
 

 

Dottorato di Ricerca in Scienze Immunologiche  

XXV ciclo 

 

Post-translational modifications in the control of 

Notch3 protein signaling  

 

 

 

 

Coordinatore: Prof.ssa Angela Santoni  

  

Relatore:                                                        Candidato: 

Prof.ssa Isabella Screpanti                            Dott.ssa Grazia Ferrara 

  

 

  

Anno Accademico: 2012/2013 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/74323968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 1 

INDEX 

 

INTRODUCTION 

 

1. The Notch gene family        pag. 2 

2. The role of Notch signalling in T-cell development pag. 8 

3. Notch in molecular pathogenesis of T-ALL leukemia pag. 10 

4. Proteins Post-translation Modifications   pag. 14 

    4.1 Acetylation and deacetylation: HATs and HDACs pag. 15 

    4.2 The role of acetylation on Notch signaling pathway pag. 25 

    4.3 Histone deacetylase inhibitors pag. 27 

    

 

EXPERIMENTAL DATA     

  

5. Introduction                                  pag. 31 

6. Materials and Methods      pag. 33 

7. Results        pag. 38 

8. Discussion        pag. 52 

9. References        pag. 55 

                   

 

 

 

 



 2 

INTRODUCTION 

 

1. The Notch gene family: structure and function 

Notch receptors are large single-pass type I transmembrane proteins whose 

function is important for normal cell-fate determination in many multicellular 

organisms.  The Notch signalling cascade represent an evolutionarily old and 

very well conserved system for signal transduction and can be found in 

species as diverse as flies, worms and humans. 

The Notch family consists of one member in Drosophila, two receptors, LIN-

12 and GLP-1, in Caenorhabditis elegans and four highly conserved 

transmembrane receptors (Notch-1, 2, 3 and 4) in mammals (Lardelli M. et 

al., 1995). 

 

The structure 

Notch is synthesized as an ≈300 kDa protein with a single-pass 

transmembrane domain harbouring a large extracellular domain involved in 

ligand binding, and a cytoplasmatic domain involved in signal transduction. 

As for the structural organization, all Notch proteins share similar basic 

structure (Figure 1). 

The extracellular domain (≈1700 aa)  includes 29-36 epidermal growth factor 

(EGF)-like repeats. EGF repeats are small molecular domain that typically 

contain three disulphide bonds and are primarily composed of β-strand, 

forming an extended rod-like structure. Some of EGF repeats (11-12 and 24-

29) mediate interactions with the Notch ligand. Many of their EGF repeats 

bind calcium, which has been shown to be important for receptor-ligand 

complexation (Cordle J. et al., 2008; Raya A. et al., 2004) and can be 

modified by two forms of O-glycosylation, O-fucose and O-glucose (Haines 

and Irvine 2003). The effects of these modifications are complex and have 



 3 

implications for Notch folding, sensitivity to the ligands and signaling 

efficiency. 

Within the extracellular domain structure , the EGF repeats are followed by a 

unique negative regulatory region (NRR), The NRR functions to keep Notch 

in an off state until it interacts with a DSL ligand. NRR is  composed of three 

cysteine-rich Lin12-Notch repeats (LNR) (each LNR domain is disulphide 

bonded and binds calcium) and a hydrophobic stretch of amino acids  the 

heterodimerization domain (HD). The three LNR domains protect the S2 site 

contained within the HD from cleavage. The structure of the NRR suggests 

that some sort of conformational change or unfolding event occur to expose 

the S2 site for cleavage by ADAM.  

In contrast to Drosophila Notch, during the secretory pathway, mammalian 

Notch proteins are cleaved by furin-like convertases at site 1 (S1). This 

cleavage generates a Notch extracellular domain-Notch transmembrane and 

intracellular domain (NECD-NTMIC) heterodimer that is held together by 

noncovalent interactions between the N- and C- terminal halves of the  

heterodimerization domain. The single transmembrane domain of the Notch 

receptor contains 3-4 arginine/lysine (Arg/Lys) residues with a C-terminal 

“stop translocation” signal. 

The intracellular region of all Notch orthologs (NIC) harbors multiple 

conserved elements. The membrane-proximal RAM (RBP-jΚ association 

module) domain contains a high-affinity binding module of 12-20 amino 

acids with a conserved “tryptophan- any amino acids-proline” (WxP )motif. 

Notch intracellular domain also contains two nuclear localization sequences 

(NLSs), a seven ankyrin repeats (ANK) domain and a loosely defined and 

evolutionarily divergent transactivation domain (TAD). While Notch1 and 

Notch2 also contain a transcriptional transactivation domain (TAD), such 

domains have not yet been described for Notch3 and Notch4. Finally, the C 

terminus of Notch receptor holds a glutamine-rich repeat (OPA) that is 
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present only in Drodophila and a conserved proline/glutamic 

acid/serine/threonine-rich (PEST) sequence motif that harbor degradation 

signals and negatively regulates protein stability.   

In mammals, the different members of the Notch family have a variable 

structural homology. Despite a similar basic structure with respect to Notch1 

and 2, Notch3 possesses a number of structural differences at the level of 

EGF-like repeats, and mostly in the intracellular domain  (Lardelli M. et al., 

1994).  Notch4-Int3 is considered a Notch protein-related. 

 

 Figure 1:  The structure of Notch receptors  

                 

 

Ingrid Espinoza, Lucio Miele. Pharmacology & Therapeutics 139 (2013) 95–110 
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Notch Signaling Pathway 

Notch signaling is initiated by dynamic interactions between membrane-

bound Notch receptors and ligands during direct cell-cell contact (Cordle J. et 

al., 2008) (Figure 2). Most Notch ligands are themselves type I 

transmembrane proteins characterized by three related structural motifs: an N-

terminal DSL (Delta/Serrate/LAG-2) motif, involved in Notch binding, a 

DOS (Delta and OMS-11-like proteins) domain that holds specialized tandem 

EGF repeats (Komatsu H. et al., 2008), and a variable number of EGF-like 

repeats.  

Several genetic and molecular studies have identified a real family of Notch 

ligands structurally related: Delta and Serrate in D. melanogaster and lag-2 

and apx-1 in C. elegans. In mammals, five differents ligands have been 

identified: three ortologs (Delta -1, -3, -4)  are structurally related to 

Drosophila Delta (Dunwoodie S. et al., 1997), and two orthologs (Jagged -1 

and -2) to Drosophila Serrate (Lindsell CE et al., 1995; Shawber C. et al., 

1996; Luo B. et al., 1997). 

After ligand binding Notch receptor undergoes a conformational change, 

triggering two sequential proteolytic cleavages of Notch (Bray S.J. 2006). 

The first cleavage is catalyzed by the tumor necrosis factor α-converting 

enzyme (TACE), an ADAM-type metalloproteinase.  This cleavage affects 

site 2 (S2), located nearly 12 amino acids before transmembrane domain and 

within the negative regulatory region and creates a short-lived 

transmembrane Notch domain that becomes a substrate for γ-secretase. γ-

Secretase is a protein complex that consists of Presenilin, the catalytic 

subunit, and three other proteins that contribute to substrate recognition and 

stability: APH-2/Nicastrin, APH-1 and PEN-2. This complex cleaves the 

Notch transmembrane domain, from site 3 (S3) to site 4 (S4) releasing a 

soluble cytoplasmic domain of Notch (Fortini M.E. 2002), the Notch 
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intracellular domain (NICD). Then,  liberated NICD translocates to the 

nucleus where it interacts (through its RAM domain) with a transcription 

factor, called CSL (CBF1 in humans, RBP-jk in mice, Suppressor of Hairless 

in Drosophila, Lag1 in C. Elegans), and a transcriptional coactivator of the 

Mistermind-like family (Wu L. et al., 2000). In the absence of NICD, CSL 

proteins bind to promoters of its target genes recruiting histone deacetylases 

and corepressor and are able to inhibit transcription (Oswald F. et al., 2005). 

The NICD/CSL interaction induces allosteric changes in CSL, that allow 

displacement of transcriptional repressor and recruitment of coactivators, 

thus inducing transcription of target genes. 

A number of target genes whose expression appears to be transcriptionally 

regulated by Notch signalling in vertebrates have been identified. The best-

characterized downstream targets of Notch/RBP-jk are members of the HES 

and HERP families of basic helix-loop-helix (bHLH) transcriptional 

repressors (Iso T. et al., 2003), NFkB (Oswald F. et al., 1998), the locus 

control region of the β-globin locus (Lam and Bresnick 1998), the cell cycle 

regulator p21 (Devgan V et al., 2005), Deltex (Ordentlich P. et al., 1998) and 

the pre-T cell receptor-α gene (Reizis B. et al., 2002).  

The model of signal transduction, just described, is characterized by a 

remarkable immediacy. The intracellular domain of Notch is able itself, 

without intermediaries, to influence the gene expression of the target cell. 

This feature helps to understand the high degree of evolutionary conservation. 

The simplicity of this model is greatly complicated by the numerous levels of 

control that are exercised on it: Notch signalling can be regulated by several 

modulators that acts at extracellular, cytoplasmic or nuclear levels (Artavanis-

Tsakonas S.  et al., 1999).  
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Figure 2:  Notch signaling 

 

Kathleen M.et al. Carcinogenesis vol.34 no.7 pp.1420–1430, 2013 
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2. The role of Notch signalling in T-cell development  

 

The first step of T-cell differentiation occur within the thymus, 

a specialized organ of the immune system, composed of a central medulla and 

a peripheral cortex, surrounded by an outer capsule. Proliferation, cell fate 

specification or death of T-cell progenitors are determined by instructive and 

selective signals, that are either cell autonomous or arise from interactions 

with the thymic stroma (Boyd and Hugo 1991) and lead the thymocyte 

progression from immature CD4
-
CD8

-
 double negative (DN) towards 

CD4
+
CD8

+
 double positive (DP) phenotype and their CD4

+
CD8

-
  versus 

CD4
-
CD8

+
 single positive (SP) and/or αβ versus γδ cell lineage choise. In 

addition to the signals generated by T cell specific differentiation products, 

e.g. the pre-T-cell receptor (pre-TCR) (von Boehmer H. et al., 1999) and 

mature TCR αβ (Jameson and Bevan 1998) other general biological 

regulators provide to control the intrathymic T cell differentiation. Multiple 

Notch receptors and their cognate ligands are described in distinct thymic cell 

compartments and play a major role during thymocyte differentiation (Felli 

MP et al., 1999). The first suggestion that Notch signaling could be an 

important regulator of haematopoietic progenitor commitment to the T-cell 

lineage came in the early 1990s, when human NOTCH1 was identified 

through the analysis of a chromosomal translocation t(7;9)(q34;q34.3) 

detected in a small number of T-ALL patients (Ellisen L.W. et al., 1991) 

suggesting that mutated “active” Notch1 could transform T-cell progenitors. 

