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INTRODUCTION 

 

 

 

1.1 EPSTEIN BARR VIRUS-INDUCED LYMPHOMAGENESIS  

 

 
Epstein Barr Virus (EBV) is a member of the herpes virus family that infects more than 

90% of the wordwide population (Rickinson et al, 2006). In developing countries, primary lytic 

infection occurs in the oropharynx in early childhood usually asymptomatically, while, in 

developed countries of high socio-economic status it is delayed until adolescence and one third 

of the cases results in infectious mononucleosis (Rickinson et al, 2006; Henle et al, 1968). In 

the oropharynx, EBV infects via the CD21 (CR2) receptor epithelial cells lining the inner 

mucosal surfaces of the mouth and nose, and naïve B cells circulating through mucosal site. 

EBV is highly immunogenic and it induces a vigorous immune response so that, soon after 

primary infection, EBV persists as an episome in a small proportion of infected B cells, 

establishing latent infection (Niedobitek et al, 1997). There are 4 different types of latency, 

each characterized by a specific pattern of EBV antigen expression (Figure 1) (Heslop, 2009). 

Most circulating infected memory B cells down-regulate viral antigens (type 0 latency) and are 

invisible to the immune system. In type 1 latency the nuclear protein EBNA-1 is expressed in 

proliferating B cells where it induces replication of the viral episome. Type 2 latency is 

associated with the expression of EBNA-1, and of the membrane proteins LMP-1 and LMP-2 

in germinal center B cells. In type 3 latency infected B cells expressed all nuclear proteins 

(EBNA-1, -2, -3A, 3B, 3C, and LP), LMP-1 and LMP-2, and 2 small RNAs (EBERs). Type 3 

latency is the only type able to transform primary B cells in vitro; however, it is also the most 

immunogenic, so that it is rarely detected in healthy persons probably due to a rapid and 

efficient EBV-specific T-cell response (Rowe et al, 1992; Ma et al, 2011). 

In has been shown that in vitro EBV infects resting B cells and transform them through 

complex mechanisms into permanently growing lymphoblastoid cell lines. This property 

makes it a candidate causative for many human cancers including epithelial and 

haematopoietic tumors (Rickinson et al, 2006). Although the true contribution of EBV to the 

lymphomagenesis remains to be elucidated, it is thought that EBV may unable EBV-infected B 

cells to exit the cell cycle to become a resting memory B-cell, resulting in their immortalization 

and continuous proliferation (Sugden et al, 1989; Saha et al, 2011) EBNA-1 is a master 

transcriptor factor that is required for immortalization; it upregulates p53 expression levels and 

a variety of other latency genes, as well as host activation proteins (Yates et al, 1984; Saridakis 
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et al, 2005). EBNA-2 has been suggested to be involved in G0 to G1 phase transition however, 

although it appears essential for initial growth transformation of infected B cells in vitro, it 

seems  to have a secondary role in tumor progression (Johannsen et al, 1995). EBNA-3A and -

3C are also essential for B-cell immortalization acting through different pathways (Table 1) 

(Anderton et al, 2008; White et al, 2010). Among EBV-encoded proteins, LMP-1 is the major 

transforming one; it has been shown to act as an oncogene in rodent fibroblast transformation 

assay (Wang et al, 1985; Kaye et al, 1993). There are evidences that LMP1 acts as a 

constitutively active receptor; in particular, LMP-1 mimics activated CD40, a member of the 

tumor necrosis factor receptor family, stimulating growth and differentiation responses in B 

cells (Uchida et al, 1999). Moreover, LMP-1 activates the nuclear factor (NF)-kB signalling 

cascade (Zhimin 

et al, 2000), and 

up-regulates the 

expression of the 

anti-apoptotic 

proteins Bcl-2 and 

A20 stimulating 

B-cell growth 

(Kulwichit et al 

1998; D’Souza et 

al,2004).  

An 

impairment in T-

cell response 

against infected 

B-cells seems to 

be crucial for the 

expansion of 

transformed cells 

(Thorley-Lawson 

et al, 2004; Hislop et al, 2007). Immune control of EBV is mediated primarily by T cells; in 

particular, while CD8
+
 T cells target primarily the EBNA3 and LMP2 proteins, CD4

+
 T cells 

most frequently react to EBNA1 (Murray et al 1992; Khanna et al, 1992; Munz et al, 2000; 

Leen et al, 2000). Recently, White et al suggested that loss of EBNA3B function in tumor cells 

 

  

        Figure 1. EBV latent life cycle. Virus enters though mucosal routes (shown is the 

buccal cavity), then infects normal naive B cells circulating through mucosal sites. 

Virus expresses type 3 latency, which drives B-cell proliferation and expands the 

infected memory pool. B-cell differentiation into the memory compartments occurs in 

germinal centers driven by type 2 latency proteins. Infected memory B cells exiting the 

germinal center down-regulate viral proteins and are invisible to the immune response. 

EBNA1 is expressed during homeostatic proliferation to maintain the latent viral 

episome. Virus replication is induced at mucosal sites, and virus is released into the 

saliva. PTLD indicates posttransplantation lymphoproliferative disease; HD, Hodgkin 

disease; NPC, nasopharyngeal cancer, and BL, Burkitt lymphoma. 

                               (Heslop HE. Blood. 2009 Nov 5;114(19):4002-8.) 
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through EBNA3B gene mutation cause substantial changes in the character, immune evasion, 

and aggressiveness of EBV-associated cancer. In this context, escape from HLA-A11–

restricted recognition of EBNA3B was previously suggested as the cause of the uncontrolled 

growth of a post-transplant DLBCL (White et al, 2012). 

 

                                   (Saha A. et al. Clin.Cancer Res. 2011 May15;17 (10):3056-3063) 

 

 

Alternatively, the disruption of the normal balance between latently infected B-cell 

proliferation and the EBV-cytotoxic T-cell response could be due to an immunodeficient status 

of the patient or to the administration of immunosuppressive agents (e.g. for organ 

transplantation). In support of this view, is the frequent evidence of EBV infection in 
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neoplastic cells of B-cell lymphoproliferative disorders (LPD) occurring in patients with 

primary immune deficiency, HIV infection, or with iatrogenic immunosuppression (Swerdlow 

et al, 2008). 
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1.2 EBV-ASSOCIATED LYMPHOPROLIFERATIVE DISORDERS  

 

 
Since its discovery as the first human tumorigenic virus, EBV has been implicated in the 

development of a wide range of B-cell (Table 2) and of T/NK-cell lymphoproliferative 

disorders (Table 3). EBV-associated malignancies arise in both immunosuppressed and 

immunocompetent individuals, and involve the expression of either some or all of the EBV 

latent proteins (Figure 1). 

 

 

1.2.1 EBV-ASSOCIATED B-CELL LYMPHOPROLIFERATIVE DISORDERS 

 

Despite its documented infection in T lymphocytes and epithelial cells, EBV has a major 

preference for B cells, and under certain circumstances the infected B cells can transform into 

malignant B-cell lymphomas (Bajaj et al, 2007). They include: Hodgkin lymphoma, Burkitt 

lymphoma, post-transplant lymphoproliferative disorders, lymphomatoid granulomatosis, age-

related EBV-associated B-cell lymphoproliferative disorders, diffuse large B cell lymphoma 

associated with chronic inflammation, and many B-cell lymphomas associated with HIV-

infection (Swerdlow et al, 2008; Carbone et al, 2008). Different types of EBV-latency are 

associated with these lymphomas (Figure 1). 

 

 

Burkitt’s Lymphoma  

 

Burkitt’s lymphoma (BL) is an aggressive B-cell tumor, often presents in extranodal sites 

or as an acute leukemia, characterized by the expansion of medium-sized cells with a very high 

proliferation index (>98%). It includes three variants: endemic (mainly in children from 

equatorial Africa, Papua, and New Guinea), sporadic (affecting children and young adults 

throughout the world), and immunodeficiency-related (mostly associated with HIV-infection). 

EBV has been detected in virtually all cases of the endemic variant, 20%–30% of the cases of 

the sporadic variant, and 30%–40% of cases of the immunodeficiency-related variant (Carbone 

et al, 2008). In all EBV-positive cases, EBV is found in the majority of the neoplastic cells 

with a type I latency pattern given by the expression of EBNA-1 and EBERs only (Weiss et al, 

2012). In endemic Burkitt lymphoma the strong epidemiological link with holoendemic 

malaria suggests a polymicrobial pathogenesis (Rochford et al, 2005). By this model, infection 
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with Plasmodium Falciparum could reactivate latently infected B cells through toll like 

receptor 9 (TLR-9) and, at the same time, impact on immunity exhausting EBV-specific T cell 

response. In all variants, irrespective of EBV status, translocation of the c-myc oncogene into 

one of the immunoglobulin loci is undoubtedly the key factor in the oncogenesis of Burkitt’s 

lymphoma (Della Favera et al, 1982; Taub et al, 1982; Hummel et al, 2006). There is some 

evidence that EBV-BL arises from a latency pattern-3 progenitor that under a selection 

pressure down–regulates the c-myc antagonist EBNA-2 (Weiss et al, 2012). The detection of 

somatic hypermutations in the V region of clonally rearranged immunoglobulin genes and the 

phenotype of the lymphoma cells indicate a germinal center (GC) cell origin of the Burkitt 

lymphoma (Chapman et al, 1996). 

 

 

                            (Carbone A et al. Oncologist. 2008 May;13(5):577-85.) 

 

 

EBV-Associated Lymphomas in Immunocompromised Individuals 

 

There exist several distinct EBV-associated lymphoproliferative disorders (LPD) in 

immunocompromised individuals. Some LPD are associated with primary immune disorders 

such as X-linked lymphoproliferative syndrome (XLP), severe combined immunodeficiency 

(SCID), hyper-IgM syndrome, common variable immunodeficiency (CVID), Wiskott-Aldrich 

syndrome (WAS), while others are associated with immunosuppressive drugs given to 

transplant recipients (PTLDs) or with HIV-infection. Finally, there are lymphoproliferative 
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disorders that arise in patients treated with immunosuppressive drugs for autoimmune diseases 

or for conditions other than in the transplant setting (Swerdlow et al, 2008). The most common 

EBV gene-expression pattern in these disorders is latency III (Figure 1).  

 

 

Post transplant lymphoproliferative disorders (PTLDs) 

 

PTLDs are lymphoproliferative disorders that develop as a consequence of 

immunosuppression in transplant recipients of both a solid organ and bone marrow. According 

to the World Health Organization classification (Swerdlow et al, 2008), PTLDs may be 

classified into: (a) early lesions, generally represented by EBV-driven polyclonal or 

oligoclonal lymphoproliferations, and (b) true monoclonal diseases, that are not necessarily 

associated with EBV infection, including polymorphic PTLDs and monomorphic PTLDs. The 

latter are indistinguishable from those that occur in immunocompetent individuals and, are 

further distinguished into Burkitt’s lymphoma/Burkitt’s-like lymphoma, diffuse large B-cell 

lymphoma (DLBCL), and cHL.  

Oncogenic viruses known to be involved in PTLD pathogenesis include EBV and human 

herpes virus 8 (HHV-8). Several lines of evidence suggest that EBV infection has a major 

pathogenetic role in PTLDs: (a) EBV infects 70%– 80% PTLD patients, including 100% of 

early-onset PTLD cases; (b) in many monomorphic PTLD cases, EBV infection is monoclonal, 

suggesting that the virus might be present in the tumor progenitor cell since the early phases of 

clonal expansion; (c) an increase in the EBV viral load and a decrease in the number of EBV-

specific cytotoxic T lymphocytes (CTLs) have found to be strongly associated with PTLD 

development; and (d) treatment of PTLDs with autologous EBV-specific CTLs results in viral 

load control and tumor size reduction (Davis et al, 2004; Carbone et al, 2008). Up to 30% of 

PTLD are EBV-negative, and although some can be driven by HHV-8, others can still be 

triggered by a no longer detectable EBV or, alternatively, by other unknown viruses (Swerdlow 

et al, 2008). 

