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Introduction

Game theory is a mathematical theory that studies models of con�ict and cooperation between

intelligent and rational decision-makers. Speci�cally it deals with all real-life situations in which

rational people interact each-other, that is when an individual's single strategy depends on what

other individuals choose to do. In this sense it should not be suprising that economics is the �eld in

which game theorists develop their main ideas: the narrowness of economic world resources and the

con�icts between countries to get them both create all the necessary ingredients for a game situation.

In literature game theory's birth coincides with the book Theory of Games and Economic Behavior

published in 1944 by the mathematician John Von Neumann and the economist Oskar Morgenstern

(see [123]).

In game theory there is a classical distinction between non-cooperative games and cooperative

games. In a non-cooperative game, player's agreements either do not occur or are not binding, even

if pre-play communication between players is possible. In contrast, in cooperative game theory,

player's commitments are binding and enforceable. In non-cooperative game theory the focus is

mainly on individual behavior while in cooperative game the emphasis is on the group of coalitions

of players and on how to divide the gains among coalitions.

This thesis deals both with non-cooperative and cooperative games in order to apply the math-

ematical theory to competitive dynamics arising from economics, particularly quantity competition

in oligopolies and pollution reduction models in IEA (International Environmental Agreements).

In Chapter 3 a new model of game is de�ned: the Bayesian multicriteria game. In our opinion

this class of game is a very useful tool to model economic situations as Cournot duopoly game in
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which �rms produce two di�erent goods and a �rm may have di�erent production costs according

to a given probability distribution. The new idea is to think that a �rm can produce two (or more)

kind of products. For example �rms produce two types of mineral water: without bubbles and with

bubbles or we can consider the diamond market which is tipically divided in two lines of produc-

tion: one covering the luxury market and the other for an industrial use. This leads to optimize the

di�erent pro�ts at the same time. On the other side it is naturally imagine that each �rm pro�t

can be a�ected by uncertainty: for example, the cost could be di�erent depending on the used

technology. We extend the de�nition of Bayesian game when the players have many objectives to

optimize as de�ned by Shapley in [102] and investigate the existence of strong and weak Bayesian

Pareto equilibria ([30] and [31]). In the special case of potential games ([74]) it is extended the

result obtained in [94] to Bayesian multicriteria game. In general it is used a scalarization approach

to obtain an existence theorem for weak and strong Bayesian Pareto equilibria (wBPE and sBPE

for short, respectively). The existence of approximate equilibria for Bayesian games (see ([73]) is

also discussed in the multicriteria case.

There is a �eld of game theory literature which deals with environmental issues, in particular a

big number of contributions have been published on pollution reduction models in recent years, see

for example [1], [2], [20], [29], [42], [46], [59], [70], [85], [116] and [127]. The typical issues analyzed

in this literature are the incentive schemes of countries which sign a treaty and the stabilization

of International Environmental Agreements. There are two main lines of thought. The �rst line

of research, exempli�ed by [9], [10], [11], [22], [23], [35] and [45], sees the problem of designing (or

signing) an IEA from the perspective of coalitions stability, a concept that has its root in the cartel

problem in industrial organization literature. The stability of an IEA is ensured by two tests: the

entry test that intends to see whether it is in interest of an already formed group of signatories to

enlarge the IEA with new members; the exit test that intends to check whether it is in the interest

of a player to remain in the coalition. The general message carried out in this literature is that

only a small number of countries will end up signing an IEA, i.e. only a small stable coalition
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can emerge. This approach is also known as the small coalition approach. The second line of

thought adopts cooperative game theory as the analytical framework. The allocation problem is

solved following a two-step methodology. First, one computes the Pareto-optimal emission levels

and second, one uses a solution concept based on cooperative game theory (Core, Shapley value,

etc) to allocate each player his share of the total optimized cooperative payo�. The remaining issue

is to �nd the right allocation function that guarantees the stability of the formed solution in the

core sense. Contrary to the �rst approach, here the stability of the coalition is passive in the sense

that the number of partecipating countries is exogenous. In other words, this approach supposes

the existence of a large number of countries that are predisposed to sign the agreement, from which

the naming grand coalition approach originates. (See for example [26], [27], [28], [41], [44], [51],

[52], [65] and [96]).

Chapter 4 is devoted to illustrate a pollution-reduction model. In this chapter an application of

Bayesian game is shown in the �eld of environmental economics. Speci�cally we apply the model of

Bayesian oligopoly games to an environmental game where countries choose their optimal emissions

strategy maximizing their own pro�ts, having to take into account that their aggregate emissions

amount to an environmental cost su�ered by all of them. Here the type structure, which is about

marginal gains and production function, is �nite and partially ordered. Under some hypothesis

the Bayesian game has a potential function and, in this way, it is simple to compute optimal pure

strategies in classical examples: in this chapter we deal with three di�erent models, whose respective

payo�s were endowed with linear, linear-quadratic and linear-logarithmic cost functions.

The starting points are [5] and [18], which on their turn are related to [52] and [53]. In the above

models, the involved countries aim at maximizing their utility functions by manoeuvring their

emissions strategies, which a�ect both their revenues and the damage provoked by the polluting

actions. The countries are di�erentiated based on these two crucial characteristics: marginal gains

and marginal damage, the former expressing competitiveness and intensity of production, the latter

involving the negative impact of the economic activities on the environment. Such double formu-

lation of uncertainty is somewhat similar to the uncertainty in inverse demand functions and cost



xii Introduction

functions analyzed by [39] and [40] in their papers on the existence of Bayesian Cournot equilibria

in duopolies. Di�erently from their approach, here the focus is on monotonicity with respect to the

partial order of the type spaces rather than on existence and uniqueness of equilibria. In the second

part, the environmental aspect is faced with a cooperative point of view. Chapter 6 proposes a

new perspective on cooperative games, by assuming that the involved players are supposed to face

a common damage. The agents can choose to make an agreement and form a coalition or to defect

and face such damage individually.

When such disadvantage is modeled by a dynamic state variable evolving over time, cooperating and

non-cooperating agents solve di�erent optimization problems, but they all must take into account

such state variable, as if it represented an externality in all their respective value functions. Even

if we just consider the cooperative and static aspects of such a game, the externality has a key role

in the worth of coalitions.

The approach relies on a class of cooperative games including an external e�ect, such that the

characteristic value function is split in two parts: one of them is standard, the other one is a�ected

by externality.

It is worth describing this new idea of externality, which basically di�ers from the previous charac-

terizations in literature. Transferable utility games with positive externalities were de�ned by [99],

which related such externality to an increase in pay-o� for the players in a speci�c coalition when

the remaining coalitions committed to merging. That is, in presence of a partition of the set of

agents and of multiple coalitions, a group of players may enjoy a positive spillover originating from

a merger of external coalitions rather than from a strategic choice.

On the other hand, the role of externality is played, and its amount is measured, by a di�erent

state variable, not directly depending on the possibly undertaken agreements. Loosely speaking,

externalities arise in the same way as they do in standard dynamic oligopoly models (see [64]).

When we relate this idea to the welfare of a country dealing with an emission reduction strategy, we

stress that the clean share of welfare is always positive, whereas the share including the pollution

e�ect is negative, then the total welfare must be globally evaluated.
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The tools which allowed us to study economic applications are discussed in the rest of the thesis.

In particular the �rst part is devoted to non-cooperative games. Chapter 1 shows classical tools of

non-cooperative game theory. More precisely we underline the distinction between �nite games and

non-�nite games discussing Nash equilibria and approximate Nash equilibria. A section is dedicated

to potential games: in such games, introduced in [83], the incentive of all players to change their

strategy can be expressed using a single global function called the potential function. Section 1.5

deals with Bayesian games. Harsanyi in [58] introduces games with incomplete information. He

proves the existence of Bayesian equilibria for the case when the pure strategy spaces are �nite.

Many aspects of Bayesian games have been studied in literature. Some of them regard the existence

of equilibria in these games. Milgrom and Weber in [82] noted that the usual �xed point argument

of Nash in [86] with the standard assumptions is not applicable in proving the existence of Bayesian

equilibrium and hence introduced su�cient conditions for the existence. Balder in [6] and [7]

generalized their result and Radner and Rosenthal in [98] presented su�cient conditions for the

existence of pure strategy Bayesian equilibrium. Kim and Yannelis in [67] provide equilibrium

existence results for Bayesian games with in�nitely many agents. Reny in [100] generalizes Athey's

and McAdams results in [4] and [76] respectively, on the existence of monotone pure strategy

equilibria in Bayesian games. Mallozzi, Pusillo and Tijs in [73] consider situations where one

of the players may have an in�nite set of pure strategies, one criterion and a �nite number of

types and get an existence theorem of approximate equilibria. As for mixed strategies they are

usually regarded as unappealing because they are not only hard to interpret, but also, considered

as too complex for real players to use. Motivated by this view, game-theorists have provided

several puri�cation theorems that describe when mixed strategies can be replaced by equivalent pure

strategies. Several puri�cation results have been obtained for games with a large number of players,

see for example Cartwright and Wooders in [24] and Carmona in [21]. As concerns the economics

literature, Bayesian games play a key role: indeed several types of uncertainty are considered,

and their implications on the provision of public goods are discussed. Gradstein in [54] assumes

that consumers are uncertain about the contribution of other individuals. Under this uncertainty,
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the time dynamics of the private provision of public good is derived. Gradstein et al. in [55] re-

examine Warr's neutrality of the provision of a public good with respect to income distribution

(see [126]) in the context of uncertainty. In the model, uncertainty is about the consumers' income:

each consumer knows her own endowment, but her information regarding the endowments of other

consumers is incomplete. Keenan et al. in [66] examine the impact of increased uncertainty on the

provision of the public good under a non-Nash response and symmetric equilibrium. Here again,

uncertainty is about the response of other contributors to a contribution to the public good. In

[61] the authors consider a public good economy with di�erential information regarding consumers

income and preferences. The private information of each consumer is given by her information

partition: that is, a consumer cannot distinguish between di�erent states of nature that belong to

the same element in her information partition. In [62] the authors apply the concept of information

advantage in [38] to a model of a public good economy introduced in [61]: they consider a public

good economy where the consumers' state-dependent utilities have a multiplicative structure. Also

as regards Cournot oligopoly in [38] authors study the value of information: in an oligopoly where

the market demand and the linear cost are uncertain, a �rm with superior information obtains higher

expected pro�ts than a �rm whose information is inferior. Einy et al. in [38] also present an example

of a Cournot duopoly with quadratic costs where superior information is disadvantageous. Also in

[32] and in [68] the authors show that in equilibrium a less informed �rm earns higher expected

pro�ts than a more informed �rm. Finally, the last section of Chapter 1 is devoted to supermodular

games introduced by Topkis in [109] and very useful to describe, for example, oligopoly situations.

Chapters 2 deals with multicriteria games. In recent years, many authors have studied the game

problem with vector payo�s, for example, see [3] and [14]. Although many concepts have been

suggested to solve multicriteria games, the notion of Pareto equilibrium, introduced by Shapley in

[102], is the most studied concept in game theory. In [125], Voorneveld et al. introduced the new

concept of ideal Nash equilibrium for �nite multicriteria games which has the best properties and

Radjef and Fahem in [97] provide an existence theorem for this new solution concept. Patrone,

Pusillo, Tijs in [94] link the concept of multicriteria game with that one of potential game. For
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some applications see for example [31].

Chapter 5, in the second part of thesis, provides the tools of cooperative game theory. In

particular in this chapter TU-games are investigated.
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Part I

Non Cooperative Approach





Chapter 1

Basic concepts on games and equilibria

The theory of non-cooperative games studies the behavior of agents in any situations where

each agent's optimal choice may depend on her forecast of the choices of her opponents. In non-

cooperative games the emphasis is mainly on the individual behavior.

1.1 Finite Games

Let us denote with N = {1, . . . , n} the players' �nite set of cardinality n.

De�nition 1.1. A non-cooperative game with a �nite number n of players is a tuple G =

(N,X1, . . . , Xn, u1, . . . , un) where ∀i ∈ N,

• Xi is a non-empty set and represents the pure strategy space of player i;

• ui : X :=
∏
i∈N Xi → R is the utility function of player i.

If we also assume that ∀i ∈ N , Xi is a �nite set, we say that G is a �nite game, and we denote

with Γfinite the class of �nite games.

Notation 1.1. Take i ∈ N , we denote with (xi, x−i) the element belonging to X such that:

• xi ∈ Xi;

• x−i ∈
∏
j∈N\{i}Xj =: X−i.
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De�nition 1.2. Let G = (N,X1, . . . , Xn, u1, . . . , un) be a non-cooperative game. Player i′s strategy

x̃i ∈ Xi dominates strategy xi ∈ Xi if

ui (x̃i, x−i) ≥ ui (xi, x−i) ∀xi ∈ Xi, ∀x−i ∈ X−i, (1.1)

with a strict inequality for at least one xi ∈ Xi. A player i′s strategy is dominated if there exists at

least another strategy which dominates it.

Player i′s strategy x̃i ∈ Xi strictly dominates strategy xi ∈ Xi if

ui (x̃i, x−i) > ui (xi, x−i) ∀xi ∈ Xi, ∀x−i ∈ X−i, (1.2)

The most important solution concept for non-cooperative games are Nash equilibria.

De�nition 1.3. Let G = (N,X1, . . . , Xn, u1, . . . , un) be a non-cooperative game.

A n-tuple (x̃1, . . . , x̃n) ∈ X is a Nash Equilibrium (NE for short) [Strong Nash Equilibrium

(sNE for short)] for G if ∀i ∈ N we have:

ui (x̃i, x̃−i) ≥ [>]ui (xi, x̃−i) ∀xi ∈ Xi. (1.3)

We denote with NE(G) [sNE(G)] the set of Nash equilibria [strong Nash equilibria] for G.

We can observe that the condition (1.3) is equivalent to say that ∀i ∈ N we have:

ui (x̃i, x̃−i) ≥ sup
xi∈Xi

ui (xi, x̃−i) . (1.4)

Nash equilibria are characterized as �xed points of particular correspondences called best re-

sponse correspondences.

In general given two sets X,Y a correspondence from X to Y is a map associating to each

element of X a subset of Y.

De�nition 1.4. Let X,Y be topological spaces and F : X ⇒ Y a correspondence. We say that:

• F is upper hemicontinuous (u.h.c. for short) in x ∈ X if for any open neighbourhood V of

F (x), there exists a neighbourhood U of x such that F (x′) ⊆ V ∀x′ ∈ U ;
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• F is lower hemicontinuous (l.s.c. for short) in x ∈ X if ∀y ∈ F (x) and for any open

neighbourhood V of y in Y, there exists a neighbourhood U of x in X such that F (x′)∩ V 6= ∅

∀x′ ∈ U ;

• F is upper hemicontinuous in X if it is upper hemicontinuous ∀x ∈ X;

• F is lower hemicontinuous in X if it is lower hemicontinuous ∀x ∈ X;

• F is continuous in x ∈ X if it is upper hemicontinuous and lower hemicontinuous in x ∈ X;

• F is continuous in X if it is upper hemicontinuous and lower hemicontinuous in X.

Recall that, given a correspondence F : X ⇒ Y, we say that k ∈ X is a �xed point for F if

k ∈ F (k).

For further explanations see [69].

De�nition 1.5. Let G = (N,X1, . . . , Xn, u1, . . . , un) be a non-cooperative game. We de�ne for all

i ∈ N the correspondence Ri : X−i ⇒ Xi where

Ri (x̃−i) = arg max
xi∈Xi

ui (xi, x̃−i) = {x̃i ∈ Xi : ui (x̃i, x̃−i) ≥ ui (xi, x̃−i) ∀xi ∈ Xi} ,

that is the player i′s best reply when the other players play x̃−i.

Let us call

R : X ⇒ X

the correspondence such that

R (x) = (R1 (x−1) , . . . , Rn (x−n)) , ∀x ∈ X.

Then R is said best reply for Nash equilibria of G.

The following theorem links �xed points and Nash equilibria.

Theorem 1.1. Let G = (N,X1, . . . , Xn, u1, . . . , un) be a non - cooperative game, and x̃ ∈ X a

strategy pro�le. Then
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• x̃ ∈ NE(G) i� x̃ ∈ R (x̃) .

Proof. It follows from De�nitions 1.3 and 1.5.

Now let us consider the following example.

Example 1.1. Let us consider the game G = (N,X1, X2, u1, u2) ∈ Γfinite with two players and

payo�s' matrix given by Table1.1 in which X1 = X2 = {T,B} are the �nite strategy spaces of player

I and II respectively. The utility functions u1, u2 : X1×X2 −→ R of player I and II respectively are

de�ned in the following way:

u1 (T, T ) = 2 u1 (T,B) = 0 u1 (B, T ) = 4 u1 (B,B) = 1;

u2 (T, T ) = 2 u2 (T,B) = 4 u2 (B, T ) = 0 u2 (B,B) = 1.

Table 1.1: Prisoner's dilemma

I \ II T B

T 2 2 0 4
B 4 0 1 1

We have that NE(G) = {(B,B)}.

In the Example 1.1 we have seen that there exists a unique NE. However the existence and

uniqueness property are not ensured for this kind of solution as the following examples show. In

particular such properties are not ensured for the class Γfinite.

Example 1.2. Let us consider, as in the previous example, the game

G = (N,X1, X2, u1, u2) ∈ Γfinite with two players and payo�s' matrix given by Table1.2

Table 1.2: Matching Pennies

I \ II P D

P 1 -1 -1 1
D -1 1 1 -1

Here there are not Nash equilibria.
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Example 1.3. Let us consider, as in the previous example, the game

G = (N,X1, X2, u1, u2) ∈ Γfinite with two players and payo�s' matrix given by Table1.3

Table 1.3: Battle of the sexes

I \ II T B

T 3 1 0 0
B 0 0 1 3

We have that NE(G) = {(T, T ) , (B,B)} .

To get a result that ensures the existence of at least a NE we have to consider the mixed

extensions of �nite games.

De�nition 1.6. Take G = (N,X1, . . . , Xn, u1, . . . , un) ∈ Γfinite. We de�ne mixed extension of

G the game G̃ = (N,∆(X1), . . . ,∆(Xn), ũ1, . . . , ũn) , where for all i ∈ N we have:

• ∆ (Xi) =
{
pi ∈ R|Xi| : pij ≥ 0 ∀j = 1, . . . , | Xi |,

∑|Xi|
j=1 pij = 1

}
that is the probability space

on Xi;

• ũi : ∆ (X) :=
∏
i∈N ∆ (Xi) −→ R de�ned in the following way:

ũi(p) =

|X1|∑
k1=1

· · ·
|Xi|∑
j=1

· · ·
|Xn|∑
kn=1

p1k1
· · · pij · · · pnkn

ui

(
x1k1

, . . . , xij , . . . , xnkn

)
,

where p ∈ ∆ (X) .

We denote with Γmixed the class of mixed extension of �nite game.

Nash equilibria and best replies for mixed extensions of a �nite game are de�ned in a similar

way.

Let us consider the following results.

De�nition 1.7. Let X,Y be subsets of Rn and F : X ⇒ Y a correspondence. We say that F has

a closed graph if the set {(x, y) ∈ X × Y : y ∈ F (x)} is a closet subset of X × Y.
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Theorem 1.2. Let K be a compact, convex and non-empty subset of Rn and F : K ⇒ K a

corrispondence with closed graph and where F (K) is a non-empty and convex set. Then there is a

x ∈ K such that x ∈ F (x).

Proof. See [69].

Theorem 1.3. Let S, T be metric spaces and f : S × T −→ R a continuous function. Then the

correspondence M : S ⇒ T such that

M(s) = arg max
t∈T

f (s, t)

has closed graph.

Proof. See [69].

Let us consider the following de�nition:

De�nition 1.8. Let X ⊆ Rn be a convex set. A function f : X −→ R is said quasi concave if

∀t ∈ R the set {x ∈ X : f(x) ≥ t} is convex.

Theorem 1.4. Take G = (N,X1, . . . , Xn, u1, . . . , un) ∈ Γfinite then the mixed extension of G, G̃

has a NE .

Proof. For every i ∈ N the set Ri (p̃−i) is non-empty since ũi is continuous and ∆ (Xi) is compact,

and it is convex since ũi is quasi-concave on ∆ (Xi) ; R is upper hemicontinuous (that is equivalent

to have closed graph since R is compact-valued), since each ũi is continuous. Thus by Theorem 1.2

R has a �xed point.

Let us calculate Nash equilibria in mixed strategies of Example 1.2.

Example 1.4. Let us consider the mixed extension G̃ = (N,∆ (X1) ,∆ (X2) , ũ1, ũ2) in Example

1.2.

We can identify the mixed-strategy space of player I and II, ∆ (X1) ,∆ (X2) respectively as the
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interval [0, 1]. Let us call p = (p, 1− p) the mixed-strategy of player I and q = (q, 1− q) the mixed-

strategy of player II. The utility functions in mixed-strategy ũ1, ũ2 : ∆ (X1) × ∆ (X2) −→ R for

player I and II respectively are de�ned in the following way:

ũ1

(
p, q
)

= pq − p (1− q)− q (1− p) + (1− p) (1− q) ,

ũ2

(
p, q
)

= −pq + p (1− q) + q (1− p)− (1− p) (1− q) .

Moreover

RI
(
q
)

= argmaxp∈[0,1] pq − p (1− q)− q (1− p) + (1− p) (1− q)

= argmaxp∈[0,1] p (4q − 2) + 1− 2q.

Then

RI
(
q
)

=


{1} if q > 1

2

{0} if q < 1
2

[0, 1] if q = 1
2

Similarly

RII
(
p
)

=


{0} if p > 1

2

{1} if p < 1
2

[0, 1] if p = 1
2

Then NE
(
G̃
)

=
{(

1
2 ,

1
2

)}
.

We can note that Theorem 1.4 is only an existence-theorem and does not ensure the uniqueness

as the following example shows.

Example 1.5. Let us consider the mixed extension G̃ = (N,∆ (X1) ,∆ (X2) , ũ1, ũ2) in Example

1.3.
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We can identify the mixed-strategy space of player I and II, ∆ (X1) ,∆ (X2) respectively as the

interval [0, 1]. Let us call p = (p, 1− p) the mixed-strategy of player I and q = (q, 1− q) the mixed-

strategy of player II. The utility functions in mixed-strategy ũ1, ũ2 : ∆ (X1) × ∆ (X2) −→ R for

player I and II respectively are de�ned in the following way:

ũ1

(
p, q
)

= 3pq + (1− p) (1− q) ,

ũ2

(
p, q
)

= pq + 3 (1− p) (1− q) .

Moreover

RI
(
q
)

= argmaxp∈[0,1] 3pq + (1− p) (1− q)

= argmaxp∈[0,1] p (4q − 1) + 1− q.

Then

RI
(
q
)

=


{1} if q > 1

4

{0} if q < 1
4

[0, 1] if q = 1
4

Similarly

RII
(
p
)

=


{1} if p > 3

4

{0} ifp < 3
4

[0, 1] if p = 3
4

In Figure1.1 the continuous line describes the graph of RI
(
q
)
, while the dotted line describes the

graph of RII
(
p
)
. The circles represent the Nash equilibria. Then NE

(
G̃
)

=
{

(0, 0) ,
(

3
4 ,

1
4

)
, (1, 1)

}
We can note that the equilibria (0, 0) , (1, 1) correspond to pure-equilibria (T, T ) , (B,B) respectively.

The last remark of Example 1.5 is true for all game G ∈ Γfinite but the viceversa does not hold

as we can see from Example 1.5.
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Figure 1.1: Nash Equilibria

1.2 Non-Finite Games

A non-cooperative game with non-�nite strategy-spaces is called non-�nite game. In particular

the mixed-extention of a �nite game is a non-�nite game. In this sense we have a corollary of

Theorem 1.4 for non-�nite game in general.

Corollary 1.1. A non-cooperative game G = (N,X1, . . . , Xn, u1, . . . , un) has a NE if for each

player i :

• the strategy set Xi is a non-empty, compact and convex subset of an Euclidean space;

• the payo� function ui is continuous and quasi-concave in xi.

Proof. It follows from Theorem 1.4.

1.2.1 Cournot-NE

A solution very similar to NE was �rst used by Cournot as early as 1838 in the framework of

duopoly model. This model is considered rightly as one of the major classic examples of applied

game theory in economics. In this model, the �rms are supposed to choose simultaneously their



10 Basic concepts on games and equilibria

volume of output. See [108].

Two �rms produce and sell a homogeneous good. Let us call q1 and q2 the quantities produced

by �rm 1 and �rm 2, respectively. To simplify matters, assume that there are not �xed costs and

that marginal costs are constant and equal to c, so that the total cost is:

Ci = cqi.

Firms face an inverse demand function given by:

P = max {a−Q, 0} ,

where Q = q1 + q2, P is the price of the good and a is a positive constant and, in generally, it is

assumed to be the reservation price of the homogeneous good. In order to avoid a corner solution

assume that a > c.

Firms are supposed to choose simultaneously the quantities q1 and q2. In this model those variable

are thus the players' strategies. The strategy sets of the player are identical and given by:

X1 = X2 = [0, a− c] .

The players' payo� functions are here the pro�t functions of the �rms:

u1 (q1, q2) = P (q1, q2) q1 − cq1

u2 (q1, q2) = P (q1, q2) q2 − cq2.

Or,more generally, after a clear change of notations:

ui(qi, qj) =


[a− (qi + qj)− c] qi if 0 ≤ qi ≤ a− c− qj

0 if 2− c− qj ≤ qi ≤ a− c.
(1.5)

If
(
q∗i , q

∗
j

)
is a NE of this game, then ∀i ∈ N :

ui
(
q∗i , q

∗
j

)
≥ ui

(
qi, q

∗
j

)
,
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for all qi ∈ Xi. Then for each player i, q∗i must be a solution of:

max
qi

ui = [a− (qi + qj)− c] qi.

It is easy to check that, by Corollary 1.1, in this game there always exists at least a NE.

With the assumption that q∗i < a− c, the �rst-order conditions of this optimization problem are

necessary and su�cient:

∂ui
∂qi

= 0, i = 1, 2,

which gives:

q∗i =

(
a− q∗j − c

)
2

, i = 1, 2.

Solving this pair of equations leads �nally to the outcome of the game:

q∗1 = q∗2 =
a− c

3
.

The Cournot duopoly model can be extended to the case in which there are many �rms (n > 2):

in this case we speak of Cournot oligopoly. In general the early literature on Cournot oligopoly

has been concerned with three main issues: whether the model is quasi-competitive, i. e., industry

output rises and price falls with additional �rms (see for example [13], [49] and [78]); whether the

model converges to perfect competition with an in�nite number of �rms (see [25], [49], [60], [78],

[103] and [119]). The third issue concerning the question whether the equilibrium solution itself is

dynamically stable (see [56], [89] and [105]).

This model has many variants in which cost structures, inverse demand and value of information

change. For example in [12] authors consider a duopoly model with quadratic cost functions. They

show existence and uniqueness of a�ne equilibrium strategies and that, in equilibrium, expected

pro�ts of �rm i increase with the precision of its information and decrease with the precision of

the rival's information. Novshek and Sonnenschein in [88] consider a duopoly model with constant

costs and examine the incentives for the �rms to acquire and release private information. Clarke

in [33] considers an n-�rm oligopoly model and shows that there is never a mutual incentive for all

�rms in the industry to share information unless they may cooperate on strategy once information
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has been shared.

Vives in [120] observed that more information can be undesirable in the setting of Cournot oligopoly.

More recently papers about the value of information in this framework are [39] and [68].

1.3 Approximate Nash Equilibria

In this section we deal with a di�erent concept solution.

We consider the following de�nition introduced by Tijs in [106].

De�nition 1.9. Let G = (N,X1, . . . , Xn, u1, . . . , un) be a non-cooperative game and ε > 0. Then

(x̃1, . . . , x̃n) ∈ X is an approximate Nash equilibrium (ε-NE for short) for G if for each i ∈ N

we have:

ui (x̃i, x̃−i) ≥ ui (xi, x̃−i)− ε ∀xi ∈ Xi. (1.6)

We denote with ε−NE(G) the set of approximate Nash equilibria of G.

Obviously for ε = 0 the set of approximate Nash equilibria is equal to the set of Nash equilibria.

The condition (1.6) means that for each i ∈ N we have:

ui (x̃i, x̃−i) ≥ sup
xi∈Xi

ui (xi, x̃−i)− ε. (1.7)

Moreover if ε1 < ε2 then ε1 −NE(G) ⊆ ε2 −NE(G) for each game G.

Example 1.6. Let us consider G = (N,X1, X2, u1, u2) with X1 = X2 = R and u1 (x1, x2) =

−u2 (x1, x2) = x2
2 − x2

1. By condition 1.7 we have that, by �xing ε > 0, the pair (x̃1, x̃2) ∈ R2 is a

ε-NE if

x̃2
2 − x̃2

1 ≥ sup
x1∈R

u1 (x1, x̃2)− ε = sup
x1∈R

(
x̃2

2 − x2
1

)
− ε

= x̃2
2 − ε,



1.3 Approximate Nash Equilibria 13

and

x̃2
1 − x̃2

2 ≥ sup
x2∈R

u2 (x̃1, x2)− ε = sup
x2∈R

(
x̃2

1 − x2
2

)
− ε

= x̃2
1 − ε.

