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Abstract

This thesis develops models and methods for statistical analysis of presence-only

data. Besides constructing new models, the emphasis is on the theoretical charac-

teristics of new models and on Bayesian prediction. Monte Carlo Markov chains

algorithms are developed for the new presence-only data models in order to be able

to simulate the posterior distribution of the unknowns and the predictive distribu-

tion of variable of interest. The new methods are applied to simulated data. One

application in ecologic science have been a driving force behind the work.

Keywords : Bayesian models, Data augmentation, MCMC algorithm, Presence-only

data, Potential distribution, Pseudo-absence approach, Semicontinuous data, Spa-

tial statistics, Two-part model.
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Chapter 1

Introduction

The aim of this first chapter is to provide both an introduction to presence-only

data problem and an overview of modeling of presence-only data. In Section 1.1 the

presence-only data problem is introduced. A first abstract definition of issues and

features of interest in this setting is given in Section 1.2. In Section 1.3 a review of

models proposed in the literature for presence-only data is considered. In Section

1.4 the structure of the thesis is explained.

1.1 Introduction to presence-only problem

The presence-only data problem represents an important issue in ecological stud-

ies. Here the researches are interested in prediction of the potential spatial extent

of a species in suitable areas. Maps of species distributions or habitat suitabil-

ity are required for many aspects of environmental research, resource management,

and conservation planning (Scott & Csuti (1997)). These include biodiversity as-

sessment, reserve design, habitat management, and restoration, species and habitat

conservation plans and predicting the effects of environmental change on species

and ecosystems. Presence-only data concerns both mobile (animal) and immobile

(plant) species studies. In this thesis the focus is on plant ecology analysis.

Given presence-absence data for a species, the logistic regression model is a very

popular tool to model species distribution. In Keating & Cherry (2004) the use

of such model for wildlife habitat-selection studies is promoted. Standard analysis

methods for presence-absence data have been used in species distribution modeling

since a long time (Austin (1985)). The currently dominant approaches for modeling

species distribution are represented by the generalized linear and generalized additive

models (GLM and GAM), and climate (environmental) envelope models. These
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last models use current distributions of species to build a scenario of the climatic

conditions that may best suits the considered species. This envelope can then be

used to forecast where species could live under predictions of future climate changes

(Cressey (2008)). See Guisan & Zimmermann (2000) and Guisan et al. (2002) for a

review.

However data availability is often a major constraint in modeling of specie dis-

tribution (Osborne et al. (2001) and Kaschner et al. (2006)). Collecting presence-

absence data, in fact, could be expensive and/or difficult, see e.g. Guisan & Zim-

mermann (2000). “The vast majority of data that is available today consist of

presence-only data sets” (Zaniewski et al. (2002)), defined by Pearce & Boyce (2006)

as “consisting only of observations of the organism but with no reliable data where

the species was not found”. In practice, the only information that are available on

the species is, very often, the true presence of the species in a given number of loca-

tions in the study area and the environmental covariates for the entire area. Atlases,

museum and herbarium records, species lists, incidental observation databases and

radio-tracking studies are example of such data.

Although presence-only data have always been used in ecology to model the

species distributions, the term “presence-only data” was rarely used before the

1990’s. Google scholar reports 13 papers containing the word “presence-only data”

from 1990 to 2000, 141 from 2001 to 2005, 447 from 2006 to 2008 and 807 form 2009

to 2011. The literature describing and comparing methods of modeling presence-

only data is growing too, see Keating & Cherry (2004), Pearce & Boyce (2006), Elith

et al. (2006), Elith & Leathwick (2009) and Franklin (2010). The use of presence-

only data in the last years has been supported by the increase of data availability.

In some areas of ecological research the quantity and quality of available data is

increased thanks to electronics collection, e.g. through remote sensing of environ-

mental measurements (Lillesand et al. (2004)) and Geographic Information Systems

(Austin (2002)) or GPS tracking of mobile species (Weimerskirch et al. (2002) . Ad-

ditionally, such data is becoming increasingly available online (Stein & Wieczorek

(2004)). Unfortunately, in other areas of research, especially in the study of rare

species (Engler et al. (2004)), the data collection is timeconsuming and expensive

yet.
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1.2 Presence-only data problem: an abstract def-

inition

The presence-only data problem can be seen as a censured (or missing) data problem.

Let D be a regular (or irregular) lattice representing the study area, dived into units

(or pixels), which are squares of equal size. Suppose that a presence-absence process

Y on D (Figure 1.1(a)) “lives” on the lattice. In black are indicated the units where

a presence is given (y = 1) and in white the units where an absence is given (y = 0).

Imagine now that, for some unfathomable reason, one is able to observe only some

units where the presence occurred in the study area and the covariates for the entire

area. These data are refereed as “presence-only data”, see Figure 1.1(b).

(a) black = presence, white =
absence

(b) the question mark denotes
lack of information on not ob-
served squares of the lattice.

Figure 1.1: Presence-only data problem

In this setting three aspects are of primary interest: the species prevalence (the

proportion of presences in the study area), the potential distribution of the species

itself and the bias due to presence-only sampling. The first quantity answers to the

question “how many presences”, the second to the question “where they are located”

and the third to the question “how to take into account the sampling bias”.

1.3 An overview of the modeling of presence-only

data

Given the nature of the available data, the desired presence-absence analysis is pre-

cluded. Then, different approaches to the modeling of species distribution based on

presence-only data have been proposed in the literature. The modeling of presence-
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only data in ecology is reviewed in Keating & Cherry (2004), where it is referred to

as use-availability data, and Pearce & Boyce (2006).

It is possible to distinguish, substantially, four different model-based group to

model species presence, in relation to given environmental covariates when presence-

only data are available. The type of method used depends on the nature of the data

investigated (presence-only or abundance-only data) and on the assumption made

on these (dependent or independent data).

Presence-only approach

In the first group the modeling focus is on the building of habitat suitability maps.

Some techniques use the environmental covariates to model species presence and

the results is a map returning habitat suitability levels for a given species in a given

area. The idea is to summarize the suite of environmental attributes of species

site occurrences and to extrapolate presence in other sites with similar attributes.

These techniques, based directly on the environmental envelope associated with

observed occurrences, represent the simplest approach to predicting species distri-

butions based on presence-only data. The approach of defining limits for each of the

environmental variables captures the sense of a niche as understood by ecologists:

that the occurrence of species should be limited by a range of environmental factors,

and that an envelope around those ranges would have predictive utility (Stockwell

(2007), Chapter 4). A variety of models and softwares are proposed in this context

(e.g. Busby (1986), Caughley et al. (1987), Lindemayer et al. (1991), Law (1994),

Pearce & Lindermayer (1998), Walther et al. (2004)). However, the most widely

applied profile techniques have been BIOCLIM (Busby (1986), Busby (1991)) and

HABITAT (Walker & Cocks (1991)).

The BIOCLIM procedure identifies locations where all climatic indices fall within

the extreme values determined from a set of observation records. Multiple levels

of classification are achieved by identifying locations with climatic values contained

within fractional parts of the study area. Thus BIOCLIM defines the environmental

envelop for a target taxon as a rectilinear volume in a Euclidean space. Instead of

a rectilinear volume in environmental space, HABITAT uses the convex hull of the

training sites to more tightly constrain the environmental envelope.

Support vector machines (SVM) for one-class problems represents a variation of the

previous approaches (e.g. Guo et al. (2005)). SVM seek to identify an environmen-

tal envelope (or hyperspace) containing the data points, in which the envelope is

optimized with respect to the number of points in the envelope and to the number

of outliers. The distance between the point and the center of the environmental
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envelope determines membership to the envelope. One advantage of this approach

over BIOCLIM is that the SVM hyperspace can have any shape, whereas BIOCLIM

uses hyperboxes to enclose the presence data (Guo et al. (2005)). HABITAT also is

more flexible than BIOCLIM. It defines the environmental envelop using a convex

hull and the relative density of observations within the environmental space. In this

sense, therefore, SVM may be considered a refinement of the HABITAT approach.

Other techniques that require only presence data are referred to multivariate asso-

ciation methods. Chief among these methods has been DOMAIN (Carpenter et al.

(1993)). This model uses a point-to-point similarity metric to assign a classification

value to a candidate site based on the proximity in environmental space of the most

similar recorded site. DOMAIN offers significant advantages over spatial models

that rely on rectilinear or convex hull environmental envelopes. It can be used to

determine either environmental envelops or a continuous map of similarity, and is

particularly well suited to applications where available site location records or envi-

ronmental data are limited.

Profile techniques use different classification algorithms but often provide similar re-

sults. Arbitrary thresholds are typically used in identifying environmentally similar

location and no uncertainty is associated with such predictions. Predictions are gen-

erally coarse. Also, the profile techniques summarize environmental characteristics

at present locations and, typically, each record has equal weight within the model.

Then, these techniques are highly dependent on biases in the presence records. A

discussion of the pros and cons of geographical and climate envelope-based tech-

niques is provided in Elith & Burgaman (2002). However, these techniques can be

most useful when the data quality (i.e. species records, environmental predictor,

biological information, etc.) is scarce.

Thus far deterministic methods based on geometric or machine learning techniques

useful to determine the environmental envelope have been considered. Hereinafter

two interesting not deterministic methods are illustrated. The first one is proposed

in Heikkinen & Högmander (1994) where the observational process is directly mod-

elled and the only covariate exploited in the model is the “square-specific coverage”.

In this work the authors develop procedures for estimating biogeographical ranges

as restoration of atlas maps, applying statistic methods of image analysis.

Also, the work of Phillips et al. (2006) is stressed because, thanks to its frequently

superior predictive performance and availability of a user-friendly interface, MaxEnt

is now becoming one of the standard approach for modeling presence-only data. In

the paper, the authors propose the use of a maximum entropy method (MaxEnt)

for modeling species geographic distributions with presence-only data. MaxEnt is a

general-purpose machine learning method with a simple mathematical formulation

for making predictions or inferences from incomplete information. Its origins lie
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in statistical mechanics (Jaynes (1957)) The core of MaxEnt model output is the

estimate of ratio of conditional density of covariates on the presence sites and the

marginal density of covariates across the entire study area. That gives insight on

which features are important and allows to estimate the relative suitability of one

location versus another. The aim is to estimate a potential species distribution by

finding the probability distribution of maximum entropy, subject to a set of con-

straints that represent incomplete information about the target distribution. The

information available about this distribution often presents itself as a set of real-

valued covariates, and the constraints are that the expected value of each covariate

should match its empirical average. The resultant surface is interpreted as providing

the relative probability of observing a species at a given location compared to other

location in the study area. However, MaxEnt is unable to provide an absolute inten-

sity. It is not possible to determine the number of observations in a specified area.

Also, MaxEnt is unable to attach any uncertainty to the resulting optimized esti-

mates. A version of MaxEnt that handles incomplete presence-only data is proposed

in Huang & Salleb-Aouissi (2009). The authors provide a formulation that is able

to learn from known values of incomplete data without having to imputed values,

which can be inaccurate. Also, a statistic explanation of MaxEnt for ecologists is in

Elith et al. (2011).

Pseudo-absence approach

The second group consists of such techniques for presence-only data that are adap-

tations of existing models for presence-absence data. They require the generation

of so called “pseudo-absences”, a random sample of locations in the study area with

known environmental covariates, to be used in place of the missing absences. The

interpretation of the meaning of “pseudo-absence data” (or background data) varies.

These locations may be selected without replacement from the entire study area ei-

ther randomly (Hirzel & Guisan (2002)), or randomly with case-weighting to reduce

the effective sample size of pseudo-absences (Ferrier & Watson (2009); Ferrier et al.

(2002)), or by using environmentally weighted random sampling (Zaniewski et al.

(2002)).

At the moment, most of pseudo-absence techniques are based on generalized linear

models (GLM) and generalized additive models (GAM) (Ferrier et al. (2002)), ar-

tificial neural networks (Lek et al. (1996)), tree-based methods (Ferrier & Watson

(1996), Elith et al. (2008)) and genetic algorithm (e.g. GARP) (Stockwell & Pe-

ters (1999)). GARP is based upon an artificial intelligence framework to produce

a set of positive and negative rules that together give a binary (presence-absence)
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prediction. However, in Ferrier & Watson (1996), the authors show that regression

model performs better than tree-based methods or genetic algorithm in predicting

species presence. In particular, GLMs enabled pioneering regression-based species

distribution models (SDMs; Elith & Leathwick (2009)). See Austin’s work in 1970s

and 1980s, cited in Austin (1985). Moreover their structural features (non-normal

error distribution, additive terms, nonlinear fitted functions) continue to be useful

and are part of many current methods including resource selection function (RSF;

Manly et al. (2002)) and maximum entropy models (MaxEnt; Phillips et al. (2006)).

In this group of modeling approach the work of Ward et al. (2009) is stressed because

it represents the starting point of this thesis. The authors propose an application

of the EM algorithm that provides a flexible method of estimating an underlying

logistic regression model from presence-only data. However, this requires the knowl-

edge of the overall population prevalence of the species. Without an independent

estimate of overall species prevalence, estimation of the logistic model is unstable

due to over-reliance on the logistic form of the model itself. Instead, in Divino et al.

(2011a) is proposed a Bayesian model that allows to overcome the need of knowing

a priori the population prevalence. This work represents an original contribute of

the thesis. See Chapter 4 for details.

Point pattern analysis approach

In the third group of modeling approaches Poisson point process models for the anal-

ysis of presence-only data in likelihood (Warton & Shepherd (2010)) and Bayesian

approach (Chakraborty et al. (2011)) are considered. In both papers the presence-

only data are viewed as a point pattern. The idea is to model the intensity of a point

process in terms of available information on the environments across the study area

through regression modeling. In other words, with data consisting only of presences

it is possible only to build a point pattern model to learn about the intensity of the

process that drives this pattern. In these works the modeling prospective changes.

Because to infer about the probability of presence at a location is not possible with

presence-only data, to infer on the presences density becomes the focus. The latter

is equivalent to infer on the distribution of presence locations over the study area.

In Warton & Shepherd (2010) the authors show that their method is approximately

equivalent to a logistic regression, when a suitable number of regularly or randomly

spaced pseudo-absences are used. However, they argue that the pseudo-approach

has problems with model specification, interpretation and implementation and that

each of these difficulties can be resolved using a point process modeling framework.
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For the authors the pseudo-absence approach as it is usually applied appears to

involve coercing the data to fit the model (presence-absence model) rather than

choosing a model that fits the original data (point-events). Also, in the pseudo-

absence approach is modelled the probability that a given point event is a presence

not a pseudo-absences. In contrast the intensity of the process at a point has a nat-

ural interpretation as the limiting expected number of presences per units area. Yet,

point process models offer a framework for choosing the “quadrature” (or pseudo-

absence) points. Instead no such framework for the choice of pseudo-absences is

offered in the pseudo-absence approach. Here how many pseudo-absences to choose

and where to put them are tricky issues that have, instead, natural solution given a

point process model specification of the problem.

In Chakraborty et al. (2011) the authors consider a hierarchical model to enable un-

certainty in the inference with regard to the intensity surface. In Warton & Shepherd

(2010), instead, the intensity of the process is modelled as a function of k explana-

tory variables with no additional uncertainty sources. Also, in Chakraborty et al.

(2011) a spatial structure into their model is introduced for the intensity surface

through spatial random effects. Then, a spatial model that model anticipated spa-

tial dependence in presence-absence probabilities is defined. The authors argue how

much of the works shown in the previous pages are “non-spatial in the sense that,

though it includes spatial covariate information, they don’t model anticipated spa-

tial dependence in presence-absence probabilities. Accounting for the latter seems

critical since causal ecological explanations such as [. . .] suggest that, at sufficiently

high resolution, occurrence of a species at one location will be associated with its

occurrence at neighboring locations (Ver Hoef et al. (2001))”. Although point pro-

cess models are a logical and elegant solution to the presence only problem, they

rely on asymptotic results to obtain models estimates, than requiring large amount

of data to be employed. When rare species are considered a little amount of data is

available and a pseudo-absence approach is most likely the only feasible. However

the logical problem pointed out by Chakraborty and coauthors can be bypassed by

applying a simple trick. A (possibly) regular lattice is superimposed to the study

area, a presence (1) is then associated to each cell where at least one presence has

been recorded, an absence (0) otherwise. In this way countably many 1s and 0s can

be observed. In this setting it would interesting to compare the results obtained

in a simulation study using the model proposed in Chakraborty et al. (2011) with

the one proposed in Divino et al. (2011b). Here a spatial extension of the model

proposed in Divino et al. (2011a) is presented. This model represents an original

contribution of this thesis. See Chapter 5 for details.
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Abundance given presence only approach

Often, in ecological studies a measure of the relative abundance is made at locations

where the species has been recorded. Examples are counts of individuals, indices

of abundance and density measurements. However, few models have been proposed

in the literature in order to treat this kind of data. Modified zero-inflated Poisson

or negative binomial (ZIP or ZINB) regression models to model abundance given

availability, where available locations are assigned a value zero, are proposed in

Welsh et al. (1996), Barry & Welsh (2002), Dirnböck & Dullinger (2004) and Nielsen

et al. (2005). At the moment seems that the only application explicitly modeling

species abundance given presence-only data is the one proposed in Di Lorenzo et al.

