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 7 1. INTRODUCTION 

1. Introduction 
Bioinformatics is the field of science in which biology, computer science, 

and information technology merge to form a single discipline. 

The initial interest in bioinformatics started when Sanger discovered the 

method to sequence proteins (Sanger and Coulson, 1975). The vast amount 

of biological data that has became available after this discovery made the 

need to organize, analyze and store them pressing. 

The first sequence database was created within a short period after the first 

protein sequence was made available in 1956 (Insulin protein sequence with 

51 residues) (Stretton, 2002), nowadays the manually created SWISS-PROT 

database, which was created in 1986, (Bairoch and Boeckmann, 1994) 

counts more than 530.000 protein sequences (release November 2011) 

(http://web.expasy.org/docs/relnotes/relstat.html). 

The availability of the entire genome sequences for several organisms and 

the exponential growth in computing power during the last few years have 

expanded the research focus from the study of a single molecule, gene, 

protein or small complex to the exhaustive exploration of molecular 

interactions and biological processes at the level of whole organisms. 

Proteins are the workhorses of the cell, performing a wide variety of 

functions. Most often, they perform these functions by interacting with other 

proteins, giving rise to large and complex protein-protein interactions 

networks.  

In the last few years, the interest for the information retrieved from protein 

interactions increased and became one of the most important resources for 
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many scientific fields (drug discovery, disease treatment, biotechnology, 

medicine). Protein interaction maps are used to extract functional 

information and for the identification of metabolic or signal transduction 

pathways. These interactions are warranted by a wide range of protein 

binding interfaces raging from long structured region (globular domains) 

(Richardson, 1981) to short unstructured region (short linear motifs (SLiMs)) 

(hunt, 1990). So far, globular domains have been studied more than SLiMs 

(more than 11000 domains are currently known) (Finn, et al., 2010), due to 

their long sequence length and also because their structure can be solved by 

x-ray crystallography. 

1.1. Protein-Protein interaction modes 
Protein interactions are relatively balanced by their affinity for their various 

partners (proteins, ligands, nucleic acids, ions). Interaction specificity and 

strength are directly related to the protein sequence composition, the 

structure, the dynamics and the energetics (Neduva and Russell, 2006). 

Proteins have several ways to interact with each other. In many cases the 

interactions are mediated by a protein component, which is commonly called 

a domain. Typically, a domain is a modular element with more than 36 

residues (Jones, et al., 1998). In this case interactions between proteins often 

involve interaction between their domains (Yellaboina, et al., 2011), but in 

other cases the interaction is mediated by a domain of the first partner and a 

short linear motif of the second partner (Neduva and Russell, 2006). 

Domain-domain interactions between pairs of proteins can be studied via 

structural determination techniques or sequence similarity. In contrast, 

domain-linear motif interactions are more difficult to identify by sequence 

comparison.  

Linear motifs are usually identified in experiments such as the yeast two-
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hybrid experiment (von Mering, et al., 2002), but can also be detected 

computationally. The number of functional motifs so far discovered is much 

lower than the thousands of domains that could bind them. This suggests that 

there are probably hundreds of new motifs still to be discovered. In the next 

paragraphs I will outline all the main linear motif attributes and the methods 

and tools used to identify them. 

1.2. Short Linear Motifs 

1.2.1. What are Short Linear Motifs (SLiMs)? 

Short Linear motifs (also known, as SLiMs, Linear Motifs (LMs) or 

minimotifs) are functional microdomains that mediate protein-protein 

interactions. Tim Hunt introduced the first definition for LMs in 1990 (hunt, 

1990): 

“The sequences of many proteins contain short, conserved motifs that are 

involved in recognition and targeting activities, often separate from other 

functional properties of the molecule in which they occur. These motifs are 

linear, in the sense that three-dimensional organization is not required to 

bring distant segments of the molecule together to make the recognizable 

unit. The conservation of these motifs varies: some are highly conserved 

while others, for example, allow substitutions that retain only a certain 

pattern of charge across the motif.” 

The main features of linear motifs are: 

1) They are short i.e generally composed by a short stretch of contiguous 

amino acids (3 to 10 residues), of which at least three are conserved, and 

mediate the binding. It is estimated that 70% of known linear motifs have 4 

defined positions or less (Davey, et al., 2010). These are the positions that 

usually play an important role for the protein function (e.g., the consensus 
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motif PxxP binds to the SH3 protein domain (Pawson and Nash, 2003), 

where P is a Proline and x is any amino acid) (Figure 1). A position of a 

linear motif can be degenerated. This means that a functional residue can be 

substituted with another amino acid sharing similar physicochemical features 

without affecting motif functionality (Davey, et al., 2010). 

2) SLiMs are linear in the sense that the residues involved in the protein 

function are adjacent in the primary sequence and in close proximity in the 

tertiary structure. 

In summary we can define Motifs as short sequence patterns, necessary for 

the protein function. 

Linear motifs are observed in different proteins with different functions, 

such as transcription factors, adaptors, membrane receptors and mediators of 

protein-protein interactions (Linding, et al., 2007). We can classify SLiMs in 

four main functional classes (Diella, et al., 2008): 

- Protein binding motifs: these are the most common linear motifs that 

bind to a domain of an interacting protein (PDZ binding motif, SH3 

binding motif). 

- Localization/targeting: represent a class of motifs involved in 

recognition of a protein to be targeted to a specific sub-cellular 

location (Nuclear export signal, ER retention retrieving). 

- Cleavage: linear motifs acting as peptidase cleavage sites (sites of 

proteins that are cut by enzymes (Taspase 1, Furin). 

- Post Translation Modification (PTM) sites: Some linear motifs are 

post-translational modification sites (N-linked glycosylation, N-

Myristoylation, etc.). 
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Figure 1: The structure of SH3p40 in complex with the polyproline motif of p47;phox 
(PDB code 1W70). In blue is the core SH3p40 structure formed by two β-sheets. In orange 
is the p47phox polyproline peptide (residues 360–372). In yellow are the SH3p40 residues 
interacting with the polypeptide (Massenet, et al., 2005). 

1.2.1.1. SLiMs biological features 

In contrast to globular domains, linear motif functions are independent of 

their tertiary structure; most of them have been identified in disordered 

regions (~ 85% of occurrences), but they have been also observed in the 

accessible parts of globular domains (Russell and Gibson, 2008). The 

disorder tendency of LMs is important for the protein disorder-order 

transition upon motif-domain interactions. Residues in disordered regions 

are less evolutionary constrained than those in ordered regions and can more 

easily evolve towards functional motifs (Davey, et al., 2009). LMs are often 

enriched in some specific residues (e.g. R, K, P, W, T and C), and depleted 

of some others, especially A and G. Hydrophobic residues, I, M and V are 

interchangeable due to their chemical similarity in many SLiMs (Puntervoll, 

et al., 2003). Conserved motif residues are usually insufficient for high 

specific binding interactions; other residues surrounding the core motif are 
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needed. SLiMs binding affinity is usually weak compared to those of 

domain-domain interactions, due to motif short length. The known motif 

features can be used to build new motif discovery tools and improve existing 

ones. 

1.2.2. Why are we interested in Linear Motifs? 

We analyse LMs for several reasons. The most important one is that they are 

implicated in several disease pathways, essentially caused by motif 

mutations (such as Alzheimer’s and Huntington’s diseases (Davey, et al., 

2011)). Since proteins use motifs for a wide range of functions, many viruses 

try to mimic human LMs to hijack cells. For example, the motif RxLx[QE] 

is implicated in the malaria pathogenesis and a disfunction of the SH3 

binding motif is related to the Influenza, Hepatitis B and C viruses 

(Kadaveru, et al., 2008). A list of disease related LMs is reported in Figure 2. 

The second reason is that linear motifs are very important for drug 

discovery. Recent studies have established the ability of small peptides to 

competitively bind proteins and the ability to target drugs to SLiM 

interactions (e.g. the angiogenesis inhibitor Cilengitide have provided 

promising results in cancer therapeutics (Burke, et al., 2002)). 