Several years later multiple investigators demonstrated that Notch1 is 

required for early T cell-commitment (Radtke F. et al 1999), T cell lineage 

decision (αβ or γδ) and VDJβ rearrangement (Wolfer A. et al., 2002). More 

specifically, Notch1 expression is high in early DN thymocytes, low in DP 

cells and intermediate in CD4 and CD8 SP cells (Hasserjian R.P. et al., 1996). 

Unlike Notch1, Notch3 is highly expressed in double negative immature 

http://en.wikipedia.org/wiki/Specialized
http://en.wikipedia.org/wiki/Immune_system
http://en.wikipedia.org/wiki/Thymus#Medulla
http://en.wikipedia.org/wiki/Cortex_(anatomy)
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thymocytes just before their transition through the β selection checkpoint and 

is subsequently downregulated across the DN to DP transition (Felli MP et 

al., 1999), that is controlled by the pre-TCR signaling pathway and 

characterized by an activated NF-kB (Voll RE et al., 2000), suggesting a 

specific role of Notch3 at this stage of thymocyte development. The ability of 

Notch3 to influence T-cell development was confirmed by generating Lck 

proximal promoter–driven Notch3-IC transgenic (N3-IC-tg) mice, in which 

the active intracellular domain of Notch3 (Notch3-IC) is selectively 

overexpressed in immature DN thymocytes (Bellavia et al., 2000). N3-IC-tg 

mice display a phenotype of dysregulated early T cell development, 

characterized by the impairment of the pre-TCR selection stage of T cell 

differentiation (e.g. expansion of stage II and III DN cells, retention of CD25 

expression in post-DN cells and constitutively activated NFkB) and the 

outgrowth of aggressive T-cell lymphoblastic lymphomas (Bellavia D. et al., 

2000 ). These data strongly suggest a specific role of Notch3 in controlling 

the crucial events occurring at the DN – DP transition, in agreement with the 

physiological expression profile of the receptor. The important role of both 

Notch1 and Notch3 in different stages of T cell development is also supported 

by the onset of lymphoproliferative diseases in murine models displaying 

constitutively active signaling of these receptors (Robey E. et al., 1996; 

Deftos ML et al., 2000; Bellavia et al., 2000). In other studies, introduction of 

constitutively active downstream components of the pre-TCR signaling 

machinery into RAG-deficient DN3 cells was insufficient to restore 

progression to the DP stage in the absence of Notch signaling ( Ciofani M. et 

al., 2004). Furthermore, DN3 cells cultured in the absence of Notch signaling 

died, suggesting that Notch functions as a survival factor at this stage of 

development. Moreover, Notch3 overexpression in a pTα knockout 

background (obtained by the generation of N3-IC/pTα
-
/
-
 double mutant mice), 
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is able to partially rescue the impaired T cell differentiation displayed by pTα
-

/
-
 mice (Bellavia et al., 2002). 

 

3. Notch in molecular pathogenesis of T-ALL leukemia  

 

In recent years aberrant Notch signaling has been linked to various forms of 

tumors, but the best-documented role of activated Notch signaling in human 

carcinogenesis is certainly T cell acute lymphoblastic leukemia (T-ALL).  

T-ALL is an aggressive hematopoietic malignancy of developing thymocytes 

that represents 15% of pediatric and 25% of adult acute lymphoblastic 

leukemia (ALL) cases and is characteristically more prevalent in males than 

in females (male-to-female ratio 3:1). The disease is generally associated with 

more unfavourable clinical features such as a high white blood cell counts, 

increased numbers of blast cells, enlarged mediastinal lymph nodes and 

involvement of the central nervous system (Uckun FM et al., 1997).  

Transformation events occur in crucial steps in thymocytes development and 

involve various genetic alterations that give rise to abnormal cell-cycle 

control with uncontrolled growth and clonal expansion of T cells. The 50% of 

T-ALL cases show an abnormal kariotype. The chromosomal translocations 

that occur frequently  in cases of T-ALL involve the juxtaposition of genes 

coding for transcription factor next to strong regulatory elements located in 

the vicinity of the T-cell receptor β (TCRβ) gene in chromosome 7q34 or the 

T-cell receptor α-δ (TCRαδ) locus in chromosome 14q11 (Ferrando and Look 

2000). These T-ALL specific transcription factor onocogenes include basic 

helix-loop-helix transcriptions factors such as TAL1, TAL2, LYL1, 

bHLHB1; LIM-only domain (LMO) proteins such as LMO1 and LMO2; 

HOXA homeobox genes; the MYC and MYB oncogenes. About 10% of T-

ALL cases harbor translocations resulting in the expression of fusion 

transcripts encoding chimerical proteins with oncogenic properties such as the 
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SIL (SCL-interrupting locus)-TAL1. Although some T-ALL tumors seem to 

result from chromosomal translocations or rearrangements that activate 

oncogenes or create oncogenic fusion genes, more than 50% of T-ALL 

patients have mutations leading to the hyperactivation of the Notch1 pathway, 

suggesting that this signaling cascade plays a central role in T-ALL 

pathogenesis. Generally, Notch1 mutations cluster in two general regions 

either at the PEST or the HD domain. Mutations about the C-terminus of the 

Notch1 receptor are frequently nonsense or frameshift mutation leading the 

deletion of the PEST domain, normally regulating Notch1 stability and 

degradation (Chiang MY et al., 2006).  Whereas mutations (such as single 

amino acids changes, short insertions or deletions that maintain the reading 

frame)  within the HD domain (exon 26 or 27) render Notch1 susceptible to 

ligand-indipendent S2 cleavage (Malecki MJ et al., 2006). Constitutive 

activation of Notch signaling affects the expression of specifics target genes 

and the downstream signaling pathways.  The best-characterized direct target 

genes include the bHLH transcriptional repressor Hes1 (Dudley DD et al., 

2009), the transcription factor c-Myc (Weng AP et al., 2006; Palomero T et 

al., 2006), the PI(3)-kinase/Akt (Palomero T et al 2007; Sade H et al 2004), 

and mTor (Chan SM et al., 2007) signaling cascade. Another important 

signaling pathway activated in response to the expression of NICD or human 

T-ALL NOTCH1 mutations in hematopoietic progenitors is the NF-kB 

cascade. Notch1 signaling is able to promote G1/S cell cycle progression via 

upregulation of CDK4 and CDK6 (Joshi I. et al.,2009) and downregulation of 

p27/KIP1 and p18/INK4C cell cycle inhibitors (DohdaT. et al., 2007; 

Palomero T. et al., 2006). 

Several experimental models of Notch receptor dysregulated expression have 

suggested critical and distinct roles for different Notch receptors in differents 

steps of T cell differentiation and in T cell leukomogenesis, giving rise the 

initial basis to analize for their oncological potential. Indeed, the oncogenic 
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potential of NOTCH1 was demonstrated in murine bone marrow (BM) 

reconstitution experiments. Mice reconstituted with BM cells expressing a 

truncated human form of NOTCH1 developed haematological malignancies 

characterized as T-ALL (Pear WS et al., 1996). The importance of Notch 

family member in the development of T-ALL has been further elucidated by a 

study in which Notch3 was shown to be expressed in all 30 human T cell 

acute leukemia samples examined, whereas Notch3 expression was 

dramatically reduced or absent in remission and in other types of T-ALL 

(Bellavia D. et al., 2002). These data together with the generation of Notch3 

transgenic mice has confirmed and reinforced the involvement of other Notch 

receptors in T-ALL pathogenesis. The T cell lineage-targeted enforced 

expression of the constitutively active Notch3-IC leads to an aggressive T-

cell leukemia, characterized by sustained expression of pTα, the invariant 

chain of pre-TCR,  enhanced expression of specific Notch target genes, such 

as HES-1 and Deltex and the constitutive activation of NFkB in thymocytes 

and peripheral T cells (Bellavia D et al., 2000), consistent with improved 

survival and increased numbers of thymocytes in Notch3 tg mice.  

The combined misexpression of the genes encoding Notch3, pTα and HES1 

in human T-ALL suggests that a signaling defect at a specific step in T-cell 

development, the pre-TCR checkpoint, is responsible for T-cell 

leukemogenesis. Indeed, deletion of pTα in Notch3-transgenic mice prevents 

tumor development.  

The important role of pTα was already observed in previous experiments that 

required the use of bone marrow precursors with rag2
-
/
-
 genotype unable to 

successfully rearrange TCR. Consequently, thymocytes differentiation is 

blocked in an early stage due to inability to express the β chain of the TCR, 

an essential component of this receptor complex. Also in this case the 

development of the disease was completely abrogated. The subsequent re-

introduction of a construct expressing the transgenic β chain of the TCR 
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instead was able to restore the tumor phenotype (Allmann D. et al., 2001). 

The result has been further confirmed using hematopoietic stem cells from 

mice SLP-76
-
/
-
, carrying a deletion of an adapter protein, essential for the pre-

TCR signal transduction (Allmann D. et al., 2001): also in this case it was 

observed the complete absence of malignant disease. 

Ultimately, as suggested for the role of oncogenetic Notch1 (Allmann D. et 

al., 2001), the development of Notch3-induced T-cell leukemia appears to be 

closely linked to the presence of the pre-TCR functionally active complex. 

Conversely to Notch1 for the Notch3 gene were not described specific 

mutations or obvious gene rearrangements, while an increase was observed in 

all cases of T-ALL analyzed (Bellavia D. et al., 2002). Therefore, differently 

from what happens for Notch1, the mechanism that regulates and supports the 

overexpression of Notch3, in association with that of pTα, has yet to be 

characterized. 
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4. Proteins Post-translation Modifications  

 

Posttranslational modifications (PTMs) of proteins represent fascinating 

extensions of the dynamic complexity of living cells’ proteomes. PTMs have 

a significant physiological/biological impact, playing crucial roles in 

regulating signaling, protein-protein modifications, protein conformational 

stability and subcellular localization. They can be either transient or 

permanent and may result from either targeted, enzymatically catalyzed 

reactions or spontaneous chemical reactions in the cell. Modifications include 

phosphorylation, glycosylation, nitrosylation, methylation, acetylation, 

lipidation and proteolysis and can act alone and in combination to regulate 

nearly all aspects of protein function.  

 

Notch signaling is used reiteratively for a vast variety of developmental 

processes as well as during the adult life of many organisms. To fulfill its 

multiple functions in distinct tissue, Notch signaling is tightly controlled both 

in time and space (Le Borgne R. 2006). Increasing number of reports have 

shown that Notch is subject to a variety of post-translational modifications 

which regulate its activity. These modifications include glycosylation, 

ubiquitylation, phosphorylation, acetylation and hydroxylation. 

Glycosylation of Notch receptors by Fringe enzymes (N-

acetylglucosaminidyltransferases) affects binding affinities between ligands 

and specific EGF-repeats (Okajima T. et al., 2003). Phosphorylation of Notch 

occurs at different residues and is caused by different kinases . 

