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Abstract

In this dissertation we discuss the deployment of combinatorial optimization methods

for modeling and solve real life problem, with a particular emphasis to two biological

problems arising from a common scenario: the reconstruction of the three-dimensional

shape of a biological molecule from Nuclear Magnetic Resonance (NMR) data.

The first topic is the 3D assignment pathway problem (APP) for a RNA molecule.

We prove that APP is NP-hard, and show a formulation of it based on edge-colored

graphs. Taking into account that interactions between consecutive nuclei in the NMR

spectrum are different according to the type of residue along the RNA chain, each color

in the graph represents a type of interaction. Thus, we can represent the sequence of

interactions as the problem of finding a longest (hamiltonian) path under the constraint

that the edges of the path follow a given order of colors (the orderly colored longest

path). We introduce three alternative IP reformulations of APP obtained with a max

flow problem on a directed graph with packing constraints over the partitions, which

have been compared among themselves. Since the last two models work on cyclic graphs,

for them we propose an algorithm based on the solution of their relaxation combined

with the separation of cycle inequalities in a Branch & Cut scheme.

The second topic is the discretizable distance geometry problem (DDGP), which is

a formulation on discrete search space of the well-known distance geometry problem

(DGP). The DGP consists in seeking the embedding in Rk of a undirected graph given

a set of Euclidean distances between certain pairs of vertices. DGP has two important

applications: (i) finding the three dimensional conformation of a molecule from a subset

of interatomic distances, called Molecular Distance Geometry Problem, and (ii) the

Sensor Network Localization Problem. We describe a Branch & Prune (BP) algorithm

tailored for this problem, and two versions of it solving the DDGP both in protein

modeling and in sensor networks localization frameworks. BP is an exact and exhaustive

combinatorial algorithm that examines all the valid embeddings of a given weighted

graph G = (V,E, d), under the hypothesis of existence of a given order on V . By

comparing the two version of BP to well-known algorithms we are able to prove the

efficiency of BP in both contexts, provided that the order imposed on V is maintained.
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Chapter 1

Introduction

1.1 OR meets biology

Making the best decision in any situation is one of the most coveted man desires. Since

the efforts of military planners during the World War II [84], Operations Research (OR)

is known as the discipline that helps to make better decisions. In these last 70 years

the OR applications have reached areas from business, industry, logistics to the newest

ecology, social network and biology, to name few. This rapid growth is due to least two

factors. The first one is the substantial progress made in the OR techniques improve-

ment, such as the simplex method for solving linear programming problems, developed

by George Dantzing in 1947 and listed in [53] among the top 10 algorithms of the twen-

tieth century. The second factor that plays a key role in the OR growth is the arrival

of the computer revolution. In fact, the development of personal computers and good

OR software packages from the 80s makes possible nowadays to collect and to handle a

huge amount of data. Nevertheless, for years OR has been a little known science to who

is outside the profession. With the goal of making understandable the value of OR even

outside the OR scientific community, in 2004 the Institute for Operations Research and

the Management Sciences (INFORMS) introduced the “O.R.: The Science of Better”

campaign to “improve the visibility, identity, and image to key constituencies outside

the discipline”1.

In the last decades the research carried out to solve more and more complex problems

has followed two main directions: first, an improvement of the solvers and algorithms,

taking also into account the increasing power of computers. Second, the way to model

problems. These two aspects are in fact two sides of the same coin, since a good solution

of an optimization problem is obtained by means of both an appropriate model (also

1www.scienceofbetter.org

1



Chapter 1. OR meets biology 2

called formulation) and an efficient algorithm to solve it. More precisely, the process

which leads from a real-world problem to its solution by means of OR can be resumed

in the following 4 steps:

1. formalize the (real-world) problem;

2. create an abstract mathematical model to describe the problem;

3. give the model as input to a solver in order to obtain the optimal solution (if the

solution process is too much time and/or memory demanding due to the difficulty

of the problem, and the optimal solution cannot be found, usually the solver can

provide some other information as the best solution found so far and sometimes a

bound on the cost of the optimal solution);

4. interpret the solution within the real-world setting of the problem.

Modeling suitably the problem is as important as the use of an efficient solver for identify-

ing a solution. In fact, the model directly affects solvers performance and the possibility

to map the optimal solution into the real-world domain. The recent explosion of data

generated in biology and medicine opens the doors to models and solution methodologies

inspired by biological processes. High throughput biological data need to be processed,

analyzed, and interpreted to address problems in life sciences. Whole genome sequencing

and other molecular diagnostics, as well as magnetic resonance spectroscopy and imag-

ing have brought light on the molecular mechanisms of evolution of diseases, increasing

the importance in the healthcare value chain as powerful platforms for precision diagno-

sis and selection of optimal treatment. In this scenario, OR based methods are taking

place with excellent results in the language of optimization, stochastic processes and

graph theory, and in many cases they have become the workhorses of the research. In

particular, the ability of OR techniques of analyzing complex molecular problems makes

OR one of the most successful branches of applied mathematics for such problems. This

should not be surprising if we consider the huge cost of an in vitro experiment compared

to computer simulations. Moreover, there exists a bilateral relation between a biological

experiment and an OR method: the first one provides the data to guide the development

of the model and its analysis, whereas the latter is useful to draw the next experimental

designs.

If we look at the recent literature, we can find many ties between biology and operational

research, including sequence alignment [23], single nucleotide polymorphisms and hap-

loids [20, 87], assembling DNA segments [23, 50], gene expression [125, 138], and protein

folding [67], which is perhaps the most celebrated problem in computational biology. In

[13] optimization methods are used for topics ranging from model building and optimal
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experimental design to metabolic engineering and synthetic biology, while [88] and [137]

collect most of the optimization algorithms developed by the machine learning com-

munity with application in computational system biology. A more complete overview

about both theoretical and computational methods in bioinformatics and system biol-

ogy is given in [42]. The book includes the description of linear programming techniques

developed to reconstruct gene regulatory networks, transcriptional regulatory networks,

protein interaction networks, and metabolic networks.

Based on the above description, the goal of this dissertation is to show how much power-

ful are the OR techniques for modeling and solving real-world problems, with a particular

attention to the OR contributions in Computational Biology. We will describe two dif-

ferent mathematical programming approaches for modeling and solving two biological

problems that arise from a common scenario: the reconstruction of the three-dimensional

shape of a biological molecule from Nuclear Magnetic Resonance (NMR) data.

The remainder of this first chapter is organized as follows: in Section 1.2 we introduce

the scenario in which the problems described in this dissertation take place. Finally, in

Section 1.3 we summarize the main scientific contributions of the thesis.

1.2 Scenario

The biological function of a molecule is determined by its specific folding into a three-

dimensional structure, defined by the atomic coordinates. This particular shape is called

tertiary structure. Although the primary structure (see Section 2.4.1) of a molecule is

its template for folding, since it contains the information that specifies both the tertiary

structure and the pathway to obtain that shape, it is not true that identical primary

structures always fold similarly. Conformations differ based on environmental factors as

well (i.e., based on where they are found). Several neurodegenerative and other diseases

are believed to result from misfolded molecules. For example, the incorrect folding of

certain proteins inhibits the production of antibodies for many allergies [121].

For years researchers have focused only on DNA and protein structure determination.

Only recently the research has also been extended to RNA, which is implicated in all

aspects of the genetic regulation, as described in Section 2.4.1.1. Understanding the

functions of RNA and proteins is essential to know their three-dimensional structures,

which, due to various technical reasons, are very difficult to determine [18].

The development of many analytic methods has made possible to obtain some indirect

structural data on which the tertiary structures may be determined. For example, the

diffraction data for a molecule crystal can be obtained by X-ray crystallography and
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used to find the electron density distribution and hence the structure of the molecule;

the magnetic resonance spectra of the nuclear spins in a molecule can be detected by

nuclear magnetic resonance (NMR) spectroscopy and used to estimate the distances

between certain pairs of atoms and subsequently, the coordinates of the atoms in the

molecule. In either case, a set of experimental data is collected and a mathematical

problem needs to be solved to form the structure [119]. The are some advantages in

using NMR spectroscopy are that the molecule does not need to be crystallized (which

is time-consuming and often fails), NMR determines an unique fold of the molecule, and

NMR also provides dynamic proprieties of the molecule such as the flexibilities of the

backbone or protein sidechains [38]. For these reasons, NMR is a powerful tool for the

analysis of folding transitions in RNA and proteins. However, to obtain accurate enough

signals, NMR experiments can only be carried out for small molecules with less than a

few hundred residues.

The determination of a three-dimensional shape of a molecule by NMR data is a lengthy

and complicated process [129]. Although types of NMR experiments differ for proteins

and nucleic acids [142], all methods of NMR structure analysis follow the same sequence

of stages: data acquisition and processing, peak picking, assignment, derivation of spa-

tial restraints, structure calculation, and validation [70, 124, 129].

The first stage concerns the acquisition of the multi-dimensional correlation spectra,

which will be computationally analyzed in the next steps. The sample is prepared by

a chemical synthesis, placed in a probe, and inserted in NMR spectrometer. Next a

range of one- and multidimensional NMR experiments are executed on it. All obtained

spectra are recorded. A more detailed description of the operating principle of NMR

spectroscopy is provided in Section 2.4.2.

During the peak picking phase, the frequencies of all peaks from the spectrum are ex-

tracted, and their values are either stored in a tabular form (i.e. in a peak table) or

graphically displayed over the spectrum. Figure 1.1 shows a traditional peak picking

on an one-dimensional spectrum. The spectrum represents the resonance signals of the

protons of the circled molecule in top-right, where the numbers upon each peak are the

resonance frequencies (chemical shift) of the corresponding protons.

The output of any peak picking algorithm is a plain list of significant points in a spec-

trum, each representing a nucleus involved in the experiment and provided of their chem-

ical shift values. However, the peaks are not labeled or marked according to their type,

they are just peaks without a semantic framework. An experienced spectroscopist can

often identify crucial peaks with virtual certainty and, if necessary, make an assignment

on the basis of a single, uniquely identified peak [70]. On the contrary, when automatic

analysis is in progress this lack of information has some important consequences on the

whole process of structure determination. Therefore, the spectrum needs to be further
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Figure 1.1: Illustration of traditional peak picking (the picture is taken from
www.nmr-analysis.blogspot.com).

processed so that appropriate nuclei are assigned to each pick in order to identify the

resonance signal yielded by the NMR experiment. This identification is provided by

the assignment stage, achieved by a sequential walking that uses information derived

from NMR experiments, such as chemical shift values and the number of peaks of each

individual nucleus (i.e., multiple resonance signals). The sequential walking process cor-

relates any cross-peak (see Section 3.2.1 for the definition of cross-peak) to the correct

nucleus “walking” across the NMR spectrum. This pathway can be used to generate a

draft of the structure, although for a more precise reconstruction other parameters must

be calculated. There exist several software for automating the assignment stage (such

as NVR-BIP [8], CANDID [77], ARIA [98], FLYA [120],to name a few). Unfortunately,

these programs can be only applied to protein spectra. Therefore, the development of

new procedures assigning to appropriate nuclei the corresponding signals is crucial for

improving the state of the art of RNA structural analysis. Here takes place the first

topic described in Chapter 3. If we consider a graph whose vertices represent the nuclei

and the edges are colored according to the resonance signals (for example, taking into

account the specificity of the required connectivity between consecutive nuclei signals in

the NMR spectrum), then the reconstruction of the sequence of interactions is equivalent

to finding the longest path on the graph such that the edges of the path must follow a

given order of colors.

Once resonance signals have been identified, it is possible to calculate the structural re-

straints, based on chemical shifts obtained thought the sequence-specific assignments. A

set of possible restraints include: molecular distances (e.g., distances between hydrogen

atoms), torsion angles (dihedral angles around certain bonds), coupling constants, etc.
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[142]. In general, the more restraints are used the better is the precision of the structures

generated. In fact, these structural restraints can be used as input for the structure cal-

culation process, during which an ensemble of structures of the molecule is determined.

The most popular methods for structure generation are distance geometry (DG) meth-

ods developed in order to satisfy the covalent and structural restraints [90]. The atoms

coordinates provide a structure that can be considered an approximation to the real one

[74]. This structure can be refined using optimization, e.g., by an energy minimization

procedure with the distance ranges as structural restraints. Here takes place the second

topic described in Chapter 4. If we consider a graph whose vertices represent atoms

and the edge weights are Euclidean distances between pair of atoms, which are known

a priori from a subset of interatomic distances, then determining the three-dimensional

conformation of the molecule is equivalent to determine the coordinates of the atoms, by

solving a graph embedding problem [26]. A more general and abstract form of the DG

problem is to find the coordinates for a set of points in some topological space given the

distances between certain pairs of points. Therefore, in addition to protein modeling,

the problem has applications in many other fields as well, such as graph drawing [73]

and wireless sensor networks localization [10], to name a few.

The final step in NMR structure determination is the validation of the set of structures

identified. The aim is to obtain an indication of the quality and structural statistics, such

as a measure of the fit of the structures to be experimental data, and other scores [124].

Validation helps to understand whether an unique final conformation of the molecule

may be real or resulting from errors, and as such whether the restraint should be mod-

ified, i.e., whether false assignment were made or whether the bounds of the restraints

should be adjusted. Nevertheless, validation is often only used for structural statistics

calculation, such as a description of the resulting structure [124].

It is legitimate to point out that although the two problems described in this dissertation

are two steps of the same process, they have been studied separately, and developed for

different biomolecules, RNA (RiboNucleic Acid) and proteins, respectively.

1.3 Contributions

In this dissertation two combinatorial problems related to the molecular structure deter-

mination are presented. Each problem takes place in a specific step within the process

of determination of the three-dimensional folding of the molecule using NMR data (see

Section 1.2). As regards the first topic, we improve the formulation of the assignment

pathway problem proposed in [129] through three alternative models, and we prove the

NP-hardness of this problem. The second topic, instead, concerns the development of
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a new version of a combinatorial algorithm, originally drawn for molecular instances

[94, 97], able to solve sensor network instances.

The dissertation is organized as follows. In Chapter 2 we introduce basic concepts of

mathematical programming, of computational complexity theory, and some fundamental

definitions of graph theory used throughout the thesis. We also provide a brief account

of the needed biological background.

In Chapter 3 we introduce the 3D assignment pathway problem from three-dimensional

Nuclear Magnetic Resonance (NMR) map of a RNA molecule. We prove that this prob-

lem is NP-hard, and show a formulation based on edge-colored graphs. Taking into

account that interactions between consecutive nuclei in the NMR spectrum are different

according to the type of residue along the RNA chain, each color in the graph represents

a type of interaction. Thus, we can represent the sequence of interactions as the problem

of finding a longest (hamiltonian) path under the constraint that the edges of the path

follow a given order of colors. We consider three alternative IP models formulated by

means of max flow problems on a directed graph with packing constraints over certain

partitions of the vertices for reformulating the problem. Since the last two models work

on cyclic graphs, for them we propose an algorithm based on the solution of their re-

laxation combined with the separation of cycle inequalities in a Branch & Cut scheme.

Part of the chapter is taken from [49] and it is to be published in [127, 128].

In Chapter 4 we describe the discretizable distance geometry problem (DDGP), which

is a formulation on discrete search space of the well-known distance geometry problem

(DGP) related to protein modeling and sensor networks localization. We give a brief re-

view of the existing continuous approaches to the solution of the DGP, and then we show

a few combinatorial requirements nedeeded to reduce the search space from continuous

to discrete. Finally, we describe the Branch & Prune (BP) algorithm, and two versions

of it solving the DDGP both in protein modeling and in sensor networks localization

frameworks. BP is an exact and exhaustive combinatorial algorithm that examines all

the valid embeddings of a given weighted graph G = (V,E, d), under the hypothesis of

existence of a given order on V . By comparing these two version to well-known algo-

rithms, we prove the efficiency of BP in both contexts, provided that it is held the order

imposed on V . Part of this chapter is taken from [51].

In Chapter 5 we summarize the work. We describe the current work in progress, dis-

cussing the potential impact of our contributes, especially in NMR molecular modeling.

We conclude the chapter by discussing some important issues for future investigations.

Finally, since the topics of this dissertation touch concepts of several branches of science,

in addition to Chapter 2 we provided two appendices, in order to give to the reader the

basis for fully understanding the sense of the problems described in this dissertation.



Chapter 2

Background

In this chapter we introduce basic concepts of several branches of science, in order to give

to the reader the basis for fully understanding the sense of the problems described in this

dissertation. At the beginning we rough in mathematical programming (MP), and three

big classes of MP problems. In fact, the problems presented in this dissertation belong to

two of these three class of problems. We briefly introduce the computational complexity

theory, and some fundamental definitions of graph theory used throughout the thesis.

Finally, there is a section devoted to molecular biology and NMR spectroscopy, since

the biological nature of the dissertation.

2.1 Mathematical programming

Mathematical Programming (MP) is a branch of OR which can be employed to analyze

and solve real-world problems where one wants to maximize, or minimize, an objective

function subject to some constraints on the decision variables. A detailed introduction

of MP is beyond the scope of this section. For a full introduction to the MP theory

we suggest the books [21, 110, 140]. Nevertheless, in a more precise definition we can

express a generic MP formulation as:

min f(x)

s.t. x ∈ X,
(2.1)

where X is the set of feasible solutions (also called search space or feasible region),

which is a cartesian product of continuous and discrete intervals (as it is defined by the

constraints of the problem and the bounds on the variables), and f : X → RF represents

the set of |F | objective functions (if |F | > 1 we have a multiobjective problem; in this

thesis we always consider problems where |F | = 1). The problem represented by the

8
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model (2.1) can be expressed as: find a point x∗ ∈ X (called optimal solution or global

optimum) which minimizes the objective function f(x), that is ∀x ∈ X, f(x∗) ≤ f(x).

A point x̄ ∈ X is called local optimum if exists ε > 0 such that ∀x ∈ X, ||x− x̄|| ≤ ε and

f(x̄) ≤ f(x), i.e., there are not better solutions than f(x̄) in the neighborhood of x̄. If

a problem does not admit any optimal solution, it is called infeasible problem, that is

X = ∅. Note that in the rest of this chapter we always refer to minimization problems.

A maximization problem where one wants to maximize an objective function f can be

reformulated as a minimization problem by means of the relationship max f = -min −f .

If the search space X is convex 1, then the set of global optima is the same as the set of

local optima. Intuitively, they are easier to solve, since there is no need to continue the

search for a global optimum after having found a local optimum, whilst in general this

is not true.

2.1.1 Classification of MP problems

We can now propose a classification of the MP problems formulated in the very general

form (2.1). Remember that the set X is given by the bounds and kinds (as integer,

continuous, or discrete) of the variables, and by the constraints of the problem, which

are usually on the form g(x) ≤ 0 or h(x) = 0. There are several classifications of MP

problems, depending on the degree of the objective function and the constraints as well

as the nature of the variables. Here we classify the MP problems in three main classes:

- Linear Programming (LP): the objective function and the constraints are linear,

and the variables are continuous;

- Mixed Integer Linear Programming (MILP or MIP): the objective function and

the constraints are linear, and at least one variable is integer. If all variables are

integer, Integer Linear Programming (ILP or IP) is used in place of MILP to refer

to the problem;

- Nonlinear Programming (NLP): at least one among the objective function and the

constraints is nonlinear, and the variables are continuous2;

We can further write the following relationships: LP ⊂ MILP and LP ⊂ NLP. The

meaning is that if a solver can be employed for a given class of problems Π, then it can

also be employed for problems of all the classes Π ⊂ Π′. For instance, a MILP solver can

1In an Euclidean space, a set X is convex if for every pair x, y ∈ X, every point z on the straight line
segment that joins x and y is also included in X.

2When at least one variable is integer the problem is referred as Mixed Integer Nonlinear Programming
(MINLP).
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be employed to solve a LP problem as well as a LP solver can be used to solve a MILP

instance. But the latter will ignore the integrality constraints on the variables. These

relationships give also an intuitive idea about the complexity of the problems of the

different categories. In general Π ⊂ Π′ means that Π is easier to solve than Π′. Hence,

LP problems are usually the easiest to solve, whereas NLPs are the most difficult. It is

possible to go further into detail with the categorization of MP problems, but for this

thesis the previous classification suffices.

The assignment problem presented in Chapter 3 is formulated by three IP models. In

Chapter 4 the distance geometry problem is a NLP problem, whose objective function

involves bilinear or quadrilinear terms depending on which formulation is used.

2.1.1.1 Linear programming

In a LP problem the constraints and the objective function are linear. In its standard

form, a LP problem can be expressed as:

min cTx

s.t. Ax = b

x ≥ 0,

where cT is the n dimensional row vector of coefficients for the objective function, A

is the m × n matrix constraints, b is the m dimensional column vector representing

the right-hand side of the constraints, and x is the n dimensional column vector of the

nonnegative variables of the problem. The feasible region of such a problem is a convex

set called convex polyhedron, having a finite number of vertices. If the polyhedron is

bounded it is called polytope. The importance of this concept in LP is that the optimal

solution of a LP problem corresponds to a vertex of the polytope representing the feasible

region. This has been the key observation at the base of the simplex algorithm, that

is an algorithm which starts from a vertex of the polyhedron and moves to another

adjacent vertex as long as the objective function improves. The procedure stops when

the vertex representing the optimal solution is reached. This is the main idea, but a lot

of details are missed (e.g., how to perform this move from a vertex to a better one, how

to know if the optimal vertex is found). For more information, see [48]. Although this

algorithm has an exponential complexity in the worst case, it is efficient in practice.

Many LP solvers,e.g. CPLEX [80], implement the simplex’s method. LPs are important

because a lot of real-world problems can be described in this way. Moreover, LPs arise

during the solution process of other categories of MP problems, as for example MILPs.
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2.1.1.2 Mixed integer linear programming

A MILP problem consists of a linear objective function and some linear constraints,

where a subset of the variables are integer. In general solving a MILP problem is

NP-hard [65]. However, there is a special case where the optimal solution of a MILP

problem can be obtained by relaxing the integrality constraints and solving the resulting

LP problem (called continuous relaxation). Consider the MILP problem stated in the

standard form as follows:

min cTx

s.t. Ax = b

x ∈ X
∀i ∈ I xi ∈ Z,

(2.2)

where I is the set of indices of integer variables. Let us introduce the concept of uni-

modularity taken from [61]:

Definition 2.1. A m×n matrix A, where m ≤ n, is called unimodular if for all m×m
submatrices B of A it holds that det(B) ∈ {−1, 0, 1}.

Suppose that the polyhedron defined by (2.2) is not empty and limited (i.e., it is a

polytope). Then the Theorem 2.1 from [61] holds.

Theorem 2.1. Let the m × n matrix A be unimodular and the m dimensional column

vector b be integer valued. The polyhedron associated to (2.2) has only integer vertices.

It is known that the optimal solution of a LP problem is found on a vertex of the polyhe-

dron defined by the constraints of the problem. If we relax the integrality constraints of

the MILP problem, and solve the corresponding LP produces an integer solution, then

this solution is optimal for the MILP problem. In other words, the unimodularity of the

constraint matrix A together with the integrality of the components of the vector b is a

sufficient condition for obtaining the optimal solution of the MILP problem by solving

its continuous LP relaxation. In the case of problems where the constraints Ax = b are

casted in form of inequalities, the concept of unimodularity has to be substituted with

that of total unimodularity in order to preserve the property of having integer vertices

of the polyhedron (the difference with respect to the unimodularity of Definition 2.1 is

that, for total unimodularity, the property detB ∈ {−1, 0, 1} must hold for all m ×m
square submatrices B of A).
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2.1.1.3 Non linear programming

Nonlinear problems can be defined as follows:

min f(x)

s.t. ∀i ∈M gi(x) ≤ 0

x ∈ X
(2.3)

where M = {1, . . . ,m} and at least one among gi(x) and f(x) is a nonlinear function.

If there are no constraints on the variable, the problem is called unconstrained. Finding

the optimal solution of a NLP problem is not as easy as for LP and MILP, due to the

nonlinearities and in general nonconvexities (in this case could occur several local optima

which makes the search for the global optimum by the solver difficult).

There exist some necessary conditions for the optimality called Karush-Kuhn-Tucker

(KKT) [83, 86], which must be satisfied by a solution x∗ of a NLP problem to be a local

optimum, and which are used by some NLP solvers. They can stated as follows.

The KKT conditions

Given a NLP problem in the form (2.3), a feasible point x∗ ≥ 0 which respects some

regularity conditions is a local optimum only if there exist some multipliers µi, ∀i ∈ M
such that following conditions hold:

∀i ∈M gi(x
∗) ≤ 0 (primal feasibility)

µi ≥ 0 (dual feasibility)

∇f(x∗) +
∑m

i=1 µi∇gi(x∗) = 0 (stationarity)

∀i ∈M µigi(x
∗) = 0 (complementary slackness),

where the objective function f and the constraints gi are differentiable in x∗ and the

operator ∇ applied to a function express its gradient. Some of the most common regu-

larity conditions are called Linearly Independent Constraint Qualifications (LICQ) and

require the gradient of the constraints that are active at x∗ to be linearly independent

when evaluated at x∗.

2.2 Graph theory

The problems described in this dissertation are modeled on graphs. A graph is a math-

ematical object which represents a binary relationship on a set of elements.

In this section we give the fundamental definitions of graph theory, and some notation
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used throughout this thesis. Some others will be given later when necessary. For an

overview on the general theory of graphs, the reader can refer to one of these books

[3, 27, 29].

An undirected graph G = (V,E) consists of a set V of vertices (or nodes) and a set E of

edges whose elements are unordered pairs of distinct vertices, i.e., for all edge (i, j) ∈ E
holds that (i, j) = (j, i). If both V and E are finite, then G is a finite graph.

An edge (i, j) is incident to vertices i and j, which are called its endpoints. Vertices

i, j ∈ V are adjacent if the edge (i, j) belong to E. A loop is an edge whose endpoints are

the same vertices. A graph that has no loops and no more than one edge connecting a

pair of vertices is a simple graph. If there exists an edge connecting any pair of vertices,

then the graph is complete. A graph is weighted if a number (weight) is assigned to each

edge. Such weight might represent a cost, length, etc. depending on the problem at

hand. Given a graph G = (V,E), the graph G′ = (V ′, E′) is subgraph of G if (i) V ′ ⊆ V
and (ii) E′ ⊆ E. When a graph G′ is a complete subgraph of another graph G then it is

a clique. Given a subset of vertices U ⊆ V of G, the subgraph G[U ] = (U,E′) is induced

by U in G if (i) U ⊆ V and (ii) E′ = {{u, v} ∈ E|u, v ∈ U}. Similarly, given a subset

of edges S ⊆ E of G, the subgraph G[S] = (V ′, S) is induced by S in G if (i) S ⊆ E

and (ii) V ′ = {v ∈ V |{u, v} ∈ S}. Note that in the first case the subgraph is induced

by a subset of vertices, whereas in the second one the subgraph is induced by a subset

of edges.

A directed graph (or digraph) D = (V,A) consists of a set V of vertices (or nodes) and

a set A of arcs whose elements are ordered pairs of distinct vertices, i.e., for all edge

(i, j) ∈ A holds that (i, j) 6= (j, i). Throughout this thesis we refer to a directed weighted

graph as network.

2.2.1 Paths and cycles

Given a finite undirected simple graph G = (V,E) where |V | = n and |E| = m.

A walk between two vertices in G is a sequence of edges {e0, e1, . . . , ek} such that ei =

(vi, vi+1), for i = 0, . . . , k. The vertex v0 is called source, whereas the last vertex vk is

called destination. A trail between two vertices in G is a walk without repeated edges.

A path between two vertices in G is a walk without repeated vertices. The length of a

path is the number of edges that compose it. If there exists in G a path from any pair

of vertices, then G is a connected graph. A cycle in G is a path closed, i.e. a path where

source and destination are the same vertex. A path traversing all the vertices of G is a

Hamiltonian path. A cycle in G traversing all vertices is a Hamiltonian cycle.
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2.3 Computational complexity

This section serves as an introduction to the areas of complexity theory needed for this

thesis. For a more deep introduction to complexity theory, the reader is referred to [65].

2.3.1 Algorithm complexity

In general, one is interested in solving combinatorial problems as efficiently as possible,

where efficient usually means fast. Hence, an important criterion for the classification

of problems is the time the best known algorithms need to find a solution for the given

problem. This issue is addressed by the theory of computational complexity. Its main

purpose is to classify problems according to their difficulty to be solved by any known

algorithm. For the classification of problems it has been shown to be useful to address the

question regarding problem complexity as a worst-case measure, that is, the complexity

of a problem is determined by the hardest conceivable instance.