The third reason is that, in spite of their importance, only a small number of 

them have been discovered. It is estimated that 15-40% of protein 

interactions are mediated by linear motifs. This implicates that hundreds of 

them are still to be discovered (Neduva and Russell, 2006). And this is the 

observation that inspired this thesis work. 
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Figure 2: Examples of diseases SLiMs, classified by function and cell compartment. For 
more details see “How viruses hijack cell regulation” (Davey, et al., 2011). 

1.3. Linear motifs discovery 
Linear motifs are difficult to detect experimentally or computationally due to 

their short length, low binding affinities, transient interactions, low 

evolutionary conservation, and because they can be easily activated or 

deactivated by a point mutation (Puntervoll, et al., 2003).  

To date, linear motifs have usually been found by experimental methods, 

which are expensive and time consuming. Only in the last few years some 

computational tools were developed to analyse and predict them. 

In an early attempt, many databases (e.g. the Eukaryotic Linear Motif 

resource (ELM) (Puntervoll, et al., 2003), and MiniMotifMiner (MnM) 

(Rajasekaran, et al., 2009)) tried to collect all linear motifs from the 

available literature and catalogue them according to their regular expression 

(http://en.wikipedia.org/wiki/Regular_expression). A regular expression is a 

special text string made up of meta-characters, i.e. characters with a special 
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meaning capable of capturing motif information.  An example is reported on 

page 22. 

To enlarge the number of proteins expressing a functional linear motif, in a 

second attempt, many repositories used known linear motif patterns as a 

starting point to predict them.  

Despite all the progress in this field, researchers still believe that the number 

of known SLiMs is too small. This implies that we need to develop new 

tools able to discover new linear motifs. In this regard, Short Linear Motif 

Finder (SLiMFinder) (Edwards, et al., 2007), and Discovery of Linear 

Motifs (DILIMOT) (Neduva and Russell, 2006) represent the most recent 

and accurate de novo SLiMs discovery tools.  

Computational methods to linear motif discovery can be grouped in two 

categories: 

1) Methods aimed at identifying new instances of already known short 

linear motifs in proteins. 

2) Methods aimed at discovering new / de novo linear motifs. 

In Chapters 2 and 3 I will outline the main concepts, data, and tools used to 

analyze and discover linear motifs for each of these two categories. 

1.4. Aim and contributions of the study 
The purpose of the study presented here is to contribute to the field of 

bioinformatics by developing, testing and applying computational methods 

to discover new short linear motifs. Our original results are described in 

three independent papers, which are briefly described below. 

Paper I “ELM: the status of the 2010 eukaryotic linear motif resource” 

(Gould, et al., 2010) describes a knowledge base covering 159 known linear 

motifs, and more than 1300 experimentally reported instances. This resource 
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is implemented in a web-server accessible at the URL (http://elm.eu.org/). It 

also includes a tool for predicting new candidates of known linear motifs in 

user-defined protein sequences (Gould, et al., 2010). 

Paper II “Exploiting Publicly Available Biological and Biochemical 

Information for the Discovery of Novel Short Linear Motifs” (Sayadi, et al., 

2011). In this paper we describe a novel approach for the discovery of 

SLiMs based on their occurrence in evolutionarily unrelated proteins 

belonging to the same biological, signaling or metabolic pathway and give 

specific examples of its effectiveness in both rediscovering known motifs 

and in discovering novel ones. An automatic implementation of the 

procedure, available for download, allows significant motifs to be identified, 

automatically annotated with functional, evolutionary and structural 

information and organized in a database that can be inspected and queried. 

An instance of the database populated with pre-computed data on seven 

organisms is accessible through a publicly available server and we believe it 

constitutes by itself a useful resource for the life sciences 

(http://www.biocomputing.it/modipath) (Sayadi, et al., 2011). 

In paper III “The interaction network of the 14-3-3 protein in the ancient 

protozoan parasite Giardia duodenalis” (Paper revision submitted to Journal 

of Proteome Research, Lalle, et al., 2011) we describe a combined 

experimental and computational study of the interaction network of the 

protein g14-3-3 in the ancient protozoan parasite Giardia duodenalis. This 

work was performed in collaboration with the group of Dr. Marco Lalle at 

Istituto Superiore di Sanità (ISS). 
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2. Methods aimed at identifying new instances of 

known LMs 
Various projects have tried to collect information about linear motifs trough 

experimental methods, extensive literature searches and high-throughput 

data analyses. Many repositories storing known LMs are available such as 

PROSITE (Bairoch, 1993), ELM (Puntervoll, et al., 2003) and MnM 

(Rajasekaran, et al., 2009). Some of them are focused on collecting specific 

type of linear motifs, such as phosphorylation sites (e.g. Phospho.ELM 

(Diella, et al., 2004)) or cleavage sites (MEROPS (Rawlings, et al., 2008) 

and CutDb (Igarashi, et al., 2007)). All these resources have contributed to 

highlight many LMs features, such as their evolutionary conservation or 

their propensity to occur in disordered regions. These motif attributes were 

used by the developers of several tools to identify new instances of known 

linear motifs. 

The QuasiMotiFinder tool (Gutman, et al., 2005) searches for conserved 

motifs in proteins using PROSITE patterns. It assigns to motif occurrences a 

score based on their physico-chemical similarity to the original motif and on 

the degree of evolutionary conservation of the residues appearing in the 

occurrence within homologous sequences. This method is restricted to the 

set of motifs in PROSITE.  

The AutoMotif Server (AMS) (Plewczynski, et al., 2005) predicts PTM sites 

in proteins, based only on sequence information. Unfortunately, the 

biological significant of the score assigned to the predicted instances is not 

clear.  
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Such tools helped considerably to detect many new motif instances, but they 

still suffer from over-prediction problems and limitations in their application. 

To overcome these problems, in a recent work (Gould, et al., 2010) we gave 

some hints aimed at helping collecting new SLiMs and detecting novel 

instances of known functional motifs. 

2.1. ELM: The Eukaryote linear motif resource 
As previously mentioned (Gould, et al., 2010), the ELM resource represents 

an expanded knowledge base (http://elm.eu.org) that stores manually curated 

information about known linear motifs (159 motifs and lists more than 1300 

instances; Instances are proteins beaning a linear motif). It also provides a 

tool to search for matches of known motifs in protein sequences. This 

resource was created to contribute to LM discovery and to help researchers 

select good candidates for experimental validations. The ELM resource has 

become available online in 2003 (Puntervoll, et al., 2003).  

The main problem of new instance detection resides essentially in the motif 

short length, which leads to a high number of false positive matches. This 

happens because a string of few characters has a high probability of being 

found by chance in a long sequence of characters. As a solution to this, in the 

last few years it has become clear that selective criteria should be applied to 

reduce the number of false positives and as a consequence, make the 

detection and the analysis of new instances of known linear motifs more 

meaningful from a biological point of view.  

This can be done by using LM features such as evolutionary conservation, 

localization in disordered regions and accessibility to the solvent. Cellular 

localization is also important for the functional likelihood of the motif 

(Davey, et al., 2011). Using these features, we have implemented several 

logical filters in the ELM server: Conservation score filter (CS) (Chica, et 
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al., 2008), Structure filter (Via, et al., 2009), taxonomic filter, cell 

compartment filter and SMART globular domain filter (Letunic, et al., 

2009). 

2.1.1. Results 

ELM linear motifs are usually manually collected using extensive literature 

searches. Recently a new tool called MiMosa (Vyas, et al., 2010) was 

created to facilitate the literature tracking and annotation of new linear 

motifs.  

Few initial steps are necessary before adding a new entry to the ELM 

database. We start by mining literature papers in search for evidences of 

experimentally determined motifs. When they are found, we review them for 

quality issues, type of experiment and perform a number of computational 

tests to establish whether the motifs meet our criteria for true positives, i.e. 

they are evolutionary conserved (Chica, et al., 2008), exposed to the solvent 

(Dosztanyi, et al., 2005) and localized in the suitable cell compartment 

(Gould, et al., 2010). Instances that pass all the tests are used to derive a 

regular expression that best describes the motif. Finally, the collected motif 

information is stored as a new entry of the database. 