(2011). In this work, that represents an original contribution of this thesis, the

analysis has been carried out by means of a two-part model See Chapter 3 for

details.

1.4 Organization of the thesis

In this thesis models and methods for the statistical analysis of presence-only data

have been developed in a Bayesian framework. Here the pseudo-absence approach

is considered. Although conceptually wrong, in Warton & Shepherd (2010) the

authors have demonstrated that the pseudo-absence approach is equivalent to the

point process modeling for a large numbers of pseudo-absences regularly spaced or

uniformly located at random over the study area. Then, under these assumptions,

the potential distributions of a species obtained thought the pseudo-absence and

the point pattern analysis approach, respectively, are equivalent. Also, the logistic

regression model represents the most manageable tool used in ecological studies.

The pseudo-absence approach is based on a complete sample composed by two dis-

tinct samples: a sample composed by the locations where the true presences are

observed and a sample of pseudo-absence or background data. In this thesis it is

assumed that the pseudo-absence sample is randomly drawn from the entire area of

study.

In Chapter 2 the methodological core of the thesis is developed. A logistic regres-

sion model adapted to three sampling designs (simple random sampling, case-control

and censured case-control design) is introduced, and the analogy between the cen-

sured case-control sample design and the pseudo-absence approach is shown. Then a

detailed analysis of a correction factor introduced to adapt the model to the various

design is reported. This factor is based on the ratio of the sampling rates for the

presences and absences in the complete sample.
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In the pseudo-absence approach the management of the correction factor is a

key point in the modeling of presence-only data and represents one of the main

contributions of the present work. Remark that the presence-only data can be seen

as “censured data” (or samples with not missing at random data). In this frame-

work, because the censoring effect is acting on the pseudo-absence data, some of the

quantities that define the correction factor can be considered random quantities. In

Ward et al. (2009) an adjusted logistic model is proposed where the ratio of the

sampling rates for the presences and absences in the complete sample is approxi-

mated by the ratio of the expected values of the sampling rates. Also, the authors

argue that this quantity can be identified only if the prevalence of the population

is a known quantity. Parameter estimates of the adjusted logistic regression is in

likelihood framework and the maximization conducted via EM algorithm.

An original contribution of this thesis is represented by the results obtained in

Di Lorenzo B., Farcomeni A. and Golini N. (2011). A Bayesian Model for

Presence-Only Semicontinuous Data, With Application to Prediction of Abun-

dance of Taxus Baccata in Two Italian Regions. Journal of Agricolture, Bio-

logical, and Environmental Statistics, 16, 339− 356.

Here the same approximation of the correction factor introduced by Ward et al.

(2009) is used but the need of knowing a priori the prevalence of the population is

partially overcome. The prevalence of the population is considered as a parameter

of the model and the uncertainty about it is modeled by an informative prior distri-

bution elicited by experts. From this consideration, Di Lorenzo et al. (2011) propose

a Bayesian version of the model in Ward et al. (2009) extended to abundance data,

that is, to an outcome which is either zero or a positive real number. These data are

usually refereed to as semicontinuous data or data with excess zeros. The analysis

can be carried out by means of a two-part model which combines a logistic model

for the probability that the response is positive, and a regression model for the log-

response conditionally on it being positive. Details of the methodology are shown

in Chapter 3.

An other original contribution of this thesis is published as:

Divino, F., Golini, N., Jona Lasinio, G. and Penttinen A. (2011). Data Aug-

mentation Approach in Bayesian Modeling of Presence-only Data. Procedia

Environmental Sciences, 7, 38− 43.

In this work a random approximation of the correction factor in the adjusted logistic

model allows to overcome the need to acquire strong information on the population
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prevalence. The model is based on the assumption that the pseudo-absence sample

is randomly drawn from the entire study area and that the observed environmental

covariates are the only determinants of species distributions. Because of the censor-

ing effect acting on the pseudo-absence sample, the proportion of presences in this

sample can be represented by a random quantity, i.e. the random sample prevalence.

Then, an unbiased estimate of unknown value of the population prevalence is given

by the proportion of presences calculated in the pseudo-absence sample. Details of

the methodology are illustrated in Chapter 4.

Chapter 3 and 4 illustrate models based on the assumption that the observed

environmental covariates are the only determinants of species distributions. This

assumption may not be adequate or sufficient to account for a species distribution.

Those models may fail to provide adequate predictive power or may underestimate

the degree of uncertainty of predictions. Then, in

Divino, F., Golini, N., Jona Lasinio, G. and Penttinen A. (2011). Spatial

Bayesian Modeling of Presence-only Data. Proceedings of the 17th EYSM,

Lisbon, Portugal, 2011

a spatial extension of the model proposed in Divino et al. (2011a) is presented. This

work represents the last contribution of this thesis. It is based on the assumption

that the presence-absence data are spatially dependent or autocorrelated, i.e. the

degree of correlation among observations depends on their relative locations. Spatial

dependence in the data is incorporated into the regression model through a spatially

structured random effect. Details of the methodology are illustrated in Chapter 5.





Chapter 2

Presence-only Data Model

In this Chapter the methodological core of the thesis is developed. A logistic regres-

sion model adapted to three sampling designs (simple random sampling, case-control

and censured case-control design) is introduced, and the analogy between the cen-

sured case-control sample design and the pseudo-absence approach is shown. Then a

detailed analysis of a correction factor introduced to adapt the model to the various

design is reported. In the pseudo-absence approach the management of the correc-

tion factor is a key point in the modeling of presence-only data and represents one

of the main contributions of the present work. In the last section the choice of the

Bayesian estimation approach is motivated.

2.1 Notation

For the convenience of the reader some of the symbols appearing in this chapter are

listed here:

• Y is a binary response variable;

• y is a realization of Y , y = 0, 1;

• Y is the presence-absence process;

• Ỹ is a Bernoulli random variable with probability of occurrence π;

• Z is a naive representation of Y ;

• z is a realization of Z;

• Z is a naive representation of Y ;
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• X is the matrix of explanatory variables or covariates;

• x is a generic row of X;

• xi is the i− th row of X, i.e. the vector of covariates available for the unit i;

• η(·) is a generic regression function;

• U = {Y1, . . . , YN} is the target population of finite size N , with yi = 0, 1;

• UD is the population from which the sample or the samples are drawn;

• UP is the subpopulation of U of size N1 corresponding to y = 1;

• U0 is the subpopulation of U of size N0 corresponding to y = 0;

• Sp is the sample of size np drawn from UP ;

• Sa is the sample of size na drawn from U0;

• Su is the sample of size nu drawn from U ;

• S is the complete sample of size n;

• n1 is the total number of y = 1 in the complete sample S;

• n0 is the total number of y = 0 in the complete sample S;

• S is a indicator variable that indicates if a unit is enclosed (s = 1) or not

(s = 0) in the complete sample S;

• γ1 is the sampling rate for the units with y = 1;

• γ0 is the sampling rate for the units with y = 0;

• n0u is the unknown number of unobserved absences in Su;

• n1u is the unknown number of unobserved presences in Su;

• n1p is the number of observed presences in Sp;

• π is the prevalence in the target population U ;

• π(x) is the conditional probability of observing a presence in U , given x;

• πD is the prevalence in the design population UD;

• πD(x) is the conditional probability of observing a presence in UD, given x;

• π∗ is the probability of occurrence of a Bernoulli data-generating model.
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2.2 Logistic regression model

Logistic regression model is the most important model for binary response, see

Agresti (2002). It is suitable when the response variable for each study unit can be

viewed as the success or failure of a single trial.

Let Y be a random variable taking values y = 1 in case of success and y = 0 in

case of failure, and let x be a set of explanatory variables available for a generic unit.

Then, a logistic regression model describing the probability of observing a success

given the explanatory variables is assumed to be:

Pr(y = 1 | x) =
exp{η(x)}

1 + exp{η(x)}
(2.1)

where η(·) is the regression function used in the data-generating model. Linear,

nonlinear and multimodal relationships can be accounted by modeling η(·) as a

simple linear model or a generalized additive model (GAM) or a boosted tree.

One important feature of the logistic regression model is its applicability to data

collected via various sampling schemes. Let X be a matrix of explanatory vari-

ables, a standard cross-section study involves simultaneous measurements of Y and

X for a random sample of units from a target population. In this situation, a lo-

gistic regression analysis provides an estimate of the conditional distribution of the

response variable given the explanatory variables in that population, see (2.1). It

is also possible to learn about the relationship between Y and X via retrospective

or case-control sampling. Then two independent samples of predeterminate size are

drawn from the two subpopulations of the target population, corresponding to y = 1

and y = 0 respectively. In both samples a set of explanatory variables are observed

for all observations. However, in this case a standard logistic regression analysis

does not provide valid estimates of the logistic model in (2.1), see Section 2.1.2.

In the following Sections the use of logistic regression is addressed, distinguishing

among three sample designs: simple random, case-control and censured case-control.

2.2.1 Simple Random design

Let U = {Y1, . . . , YN} be the target population of finite size N , with y = 0, 1.

Also, let x be a generic row of the matrix of covariates X corresponding to the

vector of covariates available for a generic unit. In a random sampling the design

population UD, the population from which the sample or the samples are drawn,

coincides with the target population U . In detail, that sampling scheme represents
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the simplest sampling design in which n observations are drawn randomly from the

N available units, and the response and the vector of covariates, x, are observed

for each observations. The conditional probability model for Y in the sample is the

same as the conditional probability model for Y in the population and both are

properly described by (2.1).

2.2.2 Case-control design

Often, more complex sampling schemes are useful in reducing costs in the survey,

in particular when the response variable represents a rare event. The case-control

design represents one of the most common choices in the literature (see Schlesselman

(1982), Woodward (1999), Hosmer & Lemeshow (2000)).

Let U be again the target population of finite size N , and let UP and U0 the

two subpopulations of U corresponding to y = 1 and y = 0 respectively. Let N1

and N0 be the dimensions of the subpopulations, with N = N1 + N0. In a case-

control sampling the design population UD coincides with the target population

U . In particular, that sampling scheme involves the observation of units from two

independent samples of predetermined size: Sp containing np observations randomly

drawn, without replacement, from the subpopulation UP with response y = 1 (the

cases) and Sa containing na observations randomly drawn, without replacement,

from U0 with response y = 0 (the controls). In both samples a set of covariates are

observed for all observations. Then, the complete sample S, composed by the two

samples Sp and Sa, is no longer described by (2.1) because conditional probability

model of observing a success in S now differs from conditional probability model of

observing a success in U . To devise an appropriate model when this sample scheme

is employed, an indicator variable S denoting whether an observation appears in

the sample S is needed (Hosmer & Lemeshow (2000)). Then, let s = 1 for each

observation that is sampled and s = 0 otherwise. Also, let γ1 = Pr(s = 1 | y = 1)

and γ0 = Pr(s = 1 | y = 0) be the sampling rates for the cases and controls

respectively, both being independent of the covariates x. Let n1 and n0 be the total

number of observations with y = 1 and y = 0 in the complete sample S, respectively.

Remark that in this sampling design np = n1 and na = n0. When sampling from U ,

a finite population, the sampling rates for the cases and controls are defined as:

γ1 =
n1

N1

and γ0 =
n0

N0

and, the conditional probability model describing the case-control design is given

by:
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Pr(y = 1 | s = 1,x) =
exp

{
η(x) + ln

(
γ1
γ0

)}
1 + exp

{
η(x) + ln

(
γ1
γ0

)} (2.2)

The using the modified logistic regression model (2.2) with case-control data allows

us to estimate η(x). Also, because the values of the quantities γ0 and γ1 are fixed a

priori, correct estimates of the events probabilities can be obtained. In the following

this statement is proved.

Let π(x) be the conditional probability model of observing a success in the target

population U :

π(x) = Pr(y = 1 | x) =
exp{η(x)}

1 + exp{η(x)}
. (2.3)

Then the Bayes rule can be used to derive the case-control model for the observations

enclosed in the sample. Because S and x are independent given Y , the probability

model describing the case-control design in (2.2) can be derived as follows

Pr(y = 1 | s = 1,x) =
Pr(s = 1 | y = 1,x) Pr(y = 1 | x)

Pr(s = 1 | y = 0,x) Pr(y = 0 | x) + Pr(s = 1 | y = 1,x) Pr(y = 1 | x)

=
Pr(s = 1 | y = 1) Pr(y = 1 | x)

Pr(s = 1 | y = 0) Pr(y = 0 | x) + Pr(s = 1 | y = 1) Pr(y = 1 | x)

=
γ1

exp{η(x)}
1+exp{η(x)}

γ0
1

1+exp{η(x)} + γ1
exp{η(x)}

1+exp{η(x)}

=
γ1 exp{η(x)}

γ0 + γ1 exp{η(x)}

=
exp

{
η(x) + ln

(
γ1
γ0

)}
1 + exp

{
η(x) + ln

(
γ1
γ0

)} ,

that proves the statement formalized in (2.2).

2.2.3 Censured case-control design

In a censured case-control design the data consist of two distinct samples. The first

is a random sample from the units with a particular response in which the covariates

are completely observed. The second is a sample from the target population U with
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information only on the covariates, and where no responses are observed. Such

a situation might occur if one obtains a sample of observations with a particular

response and wishes, for reasons of time and economy, to compare them with a

random sample from a possibly different survey in which the particular response

was not measured (see Lancaster & Imbens (1996)).

Let U be the target population and UP be the population of success defined as in

Section 2.2.2. In the censured case-control design the target population U and the

design population UD does not coincide. UD consists now of the target population

augmented with the population of successes and has size N + N1: UD = {U ,UP}.
That sampling scheme involves the random sampling of np observations with y = 1

from the population of successes UP and nu observations from the target population

U . Then, the complete sample S is composed by two distinct samples: Sp containing

np observations with response y = 1 and Su containing nu observations with only

information on the covariates, and no responses are observed. In practice Su, being

the control group in the case-control sampling, consists of a unknown mixture of

observations with response y = 1 and y = 0.

Remark that, if the successes are rare the censured case-control and case-control

designs are approximately equivalent. In fact Su will consist almost entirely of

failures.

Let π be the probability of observing a success in the target population, π =

Pr(y = 1), then it is natural to expect that the sample Su will contain, on average,

(1− π)nu failures and πnu successes. Then, π represents the expected rate of cases

in Su, as defined in Lancaster & Imbens (1996).

Remark that Sa ⊆ Su and that the proportion of successes within the complete

sample S is a biased estimator of the proportion of success in the target population.

Then, the probability model describing the censured case-control design is give by:

Pr(y = 1 | s = 1,x) =
2 exp

{
η(x) + ln

(
γ1
γ0

)}
1 + 2 exp

{
η(x) + ln

(
γ1
γ0

)} (2.4)

where γ1 = Pr(s = 1 | y = 1) and γ0 = Pr(s = 1 | y = 0) are by definition:

γ1 =
n1

2N1

and γ0 =
n0

N0

. (2.5)

Again, the independence of γ1 and γ0 from the covariates x is assumed. Let’s prove

the (2.4). Firstly it is necessary to prove that the conditional probability of observing

a presence in the design population UD is the following:
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πD(x) = Pr(y = 1 | x) =
2 exp{η(x)}

1 + 2 exp{η(x)}
. (2.6)

By definition the conditional probability of observing a presence in U is equal to the

ratio of the number of units that assume value 1 with observed covariates x in U on

the total number of units with observed covariates x:

π(x) =
N1(x)

N(x)
,

and it is described by the model defined in (2.3).