The time-complexity of an algorithm is measured by a time-complexity function that

gives, depending on the instance size, the maximal run-time for the algorithm to solve

an instance. The size of a problem instance reflects the amount of data to encode an

instance in a compact form. Often it is sufficient to have an intuitive understanding of

the size of an instance. The time-complexity is typically given, in terms of the number

of elementary operations like value assignments or comparisons; it is formalized by the

O(·) notation. Let f and g be two functions from N→ N, then we write f(n) = O(g(n))

if there are positive integers c and n0 such that for all n > n0, f(n) ≤ cg(n).

An algorithm runs in polynomial time, if the worst case run-time is bounded by a

polynomial; otherwise the algorithm is said to be an exponential time algorithm.

In complexity theory, a basic difference is made between efficiently solvable problems

(easy problems) and inherently intractable ones (hard problems). Usually, a problem is

considered efficiently solvable if a solution can be found in a number of steps bounded

by a polynomial of the input size. If the number of steps needed to solve an instance

grows super-polynomially, we say that a problem is inherently intractable.

2.3.2 Problem Complexity

The theory of NP-completeness formalizes the distinction between easy and hard prob-

lems. In general, the theory of NP-completeness is concerned with the decision version

of combinatorial problems. The generality of the conclusions drawn is not limited by

this fact because it is obvious that the optimization version of a problem is not easier
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to solve than the decision version and if the optimization version of a problem can be

solved efficiently, then the same is true for the decision version. Optimization problems

typically have an associated decision problem; for example, in the Traveling Salesman

problem (TSP), the associated decision version asks whether a tour with cost bound

f(π) < L exists [65]. The evaluation version of an optimization problem can be solved

as a series of decision problems using binary search on the bound L.

The theory of NP-completeness distinguishes between two basic classes of problems.

One is the class P of tractable problems.

Definition 2.2. The class P is the class of decision problems that can be solved by a

polynomial time algorithm.

The class NP can be defined informally in terms of a nondeterministic algorithm. Such

an algorithm can be conceived as being composed of a guessing stage and a checking

stage. If we are given some instance I, in the first stage some solution is guessed. This

solution is verified by a deterministic polynomial algorithm in the second stage. The class

NP is the class of problems that can be solved by such a nondeterministic algorithm. For

the class NP this polynomial-time verifiability of the property for some given solution s

is essential. The polynomial time verifiability also implies that the guessed solution is

of polynomial size.

Definition 2.3. The class NP consists of those problems that can be solved by a non-

deterministic polynomial-time algorithm.

Any decision problem that can be solved by a deterministic polynomial-time algorithm

also can be solved by a nondeterministic polynomial-time algorithm, that is P ⊆ NP.

Probably the most important open question in theoretical computer science today is

whether P = NP? It is widely believed nowadays that P 6= NP, yet no proof of this

conjecture has been found so far.

A problem usually is considered intractable if it is in NP \ P. As one cannot show that

NP \ P is not empty, the theory of NP-completeness focuses on proving results of the

weaker form if P 6= NP, then Π ∈ NP \ P. One of the key ideas needed for this approach

is the notion of polynomial-time reducibility among problems.

Definition 2.4. A problem Π is polynomially-reducible to a problem Π′, if a polynomial-

time algorithm exists that maps each instance of Π onto an instance of Π′ and that for

each instance of Π “yes” is output iff for the corresponding instance of Π′ the output of

the decision procedure is “yes”.

Informally this definition says that if Π can be polynomially reduced to Π′, then prob-

lem Π′ is at least as difficult to solve as problem Π. Using the notion of polynomial

reducibility we can proceed to define the class of NP-complete problems.
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Definition 2.5. A problem Π is NP-complete iff (i) Π ∈ NP and (ii) for all Π′ ∈ NP

holds that Π′ is polynomially reducible to Π.

The class of NP-complete problems is in some sense the class of the hardest problems

in NP. If a NP-complete problem can be solved by a polynomial time algorithm, then

all problems in NP can be solved in polynomial time. Yet, so far for no NP-complete

problem a polynomial time algorithm could be found. Thus, if one can prove that a

problem Π is NP-complete common belief suggests that no deterministic polynomial-

time algorithm exists and the problem cannot be solved efficiently. The foundations of

NP-completeness theory were laid in [44]. Cook gave the first proof that every problem

in the class NP could be polynomially reduced to the satisfability problem (SAT).

In this dissertation we are concerned with optimization problems and address the search

version of the problem, that is, we want to find optimal solutions. Clearly, the search

version is not easier than the associated decision problem. Thus, proving that the

decision version of a problem is NP-complete implies that also the search version is

hard to solve. Problems which are at least as hard as NP-complete problems but not

necessarily element of NP are called NP-hard.

Definition 2.6. A problem Π is NP-hard iff for all Π′ ∈ NP holds that Π′ is polynomially

reducible to Π.

Therefore, any NP-complete problem is also NP-hard. On the other side, if the decision

version of an optimization problem is NP-complete, the optimization problem is NP-

hard.

2.4 Biomolecules and NMR spectroscopy

In this section we introduce basic concepts of molecular biology and trace out the ex-

planation of the NMR spectroscopy process, in order to make more understandable the

importance of the problems discussed through this thesis and the available data used.

2.4.1 Biomolecules

The fundamental biomolecules are carbohydrates, lipids, nucleic acids, and proteins.

Carbohydrates are commonly referred to as sugars, and they perform numerous roles in

living organisms, the most famous being the storage of energy. The lipids conduct many

biological functions acting as structural components of cell membranes. Nucleic acids,

which include DNA (deoxyribonucleic acid) and RNA (ribonucleic acid), and proteins
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function in encoding, transmitting and expressing genetic information. These are the

most important biomolecules in a cell. In particular, proteins perform a vast array of

functions including replicating DNA, responding to stimuli, and transporting molecules

from one location to another.

Nucleic acids are made from nucleotides (or residue) successively linked each other by

chemical bonds (backbone structure). Each nucleotide is composed of a nucleobase (e.g.,

adenine, cytosine, guanine, thymine or uracil), a sugar with five carbon atoms, and one

or more phosphate groups. Therefore, a nucleotide chain is a backbone of sugar and

phosphate on which are bounded the nucleobases. Nucleic acids differ in the structure

of the sugar in their nucleotides, and in one type of nucleobase (adenine, cytosine, and

guanine are found in both RNA and DNA, while thymine occurs in DNA and uracil

occurs in RNA). The nucleotide chain represents the genetic information needed to

define all proteins in a cell through a particular process called protein synthesis. This

process transforms the sequence of nucleotides into a well-defined sequence of amino

acids, which in turn compose the proteins. Such sequences are called primary structures:

a nucleotides chain is the primary structure of a nucleic acid, and an amino acid chain

is the primary structure of a protein. The secondary structure describes one- and two-

strand fragments as well as the formation of loops or helices in local segments of the

molecule, while the tertiary structure is its whole folding on itself in a three-dimensional

structure, defined by the atomic coordinates. This specific three-dimensional structure

of the molecule (both for Nucleic acids and proteins) determines its activity. A full

complete biochemical description of these biomolecules is beyond the scope of this thesis.

The reader interested to a more biochemical detailed description is referred to any book

of biochemistry as [18].

2.4.1.1 Biomelules in the origin of life

DNA, RNA and proteins are the building blocks of life. DNA is the famous molecule of

the heredity. This is the molecule that gets passed down from one generation to the next.

Proteins are the molecules of structure and functions. Cells are packed full of proteins.

RNA is the intermediary between DNA and proteins. Hence DNA molecules code for

the protein molecules by RNA molecules making us what we are. This process, known

as “central dogma of molecular biology”, has been introduced in 1958 by Francis Crick.

He stated hat information passes from DNA to proteins via RNA, but proteins cannot

pass the information back to DNA [46]. This information transfers describe the normal

flow of biological information: DNA can be copied to DNA (DNA replication), DNA

information can be copied into mRNA3 (transcription), and proteins can be synthesized

3mRNA is the messenger RNA, that is a copy of DNA that convey genetic information.
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using the information in mRNA as a template (translation). The biological dogma laid

the foundations for the study of residue-by-residue information transfers in biomolecules

where one chain (e.g. amino acids chain) is used as a template for the construction of

another chain (e.g. protein) with a sequence that is entirely dependent on the original

one.

Since DNA acts as genetic information repository of all the cells, and proteins perform

a wide array of functions dictated by the nucleotide sequence of the genes, initially the

research in sequence information area was focused on these two biomolecules. Only re-

cently the research has been extended to RNA, which is implicated in all aspects of the

genetic regulation, such as the control of both transcriptional and post-transcriptional

gene expression. In fact, in eukaryotes the 97% of the transcriptional output is not

employed for coding the DNA (ncRNA), hence it is not translated into protein. This

discover implied a dramatic increasing of studies aimed at understanding the importance

of RNA in many biological processes. In particular, the discoveries of ncRNA and RNA

interference4 (RNAi) have involved a broad line of research. Although most of ncRNA

is a component of the ribosome on which mRNA carries out the protein synthesis, re-

cently some transcriptomic and bioinformatics studies have suggested the existence of

thousands of small ncRNAs involved in the post-transcriptional gene silencing, the mech-

anism of inhibition the translation of a particular gene. Such small ncRNA, discovered

at the end of the 90s, can be placed within the nucleus as well as in the cytoplasm, and

their length ranges from 20-30 nucleotides. They are known as small interfering RNA

(siRNA) and MicroRNA (miRNA), and are the shortest RNA in eukaryotes. Usually,

these small ncRNA recognize homologue sequences within mRNA and through based-

pair complementary sequence induct the degradation of the RNA target or block the

protein synthesis process [16]. Over the last few years, the dysregulation of miRNA has

been associated with disease, first of all the cancer [75, 104], for that miRNAs ar often

called oncomir.

In 1986 the Nobel laureate Walter Gilbert introduced the phrase “RNA world” in a

commentary on how recent observations of the catalytic proprieties of various forms of

RNA fit with this hypothesis [66]. The discovery of RNA catalytic capability, in fact,

supported the newer hypothesis that an RNA world existed on Earth before modern cell

arise. According to this hypothesis, RNA stored both genetic information and catalyzed

the chemical reactions in primitive cells. Only later in evolutionary time did DNA take

over as the genetic material and proteins become the major catalyst and structural

component of cells [4].

4RNA interference is a biological process in which RNA molecules inhibit gene expression, typically
by causing the destruction of specific mRNA molecules.
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2.4.2 Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance (NMR) Spectroscopy is an analytical technique that al-

lows to obtain detailed information on the molecular structure of chemical compounds.

NMR Spectroscopy measures the absorption of electromagnetic radiation in molecules

immersed in a strong magnetic field [78]. A molecule is formed by atoms, which in turn

consist of a central nucleus containing a mix of positively charged protons and electri-

cally neutral neutrons, surrounded by a cloud of negatively charged electrons. An atom

containing an equal number of protons and electrons is electrically neutral, otherwise

it is positively or negatively charged. An atom is classified according to the number

of protons and neutrons in its nucleus: the number of protons determines the chemical

element, and the number of neutrons determines the isotope of the element. There-

fore, isotopes are variants of a particular chemical element such that they share the

same number of protons in each atom, but differ in neutron numbers. For example,

carbon-12, carbon-13 and carbon-14 are three isotopes of the element carbon each with

6 protons and with 6, 7 and 8 neutrons respectively. Any subatomic particle orbits

around a own axes generating a small magnetic field. This rotation motion is called

spin. In particular, the rotation motion of the whole nucleus (protons and neutrons)

around its own axes is called nuclear spin, and the magnetic field generated by it is said

nuclear magnetic moment (NMM) of spin. All isotopes that contain an odd number

of protons and/or neutrons have a nonzero NMM of spin, while all nuclei with even

numbers of both have a NMM spin of zero. Only nuclei with nonzero NMM of spin can

absorb and re-emit the applied electromagnetic radiation, and are thus observable in

an NMR experiment. In absence of a external magnetic field, the NMM associated to

the nuclear spin assumes any direction in the space. But, when the nuclei with NMM

are placed in an external static magnetic field, the nuclei are split into two potential

energy levels (spin states) assuming a parallel or anti-parallel orientation with respect

to the applied magnetic field (see Figure 2.1(a)). In these spin states the nuclei also

undergo a cone shaped rotation motion called precession. This motion looks like the

motion of a spinning top (see Figure 2.1(b)). The precession frequency of a spin, called

Larmor frequency (LF), depends on the nucleus under investigation as well as on the

chemical environment. I.e., two atoms of different chemical elements have different LF,

and two atoms of the same chemical elements (e.g. two isotopes) have different LF

if they are not surrounded by the same chemical structure. In presence of the static

magnetic field, the resonant frequency signal (i.e., the LF of spin) can induce a tran-

sition between spin states since the frequency of radiation is equivalent to the energy

difference between the two levels. When it occurs some spins switch from parallel to

anti-parallel orientation at higher energy state (spin flip), and it is said that the nuclei

resonate. When the radio frequency signal is then switched off, the relaxation of the
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(a) parallel and anti-parallel orientation. B0 is the
external magnetic field direction.

(b) B0 is the external magnetic
field direction, and B1 is the di-
rection of the MMN of spin that
follows the precession.

Figure 2.1: Parallel and anti-parallel orientation (a) and precession motion (b).

spins backing to the lower state produces a measurable amount of radio frequency signal

at the resonant frequency associated with the spin flip. The exact frequency of the signal

produced during the spin relaxation is specific for each type of atom and depends on

the local chemical environment. The energy absorbed by the nuclei is slowly transferred

to the neighboring atoms with an intensity proportional to the number of nuclei able to

resonate during the radiation. In other words, a NMR experiment involves only nuclei

of atoms of specific chemical elements of the analyzed molecule, which yield resonance

signals depending on the other atoms surrounding them. The collected signal during

the NMR experiment, called correlation signal, is an oscillating signal with the LF of

the nucleus in examination, which fades over time and it is called FID (Free Induction

Decay). The FID is then transformed in a function of frequency, the NMR spectrum, by

Fourier transformation5 (see Figure 2.2). As above mentioned, when an atom is placed

Figure 2.2: Conversion from a FID graph to a NMR spectrum.

in a magnetic field, its electrons circulate around the direction of the applied magnetic

5The Fourier transform converts a time function into a function of frequency, and it is one of the
most common approaches in signal analysis [30].
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field. This circulation causes in turn a small magnetic field, which shields the nuclei

slightly from the external field. This induce a variation of LF, since the electron density

around each nucleus in a molecule varies according to the types of atoms and bonds in

the molecule. This effect is called chemical shift, and it gives the name to the relative

signal frequency in a NMR spectrum. The chemical shift value is reported in parts

per million (ppm), and it is one of the major parameters of NMR spectroscopy since it

causes the different positions of the signals in a NMR spectrum. For organic structure

determination, the two most important types of NMR spectra are proton (H1 NMR)

and carbon (C13 NMR) spectra. They give information about the number of hydrogens

and carbons in a molecule and their connections. NMR spectroscopy experiments can be

carried out by one- (1D), two- (2D), three- (3D) and four-dimensional (4D) techniques.

All 1D NMR spectroscopy experiments are carried out using a single pulse sequence.

For example, a 90◦ pulse (applied along the x axis) rotates the magnetization vector

onto the y axis. After this pulse each spin processes with its own LF around the z

axis and induces a signal in the receiver coil of the NMR spectrometer. Usually, the

experiment is repeated several times and the data are summed up to increase the signal

to noise ratio. After summation the data are Fourier transformed to yield the final 1D

spectrum. In additional to the 1D NMR spectroscopy used to study chemical bonds,

two or three dimensional approaches have been developed for the determination of the

structure of complex molecules like proteins and nucleic acids. In 2D NMR spectroscopy

experiments, in addition to preparation and detection steps which define 1D NMR spec-

troscopy experiments, the spins can process freely for a given time t1 and is used a mixing

sequence. In particular, the nuclei are excited with two pulses or groups of pulses. The

acquisition is carried out by incrementing the delay (i.e. evolution time t1) between the

two pulse groups. Two dimensional Fourier transformed yields the 2D spectrum with

two frequency axes. 2D NMR spectroscopy includes homonuclear and heteronuclear

correlation experiments. In homonuclear experiments, signals produced by the same

isotope (usually H1) are detected. These signals can be produced by the atoms being in

close relation through bond or through space. The 2D COSY (Correlated Spectroscopy

correlates scalarly coupled protons) and 2D TOCSY (Total Correlation Spectroscopy

identifies protons belonging to the same scalar coupling network) experiments correlate

all atoms which are in close relation through bond. The 2D NOESY (Nuclear Over-

hauser Effect Spectroscopy) experiment correlates all protons which are close enough. It

also correlates protons which are distant in the amino acid sequence but close in space

due to tertiary structure. This is the most important information for the determina-

tion of protein structures. Note that an homonuclear experiment involves just protons

of hydrogens nucleus (which does not contain neutrons), and only in this case proton

and nucleus are synonymous. Heteronuclear experiments detect the signals generated

by different isotopes. The most important heteronuclear NMR experiment is the HSQC
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(Heteronuclear Single Quantum Correlation). It correlates the nitrogen atom of an NHx

group with the directly attached proton. Each signal in a HSQC spectrum represents a

proton that is bound to a nitrogen atom. A 3D NMR spectroscopy experiments can be

easily constructed from a two dimensional one by inserting an additional indirect evo-

lution time and a second mixing period between the first mixing period and the direct

data acquisition. Each of the different indirect time periods (t1, t2) is incremented sep-

arately. A 3D NMR spectroscopy experiment can be achieved by combining HSQC and

NOESY in a single 3D experiment: The NOESY experiment is extended by an HSQC

step. Acquisition starts after this HSQC step rather than at the end of the NOESY

mixing time. The resulting experiment is called 3D NOESY-HSQC. In a similar way,

a TOCSY-HSQC can be constructed by combining the TOCSY and the HSQC experi-

ment. A 3D NMR spectroscopy experiment can also be constructed by triple resonance

experiments. These experiments are called triple resonance because nuclei of three dif-

ferent chemical elements (e.g. H4′, C4′, P ) or three protons are correlated. Figure 2.3

shows a 3D NMR spectrum representing the correlations between three protons. Any

dimension corresponds to the chemical shift ranges of the specific nucleus involved in

the NMR experiment; each point on the spectra is a resonance peak, and its volume is

proportional to the signal intensity.

Figure 2.3: Absorption spectrum of a 3D NMR experiment (the picture is taken from
http://www.bioc.rice.edu/bios576/nmr/nmr.html).
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The orderly colored longest path

problem for RNA structure

determination

In this chapter we undertake the discussion on the 3D assignment pathway problem

from three-dimensional NMR map of a RNA molecule. The idea, originally proposed

in [129], is that determining the sequence of interactions among atoms involved in the

NMR experiment can lead to determine the shape of such biological molecule. First, we

introduce the assignment pathway problem in RNA structural analysis, we prove that

this problem is NP-hard, and show a formulation of it based on edge-colored graphs.

Taking into account that interactions between consecutive proton in the NMR spectrum

are different according to the type of residue along the RNA chain, each color in the graph

represents a type of interaction. Thus, we can represent the sequence of interactions as

the problem of finding a longest (hamiltonian) path under the constraint that the edges of

the path follow a given order of colors. The problem is referred to as the Orderly Colored

Longest Path on a c-edge-colored graph (OCLP). Next, we consider three alternative

IP models formulated by means of max flow problems on a directed graph with packing

constraints over certain partitions of the vertices [49]. Since the last two models work on

cyclic graphs, for them we propose an algorithm based on the solution of their relaxation

combined with the separation of cycle inequalities in a Branch & Cut scheme [127]. By

means of an ad-hoc generator, we assemble a large set of simulated test problems that

respect the structural features of real 3D NMR maps recorded for RNA molecules. Using

these problems as a benchmark, we provide computational evidence of the utility of our

models as well as of the algorithm based on cycle separation. This chapter is mainly

based on the works presented in [49, 127]. However, [129] was a guide for the introduction

to the biochemical problem and for its graph-based modeling.

23
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3.1 Introduction

In the last years a quick growth of operations research techniques used for modeling

and solving many molecular processes has been observed. Understanding the functions

of each macromolecule in the cell has made the cognition of organism structure one

of the most fundamental tasks in many different research areas. At the beginning the

researches focused on DNA and proteins. However, at present we can observe a growing

interest in RNA study, which has been the subject of a multitude of recent discover-

ies, including the involvement of regulatory RNAs in cancer [16] as well as infectious

and neurodegenerative diseases [62]. The knowledge of three-dimensional structure of

RNA is essential to understand its biological functions, including the identification of

conformational changes that accompany its folding. High-resolution Nuclear Magnetic

Resonance (NMR) spectroscopy can provide both structural details and dynamic charac-

teristics of biomolecules without requiring crystallization, which is impossible to achieve

in some samples. This makes of NMR spectroscopy a powerful tool for the analysis

of folding transitions in RNA. Fundamental element of the analysis is an identification

of resonance signals among nuclei in the molecule analyzed. An assignment of the ob-

served NMR signals to the corresponding nuclei is a bottleneck of the RNA structure

elucidation [129]. Hereafter we refer to this problem as the assignment pathway prob-

lem. The number of correlation signals recorded during a NMR experiment grows with

the molecule size, producing spectra with more and more overlapping peaks. This high

density arrests or disables resonance signal identification on the basis of two-dimensional

experiments. A step towards three-dimensional spectra is the most evident solution to

this problem [129].

The procedure based on our idea for solving the assignment pathway problem on 3D

NMR maps (further also referred to as 3D-APP) consists in three phases. The first

involves the building of an edge-colored graph G = (V,E) from a 3D NMR spectrum

such that any vertex v ∈ V is a cross-peak (see Section 3.2.1), and the edges are colored

according to the type of interaction occurring in the NMR experiment between consec-

utive nuclei along the RNA chain. These interactions can be computed by using the

coordinates of each cross-peak, i.e., using the chemical shift values of the nuclei. The

second phase concerns to find a longest (hamiltonian) path on G in order to respect the

sequence of iterations, which is considered as a sequence of colors on G. Thus the mag-

netization transfer pathway (or the correlation signals pathway) occurring between the

nuclei is represented through an orderly colored path (see Section 3.3.1 for the formal

definition). The last phase provides the assignment of the corresponding atoms1 to each

1Since the NMR spectroscopy involves only nuclei of the atoms (see Section 2.4.2), in this framework
when we refer to atom we mean nucleus and vice-versa.
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cross-peak according to the type of NMR experiment adopted.

To our knowledge, this is the first time where an assignment pathway problem is for-

mulated as a longest (hamiltonian) path on an edge-colored graph. Unfortunately, at

moment not many experimental data for already solved cases are collected and publicly

available for an analysis. This because of the 3D NMR for RNA has been introduced

relatively late, as compared to the protein field. Thus, we implemented an instance

generator to simulate the reliable 3D NMR data together with the assignment solution.

This drawback brought us to focus especially on the second stage of this procedure for

which we developed and compared three integer linear programming models to solve the

orderly colored longest path (OCLP) problem in order to reconstruct the magnetization

transfer pathway.

The chapter is structured as follows. In the remainder of this Section we introduce the

importance of the assignment pathway problem for RNA structure determination. In

Section 3.2 we describe the biophysical origin of the pathway reconstruction problem

on 3D NMR spectra and we discuss its computational complexity. In Section 3.3 we

define the OCLP problem, by showing how an instance of this problem can represent an

instance of the 3D-APP as well as an instance of different kinds of well-known problems.

In Section 3.4 we describe three alternative integer programming models for modeling in

turn the OCLP problem as a network problem, and we show this category of problems

still being NP-hard whilst formulated on an acyclic network. Section 3.5.1 introduces

the procedures proposed for solving the three models. In Section 3.6 we describe two

instance generators used to (i) generate edge-colored graphs, and (ii) simulate spectral

data. In this way we have compared the models both from the mathematical and the

biochemical point of view. We also evaluate the efficacy of the fractional cycle separation

approach as opposed to the separation of the integer cycles in the optimal solutions of

the problem. Finally, in Section 3.7, we draw conclusions and show the directions of

future work.

3.1.1 The problem of the assignment in RNA structural analysis

Elucidating the mechanistic aspects of many cellular processes requires a detailed knowl-

edge of the tertiary structure of the RNA molecules involved. This folding into a specific

three-dimensional shape depends on the primary and secondary structures of the RNA

molecules (see Section 2.4.2). In fact, RNA usually possesses a variety of single-stranded

and double-stranded regions that give rise to complex three-dimensional structures.

Differently from protein and DNA, which have slower degradation under in vitro con-

ditions, the development of methods dedicated to the exploration of RNA structure is

ambler.
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As mentioned in Section 1.2, the two main experimental techniques used to derive struc-

ture models of biological biomolecules are X-ray crystallography and Nuclear Magnetic

Resonance spectroscopy. X-ray crystallography (also referred as X-ray diffraction) out-

does NMR in the resolution of experimental data. Nevertheless, the crystallization of

several RNA molecules is not possible, it does not reflect the molecular dynamics, and

often it is not reproduce the real conformation of the molecules [124, 129]. High res-

olution NMR study can provide both structural details and dynamic characteristics of

the molecule. In this respect, NMR spectroscopy seems a good choice for an analysis

of RNAs which hardly undergo crystallization [129]. Tertiary structure determination

procedure using NMR starts with the acquisition of multidimensional correlation spectra

which are analyzed in order to determine the structure. The procedure that assigns ob-

served NMR signals to the corresponding protons and other nuclei is a fundamental step

of the RNA structure determination process. The assignment is usually based on the

analysis of one and multi-dimensional spectra resulting from NMR experiments. This

step is highly dependent on the experimenters knowledge, experience and intuition, and

for this reason it is often not fully automated. Existing applications dedicated to RNA

require an effort in data preparation to improve the quality of assignment [24]. The situ-

ation is different in case of proteins. Since studying the structures of these biomolecules

is much easier, the development of methods dedicated to their exploration has been, for

years, more dynamic. Automatic design of NMR spectra analysis has made a strong

impact on the elucidation of protein structures [129].

At present, several softwares for protein signal assignment in two-dimensional spectra

have been implemented [8, 11, 77, 98, 102, 120, 146]. Unfortunately, they appeared not

suitable for processing RNA data. Hopefully, it will popularize within RNA domain

soon. To the best of our knowledge, only one automatic assignment method dedicated

exactly for RNA chains has been developed. The method, called RNA Probabilistic

Assignment of Imino Resonance Shifts (RNA-PAIRS), predicts the secondary structure

of a RNA imino resonances. RNA-PAIRS sets in motion a dynamic network that rever-

berates between predictions and experimental evidence in order to reconcile and rectify

resonance assignments and secondary structure information. The procedure is halted

when assignments and base-parings are deemed to be most consistent with observed

cross-peaks [12].

In conclusion, the development of new procedures assigning to appropriate nuclei the

corresponding signals is crucial for improving the state of the art of RNA structure

analysis.
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3.2 The 3D assignment pathway problem

The assignment, being the first computational step in elucidation of RNA tertiary struc-

ture, is the foundation of the whole procedure. In brief, the assignment is based on the

NMR spectrum, where the magnetization transfer between the nuclei along the chain

should be sketched. In this section we introduce the biophysical problem of resonance

assignment on 3D NMR maps, originally introduced in [129], which was an inspiration

for our work, as described in [49, 127]. Finally, we discuss the computational complexity

of this original problem.

3.2.1 Problem description

The Nuclear Magnetic Resonance is a technique used to study the emission of molecular

electromagnetic radiations. A 3D NMR map is a record of NMR interactions that occur

between RNA atoms involved in the experiment and it reflects inter-nucleic transfer of

magnetization.

As previously introduced in Section 2.4.2, a 3D NMR spectroscopy experiment is a

triple resonance experiments because it involves atoms (that is, the nuclei) of three dif-

ferent chemical elements (e.g. H4′, C4′, P ) or protons (hydrogen’s isotopes). In output

an one-dimensional spectrum (as the one in Figure 2.2) is returned for each chemical

element. All these spectra can be represented together in a unique three-dimensional

spectrum whose axes are the signal frequency ranges of each 1D spectrum. The obtained

3D NMR spectrum (also called map) is an absorption spectrum containing information

about resonance signals of all triplets of nuclei detected during the NMR experiment.