Once a new motif is added to the ELM database we try to detect its new 

instances. This is a difficult task, being the signal too weak to know whether 

an occurrence in a protein is true or it just appears by chance. We found that 

the search is more successful if we limit the search space as much as 

possible. Accordingly, interaction data and motif enrichment in proteins with 

annotated keywords were implemented to provide some statistical support. 

Such approach has proved its efficiency in various cases, for example new 

instances of EH1 transcriptional repressor motif were enriched in proteins 

annotated with keywords related to transcription (Copley, 2005). In a recent 
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case, a tool called SIRW (Ramu, 2003) allowing motif/keyword explorations 

was used to detect new ELM instances of the KEN box APCC-binding 

Destruction motifs found to be enriched with cell cycle keywords (Michael, 

et al., 2008). 

2.1.1.1. mTOR related motifs 

In this paragraph, we want to elucidate the ELM procedure, by describing 

the example of the mTOR target motifs. These are linear motif known to 

mediate some of the mTOR protein interactions.  

The mTOR protein, the mammalian target of rapamycin (Schalm, et al., 

2003), is a serine/theronine kinase that participates to the mTOR pathway, 

which plays a key role in the regulation of cell growth, cell proliferation, 

protein synthesis, and transcription (Hay and Sonenberg, 2004). It is 

dysregulated in many human diseases, especially in certain cancers, in 

diabetes and obesity (Beevers, et al., 2006). There are two functionally 

distinct mTOR-containing multiprotein complexes. In the first complex, 

TORC1 which is rapamycin-sensitive, mTOR acts by phosphorylating and 

inactivating the eukaryotic initiation factor 4E-binding protein (4E-BP1) and 

by phosphorylating and activating the S6 kinase (S6K1) (Schalm, et al., 

2003). In the second complex, TORC2 which is rapamycin-insensitive, 

mTOR acts by phosphorylating the protein kinase B (PKB) (Chiang and 

Abraham, 2007). 

Two short motifs have been reported in the mTOR target proteins: the TOS 

motif (TOR signaling motif) and the RAIP motif. These mediate interactions 

respectively in the TORC1 and TORC2 complexes. mTOR in complex with 

an adaptor protein (raptor) phosphorylates its substrates S6K1 and 4E-BP1 in 

the TORC1 complex through the TOS motif, present in the N-terminus of 

S6K1 and C-terminus of 4E-BP1. In contrast, in the TORC2 complex, 
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mTOR uses the RAIP motif to phosphorylate the N-terminus of 4E-BP1 

(Beugnet, et al., 2003). A detailed figure (Figure 3) of the mTOR pathway is 

showed below (Chiang and Abraham, 2007). 

 
Figure 3: The mTOR pathway (Chiang and Abraham, 2007).  

 

To analyse these two motifs, we collected several experimental papers 

describing TOS and RAIP instances (Beugnet, et al., 2003; Carroll, et al., 

2006). We found eight putative instances of the TOS motif (Beugnet, et al., 

2003). For each instance, we verified the biological significance, sequence 

disorder, evolutionary conservation (Figure 4), and quality of the 

experiment. In our procedure, motif existence is taken under further 

consideration only if it has been validated by at least three different 

experimental methods. For example, four methods were used to gain 

evidence on the motif “FEMDI” in the protein 4EBP1 (Beugnet, et al., 

2003): co-immunoprecipitation, western blot, pull down and mutation 

analyses (Berggard, et al., 2007).  
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Figure 4: Multiple sequence alignment of the 4E-BP1 homologous proteins obtained with 
MView (Brown, et al., 1998). The box in black shows the conservation of the motif FEMDI 
along the homologous proteins.  

Only five out of the eight putative TOS instances passed our tests and were 

therefore considered as true positives. In contrast the two proteins interacting 

with mTOR through the RAIP motif were considered as false positives 

(Carroll, et al., 2006). All potential mTOR instances are listed in Table 1. 
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Motif	   Uniprot	  ID	   Sequence	   Position	  
TOS	   4EBP1_HUMAN	  

4EBP2_HUMAN	  
4EBP3_HUMAN	  
KS6B1_HUMAN	  
KS6B2_HUMAN	  
HIF1A_HUMAN	  
PLD2_HUMAN	  
AKTS1_HUMAN	  

FEMDI	  
FEMDI	  
FEMDI	  
FDIDL	  
FDIDL	  
FVMVL	  
FVQLF	  
FVMDE	  

114-‐118	  
116-‐120	  	  	  
96-‐100	  	  	  
28-‐32	  	  	  
5-‐9	  	  	  

99-‐103	  
257-‐261	  
129-‐133	  

C-‐Ter	  
C-‐Ter	  
C-‐Ter	  
N-‐Ter	  
N-‐Ter	  

	  

RAIP	   4EBP1_HUMAN	  
4EBP2_HUMAN	  

RAIP	  
RAIP	  

13-‐16	  
15-‐18	  

N-‐Ter	  
N-‐Ter	  

Table 1: TOS and RAIP putative instances. 

The multiple sequence alignments of TOS instances were used to identify 

functional important residues and therefore to derive their representative 

regular expression:  

F[EDQS][MILV][ED][MILV]((.{0,1}[ED])|($)) 

Where ‘.’ means any amino acid, ‘[EDQS]’ means that all amino acids 

between [ ] are allowed, it can be ‘E’ or ‘D’ or ‘Q’ or ‘S’. ‘|’ means ‘or’, i.e. 

X|Y means that either X or Y can match. Curly brackets indicate a range of 

allowed positions, i.e. ‘{0,1}’ means 0 is the min required, and 1 is the max 

allowed. ‘$’ means that the motif matches the carboxy-terminus of a protein 

sequence. From this regular expression we can deduce that the motif 

alternates between hydrophobic and polar positions and its terminal charge 

can be either in the carboxy-terminus (4E-BP1,2,3) or inside the protein 

sequence (S6-beta kinase). The motif regular expression and the related 

information give rise to a new entry in the ELM database. The TOS motif is 

stored under the ELM ID: LIG_RAPTOR_TOS_1 accessible at 

http://elm.eu.org/elms/elmPages/LIG_RAPTOR_TOS_1.html (Figure 6). 

The newly added TOS motif was then used to search for new instances of the 

TOS motif using the Motif/keyword search method (Michael, et al., 2008). 

We identified two motif occurrences in NUMB_HUMAN and 



 2. Methods aimed at identifying new instances of known LMs 23 

NUMBL_HUMAN, respectively (Figure 5), and evaluated them with the 

ELM logical filters (e.g. Conservation Score (CS) (Chica, et al., 2008)) 

(Figure 7).  

 

Figure 5:  CS web interface result output, displayed with the annotated sequence alignment 
editor JalView (Waterhouse, et al., 2009). The alignment shows the set of sequences 
obtained by the CS filter with the NUMBL query sequence at top position. Sequences that 
align to the TOS motif regular expression are colored in green showing that the motif is well 
conserved, with a top CS score of 1.00. CS gives a score varying from 0 to 1, where 0 
means not conserved and 1 well conserved (Chica, et al., 2008).  
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Figure 6: ELM web page details of the entry LIG_RAPTOR-TOS_1 
(http://elm.eu.org/elms/elmPages/LIG_RAPTOR_TOS_1.html). Information about the 
function, the description and the Pattern of the motif are shown first, the list of proteins, 
motif occurrences and positions are shown at the end of the web page (Gould, et al., 2010). 
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Figure 7: Output page of the ELM server when queried with the protein sequence NUMBL 
(UniProt: NUMBL_HUMAN). Each key refers to specific information, e.g. green indicates 
domains. Structural, sequence disorder and other information are also provided (Gould, et 
al., 2010). 
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3. de novo Linear motif prediction 
During the last few years, many proteome-scale interaction data sets have 

become available, opening the door to the development of new linear motif 

discovery algorithms (e.g. DILIMOT (Neduva and Russell, 2006), SLiMdisc 

(Davey, et al., 2006) and MOVIN (Marcatili, et al., 2008)). 