 

 

Other iatrogenic immunodeficiency-associated lymphoproliferative disorders 

 

 Other iatrogenic LPD can occur in patients treated with immunosuppressive drugs for 

autoimmune diseases. It is actually difficult to determine how many LPD are directly related to 
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the iatrogenic immunosuppression rather than the underlying disorder, however, it is likely that 

risk and type of LPD depend on the type of immunosuppressive agent (e.g. methotrexate, 

infliximab, TNF blocks) and on the nature of the underlying disorder (e.g. rheumatoid arthritis, 

inflammatory bowel disease, dermatomyositis, psoriasis). Most of the cases are diffuse large B 

cell lymphomas, while others are more polymorphic or resemble Hodgkin lymphoma. In half 

of the cases the localization is extranodal, and about 50% of the cases are EBV-positive (Au et 

al, 2006; Swerdlow et al, 2008). 

 

 

HIV-Associated Lymphoproliferative Disorders 

 

HIV-associated lymphoproliferative disorders are a heterogeneous group of diseases that 

arise in the presence of HIV-associated immunosuppression, a state that permits the unchecked 

proliferation of EBV-infected lymphocytes. Traditionally, these aggressive disorders include 

both central nervous system and systemic lymphomas. Pleural effusion lymphomas (PEL) also 

occurs and often involves EBV in addition to HHV-8 (Carbone et al, 2008). The categories of 

HIV-associated lymphomas included in the latest WHO classification of tumors of 

haematopoietic and lymphoid tissues are grouped as follows: (a) lymphomas also occurring in 

immunocompetent patients such as: Burkitt’s lymphoma (30% EBV+), systemic DLBCL with 

centroblastic features (30% EBV+), and DLBCL with immunoblastic features frequently 

involving the central nervous system (100% EBV+); (b) unusual lymphomas occurring more 

specifically in HIV-positive patients, including: PEL (80% EBV+ in addition to 100% 

HHV8+) and plasmablastic lymphoma of the oral cavity (60-70% of the oral cavity; (c) 

lymphomas also occurring in other immunodeficiency states (Swerdlow et al, 2008).  

 

 

EBV+ diffuse large B cell lymphoma of the elderly 

 

EBV+ diffuse large B cell lymphoma of the elderly is an EBV+ lymphoma occurring in 

patients over 50 years with no other cause of immunodeficiency. It represents up to 10% of 

elderly lymphomas in Asian population and about 4% of DLBCL in Western countries (Gibson 

et al, 2009; Hoeller et al, 2010). Its incidence increases with increasing age, and is slightly 

predominant in male. Most patients (70%) have an extranodal disease, including skin, lung, 

tonsil, and stomach. The disease is clinically aggressive with a poor prognosis. 
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Morphologically, it is subclassified in polymorphic and monomorphic. The polymorphic 

subtype show a proliferation of B cells with a broad range of maturation, whereas in the 

mononorphic variant neoplastic B cells have either centroblastic or immunoblastic features. In 

both subtypes are present Hodgkin and Reed Stenberg(H/RS)-like cells. EBER is positive in 

the neoplastic cells, whereas LMP-1 may be negative. The EBV latency pattern is of type III. It 

is believed that the development of this lymphoma is related to immunosenescence that is part 

of the aging process (Swerdlow et al, 2008).  

 

 

Diffuse large B cell lymphoma (DLBCL) associated with chronic inflammation 

 

The disease arise in the context of local long-standing inflammation, usually after decades 

after the onset of the inflammation. Therefore, patients are usually old with a male 

predominance. Most cases are reported to be associated with pyothorax occurring many years 

after artificial pneumothorax for pulmonary tubercolosis. Also, it has been described in bones 

of patients with chronic osteomyelitis, joints, and soft tissues. It is an aggressive lymphoma 

with about 25% of 5-year overall survival. Histologically, it resembles  EBV+ diffuse large B 

cell lymphoma of the elderly, and as for it, EBV latency pattern is type III in more than 60% of 

the cases (Swerdlow et al, 2008). It is supposed that local chronic inflammation may favour 

immune escape of EBV-transformed B cells trough the production of large amount of IL-10, an 

immunosuppressive cytokine, and that it may also provide autocrine to paracrine tumor growth 

via the production of IL6 (Kanno et al, 1996; Kanno et al, 1997). 

 

 

Lymphomatoid granulomatosis  

 

 Lymphomatoid granulomatosis is a rare angiocentric and angiodestructive 

lymphoproliferative disease involving extranodal sites (i.e. lung, skin, kidney, brain and, liver). 

It often develops in patients with an underlying immunodeficiency (e.g. post-organ 

transplantation therapy, Wilskott-Aldrich syndrome, HIV-infection, and others). 

Morphologically, It is composed of a small number of large EBV-positive B cells associated 

with numerous small reactive T cells (Swerdlow et al, 2008). 
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1.2.2 EBV-ASSOCIATED T/NK-CELL LYMPHOPROLIFERATIVE DISORDERS 

 

T-cell lymphoproliferative disorders that have been reported to be EBV associated 

include a subset of peripheral T-cell lymphomas (PTLC), angioimmunoblastic T-cell 

lymphoma (AILT), extranodal nasal type NK/T-cell lymphoma, enteropathy-type T-cell 

lymphoma, hepatosplenic T-cell lymphoma, systemic EBV+ T-cell Lymphoproliferative 

disease of childhood, Hydroa vacciniforme-like lymphoma, and aggressive NK-cell 

leukemia/lymphoma. However, many T cell lymphoma may contain scattered EBV+ cells as a 

reflection of the generalized immunodeficiency that is sometimes part of a peripheral T-cell 

lymphoma (Carbone et al, 2008; Swerdlow et al 2008). 

 

 

                       (Carbone A et al. Oncologist. 2008 May;13(5):577-85.) 

 

 

Angioimmunoblastic T cell lymphoma (AILT) 

 

AILT is one of the most common PTCL subtype. It is characterized by systemic disease, a 

polymorphous infiltrate primarily involving lymph nodes, and prominent proliferation of high 

endothelial venules and follicular dendritic cells (Swerdlow et al 2008). The clinical behavior 

is very aggressive with a scarce response to therapy. The molecular pathogenesis of AILT, as 

in general for all peripheral T-cell neoplasms, is poorly understood. Characteristically, AILT is 

a lymphoma in which expanding B-cell clones are often present beside the T-cell clones. AILT 

is also associated with EBV in a high proportion of cases (97%), but in this lymphoma, the 

EBV is seen mainly in the B lymphocytes and in large atypical H/RS-like B-cells (Zettl et al, 
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2002; Quintanilla-Martinez et al, 1999; Smuk et al, 2010). The presence of EBV in only a 

subpopulation of cells suggests that EBV infection is not part of the pathogenesis of the 

disease, but a manifestation of the diminished local immune surveillance or alternatively, that 

the viral genome has been lost from the malignant T cells. 

 

 

Extranodal NK/T-cell lymphoma nasal type 

 

Extranodal NK/T-cell lymphoma nasal type is a predominantly extranodal lymphoma 

characterized by vascular damage by a population of neoplastic cells characterized by absence 

of  T-cell antigens and by expression of the NK cell marker CD56. Clinically, these tumors 

occur in the nasal and upper aerodigestive track, and it is more common in Asian and in native 

Americans of Central and South America. EBV is consistently associated with these 

lymphomas, regardless of geographical location. Tumor cells are always positive for EBER, 

and mostly negative for LMPI-1 (Swerdlow et al 2008; Weiss et al 2012). 

 

 

Systemic EBV+ T cell lymphoproliferative disease (LPD)  

 

 Systemic EBV+ T-cell LPD is a recently recognized clonal proliferation of EBV-infected T 

cells with an activated cytotoxic phenotype (TIA-1+). It occurs mainly in children and young 

adults frequently from Asia and Mexico. It can occur shortly after primary acute EBV infection 

or in the setting of chronic active EBV infection (CAEBV). It is a systemic disease with 

involvement of liver, spleen, lymph nodes, bone marrow, skin, and lungs. The clinical course is 

very aggressive with death occurring just after days or weeks. EBER is consistently positive in 

neoplastic CD8+ T cells. Its association with primary EBV infection strongly suggest the 

presence of a genetic defect in the host immune response to EBV that may predispose to EBV+ 

T cell LPD (Swerdlow et al 2008; Weiss et al 2012). 

 

 

Hydroa vacciniforme like- lymphoma 

 

 It is an EBV+ cutaneous T-cell lymphoma occurring in children and adolescence and 

associated with hypersensitivity to insect bites and sun. It is seen mainly in Asian and in native 
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Americans of Central and South America. It involves sun-exposed skin with papulo-vescicular 

lesions that ulcerates. Clinical course is variable, it may be indolent for several years, or may 

consists in recurrent skin lesions before progression to systemic involvement. Neoplastic T-

cells consistently express EBER, whereas LMP-1 is generally negative(Swerdlow et al 2008). 
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1.3  HODGKIN LYMPHOMA AND EBV 

 

 

1.3.1 Classification and morphology 

 

Based on differences in histological characteristics, cell of origin, clinical features, and 

molecular pathogenesis HL is categorized in 2 distinct entities: nodular lymphocyte 

predominant lymphoma (NLPHL), and classical Hodgkin Lymphoma (cHL).The latter is 

further subclassified into 4 variants: nodular sclerosis (NS), mixed cellularity (MC), 

lymphocyte-rich (LR), and lymphocyte-depleted (LD) (Swerdlow et al 2008).  

A striking feature of both cHL and NLPHL is that in the affected lymph node malignant 

cells are very rare (0.1-2% of tumor mass) and are scattered in a background rich in small 

lymphocytes, plasma cells, histiocytes and eosinophils (Figure 2). In cHL the neoplastic cells 

are referred to as Hodgkin and Reed Sternberg (H/RS) cells. Hodgkin cells are large and 

mononucleated with prominent eosinophilic nucleoli, whereas Reed Sternberg cells are bi- or 

multinucleated (Figure 2A). In NLPHL tumor cells are indicated as lymphocyte predominant 

(LP) cells (formerly called L&H cells) and show a multilobated morphology generally lacking 

evident nucleoli (“popcorn” cells) (Figure 2B) (Swerdlow et al 2008).  

 

 

 

 The cellular origin of the tumor cells in HL remained elusive for many years, since  

 

The cell of origin of HL tumor cells was elusive for many years until analysis of 

immunoglobulin gene rearrangement in microdissected tumor cells revealed that these cells are 

       

BA BAA

                   
 

Figure 2. A. Hodgkin and Reed Sternberg cells in classical Hodgkin lymphoma. B. “Popcorn cell” in nodular 

lymphocyte predominant lymphoma (Haematoxilin and Eosin, original magnification x400) 
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frequently clonal B cells with somatically mutated immunoglobulin V genes (Kuppers et al, 

1994; Kanzler et al, 1996; Kuppers et al, 1994). However, except of LP cells, that consistently 

express the B-cell markers CD20, CD79a, CD19, and the transcriptors factors PAX5, OCT2 

and BOB1, the phenotype of the H/RS does not reveal its B cell origin. Indeed, apart from low 

expression of PAX5 and a focal staining for CD20 in about 20% of the cases, all the other 

markers of B cell lineage are down regulated in cHL (Tzankov et al, 2003; Saez et al, 2002; 

Kuppers 2009 Hematol; Browne et al, 2006). Characteristically, H/RS cells and not LP cells 

express CD30 a member of the tumor necrosis factor receptor (TNFR) family. Also, in about 

85% of the cases there is coexpression of CD15, a myeloid-associated marker. Aberrant 

expression of T-cell (Dallenbach et al, 1989; al Saati et al, 1997; Tzankov et al, 2005) or 

dendritic cell-associated markers (Pinkus et al, 1997; Sorg et al, 1997; Peh et al, 2001) has 

also been reported in a minority of cHL. Although most of the cases expressing a T-cell 

phenotype are also found to be of B-cell origin based on molecular analysis, a T-cell origin has 

also been suggested in few reported cases based on the presence of T cell receptor gene 

rearrangements in tumor cells (Muchen et al 2000; Seitz et al, 2000). 

