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Abstract

The discovery of a new particle within the search for the Standard Model Higgs
boson in the H → ZZ(∗) → 4` channel at ATLAS, with about 25 fb−1 of data
collected in pp collisions at the LHC, is discussed. Different hypotheses on the
quantum numbers of the new boson are tested, by means of spin–parity studies
based on a matrix element description of the H → ZZ decay amplitude. Prospects
for the measurement of the tensor structure of the HZZ vertex in the spin zero
hypothesis at a high–luminosity LHC are also presented.
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Introduction

The last decades of high energy experiments have verified to an impressive level of
accuracy the predictions of the Standard Model of particle physics. The question
on how particles acquire mass has in the Standard Model an answer — the Higgs–
Brout–Englert mechanism — which remained for a long time still to be confirmed
by observations. The existence of a scalar field is predicted to give mass to fermions
and vector bosons via Yukawa couplings and spontaneous breaking of the underlying
symmetry of the standard theory, leading to the emergence of a physical scalar
particle, the Higgs boson.

The fact that the mass of this particle, mH , is a free parameter of the Standard
Model has motivated the construction of the Large Hadron Collider (LHC), colliding
proton beams at unprecedented center–of–mass energies. High precision detectors
like ATLAS have been designed to obtain the broadest sensitivity to a possible Higgs
signal in the full mass range. Different reconstruction strategies have been designed
for different values of mH , at which different decay channels become more interesting
than others. Among them, the H → ZZ(∗) → 4` channel provides high signal
sensitivity, giving a significant contribution to the discovery potential for masses
from 100GeV to the TeV region, with a high signal to background ratio despite
the low cross–section times branching ratio. Lepton momentum reconstruction
performance leads to an excellent four–lepton mass resolution, of the order of
2÷ 4GeV, which allows a high precision measurement of mH . Moreover, the fact
that the decay chain is fully reconstructed provides a clean and clear signature from
which information about the inner structure of the Higgs decay can be extracted.

This thesis work started after the HCP conference in November 2011, where
combined data from the ATLAS and CMS experiments excluded a wide range of
Higgs masses with up to 2.3 fb−1 of pp collision data at

√
s = 7TeV, leaving only

the 114GeV < mH < 141GeV region as a viable one for the observation of a low
mass Higgs boson consistent with electroweak precision measurements. The author
has been a core developer of the H → ZZ(∗) → 4` analysis, and has contributed to
optimize both for the searches at low and high values of mH . He worked first to the
introduction of the Z mass constraint fit method in the 2011 data analysis, which
brought an O(10%) improvement in mass resolution and consequently a O(5%)
improvement in signal sensitivity. He then focused on the optimization of lepton
selection and isolation criteria, to maximize signal efficiency thus keeping under
control contamination from irreducible and reducible backgrounds, with particular
attention on event pile–up effects which became more and more relevant with the
increasing instantaneous luminosity in 2012.

The Higgs search culminated in July 4th, 2012, with the public announcement of
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the observation of a new particle in the search for the Higgs boson in the H → γγ and
H → ZZ(∗) → 4` decay channels with the first ≈ 11 fb−1 collected at

√
s =7TeV and

8TeV, for a combined significance against background of more than 5σ. Naturally
the question arised on whether the new particle observed searching for the Higgs
boson actually is the Standard Model Higgs boson, or not. The study of its quantum
numbers by means of the determination of its spin–parity state JPC is a crucial
step for the understanding of the properties of the new boson: the observed particle
could be a pseudo–scalar boson, a graviton–like 2+ state, a spin 1 state or also
a spin 0 state which is not eigenstate of CP or shows deviations in the decay
amplitude from the Standard Model expectation, which might hint to new physics.
The H → ZZ(∗) → 4` decay channel is the most suitable instrument to achieve this
goal, as one can reconstruct the full decay chain and derive the intrinsic properties of
the H → ZZ decay amplitude from angular and invariant mass distributions of the
final state. The author developed a matrix–element based technique which allowed
the exclusion with the full ≈ 25 fb−1 statistics of many alternative JP hypotheses
against the Standard Model expectation, and will allow in the near future to further
investigate the tensor structure of the HZZ vertex in the J = 0 assumption.

This thesis is organized as follows. In Chapter 1, a brief introduction to Higgs
boson physics is presented, together with the current status of the Higgs boson
searches. In Chapter 2, a description of the scope and features of the LHC and the
ATLAS experiment is provided. In Chapter 3, a description of lepton identification
and reconstruction techniques used for the analyses presented in this thesis is provided.
In Chapter 4, a general introduction on the main features of the H → ZZ(∗) → 4`
channel is presented, together with the instruments which exploit the four–lepton
signature to investigate the HZZ vertex with matrix element techniques. In Chapter
5, the results of the H → ZZ(∗) → 4` search with the most recent analysis of
the full 2011 and 2012 combined datasets are discussed. In Chapter 6, the JP –
MELA technique is introduced, and results on hypothesis testing of different specific
models against the Standard Model hypothesis are shown. In Chapter 7, two
techniques based on the same matrix element approach are presented, which allow
to probe coupling parameters describing the most general H → ZZ decay amplitude.
Prospects on the sensitivity which can be reached with a High Luminosity LHC are
discussed. Conclusions are drawn in Chapter 8.
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Chapter 1

The Higgs Boson

The Standard Model of Particle Physics is currently the best description of the strong
and electroweak interactions between elementary particles. Many high energy physics
experiments have shown the impressive level of agreement between its predictions
and precision measurements, culminating with the recent discovery of a new particle
within Higgs boson searches by ATLAS and CMS. In this chapter, an introduction
to the theoretical framework of the Standard Model is provided, with particular
focus on the role of the spontaneous symmetry breaking and the Higgs mechanism.

1.1 The Standard Model of Particle Physics

Among the four known forces which occur in nature – the electromagnetic force, the
weak interactions, the strong nuclear force and the gravitational force, the first three
are the dominant ones in the scale of particle physics1. The aim of the Standard
Model (SM) is to provide an unified theoretical description of these three forces,
using the language of Quantum Field Theory (QFT).

1.1.1 The Role of Symmetries

QFT arises as a solution to the problem of unifying quantum mechanics and relativity.
Particles in QFT are described by local fields ψ(x), evaluated in the space–time
point x. Dynamics can be described using a lagrangian density L, which is a function
of the field ψ and its space–time derivatives ∂µψ; classical equations of motion are
determined by the requirement of the action

S =
∫

d4xL (ψ, ∂µψ)

1Gravitational force is negligible up to an energy scale for which the Compton wave length λ̄ of
a particle is comparable to its Schwarzschild radius, i.e.

λ̄ = ~
mc

= GN
m

c2 ,

where ~ is the Planck constant divided by 2π, c is the speed of light in vacuum and GN the
gravitational constant. This happens when the particle mass m is at the order of 1× 1019 GeV,
which is called Planck mass.
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to be stationary, i.e. δS = 0. The gauge group of the theory is the continous group
of local transformations of the fields for which the variation δS remains unchanged.

Symmetries observed in Nature motivate the gauge structure of the lagrangian
density of the SM, LSM. Since, by Noether’s theorem, each continuous symmetry of
the lagrangian density yields to a conserved current and hence a conserved charge,
observed symmetries are accounted for by symmetries of LSM under transformations
of fields, U2.

The SM is a gauge theory with lagrangian density

LSM = LQCD + LEW ,

which is locally invariant under gauge transformations belonging to the symmetry
group

SU(3)C ⊗ SU(2)L ⊗ U(1)Y .
The SU(3)C group refers to colour, the conserved charge of Quantum Chromody-
namics (QCD) – the theory which describes strong interactions between quark and
gluons. The SU(2)L ⊗ U(1)Y group refers to the electroweak interactions, which
conserve the weak hypercharge Y and isospin I.

1.1.2 Quantum Electrodynamics

A first illustrative example of how symmetries play role in the way the lagrangian
density is written is Quantum Electrodynamics (QED). QED is an abelian gauge
theory describing an electrically charged particle with spin 1/2 and mass m (and,
eventually, the one of its antiparticle), represented by its field ψ, and its electromag-
netic field, a massless vector boson (the photon), represented by the field Aµ. The
theory is invariant with respect to the unitary joint transformations

ψ(x)→ U(x)ψ(x) = eıα(x)ψ(x),

Aµ(x)→ U(x)Aµ(x) = Aµ(x) + 1
e
∂µα(x),

where α(x) is an arbitrary function of the space–time coordinates. The group of
these transformations is U(1).

The lagrangian density is

LQED = −1
4F

µνFµν + ψ̄(ıγµDµ −m)ψ, (1.1)

where γµ are the 4× 4 Dirac matrices3 ψ̄ = ψ†γ0, Fµν is the electromagnetic field
strength tensor4 and the covariant derivative Dµ is defined by

Dµ = ∂µ − ıeAµ.
2An example of conserved charge is the electric charge, which is conserved in electromagnetic

interactions. This conservation law follows from, and is represented by, the invariance of the
lagrangian density with respect to the unitary global gauge transformation U :

ψ(x)→ Uψ(x) = eıαψ,

where ψ(x) is the quantum field evaluated at the space–time point x and α is an arbitrary constant.
3It holds {γµ, γν} = 2gµνI4, where gµν is the metric tensor and I4 the 4× 4 unit matrix.
4The electromagnetic field strength tensor is defined by

Fµν = ∂νAµ − ∂µAν .
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The coupling constant between the fermion and photon fields is e, the electric
charge of the fermion, which gives the magnitude of the interaction term in Eq.
(1.1). A consequence of the invariance of Eq. (1.1) under U(1) transformations, and
in particular of global phase transformations of the Dirac field ψ, is the conservation
of the Noether’s current Jµ = ψ̄γµψ and hence of the electric charge.

Precision measures, such as the one of the anomalous magnetic moment of the
electron and the Lamb shift of hydrogen energy levels, have shown an impressive
agreement between QED predictions and experimental data.

1.1.3 Strong Interactions

Strong interactions involve quarks, which are spin 1/2 fermions, and gluons, which
are spin 1 bosons (vector bosons); colour is the conserved charge of these interac-
tions. Quarks and gluons appear in six different colours (red, green, blue and the
corresponding anticolours).

Evidence of colour as a quantum number conserved in strong interactions has
been provided both by the decay of the ∆++ resonance and by the study of R =
σhadrons/σmuons at increasing

√
s in e+e− scattering. Coloured particles are not

observed singularly (colour confinement), i.e. only colour–neutral states can be
observed in Nature.

QCD is a non–abelian gauge theory which aims at describing strong interactions.
Its lagrangian density LQCD is symmetric under transformations of the SU(3) group;
if we assume only one quark flavour is involved5, it can be written as

q(x)→ U(x)q(x) = e−ıgSαa(x)Taq(x),

where gS = 4παS is the coupling constant of strong interactions, αa are arbitrary
functions and Ta are the eight generators of SU(3)6.

In a way analogous to QED, the eight generators of SU(3) call for the introduction
of eight fields, the gluonsGa, which are mediators of strong interactions and transform
as

Gaµ → Gaµ −
1
gS
∂µαa − fabcαbGcµ.

The lagrangian density can then be written in terms of the covariant derivative

Dµ = ∂µ + ıgTaG
a
µ

as
LQCD = −1

4
∑
a

F aµνF
a,µν + q̄ (ıγµDµ −m) q,

where F aµν are tensors defined as

F aµν = ∂µG
a
ν − ∂νGaµ − gSfajkGjµGkν . (1.2)

5Extension to all flavours can be easily restored replacing q by qr, and summing up over the
quark flavour r.

6It holds
[Ta, Tb] = ifabcTc,

where fabc are the structure constants of SU(3) (for an abelian theory fabc = 0). Note that U and
Ta are 3× 3 matrices; summation is implied on latin indices a, b, c = 1 . . . 3.
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A notable difference between the electromagnetic field strength tensor Fµν and
Eq. (1.2) is that, since QCD is non–abelian, there is the third term which accounts
for self–interaction between gauge bosons, i.e. it represents vertices with three or
four gluons. A fundamental feature of QCD is asymptotic freedom: quarks interact
weakly at high energies, hence allowing for perturbative calculations, but strongly
at low energies, preventing the unbinding of baryons and mesons.

1.1.4 Electroweak Interactions

The roots of electroweak theory fall back to 1934, when Enrico Fermi provided a
theoretical description of the β radioactive decay[1]

n→ p+ e− + ν̄e,

which happens at very low rates due to the involvement of weak interactions rather
than electroweak or strong interactions. Fermi’s description happens via the contact
interaction

L = −GF (ψ̄pγµψn)(ψ̄eγµψν) + h.c.,
where GF is the Fermi constant. This picture is not renormalizable and does violate
unitarity; thus, it offers a good effective description of weak interactions only at low
energies7. Experiments show that weak interactions involve both charged and neutral
currents: the first account for transitions between up– and down–type leptons or
quarks, the latter conserve flavour.

The electroweak theory aims at unifying the theory of weak interactions and
electromagnetic interactions. It is invariant under transformations of the symmetry
group

SU(2)L ⊗ U(1)Y .
Fermions are grouped according to the their chirality eigenstate, i.e. in left–handed
and right–handed fields ψL,R, where

ψL = PLψ = 1
2(1− γ5)ψ,

ψR = PRψ = 1
2(1 + γ5)ψ,

and PL,R is the left (right)–handed projection operator, while γ5 = ıγ0γ1γ2γ3. Left–
handed fermions are paired in doublets with isospin I = 1/2, while right–handed
ones are I = 0 singlets: there are three families of quarks,(

u
d
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,
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,

and analogously three families of leptons,(
νe
e
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,
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µ
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L
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L

,
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e
)
R
,
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µ
)
R
,
(
τ
)
R
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7Since the complete theory of weak interaction involves massive mediators, the W and Z bosons,
this effective theory is valid for energies negligible with respect to the mass of the W boson,
E � mW ∼ 80GeV.
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Weak hypercharge and electric charge are linked to the weak isospin by the relation

Q = I3 + Y

2 ,

where I3 is the third component of the weak isospin.
Hypercharge symmetry involves both chiralities, i.e. the lagrangian density is

invariant under the transformations of the U(1) group,

ψL,R → eıα(x)Y2 ψL,R,

while weak isospin symmetry involves only left–handed doublets, with invariance
under transformations of SU(2),

ψL → eıβa(x) τ
a

2 ψL,

where τa/2 are the generators of SU(2)8 and summation over a = 1, 2, 3 is implied.
As a consequence of the local gauge symmetries of the electroweak lagrangian

density, four gauge fields are introduced, in a way analogous to QED: one has a
triplet of vector bosons, Wµ

i (i = 1, 2, 3) for SU(2)L and a singlet Bµ for U(1)Y ;
while the Wµ

i fields couple only to left–handed fermion fields, Bµ couples to fermions
with either chirality. Physical fields, corresponding to the four observed bosons –
two neutral, the photon and the Z boson, and two charged, the W+ and W− bosons
– can be then obtained with the linear combinations

Aµ = sin θWWµ
3 + cos θWBµ, (1.3)

Zµ = cos θWWµ
3 − sin θWBµ, (1.4)

Wµ
± = Wµ

1 ∓ ıW
µ
2√

2
, (1.5)

where θW is the weak mixing angle.
The electroweak lagrangian density can be expressed as the sum of the field

strength tensors
LEW = −1

4
∑
V

FµνV FV,µν + ı
∑
f

f̄Dµγ
µf, (1.6)

where summations run over all gauge vector bosons, V , and fermion fields, f . The
covariant derivative Dµ is defined as

Dµ = ∂µ − ıgV (λaVa)µ,

where gV is the generic coupling constant of a fermion to the V field, λa are the
generators of the corresponding symmetry group, and Va is the field tensor. Explicitly,
for a single fermion field ψ one has

LEW = −1
4W

a
µνW

µν
a −

1
4BµνB

µν + ıψ̄γµDµψ,

8We denote by τa (a = 1, 2, 3) the Pauli matrices.
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with

Wµν
i = ∂νW

µ
i − ∂µW

ν
i − gεijkW

µ
i W

ν
j ,

Bµν = ∂νBµ − ∂µBν ,

and
Dµ = ∂µ + ıgW a

µIa + ı
g′

2 BµY,

where g and g′ are the SU(2) and U(1) coupling constants, respectively, which are
linked to θW via the relations

sin θW = g′√
g2 + g′2

,

cos θW = g√
g2 + g′2

.

Moreover, the electric charge e can be written as e = g sin θW .
What is missing in Eq. (1.6) are terms which give mass to fermions and vector

bosons9: this prediction is in contrast with the experimental observation, and calls
for a technique which allows for non–zero fermion and vector boson masses but at
the same times preserves gauge invariance.

1.2 Giving Mass to Particles: the Higgs–Brout–Englert
Mechanism

1.2.1 Electroweak Symmetry Breaking

A way to modify the electroweak lagrangian density to give masses to fermions
and vector bosons is the so–called Higgs–Brout–Englert mechanism[2]. The idea
is to introduce a scalar isospin doublet, eigenstate of weak isospin with I = 1/2,
I3 = −1/2 and hypercharge Y = 110,

φ(x) =
(
φ+(x)
φ0(x)

)
,

where φ+ and φ0 are complex fields. This term yields a corresponding contribution
in the lagrangian density,

LH = (Dµφ)†(Dµφ)− V (φ),

where the potential term can be expressed as

V (φ) = µ2φ†φ+ λ(ψ†ψ)2 = µ2φ2 + λφ4. (1.7)

9For example, in the case of the fermion field, one cannot include a mass term proportional to
ψ̄ψ since

ψ̄ψ = ψ̄LψR + ψ̄RψL

would mix left– and right–handed fields, breaking the invariance of the lagrangian density under
transformations of SU(2)L ⊗ U(1)Y .

10In this way, Q = 0 for the lower component.
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Figure 1.1. V (φ), as defined in Eq. (1.7), for λ > 0 and different signs of µ2.
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The potential V defined in Eq. (1.7) has a finite lower bound when λ > 0,
which defines a ground state |0〉 (the vacuum state). According to the sign of µ2,
this ground state can be unique (µ2 > 0, with minimum for φ = 0) or degenerate
(µ2 < 0), due to the shape of the potential which has a minimum in φ = 0 (Fig.
1.1a) or in a set of points (Fig. 1.1b), respectively.

We are interested in the latter case, µ2 < 0. One can solve the degeneracy of the
ground states adding a driving term

ε∗φ+ εφ†,

to the lagrangian density of Eq. (1.6), where ε is in general a complex number.
When we let ε tend to zero, the driving term forces the potential to have a single
minimum in

φ = φ0 =
(

0
η

)
,

with η =
√
−µ2/2λ, for which the expectation value of the field φ on the vacuum

state is non–zero,
〈0|φ |0〉 = η ≡ v√

2
6= 0.

We introduced in this way a preferential direction in the φ complex plane: the mini-
mum energy configuration is no more symmetric, and the symmetry is spontaneously
broken by the ground state.

By applying perturbation theory around the vacuum state to the φ field, one
can see that the two degrees of freedom associated to the complex field φ are
represented by two particles, one with mass 4λη2 and one massless (Goldstone
theorem). However, there is no experimental evidence of a massless scalar boson (the
Goldstone boson): in fact, invariance of the electroweak lagrangian density under
local phase transformations of the fields always allows us to choose a gauge (unitary
gauge) in which the Goldstone boson and the massive boson are replaced by two
fields, a scalar H and a vector A, with masses

m2
H = −2µ2 = 4λη2,

m2
A = 2e2η2.

As a consequence of this gauge choice, Eq. (1.2.1) can be written as

φ(x) = 1√
2

(
0

v + h(x)

)
. (1.8)

We note that the spontaneous symmetry breaking of the electroweak lagrangian
density still conserves the gauge symmetry of electromagnetism, i.e.

SU(2)L ⊗ U(1)Y −→ U(1)EM .

1.2.2 Gauge Bosons

If we consider the kinetic part of the lagrangian density of Eq. (1.2.1), replacing φ
with Eq. (1.8), one has

(Dµφ)†(Dµφ) = 1
2∂

µh∂µh+ 1
8g

2(v + h)2|Wµ
1 + ıWµ

2 |
2 + 1

8(v + h)2|g′Wµ
3 − gBµ|

2.
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Applying Eq. (1.5), masses for the vector boson fields are identified: we have an
intermediate charged boson, the W , with mass mW = gv/2, a massive neutral boson,
the Z, with mass mZ =

√
g2 + g′2v/2, and the photon, with mγ = 0. It holds

MW /MZ = cos θW .

1.2.3 Fermions

We cannot obtain a mass m for a fermion field f by adding to the electroweak
lagrangian density a term

mf̄f = m(f̄LfR + f̄RfL),

since this term has an overall weak isospin 1/2, but we can restore invariance under
transformations of SU(2)L ⊗ U(1)Y by adding instead a Yukawa term representing
the interaction between the Higgs field and fermion fields. For electrons, for example,
one can write

Leφ = ge
(

¯̀φeR + ēRφ
†`
)
,

where ` = (ν, e)T. This term becomes, after spontaneous symmetry breaking and
after choosing the unitary gauge,

l̄φ = n̄uLφ
+ + ēLφ

0 = ēL

(
η + h√

2

)
,

from which one has
Leφ = geηee+ ge√

2
hee.

We can recognize that the first term is a mass term, with

me = geη = ge
v√
2
.

The coupling of the Higgs field to fermions is therefore proportional to their
mass. The mass of the Higgs boson itself depends on the two parameters of the
potential V (φ), i.e. the vacuum expectation value v and the coupling parameter λ.
It can be shown that

v = 2mW

g
= (
√

2GF )−
1
2 .

Precision measurements of GF from muon lifetime measurements yield v ≈ 247GeV.
The Higgs mass mH is a free parameter of the theory.

1.2.4 Theoretical Constraints on mH

There are multiple theoretical constraints which put lower and upper bounds to the
value of mH , which is a free parameter of the theory11[3, 4, 5, 6]. A lower bound on
the Higgs mass is given by the stability of the vacuum state (stability bound) and
upper bounds are given both by the requirement for the Higgs self–coupling not

11λ can be always expressed as a function of mH and v.
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to blow up at high energy (triviality bound), and by the requirement of scattering
amplitudes of longitudinal bosons not to exceed the unitarity bound.

The triviality bound comes as a consequence of the renormalization group
equations (RGEs) of the SM. If we assume that the RGEs are in the perturbative
regime, first–order radiative corrections predict a running value of the quartic
coupling λ, as a function of the involved energy scale Q. Neglecting the Yukawa
contribution for the top quark, valid only for heavy mH , one has

λ(Q) = λ(v)
1− 3

4π2 log Q2

v2 λ(v)
,

which is linked to mH from the dipendence on λ(v) by m2
H = 2λ(v)v2. In order for

the perturbative regime to be valid at all energies, the self–coupling λ(Q) has to
remain finite for Q2 →∞: the consequence is however be that at low energies one
would have λ = 0, i.e. the theory would be free in the infrared region (triviality).
This means that either the theory becomes non–perturbative above a certain energy
scale Λc, or that the SM is not valid above that scale Λc. This results in an upper
limit on the Higgs mass.

The stability bound, on the other hand, is related to the fact that symmetry
breaking actually occurs only when V (v) < V (0), hence the requirement λ > 0.
RGEs show that, as a function of the top quark mass mt, when mH is low enough
the electroweak vacuum is only a local minimum of the potential V , while the global
minimum is located at values of the field beyond an energy scale lower than the
Planck mass, Λ < MP , for which λ < 0. The local minimum can potentially become
unstable in favour of the global minimum, unless there is new physics at or before
the scale Λ that prevents this.

A metastability region can be identified as the regime in which the lifetime of
the electroweak vacuum is greater than the age of the universe.

Moreover, one of the reasons of the introduction of the Higgs field is to recover
unitarity in the high–energy scattering of longitudinal W and Z bosons. The
quadratic growth with the energy of the amplitude of these processes is in fact
cancelled by the introduction of diagrams involving the Higgs boson, provided that
its mass satisfies the relation

mH <

√
8π
√

2
3GF

≈ 1TeV,

or that new physics appears at a similar energy scale.
Fig. 1.2 shows, in the mH vs Λ plane, the regions allowed and forbidden by these

theoretical arguments.

1.3 Looking for the Higgs Boson
The fact that mH is a free parameter of the theory draws an important experimental
challenge in the search of the Higgs boson. Different values of the Higgs mass, in
fact, yield different interplay between the possible production mechanisms and the
open decay channels, and therefore call for different reconstruction strategies as a
function of mH .
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Figure 1.2. Stability and triviality bounds for the Standard Model, as a function of the
Higgs boson mass MH and the scale of new physics Λ[3].

1.3.1 Production Mechanisms

The dominant contribution on the production side in pp collisions is the gluon fusion
(ggF) mechanism,

pp→ gg → H.

Its lowest order Feynman diagram is shown in Fig. 1.3a: this process cannot happen
at tree level and therefore involves fermion loops. Since the coupling between the
Higgs field and fermions is proportional to their mass, the dominant contribution
to this vertex in the SM comes from the ttH coupling. Gluon fusion yields the
highest production cross-section in the full Higgs mass range; its value is known
at next–to–leading–order (NLO) and next–to–next–to–leading–order (NNLO) in
QCD, with an uncertainty of about 10%[8], arising mainly from missing terms
in the perturbative expansion, as well as from the imprecise knowledge of parton
distribution functions.

Vector boson fusion (VBF)

qq → qqV ∗V ∗ → qqH,

which is shown in Fig. 1.3b, involves instead the coupling with intermediate vector
bosons radiated from the initial state partons. Experimentally, the hadronization
induced from the initial state partons is observed as two high–energy jets almost
collinear with the colliding beams: by identifying those jets, one has an handle to
effectively tag VBF events. The VBF production cross–section in pp collisions, as
shown in Fig. 1.4, is about one order of magnitude less than the ggF value. It receives
small QCD corrections and it is known at NLO with less than 10% uncertainty.

Associated production with a vector boson (V H)

qq̄ → V ∗ → V H,
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(a) Gluon fusion
(b) Vector Boson Fusion

q

q̄

Z∗

H

Z

(c) Associated production with vec-
tor bosons

(d) Associated production with top
quarks

Figure 1.3. Lowest order Feynman diagrams for different production mechanisms of the
Higgs boson.

which is shown in Fig. 1.3c, happens when a Higgs boson is radiated from an
intermediate vector boson (Higgsstrahlung). Its experimental signature is clear, due
to the possibility to reconstruct the decay of the intermediate boson as well as the
Higgs decay products. This production mechanism has lower cross–section than ggF
and VBF, has moderate QCD corrections and it is known at NLO and NNLO in
QCD, with an uncertainty of less than 5%.

Associated production with a top quark (ttH), shown in Fig. 1.3d, involves the
production two top quarks together with the Higgs boson. The cross–section of this
process is however negligible when compared with the other production mechanisms.

1.3.2 Decay Channels

Depending on the value of the Higgs mass, different are the open decay channels
and their production cross–section times decay branching ratio (BR), which sets the
magnitude between the different processes. Fig. 1.5 shows the cross–section times
BR (σ ×BR) as a function of mH , for pp collisions both at

√
s =7TeV and 8TeV:

we can identify three different mass regions where the sensitivity of the various
channels is different.

In the low mass region (mH < 130GeV), the dominant branching ratio is the
one of H → bb̄. Experimentally, however, this channel can be really challenging
at hadron colliders, where one has to discriminate a signal with a cross–section of
O(10 pb) over a background from QCD multi–jet production with a cross–section of
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O(100 µb). Signal to background ratio S/B is higher for the H → γγ decay channel,
with S/B = O(10−2). Its signature consists of two high–energy photons whose
invariant mass distribution has a narrow peak at mγγ ≈ mH ; main backgrounds,
namely direct di–photon production and jj/γj with at least one jet misidentified as
a photon, can be evaluated with data–driven techniques using the sidebands of the
mγγ distribution. Moreover the H → ZZ∗ → 4` channel12, despite its low σ ×BR,
has S/B = O(1) due to the presence of four leptons in the final state. Its signature
consists of four leptons, the invariant mass of two of which is compatible with an
on–shell Z boson, and a peak in the four–lepton invariant mass m4`. The main
background is pp→ ZZ∗ → 4`, with minor contributions from Z + jj, Z + bb̄ and tt̄.

In the mass region 130GeV < mH < 180GeV, the two dominant channels are
H → ZZ(∗) and H →W+W−. With respect to H → ZZ, the cross–section of the
process p→ H →WW is higher, due to the bigger coupling of the Higgs field with
W bosons and to the reaching of the kinematic threshold 2mW , where the decay to
two on–shellW bosons is open. The most promising final state for this channel is the
one with leptonic decays of the intermediate bosons, W → `ν̄`, whose experimental
signature consists of an high–energy charged lepton and high missing transverse
momentum. Due to the presence of neutrinos in the final state, it is however not
possible to reconstruct completely the final state: the Higgs boson is identified from
the transverse mass distribution of the `ν`ν system13, and resolution on the Higgs
boson mass is poor.

In the high mass region, 180GeV < mH < 1TeV, the most promising channel
for the identification of the Higgs boson is H → ZZ, with subsequent decay in ``qq,
``νν and in four leptons. Both Z bosons are in this case on–shell, which allows to
further reduce backgrounds applying a more stringent kinematic selection on the
decay leptons.

Fig. 1.6 shows the total decay width ΓH of the Higgs boson, as a function of
its mass[7]. For low values of mH , below the threshold for the production of two
W bosons, the decay width is of the order of 1MeV to 10MeV. It then increases
rapidly with the opening of diboson decays, until – for masses at the level of 1TeV –
the Higgs boson becomes a quite broad resonance. The interplay between ΓH and
the experimental resolution on mH becomes important, if we take as an estimate
of the mass resolution the resolution on m4` in the H → ZZ → 4` decay, at about
350GeV.

1.3.3 Where do We Stand?

Various have been the experimental searches for the Higgs boson in the last decades.
Collider experiments have been purposedly designed to cope with the challenges of a
chase which spans over the full mass range allowed by theoretical arguments, while
precision measurements in the electroweak sector further allowed to put constraints

12To ease the notation, we will indicate with H → ZZ(∗) also the process H → ZZ∗/γ∗.
13Transverse mass is defined as

mT =
√

(E``T + Emiss
T )2 −

∣∣p``T + Emiss
T

∣∣2,
where E``T = (|p``T |2 +m2

``)1/2.
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Figure 1.5. Cross–section times branching ratio, as a function of the Higgs mass mH , for
different decay channels and different center–of–mass energies.
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Figure 1.6. Total decay width of the Standard Model Higgs boson, as a function of its
mass. From Ref. [7].

on its mass mH .
LEP, the e+e− collider at the SPS at CERN, provided the first limits on the

Higgs mass by direct searches[9], using about 2.5 fb−1 of data collected by the
ALEPH, DELPHI, L3, and OPAL collaborations at a center–of–mass energy

√
s =

189GeVto209GeV. The most sensitive channel wasH → bb̄, with the Higgs produced
in association with a Z boson in the process e+e− → Z∗ → HZ. A Higgs boson
with a mass mH < 114.4GeV was excluded at 95% CL, as shown in Fig. 1.7.

