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Introduction

Game theory is a mathematical theory that studies models of conflict and cooperation between
intelligent and rational decision-makers. Specifically it deals with all real-life situations in which
rational people interact each-other, that is when an individual’s single strategy depends on what
other individuals choose to do. In this sense it should not be suprising that economics is the field in
which game theorists develop their main ideas: the narrowness of economic world resources and the
conflicts between countries to get them both create all the necessary ingredients for a game situation.
In literature game theory’s birth coincides with the book Theory of Games and Economic Behavior
published in 1944 by the mathematician John Von Neumann and the economist Oskar Morgenstern
(see [123]).

In game theory there is a classical distinction between non-cooperative games and cooperative
games. In a non-cooperative game, player’s agreements either do not occur or are not binding, even
if pre-play communication between players is possible. In contrast, in cooperative game theory,
player’s commitments are binding and enforceable. In non-cooperative game theory the focus is
mainly on individual behavior while in cooperative game the emphasis is on the group of coalitions
of players and on how to divide the gains among coalitions.

This thesis deals both with non-cooperative and cooperative games in order to apply the math-
ematical theory to competitive dynamics arising from economics, particularly quantity competition
in oligopolies and pollution reduction models in TEA (International Environmental Agreements).
In Chapter 3 a new model of game is defined: the Bayesian multicriteria game. In our opinion

this class of game is a very useful tool to model economic situations as Cournot duopoly game in
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which firms produce two different goods and a firm may have different production costs according
to a given probability distribution. The new idea is to think that a firm can produce two (or more)
kind of products. For example firms produce two types of mineral water: without bubbles and with
bubbles or we can consider the diamond market which is tipically divided in two lines of produc-
tion: one covering the luxury market and the other for an industrial use. This leads to optimize the
different profits at the same time. On the other side it is naturally imagine that each firm profit
can be affected by uncertainty: for example, the cost could be different depending on the used
technology. We extend the definition of Bayesian game when the players have many objectives to
optimize as defined by Shapley in [102] and investigate the existence of strong and weak Bayesian
Pareto equilibria ([30] and [3I]). In the special case of potential games ([74]) it is extended the
result obtained in [94] to Bayesian multicriteria game. In general it is used a scalarization approach
to obtain an existence theorem for weak and strong Bayesian Pareto equilibria (wBPE and sBPE
for short, respectively). The existence of approximate equilibria for Bayesian games (see ([73]) is

also discussed in the multicriteria case.

There is a field of game theory literature which deals with environmental issues, in particular a
big number of contributions have been published on pollution reduction models in recent years, see
for example [1I, [2], [201, [29], [42], [46], [59], [T0], [85], [116] and [127]. The typical issues analyzed
in this literature are the incentive schemes of countries which sign a treaty and the stabilization
of International Environmental Agreements. There are two main lines of thought. The first line
of research, exemplified by [9], [I0], [IT], [22], [23], [35] and [45], sees the problem of designing (or
signing) an TEA from the perspective of coalitions stability, a concept that has its root in the cartel
problem in industrial organization literature. The stability of an IEA is ensured by two tests: the
entry test that intends to see whether it is in interest of an already formed group of signatories to
enlarge the IEA with new members; the exit test that intends to check whether it is in the interest
of a player to remain in the coalition. The general message carried out in this literature is that

only a small number of countries will end up signing an IEA, i.e. only a small stable coalition
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can emerge. This approach is also known as the small coalition approach. The second line of
thought adopts cooperative game theory as the analytical framework. The allocation problem is
solved following a two-step methodology. First, one computes the Pareto-optimal emission levels
and second, one uses a solution concept based on cooperative game theory (Core, Shapley value,
etc) to allocate each player his share of the total optimized cooperative payoff. The remaining issue
is to find the right allocation function that guarantees the stability of the formed solution in the
core sense. Contrary to the first approach, here the stability of the coalition is passive in the sense
that the number of partecipating countries is exogenous. In other words, this approach supposes
the existence of a large number of countries that are predisposed to sign the agreement, from which
the naming grand coalition approach originates. (See for example [26], [27], [28], [41], [44], [51],
[52], [65] and [96]).

Chapter 4 is devoted to illustrate a pollution-reduction model. In this chapter an application of
Bayesian game is shown in the field of environmental economics. Specifically we apply the model of
Bayesian oligopoly games to an environmental game where countries choose their optimal emissions
strategy maximizing their own profits, having to take into account that their aggregate emissions
amount to an environmental cost suffered by all of them. Here the type structure, which is about
marginal gains and production function, is finite and partially ordered. Under some hypothesis
the Bayesian game has a potential function and, in this way, it is simple to compute optimal pure
strategies in classical examples: in this chapter we deal with three different models, whose respective
payoffs were endowed with linear, linear-quadratic and linear-logarithmic cost functions.

The starting points are [5] and [18], which on their turn are related to [52] and [53]. In the above
models, the involved countries aim at maximizing their utility functions by manoeuvring their
emissions strategies, which affect both their revenues and the damage provoked by the polluting
actions. The countries are differentiated based on these two crucial characteristics: marginal gains
and marginal damage, the former expressing competitiveness and intensity of production, the latter
involving the negative impact of the economic activities on the environment. Such double formu-

lation of uncertainty is somewhat similar to the uncertainty in inverse demand functions and cost
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functions analyzed by [39] and [40] in their papers on the existence of Bayesian Cournot equilibria
in duopolies. Differently from their approach, here the focus is on monotonicity with respect to the
partial order of the type spaces rather than on existence and uniqueness of equilibria. In the second
part, the environmental aspect is faced with a cooperative point of view. Chapter 6 proposes a
new perspective on cooperative games, by assuming that the involved players are supposed to face
a common damage. The agents can choose to make an agreement and form a coalition or to defect
and face such damage individually.

When such disadvantage is modeled by a dynamic state variable evolving over time, cooperating and
non-cooperating agents solve different optimization problems, but they all must take into account
such state variable, as if it represented an externality in all their respective value functions. Even
if we just consider the cooperative and static aspects of such a game, the externality has a key role
in the worth of coalitions.

The approach relies on a class of cooperative games including an external effect, such that the
characteristic value function is split in two parts: one of them is standard, the other one is affected
by externality.

It is worth describing this new idea of externality, which basically differs from the previous charac-
terizations in literature. Transferable utility games with positive externalities were defined by [99],
which related such externality to an increase in pay-off for the players in a specific coalition when
the remaining coalitions committed to merging. That is, in presence of a partition of the set of
agents and of multiple coalitions, a group of players may enjoy a positive spillover originating from
a merger of external coalitions rather than from a strategic choice.

On the other hand, the role of externality is played, and its amount is measured, by a different
state variable, not directly depending on the possibly undertaken agreements. Loosely speaking,
externalities arise in the same way as they do in standard dynamic oligopoly models (see [64]).
When we relate this idea to the welfare of a country dealing with an emission reduction strategy, we
stress that the clean share of welfare is always positive, whereas the share including the pollution

effect is negative, then the total welfare must be globally evaluated.
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The tools which allowed us to study economic applications are discussed in the rest of the thesis.
In particular the first part is devoted to non-cooperative games. Chapter 1 shows classical tools of
non-cooperative game theory. More precisely we underline the distinction between finite games and
non-finite games discussing Nash equilibria and approximate Nash equilibria. A section is dedicated
to potential games: in such games, introduced in [83], the incentive of all players to change their
strategy can be expressed using a single global function called the potential function. Section 1.5
deals with Bayesian games. Harsanyi in [58] introduces games with incomplete information. He
proves the existence of Bayesian equilibria for the case when the pure strategy spaces are finite.
Many aspects of Bayesian games have been studied in literature. Some of them regard the existence
of equilibria in these games. Milgrom and Weber in [82] noted that the usual fixed point argument
of Nash in [86] with the standard assumptions is not applicable in proving the existence of Bayesian
equilibrium and hence introduced sufficient conditions for the existence. Balder in [6] and [7]
generalized their result and Radner and Rosenthal in [98] presented sufficient conditions for the
existence of pure strategy Bayesian equilibrium. Kim and Yannelis in [67] provide equilibrium
existence results for Bayesian games with infinitely many agents. Reny in [100] generalizes Athey’s
and McAdams results in [4] and [76] respectively, on the existence of monotone pure strategy
equilibria in Bayesian games. Mallozzi, Pusillo and Tijs in [73] consider situations where one
of the players may have an infinite set of pure strategies, one criterion and a finite number of
types and get an existence theorem of approximate equilibria. As for mixed strategies they are
usually regarded as unappealing because they are not only hard to interpret, but also, considered
as too complex for real players to use. Motivated by this view, game-theorists have provided
several purification theorems that describe when mixed strategies can be replaced by equivalent pure
strategies. Several purification results have been obtained for games with a large number of players,
see for example Cartwright and Wooders in [24] and Carmona in [2I]. As concerns the economics
literature, Bayesian games play a key role: indeed several types of uncertainty are considered,
and their implications on the provision of public goods are discussed. Gradstein in [54] assumes

that consumers are uncertain about the contribution of other individuals. Under this uncertainty,
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the time dynamics of the private provision of public good is derived. Gradstein et al. in [55] re-
examine Warr’s neutrality of the provision of a public good with respect to income distribution
(see [126]) in the context of uncertainty. In the model, uncertainty is about the consumers’ income:
each consumer knows her own endowment, but her information regarding the endowments of other
consumers is incomplete. Keenan et al. in [66] examine the impact of increased uncertainty on the
provision of the public good under a non-Nash response and symmetric equilibrium. Here again,
uncertainty is about the response of other contributors to a contribution to the public good. In
[61] the authors consider a public good economy with differential information regarding consumers
income and preferences. The private information of each consumer is given by her information
partition: that is, a consumer cannot distinguish between different states of nature that belong to
the same element in her information partition. In [62] the authors apply the concept of information
advantage in [38] to a model of a public good economy introduced in [61]: they consider a public
good economy where the consumers’ state-dependent utilities have a multiplicative structure. Also
as regards Cournot oligopoly in [38] authors study the value of information: in an oligopoly where
the market demand and the linear cost are uncertain, a firm with superior information obtains higher
expected profits than a firm whose information is inferior. Einy et al. in [38] also present an example
of a Cournot duopoly with quadratic costs where superior information is disadvantageous. Also in
[32] and in [68] the authors show that in equilibrium a less informed firm earns higher expected
profits than a more informed firm. Finally, the last section of Chapter 1 is devoted to supermodular
games introduced by Topkis in [109] and very useful to describe, for example, oligopoly situations.

Chapters 2 deals with multicriteria games. In recent years, many authors have studied the game
problem with vector payoffs, for example, see [3] and [14]. Although many concepts have been
suggested to solve multicriteria games, the notion of Pareto equilibrium, introduced by Shapley in
[102], is the most studied concept in game theory. In [125], Voorneveld et al. introduced the new
concept of ideal Nash equilibrium for finite multicriteria games which has the best properties and
Radjef and Fahem in [97] provide an existence theorem for this new solution concept. Patrone,

Pusillo, Tijs in [94] link the concept of multicriteria game with that one of potential game. For



Introduction XV

some applications see for example [31].
Chapter 5, in the second part of thesis, provides the tools of cooperative game theory. In

particular in this chapter TU-games are investigated.
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Part 1

Non Cooperative Approach






Chapter 1

Basic concepts on games and equilibria

The theory of non-cooperative games studies the behavior of agents in any situations where
each agent’s optimal choice may depend on her forecast of the choices of her opponents. In non-

cooperative games the emphasis is mainly on the individual behavior.

1.1 Finite Games

Let us denote with N = {1,...,n} the players’ finite set of cardinality n.

Definition 1.1. A non-cooperative game with o finite number n of players is a tuple G =

(N, X1,...,Xn,u1,...,uy) where Vi € N,
o X, is a non-empty set and represents the pure strategy space of player i;
o u;: X := [[icny Xi = R is the utility function of player i.

If we also assume that Vi € N, X; is a finite set, we say that G is a finite game, and we denote

with I'finite the class of finite games.
Notation 1.1. Take i € N, we denote with (x;,x_;) the element belonging to X such that:
° z; € Xj;

e r_; € ngN\{z} X] =: X_i.
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Definition 1.2. Let G = (N, X1,..., Xn,u1,...,uy) be a non-cooperative game. Player i's strategy

T; € X; dominates strateqy x; € X; if
U; (fi,.%fi) > U (1‘1', l’fi) Vo, € X5, Ve_; € X5, (1.1)

with a strict inequality for at least one x; € X;. A player i's strategy is dominated if there exists al
least another strategy which dominates it.

Player i's strategy x; € X; strictly dominates strateqy x; € X; if
U; (5271'—» > U; (xi, x_i) Vx; € XZ‘, Vo_; € X—i7 (1.2)
The most important solution concept for non-cooperative games are Nash equilibria.

Definition 1.3. Let G = (N, X1,..., Xp,u1,...,uy) be a non-cooperative game.
A n-tuple (T1,...,%n) € X is a Nash Equilibrium (NE for short) [Strong Nash Equilibrium

(sNE for short)] for G if Vi € N we have:
U (fz, 5_2) > [>] U (a:i, f_l) vV, € X;. (13)

We denote with NE(G) [sNE(G)] the set of Nash equilibria [strong Nash equilibria| for G.

We can observe that the condition (1.3)) is equivalent to say that Vi € N we have:

U; (f“ EL‘/,l) Z Sup u; (ﬂfi, CAL‘J,l) . (14)
r;,€X;

Nash equilibria are characterized as fixed points of particular correspondences called best re-
sponse correspondences.
In general given two sets X,Y a correspondence from X to Y is a map associating to each

element of X a subset of Y.
Definition 1.4. Let XY be topological spaces and F: X =Y a correspondence. We say that:

e [ is upper hemicontinuous (u.h.c. for short) in x € X if for any open neighbourhood V of

F(z), there exists a neighbourhood U of x such that F(z') CV Va' € U,
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F is lower hemicontinuous (l.s.c. for short) in x € X if Vy € F(x) and for any open
neighbourhood V' of y in Y, there exists a neighbourhood U of x in X such that F(2')NV # 0

va' e U;

o F' is upper hemicontinuous in X if it is upper hemicontinuous Vo € X;

F is lower hemicontinuous in X if it is lower hemicontinuous Vo € X

F is continuous in x € X if it is upper hemicontinuous and lower hemicontinuous in x € X;
o I is continuous in X if it is upper hemicontinuous and lower hemicontinuous in X.

Recall that, given a correspondence F' : X =2 Y, we say that k € X is a fixed point for F' if
k e F(k).

For further explanations see [69].

Definition 1.5. Let G = (N, X1,..., X, u1,...,uy,) be a non-cooperative game. We define for all

i € N the correspondence R; : X_; = X; where

Ri (E—z) = arg max u; (I'Z‘, 5_1) = {EZ S Xi L Ug (fz,f_z) > U; (l’i,i_i) in € XZ'},

r, €X;
that is the player i's best reply when the other players play T_;.
Let us call

R: X=X

the correspondence such that

R(IL‘) = (Rl (xfl) PRI aRn (x*n)) ) Vo e X.
Then R is said best reply for Nash equilibria of G.
The following theorem links fixed points and Nash equilibria.

Theorem 1.1. Let G = (N, Xy,..., Xy, u1,...,uy) be a non - cooperative game, and T € X a

strategy profile. Then



4 Basic concepts on games and equilibria

e € NE(G) ifft € R(x).
Proof. Tt follows from Definitions [1.3] and O

Now let us consider the following example.

Example 1.1. Let us consider the game G = (N, X1, Xo,u1,u2) € T finite with two players and
payoffs’ matriz given by Tabl in which X1 = Xo = {T, B} are the finite strategy spaces of player
I and II respectively. The utility functions ui,us : X1 X Xo — R of player I and II respectively are

defined in the following way:
(75} (T,T) =2 Ui (T,B) =0 (75} (B,T) =4 (75} (B,B) = 1;
ug (T, T) =2 ug (T,B) =4 ue (B, T) =0 ug (B,B) = 1.

Table 1.1: Prisoner’s dilemma

INIL T B
T 22 04
B 40 11

We have that NE(G) = {(B, B)}.

In the Example we have seen that there exists a unique NE. However the existence and
uniqueness property are not ensured for this kind of solution as the following examples show. In

particular such properties are not ensured for the class I' fpze.

Example 1.2. Let us consider, as in the previous example, the game
G = (N, X1, Xo,u1,u2) €I pinite with two players and payoffs’ matriz given by Tabl

Table 1.2: Matching Pennies

INIT P D
P 1-1 -11
D 11 1-1

Here there are not Nash equilibria.
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Example 1.3. Let us consider, as in the previous example, the game
G = (N, X1, Xo,u1,u2) €I pinite with two players and payoffs’ matriz given by Tabl

Table 1.3: Battle of the sexes

INII T B
T 31 00
B 00 13

We have that NE(G) ={(T,T),(B,B)}.

To get a result that ensures the existence of at least a NE we have to consider the mixed

extensions of finite games.

Definition 1.6. Take G = (N, X1,..., Xp,u1,...,Un) € Lfinite. We define mized extension of

G the game G= (N, A(X1), ..., A(Xy), Uty ..., Uy), where for alli € N we have:

o A(X;) = {pi eRXlpi >0 Vi=1,...,]| X; |, Z‘X ‘pw = 1} that is the probability space

on X;;

o U : A(X) :=[Licn A (X;) — R defined in the following way:

| X1 | X | X

E E E plkl ij pnknui (xlkl,...,xij,...,xnkn),

ki1=1 7j=1
where p € A (X).
We denote with I'j,;.6q the class of mixed extension of finite game.
Nash equilibria and best replies for mixed extensions of a finite game are defined in a similar
way.

Let us consider the following results.

Definition 1.7. Let X, Y be subsets of R" and F': X =Y a correspondence. We say that F' has

a closed graph if the set {(x,y) € X XY 1y € F(z)} is a closet subset of X x Y.
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Theorem 1.2. Let K be a compact, conver and non-empty subset of R™” and F : K = K a
corrispondence with closed graph and where F (K) is a non-empty and convez set. Then there is a

x € K such that x € F(x).
Proof. See [69]. O

Theorem 1.3. Let S, T be metric spaces and f : S xT — R a continuous function. Then the

correspondence M : S = T such thal

M(s) = argmax f (s, )

has closed graph.
Proof. See [69]. O
Let us consider the following definition:

Definition 1.8. Let X C R" be a convex set. A function f : X — R is said quasi concave if

Vt € R the set {x € X : f(x) >t} is convex.

Theorem 1.4. Take G = (N, X1,...,Xn,u1,...,Un) € I tinite then the mized extension of G, G

has a NE .

Proof. For every i € N the set R; (p—;) is non-empty since u; is continuous and A (X;) is compact,
and it is convex since u; is quasi-concave on A (X;); R is upper hemicontinuous (that is equivalent
to have closed graph since R is compact-valued), since each ; is continuous. Thus by Theorem (1.2

R has a fixed point. O
Let us calculate Nash equilibria in mixed strategies of Example

Example 1.4. Let us consider the mized extension G = (N,A(X1),A (X2),u1,U2) in Evample
(L2

We can identify the mized-strategy space of player I and II, A(X1),A (Xs2) respectively as the



1.1 Finite Games 7

interval [0,1]. Let us call p = (p,1 — p) the mized-strategy of player I and q = (q,1 — q) the mized-
strategy of player II. The utility functions in mized-strategy ui,uz @ A(X7) X A (X)) — R for

player I and II respectively are defined in the following way:

u (p,g) =pg—p(1—q)—q(l—p)+(1-p)(1—gq),

Uy (p,q) = —pg+p(1—q)+q(1—p)—(1—-p)(1—4q).

Moreover
Rr(q) = argmazyepq pg—p(l—q)—q(1—p)+(1—-p)(1-q)
= argmazpepo) p(4g —2) +1—2q.
Then ) 1
{1} ifg>3
Rr(q) =4 {0} fg<3
0,1] if g =3
Similarly
{0} ifp>3
Rir(p) =9 {1} fp<jy
[0,1] ifp =3

Then NE (G) = {(3.3)}.
We can note that Theorem |1.4]is only an existence-theorem and does not ensure the uniqueness

as the following example shows.

Example 1.5. Let us consider the mized extension G = (N, A (X1),A(X2), 1, 12) in Brample

(L3
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We can identify the mized-strategy space of player I and II, A(X1),A (X2) respectively as the
interval [0,1]. Let us call p = (p,1 — p) the mized-strategy of player I and q = (q,1 — q) the mized-
strategy of player II. The utility functions in mized-strategy w1, us : A(X1) x A(Xy) — R for

player I and II respectively are defined in the following way:

1 (p,q) =3pg+(1—-p)(1—q),

s (pq) =pg+3(1—p)(1—gq).

Moreover
Rr(q) = argmaz,epq) 3pg+ (1 —p) (1 —q)
= argmazyepy p(4g—1)+1—gq.
Then _ .
{1} ifqg> 3
Rr(q) =14 {0} ifg<i
0,1 ifg=1
Stmilarly
{1} ifp>3

Ry (p) =4 {0} ifp <%
[0,1] ifp=7
In Figur the continuous line describes the graph of Ry (g) , while the dolted line describes the
graph of Ry (]3) . The circles represent the Nash equilibria. Then NE (é) = {(0, 0), (%, %) , (1, 1)}

We can note that the equilibria (0,0),(1,1) correspond to pure-equilibria (T, T'), (B, B) respectively.

The last remark of Example is true for all game G € I i, but the viceversa does not hold

as we can see from Example
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1/4

0 3/4 1

Figure 1.1: Nash Equilibria

1.2 Non-Finite Games

A non-cooperative game with non-finite strategy-spaces is called non-finite game. In particular
the mixed-extention of a finite game is a non-finite game. In this sense we have a corollary of

Theorem [I.4] for non-finite game in general.

Corollary 1.1. A non-cooperative game G = (N, Xy,..., Xy, u1,...,uy,) has a NE if for each

player i :
o the strategy set X; is a non-empty, compact and convexr subset of an Fuclidean space;

o the payoff function u; is continuous and quasi-concave in x;.

Proof. Tt follows from Theorem O
1.2.1 Cournot-NE

A solution very similar to NE was first used by Cournot as early as 1838 in the framework of
duopoly model. This model is considered rightly as one of the major classic examples of applied

game theory in economics. In this model, the firms are supposed to choose simultaneously their
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volume of output. See [I08].
Two firms produce and sell a homogeneous good. Let us call ¢g; and ¢ the quantities produced
by firm 1 and firm 2, respectively. To simplify matters, assume that there are not fixed costs and

that marginal costs are constant and equal to ¢, so that the total cost is:
C; = cq;.
Firms face an inverse demand function given by:
P =max{a—Q,0},

where (Q = q1 + q2, P is the price of the good and « is a positive constant and, in generally, it is
assumed to be the reservation price of the homogeneous good. In order to avoid a corner solution
assume that a > c.

Firms are supposed to choose simultaneously the quantities ¢; and ¢o. In this model those variable

are thus the players’ strategies. The strategy sets of the player are identical and given by:
X1 :X2: [O,CL—C].
The players’ payoff functions are here the profit functions of the firms:

w1 (q1,92) = Pl(q,@)a —cq

uz (q1,2) = P(q1,92) g2 — cqo.

Or,more generally, after a clear change of notations:
[a—(¢i+qj)—cg if 0<¢<a—c—gj

0if 2—-c—q¢g;<qg<a—c

If (qz’f, q;) is a NE of this game, then Vi € N :
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for all ¢; € X;. Then for each player i, ¢F must be a solution of:

n?mu:h~%%+%)—d%

It is easy to check that, by Corollary [L.1], in this game there always exists at least a NE.
With the assumption that ¢ < a — ¢, the first-order conditions of this optimization problem are

necessary and sufficient:
aui
9qi

=0, 1=12,

which gives:

(a-5-¢)
G =~—p—" i=12

Solving this pair of equations leads finally to the outcome of the game:

a—=cC

3

@ =q =

The Cournot duopoly model can be extended to the case in which there are many firms (n > 2):
in this case we speak of Cournot oligopoly. In general the early literature on Cournot oligopoly
has been concerned with three main issues: whether the model is quasi-competitive, i. e., industry
output rises and price falls with additional firms (see for example [13], [49] and [78]); whether the
model converges to perfect competition with an infinite number of firms (see [25], [49], [60], [78],
[103] and [119]). The third issue concerning the question whether the equilibrium solution itself is
dynamically stable (see [56], [89] and [105]).

