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Summary

Background and Motivations

Owing to its unique physical properties, rubber plays a keyrole in countless industrial appli-
cations. Tires, vibration absorbers and shoe soles are only but a few of the myriad uses of
natural and synthetic rubber in an industry which in 2009 had an estimated market value of
2 billion euro.

Despite a peculiar internal structure, the macroscopic behavior of filled-rubber is reminis-
cent of several biological soft tissues. While rubber is internally constituted by flexible long
chain molecules that intertwine with each other, a similar role is played, in soft-tissues, by
collagen fiber bundles. As a consequence, both classes of materials are able to sustain large
strains and exhibit the characteristics of a viscous fluid and an elastic solid.

In industry, the requirement to model complex geometrical structures made of materials
exhibiting a nonlinear constitutive behavior is a compelling reason to use Finite Element
Analysis (FEA) software. The predictive capabilities of these numerical tools strongly rely
upon the capabilities of the underlying model to describe the material’s rheological properties.
The possibility of simulating accurately the material behavior over the entire working range
avoids the use of excessive number of prototypes, thereby reducing the need for expensive and
difficult experimental tests; consequently, development costs can be drastically reduced.

The theory of viscoelasticity is crucial in describing materials, such as filled rubber, which
exhibit time dependent stress-strain behavior. In many engineering applications, such as the
estimate of the rolling resistance of tires and hysteretic losses in soft biological tissues, the
energy dissipation is a primary feature to be predicted (Fig. 1). In addition, in the usual
operative range, tires, shock absorbers and other rubber components bear finite dynamic
deformations. Therefore, a reliable constitutive equation must be assessed within the theory
of nonlinear viscoelasticity.

A review of the literature revealed significantly more well-established studies dealing with
hyperelastic constitutive models, than those dealing with finite viscoelasticity.

Over the years, many hyperelastic models able to describe all the relevant aspects of
the quasi-static response have been introduced. Furthermore, the American norms (ASTM
D412, ASTM D575, ASTM D945, ASTM D6147, ASTM D1456) establish all the experimental
techniques to identify the material constitutive parameters. In this context, many authors
have recently addressed the problem of finite amplitude wave propagation or focused their
interest upon particular boundary value problems.

On the other hand, there is a lack of well-established nonlinear viscoelastic models capable
of describing all the relevant effects in the material response. Moreover, a standardization sim-
ilar to that concerning the static norms is yet to be achieved. The usual methodology provides
for small harmonic deformations superimposed on a large static displacement. However, such
a prescription does not allow the capture of many of the relevant nonlinear phenomena. In the
literature, experimental evidence concerning finite dynamic deformations is rarely reported.
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Figure 1 The energy dissipation is a primary feature to be predicted in many engineering applications such

as the estimate of the rolling resistance of tires and hysteretic losses in biological tissues and the

design of vibration absorbers.

Outline

In this work, the behavior of carbon black-filled rubber is thoroughly analyzed with the inten-
tion of developing a constitutive model able to reproduce both static and dynamic material
responses. However, due to the similarities between rubber and biological tissues, most of the
results presented can be applied in a wider context.

The objectives of this thesis can be summarized as follows:

• to define ad-hoc experimental procedures for the evaluation of viscoelastic constitutive
parameters;

• to formulate a constitutive model able to predict hysteresis losses at finite strain and
low frequencies;

• to solve the numerical problems related to the identification of viscoelastic constitutive
parameters.

Several nonlinear viscoelastic models have been examined thoroughly and for each of them
advantages and disadvantages are highlighted.

A series of experiments concerning both static and dynamic tests were performed aimed
at measuring all the relevant nonlinear effects. Temperature and strain rate dependencies
were investigated and discussed. The standard methodology was applied to perform both
tensile and compressive quasi-static tests. Some shortcomings of this procedure, resulting
in a unreliable stress-strain constitutive curve around the undeformed configuration, were
identified. This lead to the design of a non-standard cylindrical specimen able to bear both
tensile and compressive loadings. Consequently, the influence of the shape factor was removed
and the same boundary conditions, in tension and compression, was applied. This allowed
the stiffness around the undeformed configuration to be evaluated in detail.

The quasi-static experimental results also allowed the influence of the Mullins effect on
the quasi-static response to be investigated: during the loading cycles, there is a significant
reduction in the stress at a given level of strain, which is a consequence of the internal material
rearrangement, i.e., the Mullins effect. This damage phenomenon is sometimes reported to
induce transverse isotropy in the material, which is usually assumed to be isotropic. The
results of the experiments have clarified this issue.
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To measure the dynamic properties of the rubber compound, creep, relaxation and cyclic
tests at different strain rates were performed. While relaxation and creep experiments incor-
porate the long-term material response, the stress arising from loading/unloading cycles at
different strain-rates involves the shortest characteristic times, thus the highest characteristic
frequencies. This methodology allows the accurate reproduction of the actual material opera-
tive range. In addition, the incorporation of creep tests into loading/unloading cycles proved
to be the most effective methodology to evaluate nonlinear viscoelastic parameters.

Finally, to allow a comparison with the literature results, the usual harmonic testing
procedure was also applied.

Thereafter, all the constitutive equations under consideration have been analyzed thor-
oughly in terms of their capabilities of describing the collated experimental data.

The material coefficients were initially identified by a procedure which relies on the sep-
arate identification of the “instantaneous” (elastic) term and of the “dissipative” (inelastic)
part. By means of high strain rate loading path, the elastic moduli of the material were
identified. Thereafter, relaxation and oscillatory data was used to obtain the characteristic
times and the dissipative moduli. It has been proved that, to guarantee the well-conditioning
of the resulting least-squares problem, i.e., to avoid relevant numerical error, relaxation tests
should be applied for the viscoelastic kernel identification rather than the standard oscillatory
tests. However, the results of this procedure were unsatisfactory for some of the models.

To overcome these limitations, a joint identification of the elastic and dissipative terms
was introduced. A common choice to deal with the numerical difficulties, related to the tran-
scendental dependence of the constitutive function upon the characteristic times, is to fix
them a-priori, e.g., one or two per decades of the experimental time range. This choice, while
often used by many authors, laed to unsatisfactory results when dealing with filled rubber. As
a matter of fact, it does not account for the well-known property of carbon black-filled elas-
tomers of having characteristic times very close to each other. As a consequence, an enhanced
iterative scheme, which actually allows a more accurate estimate of the characteristic times
clusters, has been introduced. Moreover, this iterative scheme deals with the requirement of
keeping the number of constitutive parameters to a minimum in order to avoid non-uniqueness
of their determination and to provide a clear physical interpretation for each of them.

The resulting identification problem requires the minimization of a nonlinear functional,
which was solved numerically. The penchant of local optimization algorithms to become
trapped in local minima on such landscapes required the adoption of a non-local optimization
strategy based on a Pattern search algorithm.

Although all the models under consideration were able to reproduce the relaxation or the
cyclic test, they failed to extrapolate the material behavior under different kinds of defor-
mation. Furthermore, they encounter difficulties in the prediction of the dynamic response
especially at low frequencies and low strain rates. This should be considered an important
drawback as the frequencies up to 10-15 Hz are often the most significant in many applications,
e.g., rolling tire at 100 km/h or human heart rate.

The extension of the definition of dynamic moduli to the nonlinear case provided new
insights into the dynamic response of a broad class of constitutive equations. In view of
the novel definition, it has been possible to prove that every nonlinear viscoelastic equation
cannot account for the linear frequency dependence of the storage modulus observed at low
frequencies. Therefore, a one-dimensional constitutive model, based on hysteretic damping
and formulated in the frequency domain, has been proposed. The corresponding time-domain
representation of the model required the introduction of the Hilbert transform.
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Original Contributions

The main original contributions to the existing literature could be summarized as follows.

• New experimental evidence concerning the deformation of filled rubber at finite strain
and finite strain rate.

• New experimental evidence concerning the transverse isotropy induced by the Mullins
effect.

• A critical analysis of the literature proposals for nonlinear viscoelastic models.

• A study of the numerical conditioning of the minimization problem resulting from the
identification of nonlinear viscoelastic constitutive equations.

• A novel iterative identification technique, which has allowed the characteristic times of
the material to be evaluated more accurately.

• An experimental/numerical comparison of the different nonlinear viscoelastic models
through the proposed identification technique.

• The extension of the definition of dynamic moduli to the nonlinear case.

• The proof of the incapability of most literature proposals to describe the dynamic moduli
at low frequencies.

• A one-dimensional constitutive model based on hysteretic damping able to fit the dy-
namic behavior of filled rubber at low frequencies.

Further Developments

Having considered all the outlined results, the following points are still under development.

• The extension of the one-dimensional model proposed to the three-dimensional case.

• The introduction of a constitutive equation in the time domain, able to reproduce the
low frequency behavior of the dynamic moduli.

• The introduction of transversely isotropic and anisotropic nonlinear viscoelastic consti-
tutive models.

• Experimental procedures to identify the anisotropic viscoelastic models.

Fiber reinforced polymer, collagen fiber bundles, and human ligaments are materials which,
nowadays, play a significant role in numerous engineering applications. All of them display
strong anisotropic response due to fiber orientation. While the constitutive theory of isotropic
materials has reached a certain level of completion, substantial effort must be made to de-
velop viscoelastic models for anisotropic materials at finite strain and to place them within a
consistent thermodynamic framework.

Further complications arise from the identification of these anisotropic nonlinear viscoelas-
tic models, since a number of independent quasi-static and dynamic tests are necessary to
identify separately the material coefficients. Very often, these experiments are difficult to
perform, particularly for in vivo soft-tissues. Therefore, the problem of identifying correctly
the material parameters is still a challenging engineering task.

Finally, finite element multiscale codes are increasingly used to simulate complex biological
tissues and rubber structures. In view of the significant computational effort required by
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the simulation of an entire human organ or a vehicle tire, the computational efficiency of
these numerical tools must a primary requirement. Parallel computing techniques should be
considered and new parallel algorithms based on GPU computing investigated.

Structure of the Thesis

• Chapter 1. The behavior of carbon black filled-rubber in relation to quasi-static and
dynamic responses is examined in detail. New insights regarding the material behavior
are provided by examining the results from the performed experiments.

• Chapter 2. The main aspects of the nonlinear theory of elasticity are discussed.

• Chapter 3. The main approaches followed to model nonlinear viscoelastic solids during
isothermal deformation are thoroughly described. Some of the most common integral
models are reviewed and advantages and disadvantages of each are highlighted. The
concept of dynamic moduli, introduced in linear viscoelasticity and referred to as storage
and loss moduli, is extended, in a consistent manner, to the nonlinear case. Finally, a
one-dimensional model based on hysteretic damping is introduced.

• Chapter 4. The standard identification procedure of the material parameters for a
nonlinear viscoelastic (NLV) constitutive equation is analyzed in view of the collated
experimental results. The main feature of this approach are evaluated by considering
Fung’s constitutive model. Thereafter, a joint identification of the elastic and of the
dissipative term is introduced.

• Chapter 5. The behavior of isotropic, almost-incompressible, nonlinear elastic and
viscoelastic materials is simulated by means of the ABAQUS FEA code. Simple de-
formations are considered and the numerical results are compared with the analytical
solutions. Finally, shortcomings of the ABAQUS finite viscoelasticity model are high-
lighted and discussed.
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Chapter 1

Rubber Phenomenology

Chapter Outline. In this chapter the behavior of carbon black-filled rubber in relation to quasi-static and
dynamic responses is examined in detail. In particular, the main features of the micro-structure of the material
and their influence on the macro-mechanical response are highlighted. The effects of strain, strain-rate and
temperature on the constitutive response are discussed. New insights regarding the material phenomenological
behavior are provided by examining the results of the experiments carried out in this work. Mullins and Payne
effects, which are peculiar in the behavior of filled elastomers, are reviewed and new results are shown.
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1.1 Material Description

Owing to its unique physical properties, rubber plays a keyrole in countless industrial appli-
cations. Tires, vibration absorbers and shoe soles are only but a few of the myriad uses of
rubber in an industry which in 2009 had an estimated market value of two billion euro.

The term rubber is actually misleading: it is used both to indicate the material, technically
referred to as natural rubber, and the broad class of synthetic elastomers which share with
natural rubber some fundamental chemical properties. Indeed, the majority of rubber used
for industrial applications are synthetically produced and derived from petroleum 1.

Rubber, or elastomer, has an internal structure which consists of flexible, long chain
molecules that intertwine with each other and continually change contour due to thermal
agitation. Elastomers are polymers with long chains (Ferry, 1980). The morphology of an
elastomer can be described in terms of convolution, curls and kinks. Convolutions represent
the long-range contour of an entire molecular chain, which forms entanglements (knots). Curls
are shorter range molecular contours that develop between entanglements and crosslinks,
and kinks are molecular bonds within a curl. Each molecular bond has rotational freedom
that allows the direction of the chain molecule to change at every bond. Thus the entire
molecular chain can twist, spiral and tangle with itself or with adjacent chains. This basic
morphology is shared among all the fifty thousand compounds used in the market today
and generically referred to by the term rubber. Despite this intricate internal structure, the
random orientation of the molecular chains results in a material which is externally isotropic
and homogeneous.

Prior of using, the neat elastomer is subjected to physical/chemical treatments to enhance
its mechanical properties. One of these treatments consists of the addition, through heating, of
sulfur-based curatives which create crosslinks among the macromolecules chains; this process
is commonly called vulcanization (see, e.g., Callister, 2007).

Figure 1.1 highlights the different behavior of a vulcanized and a non-vulcanized rub-
ber specimen subjected to a tensile loading. Initially, both of the elastomers have a similar
intertwined internal structure. When stretched, the macromolecules of the non-vulcanized
compound disentangle themselves according to the direction of the applied force. This mi-
crostructural change results in a more ordered internal state with a subsequent reduction in
entropy. Thereafter, the macro-brownian motions of the macromolecules cause the chains to
slide back, one onto each other, to the disordered state. Finally, once the external load is
removed (step d in the figure), each macromolecule maintains its state of maximum entropy.
Therefore, the initial overall shape is not recovered: all the energy externally supplied to
stretch the specimen is dissipated by the viscous friction among the macromolecules.

A different microstructural response occur during the deformation of the vulcanized spec-
imen. Indeed, when subjected to an external traction, the molecular chains dispose parallel
to the macro-displacement and, because of the crosslinks introduced

by the vulcanization, they cannot slide back to the initial disordered state. By removing
the external loading, the system tends towards the initial state of maximum entropy and
the specimen recover the initial length. In this case, the external supplied energy is totally
recovered.

The behavior of a real elastomer slightly differs from this simplified description. Indeed,
even if the elastomer is vulcanized, the macromolecules can partially slide one onto each other
with a dissipation of the mechanical energy.

At the end of the vulcanization process for some specific applications, such as in tires,
reinforcing filler, usually carbon black, is added to the compound. This carbon based curative

1The uncontrolled growth of the petroleum price in 2008 has forced many producers to substitute partially

the synthetically produced compounds with natural rubber.
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initial
state

a b c d

e f g h

stretched stretched final
state

Figure 1.1 Effects of stretching on a non-vulcanized (above) and a vulcanized (below) elastomer.

lends to the material the black color typical of tires.

The tensile strength of rubber increases with increasing filler content up to a certain level.
Beyond this level, the tensile strength decreases with higher filler concentrations. Goldberg
et al. (1989) suggested that this is because high amounts of carbon black fillers cause the
carbon black to agglomerate into large clusters and these clusters impart flaws that can easily
create cracks and lead to a catastrophic failure. The quantity of filler present in the elastomer
is measured in phr, parts per hundred by weight of elastomer; the concentration at which
maximum tensile strength is obtained, varies with the type of carbon black. For carbon
black fillers with smaller particle size, the maximum tensile strength is attained at lower
concentrations than those for large particle sized carbon black fillers.

The resulting mechanical characteristics such as strength, tear and abrasion resistance,
along with stiffness, considerably increase with respect to the neat elastomer. The addition
of filler contributes also to alter greatly the viscous behavior and temperature dependence.
For example, unfilled elastomers exhibit a linear viscoelastic behavior for shear strains up to
20 % or more, while a carbon black-filled elastomer shows a pronounced nonlinear behavior
at shear strains as low as 0.5 % (Chazeau et al., 2000).

In the next section the standard phenomenology of carbon black-filled rubber will be pre-
sented and the influence on the constitutive response of temperature and filler concentration
will be discussed. Although the focus is on traditional vulcanized rubber, other thermoplas-
tic elastomers show similar mechanical properties even if their chemical composition is quite
different. Moreover, from a macroscopic point of view, the behavior of such materials is very
close to the behavior of some biological soft tissues, such as ligaments and tendons, for what
concerns both their static and dynamic responses.
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Figure 1.2 Experimental data on carbon black-reinforced styrene butadiene rubber for tensile (circle) and pure

shear (square) tests (Drozdov, 2007). The ratio of the tangent stiffness around the undeformed

configuration, i.e., nominal strain equal to 1, is approximately equal to 3.

1.2 Standard Phenomenology

1.2.1 Quasi-static

The behavior of carbon black-filled elastomers can be primarily described as hyperelastic:
under static or quasi-static loading dissipative effects are negligible.

There have been numerous experimental studies addressing the response of rubber un-
der quasi-static loading conditions, including uniaxial tension/compression, shear, equibiaxial
tension (Drozdov & Dorfmann, 2003; Laraba-Abbes et al., 2003; Przybylo & Arruda, 1998;
Treloar, 2005). In all these experimental conditions, the resulting constitutive curves are
strongly nonlinear. However, constitutive nonlinearities coupled with heterogeneous strain
field could lead to experimental results which are very difficult to analyze1. Thus, displace-
ment fields leading to homogeneous deformation should be opted for. A typical example is
the equibiaxial (two-dimensional) extension test which is preferred to the equivalent uniaxial
compression, because the difficulties related to the bulging of the specimen under compressive
loading are avoided (Treloar, 2005).

The typical stress-strain constitutive curves of a carbon black-filled elastomer are shown
in Fig. 1.2 (Drozdov, 2007). The material is subjected to uniaxial tension/compression, and
pure shear. In the typical working range (0.8 ≤ λ ≤ 2.0) the constitutive nonlinearities are
evident; indeed, as the breaking point is approached, the material stiffness rapidly increases so
that the slope of the experimental curves begins to rise. As a consequence of the intertwining
internal structure, during compression, high levels of loading force are suddenly reached, i.e.,
the material is much stiffer with a non-symmetric behavior between tensile and compressive
stresses.

From Fig. 1.2, it is evident that the shear modulusG around the undeformed configuration,
1In recent years the use of digital image correlation techniques to evaluate heterogeneous strain fields

has spread rapidly (see, e.g., Chevalier et al., 2001; Sasso et al., 2008). However, for technical reasons, these

techniques are limited to experiments involving very low strain rate.



6 Chapter 1. Rubber Phenomenology

�
� � �

�
�

�

�

�

�

�

�

�

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.000

0.002

0.004

0.006

0.008

0.010

Λ

D
V

�
V

0

Figure 1.3 Volume dilatation for a rubber specimen undergoing a uniaxial tensile experiment (results provided

by Reichert et al., 1987). The volume change remains limited over a wide strain range.

i.e., nominal strain equal to 1, has a lower value compared to the Young modulus E in tensile
experiments. The ratio E/G is approximately equal to 3, which corresponds to a Poisson
function in the undeformed configuration equal to ν = 0.5, meaning that the material is
incompressible.

The incompressibility of carbon black-filled rubber has been confirmed by a number of
different researchers over the years (Bischoff et al., 2001; MacKnight, 1966; Ogden, 1976; Penn,
1970; Reichert et al., 1987). Experiments by Reichert et al. (1987) in Fig. 1.3 show a limited
volume variation (∆V/V0 u 0.01) at large strain (λ u 4) corroborating the incompressibility
constraint introduced in many constitutive equations (see also Mott & Roland, 2010; Mott
et al., 2008; Voinovich, 2010).

The effects upon the quasi-static response of an increasing quantity of reinforcing filler have
been studied and results have been provided in (Yeoh & Fleming, 1997) for pure shear tests
(see Fig. 1.4). The addition of carbon black produces higher value of the initial stiffness (i.e.,
tangent modulus around the undeformed configuration) with respect to the neat elastomer,
while it makes the compound more sensitive to temperature variations. Indeed, the same
qualitative behavior has been reported whatever the loading conditions.

The influence of the temperature on the stress-strain curve is shown in Fig. 1.5. At very
low temperatures, the polymer will behave like glass and exhibit a high modulus. As the
temperature is increased, the polymer will undergo a transition from a hard “glassy” state to
a soft “rubbery” state in which the modulus can be several orders of magnitude lower than
it was in the glassy state. The transition from glassy to rubbery behavior is continuous and
the transition zone is often referred to as the leathery zone. The onset temperature of the
transition zone, moving from glassy to rubbery, is known as the glass transition temperature,
or Tg.

The stiffness reduction produced by the temperature is strongly affected by the amount of
filler. Results in Fig. 1.6 by Chanliau-Blanot et al. (1989) show that a compound with filler
content of 45 phr has a percentage variation of the stiffness with the temperature higher than
a compound with 0 phr of filler.

The majority of rubber compounds currently used in industry have a glass transition
temperature Tg much less than 0 ℃. Hence, within the common operative range the material
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Figure 1.4 Results of shear tests on rubber specimens with an increasing filler concentration (Yeoh & Fleming,

1997). The initial material stiffness shows a monotonic growth for higher value of filler content in

the range φ ∈ {0.5, 1.0, 1.5, 2.0} phr.

behaves as elastic and the effects due to a glassy state are avoided.

1.2.2 Dynamic

The material behavior above-described refers to the quasi-static response. However, elas-
tomers subjected to real world loading conditions possess fluid-like characteristics typical of
a viscoelastic material. When loaded by means of a stepwise strain, they stress-relax, i.e., the
reaction force resulting from the application of an initial peak falls to an asymptotic value,
which is theoretically reached after an infinite time (see the experiments by Khan et al., 2006,
shown in Fig. 4.8). Moreover, if an external force is suddenly applied, creep is observed and
the strain begins to change slowly towards a limiting value.

Both these phenomena are caused by the complex geometrical entanglements between
chains, which produce a local enhancement of the residual (Van der Walls) force. Under
prolonged loading, such “entanglement-cohesion” will slowly breakdown, giving rise to the
phenomena of stress-relaxation and creep described above (Treloar, 2005). For shorter times
of stressing, these effects are limited and the elastic contribution is predominant.

This behavior provides evidences of the fading memory property of the material. There-
fore, the entire strain (and temperature) history must affect the constitutive behavior of filled
rubber elastomers. While the strain-rate sensitivity and the failure time dependency are rec-
ognized and well-documented in the case of other materials such metals, the incorporation of
history-dependent properties of elastomers requires further clarification.

A frequently employed characterization of elastomers is achieved through sinusoidal strain
histories of frequency ω. This type of material characterization is frequently referred to as dy-
namic meaning that it implicates moving parts, differing from methods leading to quasi-static
response. Therefore, in this context, the adjective “dynamic” is not reserved to phenomena
involving inertia (e.g., wave propagation) which can be neglected in most of the experimental
conditions.

Under the action of dynamic loading, the deformation of rubber, like other viscoelas-
tic solids, occurs with a certain delay owing to viscous friction inside the material. Under
harmonic deformation, this delay manifests itself by a phase shift between the applied dis-
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2006).

placement and the load (Boiko et al., 2010). This shift is proportional to the viscous losses.
In order to explain thoroughly elastomers behavior under oscillatory deformation, let

u(t) = u0 + ∆u sin(ωt) (1.1)

be the longitudinal displacement in an uniaxial deformation from which the nonlinear La-
grangian strain follows as

ε(t) = ε0 + ∆ε1 sin(ωt) (1.2)

obtained by dividing u by the length l0 of the undeformed specimen. The imposed strain
function (1.2) implies, in the nonlinear case, the time-dependent nominal stress response σ(t),
i.e., force applied to the specimen divided by the initial area, whose steady state response is
assumed to have the Fourier series

σ(t) =
b0
2

+
∞∑
k=1

[ak sin(kωt) + bk cos(kωt)] . (1.3)

Here,

S(ε0, ω,∆ε1) :=
1

∆ε1
a1(ε0, ω,∆ε1), (1.4)

L(ε0, ω,∆ε1) :=
1

∆ε1
b1(ε0, ω,∆ε1) (1.5)

are the storage and loss moduli, also generically referred to as complex moduli. In general,
neither S nor L depend on ∆ε1, if | ∆ε1 | is small (small strain). On the contrary, the
aforementioned moduli for carbon black-reinforced rubber show a rather strong dependence
on ∆ε1 in the case | ∆ε1 | is large. This nonlinear amplitude dependence is called the Payne
effect (see Sec. 1.3).

The storage and loss moduli frequency dependence bears no special name, but it is of
fundamental importance to understand the dynamic behavior of elastomers.

Figure 1.8 outlines the dynamic moduli as function of the frequency ω for different values of
static prestrain ε0 (Lee & Kim, 2001). At lower frequencies (ω → 0) the storage modulus tends
to a finite nonzero value with a nonzero derivative. As it will be shown in a following chapter,
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Figure 1.8 Storage S and loss L moduli as functions of the frequency ω in the range ω ∈ [0, 1200] Hz for

different values of static prestrain ε0 ∈ {0.65, 0.75, 0.95}. The amplitude value was ∆ε1 = 0.63 for

all the experiments (Lee & Kim, 2001).

this behavior cannot be described by (linear or nonlinear) standard viscoelastic constitutive
equations. The data collated by Lee & Kim (2001) suggest a non-monotonic dependence of
the storage modulus upon the static prestrain ε0: from ε0 = 0.65 to ε0 = 0.75, the storage
modulus S considerably decreases, but it increases again at ε0 = 0.95. A similar, but less
accentuated, trend is shown by the loss modulus. Experiments collated in (Gottenberg &
Christensen, 1972; Osanaiye, 1996) and more recently in (Luo et al., 2010) are in agreement
with Lee & Kim’s results.

As in the static case, the dynamic behavior of elastomers also exhibits a very strong
temperature dependence. This effect is much more pronounced than in the comparable types
of tests conducted upon metals, where the mechanical properties could reasonably be taken
as temperature independent within the common working range.

A standard assumption made in the modeling of filled elastomers, which can be corrobo-
rated by experimental data, is the so-called thermorehologically simple behavior. Within this
context, the basic postulate is that a viscoelastic mechanical property - relaxation function,
creep function or complex moduli - at a series of different temperatures, when plotted against
the logarithm of time or frequency can be superimposed to form a single curve (Pipkin, 1986;
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Figure 1.9 Storage S and loss L moduli plotted against logarithmic frequency (log10 f) for six different

temperatures T ∈ {−7, 5, 16, 26, 38, 49} ℃ (Gottenberg & Christensen, 1972). The same results

are shown in a linear frequency scale in Fig. 1.10.
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Figure 1.10 Storage S and loss L moduli plotted against frequency in the range f ∈ [0, 15] Hz for six different

temperatures T ∈ {−7, 5, 16, 26, 38, 49} ℃ (Gottenberg & Christensen, 1972).
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Figure 1.12 Pre-conditioning cycles of a particle-reinforced dumbbell specimen with 20 phr (left) and 60 phr

(right) of carbon black with maximum stretch λ := `/`0 = 3 (Dorfmann & Ogden, 2004).

Williams et al., 1955), shifting the various curves at different temperatures along the time
or frequency axis. Such a temperature dependence is schematically shown in Fig. 1.9 for
the storage S and loss L moduli. Similar temperature dependence is shown for the relaxation
function in Fig. 1.11 (Christensen, 2003). Materials obeying this empirical principle are called
thermorehological simple. Even for thermorehological simple materials such a procedure can
be expected to be valid only over a limited time and temperature range, primarily above the
glass transition temperature (see, e.g., Singh et al., 2006).

1.3 Other Nonlinear Effects

Apart from the standard phenomenology described in the previous section, carbon black-
filled elastomers present some effects peculiar of this class of materials. These effects are the
Mullins effect, which concerns the quasi-static behavior, and the Payne effect, dealing with
the dynamic response.

1.3.1 Mullins effect

The Mullins effect (Mullins, 1947) is a strain induced softening phenomenon, which is as-
sociated mainly with a significant reduction in the stress at a given level of strain during
the unloading path as compared with the stress on initial loading in stress-strain cyclic tests
(Dorfmann & Ogden, 2003).

In filled rubber this phenomenon is due to the mechanical hysteresis from filler particles
debonding from each other or from the polymer chains caused by the stretching. Owing to this,
highly reinforced elastomers suffer a more pronounced stiffness reduction than those with low
filler content. After the first few loading/unloading cycles the internal microstructure reaches
a permanent state and changes in stiffness become no more significant. Figure 1.12 represents
typical loading/unloading curves for a rubber specimen subjected to multiple cycles of uniaxial
stretching (Dorfmann & Ogden, 2004). Although this anelastic effect is irreversible for a fixed
temperature, an increase in the temperature of the specimen could result in a partial recovery
of the previously broken bonds and, consequently, on a recovery of the material stiffness.
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For the sake of completeness, in the following the main approaches used to describe the
Mullins effect will be reviewed (see, e.g. Ouyang, 2006; Vakada, 2005, and references therein).

The first attempt to develop a quantitative theory to account for the softening resulting
from rubber stretching was developed by Blanchard & Parkinson (1952). They considered
that value of the shear modulus G is a measure of the total number of cross-links within
rubber and a reflection of the chemical cross-links produced within vulcanization as well as
linkages between rubber and filler. They suggested that the decrease in G was due to the
breakdown of linkages between filler and rubber. Their interpretation has provided a useful
starting point for the work of other researchers.

One of the other early investigations was done by Mullins & Tobin (1957) who considered
the filled rubber as a heterogeneous system comprising hard and soft phases. The hard phase
was considered to be inextensible and the soft phase to have the characteristics of gum rubber.
During deformation, hard regions are broken down and transformed into soft regions. Then
the fraction of the soft region becomes greater with the increasing tension which in turn is
responsible for the reduced material stiffness. However, Mullins & Tobin did not provide a
direct physical interpretation for their model.

More recently, new insights into Mullin’s effect have been obtained and many researchers
proposed their own constitutive model (Dorfmann & Ogden, 2004; Govindjee & Simo, 1992;
Horgan et al., 2004; Ogden & Roxburgh, 1999; Qi & Boyce, 2004).

In Govindjee & Simo (1992) a micromechanically based continuum damage model for
carbon-black filled elastomers was introduced. The keypoint of the paper was to incorporate
both a damage induced phenomenon such as Mullin’s effect and the viscous behavior of a
theory of viscoelasticity. Within the framework of damage elasticity, relaxation processes in
the material are described via stress-like convected internal variables, governed by dissipative
evolution equations (see Chap. 3); they are interpreted as the nonequilibrium interaction
stresses between the polymer chains in the network.

