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Chapter 1

Introduction

1.1 Ion hydration

Water is the most abundant compound on the surface of earth and, being
the principal constituent of all living organism, it is the basis for life on our
planet. Consequently, knowledge of the structural and dynamic properties of
water is crucial in many problems of physics, chemistry and biology. Even
if water has an apparently simple molecular structure, it is a rather complex
fluid and shows many distinctive properties which are generally ascribed to
the hydrogen bond at molecular level. The structure of water is in fact well
described in terms of a dynamical network of hydrogen bonded clusters in
which tetrahedral cages play a dominant role. The fundamental dynamical
process occurring in water is the formation and breaking of hydrogen bonds
which generally take place in the subpicosecond time scale [1].

The structure and dynamics of these hydrogen bonded clusters is modi-
fied by changes of temperature and pressure, as well as by the introduction
of solutes [2]. In particular, ions in solution strongly distort the structure of
surrounding water molecules, as the result of the change in the microscopic
balance of intermolecular forces, from that of water-water interactions in the
neat solvent to that of ion-water interactions in the resulting solution. Our
present understanding of the changes occurring to water in the presence of an
ion is based on the scheme introduced by Frank and Wen [3] and Gurney [4]
who considered three concentric solvent regions around the ions: the inner-
most region, the so called first hydration shell, in which the water molecules
are strongly oriented by the ion and tend to be carried by the ion as it moves
through the solution, the second hydration shell in which the water molecules
are only weakly oriented by the ion and finally, in the outermost region far
from the ion, the structure of water is generally the same as that of bulk
water. Figure 1.1 provides a schematic picture of the hydration spheres of a
metal cation having a first solvation shell of six water molecules. This is for
example the situation encountered in many 3d metal ions.

Ions have been classified as structure makers and structure breakers ac-
cording to their ability to induce structuring of water. Small ions with high
electric charge are generally structure makers, as the water molecules in the
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Figure 1.1: Structure of a generic hydrated metal cation in aqueous solution.

first solvation shell are strongly bound to the ion and it is appropriate to think
of a well defined ion-water complex. Larger ions instead are often structure
breakers as their main influence is the disruption of the hydrogen bond net-
work characteristic of bulk water. All ions are hydrated to varying extents in
water but the degree of hydration depends on a number of factor, such as the
ionic size and the charge density [1]. Cations are more strongly hydrated in
general than anions due to a combination of high positive charge density and
a particularly strong interaction with the negatively polarized oxygen atom of
water. However, a well defined first hydration shell of water molecules exists
also around halide ions, even if the interaction (via the hydrogen atoms) is
somewhat weaker [1].

The structural and dynamic properties of the hydration spheres of aqua
ions are fundamental to understanding the behaviour of ions in chemical and
biological systems and processes. Consequently, a large number of experimen-
tal techniques, primarily X-ray and neutron diffraction, have been applied to
obtain structural information on the ion-water interaction. For 3d metal tran-
sition elements the identification of the primary hydration geometry, usually
octahedral six-coordinated, has proved relatively straightforward [2]. For the
rest of ions, including anions, alkaline and earth-alkaline cations, information
on the hydration structure is not very conclusive, in principle as a result of
the higher disordered environments and a general lack of direct information
relating to static and dynamic properties of solvent molecules when they co-
ordinate ions [2].

During the last several years it has been shown that X-ray absorption spec-
troscopy (XAS) is particularly well suited for the investigation of the local
solvent structure of ions dissolved in water, due to its atomic selectivity and
its sensitivity to dilute solutions. From the analysis of the Extended X-Ray
Absorption Fine Structure (EXAFS) it is possible to obtain very accurate ion-
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water first shell distances. However, in the case of disordered systems, such
as ionic solutions, the uncertainty in the coordination numbers determined
by the EXAFS analysis is usually too large for a conclusive determination of
the geometry of hydration complexes. Conversely, a quantitative analysis of
the X-ray Absorption Near Edge Structure (XANES) region, which includes
the rising edge and about 200 eV above it, can provide accurate geometrical
information on the hydration clusters existing in water. Nevertheless, the
characterization of the structural and dynamical properties of ions and wa-
ter molecules in the hydration spheres is very difficult to be obtained from
experimental techniques only, and the combined use of experimental and the-
oretical methods is essential to obtain reliable information. Among computer
simulation techniques, Molecular Dynamics is a powerful tool in the analysis
of both static and dynamic properties of solvated ions in solution and has
been extensively used in the last decades for the study of aqueous solutions
2].

In this context, the aim of this work is to unveil the detailed structure
and dynamics in aqueous solutions of the group 12 divalent cations, i.e. Zn?*,
Cd*" and Hg?", and of one anion (Br™), using a procedure which combines
XAS spectroscopy and Molecular Dynamic simulation techniques.

1.2 Group 12 aqua ions

Zinc is an extremely important biological element and it is the second most
abundant element in the human body after iron. The primary role for zinc
is to promote hydrolitic processes in the form of a Lewis acid, the most well
known examples being the enzymes carboxypeptidase, carbonic anhydrase,
and the alcohol dehydrogenase [1]. In aqueous solution the Zn* ion is well
known to be coordinated by six water molecules in an octahedral symmetry
common to many 3d transition metals such as Ni** and Co?". The existence
of a stable octahedral geometry has been observed in many experimental and
computational studies [1, 5] and has been recently confirmed using a com-
bined Molecular Dynamics-XAS approach [6, 7].

Even if they belong to the same group of the periodic table, cadmium
and mercury have very different biological properties as compared to zinc. In
fact both of them are toxic and environmentally hazardous elements and can
alter a wide variety of cellular and biochemical processes, as they are able
to replace biological Zn?** and Ca?" in enzymes, proteins, and nucleic acids,
modifying the normal activity of these species [8]. Structural information on
Cd?* and Hg?* hydration complexes is key for understanding their transport
in aqueous environments and their interaction with biological molecules and
proteins. In particular, it is very important to resolve the ability of Cd** and
Hg?* to mimic ions like Zn?* and Ca?* which show very different coordina-
tion properties [9] in biological systems, since Zn*" in protein tends to form
well-defined coordination structures generally with four or six ligands, while
the Ca?T coordination is characterized by higher coordination numbers and
more disordered coordination spheres [1].
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The structure of the hydrated Cd? ion in aqueous solution has been
the subject of several X-ray diffraction investigations, where the number of
nearest neighbors was assumed “a priori” to be six (as the structures of all
isolated hydrated Cd?* ions in the solid state display an octahedral configu-
ration), and which led to consistent values for the Cd-O internuclear distance
[2]. Conversely, an investigation by our group combining Molecular Dynamics
simulations, EXAFS, and large angle X-ray scattering measurements has sug-
gested a more dynamical picture with a first coordination shell which transits
between hexa- and heptahydrated clusters [10, 11]. The existence of such a
flexible hydration structure could provide a rationale for the ability of Cd**
to substitute ions having variable coordination geometries in biological sys-
tems. Nevertheless, this finding is still controversial since a recent study on
the hydration structure of cadmium by ab initio calculations concluded that
the hexacoordinated model is more probable [12]. These new results suggest
the need of additional experimental and theoretical work to support the claim
that cadmium has a variable coordination number in which a heptacoordi-
nated species plays a predominant role.

The Hg?" ion has usually been described as being octahedrally coordi-
nated by water [13], although a degree of uncertainty has been caused by
the variety of coordination structures found in solid complexes [1], and by
the quite short residence time of water molecules in the first coordination
shell [14] (on the order of 1 ns), as compared to divalent first-row transi-
tion ions which form octahedral complexes in aqueous solution, indicating a
larger flexibility of the Hg?* hydration complex. From a computational point
of view, several approaches have been used to investigate the properties of
the Hg?™ aqua ion. These include quantum mechanical ab initio calculations
on Hg?"(H,0),, clusters [15], classical Molecular Dynamics simulations (both
with simple pair potentials and including three-body corrections) [16], and ab
initio quantum mechanics/molecular mechanics (QM/MM) simulations [17],
all describing the Hg?" innermost hydration shell as an octahedral complex.

However, the radial distribution function obtained from X-ray diffraction
shows an unexpectedly large variation in the Hg-O bond lengths, explained
by a pseudo Jahn-Teller effect in the octahedral complex [18]. In a very recent
study the Hg?* hydration structure has been investigated by neutron diffrac-
tion with isotopic substitution [19]. The conclusion drawn by the authors is
that the first solvation shell contains six water molecules, even though the
actual experimental determination of the number of deuterium atoms around
the Hg?*t ion is 13.542.1, thus suggesting a higher coordination number. It
is clear from these findings that a conclusive description of the structural
properties of Hg?" ion in aqueous solution is still lacking.

1.3 Ion hydration in high-density water

The properties of aqueous solutions under pressure are fundamentally im-
portant for a wide range of scientific disciplines, such as geoscience, envi-
ronmental sciences and planetary modeling. At high pressures (and temper-
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Figure 1.2: The phase diagram of water.

atures) water exists in different liquid or solid phases whose properties are
very different from those found at normal conditions. Supercritical water
exists at temperatures above 600 K and pressures between 10 MPa and 1
GPa (see Figure 1.2). It is characterized by a low dielectric constant (~ 6 in
a typical supercritical regime) and weak hydrogen bonding formation which
makes it an excellent solvent for non polar substances. Due to the broad
range of applications, such as in the decomposition of organic wastes or in
the hydrothermal synthesis, supercritical water has been extensively studied
20, 21, 22]. At pressures between 0.1 and 10 GPa and temperature between
300 and 500 K liquid water is in equilibrium with several forms of ice and its
phase in this region is called compressed water (see Figure 1.2). Due to the
huge pressure, the phases existing in this zone are very different and much
more dense than those found at normal conditions. The trend of the water
density as a function of temperature and pressure is shown in Figure 1.3. For
a long time, compressed water has not been so extensively studied from an
experimental point of view due to the difficulties of reaching this very high
pressures and only in these last years it has been possible to make experiments
in this pressure range. For this reason compressed water is a system that has
recently gained much interest, and the effect of pressure on the structure and
hydrogen bond network of compressed water has been addressed by a variety
of experimental and theoretical works [23, 24, 25, 26, 27, 28, 29]. Although
different conclusions are drawn from these studies, they suggest the possi-
ble existence of a high-density state of water (HDW) which at a pressure of
few kilobars gradually evolves at the expense of a low-density state of water
(LDW) [26]. In HDW the second shell of neighbor molecules is thought to
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Figure 1.3: Trend of the water density as a function of temperature and pressure.

collapse onto the first one, as a consequence of the rupture of the hydrogen
bond network. However, the results of a Molecular Dynamics simulation [28]
have shed light on the key role played by interstitial molecules in the second
coordination shell, while in a recent neutron diffraction investigation the au-
thors conclude that with increasing density water approaches a local structure
common to a simple liquid [29]. Despite the plethora of studies on the prop-
erties of pure high-density water, to the best of our knowledge there is only
one work in the literature addressing the structural changes of ionic aqueous
solutions under high pressure [30]. In this study the transformation of the
Rb* and Br~ first hydration shells was investigated and dramatic effects in
the anion hydration structure have been observed with increasing pressure.