Ubiquitination is a main player in regulating a broad variety of cellular 

processes including cell division, differentiation, signal transduction, protein 

trafficking and quality control (Mukhopadhyay D et al., 2007).  Therefore, 

ubiquitin is a versatile modification designed to shape cell-signaling pathways 

and is at the heart of the spatiotemporal control of Notch signaling. Several 
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studies have suggested that proteasomal degradation of activated forms of 

Notch (Notch-IC) may be required for the negative regulation of Notch 

signaling (Hubbard EJ. et al., 1997; Schweisguth F. 1999). c-Cbl, Itch and 

Sel-10 are all involved in the negative regulation of Notch signaling (Qiu L. 

et al., 2000; Oberg C. et al., 2001; Wu G. et al., 2001; Jehn BM et al., 2002). 

Indeed,  C elegans and mammalian SEL-10/Fbw7 (a WD40-repeat containing 

F-Box protein component of an Skp1/Cul1/F-box protein-Rbx1-type 

ubiquitin ligase) were shown to ubiquitinate NICD to promote its 

proteosomal degradation (Hubbard EJ et al., 1997; Oberg C. et al., 2001; Wu 

G. et al., 2001). Although , c-Cbl has been shown to promote ubiquitin-

dependent lysosomal degradation of membrane-associated Notch1 (Jehn BM. 

et al., 2002), recently we have demonstrated that c-Cbl is also able to target 

Notch3-IC protein to the proteosomal-degradative pathway only in the 

presence of pTα and that this depends on the cytoplasmic localization and 

tyrosine phosphorylation state of c-Cbl  (Checquolo S. et al., 2010). In 

addiction to ubiquitination, other PTMs suchs as phosphorylation, 

glycosylation and acetylation have been identified in Notch. Different PTMs 

form a complex regulatory program with characteristics of a sophisticated 

language and such a program is fundamental to normal development and 

disease pathogenesis. 

 

4.1 Acetylation and deacetylation: HATs and HDACs. 

Epigenetic modifications are defined as heritable changes in gene expression 

that are not due to any alteration in the genetic information represented by the 

DNA sequence. Unlike genetic modifications, epigenetic modifications are 

reversible. Acetylation has emerged as a major posttranslational modification 

for histones. Cross-regulation between this and other modifications is crucial 

in modulating chromatin-based transcriptional control and shaping inheritable 

epigenetic programs. It has been nearly 40 years since Allfrey and co-workers 



 16 

proposed that acetylation state of histones within chromatin is correlated with 

gene regulation. The acetylation neutralizes the positive charge of the histone 

lysine residues, relaxing the chromatin conformation and enabling greater 

accessibility of the transcription machinery (Haberland M. et al., 2009). In 

contrast, the removal of the acetyl groups from histones induces chromatin 

condensation and gene transcriptional repression (Haberland M. et al., 2009). 

In addiction to transcription, the status of histone acetylation may influence 

cell growth and differentiation (Mizuguchi G. et al., 2001).  

Like histones, many nonhistone proteins are subject to acetylation.. There is a 

growing body of evidence supporting the notion that acetylation, like 

phosphorylation, is an important regulatory protein modification. Indeed, the 

acetylation of several transcription factors and cytoplasmic proteins may 

regulate multiple mechanisms, such as modification of DNA binding ability, 

secondary protein-protein interactions, protein half-life and protein 

localization thus affecting DNA repair, cell cycle progression, apoptosis and 

various signaling pathways. 

 

Acetylation is a reversible modification controlled by the antagonistic actions 

of two types of enzymes, histone acetylases (HATs) and histone deacetylases 

(HADCs). 

 

The Histone Acetylases (HATs) 

Histone acetyltransferase (HAT) enzymes are the catalytic subunits of 

multisubunit protein complexes that acts by transferring an acetyl group from 

acetyl-coenzyme A (acetyl-CoA) to an ε-amino group of certain lysine side 

chains within a histone’s basic N-terminal tail region.  Acetylation of lysine 

residues at the ε-NH2 is highly dynamic and neutralizes part of histone tail 

region’s positive charge, weakening histone-DNA or nucleosome-nucleosome 

interactions (Nakatani Y. 2001), thereby destabilizing nucleosome structure 



 17 

or arrangement. In this way, nuclear factors, such as the transcription 

complex, have more access to a genetic locus. HAT proteins, forming 

multiple complexes, are recruited to chromatin to acetylate histones and/or 

transcription factors. A large number of transcription factors are now known 

to have HAT activity. Sequence analysis of these proteins reveals that they 

fall into distinct families that show high sequence similarity within families 

but poor to no sequence similarity between families (Kuo M.H. et al., 1998).  

HAT proteins generally belongs to one of two categories (Sterner E. and 

Berger S. L. 2000):  

- type A, located in the nucleus, catalyze the postsynthetic acetylation of all 

four nucleosomal histones. 

- type B, located in the cytoplasm, are responsible for the acetylation of 

newly synthesized histone proteins. This allows the transport of “de novo” 

translated histones through the nuclear membrane and the subsequent 

replacement into newly replicated DNA. 

The A-type HATs are organized in five distinct groups based on structural 

homology in the primary sequence as well as on biochemical mechanism of 

acetyl transfer (table 1 ):  

- human Gnc5 (KAT2A), PCAF (KAT2B) and ELP3 (KAT9) belong to the 

GNAT family and are known as transcriptional activators; 

- the p300/CBP family members are the most studied. Unlike the other 

families, they don’t bind directly to DNA, but are recruited on the promoters 

of target genes by other transcription factors  (capable themselves of binding 

DNA) , such as E1A and CREB, only in phosphorylated form (Roth SY et 

al., 2001). The HATs CBP and p300 are two ubiquitous transcriptional co-

activators and  structurally contain several protein domains, including a 

bromodomain (believed to facilitate interactions with acetylated lysine 

residues) , three regions of zinc-finger (Cys, ZZ and TAZ), a centrally 

located and highly conserved acetyltransferase (HAT) domain and two 
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independent regions that interact with different transcription factors 

(Janknecht R. and T. Hunter, 1996);  

- the MYST family of HAT proteins are involved in divergent biological 

functions regulating transcriptional silencing, dosage compensation in 

Drosophila, HIV Tat interaction, DNA repair and includes Tip60 (KAT5), 

MOZ/MYST3 (KAT6A), MORF/MYST4 (KAT6B), HBO1/MYST2 

(KAT7) and HMOF/MYST1 (KAT8);  

- TAF1/TBP (KAT4) and TIFIIIC90 (KAT12) belong to transcriptional 

factor related HAT family (TF-related HATs family);  

- different steroid receptor co-activators have been described to be 

catalytically active histone acetyltransferases, e.g. SRC1 (KAT13D), p600 

(KAT13C) and other (NR-coactivators). 

While the GNAT and MYST families have homologs from yeast to man, 

p300/CBP is metazoan-specific. 

 

Table 1. Nuclear type A HAT families 

 

 Furdas S. D. et al. Arch. Pharm. Chem. Life Sci. 2012, 345, 7–21 
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Despite the lack of significant sequence similarity between each HAT 

subfamilies, all HATs share a globular α/β fold in which the central αβ core 

region is surrounded by a bundle of alpha helices at opposite ends (N- and C- 

terminal) of the enzyme. This core region participates in acetyl CoA co-

factor binding and templating the respective substrate protein for acetylation 

and appears structurally conserved among the various subfamilies of HATS. 

Unlike the core region, the various HAT sub-families contain structurally 

divergent regions, the N- and C- terminal regions (that flank the core region). 

The diversity in these regions could be correlated with their distinct substrate 

specificities, biological activities and with their different chemical strategies 

to acetylate their substrates (Yuan H. and Marmostein R. 2013). 

 

HATs are increasingly being recognized as modifier of both histones and 

nonhistone proteins (Sterner D.E. et al., 2000). Acetylation of non-histone 

proteins, has been shown to modulate their functions by altering their 

stability, cellular localization or interactions, thus, contributing to several 

processes which are crucial for cellular fate.  Protein acetylation patterns 

(which are often collectively termed the “acetylome”) involve more than 60 

transcription factors and many other proteins that regulate DNA repair and 

replication, metabolism, cytoskeletal dynamics, apoptosis, nuclear import, 

protein folding, and cellular cellular signaling (Table 2), allowing to interfere 

with every step of regulatory processes from signaling to transcription to 

protein degradation. The tumor suppressor p53 was the first non-histone 

protein shown to be acetylated by HATs (Gu and Roeder 1997). p53 can be 

acetylated at multiple lysines by distinct acetyltransferases and enhancement 

of p53 acetylation levels strongly correlates with protein stabilization and 

activation in response to cellular stress (Luo J. et al., 2000; Ito A. et al., 

2001). PCAF and p300/CBP catalyse acetylation of C-terminal p53 lysine 

residues which overlap with ubiquitination sites and abrogates complex 



 20 

formation between p53 and Mdm2, preventing p53 proteasomal degradation 

(Ito A et al 2002). Numerous HATs (CBP, Tip60, Gcn5 and PCAF) were 

shown to be able to acetylate c-Myc at multiple lysine, preventing its 

ubiquitination and proteasomal degradation (Patel JH et al., 2004; Vervoorts 

J. et al., 2003). Posttranslation modifications of NF-kB dimers have been 

shown to alter their interactions with co-activators. Phopsphorylated p65 (a 

NF-kB subunit) preferentially interacts with p300/CBP resulting in p65 

acetylation at multiple site and increased transcription of NF-kB target genes 

(Greene and Chen  2004). 

Aberrant lysine acetylation has been reported in malignant cells (Yang XJ 

2004) and HATs and HDACs are closely linked to severe disease such as 

cancer, neurodegeneration, cardiovascular disorders, inflammation and 

functional alterations in metabolic cascades. Hence, the HAT-HDAC 

interplay represents an important target system for regulatory mechanisms 

and for the development of potential therapeutical strategies. In the last ten 

years a limited number of compounds have been identified to address lysine 

acetyltransferase activities, inhibiting or activating these histone modifying 

enzymes: natural products, synthetic derivates, bisubstrate inhibitors and 

syntetic small molecules. Anacardic acid was the first non-competitive HAT 

inhibitor found with inhibitory activity against PCAF and p300 that show 

anticancer activity. This compound inhibits the acetylation of the p65 subunit 

of NF-kB blocking its activation and nuclear localization (Sung B.M. et al., 

2008). Curcumin, an other natural product, show a certain selectivity within 

the HAT family. Indeed,  it is unable to affect the enzymatic activity of PCAF 

but show specifity towards p300. Curcumin is able to repress p300-mediated 

p53 acetylation  and inhibits histones H3 and H4 acetylation 

(Balasubramanyam K. et al., 2004). Other compounds, such as a derivative of 

quinoline, MC1626 (Smith et al., 2007) and the isothiazolones (Stimson L. et 

al., 2005), act instead as inhibitors of GCN5, PCAF and p300, respectively. 
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Table 2. Selected non-histones proteins and functional consequences of 

their acetylation 

 

Spange S. et al.  The International Journal of Biochemistry& Cell Biology 41(2009) 185-198 

 

 

 

 

HDACs 

HDACs have emerged as crucial transcriptional co-repressors in highly 

diverse physiological and pathological systems. In human, HDACs comprise 

a family of 18 genes sub-diveded into 4 classes on the basis of their sequence 

homology to ortholog yeast proteins, sub-cellular localization and enzymatic 

activities (Thiagalingam S. et al., 2003) (Figure 3). 