This model has many variants in which cost structures, inverse demand and value of information
change. For example in [12] authors consider a duopoly model with quadratic cost functions. They
show existence and uniqueness of affine equilibrium strategies and that, in equilibrium, expected
profits of firm 4 increase with the precision of its information and decrease with the precision of
the rival’s information. Novshek and Sonnenschein in [88] consider a duopoly model with constant
costs and examine the incentives for the firms to acquire and release private information. Clarke
in [33] considers an n-firm oligopoly model and shows that there is never a mutual incentive for all

firms in the industry to share information unless they may cooperate on strategy once information
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has been shared.
Vives in [120] observed that more information can be undesirable in the setting of Cournot oligopoly.

More recently papers about the value of information in this framework are [39] and [68].

1.3 Approximate Nash Equilibria

In this section we deal with a different concept solution.

We consider the following definition introduced by Tijs in [106].

Definition 1.9. Let G = (N, Xy,..., Xy, u1,...,uy) be a non-cooperative game and € > 0. Then
(T1,...,Tyn) € X is an approximate Nash equilibrium (e-NE for short) for G if for each i € N

we have:
U; (51,%_2) > U (l’i,f_i) — € Vr; € X;. (1.6)

We denote with e — NE(G) the set of approximate Nash equilibria of G.
Obviously for € = 0 the set of approximate Nash equilibria is equal to the set of Nash equilibria.

The condition (1.6)) means that for each i € N we have:

w; (T, T—;) > sup u; (x;,T_;) — €. (1.7)
r,€X;

Moreover if €1 < ez then ¢ — NE(G) C e — NE(G) for each game G.

Example 1.6. Let us consider G = (N, X1, Xo,u1,uz) with X1 = X9 = R and uy (v1,22) =
—ug (71, 79) = 23 — 23. By condition we have that, by fizing € > 0, the pair (T1,72) € R? is a

e-NE if

Ty — % > sup uy (11,%2) —€ = sup (I3 —x}) —e

x1€ER zr1€R

= T9 —E€,
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and
T3 — 75 > sup ug (F1,22) —e = sup (35 —23) —¢
z2€R z2€R
_ =
= I]—¢

That is if (71,72) € [V, Vel X [V, Vel
e — NE (G) is the square with center (0,0) and side 2\/e. In particular NE(G) = {(0,0)}.

Example 1.7. Let G = (N, X1, X2, u1,uz) be a non-cooperative game with X1 = X9 = R and

uy (z1,x2) = —ug (z1,22) = z122. We have that:
sup up (x1,T2) —€ = sSup Toxy — €
r1€ER r1€R
< 400 T =0,
and
sup ug (T1,x2) —€ = sup —T1xy —€
z2E€R T2€R

< 4o 73 =0.
So the unique ¢ — NE is the pair (Z1,T2) = {(0,0)}. In this case e — NE(G) = NE(G).

Next example shows that for some values of € the existence of approximate Nash equilibria is

not ensured.

Example 1.8. Let us consider G = (N, X1, Xo,u1,us) a non-cooperative game with X; = Xy =

{—-1,1} and uy (1, x2) = —ug (1, x2) = x122, (See , By condition we have that, by fizing
e > 0, the pair (21,T2) € {—1,1} x {—1,1} is a e-NE if:

%1%2 > max U1 (331,52) — €
1‘16{—1,1}
= max ZTori —e€=1—¢,
1‘16{—1,1}
and
—flfg > max U (%1, 952) — €
3:26{—1,1}
= max —I129 —€=1—c¢.

xgE{—l,l}
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then the pair (T1,T2) € {—1,1} x {—1,1} is a e-NE iff ¢ > 2. So if € < 2, there are not

approzimate Nash equilibria and, in particular NE(G) = 0.

From these examples we have seen that, as for Nash equilibria, neither the existence (see Example
1.8) nor the uniqueness (see Example [1.6]) of approximate Nash equilibria is guaranteed. Also in
this case there are existence theorems. We quickly show a result due to Tijs (see [106]), but many

other papers have been written about this topic (see for example [16], [104]).

Theorem 1.5. Take G = (N, X1,..., Xy, u1,...,un) € I finite such that for each player i, u; is an
upper bounded function on X = [[,cn Xi, then for each € > 0, the mized extension of G, G has

e— NEFE.

Proof. See [106]. O

1.4 Potential Games

Potential games were introduced by Monderer and Shapley in [83] and studied for example in
[124]. A game is said a potential game if the incentive of all players to change their strategy can
be expressed using a single global function called the potential function. This potential function
provides the necessary information for the computation of the pure Nash equilibria. Thus a potential
function is an economical way to summarize the information concerning pure Nash equilibria into
a single function. Moreover, every finite game with a potential function has an equilibrium in pure
strategies: since the strategy space is finite, the potential function achieves its maximum at a certain

strategy profile.

Definition 1.10. Let G = (N, X1,..., X, u1,...,u,) be a non-cooperative game. We say that G
is a potential game if there is a function (called potential function) I1 : X := [[;cy Xi — R such

that for each i € N, x;,y; € X;, x_; € X_; we have:

wi (i, ) — wi (yi, v—) = (x5, x—5) — I (ys, 2—4) .
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Table 1.4: A potential function

B
4
b}

ool
BN | g

Example 1.9. Let us consider the Prisoner’s dilemma game (see Example . It is a potential
game, where a potential function I is given in TabldI.4)

From Definition[1.10 it follows that a potential function is not unique: if Il is a potential function
for a game G also Il + ¢, with ¢ € R, is a potential function for G. Then all potential functions of

the Prisoner’s dilemma game are i, with k € R, given by Tabld1.5]

Table 1.5: All potential functions

T B
T 2+k 4+k
B 4+k 5+k

Interesting classes of potential games are the coordination games and the dummy games.

Definition 1.11. Let G = (N, Xy,..., Xy, u1,...,uy) be a non-cooperative game. We say that G
is a coordination game if u; = u; Vi,j = 1,...,n. That is the utility functions are equal for each

player.

Definition 1.12. Let G = (N, Xy,..., Xy, u1,...,uy) be a non-cooperative game. We say that G
is a dummy game if u; (z;,x_;) = w; (yi,x—;) Yi=1,...,n, w5,y € X;, z_; € X_;. That is

player i's strategy choice does not affect her payoff.

A potential function for a coordination game G = (N, Xy,..., Xy, u1, ..., uy,) is II = vy while a
potential function for a dummy game is the null function.

Not all finite games admit a potential function as we can conclude from:
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Theorem 1.6. Take G = (N, X1,..., Xy, u1,...,un) € Lfinite a potential game, II a potential

function for G, and G1 = (N, Xy,..., X,,IL,... 1) a coordination game. Then
i) NE(G) = NE(Gy):
ii) G has a NE.

Proof. See [107]. O

By Theorem [1.6] the game in the Example [I.2]is not a potential game.

For non-finite games we have the following theorem:

Theorem 1.7. Let G = (N, X1,...,Xp,u1,...,uy) be a potential game and II an upper bounded

potential function for G. Then Ye > 0, G has e— NF.

Proof. See [83]. H

The next results, dealing with differentiable games (i.e. such that their utility functions are

differentiable) are well-known.

Lemma 1.1. Let G = (N, Xq,..., Xp,u1,...,uy) be a game in which for each player i, X; are
intervals of real numbers. Suppose the utility functions w; are continuously differentiable Vi € N,
and let I1 : X — R. Then 11 is a potential function for G iff Il is continuously differentiable, and

8:1;‘1- = 87551-’ Vi e N.

Theorem 1.8. Let G = (N, Xq,...,Xp,u1,...,uy) be a game in which for each player i, X;
are intervals of real numbers. Suppose the utility functions u; are twice continuously differentiable
Vi € N. Then G is a potential game iff

82ui 82Uj
= i,7 € N. 1.
8@89@ a:ziaSUj, VZJ < ( 8)

Moreover, if the utility functions satisfy @ and z is an arbitrary (but fized) strategy profile in X,

then a potential function for G is given by

1 0
) =Y [ G o) ) 0 (1.9
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where y : [0,1] — X is a piecewise continuously differentiable path in X that connects z to x.

Example 1.10. Let G. = (N, Xq,..., Xpn,u1,...,uy) be a Cournot oligopoly game in which there
is a linear inverse demand function P = max{a — Q,0}, where Q = > ;| ¢i, and cost functions

Cly - -+, Cp With continuous derivatives. We take X; = [0,4+00) and

ul(qlv7qn):P(q17)qn)QZ_Cl(qZ)a VZEN

It 1s simple to prove that G, is a potential game with potential function

n

n n
Mg, ...qn)=a G— Y @~ Y, ¢gj— Y cilx).
=1 =1

1<i<j<n i=1

1.5 Bayesian Games

We frequently wish to model situations in which some of the parties are not certain of the
characteristics of some of the other parties. The model of a Bayesian game is designed for this
purpose: indeed the case of perfect knowledge of payoffs is a simplifying assumption that may be
a good approximation in some cases. A Bayesian game, or game with incomplete information, is
a game in which, at the first point in time when the players can begin to plan their moves in the
game, some players already have private information about the game that other players do not know.
The initial private information that a player has at the first point in time is called the type of the
player. The type of a player embodies any private information (more precisely, any information that
is not common knowledge to all players) that is relevant to the player’s decision making. This may
include, in addition to the player’s utility function, her beliefs about other players’ utility functions,
her beliefs about what other players believe her beliefs are, and so on.

To define a Bayesian game, see for example [50], we must specify a set of players N and, for each
player i € N, we must specify a set of possible actions A;, a set of possible types T;, a probability
function p; and a utility function w;. We let A = [[,cn Ai, T = [[;cn Ti- That is, A is the set of
all possible profiles of actions that the players may use in the game, and 7T is the set of all possible

profiles of types that the players may have in the game. For each player ¢, we let T__; denote the set
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of all possible combinations of types for the players other than i. The probability function p; must
be a function from 7; into A (T-;), the set of probability distributions over T;. That is, for any
possible type t; € T;, the probability function must specify a probability distribution p; (:|t;) over
the set T_;, representing what player ¢ would believe about the other players’ types if her own type
were t;. Thus, for any t_; € T_;, p; (t—|t;) denotes the subjective probability that ¢ would assign to
the event that ¢_; is the actual profile of types for the others players, if her own type were ;.

For any player ¢ € N, the utility function u; in the Bayesian game must be a function from A x T
to R.

These structures together define a Bayesian game G, so we may write
G = (N,Al,...,An,Tl,...,Tn,pl,...,pn,ul,... ,un).

G is finite iff the sets N, A; and T; are finite Vi € N. When we study such a Bayesian game G, we
assume that each player ¢ knows the entire structure of the game and her own actual type in T; and
this fact is common knowledge among all the players in N. A strategy for a player ¢ in the Bayesian
game @ is defined to be a function from her set of types T; into her set of action A;.

We say that beliefs (p;);c in a Bayesian game are consistent iff there is some common prior
distribution over the set of type profile ¢ such that each players’ beliefs given her type are just the
conditional probability distribution that can be computed from the prior distribution by Bayes’s
formula. That is, beliefs are consistent iff there exists some probability distribution p € A (T") such

that:
p(t_i ti)
p (t:)

Because we consider in the following consistent beliefs under condition we denote

Di (t_i|ti) = Vi € N. (110)
G=(N,Ay,....,A,,T1,....,Th,p,u1,...,u,) instead of
G = (N,Al,...,An,Tl,...,Tn,pl,...,pn,U1,...,Un).

A play of such a game proceeds as follows: before the types are announced each player i chooses

a strategy x; € AzTZ If the type profile is t = (¢1,...,t,) then player i's payoff is

In general, given two sets X and Y, the notation XY indicates the set of functions from Y to X, that is
XY ={flf: Y — X}
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U; (xl(tl),l'g(tg), cons@p(tn), tr, oy tn) .
The a priori expected payoff for player ¢ when the players use strategies x1,...,x, respectively

is a function U; : AT x --- x AT» — R such that

Ui (w1, mn) = Y p(t)ui (z1(t), 22(t2), ., 2n(tn),tr, s tn)
teT

being p(t) the probability distribution of player ¢ when her type profile is t.

Definition 1.13. Let G = (N, Ay,...,An,Th,...,Th,p,u1, ..., u,) be a Bayesian game. We say
that a strategy profile * = (1, T2, ...,%y) € Aipl ><A;F2 x---x Al js a Bayesian Nash equilibrium

(for short BNE) if Vi € N, Vx; € A;TFZ' we have
Ui () > Ui (x3,0—) .
Example 1.11. Let G = (N, Ay, A2, T1,To,p,u1,u2) be a finite Bayesian game where:
e N =1{1,2};
o Ay ={a1,b1}, As ={az,ba};
o Ti— {8} T {63},

The functions ui,ug : (A1 X Ag) X (Th x Ta) — R are represented by the bimatrices Table
and Table L7
Table 1.6: u;

1 \2.1 as b2

a1 12 01
b1 04 13

The first one represents the case in which player 2’s type is t3. while the second one represents
the case in which player 2’s type is t3. We can note that the player 1’s payoffs are the same in both

matrices.
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Table 1.7: us

1 \ 2.2 a9 bg

al 11 03
b1 02 13

We suppose that Nature extracts with probability P € [0, 1] the type t3 (obviously with probability
1 — P the type t2). So we have that p (t%,t%) =Pandp (t%,t%) =1-P
Then the values of Uy and Uy are given in the bimatriz Table Now we want to compute the

Table 1.8: A priori expected payoff functions

U\Uz ag ba
al 1P+1 0 3-2P
b1 02P+2 13

Bayesian Nash equilibria for this game depending on P.

o If P>

win

BNE = {(a1,a2), (b1,b2)};

o I[fP<

win

BNE = {(b1,b2)} .
Now we introduce the notion of mixed extension of a Bayesian game.

Definition 1.14. Let G = (N, Ay, ..., Ap, T, ..., Tp,p,u1, ..., u,) be a Bayesian game. Then the
mized extension of G is the Bayesian game G= (N, ZI, ey gn,Tl, oy oy p,un, ... ,ﬂn> , where
A; is the family of probability measures (on the o—algebra of all subsets of A;) with finite support.
Such probability measures are the form p; = Y} _| Prea, where ai,...,as € A;, pr > 0, for all
ke{l,....s} and >} _, pr = 1, where

)

(B) 1 f BCA;,a, € B
€aq =
g 0 if BC Aj,ap ¢ B

Furthermore W; (fi, - . ., pin, t) = [ (a1,. .., an,t)dpr (a1) .. .dpy (an) for all i € N and

(/1’17"‘ 7/~Ln) € g: HZGNEZ
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1.6 Supermodular Games

The class of supermodular games was introduced by [109] and further studied by [81], [110],
[121] and [122]. Supermodular games are games in which each player’s marginal utility of increasing
her strategy rises with increases in her rivals’ strategies. In such games the best response correspon-
dences are increasing, so that the players’ strategies are strategic complements. When there are
two players, a change in variables allows this framework to also accomodate the case of decreasing
best responses. Supermodular games are particularly well behaved: they have pure-strategy Nash
equilibria. The upper bound of player s Nash-equilibrium strategies exists and it is a best response
to the upper bounds of her rivals’ sets of Nash-equilibrium strategies, and similarly for the lower
bounds. The simplicity of supermodular games makes convexity and differentiability assumptions
unnecessary, although they are satisfied in many applications, for example in the Cournot duopoly.

Let us recall some definitions about supermodular games.

Definition 1.15. A partially ordered set (POSET) is a set X on which there is a binary

relation = that is reflezive, antisymmetric and transitive.
Definition 1.16. Let us consider a partially ordered set X and a subset Y of X.

o Ifye X and y 2 x for each x € Y, then y is a lower bound for Y,

o Ifz€ X and x = z for each x € Y, then z is an upper bound for Y.

When the set of lower bounds of Y has a greatest element, then this greatest lower bound of Y
is the infimum of Y in X.
When the set of upper bounds of Y has a least element, then this least upper bound of Y is the

supremum of Y in X.

Definition 1.17. o If two elements x1 and xo of a partially ordered set X have a supremum in

X, it is called the meet of x1 and xo and it is denoted by x1 N T2;

o If two elements x1 and xo of a partially ordered set X have a infimum in X, it is called the

jotn of x1 and xo and it is denoted by x1 V xo.
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Definition 1.18. A partially ordered set that contains the join and the meet of each pair of its
elements is a lattice. If a subset Y of a lattice X contains the join and the meet (with respect to

X ) of each pair of elements of Y, then Y is a sublattice of X.

Remark 1.1. The real line R with the natural ordering > is a lattice with x V y = max {z,y} and
Ay =min{z,y} Yo,y € R. Also R", (n > 1) with the usual partial order > is a lattice with xVy =
(1 VY, sy Vyp) and c ANy = (1 A Y1, .., Ty AYp), Yo = (1,...,2n),y = (Y1,...,yn) € R™
Any subset of R is a sublattice of R, and a subset X of R™ is a sublattice of R™ if Va,y € X we

have that x Vy, x ANy € X.
Definition 1.19. A supermodular game
G=(N,X1,....,Xn,u1,...,Up)
is a tuple where
e N ={1,...,n} is a finite set of players;

eVie N, X; CR™ (for some m(i) € N) and X; # 0 is the strategy space of player i,

X = [[ien Xi is the cartesian product of the strategy spaces;
o u; : X —> R is the payoff function of player i,
o Vic N, X; is a sublattice of R™1);

e Vi € N, u; have increasing differences on X, i.e.

Ve = (z1,...,2n) ¥y = (Y1,---,Yn) € X such that x; > y;, we have
(7 (.%'1,...,l‘i_l,xi,xi+1,...,$n) — Uy (ylyn-7yi—1axi,yi+1a---ayn)
Zui (3717--~7$z‘—173/i;$z‘+17--~71'n) — Uy (y17"'7yi—1ayiayi+17'"7y’n>;

e Vi€ N, u; is supermodular in the i—th coordinate, i.e.

Ve = (z1,...,2n), ¥y = (Y1,---+Yn), 2 = (21, .., 2n) € X we have

U; (21, ey 21y Ly Py e - ,zn) =+ u; (21, ey Zi—1,Yiy Zig 1y - .,Zn)
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< u; (2’1,..  y Zie1, T N Yiy Zig 1,y - - ,Zn) + u; (21,.. yZie1, T NV Yiy Zig 1y - ,zn) .

Increasing differences point out that an increase in the strategies of player i's rivals raises the
desirability of playing a high strategy for player 7.

We can observe that supermodularity is automatically satisfied if for each ¢ € N, Xj; is single-
dimensional. We will need supermodularity in the case of multi-dimensional strategy spaces to
prove that each player’s best responses are increasing with her rivals’ strategies.

For example the Cournot duopoly defined in Subsection of Chapter 1 is a supermodular
game.

From [110] we have the following propositions.

Proposition 1.1. Let f : R® — R be a differentiable function on R", then f has increasing

differences on R™ iff 867{2‘ is increasing in x;j for eachi,j =1,...,n withi # j and Vo = (z1,...,2,).
Proof. See [110]. O

Proposition 1.2. Let f: R” — R be a twice differentiable function on R™, then f has increasing

differences on R™ iﬁ% >0 foreach i,j=1,...,n withi# j and Vo = (z1,...,2,).
Proof. See [110]. O
The following existence theorem is due to Topkis in [109].

Theorem 1.9. Let G = (N, Xy, ..., Xp,u1,...,uy) be a supermodular game. If, for each i € N, X;
is compact and u; 18 upper hemicontinuous in x; for each x_; € X_;, then the set of pure-strategy

Nash equilibria is nonempty and possesses greatest and least equilibrium points.

Proof. See [109]. O
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Chapter 2

Multicriteria games

Multicriteria (or multiobjective) optimization problems typically have conflicting objectives, and
a gain in one objective is, sometimes, a loss for another. Therefore the definition of optimality is
not obvious as in the one-criterion case. However in many settings, mathematical models involving
more than one objective seem much more adherent to the real problems.

Formally, a multicriteria optimization problem can be formulated as

Optimize fi (x),..., fr (z) (2.1)
subject to x € D,

where D denotes the feasible set of alternatives and r € N the number of criterion functions
fo: D—R, k=1,...,r.
See for example [30], [31], [I01] and [124].

In this chapter we study the situation in which there is not only a conflict between criteria,
but there are, also, many optimization problems to solve simultaneously: that is we deal with
multicriteria games.

In recent years, many authors have studied the game problem with vector payoffs, for example,
see [3] and [14]. Although many concepts have been suggested to solve multicriteria games, the
notion of Pareto equilibrium, introduced by Shapley in [102], is the most studied concept in game
theory. In [125], Voorneveld et al. introduced the new concept of ideal Nash equilibrium for finite

multicriteria games which has the best properties and Radjef and Fahem in [97] provide an existence
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theorem for this new solution concept. Patrone, Pusillo, Tijs in [94] link the concept of multicriteria

game with that one of potential game. For some applications see for example [31].
2.1 Weak and Strong Pareto Equilibria

Definition 2.1. A non-cooperative multicriteria game is a tuple

Gm=(N,Xy,..., X5, u1,...,uy,) where for each i € N
o N is a finite set and represents the set of players ;
o X, is a non-empty set and represents the pure-strateqy space of player i;

o ui : X = [[,cn Xi = R™ s the utility function of player i, where m is the number of

objectives.

Let us denote with I}, the class of finite multicriteria games.

Remark 2.1. We recall the partial order definition in R™. For all a, b € R™, we say that:

a=bifa;,=b; Yi=1,...,m;

aZbifa;>b; Yi=1,...,m;

a>bifa;>b; Yi=1,...,m, and a # b;

a>bifa;>b; Vi=1,...,m.

Definition 2.2. Let G, = (N, X1,..., Xp,u1,...,uy,) be a multicriteria game. Then the strategy

profile T € X is
e g weak Pareto equilibrium for G, if Vi € N Ax; € X; such that
wi(xi, T—i) > ui(Ti, T—;);
e a strong Pareto equilibrium for G, if Vi € N fz; € X; such that

wi(2s, i) > ui(T5, T—;).



2.1 Weak and Strong Pareto Equilibria 27

Let us denote with wPE(G,,) and sPE(G,,) weak and strong Pareto equilibria of G,,.

From Definition we can note that, in one-criterion case, weak [strong] Pareto equilibria
correspond to NE [sNE] respectively, for the game.
It is clear that a strong Pareto equilibrium is also a weak Pareto equilibrium but the viceversa

does not hold as the following example shows.

Example 2.1. Let us consider the finite bicriteria game Go = (N, X1, Xo,u1, u2) with payoff matriz
given by Tablq2.1] where X1 = {T,B}, X, = {L,R} are the strategy spaces of player I and II
respectively. The utility functions uy,ug : X1 X Xo — R? of player I and II respectively are defined

in the following way:
ul(T,L) = (3,4) wi(T,R) = (4,3) wi1(B,L) = (3,5) u1(B, R) = (1, 2),

ua(T, L) = (3,2) ua(T, R) = (2,3) u2(B, L) = (1,1) ua(B, R) = (2,2).

We have that wPE(G) = {(T, L), (T, R)} while sPE(G) ={(T,R)}.Then sPE(G) C wPE(G).

Table 2.1: Weak Pareto Equilibria

I\NII L R

T (3, 4) (3,2) (4,3)(2,3)
B (3,5) (1, 1) (1,2) (2, 2)

Pareto equilibria can be characterized as fixed points of best reply correspondences.
Definition 2.3. Let G, = (N, X1,..., X, u1,...,uy) be a multicriteria game.

o We define for each i € N wB; : X_; = X; where
'U}Bi(l'_i) = {.Tl € X; ’ iﬂyi € X;: ui(yi,:ﬁ_i) > uz(xl,x_,)} .

Call X := [],cn Xi, and define

wB: X =3 X
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the correspondence such that

x—> H wB;(r_;)
1EN
that 1s

WB (%) = By (51) ..., wBy (v_n)), ¥ € X;
o We define for each i € N sB; : X_; = X; where

sBi(z_;) ={z; € X; | Pyi € X+ wi(yi, 2—i) > wilzi, z—i)}.

Define

sB: X=X

the correspondence such that

x — H sB; (z_;),
1EN

that is

sB(z)=(sBi(x-1),...,8Bn (x_y)), Vxre X.

Then wB and sB are called best reply correspondences for weak and strong Pareto
equilibria in pure strategies, respectively.
The mixed extension of a finite multicriteria game is defined in the same way of the one of

one criterion game (see Definition where utility functions are R™-valued. The class of mixed

m

extension of a finite multicriteria game is denoted with I'”". ..

Weak and strong Pareto equilibria of the mixed extension G of a finite multicriteria game G,
are defined similarly and are denoted with wPE(G,,) and with sPE(G,).

As concern the best reply correspondences for weak and strong Pareto equilibria in mixed strate-

gies we have the following definition.

Definition 2.4. Let Gy, = (N, A(X}),...,A(Xy), U1, . .., Tn) be the mized extension of a multicri-

teria game.
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o We define for each i € N wB; : A(X_;) = A(X;) where
wBi(z_;) = {z; € AX;) | Dys € AX,) « Wilys, w—s) > Uilwi, z—;)} .

