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 7 I Introduction 

I Introduction 

I.I A pathway through evolution 

 

Cellular communication implies transduction of extracellular signals into cells and 

subsequently induction of intracellular response.1 Signal transduction from one cell to 

another is achieved by transmitter molecules or ligands that can either be sequestered 

into the extracellular medium, mostly for intermediate and long range signalling, or 

execute their role in direct cell-cell contact as in the case of membrane bound proteins. 

Which cell is targeted depends on the expression of specific intra- or intermembrane 

receptor molecules, providing the cell with ligand specific binding sites on its surface. 

Non-covalent binding leads to conformational changes in the receptor that in turn is 

activating a second intracellular messenger. Because extracellular activation is step by 

step triggering secondary signal transduction events, involving a defined set of 

proteins, molecules and posttranslational modifications, one is talking about a 

signalling pathway.2 The effect and final goal of pathway activation is a cellular 

response, either by direct alteration of the metabolism or indirectly by induction of 

transcriptional events leading to changed genetic expression levels inside the signal 

receiving cell.3 Signalling pathways are absolutely essential for developmental 

processes in multi-cell organisms, providing the basic requirements for intercellular 

communication in order to control proliferation, differentiation and apoptosis. Many of 

indispensible biological characteristics, including specific ligand and receptor 

expression, intermediate messenger proteins and posttranslational modification events 

as well as mechanisms for target gene repression and activation have been highly 

conserved through evolution. RAS/MAPK, WNT, TGFß, JAK/STAT, NOTCH or 

HEDGEHOG are key genes for signalling pathways, processing conserved 

developmental cues in invertebrates like in vertebrates.4,5 While controlled pathway 

activation can make the cell change from a spatio-temporal defined steady state into a 

responding cell, genetic or epigenetic deregulation of such a pathway can trigger 

inappropriate response mechanisms. In case of the involvement of key signalling 

pathways, such an uncontrolled change of genetic expression can disturb the fragile 

equilibrium between proliferation and apoptosis and cause genetic diseases and 

cancer.6-18 Understanding of complex signalling pathway coordination in cells still poses 

a complex task for modern science and it will be necessary to combine parallel events 

of signal processing in order to compile whole cellular response and to understand how 

development and live is orchestrated in detail.19-30 
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I.II Notch 

I.II.I NOTCH gene 

 

Morgan and Bridges discovered in 1916 the NOTCH gene by X-linked dominant 

Drosophila melanogaster genetic mutants, exhibiting irregular notches of missing tissue 

at the tips of the insect’s wing blades, explaining similar observations done by John S. 

Dexter two years before. In 1940 Poulson at al. found out that complete loss of NOTCH 

activity caused lethal hyperplasia of the embryonic nerve system.31 In the following 

decades NOTCH was shown to have a unique role in binary cell fate determination.32 

Its ability of regulating symmetric versus asymmetric division in fetal and postnatal 

development33 underlined the involvement of the NOTCH gene in organogenesis and 

tissue formation at multiple developmental steps in probably all cells of the animal and 

human body.34-39 
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fig. 1: Notch signalling in development, taken  from Andersson et al., Dev., 2011.
5 

 

Since in the 1980s the NOTCH gene was sequenced by Spyros Artavanis-Tsakonas 

and Michael W. Young40-44, the US National Library of Medicine counts more than 

8.000 publications dealing with ‘Notch signal(l)ing’, with an exponentially increasing 

number and nearly 3.000 entries only in the last three years from 2010 up to date. 

 

A century of research on NOTCH brought us to a detailed understanding of the core 

signalling pathway, including the Notch receptor as well as many other auxiliary 

proteins and mechanisms that orchestrate signal transduction. However, its tangled 

involvement in a vast number of developmental processes, its increased complexity in 

higher species, pronounced by overlapping as well as distinct roles of multiple 

paralogues and interacting proteins, as well as mechanisms responsible for pathway 

regulation and fine tuning, seem to snowball and at the same time redefine our entire 

knowledge of cellular biology. NOTCH is so tremendously essential for live, that 

aberrant Notch signalling is the reason for many different genetic caused diseases.9,45-

54 Understanding the Notch signalling pathway opens up new possibilities for cancer 

therapy. Clinical trials are already on the way to hopefully produce effective 

pharmaceutics against genetically caused aberrant signalling diagnosed in a multitude 

of cancers.55-59 
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I.II.II The canonical Notch pathway 
 

The core pathway of canonical Notch signalling is activated by ligand-receptor binding 

between two adjacent cells, inducing a cleavage process of the Notch receptor, a type I 

single-pass transmembrane protein heterodimer, transcriped from the NOTCH gene, 

posttranslationally modified and expressed on the surface of a signal receiving cell. 

The processed intracellular domain of the Notch receptor (NICD) is than translocating 

into the nucleus and induces, by derepression and binding to a CBF1/Suppressor of 

Hairless/LAG-1 (CSL) family DNA-binding protein, transcription of specific Notch 

related target genes.31  

 

 
 

figure 2: Notch receptors. Notch receptors are expressed on the cell surface as heterodimers composed 

of a large extracellular domain non-covalently linked to the intracellular domain. Epidermal growth-factor 

(EGF)-like repeats and a negative regulatory region (NRR), comprising three LIN Notch (LNR) repeats and 

a heterodimerization domain (HD), define the extracellular part, while the intracellular domain contains the 

RAM domain and seven Ankyrin repeats (ANK), important for cofactor binding at the chromatin level. 

Notch receptors 1-3 contain two nuclear localization signals (NLS) compared to one NLS in Notch4. The 

transcriptional activation domain (TAD) is important for downstream target activation events and shows 

structural differences between the mammalian Notch family members. All four Notch receptors contain a 

C-terminal Pro Glu Ser Thr (PEST) sequence for degradation. 
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Initially the NOTCH gene is translated as a 300 kDa precursor protein which is 

immediately processed by furin-like convertase proteolysis at cleavage site S1 in the 

Golgi apparatus and reassembled as a non-covalently linked heterodimer60 before 

being extensively N- and O- glycosylated and transported to the cell’s membrane. 

Fucosylation by Pofut1 (in mammals, O-fut1 in Drosophila) and Fringe is essential for 

receptor ligand interaction and can modulate binding strength and partner 

preferences61, while the chaperone activity of glycolysating enzymes in the 

endoplasmatic reticulum is essential for export of processed Notch receptors to the cell 

surface62,63. 

 

Compared to a single NOTCH gene present in Drosophila melanogaster, in mammals 

four different NOTCH genes have evolved, coding for four Notch receptor paralogues 

(Notch1-4).31,64 The extracellular region of Notch receptors (NECD) is defined by 

tandem Epidermal Growth Factor (EGF)-like repeats, providing 36 repeats in Notch1 

and Notch2, 34 repeats in Notch3 and 29 in Notch4 followed by three LIN-12 Notch 

repeats adjacent to the cell membrane. A single pass transmembrane region is 

connecting the NECD with the intracellular domain (NICD) of a Notch receptor 

heterodimer.31 This EGF-like structure is shared by all receptors as well as by the 

Notch pathway related Delta and Serrate ligands (DSLs) in Drosophila and the five 

corresponding mammalian DSL-like homologues Delta-like1, 2, 4 and Jagged1 and 2. 

It enables receptor-ligand interactions through intra-domain disulfide bridge motifs, 

defined by calcium binding capacity of six specific cysteine residues embedded in 

single EGF-like repeats.65-68 Ligand binding to the extracellular part of a Notch receptor 

is inducing trans-endocytosis of the ligand-NECD complex into the signal sending cell. 

The cell-cell contact is believed to induce a pulling force69 that provokes a slight 

conformational lifting mechanism of the extracellular Notch receptor domain, exposing 

the cleavage site S2, buried inside the negative regulatory region (NRR)70 C-terminal to 

the EGF-repeats of the extracellular domain. Here is where the LIN-12 Notch repeats 

and the heterodomain (HD) reside. In case of no ligand binding the S2 cleavage site 

remains inaccessible and shielded by the LIN-12 Notch domain, in order to prevent 

inappropriate Notch activation.71 Only after ligand binding induced conformational 

changes in the NRR a metalloprotease of the ADAM10/TACE (in mammals; Sup-17 in 

C. elegans; Kuz in Drosophila) family can induce proteolysis, facilitating removal of the 

extracellular domain of the Notch receptor.72 The fact that cleaved Notch ectodomains 

are transendocytosed together with the ligands into the signal sending cell is believed 

to play a role in feedback signalling inside the signal sending cell73-79 but remains still to 

be fully understood. 
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The resulting Notch extracellular truncation (NEXT) in a signal receiving cell is 

subsequently endocytosed and further cleaved by the intramembrane aspartyl protease 

gamma-secretase complex, releasing the Notch intracellular domain (NICD).80-85 

Monoubiquitination of a juxtamembrane lysine residue inside the NEXT is required for 

this last cleavage step.86 It has been proposed that specific ubiquitination at or 

immediately after endocytosis would be an ulterior controlling mechanism in the Notch 

signal cascade having inpact on endosomal sorting and thereby regulating further 

signal transduction, receptor recycling or degradation.87-90 Only an activated and 

correctly processed intracellular domain of the Notch receptor proceeds signalling into 

the nucleus. 

 

 
 

figure 3: Notch signalling. Notch proteins are synthesized as a single 300 kDa polypeptide. After 

fucosylation, full length Notch is cleaved at the trans-Golgi by a furin-like protease at the S1-cleavage site 

to generate the non-covalently linked Notch heterodimer. The Notch receptor is further glycosylated by 

Fringe glycosyltransferases before shuttled and associates to the plasma membrane. Interaction with a 

DSL ligand (1) and trans-endocytosis of the ligand bound extracellular portion induces proteolytic cleavage 

of the Notch receptor by the ADAM (a disintegrin and metalloproteinase) protease TACE (tumour-necrosis-

factor- -converting enzyme) (2). A final S3-cleavage by the γ-secretase complex is triggering the release 

of an intracellular Notch fragment which translocates into the nucleus (4), where it associates with and 

derepresses the transcriptional repressor RBPj (also called CBF1, suppressor of hairless or Lag1), 

inducing specific target gene activation(5). 
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Cleaved NICD is the distal transactivating component in the Notch signalling cascade. 

In correlation with its function, NICD contains a region called RAM (RBPj associated 

molecule) for RBPj (CBF1, suppressor of hairless, Lag1; CSL) binding, seven ankyrin 

repeats (ANK) and two nuclear localization sequences, one before and one after the 

ANK region. Due to the essential roles of RAM and ANK domains in ternary activator 

complex formation together with the DNA-binding protein RBPj and the coactivator 

Mastermind-like (MAML), a key mechanism of canonical Notch signalling, the 

respective protein sequences are highly conserved between different members of the 

Notch family91. The transactivation domain (TAD), C-terminal to the ANK repeats, 

shows more variations92, indicating possible differences in transactivation strength or 

protein-protein interaction capacity with paralogue specific cofactors. At the very 

C-terminal end of the NotchICD is located a conserved region rich in proline (P) 

glutamic acid (E), serine (S) and threonine (T), known as the PEST domain and 

believed to be important for protein degradation.93-97 

In the past decade, Notch specific transactivation of target genes has been intensively 

studied and subjected to powerful bioanalystic tools like x-ray crystallography and 

nuclear magnetic resonance (NMR) assays, providing us very detailed insights into 

molecular interactions during activator complex formation on the DNA. In the ‘off’ state 

of Notch signalling, respective target gene promoters are repressed by RBPj and 

additional corepressors, forming a complex that hinders inapropriate transcription 

initiation.98 Presence of cleaved NotchICD inside the nucleus is triggering derepression 

of the promoter region by displacing corepressors and direct binding to RBPj.99-101 

While the DNA-recognition and binding domain of RBPj is recruiting NICD onto the 

specific CSL promoter region in Notch target genes101,102, a third partner in the ternary 

activator complex, is absolutely essential for full transactivation: Mastermind-like.103-105 

In higher vertebrates like mouse and human there are three known members of the 

Mastermind-like protein family (MAML1-3) which can in part substitute for each 

other.106 MAML1 is the best studied paralogue and, together with NICD and RBPj 

sufficient to induce full Notch transactivation. MAML1 has been shown to bind the 

NICD and RBPj on CSL sites only in a complexed dimer where a highly conserved N-

terminal alpha-helical structure of the first 80 amino acids of MAML1 is fitting into a 

molecular groove formed by some parts of the C-terminal Notch ANK repeats and 

specific residues of the RBPj protein. The role of MAML is mainly considered to recruit 

additional cofactors like p300 or CDk8 which are inducing posttranslational 

modifications like acetylation, phosphorylation and ubiquitination, regulating the binding 

affinity and longevity of NICD engagement in transactivation.107-115  
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I.II.III Similarities and discrepancies between mammalian Notch paralogues 
 

Since Notch family members can only in part substitute for each other116, it is still a task 

to unravel specific properties and the evolutionary need for four slightly different 

receptors in more complex vertebrates, compared to a single NOTCH gene sufficient 

for signalling in Drosophila melanogaster. When simple target gene transactivation 

strength has been compared in vitro, using luciferase reporter constructs driven by the 

Hes1 promoter, a differential activity pattern was established in which the intracellular 

domain of Notch1 resulted as the prevalent transcription factor with the strongest 

response, followed by the other paralogues 2, 3 and 4.116 Notch1 is the most studied 

Notch family member and often used in overexpression experiments aimed to simulate 

general Notch pathway activation. However, the presence of other Notch proteins and 

the differential coexpression in developing tissues are indicating that in higher 

organisms developmental control is encoded in simultaneously acting Notch 

paralogues, with specific roles, differing in cofactor binding capacities, ligand-receptor 

activation specificies or posttranslational properties deciding about proteic half life, 

quantitative availability at the transactivation site and strength as promoter specific 

transcription factors.116-121 Further evidences for independent and specific roles of the 

four mammalian Notch receptors are given since mutations in respective genes were 

associated with different developmental defects and human diseases. Mutations in the 

NOTCH1 gene can cause T-cell acute lymphoblastic leukaemia (T-ALL)122 and aortic 

valve disease123, while NOTCH2 defects are leading to Alagille syndrome124 or 

osteoporosis like in the case of Hajdu-Cheney syndrome125. Cerebral autosomal 

dominant arteriopathy with subcortial infarcts and leukoencephalopathy (CADASIL) is a 

stroke disorder caused by mutations in the NOTCH3 gene126-129 and NOTCH4 may be 

involved in schizophrenia130-136. Shimizu et al. showed that expression levels of RBPj 

could differentially alter Notch induces transcriptional activity. On a TP1-luciferase 

promoter N1IC was the strongest activator compared to N2IC and N3IC, while 

coexpression of RBPj was reducing the overall NICD induced transactivation. 

Interestingly the NICD induced activation level of a Hes5 luciferase promoter showed 

an increased signal transduction capacity of N3IC when coexpressed RBPj while the 

ICD constructs of Notch1 and Notch2 copied the behaviour of negative RBPj relation, 

seen in the TP1-luc assay.116 A deeper investigation of vertebrate Notch target 

selectivity was done by the group of Kopan. The authors of a comparative study on the 

transactivation capacity of different Notch family members, published in 2005, stated 

that “relative activation strength is dependent on protein module and promoter 

context”101. The RAM region of NotchICDs interprets CSL binding site proximity and 
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orientation while the transactivation domain of Notch is important for recruitment of 

cofactors into the activator complex formation. A difference in target site recognition 

was established in which Notch1ICD prefers paired, head to head orientated, CSL sites 

and Notch3ICD, providing a TAD region with only 40 % conservation of amino acid 

sequence with respect to the transactivation domain of Notch1, was more active on 

promoters like Hes5, with single so called cryptic CSL sites in conjunction to a 

proximal, yet unknown cis-element of the zinc finger character. Chimeric constructs 

demonstrated the Notch3 TAD to be the most potent transactivator on Hes5, when 

fused to the Notch1 RAM/ANK domain in order to get maximal CSL binding and MAML 

recruitment to the promoter.101 In line with these observations x-ray crystallography 

studies from the group of Blacklow propose dimerization of two NotchICDs on paired 

CSL binding sites, including the cryptic Hes5 promoter.137 Whether different Notch 

isoforms can positively cooperate on target gene activation or whether there are 

additional DNA-binding cofactors involved to explain target selectivity remains still a 

problem to be solved. J. W. Cave is deducing that “incorporation of different NICD 

paralogues into Notch transcription complexes increases the combinatory complexity 

with local activators”138. A part from mutations that directly affect the respective genes 

of Notch receptor paralogues, ligands139-148 or pathway members like RBPj and 

Mastermind-like149-151, the increasing number of identified NICD binding proteins and 

their specific roles in posttranslational modifications of Notch, are manifolding possible 

weak spots in the Notch pathway whose genetic defects in outer corepathway 

components may lead to additional modulation of Notch signalling: Deltex (Dtx1-4) 

controls Notch ubiquitination, processing and internalization at the membrane level152-

157 while the RBPj interacting and tubulin associated protein (RITA/C12ORF52) shuttles 

cleaved intracellular domain of Notch between cytoplasm and nucleus158. The Ski-

interacting protein/nuclear receptor coactivator (SKIP/NCoA-62/SNW1) forms 

multidimers with NICD and MAML enableing association to RBPj and transcriptional 

activation.159,160 Beta-catenin (Ctnnb1) synergizes with NICD and RBPj on target 

genes161-163 while the Notch-regulated ankyrin repeat protein (Nrap) as well as tumor 

protein p73 α (p73α) bind and inhibit the NotchICD/CSL interface164-166. Also Smad 

family members (SMADs) enhance and fine-tune Notch signalling.167-171 NICD was 

demonstrated to interacte with nuclear factor NF-κB172-175 while the subunit alpha of 

hypoxia inducible factor 1 (HIF1α) can stabilize NICD and synergize in transcription of 

Notch target genes.176-178 Cyclin dependent kinase 8 (CDK8) together with Cyclin C 

(CycC) phosphorylate the intracellular domain of Notch to target the NICD for 

ubiquitination and degradation.115 While numb was shown to recruit the E3 ubiquitin 

ligase Itch to N1IC121, which due to the membrane theathered domain of itch is 
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believed to act outside the nucleus179,180, another E3 ubiquitin ligase, F-box/WD repeat 

protein 7 (Fbxw7/Cdc4), colocalizes to and ubiquitinates NICDs inside the 

nucleus.96,115,181-183 Selective Notch target gene activation can also be primed to 

become transcriptionally active by the presence of epigenetic modifications regulating 

the chromatin microenvironment. Methylation of histone H3 lysine residue 3 (H3K4) 

and acetylation of H3K9 residues are known to trigger cofactor accessibility and gene 

activation while demethylation and deacetylation are associated with repressive effects 

on transactivation.184-186 The protein p300 is known to trigger important 

posttranslational modifications on targets through its acetylation capacity. In a specific 

cellular context of mouse retina, Notch1 was proved to be more stable when being 

acetylated by p300. The general idea is that acetylation takes place at the same lysine 

residues that can also be targeted by E3 ubiquitin ligases in order to transfer ubiquitin 

chains to the protein and determine its proteasomal degradation.187 The fact that 

MAML1 is able to bind p300 and recruit it into the NICD-CSL complex, highlights the 

finely tuned complex formation process in which interaction of Notch with various 

cofactors is orchestrated in a temporal and spatial manner.114,188 The presence of 

cleaved NICD inside the nucleus, binding to RBPj and complex formation with MAML is 

inducing a series of events, leading step by step to complex stabilization, transcription 

initiation as well as sequential complex destabilization and NICD degradation, in order 

to render the cell as sensitive as possible to continued Notch signalling.189-191 A further 

distinction between Notch paralogue’s transactivation strength and protein stability 

became evident when phosphorylation studies on Notch have been done. 