That is if (x̃1, x̃2) ∈ [−
√
ε,
√
ε]× [−

√
ε,
√
ε] .

ε−NE (G) is the square with center (0, 0) and side 2
√
ε. In particular NE(G) = {(0, 0)} .

Example 1.7. Let G = (N,X1, X2, u1, u2) be a non-cooperative game with X1 = X2 = R and

u1 (x1, x2) = −u2 (x1, x2) = x1x2. We have that:

sup
x1∈R

u1 (x1, x̃2)− ε = sup
x1∈R

x̃2x1 − ε

< +∞⇔ x̃2 = 0,

and

sup
x2∈R

u2 (x̃1, x2)− ε = sup
x2∈R

−x̃1x2 − ε

< +∞⇔ x̃1 = 0.

So the unique ε−NE is the pair (x̃1, x̃2) = {(0, 0)} . In this case ε−NE(G) = NE(G).

Next example shows that for some values of ε the existence of approximate Nash equilibria is

not ensured.

Example 1.8. Let us consider G = (N,X1, X2, u1, u2) a non-cooperative game with X1 = X2 =

{−1, 1} and u1 (x1, x2) = −u2 (x1, x2) = x1x2, (see 1.2). By condition (1.7) we have that, by �xing

ε > 0, the pair (x̃1, x̃2) ∈ {−1, 1} × {−1, 1} is a ε-NE if:

x̃1x̃2 ≥ max
x1∈{−1,1}

u1 (x1, x̃2)− ε

= max
x1∈{−1,1}

x̃2x1 − ε = 1− ε,

and

−x̃1x̃2 ≥ max
x2∈{−1,1}

u2 (x̃1, x2)− ε

= max
x2∈{−1,1}

−x̃1x2 − ε = 1− ε.
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then the pair (x̃1, x̃2) ∈ {−1, 1} × {−1, 1} is a ε-NE i� ε ≥ 2. So if ε < 2, there are not

approximate Nash equilibria and, in particular NE(G) = ∅.

From these examples we have seen that, as for Nash equilibria, neither the existence (see Example

1.8) nor the uniqueness (see Example 1.6) of approximate Nash equilibria is guaranteed. Also in

this case there are existence theorems. We quickly show a result due to Tijs (see [106]), but many

other papers have been written about this topic (see for example [16], [104]).

Theorem 1.5. Take G = (N,X1, . . . , Xn, u1, . . . , un) ∈ Γfinite such that for each player i, ui is an

upper bounded function on X =
∏
i∈N Xi, then for each ε > 0, the mixed extension of G, G̃ has

ε−NE.

Proof. See [106].

1.4 Potential Games

Potential games were introduced by Monderer and Shapley in [83] and studied for example in

[124]. A game is said a potential game if the incentive of all players to change their strategy can

be expressed using a single global function called the potential function. This potential function

provides the necessary information for the computation of the pure Nash equilibria. Thus a potential

function is an economical way to summarize the information concerning pure Nash equilibria into

a single function. Moreover, every �nite game with a potential function has an equilibrium in pure

strategies: since the strategy space is �nite, the potential function achieves its maximum at a certain

strategy pro�le.

De�nition 1.10. Let G = (N,X1, . . . , Xn, u1, . . . , un) be a non-cooperative game. We say that G

is a potential game if there is a function (called potential function) Π : X :=
∏
i∈N Xi −→ R such

that for each i ∈ N, xi, yi ∈ Xi, x−i ∈ X−i we have:

ui (xi, x−i)− ui (yi, x−i) = Π (xi, x−i)−Π (yi, x−i) .
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Table 1.4: A potential function

T B

T 2 4
B 4 5

Example 1.9. Let us consider the Prisoner's dilemma game (see Example 1.1). It is a potential

game, where a potential function Π is given in Table1.4.

From De�nition 1.10 it follows that a potential function is not unique: if Π is a potential function

for a game G also Π + c, with c ∈ R, is a potential function for G. Then all potential functions of

the Prisoner's dilemma game are Πk, with k ∈ R, given by Table1.5.

Table 1.5: All potential functions

T B

T 2+k 4+k
B 4+k 5+k

Interesting classes of potential games are the coordination games and the dummy games.

De�nition 1.11. Let G = (N,X1, . . . , Xn, u1, . . . , un) be a non-cooperative game. We say that G

is a coordination game if ui = uj ∀i, j = 1, . . . , n. That is the utility functions are equal for each

player.

De�nition 1.12. Let G = (N,X1, . . . , Xn, u1, . . . , un) be a non-cooperative game. We say that G

is a dummy game if ui (xi, x−i) = ui (yi, x−i) ∀i = 1, . . . , n, xi, yi ∈ Xi, x−i ∈ X−i. That is

player i′s strategy choice does not a�ect her payo�.

A potential function for a coordination game G = (N,X1, . . . , Xn, u1, . . . , un) is Π = u1 while a

potential function for a dummy game is the null function.

Not all �nite games admit a potential function as we can conclude from:
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Theorem 1.6. Take G = (N,X1, . . . , Xn, u1, . . . , un) ∈ Γfinite a potential game, Π a potential

function for G, and G1 = (N,X1, . . . , Xn,Π, . . . ,Π) a coordination game. Then

i) NE(G) = NE(G1);

ii) G has a NE.

Proof. See [107].

By Theorem 1.6 the game in the Example 1.2 is not a potential game.

For non-�nite games we have the following theorem:

Theorem 1.7. Let G = (N,X1, . . . , Xn, u1, . . . , un) be a potential game and Π an upper bounded

potential function for G. Then ∀ε > 0, G has ε−NE.

Proof. See [83].

The next results, dealing with di�erentiable games (i.e. such that their utility functions are

di�erentiable) are well-known.

Lemma 1.1. Let G = (N,X1, . . . , Xn, u1, . . . , un) be a game in which for each player i, Xi are

intervals of real numbers. Suppose the utility functions ui are continuously di�erentiable ∀i ∈ N,

and let Π : X −→ R. Then Π is a potential function for G i� Π is continuously di�erentiable, and

∂ui
∂xi

=
∂Π

∂xi
, ∀i ∈ N.

Theorem 1.8. Let G = (N,X1, . . . , Xn, u1, . . . , un) be a game in which for each player i, Xi

are intervals of real numbers. Suppose the utility functions ui are twice continuously di�erentiable

∀i ∈ N. Then G is a potential game i�

∂2ui
∂xi∂xj

=
∂2uj
∂xi∂xj

, ∀i, j ∈ N. (1.8)

Moreover, if the utility functions satisfy (1.8) and z is an arbitrary (but �xed) strategy pro�le in X,

then a potential function for G is given by

Π (x) =
∑
i∈N

∫ 1

0

∂ui
∂xi

(y (t)) (yi)
′ (t) dt, (1.9)
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where y : [0, 1] −→ X is a piecewise continuously di�erentiable path in X that connects z to x.

Example 1.10. Let Gc = (N,X1, . . . , Xn, u1, . . . , un) be a Cournot oligopoly game in which there

is a linear inverse demand function P = max {a−Q, 0} , where Q =
∑n

i=1 qi, and cost functions

c1, . . . , cn with continuous derivatives. We take Xi = [0,+∞) and

ui (q1, . . . , qn) = P (q1, . . . , qn) qi − ci (qi) , ∀i ∈ N.

It is simple to prove that Gc is a potential game with potential function

Π (q1, . . . , qn) = a

n∑
i=1

qi −
n∑
i=1

q2
i −

∑
1≤i<j≤n

qiqj −
n∑
i=1

ci (xi) .

1.5 Bayesian Games

We frequently wish to model situations in which some of the parties are not certain of the

characteristics of some of the other parties. The model of a Bayesian game is designed for this

purpose: indeed the case of perfect knowledge of payo�s is a simplifying assumption that may be

a good approximation in some cases. A Bayesian game, or game with incomplete information, is

a game in which, at the �rst point in time when the players can begin to plan their moves in the

game, some players already have private information about the game that other players do not know.

The initial private information that a player has at the �rst point in time is called the type of the

player. The type of a player embodies any private information (more precisely, any information that

is not common knowledge to all players) that is relevant to the player's decision making. This may

include, in addition to the player's utility function, her beliefs about other players' utility functions,

her beliefs about what other players believe her beliefs are, and so on.

To de�ne a Bayesian game, see for example [50], we must specify a set of players N and, for each

player i ∈ N, we must specify a set of possible actions Ai, a set of possible types Ti, a probability

function pi and a utility function ui. We let A =
∏
i∈N Ai, T =

∏
i∈N Ti. That is, A is the set of

all possible pro�les of actions that the players may use in the game, and T is the set of all possible

pro�les of types that the players may have in the game. For each player i, we let T−i denote the set
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of all possible combinations of types for the players other than i. The probability function pi must

be a function from Ti into ∆ (T−i) , the set of probability distributions over T−i. That is, for any

possible type ti ∈ Ti, the probability function must specify a probability distribution pi (·|ti) over

the set T−i, representing what player i would believe about the other players' types if her own type

were ti. Thus, for any t−i ∈ T−i, pi (t−i|ti) denotes the subjective probability that i would assign to

the event that t−i is the actual pro�le of types for the others players, if her own type were ti.

For any player i ∈ N, the utility function ui in the Bayesian game must be a function from A× T

to R.

These structures together de�ne a Bayesian game G, so we may write

G = (N,A1, . . . , An, T1, . . . , Tn, p1, . . . , pn, u1, . . . , un) .

G is �nite i� the sets N,Ai and Ti are �nite ∀i ∈ N. When we study such a Bayesian game G, we

assume that each player i knows the entire structure of the game and her own actual type in Ti and

this fact is common knowledge among all the players in N. A strategy for a player i in the Bayesian

game G is de�ned to be a function from her set of types Ti into her set of action Ai.

We say that beliefs (pi)i∈N in a Bayesian game are consistent i� there is some common prior

distribution over the set of type pro�le t such that each players' beliefs given her type are just the

conditional probability distribution that can be computed from the prior distribution by Bayes's

formula. That is, beliefs are consistent i� there exists some probability distribution p ∈ ∆ (T ) such

that:

pi (t−i|ti) =
p (t−i, ti)

p (ti)
∀i ∈ N. (1.10)

Because we consider in the following consistent beliefs under condition 1.10 we denote

G = (N,A1, . . . , An, T1, . . . , Tn, p, u1, . . . , un) instead of

G = (N,A1, . . . , An, T1, . . . , Tn, p1, . . . , pn, u1, . . . , un) .

A play of such a game proceeds as follows: before the types are announced each player i chooses

a strategy xi ∈ ATii 1. If the type pro�le is t = (t1, . . . , tn) then player i′s payo� is

1In general, given two sets X and Y, the notation XY indicates the set of functions from Y to X, that is
XY = {f |f : Y −→ X}
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ui (x1(t1), x2(t2), . . . , xn(tn), t1, . . . , tn) .

The a priori expected payo� for player i when the players use strategies x1, . . . , xn respectively

is a function Ui : AT11 × · · · ×ATnn −→ R such that

Ui (x1, . . . , xn) =
∑
t∈T

p(t)ui (x1(t1), x2(t2), . . . , xn(tn), t1, . . . , tn) ,

being p(t) the probability distribution of player i when her type pro�le is t.

De�nition 1.13. Let G = (N,A1, . . . , An, T1, . . . , Tn, p, u1, . . . , un) be a Bayesian game. We say

that a strategy pro�le x̂ = (x̂1, x̂2, . . . , x̂n) ∈ AT11 ×A
T2
2 ×· · ·×ATnn is a Bayesian Nash equilibrium

(for short BNE) if ∀i ∈ N, ∀xi ∈ ATii we have

Ui (x̂) ≥ Ui (xi, x̂−i) .

Example 1.11. Let G = (N,A1, A2, T1, T2, p, u1, u2) be a �nite Bayesian game where:

• N = {1, 2} ;

• A1 = {a1, b1} , A2 = {a2, b2} ;

• T1 =
{
t11
}
, T2 =

{
t12, t

2
2

}
.

The functions u1, u2 : (A1 ×A2) × (T1 × T2) −→ R are represented by the bimatrices Table 1.6

and Table 1.7.

Table 1.6: u1

1 \ 2.1 a2 b2

a1 1 2 0 1
b1 0 4 1 3

The �rst one represents the case in which player 2's type is t12, while the second one represents

the case in which player 2's type is t22. We can note that the player 1's payo�s are the same in both

matrices.
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Table 1.7: u2

1 \ 2.2 a2 b2

a1 1 1 0 3
b1 0 2 1 3

We suppose that Nature extracts with probability P ∈ [0, 1] the type t12 (obviously with probability

1− P the type t22). So we have that p
(
t11, t

1
2

)
= P and p

(
t11, t

2
2

)
= 1− P.

Then the values of U1 and U2 are given in the bimatrix Table 1.8, Now we want to compute the

Table 1.8: A priori expected payo� functions

U1\U2 a2 b2

a1 1 P+1 0 3-2P
b1 0 2P+2 1 3

Bayesian Nash equilibria for this game depending on P .

• If P ≥ 2
3 BNE = {(a1, a2) , (b1, b2)} ;

• If P < 2
3 BNE = {(b1, b2)} .

Now we introduce the notion of mixed extension of a Bayesian game.

De�nition 1.14. Let G = (N,A1, . . . , An, T1, . . . , Tn, p, u1, . . . , un) be a Bayesian game. Then the

mixed extension of G is the Bayesian game G̃ =
(
N, Ã1, . . . , Ãn, T1, . . . , Tn, p, ũ1, . . . , ũn

)
, where

Ãi is the family of probability measures (on the σ−algebra of all subsets of Ai) with �nite support.

Such probability measures are the form µi =
∑s

k=1 pkeak where a1, . . . , as ∈ Ai, pk ≥ 0, for all

k ∈ {1, . . . , s} and
∑s

k=1 pk = 1, where

eak (B) =

{
1 if B ⊂ Ai, ak ∈ B
0 if B ⊂ Ai, ak /∈ B

,

Furthermore ũi (µi, . . . , µn, t) =
∫
ui (a1, . . . , an, t) dµ1 (a1) . . . dµn (an) for all i ∈ N and

(µ1, . . . , µn) ∈ Ã =
∏
i∈N Ãi.
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1.6 Supermodular Games

The class of supermodular games was introduced by [109] and further studied by [81], [110],

[121] and [122]. Supermodular games are games in which each player's marginal utility of increasing

her strategy rises with increases in her rivals' strategies. In such games the best response correspon-

dences are increasing, so that the players' strategies are strategic complements. When there are

two players, a change in variables allows this framework to also accomodate the case of decreasing

best responses. Supermodular games are particularly well behaved: they have pure-strategy Nash

equilibria. The upper bound of player i′s Nash-equilibrium strategies exists and it is a best response

to the upper bounds of her rivals' sets of Nash-equilibrium strategies, and similarly for the lower

bounds. The simplicity of supermodular games makes convexity and di�erentiability assumptions

unnecessary, although they are satis�ed in many applications, for example in the Cournot duopoly.

Let us recall some de�nitions about supermodular games.

De�nition 1.15. A partially ordered set (POSET) is a set X on which there is a binary

relation � that is re�exive, antisymmetric and transitive.

De�nition 1.16. Let us consider a partially ordered set X and a subset Y of X.

• If y ∈ X and y � x for each x ∈ Y, then y is a lower bound for Y ;

• If z ∈ X and x � z for each x ∈ Y, then z is an upper bound for Y.

When the set of lower bounds of Y has a greatest element, then this greatest lower bound of Y

is the in�mum of Y in X.

When the set of upper bounds of Y has a least element, then this least upper bound of Y is the

supremum of Y in X.

De�nition 1.17. • If two elements x1 and x2 of a partially ordered set X have a supremum in

X, it is called the meet of x1 and x2 and it is denoted by x1 ∧ x2;

• If two elements x1 and x2 of a partially ordered set X have a in�mum in X, it is called the

join of x1 and x2 and it is denoted by x1 ∨ x2.
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De�nition 1.18. A partially ordered set that contains the join and the meet of each pair of its

elements is a lattice. If a subset Y of a lattice X contains the join and the meet (with respect to

X) of each pair of elements of Y, then Y is a sublattice of X.

Remark 1.1. The real line R with the natural ordering ≥ is a lattice with x ∨ y = max {x, y} and

x∧y = min {x, y} ∀x, y ∈ R. Also Rn, (n > 1) with the usual partial order ≥ is a lattice with x∨y =

(x1 ∨ y1, . . . , xn ∨ yn) and x∧ y = (x1 ∧ y1, . . . , xn ∧ yn) , ∀x = (x1, . . . , xn) , y = (y1, . . . , yn) ∈ Rn.

Any subset of R is a sublattice of R, and a subset X of Rn is a sublattice of Rn if ∀x, y ∈ X we

have that x ∨ y, x ∧ y ∈ X.

De�nition 1.19. A supermodular game

G = (N,X1, . . . , Xn, u1, . . . , un)

is a tuple where

• N = {1, . . . , n} is a �nite set of players;

• ∀i ∈ N, Xi ⊆ Rm(i) (for some m (i) ∈ N) and Xi 6= ∅ is the strategy space of player i,

X =
∏
i∈N Xi is the cartesian product of the strategy spaces;

• ui : X −→ R is the payo� function of player i;

• ∀i ∈ N, Xi is a sublattice of Rm(i);

• ∀i ∈ N, ui have increasing di�erences on X, i.e.

∀x = (x1, . . . , xn) , y = (y1, . . . , yn) ∈ X such that xi ≥ yi, we have

ui (x1, . . . , xi−1, xi, xi+1, . . . , xn)− ui (y1, . . . , yi−1, xi, yi+1, . . . , yn)

≥ ui (x1, . . . , xi−1, yi, xi+1, . . . , xn)− ui (y1, . . . , yi−1, yi, yi+1, . . . , yn) ;

• ∀i ∈ N, ui is supermodular in the i−th coordinate, i.e.

∀x = (x1, . . . , xn) , y = (y1, . . . , yn) , z = (z1, . . . , zn) ∈ X we have

ui (z1, . . . , zi−1, xi, zi+1, . . . , zn) + ui (z1, . . . , zi−1, yi, zi+1, . . . , zn)
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≤ ui (z1, . . . , zi−1, xi ∧ yi, zi+1, . . . , zn) + ui (z1, . . . , zi−1, xi ∨ yi, zi+1, . . . , zn) .

Increasing di�erences point out that an increase in the strategies of player i′s rivals raises the

desirability of playing a high strategy for player i.

We can observe that supermodularity is automatically satis�ed if for each i ∈ N, Xi is single-

dimensional. We will need supermodularity in the case of multi-dimensional strategy spaces to

prove that each player's best responses are increasing with her rivals' strategies.

For example the Cournot duopoly de�ned in Subsection 1.2.1 of Chapter 1 is a supermodular

game.

From [110] we have the following propositions.

Proposition 1.1. Let f : Rn −→ R be a di�erentiable function on Rn, then f has increasing

di�erences on Rn i� ∂f
∂xi

is increasing in xj for each i, j = 1, . . . , n with i 6= j and ∀x = (x1, . . . , xn) .

Proof. See [110].

Proposition 1.2. Let f : Rn −→ R be a twice di�erentiable function on Rn, then f has increasing

di�erences on Rn i� ∂2f
∂xi∂xj

≥ 0 for each i, j = 1, . . . , n with i 6= j and ∀x = (x1, . . . , xn) .

Proof. See [110].

The following existence theorem is due to Topkis in [109].

Theorem 1.9. Let G = (N,X1, . . . , Xn, u1, . . . , un) be a supermodular game. If, for each i ∈ N, Xi

is compact and ui is upper hemicontinuous in xi for each x−i ∈ X−i, then the set of pure-strategy

Nash equilibria is nonempty and possesses greatest and least equilibrium points.

Proof. See [109].
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Chapter 2

Multicriteria games

Multicriteria (or multiobjective) optimization problems typically have con�icting objectives, and

a gain in one objective is, sometimes, a loss for another. Therefore the de�nition of optimality is

not obvious as in the one-criterion case. However in many settings, mathematical models involving

more than one objective seem much more adherent to the real problems.

Formally, a multicriteria optimization problem can be formulated as

Optimize f1 (x) , . . . , fr (x) (2.1)

subject to x ∈ D,

where D denotes the feasible set of alternatives and r ∈ N the number of criterion functions

fk : D −→ R, k = 1, . . . , r.

See for example [30], [31], [101] and [124].

In this chapter we study the situation in which there is not only a con�ict between criteria,

but there are, also, many optimization problems to solve simultaneously: that is we deal with

multicriteria games.

In recent years, many authors have studied the game problem with vector payo�s, for example,

see [3] and [14]. Although many concepts have been suggested to solve multicriteria games, the

notion of Pareto equilibrium, introduced by Shapley in [102], is the most studied concept in game

theory. In [125], Voorneveld et al. introduced the new concept of ideal Nash equilibrium for �nite

multicriteria games which has the best properties and Radjef and Fahem in [97] provide an existence
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theorem for this new solution concept. Patrone, Pusillo, Tijs in [94] link the concept of multicriteria

game with that one of potential game. For some applications see for example [31].

2.1 Weak and Strong Pareto Equilibria

De�nition 2.1. A non-cooperative multicriteria game is a tuple

Gm = (N,X1, . . . , Xn, u1, . . . , un) where for each i ∈ N

• N is a �nite set and represents the set of players ;

• Xi is a non-empty set and represents the pure-strategy space of player i;

• ui : X :=
∏
i∈N Xi → Rm is the utility function of player i, where m is the number of

objectives.

Let us denote with Γmfinite the class of �nite multicriteria games.

Remark 2.1. We recall the partial order de�nition in Rm. For all a, b ∈ Rm, we say that:

• a = b if ai = bi ∀i = 1, . . . ,m;

• a = b if ai ≥ bi ∀i = 1, . . . ,m;

• a ≥ b if ai ≥ bi ∀i = 1, . . . ,m, and a 6= b;

• a > b if ai > bi ∀i = 1, . . . ,m.

De�nition 2.2. Let Gm = (N,X1, . . . , Xn, u1, . . . , un) be a multicriteria game. Then the strategy

pro�le x̃ ∈ X is

• a weak Pareto equilibrium for Gm if ∀i ∈ N @xi ∈ Xi such that

ui(xi, x̃−i) > ui(x̃i, x̃−i);

• a strong Pareto equilibrium for Gm if ∀i ∈ N @xi ∈ Xi such that

ui(xi, x̃−i) ≥ ui(x̃i, x̃−i).
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Let us denote with wPE(Gm) and sPE(Gm) weak and strong Pareto equilibria of Gm.

From De�nition 2.2 we can note that, in one-criterion case, weak [strong] Pareto equilibria

correspond to NE [sNE] respectively, for the game.

It is clear that a strong Pareto equilibrium is also a weak Pareto equilibrium but the viceversa

does not hold as the following example shows.

Example 2.1. Let us consider the �nite bicriteria game G2 = (N,X1, X2, u1, u2) with payo� matrix

given by Table2.1 where X1 = {T,B} , X2 = {L,R} are the strategy spaces of player I and II

respectively. The utility functions u1, u2 : X1×X2 −→ R2 of player I and II respectively are de�ned

in the following way:

u1(T, L) = (3, 4) u1(T,R) = (4, 3) u1(B,L) = (3, 5) u1(B,R) = (1, 2),

u2(T, L) = (3, 2) u2(T,R) = (2, 3) u2(B,L) = (1, 1) u2(B,R) = (2, 2).

We have that wPE(G) = {(T, L), (T,R)} while sPE(G) = {(T,R)}.Then sPE(G) ⊂ wPE(G).

Table 2.1: Weak Pareto Equilibria

I \ II L R

T (3, 4) (3, 2) (4, 3) (2, 3)
B (3, 5) (1, 1) (1, 2) (2, 2)

Pareto equilibria can be characterized as �xed points of best reply correspondences.

De�nition 2.3. Let Gm = (N,X1, . . . , Xn, u1, . . . , un) be a multicriteria game.

• We de�ne for each i ∈ N wBi : X−i ⇒ Xi where

wBi(x−i) = {xi ∈ Xi | @yi ∈ Xi : ui(yi, x−i) > ui(xi, x−i)} .

Call X :=
∏
i∈N Xi, and de�ne

wB : X ⇒ X
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the correspondence such that

x 7−→
∏
i∈N

wBi(x−i)

that is

wB (x) = (wB1 (x−1) , . . . , wBn (x−n)), ∀x ∈ X;

• We de�ne for each i ∈ N sBi : X−i ⇒ Xi where

sBi(x−i) = {xi ∈ Xi | @yi ∈ Xi : ui(yi, x−i) ≥ ui(xi, x−i)} .

De�ne

sB : X ⇒ X

the correspondence such that

x 7−→
∏
i∈N

sBi (x−i) ,

that is

sB (x) = (sB1 (x−1) , . . . , sBn (x−n)), ∀x ∈ X.

Then wB and sB are called best reply correspondences for weak and strong Pareto

equilibria in pure strategies, respectively.

The mixed extension of a �nite multicriteria game is de�ned in the same way of the one of

one criterion game (see De�nition 1.6) where utility functions are Rm-valued. The class of mixed

extension of a �nite multicriteria game is denoted with Γmmixed.

Weak and strong Pareto equilibria of the mixed extension G̃m of a �nite multicriteria game Gm

are de�ned similarly and are denoted with wPE(G̃m) and with sPE(G̃m).

As concern the best reply correspondences for weak and strong Pareto equilibria in mixed strate-

gies we have the following de�nition.

De�nition 2.4. Let G̃m = (N,∆(X1), . . . ,∆(Xn), ũ1, . . . , ũn) be the mixed extension of a multicri-

teria game.
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• We de�ne for each i ∈ N wBi : ∆(X−i)⇒ ∆(Xi) where

w̃Bi(x−i) = {xi ∈ ∆(Xi) | @yi ∈ ∆(Xi) : ũi(yi, x−i) > ũi(xi, x−i)} .

Call ∆(X) :=
∏
i∈N ∆(Xi), and de�ne

w̃B : ∆(X)⇒ ∆(X)

the correspondence such that

x 7−→
∏
i∈N

w̃Bi(x−i),

that is

w̃B (x) = (w̃B1 (x−1) , . . . , w̃Bn (x−n)) ∀x ∈ ∆ (X) ;

• We de�ne for each i ∈ N s̃Bi : ∆(X−i)⇒ ∆(Xi) where

s̃Bi(x−i) = {xi ∈ ∆(Xi) | @yi ∈ ∆(Xi) : ũi(yi, x−i) ≥ ũi(xi, x−i)} .

De�ne

s̃B : ∆(X)⇒ ∆(X)

the correspondence such that

x 7−→
∏
i∈N

s̃Bi(x−i),

that is

s̃B (x) = (s̃B1 (x−1) , . . . , s̃Bn (x−n)) ∀x ∈ ∆ (X) .

Then w̃B and s̃B are called best reply correspondences for weak and strong Pareto

equilibria in mixed strategies, respectively.

Fixed points of w̃B and s̃B are weak and strong Pareto equilibria of G̃m, respectively as stated

by the next theorem.

Theorem 2.1. Let G̃m = (N,∆(X1), . . . ,∆(Xn), ũ1, . . . , ũn) be the mixed extension of a �nite

multicriteria game, and let x̄ ∈ ∆(X) be a strategy pro�le. Then
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• x̃ ∈ wPE(G̃m) i� x̃ ∈ w̃B(x̄);

• x̃ ∈ sPE(G̃m) i� x̃ ∈ s̃B(x̄).

Proof. It immediately follows from De�nition 2.2 and De�nition 2.4.

Let us consider the next example taken from [117] (see also [124]).

Example 2.2. Consider a bicriteria game G2 with two players: an ispector (player I) who has to
decide whether or not to inspect a factory (player II) to check if its production is hygienical. Each
player has two strategies and two objectives which can be summarized in Table2.2. Payo� functions

Table 2.2: Strategies and Objectives

Strategies Objectives

Inspector (I) • inspect (I) • minimize inspection costs
• non inspect(NI) • guarantee an acceptable level of hygiene in production

Factory(II) • hygienical (H) • minimize production costs
• non hygienical (NH) • achieve some level of hygienical production

are given below in Table2.3. Here c > 1 denotes the penalty that is imposed if the inspected production
fails to be hygienical.

Table 2.3: Payo�s functions

I \ II H NH

I (−1, 1) (−1, 1)
(
c− 1, 1

2

)
(−c− 1, 1)

NI (0, 1) (−1, 1) (0, 0) (0, 0)

The �rst coordinate of the payo� to player I denotes the negative costs of inspection, the second
coordinate speci�es satisfaction with the hygienical situation. The �rst coordinate for the factory
depicts extra negative production costs, the second represents the hygiene satisfaction level.
We have that wPE(G) = {(I,H) , (I,NH) , (NI,H)}, while sPE(G) = {(NI,H)} .
As regards Pareto equilibria in mixed strategies, let p ∈ [0, 1] the probability of player I playing I and
let q ∈ [0, 1] the probability of player II playing H. Let ũ1 and ũ2 be the utility functions in mixed
strategies of player I and II respectively. Then we have that

ũ1 (p, q) =

(
pc− p− pqc, 1

2
p− 1

2
pq + q

)
,

ũ2 (p, q) = (−p− pc+ pqc+ pq − q, p− pq + q) .