Each correlation signals, or just interactions, is displayed in the spectrum by a cross-

peak. The cross-peaks are symmetrical along the diagonal of the spectrum, and their

positions represent the chemical shift values of the nuclei involved in the magnetization

transfer. Any cross-peak is characterized by its location on the map (the three coor-

dinates of its center x, y, z given in ppm), its size (i.e. width in each dimension), and

a value of the relative signal intensity (the volume). Figure 3.1 represents a 3D NMR

spectrum projected on the plane whose axes are the chemical shift ranges of two of the

three chemical elements, and an enlarged fragment of it (the small rectangle) with enu-

merated cross-peaks. This NMR data can be used to compute structural parameters,

like atom relative positions, inter-atomic distances, etc, which are in turn used to com-

pute the whole three-dimensional shape of the molecule. These values are determined by

coordinates of the corresponding cross-peaks. However, the relationship between cross-

peaks collected on the NMR map and atoms of the analyzed molecule is not known.

Therefore, the first step in the computation of the molecule structure is the assignment
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(a) (b)

Figure 3.1: Absorption spectrum of a 3D NMR experiment projected on the plane
x, y (a) and one its fragment with enumerated cross-peaks (b).

of the corresponding atoms to any cross-peaks [129]. The assignment of cross-peaks on

the 3D NMR map to the corresponding atoms results from a reconstruction of particular

pathway(s) between the cross-peaks. Since the atoms in the molecule are close in space,

it is easy to understand that, if we could determine a path between the cross-peaks on

the NMR map, then we could reconstruct the magnetization transfer track among the

corresponding atoms yielded during the NMR experiment. This reconstruction allows

us to labeling the cross-peaks according to the type of atoms and/or residue. Obviously,

the pathway must be the longest possible with respect to the biological meaning of the

problem.

Each NMR experiment induces different correlation signals among specific nuclei of the

RNA chain. Therefore, the reconstruction of a sequential assignment pathway depends

on the type of NMR experiment. There are three types of 3D NMR experiments:

- the homonuclear experiment (e.g. NOESY-NOESY) stimulates interactions be-

tween the nuclei of isotopes;

- the heteronuclear one (e.g. HCP) involves the nuclei of different chemical elements;

- the mixed experiment (e.g. HSQC-NOESY) combines both.

Each of these types identifies a sequence-specific connectivity pathway representing mag-

netization transfer between the selected nuclei of the analyzed molecule. Consequently,

H4′ − C4′ − P signals in heteronuclear HCP spectrum, representing the sequence of

intra- and internucleotide2 scalar interactions form the pathway (H4′n − C4′n − Pn) −
(H4′n − C4′n − Pn+1) − (H4′n+1 − C4′n+1 − Pn+1) − . . ., where n stands for a residue

number [129]. An example is given in Figure 3.2, where the track of magnetization

2An intranucleotide interaction occurs when the cross-peak represents the resonance signal between
adjacent nuclei that belong to the same residue; otherwise the interaction is internucleotide.
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transfer within the single RNA chain (a) and the corresponding cross-peaks in the

3D NMR spectrum (b) are represented. Intranucleotide interactions are colored green,

whereas internucleotide interactions are colored red. The reconstruction of the sequence

of intra- and internucleotide interactions is the path among the cross-peaks alternated

in these two colors (b). HSQC-NOESY is mixed, homo- and heteronuclear experi-

(a) (b)

Figure 3.2: A fragment of simulated 3D HCP spectrum for r(ACGU) with the mag-
netization transfer pathway between H4′ − C4′ − P nuclei. F1,F2,and F3 axes in (b)

represent chemical shift ranges ranges of H4′ − C4′ − P respectively.

ment, being most frequently used to resonance assignment of RNAs. It provides the

information about many different interactions, collected in the separate regions of its

spectrum. The most meaningful are the signals constructing the following pathways:

(C1′n−H1′n−H8/H6n)−(C1′n−H1′n−H8/H6n+1)−(C1′n+1−H1′n+1−H8/H6n+1)−. . .,
and (C8/C6n − H8/H6n − H1′n) − (C8/C6n − H8/H6n − H1′n+1) − (C8/C6n+1 −
H8/H6n+1 −H1′n+1)− . . . [129]. Finally, homonuclear NOESY-NOESY spectra can be

used for a reconstruction of several magnetization transfer tracks, from which crucial

are (H8/H6n+1−H1′n−H8/H6n)− (H8/H6n+1−H1′n−H8/H6n+1)− (H8/H6n+1−
H1′n+1 − H8/H6n+1) − . . . [129]. Consequently, two types of NMR interactions can

be observed: homonuclear (in homonuclear and mixed experiments) and heteronuclear

(in heteronuclear and mixed experiments). Similarly, there are two types of assignment

pathways.

Pathway construction starts from any cross-peak pi(xi, yi, zi) on the map, where xi, yi, zi

are the coordinates of pi. Next, the following steps are repeated depending on the

pathway type:
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a. for a heteronuclear pathway

(1) go to pi+1 if xi+1 = xi, yi+1 6= yi and zi+1 6= zi

(2) go to pi+2 if xi+2 6= xi+1, yi+2 = yi+1 and zi+2 = zi+1.

Other combinations are also possible in the heteronuclear case, provided that in

the first step any two coordinates of pi+1 must equal their counterparts in pi, while

in the second step - the remaining one must satisfy the equality.

b. for a homonuclear pathway

(1) go to pi+1 if xi+1 = xi, yi+1 = yi and zi+1 6= zi

(2) go to pi+2 if xi+2 6= xi+1, yi+2 = yi+1 and zi+2 = zi+1

(3) go to pi+3 if xi+3 = xi+2, yi+3 6= yi+2 and zi+3 = zi+2.

The above steps are iterated as long as there are unvisited cross-peaks on the NMR map

and the pathway can be extended (i.e. there is at least one unvisited cross-peak that

has the appropriate coordinates and so it can be added to the pathway). The objective

is to find the longest path under the constraint that each cross-peak can be visited at

most once.

3.2.2 Problem computational complexity

In this section we discuss the computational complexity of the assignment pathway

construction on the 3D NMR map. The problem is proved NP-hard. Below we report

our proof presented in [127].

Let us first consider the heteronuclear case. We define a decision version of the problem

of finding the 3D heteronuclear assignment pathway (denoted by Π′) in the following

way:

Instance:

A 3D NMR graph, i.e. graph G′ = (V ′, E′) located in the three-dimensional space,

where V ′ = {ωi(xi, yi, zi) : i = 1, . . . , n} represents a set of n cross-peaks from the

corresponding 3D NMR map, each vertex has three coordinates x, y, z (equal to those of

the relative cross-peak), E′ is a set of edges (an edge is built between every two vertices,

ωi, ωj ∈ V ′, which have either one or two common coordinates).

Question:

DoesG′ contain a heteronuclear assignment pathway, that is an ordering P = 〈ω1, ω2, . . . , ωn〉
of vertices in G′, such that every vertex occurs in P at most once, (ωi, ωi+1) ∈ E′ for
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all i (1 ≤ i < n), and any three-element subsequence 〈ωi, ωi+1, ωi+2〉 ∈ P satisfies the

rules: xi = xi+1, xi+1 6= xi+2, yi 6= yi+1, yi+1 = yi+2, zi 6= zi+1, zi+1 = zi+2?

Proof. In order to prove that Π′ ∈ NP , it is sufficient to demonstrate a nondeterministic

algorithm solving the problem in polynomial time. Such algorithm only needs to guess

an ordering of vertices in G′ and check in polynomial time whether all the relationships

between vertex coordinates are satisfied.

Next, let us take the known NP-complete problem Π of finding a Hamiltonian path in a

given graph G = (V,E) that will be used to transform Π′ into Π. In the decision version

of Hamiltonian path problem the question is whether graph G contains an ordering

〈v1, v2, . . . , vk〉 of its vertices, such that k = |V | and (vi, vi+1) ∈ E for all i (1 ≤ i < k).

The problem remains NP-complete even if we assume that G has no self-loops and no

vertices with degree exceeding three [65]. Now, taking an arbitrary graph G = (V,E),

that is an instance of the Hamiltonian path problem, we can construct G′ in the following

way (cf. Figure 3.3):

(1) For every vertex vi ∈ V in G, place two corresponding vertices in G′: ωi0(xv, yv, 0) ∈
V ′ and ωi1(xv, yv, 1) ∈ V ′.

(2) For every edge ej(vp, vt) ∈ E in G, place two corresponding edges in G′: ej0 =

(ωp0 , ω
t
0) and ej1 = (ωp1 , ω

t
1).

(3) For every vertex vi ∈ V in G, introduce edge ei01 = (ωi0, ω
i
1) in G′.

G=(V,E) 

v1 

v2 

v3 

G’=(V’,E’) 
Z=0 

Z=1 

0 

0 

0 
1 

2 

3 

1 

1 

1 
1 

2 

3 

Figure 3.3: Construction of 3D NMR graph (heteronuclear case).

By that means, we obtain 3D NMR graph G′ = (V ′, E′), where V ′ = V ′0∪V ′1 , |V ′| = 2|V |,
and E′ = E′0∪E′1∪E′01, |E′| = 2|E|+|V |. The time used to construct G′ is bounded from

the above by the input length of problem Π. Based on the above transformation we can
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observe that G contains a Hamiltonian path if and only if the corresponding 3D NMR

graph G′ contains a heteronuclear assignment path. This in turn implies NP-hardness

of the heteronuclear assignment pathway construction on the 3D NMR map.

Similarly we can treat the problem of finding a 3D homonuclear assignment path. The

3D NMR graph G′′ = (V ′′, E′′) to represent this version of the problem is constructed

as in the heteronuclear case, except that every edge (ωi, ωj) ∈ E′′ connects two vertices

from V ′′, which have exactly two common coordinates. In the decision version (denoted

by Π′′), the question is formulated as follows:

Question:

doesG′′ contain a homonuclear assignment pathway, that is an ordering P = 〈ω1, ω2, . . . , ωn〉
of vertices in G′′, such that every vertex occurs in P at most once, (ωi, ωi+1) ∈ E” for

all i (1 ≤ i < n), and any four-element subsequence 〈ωi, ωi+1, ωi+2, ωi+3〉 ∈ P satisfies

the rules: xi = xi+1, xi+1 6= xi+2, xi+2 = xi+3, yi = yi+1, yi+1 = yi+2, yi+2 6= yi+3, zi 6=
zi+1, zi+1 = zi+2, zi+2 = zi+3?

Proof. The proof is again based on the transformation using the Hamiltonian path prob-

lem Π. Given G = (V,E), being an instance of Π, we construct G′′ = (V ′′, E′′) according

to the following steps:

(1) For every vertex vi ∈ V in G, place the corresponding vertex in G′′: ωi(xv, yv, zv) ∈
V ′′.

(2) For every edge ej(vp, vt) ∈ E in G, construct a cubic subgraph S′′j (cf. Figure 3.4)

and add it to G′′ between vertices ωp, ωt ∈ V ′′.

G=(V,E) 

vp 

vt 

e(vp,vt) 

p (xp,yp,zp)
 

t (xt,yt,zt)
 

2 (xt,yp,zt)
 

1 (xp,yp,zt)
 

3 (xt,yp,zp)
 

5 (xt,yt,zp)
 

4 (xp,yt,zt)
 6 (xp,yt,zp)

 

G”=(V”,E”) 

Figure 3.4: Subgraph construction in 3D NMR graph (homonuclear case).

Again, the time used to construct G′′ is bounded from above by the input length of

problem Π. Moreover, from the transformation it is clear that G contains a Hamiltonian
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path if the corresponding graph G′′ contains a homonuclear assignment path, and vice

versa. This proves the NP-hardness of the homonuclear assignment pathway problem.

3.3 An edge-colored graph based formulation

Several problems modeled by edge-colored graphs have achieved significant interest dur-

ing last decades, both from the theoretical point of view and of its domains of applica-

tions. Although many problems may be modelled by seeking multicolored cycles (i.e.,

cycles with edges of different color) or monochromatic cycles (i.e., cycles whose edges

have the same color) [34, 93], usually the most hype field of study concerns the mini-

mization of the number of colors on the graph.

According to the instance provided as input, we can distinguish between problems de-

fined on edge-colored graph and problems whose aim is to define an optimal coloring

for a given uncolored graph. The latter are called edge-coloring problems, and a feasi-

ble solution of them is an assignment of colors to the edges of the graph. Usually, the

assignment is assumed to be a proper coloring of the edges (i.e., no two adjacent edges

have assigned the same color), which is obtained using the least number of colors. Edge

coloring problems have applications in scheduling problems [64, 139] and in fiber optic

networks [81], among others. For example, a communication network may be repre-

sented as a graph where any vertex is a station and an edge connects two stations that

wish to communicate with each other by a fiber optic. Different frequency of light are

indicated with different colors. The problem of assigning colors to the edges in such a

way that no two paths that share a segment of fiber optic use the same frequency is a

path coloring problem, which was first introduced by Aggarwal et al. [2] and Raghavan

and Upfal [114]. A particular path coloring problem is the non-repetitive coloring prob-

lem [5], where a coloring is a sequence of colors on any path in the graph such that a

path cannot contain adjacent subpaths colored with the same sequence of colors.

On the other hand, when a coloring for a given graph G is already known, one may be

interested in extracting subgraphs colored in a specified pattern. For example, a trans-

portation network can be represented by a graph whose edges are colored according to

the different modes of transportation, then to seek a path of minimum number of colors

between two vertices is equal to look for a path connecting them by using the mini-

mum number of different modes of transportation [40]. This is a typical application of

the well-known minimum label spanning tree problem, initially addressed by Broersma

and Li [33] and Chang and Leu [41]. This problem falls in the class of the combina-

torial optimization problems defined on labeled graphs: the label graph problems (see

[36, 39, 59, 143], to name a few).
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In this section we describe the OCLP problem based on edge-colored graph representing

the assignment pathway problem presented in Section 3.2. As previously described in

[127], we build an edge-colored graph G = (V,E) from a 3D NMR spectrum such that

any vertex v ∈ E is a cross-peak, and the edges are colored according to the type

of interaction occurring in the NMR experiment. Finally, we consider other possible

applications of the OCLP problem at the outside of the biological world. However, this

last part is under completion in [128].

3.3.1 Notation and Definitions

Definition 3.1. Let G = (V,E) be a finite undirected simple graph, and C = {1, . . . , c}
be a set of colors, with c ≥ 2. G is a c-edge-colored graph if any edge {vi, vj} ∈ E is

colored from C.

Definition 3.2. Let G = (V,E) be a c-edge-colored graph. A path in G where any two

adjacent edges differ in color is an properly colored path.

Definition 3.3. Let G = (V,E) be a c-edge-colored graph. An orderly colored path

(OCP) in G is a properly colored path whose edges follow a given sequence of colors.

Definition 3.4. Let G = (V,E) be a c-edge-colored graph. An alternating path in G

is a orderly colored path whose edges are alternated in a sequence of only two colors.

The Orderly Colored Longest Path Problem

Let G = (V,E) be a c-edge-colored graph on a set of colors C = {1, . . . , c}. Given a

subset Q ⊆ C of k colors, where 2 ≤ k ≤ c, and an order on Q. Let S ⊆ E be the

subset containing the edges colored with the colors in Q. The orderly colored longest

path problem is the problem of finding the path of maximum length in G[S] such that

edge colors along the path hold the order on Q.

The Orderly Colored Hamiltonian Path Problem

The orderly colored hamiltonian path problem is the problem of finding an OCLP which

visits each vertex in G exactly once.

Let us consider the small graph in Figure 3.5.b. composed of 6 vertices, 10 edges, and

3 colors, where Q ⊆ C = {green, blue, red}, and the ordering on Q is the sequence

given in Figure 3.5.a. The longest orderly colored path (OCLP) is the orderly colored

hamiltonian path (OCHP) represented in Figure 3.5.c. For simplicity, we assume that a

feasible path must always start from a given color (green, in this case); such assumption

can be easily removed by solving c instances of the same model.
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Figure 3.5: A simple example of 3-edge-colored graph. For better readability, green
arcs are solid, red arcs are dotted, blue arcs are dashes.

3.3.2 Building the edge-colored graph

With respect to the description of Section 3.2.1, the problem can be modeled with an

edge-colored undirected graph G = (V,E). Every vertex vi ∈ V represents cross-peak pi

from the 3D NMR map and |V | = n, where n equals the number of cross-peaks. Every

connection between two cross-peaks, which have either one or two common coordinates,

is represented by an edge e ∈ E in graph G. Thus, if m is the number of all possible

connections that can be traced on NMR map, then |E| = m. Each edge e(vi, vj) ∈ E is

assigned a color (label) from the set of c = 6 colors C = {0, 1, 2, 3, 4, 5}, and each color

represents different relationship between the coordinates of the corresponding cross-

peaks. Thus, E can be partitioned into six subsets:

E0 = {(vi, vj) ∈ E : xi 6= xj , yi = yj , zi = zj}
E1 = {(vi, vj) ∈ E : xi = xj , yi 6= yj , zi = zj}
E2 = {(vi, vj) ∈ E : xi = xj , yi = yj , zi 6= zj}
E3 = {(vi, vj) ∈ E : xi = xj , yi 6= yj , zi 6= zj}
E4 = {(vi, vj) ∈ E : xi 6= xj , yi 6= yj , zi = zj}
E5 = {(vi, vj) ∈ E : xi 6= xj , yi = yj , zi 6= zj}

Such c-edge-colored graph G represents the 3D NMR map together with all passages that

can be crossed when the assignment pathway is constructed (see Figure 3.6). Keeping in

mind that we consider three types of 3D NMR maps (homonuclear, heteronuclear and

mixed), we understand how they are represented by different c-edge-colored graphs:

a. If G = (V,E) encodes a heteronuclear or a mixed map: c = 6, E = E0 ∪E1 ∪E2 ∪
E3 ∪ E4 ∪ E5.

b. If G = (V,E) encodes a homonuclear map: c = 3, E = E0 ∪ E1 ∪ E2.
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Figure 3.6: Example 3D NMR map (a) and its representation as edge-colored graph
(b). x, y, z axes in (a) represent chemical shift ranges of each nucleus.

Due to the description in Section 3.2.1 two types of assignment pathways (homonuclear

or heteronuclear) can be reconstructed in c-edge-colored graph representing the 3D NMR

map. Thus, we define two versions of 3D-APP.

3D-APPHE (heteronuclear assignment pathway problem):

Given a c-edge-colored undirected graph G = (V,E), where V is a set of vertices

representing cross-peaks from the heteronuclear or mixed 3D NMR map, and E is a

set of colored edges partitioned into c=6 subsets, find the longest elementary path

P = {e0, e1, . . . , ek} in E such that if ei ∈ Ew then ei+1 /∈ Ew, and the edges of P

are alternately in either E0, E3 or E1, E5 or E2, E4.

3D-APPHO (homonuclear assignment pathway problem):

Given a c-edge-colored undirected graph G = (V,E), where V is a set of vertices each

of which represents a cross-peak from the homonuclear 3D NMR map, and E is a set

of colored edges partitioned into c subsets (c ∈ {3, 6}), find the longest elementary path

P = {e0, e1, . . . , ek} in E0 ∪ E1 ∪ E2 such that if ei ∈ Ew then ei+1, ei+2 /∈ Ew, and the

edges of P are alternately in E0, E1, E2.

In conclusion, the problem of finding the longest transfer pathway between the cross-

peaks in order to reconstruct the sequential assignment of NMR signals on the 3D NMR

map can be represented as the OCLP problem, where the path is orderly in a sequence

of either 2 (2-OCLP) or 3 (3-OCLP) colors, respectively.

2-OCLP as reformulation of the 3D-APPHE :

Let G = (V,E) be a 6-edge-colored graph on a set of colors C = {1, . . . , 6}, where V is a
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set of vertices representing cross-peaks from the heteronuclear or mixed 3D NMR map.

Given a subset Q ⊆ C of 2 colors representing the only possible steps of the assignment

pathway. Let S ⊆ E be the subset containing the edges colored with the colors in Q.

Find the longest alternating path in G[S].

3-OCLP as reformulation of the 3D-APPHO:

Let G = (V,E) be a 6-edge-colored graph on a set of colors C = {1, . . . , 6}, where V is a

set of vertices representing cross-peaks from the homoronuclear 3D NMR map. Given a

subset Q ⊆ C of 3 colors representing the only possible steps of the assignment pathway,

and an order on Q. Let S ⊆ E be the subset containing the edges colored with the

colors in Q. Find the longest path in G[S] such that the order on Q is hold.

3.3.3 Not only biological applications

Recently a few applications of properly edge-colored Hamiltonian and Eulerian cycles

and paths in molecular biology have been studied [54, 55, 112, 113]. In particular, in

[55] is discussed the existence of alternating Hamiltonian circuits that determine the

spatial order of the chromosomes within haploid chromosome complements; whereas

in [113] alternating Eulerian cycles are used to represent the solutions of the Double

Digest Problem (i.e., the problem of constructing a physical maps of DNA sequences).

Nevertheless, we believe that besides the 3D-APP, other well-known problems could be

formulated as an OCLP problem both in biology and in other fields.

For example, the OCLP problem may be used for modeling city blocks problems on

mesh graphs where intersections are vertices and streets are edges [108]. Let us consider

a rectangular grid where horizontal edges are colored with one color and vertical edges

with the other one, then a path whose edges are alternated in dimension will also be

a path whose edges are alternated in color. Analogously, a mesh structure may rep-

resent a chessboard setting a vertex on each square and coloring the edges from a set

of colors. Hence we can model edge-colors constrained path problems related to the

chess moves, such as for the knight’s tour problem [136], which is the problem of seeking

an Hamiltonian (or longest) path composed of knight’s moves. Of interest are also the

applications on grid graphs that contain obstacles, e.g., forbidden vertices [130], such

as in the Longest Path Routing problem discussed in [131]. Similarly, orderly colored

schemes could be useful to model particular routing problems: pick-up and delivery,

where different types of pick-up and deliveries must alternate over the edges [117]; and

electric vehicles routing, where loading and discharging arcs must alternate, or separated

waste collection routing [116].
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3.4 Three IP formulations

In the previous section we have shown how the 3D-APP can be formulated as OCLP

problem. Here, we describe three integer programming (IP) formulations for modeling

the OCLP problem such as the network problems presented in [49]. The edge-colored

graph G is transformed by coping k times the vertex set V in order to obtain a k-partite

digraph, on which we impose additional packing constraints.

The first model is based on a longest path problem in a n-partite graph with a number

of partitions equal to the number of vertices of the original graph. The second model is

a transformation of the latter, where the number of partite sets depends on the number

of colors. The third model is formulated on a n-partite graph, where each partition is a

c-connected subgraph of the original graph. In the following we assume, without loss of

generality, that the searched path must always start from color with label 1.

3.4.1 Longest path over acyclic n-partite graph

Let G = (V,E) be a c-edge-colored graph. We transform G to digraph D = (V ′, A) as

follows:

1. The set of vertices V = {v1, v2, . . . , vn} from G is repeated n times in V ′ such that

(i) V ′ = V 1 ∪ V 2 ∪ · · · ∪ V n and V i ∩ V j = ∅, for each i, j ∈ V : i 6= j; and (ii)

V l = {vl1, vl2, . . . , vln} for each l ∈ {1, . . . , n}. We refer to each V l as a partite set.

2. We denote a level set as Lr = {v1
r , v

2
r , . . . , v

n
r } such that any vertex vlr belongs to a

different partite set, thus V l ∩ Lr = {vlr} for each r = 1, . . . , n and l ∈ {1, . . . , n}.

3. Let (Lr, Lr+1) be a pair of two consecutive level sets. Each edge (vi, vj) ∈ E is

replaced by two arcs in A, (vir, v
j
r+1) and (vjr , vir+1), in order to connect (Lr, Lr+1).

Both arcs have the same cost cij associated with (vi, vj) ∈ E.

4. Each pair of level sets (Lr, Lr+1) is connected by arcs of the same color from G.

On the basis of the color sequence requested from the path, in the n− 1 level set

pairs the arcs are recursively alternated in color. E.g., if c = 2 then all pairs of

arcs (vi1, v
j
2) ∈ A and (vj1, v

i
2) ∈ A in (L1, L2) are from those edges (vi, vj) ∈ E

with color 1 in G; all pairs of arcs (vi2, v
j
3) ∈ A and (vj2, v

i
3) ∈ A in (L2, L3) are

from those edges (vi, vj) ∈ E with color 2 in G; all pairs of arcs (vi3, v
j
4) ∈ A and

(vj3, v
i
4) ∈ A in (L3, L4) are from those edges (vi, vj) ∈ E with color 1 in G and so

on.
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5. One source vertex s and one destination vertex t are added to D, thus |V ′| = n2+2;

L0 = {s}; Ln+1 = {t}. Arcs with null weight connect s with each vertex in L1,

and each vertex in V ′ to t (the latter referred to as exit arcs).

Summarizing, any vertex vl ∈ V has n copies in V l, each of which is in turn an element

of a level set Lr.

Example 3.1. Let us consider the 3-edge-colored graph G = (V,E) in Figure 3.5. The

corresponding network D has 38 vertices and 6 partite sets as shown in Figure 3.7. The

grey horizontal box represents the first partite set containing 6 copies of the vertex 1,

whereas the grey vertical box represents the fifth level set containing one copy for each

vertex of V . The arcs in each level set pair are alternated w.r.t. the ordering of colors

{green, red, blue}. We remark that the arcs represented by light grey lines are the exit

arcs; for better readability in Figure 3.7 only exit arcs from vertices belonging to the first

and the last partite sets have been represented; although the model accounts for exit arcs

from each one of the 36 vertices to the sink vertex.

Figure 3.7: The 6-partite graph arising from the edge-colored graph of Figure 3.5.

Theorem 3.1. Let D = (V ′, A) be a n-partite digraph as above defined. If D admits a

hamiltonian path from s to t such that successive vertices belong to different partite sets

V l, then this path is an OCHP in G.

Proof. Let us assume that for each partite set V l in D we have |V l| = 1. Then a

hamiltonian path in from s to t in D is also a hamiltonian path in G. By definition
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we know that any arc (vi, vj) connecting successive level sets (Lr, Lr+1) is colored in G

according to the given sequence of colors composing the path, and since |V l| = 1 then

|Lr| = |V l|. Therefore, the hamiltonian path in D such that each arc is (vi, vj) : vi ∈
V l, vj ∈ V l+1 is orderly colored in G.

Corollary 3.1. An OCHP in G is an OCLP in G composed by n− 1 edges.

Theorem 3.2. Let D = (V ′, A) be a n-partite digraph as above defined. Then a longest

path from s to t in D such that successive vertices belong to different partite sets V l is

an OCLP in G.

Proof. By Corollary 3.1 instances of the OCLP problem form a subclass of instances of

the OCHP problem.

We now describe the corresponding IP formulation. Let D = (V ′, A) be a directed graph

as above described. For each arc (vir, v
j
r+1) ∈ A we associate the decision variable xijr ,

where xijr = 1 if the arc (vir, v
j
r+1) belongs to the path P , and xijr = 0 otherwise. All arc

costs are set cijr = 1 except for those incident to s or t, which is assigned zero cost. The

subscript r is used to distinguish the same arcs repeated in different level set pairs.

The longest path over acyclic n-partite graph (LPnPP) is an optimization model formu-

lated as follows:

Maximize
∑

(vir,v
j
r+1)∈A c

ij
r x

ij
r

subject to: ∑
(vir,v

j
r+1)∈A x

ij
r −

∑
(vjr−1,v

i
r)∈A x

ji
r = 0 ∀vir ∈ V ′ − {s, t} (C1)∑

(s,vj1)∈A x
sj
1 = 1 (C2)∑

(vir,t)∈A x
it
r = 1 (C3)∑

(v
j
r−1,v

i
r)∈A

vir∈V l

xjir ≤ 1 l = 1, 2, . . . , n (C4)

xijr ∈ {0, 1} ∀(vir, v
j
r+1) ∈ A (C5)

where the constraints (C1-C3) are the classical balance constraints formulated on a

network problem: from the source s to the sink t, anytime a vertex vir is reached from

the path P the next vertex selected vjr+1 must be adjacent to vir. The set of packing

constraints (C4) ensure that for each set V l at most one vertex can be visited by the

path. In this way only one copy of the same vertex of the original graph is visited by

the path, making us sure that the expansion of the vertices does not create unfeasible

paths w.r.t. the original problem. According to these consideration, it is easy to state

the following:
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Preposition 3.1. A feasible (optimal) solution x∗ of LPnPP in D is an orderly colored

(longest) path in G. If x∗ is composed by n− 1 edges, then it is an OCHP in G.