Phosphorylation of specific serine or threonine residues, creating a required E3 

ubiquitin ligase binding motif, were shown to antagonize protein acetylation in a 

competitive manner.114 The fact that Notch3, in a leukaemia cell background, was less 

stable when HDAC inhibitors were used to increase Notch3 acetylation, by inhibition of 

deacetylating processes, indicates the highly complex and cell context dependent 

situation of posttranslational modifications of different Notch paralogues.192 In order to 

demonstrate that phosphorylation, induced by the specific Nemo-like kinase (NLK), 

was leading to increased ubiquitination and sequential degradation of Notch1, 

transcriptional activity were tested in luciferase assays. While Notch1 was indicating a 

dose dependent decrease of activity, corresponding to protein phosphorylation and 

degradation, Notch3 was showing the exact opposite and exceeded by far the Notch1 

induced signal strength.193 Regarding differences in acetylation and stability of the 

intracellular domains of Notch members, it is important to mention that further 

ubiquitination and turnover processes of NICDs are just about to be understood. 
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I.II.IV Notch signalling in T-cell development 

 

In haematopoiesis, including the lymphatic as well as the immune system, Notch is 

believed to be essential for maintenance of hematopoietic stem cells, myeloid 

homeostasis as well as the control of balance between B-cell versus T-cell 

development.194 

 

 
 

figure 4: T-cell development, taken from Love et al., Nat. Rev. Immun., 2011.
195 Haematopoietic stem 

cells (HSCs) differentiate into multipotent progenitors (MPPs) within the bone marrow. Recombination 

activating gene 1 (RAG1) and RAG2 positive lymphoid-primed multipotent progenitors (LMPPs, CLPs) 

subsequently upregulate CC-chemokine receptor (CCR) 7 and 9. These thymus-settling progenitors 

(TSPs) enter the thymus near the cortico-medullary junction to generate early T cell progenitors (ETPs; 

also known as KIT+ double negative 1 (DN1) thymocytes). ETPs in turn differentiate into DN2 and DN3 

cells that migrate to the subcapsular zone. Expression of the pre-T cell receptor (preTCR) on DN3 

thymocytes induces cell proliferation and differentiation to the DN4 and subsequently to the double positive 

(DP) stage. DP thymocytes that form appropriate interactions with self peptide–MHC complexes on cortical 

thymic epithelial cells (positive selection) upregulate expression of CCR7 and mature into single positive 

(SP) mature T cells. Negative selection in the medulla is followed by emigration into the periphery. 

 

Notch1 has been shown to be involved in the generation of hematopoietic stem cells 

(HSCs) derived from endothelial cells but is dispensable for later embryonic 

haematopoiesis.196,197 Jagged1 expression in osteoblasts may regulate the HSC 

homeostasis through Notch signalling, as presence of gamma-secretase inhibitors 

blocked a Jagged1-Notch induced increase in total numbers of HSCs but in how far 

Notch signalling is involved in stem cell niches is yet an open question.198,199 



 18 I Introduction 

Haematopoietic stem cells differentiate into RAG1/2 (recombination activating gene 1 

and 2) positive multipotent progenitors within the bone marrow. After upregulation of 

CC-chemokine receptor (CCR) 7 and 9 they enter the thymus near the cortico-

medullary junction to generate early T cell progenitors (ETPs).195 Notch1 other than 

Notch2 or 3 is through Delta-like4-Notch1-CSL signalling in a non redundant way 

necessary and sufficient for bone marrow derived lymphoid progenitor cells in 

becoming T-cells and no B-cells.200,201 The block of B-cell lineage is in part mediated by 

Hes, a direct Notch target.202 Lineage commitment is thought to happen by the entry of 

immature lymphoid precursors into the thymus as Notch ligands (mostly Jagged1 and 

Delta 4) are only expressed on the thymic epithelium.203 Immature CD4- and CD8- 

double negative thymocytes (DN1: LINlow, SCA1+, KIT+)  differentiate into DN2 (LINlow, 

CD25+, KIThi)  and DN3 (LINlow, CD25+, KITlow) cells, migrating to the subcapsular 

zone.195 Expression of the preT-cell receptor (preTCR) on late DN3 thymocytes 

induces cell proliferation and differentiation to the DN4 and subsequently to the double 

positive (DP) stage. Notch3 may coordinate growth and differentiation of late DN 

T-cells as Lck-driven N3IC overexpression in vivo did maintain abberant expression of 

the invariant chain of the preT-cell receptor and can regulate the function of T-cell 

differentiating factor SCL/Tal1.204,205 The importance of Notch1 and Notch3 in 

thymocyte differentiation is further sustained by their protein expression patterns, 

peaking at the DN3 stage of early T-cells206, and non-overlapping functions of both 

Notch paralogues.120,207 Whether or not canonical Notch signalling is dispensable for 

post preTCR checkpoint lineages and differentiation into CD4+ or CD8+ single positive 

T-cells, remains still to be clarified. N1IC overexpression did affect SP cells but 

conditional inactivation of Notch1 or RBPj was not skewing nor versus one or the other 

lineage fate.208,209 DP thymocytes that form appropriate interactions with self peptide 

MHC complexes on cortical thymic epithelial cells (positive selection) upregulate 

expression of CCR7 and mature into single positive (SP) mature T cells. Negative 

selection in the medulla is followed by emigration into the periphery.195 

 

 

I.II.V Notch signalling in leukaemogenesis 

 

Involvement of NOTCH in leukaemogenesis was evident since it has been shown that 

a specific chromosomal translocation, t(7;9)(q34;q34.3), was leading to the aberrant 

expression of a truncated form of Notch1IC, causing T-cell acute lymphoblastic 

leukaemia (T-ALL).210,211 While this specific mutation was found in about 1 % of all 

human T-ALL disease cases other mutations in T-ALL patients have been identified, 
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leading all to hyperactivity of the Notch1 protein and increasing the incidence of Notch1 

gain of function mutations in T-ALL up to 50 %.122 Transgenic Lck-driven intra-thymic 

Notch3ICD overexpression in mice induced a developmental block at the double 

negative stage (DN) of T-cell development. Notch3ICD was able to bypass the preTCR 

checkpoint in pTα/preTCR deficient immature thymocytes through constitutive 

activation of a non-canonical NF-κB pathway, resulting in a more differentiated T-cell 

phenotype.212,213 The observation that Notch3 does have an important role in T-cell 

development was confirmed by more recent publications.175,204,213 

 

 
 

figure 5: Notch activity in T-cell development. Notch/RBPj signalling is involved in multiple steps of 

thymocyte differentiation as indicated. During the intrathymic T-cell development from double negative DN 

(CD4−CD8−) thymocytes into double positive DP (CD4+CD8+) and single positive SP (CD4+ or CD8+) 

thymocytes, Notch1 and Notch3 receptor expression are peaking at the DN3 stage, where preTCR 

signalling and monoclonal amplification happens, creating a T-cell pool subsequently subjected to positive 

selection during the DN4 stage. 

 

Koyanagi et al. have done an exhausting Notch receptor and ligand expression profile 

during the different stages of T-cell development and underline the upregulation of 

Notch1 and Notch3 at the double negative stages DN2 to DN4. More precisely Notch1 

receptor expression was detected until beta-selection, defined by the surface marker 

CD27, and immediately downregulated before gene rearrangement of the T-cell 

receptor beta-chain (TcR βlow and TcR βhigh ) while Notch3 receptor was downregulated 

in TcR βhigh cells, after Notch1. Even in sorted double positive (DP) T-cells there were 

evidences of Notch3 receptor as well as Jagged1 ligand expression which could 

indicate a specific non-redundant role for Notch3, just at the transition from double 

negative to double positive cells during thymocyte differentiation.206 
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These observations are in line with our FACS analysis date from Notch3IC transgenic 

mice exhibiting lymphomas with a developmental block at the DP stage. Shi et al. have 

described non-overlapping functions for Notch1 and Notch3 during lymphopoiesis in 

the thymus demonstrating evidences for dramatic changes in expression of Notch3, in 

RNA and protein levels, from DN1/DN2 to DP T-cells peaking at the DN3 stage. 

Important to mention is that Notch3 levels have been normal despite simultaneous 

Notch1 deletion, excluding Notch3 upregulation to be caused by Notch1 gene 

transactivation.120 A comparative approach aimed to decipher the role of variations 

between different Notch family members in leukaemogenesis was demonstrating that, 

while overexpression of all intracellular domains of Notch 1 to 4 support T cell 

development in thymic organ culture as well as in mice, N4ICD overexpression failed to 

induce T-ALL in xenotransplants. Failure of transactivation of important target genes 

like Hes1, which was shown to potentiate T-cell lymphomagenesis, and the inability to 

rescue Notch1 dependent T-ALL, were in the case of Notch4 at least in part caused by 

a structural divergence in the ANK domain.214 Important to know is that NICD must 

cooperate with a second T-cell specific signalling event, mediated by the preT-cell 

receptor, to exert its oncogenic potential. When N1IC expressing bone marrow 

progenitors, derived from mice lacking functional preTCR signalling (Rag2-/-, Lcp2-/- or 

SLP76 deficient), were transplanted into lethally irradiated mice, no T-cell leukaemia 

was detected until the T-cell receptor beta transgene was reintroduced into Rag2-/- 

mice.215 The fact that aberrant upregulation of the intracellular domain of Notch 

(NICD1-3), the distal transcription factor in Notch signalling, is causing T-ALL was 

sustained by two further experimental setups. On the one hand constitutive expression 

of the Notch ligand Delta4 in bone marrow progenitors was able to activate the Notch 

signalling pathway inducing T cell leukaemia. On the other hand ineffective degradation 

of NotchICD, caused by Fbw7 mutations and consequently reduced NICD degradation, 

was detected in human T-ALL patients. With a 30% loss of function mutation 

coincidence in T-ALL, affecting three arginine residues in its target binding domain, 

FB(X)W7 represents the second most mutated gene in T-ALL patients, directly after 

mutations in the NOTCH1 gene, and should be considered as a major regulator of 

intracellular Notch signalling.216 Interestingly Bellavia et al. reported that in virtually 100 

% of human T-ALL cases, Notch3 is overexpressed without having specific genetic 

mutations like demonstrated for the NOTCH1 gene.217 
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I.III Hedgehog 

I.III.I Hedgehog pathway 

 

Like Notch also the Hedgehog pathway is one of the highly conserved representatives 

of key signalling pathways, controlling proliferation and differentiation in embryo- and 

organogenesis as well as pattern formation in pre- and postnatal vertebrate and 

invertebrates.218-220 Binding of the mammalian, lipid-modified and secreted Sonic (Shh), 

Indian (Ihh) or Desert (Dhh) Hedgehog ligands to the 12 transmembrane receptor 

Patched is triggering pathway activation in the signal receiving cell. The non-covalent 

ligand receptor interaction is inducing derepression of Smoothened, a second 

transmembrane protein, which is then able to subsequently activate the intracellular 

transcription factor Gli that translocates into the nucleus and initiates target gene 

transcription.221,222 

 
 

figure 6: Hedgehog signalling. In the absence of Hh ligands (0), the transmembrane receptor Patched is 

repressing Smoothened. Under these circumstances, kinases like PKA, GSK3β or CK1 phosphorylate 

Gli2/3 and initiated their processing into repressor forms which translocate into the nucleus in order to 

inhibit target gene activation. Upon binding of sequestered Hh ligand (1), Patched derepresses 

Smoothened (2) that now engages the signalling machinery, culminating in the appearance of activator 

forms of Gli that translocate into the nucleus (3) and regulate expression of Hh target genes (4). 
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The presence of Hedgehog ligands is in most cases graduated with the highest 

concentration at the signal sending source and low quantities in extracellular matrix 

distant from it. As cellular response is depending on concentration as well as duration 

of the signal, a gradient of sequestered ligands is important for proper developmental 

patterning processes, providing a position dependent intercellular communication and 

affecting cells juxtaposed to the ligand source differently than more distant cells.223-225 

The receptor protein Patched works as a repressor of the 7 transmembrane protein 

Smoothened (Smo), inhibiting its function in the signalling off state.226 In this case the 

transcription factors Gli2 and Gli3 are bound to a multiprotein complex, including 

Suppressor of Fused (SUFU) and the mammalian homologue of Costal2 (KIF7).227,228 

Three different and often sequentially acting kinases, protein kinase A (PKA), glycogen 

synthase kinase 3 (GSK3) and casein kinase 1 (CK1) have been shown to 

phosphorylate Gli2 and Gli3 proteins at specific serine and threonine residues.229,230 

Once phospho-modified, Gli proteins undergo proteolytic processing, initiated by an 

enzyme called Slmb, producing shorter Gli2 and Gli3 repressor forms that translocate 

into the nucleus and repress, together with SUFU, SAP18 and SIN3, specific 

Hedgehog pathway target genes.231-233 When activating the Hedgehog signalling 

pathway by extracellular Hh-ligand binding to Patched, Smoothened becomes 

derepressed and phosphorylated in its C-terminal intracellular tail.234,235 In Drosophila, 

this modification is believed to induce recruitment of Cos2, disassembling the 

multiprotein complex formed around Cubitus interruptus (Ci), the analogue of 

mammalian Gli proteins.236 In vertebrates Kif7 has been shown to have similar 

enzymatic functions regarding Gli1 processing and complex formation.237,238 

Non-phosphorylated or processed Gli proteins have the full potential to transactivate 

target genes by translocation into the nucleus and recruitment of enhancer proteins like 

Dyrk1 and CBP/p300.239 Beside various target genes also the proper pathway 

members PATCHED1 as well as GLI1 are induced by active Hedgehog signalling, 

building up a complex feedback loop capable to reinforce ligand induced signalling 

inside the signal receiving cell as well as responding to the extracellular activation by 

Patched receptor production.240,241 

 

 

I.III.II Hedgehog in T-cell development 

 

Hedgehog signalling is involved in intrathymic T-cell development. While the ligand Shh 

is provided and sequestered by thymic stroma, the receptor Patched as well as the 

pathway activator Smoothened are expressed in the membrane of developing, double 
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negative (DN; CD4- and CD8-) thymocytes. By the use of monoclonal antibodies 

blocking Shh, Crompton and colleagues have demonstrated that Hedgehog pathway 

inhibition was increasing the number of cells differentiated from DN into DP T-cells. In 

contrast, supply of Shh proteins could provoke a differential arrest at the CD25+ DN3 

stage.242 Further it has been shown that in activated CD4+ T-cells Shh plays a role in 

clonal expansion by promoting cell cycle transition from S to G2 phase.243 Positive and 

negative selection of immature T-cells in the thymus ensure functional but not 

self-reactive TCR signal strength in order to give rise to mature thymocytes without 

autoimmunity effects.244 Rowbotham et al. studied the effect of Hedgehog pathway 

activity during T-cell development and demonstrated that, while transgenic introduction 

of the T-cell receptor into wild type mice did result in more effective positive and 

negative selection, clonal deletion was ineffective when the TCR was overexpressed in 

mice with Gli2∆N2 driven, constitutive active Hedgehog signalling. Further evidence 

that Hedgehog signalling is counteracting the TCR was provided from Shh-/- mice in 

which TCR signalling is hyperactive leading to an abnormal high CD4:CD8 ratio.245,246 

How Hedgehog signalling is terminated in order to give rise to further development into 

DP and mature functional T-cells is not well understood and requires deeper 

investigation. Gli3 is upregulated in T-cells after preTCR signalling and considered to 

be easily processed into its repressor form which would add an additional repressing 

factor in intracellular Hedgehog signal regulation.247 It has been proposed that the 

movement of developing thymocytes inside a Shh gradient, set up by the thymic 

architecture, is exposing T-cells to changing pathway activating conditions (fig. 7).248 At 

the same time Smoothened has been shown to be downregulated by preTCR 

signalling.242 In both cases intracellular Hedgehog signal transduction was 

downmodulated by the consequences of impaired Smoothened activity and 

consequent inactivation of Gli transcritption factors. Especially during transition from 

the DN3 stage before and after Notch induced preTCR signalling, till mature single 

positive CD4+ T-killer or CD8+ T-helper cells, the pool of differentiating thymocytes 

underlies exclusive checkpoints. For a successful passage through the beta-selection 

step, one of the important T-cell specifying checkpoints, thymocytes must have 

rearranged the beta-chain of the T-cell receptor (TCRβ) in order to signal through the 

preTCR. The importance of the Hedgehog signalling cascade in developing T-cells was 

further sustained by El Andaloussi et al. demonstrating the essential role of 

Smoothened derepression and Gli1/2 activation in promoting survival and proliferation 

at the stage preceding preTCR signalling.249 
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figure 7: T-cell development, taken from Crompton et al., Nat. Rev.  Immun., 2007.