Starting from this statement, the conditional probability of observing a success for

the generic unit i in the design population UD can be derived as follows:

Pr(yi = 1 | xi) = Pr(yi = 1 | i ∈ U ,xi) Pr(i ∈ U | xi)
+ Pr(yi = 1 | i ∈ UP ,xi) Pr(i ∈ UP | xi)

= π(xi)
N(xi)

N(xi) +N1(xi)
+ 1

N1(xi)

N(xi) +N1(xi)

=
π(xi)N(xi) +N1(xi)

N(xi) +N1(xi)

=
π(xi) + N1(xi)

N(xi)

1 + N1(xi)
N(xi)

=
2π(xi)

1 + π(xi)

=
2 exp{η(xi)}

1 + 2 exp{η(xi)}

for each i ∈ UD.

Then the Bayes rule can be used to derive the censured case-control model condi-

tional on the event that an observation from UD is in the sample. Because S and x

are independent given Y , the probability model describing the censured case-control

design in (2.4) can be derived as follows
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Pr(y = 1 | s = 1,x) =
Pr(s = 1 | y = 1,x) Pr(y = 1 | x)

Pr(s = 1 | y = 0,x) Pr(y = 0 | x) + Pr(s = 1 | y = 1,x) Pr(y = 1 | x)

=
Pr(s = 1 | y = 1) Pr(y = 1 | x)

Pr(s = 1 | y = 0) Pr(y = 0 | x) + Pr(s = 1 | y = 1) Pr(y = 1 | x)

=
γ1

2 exp{η(x)}
1+2 exp{η(x)}

γ0

(
1− 2 exp{η(x)}

1+2 exp{η(x)}

)
+ γ1

2 exp{η(x)}
1+2 exp{η(x)}

=
γ1

2 exp{η(x)}
1+2 exp{η(x)}

γ0

(
1+2 exp{η(x)}−2 exp{η(x)}

1+2 exp{η(x)}

)
+ γ1

2 exp{η(x)}
1+2 exp{η(x)}

=
γ1

2 exp{η(x)}
1+2 exp{η(x)}

γ0

(
1

1+2 exp{η(x)}

)
+ γ1

2 exp{η(x)}
1+2 exp{η(x)}

=
γ12 exp{η(x)}

γ0 + γ12 exp{η(x)}

=
γ1
γ0

2 exp{η(x)}
1 + γ1

γ0
2 exp{η(x)}

=
2 exp

{
η(x) + ln

(
γ1
γ0

)}
1 + 2 exp

{
η(x) + ln

(
γ1
γ0

)} .

2.3 Pseudo-absence approach

As discussed in Section 2.1, given success-failure data, logistic regression approach

and its generalizations are typically used to model dichotomous variable. As dis-

cussed in Chapter 1, these models represent an important tool for ecological studies

suitable for species distribution description.

Let Y be a binary random variable measuring the presence-absence of a given

species, such that y = 1 if the species is observed at a location and y = 0 if not. Let

X be a matrix of environmental covariates available over the entire study area, and

x is a row of X, i.e. the vector of environmental covariates available at a generic

location.

A tricky point in ecological studies is the definition of the response variable. Of-

ten the response variable and the environmental covariates come from different data

sources that are not, necessarily, aligned in space or time (spatial misalignment,

Gelfand (2010)). In general, species occurrences data are referenced to point loca-

tions while environmental data are refereed to grid cells. It is possible to work at

the scale of the responses, i.e., the sample sites, and assign to each sample site the
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values of the environmental covariates available on the grid cell where the site falls.

Alternatively, it is possible to work at grid cell level, assigning a presence to a grid

cell if any sample site in that cell showed a presence, or an absence can be assigned

to the cell if no presences are recorded there (Latimer et al. (2006)). In this thesis

the second option is considered. In particular, a presence is assigned to a grid cell if

at least one sample site in that cell showed a presence, or an absence if no presences

are recorded there. Remark that under this assumption the sampling intensity, as

well as how many presences occurs in the cell, is not considered. For this reason

the response variable can be seen as an approximation of the true presence-absence

process.

Given the nature of presence-only data it is generally not possible to calculate

probabilities of presence and, then, to provide the likelihood of species presence.

As discussed in Chapter 1, following the pseudo-absence approach it is possible to

prove that an adjusted case-control model is a suitable model for presence-only data.

That approach is based on the generation of pseudo-absence (or background) data,

a random sample of locations taken from the landscape of interest. In this locations

the presence or absence of a species is unknown. However, they provide a summary

against which the observed presences are compared. Ward et al. (2009) argue that

if one treats the observed presences and background data as if they were the true

presences and absences this is wrong for two reasons. Firstly, the observed presences

and the pseudo-absence data are selected with unknown sampling rates. Secondly,

pseudo-absence data contain unknown number of presences. This second problem

is dealt with adapting the case-control model to presence-only data.

Now, let U be the target population of observed presences y = 1 and absences

y = 0, of size N . Also, let UP be the population of size N1 of presences from

U . Then, the design population UD consists of the target population augmented

with the population of presences and has size N + N1: UD = {U ,UP}. In the

pseudo-absence approach the complete sample S is composed by two samples: Su,

of size nu, randomly sampled from the target population U and Sp, of size np and

independent of Su, randomly drawn from the population of observed presences UP .

Under this assumption the pseudo-absence approach can be seen as a censured case-

control model. Given the sampling rates for the cases and controls, that define the

correction factor (2.5) used in the adjust logistic model (2.4), then the probability

model that can be used to describe presence-only data is:

Pr(y = 1 | s = 1,x) =
2 exp

{
η(x) + ln

(
γ1
γ0

)}
1 + 2 exp

{
η(x) + ln

(
γ1
γ0

)}
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where γ1 = Pr(s = 1 | y = 1) and γ0 = Pr(s = 1 | y = 0) that are by definition

equal to:

γ1 =
n1

2N1

and γ0 =
n0

N0

.

2.4 The role of the correction factor

In the pseudo-absence approach the management of the correction factor, based on

the ratio

γ1

γ0

=
Pr(s = 1 | y = 1)

Pr(s = 1 | y = 0)
, (2.7)

represents a crucial point. In fact, it depends on unknown quantities.

Let π be the prevalence of the finite target population U . Then, by definition, π is

the ratio of the number of presences on the population size:

π
def.
=
N1

N
⇒ N1 = πN, (2.8)

and:

1− π def.
= 1− N1

N
=
N0

N
⇒ N0 = (1− π)N. (2.9)

Then, from the pseudo-absence model the ratio (2.7) can be expressed as follows:

γ1

γ0

=
n1

2N1

:
n0

N0

=
n1

2πN
:

n0

(1− π)N

=
n1

n0

1− π
2π

where n1 is the total number of presences in the complete sample S, n0 is the total

number of absences in the complete sample S. All the quantities that appear in this

ratio are unknown.

When presence-only data are considered one cannot observe the true process

Y , but is able to assess information on a naive representation Z of Y . Then the
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pseudo-absence problem can be reformalized in terms of the variable Z, where z = 1

implies y = 1 and z = 0 implies y = 1 or y = 0. This first relation between the true

and observed process is summarized in the following scheme:

{
z = 1⇒ y = 1;

z = 0⇒ y = 1 or y = 0

and represented as in Table 2.1

z = 0 z = 1 Total

y = 0 N0 0 N0

y = 1 N1 N1 2N1

Total N N1 N +N1

Table 2.1: Population scheme for presence-only data.

The naive variable Z can be seen as a stratum variable that indicates if the

observation i belongs to Su or Sp. The complete sample S is then composed by two

samples: Su, the sample of the pseudo-absences of size nu, corresponding to z = 0

and Sp, the sample of observed presences of size np, corresponding to z = 1. The

presence-only data can be graphically sketched as follows:

Z 0, . . . , 0, . . . , 0 1, . . . , 1

Y Ỹ1, . . . , Ỹi, . . . , Ỹnu 1, . . . , 1

Su Sp

where Ỹi is a Bernoulli random variable associated to each observation i belonging

to Su that represents the unobserved response variable Yi. Because the censoring ef-

fect acting on the sample Su, the sequence Yi of dependent and identically Bernoulli

random variables, each drawn without replacement with probability of occurrence

described in (2.4), is unknown in Su. Then, a sequence Ỹi of independent an identi-

cally Bernoulli random variables, each drawn with replacement with probability of

occurrence π, is associated to the sequence of Yi. This step underlines the presence

of a double source of randomness to be considered in this framework: the first cames

from the sampling scheme (case-control design) and the second from the censoring

effect acting on the sample Su.

Then, the relation between Y and Z can be re-formalized as follows:

{
zi = 1⇒ i ∈ Sp, Yi → yi is an observed value equal to 1;

zi = 0⇒ i ∈ Su, Yi → Ỹi is a Bernoulli random variable.
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and represented as in Table 2.2

z = 0 z = 1 Total

y = 0 n0u 0 n0

y = 1 n1u n1p n1

Total nu np n

Table 2.2: Z and Y relation at sample level.

where

n0u is the unknown number of unobserved absences in the sample Su;

n1u is the unknown number of unobserved presences in the sample Su;

n1p is the number of observed presences in the sample Sp;

n0 is the unknown total number of absences in the complete sample S;

n1 is the unknown total number of presences in the complete sample S.

The number of the true presences n1 is obtained as the sum of the number of observed

presences in the sample Sp (n1p) and the unknown number of unobserved presences

in the sample Su (n1u). While n0 is equal to the unknown number of unobserved

absences in the sample Su. In formula:

n1 = n1u + n1p,

n0 = n0u,

and

np = n1p,

nu = n0u + n1u.
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Because the censoring effect acting on sample Su, all the unknown quantities (n1,

n0, n1u, n0u) can be considered random quantities and are indicate with the symbol

∼:

ñ0u = nu − ñ1u,

ñ0 = ñ0u,

ñ1 = ñ1u + np.

In particular n1u can be written as:

ñ1u =
∑
i∈Su

Ỹi.

As direct consequence, the correction factor is based on a ratio of random quantities:

γ̃1

γ̃0

=
ñ1u + np
nu − ñ1u

1− π
2π

. (2.10)

In order to handle the correction factor, Ward et al. (2009) approximate the ratio

in (2.10) by the ratio of expected values of the sampling rates. Being π the expected

value of each Ỹi in Su, the expected number of the true presences in Su is given by:

E[ñ1u] = E

[∑
i∈Su

Ỹi

]
(2.11)

=
∑
i∈Su

E
[
Ỹi

]
= πnu

and, consequently, the expected number of the true presences in the complete sample

S is:

E[ñ1] = E[ñ1u + np] (2.12)

= E[ñ1u] + np

= πnu + np.
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Then, given (2.12), the ratio in (2.10) can be approximated as follows:

γ̃1

γ̃0

≈ E[γ̃1]

E[γ̃0]
(2.13)

=
E[ñ1u] + np
nu − E[ñ1u]

1− π
2π

=
πnu + np
(1− π)nu

1− π
2π

=
πnu + np

2πnu
.

In Ward et al. (2009), the authors argue that this quantity can be identified only if

the prevalence of the population π is a known quantity.

Di Lorenzo et al. (2011) use the same approximation introduced by Ward et al.

(2009) and model the information about the prevalence by an informative prior

distribution (expert elicitation). Details are shown in Chapter 3.

While in Divino et al. (2011a) a random approximation of the correction fac-

tor allows to overcome the need to acquire strong information on the population

prevalence. Details are shown in Chapter 4.

2.5 The prevalence: a remark

Now assume that a population of size N has been generated from the following

model:

Y ∼ Ber(π∗) (2.14)

Then

U = {Y1, . . . , YN}

is a target population with empirical prevalence π, such that E(π) = π∗.

Let UP be the subpopulation of U of size N1 corresponding to y = 1:

UP = {1, . . . , 1}

called population of successes.
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As discussed in Section 2.2.3, in the censured case-control sampling the target pop-

ulation U and the design population UD not coincide. The design population UD,

in fact, consists of the target population augmented with the population of known

presences

UD = {U ,UP}

and it has size N +N1.

Consequently the proportion of presences in U is different from the one in UD:

π 6= πD.

This statement is henceforward proved. From Table 2.1

π = Pr(y = 1 | z = 0)

=
N1

N

and

πD = Pr(y = 1)

= Pr(y = 1 | z = 0) Pr(z = 0)

+ Pr(y = 1 | z = 1) Pr(z = 1)

=
N1

N

N

N +N1

+
N1

N1

N1

N +N1

=
2N1

N +N1

=
2πN

(1 + π)N

=
2π

1 + π
.
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In practice, three different prevalences appear:

π∗ the prevalence of the generating model,

π the prevalence of the target population U ,

πD the prevalence of the design population UD,

linked by the following properties:

π∗ = E[π] 6= E[πD] = E
[

2π

1 + π

]
.

2.6 Bayesian framework

In this thesis Bayesian estimates, inference and prediction are considered. This

choice being motivated mostly by the possibility, in this framework, to handle the

prevalence as a parameter of the model.

2.6.1 Bayesian Logistic regression

Methods for Bayesian estimation of the logistic regression model, whether with

univariate or multivariate outcome, are well established (Congdon (2007), Ntzoufras

(2009), Kruschke (2010)).

Consider the logistic regression model described in 2.1:

π(x) = Pr(y = 1 | x) =
exp{η(x)}

1 + exp{η(x)}
,

where η(·) is a generic parametric function and β is the vector of parameters of η(·).

In order to derive inference in a Bayesian framework it is necessary to specify

prior distributions, p(·), for all the parameters of interest and a likelihood model

for the observed data, L(·; data). Then, the Bayesian logistic regression model is

expressed as follows:

Y | x ∼ Ber(π(x))

β ∼ p(β).
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Using the Bayes theorem, the posterior distribution of the parameters under this

model is given by:

p(β | y;X) ∝ L(β;y,X)p(β)

Bayesian estimates and credibility intervals of the parameters of interest are obtained

simulating the marginal profiles of that posterior distribution through the use of

MCMC techniques.





Chapter 3

Bayesian Modeling of

Presence-only Data: a first model

In this Chapter a first Bayesian model for presence-only data is proposed. The

methodology here shown is published the paper

Di Lorenzo B., Farcomeni A. and Golini N. (2011). A Bayesian Model for

Presence-Only Semicontinuous Data, With Application to Prediction of Abun-

dance of Taxus Baccata in Two Italian Regions. Journal of Agricolture, Bio-

logical, and Environmental Statistics, 16, 339− 356.

The model developed in this work represents a Bayesian version of the one in Ward

et al. (2009), where the authors proposed a model which explicitly takes into account

bias due to presence-only sampling. Ward’s model can be used when the outcome

of interest is a dichotomous variable measuring whether the species is present or

absent in a given location.

Di Lorenzo et al. (2011) extend Ward’s model to abundance data, that is, to

an outcome which is either zero or a positive real number. These data are usually

refereed to as semicontinuous data or data with excess zeros, and analysis can be

carried out by means of a two-part model which combines a logistic model for the

probability that the response is positive, and a regression model for the log-response

conditionally on it being positive.

The main innovation in the work is that the uncertainty related to the zeros is

explicitly take into account. The resulting model can hence also be thought to as

a two-part model with partial possible measurement error. Further, the adjustment

for the case-control type sampling is performed.
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The inference for the model is derived in a Bayesian framework because it al-

lows to handle the prevalence of species as a parameter of the model. Then, the

information about it can be modeled by an informative prior distribution (expert

elicitation).

3.1 Modeling of presence-only data

Given (2.4) and (2.13), the conditional probability model describing the adjusted

logistic model in logit form can be expressed as follows:

logit Pr(y = 1 | s = 1,x) = η(x) + ln(2) + ln

(
πnu + np

2πnu

)
(3.1)

= η(x) + ln

(
πnu + np
πnu

)

where the regression function η(·) is linear in x: η(x) = xβ = β0 + β1x1 + . . .+ xk.

Here the attention is focused on a linear form for η(x) being the choice motivated

by the adequacy of this model for the data at hand. Obviously this is not the

only choice and other more flexible choice for η(·) could be used (e.g., generalized

additive models, Hastie & Tibshirani (1990)). Modification of this approach for

these different choices is often straightforward and does not usually lead to major

modification of the inferential strategies described in Section 3.2.1.

As discussed in Section 2.3, when presence-only data are considered one cannot

observe the true process Y , but is able to assess information on a naive represen-

tation Z of Y . Then it is necessary to link parameters to the observed process

Z in order to perform inference and, to do so, is necessary to derive the observed

likelihood L(θ; z,X) for the presence-only data. Using a short-hand notation θ to

denote the parameters at stake, the observed likelihood for presence-only data is

given by:

L(θ; z,X) =
∏
i∈Su

Pr(zi = 0 | si = 1,xi)

×
∏
i∈Sp

Pr(zi = 1 | si = 1,xi).