The best reply correspondence for weak Pareto equilibria in mixed strategies for player I is
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w̃BI (q) = {p̄ ∈ [0, 1] | @p ∈ [0, 1] : ũ1 (p, q) > ũ1 (p̄, q)} .

So we have

w̃BI (q) =


{1} if 0 ≤ q < 1− 1

c

[0, 1] if 1− 1
c ≤ q ≤ 1

Similarly for player II we have

w̃BII (p) =


{1} if 1

c+1 < p < 1

[0, 1] if 0 ≤ p ≤ 1
c+1 ∪ p = 1

Figure 2.1: w̃BI (q)

Figures 2.1 and 2.2 represent best reply correspondences for weak Pareto equilibria in mixed
strategies for player I and II respectively.
Then, as we can see in Figure2.3 we have that

wPE(G̃2) =

([
0,

1

1 + c

]
×
[
1− 1

c
, 1

])
∪
((

1

c+ 1
, 1

)
× {1}

)
∪ ({1} × [0, 1]) .

Weak Pareto equilibria in mixed strategies occuring in this model are those in which there is full
inspection (that is p = 1), those in which the factory produces in a hygienical way with probability
q = 1 and those in which the chance upon inspection is small (p ≤ 1

c+1), but the production is
neverthless hygienical with high probability (q ≥ 1 − 1

c ). This last fact is due to the penalty c > 1
imposed if the checked production is not hygienical. Obviously if c increases the set of weak Pareto
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Figure 2.2: w̃BII (p)

Figure 2.3: wPE(G̃2)

equilibria in mixed strategies shrinks because, from an interpretative point of view, the factory have to
pay a higher penalty if the inspector �nds that its production is not hygienical. From a mathematical

point of view it is su�cient to observe that limc→+∞ 1− 1
c = 1 and limc→+∞

(
1
c+1

)
= 0.
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Similar computations show

s̃BI (q) =



{1} if 0 ≤ q ≤ 1− 1
c

[0, 1] if 1− 1
c < q < 1

{0} if q = 1

and

s̃BII (p) =


{1} if 1

c+1 ≤ p ≤ 1

[0, 1] if 0 ≤ p < 1
c+1

From which we have

sPE
(
G̃2

)
=

(
{0} ×

(
1− 1

c
, 1

])
∪
((

0,
1

c+ 1

)
×
(

1− 1

c
, 1

))
.

In contrast to what happens for Nash equilibria, here it is not true that a Pareto equilibrium in

pure strategy is also a Pareto equilibrium in mixed strategies.

Example 2.3. Let us consider the �nite bicriteria game G2 with two players with utility functions

given by the bimatrix in Table2.4.

Table 2.4: Weak Pareto equilibria in pure strategies

I \ II L R

T (2, 0) (4, 0) (2, 0) (-1, -1)
M (0, 2) (0, 4) (0, 2) (-1, -1)
B (0, 0) (0, 1) (0, 0) (-1, -1)

Here player I has 3 pure strategies T , M and B, while player II has two pure strategies L

and R. We can see that wPE (G2) = {(T, L) , (M,L) , (B,L)} . Let us consider the mixed extension

G̃2 = (N,∆(X1),∆(X2), ũ1, ũ2) of the game G2. Previously we can see that the strategy R is strongly

dominated, so player II will assign probability 0 at the strategy R (and so 1 at the strategy L ). Let

p = (p1, p2, p3) where p3 = 1 − p1 − p2 with p1, p2 ∈ [0, 1] = ∆ (X1) such that p1 is the probability

that player I assigns to T , p2 the probability for M and p3 that one for B. By previous observation,

player II has the unique mixed strategy q = (1, 0) . Then if player I chooses T with probability 1
2 and
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M with probability 1
2 , we have that

ũ1

((
1

2
,
1

2
, 0

)
, (1, 0)

)
= (1, 1) > (0, 0) = ũ1 ((0, 0, 1) , (1, 0)) ,

and

ũ2

((
1

2
,
1

2
, 0

)
, (1, 0)

)
= (2, 2) > (0, 1) = ũ2 ((0, 0, 1) , (1, 0)) .

We can see that the mixed strategy ((0, 0, 1) , (1, 0)) corresponds to weak Pareto equilibrium in pure

strategy (B,L) . So the mixed strategy ((0, 0, 1) , (1, 0)) is strongly dominated by the mixed strategy((
1
2 ,

1
2 , 0
)
, (1, 0)

)
and so it cannot be a weak Pareto equilibrium for G̃2.

2.2 Scalarization

Generally, there are many e�cient points of a multicriteria problem. One of the most analyzed

topics in multicriteria optimization is the scalarization of (2.1), namely how to build a scalar max-

imization problem, which leads one to �nd all the solutions of (2.1).

The classic scalarization (see [30] and [31]), which is called weight-method, consists in considering

the following scalar maximum problem

max
x∈D

r∑
k=1

µkfk (x) , (2.2)

where µ = (µ1, . . . , µr) ∈ Rr+,
∑r

k=1 µk.

Every solution of (2.2) is a weak Pareto solution of (2.1). Moreover, if, for a �xed weight-vector

µ ≥ 0, (2.2) admits a unique solution, then it is a Pareto solution of (2.1). If µk > 0, ∀k = 1, . . . , r,

then every solution of (2.2) is a strong Pareto solution of (2.1).

In the last part of this section, we are going to show the existence of weak and strong Pareto

equilibria for mixed extensions of a �nite multicriteria game. This result is proved through a

particular kind of one criterion game which arises from the multicriteria game assigning non negative

weights to di�erent objectives. See for example [14].

In order to prove an existence theorem for Pareto equilibria we give the de�nition of scalarized
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game as follows 1.

De�nition 2.5. Let Gm = (N,X1, . . . , Xn, u1, . . . , un) ∈ Γmfinite and let λ = (λ1, . . . , λn) where

λi = (λi1, . . . , λim) ∈ ∆m is a weight vector for player i' s objectives ∀i ∈ N. We de�ne the weighted

game

Gλ =
(
N,X1, . . . , Xn, v

λ
1 , . . . , v

λ
n

)
,

where ∀i ∈ N, vλi : X −→ R is de�ned in the following way:

vλi (x1, . . . , xn) =

m∑
k=1

λikuik (x1, . . . , xn) . (2.3)

Theorem 2.2. Let G̃m = (∆(X1), . . . ,∆(Xn), ũ1, . . . , ũn) ∈ Γmmixed and we take x̃ ∈ ∆(X). Then

• x̃ ∈ wPE(G̃m) i� for each i ∈ N there exists a λi = (λi1, . . . , λim) ∈ ∆m such that

x̃ ∈ NE(G̃λ);

• x̃ ∈ sPE(G̃m) i� for each i ∈ N there exists a λi = (λi1, . . . , λim) ∈ ∆0
m such that

x̃ ∈ NE(G̃λ)

Proof. See [124].

2.3 Relation between Supermodular Multicriteria Games and Po-
tential Multicriteria Games

In this section we want to extend the theory of supermodular games to potential multicriteria

games.

De�nition 2.6. A supermodular multicriteria game

Gm = (N,X1, . . . , Xn, u1, . . . , un)

is a tuple where

• N = {1, . . . , n} is a �nite set of players;

1Let us denote with ∆n and with ∆0
n the following sets: ∆n =

{
x ∈ Rn

+ :
∑n

i=1 xi = 1
}
, ∆0

n ={
x ∈ Rn

++ :
∑n

i=1 xi = 1
}
.
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• ∀i ∈ N, Xi ⊆ Rm(i)(for some m (i) ∈ N) and Xi 6= ∅ is the strategy space of player i,

X =
∏
i∈N Xi is the cartesian product of the strategy spaces;

• ui : X −→ Rm is the payo� function of player i;

• ∀i ∈ N, Xi is a sublattice of Rm(i);

• ∀i ∈ N, ui have increasing di�erences on X, i.e.

∀x = (x1, . . . , xn) , y = (y1, . . . , yn) ∈ X such that xi ≥ yi, we have

ui (x1, . . . , xi−1, xi, xi+1, . . . , xn)− ui (y1, . . . , yi−1, xi, yi+1, . . . , yn)

� ui (x1, . . . , xi−1, yi, xi+1, . . . , xn)− ui (y1, . . . , yi−1, yi, yi+1, . . . , yn) ;

• ∀i ∈ N, ui is supermodular in the i−th coordinate, i.e.

∀x = (x1, . . . , xn) , y = (y1, . . . , yn) , z = (z1, . . . , zn) ∈ X we have

ui (z1, . . . , zi−1, xi, zi+1, . . . , zn) + ui (z1, . . . , zi−1, yi, zi+1, . . . , zn)

� ui (z1, . . . , zi−1, xi ∧ yi, zi+1, . . . , zn) + ui (z1, . . . , zi−1, xi ∨ yi, zi+1, . . . , zn) .

Proposition 2.1. Let f : Rn −→ Rm be a twice di�erentiable function on Rn, then f has increasing

di�erences on Rn i� ∂2f
∂xi∂xj

≥ (0, . . . , 0) , for each i, j = 1, . . . , n with i 6= j.

Proof. It is a straight generalization of a result in [110] to vectorial functions.

The following proposition is a generalization of Lemma 1 in [15].

Proposition 2.2. Let Gm = (N,X1, . . . , Xn, u1, . . . , un) be a potential multicriteria game with

potential function Π. Then ∀i ∈ N there exist functions f−i : X−i :=
∏
j 6=iXj −→ Rm such that

ui (xi, x−i) = Π (xi, x−i) + 2f−i (x−i) ∀xi ∈ Xi, x−i ∈ X−i.

Proof. For each xi ∈ Xi and x−i ∈ X−i let

f−i (x−i) =
1

2
[ui (xi, x−i)−Π (xi, x−i)] .
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Since Π is a potential function for Gm, ∀xi, yi ∈ Xi and ∀x−i ∈ X−i, we have

ui (xi, x−i)− ui (yi, x−i) = Π (xi, x−i)−Π (yi, x−i)

or

ui (xi, x−i)−Π (xi, x−i) = ui (yi, x−i)−Π (yi, x−i)

= 2f−i (x−i) .

For each i ∈ N, the functions f−i in Proposition 2.2 are called separating functions.

Let us consider a Cournot bicriteria game G2 where the demand arises from a competitive

market of two types of commodities.

De�nition 2.7. We de�ne G2 = (N,X, Y, u1, u2) , where

• N = {1, 2} ;

• X = Y =
[
0, δ2
]2

where δ is a positive amount;

• ui : X × Y −→ R2, i = 1, 2 are the utility functions de�ned in the following way:

Take x = (x1, x2) ∈ X, y = (y1, y2) ∈ Y, and

u1 (x, y) = (x1 (δ − x1 − y1)− c1, x2 (δ − x2 − y2)− c2) ,

and

u2 (x, y) = (y1 (δ − x1 − y1)− c1, y2 (δ − x2 − y2)− c2) ,

where c1, c2 > 0.

Remark 2.2. We can note that G2 is a particular case (more precisely is a deterministic case) of

the Cournot game Γc de�ned in [75] and discussed in Chapter 3. Therefore G2 is a potential game
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with potential function

Π (x, y) =

(
−
(
x2

1 + x2
2 + y2

1 + y2
2

)
− 1

2
(x1y1 + x1y2 + x2y1 + x2y2)

+δ (x1 + y1 + x2 + y2) ,

−
(
x2

1 + x2
2 + y2

1 + y2
2

)
− 1

2
(x1y1 + x1y2 + x2y1 + x2y2)

+δ (x1 + y1 + x2 + y2)

)
.

As done in [15] for the scalar case, we put x̄ = x and ȳ = −y for each x ∈ X, y ∈ Y and consider

the game

Ḡ2 =
(
N, X̄, Ȳ , ū1, ū2

)
where X̄ = X, Ȳ = −Y =

[
− δ

2 , 0
]2

and for each x̄ ∈ X̄, ȳ ∈ Ȳ ,

ū1 (x̄, ȳ) = u1 (x̄,−ȳ) , ū2 (x̄, ȳ) = u2 (x̄,−ȳ) . The game Ḡ2 is strategically equivalent to game G2.

So we have that (x, y) is a weak [strong] Pareto equilibrium for G2 i� (x,−y) is a weak [strong]

Pareto equilibrium for Ḡ2. In particular, since G2 is a potential bicriteria game with potential

function de�ned in Remark 2.2, also Ḡ2 is a potential bicriteria game with potential function Π̄

given by Π̄ (x̄, ȳ) = Π (x̄,−ȳ) , ∀x̄ ∈ X̄, ȳ ∈ Ȳ .

Proposition 2.3. Let G2 be a Cournot bicriteria game de�ned as in De�nition 2.7 and consider

the game Ḡ2 as above. Then we have that Ḡ2 is a supermodular game.

Proof. X̄ and Ȳ are sublattices of R2 because they are product of intervals. Moreover ū1 and ū2

have increasing di�erences properties on X̄ × Ȳ , because by Proposition 2.1 we have

∂2ū1

∂x̄∂ȳ
= (1, 1) > (0, 0) ,

and

∂2ū2

∂x̄∂ȳ
= (1, 1) > (0, 0) .

Finally it is simple to prove that ū1 is supermodular in the �rst coordinate and ū2 is supermodular

in the second coordinate.



Chapter 3

Bayesian Pareto Equilibria in
Multicriteria Games

3.1 Introduction

Shapley in [102] introduced the concept of multicriteria games, that is games with vector payo�s,

and studied their equilibrium points. Subsequently many papers have been published about this

topics, as Borm, Tijs, van den Aarssen in [14] or Patrone, Pusillo, Tijs in [94]; in particular this

last paper links the concept of multicriteria games with that of potential games introduced by

Monderer and Shapley in [83]. On the other hand Harsanyi in [58] introduced games with incomplete

information and he called them Bayesian games. In these games the players are not completely

informed about the real-valued payo� function of the other players and there is an uncertainty

about the characteristics of the players (or types). The existence of Bayesian Nash equilibria (BNE

for short) in the case where the pure strategy spaces are �nite have been proved in [58]. Later Kim

and Yannelis in [67] proved existence theorems where the set of agent is an in�nite set. Their model

allows the individual's action set to depend on the states of nature and to be an arbitrary subset of

an in�nite dimensional space. Also Kitti and Mallozzi in [68] prove an existence theorem based on

Corollary 1.1. Meirowitz in [79] shows that if type and action spaces are both non-empty, compact

and convex subsets of a �nite dimensional Euclidean space, agent utility functions are continuous in

their type and action as well as the action of the other players, agent expected utility functions are

strictly quasiconcave in the agent's action for every type, the set of rationalizable mappings from
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type to action have uniformly bounded slope and agent posterior beliefs are suitably continuous in

their types, then BNE exist. Reny in [100] generalizes Athey's and McAdams results in [4] and [76]

respectively, on the existence of monotone pure strategy equilibria in Bayesian games. Mallozzi,

Pusillo and Tijs in [73] consider situations where one of the players may have an in�nite set of pure

strategies, one criterion and a �nite number of types and get an existence theorem of approximate

equilibria. Many Bayesian models have been studied recently, for example Einy et al. in [40] study

conditions under which a Bayesian Cournot equilibrium exists and is unique, in an oligopoly, in [61]

the authors prove the existence and uniqueness of a Bayesian Nash equilibrium in a public good

economy with di�erential information regarding consumers income and preferences with incomplete

information.

In this chapter we combine the concept of multicriteria games and the concept of Bayesian games:

Bayesian multicriteria games are de�ned and some equilibrium concepts are discussed. Moreover

we present the classical model of Cournot duopoly game in the sense of a Bayesian multicriteria

game.

3.2 Bayesian Multicriteria Games (BMG)

A Bayesian multicriteria game is a tuple

Γ = (N,A1, . . . , An, T1, . . . , Tn, p, u1, . . . , un)

(for short Γ = (N,A,T, p, u)) where

• N = {1, . . . , n} is a �nite set of players;

• ∀i ∈ N, the action space is a metric space Ai, A =
∏
i∈N Ai is the cartesian product of the

action spaces;

• ∀i ∈ N, Ti 6= ∅ is a �nite set and represents the type space of player i, T =
∏
i∈N Ti is the

cartesian product of the type spaces;

• ∀i ∈ N, a strategy for player i is a function xi : Ti −→ Ai;
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• p is a probability distribution on the set T ;

• ui : A× T −→ Rm is the payo� function which assigns to player i the payo�

ui (a1, . . . , an, t1, . . . , tn) given that the players 1, 2, . . . , n have type t1, . . . , tn and choose ac-

tions a1, . . . , an respectively.

Assume that it is common knowledge that each player i belongs to one of the possible types ti ∈ Ti.

Each player knows only her own type ti. The beliefs embodied in the description of a type ti ∈ Ti

must include subjective probability distributions over the sets T−i :=
∏
k 6=i Tk. These probabilities

pi
(
t−i|ti

)
represent uncertainty about players' type against whom i is playing. If these players types

are independent, then pi is independent of ti.

Recall that we assume that initially Nature draws a vector of types (t1, . . . , tn) according to the

prior probability distribution p. Once Nature reveals ti to player i, she is able to compute the belief

pi (t−i|ti) using the Bayes' rule:

pi (t−i|ti) =
p (t−i, ti)

p (ti)
.

Of course, if players' types are independent, pi (t−i|ti) does not depend on ti, but the belief is still

derived from the prior distribution p.

A play of such a game proceeds as follows: before the types are announced each player i chooses

a strategy xi ∈ ATii .If the type pro�le is t = (t1, . . . , tn) then player i′s payo� is

ui (x1(t1), x2(t2), . . . , xn(tn), t1, . . . , tn) .

The a priori expected payo� for player i when the players use strategies x1, . . . , xn respectively

is a function Ui : AT11 × · · · ×ATnn −→ Rm such that

Ui (x1, . . . , xn) =
∑
t∈T

p(t)ui (x1(t1), x2(t2), . . . , xn(tn), t1, . . . , tn) ,

that is Ui is a vectorial sum of Rm, being p(t) the probability distribution of player i when her

type is ti.

De�nition 3.1. Let Γ = (N,A, T, p, u) be a Bayesian multicriteria game. We say that a strategy

pro�le x̂ = (x̂1, x̂2, . . . , x̂n) ∈ AT11 ×A
T2
2 × . . . ATnn is a
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• Weak Bayesian Pareto equilibrium (for short wBPE) for the game Γ if ∀i ∈ N,

@xi ∈ ATii such that

Ui (xi, x̂−i) > Ui (x̂) ;

• Strong Bayesian Pareto equilibrium (for short sBPE) for the game Γ if ∀i ∈ N,

@xi ∈ ATii such that

Ui (xi, x̂−i) ≥ Ui (x̂) .

We denote with wBPE (Γ) and with sBPE (Γ) the set of weak Bayesian Pareto equilibria and

strong Bayesian Pareto equilibria respectively for Γ.

Remark 3.1. If a strategy pro�le x̂ is a strong Bayesian Pareto equilibrium then it is a weak

Bayesian Pareto equilibrium, but the viceversa does not hold. See the Example 3.1.

Remark 3.2. If in Γ the type spaces are trivial, i.e. |T1| = |T2| = · · · = |Tn| = 1 then we can write

(N,A, u) and we obtain a multicriteria game with complete information and wBPE and sBPE boil

down to wPE (weak Pareto equilibria) and sPE (strong Pareto equilibria) respectively.

A Bayesian multicriteria game is called a �nite game if Ai are �nite sets for all i ∈ N.

We de�ned a strategy of player i as a function xi : Ti −→ Ai. For semplicity in the following

examples, in place of xi (ti) we will write the corresponding action in Ai.

Let us consider the following example:

Example 3.1. Let Γ = (N,A,T, p, u) be a �nite Bayesian multicriteria game where:

• N = {1, 2} ;

• A1 = {a1, b1} , A2 = {a2, b2} ;

• T1 =
{
t11
}
, T2 =

{
t12, t

2
2

}
.
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The functions u1, u2 : (A1 ×A2)× (T1 × T2) −→ R2 are represented by the bimatrices Table 3.1

and Table 3.2.

Table 3.1: u1

1 \ 2 type 1 a2 b2

a1 (1,0) (2, 3) (0, 1) (1, 0)
b1 (0, 1) (4, 3) (1, 0) (3, 1)

Table 3.2: u2

1 \ 2 type 2 a2 b2

a1 (1,0) (1, 2) (0, 1) (3, 4)
b1 (0, 1) (2, 3) (1, 0) (3, 2)

The �rst table represents the case in which player 2's type is t12, whereas the second one represents

the case in which player 2's type is t22. In each entry of any bimatrix the �rst pair is the payo� of

player 1, while the second one is the payo� of player 2. In this example each player has two criteria.

We can note that the player 1's payo�s are the same in both matrices. In the �rst case a2 is a

dominant strategy for player 2.

Now we suppose that player 2's type is t12 with probability P ∈ [0, 1] and type is t22 with probability

1 − P . Then the a priori expected payo� functions U1 and U2 are given in the bimatrix Table 3.3,

where x1, y1 are the strategies of player 1, while x2, y2 are the strategies of player 2. 3.3. Now we

Table 3.3: A priori expected payo� functions

U1\U2 x2 y2

x1 (1,0) (P+1, P+2) (0, 1) (3-2P, 4-4P)
y1 (0, 1) (2P+2, 3) (1, 0) (3, 2-P)

want to compute the strong and weak Bayesian Pareto equilibria for this game depending on P .

• If P > 2
3 wBPE = sBPE = {(a1, a2) , (b1, a2)} ;

• If 1
2 < P < 2

3 wBPE = sBPE = {(a1, a2) , (a1, b2) , (b1, a2)} ;
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• If 2
5 < P < 1

2 wBPE = sBPE = {(a1, a2) , (a1, b2) , (b1, a2) , (b1, b2)} ;

• If P < 2
5 wBPE = sBPE = {(a1, b2) , (b1, a2) , (b1, b2)} ;

• If P = 2
3 wBPE = {(a1, a2) , (b1, a2)} sBPE = {(b1, a2)};

• If P = 2
5 wBPE = {(a1, b2) , (b1, a2) , (b1, b2)} sBPE = {(b1, a2) , (b1, b2)};

• If P = 1
2 wBPE = {(a1, a2) , (a1, b2) , (b1, a2)} sBPE = {(a1, a2) , (a1, b2)}.

In the Example 3.1 there are many equilibria. Generally the existence of equilibria is not ensured.

Indeed let us consider the following example:

Example 3.2. Let Γ = (N,A,T, p, u) be a �nite Bayesian multicriteria game where:

• N = {1, 2} ;

• A1 = {a1, b1} , A2 = {a2, b2} ;

• T1 =
{
t11
}
, T2 =

{
t12, t

2
2

}
.

The functions u1, u2 : (A1 ×A2)× (T1 × T2) −→ R2 are represented by the bimatrices Table 3.4 and

Table 3.5.

Table 3.4: u1

1\ 2 type 1 a2 b2

a1 (2,3) (1, -1) (4, 1) (2, 1)
b1 (1, 2) (3, 2) (5, 2) (2, 1)

Table 3.5: u2

1 \ 2 type 2 a2 b2

a1 (2,3) (2, -1) (4, 1) (3, 0)
b1 (1, 2) (1, 2) (5, 2) (0, 0)

Also we suppose that player 1 assigns probability P ∈ [0, 1] to type t12, and probability 1 − P to

type t22, so we have that p
(
t11, t

1
2

)
= P and p

(
t11, t

2
2

)
= 1−P. Then the values of U1 and U2 are given
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in the bimatrix Table 3.6.

Table 3.6: A priori expected payo� functions

U1\U2 x2 y2

x1 (2,3) (-P+2, -1) (4, 1) (-P+3, P)
y1 (1, 2) (2P+1, 2) (5, 2) (2P, P)

It is easy to prove that there are not weak Bayesian Pareto equilibria or strong Bayesian Pareto

equilibria. In e�ect we can note that U1 (x1, x2) > U1 (y1, x2) and U1 (y1, y2) > U1 (x1, y2) . So

possibly Bayesian Pareto equilibria are (x1, x2) , (y1, y2) . But, since U2 (x1, y2) = (3− P, P ) >

(2− P,−1) = U2 (x1, x2) and U2 (y1, x2) = (2P + 1, 2) > (2P, P ) = U2 (y1, y2) , for each P ∈ [0, 1] ,

they are not Bayesian Pareto equilibria.

3.3 Bayesian Potential Multicriteria Games (BPMG)

In this section we de�ne a Bayesian potential multicriteria game.

De�nition 3.2. Let Γ = (N,A,T, p, u) be a Bayesian multicriteria game with a priori expected

payo� Ui for all player i ∈ N , we say that Γ is a Bayesian potential multicriteria game (BPMG

for short) if there exists a map Π : AT11 × · · · × ATnn −→ Rm such that ∀i ∈ N, xi, yi ∈ ATii and

∀x−i ∈ AT−i

−i :=
∏
j∈N\{i}A

Tj
j , we have

Ui (xi, x−i)− Ui (yi, x−i) = Π (xi, x−i)−Π (yi, x−i) . (3.1)

We call Π a potential function.

Example 3.3. Let Γ = (N,A,T, p, u) be a �nite Bayesian multicriteria game where:

• N = {1, 2} ;

• A1 = {a1, b1} , A2 = {a2, b2} ;

• T1 =
{
t11
}
, T2 =

{
t12, t

2
2

}
.
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The functions u1, u2 : (A1 ×A2)× (T1 × T2) −→ R2 are represented by the bimatrices Table 3.7 and

Table 3.8.

Table 3.7: u1

1 \ 2 type 1 a2 b2

a1 (3,4) (3, 2) (4, 3) (2, 3)
b1 (0, 5) (1, 1) (1, 2) (0, 0)

The �rst one represents the case in which player 2's type is t12, whereas the second one represents

the case in which player 2's type is t22. We can note that the player 1's payo�s are the same in both

matrices.

The value of U1 and U2 are given in the bimatrix Table 3.9.

It is easy to see that a potential Π for this game is given by the matrix Table 3.10.

We can see that the strategies (x1, x2) , (x1, y2) , (y1, x2) are sBPE for Γ, for all P ∈ [0, 1].

De�nition 3.3. Let Γ = (N,A,T, p, u) be a Bayesian multicriteria game, we say that Γ is a

Bayesian coordination game if ui = uj ∀i 6= j.

Clearly, if Γ is a Bayesian coordination game then Ui = Uj ∀i 6= j. For such a game there is a

potential Π : AT11 × · · · ×ATnn −→ Rm. Take, for example, Π = U1.

De�nition 3.4. Let Γ = (N,A,T, p, u) be a Bayesian multicriteria game, we say that Γ is a

Bayesian dummy game if

ui (xi (ti) , x−i (tj) , t) = ui (yi (ti) , x−i (tj) , t)

∀t ∈ T ∀i ∈ N, ∀xi, yi ∈ ATii , ∀x−i ∈ A
T−i

−i ∀j 6= i.

Table 3.8: u2

1 \ 2 type 2 a2 b2

a1 (3,4) (6, 4) (4, 3) (4, 4)
b1 (0, 5) (2, 2) (1, 2) (0, 0)
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Table 3.9: A priori expected payo� functions

U1\U2 x2 y2

x1 (3,4) (6-3P, 4-2P) (4, 3) (4-2P, 4-P)
y1 (0, 5) (2-P, 2-P) (1, 2) (0, 0)

Table 3.10: A potential function

Π x2 y2

x1 (3,4) (1+P, 4+P)
y1 (0, 5) (P-2, 3+P)

For a dummy game, since ui does not depend on the i-th component, for each i ∈ N we let

ui(xi, x−i) = di(x−i),∀xi, x−i and we denote by Γd = (N,A,T, p, d) a dummy game. If Γ is a

Bayesian dummy game then Ui (xi, x−i) = Ui (yi, x−i) ∀i ∈ N, xi, yi ∈ ATii , ∀x−i ∈ A
T−i

−i , and it

has a potential Π : AT11 × · · · ×ATnn −→ Rm, which is Π = (0, . . . , 0) .

Remark 3.3. Let Γj =
(
N,A,T, p, uj

)
be a �nite set of Bayesian potential multicriteria games

with potential Πj ∀j = 1, . . . , k, then the Bayesian multicriteria game Γ =
(
N,A,T, p,

∑k
j=1 u

j
)

is a Bayesian potential multicriteria game with potential
∑k

j=1 Πj .

Remark 3.4. By the decomposition theorem (see [16], [94]), a Bayesian multicriteria game Γ =

(N,A,T, p, u) has a potential function i� there exist a coordination game Γπ = (N,A,T, p, π) and

a dummy game Γd = (N,A,T, p, d) such that Ui = Π +Di ∀i ∈ N, where with Ui,Π, Di we denote

the a priori expected functions of ui, π, di, respectively. Moreover Π is a potential function of Γ.

Theorem 3.1. Let Γ = (N,A,T, p, u) be a �nite Bayesian potential multicriteria game, then there

exists a strategy pro�le x̂ ∈ AT11 × · · · ×ATnn such that x̂ is a sBPE for Γ.