Ogden & Roxburgh (1999) proposed to account for the Mullins effect with a phenomeno-
logical model based on the theory of incompressible isotropic elasticity amended by the incor-
poration of a single continuous damage parameter. The dissipation is measured by a damage
function which depends only on the damage parameter and on the point of the primary loading
path from which unloading begins. A specific form of this function with two adjustable ma-
terial constants, coupled with standard forms of the (incompressible, isotropic) strain-energy
function, was used to illustrate the qualitative features of the Mullins effect in both simple
tension and pure shear. However any effects of residual strain were not incorporated.

Dorfmann & Ogden (2004) introduced a constitutive model for the Mullins effect with
permanent set in particle-reinforced rubber. The theory of pseudoelasticity has been used
for this model, the basis of which is the inclusion of two variables in the energy function in
order to capture separately the stress softening and residual strain effects. The dissipation of
energy i.e. the difference between the energy input during loading and the energy returned
on unloading is also accounted for in the model by the use of a dissipation function, which
evolves with deformation history.

A phenomenological model based on the limiting chain extensibility associated with the
Gent model of rubber elasticity has been proposed by Horgan et al. (2004). The Gent strain
energy function (Gent, 1996) was modified to incorporate stress softening characteristics typ-
ical of the Mullins effect. Although the Gent model is phenomenological in nature, a micro-
scopically based interpretation was given to all of its constitutive parameters. In this way,
it has been possible to develop a model for the Mullins effect based on the alteration of the
polymeric network. Indeed they showed that their approach is a particular case of the more
general framework of pseudo-elasticity developed in (Ogden & Roxburgh, 1999).
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Figure 1.13 Strain dependence of the storage and loss moduli (Payne effect) at 70 ℃ and 10 Hz for a rubber

compound with different concentration of carbon black filler (Wang, 1999). The graphs suggest a

monotonic dependence of the dynamic moduli on the filler content in the range φ ∈ [0, 70] phr.

The Payne effect becomes unnoticeable for low reinforced elastomers (φ ∈ {0, 10} phr).

1.3.2 Payne effect

Another softening phenomena which manifests the dependence of the stress upon the entire
history of deformation is the so-called Payne effect. Like the Mullins effect, this is a softening
phenomena but it concerns the behavior of carbon black-filled rubber subjected to oscillatory
displacement. Indeed, the dynamic part of the stress response presents a rather strong non-
linear amplitude dependence, which is actually the Payne effect (Chazeau et al., 2000; Huber
et al., 1996; Payne, 1962).

For a dynamic strain arising from a harmonic displacement (1.1), the storage and loss
moduli depends nonlinearly upon the strain amplitude ∆ε1 as shown in Fig. 1.13 for a strain
amplitude in the range ∆ε ∈ [0.1, 0.6] and a frequency f = 2π/ω = 10 Hz.

There have been several attempts to explain the Payne effect by macroscale mechanism
based models. Chazeau et al. (2000) classify them as (i) filler-structure models, (ii) matrix
filler bonding and debonding models and (iii) phenomenological or nonlinear network models.
They also state: “Payne himself suggested qualitatively that the amplitude dependence of the
storage and loss moduli were due to a filler network in which the filler contacts depended on
the strain amplitude. At lower amplitudes, he argued that the filler contacts are largely intact
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and contribute to the high value of the modulus [moduli, the author]. Conversely, at higher
amplitudes the filler structure has broken down and does not have time to reform”. Therefore,
Payne’s explanation is of class (ii).

Following the work of Payne, Kraus (1984) proposed an empirical model based on the
agglomeration/deagglomeration kinetics of filler aggregates, assuming a Van der Waals type
interaction between the particles. In a paper addressing universal properties in the dynamic
deformation of filled rubbers, Huber et al. (1996) introduced the rheological model of Zener
with a nonlinear and linear spring and a dashpot to corroborate the phenomenologically based
formula

G′ −G′∞
G′0 −G′∞

=
1

1 + (∆ε1/ac)2m
, (1.6)

where G′ is the storage modulus, G′∞ its value at very large strain and G′0 the corresponding
value at very small strain. Moreover, ac is a constant and m u 0.6 is nearly universal, i.e.
to a large extent independent of temperature, frequency, filler content and type of carbon.
Whilst Huber et al. (1996) call (1.6) a theoretical result, it is still based on a rheological model.
Chazeau et al. (2000) stress this effect in their paper, and so it qualifies no, or no much, better
than the phenomenological approach of continuum mechanicians (see Lion & Kardelky, 2004,
for references) who postulate nonlinear stress strain behavior. In those approaches the matrix-
filler bonding and debonding is formulated considering the dependence upon the entire stress
history with the debonding modeled by the appropriate irreversibility properties.

In 1999 Wang (Wang, 1999) investigated the impact of the filler network, both its strength
and architecture on the dynamic modulus and hysteresis during dynamic strain. It was found
that the filler network can substantially increase the effective volume of the filler due to rubber
trapped in the agglomerates, leading to high elastic modulus. During the cyclic strain, while
the stable filler network can reduce the hysteresis of the filled rubber, the breakdown and
reformation of the filler network would cause an additional energy dissipation resulting in
the higher hysteresis. The experiments, shown in Fig. 1.13, were done at strain amplitudes
∆ε1 ∈ [0.1, 60] % with a frequency of 10 Hz under a constant temperature of 70℃. The results
show that the dependence of the storage and loss moduli upon ∆ε1 is strongly influenced by the
quantity of carbon black filler used in the compound, vanishing for low reinforced elastomers.
Therefore, higher hysteresis at low temperature and low hysteresis at high temperature could
be achieved by depressing filler network formation.

Even though the Payne effect has been known for more than 40 years, a model able to
describe such a phenomenon in the relevant frequency and amplitude range is still missing 1.

1.4 Experimental Techniques

1.4.1 Testing Procedures

The constitutive nonlinearities of carbon black-filled elastomers must be treated warily by any
experimenter in his exploration of the material properties. Indeed, nonlinearities coupled with
non-uniform strain fields could lead to experimental results very difficult to analyze because
the strain nonuniformities can easily mask the actual nonlinear behavior of the material
(Beatty, 1996). Moreover, the ability of filled rubber to undergo finite strains is a compelling
reason to characterize the material through displacement fields for which the relation between
stress components and the position vector is known at any point of the body.

1Recently Höfer & Lion (2009) have proposed a new model which seems able to describe the Payne effect;

their constitutive relationship is based on Volterra-type fading memory scalar internal variables, but they need

a lot of them to obtain a convincing match of the storage and loss moduli with the experiments.
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Among the solutions of the balance equation, every deformation, in equilibrium with zero
body force and supported by suitable surface traction alone, is called a controllable solution.
A universal solution, or universal relation, is a controllable solution valid for all the materials
in a given class (Ericksen, 1954; Pucci & Saccomandi, 1997; Saccomandi, 2001).

Among universal solutions, homogeneous strain are the preferred way to test the behavior
of nonlinear homogeneous isotropic materials (Beatty & Hayes, 1992a). Since the strain field
is uniform, conducting and measuring displacement and forces are equivalent to control and
measure strains and stresses (Haupt, 2002).

In solid mechanics the testing procedures usually rely upon tension/compression, torsion
and shear experiments.

Thin specimens with a constant cross-section are the preferred way to test the material
behavior under tensile loadings. Indeed, a homogeneous uniaxial state of stress prevails in
the central thin shaft. Thick cylinders are commonly employed either for compressive loading
or torsion testing. In the first case, barrel deformation of the lateral mantle is avoided by
a proper lubrication of the platelets, while torsion test can be interpreted in terms of a
universal relation. A torsion test carried out on a cylindrical tube produces a homogeneous
shear stress distribution if the wall is thin enough. Shear of a short cylindrical specimen
results in a homogeneous strain field, as far as the height-to-diameter ratio remains limited
and the bulging of the lateral surface can be ignored.

Non-uniform strain field could also be used (Beatty & Hayes, 1992b). However, two
different situations could occur: nonhomogeneities of the deformation field are ignored and
the stress field is interpreted as homogeneous (Przybylo & Arruda, 1998), while combined
mechanical-optical techniques are used to decouple constitutive nonlinearities and strain in-
homogeneities (Chevalier et al., 2001; Sasso et al., 2008). The first solution could lead to
an approximation error which could become relevant depending upon the testing conditions.
The latter requires hard data processing and its applicability is limited to low strain rate
processes.

1.4.2 Specimen Geometry

The material properties inferred from an experiment can be strongly influenced by the speci-
men geometry. Therefore, a lot of care should be taken to ensure that strain fields within the
specimen reflect the ideal homogeneous deformation state. Owing to this, the study of new
specimens and clamps is an active research area (Castellucci et al., 2008; Rittel et al., 2002;
Zhao et al., 2009).

In Tables 1.1 and 1.2 several specimens commonly employed to characterize the stress-
strain properties of filled rubber are reviewed. These include: cylindrical specimen for com-
pression / tension (e.g., Bergström & Boyce, 1998; Lion, 1998), dumbbell (e.g., Drozdov &
Dorfmann, 2003; Kar & Bhowmick, 1997; Yoshida et al., 2004), rubber strip (e.g., Przybylo
& Arruda, 1998; Ramorino et al., 2003), cylindrical (or rectangular) double shear specimen
(e.g., Chazeau et al., 2000; Dorfmann et al., 2002) and compression tension hourglass (e.g.,
Haupt & Sedlan, 2001). In particular, Tab. 1.1 shows those specimen actually employed
for the material characterization carried out in this work, while Tab. 1.2 presents some new
literature proposals.

A Dumbbell specimen is represented in Tab. 1.1a. Its typical dog-bone shape is stan-
dardized together with molding techniques and dimensions in the ASTM D412 norm (ASTM,
1998, 2003). The proper size of the specimen depends upon the load cell equipped in the
testing machine. The enlarged boundaries are intended to increase the contact area between
the holders and the material, allowing a wider range of strains to be imposed. Moreover, this
particular shape contributes to the prevention of the onset of a fracture near the clamps where
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the maximum stress is located. Even if a heterogeneous strain field is present, the deformation
could reasonably be assumed as homogeneous in the middle of the shaft. Therefore, while
the displacement is exerted controlling the distance between the clamps, the deformation is
monitored in the central region. External measurement equipments such as strain-gauges,
extensometers or fast cameras are commonly employed.

All these devices can accurately measure displacement fields arising from low strain rate
processes. At higher frequencies, however, the additional inertia due to strain gauges and
extensometers can overcome the inertia of the specimen resulting in incorrect measurements.
Moreover, fast cameras produce a large amount of data, which is difficult to handle and
analyze.

Because of these limitations, dumbbell specimens are rarely used for high frequency testing,
while thin rubber strips (tension) or thick cylindrical specimens (compression) are preferred1.
In both cases, the deformation is assumed as proportional to the distance between the platelets
by neglecting nonhomogeneities of the deformation field.

The length of the rubber strips used in dynamic tests is chosen according to the physical
dimensions of the DMA load cell (Dynamic Mechanical Analyzer). Based on this, very small
specimens are also used (e.g., L = 2 mm and H = 2 cm), requiring very careful handling of the
interfaces between the specimen and the load device. Pressure controlled holders can avoid
slipping, but for technical reasons, they are rarely used in testing machines. An alternative
solution could be gluing the specimen into the clamps.

Cylindrical shaped specimens are commonly employed for compression experiments. Dur-
ing the test, the displacement is exerted controlling the distance between the platelets. If the
plates are accurately lubricated, the bulging of the lateral surface is avoided and the nonho-
mogeneities of the strain field can be considered negligible. To this end temperature inert
silicon or graphite based lubricants are commonly employed.

Dimensions and shapes of cylindrical specimens are standardized in the ASTM D575
norm (ASTM, 2003). Indeed, the diameter-to-height ratio is limited by the occurrence of
buckling instabilities. In particular, by considering a hinged-hinged isotropic homogeneous
beam subjected to a compressive load, the critical value of the stretch λc can be calculated in
terms of the beam shape factor (Fig. 1.14). Based on this, a tall cylindrical specimen, with
H = 54 mm and diameter D = 18 mm, was engineered. Our intention was to use a unique
specimen for both compressive and tensile loads avoiding any effects due to the different
shape factors and clamping conditions. Although the chosen height-to-diameter ratio results
in λc = 0.7, to safely avoid any buckling instabilities, the deformation was limited to λ = 0.8.
A knife extensometer was used to monitor the strain in the central shaft, while the edges were
glued to the plates for the transmission of the tensile force. An epoxy adhesive, capable of
resisting high temperatures, allowed us to reach tensile stresses of the order of 10 MPa.

The results of these tension/compression tests will be discussed in the next section.

1.5 Experimental Evidences

The experiments presented in this section were conducted by the author at the Bridgestone
Technical Center Europe s.p.a. in Rome and at Dipartimento di Ingegneria Chimica e Mate-
riali di Sapienza Universitá di Roma. The material tested was a carbon black-filled rubber.
Three different compounds were used: a weakly, a medium and a heavily reinforced com-
pound, which are indicated, respectively, as A, B and C in the following. Further details on

1At higher frequencies, specimen geometry and clamping conditions become critical and different set-up

are used (ASTM, 2003; Lakes, 2004).
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Table 1.1 Schematic representation of the rubber specimens used in this work.

Shape Remarks

(a) L

W

T

clamp

Test: Tension. Shape, size and

molding techniques are standardized

in the ASTM D412 norm (ASTM,

2003). Dimensions: W = 7 mm,

L = 30 mm, T = 2 mm.

(b)

D

H lubricant

Test: Compression. Dimensions:

H = 25 mm, D = 19 mm (ASTM

D575 norm, ASTM, 2003). Bound-

ary Conditions: platelets lubricated

with graphite.

(c)

D

H

glue

Test: Tension-Compression. Di-

mensions: H = 54 mm,

D = 19 mm. Boundary Con-

ditions: specimen glued to the

platelets.

(d)
L

W

T

clamp

Test: Tension. Dimensions:

L = 50 mm, W = 5 mm.

Boundary Conditions: in absence

of pressure controlled clamps, the

specimen could be glued to the grips

to avoid slipping at the interface.
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Table 1.2 Schematic representation of specimens used in the literature for elastomers testing.

Shape Remarks

(a)

D

H

specimen fixtures

glue

Test: Tension - Compression -

Torsion. Typical dimensions:

H = 20 mm, D = 30 mm.

Boundary Conditions: the specimen

is molded directly into the grips

(see, e.g., Haupt & Sedlan, 2001).

(b)

H

H

D

fixed

fixed

Test: (double) Shear. Typical

dimensions: H = 2.5 mm,

D = 19 mm. For low strain,

the state of deformation can be rea-

sonably interpreted as a pure shear

state (see, e.g., Castellucci et al.,

2008).

(c)

W

T
H

Test: Shear. Typical dimensions:

H = 2 mm, W = 12 mm,

T = 2 mm. The specimen can sus-

tain larger strain than the standard

double shear specimen. Moreover,

this test does not necessitate of any

special holders (see, e.g., Zhao et al.,

2009).
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Figure 1.14 Height-to-diameter ratio, H/D, as function of the critical strain λc.
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Figure 1.15 Stretch (λ := `/`0) plotted against time for the preconditioning cycles to account for the Mullins

effect. The experiment was monitored exerting a displacement with a constant strain rate leading

to a constant velocity of the crossing bar of 50 mm/min.

the chemical composition and the specific content and type of carbon black-filler unfortunately
can not be given as they are not known to the author.

Both static and dynamic tests were performed. Static tests were conducted with a
Zwick/Roell z010 machine with cylindrical and dumbbell specimens; for dynamic tests a
GABO Eplexor 500N testing machine for tension and an MTS 825 Elastomer Testing System
for compression were used.

1.5.1 Specimen Preconditioning

To eliminate the influence of the Mullins effect, before any experiments, all samples were
subjected to a cyclic strain.

For dumbbell specimen, the preconditioning cycles were monitored by exerting a dis-
placement from the undeformed configuration (λ = 1) up to the strain λ = 1.5. The
loading-unloading path was repeated seven times with a constant strain rate corresponding
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Figure 1.16 Nominal stress plotted against stretch (λ) for the preconditioning cycles performed on a dumbbell

specimen. The inset shows the left-drift of the first three cycles of the constitutive curve which

is actually a manifestation of the Mullins effect. The sixth an seventh repetitions overlap.
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Figure 1.17 Nominal stress plotted against stretch (λ) for the preconditioning cycles performed on a rubber

strip (only the loading paths are shown). The stiffness reduction caused by the Mullins effect is

evident.
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90 mm

clamp
3 mm

60 mm

Figure 1.18 Rubber pad used to investigate the transverse isotropy induced by the Mullins effect. 6 different

specimens, 3 in the direction of the displacement, 3 in the orthogonal direction, were cut after

the preconditioning procedure.

to a velocity of the crossing bar of 50 mm/min (Figs. 1.15 and 1.16). The number of repeti-
tions was established by observing that after seven deformation cycles, the material reached
a permanent state and the Mullins effect is no longer significant. This behavior was observed
for all the compounds.

The softening phenomenon manifestation of the Mullins effect is due to the change in the
microstructure caused by deformation. This internal “damage” could induce a preferred direc-
tion resulting in a different material symmetry with respect to the neat elastomer (Dorfmann
& Ogden, 2004; Horgan et al., 2004).

In order to provide new insights into this phenomenon, a thin pad of rubber with dimen-
sions W = 60 mm, L = 90 mm and T = 3 mm was subjected to an uniaxial displacement
leading to the strain shown in Fig. 1.15. Thereafter, six specimens were cut, three in the
direction of the displacement (Specimen V in Fig. 1.18) and three in the orthogonal direction
(Specimen H). If the transverse isotropy induced by the Mullins effect were relevant, the two
classes of specimens would have different preferred directions, thus different uniaxial behavior.

However, experiments in Fig. 1.19 show that the stress-strain curves of the vertical and
horizontal preconditioned specimens are sufficiently close to one another. Moreover, after the
first few loading/unloading cycles the differences between the experimental curves become
negligible.

In view of these results, the microstructural changes caused by the preconditioning can be
ignored and the material can be assumed reasonably as isotropic.

In the following, all the results have been obtained with preconditioned specimens.

1.5.2 Quasi-static

The quasi-static tests were conducted with a Zwick/Roell z010 for both tensile and compres-
sive loads.

A dumbbell specimen (Tab. 1.1a) with size L = 30 mm, W = 7 mm and T = 2 mm,
clamped at the upper and lower ends for the transmission of the tensile force was used. The
experiment was monitored by exerting a displacement with a static load corresponding to ten-
sion up to the stretch λ = 1.5. The corresponding strain was obtained from the displacement
measured in the thin shaft of the specimen, through a contact extensometer equipped with
knife edges.
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Figure 1.19 Nominal stress plotted against stretch (λ) in the range λ ∈ [1.0, 1.5] for the horizontally H and

vertically V prestretched specimens. After few loading-unloading cycles the two curves overlap.
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Figure 1.20 Nominal stress plotted against stretch in the range λ ∈ [1.0, 1.5]. The experiment was repeated

for three different temperatures T ∈ {25, 45, 65} ℃. The velocity of the crossbar for the force

transmission was 10 mm/min.

For the compression tests, cylindrical specimens with diameter-to-height ratioD/H = 0.76
(Tab. 1.1b) were used. The top and bottom surfaces of the cylinder were lubricated with
graphite to guarantee uniform lateral displacement over the height and, consequently, avoid
bulging of the mantle surface. Central transfer of the load was very accurate so that bending
and torsional deformations, if present, were negligible. Both tension and compression tests
were repeated for three temperatures in the range T ∈ {25, 45, 65} ℃ and three velocities of
the crossbar v ∈ {10, 30, 50} mm/min. To ensure the homogeneity of the temperature field
inside the sample, each specimen was kept at a constant temperature for one hour. Moreover,
after this heating process, the preconditioning procedure was repeated to take account of the
rebonded physical cross-links, responsible for the Mullins effect, caused by the temperature
increase.

The tensile and compressive stress-strain constitutive curves are shown in Figs. 1.20 -
1.23. Strain rate effects on the material stiffness are very limited and the loading curves
almost overlap (Figs. 1.22 and 1.23). Moreover, as seen in Figs. 1.20 and 1.21, the changes in
the compound stiffness for a temperature range of 25 ℃ - 65 ℃ are negligible.

All the results up to this point, have dealt with quasi-static compression and tension tests.
They have revealed a very different material response to tensile and compressive loads. In
particular, at lower strains, the stress-strain curve shows an inflection point and, consequently,
a change of the tangent stiffness around the undeformed configuration (Figs. 1.22 - 1.23 and
1.20 - 1.21). This behavior could be interpreted in terms of the different micromechanical
phenomena undergoing compression, e.g., macromolecules entanglement grows, and tension,
e.g., macromolecular chains disentangle themselves. However, for very low strain, a much
smoother change of the stiffness has been reported (Mott & Roland, 1995, 1996; Roland et al.,
1999). Therefore, the reliability of the measurements in the initial region of the constitutive
curves can be questioned, e.g., a non accurate transmission of the load may result in an
overestimate of the initial stiffness.

To investigate thoroughly this point, a tall cylindrical specimen with sizes and shape
reported in Tab. 1.1c was molded. This non-standard specimen was used for both tensile and
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Figure 1.21 Nominal stress plotted against stretch in the range λ ∈ [0.4, 1.0] for a cylindrical specimen. The

experiment was repeated for three different temperatures T ∈ {25, 45, 65} ℃. The velocity of the

crossbar for the force transmission was 10 mm/min.
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Figure 1.22 Nominal stress plotted against stretch in the range λ ∈ [1.0, 1.5]. The experiment was repeated

for three velocities of the crossbar v ∈ {10, 30, 50} mm/min. The temperature was held constant

at 25 ℃.
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Figure 1.23 Nominal stress plotted against stretch in the range λ ∈ [0.6, 1.0] for cylindrical specimen. The

experiment was repeated for three velocities of the crossing bar v ∈ {10, 30, 50} mm/min. The

temperature was held constant at 25 ℃.

compressive loading, avoiding the influence on the measurements of the clamping conditions
and of the shape factor.

The results of these non-standard tests are shown in Fig. 1.24. The change in the tangent
stiffness between compression (thick cylinder) and tension (dumbbell) is noticeable, while a
much smoother change is observed with the tall cylindrical specimen. Moreover, the material
stiffness measured with dumbbell and tall cylindrical specimens is comparable, while it differs
considerably from that measured with the thick cylindrical shape. This suggests a low relia-
bility at lower strains of the measurements, in particular during compression, owing to both
an inaccurate transfer of the load and an improper lubrication. By using a unique specimen,
these experimental difficulties have been overcome and the material behavior in the range
λ ∈ [0.8, 1.2], i.e., the actual working range, have been properly described.

1.5.3 Dynamic

The carbon black-filled rubber behavior cannot be inferred by means of static experiments
only. Indeed, real world loading conditions imply loading rates which are outside the range of
quasi-static tests (v ≤ 10 mm/min). Dynamic tests for elastomers are usually conducted by
statically stretching the specimen to a large value of strain and then making it oscillate with
a small amplitude sinusoidal time law (Cho & Youn, 2006; Darvish & Crandall, 2001; Knauss
et al., 2008; White et al., 2000). However, this procedure does not allow the triggering of all
the nonlinearities of the dynamic response.

In this work, with the intention of reproducing loading conditions in agreement with the
actual operative range, oscillatory tests at finite strain, relaxation, creep and cyclic experi-
ments were conducted. While the oscillatory tests require a very precise Dynamic Mechanical
Analyzer (DMA) to reach higher frequencies, the other experiments do not require expensive
testing machinery. Therefore, apart from the material characterization itself, the intention
was to investigate the possibility of inferring dynamic material properties through relaxation
and creep rather than loading and unloading cycles at finite strain or standard harmonic tests.
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Figure 1.24 Nominal stress as functions of strain in the range λ ∈ [0.7, 1.4] for three different specimen shapes:

dumbbell, thick cylinder and tall cylinder. The results show a different value of the tangent

stiffness around the undeformed configuration (λ = 1) in tension with respect to compression,

probably caused by the lubrication of the platelets. These differences disappear by using the

same specimen for both tensile and compressive loads.

The stress relaxation tests were performed on both cylindrical and dumbbell specimens
(Tab. 1.1 a and b).

The cylindrical specimen was compressed, starting from the initial undeformed configu-
ration, λ = 1, up to the final strain λ = 0.83 (17 %) in ∆t = 0.7 s with a constant strain
rate. Thereafter, the deformation was held fixed for 100 s. In particular, the strain rate of the
initial ramp was λ̇ u 0.24 s−1, corresponding to a velocity of the crossbar for the transmission
of the load v u 370 mm/min. The resulting stress relaxation curves are shown in Fig. 1.25
for three temperatures in the range T ∈ {0, 25, 65} ℃. It can be seen from the graphs that
an increase in temperature results in a reduction of the material stiffness and, consequently,
in a lower (absolute) value of the maximum force.

Theoretically, the same deformation history with an infinite strain rate, i.e., ∆t → 0,
would have allowed the direct measurement of the viscoelastic properties. However, this is
not possible when dealing with laboratory equipment. Indeed, not accounting for the finite
strain rate of the initial ramp would result in an underestimate of the material characteristic
times (Antonakakis et al., 2006).

The laboratory environments normally imposes a range for the observable time scales.
The highest sampling rate the acquisition channel can reach determines the shortest achiev-
able time; besides the duration of the experiment is an upper bound for time scales. The
Zwick/Roell z010 equipment is able to acquire data up to the frequency 10 kHz; 1 kHz was
used, whereas the experiments lasts 30 s. This choice was a compromise between the minimum
observable time scale and number of data samples recorded.

Relaxation tests permit the capturing of the material behavior involving larger charac-
teristic times. Since in many engineering applications (e.g., tires, shock absorbers, etc.), the
shortest intrinsic times are also significant, loading/unloading cycles at high strain rate were
performed. As shown in Figs. 1.26 and 1.27, the loading/unloading path was repeated for
four different speeds of the rising ramp in the range λ̇min = 0.14 s−1 to λ̇max = 1.09 s−1. All
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Figure 1.25 Nominal stress plotted against time in the range t ∈ [0, 30] for the relaxation experiment re-

peated for three different temperatures T ∈ {0, 25, 65} . The strain rate during the initial ramp

was λ̇ u 0.24 s−1, corresponding to a velocity of the crossbar for the transmission of the load

v u 370 mm/min.

the loading paths from the undeformed configuration, λ = 1, to the maximum strain λ = 0.83
were displacement controlled; all the unloading paths were force controlled up to the zero
force. This has allowed us to perform after each cycle a three seconds creep test to recover the
undeformed, stress-free initial configuration. The time-rate of the force controlled unloading
paths were proportional to those of the loading ramps.

Figure 1.27 outlines the stress-strain constitutive curves related to the strain history rep-
resented in Fig. 1.26. The stiffness growth for increasing values of the strain rate λ̇ is evident.
Moreover, the dissipated energy over a cycle, which is proportional to the area of the cycle,
shows a monotonic dependence upon the strain rate. Indeed, this behavior is shown by all
the viscoelastic materials either solids or fluids.

Standard oscillatory test, both in tension and in compression, were also performed. They
were obtained through a sinusoidal displacement of amplitude ∆ε1 overimposed on a static
stretch ε0 as outlined in Fig. 1.28a in the case of a compression test with ε0 = −0.17,
∆ε1 = 0.1 and f1 = 5 Hz. The experiment was repeated for ∆ε1 ranging in {0.01, 0.05, 0.1}
and frequency f1 ∈ [0, 70] Hz.

The time history of the stress is shown in Fig. 1.28b. It is evident from the graph that
the material response involves both short and long-term contributions. In particular, the
relaxation phenomenon associated with larger characteristic times is evident for t < 4 s, while
the stress settles for t > 5 s. The steady state response, corresponding to the last few cycles
in Fig. 1.28, was used to extract the dynamic moduli through Eqs. (1.4) and (1.5). Figures
1.30, 1.31 and 1.32 outline the variation of the dynamic moduli with the frequency f1 and
their dependence upon the temperature, the compound type and the dynamic amplitude. In
particular, Fig. 1.32 displays a much stronger frequency dependence of a heavily reinforced
compound (Compound C) with respect to a weakly reinforced one (Compound A).

Dynamic tension tests were conducted with a GABO Eplexor 500N testing machine on
the rubber strip represented in Tab. 1.1d. Two prestrain were used, ε0 = 0.20 and ε0 = 0.40
respectively and the strain amplitude ∆ε1 ranges from 0.01 to 0.13. It is seen from Fig. 1.29
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Figure 1.26 (a) Strain, λ, and (b) nominal stress plotted against time in the range t ∈ [0, 35] for the

loading-unloading experiment. The loading path was repeated for four strain rate λ̇ in the range

λ̇ ∈ [0.03, 0.3].
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Figure 1.27 Nominal stress plotted against strain, λ, for four different strain rate λ̇ in the range λ̇ ∈ [0.03, 0.3].

The arrow highlights the stiffness increase due to the increasing strain rate.
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Figure 1.28 Nominal stress plotted against time in the range t ∈ [0, 30] for ε0 = −0.17, ∆ε1 = 0.10 and

f1 = 8 Hz.

that, for larger ∆ε1, the stress-strain curve is no more elliptic, meaning that the nonlinearities
become relevant. The slope variation of the ellipse major axes, which indicates a reduction of
the Storage modulus, is a manifestation of the Payne effect.

The tests were repeated for three frequencies as shown in Figs. 1.33 and 1.34.

1.5.4 Payne Effect

Figure 1.34 shows storage (panel (a)) and loss (panel (b)) moduli as functions of ∆ε1 for three
different driving frequencies as shown in the insets. Symbols represent measured values, and
solid, dashed and dotted lines are linear interpolations between these. In the linear case, these
graphs would reduce to values independent of ∆ε1; so, the ∆ε1-dependence, is a manifestation
of the nonlinear response (Payne effect). It is seen that the storage modulus is a monotonically
decreasing function of ∆ε1 with a maximum value for ∆ε1 → 0 and likely approaching an
asymptotic value for large ∆ε1. The loss modulus also shows a monotonic decay but only for
∆ε1 ' 0.002. Below this value the graphs indicate a peak value at positive ∆ε1 and a small
drop for even smaller ∆ε1. Such behavior has also been measured by Höfer & Lion (2009).

Figure 1.33 displays storage, S, and loss, L, moduli plotted against ∆ε1 for different values
of static prestrain ε0 as indicated in the insets. It is evident that both moduli react to the
static prestress and that, in the considered range (ε0 ∈ {0.2, 0.4}), S and L increase with
growing ε0. This results partially confirmed the measurements of (Lee & Kim, 2001), even if
in those results a clear monotonic dependence upon ε0 was absent at lower strain.