Precision measurements in the electroweak sector also give an indirect information
on the Higgs mass, since mH enters in the radiative corrections. Best fits including
data from LEP and SLD experiments have been performed[10]. Fig. 1.8 shows
results obtained without including data from direct searches: the best fit mass
is mH = 91+30

−23 GeV, where uncertainties include the 68% CL interval around the
maximum likelihood estimate (MLE).

Results from the CDF and D0 collaborations at the Tevatron accelerator at
Fermilab, based on up to 10 fb−1 of data collected in pp̄ collisions at

√
s = 1.96TeV,

are shown in Fig. 1.9[11]. The most important production mechanism is the associate
production with W or Z bosons, which then decay leptonically; the most sensitive
decay channel is H → bb̄, while the center–of–mass energy allows also H → WW
and H → ZZ to be kinematically permitted. Results exclude a SM Higgs boson, at
the 95% confidence level (CL), from 90 to 109GeV and from 149 to 182GeV.

In July 2012, the ATLAS and CMS collaborations at the LHC announced the
observation of a new particle within the search of the Higgs boson[12, 13], at a mass
of about 125GeV, using up to 5.1 fb−1 of data collected in pp collisions at

√
s = 7TeV
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and up to 5.9 fb−1 at
√
s = 8TeV. Fig. 1.10 shows how, already with this statistics,

the exclusion limit covers the full mass range probed by LHC experiments, apart
from a narrow region around the mass of the observed particle. Recent Tevatron
results show that an excess of 3.0σ is also observed at the CDF and D0 experiments
for mH = 125GeV, and recent LHC results using the full 2012 dataset confirm
the discovery of the new particle with a significance against the background–only
hypothesis of more than 6σ[14, 15].

This thesis work focuses both on the discovery of the new particle, using ATLAS
data in the H → ZZ(∗) → 4` channel, and on the characterization of its properties.
The nature of the new boson is in fact not obvious: is it the Standard Model Higgs
boson, or just one of the Higgs bosons predicted or allowed by theories beyond the
Standard Model (BSM)? Does it behave, from the point of view of couplings to SM
particles and of quantum numbers, in the same way as the Standard Model Higgs
boson does? Do current data allow or ask for a more general explanation of particle
physics at the current energy scale?
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Chapter 2

The ATLAS Experiment at the
LHC

Looking for the Higgs boson is among the reasons for which the LHC and in particular
the ATLAS experiment were designed. Exploiting the energy frontier is both an
unprecedented technical and experimental challenge: it requires an excellent design
and operation of the accelerator complex, together with a deep understanding of each
detector subsystem. In this chapter, a description of the LHC and of the ATLAS
experiment is provided.

2.1 The Large Hadron Collider
The Large Hadron Collider (LHC)[16] is a proton–proton and heavy ions collider,
with design center–of–mass energies of 14TeV and 5.52TeV per nucleon, respectively,
and a design instantaneous luminosity of 1× 1034 cm−2s−1. It is a 26.7 km wide
ring formed by 1232 superconducting magnets, each 15m long, which generate a
dipole magnetic field of 8.4T. Eight experimental halls are built, one of which hosts
the ATLAS experiment. In the linear section of the ring before each experiment, a
system of three magnets with quadrupole field is placed at each side of the detector,
in order to focus the two beams in such a way to obtain a RMS width of the beam
in the transverse plane of about 16.63 µm. Collisions take place when bunches of
particles of each beam collide with bunches from the other beam (bunch crossing,
BC): the design BC period is about 25 ns.

In a scattering process, luminosity is defined as the proportionality factor between
the cross–section of the process, σ, and the number of observed events for that process,
N , via the relation N = Lσ. The instantaneous luminosity L, with L =

∫
dtL, can

be expressed as a function of the characteristic parameters of the collider:

L = F
nbN

2
bfrev

4πσ∗2 ,

where nb is the number of bunches which circulate in the accelerator, Nb is the
number of protons per bunch, frev is the revolution frequency of the machine and
σ∗ is the RMS beam width in the interaction point, while F is a geometric factor
depending on the angle at which the two beams cross each other. If this angle, θc, is
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Figure 2.1. Scheme of the Large Hadron Collider at CERN, Geneva.
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Parameter Value
nb 2808 bunch
Nb 1.15 · 1011p/bunch
frev 11 245 kHz
σ∗ 16.7 µm
θc 285 µrad
σz 7.55 cm
F 0.84

Table 2.1. Design parameters for the LHC[16].

low enough1, one can write

F ≈ 1√
1 +

(
θcσz
2σ∗

)2
,

where σz is the RMS length of each bunch. Table 2.1 shows the design parameters
for the LHC[16].

During 2011, the LHC has collided proton beams at
√
s = 7TeV, reaching a

peak instantaneous luminosity of 3.65× 1033 cm−2 s−1 and delivering an integrated
luminosity of 5.6 fb−1[18]. In 2012, with a center–of–mass–energy of 8TeV, the LHC
has reached a peak instantaneous luminosity of 7.73× 1033 cm−2 s−1 and delivered a
total of 23.3 fb−1. Fig. 2.2 and Fig. 2.3 show the behaviour of integrated and (peak)
instantaneous luminosity as a function of time, for both years.

The number of inelastic interactions between partons which take place each time
proton beams collide is proportional to the instantaneous luminosity of the single
bunch and inversely proportional to frev. Fig. 2.4 shows the distribution of the
mean number of interactions per bunch crossing, 〈µ〉, for 7TeV and 8TeV.

2.1.1 The High Luminosity LHC

In 2015 the LHC will start taking data at
√
s = 13 ÷ 14TeV, and will reach

progressively the design luminosity of 1× 1034 cm−2s−1, being able to collect about
40 fb−1 per year. At this luminosity, however, by 2019 the LHC will need to run
for more than ten years to half the statistical uncertainty in physics measurements,
which is crucial for the observation of rare processes and the study of new particles.

The High Luminosity LHC programme (HL–LHC)[17] is an upgrade project,
whose start is foreseen in 2020, which aims at improving by a factor 10 the design
instantaneous luminosity of the accelerator, i.e. up to 1× 1035 cm−2s−1 (for an
average number of interactions per bunch crossing up to 〈µ〉 = 140). The goal of
the project, which relies on the replacement of the inner triplet magnets and other
hardware changes that will occur in 2022–2023, is to be able to integrate 300 fb−1

within the first 10 ÷ 12 years of life of the LHC, and to reach the threshold of
3000 fb−1 in 10÷ 12 additional years.

1At the LHC, θc = 285 µrad.
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(a) 2011

(b) 2012

Figure 2.2. Integrated luminosity versus day, for 2011 and 2012 data taking periods.
Green histogram is the value delivered by LHC to ATLAS, while the yellow histogram
represents the luminosity recorded by ATLAS.
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(a) 2011

(b) 2012

Figure 2.3. Maximum instantaneous lumonosity versus day, for 2011 and 2012 data taking
periods.
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Figure 2.4. Average number of interactions per bunch–crossing[18].

2.2 ATLAS, a Particle Physics Experiment

2.2.1 Detecting Particles

Various are the reconstruction strategies used by particle physics experiments to
identify and reconstruct elementary and composed particles. Fig. 2.5 shows a cross
section of the ATLAS detector (described in the next section and in the rest of the
chapter), showing the behaviour of different kinds of particles (electrons, photons,
muons, neutrinos, neutrons and protons) when interacting with different detectors
in a pp collider.

Electrically charged particles, whether elementary or not, are bent by magnetic
fields. Their trajectory is therefore changed, since they obtain an angular momentum
which depends on the sign of their charge: positive and negative particles (electrons
and positrons, for example) can be discriminated by looking at the curvature of their
trajectory. Trajectories, on the other hand, can be reconstructed for example using
silicon or straw tubes detectors, identifying the points (hits) where there is a signal
compatible to a particle interacting with the matter of the detector and fitting them
back to a common trajectory. Neutral particles are not bent by magnetic fields, so
other detection techniques must be used.

For this reason, a tracking system with excellent spatial resolution is usually
placed close to the interaction point where the two beams collide, in order to be
able to identify promptly tracks associated to particles produced in the interaction.
After reconstructing all tracks in each event, it is also possible to identify the point
where the primary interaction has taken place (primary vertex) and all other spatial
points compatible with a secondary interaction (secondary vertices), which can be
either associated to the subsequent decay of a short–lived particle into two or more
charged particles, or to additional interactions other than the primary one (pile–up).

Charged particles also undergo Bremsstrahlung, the magnitude of which varies
inversely with the square of their mass: hence, this is an effect that is stronger
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for electrons than for other particles. Electrons interact with matter and produce
photons, which can in turn produce electron–position pairs if their energy is above the
kinematic treshold 2me, thus producing electromagnetic showers. Electromagnetic
calorimeters are designed to detect electromagnetic showers by ionization of some
scintillating material; the quantity of material is designed in such a way to be
able to contain (almost) the full cascade, whose length is expressed in terms of
radiation lengths X0. Electrons and photons behave similarly in the electromagnetic
calorimeter, and can be discriminated using the information from the inner tracking
system (an electromagnetic cluster associated to a track can be identified as an
electron).

Hadrons interact mainly with the strong force, via anelastic nuclear processes:
hadronic showers are formed by the cascade production of other hadrons, nuclear
deexcitation and decays of pions and muons. Their longitudinal development is
characterized by the interaction length λ, which sets the geometrical size scale of
hadronic calorimeters. Hadronic showers have also an electromagnetic component:
to obtain a linear energy response for hadrons, the ratio between the detection
efficiency for electrons and hadrons, e/h, should be close to 1. Shower shapes can
also be investigated to obtain informations on the particle originating them2.

The thickness of electromagnetic and hadronic calorimeters, designed in terms
of X0 and λ, is such that only particles weakly interacting with matter survive
after passing through them. It is the case of muons, for which dedicated tracking
systems are deployed: an external muon spectrometer in magnetic field allows to
reconstruct their trajectory and momentum with high precision, which can also
profit from the information coming from the inner tracking system (where muons
are expected to leave a track since they are electrically charged) and from the
calorimetric system (where muons, at least for energies below 100GeV, have to leave
a deposit consistent with their being minimum ionizing particles). Neutrinos, on
the other hand, have too low interaction cross–sections with matter for a typical
collider experiment: they can be identified assuming the conservation of energy and
momentum in the transverse plane (see next section) as non–zero pT(ν) = −∑i pT
(missing transverse momentum, which is ideally zero when all particles produced in
an event are reconstructed).

2.2.2 A Toroidal LHC ApparatuS

The ATLAS detector (A Toroidal LHC Apparatus[19]) is a multi–purpose collider
experiment. It is composed by a series of sub–detectors, placed in cilindric symmetry
around the beam axis: it consists of a central region, called barrel, which is 42m long
and has a radius of about 11m, closed at the two edges by two endcaps, with the
purpose of detecting also particles in the forward region. Fig. 2.6 shows a picture of
the experiment; from the innermost to the outermost layer, there are:

• a tracking system (Inner Detector), for the reconstruction of tracks of elec-
trically charged particles and the reconstruction of primary and secondary
interaction vertices;

2For example, gluons have higher colour charge than quarks, and therefore produce wider
hadronic jets.
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Figure 2.5. Event Cross Section in a computer generated image of the ATLAS detector.
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Figure 2.6. Scheme of the ATLAS experiment at the LHC.

• a solenoidal magnetic field, the symmetry axis being the beam collision axis;

• an electromagnetic calorimeter (ECAL), for the reconstruction of electromag-
netic showers induced by electrons and photons;

• an hadronic calorimeter (HCAL), for the reconstruction of hadronic showers
and the study of jet structures;

• a muon spectrometer, for the high–precision reconstruction of tracks of pene-
trating electrically charged particles;

• a system of toroidal magnets in air.

ATLAS, as shown in Fig. 2.7, uses a right–handed coordinate system in which
the x axis points towards the center of the LHC ring, the z axis corresponds to
the direction of the beams and the y axis is vertical. Cylindrical coordinates are
often used, defining the azimuthal angle φ ∈ [π, π], and the polar angle θ which is
measured with respect to the z > 0 axis.

For a particle with energy E and longitudinal (z) momentum component pL,
rapidity is defined as

y = 1
2 ln

[
E + pL
E − pL

]
.

It can be shown that the rapidity difference ∆y is invariant under longitudinal
boosts.
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Figure 2.7. ATLAS coordinate system.

In the ultra–relativistic limit one has E ≈ pL, and the rapidity y can be approxi-
mated by the pseudorapidity,

η = − ln
[
tan θ2

]
.

Fig. 2.8 shows how the pseudorapidity is 0 for θ = 90° (barrel region), and grows
asymptotically for θ → 0 (endcap region).

The LHC is a hadron collider: this means that the collision itself does not involve
elementary particles, but rather composite particles (which contain quarks and
gluons). The effective interaction energy in the center–of–mass system depends on
the momenta of the partons actually involved in the interaction, and is therefore

Figure 2.8. Pseudorapidity η for different values of the polar angle θ.
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Figure 2.9. Scheme of the ATLAS superconducting magnet system: solenoid (blue) and
toroid (red).

unknown. It is consequently natural to study kinematics in the transverse plane xy,
in which kinematics is closed and energy and momentum conserved if we assume
that the longitudinal momentum component of partons is always dominant over
their average transverse momentum.

Distance between particles in the ηφ plane is usually expressed as a function of
∆R =

√
∆η2 + ∆φ2.

2.2.3 The Magnet System

ATLAS superconducting magnet system[22] is shown in Fig. 2.9; it is composed by

• a solenoid, its symmetry axis being the z axis, placed within the Inner Detector
in the barrel region: the trajectories of charged particles are bent by its axial
magnetic field of 2T, allowing the measurement of their momentum;

• a toroid for the barrel and two toroids for the two endcaps: all of them are air–
core, in order to minimize multiple scattering, and produce a radial magnetic
field used to measure momenta of charged penetrating particles.

The central solenoid is 5.3m long, with a diameter of 2.4m, and has been
designed in order to reduce the amount of energy lost by particles before reaching
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Figure 2.10. Behaviour of the bending power
∫
d`B as a function of pseudorapidity η, for

different values of the azimuthal angle φ.

the calorimetric system. It produces a magnetic field of 2T in the central tracking
region and a 2.6T peak field.

The toroidal magnet system consists of eight barrel coils, built on different
cryostats, and two endcap cryostats which host eight coils each, rotated by 22.5°
with respect to the barrel coils in order to obtain radial superposition and optimize
the bending power

∫
d`B in the superimposing region. The choice of toroidal magnets

is motivated by the fact that in this way the magnetic field is confined without need
for additional material, thus reducing the effect of multiple scattering on momentum
resolution.

The toroidal field has a complex behaviour, shown in Fig. 2.10 in terms of its
bending power, which goes from 2T to 6T in the barrel and from 4T to 8T in the
endcaps. In the region 1.3 < |η| < 1.6 (transition region) one can see the effect of
the superposition of the barrel and endcap fields, which yields lower values of

∫
d`B

less homogenous in η.

2.2.4 The Inner Detector

The purpose of the Inner Detector (ID)[23] is the reconstruction of tracks of charged
particles, the precision measurement of their momenta and the reconstruction of
primary and secondary interaction vertex. The momentum p of a particle (with
charge q and speed v) in an axial magnet field B is bound to the curvature of its
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trajectory by the Lorentz force

F = qv×B.

The field B is longitudinal, hence trajectories are bent in the transverse plane xy.
In uniform magnetic field, the trajectory of a particle can be represented by an

helix. Five are the measured parameters:

1/pT inverse of the transverse momentum of the particle;

φ azimuthal angle of the track, defined in terms of momentum components by
tanφ ≡ py/px;

d0 transverse impact parameter, defined as the distance in the xy plane between
the z axis and the maximum approach point of the helix (MAP) to the z axis
itself; its sign is given by the angular momentum of the track with respect to
the z axis;

cot θ cotangent of the polar angle θ, defined in terms of momentum components by
cot θ ≡ pz/pT;

z0 longitudinal impact parameter, defined as the z coordinate of the MAP.

Momentum resolution can be expressed as a function of the resolution on the
single point, ε, of the number of points used for reconstructing the track, N , and of
the momentum itself p; it holds

∆p
p2 = 8

0.3Bl2 ∆s,

where B is in T, l is the length of the reconstructed track, in m and[20]

∆s = ε

8

√
720
N + 4 .

The Inner Detector has cylindrical symmetry around the beam axis. It extends
over z = ±345 cm (the barrel region corresponds to ±80 cm), with a diameter of
115 cm. Fig. 2.11) shows the three different subdetectors:

• a Silicon Pixel Detector, with high precision and granularity, placed close to the
interaction point; it contributes significantly to the resolution over the impact
parameter d0 and to the reconstruction of primary and secondary interaction
vertices;

• a Semiconductor Tracker (SCT), with high granularity, which contributes to
the momentum and d0 measurements and to vertex reconstruction;

• a Transition Radiation Tracker (TRT), with lower ε with respect to the other
two subdetectors, but with less quantity of material per reconstructed point.
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Figure 2.11. Scheme of the ATLAS Inner Detector.
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Figure 2.12. Radiation and interaction lengths, averaged over φ, as a function of the
absolute value of the pseudorapidity |η|. Different contributions from external services
and subdetector systems are shown.
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Contributions to the radiation and interaction lengths, X0 and λ, as a function of
pseudorapidity, are shown in Fig. 2.12.

The Silicon Pixel Detector is the closest to the collision axis and consists of three
cylindrical layers placed at 4 (barrel layer, or B–layer, covering |η| < 2.5), 10 and
13 cm (covering |η| ≤ 1.7) from the interaction point, plus five endcap disks with
radii between 11 and 20 cm (covering 1.7 < |η| < 2.5). Resolution on the single point
for the three cylindrical layers is 12 µm in the rφ plane and 66 µm in z, while the
five disks have a resolution on r of 77 µm[21]. On average, a track crosses three pixel
layers.

The Semiconductor Tracker consists of eight silicon micro–strip detectors, with
a single point resolution of 16 µm in the rφ plane and of 580 µm on z. It allows
to discriminate tracks originating from different particles, if they have a spatial
separation of more than 200 µm. On average, the SCT provides eight precision
position measurements for a track crossing it in the barrel region.

The Transition Radiation Tracker consists of straw tubes, with a 4mm diameter
each, and can provide on average 30 and up to 36 hits per track in the region |η| < 2.0.
Single point resolution is of the order of 170 µm: this is compensated by the fact
that the outermost TRT hits contribute more to the momentum measurement of
the particle, due to the higher lever arm. Transition radiation foils and fibers allow
also to discriminate between pions and electrons.

Overall, the combined momentum measurement of the inner detector system has
a resolution of

σpT

pT
= 0.05% · pT ⊕ 1%,

where ⊕ indicates that the two contributions are summed in quadrature.

2.2.5 Calorimeters

ATLAS calorimetric system[24] (shown in Fig. 2.13) consists of an electromagnetic
calorimeter (ECAL) for the identification of electromagnetic showers induced by
electrons and photons, and of an hadronic calorimeter (HCAL) for the reconstruction
of hadronic jets.

Electromagnetic Calorimeter

The electromagnetic calorimeter is a lead–liquid argon (LAr) sampling calorimeter,
with accordion geometry (shown in Fig. 2.14) which provides complete coverage and
symmetry in φ. Thickness of active material layers is of about 2.1mm, while the
thickness of the lead absorbers varies with η in order to optimize energy resolution.
ECAL covers the pseudorapidity region |η| < 3.2: the barrel calorimeter covers
|eta| < 1.475, while the endcap calorimeter covers the rest of the |η| range. A
presampler detector is present for |η| < 1.8, to estimate particle energy loss before
the calorimeter itself.

The barrel region has cylindrical symmetry around the beam axis, and is com-
posed by three sampling calorimeters formed by tiles of plastic scintillators alternated
with layers of absorbing material (iron):
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Figure 2.13. Scheme of the ATLAS calorimetric system.

• the first sampling is 4.3X0 thick and consists of small strips with ∆η = 0.0031;
its purpose is to separate electrons and positrons from charged pions and
photons from π0;

• the second sampling is 16X0 thick, and is segmented in square towers of size
∆η ×∆φ = 0.025× 0.025;

• the third sampling is designated for high energy electrons and photons (E >
50GeV): since they can produce larger clusters, the η size is doubled without
loss in resolution.

The endcap region uses copper and LAr, with parallel plates; for |η| > 3.1 a forward
LAr calorimeter is present.

The total thickness of ECAL is of more than 24X0 in the barrel and 26X0 in the
endcaps. Energy resolution is given by

∆E
E

= 10%√
E[GeV]

⊕ 0.3%,

while the pseudorapidity resolution is

∆η = 40mrad√
E[GeV]

.

Hadronic Calorimeter

The hadronic calorimeter covers the pseudorapidity region |η| < 4.9. It has been built
with the purpose of containing hadronic showers reducing the effect of punch–through
(particles, other than muons, which manage to pass through calorimeters and reach
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Figure 2.14. Accordion structure of the LAr and Pb layers of ATLAS electromagnetic
calorimeter.

the muon spectrometer). Its thickness at η = 0 in terms of interaction lengths is
11λ.

The barrel region (|η| < 1.0) and the extended barrel region (0.8 < |η| < 1.7)
consist of a tile detector. It is a sampling calorimeter, composed by iron plates
(absorber) and scintillating tiles (active material). Granularity is ∆η×∆φ = 0.1×0.1;
the ratio e/h between the calorimeter response for an electron and for a hadron is
close to 1.3.

In the endcap region (1.5 < |η| < 3.2), where radiation hardness is crucial,
the calorimeter uses liquid argon as active material and copper plates as absorber.
Granularity is ∆η ×∆φ = 0.1× 0.1 for 1.5 < |η| < 2.5 and ∆η ×∆φ = 0.2× 0.2 for
2.5 < |η| < 3.2.

A third subdetector system is the foward calorimeter, which covers 3.1 < |η| < 4.9
and has a granularity of ∆η × ∆φ = 0.2 × 0.2. It is composed by three regions:
the one closest to the interaction point has LAr as active material and copper as
absorber, while the other two use tungsten instead of copper to cope with the more
demanding radiation hardness requirements in the high pseudorapidity region.

The overall energy resolution of the barrel/endcap system is

∆E
E

= 50%√
E[GeV]

⊕ 3%,

while for the forward calorimeter it is

∆E
E

= 100%√
E[GeV]

⊕ 10%.
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Figure 2.15. Cross section of the ATLAS muon spectrometer, in the xy and rz planes.

2.2.6 The Muon Spectrometer

The aim of the muon spectrometer[25] (shown in Fig. 2.15), is to provide a precision
measurement of the momentum of those particles which manage to survive after
passing through the calorimetric system. It exploits the high intensity of the toroidal
magnetic field and the high lever arm of the momentum measurement for particles
originating in the interaction point. The magnetic field is almost orthogonal to
particle trajectories: momentum measurement happens in the rz plane.

The barrel region of the muon spectrometer (|η| < 1.05) is composed by three
cylindrical layers around the beam axis, called stations, placed at r = 5, 7.5 and
10m. The endcap region and the transition region between barrel and endcaps are
composed by four vertical disks, concentric to the beam axis, placed at |z| = 7.4,
10.8, 14 and 21.5m.

Tracks are measured using three layers of Monitored Drift Tubes (MDTs), in
the region |η| < 2, and by a layer of Cathode Strip Chambers (CSCs) and three
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layers of MDTs for 2 < |η| < 2.7. Chambers chambers are placed in such a way
that every track originating in the interaction point crosses three stations. Precision
momentum measurement happens in the principal bending direction of the magnetic
field.

MDTs (shown in Fig. 2.16) are aluminium drift tubes with a diameter of 30mm,
filled with a mixture of argon and carbon dioxide at a pressure of 3 bar, for a total
volume of 800m3. In the middle of each of these tubes, a tungsten–rhenium wire
with a diameter of 50 µm is used as an anode, placed at 3080V to create avalanches
from the ionization electrons. Spatial resolution for each tube is about 80 µm.

In the high pseudorapidity region (|η| > 2), the rate of forward interactions is
higher than 1150Hz/cm2. The first layer of MDTs is therefore replaced by CSCs,
which have lower neutron sensitivity. CSCs (shown in Fig. 2.17) are multiwire
proportional chambers filled with an argon–carbon dioxide mixture, with cathode
strip readout. Anode wires are kept at 1800V: once an avalanche is formed by
a ionizing particle, a charge is induced on the cathode, which consists of strips
orthogonal to the anode wires. The precision coordinate is obtained measuring this
charge; the transverse coordinate is instead obtained using orthogonal strips, parallel
to the anode wires, which form the second catode of the chamber. Spatial resolution
for the precision coordinate is of the order of 60 µm.

A system of trigger detectors is present for |η| < 2.4: it consists of Resistive Plate
Chambers (RPCs) in the barrel, located on both sides of the middle MDT station
and either directly above or below the outer MDT station, and Thin Gap Chambers



40 2. The ATLAS Experiment at the LHC

(TGCs) in the endcap region, located near the middle MDT station. They also
provide a second–coordinate measurement of track parameters in the non–bending
projections, in a direction approximately parallel to the magnetic field lines.

RPCs are gas detectors formed by two resistive Bakelite plates. The gap between
the plates, which is 2mm wide, is filled by a mixture of gases (97% C2H2F4, 3%
C4H1O) under an electric field of typically 4.5 kV/mm. Ionization electrons are
multiplied into avalanches, and the signal is read out using metal strips on both
sides of the detector, along directions both parallel (η) and orthogonal (φ) to the
MDT wires. RPCs provide a typical space–time resolution of 1 cm× 1 ns.

TGCs are multi–wire proportional chambers where the anode wire pitch is larger
than the distance between the cathode and the anode. They use a gas mixture of 55%
CO2 and 45% n–pentane (n− C5H12), and operate in saturated mode. Anodes are
parallel to the MDT wires, and together with readout strips orthogonal to the wires
they provide the trigger information. Second coordinate measurement is obtained
using the readout strips. Typical time resolution is 5 ns.

Momentum resolution σ(pT)/pT of the ATLAS muon spectrometer system is of
about 2÷ 3% over most of the kinematic range, while it reaches 10% for momenta
of the order of 1TeV.

2.2.7 Taking Data: the Trigger System

At the design value of LHC instantaneous luminosity, 1× 1034 cm−2 s−1, the average
number of interactions per bunch crossing is of about 40MHz, corresponding to
an interaction rate of the order of 1GHz. ATLAS records an amount of data per
event which is at the level of 1.5 Mbyte: this, given the current maximum data
transfer rate on disk, means that the maximum rate of events which can be saved on
disk is of about 200Hz. Real–time (online) hardware and software systems (trigger
systems) are therefore necessary to reduce the output event rate by a factor 106,
keeping at the same time an high efficiency over interesting events.

The ATLAS trigger system[26] is organised in three different levels of event
selection, first level (LVL1), second level (LVL2) and event filter (EF), as shown in
Fig. 2.18. The amount of detector data needed to take a decision, or equivalently
the number of detector channels involved, increases from LVL1 (which is entirely
hardware) to LVL2 and EF (which are software–based), in such a way to be able to
apply more and more stringent selection criteria and to reduce dead time.

Since the LVL1 trigger has about 2 µs to take a decision, only fast detector systems
are used: calorimeters for electrons, jets, τ–leptons and missing transverse energy,
muon trigger chambers for muons. As for calorimeters[27], reduced granularity
signals which cover ∆η ×∆φ ≈ 0.1× 0.1 (trigger towers) are used to build clusters
and compute their transverse energy ET, summing up signals from ECAL and HCAL
cells, with a precision of about 1GeV. As for the muon system[28], only RPCs and
TGCs are used: muon pT thresholds, as shown in Fig. 2.20, are applied looking for
hits within defined coincidence windows around the extrapolation to the interaction
point of the first hit. LVL1 can reduce in this way the event rate to about 75 kHz.

The LVL2 trigger uses information from all the detector systems, restricted
around a region of interest (RoI) identified by LVL1. The available processing time,
of the order of 10ms, allows a first reconstruction of physics objects using various
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Figure 2.18. Flow chart of the ATLAS trigger system.

Figure 2.19. Event rate at different trigger levels.
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Figure 2.20. Quarter section of the muon system in the rz plane: coincidence windows
(red and blue) are shown for low and high–pTmuons.

detector systems and fast, optimized software algorithms. For example, muons
are identified matching a track reconstructed in the muon spectrometer to a track
reconstructed in the inner detector; information from ID and calorimeters is also
used to require muons to be produced isolated. The output event rate of LVL2 is of
about 1 kHz.

At event filter, decisions are taken using the full granularity available from
each subdetector. Optimized algorithms similar to the offline reconstruction and
identification algorithms can be used, as the processing time available is of about 1 s.
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Chapter 3

Lepton Reconstruction

Charged leptons give, at a hadron collider, the cleanest and clearest detector sig-
natures. Excellent electron and muon reconstruction performance is crucial for the
H → ZZ(∗) → 4` search, both in terms of Higgs mass resolution and of acceptance
in the low mH region. This can be achieved with the contribution of all ATLAS
detector systems, which have been designed to provide high efficiency and resolution
in a wide momentum range, from some GeV to the TeV scale. In this chapter,
reconstruction techniques for electrons and muons are reviewed.

3.1 Tracking Charged Particles

The track reconstruction strategies in the inner detector are different for primary
and secondary particles[29]. A particle is considered as primary if it has a mean
lifetime longer than 3× 10−11 s and has been produced either at the interaction
point or by the decay of a particle with a lifetime shorter than the same value. In
this case, track reconstruction happens with an inside–out algorithm, which starts
the iterative track building procedure from the innermost subdetector layers. On the
other hand, an outside–in strategy is designed for the reconstruction of secondary
particles. Inside–out and outside–in sequences are consecutive.

3.1.1 Inside–out Algorithm

For primary particles, reconstruction starts from seeds composed by at least 3 hits
in the silicon detectors (B–layer, SCT). Each track seed identifies a set of detector
elements, the road, in which further hits to be associated to the same track candidate
are searched. A combinatorial Kalman filter algorithm, which takes into account
energy loss and multiple scattering in the detector material, is used to predict the
position of the track in each point of the detector, thus including successive hits into
the track candidate.

Track candidates are then refitted, minimizing a χ2 which takes into account the
distance of each hit from the most likely trajectory. Since many track candidates
either share hits or are incomplete, an ambiguity solving procedure is applied, which
scores morphologic parameters of each track. A track for which a B–layer hit is
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expected by extrapolation but not found (hole1) will for example receive a penalty
score. Hits shared between different tracks are assigned to the track with highest
score and removed from the fit of the other, with an iterative procedure after which
track candidates beyond a certain quality cut are rejected.

Tracks are then extended to the TRT. First, an extended track is formed simply
adding hits compatible with the extension of the silicon track candidate to the TRT.
Tracks are then refitted using the combined information from silicon detectors and
TRT, and a track scoring procedure is applied. At this stage, either silicon or TRT
hits which lower the fit quality can be flagged as outliers and discarded from the
track fit.

The inside–out reconstruction applies a track transverse momentum cut pT >
400MeV. Reconstruction efficiency, defined as the fraction of primary particles with
pT > 400MeV and |η| < 2.5 which are matched to a reconstructed track2, is shown
in Fig. 3.1. Reconstruction efficiency is stable within 1% against increasing pile–up
conditions, with values above 90% for transverse momenta above 10GeV.