Call A(X) :=[],eny A(X;), and define
wB : A(X) = A(X)

the correspondence such that

x— H {U\Bi(z‘,i),
iEN
that s

wB () = (wB1 (z_1),...,wBy (z_n)) Yz € A(X);
o We define for each i € N sB; : A(X_;) = A(X;) where
sBi(z_i) = {z;i € AXy) | Byi € AXy) « Ui(yi, v—7) > (g, 2-7)}

Define

sB: A(X) = A(X)

the correspondence such that

T — H sABi(w_i),
1EN
that is

sB(z) = (sB1 (2_1),...,5Bn (xz_n)) Vz € A(X).

Then wB and sB are called best reply correspondences for weak and strong Pareto
equilibria in mixed strategies, respectively.
Fixed points of wB and sB are weak and strong Pareto equilibria of ém, respectively as stated

by the next theorem.

Theorem 2.1. Let G, = (N,A(X1),...,A(X,), 0, ..., 1) be the mized extension of a finite

multicriteria game, and let & € A(X) be a strategy profile. Then
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o i € WPE(Gy,) iff T € wB(Z);
o 7€ sPE(Gy) iff ¥ € sB(z).
Proof. Tt immediately follows from Definition and Definition O

Let us consider the next example taken from [I17] (see also [124]).

Example 2.2. Consider a bicriteria game Go with two players: an ispector (player 1) who has to
decide whether or not to inspect a factory (player II) to check if its production is hygienical. Fach
player has two strategies and two objectives which can be summarized in Tabld2.2, Payoff functions

Table 2.2: Strategies and Objectives

Strategies Objectives
Inspector (I) e inspect (I) e minimize inspection costs

e non inspect(NT) e guarantee an acceptable level of hygiene in production
Factory(II) e hygienical (H) e minimize production costs

e non hygienical (NH) e achieve some level of hygienical production

are given below in Tabld2.5 Here ¢ > 1 denotes the penalty that is imposed if the inspected production
fails to be hygienical.

Table 2.3: Payoffs functions

INII H NH
I (-1,1) (-1,1) (c—1,%) (—c—1,1)
NI (0,1) (-=1,1)  (0,0) (0,0)

The first coordinate of the payoff to player I denotes the negative costs of inspection, the second
coordinate specifies satisfaction with the hygienical situation. The first coordinate for the factory
depicts extra negative production costs, the second represents the hygiene satisfaction level.

We have that wPE(G) ={(I,H),(I,NH),(NI,H)}, while sPE(G) ={(NI,H)}.

As regards Pareto equilibria in mized strategies, let p € [0, 1] the probability of player I playing I and
let ¢ € [0,1] the probability of player II playing H. Let uy and ug be the utility functions in mized
strategies of player I and II respectively. Then we have that

~ 11
w1 (p,q) = pe—p = pac, 5p = 54 +4q)

u2 (p,q) = (—p — pc+pgc+pqg — ¢, p —pg+q) .

The best reply correspondence for weak Pareto equilibria in mizved strategies for player I is
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wB (¢) ={pe(0,1] | Bp € [0,1] : 1 (p,q) > W (,9)} -

So we have
{1} ifo<g<1-1
wBy (q) =
0,1] if1-1<g<1

Similarly for player IT we have
- {1} if 2z <p<1
wBir (p) =
0,1] f0<p< J7Up=1

S S

1-1fc

Il
0 111+c 1

Figure 2.1: wB; (q)

Figures and represent best reply correspondences for weak Pareto equilibria in mized
strategies for player I and I respectively.
Then, as we can see in Figurd2.5 we have that

wPE(Gy) = ([o 1iJ < [1 _ % 1]) U <(Ci11> < {1}) U ({1} x [0,1]).

Weak Pareto equilibria in mized strategies occuring in this model are those in which there is full
inspection (that is p = 1), those in which the factory produces in a hygienical way with probability
q = 1 and those in which the chance upon inspection is small (p < H%), but the production is
neverthless hygienical with high probability (¢ > 1 — %) This last fact is due to the penalty ¢ > 1
imposed if the checked production is not hygienical. Obuviously if ¢ increases the set of weak Pareto
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1-1fc|

SO\

0 111+c 1

Figure 2.2: wB; (p)

1-1fe

0 Il
0 111+c 1

Figure 2.3: wPE(Gy)

equilibria in mized strategies shrinks because, from an interpretative point of view, the factory have to
pay a higher penalty if the inspector finds that its production is not hygienical. From o mathematical
point of view it is sufficient to observe that lim.— o0 1 — % =1 and lim. 1 (ﬁ) =0.
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Similar computations show

{1} f0<g<1—3

sBr(q)=1410,1] if1—-L<g<1

{0} ifg=1

and
{1} if 4z <p<1
sBrr (p) =

0,1] f0<p< =5

From which we have

ro(e)= (0= (- ) ((025) (- 1)

In contrast to what happens for Nash equilibria, here it is not true that a Pareto equilibrium in

pure strategy is also a Pareto equilibrium in mixed strategies.

Example 2.3. Let us consider the finite bicriteria game Go with two players with utility functions
given by the bimatriz in Tabld2.])

Table 2.4: Weak Pareto equilibria in pure strategies

INII L R

T (27 O) (47 O) (27 0) (_17 '1)
M (07 2) (07 4) (07 2) (_17 _1)
B (07 O) (07 1) (07 0) (_17 '1)

Here player I has 3 pure strategies T', M and B, while player II has two pure strategies L
and R. We can see that wPE (G2) ={(T,L),(M,L),(B,L)}. Let us consider the mized extension
Gy = (N, A(X1),A(X2),ur,u2) of the game Ga. Previously we can see that the strategy R is strongly
dominated, so player II will assign probability O at the strategy R (and so 1 at the strateqy L ). Let
p = (p1,p2,p3) where p3 = 1 — p; — pa with p1,p2 € [0,1] = A(X1) such that p1 is the probability
that player I assigns to T, ps the probability for M and ps that one for B. By previous observation,

player II has the unique mized strateqy ¢ = (1,0). Then if player I chooses T with probability % and
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M with probability %, we have that

~ 11 ~

m ((5:3:0) (10)) = (1.2) > 0.0 = (0.0.1).(1.0).
and

oA ((; ;0> 1, 0)> —(2,2) > (0,1) = @5 ((0,0,1) , (1,0))..

We can see that the mized strategy ((0,0,1),(1,0)) corresponds to weak Pareto equilibrium in pure

strategy (B, L) . So the mized strategy ((0,0,1),(1,0)) is strongly dominated by the mized strategy

((%, %, 0) , (1, 0)) and so it cannot be a weak Pareto equilibrium for ég,

2.2 Scalarization

Generally, there are many efficient points of a multicriteria problem. One of the most analyzed
topics in multicriteria optimization is the scalarization of , namely how to build a scalar max-
imization problem, which leads one to find all the solutions of .

The classic scalarization (see [30] and [31]), which is called weight-method, consists in considering

the fOHOWng Scalar maximum prob]em
max E UkTk (T 2.2
weD ] kJk ( ) ) ( )

where n= (Ml? SR /’L’r‘) € Ri? 271;21 M-
Every solution of (2.2)) is a weak Pareto solution of (2.1). Moreover, if, for a fixed weight-vector

>0, admits a unique solution, then it is a Pareto solution of . If up >0, Vek=1,...,7,
then every solution of is a strong Pareto solution of .

In the last part of this section, we are going to show the existence of weak and strong Pareto
equilibria for mixed extensions of a finite multicriteria game. This result is proved through a
particular kind of one criterion game which arises from the multicriteria game assigning non negative
weights to different objectives. See for example [14].

In order to prove an existence theorem for Pareto equilibria we give the definition of scalarized



2.3 Relation between Supermodular Multicriteria Games and Potential Multicriteria
Games 35

game as follows E]

Definition 2.5. Let G, = (N, X1,..., X, u1,...,u,) € I inite and let X = (A1, An) where
Ai = (Nity -+ -5 Aim) € Ay, is a weight vector for player i’ s objectives Vi € N. We define the weighted

game

N

GN = (N,Xl,...,Xn,vi\,... UA),
where Vi € N, v;\ : X — R is defined in the following way:
m
v (@1, n) =) ikt (21, ) | (2.3)
k=1
Theorem 2.2. Let Gy, = (A(X1),..., A(Xp), Uy, ..., Tn) € I eq and we take T € A(X). Then

e T € wPE(Gy,) iff for each i € N there exists a \j = (i1, ..., N\im) € Ay, such that

T e NE(G));

e ¥ € sPE(G,,) iff for each i € N there exists a \; = (\i1, ..., \im) € A% such that

i€ NE(Gy)

Proof. See [124]. O

2.3 Relation between Supermodular Multicriteria Games and Po-
tential Multicriteria Games

In this section we want to extend the theory of supermodular games to potential multicriteria

games.

Definition 2.6. A supermodular multicriteria game
Gm=(N,X1,..., X, u1,...,up)

is a tuple where

o N ={1,...,n} is a finite set of players;

Let us denote with A, and with A2 the following sets: A, = {:U ERY YT jai = 1}7 AY =
{zeRl 30 o =1}
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e Vi e N, X; CR"™(for some m(i) € N) and X; # 0 is the strategy space of player i,

X = [[ien Xi is the cartesian product of the strategy spaces;
o u; : X — R™ is the payoff function of player i;
o Vie N, X; is a sublattice of R™1);

o Vi € N, u; have increasing differences on X, i.e.

Ve = (z1,...,2n) ¥y = (Y1,-..,Yn) € X such that x; > y;, we have
Wi (T1ye s Ty Tiy Ti 1, -+, Tn) — Wi (Y1 -+, Yie 1, Ty Yik 1y - - - Yn)
= U (xla--wxi—hyiaxi-i-l""7x'rl) — U (y17"'7yi—layi7yi+17'"ayn>;

o Vi€ N, u; is supermodular in the i—th coordinate, i.e.

Ve = (x1,...,20),y= (Y1, Yn), 2 = (21,...,2n) € X we have
Ug (zla"'7zi—laxi7zi+17"'7zn)+ui (Zla"'7zi—17yiazi+17"'7zn)
< u; (21,...,zifl,azi/\yi,ziﬂ,...,zn)+u2- (21,...,zi,l,xi\/yi,ziﬂ,...,zn).

Proposition 2.1. Let f : R® — R™ be a twice differentiable function on R™, then f has increasing

differences on R™ iff B:ngj >(0,...,0), for each i,j =1,...,n with i # j.
Proof. 1t is a straight generalization of a result in [I10] to vectorial functions. O
The following proposition is a generalization of Lemma 1 in [I5].

Proposition 2.2. Let G,,, = (N, Xq,..., X, u1,...,u,) be a potential multicriteria game with

potential function 1. Then Vi € N there exist functions f—; : X_; := H#i Xj — R™ such that
Ui (:ci,x_i) =11 (J:‘Z', .%'_i) + 2f_i (m_z) Vx,; € Xi, r_; € X_;.

Proof. For each x; € X; and x_; € X_; let
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Since II is a potential function for G,,, Vx;,y; € X; and Vx_; € X_;, we have
wi (T4, 2-3) — wi (Yi, v—) = I (25, 2;) — I (g5, 2—)
or

ui (v, ) — (@, 2) = i (yi,v—) — I (yi, v-4)

For each ¢ € N, the functions f_; in Proposition are called separating functions.

Let us consider a Cournot bicriteria game Go where the demand arises from a competitive

market of two types of commodities.
Definition 2.7. We define Gy = (N, X, Y, u1,u2), where

e N ={1,2};

2 , »
e X =Y = [0, g] where 0 15 a posilive amount;

o u;: X xY — R2%, i =1,2 are the utility functions defined in the following way:
Take v = (x1,22) € X, y = (y1,y2) €Y, and
ur (z,y) = (21 (6 —21 —y1) —c1,22 (6 — 22 —y2) — ¢2)

and
uz (2,y) = (y1 (6 — 21 —y1) — 1,92 (6 — w2 — Y2) — ¢2),

where ¢1,co > 0.

Remark 2.2. We can note that Go is a particular case (more precisely is a deterministic case) of

the Cournot game I'. defined in [T3] and discussed in Chapter 3. Therefore G is a potential game
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with potential function

1
II(x,y) = (— (:c% + x% + y% + y%) —3 (11 + z1Y2 + T2y1 + T2Y2)

+6 (x1 +y1 + 22+ 42) s

1
- (37% +a5+yi+ yg) 5 (x1y1 + T1y2 + 2y1 + T2Y2)

+0 (x1 + y1 + @2 —|—y2)>.

As done in [15] for the scalar case, we put & = x and §y = —y for each x € X, y € Y and consider
the game

Gy = (N, X, Y, 1, 1) where X = X, ¥ = —Y = [~2,0]% and for cach z € X, g€ Y,

w1 (Z,9) = u1 (T, —9), U2 (Z,7) = uz (T, —7) . The game Gy is strategically equivalent to game Go.
So we have that (x,y) is a weak [strong] Pareto equilibrium for Gy iff (z,—y) is a weak [strong]
Pareto equilibrium for Gs. In particular, since Go is a potential bicriteria game with potential

function defined in Remark also G is a potential bicriteria game with potential function IT

given by I (z,7) =1 (z,—9), vz € X, g€ Y.

Proposition 2.3. Let Go be a Cournot bicriteria game defined as in Definition and consider

the game G5 as above. Then we have that Go is a supermodular game.

Proof. X and Y are sublattices of R? because they are product of intervals. Moreover @; and s

have increasing differences properties on X x Y, because by Proposition we have

8217,1
=(1,1
and
62’17,2
or0p = (11> (0.0).

Finally it is simple to prove that u; is supermodular in the first coordinate and s is supermodular

in the second coordinate. O



Chapter 3

Bayesian Pareto Equilibria in
Multicriteria Games

3.1 Introduction

Shapley in [102] introduced the concept of multicriteria games, that is games with vector payoffs,
and studied their equilibrium points. Subsequently many papers have been published about this
topics, as Borm, Tijs, van den Aarssen in [I4] or Patrone, Pusillo, Tijs in [94]; in particular this
last paper links the concept of multicriteria games with that of potential games introduced by
Monderer and Shapley in [83]. On the other hand Harsanyi in [58] introduced games with incomplete
information and he called them Bayesian games. In these games the players are not completely
informed about the real-valued payoff function of the other players and there is an uncertainty
about the characteristics of the players (or types). The existence of Bayesian Nash equilibria (BNE
for short) in the case where the pure strategy spaces are finite have been proved in [58]. Later Kim
and Yannelis in [67] proved existence theorems where the set of agent is an infinite set. Their model
allows the individual’s action set to depend on the states of nature and to be an arbitrary subset of
an infinite dimensional space. Also Kitti and Mallozzi in [68] prove an existence theorem based on
Corollary Meirowitz in [79] shows that if type and action spaces are both non-empty, compact
and convex subsets of a finite dimensional Euclidean space, agent utility functions are continuous in
their type and action as well as the action of the other players, agent expected utility functions are

strictly quasiconcave in the agent’s action for every type, the set of rationalizable mappings from
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type to action have uniformly bounded slope and agent posterior beliefs are suitably continuous in
their types, then BNE exist. Reny in [100] generalizes Athey’s and McAdams results in [4] and [76]
respectively, on the existence of monotone pure strategy equilibria in Bayesian games. Mallozzi,
Pusillo and Tijs in [73] consider situations where one of the players may have an infinite set of pure
strategies, one criterion and a finite number of types and get an existence theorem of approximate
equilibria. Many Bayesian models have been studied recently, for example Einy et al. in [40] study
conditions under which a Bayesian Cournot equilibrium exists and is unique, in an oligopoly, in [61]
the authors prove the existence and uniqueness of a Bayesian Nash equilibrium in a public good
economy with differential information regarding consumers income and preferences with incomplete
information.

In this chapter we combine the concept of multicriteria games and the concept of Bayesian games:
Bayesian multicriteria games are defined and some equilibrium concepts are discussed. Moreover
we present the classical model of Cournot duopoly game in the sense of a Bayesian multicriteria

game.
3.2 Bayesian Multicriteria Games (BMG)

A Bayesian multicriteria game is a tuple
=(N,Ay, ..., A, Th,....,Th,p,ut, ..., up)
(for short T' = (N, A, T, p,u)) where
e N ={1,...,n} is a finite set of players;

e Vi € N, the action space is a metric space A;, A = [[;cy Ai is the cartesian product of the

action spaces;

e Vi€ N, T; # 0 is a finite set and represents the type space of player 4, T = [[,c T; is the

cartesian product of the type spaces;

e Vi € N, a strategy for player i is a function z; : T; — Aj;;
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e p is a probability distribution on the set T

o u;: A X T — R™ is the payoff function which assigns to player i the payoff
w; (a1, ... an,t1,...,t,) given that the players 1,2,...,n have type t1,...,t, and choose ac-

tions aq, ..., a, respectively.

Assume that it is common knowledge that each player i belongs to one of the possible types ¢; € T;.
Each player knows only her own type ¢;. The beliefs embodied in the description of a type t; € T;
must include subjective probability distributions over the sets T—% := [] ki Lhe- These probabilities
Di (t_i|ti) represent uncertainty about players’ type against whom 4 is playing. If these players types
are independent, then p; is independent of ;.

Recall that we assume that initially Nature draws a vector of types (t1,...,t,) according to the
prior probability distribution p. Once Nature reveals ¢; to player i, she is able to compute the belief

p; (t—i|t;) using the Bayes’ rule:
p(t—iti)
p(t)

Of course, if players’ types are independent, p; (t—;|t;) does not depend on t;, but the belief is still

pi (t=ilt;) =

derived from the prior distribution p.

A play of such a game proceeds as follows: before the types are announced each player ¢ chooses
a strategy x; € AZTi.If the type profile is t = (¢1,...,t,) then player i's payoff is
i (x1(t1), x2(t2), .-y n(tn), t1, .-, tn) .

The a priori expected payoff for player ¢« when the players use strategies x1,...,x, respectively
is a function U; : A?l x -+ x Aln — R™ such that

Ui (21, o) = > pt)us (21(t1), 22(ta), -, Zntn) b1, tn)
teT

that is U; is a vectorial sum of R™, being p(t) the probability distribution of player ¢ when her

type is t;.

Definition 3.1. Let I' = (N, A, T,p,u) be a Bayesian multicriteria game. We say that a strategy

profile T = (1, T2, ..., %) GA{l ><A§2 x ... Aln js g
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e Weak Bayesian Pareto equilibrium (for short wBPE) for the game I" if Vi € N,
Az, € AZT’ such that

Ui (.%i, 2_1) > Uz' (/.f) )

e Strong Bayesian Pareto equilibrium (for short sBPE) for the game ' if Vi € N,
Az, € AZ-Ti such that

Ui (z,2-5) > Ui (Z) .

We denote with wBPE (I') and with sBPE (I') the set of weak Bayesian Pareto equilibria and

strong Bayesian Pareto equilibria respectively for I'.

Remark 3.1. If a strategy profile T is a strong Bayesian Pareto equilibrium then it is a weak

Bayesian Pareto equilibrium, but the viceversa does not hold. See the Example[3.1]

Remark 3.2. If in T the type spaces are trivial, i.e. |T1| = |To| =--- = |T,,| = 1 then we can write
(N, A, u) and we obtain a multicriteria game with complete information and wBPE and sBPE boil

down to wPE (weak Pareto equilibria) and sPE (strong Pareto equilibria) respectively.

A Bayesian multicriteria game is called a finite game if A; are finite sets for all i € N.

We defined a strategy of player ¢ as a function z; : T; — A;. For semplicity in the following

examples, in place of z; (¢;) we will write the corresponding action in A;.
Let us consider the following example:

Example 3.1. LetI' = (N, A, T, p,u) be a finite Bayesian multicriteria game where:
e N =1{1,2};
o Ay ={a1,b1}, Az = {as, bo};

o T1 = {t}}, T = {t3,43} .
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The functions uy,us : (A1 x Ag) x (T1 x Ty) — R? are represented by the bimatrices Table

and Table[3.2.

Table 3.1: uq
1 \ 2typel ao by
ap (1,0) (2,3) (0,1) (1,0)
bl (Oa 1) ( ) 3) (L O) (3a 1)

Table 3.2: uo
1 \ 2 type 2 aq bo
ai (1,0) (1,2) (0,1) (3, 4)
b1 (0,1)(2,3) (1,0) (3,2)

The first table represents the case in which player 2’s type is t5, whereas the second one represents
the case in which player 2’s type is t3. In each entry of any bimatriz the first pair is the payoff of
player 1, while the second one is the payoff of player 2. In this example each player has two criteria.
We can note that the player 1’s payoffs are the same in both matrices. In the first case as is a
dominant strategy for player 2.

Now we suppose that player 2’s type is ti with probability P € [0, 1] and type is t3 with probability
1 — P. Then the a priori expected payoff functions Uy and Us are given in the bimatriz Table
where x1,y1 are the strategies of player 1, while x2,y2 are the strategies of player 2. [3.3. Now we

Table 3.3: A priori expected payoff functions

U1\U2 X2 Y2
T (1,0) (P+1, P+2) (0, 1) (3-2P, 4-4P)
Y1 (0, 1) (2P+2, 3) (1, 0) (3, 2-P)

want to compute the strong and weak Bayesian Pareto equilibria for this game depending on P.
e If P> 2 wBPE = sBPFE = {(a1,a2), (b1,a2)};

e If3<P< % wBPE = sBPE = {(a1,a2), (a1,b2), (b1,a2)};
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If 2 < P <3} wBPE =sBPFE ={(a1,a2),(a1,b2) , (b1, a2), (b1,b2)};

o If P <2 wBPE =5sBPE ={(a1,bs), (b1,a2), (b1,b2)};
o If P=2 wBPE = {(a1,a2),(b1,a2)} sBPE = {(b1,as)};
° IfP = % wBPE = {(al,bg) y (b1,a2) y (bl,bg)} sBPE = {(bl,ag) 5 (bl,bg)};

IfP = % wBPE = {(al,ag) s (al,bg) s (bl,GQ)} sBPE = {(al,ag) N (al,bg)}.

In the Example [3.T]there are many equilibria. Generally the existence of equilibria is not ensured.

Indeed let us consider the following example:

Example 3.2. Let I' = (N, A, T,p,u) be a finite Bayesian multicriteria game where:
o N ={1,2};
o Ay ={a1,bi}, Az ={az,b2};
o i ={t1}, To = {tz,83}.

The functions ui,us : (A1 x Ag) x (T} x Ty) — R? are represented by the bimatrices Table and

Table[3.5]
Table 3.4: u;q
1\ 2typel ag by
ai (273) (17 '1> (47 1) (27 1)
Table 3.5: uo
1 \ 2 type 2 ao bo
ai (273) (27 _1) (47 1) (37 0)

Also we suppose that player 1 assigns probability P € [0,1] to type ti, and probability 1 — P to

type 12, so we have that p (t},t}) = P and p (t},t3) = 1 — P. Then the values of Uy and Uy are given
ype 1y 1512 1,2
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in the bimatriz Table[3.4

Table 3.6: A priori expected payoff functions

U1\U2 T2 Y2
T (273) (_P+27 '1) (47 1) (_P+37 P)

It 1s easy to prove that there are not weak Bayesian Pareto equilibria or strong Bayesian Pareto
equilibria. In effect we can note that Uy (x1,x2) > Uy (y1,22) and Ui (y1,y2) > Uy (z1,y2). So
possibly Bayesian Pareto equilibria are (z1,22), (y1,y2). But, since U (x1,y2) = (3— P,P) >
(2—P,—1) =Us (x1,22) and Uz (y1,x2) = (2P +1,2) > (2P, P) = U (y1,y2) , for each P € [0,1],

they are not Bayesian Pareto equilibria.
3.3 Bayesian Potential Multicriteria Games (BPMG)

In this section we define a Bayesian potential multicriteria game.

Definition 3.2. Let I' = (N, A, T,p,u) be a Bayesian multicriteria game with a priori expected
payoff U; for all player i € N, we say that I' is a Bayesian potential multicriteria game (BPMG
for short) if there exists a map II : AlTl x oo x Aln — R™ such that Vi € N, x;,y; € AiT" and

Vr_; € A:C;" = HjeN\{i} A?j, we have
Ui (zi, 2—i) = Ui (yi, i) = W (@i, o) — I (i, 2—) - (3.1)
We call II a potential function.
Example 3.3. Let I' = (N, A, T,p,u) be a finite Bayesian multicriteria game where:
o N =1{1,2};
o Ay ={a1,b1}, Ay ={ag,ba};

o T1 = {t}}, T = {t3,43} .
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The functions ui,ug : (A1 x Ag) x (Ty x Ty) — R? are represented by the bimatrices Table and

Table[3.8
Table 3.7: u;
1\ 2typel a» by
a1 (34) (3,2) (4,3)(2,3)

The first one represents the case in which player 2’s type is t3, whereas the second one represents
the case in which player 2’s type is t3. We can note that the player 1’s payoffs are the same in both
matrices.