1.4 Halide ions in aqueous solution: the bro-
mide case

While much experimental and theoretical work has been devoted to char-
acterize the structural and dynamical behaviour of cations in water, the hy-
dration properties of halides are still the subject of intense debate [31, 32].
For the bromide ion the hydration number as determined by X-ray and neu-
tron diffraction is 6 in most cases, but as found for other halide ions, it is
very difficult to establish the number of water molecules belonging to the first
coordination shell due to its diffuse character [2]. The Br-O first shell bond
length determined by X-ray diffraction is in the range 3.29-3.40 A [2]. These
scattered results underline the difficulty of defining the halide coordination
shells also as a consequence of the fast water exchange between the first and

6
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second hydration shells. The experimental residence time is generally esti-
mated to be very short (less than 5 ps) [33]. A K-edge EXAFS study of bro-
mide ions in aqueous solutions has been carried out using classical Molecular
Dynamics simulations [34]. The obtained Br-O radial distribution function
was used with the integral formulation of the EXAFS equation to simulate
the EXAFS theoretical signal which was found to be in very good agreement
with the experimental data. While this approach does not allow to get the
detailed orientation of water molecules around the bromide ion (also the H
atoms were neglected), it did provide an oxygen coordination number (6.9)
and first shell distance (3.34 A), well within the range of previous studies [2].
The same approach was used by Wallen et al. [35] who extended the range of
temperatures into the supercritical regime of water while Filipponi et al. [30]
investigated the pressure dependence of the Br-O radial distribution function
up to 2.8 GPa.

Very recently, time-resolved X-ray absorption spectroscopy has been used
to observe the transient species generated by one-photon detachment of an
electron from aqueous bromide [36]. A laser pulse of 200 nm has been used
to modify the Br~ electronic structure, while X-ray pulses with a duration of
80 ps have been used as probe. The water shell organization has been found
to vary upon electronic structure changes but a quantitative analysis of the
solvent shell reorganization relies on a clear description of the solvation shell
structure around Br~ prior to laser excitation. These results clearly show that
the interpretation of experimental data relies heavily on high quality compu-
tational simulations [2, 32, 34, 37]. Recently, Raugei and Klein [38] reported
Density Functional Theory (DFT)-based Car-Parrinello Molecular Dynamics
simulations of a box of 32 water molecules and either one HBr molecule or a
Br~ ion. They found a rather structured and asymmetric solvation shell, at
variance with the classical Molecular Dynamics results.

Even if many quantum simulations have been carried out on cluster mod-
els of water molecules around the halides [37, 39], in general only few simu-
lations (classical, semi-classical or quantum) have been checked against ex-
perimental observables. Merkling et al. [37] derived optimized geometries of
[Br(H20),,]~ clusters (1 < n < 8) from quantum chemical calculations, and,
in order to reproduce the X-ray Absorption Near Edge Structure spectra in a
satisfactory way, they had to consider statistical fluctuations, which in their
case were obtained from snapshots of Monte Carlo simulations. In limiting
their analysis to the first shell, the simulations of Merkling et al. [37] are not
sufficient to understand the dynamics of hydration, including exchange with
the bulk.

Clearly, more work, both experimental and theoretical, is needed to unveil
the structure and dynamics of the bromide ion hydration shells, and the com-
plexity of the problem is underlined by the spread of coordination numbers
and distances found in the literature.
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1.5 Aim of this work

In this work a detailed investigation of the structure and dynamics of
Zn?**, Cd?T, Hg?>" and Br~ ions in aqueous solution will be carried out com-
bining X-ray absorption spectroscopy and Molecular Dynamics simulations.
The solvation properties of Cd?*, Hg?* and Br~ ions will be studied at 1 bar
and 300 K, since the hydration structure of these ions is still poorly defined
even at ambient conditions. Conversely, in the case of the Zn?* ion, which is
well known to be octahedral at 1 bar and 300 K [5, 6, 7], the hydration prop-
erties will be studied in conditions of very high pressure (up to 2.85 GPa),
with a double aim: on the one hand to unveil the structural transformation
occurring to water from the low- to the high-density conditions, on the other
hand to investigate the pressure effects on the hydration structure of the Zn?*
ion.

For the group 12 aqua ions classical Molecular Dynamics will be used as it
allows to study dynamic processes occurring in the nanosecond or longer time
scale. In fact, the residence time of water molecules in the first hydration shell
of Cd** and Hg?" is of the order of nanoseconds [14] and quantum mechan-
ical Car-Parrinello or QM /MM simulations, which are computationally very
expensive and can be used only in short simulations (up to a few hundreds of
picoseconds), can be affected by poor sampling if used to investigate trans-
port properties occurring on the nanosecond or longer time scale. On the
other hand, classical Molecular Dynamics can be used to obtain simulations
several orders of magnitude longer, but the proper choice of the interaction
potentials used is always a mandatory prerequisite for a reliable description
of the system under investigation. For this reason, in this work it will be
further developed and applied a computational procedure for the generation
of effective two-body ion-water potentials, by means of ab initio calculations,
to be employed in the Molecular Dynamics simulations. The reliability of this
methodology has been already assessed by an investigation of the hydration
properties of Zn**, Co?* and Ni*T at ambient conditions [6].

On the contrary, in the case of halide ions classical Molecular Dynamics
could not be able to reproduce the hydration structure accurately, since it is
difficult in the classical framework to take properly into account polarization
effects, which have a strong impact on the halide-water interactions. As a
consequence, ab initio Molecular Dynamics will be used in the study of the
bromide aqua ion, as it is able to describe the dynamics of the system in a
self-consistent fashion, taking into account in a natural way polarization and
many-body interactions. Moreover in the case of the Br™ ion, the estimated
residence time of the first shell water molecules is three orders of magnitude
shorter (in the picosecond timescale) as compared to Cd*" and Hg?**, so that
sufficiently long ab initio Molecular Dynamics can be carried out to achieve
a proper sampling of the phase space of the system.

This thesis is organized as follows. Chapter 2 and 3 describe the theo-
retical background of electronic structure methods and Molecular Dynamics
simulations. In chapter 4 the basic concepts of X-ray absorption spectroscopy
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are given, and the methods employed in the EXAFS and XANES data ana-
lysis are described, with particular emphasis on their application to the study
of disordered systems. Chapter 5 addresses the procedure used to generate
the ion-water pair potentials, to be used in the classical Molecular Dynamics
simulations of group 12 aqua ions. The theoretical and experimental methods
employed in the study of group 12 aqua ions are summarized in chapter 6.
Chapter 7 and 8 describe all of the results on the hydration properties of
Hg?* and Cd** at ambient conditions, respectively, while the results of our
investigation on the Zn?* hydration properties under high pressure will be
presented in chapter 9. Chapter 10 describes our combined theoretical and
experimental investigation of the bromide ion hydration properties. Finally,
chapter 11 summarizes and concludes this thesis.
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Chapter 2

Electronic structure methods

In this chapter an introduction to electronic structure methods will be
given. Atomic units will be used throughout [40]:

e=1, m.=1, h=1, dreg =1

where e and m, are the electron charge and mass, respectively, and ¢, is the
dielectric constant of vacuum.

2.1 The Molecular Hamiltonian

According to quantum mechanics the energy and many other properties
of a stationary state of a molecule can be obtained by solution of the time-
independent Schrodinger equation [41]:

HY = EU (2.1)

where H is the Hamiltonian operator representing the total energy, FE is
the numerical value of the energy of the state and ¥ is the wavefunction,
which depends on the coordinates of all of the particles and contains all the
information on the system. The square modulus of the wavefunction, |¥|?, is
interpreted as a measure of the probability distribution of the particles within
the molecule. The Hamiltonian H, like the energy in classical mechanics, is
the sum of kinetic T and potential V operators:

H=T+V (2.2)

In the simplest case, i.e. if no external electrostatic or magnetic fields are
present and if we restrict the interactions among particles to the Coulomb in-
teractions (neglecting spin-spin and spin-orbit coupling operators), the molec-
ular Hamiltonian for a system composed of M nuclei and N electrons is given
by:

H=T,+V,,+V,.+T.+ V. (2.3)

11
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where
Moo
T, = — \V& 2.4
; 2Ma a ( )

is the operator of the kinetic energy of the nuclei (M, is the mass of nucleus
a and V2 is the Laplace operator acting over the coordinates of nucleus a),

M M ZaZ
Vnn = Z Z Rabb
a=1 b>a=1

is the Coulomb repulsion between the nuclei (Z, is the charge of nucleus a,
R, is the distance between nuclei a and b),

Ve = —Zzé (2.6)

a=1 i=1 @

(2.5)

is the Coulomb nucleus-electron interactions (r;, is the distance between nu-
cleus a and electron 1),

iy
T.=-) §v§ (2.7)
=1

is the operator of the kinetic energy of the electrons (V? being the Laplace
operator acting over the coordinates of electron i) and finally

N N
Vee=> > Ti (2.8)
i=1 j>i=1 Y

is the Coulomb repulsion between the electrons (r;; is the distance between
electrons i and j).

This Hamiltonian is non relativistic and it is only valid for particles with
a velocity much smaller than the velocity of light. This is generally sufficient
for light elements (with atomic number Z lower than 36), and also for the
valence electrons of heavier elements.

2.2 The Born-Oppenheimer approximation

In order to solve the Schrodinger equation 2.1 we need to use approxi-
mate methods. In fact the Schrodinger equation can be solved exactly only
for very simple systems, such as the harmonic oscillator or the rigid rotor, and
for one-electron systems (hydrogenoid atoms or the Hj molecular ion). The
first important approximation used to simplify the solution of the Schrodinger
equation is the Born-Oppenheimer approximation, which consists in a separa-
tion of the motions of the electrons from that of the nuclei. This approxima-
tion is reasonable since the mass of the nucleus is thousands of times greater
than that of the electron. The nuclei thus move very slowly with respect to

12
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the electrons and the electrons react essentially instantaneously to changes
in nuclear positions. Therefore, the electron distribution within a molecular
system depends on the positions of the nuclei and not on their velocities or,
in other words, the nuclei appear fixed to the electrons and the electronic
motion can be described as occurring in a field of fixed nuclei.