 

 

1.3.2 Epidemiology 

 

Hodgkin lymphoma (HL) is one of the most common lymphomas in the Western Word 

with an incidence of 3 cases per 

100 000 persons-year (Farrell et 

al, 2011). Classical Hodgkin 

lymphoma accounts for more 

than 95% of all HL and is 

associated with EBV in about 

30-40% of the cases (Swerdlow 

et al, 2008). The highest 

incidence of cHL is in 

Caucasians, followed by African 

Americans and Hispanics, with 

the lowest observed in Orientals. 

However, an increasing 

incidence of cHL was reported among Chinese immigrants in Western Countries (Huang et al, 

 

Figure 3 Three-disease model for Hodgkin Lymphoma. 

(Armstrong et al. Leukemia (1998)12, 1272-1276) 
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2011). Epidemiologic and molecular findings suggest that cHL is not a single disease but 

consists of more than one entity. Indeed, cHL may occur in different geographic and 

socioeconomic settings with distinct pathological and clinical characteristics (Carbone et al, 

2011). In 1998 Armstrong et al. proposed a “three-disease model” based on age presentation, 

histological type and EBV association (Figure 3) (Armstrong et al, 1998). The first entity is 

largely an EBV-associated disease of childhood, with higher incidence in developing countries 

and of usually MC type. The second entity predominantly affects older adults, and is also 

usually of the MC subtype and EBV associated. The third one occurs in young adults, is more 

prevalent in developed countries, is not associated with EBV, and is usually of the NS subtype. 

Harris et al. suggested three epidemiological patterns of cHL based on socioeconomic level. 

The first pattern is seen in poorly developed countries, occur in early childhood, and is mainly 

of the MC subtype; the second pattern is observed in developing and transitional economies, 

affects both children and adolescence, and shows equal frequency of MC and NS subtypes; the 

third one occurs in developed countries and display a third decade peak and a predominance of 

NS subtype (Harris et al, 1998). Another HL classification is based on patients’s 

immunological status, by which cHL may occur: a) in the general population, or b) in 

immunosuppressed hosts (associated with HIV-infection or with iatrogenic 

immunosuppression) (Carbone et al, 2011). However, despite all these categorizations, there 

are several lines of evidence that suggest that these epidemiological patterns are not tight and 

that transition may exists among different forms of the disease. 

 

 

1.3.3 Pathogenesis and role of EBV 

 

EBV is found in up to 40% of cHL, whereas is rarely found in NLPHL (Kuppers et al, 

Nature 2009). The association varying with age (more frequent in children and older adults), 

gender (more frequent in males), geography and socioeconomic status (higher in Asia and in 

Central and South America), histology (more likely in MC and LD subtypes), and host 

conditions (nearly all cases of HL occurring in patients with AIDS are EBV+) (Kuppers et al, 

Nature 2009; De Re et al, 1993). In EBV+ tumors EBV is detected in the majority of H/RS 

cells and it is found to be clonal, suggesting that infection occurred prior to transformation of B 

cells (Weiss et al, 1987; Weiss et al, 1989; Gulley et al, 1994). 

EBV+ H/RS cells exhibit a type II latency phenotype, with the expression of a limited 

number of latency genes, including EBNA1, LMP1, LMP2 and EBERs. EBNA 1 is essential 
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for maintaining viral genome as an episome. Moreover, it may support tumor development 

upregulating CCL20, an attracting chemokine for Tregs, and downregulating the protein-

tyrosine phosphatase-k, which is a putative tumor suppressor gene (Baumforth et al, 2008; 

Flavell et al, 2008). LMP-1 is an oncogene that mimiking an active CD40 receptor 

constitutively activates NF-kB in tumor cells (Kilger et al, 1998). LMP-2 can replace the 

function of a BCR, and in vitro is essential for the rescue and transformation by EBV of 

germinal center (GC) B cells lacking functional BCRs (Bechter et al, 2005). Thus, it appears 

that through the BCR and the CD40 signaling EBV may play a critical role in the initial events 

of HL pathogenesis, rescuing from apoptosis EBV-infected GC cells carrying BCR destructive 

mutations (Mancao et al, 2005; Chaganti et al, 2005). In addition, LMP-1 and LMP-2 

contribute to the downregulation of the B-cell phenotype in EBV+ H/RS cells through 

activation of the Notch1 pathway (Portis et al, 2003; Vockerodt et al, 2008). 

The demonstration that a virus strain carrying a 30bp deletion in the LMP1 gene was 

more tumourigenic than the prototype B95.8 LMP1 led to numerous studies of the prevalence 

of this virus strain within EBV-associated cancers, including HL. In general, virus strains 

carrying this 30bp deletion occur with a similar frequency in virus-positive tumour patients and 

in healthy donors from the same geographical region. The exception to this is HL, where some 

studies have shown an increased incidence of this deletion variant in HIV-positive HL 

compared to HIV-negative HL,
 
and in pediatric HL compared to normal controls (Hu et al, 

1993; Santon et al, 1998). 

Nevertheless, most adults that carry EBV never develop cHL, and in up to 60% of cHL 

there is no evidence of EBV in malignant cells. Although the morphology, phenotype and gene 

expression profile of EBV-associated and EBV-negative cases of cHL appear similar, there is 

increasing evidence that the molecular pathogenesis of these two conditions may be distinct 

(Farrell et al 2011). Based on epidemiological observations, in 1996 Mac Mahon has 

suggested that Hodgkin’s disease may not be a single entity but a syndrome comprising at least 

two, and possibly three, entities with different etiologies (MacMahon, 1996). This hypothesis 

was further supported by Armstrong et al with the “three-disease model” with HL occurring in 

childhood (EBV+, MC type), HL of young adults (EBV-, NS type) and HL of older adults 

(EBV+, MC type) (Armstrong et al, 1998). In 2002 based on studies assessing that infectious 

mononucleosis is associated with higher risk of developing HL, Jarrett et al. has extended the 

“three-disease model” to include a fourth entity represented by EBV-associated cases occurring 

in young adults with delayed exposure to EBV (Jarrett et al, 2003; Jarrett et al, Leuk 

Lymphoma 2003). However, the infrequent association of EBV with HL in young adulthood, 



 19 

suggested that EBV is mainly not pathogenetic in young patients and that another currently 

unknown virus might be involved in the development of the disease (Kapatai et al 2007, 

Jarrett et al, Leuk Lymphoma 2003). Conversely, the “hit and run hypothesis” (Ambinder, 

2000; Jox et al, 1997; Trivedi et al, 1995) suggested that EBV may contribute early on the 

pathogenesis of EBV-negative HL. Based on this hypothesis after EBV has infected and 

transformed B cells it is lost because of the presence of a defective integrated and rearranged 

viral DNA. The partial elimination of defective EBV episomes from infected cells has been 

previously detected in some cases of EBV-negative sporadic Burkitt lymphoma (Trivedi  et al, 

1995); this prompted to the search for EBV DNA in H/RS cells. Although Gan et al. found 

defective EBV genome in 2 cases of EBV-negative HL, others did not found any trace of EBV 

in H/RS to support a “hit-and-run” mechanism. Moreover, because some young patients with 

HL have no evidence of previous EBV-infection, it seems unlikely that EBV can be 

responsible for EBV-negative HL. In this view, EBV-positive and EBV-negative HL may 

simply represent two distinct diseases (Gan et al, 2002; Gallagher et al, 2003). Whether or not 

EBV-positivity in HL has prognostic significance remains controversial, with data on both 

sides of the question (Table 4) (Jarrett et al, 2005); nevertheless, the expression of viral 

antigens on tumor cells may still be crucial posing theoretical targets for anti-cancer therapies, 

including vaccination. 

 

 

 

1.3.4 Genetic alterations and deregulated signalling 

 

 
 

Table 4. Summary of previous studies that have examined the effect of EBV status on clinical outcome in 

Hodgkin lymphoma. (Jarrett RF et al. Blood 2005 106: 2444-2451) 
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H/RS cells carry rearranged and somatically mutated Ig V genes in nearly all cases; 

however in 25% of the cHL clearly destructive somatic mutations were found that rendered 

originally functional IgV region non functional (Kuppers et al, 1994; Kanzler et al, 1996). 

Such mutations happen in germinal centre (GC)  B cells, that normally rapidly undergo 

apoptosis. Thus, in HL pathogenesis critical steps most likely occur in GC to enable H/RS 

precursors with defective BCR to escape apoptosis. Nevertheless, it can not be rule out that 

additional transforming events could affect H/RS cells before they enter the GC and even after 

they have left it. Supporting this multistep process is the evidence that HL tumor cells usually 

show multiple chromosomal abnormalities and subclonal aberrations, indicating chromosomal 

instability (Steidl et al, 2010; Weber-Matthiesen et al, 1995).  

Chromosomal translocations involving the Ig loci were detected in about 20% of cHL. 

Some of them involve the oncogenes BCL2, BCL6 and MYC, but for most cases partner gene 

is unknown (Martin-Subero et al, 2006). Considering the general silencing of the Ig loci in 

H/RS cells, it might be possible that these translocations may be relevant just in the early 

stages of the disease, when H/RS cells still have a B-cell phenotype. Conversely, translocations 

involving BCL6 are frequently found in LP cells (Wlodarska et al, 2003). 

A rescue of H/RS from apoptosis is probably a key event in HL pathogenesis hence, 

activators or inhibitors of apoptosis were extensively studied for genetic aberrations in H/RS 

cells. The genetic lesions most frequently found in cHL involve members of two signalling 

pathways: JAK-STAT and NF-kB. In about 20% of HL cases there are genomic gains of JAK2 

in H/RS cells, and in 40% of the cases inactivating mutations of SOCS1, a negative regulator 

of JAK-STAT signalling, can be found (Joos et al, 2000; Weniger et al, 2006). Multiple 

genetic lesions in the NF-kB pathway seems to contribute to its deregulation in H/RS cells. 

Interesting, among these an inhibitor of NF-kB activity A20, is inactivated in 40% of mainly 

EBV-negative HL (Schmitz et al, 2009). This suggest that A20 inactivation and EBV infection 

are mutually exclusive transforming events in cHL. Other cell signalling pathways known to be 

aberrantly activated in HL include the PI3K/AKT pathway and the MAPK/ERK pathway. Both 

may be critical for H/RS cell survival and proliferation (Dutton et al, 2005; Zheng et al, 2003). 

 

 

1.3.5 Tumor microenviroment 

 

The microenviroment in HL is unique among lymphomas both for the complexity of cell 

types involved, and for the fact that non-tumor cells represent the majority of the cells, 
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accounting for 99% of all the cells in the tumor. H/RS cells grow in a typical 

microenvironment that is composed of several types of cells, including B cells, T cells, plasma 

cells, eosinophils, mast cells, and fibroblasts (Swedlow et al, 2008). This microenvironment is 

a critical determinant for the initiation and progression of HL. It is likely essential for H/RS 

cell survival, as indicated from the difficulty to grow H/RS cells in culture or in 

immunodeficient mice or to find H/RS cells in the peripheral blood (Kapp et al, 1993; Kapp et 

al, Blood 1993). H/RS cells appear to regulate this microenvironment by secretion of cytokines 

and chemokines (Figure 4) (Steidl et al 2011). For example, H/RS cells attract eosinophils by 

granulocyte-macrophage colony-stimulating factor, IL5, IL9, CCL5, and CCL28, and they 

attract TH2-type T helper cells and Treg cells by secretion of CCL5, CCL17, and CCL22 

(Skinnider et al, 2002; Aldinucci et al, 2008; Fisher et al, 2003). 

CD4+ T cells usually represent the largest population of cells in the lymphoma tissue. A 

fraction of these cells are CD4+ T helper cells. These cells are in close contact with H/RS cells 

and may play a pathogenetic role by stimulating the survival and growth of tumor cells. Indeed, 

although H/RS cells do not express most B cell-associated genes, they retained expression of 

MHC class II, CD40, CD80 and CD86, key molecules for an interaction of B cells with T 

helper cells. The interaction between H/RS cells and T cells is histologically typical; in HL 

biopsies H/RS cells are surrounded by CD40 ligand-expressing CD4+ T cells forming with 

them “rosettes” structures. The CD40 stimulation mediated by T cells leads to the activation of 

NF-kB, a survival signal for 

H/RS cells (Carbone et al, 1995; 

Nozawa et al, 1998).  