3.1.2 Outside–in Algorithm

Secondary particles coming from secondary decay vertices or from photon conversions
can produce tracks which do not have enough silicon hits to be selected by the
inside–out algorithm. Electrons with high energy loss might as well result in a
failed attempt by the inside–out algorithm to find a TRT extension of the silicon
track candidate. A dedicated outside–in procedure (back–tracking) is therefore
applied after the reconstruction of primary tracks has taken place: track segments
reconstructed in the TRT are extended inwards by adding silicon hits, to form track
candidates in a way analogous to the inside–out algorithm. Reconstruction efficiency
is shown in Fig. 3.2.

3.1.3 Primary Vertices

Reconstructed tracks are used to reconstruct primary vertices, by means of an
iterative vertex finding algorithm[30]. First, the maximum of the distribution of the
z position of closest approach point of reconstructed tracks to the beam interaction
point is used to obtain vertex seeds. An iterative procedure progressively downgrades
the contribution from tracks close to the vertex seed to the global vertex fit χ2;
tracks incompatible with the vertex by more than 7σ3 are used to seed a new vertex.
The procedure stops when all tracks are associated to a vertex candidate, or when
no additional vertex can be found. The position of the beam spot, i.e. of the point
at which proton beams collide, is used as a three–dimensional constraint in the
procedure.

Resolution on vertex position is of about 30 µm in the xy plane and 50 µm in the
z direction. A single primary vertex is usually selected choosing, among primary

1Inactive detector modules are excluded from the definition of holes.
2Particle–track matching is based on the fraction of hits of the track which are actually produced

by the simulated primary particle.
3Compatibility is in terms of a χ2 with 2 degrees of freedom.
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(a) pT

(b) η

Figure 3.1. Track reconstruction efficiency for primary particles by the standard inside–out
algorithm (dashed lines), as a function of pT and η. Distributions are shown for different
average number of interactions per bunch crossing (µ = 1 or |µ| = 21, 41).
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(a) pT

(b) η

Figure 3.2. Track reconstruction efficiency for secondary particles by the standard outside–
in algorithm (dashed lines), as a function of pT and η. Distributions are shown for
different average number of interactions per bunch crossing (µ = 1 or |µ| = 21, 41).
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vertex candidates, the one which maximizes the scalar sum of the square of the
transverse momenta of the associated tracks, ∑ pT

2.

3.2 Muons

Muon reconstruction strategies[31] exploit the fact that muons, in principle, leave a
signal in all detector systems. Muons are charged, minimum ionizing and penetrating
particles, which means one can expect a inner detector track to be reconstructed,
associated with low calorimetric deposit and a track in the muon spectrometer.
Different reconstruction techniques take into account the different acceptance of
the subdetector systems in terms of geometrical coverage (η, φ) and transverse
momentum.

ATLAS muon reconstruction and identification techniques are influenced by
considerations on muon acceptance:

• the acceptance of the ID is |η| < 2.5: inner tracker information is therefore
not available in the forward region of the detector;

• the overall quantity of material of the ID, ECAL and HCAL systems is such
that muons are expected to lose 3GeV before being able to reach the muon
spectrometer;

• uninstrumented regions are present in the MS for |η| < 0.1, due to the presence
of detector services, and for 1.1 < η < 1.3.

The muon spectrometer has been designed to be able to provide an high resolution
standalone reconstruction of muon tracks, standalone muons. A combination of
measurements from the inner detector and the muon spectrometer allows of course
to obtain better momentum resolution than using the ID or MS measurements
alone, and leads to the definition of combined muons. When an accurate MS
measurement is not available, the association of an ID track to a track segment in
the muon system (segment–tagged muons) or to an energy deposit in the calorimeter
consistent with a minimum ionizing particle (calorimeter–tagged muons) helps to
recover reconstruction efficiency.

3.2.1 Muon Spectrometer

Stand–alone reconstruction[32] starts from a Region of Activity (ROA), with size
∆η×∆φ ≈ 0.4× 0.4, identified by the trigger chambers. ROAs are cones pointing to
the interaction point and centered where there exists at least one RPC or TGC hit in
both coordinates. Chambers crossing the ROA are used for the muon reconstruction.

Straight line track segments are reconstructed in two steps. First, a strict search
is performed both in the transverse plane, using stations where the second coordinate
chambers are available4, and using 3D input from the CSCs. Efficiency in regions
where trigger chambers are not available is recovered using, on a second pass of the
segment finding algorithm, MDT–based ROAs defined by accumulation of hits in η

4Outer and middle stations in the barrel, middle MDT stations in the endcaps.
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in the MDT stations. An independent loose search then follows, without requiring a
matching with a second coordinate hit5.

After a first estimate of the transverse momentum using their position and
direction, strict segments are extrapolated to the first station found using tracking in
magnetic field, performing several trials for different pT hypotheses around the initial
rough estimate (momentum scan). The best matching loose segment, if present,
is used to build a track candidate with a full track fitting procedure. A second
momentum scan after the fit is performed, in order to include also segments coming
from other stations: if the track is associated to at least two segments, another
global fit takes place.

A more accurate estimate of the parameters of the track is obtained refitting it
again, this time using full raw detector information instead of track segments and
taking into account holes and outlier hits. Detector material is finally included in
the last χ2 fit, in which chambers and dead material around the track are discretized
into a finite number of scattering centers6.

Each muon track is represented by a five–dimensional vector, corresponding to
the helix parameters, and a 5× 5 covariance matrix, which is obtained varying helix
parameters (taking into account correlations) in such a way to obtain a ∆χ2 of unity.
Extrapolation of MS tracks to the interaction point is then performed: energy loss
and multiple scattering in the calorimeters are taken into account and propagated
to track parameters and covariance matrix.

3.2.2 Combining Inner Detector and Muon Spectrometer Measure-
ments

Combined Muons

The inner detector and muon spectrometer measurements can be combined, using
a statistical procedure which takes into account the covariance matrices of the
two tracks, and hence the different uncertainty over the measurement of track
parameters. If we denote as v = (d0, z0, pT, η, φ)T the vector of helix parameters,
as C the associated covariance matrix and if we use MS and ID to label muon
spectrometer and inner detector measurements, for a given MS track the ID track
which minimizes7

χ2 = (vMS − vID)T(CID + CMS)−1(vMS − vID)

is used for the combination.
5When no trigger hit in φ is available, the second coordinate is determined trying five different

positions along the tube. Hit pairs are required to point loosely to the interaction point, in order to
suppress background and combinatorial tracks.

6Energy loss is taken into account, while scattering angles are constrained fit parameters of the
overall χ2 minimization.

7This is a consequence of the fact that the χ2 of a generic track fit can be expanded around its
minimum χ2(v0) = χ2

0 as
χ2(v) = χ2

0 + (v− v0)TC−1(v− v0). (3.1)
Writing the χ2 of the combined measurement in the form of Eq. (3.1) and in terms of the

analogous expansions for ID and MS measurements, one gets the final relations presented in this
section.
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The combined helix parameters can then be expressed as

v = (C−1
ID + C−1

MS)(C−1
IDvID + C−1

MSvMS),

while the associated covariance matrix is

C = (C−1
ID + C−1

MS)−1.

Segment–tagged Muons

Segment–tagged muons are composed by a inner detector track, with sufficient
momentum, which is geometrically compatible with at least a track segment in
the MDTs or CSCs. ID tracks and MS track segments are used only if they have
not been used by the previous algorithm to build any combined muon. Matching
between the ID track and the MS segment(s) is done in terms of a compatibility
χ2 between the extrapolation of the ID track and the reconstructed MS segments.
Helix parameters of segment–tagged muons are those of the associated ID track.

3.2.3 Combining Calorimeter and Muon Spectrometer Measure-
ments

Calo–tagged muons are composed by a inner detector track associated to an energy
deposit in the calorimeters compatible with the expectation for a minimum ionizing
particle. In this way, despite the resulting low muon purity, it is possible to recover
reconstruction efficiency in those detector regions where MS instrumentation is not
available. Identification criteria for calo–tagged muons are optimized for |η| < 0.1
and 25 . pT . 100GeV.

3.2.4 Performance

Reconstruction Efficiency

Fig. 3.3 shows the muon reconstruction efficiency[31], measured with a sample of
muons with pT > 20GeV coming from Z decays, as a function of η. Reconstruction
efficiency is almost uniform in the whole pseudorapidity range, with a value of about
98%. The efficiency recovery due to the use of calo–tagged muons for η ≈ 0 is also
visible. Reconstruction efficiencies are expected to be almost independent on the
muon transverse momentum, as it is shown in Fig. 3.4.

Comparison with Monte–Carlo (MC) simulation is also shown on the lower panel
of each efficiency plot, in terms of the efficiency scale factor

SF = ε(data)
ε(MC) ,

which is used in physics analyses as a weight correction of simulated events to match
observed data distributions. Uncertainties on muon reconstruction scale factors arise
mainly from the estimation of backgrounds to the pure muon sample selected for
efficiency studies (0.2%) and to extrapolation of Z → µµ data either to the low pT
region8 or in the very high pT region9.
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Figure 3.3. Muon reconstruction efficiency as a function of η for muons with pT > 20GeV,
for different muon reconstruction types. Calo–tagged muons are used only in the region
|η| < 0.1. Ratio between data and MC efficiencies is also shown; the deviation from
unity for 1.5 . η . 2.2 is due to mismodeling of pixel subdetectors in MC simulation.

Fig. 3.5 shows the muon reconstruction efficiency for combined and segment–
tagged muons as a function of the average number of interactions per bunch crossing.
Efficiency, which on average is above 97%, is almost stable against event pile–up.

Momentum Scale and Resolution

Monte Carlo simulation is corrected for residual mismodeling of detector material,
geometric alignment of subdetector systems and intrinsic detector resolution, by
comparison with data. A parametrization of momentum correction is used, analogous
to the one for momentum resolution,

σ(pT)
pT

= a⊕ b · pT,

where the first term takes into account contributions from multiple scattering, while
the second term describes both the intrinsic resolution of each detector component
and residual misalignments. In this way, the momentum measured in the simulation
(either in the ID or MS10), p(MC)

T , is corrected on an event–by–event basis as

p
(MC,corr)
T = p

(MC)
T · s(η)

[
1 + ∆a(η)G(0, 1) + ∆b(η)G(0, 1)p(MC)

T ,
]

8In the region 7 < pT < 10GeV differences with respect to SFs computed with J/ψ → µµ events
are below 1%, while for pT < 7GeV they are below 2%.

9Above 100GeV a systematic uncertainty of 1% × p, with p in TeV, is assigned, from Monte
Carlo studies where conservative residual misalignments and a 10% variation of muon energy loss
are simulated.

10The correction applied to combined muons is the average of the ID and MS corrections, where
each of the two components is weighted with the corresponding momentum resolution.
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(a) Combined and segment–tagged muons (0.1 < |η| < 2.5)

(b) Calo–tagged muons (|η| < 0.1)

Figure 3.4. Muon reconstruction efficiency as a function of muon pT, for different muon
types and pseudorapidity regions. Ratio between data and MC efficiencies is also shown.
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Figure 3.5. Muon reconstruction efficiency as a function of 〈µ〉 for muons with pT > 20GeV,
for combined or segment–tagged muons. Ratio between data and MC efficiencies is also
shown.

where s corrects the momentum scale, and ∆a,∆b are correction factors analogous
to a, b and multiplied by G(0, 1), a random variable which follows a Gaussian
distribution with mean 0 and variance 1 (momentum smearing).

The correction factors s, a, b, which are computed for each detector system (ID,
MS11) in 16 bins in pseudorapidity, are estimated by fitting the Z → µµ data
mass spectrum with Monte Carlo templates. Different templates are obtained from
simulation varying the correction parameters, and the fitting procedure selects
the best match to the data mass spectrum. Systematic uncertainties on the a, b
parameters are obtained varying the mass region used to derive the dimuon mass
templates. Systematic uncertainties on s of 1% in the central and 2% in the forward
region are introduced to cover possible dependence of the scale corrections on muon
momentum.

Fig. 3.6 shows the Z → µµ mass shape, in data and Monte Carlo simulation,
before (top) and after (bottom) applying the correction factors estimated as above:
better agreement is obtained when smearing and scale corrections are applied.

Mass scale is shown in Fig. 3.7, as a function of pseudorapidity, and compared
with results obtained using Υ and J/ψ decays, selected with pT > 6.5GeV and
6GeV, respectively. Negligible dependence of the mass scale on muon momentum is
observed, with an effect visible only at low momenta and covered by the assigned
systematic uncertainties.

Mass resolution, obtained fitting the dimuon mass distribution in data using a
convolution of the mass shape of generated Monte Carlo events12 with a gaussian

11Independent measurements from the study of multiple scattering in the ID using secondary
interaction vertices, and from the study of residual misalignments in the MS, constrain aID and bMS
to be small.

12Generated means that the simulated particles, after final state radiation but before passing
through detector simulation, are used.
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resolution model using per–event uncertainties on mµµ as estimated from the muon
track fit, is shown in Fig. 3.8, as a function of pseudorapidity. Dimuon mass
resolution, which ranges from 1.5GeV to 3GeV depending on the detector region,
is again shown before (left) and after (right) applying muon smearing and scale
corrections.

3.3 Electrons
Three are the electron reconstruction strategies followed in ATLAS:

• the standard reconstruction is seeded from electromagnetic (EM) clusters and
looks for a compatible ID track;

• the standard reconstruction extends also outside |η| > 2.5, where ID infor-
mation is not available and hence the measurement relies only on the EM
cluster;

• a reconstruction optimized for low–pT(some GeV) non–isolated electrons, which
starts from an ID track and looks for a match with a relatively isolated energy
deposit in the calorimeter.

The standard algorithm for electrons in the central calorimeter region (|η| < 2.47),
which are the ones relevant to the H → ZZ(∗) → 4` analysis, is the one described in
this section.

3.3.1 The Gaussian Sum Filter

The inner detector track fitting, described in Sec. 3.1, is based upon a regressive least
squares estimator, the Kalman filter. The Kalman filter performs the measurement of
track parameters in steps, incorporating measurement from each detector component
sequentially13. It relies on the assumption that all measurement uncertainties (such
as those arising from energy loss) can be described by gaussian probability density
functions.

ATLAS track reconstruction applies the pion mass hypothesis when estimating
the effect of energy loss for ionization, bremsstrahlung and multiple scattering.
Electrons, on the other hand, lose energy mainly by bremsstrahlung, well described
by the Bethe–Heitler distribution, which expresses the probability for an electron
to retain a fraction z of its initial energy after passing through a material thick t
radiation lengths (X0) as[33]

f(z) = (− ln(z))a−1

Γ(a) ,

where a = t ln(2). Moreover, for electrons above the GeV scale additional effects14
lead to a f(z) which can be calculated only numerically. This probability density

13This approximation aims at reducing the CPU time needed to obtain the best estimate of track
parameters using all available measurements.

14For example, corrections due to interference effects in the scattering processes for ultrarelativistic
electrons (Landau–Pomeranchuk–Migdal effect) and to longitudinal density of the matter, the Ter–
Mikaelian effect.
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(a) MC with no corrections

(b) MC with smearing and scale corrections

Figure 3.6. Distribution of the dimuon invariant mass for combined, isolated muons with
pT > 25GeV, as obtained from 8TeV data, compared with Monte Carlo simulation for
Z → µµ and backgrounds. The effect of applying smearing and scale corrections defined
in the text is shown on the right plot.
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function (p.d.f.) is manifestly non gaussian, and hence the Kalman filter is no more
an optimal approximation.

Electron inner detector tracks are therefore reconstructed using a generalization
of the Kalman filter, the Gaussian Sum Filter (GSF)[34]. The GSF approximates
the uncertainties p.d.f. as a sum of gaussian components, and uses a Kalman filter
for each of these. In this way, many Kalman filters process in parallel, each one
representing a different contribution to the Bethe–Heitler spectrum.

ATLAS electron reconstruction uses the GSF to account for the energy loss
by bremsstrahlung in the silicon detectors15. The GSF algorithm is applied to
refit inner detector tracks already assigned to electrons (as explained in the next
section), and reduces the dipendence of the momentum measurement on the amount
of material at given pseudorapidity. This is shown in Fig. 3.9, where the average
of the distribution of the ratio of the reconstructed versus true q/p, for simulated
electrons with pT, from 7GeV to 80GeV is compared between electrons with low or
high bremsstrahlung, as a function of η, before and after GSF is applied.

3.3.2 Electron Reconstruction

Standard electron reconstruction is seeded from an electromagnetic cluster. Clus-
ters are reconstructed with a sliding window algorithm, following a three–steps
procedure[35]:

Tower Building The middle layer of ECAL is divided in a grid of towers of size
∆η ×∆φ = 0.025× 0.025, to which an energy E is assigned by the sum of all
cluster cells crossing this geometrical region16.

15The GSF does not bring any substantial improvement in the case of the TRT, due to the more
homogeneous distribution of detector material and the lower measurement precision.

16The contribution of cells crossing more than one tower is proportionally shared among each of
them.



56 3. Lepton Reconstruction

η
-2 -1 0 1 2

D
i-m

uo
n 

m
as

s 
re

so
lu

tio
n 

[G
eV

]

0
0.5

1
1.5

2
2.5

3
3.5

4

4.5
5

Chain 1, CB muons
 Data 2012•
 MC12 without corrections°

 PreliminaryATLAS
-1

Ldt=20.4 fb∫=8 TeV, s

(a) MC with no corrections

η
-2 -1 0 1 2

D
i-m

uo
n 

m
as

s 
re

so
lu

tio
n 

[G
eV

]

0
0.5

1
1.5

2
2.5

3
3.5

4

4.5
5

Chain 1, CB muons
 Data 2012•
 MC12 without corrections°

 PreliminaryATLAS
-1

Ldt=20.4 fb∫=8 TeV, s

(b) MC with smearing and scale corrections

Figure 3.8. Dimuon invariant mass resolution in data, compared with Monte Carlo
simulation before and after corrections.
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(a) Before GSF refit

(b) After GSF refit

Figure 3.9. Average of the distribution of the ratio of reconstructed and true electron q/p,
as a function of η, for simulated electrons between 7GeV and 80GeV (black), before
and after GSF refit is applied. Electrons which lose more (red) or less (blue) than 20%
of energy by bremsstrahlung are also shown. High–bremsstrahlung events are dominant
at high |η|, as expected from Fig. 2.12a.
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Seed Finding A sliding window (with a fixed width of 5×5 in tower units ∆η×∆φ)
is moved around the grid of towers: a seed (pre–cluster) is formed if the
transverse energy of the window, defined as the sum of transverse energies of
the included towers, is a local maximum and is above 3GeV. The position
of the pre–cluster is computed with an energy–weighted average of η and φ
baricenters of all cells within a window spreading by 3× 3 towers around the
central tower17. Duplicate pre–clusters within a ∆η ×∆φ = 2× 2 region are
removed selecting the highest energy pre–cluster.

Cluster Filling Clusters are built selecting all barrel (endcap) cells within a 3× 7
(5 × 5) ∆η × ∆φ region18 around the position of the seed. This is done in
different steps: one starts from the ECAL middle layer, using as seed position
the baricenter of the pre–cluster, adds the middle layer cells and then uses
their baricenter as seed for the search in the strip layer and in the back layer,
while for the pre–sampler the baricenter of the cells in the strip layer is used.

The cluster building efficiency is measured on electrons from Z → ee decays to be
≈ 100%.

Electrons are then reconstructed matching the calorimeter cluster to a track
selected by the GSF algorithm. If more than one match is possible, the ones with
hits in the silicon detectors are preferred, and the one with lower distance in ∆R
with respect to the cluster is chosen. Electron momentum is then obtained using

• the inner detector information for the measurement of d0, z0, η and φ, and for
the charge determination;

• the cluster information for the determination of E.

Fig. 3.10 shows, in blue, the electron reconstruction efficiency for Z → ee events
in 8TeV pp collision data and Monte Carlo, when a requirement of at least 1 pixel
hit and 7 SCT hits is applied on the associated ID track. The effect of applying
GSF refit to reconstruction efficiencies, expressed as a function of cluster η and ET,
is shown: average reconstruction efficiency is above 97%.

3.3.3 Electron Identification

The aim of electron identification is to provide a set of selection requirements, based
on variables associated to the reconstructed object, which allow to discriminate
true isolated electrons from hadronic jets faking electrons. Different identification
criteria have been developed in ATLAS, optimized for different working points in the
plane of the efficiency on isolated electrons versus the rejection against non–isolated
electrons[35]. We will describe in this section a set of requirements optimized for
the H → ZZ(∗) → 4` analysis at 8TeV, the so–called MultiLepton menu, and the
loose++ requirements used for processing 7TeV data.

Electron identification in the MultiLepton menu is based on:
17At the calorimeter edges, this second window may be instead centered on the highest energy

tower.
18In the barrel ∆φ is large, due to the fact that the magnetic field curvature is in this direction.

In the endcap, on the other hand, ∆φ is lower because the bending effect is lower, and ∆η is higher
due to the fact that the physical size of the calorimeter cells is smaller than in the barrel.
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(a) Efficiency vs ηcluster

(b) Efficiency vs Ecluster
T

Figure 3.10. Electron reconstruction efficiency, for 2011 (red) and 2012 (blue) data and
MC simulation, as a function of η and ET of the associated cluster, from Z → ee events.
Unlike the 2012 data/MC sample, the 2011 reconstruction used here did not include
the GSF refit: for the analyses presented in this thesis, however, GSF was applied in
electron reconstruction also for 7TeV data and MC.
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• the number of silicon hits (one hit in the B–layer and at least 2 pixel hits are
required);

• the hadronic leakage Rhad, i.e. the ratio between the transverse energy deposit
in ECAL and HCAL (electrons are expected to release most of their energy in
the electromagnetic calorimeter);

• the fraction of electron energy deposited on the third and outermost ECAL
layer;

• the energy deposit on the second sampling of ECAL (electrons are expected to
deposit there most of their energy);

• the cluster isolation in pseudorapidity, defined in terms of the ratio of energy
deposited in a 3× 7 towers window divided by the energy deposit in a 7× 7
window, Rη;

• the shower width in η measured using the strips of the first layer of the
calorimeter, wstot, and in the second layer, wη2 (average over detector cells,
weighted with their associated energy);

• the energy deposit in the hadronic calorimeter and the second ECAL sampling
(to reject jets containing pions and wide showers);

• the η, φ matching between cluster and ID track (which is expected to be poor
for jets faking electrons);

After these selections, jets with one or more neutral particle (like the π0), which
give rise to significant electromagnetic showers, become an important contribution
to electron background. Rejection of this kind of jets can be achieved using the
first ECAL layer: its fine granularity allows to discriminate between electrons,
which leave an energy deposit with a single maximum E1, and these jets, which
can cause a significant second maximum E2. Selection criteria are applied on
Eratio = (E1 − E2)/(E1 + E2)

Jets with low particle multiplicity containing mainly π0s, photon conversions and
non–isolated electrons from decay of heavy flavours remain as main backgrounds.
In order to further reject them, in the transition region between ECAL barrel and
endcap cuts are applied on the fraction of high–threshold hits in the TRT (which
helps to identify electrons, which are in the ultra–relativistic regime).

The electron identification efficiency is shown in Fig. 3.11. Efficiency as a
function of electron ET is estimated using decay electrons from J/ψs produced
promptly and Z bosons. Identification efficiency is shown to be flat as a function of
transverse energy within 5%; the agreement between efficiency estimated in data
and Monte Carlo simulation is better than 4% for low ET and better than 0.5÷ 1%
at high ET. As estimated from Z → ee events, identification efficiency is also flat –
within 2% – with respect to the average number of interactions per bunch crossing,
and is well described by the Monte Carlo simulation within 0.5%.

In the case of the 2011 data taking, electron identification is based on the loose++
menu. Electron identification is in this case based on Rhad, Rη, wη2, wstot, Eratio,
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(a) Efficiency vs ET

(b) Efficiency vs 〈µ〉

Figure 3.11. Electron identification efficiency, for 2012 data (filled markers) and MC
simulation (open markers), as a function of electron ET (measured from J/ψ → ee and
Z → ee events), and of the average number of interactions per bunch crossing (measured
from Z → ee events).
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on the number of pixel and silicon hits and on the ∆η match between the inner
detector track and the electromagnetic cluster.
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Chapter 4

H → ZZ → 4`: the Golden
Channel

Various are the reasons for which the H → ZZ(∗) → 4` channel is universally
known as the golden channel in the search for the Higgs boson. Despite its lower
cross–section with respect to H → γγ and H →WW at low mH , it offers a clear,
clean signature with a good signal to background ratio, which extends to a wide
Higgs mass range. The presence of charged leptons in the final state allows for a
complete reconstruction of the decay chain: kinematical variables of the final state
can be measured with excellent precision, allowing to study the properties of the
Higgs boson and to determine the quantum number of the observed, new particle.
In this chapter, the main features of the H → ZZ(∗) → 4` channel are reviewed,
both in the context of the Higgs boson search and of the spin–parity studies of a
generic particle decaying via X → ZZ → 4`.

4.1 The Standard Model Signature

The tree–level Feynman diagram for the H → ZZ(∗) → 4` decay is shown in Fig. 4.1.
The Higgs boson interacts with two Z bosons, which can possibly be off mass shell
(virtual), which then decay into pairs of opposite–sign leptons1. For mH . 2mZ ,
interference effects between final state leptons are present for the decay channels with
identical leptons, e.g. H → ZZ(∗) → µ+µ−µ+µ− and H → ZZ(∗) → e+e−e+e−,
which lead to an enhancement of the branching ratio in final states with same flavour
leptons of about 10% (mH = 120GeV), while the one for opposite flavour leptons is
proportionally reduced.

The H → ZZ(∗) → 4` process can be simulated either at leading order (using
the Pythia event generator[37]) or next–to–leading order (using the powheg event
generator 2[38]). The perturbative order of the calculation influences the transverse
momentum distributions of the Higgs boson: Fig. 4.2 shows different predictions
for the Higgs pT between the two generators, especially visible in the case of VBF
production. In the case of the ggF production mechanism, further pT corrections

1The branching ratio for Z → ``, with ` = e, µ, is 6.7% (10.1% if we consider also τ leptons)[36]
2The powheg event generator is interfaced to Pythia for parton shower, hadronization and

underlying event simulation.
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Z

Z

ℓ+

ℓ−

ℓ−

ℓ+

Figure 4.1. Lowest order Feynman diagram for the H → ZZ(∗) → 4` decay.

to the NNLO spectrum arise from calculations at NLO in QCD corrections and
next–to–next–to–leading–logarithm (NNLL) in QCD soft–gluon resummations[39]
and are shown in Fig. 4.3. The choice of the set of parton density functions and of
the αs scale has an impact of less than 2% on the signal acceptance, independent on
mH .

The signature of H → ZZ(∗) → 4` is the presence of four final state leptons,
which are produced isolated and which come from the decay of two intermediate
bosons. Selection criteria are based on requirements on the kinematic variables of the
event — momentum, invariant mass of the dilepton pairs, lepton isolation measured
with the tracking system and calorimeters, lepton impact parameter — and aim at
selecting a pure signal sample, thus reducing the contribution from backgrounds.
Different is the impact on purity coming from different background sources, as a
function of the Higgs mass value.

4.1.1 Low and High Mass Searches

The kinematic production threshold of two Z bosons, ≈ 2mZ , defines two Higgs
mass regions, in which experimental event selection strategies are different.

The main background over the full mass range is pp → ZZ(∗) → 4`, which is
called irreducible background since presents the same final state as the signal; it is
described in Sec. 4.1.2. For mH & 2mZ , where both Z bosons are on the mass shell
and hence give rise to high–pT leptons, it is by far the dominant background source.
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Figure 4.2. Generated Higgs transverse momentum for ggF and VBF production, compared
between LO and NLO generators[7].
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Figure 4.3. Higgs transverse momentum distribution, for mH = 130GeV, compared
bewtween powheg (NNLO) and HqT (NNLO+NNLL). The ratio between the two
distributions is also shown as a function of Higgs pT. From Ref. [7].
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Figure 4.4. Generated invariant mass of Z1 and Z2, defined respectively as the dilepton
pair with invariant mass closest and farthest from the Z pole, for Higgs masses of
125GeV and 360GeV and ggF production. The double peak structure in the Z2 mass
distribution for mH = 360GeV is due to the definition criteria of Z1 and Z2.

For mH . 2mZ , at least one of the two Z bosons is off the mass shell. This
means that the pair of opposite charged leptons in the final state with lower invariant
mass will determine the purity of the selected data sample. Indeed, if we denote
by Z1 the four–momentum of the dilepton pair ff with invariant mass closest to
the Z mass, and by Z2 the one of the pair f ′f ′, it is the lepton pair f ′f ′ which
will have a softer single lepton pT spectrum. Let us restrict to ` = e, µ: since
reconstruction and electron performance are very different between electrons and
muons, one expects different signal efficiency and background rejection between final
states with Z2 → µµ, which are expected to be cleaner, and those with Z2 → ee,
where backgrounds from jets and non–isolated electrons become relevant. This
usually gives rise to contributions from the so–called reducible backgrounds, described
in Sec. 4.1.3, which are more relevant in 4e, 2µ2e final states than in 4µ, 2e2µ
(here and in the following we denote as 2f2f ′ the final state with Z1 → ff and
Z2 → f ′f ′).

Fig. 4.4 shows the behaviour of the invariant masses of the two Z bosons for
mH = 125 and 360GeV, at generator level. One can see that, for low Higgs mass,
the distribution of the mass of the on–shell Z boson does not follow a Breit–Wigner
distribution as in the case of inclusive Z production. This effect is reduced at high
mH . Fig. 4.5 shows, for mH = 125GeV, the correlation between the two invariant
masses; there is a relevant fraction of events in the region where both Z1 and Z2 are
far from the Z pole. The kinematic threshold imposed by the energy conservation
mZ1 +mZ2 . mH is also evident.

4.1.2 The Irreducible Background

The production mechanisms for the irreducible background pp→ ZZ(∗) → 4` are
shown in Fig. 4.6. The main process is qq → ZZ: as it can be seen from 4.8b in
the case of the 2e2µ final state, the NLO cross–section (computed with MCFM[40])
of the gg → ZZ production mechanisms is less than 10% of the cross–section of
qq → ZZ.
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pole, for mH = 125GeV and ggF production.

The peak shown in the production cross–section at m4` ≈ mZ is due to the single
resonant production of a Z boson, whose Feynman diagram is shown in Fig. 4.7.
The effect of the inclusion of this term in the calculation, as shown in Fig. 4.8a, is
relevant for m4` . 100GeV.

The four–lepton mass spectrum of the irreducible background can be therefore
divided in three regions:

• single–resonant mass region (below 100GeV), where the peak at m4` ≈ mZ

from single resonant production is present;

• low mass region (below 2mZ), which shows a rising shoulder whose shape is
influenced by the kinematic cuts applied by the selection;

• high mass region (above 2mZ), where the spectrum shows the fall of the
kinematic shoulder due to the opening of the decay to real bosons.