An explicit expression of the latter is given first using a probability argument

across y = 1 and y = 0:
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Pr(z = 1 | s = 1,x) = Pr(z = 1 | y = 1, s = 1,x) Pr(y = 1 | s = 1,x) (3.2)

+ Pr(z = 1 | y = 0, s = 1,x) Pr(y = 0 | s = 1,x)

= Pr(z = 1 | y = 1, s = 1) Pr(y = 1 | s = 1,x)

+ Pr(z = 1 | y = 0, s = 1) Pr(y = 0 | s = 1,x)

as Z | Y,x ∼ Z | Y . Then, from the definition of conditional probability follows

that

Pr(z = 1 | y = 1, s = 1) =
Pr(z = 1, y = 1 | s = 1)

Pr(y = 1 | s = 1)
.

Following the pseudo-absence approach the expected number of true presences

in the complete sample S is np + πnu, see (2.12). Hence, Pr(y = 1 | s = 1) =

(np + πnu)/(np + nu).

Also, from Table 2.2, Pr(z = 1, y = 1 | s = 1) = np/(np + nu), and consequently:

Pr(z = 1 | y = 1, s = 1) =
np

np + πnu
. (3.3)

Further, Pr(z = 1 | y = 0, s = 1) = 0 because all z = 1 in the data must occur for

y = 1.

Combining (3.1) with (3.3), after some manipulations, it is obtained:

Pr(z = 1 | s = 1,x) = 0 +

np

πnu
exp{xβ}

1 +
(

1 + np

πnu

)
exp{xβ}

.

Then, the explicit form of the observed likelihood for presence-only data is given by:

L(θ; z,X) =
∏
i∈Su

Pr(zi = 0 | si = 1,xi)
∏
i∈Sp

Pr(zi = 1 | si = 1,xi) (3.4)

=
∏
i∈Su

 1 + exp{xiβ}

1 +
(

1 + np

πnu

)
exp{xiβ)}

∏
i∈Sp

 np

πnu
exp{xiβ}

1 +
(

1 + np

πnu

)
exp{xiβ)}


where θ is a short-hand notion for the parameters at stake.
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3.1.1 Inference

Priors

In order to derive inference in the Bayesian framework, the following prior distribu-

tions are assumed:

p(β, π) = p(β)p(π). (3.5)

where β ∼ N (0,Σβ), with Σβ fixed, and p(π) ∼ Beta(aπ, bπ), with aπ and bπ chosen

in a such way to summarize the uncertainty on the true value of the prevalence.

The informative prior on π plays a special rule in this framework as the data

contain very little information on π (see Ward et al. (2009) for the identifiability

issues related to π).

In practice, inference and predictions are based on the integrated likelihood (with

respect to the prior on π). The nonidentification makes inference arbitrarily sensi-

tive to the prior. The proposed model considers a parametrization with a simple

contextual meaning, so that it is possible to elicit an informative prior for π. For

methods in prior elicitation, see for instance Kadane et al. (1980), Kadane & Wolfson

(1998), Garthwaite et al. (2005), and references therein.

Model fit

As discussed in Section 1.1, since not all Yi are observed, the presence-only data

model can be seen a missing (or censured) data model. The posterior distribution

is not known in closed form, then a MCMC algorithm is required to obtain sam-

ples from such distribution. Here a MCMC sampling scheme is proposed defining

a Bayesian counterpart of the EM algorithm. The sampling scheme is based on

alternating a data augmentation/imputation step, in which the latent observations

Yi are sampled from their full conditional, with Metropolis Hastings (MH) steps.

Hence, the data augmentation scheme based on the generation of latent observa-

tions Yi, allows to derive the complete likelihood, L(θ; z,y,X).

Using a conditioning argument, one gets that
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L(θ; z,y,X) =
∏
i∈S

Pr(Yi, Zi | si = 1,xi) (3.6)

=
∏
i∈S

Pr(Zi | Yi, si = 1,xi) Pr(Yi | si = 1,xi)

=
∏
i∈S

Pr(Yi | si = 1,xi)

=
∏
i∈S

Pr(yi = 0 | si = 1,xi)
1{yi=0} Pr(yi = 1 | si = 1,xi)

1{yi=1}

where 1{C} is the indicator function for condition C.

Pr(Yi | si = 1,xi) follows directly from (3.1):

Pr(y = 1 | s = 1,x) =
exp

{
η(x) + ln

(
np+πnu

πnu

)}
1 + exp

{
η(x) + ln

(
np+πnu

πnu

)} (3.7)

=
exp{η(x)}np+πnu

πnu

1 + np+πnu

πnu
exp{η(x)}

=

(
1 + np

πnu

)
exp{η(x)}

1 +
(

1 + np

πnu

)
exp{η(x)}

=

(
1 + np

πnu

)
exp{xβ}

1 +
(

1 + np

πnu

)
exp{xβ}

and

Pr(y = 0 | s = 1,x) = 1− Pr(y = 1 | s = 1,x) (3.8)

=
1

1 +
(

1 + np

πnu

)
exp{xβ}

.

Then, the complete likelihood for presence-only data, in terms of both Z and Y ,

can be obtained by substituting 3.7 and 3.8 into 3.6

L(θ;y, z,X) =
∏
i∈S

Pr(yi = 0 | si = 1,xi)
1{yi=0} Pr(yi = 1 | si,xi)

1{yi=1} (3.9)

=
∏
i∈S

 1

1 +
(

1 + np

πnu

)
exp{xiβ}

1{yi=0}


(
1 + np

πnu

)
exp{xiβ}

1 +
(

1 + np

πnu

)
exp{xiβ}

1{yi=1}
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where β represents the k-dimensional parameters vector introduce to model the k

covariates contribution in the logistic model so that η(x) = xβ.

The proposed algorithm, a Metropolis within Gibbs sampling scheme, is detailed

below (Algorithm 1).

Algorithm 1 Gibbs sampling scheme

1. Sample the latent variables Yi from p(Yi | Zi, si = 1,xi), i = 1, . . . , n; where

p(Yi | Zi, si = 1,xi) = 1yi=zi
∗ 1zi=1 + 1zi=0p(Yi | zi = 0, si = 1,xi). That is,

set yi = zi when zi = 1 and when zi = 0 note that

p(Yi | zi = 0, si = 1,xi) = p(Yi | si = 1,xi),

since is assumed that data are sampled uniformly at random from the study

area. Sampling of Yi when zi = 0 implies to sample Yi form the Bernoulli

distribution given in (3.1).

2. Sample the regression parameters (β) from

p(β | y;X) ∝ p(β)
exp{

∑n
i 1yi=1xiβ}

1 +
(

1 + np

πnu

)
exp{

∑n
i 1yi=1xiβ}

.

3. Sample π from its prior.

Here the sampling scheme of Diebolt & Robert (1994) for mixture (missing data)

models is adapted to the presence-only data. At Step 1 the latent variables are

sampled form their full conditionals. One then augments generating Yi from its

discrete full conditional distribution when zi = 0. When zi = 1, Yi is not sampled

since its full conditional is a point mass on Zi.

At Step 2 the logistic regression parameters for simplicity are sampled through

an Adaptive Rejection Metropolis Sampling (Gilks et al. (1995)), even if there are

many different alternative approaches for this standard problem.

For simplicity in this chapter the prevalence π is sampled from its prior.



37 Bayesian Modeling of Presence-only Data: a first model

3.2 Modeling of presence-only semicontinuous data

Suppose now that the outcome of interest is not only the presence of species, but

also a continuous quantity measuring its abundance. In other words, the response

variable Y is either zero or positive real number, Y ≥ 0. These data are usually

refereed to as semicontinuous data or data with excess zeros.

As for the presence-only data, when presence-only semicontinuous data are con-

sidered the true process Y it is not observed, but information on the naive represen-

tation Z of Y is available. Then z > 0 implies y = z > 0, z = 0 implies y ≥ 0. This

relation between the true and observed process can be summarized in the following

scheme:

{
z > 0⇒ y>0;

z = 0⇒ y≥0.

Let π = Pr(y > 0) be the prevalence of the true presence-absence process Y .

Following the pseudo-absence approach shown in Chapter 2, the semicontinuous

response Y is modelled through a two-part model. The two parts are usually made

of a logistic model for the conditional probability that the response is positive, and

a regression model for the log-response conditionally on the fact that is positive.

In this section the classical two-part model is extended for taking into account

uncertainty related to pseudo-absences.

The adjusted logit model can be specified as follows:

logit Pr(y > 0 | s = 1,x) = η(x) + ln

(
γ1

γ0

)
(3.10)

where the regression function η(·) is linear in x (η(x) = xβ = β0 +β1x1 + . . .+xk);

np and nu are the number of observed abundances (z > 0) and the number of

pseudo-absence data (z = 0), respectively.

For the continuous part of the model is assumed that:

E[ln(Y ) | y > 0,x] = η(x) (3.11)

where η(x) = xα and ln(Y ) is conditionally distributed as a normal variate with

standard deviation σ.
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Note that the same or a different set of covariates can be used on each part of the

models. Again, the attention is restricted to linear models for the the probability of

observing a presence as this model was adequate for the data at hand.

Conditionally on s = 1 the the regression model (3.11) needs no adjustment.

Using the Bayes rule, one can see as:

f(Y | y > 0, s = 1,x) =
Pr(s = 1 | Y, y > 0,x)f(Y | y > 0,x)

Pr(s = 1 | y > 0,x)
(3.12)

=
Pr(s = 1 | Y, y > 0)f(Y | y > 0,x)

Pr(s = 1 | y > 0)

= f(Y | y > 0,x)

so, the sampling rate depends only on the presence and not on the actual value of

the abundance.

Derive now an explicit expression for the ratio γ1
γ0

in (3.10). Following the pseudo-

absence approach, the complete sample S is composed by two samples: Su, the

sample of the pseudo-absence locations of size nu, corresponding to z = 0 and Sp,

the sample of observed abundances of size np, corresponding to z > 0. The presence-

only data can be graphically sketched as follows:

Z 0, . . . , 0, . . . , 0 > 0, . . . . . . , > 0

Y Y ∗1 , . . . , Y
∗
i , . . . , Y

∗
nu

> 0, . . . . . . , > 0

Su Sp

where Y ∗i is a semicontinuous random variable associated to each observation i

belonging to Su that represents the unobserved semicontinuous response variable

Yi. Because the censoring effect acting on sample Su to the unknown sequence Yi of

semicontinuous random variables can be associated a sequence of Y ∗i semicontinuous

random variables defined by the following two-part model:

1. Adjusted case-control model:

Ỹi ∼ Ber(π) i.i.d.

drawn with replacement.
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2. Regression model:

Y ∗i | ỹi = 1 ∼ LN (µ, σ2)

where Y ∗i | ỹi = 1 is a log normal distribution.

As discussed in Section 2.4, in this framework a double source of randomness is

considered.

Then, the relation between Y and Z can be re-formalized as follows:

{
zi > 0⇒ i ∈ Sp, Yi → yi is an observed semicnontinuous value;

zi = 0⇒ i ∈ Su, Yi → Y ∗i is a semicontinuous random variable.

and represented as in Table 2.2

z = 0 z > 0 Total

y = 0 n0u 0 n0

y > 0 n1u n1p n1

Total nu np n

Table 3.1: Z and Y relation at sample level.

where, again,

n0u is the unknown number of unobserved abundances (y > 0) in the sample

Su;

n1u is the unknown number of unobserved abundances in the sample Su;

n1p is the number of observed abundances in the sample Sp;

n0 is the unknown total number of absences in the complete sample S;

n1 is the unknown total number of abundances in the complete sample S.

Then, the number of the true abundances n1 is obtained as the sum of the number of

observed abundances in the sample Sp (n1p) and the unknown number of unobserved

abundances in the sample Su (n1u). While n0 is equal to the unknown number of

unobserved absences in the sample Su. In formula:
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n1 = n1u + n1p,

n0 = n0u,

and

np = n1p,

nu = n0u + n1u.

Yet, because of the effect induced by the censoring acting on the sample Su, all the

unknown quantities (n1,n0,n1u,n0u) can be considered random quantities and are

indicate with the symbol ∼:

ñ0u = nu − ñ1u,

ñ0 = ñ0u,

ñ1 = ñ1u + np.

In particular n1u can be written as:

ñ1u =
∑
i∈Su

Ỹi.

As direct consequence, the correction factor becomes a ratio of random quantities:

γ̃1

γ̃0

=
ñ1u + np
nu − ñ1u

1− π
2π

(3.13)

and as discussed in Section 2.4 can be approximate by the ratio of expected values

of the sampling rates. Being π the expected value of each Ỹi in Su, the expected

number of the true abundances in Su is given by:

E[ñ1u] = E

[∑
i∈Su

Ỹi

]
(3.14)

=
∑
i∈Su

E
[
Ỹi

]
= πnu
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and, consequently, the expected number of the true abundances in the complete

sample S is:

E[ñ1] = E[ñ1u + np] (3.15)

= E[ñ1u] + np

= πnu + np.

Then, given (3.15), the random ratio can be approximated as follows:

γ̃1

γ̃0

≈ E[γ̃1]

E[γ̃0]
(3.16)

=
E[ñ1u] + np
nu − E[ñ1u]

1− π
2π

=
πnu + np
(1− π)nu

1− π
2π

=
πnu + np

2πnu

and the explicit form of (3.10) follows:

logit Pr(y > 0 | s = 1,x) = η(x) + ln

(
πnu + np
πnu

)
(3.17)

Then, the observed likelihood for presence-only semicontinuous data is given by:

L(θ; z,X) =
∏
i∈Su

Pr(zi = 0 | si = 1,xi)

×
∏
i∈Sp

[Pr(zi > 0 | si = 1,xi)f(zi | zi > 0, si = 1,xi)] .

where θ is a short-hand notation to denote the parameters at stake.

Again, an explicit expression of the latter is given first using a probability argu-

ment across y > 0 and y = 0:

Pr(z > 0 | s = 1,x) = Pr(z > 0 | y > 0, s = 1,x) Pr(y > 0 | s = 1,x)

+ Pr(z > 0 | y = 0, s = 1,x) Pr(y = 0 | s = 1,x)

= Pr(z > 0 | y > 0, s = 1) Pr(y > 0 | s = 1,x)

+ Pr(z > 0 | y = 0, s = 1) Pr(y = 0 | s = 1,x)
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as Z | Y,x ∼ Z | Y . Then, from the definition of conditional probability follows

that:

Pr(z > 0 | y > 0, s = 1) =
Pr(z > 0, y > 0 | s = 1)

Pr(y > 0 | s = 1)
.

As for the presence-only data, the expected number of true absences in the complete

sample S is np + πnu. Hence, Pr(y > 0 | s = 1) = (np + πnu)/(np + nu).

Yet, given the relation between Y and Z, Pr(z > 0, y > 0 | s = 1) = np/(np + nu).

Consequently:

Pr(z > 0 | y > 0, s = 1,x) =
np

np + πnu
. (3.18)

Further, Pr(z > 0 | y > 0, s = 1) = 0 because all z > 0 in the data must occur for

y > 0.

Combining (3.10) with (3.18), after some manipulations:

Pr(z > 0 | s = 1,x) = 0 +

np

πnu
exp{xβ}

1 +
(

1 + np

πnu

)
exp{xβ}

.

Then, the explicit form of the observed likelihood for the presence-only data is given

by:

L(θ; z,X) =
∏
i∈Su

Pr(zi = 0 | si = 1,xi) (3.19)

×
∏
i∈Sp

[Pr(zi > 0 | si = 1,xi)f(Zi | zi > 0, si = 1,xi)]

=
∏
i∈Su

 1 + exp{xiβ}

1 +
(

1 + np

πnu

)
exp{xiβ}


×

∏
i∈Sp

 np

πnu
exp{xiβ}

1 +
(

1 + np

πnu

)
exp{xiβ}

f(zi | zi > 0, si = 1,xi)


=

∏
i∈Su

 1 + exp{xiβ}

1 +
(

1 + np

πnu

)
exp{xiβ}


×

∏
i∈Sp

 np

πnu
exp{xiβ}

1 +
(

1 + np

πnu

)
exp{xiβ}

1

zi
√

2πσ
exp

{
(ln(zi)− xiα)2

2σ2

} .
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where θ is a short-hand notion for the parameters at stake and 1C is the indicator

function for condition C.