Figure 1.30 shows the analogous behavior of the storage and loss moduli as functions
of frequency for different values of ∆ε1. These graphs show a monotonic growth of the
storage and loss moduli and give no hint that the values for S and L would saturate at larger
frequencies.

To see whether the dependencies of storage and loss moduli of Figs. 1.30 and 1.34 are
reliably secured experimental results, the experiments of Fig. 1.34 were repeated several times
under the same conditions. We would be able to show the results by reproducing the graph
of Fig. 1.34, but in order to “amplify” the difference between several curves we produced Fig.
1.35, in which the storage and loss moduli are shown in doubly logarithmic representation
for 0.0005 ≤ ∆ε1 ≤ 0.2. Figure 1.35 shows results for the storage and loss moduli of five-
fold repetitions of the experiments as shown in Figs. 1.30 and 1.34. It is clearly seen that
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Figure 1.29 Nominal stress as function of the stretch λ for different values of the dynamic strain amplitudes

∆ε1 ∈ [0.01, 0.13] in the case of a tensile test (ε0 = 0.2, f1 = 15 Hz) on a rubber strip. For the

largest ∆ε1, the stress-strain curve is no more elliptic, meaning that the nonlinearities become

relevant. The slope variation of the ellipse major axis, which indicates a reduction of the Storage

modulus, is a manifestation of the Payne effect.
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Figure 1.30 Storage, S, and loss, L, moduli, plotted against the frequency f1 in the range f1 ∈ [0, 70] Hz for

three different strain amplitude ∆ε1 ∈ {0.01, 0.05, 0.1}. The temperature was T = 25 ℃ and

prestrain was ε0 = −0.15 (compression) for all the frequencies. The reduction of the dynamic
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Figure 1.31 Storage, S, and loss, L, moduli, plotted against the frequency f1 in the range f1 ∈ [0, 70] Hz

for three different temperature T ∈ {0, 25, 65} ℃. The dynamic amplitude was ∆ε1 = 0.05 and

prestrain was ε0 = −0.15 (compression) for all the frequencies.
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Figure 1.32 Storage, S, and loss, L, moduli, as functions of the frequency f1 in the range f1 ∈ [0, 70] Hz for the

three different compounds tested. The content of filler monotonically increases from compound

A to C. The dynamic amplitude was ∆ε1 = 0.05, the prestrain ε0 = −0.15 (compression) and

the temperature T = 25 ℃ for all the frequencies.
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Figure 1.33 (a) Storage, S, and (b) loss, L, moduli, plotted against the strain amplitude ∆ε1 in the range

∆ε1 ∈ [0, 0.13] for the static prestrains listed in the insets. The graphs suggest a dependence on

the static prestrain. The value of the frequency was f1 = 10 Hz.
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Figure 1.34 (a) Storage, S, and (b) loss, L, moduli, plotted against the strain amplitude ∆ε1 in the range

∆ε1 ∈ [0, 0.13] for three different driving frequencies f = 10, 15 and 50 Hz. The variation of S

and L with ∆ε1 are manifestations of the Payne effect. The prestrain was ε0 = 0.2 (tension) for

all the frequencies.

reproducibility for ∆ε1 ≥ 0.005 is excellent. Below this value, the measured points show
a somewhat enlarged spreading, more for the loss than for the storage modulus, but still
sufficiently close to one another that the robustness of the results can be trusted.



1.5 Experimental Evidences 35

10
−3

10
−2

10
−1

10
7

∆ ε
1

S
 (

P
a

)

 

 
10 Hz

15 Hz

50 Hz

10
−3

10
−2

10
−1

10
6.3

10
6.4

10
6.5

10
6.6

∆ ε
1

L
 (

P
a

)

 

 
10 Hz

15 Hz

50 Hz

(a) (b)

Figure 1.35 Doubly logarithmic representation of (a) storage, S, and (b) loss, L, moduli as function of ∆ε1

for three different frequencies f = 10, 15 and 50 Hz. For each of these, five repetitions of the

experiment are shown. The value of the prestrains was ε0 = 0.2 (tension).
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Chapter 2

Nonlinear Elasticity

Chapter Outline. In this chapter the main aspects of the nonlinear theory of elasticity are presented. As
nonlinear elasticity, and, in particular, hyperelasticity, is such a useful tool in the description of the behavior of
carbon black-filled rubber undergoing quasi-static loadings, the main methodologies for describing the behavior
of materials subjected to large strains are introduced. Some of the results herein presented will be applied to
nonlinear viscoelastic constitutive models and discussed in subsequent chapters.
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2.1 Kinematics

In the following section, the basic concepts used to describe the (finite) deformation of a
simple material are briefly presented. A comprehensive introduction of finite elasticity can
be found, for instance, in (Beatty, 1996; Holzapfel, 2000; Ogden, 1997).

We consider a continuous body which occupies a connected open subset of a three-
dimensional Euclidean point space, and we refer to such a subset as a configuration of the
body. We identify an arbitrary configuration as a reference configuration and denote this by
Br.
Let points in Br be labelled by their position vectors X relative to an arbitrarily chosen
origin and let ∂Br denote the boundary of Br. Now suppose that the body is deformed
quasi-statically from Br so that it occupies a new configuration, B say, with boundary ∂B.
We refer to B as the current or deformed configuration of the body. The deformation is
represented by the mapping χ : Br → B which takes points X in Br to points x in B. Thus,

x = χ(X), X ∈ Br, (2.1)

where x is the position vector of the point X in B. The mapping χ is called the deformation
from Br to B and is required to be one-to-one. Its inverse χ−1 satisfies

X = χ−1(x), x ∈ B. (2.2)

Both χ and its inverse are assumed to satisfy proper regularity conditions, e.g., C2(Br) ∩ C0(Br).
For simplicity we consider only Cartesian coordinate systems and let X and x respectively

have coordinates Xα and xi, where α, i ∈ {1, 2, 3}, so that xi = χi(Xα). Greek and Roman
indices refer, respectively, to Br and B and the usual summation convention for repeated
indices is used.

The deformation gradient tensor, denoted F, is given by

F = Gradx, (2.3)

and has Cartesian components Fiα = ∂xi/∂Xα, Grad being the gradient operator in Br.
Local invertibility of χ requires that F be non-singular. Similarly, for the inverse deformation
gradient

F−1 = gradX, (F−1)αi =
∂Xα

∂xi
, (2.4)

where grad is the gradient operator in B. With the use of the notation defined by

J = det F. (2.5)

The equation
dx = FdX (2.6)

(in components dxi = FiαdXα) describes how an infinitesimal line element dX of material at
the point X transforms linearly under the deformation into the line element dx at x.

Following (Ogden, 1997), we can define a tensor measure of strain:

G =
1

2

(
FTF− I

)
(2.7)

where I is the identity tensor, and G is called Green strain tensor.
Other suitable strain measures are:

C = FTF, B = FFT (2.8)

which are called, respectively, the right and the left Cauchy-Green deformation tensors.
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2.2 Strain Energy Function

Materials whose constitutive behavior is only a function of the current state of deformation,
measured through C or G, are generally known as elastic or Cauchy elastic materials. In this
setting a more useful concept from both theory and applications is hyperelasticity (or Green
elasticity), which is a particular case of Cauchy elasticity. In the case of hyperelastic materials
the existence of a strain energy function Ψ defined on the space of deformation gradient is
postulated: the work done by the stresses during a deformation process is only dependent on
the initial and final body configurations.

For such materials the following stress measure can be introduced:

T =
∂Ψ(G)

∂G
(2.9)

which is called the second Piola-Kirchhoff stress tensor: it represents a contact force density
measured in the current configuration per unit area of the reference shape.

According to (2.9), we can introduce other well-known stress measures, e.g.,

Π =FT = F
∂Ψ

∂G
(2.10)

σ =J−1ΠFT = J−1F
∂Ψ

∂G
FT (2.11)

where J = det F, T is the so called nominal stress tensor and σ is the Cauchy stress tensor.
The mechanical interpretation of these stress measures are:

• the second Piola-Kirchhoff stress tensor represents a contact force density measured in
the reference configuration per unit of reference area;

• the Cauchy stress tensor represents a contact force density measured in the current
configuration per unit of current area;

• ΠT is called first Piola-Kirchhoff ; it expresses the contact force density in the reference
frame per unit of current area.

We remark that the only assumption used to introduce definitions (2.9) - (2.11) is that
a strain energy density function can be defined in the reference configuration. Indeed, this
is the most general way of describing nonlinear elastic simple materials. Moreover, since
the function Ψ depends only on the Cauchy-Green strain tensor G, and it is defined in the
reference configuration, it is not affected by any change of observer. The previous requirement
is mechanically known as Principle of Frame Invariance and for the constitutive relations (2.9)
- (2.11) is automatically fulfilled (Liu, 2004; Murdoch, 2005; Rivlin, 2002, 2005; Truesdell &
Noll, 1965).

In order to clarify this assertion, let us suppose that a rigid-body motion, i.e.,

x∗ = Q x + c

is superimposed on the deformation x = χ (X), where Q and c are constant with respect to
the position X (c is the translation vector). Q belongs to the class of the orthogonal tensor,
which we will call Orth3. The resulting deformation gradient, say F∗, is given by

F∗ = Q F

and
G∗ :=

1

2

(
F∗ T F∗ − II

)
= G
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Therefore, using equation (2.11) the following relation for the Cauchy stress tensor holds for
each deformation gradient F and for all Q ∈ Orth3:

σ∗ = QσQT . (2.12)

Relation (2.12) expresses the fact that the constitutive law (2.11) is objective. In essence, it
means that the material properties are independent on the superimposed rigid-body motions.

2.3 Restrictions on the Strain Energy Function

The form of the constitutive law can be simplified if the material is characterized by some
symmetry properties. From the physical point of view this means that there exist a change
in the reference placement such that after this change the material is indistinguishable.

The set of all material symmetry transformations at a material point X depends on the
selected reference configuration and for hyperelastic materials can be defined as

gR,X =
{
H ∈ Lin+ | det H = 1 ∧ Ψ

(
HTGH

)
= Ψ (G)

}
(2.13)

where Lin+ is the space of the positive definite tensor. The set gR,X is a group (see, e.g.,
Ogden, 1997, for the completed proof) and it is called material symmetry group.

Materials which are indistinguishable after every rotation of the reference frame are called
isotropic materials. In such a case, it results

Orth+
3 ⊂ gR,X (2.14)

i.e., the symmetry group contains the class of all the rotations of the reference frame. Con-
stitutive equations for isotropic materials are, actually, the simplest ones.

According to (2.13), for isotropic materials the energy function Ψ must fulfill the condition:

∀Q ∈ Orth+
3 , Ψ

(
QTGQ

)
= Ψ (G) (2.15)

Orth+
3 being the class of all the rotations.

Every scalar function Ψ of a symmetric tensor G which satisfies (2.15) is called an Isotropic
Tensor Function of G. An isotropic scalar-valued function of G is also called a scalar invariant
of G. It may easily be checked that the principal invariants of G, defined by

Î1(G) = trG, (2.16)

Î2(G) =
1

2

[
I2

1 (G)− trG2
]
, (2.17)

Î3(G) = det G (2.18)

are scalar invariants in accordance with definition (2.15).
Rivlin & Ericksen (1955) showed that a scalar-valued function of a symmetric tensor G is

isotropic if and only if it is expressible as a function of I1(G), I2(G) and I3(G).
Hence, for isotropic materials the strain energy density function takes the form:

Ψ (G) = Ψ̃(Î1(G), Î2(G), Î3(G)) (2.19)

or, since

G =
1

2
(C− I) , (2.20)

it is natural to express the strain energy density function in terms of the invariants of the
strain tensor C, i.e.,

Ψ(C) = Ψ̂(I1, I2, I3), (2.21)
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where
I1 = Î1(C), I2 = Î2(C), I3 = Î3(C). (2.22)

According to equation (2.19) and definitions (2.16) - (2.18), the most general form of the
second Piola-Kirchhoff stress tensor for an isotropic and hyperelastic material is:

T =2
∂Ψ

∂C

=2

(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2

)
I− 2

∂Ψ

∂I2
C + 2 I3

∂Ψ

∂I3
C−1, (2.23)

where the following equalities have been used:

∂I1

∂C
= I,

∂I2

∂C
= I1 I−C,

∂I3

∂C
= I3 C−1. (2.24)

From equation (2.11), the relation between the Cauchy stress and the strain invariants
follows

σ =2 I
1/2
3

∂Ψ

∂I3
I + 2I

−1/2
3

(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2

)
B− 2I

−1/2
3

∂Ψ

∂I2
B2

= θ0(I1, I2, I3) I + θ1(I1, I2, I3) B + θ2(I1, I2, I3) B2 . (2.25)

By applying the Cayley-Hamilton theorem, the previous equation can rewritten as

σ = α0(I1, I2, I3) I + α1(I1, I2, I3) B + α−1(I1, I2, I3) B−1 , (2.26)

being 
α0 = θ0 − I2θ2,

α1 = θ1 + I1 θ2,

α−1 = I3 θ2

(2.27)

Assuming that the stress vanishes in the reference configuration (T (I) = 0), one gets the
following restriction on the strain energy Ψ:

∂Ψ

∂I1

∣∣∣∣
C=I

+ 2
∂Ψ

∂I2

∣∣∣∣
C=I

+
∂Ψ

∂I3

∣∣∣∣
C=I

= 0 (2.28)

A stress-free reference configuration is commonly called a natural state.

2.4 Compressibility

A typical choice to model compressible materials is to decompose the left Cauchy-Green strain
tensor into a pure isochoric and a pure volumetric part (Flory, 1961; Sansour, 2008):

C = C(I
1/3
3 I) (2.29)

so that det C = 1.
Furthermore, the first and the second modified invariants are introduced as the invariants

of C in the same manner of those of C in (2.16)-(2.17):

I1 = I1(C) = I
−1/3
3 I1, I2 = I2(C) = I

−2/3
3 I2. (2.30)

According to (2.29), the relation I3 = 1 holds for all deformations.
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In the field of nonlinear mechanics, an ansatz assumed by several researchers is that the
strain energy function Ψ is additively decomposed as

Ψ(I1, I2, I3) = ΨI(I1, I2) + ΨV (I3), (2.31)

where ΨI depends only upon the isochoric part of the deformation and ΨV depends on changes
in volume (Ogden, 1997; Sansour, 2008; Simo et al., 1985). This choice could eventually leads
to a non-physical behavior at large strains (Eihlers & Eppers, 1998). From equation (2.25),
the Cauchy stress tensor becomes

σ =2 I
1/2
3

(
∂ΨI

∂I3
+
∂ΨV

∂I3

)
I + 2I

−1/2
3

(
∂ΨI

∂I1
+ I1

∂ΨI

∂I2

)
B

− 2I
−1/2
3

∂ΨI

∂I2
B2 (2.32)

and from definitions (2.30) one gets the following derivatives of the the strain energy function
Ψ with respect to the modified invariants I1, I2 and I3,

∂ΨI

∂I1
=I
−1/3
3

∂ΨI

∂I1

,

∂ΨI

∂I2
=I
−2/3
3

∂ΨI

∂I2

,

∂ΨI

∂I3
=− 1

3
I−1

3

[
∂ΨI

∂I1

I1 + 2
∂ΨI

∂I2

I2

]
.

(2.33)

By substituting equations (2.33) into (2.32), one gets:

σD(BD) = 2 I
−1/2
3

(
∂ΨI

∂I1

+ I1
∂ΨI

∂I2

)
BD − 2 I

−1/2
3

∂ΨI

∂I2

(
B

2
)
D

(2.34)

σV (I3 I) = 2 I
1/2
3

∂ΨV

∂I3
I. (2.35)

in which the subscripts D and V represent the deviatoric and the volumetric part of the
tensor.

Equations (2.34)-(2.35) state that:

1. a superimposed deviatoric stress doesn’t produce any volume changes, but only shape
changes (trσD = 0);

2. a superimposed pressure uniquely produces a volume change.

Points 1 and 2 are the extension to the nonlinear case of the deviatoric/volumetric stress
decomposition introduced in the framework of linear elasticity (and are consistent with that).

Equation (2.35) implies that the reference configuration is stress-free if the following re-
striction on the function ΨV is valid:

∂ΨV

∂I3

∣∣∣∣
I3=1

= 0 . (2.36)

Therefore, assuming a sufficient regularity for the function ΨV , expression (2.31) can be
expanded by Taylor series around the undeformed configuration (I3 = 1) as:

ΨV (I3) =

∞∑
i=2

1

Di
(I3 − 1)i (2.37)
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where

(Di)
−1 =

1

i!

∂iΨV

∂Ii3

∣∣∣∣
I3=1

. (2.38)

With similar assumptions, one obtain the following expansion around the reference con-
figuration (I1 = 3, I2 = 3) for the function ΨI :

ΨI(I1, I2) =

∞∑
i,j=0

cij
(
I1 − 3

)i (
I2 − 3

)j (2.39)

where

cij =


0, if (i, j) = (0, 0),

1

i!j!

∂i+jΨ

∂iI1 ∂jI2

∣∣∣∣
I1=3, I2=3

, otherwise.
(2.40)

2.5 Incompressibility

Experimental evidences shown in Chapter 1 have revealed a negligible change in volume occur-
ing during the deformation. This behavior allows the modeling of rubber as an incompressible
material. From one hand, this assumption simplifies the determination of equilibrium solu-
tions, but, on the other hand, it makes the constitutive relation hard to implement in a
numerical code. Therefore, both near-incompressible and incompressible materials will be
considered in the following.

Every deformation allowed in a hyperelastic incompressible material must satisfy:

I3 = det C = 1 (2.41)

The constraint (2.41) defines an hypersurface in the space of the deformation gradients.
Any stress normal to this surface, i.e., in the direction ∂ det C/∂F, does not expend work
on any (virtual) incremental deformation δx compatible with the constraint. The stress is,
hence, determined by the constitutive law unless a vector parallel to ∂ det C/∂F. From an
energetic point of view this is tantamount to assume the strain energy function as

Ψ(I1, I2, I3) = Ψ(I1, I2, 1)− p (I3 − 1) , (2.42)

where p(I1, I2) is the Lagrange multiplier associated to the constraint (2.41) which depends
upon boundary conditions.

Once more, assuming a sufficient regularity of the function ΨI , one obtains the following
Taylor expansion around the reference configuration

ΨI(I1, I2) =

N∑
i=1

cij(I1 − 3)i(I2 − 3)j . (2.43)

Equation (2.43) was firstly introduced by Rivlin & Saunders (1952), and for this reason it is
sometimes called Rivlin-Saunders’s expansion. Some of the most used material models and
the respective parameters cij are reported in table 2.1.

The following expression of the Cauchy stress for an incompressible material follows from
equations (2.25) and (2.42):

σ = −p I + 2

(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2

)
B− 2

∂Ψ

∂I2
B2. (2.44)

In order to verify the stress-free condition (σ(I) = 0) in the reference configuration, the
unknown pressure field p must satisfy:

p(I1, I2)|C=I = p(3, 3) = 2
∂Ψ

∂I1

∣∣∣∣
C=I

+ 4
∂Ψ

∂I2

∣∣∣∣
C=I

(2.45)



2.6 Homogeneous deformations 45

Table 2.1 Material models based on Rivlin’s expansion (Hartmann, 2001a).

Author/Model

Mooney Rivlin c10 c01

Isihara et al. c10 c01 c20

Neo-Hooke c10

Yeoh c10 c20 c30

James et al. c10 c01 c11 c20 c30

Biderman c10 c01 c20 c30

Tschoegl c10 c01 c11

Tschoegl c10 c01 c22

Lion c10 c01 c50

Haupt/Sedlan c10 c01 c11 c02 c30

2.6 Homogeneous deformations

In the following we analyze some elementary problems in which the deformation is homoge-
neous, i.e. the deformation gradient F is constant in whole body. Homogeneous deformations
are equilibrium solution for all the class of hyperelastic materials; for this reason they are
called universal solutions (see, e.g., Pucci & Saccomandi, 1997).

2.6.1 Simple Tension

In the case of simple tension or simple compression the deformation is given by

x1 = λ1X1, x2 = λ2X2, x3 = λ2X3, (2.46)

hence the deformation gradient is a diagonal matrix

F = Diag {λ1, λ2, λ2} , (2.47)

where λ1, λ2 are called principal stretches, which are constant because the deformation is
homogeneous. Here the λ1-direction is the direction of the external load. Since in a simple
tension test, the lateral surfaces of the specimen are supposed to be unloaded, the principal
stresses corresponding to the directions 2 and 3 vanish.

For deformation (2.47) the strain invariants become:

Ĩ1 = λ2
1 + 2λ2

2, Ĩ2 = λ−2
1 + 2λ−2

2 . (2.48)

Incompressible Materials

In the case of incompressibility, the constraint (2.41) must be satisfied, and the following
relation between the stretches must hold:

λ1 λ
2
2 = 1⇐⇒ λ2 = λ

−1/2
1 , (2.49)
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Table 2.2 Uniaxial Cauchy stress arising from a stretch λ for some of the most used incompressible material

models.

Model σ11

Neo-Hooke σ11 = 2c10

(
λ2 − λ−1

)
Mooney-Rivlin σ11 = 2 (c10 λ+ c01)

(
λ− λ−2

)
Yeoh (c30 = 0) σ11 = 2

(
λ− λ−2

) [
c10λ+ 2 c20 (λ2 − 3λ+ 2)

]

hence the strain invariants depend only upon λ1, e.g.,

Ĩ1 = λ2
1 + 2λ−1

1 , Ĩ2 = λ−2
1 + 2λ1 (2.50)

The unknown pressure field can be determined from the condition that the stresses σ22

and σ33 vanish

p = 2

[
∂Ψ

∂I1
+ I1

∂Ψ

∂I2

]
I1=Ĩ1,I2=Ĩ2

λ
−1/2
1 − 2

[
∂Ψ

∂I2

]
I1=Ĩ1,I2=Ĩ2

λ−1
1 . (2.51)

In the following the solution of the simple tension problem will be presented for three of
the most used nonlinear elastic models, viz. Neo-Hooke, Mooney-Rivlin and Yeoh model.

The strain energy function in the Neo-Hookean model is

ΨI = c10(I1 − 3) (2.52)

thus, from equation (2.44):
σ = −p I + µ0 B, (2.53)

where µ0 = 2 c10 is the so called initial shear modulus (shear modulus in the reference config-
uration).

From equation (2.51), the expression of the pressure field follows:

p = µ0
1

λ
(2.54)

and the stress in the direction 1 becomes:

σ11 = µ0

(
λ2 − 1

λ

)
. (2.55)

In the same manner by means of equation (2.44) the unidimensional stress-strain relation
can be obtained for Mooney-Rivlin and Yeoh model. These results are shown in table 2.2.

Compressible Materials

In the compressible case the relation (2.49) is not anymore valid, thus the orthogonal stretch
λ2 must be derived from the implicit relation:

σ22(λ1, λ2) = 0 (2.56)

or equivalently σ33(λ1, λ2) = 0, which follows from the condition that the components of the
stress σ22 and σ33 vanish. Equation (2.56) has to be solved numerically for each λ1.

Numerical results in the cases of Neo-Hooke, Mooney-Rivlin and Yeoh models will be
discussed in Chapter 5.
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Model σ12

Neo-Hooke σ12 = 2c10γ

Mooney-Rivlin σ12 = 2 (c10 − c01) γ

Yeoh (c30 = 0) σ12 = 2 [c10 + 2c20(I1 − 3)] γ

Table 2.3 Simple shear test results for some of the most used material models.

2.6.2 Simple Shear

Another example of a homogeneous deformation state is a simple shear defined by

x1 = X1 + γ X2, x2 = X2, x3 = X3, (2.57)

where γ is the amount of shear strain. Thus,

F =

1 γ 0
0 1 0
0 0 1

 , B =

1 + γ2 γ 0
γ 1 0
0 0 1

 , C =

1 γ 0
γ 1 + γ2 0
0 0 1

 (2.58)

and
I1(C) = 3 + γ2, I2(C) = 3 + γ2, I3(C) = 1. (2.59)

that is the strain invariants are even function of the shear strain.
The simple shear is an isochoric deformation that is possible in every compressible, homo-

geneous, and isotropic hyperelastic material. The constitutive relation (2.26) shows that the
shear stress related to the shear strain γ is given by:

σ12 = γ α(I1, I2, 1), (2.60)

wherein the generalized shear response function is defined by

α(I1, I2, 1) = α1(I1, I2, 1)− α−1(I1, I2, 1) (2.61)

From (2.26) one gets 
α0(I1, I2, 1) = 2

∂Ψ

∂I3
− 2 I2

∂Ψ

∂I2

α1(I1, I2, 1) = 2
∂Ψ

∂I1

α−1(I1, I2, 1) = −2
∂Ψ

∂I2

(2.62)

thus,

σ12 = 2

(
∂Ψ

∂I1
− ∂Ψ

∂I2

)
γ (2.63)

It is seen that the shear stress is an odd function of the amount of shear.
Furthermore notice that the shear stress is in the direction of the shear if and only if
α(I1, I2, 1) > 0. However, the only presence of shear stress cannot produce a simple shear
state.

It also follows from (2.32) that the scalar function α1 and α−1 are determined by the
normal stress differences; we have:

σ11 − σ33 = α1 γ
2, (2.64)

σ22 − σ33 = α−1 γ
2, (2.65)
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where
σ33 = α0 + α1 + α−1 = τ(γ2) γ2 (2.66)

where since αi are even function of γ, this dependence has been explicitly shown in the last
term. Moreover the last relation allows to determine τ(γ2), hence α0. We highlight that the
normal stresses are unchanged if the shear is reverted. If these are not furnished, the block
will tend to contract or to expand. Such normal stress effects are typical of problems in finite
elasticity.

The most striking feature of the simple shear problem is that the results (2.64)-(2.66) do
not involve the shear stress. On the contrary, the shear stress is determined by the difference
of the normal stresses:

γ σ12 = σ11 − σ22, (2.67)

and it is determined in the same way for every homogeneous, isotropic hyperelastic material,
regardless of the form of the response functions. The formula (2.67) is an example of an
universal relation in the finite elasticity theory.



Chapter 3

Nonlinear Viscoelasticity

Chapter Outline. In the first section of this chapter the main approaches followed in modeling nonlinear
viscoelastic solids during isothermal deformation are thoroughly described. Since filled rubber can reasonably
be assumed isotropic, only isotropic constitutive relations are considered. Thereafter, the attention is focused
on integral viscoelastic models. In particular, some of the most common integral models are reviewed and
advantages and disadvantages of each of them are highlighted. Uniaxial stretch histories are investigated by
reducing the general three-dimensional model to the one-dimensional case. In this context, the concept of
dynamic moduli, introduced in linear viscoelasticity and referred to as storage and loss moduli, is extended,
in a consistent manner, to the nonlinear case. Moreover, for some of the constitutive equations examined,
the analytical value of the storage and loss moduli is computed and their frequency behavior discussed with
reference to the collated experiments on carbon black-filled rubber. Finally the predicting capabilities of the
classical linear integral viscoelastic model and of a new model based on hysteretic damping are analyzed.
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3.1 Nonlinear Theory of Viscoelasticity

The theory of viscoelasticity is crucial when describing materials, such as rubber, which exhibit
time dependent stress-strain behavior.

Indeed, carbon black-filled rubber, when loaded with time-dependent external forces, suf-
fers a state of stress which is the superposition of two different aspects: a time independent,
long-term, behavior (sometimes improperly called “hyperelastic”) opposed to a time depen-
dent, short-term, response. Step-strain relaxation tests suggest that short term stresses are
larger than the long term or quasi-static ones (Johnson et al., 1995). Moreover, oscillatory
(sinusoidal) tests indicate that dissipative anelastic effects are significant, which leads to the
consideration of a constitutive relation which depends not only on the current value of the
strain but on the entire strain history. This assumption must be in accordance with some
principles which restrict the class of reliable constitutive equations. These restrictions can be
classified as “physical” and “constitutive”. The former are restrictions to which every rational
physical theory must be subjected to, e.g., frame indifference. The latter, on the other hand,
depends upon the material under consideration, e.g., internal symmetries.

The principle of determinism (Truesdell & Noll, 1965) belongs to the first class. It states
that: the stress at a given material point is determined by the entire past history of the motion
in a neighborhood of the considered point.

Another basic assumption in every rational constitutive theory is the principle of frame in-
difference: the response of the system must be the same for all observers (Liu, 2004; Murdoch,
2005; Rivlin, 2002, 2005; Truesdell & Noll, 1965).

Then one is lead to consider constitutive restrictions. One important assumption, proposed
by Noll (1958), postulates that the material is simple, which means that the stress at a given
material point depends only on the history of the first order spatial gradient of the deformation,
in a small neighborhood of the material point. Therefore, the influence of the higher order
spatial gradients is ignored. Although this assumption is usually considered non-constitutive,
it legitimately belongs to the class of constitutive restrictions because there exhist materials,
e.g., porous media and functionally graded, leading to an unacceptable approximation if higher
order spatial gradients are ignored1.

Other simplifications of the constitutive laws are obtained by assuming that the material
is non-aging, which means that the microscopic changes at the time-scale of experimental
test can be ignored, which indeed, complies with the experimental observations discussed in
Sec. 1.2 (see, e.g., Wineman, 2009). An additional assumption, which is also corroborated by
the experimental data, is the isotropy of the material, i.e., the material at a given point in one
reference configuration is indistinguishable in its response from the same material after it has
been statically rotated into another reference configuration. Then, the constitutive equation
is simplified accordingly. As expected, the constitutive laws for isotropic materials are, by
far, the simplest ones. Finally, the internal material constraints of incompressibility is yet an
other way to restrict and simplify the constitutive laws.

All the results presented are consistent with these principles.
In the following, we are motivated to develop a general nonlinear theory of viscoelastic-

ity because, in the practical application of tire industry, rubber materials are used under
conditions which do not comply with the infinitesimal deformation assumptions of the linear
theory. For these materials, the range of deformation beyond which superposition and thereby
linearity holds is extremely limited. Anyway, one of the first requirements for a nonlinear con-
stitutive law is that, for a very small deformation, the model reduces to the corresponding

1 The dependence upon higher order spatial gradient may have significant applications in the modeling

of solids subjected to concentrated strains and fractured. As this, the applications on rubber modeling are

forthcoming (see, e.g., dell’Isola et al., 2009).
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linear model (see, e.g., Quintanilla & Saccomandi, 2007).
In the following section a review of the constitutive equations used to model nonlinear

viscoelastic solids undergoing isothermal deformation is provided.