H/RS cells can also 

orchestrate the cellular infiltrates 

to evade an attack by cytotoxic T 

cells (CTL) or NK cells. In this 

regard, it has recently become 

clear that many of the CD4+ T 

cells in classical HL are not 

helper but regulatory T cells. 

H/RS cells not only can attract 

these cells but also can induce 

the differentiation of naïve CD4+ 

T cells into Treg cells (Tanijiri et al, 2007). Tregs may have a pathogenetic role, as there is 

 
Figure 4. Schematic of the crosstalk between malignant Hodgkin  

Reed-Sternberg (H/RS) cells and the tumor microenvironment in 

classical Hodgkin's lymphoma. (Steidl C et al. JCO 2011;29:1812-1826) 
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indication that they have immunosuppessive activity on HL-infiltrating CTL cells (Marshall et 

al, 2004). However, high number of Treg cells in HL microenviroment has been reported to be 

associated with a better prognosis, indicating that an excess of these cells may have 

suppressive effects also on H/RS survival (Alvaro et al, 2005; Kelley et al, 2007). Furthermore, 

H/RS cells might inhibit cytotoxic cell functions through the expression of PD1 and CD95, and 

the secretion of the immunosuppressive cytokines IL-10, TGFβ, galectine-1 and prostaglandin 

E2 (Chemintz et al, 2007; Gandhi et al, 2007; Aldinucci et al 2010; Kuppers et al 2012). 

EBV infection might also affect the microenviroment composition by increasing the 

production of molecules involved in immune escape and T cell recruitment. For example, IL10 

was found to be expressed in 66% of EBV+ cHL cases but in only 16% of EBV-negative cases 

(Skinnider et al 2002). In vitro HL cells can process and present epitopes from LMP1 and 

LMP2A in the context of multiple class I alleles (MHC) and are sensitive to lysis by EBV-

specific CTLs. However, EBV-infected H/RS cells survive in vivo, probably because H/RS 

cells are able to counteract EBV-specific CTL responses. Surprisingly, EBV+ HL have been 

shown to contain more activated CTLs and express higher levels of MHC class I than EBV-

negative cases (Kapatai et al, 2007). Moreover, Chetaille et al. described a molecular signature 

of EBV+ cHL, characterized by genes associated with Th1 and antiviral responses (Chetaille et 

al, 2009). However, CTL cells might not be effective in the immune response against EBV in 

H/RS cells. Recent data have shown a strong association between EBV+ HL and human 

leukocyte antigen (HLA) class I genotype. Increased risk was associated with HLA-A*01 and 

decreased risk with HLA-A*02. Whereas CTL responses to many HLA-A*02 restricted EBV 

epitopes have been described, there are no confirmed HLA-A*01-restricted responses to 

epitopes derived from either lytic or latent viral proteins. This raises the suspicion that the 

increased risk of EBV-associated cHL is related to a weak EBV-specific CTL response 

(Hjalgrim et al, 2010; Straathof et al, 2005). 

Several studies point to an adverse prognosis for EBV-association in adult cHL; however, 

physiological and age-related changes of the immune system may also play an important role 

in modulating the tumour microenvironment in HL. Supporting this, a favourable outcome was 

described for EBV+ cHL occurring in young patients (Barros et al, 2012). Also, another study 

has demonstrated that there is an age-dependent relationship between tumor EBV status and 

clinical outcome in cHL. In particular, it was found that in patients aged 16 to 49 years EBV 

status has not significant impact on prognosis, whereas in patients over 50 years EBV status 

was significantly associated with poorer outcome, suggesting that an age-related decrease in 
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immunity may contribute to the age effect on prognosis in patients with EBV+ cHL (Jarrett et 

al, 2005). 
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2. PERSONAL CONTRIBUTION 

 

 

2.1 AIM 

 

 Based on epidemiological studies, EBV-positive lymphoproliferative disorders (LPD) are 

associated with patient’s age, immune system status of the host, geography, and socioeconomic 

conditions. In particular, in immunocompetent patients EBV+ cHL occur more frequently in 

children from poorly developed countries and in older adults from developed countries, 

whereas EBV-negative cases are more frequent among young adults of developed countries 

(Armstrong et al 1998, Jarrett et al 2003). These differences have questioned the effective role 

of EBV in the pathogenesis of the disease, and have raised the possibility that EBV-positive 

and EBV-negative cHL may represent two distinct diseases (Harris et al 1998).  

 It has been suggested that different factors may contribute to the development of EBV+ cHL 

in children and older patients. In the former, early age of EBV infection has been reported to 

greatly affect the association of EBV with cHL (Glaser et al 1997) while, in the latter 

immunosenescence related to patient’s age has been proposed as a key factor for the 

development of EBV+ cHL (Jarrett et al 2005, Dojcinov et al 2011). In both cases, it has been 

suggested that an impaired immune status of the host may contribute to the development of 

EBV+ cHL. However, whether or not EBV+ cHL occurring in children and in old patients 

represent the same disease remains to be clarified.  

To address this issue, we characterized and compared the immunophenotipic and molecular 

features of 57 cases of HL occurring in pediatric patients from Baghdad with those of 30 cases 

of HL diagnosed in old Italian patients.  
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2.2 MATERIALS AND METHODS 
 

 

Patients 

 

Paraffin blocks of 57 cases of pediatric HL first diagnosed at the Children Welfare 

Teaching Hospital of Baghdad in the period 2008-2012 were sent to the Pathology Unit of 

Sant’Andrea Hospital of Rome for a second opinion. Clinico-pathological features of the 

patients are summarized in Table 5. Histologically, 51 cases were classified as cHL (89%), of 

which 35 as MC (69%), and 16 as NS (31%). Six cases were classified as NLP-HL. Moreover, 

30 cases of Hodgkin Lymphoma diagnosed in caucasian Italian patients aged 50 years or older 

in the period 2003-2012 at Sant’Andrea Hospital of Rome were enrolled in the study (Table 7). 

A control group of 10 cases of EBV-negative cHL from caucasian Italian adult young patients 

(age range 17-32 year old) was included in the study.  

 

 

Immunohistochemistry  

 

Phenotypic characterization of tumor cells was performed by immunohistochemistry on 

formalin-fixed paraffin-embedded (FFPE) serial sections of the involved lymph node using the 

following antibody: CD3, CD4, CD8, CD20, (Novocastra, UK), CD30, CD79a, CD15, (Dako, 

Denmark), PAX5 (Thermo Scientific, USA), OCT2 and BOB1 (Santa Cruz Biotechnology 

Inc., USA). The number of stained cells with H/RS morphology was determined at 400X.  

Cases were classified as negative; or as having <50% H/RS cells stained; or as having >50% 

H/RS cells stained. 

T-cell components present in the tumor microenvironment of cHL was investigated by 

immunohistochemistry for CD3, CD4, CD8, CD56, and Granzyme B (Dako, Denmark). Data 

were obtained by counting 5 separate 1000× high-power fields (HPFs) and calculating the 

mean number of positively stained cells per HPF. 

FFPE tissue sections were immunostained on an automated immunostainer (Dako 

Corp., Carpinteria, CA) using a dextran polymer-peroxidase-DAB detection kit (Dako 

EnVision™ FLEX+ kit) according to the manufacturer's instructions. Briefly, using a 3-in-1 

procedure, deparaffinization, rehydratation and heat-induced epitope retrieval was performed 

incubating 4 μm thick paraffin sections with the Envision pre-heated target retrieval solution 

for 20 minutes at 97°C. Sections were then cooled at room temperature, immersed in a washing 
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buffer for 5 min, and then incubated with an optimal dilution of the primary antibody for 20 

min. After a washing bath, sections were incubated for 20 min with a FLEX HRP-conjugated 

(horse radish peroxidase) linker composed by secondary antibodies with anti-mouse and anti-

rabbit Ig specificity. Immunohistochemical reactions were subsequently developed with 

diaminobenzidine as chromogenic peroxidase substrate, and slides were counterstained with 

haematoxylin. 

 

 

Tests for the detection of EBV in tumor cells  

 

To investigate the presence of EBV infection in H/RS cells immunohistochemistry for 

LMP-1 protein (Dako, Denmark) was performed in all the pediatric and adult cHL. In addition, 

all the cases were also tested by in situ hybridization (ISH) for EBV-encoded RNAs (EBERs).  

EBER-ISH was performed on paraffin sections using a cocktail of EBER1 and EBER2 

fluorochrome-conugated riboprobes (EBER PNA Probe/Fluorescein, Dako, Denmark), and a 

polyclonal rabbit anti-FITC/HRP antibody (Dako, Denmark). Briefly, deparaffinized 2 μm 

thick sections were pre-treated with a pepsin solution (proteinase K) for 6 min at room 

temperature in a humid chamber. Proteolytic process was stopped with 95% ethanol for 10 

secs. Sections were washed in distilled water, and air-dried. Sections were then incubated with 

the EBER PNA probe fluorescein-conjugated for 2 h at 37°C in a hybridization oven and 

covered with a coverslip. Slides were washed for 25 min with a stringent washing solution, air-

dried, and then incubated in a humidity chamber with an anti-FITC/HRP rabbit polyclonal 

antibody for 30 min. After a washing step with PBS buffer, a 5 min incubation with the HRP-

substrate (diaminobenzidina) was performed. Slides were counterstained with haematoxilyn. 

 

 

Genomic DNA extraction 

 

 Genomic DNA was purified from formalin-fixed paraffin embedded tissues using the QIAmp 

DNA mini kit (Qiagen). The QIAamp DNA purification procedure was carried out using 

QIAamp Mini spin columns. For each tumor a paraffin block was cut at 10 μm and collected in 

an autoclaved plastic microtube (1.5 ml). For each microtube, 2 sections of total 20 μm 

thickness were carefully collected. Deparaffinization was carried out by adding 1 ml xylene to 

each microtube for 30 min for two changes, followed by 100% and 75% ethanol for 30 min 
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with two changes. After a washing step with PBS for 15 min in two changes, 200 μl of lysis 

buffer containing proteinase K was added and incubated at 56 °C overnight using a heat block. 

When all tissue fragments were dissolved completely, the lysate was loaded onto the QIAamp 

Mini spin column. A brief centrifugation was carried on to allow DNA to be adsorbed onto the 

QIAamp silica membrane. DNA bound to the QIAamp membrane was washed in 2 

centrifugations using 2 different washing buffers. Purified DNA was eluted in AE from the 

QIAamp Mini spin column in a concentrated form. Using a spectrophotometer (Nanodrop, 

Thermoscientific), the amount of DNA yield was measured according to the standard protocol 

recommended by the manufacturer. 

 

 

Polymerase Chain Reaction (PCR) analysis of the LMP-1 gene polymorphism 

 

To investigate LMP-1 gene polymorphism in HL biopsies of Iraqi children, the DNA 

was extracted from 25 EBV+ cHL (21 MC and 4 NS) as previously described. The DNA from 

B95.8 and Raji cell lines was used as LMP1 wild-type control. The DNA from AG876 and 

Rael cell lines was used as LMP1 deleted variant control. A DLBCL cell line, U2932 was used 

as EBV negative control of the PCR reaction. For the PCR reaction, following primers were 

designed: forward primer: 5’ GTG GGG GTC GTC ATC ATC TC 3’  (B95.8 coordinates 

168190-168209); reverse primer: 5’CGG AAG AGG TTG AAA ACA AA 3’ (B95.8 

coordinates 168331-168350). The DNA was amplified using the following PCR conditions: 

initial denaturation step at 94°C for 5 minutes, 40 cycles of denaturation at 94°C for 1 minute, 

annealing at 56°C  for 1 minute, extension at 72°C for 1 minute, final extension step at 72°C 

for 10 minutes. PCR products were visualised on a 2% agarose gel. The product length for the 

wild type LMP1 amplicon was 161 bp, and for the deleted LMP1 variant amplicon 131 bp.  