The value of Uy and Uy are given in the bimatriz Table[3.9

It is easy to see that a potential II for this game is given by the matriz Table[3.10,

We can see that the strategies (x1,x2), (x1,y2), (y1,22) are sBPE for T, for all P € [0,1].

Definition 3.3. Let I' = (N, A, T,p,u) be a Bayesian multicriteria game, we say that T' is a

Bayesian coordination game if u; = u; Vi # j.

Clearly, if I" is a Bayesian coordination game then U; = U; Vi # j. For such a game there is a

potential IT : AIT1 x -+ x Aln — R™, Take, for example, II = Uj.

Definition 3.4. Let I' = (N, A, T,p,u) be a Bayesian multicriteria game, we say that T' is a

Bayesian dummy game if
wi (i (), 2-i (t5) 1) = ui (yi () , i (¢5) , 1)
VteT Vie N, Vay,yi€ A, vo_, e A0 Vj+£i.

Table 3.8: us

1\ 2type2 az by

ay (3,4) (6,4) (4,3) (4,4)
b1 (0,5) (2,2) (1,2) (0,0
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Table 3.9: A priori expected payoff functions

Ui\Uz x2 Y2
1 (3,4) (6-3P, 4-2P) (4, 3) (4-2P, 4-P)
U1 (0, 5) (2-P, 2-P) (1, 2) (0, 0)

Table 3.10: A potential function

I 2 Y2

21 (34)  (1+P, 4+P)
y1 (0,5) (P-2, 3+P)

For a dummy game, since u; does not depend on the i-th component, for each i € N we let
wi(zi,x_;) = di(x_;), Vs, r_; and we denote by T = (N, A, T,p,d) a dummy game. If T is a
Bayesian dummy game then U; (z;,z_;) = U; (yi,x—;) Vi € N,x;,y; € A;TFi, Va_; € Agi, and it

has a potential TT : A" x --- x AIn — R™, which is TT = (0,...,0).
Remark 3.3. Let IV = (N,A, T,p,uj) be a finite set of Bayesian potential multicriteria games
with potential IV Vj = 1,...,k, then the Bayesian multicriteria game I' = (N, A, T p, Z?:l uj>

15 a Bayesian potential multicriteria game with potential Z?:l I,

Remark 3.4. By the decomposition theorem (see [16l], [94)]), a Bayesian multicriteria game I' =
(N, A, T,p,u) has a potential function iff there exist a coordination game I'™ = (N, A, T,p, ) and
a dummy game T% = (N, A, T,p, d) such that U; =11 + D; Vi € N, where with U;, 11, D; we denote

the a priori expected functions of u;, 7, d;, respectively. Moreover 11 is a potential function of T

Theorem 3.1. Let I' = (N, A, T, p,u) be a finite Bayesian potential multicriteria game, then there

exists a strategy profile T € A?l x -+ x Aln such that T is a sBPE for T.
Proof. Let T1: AT' x ... x ATn — R™ be a potential for T', with IT = (ITy, ..., IT,,) where
Hk:AlT1 X e XAZ” — R Vk=1,...,m.

Since T is a finite game, argmar, i At Yo Iy (y) # 0. Take

m

T EArgmazT, i T Zﬂk (y). (3.2)
k=1



48 Bayesian Pareto Equilibria in Multicriteria Games

Then x is a sBPFE for I'. Indeed, suppose that = is not a sBPFE for I', then there exists
1€ N and y; € A;‘n such that U; (y;,z—;) > U; (x4, x—;) . But then II (y;, x—;) — II (z;,x—;) > 0, so

Yooy M (yi, —3) — Uy (2, 2—;) > 0, which is in contradiction with condition ([3.2)). O
Clearly, by Remark T is also a wBPE for I

Theorem 3.2. LetT' = (N, A, T, p,u) be a Bayesian potential multicriteria game with potential I1.
Then

sBPE () = sBPE (I'),
where I'™ = (N, A, T,p, ).

Proof. Tt follows from Remark O

An economic application of the concept of Bayesian multicriteria game in particular case of one

criterion is studied in [93].
3.3.1 Approximate Bayesian Pareto Equilibria

Definition 3.5. Let I' = (N, A, T, p,u) be a Bayesian multicriteria game. We say that a strategy

~ s ~ T T T, -
profile T = (Z1,%2,...,%,) € A]' X A2 X -+~ X Aj is a

e Approximate Bayesian Pareto equilibrium (for short eBPE) for the game T' if

Vi € N, Ve > 0, we have that T; € eB (T_;), where
eB(T_;) = {wic X|Ui(yi,x—i) ¢ U (xi,x_;) + eRT },
with R =R\ {[0,¢]"}, where R = {(z1,...,2m)|z; >0i=1,...,m}.
We denote with eBPFE (T") the set of approximate Bayesian Pareto equilibria for T'.
Definition 3.6. For f: A1T1 X oo x AIn — R we define
o

= Jye Al x - x Al"|f (y) > sup f(x)—e

T
m€A11><~~-><Af€"
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Example 3.4. Consider the Example in which there are not weak (strong) Bayesian Pareto

equilibria and let us compute the e BPE of the game I'. With trivial computations we get:
If P> 3,

(1) 1 <e<2—P, eBPE(T) = {(a1,b2), (b1,a2)};
(2) 2— P<e<P+1, eBPE(T) = {(a1,b2)} ;
(3) ¢ > P+1, eBPE(T) = 0.

IfpP<i,
(1) 1<e<P+1, eBPE(T) = {(a1,b2), (b1,a2)};
(2) P+1<e<2—P, eBPE(T) = {(b1,a2)};
(3) €>2— P, eBPE(T) = 0.

IfP=

9

N[ —

(1) 1<e< 3, eBPE(T) ={(a1,b2), (b1,a2)};

(2) e> 3, eBPE(T) = 0;

(3) e=35, eBPE () = {(a1,a2), (a1, b2) , (b1, a2) , (b1, b2)} .
e Ife <1, eBPE(T) = (;

o Ife=1, ¢BPE(D) = {(a1,as), (a1,bs), (b1, as), (b1, b2)} .

The following theorem extends the Theorem 3.1 in [73] to multicriteria games, and to Bayesian

games the Theorem 3.6 in [94].

Theorem 3.3. Let I' = (N, A, T,p,u) be a Bayesian potential multicriteria game. Suppose that
the potential function is upper bounded, then there exists a strateqy profile

T e AIT1 x -+ x Aln such that & is a eBPE for T', for all € > 0.
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Proof. Let 11 : Arfl x -+ x Aln — R™ be a potential for ', with IT = (IIy, ..., II,,) where
Hk:Aipl X v XAZ” — RVE=1,...,m.

Since IT is upper bounded, argsup;_ ,r > ey Uy (y) # 0. Take

m
x € argsuP;eAflx---xAZ" an (y). (3.3)
k=1

Then z is a eBPFE for I'. Indeed, suppose that z is not a e BPFE for I, then let be i € N and

yi € AZ-Ti such that U; (yi, ;) € U; (zi,7—;) + R} .. But then
I (yi, v—i) — (2, 2—5) = Ui (yis i) — Ui (w5, 2—) € RY
50 Y peqy g (ys, x—i) — Oy (25, 2—;) > €, which is in contradiction with condition (3.3). O

Remark 3.5. Let I' = (N, A, T, p,u) be a Bayesian potential multicriteria game with potential I1.
Then Ye > 0, we have

¢BPE (') = eBPE (I'™),

where I'™ = (N, A, T,p, ).
3.4 Existence results: the scalarization approach

In the setting of Section we consider the Bayesian multicriteria game I', and as in [68], we

use the following additional assumptions on the Bayesian game I'. For every player ¢ :
(A1) w; (-, t) is continuous Vt € T Vi € N.
(A2) A;is a compact and convex set, and u; (-, a_;, t) are quasiconcave Va_; € A_;, Vt € T, Vi € N.

In the following we apply the most popular existing methods for solving multiobjective opti-
mizations problems to Bayesian multicriteria games. See for example [80].
In order to prove an existence theorem for Bayesian Pareto equilibria (see Definition [3.1)) we

give the definition of scalarized game as follows
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Definition 3.7. LetT' = (N, Ay, ..., Ap, 11, ..., Ty, p,ut, ..., uy,) be a Bayesian multicriteria game
and let X = (A1,...,\p) where A\j = (M1, -« -, Aim) € Ay 18 a weight vector for player i’ s objectives

Vi € N. We define the weighted game

= <N,A1,...,An,Tl,...,Tn,p,vi\,... UA),

ren

where Vi € N, v;\ : A X T — R is defined in the following way:

m
v (an,antyotn) =Y Nkt (@1, Gyt ). (3.4)
k=1

Remark 3.6. We recall that the inner product, denoted by (-,-) of two vectors a = (a1,...,an),

b= (b1,...,bn) € R" is a real number given

<(Z, b> = Z albz

i=1

Remark 3.7. The a priori expected payoff Vf‘i for player i can be written in this way:

VA (21, ) = ZZ)\ikuik(xl(tl)v"'7xn(tn>)p(t)

teT k=1

k=1 teT
= <)\Z, Ui ({L‘l, e ,:L'n)>

The next theorem links the Bayesian Pareto equilibria for the game I' to the Bayesian Nash

equilibria for the game T,

Theorem 3.4. LetI' = (N, A, T,p,u) be a Bayesian multicriteria game which satisfies Assumptions

(A1) and (A2), such that AT* x - x ATn is a conver subset. Let T € ATV x ... x ATn | then
e T is a wBPE for T iff for all i € N ezists \; € Ay, such that T is a BNE for FS‘;

Proof. Let Z be a wBPE for ' then Vi € N, fz; € A;Tpi such that U; (x;,7_;) > U; (Z) . Then U; (%) is
weak Pareto optimal in R™. By Theorem 10.1 pages 117-118 in [124] and for the convexity of R™ and

of ATt x - x ATn we have that Vi € N, 35; € Ay, such that Vz € AT x -+ x ATn VA (3) > V7 (2)
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because of the Remark @ Tt follows that 7 is a BNE for T
On the other hand, we suppose by contradiction that Z is not a wBPE of I". Then 3¢ € N, Jy; € AiTi

such that

For hypothesis 35\2- € A,, such that

VN (@) > VN (5,3 (3.6)

So the conditions (3.5 and (3.6) lead to a contradiction.

The next corollary ensures the existence of Bayesian Nash equilibria for the weighted game T

Corollary 3.1. If v;\ 18 continuous, A; is a compact and convex set and v;\ (-,a_;,t) are quasiconcave

Va_; € A_; ¥t € T, Yi € N, then T* possesses a Bayesian equilibrium Y\; € Ap,.
Proof. See Proposition 1 in [68]. O
Finally, Corollary ensures the existence of wBPE for a Bayesian multicriteria game.

Corollary 3.2. If 1)1-)‘ 15 continuous, A; is a compact and convex set and vi)‘ (-,a—;,t) are quasiconcave

Ya_;, € A_; VteT, Vi e N, and if A1T1 X - x Al s a convexr subset then
e Vie N, 3\ € A, such that 7 is a wBPE for the multicriteria game T.

Proof. Tt follows from Theorem O

A question of interest in economics is how the optimal choice changes as a parameter changes.
We know that, Vi € N, if Vi/\i is twice continuously differentiable with respect to x;, given a BNE

profile z = (Z1,...,Z,) it must satisfy Vi € N the condition

9 Ai (23
o, (@) =0 (3.7)
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andVj=1,....m

V> (3) <0 (3.8)

SowehaveVi=1,...,n Vj=1,...,m,

0? 9?

— VX (T) da; VA (Z)dNi; =0 3.9
69512 ¢ ($) i+ 8.%8)\” v (33) J ( )
In our case we have Vi =1,....n Vj=1,...,m,
dei D oter a%iuz‘j (@1 (t1) - 20 (ta)) P (2)
d)‘ij ZteT Zzlzl )\ik %uzk (/x\l (tl) g 753\n (tn))

p(t)
_ EtET %uw (71 (tl) yens Ty (tn)) P (1)
S Ak Sier e @1 (1) B (1) p ()]

B %Uij (Z1y...,%p)
= — 5 — —,
<)\i; %Ul (.%'1, e ,xn)>
so the sign of this derivative is given by the sign of %Uij (Z1,..,Tp) -

3.5 An economic application: the Cournot duopoly

Let us consider a Cournot game I', with incomplete information on production costs and where
the demand arises from a competitive market of two types of commodity.

Then, we define I'c = (N, Ay, Ay, T1, T, P, uy,ug) , where

N ={1,2};

2 . .. . .
A=Ay = [0, g] where 9§ is a positive amount. We denote with A = Ay x As the Cartesian

product of the action spaces of firms;

Ty = {t}},T> = {t3,t3} are the type finite set. We denote with T" = T} x T} the Cartesian

product of the type spaces of firms;

e P c0,1] is the probability that firm 2’s type is t;
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o u;: AxT — R? i=1,2are the utility functions defined in the following way:

Call a = (a1,a2) € A1, b= (b1,b2) € Ag, and
u1 (a,0,t) = (f1(a,b), f2(a,b)),

where

o fi(a,b)=a1 (6 —a1 —b1)—ci;

o fa(a,b) =az (6 —az —bz) — ca.
where c1,cy > 0.

ud (a,b,t) if the type is ¢}
ug (a,b,t) =

u3 (a,b,t) if the type is 13,

where with u},u3 we denote the utility function of player 2's type is t3,3, respectively.

In particular
uy (a,b,t) = (g1 (a,b), 92 (a,0)),
where
e gl (a,b) =b1 (6§ —ay —by) — kb%;
e gl (a,b) =by (6§ —ag — by) — kb2.
u3 (a,b,1) = (g7 (a,0) , g3 (a, b))

where
® g%(a,b) :bl (5—&1 —bl)—k;
[ g%(a,b) 262(5—612—[)2)—]6.

where k > 0. Let (z,y) = (z1,22,91,%2) € Arfl X AQT2 be the a priori expected payoff function of

firm 11is Uy : Aipl X Agz — R2 such that

Ui (2,y) = (F1 (z,y) , I (2,9))

where
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o Fi(z,y)=x1(6 — 21 —y1) — c1;

o Fy(x,y) =x2(0 —x2 —y2) — Co.
and the a priori expected payoff function of firm 2 is Us : A{l X A? — R? such that
Uz (z,y) = (PG} (z,y) + (1 = P) G (2,y), PG3 (z,y) + (1 = P) G} (z,y)) =: (G1 (z,9) , G2 (z.y)).
where

o Gi(z,y) =y (6 — 21— 1) — kyi;

o G (2,y) =y2 (8§ — 22 — yo) — ky3;

o G (z,y) =1 (6 —z1—y1) = k;

o G5(2,y) =y2 (6 — w2 —y2) — k.

We want to find Bayesian Pareto equilibria for T'..
Let us define the weighted Cournot game Fé = (N, A1, Ay, T, T5, P, v{‘,vé\), with A € [0,1],

where v; : AX T — R, i = 1,2 are defined in the following way:

v (a,b,t) = Mi (a,0) + (1= A) fa (a,b);
Mgt (a,b) + (1 — X) g2 (a,b) if the type is #)
v) (a,b,t) =
g3 (a,b) + (1 — N) g3 (a,b) if the type is 3,
The weighted Cournot game I') satisfies the assumptions of Corollarybecause A, Ay are convex
and compact sets, v7 (-,¢) and v} (-, ) are continuous functions because they are linear combinations
of continuous functions for each ¢t € T, v{‘ (-,y) and vg‘ (x,-) are concave functions Yy € A2T2, and
Vo € A{l, respectively, because they are linear combinations of concave functions. Then I') possesses
a Bayesian Nash equilibrium VA € [0, 1].
If A € [0,1], denoting by V;* and V3 the a priori expected payoff functions for firms 1 and 2

respectively, we have for all P € [0, 1],

oV
W(l‘??/) = A0—271—y1) + (1= A) (6 — 222 — y2);
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and

Vs
87;(%@ = A(=2Pky1 +0 — a1 —2y1) + (1 = A) (=2Pkyz + 0 — w2 — 2y3)..

from which we obtain the following weighted quantities:

0(1+2Pk
vy (1= Az E‘%—HLPk)
1)
A 1- Ny = —
nA =Ny 3+ 4Pk

from which we have Y\ € (0,1] the Bayesian Nash equilibria of I')

<<i [m -1 —)\)1’2] ,:c2> , G [SJF(ZP]{ —(1=2) yz] ,y2>>, (3.10)

and for A = 0, we get the following Bayesian Nash equilibria

(o 550 (o))

3.5.1 The contraction approach

The contraction approach is based on showing that the best reply map

T (z,y) = (ammmﬁ,,c€ AT Vi (2,y) , argmaz AT Vst (x, y))

is a contraction. Then there is a unique fixed point of T, that is, unique Bayesian Nash equilibrium
for Fi‘ according to the Banach fixed-point theorem . Namely we have to prove that T is a
contraction on AT* x AJ2. For this a sufficient condition is that (see [122]):

92V
0z2

02V

520y | < © (3.12)

+

1

Theorem 3.5. Let (X,d) be a non-empty complete metric space. Let T : X — X be a contraction mapping on X,
i.e.: there is a nonnegative real number h < 1 such that

d(T(x), T(y)) < h-d(z,y)

for all x,y € X. Then the map T admits one and only one fized-point x* € X.
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and

02V
0y?

ORAVAS
oyox

<0, (3.13)

for each x € AlTl, y € A2T2 and A € [0,1].

It easy to see that both conditions ([3.12)) and (3.13)) are satisfied, so the weighted Cournot game T'}

admits a unique Bayesian Nash equilibrium. Conditions (3.12)) and (3.13) also ensure dominance

solvability of I'2 | and, consequentely, global stability.

Suppose we want to determine how the optimal a priori expected payoff functions Vl’\, and V2A
respond to changes in the parameter A € [0, 1].

It easy to see with comparative statics techniques that YA € (0, 1] the unique Bayesian Nash

equilibrium for Fé‘ is

. o ({50 +2PK) 51 +2Pk) 5 5
(@y7) = (( 3+4Pk ' 3+4Pk ) \3xapk 3x4pk) | (3.14)

In particular by Theorem we proved that (z*,y*) in (3.14) is a wBPE for I';, and for the

uniqueness it is also a sBPE for I'..
In the case A = 0 the previous technique cannot be used because x7 (\) and yj (A) defined in

(3.10) are not differentiable at A = 0. Indeed the game T is reduced to be a one-criterion game

5(142Pk) 5
3+4Pk ° 3¥4Pk ) -

with Bayesian Nash equilibium (z*, y*) = (

3.5.2 The potential approach

From another point of view, we deal with the game I'. as a Bayesian potential bicriteria game.

Consider the following lemma

Lemma 3.1. The Bayesian bicriteria game U. is a Bayesian potential bicriteria game with the

2A game is dominance solvable if the set remaining after iterated elimination of strictly dominated strategies
is a singleton (see [84]).
3A BNE is globally stable if for any initial position the system converges to it.
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following potential function:

1
M(z,y) = <— (ﬁ + SU%) - (1+ Pk) (3/% + y%) — = (z1y1 + 21y2 + To2y1 + T2y2)

2
+0 (x1 4+ y1 + 22 + 42),
2, 2 2, .2 1
- (951 + 1‘2) — (1+ Pk) (3/1 + 3/2) 5 (x1y1 + 1Y2 + Toy1 + 2y2)
+0 (21 +y1 + 22 + yz))

= (Hl (xay)7H2 (ﬂj,y))
Proof. Consider a two-person Bayesian bicriteria game with a priori expected payoff functions

Wi (z,y) = (—Cﬁl (P) (z-e1)” =24y (P) (- e1) (y - ex) + 26} (- ex) + hi (y, P)

@1 (P) (& - e2)? — 20 (P) (3 e2) (y - e2) + 203 (2 e2) + 2 (3, P) )

Wa (z,y) = (_Q%2(P)(y'el)2_2(151(P)(x'el)(y’el)+29%(y'61)+h%($vp)7

—g35 (P) (y - €2)” — 243, (P) (z - €2) (y - €2) + 203 (y - e2) + h3 (a, P)) :

From a straightforward generalization of Lemma 6 in [II1I] to two criteria, we have that it is a

Bayesian potential bicriteria game iff q12 (P) = go1 (P) VP € [0,1]. A Bayesian potential function

IT is such that

M(z,y) = —qu(P)(z-2)—q2(P)y-y)
—q12(P) (z-y) —qi2 (P) (v -e1) (y-e2) —qia (P) (v - e2) (y - 1)

+(2,2) (01 -2) +(2,2) (62-v),
where {e1, ea} is the canonical basis of R?, and
q11 (P) = (q%l (P) 7q%1 (P)) )

22 (P) = (Q%2 (P)»qg2 (P)),

Q12 (P) = (Q%z (P) 7Q%2 (P))
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are aleatory vectors,

01 = (9}’0%) )
02 = (Q%, 05)

are constant vectors and

hi:Y x[0,1] — R?,
hy: X x [0,1] — R2.

In our case we have:

(i) q12(P) =¢qa1 (P) = (%, %) :
(ii) q11 (P) = (1,1),(]22 (P) — (1 +Pk,1+Pk);
) == (5.9):

(iv) 1 (y,P) = (—c1,—¢2) ,ho (z, P) = (=k (1 = P),—k (1 — P)).
From (i) we have that ', is a BPMG, and it is easy to compute the potential function. O

Since II (x,y) < (252, 252) , the potential II is an upper bounded function and for any € > 0 I,
has an eBPE (by Theorem . In particular, in our setting, if y € argmaxxeAlTlﬂl (z,y), and
T € argmaacyeAQTQHg (z,y) (that is (Z,7) € A{l X A2T2 is a sBPE for I'T = (N, A1, Ag, Th, Ts, P, ),
then, for Theorem is a sBPE for I'., and, obviously, also a wBPE for T'...

In our example we have

1 1 1 1
argmaz, _,ni Il (2,y) = { <—4 (Y1 +42) + 50— (y1 +92) + 25) } ;
N _ 1 1 5
womet,eapll @0 =\ "y M T sae R

1 1
“Ia g R Wrte) 2(1+Pk)5>}'

So it is easy to see that

5 (1+2Pk) (1 +2Pk) 5 5 (3.15)
3+4Pk ' 3+4Pk ) \3+4Pk’3+4Pk) )’ '
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is a sBPE for I';, as we proved in the first part of the model.

We studied the class of Bayesian multicriteria games establishing the existence of approximate,
weak and strong Bayesian Pareto equilibria in the case of Bayesian potential multicriteria games.
In a general case, by using the scalarization approach, we showed the existence of weak Bayesian
Pareto equilibria. Moreover we gave an economic example which modelize the classical game of
Cournot duopoly in the case of incomplete information and in which both firms have two objectives
to optimize.

There are many topics for further research. First of all this model of Bayesian multicriteria game
can be applied to environmental games in which countries have to take into account many objectives
and it is realistic to suppose incomplete information about political strategies of opponent countries.
The interesting case of supermodular games ([I5], [94]) could be also considered in order to obtain

some further results about the Bayesian multicriteria games.



Chapter 4

A Bayesian Potential Game to Illustrate
Heterogeneity in Cost/Benefit
Characteristics

4.1 Introduction

We are going to propose an idea to model heterogeneity of agents in games where the differences
among players’ behaviours can be outlined by considering two main features, basically relying on
benefit and cost.

The chosen approach comes from Bayesian game theory, where the definition and the employ-
ment of suitable types for players lead to a naturally asymmetric structure. Specifically, we will
select an asymmetric game where the type structure is finite and investigate the related Bayesian
potential game. Potential games are quite a useful tool to simplify the determination of Nash
equilibria and achieve a number of properties of the optimal strategies of the game. Specifically,
potential functions of games collect all the relevant information in a unique function, whereas in
Bayesian games every player only owns and takes into account information on her type in her payoff
structure.

Actually, my analysis takes into account a specific kind of payoff, whose features are very com-
mon across oligopoly games, i.e. the typical form of profit equalling the difference between gains,
where the information about benefit type is, and costs, where the information about cost type is.

We assume that the cost functions include the contributions of all agents, as if all strategies caused
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a damage to all agents, even if at different levels. Such a formulation can be applied to an environ-
mental game, where firms (or countries) choose their optimal emissions strategy maximizing their
own profits, having to take into account that their aggregate emissions amount to an environmental
cost suffered by all of them. We find it evident that when the involved agents are countries, even
more than firms, the issue of modeling heterogeneity assumes high priority.

