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Introduction 

Transition metals catalysis represents an important and 

versatile tool for the organic synthesis. Indeed its use is associated 
with several advantages in terms of reaction selectivity, and 

“atom economy”. In the last decade the growing utilization of 

transition metals catalysis has deeply influenced and modified the 

design of heterocyclic synthesis as testified by the wide amount 
of studies on the palladium-catalyzed cross-coupling reaction that 

in 2010 led Prof. Richard F. Heck (University of Delaware, 

USA), Prof. Ei-ichi Negishi (Purdue University, USA) and Prof. 
Akira Suzuki (Hokkaido University, Japan) to achieve the Nobel 

Prize for Chemistry. 

In this context, during my doctorate activity, we investigated the 

construction of heterocyclic rings and the production of 
derivatives of heterocyclic compounds of biological interest 

through palladium, copper and gold catalyzed reactions.  

As part of our studies on the palladium catalysis we developed 
several synthetic strategy for the construction of different classes 

of compounds such us functionalized 2,3-dihydrofurans, 
substituted 2,3-substituted quinolin-4-(1H)-ones, 
dibenzo[a,c]carbazoles, 2-amino ketones and  aryl sulfones. Then, 

the economic attractiveness of copper-based methods and the 

growing interest in copper-catalyzed syntheses stimulated us to 
investigate some copper-catalyzed protocol. In this area we 

studied the oxidation reaction of the 1,2-diarylethanones and the 

cyclization reaction of the N-(2-bromoaryl)enaminones to obtain 
2,4-diarylbenzo[b][1,4]oxazepines. Finally, using gold complexes 

we developed a new sinthetical approach to 2,4-diaryl-2,3-

dihydro-1H-benzo[b][1,4]diazepines. 
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1. Palladium catalysis 

1.1 Palladium catalysts 

Among all the transition metals, palladium is the most useful 

in organic synthesis, because of his versatility in the CC, 

Cheteroatoms bonds forming reaction. 
1
  

Palladium has ten electrons in the valence shell and exists 
mainly in two oxidation states: (0) and (+2), so it tends to form d 

10 and d 8 complexes of relatively low oxidation states. Coupled 

with the ready formation of coordinatively unsaturated species of 

16 or even less electrons providing one or more empty 
coordination sites, Pd can indeed provide simultaneously at least 

one each of empty and filled nonbonding orbitals. Thus it can be 

understood why Pd can readily participate to concerted reactions 
with low activation energies. Some of the selectivity features, 

stereoselectivity is one of these, can be readily attributed this 

characteristic. The most significant consequence of its high 
propensity to run in concerted reactions, is the high affinity for 

nonpolar -compounds, such as alkynes, alkenes and even arenes. 

Furthermore, it can also readily form  bonds with nonbonding 
electron donors, such as amines, imines, nitriles, phosphines, 

phosphites, and various other N, P, S, O containing donors. 

Carbon monoxide and isonitriles are also representative examples 

of C-centered n-electron donors. Thank to this Pd-mediated 
reactions are usually carried up in mild conditions. Palladium is 

relatively unreactive toward many functionalities, such as 

aldehydes, ketones, esters, amides, as well as nitro and ciano 
groups permitting to have often a wide generalization of the 

procedures. 

There are several features which make reactions involving Pd 
catalysts and reagents particularly useful and versatile among 

many transition metals used for organic synthesis. Most 

importantly, Pd catalysts offer an abundance of possibilities of 

carbon-carbon bond formation.  
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A further important aspect of the palladium catalysis is the 

tolerance to many functional groups such as carbonyl and 

hydroxy groups; for this reason Pd-catalyzed reactions can be 

carried out without protection of these functional groups. 
Oxidation state has a considerable influence on the palladium 

complexes reactivity. The Pd(0) complexes of are good 

nucleophiles,  good bases and are easily oxidized. Two of the 
most widely utilized are Pd2(dba)3 and Pd(PPh3)4. In the Pd2(dba)3  

each palladium atom is coordinated by the double bonds of the 

three molecules of dba to form a 16 electrons complex (Figure 1). 

 

Figure 1 

In the Pd(PPh3)4 palladium is coordinated by four molecule of 
triphenylphosfine  and generates a 18 electron complex. 

The Pd(II) salts display different characteristic: they are 

electrophiles species and could react with  electron rich species 
such as arenes and alkenes. These compounds could be used as 

stoichiometric reagents or as catalysts. When used as catalysts, 

they rapresent  Pd(0) forerunners. Alkenes, alkynes, carbon 

monoxide
2

, metal hydrides organometallic compounds 
3

 and 
phosphines 

4
 could be the reducing agent for the Pd(II). Pd(II) 

salts commonly used are  PdCl2, Pd(OAc)2 and the 

PdCl2(CH3CN)2. Palladium activity could be  modulated by using 
phosphines with specific steric and electronic characteristics.  
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Figure 2 

In this regard should remember the alkyl-phosphines and 
arylfosfine with electron-withdrawing groups, such as tris (4-

chlorophenyl) phosphine, alkyl-phosphines and arylfosfine with 

electron-donating groups such as tris (2,4,6-trimethoxyphenyl) 
phosphine, the sulfonated phosphines which allow operate in the 

aqueous phase due to the high hydrophilicity, the bidentate 
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phosphines such as diphenylphosphinopropane, the 

dipheylphosphinobutane or diphenylphosphinoferrocene, which 

are particularly used in the carbonylation reactions (Figure 2). 

1. 2 Main palladium-catalyzed reactions 

In this section, the main features of the palladium-catalyzed 

processes studied during my doctorate activity will be discussed.  

1.2.1 Heck reaction 

More than 40 years ago Mizoroki 
5
 and Heck 

6
 independently 

designed and executed the first Pd-catalyzed coupling reactions of 

aryl and alkenyl halide with alkenes. This process, known 
worldwide as the Heck reaction is  attractive from a synthetic 

point of view because high chemoselectivity and mild conditions 

are associated with low toxicity and low costs of the reagents. 
7
  

Howewer, the real drive to utilize this powerful CC bond 
forming process, began only in the second half of the 1970s when 
several coupling reactions mechanistically related to the Heck 

reaction, as Sonogashira and Suzuki cross-coupling, were 

developed. Application of the Heck reaction range from the 

preparation of a large variety of hydrocarbons, novel polymers, 
and other unsaturated compounds, many of which are useful as 

UV screen, pharmaceuticals, etc. Although the potential of this 

Pd-catalyzed process has not yet been fully explored, it is 
appropriate to say, even at this stage, the carbometallation 

reactions are true “power tools” in contemporary organic 

synthesis. 
The Heck reaction is a process in which the formation of a 

new C-C bond takes place, starting from an aryl/vinyl halide or 

triflate and an alkene, in presence of a base and of a catalytic 

amount of palladium, to give the vinylic substitution product 
(Scheme 1). 
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Scheme 1  

The Pd-catalyzed reaction proceeded smoothly with terminal 

alkenes substituted with electron-withdrawing groups, but 

electronically neutral alkenes or electron-donating alkenes were 
less suitable as substrates. With the latter class of non-electron-

poor alkenes, diarylated products, regioisomers, double bond 

isomers, mixtures of cis- and trans- isomers, products in which a 

heteroatom substituent bonded to the alkene had been eliminated, 
or sometimes even tar were encountered under the traditional 

conditions (Scheme 2 and 3). 

 

 
 

Scheme 2 

 

 
Scheme 3 

 

In scheme 4 is reported the general mechanism of Heck 

reaction. 

The catalytically active species is a 14-electron complex, PdL2, 
8
 it 

is commonly generated in situ either from a Pd(0) complex or by 

reduction of relatively inexpensive Pd(II) acetate or chloride. 
9
 

The first step of mechanism is oxidative addition of RX to the 
Pd(0) complex to generate a σ-alkenyl or σ-aryl-palladium(II) 

complex cis-RPdXL2. Cis-RPdXL2 isomerizes to most stable 
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trans-RPdXL2 can undergo syn-insertion into the CC double 

bond of the in-plane coordinated alkene, to yield to generate η
2
–

organopalladium complex. Then there is a carbopalladation or a 

migratory step which produces new σCPd and σCC bond. 

The elimination of HPdX occur only after an internal rotation 
around the former double bond as it requires a β-hydrogen atom 

to be oriented synplanar with respect to the halopalladium residue 

so Heck reaction results stereoselective. After that alkene product 
and L2Pd(H)X are produced, and the presence of a base is 

necessary in order to transform the L2Pd(H)X into the starting 

L2Pd(0) complex and close the catalytic cycle.  
 

 
Scheme 4 
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The most frequently used catalyst system for Heck-type 

coupling reactions consist of commercially available palladium 

compounds in the presence of various ligands. The first chance is 

often the air-stable and relatively inexpensive palladium acetate; 
however, several of other published variants can be preferable for 

certain applications. It is commonly assumed that the 

palladium(II) species is reduced in situ by the solvent, the alkene, 
the amine or the added ligand.  

Typical bases used in the Heck reaction are tertiary amines (Et3N, 

iPr2NEt, etc.) or acetate or carbonate bases (AcONa, K2CO3, etc.). 
Except for aryl iodides, the presence of ligands is necessary in 

order to effect at a reasonable temperature.  Ligands for Heck 

reaction could be  monodentate 
10

 and bidentate phosphines 
11

 and 

1,10-phenanthroline derivatives. 
12

  
Heck reaction is reported to be a high regioselective reaction 

13
 

using procedures that favour the coordination-insertion process 

via dissociation of the ligand.  
Regarding the solvent, initially, only dipolar aprotic solvents 

such as tertiary amines, acetonitrile, dimethyilformamide, N-

methylpirrolidone, and dimethylsulfoxide, were used. However, 
as originally observed by Heck, the presence of water can 

generate certain coupling reactions.A further achievement was the 

discovery that Heck reactions are greatly accelerated in the 

presence of quaternary ammonium salts (“Jeffery” conditions: 
Pd(OAc)2, K2CO3, n-Bu4NX, DMF). In these conditions 

iodoarenes and iodoalkenes can be coupled to alkenes at room 

temperature. The assistance of tetraalkylammoniun salts in the 
regeneration of the catalytically active Pd(0) species apparently 

plays the major role. 

The nature of the leaving group greatly affects the reaction 

rate: aryl iodides react faster than bromides, and aryl chlorides are 
notoriously unreactive unless special catalysts or ligands and 

elevated temperatures are used to enhance the reaction rate. This 

has been taken to indicate that the oxidative addition of the 
haloarene to Pd(0) is the rate-determining step. This reaction can 

be catalyzed by palladium complexes with or without phosphine 
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ligands (phosphine assisted vs phosphine-free catalysis). A 

primary role of phosphine ligands is to support palladium in its 

zero oxidation state in the form of stable PdL4 or PdL3 species. 

The phosphine-assisted approach is the classical and well-
established method which gives excellent results in a majority of 

cases, but, for economical and chemical reasons, research was 

addressed in seeking for anything else. Phosphine ligands are 
expensive, toxic, and unrecoverable. In large-scale applications 

on industrial and semi-industrial scale, the phosphines might be a 

more serious economical burden than even palladium itself, 
which can be recovered at any stage of production or from 

wastes. The chemical reason is lower reactivity of fully ligated 

complexes of palladium, the main result of which is the need for 

higher loads of catalyst to achieve appropriate rates of reaction 
and therefore further aggravation of procedure cost.  

Both underligated and phosphine-free catalysis are opposite 

to the phosphine-assisted conservative methodology. It relies not 
on the intrinsic stability of properly ligated isolable complexes, 

but rather on making zerovalent palladium species run for life 

within the Heck catalytic cycle or die as inactive black sediments. 
Underligated Pd(0) species (the term underligated means that a 

given palladium complex bears less strongly bonded ligands than 

is required to form a stable complex) are intrinsically unstable to 

survive outside of the cycle but are likely to have higher 
reactivity; therefore, their stationary concentration in a catalytic 

system is much lower. Unlike phosphine-assisted systems which 

are based on thoughtful design and knowledge of intimate details 
of coordination chemistry, phosphine-free systems are not so 

predictable yet. The primary reduction of Pd(II) to Pd(0) is most 

likely accomplished by phosphine in the phosphine assisted 

catalytic cycles. The reduction is assisted by hard nucleophiles, of 
which the most common are hydroxide and alkoxide ions, water, 

and acetate ion, though in special cases even fluoride in the 

presence of water can play the role. 
In phosphine-free systems, the primary reduction of Pd(II) 

can be effected by amines, if these are used as base, or olefin. It is 
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interesting to note that neither Et3N nor olefin have any detectable 

influence on the reduction rate in the presence of phosphine. Still, 

it is well-known that in the absence of phosphine, olefins are 

oxidized by Pd(II) via the first turn of a Waker-type catalytic 
cycle. This process may be a serious yield-decreasing factor in the 

reactions with high initial loads of palladium salts in phosphine-

free systems if the olefin is taken in an equimolar amount with 
respect to the electrophilic substrate (that is the by-default case in 

the intramolecular Heck cyclizations). 

1.2.2 CH activation, direct arylation 

In the past several decades, synthetic chemists started 

changing organic synthetic pathways to avoid unfriendly 
chemicals and developing new, straightforward methods for 

approaching final goals. In this context, transition metal-catalyzed 

CH bond functionalization for the CC bond formation has 
emerged as a promising area in organic synthesis. 

14
 In particular, 

reactions involving Pd-catalyzed activation of sp
2
 or sp

3
 CH 

bonds of arenes or alkenes have been extensively investigated. 
15

 

Successful application of the CH activation strategy on readily 

available substrates have been also reported using various metals 
other than Pd catalyst. 

16
 
17

 

While the coupling of an aryl halide or pseudohalide with an 

organometallic reagent is commonly referred to as a cross-

coupling reaction, several terms such as CH (bond) activation, 

CH (bond) functionalization, cross-dehalogenative coupling, and 
catalytic direct arylation have been used to describe the 
corresponding coupling of an aryl halide or pseudohalide with a 

simple arene. Although the previous two terms are more prevalent 

in the literature, the term direct arylation is now the most used, 

and can be described as the direct coupling of a nonactivated aryl 

CH bond with an activated arene. Although there exist a variety 
of routes for the construction of aryl-aryl bonds, arguably the 

most common method is through the use of transition-

metalmediated reactions. Chemo- and regioselectivities can, in 
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principle, be achieved by tweaking the properties of the metal 

complex through choice of metal and by ligand design. Typically, 

these reactions involve either the coupling of an aryl halide or 

pseudohalide with an organometallic reagent, or the 
homocoupling of two aryl halides or two organometallic reagents.  

 

Scheme 5 

The simplest approach would involve the coupling of two 

aryl CH bonds to give the corresponding biaryl product (Scheme 
5), although this process is unfavorable from a thermodynamic 

perspective due to the high bond strength of an aryl CH bond 
(e.g., the homocoupling of benzene to give biphenyl and 

hydrogen is thermodynamically disfavored by 13.8 kJ/mol). 

Furthermore, while such an approach is alluring, the ubiquitous 

and diverse nature of CH bonds in complex organic compounds 
makes a regioselective oxidative coupling of this type a 

formidable challenge. 

One solution which addresses the thermodynamic issue as 

well as the need for stoichiometric activating agents on both 
coupling partners is to use a preactivated aryl substrate as one 

coupling partner and a simple unactivated aryl substrate as the 

other (Scheme 5). Although the advantages of this strategy for 
aryl-aryl coupling have made it a popular topic of research since 

the first reports over 20 years ago, the more subtle issue of CH 
bond regioselectivity remains unsolved in some systems. 

Although a variety of transition metals have been used for the 

formation of aryl-aryl bonds, second-row transition metals in low 
oxidation states (Rh, Ru, Pd) have emerged as the preferred 

catalysts in catalytic direct arylation reactions. In some cases, the 

high reactivity of the transition-metal complexes employed in 
direct arylation reactions has allowed for the use of extremely low 
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catalyst loadings (as low as 0.1 mol %), making them industrially 

attractive. The ligands used in direct arylation depend on the 

nature of the aryl halide being used. For more reactive aryl 

iodides, moderately electron-rich monodentate phosphines such 
as P(Ph)3 are typically used. These same phosphines have also 

been successfully utilized for aryl bromides, although in some 

systems far superior yields have been obtained using palladium 
and more sterically bulky and electron-rich trialkylphosphine or 

Buchwald’s biphenylphosphines. Recently, the use of aryl 

chlorides in a palladium-catalyzed direct arylation reaction has 
also been reported. However, as in other cross-coupling reactions, 

the low reactivity of the CCl bond to oxidative addition 
necessitated the use of electron-rich and sterically-hindered 

trialkylphosphines, Buchwald’s biphenylphosphines, or  

N-heterocyclic carbene ligands to achieve synthetically useful 
yields of the direct arylation product. It should also be noted that 

ligand-free conditions (Jeffery’s conditions) have also been 

successfully used in palladium-catalyzed direct arylation 

reactions for a variety of aryl halides. While base is generally 
required in direct arylation reactions, in most cases the exact role 

of the base remains unclear. Some recent evidence, however, 

suggests that in some systems the base may be intimately 
involved in the formation of the diarylpalladium(II) species (and 

not simply as a bystander whose role is to regenerate the active 

catalyst). Typically, inorganic bases such as K2CO3, Cs2CO3, 
KOAc, t-BuOK, and CsOPiv are used. In particular, cesium 

carbonate and cesium pivalate have proven to be very effective in 

many cases due to increased solubility in organic solvents. While 

polar, aprotic solvents such as DMF, DMA, MeCN, NMP, and 
DMSO are commonly used, nonpolar solvents such as toluene 

and xylene have also been employed successfully. In addition, 

temperatures >100 °C are typically used, and in most cases 
heating for several hours to days is necessary. 
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 Scheme 6 

Direct arylation reactions can take place in either an 

intermolecular or an intramolecular fashion. While intramolecular 
direct arylation reactions employ tethers to limit the degree of 

freedom in a system, thereby controlling the regioselectivity of 

the reaction, intermolecular direct arylation reactions present a 

more formidable task since the catalyst has a greater degree of 
freedom when reacting at the C-H bond. Two factors that 

influence the regioselectivity of the intermolecular direct 

arylation are the electronics of the arene being functionalized, for 
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example the reaction occurs ortho or para to the electrondonating 

group via an electrophilic aromatic substitution process, and more 

commonly the directing group. Typically, directing group-

assisted reactions employ nitrogen- and oxygen-coordinating 
functional groups to direct the arylation, although in some cases 

external alkenes or alkynes in a cascade process have been used 

to create a “directing” alkyl- or alkenylmetal species in situ. 

Mechanistically, the direct arylation of arenes is proposed to 

occur via oxidative addition of the transition metal into the aryl 

halide, followed by one of a number of possible key C-C bond-
forming steps (Scheme 6):  

 a CH bond oxidative addition  

 a bond metathesis  

 electrophilic aromatic substitution at the metal (SEAr)  

 a Heck-type (or carbometalation) process either through a 

formal anti -hydride elimination or via isomerization 

followed by a syn -hydride elimination  

 a concerted SE
3
 process  

While the exact nature of this step has been investigated for some 
systems, it should be noted that the exact mechanism for any 

given example depends on the substrate, transition metal, solvent, 

base, and ligand used. 
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1.2.3 Sonogashira coupling 

The Sonogashira-Hagihara reaction (more often simply known 

as Sonogashira coupling) is the most popular procedure for the 
alkynylation of aryl or alkenyl halides, originally reported in 

1975. This protocol is based on the the addition of copper salts as 

cocatalysts thus accelerating the coupling reaction and enabling  
performance of the alkynylation at room temperature. 

The copper-cocatalyzed Sonogashira reaction is believe to take 

place through two independent catalytic cycles as shown in 
scheme 7, where a tertiary amine is represented as base, with 

other amines or inorganic bases performing similarly. 
18,

 
19,

 
20

 The 

Pd-cycle is based on fast oxidative addition of R
1
X (R

1
= aryl, 

hetaryl, vinyl; X= I, Br, Cl, OTf) to the catalyst. This is 

classically thought to be 14-electron Pd(0)L2, formed by 
reduction of different Pd(II) complexes using ligands and solvents 

that can reduce Pd(II) species typically via  

-complexation-dehydropalladation-reductive elimination.  

 
Scheme 7 
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In the oxidative addition step, the characteristics of the R
1
X 

substrate are crucial because this step results facilitated if X= I or 

OTf and if the electronic density is reduced on the CX bond by 
the presence of electron-withdrawing groups. The next step in the 

Pd-cycle would connect with the cycle of the copper cocatalyst. 

Thus, a usually rate-determining transmetalation from the copper 

acetylide formed in the Cucycle would generate a R
1
Pd-(CCR

2
)L2 

species, which gives the final coupled alkyne after trans/cis 

isomerisation and reductive elimination with regeneration of the 

catalyst. The second Cu-cycle is still poorly understood. The base 
(generally an amine) is supposed to abstract the acetylenic proton 

of the terminal alkyne, thus forming a copper acetylide in the 

presence of the copper(I) salt. It should be pointed out that the 
generally employed amines are usually not basic enough to 

deprotonate the alkyne in order to generate the anionic 

nucleophile that should form the copper acetylide. Therefore, a -
alkyne-Cu complex could be involved in the cycle, thus making 

the alkyne proton more acidic for easier abstraction.  

The copper acetylides could also be involved in the formation of 

the initial Pd(0)L2 catalytic species by reaction with the starting 

Pd(II) complexes, thus forming Pd-(CCR
2
)2L2, which after 

reductive elimination would afford active Pd(0)L2 and some 
amounts of a diacetylene byproduct. 

The two catalysts tipically used in this reaction are 

PdCl2(PPh3)2 and CuI. In this case, the oxidation of 
triphenylphosphine to triphenylphosphine oxide leads to the 

formation of Pd(0) in situ. In contrast, CuI reacts with the 

terminal alkyne and produces a copper(I) acetylide, which acts as 
an activated species for the coupling reactions. 

The reaction medium have to be basic to neutralize the 

hydrogen halide produced as the byproduct of this coupling 

reaction, so alkylamine compounds such as triethylamine and 
diethylamine are sometimes used as solvents, but also DMF, THF 

or ether can be used as solvent. In addition, deoxygenated 

conditions are formally needed for Sonogashira coupling 
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reactions because the palladium(0) complexes are unstable in the 

air, and oxygen promotes the formation of homocoupled 

acetylenes. Recently, development of air-stable organopalladium 

catalysts enable this reaction to be conducted in the ambient 
atmosphere. 

As in the other Pd-catalyzed cross-coupling reactions, the 

reactivity order of the organic electrophiles, with respect to 
leaving groups, is on the same trends as mentioned in Heck 

preface: 

 I ≥ OTf ≥ Br > Cl. For the substituents the reactivity order is:  
EWG > H > EDG.  
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1.3 New palladium-catalyzed synthetic strategies 

In this section the main features of our synthetic approaches 

to different classes of compounds will be discussed. 

1.3.1 Functionalized 2,3-dihydrofurans via 

palladium-catalyzed oxyarylations of -allyl--

ketoesters 21 
 

The 2,3 dihydrofuran motif is displayed in a large number of 
bioactive natural products as well as pharmaceutically important 

unnatural compounds such us neo-clerodane diterpenoids 
22

 and 

aflatoxin B1. 
23

 In addition, 2,3 dihydrofuran derivatives are 

useful synthetic intermediates. 
24

 Some of the most convenient 
approaches to the construction of the 2,3-dihydrofuran system are 

based on the reaction of active methylene compounds 
25

 or ylides 

with suitable electophiles. 
26

 Palladium catalyzed approaches are 
also known. 

27
 Despite the number of methods developed, the 

search of more general and versatile synthetic approaches to this 

class of compounds continues to be an active area of research.  
Recently, we have developed a synthesis of hexahydro-3H-

pyrrolizin-3-ones through Pd-catalyzed carboamination.
28

 

Subsequently, Wolfe at al. have reported the same reactivity 

between aryl bromide and 4-(but-3-enyl)-substituted-oxazolidin-
2-ones to give trans-2,5 disubstituted pirrolidines. 

29
 On the basis 

of our studies, we have investigated the palladium catalyzed 

oxyarylation of -allyl--ketoesters to obtain a catalytic route for 
the synthesis of substituted 2,3-dihydrofurans as shown in scheme 

8. 

Scheme 8: Work hypothesis 
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Using the reaction of 3-bromanisole 7 with ethyl 2-

acetylpent-4-enoate 8 as probe for evaluating the reaction 

condition, we starting our study by examining the influence of 

ligands, bases, and solvents in the presence of Pd2(dba)3 at 100°C 
in 0.08 M solutions. Low to moderate yields of 9 were obtained 

using XantPhos 
30

 and Cs2CO3 in 1,4-dioxane by increasing 

loading of catalyst from 0.01 to 0.025 equiv. (Table 1, entry 1-7). 
With dppf or dppb ligands no evidence of 9 was obtained and the 

Mizoroki-Heck derivative 10 was isolated as the main product 

(Table 1, entry 8-10).  
Pleasingly, an increase of both the yield and the 

oxypalladation/ Mizoroki-Heck reaction selectivity were observed 

by switching to RuPhos (Table 1, entry 13). Higher yields and 

selectivity were observed using MeCN as solvent (Table 1, entry 
14). Further optimization studies revealed that the best results 

could be obtained by using 0.025 equiv Pd2(dba)3, 0.05 equiv  

RuPhos, and 1.2 equiv Cs2CO3, in a more concentred 0.25 M 
MeCN solution at 100°C. Under these conditions 9 was isolated 

in 79 % yield in 2.5 h and no  
Mizoroki-Heck product was observed (Table 1, entry 17). 
Under the optimized conditions, we have obtained a variety of 

polyfunctionalized-2,3-dihydrofurans from electron-poor aryl 

halides. 

However, using electron-rich aryl halides produced the desired 
dihydrofurans in low yield. In these cases, raising the ligand to 

palladium ratio from 1:1 to 2:1, led to the isolation of the 

corresponding dihydrofurans in good yield. Consequently, we 
decided to employ 0.05 equiv RuPhos with neutral or electron-

poor aryl halides and 0.1 equiv RuPhos with electron-rich aryl 

halides. 
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Table 1 Catalysts, Solvents, Bases in the reaction of 3-bromoanisole with 

ethyl 2-acetylpent-4-enoate 

 

 

Entry 

Ligand or 

catalyst 

(equiv) 

Solvent(ml) Base 
Time 

(h) 

Yield 

9 (%) 

Yield 

10 (%) 

1 Xantphos 
0.02 

1,4-dioxane Cs2CO3 5 20a - 

2 Xantphos 
0.03 

1,4-dioxane Cs2CO3 5.5 27a - 

3 Xantphos 
0.03 

1,4-dioxane Cs2CO3 3.5 25b,c - 

4 Xantphos 

0.03 

1,4-dioxane Cs2CO3 5.5 27b,d - 

5 Xantphos 
0.03 

1,4-dioxane Cs2CO3 8 24b - 

6 Xantphos 
0.05 

1,4-dioxane Cs2CO3 3 31e - 

7 Xantphos 
0.05 

1,4-dioxane Cs2CO3 3 23e,f - 

8 Dppf 1,4-dioxane Cs2CO3 2.5 -e 60 

9 dppb 1,4-dioxane Cs2CO3 6 -e 65 

10 Pd(PPh3)4 1,4-dioxane Cs2CO3 3 - 30 

11 Sphos 0.05 1,4-dioxane Cs2CO3 22 52e 28 

12 Sphos 1,4-dioxane K3PO4 24 32e 28 

13 Ruphos 0.05 1,4-dioxane Cs2CO3 2.5 65 e 13 

14 Ruphos 0.05 MeCN Cs2CO3 2.5 74 e - 

15 Ruphos 0.05 Toluene Cs2CO3 1 44 e 25 

16 Ruphos 0.05 DMF Cs2CO3 1.5 55 e - 

17 Ruphos 0.05 MeCN Cs2CO3 2.5 79 c,e - 

18 Ruphos 0.05 MeCN K3PO4 1 60 c,e 8 

19 Ruphos 0.05 MeCN K2CO3 2 55 c,e - 

20 Ruphos 0.05 MeCN NaHCO3 9 Tracesc,e - 

Reactions are carried out on a 0.05 mmol scale at 100°C in a 0.08 M solution 
under a nitrogen atmosphere using 1 equiv. of 7, 1.2 equiv of 8, 1.2 equiv of 
base and 0.01 equiv of Pd2(dba)3. 

b 0.015 equiv of Pd2(dba)3. 
c 0.25 M. d 0.05 M. 

e 0.025 equiv of Pd2(dba)3. 
f 1 equiv of 7 and 2 equiv. of  8. 
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A possible explanation of these results could arise from the 

catalyst precipitation, most probably due to the slow rate of the 

oxidative addition usually observed with electron-rich aryl 

halides. An increased amount of ligand should allow for a better 
solubilization of the catalyst. Using these conditions we next 

explored the scope and generality of the process. In general, clean 

formation of 2,3 dihydrofurans was observed with a variety of 
neutral, electron-rich and electron-poor aryl bromides. The 

reaction tolerates several useful substituents including chloro, 

fluoro, ether, ketone, ester, cyano, and nitro groups. The ability to 
incorporate chloro  substituent  is particulary interesting since it 

can be used for further synthetic manipulations via transition 

metals catalyzed coupling reactions. Ortho substituents such as o- 

methyl and o-cyano groups are also well tolerated.  
The method can be extended to aryl nonaflates and chlorides, 

although electron –poor aryl chlorides afford oxyarylation 

products in excellent yields whereas electron-rich aryl chlorides 
are less successful substrates. 

Heterocyclic halides were briefly investigated and were found 

to give the corresponding 2,3-dihydrofurans in moderate to high 

yields. The influence of the substituent diversity of the -allyl--

ketoesters was also explored. We found that the oxyarylation 
reaction appear to be disfavored by substituents decreasing the 

nucleophilicity of the enolate of the -ketoester both with 
electron-rich and electron poor aryl halydes.  

Our preparative results are summarized in the table 2. 
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Table 2: Synthesis of functionalized 2,3-dihydrofurans from -allyl--

ketoesters 

Entry Aryl halide R Time (h) Yield 

5(%) 1 3-MeOC6H4Br Me- 2.5 79 

2 4-MeOC6H4Br Me- 4.5 64 

3 3-CF3C6H4Br Me- 2.5 92 

4 3-MeC6H4Br Me- 5 79 

5 4-MeC6H4Br Me- 4.5 73 

6 4-CNC6H4Br Me- 1.5 86 

7 4-MeCOC6H4Br Me- 1 91 

8 2-CNC6H4Br Me- 2.5 92 

9 3-NO2C6H4Br Me- 4.5 81 

10 3-bromoquinoline Me- 5 75 

11 4-FC6H4Br Me- 2.5 70 

12 4-MeOC6H4Br Me- 7 44 

13 3-MeC6H4Br Me- 7 65 

14 4-MeC6H4Br Me- 24 54 

15 4-MeOC6H4Cl Me- 24 44 

16 3-CF3C6H4Cl Me- 5.5 94 

17 4-(Me)2C6H4Br Me- 5 33 

18 2-bromopyridine Me- 5.5 51 

19 3-chloropyridine Me- 24 37 

20 4-CNC6H4Br Furyl- 0.66 84 

21 4-MeC6H4Br Furyl- 2,5 74 

22 4-CNC6H4Br i-Pr 0.75 90 

23 4-MeC6H4Br i-Pr 2.5 83 

24 4-CNC6H4Br Ph- 2.5 84 

25 4-MeC6H4Br Ph- 17 31 

Reactions were carried out on a 0.5 mmol scale, at 100°C in a 0.25 M solution of 
anhydrous acetonitrile, under a nitrogen atmosphere using 1 equiv of aryl halide, 
1.2 equiv of 1, 1.2 equiv of Cs2CO3, 0.025 equiv of Pd2dba3 0.05 equiv of 
Ruphos. Reactions 2, 4, 5, 17, 21 with 0.1 equiv of Ruphos. Reaction 24 with 
0.1 equiv of Ruphos at  100°C 
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Most probably the reaction proceeds according to a 

mechanism analogous to that described for related palladium-

catalyzed reaction 
31

 (Scheme 9).  

Palladium(0) reacts with the aryl halide through an oxidative 

addition to give the -complex 11 that could undergo an oxygen 
displacement with the in situ generated enolate to afford the 

adduct 12. A subsequent intramolecular oxypalladation would 

provide the intermediate 13 from which the 2,3 dihydrofuran 
derivative 14 would form via reductive elimination . 

 

 Scheme 9 Proposed reaction mechanism 

 

In summary, we have shown that palladium catalysis provides 

an efficient tool for the construction of polifunctionalized 

dihydrofurans from -allyl--ketoesters and aryl halides. The 
reaction tolerates a variety of neutral, electron-rich and electron-

poor aryl bromides. Ortho substituents are also tolerated. Similar 

yields are obtained employing aryl chlorides. Main advantages of 

our procedure include simplicity of operation and use of readily 
available, inexpensive and harmless starting materials. 
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1.3.2 Palladium-catalyzed synthesis of 2-amino 

ketones from propargylic carbonates and secondary 

amines 32 

2-Amino-ketones are subunits of a variety of pharmaceutical 

and natural products with biological activities. Particularly they 

are substructure of mersingines A and B 
33

 and of a small family 
of linear peptides including the antitumor agent eponemycin.

34
 

Furthermore 2-amino-ketones are useful synthetic intermediates.
35

 

Despite their importance, direct synthesis of this class of 
compounds is rather limited. Current general synthetic 

approaches are based on the -amination of ketones
 36

 and 
enolsilanes, 

37
 on the osmium-catalyzed ketamination of alkenes, 

38
 on the conversion of the carboxylic group of amino acids into a 

ketonic group 
39

 and on the formation of carbon-carbon bonds 
between carbonyl and amino-containing fragments. 

40
 Palladium 

catalysis has been rarely applied in this area. To the best of our 

knowledge, it has been used only in the preparation of 2-amino 

ketones from a -sulfonamidoorganostannanes and benzoyl 
chlorides. 