Proof. Let Π : AT11 × · · · ×ATnn −→ Rm be a potential for Γ, with Π = (Π1, . . . ,Πm) where

Πk : AT11 × · · · ×A
Tn
n −→ R ∀k = 1, . . . ,m.

Since Γ is a �nite game, argmax
y∈AT1

1 ×···×A
Tn
n

∑m
k=1 Πk (y) 6= ∅. Take

x ∈ argmax
y∈AT1

1 ×···×A
Tn
n

m∑
k=1

Πk (y) . (3.2)
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Then x is a sBPE for Γ. Indeed, suppose that x is not a sBPE for Γ, then there exists

i ∈ N and yi ∈ ATii such that Ui (yi, x−i) ≥ Ui (xi, x−i) . But then Π (yi, x−i) − Π (xi, x−i) ≥ 0, so∑m
k=1 Πk (yi, x−i)−Πk (xi, x−i) > 0, which is in contradiction with condition (3.2).

Clearly, by Remark 3.1, x̂ is also a wBPE for Γ.

Theorem 3.2. Let Γ = (N,A,T, p, u) be a Bayesian potential multicriteria game with potential Π.

Then

sBPE (Γ) = sBPE (Γπ) ,

where Γπ = (N,A,T, p, π) .

Proof. It follows from Remark 3.3.

An economic application of the concept of Bayesian multicriteria game in particular case of one

criterion is studied in [93].

3.3.1 Approximate Bayesian Pareto Equilibria

De�nition 3.5. Let Γ = (N,A,T, p, u) be a Bayesian multicriteria game. We say that a strategy

pro�le x̂ = (x̂1, x̂2, . . . , x̂n) ∈ AT11 ×A
T2
2 × · · · ×ATnn is a

• Approximate Bayesian Pareto equilibrium (for short εBPE) for the game Γ if

∀i ∈ N, ∀ε > 0, we have that x̂i ∈ εB (x̂−i) , where

εB (x̂−i) =
{
xi ∈ Xi|Ui (yi, x−i) /∈ Ui (xi, x−i) + εRm+

}
,

with εRm+ = Rm+ \ {[0, ε]
m} , where Rm+ = {(x1, . . . , xm) |xi ≥ 0 i = 1, . . . ,m} .

We denote with εBPE (Γ) the set of approximate Bayesian Pareto equilibria for Γ.

De�nition 3.6. For f : AT11 × · · · ×ATnn −→ R, we de�ne

argsupε
x∈AT1

1 ×···×A
Tn
n
f (x)

=

y ∈ AT11 × · · · ×A
Tn
n |f (y) ≥ sup

x∈AT1
1 ×···×A

Tn
n

f (x)− ε

 .
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Example 3.4. Consider the Example 3.2 in which there are not weak (strong) Bayesian Pareto

equilibria and let us compute the εBPE of the game Γ. With trivial computations we get:

If P > 1
2 ,

(1) 1 < ε ≤ 2− P, εBPE (Γ) = {(a1, b2) , (b1, a2)} ;

(2) 2− P < ε ≤ P + 1, εBPE (Γ) = {(a1, b2)} ;

(3) ε > P + 1, εBPE (Γ) = ∅.

If P < 1
2 ,

(1) 1 < ε ≤ P + 1, εBPE (Γ) = {(a1, b2) , (b1, a2)} ;

(2) P + 1 < ε ≤ 2− P, εBPE (Γ) = {(b1, a2)} ;

(3) ε > 2− P, εBPE (Γ) = ∅.

If P = 1
2 ,

(1) 1 < ε < 3
2 , εBPE (Γ) = {(a1, b2) , (b1, a2)} ;

(2) ε > 3
2 , εBPE (Γ) = ∅;

(3) ε = 3
2 , εBPE (Γ) = {(a1, a2) , (a1, b2) , (b1, a2) , (b1, b2)} .

• If ε < 1, εBPE (Γ) = ∅;

• If ε = 1, εBPE (Γ) = {(a1, a2) , (a1, b2) , (b1, a2) , (b1, b2)} .

The following theorem extends the Theorem 3.1 in [73] to multicriteria games, and to Bayesian

games the Theorem 3.6 in [94].

Theorem 3.3. Let Γ = (N,A,T, p, u) be a Bayesian potential multicriteria game. Suppose that

the potential function is upper bounded, then there exists a strategy pro�le

x̂ ∈ AT11 × · · · ×ATnn such that x̂ is a εBPE for Γ, for all ε > 0.
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Proof. Let Π : AT11 × · · · ×ATnn −→ Rm be a potential for Γ, with Π = (Π1, . . . ,Πm) where

Πk : AT11 × · · · ×A
Tn
n −→ R ∀k = 1, . . . ,m.

Since Π is upper bounded, argsupε
y∈AT

∑m
k=1 Πk (y) 6= ∅. Take

x ∈ argsupε
y∈AT1

1 ×···×A
Tn
n

m∑
k=1

Πk (y) . (3.3)

Then x is a εBPE for Γ. Indeed, suppose that x is not a εBPE for Γ, then let be i ∈ N and

yi ∈ ATii such that Ui (yi, x−i) ∈ Ui (xi, x−i) + Rm+,ε. But then

Π (yi, x−i)−Π (xi, x−i) = Ui (yi, x−i)− Ui (xi, x−i) ∈ Rm+,ε,

so
∑m

k=1 Πk (yi, x−i)−Πk (xi, x−i) > ε, which is in contradiction with condition (3.3).

Remark 3.5. Let Γ = (N,A,T, p, u) be a Bayesian potential multicriteria game with potential Π.

Then ∀ε ≥ 0, we have

εBPE (Γ) = εBPE (Γπ) ,

where Γπ = (N,A,T, p, π) .

3.4 Existence results: the scalarization approach

In the setting of Section 3.2, we consider the Bayesian multicriteria game Γ, and as in [68], we

use the following additional assumptions on the Bayesian game Γ. For every player i :

(A1) ui (·, t) is continuous ∀t ∈ T ∀i ∈ N.

(A2) Ai is a compact and convex set, and ui (·, a−i, t) are quasiconcave ∀a−i ∈ A−i, ∀t ∈ T, ∀i ∈ N.

In the following we apply the most popular existing methods for solving multiobjective opti-

mizations problems to Bayesian multicriteria games. See for example [80].

In order to prove an existence theorem for Bayesian Pareto equilibria (see De�nition 3.1) we

give the de�nition of scalarized game as follows
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De�nition 3.7. Let Γ = (N,A1, . . . , An, T1, . . . , Tn, p, u1, . . . , un) be a Bayesian multicriteria game

and let λ = (λ1, . . . , λn) where λi = (λi1, . . . , λim) ∈ ∆m is a weight vector for player i' s objectives

∀i ∈ N. We de�ne the weighted game

Γλ =
(
N,A1, . . . , An, T1, . . . , Tn, p, v

λ
1 , . . . , v

λ
n

)
,

where ∀i ∈ N, vλi : A× T −→ R is de�ned in the following way:

vλi (a1, . . . , an, t1, . . . , tn) =
m∑
k=1

λikuik (a1, . . . , an, t1, . . . , tn) . (3.4)

Remark 3.6. We recall that the inner product, denoted by 〈·, ·〉 of two vectors a = (a1, . . . , an) ,

b = (b1, . . . , bn) ∈ Rn is a real number given

〈a, b〉 =
n∑
i=1

aibi.

Remark 3.7. The a priori expected payo� V λi
i for player i can be written in this way:

V λi
i (x1, . . . , xn) =

∑
t∈T

m∑
k=1

λikuik (x1 (t1) , . . . , xn (tn)) p (t)

=
m∑
k=1

[
λik
∑
t∈T

uik (x1 (t1) , . . . , xn (tn)) p (t)

]
= 〈λi, Ui (x1, . . . , xn)〉.

The next theorem links the Bayesian Pareto equilibria for the game Γ to the Bayesian Nash

equilibria for the game Γλ.

Theorem 3.4. Let Γ = (N,A,T, p, u) be a Bayesian multicriteria game which satis�es Assumptions

(A1) and (A2), such that AT11 × · · · ×ATnn is a convex subset. Let x̂ ∈ AT11 × · · · ×ATnn , then

• x̂ is a wBPE for Γ i� for all i ∈ N exists λ̃i ∈ ∆m such that x̂ is a BNE for Γλ̃;

Proof. Let x̂ be a wBPE for Γ then ∀i ∈ N, @xi ∈ ATii such that Ui (xi, x̂−i) > Ui (x̂) . Then Ui (x̂) is

weak Pareto optimal in Rm. By Theorem 10.1 pages 117-118 in [124] and for the convexity of Rm and

of AT11 ×· · ·×ATnn we have that ∀i ∈ N, ∃λ̃i ∈ ∆m such that ∀z ∈ AT11 ×· · ·×ATnn V λ̃i
i (x̂) ≥ V λ̃i

i (z)
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because of the Remark 3.7. It follows that x̂ is a BNE for Γλ̃.

On the other hand, we suppose by contradiction that x̂ is not a wBPE of Γ. Then ∃i ∈ N, ∃yi ∈ ATii

such that

Ui (yi, x̂−i) > Ui (x̂) . (3.5)

For hypothesis ∃λ̃i ∈ ∆m such that

V λ̃i
i (x̂) ≥ V λ̃i

i (yi, x̂−i) . (3.6)

So the conditions (3.5) and (3.6) lead to a contradiction.

The next corollary ensures the existence of Bayesian Nash equilibria for the weighted game Γλ.

Corollary 3.1. If vλi is continuous, Ai is a compact and convex set and vλi (·, a−i, t) are quasiconcave

∀a−i ∈ A−i ∀t ∈ T, ∀i ∈ N, then Γλ possesses a Bayesian equilibrium ∀λi ∈ ∆m.

Proof. See Proposition 1 in [68].

Finally, Corollary 3.2 ensures the existence of wBPE for a Bayesian multicriteria game.

Corollary 3.2. If vλi is continuous, Ai is a compact and convex set and vλi (·, a−i, t) are quasiconcave

∀a−i ∈ A−i ∀t ∈ T, ∀i ∈ N, and if AT11 × · · · ×ATnn is a convex subset then

• ∀i ∈ N, ∃λ̃i ∈ ∆m such that x̂λ̃ is a wBPE for the multicriteria game Γ.

Proof. It follows from Theorem 3.4.

A question of interest in economics is how the optimal choice changes as a parameter changes.

We know that, ∀i ∈ N, if V λi
i is twice continuously di�erentiable with respect to xi, given a BNE

pro�le x̂ = (x̂1, . . . , x̂n) it must satisfy ∀i ∈ N the condition

∂

∂xi
V λi
i (x̂) = 0 (3.7)
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and ∀j = 1, . . . ,m

∂2

∂x2
i

V
λij
i (x̂) < 0 (3.8)

So we have ∀i = 1, . . . , n ∀j = 1, . . . ,m,

∂2

∂x2
i

V λi
i (x̂) dxi +

∂2

∂xi∂λij
V λi
i (x̂) dλij = 0 (3.9)

In our case we have ∀i = 1, . . . , n ∀j = 1, . . . ,m,

dxi
dλij

= −
∑

t∈T
∂
∂xi
uij (x̂1 (t1) , . . . , x̂n (tn)) p (t)∑

t∈T
∑m

k=1 λik
∂2

∂x2i
uik (x̂1 (t1) , . . . , x̂n (tn)) p (t)

= −
∑

t∈T
∂
∂xi
uij (x̂1 (t1) , . . . , x̂n (tn)) p (t)∑m

k=1

[
λik
∑

t∈T
∂2

∂x2i
uik (x̂1 (t1) , . . . , x̂n (tn)) p (t)

]
= −

∂
∂xi
Uij (x̂1, . . . , x̂n)

〈λi, ∂
2

∂x2i
Ui (x̂1, . . . , x̂n)〉

,

so the sign of this derivative is given by the sign of ∂
∂xi
Uij (x̂1, . . . , x̂n) .

3.5 An economic application: the Cournot duopoly

Let us consider a Cournot game Γc with incomplete information on production costs and where

the demand arises from a competitive market of two types of commodity.

Then, we de�ne Γc = (N,A1, A2, T1, T2, P, u1, u2) , where

• N = {1, 2} ;

• A1 = A2 =
[
0, δ2
]2

where δ is a positive amount. We denote with A = A1 ×A2 the Cartesian

product of the action spaces of �rms;

• T1 =
{
t11
}
, T2 =

{
t12, t

2
2

}
are the type �nite set. We denote with T = T1 × T2 the Cartesian

product of the type spaces of �rms;

• P ∈ [0, 1] is the probability that �rm 2's type is t12;
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• ui : A× T −→ R2, i = 1, 2 are the utility functions de�ned in the following way:

Call a = (a1, a2) ∈ A1, b = (b1, b2) ∈ A2, and

u1 (a, b, t) = (f1 (a, b) , f2 (a, b)) ,

where

• f1 (a, b) = a1 (δ − a1 − b1)− c1;

• f2 (a, b) = a2 (δ − a2 − b2)− c2.

where c1, c2 > 0.

u2 (a, b, t) =


u1

2 (a, b, t) if the type is t12

u2
2 (a, b, t) if the type is t22,

where with u1
2, u

2
2 we denote the utility function of player 2's type is t12, t

2
2, respectively.

In particular

u1
2 (a, b, t) =

(
g1

1 (a, b) , g1
2 (a, b)

)
,

where

• g1
1 (a, b) = b1 (δ − a1 − b1)− kb21;

• g1
2 (a, b) = b2 (δ − a2 − b2)− kb22.

u2
2 (a, b, t) =

(
g2

1 (a, b) , g2
2 (a, b)

)
where

• g2
1 (a, b) = b1 (δ − a1 − b1)− k;

• g2
2 (a, b) = b2 (δ − a2 − b2)− k.

where k > 0. Let (x, y) = (x1, x2, y1, y2) ∈ AT11 × A
T2
2 be the a priori expected payo� function of

�rm 1 is U1 : AT11 ×A
T2
2 −→ R2 such that

U1 (x, y) = (F1 (x, y) , F2 (x, y))

where
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• F1 (x, y) = x1 (δ − x1 − y1)− c1;

• F2 (x, y) = x2 (δ − x2 − y2)− c2.

and the a priori expected payo� function of �rm 2 is U2 : AT11 ×A
T2
2 −→ R2 such that

U2 (x, y) =
(
PG1

1 (x, y) + (1− P )G2
1 (x, y) , PG1

2 (x, y) + (1− P )G2
2 (x, y)

)
=: (G1 (x, y) , G2 (x, y)) .

where

• G1
1 (x, y) = y1 (δ − x1 − y1)− ky2

1;

• G1
2 (x, y) = y2 (δ − x2 − y2)− ky2

2;

• G2
1 (x, y) = y1 (δ − x1 − y1)− k;

• G2
2 (x, y) = y2 (δ − x2 − y2)− k.

We want to �nd Bayesian Pareto equilibria for Γc.

Let us de�ne the weighted Cournot game Γλc =
(
N,A1, A2, T1, T2, P, v

λ
1 , v

λ
2

)
, with λ ∈ [0, 1],

where vi : A× T −→ R, i = 1, 2 are de�ned in the following way:

vλ1 (a, b, t) = λf1 (a, b) + (1− λ) f2 (a, b) ;

vλ2 (a, b, t) =


λg1

1 (a, b) + (1− λ) g1
2 (a, b) if the type is t12

λg2
1 (a, b) + (1− λ) g2

2 (a, b) if the type is t22,

The weighted Cournot game Γλc satis�es the assumptions of Corollary 3.1 because A1, A2 are convex

and compact sets, vλ1 (·, t) and vλ2 (·, t) are continuous functions because they are linear combinations

of continuous functions for each t ∈ T, vλ1 (·, y) and vλ2 (x, ·) are concave functions ∀y ∈ AT22 , and

∀x ∈ AT11 , respectively, because they are linear combinations of concave functions. Then Γλc possesses

a Bayesian Nash equilibrium ∀λ ∈ [0, 1].

If λ ∈ [0, 1], denoting by V λ
1 and V λ

2 the a priori expected payo� functions for �rms 1 and 2

respectively, we have for all P ∈ [0, 1],

∂V λ
1

∂x
(x, y) = λ (δ − 2x1 − y1) + (1− λ) (δ − 2x2 − y2) ;
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and

∂V λ
2

∂y
(x, y) = λ (−2Pky1 + δ − x1 − 2y1) + (1− λ) (−2Pky2 + δ − x2 − 2y2) .

from which we obtain the following weighted quantities:

λx1 + (1− λ)x2 =
δ (1 + 2Pk)

3 + 4Pk

λy1 + (1− λ) y2 =
δ

3 + 4Pk

from which we have ∀λ ∈ (0, 1] the Bayesian Nash equilibria of Γλc((
1

λ

[
δ (1 + 2Pk)

3 + 4Pk
− (1− λ)x2

]
, x2

)
,

(
1

λ

[
δ

3 + 4Pk
− (1− λ) y2

]
, y2

))
, (3.10)

and for λ = 0, we get the following Bayesian Nash equilibria((
x1,

δ (1 + 2Pk)

3 + 4Pk

)
,

(
y1,

δ

3 + 4Pk

))
. (3.11)

3.5.1 The contraction approach

The contraction approach is based on showing that the best reply map

T (x, y) =
(
argmax

x∈AT1
1
V λ

1 (x, y) , argmax
y∈AT2

2
V λ

2 (x, y)
)

is a contraction. Then there is a unique �xed point of T, that is, unique Bayesian Nash equilibrium

for Γλc according to the Banach �xed-point theorem 1. Namely we have to prove that T is a

contraction on AT11 ×A
T2
2 . For this a su�cient condition is that (see [122]):

∂2V λ
1

∂x2
+

∣∣∣∣∂2V λ
1

∂x∂y

∣∣∣∣ < 0; (3.12)

1

Theorem 3.5. Let (X, d) be a non-empty complete metric space. Let T : X −→ X be a contraction mapping on X,
i.e.: there is a nonnegative real number h < 1 such that

d(T (x), T (y)) ≤ h · d(x, y)

for all x, y ∈ X. Then the map T admits one and only one �xed-point x∗ ∈ X.
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and

∂2V λ
2

∂y2
+

∣∣∣∣∂2V λ
2

∂y∂x

∣∣∣∣ < 0, (3.13)

for each x ∈ AT11 , y ∈ AT22 and λ ∈ [0, 1] .

It easy to see that both conditions (3.12) and (3.13) are satis�ed, so the weighted Cournot game Γλc

admits a unique Bayesian Nash equilibrium. Conditions (3.12) and (3.13) also ensure dominance

solvability of Γλc
2 and, consequentely, global stability.3

Suppose we want to determine how the optimal a priori expected payo� functions V λ
1 , and V

λ
2

respond to changes in the parameter λ ∈ [0, 1].

It easy to see with comparative statics techniques that ∀λ ∈ (0, 1] the unique Bayesian Nash

equilibrium for Γλc is

(x∗, y∗) =

((
δ (1 + 2Pk)

3 + 4Pk
,
δ (1 + 2Pk)

3 + 4Pk

)
,

(
δ

3 + 4Pk
,

δ

3 + 4Pk

))
. (3.14)

In particular by Theorem 3.4 we proved that (x∗, y∗) in (3.14) is a wBPE for Γc, and for the

uniqueness it is also a sBPE for Γc.

In the case λ = 0 the previous technique cannot be used because x∗1 (λ) and y∗1 (λ) de�ned in

(3.10) are not di�erentiable at λ = 0. Indeed the game Γλc is reduced to be a one-criterion game

with Bayesian Nash equilibium (x∗, y∗) =
(
δ(1+2Pk)

3+4Pk , δ
3+4Pk

)
.

3.5.2 The potential approach

From another point of view, we deal with the game Γc as a Bayesian potential bicriteria game.

Consider the following lemma

Lemma 3.1. The Bayesian bicriteria game Γc is a Bayesian potential bicriteria game with the

2A game is dominance solvable if the set remaining after iterated elimination of strictly dominated strategies
is a singleton (see [84]).

3A BNE is globally stable if for any initial position the system converges to it.
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following potential function:

Π (x, y) =

(
−
(
x2

1 + x2
2

)
− (1 + Pk)

(
y2

1 + y2
2

)
− 1

2
(x1y1 + x1y2 + x2y1 + x2y2)

+δ (x1 + y1 + x2 + y2) ,

−
(
x2

1 + x2
2

)
− (1 + Pk)

(
y2

1 + y2
2

)
− 1

2
(x1y1 + x1y2 + x2y1 + x2y2)

+δ (x1 + y1 + x2 + y2)

)
:= (Π1 (x, y) ,Π2 (x, y)) .

Proof. Consider a two-person Bayesian bicriteria game with a priori expected payo� functions

W1 (x, y) =
(
−q1

11 (P ) (x · e1)2 − 2q1
12 (P ) (x · e1) (y · e1) + 2θ1

1 (x · e1) + h1
1 (y, P ) ,

−q2
11 (P ) (x · e2)2 − 2q2

12 (P ) (x · e2) (y · e2) + 2θ2
1 (x · e2) + h2

1 (y, P )
)

W2 (x, y) =
(
−q1

22 (P ) (y · e1)2 − 2q1
21 (P ) (x · e1) (y · e1) + 2θ1

2 (y · e1) + h1
2 (x, P ) ,

−q2
22 (P ) (y · e2)2 − 2q2

21 (P ) (x · e2) (y · e2) + 2θ2
2 (y · e2) + h2

2 (x, P )
)
.

From a straightforward generalization of Lemma 6 in [111] to two criteria, we have that it is a

Bayesian potential bicriteria game i� q12 (P ) = q21 (P ) ∀P ∈ [0, 1]. A Bayesian potential function

Π is such that

Π (x, y) = −q11 (P ) (x · x)− q22 (P ) (y · y)

−q12 (P ) (x · y)− q12 (P ) (x · e1) (y · e2)− q12 (P ) (x · e2) (y · e1)

+ (2, 2) (θ1 · x) + (2, 2) (θ2 · y) ,

where {e1, e2} is the canonical basis of R2, and

q11 (P ) =
(
q1

11 (P ) , q2
11 (P )

)
,

q22 (P ) =
(
q1

22 (P ) , q2
22 (P )

)
,

q12 (P ) =
(
q1

12 (P ) , q2
12 (P )

)
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are aleatory vectors,

θ1 =
(
θ1

1, θ
2
1

)
,

θ2 =
(
θ1

2, θ
2
2

)
are constant vectors and

h1 : Y × [0, 1] −→ R2,

h2 : X × [0, 1] −→ R2.

In our case we have:

(i) q12 (P ) = q21 (P ) =
(

1
2 ,

1
2

)
;

(ii) q11 (P ) = (1, 1) , q22 (P ) = (1 + Pk, 1 + Pk) ;

(iii) θ1 = θ2 =
(
δ
2 ,

δ
2

)
;

(iv) h1 (y, P ) = (−c1,−c2) , h2 (x, P ) = (−k (1− P ) ,−k (1− P )) .

From (i) we have that Γc is a BPMG, and it is easy to compute the potential function.

Since Π (x, y) ≤
(
2δ2, 2δ2

)
, the potential Π is an upper bounded function and for any ε > 0 Γc

has an εBPE (by Theorem 3.3). In particular, in our setting, if ŷ ∈ argmax
x∈AT1

1
Π1 (x, y) , and

x̂ ∈ argmax
y∈AT2

2
Π2 (x, y) (that is (x̂, ŷ) ∈ AT11 × A

T2
2 is a sBPE for Γπc = (N,A1, A2, T1, T2, P, π) ,

then, for Theorem 3.2, is a sBPE for Γc, and, obviously, also a wBPE for Γc.

In our example we have

argmax
x∈AT1

1
Π1 (x, y) =

{(
−1

4
(y1 + y2) +

1

2
δ,−1

4
(y1 + y2) +

1

2
δ

)}
,

argmax
y∈AT2

2
Π2 (x, y) =

{(
− 1

4 (1 + Pk)
(x1 + x2) +

1

2 (1 + Pk)
δ,

− 1

4 (1 + Pk)
(x1 + x2) +

1

2 (1 + Pk)
δ

)}
.

So it is easy to see that((
δ (1 + 2Pk)

3 + 4Pk
,
δ (1 + 2Pk)

3 + 4Pk

)
,

(
δ

3 + 4Pk
,

δ

3 + 4Pk

))
, (3.15)



60 Bayesian Pareto Equilibria in Multicriteria Games

is a sBPE for Γc, as we proved in the �rst part of the model.

We studied the class of Bayesian multicriteria games establishing the existence of approximate,

weak and strong Bayesian Pareto equilibria in the case of Bayesian potential multicriteria games.

In a general case, by using the scalarization approach, we showed the existence of weak Bayesian

Pareto equilibria. Moreover we gave an economic example which modelize the classical game of

Cournot duopoly in the case of incomplete information and in which both �rms have two objectives

to optimize.

There are many topics for further research. First of all this model of Bayesian multicriteria game

can be applied to environmental games in which countries have to take into account many objectives

and it is realistic to suppose incomplete information about political strategies of opponent countries.

The interesting case of supermodular games ([15], [94]) could be also considered in order to obtain

some further results about the Bayesian multicriteria games.



Chapter 4

A Bayesian Potential Game to Illustrate
Heterogeneity in Cost/Bene�t
Characteristics

4.1 Introduction

We are going to propose an idea to model heterogeneity of agents in games where the di�erences

among players' behaviours can be outlined by considering two main features, basically relying on

bene�t and cost.

The chosen approach comes from Bayesian game theory, where the de�nition and the employ-

ment of suitable types for players lead to a naturally asymmetric structure. Speci�cally, we will

select an asymmetric game where the type structure is �nite and investigate the related Bayesian

potential game. Potential games are quite a useful tool to simplify the determination of Nash

equilibria and achieve a number of properties of the optimal strategies of the game. Speci�cally,

potential functions of games collect all the relevant information in a unique function, whereas in

Bayesian games every player only owns and takes into account information on her type in her payo�

structure.

Actually, my analysis takes into account a speci�c kind of payo�, whose features are very com-

mon across oligopoly games, i.e. the typical form of pro�t equalling the di�erence between gains,

where the information about bene�t type is, and costs, where the information about cost type is.

We assume that the cost functions include the contributions of all agents, as if all strategies caused
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a damage to all agents, even if at di�erent levels. Such a formulation can be applied to an environ-

mental game, where �rms (or countries) choose their optimal emissions strategy maximizing their

own pro�ts, having to take into account that their aggregate emissions amount to an environmental

cost su�ered by all of them. We �nd it evident that when the involved agents are countries, even

more than �rms, the issue of modeling heterogeneity assumes high priority.

The Bayesian game approach seems to be suitable, in that it permits a complex characteriza-

tion of types which may re�ect countries' economic attitudes, productive characteristics and even

propensity to cause environmental damage.

In our opinion, the distinction among types usually employed in Bayesian game theory responds

to the commitment to manage the complexity and the heterogeneity of such a framework, in which all

countries are endowed with such di�erent prerogatives. Furthermore, some contributions appeared

in recent literature taking into account the issue of monotonicity of pure-strategy equilibria in

Bayesian games (in particular, [76], [118] and [100]) in setups where the type spaces are partially

ordered probability spaces. In this chapter, we intend to develop a procedure to check monotonicity

in our framework, where the type spaces are discrete and consisting of a �nite number of types,

because the techniques employed by [118] and [100] cannot be applied.

After constructing the Bayesian game and establishing a suitable preference order on the type

spaces, we proceed to take into examination the Bayesian potential structure of the game. Additive

separability in the strategic variables of the environmental cost functions makes such structure quite

simple to deal with and provides some clear properties for the Nash equilibria.

In particular in this chapter we underline that the potential of the original game can be explicitly

calculated and decomposed in the sum of the aggregate revenue and the aggregate cost, giving rise

to an equivalent game where information on the probability distributions of all types is collected.

Moreover the cost structure emerging from the formula of the potential function provides necessary

and su�cient conditions to ensure monotonicity of the pure strategies, in compliance with the partial

order established on the type spaces. Finally, monotonicity and feasibility of the pure strategies are

shown and proved in some very basic examples. The �rst example involves a unique pure strategy
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in the original strategy space, in the second one the pure strategy is unique as well but the strategy

space must be restricted in order to ensure monotonicity, whereas the third example, which relies

on a non-standard payo� structure, does not have a globally concave potential function and then

requires a di�erent kind of analysis.

4.2 The setup of the model

In standard environmental games, N countries choose their optimal emissions strategies ei ≥ 0,

in order to maximize their pro�t functions. Typically, their emissions contribute to increase the

total stock of pollution.

An aggregate dynamic variable is usually employed denoting the stock of pollution produced by

the accumulation of all countries'emissions: P . P causes damage to the environment and a�ects

countries'payo�s negatively, behaving as a negative environmental externality whose e�ect di�ers

across countries, as if each player had to bear a speci�c environmental cost depending on the

aggregate stock of emissions. In [5], [18] and in analogous models, such heterogeneity is modeled

by employing asymmetric marginal damages across countries and asymmetric marginal revenues.

Our approach will be di�erent, in that we will assume that individual environmental cost will

be determined by each country's own type. Speci�cally, P = fk (e1, . . . , en), assuming that the

production function fk(·), corresponding to type k, is such that fk (0, . . . , 0) = 0, and is increasing

with respect to each emission variable, i.e.:

∂fk
∂ej

> 0, ∀ j = 1, . . . , n.