Class I, II and IV HDACs are also referred to as “classical” HDACs and are 

Zn2+-dependent enzymes whereas class III HDACs, also called sirtuins 

require NAD+ as a cofactor. 
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Figure 3. Human HDACs superfamily 

 

Barneda-Zahonero B.  and Parra M. Molecular Oncology 2012. 

 

Class I HDACs, ubiquitously expressed in all tissue, are nuclear proteins 

(with homology to the yeast RPD3 protein) able to exert a strong catalytic 

effect on histone lysine. Phylogenetic analysis suggests that this class can be 

sub-divided in class IA (HDAC1 and 2), class 1B (HDAC3) and class 1C 

(HDAC8). The protein structure of this class of proteins  is characterized by 

a highly conserved deacetylase domain flanked by short amino and carboxy- 

terminal extensions (Yang and Seto 2008). HDAC1 and HDAC2 are highly 

similar and play a critical role in proliferation, cell cycle and apoptosis 

processes (Segre and Chiocca 2011); HDAC3 is involved in cell cycle 
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control and DNA damage response (Reichert N. et al., 2012); HDAC8, 

predominantly found in the cytosol, associates with smooth muscle alpha-

actin playing an important role in smooth muscle cell contractility 

(Waltregny D. et al., 2005). HDAC class II is divided in class IIA 

(HDAC4,5,7 and 9) and class IIB (HDAC6 and 10) on the basis of the 

presence of a double deacetylase domain typical of HDAC6 and 10 (Verdin 

E. et al., 2003). This class of proteins is constituted by large proteins 

shuttling between cytoplasm and nucleus with homology to the Hda1 yeast 

protein (Verdin E. et al., 2003). HDACs class IIA are expressed in a tissue-

specific manner and are involved in differentiation and development. Signal-

dependent phosphorylation of class IIA is responsible whether they are 

localized in the nucleus or cytoplasm affecting their ability to act as 

transcriptional co-repressors in the nuclear compartment (Yang X.J. and Seto 

E. 2008). HDAC6 is the only HDAC that has substrate specificity versus α-

tubulin, due to the presence of a  α-tubulin deacetylase domain. HDAC10 is 

found in the nucleus and cytoplasm but its specific substrates remain 

unknown. Class III HDACs (SIRT1-7) homologues of the yeast SIR2 

protein, are widely expressed and localized in different cellular 

compartments. Sirtuins have a critical role in regulation of oxidative stress, 

DNA repair, regulation of metabolism and aging (Saunders  L.R. and Verdin 

E. 2007). HDAC11 is currently the only member of the class IV HDAC 

subfamily and is characterized by a deacetylase domain sharing homology 

with both HDAC class I and class II domains (Gao L. et al., 2002). HDACs 

are found as part of multi-protein complexes with differents proteins such as 

Silencing mediator for retinoid and thyroid receptors (SMRT), Nuclear co-

repressor (N-Cor), Sin3 and Nuclear remodeling complex (NURD) (Yang 

X.J. and Seto E. 2008). Although histone deacetylases catalyse the removal 

of acetyl groups from lysine residues in histone amino termini, leading to 

chromatin condensation and transcriptional repression (Roth S. et al., 2001) 
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the activity of the different HDACs is not limited to histones and consequent 

chromatin modification, but also effects several addictional substrates 

(Glozak MA. et al., 2006). Transcription factors, signal transcription 

mediators, DNA repair enzymes, chaperones, structural proteins have been 

described to be subjected to reversible acetylation by HATs and HDACs.The 

identification as HDAC substrates of proteins, such as p53, HSP90, E2F, 

pRb and BCL6 (Juan LJ et al., 2000; Kovacs JJ et al., 2005; Bali P. et al., 

2005; Martinez-Balbas MA. et al., 2000; Nguyen DX et al., 2004; 

Bereshchenko OR et al., 2002) , clearly involved in oncogenesis and cancer 

progression, suggests that the aberrant pattern of acetylation occurring in 

cancer cells,  is not limited to the histone proteins but could be extended to 

some or all HDAC possible substrates. 

 

HDACs and cancer 

Cancer has traditionally been considered a disease of genetic defects (gene 

mutations, deletions and chromosomal abnormalitities), resulting in the loss 

of function of tumor suppressor genes and/or gain of function or 

hyperactivation of oncogenes (Hanahan D. and Weinberg R.A. 2000). 

However, there is growing evidence that gene expression governed by 

epigenetic changes is also crucial to the onset and progression of cancer 

(Lund A.H. and van Lohuizen M. 2004). Most studies show the contribution 

of HDACs to cancer.  

- HDACs can be aberrantly recruited to target genes via their 

interaction with oncogenic DNA-binding fusion proteins (that result 

from chromosomal translocations). Is the case of the oncogenic PML-

RARα, PLZF-RARα and AML1-ETO fusion proteins that induce 

acute promyelocytic leukemia (APL) and acute myeloid leukemia 

(AML) by recruiting HDAC-containing repressor complexes  to 

constitutively repress expression of specific target genes. 
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- HDACs can physical interact with overexpressed repressive 

transcription factors. For example, B-cell lymphoma 6 (BCL6) is a 

transcription factor overexpressed in ≈40% of diffuse large B-cell 

lymphomas (DLBCLs) that results hypo-acetylated by HDACs and 

specifically recruits HDAC2 to repress  growth-regulatory target 

genes such as CDKN1A (encoding p21
WAF1/CIP1

) (Pasqualucci L et 

al., 2003). 

- Mutations and/or aberrant expression of various HDACs have often 

been observed in human disease, in particular cancer. HDAC1 is 

overexpressed in prostate, gastric, colon and breast carcinoma 

(Halkidou K et al.2004; Choi J.H. et al 2001; Wilson A. et al 2006; 

Zhang Z et al., 2005). Somatic mutations of HDAC2 gene have been 

identified in human epithelial cancers with microsatellite instability 

(Ropero S. et al., 2006). 

  

4.2 The role of acetylation on Notch signaling pathway 

Notch is a vitally important signaling receptor which modulates cell fate 

determination and pattern formation in a number of ways during the 

development of both invertebrate and vertebrate species. Because of its 

important function, the mechanism of Notch receptor signaling uses 

numerous control points. Ligand activation of Notch receptors leads to release 

of the intracellular receptor domain (NotchIC) which translocates to the 

nucleus and interacts with the DNA-binding protein RBPjk and coactivators 

to control expression of specific target genes. In addiction to ligand-mediated 

activation, Notch signaling can be further modulated by interactions of 

NotchIC with a number of other proteins. These include p300 and PCAF, 

suggesting that acetylation may be involved in Notch activity regulation. 

p300 plays a key role in facilitating the ability of MAML1 (Notch 

coactivator) and PCAF to potentiate NotchIC-mediated transcriptional 
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activation from chromatin templates (Wallberg A.E. et al., 2002). Both p300 

and MAML1 can physically interact with NotchIC: MAML1 binds to the 

ankyrin repeats, and p300 binds to a three-amino-acid motif in a region that 

has been shown to be a transactivating domain (Oswald F. B. et al., 2001; 

Beatus P.J. et al., 2001). The primary function of p300 is to act as a histone 

acetyltransferase. This was confirmed by experimentally altering the levels of 

acetyl-CoA in the in vitro transcription experiments. Furthermore p300 is able 

to interact with MAML1 leading to p300 recruitment for subsequent 

chromatin modification. This interaction potentiates p300 autoacetylation and 

thereby p300 coactivator function. MAML1 enhances p300 HAT activity 

directly, and this coincides with the translocation of MAML1, p300 and 

acetylated histones to nuclear bodies (Hansson A.E. et al., 2009). The 

function of PCAF as a coactivator of Notch1 and Notch3 appears to be 

dependent on the same p300 and MAML1: PCAF shows histone 

acetyltransferase activity and enhances Notch1 and Notch3 transcriptional 

activation (Kurooka H., T. Honjo 2000) only in the presence of p300. This 

may relate to the fact that PCAF does not interact cooperatively with 

MAML1 but directly with the same p300 protein (Yang XJ et al., 1996). 

There is therefore a hierarchical order for co-activators function, in which 

p300 plays a critical role by facilitating the action of both MAML1 and PCAF 

in enhancing Notch-IC- mediated transcriptional activation. Tip60 is another 

HAT enzyme involved in regulation of Notch1 signaling pathway. Tip60 

harbors a chromodomain, a zinc finger motif, and an acetyl-CoA binding 

domain. The zinc finger motif and acetyl-CoA binding domain play pivotal 

roles in the HAT activity and  are essential for the binding of Tip60 to 

Notch1. Tip60-Notch1 binding negatively regulates the transactivation of 

Notch1-IC target genes via the suppression of the interaction between 

Notch1-IC and CSL.   

 



 27 

4.3 Histone deacetylase inhibitors   

The initiation and progression of cancer is controlled by both genetic and 

epigenetic events. Unlike genetic alterations, which are almost impossible to 

reverse, epigenetic aberrations are potentially reversible, whereby specific 

drugs can be used to return to a physiological condition. The use of inhibitors 

of histone deacetylases (HDACi) allows the re-activation of the expression of 

tumor suppressor genes silenced in cancer cells. A relatively wide range of 

structures have been identified that are able to inhibit the activity of class I, 

class II and class IV HDACs (Johnstone R.W. et al., 2002). They derive from 

both natural sources and from synthetic routes and with a few exceptions, 

they can all be divided into chemical classes including hydroxamic acid 

derivates, carboxylates, benzamides, electrophilic ketones and cyclic peptides 

(Mai A. et al., 2005) and inhibit the enzymatic activity of HDACs with 

varying efficiency (Table 3 ).  Inhibition of deacetylase activity involves not 

only chromatin remodeling but also hyperacetylation of the non-histone 

proteins that can lead to changes in the interactions, localization and stability 

of the same proteins (Caron et al., 2005; Glozak et al., 2005).  To date, the 

HDACi anticancer drugs are considered very promising: at the cellular level, 

in fact, are able to induce differentiation, cell cycle arrest, senescence, 

apoptosis (activation of both death-receptor and intrinsic apoptotic pathways), 

and mitotic cells death. In "in vivo" experiments, inhibitors of HDACs are 

able to reduce the tumor invasiveness, angiogenesis and metastasis formation: 

their key feature in the therapy against cancer is represented by the selective 

toxicity to tumor cells compared to normal cells (Bolden et al., 2006; Minucci 

and Pelicci, 2006; Xu et al., 2007) .  Despite the highly varied structure, all of 

HDACi compounds show the same mechanism of action: the ability to block 

the enzymatic activity of HDAC proteins by binding to the zinc ion (Zn
2+

) 

located in its catalytic site.  
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Butyrate, first synthesized in 1949, and valproic acid (VPA), an anti-epileptic 

drug, were the first known HDAC inhibitors that can inhibit cell growth and 

induce apoptosis both in vitro and in vivo (Candido, E. P et al.,1978; Sealy L 

et al., 1978). Both butyrate and valproic acid are not specific and require high 

concentrations to inhibit HDAC, due to their short-chain that restricts the 

contacts with the catalytic site of HDAC (Yoo and Jones, 2006); VPA 

selectively induces the degradation of HDAC2 in vitro and in vivo and can be 

used in combination with other anticancer agents; it has been successfully 

used in combination with all-trans retinoic acid in elderly patients with acute 

myelogenous leukaemia (Raffoux, E. et al., 2005). Hydroxamates includes 

Trichostatin A (TSA), Suberoylanilide hydroxamic acid (SAHA), PXD101, 

LBH589 and  NVP-LAQ824. All these compounds are potent inhibitors of 

HDACs, and are active at micromolar to subnanomolar concentrations. TSA, 

derived from Streptomyces, was first shown to be a potent inducer of 

differentiation and cell-cycle arrest, and later reported to possess anti-HDAC 

activity (Yoshida, M., et al., 1990). The benzamides MS-275 and CI-994 are 

two of the most well-known synthetically derived inhibitors of HDACs. 