41
 

We have developed a new palladium–catalyzed route to 2-

amino-ketones from readily available propargylic carbonates and 

secondary amines that involves a formal anti-Markovnikov 

addition of water to the carbon-carbon triple bond and the 

substitution of the C propargylicN bond for the C propargylicO bond 
(Scheme 10). 

 

Scheme 10 Palladium-catalyzed synthesis of 2-amino ketones from 
propargylic carbonates and secondary amines 

On the basis of our previous study showing that 2-

aminomethyl indoles could be prepared from 3-(o-

trifluoroacetamidophenyl)-1-propargylic carbonates and amines 
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through a process involving sequential 

intramolecular/intermolecular CN bond forming steps, we 
hypothesized that a similar reaction, omitting the 

trifluoroacetamido group bound to the aromatic ring, might 

provide access to 2-amino-ketones via sequential intermolecular 

CN bond forming steps, leading to enamine intermediates 15 

and hydrolysis (Scheme 11). 

 Scheme 11 Work hypothesis 

We set out to use the reaction of 1 equiv of 16 with 3 equiv of 

morpholine as model system to evaluating the feasibility of 
reaction.  

 
 

Scheme 12 Reaction of 16 with morpholine in the presence of Pd(PPh3)4 

and Pd2(dba)3/dppf. 
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First attemps met with failure: under the same conditions 

employed for the 2-aminomethyl indoles synthesis the ether 17 

was formed in almost quantitative yield (Scheme 12 a).  

The reaction produced instead the ketocarbamate 18 in 76 % 
using the Pd2(dba)3/dppf combination in THF at 80°C (Scheme 12 

b). Using MeCN as solvent gave 18 in a slightly lower yield 

whereas only degradation products were formed in toluene and 
DMSO. For this reaction we proposed the following mechanism 

(Scheme 13). Palladium reacts with the phenylpropargylic 

carbonate 19 to give the  allenyl-palladium complex 20 which 
would be in equilibrium with the propargylic palladium 

intermediate 21. The nucleophilic attach of the morpholine at the 
central carbon of the complex followed by a protonatium step, 

give the allylic palladium complex 22. This complex is attached 

by another molecule of morpholine to give the carbamate 
palladium complex 23. Alternatively, morpholine can displace the 

ethoxy group of 20/21 to give 20’/21’ that is converted in the 

carbamate complex 23 via nucleophilic attack of another 

molecule of morpholine at the central cabon of the 
allenylic/propargylic palladium complex and protonation. 

Subsequently, the intramolecular nucleophilic attack of the 

carbamate oxygen at one of the allylic carbons of 23 and the 
hydrolysis of the resultant enamine intermediate 24 generates the 

ketocabamate 25. Experimental evidence for the intermediacy of 

24 was obtained by NMR analysis of the crude reaction mixture 
before work up. Steric effects due to the substituents of 22 or 23 

might occur for the preferential intramolecular nucleophilic attack 

of the less hindered carbamate fragment to one of the allylic 

termini with respect to the intermolecular nucleophilic attack of 
the more sterically demanding morpholine. Therefore we decided 

to investigated the reactivity of the unsubstituted propargylic 

carbonate 26. Pleasingly its reaction with morpholine in the 
presence of Pd2(dba)3/dppf in THF at 80 °C afforded the desired 

2-aminoketones in 76% isolated yield after 3 h. 
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Scheme 13 Proposed  mechanism for the formation of the carbamate derivative 

25 

Using these conditions we next explore the scope and the 

generality of the process; as shown in table 3 clean formation of 
2-amino–ketones was observed with a variety of propargilyc 

carbonates bearing neutral, electron-rich and electron poor 
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aromatic rings and cyclic secondary amines containing useful 

functional groups.  

Table 3 Palladium catalyzed synthesis of 2-amino-ketones from propargylic 
carbonates and secondary amines 

 
 

Reaction were carried out on a 0.35 mmol scale at 80°C in anhydrous THF 

(2mL), under a nitrogen atmosphere, using 1 equiv. of propargylic carbonates, 3 
equiv. of amine, 0.025 equiv. of Pd2(dba)3 and 0.05 equiv. of dppf. 

For the synthesis of the 2-aminoketones 28 we proposed the 
mechanism depicted in the following Scheme 13. 

Entry Ar Amine 27 t 

(h) 

Yield 28 

(%) 

1 Ph Morpholine 3 76 

2 Ph Piperidine 1.5 46 

3 Ph 1-Ethylpiperazine 2 75 

4 Ph 1-(4-fluorophenyl)piperazine 1 60 

5 Ph 1-(4-bromobenzyl)piperazine 2 74 

6 Ph 2-(piperazin-1-yl)benzonitrile 18 49 

7 Ph 1-(4-methoxybenzyl)piperazine 55 92 

8 Ph Piperazine 0.5 57 

9 4-MeOC6H4 Morpholine 4.5 57 

10 4-MeOC6H4 1-(4-methylbenzyl)piperazine 2 66 

11 4-MeOC6H4 1-(4-chlorolbenzyl)piperazine 4 73 

12 4-MeCOC6H4 Morpholine 7 58 

13 4-EtO2CC6H4 Morpholine 3 88 

14 4-EtO2CC6H4 1-Ethylpiperazine 1 84 

15 4-EtO2CC6H4 1-(3,4-trichlorolbenzyl)piperazine 1.5 92 

16 3-MeC6H4 Morpholine 1.5 65 
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After the initial reaction of Pd(0) with the aryl-propargylic 

carbonate 26 occurs an intamolecular nucleophilic attack of the 

nitrogen at the less substituted terminus of the -allylic palladium 
complex 29 (Scheme 14 a). The resultant enamine 31 generate the 

desired 2-aminoketone 28 after hydrolysis. 
 

 
Scheme 14 Proposed reaction mechanism for the formation of 2-aminoketone 28 

Alternatively, (Scheme 14 b) morpholine can displace the 

ethoxy group of 29 to give the carmamate palladium complex 30 

that is converted in the enamine 31 after an intramolecular 
nucleophilic attack of the nitrogen at the less substituted allylic 

carbon. 
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In summary, we have developed a novel palladium-catalyzed 

approach to 2-amino ketones from arylpropargyl carbonates 

bearing neutral, electron-rich, and electron-poor aromatic rings 

and cyclic secondary amines containing useful functional groups 
such as cyno, chloro and bromo substituents. Our procedure is 

simple, uses readily available starting materials and may 
represent a useful tool for the synthesis of this class of 

compounds.  

1.3.3 Dibenzo[a,c]carbazoles from N-(2-bromoaryl)-

3-arylindoles via a palladium-catalyzed 

intramolecular CH funtionalization/CC bond 

formation process 42 

The palladium catalyzed reaction of 

alkynyltrifluoroacetanilides with organopalladium intermediates 
generated in situ from Pd (0) species and aryl and vinylic halides 

or triflates, alkyl halides, alkynyl halides and allylic esters has 

been proved to be a powerful and versatile tool for the 

construction of the substituted indole ring (Scheme 15). 
43

 

 

Scheme 15 Palladium catalyzed synthesis of indoles from 
trifluoroacetanilides 

As part of our ongoing study, we hypothesized that in 
presence of appropriate functional groups this indole synthesis 

might be exploited to provide a new ready access to condensed 

carbazoles (Scheme 16). 
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Scheme 16 Work hypothesis 

The stimulus for this study has been provided by the growing 

importance of condensed (hetero)aromatic rings in organic 

material science 
44

 and by their biological avtivities. 
45

 In 

addition, combining our indole synthesis with a cyclization based 

on a CH functionalization/CC bond formation reaction 
appeared particularly attractive for us. Indeed, direct transition 

metal-catalyzed functionalization of (hetero)arenes via the 

activation of inert CH bonds has attracted a great deal of 
attention in recent years.

46
 

Initial attempts to cyclize [2-(2-
Bromoaryl)ethynyl]trifluoroacetanilides 32 to the corresponding 

carbazole derivatives 35 were carried out using Pd(OAc)2 as the 

source of Pd (0) species. We tested various ligands, bases, 
solvents and reaction temperature but formation of only traces of 

the desired carbazole was observed in several cases along with 

the N-arylation byproduct 36 (Figure 3). 
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Figure 3 N-arylation byproduct  

To avoid the formation of N-arylation byproducts we decided 

to protect the indole NH group; several protecting groups was 

explored but best results were obtained with 2-
(trimethylsilyl)ethoxymethyl chloride (SEM-Cl). The SEM 

derivative was isolated in 95% yield upon treatment of 34 with 

SEM-Cl in the presence of NaH in DMF at room temperature for 
1h. With an efficient procedure for the preparation of the starting 

indole in the hands, the cyclization of 37 into the corresponding 

carbazole was next investigated. 

As shown in table 4, the best result both in term of yield and 
reaction time was observed using P(Ph)3 and Cs(OAc) in DMF at 

120°C (Table 4, entry 6). The protecting group could be readily 

removed by treating the N-SEM carbazole with a THF solution of 
n-Bu4NF at 60°C. Furthermore the cyclization/deprotection 

sequence could be performed omitting the isolation of the 

intermediate protected carbazole, by adding the reagents required 

for the deprotection step to a crude mixture following the 
cyclization of 37 had been concentred under reduced pressure. 

Under these conditions the corresponding free NH carbazole was 

isolated in 70% overall yield. 
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Table 4 Cyclization of the SEM derivative 37 

 

Entry Ligand 
(equiv) 

e 

equiv. 

Base Time 
(h) 

Temperature  

(°C) 
Yield 38 

(%) 

1 Dppe (0.05) K2CO3 7 100 25a 

2 Dppe (0.01) K2CO3 8 120 23b 

3 Dppe (0.02) K2CO3 23 120 37c 

4 Dppe (0.01) CsOAc 7 120 40d 

5 Dppe (0.02) CsOAc 1.5 120 89 

6 P(Ph)3 (0.02) CsOAc 0.5 120 97 

Reaction were carried out under a nitrogen atmosphere on a 0.25 mmol scale in 

5 mL of DMF using 0.05 equiv. of Pd(OAc)2, a phosphine ligand, and 2 eqiuv. 
of base. 
a The starting material was recovered in 74% of yield; b the starting material was 
recovered in 49% of yield; c the starting material was recovered in 37% of yield; 
d the starting material was recovered in 25% of yield. 

This protocol was then used when the process was extended 

to include other N-SEM indoles. Our preparative results are 

summarized in table 5. Several carbazole derivatives bearing a 
variety of functional groups have been prepared in good to 

excellent yield. With indoles bearing meta substituent on the aryl 

ring at the C 3 position, two regioisomeric carbazole derivatives 
can form and the nature of the substituents was found to play an 

important role in controlling the composition of the reaction 

mixture. In the presence of m-Me or m-OMe groups almost 

equimolecular amounts of the two regioisomers are formed (table 
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5, entries 13 and 14). With the more steric demanding m-CF3 

group the new CC bond is formed regioselectively at the less 
crowded ortho position (Table 5, entry 3). With indoles 

derivatives bearing a metha cyano substituent the new CC bond 
is formed preferentially at the more crowded ortho position 

(Table 5, entry 3). Such a behavior may be accounted for by the 

coordination of the cyano group to the palladium atom of the aryl-
palladium complex formed in situ via oxidative addition. The 

resultant intermediate would exert a directing effect on the 

cyclization step.  
As to the mechanism of the cyclization step, an 

intermolecular competition experiment using the compound 41 

(Figure 4) and the corresponding indole containing a deuterium 
labeled 3-phenyl substituent 42 suggest that a hydrogen-

abstraction step is not involved in the rate limiting step. No 

isotope effects was observed when this two compounds were 

subjected to cyclization conditions supporting the view that the 
reaction proceeds through an electrophilic aromatic substitution 

involving the intermediate 43. 
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Table 5 Cyclization of the SEM derivatives 

 

Entry R
3 R

4 R
5 Time 

(h) 

 Yield 40 

(%) 

1 H H 4-OMe 0.5  70 

2 H H 4-CN 7  92 

3 H H 3-CF3 24  60 

4 H H 2-Me 0.5  84 

5 H H 4-MeCO 5  65 

6 H H 4-EtOCO 24  65 

7 H H 4-NO2 5  73 

8 H H 4-Cl 24  80 

9 H H H 9  62 

10 5-CN H H 1  75 

11 H 4-Me 4-MeO 9  61 

12 H 4-Me 4-MeCO 1  77 

13 H H 3-Me 24  95a 

14 H H 3-MeO 24  60b 

15 H H 3-CN 24  55c 

Reactions were carried out under a nitrogen atmosphere on a 0.25 mmol scale in 
5mL of DMF at 120 °C using 0.05 equiv of Pd(OAc)2, 0.2 equiv of P(Ph)3 and 2 
equiv of CsOAc. a Yield refers to a mixture of two regioisomers which ratio is 
50:50; b yield refers to a mixture of two regioisomers which ratio is 45 : 55; c 
yield refers to a mixture of two regioisomers which ratio is 75 : 25. 
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Figure 4 Mechanicistic hypothesis 

To summarize, this work describes a general protocol for the 
synthesis of dibenzo[a,c]carbazoles from 2-(2-bromoaryl)-3-

arylindoles, readily available from 2-[(2-

bromoaryl)ethynyl]trifluoroacetonilidies. The reaction tolerates a 
variety of useful substituents including chloro, nitro ether , cyano, 

keto, and ester groups. and proceeds through an intramolecular 

palladium-catalyzed CH fuctionalization/CC bond formation 
process that most probably involves an electrophilic aromatic 

substitution.  
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1.3.4 Palladium-catalyzed aromatic sulfonylation: a 

new catalytic domino process exploiting in situ 

generated sulfinate anions 47 

Aromatic sulfones are compounds of considerable interest 

embedding a number of positive features such as stability, 

crystallinity, chromophoric activity, 
48

 as well as antibactarical 
anti fungal and antitumor activities.

49 
As reported under palladium 

catalysis, allyl sulfoxides can generate sulfonenate anions which 

can in turn be easily cross-coupled to afford aryl sulfoxides. 
50, 51

 
On the basis of these our previous study we hypothesized the 

extension of palladium catalyzed allyl-to-aryl conversion domino 

process from sulfoxides to solfones according to the scheme 17. 

 

 

 
Scheme 17 Work hypothesis 

As shown, the desired sulfinate anion is generated via 
oxidative addition of an allylic sulfone onto a palladium complex. 

Subsequent nucleophilic interception of the thus formed 

η
3
allylpalladium complex is then expected to trigger the 

sulfinate anion release, which may in turn be further reacted in a 

palladium-catalyzed arylation reaction. 
We selected ad model system for our preliminary studies the 

palladium–catalyzed sulfonylation reaction of the allyl p-tolyl 

sulfone and 4-iodoanisole. Some of our results are summarized in 
table 6. 
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Table 6 Optimization studies of the palladium-catalyzed aromatic sulfonylation 

 

Entry Additive Temperature 

(°C) 
Yield 44 

(%) 

1 - 80 - 

2 n-Bu4NCl 80 - 

3 n-Bu4NBr 80 65 

4 n-Bu4NHSO4 80 15 

5 n-Bu4NBr reflux 88 

Reactions were carried out using 1.2 equiv. of 4-iodoanisole, 1 equiv. of  allyl 
p-tolyl sulfone, 0.02 mol % of Pd2dba3, 0.05 mol % of XantPhos, 2 equiv. of  
KOt-Bu and 2.0 equiv. of additive (if used). 

 

As shown, best results was obtained using 2eq of n-Bu4NBr 
in presence of 0.02 mol % of Pd2dba3, 0.05 mol % of Xantphos 

and 2 equiv. of KOt-Bu in toluene (Table 6, entry 5). 

 With the optimized conditions in the hands we investigate 
the reaction of the p-tolylsulfone with a variety of substituted aryl 

halides. Results of these studies are summarized in the next table 

7. 
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Table 7 Palladium-catalyzed aromatic sulfonylation of different aryl halides 

 

Reactions were carried out in toluene at reflux for 16h 

According to these results aryl-iodide and aryl-bromide could 

be successfully used as partners but aryl-chloride did not allow 

the desired coupling to take place (see entry 7). 
The reaction was next studied using different substituted allyl 

sulfones as the sulfinate anion source and various aryl iodides 

(Table 8). Starting from allyl p-tolyl sulfone, the reaction with m-
iodoanisole afforded sulfone in 55% yield (Table 8, entry 2) to 

compare with 88% yield previously obtainedwith p-iodoanosole 

(Table 8, entry 1). Under the same conditions o-iodoanisole did 

not allow the generation of the expected sulfone (Table 8, entry 
4). This suggest that the present coupling is very sensitive to 

steric hindrance in the vicinity of the aryl halide reacting center. 

 
 

 

  

Entry X R Yield 45 
(%) 

1 I -OMe 88 

2 I -Me 66 

3 I -CF3 16 

4 I -NO2 - 

5 Br -OMe 48 

6 Br -Me 52 

7 Cl -OMe - 
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Table 8 Palladium-catalyzed aromatic sulfonylation of different allyl sulfones 

with aryl iodides 

 

Reactions were carried out in toluene at reflux for 16h 

A mechanistic proposal for the palladium-catalyzed sulfinate 

generation-arylation pseudo-domino 
52

 catalytic sequence is 
described in the following scheme 18. First, oxidative addition of 

the allylic sulfone to Pd(0) is expected to afford the 

corresponding η
3
-allylpalladium(II) complex. Interception of the 

allyl moiety of the palladium complex by potassium tert-butoxide 

liberates the sulfinate  anion as well as Pd(0), which are both set 

to enter the second catalytic cycle. 

Halide-to-sulfinate ligand exchange on the s-
arylpalladium(II) complex in turn to generated from the oxidative 

addition of the aryl iodide to Pd(0) gives, after reductive 

elimination, the corresponding aromatic sulfone.  

Entry R
1
 R

2
 Yield 46  

(%) 

1 4-MeC6H4 4-MeO 88 

2 4-MeC6H4 3-MeO 55 

3 4-MeC6H4 2-MeO - 

4 4-MeOC6H4 4-Me 40 

5 4-MeOC6H4 4-MeO 37 

6 4-O2NC6H4 4-Me 21 

7 4-O2NC6H4 4-MeO - 

8 2-naphthyl 4-Me 60 

9 2-naphthyl 4-MeO 61 

10 Bn 4-MeO - 
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Inspection of this mechanism reveals that such a pseudo-

domino process can only be successful if the oxidative addition of 

the allyl sulfone to the Pd(0) complex is faster than the associated 

to the aryl halide.  
The second catalytic cycle (sulfinate arylation), would 

probably stall at the irreversibly generated -arylpalladium(II) 
complex stage and no spare Pd(0) complex would be available to 

feed the first catalytic cycle (sulfinate generation). Such analysis 
is in accord with the fact yhat the electron-poor aryl halides, 

which are associated to a fast ossidative addition, did not afford 

satisfactory results (Table 7, entries 3 and 4). 

 

Scheme 18 Proposed reaction mechanism 

In conclusion, we have reported a pseudo-domino sequence 

involving the palladium-catalyzed generation of sulfinate anions 
followed by their arylation to afford aromatic sulfones. Study to 

elucidate the details of the reaction mechanism are presently 

under investigations. 
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1.3.5 2,3-substituted 4-(1H)-quinolones via 

intramolecular palladium-catalyzed carbonylative 

cross-coupling of N-(2-iodoaryl)enaminones 

Palladium-catalyzed cross-coupling reactions have made an 

enormous impact on organic synthesis over the past few decades. 

Moreover the synthetic potential of these reactions has been 
considerably expanded be the development of carbonylative 

cross-coupling reactions in which carbon monoxide is inserted 

between the two coupling partners.
53

 
As part of our studies on the chemistry of N-(2-

iodoaryl)enaminones, we have recently hypothesized that a 

carbonylation reaction could give access to 2,3-substituted 4-

(1H)-quinolones according to the scheme 19. 

 

Scheme 19 Work hypothesis 

The stimulus for this study has been provided by the great 
pharmaceutical importance of the 4-(1-H)quinolone derivatives: 

they are found in many naturally occurring alkaloids 
54

  which 

exhibit broad biological activities. For example 4-(1-H)quinolone 
derivatives might posses potential as antimalarial agents 

55
 as 

anti- tuberculosis drug, 
56

 
57

 and as antitumor agents. 
58

 

We set out to investigate the potential of the Pd-catalyzed 
carbonylative cross-coupling in the synthesis of 2,3-substituted 

quinolin-4-(1H)-ones using the reaction of the N-(2-

iodoaryl)enaminones 47 in presence of palladium catalyst under 

an atmosphere of CO. To our delight, the quinolone derivative 48 
was obtained in 54% yield using 0.05 equiv Pd(PPh3)4, 2 equiv 
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Cs2CO3 , at 100°C and 20 bar of carbon monoxide in 5 mL of 

MeCN (Table 9, entry 2). Nevertheless we decided to optimize 

this model reaction in term of catalyst, pressure and solvent. Our 

optimization studies are summarized in table 9. 

Table 9 Optimization of the reaction conditions 

 

Entry Catalyst CO 

pressure 
(bar) 

Solvent Time 

(h) 

47 

(%) 

Yield 

48 

(%) 

1 Pd(PPh3)4 10 MeCN 72 98 - 

2 Pd(PPh3)4 20 MeCN 38.5 - 53 

3 Pd2dba3/Xphos 20 MeCN 72 - 68 

4 Pd2dba3/Xphos 30 MeCN 48 4 44 

5 Pd2dba3/Sphos 20 MeCN 48 - 56 

6 Pd2dba3/Sphos 20 MeCN 72 - 64 

7 Pd2dba3/Xantphos 20 MeCN 48 - 59 

8 Pd2dba3/dppf 20 MeCN 72 35 36a 

9 Pd2dba3/Xphos 20 THF 68 50 41 

10 Pd2dba3/Xphos 20 DMF 24 - 54b 

11 Pd2dba3/Xphos 20 MeCN 72 33 42c 

Reaction were carried on a 0.2 mmol scale by using 0.05 equiv of Pd, 0.05 
equiv of ligand, 2 equiv of Cs2CO3 in 5 mL of solvent at 100°C.a We observed 
the formation of 2-(phenanthridin-6-(5-H)-ylidene)-1-phenylethanone in 9% 
yield.b We isolated the corresponding indole in 14 % yield.c Reaction was 
carried out by using K2CO3 as base. 
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As shown with Pd(PPh3)4, at lower CO pressure (10 bar), the 

formation of the 4-(1-H)quinolone nucleus is not observed and we 

recovered almost quantitatively the stating material (Table 9, 

entry 1). Best results was obtained using Pd2(dba)3 and 
Buchwald’s ligands: the desired cyclic compound was isolated in 

68% yield using Pd2(dba)3 /XPhos combination in MeCN at 20 

bar CO and 100°C (Table 9, entry 3). Higer pressure of carbon 
monoxide led to the isolation of the desired cyclic compound in 

lower yield (Table 9, entry 4). Under the optimized condition we 

synthesized a variety of 2,3-substituted 4-(1H)-quinolones with 
moderate to good yields. Our results are reported in table 10. 

Table 10 Synthesis of 2,3-substituted 4-(1H)-quinolones 

 

a 
35 % of starting material recovered 

Entry R Ar
1 

Ar
2 

Time 

(h) 
Yield 49 

(%) 

1 H H 4-CF3 72 65 

2 H H 4-F 72 73 

3 H H 3-OMe 72 82 

4 H H 3-Me 72 51 

5 H H 4-Me 72 33 

6 H H H 72 68 

7 H 4-COMe H 72 91 

8 H 4-COOMe H 72 83 

9 H 3-OMe H 72 45a 

10 H 4-OMe H 72 25 

11 H 4-Cl 4-COMe 72 47 

12 4-Br H H 72 37 

13 4-Br H CF3 72 30 
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A plausible pathway for this synthesis is outlined in scheme 

20. First, palladium oxidatively insert into the CI bond to 
generate the palladium complex 50 in which carbon monoxide 

inserts to give the complex 51. After a deprotonation step results 

the seven-membered palladacycle 52 that via a reductive 
elimination affords the desired 2,3-substituted 4-(1H)-quinolone 

48.  

 
Scheme 20 Proposed mechanism 

To sum up, we have developed an efficient palladium 

catalyzed intramolecular carbonylative cross-coupling reaction of 

readily available N-(2-iodoaryl)enaminones, yielding 2,3-

diarylquinolones that represents a class of compounds of 
considerable interest in medicinal chemistry. 
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2. Copper catalysis 

The enormous development of palladium-catalyzed methods 

in CC and Cheteroatom bond forming reaction occurred during 
the past four decades results today in the common way of 

thinking according to which the cross coupling reactions are 

closely associated with the palladium catalysis. A certain effort is 
required to realize that the cross-coupling chemistry is actually 

much older and that the copper has been the ancestor of palladium 

in this domain. 
59

 Classical Ullmann chemistry along with closely 
related methods have been known for a full century and served 

well for CN, CS, CO and some other bond formation 

reactions. CC bond formation has been excellently serviced by 
organocuprate chemistry . 

Howevar, the last years witness a steady increase of interest in 

copper assisted cross-coupling chemistry with dozens of new 

effective procedures emerging in all areas. A number of methods 
using various copper complexes and salts to carry out cross-

coupling reactions leading to the formation of Cheteroatom 

(CN, CO, CS, CP, CSe), CC, and Cmetal bonds have 
been proposed.  

These methods aim at overcoming the deficiencies of 

conventional copper-assisted substitution methods (Ullmann 
chemistry) due to dramatic softening of reaction conditions 

extension of scope towards unactivated substrates and new types 

of nucleophiles, and increasing tolerance to sensitive 

functionality. On the other hand, the scope and selectivity of 
copper-assisted methods are often complimentary to the parallel 

palladium-catalyzed cross-coupling methods.  
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2.1 Comparison between copper and palladium 

catalysts 

Copper salts and complexes are versatile reagents for cross-
coupling reagents, with breadth of scope similar to that of 

palladium from CC, Cheteroatom (N, P, O, S, Se) to CH and 

Cmetal. 
It presents an easy accessibility of four oxidation states from (0) 

to (+3), while palladium has at its disposal only two stable 

oxidation states (0) and (+2). There are indeed (+1), (+3) and (+4) 
oxidation states for palladium, but these are either extremely rare 

or play no unambiguously identifiable role in cross-coupling 

reactions. Most likely, the cross-coupling catalytic cycle with 

copper is serviced by (+1)/(+3) oxidation states. The accessibility 
of odd-electron states in copper, implying that it can take part in 

redox single-electron transfer processes, and thus an alternative 

free-radical mechanism should be taken into consideration. 
Copper is much cheaper than Palladium, (ca. by 10

5
 cheaper) and 

copper catalysts usually employ much cheaper ligands while 

palladium prefers expensive phosphines, copper satisfy itself with 
more trivial N or O ligands, many of which are common 

analytical or general purpose reagents. For this reason almost 

nobody bothers to optimize the amount of copper as soon as the 

required yield of target products is achieved, while in the case of 
palladium-driven reaction the cost of palladium makes the 

optimization of catalytic efficiency a vital task. On the other hand 

most copper catalyzed  reactions are slow to require a day or so 
for completion, and the turnover frequencies are very low. In Pd 

chemistry very high TONs exceeding 104 and TOFs exceeding 

10
3
 h

−1
 are now quite usual. Thus, the actual cost of catalyst may 

not be so favorable for copper. To this we should add a strict 

preference of copper for expensive organic iodides as substrates, 

with bromides being much less useful, and only a few systems 

being devoted to organic chlorides, whereas palladium has 
achieved considerable success in recent years reactions with 

unactivated substrates. Copper assisted cross-coupling is not so 
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far applicable to sulfonate (triflate, tosylate, etc.) leaving groups, 

with the sole exception of copper-catalyzed reactions of Grignard 

reagents. This is a serious omission, as sulfonate esters allow one 

to introduce the large field of phenols and carbonyl compounds 
into cross-coupling; palladium catalysts serve excellently in such 

chemistry. 

The copper assisted chemistry is environmentally unaware. 
One of the most evident trends in organic synthesis today is 

environmental awareness, definitely a must for any chemistry that 

aims at large scale applications. In copper assisted chemistry 
practically no efforts to develop green methods can be found. 

Meanwhile in Pd-catalyzed chemistry a lot of successful ideas on 

clean media, recyclable systems, highly effective catalysts, etc. 

have already been implemented gives poorer results than the 
heterogeneous copper salts  

Copper assisted methods do not exactly follow their 

palladium counterparts – copper apparently has its own 
applications, where it is superior to palladium, e.g. in better 

tolerance to functional groups and double bonds, and more 

flexible chemoselectivity (cf. CN, CO cross-coupling, etc.). 
Copper-assisted methods allow to successfully extend cross-

coupling methods to some classes of processes, which are still 
unfavorable targets for palladium catalysts, e.g. secondary 

alcohols in CO coupling, sp
3
–sp

2
 and sp

3
–sp

3
 CC coupling. 

As to the catalytic cycle (Scheme 21), unlike Palladium-

driven cross-coupling, in which an oxidative addition step is 

believed to precede the transmetallation, the ordering of oxidative 
addition and transmetallation steps in the copper cycle is 

unknown, so either of two possibilities can take place (pathways a 

or b). 
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Scheme 21 

 

As shown, the catalytic specie Cu(I) is regenerated at the product 
forming reductive elimination step as a compound CuX, which 

may bear different ligands than the compound CuY which entered 

the catalytic cycle. Therefore, the regeneration, in this case, 

means the regeneration of oxidation state, and not exactly of the 
form used to initiate the cycle. This form may or may not be 

reactive, it may or may not undergo ligand exchange to form the 

active species that enters the second turn of the catalytic cycle. If 
this form is not reactive, the cycle is disrupted, and we cannot 

regard the reaction as catalytic, though the chemistry involved in 

a single turn is exactly the same as it would be if the reaction 

were catalytic, capable of two or more turns. In fact, this means 
that the factors effecting the deactivation of copper catalysts 

remain poorly understood. 
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1.3 New copper-catalyzed synthetic strategies 

In this section the main features of our copper catalyzed 

synthetic approaches to several classes of compounds will be 
discussed. 

1.3.1 Copper-catalyzed oxidation of deoxybenzoins 

to benzils under aerobic conditions. 

As part of our continuing interest in the synthesis of 
heterocycles, 

60
 we lately turned our attention to the development 

of new approaches to heterocyclic derivatives starting from 1,2-

diketones, a class of versatile synthetic intermediates. Indeed they 

are substructure of natural products 
61

 and a variety of 
biologically active heterocyclic compounds, such as imidazoles, 

triazines and quinoxaline, can be synthesized from benzil 

derivatives. 
62

 
Among the wide variety of methods described in literature for 

their preparation, 
63

 the recently reported conversion of readily 

available deoxybenzoins to benzils in the presence of DABCO 
and air 

64
 appeared to us particularly attractive and convenient as 

well as environmentally benign. However, when we attempted the 

conversion of the deoxibenzoin into the corresponding benzil 

under the described conditions, a reaction described to afford the 
benzil in 95% yield, the desired product was isolated only in 19% 

yield and the starting material was recovered in 74% yield (Table 

11, entry 1). Similar disappointing results were obtained with 
different substituents (Table 11, entry 2-4). 
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Table 11 Synthesis of benzils from deoxibenzoins in presence of DABCO 

 

Entry R
1 

R
2 

Yield 54 

(%) 

Recovered 

53 (%) 

1 H H 19 74 

2 OMe H 20 80 

3 Cl I traces 60 

4 H CN traces 90 

 
We then turned our attention to the other methods that allow 

for the synthesis of benzils via oxidation of deoxybenzoins. 

However, they are all based on the use of stoichiometric amounts 
or an excess of oxidants such as selenium dioxide, 

63a
 thallium 

nitrate, 
63b 

pyridinium chlorocromate, 
63g, h 

and potassium 

permanganate. 
63i 

Furthermore, methods based on thallium and 

chromium salts suffer from the drawback of using toxic reagents. 
Therefore, it appeared to us of interest to explore an alternative, 

more environmentally friendly approach. Particularly, given the 

known ability of copper to catalyze oxidation reactions,
 65

 we 
settled to investigate the feasibility of a copper-catalyzed 

oxidation process. 