Such production function fk(·) expresses the e�ect of the accumulation of the pollution stock

on a country whose type is k. Thus, we can look upon it either as an environmental cost for the

country or as the marginal contribution of each country with type k to the aggregate pollution

stock.

Generally, the Bayesian games are endowed with a structure which may be suitable to model

heterogeneity of agents. In this case, we are going to take into account two basic elements of het-
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erogeneity, possibly di�erent across countries: the marginal gains from emissions and the individual

contributions to damage caused by the accumulation of pollution. In both cases, we will consider

a low and a high level, labeled by indexes L and H. Hence, we intend to rely on 4 di�erent types

(an example of such a discrete type structure can be found in [24]).

The main characteristics of our framework can be summarized as follows:

• N = {1, . . . , n}, where n < ∞, is the set of players, i.e. countries which aim to maximize

their payo�s;

• bL, bH ∈ R+ are parameters indicating all the possible marginal gains from emissions; bL < bH ,

then bL is suitable to de�ne the action spaces of countries;

• the action spaces of countries are called Ei (standing for emissions) and are all equal compact

intervals, i.e.:

E1 = E2 = . . . = En = E = [0, 2bL];

• the �nite sets representing the type spaces of players are all equal to

T = {(bL, fL(·)), (bL, fH(·)), (bH , fL(·)), (bH , fH(·))},

equipped with the partial ordering < which will be established in De�nition 4.3, and Tn is

the Cartesian product of n copies of T . Note that this type structure allows each involved

country to belong to 4 alternative types;

• the common prior belief of the agents is represented by a discrete probability measure having

full support on each �nite type space T . Each probability distribution is designed in such a

way that the i-th country has probability pjki to belong to type (bj , fk(·)) ∈ T ; namely, the

following properties are supposed to hold:

pjki ≥ 0, ∀ i = 1, . . . , n, k, j ∈ {L,H},

pLLi + pLHi + pHLi + pHHi = 1 ∀ i = 1, . . . , n.
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• if the i-th country belongs to type (bj , fk(·)), her payo� function reads as follows:

ei

(
bj −

ei
2

)
− fk (e1, . . . , en) ;

hence, the i-th utility function is given by ui : En × Tn −→ R such that:

ui(e1, . . . , en, t1, . . . , tn) =


uLLi (e1, . . . , en, t1, . . . , tn) if ti = (bL, fL(·))
uLHi (e1, . . . , en, t1, . . . , tn) if ti = (bL, fH(·))
uHLi (e1, . . . , en, t1, . . . , tn) if ti = (bH , fL(·))
uHHi (e1, . . . , en, t1, . . . , tn) if ti = (bH , fH(·))

, (4.1)

where

ujki (e1, . . . , en, t1, . . . , tn) = ei

(
bj −

ei
2

)
− fk (e1, . . . , en) ;

• the a priori expected payo� function of country i is Ui : (ET )n −→ R such that:

Ui(x1, . . . , xn) = pLLi uLLi (x1 (t1) , . . . , xn (tn) , t1, . . . , tn) (4.2)

+pLHi uLHi (x1 (t1) , . . . , xn (tn) , t1, . . . , tn)

+pHLi uHLi (x1 (t1) , . . . , xn (tn) , t1, . . . , tn)

+pHHi uHHi (x1 (t1) , . . . , xn (tn) , t1, . . . , tn),

where x = (x1, . . . , xn) ∈ (ET )n are the strategic variables depending on the type pro�le

(t1, . . . , tn) ∈ Tn assigned to the n countries by Nature 1.

From now on, we will call Γ = (N, E, T, p, u) the game at hand.

4.2.1 Main characteristics of the game

Generally, we can formulate the conditions under which a Bayesian Nash equilibrium (BNE for

short) is implicitly determined:

Proposition 4.1. Let Γ = (N, E, T, p, u) be a Bayesian game with a priori expected utility

functions Ui, i = 1, . . . , n. Call W the largest open set with subset topology containing (ET )n. If

∀ i ∈ N the following additional assumptions hold:
1We will take into account pure strategies only, i.e. measurable functions xi : T −→ E, as in the de�nition in

[100], p. 508.
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(A1) Ui ∈ C2 (W ) , and FH , FL ∈ C2 (W ) ;

(A2)
∂Ui
∂xi

(x1, . . . , xn) ≥ 0;

(A3)
∂2FH
∂x2

i

(x1, . . . , xn) ≥ 0,
∂2FL
∂x2

i

(x1, . . . , xn) ≥ 0.

where FL and FH are the a priori expected payo� functions of fL and fH , respectively.

Then the strategy pro�le x̂ = (x̂1, . . . , x̂n) ∈
(
ET
)n
, where ∀i ∈ N

x̂i =
∑

j,k∈{L,H}

pjki

[
bj −

∂Fk
∂xi

(x̂)

]
(4.3)

is a candidate strategy to be a BNE for Γ.

Proof. Let x = (x1, . . . , xn) ∈W . We have that ∀ i ∈ N,

Ui (x) = pLLi

[
xi

(
bL −

xi
2

)
− FL (x)

]
+ pLHi

[
xi

(
bL −

xi
2

)
− FH (x)

]
(4.4)

+pHLi

[
xi

(
bH −

xi
2

)
− FL (x)

]
+ pHHi

[
xi

(
bH −

xi
2

)
− FH (x)

]
.

If Assumption (A1) holds, we have

∂Ui
∂xi

(x) = −xi +
∑

j,k∈{L,H}

pjki

[
bj −

∂Fk
∂xi

(x)

]
and

∂2Ui
∂x2

i

(x) = −1−
∑

j,k∈{L,H}

pjki
∂2Fk
∂x2

i

(x)

is negative by Assumption (A3).

Therefore, ∀ i ∈ N , if x̂i is solution to the n equations
∂Ui
∂xi

(x) = 0, i.e. (4.3) hold, then the strategy

pro�le x̂ = (x̂1, . . . , x̂n) is a candidate strategy to be a BNE for Γ.

4.3 The Bayesian potential game

In compliance with the standard notation employed in Bayesian game theory, in this subsection

we will use the following symbols, possibly indexed (see also [75]): N for the set of players, E for the

action spaces, T for the type spaces, p for the probability distribution, u for the payo� functions, U
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for the a priori expected utility functions, Γ for the Bayesian game and Π for the potential functions.

Furthermore, we will denote with ET the space of all functions from T to E. In [75] the authors

prove existence theorem for Pareto equilibria in Bayesian potential multicriteria games. We adapt

these results to the case in which there is one criterion as in Remark ??.

We are going to construct a BPG by exploiting the additivity argument stated in Remark 3.3.

Consider two di�erent Bayesian games, the former representing the revenue contribution and the

latter representing the cost contribution. Each one of them is endowed with the same type spaces

and the same probability distributions, that is:

Γ1 =
(
N, E, T, p, gji

)
and Γ2 =

(
N, E, T, p, hki

)
,

∀ i ∈ N, j, k ∈ {L,H}, where

gji (e1, . . . , en, t1, . . . , tn) = ei

(
bj −

ei
2

)
,

hki (e1, . . . , en, t1, . . . , tn) = −fk (e1, . . . , en) .

∀ i ∈ N, the a priori expected payo� functions respectively are:

Gi (x) =
(
pLLi + pLHi

) [
xi

(
bL −

xi
2

)]
+
(
pHLi + pHHi

) [
xi

(
bH −

xi
2

)]
, (4.5)

Hi (x) = −
(
pLLi + pHLi

)
FL (x)−

(
pLHi + pHHi

)
FH (x) . (4.6)

Before getting to calculate the potential functions, we remind the readers that a necessary and

su�cient condition for the existence of a potential function Π is stated in [83]: given the payo�

functions Ui, a potential function exists if and only if

∂2Ui
∂xi∂xj

=
∂2Uj
∂xi∂xj

(4.7)

for all i 6= j. The conditions (4.7) hold for Ui = Gi as in (4.5), whereas for Hi as in (4.6) we need

the following result:
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Proposition 4.2. Γ2 is a potential game if and only if ∀ i 6= j ∈ N we have

pLLi + pHLi = pLLj + pHLj ,

pLHi + pHHi = pLHj + pHHj .

Proof. It su�ces to write down (4.7) for Hi:

(
pLLi + pHLi

) ∂2FL (x)

∂xi∂xj
+
(
pLHi + pHHi

) ∂2FH (x)

∂xi∂xj
=

=
(
pLLj + pHLj

) ∂2FL (x)

∂xi∂xj
+
(
pLHj + pHHj

) ∂2FH (x)

∂xi∂xj

if and only if for all i 6= j we have:

pLLi + pHLi = pLLj + pHLj and pLHi + pHHi = pLHj + pHHj .

We are going to assume some kind of suitable separability in the variables of the production

functions FL(·) and FH(·). For example, referring to [8], we can consider forms of payo�s taken

from standard games in normal form.

De�nition 4.1. An n− player normal form game Γ = (N,X1, . . . , Xn, f1, . . . , fn) is called a par-

tially separable game if for any i ∈ N there exist two functions f ii : Xi −→ R and

f−ii :
∏
k 6=iXk −→ R such that

fi (x) = f ii (xi) + f−ii (x−i) .

The separable games, introduced in [8], are a particular case of partially separable games intro-

duced in [95] in which ∀i ∈ N, f−ii = 0. Accordingly, we can employ production functions of the

following kind:

FL (x) =
n∑
j=1

[
ΦjL (xj) + Φ̃(−j)L (x−j)

]
,

FH (x) =

n∑
j=1

[
ΦjH (xj) + Φ̃(−j)H (x−j)

]
.
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Hypothesizing that for all j = 1, . . . , n, ΦjL,ΦjH ∈ C2
(
ET
)
and Φ̃(−j)L, Φ̃(−j)H ∈ C2

((
ET
)n−1

)
and that the conditions on weights stated in Proposition 4.2 hold, then Γ2 is a Bayesian potential

partially separable game (see [95] for the non-Bayesian case). In our case, we will rely on a stronger

form of separability, i.e. Φ̃(−j)L (x−j) = 0 and Φ̃(−j)H (x−j) = 0 for all j = 1, . . . , n.

Proposition 4.3. If FL (x) =
∑n

j=1 ΦjL (xj) , and FH (x) =
∑n

j=1 ΦjH (xj) , and for all

j = 1, . . . , n, ΦjL, ΦjH ∈ C2
(
ET
)
, the Bayesian games Γ1 and Γ2 are BPGs, whose potential

functions are as follows:

P1 (x) = −
n∑
j=1

1

2
x2
j +

n∑
j=1

[
(bL − bH)

(
pLLj + pLHj

)
+ bH

]
xj , (4.8)

P2 (x) = −
n∑
j=1

(
pLLj + pHLj

)
ΦjL (xj)−

n∑
j=1

(
pLHj + pHHj

)
ΦjH (xj) . (4.9)

Proof. It is immediate to check that
∂Gi
∂xi

=
∂P1

∂xi
, and that

∂Hi

∂xi
=
∂P2

∂xi
. Furthermore, Proposition

4.2 is veri�ed, hence (4.8) and (4.9) are potential functions for Γ1 and Γ2.

Corollary 4.1. If FL (x) =
∑n

j=1 ΦjL (xj) , and FH (x) =
∑n

j=1 ΦjH (xj) , and for all j = 1, . . . , n,

ΦjL,ΦjH ∈ C2
(
ET
)
, the Bayesian game Γ = (N, E, T, p, u), where ujki = gji + hki , is a BPG

whose potential function is given by:

Π (x) = −1

2

n∑
j=1

x2
j + bH

n∑
j=1

xj +
n∑
j=1

[(bL − bH)xj − ΦjL(xj)] p
LL
j +

+
n∑
j=1

[(bL − bH)xj − ΦjH(xj)] p
LH
j −

n∑
j=1

ΦjL(xj)p
HL
j −

n∑
j=1

ΦjH(xj)p
HH
j . (4.10)

Proof. It immediately follows from Proposition 4.3 and Remark 3.3. Summing the potentials and

�nally rearranging terms yields:

Π (x) = P1 (x) + P2 (x) = −
n∑
j=1

1

2
x2
j +

n∑
j=1

[
(bL − bH)

(
pLLj + pLHj

)
+ bH

]
xj+

−
n∑
j=1

(
pLLj + pHLj

)
ΦjL(xj)−

n∑
j=1

(
pLHj + pHHj

)
ΦjH(xj) =
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= −1

2

n∑
j=1

x2
j + bH

n∑
j=1

xj +

n∑
j=1

[(bL − bH)xj − ΦjL(xj)] p
LL
j +

+
n∑
j=1

[(bL − bH)xj − ΦjH(xj)] p
LH
j −

n∑
j=1

ΦjL(xj)p
HL
j −

n∑
j=1

ΦjH(xj)p
HH
j .

Remark 4.1. The explicit calculation of Bayesian potential functions has already been investigated

in some recent papers (for example, [111]), and in particular, it turns out to be simple when the

structure of the game is linear-quadratic. If we consider a Bayesian game Γ with a priori expected

payo� functions:

Ũi (x) = −qii (p)x2
i − 2

∑
j 6=i

qij (p)xixj + 2θi (p)xi + hi (x−i, p) ,

where qij and θi are su�ciently regular functions of the probability distributions p and hi is a

su�ciently regular function of x−i and p, then by Lemma 6 in [111], we have that Γ is a BPG i�

qij (p) = qji (p) ∀ i, j ∈ N with i 6= j, and for all p. A Bayesian potential function for Γ is given by

Π (x) = −xtQ (p)x+ 2θ (p)t x,

where Q (p) = [qij (p)]n×n, θ (p) = [θ1 (p) , . . . , θn (p)]t and t denotes the transpose of a matrix.

Note that (4.10) can easily be decomposed in the sum R(x) + ∆(x), i.e. the sum of aggregate

revenue and aggregate damage. R(x) = −1

2

∑n
j=1 x

2
j +bH

∑n
j=1 xj has no aleatory features, whereas

∆(x) =
∑n

j=1 Ej [∆j(xj)], where Ej [·] is the expectation operator when its variable is distributed

according to pj , and the determinations of ∆j(xj) are:

∆j(xj , tj) =


(bL − bH)xj − ΦjL(xj) if tj = (bL, fL(·))
(bL − bH)xj − ΦjH(xj) if tj = (bL, fH(·))
−ΦjL(xj) if tj = (bH , fL(·))
−ΦjH(xj) if tj = (bH , fH(·))

.

The economic intuition behind the formulation R(x) + ∆(x) can be further re�ned: in particular,

R(x) represents the aggregate revenue of all agents if they all shared the same high marginal revenue
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type H, whereas ∆(x) can be expressed as follows:

∆(x) =
n∑
j=1

Ej [∆j(xj)] =
∑

j∈{1,...,n}, s∈{L,H}

psLj [(bs − bH)xj − ΦjL(xj)]+

+
∑

j∈{1,...,n}, s∈{L,H}

psHj [(bs − bH)xj − ΦjH(xj)],

where the two sums indicate the aggregate damage, or cost, for all agents due to their marginal

gains'levels. The former measures the aggregate losses of agents with low production functions

based on their marginal revenue type, whereas the latter does the same for the agents with high

production functions. ∆(x) can be thought of as the function quantifying the loss in payo� caused

by the fact that they fail to belong to the high marginal revenue type.

The following proposition provides necessary and su�cient conditions for Π to admit a maximum

point, i.e. a BNE for Γ (by Theorem 3.2 in the special case of one criterion).

Proposition 4.4. If there exists a unique point x∗ = (x∗1, . . . , x
∗
n) ∈ (0, 2bL)n such that for all

j = 1, . . . , n the following �rst order conditions hold:

− x∗j + (bL − bH)
(
pLLj + pLHj

)
+ bH −

(
pLLj + pHLj

)
Φ′jL(x∗j )−

(
pLHj + pHHj

)
Φ′jH(x∗j ) = 0, (4.11)

and Φ′′jL (xj) ≥ 0 and Φ′′jH (xj) ≥ 0 for any x = (x1, . . . , xn) in an open neighbourhood of x∗ for all

j = 1, . . . , n, then x∗ is a BNE for Γ.

Proof. The necessary conditions for the maximization of (4.10) are the n equations (4.11). Because

all the second order partial mixed derivatives are zero, the su�cient conditions are given by:

∂2Π

∂x2
i

= −1−
(
pLLj + pHLj

)
Φ′′jL(x∗j )−

(
pLHj + pHHj

)
Φ′′jH(x∗j ),

which are strictly negative if Φ′′jL (xj) ≥ 0 and ΦjH (xj) ≥ 0 for all j = 1, . . . , n. Then x∗ is the

unique maximizer for Π and consequently a BNE for Γ.

Note that Proposition 4.4 only takes into consideration a unique equilibrium point and assumes

it not to be on the boundary of the domain, hence it essentially concerns globally concave potential

functions. In Section 4.4, we will also examine an example in which global concavity of Π is not

veri�ed.
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4.3.1 Monotonicity of strategies

In this subsection, we are going to establish a preference order on our type spaces, whereby we

will be able to de�ne monotonicity of strategies. We recall for reader's convenience the following

de�nition.

De�nition 4.2. Let A be a nonempty set. A partial preorder < on A is a re�exive and transitive

relation. A total preorder is a re�exive, transitive and total relation. An antisymmetric partial

preorder < is called partial order, if < is also a total relation, we call it a total order.

Let Θ be a compact subset of Rm containing the origin and consider the following set

F (Θ) = {f : Θ −→ R | f (0, . . . , 0) = 0, (4.12)

f ∈ C2(Θ),
∂f

∂xj
(c) ≥ 0, ∀ c ∈ Θ, ∀ j = 1, . . . , n.

}
.

We want to construct a partial order < on the set R+ ×F (Θ) in the following way:

De�nition 4.3. Let (α, f) , (β, g) ∈ R+ ×F (Θ) , we say that

(α, f) < (β, g)

i�

α ≥ β and
∂f (c)

∂xj
≤ ∂g (c)

∂xj
∀j = 1, . . . , n. (4.13)

It is easy to verify that the relation in De�nition 4.3 is a partial order. Namely, (4.13) establishes

a preference on pairs, leading to a preference on types, which is based on a double prerogative: a

larger bene�t parameter and a lower maximum cost. Note that because Θ is compact and f and g

are both continuous, the sides of both inequalities involve �nite values.

Remark 4.2. The partial order < de�ned in De�nition 4.3 on the set R+ × F ([0, 2bL]n) induces

the following partial order on type set T :

(bH , fL (·)) < (bH , fH (·)) < (bL, fH (·))

(bH , fL (·)) < (bL, fL (·)) < (bL, fH (·)) ,
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then (T, <) is a poset.

De�nition 4.4. A strategy for player i, xi : T −→ A, is monotone if t′i < ti implies xi (t′i) ≥ xi (ti)

for all t′i, ti ∈ T.

The following theorem intends to characterize the monotonicity of BNEs in our framework.

Intuitively, it relies on the fact that the preference order on R+×F ([0, 2bL]n) is reproduced in the

FOCs of our maximization problem.

Theorem 4.1. Let Γ = (N, E, T, p, u) a Bayesian game such that BNE (Γ) 6= ∅.

If FL (x) =
∑n

j=1 ΦjL (xj) , and FH (x) =
∑n

j=1 ΦjH (xj) , and for all j = 1, . . . , n, ΦjL,ΦjH ∈

F ([0, 2bL]n) , Γ admits a monotone BNE x∗ with respect to the partial order < on the set R+ ×

F ([0, 2bL]n) i� ∀ j = 1, . . . , n, we have:

∂ΦjL (xj)

∂xj
≤
∂ΦjH (xj)

∂xj
, (4.14)

for all xj ∈ (0, 2bL).

Proof. Rearranging the j-th FOC (4.11) yields:

x∗j = (bL − bH)
(
pLLj + pLHj

)
+ bH −

(
pLLj + pHLj

)
Φ′jL(x∗j )−

(
pLHj + pHHj

)
Φ′jH(x∗j ),

leading to the following implicit de�nitions of the pure strategies:

x∗j (bH , fL (·)) = bH − Φ′jL(x∗j )

x∗j (bH , fH (·)) = bH − Φ′jH(x∗j )

x∗j (bL, fH (·)) = bL − Φ′jH(x∗j )

x∗j (bL, fL (·)) = bL − Φ′jL(x∗j )

and it follows immediately that if (4.14) holds for all players, the preference order de�ned in De�-

nition 4.3 and in Remark 4.2 is satis�ed by x∗ ∈ BNE(Γ).

What follows is a criterion to ensure the feasibility of monotone pure strategies:
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Proposition 4.5. If x∗ is a monotone pure strategy of Γ and if the following inequalities hold:{
x∗j (bH , fL (·))) < 2bL

x∗j (bL, fH (·)) > 0,

then x∗ ∈ [0, 2bL]n .

Proof. It directly follows from monotonicity of x∗ and from the strategy spaces of the problem.

We can also prove another standard property of oligopoly games:

Proposition 4.6. If x∗j (bk, ·) is a monotone pure strategy of Γ for player j, the j-th consumer

surplus CSj is monotone in x∗j (bk, ·) irrespective of j's type.

Proof. The j-th consumer surplus at equilibrium is the area of the triangle between the inverse

demand function and its level corresponding to the equilibrium x∗j (bk, ·), i.e.:

CSj(x
∗
j (bk, ·)) =

1

2
x∗j (bk, ·)

[
bk −

(
bk −

x∗j (bk, ·)
2

)]
=

(x∗j (bk, ·))2

4
,

then CSj(·) is strictly monotone in x∗j and does not depend on types.

In the next section, we will investigate di�erent kinds of functions ΦjL(·) and ΦjH(·), calculate

the related potential functions explicitly, and determine the Nash equilibrium structures of the

related BPGs.

4.4 Examples with di�erent production functions

Case A

Consider an elementary case of Bayesian game where both production functions are linear, although

having di�erent slopes. Heterogeneity relies on the di�erent individual e�ects from emissions, i.e.:

FL (x) =

n∑
j=1

xj (4.15)

and

FH (x) =
n∑
j=1

δjxj , with δj > 1 ∀ j ∈ N. (4.16)
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Calling ΓL the Bayesian game with FL as in (4.15) and FH de�ned as in (4.16), it is simple to prove

the following:

Lemma 4.1. ΓL is a BPG with the following potential function:

ΠL (x) = −1

2

n∑
j=1

x2
j + bH

n∑
j=1

xj+

+

n∑
j=1

(bL − bH − 1)xjp
LL
j +

n∑
j=1

(bL − bH − δj)xjpLHj −
n∑
j=1

xjp
HL
j −

n∑
j=1

δjxjp
HH
j . (4.17)

Proof. The conditions (4.7) hold for all i, j = 1, . . . , n, then ΓL is a BPG. (4.17) immediately follows

from the application of (4.10).

To determine the pure-strategy equilibria, it su�ces to describe the FOCs:

∂ΠL

∂xi
= 0 ⇐⇒ xi = bH + (bL − bH − 1)pLLi + (bL − bH − δj)pLHi − pHLi − δipHHi ,

for all i = 1, . . . , n. By Theorem 4.1, the pure strategies are monotone with respect to the poset

(T, <). Namely, the i-th optimal strategies based on all possible type realizations are:

x̂i (bH , fL (·)) = bH − 1

x̂i (bH , fH (·)) = bH − δi

x̂i (bL, fH (·)) = bL − δi

x̂i (bL, fL (·)) = bL − 1

and the veri�cation of monotonicity is straightforward. Note that in this speci�c case they

exactly correspond to marginal cost levels for all agents. In order to check the feasibility of such

strategies, we have to state some suitable parametric conditions, in compliance with Proposition

4.5. x̂ ∈ [0, 2bL]n if:{
bH − 1 < 2bL

bL − δi > 0
⇐⇒ bL > max

{
δ1, δ2, . . . , δn,

bH − 1

2

}
.
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Case B

A similar technique can be applied to a Bayesian game played by agents endowed with even more

heterogenous types. In particular, a game in which the pollution production functions fk(·) have

di�erent structures, for example the one corresponding to the lowest sensitivity to the stock of

pollution which is linear and the one corresponding to the highest sensitivity which is quadratic.

In such a case, we will have:

FL (x) =
n∑
j=1

γjxj , with γj > 1 ∀j ∈ N. (4.18)

and

FH (x) =
n∑
j=1

x2
j . (4.19)

Call ΓLQ the Bayesian game with FL as in (4.18) and FH as in (4.19).

Lemma 4.2. The Bayesian game ΓLQ is a BPG with the following potential function:

ΠLQ (x) = −1

2

n∑
j=1

x2
j + bH

n∑
j=1

xj+

+
n∑
j=1

[bL − bH − γj ]xjpLLj +
n∑
j=1

[
(bL − bH)xj − x2

j

]
pLHj −

n∑
j=1

γjxjp
HL
j −

n∑
j=1

x2
jp
HH
j . (4.20)

Proof. (4.7) hold for all i, j = 1, . . . , n, then ΓLQ is a BPG. The application of (4.10) yields (4.20).

Note that in ΓLQ the hypotheses of Theorem 4.1 are not veri�ed in the whole strategy space

[0, 2bL]n. In fact,

∂ΦiL (xi)

∂xi
≤ ∂ΦiH (xi)

∂xi
⇐⇒ xi ≥

γi
2
,

hence we have to restrict the strategy space to Θ :=
∏n
j=1

[γj
2
, 2bL

]
, which is nonempty if and only

if bL > max
{γ1

4
, . . . ,

γn
4

}
.

Because the structure of ΠLQ is linear-quadratic, it admits a unique maximizer as well, i.e.

x̂i =
[bL − bH − γi]pLLi + [bL − bH ]pLHi − γipHLi

1 + 2pLHi + 2pHHi
, (4.21)
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so the pro�le strategy x̂ is a feasible and monotonic BNE for ΓLQ if x̂ ∈
∏n
j=1

[γj
2
, 2bL

]
. The

i-th optimal strategies based on all types are as follows:

x̂i (bH , fL (·)) = bH − γi

x̂i (bH , fH (·)) =
bH
3

x̂i (bL, fH (·)) =
bL
3

x̂i (bL, fL (·)) = bL − γi

and adapting the hypotheses of Proposition 4.5, the su�cient conditions for feasibility are given

by:

bH − γi < 2bL
bL
3
>
γj
2

⇐⇒ bL > max

{
bH − γ1

2
, . . . ,

bH − γn
2

,
3γ1

2
, . . . ,

3γn
2

}
.

Case C

In this example we will deal with a potential having two stationary points. The damage functions

are the following:

FL (x) =

n∑
j=1

log (xj + 1) , (4.22)

and

FH (x) =
n∑
j=1

xj . (4.23)

Call ΓLogL the Bayesian game with FL as in (4.22) and FH as in (4.23).

Lemma 4.3. The Bayesian game ΓLogL is a BPG endowed with the following potential function:

ΠLogL (x) = −1

2

n∑
j=1

x2
j + bH

n∑
j=1

xj+

+

n∑
j=1

[(bL − bH)xj − log(xj + 1)] pLLj +
n∑
j=1

(bL − bH − 1)xjp
LH
j −

n∑
j=1

log(xj + 1)pHLj −
n∑
j=1

xjp
HH
j .

(4.24)
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Proof. The formula (4.24) follows from the application of (4.10).

The FOCs of this model read as:

∂ΠLogL

∂xi
= −xi + bH +

[
bL − bH −

1

xi + 1

]
pLLi + (bL − bH − 1)pLHi − pHLi

xi + 1
− pHHi = 0,

for all i = 1, . . . , n.

The explicit computation of the related BNE deserves some detailed comments. To begin with,

the conditions (4.14) hold because
1

xj + 1
≤ 1 for all xj ∈ [0, 2bL]. On the other hand, ΠLogL(x) is

not globally concave: in fact,
∂2ΠLogL

∂x2
i

≥ 0 in the whole interval [0, 2bL] if and only if

pLLi = pHLi = 0. Hence, the two unique pure strategies than can be immediately determined are:

x̂i (bH , fH (·)) = bH − 1

x̂i (bL, fH (·)) = bL − 1,

∀ i ∈ N. The remaining strategies must be deduced from a second degree equation. For example:

−x̂i (bH , fL (·)) + bH −
1

x̂i (bH , fL (·)) + 1
= 0 ⇐⇒

⇐⇒ x̂i (bH , fL (·)) =
bH − 1 +

√
b2H + 2bH − 3

2
,

after discarding the negative root. Analogously, we have:

−x̂i (bL, fL (·)) + bL −
1

x̂i (bL, fL (·)) + 1
= 0 ⇐⇒

⇐⇒ x̂i (bL, fL (·)) =
bL − 1 +

√
b2L + 2bL − 3

2
.

Both of them are real for bL > 1. As far as monotonicity is concerned, we note that all the

inequalities

x̂i (bH , fL (·)) > x̂i (bH , fH (·)) > x̂i (bL, fH (·)) ,

x̂i (bH , fL (·)) > x̂i (bL, fL (·)) > x̂i (bL, fH (·))

are simply veri�ed for bL > 1.
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Finally, to ensure feasibility, we have to check the hypotheses of Proposition 4.5 to achieve a

suitable parametric condition:


bH − 1 +

√
b2H + 2bH − 3

2
< 2bL

bL − 1 > 0

⇐⇒ bL > max

bH − 1 +
√
b2H + 2bH − 3

4
, 1

 .