The Bayesian game approach seems to be suitable, in that it permits a complex characteriza-
tion of types which may reflect countries’ economic attitudes, productive characteristics and even
propensity to cause environmental damage.

In our opinion, the distinction among types usually employed in Bayesian game theory responds
to the commitment to manage the complexity and the heterogeneity of such a framework, in which all
countries are endowed with such different prerogatives. Furthermore, some contributions appeared
in recent literature taking into account the issue of monotonicity of pure-strategy equilibria in
Bayesian games (in particular, [76], [118] and [I00]) in setups where the type spaces are partially
ordered probability spaces. In this chapter, we intend to develop a procedure to check monotonicity
in our framework, where the type spaces are discrete and consisting of a finite number of types,
because the techniques employed by [118] and [100] cannot be applied.

After constructing the Bayesian game and establishing a suitable preference order on the type
spaces, we proceed to take into examination the Bayesian potential structure of the game. Additive
separability in the strategic variables of the environmental cost functions makes such structure quite
simple to deal with and provides some clear properties for the Nash equilibria.

In particular in this chapter we underline that the potential of the original game can be explicitly
calculated and decomposed in the sum of the aggregate revenue and the aggregate cost, giving rise
to an equivalent game where information on the probability distributions of all types is collected.
Moreover the cost structure emerging from the formula of the potential function provides necessary
and sufficient conditions to ensure monotonicity of the pure strategies, in compliance with the partial
order established on the type spaces. Finally, monotonicity and feasibility of the pure strategies are

shown and proved in some very basic examples. The first example involves a unique pure strategy
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in the original strategy space, in the second one the pure strategy is unique as well but the strategy
space must be restricted in order to ensure monotonicity, whereas the third example, which relies
on a non-standard payoff structure, does not have a globally concave potential function and then

requires a different kind of analysis.

4.2 The setup of the model

In standard environmental games, /N countries choose their optimal emissions strategies e; > 0,
in order to maximize their profit functions. Typically, their emissions contribute to increase the
total stock of pollution.

An aggregate dynamic variable is usually employed denoting the stock of pollution produced by
the accumulation of all countries’emissions: P. P causes damage to the environment and affects
countries’payoffs negatively, behaving as a negative environmental externality whose effect differs
across countries, as if each player had to bear a specific environmental cost depending on the
aggregate stock of emissions. In [5], [I8] and in analogous models, such heterogeneity is modeled
by employing asymmetric marginal damages across countries and asymmetric marginal revenues.
Our approach will be different, in that we will assume that individual environmental cost will
be determined by each country’s own type. Specifically, P = fi (e1,...,ey), assuming that the
production function fx(-), corresponding to type k, is such that fx (0,...,0) = 0, and is increasing

with respect to each emission variable, i.e.:

%>0’ V]:L,n
Oej

Such production function fx(-) expresses the effect of the accumulation of the pollution stock
on a country whose type is k. Thus, we can look upon it either as an environmental cost for the
country or as the marginal contribution of each country with type k to the aggregate pollution
stock.

Generally, the Bayesian games are endowed with a structure which may be suitable to model

heterogeneity of agents. In this case, we are going to take into account two basic elements of het-
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erogeneity, possibly different across countries: the marginal gains from emissions and the individual

contributions to damage caused by the accumulation of pollution. In both cases, we will consider

a low and a high level, labeled by indexes L and H. Hence, we intend to rely on 4 different types

(an example of such a discrete type structure can be found in [24]).

The main characteristics of our framework can be summarized as follows:

N = {1,...,n}, where n < oo, is the set of players, i.e. countries which aim to maximize

their payoffs;

br,byg € Ry are parameters indicating all the possible marginal gains from emissions; by, < b,

then by, is suitable to define the action spaces of countries;

the action spaces of countries are called E; (standing for emissions) and are all equal compact
intervals, 1.e.:

E1:E2::En:E: [O,QbL];
the finite sets representing the type spaces of players are all equal to

T ={(br, fr(-)); (br, fu()), (bm, fr(-)); (bwm, fu(-))}:

equipped with the partial ordering = which will be established in Definition [£.3] and 7" is
the Cartesian product of n copies of T. Note that this type structure allows each involved

country to belong to 4 alternative types;

the common prior belief of the agents is represented by a discrete probability measure having
full support on each finite type space T. Fach probability distribution is designed in such a
way that the i-th country has probability pzk to belong to type (b;, fx(-)) € T’; namely, the

following properties are supposed to hold:
pF >0, Vi=1,...,n, k,je{L,H},
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e if the i-th country belongs to type (bj, fx(:)), her payoff function reads as follows:

€;

ei<bj— 2)—fk(61,...,6n);

hence, the i-th utility function is given by u; : E™ x T" — R such that:

uiLL(eh N o) t1, e ,tn) if ti = (bL, fL())
LH -
u; 61,...,6,t1,...,t if ¢; = bL, fH
ui(el,...,en,tl,...,tn): ZHL( " n) . ’ ( (>) , (4.1)
ui (e, .. enytl, .. ty) it = (ba, fL())
uZHH(eb ey 6n,t17 e ,tn) lf ti = (bH, fH())
where
” €;
uf (€1y.nvy €y t1yeeny ty) =€ (bj—é) — fr(er, .. en);
e the a priori expected payoff function of country i is U; : (E7)" — R such that:
Ui(z1,...,x,) = pFrull(a (t1), ... 20 (tn) s, .. 1) (4.2)
Al () (41) . an (t0) Sty tn)
+pH Lyl (2 (t)) .. () 1, )
+pH ] () (8) g (E) 1, ),
where = (21,..., 1,) € (ET)" are the strategic variables depending on the type profile
(t1,..., t,) € T™ assigned to the n countries by Nature E

From now on, we will call ' = (N, E, T, p, u) the game at hand.

4.2.1 Main characteristics of the game

Generally, we can formulate the conditions under which a Bayesian Nash equilibrium (BNE for

short) is implicitly determined:

Proposition 4.1. Let I' = (N, E, T, p, u) be a Bayesian game with a priori expected utility
functions U;, i = 1,...,n. Call W the largest open set with subset topology containing (ET)™. If

Vi € N the following additional assumptions hold:

We will take into account pure strategies only, i.e. measurable functions z; : T — E, as in the definition in
[100], p. 508.
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(A]) U; € C? (W), and Fy, Fr, € C? (W)7

oU;
(42 Wia ) = 0
a2FH 82FL
(Ag) a.rg (th,JUn)ZO, W(iﬂ,,%ﬁ)zo

where Fr, and Fy are the a priori expected payoff functions of fr and fg, respectively.

Then the strategy profile T = (Z1,...,%n) € (ET)n, where Vi € N

i= Y - 5@ @3)

1s a candidate strategy to be a BNE for .

Proof. Let x = (x1,...,2,) € W. We have that Vi € N,

Us(a) = pF* i (b= 5) = Fo @) +pF [ (b0 = 5) = Fu ()] (4.4)
+pitE [Cﬂz (bH - %) — Fr, (:B)] + piH [mz (bH — %) — Fy (:n)] )

If Assumption (Al) holds, we have

oU; , OF)
@ = w3 [bj Rz (x)]
¢ j.ke{L,H} ¢

and

277, 92
Thw=-1- Y ol

[ a 2
< T4
¢ J.ke{L,H} !

is negative by Assumption (A3).

. : . oU; .
Therefore, Vi € N, if Z; is solution to the n equations 3 “(z) =0, i.e. 1’ hold, then the strategy
x

(2

profile Z = (¥1,...,Z,) is a candidate strategy to be a BNE for T. O
4.3 The Bayesian potential game

In compliance with the standard notation employed in Bayesian game theory, in this subsection
we will use the following symbols, possibly indexed (see also [75]): N for the set of players, E for the

action spaces, T for the type spaces, p for the probability distribution, w for the payoff functions, U
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for the a priori expected utility functions, I' for the Bayesian game and II for the potential functions.
Furthermore, we will denote with ET the space of all functions from T to E. In [75] the authors
prove existence theorem for Pareto equilibria in Bayesian potential multicriteria games. We adapt
these results to the case in which there is one criterion as in Remark 77?.

We are going to construct a BPG by exploiting the additivity argument stated in Remark
Consider two different Bayesian games, the former representing the revenue contribution and the
latter representing the cost contribution. Each one of them is endowed with the same type spaces

and the same probability distributions, that is:
Flz(Na E7 Ta b, gf) and F2:<N7 Ea Tv b, h§)7
VieN, j,ke{L,H}, where

. .
gf (61, yenytiy ... tn) =€ (bj_é)’

hf(el,...,en,tl,...,tn):—fk(el,...,en).

V ¢ € N, the a priori expected payoff functions respectively are:

G (z) = (pF* + pt™) [:Uz (bL — %)} + (pf* + ™) [mz (bH - %)] : (4.5)
H;(z) = — (pi" + pi™") Fu (x) — (pf"" + p/™™) Fy (). (4.6)

Before getting to calculate the potential functions, we remind the readers that a necessary and
sufficient condition for the existence of a potential function II is stated in [83]: given the payoff
functions U;, a potential function exists if and only if

U, 0
8@8% N axiax]‘

(4.7)

for all i # j. The conditions (4.7) hold for U; = G; as in (4.5]), whereas for H; as in (4.6 we need

the following result:
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Proposition 4.2. ['y is a potential game if and only if Vi # j € N we have
pi" -+t = pit 4 pit,
R S A

Proof. Tt suffices to write down (4.7)) for H;:

0’ () 0?Fy (x)
LL ,  HLy 9 FL(T) L HHY 9 LH\T)
(pl +pl ) 81‘18I‘j + (pz +pl ) 8@6:@
O*Fy, (z) 0?Fy (x)
= (pbl 4 pHLYy Z L) LH | JHH\Y “H%)
N (p] er] ) aiblal‘j + (pj erj ) 8.%‘@6:%
if and only if for all i # j we have:
prtpt =pit 4 pt and o pH 4 pft = Rt 4 T

O

We are going to assume some kind of suitable separability in the variables of the production
functions Fr(-) and Fy(-). For example, referring to [§], we can consider forms of payoffs taken

from standard games in normal form.

Definition 4.1. An n— player normal form game I' = (N, X1,..., X, f1,..., fn) 15 called a par-
tially separable game if for any i € N there exist two functions f!: X; — R and
it [1zi X — R such that

fila) = fi (@) + [ (2=0) -

The separable games, introduced in [§], are a particular case of partially separable games intro-
duced in [95] in which Vi € N, fi_i = 0. Accordingly, we can employ production functions of the

following kind:

Fr(z)=) [‘I)jL () + ®jL (ﬂf—j)] ;
j=1
Fy(z)=>)_ [‘I’jH () + By (x—j)} :

Jj=1
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Hypothesizing that for all j = 1,...,n, ®;1,®;y € C? (ET) and (T)(_j)L,CTD(_j)H cC? ((ET)H_1>
and that the conditions on weights stated in Proposition hold, then I's is a Bayesian potential
partially separable game (see [95] for the non-Bayesian case). In our case, we will rely on a stronger

form of separability, i.e. &3(,j) (x—j) =0 and (ID( pa (T—j)=0foralj=1,...,n

Proposition 4.3. If Fp, (z) = >, ;1 (v;), and Fu (x) =377, ®jm (z;), and for all
j=1....,n, &1, ®;g € C? (ET), the Bayesian games 'y and I's are BPGs, whose potential

functions are as follows:

n n
1
=57+ > [br = bm) (07" +p7") + ba] @, (4.8)
j=1 j=1
n n
Z +p3 D) () — Z (P]LH +P§{H) Qi (x5) . (4.9)
J=1 Jj=1
0G; 8P 0H; 0P
Proof. 1t is immediate to check that = 1, and that P2 Furthermore, Proposition
is verified, hence (4.8) and (4.9) are potential functions for I'; and T's. O

Corollary 4.1. If F, (v) = Y %_) @1 (z5), and Fy (z) = 377, @ (v5), and for all j =1,...,n,
i, Py € C? (ET), the Bayesian game I' = (N, E, T, p, u), where uj = gZ + h¥, is a BPG

whose potential function is given by:

:—fo —I—bHZxJ+Z [(br — b)) xj — ®j(x;)] pfF+

n

+ Z [(br — bu) zj — Pjm(x;)] Z ;1 (z5)p Z Pip(xj)p; . (4.10)

j=1
Proof. It immediately follows from Proposition [£.3] and Remark [3.3] Summing the potentials and

finally rearranging terms yields:

3

n

1
I(z) = Py (z) + P2 (2 5@ + > [or = bu) (p7" +p7") + o]
j=1 j=1
(pf" +pj'") ®jr()) T pl™) @5 () =

Jj=1 Jj=

—
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1 n n n
= —5 Zx? + by ij + Z [(bL — bH) Tj— (I)jL(wj)]ijL-f—
=1 j=1 j=1

n
+Z (b, —by) x Qjip(xj)] H ZCI)]L (xj)p ZCI)]H (xj)p
7j=1

O]

Remark 4.1. The explicit calculation of Bayesian potential functions has already been investigated
in some recent papers (for example, [111]), and in particular, it turns out to be simple when the
structure of the game is linear-quadratic. If we consider a Bayesian game U with a priori expected

payoff functions:

Ui (z) = —qii (p) 22 — 2 Z ij (p) wixj + 20; (p) ; + hi (x—i,p) ,
J#i
where q;; and 0; are sufficiently reqular functions of the probability distributions p and h; is a
sufficiently regular function of x_; and p, then by Lemma 6 in [I11)], we have that T' is a BPG iff

¢ij (p) = qji (p) Vi,j € N withi# j, and for all p. A Bayesian potential function for I' is given by
(z) = —2'Q(p)z +20(p)' =
where Q (p) = [¢ij (P)lnxns 0 (p) = 61 (p),...,0n (p)] and? denotes the transpose of a matriz.

Note that (4.10) can easily be decomposed in the sum R(x) + A(x), i.e. the sum of aggregate
1
revenue and aggregate damage. R(z) = 5 Z?Zl sz +by Z?:l xj has no aleatory features, whereas
A(x) = 375 Ej[Aj(x;)], where E;[-] is the expectation operator when its variable is distributed
according to p;, and the determinations of Aj(z;) are:
(b — b)) wj — ®jr(x;) if ¢ = (br, fL(-))
(br —bm)xj — @ju(x;) if tj = (br, fu())

)

)
=1 (z5) if t;=(bu, fr("))
=P (zj) if tj= (b, fu())

Aj(wy, t;) =

The economic intuition behind the formulation R(x) 4+ A(x) can be further refined: in particular,

R(x) represents the aggregate revenue of all agents if they all shared the same high marginal revenue
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type H, whereas A(x) can be expressed as follows:
A(z) = Bi[Aj(x5)] = > 3" ((bs — brr) x5 — @y (w)]+
Jj=1 je{1,...,n}, se{L,H}

+ > P57 [(bs — br) wj — ®;m(w5)],
je{l,...,n}, se{L,H}

where the two sums indicate the aggregate damage, or cost, for all agents due to their marginal
gains’levels. The former measures the aggregate losses of agents with low production functions
based on their marginal revenue type, whereas the latter does the same for the agents with high
production functions. A(z) can be thought of as the function quantifying the loss in payoff caused
by the fact that they fail to belong to the high marginal revenue type.

The following proposition provides necessary and sufficient conditions for I to admit a maximum

point, i.e. a BNE for I' (by Theorem [3.2]in the special case of one criterion).

*

Proposition 4.4. If there exists a unique point z* = (x7,...,2}) € (0, 2br)" such that for all

7 =1,....n the following first order conditions hold:
o= ) O ) (0 9) @ 05) — 087+ 9 @) =0, (411

and @7 (x;) > 0 and Yy (x5) > 0 for any x = (21,...,25) in an open neighbourhood of x* for all

j=1,...,n, then x* is a BNE for .

Proof. The necessary conditions for the maximization of (4.10) are the n equations (4.11)). Because
all the second order partial mixed derivatives are zero, the sufficient conditions are given by:

821_[ LL HL LH HH
0z = (5" +pi7) ®h(a) = (5" + i) Py (]),
7

which are strictly negative if ®7; (z;) > 0 and ®; (z;) > 0 for all j = 1,...,n. Then 2* is the

unique maximizer for IT and consequently a BNE for I. O

Note that Proposition only takes into consideration a unique equilibrium point and assumes
it not to be on the boundary of the domain, hence it essentially concerns globally concave potential
functions. In Section .4 we will also examine an example in which global concavity of II is not

verified.
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4.3.1 Monotonicity of strategies

In this subsection, we are going to establish a preference order on our type spaces, whereby we
will be able to define monotonicity of strategies. We recall for reader’s convenience the following

definition.

Definition 4.2. Let A be a nonempty set. A partial preorder = on A is a reflexive and transitive
relation. A total preorder is a reflexive, transitive and total relation. An antisymmetric partial

preorder = is called partial order, if = is also a total relation, we call it o total order.

Let © be a compact subset of R™ containing the origin and consider the following set

F(©) = {f:06—R| f(0,...,0)=0, (4.12)
f e C?*o), ﬁ(c)ZO, Vceo, w:1,...,n.}.
a’lij

We want to construct a partial order > on the set Ry x F (0©) in the following way:

Definition 4.3. Let (o, f), (8, g9) € Ry X F(©), we say that

(o, f) = (B, 9)

o1 () _ 99(0

>
a>p and gz, = o,

Vi=1,...,n. (4.13)

It is easy to verify that the relation in Definition is a partial order. Namely, (4.13]) establishes
a preference on pairs, leading to a preference on types, which is based on a double prerogative: a
larger benefit parameter and a lower maximum cost. Note that because © is compact and f and g

are both continuous, the sides of both inequalities involve finite values.

Remark 4.2. The partial order = defined in Definition on the set Ry x F ([0, 2b.]") induces
the following partial order on type set T :

(br, f2 () = (bm, fu () = (br, fu (+))
(b, fr () = (br, fL (+)) = (br, fu (),
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then (T, =) is a poset.

Definition 4.4. A strategy for player i, x; : T — A, is monotone if t; = t; implies z; (t;) > x; (t;)

for all t),t; € T.

The following theorem intends to characterize the monotonicity of BNEs in our framework.
Intuitively, it relies on the fact that the preference order on Ry x F ([0, 2bz]") is reproduced in the

FOCs of our maximization problem.

Theorem 4.1. Let T'= (N, E, T, p, u) a Bayesian game such that BNE (T') # ().

If Fr(z) = >20_; @51 (z)), and F (z) = 377 ®jm (x5), and for all j = 1,....n, 1, Py €
F ([0, 2b.]"), T’ admits a monotone BNE z* with respect to the partial order = on the set Ry x
F ([0, 2bL]") iff V5 =1,...,n, we have:

0®j1 (z;) _ 0Pjm ()
8$j - 8xj ’

(4.14)
for all x; € (0, 2br).
Proof. Rearranging the j-th FOC yields:

= (= ba) (0 1) b = (5 201) 95,05) = (001 ),
leading to the following implicit definitions of the pure strategies:

2 fu () = by — ()
25 (b i () = by — @ ()
25 (0 () = b — @ ()
25 (bp, () = by — @)

and it follows immediately that if (4.14) holds for all players, the preference order defined in Defi-

nition and in Remark {4.2|is satisfied by 2* € BNE(I'). O

What follows is a criterion to ensure the feasibility of monotone pure strategies:



A Bayesian Potential Game to Illustrate Heterogeneity in Cost/Benefit
74 Characteristics

Proposition 4.5. If x* is a monotone pure strateqy of I' and if the following inequalities hold:

{m; (brs fr () < 2by,
z; (br, fu (1)) >0,

then z* € [0, 2br]".
Proof. Tt directly follows from monotonicity of * and from the strategy spaces of the problem. [
We can also prove another standard property of oligopoly games:

Proposition 4.6. If x}f(bk,-) is a monotone pure strateqy of I' for player j, the j-th consumer

surplus C'S; 1is monotone in :1:;‘-(1)/167 -) irrespective of j’s type.

Proof. The j-th consumer surplus at equilibrium is the area of the triangle between the inverse

demand function and its level corresponding to the equilibrium x5 (b, -), i.e.:

CS;(a (b, ) = %w;(bk, ) I:bk 3 (bk B :ﬁ(gm ))} _ (x§(b§, .))2’

*

J and does not depend on types. ]

then C'S;(-) is strictly monotone in

In the next section, we will investigate different kinds of functions ®;7.(-) and ®;x(-), calculate
the related potential functions explicitly, and determine the Nash equilibrium structures of the

related BPGs.
4.4 Examples with different production functions

Case A
Consider an elementary case of Bayesian game where both production functions are linear, although

having different slopes. Heterogeneity relies on the different individual effects from emissions, i.e.:

Fi(z) =) (4.15)
j=1

and

Fr (x) = Z(ijj, with 5j >1 VjeN. (4.16)
j=1
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Calling I';, the Bayesian game with F7, as in (4.15) and Fp defined as in (4.16]), it is simple to prove

the following:

Lemma 4.1. 'y, is a BPG with the following potential function:

1 n ) n
J= J=

+Z(bL—bH—1 mjp] +Z (b, — b — 90, xjp]H ijp —ZéjxjijH. (4.17)

j=1
Proof. The conditions (.7) hold for all 4,5 = 1,...,n, then I';, is a BPG. (4.17) immediately follows
from the application of (4.10]). O

To determine the pure-strategy equilibria, it suffices to describe the FOCs:

oIl
8902-

=0 < x; =by + (bp — by — V)pl'" + (b — by — 6;)pt™ — pi'F — &;p!™,

foralli =1,...,n. By Theorem the pure strategies are monotone with respect to the poset

(T, ). Namely, the i-th optimal strategies based on all possible type realizations are:

zi (bm, fr (1)) = bu—1
zi (bu, fu (-)) = bg—0
z; (br, fu (1)) = br—9;

zi(bp, fr () = br—1

and the verification of monotonicity is straightforward. Note that in this specific case they
exactly correspond to marginal cost levels for all agents. In order to check the feasibility of such

strategies, we have to state some suitable parametric conditions, in compliance with Proposition

M5l z €0, 2b.)" if:

{bH—l < 2bp,

by — 1
— bL>max{61,52,...,6n,H}.
bL—(5¢>0

2
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Case B
A similar technique can be applied to a Bayesian game played by agents endowed with even more
heterogenous types. In particular, a game in which the pollution production functions fx(-) have
different structures, for example the one corresponding to the lowest sensitivity to the stock of
pollution which is linear and the one corresponding to the highest sensitivity which is quadratic.
In such a case, we will have:
n
Fr, (l‘) = Z’ijj, with v; >1 Vje N. (4.18)
j=1

and
Fy(z) =) af. (4.19)
j=1

Call ' the Bayesian game with Fy, as in (4.18) and Fg as in (4.19).

Lemma 4.2. The Bayesian game I' g is a BPG with the following potential function:

1 n n
g (x) = D) Zx? + by Zxﬂ-
j=1 j=1

n

+ > [br b —ylapt + Y (b —ba)ay —af] pp™ =Y ygapt =Y adp (4.20)
j=1 j=1 g=1 j=1

Proof. (4.7) hold for all 4,j = 1,...,n, then I'r g is a BPG. The application of (4.10)) yields (4.20]).
O]

Note that in I',¢ the hypotheses of Theorem are not verified in the whole strategy space

[0, 20.]". In fact,

0P, (z;) _ 0Py () Vi
< = x; > —,
ox; - ox; Ti= 2
hence we have to restrict the strategy space to © := H?Zl [%, 2bL} , which is nonempty if and only
if by, > max{%,...,%}.

Because the structure of Iy ¢ is linear-quadratic, it admits a unique maximizer as well, i.e.

~ _ b —ba —wlpE" + [br — bulpf — yipf "
Li = LH H ’ (4.21)
1+ 2p;** + 2p;
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so the profile strategy Z is a feasible and monotonic BNE for I'rq if € H?:l [%, 2bL] The

i-th optimal strategies based on all types are as follows:

zi (bu, fL () = bm — i
b

7 (be, fu (-) = gH
br,

T (br, fu (1) =

z; (b, fL(0)) = br—"

and adapting the hypotheses of Proposition {.5] the sufficient conditions for feasibility are given

by:
by — v < 2by, by — M by —vn 3M 3y
b7L>lj L>max{ 2 ) ’ 2 72a 72}
3 2
Case C

In this example we will deal with a potential having two stationary points. The damage functions

are the following:

z) = Zlog (z;+1), (4.22)
and
r) =) ;. (4.23)
j=1

Call T'fo47, the Bayesian game with Fy, as in (4.22) and Fy as in (4.23)).