We started our study by examining the oxidation of 

deoxibenzoin with Cu(OAc)2 and P(Ph)3 in o-xylene under a 
balloon of oxygen. An initial screen showed that the oxidation 

byproduct could be isolated only in 15% yield at 80 °C, the main 

product being benzoic acid (50% yield) (Table 1, entry 1). The 
starting material was recovered in 35% yield. Pleasingly, 

increasing the reaction temperature to 100 °C led to the isolation 

of 54 in 95% yield (Table 1, entry 2). However, when these 
conditions were applied to  1-(4-methoxyphenyl)-2-
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phenylethanone the reaction afforded the corresponding benzil 

derivative in 24% yield and p-anisic acid was isolated in 70% 

yield (Table 1, entry 3). Thus, we decided to optimize the reaction 

conditions for this substrate exploring the influence of 
temperature, copper salts, ligands, and solvents on the reaction 

outcome. Increasing the reaction temperature to 130 °C led to the 

isolation of the desired oxidation byproduct in 48% yield along 
with significant amounts of p-anisic acid (Table 1, entry 4). The 

use of other copper salts and ligands gave similar results (Table 1, 

entries 5-9). Similar results were also obtained in m-xylene (Table 
1, entry 10) whereas the starting material was recovered in almost 

quantitative yield using 1,4-dioxane, acetonitrile, and toluene 

(Table 1, entries 11-13). An increase of the yield (57%) was 

observed in 1,2,4-trimethylbenzene substituting air for oxygen 
(Table 1, entry 14) and when the reaction was carried out under 

these last conditions decreasing the reaction temperature to 100 

°C the desired oxidation byproduct could be isolated in a 
satisfactory 62% yield (Table 1, entry 15). We then came back to 

evaluate the behavior of deoxibenzoin under these conditions but 

the corresponding benzil was formed in a yield lower than that 
observed in o-xylene under oxygen. Thus, we decided to use both 

the oxidation protocols [Cu(OAc)2, PPh3, o-xylene, O2, 100 °C 

and Cu(OAc)2, PPh3, 1,2,4-trimethylbenzene, air, 100 °C] when 

other substrates where investigated to explore the scope and 
generality of the reaction. Most probably, the best think is to 

evaluate the effectiveness of these protocols each time. 
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Table 12 Optimization studies 

 
Entry Catalyst (%) Solvent T 

(°C) 

t (h) Yield 

54(%) 

Yield 

55(%) 

1 a, d Cu(OAc)2 (15) 
PPh3               (15) 

o, xylene 80 24 15 50 

2 a Cu(OAc)2 (15) 
PPh3               (15) 

o, xylene 100 4 95 - 

3 b Cu(OAc)2 (15) 
PPh3               (15) 

o, xylene 100 4 24 70 

4 b Cu(OAc)2 (15) 
PPh3               (15) 

o, xylene 130 0.75 48 19 

5 b Cu(OTf)2  (20) o, xylene 130 3 44 31 
6 b CuI            (15) 

PPh3          (30) 
o, xylene 130 24 46 6 

7 b CuI            (20) 
Proline      (40) 

o, xylene 130 0.75 24 30 

8 b CuCl2            (20) o, xylene 130 5.5 50 8 

9 b Cu(OAc)2  (15) 
CHDA e     (30) 

o, xylene 130 2.5 48 - 

10 b Cu(OAc)2   (15) 
PPh3                (15) 

m, xylene 130 0.75 49 19 

11 b Cu(OAc)2   (15) 
PPh3                (15) 

1,4-dioxane 130 24 - -f 

12 b Cu(OAc)2   (15) 
PPh3                 (15) 

MeCN 130 4 - -f 

13 b Cu(OAc)2    (15) 
PPh3                 (15) 

toluene 130 0.75 - -f 

14 b, c Cu(OAc)2    (15) 
PPh3                 (15) 

1,2,4-TMB g 130 0.75 57 - 

15 b, c Cu(OAc)2    (15) 
PPh3                 (15) 

1,2,4-TMB g 100 0.75 62 - 

16 b, c Cu(OAc)2    (15) 
PPh3                 (15) 

1,2,4-TMB g 100 0.75 83 - 

Reactions were carried out on a 0.4 mmol scale in 1,6 mL of solvent under an 
atmosphere of oxygen. a Reaction was carried out using deoxibenzoin as starting 
material. b Reaction was carried out using 1-(4-methoxyphenyl)-2-phenylethanone 
as starting material. c Reaction was carried out under air. d Starting material was 
recovered in 34% yield. e CHDA= cyclohehanediamine. f Starting material was 
recovered in 99% yield. g 1,2,4-TMB= 1,2,4-trimethylbenzene. 
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Our preparative results (Table 13) show that reaction affords 

benzils from deoxybenzoins in moderate to excellent yields and 

tolerates a variety of useful substituents including chloro, bromo, 

iodo, keto, ester, and cyano groups. Substituents in the ortho 
position of the benzylic fragment are are also tolerated (Table 2, 

entry 18). 

Table 13 Oxidation of 1,2 diarylethanones to benzil derivatives under the 
optimized conditions 

 

Entry R
1 R

2 t (h) Yield 54 (%) 

1 H H 0.92 83 

2 H p-OMe 0.75 62 

3 p-OMe H 0.75 55 

4 H p-Me 7 70 

5 H o-Me 0.5 45 

6 H p-COOMe 1 72 

7 H p-CN 1 66 

8 H p-COMe 5 53 

9 p-Cl H 1.5 53 

10 p-Cl p-I 2.5 70 

11 H p-I 7 60 

12 H p-Br 2.5 75 

13 p-Cl p-Br 5 60 

14 p-Cl p-OMe 0.5 56 

15 p-OMe p-OMe 0.75 51 

16 o-Br - 7h 62 

Reaction were carried out on a 0.4 mmol scale, using 0.15 equiv. of Cu(OAc)2, 0.3 

equiv. of PPh3 in 1.6 ml of solvent at 100°C under an atmosphere of air. 
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Although the detailed mechanism of this copper-catalyzed 

oxidation is unclear at the moment, it is likely that the reaction 

proceeds according to the following basic steps (Scheme 22): 

initial formation of the benzylic radical 56 from the starting 
deoxybenzoin 55 in the presence of the copper catalyst and 

oxygen; its subsequent reaction with oxygen to afford the 

peroxoradical 57; conversion of 57 into the hydroperoxide 58 via 
capture of a hydrogen from the reaction medium; elimination of 

water 
66

 to give the benzil derivative 59. 

Scheme 22 Proposed reaction mechanism 

In summary, a simple and convenient copper-catalyzed 

oxidation of deoxybenzoins to benzils under neutral conditions 
using air as the oxidant has been developed; reaction allows to 

obtain benzil derivatives with the contemporary presence of 

chloro, bromo and iodo  substituents: these products could be 
useful for increasing molecular complexity via a selective double 

functionalization.  
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1.3.2 Copper catalyzed synthesis of 2,4-

diarylbenzo[b][1,4]oxazepines from N-(2-

bromoaryl)enaminones 

For a long time our research group has studied the reactivity 

of the N-(2-haloaryl)enaminones. These studies have led to the 

development of new synthetic strategies for the 3-Acylindoles by 
exploiting both palladium and copper catalyst (Scheme 23). 

67, 68 

 
Scheme 23 Our previous studies 

Particularly, studying the copper-catalyzed reaction and 

investigating the reactivity of the bromo-containing enaminones, 

we were surprised to find that the formation of the expected 
indole product was accompanied by the formation of a 

benzoxazepine derivative. We next hypothesized that changing 

the reaction conditions in a suitable way we could obtain the 

benzoxazepinic nucleus as the principal product (Scheme 24).  
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Scheme 24 Our work hypothesis 

We started our study by examining whether the enaminone 60 
could be converted in the corresponding benzoxazepine derivative 

61, using a copper catalyst under an atmosphere of air. After an 

initial screen of bases (Cs2CO3, K2CO3, Na2CO3) and solvents 
(DMA, DMF, DMSO) we found that the cyclic compound 61 

could be isolated in 40% of yield by using 0.05 equiv of CuI, 0.05 

equiv of 1,10-phenantroline, 2 equiv of K2CO3 in DMA after 8h 

(Table 13, entry 1). Optimization studies were then performed 
varying the nature of ligands and the temperature (Table14). A 

satisfactory result was obtained using 0.05 equiv of CuI, 0.05 

equiv of P(Ph)3, 2 equiv of K2CO3 in DMA at 140°C: the desired 
product 61 was isolated in 56% yield while the indole derivative 

62 was obtained in 22% yield (Table 14, entry 8). 
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Table 14 Optimization of the reaction conditions 

 

Entr

y 

Ligand (equiv) Temperatur
e °C 

Time 

(h) 

Yield

61(%

) 

Yield  

62(%) 

1 1,10-Phenantroline 5% 140 8 40 11 

2 PPh3 5% 

 

140 6.5 54 27 

3 TMEDA 5% 

 

140 30 33 30 

4 (2,4,6-OMe-C6H4)3P 

5% 

 

140 5 54 25 

5 Ru-Phos 5% 

 

140 5 55 24 

6 PPh3 10% 

 

140 6 47 30 

7 PPh3 5% 

 

150 3.5 54 2 

8 PPh3 5% 

 

140 3.5 56a 22 

9 PPh3 5% 

 

120 24 - 18 

Reactions were carried out with 0.05 equiv of CuI freshly purified by 
crystallization. a Reaction was carried out with 0.05 equiv of CuI as purchased 
without further purification. 

To evaluate the scope and the generality of the process we set 

out to investigate the reaction of substituted N-(2-

Bromoaryl)enaminones on the N-aryl fragment. Interestingly, we 
found that reaction of 3-(2-bromo-4-methylphenylamino)-1,3-

diphenylprop-2-en-1-one 63 gave both the corresponding 

benzoxazepine 64 (40% yield) and the corresponding indole 65 

(20% yield), while the 3-(2-bromo-4-chlorophenylamino)-1,3-
diphenylprop-2-en-1-one 66 gave the benzoxazepine nucleus 67 

in 84% of yield as the only product (Scheme 25, Scheme 26). 
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Scheme 25 Reaction of 3-(2-bromo-4-methylphenylamino)-1,3-diphenylprop-2-

en-1-one 63 
 

 
Scheme 26 Reaction of 3-(2-bromo-4-chlorophenylamino)-1,3-diphenylprop-2-

en-1-one 66 

Under the optimized conditions we synthesized a variety of 

2,4-diarylbenzo[b][1,4]oxazepine from N-(2-
bromoaryl)enaminones and our results are summarized in table 

15. 
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Table 15 Copper catalyzed synthesis of 2,4-diarylbenzo[b][1,4]oxazepines 

 

Entry R
1
 R

2
 R

3
 Time 

(h) 

Yield 

69 (%) 

1 H H H 3.5 56 

2 Me H H 8 40 

3 Cl H H 1 84 

4 Cl 4-Cl H 6 78 

5 Cl 3-OMe H 1 82 

6 Cl 4-Me H 0.75 83 

7 Cl H 4-COOMe 0.5 71 

8 Cl H 3-OMe 0.75 90 

9 F H H 0.5 86 

10 F H 4-COOMe 0.5 61 

Reactions were carried out on a 0.20 mmol scale under an atmosphere of air in 
1.5 mL of DMA. 

A plausible pathway for this synthesis, outlined in scheme 27, 

begins with the initial coordination of -(2-Bromoaryl)enaminone 

with copper. The resulting complex 70 undergoes an oxidative 

addition of the CX bond to copper to afford the Cu(III) 
intermediate 71. Subsequent reductive elimination releases the 
product 61 with concomitant regeneration of the catalyst.  
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Scheme 27 Proposed reaction mechanism 

In conclusion, we have shown that N-(2-iodoaryl)enaminones 

can be converted selectively into the corresponding 2,4-

diarylbenzo[b][1,4]oxazepine in the presence of catalytic amounts 
of CuI.  
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3. Gold catalysis 

Despite the extensive use of gold and gold salts in 

heterogeneous catalysis since the 1960s, the golden era of 

homogeneous gold catalysis has begun at the end of the 20th 

century, evident by the dramatically increased number of 
publications in this field (Figure 5 and 6). 

69
 

 

Figure 5 Overall publications number by year in gold-catalysis 

 

 

Figure 6 Pubblications rate on gold catalysis mediated on the total number of 
scientific papers on organometallic catalysis. 
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Nowadays homogeneous gold catalysis is an emerging area 

of transition-metal catalysis with tremendous potential for organic 

synthesis. 
70

  

Both gold(I) and gold (III) salts are soft carbophilic Lewis 
acids and can activate C–C double and triple bonds for an inter- 

or intramolecular attack of a nucleophile to form new C–C or C–

heteroatom bonds. Among various substrates amenable to 
activation, alkynes play a dominant role. Many of the 

investigations into the catalytic reactivity of Au exploit the 

propensity of both Au(III) and cationic Au(I) complexes to 
activate alkynes towards nucleophilic addition. Research in this 

area has been extensively reviewed. 
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Gold-catalyzed reactions have displayed several unique features. 

Specifically, with an electron configuration of [Xe]4f
14

5d
10

6s
1
 for 

the gold atom, gold catalysts mainly exist in (+1) and (+3) 

oxidation states. The high oxidation potential of Au(I) to Au(III) 

allows most Au(I)-catalyzed reactions to proceed without 
precautions to exclude air. In addition, gold catalysts are 

exceptionally alkynophilic, but not as oxophilic as most Lewis 

acids. Thus oxygen, water, and alcohols are often well-tolerated, 
in sharp contrast to most air- and moisture-sensitive Lewis acid or 

transition metal-catalyzed transformations. Besides convenient 

procedures without the concern of air and moisture, gold-

catalyzed reactions often provide efficientaccess to structures of 
immense diversity and/or complexity from much simpler starting 

materials. Furthermore, distinct from classical carbocations, the 

non-classical carbocation or carbenoid feature of intermediates 
involved in gold-catalyzed transformations often leads to well-

controlled product selectivity. Lastly, carbon gold bonds are 

labile toward proto-deauration, but not susceptible to b-hydride 

elimination, which frequently occurs in other transition metal-
catalyzed reactions, thereby increasing the product selectivity. 

These reactions are all based upon a common platform, namely, 

the activation of alkynes, allenes, and sometimes alkenes by the 
gold species. 
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The gold-catalyzed transformations are convenient, and often 

accomplished under remarkably mild conditions. In addition to 

high level control of chemo-, regio-, and diastereoselectivity of 

many reactions, highly enantioselective gold catalysis has also 
emerged. Finally, the broad substrate scope and diverse product 

scaffolds of these reactions will undoubtly increase their impact 

on medicinal chemistry and natural product synthesis. 

3.1 Heteroatom addition to unsaturated CC 

bonds 
72

 

Gold-activated alkynes and allenes, and occasionally alkenes 
are good electrophiles for both sp

2
- and sp

3
-hybridized 

heteroatom nucleophiles. If a heteroatom X is sp
3
-hybridized and 

HXR serves as a nucleophile, the proposed mechanism involves a 
trans heteroatom auration in most cases and the ensuing 

protodeauration (Scheme 28).  

 
Scheme 28 

Typically an intramolecular CX bond formation followed by 
protodeauration leads to an X-containing heterocycle. In the cases 
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where R2X (X=O, S) is used as a nucleophile, the resulting X 

cation often leads to a subsequent rearrangement reaction. When 

X is sp
2
 hybridized, particularly in the cases of ketones, 

aldehydes, and imines, upon the addition of X to gold-activated 

unsaturated CC bonds, the resulting X cation, as an electrophile, 
could thereby trigger the addition of another nucleophile (Scheme 

29). 

 
Scheme 29 

Of particular interest is the third reaction mode in which the 

nucleophile also bears a leaving group thus setting the stage to 

generate a gold carbenoid (Scheme 30), a versatile intermediate 
for further transformations.  

 
Scheme 30 

The regioselectivity of these reactions is often excellent, and 

high enantioselectivity has been accomplished in cyclization 

reactions of alcohols and amine derivatives with allenes. 
Reactions are generally conducted under very mild conditions, 

with excellent efficiency and functional group compatibility. 

The gold-catalyzed 5-endo-dig, 5-exo-dig or 6-exo-dig 
cyclization reactions of heteroatom nucleophiles onto alkynes 

followed by protodeauration provide straightforward and efficient 

approaches to various five- and six-membered heterocycles. The 

nucleophiles can be the oxygen atom of alcohols, 
73

carboxylic 
acids, 

74
 carbonates, 

75
 carbamates, 

76
 and amides 

77
, and the 
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nitrogen atom of amines, 
78

 carbamates, 
79

 trichloroacetimidates, 
80

 and anilines. 
81

 

We focused our attention on Gold-catalyzed sequential or 

tandem reactions involving the addition of nitrogen nucleophiles 
to alkynes to obtain biologically interesting heterocycles. 

 In this context a remarkable processes is the reaction of 
enamines resulting from the hydroamination of amine 82

 or aniline, 
83

 

that readily cyclize onto alkynes to form pyrroles or indoles (Scheme 
31).  

 

Scheme 31 

Another important gold-catalyzed process is the cyclization of 2-

alkynylaniline to obtain C-3-functionalized indole (Scheme 32). 84 

Reaction provides the formation of an indolyl-gold specie, which then 

adds to -unsaturated ketone, or undergoes a gold-catalyzed 
FriedeleCrafts-type process . 
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Scheme 32 
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3.2 New gold-catalyzed synthetic strategies 

In this section the main features of our gold-catalyzed 

synthetic approache to 2,4-diaryl-2,3-dihydro-1h-
benzo[b][1,4]diazepines will be discussed. 

3.2.1 Synthesis of 2,4-diaryl-2,3-dihydro-1H-

benzo[b][1,4]diazepines by gold(I) catalyzed 

reaction of 1,2-phenylenediamine and propargylic 

alcohols  

The direct Au(III)-catalyzed substitution of propalgylic 

alcohols in the presence of various nucleophiles is a reaction 
described in 2005 by Georgy et al. This work showed that gold 

could acts as a Lewis acid to promote a SN reaction through the 

formation of a stabilized propagylic carbocation intermediate. 
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On the basis of this literature data we hypothesized that the 1,3-

diaryl-propargylic alchols could react with a double nucleophile 

such as the o-phenylendiamine to give the six-membered 74 or 

seven-membred heterocyclic compound 75 (Scheme 33). 

 
Scheme 33 Work hypothesis 

We set out to evaluate the feasibility of reaction by using the 

1,3-diphenylprop-2-yn-1-ol with the o-phenylendiamine in 
presence of a gold catalyst. Unfortunately our first attempts with 

Au(III) catalysts did not give the expected result and we decide to 

try a new Au(I)-catalyst: (Acetonitrile)-[(2-biphenyl)-di-tert-
butylphosphine]gold(I) hexafluoroantimonate. To our delight the 

use of 1.1 equiv. of o-phenylendiamine 73, 0.02 equiv of catalyst 
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in 2 mL of CH2Cl2 at 60°C led to the desired product 74 in 72% 

of yield (Table 16, entry 3). Formation of the six-membered 

cyclic compound 75 was not observed. Results of our preliminary 

studies are reported in table 16. 

Table 16 Optimization studies 

 

Entry Temperature 
°C 

Time 
(h) 

Recovered 76  
(%) 

Yield 77 

(%) 

1 25 48 62 30 

2 80 96 29 34 

3 60 24 4 72 

Reactions were carried out on a 0.5 mmol scale using 0.02 equiv. of catalyst in 2 
mL of CH2Cl2 under an atmosphere of air  

Having optimized the reaction conditions we focused our 

attention on the determination of the scope of this methodology. 

To this end we synthesized various 1,3-diaryl-propargylic 
alcohols with electron-rich and electron deficient groups on the 

two aromatic rings and we observed that the 1,3-diaryl-

propargylic alchols with electron-deficient groups on the aromatic 

ring of the benzylic moiety required highest amount of catalyst 
for their full conversion in the corresponding benzodiazepine. 

Indeed, using 0.02 equiv of catalyst, after 48 h we obtained the 

desired cyclic compound in 31% of yield recovering wide amount 
of starting material (41%) (Table 17, entry 1). Otherwise by using 

0.03 equiv. of catalyst, after 24 h, we obtained the 1,5-

benzodiazepine in 68% of yield and just 4% of the propargylic 
alchol was recovered (Table 17, entry 2). With electron-rich 

groups on the aromatic ring linked to the CC triple bond, by 
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increasing the catalyst rate from 0.02 to 0.03 equiv. we obtained 

worst results (Table 17, entry 4). 

Table 17 Optimization studies

 

Entry Ar
1
 Ar

2
 Catalyst 

(eqiuv) 

Time 
(h) 

Recovered 

72 

(%) 

Yield 

74 

(%) 1 4-CN H 0.02 48 41 36 

2 4-CN H 0.03 24 4 68 

3 H 4OMe 0.02 20 16 36 

4 H 4-OMe 0.03 20 - 12 

Reactions were carried out on a 0.5 mmol scale in 2 mL of CH2Cl2 under an 
atmosphere of air at 60 °C. 

In agreement with these experimental evidences we synthetized a 

variety of 2,4-diaryl-2,3-dihydro-1H-benzo[b][1,4]diazepines 

with good to moderate yields using a catalyst loading ranging 
from 0.02 to 0.03 equiv. Some of our preparative results are 

reported in the following table 18. 
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Table 18 Synthesis of 2,4-diaryl-2,3-dihydro-1h-benzo[b][1,4]diazepines by 

gold(I) catalyzed reaction of 1,2-phenylenediamine and propargylic alcohols 

 

Entry Ar
1 

Ar
2 

Time 

(h) 

Yield 74 

(%) 

1 H H 24 72 

2 4-OMe H 16 62 

3 H 4-OMe 20 36 

4 4-Me H 30 57 

5 H 4-Me 20 63 

6a 4-CN H 24 68 

7 H 4-CN 24 56 

8 3-OMe H 24 66 

9 H 3-OMe 7 67 

10a 4-Br H 24 67 

11 H 4-Br 24 65 

12 H 3-Br 20 60 

13a 4-COOEt H 9 63 

14a 4-Cl H 10 70 

15 4-OMe 4-OMe 24 46 

16a 4-COOEt 4-OMe 20 36 

Reaction were carried out on a 0.5 mmol scale using 0.02 equiv of catalyst 1.2 
equiv of o-phenylendiamine in CH2Cl2 at 60°C under an atmosphere of air. 
a Reactions were carried out using 0.03 equiv of catalyst. 
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A probable reaction mechanism is outlined in the following 

scheme 34. The catalyst Au(I) interacting with the propargylic 

alchol promote a nucleophilic substitution SN2 type to generate 

the intermediate 79. Once again this compound could interacts 
with Au(I) to give the desired heterocyclic compound 74.  

 
Scheme 34 Proposed reaction mechanism 

The formation of the enamine intermediate 79 has been 
highlighted carrying out a reaction with the 1,2-

diphenylpropargilalchol 76 and the aniline 80 in the presence of 

the Au(I) catalyst. Under these conditions we observed the 
formation of the enamine 81 as the principal products (Scheme 

35). 

 

Scheme 35 Reaction of 1,2-diphenylpropargilalchol with the aniline 

In summary this work describes a new synthetic route to 2,4-

diphenyl-2,3-dihydro-1H-benzo[b][1,4]diazepines. Our procedure 
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is simple, uses readily available starting materials and may 

represent a useful tool for the synthesis of this class of 

compounds.  
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4. Experimental section 

4.1. General information 

Melting points were determined with a Büchi B-545 
apparatus andare uncorrected. All of the reagents, catalysts, and 

solvents are commercially available and were used as purchased, 

without further purification. When it was possible, starting 

materials were purified on axially compressed columns, packed 
with SiO2 25-40 μm, connected to a preparative pump for solvent 

delivery and to a refractive index detector, and eluting with n-

hexane/EtOAc mixtures. 
1
H NMR (400.13 MHz), 

13
C NMR 

(100.6 MHz) and 
19

F NMR (376.5 MHz) spectra were recorded 

with a Bruker Avance 400 spectrometer. Splitting patterns are 

designed as s (singlet), d (doublet), t (triplet), q (quartet), m 
(multiplet), or bs (broad singlet). Infrared (IR) spectra were 

recorded on a JASCO FT/IR-430 spectrophotometer. Mass 

spectra were determined with a QP2010 Gas Chromatograph 

Mass spectrometer (EI ion source) and a Thermo Finnigan LXQ 
spectrometer (ESI ion source). 

4.2 Additional information and characterization 

data on the synthesized compounds 

4.2.1 Additional information and characterization 

data on functionalized 2,3-dihydrofurans 

General Information: All the aryl halides, catalysts, bases, 

and solvents used are commercially available and were used as 
purchased, without further purification. The 

allylchetoesters were prepared according to literature.
86

 

General procedure for the synthesis of functionalized 2,3-

dihydrofurans: An oven-dried Schlenk tube equipped with a 
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magnetic stirring bar was charged under argon with Pd2(dba)3 

(11.4 mg, 0.0125 mmol), Ruphos (11.7 mg, 0.025 mmol) and 

anhydrous acetonitrile (1.0 ml). The resultant solution was stirred 

under N2 at room temperature for 10 minutes before adding 
cesium carbonate (195.5 mg, 0.6 mmol), the aryl halide (93.0 mg, 

0.5 mmol), the 2-allyl-β-ketoester dissolved in anhydrous 

acetonitrile (1.0 mL). The reaction mixture was warmed at 100°C 
and stirred until starting material ending. After cooling, the 

reaction mixture was diluted with AcOEt and washed twice with 

H2O, and with a saturated NaCl solution. The organic layer was 
dried over Na2SO4, filtered and concentrated under reduced 

pressure. The residue was purified by chromatography on silica 

gel to afford the desired product. 

 

ethyl 5-(3-methoxybenzyl)-2-methyl-4,5-dihydrofuran-3-

carboxylate: pale yellow liquid; 
1
H NMR (400 MHz) 

(CDCl3)  7.26-7.22 (m, 1 H), 6.84-6.79 (m, 3 H), 4.90-4.82 
(m, 1 H), 4.17 (q, J = 7.2 Hz, 2 H), 3.81 (s, 3 H), 3.05 (dd, J1 

= 14 Hz, J2 = 6.8 Hz, 1 H), 2.94 (dd, J1 = 13.6 Hz, J2 = 6.4 
Hz, 1 H), 2.80 (m, 1H), 2.68-2.62 (m, 1 H), 2.21 (s, 3 H), 

1.28 (t, J= 7.2 Hz); 
13

C NMR (100.6 MHz) (CDCl3)  167.5, 
166.2, 159.7, 138.6, 129.4, 121.7, 115.2, 111.8, 101.7, 82.5, 

59.4, 55.1, 42.0, 34.8, 14.5, 14.1; IR (neat, cm
-1

) 2935, 2836, 

1695, 1646, 1513, 1384, 1247, 1228,1081, 1035, 975 cm
-1

; 
MS m/z (relative intensity) 109 (9.8%), 155 (15.1%), 276 

(M
+
 22.5%), 83 (24.1%), 122 (100%); Anal. Calcd. For 

C16H20O4; C, 69.54; H, 7.30; Found C, 69.65; H, 7.32.  
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ethyl 5-(4-methoxybenzyl)-2-methyl-4,5-dihydrofuran-3-

carboxylate: pale yellow liquid;
1
H NMR (400 MHz) (CDCl3)  

7.17-7.15 (m, 2 H), 6.88-6.86 (m, 2 H), 4.86-4.78 (m, 1 H), 4.20-

4.15 (m, 2 H), 3.81 (s, 3 H), 3.00 (dd, J1 = 14 Hz, J2 = 6.8 Hz, 1 

H), 2.95-2.91 (m, 1 H), 2.89-2.79 (m,1 H), 2.66-2.60 (m, 1 H), 

2.20 (s, 3 H), 1.28 (t, J = 7.2 Hz); 
13

C NMR (100.6 MHz) 

(CDCl3)  167.6, 166.3, 158.4, 130.3, 129.0, 113.9, 101.6, 82.8, 
59.4, 55.2, 41.1, 34.7, 14.5, 14.2;IR (neat, cm

-1
) 2935, 2836,1695, 

1646, 1612, 1583, 1513, 1442, 1384, 1247, 1228, 1081, 1035, 

975, 873, 763; 

MS m/z (relative intensity) 147 (4.6%), 231 (8.1%), 65 (8.5%), 
109 (9.8%), 155 (15.1%), 134 (16.2%), 91 (19.8%), 55 (22.4%), 

276 (M
+
 22.5%), 83 (24.1%), 122 (100%);Anal. Calcd. For 

C16H20O4; C, 69.54; H, 7.30; Found C, 69.64; H, 7.32. 

 

ethyl 5-(4-(dimethylamino)benzyl)-2-methyl-4,5-
dihydrofuran-3-carboxylate: Yellow liquid; 

1
H NMR (400 

MHz) (CDCl3)  7.12 (d, J = 8.8 Hz, 2 H), 6.73 (d, J = 8.8 Hz, 2 
H), 4.86-4.78 (m, 1 H), 4.21-4.15 (m, 2 H), 3.02-2.88 (m, 8 H), 

2.78 (dd, J1 = 14,0 Hz, J2 = 6.8 Hz, 1 H), 2.68-2.62 (m, 1 H), 2.22 

(s, 3 H), 1.29 (t, J = 7.2 Hz 3 H);
 
 
13

C NMR (100.6 MHz) (CDCl3) 

 167.7, 166.4, 149.4, 130.0, 125.0, 112.9, 101.6, 83.2, 59.4, 41.0, 
40.8, 34.7, 14.5, 14.2; IR (neat, cm

-1
) 2923, 1695, 1644, 1521, 

1444, 1384, 1226, 1081, 973, 763;  

MS m/z (relative intensity) 65 (2.4%), 55 (4.5%), 91 (7.3%), 289 

(M
+
 9.2%),118 (12.9%),134 (100%); Anal. Calcd. For C17H23NO3 

C,70.56; H, 8.01; N, 4.84; Found C,70.65; H, 8.00; N, 4.85. 
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ethyl 2-methyl-5-(3-methylbenzyl)-4,5-dihydrofuran-3-

carboxylate: yellow liquid; 
1
H NMR (400 MHz) (CDCl3)  7.25-

7.21 (m, 1 H), 7.09-7.04 (m, 3 H), 4.91-4.83 (m, 1 H), 4.22-4.16 

(m, 2 H), 3.08-3.03 (m, 1 H), 2.97-2.91 (m, 1 H) 2.91-2.83 (m, 1 

H), 2.82-2.63 (m, 1 H), 2.43 (s, 3 H), 2.22 (t, J = 1.6 Hz, 3 H), 

1.32-1.28 (t, J = 7.2 Hz, 3 H);
 
 
13

C NMR (100.6 MHz) (CDCl3)  
167.6, 166.3, 138.0, 136.9, 130.1, 128.4, 127.4, 126.3, 101.7, 

82.7, 59.4, 42.0, 34.8, 21.4, 14.5, 14.2; IR (neat, cm
-1

) 2925, 

1697, 1648, 1444, 1384, 1226, 1081, 975; MS m/z (relative 
intensity) 260 (M

+
 13.5%), 127 (20.5 %), 91 (34.9%), 155 

(37.7%), 83 (29.9%), 106 (100%); Anal. Calcd. For C16H20O3 C, 

73.82; H 7.74; Found C, 73.75; H, 7.75. 

 

ethyl 2-methyl-5-(4-methylbenzyl)-4,5-dihydrofuran-3-

carboxylate: yellow liquid; 
1
H NMR (400 MHz) (CDCl3)  7.14-

7.12 (m, 4 H), 4.89-4.81 (m, 1 H), 4.22-4.16 (m, 2 H), 3.07-3.02 
(m, 1 H), 2.97-2.90 (m, 1 H), 2.87-2.62 (m,1 H), 2.36 (s, 3 H), 

2.22 (t, J = 1.6 Hz, 3 H), 1.31-1.28 (t, J = 7.2 Hz, 3 H);
 
 
13

C NMR 

(100.6 MHz) (CDCl3)  167.6, 166.3, 136.1, 133.9, 129.2, 129.1, 
101.6, 82.8, 59.4, 41.6, 34.8, 21.0, 14.5, 14.2; IR (neat, cm

-1
) 

2925, 1697, 1648, 1446, 1384, 1226, 1081, 975 cm
-1

; MS m/z 
(relative intensity) 127 (24.4%), 260 (M

+
 25.9%), 91 (32.9%), 

155 (35.0%), 83 (38.7%), 106 (100%); Anal. Calcd. For C16H20O3 

C, 73.82; H 7.74; Found C, 73.70; H, 7.75. 
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ethyl 2-methyl-5-(2-methylbenzyl)-4,5-dihydrofuran-3-

carboxylate: yellow liquid; 
1
H NMR (400 MHz) (CDCl3)  7.22-

7.17 (m, 4 H), 4.93-4.86 (m, 1 H), 4.20 (q, J = 7.2 Hz, 2 H), 3.11 

(dd, J1 = 14 Hz, J2 = 7.2 Hz, 1 H), 3.01-2.95 (m, 1 H), 2.86 (dd, J1 

= 14.4 Hz, J2 = 6.4 Hz, 1 H), 2.71-2.60 (m, 1 H), 2.36 (s, 3 H), 

2.22 (s, 3 H), 1.31 (t, J = 7.2, 3 H); 
13

C NMR(100.6 MHz) (CDCl3) 167.6, 166.3, 136.5, 135.5, 130.4, 
129.8, 126.8, 126.0, 101.7, 82.0, 59.4, 39.2, 35.1, 19.7, 14.5, 

14.2.; 

IR (neat, cm
-1

) 2977, 1697, 1648, 1461, 1384, 1326, 1261, 1226, 

1081, 975, 873, 763, 744; MS m/z (relative intensity) 171 (5.1%), 
143 (6.9%), 65 (12.3%), 215 (15.2%), 117 (22.8%), 260 (M

+
 

31.2%), 127 (49.1%), 91 (55.5%), 55 (59.0%), 155 (66.2%), 83 

(87.6%), 106 (100%); Anal. Calcd. For  C16H20O3 C, 73.82; H, 
7.74; Found C, 73.90; H, 7.72. 

 

ethyl 5-benzyl-2-methyl-4,5-dihydrofuran-3-carboxylate: 

yellow liquid; 
1
H NMR (400 MHz) (CDCl3)  7.35-7.24 (m, 5 H), 

4.91-4.83 (m, 1 H), 4.24-4.16 (m, 2 H), 3.08 (dd, J1 = 14 Hz, J2 = 

6.8 Hz, 1 H), 2.97-2.86 (m, 2 H), 2.66 (dd, J1 = 14.8 Hz, J2 = 7.2 

Hz, 1 H), 2.22 (s, 3 H), 1,13 (t, J = 6.8 Hz ); 
13

C NMR(100.6 

MHz) (CDCl3)  167.6, 166.3, 137.0, 129.4, 128.5, 126.7, 101.7, 

82.6, 59.4, 42.0, 34.8, 14.5, 14.2; IR (neat, cm
-1

) 2931, 1695, 
1644, 1454, 1384, 1228, 1083, 873, 752, 700; MS m/z (relative 

intensity) 93 (10.3%), 97 (14.6%), 115 (15.2%), 201 (15.3%), 104 

(22.4%), 246 (M
+
 26.0%), 65 (33.6%), 127 (46.9%), 55 (58.1%), 

155 (67.6%), 83 (78.6%), 91 (100%); 
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Anal. Calcd. For C15H18O3 C, 73.15; H, 7.37; Found C, 73.32; H, 

7.30. 