3.2 State of the Art

Pioneering Works

Polymeric materials, such as rubber, exhibit a mechanical response which can not be properly
described by means of elastic and viscous effects. In particular, elastic effects account for
materials which are able to store mechanical energy with no dissipation. On the other hand,
a viscous fluid in a hydrostatic stress state dissipates energy, but is unable to store it. As
the experimental results reported in Chapter 1 have shown, filled rubber present both the
characteristics of a viscous fluid and of an elastic solid. Viscoelastic constitutive relations
have been introduced with the intent of describing the behavior of materials able to both
store and dissipate mechanical energy.

The origin of the theory of viscoelasticity may be traced to various isolated researchers in
the last decades of the 19th Century. This early stage of development is essentially due to the
work of Maxwell, Kelvin and Voigt who independently studied the one dimensional response
of such materials. The linear constitutive relationships introduced therein are the base of
rheological models which are still used in many applications (see, e.g., Malkin, 1995). Their
works led to Boltzmann’s (Boltzmann, 1874) first formulation of three dimensional theory for
the isotropic medium, which was generalized later to the anisotropic case by Volterra (1912).

However, in filled rubber, constitutive nonlinearities turn out to be significant even at
small strains because of their internal entangled structure. In addition, when the material
is able to bear large strains, geometrical nonlinearities also become relevant. Therefore an
approach considering both constitutive and geometrical nonlinearities must be pursued.

The early stage of development, following the works of Maxwell, Kelvin and Voight, has
constituted the starting point for many other researchers. In particular in the mid 40s different
modeling strategies have actually been used to describe nonlinear viscoelastic solids.

Internal-variables Formulations

A general approach, introduced by Coleman & Noll (1961), is to formulate the constitutive
equation in terms of thermodynamic state-variables: the internal energy is expressed as func-
tion of both the current values of strain (stress) and the so-called internal state variables
(Coleman, 1964; Coleman & Gurtin, 1967; Coleman & Noll, 1963) 1. The latter may be iden-
tified with local micro-structural quantities, e.g., filler content (Schapery, 1997), or suitably
defined averages (Lion, 1997). Rate effects are introduced through evolution equations, which
usually relate time rates-of-change of internal variables to thermodynamic forces, which are
the derivatives of the internal energy with respect to each internal variable.

Simo (1987) proposed a constitutive equation based on an internal variables formulation
which has provided a starting point for many successive works (Govindjee & Simo, 1992;
Holzapfel, 1996; Holzapfel & Gasser, 2001; Yoshida et al., 2004). In Simo’s approach, the
internal energy is split according to the multiplicative decomposition of the deformation gra-

1In the isothermal and adiabatic context considered here, the internal energy coincides with the Helmotz

free energy; furthermore, the Clausius-Duhem inequality reduces to the Clausius-Planck inequality.
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dient into dilatational and volume-preserving parts 2

Even though this choice might lead to non-physical results at finite strains (Eihlers &
Eppers, 1998), Simo’s model is able to reproduce the hysteretic behaviors of carbon-filled
rubber, incorporating also the Mullins effect. In this case the internal energy is split as
the sum of three different parts: (i) a volumetric term depending upon the volume change
J = det F, (ii) a term depending upon the isochoric deformation F = J−1F and (iii) a term
relying on the internal variable q representing the nonequilibrium part of the stress. The
evolution equation of q is postulated assuming the generalized force is proportional to the
derivative of the internal energy with respect to the isochoric strain. This approach is found
to be computationally very efficient, and thus adopted in many commercial finite element
codes. However, Simo’s model has not been conclusively proven to satisfy the second law
of thermodynamics for all the admissible processes. Hence, it is essentially restricted to
viscoelastic response for strain states near the elastic equilibrium.

Govindjee & Simo (1992) developed a similar model on the basis of the micromechanical
structures of the carbon black particles and rubber matrices: the relaxation processes in the
material were described through stress-like internal variables. These variables are governed
by dissipative evolution equations, and interpreted as the nonequilibrium stresses due to the
interaction between the polymer chains. Holzapfel (1996) proposed a model in which the
internal energy is additively partitioned in the standard volumetric term plus an isochoric
part. The latter depends both on the isochoric strain and a set of internal variables Γα
that can be regarded as an internal strain tensor. This approach generalizes the additive
decomposition introduced by Simo.

An advantage of the state-variable formulations is that, in contrast to the other approaches,
it is not restricted to isotropic responses. Anisotropic effects could be easily taken into account,
e.g., by introducing state variables depending upon fiber orientations as in Holzapfel & Gasser
(2001). Moreover physical theories, such as dislocation models, may be introduced directly in
the formulation of the evolution equations. However, it has been reported that the viscosity
alone is not enough to reproduce the large hysteretic energy behavior of high-damping rub-
ber, used in vibration absorbers. Thus, Yoshida et al. (2004) proposed a constitutive model
consisting of two parts: an elastoplastic term with a strain-dependent isotropic hardening
law, representing the energy dissipation of the material, and a second part consisting of a hy-
perelastic body with a damage model, which expresses the evolutional direction of the stress
tensor.

Additive Decomposition of Ψ

A decomposition of the deformation gradient into elastic and inelastic terms leads to alter-
native formulations of the strain energy function (Meggyes, 2001). This decomposition was
first proposed by (Sidoroff, 1974) and later by Lubliner (1985) who extended the pioneering
work of Green & Tobolsky (1946). Although in the framework of elastoplasticity the decom-
position of the deformation gradient, into elastic and plastic terms, relies on clear physical
assumptions, there is a lack of evidence in the context of viscoelasticity. However, it has been
successfully applied in many nonlinear constitutive equations (e.g., Bonet, 2001; Hasanpour
et al., 2009; Haupt & Sedlan, 2001; Hoo Fatt & Al-Quraishi, 2008; Huber & Tsakmakis, 2000;
Lion, 1997, and many others).

In this context, it is assumed that the deformation gradient can be decomposed as

F = Fe Fi . (3.1)

2The multiplicative decomposition of the deformation gradient into volumetric and isochoric parts was

first introduced by Flory (1961) (see, e.g., Sansour, 2008).
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The inelastic term Fi, sometimes called viscous term Fv, introduces an intermediate con-
figuration. However, the decomposition (3.1) is a conceptual one, and cannot generally be
determined experimentally since neither Fe nor Fi are observable quantities (Vidoli & Sciarra,
2002). The inelastic term in (3.1) was also extended to three, four or more deformation parts

Fi = F
(1)
i ...F

(N)
i (3.2)

and was adopted and studied, for example, in elastoplasticity and viscoelasticity (see, e.g.,
Bonet, 2001; Haupt, 1985; Haupt & Sedlan, 2001; Meggyes, 2001, and references therein).

The decomposition (3.1) is generally followed by the ansatz on the internal energy for
which Ψ is split as the sum of an equilibrium part and an overstress term, i.e.,

Ψ = Ψe(C) + Ψo(Ce) . (3.3)

Here C is the right-Cauch-Green strain tensor and Ce = FT
e Fe is the elastic strain in the

intermediate configuration. This form of the internal energy has been postulated by several
researchers (Hasanpour et al., 2009; Haupt & Sedlan, 2001; Hoo Fatt & Al-Quraishi, 2008;
Lion, 1997).

Bonet (2001) proposed a more general equation for Ψ, e.g.,

Ψ = Ψe(C) + Ψo(C,Ci) , (3.4)

in which the overstress term depends both on the whole strain tensor C and on the inelastic
(viscous) strain Ci = FT

i Fi; assuming that the viscous components is proportional to the long
term expression, e.g.,

Ψo(C,Ci) = αΨe(Ce) , (3.5)

equation (3.4) reduces to (3.3).
All these constitutive choices for the free energy Ψ lead to different expressions of the

stress in terms of the deformation gradient. By applying the Coleman and Noll procedure
(Coleman & Noll, 1963), i.e., by restricting the form of the stress tensor in such a way that
the Clausius-Plank inequality is verified for every admissible process , the Piola symmetric
stress tensor is shown below

T = Te + Ti , (3.6)

where Te is the equilibrium stress and Ti the overstress. In particular, for an internal energy
of the form (3.3), the following relations between Ψe, Ψo and Te, Ti are valid:

Te =
∂Ψe

∂C
, Ti =

∂Ψo

∂Ci
. (3.7)

Equation (3.7) is not sufficient to determine the behavior of the material. In order to
complete the description, the evolution equations (or flow rules) of the internal variables Fe

and/or Fi, which determine the way viscoelastic processes evolve, must be defined. Often
the evolution equations are suitably defined to be efficient with respect to time integration
algorithms (Holzapfel & Gasser, 2001). A common choice for the flow rule is to apply a gener-
alization of the one-dimensional linear Maxwell-model to the three-dimensional and nonlinear
regime. In this case the evolution equations are assumed to be linear, and the overstress term
arising from them is the generalization of the extra-stress arising in Maxwell element (see,
e.g, Holzapfel, 2000; Huber et al., 1996). Lion (1997) proposed nonlinear evolution equations
based on strain, time and temperature. Bonet (2001) also used nonlinear evolution equations
of rate type for the internal variables. These are based on a particular linear relaxation form
of the Maxwell model which leads to a viscoelastic formulation that can be seen as a particular
case of a large strain viscoplastic model. A variational formulation of Bonet’s model has been
developed in (Fancello et al., 2008).
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Integral Formulation

The internal-variables formulation is not the only way to define the internal energy. Following
the seminal work of Boltzmann (1874), Green & Rivlin (1957) and successively Coleman & Noll
(1961) proposed constitutive relations for which the stress a time t depends upon the entire
history of deformation up to the current time instant. However, the definition of the internal
energy was developed accordingly and in agreement with the fading memory properties, i.e.,
strains which occurred in the distant past have less influence on the present value of Ψ than
those which occurred in the more recent past.

To mathematically express the fading memory property, Coleman & Noll (1961) introduced
the following inner product in the space of deformation histories

Ct
1(s) : Ct

2(s) :=

∫ ∞
0

tr
{
Ct

1(s)Ct
2(s)

}
h2(s)ds , (3.8)

which induces the norm ∥∥Ct(s)
∥∥
Ht

:=
(
Ct(s) : Ct(s)

)1/2
. (3.9)

Here, Ct represents the history of the right-Green strain tensor up to time t, i.e.,

Ct(s) = C(t− s) , s ∈ [0,∞) . (3.10)

Moreover h(t) is called obliviator of order r and it satisfies the following conditions (Trues-
dell & Noll, 1965):

1. h(s) is defined for 0 ≤ s <∞ and has a positive real value: h(s) > 0;

2. h(s) is normalized by the condition h(0) = 1;

3. h(s) decays to zero monotonically for large s in such a way that

lim
s→∞

sr h(s) = 0. (3.11)

The norm (3.9) equipped with a function h satisfying properties 1, 2 and 3 is called fading
memory norm; in this topology, two deformation histories are distant if they are distant in
the recent past, i.e., deformations which occur in the recent past have more weight than those
which occurred in the distant past.

Fichera (1979) was the first to point out that in order to assure the existence of equilib-
rium solutions the influence function has to satisfy the decreasing condition (3.11) (see the
contribution of Fichera in Carroll & Hayes, 1996).

The mathematical assumptions behind the theory of fading memory have been recently
reviewed by Drapaca et al. (2007). Definition (3.9) leads to the so-called Strong Principle
of Fading Memory (Truesdell & Noll, 1965) (SPFM) 1, which defines the class of admissible
internal energy functionals:

There exists an obliviator h(t) of order greater than n+1/2 such that the constitutive function
Ψ is defined and n-times Fréchet-differentiable in a neighborhood of the zero strain history.

The SPFM alone is not sufficient to define properly an internal energy, but rather restrictive
conditions must be satisfied to assure the existence of a stationary point of Ψ (see, e.g.,
Fabrizio et al., 1995).

Over the years, many researchers have dealt with a proper definition of internal energy
accounting for deformation histories (Del Piero & Deseri, 1997; Fabrizio & Morro, 1992;

1Less restrictive conditions on Ψ are stated in the so-called Weak Principle of Fading Memory (WPFM)

(Drapaca et al., 2007).
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Golden, 2005, and references therein). It is well known that the internal energy and entropy
of a material with memory is generally not uniquely defined (Golden, 2001). A fundamental
result in this area is due to Gurtin & Hrusa (1988) who obtained a necessary and sufficient
condition for the existence of the internal energy arising from a stress-strain constitutive
relation of single integral type. Moreover they were able to develop the following explicit
formula for Ψ,

Ψ(Ct) = Ψ1(C(t)) +

∫ ∞
0

ψ(τ,C(τ),C(t− τ))dτ . (3.12)

The majority of models obtained from an a priori internal energy fits within this single hered-
itary framework (Haupt & Lion, 2002; Höfer & Lion, 2009; Lion & Kardelky, 2004). The
stress arising from the constitutive assumption (3.12) involves a single hereditary integral of
a nonlinear function of the strain. In this wide sense, single integral constitutive relations
encompass a class of viscoelastic models equivalent to differential and fractional differential
models (Adolfsson et al., 2005; Hanyga, 2007; Hanyga & Seredynska, 2007).

The theory of single integral constitutive equations developed by Gurtin & Hrusa was
extended to multiple integral functionals by Hanyga & Seredynska (2007). In this context,
the internal energy Ψ reads as

Ψ(Ct) =Ψ1(C(t))+

+

N∑
n=1

∫ ∞
0

...

∫ ∞
0

ψ(τ,C(τ),C(t− τ1), ...,C(t− τn))dτ1 ... dτn ,
(3.13)

where N is a positive integer. The models introduced by Green & Rivlin (1957), Pipkin
& Rogers (1968), and Hassani et al. (1998) fit into this enlarged framework1. However, in
general, their applicability to describe the behavior of real materials is questioned since many
parameters are necessary to fit the experimental data (see Chap. 5 of Lockett, 1972).

Single Integral Formulation

In applied viscoelasticity not all the constitutive equations are formulated by an a-priori
defined internal energy Ψ, but the constitutive model is expressed directly by the functional
relation between the stress and the strain through an hereditary integral. In rheology this class
of constitutive models is called Rivlin-Sawyers models; Fung’s (Fung, 1972), Fosdick and Yu’s
(Fosdick & Yu, 1998) and many other models currently used belong to this constitutive class.
Because Rivlin-Sawyers models are not obtained with the Coleman and Noll’s procedure, their
thermodynamic consistency must be verified a posteriori.

Single hereditary formulation has proven to reproduce all the crucial aspects of rubber
behavior (hysteresis, relaxation and creep). In the simplest situation, the current value of the
stress is the sum of two different contributions: a purely elastic term depending on the current
value of the strain and a hereditary integral depending on the whole strain history. In the
linear model of viscoelasticity, introduced by Bernstein et al. (1963), the stress dependence
on the strain history is assumed to be linear, i.e.,

σ(t) =2µG(t) + λ tr {G(t)} I

+

∫ t

0
k̇(s) [2µG(t− s) + λ tr {G(t− s)} I] ds

1Multiple integral theory might be obtained by a proper Taylor-like series approximation of the functional

Ψ on the space of deformation histories. In this sense, single integral models are obtained by the former

expansion truncated at the first term (Drapaca et al., 2007; Wineman, 2009).
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where k(t) is the so-called viscoelastic kernel (or relaxation function), λ and µ the Lamé moduli
and E the Green-Lagrangian strain tensor. A common choice for the relaxation function is
to assume k(0) = 1, thus k is referred to as reduced relaxation function.

A suitable kernel in the integral can account for both the short and long term strain
contributions to the current stress value. To be consistent with the second principle of ther-
modynamics, k(t) must be a completely monotonic function of t (see, e.g., Hanyga, 2005),
i.e., it must be infinitely differentiable and satisfy

∀n ∈ IN, ∀t > 0, (−1)n
∂nk

∂tn
≥ 0 , (3.14)

The condition of infinite differentiability can be dropped obtaining a much weaker require-
ments for k (see, e.g., Lion & Kardelky, 2004),

k(t) ≥ 0, k′(t) ≤ 0, k′′(t) ≥ 0 . (3.15)

In order to express the reduced relaxation function k(t), a discrete relaxation spectrum,
whose form was derived by various molecular models (Pipkin, 1986), is generally used. For-
mally,

k(t) =

N∑
i=1

ki +

N∑
i=1

(1− ki) e
− t
τi ,

N∑
i=1

ki < 1 . (3.16)

Equation (3.16) is commonly referred to as Prony’s series.
Recently fractional calculus has started to play an increasing role in polymer rheology

(Adolfsson & Enelund, 2003; Adolfsson et al., 2005; Gil-Negrete et al., 2009; Hanyga, 2007;
Haupt & Lion, 2002; Haupt et al., 2000; Lion & Kardelky, 2004). This is due to the fact
that the frequency dependence of the dynamic moduli of filler-reinforced rubber is fairly weak
and essentially of the power-law type (Lion & Kardelky, 2004). As shown in the literature
such behavior can be represented with a minimum of material constants using the fractional
calculus.

In terms of fractional derivatives, the relaxation function can be defined as

k(t) = 1 +
1

Γ(1− α)

∫ t

0
(t− s)−αη(s)ds , (3.17)

where 0 < α < 1, Γ(x) =
∫∞

0 zx−1e−zdz is the Eulerian Gamma function and η(s) is a
suitable function such that limt→∞ k(t) <∞. The time derivative of k becomes the left-sided
Riemann-Liouville fractional derivative, i.e.,

0D
α
t η(t) =

1

Γ(1− α)

d

dt

∫ t

0
(t− s)−αη(s)ds . (3.18)

The behavior of the dynamic moduli arising from a fractional order viscoelastic kernel,
like (3.17), has been studied in (Rogers, 1983).

Another way to introduce fractional derivatives is through rheological models of fractional
order. In particular, the fractional Maxwell element corresponds to a spring in series with a
fractional damper. The one-dimensional linear stress, σ, versus strain, ε, relation of a spring
in parallel with the fractional Maxwell element can expressed in terms of fractional derivatives
(Metzler & Nonnenmacher, 2003), e.g.,

σ(t) =

∫ t

0

[
µeq + µ0vEβ

(
−(t− s)β

ζβ

)]
ε̇(s)ds (3.19)

where the kernel

Eβ(t) =

∞∑
i=0

ti

Γ(1 + βi)
, (3.20)
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is the Mittag-Leffler function (see Haupt et al., 2000; Metzler & Nonnenmacher, 2003, and
references therein). Since E1(t) equals the exponential function, the Mittag Leffler function
is also known as the fractional exponential function.

Fractional order models present a relevant drawback due to the difficulty in handling nu-
merically constitutive equations of fractional order, in particular of differential type (Adolfsson
et al., 2005). Moreover, the identification of the constitutive parameters relies on a strongly
ill-conditioned minimization problem (see Chapter 4). For this reason, they are rarely imple-
mented in commercial codes and therefore their use is very limited.

Quasi-Linear Viscoelasticity

Because of the inherent nonlinear behavior exhibited by most of carbon black-filled rubber,
the linear formulation is not applicable in general.

In the context of nonlinear viscoelasticity, one of the simplest model is the Quasi-Linear
viscoelastic model proposed by Fung (Fung, 1972). In one dimension, he suggested the fol-
lowing relationship for the second Piola-Kirchhoff stress T in terms of the stretch λ := `/`0,

T (t) =

∫ t

−∞
k(t− s) ∂T

e[λ(s)]

∂λ

∂λ

∂s
ds , (3.21)

that is, the tensile stress at time t is the sum of contributions of all the past changes, each
governed by the same relaxation function. T e(λ), a function of λ alone, is the nonlinearly
elastic response.

Rewriting Eq. (3.21) in the form

T (t) =

∫ t

−∞
k(t− s) Ṫ e(s)ds , (3.22)

we see that the stress response depends linearly upon the nonlinear function of the strain
T e(λ), from which the name “Quasi-Linear” derives. If the material is in the natural state for
t < 0, Eq. (3.22) reduces to

T (t) = T e[λ(t)] +

∫ t

0

∂k(t− s)
∂t− s

T e[λ(s)] ds , (3.23)

since k(0) = 1 and all the functions are smooth in 0 ≤ t < ∞. Equation (3.23) states that
the tensile stress at time t is equal to the instantaneous elastic response T e decreased by an
amount depending on the past history, since k̇(t) is negative.

Recently many investigators have proposed their own nonlinear viscoelastic constitutive
relationship. Among them, the predictive capabilities of the models introduced in (Fosdick
& Yu, 1998; Hallquist, 1998; Hibbit et al., 2007; Shim et al., 2004; Yang et al., 2000) will be
analyzed in Chap. 4 with respect to the experimental data shown in Chap. 1.

There are several applications of the viscoelastic theory concerning the behavior of carbon
black-filled elastomers at high strain rates (102 − 103 s−1) (Hoo Fatt & Ouyang, 2007; Shim
et al., 2004; Yang et al., 2000). In all these models the time derivative of the strain explicitly
appears in the hereditary term. Hoo Fatt & Ouyang’s model is developed from the BKZ
constitutive equation (Bernstein et al., 1963) and is reported to be able to capture the high
modulus due to high strain rates. However, it shows some shortcomings owing to a zero
Young’s modulus in the undeformed configuration and, hence, it will not be considered in the
comparison addressed in Chap. 4.

In particular, for this model, the Cauchy stress σ arising from a constant strain rate test,
say ε̇0, such that λ = 1 + ε̇0t, is

σ = 2α1(I1 − 3)α2

(
λ2 − 1

λ

)
−
(
λ2 − 1

λ

)∫ λ

1

[
2β1k̇(

λ− ζ
ε̇0

)

(
ζ2 +

2

ζ
− 3

)(
ζ − 1

ζ2

)]
dζ
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and, hence, the Young’s modulus around the undeformed configuration is zero ([∂σ/∂λ]λ=1 = 0),
which contrasts with the experimental evidences.

Advanced finite element codes are often called upon to simulate tires and biological soft
tissues because of the complex behavior of these NLV materials. Among many, two of the
most used FEA codes, which includes a finite viscoelasticity model, are the Abauqs FEA and
the LS-Dyna code. Both of these numerical tools are used in different branches of engineering
(e.g, aeronautical, automotive, structural).

In particular, the LS-Dyna finite viscoelastic relationship (Hallquist, 1998) takes into ac-
count rate effects through linear viscoelasticity by a convolution integral. The model corre-
sponds to a Maxwell fluid consisting of dampers and springs in series. The Abaqus FEA model
is reminiscent of, and similar to, a well-established model of finite viscoelasticity, namely the
Pipkin–Rogers model (Pipkin & Rogers, 1968). This model, with an appropriate choice of
the constitutive parameters, reduces to the Fung (QLV) model (Ciambella et al., 2009; Hibbit
et al., 2007).

Differential Viscoelasticity

Finally, it is worth mentioning another approach used to describe nonlinear viscoelastic solids:
nonlinear differential viscoelasticity (Biot, 1954; Schapery, 1997; Tvedt, 2008). This theory
has been successfully applied to model finite amplitude waves propagation (Destrade & Sac-
comandi, 2004; Destrade et al., 2009; Hayes & Saccomandi, 2000). It is the generalization
to the three-dimensional nonlinear case of the rheological element composed by a dashpot in
series with a spring. Thus in the simplest case, the stress depends upon the current values of
strain and strain rate only. In this sense, it can account for the nonlinear short-term response
and the creep behavior, but it fails to reproduce the long-term material response (e.g., relax-
ation tests). The so-called Mooney-Rivlin viscoelastic material (Beatty & Zhou, 1991) and
the incompressible version of the model proposed by Landau & Lifshitz (1986) belong to this
class.

The substantive “grade 1” is generally used referring to such models for remarking the de-
pendence of stress on the strain rate only (see Truesdell & Noll, 1965). Constitutive equations
with higher order time derivatives are also used (see, e.g., Fosdick & Yu, 1996).

3.3 Quasi-Linear Viscoelasticity

3.3.1 Fung’s Model

A quite general integral series representation of the internal energy Ψ was proposed by Pipkin
& Rogers (1968). Dai et al. (1992) used the first term of such an integral series to describe
the nonhomogeneous deformation of a nonlinearly viscoelastic slab. The constitutive relation
they obtained is

T(t) = R[C(t), 0] +

∫ t

0

∂

∂(t− s)
(R[C(s), t− s])ds. (3.24)

Here R[C(t), 0] represents the stress due to an instantaneous deformation occurring at time
t = 0, while R[C(s), ξ] is a strain dependent tensorial relaxation function which in the case
of isotropy has the form

R[C(τ), ξ] = φ0(τ, Ii(ξ))I + φ1(τ, Ii(ξ))C(τ) + φ−1(τ, Ii(ξ))C
−1(τ), (3.25)
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where φ0, φ1, φ−1 are scalar functions of time ξ and of the principal strain invariants I1, I2

and I3 (2.16)-(2.18) at time τ . The expression given be eq. (3.24) incorporates the assumption
that there has been no deformation prior to time t = 0.

Johnson et al. (1996a) have shown that, if the relaxation property can be described by a
scalar function k(t), the single integral representation (3.24) is equivalent to the Quasi-Linear
Viscoelastic (QLV ) model first introduced by Fung (1972), i.e.,

T(t) =θ̂0(t)I + θ̂1(t)C(t) + θ̂−1(t)C−1(t)

+

∫ t

0
k̇(t− s)

{
θ̂0(s)I + θ̂1(s)C(s) + θ̂−1(s)C−1(s)

}
ds (3.26)

which follows from (3.24)-(3.25) with the identification

φi(τ, Ii(ξ)) = k(ξ)θ̂i(I1(τ), I2(τ), I3(τ)), i ∈ {1, −1, 0} (3.27)

where k(t) is the reduced viscoelastic kernel. In the next, the dependence of θi upon the strain
invariants I1, I2, I3 will be specified only when necessary.

The Quasi-Linear Viscoelastic (QLV) model has proven to be a successful phenomenologi-
cal model for describing the nonlinear viscoelastic behavior of solids (see references in Johnson
et al., 1996b; Rajagopal & Wineman, 2008).

If the reference configuration is stress free, the coefficients θ0, θ1, θ−1 cannot be arbitrary
assigned, but the following restriction

θ0(3, 3, 1) + θ1(3, 3, 1) + θ−1(3, 3, 1) = 0 (3.28)

must hold.
In the case of incompressibility Fung’s model reads as

T(t) =p(t)C−1(t) + θ0(t)I + θ1(t)C(t)

+

∫ t

0
k̇(t− s) {θ0(s)I + θ1(s)C(s)} ds, (3.29)

where p(t) is the Lagrange multiplier associated to the incompressibility constraint, which in
the dynamic case reads as

∀t, det C(t) = 1. (3.30)

As in the static case, p(t) must be determined from equilibrium equations and boundary
conditions.

Equation (3.29) states that the stress at time t is equal to the instantaneous response
decreased by an amount depending on the past history, since k̇(t) is generally negative valued.
In other words, the QLV model reflects strain history dependent stress and fading memory.

In order to express relaxation properties, Prony’s series (3.16) might be used, i.e.,

k(t) =
N∑
i=1

µi
µ0

+
N∑
i=1

(
1− µi

µ0

)
e
− t
τi ,

N∑
i=1

µi = µ∞ , (3.31)

where µ0 is a real constant representing the shear modulus in the reference configuration, µ∞
is the ultimate value to which the shear modulus settles after an infinite time and τi are the
characteristic time constants.

To emphasize some limits of Fung’s model, we henceforth focus on an incompressible
viscoelastic solid for which the instantaneous response is modeled by a Neo-Hookean stress-
strain relationship, i.e.,

Te = pC−1 + µ0I (3.32)
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Then from (3.29) we have the identification θ0 = µ0, θ1 = θ−1 = 0, that yields:

T(t) = p(t)C−1(t) + µ0k(t)I, (3.33)

since k(0) = 1, or for the Cauchy stress tensor:

σ(t) = p(t)I + µ0k(t)B(t). (3.34)

Let us consider an uniaxial deformation described by

x1 = λ(t)X1, x2 = λ(t)−1/2X2, x3 = λ(t)−1/2X3, (3.35)

where λ(t) is the stretch ratio in the direction of the extension. The resulting deformation
gradient has the diagonal form

F(t) = Diag
[
λ(t), λ(t)−1/2, λ(t)−1/2

]
. (3.36)

Assuming that the uniaxial deformation arises from a uniaxial tension with σ11 6= 0,
σ22 = σ33 = 0 enables us to compute the Lagrange multiplier p(t). The resulting non-zero
component of the Cauchy stress is

σ11(t) =

[
µ∞ +

N∑
i=1

(µ0 − µi) exp−t/τi

]
[λ2(t)− λ−1(t)], (3.37)

hence, system response in the steady state (t� max {τ1, ..., τN}) is

σSS11 (t) =µ∞[λ2(t)− λ−1(t)], (3.38)

which is the response of a purely elastic non-dissipative material.

3.3.2 Fosdick and Yu’s model

In the framework of nonlinear viscoelasticity, Fosdick & Yu (1998) proposed their own con-
stitutive equation.

They assumed that the second Piola-Kirchhoff stress tensor is given by

T(t) =θ0(t)I + θ1(t)C(t) + θ−1(t)C−1(t)

+ J(t)F−1(t)

{∫ ∞
0

k̇(s) [Ct(t− s)− I] ds
}

F−T (t), (3.39)

where Ct(s) is the relative right Cauchy-Green strain tensor:

Ct(s) = FT
t (s)Ft(s) = F−T (s)FT (s)F(s)F−1(t), (3.40)

being Ft(s) = F(s)F−1(t).
If a strain C(t) is suddenly applied at time t = 0, e.g.,

C(t) =

{
I, if t ≤ 0

C+(t) 6= I, if t > 0
(3.41)

equation (3.39) takes the following form

T(t) = Te(t) + J(t)F−1(t)F−T (t)

{∫ t

0
k̇(t− s) [C(s)−C(t)] ds

}
F−1(t)F−T (t) (3.42)
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where
Te(t) = θ0(t)I + θ1(t)C(t) + θ−1(t)C−1(t) (3.43)

is the instantaneous part of the stress.
For an incompressible material, a Lagrangian multiplier accounting for the constraint

det C = 1 must be introduced and, hence, equation (3.39) becomes

T(t) =q(t)C−1(t) + θ0(t)I + θ1(t)C(t)

+ F−1(t)F−T (t)

{∫ t

0
k̇(t− s)C(s)ds

}
F−1(t)F−T (t), (3.44)

or in terms of Cauchy stress,

σ(t) =q̃(t)I + θ̃0(t)B(t) + θ̃1(t)B2(t) + F−T (t)

{∫ t

0
k̇(t− s)C(s)ds

}
F−1(t). (3.45)

Fosdick and Yu’s model has been successfully applied to describe finite amplitude wave
propagation (Destrade & Saccomandi, 2006; Hayes & Saccomandi, 2000; Salvatori & Sanchini,
2005).

By comparing (3.44) with Fung’s constitutive equation (3.29), the differences between the
two models appear:

• the ”instantaneous” part of the stress is the same in the two models;

• the “dissipative” term of Fosdick’s model differs from that of the QLV model (3.29)
since it represents the history of the symmetric Piola-Kirchhoff stress transformed by
push-forward and pull-back deformations.