3.2.1 Inference

Priors

The prior distributions of the model of presence-only semicontinuous data are spec-

ified below:

p(β,α, σ, π) = p(β)p(α)p(σ)p(π), (3.20)

where β ∼ N (0,Σβ) and α ∼ N (0,Σα) with Σβ and Σα fixed. Prior specification

is completed letting p(σ) be a IG(aσ, bσ) and let p(π) be a Beta(aπ, bπ) that sum-

marizes available information on the uncertainty on the true value of the prevalence

(see Section 3.1.1).

Model fit

In order to approximate the posterior distribution, an ad-hoc MCMC sampling

scheme adapted from Diebolt & Robert (1994) is used. Hence, the data are aug-

mented making use of the latent observations yi, and the complete likelihood, L(θ; z,y,X)

is consequently derived.

Using a conditioning argument

L(θ; z,y,X) =
∏
i∈S

Pr(Yi, Zi | si = 1,xi) (3.21)

=
∏
i∈S

Pr(Zi | Yi, si = 1,xi) Pr(Yi | si = 1,xi)

=
∏
i∈S

Pr(Yi | si = 1,xi)

=
∏
i∈S

Pr(yi = 0 | si = 1,xi)
1{yi=0}

×
∏
i∈S

Pr(yi > 0 | si = 1,xi)f(Yi | yi > 0, si = 1,xi)
1{yi>0} .

The form of Pr(Yi | si = 1,xi) follows directly from (3.10). Also, Pr(y > 0 |
x, s = 1) and Pr(y = 0 | s = 1,x) are the same expressed in (3.7)) and (3.8). Then:
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Pr(y > 0 | s = 1,x) =
exp{xiβ}

(
1 + np

πnu

)
1 +

(
1 + np

πnu

)
exp{xiβ}

(3.22)

and

Pr(y = 0 | s = 1,x) = 1− Pr(y > 0 | s = 1,x) (3.23)

=
1

1 +
(

1 + np

πnu

)
exp{xiβ}

.

The density f(Y | y > 0, s = 1,x), due to 3.12, is given by:

f(Y | y > 0, s = 1,x) =
1

y
√

2π
exp

{
− 1

2σ2
(ln(y)− xα)2

}
(3.24)

Then, the explicit form of the complete likelihood for the presence-only semicontin-

uous data, in terms of both Z and Y , can be obtained by substituting (3.22) and

(3.23) into (3.21):

L(θ; z,y,X) =
∏
i∈S

Pr(yi = 0 | si = 1,xi)
1{yi=0} (3.25)

×
∏
i∈S

Pr(yi > 0 | si = 1,xi)f(Yi | yi > 0, si = 1,xi)
1{yi>0}

=
∏
i∈S

 1

1 +
(

1 + np

πnu

)
exp{xiβ)}

1{yi=0}

×
∏
i∈S


(

1 + np

πnu

)
exp{xiβ}

1 +
(

1 + np

πnu

)
exp{xiβ}

1

yi
√

2π
exp

{
− 1

2σ2
(ln(yi)− xiα)2

}{yi>0}

where β represents the vector of k parameters used for the logistic part and α

represents the vector of h parameters used for the linear regression part.

The general iteration of the (Metropolis within) Gibbs sampling scheme is de-

tailed in Algorithm 2.
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Algorithm 2 Gibbs sampling scheme

1. Sample the latent variables Yi from p(Yi | Zi, si = 1,xi), i = 1, . . . , n; where

p(Yi | Zi,xi) = 1yi=zi
∗ 1zi>0 + 1zi=0p(Yi | zi = 0, si = 1,xi). That is, simply

one sets yi = zi when zi > 0 and when zi = 0 note that

p(Yi | zi = 0, si = 1,xi) = p(Yi | si = 1,xi),

since is assumed that data are sampled uniformly at random from the study

area. Sampling of Yi when zi = 0 must then be performed in two steps, since

p(Yi | si = 1,xi) is a mixed measure. First, one shall sample a presence

from p(yi > 0 | si = 1,xi), and then set Yi = yi, where yi is sampled from

p(Yi | yi > 0,xi).

2. Sample the regression parameters (β) for the logistic part from

p(β | y;X) ∝ p(β)
exp{

∑n
i 1yi>0xiβ}

1 +
(

1 + np

πnu

)
exp{

∑n
i 1yi>0xiβ}

.

3. Sample the remaining parameters α and σ simultaneously as:

p((α, σ) | y;X) ∝ p(α, σ)L(θ | z,y;X).

4. Sample π from its prior.

At Step 1 of the MCMC algorithm, latent indicators are sampled. Here, a latent

variable, Yi, which is not discrete is sampled. Then, it is necessary to augment

generating Yi from its semicontinuous full conditional distribution when zi = 0.

When zi > 0, Yi is not sampled since its full conditional is a point mass on yi.

Convergence of the chain is guaranteed from the fact that f(Yi | Zi, si = 1,xi), albeit

arising from a unusual semicontinuous distribution, is exactly the full conditional

for Yi. All required regularity are consequently implied by model assumption.

After to have sampled or set values for Y , Step 2 arises from straightforward

conditional independence conditions, (3.10) and (3.19).

At Step 3, several difficulties are associated with setting up Metropolis Hastings

(MH) steps for the parameters (α, σ). Key to success for MH is linked to a clever

choice for the candidate transition kernel, which does not seem readily available

here. Furthermore, the last full conditional distribution is also potentially multi-
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modal, and even if a good candidate transition kernel were available, tuning of MH

would be made harder by volatility in the latent indicators 1yi>0. In order to avoid

difficulties linked with setting up MH, it is possible to sample (α, σ) simultaneously

with Adaptive Rejection Metropolis Sampling (Gilks et al. (1995)). In this contest

the ARMS works nicely, and needs essentially no tuning.

For sampling the logistic regression parameters at Step 2 an Adaptive Rejection

Metropolis Sampling (Gilks et al. (1995)) is again used for simplicity, even if, as

discussed in Section 3.1.1 there are many different alternative approaches for this

standard problem.

Yet, for simplicity the prevalence π is sampled from its prior.

3.3 Simulation Study

The performance of the proposed model is investigated in this section on simulated

data. The EM algorithm of Ward et al. (2009) is extended to abundance data, in

order to obtain maximum likelihood estimates for comparison.

A semicontinuous response Y is generated from the following two-part model

logit Pr(y > 0 | x1, x2) = β0 + β1x1 + β2x2

and, conditionally on y > 0 and x3

ln(Y ) = α0 + α1x3 + ε,

where β0 = −4.5, β1 = 3, β2 = 2, α0 = 0.3, α1 = 1, and ε is sampled from a standard

normal. The covariates are generated independently as follows: x1 is sampled from

a Bernoulli with parameter 0.2, mimicking a categorical predictor, and the other two

covariates are generated from standard normals. At each replication we generate a

study area of N observations, and randomly select a proportion λ of the observed

presences for the sample of presences used for model fitting. Then, the pseudo-

absences sample is drawn from the remaining data, and fit the Bayesian and the

oracle classical model in which the prevalence is correctly known. Remark that this

sampling procedure is in according to the sampling assumption set out in this thesis

only when N is large and π is small. For the Bayesian approach, the following priors

are used: for the logistic and regression coefficients, normal zero centered priors with

variance equal to 25 and 9 respectively; an exponential for the precision parameter

(i.e., the inverse of σ), and a Beta with parameters 0.6 and 5 for prevalence. Data
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generation and model fitting are replicated 1000 times, and the average results are

reported over the 1000 replications.

In Table 3.2 the average Relative Root Mean Squared Error (RRMSE) of the

parameter estimates of Bayesian and EM algorithm for different values of N and λ

is reported. RRMSE is calculated as ratio of RMSE to true parameter value.

Bayesian Model EM algorithm

N = 104 N = 104 N = 900 N = 900 N = 104 N = 104 N = 900 N = 900

λ = 10% λ = 30% λ = 10% λ = 30% λ = 10% λ = 30% λ = 10% λ = 30%

Parameters

β1 0.16 0.17 0.22 0.21 0.16 0.13 0.30 0.46

β2 0.23 0.23 0.27 0.37 0.15 0.12 0.29 0.47

α0 0.09 0.10 0.30 0.34 0.09 0.10 0.30 0.35

α1 0.03 0.03 0.09 0.10 0.03 0.03 0.09 0.11

σ 0.02 0.02 0.07 0.11 0.29 0.29 0.30 0.28

π 0.07 0.07 0.07 0.07 - - - -

95% CI π, L 0.1367 0.1361 0.1373 0.1424 - - - -

95% CI π, C 1.0000 1.0000 1.0000 1.0000 - - - -

Table 3.2: RRMSE of the parameter estimates of Bayesian model and EM model or

different values of N and λ in simulated data. We omit β0 since it is summarized

in the final prevalence estimate. The last two lines report the mean length (L)

and coverage (C) of the 95% CI for the prevalence parameter π. The number of

replications is 1000.

For the proposed Bayesian method it can be seen that, as expected, the RRMSE

decreases with N . On the other hand, there does not seem to be a strong dependence

on λ, indicating that it does not really matter how many presences are obtained, as

long as these are sampled independently and uniformly from the study area and the

final sample size is large enough. The EM algorithm seems to be dependent both on

N and λ, and it is sometimes outperformed by the Bayesian approach even if it has

the unfair advantage of assuming a known, and correct, prevalence. The RRMSE

for the regression coefficients are in general comparable, but the Bayesian approach

seems to work much better than the frequentist method in estimating σ. This is

due to a negative bias in the estimate of σ obtained with the EM algorithm, which

could be explained by the optimism in assuming a known prevalence. The same

assumption seems to lead to a smaller RRMSE in the coefficients of the logistic part

when N is large, and larger when N is small. In Table 3.2 we also show the mean

length of the 95% credibility intervals and their frequentist coverage for π. It can be

seen that the frequentist coverage is very large, and that the mean length is large

too and reflects prior inputs (i.e., a much smaller mean length could be obtained
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with a more concentrated prior).

A further comparison between the Bayesian and frequentist method is given in

Table 3.3, where the predictive performance of the methods are compared. At each

replication the RRMSE for positive predictions is calculated, and the predictive

performance of the presence-absence part of the model computing sensitivity and

specificity is summarized.

Test N λ Bayesian Model EM algorithm
104 10% 0.01 0.00

RRMSE 104 30% 0.00 0.00
900 10% 0.05 0.00
900 30% 0.00 0.00

104 10% 0.84 0.84
Sensitivity 104 30% 0.84 0.84

900 10% 0.84 0.84
900 30% 0.83 0.83

104 10% 0.16 0.16
Specificity 104 30% 0.16 0.16

900 10% 0.16 0.16
900 30% 0.17 0.17

Table 3.3: RRMSE for positive predictions, sensitivity and specificity of the pre-

dicted presence/absence for different values of N and λ in simulated data. The

results are averaged over 1000 replications.

The appears to be no difference between (oracle) frequentist and the Bayesian

approach, in both cases the predicted values are very close to the observed values,

sensitivity is rather large and specificity is rather small.

Finally, a small study is provide to evaluate sensitivity of the parameter estimates

to the choice of priors. In Table 3.4 the RRMSE of the parameters when N = 10000

and λ = 0.1 for additional sets of priors is shown. Prior set (a) is the set used for the

previous simulations and described at the beginning of the section. In prior set (b) a

bias to the prior set (a) is added. The priors for logistic and regression coefficients are

centered on -0.5, and further a Gamma with parameters 1.5 and 1 for the precision

parameter is used. Prior set (c) is equivalent to (a), with the exception of the prior

for the prevalence parameter, where a Beta distribution with parameters 0.46 and

2.64 is used; and finally in prior set (d) a zero centered Student’s T distributions

with three degrees of freedom for the β and α parameters is used.
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Prior settings
Parameters (a) (b) (c) (d)
β1 0.16 0.15 0.15 0.16
β2 0.23 0.23 0.24 0.23

α0 0.09 0.09 0.09 0.09
α1 0.03 0.03 0.03 0.03

σ 0.02 0.02 0.02 0.02

π 0.07 0.07 0.07 0.07

Table 3.4: Sensitivity analysis: RRMSE obtained with (a) default priors, (b) biased

priors, (c) biased prior on the prevalence parameter, (d) flat priors. The results are

based on 1000 replications.

It can to see that there does not seem to be prior sensitivity with the sample

sizes common encountered in real data applications.

3.4 Application to real data

Taxus baccata is a relict of the Cenozoic flora, characterized by warm-humid cli-

matic conditions. It survived glaciations in refugia areas, and may have followed

Fagus in successive postglacial expansions. This process has determined the cur-

rent fragmented presence and reduced consistency. Taxus baccata has low resistance

to intense cold and it probably survived mainly thanks to the ability of asexual

reproduction and sex variations of adults in case of need.

The data used was recorded in a study area located in central Italy, with specific

reference to Abruzzo and Lazio regions. The area of interest extends for about

28000 Km2, with an heterogenous morphology, which includes sandy coasts and

the summits of the Apennines (the highest peak being the Gran Sasso, 2912 m

of altitude). The forest habitat of Taxus baccata in these two regions is of high

conservation priority in Europe (Scarnati et al. 2009).

The aim of the analysis is to obtain a map of the potential distribution of Taxus

baccata, through climatic, topographic, structural and environmental parameters.

This map is then used for elaborating conservation strategies (Guisan & Zimmer-

mann 2000).

Climatic maps in GRID format, with a spatial resolution of 500 m, were built.

These maps were obtained by interpolating precipitation and temperature data
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recorded in 300 meteorological stations and calculating the average data for the

1960− 1990 period (see Attorre, Alfó, De Sanctis, Francesconi & Bruno (2007) for

technical details).

The environmental covariates considered were:

MIN−T−1 Minimum temperature of the coldest month (January)

MAX−T−7 Maximum temperature of the hottest month (July)

T−MED Average temperature in twelve consecutive months

TOTAL−P Total annual precipitation

SUMM−P Precipitation during summer

WINT−P Precipitation during winter

MOISTURE Moisture index

ALT Altitude

Descriptive analysis of these are summarized in Table 3.5(a) for the entire grid, and

in Table 3.5(b) for the plots in which a presence was recorded. Note that in Table

3.5(a) only on suitable locations for proliferation of Taxus Baccata are reported (see

below).

Temperatures are expressed in degree Celsius (◦C), precipitations are expressed

in millimetres (mm), moisture is expressed in Mi = TOTAL−P/ETp, where ETp is

the potential evapotraspiration and altitude is expressed in metres (m). As measure

of abundance for Taxus the Importance Value (IV) expressed on relative basal area

and the number of stems contained within each plot (Basal area/ha) is used. See

Attorre, Alfó, De Sanctis, Francesconi & Bruno (2007) for technical details.
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(a)

Min 1st Quartile Median Mean 3rd Quartile Max Std. Dev.
MIN−T−1 (◦C) -6 -3 -2 -2 -1 4 1
MAX−T−7 (◦C) 18 22 24 23 25 28 2
T−MED (◦C) 5 8 9 9 10 13 1
TOTAL−P (mm) 629 1029 1189 1211 1403 1894 245
SUMM−P (mm) 91 145 165 170 191 292 33
WINT−P (mm) 153 304 363 375 447 706 95
MOISTURE (Mi) 0.9 1.2 1.3 1.3 1.4 2.3 0.2
ALT (m) 900 1035 1217 1244 1424 1750 235

(b)

Min 1st Quartile Median Mean 3rd Quartile Max Std. Dev.
MIN−T−1 (◦C) -4 -3 -2 -2 -1 2 1
MAX−T−7 (◦C) 20 21 22 22 24 25 1
T−MED (◦C) 6 8 8 8 9 12 1
TOTAL−P (mm) 22 1251 1405 1414 1620 1696 206
SUMM−P (mm) 141 161 203 196 219 254 31
WINT−P (mm) 256 336 440 429 507 560 86
MOISTURE (Mi) 1.1 1.3 1.3 1.4 1.4 1.7 0.2
ALT (m) 969 1278 1430 1392 1503 1715 157
ABUNDANCE 1 7 12 20 30 78 18

Table 3.5: Descriptive statistics for the environmental covariates on the whole data (a)
and for locations where abundance is positive (b). MIN−T−1: Minimum temperature of
the coldest month (January). MAX−T−7: Maximum temperature of the hottest month
(July). T−MED: Average temperature in twelve consecutive months. TOTAL−P : Total
annual precipitation. SUMM−P : Precipitation during summer. WINT−P : Precipitation
during winter. MOISTURE: Moisture index. ALT : Altitude.