248
 Immature DN1 

stage thymocytes are situated close to the site of thymic entry at the cortico-medullary junction. The DN2 

population moves across the cortex and into the subcapsular zone. DN3 T-cells accumulate in the 

subcapsula where transition to the DN4 stage happens. During their passage through the thymus, 

thymocytes are exposed to a gradient of SHH produced by thymic epithelial cells (TECs) scattered in the 

subcapsular region, medulla and cortico-medullary junction. 

 

While Hedgehog signalling is absolutely essential for many early developmental 

processes, Gli1 has been shown to be not essential for mouse development. Gli1, 

beeing a transcriptional target of its own, is autoamplifying Hedgehog induced signals. 

Important to mention is that Gli2 seems to able to substitute for Gli1 which might 

explain the lack of phenotype in Gli1-mutant mice.250,251 Gli1 differs mainly from the 

mammalian GLI family members Gli2 and Gli3 by the lack of repressor function in the 

‘off’ state of Hh-signalling and is considered as an unambiguous positive Hedgehog 

pathway transcription factor.252 As Hedgehog signalling is transcriptionally controlling 

many target genes whose activation is decisive for proliferation, cell cycle regulation as 

well as initiation of differentiation, repression of those genes at defined developmental 

steps in lineage patterning is probably as important as their activation. Gli1, not 

providing a PPD site for being processed into a target gene repressor, is therefore 

proposed to have an outstanding role in mammalian Hedgehog signalling.253,254 In fact 

Gli1 has a non-redundant role in intrathymic T-cell development. It positively affects 

T-cell differentiation before and negatively after preTCR signalling. Gli1 is in contrast to 

Gli2 and Gli3 not essential at the DN1 and DN2 stages of developing thymocytes but 

Gli1 knockout does affect the DN3 and DN4 populations. Gli1 expression is peaking in 

DN3 T-cells (fig. 8) but does not seem to be involved in the process of TCRβ chain 

rearrangement.255 
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I.IV Cross talk 

I.IV.I Possible Notch and Hedgehog cross regulation 

 

The case of Gli1 regulation has been subjected to multiple analyses in various organs, 

tissues and cell lines. An integrative genomic approach, done by Katoh and colleagues, 

is proposing that Gli1, beside other regulatory mechanisms, is under negative control of 

canonical Notch signalling. Gli1 was transcriptionally downregulated after Notch 

activation, possibly by the repressive effect of basic helix-loop-helix (bHLH) type Notch 

target genes of the HES and HEY family, binding to conserved double N-boxes in the 

first intron of the GLI1 gene.256 Nguyen et al. came to the conclusion that there would 

be a multistep link between bHLH/Notch and Gli activities. They refer to previous work 

of Chitnis and Krintner who postulated that lateral inhibition by Delta-Notch signalling is 

essential for neurogenesis and demonstrate data in which a morfolino-drug against 

Gli3 could reverse the neurogenic effect caused by Delta-mutant Notch inhibition.257,258  

 

A delicate balance between Notch and Hedgehog signalling is further sustained by the 

work of Kim et al. who stated that “endodermal Hedgehog signals modulate Notch 

pathway activity in the developing digestive tract mesenchyme”259. While complete 

absence of Notch signalling in conditional RBPJ knockout mice caused loss of 

subepithelial fibroblasts and abbreviated gut length, also Notch overactivity caused loss 

of mesenchymes and impaired organogenesis. Interestingly, the overexpression of 

Notch phenocopied Hh-deficient embryos. On the contrary, fetal gut mesenchymes in 

culture could be rescued by Shh-induced signalling counteracting the programmed cell 

death caused by Notch overactivity. Kim et al. assumed that Hedgehog signalling was 

restraining Notch pathway activity in order to give rise to proper organogenesis of the 

developing embryonic intestine. Double-null embryos for Shh and Ihh were exhibiting 

increased Notch signalling. An important observation is that increased Hes1 and Hes5 

expression in embryos lacking Hedgehog pathway activity was not accompanied with 

increased expression of Notch receptors or ligands. That is why the authors suggest 

Hedgehog signalling to modulate the Notch pathway’s activity intracellulary and distal 

to receptor activation.259 

 

Shivdasani’s group demonstrated a Hedgehog pathway antagonizing effect of 

Notch1ICD overexpression in cultured cells. It should be mentioned that quantitative 

PCR, western blotting as well as in-situ hybridization indicated Notch3 to play a major 

role in stomach endoderm and mesenchyme in vivo. Nevertheless, in this experimental 
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setting Notch3ICD efficacy in antagonizing the Hedgehog pathway was not tested, the 

localization of a possible cross talk between Notch and Hedgehog signalling, distal to 

the NotchICD release and upstream of Notch target gene activation, suggests the 

involvement of the intracellular domain of Notch or components of the Notch activator 

complex. 

 

 

I.IV.II Notch and Hedgehog in complementing T-cell development 

 

 

The work of Siggins et al. could add an interesting point to the role of Hedgehog 

signalling in haematopoiesis: Conditional Patched1 knockout mice had no effect on 

hematopoietic stem cell (HSC) activity and did not show Hh signal activation when 

hematopoiesis-specific Patched deletion was applied. Still a hematopoietic defect could 

be detected, pronounced in death of bone marrow (BM) derived preB-cells as well as a 

significant loss of double positive (DP) T-cells. Double negative (DN) stages of T-cell 

development were unaffected. While the authors explained the phenotype to be caused 

by epithelial cell extrinsic mechanisms, induced through Hh signal activation in non-

hematopoietic tissue, the observed properties of B-cell deletion, T-cell defects at the 

DP stage and splenomegaly are very similar to hematopoietic defects in mice with 

hyperactive Notch signalling. Notch activity in early thymocyte progenitors is skewing 

cells to become T-cells instead of B-cells, while Notch3IC transgenic mice exhibited 

splenomegaly and developmental defects at the DN-DP transition of developing 

thymocytes.204,260 Interestingly the exposure to cyclopamine, a small molecule inhibitor 

of Smoothened, did negatively affect early thymocyte progenitors (ETPs) and 

thymocytes of the DN2 stage of differentiation but did not alter the survival rate of 

CD25+ preT cell lines, evidencing the importance of functional and timely regulated 

Hedgehog signalling before but not after preTCR signalling.249 Deeper analysis of Gli1 

deficient mice with healthy appearance showed a differential blockage at the DN3 

stage of developing thymocytes right before preTCR signalling.255 
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figure 8: Notch and Hedgehog activation during T-cell development: While Gli2 protein expression is 

positively correlated with Patched expression, peaking at the DN2 stage of developing thymocytes, 

expression of Gli3, believed to be a potent Hedgehog pathway repressor, is negatively correlated to Gli1 

expression and most prominent at the DN1 as well as the DN4 stage. Gli1 expression is essential before 

preTCR signalling occurs and Notch3 and Gli1 have overlapping expression patterns peaking at the DN3 

stage of DN3 thymocytes. 

 

Gli1 expression is peaking at the double negative DN3 stage of immature thymocyte 

differentiation (fig. 8) indicating high levels of Hedgehog pathway activities.249,255 

Overlapping expression patterns of Gli1 and Notch3(IC), with their maximal levels at 

the exact same spatio-temporal window of T-cell development as well as their essential 

and distinct roles in orchestrating differentiation and proliferation before preTCR signal 

initiation, might indicate either a higher yet undefined molecular network regulating 

simultaneously both pathways or more probably a diret inter-pathway cross talk 

important to maintain intracellular balance and to coordinate signal response 

mechanisms. 
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I.V Aim of thesis 

 

Both the Notch and the Hedgehog pathway, highly conserved from vertebrates to 

invertebrates, contribute indispensably to correct development and coordinate 

stemness maintenance, proliferation, differentiation and apoptosis. Aberrant signalling, 

generally caused by mutations in one or more genes of the many members or auxiliary 

proteins involved in the signalling cascades can provoke changes in the tightly 

regulated balance of gene expression and lead to abnormal and oncogenic 

characteristics of multiple cell types at various developmental stages. Combined 

targeting of both pathways has been proposed to be tested in patients. Regrowth and 

recurrence of tumours is believed to be initiated by a small pluripotent fraction of self 

renewing cancer stem cells and poses a major problem for clinical chemotherapy of 

cancer where slow proliferating cells often show a higher resistance against unspecific 

drugs.261,262 Self renewing capacity and monoclonal cell pool amplification rely on 

control of the cell-cycle, proliferation and differentiation, believed to be managed by 

simultaneous Notch and Hedgehog signalling. Deciphering the molecular mechanism 

behind merging pathway coordination will be of essential importance for developmental 

biology as well as for the improvement of current cancer therapies. Due to their 

complementing roles in lineage patterning, the goal of this thesis was to verify a 

regulative cross talk between Notch and Hedgehog signalling during immature 

thymocyte development. The Hedgehog-Gli signal transduction cascade has been 

shown to be essential for intrathymic T-cell development until preTCR signalling occurs 

while in parallel the Notch pathway is playing an important role in initiation of preTCR 

signalling at the CD4- and CD8- double negative DN3 stage of developing thymocytes. 

In order to investigate the possibility of a cooperative role of Notch and Hedgehog 

signalling in T-cells, protein expression patterns of respective pathway transcription 

factors should be established. Initial experiments were aimed to elucidate Gli1 and 

Notch3 transcriptional activity in DN1 and DN3 -like thymocyte cell lines. Once ruled 

out a possible convergence point, the molecular background of interpathway signalling 

should be investigated. 
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II Materials and Methods 

II.I Chemicals and Solutions 

II.I.I Salts and Powders 

 

The following salts, powders and reagents were purchased from Aurogene, Fluka, 

Merck and Sigma: 

 

Agar, agarose , boric acid, bromphenol blue, EDTA, EGTA, glycin , KCl, LB, Na3VO4, 

NaCl, NaF, Na-pirophosphate, non fat dry milk, PMSF, SDS, Tris-HCl, Trizma base. 

 

 

II.I.II Buffers and Solutions 

 

The following salts, powders and reagents were purchased from Carlo Erba Reagents, 

Euroclone, Fluka, Gibco, Merck, Roche and Sigma: 

 

acetone, acrilamid mix (30 %), ammonium persulfate (APS), bradford dye, Brij58, 

chloroform, complete protease inhibitor tablets, DMSO, DTT, ECL, ethanol, FBS, 

formaldehyde, glycerol, glycogen, HEPES, iso-propanol, L-glutamine, luciferase assay 

reagent and substrate, methanol, Na-deoxycholate , NP-40, PBS, penicillin-

streptomycin, phenol, physiological solution, Stop&Glow, TEMED, trichlor acid (TCA), 

Triton-X, Trizol, TWEEN, β-mercaptoethanol. 

 

 

 

TBE buffer (10x):  TRIS base (108 g/L), boric acid (54 g/L), 

    EDTA 0.5 M, pH 8 (7.4 g/L) 

 

WB running buffer (10x): 30.25 g/L Trizma base, 144 g/L glycine, 10 g/L SDS 

 

WB transfer buffer (10x): 60 g/L Trizma base, 95 g/L glycine 
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RIPA lysis buffer:   20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% Triton X-100,  

    1 mM EDTA  pH 8.0, 30 mM NaF, 2 mM Na-piro-  

    Phosphate, 1 mM Na-orthovanadate (Na3VO4), Protease  

    inhibitor cocktail tablets. 

 

NP-40 lysis buffer:   50 mM HEPES, 150 mM NaCl, 10 mM EDTA, 

    0.1 % NP-40, proteinase inhibitor cocktail tablets. 

 

triton lysis buffer:   20 mM TrisHCl (pH 7.5), 150 mM NaCl, 1 mM EDTA,  

    Triton-X (1x), 30 mM NaF, 1 mM Na3VO4, 0.25 mM  

    PMSF, proteinase inhibitor cocktail tablets. 

 

buffer A:    10 mM HEPES, 10 mM KCl, 10 mM NaCl, 0.1 mM EDTA,  

    0.1 mM EGTA, 1 mM DTT, 0.5 mM PMSF 

 

buffer C:    20 mM HEPES, 0.4 M NaCl, 1 mM EDTA, 1 mM EGTA, 

    1 mM DTT, 1 mM PMSF, proteinase inhibitor cocktail  

    tablets. 

 

 

II.I.III Others 

 

Blue X-Ray film (Aurogene), hyperladder (bioline), immobilon transfer membrane 

(millipore), nitrocellulose membrane (PROTRAN, Whatman), metafectene pro 

(biontex), lipofectamine 2000 (invitrogen);  

 

Reagents for standard PCR and reverse transcriptase PCR (buffer, MgCl2, dNTPs, 

oligo dT primers, RNase inhibitor, Taq-polymerase) were purchased from Applied 

Biosystems, Bioline and Promega; 

 

Restriction enzymes and buffers purchased from New England BioLabs. 

 

Bi or tri- distilled water was used; 
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II.II Biological Material 

II.II.I  Primary antibodies used for immunoblotting 

 

Anti-β-Actin (A5441) (Sigma) 

ANTI-FLAG (F7425) (Sigma) 

ANTI-FLAG (M2)  (Sigma) 

Anti-MAML1 (5975) (Millipore) 

Anti-RBP-Jk  (Millipore) 

anti-Tubulin (8035) (Santacruz) 

GLI-1 H-300 (20687) (Santacruz) 

GLI-1 N-16 (6153) (Santacruz) 

HA-probe F-7 (7392) (Santacruz) 

HA-probe Y-11 (Sigma) 

Lck 3A5 (433)  (Santacruz) 

Mam1 N-20 (18506) (Santacruz) 

MAML1 (#4608)  (Cell Signaling) 

Notch3 (#2889) (Cell signaling) 

Notch3 (8G5)   (Cell signaling) 

Notch3 M134 (5593) (Santacruz) 

Notch3 M20 (7424) (Santacruz) 

NOTCH3 (23426)  (abcam) 

patched G19 (6149) (Santacruz) 

RBPJK (25949)  (abcam) 

RBPJk D20 (8213) (Santacruz) 

RBPSUH (#5442)  (Cell Signaling) 

Smo N-19 (6366) (Santacruz)

 

II.II.II  Plasmids 

 

N3IC-HA and N3IC-flag: Notch3-IC (aa 1664 - 2318) with C-terminal HA-tag was 

cloned into T7 CMVp expression plasmid, provided by Dr. U. Lendahl and described by 

Lardelli et al. 1996.263 -HA to -flag exchange was done in Screpanti’s lab. by standard 

cloning techniques. MAML1-flag: cDNA of human Mastermind-like 1 full-length was 

cloned in pFLAG-CMV2, described by Wu et al., 2000.107 RBPjk: cDNA of murine RBPj 

was cloned into CDM8 vector, descrive by Chung CN et al., 1994.264 Gli1-HA was 

provided by Dr. AE Oro and described by Kinzler et al., 1988.265 

 

pTα luciferase promoter: Putative pTα promoter region (pubMed sequence U27268) 

was subcloned in TA-cloning vector and fused into luciferase pGL3-basic vector.266 

Patched wt and mut luciferase promoter were provided by R. Toftgard (KI, Sweden) 

and described by Agren et al., 2004.267; Gli 12x luciferase responsive element was 

provided by R. Toftgard and described in Kogerman et al., 1999.268 

 

Plasmid amplification and purification was done following the QIAGEN protocol, using 

QIAGEN Plasmid Mini or Maxi kit. 
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II.II.III  Cell lines 

 

Cell lines were cultured at 37°C, 5% CO2 in humidified atmosphere and split each 

second or third day. 

 

Hek 293T cell line: Human embryonic kidney cells with SV40 Large T-antigen. Cultured 

in DMEM, 10% FBS, 100 U/ml penicillin, 100 µg/mL streptomycin, 2 mM L-glutamine; 

 

M31T cell line: Immortalized CD4- CD8- CD3+ T cell line with α, β but no γ TCR, after 

secondary Vβ rearrangement, described by Primi D. et al., 1988.269 Cultured in DMEM, 

10% FBS, 100 U/ml penicillin, 100 µg/mL streptomycin, 2 mM L-glutamine, 

β-mercaptoethanol; 

 

preT 2017 cell line: Transformed Maloney virus-derived CD4- CD8- T cell line with 

TCRγ high, described by Spolski R. et al., 1988.270 Cultured in RPMI, 10% FBS, 100 

U/ml penicillin, 100 µg/mL streptomycin, 2 mM L-glutamine, β-mercaptoethanol; 

 

N3-232T-cell line: Immortalized immature thymocyte cell line derived from Notch3-IC 

transgenic mice. Cultured in RPMI, 10% FBS, 100 U/ml penicillin, 100 µg/mL 

streptomycin, 2 mM L-glutamine, β-mercaptoethanol. 

 

 

II.III Methods 

II.III.I  Bradford assay 

 

1 - 5 µL of cell lysate or volumes of BSA-solution (0 - 40 µg) were diluted in 800 mL 

H2O and 200 mL Bradford-dye (Biorad protein assay). Spectrometrical absorption was 

determined at 595 nm and protein concentrations were calculated from BSA-trendline. 