De novo SLiM discovery tools use the concept of statistical over-prediction 

as an indicator of functionality. Any set of proteins that are likely to use 

SLiMs to mediate their functionality represents a suitable input for such 

tools. The majority of de novo SLiM discovery tools is based on protein-

protein interaction data, usually obtained in high-throughput experiments 

and from Protein-protein interaction (PPI) databases (e.g. STRING (Jensen, 

et al., 2009), MINT (Zanzoni, et al., 2002); BIND (Alfarano, et al., 2005)).  

Proteins in a network could potentially use SLiMs to interact. If this is the 

case, SLiMs might be searched in sub-networks, i.e. in sets of proteins (≥2) 

interacting with a single central protein. Statistically, the signal from proteins 

that interact through a motif must be stronger than the noise due to proteins 

that either use a different interactions mechanism or are false positives. This 

means that PPI data quality is essential in motif discovery from PPI 

networks. 

In a recent work we proposed a new approach where, instead of using PPI 

data to discover motif, we used sets of proteins belonging to the same 

biological, signaling or metabolic pathway. This approach is described in 

paper II “Exploiting Publicly Available Biological and Biochemical 

Information for the Discovery of Novel Short Linear Motifs” (Sayadi, et al., 

2011) (enclosed in this thesis).  
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3.1. MoDiPath: Motif Discovery in Pathways 
A linear motif can be derived from a set of proteins sharing a function or 

interacting with a common central protein. Therefore, by collecting and 

analyzing the sequences of proteins sharing common features, it should be 

possible to identify novel motifs associated with the common functionality. 

In this work we aimed at discovering motifs associated with biological 

processes. To this end, we inspected sequences belonging to the same 

process (Yaffe, et al., 2001). As described in paper II, we combined different 

databases and tools to generate a new computational approach called 

MoDiPath (Motif Discovery in Pathways (MDP)) that uncovers new linear 

motifs over represented in pathways. The database is accessible online at 

http://www.biocomputing.it/modipath. 

MoDiPath is designed to look for over-represented motifs in pathways. Our 

approach consists in taking a set of proteins belonging to a pathway 

(metabolic or signaling transduction), removing sequence redundancy, and 

applying algorithms for the identification of motifs significantly over-

represented in the whole set or in a subset. Statistical tests and other filters 

are then applied to check the robustness of the predicted motifs (Sayadi, et 

al., 2011). 

3.1.1. Results 

Our source of pathway information is the KEGG (Kyoto Encyclopedia of 

Genes and Genomes) Pathway database, which is a knowledge base for 

systematic analysis of gene functions (Ogata, et al., 1999). It clusters 

proteins in pathways for several species. Each pathway represents the 

functional aspects of a biological system, and involves a specific protein list, 

graphically represented as a network of connected proteins (Kanehisa and 



 3. de novo Linear motif prediction 28 

Goto, 2000).  

In this work, the KEGG database was used to derive information from seven 

different species (Homo sapiens, Mouse, Rat, Drosophila, Caenorhabditis 

elegans, Saccharomyces cerevisiae, Escherichia coli). As an example, here 

we report the results obtained for Homo sapiens.  

The KEGG database counts more than 201 pathways for the human species. 

Each pathway contains a variable number of proteins. In our procedure each 

pathway protein set is screened in search for shared motifs using SlimFinder, 

a de novo linear motif discovery tool (Edwards, et al., 2007). To avoid that 

high intra-pathway sequence similarity affects motif prediction, we first 

remove redundancy at 25% and 40% sequence identity from each protein set 

using CD-HIT (Li and Godzik, 2006). 

As a result, we obtain a list of predicted motifs for each pathway in the form 

of a regular expression. Our approach also provided a list of proteins for 

each predicted SLiM. A total of 2097 putative SLiMs were predicted in the 

Homo sapiens pathways. Predicted SLiMs were ranked according to their 

statistical significance. A hyper-geometric distribution test (Romero, et al., 

2001) was used to assess whether the motif is statistically significantly over-

represented in a pathway. To choose the best threshold for the hyper-

geometric distribution p-value, we randomly reshuffled the protein list of 

each pathway ten times. Comparing the results of the real data with the 

random ones, we selected a p-value of 3×10e-9, as the best threshold, which 

corresponds to a false discovery rate (FDR) lower than 10%. According to 

this p-value, 104 out of the 2097 motifs were statistically significant (21 in 

metabolic pathways and 83 in non-metabolic pathways). This is a high 

number if we consider that the ELM database stores 159 LMs. We also 

verified whether the newly discovered motifs showed some degree of 
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similarity to known motifs with known SLiMs. We found that out of the 104 

significant motifs, 82 have some degree of similarity to already known 

motifs present in other databases (e.g. ELM, MnM). Sixty-three of the 

eighty-two are identical to other known motifs. Interestingly, 22 SLiMs do 

not share any similarity with any known motif and can be considered as 

novel motifs. We define two motifs to be similar if their CompariMotif 

(Edwards, et al., 2008) score is above 0.7. CompariMotif is a tool that 

compares motifs between each other and gives a score of similarity raging 

from 0 (weak similarity) to 1 (Strong similarity) (see Materials and 

Methods).  

These results reflect the ability of the MoDiPath procedure to uncover and 

re-discover a significant number of motifs. A summary of the results for the 

seven organisms is reported in Table 2. Finding over-represented motifs in a 

pathway is crucial but not sufficient. It is important to distinguish between 

true and false occurrences, i.e. to assess which occurrences have a biological 

role and are associated to a biological function. To this aim, we used 

additional tools to carry out further investigations. We analyzed, for each 

motif, its degree of sequence disorder, its evolutionary conservation score 

(CS), structural information and GO term enrichment. 
Species	   Putative(a)	   Significant	  SLiMs(b)	   Novel	  SLiMs(c)	  

	   Total	   MP	   NMP	   Total	   MP	   NMP	   Tot	   MP	   NMP	  

H.sapiens	   2097	   836	   1261	   104	   21	   83	   22	   6	   16	  
M.musculus	   2094	   882	   1212	   127	   38	   89	   28	   12	   16	  
R.norvegicus	   1863	   809	   1054	   72	   19	   53	   15	   5	   10	  

D.melanogaster	   1391	   632	   759	   35	   5	   30	   4	   0	   4	  
C.elegans	   1050	   610	   440	   32	   12	   20	   6	   6	   0	  
E.coli	   933	   733	   200	   11	   10	   1	   2	   1	   1	  

S.cerevisiae	   889	   584	   305	   20	   15	   5	   3	   2	   1	  

Table 2:  (a): Total number of putative motifs identified by SliMFinder in KEGG pathways; 
(b): number of significantly over-represented motifs in pathways with respect to the two 
reference datasets (hyper-geometric p-value < 3×10e-9); (c): number of significant motifs 
that are novel (hyper-geometric p-value < 3×10e-9, NormIC < 0.7). MP: Metabolic 
pathways; NMP: Non-Metabolic Pathways. 
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As described in paper II, all these steps are part of an automatic pipeline that 

can be downloaded at http://www.biocomputing.it/modipath/MoDiPath.11-

04-2011.zip and installed and run locally.  

Results are stored in the MoDiPath web server 

(http://www.biocomputing.it/modipath/) and can be displayed via a visual 

interface (Figure 8). In the ‘Search’ part the user can access the available 

data selecting a protein ID, a pathway ID or a species name from the 

available species menu. In the ‘Scan’ part there are two options: 

Protein/Sequence Scan and Pattern Expression Scan. In the 

‘Protein/Sequence Scan’ part, users are required to select a species of interest 

and to input a protein ID or a sequence in Fasta format. The program will 

scan the protein with all the motifs collected for the selected species. As a 

result, users obtain a list of motifs and their sequence position in the protein 

also mapped, when possible on their three-dimensional structure. In the 

‘Pattern Expression Scan’ part, users are required to input a motif and to 

select a species; the program will provide a list of similar motifs present in 

the database, ranked by a similarity score. Computationally, the jobs run in a 

few seconds. 