Discrimination between signal and background is done mainly in terms of the m4`
distribution, since the signature of an Higgs boson decay is a narrow peak in the
four–lepton invariant mass, while the ZZ background is locally flat (apart from
mH ≈ mZ , 2mZ). Further discrimination power is provided, as it can be seen from
Fig. 4.9, by the invariant mass of Z2

3.

4.1.3 Reducible Backgrounds

Reducible background contributions come from

• production of Z bosons in association with jets;

• production of Z bosons in association with heavy flavours;
3In Sec. 4.2 a full account of kinematic variables which can be used to discriminate signal and

background is presented.
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Figure 4.6. Lowest order Feynman diagrams for qq → ZZ and gg → ZZ production.
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Figure 4.7. Lowest order Feynman diagram for the single resonant production mechanism.
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• production of tt̄ pairs.

Fig. 4.10 and 4.11 show some of the relevant lowest order Feynman diagrams for
these processes. In the case of Z + jj production4, the Z boson decays leptonically,
while two jets of the final state are mistakenly reconstructed as leptons, mainly
as fake electrons. In the case of Z + bb production5, a real lepton coming from
the decay of heavy flavours can be reconstructed; this lepton will be not isolated,
since it’s produced in the vicinity of a particle jet. In the case of tt̄ production,
top quarks decay to Wb and a four–lepton signature is obtained when the two W s
decay to `ν6 and another lepton is produced in the decay of hadrons produced in
the hadronization of each of the two b quarks.

Reducible backgrounds are characterized by the presence of a lepton pair which
has a softer pT spectrum than leptons from decay of on–shell Z bosons, hence
reducible backgrounds are more relevant in the low mH region where one does not
place stringent cuts on lepton momenta in order to keep signal acceptance high.

These leptons, unlike signal leptons which are produced isolated, are usually
sorrounded by other particles, which result in an energy or momentum deposit in
the detector. Selection criteria based on the sum of the transverse energy deposits
in a cone of size ∆R̂ around the reconstructed lepton (which has transverse energy
ET and transverse momentum pT), i.e.

∑
∆Ri<∆R̂

E
(i)
T

/
ET ,

and on the sum of the transverse momenta of the charged particles within a cone of
size ∆R̃, ∑

∆Ri<∆R̃

p
(i)
T

/
pT ,

4We denote as Z + jj the production of a Z boson in association with light–flavour jets, which
are mistakenly reconstructed as leptons.

5We will usually denote by Z + bb the more general production of Z bosons in association with
hadrons with b or c quark content.

6The branching ratio for W → `ν is 32.4%[36].
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Figure 4.10. Lowest order Feynman diagrams for pp→ Z + bb̄.

are usually applied to reject non–isolated leptons.
Further rejection power for leptons produced from the decay of heavy flavours,

i.e. from displaced secondary vertices, is obtained with selection criteria based on
the significance of their impact parameter measurement,

d0
σ(d0) ,

where σ(d0) is the uncertainty on the d0 measurement.

4.2 Probing the HZZ Vertex
The most interesting feature of the H → ZZ(∗) → 4` channel, apart from the high
signal to background ratio which allows for good sensitivity over the full Higgs mass
range, is the possibility to fully reconstruct the decay chain of the boson. This is
an unique handle to understand the features of the H → ZZ decay, in terms of
the tensor structure of the HZZ vertex and of the intrinsic properties of the new
particle.

The topology of the final state is deeply influenced by the spin–parity state of
the decaying particle. Techniques have been developed in 1950s[41], to measure the
π0 parity in π0 → γγ and π0 → γ∗γ∗ → e+e−e+e− decays by studying the photon
polarization and the orientation of the planes of the Dalitz pairs, and were later
applied in B–physics for the study of CP violation with B → V1V2 decays7. The

7For example, B0
s → J/ψφ and B0

s → φφ decays.
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Figure 4.11. Lowest order Feynman diagrams for pp→ tt̄.

amount of information on the nature of the decay which is available in the study
of subsequent decay of a generic particle, X, into vector bosons that decay then to
leptons, is higher than in the case of direct decays to pairs of particles, like H → γγ.
The H → ZZ(∗) → 4` channel plays therefore an optimal role in probing the HZZ
vertex.

In this section we will introduce the more general description of the decay of
a particle X via X → ZZ → 4`, where either of the two Z bosons can be off the
mass shell. The decay amplitude into four leptons will be expressed in terms of
the kinematic variables which describe the full decay chain, and distributions of
the observables for different spin–parity states and production scenarios will be
given[42].

4.2.1 Kinematic Observables

In the assumption of massless leptons, the final state of the decay

X → Z1Z2 → 4`

is described with 4×3 = 12 degrees of freedom, one per lepton momentum component:
they are assigned as follows. Four degrees of freedom come from the four–momentum
of X, (pT, η, φ,mX) (where mX has the same meaning of mH

8), which describes the
Lorentz boost into the X center–of–mass frame. Two additional degrees of freedom
are chosen to be the masses of the two Z bosons, m1 and m2; we will assume in the
following that m1 > m2

9.
The six remaining degrees of freedom are defined in the X rest frame, where

n̂z = (0, 0, 1) represents the parton collision axis:
8We emphasize that mX differs from m4` in the fact that the former is the mass pole of the

particle X, while the latter is the reconstructed invariant mass of the four–lepton system.
9For mX � 2mZ , which is the relevant case for the characterization of the new boson at 126GeV,

mi corresponds to the invariant mass of Zi defined with the criteria explained in Sec. 4.1.1.
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• θ∗ ∈ [0, π] and φ∗ ∈ [−π, π] are defined in terms of the unit vector of the Z1
flight direction, q̂1 = (sin θ∗ cosφ∗, sin θ∗ sinφ∗, cos θ∗);

• φ, φ1 ∈ [−π, π] are the two azimuthal angles between the three planes, in the
X rest frame, defined by X,Z1, Z2 and by each Z and its decay leptons:

φ = q1 · (n̂1 × n̂2)
|q1 · (n̂1 × n̂2)| arccos(−n̂1 · n̂2),

φ1 = q1 · (n̂1 × n̂sc)
|q1 · (n̂1 × n̂sc)|

arccos(−n̂1 · n̂sc),

where if we denote by qi = qi1 + qi2 the three–momentum, in the X rest frame,
of Zi (the first term in the sum being the three–momentum of the negatively
charged decay lepton, the second being the positively charged one), the normal
vectors to the three planes are defined as

n̂1 = q11 × q12
|q11 × q12|

,

n̂2 = q21 × q22
|q21 × q22|

,

n̂sc = n̂z × q1
|n̂z × q1|

.

• the angles θ1, θ2 are defined as

θ1 = arccos
(
− q̂2 · q11
|q̂2||q̂11|

)
,

θ2 = arccos
(
− q̂1 · q21
|q̂1||q̂21|

)
,

where this time all three–momenta are in the Zi rest frame.

In the following (especially in Sec. A.3) we will sometimes use the convenient
substitution ψ = φ1 + φ/2, ψ ∈ [−π, π], and define the set

Ω = {cos θ∗, φ1, cos θ1, cos θ2, φ}.

It has to be noted that the angle φ∗ offset is arbitrary and is therefore not used
in the subsequent analysis. The definition of the five relevant angles is sketched in
Fig. 4.12.

4.2.2 Angular Distributions

The differential angular and mass final state distribution in the spin J hypothesis
can be written as10

dΓJ(m1,m2,Ω)
dm1dm2dΩ ∝ P (m1,m2) · dΓJ(Ω)

dΩ , (4.1)

10We will not use momentum and rapidity of the X boson in the following, despite the fact that
they depend on the production process, since the QCD uncertainties on their determination are
high.
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Figure 4.12. Definition of the five production and decay angles in the X → ZZ(∗) → 4`
decay.

where the term P (m1,m2) is

P (m1,m2) =
[
1− (m1 +m2)2

m2
X

]
·
[
1− (m1 −m2)2

m2
X

]

· m3
1

(m2
1 −m2

Z)2 +m2
ZΓ2

Z

· m3
2

(m2
2 −m2

Z)2 +m2
ZΓ2

Z

,

(4.2)

where ΓZ is the total decay width of the Z boson, and mZ its mass.
After integrating over the five angular variables, one gets

dΓJ
dm1dm2

∝
∑

α,β=0,−,+
|Aαβ(m1,m2)|2 · P (m1,m2), (4.3)

where Aαβ are decay amplitudes, which are characteristic of the spin and coupling
hypothesis.

In the following we will review the main features of the decay amplitudes for
spin states J = 0, 1, 2. Full details on the parametrization of the angular part of
Eq. (4.1) are given in Sec. A.3.

4.2.3 Decay Amplitudes

In this section we will show the general scattering amplitudes that describe the
interaction X → Z1Z2. We will assume each of the Z bosons has a transverse
polarization vector εi, so that qiεi = 0, and a field strength tensor f (i),µν = εµi q

ν
i −ενi q

µ
i

whose conjugate is f̃ (i)
µν = 1/2εµναβf (i),αβ ; the X boson will have a polarization vector
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εX . We will also denote by q̃ = q1 − q2 the difference between the momenta of the
two Z bosons, and in the case of spin 2 we will use the symmetric traceless tensor tµν
which is transverse to the momentum of the particle X, tµνqν = 0, and is reported
on Ref. [42]. We will use Λ to denote the scale at which new physics could appear,
and v to denote the vacuum expectation value of the field associated to X.

Spin Zero

If the spin J of the boson X is zero, one can write the more general X → Z1Z2
scattering amplitude as

A(X → Z1Z2) = v−1
(
g1m

2
Zε
∗
1ε
∗
2 + g2f

∗(1)
µν f∗(2),µν + g3f

∗(1),µνf∗(2)
µα

qνq
α

Λ2

+g4f
∗(1)
µν f̃

∗(2),µν)
,

(4.4)

where the couplings gi are in general complex momentum–dependent form factors.
If we make the assumption they are constants11, Eq. 4.4 can be written as

A(X → Z1Z2) = v−1ε∗µ1 ε∗ν2

(
a1gµνm

2
X + a2 qµqν + a3εµναβ q

α
1 q

β
2

)
, (4.5)

where the coefficients ai are related to the couplings gi by

a1 = g1
m2
Z

m2
X

+ s

m2
X

(
2g2 + g3

s

Λ2

)
,

a2 = −
(

2g2 + g3
s

Λ2

)
,

a3 = −2g4.

with
s = q1q2 = m2

X −m2
1 −m2

2
2 .

The explicit form of the decay amplitudes in the spin zero case is, in the helicity
base12,

A00 = −m
2
X

v

(
a1
√

1 + x+ a2
m1m2
m2
X

x

)
,

A++ = m2
X

v

(
a1+ıa3

m1m2
m2
X

√
x

)
,

A−− = m2
X

v

(
a1−ıa3

m1m2
m2
X

√
x

)
,

where x is defined as

x =
(
m2
X −m2

1 −m2
2

2m1m2

)2

− 1.

11Under this assumption, an effective Lagrangian density can be written, where terms with g1
are associated with operators of dimension 3, those with g2, g4 with operators of dimension 5 and
terms with g3 to operators with dimension 7.

12See Sec. 4.2.4 for details
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The Standard Model Higgs boson has, at tree level,

g1 = 2ı, g2 = g3 = g4 = 0,

while small values for g2 are generated by electroweak radiative corrections13, and
g4 is zero up to three–loop corrections.

Spin One

The general scattering amplitude for a spin 1 boson14 can be written as

A(X → Z1Z2) = b1 [(ε∗1q)(ε∗2εX) + (ε∗2q)(ε∗1εX)] + b2εαµνβε
α
Xε
∗,µ
1 ε∗,ν2 q̃β. (4.7)

The two coupling constants b1, b2 are such that, if we assume parity–conserving
interactions, a vector resonance corresponds to b1 6= 0, while a pseudo–vector
resonance to b2 6= 0.

Full expressions of the decay amplitudes are shown in Sec. A.1.

Spin Two

The general scattering amplitude for a spin 2 boson can be written as

A(X → Z1Z2) = Λ−1
[
2g1tµνf

∗(1)µαf∗(2)να + 2g2tµν
qαqβ
Λ2 f∗(1)µαf∗(2)νβ

+g3
q̃β q̃α

Λ2 tβν
(
f∗(1)µνf∗(2)

µα + f∗(2)µνf∗(1)
µα

)
+ g4

q̃ν q̃µ

Λ2 tµνf
∗(1)αβf

∗(2)
αβ

+ m2
Z

(
2g5tµνε

∗µ
1 ε∗ν2 + 2g6

q̃µqα
Λ2 tµν (ε∗ν1 ε∗α2 − ε∗α1 ε∗ν2 )

+ g7
q̃µq̃ν

Λ2 tµνε
∗
1ε
∗
2

)
+ g8

q̃µq̃ν
Λ2 tµνf

∗(1)αβ f̃
∗(2)
αβ

+m2
Z

(
g9
tµαq̃

α

Λ2 εµνρσε
∗ν
1 ε
∗ρ
2 q

σ + g10
tµαq̃

α

Λ4 εµνρσq
ρq̃σ (ε∗ν1 (qε∗2) + ε∗ν2 (qε∗1))

)]
,

(4.8)

which is a function of the 10 couplings gi. The first seven coupling factors, g1 . . . g7,
correspond to a particle with spin–parity state JP = 2+, while the other three,
g8, g9, g10, correspond to a 2− particle. A minimal coupling scenario, where only
lowest–order operators are involved, corresponds to the case g1 = g5 6= 0.

Full expressions of the decay amplitudes are shown in Sec. A.2.

13One has g2 = O(α2) ≈ 10−2.
14The observation of the 126GeV resonance also in the H → γγ decay channel implies, by

the Landau–Yang theorem[43], that spin one states are studied in H → ZZ(∗) → 4` under the
assumption that the observed resonances are actually more than one. This is for example true for
the model in Ref. [44], hence it is interesting to investigate also the possible J = 1 nature of the
new boson.
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4.2.4 CP Admixtures

In Eq. (4.6) we have expressed the scattering amplitude for a spin zero X boson
in the helicity basis15. Helicity λ, i.e. the projection of the spin of a particle along
its momentum, is invariant under rotations and is a pseudoscalar, since it changes
sign under the parity transformation. Amplitudes expressed in the helicity base are
therefore not eigenstates of the charge–conjugation–parity operator, CP .

To reveal the CP nature of the spin zero scattering amplitudes we have to use the
transversity base. Transversity is defined as the projection of the spin of a particle
over a plane orthogonal to the momentum of that particle. The amplitudes

A0 = A00, (4.9)

A‖ = 1√
2

(A++ +A−−), (4.10)

A⊥ = 1√
2

(A++ −A−−), (4.11)

which are expressed in terms of helicity amplitudes, are eigenstates of CP : A0 and
A‖ correspond to CP–even states (orbital angular momentum of the two Z system
L = 0, 2), while A⊥ corresponds to a CP–odd state (L = 1)16. Explicitly,

A0 = −m
2
X

v

(
a1
√

1 + x+ a2
m1m2
mX

x

)
,

A‖ =
√

2m
2
X

v
a1,

A⊥ = ı
√

2m1m2
v

√
xa3.

The CP–odd term is therefore a function of a3 ∝ g4. For a generic boson X
with no definite CP state, i.e. an admixture of CP–even and CP–odd components
(CP mixing), we can define a CP–odd fraction,

fCP = |A⊥|2

|A0|2 + |A‖|2 + |A⊥|2
, (4.12)

which measures the magnitude of the CP–odd amplitude with respect to the total
decay amplitude. This fraction is in general a function of the event–by-event masses
of the two Z bosons, m1,m2. As it will be shown in Chapter 7, integrating Eq. (4.12)
over m1,m2 one can obtain an effective fraction of CP–odd component for the boson
X.

15Total angular momentum conservation requires the helicity λi of the two decay vector bosons
to be the same, i.e. λ1 = λ2 = λ. This explains why A00, A++ and A−− are sufficient to describe
the spin zero decay.

16The system of two vector bosons tranforms under CP as CP |Z1Z2〉 = (−1)L |Z1Z2〉.
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Chapter 5

Signal Extraction

The first goal of this thesis work was to search for the Higgs boson in the H →
ZZ(∗) → 4` decay channel. Event selection criteria – such as kinematic cuts,
isolation and impact parameter requirements – have been optimized on Monte Carlo
simulation to improve the sensitivity in the low Higgs mass region. Tools have
been deployed and validated to improve mass resolution and sensitivity using full
information from the final state leptons. In this chapter, the analysis of the full 2011
and 2012 data samples collected by the ATLAS experiment is presented, and results
on the search of the Higgs boson are discussed.

5.1 Data Samples

5.1.1 Collision Data

Proton–proton collision data from the 2011 and 2012 ATLAS data taking are
used, provided that each detector component relevant for the event reconstruction
was operating normally during the data taking (data quality requirements). The
resulting integrated luminosities corresponding to each of the four final states
(4µ,2µ2e+ 2e2µ,4e) are 4.6 fb−1for

√
s = 7TeV and 20.7 fb−1for

√
s = 8TeV.

5.1.2 Monte Carlo Simulation

Events for signal and background processes are generated using the Monte Carlo
simulators presented below. Full simulation of each event is performed using the
ATLAS detector simulation[61] within the GEANT4 framework[62]. Pile–up inter-
actions, i.e. additional pp interactions in the same and in nearby bunch crossings,
are included in the simulation. Simulated events are re–weighted to reproduce the
observed distribution of the mean number of interactions per bunch crossing in data
(shown in Fig. 2.4).

Signal

Signal processes are modelled using the powheg Monte Carlo event generator[38],
where gluon fusion (ggF) and vector boson fusion (VBF) production mechanisms are
calculated separately, using matrix elements up to the next–to–leading–order. As
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discussed in Sec. 4.1, Higgs transverse momentum is reweighted to the HqT spectrum
to NLO+NNLL. powheg is interfaced to Pythia for showering and hadronization,
which in turn is interfaced to photos[45] for final state QED radiative corrections
and to tauola[46] for the simulation of the decays of τ–leptons. Pythia is used to
simulate the production of a Higgs boson in association with vector bosons, W or H.

Production cross–sections and decay branching ratios, and the relative uncertain-
ties, are taken from Ref. [7]. Cross–sections for the ggF process have been calcolated
at NLO[8, 47] and NNLO[50] in QCD, and NNLL QCD soft–gluon resummations[51]
and NLO electroweak radiative corrections[52] are applied. Cross–sections for the
VBF process are calculated with full NLO QCD and EW corrections[53] and ap-
proximate NNLO QCD corrections[54]. For the associated production WH/ZH,
cross–sections are calculated at NLO[55] and NNLO[56] in QCD and NLO elec-
troweak radiative corrections[57] are applied. Branching ratios are predicted by
prophecy4f[58], which includes the complete NLO QCD and electroweak correc-
tions, the interference effects between identical final–state fermions described in Sec.
4.1 and the leading two–loop heavy Higgs boson corrections to the four–fermion
decay width.

Cross–section uncertainties arise from:

• QCD scale uncertainties, which for mH = 125GeV amount to +7
−8% for ggF

and ±1% for VBF and VH production mechanisms;

• uncertainties in the parton distribution functions (PDF) and αs, which yield an
uncertainty of ±8% for gluon–initiated processes and ±4% for quark–initiated
processes;

• the fact that cross–section calculations do not take into account the Higgs
width1: above mH = 300GeV, an uncertainty of 150%×m3

H , with mH in TeV,
is applied.

Table 5.1 shows the production cross–section and decay branching ratios for
H → ZZ(∗) → 4`, for various Higgs mass hypotheses mH . These values are used to
normalize the signal MC samples to the data luminosity.

Irreducible Background

The ZZ(∗) continuum background is simulated using powheg[59] for qq production
and gg2ZZ[60] for gg production. Inclusive cross–section and invariant mass (m4`)
shape are taken from mcfm[40], which includes both processes at NLO in QCD.

Uncertainties on the irreducible background cross–section arise from QCD scale
uncertainty (±5%) and PDF and αs uncertainties (±4% for quark–initiated processes
and ±8% for gluon–initiated processes).

Reducible Backgrounds

The Z+jj background is simulated using alpgen[63] and is divided into two sources:
Z + light jets — which includes Z + cc̄ in the massless c-quark approximation and

1A Breit–Wigner line shape is nevertheless applied at generator level.
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mH σ (gg → H) σ (qq′ → Hqq′) σ (qq̄ →WH) σ (qq̄ → ZH) BR
(
H → ZZ(∗) → 4`

)
[GeV] [pb] [pb] [pb] [pb] [10−3]

√
s = §7TeV

123 15.8+2.3
−2.4 1.25± 0.03 0.60+0.02

−0.03 0.33± 0.02 0.103
125 15.3± 2.3 1.22± 0.03 0.57± 0.02 0.32± 0.02 0.125
127 14.9± 2.2 1.20± 0.03 0.54± 0.02 0.30± 0.02 0.148
400 2.05+0.30

−0.29 0.18± 0.01 − − 1.21
600 0.34+0.06

−0.05 0.062+0.005
−0.002 − − 1.23

√
s = 8TeV

123 20.2± 3.0 1.61± 0.05 0.73± 0.03 0.42± 0.02 0.103
125 19.5± 2.9 1.58+0.04

−0.05 0.70± 0.03 0.39± 0.02 0.125
127 18.9± 2.8 1.55± 0.05 0.66+0.02

−0.03 0.37± 0.02 0.148
400 2.92+0.41

−0.40 0.25± 0.01 − − 1.21
600 0.52+0.08

−0.07 0.097± 0.004 − − 1.23

Table 5.1. Production cross–sections of an Higgs boson via ggF, VBF and VH production
mechanisms in pp collisions at

√
s = 7 and 8TeV. The decay branching ratio for

H → ZZ(∗) → 4`, with ` = e, µ is also reported. Uncertainties consist of the linear
sum of QCD scale and PDF+αs uncertainties described in the text. Above 300GeV the
production cross–section for associated production is negligible.

Z + bb̄ from parton showers — and Z + bb̄ which uses matrix element calculations
that take into account the b-quark mass. Normalization is taken from data control
regions; for comparisons with simulation, QCD NNLO cross–section calculations are
used[48].

The tt̄ background is simulated using mc@nlo[64] and normalized to approximate
NNLO cross–section calculations[49]. Uncertainties on the tt̄ cross–section arise
from QCD scale uncertainty (+4

−9%) and PDF and αs uncertainties (±7%).
Both alpgen and mc@nlo are interfaced to herwig[65] for parton shower

hadronization and to jimmy[66] for the underlying event simulation.

5.2 Event Selection

5.2.1 Trigger

Events are accepted for analysis if they pass online selection requirements which
depend on the final state being looked for (4µ, 2µ2e+2e2µ, 4e). Single and di–lepton
triggers are used: an event must pass either a single lepton or a di–lepton trigger
(logic OR). The set of selection requirements is shown in Table 5.2 for the 2012 data
taking and Table 5.3 for the 2011 data taking. Isolation requirements, if present,
are applied at Event Filter level, by requiring the scalar sum of the pT of the inner
detector tracks within a cone ∆R < 0.2 to be less than 10% of the lepton pT. Trigger
pT/ET thresholds (and the inclusion or not of isolation requirements in the trigger
algorithms) have been chosen in order to keep the trigger output rate within the
maximum design rate during the data taking. Reconstructed leptons are requested,
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Channel Single-lepton Di-lepton
4µ isolated, pT > 24GeV (p(1)

T , p
(2)
T ) > (18, 8)GeV

(p(1)
T , p

(2)
T ) > (13, 13)GeV

2e2µ 4µ ∨ 4e 4µ ∨ 4e
(E(e)

T , p
(µ)
T ) > (12, 10)GeV

(E(e)
T , p

(µ)
T ) > (24, 8)GeV

4e isolated, ET > 24GeV (E(1)
T , E

(2)
T ) > (12, 12)GeV

Table 5.2. Summary of the triggers used during the 2012 data taking for the final states.
When multiple triggers are indicated (rows), the logic OR among them, ∨, is requested.

Channel Single-lepton Di-lepton
4µ pT > 18GeV (p(1)

T , p
(2)
T ) > (10, 10)GeV

2e2µ 4µ ∨ 4e 4µ ∨ 4e
4e ET > 20÷ 22GeV (E(1)

T , E
(2)
T ) > (12, 12)GeV

Table 5.3. Summary of the triggers used during the 2011 data taking for the final states. The
ET threshold of the single electron trigger varied during the data taking, corresponding
to different detector conditions (increasing interaction rate).

at analysis level, to match the trigger which selected the event2.
The trigger efficiency, i.e. the efficiency of the trigger requirements described

above with respect to the full analysis selection criteria, computed on a signal sample
with gluon–fusion production of an Higgs boson of mass mH = 130GeV is 97.6% for
the 4µ channel, 97.3% for the 2e2µ channel and 99.7% for the 4e channel. Trigger
efficiency is measured, as a function of electron η or muon η, φ, in data and MC using
events from Z → ee and Z → µµ decays: simulated events are weighted with a scale
factor which accounts for residual differences between data and MC efficiencies3.

5.2.2 Leptons

Electrons

Electrons with pseudorapidity of the associated cluster |η| < 2.47 and ET > 7GeV
are used. They are reconstructed as explained in Sec. 3.3. Electrons used for the
analysis of 8TeV (7TeV) data and Monte Carlo are required to pass the MultiLepton
(loose++) identification criteria described in Sec. 3.3.3.

2In other words, the reconstructed lepton(s) must be compatible in ∆R with the corresponding
lepton(s) reconstructed by the Event Filter algorithms.

3In the single lepton trigger case, this scale factor SF can be written as

SF =
1−

∏
i
(1− εdata(vi))

1−
∏
i
(1− εMC(vi))

,

where ε is the trigger efficiency in data or MC and vi is the three–momentum of the i–th lepton
forming the Higgs candidate.
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Electrons must be compatible with the primary vertex4 in terms of their longitu-
dinal impact parameter, |z0| < 10mm.

Muons

Combined muons (CB) are used in the pseudorapidity region |η| < 2.5, while stand–
alone muons (SA) are used for 2.5 < |η| < 2.7. In both cases, a lower pT cut at
6GeV is applied. Acceptance is recovered in the central region of the detector by
using calorimeter–tagged muons (CT) for |η| < 0.1 if they satisfy the requirement
pT > 15GeV and if they do not share the same ID track of any reconstructed
electron.

The same selection cut as for electrons, |z0| < 10mm, is applied to reject muons
displaced with respect to the primary vertex. Muons coming from cosmic rays are
rejected by a requirement on their transverse impact parameter, d0 < 1mm.

5.2.3 Candidates

Among all selected leptons, Higgs candidates are formed using all possible pairs of
two leptons with same flavour and opposite charge. The highest–pT lepton of each
quadruplet must have pT > 20GeV, the second lepton pT > 15GeV and the third
one pT > 10GeV.

Within each quadruplet, dileptons are ordered according to the distance between
their invariant mass and mZ : the closest one has mass m1 and is called Z1, the
other one (which is possibly off–shell) has mass m2 and is called Z2. If at this stage
there is more than one selected quadruplet, the one with lower δZ = |m1 −mZ | is
selected; if two candidates share the same δZ , the one with highest m2 is taken.

The following selection criteria are then applied to the selected quadruplet:

1. leptons must be separated in ∆R, with a lower threshold of 0.1 for leptons of
the same flavour and — to reject photons coming from muon bremsstrahlung
and misidentified as electrons — 0.2 for opposite flavour leptons;

2. in order to remove contamination from Jψ decays, none of the possible dilepton
pairs within the quadruplet can have an invariant mass m2` < 5GeV;

3. the mass of the first dilepton must satisfy the relation 50 < m1 < 106GeV;

4. the invariant mass of the other dilepton object, Z2, must satisfy mthr < m2 <
115GeV, where mthr depends on m4` as

mthr =


12GeV if m4` < 140GeV,

12GeV + m4` − 140GeV
190GeV− 140GeV · (38GeV) if 140 < m4` < 190GeV,

50GeV if m4` > 190GeV;

4A primary vertex must have been reconstructed (see Sec. 3.1.3) by at least 3 inner detector
tracks.
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5. track isolation criteria are applied on the four decay leptons (electrons and
combined, segment–tagged and calorimeter–tagged muons5), requiring∑

∆R<0.2
p

(i)
T /pT < 15% (CB, ST, CT muons),

∑
∆R<0.2

p
(i)
T /ET < 15% (electrons),

where the sum runs over all tracks reconstructed in the inner detector, without
any contribution from the leptons within the quadruplet;

6. calorimetric isolation criteria6 are applied: for electrons,∑
∆R<0.2

E
(i)
T /pT < 30% (CB, ST, CT muons),

∑
∆R<0.2

E
(i)
T /pT < 15% (SA muons),

∑
∆R<0.2

E
(i)
T /ET < 20(30)% (electrons),

where two values are indicated for electrons referring to 8(7)TeV analyses7,
and contribution from leptons within the quadruplet which are in the cone
∆R < 0.18 around the considered lepton is removed;

7. impact parameter significance of the leptons should satisfy the requirements8

|d0|/σ(d0) < 3.5 (muons),
|d0|/σ(d0) < 6.5 (electrons).

5.3 Mass Resolution
The mass of the four lepton system, m4`, is the discriminating variable between
signal and backgrounds. The true mass of the Higgs boson, mH , is inferred from the
m4` distribution: it is therefore crucial to obtain a high four lepton mass resolution.
Fig. 5.1 shows the resolution on m4` and the intrinsic width of the Higgs boson, ΓH ,
as a function of mH : resolution effects are dominant up to about 350GeV, hence in
the low mass region improvements in mass resolution yield significant improvements
in the signal sensitivity.

Two are the corrections applied to improve mass resolution: recovery of photons
from final state radiation, and the Z mass constraint fit.

5Stand–alone muons do not have an associated inner detector track.
6Calorimetric isolation, which is in principle pile–up sensitive (lower selection efficiency at higher

µ), is corrected subtracting the average amount of energy deposit in the calorimeter as a function of
the average number of interactions per bunch crossing. Track isolation is less pile–up sensitive, since
selection cuts, which sensibly reduce the fraction of tracks not coming from the primary vertex, are
applied on tracks used in the isolation computation.

7The 8TeV cut is stricter due to the higher average number of interactions per bunch crossing
in the 2012 data taking.

8The impact parameter selection requirement on electrons is less stringent than for muons, since
for electrons impact parameter resolution is affected by bremsstrahlung.
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(without) FSR recovery.

5.3.1 Final State Radiation Recovery

Final state radiation (FSR) of photons from the decay muons of Z1 is taken into
account[67] by summing up to the lepton momenta photons with an anergy above
1GeV and within ∆R < 0.09 to 0.15 (with a threshold depending on photon
ET). Photons between 1GeV and 3.5GeV are reconstructed using the topological
algorithm[35], which builds clusters of variable size collecting cells around a seeding
cell with an energy above a certain signal to noise threshold. Photons above
3.5GeV are reconstructed using the same sliding window algorithm used for electrons
(described in Sec. 3.3.2).

This correction is applied when 66 < m1 < 89GeV and the corrected Z1 invariant
mass satisfies mµµγ < 100GeV. It affects about 4% of all selected signal events, as
estimated from Monte Carlo simulation. Fig. 5.2 shows the effect of the inclusion of
FSR photons both on Z1 mass distribution and on m4`, for a simulated Higgs signal
with mH = 125GeV.