 

II.III.II  Chromatin immunoprecipitation assay 

 

Protein complexes were cross linked to DNA in living nuclei by adding formaldehyde 

directly to thymocytes to a final concentration of 1%. Crosslinking was allowed to 

proceed for 10 min at 37°C and then was stopped by the addition of glycine to a final 

concentration of 0.125M. Cells were washed twice with phosphate-buffered saline 



 33 II Materials and Methods 

containing 1mM PMSF. Nuclei were extracted with a 20 mM Tris pH 8.0, 3 mM MgCl2, 

20 mM KCl buffer containing protease inhibitors, pelleted and lysed by incubation in 

SDS lysis buffer (1% SDS, 10 mM EDTA, 50 mM Trischloride pH 8.1), containing 

protease inhibitors. Chromatin solution was sonicated for 15 pulses of 15 s to generate 

300 – 600 bp DNA fragments. After microcentrifugation the supernatant was diluted 

1:10 (dilution buffer: 0.01 % SDS, 1 % Triton X-100, 1.2 mM EDTA, 16.7 mM 

Trischloride pH 8.1, 167 mM NaCl, containing protease inhibitors), precleared with 

Salmon Sperm DNA/Protein A agarose (#157, Upstate Biotechnology) and divided into 

aliquots. 5 µg antibodies were added per aliquot for incubation (in rotation over night, 

4°C) and Antibody-protein-DNA complexes were isolated by immunoprecipitation with 

Salmon Sperm DNA/Protein A agarose. Following extensive washing, DNA bound 

fragments were eluted and analyzed by subsequent PCR using primers specific for 

Gli-binding sites on the mPtch-promoter. Primers used: mPtch1A fwd ACACACTGGCG 

CACTATCCA, mPtch1A rev ACACACTCACACGTACAGGA, mPtch1B fwd TAAGAAA 

GAAAGGAGGGGGG, mPtch1B rev GGAGGGCAGAAATTACTCAG. 

 

II.III.III  Immunoblotting 

 

Nitrocellulose membranes were carefully washed (PBS, 0,05 % Tween), blocked with 

non fat dry milk dissolved in PBS and incubated with primary antibodies in 2 % or 5 % 

milk for 2 hours or over night. Membranes were washed three times with PBS-Tween 

for 10 min. each, reincubated with horseradish peroxidase-labeled goat-antirabbit, 

goat-antimouse or rabbit-antigoat secondary antibodies (Santa Cruz Biotechnology 

Inc.) and developed with the ECL detection system (Amersham). 

 

II.III.IV  Immunofluorescence microscopy 

 

Cells were fixed in 4 % paraformaldehyde for 20 min. at RT, incubated in 0.2 % Triton 

X-100 to permeabilize cell membranes and incubated in blocking buffer (PBS with 3 % 

BSA). Primary antibodies were diluted in PBS and incubated 1,5 h. Samples were 

washed three times and then incubated with secondary antibodies for 30 min at room 

temperature in blocking solution. Nuclei were counterstained with Hoechst reagent. 
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II.III.V  Immunoprecipitation assay 

 

Cells were lysed, protein concentration was determined and 200 µg - 1000 µg of whole 

cell lysate were immunoprecipitated using specific antibodies and Protein A-Agarose 

Immunoprecipitation Reagent (sc-2001) or Protein G PLUS-Agarose Immuno-

precipitation Reagent (sc-2002). HA peptide I2149 against aa98-106 of human 

influenza virus HA (Sigma-Aldrich) or normal mouse, rabbit or goat IgG (santa cruz) 

was used as negative controls. Precipitates were further resolved by SDS-PAGE and 

subjected to western blot analysis. 

 

II.III.VI  Luciferase assay 

 

Luciferase activity was assayed with a Dual luciferase assay system 24 or 48 hours 

after transfection of plasmid DNA and Renilla-expressing vector pRL-TK, (Promega). 

Specific luciferase activity was determined (TD-20/30 luminometer, Turner Designs) in 

triplicates and normalized to renilla luciferase activity in a dual luciferase assay system 

(Promega, Madison, WI, USA), following manufacture’s protocol. 

 

II.III.VII  Nuclear and cytosolic compartments 

 

Pellet of 10 x 106 cells was washed in PBS, centrifuged (7 min., 4°C, 1.200 rpm), 

resuspended in 100 µL freshly prepared buffer A and incubated 15 min. on ice. After 

addition of 0.6 % NP-40 the lysate was vortexed for 10 sec. and centrifuged (30 sec., 

4°C, 12.000 rpm) in order to subsequently separate the cytosolic compartment in the 

supernatant from pelleted nuclei. The supernatant was further centrifuged (20 min., 

4°C, 12.000 rpm) in order to eliminate membrane residues. The nuclear pellet was 

washed carefully 3 times in buffer A + NP-40 (each time 30 sec., 4°C, 12.000 rpm) 

before being resuspendet in buffer C, vortexed for 15 sec. and incubated 10 min. on 

ice. Nuclear proteins were found in the supernatant of a final centrifugation (20 min., 

4°C, 12.000 rpm). 
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II.III.VIII RNA quantification 

 

Total RNA was extracted from resting cells, using Trizol (Gibco) following 

manufacture’s protocol and purified by RNeasy Mini kit (Qiagen). mRNA expression 

was analysed by cDNA transcripts using the ABI Prism 7900HT Sequence Detection 

System (Applied Biosystems) employing TaqMan gene expression assay according to 

the manufacturer's instructions (Applied Biosystems). Each amplification reaction was 

performed in triplicate, and the average of the three threshold cycles was used to 

calculate the amount of transcripts in the sample (SDS software, ABI). All values were 

normalized to two endogenous controls, GAPDH and HPRT. 

 

II.III.IX  Transfection 

 

Transient transfection experiments were performed by Lipofectamine 2000 

Transfection Reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacture’s 

instructions.  

 

II.III.X  Western blotting 

 

6 % or 8 % poly-acrylamide gels were freshly prepared. Samples containing Laemli-

buffer and β-mercaptoethanol were boiled 5 min. and separated by SDS-PAGE, 

(running buffer, 100 mV) before blotted onto nitrocellulose membrane (chilled transfer 

buffer, 100 mV). Prestained Protein Marker HyperPAGE (BIOLINE) or ProSieve 

Quadcolor Protein Markers (Lonza Rockland) were used for band size determination. 

Protein blotting on the membrane was generally confirmed with Ponceau solution. 

 

II.III.XI  Whole cell lysates 

 

Pellet of 10 x 106 cells was washed in PBS, centrifuged (7 min., 4°C, 1.200 rpm), 

resuspended in 100µL (NP-40 or Triton-x) lysis buffer, incubated 20 min. on ice and 

centrifuged (20 min., 4°C, 13.000 rpm). Protein concentration of supernatant was 

determined by Bradford assay. 
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III Results 

III.I Antagonistic effect in target gene activation 

III.I.I Gli1 interferes with Notch target gene transactivation 

 

In order to investigate the paradigm of a Notch-Hedgehog cross talk in thymocytes, we 

decided to start with a straight forward approach, testing whether or not active 

Hedgehog pathway could directly affect Notch induced transcriptional activity on a 

Notch specific target gene. The alpha chain of the pre T-cell receptor (preTCRα or pTα) 

is a known Notch target and our lab could demonstrate previously that Notch3 is 

important for pTα expression at the DN3 stage of developing thymocytes.213,271  
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figure 9: pTα promoter activation by N3IC and cofactors. pTα driven luciferase signal strength in M31T 

cells, 48h post transfection. Cotransfection of N3IC together with MAML1 and RBPjκ results in maximal  

signal induction. Addition of Gli1 shows antagonistic effect on N3IC induced target gene transactivation. 

 

To exclude multiple processing and activation steps of known members of the 

Hedgehog pathway, like Smoothened or the Suppressor of Fused (SuFu), which would 

render the final interpretation much more complex, we decided to cotransfect and 

overexpress the distal transcription factor Gli1 together with the required intracellular 

domain of Notch3 (N3IC) and its essential cofactors RBPjκ and MAML1 into the M31T 

(fig. 9) or preT 2017 (fig. 10) cell line, measuring luciferase expression 48h after 

transfection. In this experiment, coexpression of Gli1 and N3IC should simulate 
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intracellular T-cell conditions in which both pathway’s distal transcription factors were 

active, in order to analyse changes in the final transcriptional outcome. Corresponding 

to previous work in our laboratory, N3IC required both cofactors, RBPjκ and MAML1, to 

gain full activation of the pTα promoter driven luciferase signal in the M31 T-cell 

background. Column five in figure 9 and 10 show maximal signal strength of 

Notch3ICD and coactivators. Interestingly the coexpression of Gli1, in a ratio 1:1 to all 

transfected protein expression plasmids, decreased Notch3IC induced promoter 

transactivation from 50 % (fig. 10, column 6) to 100 % (fig. 9, column 6). This 

antagonistic effect of Gli1 coexpression in Notch3IC driven pTα promoter 

transactivation assays did also work on other known Notch target genes like Hes1 and 

Hes5 (data not shown). As for maximal transactivation of Notch target genes it was 

necessary to transfect, in addition to NICD, also the cofactors RBPjκ and MAML1, 

interpretation of such an antagonistic effect of Gli1 resulted complex. To reduce the 

number of expressed proteins involved in a possible Notch-Gli cross reaction, we 

decided to switch the experimental setting to a Gli1 induced transactivation assay, 

trying to show N3IC overexpression in disturbing Gli1 driven luciferase expression in a 

similar antagonistic way. Gli1 is able to directly bind its target genes by at least the last 

three of its five zinc finger structures272 and does therefore not require a DNA binding 

protein like RBPjκ in the canonical Notch pathway. 
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figure 10: pTα promoter activation by N3IC and cofactors. pTα driven luciferase signal strength in preT 

cells, 48h post transfection. Cotransfection of N3IC together with MAML1 and RBPjκ results in maximal 

induction. Addition of Gli1 shows antagonistic effect on N3IC induced target gene transactivation. 
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III.I.II Cell context dependent effect of N3IC on Gli1 induced transactivation 

 

Using a luciferase reporter element, driven by a sequence of twelve times repeated Gli 

consensus binding sites (Gli12x-promoter) we were able to transfect our leukaemia 

T-cell lines M31T and preT and deduce from only promoter (p) transfections (p = 1 fold 

induction) versus promoter and cotransfected Gli1- expression vector the Gli1 induced 

transcriptional activity. As to be seen in figure 11, Gli1 was able to activate the 

luciferase-reporter while coexpression of N3IC failed to unspecifically activate Gli1 

induced luciferase expression. The M31T cell line was used to represent the cellular 

context of developing thymocytes in an early double negative (DN1-like) stage of 

differentiation.269,273 At this time point neither Notch3 nor Notch1 are activated, proved 

by the complete absence of the NICD in western blot assays (fig. 22 and data not 

shown). As overexpression of the intracellular domain of Notch3 did not affect Gli1 

induced target gene transactivation in M31T cells (fig. 11a), we made two possible 

cases. Either there would be no direct cross talk of the pathway's distal transcription 

factors Gli1 and N3IC or for an indirect effect the given molecular context of M31T cells 

would not provide the proteic requirement for pathway interactions. To rule out a direct 

Gli1-Notch protein-protein interaction we performed immunoprecipitation assays, using 

whole cell lysate of transfected Hek293T cells, but failed to copurify Gli1-HA together 

witch N3IC-flag precipitation (data not shown). 
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figure 11: Gli12x responsive element activation by Gli1. 12 Gli consensus binding site driven luciferase 
signal strength in M31T (a.) and preT (b.) cells, 48h post transfection. Gli1 transfection results in maximal 
induction. Addition of N3ICD shows a 28 % reduction of Gli1 induced target gene transactivation in preT 
but not in M31T cells. 
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Following our second hypothesis, that the cellular context would make the difference in 

indirect N3IC-Gli1 cross talk, we applied the same experimental approach using the 

preT 2017 cell line, representing a late DN3 stage of differentiation. Under normal in 

vivo conditions Notch3 as well as Gli1 expression are peaking short before the preTCR 

signalling initiation (Crompton et al.248, Koyanagi et al.206, Shi et al.120, our data), like 

depicted in figure 8. The preT 2017 cell line derived from Maloney virus transformed 

CD4- CD8- double negative thymocytes, expressing TCRγhigh is providing a DN3-like 

molecular background.270 Interestingly, and different from our observations using M31T 

cells, in the preT cell line we could see a significant reduction of Gli1 induced luciferase 

expression when cotransfecting the constitutive active form of Notch3 (fig. 11b). In a 

ratio 1:1 of transfected plasmids the signal decrease was 28 %. Such an effect on Gli1 

induced transactivation could have had several explanations. We excluded the 

possibility that N3IC would repress actively the Gli12x responsive element as luciferase 

expression was under the control of twelve Gli1 consensus binding sites without any 

CSL element needed for NICD binding. Still the overexpression of N3IC could inhibit 

Gli1 induced transcription by yet unknown Gli1 protein inactivating or degrading 

mechanisms. A third possibility of lowering transcriptional activity on target genes is the 

limitation of endogenous cofactors.274 If a possible cross talk between the Notch and 

Hedgehog pathways would involve not or not only the distal transcription factors Gli1 

and NICD, we were wondering whether or not known Notch binding partners could 

affect Gli1 activity while being differentially expressed in the two thymocyte cell lines 

used. We performed total (fig. 22), cytosolic (data not shown) and nuclear (fig. 12) 

protein extraction of the respective cell lines 

and compared specific cofactor expression 

levels by western blot analysis. While focusing 

on RBPjκ and MAML1, known Notch pathway 

members that have been shown to bind the 

intracellular domain of Notch and could have 

been affected or sequestered by N3IC in our 

experiments, we detected differences in 

nuclear protein levels. Figure 12 illustrates the 

significant higher level of MAML1 protein in the 

nuclear compartment of preT cells compared to 

M31T cells. RBPjκ did also show some slighter 

expression differences, with higher protein 

levels in M31T nuclei. 

figure 12: Western blot of nuclear 
extracts of M31T and preT cells. 
Lysates were dissolved by SDS-PAGE. 
Nitrocellulose blots were cut at specific 
protein band sizes and incubated with 
the indicated antibodies. 
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III.I.III Mastermind-like1 coactivates Gli1-induced transcriptional activity  

 

Different nuclear expression of the Notch coactivator Mastermind-like 1 (MAML1) in 

M31T and preT cells (fig. 12), its importance in Notch activator complex formation189,275-

277 and recruitment of additional factors114,188 as well as its upcoming Notch-

independent roles in other signalling pathways278-281, led us to the following 

experimental setting: We cotransfected a plasmid coding for MAML1 into the M31T cell 

line while performing the same Gli1 target gene activation study using a Gli12x 

responsive element, in order to supply the DN1-like cell line with this potent cofactor, 

like expressed in DN3-like preT cells. By this approach, we were able to detect in our 

model an unexpected, more than 200 % increase of Gli1 induced luciferase expression 

(fig. 13a, compare columns 3 and 4). As Mastermind-like1 did not affect the Gli 

consensus site driven luciferase expression in the absence of overexpressed Gli1 

protein (column 2), we assumed MAML1 to have an agonistic role in Gli1 induced gene 

transactivation. The effect of MAML1 was dose dependent, tested by increased 

MAML1:Gli1 ratios (data not shown). In preT 2017 cells the addition of MAML1 did 

reinforce Gli1-induced transcriptional activity up to 400 %, further sustaining the 

importance of Mastermind-like 1 protein expression levels at the DN3 stage of 

developing thymocytes. 
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figure 13: Gli12x responsive element activation by Gli1. 12 Gli consensus binding site driven luciferase 
signal strengh in M31T (a.) and preT (b.) cells, 48h post transfection. Gli1 transfection results in about 100 
fold promoter induction. Addition of MAML1 shows in Gli1 induced target gene transactivation a significant 
signal increment of more than 200% in M31T and 400 % in preT cells. 



 41 III Results 

III.I.IV N3IC reverses Gli1 transactivation potentiated by MAML1 

 

Once demonstrated that MAML1 can act as a cofactor in the Hedgehog pathway, able 

to increase significantly Gli1 induced transcriptional activity, we were wondering what 

would happen when we express N3IC in this Notch inactive background.  
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figure 14: N3IC induced antagonism in Gli1 and MAML1 induced transactivation. Gli12x driven 

luciferase signal strength in M31T cells, 48h post transfection. Addition of N3IC antagonizes the positive 

effect of MAML1 on Gli1 induced transactivation in a dose dependent manner.  

 

In order to show a direct effect of Notch pathway activation on Gli1 induced signalling, 

we decided to cotransfect N3IC into the M31T or the preT cell line, analysing Gli1 

induced and MAML1 potentiated signal strength in the presence of active Notch. 