3.4.2 Longest path over cyclic c-partite graph

In this second formulation we significantly simplify the dimension of the graph used to

search the longest paths introducing cycle elimination constraints in the formulation.

These constraints can be separated, making this approach potentially interesting from

the computational point of view, as will be detailed in Section 3.5.1.

Let G = (V,E) be a c-edge-colored graph. We transform G to digraph D = (V ′, A) as

follows:

1. The set of vertices V = {v1, v2, . . . , vn} from G is repeated c times in V ′ such that

(i) V ′ = V 1 ∪ V 2 ∪ · · · ∪ V n and V i ∩ V j = ∅, for each i, j ∈ V : i 6= j; and (ii)

V l = {vl1, vl2, . . . , vlc} for each l ∈ {1, . . . , n}. We refer to each V l as a partite set.

2. We denote a level set as Lr = {v1
r , v

2
r , . . . , v

n
r } such that any vertex vlr belongs to a

different partite set, thus V l ∩ Lr = {vlr} for each r = 1, . . . , c and l ∈ {1, . . . , n}.

3. Let (Lr, Lr+1) be a pair of two consecutive level sets. Arcs are directed from Lr to

Lr+1, r = 1, . . . , c. Each edge (vi, vj) ∈ E is replaced by two arcs in D, (vir, v
j
r+1)

and (vjr , vir+1), in order to connect the consecutive level sets (Lr, Lr+1). Both arcs

have the same cost cij from the edge (vi, vj) ∈ E.

Differently from LPnPP, here the number of level set pairs is c−1, instead of n−1.

Indeed, the last pair of level sets is composed by (Lc, L1), because the arcs labeled

with color c connecting the last level set Lc to the first one L1. Therefore D′ may

be considered partitioned respect the number of colors. Below we will indicate a

level set pair with (Lp, Lq) and its arc with (vip, v
j
q), where q = rest + 1 and rest

is the remainder of p/c.

4. Each pair of level sets (Lp, Lq) contains arcs with same color in G.

On the basis of the color sequence requested from the path, in the c level set pairs

the arcs are recursively alternated in color. E.g., if c = 3 then all pairs of arcs

(vi1, v
j
2) ∈ A and (vj1, v

i
2) ∈ A in (L1, L2) are from those edges (vi, vj) ∈ E with

color 1 in G; all pairs of arcs (vi2, v
j
3) ∈ A and (vj2, v

i
3) ∈ A in (L2, L3) are from

those edges (vi, vj) ∈ E with color 2 in G and all pairs of arcs (vi3, v
j
1) ∈ A and

(vj3, v
i
1) ∈ A in (L3, L1) are from those edges (vi, vj) ∈ E with color 3 in G.
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5. One source vertex s and one destination vertex t are added to D, thus |V ′| = nc+2;

Arcs with null weight connect s with each vertex in L1, each vertex in V ′ to t (the

latter referred to as exit arcs).

Example 3.2. As in the example 3.1 we consider the edge-colored graph of Figure 3.5.

Here, the corresponding network has 20 vertices, 6 partite sets V l, only 3 level sets L1,

L2, and L3, as shown in Figure 3.8. The arcs between the three level sets are directed

from L1 to L2 if their color label is green in G; are directed from L2 to L3 if their

color label is red in G; and are directed from L3 to L1 if their color label is blue in G.

Also here, arcs represented by light grey lines are the exit arcs, and only a part of them

is represented for readability (exit arcs should be present from each vertex to the sink

vertex).

Figure 3.8: The 3-partite graph arising from the edge-colored graph in Figure 3.5.

Let D = (V ′, A) be a directed graph as above described. Since in this model there are

not arcs repetitions, for each arc (vip, v
j
q) ∈ A we refer with xij to the binary decision

variables, and with cijr to the arc cost. All arc costs are set cijr = 1 except for those

incident to s or t, which is assigned zero cost. The longest path over cyclic c-partite
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graph (LPcPP) is formulated as follows:

Maximize
∑

(vip,v
j
q)∈A c

ijxij

subject to: ∑
(vip,v

j
q)∈A x

ij −
∑

(vjq ,vip)∈A x
ji = 0 ∀vip ∈ V ′ − {s, t} (C1)∑

(s,vj1)∈A x
sj = 1 (C2)∑

(vip,t)∈A x
it = 1 (C3)∑

(vip,v
j
q)∈A

vip∈V l

xij ≤ 1 l = 1, 2, . . . , n (C4)

∑
(vip,v

j
q)∈Γ

xij ≤ | Γ | −1 Γ ∈ Γ̂ (C5)

xij ∈ {0, 1} ∀ (vip, v
j
q) ∈ A (C6)

As in LPnPP, the constraints (C1-C3) ensure that the solution describes a path from

s to t. The packing constraints (C4) state that in any set V l at most one vertex can

be visited from the path. Since this time the network is not acyclic, we need to enforce

the separations of all the orderly colored cycles; in the formulation this is achieved with

constraints (C5), that for each cycle Γ ∈ Γ̂ expresses cycle elimination constraints.

Cycle elimination constraints are not added in the initial formulation of the problem

when the problem is solved, but they are iteratively separated if a cycle appears in the

current solution.

Preposition 3.2. A feasible (optimal) solution x∗ of LPcPP in D is an orderly colored

(longest) path in G. If x∗ is composed by n− 1 edges, then it is an OCHP in G.

3.4.3 Longest path over cyclic c-connected graph

Although the formulation of this third model requires cycle elimination constraints as

the previous one, and the number of vertices still depends on the number of colors, here

the graph is not really c-partite. For the sake of clarity, let us change the notation

adopted in the first two models.

Let G = (V,E) be a c-edge-colored graph. We transform G to digraph D = (V ′, A) as

follows:

1. The set of vertices V = {v1, v2, . . . , vn} from G is repeated c times in V ′ such

that (i) V ′ = V 1 ∪ V 2 ∪ · · · ∪ V n and V i ∩ V j = ∅, for each i, j ∈ V : i 6= j;

(ii) V i = {vi1, vi2, . . . , vic} for each i ∈ {1, . . . , n}, and (iii) any copy vli ∈ V i has a

different color r from the set of colors C = {1, . . . , c}.

2. The arcs set is composed by two subsets A = A′ ∪A′′, where:
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- A′ is in turn composed by n disjoint subsets Ai such that A′ = A1∪A2∪· · ·∪
An, and where |Ai| = c for each i ∈ {1, . . . , n}.

Arcs in subset Ai define a cycle on the V i vertices by connecting a vertex

to another in V i according to the requested ordering of colors. When we

consider the subgraph Di = (V i, Ai) composed by the subsets of vertices V i

and the subset of arcs Ai, then we refer to a color connected component.

In practice, for any pair of vertices vil and vir in V i there is in Ai an arc directed

from vil to vir, and the last arc is precisely (vic, v
i
1) which closes a cycle in Ai.

The sequence of the arcs depends on the requested color sequence; i.e., if the

path crosses the arc (vil , v
i
r) ∈ Ai in D, then the corresponding path in G is

changing in color from l to r. Since the arcs in Ai are only used as bridge

between two different colors, they have zero cost. In Figure 3.9 it is shown

an example with three colors, whose ordering is the same in Figure 3.5.a.

Figure 3.9: The color connected component of a vertex of G into the cycles with 3
vertices and 3 arcs.

- the subset A′′, whose arcs connect vertices that belong to two partition V i

and V j , where i 6= j. Namely, each original edge (vi, vj) ∈ E with color r ∈
{1, . . . , c} is represented by two oppositely directed arcs (vir, v

j
r), (v

j
r , vir) ∈ A′′

introduced between vertices with color r in V i and V j . We collect such arcs

within the set Ac, to which we also add arcs connecting s with each vertex

vi1 (i = 1, . . . , n), and arcs connecting all vertices of V ′ with the destination

vertex t.

3. Each edge (vi, vj) ∈ E with color label l ∈ C is replaced by two arcs in A′′, (vil , v
j
l )

and (vjl , v
i
l). Therefore, the set A′′ only contains arcs with one end in a connected

subgraph and the other end in another connected subgraph.

Both arcs have the same cost cij from the edge (vi, vj) ∈ E. E.g., if c = 3 then all

pairs of arcs (vi1, v
j
1) and (vj1, v

i
1) ∈ A′′ are from those edges (vi, vj) ∈ E with color
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1 in G; all pairs of arcs (vi2, v
j
2) and (vj2, v

i
2) ∈ A′′ are from those edges (vi, vj) ∈ E

with color 2 in G, and all pairs of arcs (vi3, v
j
3) and (vj3, v

i
3) ∈ A′′ are from those

edges (vi, vj) ∈ E with color 3 in G.

4. One source vertex s and one destination vertex t are added to D, thus |V ′| =

n× c+ 2. Arcs with zero cost connect s with each vertex vi1, i = 1, . . . , n, and all

vertices of V ′ to t (the latter referred to as exit arcs). Also these arcs belong to

A′′.

Example 3.3. Let us consider the same example of the previous sections. The resulting

network D = (V ′, A) has 20 vertices. Each original vertex is represented by a cycle of 3

colored vertices. Two vertices of color ci are connected by two arcs in opposite directions

only if in the original graph they are connected by an edge of color ci. The source vertex

is connected to all vertices of color green; exit arcs to sink are not represented in Figure

3.10 but they are considered for all vertices.

Figure 3.10: The 3-connected graph arising from the edge-colored graph in Figure
3.5

Let us describe the corresponding IP formulation of LPCPP. Let D = (V ′, A) be the

directed graph depicted above. Since in this model there are two different set of arcs,

we use two types of decision variables: for each arc (vil , v
j
l ) ∈ A

′′, where vil ∈ V i and

vjl ∈ V
j , we refer to xijl ; for each arc (vil , v

i
r) ∈ Ai we refer to xilr. Both decision variables

and arc costs are binaries, and with cijl = 1 we refer to the cost of all the arcs in A′′.

The longest path over cyclic c-connected graph (LPCPP) is formulated as follows:
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Maximize
∑

(vil ,v
j
l )∈A′′ c

ij
l x

ij
l

subject to: ∑
(vjl ,v

i
l )∈A′′

xjil −
∑

(vil ,v
i
r)∈A′ x

i
lr = 0 ∀vil ∈ V ′ − {s, t} (C1)∑

(vir,v
i
l )∈A′

xirl −
∑

(vil ,v
j
l )∈A′′ x

ji
l = 0 ∀vil ∈ V ′ − {s, t} (C2)∑

(s,vj1)∈A′′ x
sj
1 = 1 (C3)∑

(vil ,t)∈A′′
xitl = 1 (C4)∑

(vil ,v
i
r)∈Ai xilr ≤ 1 i = 1, 2, . . . , n (C5)∑

(vil ,v
j
l )∈A′′ x

ij
l ≤ 1 i = 1, 2, . . . , n (C6)∑

(vjl ,v
i
l )∈A′′

xjil ≤ 1 i = 1, 2, . . . , n (C7)∑
(vil ,v

j
l )∈Γ

xijl +
∑

(vil ,v
i
r)∈Γ x

i
lr ≤ | Γ | −1 Γ ∈ Γ̂ (C8)

xijl ∈ {0, 1} ∀ (vil , v
j
l ) ∈ A

′′ (C9)

xilr ∈ {0, 1} ∀ (vil , v
i
r) ∈ A′ (C10)

Recalling that arcs internal to the connected subgraphs have zero cost, in the objective

function only appear the variables corresponding to the arcs in A′′. The constraints

(C1-C4) ensure that the solution is a path from s to t. In particular, the constraints

(C1-C2) state that anytime the path reaches a vertex vil through an arc with color l,

then the next arc in the path must connect it to another vertex vir belong to the same

color connected component Di, which is in turn the head of an arc with color r. In this

way the path follows the required ordering of colors. In this model three kinds of packing

constraints (C5-C7) have been formulated. These constraints ensure that in any color

connected component Di at most one arc can be selected (C5) and at most two vertices

can be visited by the path (C6-C7). Such as in LPcPP the graph is not acyclic, thus

we need to enforce the separations of all the cycles adding the constraints (C8), that for

each cycle Γ ∈ Γ̂ express the corresponding cycle elimination constraint.

Preposition 3.3. A feasible (optimal) solution x∗ of LPCPP in D is an orderly colored

(longest) path in G. If x∗ is composed by n− 1 edges, then it is an OCHP in G.

3.4.4 OCLP problem and Shortest Path problems

Although the difference between a path coloring problem and the OCLP problem is quite

evident, that one between an existing label graph problem and the OCLP problem is

more subtle. One might think that the OCLP problem can be reduced to an elementary

shortest path problem, setting negative edge weights, and then solved by using a labeling

algorithm or with a dynamic programming approach [63]. For instance, our OCLP

problem formulations could appear similar to the Shortest Path Tour Problem (SPTP)
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described in [60]. SPTP is a polynomial-time reduction into a s-t shortest path problem

of a multi-stage digraph such that the path should successively pass through at least

one node from given partite sets of vertices. Nevertheless, the substantial difference

between SPTP and OCLP is to be found in the formulation of the constraints on the

partite sets: in the former they are covering constraints, while in the latter they are

packing constraints. Moreover, the SPTP formulation requires that all arc lengths are

nonnegative, so that no negative cycles could hold in the solution. On the other hand, one

could guess that OCLP problem can be reduced to an elementary shortest path problem

with resource constraints [56, 58], which is solvable by correcting labeling algorithms

working even in presence of negative cycles. The requirement that paths need to be

properly colored could be fulfilled extending the labels by an additional attribute, which

is the color of the last arc. Dominance would be then performed only among labels of

the same color, and the path extension step would respect the given order of colors.

Unfortunately, this reduction does not guarantee to find a path which visits the largest

number of vertices of the graph. Let us recall that in the ideal case we would find an

hamiltonian path.

3.4.5 Computational complexity analysis

The Hamiltonian path problem is one of the most well-known NP-complete problems,

with numerous applications. The most natural optimization version of this problem is

the longest path problem, that is, to compute a simple path of maximum length or,

equivalently, to find a maximum induced subgraph which is Hamiltonian. Even if a

graph itself is not Hamiltonian, it makes sense in an assignment pathway problem to

search for a longest path. However, computing a longest path seems to be more difficult

than deciding whether or not a graph admits a Hamiltonian path. Indeed, it has been

proved that even if a graph is Hamiltonian, the problem of computing a path of length

n − nε for any ε < 1 is NP-hard, where n is the number of vertices of the input graph

[82]. Moreover, there is no polynomial time constant-factor approximation algorithm

for the longest path problem unless P = NP [82].

In contrast to the Hamiltonian path problem, for which many polynomial time algo-

rithms have been developed with considerable success, there is only a small class of al-

gorithms for solving the longest path problem. To our knowledge, these were restricted

to multipartite digraphs [71], trees [35],weighted trees and block graphs [133], bipartite

permutation graphs [134], interval graphs [79], and cocomparability graphs [101].

As regards longest path on edge-colored graphs, in literature there are several works

showing that to find a properly colored path is NP-hard [1, 17, 43, 69]. Nevertheless,

by imposing a few ad-hoc characterization on the edge-colored graph it is possible to
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determine a properly colored path (or just to check its existence) in polynomial time,

by trying to visit each vertex of the graph the least number of times. This has been

proved for several types of problem: longest path [14], path between two given vertices

[1, 43, 69, 100], hamiltonian path [15, 28] and cycles [93, 144].

In general, It is well known that alternating edge-colored hamiltonian paths can be found

efficiently in 2-edge-colored complete graphs, but it is a long standing question whether

there exists a polynomial algorithm for finding such hamiltonian paths in edge-colored

complete graphs with three colors or more [17].

Theorem 3.3. The problem of finding an orderly colored longest path in an edge-colored

graph is NP-hard.

Our proof is based on the reduction of LPnPP from the Longest path problem (LPP),

which is well-known being NP-hard [65]. Since for both LPcPP and LPCPP models

the network is not acyclic, proving that OCLP problem is NP-hard in these cases is

rather trivial; instead, the network representing the LPnPP is directed and acyclic, thus

one might think that this problem may be reduced to a shortest path problem which is

polynomial solvable. Below we provide a sketch of the proof, which shows that LPnPP

is still Np-hard due to the presence of the packing constraints.

Proof. We first rely on the fact that a correct model for OCLP is provided by LPnPP.

Then, we note that any LPP instance G = (V,E) can be converted into one of the

LPnPP D = (V ′, A) simply by replicating n times the vertices of G, and by forming

n-partitions of the vertex set V ′. For each partition composed by n-copies of the same

vertex v ∈ V of G we add a packing constraint. Direct arcs are added between the levels

according to the rules described in Section 3.4.1, with the only difference that, in this

case, the color constraints on the edges are not present and thus all arcs are replicated

between each pair of consecutive levels. The network so obtained is an instance of the

LPnPP, and can be solved finding the longest path between two vertices with no cycles.

Clearly the transformation of a LPP instance into one of the LPnPP can be performed

in polynomial time in the size of the original graph.

Let us now consider the conversion of any LPnPP into a longest path problem. For each

partition of the LPnPP instance D, we can remove the associated packing constraints

and add two direct arcs which connect, in both directions, each pair of vertices in the

same partition. Each of these arcs is associated with a very large positive weights in the

objective function. In this way, a great number of augmenting cycles are introduced in

the graph, each of which touches two or more vertices in the same partition. Thus, the

longest path on such graph contains a cycle every time that two vertices in the same

partition are chosen. Conversely, if the longest path on this graph does not contain
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cycles, then it is longest with respect to the weights of the edges of D, and this path

is in turn a solution of the associated LPnPP. Since also the transformation of LPnPP

instance into an LPP instance can be performed in polynomial time in the size of the

original graph, we can then conclude that LPnPP belongs to the same complexity class

of LPP. This completes the sketch of proof.

3.5 The assignment pathway procedure at glance

On the basis of the graph models described in Section 3.3 we have developed a procedure

solving the 3D-APP. This procedure has been implemented in C programming language

and runs in Unix as well as Windows environment.

All the spectral parameters are listed in a text file representing the 3D NMR spectrum

after peak-picking procedure. The file specifies all the cross-peaks contained in the spec-

trum. For each cross-peak, there are: its number, three coordinates (xi, yi, zi) given in

ppm or Hz, and widths in three dimensions given in Hz. Additionally, user provides the

type of interaction (homo- or heteronuclear), the type of correlation signal (only for a

heteronuclear interaction), the type of IP model (see Section 3.4), and the time-limit.

A more detailed description of a 3D NMR instance shall be given in Section 3.6.2.1.

In the first step an algorithm reads the input files and constructs an edge-colored graph

assigning to any edge an appropriate label according to the scheme in Section 3.3.2.

Not-labeled edges are consider incorrect and they are not added to the graph struc-

ture, together with all isolated vertices (e.g., vertices connected to others by not-labeled

edges). Next, the procedure builds a network representation of the edge-colored graph

according to the IP model chosen. Then a mixed integer commercial solver for finding

the longest path on the network is called.

The number of possible assignment pathways and their lengths depend on RNA struc-

ture [129]. Usually there exist several pathways that satisfy all the required conditions.

We assumed that in the first tests of the method all the possible solutions should be

returned. Therefore for enumerating all the orderly colored paths of maximum length,

the method solve the problem iteratively, by cutting out at each iteration the current

optimal solution, until one between the stopping criterions is satisfied. Such criterions

are the maximum time-limit, and the length of the path (i.e., when the current solution

found is shorter than previous one). Figure 3.11 presents the general view of the method.

3.5.1 A Branch & Cut approach

Last two formulations presented in Section 3.4.2 and Section 3.4.3 rely on the satisfaction

of exponentially many cycle elimination constraints, (C5) and (C8) respectively. Such
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Figure 3.11: The flow-chart of the assignment procedure.

constraints cannot be listed explicitly in the formulation and need to be treated with

some specific technique (this concerns the cutting scheme in Figure 3.11). Initially,

we adopted a simple strategy to deal with them [49]: the cycle elimination constraints

were relaxed in the formulation, the relaxed IP was solved and, if a cycle appeared in

the integer solution, the corresponding cycle elimination constraint was added to the

formulation, and the problem was re-optimized. According to this strategy, the first

optimal solution without cycles is the desired optimal solution of the problem. However,

we assumed that all the solutions of maximum length should be returned. In this way

we have been able to determine the cardinality of the set of the optimal solutions, in

order to assess the quality of the reconstructed path from the biochemical point of view.

Also in this case, equivalent optimal solutions were listed by cutting out the current

optimal solution found, and then re-optimizing the problem. The two models performed

reasonably well on problems with a limited number of cross-peaks when a mixed integer

commercial solver is used.

At a later stage, we proposed a Branch & Cut (B&C) scheme where a separation oracle

is applied to find cycles violated by the fractional solutions at hand in the vertices of

the branching tree [127]. In this way, the integer optimization software adopted seeks

a solution of the problem by branch-and-cut until it either finds a feasible solution
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without orderly colored cycles inside, or shows that one none exists. Below we describe

the polynomial separation problem.

The separation procedure is applied straight-forwardly to both LPcPP and LPCPP

formulations presented above. Thus, without loss of generality, we consider the graph

D = (V ′, A) associated either to Model 2 (Section 3.4.2) or Model 3 (Section 3.4.3), and

we denote with x a binary solution vector of one considered model. We refer with xa to

the variable xij ∈ {0, 1}, for each a = (i, j) ∈ A. Thus, if the arc a ∈ A is part of the

solution x, then xa = 1; otherwise xa = 0.

Given a solution x̃, we define the set W ⊆ V ′ composed by all vertices that are endpoints

of arcs included in x̃: W = {i, j ∈ V ′ : x̃a = 1, a = (i, j)}.
Let now z ∈ {0, 1}|W | be the incidence vector of W , A[W ] be the set of edges connecting

vertices in W , and y ∈ {0, 1}|A[W ]| be the incidence vector of A[W ]. We first note that

a subset Γ ⊆ W identifies a cycle in V ′ if
∑

i∈Γ,j∈Γ x̃
ij > |Γ| − 1. With the aid of the y

variables just defined, we can write the following linear integer problem:

Maximize
∑

a∈A[W ] x̃
aya −

∑
i∈W zi

subject to:

ya ≤ zi ∀a ∈ A[W ], a = (i, j)

ya ≤ zj ∀a ∈ A[W ], a = (i, j)

ya ≥ zi + zj − 1 ∀a ∈ A[W ], a = (i, j)

ya ∈ {0, 1} ∀a ∈ A[W ]

zi ∈ {0, 1} ∀i ∈W

(3.1)

The problem (3.1) handles vertices and edges of the solution vector x̃. The first two

constraints guarantee that for each arc a ∈ A[W ] considered in the solution of (3.1) the

endpoints (i, j) must have associated zi = 1 and zj = 1 respectively. The third constraint

states that if two vertices i, j ∈W are endpoints of arcs included in the solution of (3.1)

then the arc a = (i, j) connecting them must have associated ya = 1. In oher words, if

an arc a = (i, j) is included in the solution of (3.1), then its endpoints are also included.

When the optimal solution (z̄, ȳ) has objective function value grater than −1 it means

that the number of arcs is higher than the number of vertices, therefore such solution

identifies a cycle in the original solution x̃. Conversely, if no solution exists, we conclude

that no cycle is present in the solution represented by x̃.

Previous results (cf. [140]) showed that problem (3.1) has integer optimal solution

also when the integrality constraints on the z and y variables are relaxed. The linear

relaxation of (3.1) is thus a polynomial separation oracle that can be applied at each

vertex of the B&C tree.
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3.6 Computational results

In order to test the strength of our models from both mathematical and biochemical

point of view, we conducted two different batteries of tests. In Section 3.6.1 is presented

a battery of test conducted on randomly generated edge-colored graphs and presented

in [128]. In Section 3.6.2 is presented a battery of test conducted on a set of instances

representing 3D NMR spectrum and presented in [127]. Let us recall that in this latter

case the procedure include the branch-and-cut scheme described in Section 3.5.1. In

both cases the results have shown that our procedure solves efficiently the problem, by

finding the optimal solution known a priori.

The experiments were run using Mixed Integer Linear Programming solver Cplex 12.2.0

by IBM Ilog [80] with standard settings. The hardware platform was an 8-core i7

Intel processor 2.597GHz with 8GB RAM. The code was developed in C programming

language and compiled with GNU CC compiler running under Microsoft Windows 7.0

with optimization option O3. The cycle separation procedure (cf. Section 3.5.1) was

implemented as a user callback function. It was managed by the main call to the mixed

integer optimizers. Presolve reductions were switched off and callback were set to access

the non-reduced model. The traditional MIP search strategy was used, and the solver

was run as a single thread.

3.6.1 Test on edge-colored graphs

In this section we show how large instances of OCLP problem can be solved in an efficient

way using the proposed IP models. We describe the instance generator developed for

creating the set of instances used during our test, and then we analyze and discuss the

results of computational experiments.

3.6.1.1 Instance simulator

The instance generator described here generates an c-edge-colored graph without taking

into account the biochemical information of an 3D NMR map. In this way we only test

the ability of our IP models to find the set of optimal solutions.

The OCLP problem instance generator produces a DIMACS Graph Format file, which is a

flexible format suitable for many types of graph and network problems. This format was

also chosen by Rutgers University for the First Computational Challenge on network

flows and matchings3. In the dimacs file all the edges of the c-edge-colored graph and

their correspondent color labels are listed.

3 http://prolland.free.fr/works/research/dsat/dimacs.html
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The instance generator has been designed to generate a c-edge-colored graph G = (V,E)

where |E| depends on graph density d and number of vertices n set such that |E| =

n(n− 1)d/2. The three main parameters governing the generation are (i) the number of

vertices n, (ii) the density of the graph d, and (iii) the number of OCPs M . The user

can also provide a sequence of two or three colors (OCSeq).

Moreover, the generator allows an additional control step related with the presence of

an OCHP; thus, we generate two types of problems:

- In problems of type 1 the OCPs in the generated graph may have any length L,

up to n− 1;

- In problems of type 2 the generation procedure is designed to create at least one

OCHP.

A sketch of this simulator is given below.

c-edge-colored graph generation

while (i < M) do

V = {s} and E = ∅;
while (|E| < L) do

generate the vertex v /∈ V such that v ∈ {1, . . . , n};
assign to the current edge (s, v) a color r according to the OCSeq;

if ((s, v) belong to a pre-existing path Pi) then

if (the color of (s, v) is different from r in Pi) then

reject l’arc (s, v);

else

V = V ∪ {v} and E = E ∪ {(s, v)};
s← v;

end if

else

V = V ∪ {v} and E = E ∪ {(s, v)};
s← v;

end if

end while

end while

if (the graph density d has not been reached) then

generate the remaining edges with random colors from {1, . . . , c}
end if
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3.6.1.2 Experimental results

A detailed report of the experiments is summarizes in Tables 3.1-3.4, each table is

referred to a different set of experiments with graph of increasing dimension (from 20

to 100 vertices) and different arc densities (here 3 levels are considered: 10%, 20%, and

30%). Let us recall that 2-OCLP specifies the problem of finding an alternating longest

path, whereas 3-OCLP specifies the problem of finding an OCLP problem whose edges

follow a given sequence of three colors. Graphs on which alternating paths were sought

are reported in Table 3.1 and Table 3.2, for problems of type 1. Tables 3.3 and Table

3.4, instead, report 3-OCLPs of type 2 (i.e. OCHP problem instances).

Each table reports in the first column the density of the edge-colored graph, followed by

the number of its vertices, the number of vertices and arcs (or variables) in the expanded

partite graph, the number of constraints in the associated ILP (this number does not

include all the constraints added to cut out the current solution, iteratively), the length

of the optimal path, the number of paths of maximum length found, and the number

of cycles cut out during the computation (for experiments run with model 2 (LPcPP)

and model 3 (LPCPP)). The last column reports the total computation time in seconds;

when solution time exceeded 1 hour, the algorithm was halted and the current state of

the solution printed.

The results reported in Tables 3.1-3.4 bring into evidence a computational challenge

when the dimension of the corresponding network reaches reasonable sizes, especially

for the computation times required for solution by the three models.