In this chapter we proposed a new approach to model heterogeneity in oligopoly games, based on

a 2-dimensional �nite type structure, separately indicating bene�t and cost characteristics of agents.

In our opinion, an environmental n-countries game in which the revenue is a linear-quadratic func-

tion of emissions and the cost is a production function of the aggregate emissions is an appropriate

application for our technique. We established a suitable preference order on the type spaces of the

Bayesian game under consideration and subsequently took into examination the Bayesian potential

structure of the game. We exploited additive separability in the strategic variables of the environ-

mental cost functions to ensure the existence of a potential for the model. Such potential is relevant

in that all information on the probability distributions of all types is collected. We found out that

the cost structure emerging from the formula of the potential function provides necessary and su�-

cient conditions to ensure monotonicity of the pure strategies, in compliance with the partial order

established on the type spaces. Finally, we applied our results to some di�erent models, whose

respective payo�s were endowed with linear, linear-quadratic and linear-logarithmic cost functions.

The �rst model involves a unique pure strategy in the original strategy space, in the second one

the pure strategy is unique as well but the strategy space must be restricted in order to ensure

monotonicity, whereas the third model, relying on a non-standard payo� structure, does not have

a globally concave potential function and then requires a di�erent kind of analysis.
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Part II

Cooperative Approach





Chapter 5

TU-Games: an overview

While in non-cooperative game theory, we focus on the individual players' strategies and their

in�uence on payo�s, and try to predict what strategies players will choose (equilibrium concept), in

cooperative game theory, we abstract from individual players' strategies and instead focus on the

coalition players may form. We assume each coalition may attain some payo�s, and then we try to

predict which coalitions will form (and hence the payo�s agents obtain).

In its classical interpretation, a TU-game describes a situation in which the players in every coalition

S of N can cooperate to form a feasible coalition and earn its worth.

Solutions of TU-games are divided in two types: set solutions and point solutions.

As concerns the set solutions, the �rst option when searching for a solution to a cooperative game

is the core. In the core no coalition of agents ends up preferring to stay alone to that resulting from

overall cooperation. However, the possible emptiness is a serious limitation of the core concept. A

rich class of TU-games with a nonempty core is the class of convex games. For a convex game the

Shapley value appears to be a core selector. Simply and well-known examples of convex games are

the so-called unanimity games that create a basis in the game space.

Shapley value is a well-knowed point solution. Axiomatizations of the Shapley value can be found

in [36], [37], [72], [112], [113], [114], [115], [128]. Another point solution is the Banzhaf-Coleman

index which, for example, is studied in [112] and [63].
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5.1 Preliminary De�nitions

De�nition 5.1. Let N be a �nite set with cardinality n and let v : 2N −→ R be a map such

that v(∅) = 0. The ordered pair (N, v) is a side-payment game or trasferable utility game

(TU-game).

We can interpret N as the set of players, and S ∈ 2N is a coalition of player. v is called

characteristic function of the game.

We denote with Γ the class of TU - games and with Gn the set of all characteristic functions v,

corresponding to a TU - game (N, v).

Notation 5.1. If S, T ∈ 2N , the inclusion S ⊆ T, means that each player of coalition S is a player

of the coalition T. In particular ∅ ⊂ T ∀T ∈ 2N .

De�nition 5.2. A TU-game (N, v) ∈ Γ is cohesive if

v(N) ≥
k∑
i=1

v(Si) ∀ {S1, . . . , Sk} partition of N

Most of TU-games derived from practical situations have the superadditivity property.

De�nition 5.3. A TU-game (N, v) ∈ Γ is superadditive if

v(S ∪ T ) ≥ v(S) + v(T ) ∀S, T ∈ 2N ,with S ∩ T = ∅.

In a superadditive game the value of the union of two disjoint coalitions is at least as large as

the sum of the values of the subcoalition separately.

The following de�nition is less interesting because there is no convenience to cooperation.

De�nition 5.4. A TU-game (N, v) ∈ Γ is additive [subadditive] if

v(S ∪ T ) = v(S) + v(T ) [v(S ∪ T ) ≤ v(S) + v(T )] ∀S, T ∈ 2N ,with S ∩ T = ∅.

It is easy to show that a superadditive game is also a cohesive game:

Proposition 5.1. Let (N, v) ∈ Γ be a superadditive game, then (N, v) is a cohesive game.
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Proof. Let {S, T} be a partition of N. Then

v(N) = v(S ∪ T ) ≥ v(S) + v(T ).

We can observe that an additive game is both superadditive and subadditive. Moreover by

Proposition 5.1 it is also a cohesive game. However, a cohesive game is not necessarily a superad-

ditive game as shown by the next example.

Example 5.1. We consider the game (N, v) where N = {1, 2, 3} and v : 2N −→ R is de�ned as

follows:

v(S) =



0 if S = ∅

1 if |S| = 1

3
2 if |S| = 2

5 if S = N

Note that this is a cohesive game, but it is not a superadditive game because if we consider S = {1}

and T = {2} , we have that v(S ∪ T ) = 3
2 < 1 + 1 = v(S) + v(T ).

De�nition 5.5. A TU-game (N, v) ∈ Γ is convex [strictly convex] if

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) [v(S ∪ T ) + v(S ∩ T ) > v(S) + v(T )] ∀S, T ∈ 2N .

We can see that a convex game is also a superadditive game:

Proposition 5.2. Let (N, v) ∈ Γ be a convex game, then (N, v) is a superadditive game.

Proof. We take S, T ∈ 2N such that S ∩ T = ∅. Then

v(S ∪ T ) + v(S ∩ T ) = v(S ∪ T ) + v(∅)

= v(S ∪ T ) + 0

≥ v(S) + v(T ).
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However, the viceversa is not true as shown by the next example.

Example 5.2. We consider the game (N, v) where N = {1, 2, 3} and v : 2N −→ R is de�ned as

follows:

v(S) =



0 if S = ∅

1
4 if |S| = 1

3
2 if |S| = 2

7
4 if S = N

We can notice that this is a superadditive game, but it is not a convex game because if we consider

S = {1, 2} and T = {1, 3} , we have that v(S ∪ T ) + v(S ∩ T ) = 7
4 + 1

4 <
3
2 + 3

2 = v(S) + v(T ).

De�nition 5.6. A TU-game (N, v) ∈ Γ is concave [strictly concave] if

v(S ∪ T ) + v(S ∩ T ) ≤ v(S) + v(T ) [v(S ∪ T ) + v(S ∩ T ) < v(S) + v(T )] ∀S, T ∈ 2N .

We can observe that (N, v) ∈ Γ is [strictly] convex i� (N,−v) ∈ Γ is [strictly] concave.

De�nition 5.7. A TU-game (N, v) ∈ Γ is monotonic [strictly monotonic] if

v(S) ≤ v(T ) [v(S) < v(T )] ∀S, T ∈ 2Nwith S ⊂ T.

De�nition 5.8. A TU-game (N, v) ∈ Γ is essential if

v(N) >
∑
i∈N

v({i})

It is inessential otherwise.

Proposition 5.3. Let (N, v) ∈ Γ be a superadditive game such that v(S) ≥ 0 ∀S ∈ 2N ; then (N, v)

is a monotonic game.

Proof. We take S, T ∈ 2N such that S ⊂ T. We can observe that T = S ∪ (T \ S). Then

v(T ) = v(S ∪ (T \ S))

≥ v(S) + v(T \ S).

Then v(T )− v(S) ≥ v(T \ S) ≥ 0.
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In particular, because of Proposition 5.2 the following statement holds.

Corollary 5.1. If (N, v) ∈ Γ is a convex game such that v(S) ≥ 0 ∀S ∈ 2N , then it is also a

monotonic game.

We can note that an additive game is an inessential game.

Proposition 5.4. Let (N, v) ∈ Γ be a monotonic game then v(S) ≥ 0 ∀S ∈ 2N .

Proof. We have that ∅ ⊂ T ∀T ∈ 2N . Then, by monotonicity, we have

0 = v(∅) ≤ v(T ).

The next pictures summarize the previous implications.

convex games

superadditive games

cohesive games
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convex and non-negative games

superadditive and non-negative games

monotonic games

non-negative games

We can also show that a convex game is not necessarily a monotonic game as the next example

shows.

Example 5.3. We consider the game (N, v) where N = {1, 2} and v : 2N −→ R is de�ned as

follows:

v(S) =



0 if S = ∅

−6 if S = {1}

−4 if S = {2}

−5 if S = N

It is easy to show that this is a convex game, but it is not a monotonic game because if we consider

S = {2} and T = {1, 2} , we have that S ⊂ T but −4 = v(S) > v(T ) = −5.

Moreover, because of Proposition 5.2, the previous example shows that superadditivity condition

is not su�cient for monotonicity.

We can also observe that the game of Example 5.3 is essential, so we conclude that convexity

and essentiality are not su�cient conditions for monotonicity. (Obviously also superadditivity and

essentiality are not su�cient conditions for monotonicity).
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Now we show that monotonicity and essentiality are not su�cient conditions for superadditivity.

We consider the following example.

Example 5.4. We consider the game (N, v) where N = {1, 2, 3} and v : 2N −→ R is de�ned as

follows:

v(S) =



0 if S = ∅

1
3 if |S| = 1

7
4 if |S| = 2

2 if S = N

We can see that this is a monotonic and essential game, but it is not a superadditive game because

if we consider S = {1} and T = {2, 3} , we have that

v(S ∪ T ) = v(N)

= 2

< v(S) + v(T )

= v({1}) + v({2, 3})

=
1

3
+

7

4

=
25

12
.

Moreover, since this game is not cohesive, we can conclude that monotonicity and essentiality are

not su�cient conditions for cohesivity.

In particular it follows that monotonicity and essentiality are not su�cient conditions for convexity.

Namely we can observe that monotonicity is not a su�cient condition for superadditivity (and

for convexity).

De�nition 5.9. A TU-game (N, v) ∈ Γ is said to be constant -sum if

v(S) + v(N \ S) = v(N) ∀S ∈ 2N ,with S ⊂ N.
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Proposition 5.5. Let (N, v) ∈ Γ be an additive game then (N, v) is a constant- sum game.

Proof. We take S, T ∈ 2N such that T = N \ S. Then

v(S) + v(T ) = v(S) + v(N \ S) = v(N)

It is easy to show that the opposite does not hold.

The most important problem for a TU-game (N, v) is how to divide the pro�ts among the

players. Indeed there is not an unique rule: the theory does not tell us which solution we have to

choose, but it describes the property of solutions, highlighting positive and negative aspects.

For further details see [91] (pages 212-233) and [107] (pages 60-66).

The next subsections are devoted to describe some kind of solutions.

5.2 Imputation and Core

De�nition 5.10. Take (N, v) ∈ Γ. A vector x = (x1, . . . , xn) ∈ Rn is called allocation. If∑
i∈N xi = v(N) then the allocation x is called pre-imputation. A pre imputation x such that

xi ≥ v({i}) ∀i ∈ N, is called imputation.

A pre-imputation is a distribution of v(N) among players. The condition
∑

i∈N xi = v(N) is an

e�cient condition or also called collective rationality. On the other hand the condition xi ≥ v({i})

is called individual rationality.

The set of imputations of the TU-game (N, v) is denoted by I(v).

From another point of view we can think of the imputation as a correspondence

I : Gn ⇒ Rn where

I(v) =

{
x ∈ Rn |

∑
i∈N

xi = v(N), xi ≥ v({i})

}
.

Proposition 5.6. Let (N, v) ∈ Γ be a cohesive game then I(v) 6= ∅.
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Proof. Because (N, v) is a cohesive game, in particular we have

v(N) ≥
n∑
i=1

v({i}).

Then ∃εi ≥ 0 ∀i = 1, . . . , n such that

v(N) =
n∑
i=1

(v({i}) + εi).

We can de�ne the vector x = (x1, . . . , xn) with xi = v({i}) + εi ∀i = 1, . . . , n.

Obviously x ∈ I(v).

Naturally, it might happen that I(v) = ∅ as shown by the following example.

Example 5.5. We consider the game (N, v) where N = {1, 2, 3} and v : 2N −→ R is de�ned as

follows:

v(S) =



0 if S = ∅

1 if |S| = 1

3
2 if |S| = 2

2 if S = N

De�nition 5.11. Take (N, v) ∈ Γ, let x, y ∈ I(v) be two imputations, and let S be a coalition. We

say x dominates y through S (x `S y) if

• xi > yi ∀i ∈ S;

•
∑

i∈S xi ≤ v(S).

We say x dominates y (x ` y) if there is a coalition S such that x `S y.

De�nition 5.12. Take (N, v), (N,w) ∈ Γ. We say that they are isomorphic if there exists a

bijection f : I(v)→ I(w) such that

x `S y ⇔ f(x) `S f(y) ∀x, y ∈ I(v), S ⊂ N.

It may be di�cult to tell whether two games are isomorphic in this sense. We have, however,

the following criterion:
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De�nition 5.13. Take (N, v), (N,w) ∈ Γ. We say that they are S-equivalent if there exist a

positive number r and n real constants α1, . . . , αn such that

v(S) = rw(S) +
∑
i∈S

αi ∀S ⊂ N.

Essentially, if two games are S-equivalent, we can obtain one from the other simply by performing

a linear transformation on the utility space of the several players. It is easy to prove that S-equivalent

implies isomorphism:

Theorem 5.1. If (N, v), (N,w) ∈ Γ are S-equivalent, they are isomorphic.

Proof. See [91] (page 216)

It is obvious that S-equivalence is, indeed, an equivalence relation. It is interesting to choose

one particular game from each equivalent class.

De�nition 5.14. A TU-game (N, v) ∈ Γ is said to be in 0 normalization if

• v({i}) = 0 ∀i ∈ N.

Theorem 5.2. If (N,w) ∈ Γ is a TU-game, it is S-equivalent to exactly one game in 0 normaliza-

tion.

Proof. It su�ces to take v(S) = w(S) −
∑

i∈S w({i}). In fact (N, v) is S-equivalent to (N,w) and

it is also 0 normalized.

De�nition 5.15. A TU-game (N, v) ∈ Γ is said to be in (0,1) normalization if

• v({i}) = 0 ∀i ∈ N ;

• v(N) = 1.

Theorem 5.3. If (N,w) ∈ Γ is an essential game, it is S-equivalent to exactly one game in (0, 1)

normalization.
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Proof. It is su�cient to take v(S) =
w(S)−

∑
i∈S w({i})

w(N)−
∑

i∈N w({i}) . Indeed (N, v) is S-equivalent to (N,w) and

it is also (0, 1) normalized.

There are two special types of games which are of interest:

De�nition 5.16. Take (N, v) ∈ Γ.We say that it is symmetric if v(S) depends only on the number

of elements in S.

De�nition 5.17. Take (N, v) ∈ Γ in (0, 1) normalization. We say that it is simple if, for each

S ⊂ N, we have either v(S) = 0 or v(S) = 1.

We can note that a game is simple if its (0, 1) normalization is simple.

In a simple game, a coalition S is said to be a winning coalition if v(S) = 1 and a losing

coalition if v(S) = 0. So in a simple game every coalition is either winning or losing.

We can note that if (N, v) ∈ Γ is a superadditive, simple game then every subset of a losing

coalition is losing, and every superset of a winning coalition is winning.

We can interpret a simple game in the following way: players are members of legislature or

members of the board of directors of a corporation, etc. In such games, a proposed bill or decision

is either passed or rejected. Those subsets of the players that can approve bills without outside help

are called winning coalitions while those that cannot are called losing coalitions.

Typical examples of simple games (N, v) ∈ Γ are

• the majority rule game where v(S) = 1 if |S| > n/2, and v(S) = 0 otherwise;

• the unanimity game where v(S) = 1 if S = N and v(S) = 0 otherwise;

• the dictator game where v(S) = 1 if {1} ∈ S and v(S) = 0 otherwise.

We introduce a concept of solution, the core, that selects the imputations which have an other

rationality property.
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De�nition 5.18. Take (N, v) ∈ Γ. The core of the game is a vector x = (x1, . . . , xn) ∈ I(v) such

that ∑
i∈S

xi ≥ v(S) ∀S ∈ 2N \ {∅} .

The set of core elements of the TU-game (N, v) is denoted by C(v).

We can observe that C(v) is a convex set.

From an other point of view we can think the core as a correspondence C : Gn ⇒ Rn where

C(v) =

{
x ∈ I(v) |

∑
i∈S

xi ≥ v(S)

}

Obviously C(v) ⊆ I(v). Consequely I(v) = ∅, implies C(v) = ∅. But also for a superadditive game

it can happen that C(v) = ∅ as shown by the next example.

Example 5.6. We consider the game (N, v) where N = {1, 2, 3} and v : 2N −→ R is de�ned as

follows:

v(S) =


0 if S = ∅

0 if |S| = 1

1 if |S| ≥ 2.

It is easy to show that this is a superdditive game, but C(v) = ∅.

Moreover we have

Theorem 5.4. Let (N, v) ∈ Γ be an essential and constant-sum game, then C(v) = ∅.

Proof. See [91] (page 220).

The concept of the core is useful as a measure of stability. As a solution concept, it presents a

set of imputations without distinguishing one point of the set as preferable to another. Indeed, the

core may be empty.

For further details see [91] (pages 212-233) and [107] (pages 67-73).
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5.3 Indices of Power

Here we deal with the concept of a value. In this approach, one tries to assign to each game in

coalitional form a unique vector of payo�s, called the value. The i-th entry of the value vector may

be considered as a measure of the value or power of the i-th player in the game. Alternatively, the

value vector may be thought of as an arbitration outcome of the game decided upon by some fair

and impartial arbiter.

De�nition 5.19. A function φ : Gn → Rn is called value.

Here φi(v) represents the worth or value of player i ∈ N in the TU-game (N, v).

In this section we introduce two values: the Shapley value and the Banzhaf-Coleman index,

and their variations.

To de�ne Shapley value we give an axiomatic treatment.

De�nition 5.20. Take (N, v) ∈ Γ and let σ : N → N be a permutation of the set N. Then, by

(N, σv) we mean the TU-game such that,

σv(S) = v(σ(S)) ∀S ∈ 2N .

De�nition 5.21. Take (N, v) ∈ Γ we called dummy player a player i ∈ N such that

v(S ∪ {i}) = v(S) + v({i}) ∀S ∈ 2Nwith i /∈ S.

De�nition 5.22. Take (N, v) ∈ Γ we called null player a player i ∈ N such that

v(S ∪ {i}) = v(S) ∀S ∈ 2Nwith i /∈ S.

De�nition 5.23. Take (N, v) ∈ Γ we called symmetric players two players i, j ∈ N such that

v(S ∪ {i}) = v(S ∪ {j}) ∀S ∈ 2Nwith i, j /∈ S.

Axioms 5.1. Take (N, v), (N,w) ∈ Γ, then a value φ : Gn → Rn satis�es the next axioms if

Axiom 1 (e�ciency)
∑

i∈N φi(v) = v(N);
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Axiom 2 (anonimity) φσ(i)(σv) = φi(v) ∀σ : N → N permutation;

Axiom 3 (dummy player) φi(v) = v({i}) ∀i ∈ N dummy player;

Axiom 4 (additivity) φi(v + w) = φi(v) + φi(w) ∀i ∈ N.

Theorem 5.5. There is a unique value φ : Gn → Rn that satis�es e�ciency, anonimity, dummy

player and additivity.

Proof. For the proof see [91] (pages 262-265).

This unique value is called Shapley value and denoted with ϕ. Given (N, v) ∈ Γ, it is explicitly

de�ned as follows

ϕi(v) =
∑
i∈S
S⊆N

(s− 1)!(n− s)!
n!

[v(S)− v(S \ {i})] , (5.1)

where s denotes the cardinality of S.

It can be seen that ∑
i∈S
S⊆N

(s− 1)!(n− s)!
n!

= 1.

We can note that the Shapley value is not only additive but also satis�es the following stronger

axiom of linearity.

Axioms 5.2. Take (N, v), (N,w) ∈ Γ, then a value φ : Gn → Rn satis�es the next axioms if

Axiom 5 (linearity) φi(av + bw) = aφi(v) + bφi(w) ∀i ∈ N and ∀a, b ∈ R.

We can also give an alternative de�nition of Shapley value. First of all we give the following

de�nitions.

De�nition 5.24. Let (N, v) ∈ Γ be a TU-game, take i ∈ N and let σ : N −→ N be a permu-

tation. Take j ∈ N such that i = σ(j). A marginal contribution of i ∈ N to the coalition

{σ(1), . . . , σ(j − 1)} is the number

mσ
i (v) = v({σ(1), ..., σ(j)})− v({σ(1), ..., σ(j − 1)}).

We denote with mσ(v) the vector of Rn with component mσ
i (v).
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De�nition 5.25. Let (N, v) ∈ Γ be a TU-game and let σ : N −→ N be a permutation. A set of

predecessor of i ∈ N in σ is the set

Pσ(i) =
{
j ∈ N | σ−1(j) < σ−1(i)

}
.

We can observe that, with the previous de�nitions mσ
i (v) = v(Pσ(i) ∪ {i})− v(Pσ(i)).

Then we have the following de�nition:

De�nition 5.26. Let (N, v) ∈ Γ be a TU-game, then the Shapley value is de�ned in the following

way:

ϕi(v) =
1

n!

∑
σ∈π(N)

mσ
i (v), (5.2)

where π(N) is the set of permutations of N.

Theorem 5.6. Let (N, v) ∈ Γ be a convex game, then ϕ(v) ∈ C(v).

Proof. Take S ⊆ N and σ : N → N a permutation. Let i1, . . . , ik, . . . , is be the elements of S in

the order in which there are in σ.

So by de�nition of marginal contribution and for superadditivity of (N, v), we have

mσ
ik

(v) = v(Pσ(ik) ∪ {ik} − v(Pσ(ik))) ≥ v({ik}),

and
n∑
k=1

mσ
ik

(v) = v(N).

Moreover, for the convexity of (N, v), we have

s∑
k=1

mσ
ik

(v) ≥
s∑

k=1

v(Pσ(ik) ∪ {ik})− v(Pσ(ik)) = v(S)

That ismσ(v) ∈ C(v).Moreover, by convexity of C(v) and for De�nition 5.26, we have ϕ(v) ∈ C(v).

From previous theorem follows the next claims.

Corollary 5.2. Let (N, v) ∈ Γ be a superadditive game, then ϕ(v) ∈ I(v).
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Corollary 5.3. Let (N, v) ∈ Γ be a convex game, then C(v) 6= ∅.

There are also many others axiomatizations of the Shapley value. For example, let us consider

the following axioms:

Axioms 5.3. Take (N, v), (N,w) ∈ Γ, then a value φ : Gn → Rn satis�es the next axioms if

Axiom 6 (null player) φi(v) = 0 ∀i ∈ N null player;

Axiom 7 (fairness) φi(v + w)− φi(v) = φj(v + w)− φj(v) ∀i, j ∈ N symmetric players.

Then, in [113] the author proves the next theorem.

Theorem 5.7. There is a unique value φ : Gn → Rn that satis�es e�ciency, null player and

fairness. This value is the Shapley value.

Proof. See [113].

For further details see [112] and [128] where the authors characterize the Shapley value on the

class of monotonic games.

One of the principal di�culties with the Shapley value is that its computation generally requires

the sum of a very large number of terms. Thus, even when the characteristic function is easy to

de�ne, evaluation may require a prohibitive amount of work. Recourse is therefore frequently had

to multilinear extension (MLE) of the game.

De�nition 5.27. Let (N, v) ∈ Γ be a TU-game, then the multilinear extension of (N, v) is

de�ned in the following way:

h(x1, . . . , xn) =
∑
S⊂N

(∏
i∈S

xi
∏
i/∈S

(1− xi)

)
v(S), (5.3)

with xi ∈ [0, 1] ∀i ∈ N.

The following property relates the MLE to the Shapley value.
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Theorem 5.8. Let (N, v) ∈ Γ be a TU-game, and h its multilinear extension, then

ϕi(v) =

∫ 1

0

∂h

∂xi
(t, . . . , t)dt ∀i ∈ N. (5.4)

For the proof see [91] (page 270) and [107] (page 94), while for more classical results see [91]

(pages 261-280) and [107] (pages 85-95).

We can observe that if we take the subclass of essential simple games we have that v(N) = 1,

for any (N, v) in this subclass and hence the sum of two simple games (N, v) and (N,w) does not

belong to this subclass. Therefore, this has motivated several authors to introduce an alternative

version of the additive axiom, see [36], [37] and [72].

In the following, as in [115], we denote the class of simple games by Γs and its subclass of essential,

monotonic simple games by Γsm, and we denote byGns , andG
n
sm the set of all characteristic functions

v, corresponding to a TU- game (N, v) ∈ Γs and Γsm, respectively. The alternative version of the

additivity axiom in case of simple games makes use of the concept of the maxgame and the mingame

of two games.

De�nition 5.28. Take (N, v), (N,w) ∈ Γ , then the maxgame of (N, v) and (N,w) is denoted

(N, z+
vw) where

z+
vw = max [v(S), w(S)] ∀S ⊆ N,

and the mingame of (N, v) and (N,w) is denoted (N, z−vw) where

z−vw = min [v(S), w(S)] ∀S ⊆ N.

Clearly, when both (N, v), (N,w) ∈ Γs, then also (N, z+
vw), (N, z−vw) ∈ Γs.

Moreover, we have the following lemma.

Lemma 5.1. Let (N, v), (N,w) ∈ Γs be two simple games. Then it holds that

v(S) + w(S) = z+
vw(S) + z−vw(S) ∀S ⊆ N.

Proof. It follows immediately by De�nition 5.28.
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Dubey in [36] stated the next additivity axiom for a value.

Axioms 5.4. Take (N, v), (N,w) ∈ Γs, then a value φ : Gns → Rn satis�es the next axiom if

Axiom 8 (minmax additivity) φi(z
+
vw) + φi(z

−
vw) = φi(v) + φi(w) ∀i ∈ N.

The next theorem states the Shapley value is the unique value satisfying the axioms of e�ciency,

anonimity, dummy player and minmax additivity.

Theorem 5.9. There is a unique value φ : Gns → Rn that satis�es e�ciency, anonimity, dummy

player and minmax additivity.

Proof. See [36].

This unique value is called Shapley-Shubik index. Given (N, v) ∈ Γs, it is explicitly de�ned

as follows

ϕi(v) =
∑
i∈S
S⊆N

(s− 1)!(n− s)!
n!

, (5.5)

where s denotes the cardinality of S, and where the summation is taken over all winning coalition

S such that S \ {i} is not winning.

Another index of power has been suggested by Banzhaf and Coleman.

De�nition 5.29. Let (N, v) ∈ Γ be a TU-game . We de�ne the Banzhaf-Coleman index as

χi(v) =
∑
i∈S
S⊆N

(
1

2

)n−1

[v(S)− v(S \ {i})].

There is a certain relation between the Shapley value and the Banzhaf-Coleman index: both give

averages of player i's marginal contributions v(S)− v(S \ {i}). The di�erence lies in the weighting

coe�cients used: for the Shapley value, these varied according to the size of S; for the Banzhaf-

Coleman index, they are all equal.

It follows immediately by de�nition that the Banzhaf-Coleman index satis�es anonimity, dummy

player, linearity and in particular, additivity. We can note that the Banzhaf-Coleman index does

not satisfy the e�ciency axiom. Infact we can consider the following example.
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Example 5.7. Let us consider the following simple game (N, v) ∈ Γ and let us calculate the Banzhaf-

Coleman index. N = {1, 2, 3} and

v(S) =


1 if |S| ≥ 2

0 otherwise .

We have χ(v) =
(

1
2 ,

1
2 ,

1
2

)
.

Axiomatizations of the Banzhaf-Coleman index on the class of simple games have been given in

[37] and in [72]. In the latter paper an axiomatization is also given for the general case by using

a monotonicity property with respect to the amalgamation of two players to one player. In [57] is

provided an axiomatization for the Banzhaf-Coleman index on the class of TU-games Γ by using an

axiom of neutral collusion, besides the standard axioms of dummy player, anonimity and linearity.

We can consider the following de�nition.

De�nition 5.30. Let (N, v) ∈ Γ be a TU-game and let i, j ∈ N be two di�erent players. Take

ζ = {i, j} a reduced game is a TU-game (N \ {j} , vζ) ∈ Γ where

vζ(S) = v(S) and vζ(S ∪ {ζ}) = v(S ∪ {ζ}) ∀S ⊆ N \ {ζ} .

Clearly (N \ {j} , vζ) is a TU-game with n− 1 players obtained by amalgamating the players i

and j in the game (N, v) into one player ζ.

In this way we can revisit the e�ciency property in the following axiom.

Axioms 5.5. Take (N, v) ∈ Γ, then a value φ : Gn → Rn satisfy the next axiom if

Axiom 9 (2- e�ciency) φi(v) + φj(v) = φζ(vζ) ∀i 6= j ∈ N.

Now we introduce the axioms that characterize the Banzhaf-Coleman index.