To investigate thoroughly the behavior of Fosdick and Yu’s model, let us consider a simple
shear deformation of amount γ(t) in the plane 12, e.g,

F(t) =

1 γ(t) 0
0 1 0
0 0 1

 . (3.46)

Hence, the right-Cauchy-Green strain tensor reads as

C(t) =

 1 γ(t) 0
γ(t) 1 + γ2(t) 0

0 0 1

 . (3.47)

If there is no traction acting on the lateral surfaces, it results σ33(t) = 0, then the Lagrangian
multiplier p(t) into (3.45) can be computed. The Cauchy stress resulting from Eq. (3.39) has
the following components:

σ11(t) = γ2(t)[θ̃0(t) + 3θ̃1(t) + θ̃1(t)γ2(t)],

σ12(t) = γ(t) [θ̃0(t) + 2θ̃1(t) + θ̃1(t)γ2(t)] +

∫ ∞
0

k̇(t− s) [γ(s)− γ(t)] ds,

σ22(t) = θ̃1(t)γ2(t) +

∫ ∞
0

k̇(t− s) [γ(s)− γ(t)]2 ds.

While the stresses σ12 and σ22 consist of an elastic term plus a dissipative integral as the stan-
dard one-dimensional model of linear viscoelasticity, σ11 is a purely elastic force distribution,
i.e., there is no stress-relaxation. This behavior seems in contrast to the assumed isotropy of
the material.
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3.3.3 Abaqus FEA model

Commercial finite element codes are often called upon to simulate the behaviour of tyres
in real-world applications. These numerical codes are mostly used as “black-boxes”, and the
validity of the results is rarely questioned, even though they might provide a decisive argument
in favour of, or against, the viability of a given tyre model.

With this aim we introduce the ABAQUS FEA finite viscoelasticity constitutive relation1

and we investigate the resulting material behavior by means of two prototype experiments.
Section 4.8.2 of the ABAQUS Theory Manual (Hibbit et al., 2007) gives the constitutive

relation for modeling nonlinear viscoelastic effects in the form:

σ(t) = σe(t) + SYM
{

F(t)

[∫ t

0

J(s)

J(t)
k̇(t− s)F−1(s)σe(s)F(s)ds

]
F−1(t)

}
, (3.48)

where σe is the instantaneous elastic Cauchy stress response (elastic response at very short
times), k is the so-called viscoelastic kernel, which characterizes the stress relaxation and
satisfies k(0) = 1.

Also, “SYM” represents the symmetric part of the bracketed term. The constitutive re-
lation (3.48) is valid for compressible as well as incompressible solids. In the latter case the
hydrostatic term −p̂I in σe (where p̂ is a Lagrange multiplier) is a workless constraint stress
in both the instantaneous response and in the history term, as expected. Indeed, for an
incompressible solid, it results J(t) = 1, for each t, and σe has the general form:

σe = −p̂I + ψ1B + ψ2B
2, (3.49)

where ψ1, ψ2 are scalar functions of time and of the first and second principal invariants,
I1, I2, of C.

Then (3.48) reduces to

σ(t) = −p(t)I + ψ1(t)B(t) + ψ2(t)B(t)2

+

2∑
i=1

SYM
{

F(t)

[∫ t

0
k̇(t− s)ψi(s)C(s)ids

]
F−1(t)

}
,

(3.50)

where p(t) = p̂(t) +
∫ t

0 k̇(t − s)p̂(s)ds is arbitrary and remains to be determined from ini-
tial/boundary conditions.

On inspection of equations (3.29) and (3.50), it can be seen that there are two main
differences between the models. First, the integral term in equation (3.50) is generally non-
symmetric, in contrast to the integral term in equation (3.29). This is taken care of in an
ad hoc manner by using the “SYM” operator. Also, the history (time integral) term in the
ABAQUS model terminates with F(t)−1 in contrast to the history term in the the QLV model,
which terminates with F(t)T . The latter fits more naturally with the usual expression for the
traction σnda via Nanson’s formula FTnda = JNdA connecting reference and deformed area
elements (J = 1 here). In fact, the ‘push-forward’ to the configuration at time t from that at
time s of the (symmetric) Cauchy stress σe(s) should involve F(t)F−1(s)σe(s)F

−T (s)FT (t)
rather than the F(t)F−1(s)σe(s)F(s)F−1(t) that appears in (3.50). This change would remove
the need to apply the SYM operation. However, for an incompressible material use of (3.49)
then leads to a term in p that doesn’t give a workless constraint stress. This can be corrected
by, for example, dropping this term from (3.49) in the integral, in which case (3.50) would be

1A new version of the Abaqus Finite Element Analysis package has recently been released (June 2009)

and the finite viscoelasticity model has been replaced
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replaced by
σ(t) =− p(t)I + ψ1(t)B(t) + ψ2(t)B(t)2

+ F(t)

[∫ t

0
k̇(t− s)ψi(s)C(s)ids

]
FT (t),

(3.51)

with p(t) the arbitrary pressure. This is then a special case within the model (3.29).
A numerical comparison between the QLV and the Abaqus FEA model for the simple shear

and uniaxial extension case has been performed to further highlight the differences between
the two models. The results of the simulations are reported in Section 5.4.

3.4 Linear Viscoelasticity

3.4.1 Reduction from nonlinear theory

In order to prove the compatibility of Fung’s QLV model with the linear theory of infinitesimal
viscoelasticity (see, e.g., Coleman & Noll, 1961; Gurtin & Sternberg, 1962) we will reduce
the QLV constitutive equation to (3.14) by ignoring higher order terms in the deformation
gradient.

The base assumption of linear elasticity, thus viscoelasticity, is that the second order term
in a formal series expansion (with respect to a small scalar evolution parameter ε) of the
displacement gradient can be ignored.

To make the meaning of ” small ” precise, let assume that F = F(τ) is the deformation
gradient at time τ , and let put

H = F− I. (3.52)

The tensor H is the gradient of the vector u = u(τ) of the displacement from the reference
configuration.
We put

Hε = εH (3.53)

where ε = ||Hε|| and ||H|| = 1. We regard ε as the measure of ”smallness” of the deformation
history. The linearized strain tensors, hence, follow

Fε = I + εH + o(ε2)

Cε = FT
ε Fε = I + 2 εE + o(ε2)

C−1
ε = I− 2 εE + o(ε2)

(3.54)

where E = (H+HT )/2 is the symmetric part of the displacement gradient, while the linearized
strain invariants are

Iε1 = 3 + 2 ε tr{E}+ o(ε2), (3.55)

Iε2 = 3 + 4 ε tr{E}+ o(ε2), (3.56)

Iε3 = 1 + 2 ε tr{E}+ o(ε2). (3.57)

Let recall the QLV model introduced by Fung

T(t) = Te(t) +

∫ t

0
k̇(t− s)Te(s)ds,

Te(t) = θ0(t)I + θ1(t)C(t) + θ−1(t)C−1(t),

(3.58)
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where θΓ(I1, I2, I3), Γ = −1, 0, 1, is a function of the strain invariants I1, I2 and I3 at time t.
For small strains, the coefficients θΓ can be expanded in Taylor’s series as

θΓ(Iε1 , I
ε
2 , I

ε
3) = θ0

Γ + 2 ε tr{E}
[
∂θΓ

∂Iε1
+ 2

∂θΓ

∂Iε2
+
∂θΓ

∂Iε3

]
ε=0

, θ0
Γ = θΓ(3, 3, 1), (3.59)

where higher order terms in ε2 have been neglected. Therefore the constitutive equation for
the instantaneous stress Te(t) becomes

Tε
e(t) =

[
θ0
−1 + θ0

0 + θ0
1

]
I + 2 ε

[
θ0

1 − θ0
−1

]
E+

+ 2 ε tr{E} I
∑

Γ=−1,0,1

[
∂θΓ

∂Iε1
+ 2

∂θΓ

∂Iε2
+
∂θΓ

∂Iε3

]
ε=0

.
(3.60)

If the reference configuration is a natural state, then θ0
−1 + θ0

0 + θ0
1 = 0 and the QLV

constitutive equation reduces to the linear viscoelastic model, i.e.,

σ(t) =2µE(t) + λ tr {E(t)} I+

+

∫ t

0
k̇(t− s) [2µE(s) + λ tr {E(s)} I] ds

(3.61)

where λ and µ are called Lamé moduli.
From equations (3.60) and (3.61) the relation between the Lamé parameters and the

coefficients θΓ follows, e.g.,

µ = θ0
1 − θ0

−1

λ = 2
∑

Γ=−1,0,1

[
∂θΓ

∂Iε1
+ 2

∂θΓ

∂Iε2
+
∂θΓ

∂Iε3

]
ε=0

(3.62)

An improved model in linear viscoelasticity can be obtained from equation (3.61) in the
hypothesis of different relaxation properties for the deviatoric and spheric parts of the strain.
It means that the previous equation can be rewritten as:

σD(t) = G(0) ED(t) +

∫ t

0
ED(t− s) Ġ(s) ds (3.63)

σV (t) = H(0) trE(t)I +

∫ t

0
trE(t− s)I Ḣ(s) ds (3.64)

where a subscript (·)D represents the deviatoric part of a tensor, G(t) and H(t) are the
viscoelastic kernels of the deviatoric and volumetric part of the stress, respectively. They are
usually called shear and bulk modulus.

3.4.2 Dynamic Moduli

There are practical situations in which viscoelastic bodies may be subjected to steady state
oscillatory conditions. The fading memory property guarantees that, for such displacement
law, the stress gets into a steady state, hence, it is reasonable to expect that a special form
of the stress might arise (see, e.g., Christensen, 2003). This situation will here be analyzed.

Let us consider the case of isotropic materials subjected to an uniaxial deformation, and
let the stress-strain relation

σ(t) = kα(0) ε(t) +

∫ t

0
ε(t− s) k̇α(s) ds (3.65)
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designate either the deviatoric or the volumetric part of the stress in equations (3.63) and
(3.64), depending upon whether α = 1 or α = 2.

With integration by parts, equation (3.65) becomes

σ(t) = kα(t) ε(0) +

∫ t

0
kα(t− s) ε̇(s) ds (3.66)

We let the strain history be specified as being a harmonic function of time according to:

ε(t) = ε0 + ε1 sin (ωt) (3.67)

hence

σ(t) = kα(t)ε0 + ε1

∫ t

0
kα(t− s)ω cos (ω s) ds

= kα(t)ε0 + ε1

∫ t

0
kα(s)ω cos (ω (t− s)) ds

= kα(t)ε0 + ε1 cos (ω t)

∫ t

0
kα(s)ω cos (ω s) ds

+ ε1 sin (ω t)

∫ t

0
kα(s)ω sin (ω s) ds

(3.68)

It is useful to decompose the viscoelastic kernel kα(t) as:

kα(t) = k̃α + k̂α(t) (3.69)

where in accordance to fading memory properties, it results:

k̂α(t)→ 0 as t→∞ (3.70)

By means of (3.69) and (3.70), the steady state response of the system (t → ∞) is:

σs(t) ' k̃αε0 + ε1 sin(ω t)

[
k̃α +

∫ ∞
0

k̂α(t)ω sin(ω s) ds
]

+ cos(ω t)

∫ ∞
0

k̂α(t)ω cos(ω s) ds

= k̃αε0 + ε1 [Sα(ω) sin(ω t) + Lα(ω) cos(ω t)] (3.71)

The existence of the integrals in previous equation is assured by (3.70) and by the fading
memory requirement (3.14).

The quantities

Sα(ω) =G̃α +

∫ ∞
0

k̂α ω sin(ω s) ds

Lα(ω) =

∫ ∞
0

k̂α ω cos(ω s) ds
(3.72)

are generally referred to as the storage and the loss moduli. Moreover the complex function:

k∗α(ω) = Sα(ω) + j Lα(ω), j =
√
−1 (3.73)

is called dynamic modulus.
From equation (3.71) we can obtain the inverse relation between the stress and the complex

moduli

Sα(ω) :=
2

ε1

ω

2π

∫ 2π
ω

0
σs(t) sin(ω t) dt = −(πε21 ω)−1

∫ 2π
ω

0
σs(t) ¨ε(t) dt (3.74)

Lα(ω) :=
2

ε1

ω

2π

∫ 2π
ω

0
σSS(t) cos(ω t) dt = (πε21)−1

∫ 2π
ω

0
σSS(t) ε̇(t) dt (3.75)
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which allows us to calculate these moduli from experimental data.
Prony’s series form is generally chosen for the viscoelastic kernels, i.e.

kα(t)

k0
α)−1

= kα(t) = 1 +

N∑
i=1

kαi

(
exp
− t
τα
i −1

)
(3.76)

where kα0 is the modulus (shear or bulk) in the reference configuration. The normalized storage
and loss moduli become:

Sα(ω)

k0
α

=1−
N∑
i=1

kαi +

N∑
i=1

kαi τ
α 2
i ω2

1 + τα 2
i ω2

(3.77)

Lα(ω)

k0
α

=
N∑
i=1

kαi τ
α
i ω

1 + τα 2
i ω2

(3.78)

3.4.3 Some Remarks on Energy Dissipation

Dissipation in materials with memory is strictly related to the structure of the viscoelastic
kernel.

To investigate more thoroughly this point, let us consider an incompressible isotropic
material following the constitutive relation (3.61) subjected to the dynamic oscillation (3.67).
For such a material the volumetric part of the stress is not constitutively assigned and the
average rate of working per unit volume in the steady state oscillatory condition is:

Ed(ω, ε1) =
ω

2π

∫ 2π
ω

0
σs(t) ε̇(t) dt

=
1

2
ε21 ω L(ω) (3.79)

Equation (3.79) furnishes an alternative definition of loss modulus and contributes to explain
better the relation with the dissipation.

Assuming, once more, for the viscoelastic kernel the Prony’s series expansion, one gets:

Ed(ω, ε1) =
1

2
ε21 k0

N∑
i=1

ki τi ω
2

1 + τ2
i ω

2
(3.80)

hence Ed(ω, ε1) attends its maximum EM for ω →∞, that is:

EM = lim
ω→∞

Ed(ω, ε1) =
1

2
ε21 k0

N∑
i=1

ki
τi

(3.81)

The value of the maximum amount of energy is strictly related to the time behavior of
the viscoelastic kernel k(t); indeed, since

k(t) = k0

[
1 +

N∑
i=1

ki

(
exp
− t
τi −1

)]
, (3.82)

the time derivative of (3.82) around the initial time instant is:

∂k(t)

∂t

∣∣∣∣
t=0

= −G0

N∑
i=1

ki
τi

(3.83)
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Figure 3.1 Average rate of working per unit volume normalized with respect to k0 for k1 = 1, τ1 = 1, η = 1

and ε1 = 1.
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Figure 3.2 Storage modulus normalized with respect to k0 for k1 = 1, τ1 = 1 and η = 1.

Comparison between equation (3.80) and (3.83) shows us that for linear viscoelastic ma-
terials the average rate of working increases as fast as the memory fades.

This result can be compared with the case of differential viscoelasticity, which can be con-
sidered the limit case of a material with instantaneous memory. The stress-strain constitutive
relation is:

σ(t) = k0 ε(t) + η ε̇(t) (3.84)

where k0, η (k0 > 0, η > 0) are material constants. In this case the average rate of working
is:

Ed(ω, ε1) =
η

2
ε21 ω

2 (3.85)

that differs considerably from (3.80), as reported in figure (3.1).
Differences between (3.80) and (3.85) reflect on the different storage and loss moduli

behaviors (Figs. (3.2) and (3.3)).
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Figure 3.3 Loss modulus normalized with respect to k0 for k1 = 1, τ1 = 1 and η = 1.

3.5 Nonlinear Dynamic Moduli

The relation between loss modulus and dissipated energy indicates how to extend the def-
initions of dynamic moduli to nonlinear viscoelastic models. For small strain and assumed
linear viscoelastic stress-deformation model, the stress response is monochromatic at the same
frequency of sinusoidal input. However, real world loading conditions do not comply with this
linear assumption, since modes at multiple frequencies are also excited. Therefore, the as-
sumptions underlying equation (3.71) are no longer valid, requiring the introduction of a more
general definition.

Experimental evidence showing the variation of the dynamic moduli with respect to the
frequency for carbon black-filled rubber (Osanaiye, 1996), a polyurethane matrix (Gottenberg
& Christensen, 1964) and mozzarella cheese (Singh et al., 2006) are displayed in Fig. 3.4.

When assessed at the lowest frequencies, both the storage and loss moduli of all the
materials considered depend linearly on the frequency. For carbon black-filled rubber this
behavior has been reported by a number of different researchers (Lee & Kim, 2001; Luo
et al., 2010). In particular, Luo et al. use the empirical Kraus model endowed with a set of
parameters varying linearly with the frequency, in order to achieve an adeguate match with
the experimental data. However, such an empirical relation cannot be derived from any known
constitutive equation. Consequently, the possibility of introducing a stress-strain constitutive
relation able to reproduce the linear dependence of the dynamic moduli at low frequencies
has been investigated. Because, the linear viscoelastic model (3.65) is unable to reproduce
this behavior, a simple nonlinear model may be appropriate?

In particular, three different classes of nonlinear constitutive equation have been consid-
ered: (i) elastic, (ii) differential viscoelastic and (iii) integral viscoelastic. Although (i) cannot
account for dissipative effects, the derivation of the dynamic moduli in this case was useful for
the calculation involving models (ii) and (iii) which, instead, are generally used to describe
materials showing relevant hysteresis losses. Commonly employed constitutive equations be-
longing to the class (i) are the Neo-Hooke and Mooney-Rivlin hyperelastic models (see, e.g.,
Hartmann, 2001b). The so-called Mooney-Rivlin viscoelastic material (Beatty & Zhou, 1991)
and the incompressible version of the model proposed by Landau & Lifshitz (1986) belong to
class (ii). Finally, most of the nonlinear integral viscoelastic models fit within class (iii) (see
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Figure 3.4 Frequency dependence of the storage and loss moduli for different materials: (a)-(b) carbon

black-filled rubber (Osanaiye, 1996); (c)-(d) polyurethane matrix containing salt and aluminum

powder (Gottenberg & Christensen, 1964); (e)-(f) mozzarella cheese (Singh et al., 2006).
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Chap. 4).

3.5.1 Definitions

Most of the solid materials, under a suddenly applied deformation, exhibit a decaying stress
as function of time, while they react to a fast load with a time increasing deformation. Both
these phenomena are consequences of the fading memory properties of the material.

Fading memory mathematically translates into a constitutive relation for which the stress
at time t, say σ(t), depends on the deformation history up to time t, say εt, i.e.,

σ(t) = F[εt]. (3.86)

It should be noted that the function F depends upon the time only implicitly through ε.
Indeed, this corresponds to the assumption that the material is non-aging.

The idea of fading memory is rendered mathematically through the relaxation property
(see, for instance, Fabrizio et al., 1995). If ε1 and ε2 are two deformations such that ε1(t) =
ε2(t) for each t ≥ t0, then the relaxation property states that

lim
t→∞

{
F[εt1]− F[εt2]

}
= 0 . (3.87)

In the case of dynamic motion, let

u(t) = u0 + u1 sin(ωt) (3.88)

be the longitudinal displacement in an uniaxial deformation from which the nonlinear La-
grangian strain is as follows

ε(t) = ε0 + ε1 sin(ωt) (3.89)

obtained by dividing u(t) by the reference length l0. Therefore, by assuming into (3.87)
ε1(t) = ε(t) and ε2(t) = ε(t + T ), with T = 2π/ω, then for each t, ε1(t) = ε2(t) and
Eq. (3.87); thus,

lim
t→∞

{
F[εt]− F[εt+T ]

}
= 0 , (3.90)

and the steady state stress, say σs(t), arising from deformation (3.89) is T -periodic.
Therefore, fading memory properties assure that the material response to a harmonic

deformation gets into a periodic steady state.
Under weak regularity assumptions, e.g., σs(t) ∈ L2

[
−π
ω ,

π
ω

]
, the Fourier series of σs(t)

uniformly converges:

σs(t) =
σC0
2

+
∞∑
i=1

[
σSi sin(i ω t) + σCi cos(i ω t)

]
, (3.91)

being σSi and σCi the Fourier coefficients of σs(t) defined as

σSi =
ω

π

∫ π/ω

−π/ω
σs(t) sin(i ω t) dt , i = 1, 2, ...,

σCi =
ω

π

∫ π/ω

−π/ω
σs(t) cos(i ω t) dt , i = 1, 2, ... .

(3.92)

For materials whose constitutive response is linear, only the first coefficients, i.e., i = 1,
in the series (3.91) are non zero. In the nonlinear case, however, the stress arising from the
harmonic displacement (3.88) is no longer monochromatic since components at multiple of the
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input frequency are excited. Therefore, by considering the steady state stress response (3.91),
the definition of dynamic moduli can be extended to the case of a nonlinear stress-strain
relation, viz.

S = Ŝ(ε0, ε1, ω) :=
1

ε1

ω

π

∫ π/ω

−π/ω
σs(τ) sin(ωτ) ds =

σS1
ε1

,

L = L̂(ε0, ε1, ω) :=
1

ε1

ω

π

∫ π/ω

−π/ω
σs(τ) cos(ωτ) ds =

σC1
ε1

.

(3.93)

The definitions given in Eqs. (3.93) are consistent with those introduced in the linear context
and, hence, the same nomenclature of storage and loss moduli has been adopted.

By introducing the stationary average rate of working over a cycle, i.e.,

Ψ = Ψ̂(ε0, ε1, ω) := lim
t→∞

ω

π

∫ t+2π/ω

t
σ(τ)ε̇(τ)dτ , (3.94)

the loss modulus can be expressed in terms of Ψ as L = 2Ψ/(ω ε2
1).

Elasticity

In the general framework of materials with memory, nonlinear elasticity can be considered a
subset of this theory aimed at describing materials for which memory effects can be ignored.
Indeed, stress depends only upon the current value of strain. Although elastic constitutive
equations are not used to describe the dynamic behavior of elastomers, since they cannot
account for dissipated energy, for the sake of completeness the dynamic moduli have also
been derived.

The constitutive equation for a Cauchy elastic material reads as

σ(t) = f [ε(t)] (3.95)

where f is a nonlinear smooth function of ε(t).
If ε(t) is T -periodic, i.e., periodic of period T , then σ(t) is also T -periodic:

σ(t+ T ) = f [ε(t+ T )] = f [ε(t)] = σ(t) , (3.96)

and, therefore, σ(t) = σs(t) being the Fourier series (3.91) convergent.
Through the change of coordinates s = ωτ/π, the definitions (3.93) become

S = Ŝ(ε0, ε1) =
1

ε1

∫ 1

−1
f [ε0 + ε1 sin(πs)] sin(πs) ds ,

L = L̂(ε0, ε1) =
1

ε1

∫ 1

−1
f [ε0 + ε1 sin(πs)] cos(πs) ds ,

(3.97)

which explicate that, for elastic constitutive equations, both the storage and loss moduli are
frequency independent.

Under stronger regularity assumptions on f , e.g., f is an analytic function of ε, the Taylor’s
series around the prestrained configuration ε = ε0 (ε1 = 0) converges to f , i.e.,

σs(t) = f [ε0 + ε1 sin(ωt)] =

∞∑
i=0

εi1
i!
f̃i(ε0) sini(ωt) , (3.98)
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with f̃i(ε0) =
[
∂if/∂εi

]
ε1=0

. Therefore, Eqs. (3.97) become

S =
∞∑
i=0

εi−1
1

i!
f̃i(ε0)

∫ 1

−1
sini+1(πs) ds =

∞∑
i=0

f̃i(ε0)
εi−1

1

i!

1 + (−1)i+1

√
π

Γ(1 + i
2)

Γ(3+i
2 )

L =
∞∑
i=0

εi−1
1

i!
f̃i(ε0)

∫ 1

−1
sini(πs) cos(πs) ds = 0

(3.99)

where Γ(·) is the Euler gamma function. It should be noted that to write Eqs. (3.99), the
infinite summation has been taken out of the integral since the series (3.98) satisfies the
hypothesis of the Dominated Convergence Theorem (see, e.g., Kolmogorov, 1999).

Equations (3.99) state that in the purely elastic case, i.e., for a material described by the
constitutive relation (3.95), the loss modulus and the dissipated energy Ψ are zero. Indeed,
this result is in accordance with the definition of hyperelastic materials for which the work
done by body and surface forces is converted into kinetic energy and stored elastic energy,
without dissipation.

Equations (3.99) allow the storage modulus to be obtained simply by computing the
derivatives of f whatever constitutive equation in the form (3.95) is chosen.

Differential Viscoelasticity

The constitutive relation of a viscoelastic material is:

σ(t) = g[ε, ε̇] . (3.100)

Hereafter, a superimposed dot will represent the first-order time derivative.
The constitutive equation (3.100) is generally referred to as differential viscoelasticity to

distinguish it from the integral formulation introduced in the following. The substantive
“grade 1” is also used referring to (3.100) for emphasizing the dependence of σ on the strain
rate only (and not on the higher order time derivatives).

As in the case of a purely elastic material, if ε(t) is T -periodic, also σ(t) is T -periodic,
e.g.,

σ(t+ T ) = g[ε(t+ T ), ε̇(t+ T )] = g[ε(t), ε̇(t)] = σ(t) ; (3.101)

therefore σs(t) = σ(t).
If the function g is analytic with respect to ε1, Taylor’s series around the prestrained

configuration ε = ε0 (ε1 = 0) coincides with g (see the Appendix); therefore, the storage and
loss modulus become

S = Ŝ(ε0, ε1, ω) =

∞∑
i=0

i∑
n=0

ωi−nεi1
n!(i− n)!

g̃i(ε0)

∫ 1

−1
sin(πs)n+1 cos(πs)i−n ds ,

L = L̂(ε0, ε1, ω) =

∞∑
i=0

i∑
n=0

ωi−nεi1
n!(i− n)!

g̃i(ε0)

∫ 1

−1
sin(πs)n cos(πs)i−n+1 ds ,

(3.102)

with g̃i(ε0) =
[
(∂ng/∂εn) (∂i−ng/∂ε̇i−n)

]
ε1=0

.
The derivatives with respect to the frequency for ω → 0 are

∂S

∂ω

∣∣∣∣
ω=0

=

∞∑
i=1

εi1
(i− 1)!

g̃i(ε0)

∫ 1

−1
sin(πs)i cos(πs) ds = 0 ,

∂L

∂ω

∣∣∣∣
ω=0

=
∞∑
i=1

1

2
√
π

ε2i−1
1

(2i− 2)!
g̃2i−1(ε0)

Γ(i− 1
2)

Γ(i+ 1)
.

(3.103)
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Integral Viscoelasticity

To take into account the fading memory properties of the material, a hereditary integral should
be introduced in the constitutive equation (see, e.g., Christensen, 2003; Drapaca et al., 2007;
Tschoegl, 1989). A convenient formulation to represent most of the nonlinear viscoelastic
models used in the literature is

σ(t) = f [ε, ε̇] + l[ε, ε̇]

∫ t

−∞
k̇(t− s)h[ε, ε̇] ds (3.104)

where k(t) is the viscoelastic kernel. In the linear case, i.e., f [ε, ε̇] = k0ε(t), l[ε, ε̇] = 1 and
h[ε, ε̇] = ε(t), the conditions on k(t) to satisfy the principle of thermodynamics are well-known
(see, for example, Hanyga, 2005). They state that

k(t) ≥ 0 , k̇(t) ≤ 0 , k̈(t) ≥ 0 ,

lim
t→∞

k(t) = k∞ < +∞, lim
t→∞

k̇(t) = 0
(3.105)

and, hence, k∞ < k0, with k0 = k(0).
Constitutive equation (3.104) assures that the stress arising from a T-periodic strain is

T-periodic, viz.

σ(t+ T ) =f [ε(t+ T ), ε̇(t+ T )]

+ l[ε(t+ T ), ε̇(t+ T )]

∫ +∞

0
k̇(τ)h[ε(t+ T − τ), ε̇(t+ T − τ)] dτ =

=f [ε(t), ε̇(t)] + l[ε(t), ε̇(t)]

∫ +∞

0
k̇(τ)h[ε(t− τ), ε̇(t− τ)] dτ = σ(t) , (3.106)

and, hence, σs(t) = σ(t). Therefore, if the Fourier series of the functions f , g and l are
absolutely convergent, then, by means of the Cauchy formula for the product between two
series (see, e.g., Rudin, 1976), the constitutive equation (3.104) can be expressed as

σs(t) =
σ̃0

2
+

+∞∑
i=1

[
σ̃Si sin(i ω t) + σ̃Ci cos(i ω t)

]
(3.107)

with
σ̃0 = σ̂0(f0, l0, H0) ,

σ̃Si = σ̂Si (fSi , f
C
i , l

S
i , l

C
i , H

S
i , H

C
i ;ω, t) ,

σ̃Ci = σ̂Ci (fSi , f
C
i , l

S
i , l

C
i , H

S
i , H

C
i ;ω, t) ,

(3.108)

and
H0 = h0 (k∞ − k0), k0 <∞ ,

HS
i = hSi

∫ +∞

0
k̇(s) cos(iωs)ds− hCi

∫ +∞

0
k̇(s) sin(iωs)ds,

HC
i = −hSi

∫ +∞

0
k̇(s) sin(iωs)ds+ hCi

∫ +∞

0
k̇(s) cos(iωs)ds .

(3.109)

The existence of the integrals in (3.109) is assured by the asymptotic properties (3.105) of the
viscoelastic kernel.

In Eqs. (3.108)-(3.109) fSi , f
C
i , lSi , l

C
i , h

S
i and hCi are the Fourier coefficients of the

functions f , l and h obtained by Eqs. (3.92); therefore alle these coefficients depend on the
frequency, but this dependence has been omitted in (3.109) for the sake of brevity.
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Equation (3.107) explicates the dependence of the harmonic stress upon the oscillatory
strain for the nonlinear constitutive equation (3.104). The dynamic moduli are obtained by a
standard projection of (3.107) over sin(ωt) and cos(ωt). After some manipulations, the result
is

S = Ŝ(ε0, ε1, ω) =
1

ε1

[
fS1 +

l0
2
HS

1 +
lS1
2
H0

]
+

1

2 ε1

+∞∑
i=1

[
−lSi HC

i+1 + lSi+1H
C
i

]
+

1

2 ε1

+∞∑
i=1

[
lCi H

S
i+1 − lCi+1H

S
i

]

L = L̂(ε0, ε1, ω) =
1

ε1

[
fC1 +

l0
2
HC

1 +
lC1
2
H0

]
+

1

2ε1

+∞∑
i=1

[
lSi H

S
i+1 + lSi+1H

C
i

]
+

1

2ε1

+∞∑
i=1

[
lCi H

S
i+1 + lCi+1H

S
i

]

(3.110)

If f , l and h are analytic functions of ε1, Equations (3.110) allow the derivative of the
storage modulus for ω → 0 to be calculated, viz.