An additional insight in this direction is provided in Table 3.5, where we report the

average solution times for the 3 models, for different sizes of the graph (the average is

taken over all the dimensions considered, e.g., density, type, number of colors). The table

shows a quick rise of solution time related to the number of vertices, and, accordingly, the

higher solution times required by Model 1 (LPnPP). Not surprisingly, for large problems

the difference in average time for the 3 models tends to reduce, as all the 3 models end

up spending the whole hour that is given as upper bound on computation time.

Despite the first model is the only one finding the optimal solutions with no cycle inside,

when the graph is denser it often fails in finding an optimal solution within the time

bound, differently from Model 2 and Model 3. As it is shown in Table 3.6, where a

comparison between the three models on 36 problems of large size (with 50, 70 and 100

vertices) is provided.

From all these results we have guessed a superiority of Model 2 and Model 3 (LPcP and

LPCPP) over Model 1 (LPnPP). To further reinforce this consideration, we compared

the three models on a set of 10 randomly generated problems with an interesting degree
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Graph Cross Arcs N. of Path N. of N. of Total
Density Peaks Model Vertices (var.) Constr. Length Paths Cycles Time (s)

20 1 402 653 423 7 1 0 0
0.1 20 2 41 64 62 7 1 0 0

20 3 41 104 141 7 1 0 0
20 1 402 689 423 7 1 0 0

0.2 20 2 41 68 62 7 1 0 0
20 3 41 108 141 7 1 0 0.02
20 1 402 827 424 7 2 0 0.02

0.3 20 2 41 82 63 7 2 0 0.02
20 3 41 122 142 7 2 0 0.02
30 1 902 1513 933 6 1 0 0

0.1 30 2 61 100 92 6 1 0 0
30 3 61 160 211 6 1 0 0
30 1 902 1949 936 7 4 0 0.08

0.2 30 2 61 130 97 7 4 2 0.03
30 3 61 190 216 7 4 2 0.06
30 1 902 2327 936 11 4 0 0.25

0.3 30 2 61 156 95 11 4 0 0.06
30 3 61 216 214 11 4 0 0.08
50 1 2502 4427 2553 9 1 0 0.03

0.1 50 2 101 176 152 9 1 0 0
50 3 101 276 351 9 1 0 0
50 1 2502 6429 2553 19 1 0 1.08

0.2 50 2 101 258 154 19 1 2 0.05
50 3 101 358 353 19 1 2 0.11
50 1 2502 8535 2660 34 108 0 553.46

0.3 50 2 101 344 366 34 108 107 24.4
50 3 101 444 564 34 108 106 36.29
70 1 4902 22743 4972 69 0 0 >3600

0.1 70 2 141 656 211 69 325 1022 >3600
70 3 141 796 490 69 227 842 >3600
70 1 4902 22743 4972 69 0 0 >3600

0.2 70 2 141 656 211 69 237 1418 >3600
70 3 141 796 490 69 189 1231 >3600
70 1 4902 22743 4972 69 9 >3600

0.3 70 2 141 656 211 69 736 1996 >3600
70 3 141 796 490 69 737 1961 >3600
100 1 10002 28013 10107 33 5 0 40.08

0.1 100 2 201 562 306 33 5 0 0.25
100 3 201 762 705 33 5 0 0.27
100 1 10002 43457 10102 N.F. 0 0 >3600

0.2 100 2 201 874 2535 96 509 1725 >3600
100 3 201 1074 2658 96 430 1528 >3600
100 1 10002 63953 10102 N.F. 0 0 >3600

0.3 100 2 201 1288 3871 99 136 3434 >3600
100 3 201 1488 4197 99 163 3334 >3600

Table 3.1: Experimental results for LPnPP, LPcPP, and LPCPP models, for 2-OCLPs
of type 1 (no injected OCHP).

of difficulty. All problems presented the same characteristics: 2 colors, 100 vertices,

density 20%, no injected Hamiltonian path.

The results in Table 3.7 have confirmed our hypothesis. Not surprisingly, all problems

exploited all the allotted time. Model 2 determined, on average, a larger number of

solutions than Model 3, by working a little harder in cutting out cycles.

From the comparison among each of the 10 problems according to the number of optimal

solutions and of the eliminated cycles found (see Figure 3.12) seems that Model 2 and

Model 3 have similar performances.



Chapter 3. Computational results 56

Graph Cross Arcs N. of Path N. of N. of Total
Density Peaks Model Vertices (var.) Constr. Length Paths Cycles Time (s)

20 1 402 641 423 5 1 0 0
0.1 20 2 61 94 82 5 1 0 0

20 3 61 154 181 5 1 0 0
20 1 402 725 423 5 1 0 0

0.2 20 2 61 108 83 5 1 1 0.02
20 3 61 168 182 5 1 1 0
20 1 402 881 428 8 6 0 0.05

0.3 20 2 61 132 88 8 6 1 0.05
20 3 61 192 187 8 6 1 0.05
30 1 902 1515 933 5 1 0 0.02

0.1 30 2 91 150 123 5 1 1 0
30 3 91 240 272 5 1 1 0
30 1 902 1921 933 10 1 0 0.02

0.2 30 2 91 192 123 10 1 1 0
30 3 91 282 272 10 1 1 0.03
30 1 902 2363 936 17 4 0 0.23

0.3 30 2 91 238 127 17 4 2 0.08
30 3 91 328 276 17 4 2 0.14
50 1 2502 4779 2554 5 2 0 0.03

0.1 50 2 151 286 205 5 2 2 0
50 3 151 436 454 5 2 2 0.02
50 1 2502 6765 2553 33 1 0 1.73

0.2 50 2 151 408 205 33 1 3 0.08
50 3 151 558 454 33 1 3 0.08
50 1 2502 8883 2560 44 8 0 >3600

0.3 50 2 151 536 314 44 34 79 70.03
50 3 151 686 563 44 34 79 101
70 1 4902 21485 4972 N.F. 0 0 >3600

0.1 70 2 211 928 688 69 18 122 >3600
70 3 211 1138 1034 69 16 107 >3600
70 1 4902 21485 4972 N.F. 0 0 >3600

0.2 70 2 211 928 688 69 28 346 >3600
70 3 211 1138 1034 69 22 229 >3600
70 1 4902 21485 4972 N.F. 0 0 >3600

0.3 70 2 211 928 688 69 51 356 >3600
70 3 211 1138 1034 69 58 346 >3600
100 1 10002 26337 10106 47 4 0 764.47

0.1 100 2 301 792 412 47 4 7 2.03
100 3 301 1092 911 47 4 7 3.23
100 1 10002 44619 10102 N.F. 0 0 >3600

0.2 100 2 301 1346 1087 97 53 633 >3600
100 3 301 1646 1515 98 47 568 >3600
100 1 10002 58545 10102 N.F. 0 0 >3600

0.3 100 2 301 1768 1567 99 35 1131 >3600
100 3 301 2068 2354 99 61 1393 >3600

Table 3.2: Experimental results for LPnPP, LPcPP, and LPCPP models for 2-OCLPs
of type 1 (no injected OCHP).

3.6.2 Test on NMR data

Since the superiority in terms of time of the last two IP formulations, we used only this

two models to test the efficiency of these two models on 3D-APP instances. We also

studied the improvement of the methods when the B&C oracle is applied. To do so,

we used test instances simulated by an instance simulator developed ad hoc, of which a

description is provided below. Then we analyze and discuss the results of computational

experiments.
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Graph Cross Arcs N. of Path N. of N. of Total
Density Peaks Model Vertices (var.) Constr. Length Paths Cycles Time (s)

20 1 402 783 423 19 1 0 0
0.1 20 2 41 78 62 19 1 0 0

20 3 41 118 141 19 1 0 0
20 1 402 895 423 19 1 0 0.03

0.2 20 2 41 90 62 19 1 0 0.02
20 3 41 130 141 19 1 0 0.03
20 1 402 1035 423 19 1 0 0.03

0.3 20 2 41 104 62 19 1 0 0.02
20 3 41 144 141 19 1 0 0.02
30 1 902 1923 933 29 1 0 0.02

0.1 30 2 61 128 92 29 1 0 0.02
30 3 61 188 211 29 1 0 0.02
30 1 902 2357 933 29 1 0 0.51

0.2 30 2 61 158 92 29 1 0 0.05
30 3 61 218 211 29 1 0 0.03
30 1 902 2767 934 29 2 0 0.69

0.3 30 2 61 186 97 29 2 4 0.2
30 3 61 246 216 29 2 4 0.19
50 1 2502 5737 2553 49 1 0 2.03

0.1 50 2 101 230 152 49 1 0 0.05
50 3 101 330 351 49 1 0 0.08
50 1 2502 8089 2558 49 6 0 5.16

0.2 50 2 101 326 161 49 6 4 0.53
50 3 101 426 351 0 1 4 1.2
50 1 2502 8089 2558 49 22 0 328

0.3 50 2 101 326 161 49 22 436 97
50 3 101 426 351 0 22 436 124
70 1 4902 19937 4972 0 0 0 >3600

0.1 70 2 141 574 211 69 124 768 1425
70 3 141 714 490 69 124 894 1829
70 1 4902 19937 4972 0 >3600

0.2 70 2 141 574 211 69 654 2276 >3600
70 3 141 714 490 69 559 2009 >3600
70 1 4902 26783 4972 0 >3600

0.3 70 2 141 772 211 69 257 2820 2206
70 3 141 912 490 69 257 2975 2341
100 1 10002 33279 10122 99 20 0 454.98

0.1 100 2 201 668 341 99 20 20 6.54
100 3 201 868 741 99 20 21 12.9
100 1 10002 51865 10102 N.F. 0 0 >3600

0.2 100 2 201 1044 3412 99 151 2960 >3600
100 3 201 1244 3755 99 162 2893 >3600
100 1 10002 66155 10102 N.F. 0 0 >3600

0.3 100 2 201 1332 3983 99 143 3539 >3600
100 3 201 1532 4358 99 123 3535 >3600

Table 3.3: Experimental results for LPnPP, LPcPP, and LPCPP models for 3-OCLPs
of type 2 (injected OCHP).

3.6.2.1 Instance simulator

As already pointed out in Section 3.2.1, NMR spectroscopy has been a well established

technique to study the structures of biological molecules. The evaluation of protein and

RNA structures obtained from NMR proves, that two-dimensional experiments are not

sufficient to compute high-quality models of large molecules [99]. Thus, the need to

elucidate and analyze large molecules results in increasing the dimensionality of NMR

experiments.

Since the 3D NMR for RNA has been introduced relatively late - as compared to the
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Graph Cross Arcs N. of Path N. of N. of Total
Density Peaks Model Vertices (var.) Constr. Length Paths Cycles Time (s)

20 1 402 663 423 19 1 0 0
0.1 20 2 61 98 82 19 1 0 0

20 3 61 158 181 19 1 0 0
20 1 402 763 423 19 1 0 0

0.2 20 2 61 114 82 19 1 0 0
20 3 61 174 181 19 1 0 0.03
20 1 402 921 423 19 1 0 0.03

0.3 20 2 61 138 82 19 1 0 0
20 3 61 198 181 19 1 0 0.02
30 1 902 1669 933 29 1 0 0

0.1 30 2 91 166 122 29 1 0 0.02
30 3 91 256 271 29 1 0 0.03
30 1 902 2117 933 29 1 0 0.05

0.2 30 2 91 212 122 29 1 0 0.03
30 3 91 302 271 29 1 0 0.03
30 1 902 2643 933 29 1 0 0.45

0.3 30 2 91 266 122 29 1 0 0.05
30 3 91 356 271 29 1 0 0.06
50 1 2502 5417 2553 49 1 0 0.3

0.1 50 2 151 326 202 49 1 0 0.03
50 3 151 476 451 49 1 0 0.03
50 1 2502 7321 2553 49 1 0 2.04

0.2 50 2 151 442 202 49 1 0 0.14
50 3 151 592 451 49 1 0 0.17
50 1 2502 7321 2553 49 16 0 822

0.3 50 2 151 442 202 49 16 87 352
50 3 151 592 451 49 16 87 528
70 1 4902 23141 4972 N.F. 1 0 34

0.1 70 2 211 1000 1330 69 1 422 8
70 3 211 1210 2516 69 1 422 2
70 1 4902 23141 4972 N.F. 0 0 >3600

0.2 70 2 211 1000 1330 69 48 642 1824
70 3 211 1210 2516 69 23 328 >3600
70 1 4902 23141 4972 N.F. 0 0 >3600

0.3 70 2 211 1000 1330 69 78 971 >3600
70 3 211 1210 2516 69 166 1720 >3600
100 1 10002 30693 10103 99 1 0 17.08

0.1 100 2 301 924 402 99 1 0 0.45
100 3 301 1224 901 99 1 0 0.59
100 1 10002 45081 10102 N.F. 0 0 >3600

0.2 100 2 301 1360 905 99 18 486 >3600
100 3 301 1660 1660 99 33 727 >3600
100 1 10002 60525 10102 N.F. 0 0 >3600

0.3 100 2 301 1828 1552 99 27 1124 >3600
100 3 301 2128 2854 99 70 1884 >3600

Table 3.4: Experimental results for LPnPP, LPcPP, and LPCPP models for 3-OCLPs
of type 2 (injected OCHP).

Number of Vertices Model 1 Model 2 Model 3
10 0.005 0.006 0.003
20 0.013 0.011 0.016
30 0.193 0.045 0.056
50 505.822 45.359 65.915
70 3303.272 2765.605 3053.289
100 2506.478 2402.853 2404.793

All Problems 1052.631 868.980 920.679

Table 3.5: Solution time (secs.) for LPnPP, LPcPP, and LPCPP; average over all
problems, by size.
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Graph Density Model 1 Model 2 Model 3
0.1 9 12 12
0.2 7 12 12
0.3 7 12 12

All Problems 23 36 36

Table 3.6: Number of solved problems (problems where at least 1 optimal solution is
found within 3600 seconds of computation) for LPnPP, LPcPP, and LPCPP, by graph

density; analysis limited to problem with 50, 70, 100 vertices.

Number of Average Average
Model solved number number

problems* of long. paths of cycles
1 2 1 0
2 10 207.3 2855.6
3 10 196.1 2703.3

Table 3.7: Performance comparison over 10 instances of 100 vertices, type 1, for
2-OCLPs on graph with d = 0.2. *At least one optimal solution.

Figure 3.12: Number of optimal solutions (a) and eliminated paths (b) for 10 ran-
domly generated problems of large size (100 vertices, 0.2 graph density, 2 colors, no
Hamiltonian path injected). Analysis limited to Models 2 and 3 (LPcPP and LPCPP).

protein field - not much experimental data for already solved cases is collected and

publicly available for an analysis. Therefore, we implemented an instance generator

to simulate the reliable 3D NMR data together with the assignment pathways. This

simulator will be publicly available soon, and it can be used for future computational

experiments. The presented methods for solving 3D-APP (see Section 3.3.2) was, thus,

tested using a set of generated instances, with the number of cross-peaks (instance size)

similar to that found in the real NMR experiments.

The 3D-APP instance simulator produces NMR data in a form of a cross-peak list of

length n. For each cross-peak pi in the list, the generator provides its position on the

map xi, yi, zi (i.e. three coordinates given in ppm, representing chemical shifts of the

involved atoms) and its width for each dimension dxi, dyi, dzi. To simulate the reliable

coordinates of cross-peaks, it uses the chemical shift statistics for all atoms included in

RNA nucleotides (A,C,G,U) downloaded from the Biological Magnetic Resonance Data

Bank [135]. Statistics used are reported in Table 3.8.
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Residue Chemical
Nucleus including shift

nucleus range
H1’ A,C,G,U 5.31 ÷ 6.10
H4’ A,C,G,U 3.99 ÷ 4.71
H6 C,U 7.46 ÷ 7.96
H8 A,G 7.23 ÷ 8.27
C4’ A,C,G,U 79.57 ÷ 84.63
P A,C,G,U -4.82 ÷ -1.41

Table 3.8: Statistical data deposited in the Biological Magnetic Resonance Data Bank
on 11/01/2012.

The simulator starts from generating the sequence of n cross-peaks with their coordinates

and widths. The coordinate values depend on the NMR experiment (heteronuclear HCP

or homonuclear NOESY) and RNA sequence, which determine the atoms involved in

the simulated interactions. Next, cross-peak widths are used to construct intervals for

each coordinate:

Ixi = [xi − dxi, xi + dxi],

Iyi = [yi − dyi, yi + dyi],

Izi = [zi − dzi, zi + dzi].

This information is next used to create the edge-colored graph G = (V,E) in the first

step of our procedure, represented as a list of edges with their colors. For each pair of

cross-peaks, pi(xi, yi, zi) and pj(xj , yj , zj), on the simulated NMR map, the edge (vi, vj)

is added to E if at least one of the following conditions is satisfied: xi ∈ Ixj , yi ∈ Iyj , or

zi ∈ Izj . All the edges are colored following the scheme based on the relation between

coordinates. To guarantee a certain variability in the set of experiments, an additional

parameter 0 ≤ α ≤ 1 has been added to the simulator. It represents the probability

that current edge color is the same as the next color in the pathway color pattern. For

instance, if the color pattern is {red, green, blue} and recently generated edge was red,

then the next edge will be green with probability α, or it will have any other color with

probability 1−α
|C|−1 , where C is the set of all colors used in the graph. Due to this strategy,

problems with longer orderly colored paths correspond to the higher values of α.

3.6.2.2 Experimental results

For the test purposes we generated 50 instances of the 3D-APP problem (25 heteronu-

clear maps and 25 homonuclear ones) with 5 different instance sizes: 30, 40, 50, 75, 100

cross-peaks, and 5 different values of α parameter: 0.3, 0.4, 0.5, 0.6, 0.7. Each of these

50 generated instances was solved with the relaxation of the last two models described

in Section 3.4. For the sake of clarity, we refer to LPcPP as Model 1 and to LPCPP
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as Model 2. The B&C approach was used to separate the fractional cycles in the opti-

mal solution. The standard MIP with built-in cuts was applied to separate the integer

cycles. Once an optimal solution was found, a constraint was added to the formulation

to exclude such solution in the succeeding iterations. Next, the algorithm was iterated.

When the optimal solution with smaller value of the objective function was obtained,

the iterations were stopped. Each run was anyway stopped after a maximum running

time of 3600 seconds.

Each instance was solved in four different ways according to the cycle separation pro-

cedures. In the remainder of this section, the tested methods are referred according to

the following convention:

(1) M1-IC: Model 1 with separation of integer cycles in the optimal solution,

(2) M2-IC: Model 2 with separation of integer cycles in the optimal solution,

(3) M1-FC: Model 1 with separation of fractional cycles in the B&C scheme,

(4) M2-FC: Model 2 with separation of fractional cycles in the B&C scheme.

Table 3.9 and Table 3.10 report the details of the results for Model 1 and Model 2,

respectively; in the columns there are the value of the α parameter used for generation,

the number of cross-peaks, and for the two variants (with integer and fractional cycle

separation) is given the value of the optimal solution, the number of cycles separated

and the computing time.

An additional parameter used for comparing the methods is the number of equivalent

solutions found in the available time. Moreover, the different methods may have different

performances according to problem type and size, although it may not be evident from

the analysis of the average results. For this reason, we propose a first analysis based

on the definition of a dominance criterion among the methods. We say that method A

dominates method B when: (1) both methods find the same number of optimal solutions,

but method A requires a shorter total computing time; (2) both methods use all the

available time but method A finds more optimal solutions.

We note that methods using FC dominate more often. In particular, the dominance of

FC methods grows with the instance size (e.g., if we consider the comparison between

M2-FC and M2-IC, we observe that M2-IC dominates M2-FC in problems of small size,

but when larger problems are considered, M2-FC becomes more relevant, as shown in

Table 3.11). This is particularly evident in Table 3.12, where the number of times each

method dominates the others is reported. Let us remark that here the set of instances

considered is composed by 32 problems whose solution time is higher than 10 seconds.
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M1-IC M1-FC
Exp. value # Opt. # Time Opt. # Time
Name of α C.peaks Value Cycles (secs.) Value Cycles (secs.)

NOESY-1 0.3 30 3 244 2 3 82 6
NOESY-2 0.4 30 23 45 25 23 10 10
NOESY-3 0.5 30 21 12 1 21 5 0
NOESY-4 0.6 30 23 30 6 23 3 2
NOESY-5 0.7 30 14 210 8 13 23 2
NOESY-6 0.3 40 34 231 48 34 26 32
NOESY-7 0.4 40 30 2211 68 30 103 43
NOESY-8 0.5 40 27 940 120 27 28 38
NOESY-9 0.6 40 34 213 4 34 29 2
NOESY-10 0.7 40 34 422 19 34 47 9
NOESY-11 0.3 50 45 697 453 44 116 473
NOESY-12 0.4 50 47 6815 1830 47 292 102
NOESY-13 0.5 50 46 345 220 46 216 164
NOESY-14 0.6 50 49 356 158 49 273 744
NOESY-15 0.7 50 49 404 514 49 201 650
NOESY-16 0.3 75 74 700 1886 74 19 3600
NOESY-17 0.4 75 73 2526 657 73 94 3061
NOESY-18 0.5 75 74 895 311 74 1204 1658
NOESY-19 0.6 75 73 1052 273 73 58 2136
NOESY-20 0.7 75 74 1072 3600 74 13 3600
NOESY-21 0.3 100 99 850 2163 99 26 3600
NOESY-22 0.4 100 99 654 382 99 14 1911
NOESY-23 0.5 100 99 487 222 99 1821 1774
NOESY-24 0.6 100 99 448 300 98 1645 1684
NOESY-25 0.7 100 98 1272 3600 98 2 3600

HCP-1 0.3 30 26 998 22 26 101 12
HCP-2 0.4 30 20 194 8 20 43 3
HCP-3 0.5 30 0 16 0 0 17 0
HCP-4 0.6 30 24 89 3 24 36 1
HCP-5 0.7 30 26 105 8 26 98 3
HCP-6 0.3 40 33 247 9 33 193 8
HCP-7 0.4 40 35 188 6 35 137 3
HCP-8 0.5 40 32 796 29 32 89 9
HCP-9 0.6 40 24 35 3 24 20 1
HCP-10 0.7 40 34 1779 36 34 245 7
HCP-11 0.3 50 46 13184 3600 46 867 407
HCP-12 0.4 50 46 987 85 46 586 66
HCP-13 0.5 50 42 496 18 42 543 15
HCP-14 0.6 50 44 6329 3600 44 411 71
HCP-15 0.7 50 44 5785 3600 44 580 190
HCP-16 0.3 75 72 5477 3600 72 52 3600
HCP-17 0.4 75 70 6712 3600 70 1527 364
HCP-18 0.5 75 74 658 55 74 1276 206
HCP-19 0.6 75 70 13211 3600 70 91 3600
HCP-20 0.7 75 72 466 54 72 1253 227
HCP-21 0.3 100 99 4899 1814 99 1502 3600
HCP-22 0.4 100 99 2271 1820 99 12 3600
HCP-23 0.5 100 98 741 94 98 3136 1428
HCP-24 0.6 100 98 5947 1913 98 98 3600
HCP-25 0.7 100 0 27 3600 98 16 3600

Table 3.9: Results for Model 1
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M2-IC M2-FC
value # Opt. # Time Opt. # Time
of α C.peaks Value Cycles (secs.) Value Cycles (secs.)

NOESY-1 0.3 30 3 82 13 3 244 2
NOESY-2 0.4 30 23 10 21 22 42 12
NOESY-3 0.5 30 21 5 1 21 21 1
NOESY-4 0.6 30 23 3 4 23 25 3
NOESY-5 0.7 30 14 23 4 14 190 4
NOESY-6 0.3 40 34 26 63 34 227 34
NOESY-7 0.4 40 30 104 96 30 2195 36
NOESY-8 0.5 40 27 28 70 26 893 91
NOESY-9 0.6 40 34 26 3 34 252 3
NOESY-10 0.7 40 34 45 14 33 379 10
NOESY-11 0.3 50 45 92 653 45 745 330
NOESY-12 0.4 50 47 215 141 47 3922 148
NOESY-13 0.5 50 46 242 839 46 474 93
NOESY-14 0.6 50 49 335 532 49 811 209
NOESY-15 0.7 50 49 176 593 49 1722 323
NOESY-16 0.3 75 74 60 1920 73 1126 3600
NOESY-17 0.4 75 73 551 3057 73 1072 2514
NOESY-18 0.5 75 74 1187 3078 74 13293 2808
NOESY-19 0.6 75 73 365 2258 73 939 631
NOESY-20 0.7 75 0 21 3600 74 1067 2748
NOESY-21 0.3 100 99 176 3600 98 1002 1911
NOESY-22 0.4 100 99 1886 3600 99 1025 1802
NOESY-23 0.5 100 99 1793 1444 99 1339 501
NOESY-24 0.6 100 99 2023 2109 99 502 285
NOESY-25 0.7 100 0 1 3600 98 1162 2463

HCP-1 0.3 30 26 99 29 26 609 9
HCP-2 0.4 30 20 51 6 20 134 4
HCP-3 0.5 30 0 17 1 0 15 0
HCP-4 0.6 30 24 40 2 24 79 1
HCP-5 0.7 30 26 85 11 26 132 4
HCP-6 0.3 40 33 236 13 33 257 6
HCP-7 0.4 40 35 98 5 35 141 3
HCP-8 0.5 40 32 109 24 32 630 13
HCP-9 0.6 40 24 34 2 24 102 2
HCP-10 0.7 40 34 292 13 34 404 6
HCP-11 0.3 50 46 32 3600 46 903 53
HCP-12 0.4 50 46 406 51 46 333 18
HCP-13 0.5 50 42 652 33 42 328 8
HCP-14 0.6 50 44 139 3600 44 397 18
HCP-15 0.7 50 44 252 3600 44 543 28
HCP-16 0.3 75 0 3 3600 71 4398 3600
HCP-17 0.4 75 70 1843 489 70 451 41
HCP-18 0.5 75 74 1663 338 74 420 35
HCP-19 0.6 75 0 3 3600 70 6201 3600
HCP-20 0.7 75 72 1196 265 72 420 44
HCP-21 0.3 100 99 2686 2691 98 4150 3600
HCP-22 0.4 100 99 2828 3600 98 4316 3600
HCP-23 0.5 100 98 3314 1331 98 597 102
HCP-24 0.6 100 98 2879 3600 97 3638 3600
HCP-25 0.7 100 0 3 3600 98 5162 2599

Table 3.10: Results for Model 2

Instance size Total
Method 30 40 50 75 100 dominations
M1-FC 3 3 8 4 3 21
M1-IC 7 7 1 1 0 16
M2-FC 0 0 1 5 7 13
M2-IC 0 0 0 0 0 0
Total 10 10 10 10 10 50

Table 3.11: Method domination according to instance size (all instances).
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Instance size Total domina-
Method 30 40 50 75 100 tion index
M1-FC 0 1 7 4 3 15
M1-IC 0 2 1 1 0 4
M2-FC 0 0 1 5 7 13
M2-IC 0 0 0 0 0 0
Total 0 3 9 10 10 32

Table 3.12: Method domination according to instance size, for instances with com-
puting time ≥ 10s.

Figure 3.13: Sum of computing times for 35 instances solved within 1 hour.

The results indicate that the use of Branch & Cut approach to separate fractional cycles

in the vertices of the branching tree is advisable. An additional confirmation of this

statement can be deduced from Figure 3.13, where we plot the total time spent to solve

the 50 instances by the 4 methods. Such indication would be biased by the fact that a

different number of solutions may be obtained by various methods when the maximum

computation time was reached. For this reason, in the chart we consider only the 35

problems for which all the methods have found the total number of optimal solutions

within the time bound. Figure 3.13 highlights the importance of using the M1-FC and

M2-FC models for saving CPU time. In particular, M2-FC was able to save in average

31% of computing time with respect to M1-FC, 61% w.r.t. M1-IC and 66% w.r.t. M2-

FC.