Axioms 5.6. Take (N, v) ∈ Γ, then a value φ : Gn → Rn satisfy the next axiom if

Axiom 10 (equal treatment) φi(v) = φj(v) ∀i, j ∈ N symmetric players;
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Axiom 11 (marginal contributions) Take (N, v), (N,w) ∈ Γ. If for some player i ∈ N we have

v(S ∪ {i})− v(S) = w(S ∪ {i})− w(S) ∀S ⊆ N \ {i, j} , then φi(v) = φi(w).

Theorem 5.10. There is a unique value φ : Gn → Rn that satis�es 2-e�ciency, dummy player,

equal treatment and marginal contributions. This value is the Banzhaf-Coleman index.

Proof. See [87].

Also for the Banzhaf-Coleman index there is a characterization through the multilinear exten-

sion, see for example [90].

Theorem 5.11. Let (N, v) ∈ Γ be a TU-game, and h its multilinear extension, then

χi(v) =
∂h

∂xi

(
1

2
, . . . ,

1

2

)
∀i ∈ N. (5.6)

Proof. See [91] (pages 294-297).

See also [92] for a reformulation of the Banzhaf-Coleman index.

For a simple game, we can de�ne also the Normalized Banzhaf-Coleman index. First of all

we formalize a concept already discussed.

De�nition 5.31. Let (N, v) ∈ Γs be a simple game [in (0, 1) normalization], a swing for player

i ∈ N is a set S ⊂ N such that i ∈ S, S wins and S \ {i} loses.

De�nition 5.32. Let (N, v) ∈ Γs be a simple game [in (0, 1) normalization], and let θi be the

number of swings for player i ∈ N. We de�ne the Normalized Banzhaf-Coleman index on

simple games as

βi(v) =
θi∑
j∈N θj

.

Clearly, we can also de�ne the Normalized Banzhaf-Coleman index on the more general class of

TU-games.
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De�nition 5.33. Let (N, v) ∈ Γ be a TU-game. We de�ne the Normalized Banzhaf-Coleman

index as

βi(v) = η(v) · χi(v) ∀i ∈ N,

where

η(v) =
v(N)∑
j∈N χj(v)

.

The Normalized Banzhaf-Coleman index (on simple games and on TU- games in general) is

e�cient and it satis�es anonimity. It does not satisfy linearity and dummy player property.

In [112] there is a characterization of the Normalized Banzhaf-Coleman index on the class of

monotonic games.

There is a large class of simple games called weighted voting games.

De�nition 5.34. A TU-game (N, v) ∈ Γ is a weighted voting game if

v(S) =


1 if

∑
i∈S wi > q

0 if
∑

i∈S wi ≤ q,

for some non-negative numbers wi, called the weights, and some positive number q, called the

quota. If q = 1
2

∑
i∈S wi, this is called a weighted majority game.

Example 5.8. The elections of Ireland held February 2011 are a 7-players weighted voting game

(N, v). The Ireland Parliament has 166 seats so the quota q is �xed to 84, that is the majority plus

one. The weights are the seats which each party get. The winner coalitions are:

{FG,LP} , {FG,FF} , {FG, I} , {FG, SF} .

All the coalitions containing the previous four coalitions are winning. Moreover the following coali-

tions are winning

{LP,FF, I, SF} , {LP,FF, I, SF, SP} , {LP,FF, I, SF, PBP} , {LP,FF, I, SF, SP, PBP} .

Let us compute the number of swings (θ), divided per cardinality of coalitions (s), of players:
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Now we can calculate the three power indices: Shapley value (ϕ), Banzhaf-Coleman index (χ ),

Normalized Banzhaf-Coleman index ( β).

ϕFG(v) = 0.6, ϕLP (v) = 0.1 ϕFF (v) = 0.1 ϕI(v) = 0.1 ϕSF (v) = 0.1 ϕSP (v) = 0 ϕPBP (v) = 0.

χFG(v) = 0.875 χLP (v) = 0.125 χFF (v) = 0.125 χI(v) = 0.125 χSF (v) = 0.125 χSP (v) =

0 χPBP (v) = 0.

βFG(v) = 56
88 βLP (v) = 8

88 βFF (v) = 8
88 βI(v) = 8

88 βSF (v) = 8
88 βSP (v) = 0 βPBP (v) = 0.

Table 5.1 represents the three power indices: Shapley value (ϕ), Banzhaf-Coleman index (χ ),

Normalized Banzhaf-Coleman index ( β).

Table 5.1: Elections of Ireland 2011

Parties Seats ϕ χ β

FG 76 0.6 0.875 56
88

LP 37 0.1 0.125 8
88

FF 20 0.1 0.125 8
88

I 15 0.1 0.125 8
88

SF 14 0.1 0.125 8
88

SP 2 0 0 0

PBP 2 0 0 0

Example 5.9. The elections of Finland held April 2011 are a 9-players weighted voting game (N, v).

The Finnish Parliament has 200 seats so the quota q is �xed to 101, that is the majority plus one.

The weights are the seats which each party get.

Table 5.2 represents the three power indices: Shapley value (ϕ), Banzhaf-Coleman index (χ ),

Normalized Banzhaf-Coleman index ( β).
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Table 5.2: Elections of Finland 2011

Parties Seats ϕ χ β

KOK 44 0, 221428571428571 0, 44921875 115
527

SDP 42 0, 2 0, 40234375 103
527

PS 39 0, 176190476190476 0, 35546875 91
527

KESK 35 0, 147619047619047 0, 29296875 75
527

VAS 14 9, 64285714285705 · 10−2 0, 20703125 53
527

VIHR 10 6, 19047619047615 · 10−2 0, 13671875 35
527

SFP 9 5, 47619047619044 · 10−2 0, 12109375 31
527

KD 6 3, 69047619047616 · 10−2 0, 08203125 21
527

RA 1 4, 76190476190458 · 10−3 0, 01171875 3
527
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Chapter 6

A new perspective on cooperative games

In the following chapter we are going to propose a new perspective on cooperative games, by

assuming that the involved players are supposed to face a common damage. The agents can choose

to make an agreement and form a coalition or to defect and face such damage individually.

When such disadvantage is modeled by a dynamic state variable evolving over time, cooperating and

non-cooperating agents solve di�erent optimization problems, but they all must take into account

such state variable, as if it represented an externality in all their respective value functions. Even

if we just consider the cooperative and static aspects of such a game, the externality has a key role

in the worth of coalitions.

The approach we will develop relies on a class of cooperative games including an external e�ect,

such that the characteristic value function is split in two parts: one of them is standard, the other

one is a�ected by externality.

It is worth describing our idea of externality, which basically di�ers from the previous character-

izations in literature. Transferable utility games with positive externalities were de�ned by [99],

which related such externality to an increase in pay-o� for the players in a speci�c coalition when

the remaining coalitions committed to merging. That is, in presence of a partition of the set of

agents and of multiple coalitions, a group of players may enjoy a positive spillover originating from

a merger of external coalitions rather than from a strategic choice.

In our case, on the other hand, the role of externality is played, and its amount is measured, by



108 A new perspective on cooperative games

a di�erent state variable, not directly depending on the possibly undertaken agreements. Loosely

speaking, in our setting externalities arise in the same way as they do in standard dynamic oligopoly

models (see [64]).

When we relate this idea to the welfare of a country dealing with an emission reduction strategy, we

stress that the clean share of welfare is always positive, whereas the share including the pollution

e�ect is negative, then the total welfare must be globally evaluated.

In recent years, a growing interest has been devoted to dynamic models of pollution abatement (on

which [64] is quite an exhaustive survey), within both cooperative and non-cooperative frameworks.

In particular, the design and the modeling of International Environmental Agreements (IEA, from

now on) have been extensively and critically discussed in [46]. Just to cite some recent examples,

[48] investigated stability of coalitions to form IEAs empirically, [77] examined IEAs from the view-

point of evolutionary game theory, whereas [71] concentrated on the cooperative dynamic allocation

of total costs incurred by countries.

Our starting points are [5] and [18], which on their turn are related to [52] and [53]. We are going

to arrange a theoretical setup building on their model, investigate a wider set of properties for such

game structures, and �nally carry out a coalitional power assessment in detail.

Substantially, this game relies on a cooperative structure which is generated as agents play

the strategies of a dynamic optimization game of pollution reduction. In this game each country

commits to maximizing her welfare either joining an IEA or refusing to join it, during the process of

accumulation of an aggregate stock of pollution. All the countries implement their optimal emissions

strategies, which di�er between signatory and non-signatory countries. At a given level of pollution,

an aggregate welfare must be shared among them, according to the quantity of cooperating nations

and their related characteristics.

Note that this structure of game di�ers from the so-called global emission games (a very ac-

curate description of which can be found in [45], Chapter 9), which are basically conceived in a

static framework. The principal di�erence is in the structure of the damage cost function: in the

global emission games it is an increasing convex function of the aggregate emissions, whereas in our
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framework it is a function of the stock of pollution, which incorporates the emissions in its evolu-

tionary dynamics. We are going to characterize this game as an extended cooperative game a�ected

by negative externality. Explicit formulas for the Banzhaf-Coleman index and the Shapley value

(which belongs to the core of the game) will be reckoned and subsequently applied to a numerical

framework exposing the countries' actual achievement of the aggregate welfare. We will also discuss

the e�ects of the countries' marginal contributions to pollution on their share of welfare.

6.1 Extended cooperative games

We aim to extend the standard de�nition of cooperative games on a �nite player set building

on the dependence on a second argument, a real variable. Let N be a �nite set with cardinality n,

and consider a subset D ⊆ [0,+∞). Let v̄ : 2N ×D −→ R be a map such that v̄(∅, ·) = 0.

De�nition 6.1. The ordered pair (N, v̄) is an extended cooperative game (ECG for short).

We will denote with Γ̄ the class of the extended cooperative games and with Ḡn the set of all

characteristic functions v̄, corresponding to an extended cooperative game (N, v̄) ∈ Γ̄.

We are going to investigate the properties of the extended cooperative games, particularly taking

into account the e�ect of this non-negative variable whenever it negatively a�ects the values of

coalitions. Note that, in the simplest case, De�nition 6.1 reduces to one-parameter families of

cooperative games, notwithstanding that we intend to make it �t to a possibly much wider class

of games. The second argument of an ECG is allowed to denote the state level in a dynamic

optimization problem when some agents make a coalition agreement. Under such circumstances,

v̄(·) is the optimal value function solving a discrete Bellman equation and its arguments respectively

represent the set of cooperating agents and the problem's state variable.

The next de�nition characterizes the suitable class of games on which we will focus our attention.

Speci�cally, we will denote with v̄NE(·) the characteristic function incorporating such negative

externality.
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De�nition 6.2. Given (N, v̄NE) ∈ Γ̄ such that

v̄NE(S, P ) = w(S)− g(P )u(S)

∀S ∈ 2N \ {∅} ∀P ∈ D ⊆ [0,+∞), and

v̄NE(∅, P ) = 0

∀P ∈ D ⊆ [0,+∞) , where

• w(S) > 0 ∀S ∈ 2N \ {∅} , w(∅) = 0;

• u(S) > 0 ∀S ∈ 2N \ {∅} , u(∅) = 0;

• g(P ) ≥ 0 ∀P ∈ D, g strictly increasing;

we call such a game extended cooperative game with negative externalities (ECGWNE for

short).

Call Γ̄NE the class of ECGWNE, and ḠnNE the set of all characteristic functions v̄NE , correspond-

ing to an ECGWNE (N, v̄NE). For the sake of simplicity, consider the non-restrictive assumption

D = [0,+∞).

Proposition 6.1. Let (N, v̄NE) ∈ Γ̄NE . Then the pair (N, v̄NE) is a nonnegative ECGWNE i�

P ∈
[
0, min
S∈2N\{∅}

{
g−1

(
w (S)

u (S)

)}]
.

Proof. By hypothesis, ∀S ∈ 2N \ {∅} and ∀P ∈ [0,+∞) , we have

v̄NE(S) = w(S)− g(P )u(S)

which is nonnegative if and only if

g(P ) ≤ w (S)

u (S)
.

Since g is strictly increasing, then it's invertible. Taking the minimum interval with respect to all

possible coalitions, we obtain:

P ≤ min
S∈2N\{∅}

{
g−1

(
w (S)

u (S)

)}
.
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We can employ the same de�nitions of Chapter 5 for the convexity of an ECGWNE.

Proposition 6.2. Let (N, v̄NE) ∈ Γ̄NE be a nonnegative ECGWNE and let w(·) be convex and u(·)

be strictly convex. Then the pair (N, v̄NE) is a convex ECGWNE i�

P ∈
[
0,min

{
min

S, T∈2N

{
g−1

(
w (S ∪ T ) + w (S ∩ T )− w (S)− w (T )

u (S ∪ T ) + u (S ∩ T )− u (S)− u (T )

)}
,

min
S∈2N\{∅}

{
g−1

(
w (S)

u (S)

)}}]
,

where S, T are not both empty sets.

Proof. By hypothesis, ∀S, T ∈ 2N (not both empty), and ∀P ∈ [0,+∞) , we have

v̄NE (S ∪ T, P ) + v̄NE (S ∩ T, P )− v̄NE (S, P )− v̄NE (T, P )

= w (S ∪ T ) + w (S ∩ T )− w (S)− w (T )− g(P ) [u (S ∪ T ) + u (S ∩ T )− u (S)− u (T )] ,

which is nonnegative if and only if

g(P ) ≤ w (S ∪ T ) + w (S ∩ T )− w (S)− w (T )

u (S ∪ T ) + u (S ∩ T )− u (S)− u (T )
.

Since g is strictly increasing, then it's invertible. Taking the minimum interval with respect to all

possible coalitions, we obtain:

P ≤ min
S, T∈2N

{
g−1

(
w (S ∪ T ) + w (S ∩ T )− w (S)− w (T )

u (S ∪ T ) + u (S ∩ T )− u (S)− u (T )

)}
.

By intersecting such interval with the domain achieved in Proposition 6.1 for nonnegativity, we

complete the proof.

Remark 6.1. In Proposition 6.2, note that if we replace the assumption of strict convexity of u(·)

with the standard modularity assumption:

u (S ∪ T ) + u (S ∩ T )− u (S)− u (T ) = 0

for all S, T ∈ 2N , then the convexity of v̄NE (S, P ) holds for all P ∈ D.
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6.1.1 Power indices for extended cooperative games

We are going to arrange the foremost solution concepts of cooperative games for ECGWNE.

De�nition 6.3. Given (N, v̄) ∈ Γ̄, the Shapley value of v̄(S, P ) is the vector ϕ(v̄(S, P )) =

(ϕ1(v̄(S, P )), ϕ2(v̄(S, P )), . . . , ϕn(v̄(S, P ))) ∈ Rn such that:

ϕi(v̄(S, P )) =
∑
i∈S
S⊆N

(s− 1)!(n− s)!
n!

[(v̄(S, P ))− (v̄(S \ {i} , P )] , (6.1)

∀ i = 1, . . . , n.

In (6.1) s denotes the cardinality of each coalition S.

The computation of the Shapley value might require the sum of a very large number of terms.

In the following, we will employ the formulas related to the multilinear extension (MLE) of the

game:

De�nition 6.4. Given (N, v̄) ∈ Γ̄, then the multilinear extension (or MLE) of (N, v̄) is

de�ned as follows:

h(x1, . . . , xn) =
∑
S⊂N

(∏
i∈S

xi
∏
i/∈S

(1− xi)

)
v̄(S, P ), (6.2)

where xi ∈ [0, 1] ∀ i = 1, . . . , n.

The MLE of a cooperative game (N, v̄) is related to the Shapley value by the following alternative

formulation:

ϕi(v̄) =

∫ 1

0

∂h

∂xi
(t, . . . , t)dt, ∀ i ∈ N. (6.3)

From now on, call h the MLE of an ECGWNE.

Theorem 6.1. Let (N, v̄NE) ∈ Γ̄NE be an ECGWNE. Then

ϕi(v̄NE) = ϕi(w)− g(P )ϕi(u), ∀ i ∈ N. (6.4)

Proof. Let a and b be the multilinear extensions of (N,w) and (N, u), respectively. Then, De�nitions

6.2 and 6.4 imply:

h(x1, . . . , xn) = a(x1, . . . , xn)− g(P )b(x1, . . . , xn)
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where xi ∈ [0, 1] ∀ i = 1, . . . , n.

Consequently, (6.3) implies:

ϕi(w)− g(P )ϕi(u) =

∫ 1

0

∂a

∂xi
(t, . . . , t)dt− g(P )

∫ 1

0

∂b

∂xi
(t, . . . , t)dt

=

∫ 1

0

∂ (a− g(P )b)

∂xi
(t, . . . , t)dt

=

∫ 1

0

∂h

∂xi
(t, . . . , t)dt = ϕi(v̄NE).

The following two corollaries simply follow from Propositions 6.1 and 6.2 and from Theorem 6.1.

Corollary 6.1. If (N, v̄NE) is a nonnegative ECGWNE, then:

ϕi(w)− g(P̃ )ϕi(u) ≤ ϕi(v̄NE) ≤ ϕi(w)− g(0)ϕi(u),

∀ i ∈ N , where

P̃ = min
S∈2N\{∅}

{
g−1

(
w (S)

u (S)

)}
.

Corollary 6.2. If (N, v̄NE) is a nonnegative and convex ECGWNE, then:

ϕi(w)− g(P̂ )ϕi(u) ≤ ϕi(v̄NE) ≤ ϕi(w)− g(0)ϕi(u),

∀ i ∈ N , where

P̂ = min

{
min

S, T∈2N

{
g−1

(
w (S ∪ T ) + w (S ∩ T )− w (S)− w (T )

u (S ∪ T ) + u (S ∩ T )− u (S)− u (T )

)}
, P̃

}
.

Another index of power has been suggested by Banzhaf and Coleman.

De�nition 6.5. Given (N, v̄) ∈ Γ̄, the Banzhaf - Coleman index of v̄(S, P ) is the vector

χ(v̄(S, P )) = (χ1(v̄(S, P )), χ2(v̄(S, P )), . . . , χn(v̄(S, P ))) ∈ Rn such that:

χi(v̄(S, P )) =
∑
i∈S
S⊆N

(
1

2

)n−1

[v̄(S, P )− v̄(S \ {i} , P )],

∀ i = 1, . . . , n.
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The Banzhaf-Coleman index can be characterized via the MLE:

χi(v̄) =
∂h

∂xi

(
1

2
, . . . ,

1

2

)
, ∀ i ∈ N. (6.5)

Theorem 6.2. Let (N, v̄NE) ∈ Γ̄NE be an ECGWNE. Then

χi(v̄NE) = χi(w)− g(P )χi(u) ∀i ∈ N (6.6)

Proof. As in the proof of Theorem 6.1, we have:

χi(w)− g(P )χi(u) =
∂a

∂xi

(
1

2
, . . . ,

1

2

)
− g(P )

∂b

∂xi

(
1

2
, . . . ,

1

2

)
=

∂ (a− g(P )b)

∂xi

(
1

2
, . . . ,

1

2

)
=

∂h

∂xi

(
1

2
, . . . ,

1

2

)
= χi(v̄NE).

The estimates provided by Corollaries 6.1 and 6.2 can also be applied to χ(v̄NE).

The core of an ECGWNE can be synthetically rede�ned too, and it will turn out to be a key

tool for our next application. Suppose that P ∗ ∈ D is a �xed level of P , such that Proposition 6.1

holds.

De�nition 6.6. Given (N, v̄NE) ∈ Γ̄NE , and P ∗ such that v̄NE ≥ 0, the following set of vectors:

CP ∗(v̄NE) =

(x1, . . . , xn) ∈ Rn :
n∑
j=1

xj = w(N)− g(P ∗)u(N), (6.7)

∑
k∈S

xk ≥ w(S)− g(P ∗)u(S), ∀ S ∈ 2N

}
(6.8)

is the core of v̄NE at P ∗.

Di�erent levels of externality entail disjoint cores, as we show in the following:

Proposition 6.3. If P1 6= P2, then CP1(v̄NE) ∩ CP2(v̄NE) = ∅.
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Proof. If at least one of the two cores is empty, the proof is trivial. Suppose they are both nonempty.

By De�nition 6.2, P2 > P1 implies g(P2) > g(P1). Therefore, if z = (z1, . . . , zn) ∈ CP1(v̄NE), then

z1 + z2 + . . .+ zn = w(N)− g(P1)u(N) > w(N)− g(P2)u(N),

then z /∈ CP2(v̄NE), hence the two cores have no common imputations.

6.2 Pollution-Control Game

We want to give some practical applications of the class of games de�ned in Section 6.1. The

�rst one is based on environmental issues. Taking inspiration from [5] we consider a set N of n

players, called countries in the sequel, involved in a pollution-control game. Denote by ejt the

carbon emissions arising from the production activity of player j at the instant of time t ∈ [0,+∞).

Assume that the net revenues derived from player j′ s production activity in a given period are

given by the following concave function of his emission R(·) such that

R(ejt) = ejt

(
bj −

1

2
ejt

)
,

where bj is a strictly positive parameter denoting the emission level at which the revenue attains its

maximum. The stock of pollution, which causes damage to the environment, evolves according to

Pt = Pt−1 (1− δ) +
∑
j∈N

ejt,

with P0 given, where δ ∈ (0, 1) is the absorption rate by Mother Nature. Players su�er an

environmental damage arising from global pollution, which is assumed linear in the pollution stock,

and given by

Dj(Pt) = djPt,

where dj > 0 is the constant marginal damage. The total discounted welfare over an in�nite horizon

of player j is then given by

Wj =

+∞∑
t=0

βt
(
ejt

(
bj −

ejt
2

)
− djPt

)
,
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such that

Pt = Pt−1 (1− δ) +
∑
j∈N

ejt with P0 given,

where β ∈ (0, 1) is the one-period discount factor assumed common to all players.

Our purpose is the design and implementation of an International Environmental Agreement

(IEA), that is a mechanism allocating to each country a collectively suitable emissions policy.

6.2.1 Di�erent Approaches

Small coalition approach

Assume that a set of players, identi�ed as `signatory countries', decide to join an IEA, according to

which their production activity is decided by maximizing the aggregate welfare of the coalition. We

denote by S the set of signatory countries, with cardinality s. The remaining players, identi�ed as

`non-signatory countries' act individually, that is, each of them decides her production activity by

maximizing her individual welfare, and we denote by S̄ the set of non-signatories, with cardinality

n− s.

As part of the agreement, we assume that each signatory country has to punish a non-signatory

for its irresponsible behavior with a punishment proportional to the level of pollution, re�ecting an

environmental concern increasing with pollution stock. The non-environmental cost incurred by a

non-signatory punished by s signatories when the pollution stock is Pt is thus given by sαPt. We

also suppose that punishing itself has a cost, which is proportional to the punishment αPt imposed

to the n− s non -signatory countries, so that each signatory incurs a non-environmental cost given

by (n− s) ταPt, where τ ≥ 0. As a consequence, the welfare of a signatory country j ∈ S in time

period t when the number of non-signatories is n− s is given by

WS
t (ejt, Pt, s) = ejt

(
bj −

1

2
ejt

)
− djPt − (n− s)ταPt,

and the welfare of a non-signatory j ∈ S̄ is given by

W S̄
t (ejt, Pt, s) = ejt

(
bj −

1

2
ejt

)
− djPt − αsPt.
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Notice that we implicitly assume that all countries are punished in the same way, and that the cost

of punishment is the same for all countries.

Now, to solve the dynamic emissions game, we assume that, for a given �xed set of signatories,

countries optimize their welfare by taking into account the evolution of the pollution stock. The

total discounted welfare of players is maximized over an in�nite horizon, where β ∈ (0, 1) is the

one-period discount factor assumed common to all players. The welfare optimization problem for a

signatory country j ∈ S is thus given by

max
(ej)j∈S

WS =
∑
j∈S

+∞∑
t=0

βt
(
ejt

(
bjt −

ejt
2

)
− Pt (dj + τα (n− s))

)
s.t.

Pt = Pt−1 (1− δ) +
∑
i∈S

eit +
∑
k∈S̄

ekt, with P0 given,

where ejt is the emissions of country j during period t and ej denotes the sequence of emissions

{ejt}t∈[0,+∞) . In the same way, the welfare optimization problem for a non-signatory country j ∈ S̄

is

max
(ej)j∈S̄

W S̄ =
+∞∑
t=0

βt
(
ejt

(
bjt −

ejt
2

)
− Pt (dj + αs)

)
s.t.

Pt = Pt−1 (1− δ) +
∑
i∈S

eit +
∑
k∈S̄

ekt, with P0 given.

As in [18], we use a dynamic programming formulation where the state variable is P , that is, the

pollution stock level in the preceding time period. We obtain a Nash equilibrium in stationary feed-

back strategies between the group of signatories, acting as a single player, and the non-signatories,

acting as n − s individual players, where s ∈ [0, n]. The case where s = 0 corresponds to a Nash

equilibrium between all players, or fully non-cooperative outcome, while the case where s = n cor-

responds to the optimization of the total welfare of all players, or fully cooperative outcome (grand

coalition). We call k the constant representing the combined e�ect of the discount factor and the
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natural pollution decay, that is,

k =
1

1− β(1− δ)
> 1.

For the set of signatory countries, denoted with ES̄ the emissions of non-signatory countries, that

is ES̄ =
∑

k∈S̄ ek, the value function V
S
(
P ;ES̄

)
represents the optimal total welfare of the group,

given ES̄ , and it satis�es

V S
(
P ;ES̄

)
= max

(ej)j∈S

∑
j∈S

ej

(
bj −

ej
2

)
(6.9)

− (dj + τα (n− s))

P k − 1

kβ
+
∑
j∈S

ej + ES̄


+ βV S

P k − 1

kβ
+
∑
j∈S

ej + ES̄ ;ES̄



Proposition 6.4. The value function (6.9) of a signatory country is linear in P. The optimal

reaction of signatory countries is independent of the level of pollution and of the defectors' strategy

and it is given by

eSj = bj − ksτα (n− s)− k
∑
j∈S

dj ,

assuming non-negative emissions.
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Proof. Assume that V S
(
P ;ES̄

)
= hS −mSP. Then we have

V S
(
P ;ES̄

)
= max

(ej)j∈S

∑
j∈S

ej

(
bj −

ej
2

)

− (dj + τα (n− s))

P k − 1

kβ
+
∑
j∈S

ej + ES̄


+ βV S

P k − 1

kβ
+
∑
j∈S

ej + ES̄ ;ES̄


= max

(ej)j∈S

∑
j∈S

ej

(
bj −

ej
2

)
− (dj + τα (n− s))

P k − 1

kβ
+
∑
j∈S

ej + ES̄


+ β

hS −mS

P k − 1

kβ
+
∑
j∈S

ej + ES̄


=: max

(ej)j∈S
v1 (ej) .

Di�erentiating with respect to emissions yields:

d

dej
v1 (ej) =

∑
j∈S

bj −
∑
j∈S

ej − s

∑
j∈S

dj + τα (n− s)

− sβmS .

d

dej

∑
j∈S

bj −
∑
j∈S

ej − s

∑
j∈S

dj + τα (n− s)

− sβmS

 = −s < 0.

So that the �rst order conditions are necessary and su�cient, provided that the solutions is interior.

The FOC are satis�ed at

eSj = bj −
∑
j∈S

dj − τα (n− s)− βmS .

Replacing eSj in (6.9) and placing cS =
∑

j∈S dj + τα (n− s) , we obtain

V S
(
P ;ES̄

)
=

1

2

∑
j∈S

(
bj − cS − βmS

) (
bj + cS + βmS

)
− cS

∑
j∈S

(
bj − cS − βmS

)
− cSES̄

+βhS − βmS
∑
j∈S

(
bj − cS − βmS

)
− βmSES̄ − P k − 1

kβ

(
cS + βmS

)
= hS −mSP.
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so that

mS = cS
k − 1

β

hS =
1

1− β

∑
j∈S

(
bj − cS − βcS

k − 1

β

)1

2

∑
j∈S

(
bj + cS + βcS

k − 1

β

)
− cS − βcS k − 1

β


−ES̄

(
cS + βcS

k − 1

β

)]
The optimal emissions of a signatory country are therefore:

eSj = bj − ksτα (n− s)− k
∑
j∈S

dj .

In the same way, the value function V S̄
j of a non-signatory country represents its optimal total

welfare, given P and the emissions of the other players, denoted by ES+, and it satis�es

V S̄
j

(
P ;ES+

)
= max

e

{
e
(
bj −

e

2

)
−
(
P
k − 1

kβ
+ ES+ + e

)
(dj + αs) (6.10)

+ βV S̄
j

(
P
k − 1

kβ
+ ES+ + e;ES+

)}
,

Proposition 6.5. The value function (6.9) of a defector country is linear in P. The optimal reaction

of non-member countries is independent of the level of pollution and of the other players' strategy

and it is given by

eS̄j = bj − k (dj + αs) ,

assuming non-negative emissions.