Addition of increasing amount of N3IC resulted in a dose dependent antagonistic effect 

on Gli1 induced and MAML1 superactivated transcriptional activity. By the use of 

plasmids coding for Gli1, MAML1 and N3IC in a ratio 1:1:1 (fig. 14, column 7) the signal 

strength of promoter activation lay exactly in between the values of normal Gli1- 

induced activity (column 4) and the, by addition of MAML1 potentiated signal 

(column 6). Increasing the intracellular N3IC protein level, transfecting Gli1, MAML1 

and N3IC in a ratio 1:1:2, was completely antagonising the coactivator effect of MAML1 

on Gli1-induced transactivation (column 8). Supplying more MAML1 (ratio 1:2:1) was 

again reverting the N3IC caused antagonism (last column), indicating a stoichiometric 

competition of N3IC and Gli1 for the coactivator MAML1. 
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We repeated the same experiment to proof a dose dependent antagonism of Notch3 

on Gli1 and MAML1 induced transactivation in preT cells and gained comparative 

results regarding the effect of MAML1 and N3IC on the transcription factor activity of 

Gli1 (compare fig. 14 and 15). MAML1 cotransfected together with Gli1 into preT cells 

showed a significant, 4-fold increase in luciferase signal strength. Most importantly and 

like in M31T cells seen before, this MAML1- induced boost of Gli1 transcriptional 

activity could again be antagonized by coexpression of N3IC in a dose dependent 

manner, as to be seen in figure 15. By increasing the intracellular overexpressed N3IC 

protein level, the coactivator effect of MAML1 on Gli1 induced transactivation was 

strongly antagonized. The supply of more MAML1 (Gli1:MAML1:N3IC in a ratio 1:2:1, 

last column) was again reverting the N3IC caused antagonism. 
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figure 15: Gli12x responsive element activation by Gli1. 12 Gli consensus binding site driven luciferase 

signal strength in preT cells, 48h post transfection. Addition of N3IC can antagonize the positive effect of 

MAML1 on Gli1 induced transactivation in a dose dependent manner. Increased supply of transfected 

MAML1 (last column) can counteract the antagonistic effect of N3IC. 
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III.I.V MAML1 and RBPjκ in Patched1 transactivation 

 

As the used Gli12x responsive element is an artificial promoter, we decided to verify 

obtained results on the promoter of the target gene PATCHED (PTCH1), known to be 

direct transcriptional target of Gli1.282 The PtchWT plasmid expresses luciferase under 

the control of 1000 bp of the Patched (Ptch) wild type (WT) promoter, upstream the 

transcription start side (TSS). The Patched-promoter sequence is providing two 

putative binding sites for Gli1 of which the one closer to the TSS has been published to 

be mandatory for target gene activation.267 Following our hypothesis, and to be in line 

with results presented in the previous chapter, N3IC should quench the MAML1 protein 

and by doing so reduce its availability to be used as a cofactor in Gli1 induced Patched 

transactivation. We know from previous studies as well as from literature that MAML1 

does only bind the intracellular domain of cleaved Notch after forming a ternary 

complex with RBPj. The RBPj-Notch dimer is forming a molecular groove on its surface 

that can provide sufficient binding energy for non-covalent binding of the helical 

N-terminal region of Mastermind-like 1.110 With this molecular concept in mind, we 

decided to evaluate also the effect of RBPj in the following luciferase assays. 
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figure 16a: Ptch1 wt promoter activation. Patched1 promoter driven luciferase signal strength in M31T 

cells, 48h post transfection. Gli1 transfection results in 2.7 fold promoter induction. Addition of MAML1 

shows a significant signal increment on Gli1 induced target gene transactivation up to 10.2. Cotransfection 

of both factors MAML1 and RBPjκ results in the maximal transactivation strength of 20 fold promoter 

induction, about 7 times Gli1 only activity. Addition of N3IC, in a ratio 1:1 to all transfected plasmids, can 

antagonize the positive effect of MAML1 and RBPjκ on Gli1 (last column). 
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In the M31T cell line, combined coexpression of RBPjκ and MAML1 increased Gli1 

induced transactivation more than seven times of normal Gli1 activity and exceeded all 

single or double combinations tested (fig. 16a, column 6 - 10). The N3IC induced 

antagonistic effect on luciferase expression still worked even on the Patched promoter 

and restored a value similar to the one measured when transfected only Gli1, without 

MAML1 or RBPjκ (fig. 16a, compare column 6 with last column). To control Gli1 

dependency and that the agonistic effects of MAML1 and RBPjκ, seen when 

cotransfected together with Gli1, was not caused by unspecific promoter binding, we 

used a mutated form of the described Patched promoter (PtchMUT), in which two point 

mutations in the mandatory Gli1 consensus binding site prevent Gli1 binding and 

transactivation.267 
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figure 16b: Ptch1 mut promoter activation. Mutated Patched1 promoter driven luciferase signal strength 

in M31T cells, 48h post transfection. No significant transactivation was observes throughout all transfected 

samples.  

 

Use of the PtchMUT promoter did effectively inhibit Gli1 induced luciferase activation. 

The fact that also no signal was detected when MAML1 and RBPjκ were coexpressed 

underlined their Gli1 reinforcing but not Gli1-target gene autoactivating properties. 

Again we were able to demonstrate a dose dependency for the Notch3IC induced 

antagonism (fig. 17). Increased levels of transfected N3IC-plasmids did restore normal 

Gli1-induced Patched activation. From this effective antagonism seen in our in vitro 

luciferase assay series, we deduced that the exact level of MAML1 and intracellular 

Notch fragments would be of major importance in interfering with the Hedgehog 

pathway. 
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figure 17: Ptch1 wt promoter activation. Patched1 promoter driven luciferase signal strength in M31T 

cells, 48h post transfection. Cotransfection of both factors MAML1 and RBPjκ results in the maximal 

transactivation strength of about 4 times Gli1 only activity. Addition of N3IC can antagonize the positive 

effect of MAML1 and RBPjκ on Gli1 induced transactivation in a dose dependent manner.  

 

The more N3IC was supplied, the more pronounced was its antagonistic effect on Gli1. 

Still MAML1 must play a decisive role in these pathway converging transactivation 

experiments as its absence uncouples N3IC from Gli1 in matter of target gene 

transactivation. 

 

In order to evaluate the effect of RBPjκ in Gli1 induced transactivation and the possible 

role in N3IC induced antagonism, we did transfection studies with RBPjκ but without 

exogenous MAML1. The effect of RBPjκ coexpression in Gli1 induced transactivation 

of a Gli12x responsive element was in M31T cell negligible and in preT cells 

statistically not significant nor dose-dependent (fig. 18), most probably due to the lack 

of RBPjκ binding sites in the artificial and Gli specific luciferase promoter. Overall Gli1 

induced promoter transactivation was more efficient in preT cells (fig. 18, column 4, 

grey vs. black), indicating that the cellular background of the preT 2017 cell line, 

representative for DN3-like thymocytes, may favour Gli1 target gene activation, while 

the differences in endogenous expression of MAML1 between M31T and preT cells 

(fig. 12) would correlate with its role as a potent Gli1 coactivator. 
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figure 18: Gli12x responsive element activation by Gli1. 12 Gli consensus binding site driven luciferase 
signal strengh in M31T (black) and preT (grey) cells, 48h post transfection. Gli1 induced transcriptional 
activity was only insignificantly altered by RBPjk and without a clear dose-dependency for additional N3IC. 
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figure 19: Ptch1 promoter activation. Patched1 wt promoter driven luciferase signal strength (black 

columns) in preT cells, 48h post transfection. Gli1 transfection results in 10 fold promoter induction. 

Addition of MAML1 shows a significant signal increment on Gli1 induced target gene transactivation up to 

32. While addition of RBPjκ shows an increment up to 42, cotransfection of both factors MAML1 and 

RBPjκ together results in the maximal transactivation strength of 66 fold promoter induction. Addition of 

N3IC, in a ratio 1:1 to all transfected plasmids, can antagonize the positive effect of MAML1 and RBPjκ on 

Gli1 (last column). Mutated Patched1 promoter driven luciferase signal strength (grey columns) in preT 

cells, 48h post transfection. No significant transactivation was observes throughout all transfected 

samples. 

 

Interestingly, when using the Patched WT promoter in the preT cell line, we did see an 

agonistic effect of RBPjκ on Gli1-induced target gene activation (fig.19, black 
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column 7). The fact that RBPjκ-only transfection, without Gli1, did not activate the 

Patched wild type promoter in an unspecific way (fig. 19, black column 3) was 

indicating a coactivator role of RBPjκ in Gli1 induced Patched promoter but not through 

Gli-consensus element activation. Using the mutated form of the Patched promoter, 

transactivation was abolished completely (fig. 19, grey columns). 

 

 

III.I.VI Enhanced Gli1 recruitment for Patched1 transactivation 

 

Using the genomatix server for transcription factor binding site prediction, we identified 

a putative RBPjκ binding site upstream to the essential Gli-binding site of the Patched 

promoter, juxtaposed to a second non-consensus Gli-binding site, reported to be a 

potent enhancer element.267 

 

mPtc1
-934         -722            -635          -450                           0

RBPjk   Gli Gli

enhancer essential Gli
binding site

mPtc1
-934         -722            -635          -450                           0

RBPjk   Gli Gli

enhancer essential Gli
binding site

 
 
figure 20: mPtc1 promoter. Mandatory and sufficient Gli consensus binding site (635-450 bp upstream) 
and Gli enhancer element juxtaposed to RBPjk/Ikaros binding site upstream the transcription start site 
(934-722 bp upstream) of murine Patched1 gene. 
 

Performing chromatin immunoprecipitation (ChIP) of M31T cells, we could detect 

endogenous Gli1, bound to the upstream enhancer element of the murine Patched1 

promoter region, when we tranfected the cells with RBPjκ or MAML1 (fig. 21a). The fact 

that MAML1 and RBPjκ overexpression is followed by Gli1 binding to the Gli enhancer 

site in the Patched1 promoter region may reflect their agonistic effect seen before in 

luciferase activity assay (compare fig. 16a and 17). Interestingly, when performing 

chromatin immunoprecipitation assay with antibodies against RBPjκ, DNA fragments 

including the putative RBPjκ binding site coprecipitated only in the case of MAML1 

transfection (fig. 21b). We did also re-ChIP assays to detect MAML1 bound to Gli1 on 

the Patched promoter but failed to gain reproductive results. Whether or not MAML1 is 

directly binding Gli1 on the chromatin remains to be demonstrated. As the effect of 

MAML1 and its involvement in Gli1 transactivation was more pronounced than that of 

RBPjκ we decided to focus in further experiments on the role of MAML1 in Gli1 

signalling.  
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figure 21: ChIP of Gli enhancer element in Patched1 promoter: Chromatin Immunoprecipitation of 

normal or transfected M31T cells. a: ChIP against Gli1 reveals DNA fragment binding in the case of RBPjκ 

or MAML1 transfected M31T cells. b: ChIP against RBPjk reveals DNA fragment binding in the case of 

MAML1 transfected M31T cells.  

 

Taken together, we were able to demonstrate a Notch independent cofactor role for 

MAML1 in Gli1 induced transcriptional activity when overexpressed in vitro in two 

different T-cell lines (fig. 14a and 15a). However, addition of the intracellular domain of 

Notch3 did abolish the coactivator effect of MAML1 on Gli1-induced transactivation in a 

dose dependent manner (fig. 14b and 15b). Also Notch transactivation, together with 

the essential cofactors RBPJκ and MAML1 was antagonized by Gli1 expression 

(fig. 10) indicating a co-usage of the MAML1 protein. Its differential nuclear expression 

in M31T and preT cells (fig. 13) as well as dose dependent antagonism seen in 

transactivation of Notch and Hedgehog target genes may argue for stoichiometric 

competition of both transcription factors NICD and Gli1 for MAML1 and the need for 

increased expression levels at the DN3-like stage of developing thymocytes (compare 

fig. 8), where under normal conditions both pathways are active and essential for 

preTCR signal induction.206,249,255 Chromatin immunoprecipitation may further sustain a 

role of MAML1 in Gli1 induced transactivation as overexpression of MAML1 in preT 

cells led to Gli1 protein binding to the enhancer element of the endogenous target gene 

Patched1. Presence of an RBPjκ binding site in front of the Patched enhancer element 

could indicate a more complex regulatory mechanism. Our working model is giving 

MAML1 a central role in between these two highly conserved signalling pathways and 

we hypothesize an intrinsic molecular competition, where expression and activation 

levels of the transcription factors Gli1 and Notch3IC are decisive in single or shared 

usage of the interpathway cofactor MAML1. 
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III.II Protein-protein interaction 

III.II.I Mastermind-like 1 interacts with Gli1 

 

The results presented in chapter III.I evidence a specific coactivator role for MAML1 in 

Gli1 induced transcriptional activity. Proteins acting as transcriptional cofactors do in 

general directly or indirectly bind the respective transcription factor and thereby 

potentiate transactivation strength through posttranslational modifications or by the 

recruitment of additional cofactors.283-285 Initially, we performed a comparative series of 

qPCR (fig. S1) and western blot (fig. 22 and data not shown) analysis of various 

thymocyte cell lines in order to screen for simultaneous expression of Notch and 

Hedgehog pathway members in RNA as well as in protein levels. 
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figure 22: WB of endogenouse proteins: Western blot analysis of three different cell lines: M31T (DN1-

like thymocytes), preT 2017 (late DN3-like thymocytes) and 232T (murine N3IC+ T-cells). The 160 kDa 

Gli1 band corresponds to transfected human Gli1 protein. The lower and slighter 125 kDa MAML1 band 

corresponds to nuclear MAML1. 

 

M31T and preT 2017 cells were used in our luciferase experiments as they represent 

DN1-like and DN3-like stages of developing double negative T-cells. The 232T cell line 

was established from immortalized ex vivo thymocytes of an Lck-driven N3IC-HA 

overexpressing transgenic mouse and was initially used as a control for endogenous 

expression of the intracellular domain of Notch3. 232T cells did express high levels of 

N3IC and Gli1 as well as their respective target genes Hes1 and Patched1, typical for 
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deregulated and simultaneously active Notch and Hedgehog pathways, like seen in 

other mouse and human leukaemia cell lines (unpublished data). Hybridization with 

specific antibodies against MAML1 did reveal two bands in western blots of preT and 

232T cells, one at the size of 140 kDa and the other at 125 kDa. The lower one was 

less pronounced when whole cell lysates were analyzed but gained prevalent protein 

detection strength when SDS-PAGE and immunoblotting was performed with nuclear 

extracts (fig. 12). 

It is known that MAML1 localizes to 

nuclear spots (compare fig. S3), 

where it can interact with the 

intracellular domain of Notch 

paralogues, RBPj or GSK3β.109,112,188 

To test which of the two bands seen in 

the western blot analysis of whole cell 

lysate was the specific NotchICD 

interacting one, we performed co-

immunoprecipitation assay of Notch 

and MAML1. As 232T cells do 

constitutively express HA-tagged N3IC we precipitated Notch with anti-HA antibodies, 

resolved proteins by SDS-PAGE and transferred them onto a nitrocellulose membrane 

before hybridization with anti-MAML1 antibodies. While in nuclear extracts (fig. 23, left 

lanes) two MAML1 bands were visible, the co-immunoprecipitate (IP) of N3IC did only 

reveal the lower 125 kDa protein band. 
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figure 24: CoIP of MAML1 and Gli1: a. Gli1-HA and MAML1-flag proteins were transfected into Hek293T 

cells and wcl were used to precipitate MAML1 with a flag-Agarose antibody. After western blotting onto 

nitrocellulose the membrane was first incubated with anti-HA antibodies in order to reveal 

coimmunoprecipitation of Gli1-HA. Reblotting with specific anti-flag antibodies did show the total protein 

pulldown. b. Endogenous immunoprecipitation of Gli1 reveals a slight coprecipitation of the lower MAML1 

band of the size 125 kDa in nuclear extracts of 232T cells. 

figure 23: MAML1 125 kDa binds N3ICD: 
Coimmuno-precipitation assay with anti-HA Agarose; 
precipitates of endogenous N3ICD-HA of nuclear 
extracts of 232T cells reveal interaction with the lower 
MAML1 band of the size 125 kDa but not with the 
upper and stronger pronounced 140 kDA band. 
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blot: MAML1
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To understand the cofactor role of MAML1 in Gli1 induced target gene activation, we 

applied similar immunoprecipitation assays to detected direct protein-protein 

interactions. Due to the lack of good commercially available antibodies against murine 

MAML1 proteins, usable for endogenous co-immunoprecipitation, we decided to 

change the experimental setup from low efficient endogenous (fig. 24b) to exogenous 

protein interaction studies (fig. 24a). We took advantage of the flag-tag of MAML1, 

transfected into Hek293T cells, and incubated immunoprecipitates (IP), an IgG 

negative control as well as whole cell lysate (+) against the HA-tag of cotransfected 

Gli1-HA. Gli1 co-immunoprecipitated with MAML1, when overexpressed in Hek293T 

cells (fig. 24a). 

 

 

III.II.II N3IC can affect Gli1-MAML1 interaction 

 

For the purpose of understanding the molecular background of the antagonistic 

behaviour of Gli1 and Notch3ICD, seen in transactivation experiments with specific 

luciferase promoters, we initially tried to coprecipitate Gli1 with N3IC but failed to see a 

direct protein-protein interaction (data not shown). We therefore started to evaluate the 

interaction strength of Gli1 and MAML1 in the absence or presence of cotransfected 

N3IC. 
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figure 25: Increasing amount of N3IC can negatively affect Gli1 binding to MAML1: a. Plasmids 

coding for the proteins Gli1-HA, MAML1-flag and N3IC-HA were transfected into Hek293T cells and wcl 

were used to precipitate MAML1 with a flag-Agarose antibody. After western blotting onto nitrocellulose the 

membrane was incubated with anti-HA antibodies in order to reveal coimmunoprecipitation of Gli1-HA and 

N3IC-HA at the same time. Increasing amount of transfected N3IC led to decreased Gli1 

coimmunoprecipitating with MAML1. b. protein expression in whole cell lysates used for 

immunoprecipitation assay in a. 
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In the experiment shown in figure 25a, we cotransfected MAML1-flag as well as 

Gli1-HA and increasing amount of N3IC-HA expression plasmids into Hek293T cells 

and performed co-immunoprecipitation against MAML1-flag proteins. While western 

blotting of whole cell lysate (25b) confirmed constant expression levels of Gli1 and 

MAML1 and a dose-dependent increase of the N3IC protein, the amount of with 

MAML1 co-immunoprecipitated Gli1 was negatively correlated to N3IC coexpression 

and binding to MAML1. Increasing amount of N3IC, with respect to constantly 

coexpressed MAML1 and Gli1 protein levels, was assumed to induce a quencher 

effect, as the intracellular domain of Notch is reported to recruit MAML1 into a ternary 

complex with RBPJκ, exhibiting non-covalent protein interactions with high affinity. 