Lemma 4.3. The Bayesian game I'rog1, 35 @ BPG endowed with the following potential function:

HLogL :—*Z:L' +bHZfL'j

n

+ Z (b — b)) xj — log(z; + 1)] pi* + Z by, — by — 1)mjp]H Zlog (zj+1)p ijp

7j=1 7=1 7j=1
(4.24)
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Proof. The formula (4.24]) follows from the application of (4.10)). O
The FOCs of this model read as:

LL LH pHL HH
pi” + (bp —bg — )p;" — —— —p;"" =0,

oIl
L9l — i+ by + b — by — o1 P
(2

ox; ;i +1

foralli=1,...,n.

The explicit computation of the related BNE deserves some detailed comments. To begin with,

the conditions (4.14)) hold because

< 1forall z; € [0, 2br]. On the other hand, II1o4z(2) is

Tj+
82 1_[LogL
8%2

= 0. Hence, the two unique pure strategies than can be immediately determined are:

not globally concave: in fact, > 0 in the whole interval [0, 2by] if and only if

pit = pft
Ty (by, fu (-)) = by —1
Ti (b, fu () = br—1,

V ¢ € N. The remaining strategies must be deduced from a second degree equation. For example:

o () = 5 O

b — 1+ /b3 +2bg — 3
2

after discarding the negative root. Analogously, we have:

= T (bu, fL (")) =

Y

=z (br, fr (1)) +br — z; (br, fi () +1 =0 =

b —1+4/b% +2b, —3

< 7 (br, fL(-)) =

:

Both of them are real for by > 1. As far as monotonicity is concerned, we note that all the
inequalities

2 (bg, fL (1)) > 2 (ba, fu (1)) > 2 (br, fu (+)),
z; (b, fr(-)) > 2; (br, fr () > 2 (br, fu ()

are simply verified for by, > 1.
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Finally, to ensure feasibility, we have to check the hypotheses of Proposition to achieve a

suitable parametric condition:

by — 1+ /b4 + 2by — 3
<2bL bH—l-l-\/b%{—l-QbH—?)
1

2 <= b > max 1 ,
b, —1>0

In this chapter we proposed a new approach to model heterogeneity in oligopoly games, based on
a 2-dimensional finite type structure, separately indicating benefit and cost characteristics of agents.
In our opinion, an environmental n-countries game in which the revenue is a linear-quadratic func-
tion of emissions and the cost is a production function of the aggregate emissions is an appropriate
application for our technique. We established a suitable preference order on the type spaces of the
Bayesian game under consideration and subsequently took into examination the Bayesian potential
structure of the game. We exploited additive separability in the strategic variables of the environ-
mental cost functions to ensure the existence of a potential for the model. Such potential is relevant
in that all information on the probability distributions of all types is collected. We found out that
the cost structure emerging from the formula of the potential function provides necessary and suffi-
cient conditions to ensure monotonicity of the pure strategies, in compliance with the partial order
established on the type spaces. Finally, we applied our results to some different models, whose
respective payoffs were endowed with linear, linear-quadratic and linear-logarithmic cost functions.
The first model involves a unique pure strategy in the original strategy space, in the second one
the pure strategy is unique as well but the strategy space must be restricted in order to ensure
monotonicity, whereas the third model, relying on a non-standard payoff structure, does not have

a globally concave potential function and then requires a different kind of analysis.
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Part 11

Cooperative Approach






Chapter 5

TU-Games: an overview

While in non-cooperative game theory, we focus on the individual players’ strategies and their
influence on payoffs, and try to predict what strategies players will choose (equilibrium concept), in
cooperative game theory, we abstract from individual players’ strategies and instead focus on the
coalition players may form. We assume each coalition may attain some payoffs, and then we try to
predict which coalitions will form (and hence the payoffs agents obtain).

In its classical interpretation, a TU-game describes a situation in which the players in every coalition
S of N can cooperate to form a feasible coalition and earn its worth.

Solutions of TU-games are divided in two types: set solutions and point solutions.

As concerns the set solutions, the first option when searching for a solution to a cooperative game
is the core. In the core no coalition of agents ends up preferring to stay alone to that resulting from
overall cooperation. However, the possible emptiness is a serious limitation of the core concept. A
rich class of TU-games with a nonempty core is the class of convex games. For a convex game the
Shapley value appears to be a core selector. Simply and well-known examples of convex games are
the so-called unanimity games that create a basis in the game space.

Shapley value is a well-knowed point solution. Axiomatizations of the Shapley value can be found
in [36], [37], [72], [112], [113], [114], [115], [128]. Another point solution is the Banzhaf-Coleman

index which, for example, is studied in [I12] and [63].
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5.1 Preliminary Definitions

Definition 5.1. Let N be a finite set with cardinality n and let v : 2 — R be a map such

that v(0) = 0. The ordered pair (N,v) is a side-payment game or trasferable utility game
(TU-game).

We can interpret N as the set of players, and S € 2V is a coalition of player. v is called
characteristic function of the game.
We denote with I' the class of TU - games and with G™ the set of all characteristic functions v,

corresponding to a TU - game (N, v).

Notation 5.1. If S, T € 2V, the inclusion S C T, means that each player of coalition S is a player

of the coalition T. In particular O C T YT € 2N,

Definition 5.2. A TU-game (N,v) € T is cohesive if

v(N) > Z’U(Sz‘) V{S1,...,Sk} partition of N
i=1

Most of TU-games derived from practical situations have the superadditivity property.

Definition 5.3. A TU-game (N,v) € T is superadditive if
v(SUT) >v(S)+v(T) VS, T €2V with SNT = 0.

In a superadditive game the value of the union of two disjoint coalitions is at least as large as
the sum of the values of the subcoalition separately.

The following definition is less interesting because there is no convenience to cooperation.

Definition 5.4. A TU-game (N,v) € I' is additive [subadditive] if
v(SUT) =v(S)+v(T) w(SUT)<v(S)+v(T)] VS, Te2N with SNT = 0.
It is easy to show that a superadditive game is also a cohesive game:

Proposition 5.1. Let (N,v) € T' be a superadditive game, then (N,v) is a cohesive game.
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Proof. Let {S,T} be a partition of N. Then
v(N)=v(SUT)>v(S)+v(T).
O

We can observe that an additive game is both superadditive and subadditive. Moreover by
Proposition it is also a cohesive game. However, a cohesive game is not necessarily a superad-

ditive game as shown by the next example.

Example 5.1. We consider the game (N,v) where N = {1,2,3} and v : 2V — R is defined as

follows:
0ifS=10
1if|S|=1
v(S) =
3 18] =2
54 S=N

Note that this is a cohesive game, but il is not a superadditive game because if we consider S = {1}

and T = {2}, we have that v(SUT) = 3 <1+ 1=10(S) + v(T).
Definition 5.5. A TU-game (N,v) € I is convex [strictly convex] if
v(SUT) +v(SNT)>v(S)+v(T) [SUT)+v(SNT)>uv(S)+v(T) VS,T¢e2V.

We can see that a convex game is also a superadditive game:
Proposition 5.2. Let (N,v) € I" be a convex game, then (N,v) is a superadditive game.
Proof. We take S,T € 2V such that SNT = (). Then

v(SUT)+v(SNT) = v(SUT)+v(0)
= v(SUT)+0

> v(S)+ (7).
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However, the viceversa is not true as shown by the next example.

Example 5.2. We consider the game (N,v) where N = {1,2,3} and v : 2V — R is defined as

follows:
0ifS=10
L8 =1
v(5) =
3 1S =2
TifS=N

We can notice that this is a superadditive game, but it is not a conver game because if we consider
S ={1,2} and T = {1,3}, we have that v(SUT) +v(SNT) =T+ 1 <3+ 2 =4(3) +0(T).
Definition 5.6. A TU-game (N,v) € I' is concave [strictly concave] if
v(SUT)+0(SNT) <v(S)+ov(T) S UT)+v(SNT) < uv(S)+v(T)] VS, Te2VN.
We can observe that (N,v) € I is [strictly| convex iff (N, —v) € I is [strictly| concave.
Definition 5.7. A T'U-game (N,v) € I' is monotonic [strictly monotonic/ if
v(S) <u(T) [v(S) <v(T)] VS, Te2Nwith ScT.

Definition 5.8. A TU-game (N,v) € I is essential if

o(N) > > o({i})
1EN

It 1s inessential otherwise.

Proposition 5.3. Let (N,v) € T be a superadditive game such that v(S) >0 VS € 2V; then (N, v)

18 a monotonic game.
Proof. We take S, T € 2V such that S C T. We can observe that 7' = S U (T'\ S). Then
o(T) = v(SU((T\S))
> v(S)+u(T\S9).

Then v(T) —v(S) >v(T\ S) > 0. O



5.1 Preliminary Definitions 87

In particular, because of Proposition the following statement holds.

Corollary 5.1. If (N,v) € T is a convex game such that v(S) > 0 VS € 2V then it is also a

monotonic game.

We can note that an additive game is an inessential game.

Proposition 5.4. Let (N,v) € I' be a monotonic game then v(S) >0 VS € 2V,

Proof. We have that ) ¢ T VT € 2V. Then, by monotonicity, we have

The next pictures summarize the previous implications.

cohesive games

superadditive games

convex games
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non-negative games
monotonic games
superadditive and non-negative games

convex and non-negative games

We can also show that a convex game is not necessarily a monotonic game as the next example

shows.

Example 5.3. We consider the game (N,v) where N = {1,2} and v : 2V — R is defined as

follows:
0if S=10
—6 if S = {1}
u(S) =
—44f S ={2}
54 S=N

It is easy to show that this is a convexr game, but it is not a monotonic game because if we consider

S ={2} and T = {1,2}, we have that S C T but —4 = v(S) > v(T) = —5.

Moreover, because of Proposition [5.2] the previous example shows that superadditivity condition
is not sufficient for monotonicity.
We can also observe that the game of Example [5.3] is essential, so we conclude that convexity
and essentiality are not sufficient conditions for monotonicity. (Obviously also superadditivity and

essentiality are not sufficient conditions for monotonicity).
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Now we show that monotonicity and essentiality are not sufficient conditions for superadditivity.

We consider the following example.

Example 5.4. We consider the game (N,v) where N = {1,2,3} and v : 2V — R is defined as

follows:
(04 S=0
3 if1SI=1
v(S) =
Tif1S]=2
24 S=N

We can see that this is a monotonic and essential game, but it is not a superadditive game because

if we consider S = {1} and T = {2,3}, we have that

v(SUT) = wo(N)
= 2
< v(S)+v(T)

= o({1}) +v({2,3})

_1+7
3 4
25
127

Moreover, since this game is not cohesive, we can conclude that monotonicity and essentiality are
not sufficient conditions for cohesivity.

In particular it follows that monotonicity and essentiality are not sufficient conditions for convezity.

Namely we can observe that monotonicity is not a sufficient condition for superadditivity (and

for convexity).

Definition 5.9. A TU-game (N,v) € I is said to be constant -sum if

v(S) +v(N\S)=v(N) VSe2" with Sc N.
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Proposition 5.5. Let (N,v) € T be an additive game then (N,v) is a constant- sum game.

Proof. We take S, T € 2" such that 7= N \ S. Then

v(S) +v(T) =v(S)+v(N\S)=0ov(N)

It is easy to show that the opposite does not hold.

The most important problem for a TU-game (N,v) is how to divide the profits among the
players. Indeed there is not an unique rule: the theory does not tell us which solution we have to
choose, but it describes the property of solutions, highlighting positive and negative aspects.

For further details see [91] (pages 212-233) and [107] (pages 60-66).

The next subsections are devoted to describe some kind of solutions.

5.2 Imputation and Core

Definition 5.10. Take (N,v) € T. A vector x = (x1,...,2,) € R" is called allocation. If
Y ien i = v(N) then the allocation x is called pre-imputation. A pre imputation x such that

x; > v({i}) Vi€ N, is called imputation.

A pre-imputation is a distribution of v(/N) among players. The condition } ;. ; = v(V) is an
efficient condition or also called collective rationality. On the other hand the condition x; > v({i})
is called individual rationality.

The set of imputations of the TU-game (IV,v) is denoted by I(v).

From another point of view we can think of the imputation as a correspondence

I: G™ = R" where

I(v) = {x ER [z =v(N),z; > v({i})} .

1EN

Proposition 5.6. Let (N,v) € T be a cohesive game then I(v) # 0.
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Proof. Because (N,v) is a cohesive game, in particular we have

o(N) =) o({i}).
i=1

Then de; >0 Vi=1,...,n such that

o(N) =Y (0({i}) + e).

=1

We can define the vector x = (z1,...,zy,) with x; =v({i}) +¢ Vi=1,...,n.

Obviously = € I(v). O
Naturally, it might happen that I(v) = () as shown by the following example.

Example 5.5. We consider the game (N,v) where N = {1,2,3} and v : 2V — R is defined as

follows:
(04 S=0
1Lif S| =1
v(S) =
5 if 18] =2
24 S=N

Definition 5.11. Take (N,v) € T, let z,y € I(v) be two imputations, and let S be a coalition. We

say © dominates y through S (x tFgy) if
oz, >y, VieSs;
o Dies i < v(9).
We say x dominates y (x & y) if there is a coalition S such that x Fg y.

Definition 5.12. Take (N,v), (N,w) € I'. We say that they are isomorphic if there exists a

bijection f : I(v) — I(w) such thal
rhsy e fx) ks fly) Va,yel(v), SCN.

It may be difficult to tell whether two games are isomorphic in this sense. We have, however,

the following criterion:



92 TU-Games: an overview

Definition 5.13. Take (N,v),(N,w) € T'. We say that they are S-equivalent if there exist a

positive number r and n real constants o, ..., ay such that

v(S) = rw(S) + Zai VS C N.
€S

Essentially, if two games are S-equivalent, we can obtain one from the other simply by performing
a linear transformation on the utility space of the several players. It is easy to prove that S-equivalent

implies isomorphism:
Theorem 5.1. If (N,v), (N,w) € I are S-equivalent, they are isomorphic.

Proof. See [91] (page 216) O

It is obvious that S-equivalence is, indeed, an equivalence relation. It is interesting to choose

one particular game from each equivalent class.
Definition 5.14. A TU-game (N,v) € I is said to be in 0 normalization if
e v({i})=0 VieN.

Theorem 5.2. If (N,w) € T" is a TU-game, it is S-equivalent to exactly one game in 0 normaliza-

tion.

Proof. It suffices to take v(S) = w(S) — > ,cgw({i}). In fact (IV,v) is S-equivalent to (NN, w) and

it is also 0 normalized. O
Definition 5.15. A TU-game (N,v) € T is said to be in (0,1) normalization if

e v({i}) =0 Vie N,

e v(N)=1.

Theorem 5.3. If (N,w) € T is an essential game, it is S-equivalent to exactly one game in (0,1)

normalization.
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Proof. Tt is sufficient to take v(S) = ;U((Jig:%zei z(({{il}})). Indeed (N, v) is S-equivalent to (N, w) and
1€

it is also (0, 1) normalized. O

There are two special types of games which are of interest:

Definition 5.16. Take (N,v) € I'. We say that it is symmetric if v(S) depends only on the number

of elements in S.

Definition 5.17. Take (N,v) € T in (0,1) normalization. We say that it is simple if, for each

S C N, we have either v(S) =0 or v(S) = 1.

We can note that a game is simple if its (0, 1) normalization is simple.

In a simple game, a coalition S is said to be a winning coalition if v(S) = 1 and a losing
coalition if v(S) = 0. So in a simple game every coalition is either winning or losing.

We can note that if (V,v) € T' is a superadditive, simple game then every subset of a losing
coalition is losing, and every superset of a winning coalition is winning.

We can interpret a simple game in the following way: players are members of legislature or
members of the board of directors of a corporation, etc. In such games, a proposed bill or decision
is either passed or rejected. Those subsets of the players that can approve bills without outside help
are called winning coalitions while those that cannot are called losing coalitions.

Typical examples of simple games (N,v) € T" are

e the majority rule game where v(S) = 1if |S| > n/2, and v(S) = 0 otherwise;

e the unanimity game where v(S) =1if S = N and v(S) = 0 otherwise;

e the dictator game where v(S) =11if {1} € S and v(S) = 0 otherwise.

We introduce a concept of solution, the core, that selects the imputations which have an other

rationality property.



94 TU-Games: an overview

Definition 5.18. Take (N,v) € . The core of the game is a vector x = (z1,...,2,) € I(v) such

that

in >w(S) VS €2V \ {0}.

i€S
The set of core elements of the TU-game (N, v) is denoted by C(v).
We can observe that C'(v) is a convex set.

From an other point of view we can think the core as a correspondence C : G = R" where
C(v) = {x eI(w)|> x> U(S)}
€S
Obviously C(v) C I(v). Consequely I(v) = ), implies C(v) = (. But also for a superadditive game

it can happen that C'(v) = () as shown by the next example.

Example 5.6. We consider the game (N,v) where N = {1,2,3} and v : 2V — R is defined as

follows:

0ifS=10
v(S) =< 04f[9] =1
14f|S| > 2.

It is easy to show that this is a superdditive game, but C(v) = .
Moreover we have
Theorem 5.4. Let (N,v) € T be an essential and constant-sum game, then C(v) = ().

Proof. See [91] (page 220). O

The concept of the core is useful as a measure of stability. As a solution concept, it presents a
set of imputations without distinguishing one point of the set as preferable to another. Indeed, the

core may be empty.

For further details see [91] (pages 212-233) and [107] (pages 67-73).
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5.3 Indices of Power

Here we deal with the concept of a value. In this approach, one tries to assign to each game in
coalitional form a unique vector of payoffs, called the value. The i-th entry of the value vector may
be considered as a measure of the value or power of the i-th player in the game. Alternatively, the
value vector may be thought of as an arbitration outcome of the game decided upon by some fair

and impartial arbiter.
Definition 5.19. A function ¢ : G" — R" is called value.

Here ¢;(v) represents the worth or value of player i € N in the TU-game (N, v).
In this section we introduce two values: the Shapley value and the Banzhaf-Coleman index,
and their variations.

To define Shapley value we give an axiomatic treatment.

Definition 5.20. Take (N,v) € T and let 0 : N — N be a permutation of the set N. Then, by

(N, ov) we mean the TU-game such that,
ov(S) = v(a(S)) VS e 2V,
Definition 5.21. Take (N,v) € T’ we called dummy player a player i € N such that
v(SU{i}) =v(S) +v({i}) VS e 2Nwithi¢S.
Definition 5.22. Take (N,v) € T we called null player a player i € N such that
v(SU{i}) =v(S) VS e2Nwithi¢S.
Definition 5.23. Take (N,v) € I' we called symmetric players two players i,j € N such that
v(SU{i}) =v(SU{j}) VSe2Nwithi,j¢S.
Axioms 5.1. Take (N,v), (N,w) €T, then a value ¢ : G™ — R" satisfies the next azioms if

Axiom 1 (efficiency) > ;. ¢i(v) = v(N);
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Axiom 2 (anonimity) ¢,;)(0v) = ¢i(v) Vo : N — N permutation;
Axiom 3 (dummy player) ¢;(v) =v({i}) Vie N dummy player;
Axiom 4 (additivity) ¢;(v+ w) = ¢i(v) + ¢i(w) Vie N.

Theorem 5.5. There is a unique value ¢ : G — R”™ that satisfies efficiency, anonimity, dummy

player and additivity.

Proof. For the proof see [91] (pages 262-265). O

This unique value is called Shapley value and denoted with . Given (IV,v) € I, it is explicitly

defined as follows

e = 3 CE N6 oo i), 6.1
i€S '
SCN

where s denotes the cardinality of S.

It can be seen that

€S
SCN

We can note that the Shapley value is not only additive but also satisfies the following stronger

axiom of linearity.
Axioms 5.2. Take (N,v), (N,w) €T, then a value ¢ : G™ — R" satisfies the next azioms if
Axiom 5 (linearity) ¢i(av + bw) = ag;(v) + bp;(w) Vi€ N and Va,b e R.

We can also give an alternative definition of Shapley value. First of all we give the following

definitions.

Definition 5.24. Let (N,v) € I" be a TU-game, take i € N and let 0 : N — N be a permu-
tation. Take j € N such that i = o(j). A marginal contribution of i € N to the coalition

{o(1),...,0(j — 1)} is the number

mi (v) = v({o(1),...,0(j)}) —v({o(l),..,a(j = 1)}).

We denote with m?(v) the vector of R™ with component m? (v).



5.3 Indices of Power 97

Definition 5.25. Let (N,v) € " be a TU-game and let 0 : N — N be a permutation. A set of

predecessor of 1 € N in o is the set
Po(i)={jeN|o7'(j) <o (i)}

We can observe that, with the previous definitions my (v) = v(FPy (i) U {i}) — v(FPy(4)).

Then we have the following definition:

Definition 5.26. Let (N,v) € T be a TU-game, then the Shapley value is defined in the following
way:

1
)= Y mew), (5.2
where w(N) is the set of permutations of N.
Theorem 5.6. Let (N,v) € T be a convex game, then p(v) € C(v).

Proof. Take S C N and o0 : N — N a permutation. Let i1,...,0,...,%s be the elements of S in
the order in which there are in o.

So by definition of marginal contribution and for superadditivity of (NN, v), we have

mg (v) = v(Fo(ir) U{ir} — v(Po(ix))) = v({ik}),
and
Z m; (v) = v(N).
k=1
Moreover, for the convexity of (N, v), we have
D omi () =Y w(Pyix) U{in}) — v(Po(ix)) = v(S)
k=1 k=1

That is m?(v) € C(v). Moreover, by convexity of C'(v) and for Definition [5.26] we have ¢(v) € C(v).

O]

From previous theorem follows the next claims.

Corollary 5.2. Let (N,v) € T be a superadditive game, then p(v) € I(v).
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Corollary 5.3. Let (N,v) € T be a convex game, then C(v) # 0.

There are also many others axiomatizations of the Shapley value. For example, let us consider

the following axioms:

Axioms 5.3. Take (N,v),(N,w) € I, then a value ¢ : G™ — R™ satisfies the next axioms if

Axiom 6 (null player) ¢;(v) =0 Vi€ N null player;

Axiom 7 (fairness) ¢;(v +w) — ¢i(v) = ¢j(v +w) — ¢p;(v)  Vi,j € N symmetric players.
Then, in [II3] the author proves the next theorem.

Theorem 5.7. There is o unique value ¢ : G" — R" that satisfies efficiency, null player and

fairness. This value is the Shapley value.

Proof. See [113]. O

For further details see [I12] and [I28] where the authors characterize the Shapley value on the
class of monotonic games.

One of the principal difficulties with the Shapley value is that its computation generally requires
the sum of a very large number of terms. Thus, even when the characteristic function is easy to
define, evaluation may require a prohibitive amount of work. Recourse is therefore frequently had

to multilinear extension (MLE) of the game.

Definition 5.27. Let (N,v) € T be a TU-game, then the multilinear extension of (N,v) is

defined in the following way:

h(ay,..2n) =Y (H zi [J(1 - m) v(S), (5.3)

ScN \ieS i¢S

with x; € [0,1] Vi€ N.

The following property relates the MLE to the Shapley value.



5.3 Indices of Power 99

Theorem 5.8. Let (N,v) € I' be a TU-game, and h its multilinear extension, then

L on )
wi(v) = (t,...,t)dt Vie N. (5.4)
o O

For the proof see [91] (page 270) and [107] (page 94), while for more classical results see [91]
(pages 261-280) and [107] (pages 85-95).

We can observe that if we take the subclass of essential simple games we have that v(N) = 1,
for any (IV,v) in this subclass and hence the sum of two simple games (IV,v) and (N, w) does not
belong to this subclass. Therefore, this has motivated several authors to introduce an alternative
version of the additive axiom, see [36], [37] and [72].

In the following, as in [I15], we denote the class of simple games by I'* and its subclass of essential,
monotonic simple games by I'*"*, and we denote by G7, and G, the set of all characteristic functions
v, corresponding to a TU- game (N,v) € I'* and I"*™, respectively. The alternative version of the
additivity axiom in case of simple games makes use of the concept of the maxgame and the mingame

of two games.

Definition 5.28. Tuke (N,v), (N,w) € ', then the mazgame of (N,v) and (N,w) is denoted
(N, 2 ) where

)y Tow

zh =max [v(S),w(S)] VS C N,

vw

and the mingame of (N,v) and (N,w) is denoted (N, z,,,) where

Zyw = min [v(S),w(S)] ¥S C N.

Clearly, when both (N,v), (N,w) € T', then also (N, z,), (N, z,,,) € T'*.

» Tow Y Fow

Moreover, we have the following lemma.

Lemma 5.1. Let (N,v), (N,w) € I'* be two simple games. Then it holds that

v(S) +w(S) = 2,(S) + 2,,(S) VS CN.