 

ethyl 5-(biphenyl-4-ylmethyl)-2-methyl-4,5-dihydrofuran-3-

carboxylate: yellow solid; Mp: 47-50°C; 
1
H NMR (400 MHz) 

(CDCl3)  7.59 (dd, J1 = 15.8 Hz, J2 = 7.2 Hz, 4 H), 7.46 (t, J = 

7.2 Hz, 2 H), 7.35 (dd, J1 = 18.8 Hz, J2 = 7.2 Hz, 3 H), 4.95-4.87 
(m, 1 H), 4.25-4.16 (m, 2 H), 3.12 (dd, J1 = 14.0 Hz, J2 = 6.8 Hz, 

1 H), 3.02-2.90 (m, 2 H), 2.72-2.59 (m, 1 H), 2.23 (s, 3 H), 1.30 

(t, J = 6.8 Hz, 3 H); 
13

C NMR(100.6 MHz) (CDCl3) 167.6, 166.3, 
140.9, 139.6, 136.2, 129.8, 128.8, 127.2, 127.0, 117.5, 101.7, 

82.6, 59.5, 41.7, 34.9, 14.5, 14.2; IR (KBr, cm
-1

) 3029, 2989, 

2925, 2876, 1695, 1648, 1484, 1448, 1384, 1367, 1321, 1261, 
1228, 1143, 1079, 975, 819, 761, 698; MS m/z (relative intensity) 

63 (5.4%), 91 (12.1%), 109 (12.2%), 191 (13.5%), 253 (13.5%), 

322 (M
+
 21.7%), 281 (25.2%), 152 (26.0%), 127 (27.8%), 55 

(41.7%), 83 (51.4%), 167 (52.9%), 207 (66.1%), 168 (100%); 
Anal. Calcd. For C21H22O3 C, 78.23; H, 6.88; Found C, 78.32; H, 

6.86.  

 

ethyl 5-(4-fluorobenzyl)-2-methyl-4,5-dihydrofuran-3-
carboxylate: white solid; Mp: 52-54 °C; 

1
H NMR (400 MHz) 

(CDCl3)  7.21-7.18 (m, 2 H), 7.03-6.99 (m, 2 H), 4.86-4.78 (m, 
1 H), 4.20-4.14 (m, 2 H), 3.04-2.83 (m, 3 H), 2.65-2.59 (m, 1 H), 

2.19 (t, J = 1.6 Hz, 3 H), 1.28 (t, J = 6.8 Hz, 3 H); 
13

C NMR 

(100.6 MHz) (CDCl3)  167.5, 166.2, 161.8, (d, J = 245 Hz), 
132.7 (d, J = 3 Hz), 130.8 (d, J = 8 Hz),  115.2, (d, J = 21 Hz), 
101.7, 82.4, 59.5, 41.1, 34.7, 14.5, 14.1; 

19
F (376.5 MHz) 
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(CDCl3)  -105.94 (s); IR (KBr, cm
-1

) 2923, 1693, 1654, 1508, 

1380, 1324, 1261, 1218, 1147, 1091, 979, 759; MS m/z (relative 
intensity) 219 (13.7%), 122(17.8%), 97 (18.6%), 264 (M

+
 

31.2%), 127 (37.4%), 155 (48.0%), 55 (51.7%), 83 (85.0%), 109 

(100%); Anal. Calcd. For C15H17FO3 C, 68.17; H, 6.48; Found C, 
68.25; H, 6.46.  

 

ethyl 2-methyl-5-(3-(trifluoromethyl)benzyl)-4,5-
dihydrofuran-3-carboxylate: pale yellow liquid; 

1
H NMR (400 

MHz) (CDCl3)  7.50-7.42 (m, 4 H), 4.90-4.82 (m, 1 H), 4.16 (q, 
J = 6.8 Hz, 2 H), 3.06 (dd, J1 = 14 Hz, J2 = 7.2 Hz, 1 H), 3.01-2.92 

(m, 2 H), 2.65-2.60 (m, 1 H), 2.18 (s, 3 H) 1.27 (t, J = 6.8 Hz, 3 

H); 
13

C NMR (100.6 MHz) (CDCl3)  167.3, 165.9, 138.0, 132.8, 
130.7 (q, J = 32 Hz), 128.8, 126.0 (q, J = 4 Hz), 124.1 (q, J = 272 

Hz), 123.5 (q, J = 4 Hz), 101.7, 81.8, 59.4, 41.7, 34.8, 14.4, 14.0; 
19

F NMR (376.5 MHz) (CDCl3)  -62.59 (s); IR (neat, cm
-1

) 
3397, 2358, 1695, 1650, 1450, 1384, 1330, 1124, 1076, 703; MS 

m/z (relative intensity) 97 (20.9%), 269 (22.7%), 314 (M
+
 

32.8%), 109 (48.0%), 127 (54.4%), 55 (61.1%), 155 (96.6%), 83 
(100%); Anal. Calcd. For C16H17F3O3; C, 61.14; H, 5.45; Found 

C, 61.21; H, 5.43. 

 

ethyl 5-(4-chlorobenzyl)-2-methyl-4,5-dihydrofuran-3-

carboxylate: yellow liquid; 
1
H NMR (400 MHz) (CDCl3)  7.29 

(d, J = 4.4 Hz, 2 H), 7.20 (d, J = 8 Hz, 2 H), 4.86-4.78 (m, 1 H), 

4.22-4.14 (m, 2 H), 3.03-2.83 (m, 3 H), 2.61 (dd, J1 = 13.4 Hz, J2 

= 6.8, 1 H), 2.19 (s, 3 H), 1.28 (t, J = 6.8 Hz); 
13

C NMR(100.6 
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MHz) (CDCl3)  167.4, 166.1, 135.5, 132.5, 130.7, 128.6, 101.7, 

82.2, 59.4, 41.3, 34.8, 14.4, 14.1); IR (neat, cm
-1

) 2981, 2360, 
2341, 1695, 1644, 1492, 1444, 1384, 1263, 1228, 1085, 873, 763, 

669; MS m/z (relative intensity) 63 (7.3%), 235 (16.3%), 109 

(19.3%) ,91 (24.1%), 280 ( M
+
 29.9%), 125 (52.8%), 55 (57.4%), 

127 (74.3%), 155 (93.1%), 83 (100%); Anal. Calcd. For  

C15H17ClO3 C, 64.17; H, 6.10; Found C, 64.19; H, 6.09. 

 

ethyl 5-(4-(ethoxycarbonyl)benzyl)-2-methyl-4,5-

dihydrofuran-3-carboxylate: yellow liquid; 
1
H NMR (400 

MHz) (CDCl3)  7.99 (d, J = 8 Hz 2 H), 7.29 (d, J = 8 Hz, 2 H), 
4.89-4.82 (m, 1 H), 4.37 (q, J = 6.8 Hz, 2 H) 4.15 (q, J = 6.4 Hz, 

2 H), 3.07 (dd, J1 = 14 Hz, J2 = 7.2 Hz, 1 H) 2.97-2.90 (m, 2 H), 
2.64-2.59 (m, 1 H), 2.17 (s, 3 H), 1.39 (t, J = 7.2 Hz, 3 H), 1.26 (t, 

J = 7.2 Hz, 3 H); 
13

C NMR(100.6 MHz) (CDCl3)  167.4, 166.4, 166.1, 142.3, 
129.7, 129.3, 129.0, 101.7, 82.0, 60.8, 59.4, 41.9, 34.8, 14.4, 14.3, 
14.1; 

IR (neat, cm
-1

) 2981, 1714, 1648, 1612, 1446, 1384, 1369, 1276, 

1228, 1178, 1105, 1022, 979, 873, 761; MS m/z (relative 

intensity) 65 (7.1%), 281 (7.6%), 227 (7.6%), 118 (16.2%), 207 
(16.9%), 318 (M

+
 18.4%), 109 (18.5%), 273 (19.7%), 55 (43.2%), 

91 (51.5%), 83 (56.4%), 155 (57.9%), 136 (65.1%), 164 (100%); 

Anal. Calcd. For C18H22O5 C, 67.91; H, 6.97; Found C, 67.99; H, 
6.95. 

 

ethyl 5-(4-acetylbenzyl)-2-methyl-4,5-dihydrofuran-3-

carboxylate: yellow wax; Mp: 51-53 °C; 
1
H NMR (400 MHz) 
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(CDCl3)  7.89 (d, J = 8 Hz, 2 H), 7.31 (d, J = 8 Hz, 2 H), 4.88-

4.81 (m, 1 H), 4.13 (q, J = 7,2 Hz, 2 H), 3.06 (dd, J1 = 14 Hz, J2 = 
7.2 Hz, 1 H), 2.96-2.87 (m, 2 H), 2.63-2.57 (m, 4 H), 2.15 (s, 3 

H), 1.24(t, J = 7.0 Hz, 3 H);
 13

C NMR (100.6 MHz) (CDCl3)  
197.7, 167.3, 166.0, 142.7, 135.7, 129.6, 128.5, 101.7, 81.9, 59.4, 

41.9, 34.8, 26.5, 14.4, 14.1; IR (KBr, cm
-1

) 2958, 2902, 2867, 

1697, 1679, 1648, 1604, 1267, 1224, 1145, 1087, 962, 761 cm
-1

; 
MS m/z (relative intensity) 115 (5.4%), 243 (8.1%), 105 (11.1%), 

288 (M
+
 11.2%), 155 (13.3%), 90 (14.7%), 55 (27.0%), 83 

(28.1%), 134 (100 %); 
Anal. Calcd. For C17H20O4 C, 70.81; H 6.99; Found C, 70.72; H, 

7.01. 

 

ethyl 5-(4-cyanobenzyl)-2-methyl-4,5-dihydrofuran-3-

carboxylate: Yellow solid; Mp: 115-117 °C; 
1
H NMR (400 

MHz) (CDCl3)  7.61(d, J = 8.2 Hz, 2 H), 7.35 (d, J = 8.0 Hz, 2 
H), 4.89-4.81(m, 1 H),4.16 (q, J = 7.2 Hz, 2 H), 3.10-2.93 (m, 3 

H), 2.64-2.58 (m, 1 H) 2.17 (s, 3H), 1.28 (t, J = 7.2 Hz, 3 H); 
13

C NMR (100.6 MHz) (CDCl3)  167.2, 165.9, 142.7, 132.2, 
130.1, 118.8, 110.7, 101.8, 81.5, 59.5, 42.0, 34.9, 14.4, 14.1; 

IR (KBr, cm
-1

) 3855, 2227, 1697, 1654, 1457, 1384, 1228, 1149, 
1085, 977; MS m/z (relative intensity) 271 (M

+
 7.0%),109 

(10.3%), 116 (14.1%), 55 (14.4%), 127 (20.5%), 83 (21.5%), 40 

(22.9%), 155 (27.7%), 44 (100%); Anal. Calcd. For C16H17NO3 

C, 70.83; H, 6.32; N,5.16; Found C, 70.91; H, 6.30; N,5.15. 

 

ethyl 5-(2-cyanobenzyl)-2-methyl-4,5-dihydrofuran-3-

carboxylate: yellow solid; Mp: 61-65°C; 
1
H NMR (400 MHz) 
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(CDCl3)  7.66 (d, J = 7.6 Hz, 1 H), 7.588 (t, J = 1.2 Hz, 1 H), 

7.416-7.354 (m, 2 H), 4.946-4.870 (m, 1 H), 4.184 (q, J = 7.2 Hz, 
2 H), 3.248 (dd, J1 = 14 Hz, J2 = 8.4 Hz, 1 H), 3.124-3.029 (m, 2 

H), 2.717-2.660 (m, 1 H), 2.205(t, J = 1.2 Hz, 3 H), 1.294 (t, J = 

7.2 Hz, 3 H);
 13

C NMR (100.6 MHz) (CDCl3)  167.2, 166.0, 
141.1, 132.9, 132.8, 130.5, 127.3, 118.0, 113.3, 101.8, 81.3, 59.5, 

40.6, 35.1, 14.4, 14.1; IR (KBr, cm
-1

) 2989, 2954, 2225, 2689, 
2648, 1263, 1224, 1128, 1089, 979, 761; MS m/z (relative 

intensity) 271 (M
+
 21.6%), 226 (22.4%), 89 (42.8%), 109 

(48.5%), 55 (60.5%), 116 (67.1%), 83 (81.6%), 127 (88.0%), 155 
(100%); Anal. Calcd. For C16H17NO3  C, 70.83; H, 6.32; N, 5.16; 

Found C, 70.85; H, 6.31 ; N, 5.17. 

 

ethyl 2-methyl-5-(3-nitrobenzyl)-4,5-dihydrofuran-3-

carboxylate: yellow solid; Mp: 58-60 °C, yield: 81%; 
1
H NMR 

(400 MHz) (CDCl3)  8.14-8.12 (m, 2 H), 7.58 (d, J = 7.6 Hz, 1 
H), 7.52-7.48 (m, 1 H), 4.93-4.46 (m, 1 H), 4.17 (q, J = 6.8 Hz, 2 

H), 3.12 (dd, J1 = 14,2 Hz, J2 = 7.6 Hz, 1 H), 3.05-2.99 (m, 2 
H), 2.67-2.61 (m, 1 H), 2.19 (t, J = 1.2 Hz, 3 H), 1.28 (t, J = 7.2 

Hz, 3 H);
 13

C NMR (100.6 MHz) (CDCl3)  167.2, 166.0, 148.3, 
139.1, 135.6, 129.3, 124.2, 121.8, 101.8, 81.5, 59.5, 41.5, 34.9, 

14.4, 14.0; IR (KBr, cm
-1

) 2925, 1698, 1654, 1429, 1382, 1351, 
1230, 1089, 690; MS m/z (relative intensity) 63 (9.5%), 115 

(11.9%), 246 (16.7%), 291 (M
+
 20.8%), 90 (29.4%), 109 

(35.7%), 55 (57.2%), 127 (60.8%), 83 (79.2%), 155 (100%); 
Anal. Calcd. For C15H17NO5 C, 61.85; H, 5.88; N, 4.81; Found C, 

61.93; H, 5.86; N, 4.80. 
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ethyl 2-methyl-5-(pyridin-3-ylmethyl)-4,5-dihydrofuran-3-

carboxylate: , Brown liquid; 
1
H NMR (400 MHz) (CDCl3)  

8.48 (br s, 2 H), 7.54 (d, J = 7.7 Hz, 1 H), 7.24 (dd, J1 = 7.7 Hz, 

J2 = 4.9 Hz, 1 H); 4.85-4.77 (m, 1 H), 4.12 (q, J = 6.8 Hz, 2 H), 

3.00-2.84 (m, 3 H), 2.62-2.56 (m, 1 H), 2.14 (s, 3 H), 1.24 (t, J = 
6.8 Hz, 3 H);

 
 

13
C NMR (100.6 MHz) (CDCl3)  167.5, 166.2, 157.4, 149.4, 

136.3, 123.9, 121.7, 101.7, 81.4, 59.4, 44.3, 34.9, 14.4, 14.1; IR 

(neat, cm
-1

) 2925, 1695, 1648, 1425, 1384,1326, 1263, 1226, 

1083, 1027, 979, 763, 715, 759; MS m/z (relative intensity) 109 
(10,1%), 202 (12.0%), 130 (12.0%), 83 (17.3%), 93 (100%), 247 

(M
+
 18.4%); 

Anal. Calcd. For C14H17NO3 C, 68.0; H, 6.44; N, 6.93; Found C, 
68.8; H, 6.45; N, 6.92. 

 

ethyl 2-methyl-5-(pyridin-2-ylmethyl)-4,5-dihydrofuran-3-
carboxylate: Brown liquid, yield: 74%; 
1
H NMR (400 MHz) (CDCl3)  8.535 (t, J = 0.8 Hz, 1 H), 7.625-

7.582 (m, 1 H), 7.189-7.127 (m, 2 H), 5.132- 5.055 (m, 1 H), 

4.141 (q, J = 6.8 Hz, 2 H), 3,188 (dd, J1 = 14 Hz, J2 = 7.6 Hz, 1 

H), 3.60-2.950 (m, 2 H), 2.692-2.634 (m, 1 H), 2.159(t, J = 1.6 
Hz, 3 H), 1.251 (t, J = 7.2 Hz, 3 H); 

13
C NMR (100.6 MHz) 

(CDCl3)  167.5, 166.2, 157.4, 149.4, 136.3, 123.9, 121.7, 101.7, 
81.4, 59.4, 44.3, 34.9, 14.4, 14.1; IR (neat, cm

-1
) 2927, 1957, 

1695, 1644, 1589, 1436, 1384, 1228, 1081, 975, 761 cm
-1
; MS 

m/z (relative intensity) 247 (M
+
 0.1%), 202 ( 2.6%), 65 (3.4%), 

130 (7.2%), 93 (100%); 

Anal. Calcd. For C14H17NO3 C, 68.00; H 6.93; Found C, 68.15; 

H, 6.91. 
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ethyl 2-methyl-5-(quinolin-3-ylmethyl)-4,5-dihydrofuran-3-

carboxylate: yellow liquid; 
1
H NMR (400 MHz) (CDCl3)  8.79 

(d, J = 2.0 Hz, 1 H), 8.08(d, J = 8.8 Hz, 1 H), 7.97 (s, 1 H), 7.76 

(d, J = 8.4Hz, 1 H), 7.68-7.64 (m, 1 H), 7.51 (t, J = 7.6 Hz, 1 H), 

4.94-4.87 (m, 1 H), 4.13 (q, J = 7.2Hz, 2 H), 3.15 (dd, J1 = 14,4 
Hz, J2 = 7.2 Hz, 1 H), 3.07-2.95 (m, 2 H), 2.69-2.63 (m, 1 H), 

2.17 (s, 3 H), 1.23 (t, J = 7.2 Hz, 3 H) ); 
13

C NMR (100.6 MHz) 

(CDCl3)  167.3, 166.0, 152.1, 147.1, 135.7, 129.9, 129.2, 129.1, 
127.9, 127.4, 126.7, 101.8, 81.8, 59.5, 39.2, 34.9, 14.4, 14.1; IR 

(neat, cm
-1

) 2927, 1695, 1650, 1494, 1444, 1382, 1326, 1261, 
1224, 1083, 977, 755; 

MS m/z (relative intensity) 252 (6.0%), 155 (6.3%), 207 (6.8%), 

127 (8.9%), 180 (11.2%), 297 (M
+
 15.0%), 83 (17.5%), 55 

(18.5%), 115 (23.2%) 143 (100%); Anal. Calcd. For C18H19NO3 

C, 72.71; H, 6.44; N, 4.71; Found  C, 72.65; H, 6.45; N, 4.70. 

 

ethyl 5-(4-cyanobenzyl)-2-(furan-2-yl)-4,5-dihydrofuran-3-
carboxylate: pale yellow solid, mp: 59-62 °C, yield 84%; 

1
H 

NMR (400 MHz) (CDCl3)  8.43 (s, 1 H), 7.61 (d, J = 8.0 Hz, 2 
H), 7.41-7.35 (m, 3 H), 6.91(s, 1 H), 4.95-4.87 (m, 1 H), 4.20 (q, 
J = 7.2 Hz, 2 H), 3.20-3.11 (m, 2 H), 2.99 (dd, J1 = 14.0 Hz, J2 = 

5.2 Hz, 1 H), 2.79 (dd, J1 = 15.2 Hz, J2 = 7.2 Hz, 1 H), 1.31-1.26 

(m, 3 H); 
13

C NMR (100.6 MHz) (CDCl3)  165.2, 157.7, 146.8, 142.8, 
142.5, 132.2, 130.2, 118.8, 116.3, 110.7, 110.0, 101.1, 80.9, 59.8, 

42.0, 36.4, 14.5; IR (KBr, cm
-1

) 3160, 2979, 2931, 2227, 1695, 
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1633,1504, 1446, 1369, 1332, 1249, 1157, 1103, 1074, 908, 873, 

817, 763, 601; 

MS m/z (relative intensity) 63 (10.0%), 278 (10.8%), 105 

(22.1%), 135 (23.0%), 73 (29.2%), 323 (M
+
 44.6%), 116 (47.0%), 

207 (49.1%), 161(69.4%), 95 (100%); Anal. Calcd. For 

C19H17NO3 C,74,25; H, 5.58; N, 4.56; Found C, 74,34; H, 5.56; N, 

4.55.  

 

ethyl 2-(furan-2-yl)-5-(4-methylbenzyl)-4,5-dihydrofuran-3-

carboxylate: yellow liquid; 
1
H NMR (400 MHz) (CDCl3)  8.49 

(d, J = 0.8 Hz, 1 H), 7.45-7.44 (m, 1 H), 7.17 (s, 4 H), 7.02 (dd J1 

= 2.0 Hz, J2 = 0.7 Hz, 1 H), 4.96-4.88 (m, 1 H), 4.30-4.18(m, 2 
H), 3.16-3.10 (m , 2 H), 2.92-2.81 (m, 2 H), 2.38 (s, 3 H), 1.33 (t, 

J = 7.2 Hz 3 H); 
13

C NMR (100.6 MHz) (CDCl3)  165.5, 158.1, 
146.8, 142.3, 136.2, 134.0, 129.3, 129.2, 116.6, 110.2, 101.1, 

82.1, 59.7, 41.6, 36.3, 21.1, 14.5; IR (neat, cm
-1

) 3160, 2979, 

2360, 1698, 1629, 1504, 1446, 1367, 1332, 1247, 1157, 1103, 
1074,873, 806, 763, 599; 

MS m/z (relative intensity) 134 (19.8%), 51 (22.7%), 117 

(23.1%), 207 (38.2%), 77 (48.2%), 312 (M
+
 51.5%), 95 (87.0%), 

105 (100%); 

Anal. Calcd. For C19H20O3 C, 77.0; H, 6.80; Found C, 76.8; H, 

6.81. 

 

ethyl 5-(4-cyanobenzyl)-2-phenyl-4,5-dihydrofuran-3-
carboxylate: brown solid; Mp:108-110 °C; 

1
H NMR (400 MHz) 

(CDCl3)  7.754-7.733 (m, 2 H), 7.632 (d, J = 8.0 Hz, 2 H), 
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7.457-7.281 (m, 5 H), 5.040-4.964 (m, 1 H), 4.144 (q, J = 6.8 Hz, 

2 H), 3.277-3.179 (m, 2 H), 3.062 (dd, J1 = 14.2 Hz, J2 = 5.6 Hz, 1 

H), 2.874 (dd, J1 = 15,2 Hz, J2 = 7.6 Hz, 1 H), 1.216 (t, J = 7.2 Hz, 

3 H); 
13

C NMR (100.6 MHz) (CDCl3)  165.1, 164.3, 142.7, 132.3, 
130.4, 130.2, 129.8, 129.2, 127.7, 118.8, 110.7, 102.2, 81.1, 59.9, 

42.0, 36.8, 14.2; IR (KBr, cm
-1

) 2925, 2225, 1702, 1637, 1598, 

1247, 1091, 1025, 755, 698; MS m/z (relative intensity) 63 
(11.2%), 127 (17.3%),253 (17.7%), 51 (23.4%), 281 (23.6%), 145 

(28.4%), 217 (35.7%), 333 (M
+
 35.9%), 89 (36.5%), 207 (58.0%), 

116 (74.2%), 77 (82.9%), 171 (85.1%), 105 (100%); Anal. Calcd. 

For C21H19NO3 C, 75.66; H, 5.74; N, 4.20; Found C, 75.56; H, 
5.73; N, 4.22. 

 

ethyl 5-(4-methylbenzyl)-2-phenyl-4,5-dihydrofuran-3-

carboxylate: orange liquid; 
1
H NMR (400 MHz) (CDCl3)  

7.822-7.802 (m, 2 H), 7.444-7.388 (m, 3 H), 7.213-7.160 (m, 4 

H), 5.036-4.959 (m, 1 H), 4.215-4.135 (m, 2 H), 3.215-3.153 (m, 
2 H), 2.895-2.886 (m, 2 H), 2.376 (s, 3 H), 1.251-1.192 (m, 3 H); 
13

C NMR (100.6 MHz) (CDCl3)  165.4, 164.7, 136.2, 133.9, 
130.2, 129.4, 129.3,129.2, 128.7, 127.6, 102.2, 82.3, 59.7, 41.4, 

36.5, 21.1, 14.3; 

IR (neat, cm
-1

) 2979, 2925, 1737, 1687, 1625, 1598, 1446, 1384, 
1243, 1085, 873, 757, 692; MS m/z (relative intensity) 308 (M

+
 

0.6%), 188 (2.3%), 322 (3.4%), 65 (9.4%), 128 (11.1%), 51 

(15.1%), 144 (16.7%), 91 (31.6%), 171 (36.6%), 115 (55.0%), 77 

(67.5%), 105 (100%); Anal. Calcd. For C21H22O3 C, 78.23; H, 
6.88; Found C, 78.16; H, 6.86. 
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ethyl 5-(4-cyanobenzyl)-2-p-tolyl-4,5-dihydrofuran-3-

carboxylate: yellow solid; Mp: 84 - 90 °C; 
1
H NMR (400 MHz) 

(CDCl3)  7.67 (d, J = 8.0 Hz, 2 H), 7.62 (d, J = 8.0 Hz, 2 H), 
7.40 (d, J = 8.0 Hz, 2 H), 7.20 (d, J = 8.0 Hz, 2 H), 5.13-4.94 (m, 

1 H), 4.15 (q, J = 7.2 Hz, 2 H), 3.26-3.16 (m, 2 H), 3.05 (dd, J1 = 

14.0 Hz, J2 = 5.2 Hz, 1 H), 2.86 (dd, J1 = 15,2 Hz, J2 = 7.6 Hz, 1 

H), 2.40 (s, 3 H),1.24 (t, J = 6.8 Hz, 3 H); 
13

C NMR (100.6 MHz) 

(CDCl3)  165.2, 164.5, 142.8, 140.8, 132.3, 130.2, 129.2, 128.4, 
126.9, 118.9, 110.7, 101.6, 80.9, 59.8, 42.0, 36.8, 21.5, 14.3; IR 

(KBr, cm
-1

) 2927, 2225, 1697, 1621, 1509, 1243, 1083, 829, 755; 

MS m/z (relative intensity) 103 (12.6%), 281 (14.6%), 347 

(26.9%), 158 (30.3%), 297 (34.5%), 65 (33.1%), 73 (48.3%), 129 
(46.0%), 185 (51.6%), 91 (87.4%), 116 (100%); Anal. Calcd. For 

C22H21NO3 , 76.06; H, 6.09; N, 4.03; Found C, 76.21; H, 6.07; N, 

4.04. 

 

ethyl 5-(4-methylbenzyl)-2-p-tolyl-4,5-dihydrofuran-3-

carboxylate: yellow liquid; 
1
H NMR (400 MHz) (CDCl3)  

7.7450 (d, J = 8 Hz, 2 H), 7.235-7.178 (m, 6 H), 5.014-4.937 (m,1 

H), 4.199-4.146 (m, 2 H), 3.203-3.142 (m, 2 H), 2.974-2.876 (m, 
2 H), 2.416 (s, 3 H) 2.377 (s, 3 H), 1.271-1.201 (m, 3 H); 

13
C 

NMR (100.6 MHz) (CDCl3)  165.5, 164.9, 140.5, 136.1, 134.0, 
129.4, 129.3, 129.2, 128.8, 128.3, 117.3, 101.5, 82.1, 59.6, 36.6, 

21.7, 21.5, 14.3; 



 
98 

IR (KBr, cm
-1

) 2979, 1737, 1683,1608, 1511, 1446, 1384, 1243, 

1184,1081,821,761; MS m/z (relative intensity) 291 (9.0%), 141 

(11.1%), 207 (14.4%), 65 (30.7%), 336 (M
+
 32.9%), 77 (34.6%), 

158 (35.7%), 230 (47.6%), 129 (52.9%), 185 (62.9%), 105 
(83.2%), 119 (86.6%), 91 (100%); Anal. Calcd. For C22H24O3  C, 

78.54; H, 7.19; Found C, 78.44; H, 7.18. 

 

ethyl 5-(4-cyanobenzyl)-2-(4-methoxyphenyl)-4,5-

dihydrofuran-3-carboxylate: yellow liquid; 
1
H NMR (400 

MHz) (CDCl3)  7.80 (d, J = 8.8 Hz, 2 H), 7.62 (d, J = 8 Hz, 2 H) 
7.39 (d, J = 8 Hz, 2 H), 6.91 (d, J = 8.8 Hz, 2 H), 4.99-4.91 (m, 1 

H), 4.16 (q, J = 6.8 Hz, 2 H), 3.85 (s, 3 H), 3.25-3.16 (m, 2 H), 
3.04 (dd, J1 = 14.4 Hz, J2 = 5.6 Hz, 2 H) 2.85 (dd, J1 = 14.8 Hz, J2 

= 7.6 Hz, 2 H), 1.25 (t, J = 7.2 Hz, 3 H); 
13

C NMR (100.6 MHz) 

(CDCl3)  165.3, 164.2, 161.3, 142.9, 132.3, 131.1, 130.2, 122.0, 
118.8, 113.0, 110.7, 100.8, 80.7, 59.7, 55.3, 42.0, 36.9, 14.3; IR 

(Neat, cm
-1

) 2933, 2227, 1695, 1606, 1509, 1461, 1384, 1247, 
1178, 1079, 1027, 873, 838, 763; MS m/z (relative intensity) 267 

(10.1%), 118 (10.6%), 63 (11.4%), 191 (17.1%), 103 (19.6%), 

253 (22.1%), 89 (22.3%),147 (23.5%), 246 (24.4%), 363 (M
+
 

24.8%), 174 (25.4%), 116 (29.7%), 281 (38.2%), 73 (88.3%), 135 
(88.3%), 207 (100%); Anal. Calcd. For C22H21NO3  C, 72.71; H, 

5.82;N, 3.85; Found C, 72.83; H, 5.83, N, 3.86. 
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ethyl 2-(4-methoxyphenyl)-5-(4-methylbenzyl)-4,5-

dihydrofuran-3-carboxylate: yellow solid; 
1
H NMR (400 MHz) 

(CDCl3)  7.86 (d, J = 8.8 Hz, 2 H), 7.21-7.16 (m, 4 H), 6.93 (d, J 
= 8.8 Hz, 2 H), 4.99-4.91 (m, 1 H), 4.18 (q, J = 6.8 Hz, 2 H), 3.87 

(s, 3 H), 3.17 (dd, J1 = 14 Hz, J2 = 8.8 Hz, 2 H), 2.96-2.86 (m, 2 
H), 2.38 (s, 3 H), 1.26 (t, J = 6.8 Hz, 3 H); 
13

C NMR (100.6 MHz) (CDCl3)   165.7, 164.6, 161.2, 136.1, 
134.0,131.1, 129.3, 129.2, 122.5, 113.0, 100.7, 81.9, 59.6, 55.3, 

41.5, 36.7, 21.1, 14.4; IR (KBr, cm
-1

) 2933, 2227, 1695, 1606, 

1509, 1461, 1384, 1303, 1247, 1178, 1079, 1027, 873, 763; MS 
m/z (relative intensity) 267 (10.1%), 218 (10.6%), 63 (11.4%), 

191 (17.1%), 103 (19.6%), 253 (22.1%), 89 (22.3%), 147 

(23.5%), 246 (24.4%), 363 (M
+
 24.8%) 174 (25.4%), 116 

(29.7%), 281 (38.2%), 73 (88.3%), 135 (88.3%), 207 (100%); 

Anal. Calcd. For C22H24O4 C, 74.98; H, 6.86; Found C, 75.06; H, 

6.85. 

 

ethyl 5-(4-cyanobenzyl)-2-(4-nitrophenyl)-4,5-dihydrofuran-3-

carboxylate: yellow liquid, yield: 23%; 
1
H NMR (400 MHz) 

(CDCl3)  8.253 (d, J = 9.2 Hz, 2 H), 7.962 (d, J = 8.8 Hz, 2 H), 
7.657 (d, J = 8.4 Hz, 2 H), 7.399 (d, J = 8.4 Hz, 2 H), 5.106-5.029 

(m, 1 H), 4.198-4.135 (m, 2 H), 3.321-3.203 (m, 2 H), 3.099 (dd, 
J1 = 14.4 Hz, J2 = 5.6 Hz, 1 H), 2.922 (dd, J1 = 15.6 Hz, J2 = 8 Hz, 

1 H), 1.246 (t, J = 7.2 Hz, 3 H); 
13

C NMR (100.6 MHz) (CDCl3)  
164.5, 161.4, 148.6, 142.2, 135.8, 132.4, 130.3, 130.1, 123.6, 

122.8, 111.0, 105.2, 81.6, 60.3, 41.9, 36.9, 14.2; IR (Neat, cm
-1
) 
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2925, 2227, 1695, 1592, 1519, 1454, 1384, 1346, 1245, 1085, 

873, 754; MS m/z (relative intensity) 63 (17.3%), 55 (33.0%), 

378 (M
+ 

41.5%), 155 (100%); Anal. Calcd. For C21H18N2O5 C, 

66.66; H, 4.79; N, 7.40; Found C, 66.75; H, 4.80; N, 7.38. 

 

ethyl 5-(4-methylbenzyl)-2-(4-nitrophenyl)-4,5-dihydrofuran-

3-carboxylate: yellow liquid; 
1
H NMR (400 MHz) (CDCl3)  

8.24 (dd, J1= 5.6 Hz, J2=2 Hz, 2 H), 8.00-7.98 (m, 2 H), 7.17 (m, 

4H),  5.08-5.00 (m, 1 H), 4.16 (q, J = 7.2 Hz, 2 H), 3.24-3.13 (m, 
2 H), 3.00-2.90 (m, 2 H), 2.37 (s, 3 H), 1.24 (t, J = 7.2 Hz, 3 

13
C 

NMR (100.6 MHz) (CDCl3)  164.2, 161.3, 142.9, 132.3, 131.1, 
130.2, 122.0, 118.8, 113.0, 110.7, 100.7, 80.7, 59.7, 42.0, 36.9, 

21.7, 14.4; 
IR (Neat, cm

-1
) 2925, 1695, 1592,1519, 1461, 1374, 1301, 1247, 

1079, 1085, 873, 763; MS m/z (relative intensity), 55 (13.4%), 63 

(15.4%) 105 (21.7%), 367 (M
+ 

33.5%), 155 (100%); Anal. Calcd. 