As an example of the application of MoDiPath, we now describe a case of a 

rediscovered motif (SKL$) and of a newly discovered motif 

([FL].L.C..Y..A). 
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Figure 8: The information provided by MoDiPath for the hsa04640 KEGG pathway. (a) 
First column: the SLiM regular expression; Second column: a ‘+’ is reported if the motif 
overlaps to a similar motif in other databases (the list of which is shown by moving the 
mouse over the ‘+’); Third column: the hyper-geometric p-value of the number of motif hits 
in the hsa04640 pathway compared to the number of motif hits in the SwissProt database; 
Fourth column: The fraction of proteins in the hsa04640 pathway that contain the WS.WS 
motif (b) Multiple sequence alignment of the hsa04640 pathway proteins containing the 
WS.WS motif. (c) Information about each of the hsa04640 proteins containing the WS.WS 
motif. Clicking on the ‘Show’ button provides more detailed information, including the 
protein structure visualization with the motif hit(s) highlighted. (d) List of motif overlap(s) 
to similar motifs in other databases; the last column reports the CompariMotif similarity 
score (NormIC). (e) GO terms shared by the hsa04640 pathway proteins that have the motif; 
the last column reports the fraction of the proteins hosting the motif that share a GO term. 
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3.1.1.1. Rediscovered motif: “SKL$” 

MoDiPath allowed the rediscovery of the well-established motif “SKL$”, 

which we found to be significantly over-represented (hypergeometric p-

value, 1.7×e-11) in the Human Peroxisome pathway (KEGG ID: hsa04146). 

SKL (Serine-Lysine-Leucine) is a conserved tripeptide, found at the 

carboxy-terminal of protein sequences. The “SKL$” motif is identical to the 

MnM motif annotated as Pex5-binding and associated to trafficking to 

Peroxisomes. The same annotation is reported for a similar motif in the ELM 

database (TRG_PTS1, regular expression: (.[SAPTC][KRH][LMFI]$)), 

which is annotated as a C-terminal signal interacting with the Pex5p protein 

to target proteins to the peroxisomal matrix. 

Peroxisomes, are vascular organelles bounded by a single membrane and 

found in eukaryotic cell (Gabaldon, 2010). They play a key role in many 

metabolic processes such as fatty acid oxidation, metabolism of cholesterol 

and biosynthesis of ether-glycolipids (Gabaldon, 2010). Peroxisomal 

proteins are first synthesized in the cytosol and then imported into the 

Peroxisomes (Wendland and Subramani, 1993). The transport of proteins 

into the matrix of Peroxisomes is mediated by the motif “SKL$”, known as 

peroxisomal targeting signal (PTS1). Peroxisomal cargo proteins, called 

peroxins (e.g. PEX5), recognize, tag and import proteins owing a PST1 

motif into the Peroxisome (Saleem, et al., 2006) (Figure 9). A loss of this 

motif has been shown to imply a loss of peroxisomal functions and the 

consequent appearance of a defect known as peroxisomal disorder (PD). 

Patients with PD display severe neurological, hepatic, and renal 

abnormalities (Wendland and Subramani, 1993). This highlights the 

importance of studying the “SKL$” motif.  

We found the “SKL$” motif in six proteins out of the sixty-nine belonging to 
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the Peroxisome pathway. All of them are localized in the Peroxisome, five of 

them participate to the fatty acid metabolic process and three of them have a 

catalytic activity (Figure 10). Notably the number of proteins matching this 

motif by chance is very limited; apart from the 6 proteins predicted by our 

procedure, the motif occurs only in 8 other proteins out of the 14,239 

proteins of the non-redundant UniProt human dataset (filtered at the 40% 

sequence identity level). We manually inspected the 8 proteins one by one, 

and we found that four of them are known to be membrane or secreted 

proteins, which means that they are likely to be false positives. The 

remaining four proteins are: a peroxisomal acyl-coenzyme A oxidase 3 

(UniProt O15254-1), a Lon protease homolog (Q86WA8), a peroxisomal 

leader peptide-processing protease (Q2T9J0), and a zinc-binding alcohol 

dehydrogenase domain-containing protein (Q8N4Q0). O15254-1 is a 

different isoform of O15254-2, a human protein, reported to belong to the 

hsa04146 KEGG pathway that does not contain the motif and differs from 

O15254-1 for the lack of the last 75 C-term amino acids; it is not clear why 

O15254-2 was chosen for inclusion in the KEGG hsa04146 pathway; we 

argue that O15254-1 should be added to the KEGG hsa04146 pathway and 

the assignment of O15254-2 reassessed. Q86WA8 is annotated in UniProt 

for having the SKL$ targeting motif and its cellular compartment is known 

to be the Peroxisome, but it is not associated with any KEGG pathway. 

Q2T9J0 and Q8N4Q0 are peroxisomal proteins but they are neither 

annotated for having the motif nor associated with any KEGG pathway. We 

propose that Q2T9J0 and Q8N4Q0 use the SKL$ motif as targeting signal to 

the Peroxisome and suggest that their inclusion, and that of Q86WA8, in the 

KEGG Peroxisome pathway should be considered. 

 



 3. de novo Linear motif prediction 34 

 

 

 
Figure 9: The Peroxisome KEGG pathway (KEGG ID: hsa04146). 
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Figure 10: MoDiPath output for the SKL$ motif of the Peroxisome KEGG pathway 
(KEGG ID: hsa04146). The first and second tables report information about the motif. The 
third table is the multiple alignments of the proteins containing the motif. The last table lists 
all the proteins where the motif occurs and provides some more detailed information (e.g. 
position of the motif, conservation score). 
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3.1.1.2. Newly discovered motif: “[FL].L.C..Y..A” 

We illustrate here the case of the [FL].L.C..Y..A motif, which we found to 

be significantly over-represented in the human Fc gamma R-mediated 

phagocytosis KEGG pathway (hsa04666). 

The KEGG pathway hsa04666 plays an important role in the host defense 

through the phagocytosis mechanism. The opsonization with antibodies 

(IgG) of infectious pathogens makes them recognizable by Fc gamma 

receptors and more susceptible to the action of phagocytes. Fc gamma 

receptors trigger through several signals the phosphorylation of many 

proteins leading to the formation of phagosomes (Kedzierska, et al., 2001). 

Using our approach we discover that protein phosphorylations is probably 

mediated by a linear motif “[FL].L.C..Y..A” found in five proteins out of 

sixty-three belonging to the same pathway (hsa04666), since it was reported 

that they are involved in the interactions with phosphoinositides (PtdIns) (see 

Table 3). Phosphoinositides represent a small fraction of cellular 

phospholipids and are very important regulatory molecules utilized both as 

cellular membrane structural lipids and as precursors of multiple signaling 

molecules. 

Uniprot	  ID	   Protein	  Name	   Protein	  Function	  
P42338	   Phosphatidylinositol-‐4,5-‐

bisphosphate	  3-‐kinase	  
catalytic	  subunit	  beta	  isoform	  

phosphorylates	  :	  PtdIns,	  
PtdIns4P,	  PtdIns(4,5)P2	  

Q9Y2I7	   1-‐phosphatidylinositol-‐3-‐
phosphate	  5-‐kinase	   Regulated	  by	  PI(3,5)P2	  

Q13393	  
Phospholipase	  D1	  

Stimulated	  by	  PtdIns(4,5)P2	  
and	  PtdIns(3,4,5)P3	  

Q92608	   Dedicator	  of	  cytokinesis	  
protein	  2	  (DOCK2)	  