VW

Proof. Tt follows immediately by Definition [5.2§] O
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Dubey in [36] stated the next additivity axiom for a value.
Axioms 5.4. Take (N,v),(N,w) € I'*, then a value ¢ : G — R"™ satisfies the next axiom if
Axiom 8 (minmaz additivity) ¢;(z},) + ¢i(2p) = ¢i(v) + ¢i(w) Vi € N.

The next theorem states the Shapley value is the unique value satisfying the axioms of efficiency,

anonimity, dummy player and minmax additivity.

Theorem 5.9. There is a unique value ¢ : G — R" that salisfies efficiency, anonimily, dummy

player and minmaz additivity.
Proof. See [36]. O

This unique value is called Shapley-Shubik index. Given (INV,v) € I'*| it is explicitly defined

as follows

(s —1)l(n—9)!
pilv) =) — : (5.5)
i€S
SCN
where s denotes the cardinality of S, and where the summation is taken over all winning coalition

S such that S\ {7} is not winning.

Another index of power has been suggested by Banzhaf and Coleman.

Definition 5.29. Let (N,v) € T be a TU-game . We define the Banzhaf-Coleman index as

1 n—1 .
W= (5) 1)~ s\ )L
€S
SCN
There is a certain relation between the Shapley value and the Banzhaf-Coleman index: both give
averages of player i’s marginal contributions v(S) — v(S \ {i}). The difference lies in the weighting
coefficients used: for the Shapley value, these varied according to the size of S; for the Banzhaf-
Coleman index, they are all equal.
It follows immediately by definition that the Banzhaf-Coleman index satisfies anonimity, dummy

player, linearity and in particular, additivity. We can note that the Banzhaf-Coleman index does

not satisfy the efficiency axiom. Infact we can consider the following example.
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Example 5.7. Let us consider the following simple game (N,v) € T' and let us calculate the Banzhaf-

Coleman index. N = {1,2,3} and

Lif[S] =2
v(S) =

0 otherwise .

We have x(v) = (3,

).

D[

)

N[ =

Axiomatizations of the Banzhaf-Coleman index on the class of simple games have been given in
[37] and in [72]. In the latter paper an axiomatization is also given for the general case by using
a monotonicity property with respect to the amalgamation of two players to one player. In [57] is
provided an axiomatization for the Banzhaf-Coleman index on the class of TU-games I' by using an
axiom of neutral collusion, besides the standard axioms of dummy player, anonimity and linearity.

We can consider the following definition.

Definition 5.30. Let (N,v) € T" be a TU-game and let i,5 € N be two different players. Take

¢ =1{%,j} a reduced game is a TU-game (N \ {j},v¢) € I where

w(S)=v(S) and v (SULCH =v(SU{C)H) VS CN\{C}.

Clearly (N \ {j},v¢) is a TU-game with n — 1 players obtained by amalgamating the players 4
and j in the game (N, v) into one player (.

In this way we can revisit the efficiency property in the following axiom.
Axioms 5.5. Take (N,v) € I, then a value ¢ : G™ — R" satisfy the next axiom if
Axiom 9 (2- efficiency) ¢;(v) + ¢j(v) = ¢¢c(ve) Vi#jeN.

Now we introduce the axioms that characterize the Banzhaf-Coleman index.
Axioms 5.6. Take (N,v) € I, then a value ¢ : G™ — R™ satisfy the next axiom if

Axiom 10 (equal treatment) ¢;(v) = ¢;(v) Vi,j € N symmetric players;
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Axiom 11 (marginal contributions) Take (N,v), (N,w) € L. If for some player i € N we have
v(SU{i}) —o(S) =w(SU{i}) —w(S) VS S N\{i,j}, then ¢i(v) = di(w).

Theorem 5.10. There is a unique value ¢ : G — R"™ that satisfies 2-efficiency, dummy player,

equal treatment and marginal contributions. This value is the Banzhaf-Coleman indez.

Proof. See |87]. O

Also for the Banzhaf-Coleman index there is a characterization through the multilinear exten-

sion, see for example [90].

Theorem 5.11. Let (N,v) € I" be a TU-game, and h its multilinear extension, then

oh (1 1 )
xi(v) = D, <2,...,2> Vi € N. (5.6)

Proof. See [91] (pages 294-297). O

See also [92] for a reformulation of the Banzhaf-Coleman index.
For a simple game, we can define also the Normalized Banzhaf-Coleman index. First of all

we formalize a concept already discussed.

Definition 5.31. Let (N,v) € I'* be a simple game [in (0,1) normalization/, a swing for player
i€ N isaset SCN such thati € S, S wins and S\ {i} loses.

Definition 5.32. Let (N,v) € I be a simple game [in (0,1) normalization/, and let 0; be the
number of swings for player i € N. We define the Normalized Banzhaf-Coleman index on

simple games as

0;
ZjeN ej'

Clearly, we can also define the Normalized Banzhaf-Coleman index on the more general class of

Bi(v) =

TU-games.
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Definition 5.33. Let (N,v) € I" be a TU-game. We define the Normalized Banzhaf-Coleman

index as
Bi(v) =n(v) - xi(v) VieN,
where
L)
() ZjeNXj(v).

The Normalized Banzhaf-Coleman index (on simple games and on TU- games in general) is
efficient and it satisfies anonimity. It does not satisfy linearity and dummy player property.

In [112] there is a characterization of the Normalized Banzhaf-Coleman index on the class of
monotonic games.

There is a large class of simple games called weighted voting games.

Definition 5.34. A TU-game (N,v) € I' is a weighted voting game if

v(S) =
0 if Zies w; < g,

for some non-negative numbers w;, called the weights, and some positive number q, called the

quota. If ¢ = %ZZES w;, this is called o wetghted majority game.

Example 5.8. The elections of Ireland held February 2011 are a 7-players weighted voting game
(N,v). The Ireland Parliament has 166 seats so the quota q is fized to 84, that is the majority plus

one. The weights are the seats which each party get. The winner coalitions are:
{FG,LP}, {FG,FF}, {FG,I}, {FG,SF}.

All the coalitions containing the previous four coalitions are winning. Moreover the following coali-

tions are winning
{LP,FF,I,SF}, {LP,FF,I,SF,SP}, {LP,FF,I,SF,PBP}, {LP,FF,I,SF,SP,PBP}.

Let us compute the number of swings (0), divided per cardinality of coalitions (s), of players:
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Now we can calculate the three power indices: Shapley value (p), Banzhaf-Coleman index (x ),

Normalized Banzhaf-Coleman index ( [3).

pra(v) =
xra(v) =
) =
) =

0 xpap(v
Bra(v

0.6, orp(v) =0.1 prr(v) = 0.1 pr(v) = 0.1 pgr(v) = 0.1 psp(v) =0 ppp(v) = 0.

0.875 xrp(v) = 0.125 xpp(v) = 0.125 x7(v) = 0.125 xgr(v) = 0.125 xgp(v) =

S Brp(v) = & Brr(v) =

& Br(v) =

& Bsr(v) =

& Bsp(v) =0 Bppp(v) = 0.

Table represents the three power indices: Shapley value (), Banzhaf-Coleman index (x ),

Normalized Banzhaf-Coleman index ( j3).

Table 5.1: Elections of Ireland 2011

Parties Seats ¢ x B
FG 76 0.6 0.875 2
LP 37 01 0125 &
FF 20 01 0125 &
I 15 01 0125 &
SF 14 01 0125 &
SP 2 0 0 0
PBP 2 0 0 0

Example 5.9. The elections of Finland held April 2011 are a 9-players weighted voting game (N, v).

The Finnish Parliament has 200 seats so the quota q is fized to 101, that is the majority plus one.

The weights are the seats which each party get.

Table represents the three power indices: Shapley value (), Banzhaf-Coleman index (x ),

Normalized Banzhaf-Coleman index ( [3).
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Table 5.2: Elections of Finland 2011

Parties Seats ¢ Y 3
KOK 44 0,221428571428571 0,44921875 1L
SDP 42 0,2 0,40234375 132
PS 39 0, 176190476190476 0,35546875 L
KESK 35 0, 147619047619047 0,29296875 =
VAS 14 9,64285714285705 - 102 0,20703125 22
VIHR 10 6,19047619047615 - 1072 0,13671875 3>
SFP 9 5,47619047619044 - 1072 0,12109375 3L
KD 6 3,69047619047616 - 1072 0,08203125 2L
RA 1 4,76190476190458 - 10~3  0,01171875 =2
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Chapter 6

A new perspective on cooperative games

In the following chapter we are going to propose a new perspective on cooperative games, by
assuming that the involved players are supposed to face a common damage. The agents can choose
to make an agreement and form a coalition or to defect and face such damage individually.

When such disadvantage is modeled by a dynamic state variable evolving over time, cooperating and
non-cooperating agents solve different optimization problems, but they all must take into account
such state variable, as if it represented an externality in all their respective value functions. FEven
if we just consider the cooperative and static aspects of such a game, the externality has a key role
in the worth of coalitions.

The approach we will develop relies on a class of cooperative games including an external effect,
such that the characteristic value function is split in two parts: one of them is standard, the other
one is affected by externality.

It is worth describing our idea of externality, which basically differs from the previous character-
izations in literature. Transferable utility games with positive externalities were defined by [99)],
which related such externality to an increase in pay-off for the players in a specific coalition when
the remaining coalitions committed to merging. That is, in presence of a partition of the set of
agents and of multiple coalitions, a group of players may enjoy a positive spillover originating from
a merger of external coalitions rather than from a strategic choice.

In our case, on the other hand, the role of externality is played, and its amount is measured, by
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a different state variable, not directly depending on the possibly undertaken agreements. Loosely
speaking, in our setting externalities arise in the same way as they do in standard dynamic oligopoly
models (see [64]).

When we relate this idea to the welfare of a country dealing with an emission reduction strategy, we
stress that the clean share of welfare is always positive, whereas the share including the pollution
effect is negative, then the total welfare must be globally evaluated.

In recent years, a growing interest has been devoted to dynamic models of pollution abatement (on
which [64] is quite an exhaustive survey), within both cooperative and non-cooperative frameworks.
In particular, the design and the modeling of International Environmental Agreements (IEA, from
now on) have been extensively and critically discussed in [46]. Just to cite some recent examples,
[48] investigated stability of coalitions to form IEAs empirically, [77] examined IEAs from the view-
point of evolutionary game theory, whereas [71] concentrated on the cooperative dynamic allocation
of total costs incurred by countries.

Our starting points are [5] and [I8], which on their turn are related to [52] and [563]. We are going
to arrange a theoretical setup building on their model, investigate a wider set of properties for such
game structures, and finally carry out a coalitional power assessment in detail.

Substantially, this game relies on a cooperative structure which is generated as agents play
the strategies of a dynamic optimization game of pollution reduction. In this game each country
commits to maximizing her welfare either joining an IEA or refusing to join it, during the process of
accumulation of an aggregate stock of pollution. All the countries implement their optimal emissions
strategies, which differ between signatory and non-signatory countries. At a given level of pollution,
an aggregate welfare must be shared among them, according to the quantity of cooperating nations
and their related characteristics.

Note that this structure of game differs from the so-called global emission games (a very ac-
curate description of which can be found in [45], Chapter 9), which are basically conceived in a
static framework. The principal difference is in the structure of the damage cost function: in the

global emission games it is an increasing convex function of the aggregate emissions, whereas in our
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framework it is a function of the stock of pollution, which incorporates the emissions in its evolu-
tionary dynamics. We are going to characterize this game as an extended cooperative game affected
by negative externality. Explicit formulas for the Banzhaf-Coleman index and the Shapley value
(which belongs to the core of the game) will be reckoned and subsequently applied to a numerical
framework exposing the countries’ actual achievement of the aggregate welfare. We will also discuss

the effects of the countries’ marginal contributions to pollution on their share of welfare.

6.1 Extended cooperative games

We aim to extend the standard definition of cooperative games on a finite player set building
on the dependence on a second argument, a real variable. Let N be a finite set with cardinality n,

and consider a subset D C [0, +00). Let ©: 2V x D — R be a map such that o(0),-) = 0.
Definition 6.1. The ordered pair (N,v) is an extended cooperative game (ECG for short).

We will denote with T' the class of the extended cooperative games and with G™ the set of all
characteristic functions v, corresponding to an extended cooperative game (N,v) € T.

We are going to investigate the properties of the extended cooperative games, particularly taking
into account the effect of this non-negative variable whenever it negatively affects the values of
coalitions. Note that, in the simplest case, Definition reduces to one-parameter families of
cooperative games, notwithstanding that we intend to make it fit to a possibly much wider class
of games. The second argument of an ECG is allowed to denote the state level in a dynamic
optimization problem when some agents make a coalition agreement. Under such circumstances,
0(+) is the optimal value function solving a discrete Bellman equation and its arguments respectively
represent the set of cooperating agents and the problem’s state variable.

The next definition characterizes the suitable class of games on which we will focus our attention.
Specifically, we will denote with onyg(-) the characteristic function incorporating such negative

externality.
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Definition 6.2. Given (N,vyg) € I such that
uNE(S, P) = w(S) — g(P)u(S)
VS € 2N\ {0} VP € D C [0,+oc), and
oNe(0,P) =0

VP € D C[0,+00), where

e w(S)>0 VSe2N\ {0}, w(d) = 0;

o u(S)>0 VS 2N\ {0}, u(d) = 0;

e g(P)>0 VP € D, g strictly increasing;

we call such a game extended cooperative game with negative externalities (ECGWNE for

short).

Call T y g the class of ECGWNE, and @7](, p the set of all characteristic functions v g, correspond-
ing to an ECGWNE (N, vyg). For the sake of simplicity, consider the non-restrictive assumption
D = [0, +00).

Proposition 6.1. Let (N,onyg) € Tng. Then the pair (N,oNE) is a nonnegative ECGWNE iff
e [O’ sehoy {gl (Z:é;q;) }] '

Proof. By hypothesis, V.S € 2V \ {#} and VP € [0, +00), we have

oNE(S) = w(S) — g(P)u(S)

which is nonnegative if and only if
w ()
u(9)

Since g is strictly increasing, then it’s invertible. Taking the minimum interval with respect to all

P= sy {g—l (l:((g))) } '

9(P) <

possible coalitions, we obtain:
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We can employ the same definitions of Chapter [5| for the convexity of an ECGWNE.

Proposition 6.2. Let (N,vng) € Tyg be a nonnegative ECGWNE and let w(-) be convez and u(-)

be strictly convex. Then the pair (N,onE) is a conver ECGWNE iff

boe [0’ min {s,l?ﬂiééw {91 (Téﬁﬁi’i Eg 2 g - Z((g))—:(g)> } ’

it ()]

where S,T are not both empty sets.

Proof. By hypothesis, VS, T € 2V (not both empty), and VP € [0, +00), we have

UNE (SUT,P)—}-T)NE(SQT,P)—T)NE(S,P) —T)NE(T,P)

= wlUD)+wlSNT)—w(S)—w(T)—gP)[u(SUT)+u(SNT)—u(S)—u(T)],

which is nonnegative if and only if

( )<w(SUT)+w(SﬂT)—w(S)—w(T)
T = (SUT) +u(SNT) —u(S) —u(T)

Since g is strictly increasing, then it’s invertible. Taking the minimum interval with respect to all

possible coalitions, we obtain:

P < min
S, Te2N

U (sonrasan—um-am )|

By intersecting such interval with the domain achieved in Proposition for nonnegativity, we

complete the proof. O

Remark 6.1. In Proposition note that if we replace the assumption of strict convexity of u(-)

with the standard modularity assumption:
u(SUT)+u(SNT)—u(S)—u(T)=0

for all S, T €2V, then the convegity of vnE (S, P) holds for all P € D.
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6.1.1 Power indices for extended cooperative games

We are going to arrange the foremost solution concepts of cooperative games for ECGWNE.

Definition 6.3. Given (N,v) € T, the Shapley value of ¥(S, P) is the vector ¢(v(S,P)) =
(p1(0(S, P)), w2(0(S,P)),...,on(0(S,P))) € R"™ such that:

(s — 1)(n — s)! [(5(S, P)) — (5(S\ {i}, P)], (6.1)

ei(0(5.P) = 3
i€S
SCN

n!

Vi=1,...,n.
In (6.1) s denotes the cardinality of each coalition S.

The computation of the Shapley value might require the sum of a very large number of terms.
In the following, we will employ the formulas related to the multilinear extension (MLE) of the

game:

Definition 6.4. Given (N,v) € T, then the multilinear extension (or MLE) of (N,v) is

defined as follows:

(i, an) =Y (H:viH(l —a:i)) %(S, P), (6.2)

SCN \ieS i¢s
where z; € [0,1] Vi=1,...,n.
The MLE of a cooperative game (N, v) is related to the Shapley value by the following alternative

formulation:

L on
to.. . t)dt VieN. 6.3
; axi(’ ,t)dt, i€ (6.3)

From now on, call h the MLE of an ECGWNE.

pi(v) =

Theorem 6.1. Let (N,oxg) € g be an ECGWNE. Then
vi(Une) = pi(w) — g(P)pi(u), VieN. (6.4)

Proof. Let a and b be the multilinear extensions of (N, w) and (N, u), respectively. Then, Definitions

[6.2] and [6.4] imply:
h(z1,...,2n) = a(z1,...,20) — g(P)b(z1,. .., %)
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where z; € [0,1] Vi=1,...,n.
Consequently, (6.3) implies:
- oot = [ et g(p) [ o
SDZ g (101 - 0 81’2 oty g 0 81’2 P
1
—g(P
— / M(t,...,t)dt
0 al’l
1
oh
= t,...,t)dt = p;(v .
0 axz( ) ’ ) ¥ (UNE)
]

The following two corollaries simply follow from Propositions[6.1]and [6.2] and from Theorem

Corollary 6.1. If (N,onEg) is a nonnegative ECGWNE, then:

pi(w) — g(P)pi(u) < pi(dng) < @i(w) — g(0)p;i(u),

P= i, {gl (z:((é’))) } '

Corollary 6.2. If (N,unE) is a nonnegative and convex ECGWNE, then:

Vi€ N, where

~

pi(w) — g(P)pi(u) < wi(tng) < pi(w) — g(0)pi(u),
Vi€ N, where

P o fo (S e )}

Another index of power has been suggested by Banzhaf and Coleman.

Definition 6.5. Given (N,v) € T, the Banzhaf - Coleman index of v(S,P) is the vector

x(0(S, P)) = (x1(v(S, P)), x2(0(S,P)),...,xn(0(S, P))) € R™ such that:

1 n—1
wosP) =Y (3) B2 - o\ @2,
€S
SCN
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The Banzhaf-Coleman index can be characterized via the MLE:

_ oh (1 1
=55\ e

Theorem 6.2. Let (N,ong) € [ng be an ECGWNE. Then

V1 e N.

Xi(UnE) = Xi(w) — g(P)xi(u) Vie N
Proof. As in the proof of Theorem we have:

xi(w) — g(P)xi(u) =

- dacstmy(1 1)

- aﬂfl D) = Xi\UNE)-

Oa (1 1 ob (1
S s ) g -
z; (2’ ’2> 9P g0 <2’

The estimates provided by Corollaries and can also be applied to x(onE).

The core of an ECGWNE can be synthetically redefined too, and it will turn out to be a key

tool for our next application. Suppose that P* € D is a fixed level of P, such that Proposition

holds.

Definition 6.6. Given (N,0ng) € Tng, and P* such that tnyg > 0, the following set of vectors:

Cp(ing) = S (x1,...,20) ER" : Y a5 =w(N) — g(P*)u(N),
j=1

Zxk > w(S) — g(P*u(S), V S € QN}

is the core of vyg at P*.

(6.7)

(6.8)

Different levels of externality entail disjoint cores, as we show in the following:

Proposition 6.3. If P, # P», then Cp,(vng) NCp,(OnE) = 0.
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Proof. If at least one of the two cores is empty, the proof is trivial. Suppose they are both nonempty.

By Definition P, > Py implies g(P2) > g(P1). Therefore, if z = (21,...,2n) € Cp, (UnE), then
2tttz =wlV) = g(P)u(N) >w(N) - g(P)u(N),
then z ¢ Cp,(UnE), hence the two cores have no common imputations. O

6.2 Pollution-Control Game

We want to give some practical applications of the class of games defined in Section 6.1} The
first one is based on environmental issues. Taking inspiration from [5] we consider a set N of n
players, called countries in the sequel, involved in a pollution-control game. Denote by e;; the
carbon emissions arising from the production activity of player j at the instant of time ¢ € [0, +00).
Assume that the net revenues derived from player j' s production activity in a given period are

given by the following concave function of his emission R(-) such that

1
R(ejt) = eji <bj - 2€jt> :

where b; is a strictly positive parameter denoting the emission level at which the revenue attains its
maximum. The stock of pollution, which causes damage to the environment, evolves according to
P=Pa(1=-8)+> e
JEN
with Py given, where § € (0,1) is the absorption rate by Mother Nature. Players suffer an
environmental damage arising from global pollution, which is assumed linear in the pollution stock,
and given by

D;(P) = d; P,

where d; > 0 is the constant marginal damage. The total discounted welfare over an infinite horizon

of player j is then given by

=5 o= 3) ),
t=0
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such that

Pr=P_1(1-68)+ ) e with Py given,
JEN

where 5 € (0,1) is the one-period discount factor assumed common to all players.
Our purpose is the design and implementation of an International Environmental Agreement

(TEA), that is a mechanism allocating to each country a collectively suitable emissions policy.
6.2.1 Different Approaches

Small coalition approach
Assume that a set of players, identified as ‘signatory countries’, decide to join an IEA, according to
which their production activity is decided by maximizing the aggregate welfare of the coalition. We
denote by S the set of signatory countries, with cardinality s. The remaining players, identified as
‘non-signatory countries’ act individually, that is, each of them decides her production activity by
maximizing her individual welfare, and we denote by S the set of non-signatories, with cardinality
n—s.

As part of the agreement, we assume that each signatory country has to punish a non-signatory
for its irresponsible behavior with a punishment proportional to the level of pollution, reflecting an
environmental concern increasing with pollution stock. The non-environmental cost incurred by a
non-signatory punished by s signatories when the pollution stock is P; is thus given by saFP;. We
also suppose that punishing itself has a cost, which is proportional to the punishment aP; imposed
to the n — s non -signatory countries, so that each signatory incurs a non-environmental cost given
by (n — s) TaP;, where 7 > 0. As a consequence, the welfare of a signatory country j € S in time

period ¢t when the number of non-signatories is n — s is given by

1
Wts (ejt, Pr,s) = ej <bj — 26jt) —djP; — (n— s)Tak,

and the welfare of a non-signatory j € S is given by

1
Wts (ejt, Pt, S) = €t <b] - 2€jt> - det — O(SPt‘
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Notice that we implicitly assume that all countries are punished in the same way, and that the cost
of punishment is the same for all countries.

Now, to solve the dynamic emissions game, we assume that, for a given fixed set of signatories,
countries optimize their welfare by taking into account the evolution of the pollution stock. The
total discounted welfare of players is maximized over an infinite horizon, where 5 € (0,1) is the
one-period discount factor assumed common to all players. The welfare optimization problem for a
signatory country j € S is thus given by
max W9 = Zfﬁt (e- (b' - @) — P, (d; +Ta(n—s))>
(;);€8 e it \ 0t — t (d;

s.t.

Pr=P_y(1-0)+) ea+ > ew, with Py given,
€S keS

where ej; is the emissions of country j during period ¢ and e; denotes the sequence of emissions
{eje} 1E[0,400) * In the same way, the welfare optimization problem for a non-signatory country j € S
is

_ —+00 .
(gl)?é(g WS = tz_gﬁt (6]'75 (bjt — %) — Pt (d] + OéS))

s.t.

P=P_1(1-9)+ Ze“ + Zekt’ with Py given.
€S keS

As in [18], we use a dynamic programming formulation where the state variable is P, that is, the
pollution stock level in the preceding time period. We obtain a Nash equilibrium in stationary feed-
back strategies between the group of signatories, acting as a single player, and the non-signatories,
acting as n — s individual players, where s € [0,n]. The case where s = 0 corresponds to a Nash
equilibrium between all players, or fully non-cooperative outcome, while the case where s = n cor-
responds to the optimization of the total welfare of all players, or fully cooperative outcome (grand

coalition). We call k the constant representing the combined effect of the discount factor and the
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natural pollution decay, that is,

1

=160

> 1.