For C21H21NO5 C, 68.65; H, 5.76 N, 3.81; Found C, 68.70; H, 
5.75 N, 3.83 

 

ethyl 5-(4-cyanobenzyl)-2-isopropyl-4,5-dihydrofuran-3-

carboxylate: yellow liquid; 
1
H NMR (400 MHz) (CDCl3)  7.60 

(d, J = 8.0 Hz, 2 H), 7.34 (d, J = 8.4 Hz, 2 H), 4.85-4.77 (m, 1 H), 

4.15 (q, J = 6.8 Hz, 2 H), 3.60 (ept, J = 6.8 Hz, 1 H), 3.06-2.89 

(m, 3 H), 2.58 (dd, J1 = 14.4 Hz, J2 = 7.2 Hz, 1 H), 1.26 (t, J = 7.2 

Hz, 3 H), 1.10 (d, J = 6.8 Hz, 3H), 1.08 (d, J = 6.8 Hz, 3H); 
13

C 
NMR (100.6 MHz) (CDCl3) 174.9, 165.8, 142.8, 132.2, 130.3, 

118.8, 110.6, 99.4, 81.3, 59.4, 42.0, 34.9, 26.7, 19.6, 19.5, 14.4; 
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IR (neat, cm
-1

) 2973, 2873, 2229, 1695, 1633, 1469, 1371, 1342, 

1236, 1116, 1045, 815, 765, 557; MS m/z (relative intensity) 141 

(23.2%), 254 (24.9%), 111 (25.2%), 69 (28.3%), 55 (37.0%), 299 

(M
+
 44.2%), 137 (44.9%), 155 (65.9%), 116 (77.3%), 183 

(100%); Anal. Calcd. For C18H21NO3,C, 72.22; H, 7.07; N, 4.68; 

Found C, 72.35; H, 7.05, N, 4.65. 

 

ethyl 2-isopropyl-5-(4-methylbenzyl)-4,5-dihydrofuran-3-

carboxylate: brown liquid; 
1
H NMR (400 MHz) (CDCl3)  7.14 

(s, 4 H), 4.85-4.78 (m, 1 H), 4.21-4.15 (m, 2 H), 3.65 (ept, J = 6.9 

Hz, 1 H), 3.09 (dd, J1 = 14 Hz, J2 = 6.4 Hz, 1 H), 2.92 (dd, J1 = 

14.4 Hz, J2 = 10 Hz, 1 H), 2.81 (dd, J1 = 14 Hz, J2 = 6.4 Hz, 1 H), 
2.63 (dd, J1 = 14.8 Hz, J2 = 7.2 Hz, 1 H), 2.36 (s, 3 H), 1.29 (t, J = 

7.2 Hz, 4 H), 1.17 (d, J = 6.9 Hz, 3H), 1.14 (d, J = 6.9 Hz, 3H); 
13

C NMR (100.6 MHz) (CDCl3)  175.4, 166.2, 136.1, 134.0, 
129.4, 129.1, 99.2, 82.5, 59.3, 41.5, 34.7, 26.8, 21.0, 19.7, 19.6, 

14.4; IR (neat, cm
-1
) 2923, 1959, 1633, 1450, 1384, 1047, 873, 

713, 406; MS m/z (relative intensity) 243 (10.5%), 141 (12.4%), 

69 (17.6%), 55 (18.6%), 155 (20.0%), 113 (21.7%), 79 (30.6%), 

288 (M
+
 30.6%), 153 (30.7%), 91 (35.3%), 105 (69.7%), 106 

(100%); Anal. Calcd. For C18H24O3 C, 74.97; H, 8.39; Found C, 
74.86; H, 8.37. 

 

ethyl 2-tert-butyl-5-(4-methylbenzyl)-4,5-dihydrofuran-3-

carboxylate: yellow liquid; 
1
H NMR (400 MHz) (CDCl3)  7.16 

(s, 4 H), 4.77-4.69 (m,1 H), 4.18-4.12 (m, 2 H), 3.03-2.95 (m, 2 
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H), 2.79 (dd, J1 = 14 Hz, J2 = 6.4 Hz, 1 H), 2.69 (dd, J1 = 14.4 Hz, 

J2 = 7.2 Hz, 1 H), 2.35 (s, 3 H), 1.31 (m, 12 H); 
13

C NMR (100.6 

MHz) (CDCl3)  167.6, 162.8, 136.2, 133.2, 129.2, 129.1, 101.6, 
82.8, 59.4, 41.6, 34.7, 32.8, 21.0, 14.2; IR (neat, cm

-1
) 2923, 

1959, 1633, 1450, 1397,1370, 1047, 873, 713, 406; MS m/z 
(relative intensity) 105 (11.3%), 302 (M

+
 27.3%), 63 (55.1%), 

155 (100%); Anal. Calcd. For C19H26O3 C, 75.46; H, 8.67; Found 

C, 75.66; H, 8.65 
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4.2.2 Additional information and characterization 

data on 2-amino ketones 

General information: Ethyl propargyl carbonates were 

prepared via Sonogashira cross-coupling of aryl iodides with 
propargyl alcohols. The isolated cross-coupling products were 

treated with ethyl chlorocarbonate to give the propargylic esters 

in 70-98% overall yield. 

Typical procedure for the preparation of 3-m-tolylprop-2-
yn-1-ol: A flask equipped with a magnetic stirring bar was 

charged with PdCl2(PPh3)2 (0.017 mmol, 12.0 mg) and CuI (0.017 

mmol, 3.2 mg) dissolved in diisopropylamine (1.8 mL) and N,N-
dimethylformamide (0.9 mL). The resultant solution was stirred 

under Nitrogen at room temperature for 10 minutes before adding 

3-iodotoluene (1.7 mmol, 372.8 mg) in N-ethyl-N-
diisopropylamine (1.2 mL) and 2-propyn-1-ol (2.05 mmol, 115.0 

mg). The reaction mixture was stirred for 3 hours at room 

temperature. After this time, the reaction mixture was diluited 

with Et2O and washed with HCl 2N, with a saturated NH4Cl 
solution and with brine. The organic layer was dried over Na2SO4, 

filtered and concentrated under reduced pressure. The residue was 

purified by flash chromatography on silica gel, eluting with a 
73/27 (v/v) n-hexane/AcOEt mixture to obtain 211.0 mg (85% 

yield) of 3-m-tolylprop-2-yn-1-ol. 

Typical procedure for the preparation of ethyl 3-m-
tolylprop-2-ynyl carbonate: A flask equipped with a magnetic 

stirring bar was charged with 3-m-tolylprop-2-yn-1-ol (1.46 

mmol, 218.8 mg) dissolved in CH2Cl2 (3 mL) and 4-(N,N-

dimethylamino)pyridine (2.19 mmol, 267.6 mg). The resultant 
solution was stirred at -30°C for 10 minutes before adding ethyl 

chloroformate (1.75 mmol, 189.0 mg). The reaction mixture was 

stirred for 30 minutes at -30°C and then for an hour at 0°C. After 
this time, the reaction mixture was diluted with Et2O and washed 

with HCl 2N and with brine. The organic layer was dried over 
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Na2SO4, filtered and concentrated under reduced pressure to 

obtain 312mg (98% yield) of 3-m-tolylprop-2-ynyl carbonate.  
1
H NMR (400 MHz) (CDCl3)  7.30-7.27 (m, 2 H), 7.24-7.20 (m, 

1 H), 7.17-7.15 (m, 1 H), 4.97 (s, 2 H), 4.27 (q, J = 7.1 Hz, 2 H), 

2.34 (s, 3 H), 1.35 (t, J = 7.1 Hz, 3 H); 
13

C NMR (100.6 MHz) 

(CDCl3)  154.7, 138.0, 132.5, 129.8, 129.0, 128.2, 121.9, 87.3, 

82.1, 64.5, 56.1, 21.2, 14.3; 

Typical procedure for the preparation of 1-amino-3-

arylpropan-2-ones: A Carousel Tube Reaction (Radley 

Discovery) was charged with Pd2dba3 (8.0 mg, 0.087 mmol), dppf 

(9.7 mg, 0.0175 mmol) and anhydrous THF (1 mL). The solution 

was stirred under Nitrogen at room temperature for 10 minutes 

before adding ethyl 3-phenylprop-2-ynyl carbonate (71.4 mg, 
0.350 mmol) dissolved in anhydrous THF (1 mL) and morpholine 

(91.45mg, 1.05 mmol). The reaction mixture was warmed at 80°C 

and stirred for 3 hours. After cooling, the volatile materials were 

evaporated at reduced pressure and the residue was purified by 
chromatography on neutral aluminum oxide (Brockmann 1) to 

afford 58.2 mg (76% yield) of the following compound:  

 

1-morpholino-3-phenylpropan-2-one: Oil; IR (neat): 3060, 

3028, 2960, 2922, 2856, 1714, 1452, 1385 cm
-1
; 

1
H NMR (400 

MHz) (CDCl3):  7.36-7.24 (m, 5 H), 3.76-3.74 (m, 6 H), 3.23 (s, 

2 H), 2.47-2.46 (m, 4 H); 
13

C NMR (100.6 MHz) (CDCl3):  
205.8, 134.0, 129.4, 128.8, 127.1, 67.0, 66.8, 53.7, 47.8; Anal. 

Calcd. For: C13H17NO2: C, 71.21; H, 7.81; Found: C, 71.13; H, 
7.83. 
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1-phenyl-3-(piperidin-1-yl)propan-2-one: oil; IR (Neat): 3060, 

3028, 2935, 2854, 2804, 1714, 1597, 1574, 1454, 1385 cm
-1

; 
1
H 

NMR (400 MHz) (CDCl3):  7.35-7.32 (m, 2 H), 7.28-7.25 (m, 3 
H), 3.78 (s, 2 H), 3.17 (s, 2 H), 2.40-2.39 (m, 4 H), 1.66-1.61 (m, 

4 H), 1.46-1.45 (m, 2 H); 
13

C NMR (100.6 MHz) (CDCl3):  
207.0, 134.3, 129.4, 128.6, 126.9, 67.7, 54.7, 47.5, 25.8, 23.8; 

Anal. Calcd. For: C14H19NO: C, 77.38; H, 8.81; Found: C, 77.44; 
H, 8.78. 

 

1-(4-ethylpiperazin-1-yl)-3-phenylpropan-2-one: oil; IR 

(Neat) 3060, 3028, 2970, 2933, 2812, 1720, 1454, 1385 cm
-1

; 
1
H 

NMR (400 MHz) (CDCl3): 7.32-7.21 (m, 5 H), 3.73 (s, 2 H), 
3.20 (s, 2 H), 2.50 (m, 8 H), 2.42 (q, J = 7.2 Hz, 2 H), 1.07 (t, J = 

7.2 Hz, 3 H); 
13

C NMR (100.6 MHz) (CDCl3):  206.2, 134.1, 
129.4, 128.7, 127.0, 66.8, 53.4, 52.6, 52.3, 47.7, 12.0; Anal. 

Calcd. For: C15H22N2O: C, 73.13; H, 9.00; Found: C, 73.35; H, 
9.02. 

 

1-(4-(4-fluorophenyl)piperazin-1-yl)-3-phenylpropan-2-one: 

Oil; IR (Neat) 3060, 3030, 2931, 2821, 1722, 1510, 1454, 1385, 

1232 cm
-1

; 
1
H NMR (400 MHz) (CDCl3):  7.37-7.26 (m, 5 H), 

7.00-6.96 (m, 2 H), 6.90-6.87 (m, 2 H), 3.79 (s, 2 H), 3.30 (s, 2 

H), 3.18-3.16 (m, 4 H), 2.65-2.63 (m, 4 H); 
13

C NMR (100.6 

MHz) (CDCl3):  205.9, 157.2 (d, JCF = 237.4 Hz), 147.9 (d, JCF = 
2.1 Hz), 134.0, 129.4, 128.7, 127.1, 117.9 (d, JCF = 7.6 Hz), 115.5 

(d, JCF = 21.9 Hz), 66.6, 53.3, 50.0, 47.8; 
19

F NMR {H} (376.5 

MHz) (CDCl3):  -124.3; Anal. Calcd. For: C19H21FN2O: C, 

73.05; H, 6.78; Found: C, 73.06; H, 6.77. 
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1-(4-(4-bromobenzyl)piperazin-1-yl)-3-phenylpropan-2-one: 

oil; IR (Neat) 3060, 3028, 2935, 2812, 1720, 1487, 1454, 1011 

cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  7.44 (d, J = 8.1 Hz, 2 H), 

7.34-7.31 (m, 2 H), 7.28-7.19 (m, 5 H), 3.75 (s, 2 H), 3.46 (s, 2 
H), 3.22 (s, 2 H), 2.49 (bs, 8 H); 

13
C NMR (100.6 MHz) (CDCl3) 

 206.2, 137.3, 134.1, 131.4, 130.8, 129.5, 128.7, 127.1, 120.9, 
66.8, 62.2, 53.4, 52.9, 47.7; Anal. Calcd. for C20H23BrN2O: C, 

62.02; H, 5.99; Found: C, 62.15; H, 6.01. 

 

2-(4-(2-oxo-3-phenylpropyl)piperazin-1-yl)benzonitrile: oil; IR 

(Neat) 3062, 3030, 2916, 2825, 2220, 1716, 1595, 1489, 1448, 

1383, 1230 cm
-1

; 
1
H NMR (400 MHz) (CDCl3):  7.56 (d, J = 7.9 

Hz, 1 H), 7.49 (t, J = 7.8 Hz, 1 H), 7.36-7.25 (m, 5 H), 7.03-7.00 
(m, 2 H), 3.77 (s, 2 H), 3.33 (s, 2 H), 3.28-3.26 (m, 4 H), 2.70-

2.67 (m, 4 H); 
13

C NMR (100.6 MHz) (CDCl3):  205.6, 155.6, 
134.3, 133.9, 133.8, 129.4, 128.8, 127.1, 121.9, 118.7, 118.4, 

106.1, 66.5, 53.3, 51.3, 47.8; Anal. Calcd. For: C20H21N3O: C, 

75.21; H, 6.63; Found: C, 75.26; H, 6.64. 

 

1-(4-(4-methoxybenzyl)piperazin-1-yl)-3-phenylpropan-2-one: 

oil; IR (Neat) 3060, 3030, 2933, 2810, 1720, 1612, 1512, 1454, 

1246 cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  7.35-7.23 (m, 7 H), 

6.87 (d, J = 8.3 Hz, 2 H), 3.81 (s, 3 H), 3.75 (s, 2 H), 3.47 (s, 2 
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H), 3.21 (s, 2 H), 2.50 (bs, 8 H); 
13

C NMR (100.6 MHz) (CDCl3) 

 206.3, 158.8, 134.2, 130.4, 130.1, 129.5, 128.7, 127.0, 113.6, 
66.8, 62.4, 55.3, 53.4, 52.8, 47.7; Anal. Calcd. For: C21H26N2O2: 

C, 74.52; H, 7.74; Found: C, 74.42; H, 7.71. 

 

1-phenyl-3-(piperazin-1-yl)propan-2-one: Oil; IR (Neat) 3060, 

3028, 2815, 1716, 1496, 1455, 1270, 1008, 732, 701 cm
-1
;
 1

H 

NMR (400 MHz) (CDCl3)  7.33-7.22(m, 5 H), 3.75 (s, 2 H), 
3.17 (s, 2 H), 2.90 (bs, 4 H), 2.41 (bs, 4 H), 2.04 (bs, 1 H);

 13
C 

NMR (100.6 MHz) (CDCl3)  206.3, 134.1, 129.4, 128.6, 127.0, 

67.3, 54.5, 47.6, 45.8; Anal. Calcd. for C, 71.53; H, 8.31; Found: 
C, 71.43; H, 8.30. 

 

1-(4-methoxyphenyl)-3-morpholinopropan-2-one: oil; IR 

(Neat) 2918, 2852, 1722, 1610, 1512, 1454, 1248, 1117 cm
-1

; 
1
H 

NMR (400 MHz) (CDCl3)  7.16 (d, J = 8.4 Hz, 2 H), 6.87 (d, J = 
8.5 Hz, 2 H), 3.80 (s, 3 H), 3.75-3.73 (m, 4 H), 3.68 (s, 2 H), 3.21 

(s, 2 H), 2.47-2.45 (m, 4 H); 
13

C NMR (100.6 MHz) (CDCl3)  
206.1, 158.7, 130.4, 125.9, 114.2, 66.80, 66.77, 55.2, 53.6, 46.9; 

Anal. Calcd. for C14H19NO3: C, 67.45; H, 7.68; Found: C, 67.57; 

H, 7.70. 

 

1-(4-methoxyphenyl)-3-(4-(4-methylbenzyl)piperazin-1-
yl)propan-2-one: Wax; IR (KBr) 2933, 2810, 1716, 1510, 1246 

cm
-1
; 

1
H NMR (400 MHz) (CDCl3)  7.21 (d, J = 7.7 Hz, 2 H), 

7.17-7.13 (m, 4 H), 6.87 (d, J = 8.4 Hz, 2 H), 3.81 (s, 3 H), 3.68 
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(s, 2 H), 3.51 (s, 2 H), 3.20 (s, 2 H), 2.52-2.50 (m, 8 H), 2.35 (s, 3 

H); 
13

C NMR (100.6 MHz) (CDCl3)  206.6, 158.7, 136.7, 134.7, 
130.4, 129.3, 128.9, 126.2, 114.2, 66.6, 62.7, 55.3, 53.3, 52.8, 

46.8, 21.1; Anal. Calcd. for C22H28N2O2: C, 74.97; H, 8.01; 

Found: C, 74.81; H, 7.99. 

 

1-(4-(4-chlorobenzyl)piperazin-1-yl)-3-(4-methoxyphenyl) 
propan-2-one: oil; IR (Neat) 2935, 2812, 1720, 1610, 1512, 

1456, 1248 cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  7.30-7.25 (m,  4 

H), 7.15 (d, J = 8.3 Hz, 2 H), 6.86 (d, J = 8.4 Hz, 2 H), 3.80 (s, 3 

H), 3.68 (s, 2 H), 3.49 (s, 2 H), 3.21 (s, 2 H), 2.50 (bs, 8 H); 
13

C 

NMR (100.6 MHz) (CDCl3)  206.5, 158.7, 136.7, 132.8, 130.4, 
128.4, 126.1, 114.2, 66.6, 62.2, 55.3, 53.3, 52.9, 46.8; Anal. 

Calcd. for C21H25ClN2O2: C, 67.64; H, 6.76; Found: C, 67.73; H, 
6.77. 

 

1-(4-acetylphenyl)-3-morpholinopropan-2-one: oil; IR (Neat) 

2922, 2856, 1724, 1680, 1606, 1452, 1385, 1269, 1115 cm
-1

; 
1
H 

NMR (400 MHz) (CDCl3)  7.91 (d, J = 8.0 Hz, 2 H), 7.32 (d, J = 
8.0 Hz, 2 H), 3.83 (s, 2 H), 3.73-3.71 (m, 4 H), 3.21 (s, 2 H), 2.58 

(s, 3 H), 2.47-2.44 (m, 4 H); 
13

C NMR (100.6 MHz) (CDCl3)  
204.9, 197.5, 139.3, 136.0, 129.7, 128.7, 67.4, 66.7, 53.7, 47.3, 

26.5; Anal. Calcd. for C15H19NO3: C, 68.94; H, 7.33; Found: C, 

68.85; H, 7.33. 
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ethyl 4-(3-morpholino-2-oxopropyl)benzoate: oil; IR (Neat) 

2978, 2925, 2856, 1712, 1610, 1448, 1385, 1275 cm
-1

; 
1
H NMR 

(400 MHz) (CDCl3)  7.99 (d, J = 8.1 Hz, 2 H), 7.29 (d, J = 8.0 
Hz, 2 H), 4.35 (q, J = 7.1 Hz, 2 H), 3.80 (s, 2 H), 3.72-3.70 (m, 4 

H), 3.19 (s, 2 H), 2.45-2.42 (m, 4 H), 1.37 (t, J = 7.1 Hz, 3 H); 
13

C 

NMR (100.6 MHz) (CDCl3)  205.0, 166.3, 139.0, 129.9, 129.5, 
129.4, 67.3, 66.8, 61.0, 53.7, 47.5, 14.3; Anal. Calcd. for 

C16H21NO4: C, 65.96; H, 7.27; Found: C, 65.59; H, 7.30. 

 

ethyl 4-(3-(4-ethylpiperazin-1-yl)-2-oxopropyl)benzoate: oil; 
IR (Neat) 2974, 2931, 2816, 1716, 1452, 1385, 1277, 1105 cm

-1
; 

1
H NMR (400 MHz) (CDCl3)  7.96 (d, J = 8.1 Hz, 2 H), 7.27 (d, 

J = 8.1 Hz, 2 H), 4.33 (q, J = 7.1 Hz, 2 H), 3.83 (s, 2 H), 3.22 (s, 2 

H), 2.54 (bs, 8 H), 2.46 (q, J = 7.2 Hz, 2 H), 1.40 (t, J = 7.1 Hz, 3 

H), 1.11 (t, J = 7.1 Hz, 3 H); 
13

C NMR (100.6 MHz) (CDCl3)  
205.5, 166.3, 139.2, 129.8, 129.5, 129.3, 67.1, 60.9, 53.4, 52.5, 

52.2, 47.3, 14.3, 11.9; Anal. Calcd. for C18H26N2O3: C, 67.90; H, 
8.23; Found: C, 67.81; H, 8.21. 

 

ethyl 4-(3-(4-(3,4-dichlorophenyl)piperazin-1-yl)-2-

oxopropyl)benzoate: oil; IR (Neat) 2979, 2933, 2827, 1714, 
1593, 1483, 1452, 1385, 1277 cm

-1
; 

1
H NMR (400 MHz) (CDCl3) 

 8.01 (d, J = 8.2 Hz, 2 H), 7.31 (d, J = 8.1 Hz, 2 H), 7.25 (d, J = 
8.9 Hz, 1 H), 6.93 (d, J = 2.7 Hz, 1 H), 6.71 (dd, J

1
 = 8.9 Hz, J

2
 = 

2.7 Hz, 1 H), 4.37 (q, J = 7.1 Hz, 2 H), 3.84 (s, 2 H), 3.28 (s, 2 
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H), 3.21-3.19 (m, 4 H), 2.62-2.59 (m, 4 H), 1.40 (t, J = 7.1 Hz, 3 

H); 
13

C NMR (100.6 MHz) (CDCl3)  205.0, 166.3, 150.5, 139.0, 
132.8, 130.5, 129.9, 129.5, 122.3, 117.3, 115.4, 66.8, 61.0, 53.0, 

48.5, 47.5, 14.4; Anal. Calcd. for C22H24Cl2N2O3: C, 60.70; H, 

5.56; Found: C, 60.81; H, 5.57. 

 

1-morpholino-3-m-tolylpropan-2-one: oil; IR (Neat) 2958, 

2920, 2854, 2812, 1720, 1606, 1452, 1385, 1117 cm
-1

; 
1
H NMR 

(400 MHz) (CDCl3)  7.22 (t, J = 7.5 Hz, 1 H), 7.10-7.03 (m, 3 

H), 3.75-3.73 (m, 4 H), 3.71 (s, 2 H), 3.22 (s, 2 H), 2.47-2.45 (m, 

4 H), 2.35 (s, 3 H); 
13

C NMR (100.6 MHz) (CDCl3)  205.9, 
138.4, 133.9, 130.2, 128.7, 127.9, 126.4, 66.9, 66.8, 53.7, 47.8, 

21.4; Anal. Calcd. for C14H19NO2: C, 72.07; H, 8.21; Found: C, 

72.19; H, 8.24. 

Typical procedure for the preparation of 2-oxo-1,3-
diphenylpropylamino-4-carboxylates : a Carousel Tube 

Reaction (Radley Discovery) was charged with Pd2dba3 (7.8 mg, 

0.0085 mmol), dppf (9.4 mg, 0.0170 mmol) and anhydrous THF 
(1 ml). The resultant solution was stirred under Nitrogen at room 

temperature for 10 minutes before adding 1,3-diphenylprop-2-

ynyl ethyl carbonate (95.0 mg, 0.34 mmol) dissolved in THF (1 

ml) and morpholine (88.7 mg, 1.02 mmol). The rection mixture 
was warmed at 80°C and stirred for 1 hours. After cooling, the 

volatile materials were evaporated at reduced pressure and the 

residue was purified by chromatography on silica gel eluting with 
a 70/30 (v/v) n-hexane/AcOEt mixture to afford 76.7 mg (77% 

yield) of the following compound:  



 
111 

 

2-oxo-1,3-diphenylpropyl morpholine-4-carboxylate: mp: 132-
134 °C; IR (KBr) 3066, 2974, 2904, 2860, 1732, 1714, 1431, 

1234, 1117 cm
-11

; 
1
H NMR (400 MHz) (CDCl3)  7.41-7.23 (m, 8 

H) 7.05-7.03 (m, 2 H), 6.09 (s, 1 H), 3.75-3.53 (m, 10 H); 
13

C 

NMR (100.6 MHz) (CDCl3)  202.2, 154.3, 133.3, 133.0, 129.7, 
129.4, 129.1, 128.5, 128.4, 127.1, 81.0, 66.5, 45.7, 44.6, 44.1; 

Anal. Calcd. for C20H21NO4: C, 70.78; H, 6.24; Found: C, 70.89; 
H, 6.26. 

 

1-(4-methoxyphenyl)-2-oxo-3-phenylpropyl morpholine-4-

carboxylate and 3-(4-methoxyphenyl)-2-oxo-1-phenylpropyl 

morpholine-4-carboxylate: Mixture; 
1
H NMR (400 MHz) 

(CDCl3)  7.41-7.39 (m, 2 H), 7.30-7.21 (m, 3 H), 7.06-7.04 (m, 1 
H), 6.96-6.92 (m, 2 H), 6.81 (m, 1 H), 6.08 (s, 0.25 H, 
PhCHOCO, 7b’), 6.04 (s, 0.75 H, p-CH3OPhCHOCO, 7b), 3.83 

(s, 2.25 H, p-CH3OPhCHOCO, 7b), 3.77 (s, 0.75 H, p-

CH3OPhCH2, 7b’), 3.73-3.43 (m, 10 H); 
13

C NMR (100.6 MHz) 

(CDCl3)  (some chemical shifts are isochronous) 202.6 (p-
MeOPhCH2CO, 7b’), 202.4 (PhCH2CO, 7b), 160.4, 158.7, 154.5, 
154.4, 133.3, 133.1, 130.7, 129.9, 129.7, 129.4, 129.0, 128.5, 

128.4, 127.0, 125.1, 125.0, 114.5, 114.0, 80.9 (PhCHOCO, 7b’), 

80.5 (p-MeOPhCHOCO, 7b), 66.5, 55.4, 55.2, 45.7, 44.8, 44.6, 

44.0. 
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1-(4-(ethoxycarbonyl)phenyl)-2-oxo-3-phenylpropyl 

morpholine-4-carboxylate: oil; IR (Neat) 2924, 2858, 1712, 
1612, 1456, 1433, 1277, 1238, 1111 cm

-1
; 

1
H NMR (400 MHz) 

(CDCl3)  8.07 (d, J = 8.1 Hz, 2 H), 7.43 (d, J = 8.0 Hz, 2 H), 
7.28-7.26 (m, 3 H), 7.05-7.03 (m, 2 H), 6.12 (s, 1 H), 4.42 (q, J = 

7.0 Hz, 2 H), 3.76 (s, 2 H), 3.71-3.47 (m, 8 H), 1.43 (t, J = 7.0 Hz, 

3 H); 
13

C NMR (100.6 MHz) (CDCl3)  201.8, 166.0, 154.1, 
138.0, 132.6, 131.4, 130.2, 129.6, 128.6, 128.1, 127.2, 80.4, 66.4 
(bs), 61.3, 45.9, 44.6, 44.1, 14.3; Anal. Calcd. for C23H25NO6: C, 

67.14; H, 6.12; Found: C, 67.20; H, 6.14. 

 

3-(4-(ethoxycarbonyl)phenyl)-2-oxo-1-phenylpropyl 

morpholine-4-carboxylate: oil; IR (Neat) 2978, 2925, 2858, 

1712, 1612, 1429, 1277, 1238, 1107 cm
-1

; 
1
H NMR (400 MHz) 

(DMSO-d6) (350 K)  7.84 (d, J = 7.6 Hz, 2 H), 7.47-7.42 (m, 5 
H), 7.18 (d, J = 7.6 Hz, 2 H), 6.14 (s, 1 H), 4.33 (q, J = 6.8 Hz, 2 

H), 4.00 (d, J = 16.4 Hz, 1 H), 3.88 (d, J = 16.4 Hz, 1 H), 3.63-

3.61 (m, 4 H), 3.48-3.47 (m, 4 H), 1.34 (t, J = 6.8 Hz, 3 H); 
13

C 

NMR (100.6 MHz) (DMSO-d6) (350 K)  202.4, 166.1, 154.2, 
139.7, 134.3, 130.3, 129.4, 129.35, 129.28, 129.1, 128.2, 81.2, 
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66.3, 61.0, 44.8, 44.6, 14.5; Anal. Calcd. for C23H25NO6: C, 

67.14; H, 6.12; Found: C, 67.20; H, 6.16. 

 

2-oxo-3-phenyl-1-(3-(trifluoromethyl)phenyl)propyl 

morpholine-4-carboxylate: oil; IR (Neat) 2924, 2858, 1712, 

1433, 1331, 1238, 1124 cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  

7.66-7.64 (m, 1 H), 7.54-7.49 (m, 3 H), 7.28-7.23 (m, 3H), 7.05-

7.04 (m, 2 H), 6.12 (s, 1 H), 3.78 (s, 2 H), 3.72-3.53 (m, 8 H); 
13

C 

NMR (100.6 MHz) (CDCl3)  (323 K)  201.9, 154.0, 134.6, 

132.5, 131.5, 131.4 (q, J= 32.6 Hz), 129.6, 129.5, 128.6, 127.3, 
126.1 (q, J= 3.6 Hz), 125.0 (q, J = 3.8 Hz), 123.7 (q, J= 271.5 

Hz), 80.0, 66.5, 46.3, 44.6, 44.1; 
19

F NMR {H} (376.5 MHz) 

(CDCl3)  -62.7; Anal. Calcd. for C21H20F3NO4: C, 61.91; H, 
4.95; Found: C, 61.82; H, 4.93. 

 

2-oxo-1-phenyl-3-(3-(trifluoromethyl)phenyl)propyl 

morpholine-4-carboxylate: mp: 97-99 °C; IR (KBr) 2862, 1728, 

1705, 1433, 1336, 1117 cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  

7.49 (d, J = 7.6 Hz, 1 H), 7.44-7.37 (m, 6 H), 7.24 (d, J = 7.9 Hz, 
1 H), 7.21 (s, 1 H), 6.07 (s, 1 H), 3.81-3.48 (m, 10 H); 

13
C NMR 

(100.6 MHz) (DMSO-d6) (350 K)  202.6, 154.2, 135.8, 134.2, 
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134.1, 129.7, 129.5, 129.4, 129.3, 128.3, 126.5 (q, J= 4.0 Hz), 

124.7 (q, J= 271.4 Hz), 123.7 (q, J = 3.8 Hz), 81.3, 66.3, 44.6, 

44.4;; 
19

F NMR {H} (376.5 MHz) (CDCl3)  -62.6; Anal. Calcd. 
for C21H20F3NO4: C, 61.91; H, 4.95; Found: C, 61.82; H, 4.93. 

 

 

 

1-(3-methoxyphenyl)-2-oxo-3-phenylpropyl morpholine-4-

carboxylate and 3-(3-methoxyphenyl)-2-oxo-1-phenylpropyl 

morpholine-4-carboxylate: Mixture; 
1
H NMR (400 MHz) 

(CDCl3)  7.40-7.16 (m, 5 H), 7.06-7.05 (m, 1 H), 6.99-6.97 (m, 1 
H), 6.88 (s, 0.43 H), 6.79-6.77 (m, 0.56 H), 6.64-6.62 (m, 0.56 

H), 6.56 (s, 0.57 H), 6.08 (s, 0.57 H, PhCHOCO, 7e’), 6.06 (s, 

0.43 H, m-MeOPhCHOCO, 7e), 3.80 (s, 1.3 H, m-
CH3OPhCHOCO,7e), 3.74-3.51 (m, 11.7 H); 

13
C NMR (100.6 

MHz) (CDCl3) (some chemical shifts are isochronous)  202.13 
(m-MeOPhCH2CO,7e’), 202.11 (PhCH2CO,7e), 160.01, 159.64, 

154.33, 154.30, 134.7, 134.4, 133.3, 133.1, 130.1, 129.7, 129.5, 

129.4, 129.1, 128.5, 128.4, 127.1, 122.0, 120.7, 115.09, 114.95, 
113.8, 112.8, 81.0 (PhCHOCO,7e’), 80.9 (m-MeOPhCHOCO,7e), 

66.5, 55.3, 55.1, 45.7, 45.6, 44.6, 44.1. 
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4.2.3 Additional information and characterization 

data on dibenzo[a,c]carbazoles 

General information: The appropriate 2-

alkynyltrifluoroacetanilides were prepared, usually in high yields, 
from 2-iodoaniline via a two-step process involving a 

Sonogashira cross-coupling with terminal alkynes followed by a 

trifluoracetylation step. 
87

 

Typical procedure for the preparation of 2-(2-
bromophenyl)-3-(4-methoxyphenyl)-1H-indole: In a 50 mL 

Carousel Tube Reactor (Radely Discovery Technology) 

containing a magnetic stirring bar, N-(2-((2-
bromophenyl)ethynyl)phenyl)-2,2,2-trifluoroacetamide (368.1 

mg, 1.0 mmol), 4-iodoanisole (468.0 mg, 2.0 mmol) and 

Pd(PPh3)4 ( 57.8 mg, 0.05 mmol) were dissolved in 5 mL of 
anhydrous MeCN. Then,Cs2CO3 (651.6 mg, 2.0 mmol) was added 

and the mixture was stirred for 40 min at 80°C. After this time the 

reaction mixture was cooled to room temperature, diluted with 

EtOAc, and washed with brine. The organic layer was separated, 
dried over Na2SO4, and concentrated under reduced pressure. The 

residue was purified by chromatography (silica gel, n-

hexane/EtOAc 85/15 v/v) to afford 302.6 mg (80% yield) of 
desired product. 
1
H NMR (400.13 MHz, CDCl3): δ 8.34 (bs, 1 H), 7.84 (d, J = 8.0 

Hz, 1 H), 7.71 (d, J = 6.4 Hz, 1 H), 7.46 (d, J = 8.0 Hz, 1 H), 
7.34-6.92 (m, 7 H), 6.91 (d, J = 8.7 Hz, 2 H), 3.84 (s, 3 H); 

13
C 

NMR (100.6 MHz, CDCl3): δ 135.7, 134.1, 133.5, 133.3, 132.6, 

130.7, 129.8, 127.4, 127.3, 127.2, 123.9, 122.8, 120.3, 119.9, 

116.4, 113.9, 111.0, 108.2, 55.2. 