The HDACi are used in the treatment of many solid tumors, as well as in 

models of leukemia and lymphomas. In HT-29 cells (human colon 

carcinoma) treated with sodium butyrate, inhibition of cell growth is 

associated with the decrease in the levels of cyclin B1 mRNA: the 

mechanism involves the histones hyperacetylation and is dependent from p21 

expression , which directly represses the transcription of cyclin B1 (Archer 

SY et al., 2005). Even valproic acid is able to induce the expression of p21, 

as well as apoptosis and cell cycle arrest in leukemic cell lines and in cell 

cultures from leukemic patients (MR Trus et al., 2005). The use of HDACi 

induces apoptosis in three cell lines of pancreatic adenocarcinoma by 

increasing the levels of Bax protein and subsequently the release of 

apoptosis-inducing factor (AIF), which induces the intrinsic mitochondrial 
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program of apoptosis (Garcia-Morales P et al., 2005).  The treatment of 

human lung carcinoma with TSA is able to induce apoptosis of the same 

cells associated with the decrease of expression of anti-apoptotic proteins 

Bcl-2 and with the increase of expression of pro-apoptotic protein Bax, with 

consequent activation of the proteolytic activity of caspase 3, and 9 

(ChoiY.H., 2005). In chronic myeloid leukemia (CML), the activity of 

tyrosine kinase bcr-abl activates several molecular mechanisms responsible 

for the inhibition of apoptosis: the use of the deacetylase inhibitor SAHA is 

able to induce apoptosis of leukemia cells by decreasing levels of bcr-abl, c-

myc and HDAC3 (Y. Xu et al., 2005).                            

To date, many "Clinical Trials" conducted with HDAC inhibitors are showing 

a significant anti-proliferative activity in solid and haematological tumors. 
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Table 3. Molecular characteristics and clinical trial status of HDACi 

 

Bolden E. J. et al. Nat Rev Drug Discov. 2006 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=anticancer+activities+of+histone+deacetylase+inhibitor.+bolden+J.+e.
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EXPERIMENTAL DATA 

 

5. Introduction     

T-cell acute lymphoblastic leukemia (T-ALL) is characterized by aberrant 

activation of Notch1 in over 60% of T-ALL cases. The high prevalence of 

activating NOTCH1 mutations highlights the critical role of Notch signaling 

in the pathogenesis of this disease. We previously showed that Notch3 

intracellular domain (Notch3IC) transgenic (tg) mice develops a very 

aggressive T-ALL with high penetrance, representing a suitable model of the 

human disease (Bellavia et al., 2000). Accordingly, Notch3 is overexpressed 

in virtually all human T-ALL cases, independently of the genetic mutations. 

Although the role of NotchIC as a transcriptional activator is widely known, 

the molecular mechanisms priming and/or regulating Notch signaling remain 

undefined. In recent years, it has become increasingly evident that Notch 

signaling pathway is highly regulated by posttranslation modification: 

glycosylation, ubiquitylation, phoshorylation. Ubiquitylation and subsequent 

proteasomal degradation of NotchIC protein plays a key role in the negative 

regulation of Notch signaling. Indeed, several data support the involvement of 

numerous ligase, such as c-Cbl, Itch and Sel-10 in the degradation of Notch1 

(Jehn et al., 2002; Oberg et al., 2001). Recently, we have also demonstrated 

that c-Cbl ubiquitin ligase may represent a hypothetical common regulator of 

both proteins Notch3 and pTα (Checquolo et al., 2010). c-Cbl targets 

Notch3IC to the proteasomal degradation pathway only in the absence of 

pTα/pre-TCR complex.  

Protein acetylation has been shown to be a reversible process regulated by 

different families of enzymes: histone acetyltransferases (HATs) and histone 

deacetylases (HDACs) (Grozinger and Schreiber, 2002). 

Although HATs and HDACs are crucial regulators of development and 

tumorigenesis and recently data suggest their involvement in the development 
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and progression of T-cell acute lymphoblastic leukemia (T-ALL), their role in 

the control of Notch signaling is poorly understood. 

We report here that Notch3 is an acetylated protein and that acetylation 

specifically influences Notch3 protein stability. Indeed, acetylated Notch3 is 

prone to ubiquitination and proteasomal-mediated degradation of the protein.  

Consistent with this, HDACi trichostatin (TSA) treatment promotes  

Notch3IC protein acetylation and its subsequent ubiquitination and 

proteasomal degradation in N3-232T-lymphoma cells and in thymocytes from 

Notch3IC tg mice.  As a consequence, Notch3 protein expression and its 

transcriptional activity are decreased. TSA treatment is also able to inhibit 

both the development and progression of T-ALL in N3IC tg mice. Together, 

our findings demonstrate that acetylation process is involved in Notch3 

protein expression and signaling regulation and ensure  the fundamental 

prerequisites for a therapeutic approach by use of HDACi in the treatment of  

T cell leukemia. 
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6. Materials and Methods 

 

Mice 

The generation and typing of N3IC tg mice have been described (Bellavia et 

al., 2000). The studies involving animals have been conducted following the 

Italian National Guidelines for Animal Care established in Decree number 

116 of 27 January 1992, in accord to the directive CEE 86/609, as well as in 

Circular number 8 of the Italian Ministry of Health, 23 April 1994. 

 

Cell cultures and drugs treatments 

HEK293T cells were cultured in Dulbecco’s modified Eagle’s medium 

containing 10% FBS. N3-232T cells (Bellavia et al., 2000) were maintained 

in RPMI containing 10% FBS and 0.1% 2-β-mercaptoethanol. Freshly 

isolated thymocytes, preT 2017 and Molt-3T cells were cultured in RPMI 

containing 10% FBS. Cells were treated with TSA (Sigma-Aldrich, Poole, 

UK), MG132 (Sigma-Aldrich), cycloheximide (Sigma-Aldrich), Vorinostat 

(Sellek-Chemicals, Houston, TX, USA) and Chloroquine (Sigma-Aldrich) for 

the times indicated. To trigger Notch3 signaling, preT 2017 cells were co-

cultured on a monolayer of the Notch ligand-expressing murine 

microvascular endothelial cell line SIEC, as previously described (Barbarulo 

et al., 2011). For in vivo treatement, TSA was administered at 10mg/kg 

intraperitoneally once (for 12 h treatment) or daily at 1mg/kg for 3 weeks, 

unless otherwise specified. 

 

Cell proliferation assay 

For proliferation analysis, N3-232T cells treated with TSA were treated with 

1 μl of Ci/ml [
3
H]-thymidine (Amersham-Pharmacia-Biotech, Piscataway, 

NJ, USA), and [
3
H]-thymidine incorporation was measured by automated 

scintillation counter (Packard Instrument Company, Meriden, CT, USA). Cell 
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proliferation of preT 2017 cells, transfected with Flag-N3IC wt or Flag-N3IC 

K/R C vectors, was evaluated by BrdU incorporation (3 h pulse) followed by 

BrdU detection (Roche Diagnostics, Penzberg, Germany), performed 

according to the manufacturer’s instructions. Transfected cells were 

counterstained with Hoechst and Flag antibody (F7425; Sigma-Aldrich). At 

least 600 transfected cells were counted in triplicate and the number of 

BrdU/Flag-positive cells were recorded. The preT 2017 cell proliferation was 

measured by using a CellTiter 96 AQ non-radioactive cell proliferation assay 

(Promega, Madison, WI, USA). The preT 2017 cells transfected with Flag 

N3IC wt or Flag N3IC K/R C vectors were plated in 96-well plates at a 

density of 10
4
 cells/well in 100 μl of medium.  

Cells were allowed to grow up to 12 h and then combined MTS (3-(4,5-

dimethylthiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium)-phenozinmethosulfate solution (20 μl/well) was added. After 

incubation for 2h at 37°C in a humidified 5%CO2 atmosphere, the absorbance 

was measured at 490nm by using GloMax Multidetction System (Promega). 

 

 

Cell transfections, plasmids and mutagenesis 

Transient transfections were performed by Lipofectamine-2000 Kit 

(Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s 

instructions. Luciferase and renilla activity were assayed with a dual-

luciferase assay system (Promega). Expression vectors were as follows: Flag- 

Tip60, HA-p300 and GST–HAT/domain were kindly provided by M Fanciulli 

(Regina Elena Cancer Institute, Rome, Italy); p300 mutant D1472–1522 was 

kindly provided by M Levrero (University Sapienza, Rome, Italy); HA-

HDAC1 was kindly provided by PL Puri (The Burnham Institute, La Jolla, 

CA, USA); Flag- N3IC (Checquolo et al., 2010), HA- N3IC (Bellavia et al., 

2000), RBP-Jk (Talora et al., 2002), MAM and ptα promoter (Bellavia et al., 
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2007) were previously described. GST-N3IC expression plasmid was created 

by insertion of Notch3 nucleotides encoding the intracellular region (amino 

acids 1664–2318) into the PGEX-4T vector (Pharmacia, Stockholm, 

Sweden). Single or multiple residues were mutated by the Quickchange site-

directed or multi-site mutagenesis kit (Stratagene, La Jolla, CA, USA). 

 

Protein extracts, immunoprecipitations and immunoblottings 

Protein extracts preparation and immunoprecipitation assays were described 

elsewhere (Felli et al., 2005; Canettieri et al., 2010) and were performed 

using the following antibodies: anti-Flag (F7425), anti-Flag (A2220), anti-

Flag-HRP (A8592) and anti-HDAC1 (H3284), purchased from Sigma-

Aldrich; anti-Acetyl-Lysine (06-933) and anti-Acetyl-Histone H3 (06-599) 

were purchased from Upstate, Temecula, CA, USA; anti-HA (sc-7392), anti-

HA-HRP (sc-7392), anti-Notch3 (sc-7424), anti-p300 (sc-584), anti-β-actin 

(sc-1616) and anti-Ub (sc-8017) were purchased from Santa-Cruz 

Biotechnology, Santa-Cruz, CA, USA. 