∂S

∂ω

∣∣∣∣
ω=0

=
k∞ − k0

2 ε1

∞∑
i=1

[
−∂l

S
i

∂ω
hCi+1 − lSi

∂hCi+1

∂ω
+
∂lSi+1

∂ω
hCi + lSi+1

∂hCi
∂ω

]
ω=0

+

k∞ − k0

2 ε1

∞∑
i=1

[
∂lCi
∂ω

hSi+1 + lCi
∂hSi+1

∂ω
−
∂lCi+1

∂ω
hSi − lCi+1

∂hSi
∂ω

]
ω=0

.

(3.111)

It can be easily proven that the coefficients hSi (0) and lSi (0) (hCi (0) and lCi (0)) are zero if
i is even (odd); furthermore, the derivatives ∂hSi

∂ω (0) and ∂lSi
∂ω (0) (∂h

C
i

∂ω (0) and ∂lCi
∂ω (0)) are zero

if i is odd (even). Therefore, for each i the square brackted term vanish and ∂S
∂ω (0) = 0.

3.5.2 One-dimensional model

In the previous paragraph some inconsistencies between the dynamic moduli, following from
definitions (3.93), and the experimental data, collated from the literature, were highlighted.
In particular, while the results of experiments display a non-zero derivative of the storage
modulus for ω which tends to zero, all the constitutive equations considered result in an
horizontal tangent at ω = 0. This frequency behavior produces a relevant error in the fitting
at lowest frequencies and is an important drawback as in many operative conditions the
material is subjected to strain rate corresponding to frequencies lower than 200 s−1.

In order to obtain an accurate match with the experimental data, a constitutive equation
not belonging to the classes (i), (ii) and (iii) must be considered.

As the basis for an appropriate constitutive equation, the linear viscoelastic model already
introduced in Sec. 3.4 was used, i.e.,

σ(t) = k0 ε(t) +

∫ t

−∞
k̇(t− s)ε(s) ds , (3.112)

and, as a consequence, the constitutive functions f , h and l are

f [ε, ε̇] = k0 ε(t) , l[ε, ε̇] = 1 , h[ε, ε̇] = ε(t). (3.113)
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Figure 3.5 Panel (a) displays the N-terms generalized Maxwell element while panel (b) displays the modified

Maxwell element with hysteretic dampers.

From Eqs. (3.110), the dynamic moduli are obtained as

S(ω) = k0 +

∫ +∞

0
k̇(s) cos(ωs) ds ,

L(ω) = −
∫ +∞

0
k̇(s) sin(ωs) ds .

(3.114)

If the Prony’s series is used to represent the viscoelastic kernel k(t), viz.

k(t) = k0

(
1−

N∑
i=1

ki +

N∑
i=1

ki e−t/τi
)
,

N∑
i=1

ki < 1 , (3.115)

Eqs. (3.114) can be expressed in terms of characteristic amplitudes ki and times τi:

S = Ŝ(ω, k0, ki, τi) = k0

(
1−

N∑
i=1

ki
1 + τ2

i ω
2

)
,

L = L̂(ω, k0, ki, τi) = k0

(
N∑
i=1

ki τi ω

1 + τ2
i ω

2

)
,

(3.116)

and Eqs. (3.77) and (3.78) are recovered. It should be noted that in the linear case neither
moduli depend on ε0 or on ε1, but only on the frequency ω.

Figure 3.6 shows the frequency dependence of the storage and loss moduli for a carbon
black-filled elastomer (experiments carried out by the author). In the same figure the results
of the fitting obtained with model (3.116) are shown.

In order to match adequately the experimental data, some modifications of the linear
model must be considered. To this end it is convenient to reformulate Eq. (3.112) in terms of
its equilibrium and overstress parts. The stress can be split into two contributions, i.e.,

σ(t) = σel(t) + σov(t) = k∞ ε(t) +
N∑
i=1

σ(i)
ov (t) , (3.117)

with k∞ = k0(1−
∑N

i=1 ki). The evolution equations of the overstress terms are:

σ̇(i)
ov (t) +

1

τi
σ(i)
ov (t) = k0 ki ε̇(t) i = 1, ..., N . (3.118)
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Figure 3.6 Fitting of the storage, (a), and loss, (b), moduli with the standard linear viscoelastic model

(Standard Kernel) and with the model proposed (Complex Kernel).

Equations (3.117) - (3.118) are standard constitutive equations in material rehology. They
correspond to a generalized Maxwell element in parallel to a spring (Fig. 3.5a). By integrating
(3.118) and substituting into (3.117), the linear viscoelastic model (3.112) is recovered.

Appropriate models to describe the linear frequency dependence of dynamic moduli can
be formulated by considering the constitutive equation of a linear hysteretic damper (Inaudi
& Makris, 1996), which in Fourier domain reads as

σ̃(j ω) = k [1− j η sign(ω)] ε̃(j ω) (3.119)

In Eq. (3.119), σ̃, ε̃ are the Fourier transforms of stress and defomation, while j =
√
−1 and

η is a frequency independent loss factor; sign(·) is the signum function, i.e., sign(x) = 1 if
x > 0, sign(x) = −1 if x < 0, sign(x) = 0 if x = 0. A time-domain representation of the
element (3.119) would involve the Hilbert-transform (Inaudi & Kelly, 1995).

In order to describe the steady state response of mechanical systems subjected to har-
monic deformations and, hence, attention has been focused on the frequency domain. The
generalized Maxwell model, governed by the evolution equation (3.118), can be modified by
introducing N hysteretic blocks in parallel, as shown in Fig. 3.5b. The constitutive equation
of the i-th block is given by:

σ̃iov(jω)

ε̃(jω)
= j k0 (1 + ηiωτi)

kiτiω

1 + ω2τ2
i

+ k0 (ω τi + ηi)
ωτiki

1 + ω2τ2
i

, (3.120)

which arises from the series of a hysteretic spring and dashpot. The constitutive equation of
the modified Maxwell element shown in Fig. 3.5 is

σ̃(jω) = σ̃el(jω) +
N∑
i=1

σ̃iov(jω) , (3.121)

with k∞ = k0

(
1−

∑N
i=1 ki

)
. Indeed, the constitutive assumptions (3.120) are equivalent to

introduce a complex stiffness k̃ into Eq. (3.112). As a consequence, the hypotheses underlying
Eqs. (3.105) are no longer valid.

In the case of linear stress-strain constitutive model, the storage and loss moduli are
obtained as the real and imaginary parts of the frequency response function (Inaudi & Makris,
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1996), i.e.,

S(ω) = k0

[
1−

N∑
i=1

ki +
N∑
i=1

(ω τi + ηi)
ω τi ki

1 + ω2τ2
i

]
,

L(ω) = k0

N∑
i=1

[
(1 + ω ηi τi)

ki τi ω

1 + ω2τ2
i

]
,

(3.122)

which, for ηi → 0, coincides with the standard dynamic moduli (3.116).
The results of the fitting are shown in Fig. 3.6 for N = 4 hysteretic dampers in parallel

with a spring. A more accurate match with the experimental data is achieved than with the
standard model. Moreover, the initial slope of the storage modulus is reproduced even with
a small number of paramenters.



Chapter 4

Model Identification

Chapter Outline. In the first section, the standard identification procedure of the material parameters
for a nonlinear viscoelastic (NLV) constitutive equation is discussed thoroughly. This routine relies on the
separate identification of the “instantaneous” (elastic) and “dissipative” (inelastic) parts. The advantages and
disadvantages of this approach are evaluated by considering Fung’s constitutive model. Thereafter, a joint
identification of the elastic and dissipative parts is introduced. To this end, the constitutive equation is
rewritten in a form suitable for encompassing all the single hereditary models. Therefore, the identification
of the constitutive coefficients is reduced to the solution of a nonlinear optimization problem. An iterative
technique allowed the refining of the relaxation times around the most significant time constants. The results
of the compression tests with cylindrical carbon black-filled rubber specimens, already summarized in Chapter
1, are here used to compare the main features of each model.
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4.1 Position of the Problem

Owing to the importance of elastomer components in engineering applications, the accurate
prediction of their mechanical behavior under operational conditions is a relevant subject in
industry. Often the material is exposed to different short- and long-time loads simultaneously.
Thus it is necessary to provide constitutive models able to predict the material response for
several loading conditions. Moreover, the models must be endowed with a set of parameters
which accurately represents the material behaviour over the entire working range.

Despite the Mullin’s effect, in most rubber-like materials no further damage can be ob-
served, even at large deformations. The consideration of pre-damaged materials, which are
in a stable stationary state with respect to the Mullin’s effect, leads to the choice of a finite
viscoelastic constitutive equation.

In the following, the QLV model introduced by Fung (1972) is used to illustrate a possible
procedure for the material parameters identification. Fung’s model reads as (see Section 3.3.1)

T(t) = Te(t) +

∫ t

0
k̇(t− s)Te(s) ds,

Te(t) = φ0(t)I + φ1(t)C(t) + φ−1(t)C−1(t),

(4.1)

where φΓ(t) = φΓ(I1(t), I2(t), I3(t)), Γ = −1, 0, 1, is a function of the strain invariants I1, I2

and I3 at time t.
The standard identification algorithm relies on three successive steps:

1. the identification of the ”instantaneous” response Te(t);

2. the solution of the linear integral equation for k(t);

3. the identification of the viscoelastic kernel parameters, e.g., the coefficients gi, τi in the
case of the Prony series for k(t).

In the next sections each of the steps 1, 2 and 3 are discussed thoroughly. However,
this procedure requires experimental measurements which are very difficult to perform: a
very fast loading ramp is necessary for the identification of the instantaneous stress Te,
while the viscoelastic kernel necessitates very long relaxation tests. As a consequence of the
restrictions imposed by the experimental equipment on the maximum exerting strain rate, the
experimental procedure actually employed in the laboratory leads to approximations which
are not satisfactory when nonlinear viscoelastic materials are involved.

In order to overcome these limitations, a combined experimental-numerical analysis based
on an identification routine, both of the long- and short-time material response, is presented.
This procedure actually generalizes the results in Knauss & Zhao (2007) to nonlinear consti-
tutive equations.

4.2 Standard Identification Procedure

4.2.1 Instantaneous Response

The ”instantaneous” stress Te(t) in equation (4.1) is by definition the tensile stress instanta-
neously generated when a step function is imposed on the specimen.

Strict laboratory measurements of Te(t) according to this definition are difficult, because
at a sudden application of the load, transient waves are induced in the specimen and the
resulting stress response measurement will be confused by these elastic waves. However, if
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the relaxation function k(t) is a continuous function, then Te(t) might be estimated by the
tensile stress response in a loading experiment with a sufficiently high rate of loading.

In order to justify this procedure, let us consider an uniaxial deformation λ(t) produced
by an uniaxial stress state (T11(t) = T (t), T22(t) = T33(t) = 0). Now, if by some monotonic
process, λ(t) is increased in a time interval τ from 0 to λ(τ) = λ̄, then by integrating by parts
Eq. (4.1) at time t = τ , the result is:

T (τ) = T e
[
λ̄
]

+

∫ τ

0
k̇(s)T e [λ(τ − s)] ds. (4.2)

Since the relaxation function k(t) is a continuously varying decreasing function, as s
increases from 0 to τ , the integrand never changes sign; by the mean theorem there exists a
ξ ∈ [0, τ ] such that

T (τ) = T e
[
λ̄
]

+ τ k̇(ξ)T e [λ(τ − ξ)] . (4.3)

Therefore, being k(t) ∈ C1(IR) and ξ → 0 as τ → 0, one gets∣∣∣k̇(ξ)
∣∣∣� 1

τ
⇒ T (τ) u T e

[
λ̄
]
, (4.4)

which allows the integral term into (4.2) to be ignored. This result confirms that, in order
to model correctly the elastic part T e, very fast loading/unloading experiments should be
preferred to quasi-static tests. Indeed, in the latter case, the material response would involve
both elastic and dissipative effects.

If k(t) is represented in terms of the Prony series, e.g.,

k(t) =
N∑
i=1

ki +
N∑
i=1

(1− ki) e
− t
τi ,

N∑
i=1

ki < 1 , (4.5)

the inequality in (4.4) yields the maximum value of τ , i.e., the minimum strain rate λ/τ ,
for which T e can be estimated as the tensile stress response T . In particular, since k(t) is a
completely monotonic decreasing function, the result is∣∣∣k̇(ξ)

∣∣∣ ≤ ∣∣∣k̇(0)
∣∣∣ =

N∑
i=1

ki
τi
<

N

τmin
, (4.6)

which provides a sufficient condition for the inequality (4.4) to be valid, i.e.,

τ � τmin
N

. (4.7)

Inequality (4.7) states that the duration in time taken for the ramp to reach the stretch
λ should be much less than the minimum characteristic time of the material. However, since
rubber is well-known to have characteristic times of the order of a few milliseconds, or even
less, laboratory measurements of T e are very difficult.

For modeling purposes, a common choice is to assume for T e an hyperelastic constitutive
equation (Hoo Fatt & Ouyang, 2007; Pena et al., 2007; Shim et al., 2004; Yang & Shim,
2004). The relation between the stress and the strain is indirectly specified through the
relation between the internal energy and the strain (Rivlin & Saunders, 1952), i.e.,

W (I1, I2) =
M∑
m=0

N∑
n=0

cmn(I1 − 3)m(I2 − 3)n , (4.8)

therefore, specifying the constitutive parameters cmn into (4.8). As a consequence of the in-
compressibility of rubber, the functionalW depends only upon the first and second invariants
of the right-Cauchy Green strain tensor.
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In the case of uniaxial stretch of a thin sheet of material, the constitutive law for T e can
be expressed in terms of the stretch λ and of the strain energy function W as follows (see
Chap. 2),

T e = λ−1∂W

∂λ
; (4.9)

however, from an experimental point of view, it is more convenient to express (4.9) in terms
of the nominal stress, i.e., force over reference area, which is the actual measured quantity,
viz.

Πe =
∂W

∂λ
=

M∑
m=0

N∑
n=0

cmnφ(m,n, λ) , (4.10)

where φ is a nonlinear function of λ and of the indices m, n, e.g.,

φ(m,n, λ) =2m

(
λ2 +

2

λ
− 3

)m−1(
λ− 1

λ2

)(
2λ+

1

λ2
− 3

)n
+

+ 2n

(
λ2 +

2

λ
− 3

)m(
2λ+

1

λ2
− 3

)n−1(
1− 1

λ3

)
.

(4.11)

Note that, whatever choice of constitutive parameters used in (4.8), the relation between the
stress and the material coefficients cmn is linear.

In order to achieve a more useful form of (4.10) with respect to the identification process,
it is possible to introduce the vector c ∈ IRmn of the material coefficients, i.e.,

cT = {c01, ..., c0n, c10, ..., c1n, ..., cm0, ..., cmn} , (4.12)

and the matrix Φ ∈Mk×mn(IR),

Φ =


φ(0, 1, λ1) φ(0, 2, λ1) ... ... φ(m, 0, λ1) ... φ(m,n, λ1)
φ(0, 1, λ2) φ(0, 2, λ2) ... ... φ(m, 0, λ2) ... φ(m,n, λ2)
... ... ... ... ... ... ...
φ(0, 1, λk) φ(0, 2, λk) ... ... φ(m, 0, λk) ... φ(m,n, λk)

 , (4.13)

where λi = λ(i∆) is the stretch at time t = i∆. In the previous equations, the coefficient c00

has been set at zero, which implies that the strain energy is zero in the reference configuration.
With the above notation, the constitutive equation (4.10) can be rewritten as the linear

system
Πe = Φ c, (4.14)

where Πe = {Πe(t1), ...,Πe(tk)} is the discrete-time stress vector.
Since the material is assumed to be incompressible, only two stretches can be varied

separately and, hence, biaxial tests would suffice to determine the form of the strain energy
function (4.14), i.e., the constitutive relation (4.10). However, in the present investigation,
only uniaxial tests were carried out, because of the limited availability of biaxial specimens.
Consequently, the resulting identification problem is expected to be ill-conditioned (Ogden
et al., 2004).

The minimization problem arising from the identification of (4.14) is

min
c∈IRmn

∥∥∥Φ c− Π̃
e
∥∥∥2

2
(4.15)

where Π̃
e
is the vector of the stress as recorded and sampled by the acquisition equipment,

while ‖ · ‖2 is the standard l2-norm. A Least-Square method (see, e.g., Golub, 1996) has been
used to solve (4.15) in Sec. 4.2.4, where results and discussions are reported.
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4.2.2 Viscoelastic Kernel

Once the ”instantaneous” response Te(t) in equation (4.1) has been identified, the problem of
determining the (normalized) viscoelastic kernel k(t), i.e., solving the integral equation (4.1),
can be addressed.

The one-dimensional constitutive equation (4.2) can be rewritten through integration by
parts as

T (t) = k(t)T e(0) +

∫ t

0
k(s)Ṫ e(t− s) ds . (4.16)

If T e(0) 6= 0, introducing the normalized quantities T̂ (t) = T (t)/T e(0) andD(t) = Ṫ e(t)/T e(0),
one gets

k(t) = T̂ (t)−
∫ t

0
k(s)D(t− s) ds, (4.17)

which is a Volterra equation of the second kind for k(t) (Linz, 1985).
A more useful form of (4.17) can be achieved by a standard time-discretization. Indeed,

during an experiment, the displacement and the force are recorded at uniform time intervals,
e.g.,

ti = i∆, i = 0, 1, ..., N, ∆ =
t

N
. (4.18)

Since k and T e are smooth functions of the time variable t, for small ∆ the integral can be
estimated by a finite sum through a quadrature rule (see, e.g., Press, 2007). For the uniform
mesh (4.18) a simple scheme is the trapezoidal rule, which gives:∫ ti

0
D(ti − s) k(s) ds =

∆

2
Di k0 + ∆

i−1∑
j=1

Di−j kj +
∆

2
D0 ki ; (4.19)

therefore equation (4.17) has the following discrete form:
T̂0 = k0,

T̂i =

(
1 +

∆

2
D0

)
ki +

∆

2
Di k0 + ∆

∑i−1
j=1Di−j kj , i = 1, ..., N

(4.20)

Since k(0) = k0 = 1, T̃i = T̂i −Di∆/2 and the result is

T̃i =

(
1 +

∆

2
D0

)
ki + ∆

i−1∑
j=1

Di−jkj , i = 1, ..., N , (4.21)

which can be easily expressed in terms of the linear system

T̃ = Γ k , (4.22)

where T̃ = {T̃1, ..., T̂N}, k = {k1, ..., kN} and

Γ = ∆


1/∆ +D0/2 0 0 ... ... ...

D1 1/∆ +D0/2 0 ... ... ...
D2 D1 1/∆ +D0/2 0 ... ...
... ... ... ... ... ...
DN DN−1 ... D2 D1 1/∆ +D0/2

 (4.23)

is a lower triangular matrix.
Through the (4.20), the identification of the viscoelastic kernel k(t) has been reduced to

the solution of the linear system (4.22), which requires the inversion of the matrix Γ.
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The structural properties of Γ strongly depend upon the experimental test performed to
measure T (t). In the case of a step-strain relaxation with an infinite speed of the initial ramp,
the strain is suddenly increased to the value λ, kept constant thereafter, e.g.,

λ(t) =

{
1, t < 0

λ, t ≥ 0
(4.24)

In this case, the derivative of instantaneous stress T e is vanishing for t ≥ 0,

Ṫ e(t) =
∂T e(λ)

∂λ
λ̇ = 0, t ≥ 0. (4.25)

Therefore, for each l Dl = 0, and the matrix Γ reduces to the identity matrix. In this ideal
situation, measuring the stress response, i.e., measuring T̃ , is equivalent to measuring the
viscoelastic kernel k(t). However, to catch the time dependence of k for t → ∞ it would be
necessary to carry out an infinitely long experimental test.

In the case of filled rubber, an accurate prediction of k can be obtained with a relaxation
experiment lasting ten minutes or less (see, e.g., Antonakakis et al., 2006). It should be noted
that a premature cut off may give an erroneous limiting value of k(t) for t→∞.

In the laboratory the prescription of λ(t) in the form (4.24) is necessarily supplanted by a
ramp history wherein the strain increases along a constant strain rate until the predetermined
value λ is reached at time t0, e.g.,

λ(t) =


1, t < 0

1 + (λ− 1)
t

t0
, 0 ≤ t < t0

λ, t ≥ t0

. (4.26)

Thus, if the undeformed configuration is stress-free, then the instantaneous stress T e0 vanishes
and the equation (4.17) becomes

T (t) =

∫ t

0
k(s)Ṫ e(t− s)ds , (4.27)

which is a Volterra equation of the first kind (Linz, 1985).
In analogy with the previous case, by using the trapezoidal quadrature rule, the discrete

form of (4.27) can be introduced T0 = 0,

T̃i =
∆

2
ki + ∆

∑i−1
j=1 kj D̂i−j , i = 1, ..., N

, (4.28)

where T̃i = Ti/Ṫ
e
0 −∆/2 D̂i and D̂i = Ṫ ei /Ṫ

e
0 . In matrix notation, the last equation can be

rewritten as
T̃ = Θ k (4.29)

where T̃ = {T̃1, ..., T̃N}, k = {k1, ..., kN} and

Θ = ∆


1/2 0 0 ... ... ...

D1 1/2 0 ... ... ...

D2 D1 1/2 0 ... ...

... ... ... ... ... ...

DN−1 DN−2 ... D2 D1 1/2

 . (4.30)
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Differentiating Eq. (4.26), the result is

dT e(t)

dt
=
∂T e(λ)

∂λ
λ̇ =


0, t < 0

λ− 1

t0

∂T e(λ)

∂λ
, 0 ≤ t < t0

0, t ≥ t0

, (4.31)

hence, Ṫ e(t) 6= 0 if 0 ≤ t < t0. The bandwidth of the matrix Γ is b = bt0/∆c, where b·c is
the floor function. Therefore, the influence of the history upon the current value of the stress
is limited to the previous b samples.

The 1-norm of the matrix Θ is

‖Θ‖1 = max
1≤j≤N

N∑
i=1

|{Θ}i j | =
1

2
+

b∑
i=1

|Di| (4.32)

and, hence, its condition number1 depends upon the bandwidth b. For a fastly increasing
ramp, the resulting matrix Θ has a lower condition number and the linear system (4.29) is well-
conditioned. On the opposite, a slowly increasing ramp results in a larger condition number
of Θ and measurement errors on T (t) may propagate to the solution k(t) and eventually
invalidate the result (see, e.g., Golub, 1996). In any case, errors due to a wrong fitting of the
instantaneous stress T e(t) will propagate to k(t).

A frequently employed characterization of the viscoelastic kernel is achieved through si-
nusoidal strain histories of frequency ω overimposed on a static displacement (Lee & Kim,
2001), e.g.,

λ(t) =


1, t < 0

1 + (λ− 1)
t

t0
, 0 ≤ t < t0

λ+ ∆λ1 sin(ω(t− t0)), t ≥ t0

, (4.33)

In analogy with the previous case, the relation between the viscoelastic kernel and the stress
is governed by the linear system (4.29); however, the derivative of T e with respect to the time
does not vanish for t > t0, i.e.,

dT e(t)

dt
=
∂T e(λ)

∂λ
λ̇ =


0, t < 0

λ− 1

t0

∂T e(λ)

∂λ
, 0 ≤ t < t0

∆λ1ω cos(ω(t− t0))
∂T e(λ)

∂λ
, t ≥ t0

. (4.34)

In this case, hence, the matrix Θ is a fully lower triangular matrix.

4.2.3 Fitting of the Prony Series

Once the viscoelastic kernel has been obtained by inverting the matrices Θ or Γ, the functional
form of k(t) must be chosen and the constitutive parameters identified accordingly.

A common assumption for k is

k(t; k, τ ) = 1 +

N∑
i=1

ki

(
e−t/τi − 1

)
, k = {k1, ..., kN}, τ = {τ1, ..., τN}, (4.35)

1The condition number of an invertible matrix A is defined as product between the norm of A and the

norm of its inverse A−1 (see, e.g., Golub, 1996).
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which is the well-known Prony series. This functional form, derived from various molecular
models, has been successfully applied to model relaxation phenomena in filled rubber (e.g.,
Antonakakis et al., 2006; Haupt & Lion, 2002; Johnson et al., 1994; Park & Schapery, 1999;
Quigley et al., 1995).

The minimization problem arising from the identification of a N-terms Prony series is

min
(k,τ )∈IRN×IRN

∥∥∥K(k, τ )− K̂
∥∥∥2

2
, (4.36)

where K(k, τ ) = {k(t1; k, τ ), ..., k(tM ; k, τ )}, K̂ is the kernel obtained by inverting the matri-
ces Θ or Γ and {t1, ..., tM} are the discrete time instants.

Ten, twenty or even more terms in the series (4.35) are sometimes used to increase the
accuracy of the fitting model. However, this choice leads to ill-conditioned solutions of the
optimization problem, which as a result are strongly affected by the choice of the initial point.

Owing to the transcendental dependence of k upon the characteristic times, the mini-
mization problem (4.36) is nonlinear, thus, nonconvex. A typical procedure, applied in the
literature for reducing the computational effort due to the minimization of a nonconvex func-
tional, is to fix a-priori the relaxation times τ i (see, e.g., Knauss & Zhao, 2007). The result
is a linear optimization problem in the reduced set of variables k.

If τ = {τ1, ..., τN} are the fixed characteristic times, then (4.36) reduces to

min
k∈IRN

∥∥∥Hk− K̃
∥∥∥2

2
, (4.37)

where {K̃}m = ({K̂}m − 1) and h is the M ×N matrix

h =


e−t1/τ1 − 1 e−t1/τ2 − 1 ... e−t1/τN − 1

e−t2/τ1 − 1 e−t2/τ2 − 1 ... e−t2/τN − 1

... ... ... ...

e−tM/τ1 − 1 e−tM/τ2 − 1 ... e−tM/τN − 1

 . (4.38)

If τ i 6= τj for each i 6= j, the functions {e−t/τ1 , ..., e−t/τN } are linearly independent. Hence,
the matrix h is full column rank and hTh is invertible. The solution of (4.37) can be achieved
with the standard linear Least Squares algorithm, i.e., by inverting the matrix hTh.

The time interval, within which the characteristic times are initially selected, is chosen
according to the duration of the experiment, i.e., the upper limit for {τi}, and the sampling
rate of the acquisition channel, i.e., the lower limit. Within this range, the relaxation times are
initially fixed at equal intervals along the logarithmic time scale with one or two increments
per decade (Knauss & Zhao, 2007). However, this choice seems to lead to unsatisfactory
results especially when nonlinear viscoelastic models are involved. Therefore, an iterative
fitting procedure for refining the estimate of the relaxation times is introduced in Section 4.3.

4.2.4 Identification Results

In the following the identification results obtained through the steps 1,2 and 3 of the above-
described procedure are reported.

Compression tests on thick cylindrical specimens were used for the fitting (see Section
1.5). In particular, the “instantaneous” response was obtained exerting a displacement with
a constant strain rate up to the stretch λ u 0.8. The velocity was 500 mm/min which is
approximately fifty times the velocity of a standard quasi-static test.
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Table 4.1 Identification results of instantaneous term for three different material models (ρ is the condition

number of the matrix ΦT Φ).

Model Name c10 c01 c20 c30 ρ

Neo-Hookean 1.1426 106 - - - 1

Mooney-Rivlin 1.1426 106 0 - - 2910

Yeoh 1.4543 106 - −0.3987 107 1.3956 107 184880

Yeoh 2 1.3312 106 - −1.4101 106 - 315

Three models were considered for the instantaneous term T e, respectively with one (c10 -
Neo-Hookean), two (c10, c01 - Mooney-Rivlin) and three (c10, c20, c30 - Yeoh) material coeffi-
cients respectively.

The function lsqlin in the MATLAB Optimization Toolbox was employed to solve nu-
merically the problem (4.15). Actually, to guarantee the physical admissibility of the fitting
models, the following constraints have been introduced (see pag. 243 in Hartmann, 2001b;
Holzapfel, 2000):

c10 > 0, c01 ≥ 0, c20 ≤ 0, c30 > 0. (4.39)

The results of the identification of T e are shown in Fig. 4.1. All the curves can roughly
describe the experimental data. However, to allow a comparison among the different models,
the relative errors are also plotted in the figure. In order to avoid a division by small values
of the force when stretches are close to one, the relative error is computed as proposed in
(Ogden et al., 2004), i.e.,

erri :=

∣∣∣(Φ c)i −
(
Π̃
e
)
i

∣∣∣
max

{
0.5,

(
Π̃
e
)
i

} . (4.40)

The optimum values of the coefficients cij together with the condition numbers ρ of the matrix
ΦT Φ are shown in Tab. 4.1.

For Neo-Hooke and Mooney-Rivlin models, the relative error at low strains is larger than
10 %. The Neo-Hookean and Mooney-Rivlin curves coincide because from the optimization
problem the result is c01 = 0. The 3-parameters Yeoh model shows a good agreement with
the experimental data with an error less than 20 % for strain lower than 0.95.

It can be seen from Tab. 4.1 that as the number of parameters increases, the condition
number increases greatly, meaning that some of the directions in the space of the parameters
c are not significant. In the case of the Yeoh model, by a singular value decomposition of the
matrix ΦT Φ, the results is that the direction corresponding to the parameter c03 is associated
with the smallest eigenvalue, meaning that c03 is not significant in describing the experimental
data.

To confirm this result, a 2 parameters Yeoh model was also considered (c30 = 0). While
the relative error remains limited the condition number is drastically reduced. However, this
model with the choice of the coefficients reported in Table 4.1 leads to a non-physical behavior
at larger strains. Therefore this solution must be discarded a-posteriori.

After the “instantaneous” response of the material has been estimated, the relaxation
kernel k can be evaluated by inverting the matrix Θ in (4.29). As a result of the discussed
well-conditioning of Θ, the errors for computing its inverse Θ−1 remain limited.

The matrix Θ is assembled from the relaxation tests (see Sec. 1.5). In this case the cylinder
was compressed to the stretch λ = 0.15 with a constant strain rate of 100 mm/min. Thereafter
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Figure 4.1 Nominal stress, Π, plotted against the stretch λ for Neo-Hookean, Mooney-Rivlin and Yeoh

material models (Panel (a)). Since c01 = 0 in Tab. 4.1, Neo-Hookean and Mooney-Rivlin curves

coincide. Panel (b) shows the corresponding relative errors.
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Figure 4.2 Identification results of the instantaneous response for three different material models. A very

different behavior is shown outside the range of the experimental data (represented in the figure

as big-dots). The 2-parameters Yeoh model exhibits a non-physical behavior.

the strain was held fixed for 100 s. The sampling rate of the external force and displacement
was 100 Hz, corresponding to a period ∆ = 0.01 s. Therefore the characteristic times in the
Prony series were chosen equally spaced in logarithmic scale in the range τi ∈ [0.01, 100] s.