Translocation	  dependt	  to	  
PtdIns(3,4,5)P3	  

O14939	   Phospholipase	  D2	   Stimulated	  by	  PtdIns(4,5)P2	  

Table 3: List of proteins found by MoDiPath that match the motif “[FL].L.C..Y..A” and 
their respective functions. 
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By searching the motif in the whole set of human UniProt sequence, we 

found 9 additional occurrences in 9 different proteins. Three of them are 

isoforms of Q13393 and two are isoforms of O14939. Of the remaining four, 

one (O00329) is a PtdIns(4,5)P2 3-kinase catalytic subunit delta isoform, 

which is reported to be involved in the PtdIns phosphate biosynthesis, and 

one (Q8TDW7) is the Protocadherin FAT-3. The molecular function of 

FAT-3 is not well known, however some authors (Lesa, et al., 2003; Marza, 

et al., 2008) reported that the fat-3 gene acts in the same genetic pathway as 

synaptojanin, the main substrate of which in the brain is PtdIns(4,5)P2 and 

suggest that FAT-3 functions in the endocytic part of the synaptic vesicles 

recycling process. More specifically, Marza et al (Marza, et al., 2008) found 

that the levels of PtdIns(4,5)P2 at release sites are increased in 

Caenorhabditis elegans fat-3 mutants lacking long-chain polyunsaturated 

fatty acids (LC-PUFAs), which would suggest that fat-3 influences the levels 

of PtdIns(4,5)P2 at release sites. For the remaining two proteins (O75976 

and Q8NEZ3) we did not find any clue to deduce potential interactions with 

phosphoinositides and we cannot exclude that they are false positives. We 

also analysed the 58/63 hsa04666 proteins that do not have the 

“[FL].L.C..Y..A” motif. In this case, we automatically selected proteins that 

have at least one keyword related to phosphoinositides (e.g. PtdIns) in their 

UniProt annotation: we found ten of such proteins and inspected their 

sequences. In six of them, we found motifs that are similar, although not 

identical, to “[FL].L.C..Y..A”. For example, the P48736 sequence contains 

the subsequence FVYSCAGYCVA which could be described by the 

“[FL].[LY].C..Y..A” regular expression, a less specific version of the 

original expression. In the four remaining sequences, we did not find sub-

sequences sufficiently similar to the identified motif.  
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In conclusion, our analysis suggests that the “[FL].L.C..Y..A” motif (and 

perhaps other related ones) is involved or participates in the recognition of 

phosphoinositides. 
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4. Computational approach to the study of the 

g14-3-3 interactor network 
The fine-tuning of the phosphorylation/dephosphorylation status of proteins 

is widely used by eukaryotic cells to regulate multiple cellular processes. In 

this scenario, in addition to the fundamental activity of different protein 

kinases and phosphatases, a key role is played by dimeric 14-3-3, a protein 

belonging to a highly conserved protein family, that binds to specific Ser/Thr 

phosphorylated sites on target proteins. The interaction of 14-3-3 with the 

target proteins is mediated by conserved residue located in an amphypatic 

groove of each monomer and requires specific binding motifs on the targets 

(Figure 11) (Obsil, et al., 2001). Three general consensus sequences for 14-

3-3 binding have been defined so far: the mod-1 motif RS.[ST].P, the mod-2 

motif R..[ST].P (Muslin, et al., 1996; Yaffe, et al., 1997), and the mode-3 

motif [ST].{1-2}$ (Coblitz, et al., 2006). Moreover, there are also proteins 

that interact with 14-3-3s through other phosphopeptide sequences and in 

some cases through non-phosphorylated sequences (Aitken, 2006; Hallberg, 

2002; Petosa, et al., 1998). Specific work and large-scale proteomic studies 

in different organisms, from yeast to human, have led to the identification of 

hundreds of intracellular 14-3-3 target proteins including enzymes and 

structural components of metabolism (more than 200 14-3-3 target proteins 

in Human) (Johnson, et al., 2010). 
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Figure 11: Structure of the 14-3-3 in complex with pAANAT1-201 (PDB code 1IB1) (Obsil, 
et al., 2001). 14-3-3 is shown in green and pAANAT1-201 in brown. AANATs contain a 
conserved sequence motif, “RRHTLP” (residues 28–33 of ovine AANAT). The 
phosphorylated Thr-31 residue of pAANAT1-201, is shown in yellow, and the bisubstrate in 
blue. 
 

4.1. g14-3-3 interactor network 
In this project we analyzed the 14-3-3 interactor network of the protozoan 

parasite Giardia duodenalis (g14-3-3). G.duodenalis is a flagellated 

protozoan that parasitizes the upper part of the small intestine of mammals 

causing giardiasis, the most common non-bacterial and non-viral diarrheal 

diseases, estimated to infect 280 million people each year (Thompson, 

2000). Due to the evident role of g14-3-3s in the parasite developing 

processes, the identification of the 14-3-3 interacting partners would provide 

novel information on the biology of Giardia. To this aim,  a  MS-based  
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proteomic  analysis  of  in vivo  affinity  purified  g14-3-3 complexes  from  

Giardia were performed at ISS (Instituto Superiore di sanita, Rome, Italy). 

4.1.1. Results 

As described in paper III “The interaction network of the 14-3-3 protein in 

the ancient protozoan parasite Giardia duodenalis”, the interaction of protein 

targets with g14-3-3 occurs in most of the cases through well-defined 

phosphorylated motifs (Aitken, 2006). Three hundred fourteen (314) putative 

g14-3-3 protein targets were identified using a large proteomics study. 

Starting from these targets, we wanted to identify proteins interacting via a 

linear motif with g14-3-3. 

4.1.1.1. Sequence analysis 
The interaction of g14-3-3 with its partners occurs, in most of the cases, 

through well-defined phosphorylated motifs (Aitken, 2006). From several 

databases (e.g. ELM (Puntervoll, et al., 2003), MnM (Rajasekaran, et al., 

2009), Phospho-MotifFinder (Amanchy, et al., 2007)) we collected 22 

regular expression encoding motifs that mediate 14-3-3 interactions in 

different species. We also used a g14-3-3 motif (regular expression 

[IL].R.[ST].[PE]..[IL]) previously identified in a recent work (Lalle, et al., 

2010). Fourteen out of the 23 motifs match at least one of the 314 14-3-3 

putative targets. 

4.1.1.2. Statistical significance estimation 

To statistically assess whether any of the identified motifs were significantly 

over-represented in the experimentally identified 14-3-3 target proteins 

compared to the whole Giardia proteome, we calculated the hyper-geometric 

p-value for each of the detected motifs (see legend to Figure 12). 
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 Figure 12: Distribution of the proteins belonging to the Giardia genome. Giardia (G): 
Indicate the whole Giardia proteome. Motif containing (MC): Includes the proteins 
containing the motif in the whole Giardia proteome. Protein experimentally determined 
(PED): Represents the proteins experimentally identified as interacting with g14-3-3. 
Binding motif containing (BMC): Represents the intersection of the two latter protein sets. 
 

As a result, we found that 4 out of the 14 putative 14-3-3 motifs are 

significantly over-represented with a hypergeometric p-value below 0.01. 

Details are listed in Table 4. This result highlights the existence of many true 

positives in the pool of proteins co-purified with g14-3-3. Only 19 out of the 

314 proteins experimentally identified did not match any of the selected 

motifs and most of them were identified as part of the ribosomal multiprotein 

complex, thus suggesting that these proteins are not direct interactors of g14-

3-3. Nevertheless, the presence of a motif is not sufficient to ensure that a 

protein interacts with g14-3-3 through that motif. In fact, gTTLL3 and 

gDIP2, two of the experimentally identified proteins, on one hand, display 

the 14-3-3 interacting motif but on the other, have functions (polyglycylase 

and deglycylase, respectively) suggesting that their interaction with 14-3-3 

occurs through a mechanism not involving the motif. To reduce the number 

of false positives, we tried to identify a more specific motif starting from 
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R..S, which is one of the 4 putative 14-3-3 motifs reported to be significantly 

over-represented in 267/314 proteins of our experimental data set (Table 4). 

Motif Regular Expression Fraction1: 
(BMC)/(PED) 

Fraction2: 
(MC)/(G) 

Hypergeometric 
p-value 

[RKH][STAVL].[ST].[PESRDIF]	   238/314	   2888/4889	   1,02E-‐10	  
R..S	   267/314	   3453/4889	   6,33E-‐10	  

R.[SYFWTQAD].[ST].[PLM]	   98/314	   1031/4889	   8,98E-‐06	  
[IL].R..[ST].[PE]...	   40/314	   339/4889	   9,30E-‐05	  

Table 4: Hypergeometric p-value for the four statistically significant g14-3-3 binding 

motifs. 