In the Born-Oppenheimer approximation the total wavefunction ¥(r, R),
which depends on the coordinates of all of the nuclei (R) and all of the elec-
trons (r), is written in the form of a product of an electronic wavefunction
U, (r;R) and a wavefunction x,(R) which describes the motion of the nuclei
[41]:

U(r,R) = ¥, (r;R)xa(R) (2.9)

By means of this ansatz, the total Schrodinger equation 2.1 is decomposed
into one equation for the electronic wavefunction:

H.V.(r;R) = E.(R)¥.(r;R) (2.10)
where the electronic Hamiltonian is given by:
H-H-T,=T.+V.+V,.+V,. (2.11)

and one equation for the wavefunction y,(R) describing the motion of the
nuclei:

(T + Ee(R))xn(R) = Exn(R) (2.12)

The independent variables in the electronic wavefunction W.(r;R) are the
coordinates r of the electrons. However, W.(r;R) depends also parametri-
cally on the coordinates R of the nuclei, since the electronic Hamiltonian
is a function of the positions of the nuclei. This means that the electronic
Schrodinger equation 2.10 has to be solved for a given nuclear geometry. As
a consequence, the electronic energy, i.e. the eigenvalue of E.(R) of the elec-
tronic Schrodinger equation, is not a constant, but depends on the nuclear
geometry. This geometry dependent electronic energy F.(R) plays the role of
the potential energy in the Schrodinger equation 2.12 for the nuclear motion.
It is therefore generally called Potential Energy Surface (PES). Thus in the
Born-Oppenheimer picture the nuclei move on a PES which is a solution of
the electronic Schrodinger equation.

In most cases the Born-Oppenheimer approximation is a very good ap-
proximation. Generally it only breaks down when two (or more) solutions
of the electronic Schrodinger equation come close together energetically. In
this case one has to go beyond the Born-Oppenheimer approximation, by
writing the total wavefunction as a linear combination of products of elec-
tronic and nuclear wavefunctions. By inserting this total wavefunction in the
Schrodinger equation 2.1, one obtains two terms in the resulting equations
which couple, via the V, operators, different electronic states. This terms
are the so called non-adiabatic coupling elements and, as already pointed out,
being important only for systems involving more than one electronic surface
with comparable energies, they are completely neglected in the framework of

13
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the Born-Oppenheimer approximation.

2.3 Requirements for the Electronic wavefunc-
tion

In the following, we will stay within the Born-Oppenheimer approximation
and will only be concerned with the electronic Schrodinger equation 2.10. For
simplicity we will drop the subscript e and the dependence on the nuclear
coordinates from V. (r; R).

A wavefunction used for describing the electronic structure of a molecular
system has to satisfy three fundamental requirements:

e Normalization. As for all quantum mechanical wavefunctions describing
stationary states we will assume that W(r) is normalized ((¥(r)|¥(r)) =
1), which means that the probability of finding the system somewhere
in space is unitary.

e Antisymmetry with respect to the permutation of two electrons. Since
electrons are fermions, the solutions of the electronic Schrodinger equa-
tion, which can be used to describe electronic systems, have to be an-
tisymmetric with respect to a permutation of any two electrons in the
system (Symmetry Postulate). Mathematically speaking, only wave-
functions which belong to the totally antisymmetric representation of
the permutation group of electrons are allowed to describe N-electron
systems. If we denote a permutation of the electrons ¢ and j by the
operator P;;, the antisymmetry requirement can be formulated as:

The Symmetry Postulate implies the Pauli principle which states that
two electrons cannot have the same series of all quantum numbers (if
i = j in equation 2.13 then ¥ = 0).

e Electronic spin. Since the electronic Hamiltonian does not contain any
spin operator, it commutes with the operators of the z-component (S,)
and of the square (S?) of the total electronic spin:

[H,S.]=0, [H,S*]=0 (2.14)

As a consequence, the electronic wavefunction has to be eigenfunction of
S. and S2%. A rigorous quantum mechanical treatment of the spin angu-
lar momentum is only possible by means of the relativistic Dirac equa-
tion, in which four-component electron wavefunctions (spinors) have to
be used [42]. However, even in a non-relativistic treatment, one has to
introduce the electron spin and the common way to do this is by repre-
senting the wavefunction of the single electron (¢(r,s)) as a product of
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2.4 The Slater Determinant

a spatial orbital ¢(r) times a spin function n(s):

¢(r,s) = o(r)n(s) (2.15)

There are only two possible spin eigenfunctions which are commonly de-
noted as « and (8 and are orthonormal. The one-electron wavefunctions
defined by equation 2.15 are called spin orbitals or sometimes simply
orbitals (even if, in a strict sense, the orbital is only the spatial part

¢(r)).

2.4 The Slater Determinant

A closer inspection of the electronic Hamiltonian (equation 2.11) shows
that it contains one-electron terms, i.e. terms that depend only on the co-
ordinates of one electron, two-electron terms, and the nuclear repulsion V,,,
which is independent of the electron coordinates. It thus can be rewritten as:

N N N
H:Zhi_l'z Z gij + Van (2.16)
i=1 i=1 j>i=1

where the h; are one-electron operators that describe the motion of a single
electron in the field generated by the nuclei and all of the other electrons:

1 M
_ 2
hy = —oVi - > o= (2.17)

T,
a=1 a

while g;; are two-electron operators describing the Coulomb repulsion between
electrons ¢ and j:
1
gij = — (2.18)
rij
If these two-electron terms g;; were absent, H would be a sum of terms each
depending only on the coordinates of one electron (V,, is just a constant
with respect to the electronic coordinates and it does not cause problems).
Then H would be separable: its eigenfunctions would be just products of
eigenfunctions of the one-particle Hamiltonians h;, and its eigenvalues sums
of eigenvalues of h;. Unfortunately, H contains the two-electron repulsion
terms, and so it is far from being separable.
Nevertheless, we start by constructing an N-electron wavefunction as a
product of one-electron wavefunctions:

IT=¢1(1)p2(2)...0n(N) (2.19)

Here the serial number 1 stands for the space and spin coordinates of electron
number 1, i.e. ¢1(1) is a spin orbital. Equation 2.19 is interpreted by saying
that the first electron “occupies” the spin orbital ¢, the second electron the
spin orbital ¢,, and so on. However, the product in equation 2.19 does not
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possess the required antisymmetry property, therefore we have to apply to
it an anti-symmetrization operator A, which generates a fully antisymmetric
wavefunction, defined as [41]:

1 p
A= N ;(—1) P (2.20)

where P is the permutation operator which performs all the permutations of
1,2,3...electrons and it is defined as:

ST1)P=1- Py +> P+ (2.21)

p ijk

where I is the identity operator, ) . ; Pij performs all binary permutations,
Eijk P;;. performs all ternary permutations and so on. Since this anti-
symmetrization operator is nothing else than an operator generating a de-
terminant out of a simple product, we can write the N-electron wavefunction
in the following form [41]:

VNI S
¢1(N) ¢2(N) ... on(N)

This determinant is called Slater determinant and is built in such a way that
over the rows we assign to a single spin orbital ¢ all the N electrons, and on
the columns we assign electron j to all the N spin orbitals. Moreover it is
generally assumed that the spatial orbitals form an orthonormal set and, due
to the orthonormality of the spin functions o and [, also the spin orbitals
form an orthonormal set as well.

2.5 The Hartree-Fock method

In the Hartree-Fock method the electronic wavefunction is constructed
as a Slater determinant from molecular spin orbitals and the optimum spin
orbitals are determined by means of the variational method. The variational
principle states that any approximate wavefunction W,, which satisfies the
same set of boundary conditions as imposed upon the exact wave function W,
has an energy E; above or equal to the exact energy of the ground state of
a system FEjy. The equality holds only if the trial wavefunction is the exact

solution.

Therefore, in the variational method, by making a trial wavefunction con-
taining a certain number of parameters, it is possible to generate the “best”
trial function of the given form by minimizing the energy as a function of
these parameters. In the present case, the trial wavefunction is the Slater
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2.5 The Hartree-Fock method

determinant and the parameters are the molecular spin orbitals.

In order to apply the variational method we have first of all to find an
expression for the energy of a Slater determinant (E). By representing the
electronic wavefunction with the anti-symmetrization operator, we obtain:

E = (VY[H[Y)

= (I|ATHA|T)
(TI/HAA|TI)

= VNUII|HA|I)

= Z(—l)p<H|HP|H>

p

where we have used the properties of the A operator, which commutes with
H and acting twice gives the same as A acting once, multiplied by v N!. By
using equation 2.16 for the electronic Hamiltonian we can write:

=

N

:Z(—l)pZ(H|hiP|H>+Z(—1 Z Z (|g;,;P|II) + V,,, (2.23)

p

Since h; depends only on the coordinates of the electron 4, all of the terms in
the first summation related to spin orbitals containing the other electrons can
be factored out of the integral. Thus, all of the products containing one or
more permutations produce integrals between orthogonal functions and go to
zero. For instance exchanging the coordinates of electrons 1 and 2 we obtain:

<¢1(1)¢2(2)“‘¢N(N)’h1\¢2(1)¢1(2)"‘¢N(N)> =
(@1(1)[hi]o2(1)){(92(2)[¢1(2)) ... (on(N)|on(N)) = 0 (2.24)

As far as the two-electron operator g;; is concerned, only the identity operator
or binary permutations can give a non zero contribution to the energy. From
the identity operator we obtain for gs:

(g1afll) = (¢1(1)¢2(2) - - - On(N)[812]01(1)$2(2) - - - on(N)) =
= (01(1)$2(2)[g12|¢1(1)¢2(2)) - - - (on(N)|on (N)) =
= (01(1)02(2)[812[01(1)$2(2)) = J1a

where Ji5 is the Coulomb integral and represents the classical repulsion be-
tween the two |¢;(1)|* e |¢2(2)|? charge distributions. On the other hand,
exchanging the coordinates of electrons 1 and 2 by means of the P15 operator
we can write:

(M|g12|P1oIl) = (#1(1)h2(2) - - - o (N)[g12]2(1)$1(2) - - - dn (1))
= (01(1)02(2)|g12]02(1)01(2)) . . . (dn(N)|on(N)) =
= (1(1)92(2)|g12|p2(1)$1(2)) = K1z
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K5 is the Exchange integral and does not have a simple classical interpreta-
tion as the Coulomb integral. By defining the Coulomb operator J; and the
Exchange operator K; as:

Jil6;(2)) = (6i(1)|gr2]di(1))[6;(2)) (2.25)
Kil¢;j(2)) = (i(1)lg12]9;(1))|9i(2)) (2.26)

it is now possible to rewrite the energy as:

ZZ (@51Jilo5) — (91Kil D)) + Vin (2.27)