Let us complete the analysis on the execution time by comparing the methods on a

subset of 23 problems, for which all of them found the same set of solutions. In Table

3.13 we report the total solution times for each problems on this subset of instances; in

the last column we compute the percentage of improvement in terms of time, i.e., the

percentage of computational time saved by the fastest method over the second fastest

in finding the solution. The best method in each row is highlighted wit a bold font. We

can observe that the methods using FC performed better, and that the improvements

obtained in solution time were quite large.
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Prob. Exp. # of method method method method Improve over
Idx Type Crosspeaks M1-IC M1-FC M2-IC M2-FC second best

1 HCP 30 0.14 0.31 0.59 0.08 42.86%
2 HCP 30 2.56 1.06 1.81 1.37 22.63%
3 HCP 30 7.71 3.2 5.52 3.59 10.86%
4 HCP 30 8.25 3.37 10.7 3.71 9.16%
5 HCP 30 21.68 11.89 29.2 9.34 21.45%
6 HCP 40 2.5 0.51 1.78 1.84 71.35%
7 HCP 40 5.55 2.73 5.24 2.93 6.83%
8 HCP 40 36.02 6.61 12.65 5.74 13.16%
9 HCP 40 9.33 7.63 12.95 6.24 18.22%
10 HCP 40 29.47 9.33 23.65 13.1 28.78%
11 HCP 50 18.03 15.09 32.82 8.08 46.45%
12 HCP 50 85.18 65.69 50.7 17.77 64.95%
13 HCP 75 54.94 205.94 337.87 35.01 36.28%
14 HCP 75 53.82 227.28 265.01 43.56 19.06%
15 NOESY 30 0.64 0.39 0.58 0.59 32.76%
16 NOESY 30 1.9 5.87 12.78 1.56 17.89%
17 NOESY 30 6.24 2.06 3.73 2.61 21.07%
18 NOESY 40 4.49 1.81 2.7 2.95 32.96%
19 NOESY 40 47.66 31.51 62.68 34.3 8.13%
20 NOESY 40 68.45 42.88 95.99 36.02 16.00%
21 NOESY 50 220.3 163.58 839.33 92.54 43.43%
22 NOESY 50 157.92 743.91 531.54 209.1 24.48%
23 NOESY 50 513.8 649.92 593.12 322.63 37.21%

Table 3.13: Solution times (secs) for a subset of 23 problems where the methods where
the performances can be compared straight-forwardly. Best performance for each row

in bold

In order to analyze the efficiency of the methods from a biochemical point of view,

we executed a set of tests taking into consideration the type of NMR map used. Let

us recall that the number of colors composing the sequence of the path is three for a

heteronuclear experiment and two for a homonuclear experiment (see Section 3.3.2).

Experiment type
Method homonuclear heteronuclear
M1-FC 10 5
M1-IC 1 1
M2-FC 4 9
M2-IC 0 0

Table 3.14: Method domination according to the experiment type (instances with
size ≥ 50 cross-peaks).

In Table 3.14 we report the dominations related to the type of experiment in problems

with 50, 75, and 100 cross-peaks. We can observe that for instances with smaller size

the difference in methods performance was not meaningful. Moreover, M2-FC appeared

superior for heteronuclear maps, while M1-FC performs better for homonuclear experi-

ments.

In Figure 3.14 we can see how much M1-FC was faster in finding solutions for homonu-

clear experiments, and M2-FC for heteronuclear ones when large instances are consid-

ered. Let us remark that the barplot is referred to the total computing times spent by

each model for solving all instances in Table 3.14.
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Figure 3.14: Computing time for instances with 50-100 cross-peaks.

Last step of our analysis was to compare both formulations in terms of number of cycles

separated by each method. In this way we could to discover if the number of fractional

cycles detected and cut by M1-FC and M2-FC was somehow related with the number of

integral cycles cut by the relaxed formulations of M1-IC and M2-IC. Top panels of Figure

3.15 show that fractional separation methods (M1-FC and M2-FC) detected a higher

number of cycles than integral ones (M1-IC and M2-IC). The bottom panels, instead,

show that models with the same cycle separation method performed similarly, although

it is more evident for M1-IC and M2-IC. In the other hand, from the comparison of M1-

FC with M2-FC we note that the latter requires a larger number of cuts in about 66%

of the considered problems, with a total of 25.483 cuts compared with 20.595 required

by M1-FC.

Figure 3.15: Number of cycles detected by each method for 35 instances solved
within 1 hour: Model 1 with Integer and Fractional Cuts (top-left panel); Model 2 with
Integer and Fractional Cuts (top-right panel); Model 1 and Model 2 with Fractional
Cuts (bottom-right panel); Model 1 and Model 2 with Integer Cuts (bottom-left panel).

3.6.3 The litmus test

As above mentioned, not much experimental data of already solved cases has been

collected and publicly available. Therefore, in order to check if one among our solutions
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correctly reconstructed the assignment, besides the generated instance, we also used a

subset of instances collected in [129] for which the original assignment pathway was a

priori known. In Figure 3.16 there is the shortest 3D spectrum from this subset, and

the original assignment pathway (the optimal solution) is drawn on the spectrum.

Figure 3.16: The original assignment pathway reconstructed for the heteronuclear
sample r(CGCCGGUA) with 30 cross-peaks.

3.7 Conclusions

In this chapter we described the problem of assignment pathway reconstruction of a RNA

molecule by 3D NMR maps which arises in the field of structural bioinformatics. This

problem is the first computational step in elucidation of RNA tertiary structure [70, 129].

The idea is that determining the sequence of interactions among atoms involved in the

NMR experiment can lead to determine the shape of such biological molecule. We proved

that assignment pathway problem is NP-hard, and showed a formulation based on edge-

colored graphs. Taking into account that interactions between consecutive nuclei in the

NMR spectrum are different according to the type of residue along the RNA chain, each

color in the graph represented a type of interaction. Thus, we represented the sequence

of interactions as the problem of finding a longest (hamiltonian in the best case) path

under the constraint that the edges of the path followed a given order of colors. We

defined this problem as the Orderly Colored Longest Path problem on a c-edge-colored
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graph (OCLP). We also showed how the OCLP problem can be adapted to model dif-

ferent types of real problems. Next, we described three alternative IP formulations used

to solve the OCLP problem, which differ in the way the orderly colored paths over a

directed network. In order to prove the efficacy of this approach, we tested our models

over two sets of randomly generated problems with different characteristics.

The first set of experiments concerned instances generated as edge-colored graph on

which paths of 2 or 3 colors were sought. The comparison among the three formula-

tions in the first set of experiments (Section 3.6.1) has shown that two models, where

cycle separation was performed iteratively adding constraints to a lighter formulation,

performed much better. For this reason we have considered a second set of experiments

focused only on these two models (Section 3.6.2). We developed a Branch & Cut pro-

cedure that uses a cycle separation polynomial oracle in order to enumerate all optimal

solutions for the majority of the considered problems on a standard computer.

Since assignment of cross-peaks on the 3D NMR maps recorded for RNA molecules is a

relatively new, not much expert knowledge concerning the problem, and not experimen-

tal data collected for already solved cases, are available for an extended analysis. This

made us propose an instance generator that can be used to test automated solutions

methods designed for the problem. Such generator can be of use in future research also

to test alternative methods. The computational results of the second set of experiments

have confirmed that the proposed models are valid options to solve 3D-APP problems

of realistic sizes. In particular, most of large size instances (100 cross-peaks) have been

solved within the time bound of one hour.

Future work will follow multiple directions: extending the test cases, including large

real experimental data, developing of theoretical conjectures for the OCLP (i.e., about

the presence of OCLP (or OCHP) in the graph related with some its characteristics),

improving the formulations and the whole assignment procedure.



Chapter 4

The discretizable distance

geometry problem

In this chapter, we introduce the Distance Geometry Problem (DGP), which is a well-

known problem with applications in biology, statistics, and engineering. We focus on

two particular applications of this problem, one in protein modeling and one in sensor

networks localization. After giving a brief review of the existing approaches to the

solution of this problem, we show few combinatorial requirements necessary to reduce

the search space from continuous to discrete, defining the discretizable distance geometry

problem. Finally, we describe the Branch & Prune (BP) algorithm, and two its versions

designed to solve the DGP both in protein modeling and in sensor networks localization

frameworks. BP is an exact and exhaustive combinatorial algorithm that examines all

the valid embeddings of a given weighted graph G = (V,E, d), under the hypothesis of

existence of a given order on V . BP computes two possible positions for the current

vertex, aimed to build a binary tree of solutions for the problem. At each step of the

algorithm, if such positions satisfy some feasibility tests, they are actually added to the

tree. We conclude the chapter showing some computational results related to these two

BP versions to solve the two above mentioned DGP applications. This chapter is mainly

based on the published papers [94, 97, 105] and the work presented in [51].

4.1 Introduction

The Distance Geometry Problem (DGP) consists of finding an embedding in Rk of a

weighted undirected graph, where the edge weights are equal to the corresponding Eu-

clidean distances in the embedding [25]. This problem has applications in many scientific

and engineering fields, such as protein structure determination [26], graph drawing [73],

69
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and wireless sensor networks localization [10], to name a few. In particular, protein

structure determination is also well-known as the Molecular Distance Geometry Prob-

lem (MDGP), and it is the problem of determining the coordinates of the atoms in a

molecule given the distances between certain pairs of atoms. Here a subset of inter-

atomic distances may be known from the type of chemical bonds between atoms, or

by means of Nuclear Magnetic Resonance (NMR) experiments. Typically, the MDGP

involves placing atoms in R3 [74, 90, 145]. The Graph Drawing Problem is the problem

of deriving representations in the plane or in the three-dimensional space of graphs, with

the aim of finding visualizations of certain properties of the graph [32]. In the Sensor

Networks Localization Problem1 (SNLP) a pair of wireless sensors can estimate their

distance by measuring the quantity of battery power necessary to a two-way commu-

nication. One particular property of the SNLP, which distinguishes it from MDGP, is

that sensor network often has a subset of fixed sensors, called anchors, whose positions

are known in advance. Such anchor positions can be used to get a subset of Euclidean

distances which, in turn, can be used to determine the coordinates in R2 of the remaining

sensors [9, 132]. In this chapter we mainly focused on the MDGP and on the SNLP.

Although the DGP is often formulated as a global optimization problem and solved by

continuous methods, an embedding can be computed by a discrete search algorithm if

the instances respect a few combinatorial requirements. This discretization process was

previously developed in R3 basing on the observation that, under certain hypothesis,

three spheres in R3 intersect in at most two points. A similar observation for the

intersection of two circumferences in R2 leads to a polynomial time algorithm for the

SNLP, as shown in [9]. Methods based on this kind of techniques are very common

in many localization algorithms because they exploit the same principle used in GPS,

known as hyperbolic trilateration, which allows to determine locations of points by

measurement of distances, by using the geometry of circles, spheres, or triangles [109].

A survey on both continuous and discrete solution methods of these problems is given

in [96].

The chapter is structured as follows. In Section 4.2 we introduce the mathematical

notation and define the main problems in distance geometry, both for an arbitrary k > 0,

as spatial dimension index, and for k = 2, 3. We conclude this section by examining the

problem according to the density of the graph. In Section 4.3 we give a brief review

of the existing continuous approaches to the solution of the DGP. In Section 4.4 we

introduce the combinatorial property for the DGP and the corresponding combinatorial

optimization problem. We also show an algorithm developed to solve the problem of

1A wireless sensor network usually consists of up to several hundred small autonomous devices to
measure some physical parameters. Each device contains a processing unit, a radio transmitter and a
receiver in order to be able to communicate with its neighbors.
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finding an appropriate order of the vertex set in order to satisfy this combinatorial

property. In Section 4.5 we explain a Branch & Prune algorithm for solving the DGP on

a discrete search space in Rk, both for k > 0 and for k = 2, 3. In Section 4.6 we discuss

briefly both the problem and the algorithm complexity. In Section 4.7 we provide some

experimental results on two sets of simulated instances. In Section 4.8 we draw some

conclusions and describe some possible lines for future works.

4.2 Notations and Definitions

Given an undirected graph G = (V,E)where |V | = n and |E| = m. We define:

1. N(v) = {u ∈ V |{u, v} ∈ E} is the neighborhood of a given vertex v ∈ V .

2. γ(v) = {u ∈ V |u < v} is the set of predecessors of v with respect to an order on

V . Therefore we indicate with N(v) ∩ γ(v) the set of adjacent predecessors of a

vertex v ∈ V .

3. ρ(v) = |γ(v)|+ 1 is the rank of a vertex v ∈ V .

The embedding of a graph

Let G = (V,E) be an undirected graph. Given an Euclidean space Rk, an embedding of

G in Rk is a function x : G→ Rk such that x maps V to a set of n points in Rk and E

to a set of m line segments in Rk.

According to this definition, a graph embedding is the representation of a graph in a

Euclidean space in order to preserve its connectivity.

The Distance Geometry Problem

Let G = (V,E, d) be an undirected weighted graph where a nonnegative function d :

E → R+ which assigns to each edge {u, v} ∈ E a weight du,v. Given an integer k > 0.

The DGP is the problem of finding an embedding x in Rk such that Euclidean distances

between pairs of points are equal to the edge weights

∀{u, v} ∈ E ||xu − xv|| = du,v, (4.1)

where || · || is the Euclidean norm computed between xu and xv, whereas du,v refers to

the known distances.

The DGP is a generalization of MDGP and SNLP to arbitrary dimension.

The Molecular Distance Geometry Problem

Let G = (V,E, d) be an instance of the DGP in R3 such that each vertex u ∈ V is an
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atom. For each pair of vertices u and v in V , there exists an edge in E if the Euclidean

distance du,v is known either chemical bond analysis or NMR experiments. The MDGP

consists in finding an embedding x ∈ R3 such that (4.1) holds.

The Sensor Networks Localization Problem

Let G = (V,E, d) be an instance of the DGP in R2 such that each vertex u ∈ V is a

sensor. Given a radio range R ∈ R+, there exists in G an edge between two vertices u

and v if and only if their Euclidean distance du,v is known, and ||xu − xv|| ≤ R. Given

a subset U ⊆ V and an embedding x′ : U → R2 such that ||x′u − x′v|| = du,v for all

{u, v} ∈ E′ in G[U ]. The SNLP consists in finding an extension x : V → R2 of x′ which

satisfies (4.1).

It is evident that SNLP ⊇ MDGP, indeed, if U = ∅ then SNLP = MDGP. Therefore, a

general method of solving the SNLP also solves the MDGP.

4.2.1 Graph distance density: complete vs sparse

The set E may not necessarily contain all possible {u, v} pairs. We say that the problem

has a sparse distance data, if E has only a subset of all {u, v} pairs; otherwise, we say

that it has a complete set of distances or dense distance data. The distances may not be

provided as exact values and, in many cases, may be given in estimated ranges. When

the exact distances are provided, the problem is formulated as (4.1), and it can then be

solved in polynomial time. A solution with such a set of distance data can be obtained

efficiently by using Singular Value Decomposition (SVD) of an induced distance matrix

[52].

Let us assume that a set of coordinates x1, · · · , xn can be found for a given set of

distances du,v, where u, v = 1, · · · , n. Then, ||xu−xv|| = du,v for all u, v = 1, · · · , n, and

||xu||2 − 2x>u xv + ||xv||2 = d2
u,v, u, v = 1, · · · , n. (4.2)

Since the graph structure is invariant under any translation and rotation, we set a refer-

ence system so that the origin is located at the last vertex (e.g., in a three-dimensional

space we set xn = (0, 0, 0)>). It follows that

d2
u,n − 2x>u xv + d2

v,n = d2
u,v, u, v = 1, · · · , n− 1. (4.3)

Given a coordinate matrix X such that

X = {xu,v : u = 1, . . . , n− 1, v = 1, . . . , k} (4.4)



Chapter 4. Notations and Definitions 73

and an introduced matrix D such that

D = {(d2
u,n − d2

u,v + d2
v,n)/2 : u, v = 1, . . . , n− 1}. (4.5)

Then, XX> = D and D must be of maximum rank k.

Theorem 4.1. Let {du,v : u, v = 1, . . . , n} be a set of distances in Rk, for some k ≤ n.

Then, the induced matrix D defined in (4.5) is of maximum rank k.

Proof. It follows from the fact that D = XX> for a coordinate matrix X in Rn−1 ×Rk

and X is of maximum rank k.

The equation D = XX> can be solved in O(kn2) operations by using the SVD of D

[68], and therefore, the DGP with a complete with a complete set of exact distances can

be solved in polynomial time.

Note that, although in practice the distances may not be available for all the pairs of

vertices, the solution of the problem with all exact distances can still be important for

the solution of the general problem on a sparse set of distances. For example, if all the

distances in a subset of vertices S ⊆ V are known, but the position of these vertices does

not, then we can determine such coordinates by solving a DGP with all exact distances

for the subset S. The procedure may also be applied repeatedly until no such subsets

of vertices can be found [122].

When the distances are inexact, or distance ranges or bounds, the solution is generally

not unique, and there may exists a set of solutions that may all be of interest in practice.

For example, in protein modeling the distances are often provided with some estimated

bounds. The related DGP then becomes to find the coordinates x1, · · · , xn of the ver-

tices, so that the distances du,v between vertices v and v are within their estimated lower

and upper bounds, lu,v and uu,v, respectively, for all {u, v} in a subset E of all pairs of

vertices. That is,

lu,v ≤ ||xu − xv|| ≤ uu,v ∀{u, v} ∈ E (4.6)

Let du,v = (lu,v + uu,v)/2 and ε = (uu,v − lu,v)/2. We can rewrite the problem (4.6) as

|||xu − xv|| − du,v| ≤ ε ∀{u, v} ∈ E (4.7)

Then, the problem can be viewed as to find an approximate solution to the DGP for a

set of exact distances du,v with each distance ||xu− xv|| allowed to have an error ε from

du,v. Such a solution is called an ε-approximation solution. If large errors are allowed,

an approximate solution is certainly easier to obtain than an exact solution.

The method that we shall discuss in this chapter concerns only instances with exact
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distance data, although a version of BP which works with interval of distance ranges

from NMR data has already been implemented [91]. However, the BP version for not

exact distance on SNLP instances is under completion.

4.3 A continuous approach for solving the DGP

As mentioned earlier in Section 4.2, DGPs are often formulated and solved by continuous

method. The system of nonlinear equations (4.1) can be re-cast as a penalty function

to be minimized:

min
x

∑
{u,v}∈E

(||xu − xv||2 − d2
u,v)

2. (4.8)

Although this function is a sum of squares, this is a nonconvex optimization problem in

x, and falls into the category of global optimization admitting many local minima [96].

It is clear that x is a solution for (4.8) if and only if the value of the penalty function in

the feasible solution set X is exactly ∅.

An approach to the solution of the DGP that replaces the large optimization problem

in (4.8) by a sequence of smaller ones has been proposed in [76]. The author showed

that the structure can be exploited by using a divide-and-conquer algorithm, which

helps reduce the complexity of the problem. Moreover, he developed a software package

called ABBIE [76] for the determination of molecular structure with a given set of

distances. The program first decomposes the graph recursively into subgraphs with

unique 3D embeddings. The smaller embedding problems are then solved by minimizing

the least-square error function (4.8). Another well-known approach to the MDGP is

DGSOL, a method in which the penalty function is approximated by a sequence of

smoother functions converging to the original one [103]. In detail, the global smoothing

method first transforms a weighted function similar to (4.8) into a set of smoother

functions with fewer local minima. The method uses these local minima to trace their

changes when the smoother functions are changed back to the original one. In this way

a global minimum is located at the end. DGSOL has been efficiently applied to some

small to medium-sized test problems with around 200 atoms. Although the method

is still fast even on large instances, the solution quality decreases with the growth of

the graph dimension. In [47] we can find the embedding algorithm, one of the major

contribution to the development of distance geometry in protein modeling, where there

is the first application of NMR spectroscopy experiments as distance data. This method

determines the coordinates of the atoms for given set of interatomic distances (or their

ranges) by exploiting some geometric properties, like triangle inequality, to estimate the

missing distance. The distance geometry literature also includes a class of semidefinite
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programming (SDP) based methods, which are often used to solve SNLP instances [22,

37]. These methods relax the SNLP to a weighted semidefinite programming problem

using the linear mapping between Euclidean distance matrices and semidefinite matrices.

Then the SDP problem is solved by primal-dual interior point solvers. We conclude

this brief, and not complete, overview on continuous method with the Geometric build-

up algorithm originally described in [52], and recently revisited in [123, 141]. This

algorithm works directly on the given distances by exploiting the special structure of

a given problem, and hence may be able to solve the problem more efficiently than a

general approach, such as we explain more deeply in Section 4.3.1.

4.3.1 The geometric build-up algorithm

The geometric build-up algorithm solves the MDGP on sparse graphs in R3 [52]. This

algorithm is based on geometric relationship between coordinates and distances to the

atoms of a molecule. Central to the algorithm is the idea to determine only a small

group of atoms at the beginning, and then complete the whole molecule by repeatedly

determining one or more atoms every time using the available distances between the

determined and undetermined atoms. I.e., let us assume that it is possible to determine

the coordinates of at least four atoms, which are marked as fixed; the remaining ones

are non-fixed. Then the coordinates of a non-fixed atom a can be calculated by using

the coordinates of four non-coplanar fixed atoms such that the distances between any

of these four atoms and the atom a are known. If such four atoms are found, the atom

a changes its status and it becomes fixed.

We consider that an atom a is a vertex v ∈ V in the graph. Let u1, u2, u3, u4 be

four vertices representing the four fixed atoms whose Cartesian coordinates are already

known. Let us suppose that the Euclidean distances among vertex v and the vertices

u1, u2, u3, u4 namely dv,ui , for i ∈ {1, 2, 3, 4}, are known. Then xv = x(v) is a solution

of the following system of equations:

||xv − xu1 || = dv,u1 ,

||xv − xu2 || = dv,u2 ,

||xv − xu3 || = dv,u3 ,

||xv − xu4 || = dv,u4 .
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Squaring both sides of these equations, we have:

||xv||2 − 2x>v xu1 + ||xu1 ||2 = d2
v,u1 ,

||xv||2 − 2x>v xu2 + ||xu2 ||2 = d2
v,u2 ,

||xv||2 − 2x>v xu3 + ||xu3 ||2 = d2
v,u3 ,

||xv||2 − 2x>v xu4 + ||xu4 ||2 = d2
v,u4 .

By subtracting one of the above equations from the others, we have a linear system that

admits a unique solution of xv since u1, u2, u3, u4 are non-coplanar. For example, if we

subtract equation i from equation i + 1 for i = 1, 2, 3, then the quadratic terms for xv

can be eliminated, and we obtain

−2(xu2 − xu1)>xv = (d2
v,u2 − d

2
v,u1)− (||xu2 ||2 − ||xu1 ||2)

−2(xu3 − xu2)>xv = (d2
v,u3 − d

2
v,u2)− (||xu3 ||2 − ||xu2 ||2)

−2(xu4 − xu3)>xv = (d2
v,u4 − d

2
v,u3)− (||xu4 ||2 − ||xu3 ||2).

Let A be a matrix and b a vector such that

A = −2


(xu2 − xu1)>

(xu3 − xu2)>

(xu4 − xu3)>

 , b =


(d2
v,u2 − d

2
v,u1)− (||xu2 ||2 − ||xu1 ||2)

(d2
v,u3 − d

2
v,u2)− (||xu3 ||2 − ||xu2 ||2)

(d2
v,u4 − d

2
v,u3)− (||xu4 ||2 − ||xu3 ||2)

 .
Since u1, u2, u3, u4 are not in the same plane, A must be nonsingular, and we can solve

the linear system Axv = b in order to obtain a unique solution for xv. In this case, all

distances are known, then solving the system requires only constant time [52].

In [52] the authors report that the GB algorithm is very sensitive to the numerical errors

introduced in computing the atomic coordinates. These numerical errors are controlled

in the updated version proposed in [141]; whereas in [123] are described the extension

of the algorithm to handling inexact distance data. GB solves the MDGP in linear time

if G is a complete graph and du,v ∈ Q+ for all {u, v} ∈ E.

Requiring the knowledge of the distances of four previously embedded adjacent vertices

limits the extention of the algorithm to instances with relatively dense graphs. In fact,

distances are usually hard to obtain (this is true especially for sensor networks). An

effort should be made in order to weaken this requirement. Although similar concepts

were already known in rigidity [76], the first work providing an iterative discrete search

algorithm for the MDGP that only requires three (rather than four) previously embedded

adjacent vertices is BP [94], a mixed combinatorial algorithm used in the development

of the MD-jeep software [107] to solve problems related to protein molecules (see Section

4.5 for more details). The main difference between GB and the BP algorithm solving

the DGP is that BP exploits a given order on V . This restriction allows BP to be more
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reliable, efficient and complete than continuous methods. In particular, it has been

shown that BP works well in proteins structure determination [94, 96, 97, 105–107].

The original contribution presented in this dissertation is the development of a version

of BP able to solve also SNLP instances [51]. In the rest of this chapter we describe the

discretization principle based of BP, and we highlight the differences between its two

versions.

4.4 Discretizing the search space

Although the DGP implicitly requires a search in continuous space, if an appropriate

order is given on V , we can show that the search space has a finite number of valid

embeddings, up to translations and rotations. In such framework it is located the Dis-

cretizable Distance Geometry Problem (DDGP), which consists of a subclass of instances

for the DGP with a combinatorial property in order to be solved by a discrete search

algorithm.

The Discretizable Distance Geometry Problem

Given an instance of the DGP G = (V,E, d), an integer k > 0 and an order on V such

that are verified the following assumptions:

1. the first k + 1 vertices in V compose a clique;

2. for each v > k there exists a subset Uv ⊆ N(v) ∩ γ(v) of at least k elements such

that:

a) G[Uv] is a k-clique in G;

b) strict simplex inequalities ∆k(Uv, d) > 0 hold,

find an embedding x in Rk such that (4.1) holds.

These assumptions allow us to extend the partial embedding x′ composed by the first

k vertices. Here, the ∆k(Uv, d) is the content of the k-simplex defined by the k-clique

G[Uv] and the vertex v:

∆k(Uv, d) =

√
(−1)k+1

2k(k!)2
|CM(Uv)| (4.9)
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computed by using the Cayley-Menger determinant [25]:

CM(Uv) =


0 1 1 . . . 1

1 0 d2
1,2 . . . d2

1,k+1
...

...
...

. . .
...

1 d2
1,k+1 d2

2,k+1 . . . 0

 (4.10)

with dij = ||x′i − x′j || for all i, j ∈ {1, · · · , k + 1}.

The strict simplex inequalities and the k-clique requirement guarantee that the k-simplex

has nonzero volume. Note that only the distances of the simplex edges are necessary

to compute ∆k(Uv, d), rather that the coordinates of the points in Uv; the required

information can be encoded as a complete graph on k+ 1 vertices with the distances as

edge weights.

When k = 3 the DDGP can be reduce to the Discretizable Molecular Distance Geometry

Problem (DMDGP) proposed in [94, 97], where the strict simplex inequalities are strict

triangular inequalities [89]. In fact, in a three-dimensional space the 3-simplex is a

pyramid whose base is the triangle formed by the 3-clique G[Uv], and the apex is the

vertex v. Therefore, the distances are the edge lengths of the pyramid. The volume

of this simplex is zero when the points of the clique G[Uv] are collinear (the base is a

segment).

The Discretizable Molecular Distance Geometry Problem

Given an instance of the MDGP G = (V,E, d) and an order on V such that are verified

the following assumptions:

1. the first 4 vertices in V compose a clique;

2. for each v > 3 there exists a subset Uv ⊆ N(v) ∩ γ(v) containing its 3 immediate

predecessors {v − 1, v − 2, v − 3} such that:

a) G[Uv] is a clique in G;

b) strict triangular inequality dv−3,v−1 < dv−3,v−2 + dv−2,v−1 holds,

find an embedding x in R3 such that (4.1) holds.

The set of adjacent predecessors N(v) ∩ γ(v) for an instance of the DMDGP has to

contain the three immediate predecessors of v, instead of any triplet of its predecessors,

as is required for a DDGP instance. Although this requirement is stronger than the one

for the DDGP, it is very realistic for proteins molecules which have a natural ordered

structure due to the particular positions of the atoms. This structure, indeed, determines

particular geometric proprieties useful for a more efficient reordering of the atoms (see
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Section 4.4.3). The idea is that along the protein backbone, atoms that are close in

sequence are also close in distance, and consequently, they are also close in the three-

dimensional conformation of the protein.

Assuming that all vertices preceding v are already embedded, we can calculate all mutual

distances needed for the computation of ∆3(Uv, d). If the strict triangular inequality

holds, then the intersection can only have either one or two points, depending on whether

the discriminant of a certain quadratic polynomial in xv is zero or nonzero [45, 111]. We

shall discuss this finite sphere intersection property in Section 4.4.1.