Locations with presence of Taxus baccata were identified by GPS coordinates,

and selected through bibliographical information and indications of the staff of the

protected areas. There are many indices of abundance which could be used. In this

research the Importance Value (IV) is used, for a definition of which the reader is

pointed to Scarnati et al. (2009). In each selected location the IV of Taxus baccata

was measured based equally on relative basal area and the number of stems contained

within it.

In this study 97 presences are been observed, and need to build predictions for

a total of 111882 locations. A few of these 111882 locations are excluded from the

analysis because they almost surely correspond to locations in which the species

is absent: GIS tools are used to discard completely unsuitable locations due for
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instance to presence of lakes, cities, roads, and so on. Also, sites where one or

more of habitat characteristics assume values that do not allow the plant growth are

discarded.

In order to obtain information on prevalence ecologists and experts are been

independently consulted, asking them a rough estimate of their expected prevalence,

a minimum and a maximum. Also, the estimates of prevalence of Taxus Baccata are

recorded and similar species obtained in previous studies dedicated at least to part

of the area under consideration. A consensus was obtained on a prevalence between

2% and 6%. Consequently it is decided to conservatively center the prior on 0.03.

Since the majority of the consulted sources indicated a prevalence of at most 5%,

it is also decided to let the third quartile of the prior be slightly smaller than 0.05;

and to have a 0.95 upper quantile of approximately 10%, an upper limit common to

many of the considered sources. Given these information, a Beta prior was elicited

with parameters 0.6 and 19.4, which has a mean of 0.03, a third quartile slightly

larger than 0.04, and a .95 upper quantile of around 0.10.

For regression coefficients there are two default prior choices in practice: a zero-

centered Gaussian with diagonal covariance matrix, and a zero-centered Gaussian

with covariance matrix γX ′X, where X is the matrix of covariates used in the model.

Then the priors for the remaining parameters was set by fixing Σβ = Σα = σ2I,

where I denotes a diagonal matrix of the appropriate size; and center the prior for

σ on its maximum likelihood estimate. A diagonal covariance matrix was preferred

since it attenuates the final correlation between estimates, i.e., collinearity; plus, it

was also avoid the arbitrary choice of the hyperparameter parameter γ.

In order to reduce spurious effects, the pseudo-absence generation was repeated

40 times, and the model fitted separately on each data set. At each repetition, 97

pseudo-absences was sampled from the suitable sites with the case-control approach

of Attorre, Francesconi, Taleb, Scholte, Saed, Alfó & Bruno (2007), select at ran-

dom starting values for the parameters, and run Algorithm 1 for a total of 100000

sweeps. A burn-in of 50000 iterations was allowed, and one each twentieth of the

50000 remaining iterations for posterior estimation was used. The perform model

is chosen according to the structured stochastic search variable section (SSSVS)

approach of Farcomeni (2010), to which the reader is pointed for details. The pos-

sibility of including any of the available covariates is considered, plus all two-way

interactions, in each part of the model. The hierarchical constraints was used so that

an interaction is not included in a model without both covariates contributing to it.

SSSVS allows to estimate a probability of inclusion for each coefficient. As proved

by Farcomeni (2010), consistency in model choice is achieved as long as covariates
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with a probability of inclusion larger than 50% are used in the model, and the other

covariates are discarded. The 40 repetitions did not provide conflicting conclusions,

so that probably no spurious effects was observed in the sampled pseudo-absences.

The results related to a single (randomly chosen) repetition are provided.

In Table 3.6 the posterior means of each covariate included in the final model

chosen with SSSVS and individual probabilities of inclusion is shown. All other

covariates, including the interactions, have an estimated probability of inclusion

smaller than 50%, and therefore are omitted from the final model.

Model Parameters Posterior Mean Std. Err. Prob. Inclusion EM

Logistic intercept 1.82 0.112 - −0.80
TOTAL P 0.94 0.100 0.85 0.86

MIN T 1 −0.52 0.113 0.79 −0.24
MAX T 7 0.65 0.105 0.80 0.53

ALT 0.66 0.126 0.81 0.82

Regression intercept 2.88 0.013 - 2.98
TOTAL P 0.17 0.008 0.99 0.14

MIN T 1 −0.29 0.010 0.75 −0.34
MOISTURE −0.08 0.009 0.65 −0.09

ALT −0.65 0.012 0.98 −0.76
σ 0.93 0.003 - 0.66

π 0.03 0.005 95%CI : (0.000− 0.136) -

Table 3.6: Posterior mean, estimated standard error and probability of inclusion for each
covariate included in the final model after SSSVS; plus maximum likelihood estimates
obtained with EM algorithm for comparison.

Note that the parameter estimates should not be directly interpreted due to

collinearity. The correlation matrix between the covariates included in the final

model is reported in Table 3.7:

TOTAL P MAX T 7 MIN T 1 ALT MOISTURE

TOTAL P 1.00 -0.09 0.14 0.12 0.14
MAX T 7 -0.09 1.00 0.42 -0.90 0.42
MIN T 1 0.14 0.42 1.00 -0.57 1.00
ALT 0.12 -0.90 -0.57 1.00 -0.57
MOISTURE 0.14 0.42 1.00 -0.57 1.00

Table 3.7: Correlation between covariates used in the final model.

The estimates obtained with the proposed model are compared with the maxi-
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mum likelihood estimates obtained with an EM algorithm along the lines of Ward

et al. (2009), assuming a known prevalence of 3%. It can be seen from Table 3.6 that

final parameter estimates are comparable, especially with respect to the regression

part of the model. The logistic part of the frequentist model is dependent on the

assumptions related to the prevalence, which must be assumed known with the EM

approach. Note further that the variance estimated with the maximum likelihood

approach is slightly smaller than the posterior mean for the variance, and it has been

observed in the simulation study that EM with known prevalence tends in fact to

under estimate the variance of the continuous part of the model. Note finally that

the posterior summaries for the prevalence parameters are essentially equivalent to

the prior summaries, as the data contain very little information on prevalence.

The predictive performance of the Bayesian model is validated by building 1−α =

0.95 predictive intervals for the observed presences. Finally a prediction coverage

probability of 0.948 is obtained, so that it is possible to claim the model valid from a

predictive point of view. A strong prior sensitivity has not experienced, and results

equivalent for practical purposes have obtained by varying the prior assumptions in

a reasonable range.

In Figure 3.1 a map of the potential distribution of the abundance of Taxus

baccata built using GIS tools is shown. The predictions in Figure 3.1 minimize the

posterior expected loss.
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Figure 3.1: Potential distribution of the abundance of Taxus baccata. R2 = 0.18,

False Negative Rate=0

As an additional measure of goodness of fit the R2 and the False Negative Rate

(FNR) was calculated. These are equal to 0.18 and 0, respectively. The same

measures are calculated for the maximum likelihood estimates, and R2 = 0.20 and

FNR= 0.16 is obtained. For comparison the same measures have computed with

different distributions for the continuous component, obtaining similar results. It

seems like peaks of large abundance are not captured well by the model, with a

strong regression to the mean effect. Consequently distributions allowing for larger

skewness are trained, but these did not seem to fit the data well overall. The peaks

of abundance actually correspond to areas in which Taxus baccata was planted and

is currently nurtured and protected by human intervention, and it would not have

been so abundant otherwise. Then the R2 is not large due to the fact that important

covariates were not measured, rather than because of the log-normal distribution not

approximating well the data. However in this application the aim is not to obtain

a correct prediction of the actual abundance, but only of its potential distribution.

Recall finally that the log-normal distribution is validated by the prediction coverage

probability.

The estimated potential distribution in Figure 3.1 leads us to conclude that Taxus

is potentially situated at both a higher and lower altitude than expected. The first

behavior (higher altitudes) is likely due to a retreating process to areas less accessible

by livestock (for instance, cows). The second behavior (lower altitudes) has been

seen in areas with a high moisture index (e.g., close to lakes in the Northwestern and
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Southwestern Lazio), which makes the area more suitable for a presence of Taxus.

Further, Taxus is more likely to be common on the western Tyrrhenian side,

where the temperatures are higher (with respect to the eastern Adriatic side of the

area). The same reasoning applies to the regions of the area in the central part of

the map, which are facing South.

The focus is now on the locations corresponding to protected area (Special Pro-

tection Zone) ZPS12, in Monti Lepini, Lazio; established by European Community

directive 79/409/CEE. 363 locations corresponding to area ZPS12 and compatible

with a presence of Taxus are selected, and the posterior probability of observing a

presence (Pr(IV > 0)) and a moderately large abundance (Pr(IV > 2)) are consid-

ered. Descriptive statistics for these probabilities computed at the 363 locations of

special interest are reported in Table 3.8.

Min 1st Quartile Median Mean 3rd Quartile Max Std. Dev.

Pr(IV > 0) 0.86 0.93 0.95 0.94 0.96 0.98 0.02

Pr(IV > 2) 0.23 0.41 0.58 0.56 0.73 0.83 0.17

Table 3.8: Descriptive statistics for the 363 posterior estimated probabilities of a

positive and of a moderately large abundance in the Special Protection Zone ZPS12.

It can be argued that Taxus is very likely to be present in the entire area, but

only in few locations an high IV is expected. About one quarter of locations with

Pr(IV > 2) > 0.7 are estimated, indicating that these locations are highly suitable

for Taxus.

These results were used to select locations for conservation actions. In areas were

a high suitability for Taxus was predicted two projects aimed at the construction of

fences to protect its regeneration from livestock have recently started.



Chapter 4

Data Augmentation Approach in

Bayesian Modeling of

Presence-only Data

In this Chapter a second Bayesian model to estimate logistic linear regressions

adapted to presence-only data is proposed. This work is published as:

Divino, F., Golini, N., Jona Lasinio, G. and Penttinen A. (2011). Data Aug-

mentation Approach in Bayesian Modeling of Presence-only Data. Procedia

Environmental Sciences, 7, 38− 43.

Here a random approximation of the correction factor in the adjusted model

(4.3) allows to overcome the need to acquire strong information on the population

prevalence. The model is based on the assumption (not always adequate) that the

environmental covariates are the only determinants of species distributions.

4.1 Modeling method

Let Y be a binary random variable measuring the presence-absence of a given species,

such that y = 1 if the species is observed at location and y = 0 if not, and let the

ratio defined in (2.10):

γ̃1

γ̃0

=
ñ1u + np
nu − ñ1u

1− π
2π

.
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Let πu be the proportion of presences in Su. Because of the censoring effect acting

on Su, πu is not observable and it can be represented by a random quantity, i.e. the

random sample prevalence in Su:

π̃u =
ñ1u

nu
. (4.1)

Also, being Su a random sample from U , when Su reflects the composition of U or

when nu (the size of Su) tends to N (the size of U), πu tends to π and π̃u represents

an unbiased estimator of π.

Given (4.1), the ratio in (2.10) can be rewritten as follows

γ̃1

γ̃0

=
ñ1u + np
nu − ñ1u

1− π
2π

(4.2)

≈ ñ1u + np
nu − ñ1u

1− π̃u
2π̃u

=
ñ1u + np
nu − ñ1u

1− ñ1u

nu

2 ñ1u

nu

=
ñ1u + np
nu − ñ1u

nu−ñ1u

nu

2 ñ1u

nu

=
ñ1u + np

2ñ1u

.

Remark that in (4.2) the direct effect of the population prevalence vanishes and that,

calculated ñ1u, the ratio is identified. Then a Bayesian model can be defined and π̃u

can be introduced, indirectly, in a MCMC algorithm a step of data augmentation.

4.1.1 Observed Likelihood

As introduced in Chapter 3, to handle the presence-only model two approaches are

available. The first one is based on the observed likelihood defined on the naive

process Z, and the second one considers the complete likelihood, i.e. the joint

probability of the Y and Z processes.

The estimation procedure works for both approaches and then the Bayesian model

will be represented using either the observed or complete likelihood. Let start to

write the analytic expression of Pr(Y | s = 1,x) and Pr(Z | s = 1,x). Given the

ratio in (4.2), the likelihood functions are obtained following the same procedure

stated in Section 2.1.
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First the observed likelihood L(θ; z,X) is considered:

L(θ; z,X) =
∏
i∈S

Pr(Zi | si = 1,xi)

=
∏
i∈Su

Pr(zi = 0 | si = 1,xi)
∏
i∈Sp

Pr(zi = 1 | si = 1,xi)

where θ is a short-hand notation to denote the parameters at stake. The expression

of Pr(z = 1 | s = 1,x) is given in (3.2) according to the ratio in (4.2):

Pr(z = 1 | s = 1,x) = Pr(z = 1 | y = 1, s = 1,x) Pr(y = 1 | s = 1,x)

+ Pr(z = 1 | y = 0, s = 1,x) Pr(y = 0 | s = 1,x)

= Pr(z = 1 | y = 1, s = 1) Pr(y = 1 | s = 1,x)

+ Pr(z = 1 | y = 0, s = 1) Pr(y = 0 | s = 1,x)

because Z | Y,x ∼ Z | Y , and Pr(y = 1 | s = 1,x), according to the ratio in (4.2),

can be rewritten as

Pr(y = 1 | s = 1,x) =
2 exp

{
η(x) + ln

(
γ̃1
γ̃0

)}
1 + 2 exp

{
η(x) + ln

(
γ̃1
γ̃0

)} (4.3)

≈
2 ñ1u+np

2ñ1u
exp {η(x)}

1 + 2 ñ1u+np

2ñ1u
exp {η(x)}

=

(
1 + np

ñ1u

)
exp{xβ}

1 +
(

1 + np

ñ1u

)
exp{xβ}

.

Also, given the relation between Y and Z, showed in Table 2.2, it is straightforward

to derive the conditional probabilities Pr(Z | Y, s = 1):

z = 0 z = 1

y = 0 0 1

y = 1 ñ1u

ñ1

n1p

ñ1

Table 4.1: Conditional probabilities of Z | Y, s = 1.
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Hence, Pr(Z | s = 1,x) can be expressed as follows:

Pr(z = 1 | s = 1,x) = Pr(z = 1 | y = 1, s = 1) Pr(y = 1 | s = 1,x)

+ Pr(z = 1 | y = 0, s = 1) Pr(y = 0 | s = 1,x)

=
ñp
ñ1

Pr(y = 1 | s = 1,x) + 0

=
ñp
ñ1

2 exp
{
η(x) + ln

(
γ̃1
γ̃0

)}
1 + 2 exp

{
η(x) + ln

(
γ̃1
γ̃0

)}
≈ ñp

ñ1

2 ñ1u+np

2ñ1u
exp {η(x)}

1 + 2 ñ1u+np

2ñ1u
exp {η(x)}

=

np

ñ1u
exp{xβ}

1 +
(

1 + np

ñ1u

)
exp{xβ}

and

Pr(z = 0 | s = 1,x) = 1− Pr(z = 1 | s = 1,x)

≈ 1 + exp{xβ}

1 +
(

1 + np

ñ1u

)
exp{xβ}

.

Then, the observed likelihood L(θ; z,X) can be written as follows:

L(θ; z,X) =
∏
i∈S

Pr(Zi | si = 1,xi) (4.4)

=
∏
i∈Su

Pr(zi = 0 | si = 1,xi)
∏
i∈Sp

Pr(zi = 1 | si = 1,xi)

≈
∏
i∈Su

 1 + exp{xiβ}

1 +
(

1 + np

ñ1u

)
exp{xiβ}

∏
i∈Sp

 np

ñ1u
exp{xβi}

1 +
(

1 + np

ñ1u

)
exp{xβi}

 .

4.1.2 Complete Likelihood

As anticipated in the previous section, another approach to handle the presence-only

model is based on the complete likelihood L(θ;y, z,X), i.e. the joint probability of

the Y and Z processes:
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L(θ;y, z,X) =
∏
i∈S

Pr(Yi, Zi | si = 1,xi)

=
∏
i∈S

Pr(Zi | Yi, si = 1,xi) Pr(Yi | si = 1,xi)

=
∏
i∈S

Pr(Zi | Yi, si = 1) Pr(Yi | si = 1,xi)

=
∏
i∈Su

Pr(Zi | Yi, si = 1) Pr(Yi | si = 1,xi)

×
∏
i∈Sp

Pr(Zi | Yi, si = 1) Pr(Yi | si = 1,xi).