=1 j5=1

DO | —

N
E=7 (¢ilhilei) +
i=1

The aim of the Hartree-Fock method is to determine the set of spin orbitals
which makes the energy of equation 2.27 a minimum. The minimization
however has to be performed in such a way that the spin orbitals remain
orthonormal and this constrained optimization can be carried out by means
of the Lagrange multipliers. By defining the Lagrange functional as:

N N
L=FE— Z Nijvij = B — Z Aij((@ilds) — 045) (2.28)
ij—1 ij=1

where the constant parameters \;; are the Lagrange multipliers and +;; are the
constraints, i.e. the orthonormality conditions, we impose that the Lagrange
function is stationary with respect to a spin orbital variation (calling for the
sake of simplicity the generic spin orbital |i):

0L = ZAU ((5il5) + (ild7)) = (2:29)
7,7=1
N
0E = Y ((difh]d) + (i|hy|6i) +
=1

+
N =
,MZ

({7195 — Kilog) + (071 — Kil)) (2.30)

-

S
Il
—

+ (@5 — K;|o8) + (i|T; — K;li))

DN | —
IMZ

s
Il
—

)]

By summing up equal terms and defining the Fock operator as F; = h; +
>_;(J; — K;), we obtain:

SL = D IIF 1) + (SilFuli)] — Y Ny ((8ils) + (i183) (2.31)
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and being F; an Hermitian operator:

N
0L =" (5i[F;]i) Z)\U (3i5) +Z 83| F;)i)* ZAU (87]) (2.32)
=1

The summations contain all the possible terms \;;(di|j), so that we can ex-
change the index orders ¢ and j in the fourth sum:

N
0L = Z 5i|F;|1) Z Xij(0i]7) + Z di|Fy|0)* Z Ni(oil7)" (2.33)
i=1

1,j=1 5,j=1

The third and fourth terms in the equation 2.33 are the conjugate complex of
the first and second term, respectively. Since the variations of |i) and |i)* are
independent, the terms in the equation 2.33 concerning |4¢) and |§i)* have to
be zero separately:

= ZM’U)
i) = Z Ajild)” (2.34)

The A matrix with elements )\;; is Hermitian, and if we diagonalize it by means
of a unitary transformation (so that \;; = 6152]) we obtain the Hartree-Fock
equations [41]:

Fili)" = €li)’ (2.35)

where |i)’ are the transformed spin orbitals and they are called the canonical
orbitals. The Hartree-Fock equations are a set of pseudo eigenvalue equations:
the Fock operator F; in fact depends, via the Coulomb and Exchange oper-
ators, on the spin orbitals. Therefore, to solve the Hartree-Fock equations
an iterative procedure has to be used. The Fock operator F; is a monoelec-
tronic operator which incorporates the kinetic energy of the electron i, the
Coulombic interaction with the nuclei and the average repulsion with the
other electrons. As a consequence, the Hartree-Fock method is a mean field
approximation based on an independent particles model in which each elec-
tron moves in an effective potential due to the nuclear attraction and to the
average repulsion generated by the other electrons [42]. The motion of elec-
trons is thus completely uncorrelated. It is noteworthy to observe that the
exact solution of the Schrodinger equation for an interacting particle systems
(the electrons in our case) can by no means be a product, even if suitably
symmetrized, of one-particle wavefunctions. However, the representation of
the electronic wavefunction as a Slater determinant offer an easy interpreta-
tion, since nothing seems more natural than the idea that a certain electron
is attributed to a certain one-electron function or, stated differently, that an
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electron is occupying a certain spin orbital.

Slater determinants are eigenfunctions of the N-electron spin operator S,
with an eigenvalue Mg equal to one-half of the difference between the number
of a and 3 electrons:

S.U = MgV (2.36)
1
Ms = S(No—Ny) (2.37)

However, except for certain cases, Slater determinants are not eigenfunctions
of the N-electron spin operator S?. One exception is the situation of a closed
shell system, in which there is an even number of electrons N = 2n and ex-
actly n spatial orbitals are doubly occupied. Fortunately, the stable ground
states of most molecules belong to this case. Whenever a single Slater deter-
minant is not an eigenfunction of S2, one can construct eigenfunctions of this
operator as linear combinations of Slater determinants, in which the same
spatial orbitals are occupied but with different spin orientations. Such linear
combinations are called configuration state functions (CSF).

Although the Hartree-Fock theory has been formulated in the early 1930ths,
for a long time numerical calculations could only be performed for atoms.
The reason was that numerical solutions of equation 2.35 were only possi-
ble for small highly symmetric systems, like atoms and diatomic molecules.
The possibility of using the Hartree-Fock method for molecular calculations
came in 1951 when Hall and Roothaan independently proposed to expand
the Hartree-Fock orbitals into a set of atom centered basis functions [41]. We
will return to a detailed description of basis sets at the end of this chapter,
but for now we simply assume that the unknown Hartree-Fock spin orbital
¢; is expanded into a finite set of m known functions y,:

b= e (2.38)
v=1

Since the basis functions are known, the spin orbital ¢; is completely deter-
mined if the expansion coefficients c,; are calculated. Thus the Hartree-Fock
equations 2.35 may be written as:

m

F f: CuiXv = € Z CuiXv (2.39)
v=1

v=1

and by premultiplying for the generic basis function (x,| and integrating we
obtain the Roothaan-Hall equations [40]:

m

Y (Fuw—€Sw)ei =0  p=1,...m (2.40)

v=1
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where:

Fo = (lFlx) (2.41)
Sw = (Xu Ix0) (2.42)

All the m equations may be collected in a matrix notation:
FC = SCe (2.43)

The S matrix contains the overlap elements between basis functions, while the
F matrix contains the Fock matrix elements which consist of two parts, i.e.
integrals involving the one-electron operators, and a sum over the occupied
spin orbitals of coefficients multiplied with two-electron integrals involving the
electron-electron repulsion operator. Obviously, also in this case the problem
requires an iterative procedure to be used, since the F matrix depend on the
solutions (the expansion coefficients). This procedure starts from an initial
guess of the coefficients, then the F matrix is formed and diagonalized. The
new set of coefficients is used for calculating a new F matrix and so on
until the new set of coefficients used for constructing the F matrix is equal,
within a certain threshold, to those resulting from the diagonalization and
self-consistency is reached. Due to the iterative procedure, this method is
called Self Consistent Field (SCF) method.

The Roothaan Hall equations were derived for closed shell systems, i.e.
for systems in a singlet state with a total spin of zero. In such systems
each spatial orbital is doubly occupied by two electrons with different spin
functions and the resulting wavefunction is called a Restricted Hartree-Fock
(RHF) wavefunction. For open-shell systems, i.e. systems in a higher spin
state with unpaired electrons, the RHF description is unsuitable and other
treatments are needed. If there are no restrictions on the form of the spatial
orbitals, and different spatial orbitals are assigned to o and 3 electrons, the
wavefunction is called Unrestricted Hartree-Fock (UHF) wavefunction. On
the other hand, open shell systems can also be described by imposing that
the maximum number of spatial orbitals suitable for the spin requirements is
doubly occupied (Restricted Open-shell Hartree-Fock ROHF).

2.6 Post-SCF Methods

The Hartree-Fock method provides only an approximation to the exact so-
lution of the electronic Schrodinger equation. The difference between the en-
ergy obtained by the Hartree-Fock method with an infinite basis set (Hartree-
Fock limit) Epp and the exact energy Fy (always in a non-relativistic treat-
ment) is called the electronic correlation energy Fo. [41]:

Eeorr = Ey — Egp (2.44)
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Physically the correlation energy is due to the fact that the motion of electrons
is correlated, while in the Hartree-Fock method the instantaneous electron-
electron interaction is replaced by an average interaction. On average the
electron are further apart than how the Hartree-Fock theory describes. The
correlation between electrons with the same spin is called the Fermi cor-
relation and it is accounted for to some extent by using an antisymmetric
wavefunction which satisfies the Pauli principle. On the other hand, the cor-
relation between electrons with opposite spin (Coulomb correlation) is com-
pletely neglected in the Hartree-Fock method. The methods that partially
calculate the correlation energy and thus go beyond the Hartree-Fock theory
are called post-SCF methods. Since the Hartree-Fock theory usually gives
99% of the correct energy, post-SCF methods generally use the Hartree-Fock
wave function as a starting point for subsequent improvements.

2.6.1 Configuration Interaction

The conceptually simplest method for accounting for correlation effects
is the method of Configuration Interaction (CI). Due to the electron inter-
actions, the full solution of the Schrédinger equation cannot be expressed in
terms of a single electron configuration, i.e. a unique assignment of electrons
to orbitals, and it is necessary to use wavefunctions that represent more than
a single electron configuration. As a consequence, in the CI methods, starting
from the Slater determinant of the Hartree-Fock theory, a series of additional
excited Slater determinants are generated by replacing spin orbitals that are
occupied in the Hartree-Fock determinant by spin orbitals that are unoccu-
pied. Consider a system comprising N electrons described at the Hartree-
Fock level with a basis set of m (m > N) basis functions. The solution of the
Hartree-Fock equations will provide N occupied spin orbitals (¢, ¢;, ¢, . - .)
which contribute to the Hartree-Fock wavefunction, and m — N unoccupied
(or virtual) orbitals (¢g, @, e, - . .). Excited Slater determinants are built by
replacing one, two, ... N occupied orbitals in the Hartree-Fock wavefunction
by one, two, ... N virtual orbitals. This corresponds to excite electrons from
orbitals at lower energies to orbitals at higher energies. In the Full-CI method
all the possible excitations are included and the wavefunction is written as a
linear combination of the Hartree-Fock determinant (we call it now ¥,) and
all of the possible excited determinants {W} [41]:

U =agly+ > a0, (2.45)

s>0

where the summation runs over all the possible excitations and the {W,}
are orthonormal. The expansion coefficients as can be determined, in an
analogous way to the HF case, with the Lagrange method, obtaining a system
of secular equations:

> (Hy— Edi)aq =0  t=12... (2.46)

s
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where H;; = (V| H|U,) are the elements of the CI matrix and Ej is the
energy of the electronic state s. The variational problem is thus transformed
into solving a set of CI secular equations that can be written also in a matrix
notation as:

(H- ET)a=0 (2.47)

The Full-CI method is, in principle, an exact method. This means that
if an infinite basis set was used, Full-CI would generate the exact solution
of the electronic Schrodinger equation (always within the Born-Oppenheimer
approximation and in a non-relativistic treatment). It is possible to demon-
strate that the CI matrix is a highly sparse matrix, in which non-zero elements
are found only between determinants which differ by zero, one or two spin
orbitals. Nevertheless, the number of excited determinants grows factorially
with the size of the basis set, and this makes the Full-CI method unfeasible for
all but the very smallest systems. As a consequence, in practical applications
truncated CI expansions are used which include only single excitations (CI
with Singles or CIS), only double excitations (CI with Doubles or CID), single
and double excitations (CI with Singles and Doubles or CISD), single, double
and triple excitations (CI with Singles, Doubles and Triples or CISDT), and
SO on.