After k has been calculated, the minimization problem (4.37) can be addressed.
In this case, the identification results are reported in Figure 4.4 for an increasing num-

ber of exponential terms in the Prony series. With N = 10 coefficients there is a perfect
agreement between the fitting model and the experimental curve, with a relative error below
2%. However, the condition number ρ of the matrix hTh increases dramatically (ρ5 = 127.2,
ρ10 = 2327 and ρ20 = 4.371 107). Therefore, there might be multiple sets of parameters
k resulting in the same value of the objective function, but which produce a very different
behavior outside the observed time range.

The robustness of the solution k has also been investigated. Because of the high values
of the condition number, it is expected that a small error either in the experimental data,
e.g., K̃, or in the model, e.g., h, produces a large variation in the identified parameters. In
particular, by considering the perturbed optimization problem:

min
k∈IRN

∥∥∥(h + dh(γ1)) (k + dk)− K̃ − dK̃(γ2)
∥∥∥2

2
, (4.41)

the sensitivity of the minimum can be investigated. In (4.41), dh(γ1) is the variation in the
model matrix induced by a random error of maximum amplitude γ1 upon the characteristic
times τ i, i.e.,

τ∗1 = (1 + γ1 r)τ1, ..., τ∗N = (1 + γ1 r)τN , (4.42)

with −1 ≤ r ≤ 1. Moreover, the vector dK̃ represents the kernel variation produced by a
random error of maximum amplitude γ2, i.e.,

dK̃i = γ2 r K̃i. (4.43)

Table 4.2 outlines the variation of the minimum solution of (4.41) for increasing error
amplitudes γ1 and γ2 in the range {0.01, 0.3}. It is evident that the solution is strongly
affected by the error amplitudes. Even though the different values of k correspond to the
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Figure 4.3 Contour plot of matrix Θmn with m,n ≤ 300 for the performed relaxation test. The bandwidth

of the matrix is evident in the figure and corresponds to a rising time of the initial ramp t0

approximately equal to 0.5 s.

same value of the objective function, they lead to a completely different frequency behavior,
as shown in Fig. 4.5.

The material behavior arising from the identified parameters c and k is shown in Fig. 4.6
compared to the experimental data. It is seen that the aforementioned procedure leads to
unsatisfactory results because the material stiffness is heavily underestimated and the relax-
ation behavior around the stress-kink is completely missed. Therefore, in the next section,
an alternative identification method for both the instantaneous and dissipative parts of the
constitutive equation is introduced.

4.3 Joint Identification

In this section a joint identification of the instantaneous and dissipative terms is presented. To
this end a single hereditary formulation for the constitutive equation of a nonlinear viscoelastic
solid is introduced which enables us to include also differential and fractional differential
models (see for instance Adolfsson et al., 2005; Lion & Kardelky, 2004).

The hereditary formulation for the current value of the second Piola-Kirchhoff stress T(t)
is introduced as follows:

T(t) = T(e)(C(t)) + Λ(C(t))

∫ t

0

∂k(t− s)
∂(t− s)

Ψ(C(s),C(t))ds, (4.44)

where T(e) represents the instantaneous stress as a function of the current value of deforma-
tion, Λ, Ψ and k account for the memory properties of the material. In particular, Λ is a
tensor-valued function of the current strain value C(t), whilst Ψ is a tensor-valued function
which depends on both the current strain C(t) and the strain history C(s).
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Figure 4.6 Nominal stress plotted against time in the range t ∈ [0, 30] s for the collected experimental data

and the Fung’s constitutive equation with a Neo-Hookean elastic part. The model coefficients have

been identified through the discussed identification procedure. The material stiffness is heavily

underestimated and the relaxation behavior around the stress-kink is completely missed

From an experimental point of view, it is convenient to express the force recorded during
the experiment (divided by the reference cross-section area) in terms of the (nominal) strain.
To this aim, the previous constitutive relation can be equivalently expressed in terms of the
first Piola-Kirchhoff stress tensor:

Π(t) = Π(e)(t) + F(t) Λ(t)

∫ t

0

∂k(t− s)
∂(t− s)

Ψ(s, t)ds , (4.45)

with Π = FT and Π(e) = FT(e).
To express the viscoelastic kernel, the discrete relaxation spectrum, leading to the Prony’s

series is used:

k(t) = 1 +
N∑
i=1

ki(e
−t/τi − 1) ,

N∑
i

ki < 1 ; (4.46)

The number N of exponential terms in (4.46) is generally selected to increase the accuracy of
the fitting model. In the literature, up to N = 20 relaxation times were used (Antonakakis
et al., 2006; Knauss & Zhao, 2007); however a large value of N could lead to ill-conditioned
identification problems where identified parameters show high sensitivity to errors in the
experimental data.

Beside differential viscoelasticity, accounted for with a discontinuous kernel, the constitu-
tive relation (4.44) can also include fractional differential models. In this case the kernel k is
expressed as (see for instance Adolfsson et al., 2005; Metzler & Nonnenmacher, 2003):

k(t) = 1 +
N∑
i=1

ki (Eδi [−(t/τi)
δi ]− 1), (4.47)

with
N∑
i=1

ki < 1, δi > 0, t ≥ 0 ,
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where Eδ is the δ-order Mittag-Leffler function, which is defined as

Eδ(u) =

∞∑
j=0

uj

Γ(1 + j δ)
, δ > 0, (4.48)

and Γ is the Eulerian Gamma function. Thermodynamics laws implies the following restric-
tions for the coefficients δi:

0 < δi ≤ 1, i = 1, ..., N (4.49)

Remark that N additional constitutive parameters δi are introduced with respect to the
standard Prony series; when δi → 1, the fractional kernel (4.47) reduces to the standard one
(4.46), since E1(t) equals the exponential function.

The constitutive relation (4.45) is valid for every NLV material bearing no special char-
acteristic. However carbon black-filled elastomers are usually treated as isotropic and incom-
pressible materials. The first property reflects on the constitutive relation (4.45) requiring
all the functions, Π(e), Λ and Ψ, to be isotropic tensor functions of C. In particular, the
instantaneous stress, for an incompressible isotropic material, can be expressed as

Π(e)(t) = φ1(I1(t), I2(t))F(t) + φ2(I1(t), I2(t))F(t)C(t) , (4.50)

where φ1 and φ2 are functions of the first two invariants of C at time t, I1(t) = trC(t) and
I2(t) = trC−1(t).

The incompressibility constraint, det F = 1, can be easily taken into account by adding
to the Cauchy stress a pressure field p(t)I which is not constitutively assigned, but depends
upon the boundary and initial conditions (Ogden, 1997). By adding the unknown pressure in
the constitutive equation of the first Piola-Kirchhoff stress, it becomes

Π(t) = −p(t)F−T (t) + ΠES(t) ; (4.51)

therefore, the extra stress term ΠES(t) remains as the only part of the stress-strain relation
which is constitutively assigned:

ΠES(t) = Π
(e)
ES + F(t) Λ(t)

∫ t

0

∂k(t− s)
∂(t− s)

Ψ(s, t)ds ,

Π
(e)
ES(t) = φ1(t)F(t) + φ2(t)F(t)C(t) .

(4.52)

A suitable choice of the instantaneous stress Π
(e)
ES , through the functions φ1 and φ2, of the

functions Λ, Ψ and of the viscoelastic kernel k in Eqs. (4.52) allows all the models under
investigation to be encompassed. Table 4.3 summarizes such choices for all the considered
constitutive equations.

4.3.1 Constitutive models under consideration

To the author knowledge all the major contributions involving hereditary integral viscoelastic
models have been here considered (refer to Table 4.3). With the intent of having the same
number of parameters for the instantaneous stress Π

(e)
ES of each model, a Mooney-Rivlin rep-

resentation has been chosen for the Models 1, 2, 3 and 6, in which the constitutive assumption
regarding Π

(e)
ES were not specified by the respective authors. Moreover, Models 2, 4, 5, in their

original versions, had a single relaxation time (N = 1), which has revealed unable to fit the
experimental data under investigation. A Prony’s series with 3, or more, exponential terms
was alternatively used.
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In particular, we have labeled as number 1 Fung’s model (Fung, 1972) which is commonly
referred to as the Quasi Linear Viscoelastic (QLV) model. While this represents one of the first
major contributions to finite viscoelasticity, its main limit lies in the choice of the function
Ψ strictly related to the constitutive function Π

(e)
ES , modeling the instantaneous material

response.
Recently, based on Fung’s seminal work, many investigators have proposed new integral-

type nonlinear viscoelastic constitutive relationships. Among them, the equations introduced
in (Fosdick & Yu, 1998; Hallquist, 1998; Hibbit et al., 2007; Shim et al., 2004; Yang et al.,
2000) are here considered and labeled as 2, 3, 4, 5 and 6 respectively.

In particular we have included several models which were intended to describe the vis-
coelastic behavior of carbon black-filled rubber at high strain rates (Hoo Fatt & Ouyang,
2007; Shim et al., 2004; Yang et al., 2000). In all these models the time derivative of the
strain explicitly appears in the hereditary term. The model by Hoo Fatt & Ouyang (2007)
was not considered in the comparison since it has shown some shortcomings owing to a zero
Young’s modulus in the undeformed configuration. For this model the Cauchy stress σ arising
from a constant strain rate test, say ε̇0, such that λ = 1 + ε̇0 t, is

σ =2α1(I1 − 3)α2

(
λ2 − 1

λ

)
+

−
(
λ2 − 1

λ

)∫ λ

1

[
2β1k̇(

λ− ζ
ε̇0

)

(
ζ2 +

2

ζ
− 3

)(
ζ − 1

ζ2

)]
dζ,

and, hence, the Young’s modulus around the undeformed configuration, that is [∂σ/∂λ]λ=1,
is equal to zero, in contrast with the experimental evidences (see Figs. 4.8 and 4.9).

The comparison includes also the constitutive equations used respectively in the FE com-
mercial codes LS-Dyna (Hallquist, 1998) and Abaqus FEA (Hibbit et al., 2007). The latter
are two of the most used FE codes, which include finite viscoelastic effects. In particular,
the finite viscoelastic relationship (Hallquist, 1998), used in LS-Dyna, takes into account for
rate effects through a convolution integral which is linear with respect to the strain tensor.
The model used in Abaqus (Hibbit et al., 2007) is similar to a well-established model of finite
viscoelasticity, namely the Pipkin–Rogers model (Pipkin & Rogers, 1968); this constitutive
equation, with an appropriate choice of the constitutive parameters, reduces to Fung’s QLV
relation (Ciambella et al., 2009).

Finally, the fractional derivatives model introduced in (Lion & Kardelky, 2004) is also
considered and labeled as number 7 in Tab. 4.3. This model, introduced to describe the
amplitude dependence of the storage and loss moduli during dynamic motions, serves here to
investigate the effects of the fractional kernel (4.47) upon the prediction of hysteresis losses.
Since to define the fractional kernel the additional parameters δi must be introduced with
respect to the standard Prony’s series, to compare properly Lion & Kardelky’s model with
the others, the fractional coefficients were initially kept fixed, δi = 1, leading to the standard
Prony’s series. Thereafter, they were left free to evolve to further minimize the objective
function. The results between the standard and the differential kernel are then compared in
terms of predicted energy dissipation.

4.3.2 Experimental Set-up

For the sake of completeness in this section some of the experimental results already discussed
in Chap. 1 are here summarized.

The possibility of testing the dynamic behavior of the material through relaxation, creep
and fast loading/unloading cycles, that can be performed with a standard tensile machin-
ery. While relaxation and creep experiments incorporate the long-term material response,
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Table 4.3 Material models under consideration: 1 - Fung (1972); 2 - Fosdick & Yu (1998); 3 - Hallquist

(1998); 4 - Yang et al. (2000); 5 - Shim et al. (2004); 6 - Hibbit et al. (2007); 7 - Lion & Kardelky

(2004)

Model Π
(e)
ES Λ Ψ

φ1 φ2

1 2 [α1 + α2I1(t)] −2α2 I F−1(s)Π
(e)
ES(s)

2 2 [α1 + α2I1(t)] −2α2 C−1(t) β1 C(s)C−1(t)

3 2 [α1 + α2I1(t)] −2α2 I −β1Ċ(s)

4 α1 α2 I − [β1 + β2I2(s)] Ċ(s)

5 α1 α2

[
1 + γ1İ2(t)

]
I −

[
β1

İ1(s)
I1(s)

C(s) + 2β2Ċ(s)
]

6 2 [α1 + α2I1(t)] −2α2 I F−1(s)Π(e)(s)C(s)C−1(t)

7 α1 − I −β1C
−1(s)Ċ(s)C−1(s)
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Figure 4.7 Specimen’s geometry for compression tests.

the stress arising from loading/unloading cycles at different strain-rates involves the lowest
characteristic times, thus the highest characteristic frequencies (in our case of the order of 100
Hz). The identification results reported here, could be complemented with dynamic experi-
mental results at higher frequencies (see Chap. 1). To this aim small harmonic deformations
superimposed on large static displacements are sometimes used; however the precision re-
quested to the testing machinery, and its price, sensibly increase as the frequency of interest
increases. We have, therefore, limited our analysis to experimental set-ups that can be re-
produced in any well-equipped laboratory which does not necessarily have the leading-edge
testing machineries.

Experiments were conducted with a Zwick/Roell z010. The specimen was cylindrically
shaped with a diameter-to-height ratio D/H = 0.76, as shown in Fig. 4.7. During all the
experiment the plate were kept lubricated with graphite to guarantee uniform lateral displace-
ment over the height and, consequently, avoid barrel deformation of the mantle. Bending and
torsional deformations, if present, were negligible; the strain field could be reasonably assumed
uniform along the specimen. This turns out to be particularly important since the material
exhibits highly nonlinear behavior: constitutive nonlinearities coupled with nonuniform strain
would be difficult, even impossible, to analyze. All the tests were conducted at an average
temperature of 25℃. All the samples were subjected to loading/unloading cycles up to 25 %
to eliminate the Mullins effect.

Starting from the initial undeformed configuration, λ = 1, the specimen was compressed
up to the final strain λ = 0.83 in ∆t = 0.7 s with constant strain rate. Thereafter, the
deformation was held fixed for 100 s, thus performing the stress relaxation test at a constant
stretch λ = 0.83. Figure 4.8 shows the recorded stretch and stress histories.

Theoretically the same deformation ramp between λ = 1 and λ = 0.83 with an infinite
strain rate, ∆t → 0, would have allowed the direct measurement of the viscoelastic kernel k(t)
from the stress response, since, in this case, the nominal stress would have been proportional
to the kernel. However, in any actual lab test, to not account for the finite strain rate of
the initial ramp results in an underestimate of the material characteristic times (Antonakakis
et al., 2006).

Relaxation tests allow the capturing of the material behavior involving larger characteristic
times. Since in many engineering applications (e.g., tires, engine mounts, etc.), the shortest
intrinsic times are also significant, loading/unloading cycles at high strain rate were also
performed. As shown in Fig. 4.9, the loading/unloading path was repeated at four different
velocity of the rising ramp in the range λ̇min = 0.14 s−1 to λ̇max = 1.09 s−1. All the loading
paths from the undeformed configuration, λ = 1, to the maximum strain λ = 0.83 were
displacement controlled; all the unloading paths were force controlled to the zero force. This
has allowed us to perform after each cycle a 3 seconds creep test to recover the undeformed,
stress-free initial configuration. The time-rate of the force controlled unloading paths were
proportional to those of the loading ramps.

Both relaxation and cyclic tests were repeated several times on different specimens, but
under the same environmental conditions. For all the repetitions, a good reproducibility has
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Figure 4.8 Relaxation test: (a) stretch versus time, (b) nominal stress versus time.
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Figure 4.9 Loading/unloading/creep cyclic test at different strain rates: (a) strain versus time, (b) nominal

stress versus time. λ̇ ∈ [0.14, 1.09] s−1.
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been obtained and the different experimental curves practically overlapped. For the sake of
clarity, only one curve is shown in Figs. 4.8 and 4.9.

The experimental results described above can properly be modeled using the standard
solution of the extension of an incompressible cylindrical body. Since for all the experiments
the strain can reasonably be assumed uniform along the specimen, the deformation is described
by

x1 = λ(t)X1, x2 = λ(t)−1/2X2, x3 = λ(t)−1/2X3 (4.53)

where λ(t) (≤ 1) is the stretch ratio in the direction of the uniaxial compression. The resulting
deformation gradient has a diagonal form

F(t) = Diag
[
λ(t), λ(t)−1/2, λ(t)−1/2

]
. (4.54)

The condition of a vanishing contact force on the lateral mantle determines the Lagrangian
multiplier p(t); eliminating p(t) from Eq. (4.51) and neglecting the inertial forces yields

Π11(t) = Π
(e)
ES 11(t)− λ−3/2(t) Π

(e)
ES 33(t)

+ λ(t) Λ11(t)

∫ t

0

∂k(t− s)
∂(t− s)

Ψ11(s, t) ds

− λ−2(t) Λ33(t)

∫ t

0

∂k(t− s)
∂(t− s)

Ψ33(s, t) ds, (4.55)

which expresses the relation between the two observable quantities, force per reference area
Π11 and stretch λ. Equation (4.55) will be used in the next section to identify the constitutive
parameters for each of the models under investigation.

4.3.3 Identification of Material Parameters

The standard identification procedure of a linearly viscoelastic model is based on the solution
of the static equilibrium equation for the strain history under consideration (see, for instance,
Knauss & Zhao, 2007). This allows the separate identification of the long-term contribution,
associated with the stationary stress in a relaxation test, and thereafter of the short-term
counterpart.

In the considered nonlinear case, however, the equilibrium equation arising from the con-
stitutive equation (4.55) and the appropriate boundary conditions can only be solved numer-
ically. Moreover, long- and short-term contributions can not be easily decoupled. Therefore,
the constitutive parameters are identified by minimizing an error functional which is based
on the entire stress history, namely:

min
p∈P

f(p) = min
p∈P

{
K∑
i=1

w2
i

[(
Π̂11(p)

)
i
−
(
Π̃
)
i

]2
}
, (4.56)

where Π̃ is the vector of the experimental stress values recorded at the sampling times
(t1, ...tK), while Π̂11(p) is the vector of the model stress values. The latter depends upon
the vector of model parameters p which spans a subset P of IRP (P = A+ B + 2N), being
constituted by

p = {α1, ..., αA, β1, ..., βB, k1, ..., kN , τ1, ..., τN} , (4.57)

with the constraints

αi ≥ 0, βi ≥ 0, 0 ≤ ki < 1,

N∑
i=1

ki < 1, τi ≥ 0 . (4.58)
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The vector w = {w1, w2, ..., wK} contains the scalar weights used to compare properly the
different regions in the experimental curves, e.g., the short- and the long-term responses. From
the experimental data, initial estimates for the material stiffnesses αi have been obtained,
whereas the starting point for the material coefficients βi are chosen to be of the same order
of magnitude.

Due to the nonlinear dependence of Π̂11 on the constitutive parameters αi, βi, ki and
τi, the resulting minimization problem (4.56) is generally non-convex. A common choice to
overcome the numerical difficulties due to the transcendental dependence of Π̂11 upon the τi
is to fix a-priori the characteristic times, say τi = τ i, inasmuch as one or two per decades of
the experimental time range (Knauss & Zhao, 2007). Therefore, the reduced minimization
problem becomes

min
p∈P

f({α1, ..., αA, β1, ..., βB, k1, ..., kN , τ1, ..., τN}) . (4.59)

with
p = {α1, ...αA, β1, ..., βB, k1, ..., kN} ∈ P ⊂ IRP .

This a-priori choice of the characteristic times, while often used by many authors (Antonakakis
et al., 2006; Knauss & Zhao, 2007), has led us to unsatisfactory identification results. As a
matter of fact, this choice does not account for the well-known property of carbon black-filled
elastomers of having characteristic times very close to each other (Lion, 1997). Therefore, an
iterative scheme, which actually allows a better estimate of the characteristic times clusters,
is here considered. It consists of the following steps:

1. the minimum characteristic time τmin is chosen according to the acquisition sampling
rate, while the maximum characteristic time τmax is dictated by the duration of the
experiment;

2. within the range [τmin, τmax], N time constants are initially chosen to be equally spaced
in logarithmic scale, i.e.,

τ
(0)
1 = τmin, ..., τ

(0)
i = τmin10(i−1)∆, ..., τ

(0)
N = τmax (4.60)

where ∆ is the logarithmic time step, i.e., ∆ = [log10(τmax/τmin)]/(N − 1);

3. once the reduced minimization problem

min
p∈P

f({α(h)
1 , ..., α

(h)
A , β

(h)
B , k

(h)
1 , ..., k

(h)
N , τ

(h)
1 , ..., τ

(h)
N }) (4.61)

is solved, a new set τ (h+1)
i of characteristic times is considered. In particular every τ (h)

i

is discarded, if the corresponding amplitude k(h)
i , minimizing (4.61), is below a given

threshold k, whereas if k(h)
i overcomes the threshold, the corresponding characteristic

time is refined and split into:

τ
(h+1)
i ← τ

(h)
i {10−( ∆

3
)h , 1, 10( ∆

3
)h}. (4.62)

The starting point of the minimization (4.61) at step h is taken to be the solution at the
previous step (α

(h−1)
i , β

(h−1)
i , k

(h−1)
i ). The initial value of the scalar coefficients k(h)

i , corre-
sponding to the newly added time constants, are set to zero. Step 3 is repeated either until
all the scalar coefficients ki exceed k, or until the decrement of the objective function between
successive steps vanishes.
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Figure 4.10 Identified nominal stresses Π11 versus logarithmic time for the relaxation test: (a) Models 1, 2,

3 and (b) Models 4, 5, 6 and 7. In the nested graph, the fitting models are shown in the range

t ∈ [0.4, 1].

To solve numerically the nonlinear minimization problem (4.61), the combination of the
functions patternsearch and fmincon in the Matlab Optimization Toolbox were used. In
particular, the first is a Pattern Search (PS) algorithm (Audet & Dennis, 2003); since it
does not require the evaluation of the gradient of the objective function, it turns out to
be particularly useful when minimizing high-gradient functions or functions with multiple
minima. The latter, instead, is based on a standard Interior Point (IP) algorithm. The
combination of PS and IP was needed because the former demonstrated robustness with
respect to the choice of the initial points, but poor convergence properties, the latter converged
faster, but showed high sensitivity with respect to the starting point. Therefore, at each step,
the PS was used to refine the starting point of the IP method.

4.3.4 Results and Discussion

The results of the iterative identification procedure are presented and discussed for all the
models under investigation.

We firstly report on the results concerning the relaxation test. In this case the time range
of the experimental data is [0.01 s, 30 s]; therefore, at iteration 0 the characteristic times were
chosen according to Eq. (4.60):

τ
(0)
1 = 0.01 s, τ

(0)
2 = 0.547 s, τ

(0)
3 = 30 s. (4.63)

The smallest characteristic time is equal to the sampling rate of the acquisition channel, which
in turn was chosen to be 100 Hz.

The results of the optimization algorithm are shown in Fig. 4.10. For almost all the
models three steps of the outlined iterative procedure were generally sufficient to reach the
stationarity of the objective function. All the models are able to describe the overall behavior
of the material also with a low number of initial time constants, N = 3 in Eq. (4.63). Fung’s
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Figure 4.11 Relative error versus time as identified by the standard procedure with N = 27 characteristic

times and by each of the three steps of the proposed iterative procedure starting with N = 3

(Model 4).

Table 4.4 Material parameters as identified through the relaxation test. Only the most significant charac-

teristic times τ i, associated with the highest amplitudes ki, are reported. In the last column, the

corresponding value of the objective function is shown.

Model α1 α2 β1 β2 kI τI kII τII kIII τIII fval

[MPa] [MPa] [MPa] [MPa] − [s] − [s] − [s] −

1 1.787 0 1.787 0 0.2941 0.312 0.1984 0.252 0.0280 3.646 7.76

2 0.818 0 9.671 − 0.3523 0.038 0.2165 7.9 0.1557 0.005 19.04

3 0.674 0 89.73 − 0.9922 246.9 0.0043 3.646 0.0016 0.082 8.86

4 0 0.731 79.09 0 0.9924 246.9 0.0032 4.507 0.0025 3.646 7.52

5 0 0.865 0 1.946 0.2001 7.9 0.0301 2.08 0.0219 0.082 29.39

6 1.859 0.175 1.859 0.175 0.4777 0.083 0.0249 2.08 0.0156 246.9 9.82

7 1.591 − 7.036 − 0.8589 113.9 0.0486 13.84 0.0445 7.9 12.16
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model (Model 1) underestimates the slope and the curvature of the relaxation curve around
the kink; this fact is actually related to an under-estimate of the lowest characteristic times.

Figure 4.11 shows the effects of the iterative procedure on the fitting results of Model 4.
In order to avoid a division by small values of the force when the stretches are close to one,
the relative error is computed as proposed in (Ogden et al., 2004), i.e.,

erri :=

∣∣∣(Π̂11(p)
)
i
−
(
Π̃
)
i

∣∣∣
max

{
0.5,

(
Π̃
)
i

} , (4.64)

and is plotted versus time in Fig. 4.11 for four different cases. The final outcome of the
standard procedure with N = 27 characteristic times, chosen as suggested in (Knauss &
Zhao, 2007), is reported as a solid black line: correspondingly the final value of the objective
function was 85.87. The outcomes of all the three steps of the proposed iterative procedure,
starting with N = 3, are reported as dashed, dotted-dashed and dotted lines, respectively; the
final value of the objective function in the third step drops to 7.52. It is evident a monotone
reduction of the relative error from the first to the third iteration. Similar results, not shown
here, has been obtained for all the other models, proving the effectiveness of the proposed
procedure to estimate the characteristic time constants.

Table 4.4 lists the material parameters identified from the relaxation data. On inspec-
tion, it is evident that different models are able to fit correctly the same data by different
modalities, which in turn call for different stress patterns. Concerning the characteristic times
and amplitudes, modeling the material fading memory, we observe that the identification of
Prony’s series is sensibly ill-conditioned, since several set of characteristic constants are able
to produce a good agreement with the experimental data. We remark that for Models 3 and
4, the optimal constitutive parameters are characterized by a factor max(βi)/max(αi) ≈ 100
between the α- and β-stiffnesses. This happens despite we have chosen the same set of initial
data for all the models which is characterized by max(βi)/max(αi) ≈ 1, as deduced from the
experimental curves. Moreover, the optimal values reported in Table 4.4 for Models 3 and
4 happen to be almost insensitive to variations of the initial point in P. We note that, in
these two models, the increase of the β-stiffness values corresponds to

∑
ki ≈ 1. This cir-

cumstance can perhaps be explained as in the Fung’s model, the only one in which we could
obtain some closed-form results, the limit stress value Π∞11 := Π11(t → ∞) is proportional
to (β1 + β2) (

∑
ki − 1). Our guess is that the relaxation data are not sufficient to avoid the

spurious behavior of Models 3 and 4, which tends to enlarge the stiffnesses βi, while letting∑
ki → 1.
The results of the iterative fitting for the loading/unloading cyclic tests at different strain

rates are shown in Figs. 4.12 and 4.13. While in Fig. 4.12 the whole stress responses are
plotted against time, the first and fourth cycles of the same responses are plotted against the
stretch in Fig. 4.13a, b and Fig. 4.13c, d, respectively. The latter figure allows the visualization
of the error in the energy dissipation for all the considered models. Indeed, a small phase
shift in Fig. 4.12 might result in a bad prediction of the dissipated energy along the cycle.

We observe a relevant error for the energy dissipation prediction at low frequencies for
all the models; as soon as the strain rate of the loading path increases, and the highest time
constants become more significant, a considerable improvement in the fitting is obtained.
Figure 4.14 summarizes these results: while, for all the models, the percentage error in the
energy dissipation is about 50% for the first cycle at the smallest strain rate, Models 3, 4,
6 and 7 are able to predict the exact dissipated energy within a 3% error at high strain
rate. The poor performance of Model 1 (Fung’s model) could be due to the strict relation
between the elastic instantaneous stress Π

(e)
ES and the integrand of the dissipative part Ψ. By

modifying Fung’s constitutive equation to have different coefficients in the two terms, a slight
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Figure 4.12 Identified nominal stresses Π11 versus time t for the loading/unloading cycles: (a) Models 1, 2,

3 and (b) Models 4, 5, 6 and 7.
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Figure 4.13 Identified nominal stresses Π11 versus stretch λ the loading/unloading cycles: (a) Models 1, 2,

3 for λ̇ = 0.14 s−1, (b) Models 4, 5, 6, 7 for λ̇ = 0.14 s−1 (first cycle), (c) Models 1, 2, 3 for

λ̇ = 1.09 s−1, (d) Models 4, 5, 6, 7 for λ̇ = 1.09 s−1 (fourth cycle).
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Figure 4.15 Relative errors for the fitting Model 4 through the loading/unloading cyclic tests.

improvement of the fitting model has been obtained. We also recall that when α2 → 0, the
elastic part of Fung’s model reduces to a neo-Hookean constitutive relation and, in this case,
it can be proved that its steady-state response is characterized by a vanishing dissipation.

Figure 4.15 shows, for the case of loading/unloading cycles, the advantages of the proposed
iterative technique with respect to the standard a-priori choice of the material characteristic
times. Again, the solid black curve represents the final outcome of the standard procedure
with N = 27 Prony’s parameters (the final value of the objective function is 2.60), while
the dashed, dotted-dashed and dotted lines represent the first three steps of the iterative
procedure (the final value of the objective function drops from 3.03 to 2.44). Since the cyclic
tests at different strain-rates involve a wide range of characteristic times, the advantages of
the iterative procedure are modest, yet its computational effort remains absolutely equivalent
to the standard a-priori choice.

Table 4.5 lists the material constants identified from the loading/unloading cyclic tests. For
almost all the models, the identified numerical values of the constitutive parameters sensibly
differs from the ones listed in Tab. 4.4, which were identified from the relaxation experiment.
It is then interesting the following question: is each set of constitutive parameters, identified
from one experimental test, able to predict the material response of the other experimental
test?

To this aim, Fig. 4.16 shows the material response in loading/unloading cycles as extrap-
olated by the constitutive parameters identified through the relaxation test. In particular
panels a-b of Fig. 4.16 refer to the first cycle at low strain rate, while panels c-d of the same
figure refer to the fourth cycle at high strain-rate. Viceversa, Fig. 4.17 shows the material re-
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Table 4.5 Material parameters as identified through the loading/unloading cyclic tests. Only the most

significant characteristic times τ i, associated with the highest amplitudes ki, are reported. In the

last column, the corresponding value of the objective function is shown.