 

 

PCR detection of Epstein Barr virus (EBV)-encoded RNA 1 (EBER1)  

 

In order to further confirm the presence of EBV-infection in HL biopsies of two elderly 

patients with methachronous B-cell lymphoma a PCR for the detection of EBER1 gene was 

performed on total DNA extracted from the whole paraffin tissue sections. For the PCR 

reaction, the following primers were designed: forward primer 

5’AGGACCTACGTGCCCTAGA3’, reverse primer 5’AAAACATGCGGACCACCAGC3’. 
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The DNA from U2932 EBVGFP cl1 (DLBCL, EBV+) and RAJI (BL, EBV+) cell lines was 

used as EBER1-positive control. U2932 (DLBCL, EBV-) and BC3 (PEL, EBV-) cell lines 

were used as EBV-negative controls of the PCR reaction. PCR products were visualised on a 

2% agarose gel. The product length for EBER1 amplicon was 167 bp. 

 

 

T-cell receptor-gamma (TCR-γ) gene rearrangements analysis  

 

In order to investigate the status of the TCRγ gene in both the pediatric and the elderly 

cases of HL, a TCRγ gene clonality assay was carried out using the “TCRγ rearrangements 

molecular analysis kit” (Master Diagnostica, Spain) in 38 of 51 Iraqi cHL and in 21 of 30 cases 

of adult cHL. This test utilizes the BIOMED-2 multiplex PCR master mixes targeting the 

variable (V) and joining (J) regions that flank the unique hypervariable antigen-binding region 

3 (CDR3) of the TCRγ gene locus, which is rearranged early during T-cell development (van 

Dongen et al 2003). In particular, genomic DNA extracted from paraffin tissue sections was 

used in two independent PCR amplification reactions. One reaction amplified DNA sequences 

between the V gamma segments 1-8 and 10, and all J gamma segments, while the other 

amplified DNA sequences between the V gamma segments 9 and 11, and all J gamma 

segments. One monoclonal and one polyclonal control samples were included in each reaction  

Following PCR amplification, the fluorochrome-labeled single-strand (denatured) PCR 

products were separated in a capillary sequencing polymer as function of size and detected 

automatically with a laser scanning on the ABI 3130 Genetic Analyzer (Applied Biosystems, 

Foster City, California). This analysis is based on the principle that primers conjugated with 

different fluorescent dyes produce different emission spectra upon excitation by a laser in a 

capillary electrophoresis instrument (GENESCAN). In this manner, different fluorophors can 

correspond to different targeted regions. GeneMapper software (ABI) was then used to 

visualize and analyze PCR products, allowing detection of clonal cells. In case of polyclonal 

lymphoproliferation many different PCR products of different sizes resulted in a gaussian 

distribution of homogeneous peaks. One type of PCR product due to a fully monoclonal 

lymphoid population gave a single prominent peak. When two unequivocal peaks were 

observed the case was considered as bi-allelic monoclonal. Samples in which more than 2 

discrete peaks (2.5-fold higher than the adjacent peaks that represent the polyclonal 

background) were observed were scored as oligoclonal (Figure 6).The limit of detection of this 

assay has been determined by the manufacturer to be approximately 1 clonal cell in 100 
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hundred normal cells (1%), and inter-assay and intra-assay reproducibility in size 

determination using capillary electrophoresis has been considered to be approximately 1-2 

basepairs.  

 

 

Heteroduplex analysis of TCRγ gene rearrangements 

 

PCR amplifications products of TCRγ gene were also evaluated by heteroduplex 

analysis on a nondenaturing polyacrylamide gel according to BIOMED-2 report (van Dongen 

et al 2003). Twenty μl of PCR product was denaturated at 94ºC for 5 minutes and re-annealed 

at 4ºC for 60 minutes. Five μl of ice-cold non-denaturing bromophenol blue loading buffer was 

added to samples. Then 20μl of mixture was loaded into the wells of 6% non-denaturing 

polyacrylamide TBE gel (Invitrogen) with a 0.5X TBE running buffer (Invitrogen) and runned 

at 110V for 3 hours. Gels were stained in 0.5μg/ml EtBr in water for 5-10 minutes, and washed 

twice in water for 5-10 minutes. UV illumination was used for visualization. Gel was 

photographed and data were interpreted. In heteroduplex analysis, PCR products are heat 

denatured and subsequently rapidly cooled to induce duplex (homo or heteroduplex) formation. 

In samples that contain polyclonal lymphoid cells PCR fragments of rearranged TCRγ genes 

form heteroduplexes, which result in a background smear of slow migrating fragments. PCR 

products from monoclonal or oligoclonal lymphoid cell populations give rise to homoduplexes 

bands (Figure 6). 

 

 

Immunoglobulin (IGH) gene rearrangements analysis  

 

We performed molecular evaluation of IGH gene rearrangements in 38 of 51 Iraqi cHL 

and in 21 of 30 cases of adult cHL using the “Identyclone IGH gene clonality assay” 

(Invivoscribe, California). This test, based on BIOMED 2 protocol (Ref 15), amplify the DNA 

between primers that target the three conserved framework regions (FR1, FR2, and FR3) of the 

variable (V) segments and the conserved joining (J) regions of the IGH gene locus. These 

regions rearrange during B-cell differentiation generating VDJ products of unique length and 

sequence. Genomic DNA extracted from FFPE tissues was amplified using three master mixes 

that combine 3 different sets of VH primers with 1 JH consensus primer. PCR amplifications 

products were then analyzed on the ABI 3130 Genetic Analyzer (Applied Biosystems, Foster 
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City, California) using GeneMapper program (as previously described for the TCRγ gene 

clonality assay). One monoclonal and one polyclonal control samples were included in each 

reaction. Clonal rearrangements were identified as prominent, single-sized peaks in the 

expected range, whereas samples were scored as polyclonal when a gaussian distribuition of 

homogeneous peaks was observed.  

 

 

Laser Capture Microdissection and TCRγ gene rearrangement analysis 

 

Laser capture microdissection was performed using the microdissection laser system SL 

CUT (NIKON Instruments, Italy). Large atypical cells with Hodgkin and Reed-Stenberg-like 

morphology were isolated on Haematoxylin and Eosin stained sections collecting 

approximately 200 cells per sample. Moreover, about 300 morphologically typical 

lymphocytes were picked from the same tissue section. DNA extraction was performed using 

the Pico pure isolation Kit (ARCTURUS, Bioscience Inc., Mountain View, CA, USA). TCRγ 

clonality assay was performed on microdissected samples as previously described for the 

whole tissue sections. 

 

 

Statistical analysis 

 

The association between clinical, pathological, and molecular variables (tumor 

histology, EBV-infection, TCRγ and IGH clonality) was assessed using Fisher’s exact test. 

Student’s t-test was used to test the correlation between patient’s age and tumor histology. 

Associations were considered to be statistically significant with p values < 0.05. 

 



 31 

Table 5. Age-related histology and EBV infection of 51 cases of pediatric cHL.  

Groups 
M:F 

Ratio 
n. of cases MC-HL NS-HL EBV+ 

3-5y 5:1 18 16 (89%) 2 (11%) 18 (100%) 

6-10y 3:1 24 14 (58%) 10 (42%) 20 (83%) 

11-13y 2:1 9 5 (56%) 4 (44%) 6 (67%) 

Total 3.25:1 51 35 (69%) 16 (31%) 44 (86%) 

 

 

 

 

2.3 RESULTS 

 

 

Clinico-pathological features of HL occurring in Iraqi children 

 

In a collaborative study between the Children Welfare Teaching Hospital of the 

University of Baghdad and the Sapienza University of Rome, 57 cases of Hodgkin lymphoma 

(HL) affecting 

Iraqi children 

under 14 years 

of age were 

reviewed at the 

Sant’Andrea 

Hospital of 

Rome (Table 5). 

Histologically, 

51 cases were classified as cHL (MC = 69%; NS = 31%), and 6 cases as Nodular Lymphocyte 

Predominance HL. The children with MC were predominantly male (ratio M:F MC=6:1 versus 

NS=1.3:1; p=0.033), and were younger than those with NS (mean age = 6.9 year old versus 

8.75 year old; p=0.016).  

To detect EBV infection of H/RS cells EBER hybridization and LMP-1 

immunostaining was performed in all the cases (Fig. 5a). EBV infection of H/RS cells was 

demonstrated in 44 of 51 cases of cHL (86%), and was more common in MC than in NS (97% 

versus 63%; p=0.0025); the 6 cases of NLP-HL were all EBV-negative. In all EBV+ cases, 

LMP-1/EBER reactivity was detected in CD30-positive cells with typical H/RS morphology 

(Figure 5); EBV+ H/RS cells were 60% of CD30+ cells in MC and 53% in NS. When children 

were stratified according to age it was found that all cases of cHL in the 3-5 years age range 

were EBV+. Moreover, with the increase of the age, there was a gradual decrease of EBV+ 

cases (from 100% to 67%), and an increase in NS cases (from 11% to 44%). These date 

indicate a progressive age-related switch from an EBV+ MC type of cHL to an EBV-negative 

NS type. 

Immunohistochemistry for CD20, CD79a, PAX-5, OCT-2, and BOB-1 was used to assess 

the immunophenotypic profile of H/RS cells. Expression of B cell markers by H/RS cells was 

similar in MC and NS, and was not influenced by EBV infection. In fact, H/RS cells were 
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PAX-5 positive in the majority of cHL cases (MC 94% versus NS 87%), and expressed at a 

lesser degree other B-cell markers including CD20 (MC 26% versus NS 25%), CD79a (MC 

37% versus NS 25%), OCT-2 (MC 31% versus NS 12%), and BOB-1 (MC 11% versus NS 

12%) (Table 6). The six cases classified as NLP-HL were all EBV-negative, and contained LP 

cells intensely positive for all the B–cell markers and negative for CD30 and CD15 (Table 6).  

 

 

 

 

 

 

 

 

       Table 6. Expression of B cell markers by H/RS cells in 57 cases of HL from Iraqi children. 

 

Histology 

 

n. of 

cases 

PAX5 CD20 CD79a OCT-2 BOB-1 

Neg <50% >50% Neg <50% >50% Neg <50% >50% Neg <50% >50% Neg <50% >50% 

cHL-MC 35 2 10 23 26 9 0 22 13 0 24 8 3 31 4 0 

  6% 28% 66% 74% 26% - 63% 37% - 69% 23% 8% 89% 11% - 

cHL-NS 16 2 3 11 12 4 0 12 3 1 14 1 1 14 2 0 

  13% 19% 68% 75% 25% - 75% 19% 6% 88% 6% 6% 88% 12% - 

cHL-

EBV-pos 

44 4 11 29 33 11 0 27 16 1 32 8 4 39 5 0 

 9% 25% 66% 75% 25% - 61% 36% 2% 73% 18% 9% 89% 11% - 

cHL-

EBV-neg 

7 0 2 5 5 2 0 7 0 0 6 1 0 6 1 0 

 - 29% 71% 71% 29% - 100% - - 86% 14% 0% 86% 14% - 

NLP-HL 6 0 1 5 0 0 6 0 0 6 0 0 6 0 0 6 

  - 17% 83% - - 100% - - 100% - - 100% - - 100% 

 

A BA B
 

 

Figure 5. Paraffin section of a lymph node involved by a pediatric MC cHL immunostained for LMP-1 (A), 

and CD30 (B) (original magnification x400). 
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Clinico-pathological features of HL occurring in Italian old adults  

 

Thirty cases of classical Hodgkin lymphoma diagnosed in patients over 50 years of age 

at Sant’Andrea Hospital of Rome were further characterized. Histologically, they were 

subclassified as MC in 11 cases (37%), as NS in 12 cases (40%), and as LR in 5 cases (17%). 

In 2 cases biopsy samples were too small to assess HL variant and were identified as 

Unclassified-HL. Compared to NS, MC cases were slightly more common in older patients 

(mean age MC = 71.6 year old versus NS = 64.3 year old; p=0.057), and were not significantly 

associated with patients gender (ratio M:F MC=1.3:1 versus NS=1:1; p=1).  