2.6.2 Mpygller Plesset perturbation theory

A different approach to the CI methods to deal with the correlation energy
is provided by the perturbation theory. Suppose that we want to solve the
electronic Schrédinger equation:

HU, = E, U, (2.48)

The perturbation theory is based upon dividing the Hamiltonian of the system
under consideration (H) in two parts:

H=H,+\V (2.49)

where A is a parameter which measures the entity of the perturbation, V
is a perturbation operator and Hj is the Hamiltonian of a problem whose
solutions are known (we call them \Ilg)) and suppose that they form a com-
plete and orthonormal set and that their corresponding energies E}go) are
non-degenerate). If V is a small perturbation as compared to the unper-
turbed Hamiltonian Hy, we can expand the energy and wavefunction of the
perturbed system in powers of A:

Uy = 0w 20 el (2.50)
Ey= EV 4BV + NEP + ¥ED 4. (2.51)

By substituting these expansions in the Schrodinger equation 2.48, it is possi-
ble to obtain corrections to the unperturbed energy and wavefunction at any
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order of approximation. In particular it is possible to demonstrate that the
first (E,(Cl)) and second order (E,(f)) corrections to the energy are:

B = (v vy (2.52)
5O — <\If,2°>|V|\If(§0°)>><\v£f;)|vw$>>
t Ek _Et
_ oy v (253)
m BB |

The first order correction is just the matrix element of the perturbation V on
the unperturbed wavefunction \I/]E;O), while the second order correction contains

matrix elements of V among \If,(CO) and all of the other unperturbed states
{\Ifgzk} The weight of these contributions to the second order correction is

inversely proportional to the energy difference between the two states (Et(o) —
E).

The perturbation theory is absolutely general and can be applied to any
kind of system. In order to apply it to molecular systems for calculating to
some extent the correlation energy, the unperturbed Hamiltonian operator
H, is taken as a sum over the Fock operators:

N
Hy=> F, (2.54)
j=1

where N is, as usual, the number of electrons. In this particular case the
perturbation theory is called Mgller-Plesset perturbation theory [41]. The
eigenfunctions of Hy are the Hartree-Fock determinant, which is the ground
state wavefunction, and all of the substituted determinants that represent the
excited states. Remembering that the electronic Hamiltonian for a molecular
system, by neglecting the term V,,,, which is just a constant, is given by:

N N N
H-= th + Z Z 8ij (255)
i=1 i=1 j>i=1
we obtain that the perturbation operator V in this specific case is given as:
N N N
LEDIDIE-"EDBPBCHOES ¥10) (2.56)
i=1 j>i=1 i=1 j=1

By inserting this form of V in the equation 2.52 we can calculate the first order
correction Eél), and if we sum up E(()O) and Eél) we reobtain the Hartree-Fock
energy FHE:

0 1 0 0 0 0 0 0
EL + B = (w1 H ) + (w P V]e) = (0 [H[w) = BIF (2.57)
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Therefore, the first correction to the energy due to the correlation is the sec-
ond order correction, which can be obtained from equation 2.53 by rewriting
it for the ground state as:

0 0 0 0) 0
E(z)_Z<\Ifé>|vm§>><w§>|vw Z' (WO VT2
o O _ 50 EO _ gD

t 0 t

(2.58)

The terms in the summation contain matrix elements of the perturbation be-
tween the ground state wavefunction and excited wavefunctions. Since V is
a two electron operator, all the integrals between the Hartree-Fock wavefunc-
tion and wavefunctions with triple and higher excitations go to zero; it can
be demonstrated that also matrix elements between \Il(()o) and wavefunction
with single excitations are zero. Thus the only non-zero elements contain
double excited wavefunctions denoted with ‘1!?}’ (the notation indicates the
promotion of electrons i and j to the virtual orbitals a and b), and the second

order correction to the energy may be written as [41]:

occ  vir \I’(O)|V|\Ij ><\Ilgjb|V|\Ij((]0)>

E(()2) - Z Z E.(O Egb
ij

1,7<t a,b<a

occ vir

Z Z (Gidj|g12|Patdr) — (Pit;|@12|Ppda)|?

€ T € — €, — €

(2.59)

1,7<t a,b<a

where the first and second summations run over all occupied and virtual
orbitals, respectively; E%b is the energy of the \If?;’ determinant, and the ¢ and
7 subscripts denote occupied orbitals, while a and b refer to virtual orbitals.
The g2 notation indicates integrations over all coordinates for electron 1
and 2 in the occupied and virtual orbitals. Since the numerator is always
positive and the denominator is always negative, the second order correction
is always negative. The Mgller-Plesset perturbation theory method which
uses the second order correction to the energy is called MP2 and it is usually
a good method to include electron correlation, as it can account for 80%
- 90% of it with a computational cost slightly higher than a Hartree-Fock
calculation. Higher order corrections to the energy can be calculated with a
similar procedure. It is noteworthy to observe than Mgller-Plesset method
may underestimate the energy since it is not a variational method.

2.7 Density Functional Theory

2.7.1 The Hohenberg-Kohn Theorems

An alternative approach to the Hartree-Fock methods (or post-SCF tech-
niques) to solve approximately the Schrodinger equation is provided by Den-
sity Functional Theory (DFT). The basis for DFT is the proof by Hohenberg
and Kohn that the ground state electronic energy of a system is completely
determined by its electron density p(r). In fact, the first Hohenberg-Kohn
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theorem [43] states that: “For any system of interacting particles in an exter-
nal potential V(r), the external potential is determined uniquely, except for
a constant, by the ground state particle density.” For a system of M nuclei
and NN electrons the electronic Hamiltonian operator is:

H=T.+V,.+V..+V,, (2.60)

(the last term in the Born-Oppenheimer approximation is a constant and
can be neglected) and the external potential is the potential generated by
the nuclei, V,.. It is seen that the Hamiltonian operator is uniquely deter-
mined by the number of electrons and by V., and so, according to the first
Hohenberg-Kohn theorem, by the electron density. This means that there
exists a one-to-one correspondence between the electron density of a system
and its energy or, in other words, that the energy is a unique functional of
the electron density, E[p], and can be written as:

Elp] = T.[p] + Enelp] + Ecclp] = Fuxl[p] + Enelp) (2.61)

where the Hohenberg-Kohn functional has been defined as:
Fuklp] = Te[p] + Eee[p] (2.62)

In the DFT the complicated N-electron wavefunction used in wavefunction
based methods (Hartree-Fock or post-SCF) is thus replaced by the much sim-
pler electron density p(r).

Using the electron density as a parameter, the second Hohenberg-Kohn
theorem [43] provides a variational principle analogous to that in wave me-
chanics. Given an approximate electron density p’ (assumed to be positive
definite everywhere) which integrates to the number of electrons NV, the en-
ergy given by this density is an upper bound to the exact ground state energy
(provided that the exact functional is used):

Eo[p] > Eolp] (2.63)

2.7.2 The Kohn-Sham approach

The challenge of DFT is to give an explicit expression to the Hohenberg-
Kohn functional Fpykp]. With reference to the Hartree-Fock theory, the
E..[p] term in the Fpg[p] functional may be divided into a Coulomb and
Exchange part, J[p] and K[p], so that the energy functional becomes:

Elp] = Te[p] + Enelpl + J[p] + Klp] (2.64)

The E,.[p] and J[p| functionals are given by their classical expressions:

Enelp) = Z; / %dr (2.65)
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1 r)p(r
Jp] = 5/%6&&" (2.66)
T.[p] and K[p] are unknown. Early attempts at deducing functionals for
the kinetic and exchange energies considered a non-interacting uniform gas
(Thomas-Fermi theory [44, 45]) but resulted in a very poor representation for
the kinetic energy.

The foundation for the use of DF'T methods in computational chemistry
has been the introduction of orbitals by Kohn and Sham. The basic idea in
the Kohn and Sham theory is splitting the kinetic energy functional into two
parts, one that can be calculated exactly, plus a small correction term. To this
end, Kohn and Sham introduce in their formalism an hypothetical reference
system of non-interacting electrons having the same electron density of the
real system. For this non-interacting system the Hamiltonian is separable:

N N N

H=Y"h =Y (V) + Y wlr) (2.67)

=1 =1 =1

where h; are single particle hamiltonians and v4(r;) are external potentials
adjusted so that the same density is obtained for the reference and the real sys-
tems. The exact solution of the Schrédinger equation (for the non-interacting
system) is given by a Slater determinant composed of molecular orbitals {¢;}
which solve the N one-particle eigenvalue equations:

hi¢; = €0 (2.68)

The exact kinetic energy functional is given by:

N

7, = S (0~ VDIo) (2.69)

=1

The key to the Kohn-Sham theory is thus the calculation of the kinetic energy
under the assumption of non-interacting electrons. In reality the electrons are
interacting and equation 2.69 does not provide the total kinetic energy. The
remaining small correction term to the kinetic energy is absorbed into an
exchange-correlation term and the total energy of the real interacting system
is written as [46]:

Eprrlp] = Tslp] + Enclpl + J1p] + Exclp] (2.70)

where F,.[p| is given by:

Evolp] = (Tulp) = Tulp)) + (Eeelp] — Jo)) (2.71)

E..[p] contains the difference between T,[p] and T}[p|, which may be consid-
ered as the kinetic correlation energy, and the non-classical part of E.[p],
that contains both exchange and potential correlation energy.

The major problem in DFT is deriving suitable formulas for the exchange-
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correlation term. If this functional was available, the problem would be, as
already encountered in the Hartree-Fock theory, to determine a set of orthog-
onal orbitals which minimize the energy. The orbital orthogonality constraint
may be enforced by the Lagrange method (in analogy with the Hartree-Fock):

N

Llp] = Eprrlp] — Z Aij((Dildy) — 04) (2.72)

ij=1

Requiring the variation of L[p] to vanish provides a set of equations involving
an effective one-electron operator (hgg), similar to the Fock operator in wave
mechanics:

N
hisoi = Z Aij@; (2.73)
j=1
where: .
higs = —§V2 + Veff (2.74)
V.s¢ is given by:
p(r'
Veff(r) = Vne(r) + / ‘]:‘ (_ I)‘/‘ dI‘/ —+ ch(r) (275)

We can choose a unitary transformation which makes the matrix of Lagrange
multipliers diagonal, obtaining a set of canonical Kohn-Sham orbitals. The
resulting pseudo-eigenvalue equations are the Kohn-Sham equations [46]:

hgsoi = € (2.76)

Since the hxg operator depends on the total density, the determination of the
orbitals involves an iterative procedure. Moreover, in practical applications,
the unknown Kohn-Sham orbitals are expanded in a set of basis functions,
analogously to the Hartree-Fock method.