Proof. Assume that V S̄
j

(
P ;ES+

)
= hS̄ −mS̄P. Then we have:

V S̄
j

(
P ;ES+

)
= max

e

{
e
(
bj −

e

2

)
−
(
P
k − 1

kβ
+ ES+ + e

)
(dj + αs)

+ βV S̄
j

(
P
k − 1

kβ
+ ES+ + e;ES+

)}
= max

e

{
e
(
bj −

e

2

)
−
(
P
k − 1

kβ
+ ES+ + e

)
(dj + αs)

+ β

(
hS̄ −mS̄

(
P
k − 1

kβ
+ ES+ + e;ES+

))}
=: max

e
v2 (e) .
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Di�erentiating with respect to emissions yields:

d

de
v2 (e) = bj − e− dj − αs− βmS̄ .

d

de

[
bj − e− dj − αs− βmS̄

]
= −1 < 0.

So that the �rst order conditions are necessary and su�cient, provided that the solutions is interior.

The FOC are satis�ed at

eS̄j = bj − dj − αs− βmS̄ .

Replacing eS̄j in (6.10) and placing cS̄ = dj + αs , we obtain

V S
(
P ;ES

+
)

=
1

2

(
bj − cS̄ − βmS̄

)(
bj + cS̄ + βmS̄

)
− cS̄

(
bj − cS̄ − βmS̄ + ES

+
)

+βhS̄ − βmS̄
(
bj − cS̄ − βmS̄ + ES

+
)
− P k − 1

kβ

(
cS̄ + βmS̄

)
= hS̄ −mS̄P

so that

mS̄ = cS̄
k − 1

β

hS =
1

1− β

[(
bj − cS̄ − βcS̄

k − 1

β

)(
1

2

(
bj + cS̄ + βcS̄

k − 1

β

)
− cS̄ − βcS̄ k − 1

β

)
− ES

+

(
cS̄ + βcS̄

k − 1

β

)]
.

The optimal emissions of a defector country are therefore:

eS̄j = bj − k (dj + αs) .

Combining these results, the equilibrium strategy vector is given by
(
eSj , e

S̄
k

)
j∈S,k∈S̄

and the

total emissions at equilibrium when the set of signatory countries is S are

TS =

n∑
j=1

bj − k

∑
j∈S̄

dj + s
∑
j∈S

dj + sα (sτ + 1) (n− s)

 ,

from which we obtain the steady-state of the pollution stock corresponding to coalition S

PS =
TSkβ

kβ − k + 1
.
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Finally, the total discounted welfare, over an in�nite horizon, of player j, according to his status,

when the set of signatories is S and the pollution stock is P, is given by

WS
j (P ) =

b2j − k2
(∑

k∈S dk + τα (n− s) s
)2

2 (1− β)
(6.11)

− (dj + τα (n− s)) k
(
P
k − 1

kβ
+

TS

1− β

)
.

W S̄
j (P ) =

b2j − k2 (dj + αs)2

2 (1− β)
− k (dj + αs)

(
P
k − 1

kβ
+

TS

1− β

)
. (6.12)

To conclude, we point out that the assumption that the damage function is linear in P makes the

emission strategies of all players independent of the stock of pollution, but this does not mean that

the emissions of the players are necessarily constant in time, because they depend on the number

of signatories, which could depend on the stock of pollution.

To check for the stability of a coalition, we use a dynamic version of the equilibrium concept

introduced in [34]. Thus, internal stability of a coalition S is achieved at P if no signatory country

would increase its total discounted welfare by deciding to quit the coalition, that is

WS
j (P ) ≥W S̄+j

j (P ) ∀j ∈ S.

Similarly, external stability of a coalition S is achieved at P if no non-signatory country would

increase its total discounted welfare by deciding to join the coalition, that is

W S̄
j (P ) > WS+j

j (P ) ∀j ∈ S̄.

A general result in static games with identical players is that these stability conditions can only

be satis�ed by very small coalitions if no additional mechanism is provided in the agreement. For

instance, in the quadratic cost/linear damage case, which corresponds to our model, they can only

be satis�ed by coalitions of two members. In a dynamic setting with identical players, Breton et al.

in [18] show that the addition of a punishment mechanism in the agreement allows to obtain stable

coalitions where s ∈ n
(

τ
1+τ , 1

]
, depending on the value of α and of Pt.
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Grand coalition approach

In the grand coalition approach to IEAs, it is assumed that a group of countries has already agreed

to participate in a joint agreement. The design of a stable IEA then reduces to �nding a way

to distribute the bene�ts of cooperation to the members of the coalition, which is acceptable to

all players. In opposition to what is assumed in the small coalition approach, the grand coalition

approach implies that the agreement collapses if at least one player defects from it. In this sense

this approach is also called the cooperative one in opposition to the small coalition approach, called

non-cooperative approach.

If one interprets the characteristic function v(S), de�ned in the Chapter 5, as the payo� that

a coalition S of countries can secure when they sign an environmental treaty, then it is clear that

its actual value depends on the environmental strategies (or behavior) of the left-out-players (LOP,

for short), i.e., N \ S. A �rst option is to assume that v(S) is given as a Nash equilibrium payo�

of the non-cooperative game played between S and the LOP acting individually. In that case, each

characteristic function value involves computing a Nash equilibrium of a non-cooperative game with

n − s + 1 players. This approach is often referred to as PNE (for Partial Nash Equilibrium), or

γ -characteristic function. A second option is to assume that the LOP also form a coalition, and,

consequently, v(S) is de�ned as a Nash equilibrium payo� of the non-cooperative game between S

and N \S. The advantage of this approach with respect to the previous one is that each equilibrium

problem now involves �nding a Nash equilibrium of a two-player non-cooperative game, however,

it may not lead to a superadditivity characteristic function. For an example in the framework of

IEAs see [17]. A third possibility is to follow [123] and suppose that the LOP form an anti-coalition

whose sole aim is to minimize the payo� of coalition S, which transforms the computation of v(S)

into the simple problem of �nding a solution to a zero-sum game.

In the context of IEAs, the PNE approach seems to be the most attractive. Indeed, there is

no reason to believe that, if some countries decide to form a coalition to tackle an environmental

problem, then necessarily the remaining players will design a parallel treaty, and even less a treaty

aiming at minimizing the welfare of the environmentally responsible countries. Further, the fact
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that this approach leads to a superadditive characteristic function is de�nitely an interesting feature.

The only drawback is that it is heavily demanding in terms of computation: with n players, one

needs to solve 2n − 1 equilibrium problems. To reduce the computational burden, Petrosjan and

Zaccour in [96] propose a characteristic function where the LOP stick to their Nash strategies as

determined in the fully non-cooperative game, i.e., when each player acts alone. The advantage of

this approach is that only one equilibrium problem has to be solved, and it only remains to solve

the optimization problem of each possible coalition.

The PNE approach corresponds to the assumption used for the solution of the emission game

in the small coalition approach: the members of a coalition S decide to join an IEA, according

to which their production activity is decided by maximizing the aggregate welfare of the coalition.

The remaining left-out-players act individually, that is, each of them decides its production activity

by maximizing his individual welfare. The solution of the emissions game can be retrieved from

the solution of the dynamic programs (6.9) and (6.10) by setting α to 0. At P, the characteristic

function assigns to each of the possible subsets S ⊆ N the total discounted welfare of coalition S

over an in�nite horizon, that is

v̂(S, P ) =

∑
j∈S b

2
j − sk2

(∑
j∈S dj

)2

2 (1− β)

−k

P k − 1

kβ
+

∑
j∈N bj − k

(∑
l∈S̄ dl + s

∑
j∈S dj

)
1− β

∑
j∈S

dj .

6.2.2 Main Features

Our aim is to study the main features of this characteristic function.

Remark 6.2. It's necessary to check the positivity of v̂(S, P ), subject to the constraints for the

optimal emissions obtained in Propositions 6.4 and 6.5, which entail the following lower bound for

the sum of all bj, for each coalition S ∈ 2N :

∑
j∈N

bj ≥ k

s∑
i∈S

di +
∑
l∈S̄

dl

 . (6.13)
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Theorem 6.3. If

max
S

k
s∑

i∈S
di +

∑
l∈S̄

dl

 ≤∑
j∈N

bj < min
S 6=∅


∑

j∈S b
2
j

2k
∑

j∈S dj
+
sk

2

∑
j∈S

dj + k
∑
l∈S̄

dl

 (6.14)

holds, then the pair (N, v̂) is a nonnegative ECGWNE for all P ∈ [0,+∞) .

Proof. Recalling the notation in Section 6.1, we can de�ne:

v̂(S, P ) = ŵ(S)− ĝ(P )û(S),

where

ŵ(S) =

∑
j∈S b

2
j − sk2

(∑
j∈S dj

)2

2 (1− β)
− k

∑j∈N bj − k
(∑

j∈S̄ dj + s
∑

j∈S dj

)
1− β

∑
j∈S

dj ,

û(S) =
k − 1

β

∑
j∈S

dj ,

ĝ(P ) = P.

Obviously, if S = ∅ then v̂(∅, P ) = 0. Moreover ĝ(P ) is nonnegative in [0,+∞) and strictly increas-

ing, and û(S) is positive ∀S 6= ∅. After extending (6.13) to all S ⊆ N , we are going to assess the

positivity of ŵ(S):

ŵ(S) =

∑
j∈S b

2
j − sk2

(∑
j∈S dj

)2

2 (1− β)
−
k
∑

j∈S dj

1− β

∑
j∈N

bj − k

∑
l∈S̄

dl + s
∑
j∈S

dj


=

∑
j∈S b

2
j + sk2

(∑
j∈S dj

)2

2 (1− β)
−
k
∑

j∈S dj
∑

j∈N bj

1− β
+
k2
∑

j∈S dj
∑

l∈S̄ dl

1− β
> 0,

if the condition (6.14) holds.

Proposition 6.6. The game (N, v̂) is convex ∀ P ∈ [0,+∞).

Proof. By Proposition 6.2 and Remark6.1, since

û (S ∪ T ) + û (S ∩ T )− û (S)− û (T )

=
k − 1

β

 ∑
j∈S∪T

dj +
∑

j∈S∩T
dj −

∑
j∈S

dj −
∑
j∈T

dj

 = 0,
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then if ŵ is convex ∀ P ∈ [0,+∞) , convexity is ensured for all nonnegative P , hence (N, v̂) is a

convex ECGWNE for all suitable P such that Proposition 6.2 holds. If we denote respectively with

s, t, h the cardinality of S, T, S ∩ T, we have

ŵ(S ∪ T ) + ŵ(S ∩ T )− ŵ(S)− ŵ(T ) =
k2

2(1− β)

(s+ t− h− 2)

 ∑
j∈S∪T

dj

2

+ (h− 2)

 ∑
j∈S∩T

dj

2

+ (6.15)

+(2− s)

∑
j∈S

dj

2

+ (2− t)

∑
j∈T

dj

2
=

k2

2(1− β)

s
 ∑

j∈S∪T
dj

2

−

∑
j∈S

dj

2
+t

 ∑
j∈S∩T

dj

2

−

∑
j∈T

dj

2
+h

 ∑
j∈S∩T

dj

2

−

 ∑
j∈S∪T

dj

2 + 2

∑
j∈S

dj

2

+

∑
j∈T

dj

2

−

 ∑
j∈S∪T

dj

2

−

 ∑
j∈S∩T

dj

2
≥

k2

2(1− β)

h
 ∑

j∈S∪T
dj

2

−

∑
j∈S

dj

2

+

 ∑
j∈S∩T

dj

2

−

∑
j∈T

dj

2
+2

−
 ∑

j∈S∪T
dj

2

+

∑
j∈S

dj

2

−

 ∑
j∈S∩T

dj

2

+

∑
j∈T

dj

2
=

k2(h− 2)

2(1− β)

 ∑
j∈S∪T

dj

2

+

 ∑
j∈S∩T

dj

2

−

∑
j∈S

dj

2

−

∑
j∈T

dj

2
=

k2(h− 2)

2(1− β)

 ∑
j∈S∩T

dj −
∑
j∈S

dj

 ∑
j∈S∩T

dj +
∑
j∈S

dj


+

 ∑
j∈S∪T

dj −
∑
j∈T

dj

 ∑
j∈S∪T

dj +
∑
j∈T

dj

 ,
and since ∑

j∈S
dj +

∑
j∈T

dj =
∑

j∈S∪T
dj +

∑
j∈S∩T

dj ,

then (6.16) is equal to

=
k2(h− 2)

2(1− β)

∑
j∈T

dj −
∑

j∈S∪T
dj

 ∑
j∈S∩T

dj +
∑
j∈S

dj −
∑

j∈S∪T
dj −

∑
j∈T

dj

 ,
which is positive because its two factors are both negative, consequently ŵ(·) is convex and the
proof is complete.
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The convexity of (N, v̂) ensures that its Shapley value belongs to its core (see De�nition 5.18).

Moreover

Corollary 6.3. If n ≥ 2, the game (N, v̂) is an essential ECGWNE ∀P ∈ [0,+∞) .

Proof. We have that the game (N, ŵ) is an essential game. Indeed

ŵ(N)−
∑
j∈N

ŵ({j}) =
−nk2

(∑
j∈N dj

)2
+ k2

∑
j∈N d

2
j

2 (1− β)

+
nk2

(∑
j∈N dj

)2

1− β
−
k2
(∑

j∈N dj

)2

1− β

=
k2(n− 2)

(∑
j∈N dj

)2

2 (1− β)
> 0

Moreover

û(N)−
∑
j∈N

û({j}) = 0

The thesis follows because v̂ is an a�ne trasformation of ŵ and û.

Remark 6.3. The nonnegative ECGWNE (N, v̂) is a monotonic game ∀P ∈ [0,+∞) .

6.2.3 Welfare allocation among players

First of all we consider the following notation:

Notation 6.1. Let (N, v̂), be an extended cooperative game. We indicate respectively with ϕ(n)
i (v̂)

and with χ(n)
i (v̂) the Shapley value and the Banzhaf - Coleman index of (N, v̂) when the number of

players is n.

(Case 1) Symmetric players In this case we assume symmetry by positing di = dj = d and

bi = bj = b for all i, j ∈ N.

Proposition 6.7. When agents are symmetric, the Shapley value for the extended cooperative game

(N, v̂) ∀i ∈ N ∀n ≥ 2 is

ϕ
(n)
i (v̂) =

(ndk − b)2

2(1− β)
− P

[
d
k − 1

β

]
.
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Proof. We proceed by induction on the number of players. We calculate the Shapley value using

the multilinear extension. For n = 2 we obtain

ϕ
(2)
i (v̂) =

(2dk − b)2

2(1− β)
− P

[
d
k − 1

β

]
.

Supposing that the thesis is true for n, we are going to prove it for n+ 1.

The inductive hypothesis implies that

ϕ
(n−1)
i (v̂) =

((n− 1)dk − b)2

2(1− β)
− P

[
d
k − 1

β

]

and

ϕ
(n)
i (v̂) =

(ndk − b)2

2(1− β)
− P

[
d
k − 1

kβ

]
,

and so

ϕ
(n)
i (v̂)− ϕ(n−1)

i (v̂) =
d2k2 (2n− 1)− 2dkb

2 (1− β)
.

Consequently, it su�ces to show that

ϕ
(n+1)
i (v̂)− ϕ(n)

i (v̂) =
d2k2 (2(n+ 1)− 1)− 2dkb

2 (1− β)

Then

ϕ
(n)
i (v̂) +

d2k2 (2(n+ 1)− 1)− 2dkb

2 (1− β)
=

=
(ndk − b)2

2(1− β)
− P

[
d
k − 1

β

]
+
d2k2 (2(n+ 1)− 1)− 2dkb

2 (1− β)
=

=
((n+ 1)dk − b)2

2(1− β)
− P

[
d
k − 1

kβ

]
= ϕ

(n+1)
i (v̂).
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Remark 6.4. Proposition 6.7 maintains that the Shapley value is constant across players under

symmetry, providing an alternative formula for the Shapley value:

ϕ
(n)
i (v̂) =

v̂(N,P )

n
∀i ∈ N, ∀n ≥ 2 (6.16)

Since the Banzhaf - Coleman index is equal for all players, we can state the following:

Proposition 6.8. If dj = d and bj = b ∀j ∈ N, then we have

χ
(n)
i (v̂) ≤ ϕ(n)

i (v̂) ∀i ∈ N, ∀n ≥ 2 (6.17)

Proof. Since Banzhaf-Coleman index doesn't satisfy the e�ciency axiom (see [87]), whereas the

Shapley value does, we have

∑
i∈N

χ
(n)
i (v̂) ≤ v̂(N,P ) =

∑
i∈N

ϕ
(n)
i (v̂).

Moreover, since none of the indices depend on players, we have

nχ
(n)
i (v̂) ≤ v̂(N,P ) = nϕ

(n)
i (v̂) ∀i ∈ N,

trivially proving the assertion.

We can note that in the relation (6.17) the strict inequality does not hold because, for example,

for n = 2, χ
(n)
i (v̂) = ϕ

(n)
i (v̂) ∀i ∈ N.

Proposition 6.8 means that for all agents, the allocation corresponding to the Shapley value is

preferable to the one corresponding to the Banzhaf-Coleman index.

(Case 2) Non Symmetric players

We can calculate some indices of power for the extended cooperative game (N, v̂), in the general

case.
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Proposition 6.9. The Shapley value for the extended cooperative game (N, v̂) ∀i ∈ N ∀n ≥ 2 is:

ϕ
(n)
i (v̂) =

k2

3(1− β)

(n− 2) di

n∑
j=1
j 6=i

dj +

n∑
j,k=1
j<k
j 6=i

djdk

+
k2

4(1− β)

(n− 1) d2
i +

n∑
j=1
j 6=i

d2
j

+

+
b2i − k2d2

i

2 (1− β)
− k

1− β

 n∑
j=1

bj − k
n∑
j=1

dj

 di − P [dik − 1

β

]
. (6.18)

Proof. By induction on the number of players, we use Theorem 6.1 to calculate the Shapley value.

For n = 2 we have

ϕ
(2)
1 (v̂) =

k2(3d2
1 + d2

2) + 4k2d1d2 + 2b21 − 4kd1(b1 + b2)

4(1− β)
− P

[
d1
k − 1

β

]
,

ϕ
(2)
2 (v̂) =

k2(d2
1 + 3d2

2) + 4k2d1d2 + 2b22 − 4kd2(b1 + b2)

4(1− β)
− P

[
d2
k − 1

β

]
.

For n = 3 we have

ϕ
(3)
1 (v̂) =

k2
(
12d2

1 + 3d2
2 + 3d2

3 + 16d1d2 + 16d1d3 + 4d2d3

)
12(1− β)

+
6b21 − 12kd1(b1 + b2 + b3)

12(1− β)
− P

[
d1
k − 1

β

]
.

Similarly

ϕ
(3)
2 (v̂) =

k2
(
3d2

1 + 12d2
2 + 3d2

3 + 16d1d2 + 4d1d3 + 16d2d3

)
+ 6b22

12(1− β)

− 12kd2(b1 + b2 + b3)

12(1− β)
− P

[
d2
k − 1

β

]
.

ϕ
(3)
3 (v̂) =

k2
(
3d2

1 + 3d2
2 + 12d2

3 + 4d1d2 + 16d1d3 + 16d2d3

)
+ 6b23

12(1− β)

− 12kd3(b1 + b2 + b3)

12(1− β)
− P

[
d3
k − 1

β

]
.
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Supposing that the thesis is true for n, we prove it for n + 1. By the inductive hypothesis we

have that:

ϕ
(n−1)
i (v̂) =

k2

3(1− β)

(n− 3) di

n−1∑
j=1
j 6=i

dj +
n−1∑
j,k=1
j<k
j 6=i

djdk

+
k2

4(1− β)

(n− 2) d2
i +

n−1∑
j=1
j 6=i

d2
j

+

+
b2i − k2d2

i

2 (1− β)
− k

1− β

n−1∑
j=1

bj − k
n−1∑
j=1

dj

 di − P [dik − 1

β

]
,

ϕ
(n)
i (v̂) =

k2

3(1− β)

(n− 2) di

n∑
j=1
j 6=i

dj +
n∑

j,k=1
j<k
j 6=i

djdk

+
k2

4(1− β)

(n− 1) d2
i +

n∑
j=1
j 6=i

d2
j

+

+
b2i − k2d2

i

2 (1− β)
− k

1− β

 n∑
j=1

bj − k
n∑
j=1

dj

 di − P [dik − 1

β

]
.

Therefore

ϕ
(n)
i (v̂)− ϕ(n−1)

i (v̂) =
k2

3 (1− β)

didn + dn

n−1∑
j=1
j 6=i

dj

+
k2

4 (1− β)

[
d2
i + d2

n

]
− k

1− β
[bn − kdn] di.

We have to show that

ϕ
(n+1)
i (v̂)−ϕ(n)

i (v̂) =
k2

3 (1− β)

didn+1 + dn+1

n∑
j=1
j 6=i

dj

+
k2

4 (1− β)

[
d2
i + d2

n+1

]
− k

1− β
[bn+1 − kdn+1] di.

Then

ϕ
(n)
i (v̂) +

k2

3 (1− β)

didn+1 + dn+1

n∑
j=1
j 6=i

dj

+
k2

4 (1− β)

[
d2
i + d2

n+1

]
− k

1− β
[bn+1 − kdn+1] di
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=
k2

3(1− β)

(n− 2) di

n∑
j=1
j 6=i

dj + didn+1 +

n∑
j,k=1
j<k
j 6=i

djdk + dn+1

n∑
j=1
j 6=i

dj



+
k2

4(1− β)

(n− 1) d2
i + d2

i +
n∑
j=1
j 6=i

d2
j + d2

n+1

+
b2i − k2d2

i

2 (1− β)

− k

1− β

 n∑
j=1

bj + bn+1 − k

 n∑
j=1

dj + dn+1

 di − P [dik − 1

β

]

=
k2

3(1− β)

(n− 1) di

n+1∑
j=1
j 6=i

dj +

n+1∑
j,k=1
j<k
j 6=i

djdk

+
k2

4(1− β)

nd2
i +

n+1∑
j=1
j 6=i

d2
j



+
b2i − k2d2

i

2 (1− β)
− k

1− β

n+1∑
j=1

bj − k
n+1∑
j=1

dj

 di − P [dik − 1

β

]
= ϕ

(n+1)
i (v̂).

Moreover, we have a similar formula for the Banzhaf - Coleman index.

Proposition 6.10. The Banzhaf - Coleman index for the extended cooperative game (N, v̂)

∀i ∈ N ∀n ≥ 2 is

χ
(n)
i (v̂) =

k2

4(1− β)

(n− 2) di

n∑
j=1
j 6=i

dj +
n∑

j,k=1
j<k
j 6=i

djdk

+
k2

4(1− β)

(n− 1) d2
i +

n∑
j=1
j 6=i

d2
j

+

+
b2i − k2d2

i

2 (1− β)
− k

1− β

 n∑
j=1

bj − k
n∑
j=1

dj

 di − P [dik − 1

β

]
. (6.19)
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Proof. It is similar to the proof of Proposition 6.9.

Propositions 6.9 and 6.10 imply that, also in the non-symmetric case, the Banzhaf - Coleman

index is suboptimal respect to Shapley value, i.e.

χ
(n)
i (v̂) ≤ ϕ(n)

i (v̂) ∀i ∈ N ∀n ≥ 2.

In particular, by (6.18) and (6.19), the di�erence between the two measures is given by:

ϕ
(n)
i (v̂)− χ(n)

i (v̂) =
k2

12(1− β)

(n− 2) di

n∑
j=1
j 6=i

dj +

n∑
j,k=1
j<k
j 6=i

djdk

 .
Hence, they are equal for n = 2 players.

6.2.4 A numerical simulation

As in [5], we use the MERGE model to calibrate the parameters of the game. MERGE is a

Model for Evaluating the Regional and Global E�ects of GHG reductions. In MERGE, the world is

divided into nine geopolitical regions: Canada, Australia and New Zealand (CANZ); China; Eastern

Europe and the former Soviet Union (EEFSU); India; Japan; Mexico and OPEC (MOPEC); USA;

Western Europe (WEUR) and the rest of the world (ROW). The data are borrowed from [5].

Table 6.1: Model parameter values

bj dj (low) dj (high) β k P

USA 1759 0.358 0.429 0.95 15.095 390000
WEUR 993 0.310 0.4345 0.95 15.095 390000
Japan 318 0.143 0.1495 0.95 15.095 390000
CANZ 293 0.053 0.0685 0.95 15.095 390000
EEFSU 919 0.056 0.134 0.95 15.095 390000
China 985 0.216 0.807 0.95 15.095 390000
India 334 0.063 0.1915 0.95 15.095 390000
MOPEC 751 0.100 0.231 0.95 15.095 390000
ROW 1202 0.288 0.717 0.95 15.095 390000

With data of Table 6.1, the game (N, v̂) satis�es the hypothesis of Theorem 6.3, and so it's an

ECGWNE.
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In the following two tables, we are going to show the Shapley values and the Banzhaf-Coleman

indices for this game in the two di�erent cases corresponding to distinct levels for dj .

Table 6.2: Numerical solution (low case)

ϕ(9) (Shapley) χ(9) (Banzhaf)

USA 28062244 28060838
WEUR 7368204.666 7366899.333
Japan -137234.3214 -138108.2105
CANZ 434146.1666 433557.5263
EEFSU 7997129.5 7996530.5
China 7966384.666 7965306.5
India 610759.9444 610137.8
MOPEC 4837516 4836773.8
ROW 12132794.5 12131538.66

Table 6.3: Numerical solution (high case)

ϕ(9) (Shapley) χ(9) (Banzhaf)

USA 27506247 27501994
WEUR 6381780 6377499
Japan -180148.8947 -182755.8823
CANZ 317080.4761 315016.8571
EEFSU 7378603.3333 7376098
China 3233134.3333 3227223.1667
India -412872.8889 -415749.8571
MOPEC 3794584.25 3791460.6667
ROW 8701525.5 8695950

The above tables suggest us a reduction e�ect of the individual welfare for higher values of di,

namely the sensitivity of the power indices with respect to the coe�cients di can be assessed more

accurately, by taking into account the �rst order derivatives of (6.18) and (6.19):

Proposition 6.11. There exist n threshold values

P∗i =
β(1− β)

k(k − 1)

k(n+ 1)

(∑
j 6=i dj

3
+
di
2

)
−

n∑
j=1

bj


such that for any P > P∗i the Shapley value of the i-th country decreases as its marginal contribution

to the stock of pollution increases.
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Proof. Deriving (6.18) with respect to di we have:

∂ϕ
(n)
i (v̂)

∂di
=

k2

1− β

n+ 1

3

∑
j 6=i

dj +
n+ 1

2
di

− k

1− β

n∑
j=1

bj −
k − 1

β
P

which is negative for

P >
β(1− β)

k(k − 1)

k(n+ 1)

(∑
j 6=i dj

3
+
di
2

)
−

n∑
j=1

bj

 := P∗i .

Consequently, the value

P∗ := max
i∈N
P∗i

is the level such that, for any P > P∗, each country's individual welfare decreases as its marginal

contribution to externality increases.

Also in this case, we can prove an analogous assertion on the Banzhaf-Coleman index.

Remark 6.5. In our numerical example we have the following threshold values for P in the two

cases:

Table 6.4: Threshold values

P∗ (low case) P∗ (high case)

USA -1.6667 -1.6485
WEUR -1.6668 -1.6485
Japan -1.6678 -1.6501
CANZ -1.6683 -1.6505
EEFSU -1.6683 -1.6502
China -1.6674 -1.6464
India -1.6682 -1.6498
MOPEC -1.6680 -1.6496
ROW -1.6670 -1.6469

We can note that in our simulation such values are slightly di�erent from one another, and that

given their negativity, the Shapley value and the Banzhaf-Coleman index of all countries decrease

as their marginal contributions to the stock of pollution increase, for all positive levels of P .



136 A new perspective on cooperative games

This chapter is divided in two parts: in the �rst part we introduced the class of extended

cooperative games with negative externality in order to contribute to the modeling of TU-games

in which the coalitional payo� is a�ected by an undesired and inevitable e�ect. We showed that

such games may have good properties, such as nonnegativity and convexity. Moreover, we proved

several features for classical concept solutions of cooperative games belonging to this new class.

In the second part the traditional model of emissions reduction game is seen as an application of

the theory elaborated in the �rst part: in particular we obtained two closed form formulas for the

Shapley value and the Banzhaf-Coleman index. In a concluding numerical simulation we employed

such formulas to calculate the welfare of countries inside the MERGE model.

Taking into account asymmetrical countries, we found that the welfare depends on each country's

speci�c prerogatives, and the suboptimality of the Banzhaf-Coleman index with respect to the

Shapley value suggests that, the latter is the preferred solution because it is also e�cient in core-

sense.

The reduction e�ect of the individual welfare for higher values of countries' marginal contribu-

tions to the pollution stock suggests that power indices are decreasing functions not just of pollution

but also of the propensity to pollute as soon as pollution outnumbers a certain threshold.

In general, we stress that the theory approached in Section 6.1 can also be exploited to inves-

tigate other kinds of games where players maximize their payo�s while facing a common damage.

Future developments of such �ndings might concern games either with more complex accumula-

tion dynamics (i.e., nonlinear) or with more than one externality variable, for example introducing

di�erent types of damages for di�erent geographical areas.

Moreover, a deeper discussion on the stability of the computed solution concepts in this frame-

work has still to be entirely developed.
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