For the set of signatory countries, denoted with ES the emissions of non-signatory countries, that
is BS = Y keg €k, the value function VS <P; E§> represents the optimal total welfare of the group,

given ES , and it satisfies

e () = e 130 (- 9) o9

(ej)jes

JjES
—(dj +Ta(n—s)) PE-FZO—FES
j TO (N S kﬁ : j
JjES
+ 8V P—k_1+ze~+E3-E5’
kﬁ jes ’ 7

Proposition 6.4. The value function of a signatory country is linear in P. The optimal
reaction of signatory countries is independent of the level of pollution and of the defectors’ strateqy

and it is given by

eJS =bj —ksta(n—s) — k:Zdj,
jes

assuming non-negative emissions.
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Proof. Assume that V*° (P; E5> = h¥ — mSP. Then we have

Ve <P; ES) = max Zej <bj — %])

(ej)jes ics

k-1 5
—(dj +Ta(n—s)) Pkﬂ+quej+E

k1 s g
+BVS PW+Zej+ES;ES
jeSs

) E—1 _
= max E €; (bj—%])—(dj—i—v'a(n—s)) PT+ E ej-i-ES
(eJ)JES jes B jes

k—1 5
+B hs—ms ijﬁ+§€]+Es

=: max v (e;).
(ej)jes

Differentiating with respect to emissions yields:

dijvl(ej):ij—Zej—s Zdj—i—Ta(n—s) — spm”.

jes JjeSs JjeS

% ij—zej—s derm(n—s) —sfm®| = —s<0.
J

JjES JjES JES
So that the first order conditions are necessary and sufficient, provided that the solutions is interior.

The FOC are satisfied at

ef:bj—Zdj—Toz(n—s)—ﬁmS.
jes

Replacing ef in and placing ¢ = > jesdj +Ta(n—s) , we obtain

_ 1 —
VS(P;ES) = 2;(bj—cs—,8ms)(bj+cs+ﬁms)—CS;(bj—cS—/Bms)—csES
Jrﬂhs—,BmSZ(bj fcsfﬁms) fﬂmSESkak_ 1 (Cs+5ms)
jes

= ¥ —mSP.



120 A new perspective on cooperative games

so that
k—1
S S
m> = c
B
1 k—1 1 k—1 k—1
S = — <b-—cs— cS> - <b~+cs+ cS>—cS— e
g |2\ g (bt 5
JjeSs JES
_ES (cs+ﬁcsk_ L
B

The optimal emissions of a signatory country are therefore:

eJS =b; —ksta(n—s) — k:Zdj.
jes
O

In the same way, the value function ng of a non-signatory country represents its optimal total

welfare, given P and the emissions of the other players, denoted by E°t, and it satisfies

S(p.mS _ € k-1 S
VP (P;E°T) = meax{e (bj_§>_ (P i +FE +—|—e> (dj + as) (6.10)
S k—1
S S+ . S+
+ BV <P 5 BT eE >}

Proposition 6.5. The value function of a defector country is linear in P. The optimal reaction
of non-member countries is independent of the level of pollution and of the other players’ strategy
and it is given by

ef =b; —k(dj +as),
assuming non-negative emissions.

Proof. Assume that V]S (P; ES+) = h% — m5P. Then we have:

S (p. pS+y  _ e k=1 s
VP (P E°T) = meax{e(bj—2>—<Pk6+E+—|—e>(dj+ozs)
S k—1
S S+ . S+
= max e(b'—g)— PE—FESJF—HE (dj + as)
py J 2 k‘ﬁ J
—i—ﬂ(hg—mg(Pk];BlJrEer—Ire;ES*))}

=: maxuvs(e).
e
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Differentiating with respect to emissions yields:

d _
%UQ(G)ij—B—dj—OéS—,BmS.

d

T bj—e—dj—as—ﬂmg =-1<0.

So that the first order conditions are necessary and sufficient, provided that the solutions is interior.
The FOC are satisfied at

S _ . ) S
ej =bj —d; —as—pm”.

Replacing 6]5 in 1} and placing S = d; + as , we obtain

Ve (P;ES+) = % (bj — 8 —ﬁm§> (bj +05+Bm5) — 8 (bj — 5 - ﬁmg +ES+>
+8h5 — BmS (bj — S~ gmS + ES+> — Pkk_ﬁl (05 i ﬁms’) — 1S —mSp
so that
mg _ csk‘gl

1 5 ok —1 1 G ok —1 5 ok —1
"= 1—6[(1’3'_65_5‘5 5 ><2<bj+"’s+5cs 5 )‘Cs_ﬁcs 5 >

_ g5 <c5+5csk;1>] :

The optimal emissions of a defector country are therefore:

efzbjfk:(dj+ozs).
O

Combining these results, the equilibrium strategy vector is given by (e;9 ,ekg) G res and the
j€S ke

total emissions at equilibrium when the set of signatory countries is S are

n

TS:ij—k: Zdj+$2dj+$@(37+1)(n—$) ,

Jj=1 jeS JeSs
from which we obtain the steady-state of the pollution stock corresponding to coalition S

T3kS

pS—_~ %
kB —k+1
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Finally, the total discounted welfare, over an infinite horizon, of player j, according to his status,

when the set of signatories is S and the pollution stock is P, is given by

2
b? — k(X jes i + Ta(n — s) s)

WP (P) = 20— ) (6.11)
o S
—(dj+7'a(n—3))k<Pkkﬁl+1Tﬁ>.
W () — b2 — k% (dj + as)? i phi—1 T° 619
i) = 21-6) (9+as)( kﬂ+1—ﬁ>' 012

To conclude, we point out that the assumption that the damage function is linear in P makes the
emission strategies of all players independent of the stock of pollution, but this does not mean that
the emissions of the players are necessarily constant in time, because they depend on the number
of signatories, which could depend on the stock of pollution.

To check for the stability of a coalition, we use a dynamic version of the equilibrium concept
introduced in [34]. Thus, internal stability of a coalition S is achieved at P if no signatory country

would increase its total discounted welfare by deciding to quit the coalition, that is

S S+j :
W; (P) ZVVj I(P) VjesS.

Similarly, external stability of a coalition S is achieved at P if no non-signatory country would

increase its total discounted welfare by deciding to join the coalition, that is

s S+j G
W7 (P) > Wy (P) VjeS.

A general result in static games with identical players is that these stability conditions can only
be satisfied by very small coalitions if no additional mechanism is provided in the agreement. For
instance, in the quadratic cost/linear damage case, which corresponds to our model, they can only
be satisfied by coalitions of two members. In a dynamic setting with identical players, Breton et al.
in [18] show that the addition of a punishment mechanism in the agreement allows to obtain stable

coalitions where s € n (1-7[-77" 1} , depending on the value of a and of P;.
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Grand coalition approach
In the grand coalition approach to IEAs, it is assumed that a group of countries has already agreed
to participate in a joint agreement. The design of a stable IEA then reduces to finding a way
to distribute the benefits of cooperation to the members of the coalition, which is acceptable to
all players. In opposition to what is assumed in the small coalition approach, the grand coalition
approach implies that the agreement collapses if at least one player defects from it. In this sense
this approach is also called the cooperative one in opposition to the small coalition approach, called
non-cooperative approach.

If one interprets the characteristic function v(S), defined in the Chapter 5| as the payoff that
a coalition S of countries can secure when they sign an environmental treaty, then it is clear that
its actual value depends on the environmental strategies (or behavior) of the left-out-players (LOP,
for short), i.e., N\ S. A first option is to assume that v(S) is given as a Nash equilibrium payoff
of the non-cooperative game played between S and the LOP acting individually. In that case, each
characteristic function value involves computing a Nash equilibrium of a non-cooperative game with
n — s + 1 players. This approach is often referred to as PNE (for Partial Nash Equilibrium), or
~ -characteristic function. A second option is to assume that the LOP also form a coalition, and,
consequently, v(.5) is defined as a Nash equilibrium payoff of the non-cooperative game between S
and N\ S. The advantage of this approach with respect to the previous one is that each equilibrium
problem now involves finding a Nash equilibrium of a two-player non-cooperative game, however,
it may not lead to a superadditivity characteristic function. For an example in the framework of
IEAs see [I7]. A third possibility is to follow [123] and suppose that the LOP form an anti-coalition
whose sole aim is to minimize the payoff of coalition S, which transforms the computation of v(S)
into the simple problem of finding a solution to a zero-sum game.

In the context of IEAs, the PNE approach seems to be the most attractive. Indeed, there is
no reason to believe that, if some countries decide to form a coalition to tackle an environmental
problem, then necessarily the remaining players will design a parallel treaty, and even less a treaty

aiming at minimizing the welfare of the environmentally responsible countries. Further, the fact
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that this approach leads to a superadditive characteristic function is definitely an interesting feature.
The only drawback is that it is heavily demanding in terms of computation: with n players, one
needs to solve 2" — 1 equilibrium problems. To reduce the computational burden, Petrosjan and
Zaccour in [96] propose a characteristic function where the LOP stick to their Nash strategies as
determined in the fully non-cooperative game, i.e., when each player acts alone. The advantage of
this approach is that only one equilibrium problem has to be solved, and it only remains to solve
the optimization problem of each possible coalition.

The PNE approach corresponds to the assumption used for the solution of the emission game
in the small coalition approach: the members of a coalition S decide to join an TEA, according
to which their production activity is decided by maximizing the aggregate welfare of the coalition.
The remaining left-out-players act individually, that is, each of them decides its production activity
by maximizing his individual welfare. The solution of the emissions game can be retrieved from
the solution of the dynamic programs and by setting « to 0. At P, the characteristic
function assigns to each of the possible subsets S C N the total discounted welfare of coalition S
over an infinite horizon, that is

2
> jes byz — sk? (Zjes dj)
2(1-p)

k—1 N ZjGN bj —k (ZZGS di + SZjGS dj)
kB 1-p

5(S,P) =

-k |P

> dj.

jes
6.2.2 Main Features

Our aim is to study the main features of this characteristic function.

Remark 6.2. It’s necessary to check the positivity of V(S, P), subject to the constraints for the
optimal emissions obtained in Propositions and [6.5, which entail the following lower bound for
the sum of all b;, for each coalition S € 2N

Sbizk|sy di+> di . (6.13)

JEN i€S leS
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Theorem 6.3. If
b2

Z]ES ] Sk'
ieS 1es JEN Jj€ jes les

holds, then the pair (N,v) is a nonnegative ECGWNE for all P € [0, +00) .

Proof. Recalling the notation in Section we can define:

u(S, P) = w(S) — g(P)u(s),

where
2 2 2
2(5) Z]GSb] sk (Zjesdj> L Zjerj_k(ZjeS‘dj+32jede> Zd
w = —_ i
2(1- ) -5 2%
u(s) = ﬁ Zdy,
JES
GP) = P

Obviously, if S = () then ©((), P) = 0. Moreover g(P) is nonnegative in [0, 400) and strictly increas-
ing, and u(S) is positive V.S # (). After extending (6.13) to all S C N, we are going to assess the

positivity of w(S):

2
b2 — sk cgdj
a(8) = 2 jes b 2(1_(5)3363 J) ijes Zb o Zdl+szd

JEN les Jes

2
2 4
> jes bF + sk? (Zjes d’ﬂ) B kY iesdid jen b n kY iesdi Y iesdi >0
2(1— B) 1-8 1-p ’

if the condition holds. O
Proposition 6.6. The game (N, ) is convex ¥ P € [0,400).
Proof. By Proposition [6.2] and Remarkp.1] since

)+u(SNT)—u(S)—u(T)

= Soodi+ > di=d di—> dj| =0,

jesurT jesnT JES JjeET
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then if @ is convex V P € [0,400), convexity is ensured for all nonnegative P, hence (N,7) is a
convex ECGWNE for all suitable P such that Proposition holds. If we denote respectively with

s,t, h the cardinality of S, T, SN T, we have

2 2
HSUT) + @S NT) — &(S) — &(T) K (s+t—h—2)( Z dj) +(h—2)( T dj) n (6.15)

21-9) jeSuT jeSNT

ol oo (5]
- 2(1’i B) {S Kﬁ%ﬂ) B (j;da‘> }

and since

Dodit) di= ) di+ ) d;

jes JET jESUT JESAT
then (6.16) is equal to
k*(h —2)
= 50-5) D= D i) | X di+ ) di— D di=) dif ],
JET jesuT JESAT jes jesuT JET

which is positive because its two factors are both negative, consequently w(-) is convex and the
proof is complete. O
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The convexity of (IV,?) ensures that its Shapley value belongs to its core (see Definition [5.18)).

Moreover
Corollary 6.3. If n > 2, the game (N,0) is an essential ECGWNE VP € [0,+00) .

Proof. We have that the game (IV, @) is an essential game. Indeed

2
—nk? (Ljen i) + K2 S jen @2
2(1-5)
nk? (Sjends) K (Sjends)

+ 1-3 B 1-3

2
k2(n—2) (Y cndj
- 2<1<§>N I

B(N) =Y a({sy) =

JEN

Moreover

a(N) =Y a{j}) = 0

JEN

The thesis follows because © is an affine trasformation of w and . O

Remark 6.3. The nonnegative ECGWNE (N, ) is a monotonic game YP € [0, +00) .
6.2.3 Welfare allocation among players

First of all we consider the following notation:

Notation 6.1. Let (N,v), be an extended cooperative game. We indicate respectively with @En) (V)
and with X(n) (V) the Shapley value and the Banzhaf - Coleman index of (N,V) when the number of

i

players is n.

(Case 1) Symmetric players In this case we assume symmetry by positing d; = d; = d and

b =b; =bforalli,jecN.

Proposition 6.7. When agents are symmetric, the Shapley value for the extended cooperative game

(N,v) Yie N VYn>2is
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Proof. We proceed by induction on the number of players. We calculate the Shapley value using

the multilinear extension. For n = 2 we obtain

@)~ (2dk—b)2 kE—1
@ = Soog Pl

Supposing that the thesis is true for n, we are going to prove it for n 4 1.

The inductive hypothesis implies that

(n-1),~ _ ((n— 1)dk — b)? B E
o = O |

and

O (ndk — b)? B k-1
=305 P[d % ]

and so
~ d*k* (2n — 1) — 2dkb
2(1-0)

o™ (@) — 0"V (@)

Consequently, it suffices to show that

PR (2(n+ 1) — 1) — 2dkb
B 2(1-p)

P @) — oM (@)

Then

)~ A*k*(2(n+1) — 1) — 2dkb

_ (ndk —b)? _P[dk_l} L PR R +1) — 1)~ 2dkb _

2(1-p) B 2(1-5)

n —b)? - n P
e g,
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Remark 6.4. Proposition maintains that the Shapley value is constant across players under

symmetry, providing an alternative formula for the Shapley value:

" () = Vie N, V¥n>2 (6.16)

Since the Banzhaf - Coleman index is equal for all players, we can state the following:

Proposition 6.8. Ifd; =d and b; =b Vj € N, then we have

@) <o™@) VieN,  vn>2 (6.17)

Proof. Since Banzhaf-Coleman index doesn’t satisfy the efficiency axiom (see [87]), whereas the

Shapley value does, we have

S @) <o, P) =3 oM (@),

1EN 1EN

Moreover, since none of the indices depend on players, we have
" (8) < B(N, P) =np{”(®)  VieN,
trivially proving the assertion.

O]

We can note that in the relation (6.17)) the strict inequality does not hold because, for example,

for n =2, y\" (@) = ¢\ (@) VieN.

i
Proposition means that for all agents, the allocation corresponding to the Shapley value is
preferable to the one corresponding to the Banzhaf-Coleman index.
(Case 2) Non Symmetric players
We can calculate some indices of power for the extended cooperative game (N, v), in the general

case.
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Proposition 6.9. The Shapley value for the extended cooperative game (N,v) Vi € N VYn > 2 is:

n) % 4 u k2 .
e (LRI SRS SE A ERveLaey (RS RS 3T
j=1

JFi J<k J#i
J#i
b2 — k2d? k " " [ k:—l]
4 2 ¢ b:— kS di| di—P|di——]. 6.18
T i DOL R DL 3 (6.18)

Proof. By induction on the number of players, we use Theorem to calculate the Shapley value.

For n = 2 we have

o K2(3d? + d3) + 4kPdydy + 203 — 4kdy(by + b k-1
<p§2)(v): ( 1+ 2)+ 1d2 + 1 1(1+ 2)—P|:d1 :|’
4(1-75) B
2(.92 2 4 2 2 2 4 1
9022)(@\) — k (dl +3d2) + 4k 5(11(12_‘;) bg kd2(b1 -I—bz) _p |:d2k B :| ‘

For n = 3 we have

k? (12d7 + 3d3 + 3d3 + 16d1da + 16d1d3 + 4dads)

(35
662 — 12kd; (b1 + ba + b3) k-1
— P |dy
12(1 - B) p
Similarly
®)5) — k? (3d? + 12d3% + 3d3 + 16d1ds + 4d1d3 + 16dad3) + 6b3
72 12(1— B)
B 12kd2(b1+bg+bg) _pla k—1
12(1 - ) ° B
©) ) k? (3d} + 3d5 + 12d3 + 4dydy + 16dd3 + 16d2d3) 4 63
Y3 \v) =

12(1 = 5)
12k‘d3(b1 + by + bg) k—1
12(1- ) P[d‘”’ 5 }
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Supposing that the thesis is true for n, we prove it for n 4+ 1. By the inductive hypothesis we

have that:
(n—1) k‘2 k’ ) n—1 )
(0) 30 7) d2d+zddk abTie (n—2)d? +Y 2| +
Jk=1 Jj=1
Jséz ];’f JAi
JF
b2 — k242 o= nd E—1
+-2 U bi— kS d; di—P[di],
21-p) 1-p ; ! ; ! 3
(@) = K dZd +de +k72 d2+2d2 T
7 3(1-8) e TR
]3&1 ];k’ ];ﬁz
JF
b2 — k2d? k "~ "~ [ k—l]
+- U bi—kS di|ldi—P|di——].
2(1-0) 15{;] ;J B
Therefore
2 n—1 2
)y (1) K . . k 2, 2 k _
v @) =0 0 = 50 g dldn+dn;d] +4(1_5)[d1+dn} 7 [on — k) di.

We have to show that

(n+1) (n) k?
N V)—: V) =
o, (D)=, () 50 7)
Then
oM (@) +

3(1-5)

didn 41 + dn1 Zd +

didpi1 + dpt1 Z d;| +

J#i

L[d%d }L[b — kdpi1] d;
4(1_5) n+1 1_5 n+1 n+1] .

J#l

L[d2+d ]—L[b — kdpi1] d;
= 4(1_/3) n+1 1_6 n+1 n+1] &g

JFi
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k?
- m dZd +ddn+1+2ddk+dn+12d
k=1
J#z JJ<'I€ J#Z
J#i
k2 b2 — k2d?
+—— Vdi+d;+> di+diy | + 20t
a-p |V Z “| T aa-g)
i

k a - k-1
i3 > bt b =k | Y dj+ dnp di—P[di/B]
j=1 j=1

kQ n+1 n+1 k2 n+1
- " ~1)d; Y d; d;d —— | nd? d?
3(1-5) n Z +];1 iy n”LZ;J
T j<k i
L j#i
b2 k2d2 n+1 n+1 |: E— 1:| (n+1)
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Moreover, we have a similar formula for the Banzhaf - Coleman index.

Proposition 6.10. The Banzhaf - Coleman indez for the extended cooperative game (N, )

Vie N Vn>2is
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Proof. Tt is similar to the proof of Proposition [6.9] O

Propositions and imply that, also in the non-symmetric case, the Banzhaf - Coleman

index is suboptimal respect to Shapley value, i.e.

Y@ <oM@) VieN vn>2.

i

In particular, by (6.18)) and (6.19), the difference between the two measures is given by:

oM@ @) = e (=2 Y di+ Y djdy
12(1 - B) ; :
7=1 7,k=1
J#i j<k
J#

Hence, they are equal for n = 2 players.

6.2.4 A numerical simulation

As in [5], we use the MERGE model to calibrate the parameters of the game. MERGE is a
Model for Evaluating the Regional and Global Effects of GHG reductions. In MERGE, the world is
divided into nine geopolitical regions: Canada, Australia and New Zealand (CANZ); China; Eastern
Europe and the former Soviet Union (EEFSU); India; Japan; Mexico and OPEC (MOPEC); USA;
Western Europe (WEUR) and the rest of the world (ROW). The data are borrowed from [5].

Table 6.1: Model parameter values

b;  d; (low) d; (high) B Kk P

USA 1759 0.358 0.429 0.95 15.095 390000
WEUR 993 0.310 0.4345 0.95 15.095 390000
Japan 318  0.143 0.1495 0.95 15.095 390000
CANZ 293 0.053 0.0685 0.95 15.095 390000
EEFSU 919 0.056 0.134 0.95 15.095 390000

China 985  0.216 0.807 0.95 15.095 390000
India 334  0.063 0.1915 0.95 15.095 390000
MOPEC 751 0.100 0.231 0.95 15.095 390000

ROW 1202 0.288 0.717 0.95 15.095 390000

With data of Table the game (INV,?) satisfies the hypothesis of Theorem [6.3] and so it’s an
ECGWNE.
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In the following two tables, we are going to show the Shapley values and the Banzhaf-Coleman

indices for this game in the two different cases corresponding to distinct levels for d;.

Table 6.2: Numerical solution (low case)

4,0(9) (Shapley)

X9 (Banzhaf)

USA
WEUR
Japan
CANZ
EEFSU
China
India
MOPEC
ROW

28062244
7368204.666
-137234.3214
434146.1666
7997129.5
7966384.666
610759.9444
4837516
12132794.5

28060838
7366899.333
-138108.2105
433557.5263
7996530.5
7965306.5
610137.8
4836773.8
12131538.66

Table 6.3:

Numerical solution (high case)

¢ (Shapley)

x9 (Banzhaf)

USA
WEUR
Japan
CANZ
EEFSU
China
India
MOPEC
ROW

27506247
6381780
-180148.8947
317080.4761
7378603.3333
3233134.3333
-412872.8889
3794584.25
8701525.5

27501994
6377499
-182755.8823
315016.8571
7376098
3227223.1667
-415749.8571
3791460.6667
8695950

The above tables suggest us a reduction effect of the individual welfare for higher values of d;,

namely the sensitivity of the power indices with respect to the coefficients d; can be assessed more

accurately, by taking into account the first order derivatives of (6.18) and (6.19):

Proposition 6.11. There exist n threshold values

i did; =
k(n+1) (Z@f]+2> -,
j=1

P = k(k—1)

such that for any P > P} the Shapley value of the i-th country decreases as its marginal contribution

to the stock of pollution increases.
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Proof. Deriving (6.18) with respect to d; we have:

o™ (% k2 1 1 Eo E—1
P; 4(1)): v n + Zdj_’_idi _7ij_7p
od; -5\ 3 % 2 ~

which is negative for

Consequently, the value

P* := max P}
1EN

is the level such that, for any P > P*, each country’s individual welfare decreases as its marginal

contribution to externality increases.

Also in this case, we can prove an analogous assertion on the Banzhaf-Coleman index.

Remark 6.5. In our numerical example we have the following threshold values for P in the two

cases:!

Table 6.4: Threshold values

P* (low case) P* (high case)

USA -1.6667 -1.6485
WEUR  -1.6668 -1.6485
Japan -1.6678 -1.6501
CANZ -1.6683 -1.6505
EEFSU  -1.6683 -1.6502
China -1.6674 -1.6464
India -1.6682 -1.6498
MOPEC -1.6680 -1.6496
ROW -1.6670 -1.6469

We can note that in our simulation such values are slightly different from one another, and that
given their negativity, the Shapley value and the Banzhaf-Coleman index of all countries decrease

as their marginal contributions to the stock of pollution increase, for all positive levels of P.
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This chapter is divided in two parts: in the first part we introduced the class of extended
cooperative games with negative externality in order to contribute to the modeling of TU-games
in which the coalitional payoff is affected by an undesired and inevitable effect. We showed that
such games may have good properties, such as nonnegativity and convexity. Moreover, we proved
several features for classical concept solutions of cooperative games belonging to this new class.

In the second part the traditional model of emissions reduction game is seen as an application of
the theory elaborated in the first part: in particular we obtained two closed form formulas for the
Shapley value and the Banzhaf-Coleman index. In a concluding numerical simulation we employed
such formulas to calculate the welfare of countries inside the MERGE model.

Taking into account asymmetrical countries, we found that the welfare depends on each country’s
specific prerogatives, and the suboptimality of the Banzhaf-Coleman index with respect to the
Shapley value suggests that, the latter is the preferred solution because it is also efficient in core-
sense.

The reduction effect of the individual welfare for higher values of countries’ marginal contribu-
tions to the pollution stock suggests that power indices are decreasing functions not just of pollution
but also of the propensity to pollute as soon as pollution outnumbers a certain threshold.

In general, we stress that the theory approached in Section can also be exploited to inves-
tigate other kinds of games where players maximize their payoffs while facing a common damage.
Future developments of such findings might concern games either with more complex accumula-
tion dynamics (i.e., nonlinear) or with more than one externality variable, for example introducing
different types of damages for different geographical areas.

Moreover, a deeper discussion on the stability of the computed solution concepts in this frame-

work has still to be entirely developed.
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