Interestingly, the expression of N3IC in whole cell lysates was less effective than in 

comparable transfection settings without coexpression of MAML1 (see also fig. 28). 

However N3IC binding to MAML1 was strong and seemed to displace Gli1 

co-precipitation. 

We know from literature that MAML1 needs the NICD-RBPj interface to efficiently bind 

to the intracellular domain of Notch, in order to form a strong ternary activator complex 

on target genes.275 We decided to overexpress also RBPjκ to equilibrate protein 

expression ratios in transfected cells used for MAML1 co-immunoprecipitation. 

Densitometrical quantification was normalized against precipitated MAML1 and values 

of Gli1-only (fig. 26, first left red column) as well as N3IC-only coimmunoprecipitates 

(lane 6, green column) were set to 1. By co-immunoprecipitation of proteins bound to 

MAML1, in a set of transfected 293T cells, we were able to show a 20 %, 46 % or even 

69 % reduction of MAML1-bound Gli1 protein (red columns, from left to right) when 

coexpressing N3IC, RBPjκ or both respectively. The diminished amount of Gli1 binding 

to MAML1 when overexpressed Gli1, MAML1 as well as N3IC in an expression plasmid 

ratio 1:1:1 is reassembling and confirming the data from previous experiments 

(i.e. fig. 25a, lanes 3 and 5). Hybridization with antibodies against RBPjκ revealed the 

presence of endogenous human RBPjκ in the N3IC-MAML1 precipitate of transfected 

Hek293T cells (fig. 26, lanes 3 and 6). Overexpression of a constant amount of mouse 

RBPjκ, the murine homologue of human RBPj in which binding properties to MAML1 

are highly conserved, led to detection of a slightly higher murine RBPjκ band in MAML1 

co-precipitates (lanes 4, 5, 7 and 8). Cotransfection of mRBPjκ did positively affect 

N3IC-MAML1 binding. While already in the reference sample (lane 6), in which only 

N3IC was coexpressed with MAML1 (= 1.0 x), endogenous hRBPjκ was recruited, 

supply of mRPBjk in an equivalent ratio to NICD and MAML1 did show a 2.7 fold 

increase of N3IC-MAML1 coprecipitation. These data sustain the need for RBPjκ in 

complex formation of the intracellular domain of Notch3 and its coactivator MAML1. 
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figure 26: N3IC and RBPjκ sequester MAML1 away from Gli1 into ternary complex: Plasmids coding 

for the proteins Gli1-HA, MAML1-flag, RBPjκ and N3IC-HA were transfected in different combinations into 

Hek293T cells and wcl were used to precipitate MAML1 with a flag-Agarose antibody. After western 

blotting onto nitrocellulose the membrane was incubated with specific antibodies in order to reveal 

coimmunoprecipitation of Gli1-HA, N3IC-HA, RBPjκ (slight band size differences between endogenous 

human RBPjκ/CSL and transfected mouse RBPjκ) and reblotted for total MAML1-flag precipitation. 

Densitometrical analysis was normalized to precipitated MAML1 amount. Gli1-only coimmunoprecipitates 

(first left red column) and N3IC-only coimmunoprecipitates (lane 6, green column) were set to 1. 

 

On the one side, coexpression of Gli1 did reduce N3IC coprecipitation with MAML1 

about 20 % (fig. 26, lane 8: 2.7, lane 5: 2.2), while on the other side the effect of N3IC 

coexpression, together with RBPj, reduced simultaneous Gli1 binding to MAML1 about 

70 % (fig. 26, compare lanes 2 and 5). The fact that also binding of N3IC to MAML1 

and RBPj is affected by coexpression of Gli1 might indicate a bilateral antagonism, 

affecting both Notch and Gli binding to a central MAML1 and is in line with results from 

our luciferase-activation experiments using the Patched or the pTα promoter. 
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III.III MAML1 induces N3IC turnover  

III.III.I Gli1 collaborates with MAML1 in N3IC degradation 

 

In order to link the antagonistic effect of Gli1 coexpression in Notch driven gene 

activation with competitive protein binding characteristics of MAML1 to N3IC and Gli1, 

we analyzed the amount of co-immunoprecipitated N3IC in a MAML1-flag IP while 

increasing the dose of Gli1 protein expression.  
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figure 27: Increasing amount of Gli1 can negatively affect N3IC protein expression: Plasmids coding 

for the proteins Gli1-HA, MAML1-flag and N3IC-HA were transfected into Hek293T cells and wcl were 

used to precipitate MAML1 with a flag-Agarose antibody. After western blotting onto nitrocellulose the 

membrane was incubated with anti-HA antibodies in order to reveal coimmunoprecipitation of Gli1-HA and 

N3IC-HA at the same time. a. Co-immunoprecipitation of increased Gli1 and constant N3IC expression. 

b. Increasing amount of transfected Gli1 leads to decreased N3IC expression when MAML1 is 

coexpressed in a constant and equal amount to N3IC. 

 

While a decreased binding affinity of N3IC to MAML1, with increasing amount of Gli1 

coexpression (27a), was not evident like in the equivalent experiment analysing the 

effect of a N3IC dose on Gli1 described above (fig. 25a), the overall protein expression 

control of whole cell lysates disclosed a strong reduction of N3IC protein expression 

(27b). The low N3IC protein expression was evident whenever we were coexpressing 

Gli1 and MAML1 together (see also fig. 25b and fig. 28a and c). To test whether the 

negative effect on Notch3IC expression, seen in figure 27b, was based on the 

combined overexpression of both proteins, MAML1 and Gli1, or caused by a single 

coexpression of one of the two proteins, we transfected independently from each other 

MAML1- or Gli1- doses, analysing the effect on expression of constantly coexpressed 

N3IC in whole cell lysates. 
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figure 28: N3IC protein expression is disturbed by MAML1: Whole cell lysate of Hek293T cells 

transfected with the same amount of Gli1 and N3IC (-HA in a. and N3IC-flag in c.) expression plasmids, 

show significant impairment of N3IC protein expression when simultaneously overexpressed MAML1 (right 

lane). Gli1 expression however is more pronounced in the presence of MAML1. b. Effect of increasing 

MAML1 or Gli1 doses on constant N3IC expression.  

 

In the case of increased MAML1 coexpression we could detect a dose dependent 

reduction of N3IC protein expression (fig. 28b, lane 1 - 4) while increased amount of 

Gli1 did only show a modest and dose-independent effect (fig. 28b, lane 5 - 8). 

However Gli1 overexpression did have a dose dependent effect on N3IC expression 

when MAML1 was coexpressed in an equivalent amount to NotchICD protein (fig. 27b). 
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figure 29: N1IC protein expression is disturbed by MAML1: Whole cell lysate of Hek293T cells 

transfected with the same amount of Gli1 and N1IC expression plasmids, show significant impairment of 

N1IC protein expression when simultaneously overexpressed MAML1 in a dose-dependent manner 

(a. lane 1 - 3). b. Increasing Gli1 protein expression however did not alter constant MAML1 expression. 

Increasing amount of transfected Gli1 led to only minimal deceased N1IC expression when MAML1 was 

coexpressed in a constant and equal amount to N1IC (a. lane 4 - 6). 

 

We decided to repeat the same set of experiments using the intracellular domain of 

Notch1 (N1IC) instead of N3IC to see whether a similar Notch paralogue would be 

affected by MAML1 and Gli1 in the same way or differ from data gained with Notch3. 
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By this we aimed to deduce protein structure related key functions important for a NICD 

paralogue specific turnover.  The dose of MAML1 did strongly reduce N1IC expression 

in the presence (fig. 29a, lane 1 - 3) or absence (fig. 30b, lane 1 - 4) of Gli1. These 

data go hand in hand with published work on MAML1 induced Notch1ICD turnover.286 
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figure 30: N1IC protein expression is disturbed by MAML1: a. Whole cell lysate of Hek293T cells 

transfected with the same amount of Gli1 and N3IC expression plasmids, show specific loss of the lower 

N1IC protein band when simultaneously overexpressed MAML1 (right lane). Gli1 expression however is 

more pronounced in the presence of MAML1. b. Effect of increasing MAML1 or Gli1 doses on constant 

N1IC expression.  

 

Loss of the lower band of N1IC (fig. 30a), visible when MAML1 was coexpressed and 

lysates were resolved by high resolution 6 % SDS polyacrylamid gel electrophoresis, 

could have been an indication for Notch1ICD phosphorylation, demonstrated to be 

important prior to ubiquitination and sequential degradation.179,287 Interestingly Gli1 

expression was increased by coexpression of MAML1 (fig. 28a,c, 29a and 30a). 

Preliminary experiments, in which the use of proteasomal inhibitors (MG132) during 

coexpression studies led to increased half-life of Gli are proposing MAML1 to actively 

induce Gli1 protein stabilization (unpublished). The underlying effect and involved 

posttranslational modifications including phosphorylation and acetylation through 

MAML1 recruitment, however remain to be deeper investigated. While the negative 

effect of MAML1 on N3IC protein expression could indicate a similar role in degradation 

initiation like demonstrated for Notch1ICD, the dose-dependent effect of Gli1 on N3IC 

was dependent on the presence of equal amount of MAML1. Assuming that both, 

MAML1 and Gli1 affect N3IC stability, we were wondering whether or not Gli1 would 

have a role in triggering ubiquitin mediated N3IC proteasomal degradation. 
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III.III.II Gli1 and MAML1 can alter ubiquitination of N3IC 

 

For in vitro ubiquitination of N3IC we coexpressed HA-tagged ubiquitin together with 

N3IC and different combinations with or without Gli1 and MAML1. Presence of MAML1 

without and with coexpression of Gli1 did again decrease N3IC expression levels in 

whole cell lysates (fig. 31 compare wcl in lanes 2, 3 and 4). Precipitating N3IC with a 

specific Notch antibody (or IgG as negative control in the IP) and hybridization of the 

western blot nitrocellulose membrane with anti-HA antibodies revealed a N3IC multi-

ubiquitination pattern with at least two specific bands at 120 kDa and 160 kDa (fig. 31). 
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figure 31: Effect of MAML1 and Gli1 on ubiquitination of N3IC: Hek293T cells were transfected (24h) 

with equal amounts of indicated protein expression plasmids and whole cell lysate were subjected to 

western blotting of total proteins (left side) or immunoprecipitation against N3IC in order to detect 

ubiquitination. 

 

Densitometrical comparison was done after normalization of detected amounts of 

ubiquitin modified N3IC 120 kDa isoforms with unmodified Notch3IC (~90 kDa). 

Interestingly, coexpression of MAML1 (fig. 31, diagram, columns “M”) was increasing 

the relative amount of ubiquitinated N3IC. Further addition of Gli1 (columns “M+G”) did 

reinforce this effect. Gli1 coexpression without MAML1 (diagram, columns “G”) did also 

increase the relative amount of the ubiquitin-modified 120 kDa N3IC isoform while 

N3IC protein expression in whole cell lysates (wcl) was unchanged (fig. 31, wcl lane 5). 
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IV Discussion 

IV.I Cross talk 

IV.I.I   Point of convergence 

 

Our general hypothesis is a cooperative role for Notch and Hedgehog signalling in 

monoclonal amplification, highly controlled by essential extracellular developmental 

cues. In this picture, stem or progenitor-like cells as well as developmental processes 

of the haematopoietic system require Hedgehog pathway activity for cellular 

proliferation and cell cycle control288-290 as well as Notch signalling, in order to inhibit 

differentiation and sustain monoclonal amplification291-293. Hence the extracellular tissue 

and the presence, absence or the exact amount of Notch and Hedgehog ligands are 

shaping the microenvironmental niche and affect single cell fate decisions. As a 

monoclonal amplification needs to be under strict control of the organic compartment in 

which the cell resides, the specific niche must provide, in addition to ligands, other 

selective mechanisms to counteract the expanding cell pool that under deregulated 

conditions would most probably lead to tumour outgrowth. We decided to study the 

complex behaviour of Notch and Hedgehog signalling in T-cells where the combination 

of both pathways, at the DN3 stage of developing thymocytes, gives rise to monoclonal 

amplification in order to provide a sufficient pool of T-cells that can be subsequently 

subjected to beta-selection induced survival through preTCR signalling as well as 

MHC-driven positive and negative selection. 

To proof a direct cross talk of active Notch and Hedgehog signalling, we decided to 

start measuring transactivation strength on Notch or Gli target genes by the use of 

luciferase expression plasmids under the control of specific promoter elements or 

consensus binding sites. 48 hours post transfection of transcription factors and 

luciferase responders into cultured T-cells, luciferase expression was deduced from 

luminometric signal strength in the various combinations of transcription and cofactors. 

N3IC, RBPjκ and MAML1 cotransfection resulted in maximal signal strength of Notch 

sensitive luciferase responders. Interestingly, additional of the Gli1 expression plasmid 

downmodulated transactivation of N3IC on its target pTα (as well as Hes1 and Hes5, 

unpublished). In parallel, Gli1 induced transactivation of a luciferase expression vector, 

driven by Gli consensus binding sites, was compared with double transfected cells 

where in addition to Gli1 also the intracellular domain of Notch3 had been 

overexpressed. N3IC led to a significant signal reduction in Gli1 induced target gene 

transactivation. 
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The presented experiments were indicating that distal components of both pathways, 

the Gli1 transcription factor and the cleaved intracellular domain of Notch3 might be 

responsible for interpathway cross talks, affecting and downmodulating opposite 

pathway’s target gene transactivation strength. 

 

Investigating the developing embryonic digestive tract, another model for studying the 

role of parallel Notch and Hedgehog signalling in developing cells, Shivdasani et al. 

demonstrated that Notch overexpression could, by the loss of mesenchymes and 

impaired organogenesis, phenocopy Hh-deficient embryos. Double-null embryos for 

Shh and Ihh were leading to increased Notch signalling. On the contrary, fetal gut 

mesenchymes in culture could be rescued from cell death, caused by Notch 

overactivity, through extracellular supply of Shh-ligands activating the Hedgehog 

signalling pathway. The authors assumed that Hedgehog signalling was restraining 

Notch pathway activity in order to give rise to proper organogenesis of the developing 

embryonic intestine.259 This antagonistic pathway behaviour, proved in vivo in Notch 

and Hedgehog dependent developing cells of the intestine, was not further investigated 

on the molecular level but may sustain our in vitro data from developing Notch and 

Hedgehog depending thymocytes, pointing towards a more general interpathway cross 

talk. The observation that increased Hes1 and Hes5 expression in the digestive tract of 

embryos lacking Hedgehog activity was not accompanied with increased expression of 

Notch receptors or ligands would suggest that Hedgehog signalling is probably 

modulating the Notch pathway’s activity distal to the step of receptor activation.259 This 

is in line with the Gli1-N3IC transactivation antagonism in our experiments, as we were 

overexpressing the intracellular constitutively active domain of Notch3 that doesn’t 

require any extracellular activation or cleavage steps. 

Kim et al. demonstrated an antagonistic effect on the Hedgehog pathway by the use of 

Notch1ICD overexpression in cultured cells, while quantitative PCR, western blotting as 

well as in-situ hybridization indicated Notch3 to play a major role in their research on 

stomach endoderm and mesenchyme in vivo. Nevertheless Notch3ICD efficacy was 

not tested in this experimental setting, the localization of a possible cross talk between 

Notch and Hedgehog distal to the NotchICD release and upstream of Notch target 

gene activation could indicate the direct involvement of the intracellular domain or 

components of the Notch activator complex.259 To this regard our data further sustain 

the possible convergence point of Notch and Hedgehog, responsible for parallel 

pathway’s antagonism on target gene transactivation, to be intracellular, short before or 

at the level of target gene transactivation. 
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IV.I.II Deregulated coordination of Notch and Hedgehog signalling 

 

Hedgehog is known to regulate stem and progenitor cell proliferation and cell cycle 

progression288-290 while canonical Notch/CSL signalling can control symmetric versus 

asymmetric division294,295 and is believed to have a fundamental role in preventing 

premature differentiation of progenitor cells296-298. In order to investigate a regulative 

network between Notch and Hedgehog signalling in neurogenic differentiation of 

neocortical progenitors, the group of Wainwright decided to inactivate both pathways. 

Conditional knockout of Patched did activate the Hedgehog pathway in progenitor cells 

and increased the amount of the radial glial progenitor cell compartment by sustained 

symmetric division. This dramatic expansion of stem and progenitor cells in the 

neocortex, could be reversed when simultaneously inactivating RBPj and attenuating 

Notch signalling. The expression of stem cell marker Sox2 in the ventricular zone of the 

neocortex was lost when RBPj was inactivated. Because the balance of symmetric 

versus asymmetric dividing progenitors was restored when both RBPj and Patched 

were lost, one could draw conclusion that excessive Hedgehog signalling is affecting 

Notch in controlling cell division symmetry.299 This is in line with our model of 

cooperating pathway activities for monoclonal division, in which like in stem cells the 

combination of both pathways and their respective target genes lead to undifferentiated 

cell pool amplification. 