4.1.1.3. Protein sequence alignments 

We further investigated the core motif R..S, including five upstream and five 

downstream residues in the experimentally identified proteins (positive 

sample) and compared them with those in the Giardia proteome presenting 

the set of Giardia proteins that match the motif but was not experimentally 

identified (negative sample). 

In order to visualize the differences between these two groups, a WebLogo 

plot was performed using TwoSampleLogo (Vacic, et al., 2006). The 

program generates a graphical representation of statistically significant 

position-specific differences in amino acids between two sets of multiply 

aligned sequences (Figure 13). The logo is composed of three parts: (1) the 

upper part displays residues enriched in the positive sample; (2) the middle 

part displays the “R..S” motif; and (3) the lower part displays residues 

depleted in the positive set. Symbol height is directly proportional to 

residues enrichment. 
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 Figure 13: Two sample logo plot representing significantly enriched (upper part) and 
depleted (lower part) residues in the proteins of the positive sample with respect to those in 
the negative sample. The “R..S” motif sequences were used as guide to build the multiple 
alignments. 

As it can be appreciated from figure 13, in the positive set the region 

surrounding the motif “R..S” contains hydrophbic residues (L, I, M and V) 

(positions -4, -2, -1 and +2) and also charged residues (D) in positions -8 and 

+3. The depletion of Cysteines (C) in the motif region suggests that 

flexibility is required for the motif to mediate the interaction. This result is 

quite different from those reported in the literature about the 14-3-3 binding 

site, where a Leu or an Arg are observed at position -5 and a Ser or a Pro are 

observed at position +2 (Johnson, et al., 2010).  

4.1.1.4. Disorder prediction 

Since it has been observed that more than 90% of the characterized 14-3-3 

protein partners contain disordered regions and almost all 14-3-3 binding 

sites are inside disordered regions (Bustos and Iglesias, 2006; Johnson, et al., 

2010) we evaluated, using IUPred (Dosztanyi, et al., 2005), the presence of 

disordered regions in the identified proteins. IUPred takes a protein sequence 

as input and gives, for each amino acid a score ranging from 0 (complete 

order) to 1 (complete disorder). Residues with a score above 0.5 are 

considered as disordered. In this study a motif is considered as disordered if 

all its residues have a disorder score > 0.5.  An example is shown in Figure 
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14. The “R..S” motifs are enclosed between vertical lines (“RIPS” from 201 

to 204 and “REAS” from 587 to 590).  Intriguingly, almost 25% of motifs in 

the proteins identified experimentally were predicted to be disordered and 

82% of them were predicted to be exposed. The solvent accessibility of 

amino acids in the protein sequence was predicted using NetSurfP (Petersen, 

et al., 2009) (see Material and Methods). 

 
 Figure 14:  IUPred disorder prediction plot for the motif “R..S” on the protein sequence 
GL50803_3206. Detected motifs are enclosed between vertical lines. IUPred was used to 
predict the disorder propensity of each amino acid of the protein sequences. The tool gives a 
score (y axis) ranging from 0 to 1 for each residue (x axis), with 0.5 being the suggested 
threshold above which a residue is considered disordered. We define a motif as being part of 
a disordered region if all its conserved residues have a score above 0.5 (e.g. In the motif  
“R..S”, R and S are the fixed positions). 

4.1.1.5. Structure prediction 

We further tried to predict the 14-3-3 motif solvent exposure using the 

tertiary structure of proteins hosting the motif. When the structure of a 

protein is known, solvent accessibility can be directly computed from its 

atomic coordinates. Only a few of our putative 14-3-3 binding proteins have 

a known structure. For the remaining ones, one could either predict the 

accessibility from the sequence alone, or if a homologue of known structure 

is available, build a comparative model of the structure and use it to compute 

approximate accessibility values.  

We were able to model 87 proteins out of 314. Model quality was evaluated 



 4. Bioinformatics study of the g14-3-3 interactor network 46 

using the QMEAN score (Benkert, et al., 2009). 57% of the models 

displayed a QMEAN score > 0.6 which ranges from 0 (low quality model) to 

1 (high quality model). 84 out of the 175 motifs present in the modeled 

proteins were found to be exposed to the solvent (average accessibility value 

above 25%, Solvent accessibility was calculated using POPS (Cavallo, et al., 

2003). 

As an example, the Pyruvate kinase three-dimensional model 

(GL50803_3206) with the localization of the putative 14-3-3 binding motif 

is shown in Figure 15. 

 
 Figure 15: 3d structure model of the protein Pyruvate kinase  (GL50803_3206). The motif 
‘REAS’ is in yellow and the motif ‘RIPS’ is in orange. We used HHpred (Söding J et al., 
2005) to identify homologous protein of known structure (template) and Modeller (Fiser A 
et al., 2003) for building the models. Parameters used were 80% coverage and E-value<10-
3. The figure was drawn with the PyMOL program (http://www.pymol.org/). 
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5. Conclusions and outlook 
The vast amount of functions encoded by SLiMs makes them important 

targets for study. With the growth of experimental data available in the last 

few years, SLiM discovery has become a challenging research field. SLiMs 

are today a primary source of protein function prediction. Novel 

computational methods and tools give us the possibility to better explore and 

analyze SLiMs. In this thesis I worked on three crucial aspects regarding 

SLiMs: the motif identification and annotation process (Paper I), the 

construction and testing of a SLiM predictor (Paper II) and the use of the 

information extracted from a real biological protein network to improve the 

specificity and sensitivity of known motifs (Paper III). 

The biological role of a short linear motif can be accessed via experimental 

validation, high-throughput computational analyses or by carefully 

reviewing the literature. Several projects have collected information about 

SLiMs and store them in databases. In this thesis I presented the ELM 

resource, a manually curated database currently covering more than 159 

SLiMs. 

The computational discovery of linear motifs is a difficult task, which 

usually requires the identification of a set of non-homologous proteins 

sharing a common functional feature (e.g., an interaction partner or a cellular 

compartment). Many algorithms for motif discovery are nowadays available 

and appropriate statistics have been developed for estimating the 

effectiveness of a motif for function prediction. However, several 

challenging aspects still remain. For example, the identification of 
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appropriate sets of non-homologous proteins sharing a functional feature or 

the association of appropriate biological functions to newly discovered 

motifs are difficult tasks. To this aim we developed MoDiPath, a motif 

discovery tool for the identification of motifs in KEGG pathways. We were 

able to identify a high number of potentially biologically meaningful motifs, 

which represent a valid starting point for further computational and 

experimental functional investigation. The methodology is reliable, as 

demonstrated by the fact that it re-discovered many known motifs (e.g. the 

targeting Peroxisome signal SLK$). Furthermore, it demonstrated to be a 

promising tool for the discovery of novel motifs (e.g. [FL].L.C..Y..A).  

Computational methods aimed at studying and discovering motifs are today 

a great aid and complement for experimental studies. In this thesis we 

illustrated the case of proteins belonging to an experimentally determined 

g14-3-3 interaction network and assumed to be interacting with g14-3-3 

through a linear motif. Our computational approach made it possible to 

reduce the number of false positives and to define a more specific motif 

mediating the interaction. 

As a concluding remark, I believe that in the next years we will witness an 

increasing interest of the scientific community in functional motifs and 

expect advances in areas such as motif statistics, and motif discovery 

algorithm design. These could help enrich our understanding of the cellular 

biology and may play an important role in the comprehension of human 

diseases. We hope this work will contribute to speed up the discovery of 

novel motifs and will constitute a useful resource for life scientists. 
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6. Materials and Methods 
In the following paragraphs, I will briefly describe some tools and methods 

used to develop ELM, MoDiPath and to study the g14-3-3 interaction 

network.  