Typical procedure for the preparation of 2-(2-

bromophenyl)3-(4-methoxyphenyl)-1-(2-((trimethylsilyl)- 

methoxy)ethyl)-1H-indole: to a solution of pre-activated NaH 
(60 % in mineral oil, 99.9 mg, 2.5 mmol; anhydrous DMF, 6 

mL)2-(2-bromophenyl)3-(4-methoxyphenyl)-1H-indole (472.6 
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mg, 1.25 mmol), dissolved in 6 mL of anhydrous DMF, was 

added dropwise under argon at 0°C. 

After stirring for 30 min at room temperature, the solution was 

cooled down in a ice bath,SEM-Cl (330 μL, 1.88 mmol) was 
added and the mixture was stirredat room temperature until 

completition. Then, the reaction mixture was diluted with Et2O 

and washed with brine. The organic layer was dried over Na2SO4 
and concentrated under reduced pressure, to give 603 mg (95% 

yield) of desired product. 
1
H NMR (400.13 MHz, DMSO d6): δ 7.79 (d, J = 8.0 Hz, 1 H), 

7.66-7.61 (m, 2 H), 7.47-7.39 (m, 3 H), 7.31-7.30 (m, 1 H), 7.29-

7.14 (m, 3 H), 6.87 (d, J = 8.8 Hz, 2 H), 5.54 (d, J = 11.1 Hz, 1 

H), 5.10 (d, J = 11.1 Hz, 1 H), 3.72 (s, 3 H), 3.28 (m, 2 H), 0.70-

0.65 (m, 2 H), -0.14 (s. 9 H); 
13

C NMR (100.6 MHz, CdCl3): δ 
158.0, 136.8, 135.2, 134.2, 133.5, 132.8, 130.2, 127.6, 127.2, 

127.0, 126.4, 122.8, 120.7, 119.9, 116.8, 113.8, 110.6, 73.3, 65.7, 

55.1, 17.8, -1.48. 

Typical procedure for the preparation of 3-methoxy-9-

((2-(trimethylsilyl)ethoxy)methyl)-9H-dibenzo[a,c]carbazole: 

in a 50 mL Carousel Tube Reactor (Radely Discovery 
Technology) containing a magnetic stirring bar Pd(OAc)2 (2.2 

mg, 0.01 mmol) and PPh3 (10.5 mg, 0.04 mmol) were dissolved 

under argon in 2 mL of anhydrous DMF. Then, 2-(2-

bromophenyl)-3-(4-methoxyphenyl)-1-(2-
((trimethylsilyl)methoxy) ethyl)-1H-indole (101.7 mg, 0.2 mmol), 

CsOAc (77 mg, 0.4 mmol) and 2 mL of solvent were added and 

the mixture was stirred for 30 min at 120°C under argon. After 
cooling, the reaction mixture was diluted with Et2O, washed with 

NaHCO3, dried over Na2SO4, and concentrated under reduced 

pressure. The residue was purified by flash chromatography using 

neutral Al2O3Brockmann activity II (Fluka) as stationary phase, 
eluting with n-hexane/ethyl acetate 95/5 to give 83.3 mg (97% 

yield) of desired product. 
1
H NMR (400.13 MHz, CDCl3): δ 8.80 (d, J = 9.2 Hz, 1 H), 8.79-

8.73 (m, 2 H), 8.58 (d, J = 8.0 Hz, 1 H), 8.20 (d, J = 2.4 Hz, 1 H), 

7.70-7.65 (m, 3 H), 7.56-7.48 (m, 1 H), 7.48-7.40 (m, 2 H), 5.96 
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(s, 2 H), 4.08 (s, 3 H), 3.93 (t, J = 8.0 Hz, 1 H), 1.10 (t, J = 8.4 

Hz, 1 H), 0.03 (s, 9 H); 
13

C NMR (100.6 MHz, CDCl3): δ 156.5, 

141.4, 133.9, 130.3, 128.9, 126.8, 125.6, 125.1, 124.2, 124.1, 

124.0, 123.98, 123.77, 123.76, 121.9, 120.9, 116.5, 114.6, 109.7, 
105.8, 74.7, 66.0, 55.5, 18.1, -1.3 

Typical procedure for the preparation of 3-methoxy-9H-

dibenzo[a,c]carbazole: in a 50 mL Carousel Tube Reactor 
(Radely Discovery Technology) containing a magnetic stirring 

bar Pd(OAc)2 (2.2 mg, 0.01 mmol) and PPh3 (10.5 mg, 0.04 

mmol)were dissolved under argon in 2 mL of anhydrous DMF. 
Then, 2-(2-bromophenyl)-3-(4-methoxyphenyl)-1-(2-

((trimethylsilyl)methoxy) ethyl)-1H-indole (101.7 mg, 0.2 mmol), 

CsOAc (77 mg, 0.4 mmol) and 2 mL of solvent were added and 

themixture was stirred for 30 min at 120°C under argon. After 
cooling,the reaction mixture was diluted with Et2O, washed with 

NaHCO3, dried over Na2SO4, and concentrated under reduced 

pressure.To the solution of the crude in anhydrous THF (2 mL) 
containing 2-(2-bromophenyl)-3-(4-methoxyphenyl)-1-((2-

(trimethylsilyl)ethoxy)methyl)-1H-indole, 2 mL of TBAF (THF 

solution, 1M, 10 eq.) were added and the mixture was stirred at 
60°C until completion. The reaction mixture was cooled, diluted 

with EtOAc, washed with NaHCO3;the organic layer was 

separated, dried over Na2SO4, and concentrated under reduced 

pressure. The residue was purified by flash chromatography using 
neutral Al2O3Brockmann activity II (Fluka) as stationary phase, 

eluting with n-hexane/ethyl acetate 95/5 to give 42 mg (70% 

yield) of desired product. 

 

3-methoxy-9H-dibenzo[a,c]carbazole: white solid; mp: 195-198 

°C. IR (KBr): 3425, 2923, 1531, 1461, 1257, 1043, 808, 738 (cm
-
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1
).

1
H NMR (400.13 MHz, CDCl3): δ 8.78 (bs, 1 H), 8.73-8.69 (m, 

2 H), 8.50 (d, J = 7.8 Hz, 1 H), 8.19 (s, 1 H), 8.09-8.03 (m, 1 H), 

7.71-7.60 (m, 3 H), 7.49-7.38 (m, 3 H), 4.07 (s, 3 H); 
13

C NMR 

(100.6 MHz, DMSO): δ 156.4, 139.0, 133.4, 129.3, 128.2, 127.5, 
126.5, 125.3, 124.8, 124.3, 124.0, 123.9, 123.5, 122.7, 121.7, 

120.3, 117.3, 112.2, 111.9, 106.8, 55.9. ESI MS: 298 (M
+1

, 

100).Analcalcd for C21H15NO: C, 84.82; H, 5.08; N, 4.71. Found: 
C, 84.71; H, 5.07; N, 4.74. 

 

9H-dibenzo[a,c]carbazole-3-carbonitrile: white solid; mp: 334-

337 °C. IR (KBr): 3311, 2223, 1531, 1448 (cm
-1

).
1
H NMR 

(400.13 MHz, DMSO d6): δ 12.69 (bs, 1 H), 9.41 (s, 1 H), 9.04 

(d, J = 8.2 Hz, 1 H), 8.89 (d, J = 8.4 Hz, 1 H), 8.63 (d, J = 8.0 Hz, 

1 H), 8.56 (d, J = 7.9 Hz, 1 H), 8.05 (d, J = 8.0 Hz, 1 H), 7.89-

7.82 (m, 1 H), 7.81-7.73 (m, 2 H), 7.49 (t, J = 7.6 Hz, 1 H), 7.37 
(t, J = 7.6 Hz, 1 H); 

13
C NMR (100.6 MHz, DMSO d6): δ 139.1, 

136.5, 132.7, 129.9, 129.74, 129.71, 128.9, 128.5, 127.7, 126.5, 

124.9, 124.7, 123.8, 123.3, 122.9, 121.8, 121.2, 120.4, 112.6, 
111.1, 105.8. ESI MS: 293 (M

+1
, 100).Anal calcd for C21H12N2: 

C, 86.28; H, 4.14; N, 9.58. Found: C, 86.20; H, 4.13; N, 9.60. 
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2-(trifluoromethyl)-9H-dibenzo[a,c]carbazole: yellow solid; 
mp: 203-207 °C. . IR (KBr): 3418, 1531, 1446, 1111 (cm

-1
).

 1
H 

NMR (400.13 MHz, DMSO d6): δ 12.62 (bs, 1 H), 9.13 (d, J = 

8.8 Hz, 1 H), 9.01- 8.95 (m, 2 H), 8.66 (d, J = 8.0 Hz, 1 H), 8.49 

(d, J = 8.0 Hz, 1 H), 7.92-7.74 (m, 4 H), 7.51-7.39 (m, 2 H); 
13

C 
NMR (100.6 MHz, DMSO d6): 139.0, 135.5, 129.6, 129.2, 128.9, 

128.8, 128.0 (q, J = 31.0 Hz), 127.5, 125.6, 125.2, 124.6, 124.1 

(q, J = 278.0 Hz), 123.8, 123.6, 122.9, 121.4, 121.1, 120.1(q, J = 
4.0 Hz),119.5 (q, J = 4.0 Hz),118.8, 112.6,111. 

19
F (376.5 MHz, 

DMSO d6)  -60.3.ESI MS: 336 (M
+1

, 100).Anal calcd for 
C21H12F3N: C, 75.22; H, 3.61; N, 4.18. Found: C, 75.29; H, 3.60; 

N, 4.15. 

 

1-methyl-9H-dibenzo[a,c]carbazole: yellow solid; mp: 173-176 

°C. IR (KBr): 3440, 2923, 1436, 736 (cm
-1
). 

1
H NMR (400.13 

MHz, CDCl3): δ 8.87 (bs, 1 H), 8.74 (d, J = 8.0 Hz, 1 H), 8.64 (d, 

J = 8.0 Hz, 1 H), 8.30 (d, J = 8.2 Hz, 1 H), 8.00 (d, J = 7.6 Hz, 1 
H), 7.69-7.53 (m, 5 H), 7.45-7.30 (m, 2 H), 3.13 (s, 3 H); 

13
C 

NMR (100.6 MHz, CDCl3): δ 138.3, 135.1, 133.2, 130.6, 130.2, 

129.4, 128.4, 126.7, 126.5, 125.6, 124.8, 124.1, 123.7, 123.4, 
122.3, 120.9, 120.5, 119.5, 113.0, 111.1, 24.8. ESI MS: 282 (M

+1
, 

100).Anal calcd for C21H15N: C, 89.65; H, 5.37; N, 4.98. Found: 

C,89.71; H, 5.35; N, 5.00. 
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1-(9H-dibenzo[a,c]carbazole-3-yl)ethanone: yellow solid; mp: 

208-211 °C. IR (KBr): 3248, 2923, 1646, 1608, 1531, 1460,1330, 

738 (cm
-1
).

1
H NMR (400.13 MHz, DMSO d6): δ 12.63 (bs, 1 H), 

9.47 (s, 1 H), 9.09 (d, J = 8.0 Hz, 1 H), 8.90 (d, J = 8.6 Hz, 1 H), 

8.67-8.59 (m, 2 H), 8.30 (dd, J1= 8.6 Hz, J2= 1.2 Hz 1 H), 7.88-

7.78 (m, 2 H), 7.76 (d, J = 8.0 Hz, 1 H), 7.48 (t, J = 7.6 Hz, 1 H), 
7.38 (t, J = 7.6 Hz, 1 H), 2.84 (s, 3 H); 

13
C NMR (100.6 MHz, 

DMSO d6): δ 198.2, 139.1, 136.3, 133.2, 132.2, 129.9, 128.1, 

127.5, 126.8, 125.9, 125.6, 124.7, 124.6, 124.0, 123.9, 123.2, 

122.9, 121.9, 121.0, 112.5, 111.5, 27.3. ESI MS: 310 (M
+1

, 
100).Anal calcd for C22H15NO: C, 85.41; H, 4.89; N, 4.53. Found: 

C, 85.37; H, 4.90; N, 4.50. 

 

ethyl 9H-dibenzo[a,c]carbazole-3-carboxylate: yellow solid; 
mp: 200-204 °C. IR (KBr): 3421, 2918, 1521, 1459, 1360, 738 

(cm
-1

).
1
H NMR (400.13 MHz, DMSO d6): δ 12.62 (bs, 1 H), 9.44 

(s, 1 H), 8.95-8.88 (m, 2 H), 8.64 (d, J = 7.5 Hz, 1 H), 8.60 (d, J = 
8.1 Hz, 1 H), 8.30 (d, J = 8.5 Hz, 1 H), 7.89-7.73 (m, 3 H), 7.50-

7.45 (m, 1 H), 7.38 (t, J = 7.4 Hz, 1 H), 4.45 (q, J = 7.0 Hz, 2 H), 

1.44 (t, J = 7.0 Hz, 3 H); 
13

C NMR (100.6 MHz, DMSO d6): δ 
166.6, 139.1, 136.2, 133.2, 129.6, 128.1, 127.8, 127.6, 126.0, 
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125.7, 124.9, 124.6, 124.3, 124.1, 123.9, 123.2, 122.9, 121.9, 

121.0, 112.5, 111.4, 61.2, 14.8. ESI MS: 340 (M
+1

, 100).Anal 

calcd for C23H17NO2: C, 81.40; H, 5.05; N, 4.13. Found:C, 81.50; 

H, 5.04; N, 4.12. 

 

3-nitro-9H-dibenzo[a,c]carbazole: orange solid; mp: 292-295 

°C. IR (KBr): 3350, 1606, 1498, 1321, 735 (cm
-1

). 
1
H NMR 

(400.13 MHz, DMSO d6): δ 12.81 (bs, 1 H), 9.54 (d, J = 2.2 Hz, 1 

H), 8.90 (d, J = 8.2 Hz, 1 H), 8.82 (d, J = 8.8 Hz, 1 H), 8.57 (d, J 

= 7.8 Hz, 1 H), 8.50 (d, J = 8.1 Hz, 1 H), 8.41 (dd, J1= 9.0 Hz, J2= 

2.1 Hz, 1 H), 7.87-7.71 (m, 3 H), 7.48 (t, J = 7.6 Hz, 1 H), 7.37 (t, 
J = 7.5 Hz, 1 H); 

13
C NMR (100.6 MHz, DMSO d6): δ 143.1, 

139.1, 137.1, 134.2, 129.4, 128.7, 127.9, 125.9, 124.9, 124.7, 

124.6, 123.7, 123.3, 123.0, 121.8, 121.7, 121.4, 120.2, 112.7, 
111.2. ESI MS: 313 (M

+1
, 100).Anal calcd for C20H12N2O2: C, 

76.91; H, 3.87; N, 8.97. Found: C, 76.83; H, 3.88; N, 8.99. 

 

3-chloro-9H-dibenzo[a,c]carbazole: yellow solid; mp: 240-243 
°C. IR (KBr): 3338, 2918, 1685, 1608, 1240 (cm

-1
).

1
H NMR 

(400.13 MHz, DMSO d6): δ 12.49 (bs, 1 H), 8.98-8.90 (m, 2 H), 

8.82 (d, J = 8.8 Hz, 1 H), 8.62 (d, J = 7.9 Hz, 1 H), 8.54 (d, J = 
7.9 Hz, 1 H), 7.86-7.70 (m, 4 H), 7.46 (t, J = 7.2 Hz, 1 H), 7.35 (t, 
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J = 7.6 Hz, 1 H); 
13

C NMR (100.6 MHz, DMSO d6): δ 139.0, 

134.8, 133.1, 128.8, 128.7, 128.5, 128.2, 128.0, 127.2, 125.7, 

124.9, 124.3, 123.9, 123.8, 123.4, 122.8, 121.7, 120.7, 112.4, 

111.3. ESI MS: 302 (M
+1

, 100).Anal calcd for C20H12ClN: C, 
79.60; H, 4.01; N, 4.64. Found: C, 79.66; H, 3.99; N, 4.65. 

 

9H-dibenzo[a,c]carbazole: white solid; mp: 185-188 °C. 
1
H 

NMR (400.13 MHz, DMSO d6): δ 12.51 (bs, 1 H) 8.94-8.86 (m, 3 

H), 8.65 (d, J = 8.0 Hz, 1 H), 8.57 (d, J = 7.6 Hz, 1 H), 7.83-7.65 

(m, 4 H), 7.59 (t, J = 7.6 Hz, 1 H), 7.44 (t, J = 7.6 Hz, 1 H), 7.34 

(t, J = 7.6 Hz, 1 H); 
13

C NMR (100.6 MHz, DMSO d6): δ139.0, 
134.7, 130.1, 129.8, 128.0, 127.4, 126.9, 126.7, 125.2, 124.4, 

124.1, 124.0, 123.84, 123.82, 123.1, 122.8, 121.8, 120.5, 112.3, 

111.7. ESI MS: 268 (M
+1

, 100).Anal calcd for C20H13N: C, 89.86; 
H, 4.90; N, 5.24. Found: C, 89.80; H, 4.93; N, 5.20 

 

9H-dibenzo[a,c]carbazole-12-carbonitrile: white solid; mp: 
305-308 °C.IR (KBr): 3336, 2360, 2223, 1531, 1448, 757 (cm

-

1
).

1
H NMR (400.13 MHz, DMSO d6): δ 12.95 (bs, 1 H), 9.12 (s, 1 

H), 8.94-8.85 (m, 3 H), 8.59 (d, J = 7.6 Hz, 1 H), 7.87-7.72 (m, 5 

H), 7.62 (t, J = 7.6 Hz, 1 H); 
13

C NMR (100.6 MHz, DMSO d6): δ 
140.8, 136.2, 130.3, 129.1, 128.3, 127.73, 127.70, 127.1, 127.0, 

126.9, 124.8, 124.5, 124.4, 124.3, 123.9, 122.9, 122.6, 121.1, 

113.3, 111.7, 102.6. ESI MS: 293 (M
+1

, 100).Anal calcd for 
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C21H12N2; C, 86.28; H, 4.14; N, 9.58. Found: C, 86.19; H, 4.15; 

N, 9.60. 

 

3-methoxy-6-methyl-9H-dibenzo[a,c]carbazole: yellow solid; 
mp. 283-287 °C.IR (KBr): 3426, 1529, 1450, 1249, 1176, 1089, 

738
1
H NMR (400.13 MHz, DMSO d6): δ 12.76 (bs, 1 H), 8.83 (s, 

1 H), 8.80 (s, 1 H), 8.72 (d, J = 8.8 Hz, 1 H), 8.60 (d, J = 8.0 Hz, 
1 H), 8.32 (s, 1 H), 7.97 (d, J = 8.0 Hz, 1 H), 7.57 (d, J = 8.4 Hz, 

1 H), 7.49 (t, J = 7.6 Hz, 1 H), 7.46-7.34 (m, 2 H), 4.04 (s, 3 H), 

2.64 (s, 3 H); 
13

C NMR (100.6 MHz, DMSO d6): δ 156.8, 141.2, 

135.9, 133.5, 130.4, 128.9, 128.6, 125.4, 124.54, 124.49, 124.3, 
123.7, 123.3, 121.81, 121.80, 121.4, 117.5, 113.3, 110.9, 106.4, 

55.9, 21.8. ESI MS: 312 (M
+1

, 100).Anal calcd for C22H17NO; C, 

84.86; H, 5.50; N, 4.50. Found: C, 84.78; H, 5.49; N, 4.52. 

 

1-(6-methyl-9H-dibenzo[a,c]carbazol-3-yl)ethanone: white 

solid, mp: 313-318 °C. 
1
H NMR (400.13 MHz, DMSO d6): δ 

12.63 (bs, 1 H), 9.39 (s, 1 H), 8.90-8.85 (m, 2 H), 8.72 (d, J = 8.4 
Hz, 1 H), 8.64 (d, J = 8.0 Hz, 1 H), 8.25 (d, J = 8.0 Hz, 1 H), 8.01 

(d, J = 8.0 Hz, 1 H), 7.61 (d, J = 8.8 Hz, 1 H), 7.55 (t, J = 7.2 Hz, 

1 H), 7.44 (t, J = 7.2 Hz, 1 H), 2.83 (s, 3 H), 2.66 (s, 3 H); 
13

C 
NMR (100.6 MHz, DMSO d6): δ 198.2, 141.2, 136.9, 136.2, 
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132.7, 132.5, 131.0, 129.4, 126.7, 126.3, 125.2, 124.9, 124.6, 

124.3, 124.0, 123.3, 122.0, 121.9, 121.1, 112.9, 111.1, 27.3, 21.9. 

ESI MS: 324 (M
+1

, 100).Anal calcd for C23H17NO; C, 85.42; H, 

5.30; N, 4.33. Found: C, 85.35; H, 5.29; N, 4.32. 

 

4-methyl-9-((2-(trimethylsilyl)ethoxy)methyl)-9H-dibenzo 

[a,c]carbazole and 2-methyl-9-((2-

(trimethylsilyl)ethoxy)methyl)-9H-dibenzo[a,c]carbazole: 
mixture; IR (neat): 3396, 2950, 1465, 1076, 835, 734 (cm

-1
). 

1
H 

NMR (400.13 MHz, DMSO d6) (unselected signals): δ 8.92-8.63 

(m, 4.4 H), 8.03-7.95 (m, 1.0 H), 7.70-7.60 (m, 2.7 H), 7.57-7.38 
(m, 3.3 H), 6.11 (s, 0.9 H), 6.06 (s, 0.9 H), 3.86 (q, J = 8.0 Hz, 2 

H), 3.09 (s, 1.4 H), 2.67 (s, 1.4 H), 1.10-0.92 (m, 2 H), -0.06 (s, 

4.5 H), -0.09 (s, 4.5 H); 
13

C NMR (100.6 MHz, DMSO d6) 
(unselected signals): δ 141.6, 141.3, 137.7, 135.7, 134.69, 134.66, 

131.4, 130.8, 129.5, 129.3, 129.0, 127.6, 127.3, 126.9, 126.8, 

126.7, 126.4, 125.3, 125.1, 124.8, 124.5, 124.3, 124.2, 124.1, 

123.6, 123.5, 123.4, 122.8, 122.3, 122.1, 121.9, 121.7, 121.6, 
114.3, 113.7, 111.2, 111.0, 74.7, 74.5, 65.85, 65.81, 27.3, 21.9, 

17.95, 17.93, -0.88. Anal calcd for C27H29NOSi: C, 78.79; H, 

7.10; N, 3.40. Found: C, 78.68; H, 7.13; N, 3.42. 
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4-methoxy-9H-dibenzo[a,c]carbazole: white solid, mp: 200-203 

°C. IR (KBr): 3409, 2254, 1484, 1252, 1025, 873 (cm
-1

).
1
H NMR 

(400.13 MHz, DMSO d6): δ 12.69 (bs, 1 H), 9.85 (d, J = 7.6 Hz, 1 

H), 8.93-8.87 (m, 1 H), 8.65 (d, J = 8.0 Hz, 1 H), 8.58 (d, J = 7.6 
Hz, 1 H), 8.01 (d, J = 8.4 Hz, 1 H), 7.79-7.60 (m, 3 H), 7.54 (t, J 

= 7.2 Hz, 1 H), 7.43 (t, J = 7.2 Hz, 1 H), 4.15 (s, 3 H);
 13

C NMR 

(100.6 MHz, DMSO d6): δ 159.1, 141.7, 135.2, 131.6, 130.6, 
129.4, 128.6, 126.6, 126.3, 124.9, 124.0, 123.5, 123.4, 122.2, 

121.8, 117.2, 116.7, 114.0, 111.8, 107.8, 56.4. ESI MS: 298 (M
+1

, 

100).Anal calcd for C21H15NO: C, 84.82; H, 5.08; N, 4.71. Found: 
C, 84.75; H, 5.10; N, 4.69. 

 

2-methoxy-9H-dibenzo[a,c]carbazole: yellow solid, mp: 210-
213 °C. IR (KBr): 3423, 1467, 1247, 1027, 825, 730 (cm

-1
). 

1
H 

NMR (400.13 MHz, DMSO d6): δ 12.48 (bs, 1 H), 8.89-8.82 (m, 

3 H), 8.61 (d, J = 7.6 Hz, 1 H), 8.21 (d, J = 2.4 Hz, 1 H), 8.04 (d, 

J = 8.0 Hz, 1 H), 7.75-7.65 (m, 2 H), 7.55 (t, J = 7.2 Hz, 1 H), 
7.45 (t, J = 7.2 Hz, 1 H), 7.30-7.25 (m, 1 H), 4.08 (s, 3 H);

 13
C 

NMR (100.6 MHz, DMSO d6): δ 159.4, 141.3, 135.1, 130.9, 

130.7, 126.9, 126.3, 126.1, 124.8, 124.5, 123.9, 123.3, 122.0, 
121.9, 121.8, 121.3, 114.2, 113.6, 111.0, 105.3, 55.8. ESI MS: 

298 (M
+1

, 100).Anal calcd for C21H15NO: C, 84.82; H, 5.08; N, 

4.71. Found: C, 84.74; H, 5.06; N, 4.69. 
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9H-dibenzo[a,c]carbazole-4-carbonitrile: IR (KBr): 3423, 

2227, 1523, 1467, 1438, 1070 (cm
-1

).
1
H NMR (400.13 MHz, 

DMSO d6): δ 12.73 (bs, 1 H), 9.65 (d, J = 8.0 Hz, 1 H), 9.20 (d, J 

= 8.0 Hz, 1 H), 8.88 (d, J = 8.0 Hz, 1 H), 8.63 (d, J = 8.0 Hz, 1 
H), 8.13 (d, J = 7.2 Hz, 1 H), 8.02 (d, J = 8.4 Hz, 1 H), 7.92-7.77 

(m, 4 H), 7.72 (d, J = 8.0 Hz, 1 H). ESI MS: 293 (M
+1

, 100). 

 

9H-dibenzo[a,c]carbazole-4-carbonitrile: white solid, mp: 299-

302 °C. IR (KBr): 3421, 2228, 1467, 1438, 1068, 837, 734 (cm
-

1
).

1
H NMR (400.13 MHz, DMSO d6): δ 12.99 (bs, 1 H), 9.26 (s, 1 

H), 9.10 (d, J = 8.8 Hz, 1 H), 9.07 (d, J = 8.0 Hz, 1 H), 8.89 (d, J 

= 8.4 Hz, 1 H), 7.78 (d, J = 8.0 Hz, 1 H), 8.06 (d, J = 8.0 Hz, 1 

H), 7.96 (d, J = 8.4 Hz, 1 H), 7.89-7.80 (m, 1 H), 7.58 (t, J = 7.2 
Hz, 1 H), 7.46 (d, J = 7.2 Hz, 1 H); 

13
C NMR (100.6 MHz, 

DMSO d6): δ 141.3, 135.2, 130, 129.6, 129.1, 128.9, 128.3, 127.4, 

126.5, 125.7, 125.44, 125.37, 124.8, 124.1, 122.7, 122.3, 122.1, 
119.8, 113.0, 11.2, 110.6. ESI MS: 293 (M

+1
, 100).Anal calcd for 

C21H12N2: C, 86.28; H, 4.14; N, 9.58. Found: C, 86.22; H, 4.13; 

N, 9.56. 
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4.2.4 Additional information and characterization 

data on 2,3-substituted 4-(1H)-quinolones  

General information: α,β-Ynones were prepared via 

Sonogashira cross-coupling of terminal alkynes with aroyl 
chlorides; the N-(2-Iodoaryl)enaminones were obtained by the 

conjugate addition of 2-iodoanilines with the -ynones. 

Typical procedure for the preparation of 1,3-

diphenylprop-2-yn-1-one: Benzoyl chloride (168.7 mg, 1.2 

mmol), PdCl2(PPh3)2 (14 mg, 0.02 mmol) and Et3N (167 µl, 1.2 
mmol) in anhydrous THF (4 mL) were stirred for 10 min under 

argon atmosphere at room temperature. CuI (7.6 mg, 0.04 mmol) 

was added and the reaction mixture was stirred for other 10 min 
before adding ethynylbenzene (102.2 mg, 1.0 mmol). After 2 h at 

room temperature, the reaction mixture was worked-up with ethyl 

acetate and washed with 2 N HCl and a saturated NH4Cl solution. 

The organic phase was separated, dried over Na2SO4, filtered and 
concentrated under reduced pressure. The residue was purified by 

chromatography on silica gel to afford the desired 1,3-

diphenylprop-2-yn-1-one. 
1
H NMR (400 MHz, CDCl3) δ: 8.26 (d, J = 7.3 Hz, 2H), 7.71 (d, J 

= 7.2 Hz, 2H), 7.66 (t, J = 7.2 Hz, 1H), 7.57-7.43 (m, 5H); 
13

C 

NMR (100 MHz, CDCl3) δ 178.1, 137.1, 134.2, 133.1, 130.8, 

129.6, 128.8, 128.7, 120.3, 93.1, 87.0. 

General procedure for the preparation of N-(2-

iodoaryl)enaminones: An oven-dried Schlenk tube was charged 

with the appropriate α,β-enone (1.5 mmol), the substituted o-
iodoaniline (1 mmol) and anhydrous MeOH (1 mL). The tube was 

sealed and stirred at 120 °C. The reaction mixture was cooled to 

room temperature, the solvent was evaporated and the residue 
was purified by silica gel, eluting with hexane/ethyl acetate 

mixtures. 
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Typical procedure for the preparation of 3-benzoyl-2-

phenylquinolin-4(1H)-one: A metal pressure reactor was 

charged with Pd2(dba)3 (0.05 mmol, 4.6 mg), XPhos (0.01 mmol, 

4.8 mg), Cs2CO3 (0.4 mmol, 130 mg), 3-(2-iodophenylamino)-
1,3-diphenylprop-2-en-1-one (0.2 mmol, 85.1 mg) and MeCN (5 

mL). The reactor was sealed and stirred at 100 °C under a CO 

pressure of 20 bar for 48 h. After cooling, the volatile materials 
were evaporated at reduced pressure and the residue was purified 

by chromatography on neutral aluminum oxide (Brockmann 1) to 

afford 44.2 mg (68% yield) of the following compound. 

 

3-benzoyl-2-phenylquinolin-4(1H)-one: pale yellow solid; mp: 
280-282°C. IR (KBr): 3060, 1731, 1668, 1508 (cm

-1
). 

1
H NMR 

(400.13 MHz, DMSO d6): δ 12.15 (bs, 1H), 8.11(d, J = 8.0 Hz, 1 

H), 7.80-7.73 (m, 4 H), 7.56 (t, J = 7.6 Hz, 1 H), 7.49-7.40 (m, 8 
H);

13
C NMR (100.6 MHz, DMSO d6): δ 196.17, 175.5, 149.9, 

140.4, 138.4, 134.1, 133.4, 132.9, 130.4, 129.4, 129.1, 129.0, 

128.9, 125.3, 125.2, 124.4, 120.7, 119.3; Anal calcd for 
C22H15NO2: C, 81.21; H, 4.65; N, 4.30; Found: C, 81.25; H, 4.64; 

N, 4.31; 
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3-(3-fluorobenzoyl)-2-phenylquinolin-4(1H)-one: withe solid; 
mp: 260-263°C. IR (KBr): 3062, 1681, 1506 (cm

-1
). 

1
H NMR 

(400.13 MHz, DMSO d6): δ 12.19 (bs, 1 H), 8.11(d, J = 8.0 Hz, 1 

H), 7.77 (bs, 2 H), 7.65 (d, J = 7.6 Hz, 1 H), 7.56-7.42 (m, 

9H);
13

C NMR (100.6 MHz, DMSO d6): δ 195.1, 175.6, 162.0, 
150.6, 140.9 (d, J= 5.7 Hz), 140.3, 133.0, 132.6 (q, J= 283 Hz), 

131.3, 130.5, 129.1, 129.0, 125.7 (d, J= 3.5 Hz), 125.3 (d, J= 2.7 

Hz), 124.5, 120.4, 120.2, 119.4, 115.4 (d, J= 21.8 Hz); 
19

F (376.5 

MHz, DMSO d6)  -112.8; Anal calcd for C22H14FNO2: C, 76.96; 

H, 4.11; N, 4.08; Found: C, 76.99; H, 4.10; N, 4.09. 

 

2-phenyl-3-(3-(trifluoromethyl)benzoyl)quinolin-4(1H)-one: 
withe solid; mp: 238-240 °C; IR (KBr): 3502, 1683, 1670, 1508 

cm
-1 1

H NMR (400.13 MHz, DMSO d6): δ 12.28 (bs, 1 H), 8.12-

8.11(m, 2 H), 8.02 (bs, 1 H), 7.94 (d, J = 7.2 Hz, 1 H), 7.78 (bs, 2 
H), 7.69 (t, J = 7.6 Hz, 1 H), 7.47-7.45 (m, 6 H);

13
C NMR (100.6 

MHz, DMSO d6): δ 195.0, 175.6, 151.3, 140.3, 139.3, 134.0, 

133.6, 133.1, 140.9 (d, J= 5.7 Hz), 140.3, 133.0, 130.54, 130.49, 

130.0, 129.7, 129.6, 125.4 (q, J= 9.3 Hz), 125.1 (q, J= 4.2 Hz), 
124.3 (q, J= 272 Hz), 119.6 (q, J= 29.5 Hz), Anal calcd for 

C23H14F3NO2: C, 70.23; H, 3.59; N, 3.56; Found: C, 70.25; H, 

3.58; N, 3.55; 
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3-(3-methoxybenzoyl)-2-phenylquinolin-4(1H)-one: yellow 

solid; mp: 248-250 °C; IR (KBr): 3060, 1675, 1571, 1504 (cm
-1

). 
1
H NMR (400.13 MHz, DMSO d6): δ 12.21 (bs, 1H), 8.10 (d, J = 

8.0 Hz, 1 H), 7.78-7.75 (m, 2 H), 7.50-7.32  (m, 8 H), 7.27 ( s, 1 

H), 7.15-7.32 (m, 1 H), 3.76 (s, 3 H); 
13

C NMR (100.6 MHz, 
DMSO d6): δ 195.9, 175.5, 159.8, 149.9, 140.4, 139.9, 134.1, 

132.9, 130.5, 130.2, 129.1, 128.9, 125.3, 125.2, 124.4, 122.4, 

120.7, 119.4, 113.5, 55.7; Anal calcd for C23H17NO3: : C, 77.73; 
H, 4.82; N, 3.94; Found: : C, 77.77; H, 4.81; N, 3.95. 