 

While the authors show Hes1 to be upregulated in the case of hyperactive Hedgehog 

signalling and hypothesize that Hedgehog would cooperate with the Notch pathway 

through the Notch-RBPj signalling cascade299, others have shown that Hedgehog and 

Gli2 signalling can bind and activate Hes1 in a Notch independent way, providing a 

plausible second explanation for Hes1 upregulation, independent of canonical Notch 

signalling300. Hes5 was not upregulated in the described experiment while in a different 

work by Hallahan et al., where transgenic Smoothened expression was used to 

activate Hedgehog signalling, resulting in medulloblastoma outgrowth, Hes5 and 

Notch2 were upregulated.299,301 In the year 2004 Wainwright’s group stated that 

“Notch2 and the Notch target gene, HES5, were also significantly elevated in 

Smoothened-induced tumors showing that Shh pathway activation is sufficient to 

induce Notch pathway signaling”301. In independent work Notch2, beside the presence 

of Notch1 and Notch3, was shown to be a general prevalent active Notch member in 

medulloblastoma302 which could also explain the upregulation of typical Notch target 

genes. 
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In 2008 the group of Wainwright published data of a deeper analysis of the paradigm of 

a Notch and Hedgehog regulatory system in medulloblastoma, proofing that in fact at 

least the canonical Notch pathway could be excluded for Hedgehog-Smoothened 

induced upregulation of Hes1. “While Smoothened function was found necessary for 

upregulation of Hes1 in response to Sonic Hedgehog, the mechanism does not require 

gamma-secretase mediated cleavage of Notch receptors, and appears to involve 

transcription factors other than RBP-Jkappa.”303 They describe their findings as “a 

novel mechanism for Hes1 regulation in stem-like cells that is independent of canonical 

Notch signalling.”303 Very interesting, apart from the Hes1 regulatory mechanisms, was 

the fact that whether Notch cleavage by gamma-secretases nor RBPj was needed for 

Hedgehog induced medulloblastoma initiation. These data could be confirmed by the 

same group two years later demonstrating evidences that “Hedgehog-dependent 

medulloblastoma were not blocked by loss of RBP-J, indicating that canonical Notch 

signaling is not required for tumor initiation and growth in this model.”304 

 

So far the presence of Notch in medulloblastoma, a model of deregulated 

neurogenesis, is beyond question but its role in tumour initiation and progression and 

its interaction with the Hedgehog signalling pathway is far from being fully understood. 

The upper described experiments may point to a non-canonical role of the intracellular 

domain of one or more Notch paralogues, downstream to extracellular Notch activation 

and upstream the canonical RBPjκ signal transduction. 

 

Ajeawung et al. report in the October’s edition of 2012 in Clinical and Investigative 

Medicine that “thus far, two drugs which target the NOTCH and HEDGEHOG signalling 

have completed Phase I clinical trials [for medulloblastoma treatment], but with 

evidence of low efficacies”.305 The work of Hatton et al. underlines the complexity of the 

Notch-Hedgehog paradigm in medulloblastoma: “In contrast to prior in vitro studies, 

pharmacologic inhibition of notch pathways did not reduce the efficacy of 

medulloblastoma xenotransplantation nor did systemic therapy impact tumor size, 

proliferation, or apoptosis in genetically engineered mouse medulloblastoma models. 

The incidence and pathology of medulloblastomas driven by the SmoA1 transgene was 

unchanged by the bi-allelic absence of Notch1, Notch2, or Hes5 genes.”306 Hatton as 

well as Julian et al. were following the hypothesis that the observed upregulation of 

Notch signalling in medulloblastoma would in cooperation with Hedgehog-Gli 

deregulation cause tumour growth. A possible alternative we would like to propose is 

that the presence of Notch proteins may not be the cause but the result of Hedgehog 

induced medulloblastoma, in order to counteract the deregulated pathway’s activities. If 
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this would be truth, the use of gamma-secretase inhibitors (GSI) and even the loss of 

RBPj would probably not alter the pathology of Hedgehog induced medulloblastoma. If 

Notch upregulation is the result of an intrinsic molecular mechanism aimed to 

antagonize deregulated Hedgehog-Gli signalling, it would be interesting to analyse the 

opposite, activating Notch in order to antagonize hyperactive Gli1 signalling in 

medulloblastoma. On the one side it has been shown that Notch is upregulated in 

medulloblastoma, without playing a role in tumour initiation307,308, while on the other 

side there are still evidences for overactivity of the Notch pathway in such 

developmental deregulated pathologies309-313. 

Growing numbers of identified Notch and Hedgehog/Gli coexpression patterns in 

various types of cancers may indicate a link between pathway coordination and tumour 

transformation. Notch deregulation can cause beside many other diseases 

gastrointestinal neuroendocrine carcinomas in which Gli1 was shown to be 

significantely upregulated and important for tumour growth.314 We did find upregulated 

Gli1 protein expression in various human T-cell acute lymphoblastic leukaemia cell 

lines (unpublished) as well as in our murine 232T cell line that constitutively 

overexpress the active intracellular domain of Notch3. Although abnormal pathway 

activities could have been caused or selected during the process of cell line 

establishment, the in vivo data from mentioned pathologies argue for a close 

relationship in stem- or progenitor cells as well as cancer. As there is no proof for direct 

Hedgehog-Notch pathway transactivation most probably other cell intrinsic 

mechanisms, controlling Gli1 and NICD protein expression, longevity and turnover may 

be involved. The highly complex situation of cooperative Notch and Hedgehog 

signalling in developmental processes and cancer awaits further investigation. “Recent 

findings have shown that Notch signaling is dysregulated and contributes to the 

malignant potential of […] tumors. Growing evidence point towards an important role 

for cancer stem cells in the initiation and maintenance of glioma and 

medulloblastoma.”315 In agreement with this a recent publication of Dave et al. 

concedes that “…the undoubted interaction observed at the developmental and stem 

cell level between Hedgehog and Notch signalling is reflected in part by an apparent 

RBPj dependent regulation by Hedgehog signalling of some, but not all, Notch effectors 

in the VZ.”316 The involvement of RBPj in Notch Hedgehog cross talk still remains 

controversial and is probably depending on the cells specific developmental stage. The 

fact that loss of RBPj dependent Notch signalling is decreasing the pool of symmetric 

dividing stem-like progenitors of the neocortex316, is in line with many other data, 

highlighting the importance of Notch in progenitor maintenance and inhibition of 

immature differentiation291-293. 
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Because Hedgehog is known to regulate proliferation through cell cycle control, 

expansion of the radial glial cell compartment316 could be caused by simultaneous 

activity of both pathways. Our observations indicate a role for RBPjκ in Patched1 

expression in a cellular context were MAML1 is present but Notch is not cleaved. It 

needs to be confirmed that antagonism on transcription outcome induced by Notch 

activation also involves Patched promoter bound cofactors. MAML1 could stabilize 

RBPjκ binding to the upstream RBPjκ-Gli1 enhancer element of murine Patched1 

promoter while exogenous supply of MAML1 and RBPj did lead to Gli1 binding to the 

enhancer element as well as increased transactivation strength in luciferase assays. 

Interpreting our in vitro data, knock-out experiments for RBPj might therefore not only 

have inhibited canonical Notch signalling but could have affected Hedgehog target 

gene activation through the lack of direct promoter binding effects like seen for 

Patched1, as well as indirectly deregulating the delicate balance of MAML1 in between 

cleaved Notch and activated Gli1.  
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IV.II Molecular concept of a Notch-Hedgehog antagonism 

IV.II.I New roles for the coactivator MAML1  

 

Mastermind-like 1 is known to be a transcriptional coactivator in the Notch pathway, 

however, several reports are disclosing novel roles for MAML1, independent of 

canonical Notch signalling. MAML1 was shown to coprecipitate together with the 

tumour suppressor p53 on chromatin of p53 targets, positively affecting transcriptional 

activity in a Notch independent manner.317 Similar agonistic effect of MAML1 on Notch 

independent transactivation was demonstrated for the runt-related transcription factor 2 

(Runx2), essential for osteoblastic differentiation as well as chondrocyte proliferation 

and maturation.318 The ability of MAML1 to bind and recruit histone acetyl transferase 

p300 as well as cyclin dependent kinase CDK8 into transcription complexes, renders 

Mastermind-like1 a potent coactivator, regulating posttranslational modification events 

like acetylation and phosphorylation of juxtaposed binding partners.111,114,115,188,319 

Data from various published work in independent biological contexts, as well as the 

research done in Screpanti’s laboratory are merging together, highlighting an overall 

concept of coordinated and cross talking Notch and Hedgehog signalling. Patched 

deletion in embryonic mesenchymes of the developing intestine can mimic a Notch 

hyperactive phenotype259, while Notch activation can antagonize Hh signalling by 

expression of Hes1 blocking Gli1320. Interestingly, one month ago, Kang et al. have 

published data from a MAML1 knockdown in human melanoma cells indicating a role 

for MAML1 in cellular senescence of cancer cells. Making the case that “targeting 

MAML1 [might] regulate the Notch, Wnt, and Hedgehog signalling pathways 

simultaneously”, the authors transplanted lentiviral shMaml1 infected cells into 

syngeneic mice in order to demonstrate decreased tumour growth compared to control 

mice. They propose this approach as “a novel anticancer strategy by inhibiting cell 

proliferation and promoting differentiation and irreversible senescence”. 321 Also Saint 

Just Ribeiro and Wallberg suggest that due to the “function of MAML1 as a coactivator 

for diverse activators, and MAML1 interaction with broadly used coactivators, […] 

MAML1 might be a key molecule that connects various signaling pathways to regulate 

cellular processes in normal cells and in human disease.”322  

 

To our knowledge we report here for the first time a direct coactivator role of MAML1 in 

Gli1-induced target gene transactivation. The described effect of MAML1 must differ 

from its role in canonical Notch signalling, as the used M31T and preT cell lines did not 

show evidence for active Notch signalling in western blot analysis of cleaved NICD and 
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qPCR of target gene transcripts. In fact does the agonistic role of MAML1 on Gli1 

transactivation only come to full potential in the absence of active Notch. As soon as 

the intracellular domain of Notch3 was coexpressed, even to low doses, the effect of 

MAML1 in the Hedgehog pathway was antagonized, rendering the case of activated 

Notch signalling not to be independent but essential to be absent. 

 

During the elaboration of this work, an independent research group discovered a 

similar cofactor role for MAML1 in Hedgehog signalling, strongly sustaining our results 

and highlighting the undoubted importance of limited amount of Mastermind in 

orchestrating developmental primed intracellular equilibrium between Notch and 

Hedgehog pathway activities. In a seminal experimental setting Kalderon and Vied 

declared Mastermind to be a crucial stem cell (SC) factor, specifically enhancing 

Hedgehog signalling in Drosophila ovary SCs. They identified Mastermind (Mam) as a 

dose-dependent modifier in a genetic screening for dominant suppressors of the 

Hedgehog-induced overproliferation of follicle stem cells (FSCs). Increased Hedgehog 

signalling, induced by Patched mutation, was leading to duplication and enhanced 

longevity of FSCs while loss of Mam entirely prevented the progressive, cell 

autonomous duplication. Reduced levels of Mam like in heterozygotes of Drosophila 

FSC mam+/- mutants failed to sustain Hh-induced FSC duplication, which highlights the 

importance of regulated Mastermind expression levels. In this cellular context 

Mastermind was shown to be essential for FSC maintenance and Hedgehog driven 

duplication while Notch-signalling was not required at that developmental time window, 

proved by Notch knockout mutants. Interestingly overactivated Notch signalling was 

impairing FSC maintenance that reflects the antagonistic behaviour in which 

Mastermind/MAML1 can serve as a coactivator in both pathways.323 In fact the 

presence of overexpressed N3IC in 232T cells could have antagonized endogenous 

Gli1-MAML1 interaction, explaining poor yields in co-immunoprecipitation in our 

experiments (fig. 24b). We propose Mastermind to be responsible for intracellular 

balance between the Notch and the Hedgehog pathway, in order to orchestrate 

simultaneous activities in stem-like, non differentiating amplification. 
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IV.II.II MAML1 is quenched by the NotchICD-CSL interface 

 

Final transcriptional outcome of the Notch-Hedgehog antagonism is most probably 

depending on many different factors, evolutionary balanced and timely and spatially 

coordinated during development. Pathway activation, nuclear translocation and 

quantitative availability of Gli1 or NICD proteins, as well as the expression level of 

MAML1 and the presence of additional cofactors and posttranslational modifications 

will decide about strength of complex stabilization and the respective binding affinity of 

Notch or Gli1 to Mastermind-like 1. Notch3ICD overexpression does not alter the 

expression of Gli1 protein (fig. 25b) but reduces its binding affinity to MAML1 (fig. 25a 

and 26). This quenching effect could explain decreased transcriptional activity of Gli1 

like seen in our transactivation studies in a Notch3IC dose dependent manner (fig.14 

and 15). While MAML1 cotransfection exceeds an agonistic effect on Gli1 induced 

transactivation we have demonstrated that supply of the constitutively active 

intracellular domain of Notch3 could counteract this hyperactivation. 

 

The function of RBPj to bind DNA is essential to recruit NICD onto specific promoter 

sites in Notch dependent target genes. RBPj is non-covalently juxtaposing MAML1 to 

NICD in the inert ternary Notch activator complex.189 Therefore also the availability of 

and binding affinity to RBPj are most probably playing a role in regulating a common 

multi-pathway usage of MAML1. Further investigation on this aspect of antagonistic 

and stochiometric molecular behaviour is needed. As the overexpression of Notch did 

counteract the essential cofactor role of MAML1 in Hedgehog induced stem cell 

maintenance, like observed by Kalderon and Vied324, it would be interesting to know 

more about the molecular mechanism underlying this antagonistic effect. We have tried 

to extend our research by the use of immunofluorescence microscopy but failed to 

identify different subcellular localization of Gli1 when overexpressing MAML1 (compare 

S2 a and b). The nuclear import of Gli1 must depend on other mechanisms like 

phosphorylation events and interaction with Fused (Fu), the suppressor of Fused 

(SuFu) or additional cofactors like i.e. the protein Zic1.325,326 The first two zinc fingers of 

Gli1 are suggested to act as a protein-protein interaction site.257 Whether MAML1 is 

provoking posttranslational modifications on Gli1, for example by the recruitment of 

p300 and CDK8, or might be involved in reinforcing chromatin binding of Gli1 to the 

specific zinc-finger binding sites, has still to be shown.  
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IV.II.III Gli1 and MAML1 induced degradation of N3IC 

 

In contrast to the antagonistic effect of N3IC on Gli1-MAML1 interaction, Gli1 

overexpression does not significantly alter the with MAML1 coprecipitated amount of 

intracellular Notch3 protein. However, Gli1 does show similar antagonistic effects on 

N3IC target gene transactivation. Dose dependent decreased expression of N3IC with 

increased Gli1 in the presence of MAML1, detected in whole cell lysates, and finally 

increased N3IC ubiquitination were an indication that Gli1 might sustain 

MAML1-induced N3IC degradation. We could exclude that differences in protein 

expression would have resulted from altered transcription of protein expression 

plasmids, as their CMV2-promoters were constitutively active and RNA levels of N3IC 

did not change significantly after coexpression of MAML1 or Gli1 (data not shown). 

MAML1 was published to be important for turnover of the intracellular domain of 

Notch1. We gained similar results and dose dependent decreased protein levels of 

Notch3IC when increasing the amount of coexpressed MAML1 in vitro. In various 

studies on different gene expression mechanisms as well as on protein stability, 

including the intracellular domain of Notch, a phosphorylation-ubiquitination cascade 

was shown to initiate degradation. Genetic expression is believed to be terminated by 

proteasomal degradation of respective transcription factors, involving a series of 

important posttranslational modifications that culminate in protein disassembly. Kinases 

phosphorylate specific amino acid side chains and by doing so create recognition sites 

for further binding of ubiquitin ligases that attach ubiquitin chains to lysine residues. 

Transcriptional activator complex disassembly is initiated and ubiquitin modified factors 

are targeted for proteasomal degradation. Controlled turnover of transcription factors is 

necessary to render genetic transactivation sensitive to quantitative and time 

dependent signal transduction. MAML is absolutely essential for Notch induced 

transactivation276 but many recent publications are indicating a step by step process in 

which Notch pathway activation leads to nuclear import of NICD, derepression of RBPj 

bound target gene promoters327,328, ternary activator complex formation110,329 and 

stabilization through recruitment of p300 and additional cofactors330, as well as 

sequential phosphorylation115,331, complex destabilization332,333 and final NICD 

ubiquitination and degradation96. Before being targeted to the proteasome, the 

intracellular domain of Notch needs to be phosphorylated at specific serines or 

threonines. Multistep phosphorylation was shown to be initiated when MAML1 is 

recruited into the transcriptional activator complex of N1IC and RBPj. MAML1 recruits 

specific kinases like CK2, NLK or CDK8 in order to phosphorylate NICD, creating a 

phosphomotif important for target recognition and binding by E3 ubiquitin ligases.115,331-
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333 Different classes of phosphorylating kinases and ubiquitin transferases with specific 

recognition sites have been identified, rendering a generalization of protein turnover 

initiating processes complex. Two E3 ligases have been proposed to be important for 

Notch receptor degradation: Deltex/Itch and the F-box and seven WD40 domain 

containing protein Fb(x)w7 (SEL-10, Cdc4 or Ago). Itch can interact with the membrane 

anchored form of Notch and posseses itself a C2 phospholipid binding domain, 

believed to be important in targeting respective protein to the plasma membrane. Fbw7 

instead is found inside the nucleus and colocalizes with the intracellular domain of 

Notch.182 Yet we don’t know how Gli1 may affect phosphorylation and ubiquitination of 

the intracellular domain of Notch3 in detail. N3IC does not provide a binding site for 

Gli1 and we failed to see direct protein-protein interaction (data not shown). As the 

presence of MAML1 seems to be essential in this regulatory mechanism, Gli1 may 

reinforce MAML1 induced phosphorylation or ubiquitination processes on NICD by 

modifying directly the MAML1 protein or its interaction with recruited cofactors. 