 

 

Fluorescence-activated cell sorting analysis 

Freshly isolated cells from thymi, spleens, blood and lymph nodes were 

prepared and stained, as previously described (Anastasi et al., 2003), and 

analyzed on a FACS-Calibur with CellQuest software (BD-Biosciences, San 

Jose, CA, USA). Cells were stained with APC-, PE-, PerCP-Cy5.5 or FITC- 

conjugated mAbs against: CD4 (553051), CD8 (553033), CD45R/B220 

(561101) and Thy1 (553004) (BD-PharMingen, San Diego, CA, USA). For 

Notch3 intracellular staining cells were incubated with anti-Notch3 (sc-7424; 

Santa-Cruz Biotechnology). Apoptosis was detected by using Annexin V 

Apoptosis Detection Kit (00-6990; eBioscience, San Diego, CA, USA). 
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mRNA expression analysis 

Total RNA was isolated with Trizol (Invitrogen) and reverse transcribed with 

Superscript II reverse transcriptase and Oligo(dT) 12–18 Primer (Invitrogen). 

Mouse ptα gene-specific primer sequences were as follows:  

- forward 5’-CTACCATCAGGCATCGCT-3’;  

- reverse 5’-CTATGTCCAAATTCTGTGGGTG-3’. 

 

Recombinant pGEX plasmids generation and GST-tagged proteins 

purification 

GST-N3IC expression plasmid was created by insertion of Notch3 

nucleotides encoding the intracellular region (amino acids 1664–2318) into 

the PGEX-4T vector (Pharmacia). GST–HAT/domain plasmid was kindly 

provided by M Fanciulli (Regina Elena Cancer Institute). GST-N3IC and 

GST–HAT/domain were transformed into Escherichia coli BL21 (DE3) 

(Stratagene) and the GST fusion proteins expression was induced for 4 h with 

1mM IPTG (Sigma-Aldrich) at OD 0.5–0.6 nm. Bacterial cells were lysed in 

NTEN buffer (20mM Tris–HCl, pH 8, 100mM NaCl, 1mM EDTA, 0.5% NP-

40) and the recombinat polypeptides were purified by affinity 

chromatography using glutathione-Sepharose-4B (GE-Healthcare, Pollards 

Wood, UK). 

 

In vitro acetylation assays 

In vitro acetylation assays have been performed using the HA-N3IC (purified 

from N3-232T cells) and GST-N3IC (purified from E. coli) as acetylation 

substrates. His-IF2 (purified from E. coli) and a pool of purified histones have 

been used as a negative and positive acetylation controls, respectively. 

Acetylation reactions have been performed incubating the acetylation 

substrates for 1 h at 30 °C in a reaction buffer (250mM Tris–HCl, pH 8, 50% 

glycerol, 0.5mM EDTA, 5mM DTT, 10mM sodium butyrate) containing 1 μg 
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of recombinant GST-HAT/domain (purified from E. coli) and 1 μl [14C]-acetyl-

CoA (55 mci/mmol, Amersham-Pharmacia-Biotech). The reaction mixture 

was subjected to SDS–PAGE followed by autoradiography. 

 

 

 

Mass spectrometry analysis 

To perform mass spectrometry analysis of in vivo acetylated N3IC, Flag-

N3IC wt and Flag-N3IC K/R C were expressed in HEK293T cells with HA-

p300 and purified by Flag immunoaffinity chromatography and run on SDS–

PAGE. The corresponding bands were cut from the gel and were processed 

via tryptic proteolysis, after reduction and alkylation steps. The peptide 

mixtures were analysed by MALDI-ToF mass spectrometry and the resulting 

peptide mass fingerprints used to identify proteins and determine their 

possible post-translational modifications by Mascot search engine (Canettieri 

et al., 2010). 

 

 

Statistical analysis 

All results were expressed as the mean ± s.d. of n experiments as indicated in 

the figure legends. Statistical analysis was performed using Student’s t-test, 

analysis of variance (ANOVA) and Fisher’s PLSD test at a significance level 

of 0.05. 
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Results 

 

TSA treatment regulates Notch3 signaling 

To study if the acetylation/deacetylation balance influences the growth of 

Notch3-dependent lymphoma cells, we studied the effect of the class I and II 

HDAC inhibitor, TSA, on the survival and proliferation of N3-232T cells, a 

T-lymphoma cell line previously established from the N3IC tg mouse model 

of T-ALL (Bellavia et al., 2000). Following a 6-h exposure to TSA, N3-

232T-lymphoma cells exhibited a significant decrease of proliferation rate 

(Figure 1a), whereas fluorescence-activated cell sorting analysis, by Annexin 

V staining, revealed that the treatment does not induce significant increase in 

apoptosis (Figure 1b). Remarkably, TSA treatment of N3-232T cells leads to 

a significant reduction of N3IC protein expression levels, as revealed by 

western blot with either anti-N3 or anti-HA antibodies, against the HA-tagged 

N3IC transgene (Figure 1c). The efficacy of the HDACi treatment was 

documented by histone H3 hyperacetylation in TSAtreated cells (Figure 1c). 

TSA treatment also induced downregulation of N3IC protein levels in the 

human T-ALL cell line Molt-3 (Figure 1d) and in the previously described 

preT 2017 cell line, in which the triggering of endogenous N3IC was induced 

after 24 h of co-culture on a monolayer of the Notch ligand-expressing 

murine microvascular endothelial cell line SIEC (Barbarulo et al., 2011) 

(Figure 1e). Consistently with these data, we observed that TSA treatment 

also reduces Notch3 signaling, as the mRNA levels of endogenous pTalpha 

(ptα), a N3IC target gene (Talora et al., 2003), are downregulated in both N3-

232T-lymphoma cells and in thymocytes, freshly isolated from N3IC tg mice 

(Figure 1f). Accordingly, TSA suppressed the activity of a luciferase 

reporter, whose transcription is driven by the ptα promoter (Figure 1g). 

Overall, these data indicate that the inhibition of HDACs suppresses Notch3 
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signaling by reducing N3IC protein levels, thereby inhibiting Notch3-

dependent lymphoma cell proliferation. 

 

 

  

 

 
Figure 1 TSA treatment regulates Notch3 expression and signaling. N3-232T cells were treated with 1 

μM TSA or with the vehicle alone (DMSO) for 6 h. (a) Proliferation was determined by measuring the 

[3H]-thymidine incorporation (cpm) into DNA, and (b) apoptosis was evaluated by Annexin V-binding, 

analysed by flow cytometry. (c) Whole-cell extracts from TSA (6 h, 1 μM) treated or treated with the 

vehicle alone N3-232T cells were analyzed by immunoblotting (WB) with anti-HA, anti-Notch3 

(N3IC), anti-acetyl histone H3 (Ac-H3) and anti-β-actin antibodies. Total lysates from Molt-3T cells 

treated for 12 h with increasing dose of TSA or with the vehicle alone (d) and from preT 2017 cells 

after 24 h of co-culture on SIEC cells plus 12 h of 1 μM TSA treatment or treated with the vehicle alone 

(e) were analysed by western blotting using antibodies against Notch3 and β-actin. (f) Semiquantitative 

RT–PCR expression analysis of murine ptα mRNA in N3-232T cells (left panel) or in thymocytes from 

tg N3IC mice (right panel) both treated with 1 μM TSA or with the vehicle alone for 6 h. Results were 

normalized by β-actin mRNA expression. The upper panels show the relative quantification as 

determined by optical densitometry (OD). (g) Luciferase assay performed on HEK 293T cells after the 

cotransfection with a luciferase reporter construct containing pre-TCR alpha chain (pTα) promoter, 

Flag-N3IC, MAM and RBP-Jk vectors, treated with 1 μM TSA or with the vehicle alone for 24 h. RLU, 

relative luciferase units were normalized to renilla. All the results showed in the figure are expressed as 

the means average deviations of three separate experiments and bars indicate s.d. **P<0.01. 
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N3IC is a substrate for p300- and HDAC1-dependent 

acetylation/deacetylation 

The effect of TSA on N3IC expression and function suggested a direct 

relationship between Notch3 and HDAC. Indeed, we found that N3IC was 

bound to HDAC1 (Figure 2a) in immunoprecipitation experiments 

performed in HEK 293T cells co-transfected with N3IC and HDAC1 

expression vectors. The protein complex formed by endogenous Notch3 and 

HDAC1 was also revealed by immunoprecipitation in whole extracts from 

N3-232T cells (Figure 2b). Previous reports have shown that acetylation of 

nonhistone proteins may be linked to regulation of their stability (Hernandez-

Hernandez et al., 2006; Leduc et al., 2006; Mateo et al., 2009). To investigate 

whether the effect of HDAC inhibition on N3IC expression could be related 

to Notch3 acetylation, we first tested the effect of TSA treatment in HEK 

293T cells transfected with a N3IC expression vector. TSA induced N3IC 

acetylation (Figure 2c). This observation implies that N3IC is a substrate of 

HAT-dependent acetylation. Notably, although both the acetyltransferases 

p300 and Tip60 have been reported to acetylate N1IC (Kim et al., 2007; 

Guarani et al., 2011), we found instead that only HAT p300, but not TIP60, 

induced a robust acetylation of N3IC (Figure 2d), whereas the p300 mutant 

Δ1472–1522, lacking acetyltransferase activity (Puri et al., 1997), failed to 

acetylate N3IC (Figure 2e). Moreover, we observed increased p300-N3IC 

proteins interaction in TSA-treated 232T cell (Figure 2f). To verify that the 

observed effect was not related to cross reactivity of anti-acetyl K antibody, 

N3IC acetylation was analyzed by in vitro acetylation assay, performed by 

incubating recombinant GST-N3IC with labelled [
14

C] acetyl-CoA in the 

presence of GST-HAT/domain. This assay showed that N3IC is acetylated in 

vitro (Figure 2g). A similar acetylation was observed in endogenous N3IC, 

constitutively expressed in N3-232T cells, after protein purification and 

incubation with labelled [
14

C] acetyl-CoA in presence of GST-HAT/domain 
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(Figure 2h). To map the acetylation sites in N3IC, we searched for the 

putative lysine targets of acetylation by a softwarebased sequence analyser. 

We found 11 evolutionarily conserved lysines in Notch3 of different species 

(Figure 3a, upper panel). Then, we performed two multisites lysines-to-

arginine mutations from the Flag- N3IC wild-type (wt) construct. Flag-N3IC 

wt, containing all 11 lysines, was mutated to obtain two different mutants: 

Flag-N3IC K/R A (K1692-K1731-K1857-K1961-K1990) and Flag-N3IC K/R 

B (K2062-K2063-K2070-K2083-K2084-K2232) (Figure 3a, lower panel). 