Then, given the conditional probabilities Pr(Z | Y, s = 1,x) defined in Table 4.1 and

given the Pr(Y | s = 1,x) in (4.3), the complete likelihood is obtained as follows:

L(θ;y, z,X) =
∏
i∈Su

Pr(Zi | Yi, si = 1) Pr(Yi | si = 1,xi) (4.5)

×
∏
i∈Sp

Pr(Zi | Yi, si = 1) Pr(Yi | si = 1,xi)

=
∏
i∈Su

{
[Pr(yi = 0 | si = 1,xi)]

1−yi

[
ñ1u

ñ1

Pr(yi = 1 | si = 1,xi)

]yi
}

×
∏
i∈Sp

{
n1p

ñ1

Pr(yi = 1 | si = 1,xi)

}

≈
∏
i∈Su


 1

1 +
(

1 + np

ñ1u

)
exp{xiβ}

1−yi
 ñ1u

ñ1

(
1 + np

ñ1u

)
exp{xiβ}

1 +
(

1 + np

ñ1u

)
exp{xiβ}

yi
×

∏
i∈Sp

n1p

ñ1

(
1 + np

ñ1u

)
exp{xiβ}

1 +
(

1 + np

ñ1u

)
exp{xiβ}


=

∏
i∈Su


 1

1 +
(

1 + np

ñ1u

)
exp{xiβ}

1−yi
 exp{xiβ}

1 +
(

1 + np

ñ1u

)
exp{xiβ}

yi


×
∏
i∈Sp


np

ñ1u
exp{xiβ}

1 +
(

1 + np

ñ1u

)
exp{xiβ}

 .
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4.2 Bayesian model

Let δ be a vector of hyperparameters with hyperprior p(δ). Conditioned on δ, the

regression parameters, βs, are Gaussian random variables. Given β and x, the

process Y is a set of independent Bernoulli random variables with probability of

occurrence πS(x) given in (4.3). At the lowest level of the hierarchy, the conditional

distribution of Z given Y can be easily derived from Table 4.1. Then, the hierarchical

Bayesian model is:

level 1. δ ∼ p(δ);

level 2. β | δ ∼ p(β | δ);

level 3. Y | s = 1,x ∼ Ber(πS(x));

level 4. Z | Y, s = 1 ∼ p(Z | Y, s = 1).

Given the prior distributions, the joint posterior distribution of θ can be derived

with respect to the complete likelihood or alternatively with respect to the observed

likelihood.

p(θ | y, z,x) ∝ L(θ;y, z,x)p(β | δ)p(δ)

or

p(θ | z,x) ∝ L(θ; z,x)p(β | δ)p(δ).
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4.3 MCMC algorithm

In the following scheme a MCMC computation that can be applied to the complete

and observed likelihood is shown.

Algorithm 3 Data Augmentation MCMC

Step 0: initialize δ,β,Y ;

Repeat:

Step 1: set n1u =
∑

i∈Su
yi;

Step 2: δ ∼ p(δ | y, z,β,X);

Step 3: β ∼ p(β | y, z, δ,X);

Step 4: yi ∼ p(Yi | Zi,β, δ, si = 1,xi)

At Step 0 let assign arbitrary values to δ,β and Y . In particular, to Yi is assigned

a realization of a Bernoulli distribution with probability of occurrence equal to 0.5

if the observation belongs to Su, while yi = 1 if the observation belongs to Sp.

After to have set or sampled values for Y , at Step 1 the number of presences in the

sample Su is obtained as sum of the Yi simulated at the previous iteration. Then

the ratio in (4.2) is identified and the proposed algorithm can be computed.

At Step 2 the hyperparameters are sampled from their conditional distributions.

At Step 3 the regression parameters (β) are sampled from the following conditional

probability:

p(β | y, z, δ;X) ∝ p(β)
exp {

∑n
i 1yi=1xiβ}

1 +
(

1 + np

ñ1u

)
exp {

∑n
i 1yi=1xiβ}

At Step 4 the unobserved Yi is simulated from its conditional distribution, if the

complete likelihood is used, or from its predictive distribution, if instead the observed

likelihood is considered.

The only requirement to perform the augmentation is that the covariates X are

available for each unit belonging to the population U .
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Note that an estimate of πu can be obtained as

π̂u =
n̄1u

nu

where n̄1u is the MCMC average of the simulations of n1u saved after the burn-in

period.

At computational level, the MCMC algorithm is simplified thanks as given Z,

the posterior distribution of Y does not depend on the censured case-control design.

This means that for each unit i ∈ Su, the unobserved Yi is simulated from a Bernoulli

distribution with probability of occurrence

π(xi) =
exp{η(xi)}

1 + exp{η(xi)}

where

η(xi) = xiβ.

This is because

p(Yi | Zi, si = 1,xi) ∼ Ber(π(xi)),∀i ∈ Su

and

p(Yi | Zi, si = 1,xi) ∼ Dirac(1), ∀i ∈ Sp.

This statement is henceforward proved:
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∀i ∈ Su

Pr(yi = 1 | Zi, si = 1,xi) = Pr(yi = 1 | zi = 0, si = 1,xi)

=
Pr(zi = 0 | yi = 1, si = 1,xi)Pr(yi = 1 | si = 1,xi)

Pr(zi = 0 | si = 1,xi)

=

ñ1u

ñ1

(
1+

ñp
ñ1u

)
exp{η(xi)}

1+
(
1+

ñp
ñ1u

)
exp{η(xi)}

1−
np

ñ1u
exp{η(xi)}

1+
(
1+

ñp
ñ1u

)
exp{η(xi)}

=

exp{η(xi)}
1+
(
1+

ñp
ñ1u

)
exp{η(xi)}

1+exp{η(xi)}
1+
(
1+

ñp
ñ1u

)
exp{η(xi)}

=
exp{η(xi)}

1 + exp{η(xi)}

and

Pr(yi = 0 | Zi, si = 1,xi) = 1− Pr(yi = 1 | zi = 0, si = 1,xi)

= 1− exp{η(xi)}
1 + exp{η(xi)}

=
1

1 + exp{η(xi)}
;

∀i ∈ Sp

Pr(yi = 1 | Zi, si = 1,xi) = Pr(yi = 1 | zi = 1, si = 1,xi)

=
Pr(zi = 1 | yi = 1, si = 1,xi) Pr(yi = 1 | si = 1,xi)

Pr(zi = 1 | si = 1,xi)

=
Pr(zi = 1 | yi = 1, si = 1,xi) Pr(yi = 1 | si = 1,xi)

Pr(zi = 1 | si = 1,xi)

=

np

ñ1

(
1+

ñp
ñ1u

)
exp{η(xi)}

1+
(
1+

ñp
ñ1u

)
exp{η(xi)}

np
ñ1u

exp{η(xi)}

1+
(
1+

ñp
ñ1u

)
exp{η(xi)}

= 1

and

Pr(yi = 0 | Zi, si = 1,xi) = 1− Pr(yi = 1 | zi = 0, si = 1,xi)

= 0.
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4.4 Simulation Study

In this section the performance of the proposed model is investigated on simulated

data.

A population of 10000 units on a regular grid 100×100 from the following model

is generated:

logitPr(y = 1 | X) = η(X)

η(X) = βX

where β = 3 and the covariate X is sampled from a Gaussian random field with

mean −2, variance 3 and range 15.

The resulting simulated data are reported in Figure 4.1:

Figure 4.1: Simulated data.

From this population 1000 samples of size n are drawn randomly selecting the 70%

of observed presences for Sp and pseudo-absences for Su in a rate 1 : 5. The preva-

lence of the population is equal to 0.044.

A Bayesian model, in the observed likelihood version, for two different situations is

fitted: with unknown π (M1) and assuming the population prevalence to be known

in the correction factor (M2). The second situation represents the benchmark of

the model proposed in this chapter and it can be considered the Bayesian version

of the model developed in Ward et al. (2009). Both models are fitted assuming the

standard Gaussian N (0, 100) as the prior for β. 20000 iterations are considered and

10000 are discarded as burn-in.
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In Table 4.2 the average Relative Root Mean Squared Error (RRMSE) of the param-

eter estimates of model M1 and M2 for n = 100 is reported. The mean of samples

prevalence in Su over the 1000 samples is 0.04435. Also, in Table 4.2 the predictive

performance of the models are compared. Misclassification Error (ME), sensibility

and specifity of predicted presence-absence data are summarized in same table:

n = 100 RRMSE of β̂ RRMSE of π̂u ME Sensitivity Specificity

M1 1.9185 0.4556 0.027 0.6023 0.9901

M2 0.2590 0.3818 0.027 0.6023 0.9902

Table 4.2: RRMSE of β̂ and π̂u. Misclassification Error, Sensitivity and Specificity

of the predicted presence-absence data. The results are averaged over 1000 samples

for each model.

For the proposed Bayesian method (M1) it can be seen that, as expected, the

RRMSE is large than one of M2. Instead, the appears to be no difference between

M1 and M2, in both cases the predicted values are very close to the observed values,

sensitivity is large and specificity is very large. The results related to the predictive

performance of the model (sensitivity and specificity) shown in Table 4.2 would be in

contrast to those obtained in Table 3.3. Remark that, despite of the simulation study

shown in Section 3.3, here the data are generated from a model with zero intercept.

In the pseudo-absence approach the intercept estimate is an issue because it is highly

correlated to the prevalence estimate (see Ward et al. (2009)). In simulation study

shown in Section 3.3 the intercept parameter is overestimated and then more 1s

than those observed are predicted (large sensitivity and small specificity).

In Figure 4.2 and 4.3 are reported the box plots of the parameter estimates of β

and π over 1000 random samples, respectively, for each model M1 and M2 and for

different values of n.
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M1:

M2:

Figure 4.2: β̂ estimated over 1000 random samples for each model.

M1:

M2:

Figure 4.3: π̂u estimated over 1000 random samples for each model.
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It is possible to note that when n increases the estimates of β and π become

closer to the true values of the parameters. Obviously, the parameter estimates with

respect M2 tend more quickly to the true value of parameters then ones obtained

by M1.

In Table 4.3 is reported the posterior mean and the 95% credibility interval for β

and the posterior mean for π for 3 samples of size 100 for each model. This samples

are chosen in order to show the performance of two models where particular samples

are drawn.

M1 M2

n = 100 πu β̂ 95%CI π̂u β̂ 95%CI π̂u

s1 0.0125 5.04 (3.25; 7.46) 0.017 3.86 (2.60; 5.78) 0.020

s2 0.0500 3.75 (2.22; 5.63) 0.042 3.39 (2.41; 4.78) 0.043

s3 0.1125 2.59 (1.25; 4.88) 0.100 2.70 (1.98; 3.63) 0.095

Table 4.3: Posterior mean and credibility interval for β and posterior mean for πu.

Note that when the sample prevalence observed in Su is similar to the true preva-

lence of the population (π = 0.044) the estimates of πu, π̂u, represents a good

approximation of π. Also, the estimates of β are closer to the true value of the

parameter.





Chapter 5

Spatial Bayesian Modeling of

Presence-only Data

Chapter 3 and 4 illustrate models based on the assumption that the observed en-

vironmental covariates are the only determinants of species distributions. This as-

sumption may not be adequate or sufficient to account for a species distribution.

Those models may fail to provide adequate predictive power or may underestimate

the degree of uncertainty of predictions. The methodology shown in this chapter

has been published in

Divino, F., Golini, N., Jona Lasinio, G. and Penttinen A. (2011). Spatial

Bayesian Modeling of Presence-only Data. Proceedings of the 17th EYSM,

Lisbon, Portugal, 2011.

Here a spatial extension of the model proposed in Chapter 4 is presented. It is

based on the assumption that the presence-absence data are spatially dependent or

autocorrelated, i.e. the degree of correlation among observations depends on their

relative locations. Spatial dependence in the data is incorporated into the regression

model through a spatially structured random effect.

5.1 Why a spatial model?

In ecology some processes (i.e. reproduction or dispersal) may affect the spatial

arrangement of species distributions causing spatial dependence (or spatial autocor-

relation) in species occurrences (or abundances), see Gaston (2003). Spatial depen-

dence leads to a dependence among locations that decays with distance: pairs of
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locations that are closer together often tend to have measures of species occurrences

(or abundances) more similar than pairs of locations that are farther apart. Also,

spatial autocorrelation invalidates the assumption of independence among sample

locations on which the traditional statistical models employed in distribution mod-

eling (i.e. regression models) are based. Then, using models that ignore spatial

dependence can lead to inaccurate parameters estimates and inadequate quantifica-

tion of uncertainty (Ver Hoef et al. (2001)). Yet, to ignore the spatial dependence

implies not consider additional information, such as the values at neighboring loca-

tions, that can help to improve the predictive power of the model (Wikle (2003)). In

Latimer et al. (2006) the authors affirm that “making distribution models spatially

explicit can be essential for accurately characterizing the environmental responde

species, predicting their probability of occurrence, and assessing uncertainty in the

model results”. These statements are also reasserted in Bahn et al. (2006), Dormann

et al. (2007) and Dormann (2007).

Since ecological data are spatial data, they contain information about both the

attribute of interest as well as its location. Following Cressie (1993), spatial data

can be categorized into three distinct types: “geostatistical or point-level data”,

“lattice or areal (regionally aggregated) data” or “point process data”. In this

chapter species occurrences are considered as areal data. In literature there are

two approaches to model binary areal data: logistic spatial generalized linear mixed

model and the autologistic model. Each approach is characterized by its modeling

of spatial dependence. The first, when a random effect is added, models dependence

indirectly, by way of a latent Gaussian Markov random field over the lattice of inter-

est (Banerjee et al. (2004)). The autologistic model, formulated by Besag in Besag

(1974), models dependence directly, through the so-called autocovariate, which is

a function of the observations themselves. It has since found may applications in

several fields, in particular ecology and epidemiology, see (Augustin et al. (1997),

Gumpertz et al. (1997), Huffer & Wu (1998), Hoeting et al. (2000), He et al. (2003),

Caragea & Kaiser (2009), Hughes et al. (2011). In this chapter the focus will be on

the logistic spatial generalized linear mixed model.

5.2 Gaussian Markov random field models

Let Λ be a regular lattice of N knots and u = (u1, . . . , uN)′ a real values Gaussian

Markov random field on Λ. Let u−i denote the vector u excluding ui. A possible way

to define a Gaussian Markov random filed (GMRF) is to specify it implicitly thought

the full conditionals {p(ui | ui)}. This approach was pioneered by Besag (1974)
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and Besag (1975). For each location i, ui is considered in term of its conditional

distribution given the remaining random variables, u−i:

ui | u−i ∼ N

(
µi −

∑
j:j∼i

cij(uj − µj),
1

κi

)
, i = 1, . . . , N (5.1)

where µi is the marginal mean of ui, κi > 0 is the precision parameter and cij

describes the effect of the neighborhood structure. The notation j ∼ i implies that i

and j are neighbors. Note that cij is non-zero only if i and j are neighbors. Being the

joint distribution of the Gaussian process, u, specified trough the set of conditional

distributions given in (5.1), some conditions on the parameters must be added to

ensure that the resulting joint distribution is “well” defined. Since the neighborhood

relationship (∼) is symmetric, the following requirement immediately is given:

if cij 6= 0 then cji 6= 0.

Let Q be the precision matrix of u. If Q is positive defined, i.e.,

Qii = κi, and Qij = κicij

and also symmetric, i.e.,

κicij = κjcji

then a valid joint distribution for u

u ∼ N (µ, Q−1) (5.2)

can be obtained by the set of conditional distributions given in (5.1), see Besag

(1974).

In order to avoid identifiability problems, it is often assumed a constant precision

parameter, i.e. κi = κ for all i. Hence, Q = κ(I + C) where C is an N ×N matrix

with zero diagonal entries and cij 6= 0 only when i ∼ j, i 6= j. Bayesian inference

for the linear GMRF model specified by (5.2) can therefore proceed after assuming

a prior distribution for κ.
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5.3 Spatial generalized linear models

Spatial generalized linear models (SGLMs) are linear models (McCullagh & Nelder

(1989)) for spatially associated data. In particular here the SGLMs model are refer-

eed to spatial generalized “mixed” models since the spatial dependence is introduced

by adding an error term modeled via a Gaussian Markov random field.

5.3.1 Spatial logistic model

Let Y be the random field of interest, where yi ∈ {0, 1} represents the observation

at the ith lattice point for i = 1, . . . , N . An SGLM for binary data may be specified

as follows

logitPr(y = 1 | x) = η(x) (5.3)

η(x) = xβ + u (5.4)

where η(·) is a linear regression function with a spatially structured random effect

u modeled via GMRF.