6.1. CD-HIT 
CD-HIT (Cluster Database at High Identity with Tolerance) 

(http://www.bioinformatics.org/cd-hit/) (Li and Godzik, 2006) is a fast 

sequence clustering program, it groups similar proteins into clusters based on 

their sequence similarities. Sequences are sorted from the longest to the 

shortest. The longest sequence becomes the representative of the first cluster, 

and then the next sequences are compared one by one to the representative. 

If one of them is similar enough according to a certain threshold, then it is 

included into the cluster, if not a new cluster starts with this sequence as a 

representative. In the end each cluster is replaced by its representative 

sequence. In this study, the last release of CD-HIT 4.0 beta was used to 

remove redundancy from sequences at the 40% identity level. PSI-CD-HIT a 

sub version of CD-HIT was used to lower the threshold to 25% sequence 

identity. 

6.2. SlimFinder 
SLiMFinder (Short Linear Motif Finder) 

(http://bioinformatics.ucd.ie/shields/software/slimfinder/) (Edwards, et al., 

2007) represents one of the most promising tools for de novo linear motif 

discovery. It is composed by two algorithms, SLiMBuild and SLiMChance. 

SLiMBuild tries first to identify linear motifs shared among unrelated 



 6. Materials and Methods 50 

proteins. To do this proteins are first clustered according to their sequence 

composition using Blast (Altschul, et al., 1990). Then the motif is built by 

combining shared dimers adjacent in the sequence into longer patterns. A 

third step consists in adding amino acid degeneracy and/or wildcards by 

adding variants that occur in the unrelated proteins. Once the motif is 

constructed, SLiMChance calculates a score that assesses motif over-

representation adjusted for evolutionary relationships. SLiMFinder also 

offers some input masking options to restrict the area of research to a smaller 

number of proteins. Masking options are disorder sequence, low complexity 

region and Uniprot features. 

In this work the SLiMFinder release 4.0 was run locally with default 

parameters. Only two parameters were modified: (1) Disorder masking, the 

option to mask disorder region in sequences, was deactivated (dismask=F); 

(2) and the probcut cut-off was fixed to 0.99. The top x motifs within the 

probcut threshold were retrieved. 

6.3. CompariMotif 
CompariMotif (Motif-Motif comparison software) 

(http://bioinformatics.ucd.ie/shields/software/comparimotif/) (Edwards, et 

al., 2008) identifies which motifs have some degree of overlap with another 

motif. It starts by formatting the regular expression of the two motifs, and 

then it compares them in a pairwise fashion. CompariMotif takes as input 

two lists of motifs and compares all the possible pair combinations. As 

output, it provides a list of motif pairs and their score (NormalIC). This score 

represents the degree of similarity (information content), and it varies from 

weak (0.0) to strong similarity (1.0). 
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6.4. Conservation Score 
Conservation Score (CS) (http://conscore.embl.de) (Chica, et al., 2008), a 

newly developed tool, uses evolutionary conservation to evaluate the 

functionality of a linear motif or to assess the power of a new motif regular 

expression. The Conservation score algorithm includes three stages. First, a 

set of homologous sequence is created and used to reconstruct their 

evolution, while conserving the motif. Next each sequence is weighted based 

on the observed evolutionary events. Lastly a conservation score (CS) is 

calculated. 

Conservation score requires as input the protein sequence containing the 

motif and the motif itself. The CS varies from 0 to 1. A score of 1 means that 

the predicted motif is fully conserved in all the informative sequences, while 

a score of 0 means that, the predicted motif is present only in the query 

sequence. 

6.5. IUPred 
IUPred (Intrinsically Unstructured Prediction) (http://iupred.enzim.hu/) 

(Dosztanyi, et al., 2005) is a prediction method aimed at identifying 

intrinsically unstructured/disordered region in protein sequences. The 

method is based on the estimation of the capacity of polypeptides to form 

stabilizing contacts, by calculating the total pair-wise inter-residue 

interaction energy. The tool takes as input a protein sequence and gives as 

output a score for each residue ranging from 0 to 1, with 0.5 being the 

suggested threshold above which a residue is considered to be disordered. 

6.6. TwoSampleLogo 
TwoSampleLogo (Two Sample Logo ) (http://www.twosamplelogo.org/) 
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(Vacic, et al., 2006) is a web-based tool used to detects statistically 

significant differences residues between the two sets of multiple sequence 

alignments, and display them as a Logo. Three sections compose the logo: 

(1) the upper section represents a set of over-represented residues in the 

positive sample; (2) the middle section displays the conserved residues of the 

motif; and (3) a lower section displays residues under-represented in the 

positive sample. In our case we have used TwoSampleLogo to find enriched 

residues in two groups of sequences that share a common motif but they 

differ in functional annotation. 

6.7. HHPred 
HHPred (http://toolkit.tuebingen.mpg.de/hhpred) (Soding, et al., 2005) is a 

powerful tool for homology detection and structural prediction. Starting with 

a query sequence the tool searches via PSI-Blast for similar proteins in the 

non-redundant database from NCBI and then builds an alignment of 

homologs. This alignment is used later to assign secondary structure 

information and to construct a HMM profile. HHpred represents the database 

of proteins by profile HMMs. The database of HMMs is precalculated in the 

same fashion using PSI-BLAST and it also contains secondary structure 

information. Next HHsearch a software for HMM-HMM comparison, is 

used to search the database of HMMs with a query HMM. The output of 

HHpred and HHsearch is a ranked list of database matches. Out of the 

ranked proteins the selected templates and the query sequence are returned 

as a multiple alignment in PIR format, and used by MODELLER (software 

implemented in HHpred) to build a 3D model (Fiser and Sali, 2003).  

MODELLER (http://salilab.org/modeller/) is a software that builds a protein 

three-dimensional structure (3D) using homology or comparative modeling. 

The tool predicts a 3D model of a protein sequence (query) based on its 
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alignment to at least one related protein of known structure (template). The 

prediction process consists of four mains steps: (1) identification of 

structural template(s), (2) query sequence-template structure(s) alignment, 

(3) model building, (4) and model quality evaluation.  

6.8. QMEAN 
QMEAN (Qualitative Model Energy ANalysis) 

(http://swissmodel.expasy.org/qmean) (Benkert, et al., 2009) is a tool for 3D 

model quality estimation, essential for protein structure prediction. The tool 

gives the possibility to evaluate a single model using a QMEAN scoring 

function or to compare a list of models of the same target protein all-against-

all using QMEANclust scoring function. The QMEAN scoring function uses 

a single model to calculate local and global pre-residue quality based on the 

combination of different structural descriptors. QMEANclust depend 

essentially on the composition of the assessed set of models. It combines 

cluster information with single model quality estimated by QMEAN. As a 

result models are ranked based on the QMEAN or QMEANclust score 

varying from 0 to 1 reflecting model quality. 

6.9. NetSurfP 
NetSurfP (Protein Surface Accessibility and Secondary Structure 

Predictions) (http://www.cbs.dtu.dk/services/NetSurfP/) (Petersen, et al., 

2009) is an artificial neural network based method that predicts surface 

accessibility and secondary structure of an amino acid in a polypeptide 

chain. The method assigns a reliability score for each residue that reflects the 

degree of surface exposure, usually calculated as a solvent accessible surface 

area (ASA) or relative surface area (RSA). Based on this calculation the 

residue is defined as exposed or buried, above or below 25% maximum 
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solvent exposure (ASAmax) respectively. 

6.10. POPS 
POPS (Parameter OPtimised Surfaces) 

(http://mathbio.nimr.mrc.ac.uk/wiki/POPS) (Fraternali and Cavallo, 2002) is 

a fast method to calculate solvent accessibility surface areas (SASAs) from a 

given structure at the atomic and residue  level. The method is based on a 

probabilistic formula fast to compute, proposed previously by Wodak and 

Janin (Wodak and Janin, 1980). The formula was then re-parameterised to 

produce accurate atomic (POPS-A) and residue (POPS-R) SASAs. As input 

the tool requires a structure (PDB file) and gives us output detailed atomic 

and residue SASAs. 
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