EBV infection of H/RS cells was found in 16 of 30 cHL (53%), and was more common 

in MC than in NS (82% versus 33%; p=0.036). Among the EBV+ cases there were also the 2 

Unclassified HL (100%) and 1 case of LR (20%). LMP-1/EBER reactivity was detected in 

cells with typical H/RS morphology in all the 16  EBV+ cases. EBV+ H/RS cells were 100% 

of the CD30+ cells in MC cases and 75% in NS cases. When patients were stratified according 

to age (Table 7), it was found that with increasing age there was a progressive transition from 

EBV-negative to EBV-positive cases (from 38% to 100%), and an increase in MC cases (from 

25% to 75%). This result was exactly the opposite of what we observed in Iraqi children, 

where it was found an inverse age-related transition from EBV+ MC cases to EBV-negative 

NS cases.  

Concordantly with the literature (Swerdlow et al 2008; Mani et al 2009) expression of 

B-cell markers was found to be downregulated in H/RS cells.  In fact, tumor cells were 

 

 Table 7. Histology and EBV infection in 30 Italian cHL stratified according to age  

 

Groups 
M:F   

ratio 

n° of 

cases 
MC-HL NS-HL LR-HL Uncl-HL EBV+ 

50-59y  1:1  8 2 (25%) 3 (38%) 2 (25%) 1 (13%) 3 (38%) 

60-69y 1:1 10 2(20%) 6 (60%) 2 (20%) 0 4 (40%) 

70-79y  7:1  8  4 (50.0%) 2 (25.0%) 1 (12.5%) 1 (12.5%) 5 (62.5%) 

≥80y  0:4  4  3 (75%) 1 (25%) 0 0 4 (100%) 

Total - 30 11 (37%) 12 (40%) 5 (17%) 2 (7%) 16 (53%) 
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consistently CD30 and CD15 positive (100% of the cases), expressed frequently PAX-5 (MC 

100% versus NS 92%), and at a lesser degree other B-cell markers including CD20 (MC 36% 

versus NS 8%), CD79a (MC 27% versus NS 25%), OCT-2 (MC 73% versus NS 50%), and 

BOB-1 (MC 54% versus NS 16) (Table 8). As for pediatric cHL, it was found that the 

immunophenotypic profile of H/RS cells was similar in MC and NS, and was not influenced by 

EBV infection.  When results where compared to that of Iraqi children, a significantly higher 

expression of OCT-2 and BOB-1 was found in MC cHL occurring in elderly Italian patients 

than that found in MC pediatric cases (Table 9). 

 

Tumor microenviroment composition in pediatric and elderly cHL 

 

Recently Barros et al have shown that in EBV+ pediatric cHL the tumor 

microenviroment is characterized by a cytotoxic/T-helper cell 1 (Th1) profile (Barros et al, IJC 

2011). The different T cell components present in the tumor microenvironment of our series of 

cHL were investigated by immunohistochemistry for CD4, CD8, CD56, and Granzyme B to 

identify activated cytotoxic T/NK lymphocytes (CTLs).  

In the pediatric cases increased GrB+ CTLs were significantly associated with patient’s 

age of 3–5 years as compared to over 6 years (mean value 129/HPF vs 27/HPF, p=0.002), with 

the histological subtype MC as compared to NS (mean value 104/HPF vs 26/HPF, p =0.02) and 

EBV+ versus EBV-negative status (mean value 95/HPF vs 21/HPF, p =0.04); no statistically 

 

Table 8. Expression of B cell markers in 30 cHL of Italian old adult patients 

 

Histology 
n. of 

cases 

PAX5 CD20 CD79a OCT-2 BOB-1 

Neg <50% >50% Neg <50% >50% Neg <50% >50% Neg <50% >50% Neg <50% >50% 

cHL-MC 11 
0 1 10 7 3 1 8 1 2 3 3 5 5 4 2 

- 9% 91% 64% 27% 9% 73% 9% 18% 27% 27% 45% 45% 36% 18% 

cHL-NS 12 
1 3 8 11 0 1 9 3 0 6 3 3 10 1 1 

8% 25% 67% 92% - 8% 75% 25% - 50% 25% 25% 84 8% 8% 

cHL-LR 5 
1 1 3 2 2 1 2 2 1 2 2 1 4 1 0 

20% 20% 60% 40% 40% 20% 40% 40% 20% 40% 40% 20% 80% 20% - 

cHL-
Unclass 

2 
0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 

- 50% 50% - 50% 50% 50% - 50% 50% - 50% 50% - 50% 

cHL-
EBV+ 

16 
0 3 13 8 4 4 9 3 4 4 4 8 10 4 2 

- 19% 81% 50% 25% 25% 56% 19% 25% 25% 25% 50% 63% 25% 13% 

cHL-
EBV-neg 

14 
2 3 9 12 2 0 11 3 0 8 4 2 10 2 2 

14% 21% 64% 86% 14% - 79% 21% - 57% 29% 14% 71% 14% 14% 
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significant correlation was found between the number of intratumoral GrB+ CTLs and TCRγ 

clonality. Consistently with data obtained in the pediatric cases, in cHL of the elderly we found 

a significant increase of GrB+ CTLs in the MC as compared to the NS subtype (mean value 

125/HPF vs. 23/HPF, p =0.005). Conversely, in cHL of the elderly the number of GrB+ CTLs 

was not associated with EBV-status, age of the patient, and TCRγ gene clonality. No 

statistically significant differences were found between cHL of Iraqi children and that of old 

Italian patients (mean value 73/HPF vs 66/HPF; p=0.425). 

The number of CD4+, CD8+ and of CD56+ cells was comparable between pediatric 

and elderly cHL. Furthermore, for both pediatric and old patients no association was found 

between the number of the CD4+, CD8+, and CD56+ cells and histological variant, EBV status 

and TCRγ gene rearrangements. 

 

 

LMP-1 gene polymorphism in EBV+ cHL of Iraqi children 

 

Sequence analyses have found several nucleotide variations in the EBV LMP1 gene 

which has been reported to have greater tumorigenic potential (Santon et al 1998). We have 

investigated the EBV-LMP-1 gene polymorphism in 25 cases of cHL of Iraqi children to 

demonstrate the characteristic 30 basepair deletion in the 3’ end of EBV LMP-1 gene. Wild 

type LMP-1 gene was found in 17/25 cases (68%), whereas the LMP-1 deleted variant of EBV 

was detected in 8/25 cases (32%); no significant association was found between the presence 

of LMP-1 deletion and any of the clinico-pathological features of the disease. Furthermore, the 

 

Table 9. Expression of B cell markers in MC and NS cHL occurring in Iraqi children and in Italian old patients 
 

Histology 
n. of 

cases 

PAX5 CD20 CD79a OCT-2 BOB-1 

Neg <50% >50% Neg <50% >50% Neg <50% >50% Neg <50% >50% Neg <50% >50% 

cHL-MC 

old 
11 

0 1 10 7 3 1 8 1 2 3 3 5 5 4 2 

- 9% 91% 64% 27% 9% 73% 9% 18% 27% 27% 45% 45% 36% 18% 

cHL-MC 

children 
35 

2 10 23 26 9 0 22 13 0 24 8 3 31 4 0 

6% 29% 66% 74% 26% - 63% 37% - 69% 23% 9% 89% 11% - 

   p=0.343  p=0.338  p=0.024  p=0.009  p=0.003 

                 

cHL-NS 

 old 
12 

1 3 8 11 0 1 9 3 0 6 3 3 10 1 1 

8% 25% 67% 92% - 8% 75% 25% - 50% 25% 25% 84 8% 8% 

cHL-NS 

 children 
16 

2 3 11 12 4 0 12 3 1 14 1 1 14 2 0 

13% 19% 69% 75% 25% - 75% 19% 6% 88% 6% 6% 88% 13% - 

   p=0.999  p=0.06  p=0.999  p=0.072  p=0.560 
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observed incidence of EBV LMP-1 gene deletion (32%) is similar to that previously reported 

for USA and Brazil (33%) (Hayashi et al 1997). 

 

IGH and TCRγ gene rearrangements in elderly and pediatric cHL 

 

IGH and TCRγ gene rearrangements were investigated in 38 of 51 cases of pediatric 

cHL (Table 10) and in 21 of 30 cases of adult cHL (Table 11) using a multiplex PCR on DNA 

extracted from whole paraffin sections. In the remaining cases (13 pediatric cHL and 9 cHL of 

the elderly) the analysis was inconclusive, probably because of poor quality DNA. PCR 

amplifications products of TCRγ gene were also evaluated by heteroduplex analysis on a 

polyacrilamide gel to confirm the existence of oligoclonal and monoclonal gene 

rearrangements (Figure 6). 

Among the 38 cHL of childhood clonal IGH rearrangements were detected in 14 cases 

(37%), and oligoclonal/monoclonal TCRγ rearrangements in 28 cases (74%), including 5 of 5 

EBV-negative cases. Dual IGH and TCRγ clonal rearrangements were detected in 4 of 38 cases 

(10%).  

In the Italian elderly cases IGH monoclonal rearrangements were found in 10 of 21 

cHL (48%). Mono/oligoclonal TCRγ rearrangements were detected in 7 of 21 cases (33%); this 

pattern was significantly different from what observed in cHL of Iraqi children (p=0.005), 

where a restricted TCRγ was found in the majority of the cases (74%). In 3 elderly cHLs (14%) 

a concomitant IGH and TCRγ monoclonal rearrangement was detected.  

 

Table 10. IGH and TCRγ gene rearrangements in cHL of Iraqi childhood 

 

Groups 
n. of 

cases 

IGH TCRγ 
IGH + 

TCRγ 

Monoclonal Polyclonal Monoclonal Oligoclonal Polyclonal Monoclonal 

cHL all 

cases 
38 

14 

37% 

24 

63% 

10 

26% 

18 

47% 

10 

26% 

4 

10% 

cHL-

MC 
26 

10 

38% 

16 

62% 

4 

15% 

14 

54% 

8 

31% 

2 

8% 

cHL-

NS 
12 

4 

33% 

8 

67% 

6 

50% 

4 

33% 

2 

17% 

2 

20% 

cHL-

EBV+ 
33 

13 

40% 

20 

60% 

6 

18% 

17 

52% 

10 

30% 

3 

9% 

cHL-

EBV- 
5 

1 

20% 

4 

80% 

4 

80% 

1 

20% 

0 

- 

1 

20% 
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In both, cHL of childhood and cHL of the elderly, no association was found between 

IGH and/or TCRγ clonality and histological subtype, EBV status, or patient’s age (Table 12). 

Nevertheless, it is interesting to note that the pattern of TCRγ clonality identified in our series 

of pediatric and elderly cHL was profoundly different from what we observed in 10 cases of 

EBV-negative cHL-NS occurred in Italian young adult patients, which exhibited polyclonal 

TCRγ rearrangements in all the cases (Table 12). 

 

 

Immunophenotipic characterization and single-cell PCR analysis of cHL with TCRγ 

monoclonality  

 

TCRγ gene rearrangements are likely to be related to the non-neoplastic T-cell 

population that characterized Hodgkin lymphomas however, rarely, T-cell markers-positive 

H/RS cells showed rearranged TCR genes, suggesting a T-cell derivation in a minority of the 

cases (Seitz et al 2000). To clarify the phenotype of H/RS cells in our series of pediatric and 

elderly HL with evidence of TCRγ gene monoclonality we investigated the 

immunohistochemical expression of several B-cell (CD20, CD79a, OCT2, BOB1) and T-cell 

markers (CD3, CD4, CD4) on H/RS cells. In 2 out of 10 pediatric cases (20%) and in 5 of 5 

 

 Table 11. IGH and TCRγ gene rearrangements in elderly Italian cHL  

 

Groups 
n. of 

cases 

IGH TCRγ 
IGH + 

TCRγ 

Monoclonal Polyclonal Monoclonal Oligoclonal Polyclonal Monoclonal 

cHL all 

cases 
21 

10 

48% 

11 

52% 

5 

24% 

2 

9% 

14 

67% 

3 

14% 

cHL-

MC 
8 

3 

38% 

5 

62% 

2 

25% 

1 

13% 

5 

62% 

1 

13% 

cHL-NS 8 
4 

50% 

4 

50% 

2 

50% 

1 

33% 

5 

17% 

1 

13% 

cHL-LR 3 
1 

33% 

2 

67% 

0 

- 

0 

- 

 

100% 

0 

- 

cHL-

UNCL 
2 

2 

100% 

0 

- 

1 

50% 

0 

- 

1 

50% 

1 

50% 

cHL-

EBV+ 
10 

5 

50% 

5 

50% 

3 

30% 

1 

10% 

6 

60% 

2 

20% 

cHL-

EBV- 
11 

5 

45% 

6 

55% 

2 

18% 

1 

9% 

8 

73% 

1 

9% 
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elderly patients (100%) H/RS showed expression of at least one of the B-cell marker tested; in 

contrast, none of the cases showed expression of T-cell associated markers on H/RS cells.  