 

3-(3-methylbenzoyl)-2-phenylquinolin-4(1H)-one: yellow 

solid; mp: 257-259 °C; IR (KBr): 3062, 1666, 1571, 1508 (cm
-1

). 
1
H NMR (400.13 MHz, DMSO d6): δ 12.13 (bs, 1H), 8.11 (d, J = 

8.0 Hz, 1 H), 7.79-7.73 (m, 2 H), 7.59 (d, J = 10.0 Hz, 2 H), 7.49-
7.29 (m, 8 H), 2.31 (s, 3 H); 

13
C NMR (100.6 MHz, DMSO d6) 

(some chemical shifts are isochronous): δ 196.2, 175.5, 149.8, 

140.3, 138.5, 138.3, 134.14, 134.10, 132.8, 130.4, 129.6, 129.1, 
128.9, 126.8, 125.3, 125.2, 124.4, 120.9, 119.3, 21.3; Anal calcd 

for C23H17NO2: C, 81.40; H, 5.05; N, 4.13; Found: C, 81.37; H, 

5.06; N, 4.12. 
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3-(4-methylbenzoyl)-2-phenylquinolin-4(1H)-one: brown solid; 
mp 329-331 °C; IR (KBr): 3444, 3062, 1664, 1571, 1500 (cm

-1
). 

1
H NMR (400.13 MHz, DMSO d6): δ 12.12 (bs, 1H), 8.10 (d, J = 

8.0 Hz, 1 H), 7.78-7.75 (m, 2 H), 7.68 (d, J = 8.0 Hz, 2 H), 7.48-
7.40 (m, 6 H), 7.23 (d, J = 8.0 Hz, 2 H), 2.34 (s, 3 H); 

13
C NMR 

(100.6 MHz, DMSO d6): δ 195.7, 175.5, 149.6, 143.8, 140.4, 

136.0, 134.2, 132.8, 130.4, 129.60, 129.57, 129.1, 128.9, 125.3, 

125.2, 124.3, 120.9, 119.3, 21.6; Anal calcd for C23H17NO2: C, 
81.40; H, 5.05; N, 4.13; Found: C, 81.36; H, 5.04; N, 4.12. 

 

3-benzoyl-2-(4-methoxyphenyl)quinolin-4(1H)-one: yellow 
solid; mp: 250-253 °C; IR (KBr): 3430, 1627, 1509 (cm

-1
). 

1
H 

NMR (400.13 MHz, DMSO d6): δ 12.03 (bs, 1H), 8.08 (d, J = 7.6 

Hz, 1 H), 7.80-7.74 (m, 4 H), 7.56 (t, J = 7.2 Hz, 1 H), 7.45-7.40 
(m, 5 H), 6.98 (d, J = 8.4 Hz, 2 H), 3.75 (s, 3 H); 

13
C NMR (100.6 

MHz, DMSO d6): δ 196.4, 175.5, 161.0, 149.6, 140.4, 138.4, 

133.4, 132.8, 130.7, 129.4, 129.0, 126.2, 125.3, 125.1, 124.3, 

120.4, 119.3,114.4, 55.8; Anal calcd for C23H17NO3: C, 77.73; H, 
4.82; N, 3.94; Found: C, 77.69; H, 4.81; N, 3.95. 
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2-(4-acetylphenyl)-3-benzoylquinolin-4(1H)-one: brown solid; 
mp: 250-252 °C; IR (KBr): 3451, 3068, 1685, 1550, 1513 (cm

-1
). 

1
H NMR (400.13 MHz, DMSO d6): δ 12.29 (bs, 1H), 8.11 (d, J = 

8.0 Hz, 1 H), 8.00-7.95 (m, 2 H), 7.82-7.77 (m, 3 H),7.64-7.56 
(m, 2 H) 7.52-7.43 (m, 3 H), 2.58 (s, 3 H); 

13
C NMR (100.6 MHz, 

DMSO d6): δ 197.9, 196.0, 175.8, 149.2, 140.3, 138.4, 138.3, 

138.1, 133.5, 133.0, 129.6, 129.4, 129.1, 128.6, 125.4, 124.6, 

120.9, 119.4, 27.3; Anal calcd for C24H17NO3: C, 78.46; H, 4.66; 
N, 3.81; Found: C, 78.50; H, 4.65; N, 3.80. 

 

3-benzoyl-2-(3-methoxyphenyl)quinolin-4(1H)-one: yellow 

solid: mp: 242.244 °C; IR (KBr): 3405, 2958, 1654, 1623, 1550, 
1509 (cm

-1
). 

1
H NMR (400.13 MHz, DMSO d6): δ 12.14 (bs, 1H), 

8.10 (d, J = 7.6 Hz, 1 H), 7.82-7.73 (m, 4 H), 7.57 (t, J = 7.6 Hz, 

1 H), 7.46-7.40 (m, 3 H), 7.33 (t, J = 8.4 Hz, 1 H), 7.03-7.00 (m, 
3H), 3.65 (s, 3 H); 

13
C NMR (100.6 MHz, DMSO d6): δ 196.1, 

175.5, 159.3, 149.5, 140.3, 138.4, 134.3, 133.4, 132.9, 130.2, 

129.4, 129.0, 125.3, 125.2, 124.4, 121.3, 120.7, 119.3, 116.1, 
114.8 55.6; Anal calcd for C23H17NO3: C, 77.73; H, 4.82; N, 3.94; 

Found: C, 77.70; H, 4.81; N, 3.93. 
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methyl 4-(3-benzoyl-4-oxo-1,4-dihydroquinolin-2-yl)benzoate: 
brown wax; ; IR (KBr): 3444, 1727, 1629, 1508 (cm

-1
); 

1
H NMR 

(400.13 MHz, DMSO d6): δ 12.26 (bs, 1H), 8.13 (d, J = 7.6 Hz, 1 

H), 8.08 (d, J = 6.8 Hz, 1 H) 7.98-7.90 (m, 2 H), 7.79 (t, J = 6.8 
Hz, 3 H), 6.63 (d, J = 7.6 Hz, 2 H), 7.56-7.43 (m, 4H), 3.85 (s, 3 

H); 
13

C NMR (100.6 MHz, DMSO d6): δ 195.9, 175.2,166.0, 

149.0, 140.3, 138.5, 138.4, 133.5, 133.0, 131.3, 129.7, 129.6, 

129.4, 129.2, 129.0, 125.4, 124.6, 121.0, 119.4, 52.8; Anal calcd 
for C24H17NO4: C, 75.19; H, 4.47; N, 3.65; Found: C, 75.21; H, 

4.46; N, 3.64. 

 

2-(4-acetylphenyl)-3-(4-chlorobenzoyl)quinolin-4(1H)-one: 

yellow solid; mp: 294-296 °C; 3444, 1687, 1509 (cm
-1

). 
1
H NMR 

(400.13 MHz, DMSO d6): δ 12.32 (bs, 1H), 8.13-8.09 (m, 1 H), 
8.02-7.93 (m, 3 H) 7.86-7.76 (m, 4 H), 7.64-7.42 (m, 6 H), 2.59 

(s, 3 H); 
13

C NMR (100.6 MHz, DMSO d6): δ 197.9, 195.0, 

175.5, 149.7, 140.3, 138.4, 138.2, 137.2, 133.7, 133.1, 131.3, 

129.6, 129.2, 128.6, 125.3, 124.7, 120.4, 119.4, 114.7, 27.3; Anal 
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calcd for C24H16CLNO3: C, 71.73; H, 4.01; N, 3.49; Found: C, 

71.69; H, 4.02; N, 3.50. 

 

3-benzoyl-6-bromo-2-phenylquinolin-4(1H)-one: yellow solid; 
mp: 265-267 °C; IR (KBr): 3256, 1670, 1567, 1494 (cm

-1
); 

1
H 

NMR (400.13 MHz, DMSO d6): ): δ 12.30 (bs, 1H), 8.19 (s, 1 H), 

7.92 (d, J = 8.8 Hz, 1 H), 7.79 (d, J = 7.6 Hz, 2 H) 7.73 (d, J = 8.8 
Hz, 1 H), 7.57 (t, J = 7.6 Hz, 1H), 7.48-7.42 (m, 8H); 

13
C NMR 

(100.6 MHz, DMSO d6): δ 195.7, 174.2,150.3, 139.3, 138.2, 

135.6, 133.8, 133.6, 130.6, 129.4, 129.10, 129.06, 129.00, 127.5, 

126.7, 121.9, 121.1, 117.1; Anal calcd for C22H14BrNO2: C, 
65.36; H, 3.49; N, 3.46; Found: C, 65.37; H, 3.48; N, 3.45; 

 

6-bromo-2-phenyl-3-(3-(trifluoromethyl)benzoyl)quinolin-

4(1H)-one: brown solid; mp: 248-250 °C; IR (KBr): 3250, 3087, 

1675, 1571, 1508 1494 (cm
-1

); 
1
H NMR (400.13 MHz, DMSO 

d6): ): δ 12.42 (bs, 1H), 8.19 (bs, 1 H), 8.11 (d, J = 8.0 Hz, 1 H), 
8.02 (bs, 1 H), 7.94 (d, J = 8.8 Hz, 2 H) 7.74 (d, J = 8.8 Hz, 1 H), 

7.69 (t, J = 7.6 Hz, 1H), 7.46 -7.45 (m, 5H); 
13

C NMR (100.6 

MHz, DMSO d6) (some chemical shifts are isochronous): δ 194.6, 
174.3, 151.6, 139.3, 139.1, 135.8, 133.7 (q, J= 10.9 Hz), 130.6 (q, 

, J= 17.9 Hz), 129.9 (q,, J= 32.2 Hz), 129.8 (q,, J= 3.7 Hz), 129.1, 
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129.0, 127.5, 126.9, 125.2 (q, J= 3.5 Hz), 124.3 (q, J= 272.5 Hz), 

122.0, 120.0, 117.4; 
19

F (376.5 MHz, DMSO d6)  -61.4; Anal 
calcd for C23H13BrF3NO2: C, 58.50; H, 2.77; N, 2.97; Found C, 

58.48; H, 2.78; N, 2.98. 

4.2.5 Additional information and characterization 

data on benzil derivatives 

General information: The 1,2-diarylethanones were 

prepared through the Friedel-Kraft reaction or through a 
palladium catalyzed cross-coupling depending on the desired 

subtituent. 

Typical procedure for the preparation of 2-(4-
chlorophenyl)-1-phenylethanone: A flask equipped with a 

magnetic stirring bar was charged with 2-(4-chlorophenyl)acetyl 

chloride (283.5 mg, 219 l, 1.5 mmol) dissolved in CH2Cl2 (1 
mL). The solution was stirred under nitrogen at 0°C before adding 

AlCl3 (219 mg, 1.65mmol) and benzene dissolved CH2Cl2 (1 
mL). Reaction mixture was stirred at room temperature for 0.5 h 

and after this time was added H2O (10 mL) dropwise. The 

resultant mixture was diluited with CH2Cl2 and washed with 

brine. The organic layer was dried over Na2SO4, filtered and 
concentrated under reduced pressure. The residue was purified by 

flash chromatography on silica gel, eluiting with n-hexane/AcOEt 

mixture to obtain 2-(4-chlorophenyl)-1-phenylethanone (256 mg, 
88% yield). 

Typical procedure for the preparation of 4-(2-

phenylacetyl)benzonitrile: A Carousel Tube Reaction (Radley 
Discovery) was charged with Pd(OAc)2 (7 mg, 0.03 mmol), 

XPhos (29 mg, 0.06 mmol) and toluene (2 mL). The solution was 

stirred under Nitogen at room temperature for 10 minutes before 

adding NaOtBu (720 mg, 7.5mmol), 4-acetylbenzonitrile (522 
mg, 3.6 mmol) and bromobenzene (471 mg, 3 mmol) dissolved in 

toluene (2 ml). The reaction mixture was warmed at 90°C and 

stirred for 5 hours. After cooling, the mixture was diluited with 
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Et2O and washed with H2O and with brine. The organic layer was 

dried over Na2SO4, filtered and concentrated under reduced 

pressure. The residue was purified by flash chromatography on 

silica gel, eluiting with n-hexane/AcOEt mixture to obtain 471 
mg of 4-(2-phenylacetyl)benzonitrile (71% yield). 

  

Typical procedure for the preparation of 1,2-
diarylethandiones: a Carousel Tube Reaction (Radley 

Discovery) was charged with Cu(OAc)2 (12 mg, 0.06 mmol), 

P(Ph)3 (31 mg, 0.12 mmol) and 1,2,4-trimethylbenzene (1 mL). 
The solution was stirred under air at room temperature for 10 

minutes before adding 1,2-diphenylethanone (78.5 mg, 0.4 mmol) 

dissolved in 1,2,4-trimethylbenzene (0.6 mL). The reaction 

mixture was warmed at 100°C and stirred for 0.83 hours. After 
cooling, the mixture was diluited with Et2O and washed with a 

satured solution of NH4Cl and with brine. The organic layer was 

dried over Na2SO4, filtered and concentrated under reduced 
pressure. The residue was purified by chromatography on silica 

gel, eluiting with n-hexane/AcOEt mixture to obtain 71.4 mg 

(83% yield) of the following compound: 

 

Benzil: Pale yellow solid; Mp: 91-93 °C; IR (KBr): 2921, 2856, 
1658, 1594, 1450, 1384, 1211, 1101, 875 cm

-1
; 

1
H NMR (400 

MHz) (CDCl3)  8.00 (d, J= 7.2 Hz, 4 H), 7.69 (t, J=7.2 Hz, 2H) 

7.54 (t, J=7.6 Hz, 4H); 
13

C NMR (100.6 MHz) (CDCl3)  194.6, 
134.9, 133.0, 129.9, 129.1; MS m/z (relative intensity): 210 ( M

+
 

0.2%), 64 (10.1%), 105 (11.6%), 51 (14.8%), 92 (15.6%), 77 

(43.1%), 135 (100%) Anal. Calcd. for C14H10O2: C, 79.98; H, 

4.79; Found: C, 79.88; H, 4.77. 
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1-(4-Methoxyphenyl)-2-phenylethane-1,2-dione: Yellow oil; IR 

(neat): 2933, 2842, 1779, 1675, 1596, 1265, 1216, 1166, 1024, 

875 cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  7.98 (t, J= 8.8 Hz, 4H), 

7.66 (t, J= 7.6 Hz, 1H) 7.52 (t, J= 7.6 Hz, 2H), 7.00 (d, J= 8.8 Hz, 

2H), 3.90 (s, 3H); 
13

C NMR (100.6 MHz) (CDCl3)  194.9, 193.2, 
165.0, 134.7, 133.2, 132.4, 129.9, 129.0, 126.1, 114.4, 55.6; MS 

m/z (relative intensity): 240 (M
+
 0.7%), 64 (10.2%), 105 (12.0%), 

92 (15.0%), 51 (15.7%), 77 (44.4%), 135 (100%); Anal. Calcd. 

for C15H12O3: C, 74.99; H, 5.03; Found: C, 74.89; H, 5.04. 

 

1-Phenyl-2-p-tolylethane-1,2-dione: Yellow oil; IR (neat): 2923, 

2854, 1604, 1450, 1384, 1214, 1174, 875 cm
-1

; 
1
H NMR (400 

MHz) (CDCl3)  7.99 (d, J= 7.2 Hz, 2H), 7.9 (d, J= 8.4 Hz, 2H), 
7.68 (t, J= 7.2 Hz, 1H), 7.53 (t, J= 8.0 Hz, 2H) 7.33 (d, J= 8.0 Hz, 

2H), 2.46 (s, 3H); 
13

C NMR (100.6 MHz) (CDCl3)  194.8, 194.3, 

146.2, 134.8, 133.1, 130.6, 130.0, 129.9, 129.7, 129.0, 21.9; MS 
m/z (relative intensity) : 224 (M

+
 1.5%), 51 (22.7%), 65 (24.3%), 

105 (25.1%), 77 (34.8%), 91 (37.0%), 119 (100%); Anal. Calcd. 

for C15H12O2: C, 80.34; H, 5.39; Found: C, 80.42; H, 5.40. 

 

1-phenyl-2-o-tolylethane-1,2-dione: Pale yellow solid; Mp: 53-
55 IR (KBr): 3064, 2969, 2929, 1994, 1820, 1679, 1596, 1452, 

1205, 1166, 881 cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  8.0 (d, J= 
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7.6 Hz, 2H), 7.69-7.51 (m, 3H), 7.38-7.29 (m, 4H) 2.73 (s, 3H); 
13

C NMR (100.6 MHz) (CDCl3)  196.7, 194.8, 141.3, 134.7, 
133.7, 133.2, 130.0, 132.6, 129.9, 129.0, 128.5, 126.0, 21.9; MS 

m/z (relative intensity) : 224 (M
+
 1.4%), 51 (21.5%), 65 (23.3%), 

105 (25.2%), 77 (35.2%), 91 (37.3%), 119 (100%); Anal. Calcd. 
for C15H12O2: C, 80.34; H, 5.39; Found: C, 80.39; H, 5.38. 

 

1-(4-acetylphenyl)-2-phenylethane-1,2-dione: Pale yellow 

solid; Mp: 78-80 °C; IR (KBr): 2923, 2852, 1677, 1436, 1213, 

885 cm
-1
; 

1
H NMR (400 MHz) (CDCl3)  8.09-8.01 (m, 4H), 7.99 

(d, J= 1.2 Hz, 2H), 7.69 (t, 7.6 Hz, 1H), 7.54 (t, 7.6 Hz, 2H), 2.65 

(s, 3H); 
13

C NMR (100.6 MHz) (CDCl3)  197.1, 193.7, 193.6, 
141.3, 136.0, 135.1, 132.7, 130.1, 129.9, 129.1, 128.7, 26.9; MS 

m/z (relative intensity): 252 (M
+
 2.51%), 91 (10.7 %), 147 

(24.5%), 77 (44.8%), 105 (100%); Anal. Calcd. For C16H12O3: C, 

76.18; H, 4.79; Found: C, 76.22; H, 4.78. 

 

Methyl 4-(2-oxo-2-phenylacetyl)benzoate: Pale yellow solid; 

Mp: 65-67 °C; IR (KBr): 2954, 2927, 2848,1720, 1671, 1436, 

1286, 1209, 1105, 885 cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  8.18 

(d, J= 8.4 Hz, 2H), 8.06 (d, J= 8.0 Hz, 2H), 8.00 (d, J= 7.6 Hz, 

2H), 7.70 (t, J= 7.6 Hz, 1H) 7.54 (t, J= 7.6 Hz, 2H), 3.97 (s, 3H); 
13

C NMR (100.6 MHz) (CDCl3)  193.7, 193.6, 165.8, 136.1, 
135.3, 135.1, 132.8, 130.1, 130.0, 129.8, 126.3, 52.6; MS m/z 

(relative intensity): 135 (9.1%), 51 (22.1%), 163 (24.7%), 77 
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(51.3%), 105 (100%); Anal. Calcd. for C16H12O4: C, 71.64; H, 

4.51; Found: C, 71.54; H, 4.50.  

 

4-(2-Oxo-2-phenylacetyl)benzonitrile: Pale yellow solid; Mp: 

110-112 °C; IR (KBr): 3112, 3073, 3046, 2225, 1683, 1660, 

1594, 1172, 881 cm
-1
; 

1
H NMR (400 MHz) (CDCl3)  8.12 (d, J= 

8.8 Hz, 2H), 8.00 (dd, J1= 8.4 Hz, J2= 0.8 Hz, 2H), 7.84 (d, J= 8.4 

Hz, 2H), 7.73 (t, J= 7.6 Hz, 1H), 7.57 (t, J= 8.0 Hz, 2H); 
13

C 

NMR (100.6 MHz) (CDCl3)  193.0, 192.4, 135.9, 135.4, 132.8, 

132.5, 130.2, 130.0, 129.2, 117.9, 117.6;MS m/z (relative 
intensity): 163 (6.3%), 235 (M

+ 
7.2%), 102 (26.6%), 51 (42.9%), 

77 (62.2%), 105 (100%); Anal. Calcd. for C15H9NO2: C, 76.59; H, 

3.86; N, 5.95; Found: C, 76.65; H, 3.84; N, 5.97. 

 

1-(4-chlorophenyl)-2-phenylethane-1,2-dione: Pale yellow 

solid; Mp: 70-72 °C; IR (KBr): 2931, 1666, 1585, 1450, 1402, 

1209, 1174, 1095, 875 cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  8.00 

(m, 4H), 7.67-7.49 (m, 5H);
 13

C NMR (100.6 MHz) (CDCl3)  
193.9, 193.0, 141.6, 135.1, 132.8, 131.4, 131.2, 129.9, 129.4, 
129.1;MS m/z (relative intensity): 245 (M

+
 0.6%), 141 (10.5%), 

139 (29.8%), 51 (35.8%), 77 (56.8%), 105 (100%); Anal. Calcd. 

for C14H9ClO2: C, 68.72; H, 3.71; Found: C, 68.69; H, 3.72 
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1-(4-bromophenyl)-2-phenylethane-1,2-dione: Yellow solid; IR 

(neat): 3087, 2967, 2927, 1668, 1579, 1450, 1398, 1209, 1174, 

1070, 873 cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  7.99 (d, J= 7.2 

Hz, 2H) 7.86 (d, J= 8.4 Hz, 2H) 7.71-7.67 (m,3H), 7.54 t, J= 7.6 

Hz, 2H); 
13

C NMR (100.6 MHz) (CDCl3)  193.9, 193.3, 135.1, 
132.8, 132.5, 131.7, 131.3, 130.5, 130.0, 129.1; MS m/z (relative 

intensity): 289 (M
+ 

2.0%), 183 (9.0%), 155 (11.9%), 51 (32.8%), 
77 (55.5%), 105 (100%); Anal. Calcd. for C14H9BrO2: C, 58.16; 

H, 3.14; Found: C, 58.20; H, 3.13 

 

1-(2-bromophenyl)-2-phenylethane-1,2-dione: Yellow oil; IR 

(KBr): 2923, 1677, 1585, 1450, 1253, 1027 860 cm
-1

; 
1
H NMR 

(400 MHz) (CDCl3)  8.09 (d, J= 0.8 Hz, 2H), 7.85-7.83 (m, 1H), 
7.71-7.62(m, 2H), 7.58-7.44 (m, 4H); 

13
C NMR (100.6 MHz) 

(CDCl3)  194.2, 191.5, 136.0, 134.5, 134.4, 133.8, 132.7, 132.6, 
130.4, 128.9, 127.8, 121.8; MS m/z (relative intensity): 289 (M

+ 

2.0%), 183 (11.2%), 155 (12.9%), 51 (32.9%), 77 (54.5%), 105 

(100%); Anal. Calcd. for C14H9BrO2: C, 58.16; H, 3.14; Found: 

C, 58.21; H, 3.13. 

 

1-(4-Iodophenyl)-2-phenylethane-1,2-dione: Yellow solid; Mp: 

89-90 °C; IR (KBr): 3060, 2927, 2861, 1670, 1579, 1394, 1211, 

1174, 879 cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  7.98 (d, J= 7.6 

Hz, 2H), 7.91 (d, J= 8.4 Hz, 2H), 7.71-7.68 (m, 3H) 7.54 (t, J= 

7.6 Hz, 2H); 
13

C NMR (100.6 MHz) (CDCl3)  193.9, 193.7, 
138.4, 135.1, 132.8, 132.3, 131.0, 130.0, 129.1, 103.7; MS m/z 

(relative intensity): 336 (M
+
 0.5%), 203 (6.5%), 231 (19.1%), 51 
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(32.7%), 50 (33.7%), 77 (56.7%), 105 (100%); Anal. Calcd. for 

C14H9IO2: C, 50.03; H, 2.70; Found: C, 50.10; H, 2.71. 

 

1-(4-Chlorophenyl)-2-(4-iodophenyl)ethane-1,2-dione: Yellow 

solid; Mp: 208-210 °C; IR (KBr): 3087, 2954, 2913, 1662, 1579, 
1394, 1209, 1172, 1091, 881 cm

-1
; 

1
H NMR (400 MHz) (CDCl3) 

 7.94-7.91 (m, 4H), 7.19 (d, J= 8.4 Hz, 2H), 7.52 (d, J= 8.4 Hz, 

2H); 
13

C NMR (100.6 MHz) (CDCl3)  193.0, 192.3, 141.4, 
138.5, 132.1, 131.3, 131.1, 131.0, 129.5, 103.9; MS m/z (relative 

intensity): 370 (M
+
 6.0%), 203 (18.3%), 51 (18.7%), 141 

(35.3%), 111 (58.1%), 50 (71.5%) 231 (85.1%) 76 (85.6%), 139 

(100%); Anal. Calcd. for C14H8ClIO2: C, 45.38; H, 2.18; Found: 
C, 45.42; H, 2.16. 

 

1-(4-bromophenyl)-2-(4-chlorophenyl)ethane-1,2-dione: 

Yellow solid; Mp: 203-205 °C; IR (KBr):2923, 1664, 1587, 1209, 

1172, 835 cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  7.94 (d, J= 8.4 

Hz, 2H), 7.86 (d, J= 8.4 Hz, 2H), 7.69 (d, J= 8.4 Hz, 2H), 7.52 (d, 

J= 8.4 Hz, 2H); 
13

C NMR (100.6 MHz) (CDCl3)  192.6, 192.3, 
141.8, 132.5, 131.5, 131.3, 131.1, 130.7, 129.5; MS m/z (relative 

intensity): 237 (11.4%), 51 (18.2%), 155 (30.1%), 141 (41.7%), 

185 (46.5%), 111 (50.2%), 50 (58.9%), 75 (92.5%), 139 (100%); 

Anal. Calcd. for C14H8BrClO2: C, 51.97; H, 2.49; Found: C, 
52.01; H, 2.51. 
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1-(4-chlorophenyl)-2-(4-methoxyphenyl)ethane-1,2-dione: 
Pale yellow solid; Mp: 127-128 °C; IR (KBr): 3093, 3002, 2937, 

2838, 1670, 1654, 1598, 1267, 1214, 1168, 1027, 881 cm
-1

; 
1
H 

NMR (400 MHz) (CDCl3)  7.96-7.92 (m, 4H), 7.49 (d, J= 8.4 
Hz, 2H), 6.99 ((d, J= 8.8 Hz, 2H), 3.90 (s, 3H); 

13
C NMR (100.6 

MHz) (CDCl3)  193.4, 192.4, 165.1, 141.4, 132.4, 131.6, 131.2, 
129.4, 125.9, 114.4, 55.7; MS m/z (relative intensity): 274 (M+ 
1.5%), 139 (18.2%) 77 (20.2%) 141 (52.2%), 135 (100%) Anal. 

Calcd. for C15H11ClO3: C, 65.58; H, 4.04; Found: C, 65.66; H, 

4.02. 

 

 

1,2-bis(4-methoxyphenyl)ethane-1,2-dione Yellow solid; Mp: 
130-131 °C; IR (KBr): 3025, 2925, 2850, 1654, 1598, 1571, 

1263, 1160, 1016, 879 cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  7.99 

(d, J= 8.8 Hz, 4H), 7.00 (d, J= 8.8 Hz, 4H), 3.91 (s, 3H); 
13

C 

NMR (100.6 MHz) (CDCl3)  193.5, 164.9, 132.4, 126.3, 114.3, 
55.6; MS m/z (relative intensity): 270 (M

+
 2.2%), 77 (17.9%), 

207 (49.4%), 44 (85.1%), 135 (100%); Anal. Calcd. for Formula: 
C16H14O4: C, 71.10; H, 5.22; Found: : C, 71.21; H, 5.23. 
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4.2.6 Additional information and characterization 

data on 2,4-diarylbenzo[b][1,4]oxazepines 

General information: α,β-Ynones were prepared via 

Sonogashira cross-coupling of terminal alkynes with aroyl 
chlorides; the N-(2-Bromoaryl)enaminones were obtained by the 

conjugate addition of 2-bromoanilines with the -ynones. 

Typical procedure for the preparation of 1,3-

diphenylprop-2-yn-1-one: Benzoyl chloride (168.7 mg, 1.2 

mmol), PdCl2(PPh3)2 (14 mg, 0.02 mmol) and Et3N (167 µl, 1.2 
mmol) in anhydrous THF (4 mL) were stirred for 10 min under 

argon atmosphere at room temperature. CuI (7.6 mg, 0.04 mmol) 

was added and the reaction mixture was stirred for other 10 min 
before adding ethynylbenzene (102.2 mg, 1.0 mmol). After 2 h at 

room temperature, the reaction mixture was worked-up with ethyl 

acetate and washed with 2 N HCl and a saturated NH4Cl solution. 

The organic phase was separated, dried over Na2SO4, filtered and 
concentrated under reduced pressure. The residue was purified by 

chromatography on silica gel. 
1
H NMR (400 MHz, CDCl3) δ: 8.26 (d, J = 7.3 Hz, 2H), 7.71 (d, J 

= 7.2 Hz, 2H), 7.66 (t, J = 7.2 Hz, 1H), 7.57-7.43 (m, 5H); 
13

C 

NMR (100 MHz, CDCl3) δ 178.1, 137.1, 134.2, 133.1, 130.8, 

129.6, 128.8, 128.7, 120.3, 93.1, 87.0. 

General procedure for the preparation of N-(2-
iodoaryl)enaminones: An oven-dried Schlenk tube was charged 

with the appropriate α,β-enone (1.5 mmol), the substituted o-

iodoaniline (1 mmol) and anhydrous MeOH (1 mL). The tube was 
sealed and stirred at 120 °C. The reaction mixture was cooled to 

room temperature, the solvent was evaporated and the residue 

was purified by silica gel, eluting with hexane/ethyl acetate 
mixtures. 

Typical procedure for the preparation of 2,4-

diphenylbenzo[b][1,4]oxazepine: An oven-dried Schlenk tube 
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was charged with CuI (0.008 mmol, 1.5 mg ), P(Ph)3 (0.008 

mmol, 2 mg) and DMA (1 mL). The tube was stirred for 10 

minutes before adding  K2CO3 (0.3 mmol, 41.4 mg) and 3-(2-

bromophenylamino)-1,3-diphenylprop-2-en-1-one (0.15 mmol, 
56.7 mg) dissolved in DMA (1 mL). The resulting mixture was 

stirred at 140°C for 6.5 h. After this time the reaction mixture was 

worked-up with Et2O and washed with H2O and with a saturated 
NH4Cl solution. The organic phase was separated, dried over 

Na2SO4, filtered and concentrated under reduced pressure. The 

residue was purified by chromatography on silica gel. 

 

2,4-diphenylbenzo[b][1,4]oxazepine: Yellow solid; Mp: 66-68 

°C; IR (KBr): 1737, 1629, 757 cm
-1

; 
1
H NMR (400 MHz) 

(CDCl3)  8.07-8.04 (m, 2H), 7.96-7.93(m, 2H), 7.51-7.48 (m, 
7H), 7.27-7.23 (m, 2H), 7.14-7.12 (m, 1H), 6.68 (s, 1H); 

13
C 

NMR (100.6 MHz) (CDCl3)  164.1, 163.3, 151.1, 142.1, 139.7, 
133.4, 130.5, 130.4, 128.8, 128.6, 128.5, 128.1, 127.6, 126.2, 

125.8, 120.8, 106.2   Anal. Calcd. for C21H15NO: C, 84.82; H, 

5.08; N, 4.71; Found: C, 84.87; H, 5.07; N, 4.72. 

 

8-chloro-2,4-diphenylbenzo[b][1,4]oxazepine: Yellow solid; 

Mp: 124-126 °C; IR (KBr): 1633, 1008, 761 cm
-1

; 
1
H NMR (400 

MHz) (CDCl3)  8.04-8.03 (m, 2H), 7.91-7.90 (m, 2 H), 7.52-7-
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51 (m, 6H),7.41 (d, J= 8 Hz, 1 H) 7.24 (d, J= 8 Hz, 1 H), 7.13 (s,1 

H), 6.67 (s, 1 H).
 13

C NMR (100.6 MHz) (CDCl3)  164.2, 162.9, 
151.0, 140.9, 139.4, 133.03, 132.98, 130.7, 130.6, 129.3, 128.9, 

128.5, 127.5, 126.2, 126.0, 121.2, 106.3; Anal. Calcd. for 

C21H14ClNO: C, 76.02; H, 4.25; N, 4.22; Found: C, 76.10; H, 
4.24; N, 4.21; 

 

8-fluoro-2,4-diphenylbenzo[b][1,4]oxazepine: Yellow solid; 
Mp: 101-103 °C; IR (KBr): 1633, 1484, 1010, 742 cm

-1
; 

1
H NMR 

(400 MHz) (CDCl3)  8.04-8.02 (m, 2H), 7.91-7.90 (m, 2H), 
7.51-7.44 (m,7 H), 7.02-6.97 (m,1 H), 6.89-6.83 (m, 1 H), 6.67-

6.63 (m, 1 H); 
13

C NMR (100.6 MHz) (CDCl3)  163.5, 163.4, 
162.4, 162.3 (d, J= 248 Hz), 151.1 (d, J= 10,9 Hz), 139.5, 138.6, 

133.1, 130.6 (d, J= 4 Hz), 129.4 (d, J= 9.6 Hz), 128.9, 128.5, 
127.5, 126.1, 112.8 (d, J= 22.2 Hz), 108.4 (d, J= 23.7 Hz), 106.3; 
19

F NMR (376.5 MHz) (CDCl3)  – 113.6; Anal. Calcd. for 
C21H14FNO; C, 79.98; H, 4.47; N, 4.44; Found: C, 80.08; H, 4.46; 

N, 4.44. 