Although it is clear that there are many similarities between the wave
mechanics Hartree-Fock theory and DFT, there is an important difference.
If the exact E,.[p] was known, DFT would provide the exact total energy
including electron correlation. Since this is not the case, it is crucial to
any application of DFT the approximation of the unknown exchange and
correlation potential. Many different functionals have been proposed in the
literature, using for instance Local Density Approximation (LDA), where the
functional depends only on the density at the coordinate where the functional
is evaluated, Generalized Gradient Approximation (GGA), which includes the
electron density gradient, as well as hybrid functionals, such as BSLYP, which
include the exact exchange energy calculated by Hartree-Fock theory [41].

28



2.8 Basis Sets

2.8 Basis Sets

One of the approximations inherent in essentially all electronic structure
methods is the introduction of a basis set in which the molecular orbitals are
expanded:

(bl' — chlixl/ (277)
v=1

where the y, are the m basis functions and the constants c,; are the expansion
coefficients. Expanding an unknown function, such as a molecular orbital, in
a set of known functions is not an approximation if the basis set is complete.
However, in this case a complete basis set means that an infinite number
of functions must be used, which is impossible in actual calculations. An
unknown molecular orbital can be thought of as a function in the infinite
coordinate system spanned by the complete basis set. When a finite basis set
is used, only the components of the molecular orbital along the coordinate
axes corresponding to the selected basis can be represented. Obviously, the
smaller is the basis, the poorer will be the representation. The two types of
basis functions commonly used in electronic structure methods are Gaussian
functions and plane waves.

2.8.1 Gaussian basis sets

One of the very few examples of an exactly solvable quantum-mechanical
problem is the hydrogenoid atom, i.e. the system formed by a nucleus of
charge Z and only one electron (H, He™, Li*T, ... ), and all the atomic-centered
basis sets in quantum chemistry try to resemble the particular solution of this
problem. The electronic eigenfunctions of the Hamiltonian operator for an
hydrogenoid atom are given by [42]:

—Zr Z?“ l
\Ijn,hm(ra 9, 90) = CVn,le " (7) Liljllfl}/im(e? 90) (278>

where C),; is a constant, n, [ and m are quantum numbers, Liljll,l is a gen-
eralized Laguerre polynomial which is of n — [ — 1 order and the function
Y,.m(0,¢) is a spherical harmonic. The idea that the one-electron solutions
of the molecular problem in many-electron atoms are not so different from
the hydrogenoid atom solutions, together with the chemical intuition that
atoms-in-molecules are not very different from isolated atoms, is what mainly
drives the choice of functions similar to this W,,;,,(r, 0, ¢) in the basis sets.
All the differences between the “real” spin orbitals and the hydrogenoid or-
bitals will be accounted for by the variational procedure aim at determining
the expansion coefficients in equation 2.77.

In this context, the first type of functions centered on the atomic nuclei
that has been used is the Slater-type orbital (STO) [40]:

XCaynaalaamaa(r7 07 (p) = NSTOrn_le_Car}/}a7ma (07 ¢) (279)
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where N°7© is a normalization constant, (, is an adjustable parameter on
which the orbital spatial extent depends, Y}, . (0, ¢) is a spherical harmonic.
The integers [, and m, can be considered quantum numbers, since, due to
the fact that the only angular dependence is in Y}, ,,, (6, ¢), the STO defined
above is still a simultaneous eigenstate of the one-electron angular momentum
operators 12 and 1, (with the origin placed at nucleus a). Conversely, the
parameter n, should be regarded as a principal quantum number only by
analogy, since, on the one hand, it does not exist a monoatomic Hamiltonian
whose exact eigenfunctions it could label and, on the other hand, only the
leading term of the polynomial in equation 2.78 has been kept in the STO. The
STO basis sets have good physical properties, such as that they have a cusp for
r = 0, and they decay at an exponential rate when » — o0, as the hydrogenoid
atom solutions. Moreover, the fact that they do not present radial nodes
(due to the absence of the non-leading terms of the Laguerre polynomial
in equation 2.78) can be solved by making linear combinations of functions
with different values of (,. Despite their being good theoretical candidates
as basis sets, STO have a serious computational drawback since four-center
integrals that have to be computed during the variational procedure cannot
be calculated analytically with STO, and this precludes the use of STO in
practical ab initio calculations of large molecules.

A major step to overcome these difficulties that has revolutionized the
whole field of quantum chemistry was the introduction of Cartesian Gaussian-
type orbitals (cGTO) [40]:

c - L (—¢r?
IO (0,,2) = N0yt 2.50)

where N¢79 is a normalization constant, x, v, z are the cartesian coordinates
(centered on the nucleus) and the integers [,, [, and [, are generally called or-
bital quantum numbers. By using GTO there is the enormous computational
advantage since all the integrals appearing in SCF theory can be calculated
analytically. This makes possible to use a much larger number of functions to
expand the one-electron spin orbitals if GTO are used, partially overcoming
their bad short- and long-range behaviour (they do not have a cusp for r = 0
and fall off too rapidly for r — 00). To remedy the fact that the angular
behaviour of the Cartesian GTOs in equation 2.80 is somewhat hidden, they
may be linearly combined to form Spherical Gaussian-type orbitals (sGTO):

G (5, 2) = NOTOY, (6, §)rn =2 Del =) (2:81)

First, the cGTOs that are combined to make up a sGTO must have all the
same value of [ = [, + [, 4+ [, and this sum of the three orbital quantum
numbers in a particular Cartesian GTO is typically referred to as the angular
momentum of the function. Moreover, like atomic orbitals, cGTOs with [ =
0,1, 2, 3, 4,...are called s, p, d, f, g, ..., respectively. For a given [ > 1,
there are more Cartesian GTOs ((I +1)({42)/2) than spherical ones (2] + 1),
and from the (I +1)({42)/2 linear combinations that can be formed using the
c¢GTOs of angular momentum [, only the angular part of 2] 4+ 1 of them turns
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out to be proportional to the spherical harmonic Y,,,(6, ¢). The rest of them
are proportional to spherical harmonic functions with a different value of the
angular momentum and this “spurious components” can be removed from
the calculation. GTO basis functions are usually used as linear combinations
(contractions) of Gaussian functions (primitive Gaussians) instead of single
function, and when they have to describe core electrons often contain many
primitives in order to better approximate the cusp behavior of hydrogenoid
functions near the nucleus [41].

An important concept in quantum chemistry is that of the atomic shells
that are defined analogously to those of the hydrogen atom, so that each
electron is regarded as filling the multi-electron atom orbitals according to
Hund’s rules. For instance, the occupied shells of carbon are defined to be
1s, 2s and 2p. Each shell may contain 2(2] + 1) electrons if complete, where
2l + 1 accounts for the orbital angular momentum multiplicity and the factor
2 for that of electron spin. According to the number of basis functions used
to describe each atomic shell, basis sets can be classified as minimal if only
2[+1 functions are employed for each (completely or partially) occupied shell,
double zeta (DZ) if 2 x (2 4+ 1) functions are used for each occupied shell,
triple zeta (TZ) if 3 x (2] 4 1) functions are used, and so on.

Since core electrons are less affected by the molecular environment and the
formation of bonds than valence electrons, core and valence shells may differ
in their respective “zeta quality”, i.e. the basis set may contain a different
number of basis functions in each case. Thus, it is very common to use more
basis functions for the valence electrons, to give them more flexibility, and
the basis set is called in this case split-valence basis set. As the molecular en-
vironment is often highly anisotropic, for most practical applications it turns
out to be convenient to add polarization functions, which are functions with
larger angular momentum as compared to the last occupied shell in the atom.
Typically, the polarization shells are single-primitive contractions and they
are denoted by adding a P to the end of the previous acronyms (for instance
DZP). Moreover, for calculations of charged species (especially anions), where
the charge density extends in space and the tails of the distribution are very
important to account for the relevant behaviour of the system, it is common
to augment the basis sets with diffuse functions, i.e. single-primitive Gaus-
sian shells of the same angular momentum as some preexisting one but with
a small exponent. This improvement is usually denoted by adding the prefix
aug- to the name of the basis set.

Correlation consistent (cc) basis sets are widely used in the literature for
molecular calculations and they are designed in such a way that functions
which provide similar amounts of correlation energy are included at the same
stage in the basis set, independently of the function type. For example, if a
second d function is added, a first f function is added too, since they contribute
in a similar way to the correlation energy. Several different sizes of cc basis
sets are available and they are known by their acronyms. For instance, cc-
pVDZ is the cc polarized valence Double Zeta basis set, while aug-cc-pVTZ,
is the augmented cc polarized valence Triple Zeta basis set [41].
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2.8.2 Plane waves

A different approach has its root in solid-state theory. Here, the periodi-
city of the crystalline lattice produces a periodic potential and this imposes
the same periodicity on the wavefunction and the electron density of the
system. The periodicity of the potential can be expressed as:

V(r+L) = V(r) (2.82)

where L is a lattice vector of the crystal. According to the Block theorem the
electronic wavefunction can be written as a product of a cell-periodic part
and a wavelike part [47]:

Y(r) = e® u(r, k) (2.83)

where k is a vector in the first Brillouin zone. The function u(r, k) has the
same periodicity of the direct lattice:

u(r,k) = u(r + L, k) (2.84)

and can be expanded using a basis set of plane waves whose wave vectors, G,
are the reciprocal lattice vectors of the crystal:

u(r, k) = Z c(G, k)e'CT (2.85)
G

where G are defined by G-L = 27m for all L, and m is an integer. Therefore,
the electronic wavefunction can be written as:

Y(r) =) (G k)T (2.86)

G

As in the case of Gaussian basis sets, in principle, an infinite number of
plane waves is required to expand the electronic wavefunction. However, the
coefficients ¢(G, k) for the plane waves with small kinetic energy:

1
T = 5|k+G|2 (2.87)

are typically more important than those with large kinetic energy [47]. For
this reason, at each k point, only G vectors with a kinetic energy lower
than a given maximum cutoff (E,,) are included in the basis. When dealing
with many-electron systems, each orbital can be written in the Bloch form
(equation 2.83) and thus expanded in plane waves according to equation 2.86.
In the framework of DF'T, the electron density can also be expanded in plane
wave basis sets and the Kohn-Sham equations assume a particularly simple
form:
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1
Z{§|k + GY0ge + V(G —G) +
G/

J(G - G) + V(G- G)}ei(G k) = €ci(G,k) (2.88)

where V,.(G — G'), J(G — G’) and V,.(G — G’) are the Fourier transforms
of the nucleus-electron, coulomb and exchange correlation potentials. In this
form the kinetic energy is diagonal since plane waves are eigenfunctions of
the kinetic energy operator [47]:

1 , 1 .
§v2€zG-r — 5’G’262G-I‘ (289)

It is clear from the above discussion that plane wave based calculations
imply the existence of a periodic potential. This is appropriate for crystal
calculations but very unnatural for isolated molecules. However, plane waves
can also be applied to non periodic system using the supercell method. In this
method the molecule is placed at a center of a supercell and is periodically
repeated. If the supercell is large enough the interactions between molecules
in neighbouring cells become negligible. Plane waves have broad application
in the field of Molecular Dynamics simulations where, as we shall see in the
next chapter, the periodicity is intimately connected to the use of periodic
boundary conditions.