To investigate the possibility that TCRγ monoclonality may also be a specific 

characteristic of H/RS cells, a single-cell PCR analysis of TCRγ gene clonality was performed 

in 4 EBV+ MC-HL of Iraqi children and in 3 elderly EBV+ MC-HL with evidence of restricted 

TCRγ gene rearrangements and no expression of T-cell markers on tumor cells. H/RS cells 

were easily recognizable by morphology, and could be singly collected with laser capture 

microdissection. DNA was obtained from about 200 microdissected H/RS cells and from 300 

microdissected surrounding small lymphocytes per sample. H/RS-like cells and neoplastic T-

lymphocytes microdissected from an angioimmunoblastic T-cell lymphoma were used as 

controls. Interpretable results were yielded only in one case of Iraqi children because of poor 

quality of the DNA extracted. Both genescan and heteroduplex analyses revealed the presence 

of a clonal TCRγ rearrangement in the microdissected H/RS cells undistinguishable from that 

observed in the whole tissue section (Figure 7A). This result suggests that H/RS cells might be 

able to rearrange both IGH and TCRγ genes. This observation is in keeping with what we have 

found in a previous study of a case of EBV+ mucocutaneus ulcer (Di Napoli et al, 2011). The 

mucocutaneus ulcer is a newly described EBV-related lymphoma (Dojcnov et al, 2010) that 

affects immunosuppressed or elderly people. It consists of an isolated ulcer, involving the skin 

or the mucosa of the gastrointestinal tract, composed by a polymorphous inflammatory-like 

infiltrate, in which are admixed atypical large EBV+ B cells with H/RS-like morphology. IGH 

and TCRγ genes clonality has been reported in 39% and 38% of the case respectively. We 

provided evidence of monoclonal TCRγ rearrangement in the microdissected neoplastic cells 

with H/RS-like morphology and not in the sourrounding lymphocytes (Figure 7B). 

 

 

Methachronous EBV-positive HL and EBV-negative non-Hodgkin lymphomas  

 

 In our series of cHL occurred in elderly patients we found that two patients had a prior 

history of lymphoma diagnosed by our Institution. The first patient had an extranodal diffuse 

large B cell lymphoma (DLBCL) of the lung treated with R-CHOP 5 years earlier; the other 

patient had a small B-cell lymphoma of the MALT type of the left kidney treated with surgery 

alone 2 years earlier. Both patients had a nodal EBV+ cHL; however, when we look for EBV-

infection in the prior extranodal non-Hodgkin B-cell lymphomas we did not find any EBER 

and/or LMP1 positive cell. To confirm the data we performed PCR analysis for the detection of 
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EBER-1 gene on the DNA extracted from the tissue biopsies of the methachronous 

lymphomas. In both patients molecular analysis confirmed the absence of EBER-1 in the 

previous non-Hodgkin B-cell lymphomas (Figure 8). 

IGH gene clonality assay showed monoclonal rearrangements in both patients with EBV+ 

cHL. In order to establish a possible clonal relationship with previous non-Hodgkin B cell 

lymphomas we compared rearrangements patterns between the methacronous tumors. In the 

MALT B cell lymphoma pherograms showed an identical pattern of IGH clonality between the 

methachronous tumors (Figure 9 case B); whereas, in the large B cell lymphoma the position 

of the IGH clonal peak differ from the one detected in the subsequent HL for 3 base pairs 

(Figure 9 case A). 

 

 

 

 
Figure 6. TCRγ gene clonality by Gene Scan fragment analysis (a) and, by heteroduplex analysis 

(b) of Iraqi pediatric cHL. (a) Samples were scored as monoclonal when one or two (bi-clonal) 

unequivocal peaks/bands were observed; as polyclonal when a gaussian distribuition of omogeneous 

peaks/bands was observed and, as oligoclonal when more than 2 discrete peaks/bands were observed. (b) 

Monoclonal PCR products give rise to homoduplexes (second and fourth lane) whereas, polyclonal PCR 

products from heteroduplexes result in a smear of slow migrating fragments (third lane). 
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            Table 12. TCRγ gene rearrangements in cHL grouped by patients age 

 

Groups 
n. of 

cases 

TCRγ 

Monoclonal Oligoclonal Polyclonal 

cHL-old 

50-69y 
13 

2 

15% 

2 

15% 

9 

70% 

cHL-old 

≥70y 
8 

3 

37% 

0 

- 

5 

63% 

cHL-child 

3-5y 
13 

2 

15% 

6 

46% 

5 

39% 

cHL-child 

6-13y 
25 

8 

32% 

12 

48% 

5 

20% 

cHL-young 

17-32y 
10 

0 

- 

0 

- 

10 

100% 
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Figure 7. Single cell analysis of TCRγ gene rearrangement in a cHL of childhood (A), and in a 

mucocutaneous ulcer of an old patient (B). A. Eteroduplex analysis showed an identical-sized band 

in the microdissected H/RS-like cells and in the whole lymph node of an Iraqi children with EBV+HL; 

a smear was observed in microdissected sourrounding lymphocytes. In contrast, neoplastic lymphocytes 

and not the H/RS-like cells microdissected from an angioimmunoblastic T-cell lymphoma showed a 

band of the same size of that found in the whole biopsy sample. B. Gene Scan analysis of TCRγ 

clonality in an EBV+ mucocutaneous ulcer involving the sigmoid colon and the lymph nodes of an old 

Italian adult. A similar peak was observed in the whole tissue section of the colon, in the lymph node 

and in the microdissected H/RS-like cells but not in the surrounding lymphocytes.  
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Figure 8. PCR analysis for the detection of EBER-1 gene in methacronous lymphomas of two 

patients (case A and case B). For case A the DNA extracted from the nodal HL diagnosed in 2012 was 

also included in the test. The analysis confirmed the presence of EBV-infection in the nodal HL of case 

A, and its absence in the prior extranodal non-Hodgkin B-cell lymphomas of both case A and case B.  
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Figure 9. GeneScan analysis of IGH gene rearrangements in two adult patients with metachronous 

lymphomas. In case A IGH clonality was very similar between the metachronous tumors; a slightly difference 

in the positition of the monoclonal pick consisting in 3 base pairs was observed in all the three mastermix used 

for the analysis. In case B the two lymphomas showed an identical IGH rearrangement pattern, as shown in 

the representative images of one of the mastermix. 
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DISCUSSION 
 

 

cHL in Iraqi children under 6 years of age is strictly associated with EBV-infection, MC-

subtype and a cytotoxic background 

 

In 1997 Glaser et al (Glaser et al 1997) published a meta-analysis of the epidemiologic 

characteristics of EBV-associated HL based on international data concerning 1546 HL patients 

of any age. They reported the existence of a higher risk of EBV+ cHL in children for both NS 

and MC subtypes; it was suggested that timing of infection greatly affects the association of 

EBV with cHL in children, with early age at infection strongly predicting EBV+ disease for 

both these histological subtypes. Our findings are consistent with this interpretation. In fact, we 

have observed that EBV infection of H/RS cells is present in 97% MC-HL and in 63% NS-HL 

of Iraqi children, whereas EBV+ NS in western countries accounts for approximately 10-25% 

of cases.  

 

 Moreover, we have noted that there is a progressive age-related decrease in the percentage of 

EBV+ cases (from 100% to 67%), and a switch in the histological types from MC to NS. The 

epidemiology of cHL in Iraq is similar to that reported for China (Zhou  et al 2001) and India 

(Dinand et al 2007). When the data of the three Asian countries are pooled together for a total 

of 300 children under 14 years of age (Table 13), it becomes clear that virtually all cases (99%) 

 

Table 13. EBV+ classic Hodgkin lymphoma in 300 Asian children in relation to age  

Age range 

Iraq China
a
 India

b
 Total 

cases 

 

EBV+ 

cases 

 
n. of 

cases 

EBV+ 

cases 

n. of 

cases 

EBV+ 

cases 

n. of 

cases 

EBV+ 

cases 

3-5 y 
18 

35%
 c
 

18 

100%
 d
 

33 

32% 

32 

97% 

17 

12% 

17 

100% 

68 

23% 

67 

99% 

6-10 y 
24 

47% 

20 

83% 

58 

56% 

54 

93% 

93 

64% 

89 

96% 

175 

58% 

163 

93% 

11-14 y 
9 

18% 

6 

67% 

13 

12% 

7 

54% 

35 

24% 

28 

80% 

57 

19% 

41 

72% 

Total cases 51 
44 

86% 
104 

93 

89% 
145 

134 

92% 
300 

271 

90% 

 

aZhou XG et al. Cancer 2001; 92:1621-1631 

bDinand V et al. Eur. J. Cancer 2007 ; 43 :161-168 

cPercent of the total number of cHL cases  

dPercent of EBV+ cases/total number of classic HL in the age-range 
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of cHL under 6 years of age were EBV+, and that the percentage of EBV+ cases significantly 

decreased  to 72% in the 11-14 years age-range. At present there is no definitive explanation 

for these findings. EBV-infection is strictly associated with MC histology, and it was 

speculated that a defective immune response, due to immaturity of the immune system might 

represent one of the triggering events (Harris et al, 1998; Barros et al, 2012; Barros et al, 

2011). This interpretation is supported by the observation that the inflammatory background of 

MC-HL in children under 10 years is profoundly different from that of older children with NS 

subtype. In particular, Barros et al. found that the inflammatory background of EBV+ MC-HL-

cases in children under 10 years was characterised by the presence of an intense T cell infiltrate 

exhibiting a cytotoxic/Th1 profile, whereas in the NS subtype of older children and in EBV-

negative cases there is a higher number of CD4+ T cells with a more regulatory/Th2 profile 

(Barros et al, IJC 2011). In keeping with Barros et al, we found that in our series of pediatric 

cHL the number of GrB+ CTL cells was significantly higher in MC subtypes, in EBV-positive 

cases, and in patients of 3-5 years old.  

 

LMP-1 gene polymorphism is not a frequent feature of EBV+ cHL of Iraqi children 

 

EBV LMP-1 polymorphisms have been reported to have a greater tumorigenic potential 

than wild type LMP-1 gene. Among these a characteristic 30 basepair deletion in the 3’ end of 

EBV LMP-1 gene has been found to be essential for the transformation activity of LMP-1 

oncogene in transfection studies. The 30-bp deletion has been demonstrated in 4/12 (33%) 

EBV+ cHL cases from USA and in 12/26 (46%) cases from Brazil (Hayashi et al 1997). An 

higher incidence of EBV LMP-1 deletion has been found in HL occurring in HIV patients 

(89%) (Docetti et al 1997; Bellas et al 1996) and in Spanish children (79%) (Santon et al 

1998). In our series of EBV+ HL of Iraqi children, we have found the presence of the 30-bp 

LMP-1 gene deletion in 32% of the cases. Our data are similar to what previously reported in 

USA and Brazil but dramatically different to that observed among Spanish children. It may be 

possible that geographical and ethnical factors may influence the incidence of EBV infection 

with EBV strains carrying distinct LMP-1 genes. 