In order to start analysing a possible degradative relationship between Gli1 and N3IC, 

we were focusing on the E3 ubiquitin ligase Fbw7 that was shown to follow Cdk8 and 

GSK3β induced phosphorylation, colocalize to NICD inside nuclear spots, physically 

interact and trigger NICD ubiquitination and proteasomal degradation.181,182,334-340 Fbw7 

does specifically fine tune Notch signalling during T-cell development and functions as 

a tumour suppressor counteracting Notch induced leukaemia.341-343 Taken together the 

published knowledge of Fbw7 induced degradation, yet only partially confirmed for 

Notch turnover, the overall picture can be summarized as followed: Starting at Notch 

induced transactivation, formation of the ternary NICD-RBPjκ-MAML complex is at the 

same time essential for target gene transactivation as well as the first step of 

programmed NICD turnover. MAML1 has been shown to recruit CDK8 into the complex 

where specific CDK8 induced phosphorylation is thought to initiate a second 

phosphorylation step on threonine or serine residues in close vicinity. Initial 

phosphorylation at a +4 position in the amino acid sequence of Fbw7 binding motifs of 

targeted proteins is followed by GSK3β induced phosphorylation at position 0. 

Comparison of amino acid sequences of experimentally proved targets of Fbw7 let us 

define a recognition motif that we used to screen for localization of conserved putative 

Fbw7 binding sites inside the intracellular domain of Notch paralogues. A part from the 

known Fbw7 degron in the very C-terminal PEST domain of all Notch family members, 

our motif search with the ExPASy server Prosite was evidencing a second putative 

binding site (fig. 32, blue marks) in mammalian NotchICDs 1-3. 
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figure 32: NICD structure analysis: Using the ExPASy PROSITE server two conserved putative Fbw7 

binding sites with the motif [LP]-[ST]-P-x(2)-[EST] were identified in the intracellular domains of Notch1 

and Notch3. JalView order from top to bottom: Notch1 human, rat, mouse, zebrafish, frog; Notch3 frog, 

zebrafish, mouse, rat, human. The C-terminal motif is localized inside the PEST domain. A second 

upstream motif can be found infront of the TAD domain, juxtaposed to a specific partially conserved lysine 

cluster. N1IC stabilizing serine-arginine mutations115 are indicated (*). 

 

C-terminal to the ankyrin repeats (ANK), through which MAML1 interacts with NICD 

during the ternary activator complex, there is an about hundred amino acid long region 

with multiple regulative features that, together with the transactivation domain (TAD), 

initiate the most diverse part of proteins of the Notch family. The EP-domain, binding 

site for p300, has a positive role in Notch1 induced transactivation while it represses 

Notch3 activity.344 The histone acetyl transferase protein p300 did lead to acetylation of 

specific lysine residues in Notch1, possibly antagonizing ubiquitination and increasing 

the overall Notch1ICD protein stability while our lab could demonstrate that Notch3ICD 

resulted more stable when deacetylated by the histone deacetylase HDAC1. 

Juxtaposed lysine residues are in part but not completely conserved between Notch1 

and Notch3 which may provide the different family members with distinct residues for 

acetylation or ubiquitination. The serine/threonine rich region (STR) as well as the 

identified putative Fbw7 motif in front of the transactivation domain are most probably 

targeted by phosphorylation events. Specific serine to alanine point mutations near and 

inside the putative Fbw7 binding site (fig. 32, *) did result in decreased NICD 

degradation which could argue for a E3 ubiquitin ligase to bind in this region.115 The 
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Nemo-like kinase (NLK) was shown to suppress “Notch signalling by interfering with 

formation of the Notch active transcriptional complex”345. Ishitani et al. describe the 

importance of phosphorylated serine-proline sites (SP) in the STR and TAD region, for 

Notch1ICD degradation. While analysing decreased transactivation strength of Notch1 

in the presence of NLK, they show a significant increase of transcriptional activity for 

Notch3ICD but don’t go into further detail regarding the third paralogue of the Notch 

family.345 MAML1 is together with Gli1 able to alter N3IC ubiquitination in a specific 

manner. While the intracellular domain of Notch1 was shown to be poly-ubiquitinated, 

our results of in vitro ubiquitination are proposing multi-ubiquitination for N3IC, 

sustaining results of similar investigations and the hypothesis of independent non-

redundant regulatory mechanisms of the NICD.121 Together with the decreased protein 

expression, the 120 kDa isoform of N3IC could indicate a specific ubiquitin-modification 

important for further proteasomal degradation. The identified putative Fbw7 binding site 

depicted in figure 32 is highly conserved through various species of the animal 

kingdom and its specific localization inside this important and at the same time non-

redundant part of the intracellular domain of Notch may indicate the involvement of 

different regulatory mechanisms between the Notch family members, responsible for 

termination of transcriptional activity, Fbw7 binding and final protein degradation. 

Timely dependent upregulation of Notch3 and Gli1 during monoclonal amplification, 

could indicate a Notch3 specific cross talk through MAML1 and Gli1, possibly 

uncoupling other Notch family members for independent cellular regulatory processes.  
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IV.III Outlook - finding the right balance 

 

Our hypothesis of a role for MAML1 in between the Notch and Hedgehog pathway 

during T-cell development, is in line with the observations of pathway antagonisms in 

different cell types at similar non-differentiating amplification events, short before 

developmental lineage decisions. We propose Mastermind to play a decisive role in 

putting Notch and Hedgehog pathway signalling on the scales in order to establish an 

intracellular equilibrium in which increased Notch or Hedgehog signalling would 

through co-usage of MAML1 lower the opposite’s pathway activity. A major problem 

remains the choice of an adequate system to demonstrate MAML1 protein switching 

from Gli1 to NICD. Different cell lines with active or inactive pathways would involve 

also different cellular backgrounds that could have influence on protein expression 

levels or posttranslational modifications rendering comparative protein-protein 

interactions difficult. We tried to activate or inhibit in vitro Hedgehog signalling by 

specific drugs in order to detect altered Notch signalling. Unfortunately the effect of the 

Smoothened agonist SAG as well as the natural occurring chemical compound 

cyclopamine did show low efficacies in Hedgehog pathway activation or repression in 

our thymocyte and leukemia cell lines. T-cells do not have a primary cilium, the 

membrane structure which functions as a sensory organelle in many eukaryotic cells, 

and which is believed to be important for Smoothened, localization and activity after 

canonical activation of the Hedgehog signalling cascade346-353. It has been shown that 

intraflagellar transport (IFT) associated proteins, essential for ciliary assembly localize 

to the microtubule organizing centre (MTOC) and the Golgi and that they are important 

for T-cell receptor (TCR)/CD3 signalling. The lack of a primary cilium and its important 

membrane structure could have been in part substituted by the presence of the 

immune synapse in thymocytes.354,355 However it still has to be shown whether or not 

Smoothened is localized to the immune synapse after derepression by Patched. 

Differences in cellular organizing structures and signalling processes in T-cell lines 

could explain low efficacies of pharmaceutical drugs raised against Smoothened 

activity of other cell lines. Interestingly the important role of Hedgehog signalling in 

immature thymocytes seems to disappear after preTCR signalling.249 Simultaneous 

T-cell receptor constitution at the immune synapse and Smoothened downregulation at 

the DN3 stage of developing thymocytes is indicating an important switch in pathway 

reactivity and awaits to be linked to shared spatial features in the T-cell membrane.356 

Also interference of Smoothened by siRNA turned out to be difficult in our T-cell model. 

PreT or 232T cells, like many other thymocyte cell lines, demonstrated low transfection 

efficiencies, even by the use of electroporation methods. In addition, high levels of Gli1 
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in 232T or other leukemic cell lines do not necessarily result from canonical Hedgehog 

pathway activation. As we presume an intracellular balance between Notch and 

Hegdehog, the constitutively overexpressed N3IC in 232T cells could have caused 

intrinsic upregulation of Gli1 during cell line establishment, in order to antagonize the 

hyperactive Notch pathway. So far, main research in this field was done in vivo, using 

genetic knock-in or knock-out methods for the sake of a general physiological 

understanding of the roles of NOTCH and HEDGEHOG. Our results and proposed 

molecular mechanisms can hopefully not only complement in vivo data but also 

highlight developing thymocytes to be a good model for studying the underlying 

molecular crosstalk, due to simultaneous requirement of both pathways at a defined 

developmental stage. Our further investigations will focus on quantitative analysis of 

MAML1 expression that, following our model, defines the threshold in converging 

pathway’s activities. The Mastermind (-like) protein is expressed early in development 

but a transcriptional activator has not yet been identified.109,357 As both signalling 

cascades rely on extracellular cues in order to activate intracellular mechanisms and 

transcriptional events, research has started and will focus more and more on in depth 

analysis of complex regulatory mechanisms in various cell types and tissues, highly 

defined in spatial and temporal coordinates. The presence of multiple Notch receptors 

and ligands, the Gli paralogues as well as different members of the Mastermind-like 

families in mammals increase complexity and will have to be included in follow up 

experiments on cross talking pathways.  
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V Summary 

 

As representatives of highly conserved key signalling pathways, the NOTCH and 

HEDGEHOG genes are involved in regulation of proliferation and cell cycle progression 

as well as differentiation and apoptosis in a multitude of organs and tissues. Both 

molecular mechanisms rely on extracellular ligand-receptor interaction, provoking 

further intracellular messenger processing and signal transduction, and culminate in 

transcription factor induced target gene transactivation. Their essential and specific 

roles in temporal and spatial defined developmental progression become evident when 

inter- and intracellular communication is deregulated. Genetic and epigenetic caused 

signalling defects have been identified in various types of cancers. In order to unravel 

coordination of molecular mechanism it is essential to understand the underlying 

signalling processes in detail. The Hedgehog pathway is getting activated by ligand 

binding to the transmembrane receptor Patched that derepresses Smoothened. 

Sequential induction of phosphorylation dependent processing and activation of Gli 

transcription factors enables their nuclear translocation and activation of specific 

Hedgehog pathway related target genes. Canonical Notch signalling is in contrast 

activated by Jagged or Delta-like ligands that provoke shedding of the Notch 

intracellular domain (NICD), its translocation into the nucleus and transcription activator 

complex formation together with essential cofactors like the DNA binding protein RBPj 

and Mastermind-like (MAML). The ability to recruit potent kinases and histone acetyl 

transferases or deacetylases into transcriptional complexes does not only assign 

Mastermind-like 1 an essential role in canonical Notch signalling but also implements 

MAML1 as a potent cofactor in Notch independent developmental processes, including 

amongst others signalling of the tumour suppressor p53. 

Interestingly, evidences from independent research have emerged, pointing towards a 

direct regulatory relationship between the two signalling pathways, so far mostly 

considered to work parallel and independent from each other. Simultaneous protein 

expression patterns and transcription factor activation of both the Notch and the 

Hedgehog pathway have been described in embryonic stem cells as well as in lineage 

specifying processes like i.a. in the developing brain or during maturation of the 

haematopeietic system. In fact deregulated Hedgehog signalling in the cerebellum can 

cause medulloblastoma and Notch activity has been shown to be affected through yet 

unidentified mechanisms. On the contrary, preliminary data of our laboratory are 

indicating the Hedgehog pathway to be deregulated in Notch-induced T-cell leukaemia. 

The Hedgehog-Gli signal transduction cascade is essential for intrathymic T-cell 
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development until the checkpoint of preTCR signalling while Notch3 is playing an 

important role in initiation of preTCR signalling at the CD4- and CD8- double negative 

DN3 stage of developing thymocytes. Overlapping expression patterns of Gli1 and 

Notch3 proteins, as well as their rising importance in proliferation and maintenance of 

undifferentiated stem or progenitor cells led us focus especially on cross regulation of 

respective transcription factors. We were able to demonstrate a Notch independent 

cofactor role for MAML1 in Gli1 induced transcriptional activity when overexpressed in 

vitro in two different T-cell lines. However, addition of the intracellular domain of Notch3 

(N3IC) did abolish the coactivator effect of MAML1 on Gli1 induced transactivation in a 

dose dependent manner. Also Notch transactivation, together with the essential 

cofactors RBPJ and MAML1 was antagonized by Gli1 expression, indicating a 

co-usage of the MAML1 protein. Its differential nuclear expression in M31T and preT 

cells as well as dose dependent antagonism seen in transactivation of Notch and 

Hedgehog target genes may argue for stoichiometric competition of both transcription 

factors N3IC and Gli1 for MAML1 and the need for increased expression levels at the 

DN3-like stage of developing thymocytes, where under normal conditions both 

pathways are active and essential for preTCR signal induction. Chromatin 

immunoprecipitation may further sustain a role of MAML1 in Gli1 induced 

transactivation as overexpression of MAML1 in preT cells led to Gli1 protein binding to 

an enhancer element of the endogenous target gene Patched1. We can draw 

conclusion that complex stability and availability of the pivotal MAML1 protein can 

regulate interpathway gene expression in vitro and may have influence on the 

developmental outcome in vivo. Microenvironmental primed pathway activation and the 

sequential co-usage of MAML1, would define a model of intrinsic equilibrium between 

Notch and Hedgehog with decisive importance on cellular response in terms of 

differentiation, proliferation and apoptosis. Our finding should be especially considered 

for Notch and Hedgehog dependent developmental processes and could be important 

for upcoming cancer treatments that combine pharmaceutical drugs against the Notch 

and the Hedgehog pathway. 

. 
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figure S1: RNA expression in T-cell lines: RNA extractions of M31T, preT and 232T cells were 

subjected to RT-PCR and sequential comparative qPCR in order to determine Notch and Hedgehog 

pathway activity inside the respective T-cell lines. 
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a.

Hek 293T transfected with: Gli1
IF staining: Gli1: red, nucleus: blue

b.

Hek 293T transfected with: Gli1 + MAML1
IF staining: Gli1: red, nucleus: blue

microscope:
Axio Observer.Z1
objective:
EC Plan-Neofluar
40x/0.75 M27

microscope:
Axio Observer.Z1
objective:
EC Plan-Neofluar
40x/0.75 M27

 
 

figure S2: Immunofluorescence microscopy: Gli1-proteins (red) overexpressed in Hek293T cells 

without (a.) or with MAML1 cotransfected (b.). In order to analyse the agonistic effect of MAML1 

coexpression on Gli1 induced transcriptional activity, immunofluorescence microscopy was used to detect 

altered intracellular localization of Gli1. After coexpression of MAML1, Gli1 remained mostly perinuclear.  
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a.

Hek 293T transfected with: MAML1
IF staining: MAML1: green, nucleus: blue

b.

Hek 293T transfected with: MAML1 + Gli1
IF staining: MAML1: green, nucleus: blue

microscope:
Axio Observer.Z1
objective:
EC Plan-Neofluar
40x/0.75 M27

microscope:
Axio Observer.Z1
objective:
EC Plan-Neofluar
40x/0.75 M27

 

 

figure S3: Immunofluorescence microscopy: MAML1-proteins (green) overexpressed in Hek293T cells 

without (a.) or with Gli1 cotransfected (b.). As localization of MAML1 to nuclear spots is believed to be 

essential for its cofactor role, implying transcriptional activity and turnover of the intracellular domain of 

Notch, immunofluorescence microscopy was used to detect possible altered localization of MAML1 in the 

presence of Gli1. After coexpression of Gli1, speckled MAML1 localization appears less pronounced but 

remains nuclear. 
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VI.II List of abbreviations 

 

ANK  Ankyrin repeats 

Bp  Base pair 

CBF-1  C-promoter binding factor-1 

CD4  T-helper cells (cluster of differentiation 4) 

CD8  T-killer cells (cluster of differentiation 8) 

ChIP  Chromatin immunoprecipitation 

CLP  Common lymphoid progenitor 

CSCs  Cancer stem cells 

CSL  CBF-1, Su(H), Lag-1 

DMEM  Dulbecco/Vogt modified Eagle's minimal essential medium 

DN  Double negative T-cells (CD4- and CD8-) 

DP  Double positive T-cells (CD4+ and CD8+) 

EGF-like Epidermal growth factor like 

ETP  Early T-cell progenitor 

FACS  Fluorescence-activated cell sorting 

FBS  Fetal bovine serum 

FSCs  Follical stem cells 

Fig.  Figure 

Gli12x  Luciferase responsive element driven by 12 Gli consensus binding sites 

GSI  Gamma secretase imhibitor 

HAT  Histone acetyltransferase 

HDAC  Histone deacetylase 

Hek  Human embryonic kidney cells 

Hh  Hedgehog 

HSC  Haematopoietic stem cell 

IF  Immunofluorescence 

IgG  Immunoglobulin G 

IP  (Co-) immunoprecipitation 

JAK  Janus kinase 

LMPP  Lymphoid primed multipotent progenitor 

Luc  luciferase 

MAML1 Mastermind-like 1 protein 

MAPK  Mitogen-activated protein kinase 

MPP  Multipotent progenitor 

MUT  Mutated 
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NICD  Notch intracellular domain 

NLS  Nulcear localization sequence 

PEST  Proline (P), Glutamic acid (E), Serine (S) and Threonine (T) rich region 

PKA  Protein kinase A 

PTα  pre T-cell receptor alpha 

Ptch  Patched1 

RAG  Recombination activation gene 

RAM  RBP associated molecule 

RAS  ‘Rat sarcoma’ small GTPase protein superfamily 

RBPJ(κ) Recombining binding protein suppressor of hairless 

RPMI  Roswell Park Memorial Institute medium 

RT  Room temperature 

RT-PCR Reverse transcriptase polymerase chain reaction 

SCs  Stem cells 

SDS PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

Smo  Smoothened 

SP  Single positive T-cells (CD4+ or CD8+) 

Su(H)  Suppressor of Hairless 

TAD  Transactivation domain 

TGF  Transforming growth factor 

TSP  Thymus-settling progenitor 

STAT  Signal transducer and activator of transcription 

WCL  Whole cell lysate 

WNT  Gene / Signalling pathway 

WT  Wild type 
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