5.3.2 The Z Mass Constraint Fit

Mass resolution can be further improved by using the fact that the invariant mass
of pairs of leptons coming from an on–shell Z boson is constrained by its intrinsic
width ΓZ . Indeed, the probability distribution of the mass of the Z boson generated
in that single event, mtrue

Z , given the measured dilepton mass m2`, can be written
using Bayes’ theorem as

p(mtrue
Z |m2`) ∝ p(m2`|σm2` ,m

true
Z ) · p(mtrue

Z |mZ ,ΓZ), (5.1)

where we recognize on the RHS:

• a resolution function, which describes the smearing of the reconstructed dilepton
mass — due to lepton momentum resolution, which yields an uncertainty9
σm2` on m2` — around mtrue

Z ;
9The dilepton mass uncertainty is computed using the covariance matrix associated to muons,
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• the a–priori probability of producing a Z boson with mass mtrue
Z , given its

mass pole mZ and its intrinsic width.
The aim of the Z mass constraint fit is to first obtain in each event the maximum

likelihood estimate of mtrue
Z by maximizing Eq. (5.1), and to change the momenta

(and covariance matrices) of the n decay particles (two electrons, two muons or two
muons and a FSR photon) under the constraint

m2` = mtrue
Z . (5.2)

Mathematically, the problem consists of a χ2 fit of the particle momenta (a vector
x of 3n parameters, i.e. 3 momentum components for each of the n particles, and
the corresponding n 3 × 3 covariance matrices V ) subject to a single non–linear
constraint (Eq. (5.2)). It is solved using the formalism of Lagrange multipliers, in
which the constraint is written as

g(x) =
[
E2
tot − p2

tot

]
− (mtrue

Z )2

= g(x0) + ∂g(x)
∂x

∣∣∣∣
x=x0

(x− x0) +O((x− x0)2)

≡ d +D∆x +O(∆x2) = 0,

(5.3)

where we have expanded g around the initial parameters x0. Here d,∆x are vectors
with dimension 1 (number of constraints) and D a matrix with dimension 1× 3n.
Applying the constraint of Eq. (5.2) is equivalent to the minimization of

χ2 = (x− x0)TV −1
x0 (x− x0) + 2λ(D∆x + d),

where x0 are the solutions of the unconstrained problem (λ = 0).
In this way, particle momenta are constrained to the most likely true Z mass in

that event. The higher is the uncertainty on the momentum of a particle, the higher
the “fraction” of the correction it is going to take. The estimate of the true Z mass
takes nevertheless into account both (reconstructed) mass resolution and Z intrinsic
width, with the result that when |m2` −mZ | � 0 the correction will be minimal,
unless momentum uncertainty is high.

The implementation of the Z mass constraint fit uses a gaussian resolution
model and a Breit–Wigner distribution for the prior on mZ

10. Its effect is shown
in Fig. 5.3, in terms of the pull between the fitted and the original dilepton mass,
(mcorr

1 −m1)/m1, as a function of m1 = m2`. As it can be seen, the effect on the
m2` distribution is relevant in the mass region around the Z mass pole, and is a
consequence of the balance between the Breit–Wigner p.d.f. and the mass resolution.
Fig. 5.4, 5.5 and 5.6 show the effect on the m4` distribution on a 125GeV and
360GeV Higgs boson. The effect on the ZZ continuum background, as shown in
Fig. 5.7, is found to be negligible.
electrons and photons, corrected for residual differences in momentum/energy response between
data and MC simulation. In the case of electrons, the covariance matrix is built including inner
detector uncertainties on the electron direction (η, φ) and energy resolution of the calorimeter, while
correlations between the ID and ECAL measurements are neglected. In the case of photons, only
the energy resolution is used.

10The effect of a different choice of the mass resolution model, for example using a Crystal Ball
p.d.f. whose parameters are estimated from Monte Carlo, has been found to be negligible within
systematic uncertainties on m2`.
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Figure 5.3. Effect of Z mass constraint fit, expressed in terms of fractional change m1
after the constraint, as a function of unconstrained m1, for a simulated Higgs boson of
125GeV.
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Figure 5.4. Comparison between the constrained (red) and unconstrained (black) four–
lepton mass, for a simulated Higgs boson of 125GeV.



88 5. Signal Extraction

 a
.u

. /
 [1

 G
eV

]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 [GeV]µ4unconstrained m
90 95 100 105 110 115 120 125 130 135 140

 [G
eV

]
µ4

co
ns

tr
ai

ne
d 

m

90

95

100

105

110

115

120

125

130

135

140

(a) 4µ

 a
.u

. /
 [1

 G
eV

]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

 [GeV]2eµ2unconstrained m
90 95 100 105 110 115 120 125 130 135 140

 [G
eV

]
2eµ2

co
ns

tr
ai

ne
d 

m

90

95

100

105

110

115

120

125

130

135

140

(b) 2µ2e

 a
.u

. /
 [1

 G
eV

]

0

0.05

0.1

0.15

0.2

0.25

 [GeV]µ2e2unconstrained m
90 95 100 105 110 115 120 125 130 135 140

 [G
eV

]
µ

2e
2

co
ns

tr
ai

ne
d 

m

90

95

100

105

110

115

120

125

130

135

140

(c) 2e2µ

 a
.u

. /
 [1

 G
eV

]

0

0.02

0.04

0.06

0.08

0.1

0.12

 [GeV]4eunconstrained m
90 95 100 105 110 115 120 125 130 135 140

 [G
eV

]
4e

co
ns

tr
ai

ne
d 

m

90

95

100

105

110

115

120

125

130

135

140

(d) 4e

Figure 5.5. Correlation between the constrained and unconstrained four–lepton mass, for
a simulated Higgs boson of 125GeV.
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Figure 5.8. Four–lepton mass distribution after FSR recovery, for a simulated signal sample
with mH = 125GeV. A gaussian fit to the m4` peak is superimposed.

5.3.3 Results

Mass resolution as a function of pseudorapidity has been studied for a Higgs signal
sample withmH = 125GeV. Mass resolution is determined by the standard deviation
obtained from a fit of the peak of the invariant mass distribution in the four decay
channels with a gaussian function11.

Fig. 5.8 shows the four–lepton mass distribution without the Z mass constraint
fit, while Fig. 5.9 shows the same distribution after applying the Z mass constraint fit.
Mass resolution after (before) the Z mass constraint is 1.64± 0.02 (2.00± 0.02)GeV
for the 4µ final state, 1.95± 0.03(2.25± 0.03)GeV for 2µ2e+ 2e2µ and 2.54± 0.05
(2.70±0.05)GeV for 4e. Tables 5.4 and 5.5 show the differentm4` resolution obtained
from gaussian fits to events reconstructed in different detector regions, together with
the full–width–at–half–maximum (FWHM) of the fitted distribution, which is an
estimate of the overall effect of tails.

11The mass fit region is determined iteratively until fit parameters are stable: the mass regions
±2σ from the fitted mean m0 for 4µ and [m0 − 1.5σ,m0 + 2.5σ] for the other channels are used, to
avoid the tail from FSR and electron bremsstrahlung.
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Figure 5.9. Four–lepton mass distribution after FSR recovery and the Z mass constraint
fit, for a simulated signal sample with mH = 125GeV. A gaussian fit to the m4` peak is
superimposed.
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5.4 Reducible Background Estimation

The normalization of the reducible `` + jj and tt̄ backgrounds is evaluated using
data–driven methods. As discussed in Sec. 4.1.3, the composition of the reducible
backgrounds depends on the flavour of the Z2 decay leptons: different methods are
used for the estimate of reducible backgrounds in the ``+µµ and ``+ ee final states.

Due to the few statistics in data control regions, the shape of the reducible
background is obtained from Monte Carlo simulation. A control region is used,
where impact parameter and calorimetric isolation requirements are not applied on
leptons from Z2, while a relative track isolation of less than 30% is required. Shape
systematics are assigned by using two other control regions, namely one where the
nominal track isolation requirement, a relative calorimeter isolation of less than 30%
and a transverse impact parameter significance d0/σ(d0) < 6.5 are applied, and one
where the requirement on the impact parameter significance is inverted.

5.4.1 ``+ µµ Background

Two are the control regions in which the Z + jj, Z + bb̄ and tt̄ backgrounds are
estimated: a control region with enriched bb̄ contribution and suppressed π/K
in–flight decays, and the other enriched in both components.

bb̄ Control Region

The bb̄–enhanced control region is obtained by removing the isolation requirement
for the Z2 decay leptons, and requiring at least one of these two leptons to fail the
impact parameter significance requirement. In this way, contamination from the ZZ
background is reduced, and both the Z + jj and tt̄ components can be estimated.

The estimation is performed using the fact that the invariant mass distribution
of Z1 is flat for the tt̄ component and shows a peak at m1 ≈ mZ for the Z + jj
component. Fig. 5.10 shows this distribution in the control region, which is then
fitted using a second order Chebychev polynomial for the tt̄ component and the
convolution of a Breit–Wigner and a Crystal Ball resolution function for the Z + jj
component; parameters for these functions are fitted on MC and allowed to vary by
10% in the fit to the experimental data.

The number of events in this control region is obtained from the fit and then
extrapolated to the signal region, using a transfer factor which uses the efficiency of
the impact parameter significance and isolation requirements obtained from Z + bb̄
simulation. This transfer factor is checked using a data–driven control region in
which events with a Z boson plus exactly one muon are selected; Z decay leptons
must fulfil the same requirements used for leptons from Z1. Variations of about 10%
are observed between transfer factors determined from MC and this Z + µ control
region, and a corresponding systematic uncertainty is assigned on the number of
background events in the signal region.

π/K Control Region

To obtain a sample enriched in π/K decays, a control region is defined removing
the impact parameter and isolation requirements on muons from Z2 and requiring



96 5. Signal Extraction

  [GeV] 12m
50 60 70 80 90 100

E
v
e

n
ts

/4
 G

e
V

0

10

20

30

40

50

60

Data 
 fittZ+jets and t

 fittt
ZZ
Z+jets
tt

WZ

 PreliminaryATLAS

µ4
­1Ldt = 20.7 fb∫ = 8 TeV:  s

(a) 4µ

  [GeV] 12m
50 60 70 80 90 100

E
v
e

n
ts

/4
 G

e
V

0

5

10

15

20

25

30

35

40

45

Data 
 fittZ+jets and t

 fittt
ZZ
Z+jets
tt

WZ

 PreliminaryATLAS

µ2e2
­1Ldt = 20.7 fb∫ = 8 TeV:  s

(b) 2e2µ

Figure 5.10. Distribution of m1, for the two ``+µµ final states, in the control region where
the isolation requirements are not applied to the decay muons from Z2, and at least one
of these muons is required to fail the impact parameter significance requirement.

that at least one of the two decay muons fails the track isolation requirement. The
contribution from π/K decays is obtained performing a fit on the m1 distribution to
which the contribution from Z + bb̄ — determined as described above — is removed,
and is found to be about 20% of the total Z + jj estimate.

tt̄ Control Region

A cross–check of the tt̄ background estimate is obtained using a control region in
which four–lepton events with e±µ∓ pairs are selected, if they satisfy the requirement
50 < meµ < 106GeV and if the two additional leptons are opposite charge muons
with mµµ which satisfies the same selection criteria used for m2. Events with
Z → ee, µµ decays are rejected, and isolation and impact parameter requirements
are applied only to the opposite–charge opposite–flavour lepton pair. An estimate
consistent with the one from the bb̄ control region is obtained.

5.4.2 ``+ ee Background

Reconstructed electrons can come from different sources: true isolated electrons,
electrons from heavy flavour decays (Q), electrons from photons conversions (γ),
electron fakes from jets (f). At reconstruction level it is possible to select recon-
struction categories of electrons which are electron–like (E) or fake–like (E), using as
discriminating variables the fraction of high threshold hits in the TRT (RTRT), the
fraction of electron energy in the first ECAL layer (f1) and the lateral containment
of the electromagnetic cluster in the azimuthal direction (Rφ, measured using the
second ECAL layer). Four control regions are used for the background estimate.
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``+ e±e∓, Relaxed Cuts

The ``+ ee control region is formed by relaxing the selection criteria on the Z2 decay
electrons. Contributions to this control region from each of the sources described
above are obtained using the classification in reconstruction categories. For each
category, the extrapolation efficiency to the signal region is obtained from MC and
cross–checked with data.

``+ e±e∓, Inverted Cuts

An additional control region, which is in this case orthogonal to the signal region, is
also obtained inverting isolation and impact parameter requirements; classification
in reconstruction categories is applied. The extrapolation efficiency is in this case
estimated using a Z + ` data sample in pT and η bins, and is found to be in good
agreement with the other method. An additional cross–check is also performed,
applying the same two methods to similar control regions where Z + e±e± events
are selected.

3`+ ` Same–Charge

An additional estimate is obtained using a control region where the electrons from Z2
have same charge, the three highest pT leptons satisfy the full analysis requirements
and the remaining electron is only required to have at least 1 pixel, 7 silicon hits
and to pass the Rη selection criteria.

The different yields for each of the truth components f , γ and Q are obtained
performing a simultaneous fit to the distributions of the number of B–layer hits and
of RTRT. Each component is modeled using templates from Monte Carlo simulation.
A systematic uncertainty on the estimated yields is obtained with the result of the
fit obtained replacing RTRT with f1 or using instead the distance in η between the
extrapolated impact point of the track on the calorimeter and the cluster barycenter
obtained using the first ECAL layer (∆η1).

Same–charge, Full Analysis

An additional control region is defined performing the full analysis but selecting
same–charge electrons in the case of Z2. A m4` < 160GeV requirement is applied
to remove contamination from ZZ background events with mismeasured charge;
contamination from Z + bb̄ is expected to be small. The resulting estimate is 6 (2)
events in the 4e (2µ2e) channels, in good agreement within statistical uncertainties
with the other estimates.

5.4.3 Summary of Reducible Background Estimates

Table 5.6 reports the results of all the reducible background estimation methods;
the estimate used for the background normalization is denoted with a “†” symbol.
The fraction of background events in the m4` < 160GeV region is approximately
80% of the total.

Fig. 5.11 shows the m1 and m2 distributions for events selected applying all
analysis criteria, apart from isolation and impact parameter requirements on leptons
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Figure 5.11. Distributions of m1 and m2 for events where isolation and impact parameter
requirements on the Z2 decay leptons are relaxed, for the ``+µµ and ``+ ee final states.
Data are compared with Monte Carlo simulation for a 125GeV Higgs signal and for
reducible background, for which normalizations obtained from data–driven methods are
applied.
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Method Estimate for
√
s = 8TeV Estimate for

√
s = 7TeV

4µ 4µ
m12 fit: Z + jj contribution 2.4± 0.5± 0.6† 0.22± 0.07± 0.02†
m12 fit: tt̄ contribution 0.14± 0.03± 0.03† 0.03± 0.01± 0.01†

tt̄ from eµ+ µµ 0.10± 0.05± 0.004 -
2e2µ 2e2µ

m12 fit: Z + jj contribution 2.5± 0.5± 0.6† 0.19± 0.06± 0.02†
m12 fit: tt̄ contribution 0.10± 0.02± 0.02† 0.03± 0.01± 0.01†

tt̄ from eµ+ µµ 0.12± 0.07± 0.005 -
2µ2e 2µ2e

``+ e±e∓ relaxed cuts 5.2± 0.4± 0.5† 1.8± 0.3± 0.4
``+ e±e∓ inverted cuts 3.9± 0.4± 0.6 -

3`+ ` (same–charge) 4.3± 0.6± 0.5 2.8± 0.4± 0.5†
same–charge, full analysis 4 0

4e 4e
``+ e±e∓ relaxed cuts 3.2± 0.5± 0.4† 1.4± 0.3± 0.4
``+ e±e∓ inverted cuts 3.6± 0.6± 0.6 -

3`+ ` (same–charge) 4.2± 0.5± 0.5 2.5± 0.3± 0.5†
same–charge, full analysis 3 2

Table 5.6. Summary of the estimated yields of reducible background events for the 20.7 fb−1

of
√
s = 8TeV data and for the 4.6 fb−1 of

√
s = 7TeV data for the full m4` range of the

analysis (see the text for details). Events for the ``+ ee control region with same–sign
electrons are given only for m4` < 160GeV, to reduce contamination from ZZ events
with charge mismeasurements; approximately 80% of the reducible background events is
in this region. The methods used for the final background estimates are indicated with
a “†” symbol. The first uncertainty is statistical, the second is systematic.

from Z2, for `` + µµ and `` + ee final states. Good agreement in shape and
normalization is observed with data.
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5.5 Systematic Uncertainties
Various sources of systematic uncertainties on signal and background yields are
considered:
Muon Identification and Reconstruction Uncertainties on muon identification

and reconstruction efficiency scale factors, as estimated for signal and irre-
ducible background, are uniform in the full m4` range and amount to ±0.8%
(±0.4%/± 0.4%) for the 4µ (2µ2e/2e2µ) channel.

Electron Identification and Reconstruction Uncertainties on electron identi-
fication and reconstruction efficiency scale factors result in an uncertainty on
the signal yields of ±2.4% (±1.8%/± 1.6%) for the 4e (2µ2e/2e2µ) channel at
m4` = 1TeV and ±9.4% (±8.7%/± 2.4%) at m4` = 125GeV.

Isolation and Impact Parameter Requirements The uncertainty on the ef-
ficiencies of the isolation and impact parameter requirements is evaluated
by measuring the efficiency of these criteria on a di–jet sample enriched in
non–isolated leptons from b, c–quark decays, and is found to be negligible.

Higgs pT Reweighting The uncertainty on the corrections to the NNLO Higgs
pT spectrum described in Sec. 4.1 is taken into account and an additional ±1%
uncertainty is added in the ggF case, to account for parton density functions
and QCD scale uncertainties.

Luminosity The overall uncertainty on the integrated luminosity is ±1.8% for
the 7TeV dataset and 3.6% for the 8TeV dataset[18], and is assigned as
corresponding uncertainty for normalizations coming from Monte Carlo.

Theory Uncertainties All theory–related systematic uncertainties for signal and
irreducible background described in Sec. 5.1.2 are taken into account.

Electron Energy Scale The uncertainty on the electron energy scale is determined
from Z → ee decays, yields an uncertainty over the measured Higgs mass mH

of less than ±0.4%(±0.2%) for the 4e (2e2µ) channel, and is negligible for 2µ2e
(where the electrons have lower momenta). This uncertainty is verified for
pT < 15GeV using J/ψ decays: at 10GeV measurements and predictions agree
to better than 1%, which leads to a contribution to the overall uncertainty on
mH of less than 0.1%. Similarly, the effect of uncertainties on final–state QED
radiation modelling and background contamination are below 0.1%.

Muon Momentum Scale The contribution to the uncertainty on mH due to
uncertainties on the determination of the muon momentum scale is evaluated
using J/ψ,Υ and Z decays, and is estimated to be ±0.2%(±0.1%) for the
4µ(2µ2e) channels.

5.6 Results
The overall signal reconstruction and selection efficiency for mH = 125GeV for
the 2012 (2011) data analysis is 39% (39%) for the 4µ channel, 26% (21%) for
2µ2e+ 2e2µ and 19% (15%) for 4e.
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4µ 2µ2e/2e2µ 4e
low mass high mass low mass high mass low mass high mass
√
s = 8TeV integrated luminosity 20.7 fb−1

ZZ(∗) 12.4 ± 0.6 92.6 ± 6.7 14.7 ± 0.9 144 ± 11 5.4 ± 0.5 55.9 ± 4.5
Z, Zbb̄, and tt̄ 1.9 ± 0.6 0.5 ± 0.2 6.1 ± 1.5 1.5 ± 0.4 2.5 ± 0.6 0.6 ± 0.2

total background 14.3 ± 0.8 93.1 ± 6.7 20.8 ± 1.8 145 ± 11 8.0 ± 0.8 56.5 ± 4.5
data 27 93 28 169 13 55

mH =123GeV 4.4 ± 0.6 5.4 ± 0.8 2.2 ± 0.4
mH =125GeV 5.8 ± 0.7 7.0 ± 0.9 2.9 ± 0.4
mH =127GeV 6.7 ± 0.9 8.4 ± 1.2 3.4 ± 0.5

√
s = 7TeV integrated luminosity 4.6 fb−1

ZZ(∗) 2.2 ± 0.1 16.8 ± 1.2 2.5 ± 0.2 26.6 ± 2.0 0.8 ± 0.1 9.4 ± 0.8
Z, Zbb̄, and tt̄ 0.2 ± 0.1 0.05 ± 0.02 2.4 ± 0.5 0.6 ± 0.1 2.0 ± 0.5 0.48 ± 0.1

total background 2.4 ± 0.1 16.9 ± 1.2 4.9 ± 0.6 27.1 ± 2.0 2.8 ± 0.5 9.8 ± 0.8
data 8 23 5 23 2 13

mH =123GeV 0.7 ± 0.1 0.8 ± 0.1 0.3 ± 0.1
mH =125GeV 1.0 ± 0.1 1.1 ± 0.2 0.4 ± 0.1
mH =127GeV 1.0 ± 0.2 1.2 ± 0.2 0.4 ± 0.1

Table 5.7. Number of observed and expected events in “low mass” (100 < m4` < 160GeV)
and “high mass” (m4` ≥ 160GeV) regions. Uncertainties on expected signal and
background yields are reported.

Table 5.7 shows the number of event observed in each final state and the number
of expected events for backgrounds. Expectations are given for 100 < m4` < 160GeV
and m4` ≥ 160GeV, for the 20.7 fb−1 at

√
s = 8TeV and the 4.6 fb−1 at

√
s = 7TeV

data sets and the combined dataset. Expectations in a window of ±5GeV around
mH = 125GeV are presented in table 5.8. Seven out of the 225 events with Z1 → µµ
undergo FSR recovery; one of them is within 120 < m4` < 130GeV. The overall
signal to background ratio is about 1.4.

Four–lepton invariant mass distributions, corresponding to the combined lumi-
nosity from 2011 and 2012, are shown in Fig. 5.12a for the mass range 80 < m4` <
170GeV and in Fig. 5.12b for the mass range 170 < m4` < 900GeV. For the selected
candidates with 120 < m4` < 130GeV, the distribution of m2 as a function of m1 is
shown in Fig. 5.13a, while the distribution of m4` versus m1 for 90 < m4` < 135GeV
is shown in Fig. 5.13b; no Z mass constraint is applied in both cases. Mass dis-
tributions for each final state are shown in the range 80 < m4` < 170GeV in Fig.
5.14.

5.6.1 Upper Limit and Signal Significance

As discussed, the discriminating variable between signal and backgrounds is m4`.
To set upper limits at 95% CL on the Higgs boson production cross–section, as a
function of its mass mH , the CLs modified frequentist formalism is used[68] with
the profile likelihood ratio test statistic[69]. A maximum likelihood fit of signal and
background models to the observed m4` distribution is performed to evaluate the
test statistic.
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total signal signal ZZ∗ Z + jj, tt̄ S/B expected observed
full mass range √

s = 8TeV
4µ 5.8 ± 0.7 5.3 ± 0.7 2.3 ± 0.1 0.50 ± 0.13 1.9 8.1 ± 0.9 11

2µ2e 3.0 ± 0.4 2.6 ± 0.4 1.2 ± 0.1 1.01 ± 0.21 1.2 4.8 ± 0.7 4
2e2µ 4.0 ± 0.5 3.4 ± 0.4 1.7 ± 0.1 0.51 ± 0.16 1.5 5.6 ± 0.7 6
4e 2.9 ± 0.4 2.3 ± 0.3 1.0 ± 0.1 0.62 ± 0.16 1.4 3.9 ± 0.6 6

total 15.7 ± 2.0 13.7 ± 1.8 6.2 ± 0.4 2.62 ± 0.34 1.6 22.5 ± 2.9 27√
s = 7TeV

4µ 1.0 ± 0.1 0.97 ± 0.13 0.49 ± 0.02 0.05 ± 0.02 1.8 1.5 ± 0.2 2
2µ2e 0.4 ± 0.1 0.39 ± 0.05 0.21 ± 0.02 0.55 ± 0.12 0.5 1.2 ± 0.1 1
2e2µ 0.7 ± 0.1 0.57 ± 0.08 0.33 ± 0.02 0.04 ± 0.01 1.5 0.9 ± 0.1 2
4e 0.4 ± 0.1 0.29 ± 0.04 0.15 ± 0.01 0.49 ± 0.12 0.5 0.9 ± 0.1 0

total 2.5 ± 0.4 2.2 ± 0.3 1.17 ± 0.07 1.12 ± 0.17 1.0 4.5 ± 0.5 5√
s = 8TeV and

√
s = 7TeV

4µ 6.8 ± 0.8 6.3 ± 0.8 2.8 ± 0.1 0.55 ± 0.15 1.9 9.6 ± 1.0 13
2µ2e 3.4 ± 0.5 3.0 ± 0.4 1.4 ± 0.1 1.56 ± 0.33 1.0 6.0 ± 0.8 5
2e2µ 4.7 ± 0.6 4.0 ± 0.5 2.1 ± 0.1 0.55 ± 0.17 1.5 6.6 ± 0.8 8
4e 3.3 ± 0.5 2.6 ± 0.4 1.2 ± 0.1 1.11 ± 0.28 1.1 4.9 ± 0.8 6

total 18.2 ± 2.4 15.9 ± 2.1 7.4 ± 0.4 3.74 ± 0.93 1.4 27.1 ± 3.4 32

Table 5.8. Number of observed and expected events in the region 120 < m4` < 130GeV.
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Figure 5.12. Distribution of the four–lepton invariant mass for observed events, together
with expectation from a mH = 125GeV signal and from backgrounds.
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Figure 5.13. a: Distribution of m2 versus m1, for events with 120 < m4` < 130GeV. b:
Distribution of m4` versus m1 for events with 90 < m4` < 135GeV. All masses are
calculated without applying the Z mass constraint fit.

observed expected
data set min p0 significance mH(p0) min p0(mH) significance

[σ] [σ]√
s = 7TeV 2.5× 10−3 2.8 125.6GeV 3.5× 10−2 1.8√
s = 8TeV 8.8× 10−10 6.0 124.1GeV 2.8× 10−5 4.0

combined 2.7× 10−11 6.6 124.3GeV 5.7× 10−6 4.4

Table 5.9. Observed and expected values of p0 for the
√
s = 7TeV,

√
s = 8TeV data sets

and their combination. The expected p0 is quoted at the value of mH of the observed
minimum.

Fig. 5.15 shows the observed and expected 95% CL cross–section upper limits,
as a function of mH , for the combined

√
s = 8TeV and

√
s = 7TeV data sets. An

excess is observed at 125GeV, which does not allow to exclude a Higgs boson below
130GeV.

The significance of this excess is given in Fig. 5.16 by the probability p0 to
obtain, in the background only hypothesis, a test statistics more signal–like than
the one observed in data; nuisance parameters are fixed to their best fit values in
the background only hypothesis. Asymptotic approximations[69] are used in the
calculation of p0, which is given as a function of mH in the 110 ÷ 180GeV range
for the individual 2011 and 2012 datasets and their combination. Lowest observed
local values of p0, and the corresponding expected values, are shown in Table 5.9. A
significance of 6.6σ is observed for mH = 124.3GeV.
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Figure 5.14. Four–lepton invariant mass distributions for the four final states, in the range
80 < m4` < 170GeV. Error bars represent 68.3% central confidence intervals.
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5.6.2 Mass Measurement

The mass of the new particle at 125GeV can be measured using a mH–dependent
signal m4` model. Four–lepton mass distributions are obtained from Monte Carlo
and described by probability density functions obtained using the kernel density
estimation technique[70]. The kernel density estimation technique uses sums of
gaussian kernels with variable width over the unbinned set of input points, to smooth
the input distribution in a non–parametric way. Probability density functions for
different simulated mass points are then combined together, using the fact that
the m4` distribution shifts approximately linearly with mH . B–splines are used to
obtain a p.d.f. which is a function of mH : for a given value of mH , the resulting m4`
shape is in this way a weighted superposition of all shapes obtained from simulated
mH values in Monte Carlo. Signal and background shapes are varied in shape from
the nominal expectation to allow for shape systematics due to all relevant effects
described in Sec. 5.5.

Within this likelihood model, mH is a free parameter of the fit and is a parameter
of interest of the problem. Fig. 5.17a shows the profile likelihood as a function of mH ,
with and without applying electron and muon mass scale systematic uncertainties
(MSS(e) and MSS(µ), respectively12). Fig. 5.17b shows the corresponding profile
likelihood curves as a function of mH for each of the four final states: results for
ee+ `` and µµ+ `` final states, in which electrons and muons respectively dominate
the mass scale, are in good agreement within uncertainties. The best fit mass is

mH = 124.3+0.6
−0.5 (stat)+0.5

−0.3 (syst)GeV,

with a systematic uncertainty which is dominated by the energy and momentum
scale uncertainties.

5.6.3 Signal Strength

The signal strength scale factor µ, defined as the ratio between the observed and
the expected yield of signal events, is a free parameter of the fit and can be treated
as a parameter of interest together with mH . Fig. 5.18 shows the best fit of the
profile likelihood ratio in the µ versus mH plane, together with the 68% and 95%
CL confidence regions obtained in the asymptotic approximation. The value of the
signal strength µ at the best fit value for mH (124.3GeV) is µ = 1.7+0.5

−0.4.

5.7 Combination with Other Channels

5.7.1 Mass Measurement

A combined mass measurement for the new resonance[71] is performed using data
from the channels with high resolution on mH , H → γγ, and H → ZZ(∗) → 4`.
Hypothesized valued of mH are tested with the profile likelihood ratio

Λ(mH) = L(mH , ˆ̂µγγ(mH), ˆ̂µ4`(mH), ˆ̂θ(mH))
L(m̂H , µ̂γγ , µ̂4`, θ̂)

,

12When a systematic effect is not applied, the corresponding nuisance parameters are fixed to
their best fit values.
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(a) mH (b) mγγ
H vs m4`

H

Figure 5.19. a: Profile likelihood ratio as a function of mH for the H → γγ and
H → ZZ(∗) → 4` channels and their combination. b: Likelihood contours as a function
of mγγ

H and m4`
H , the individual mass measurements performed in the two channels.

where θ is the set of nuisance parameters of the model and the single and double
circumflex denote the unconditional and conditional maximum likelihood estimates
of the parameters, respectively. The leading source of systematic uncertainty in the
mass measurement comes from mass scale uncertainties, which yield small correlation
between the two measurements (Fig. 5.19b). Individual and combined measurements
are shown in Fig. 5.19a, where the combined mass is measured to be

mH = 125.5± 0.2(stat)+0.5
−0.6(sys)GeV.