It is noteworthy to observe that, at variance with Gaussian basis functions
that are centered on the nuclei, plane waves are originless functions, i.e. they
do not depend on the positions of the nuclei. This property facilitates force
calculations in Molecular Dynamics simulations. This also implies that plane
waves are “delocalized” in space and do not favour certain atoms or regions
over others, so that they can be considered as an ultimately balanced basis
set. Therefore, the only way to improve the quality of the basis set is to
increase F.,, i.e. the largest G vector that is included in the finite expan-
sion (equation 2.86). This approach is completely different and much simpler
than the traditional procedures in quantum chemistry that are needed in or-
der to produce reliable Gaussian basis sets [40]. Another appealing feature
is that derivatives in real-space are simply multiplications in G-space, and
both spaces can be efficiently connected via Fast Fourier Transforms (FFT).
On the other hand, a severe shortcoming of plane waves is that there is no
way to assign more basis functions into regions of space where they are more
needed than in other regions. This is particularly bad for systems with strong
inhomogeneities.

It is important to stress that pseudopotential approximation is intimately
connected to using plane waves. Pseudopotentials allow for a considerable re-
duction of the basis set size, taking out of explicit calculations the innermost
electrons. Core orbitals feature strong and rapid oscillations due to the Pauli
principle, which enforces a nodal structure into the wavefunction by imposing
orthogonality of the orbitals. For this reason, we need to use for these elec-
trons a great number of basis functions. However, core electrons are relatively
inert, and most of the important chemical properties of atoms and molecules
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are determined by the interactions of their valence electrons. In practice,
in the pseudopotential approximation, only the valence electrons are treated
explicitly, while core orbitals are represented by a smooth and nodeless effec-
tive potential. Moreover, since most relativistic effects are connected to core
electrons, these effects can be incorporated in the pseudopotentials without
complicating the calculation of the final system.

2.9 Continuum solvation models

The computational methods described in the previous sections of this
chapter deal with the study of molecular properties in vacuum. However,
many processes take place in solution and when a molecule interacts with
solvent molecules its properties can be very different from those observed in
vacuum. Therefore, in order to study a solvated system, it is necessary to
use a model able to describe the solute-solvent interactions. Solvent models
may broadly be divided into two classes: discrete and continuum models [48].
Discrete models include in calculations together with the system of interest
(the solute) a certain number of solvent molecules which are treated at a
comparable level of theory. On the other hand, continuum models treat the
solvent as a continuous medium, and the solute-solvent interactions are de-
scribed by means of the reaction field of the solvent, i.e. the electric field
generated by it. For this reason, and due to the fact that they employ iter-
ative procedures, this methods are generally called Self Consistent Reaction
Field (SCRF) methods. Combinations of discrete and continuum models are
also possible, for example by considering explicitly the solvent molecules of
the first solvation shell, while treating the rest of the solvent by a continuum
model.

A brief introduction to the class of continuum models will be given in this
section. First of all, it is important to stress that in continuum models it is
fundamental the presence of a cavity inside the dielectric medium in which
solute molecules are placed. This cavity has to exclude solvent molecules, it
has to include most of the solute charge distribution, and it should reproduce
as much as possible the shape of the solute molecule. The cavity is usually
constructed by interlocking spheres centered on each solute atom, with radius
equal or proportional to the van der Waals radius of the atom. This surface
formed by interlocking spheres is called van der Waals surface. Since such
a cavity may be quite irregular and may contain regions not accessible to
solvent molecules, two additional forms of cavity are also used, the Solvent
Excluding Surface (SES) and the Solvent Accessible Surface (SAS) (see Fi-
gure 2.1). In both cases the solvent molecule is represented as a sphere with
a volume equal to the van der Waals volume. The positions spanned by the
center of a solvent sphere rolling on the van der Waals solute cavity generate
the SAS, which is consequently the surface in which the center of the solvent
sphere cannot enter. The SES represents instead the whole surface not ac-
cessible by the entire solvent molecule, as it is possible to see in Figure 2.1.

In the framework of continuum models, the before mentioned self consis-
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Figure 2.1: Schematic representation of the Solvent Accessible Surface (SAS) and the
Solvent Excluding Surface (SES).

tent problem stems from the fact that the solute charge distribution polarizes
the solvent continuum medium which, in turn, polarizes the solute charge
distribution. Such a problem can be solved only be means of an iterative pro-
cedure. The equations that describe the electrostatic properties in continuum
models are:

V2V(r) = V-E(r) = —47psn inside the cavity (2.90)
VV(r) = V-D(#) =0 outside the cavity — (2.91)
‘/in = ‘/out (292)

a‘/zn o a‘/out o
(D ’ n)in = on = € on - (D ) n)out (293>

where pg,, is the solute charge distribution, n is the normal to the cavity
surface, € is the dielectric constant of the solvent and D(r) = e¢E(r) is the
dielectric displacement; in and out indexes indicate that the corresponding
properties are calculated inside or outside the cavity. The electric field E(r)
is associated to the potential V' (r) which is the sum of the potential Vi, (r)
generated by the solute charge distribution ps.,, and the potential generated
by the solvent polarization Vg(r):

V(r) = Vi (r) + Vr(r) (2.94)

There exist several methods which solve these electrostatic equations in dif-
ferent ways. Multipole Expansion methods (MPE), for instance, are based on
a multipole expansion of V,(r) [48]. The simplest version of MPE methods
is the Onsager method in which the solute is represented just as a dipole.
The main drawback of this method is that it generally uses a spherical cav-
ity which is not suitable to describe complex molecular shapes. Conversely,
Apparent Surface Charges (ASC) methods [48] treat the solute-solvent inter-
actions by means of a polarization charge distribution, o(r), displaced on the
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internal cavity surface. In ASC methods the potential Vg(r) of the previous
equation is given by:

V,(r) = / 9(8) (2.95)

r|r—s

where the subscript ¢ indicates that the potential is calculated from the charge
distribution o(s), the integration is over all the surface area of the I' cavity
and s is a generic point of it. By defining a charge surface distribution as
the source of the electrostatic potential, ACS methods simplify the problem
as compared to other formulations in which the source of the potential is
all the dielectric medium. Nevertheless, the integration of equation 2.95 is
too much demanding and, for this reason, the cavity surface is partitioned in
small elements called tesserae (from a few tens to a few hundreds of elements
for each atom), which have to be small enough that o(s) can be considered as
a constant on each tessera (generally their surface area is comprised between
0.05 and 0.4 AQ). By associating to each tessera k a position s, and a point
charge qy, it is possible to rewrite equation 2.95 as:

V,(r) =Yy & (2.96)

‘I‘ — Sk‘

where the summation runs over all the tesserae. The ASC methods mostly
used are:

e The Polarizable Continuum Model method (PCM), which is the oldest
ASC formulation [49].

e The Conductor like PCM (CPCM), which is very efficient to describe
the properties of polar solvents such as water [50].

e The Integral Equation Formalism (IEF)-PCM, which employs Green
functions in order to define the potential [51].

The main difference between PCM and CPCM is that while in the first case
the solvent is considered as a dielectric medium, in the latter one the solvent
is represented as a medium with a dielectric constant going to infinity, i.e. as
a conductor. By multiplying the charge distribution obtained with ¢ = oo
(0*(s1)) for a suitable function of ¢, it is then possible to obtain the charge
distribution corresponding to a finite ¢ value [50]:

o(s) = fle)a*(sk) (2.97)
e—1

In ASC methods the surface charge distribution is determined by solving
the following matrix equation:

AQ=-V (2.99)
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Q is a column vector that contains the polarization charges, while V is a
column vector containing the solute electrostatic potential and its elements
are V; = Viou(s;). A is a square matrix of 72T dimension (where T is the
number of tesserae), which depends on the solvent properties and on the
cavity shape. The explicit expression of A depends on the particular ASC
formulation used, and in the case of the CPCM method the matrix elements

are given by:
4
Ay = 107,/= (2.100)
Q;

|si — sy

where a; is the area of the ¢ tessera and the s; vector corresponds to the center
of the tessera.

As far as the quantum mechanical problem is concerned, the Hamiltonian
H of a molecular system placed in a suitable cavity inside the solvent is the
sum of two terms [52]:

H=H? +HH® (2.102)

where H® is the Hamiltonian of the isolated solute, while H? is the operator
associated with the reaction potential Vx(r) plus the interaction between
the solute nuclei and polarization charge of the solvent (o). In order to
obtain the H approximate eigenfunctions W it is possible to use one of the
electronic structure methods discussed in this chapter. However, since the
solute charge distribution p,.,, depends on the wavefunction ¥, an iterative
procedure is employed which generally starts with a calculation of W) the
H®© eigenfunction; Psotus 0 and U are then computed and from the new U a
New psop, 1S obtained and so on until self consistency is reached.
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Chapter 3

Molecular Dynamics
Simulations

Molecular Dynamics, strictly speaking, is the simultaneous motion of
atomic nuclei and electrons forming molecular entities. A complete descrip-
tion of such a system requires in principle solving the full time-dependent
Schrodinger equation including both electronic and nuclear degrees of free-
dom. This is however a too much expensive computational task which is in
practice unfeasible for systems consisting of more than three atoms. In or-
der to study the dynamics of the vast majority of chemical systems several
approximations have therefore to be introduced. First of all, it is assumed in
Molecular Dynamics with the Born-Oppenheimer approximation (see section
2.2) that the motion of electrons and nuclei is separable, and the electron
cloud adjusts instantaneously to changes in the nuclear configuration. As a
consequence, nuclear motion evolves on a PES, associated with the electronic
quantum state which is obtained by solving the time-independent electronic
Schrodinger equation 2.10 for a series of fixed nuclear geometries. In prac-
tice, most Molecular Dynamics simulations are performed on the ground state
PES.