The DDGP may also represent a discretization of the SNLP. For the sake of clarity we

refer to it as the Discretizable Sensor Networks Localization Problem (DSNLP).

The Discretizable Sensor Networks Localization Problem

Given an instance of the SNLP G = (V,E, d) and an order on V such that are verified

the following assumptions:

1. the first three vertices induce a clique in G;

2. for each v > 2 the set |N(v) ∩ γ(v)| contains at least two (different) elements.

find an embedding x in R2 such that (4.1) holds.

Working on a two-dimensional space the DSNLP assumptions can be expressed in a

weaker form: it is enough that any sensor v interacts with at least other two sensors

previously visited, whose distances from v are known. The 2-simplex is a triangle whose

vertices are the current vertex v and a pair of adjacent predecessors of v. Therefore, the

requirement of strict simplex inequalities becomes unnecessary because the computed

Cayley-Menger determinant is always greater than zero. Moreover, the subgraph induced

by the anchors can be used to build the initial embedding x′, thus the set of anchors

must have at least three elements. BP determines all possible embeddings of a DSNLP

instance by extending x′.

4.4.1 Sphere intersections

As above mentioned, once the vertices of Uv have been embedded in Rk, the known

distances from vertices in Uv to a given v will enforce the position of v as the intersection

of k spheres.

Let S(x, r) be a sphere in Rk with center x ∈ Rk and radius r ∈ R+, and let

I =

k⋂
v=1

S(xv, dv,k+1)
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be the intersection of k spheres with centers x1, . . . , xk and radii d1,k+1, · · · , dk,k+1.

The intersection of these k spheres in Rk might contain zero, one, two or uncountable

points depending on the position of the centers and the lengths of the radii. In particular,

if the k sphere centers are collinear in Rk, for k > 2, then the set of distance matrices

yield a Cayley-Menger determinant having value exactly zero (the simplex inequalities

2.b fail to hold), and their intersection I has uncountable cardinality (see, for example,

the thick circle in Figure 4.1(a) in R3); when k = 2 it is provided if the two circumferences

are centered in the same point, and consequently, they have equal radius lengths. On

the other hand, if the k-clique 2.a cannot be realized, then I = ∅. In general, the strict

(a) sphere centers collinear (b) sphere centers non-collinear

Figure 4.1: The intersection of three spheres in R3.

simplex inequalities 2.b and the k-clique requirement 2.a preserve the dimensionality of

the k-simplex, guaranteing the finite sphere intersection property so that the intersection

I can only contains:

- one point if |Uv| = k + 1 in Rk. For instance, let us suppose that in R2 the

vertex v has three adjacent predecessors v1, v2, v3. The intersection of the three

circumferences centered in v1, v2, v3 with radii dv1,v, dv2,v, dv3,v is just the single

point v, which is a vertex of the polytope v, v1, v2, v3.

- two points if |Uv| = k in Rk (as showed in Figure 4.1(b) for R3).

Last two considerations have been formalized in [97] by few lemmata related to rigid

graphs [57], which we introduce in the following. We assume that the probability of any

point in Rk belonging to any given subset of Rk having Lebesgue measure zero is equal

to zero. Based on this assumption, when we state “∀p ∈ P , F (p) has probability 1” for

a certain well-formed formula F means that the statement F (p) holds over a subset of P

that has Lebesgue measure 1. Usually, this occurs whenever p is a geometrical statement

about Euclidean space that fails to hold for strictly lower dimensional manifold, such as
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a simplex in Rk composed by fewer than k+ 1 vertices. In this situation the collinearity

causes an uncountable P as in Figure 4.1(a), and the Lesbegue measure is zero within the

set of all possible (real) distance matrices. Let Gv = G[γ(v)∪{v}] be a valid embedding

of G[γ(v)].

Lemma 4.1. If |N(v) ∩ γ(v)| = k then there are at most two distinct extensions of x

valid for Gv. If one valid extension exists, then with probability 1, there are exactly two

distinct valid extensions.

Lemma 4.2. If |N(v)∩γ(v)| > k then, with probability 1, there is at most one extension

of x.

Lemma 4.3. With the notation of Lemma 4.1, if x′ is a valid embedding for G[Uv],

then z̄ is a reflection of z with respect to the hyperplane through the k points of x′.

Proof. All proof of lemmata 4.1-4.3 are provided in [97].

4.4.2 The influence of rigidity

Since the graph may be sparse, the embedding may not be unique. There may be

more than one way to position the points, and all the distance constraints can still be

satisfied. If some of the points can be moved continuously without violating any distance

constraints, the graph is called flexible; otherwise, it is called a rigid graph. Note that

flexibility of a graph leads to infinitely many solutions to the DGP [76].

Rigidity and uniqueness of the distance graph can be important for the study of DGPs.

In order for a graph to have a unique embedding, it is obvious that it must first be

rigid. However, a rigid graph may still have multiple embeddings, for example, when

it has partial reflections. Thus, another necessary condition for unique embeddability

is that the graph does not have partial reflections. In a k-dimensional space this is

guaranteed only if the graph is (k+1)-connected. All these properties can be used to

exploit the structure of large graphs to find subgraphs that have unique embeddings. The

embedding problem for a given distance graph can then be solved by dividing the graph

into such subgraphs. The solutions found for any subgraph can finally be combined into

a unique solution for the whole graph [76].

Reflections with respect to hyperplanes are isometries2, and can therefore be represented

by linear operators. If a ∈ Rk is the unit normal vector to a hyperplane H containing

the origin, then the reflection operator R0 w.r.t. H can be expressed in function of the

2An isometry is a transformation which maps elements from a metric space A to another metric space
B such that the distances between the elements in B are equal to the distances between the elements in
A.
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standard basis by the matrix I − 2aa>, where I is the K ×K identity matrix [31]. Let

H be a hyperplane with equation a>x = a0 (with a0 6= 0) and ai be, for some 1 ≤ i ≤ k,

the nonzero coefficient of the smallest index in a. Then, the reflection operator R acting

on a point p ∈ Rk w.r.t. H is given by

R(p) = R0(p− a0

ai
ei) +

a0

ai
ei,

where ei ∈ Rk is the unit vector with 1 at index i and 0 elsewhere: we first translate p

so that we can reflect it using R0 w.r.t. the translation H containing the origin, then

we perform the inverse translation of the reflection.

4.4.3 The importance of being ordered

It is clear that discretization requirements of the DDGP strongly depend from the or-

dering of the vertex set V . Since DDGP instances may not satisfy such requirements

in the reality, we consider the problem of finding a good order (or determining that one

such order does not exists) as a pre-processing step before to solve the DDGP [89].

The Discretization Vertex Order Problem (DVOP)

Given a simple undirected graph G = (V,E) and a positive integer k > 0, establish

whether there is an order on V such that:

1. the first k vertices induce a clique in G;

2. each v ∈ V with rank ρ(v) > k has |N(v) ∩ γ(v)| ≥ k.

Note that DVOP does not verify whether the order satisfies the strict simplex inequalities

requirements. DVOP only allows us to embed the first k vertices uniquely, and it ensures

us that any vertex in V has at least k adjacent predecessors. In fact, if a vertex v has

fewer than k adjacent predecessors, then there may be infinitely many placements for

it, which means that |N(v) ∩ γ(v)| does not allow to define an appropriate order on V .

An exponential time solution algorithm for this problem consists in finding a k-clique

C in G, and to consider their vertices as first vertices of the new ordering. Then, all

other vertices are greedily positioned in the new ordering by choosing any time the one

with the largest number of adjacent predecessors, stopping whether this is smaller than

k. A sketch of this reordering algorithm is given below. If k is a fixed constant, then

this becomes a polynomial algorithm. Since DGP applications rarely require a variable

k, this is a comforting result.
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A reordering algorithm

Let B = ∅ be the set of the reordered vertices in G.

reorder(G)

while (a valid ordering is not found) do

find a k-clique C in G;

place the vertices of C at the beginning of new order: B = C;

while (V \B 6= ∅) do

find the vertex v in V \B with the largest number l of adjacent vertices in B;

if (l < k) then

end while: there are no possible orderings for this choice of C;

end if

B = B ∪ {v};
end while

end while

4.5 A Branch & Prune algorithm for solving the DDGP

In this Section we show a Branch & Prune (BP) algorithm originally drawn to solve

MDGP instances [94, 97], and adapted in a later stage to solve also SNLP instances

[51]. BP is an exact and exhaustive combinatorial algorithm that examines all the valid

embeddings of a given weighted graph G = (V,E, d), under the hypothesis of existence

of a given order on V .

For solving the DDGP in a k-dimensional embedding space, the BP algorithm requires

five arguments recursively:

1. the weighted simple undirected graph G = (V,E, d);

2. a current vertex v to embed;

3. a subset Uv ⊆ N(v) of k elements;

4. a valid embedding x′ of a subgraph of G containing G[Uv];

5. the set X of valid embeddings of G currently found.

The BP algorithm computes two possible positions for the current vertex v, with the

intent of building a binary tree of solutions for the problem. The nodes of the tree

at level v represent possible spatial positions i for the vertex v. In Figure 4.2, for

example, we can see a binary tree T for n = 6. The blue boxes show a complete path
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on T from the root x1 to one its leaf node x6. The path corresponds to the solution

(x4, x5, x6) = (0, 1, 1) found starting from the initial clique (x1, x2, x3). When a position

fails some feasibility tests, the branch i is pruned, where the ith variable indicates which

of the two possible choices for the vertex xi have been taken. A more detailed description

of pruning techniques is given in Section 4.5.3, whereas a sketch of BP is provided below.

Figure 4.2: The binary tree T for n = 6 corresponding to the solution (x4, x5, x6) =
(0, 1, 1).

Theorem 4.2. At termination of BP, X contains all valid embeddings of G extending

x′.

For each leaf node of the tree generated by BP, the unique path to the root node encodes

an embedding of G. By the Theorem 4.2, for which a proof is provided in [94], the paths

from each leaf node at level |V | encode all valid embeddings of G exending x′. We

remark that the BP can be stopped after the first valid embedding has been found when

just one solution of the DDGP is needed. It can also be allowed to proceed until all

valid embeddings have been identified. This makes the BP algorithm complete. Since

the first k nodes can be fixed, in the worst case the binary tree contains 2n−k nodes.

This makes BP a worst-case exponential algorithm.
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BP algoritm

Let I be the intersection of the k spheres S(x′u, du,v) for u ∈ Uv.
BP(G, v, Uv, x

′, X)

for (i ∈ I) do

compute the ith position for the current vertex v: xvi ;

check the feasibility of xvi : is x = (x′, xvi) a valid embedding of G[{1, . . . , v}]?
if (the position xvi is feasible) then

if (v = n) then

one solution is found: x→ X;

else

let U ′v = (Uv \ {minUv}) ∪ {v};
BP(G, v + 1, U ′v, x,X);

end if

else

the current branch is pruned;

end if

end for

4.5.1 BP for the DMDGP

Given a DMDGP instance as above described, BP computes two new positions for any

vertex v exploiting 3 immediate predecessors {v − 1, v − 2, v − 3} of v w.r.t. the vertex

order imposed on V (before to run BP). The recursive algorithm starts with the call

BP(G, 4, Uv = {1, 2, 3}, x′, ∅) where x′ is the valid embedding of the first three vertices

inducing a clique in G. This is possible only if all the assumptions described in Section

4.4 are satisfied. Under such conditions the sphere intersection property in Section 4.4.1

guarantees that the intersection I of three sphere centered at xv−1, xv−2 and xv−3, with

radii dv−1,v, dv−2,v, and dv−3,v, consists of at most two distinct points. In particular,

xv1 ∈ I is the reflection of xv0 ∈ I through the hyperplane defined by xv−1, xv−2, and

xv−3.

In the case of DMDGP, the problem of intersecting the three spheres can be replaced

by the problem of finding the possible torsion angles along a backbone of atoms of

the molecule. It has be proved that there are only two possible torsion angles for

each quadruplet of consecutive atoms {v − 3, v − 2, v − 1, v}. These two torsion angles

correspond to two possible positions for the last atom of the quadruplet [95]. Below

we describe how the problem of intersecting the three spheres can be replaced by the
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problem of finding the possible torsion angles along the protein backbone related to the

order on V by using consecutive atoms.

Without loss of generality, fixed three consecutive atoms {v − 3, v − 2, v − 1} in the

sequence, we can express the cosine of the torsion angle ωv in terms of the distances

rv−2, dv−2,v, dv−3,v and the bond angle θv−1, θv as follows:

cosωv =
r2
v−2 + d2

v−2,v − 2rv−2dv−2,v cos θv−1 cos θv − d2
v−3,v

2rv−2dv−2,v sin θv−1 sin θv
,

where rv is the Euclidean distance (the bond length) between the atoms v − 1, v, for

all v ∈ {2, . . . , n}; θv ∈ [0, π] is the bond angle between the segments joining the atoms

v − 2, v − 1 and v − 1, v, for all v ∈ {3, . . . , n}; and ωv ∈ [0, 2π] is the torsion angle

between the normals through the planes defined by the atoms v − 3, v − 2, v − 1 and

v − 2, v − 1, v, for all v ∈ {4, . . . , n} (see Figure 4.3).

Figure 4.3: Definitions of bond lengths, bond angles and torsion angles.

Hence, if we know all the bond lengths (rv), bond angles (θv), and distances between

the atoms separated by three covalent bonds (dv−3,v), we can calculate the cosine of the

torsion angles defined by the atoms {v − 3, v − 2, v − 1, v} for v = 3, . . . , n. This, in

turn, can be used to compute the two possible positions xv0 , xv1 for the fourth atom v

by determining

xv0 =


−rv−2 + rv−1 cos θv−1 − rv cos θv−1 cos θv + rv sin θv−1 sin θv cosωv

rv−1 sin θv−1 − rv sin θv−1 cos θv − rv cos θv−1 sin θv cosωv

−rv sin θv
√

1− (cosωv)2

 ,
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xv1 =


−rv−2 + rv−1 cos θv−1 − rv cos θv−1 cos θv + rv sin θv−1 sin θv cosωv

rv−1 sin θv−1 − rv sin θv−1 cos θv − rv cos θv−1 sin θv cosωv

+rv sin θv
√

1− (cosωv)2

 .
For the fifth atom, we will obtain four possible positions, one for each combination

of ±
√

1− (cosω4)2 and ±
√

1− (cosω5)2. As consequence, we can see that for the i-

th atom we obtain 2i−3 possible positions (as it is shown in Figure 4.2). So, for a

molecule shaped as a sequence of n atoms, we get 2n−3 possible sequences of torsion

angles ω4, ω5, . . . , ωn each defining a different three-dimensional structure. By using the

torsion matrices Bv, defined as

Bv =


− cos θv − sin θv 0 −rv cos θv

sin θv cosωv − cos θv cosωv − sinωv rv sin θv cosωv

sin θv sinωv − cos θv sinωv cosωv rv sin θv sinωv

0 0 0 1


for v = 1, . . . , n, we can convert a sequence of torsion angles into Cartesian coordinates

x1, x2, x3 in R3. In fact, at any iteration, BP computes Bv and solves the two following

systems:

(xv0 , 1)> = B1B2 . . . Bv0(0, 0, 0, 1)>

(xv1 , 1)> = B1B2 . . . Bv1(0, 0, 0, 1)>.

4.5.2 BP for the DSNLP

We developed a new version of BP, which solves DSNLP instances by intersecting two

circumferences in R2 [51].

Let u, u′ ∈ N(v) ∩ γ(v) be a pair of precedents of v ∈ V . Then, xv1 ∈ I is the reflection

of xv0 ∈ I through the straight line defined by xu, xu′ . Thus, at each iteration, BP

solves twice the following quadratic system:{
||xu − xvi || = du,vi

||xu′ − xvi || = du′,vi ,
(4.11)

for both vertices vi = {0, 1}. In literature there exist several method finding solutions of

the system (4.11), such as the Gaussian Elimination or the Orthogonal Decomposition

[45]. Let us remark that, whatever method is used, it is very important that the found

solutions are very accurate. Indeed, they represent the possible positions for the graph

vertices, which have to pass some tests for feasibility before being inserted in the binary

tree. Therefore, if the found solutions for (4.11) are not accurate enough, then the

pruning tests might reject them all, and no solutions are found.
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While, in the case of the DMDGP, there exists the choice of considering torsion angles

instead to compute the sphere intersections, this is not possible when we consider DSNLP

instances. A sequence of quadratic systems need instead to be computed and, at each

interaction of BP, we must be aware that some errors may be introduced in the computed

coordinates. In order to keep the propagation of these errors as low as possible, we

implemented the following strategy: at each iteration of BP, we try all the possible

triples of vertices {xu, x′u, xvi} and we chose the triplet corresponding to the quadratic

system with the most accurate solutions. Therefore, BP verifies whether either or both

positions xv0 , xv1 are compatible with the distances to all pairs of adjacent predecessors,

by selecting the best one solving (4.11). We notice that here BP needs a common pair

of precedents, and not necessarily the immediate predecessors as required for solving

DMDGP instances.

In our implementation, we solve the quadratic system (4.11) by Gaussian Elimination

[45], for which two linear systems need to be solved. Since the distances between pairs of

vertices in {xu, x′u, xvi} can be large, the coordinates related to such vertices may have

distinct orders of magnitude. This can cause the occurrence of badly-scaled matrices

for the two systems to be solved. Therefore, we employed the function dgesvx of the

LAPACK library [6], which automatically scales the coefficient matrices before solving

the linear systems.

4.5.3 Pruning the branches of the tree

If there exist other vertices in N(v) ∩ γ(v) which have not been used to compute I,

then they can be used for checking the feasibility of the two computed positions. BP

prunes the branch xv, together with all the positions along the same branch, only if the

corresponding distances are infeasibles with respect to (4.1), for a given tolerance ε > 0,

i.e., if

|||xu − xv|| − du,v| > ε ∀u ∈ N(v) ∩ γ(v) ∧ u /∈ Uv. (4.12)

This pruning device is called Direct Distance Feasibility (DDF), and it is one of the most

robust pruning devices that can be used during the discrete search.

Another pruning device, based on the point-to-point Dijkstra shortest path, searches

on Euclidean graphs [92]. Consider the vertices u, v, w with u < v < w such that

{u,w} ∈ E, i.e., the distance du,w is known. Suppose that a position for the vertex u

is already available, and that the feasibility of the node xv needs to be verified. Let

D(v, w) be an upper bound to the distance ||xv −xw|| for all possible valid embeddings.

Then, if

||xu − xv|| > du,w +D(v, w) (4.13)
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holds, the node xv can be pruned [92] because the triangular inequality is negated. A

valid upper bound D(v, w) can be computed by finding the shortest path between the

vertex v and the vertex w in G. We call this pruning device Dijkstra Shortest Path

(DSP). Computational experiments showed that the SDP detects infeasible embeddings

sooner than the DDF, but it is also more computationally expensive.

In the case of the DMDGP, new pruning devices were proposed in [106] in order to

consider real NMR experiments. In fact, it has been noticed that the range of distances

between the hydrogen atoms pairs of the molecule is very large, and often DDF is not

able to sufficiently prune branches of the tree. This causes the multiplication of the

solutions found by BP, where some infeasible solutions are also contained. Such new

pruning devices, instead, are based on different information, such as the list of bounds on

the torsion angles of the protein backbones, and the information regarding the protein

secondary structures.

4.5.4 Algorithm accuracy evaluation

The BP algorithm supplies in output: (i) an embedding x, (ii) the CPU time employed

by the method to yield x, and (iii) an assessment about how far is x from a known

optimal solution. For this purpose can be used several accuracy measures, most popular

are the following.

1. penalty, which is the evaluation of the function defined in (4.8) for a given embed-

ding x.

2. Largest Distance Error (LDE):

LDE =
1

m

∑
{u,v}∈E

|||xu − xv|| − du,v|
du,v

it is a scaled, averaged and square-rooted version of the penalty.

3. Root Mean Square Deviation (RMSD), which is a difference measure for sets of

points in Euclidean space having the same center of mass. Let x, y be embeddings

of G, then

RMSD(x, y) = min
T
||y − Tv||

where T varies over all rotations and translations in Rk.
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4. Max Error (ME), which is the maximum distance between the position found and

the real position of the vertex v. This is defined as

ME = max
v
||xv − xrealv ||2.

Accordingly, if y is the known optimal configuration of a given protein, different realiza-

tions of the same protein yield different RMSD values. Evidently, RMSD is a meaningful

accuracy measure only for test sets where the optimal conformations are already known

(such as PDB instances). We, for our part, have chosen to use the LDE function. The-

oretically, if the value of the LDE is 0 then x is feasible and (4.1) holds; in practice, the

value of the LDE has to be lesser then a very small tolerance parameter ε > 0.

4.6 Computational complexity

The DGP can be solved in polynomial time if the distances for all pairs of vertices are

available [74]. Nevertheless, it has been proved to be a strongly NP-Complete for k = 1

and strongly NP-hard for k > 1 by reduction from SUBSET-SUM problem [118]. In

the same manner in [94] has been shown the NP-hardness of the DMDGP. In [9] the

sensors network is defined as an unit disk graph, i.e., an intersection graphs composed

by circumferences centered in the vertices and which edges are Euclidean distances at

most twice the radius. The authors showed that finding an embedding in R2 for a unit

disk graph of given radius is still a NP-hard problem.

Despite this NP-hardness complexity, the scientific community has not been discouraged

from searching and developing new algorithms for solving the DGP, because the theory

related to NP-hardness of the problem given in [118] was based on very special graphs

and distances, which are highly unlikely to occur in practical problems on proteins. In

fact, by exploiting the natural atomic ordering of these molecules in various way we

can produce a vertex order as described in Section 4.4.3. As mentioned in Section 4.5,

BP has in the worst-case an exponential running time. Nevertheless, reordering the

instances BP is able to find all the solutions of the problem in polynomial time [94].

4.7 Computational Results

We present in this section some computational experiments related to the two BP ver-

sions for the MDGP and the SNLP presented in [89] and [51] respectively. In both cases,

before to run BP was checked whether all instances satisfied the discretization assump-

tions. In presence of a problem whose vertex order did not satisfied the discretization
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assumptions the instance were reordered as described in Section 4.4.3. In all the exper-

iments, the tolerance used when comparing known and computed distances was set to

ε = 0.001. The code used for running all tests was written in C programming language.

All tests were done on a 2.13GHz Intel Core 2 Duo processor and with 4GB of RAM,

running Linux. The codes have been compiled by the GNU C compiler 4.1.2 version

with the -03 flag.

4.7.1 MDGP experiments

We considered instances generated from proteins having known conformations in the

PDB [19]. Each PDB record consisted in a set of atomic coordinates for a given protein

generated by computing the distances between all the possible pairs of hydrogens in the

molecule, and by keeping only the ones smaller than a predefined threshold δ. This

procedure simulated NMR data, because all the distances were between hydrogens, and

only short-range distances were considered. The threshold δ usually ranges between 5Å3

and 6Å, thus here was set δ = 5.5Å.

For each protein, in Table 4.1 there is the number of its hydrogen atoms, and the number

of available distances (edges). The next two columns refer to the BP algorithm applied

to the reordered proteins. We report the solution quality in terms of LDE and the user

CPU time, expressed in seconds. The last two columns refer to DGSOL [103], a software

for distance geometry based on a continuous formulation of the problem.

Because DGSOL accepts a set of lower and upper bounds on the available distances as

input (and therefore solves a different problem than ours), the comparison is not totally

fair. Moreover, DGSOL is the only well-known continuous optimization-based algorithm

with publicly available code that we could use as a reference to compare against. DGSOL

was provided of the set of intervals [d − ε, d + ε], where d is the generic distance given

to BP. The obtained values for the LDE function and the user CPU time show that BP

is faster (by around 2 orders of magnitude) and able to find better-quality (by around

10 orders of magnitude) solutions.

4.7.2 SNLP experiments

If the solution of the optimization problem is not conditioned from the noise, the algo-

rithm can return correct sensor positions [7]. Therefore, for all instances we assumed

that there was not noise in the distance measurements.

3Å is the unit of length for intermolecular distances. One angstrom equals to 10−10 meters, or 0.1
nanometers.
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Instance Atoms |E| BP LDE BP time DGSOL LDE DGSOL time

1brv 90 729 3.36e-11 0.01 4.14e-01 1.90
1a11 144 1192 2.43e-12 0.01 1.07e-05 5.27
1erp 209 1969 3.63e-11 0.05 3.95e-01 7.21
1aqr 214 1690 3.45e-11 0.02 6.19e-01 8.34
1bbl 221 1690 2.19e-08 0.05 9.29e-01 9.81
1ed7 261 2591 3.91e-11 0.05 8.34e-01 8.04
1h1j 261 2489 3.16e-11 0.03 3.41e-01 13.08
1ahl 268 2508 4.33e-11 0.02 6.46e-01 15.03
1dv0 275 2669 4.08e-10 0.05 9.20e-01 14.47
1k1v 277 2600 4.25e-11 0.06 7.42e-01 12.66
1ccq 389 3888 5.97e-11 0.10 7.47e-01 20.46
1a2s 480 4723 5.71e-08 0.77 7.72e-01 24.75
1acz 589 6067 5.36e-08 1.97 7.42e-01 44.15
2hsy 620 5935 8.23e-11 0.66 8.10e-01 32.66
1b4c 1152 11044 7.62e-08 1.81 9.22e-01 117.51
1a23 1157 11628 9.08e-11 2.38 8.79e-01 110.00
2ron 1501 15101 1.09e-06 4.15 8.47e-01 148.61
1ezo 2259 21049 4.89e-07 7.91 9.09e-01 308.90

Table 4.1: Comparison between BP and DGSOL performances on a set of molecular
instances.

The instances were composed of n sensors (including anchors) randomly placed in the

region [0, 1]2. We ranged the number of sensors from 2000 to 10000 in steps of 2000,

and the radio range R from 0.7 to 0.4 in steps of 0.1. We also generated the partial

Euclidean distance matrix of order n such that its no unspecified elements were the

distance between anchor pairs and the distance between sensors that are within R.

In Table 4.2 we report the results of our tests on noiseless problems. The first two

columns show the cardinally of the vertex set (number of sensors plus number of an-

chors) and the cardinally of the edge set. Note that the first 4 vertices were taken as

anchors, as specified in the third column. The other columns report the value of the

radio range R, the best LDE function values and the CPU time (seconds) needed to

solve the instance with BP. The last two columns refer to the performance of the SNLS-

DPclique (here referred as SDPcl) facial reduction algorithm presented in [85]. This

mixed-combinatorial algorithm identifies the intersections of faces of the SDP cone as

unions of intersecting cliques and iteratively expand them following a vertex order.

The comparison between the BP and the SDPcl algorithm shows that although the latter

scales extremely well, BP is faster with a slightly lower order of accuracy of the solution:

O(1012) for BP versus O(1013) for SDPcl.
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Sensors |E| Anchors R BP LDE BP time SDPcl ME SDPcl time

2000 28892 4 0.07 1.30e-12 0.16 6e-13 1.00
2000 21490 4 0.06 1.16e-12 0.17 1e-12 1.00
2000 14634 4 0.05 9.90e-13 0.15 - 1.00

4000 116490 4 0.07 1.33e-12 0.57 2e-13 2.00
4000 86325 4 0.06 1.40e-12 0.60 6e-13 2.00
4000 59991 4 0.05 1.45e-12 0.61 4e-13 2.00
4000 38807 4 0.04 4.33e-12 0.58 1e-13 2.00

6000 261120 4 0.07 7.96e-13 1.09 3e-13 4.00
6000 194750 4 0.06 1.27e-12 1.39 2e-13 4.00
6000 135334 4 0.05 8.91e-8 1.30 3e-13 3.00
6000 87715 4 0.04 2.38e-12 1.38 7e-13 3.00

8000 464562 4 0.07 8.35e-13 2.08 3e-13 6.00
8000 344007 4 0.06 1.35e-12 2.40 2e-13 6.00
8000 241254 4 0.05 2.52e-12 2.97 6e-13 5.00
8000 154699 4 0.04 1.77e-12 2.70 6e-13 5.00

10000 721838 4 0.07 9.24e-13 3.70 3e-13 9.00
10000 536027 4 0.06 9.75e-13 3.67 9e-13 8.00
10000 377435 4 0.05 1.98e-12 3.97 5e-13 7.00
10000 242951 4 0.04 1.76e-12 4.51 3e-13 7.00

Table 4.2: Comparison between BP and SDPcl performances on a set of noiseless
problems.