5.7.2 Signal Strengths

The combined measurement of the signal strength parameter µ, using all decay
channels (W,ZH → bb,H → ττ,H → WW ∗ → `ν`ν,H → γγ and H → ZZ(∗) →
4`) for an integrated luminosity of up to 25 fb−1, is performed for a fixed mass
hypothesis of 125.5GeV, by using the profile likelihood ratio

Λ(µ) = L(µ, ˆ̂θ(µ))
L(µ̂, θ̂)

,

where µ is the vector of signal strength factors. Results are shown in Fig. 5.20: the
measured global signal yield is

µ̂ = 1.30± 0.13(stat)± 0.1(sys),

and is consistent with the SM expectation µ = 1 at 9% level (40% when using
rectangular pdfs for the dominant theory systematic uncertainties). The agreement
between the individual signal strengths and the combined value is 13%. The value
of µ̂ changes by about 4% by varying the assumed mH of ±1GeV.
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Figure 5.20. Measurements of the signal strength parameter µ for mH = 125.5GeV for
the individual channels and their combination.
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Chapter 6

Spin–parity Measurements

In the Standard Model, the Higgs boson is predicted to be a spin zero particle
with even parity — a 0+ state. Discriminant–based techniques which exploit the
full final state information from the H → ZZ(∗) → 4` decay can be used to test
this hypothesis against alternative scenarios, in order to establish which model the
observed data are more likely to be described by. In this chapter, the JP –MELA
technique is introduced, and results on the hypothesis testing with the 2011 and
2012 collision data are presented.

6.1 Analysis Method
Different pairs of hypotheses on the spin–parity state of the new particle are tested,
using a multivariate technique based on the matrix element description of the
X → ZZ decay: the full information on the final state, based on the 7 masses
and angles defined in Sec. 4.2.1, is projected on a single dimension, the JP –MELA
discriminant. The new particle is assumed to have a mass mH = 125GeV.

6.1.1 Hypothesis Testing

The following hypotheses on the quantum numbers of the new particle are considered:

0+ the Standard Model Higgs Boson (following Sec. 4.2.3, g1 = 2ı, g2 = g3 = g4 = 0);

0− a pure pseudoscalar state (g1 = g2 = g3 = 0, g4 = 1);

1+ the vector state of Sec. 4.2.3 with b1 = 1, b2 = 0;

1− the pseudovector state of Sec. 4.2.3 with b1 = 0, b2 = 1;

2+ a minimal coupling parity–even spin 2 state, equivalent to a Kaluza–Klein
graviton (g1 = g5 = 1, gi 6=1,5 = 0 of Sec. 4.2.3);

2− a parity–odd state with higher order operators (g8 = g9 = 1, gi 6=8,9 = 0).

The spin 2 states can in principle be produced both in gluon fusion and qq̄
annihilation. For example, the dominant contribution to the production of the
considered 2+ state comes from the ggF process; the contribution from qq̄ annihilation
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is about 4% at LO QCD, but might be significantly modified from higher order
QCD corrections. The production mechanism affects the kinematic distributions of
the final state, since in the boson rest frame the projection of its polarization states
onto the parton collision axis can take only the values ±2 for ggF and ±1 for qq̄
production. Five values of fraction of ggF production fqq = 0, 25%, 50%, 75% and
100% are considered for both 2+ and 2− models, by mixing at generator level events
simulated under the fqq = 0 and fqq = 1 hypotheses1.

6.1.2 Data and Monte Carlo Samples

The same data and background Monte Carlo samples of the analysis described in
Chapter 5 are used.

As for the signal simulation, the jhu leading–order generator[42] is used to
simulate the decay of a boson with mH = 125GeV under the hypotheses defined in
the previous section, both at

√
s = 7TeV and 8TeV. The Pythia MC generator is

employed for the parton showers, using the CTEQ6L1 parton density functions and
the AU2 underlying event tuning[72]. A generator level comparison of kinematic
distributions between jhu and powheg generators is shown in Fig. 6.1. Events
generated by jhu under the spin 0 hypotheses are weighted in such a way to account
for differences in the Higgs pT spectrum with respect to powheg simulation. Fig.
6.2 shows the generator level comparison between gluon fusion and qq̄ annihilation
production mechanisms for the spin 2+ model.

The normalization and shapes of the JP –MELA discriminant for the reducible
background are obtained from data control regions, as explained in Sec. 5.4.

6.1.3 Event Selection

The event selection criteria described in Sec. 5.2 are applied. An additional
requirement on the reconstructed four–lepton invariant mass,

115 < m4` < 130GeV

is applied, in order to select a narrow signal region around the 125GeV peak with
low background contamination.

It has to be noted that, in the case of 4µ and 4e final states, the selection criteria
can in principle produce a reconstructed lepton quadruplet where the assignment of
leptons to Z bosons is wrong (wrong–pairing), i.e.(

`+Z1
, `−Z1

, `+Z2
, `−Z2

)
reco
6=
(
`+Z1

, `−Z1
, `+Z2

, `−Z2

)
true

.

Wrong–pairing affects both signal and backgrounds, typically for events with both
Z1 and Z2 which in reality are off the mass shell. This effect can be evaluated on
Monte Carlo: Table 6.1 shows the fraction of mis–paired selected candidates for
signal and background simulation.

1The two samples can be mixed as no interference effect is present between the ggF and the qq̄
production processes.
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Figure 6.1. Comparison between jhu (LO) and powheg (NLO) Monte Carlo signal
samples for the SM 0+ model, at generator level. Residual differences between Higgs pT
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Figure 6.2. Comparison between JP = 2+ Monte Carlo signal samples with gluon–fusion
and qq̄ annihilation production mechanisms, at generator level.
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Sample Fraction of mis–paired candidates (%)

channel 4µ 4e

powheg gg, JP = 0+ 9.4± 0.4 11.0± 0.7
jhu gg, JP = 0+ 9.2± 0.5 10.9± 0.7
jhu gg, JP = 0− 13.5± 0.6 13.9± 0.8
jhu qq, JP = 1+ 3.5± 0.3 4.1± 0.5
jhu qq, JP = 1− 6.8± 0.3 6.9± 0.5
jhu gg, JP = 2+ 6.3± 0.4 6.5± 0.5
jhu qq, JP = 2+ 6.0± 0.4 6.5± 0.6
jhu gg, JP = 2− 16.7± 0.6 15.9± 0.8
jhu qq, JP = 2− 13.2± 0.7 16.8± 1.3
powheg pp→ ZZ 17.8± 0.3 16.4± 0.4

Table 6.1. Fraction of events with wrong–pairing selected in jhu and powheg simulation,
for signals and irreducible background, in the mass window 115GeV to 130GeV.

The analysis is performed in four final states (4µ, 2µ2e, 2e2µ, 4e), two center–of–
mass energies (

√
s = 7TeV and 8TeV) and two bins of four–leptons mass,

121GeV < m4` < 127GeV,
115GeV < m4` < 121GeV ∪ 127GeV < m4` < 130GeV,

which are denoted as “high” and “low” signal to background ratio (S/B) bins. Monte
Carlo studies show that the choice of the two mass bins, which aims at reducing
the impact of backgrounds on the measurement, allows for an improvement in the
separation between pairs of hypotheses of about 5%.

The expected yields in each of these 4× 2× 2 channels are shown in Table 6.2
and Table 6.3.

Final State and bin Signal ZZ Reducible
4µ High 4.62 1.42 0.29
4µ Low 0.93 1.92 0.39
4e High 1.95 0.58 0.32
4e Low 0.77 0.83 0.43

2e2µ High 3.01 1.02 0.31
2e2µ Low 0.79 1.41 0.42
2µ2e High 2.22 0.68 0.44
2µ2e Low 0.65 0.94 0.61

Table 6.2. Expected yields for signal, ZZ background and reducible backgrounds for the
8TeV data analysis (20.7 fb−1).
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Final State and bin Signal ZZ Reducible
4µ High 0.83 0.27 0.06
4µ Low 0.17 0.40 0.09
4e High 0.24 0.09 0.07
4e Low 0.11 0.12 0.10

2e2µ High 0.51 0.20 0.07
2e2µ Low 0.13 0.28 0.09
2µ2e High 0.33 0.11 0.10
2µ2e Low 0.09 0.17 0.14

Table 6.3. Expected yields for signal, ZZ background and reducible backgrounds for the
7TeV data analysis (4.6 fb−1).

6.1.4 Kinematic Distributions

Fig. 6.3 shows the distributions for m1,m2 and the five production and decay
angles in the full mass range 115GeV < m4` < 130GeV, for the 8TeV dataset.
Expectations for the 0+ and 0− hypotheses are shown.

6.2 The JP -MELA Discriminant

As discussed in Sec. 4.2.1, the final state information can be conveniently expressed
in terms of eight degrees of freedom — the Higgs mass mH , the masses of the
two intermediate bosons m1,m2 and the five production and decay angles Ω =
{cos θ∗, φ1, cos θ1, cos θ2, φ}. In the case of signal, Eq. (4.1) describes the distribution
of seven of these observables as a function of parameters which characterize (and
define) each of the signal models. Indeed, one can treat Eq. (4.1) as a probability
density function (pdf) in this 7D space for a given model H,

p(m(true)
1 ,m

(true)
2 ,Ω(true)|H),

where the superscript “true” is to underline that this pdf will provide a parton
level description of the process, i.e. only the true masses and angles will stricty be
distributed according to this pdf. Reconstruction effects such as detector acceptance
in pT, η and — to less extent — detector resolution, as well as selection effects which
both imply kinematic cuts and induce wrong–pairing, need to be parametrized in an
effective way, in order to obtain a pdf pS which optimally describes reconstructed
observables. Such a model can be easily extended to the 8D space, by writing

pS(m4`,m1,m2,Ω|H) = pS(m4`|H) · pS(m1,m2,Ω|H), (6.1)

under the assumption that no correlations are present between the reconstructed
Higgs mass and the spin–parity sensitive observables.

This information can be used effectively to build a discriminant between two
different hypotheses H0 and H1, i.e. a one–dimensional observable which condensates
the full final state observation, and whose probability distribution is deeply different
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Figure 6.3. Kinematic distributions for the full mass range and the 8TeV dataset.
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between H0 and H1. The JP –MELA discriminant is defined as

JP –MELAH0,H1(m4`,m1,m2,Ω) = pS(m4`,m1,m2,Ω|H0)
pS(m4`,m1,m2,Ω|H0) + pS(m4`,m1,m2,Ω|H1) ,

(6.2)
and is indeed a number associated to each event2, defined in terms of the likelihood
of that event to occur when the hypothesis H0 is true and of the corresponding
likelihood for H1. By construction, its value is 0 for a purely–H1 event and 1 for
a purely–H0 event. It can be proved that the discriminant defined in Eq. (6.2)
provides the optimal separation between the two hypotheses, provided that the pdfs
p give an accurate description of the actual observables and their correlations.

6.2.1 Signal Description

The likelihood pS , which describes the probability of an event to occur under a given
signal hypothesis H, is defined as follows3:

pS(m4`,m1,m2,Ω|H) =fRP · pS(m4`) · p(m1,m2,Ω|H) ·A(m1,m2,Ω|H)
+ (1− fRP ) · pS(m4`) · pWP (m1,m2,Ω|H),

(6.3)

where fRP is the fraction of events in which selection preserved the correct lepton
pairing4, p is defined by Eq. (6.1), A is the acceptance function which allows to
correct for the fact that Eq. (6.1) is a parton level description of m1,m2,Ω, and
pWP is a pdf which describes events where the lepton pairing is wrong.

Mass Parametrization

The mass distribution p(m4`|H) is obtained by fitting a model composed by the
sum of a Crystal Ball function and a Gaussian distribution to full simulation Monte
Carlo. The same model is used to describe both events with correct and with wrong
lepton pairing.

Acceptance Functions

The acceptance function A is written as

A(m1,m2,Ω) = A(m1,m2) ·A(cos θ∗) ·A(φ1) ·A(cos θ1) ·A(cos θ2) ·A(φ),

i.e. as a product of individual 1D terms for each of the production and decay angles,
and a 2D term for the two dilepton masses. Acceptance functions are determined on
half of the statistics of the available signal Monte Carlo samples, as follows.

The individual terms for the five angular variables are obtained by fitting with
an empirical model the ratio between the distributions of each angle obtained from
full simulation MC (numerator) and from pseudo–data generated according to the

2The dependence on pS(m4`) accounts for possible differences in four–lepton mass resolution
between different signal hypotheses.

3One has to note that p, which comes from Eq. (4.1) and has its complete form in Sec. A.3, is
here evaluated using the reconstructed observables.

4It is identically 0 for 2µ2e and 2e2µ final states.
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parton–level pdf p (denominator). The fit functions for a single observable ξ are in
the general form

f(ξ) = (a+ bξ) ·
4∑
i=0

pi · cos(2i · ξ) (6.4)

where a, b, p1, p2, p3, p4 are free parameters of the fit to the ratio of Monte Carlo and
data histograms of ξ.

The 2D term A(m1,m2) is obtained with an iterative procedure. First, all other
acceptance corrections are applied, and pseudo–events are generated according to the
pS model5. Then, the ratio between the m2 distributions in full simulation Monte
Carlo and in these pseudo–data (which is an histogram) is fitted with an empirical
model. Lastly, the procedure is repeated, this time adding this 1D acceptance
correction on m2, to obtain the correction term for m1.

Wrong–pairing The pdf describing the wrong–paired events is obtained from
half of the statistics of the available signal Monte Carlo samples, in the form

pWP (m4`,m1,m2,Ω) = pS(m4`)·pWP (m1,m2)·p(cos θ∗)·p(φ1)·p(cos θ1)·p(cos θ2)·p(φ).

The 2D term pWP (m1,m2) is described by a 2D template obtained from Monte
Carlo simulation. In a way analogous to the acceptance functions A, an empirical
parametrization is used to describe the 1D angular distributions for wrong–paired
events, in the form

f(ξ) = (a+ bξ) ·
8∑
i=0

pi · cos(2i · ξ). (6.5)

6.2.2 Closure Tests

Closure tests for the likelihood (6.3) are performed using half of the full simulation
Monte Carlo samples, the other half having been used to determine the functional
form of acceptance functions and wrong–pairing parametrization. Comparison are
done using 1D projections, over each of the eight dimensions, of the full likelihood
model, which is compared to simulation for all the considered signal hypotheses.

The projections of the signal likelihood and full MC simulation are in good
agreement, indicating that the chosen parametrizations are adequate for a general
description of the considered spin–parity states. Comparisons are shown in the case
of a SM Higgs boson in Fig. 6.4 to 6.11, while the distributions for all other models
are shown in App. B. Any residual discrepancy observed between pdf and MC
samples is not expected to introduce any bias in the hypothesis testing procedure.

6.2.3 Spin Two: Admixtures between gg and qq̄ Production

The pdf for a J = 2 particle with a given fraction of qq̄ annihilation production fqq
is defined in terms of the pdfs of the pure qq̄ and gg states, already corrected for

5For this purpose fRP ≡ 1.
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From left to right and top to bottom: 2µ2e, 4e, 2e2µ and 4µ channels.
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Figure 6.10. Comparison of the likelihood projection for a 0+ Higgs–like resonance (red
curve) and the corresponding jhu (black points) MC simulation for the mZ2 observable.
From left to right and top to bottom: 2µ2e, 4e, 2e2µ and 4µ channels.
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curve) and the corresponding jhu (black points) MC simulation for the m4l observable.
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JP Production Decay Selection
mechanism channel efficiency

2+ gg → X X → 4µ 0.346± 0.003
2+ X → 2µ2e 0.216± 0.003
2+ X → 2e2µ 0.279± 0.003
2+ X → 4e 0.181± 0.002
2+ qq̄ → X X → 4µ 0.315± 0.002
2+ X → 2µ2e 0.193± 0.002
2+ X → 2e2µ 0.254± 0.002
2+ X → 4e 0.165± 0.002
2− gg → X X → 4µ 0.356± 0.003
2− X → 2µ2e 0.218± 0.003
2− X → 2e2µ 0.278± 0.003
2− X → 4e 0.193± 0.002
2− qq̄ → X X → 4µ 0.233± 0.003
2− X → 2µ2e 0.140± 0.002
2− X → 2e2µ 0.112± 0.002
2− X → 4e 0.180± 0.002

Table 6.4. Selection efficiencies for the spin 2 hypothesis, for the gg and qq̄ production
mechanisms.

acceptance and wrong–pairing effects: one has

pS(m4`,m1,m2,Ω|J = 2, fqq) =f effqq · pS(m4`,m1,m2,Ω|J = 2, fqq = 0)
+ (1− f effqq · pS(m4`,m1,m2,Ω|J = 2, fqq = 1),

(6.6)

where the effective fraction f effqq is defined in terms of the selection efficiencies εgg,qq
for the two production mechanisms, as

f effqq = fqq · εqq
fqq · εqq + (1− fqq) · εgg

.

Table 6.4 shows these selection efficiencies for the four final states, as evaluated from
Monte Carlo.

Closure tests for this procedure are shown in Appendix B for all the considered
values of fqq for the J = 2 states. Good agreement is found between the fully
simulated MC events and the 1D projections of Eq. (6.6), proving the validity of
the linear combination described above.

6.3 Signal and Background Parametrization

Signal and background models are obtained from the distributions of the JP –MELA
discriminant computed on Monte Carlo samples for signal and irreducible background,
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and on data control regions for the reducible background. Histograms obtained
in this way are used as likelihood components for a binned maximum likelihood
approach.

6.3.1 Likelihood Model

The total binned likelihood can be written in the form

L(ε, µ) =
∏
ij

Poiss(Nobs
ij |N

exp
ij ),

where the sum runs over the 16 channels6 i and the bin j of the i–th distribution.
Nobs
ij is the number of events observed in the j–th bin of the i–th channel, while the

corresponding expected number of events is

N exp
ij = µN ij

S [ε · pij(H0) + (1− ε) · pij(H1)] +
∑

k=ZZ,red
N ij
Bk
pij(Bk),

where N ij
S,ZZ,red is the expected number of events from signal, irreducible and

reducible backgrounds, and pij is the value in that bin of the pdf describing the
JP –MELA discriminant for a given signal or background hypothesis.

The signal strength µ is taken at its best fit value (profiled). H0 and H1 are
the two hypotheses under test: discrimination is performed computing the ratio of
profile likelihoods test statistics

log L(H0)
L(H1) ≡ log L(ε = 0, µ = µ̂)

L(ε = 1, µ = µ̂) . (6.7)

Distributions of the test statistics are computed generating a series of pseudo–
experiments in the H0 and H1 hypotheses.

6.3.2 Discriminant Distributions

JP –MELA distributions (histograms), from which pij are computed, are obtained:

• in the case of signal and irreducible background, on full simulation MC;

• in the case of reducible background, by smoothing using a Kernel Density
method the JP –MELA distribution computed on the inclusive data–driven
control region, i.e. the same distribution is used for all the 16 channels.

Distributions for the various discriminants are shown in Fig. 6.12—6.15.

6(7TeV, 8TeV)× (4µ, 2µ2e, 2e2µ, 4e)× (“low”, “high”)
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Figure 6.12. Distribution of the JP –MELA discriminant between the 0+ and the 0−, 1+

and 1− hypotheses, in data and Monte Carlo.
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Figure 6.13. Distribution of the JP –MELA discriminant between the 0+ and the 2+

hypothesis with different values of fqq, in data and Monte Carlo.
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Figure 6.14. Distribution of the JP –MELA discriminant between the 0+ and the 2−

hypothesis with different values of fqq, in data and Monte Carlo.
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6.3.3 Systematic Uncertainties

Systematic uncertainties are included to the likelihood model of Sec. 6.3.1 in the
form of nuisance parameters, which allow the description of effects both on the
normalization of each of the 16 analysis sub–channels and on the shape of the
JP –MELA discriminant.

Normalization Systematics

The following effects on normalization are taken into account:

• the systematic uncertainty on the luminosity measurement, which affects the
overall normalization of signal and irreducible background, described in Sec.
5.5;

• the effect of assuming a different value for the hypothesized mH , which leads
less than 10% variations in the relative normalization of “low” and “high” S/B
bins;

• the effect of muon and electron energy scale and resolution systematics, which
is conservatively evaluated as a 10% effect on the relative normalization of the
two S/B bins;

• the overall normalization uncertainties on the event yields for irreducible and
reducible background, described in Sec. 5.5.

Shape Systematics

Additional systematic effects can affect the shapes of the JP –MELA discriminant.
The following have been taken into account:

• an uncertainty on the fraction of candidates with wrong lepton pairing is
assigned to all spin hypotheses from the half–difference between the 0+ wrong–
pairing fraction obtained from powheg and jhu simulations (Table 6.1);

• the statistical uncertainty on the reducible background shape, due to the
low statistics available on data, is taken from the 95% CL upper and lower
variations of the nominal Kernel Density pdf;

• the effect on the discriminant shapes of the uncertainty on the corrections to
the Higgs pT spectrum;

• the effect of muon and electron energy scale and resolution systematics.

The effect on the JP –MELA discriminant of some of the shape systematics is
illustrated in Fig. 6.16, while Fig. 6.17 shows two examples of the shape uncertainty
associated to the reducible backgrounds.
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tested assumed 0+ 0− 1+ 1− 2+ 2−

0+ - 0.0025 0.0046 0.0009 0.0676 0.0043
- (2.8116) (2.6015) (3.1167) (1.4936) (2.6291)

0− 0.0011 - 0.0004 0.0004 0.0044 0.0096
(3.0647) - (3.3715) (3.3580) (2.6176) (2.3408)

1+ 0.0031 0.0004 - 0.0074 0.0031 0.0005
(2.7376) (3.3876) - (2.4391) (2.7328) (3.2664)

1− 0.0010 0.0005 0.0067 - 0.0003 0.0044
(3.0883) (3.2777) (2.4727) - (3.4183) (2.6232)

2+ 0.0639 0.0073 0.0040 0.0004 - 0.0023
(1.5232) (2.4432) (2.6503) (3.3876) - (2.8291)

2− 0.0032 0.0082 0.0011 0.0028 0.0013 -
(2.7247) (2.4015) (3.0490) (2.7730) (3.0015) -

Table 6.5. Expected separations between different spin hypotheses combining 7TeV and
8TeV results.

tested assumed 0+ 2+(fqq = 25%) 2+(fqq = 50%) 2+(fqq = 75%) 2+(fqq = 100%)

0+ - 0.0750 0.0775 0.0734 0.0817
- (1.4397) (1.4220) (1.4512) (1.3937)

2+(fqq = 25%) 0.0674
(1.4955)

2+(fqq = 50%) 0.0678
(1.4922)

2+(fqq = 75%) 0.0686
(1.4863)

2+(fqq = 100%) 0.0652
(1.5122)

Table 6.6. Expected separations between the 0+ and the 2+ hypotheses for different values
of fqq, combining 7TeV and 8TeV results.

6.4 Hypothesis Testing Results
Distributions for the test statistics of Eq. (6.7), generated using more than 500k
pseudo–experiments for each hypothesis, are shown in Fig. 6.18—6.21. Maximum
likelihood estimates of the nuisance parameters are obtained from a fit of the
likelihood model to the data. In each pseudo–experiment, the expected number of
signal and background events is fixed to the yield observed on data. All systematic
uncertainties described in Sec. 6.3.3 are taken into account; the signal strength µ is
profiled.

6.4.1 Expected Separations

Expected separations between pairs of alternative hypotheses are shown in terms of
p0–values and the corresponding number of Gaussian σs (between parentheses) in
Tables 6.5—6.7, for the combined 7TeV and 8TeV dataset.

6.4.2 Observed Separations

Observed separations between pairs of alternative hypotheses are shown in terms of
p0–values and the corresponding number of Gaussian σs (between parentheses7) in
Tables 6.8—6.10, for the combined 7TeV and 8TeV dataset.

7Negative values for Gaussian sigmas occur when p0 > 0.50.



6.4 Hypothesis Testing Results 133

))
1

)/L(H
0

log(L(H

­15 ­10 ­5 0 5 10 15

E
n

tr
ie

s

0

0.05

0.1

0.15

0.2

0.25

0.3

Data
Signal hypothesis

=125 GeV)
H

(m

+ = 0
0H

PJ

­
 = 0

1H
PJ

ATLAS Preliminary

 4l→ 
(*)

 ZZ→H 
­1

Ldt = 4.6 fb∫ = 7 TeV: s

­1
Ldt = 20.7 fb∫ = 8 TeV: s

 ­ MELA
P

J

(a) 0+ vs 0−

))
1

)/L(H
0

log(L(H

­15 ­10 ­5 0 5 10 15

E
n

tr
ie

s

0

0.05

0.1

0.15

0.2

0.25

0.3

Data
Signal hypothesis

=125 GeV)
H

(m

+ = 0
0H

PJ

+ = 1
1H

PJ

ATLAS Preliminary

 4l→ 
(*)

 ZZ→H 
­1

Ldt = 4.6 fb∫ = 7 TeV: s

­1
Ldt = 20.7 fb∫ = 8 TeV: s

 ­ MELA
P

J

(b) 0+ vs 1+

))
1

)/L(H
0

log(L(H

­15 ­10 ­5 0 5 10 15

E
n

tr
ie

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18 Data
Signal hypothesis

=125 GeV)
H

(m

+ = 0
0H

PJ

­
 = 1

1H
PJ

ATLAS Preliminary

 4l→ 
(*)

 ZZ→H 
­1

Ldt = 4.6 fb∫ = 7 TeV: s

­1
Ldt = 20.7 fb∫ = 8 TeV: s

 ­ MELA
P

J

(c) 0+ vs 1−

))
1

)/L(H
0

log(L(H

­15 ­10 ­5 0 5 10 15

E
n

tr
ie

s

0

0.1

0.2

0.3

0.4

0.5

0.6

Data
Signal hypothesis

=125 GeV)
H

(m

+ = 0
0H

PJ

+
m = 2

1H
PJ

ATLAS Preliminary

 4l→ 
(*)

 ZZ→H 
­1

Ldt = 4.6 fb∫ = 7 TeV: s

­1
Ldt = 20.7 fb∫ = 8 TeV: s

 ­ MELA
P

J

(d) 0+ vs 2+

))
1

)/L(H
0

log(L(H

­15 ­10 ­5 0 5 10 15

E
n

tr
ie

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22
Data

Signal hypothesis

=125 GeV)
H

(m

+ = 0
0H

PJ

­
 = 2

1H
PJ

ATLAS Preliminary

 4l→ 
(*)

 ZZ→H 
­1

Ldt = 4.6 fb∫ = 7 TeV: s

­1
Ldt = 20.7 fb∫ = 8 TeV: s

 ­ MELA
P

J

(e) 0+ vs 2−

Figure 6.18. Distributions of the test statistics for each pair of spin and parity hypotheses,
compared with the observed value of the test statistics in data.
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Figure 6.19. Distributions of the test statistics for the hypothesis test between 0+ vs 2+

with fqq 6= 0, compared with the observed value of the test statistics in data.

tested assumed 0+ 2−(fqq = 25%) 2−(fqq = 50%) 2−(fqq = 75%) 2−(fqq = 100%)

0+ - 0.0043 0.0078 0.0065 0.0045
- (2.6239) (2.4196) (2.4828) (2.6133)

2−(fqq = 25%) 0.0039
(2.6637)

2−(fqq = 50%) 0.0065
(2.4829)

2−(fqq = 75%) 0.0057
(2.5300)

2−(fqq = 100%) 0.0034
(2.7108)

Table 6.7. Expected separations between the 0+ and the 2+ hypotheses for different values
of fqq, combining 7TeV and 8TeV results.
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Figure 6.20. Median of the distributions of the test statistics for the assumed (H0 = 0+)
and the alternative (H1 = 2+) hypotheses, together with ±1σ and ±2σ bands around
either hypothesis, for 0+ vs 2+ with different values of fqq, compared with the observation
in data.

tested assumed 0+ 0− 1+ 1− 2+ 2−

0+ - 0.4046 0.5075 0.1123 0.3793 0.0766
- (0.2416) (−0.0188) (1.2143) (0.3074) (1.4286)

0− 0.0022 - 0.1019 0.0105 0.0378 0.1681
(2.8445) - (1.2707) (2.3093) (1.7766) (0.9616)

1+ 0.0028 0.0134 - 0.0874 0.0204 0.0013
(2.7690) (2.2153) - (1.3567) (2.0451) (3.0158)

1− 0.0274 0.1288 0.1360 - 0.0300 0.1680
(1.9204) (1.1320) (1.0986) - (1.8810) (0.9621)

2+ 0.1127 0.2126 0.2499 0.0498 - 0.0504
(1.2122) (0.7976) (0.6747) (1.6470) - (1.6414)

2− 0.1070 0.0778 0.3875 0.0373 0.0995 -
(1.2428) (1.4202) (0.2859) (1.7830) (1.2844) -

Table 6.8. Observed separations between different spin hypotheses combining 7TeV and
8TeV results.

tested assumed 0+ 2+(25%qq) 2+(50%qq) 2+(75%qq) 2+(100%qq)

0+ - 0.7309 0.8411 0.7789 0.9550
- (−0.6154) (−0.9988) (−0.7685) (−1.6952)

2+(25%qq) 0.0166
(2.1297)

2+(50%qq) 0.0056
(2.5346)

2+(75%qq) 0.0115
(2.2748)

2+(100%qq) 0.0005
(3.3048)

Table 6.9. Observed separations between the 0+ and the 2+ hypotheses for different values
of fqq, combining 7TeV and 8TeV results.
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Figure 6.21. Distributions of the test statistics for the hypothesis test between 0+ vs 2−

with fqq 6= 0, compared with the observed value of the test statistics in data.

tested assumed 0+ 2−(25%qq) 2−(50%qq) 2−(75%qq) 2−(100%qq)

0+ - 0.0568 0.1521 0.1539 0.2729
- (1.5823) (1.0275) (1.0200) (0.6042)

2−(25%qq) 0.1446
(1.0600)

2−(50%qq) 0.0765
(1.4290)

2−(75%qq) 0.0680
(1.4912)

2−(100%qq) 0.0180
(2.0980)

Table 6.10. Observed separations between the 0+ and the 2− hypotheses for different
values of fqq, combining 7TeV and 8TeV results.
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JP –MELA analysis
tested JP for tested 0+ for
an assumed 0+ an assumed JP CLS

expected observed observed
0− p0 0.0011 0.0022 0.40 0.004
1+ p0 0.0031 0.0028 0.51 0.006
1− p0 0.0010 0.027 0.11 0.031
2+ p0 0.064 0.11 0.38 0.182
2− p0 0.0032 0.11 0.08 0.116

Table 6.11. Values of the expected and observed p0 for an assumed 0+ hypothesis H0 and
different tested H1 = JP hypotheses, together with the observed p0 values when H0 and
H1 are inverted, for the combined 8TeV and 7TeV dataset. The CLs confidence level
obtained from these p0 values is also shown. The production mode for 2+ and 2− states
is assumed to be 100% ggF.

6.4.3 Summary

Table 6.11 shows the observed values of p0 for all hypothesis tests in which the
assumed hypothesis is the Standard Model 0+ model. The statistical separation
between the hypothesis pairs is also provided in terms of CLs, defined as

CLs = p0(data|H1 = JP )
1− p0(data|H0 = 0+) ,

where p0 is computed from the test statistics distribution in the H0(H1) hypothesis,
as the right–tail integral from the test statistics value on data to infinity. The
expected separation between H0 and H1 is obtained using the median of the H0
distribution instead of the value of the test statistics on data.