When transfected with p300 vector, Flag-N3IC K/R A mutant was no longer 

acetylated when compared with N3IC wt and Flag-N3IC K/R B mutant, after 

transfection in HEK 293T cells and western blot against acetyl-lysine (Figure 

3b, lanes 2, 4 and 6). To identify the acetylatable lysines, we constructed two 

additional mutants, by separately mutating the five lysines previously mutated 

in Flag-N3IC K/R A (that is, Flag-N3IC K/R C (K1692-K1731) and Flag-

N3IC K/R D (K1857-K1961-K1990)) (Figure 3a, lower panel). Acetylation 

assay demonstrated that the Flag-N3IC K/R C mutant contained the specific 

acetylated residues (Figure 3b, lanes 7–8). Finally, we constructed two single 

K/R mutants, by separately mutating the two lysines previously mutated in 

Flag-N3IC K/R C (that is, Flag-N3IC K/R 1692 and Flag-N3IC K/R 1731). 

As shown in Figure 3c, when transfected with HEK 293T cells along with 

p300 expression vector, both the mutants were acetylated. Mass spectrometry 

analysis in HEK 293T co-transfected with Flag-N3IC wt, Flag- N3IC K/R C 

and HA-p300 expression vectors identified the tryptic peptide encompassing 

the region 1686–1694 as acetylated in wt protein but not in the K/R C mutant 

(Figure 3d). Mass spectrometry detection of tryptic peptide containing 

K1731 was indeed performed, but the presence of methionine and cysteine 

residues caused a severe fall in mass spectrometric sensitivity. 
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Figure 2 N3IC is a substrate for acetylation. (a) Total protein extracts from HEK 293T cells, 

transfected with Flag-N3IC and HA-HDAC1 expressing vectors, were subjected to 

immunoprecipitation with anti-Flag (Ip Flag) followed by western blotting with anti-HA and anti-Flag 

antibodies. For negative controls (Ctr), beads were pre-blocked with Flag peptide (0.1 mg/ml). (b) 

Total protein extracts from N3-232T cells were immunoprecipitated with anti-HDAC1 antibody (Ip 

HDAC1) and IgG (Ip IgG) followed by immunoblotting with anti-Notch3 and anti-HDAC1 antibodies. 

(c) HEK 293T cells were transfected with Flag-N3IC vector and treated for 24 h with 1 μM TSA or 

with the vehicle alone. Total protein extracts were subjected to immunoprecipitation with anti- Flag 

followed by immunoblotting with anti-acetyl K and anti-Flag antibodies. (d) Protein extracts, from 

HEK 293T cells transfected with HA-N3IC and HA-p300 or Flag-Tip60 expressing vectors, were 

subjected to immunoprecipitation with anti-HA (Ip HA) followed by imunoblotting with anti-acetyl-

Lysine (acetyl K) and anti-HA antibodies. (e) Protein extracts, from HEK 293T cells transfected with 

Flag-N3IC and p300 or p300 Δ1472–1522 expression vectors, were subjected to immunoprecipitation 

with anti-Flag followed by imunoblotting with anti-acetyl-Lysine (acetyl K) and anti-Flag antibodies. 

(f)Whole-cell extracts, from N3-232T cells treated with TSA (6 h, 1 μM) or with the vehicle alone, 

were immunoprecipitated with anti-Notch3 antibody (Ip N3) followed by western blotting against anti-

p300 and anti- Notch3. (g) Purified glutathione S-transferase-N3IC (GST-N3IC), Histidine-IF2 (His-

IF2) and histones were incubated with 14C-acetylCoA and with recombinant acetyl-transferase domain 

(GSTHAT/domain). Acetylated proteins were revealed by SDS-PAGE followed by autoradiography 

(upper panel). A loading control gel was stained with Coomassie blue (lower panel). (h) Total protein 

extracts from N3-232T cells were subjected to anti-HA immunoprecipitation and analysed by in vitro 

acetylation assay using GST-HAT/domain in the presence of 14C acetylCoA. All results showed in figure 

are representative of triplicate experiments. 
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Figure 3 N3IC is acetylated at 1692 Lys and 1731Lys. (a) CLC Viewer protein sequence alignment of 

mouse, rat and human in the regions surrounding Notch3 murine putative acetylated lysines (upper 

panel). Schematic representation of N3IC wt and K/R mutants (lower panel). (b) Flag-N3IC wt vector 

and four different clusters (Flag-N3IC K/R A; B; C; D) were expressed in HEK 293T cells. Whole-cell 

extracts were immunoprecipitated with anti-Flag antibody (Ip Flag) followed by immunoblotting with 

anti-acetyl K and anti-Flag antibodies. (c) Flag-N3IC wt vector and two different mutants (Flag-N3IC 

K/R 1692; Flag-N3IC K/R 1731), together with p300 expression vector, were transfected in HEK 293T 

cells. Whole-cell extracts were immunoprecipitated with anti-Flag antibody followed by 

immunoblotting with anti-acetyl K and anti-Flag antibodies. (d) A particular of the MALDI-ToF 

spectra of N3IC wt and N3IC K/R C tryptic mixtures focused in the range 960–975 to highlight T1686-

1694 peptide (DIAAGHKacGR, MH+ at m/z 966.5083; theoretical molecular mass = 924.5009). All 

results showed in figure are representative of triplicate experiments. 

 

 

 

 

Acetylation regulates Notch3 ubiquitination, proteasomal degradation and 

function. 

The data generated so far clearly indicate that HDAC inhibition induces both 

N3IC acetylation as well as a decrease of protein levels and signaling activity. 

Protein acetylation has been reported to prime subsequent ubiquitin-

dependent stability of target proteins (Hernandez- Hernandez et al., 2006; 

Leduc et al., 2006). Although we and others suggested that proteasomal 

degradation of Notch intracellular domain (NIC) may be required for 
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repressing Notch signaling, the underlying mechanisms are still to be 

clarified. Therefore, we studied N3IC protein stability in N3-232T-lymphoma 

cells treated with TSA in the presence of the protein synthesis inhibitor, 

cycloheximide. As shown in Figure 4a, the half-life of N3IC in TSA-treated 

cells was reduced when compared with cells treated with the vehicle alone. In 

keeping with this observation, the addition of the proteasome inhibitor 

MG132, but not the lysosome inhibitor Chloroquine, reverted the reduction of 

N3IC protein levels in TSA-treated N3-232T cells (Figure 4b). Similar data 

were observed using vorinostat, another HDACi (Figure 4c) and in TSA-

treated thymocytes freshly obtained from N3IC tg mice (Figure 4d). We have 

previously demonstrated that N3IC protein stability is regulated by an 

ubiquitin-proteasome system (Checquolo et al., 2010). Thus, we performed 

an ubiquitination assay, to assess whether TSA-induced N3IC acetylation was 

followed by its ubiquitination dependent proteasomal degradation. Whole-cell 

protein extracts from N3-232T cells, treated with TSA or vehicle alone, were 

subjected to Notch3 immunoprecipitation followed by western blotting with 

anti-ubiquitin. Treatment with TSA resulted in a strong increase of N3IC 

ubiquitination (Figure 4e) that was accompanied by a strong increase of 

N3IC acetylation (Figure 4f). To specifically address if the acetylation of the 

lysines 1692 and 1731 affects N3IC stability, we analyzed the half-life of 

both N3IC wt and the non-acetylatable N3IC K/R C mutant. HEK 293T cells, 

transfected with Flag-N3IC wt or Flag-N3IC K/R C mutant, were treated with 

cycloheximide in a time course assay. As shown in Figure 5a, the half-life of 

the Flag-N3IC wt was reduced when compared with the K/R mutant protein, 

which also displays an increased transcriptional activity toward pTa promoter 

(Figure 5b).  
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Figure 4. N3IC acetylation controls its ubiquitination and degradation. (a) Total protein extracts, from 

N3-232T cells treated with 1 μM TSA or with the vehicle alone in a time course assay with 10 μg/ml 

CHX, were revealed by immunoblotting with anti-Notch3 (N3IC) and anti-β-actin antibodies. The right 

panel shows the relative quantification as determined by optical densitometry (OD) and results are 

expressed as the means average deviations of three separate experiments and bars indicate s.d. *P<0.05; 

**P<0.01; ns, not significant. (b) Total lysates from N3-232T cells, treated with 1 μM TSA or with the 

vehicle alone for 6 h in the presence of 25 μM MG132 or 25 μM chloroquine, were analysed by western 

blotting using antibodies against Notch3 and β-actin. (c) N3-232T cells were treated with 1 μM 

Vorinostat or with the vehicle alone for 24 h in the presence or absence of 25 μM MG132 before extract 

preparation. Whole-cell extracts were revealed with anti-Notch3 and anti-β -actin antibodies by western 

blotting. (d) Total cell extracts, from thymocytes of tg N3IC mice treated for 6 h with 1 μM TSA or 

with the vehicle alone in the presence or absence of 25 μM MG132, were revealed by immunoblotting 

with anti-Notch3 and anti-β-actin antibodies. Whole-cell extracts, from N3-232T cells treated with TSA 

(6 h, 1 μM) or with the vehicle alone, were immunoprecipitated with anti-Notch3 (Ip N3) (e) or with 

anti-acetyl K (Ip acetyl K) (f) antibodies followed by western blotting against anti-Ubiquitin (e) and 

anti-Notch3 antibodies (f). All results showed in figure are representative of triplicate experiments. 
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Notch3 acetylation impairs T-cell proliferation  

To investigate whether N3IC acetylation was related to the regulation of the 

proliferative output of Notch3 signaling, we transfected preT 2017 cells (that 

display no or very low N3IC expression) with wt N3IC or the nonacetylatable 

N3ICK/R C mutant. While being insensitive to TSA treatment, with respect 

to both Notch3 expression levels (Figure 5c) and cell proliferation (Figure 

5d), preT 2017 cells transfected with the N3IC K/R C mutant display a 

significant increase of proliferation rate, as revealed by BrdU assay, when 

compared with cells transfected with Flag- N3IC wt construct (Figure 5d). 

Together these results suggest that N3IC acetylation at lysines 1692 and 1731 

regulates proteasomal degradation-mediated protein stability and function, 

thus impairing the proliferative effect of Notch3 signaling. 
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Figure 5 1692Lys and 1731Lys acetylation regulates N3IC protein stability and function. (a) HEK 

293T cells were co-transfected with HA-p300 and Flag-N3IC wt or Flag-N3IC K/R C vectors and 

treated in a time course manner with 10 μg/ml CHX. Whole-cell extracts were revealed with anti-Flag 

and anti-β-actin antibodies. The lower panel shows the relative quantification as determined by optical 

densitometry (OD). (b) Luciferase assay performed on HEK 293T cells after the co-transfection with a 

luciferase reporter construct containing pre-TCR alpha chain (pTα) promoter, MAM, RBP-Jk and Flag-

N3IC wt or Flag-N3IC K/R C vectors. RLU, relative luciferase units, were normalized to renilla. 