 

8-methyl-2,4-diphenylbenzo[b][1,4]oxazepine: Yellow solid; 

Mp: 93-95 °C; IR (KBr): 1737, 1629, 757 cm
-1

 
1
H NMR (400 
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MHz) (CDCl3)  8.04 - 8.02 (m, 2H), 7.95 - 7.93 (m, 2H), 7.50- 

7.48 (m, 6 H), 7.37 (d, J= 8 Hz, 1H), 7.06 (d, J= 7.2 Hz, 1H), 6.93 
(s, 1H), 6.64 (s, 1H), 2.37 (s, 3H); 

13
C NMR (100.6 MHz) 

(CDCl3)  163.3, 162.8, 150.6, 139.9, 139.6, 138.7, 133.6, 
130.31, 130.26, 128.9, 128.8, 128.4, 127.4, 126.5, 126.2, 121.2, 

106.2, 20.9; Anal. Calcd. for C22H17NO: C, 84.86; H, 5.50; N, 

4.50; Found: C, 84.90; H, 5.51; N, 4.49. 

  

8-chloro-4-phenyl-2-p-tolylbenzo[b][1,4]oxazepine: Yellow 

solid; Mp: 134-136 °C; IR (KBr): 1737, 1631, 1473, 1006, 763 

cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  8.02 (d, J= 4.8Hz, 2H), 7.80 

(d, J= 8 Hz, 2H), 7.51 (m, 4H), 7.40 (d, J= 8.4 Hz, 1H), 7.30 (d, 

J= 8Hz, 2H), 7.23 (d, J= 8.4 Hz, 1H), 7.12 (s, 1H), 6.62 (s, 1 H), 

2.45 (s, 3H); 
13

C NMR (100.6 MHz) (CDCl3)  164.3, 163.1, 
151.0, 141.1, 140.9, 139.6, 132.9, 130.7, 130.2, 129.6, 129.2, 

128.5, 127.5, 126.2, 125.9, 121.2, 105.5, 21.5; Anal. Calcd. for 

C22H16ClNO: C, 76.41; H, 4.66; N, 4.05; Found: C, 76.48; H, 

4.67; N, 4.04. 
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8-chloro-2-(4-chlorophenyl)-4-phenylbenzo[b][1,4]oxazepine: 

Yellow solid; Mp: 140-142 °C; IR (KBr): 1631, 1475, 1008, 763 

cm
-1
; 

1
H NMR (400 MHz) (CDCl3)  8.00 (d, J= 6 Hz, 2H), 7.81 

(d, J= 8.4 Hz, 2H), 7.57-7.39 (m, 6 H), 7.23 (d, J= 8.4 Hz, 1H), 

7.08 (s,1 H), 6.62 (s, 1 H); 
13

C NMR (100.6 MHz) (CDCl3)  
163.9, 161.6, 150.7, 140.7, 139.2, 136.7, 133.1, 131.5, 130.8, 

129.4, 129.2, 128.5, 127.5, 127.4, 126.1, 121.1, 106.6; Anal. 

Calcd. for C21H13Cl2NO: C, 68.87; H, 3.58; N, 3.82; Found: C, 
68.90; H, 3.59; N, 3.83. 

 

8-chloro-2-(3-methoxyphenyl)-4-

phenylbenzo[b][1,4]oxazepine: Yellow solid; Mp: 96-98 °C; IR 

(KBr): 1737, 1635, 1473, 767 cm
-1

; 
1
H NMR (400 MHz) (CDCl3) 

 8.02 (d, J= 5.6 Hz, 2H), 7.51-7.39 (m, 7 H), 7.23 (dd, J1= 8.4 
Hz, J2= 1.2 Hz 1 H), 7.12 (s, 1 H), 7.04 (d, J= 8 Hz, 1H), 6.65 (s, 

1 H), 3.91 (s, 3 H); 
13

C NMR (100.6 MHz) (CDCl3)  164.1, 

162.5, 159.9, 150.9, 140.8, 139.4, 134.4, 133.0, 130.7, 130.0, 
129.3, 128.5, 127.5, 126.0, 121.2, 118.6, 116.0, 111.9, 106.6, 

55.5; Anal. Calcd. for C22H16ClNO2: C, 73.03; H, 4.46; N, 3.87; 

Found: C, 73.08; H, 4.45; N, 3.88. 
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8-chloro-4-(3-methoxyphenyl)-2-

phenylbenzo[b][1,4]oxazepine: Yellow wax; IR (KBr): 1737, 

1635, 1473, 767 cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  7.90-7.87 

(m, 2 H), 7.63-7.29 (m, 7 H), 7.24 (dd, J1= 5.2 Hz, J2= 1.2 Hz 1 

H), 7.22 (d, J= 2 Hz, 1H), 7.13-7.05 (m,1 H), 6.65 (s, 1 H), 3.92 

(s, 3 H); 
13

C NMR (100.6 MHz) (CDCl3) : 163.9, 162.8, 159.8, 
151.0, 140.9, 140.8, 133.0, 130.6, 129.5, 129.3, 128.9, 126.2, 

126.0, 121.2, 120.2, 116.8, 112.5, 106.4, 55.4; Anal. Calcd. for 
C22H16ClNO2 C, 73.03; H, 4.46; N, 3.87; Found: C, 73.10; H, 

4.45; N, 3.88. 

 

methyl 4-(8-chloro-2-phenylbenzo[b][1,4]oxazepin-4-

yl)benzoate: Yellow solid; Mp: 180-182 °C; IR (KBr): 1725, 

1635, 1295, 1008, 761 cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  

8.15(d, J= 6.4 Hz, 2H), 8.08(d, J= 6.4 Hz, 2H), 7.90-7.89 (m, 2 
H), 7.51 (bs, 3H), 7.41 (dd, J1= 8.2 Hz, J2= 1.6 Hz 1 H), 7.28-7.23 

(m, 1 H), 7.12 (s, 1H), 6.65 (s, 1 H), 6.64 (s, 1 H), 3.98 (s, 

3H);
13

C NMR (100.6 MHz) (CDCl3) 166.6, 163.3, 163.1, 150,7, 
143.3, 140.6, 133.6, 132.7, 131.8, 130.8, 129.7, 129.4, 128.9, 

127.5, 126.2, 126.1, 121.3, 105.9, 52.3; Anal. Calcd. for 
C23H16ClNO3:C, 70.86; H, 4.14; N, 3.59; Found C, 70.90; H, 4.13; 

N, 3.60;  
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methyl 4-(8-fluoro-2-phenylbenzo[b][1,4]oxazepin-4-
yl)benzoate: Yellow solid; Mp: 155-157 °C; IR (KBr): 1727, 

1637, 1295, 1010, 771 cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  8.14 

(d, J= 8 Hz, 2H), 8.07 (d, J= 8 Hz, 2H), 7.89 (m, 2H), 7.50-7.43 

(m, 4 H), 6.99 (t, J= 7.6 Hz, 1H), 6.85 (d, J= 8.4 Hz, 1H), 6.63 (s, 

1 H), 3.97 (s, 3 H); 
13

C NMR (100.6 MHz) (CDCl3)  166..7, 
162.8, 160.8 (d, J= 292.7 Hz), 150.9 (d, J= 10.9 Hz), 143.4, 

138.3, 132.9, 131.7, 130.7, 129.7 129.6 (d, J= 10.6 Hz), 128.9, 
127.4, 126.2, 112.9 (d, J= 21.9 Hz), 108.5 (d, J= 24.3 Hz), 105.9, 

52.3; 
19

F NMR (376.5 MHz) (CDCl3)  – 112.7; 
Anal. Calcd. for C23H16FNO3:  C, 73.99; H, 4.32; N, 3.75; Found 

C, 73.93; H, 4.31; N, 3.76. 
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4.2.6 Additional information and characterization 

data on 2,4-diaryl-2,3-dihydro-1H-

benzo[b][1,4]diazepines 

General information: The 1,3 diarylpropargilic alcohols 

were prepared, usually in high yields, using two main synthetic 

strategies: a) Sonogashira cross-coupling of 1-arylprop-2-yn-1-ols 
and substituted aryl-iodides; b) Nucleophilic addition of a 

terminal alkyne to an aldeyde. 

Typical procedure for the preparation of 3-(4-
bromophenyl)-1-phenylprop-2-yn-1-ol: in a Carousel Tube 

Reactor (Radely Discovery Technology) containing a magnetic 

stirring bar PdCl2(PPh3)2 (30.8 mg, 0.044 mmol) and CuI (8.4 mg, 

0.044 mmol) were dissolved under nitrogen in 2.3 mL of 
anhydrous DMF and 2mL of N-diisopropylamine. The resultant 

solution was stirred under Nitrogen at room temperature for 10 

minutes before adding 1-bromo-4-iodobenzene (1245 mg, 4.4 

mmol) and 1-phenylprop-2-yn-1-ol (700 mg, 657 l, 5.3 mmol) 

dissolved in N-diisopropylamine (1.5 ml). The reaction mixture 
was stirred for 3 hours at room temperature. After this time, the 

reaction mixture was diluited with Et2O and washed with HCl 2N, 

with a saturated NH4Cl solution and with brine. The organic layer 
was dried over Na2SO4, filtered and concentrated under reduced 

pressure. The residue was purified by flash chromatography on 

silica gel, to obtain 1136 mg (90 % yield) of 3-(4-bromophenyl)-

1-phenylprop-2-yn-1-ol. 
1
H NMR (400 MHz) (CDCl3)  7.62 (d, J= 7.2 Hz, 2 H), 7.45-

7.33 (m, 7 H), 5.69 (s, 1 H), 2.62(bs, 1 H); 
13

C NMR (100.6 

MHz) (CDCl3)  140.4, 133.2, 131.6, 128.7, 128.5, 126.7, 122.9, 
121.4, 90.0, 85.6, 65.1. 

Typical procedure for the preparation of 4-(1-hydroxy-3-

phenylprop-2-ynyl)benzonitrile: to a solution of ethynylbenzene 
(1838 mg, 1.98 ml, 18 mmol) in anhydrous THF (10 mL) were 

added dropwise, at -78 °C, 9 ml of a 2 M BuLi solution. The 
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resultant solution was stirred for 1 hour before adding dropwise 

4-formylbenzonitrile (1838 mg, 14 mmol) dissolved in 10 mL of 

anhydrous THF. Reaction was stirred at room temperature until 

starting material ending. Then, reaction mixture was cooled at 
0°C and 10 mL of a satured NH4Cl solution were added dropwise. 

Resulting mixture was worked-up with ethyl acetate and washed 

with H2O and a saturated NH4Cl solution. The organic phase was 
separated, dried over Na2SO4, filtered and concentrated under 

reduced pressure. The residue was purified by chromatography on 

silica gel to afford 3262 mg ( 80% yield) of 4-(1-hydroxy-3-
phenylprop-2-ynyl)benzonitrile. 
1
H NMR (400 MHz) (CDCl3)  7.75 (d, J= 8.0 Hz, 2 H), 7.71 (d, 

J= 8.4 Hz, 2 H) 7.48 (dd, J1= 7.6 Hz, J2= 1.2 Hz, 2H), 7.40-7.33 

(m, 3 H), 5.77 (d, J= 5.2 Hz 1 H), 2.65 (d, J= 5.6 Hz 1 H); 
13

C 

NMR (100.6 MHz) (CDCl3)  145.6, 132.5, 131.8, 129.0, 128.4, 
127.3, 121.8, 112.1, 87.55, 87.51, 64.2.. 

Typical procedure for the preparation of 2,4-diphenyl-2,3-
dihydro-1H-benzo[b][1,4]diazepine: a Carousel Tube Reactor 

(Radely Discovery Technology) equipped with a magnetic 

stirring bar was charged with (Acetonitrile)-[(2-biphenyl)-di-tert-
butylphosphine]gold(I) hexafluoroantimonate. (7.7 mg, 0.01 

mmol), 1,3-diphenylprop-2-yn-1-ol (104 mg, 0.5 mmol), and 

CH2Cl2 (2 mL). The resultant solution was stirred for 10 minutes 
before adding the 1,2-phenylenediamine (65 mg, 0.6 mmol). 

Reaction mixture was warmed at 60°C and stirred for 24 hours. 

After this time, the mixture was diluited with AcOEt and washed 

with H2O, and with brine. The organic layer was dried over 
Na2SO4, filtered and concentrated under reduced pressure. The 

residue was purified by chromatography on silica gel, to obtain 

107 mg (72% yield) of 2,4-diphenyl-2,3-dihydro-1H-
benzo[b][1,4]diazepine. 
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2,4-diphenyl-2,3-dihydro-1H-benzo[b][1,4]diazepine: Brown 

solid; Mp: 110-112 °C; IR (KBr): 3335, 3054, 1608, 1475, 1448, 

1114, 865, 765 cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  7.91-7.89 

(m, 2H), 7.53-7.33 (m, 9H), 7.14-7.07 (m, 2H), 6.85 (dd, J1= 7.6 

Hz, J2= 1.6 Hz, 1H), 5.22 (dd, J1= 8.8 Hz, J2= 3.6 Hz, 1H), 3.82 

(s, 1H), 3.28 (dd, J1= 13.6 Hz, J2= 3.6 Hz, 1H), 3.10 (dd, J1= 13.6 

Hz, J2= 8.8 Hz, 1H); 
13

C NMR (100.6 MHz) (CDCl3)  167.1, 
145.0, 139.2, 138.4, 130.2, 129.1, 128.9, 128.4, 128.1, 127.0, 
126.5, 126.0, 121.3, 120.6, 70.5, 37.8; Anal. Calcd. for C21H18N2: 

C, 84.53; H, 6.08; N, 9.39; Found: C, 84.42; H, 6.07; N, 9.40. 

 

4-(4-methoxyphenyl)-2-phenyl-2,3-dihydro-1H-

benzo[b][1,4]diazepine: Yellow solid; Mp: 131-133 °C; IR 

(KBr): 3347, 3050, 2996, 2933, 2859, 1599, 1511, 1475, 1253, 

1174, 838, 750 cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  7.85 (d, J= 8 

Hz, 2H), 7.48-7.33 (m, 7H), 7.08 (t, J= 3.2 Hz, 2H), 6.92 (d, J= 8 
Hz, 2H), 6.84 (d, J= 7.2 Hz, 1H), 5.20 (dd, J1= 8.4 Hz, J2= 2.8 

Hz, 1H), 3.87 (s, 3H), 3.76 (s,1H), 3.23 (dd, J1= 13.6 Hz, J2= 3.2 

Hz, 1H), 3.04 (dd, J1= 13.2 Hz, J2= 8.8 Hz, 1H); 
13

C NMR (100.6 

MHz) (CDCl3)  166.7, 161.4, 145.0, 139.7, 138.2, 131.7, 128.9, 

128.73, 128.66, 128.0, 126.1, 126.0, 121.4, 120.7, 113.7, 70.7, 
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55.4, 37.4; Anal. Calcd. for C22H20N2O: C, 80.46; H, 6.14; N, 

8.53; Found: C, 80.55; H, 6.12; N, 8.52. 

 

2-(4-methoxyphenyl)-4-phenyl-2,3-dihydro-1H-

benzo[b][1,4]diazepine: Yellow solid; Mp: 114-116 °C; IR 
(KBr): 3347, 3060, 2994, 2836, 1901, 1606, 1508, 1473, 1240, 

1176, 1031, 813, 769 cm
-1
; 

1
H NMR (400 MHz) (CDCl3)  7.89 

(dd, J1= 7.6 Hz, J2= 1.6 Hz, 2H), 7.44-7.35 (m, 6H), 7.11-7.04 

(m, 2H), 6.90 (d, J= 8.8 Hz, 2H), 6.82 (dd, J1= 7.6 Hz, J2= 1.6 

Hz, 1H), 5.16 (dd, J1= 9.2 Hz, J2= 3.6 Hz, 1H), 3.83 (s, 3H), 
3.79(bs, 1H), 3.25 (dd, J1= 13.2 Hz, J2= 3.6 Hz, 1H), 3.05 (dd, 

J1= 13.6 Hz, J2= 9.2 Hz, 1H); 
13

C NMR (100.6 MHz) (CDCl3)  
167.2, 159.4, 139.1, 139.0, 138.2, 137.3, 130.1, 129.0, 128.4, 

127.1, 127.0, 126.4, 121.2, 120.6, 114.2, 69.9, 55.4, 38.0; Anal. 

Calcd. for C22H20N2O: C, 80.46; H, 6.14; N, 8.53; Found: C, 
80.57; H, 6.12; N, 8.54. 

 

2-phenyl-4-p-tolyl-2,3-dihydro-1H-benzo[b][1,4]diazepine: 

Yellow solid; Mp: 117-119 °C; IR (KBr): 3351, 3048, 2915, 
2857, 1901, 1677, 1602, 1475, 1450, 1292, 1182, 1039, 819, 750 
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cm
-1
; 

1
H NMR (400 MHz) (CDCl3)  7.80 (d, J= 8.0 Hz, 2H), 

7.47 (m, 6H), 7.24 (d, J= 8.0 Hz, 2H), 7.13-7.06 (m, 2H), 6.85 
(dd, J1= 7.2 Hz, J2= 1.6 Hz, 1H), 5.21 (dd, J1= 9.2 Hz, J2= 4 Hz, 

1H), 3.79 (bs, 1H), 3.26 (dd, J1= 13.2 Hz, J2= 3.6 Hz, 1H), 3.06 

(dd, J1= 13.2 Hz, J2= 9.2 Hz, 1H), 2.43 (s, 3H); 
13

C NMR (100.6 

MHz) (CDCl3)  167.2, 145.1, 140.5, 139.4, 138.3, 136.4, 129.2, 

128.9, 128.8, 128.0, 127.1, 126.3, 126.0, 121.4, 120.7, 70.7, 37.6, 
21.4; Anal. Calcd. for C22H20N2: C, 84.58; H, 6.45; N, 8.97; 

Found: C, 84.48; H, 6.44; N, 8.96. 

 

4-phenyl-2-p-tolyl-2,3-dihydro-1H-benzo[b][1,4]diazepine: 

Yellow solid; Mp: 88-90 °C; IR (KBr): 3332, 3029, 2854, 1606, 
1471, 1446, 1348, 1228, 1112, 1014, 871, 759 cm

-1
; 

1
H NMR 

(400 MHz) (CDCl3)  7.95-7.93 (m, 2H), 7.49-7.43 (m, 4H),7.36-
7.31(m, 2H), 7.22 (d, J= 7.6 Hz, 2H), 7.14-7.07 (m, 2H), 6.84 

(dd, J1= 8.0 Hz, J2= 1.6 Hz, 1H), 5.16 (dd, J1= 9.2 Hz, J2= 3.6 Hz, 

1H), 3.80 (bs, 1H), 3.28 (dd, J1= 13.6 Hz, J2= 3.6 Hz, 1H), 3.08 
(dd, J1= 13.2 Hz, J2=9.2 Hz, 1H), 2.41 (s, 1H); 

13
C NMR (100.6 

MHz) (CDCl3)  167.1, 142.1, 139.2, 139.1, 138.4, 137.8, 130.2, 
129.6, 129.1, 128.4, 127.1, 126.5, 125.9, 121.2, 120.6, 70.2, 38.0, 

21.2; Anal. Calcd. for C22H20N2: C, 84.58; H, 6.45; N, 8.97 Found 

C, 84.67; H, 6.46; N, 8.98. 
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4-(2-phenyl-2,3-dihydro-1H-benzo[b][1,4]diazepin-4-yl) 

benzonitrile: Orange wax; IR (KBr): 3359, 3060, 2923, 2227, 
1689, 1608, 1471, 1328, 1261, 836, 754 cm

-1
; 

1
H NMR (400 

MHz) (CDCl3)  7.86 (d, J= 8 Hz, 2H), 7.62 (d, J= 7.6 Hz, 2H), 
7.44-7.30 (m, 6H), 7.14-7.03 (m, 2H), 6.85 (d, J= 7.6 Hz, 1H), 

5.23-5.21 (m, 1H), 3.93 (bs, 1H), 3.24 (dd, J1= 14 Hz, J2= 3.2 Hz, 
1H), 6.19 (dd, J1= 13.6 Hz, J2= 4 Hz, 1H); 

13
C NMR (100.6 MHz) 

(CDCl3)  164.8, 144.3, 143.2, 138.8, 138.1, 132.0, 129.8, 128.9, 
128.2, 127.4, 126.0, 121.3, 120.5, 118.7, 113.1, 70.0, 38.1; Anal. 

Calcd. for C22H17N3: C, 81.71; H, 5.30; N, 12.99; Found: C, 

81.61; H, 5.31; N, 12.97; 

 

4-(4-phenyl-2,3-dihydro-1H-benzo[b][1,4]diazepin-2-yl) 

benzonitrile: Orange solid; Mp: 143-145 °C; IR (KBr): 3374, 
3056, 2964, 2888, 2221, 1612, 1471, 1329, 1101, 836, 759 cm

-1
; 

1
H NMR (400 MHz) (CDCl3)  7.85 (d, J= 8 Hz, 2H), 7.61 (d, J= 

8 Hz, 2H), 7.62-7.31 (m, 6H), 7.14-7.03 (m, 2H), 6.84 (d, J= 7.6 

Hz, 2H), 5.22 (bs, 1H), 3.96 (bs, 1H), 3.23 (dd, J1= 14 Hz, J2= 3.2 

Hz, 1H), 3.09 (dd, J1= 13.6 Hz, J2= 7.6 Hz, 1H); 
13

C NMR (100.6 

MHz) (CDCl3)  164.8, 144.4, 143.2, 138.8, 138,0, 132.0, 130.0, 
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128.9, 128.2, 127.4, 126.0, 121.2, 120.5, 118.7, 113.1, 70.0, 38.1; 

Anal. Calcd. for C22H17N3: C, 81.71; H, 5.30; N, 12.99; Found: C, 

81.62; H, 5.29; N, 13.00. 

 

4-(3-methoxyphenyl)-2-phenyl-2,3-dihydro-1H-benzo 

[b][1,4]diazepine: Pale yellow solid; Mp: 144-146 °C; IR (KBr): 
3386, 3056, 2933, 1592, 1500, 1274, 1155, 871, 750 cm

-1
; 

1
H 

NMR (400 MHz) (CDCl3)  7.50-7.31 (m, 9H), 7.12-7.05 (m, 
2H), 7.00 (d, J= 6.4 Hz, 1H), 6.85 (d, J= 7.6 Hz, 1H), 5.21 (dd, 

J1= 8.8 Hz, J2= 3.2 Hz, 1H), 3.86 (s, 3H), 3.81 (bs, 1H), 3.25 (dd, 

J1= 13.2 Hz, J2= 3.6 Hz, 1H), 3.07 (dd, J1= 13.6 Hz, J2= 8.8 Hz, 

1H); 
13

C NMR (100.6 MHz) (CDCl3)  166.9, 159.7, 144.9, 

140.6, 139.1, 138.3, 129.3, 129.0, 128.9, 128.0, 126.5, 126.0, 
121.3, 120.6, 119.6, 116.6, 111.7, 70.6, 55.4, 37.9; Anal. Calcd. 

for C22H20N2O: C, 80.46; H, 6.14; N, 8.53; Found: C, 80.50; H, 

6.15; N, 8.55. 

 

2-(3-methoxyphenyl)-4-phenyl-2,3-dihydro-1H-benzo[b] 

[1,4]diazepine: Pale yellow solid; Mp: 125-127 °C; IR (KBr): 
3386, 3056, 2933, 1614, 1596, 1484, 1330, 1251, 1145, 871, 748 

cm
-1
; 

1
H NMR (400 MHz) (CDCl3)  7.90 (d, J= 6.4 Hz, 2H), 

7.45-7.40 (m, 4H), 7.31-7.28 (m, 1H), 7.13-7.02 (m, 4H), 6.88-
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6.87 (m, 2H), 5.19 (dd, J1= 8.8 Hz, J2= 4 Hz, 1H), 3.80 (bs, 1H), 

3.78 (s, 3H), 3.27 (dd, J1= 13.6 Hz, J2= 4 Hz, 1H), 3.08 (dd, J1= 

13.2 Hz, J2= 8.4 Hz, 1H); 
13

C NMR (100.6 MHz) (CDCl3)  
167.2, 160.0, 146.6, 139.3, 139.2, 138.4, 130.1, 129.9, 129.0, 

128.4, 127.0, 126.5, 121.4, 120.6, 118.3, 113.6, 111.6, 70.6, 55.3, 
37.7; Anal. Calcd. for C22H20N2O: C, 80.46; H, 6.14; N, 8.53; 

Found: C, 80.36; H, 6.13; N, 8.52. 

 

4-(4-bromophenyl)-2-phenyl-2,3-dihydro-1H-benzo[b] 

[1,4]diazepine: Yellow solid; Mp: 136-138 °C; IR (KBr): 3347, 
3056, 2933, 2854, 1606, 1558, 1473, 1452, 1072, 1008, 823, 759 

cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  7.69 (d, J= 8.8 Hz, 2H), 

7.50 (d, J= 8.8 Hz, 2H), 7.44 (, J= 6.4 Hz, 2H), 7.39-7.33 (m, 

4H), 7.13- 7.05 (m, 2H), 6.84 (dd, J1= 7.6 Hz, J2= 1.6 Hz, 1H), 

5.21 (dd, J1= 8 Hz, J2= 3.6 Hz, 1H), 3.82 (bs, 1H), 3.21 (dd, J1= 
13.6 Hz, J2= 3.6 Hz, 1H), 3.05 (dd, J1= 13.6 Hz, J2= 8 Hz, 1H); 
13

C NMR (100.6 MHz) (CDCl3)  166.0, 144.6, 138.9, 138.5, 
138.0, 131.5, 129.1, 128.9, 128.6, 128.2, 126.8, 126.0, 124.8, 

121.4, 120.6, 70.5, 37.7; Anal. Calcd. for C21H17BrN2: C, 66.85; 
H, 4.54; N, 7.43; Found: C, 66.96; H, 4.53; N, 7.44. 
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2-(4-bromophenyl)-4-phenyl-2,3-dihydro-1H-benzo[b] 

[1,4]diazepine: Yellow solid; Mp: 141-143 °C; IR (KBr): 3363, 
3056, 2962, 2892, 1614, 1469, 1407, 1326, 1068, 1004, 823, 754 

cm
-1
; 

1
H NMR (400 MHz) (CDCl3)  7.83 (d, J= 6.8 Hz, 2H), 

7.48-7.37 (m, 7H), 7.32 (d, J= 8.4 Hz, 2H), 7.12-7.06 (m, 2H), 

6.83 (dd, J1= 6.8 Hz, J2= 2 Hz, 1H), 5.20 (dd, J1= 8 Hz, J2= 4 Hz, 

1H), 3.73 (bs, 1H), 3.22 (dd, J1= 13.2 Hz, J2= 4 Hz, 1H), 3.04 (dd, 

J1= 13.6 Hz, J2= 8.4 Hz, 1H); 
13

C NMR (100.6 MHz) (CDCl3)  
167.0, 143.7, 139.5, 139.0, 138.0, 131.9, 130.3, 128.9, 128.4, 

127.8, 127.0, 126.5, 121.8, 121.7, 120.7, 70.2, 37.4; Anal. Calcd. 

for C21H17BrN2 : C, 66.85; H, 4.54; N, 7.43; Found: C, 66.75; H, 
4.52; N, 7.42. 

 

2-(3-bromophenyl)-4-phenyl-2,3-dihydro-1H-
benzo[b][1,4]diazepine Yellow solid; Mp: 89-91 °C; IR (KBr): 

3330, 3062, 2854, 1604, 1567, 1467, 1351, 1294, 1114, 1068, 

854, 748 cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  7.84 (d, J= 6.4 Hz, 

2H), 7.59 (s, 1H), 7.46-7.34 (m, 7H), 7.21 (t, J= 8 Hz, 1H), 7.13-

7.06 (m, 3H), 6.85 (dd, J1= 7.2 Hz, J2= 2 Hz, 1H), 5.19 (dd, J1= 
8.4 Hz, J2= 4 Hz, 1H), 3.76 (bs, 1H), 3.23 (dd, J1= 13.6 Hz, J2= 4 

Hz, 1H), 3.05 (dd, J1= 13.2 Hz, J2= 8.4 Hz, 1H); 
13

C NMR (100.6 
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MHz) (CDCl3)  167.1, 147.0, 139.4, 139.0, 137.9, 131.0, 130.4, 

130.3, 129.2, 128.9, 128.4, 127.0, 126.6, 124.7, 122.8, 121.7, 
120.7, 70.1, 37.3; Anal. Calcd. for C21H17BrN2: C, 66.85; H, 4.54; 

N, 7.43; Found: C, 66.75; H, 4.53; N, 7.44. 

 

ethyl 4-(2-phenyl-2,3-dihydro-1H-benzo[b][1,4]diazepin-4-

yl)benzoate Yellow solid; Mp: 129-131 °C; IR (KBr): 3357, 
3029, 2992, 2900, 1689, 1600, 1481, 1284, 1103, 1010, 850, 755 

cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  8.04 (d, J= 8.4 Hz, 2H), 

7.87 (d, 8.4 Hz, 2H), 7.45-7.29 (m, 6H), 7.13-7.04 (m, 2H), 6.84 

(d, J= 7.6 Hz, 1H), 5.22 (dd, J1= 8.0 Hz, J2= 3.6 Hz, 1H), 4.41 (q, 

J= 6.8 Hz, 2H), 3.89 (bs, 1H), 3.26 (dd, J1= 13.6 Hz, J2= 3.6 Hz, 
1H), 3.09 (dd, J1= 13.6 Hz, J2= 8.4 Hz, 1H), 1.44 (t, J= 6.8 Hz, 

3H); 
13

C NMR (100.6 MHz) (CDCl3)  166.3, 166.0, 144.6, 
143.1, 138.65, 138.60, 131.5, 129.5, 128.9, 128.1, 127.0, 126.8, 

126.0, 121.2, 120.5, 70.3, 61.1, 38.1, 14.3; Anal. Calcd. for 

C24H22N2O2: C, 77.81; H, 5.99; N, 7.56; Found: C, 77.89; H, 5.98; 
N, 7.54. 
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4-(4-chlorophenyl)-2-phenyl-2,3-dihydro-1H-

benzo[b][1,4]diazepine Brown solid; Mp: 123-125 °C; IR (KBr) 
3347, 3060, 2854, 1606, 1587, 1473, 1095, 1010, 825, 761 cm

-1
; 

1
H NMR (400 MHz) (CDCl3)  7.76 (d, , J= 8.4 Hz, 2H), 7.45 (d, 

, J= 6.8 Hz, 2H), 7.39-7.33 (m, 6H), 7.13-7.05 (m, 2H), 6.84 (dd, 

J1= 7.6 Hz, J2= 1.6 Hz, 1H), 5.21 (dd, , J1= 8.4 Hz, J2= 4 Hz, 1H), 
3.82 (bs, 1H), 3.22 (dd, J1= 13.6 Hz, J2= 4.0 Hz, 1H), 3.05 (dd, 

J1= 14 Hz, J2= 8.4 Hz, 1H);
 13

C NMR (100.6 MHz) (CDCl3)  
165.9, 144.7, 138.9, 138.5, 137.6, 136.2, 129.1, 128.9, 128.5, 

128.3, 128.1, 126.7, 126.0, 121.4, 120.6, 70.5, 37.7; Anal. Calcd. 

For C21H17ClN2: C, 75.78; H, 10.65; N, 8.42; Found C, 75.88; H, 
10.66; N, 8.43. 

 

2,4-bis(4-methoxyphenyl)-2,3-dihydro-1H-

benzo[b][1,4]diazepine Brown solid; Mp: 98-100 °C; IR (KBr) 
3353, 3052, 2956, 2832, 1664, 1600, 1509, 1230, 1172, 1033, 

840, 750 cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  7.86 (d, J= 8.8 Hz, 

2H), 7.37-7.35 (m, 3H), 7.07-06 (m, 2H), 6.98-6.89 (m, 4H), 

6.82-6.80 (m, 1H), 5.14 (dd, J1= 8.8 Hz, J2= 3.6 Hz, 1H), 3.87 (s, 
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1H), 3.86 (s, 3H), 3.83 (s, 3H), 3.20 (dd, J1= 13.2 Hz, J2= 3.6 Hz, 

1H), 3.00 (dd, J1= 13.6 Hz, J2= 8.8 Hz, 1H ); 
13

C NMR (100.6 

MHz) (CDCl3)  166.7, 161.4, 159.3, 139.6, 138.2, 137.4, 131.8, 
128.7, 128.6, 127.1, 126.0, 121.4, 120.7, 114.1, 113.7, 70.2, 55.4, 

37.5; Anal. Calcd. For C23H22N2O2: C, 77.07; H, 6.19; N, 7.82; 
Found: C, 77.12; H, 6.18; N, 7.83. 

 

2-ethyl-4-phenyl-2,3-dihydro-1H-benzo[b][1,4]diazepine 
brown oil; IR (neat): 3345, 2965, 2875, 1608, 1446, 1384, 1049, 

1024, 873, 755 cm
-1

; 
1
H NMR (400 MHz) (CDCl3)  8.03 (m, 

2H), 7.39-7.33 (m, 4H), 7.07-7.01 (m, 2H), 6.80 (d, J= 6.8 Hz, 
1H), 4.01-3.95 (m, 1H), 3.05 (dd, J1= 13.2 Hz, J2= 4 Hz, 1H), 

2.72 (dd, J1= 13.2 Hz, J2= 8.4 Hz, 1H), 1.64 (q, J= 7.2 Hz, 2H), 

1.02 (t, J= 7.6 Hz, 3H);
 3
C NMR (100.6 MHz) (CDCl3)  167.3, 

139.8, 139.7, 138.2, 130.1, 128.7, 128.5, 127.0, 126.2, 121.3, 

120.9, 68.0, 34.7, 30.7, 10.4; Anal. Calcd. For C23H22N2O2 : C, 
77.07; H, 6.19; N, 7.82; O, 8.93; Found : C, 77.07; H, 6.19; N, 

7.82; O, 8.93; 
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