Model α1 α2 β1 β2 kI τI kII τII kIII τIII fval

[MPa] [MPa] [MPa] [MPa] − [s] − [s] − [s] −

1 4.106 0 4.106 0 0.1575 1.187 0.133 0.144 0.1299 2.08 10.11

2 0.881 0 13.08 − 0.3393 0.006 0.2702 0.001 0.0956 0.005 3.15

3 0.003 0 545.9 − 0.9156 246.9 0.0005 0.960 0.0002 0.082 2.48

4 0 0.909 0.934 0.002 0.5002 2.08 0.1485 1.187 0.1234 0.082 2.44

5 0 0.955 0 0.199 0.5569 2.08 0.2678 0.082 0.0624 0.960 4.51

6 9.778 0 9.778 0 0.1249 0.006 0.1151 0.005 0.0757 0.082 2.78

7 1.736 − 0.718 − 0.6025 2.08 0.103 0.960 0.0760 0.082 2.59
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Figure 4.16 Panels (a) and (b) show the hysteresis loop at λ̇ = 0.03 s−1 and λ̇ = 0.3 s−1, respectively as

predicted by the fitting models inferred through the relaxation test.
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Figure 4.17 Panels (a) and (b) show the relaxation curves as predicted by fitting models inferred through

the cyclic test.

sponse in the relaxation test as extrapolated by the constitutive parameters identified through
the loading/unloading cycles.

Table 4.6, which refers to the data reported in Fig. 4.16, summarizes the percentage errors
in the cross-predictions of the energy dissipation when the material is identified through
the relaxation test. Models 1, 2, and 5 show relevant errors at both low and high strain
rates. In particular, we observe that i) Model 1 exhibits the already discussed tendency to
underestimate significantly the dissipation, ii) Model 2 completely misses the correct material
behavior by predicting positive tension stresses under compression strains. On the other hand,
Models 3, 4, 6 and 7 perform extremely well by predicting the correct energy dissipation
within a percentage error of 67% at low strain rates and within a percentage error of 15% at
high strain rates. These two numbers must be compared with the direct prediction errors of
Fig. 4.11, i.e., about 50% and 3%, respectively. Models 4, 6 and 7 give also good estimates of
the loading and unloading tangent stiffnesses.

Similarly, Tab. 4.7, which refers to the data reported in Fig. 4.17, summarizes the percent-
age errors in the cross-predictions of maximum and limit stress in the relaxation curve when
the material is identified through the cyclic tests. Apart from Model 1, which completely
misses the correct behavior, the other models are able to predict the main features of the
relaxation test within a 10% error. Model 2 distinguishes by predicting the maximum stress
with 1.5% error, while particularly good estimates of the limit stress are given by Models 3,
4, 6 and 7.

Finally, we discuss the fractional kernel (4.47) introduced in (Lion & Kardelky, 2004)
(Model 7). As discussed before, up to now the additional parameters δi have been kept fixed
to allow a fair comparison with the other models. Now these additional parameters are left
free to evolve to further minimize the objective function. We remark that in the case of the
fractional kernel (4.47), the computational effort in the minimization process considerably
increases. Indeed, if the standard viscoelastic kernel is used, since at each step the coefficients
τi are kept fixed, the resulting objective function is linear with respect to the unknowns αi
and bilinear in βi and ki. Instead, when using the fractional model, the kernel function k(t)
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Table 4.6 Percentage errors in the cross-prediction of energy dissipation when the material is identified

through the relaxation test. A positive value means an underestimate.

Model 1st cycle [%] 4th cycle [%] Total [%]

1 93 95 96

2 −79 −48 −56

3 66 13 43

4 66 15 44

5 71 33 56

6 67 12 44

7 66 11 43

Table 4.7 Percentage errors in the cross-predictions of maximum and limit stress when the material is iden-

tified through the cyclic tests.

Model max |Π11| [%] Π11(t = 30 s) [%]

1 78 16

2 1.5 7.9

3 11 −1.5

4 10 5.5

5 8.4 10

6 10 5.7

7 9.9 6.4
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Table 4.8 Percentage errors of Model 7 with δi = 1 and δi = δ∗i . The first two columns show the errors

obtained by inferring the material parameters through the cyclic tests, the latter columns refer to

the material parameters inferred through the relaxation test.

δi = 1 δi = δ∗i δi = 1 δi = δ∗i

Direct Prediction Cross-Prediction

1st Cicle [%] 54.09 54.03 65.53 65.51

4th Cicle [%] −0.67 −0.57 11.4 11.38

Total [%] 29.2 29.08 42.6 42.5

Cross-Prediction Direct Prediction

max |Π11| [%] 9.93 9.91 2.04 2.01

Π11(t = 30 s) [%] 6.41 6.4 0.21 0.19

must be reevaluated for each tentative value of the parameters δi, while the resulting objective
function depends transcendentally on the unknown coefficients. The optimal set δi = δ∗i for
the fractional kernel is characterized by 0.75 < δ∗i ≤ 1; Tab. 4.8 shows the associated results.
We observe modest improvements in the direct and cross predictions of Model 7 for what
concern both the energy dissipation (at low and high strain rates) and the maximum and
limit stresses in relaxation.

4.3.5 Conclusions and perspectives

We have presented a literature survey of the main nonlinear viscoelastic constitutive models
and we have identified their parameters on the basis of two different compression tests in the
range `/`0 ∈ [0.83, 1]. Relaxation and loading/unloading/creep cycles at different strain rates
have been performed on a carbon black-filled rubber compound. An iterative identification
procedure has been introduced and has led to a better estimate of the characteristic time
constants with respect to their a-priori choice used by many authors. The presented results
allow us to draw the following conclusions:

• Model 1 (Fung’s model), which was firstly introduced to describe the behavior of soft
biological tissues, has revealed unable to describe the dissipated energy both at higher
and lower strain rates.

• Models 3 (Hallquist, 1998), 4 (Yang et al., 2000), 6 (Hibbit et al., 2007) and 7 (Lion
& Kardelky, 2004) have shown the best predicting capabilities: these models are able
to predict the dissipated energy in high strain-rate cycles, a crucial quantity in many
engineering and bio-medical applications, within a 3% error. The same error raises to
10-15% if their constitutive parameters are identified by the only mean of the relaxation
test.

• The relaxation data are not sufficient to resolve both the βi stiffnesses and the sum of
characteristic amplitudes

∑
ki for Models 3 and 4. Thus the limit stress value Π∞11 is
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correctly predicted by the product of a spuriously large stiffness βi with a spuriously
small term (

∑
ki − 1). The cyclic tests eliminate this indetermination for Model 4 but

not for Model 3 (cfr. Tabs. 4.4 and 4.5).

• For the purpose of viscoelastic properties identification, the proposed loading/unloading
cycles revealed more effective with respect to the simple relaxation test; yet they require
the same hardware and the same amount of time to be performed.

• All the considered models sensibly underestimate the energy dissipation in loading/unloading
cycles at low strain-rates with 50% errors at least; we recall that the constitutive rela-
tions 4 and 5 were specifically aimed at modeling the filled rubber behaviour at high
strain rates.

• At least for the presented experimental cases, the use of additional constitutive pa-
rameters modeling a fractional derivative viscoelastic kernel does not introduce sensible
improvements in the predictions.

Moreover we have observed that different sets of material parameters (as listed in Tabs. 4.4
and 4.5) are able to cross predict the stress response within an acceptable tolerance. Being
pretty confident that the described minimization procedure has allowed us to bypass meaning-
less local minima for the constitutive parameters, we conclude that the presented experimental
tests are not sufficient to characterize unequivocally the three-dimensional viscoelastic consti-
tutive relation. In particular tests involving shear deformations, tensile and mixed deformation
patterns, yet difficult to perform, could usefully complement the presented data.

Finally we have enlightened a general ill-conditioning in the problem of the identification
of the Prony’s series modeling the actual material memory. It could be worth curing this
difficulty by reducing the description of the viscoelastic kernel to a minimal set of parameters.



Chapter 5

Numerical Applications

Chapter Outline. In this chapter the behavior of isotropic, almost-incompressible, nonlinear elastic and
viscoelastic materials is simulated by means of the ABAQUS FEA code. Simple deformations are considered
and the numerical results are compared with the analytical solutions. Finally, shortcomings of the ABAQUS
finite viscoelasticity model are highlighted and discussed.
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5.1 Hyperelastic Material Simulation

When modeling a nonlinear hyperelastic material in ABAQUS, the program makes the fol-
lowing assumptions:

1. the material behavior is elastic,

2. the material behavior is isotropic,

3. the simulation includes nonlinear geometrical effects.

The use of hybrid-type elements is highly recommended when dealing with near-incompressible
materials. Such elements are based on mixed-type formulations, where independent interpo-
lations for displacement and stress fields are assumed and two sets of governing equations,
both equilibrium and compatibility are enforced in weak form.

As well-known, in the case of incompressible materials, the volumetric strain locking prob-
lem appears, if standard displacement-based FE formulations are employed. In order to
overcome such numerical drawbacks, various mixed/hybrid FE have been proposed in the
literature based on distinct interpolations of displacement and pressure fields. It has been
widely demonstrated that such enhanced FE are able to avoid volumetric strain locking. On
the other hand, since most of the experimental tests are performed on 2D specimens, where
plane stress conditions are satisfied, the use of 2D displacement-based FE together with the
plane stress assumption is also justified. In this case the determination of the pressure field
is not affected by the volumetric locking problem (see, e.g., Belytschko, 2000).

In ABAQUS, the identification of the hyperelastic material properties can be performed
on the basis of experimental stress-strain curves. Four different tests can be used to get an
accurate evaluation of the material parameters. These are uniaxial, planar (pure shear test),
equibiaxial and volumetric tests. Clearly, when already known, material parameters can be
directly specified in ABAQUS to describe hyperelastic material models. Since the problem of
the identification of material parameters has been already addressed in Chap. 4, the second
task will be used in this chapter.

In order to investigate ABAQUS performances comparison between analytical and nu-
merical solutions will be carried out. With the aim of investigating how the adopted solution
scheme influences the results, standard patch test on single element will be performed and
a comparison among different kinds of elements will be addressed (hybrid C3D8H and plane
stress CPS4R).

5.2 Implicit vs. Explicit Formulation

Finite Element Analysis (FEA) involving short-time dynamical problems with large deforma-
tion, quasi-static problems with large deformations and multiple nonlinearities, or complex
contact/impact problems requires the use of either implicit or explicit solution techniques. Ex-
amples of these types of simulations are crashworthiness analysis, drop testing, deep drawing,
rolling, extruding, pipe whip, bird strike, fan containment and many more.

The ABAQUS FEA program includes the ability to address both implicit as well as explicit
solutions. Both the solution procedures are based on a numerical time integration scheme to
solve the discrete dynamical equilibrium equations in terms of displacements, velocities and
accelerations, then strains and stresses (Hibbit et al., 2007). Implicit integration schemes
(ABAQUS/Standard uses a Hilber-Hughes-Taylor algorithm for implicit integration) assume
a constant average acceleration over each time step, ∆t = tn+1 − tn, where tn and tn+1 are
the starting and ending points of the time interval ∆t. The governing equations are solved
and the resulting accelerations and velocities at tn+1 are calculated. Then the unknown
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displacements at tn+1 are determined. Explicit integration schemes (ABAQUS/Explicit uses
a Central Difference method) assume a linear change of the displacement in each time step.
The governing equations are evaluated and the resulting accelerations and velocities at tn are
calculated. Then, the unknown displacements at tn+1 are determined.

There is one major difference between the two techniques in the equations that are used
to solve for displacements at tn+1. The implicit solution method requires matrix inversion of
the structural stiffness matrix, the explicit solution does not. However, unlike the implicit
solution scheme, which is unconditionally stable independently on the time step size, the
explicit scheme is stable only for time step size smaller than a critical size evaluated for the
analyzed structure. The undamped critical time step size is 2/ωn (where ωn is the largest
natural circular frequency), which is usually a very small value. This very small time step size
requirement for stability thereby makes explicit solutions useful only for very short transient
analyses. But, even though the number of time steps in an explicit solution may be orders
of magnitude greater than in an implicit solution, it is significantly more efficient than an
implicit solution since no matrix inversion is required. Therefore the choice of the integration
scheme strongly relies on the problem under investigation.

5.3 Static Analysis

In this section some of the results obtained in Chap. 2 for the simple deformation of hyper-
elastic materials are recalled. A comparison between analytical and numerical solutions are
presented and discussed. The FE analysis was performed using the C3D8R element, which is
a general purpose linear brick element, with reduced integration (1 integration point).

5.3.1 Uniaxial Extension

In an uniaxial extension test of an isotropic compressible solid, the (homogeneous) strain
tensor is described by

F = Diag {λ1, λ2, λ2} , (5.1)

where λ1 and λ2 are the longitudinal and lateral stretch, respectively. The stretch λ1 is known,
since it depends on the imposed displacement field, but λ2 has to be determined from the
boundary condition. In particular, since σ22 = σ33 = 0, the stretch λ2 can be derived from
the implicit relation:

σ22(λ1, λ2) = 0 (5.2)

From equations (2.34)-(2.35) the Cauchy stress arising from the deformation (5.1) is

σ = 2φ0I + 2φ1BD + 2φ2

(
BB

)
D

(5.3)

where
φ0 = I

1/2
3

∂ΨV

∂I3
, φ1 = I

−1/2
3

(
∂ΨI

∂I1

+ I1
∂ΨI

∂I2

)
, φ1 = −I−1/2

3

∂ΨI

∂I2

, (5.4)

and (·)D is the deviatoric part of the tensor.
The dependence of PsiI and PsiV , i.e., of the isochoric and deviatoric parts of the strain

energy function, is known once a constitutive equation is chosen. In the following three
different nonlinear models (Neo-Hooke, Mooney-Rivlin, Yeoh) are analyzed.

The Neo-Hookean constitutive law reads as:

ΨI(I1, I2) = c10

(
I1 − 3

)
,

ΨV (I3) =
1

D

(
I

1/2
3 − 1

)2
,
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thus,

σ =
2

D
(I

1/2
3 − 1)I + 2 c10 I

−1/2
3 BD. (5.5)

and the initial shear and bulk moduli (moduli around the reference configuration) are given
by:

µ0 = 2 c10, k0 = 2/D. (5.6)

From equation (5.5) one gets the following expression for the Cauchy stress components:

σ11 =
4

3
(λ2

1 − λ2
2)(λ1 λ

2
2)−5/3 +

2

D
(λ1 λ

2
2 − 1), (5.7)

σ22 = σ33 =
2

3
(λ2

2 − λ2
1)(λ1 λ

2
2)−5/3 +

2

D
(λ1 λ

2
2 − 1), (5.8)

Using a numerical root finding method, the lateral strain λ2 can be obtained from equation
(5.2) for a given longitudinal strain λ1. We only consider the so-called simple materials, where
the implicit relation (5.2) has only one root for a given λ1 (Eihlers & Eppers, 1998).

In the case of linear elasticity, the Poisson ration ν is known to be a material constant. If a
solid is assumed to be incompressible, ν is equal to 1/2. In what follows, we define a nonlinear
Poisson function via the longitudinal and lateral strain (see, e.g., Beatty & Stalnaker, 1986),
viz.

ν = −λ2 − 1

λ1 − 1
. (5.9)

Obviously, ν is not a constant in the case of finite elasticity.
The well-known relation between the initial shear modulus µ0, the initial bulk modu-

lus k0 and the initial Poisson function ν0 follows from a linearization around the reference
configuration of equation (5.3) (Eihlers & Eppers, 1998), i.e.,

ν0 =
3k0 − 2µ0

6k0 + 2µ0
(5.10)

The values of the nonlinear Poisson function (5.9) have been plotted in figure (5.1) for a
Neo-Hookean material and for different values of D and increasing λ1.

The same results have been obtained for Mooney-Rivlin and Yeoh models, for which the
strain energy functions are:

ΨI(I1, I2) = c10

(
I1 − 3

)
+ c01(I2 − 3), (5.11)

ΨV (I3) =
1

D

(
I

1/2
3 − 1

)2
, (5.12)

and

ΨI(I1, I2) = c10

(
I1 − 3

)
+ c20(I2 − 3), (5.13)

ΨV (I3) =
1

D

(
I

1/2
3 − 1

)2
, (5.14)

respectively
From equation (5.3), the following stress-strain relations are valid:

σ =
2

D
(I

1/2
3 − 1)I + 2 I

−1/2
3

(
c10 + c01 I1

)
BD − 2 c01 I

−1/2
3 (B

2
)D. (5.15)

for a Mooney-Rivlin material, and

σ =
2

D
(I

1/2
3 − 1)I + 2 I

−1/2
3

[
c10 + c20 (I1 − 3)

]
BD. (5.16)
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Figure 5.1 Nonlinear Poisson function for a Neo-Hookean material with different values of the compressibility

coefficient D for the analytical model (solid curves) and the ABAQUS FEA model (dotted curves).

The two curves perfectly overlap.
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Figure 5.3 Normalized uniaxial stress σ11/µ0 plotted against stretch λ1 for a Neo-Hookean material with

different values of the compressibility coefficient D for the analytical model (solid curves) and the

ABAQUS FEA model (dotted curves). The analytical and numerical curves perfectly overlap.

for a Yeoh material.
Moreover, the initial moduli are:

µ0 = 2 (c10 + c01), k0 = 2/D (5.17)

from equations (5.15), and
µ0 = 2 c10, k0 = 2/D (5.18)

from (5.16).
The results of the combined numerical/analytical simulations are shown in Figs. (5.1)-

(5.4). The constitutive parameters were chosen as

c10 = c01 = µ0/4, (5.19)

for Mooney-Rivlin model and
c20 = µ0/4 (5.20)

for Yeoh model. In all the cases the volumetric constant was D = 10−8.
Figure 5.1 shows the nonlinear Poisson’s function in terms of the stretch λ1 in the case

of a Neo-Hookean material model. For every value of the compressibility constraint D in the
range D ∈

[
10−10, 10−6

]
, the analytical and (ABAQUS) numerical models predict the same

Poisson’s function. For D = 10−6, ν displays a non-monotonic behavior for smaller stretches,
which means that for very high compression ratios the lateral displacement diminishes while
the material is being compressed. This non-physical behavior is a consequence of the volu-
metric/isochoric split of the strain energy function and it is well documented in the literature
(Eihlers & Eppers, 1998).

The different nonlinear Poisson’s function arising from the material models considered are
shown in Fig. 5.2. Figure 5.3 displays the uniaxial behavior of the models.
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Figure 5.4 Normalized uniaxial stress σ11/µ0 plotted against stretch λ1 for different analytical models (solid

curves) and the corresponding ABAQUS FEA models (dotted curves) in the simple tension case.

The two curves perfectly overlap.

5.3.2 Simple Shear

A simple shear deformation has been described in Chap. 2. Recalling those results, the
deformation gradient is given by:

F =

1 γ 0
0 1 0
0 0 1

 (5.21)

thus, det F = 1.
The boundary conditions applied to subject a solid to a simple shear deformation state are such
that the deformation (5.21) is volume-preserving, independently on the assumed constitutive
equation.

We refer here and henceforth to the analytical solutions reported in table (2.2). The
comparison between numerical and analytical results are plotted in figures (5.5) and (5.6).
The material parameters are the same as in the uniaxial extension case. The volumetric
constant D has been set to D = 10−8, which for µ0 = 106 corresponds to ν = 0.495.

5.4 Dynamic Simulations

In this section we derive analytical solutions for the two boundary-value problems considered
also in the static case: simple shear and uniaxial extension.

We henceforth focus on an incompressible viscoelastic solid for which the instantaneous
response is modeled by a two terms Yeoh stress-strain relationship (a standard implementation
in ABAQUS):

σe = −pI + µ0(1− 3α+ α I1) B, (5.22)

where µ0 and α are positive constants ( µ0 is the shear modulus in the reference configuration)
and I1(t) = tr{B(t)} . Also, for simplicity, the time relaxation of the solid is assumed to be
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Figure 5.5 Normalized stress σ11/µ0 plotted against stretch γ for different analytical models (solid curves)

and the corresponding ABAQUS FEA models (dotted curves) in the simple shear case.
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governed by a one-term Prony series expansion given by:

G(t) =
µ∞
µ0

+

(
1− µ∞

µ0

)
e−t/τ , (5.23)

where µ∞ is the asymptotic value to which the shear modulus settles after an infinite time
and τ is a characteristic time constant.

For the sake of clarity, let recall the ABAQUS FEA finite viscoelastic model already
introduced in Section 3.3.3; for an incompressible solid it reads as

σ(t) = −p(t)I + ψ1(t)B(t) + ψ2(t)B(t)2

+
2∑
i=1

SYM
{

F(t)

[∫ t

0
Ġ(t− s)ψi(s)C(s)ids

]
F−1(t)

}
,

(5.24)

where p(t) = p̂(t) +
∫ t

0 Ġ(t − s)p̂(s)ds is arbitrary and remains to be determined from ini-
tial/boundary conditions.

Then, for the ABAQUS model we have ψ1(t) = µ0(1− 3α+αI1(t)), ψ2(t) = 0, and hence
(5.24) reduces to:

σ(t) = −p(t)I + µ0 (1− 3α+ αI1(t)) B(t)+

+
(µ∞ − µ0)

τ
SYM

{
F(t)

[∫ t

0
e−(t−s)/τ (1− 3α+ αI1(s)) C(s)ds

]
F−1(t)

}
.

(5.25)

By contrast, for the Fung’s QLV model introduced in Sec. 3.3.1, the result is

φ0(s, t− s) = µ0 [1− 3α+ αI1(s)] G(t− s), φ1(s, t− s) = 0, φ2(s, t− s) = 0, (5.26)

yielding
σ(t) =− p(t)I + µ0 [1− 3α+ αI1(s)] B(t)

+
µ∞ − µ0

τ

∫ t

0
e−(t−s)/τ [1− 3α+ α I1(s)] dsB(t).

(5.27)

In order to further highlight the differences between Abaqus and QLV model, we will
compare the average rate of working in the case of the two simple motions considered here.
To this end, we define the dissipated energy density Ed over a period T referred to the current
configuration.
We recall that the internal rate of working of the stress per unit current volume is σ(t)·D(t) ≡
tr {σ(t)D(t)}. Assuming for D(t) a periodic time law, the time-averaged work done per unit
current volume over a period T starting at time T0, is given by

Ed =
1

T

∫ T0+T

T0

σ(t) ·D(t)dt, (5.28)

where T0 and T0 + T are the starting and ending time points.
Since the elastic part of the stress does not contribute to this expression (5.28) represents

the energy dissipated in a cycle (which depends on T0 in general).

5.4.1 Uniaxial Extension

When an incompressible isotropic solid is subjected to an uniaxial extension, the (homoge-
neous) motion is described by:

x1 = λ(t)X1, x2 = λ(t)−1/2X2, x3 = λ(t)−1/2X3, (5.29)
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where λ(t) (≥ 1) is the stretch ratio in the direction of the uniaxial tension σ11 (≥ 0). The
resulting deformation gradient has the following diagonal form:

F(t) = Diag
[
λ(t), λ(t)−1/2, λ(t)−1/2

]
. (5.30)

Vanishing of the lateral stresses σ22 = σ33 = 0 determines the Lagrange multiplier p(t)
and elimination of p(t) yields

σ11(t) = µ0

[
λ(t)− λ−2(t)

] [
2α+ (1− 3α)λ(t) + αλ3(t)

]
+
µ∞ − µ0

τ

∫ t

0
e−(t−s)/τ [λ(s)− λ−2(s)

] [
2α+ (1 + 3α)λ(s) + αλ3(s)

]
ds,

(5.31)

for the Abaqus model and

σ11(t) = µ0

[
λ(t)− λ−2(t)

] [
2α+ (1− 3α)λ(t) + αλ3(t)

]
+
µ∞ − µ0

τ

[
λ2(t)− λ−1(t)

] ∫ t

0
e−(t−s)/τλ−1(s)

[
2α+ (1 + 3α)λ(s) + αλ3(s)

]
ds,

(5.32)

for the QLV model.
The difference between these models is now clear, and it reflects significantly on the rate of

working, as we confirm numerically below. From an experimental point of view, it is common
practice to employ a dynamic displacement superimposed on a large static deformation. Here
we consider a Neo-Hookean solid deformed in tension to a stretch of 1.5 from time t = 0 to
time t = 1, and then made to oscillate with a superimposed amplitude such that the stretch
λ(t) ranges from 1. to 1.5. Thus,

λ(t) =

{
1 + 0.5t, 0 ≤ t ≤ 1,

1.5 + 0.2 sinω(t− 1), t ≥ 1.
(5.33)

For numerical purposes the stresses are non-dimensionalized by dividing by µ0. For the
remaining parameters we set

µ∞/µ0 = 0.5, τ = 0.01 s, ω = 48π s−1, (5.34)

except when the frequency dependence of the energy dissipation rate is investigated where ω
varies.

The numerical results have been obtained with ABAQUS 6.7-1 using a single C3D8H
element (brick, 8 nodes, trilinear, hybrid with constant pressure) with an implicit solution
scheme. As a check, the same test was done with a 2D plane stress element CPS4 (4 nodes,
bilinear, plane stress) and the same results were obtained. Furthermore a comparison among
implicit solution scheme, explicit solution scheme and analytical solution has been carried out
and the results are shown in Fig. 5.7. In the case of Explicit time integration a C3D8 element
has been used.
The results settle very rapidly to the steady state so that the expression (5.28) becomes
essentially independent on T0. Figure 5.8, in which Ed/µ0 is plotted against frequency ω
in the steady state, shows clearly that the ABAQUS model overestimates the steady state
energy dissipation substantially (by a factor of 4 to 5) compared with the QLV model.

5.4.2 Simple Shear

We now consider a simple shear motion of the form:

x1 = X1 + γ(t)X2, x2 = X2, x3 = X3, (5.35)
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Figure 5.7 Dependence of the dimensionless axial tension σ11 on time t for the Abaqus FEA model (solid

curve), the ABAQUS output (dotted curve) and the QLV model (dashed curve).
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where γ(t) is the amount of shear strain. The (non-symmetric) deformation gradient results
as:

~F (t) =

1 γ(t) 0
0 1 0
0 0 1

 . (5.36)

Simple calculations reveal that a sheared solid described by the ABAQUS model is in a
state of plane stress (σij 6= 0 for i, j ∈ {1, 2}; σ3j = 0 for j = 1, 2, 3) when the Lagrange
multiplier p(t) is taken as

p(t) = µ∞ − (µ∞ − µ0)e−t/τ + αµ0γ
2(t)− α µ∞ − µ0

τ

∫ t

0
e−(t−s)/τγ2(s)ds. (5.37)

Note that the combination of plane strain and plane stress (in the (1, 2) plane) is permissible
for an incompressible material provided p(t) (and hence σ11(t) and σ22(t)) is (are) adjusted
accordingly. Then, for the ABAQUS model we obtain

σ11(t) =µ0γ
2(t)

[
1 + αγ2(t)

]
+
µ∞ − µ0

τ
γ(t)

∫ t

0
e−(t−s)/τγ(s)

[
1 + αγ2(s)

]
ds,

σ12(t) =µ0γ(t)
[
1 + αγ2(t)

]
+

+
(µ∞ − µ0)

2τ

∫ t

0
e−(t−s)/τγ(s)

[
2 + γ(s)γ(t)− γ2(t)

] [
1 + αγ2(s)

]
ds,

σ22(t) =
(µ∞ − µ0)

τ

∫ t

0
e−(t−s)/τγ(s) [γ(s)− γ(t)]

[
1 + αγ2(s)

]
ds,

(5.38)

and for the QLV model

σ11(t) = µ0γ
2(t)

[
1 + αγ2(t)

]
+
µ∞ − µ0

τ
γ2(t)

∫ t

0
e−(t−s)/τ [1 + αγ2(s)

]
ds,

σ12(t) = µ0γ(t)
[
1 + αγ2(t)

]
+
µ∞ − µ0

τ
γ(t)

∫ t

0
e−(t−s)/τ [1 + αγ2(s)

]
ds,

σ22(t) = 0.

(5.39)

Note that Rivlin’s universal relation σ11−σ22 = γσ12 from isotropic elasticity holds also for
the present Yeoh-based viscoelastic model. The expressions in (5.39) are expected intuitively
for the Yeoh model because for its instantaneous response at very short times the Cauchy stress
has components σe 11 = µ0γ

2(1 + αγ2) , σe 12 = µ0γ(1 + αγ2), σe 22 = 0. By contrast, the
ABAQUS model gives rise to a σ22 component generated purely by the viscoelastic effects,
in which case the relaxation process creates such a component ex nihilo! However, since
simple shear is a displacement controlled motion the stress components adjust automatically
to accommodate the geometry and they are therefore very much dependent on the form of
the constitutive law. The difference in the shear stress, however, has serious consequences for
the rate of working, and hence the dissipation, because here

D(t) =

 0 γ̇(t)/2 0
γ̇(t)/2 0 0

0 0 0

 , (5.40)

and hence σ ·D = σ12(t)γ̇(t), which is obviously not the same for both models.
We confirm these findings by testing the ABAQUS software against the formulas (5.38)-

(5.40). We take the amount of shear γ(t) to vary as

γ(t) =

{
t, 0 ≤ t ≤ 1

1 + 0.2 sin [ω (t− 1)] , t ≥ 1,
(5.41)
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Figure 5.9 Dependence of σ12/µ0 on time t in simple shear state for the ABAQUS analytical model (solid

curve), the ABAQUS output (dotted curve) and the QLV model (dashed curve).

with the other parameters given by (5.34). Figures 5.9 and 5.10 display the variations of
the σ12 and σ22 components computed from (5.38) and (5.39) in dimensionless form. As in
the case of simple tension there is not a great difference in the active stress (in this case σ12)
between the two models, but the reactive stress σ22 is very different. Finally, as also for simple
tension, we find that the ABAQUS model overestimates the rate of working with respect to
the QLV model (by a factor of 2 to 3), as shown in Fig. 5.11, again in dimensionless form
with Ed/µ0 plotted against frequency ω in the steady state. Using the ABAQUS software,
we recovered the thick curves (in Figs. 5.9 and 5.10), which confirms that equation (5.24) is
actually implemented in the ABAQUS code.

A comparison between implicit and explicit solution scheme has been performed. In the
latter case a C3D8 element has been used (C3D8H is not available in explicit time integration).
We find that the explicit solution scheme overestimates the rate of working with respect to
the implicit/theoretical model, as shown in Fig. 5.11, again in dimensionless form with Ed/µ0

plotted against frequency ω in the steady state.
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Figure 5.10 Dependence of σ22(t)/µ0 on time t in simple shear for the ABAQUS FEA model (solid curve),
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