Results are expressed as the means average deviations of three separate experiments and bars indicate 

s.d. *P<0.05; **P<0.01. (c) Whole-cell extracts from preT 2017 cells transfected with Flag-N3IC wt or 

Flag-N3IC K/R C vectors and treated with 1 μM TSA for 12 h were revealed with anti-Flag and anti-β-

actin antibodies. The upper panel shows the relative quantification as determined by optical 

densitometry (OD). (d) preT 2017 cells were transfected with Flag-N3IC wt or Flag-N3IC K/R C 

vectors for 12 h and then treated with 1 μM of TSA or with the vehicle alone for 12 h. BrdU was then 

added to the cells for 3 h and the percent of BrdU incorporation was measured in the population of 

transfected cells to monitor cell proliferation. All results showed in the figure are expressed as the 

means average deviations of three separate experiments and bars indicate s.d. *P<0.05; **P<0.01, ns, 

not significant. 
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TSA-induced downregulation of Notch3 prevents T-ALL development and 

progression in N3IC tg mice  

The role of Notch3 acetylation in enhancing protein degradation would be 

consistent with the subsequent suppression of Notch3-dependent 

transcriptional activity and activation of a number of proliferative or 

oncogenic pathways (Talora et al., 2003, 2006; Vacca et al., 2006; Bellavia et 

al., 2007). Overall, these findings suggest that this acetylation mechanism 

might be exploited for controlling Notch3-dependent leukemia. Indeed, 

blocking acetylation by specific lysines mutation (K/R
1692-1731 

mutant) 

increases proliferation rate of T cells. Therefore, to better address the role of 

acetylation/deacetylation mechanism in N3IC-dependent T-ALL, we studied 

the effect of TSA in vivo by treating T-ALL developing N3IC tg mice 

(Bellavia et al., 2000). We first investigated the in vivo effect of TSA on 

N3IC protein levels. To this end, 8-week-old N3IC tg mice were treated with 

one single intraperitoneal injection of 10 mg/kg TSA and after 12 h they were 

killed. Consistently with the ex vivo assays, in vivo acute TSA treatment, 

while being unable to modify thymocyte subset distribution with respect to 

CD4 and/or CD8 expression (Figure 6a), did cause a reduction of N3IC 

protein expression levels in whole thymocyte extracts of TSA-treated mice 

when compared with vehicle-injected littermates (Figure 6b). We next 

injected intraperitoneally TSA (1 mg/kg/day) for 3–12-week-old N3IC tg 

mice, displaying an overt aggressive leukemia (that is, splenomegaly and 

enlarged peripheral lymph nodes). Notably, as shown in Figure 6c, spleens 

and mesenteric lymph nodes, from TSA-treated tg N3IC mice, showed a 

significant reduction in size when compared with littermates injected with 

vehicle alone. Moreover, Figure 6d shows a reduction of the N3IC protein 

levels in whole-cell extracts from spleen of TSA treated with respect to 

untreated mice. We and others previously showed that accumulation of 

CD4
+
CD8

+
 DP cells in spleen, lymph nodes and ,peripheral blood represents 
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a pathognomonic feature of T-cell leukemias sustained by enforced 

expression of NIC in pre-T-cells or in bone marrow of mice (Pear et al., 1996; 

Bellavia et al., 2000, 2007). Figures 6e and 7a, respectively, show that the 

cell population most importantly affected by the TSA treatments is 

represented by the CD4
+
CD8

+
  DP T cells in both spleen and lymph nodes 

when compared with vehicle-injected littermates, either when the percent 

distribution or the absolute number is considered. Figure 6e also show that 

the percent distribution of B220
+
 cells (putative B cells) and B220

-
Thy

-
 cells 

(non-B, non T-cells) is unchanged or increased. Notably, the percent 

distribution of peripheral blood T cells, illustrated in the upper right panel of 

Figure 7a, also shows the specific decrease of DP cells. Finally, 

fluorescence-activated cell sorting analysis shows a decrease of Notch3 

intracellular expression specifically in the cells of the spleens characterized 

by the CD4
+
CD8

+
 phenotype (Figure 7b). Taken together, these results 

suggest that the TSA administration in N3IC tg mice induces N3IC-

dependent tumor regression, by promoting N3IC protein acetylation and 

subsequent degradation. 
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Figure 6 TSA-induced N3IC downregulation prevents T-ALL development in N3IC transgenic mice. 

(a) CD4+ and/or CD8+ different subset distribution of thymocytes from tg N3IC mice treated for 12 h 

with one single intraperitoneal injection with 10 mg/kg of TSA (B, C) or with the vehicle alone 

(DMSO) (A). (B) Whole-cell extracts from thymocytes of the same mice illustrated in panel (a) were 

revealed with anti-Notch3 (N3IC) and β-actin antibodies. (c) Macroscopic aspect of spleens and 

mesenteric lymph nodes isolated from tg N3IC mice treated for 3 weeks with TSA (1 mg/kg/day) (E, F) 

or with the vehicle alone (D). (d) Total protein extracts from splenocytes were revealed with anti- 

Notch3 and β -actin antibodies. (e) Bar graphs represent the percentages of CD4+CD8+ DP, the sum of 

CD4+ and CD8+ SP, B220+ and B220-Thy- cells from spleens and lymph nodes from tg N3IC mice 

treated with TSA, expressed as percent variation relative to those of mice treated with vehicle alone 

(DMSO). Results are expressed as the means average deviations of three separate experiments (n=3 

mice per group) and bars indicate s.d. **P<0.01, ns, not significant. 
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Figure 7 TSA treatment impairs the expansion of CD4+CD8+ DP cells in spleen and lymph nodes of 

N3IC transgenic mice. (a) CD4+ and/or CD8+ subset distribution of lymphocytes derived from thymi, 

spleens, blood and mesenteric lymph nodes of tg N3IC mice treated for 3 weeks daily with TSA (E; F) 

or with vehicle alone (D) (lower panels). Bar graphs represent the absolute cell number from thymi, 

spleens, mesenteric lymph nodes and the relative percentage from peripheral blood of CD4+CD8+ DP 

and the sum of CD4+ and CD8+ SP cells (upper panels). Results are expressed as the means average 

deviations of three separate experiments and bars indicate s.d. **P<0.01, ns, not significant (b) Notch3 

expression by electronically gated CD4+CD8+ DP subsets from spleens of mice injected with TSA (E, 

F) or with the vehicle alone (D). Red curves represent the staining with anti-Notch3 antibody. Green 

curves represent the negative isotype control. The mean fluorescence intensity (MFI) ratio between 

Notch3 and isotypic control staining is indicated. The results showed in the figure are representative of 

three independent experiments. N=3 mice for group. 
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Discussion 

Notch is a vitally important signalling receptor controlling cell fate 

determination in a broad spectrum of tissues and in both invertebrate and 

vertebrate species. To permit the Notch signal to be deployed in numerous 

contexts, many different mechanisms have evolved to regulate the level, 

duration and spatiotemporal distribution of Notch activity. Regulation 

involves multiple levels such as ligand and receptor expression , Notch-ligand 

interactions, trafficking of the receptor and ligands, and covalent 

modifications. Development and progression of T-ALL have been linked to 

mis-regulation of Notch signaling (Aifantis I. et al., 2008; Clappier E. et al., 

2010). Especially, we demonstrated an overexpression of Notch3 in virtually 

all patients with T-ALL analyzed, despite is not due to Notch3 gene 

mutations or gene rearrangements (Bellavia et al., 2002).  Although, we have 

demonstrated that an altered ubiquitin-dependent proteolysis process may be 

responsible for Notch3-IC protein overexpression and sustenance of  Notch3-

induced T cells leukemia (Checquolo S. et al., 2010), post-translational 

modifications of Notch3 and their functional role with respect to Notch3 

overexpression in T-cell leukemia are still poorly understood. For this 

purpose, we analized here the role of acetylation in the control of Notch3 

protein stability. We initially demonstrated by in vitro and ex vivo 

experiments a novel mechanism that links acetylation and ubiquitination, in 

which the association of Notch3-IC with p300 determines its acetylation and 

subsequent ubiquitination with proteasomal degradation. Acetylation occours 

at two specific lysine (1962
Lys

 and 1731
Lys

) located in the RBP-Jkappa 

associated (RAM) domain of Notch3-IC and require the integrity of the HAT 

domain of p300. This acetylation is completely reverted by the direct 

interaction of Notch3-IC protein with the histone deacetylase HDAC1.  

Although the acetylatable lysine residues in the RAM domain are 

evolutionarily conserved in all Notch proteins, the role of acetylation seems 
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to be different among other members of Notch family and may depend on the 

different cellular contexts. Indeed, conversely with our data, it has been 

shown that Sirt1 loss of function-induced Notch1 acetylation sustains Notch1 

stabilization, playing a positive role in endothelial cells and in in vivo models 

of vascular maturation/degradation (Guarani et al., 2011).  

Recently, accumulating evidence sustains a novel specific role of HDACi in 

growth arrest, differentiation or apoptosis in vitro and in vivo (Johnstone RW 

2002; Marks P. et al., 2001) and several classes of HDACi have been 

demonstrated  to have promising therapeutic potential in both haematological 

and solid malignancies (Bolden et al., 2006; Piekark et al., 2007; Bots 2009; 

Mercurio et al., 2010). In this thesis we analized the effect of TSA HDACi in 

the regulation of Notch3 signaling and in Notch3-induced T cells leukemia 

development. HDACi treatment promotes Notch3-IC acetylation,  affecting 

protein stability and thus enhancing its degradation in human and mouse T-

ALL cell lines and in a in vivo experiments on T-ALL developing Notch3-IC 

tg mice. As a consequence, Notch3 transcriptional activity is decreased, thus 

resulting in the impairment of downstream signaling. We demonstrated that 

HDACi treatment inhibits Notch3-IC-enhanced pTα promoter activity and in 

vivo expression of endogenous pTα in Notch3-IC tg mice as well as in vitro 

T-cell proliferation and in vivo growth of Notch3-induced T-cell 

leukemia/lymphoma in tg mice. Our previous studies showed the importance 

of constitutive activation of pre-TCR signaling in tg Notch3-IC mice in 

sustaining a number of oncogenic pathways responsible for T-cell 

leukemogenesis (Bellavia D. et al., 2002; Talora et al., 2006).  Therefore, the 

impaired ability of acetylated Notch3 to enhance pTα expression implies its 

control of T cell differentiation and tumorigenesis. We showed also that TSA-

induced withdrawal of HDAC function in mice is able to decrese Notch3-IC 

protein level (and probably impairs its signaling) specifically in splenic 

CD4
+
CD8

+
 DP cells, possibly representing the precursors of leukemic cells in  
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circulating blood and in peripheral lymphoid organs (Pear et al., 1996; 

Beverly et al., 2005; Bellavia et al., 2007), thus blocking their expansion or 

migration. HDACi may interfere with critical step in T cell differentiation, 

impairing the development and progression of the lymphoproliferative 

disease. This highlights the relevance of physiological mechanisms that, by 

repressing HDAC function and subsequent Notch3 activity, can prevent 

pathological consequences. In conclusion, the central role of 

acetylation/deacetylation balance as a switch required for the fine-tuning on 

Notch3 signaling reveals the molecular basis for the use  of HDACi as 

promising agents for treatment of human T-ALL. 
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