 

Aging is associated to the development of an EBV+ MC-HL subtype 

 

Epidemiological studies reported that EBV+ HL of the mixed cellularity type shows a 

peak in older adults (>= 55 years) in developed countries (Armstrong  et al, 1998, Jarrett et al, 
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2003; Jarrett et al, 2005). Consistently with these reports, we detected EBV infection in 16 of 

30 cHL (53%) occurred in elderly Italian patients, with a significant predilection for MC than 

NS histology (82% vs 33%; p=0.036). Moreover, the percentage of EBV-associated cases, and 

of MC HL subtype gradually increased with advancing of patients age, supporting the 

hypothesis that EBV infection, histology and patients age are closely related. Jarrett et al. 

indicated that the decline in EBV-specific cellular immunity that occurs with age may be 

responsible of EBV reactivation in infected B-cells, thus increasing the risk of their malignant 

transformation (Jarrett et al, 2005). Ageing is known to be accompanied by thymic involution 

and also by a chronic low-grade inflammation state; these determine a progressive exhaustion 

of the CD8+ T-cell population and predispose elderly people to tumor development (Vasto et 

al, 2007; Candore et al, 2010). A major force able to drive a chronic pro-inflammatory state 

during aging may be represented by persistent infections by EBV and Cytomegalovirus virus 

(CMV). In support of this view in our series of cHL occurring in Italian old patients we 

observed a significant higher number of GrB+ CTL cells in the MC cases, which were found to 

be more commonly associated with EBV-infection.  

 

cHL of elderly Italians retains higher expression of B-cell markers than cHL of Iraqi 

children 

 

It is widely accepted that H/RS derive from mature B cells, although they show global 

loss of the B-cell phenotype. Mechanisms causing this extensive reprogramming of the tumor 

cells are mostly unknown. One of the contributing factor identified is given by the 

downregulation of the expression of several transcriptor factors in H/RS cells, including OCT2 

and BOB1, that regulates the expression of many B-cell specific genes. An exception of this 

rule is represented by PAX5, the main B-cell lineage commitment factor. In fact, although 

PAX5 is found to be expressed in H/RS, many of its target genes are found to be down 

regulated, suggesting that its activity might be somehow impaired (Saez et al, 2002; Kuppers, 

Hematol 2009; Browne et al, 2006). Our data are consistent with what previously reported in 

the literature; in the series of Hodgkin lymphomas we investigated H/RS cells were usually 

positive for PAX5, and exhibited downregulation of the other B-cell markers CD20, CD79a, 

OCT2 and BOB1. However, when stratified for histology and patients age, our data showed 

that MC-HL of old Italian adults retain an higher expression of OCT-2 (73%) and BOB-1 

(55%) compared to MC-HL of Iraqi children (OCT2 31%; BOB1 11%). The expression of 

OCT2 and BOB1 in elderly MC-HL was also greater than that reported in the literature (OCT-
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2 12-63%; BOB-1 25-37%) (Cosio et al, 2004; Browne et al, 2006). This difference may be 

due to the fact that in previous studies HL of different subtypes or from patients with different 

age were pooled together, whereas in our study we sub-group HL cases by histology and 

patient age. Moreover, we considered both strong and weak, but clearly positive, staining 

patterns, whereas others may have considered as positive only strong intensity staining. 

Alternatively, our findings may raise the possibility that some of the elderly MC-HL are 

instead EBV+ DLBCL of the elderly. However, not all the HL of old adults that express OCT-

2 and/or BOB-1 were EBV+. Furthermore, the consistent expression of CD15, together with 

the infrequent positivity for CD20 or CD79a, on morphologically typical H/RS cells argues 

against this hypothesis. Finally, Adams et al., have found that BOB-1, OCT-2, CD79a and 

CD20 were more commonly expressed in post-transplant Hodgkin lymphoma (ptHL) versus 

cHL, suggesting that ptHL and cHL are closely related but not identical neoplasm, differing in 

the strict association with EBV infection, persistent phenotipic B-cell signature, and high 

expression of PI3K as well as the slightly CD4-depleted but TIA-1/Granzyme B-enriched 

cellular background composition in ptHL (Adams et al, 2009).  

 

Restricted TCRγ gene rearrangements are a distinctive feature of cHL of Iraqi children  

 

We have found a monoclonal IGH gene rearrangement in 37% of pediatric HL and in 

48% of elderly cases using the BIOMED2 system applied to total DNA extracted from whole 

paraffin sections. This percentage is similar to that reported by Chute et al. (Chute et al, 2008) 

who could demonstrate IGH monoclonality in 24% of cHL cases, and borderline clonality in 

17%.  

An interesting finding of our study is the demonstration of monoclonal/oligoclonal 

TCRγ, suggestive of restricted T cell responses, in a large proportion of pediatric cHL (74%). 

This percentage is considerably higher than that reported for France, where only 13 of 85 

(15%) cHL cases exhibited clonal TCRγ gene rearrangements (Al Saati et a,l 1997). However, 

the age of the French patients was not reported in the paper, so that it can not be excluded the 

existence of a possible association between patient’s age and TCRγ gene status.  

The biological significance of restricted T cell responses in HL involved tissues may be 

only matter of speculation. Restricted T cell responses against EBV antigens may be probably 

indicative of a poorly efficient immune response. In fact, during primary EBV infection, 

recovery from the symptoms is coincident with broad T cell reactivity to multiple epitopes 

whereas, in patients with a delayed healing a narrowly focused response has been observed 
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(Bharadwaj et al, 2001). More recently, it has been shown that a distinctive serologic response 

to EBV latent antigens, indicative of immune dysfunction, is associated with an increased risk 

to develop EBV+ cHL (Levin et al, 2012). Moreover, T cell restricted responses were 

previously observed in about 30% of EBV-driven lymphoproliferative disorders secondary to 

iatrogenic immunosuppression (Au et al, 2006; Dojcinov et al, 2010) and to 

immunosenescence owing to ageing (Dojcinov et al, 2011). In this latter condition T cell 

responses to viruses are profoundly affected due to accumulation of mature CD8+ T cells with 

diminished functionality. A similar condition was described in early infancy, where cytotoxic 

T lymphocyte responses to viral infections remain low as compared with adults (Kovarik et al, 

1998). Furthermore, we detected a consistent polyclonal TCRγ rearrangements in 10 cases of 

EBV-negative NS-HL of Italian young adults. This supports the hypothesis that high incidence 

of T cell restricted responses in cHL of childhood might be the expression of a defective local 

immune response, which might be particularly pronounced in children under 14 years of age.  

In contrast to Iraqi children, our series of cHL occurring in old Italian adults showed 

monoclonal/oligoclonal TCRγ rearrangements only in 33% of the cases. This difference might 

be related to a different tumor microenviroment. It is possible that children and older adults 

differ in their response to the tumor not only with respect to the recruited cell types but also to 

the functional status of these cells. Barros et al. have recently found that tumor 

microenviroment composition in pediatric cHL is distinct from adults, with a higher number of 

CD14+ cells and of CD3+, CD8+, TIA-1+, and TBET+ lymphocytes in children under 10 

years (Barros et al, IJC 2011; Barros et al, 2012). In our series of pediatric and elderly cHL 

we did not find any significant difference in the number of CD3+, CD4+, CD8+, CD56+, 

GrB+ cells, with both pediatric and elderly cHL, having a more cytotoxic background in MC as 

compared to NS subtype. Neverthless, we have no data on the functionality of these cells to 

exclude that different TCRγ clonality pattern may reflect diverse states of immune 

responsiveness. 

 

Concomitant IGH and TCRγ rearrangements occurrence in H/RS cells 

 

A small proportion (10-14%) of HL cases from both pediatric and elderly patients 

showed a concomitant IGH and TCRγ clonality. Dual IGH and TCRγ clonality has been 

previously reported by Saati et al. in 6% of a series of 85 HL. Reports on single cell analysis of 

IGH and TCRγ rearrangements in HL showed that clonality of IGH and TCRγ genes in H/RS 

cells are mutually exclusive, with evidence of TCR genes clonality in H/RS cells expressing T-
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cell markers (Seitz et al, 2000; Müschen et al, 2000). Thanks to laser capture micro-dissection 

we provide evidence that TCRγ clonal rearrangement may occur in neoplastic B cells with 

H/RS-like morphology lacking expression of T-cell associated markers. Thus, our findings 

raise the possibility that in H/RS cells a still unrecognized transforming event might cause 

deregulation/impairment of the RAG (Recombination Activating Gene) enzyme system 

inducing TCR gene rearrangements in B cells which have already undergone IGH 

rearrangements. A similar pathogenetic mechanism has already been proposed to explain the 

presence of concomitant IGH and TCR rearrangements in a consistent number of cases of 

precursor-B-ALL  (Szczepański et al, 1999). 

 

Composite EBV+ HL and EBV-negative non-Hodgkin B cell-lymphoma  

 

It is interesting to note that in our series of elderly EBV+ HL two patients had a prior 

history of an EBV-negative extranodal non-Hodgkin B-cell lymphoma. GeneScan analysis 

demonstrated an identical monoclonal IgH rearrangement in the methachronous lymphomas of 

one of the two patients, suggesting derivation from the same neoplastic clone. In the other 

patient, a very similar IgH clonality pattern was observed between the two lymphomas. 

Although IGH somatic mutation seems not to be a characteristic feature of cHL (Kuppers et al, 

1994), in this patient it can be possible that additional mutations in the rearranged IGH gene 

may have occurred in the subsequent tumor. Alternatively, it might be possible that the two 

tumors represent unrelated neoplasms. To address this question, we are presently undergoing 

IGH mutational analysis of the methachronous lymphomas. Recently, a single cell analysis 

have been conduct to investigate the clonal relationship of a series of cHL and its recurrences 

(Oberman et al, 2011). The authors found both related and unrelated relapses, and observed an 

EBV-association switch in a proportion of the clonally unrelated HL. Similarly, Tinguely et al. 

described a composite lymphoma consisting of a mantle cell lymphoma (MCL) and an EBV+ 

HL, in which single cell analysis of rearranged V genes revealed a clonal relationship between 

the two lymphomas. Moreover, the authors detected somatic mutations in H/RS but not in 

MCL cells, and noticed that only a subclone of the H/RS population, with a particular mutation 

pattern in the V genes, was EBV-infected. This finding represented for Tinguely et al a strong 

indication that EBV infection of the H/RS cell precursor occurred in the germinal center (GC) 

(Tinguely et al, 2003). The identification of composite synchronous and methachronous tumors 

suggests the possibility of the existence of a common tumor stem or precursor cell that already 

carried some transforming events. Nevertheless, it might be possible that unknown genetic or 
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environmental factors (i.e. chemotherapies, aging) predispose an individual to the development 

of clonally unrelated lymphomas. 

The presence of EBV exclusively in the relapsed HL in our cases and in the ones 

described in the literature (Oberman et al, 2011) raises concern about the role of EBV in the 

pathogenesis of the disease. It can be speculated that a common precursor might be 

subsequentially infected by EBV during the remission period between the two methachronous 

lymphomas, probably through virions released by non-neoplastic memory B cells. 

Alternatively, based on the “hit and run” theory, we could assume that EBV infection occurred 

early during tumorigenesis, and that only tumor cells with a defective EBV genome that loss 

the virus might have had a selective advantage in the prior lymphoma (Jox et al, 1997; Trivedi 

et al, 1995). However, this theory is difficult to prove because we and others have failed to find 

any trace of previous EBV infection in H/RS cells of EBV-negative lymphomas (Staratschek-

Jox et al, 2000). In contrast, arguments in favour of the theory are the observation that EBV+ 

HL cases may relapse as EBV-negative cases (Delecluse et al, 1997; Nerurkar et al, 2000), the 

notion that infectious mononucleosis represents a risk factor also for the development of EBV-

negative HL (Jarrett et al, 2002; Sleckman et al, 1998), and the demonstration of defective 

forms of EBV which progressively lose the ability to infect host cells (Gan et al, 2002).  

 

In conclusion, our data suggest that cHL occurring in Iraqi children and in Italian older 

adults are very similar with an age-depend variation in histology and EBV-infection, 

suggesting that in both class of patients an impaired immune system may be critical for the 

development of the disease. However, significant differences in B-cell phenotype of H/RS cells 

and in pattern of TCRγ gene rearrangements suggest that cHL of pediatric and elderly patients 

are closely related but not identical neoplasm, probably representing a continuum spectrum.  
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