The expected separation between the SM hypothesis and the 0−, 1+, 1− and
2− hypotheses is above the 2.5σ level, while the expected separation against 2+ is
about 1.5σ. The expected separation is, for the 2+ and 2− hypotheses, found to be
independent on the production fraction fqq.

The observed p0 values allow to exclude the 0−, 1+ and 1− hypotheses against
the SM 0+ with a CLs value of 99.6%, 99.4% and 96.9%. As for the exclusion of
the 2+ and 2− hypotheses against the SM, the observed CLs values make the result
inconclusive.

6.5 Combination with Other Channels
A combination of spin–parity measurements from H → ZZ(∗) → 4`, H → γγ and
H → WW (∗) → `ν`ν is presented in Ref. [73]. Results, as shown in Fig. 6.22,
exclude the specific JP = 2+ hypothesis against the Standard Model expectation
with a confidence level of more than 99.9%, independently on assumed the value of
the fraction fqq.
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Chapter 7

Probing the HZZ Tensor
Structure

Direct information on the decay amplitude of the new particle into two vector bosons
can be obtained by studying the final state distributions of the decay leptons. If
the spin of this particle is assumed to be zero, four coupling parameters gi define
the most general X → ZZ decay amplitude. In the Standard Model only the first
one, g1, is non–zero: admixtures between CP–even and CP–odd components or
contributions from new physics in loops can be probed looking for deviations from
zero of g4 and g2, by using the matrix element description of the final state. In this
chapter, prospects on the measurement of g4 and g2 with data from the foreseen
HL-LHC are discussed.

7.1 Decay Amplitude in the Scalar Boson Assumption

Let us take again Eq. (4.4):

A(X → Z1Z2) = v−1
(
g1m

2
Zε
∗
1ε
∗
2 + g2f

∗(1)
µν f∗(2),µν + g3f

∗(1),µνf∗(2)
µα

qνq
α

Λ2

+g4f
∗(1)
µν f̃

∗(2),µν)
.

(7.1)

We recognize that:

g1 is equal to 2ı in the SM1;

g2 obtains a non–zero value in the SM only after electroweak radiative corrections,
g2 = O(10−2);

g3 multiplies a term which is suppressed by the square of the scale of new physics
Λ & 10TeV, and therefore is neglected in the following discussion;

1In the following we will usually adopt the convention where g1 = 1 ∈ R is used to denote
the SM model, since an overall complex phase does not affect angular distributions and overall
normalization effects can be absorbed in the signal strength modifier µ.
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g4 is the only term multiplying a CP–odd component2, and is zero in the SM up to
three loop corrections.

Different theoretical models (a review of which can be found in Ref. [74]) predict
CP violation when both CP–even and CP–odd terms in Eq. (4.5) are present[75].
For example, within the context of Two–Higgs–Doublet–Models, CP violation arises
from the mixing of the neutral Higgs sector, composed by two scalar bosons and
a pseudoscalar, and might be responsible for the barion asymmetry observed in
Nature[76]. However, in many models the coupling between a pseudoscalar state
and a pair of Z bosons is allowed only at loop level. As a consequence, one expects
that the contribution to the amplitude due to the CP–even component is dominant,
i.e. that phenomenologically the interesting region to probe is |g4/g1| � 1. On the
other hand, the observation of a value of the g2 parameter significantly different
from the SM prediction might hint at new physics contributions to loop processes
other than the SM ones.

7.1.1 Measurement Strategy

The measurement of the value of any of the coupling parameters can be performed
by fitting for Re(g4), Im(g4) and µ assuming g1 = 1, or by fitting for Re(g2), Im(g2)
and µ still with g1 = 1. In this way, one is sensitive to the ratio of couplings

Re(g2/g1), Im(g2/g1) or Re(g2/g1), Im(g2/g1) (7.2)

while modifications of the overall signal cross–section are still taken into account
with the signal strength factor µ.

An alternative parametrization of Eq. (7.2) is given by

fai = |ai|2σi
|ai|2σ1 + |ai|2σi

, φai = Arg
(
ai
a1

)
, (7.3)

where σi is the cross–section associated to the ai term of Eq. (4.6), computed for
all aj 6=1 = 0. The value of σi depends on the acceptance of the analysis and can be
computed from Monte Carlo. Applying the same event selection of Chapter 5, one
gets

fai = r2
i1

1 + r2
i1
, where r2

31 ≈ 0.16 |g4|2

|g1|2
and r2

21 ≈ 0.382 |g2|2

|g1|2
. (7.4)

To uniform the notation, in the following we will call fg2 = fa2 and fg4 = fa3 .

7.1.2 Interpretation of g4/g1 vs 〈fCP 〉

Event by event, the fraction of CP–odd component introduced in Eq. (4.12)

fCP = |A⊥|2

|A0|2 + |A‖|2 + |A⊥|2
,

2The fact that g4 is responsible for a CP–odd component can be seen expressing the amplitude
in the transversity base, as done in Sec. 4.2.4.



7.1 Decay Amplitude in the Scalar Boson Assumption 141

1
/g

4
Abs g

0 5 10 15 20

>
C

P
<

f

0

0.2

0.4

0.6

0.8

1

Figure 7.1. Relation between 〈fCP 〉 and |g4/g1|.

is, through the dependence on transversity amplitudes, a function of the intermediate
vector boson masses m1,m2. To interpret a given value of g4/g1 in terms of CP–
even/odd components, an effective parameter

〈fCP 〉 =
∫
Cm1,m2

dm1 dm2 fCP (m1,m2)

is introduced, where the integral is taken on the surface Cm1,m2 determined by the
event kinematics and selection criteria. Fig. 7.1 shows the relation between 〈fCP 〉
and |g4/g1|. The relation

〈fCP 〉 ≈ fa3 ≡ fg4

holds.

7.1.3 Sensitivity on g4/g1, g2/g1

The effect on one–dimensional mass and angular distributions of non–zero values
of g2 and g4, when g1 is assumed to be equal to unity, is shown in Fig. 7.2, in
the case of g4, and Fig. 7.3 in the case of g2. As for the pseudoscalar term, the
sensitivity is mainly on the absolute value |g4/g1|: if one assumes that g4/g1 is real,
discrimination between positive and negative values (+3, in red, and −3, in green)
is obtained only from the azimuthal angle φ, while imaginary values (3ı, in blue,
and −3ı, in magenta) induce asymmetries in the cos θ1,2 distributions. As for g2,
most of the separation with respect to the SM is obtained from m2, cos θ1,2, φ for
negative values of g2/g1 (−1, in green).
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7.1.4 Analysis Techniques

Two parallel approaches can be used to probe the g2 and g4 complex couplings:

• a full fit to the 8D final state of a signal plus background model;

• a discriminant–based approach, in which a 2D analysis is performed in a space
where one dimension aims at discriminating signal from backgrounds, and
the other dimension provides separation between different signal (g2/g1, g4/g1)
hypotheses.

These two approaches are somewhat complementary. On one hand, the 8D fit
method allows to probe the tensor structure of the HZZ vertex in an optimal way,
since all available information on the final state is used in the fitting procedure: the
interesting coupling is a free parameter of the fit. On the other hand, this technique
relies on an accurate description of detector and selection effects and on an accurate
parametrization of irreducible and reducible backgrounds. These are complex goals,
given the high dimensionality of the observable space, and assumptions must be
made on the way acceptance effects and backgrounds are parametrized. The 2D
approach is used as a cross–check of the validity this method: it is an extension of the
JP –MELA hypothesis testing technique, in which the likelihood model for signal and
backgrounds is built directly from the 2D distribution of two discriminants computed
on full simulation Monte Carlo, and therefore does not require a parametrization of
detector and acceptance effects. It provides the possibility to define the set of values
of the interesting parameter (g2/g1, g4/g1) which are expected to be excluded with
respect to the SM hypothesis g2 = g4 = 0.

In this chapter, these two approaches are introduced, and preliminary sensitivity
projections on the real and imaginary parts of g2/g1 and g4/g1 for 300 fb−1 and
3000 fb−1 at the HL–LHC at 14TeV are studied with Monte Carlo simulation.
Confidence intervals on the complex amplitude parameters, and equivalently on the
fractions fgi and the argument of gi, are shown in the assumption of a Standard
Model Higgs boson.

Sample Reweighting

Signal samples are simulated, as discussed in Chapter 6, with the jhu generator, in
the SM 0+ hypothesis.

A reweighting procedure is applied to obtain full simulation Monte Carlo samples
for any (g1 = 1, g2, g4) hypothesis. Reconstructed events from the Standard Model
0+ sample are weighted with a factor

w(m1,m2,Ω|g̃i) = p(m1,m2,Ω|gi = g̃i)
p(m1,m2,Ω|gi = 0) (i = 2, 4), (7.5)

which represents the ratio between the probabilities of that event to occur in the
g̃i 6= 0 and in the SM hypothesis.

The validity of this procedure is based on the fact that the phase space covered
by the pdf is the same for all possible spin zero hypotheses. Fig. 7.4—7.7 show the
validation at reconstruction level of sample reweighting, where the 0− sample fully
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simulated with jhu MC is compared to the 0+ sample reweighted according to Eq.
7.5. Good agreement between the two sets of distributions of the final state masses
and production and decay angles is observed within the MC statistical uncertainty.



146 7. Probing the HZZ Tensor Structure

m
1 

[G
eV

]

50
60

70
80

90
10

0

a.u. / 2.00 GeV

0

0.
02

0.
04

0.
06

0.
080.

1

0.
12

0.
14

0.
16

0.
180.

2

0.
22

m
2 

[G
eV

]

20
40

60
80

10
0

a.u. / 1.84 GeV

0

0.
02

0.
04

0.
06

0.
080.

1

0.
12

)µ
 f

u
lls

im
 (

4
- 0

)µ
 (

4
+

 f
ro

m
 0

- 0

θ
co

s

-1
-0

.8
-0

.6
-0

.4
-0

.2
0

0.
2

0.
4

0.
6

0.
8

1

a.u. / 0.11 0.
04

0.
05

0.
06

0.
07

0.
08

1φ
-3

-2
-1

0
1

2
3

a.u. / 0.35 0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

1θ
co

s

-1
-0

.8
-0

.6
-0

.4
-0

.2
0

0.
2

0.
4

0.
6

0.
8

1

a.u. / 0.11 0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
090.

1

2θ
co

s

-1
-0

.8
-0

.6
-0

.4
-0

.2
0

0.
2

0.
4

0.
6

0.
8

1

a.u. / 0.11 0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

φ

-3
-2

-1
0

1
2

3

a.u. / 0.35 0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

F
ig
ur
e
7.
4.

D
ist

rib
ut
io
n
of

th
e
m
as
s
an

d
an

gu
la
r
ob

se
rv
ab

le
s,

at
re
co
ns
tr
uc
tio

n
le
ve
l,
fo
r
th
e

4µ
fin

al
st
at
e
fo
r
a
fu
lly

sim
ul
at
ed

0−
m
od

el
(b
lu
e

ba
nd

)
an

d
th
e
fu
lly

sim
ul
at
ed

SM
0+

m
od

el
re
we

ig
ht
ed

to
0−

us
in
g
th
e
m
at
rix

el
em

en
t.



7.1 Decay Amplitude in the Scalar Boson Assumption 147

m
1 

[G
eV

]

50
60

70
80

90
10

0

a.u. / 2.00 GeV

0

0.
02

0.
04

0.
06

0.
080.

1

0.
12

0.
14

0.
16

0.
18

m
2 

[G
eV

]

20
40

60
80

10
0

a.u. / 1.84 GeV

0

0.
02

0.
04

0.
06

0.
080.

1

0.
12

2e
)

µ
 f

u
lls

im
 (

2
- 0

2e
)

µ
 (

2
+

 f
ro

m
 0

- 0

θ
co

s

-1
-0

.8
-0

.6
-0

.4
-0

.2
0

0.
2

0.
4

0.
6

0.
8

1

a.u. / 0.11 0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

1φ
-3

-2
-1

0
1

2
3

a.u. / 0.35 0.
04

0.
05

0.
06

0.
07

0.
08

1θ
co

s

-1
-0

.8
-0

.6
-0

.4
-0

.2
0

0.
2

0.
4

0.
6

0.
8

1

a.u. / 0.11 0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
090.

1

0.
11

2θ
co

s

-1
-0

.8
-0

.6
-0

.4
-0

.2
0

0.
2

0.
4

0.
6

0.
8

1

a.u. / 0.11 0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

φ

-3
-2

-1
0

1
2

3

a.u. / 0.35 0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
090.

1

F
ig
ur
e
7.
5.

D
ist

rib
ut
io
n
of

th
e
m
as
s
an

d
an

gu
la
r
ob

se
rv
ab

le
s,

at
re
co
ns
tr
uc

tio
n
le
ve
l,
fo
r
th
e

2µ
2e

fin
al

st
at
e
fo
r
a
fu
lly

sim
ul
at
ed

0−
m
od

el
(b
lu
e

ba
nd

)
an

d
th
e
fu
lly

sim
ul
at
ed

SM
0+

m
od

el
re
we

ig
ht
ed

to
0−

us
in
g
th
e
m
at
rix

el
em

en
t.



148 7. Probing the HZZ Tensor Structure

m
1 

[G
eV

]

50
60

70
80

90
10

0

a.u. / 2.00 GeV

0

0.
02

0.
04

0.
06

0.
080.

1

0.
12

0.
14

0.
16

0.
18

m
2 

[G
eV

]

20
40

60
80

10
0

a.u. / 1.84 GeV

0

0.
02

0.
04

0.
06

0.
080.

1

0.
12

)µ
 f

u
lls

im
 (

2e
2

- 0

)µ
 (

2e
2

+
 f

ro
m

 0
- 0

θ
co

s

-1
-0

.8
-0

.6
-0

.4
-0

.2
0

0.
2

0.
4

0.
6

0.
8

1

a.u. / 0.11 0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

1φ
-3

-2
-1

0
1

2
3

a.u. / 0.35 0.
04

0.
05

0.
06

0.
07

0.
08

1θ
co

s

-1
-0

.8
-0

.6
-0

.4
-0

.2
0

0.
2

0.
4

0.
6

0.
8

1

a.u. / 0.11 0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
090.

1

2θ
co

s

-1
-0

.8
-0

.6
-0

.4
-0

.2
0

0.
2

0.
4

0.
6

0.
8

1

a.u. / 0.11 0.
04

0.
05

0.
06

0.
07

0.
08

φ

-3
-2

-1
0

1
2

3

a.u. / 0.35 0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
090.

1

F
ig
ur
e
7.
6.

D
ist

rib
ut
io
n
of

th
e
m
as
s
an

d
an

gu
la
r
ob

se
rv
ab

le
s,

at
re
co
ns
tr
uc

tio
n
lev

el
,f
or

th
e

2e
2µ

fin
al

st
at
e
fo
r
a
fu
lly

sim
ul
at
ed

0−
m
od

el
(b
lu
e

ba
nd

)
an

d
th
e
fu
lly

sim
ul
at
ed

SM
0+

m
od

el
re
we

ig
ht
ed

to
0−

us
in
g
th
e
m
at
rix

el
em

en
t.



7.1 Decay Amplitude in the Scalar Boson Assumption 149

m
1 

[G
eV

]

50
60

70
80

90
10

0

a.u. / 2.00 GeV

0

0.
02

0.
04

0.
06

0.
080.

1

0.
12

0.
14

0.
16

0.
18

m
2 

[G
eV

]

20
40

60
80

10
0

a.u. / 1.84 GeV

0

0.
02

0.
04

0.
06

0.
080.

1

0.
12

0.
14

 f
u

lls
im

 (
4e

)
- 0

 (
4e

)
+

 f
ro

m
 0

- 0

θ
co

s

-1
-0

.8
-0

.6
-0

.4
-0

.2
0

0.
2

0.
4

0.
6

0.
8

1

a.u. / 0.11 0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

1φ
-3

-2
-1

0
1

2
3

a.u. / 0.35 0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

1θ
co

s

-1
-0

.8
-0

.6
-0

.4
-0

.2
0

0.
2

0.
4

0.
6

0.
8

1

a.u. / 0.11 0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
090.

1

2θ
co

s

-1
-0

.8
-0

.6
-0

.4
-0

.2
0

0.
2

0.
4

0.
6

0.
8

1

a.u. / 0.11 0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

φ

-3
-2

-1
0

1
2

3

a.u. / 0.35 0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
090.

1

F
ig
ur
e
7.
7.

D
ist

rib
ut
io
n
of

th
e
m
as
s
an

d
an

gu
la
r
ob

se
rv
ab

le
s,

at
re
co
ns
tr
uc

tio
n
le
ve
l,
fo
r
th
e

4e
fin

al
st
at
e
fo
r
a
fu
lly

sim
ul
at
ed

0−
m
od

el
(b
lu
e

ba
nd

)
an

d
th
e
fu
lly

sim
ul
at
ed

SM
0+

m
od

el
re
we

ig
ht
ed

to
0−

us
in
g
th
e
m
at
rix

el
em

en
t.



150 7. Probing the HZZ Tensor Structure

Final State Signal ZZ∗ Reducible Backgrounds
4µ 1186 427 214

2µ2e 867 287 144
2e2µ 1035 383 191
4e 871 317 158

Table 7.1. Event yields expected in the selected mass region for signal and backgrounds
with 3000 fb−1 collected at a high luminosity LHC.

Event Yields and Systematic Uncertainties

Events are selected using the same criteria presented in Chapter 5. Signal and
background cross–sections for

√
s = 14TeV are used3, and event yields are computed

with fast simulation studies which take into account the harsher experimental
conditions at the HL–LHC. Table 7.1 shows the expectations for signal, irreducible
and reducible backgrounds, in the four final states, for 3000 fb−1; the 300 fb−1

expectation is obtained by rescaling these numbers for the different luminosity. The
sum of the yields of the reducible and irreducible backgrounds is assigned to the
ZZ∗ simulated events.

Systematic uncertainties are assigned on this yield estimation:

• 3% luminosity uncertainty, correlated between signal and background;

• 5% lepton reconstruction efficiency;

• 9.4% (7.4%) combined uncertainty on the ZZ∗ production cross–section and
on the reducible background yield for 300 (3000) fb−1.

An additional systematic uncertainty of 10% on signal and background normaliza-
tion is applied in the case of the 8D fit, correlated between signal and background, to
conservatively take into account possible uncertainties in the description of detector
acceptance and resolution and in parametrization of backgrounds.

7.2 8D Fit

The 8D fit approach uses the full final state information,

m4`,m1,m2, cos θ∗, φ1, cos θ1, cos θ2, φ,

which is described using the same signal model used to build the JP –MELA discrim-
inant, which comes from matrix element calculation corrected for acceptance and
selection effects (see Sec. 6.2.1), and an empirical background model based on MC
simulation.

3In the case of the signal, which is simulated with mH = 125GeV, one has σ ×BR = 15.85 fb.
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7.2.1 Likelihood Model

The likelihood model in the 8D case is written as

L(Re(g4/g1), Im(g4/g1), µ, θ) =
∏

k=4µ,2µ2e,2e2µ,4e

N∏
i=1

Pois(N |µN (k)
s +N

(k)
b )

·
{

N
(k)
s

N
(k)
s +N

(k)
b

p
(k)
S (m(i)

4` ,m
(i)
1 ,m

(i)
2 ,Ω(i)|Re(g4/g1), Im(g4/g1))

+ N
(k)
b

N
(k)
s +N

(k)
b

p
(k)
ZZ(m(i)

1 ,m
(i)
2 ,Ω(i))

}
,

(7.6)

(and equivalent for g2) where pS is the full signal description introduced in Eq. (6.3),
which corrects the matrix element calculation for acceptance and selection effects in
each of the four final states. To ease the notation, gaussian constraints on nuisance
parameters θ associated to the normalization systematic uncertainties presented in
Sec. 7.1.4 are not shown.

7.2.2 Background Description

For the description of the irreducible background, the factorization

pZZ(m1,m2,Ω) = pZZ(m1,m2)·pZZ(cos θ?)·pZZ(φ1)·pZZ(cos θ1)·pZZ(cos θ2)·pZZ(φ)

is used, where each pZZ term is obtained from full simulation MC. One–dimensional
distributions of the five angles are parametrized empirically as in Sec. 6.2.1, while a
2D histogram template is used for m1,m2. Fig. 7.8 shows the level of agreement
between full simulation ZZ MC and pZZ .

7.2.3 Statistical Procedure

A 2D scan of the likelihood of Eq. (7.6) is performed in the complex plane to obtain
a confidence interval on the measured parameter gi/g1, which in the asymptotic
assumption is equivalent to the set of g̃i/g1 = (Re(gi/g1), Im(gi/g1)) values for which

−2∆LL = 2 log L(g̃i/g1)
L(ĝi/g1) ∝ χ

2(ndof= 2)

≤ 2.28(5.99) for 68% (95%) CL.

The two parameters of interest are the real and imaginary parts of g4/g1 (g2/g1);
the signal strength µ is profiled. Expected limits are obtained by fitting an Asimov
dataset[69] generated in the Standard Model hypothesis, and quoting the correspond-
ing confidence intervals. The granularity with which the likelihood is evaluated in
the complex plane is Re(gi/g1)× Im(gi/g1) = 0.05× 0.05.

7.2.4 Closure Tests

In order to test the correct implementation of the method and the validity of signal
and background parametrizations, a series of closure tests has been performed.
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Figure 7.8. Comparison of the likelihood projection for the pp→ ZZ(∗) → 4` irreducible
background (red curve) and the corresponding powheg (black points) MC simulation
for the eight observables. From left to right and top to bottom for each observable:
2µ2e, 4e, 2e2µ and 4µ channels.
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Channel Eq. Stat. (fb−1) Pull Mean Pull σ
4µ 30 −0.01± 0.03 0.91± 0.02
2µ2e 30 −0.01± 0.03 0.93± 0.02
2e2µ 30 −0.03± 0.03 0.93± 0.02
4e 30 0.00± 0.03 0.91± 0.02
4µ 3000 0.01± 0.03 1.07± 0.02
2µ2e 3000 0.04± 0.03 1.02± 0.02
2e2µ 3000 0.00± 0.03 1.05± 0.02
4e 3000 0.05± 0.03 1.02± 0.02

Table 7.2. Mean and width of gaussian pulls for the Re(g4) parameter (g1 = 1), obtained
by performing 1000 functional toy experiments using the full 8D likelihood to generate
signal plus background samples with an equivalent statistic of 30 fb−1 and 3000 fb−1.

Dedicated test samples, obtained either from pseudo–experiments (toys) generated
from the likelihood itself to test its correct implementation, or from full simulation
MC, have been used to study possible biases induced by the fitting procedure.

To validate the fitting procedure, toy experiments have been performed generating
1000 samples with a number of events Poisson–distributed around the expectations
for 30 fb−1 and 3000 fb−1. Pulls of the Re(g4/g1) = x parameter, defined as

pull(x)i = xi − x(true)

σ(xi)

have been studied. Table 7.2 shows the mean and width of gaussian fits to the
pull distributions (some examples of which are reported in Fig. 7.9). Mean and
standard deviation of the distributions are compatible with the expectations of 0
and 1, respectively, indicating that no significant bias is observed.

Table 7.3 shows the mean and width of gaussian fits to the pull distributions
obtained by injecting multiple samples from the SM MC events corresponding to an
equivalent statistic4 of about 30 fb−1. In all cases pull distributions are consistent
within statistical uncertainty with normal distributions.

A high–statistics test has been performed by fitting the full SM sample, which
corresponds to a luminosity of more than 3000 fb−1, reweighted to different values
of the g4 and g2 parameters. The distributions of the fitted values of Re(gi/g1) and
Im(gi/g1) versus their true values are shown in Fig. 7.10. No significant bias is
observed for any of the tested values.

Finally, Fig. 7.11 shows −2∆LL sensitivity contours at 68% and 95% CL in
the (Re(gi/g1), Im(gi/g1)) planes, as obtained by fitting three injected samples with
g1 = 1 and g4 = −1 + ı, g4 = 2 + 2ı and g2 = −1 + ı, for an integrated luminosity of
300 fb−1.

4The equivalent statistics is limited by the available full simulation MC statistics.
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Channel Eq. Stat. (fb−1) Pull mean Pull sigma
4µ 30 0.02± 0.04 0.83± 0.03
2µ2e 30 0.00± 0.06 0.92± 0.04
2e2µ 30 0.09± 0.05 0.96± 0.04
4e 30 0.07± 0.06 0.95± 0.05

Table 7.3. Mean and width of gaussian pulls for the Re(g4) parameter (g1 = 1), obtained
by fitting multiple pseudo–experiments sampled from full simulation Standard Model
MC events, corresponding to an equivalent statistic of 30 fb−1 each.
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Figure 7.9. Pull distributions for the g4 parameter (g1 = 1) obtained in toy experiments
corresponding to an equivalent statistic of 3000 fb−1 each.

(a) Re g4 (b) Im g4 (c) Re g2 (d) Im g2

Figure 7.10. Distributions of the measured values of g4 (g2) (y-axis) from fits to samples
with generated values g4 (g2) and g1 = 1 (x-axis). Each sample is obtained by reweighting
the the full simulation Standard Model sample to the corresponding hypotheses.



7.2 8D Fit 155

1
)/g

4
(gℜ

­4 ­3 ­2 ­1 0 1 2 3 4

1
)/

g
4

(g
ℑ

­4

­3

­2

­1

0

1

2

3

4
Preliminary Simulation

 = ­1 + i
4

8D Fit: injection test g

ATLAS

(a) g1 = 1, g4 = −1 + ı

1
)/g

4
(gℜ

­4 ­3 ­2 ­1 0 1 2 3 4

1
)/

g
4

(g
ℑ

­4

­3

­2

­1

0

1

2

3

4
Preliminary Simulation

 = 2 + 2i
4

8D Fit: injection test g

ATLAS

(b) g1 = 1, g4 = 2 + 2ı

1
)/g

2
(gℜ

­4 ­3 ­2 ­1 0 1 2 3 4

1
)/

g
2

(g
ℑ

­4

­3

­2

­1

0

1

2

3

4
Preliminary Simulation

 = ­1 + i
2

8D Fit: injection test g

ATLAS

(c) g1 = 1, g2 = −1 + ı

Figure 7.11. Contours corresponding to 68% and 95% CL of the distribution of −2∆LL in
the (Re(gi/g1), Im(gi/g1)) plane, obtained when samples different from the SM one are
injected, for the 8D fit and the g4 and g2 parameters. The tests assume an integrated
luminosity of 300 fb−1.
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7.2.5 Results

Fig. 7.12 and 7.13 show the distribution of −2∆LL, in the (Re(g4/g1), Im(g4/g1))
and (Re(g2/g1), Im(g2/g1)) planes when a Standard Model signal is assumed, for
integrated luminosities of 300 fb−1 (upper plots) and 3000 fb−1 (lower plots). The
68% and 95% CL contours are reported as well.
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7.3 2D Discriminant Analysis

A complementary 2D discriminant method is developed, as an extension of the
JP –MELA technique. Hypothesis testing is performed between the SM hypothesis
and the tested g1 hypothesis (i = 1, 2), in the two dimensional space where one
dimension is given by

Dg̃i(m1,m2,Ω) = p(m1,m2,Ω|g1 = 1, gi = 0)
p(m1,m2,Ω|g1 = 1, gi = 0) + p(m1,m2,Ω|g1 = 1, gi = g̃i)

, (7.7)

and the other dimension is
DZZ = m4`,

and aims at separating signal and background. It can be noted that the discriminant
of Eq. (7.7) is the analogous of Eq. (6.2), this time separating the SM hypothesis
from the gi 6= 0 ones.

7.3.1 Likelihood Model

For each point of the complex plane (Re(gi/g1), Im(gi/g1)), an hypothesis test is
performed between that specific hypothesis and the SM one, using the likelihood
model

L(ε, µ, θ) =
∏

k=4µ,2µ2e,2e2µ,4e

N∏
i=1

Pois(N |µN (k)
s +N

(k)
b ) ·

{
N

(k)
s

N
(k)
s +N

(k)
b

[
εf

(k)
sig (D(i)

g̃4 ,m
(i)
4` |g̃4/g1)

+ (1− ε)f (k)
sig (D(i)

g̃4 ,m
(i)
4` |g4/g1 = 0)

]
+ N

(k)
b

N
(k)
s +N

(k)
b

f
(k)
bkg(D

(i)
g̃4 ,m

(i)
4` )
}

(and analogous for g2), where the second product runs over events i and, again,
gaussian constraints associated to nuisance parameters θ to account for normalization
systematics in signal and background are not shown. The parameter ε is 1 in the
case of the hypothesis g̃4 and 0 in the case of the SM hypothesis.

The functions f (k)
sig are obtained using 2D distributions computed on Monte Carlo

samples (an example of which is shown in Fig. 7.14), in the case of signal after the
reweighting described in Sec. 7.1.4. Discriminant distributions are smoothed using
a 2D kernel density estimation technique.

7.3.2 Statistical Procedure

The hypothesis testing is performed using the profile likelihood test statistics, where
ε is treated as parameter of interest and µ is profiled. In each point of the complex
plane, the corresponding hypothesis on gi/g1 is tested against the SM hypothesis,
using the CLs method and the asymptotic calculation[69]. The CL of exclusion of
the alternative hypothesis with respect to the SM one is reported, for each point of
the plane, by using an Asimov dataset generated according to the SM hypothesis.
This procedure is performed with a granularity Re(gi/g1)× Im(gi/g1) = 0.05× 0.05
in the complex plane.
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(b) g4 = −4− 4ı
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Figure 7.14. Example of the distribution, for the four final states, of the 2D discriminant
computed on full simulation events, for SM signal, SM signal reweighted to g4 = −4− 4ı
and ZZ∗ continuum background.
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Luminosity (fb−1) Re(g4/g1) Im(g4/g1) Re(g2/g1) Im(g2/g1)
300 (-0.88, 0.91) (-1.02, 1.05) (-0.84,0.44) (-1.19, 1.18)
3000 (-0.30, 0.33) (-0.39, 0.42) (-0.30,0.11) (-0.71, 0.68)

Table 7.4. Expected sensitivities, expressed in terms of the expected 95% CL intervals
for Re(g4/g1), Im(g4/g1),Re(g2/g1) and Im(g2/g1) when the other parameter is profiled,
that can obtained with the 8D fit method in the presence of a SM signal.

Luminosity (fb−1) |Re(g4/g1)| | Im(g4/g1)| |Re(g2/g1)| | Im(g2/g1)|
300 0.80 0.90 0.69 1.05
3000 0.32 0.41 0.26 0.65

Table 7.5. Expected sensitivities, expressed as 95% CL expected upper limits on the
|Re(g4/g1)|, | Im(g4/g1)|, |Re(g2/g1)| and | Im(g2/g1)| parameters, that can be obtained
in the presence of a SM signal with the 2D hypothesis testing method.

7.3.3 Results

Fig. 7.15 shows the expected sensitivity in number of gaussian sigmas, to exclude a
given point in the (Re(g4/g1), Im(g4/g1)) (upper plots), and (Re(g2/g1), Im(g2/g1))
(lower plots) planes, for a Standard Model signal, estimated with the 2D hypothesis
testing method. Left plots assume an integrated luminosity of 300 fb−1, while the
right plots assume 3000 fb−1.