4.8 Conclusions

In this chapter we introduced the MDGP and the SNLP as subclasses of instances of the

DGP. After a brief review of the existing approaches for solving the DGP, we described

few combinatorial requirements necessaries to reduce the search space from continuous to

discrete, by defining the DDGP. We explained the needed requirements for discretizing

also MDGP and SNLP instances in order to apply the BP algorithm proposed in [94, 97].

In such papers BP is used to solve only DMDGP instances, but we adapted it in a

later stage to solve also SNLP instances [51]. In order to test the efficacy of BP in

both problems, we reported the computational results obtained comparing BP with

two well-know algorithms. For the molecular case, we reported the comparison results

between BP and DGSOL [103] on a set of molecular sparse instance not previously

ordered. These instances were artificially generated from a subset of proteins having

known conformations in the PDB [19]. For the sensor networks case, we compared BP

and SDPcl [85] on a set of instances generated with same parameters.

The results highlight the importance of the discretization of the solution space, by

finding faster an optimal solution without loss of quality. On the other hand, algorithms

working on Euclidean spaces are often iterative on the graph vertices, and therefore

require a vertex order. For this purpose, we have shown that a vertex re-ordering might
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transform an instance that did not belong to the class of the DDGP to one that instead

satisfied the assumptions of discretization. Comparing the average CPU time needed

to reorder a DMDGP instance and a DSNLP instance, we observed that the reordering

algorithm was very fast only with MDGP instances. In fact, the longest molecular chain

represented by a graph with n = 2259 and |E| = 21049 was reordered in less than 0.20

[89]. This could be imputed to two factors: (i) the larger cardinality of the vertex set in

DSNLP instances (the smallest had |V | = 2000), and (ii) a better spatial conformation

of the graph for molecular instances given by the protein backbone shape.

In many real cases, the distances are not provided as exact values but they are given in

estimated ranges (e.g., in protein modeling the distances are often provided with some

estimated bounds), by involving the not uniquely of the solution. For this purpose,

we are working on a new extension the BP algorithm in order to manage this kind of

data. In this framework we refer to the iBP algorithm, presented in [91] for solving

MDGPs, which is is the first algorithm implementing a discrete search which is able

to manage interval data. In particular, we are carrying out the development of new

discretization orders for the amino acids that can be found in proteins. Together with

the discretization order for the protein backbone described in Section 4.4, these orders

allow for discretizing all instances concerning proteins composed by these amino acids.

In this way, the employment of the iBP algorithm is possible, and all distances estimated

through NMR experiments can be exploited for efficiently pruning parts of the iBP search

tree.

In conclusion, future researches about the MDGP will be devoted to the identification of

special orders for the side chains in proteins. The aim is to improve the iBP algorithm, so

that it can output more representative solutions. In the framework of the wireless sensor

networks, instead, we will complete the corresponding iBP version and we will focus on

the improvement of the reordering procedure, which is crucial to obtain a remarkable

speed-up of the algorithm in order to test larger instances.
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Conclusions

5.1 Summary

In this dissertation we studied two combinatorial problems related to the molecular

structure determination. Knowing the three-dimensional structures of RNA and pro-

teins is essential to understand their biological functions. Unfortunately, these structures

are very difficult to determine for various technical reasons [18]. The two main experi-

mental techniques used to derive structure models of biological biomolecules are X-ray

crystallography and Nuclear Magnetic Resonance spectroscopy. X-ray crystallography

uses diffraction data of a molecule crystal to find the electron density distribution of

the molecule, and hence its structure; whereas the magnetic resonance spectra of the

nuclear spins in a molecule can be detected by NMR spectroscopy and used to estimate

the distances between certain pairs of atoms and subsequently, the coordinates of the

atoms in the molecule. In either case, a set of experimental data is collected and a math-

ematical problem needs to be solved to form the structure [119]. X-ray crystallography

outdoes NMR in the resolution of experimental data. Nevertheless, the crystallization

of several RNA molecules is not possible, it does not reflect the molecular dynamics,

and often it is not reproduce the real conformation of the molecules [124, 129]. High

resolution NMR study can provide both structural details and dynamic characteristics

of the molecule. For these reasons, NMR is a powerful tool for the analysis of folding

transitions in molecules. The process of molecular structure determination by NMR data

consists of a sequence of steps: data acquisition and processing, peak picking, assign-

ment, derivation of spatial restraints, structure calculation, and validation [70, 124, 129].

The two problems discussed in this dissertation cover two steps of this process.

The first topic is the orderly colored longest path problem for RNA structure determi-

nation. We described the problem of assignment pathway reconstruction of a RNA
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molecule by 3D NMR maps. The idea is that determining the sequence of interac-

tions among atoms involved in the NMR experiment can lead to determine the shape

of such biological molecule. We proved that assignment pathway problem is NP-hard,

and showed a formulation based on edge-colored graphs. Taking into account that in-

teractions between consecutive nuclei in the NMR spectrum are different according to

the type of residue along the RNA chain, each color in the graph represented a type of

interaction. Thus, we represented the sequence of interactions as the problem of find-

ing a longest (hamiltonian in the best case) path under the constraint that the edges

of the path followed a given order of colors. We defined this problem as the Orderly

Colored Longest Path problem on a c-edge-colored graph (OCLP). We also showed how

the OCLP problem can be adapted to model different types of real problems. Next,

we described three alternative IP formulations used to solve the OCLP problem, which

differ in the way the orderly colored paths over a directed network. In order to prove

the efficacy of this approach, we tested our models over two sets of randomly generated

problems with different characteristics. Moreover, we proposed a second instance gen-

erator that takes into account the biological component information of the problem. In

fact, assignment of cross-peaks on the 3D NMR maps recorded for RNA molecules is a

relatively new, and not experimental data collected for already solved cases are available

for an extended analysis.

The first set of experiments concerned instances generated as edge-colored graph on

which paths of 2 or 3 colors were sought. The comparison among the three formulations

in the first set of experiments has shown that two models, where cycle separation was

performed iteratively adding constraints to a lighter formulation, performed much bet-

ter. For this reason we considered a second set of experiments focused only on these two

models. We developed a Branch & Cut procedure that uses a cycle separation polyno-

mial oracle in order to enumerate all optimal solutions for the majority of the considered

problems on a standard computer. The computational results of the second set of experi-

ments confirmed that the proposed models were valid options to solve 3D-APP problems

of realistic sizes. In particular, most of large size instances (100 cross-peaks) have been

solved within the time bound of one hour.

Once resonance signals have been identified, it is possible to calculate some structural

restraints of the molecule, such as molecular distances (e.g., distances between hydrogen

atoms), torsion angles (dihedral angles around certain bonds), coupling constants, etc.

[142]. The most popular methods used for structure generation are distance geometry

(DG) methods developed in order to satisfy the covalent and structural restraints [90].

The atoms coordinates provide a structure that can be considered as an approximation

to the real one [74]. This structure can be refined by using optimization, e.g., by an

energy minimization procedure with the distance ranges as structural restraints. Here
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takes place the second topic of the thesis, the discretizable distance geometry problem

(DDGP). This is a revision of the above mentioned distance geometry problem (DGP),

which, in addition to protein modeling, has applications in many other fields from statis-

tics to engineering. After a brief review of the existing approaches for solving the DGP,

we showed few combinatorial requirements necessaries to reduce the search space from

continuous to discrete, by defining the DDGP. We focused on two particular applications

of this problem, one in protein modeling and one in sensor networks localization. Thus,

we defined the discretizable molecular distance geometry problem (DMDGP) and the

discretizable sensor network localization problem (DSNLP) respectively. We described

the Branch & Prune algorithm proposed in [94, 97] for molecular instances, and a new

version of this combinatorial algorithm that we developed in order to solve sensor net-

work instances. In order to test the efficacy of BP in both problems, we have shown the

computational results obtained comparing BP with two well-know algorithms. For the

molecular case, we reported the comparison results between BP and DGSOL [103] on a

set of molecular sparse instance not previously ordered. These instances were artificially

generated from a subset of proteins having known conformations in the PDB [19]. For

the sensor networks case, we compared BP and SDPcl [85] on a set of instances gener-

ated with same parameters.

The results highlight the importance of the discretization of the solution space, by find-

ing faster an optimal solution without loss of quality. On the other hand, algorithms

working on Euclidean spaces are often iterative on the graph vertices, and therefore

require a vertex order. For this purpose, we have shown that a vertex re-ordering might

transform an instance that did not belong to the class of the DDGP to one that instead

satisfied the assumptions of discretization. Comparing the average CPU time needed

to reorder a DMDGP instance and a DSNLP instance, we observed that the reordering

algorithm was very fast only with MDGP instances. In fact, the longest molecular chain

represented by a graph with n = 2259 and |E| = 21049 was reordered in less than 0.20

[89]. This could be imputed to two factors: (i) the larger cardinality of the vertex set in

DSNLP instances (the smallest had |V | = 2000), and (ii) a better spatial conformation

of the graph for molecular instances given by the protein backbone shape.

5.2 Ongoing work and Future directions

As regards the OCLP problem for RNA structure determination, we are working on

the extension of the method to large real experimental data as well as to improve the

spectra generator, in order to make it also useful to test alternative methods. We are

developing some theoretical conjectures (i.e., about the presence of OCLP (or OCHP)

in the graph related to some its characteristics), and improving the formulations and



Chapter 5. Ongoing work and Future directions 98

the whole assignment procedure. Moreover, it is our intention to implement a dynamic

programming algorithm working in presence of cycles, in order to solve an instance

without call the commercial solvers.

Future researches on MDGP will be devoted to the identification of special orders for the

side chains in proteins. In many real cases, indeed, the distances are only provided for

the protein backbone. Moreover, such distances are often not provided as exact values

but they are given in estimated ranges (e.g., in protein modeling the distances are often

provided with some estimated bounds), by involving the not uniquely of the solution. For

this purpose, we are working on a new extension the BP algorithm in order to manage

this kind of data. In this framework we refer to the iBP algorithm, presented in [91]

for solving MDGPs, which is is the first algorithm implementing a discrete search which

is able to manage interval data. Together with the discretization order for the protein

backbone described in this thesis, this new ordering allows to discretize all instances

concerning proteins also composed by amino acids. In this way, all distances estimated

through NMR experiments can be exploited for efficiently pruning parts of the iBP

search tree, and it can output more representative solutions. In the framework of the

wireless sensor networks, instead, we will complete the corresponding iBP version and

we will focus on the improvement of the reordering procedure, which is crucial to obtain

a remarkable speed-up of the algorithm in order to test larger instances.



Appendix A

Algebra background

A.1 Vectors and Matrices

In this thesis, we work with vectors and matrices whose components are real numbers.

Vectors are denoted by lowercase letters, and matrices by uppercase letters. The space

of real vectors of length n is denoted by Rn, and the space of real m × n matrices is

denoted by Rm×n.

Given a vector x ∈ Rn, we use xi to denote its ith component, and assume that x

is a column vector such that its transpose, denoted by xT , is a row vector, i.e. x =

(x1, · · · , xn)T . The product between a vector x and a scalar α is αx = (αx1, · · · , αxn)T .

If x, y ∈ Rn, the standard inner product is

xy = xT y =
n∑
i=1

xiyi.

Given a matrix A ∈ Rn, we specify its components by double scripts as aij , i = 1, · · · ,m
and j = 1, · · · , n. Let x ∈ Rn be a vector and let A ∈ Rn be a matrix. Then the

matrix-vector product b = Ax is the m-dimensional column vector defined as follows:

bi =
n∑
j=1

aijxj , i = 1, · · · ,m.

The transpose of an m × n matrix A, denoted by AT , is the n × m matrix such that

aTij = aji, i = 1, · · · , n and j = 1, · · · ,m. A matrix A is said to be square if m = n. A

square matrix A is symmetric if AT = A. The diagonal of the matrix A ∈ Rn consists

of the elements aii, for i = 1, · · · ,min(m,n). A is called diagonal if aij = 0 whenever

i 6= j. The identity matrix, denoted by I, is the square diagonal matrix whose diagonal

elements are all 1.
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A square matrix A ∈ Rn is called nonsingular if there exists an n×n matrix B such that

AB = BA = I. We denote B by A−1 and call it the inverse of A. For a nonsingular

matrix A ∈ Rn and for any vector b ∈ Rn, there exists x ∈ Rn such that Ax = b.

A set of n vectors xi, · · · , xn is linearly independents if none of them can be written as

linear combination of the others, that is iff does not exist n scalars α1, · · · , αn not all

zero such that
n∑
i=1

αixi = 0.

If such scalars exist, then the vectors xi, · · · , xn are said to be linearly dependents.

A.2 Norms

A norm is a mapping || · || from Rn to the nonnegative real numbers that satisfies the

following:

- ||x|| = 0⇔ x = 0 for all x ∈ Rn,

- ||αx|| = |α| ||x|| for all α ∈ R and x ∈ Rn,

- ||x+ y|| ≤ ||x||+ ||y|| for all x, y ∈ Rn.

For any vector x ∈ Rn, one can define the following norms:

- ||x||1 =
∑n

i=1 |xi|,

- ||x||2 =
√∑n

i=1 |xi|2,

- ||x||∞ = maxi=1,··· ,n |xi|.

The norm || · ||2 is often called the Euclidean norm, and it satisfies the Cauchy-Schwarz

inequality

||xT y|| ≤ ||x||2||y||2,

with equality if and only if one of these vectors is a nonnegative multiple of the other.

A.3 Gaussian Elimination

Let A ∈ Rn be the square matrix whose columns are the vectors ai, i = 1, · · · , n. If the

vectors ai, · · · , an are linearly independent then this matrix is nonsingular. Hence the

nonlinear equations

||x− ai||22 = d2
i , i = 1, · · · , n,



Appendix A. Gaussian Elimination 101

or equivalently,

xTx− 2xTai + aTi ai = d2
i , i = 1, · · · , n,

can be rewrite as

aTi x = (r + bi)/2, i = 1, · · · , n (A.1)

where r = xTx and bi = aTi ai − d2
i , i = 1, · · · , n.

In matrix form (A.1) become ATx = (re+ b)/2, or

x = (ru+ v)/2, (A.2)

where e ∈ Rn denotes the vector e = [1, 1, · · · , 1]T and

u = A−T e, v = A−T b. (A.3)

Hence, r = xTx = 1
4(ru + v)T (ru + v) or (uTu)r2 + (2uT v − 4)r + vT v = 0, which is a

quadratic equation in the scalar r. Solving for r gives,

r =
2− uT v ±

√
(2− uT v)2 − (uTu)(vT v)

uTu
, (A.4)

and the two solutions for x can then be recovered using (A.2).

The above approach is efficient, requiring the solution of two linear systems of equations

(A.3) of order n [45].
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Simplex volumes and the

Cayley-Menger determinant

B.1 The simplex volumes

A simplex in n-dimensional Euclidean space is a convex solid with n+ 1 vertices. Thus

in one-dimensional space a simplex is just the line segment between two specified points.

A simplex in two-dimensional space is a triangle (three vertices), a simplex in three-

dimensional space is a tetrahedron (four vertices), and so on. Hence, any vertex of a

simplex in a k-dimensional space can be regarded as the apex of a pyramid on a (k-1)-

dimensional base defined by the other vertices.

The content of a simplex (i.e., the length of a one-dimensional simplex, the area of a

two-dimensional simplex, the volume of a three-dimensional simplex, and so on) can be

expressed very simply as a function of the coordinates of the n+ 1 vertices.

Let Vn−1 denote the content of the base, the content Vn of the pyramid is given by

Vn =
1

n!

n∏
i=1

hi, (B.1)

where h1 is the distance between the first two vertices, h2 is the height of the third

vertex above the line containing those two vertices, h3 is the height of the fourth vertex

above the plane containing the first three vertices, and so on. Thus the content of

a n-dimensional simplex is 1/n! times the heights of the vertices (taken in any linear

sequence) above the subspace containing the previous vertices.

In matrix terms, we can rewrite (B.1) as the determinant of an n× n matrix consisting

of the n coordinates of each of the remaining n vertices. For example, with n = 3 the

content of the corresponding 3-simplex, with the fourth vertex located at the origin, is
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given by

V3 =
1

3!


x1 y1 z1

x2 y2 z2

x3 y3 z3

 ,
where (xi, yi, zi) with i = 1, 2, 3 are the coordinates of the other three vertices.

We can also write the volume of the simplex without requiring one of them to be at the

origin, but considering a fourth vertex (x4, y4, z4). The content of this 3-simplex is

V3 =
1

3!


x1 − x4 y1 − x4 z1 − x4

x2 − x4 y2 − x4 z2 − x4

x3 − x4 y3 − x4 z3 − x4

 .
By co-factor decomposition we can write this as the determinant of an n+2 dimensional

matrix

V3 =
1

3!


1 x1 − x4 y1 − x4 z1 − x4

1 x2 − x4 y2 − x4 z2 − x4

1 x3 − x4 y3 − x4 z3 − x4

1 0 0 0

 .
We can make use of the fact that adding a multiple of any column (or row) to another

column (or row) does not change the determinant. In fact, if any column vector ci is

replaced with ci + kcj , where cj is one of the other column vectors, then each co-factor

is multiplied by an element of ci + kcj , and hence it is clear that the determinant is the

sum of the original determinant plus the determinant of the original matrix where ci has

been replaced by kcj . But the latter determinant is identically zero, because one column

is a multiple of another. Therefore, applying this proposition to the above matrix, we

can add x4 times the first column to the second column, obtaining:

V3 =
1

3!


1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 x4 x4

 .

This derivation is completely general, and applied to simplexes in n dimensions, enables

us to compute the content in terms of the coefficients of the (n+ 1) vertices.

B.2 The Cayley-Menger determinant

In the thesis we express the volume of a simplex in terms of the edge lengths rather than

the vertex coordinates. To illustrate how we can derive such an expression, consider a
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two-dimensional simplex with vertices pi = (xi, yi), i = 1, 2, 3. We know the content is

given by the determinant

V2 =
1

2!


1 x1 y1

1 x2 y2

1 x3 y3

 .
Since a matrix and its transpose have the same determinant, we also have

(V2)2 =

1

2


1 x1 y1

1 x2 y2

1 x3 y3




1

2


1 1 1

x1 x2 x3

y1 y3 y3


 =

1

4


1 + p1p1 1 + p1p2 1 + p1p3

1 + p2p1 1 + p2p2 1 + p2p3

1 + p3p1 1 + p3p2 1 + p3p3

 ,
where pipj = xixj+yiyj . We can express this as the determinant of a matrix of dimension

increased by one, as follows.

(V2)2 =
1

4


1 1 1 1

0 1 + p1p1 1 + p1p2 1 + p1p3

0 1 + p2p1 1 + p2p2 1 + p2p3

0 1 + p3p1 1 + p3p2 1 + p3p3

 .

We again make use of the fact that the determinant of a matrix is unchanged if any

multiple of a row is added to any other row. Thus we can subtract the first row from

each of the other rows to give

(V2)2 =
1

4


1 1 1 1

−1 p1p1 p1p2 p1p3

−1 p2p1 p2p2 p2p3

−1 p3p1 p3p2 p3p3

 .

Let’us notice that the determinant of the co-factor of the upper left element is zero, as

can be seen from the fact that
0 x1 y1

0 x2 y2

0 x3 y3




0 0 0

x1 x2 x3

y1 y2 y3

 =


p1p1 p1p2 p1p3

p2p1 p2p2 p2p3

p3p1 p3p2 p3p3

 .
The determinants on the left are obviously zero, so the right side is also zero. Hence

the upper-left element of the prior matrix has no effect on the value of the determinant,

so we can set it to zero. Also, making use of the fact that multiplying the elements of

any column (or row) by a constant has the effect of multiplying the determinant by that
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constant, we can negate the first column to give

(V2)2 = −1

4


0 1 1 1

1 p1p1 p1p2 p1p3

1 p2p1 p2p2 p2p3

1 p3p1 p3p2 p3p3

 .

If we multiply each of the last three columns by -2, and then multiply the first row by

-1/2, this expression becomes

(V2)2 = − 1

16


0 1 1 1

1 −2p1p1 −2p1p2 −2p1p3

1 −2p2p1 −2p2p2 −2p2p3

1 −2p3p1 −2p3p2 −2p3p3

 .

Now, for i = 1, 2, 3, we add the first column multiplied by pipi to the (i+ 1)th column,

and we add the first row multiplied by pipi to the (i+ 1)th row, to give the expression

(V2)2 = − 1

16


0 1 1 1

1 p2
1 − 2p1p1 + p2

1 p2
1 − 2p1p2 + p2

2 p2
1 − 2p1p3 + p2

3

1 p2
2 − 2p2p1 + p2

1 p2
2 − 2p2p2 + p2

2 p2
2 − 2p2p3 + p2

3

1 p2
3 − 2p3p1 + p2

1 p2
3 − 2p3p2 + p2

2 p2
3 − 2p3p3 + p2

3

 .

The square of the distance between pi and pj is d2
i,j = p2

i − 2pipj + p2
j = (xi − xj)2 +

(yi − yj)2. Thus, we compute the Cayley-Menger determinant for the area of a triangle

in terms of the edge lengths as

(V2)2 = − 1

16


0 1 1 1

1 0 d2
1,2 d2

1,3

1 d2
2,1 0 d2

2,3

1 d2
3,1 d2

3,2 0

 .

Therefore, the Cayley-Menger determinant giving the squared content of an n-dimensional

simplex can be written as

(Vn)2 = −
|d2
i,j |

(−2)n(n!)2
.

where i, j = 0, 1, · · · , n+ 1.

Thus the squared content of a one-dimensional simplex (i.e., a line segment between two
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vertices) can trivially be expressed in terms of the edge length as

2(V1)2 =


0 1 1

1 0 d2
1,2

1 d2
2,1 0

 = d2
1,2 + d2

2,1 = 2d2
1,2

Likewise the volume of a tetrahedron is given in terms of the edge lengths by

(V3)2 = − 1

16



0 1 1 1 1

1 0 d2
1,2 d2

1,3 d2
1,4

1 d2
2,1 0 d2

2,3 d2
2,4

1 d2
3,1 d2

3,2 0 d2
3,4

1 d2
4,1 d2

4,2 d2
4,3 0


.
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[103] Moré J.J., Z. Wu, Global continuation for distance geometry problems, SIAM J.

Optim., 7: 814-836, 1997.

[104] Mraz M., S. Pospisilova, MicroRNAs in chronic lymphocytic leukemia: From

causality to associations and back, Expert Review of Hematology 5(6): 579-581,

2012.

[105] Mucherino A., C. Lavor, L. Liberti, The Discretizable Distance Geometry Problem,

Optimization Letters, 6(8): 1671-1686, 2012.



Bibliography 115

[106] Mucherino A., C. Lavor, T. Malliavin, L. Liberti, M. Nilges, N. Maculan, Influ-

ence of pruning devices on the solution of Molecular Distance Geometry Problems,

Lecture Notes in Computer Science, 6630: 206-217, 2011.

[107] Mucherino A., L. Liberti, C. Lavor, MD-jeep: an Implementation of a Branch

& Prune Algorithm for Distance Geometry Problems, Lectures Notes in Computer

Science, in Proc. of ICMS10, Kobe, Japan, 6327: 186-197, 2010.

[108] Myers B.R., Enumeration of tour in Hamiltonian rectangular Lattice graphs, Math-

ematical Magazine, 54: 19-23, 1981.

[109] Pal A., Localization algorithms in Wireless Sensor Networks: current approaches

and future challenges, Network Protocols and Algorithms, 2(1), 2010.

[110] Papadimitriou C.H., K. Steiglitz, Combinatorial optimization: algorithms and

complexity, Dover Pubblications, Inc., Mineola, NY, USA, 1998.

[111] Petitjean M., Sphere unions and intersections and some of their applications in

molecular modeling, in Distance Geometry: Theory, Methods, and Applications, A.

Mucherino, C. Lavor, L. Liberti, and N. Maculan (Eds), Springer, Berlin, 2013.

[112] Pevzner P.A., Computational Molecular Biology: an algorithmic approach, MIT

Press, 2000.

[113] Pevzner P.A., DNA Physical mapping and alternating eulerian cycles in colored

graphs, Algorithmica, 13(1-2): 77-105, 1995.

[114] Raghavan P., E. Upfal, Efficient routing in all optical networks, in Proc. of 26th

ACM STOC, 1994.

[115] Restrepo G., J.L. Villaveces, Mathematical thinking in chemistry, Hyle: Interna-

tional Journal for Philosophy of Chemistry, 18: 3-22, 2012.

[116] Sachenbacher M., M. Leucker, A. Artmeier, J. Haselmayr, Efficient Energy-

Optimal Routing for Electric Vehicles, in Proc. of AAAI, 2011.

[117] Savelsbergh M.W.P., M. Sol, The general pickup and delivery problem, Transport

Sci, 29: 17-29, 1995.

[118] Saxe J.B., Embeddability of weighted graphs in k-space is strongly Np-hard, in

Proc. of 17th Allerton Conference in Communications, Conrol and Computing,

Monticello, 480-489, 1979.

[119] Schlick T., Molecular Modeling and Simulation: An Interdisciplinary Guide,

Springer, 2003.



Bibliography 116

[120] Schmidt E., P. Güntert, A new algorithm for reliable and general NMR resonance

assignment, J. Am. Chem. Soc., 134: 12817-12829, 2012.

[121] Selkoe D.J., Folding proteins in fatal ways, Nature 426(6968): 900-904, 2003.

[122] Sippl M., H. Scheraga, Cayley-Menger coordinates, Proc. Natl. Acad. Sci. USA,

83: 2283-2287, 1986.

[123] Sit A., Z. Wu, Solving a generalized distance geometry problem for protein structure

determination, Bullettin of Mathematical Biology, 73: 2809-2836, 2011.

[124] Spronk C.A.E.M., S.B. Nabuurs, E. Krieger, G. Vriend, G.W. Vuister, Validation

of protein structures derived by NMR spectroscopy, Progress in Nuclear Magnetic

Resonance Spectroscopy, 45: 315-337, 2004.

[125] Sum M., Xiong M., A mathematical programming approach for gene selection and

tissue classification, Bioinformatics, 19(10): 1243-51, 2003.

[126] SylvesterJ., Chemistry and algebra, Nature, 17: 284-284, 1878.

[127] Szachniuk M., M.C. De Cola, G. Felici, D. de Werra, J. Blazewicz, Optimal pathway

reconstruction on 3D NMR maps, Discrete Applied Mathematics, in revision.

[128] Szachniuk M., M.C. De Cola, G. Felici, J. Blazewicz, The Orderly Colored Longest

Path Problem - A survey of applications and new algorithm, RAIRO-Operations

Research, accepted.

[129] Szachniuk M., M. Popenda, R.W. Adamiak, J. Blazewicz, An Assignment Walk

through 3D NMR Spectrum, in Proc. of CIBCB’2009, 215-219, 2009.

[130] Szeider S., Finding paths in graphs avoiding forbidden transitions, Discrete Appl.

Math., 126: 239-251, 2003.

[131] Tseng I.-L., H.-W. Chen, C.-I. Lee, Obstacle-Aware longest path routing with par-

allel MILP solvers, in Proc. of WCECS, 2010.

[132] Tubaishat M., S. Madria, Sensor networks: an overview, in IEEE Potentials, 22:

20-23, 2003.

[133] Uehara R., Y. Uno, Effcient algorithms for the longest path problem, in Proc. of

15th ISAAC, 871-883, 2004.

[134] Uehara R., G. Valiente, Linear structure of bipartite permutation graphs and the

longest path problem, Inform. Process. Lett., 103: 71-77, 2007.



Bibliography 117

[135] Ulrich E.L., H. Akutsu, J.F. Doreleijers, Y. Harano, Y.E. Ioannidis, J. Lin,

M. Livny, S. Mading, D. Maziuk, Z. Miller, E. Nakatani, C.F. Schulte, D.E. Tolmie,

R.K. Wenger, H. Yao, J.L. Markley, BioMagResBank, Nucleic Acids Research 36(1):

D402-D408, 2008.

[136] Watkins J.J., R.L. Hoenigman, Knight’s tours on a torus, Mathematics, 70: 175-

184, 1997.
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