5.4 Modeling method

Given the ratio in (4.2) and according to the model specified in (5.3) and (5.4), the

adjusted case-control model can be expressed as follows:

logitPr(y = 1 | s = 1,x) = η(x) + ln

(
ñ1u + np
ñ1u

)
(5.5)

η(x) = xβ + u (5.6)

where, as in Section 5.3.1, η(·) is a linear regression function with a spatially struc-

tured random effect u modeled via GMRF. In this work an improper version of

GMRF, the so called “Intrinsic Gaussian Markov random field” (IGMRF) of first

order is considered (see Besag et al. (1991), Besag & Kooperberg (1995)). In par-

ticular here a zero mean IGMRF is used. Then u has joint distribution:

p(u) ∝ κ
N−1

2 exp{−u′Qu}, (5.7)
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where Q has off-diagonals entries equal to −κcij and ith diagonal element κ
∑

j cij.

Because Q is not of full rank, the distribution defined in (5.7) is improper. This

form is a very popular prior distribution for spatially structured random effects in

generalized linear models (Banerjee et al. (2004); Rue & Held (2005)) and it is used

in various applications, especially in disease mapping (see MacNab (2003), Paciorek

(2007), Wakefield (2007)). Generally GMRFs are a convenient models from both

a computational and theoretical point of view: they have the Markov property

and they are jointly Gaussian. The Markov property is also important for models

relying on inference based on MCMC sampling as it ensures rapid computation

of the conditional density. A first order zero mean IGMRF represents the easiest

and computational faster way to implement a GMRF. Also, the use of an intrinsic

GMRF is not an issue as long as the posterior is proper (a detailed discussion on the

conditions under which posterior property is guaranteed for various GMRF models

is given in Sun et al. (1999)). Yet, in ecological studies the use of an intrinsic GMRF

is justified from a conceptual point of view. This model reflects the idea that some

ecological processes may effect the spatial arrangement of the species distributions

causing spatial dependence in species occurrences, as discussed in Section 5.1. To

consider an intrinsic GMRF as model to describe u implies to affirm that the measure

of species occurrences at a location also will depend on the average of values at

neighboring locations.

When cij = 1 if j ∼ i and 0 otherwise, (5.7) simplifies to the “pairwise-difference

form”:

p(u) ∝ κ
N−1

2 exp

(
−κ

2

∑
i∼j

(ui − uj)2

)
, (5.8)

where i ∼ j denotes the set of all unordered pairs of neighbors. The requirement

for the pair to be unordered prevents from double counting as i ∼ j ⇔ j ∼ i.

Let ni denote the number of neighbors of location i. If cij = 1 when i and j are

neighbors and 0 otherwise, the precision matrix Q in (5.7) has elements

Qij = κ


ni, i = j;

−1, i ∼ j;

0, otherwise.

from which it follows an intuitive conditional specification:

ui | u−i, κ ∼ N
(∑

j:j∼i uj

ni
,

1

κni

)
. (5.9)
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Hence, the distribution of ui is normal with mean given by the average of its neigh-

bors and its variance decreases as the number of neighbors increases. This means

that the measure of species occurrences at location i also will depend on the average

of values at neighboring locations.

See Rue & Held (2005) for a discussion of the related theory of IGMRF models.

5.4.1 Observed and complete likelihood

The procedure to obtain the observed and complete likelihood is the same used

in Chapter 4. It is straightforward to prove that the observed likelihood can be

specified as

L(θ; z,X) =
∏
i∈S

Pr(Zi | si = 1,xi) (5.10)

=
∏
i∈Su

Pr(zi = 0 | si = 1,xi)
∏
i∈Sp

Pr(zi = 1 | si = 1,xi)

≈
∏
i∈Su

 1 + exp{xiβ + ui}

1 +
(

1 + np

ñ1u

)
exp{xiβ + ui}

∏
i∈Sp

 np

ñ1u
exp{xiβ + ui}

1 +
(

1 + np

ñ1u

)
exp{xiβ + ui}


while the complete likelihood as

L(θ;y, z,X) =
∏
i∈S

Pr(Zi | Yi, si = 1) Pr(Yi | si = 1,xi) (5.11)

=
∏
i∈Su

{
[Pr(yi = 0 | si = 1,xi)]

1−yi

[
ñ1u

ñ1

Pr(yi = 1 | si = 1,xi)

]yi
}

×
∏
i∈Sp

{
n1p

ñ1

Pr(yi = 1 | si = 1,xi)

}

≈
∏
i∈Su


 1

1 +
(

1 + np

ñ1u

)
exp{xiβ + ui}

1−yi
 exp{xiβ + ui}

1 +
(

1 + np

ñ1u

)
exp{xiβ + ui}

yi


×
∏
i∈Sp


np

ñ1u
exp{xiβ + ui}

1 +
(

1 + np

ñ1u

)
exp{xiβ + ui}


where θ is a short-hand notation to denote the parameters at stake.
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5.5 Bayesian model

Let δ be a vector of hyperparameters with hyperprior p(δ). Conditioned on δ, the

regression parameters, βs, are Gaussian random variables and the random effect u is

an intrinsic Gaussian Markov random field. Given β, u and the set of covariates X,

the process Y is a set of Bernoulli random variables with probability of occurrence

πc(x) defined in (5.5) and (5.6). At the lowest level of the hierarchical specification

of the model, the conditional distribution of Z given Y can be derived from the

relations between the two process described in Section 2.4.

Then, the hierarchical Bayesian model is given by:

level 1. δ ∼ p(δ);

level 2. β | δ ∼ p(β | δ) and u | δ ∼ IGMRF (δ);

level 3. Y | s = 1,x ∼ Ber(πc(x));

level 4. Z | Y, s = 1 ∼ p(Z | Y, s = 1).

Given the prior distributions, the joint posterior distribution of θ can be derived

only with respect to the complete likelihood:

p(θ | y, z,x) ∝ L(θ;y, z,x)p(β | δ)p(u | δ)p(δ).

Note, in fact, that the spatial structure of the random effect u is given by the

neighborhood system defined among all sites in the target population U .
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5.6 MCMC algorithm

In the following scheme the MCMC algorithm used to estimate the proposed model

is illustrated, it uses the complete likelihood specification given above.

Algorithm 4 Data Augmentation MCMC

Step 0: initialize δ,β,u,Y ;

Repeat:

Step 1: set n1u =
∑

i∈Su
yi;

Step 2: δ ∼ p(δ | y, z,β,u,X);

Step 3: β ∼ p(β | y, z,u, δ,X);

Step 4: u ∼ p(u | y, z,β, δ,X) over U ;

Step 5: yi ∼ p(Yi | Zi,β, ui, δ, si = 1,xi) over U .

At Step 0 let assign arbitrary values to δ,β, u and Y . In particular, to Yi is assigned

a realization of a Bernoulli distribution with probability of occurrence equal to 0.5

if the observation belongs to Su, while yi = 1 if the observation belongs to Sp. To

ui is assigned value 0 for each observation i ∈ U .

As in Chapter 3, after to have set or sampled values for Y , at Step 1 the number of

presences in the sample Su is obtained as sum of the Yi simulated at the previous

iteration. Then the ratio in (4.2) identified and the proposed algorithm can be

computed.

At Step 2 the hyperparameters are sampled from their conditional distributions.

At Step 3 the regression parameters (β) are sampled from the following conditional

probability:

Pr(β | y, z,u, δ,X) ∝ p(β)
exp {

∑n
i 1yi=1xiβ + ui}

1 +
(

1 + np

ñ1u

)
exp {

∑n
i 1yi=1xiβ + ui}

At Step 4 the spatially structured random effect u is simulated. For each location

i, ui is generated from the following conditional probability:
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Pr(ui | yi, zi,β,u−i, δ,x) ∝ p(ui | u−i, κ)
exp {

∑n
i 1yi=1xiβ + ui}

1 +
(

1 + np

ñ1u

)
exp {

∑n
i 1yi=1xiβ + ui}

At Step 5 the unobserved Yi is simulated from its conditional distribution.

At computational level, the MCMC algorithm is more complicated than one

proposed in Chapter 4. Remark that it is necessary to perform data augmentation

(Step 4 and Step 5) over the target population U for both u and Y processes in

order to consider the spatial structure of the sites enclosed in both samples Su and

Sp. The only requirement to perform the augmentation is that the covariates X are

available for each unit belonging to the population U .

Again, an estimate of πu is easily obtained as

π̂u =
n̄1u

nu

where n̄1u is the MCMC average of the simulations of n1u saved after the burn-in

period.

As discussed in Section 4.3, given Z the posterior distribution of Y does not

depend on the censured case-control design. But now, for each unit i ∈ Su, the un-

observed Yi is simulated from a Bernoulli distribution with probability of occurrence

πsp(xi) =
exp{η(xi)}

1 + exp{η(xi)}

where

η(xi) = xiβ + ui.

This is because

p(Yi | Zi, β, ui, δ, si = 1,xi) ∼ Ber(πsp(xi)),∀i ∈ Su

and

p(Yi | Zi, β, ui, δ, si = 1,xi) ∼ Dirac(1),∀i ∈ Sp.

The above statements are straightforward to prove, see Section 4.3.
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5.7 Simulation Study

In this section preliminary results from a small simulation study are reported, with

the aim to investigate the performance of the proposed model in a very simple

situation.

A population of 10000 units on a regular 100×100 grid from the following model

is generated from a spatial logistic model with linear regression function

logitPr(y = 1 | X) = η(X)

η(X) = βX + U

where β = −1, the covariate X is generated from a mixture of two Gaussian com-

ponents with standard deviation σ1 = σ2 = 0.5 and mean µ1 = −2 and µ2 = 2,

U is a first order zero mean IGMRF with precision κ = 1 as defined in (5.8). The

prevalence of the generated population, π, is equal to 0.2720.

The resulting simulated data are reported in Figure 5.1:

Figure 5.1: Simulated data.

From the Figure 5.1 it is possible to note that the generated data (Y ) are not

strongly spatial dependent.

Let Su be the pseudo-absence sample that coincides to U with zi = 0, ∀i ∈ U , such

that nu = 10000. Also, let Sp be the sample of presences of size np = 1904 obtained

by randomly selecting the 70% of true presences from the original population. Hence

at each iteration of the algorithm the complete sample will have size n = 11904.

Note that the sample prevalence of Su for each of the 1000 samples is an unbiased
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estimator of the prevalence of the target population, πu = π = 0.2720.

A Bayesian model for three different situations is fitted: spatial model with unknown

π (M1) proposed in this Chapter, spatial model assuming the population prevalence

to be known in the correction factor (M2), non-spatial model proposed in Chapter

4 with unknown prevalence (M3). Remark that the model M2 can be considered as

the spatial Bayesian version of the model developed in Ward et al. (2009).

The three models are fitted with the same prior settings: standard GaussianN (0, 100)

as the prior for β, first order zero mean intrinsic Gaussian Markov random field

with precision κ as defined in (5.8) as prior for u and a Gamma distribution

G(0.0001, 0.0001) as prior for κ. In literature a Gamma distribution with mean

1 and large (or infinite) variance as prior for the precision parameter represents a

standard choice, see Best et al. (1999), Spiegelhalter et al. (2003), Gelfand et al.

(2005), Latimer et al. (2006). 20000 iterations are considered and 10000 are dis-

carded as burn-in. In Table 5.1 the average Relative Root Mean Squared Error

(RRMSE) of the parameter estimates of model M1 and M2 for 1000 samples is

reported. RRMSE is calculated as ratio of Root Mean Squared Error (RMSE) to

true parameter value. Also, the predictive performance of the models are compared.

Misclassification Error (ME), sensibility and specifity of predicted presence-absence

data are summarized in the same table:

RRMSE of β̂ RRMSE of π̂u ME Sensitivity Specificity

M1 0.2201 0.2327 0.1925 0.3301 0.9859

M2 0.7322 0.5920 0.1925 0.3301 0.9859

M3 0.1675 0.1065 0.1925 0.3301 0.9859

Table 5.1: RRMSE of β̂ and π̂u. Misclassification Error, Sensitivity and Specificity

of the predicted presence-absence. The results are averaged over 1000 samples for

each model.

For the model M2 it can be seen that the RRMSE of the parameter estimates is

larger than one of M1 and M3. The “best” model in terms of point estimates

accuracy is M3 followed by M1. Instead, the appears to be no difference between

M1, M2 and M3: in all three cases the predicted values are close to the observed

values, sensitivity is enough large and specificity is very large.
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In Figure 5.2 is reported the box plots of the parameter estimates of β and π

over 1000 random samples, respectively, for each model M1, M2 and M3.

β̂:

π̂u:

Figure 5.2: β̂ estimated over 1000 random samples for each model.

It is possible to note that for the model M1 some estimates of β and π become

closer to the true values of the parameters.

5.8 Discussion

Several other simulation studies have been performed with the aim to give heuristic

guidelines whereby the spatial model would be the best choice in order to predict

species distributions. This model would be more adequate than the “independence”

model when strong a priori information on the spatial interaction parameter is avail-

able, when the latent spatial structure of the phenomenon is known from other stud-

ies, when the data generating model includes strongly spatially structured covariates

and the estimation model uses an appropriate Gaussian field to model the spatial

dependence in the species occurrences.



Conclusions and Further

Developments

The present work has involved mainly the study and development of presence-only

data models in a Bayesian framework. Among many approaches to the modeling of

species distribution with presence-only data that can be found in the ecological lit-

erature, the pseudo-absence approach, although it raises some conceptual concerns

(see Section 1.3), has been chosen in the present research. The main issue that has

to be addressed in this approach relates to the need to know a priori the population

prevalence in order to implement logistic-type models for the study on populations

distribution. Here three models, trying to address the above mentioned problem,

have been developed.

In Chapter 3 a first Bayesian model allowing to partially overcome the need to know

a priori the prevalence of the population (π) is presented. The model can be used

in situations where π is known with some uncertainty. In the proposed model π has

been considered as a parameter of the model and the strength of knowledge about

it has been summarized by an informative prior distribution elicited by experts.

The model is based on the assumption that the pseudo-absence sample is randomly

drawn from the entire study area and that the observed environmental covariates

are the only determinants of species distribution.

In Chapter 4 a second Bayesian model allowing to overcome the need to acquire

strong information on π is developed. Although here π is not added as a parameter

to the model, it can be indirectly estimated in the proposed MCMC algorithm. Also

this model is based on the assumption that the pseudo-absence sample is randomly

drawn from the entire study area and that the observed environmental covariates

are the only determinants of species distribution. In the applications the accuracy

of the parameter estimates (and, indirectly, of the prevalence) and the predictive

power are related with the significance of available environmental covariates. It

could be interesting in future to apply the model to rare species and improve it

using auxiliaries data: presence-only data for common species. Frequently, in eco-

logical survey the collected data are common and rare species which are related
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with habitat selection and do not belong essentially to the same family. Then, given

the natural relationship between the common and rare species, is usual to observe

that in the locations where the rare species is present also the presence of common

species is recorded. The contrary is not true. Hence, conditional on the distribution

of presence-only data of the common species, the rare species data can be consid-

ered presence-absence data. Then, a simple logistic model can be used to model

the potential distribution of the rare species. Furthermore, this model can be easily

extended to abundance data.

The models illustrated in Chapter 3 and 4, based on the idea that the observed

environmental covariates are the only determinants of species distribution, may fail

to provide accurate parameter estimates and adequate predictive power or may un-

derestimate the degree of uncertainty of predictions when species occurrences are

spatially dependent. Then in Chapter 5 a spatial extension of the model proposed

in Chapter 4 has been reported. The model is based on the assumption that the

presence-absence data are spatially dependent, i.e. the degree of correlation among

the observations depends on their relative locations. Simulation examples return in-

teresting results suggesting heuristic guidelines whereby the spatial model would be

the best choice in order to predict species distributions. The identifiability problems

related to a not zero intercept should be investigated. A possible solution could be

to consider the value of the intercept at each iteration of the MCMC algorithm as

a constrained residual from the fitting of the logistic model estimated at the previ-

ous step. Yet, it could be interesting to compare the proposed spatial model with

the one proposed in Chakraborty et al. (2011), where the presence-only data are

viewed as a point pattern, by means of a simulation study. Note that in Warton &

Shepherd (2010) the authors have demonstrated that the pseudo-absence approach

is equivalent to the point process approach when a large number of pseudo-absences

regularly spaced or uniformly located at random over the study area is taken.

Remark that in each proposed models the attention has been restricted to linear

models for both the conditional probability that the response is positive (logistic

model) and for the response conditionally on it being positive (regression model).

Other more flexible choices for the logistic and regression model could be used (e.g.,

generalized additive models, non-parametric function and others).
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