7.4 Summary
A summary of the expected sensitivities on g4/g1 and g2/g1, that can be reached
with 300 fb−1 and 3000 fb−1, with the 8D fitting technique is reported in Table 7.4.
Results are compatible with those obtained with the cross–check 2D hypothesis
testing technique (shown in Table 7.5) within the uncertainty associated to the
granularity of the scan of the complex plane5.

A summary of the expected sensitivities for the fractions fg4 and fg2 for 300 fb−1

and 3000 fb−1 obtained with the 8D fit technique is reported in Table 7.6, while
contours at 68% and 95% CL are shown in Fig. 7.16. Results are compatible with
those obtained with the cross–check 2D hypothesis testing technique (shown in Table
7.7 and Fig. 7.16) within the uncertainty associated to the granularity of the scan
of the fgi versus Arg(gi/g1) plane, which is 0.02 × 0.02. Further precision on the
measurement of fg2 , fg4 might be achieved in the future applying similar techniques
at the foreseen e+e− colliders[77].

5In the 8D case, intervals on the real and imaginary parts of the coupling factors are given
profiling the other parameter. In the 2D case the one–dimensional interval, obtained from the same
plane, containing points not excluded at 95% CL is given. In both cases, the procedure is applied
on the 2D histograms shown in Fig. 7.12, 7.13, 7.15 (for the (Re gi/g1, Im gi/g1) plane) and Fig.
7.16, 7.17 (for the (fgi ,Arg(gi/g1)) plane), and is therefore affected by the granularity of the scan
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Figure 7.15. Expected sensitivity in number of equivalent gaussian sigmas, to exclude
a given point in the (Re(g4/g1), Im(g4/g1)) and (Re(g2/g1), Im(g2/g1)) planes, for a
Standard Model signal, estimated with the 2D hypothesis testing method. The 68% and
95% CL contours are reported as well.

Luminosity (fb−1) fg4 fg2

300 0.20 0.29
3000 0.06 0.12

Table 7.6. Expected sensitivities for fg4 and fg2 , for 300 fb−1 and 3000 fb−1, with the
8D fit method. Numbers are expressed as 95% CL upper limits on the fg4 and fg2

parameters, which can be obtained in the presence of a Standard Model signal.
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Luminosity (fb−1) fg4 fg2

300 0.12 0.34
3000 0.04 0.15

Table 7.7. Expected sensitivities for fg4 and fg2 , for 300 fb−1 and 3000 fb−1, with the 2D
hypothesis testing method. Numbers are expressed as 95% CL upper limits on the fg4

and fg2 parameters, which can be obtained in the presence of a Standard Model signal.
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Figure 7.16. Distribution of −2∆LL of the 8D fit in the fg4 versus Arg(g4/g1) and fg2

versus Arg(g2/g1) planes, when the Standard Model hypothesis is assumed.
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Figure 7.17. Expected sensitivity in number of equivalent gaussian sigmas, to exclude
a given point in the fg4 versus Arg(g4/g1) and fg2 versus Arg(g2/g1) planes, when
the Standard Model hypothesis is assumed, estimated with the 2D hypothesis testing
method.



7.4 Summary 165

in each of the planes.
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Chapter 8

Conclusions

A search for the Standard Model Higgs boson in the H → ZZ(∗) → 4` decay
channel has been presented in this thesis, with about 25 fb−1 of data collected
in pp collisions at

√
s =7TeV and 8TeV by the ATLAS experiment at the LHC.

Event selection criteria and lepton and four–lepton mass resolution performance
have been discussed. A new particle has been observed within this search in
H → ZZ(∗) → 4`, with a local significance against background of about 6.6σ. This
observation has been confirmed by decays in other channels with rates consistent with
the Standard Model expectation. Combined results from all ATLAS searches show
that this particle has a mass of 125.5± 0.2(stat)+0.5

−0.6(sys)GeV and a signal strength
of 1.30± 0.13(stat)± 0.1(sys) compatible with the Standard Model expectation of
unity.

The Standard Model prediction for the quantum numbers of this new particle,
JP = 0+, has been tested against different alternative hypotheses, using a matrix–
element–based method. The JP –MELA multivariate technique for the description of
final state kinematics in terms of the most general parametrization of the H → ZZ
decay amplitude, corrected for acceptance and selection effects studied on Monte
Carlo simulation, has been presented. The hypothesis testing method against
JP = 0−, 1+, 1−, 2+ and 2− specific models has been described. Results show that
the 0+ hypothesis is clearly preferred, and 0−, 1+ and 1− models are excluded at
more than 95% CL with the CLs method. Combination with searches in H → γγ
and H →WW (∗) → `ν`ν decay channels allows to exclude also the 2+ hypothesis
at more than 99.9% CL, independently on the assumed fraction of gluon fusion and
qq̄ annihilation production processes.

Finally, two techniques, based on the same description of the final state kinematics,
for the determination of the coupling parameters which characterize the most general
H → ZZ decay amplitude, have been described. A 2D hypothesis testing method in
the complex plane of the complex coupling parameters g2/g1 and g4/g1 has been
presented, as well as a 8D fitting method based on the full analytic signal description
and an empirical background model. Sensitivity prospects for a High Luminosity
LHC at

√
s = 14TeV have been discussed: a fractional CP–odd component of more

than 20% (6%) can be excluded at 95% CL with 300 fb−1 (3000 fb−1). An analysis
of the ATLAS Run I dataset is currently ongoing; preliminary projections show that
an expected sensitivity on 〈fCP 〉 comparable to the result by the CMS collaboration
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reported in Ref. [78] can be reached with the proposed techniques.
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Appendix A

Decay Amplitudes and
Differential Distributions

In this Appendix, the full functional form for the differential distributions of a
particle with spin J = 0, 1, 2 decaying via X → Z1Z2→ 4` is given[42].

A.1 Spin One

The helicity amplitudes in the spin-one case corresponding to Eq. (4.7) are the
following:
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A.2 Spin Two

The scattering amplitude of Eq. (4.8) can be written as
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A(X → Z1Z2) = Λ−1e∗µ1 e∗ν2

[
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The eight coefficients ci can be expressed through the couplings gi by
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The helicity amplitudes are as follows:
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A.3 Differential Distributions
Let J be the spin of the boson X; we will use all simbols defined in Sec. 4.2. The
helicity amplitudes Aαβ = Aαβ(m1,m2) of Eq. 4.3 are presented in Eq. (4.6) for
J = 0, Eq. (A.1) for J = 1 and Eq. (A.2) for J = 2. Since they are complex
amplitudes, we can express them using their absolute value |Aαβ| and the phase
φαβ = arg(Aαβ/A00).

The differential angular and mass distribution, expressed in terms of the helicity
amplitudes, is

NJ dΓJ(m1,m2, cos θ∗,Ψ, cos θ1, cos θ2,Φ)
d cos θ∗dΨd cos θ1d cos θ2dΦ =
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F J0,0(θ∗)×
[
4 |A00|2 sin2 θ1 sin2 θ2

+ |A++|2
(
1 + 2Af1 cos θ1 + cos2 θ1

) (
1 + 2Af2 cos θ2 + cos2 θ2

)
+ |A−−|2

(
1− 2Af1 cos θ1 + cos2 θ1

) (
1− 2Af2 cos θ2 + cos2 θ2

)
+ 4|A00||A++|(Af1 + cos θ1) sin θ1(Af2 + cos θ2) sin θ2 cos(Φ + φ++)
+ 4|A00||A−−|(Af1 − cos θ1) sin θ1(Af2 − cos θ2) sin θ2 cos(Φ− φ−−)

+ 2|A++||A−−| sin2 θ1 sin2 θ2 cos(2Φ− φ−− + φ++)
]

+ F J1,1(θ∗)×
[
2|A+0|2(1 + 2Af1 cos θ1 + cos2 θ1) sin2 θ2

+ 2|A0−|2 sin2 θ1(1− 2Af2 cos θ2 + cos2 θ2)
+ 2|A−0|2(1− 2Af1 cos θ1 + cos2 θ1) sin2 θ2

+ 2|A0+|2 sin2 θ1(1 + 2Af2 cos θ2 + cos2 θ2)
+ 4|A+0||A0−|(Af1 + cos θ1) sin θ1(Af2 − cos θ2) sin θ2 cos(Φ + φ+0 − φ0−)

+ 4|A0+||A−0|(Af1 − cos θ1) sin θ1(Af2 + cos θ2) sin θ2 cos(Φ + φ0+ − φ−0)
]

+ F J1,−1(θ∗)×
[
4|A+0||A0+|(Af1 + cos θ1) sin θ1(Af2 + cos θ2) sin θ2 cos(2Ψ− φ+0 + φ0+)

+ 4|A+0||A−0| sin2 θ1 sin2 θ2 cos(2Ψ− Φ− φ+0 + φ−0)
+ 4|A0−||A0+| sin2 θ1 sin2 θ2 cos(2Ψ + Φ− φ0− + φ0+)

+ 4|A0−||A−0|(Af1 − cos θ1) sin θ1(Af2 − cos θ2) sin θ2 cos(2Ψ− φ0− + φ−0)
]

+ F J2,2(θ∗)×
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]
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]
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2|A−−||A0+|(Af1 − cos θ1) sin θ1 sin2 θ2 cos(Ψ + 3Φ/2 + φ0+ − φ−−)
+ 2
√

2|A−−||A−0|(1− 2Af1 cos θ1 + cos2 θ1)(Af2 − cos θ2) sin θ2
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· cos(Ψ + Φ/2 + φ−0 − φ−−)
+ 2
√

2|A++||A0+|(Af1 + cos θ1) sin θ1(1 + 2Af2 cos θ2 + cos2 θ2)
· cos(Ψ− Φ/2 + φ0+ − φ++)

+ 2
√

2|A++||A−0| sin2 θ1(Af2 + cos θ2) sin θ2 cos(−Ψ + 3Φ/2− φ−0 + φ++)
]

+ F J0,2(θ∗)×
[
4|A00||A+−|(Af1 + cos θ1) sin θ1(Af2 − cos θ2) sin θ2 cos(2Ψ− φ+−)

+ 2|A−−||A+−| sin2 θ1(1− 2Af2 cos θ2 + cos2 θ2) cos(2Ψ− Φ + φ−− − φ+−)

+ 2|A++||A+−|(1 + 2Af1 cos θ1 + cos2 θ1) sin2 θ2 cos(2Ψ + Φ + φ++ − φ+−)
]

+ F J0,−2(θ∗)×
[
4|A00||A−+|(Af1 − cos θ1) sin θ1(Af2 + cos θ2) sin θ2 cos(2Ψ + φ−+)

+ 2|A−−||A−+|(1− 2Af1 cos θ1 + cos2 θ1) sin2 θ2 cos(2Ψ + Φ− φ−− + φ−+)

+ 2|A++||A−+| sin2 θ1(1 + 2Af2 cos θ2 + cos2 θ2) cos(2Ψ− Φ− φ++ + φ−+)
]

+ F J1,2(θ∗)×
[
2
√

2|A+0||A+−|(1 + 2Af1 cos θ1 + cos2 θ1)(Af2 − cos θ2) sin θ2 cos(Ψ + Φ/2 + φ+0 − φ+−)

+ 2
√

2|A0−||A+−|(Af1 + cos θ1) sin θ1(1− 2Af2 cos θ2 + cos2 θ2) cos(Ψ− Φ/2 + φ0− − φ+−)
− 2
√

2|A0+||A−+|(Af1 − cos θ1) sin θ1(1 + 2Af2 cos θ2 + cos2 θ2) cos(−Ψ + Φ/2 + φ0+ − φ−+)

− 2
√

2|A−0||A−+|(1− 2Af1 cos θ1 + cos2 θ1)(Af2 + cos θ2) sin θ2 cos(Ψ + Φ/2 + φ−0 − φ−+)
]

+ F J1,−2(θ∗)×
[
2
√

2|A+0||A−+| sin2 θ1(Af2 + cos θ2) sin θ2 cos(3Ψ− Φ/2− φ+0 + φ−+)

+ 2
√

2|A0−||A−+|(Af1 − cos θ1) sin θ1 sin2 θ2 cos(3Ψ + Φ/2− φ0− + φ−+)
− 2
√

2|A0+||A+−|(Af1 + cos θ1) sin θ1 sin2 θ2 cos(3Ψ + Φ/2 + φ0+ − φ+−)

− 2
√

2|A−0||A+−| sin2 θ1(Af2 − cos θ2) sin θ2 cos(3Ψ− Φ/2 + φ−0 − φ+−)
]
,

where NJ is a normalization constant, and Afi is a parameter1 which characterizes
the decay of Zi, and is approximately 0.15.

The functions F Ji,j(θ∗) are defined through the Wigner d-functions as

F Ji,j(θ∗) =
∑

m=0,±1,±2
fm d

J
im(θ∗)dJjm(θ∗) , (A.3)

where fm are linked to the fractions fzi of spin twoX resonance production with
projections of the spin over the z axis of 0,±1,±2, by the relations

f0 = fz0, f±2 = fz2
2 , f±1 = fz1 ±∆fz1

2 .

For a spin zero particle, only F 0
00 6= 0; for a spin one particle, only F 1

11 and F 1
−11 are

non–zero. All contributions are in principle present for a spin two particle.

A.3.1 The Effect of the Production Mechanism

The production mechanism of the resonance X influences the decay angular distribu-
tions through the terms of Eq. (A.3). In the case of qq̄ annihilation, the resonance

1It is defined by Af = 2ḡfV ḡ
f
A/(ḡ

f2
V + ḡf2

A ).
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X can be produced only by m = ±1, while in gg fusion one can have either m = ±2
or m = 0. The relative fractions of m = ±2 versus m = 0 are determined by the
helicity amplitudes of Eq. (A.2). The relative fraction fqq̄ of qq̄ → X production is
determined by the ratio of cross–sections: This leads to

f+1 = f−1 = fz1
2 = fqq̄

2 ,

f+2 = f−2 = fz2
2 = (1− fqq̄)

|Agg+−|2∑
α,β=±1 |A

gg
αβ|2

= (1− fqq̄)
|Agg−+|2∑

α,β=±1 |A
gg
αβ|2

,

f0 = fz0 = (1− fqq̄)
|Agg++|2 + |Agg−−|2∑

α,β=±1 |A
gg
αβ|2

. (A.4)

For a J = 0 resonance, fqq̄ = 0 and f0 = 1. For a J = 1 resonance fqq̄ = 1. For
a J = 2 resonance, all polarizations are in general possible. The minimal coupling
configuration corresponds to f0 = 0.



175

Appendix B

Closure Tests for Signal
Parametrization

In this appendix, closure tests for the likelihood description of signal Monte Carlo
presented in Chapter 6 are shown.

B.1 Closure Tests
In figures B.1 to B.13 the comparisons for all the eight final state observables for all
the tested production models are shown. An overall good agreement is observed,
confirming that the pdf accurately describes the processes studied for all the spin
hypotheses considered.

B.1.1 JP = 0−



176 B. Closure Tests for Signal Parametrization

*θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06
ATLAS Internal

2eµ 2→
(*)

ZZ→H

*θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06
ATLAS Internal

 4e→
(*)

ZZ→H

*θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

ATLAS Internal

µ 2e2→
(*)

ZZ→H

*θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06

 MELA pdf
­

0

 JHU mc12a
­

0

 MELA pdf
­

0

 JHU mc12a
­

0

ATLAS Internal

µ 4→
(*)

ZZ→H

(a) cos θ∗

1
φ

­3 ­2 ­1 0 1 2 3

a
.u

. 
/ 

 0
.2

1

0

0.01

0.02

0.03

0.04

0.05

0.06 ATLAS Internal

2eµ 2→
(*)

ZZ→H

1
φ

­3 ­2 ­1 0 1 2 3

a
.u

. 
/ 

 0
.2

1

0

0.01

0.02

0.03

0.04

0.05

0.06 ATLAS Internal

 4e→
(*)

ZZ→H

1
φ

­3 ­2 ­1 0 1 2 3

a
.u

. 
/ 

 0
.2

1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 ATLAS Internal

µ 2e2→
(*)

ZZ→H

1
φ

­3 ­2 ­1 0 1 2 3

a
.u

. 
/ 

 0
.2

1

0

0.01

0.02

0.03

0.04

0.05

0.06
 MELA pdf

­
0

 JHU mc12a
­

0

 MELA pdf
­

0

 JHU mc12a
­

0

ATLAS Internal

µ 4→
(*)

ZZ→H

(b) φ1

1
θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
ATLAS Internal

2eµ 2→
(*)

ZZ→H

1
θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 ATLAS Internal

 4e→
(*)

ZZ→H

1
θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
ATLAS Internal

µ 2e2→
(*)

ZZ→H

1
θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06
 MELA pdf

­
0

 JHU mc12a
­

0

 MELA pdf
­

0

 JHU mc12a
­

0

ATLAS Internal

µ 4→
(*)

ZZ→H

(c) cos θ1

2
θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06 ATLAS Internal

2eµ 2→
(*)

ZZ→H

2
θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06
ATLAS Internal

 4e→
(*)

ZZ→H

2
θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06 ATLAS Internal

µ 2e2→
(*)

ZZ→H

2
θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06
 MELA pdf

­
0

 JHU mc12a
­

0

 MELA pdf
­

0

 JHU mc12a
­

0

ATLAS Internal

µ 4→
(*)

ZZ→H

(d) cos θ2

φ

­3 ­2 ­1 0 1 2 3

a
.u

. 
/ 

 0
.2

1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 ATLAS Internal

2eµ 2→
(*)

ZZ→H

φ

­3 ­2 ­1 0 1 2 3

a
.u

. 
/ 

 0
.2

1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
ATLAS Internal

 4e→
(*)

ZZ→H

φ

­3 ­2 ­1 0 1 2 3

a
.u

. 
/ 

 0
.2

1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 ATLAS Internal

µ 2e2→
(*)

ZZ→H

φ

­3 ­2 ­1 0 1 2 3

a
.u

. 
/ 

 0
.2

1

0

0.01

0.02

0.03

0.04

0.05

0.06
 MELA pdf

­
0

 JHU mc12a
­

0

 MELA pdf
­

0

 JHU mc12a
­

0

ATLAS Internal

µ 4→
(*)

ZZ→H

(e) φ

 [GeV]1m

50 60 70 80 90 100

a
.u

. 
/ 

 1
.1

2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14 ATLAS Internal

2eµ 2→
(*)

ZZ→H

 [GeV]1m

50 60 70 80 90 100

a
.u

. 
/ 

 1
.1

2

0

0.02

0.04

0.06

0.08

0.1

0.12
ATLAS Internal

 4e→
(*)

ZZ→H

 [GeV]1m

50 60 70 80 90 100

a
.u

. 
/ 

 1
.1

2

0

0.02

0.04

0.06

0.08

0.1

0.12
ATLAS Internal

µ 2e2→
(*)

ZZ→H

 [GeV]1m

50 60 70 80 90 100

a
.u

. 
/ 

 1
.1

2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 MELA pdf
­

0

 JHU mc12a
­

0

 MELA pdf
­

0

 JHU mc12a
­

0

ATLAS Internal

µ 4→
(*)

ZZ→H

(f) m1

 [GeV]2m

20 40 60 80 100

a
.u

. 
/ 

 2
.0

6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14 ATLAS Internal

2eµ 2→
(*)

ZZ→H

 [GeV]2m

20 40 60 80 100

a
.u

. 
/ 

 2
.0

6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 ATLAS Internal

 4e→
(*)

ZZ→H

 [GeV]2m

20 40 60 80 100

a
.u

. 
/ 

 2
.0

6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 ATLAS Internal

µ 2e2→
(*)

ZZ→H

 [GeV]2m

20 40 60 80 100

a
.u

. 
/ 

 2
.0

6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
 MELA pdf

­
0

 JHU mc12a
­

0

 MELA pdf
­

0

 JHU mc12a
­

0

ATLAS Internal

µ 4→
(*)

ZZ→H

(g) m2

 [GeV]
4l

m

116 118 120 122 124 126 128 130

a
.u

. 
/ 

 0
.3

0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08 ATLAS Internal

2eµ 2→
(*)

ZZ→H

 [GeV]
4l

m

116 118 120 122 124 126 128 130

a
.u

. 
/ 

 0
.3

0

0

0.01

0.02

0.03

0.04

0.05

0.06
ATLAS Internal

 4e→
(*)

ZZ→H

 [GeV]
4l

m

116 118 120 122 124 126 128 130

a
.u

. 
/ 

 0
.3

0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
ATLAS Internal

µ 2e2→
(*)

ZZ→H

 [GeV]
4l

m

116 118 120 122 124 126 128 130

a
.u

. 
/ 

 0
.3

0

0

0.02

0.04

0.06

0.08

0.1  MELA pdf
­

0

 JHU mc12a
­

0

 MELA pdf
­

0

 JHU mc12a
­

0

ATLAS Internal

µ 4→
(*)

ZZ→H

(h) m4`

Figure B.1. Comparison of the likelihood projection for a 0− Higgs–like resonance (red
curve) and the corresponding jhu (black points) MC simulation for the eight observables.
From left to right and top to bottom for each observable: 2µ2e, 4e, 2e2µ and 4µ channels.
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Figure B.2. Comparison of the likelihood projection for a 1+ Higgs–like resonance (red
curve) and the corresponding jhu (black points) MC simulation for the eight observables.
From left to right and top to bottom for each observable: 2µ2e, 4e, 2e2µ and 4µ channels.
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Figure B.3. Comparison of the likelihood projection for a 1− Higgs–like resonance (red
curve) and the corresponding jhu (black points) MC simulation for the eight observables.
From left to right and top to bottom for each observable: 2µ2e, 4e, 2e2µ and 4µ channels.
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Figure B.4. Comparison of the likelihood projection for a 2+ Higgs–like resonance (red
curve) and the corresponding jhu (black points) MC simulation for the eight observables.
From left to right and top to bottom for each observable: 2µ2e, 4e, 2e2µ and 4µ channels.
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Figure B.5. Comparison of the likelihood projection for a 2− Higgs–like resonance (red
curve) and the corresponding jhu (black points) MC simulation for the eight observables.
From left to right and top to bottom for each observable: 2µ2e, 4e, 2e2µ and 4µ channels.
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Figure B.6. Comparison of the likelihood projection for a 2+ fqq = 25% Higgs–like
resonance (red curve) and the corresponding jhu (black points) MC simulation for the
eight observables. From left to right and top to bottom for each observable: 2µ2e, 4e,
2e2µ and 4µ channels.
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Figure B.7. Comparison of the likelihood projection for a 2+ fqq = 50% Higgs–like
resonance (red curve) and the corresponding jhu (black points) MC simulation for the
eight observables. From left to right and top to bottom for each observable: 2µ2e, 4e,
2e2µ and 4µ channels.
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Figure B.8. Comparison of the likelihood projection for a 2+ fqq = 75% Higgs–like
resonance (red curve) and the corresponding jhu (black points) MC simulation for the
eight observables. From left to right and top to bottom for each observable: 2µ2e, 4e,
2e2µ and 4µ channels.
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B.1.9 JP = 2+ (100% qq production)
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Figure B.9. Comparison of the likelihood projection for a 2+ fqq = 100% Higgs–like
resonance (red curve) and the corresponding jhu (black points) MC simulation for the
eight observables. From left to right and top to bottom for each observable: 2µ2e, 4e,
2e2µ and 4µ channels.



B.1 Closure Tests 193

B.1.10 JP = 2− (25% qq production)



194 B. Closure Tests for Signal Parametrization

*θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
ATLAS Internal

2eµ 2→
(*)

ZZ→H

*θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
ATLAS Internal

 4e→
(*)

ZZ→H

*θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 ATLAS Internal

µ 2e2→
(*)

ZZ→H

*θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06  fqq = 25% MELA pdf
­

2

 fqq = 25% JHU mc12a
­

2

 fqq = 25% MELA pdf
­

2

 fqq = 25% JHU mc12a
­

2

ATLAS Internal

µ 4→
(*)

ZZ→H

(a) cos θ∗

1
φ

­3 ­2 ­1 0 1 2 3

a
.u

. 
/ 

 0
.2

1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
ATLAS Internal

2eµ 2→
(*)

ZZ→H

1
φ

­3 ­2 ­1 0 1 2 3

a
.u

. 
/ 

 0
.2

1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
ATLAS Internal

 4e→
(*)

ZZ→H

1
φ

­3 ­2 ­1 0 1 2 3

a
.u

. 
/ 

 0
.2

1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 ATLAS Internal

µ 2e2→
(*)

ZZ→H

1
φ

­3 ­2 ­1 0 1 2 3

a
.u

. 
/ 

 0
.2

1

0

0.01

0.02

0.03

0.04

0.05

0.06  fqq = 25% MELA pdf
­

2

 fqq = 25% JHU mc12a
­

2

 fqq = 25% MELA pdf
­

2

 fqq = 25% JHU mc12a
­

2

ATLAS Internal

µ 4→
(*)

ZZ→H

(b) φ1

1
θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06 ATLAS Internal

2eµ 2→
(*)

ZZ→H

1
θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06 ATLAS Internal

 4e→
(*)

ZZ→H

1
θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06
ATLAS Internal

µ 2e2→
(*)

ZZ→H

1
θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05
 fqq = 25% MELA pdf

­
2

 fqq = 25% JHU mc12a
­

2

 fqq = 25% MELA pdf
­

2

 fqq = 25% JHU mc12a
­

2

ATLAS Internal

µ 4→
(*)

ZZ→H

(c) cos θ1

2
θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1
a

.u
. 

/ 
 0

.0
7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
ATLAS Internal

2eµ 2→
(*)

ZZ→H

2
θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
ATLAS Internal

 4e→
(*)

ZZ→H

2
θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
ATLAS Internal

µ 2e2→
(*)

ZZ→H

2
θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

a
.u

. 
/ 

 0
.0

7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07  fqq = 25% MELA pdf
­

2

 fqq = 25% JHU mc12a
­

2

 fqq = 25% MELA pdf
­

2

 fqq = 25% JHU mc12a
­

2

ATLAS Internal

µ 4→
(*)

ZZ→H

(d) cos θ2

φ

­3 ­2 ­1 0 1 2 3

a
.u

. 
/ 

 0
.2

1

0

0.01

0.02

0.03

0.04

0.05

0.06 ATLAS Internal

2eµ 2→
(*)

ZZ→H

φ

­3 ­2 ­1 0 1 2 3

a
.u

. 
/ 

 0
.2

1

0

0.01

0.02

0.03

0.04

0.05

0.06
ATLAS Internal

 4e→
(*)

ZZ→H

φ

­3 ­2 ­1 0 1 2 3

a
.u

. 
/ 

 0
.2

1

0

0.01

0.02

0.03

0.04

0.05

0.06 ATLAS Internal

µ 2e2→
(*)

ZZ→H

φ

­3 ­2 ­1 0 1 2 3

a
.u

. 
/ 

 0
.2

1

0

0.01

0.02

0.03

0.04

0.05

0.06

 fqq = 25% MELA pdf
­

2

 fqq = 25% JHU mc12a
­

2

 fqq = 25% MELA pdf
­

2

 fqq = 25% JHU mc12a
­

2

ATLAS Internal

µ 4→
(*)

ZZ→H

(e) φ

 [GeV]1m

50 60 70 80 90 100

a
.u

. 
/ 

 1
.1

2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
ATLAS Internal

2eµ 2→
(*)

ZZ→H

 [GeV]1m

50 60 70 80 90 100

a
.u

. 
/ 

 1
.1

2

0

0.02

0.04

0.06

0.08

0.1

ATLAS Internal

 4e→
(*)

ZZ→H

 [GeV]1m

50 60 70 80 90 100

a
.u

. 
/ 

 1
.1

2

0

0.02

0.04

0.06

0.08

0.1

0.12 ATLAS Internal

µ 2e2→
(*)

ZZ→H

 [GeV]1m

50 60 70 80 90 100

a
.u

. 
/ 

 1
.1

2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 fqq = 25% MELA pdf
­

2

 fqq = 25% JHU mc12a
­

2

 fqq = 25% MELA pdf
­

2

 fqq = 25% JHU mc12a
­

2

ATLAS Internal

µ 4→
(*)

ZZ→H

(f) m1

 [GeV]2m

20 40 60 80 100

a
.u

. 
/ 

 2
.0

6

0

0.02

0.04

0.06

0.08

0.1

0.12
ATLAS Internal

2eµ 2→
(*)

ZZ→H

 [GeV]2m

20 40 60 80 100

a
.u

. 
/ 

 2
.0

6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
ATLAS Internal

 4e→
(*)

ZZ→H

 [GeV]2m

20 40 60 80 100

a
.u

. 
/ 

 2
.0

6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
ATLAS Internal

µ 2e2→
(*)

ZZ→H

 [GeV]2m

20 40 60 80 100

a
.u

. 
/ 

 2
.0

6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
 fqq = 25% MELA pdf

­
2

 fqq = 25% JHU mc12a
­

2

 fqq = 25% MELA pdf
­

2

 fqq = 25% JHU mc12a
­

2

ATLAS Internal

µ 4→
(*)

ZZ→H

(g) m2

 [GeV]
4l

m

116 118 120 122 124 126 128 130

a
.u

. 
/ 

 0
.3

0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
ATLAS Internal

2eµ 2→
(*)

ZZ→H

 [GeV]
4l

m

116 118 120 122 124 126 128 130

a
.u

. 
/ 

 0
.3

0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 ATLAS Internal

 4e→
(*)

ZZ→H

 [GeV]
4l

m

116 118 120 122 124 126 128 130

a
.u

. 
/ 

 0
.3

0

0

0.02

0.04

0.06

0.08

0.1
ATLAS Internal

µ 2e2→
(*)

ZZ→H

 [GeV]
4l

m

116 118 120 122 124 126 128 130

a
.u

. 
/ 

 0
.3

0

0

0.02

0.04

0.06

0.08

0.1

 fqq = 25% MELA pdf
­

2

 fqq = 25% JHU mc12a
­

2

 fqq = 25% MELA pdf
­

2

 fqq = 25% JHU mc12a
­

2

ATLAS Internal

µ 4→
(*)

ZZ→H

(h) m4`

Figure B.10. Comparison of the likelihood projection for a 2− fqq = 25% Higgs–like
resonance (red curve) and the corresponding jhu (black points) MC simulation for the
eight observables. From left to right and top to bottom for each observable: 2µ2e, 4e,
2e2µ and 4µ channels.
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Figure B.11. Comparison of the likelihood projection for a 2− fqq = 50% Higgs–like
resonance (red curve) and the corresponding jhu (black points) MC simulation for the
eight observables. From left to right and top to bottom for each observable: 2µ2e, 4e,
2e2µ and 4µ channels.
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Figure B.12. Comparison of the likelihood projection for a 2− fqq = 75% Higgs–like
resonance (red curve) and the corresponding jhu (black points) MC simulation for the
eight observables. From left to right and top to bottom for each observable: 2µ2e, 4e,
2e2µ and 4µ channels.
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Figure B.13. Comparison of the likelihood projection for a 2− fqq = 100% Higgs–like
resonance (red curve) and the corresponding jhu (black points) MC simulation for the
eight observables. From left to right and top to bottom for each observable: 2µ2e, 4e,
2e2µ and 4µ channels.
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