Moreover, in addition to making the Born-Oppenheimer approximation,
Molecular Dynamics treats the atomic nuclei as classical particles whose tra-
jectories are computed using the laws of classical mechanics. This is a very
good approximation for molecular systems as long as the properties studied
are not related to the motion of light atoms (like the hydrogen atoms, which
show quantum mechanical behaviour in certain situations such as tunneling
phenomena) or vibrations with frequency v such that hv > kgT.

The potential functions which describe the intermolecular and intramolec-
ular interactions between classical nuclei can be treated at various levels of
approximation. In classical Molecular Dynamics the interaction potential is
expressed as a simple sum of pair potentials. On the other hand, ab ini-
tio Molecular Dynamics computes interactions at a much more fundamental
level using electronic structure methods. In the mixed Quantum Mechani-
cal and Molecular Mechanics (QM/MM) methods instead the “important”
part of the system, for instance where a chemical reaction is taking place, is
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treated with electronic structure calculations whereas the rest of the system
is described by a classical force field. In this chapter an introduction to the
classical Molecular Dynamics is given, followed by a brief description of how
classical and quantum mechanics is coupled in ab initio Born-Oppenheimer
and Car-Parrinello Molecular Dynamics simulations.

3.1 Classical Molecular Dynamics

In the classical Molecular Dynamics simulations the time evolution of a
system composed by M particles (generally atoms) is obtained by solving the
Newton’s equation of motion step-by-step [53]:

MR,=F, a=1,2,....M (3.1)

where M, and R, are the mass and the position of particle a and F, is the
force acting on particle a given by:

v
IR,

F.,= (3.2)
V is a potential energy function which depends on the complete set of 3M
particle coordinates. In classical Molecular Dynamics the complex potential
energy function is represented by a sum of simple functions, called force fields.
In these force fields, the interactions are usually divided into bonded and non-
bonded [54]:

V= ‘/bcmded + Vnon—bonded (33)

Bonded interactions are written as a sum of various terms:

%onded - ‘/bonds + Vangles + V;lihedrals + ‘/impr—dihedr (34)

Vionds describes the stretching between the atoms in the system covalently

bonded: ]
%onds = Z Ekb”(bw - bgj)Q (35)

bonds
where the covalent bond between atoms 7 and j is represented by a harmonic
potential with force constant ky;;, instantaneous distance b;; and equilibrium
distance b?j. For some systems that require an anharmonic bond stretching
potential, other functional forms can be used such as the Morse potential [55].
Vangles describes the bond angle vibrations:

1
Vangles = Z ékjgijk (ezﬂc - H?Jk)2 (36)

angles

where the bending of the bond angle between a triplets of atoms ¢, 7 and £ is
modeled by a harmonic potential with force constant ky,;, , instantaneous an-
gle 0,5 and equilibrium angle Q%R. Viinedrals mimics the vibrations of dihedral
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angle (four-body) interactions and is generally modeled as:

1
Viinedrals = Z 57%1-]-“[1 + cos(noijm — )] (3.7)

dihedrals

where ¢;;1; is the angle between the ¢jk and jkl planes. Vi, —dinedr T€presents
a special type of dihedral interaction (called improper dihedral) which is used
to force atoms to remain in a plane or to prevent transitions to a configuration
of opposite chirality (a mirror image) and, in harmonic approximation, is
given by:

V;mpr—dihedr = Z %k&jkz (£ijkl - gz(')jkl)2 (38>

impr—dihedr

where ke, ,,, &im and &y, are the force constant, instantaneous and equilib-
rium improper dihedral angle, respectively.

As far as the non-bonded interactions are concerned, atoms are repre-
sented by charged point particles interacting with each other by parametrized
model potentials. One of the most used functional form of V.., _pondeq 1S given
as:

(12) (6)
1 qq C:. C:
Vnonf onded — — =L g = 3.9
ponded Z <47T€() ErRij Z ( R!2 RS, ) ( )
pairs(ij) pairs(ij) v v

where the first term describes the Coulomb interactions between all of the
atomic partial charges of the system (g; and ¢; are the partial charges of
particles ¢ and j placed at a distance R;;), while the second term represents
the van der Waals interactions by means of a Lennard-Jones potential which
is the most commonly used form.

Aspects and details of the Molecular Dynamics simulation techniques will
not be discussed here for the sake of brevity. However, it is noteworthy to
summarize just a few points:

e The Newton’s equations of motion 3.1 are integrated numerically step-
by-step. Many algorithms have been designed to do this which are
generally based on a Taylor expansion of the particle positions around
the positions at a certain time instant. Among these methods, the most
commonly used are the Verlet [56] and the leap-frog [57] algorithms.
These two methods have the important property to be time-reversible,
like the Newtonian equations of motion [58].

e Periodic boundary conditions [54] are applied in Molecular Dynamics
simulations in order to minimize edge effects which may produce arti-
facts in a finite system. The atoms of the system to be simulated are
put into a space-filling box, which is surrounded by translated copies
of itself. There are thus no boundaries of the system. However, this
imposed artificial periodicity by itself may cause errors, especially when
considering properties which are influenced by long-range correlations.

e Long range non-bonded interactions are generally not calculated beyond
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a certain cutoff distance around each particle, in order to reduce the
computational cost of the simulations. However, as far as the Coulomb
interactions are concerned, the use of a simple cutoff can introduce
serious artifacts and, for this reason, several techniques have been de-
veloped for handling long range interactions, the most popular of them
being the Ewald summation [59] and the Particle Mesh Ewald methods
[60, 61].

e Constraints are often used in Molecular Dynamics simulations, i.e. bonds
are treated as being constrained to have fixed length. This is very useful
when bonds have very high vibration frequencies and should be treated
in a quantum mechanical way rather than in the classical approxima-
tion. Moreover, they allow to increase the integration time step and
thus to perform longer simulations. The most commonly used con-
straints methods are the LINCS [62] and SHAKE [63] algorithms.

e When solving the Newton’s equations of motion 3.1 the energy is a con-
stant of motion and the simulation is performed in an NVE ensemble.
However, it is often more convenient to carry out simulations in other
ensembles, such as NVT or NPT. To this end, several approaches have
been developed which control the temperature and the pressure of a
system. As far as the temperature control is concerned, widely used
techniques are the Berendsen [64] and Nosé-Hoover [65, 66] methods,
while for the pressure control the Parrinello-Rahman scheme [67, 68] is
extensively employed.

3.2 Born-Oppenheimer Molecular Dynamics

We have seen in the previous section that in the classical Molecular Dy-
namics simulations the interaction potentials are expressed as a sum of pair
potentials, represented by suitable functional forms. These potentials are de-
termined in advance, either empirically or based on electronic structure calcu-
lations. An alternative approach to treat the interatomic potentials consists
in solving the electronic structure problem in each Molecular Dynamics step,
given the set of fixed nuclear positions at that instant of time. Thus, the
electronic structure part consists in solving the time-independent electronic
Schrodinger equation 2.10 for that particular nuclear configuration, while the
nuclei are propagated via classical Molecular Dynamics. In such an approach,
the time-dependence of the electronic structure is not intrinsic, but a conse-
quence of the nuclear motion.

The equations of motion in the Born-Oppenheimer Molecular Dynamics
are given by [47]:

MR, = —Vming(V/H|V) (3.10)
HY = EU (3.11)
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where M, and R, are the mass and the position of nucleus a, while H, ¥
and F are the electronic Hamiltonian, wavefunction and energy, respectively.
In each Born-Oppenheimer Molecular Dynamics step the minimum of (H)
has to be reached, and this means that the electronic wavefunction has to
be optimized at each instant of time using a suitable electronic structure
method. This may be for instance the Hartree-Fock approximation or the
DFT described in the previous chapter.

3.3 Car-Parrinello Molecular Dynamics

The Born-Oppenheimer Molecular Dynamics requires, as already pointed
out, that the time-independent electronic Schrodinger equation be solved self-
consistently at each Molecular Dynamics step and this task is computationally
very expensive. The aim of the Car-Parrinello method is to reduce the com-
putational cost of ab initio Molecular Dynamics simulations. The basic idea
of the Car-Parrinello approach is to introduce classical degrees of freedom
associated with the electronic wavefunction [69]. These electronic degrees of
freedom evolve in time classically along with the nuclei. The “electron dy-
namics” is the defining feature of the Car-Parrinello approach which exploits
the quantum-mechanical adiabatic time-scale separation of the fast electronic
and slow nuclear motion (see section 2.2), by transforming it into classical-
mechanical adiabatic energy-scale separation in the framework of Molecular
Dynamics.

Car and Parrinello postulated a new set of Lagrangians (Lcop) like [69]:

M N
1 : 1 ..
Lop = E §MaR§ + E Eﬂi<¢i‘¢i> — (U[H|Y) + (constraints)  (3.12)
a=1 i=1

where:

o T, = 224:1 %MaRg is the kinetic energy of the M nuclei of masses m,

and positions R,,.

o T, = Zf\il %MZ<¢,|¢1> is the classical fictitious kinetic energy of the N

electronic orbitals ¢;. This quantity has no relation with the quantum
electron kinetic energy and it does not have any physical meaning. p; =
1 are the fictitious masses or inertia parameters assigned to the orbital
degrees of freedom. The units of the mass parameter p are energy times
a square time for reasons of dimensionality.

o V., = (V|H|Y) is the potential energy calculated on the electronic wave-
function U (H is the electronic Hamiltonian).

e (constraints) This term is introduced in order to guarantee the con-
servation of the orbital orthogonality. The constraints are functions of
both the set of orbitals and the nuclear positions.
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The corresponding Newtonian equations of motion are:

d oL oL
d oL _ oL (3.14)

dt ogy 0¢;

like in classical mechanics, but here for both the nuclear positions and the
electron orbitals. The equations of motions in the Car-Parrinello Molecular
Dynamics are thereby given as [47]:

MR, = —8Ra<\If|H]\II) + IR, (constraints) (3.15)
. o P .
po; = oo (UH|T) + pre (constraints) (3.16)

According to the Car-Parrinello equations of motion the nuclei evolve in time
at a certain physical temperature o Zfzvil MaRg, whereas a fictitious tem-
perature o Zfil u<¢l|¢z> is associated to the electronic degrees of freedom.
If this “electronic temperature” is low, the electronic subsystem is close to
its instantaneous minimum energy ming,,) (¥V|H|¥), i.e. close to the Born-
Oppenheimer surface. Thus, a ground state wavefunction optimized for the
initial configuration of the nuclei will stay close to its Born-Oppenheimer sur-
face also during time evolution if it is kept at a sufficiently low temperature.
Since the Lagrangian in equation 3.12 is time-independent, there is in the
Car-Parrinello approach a conserved energy quantity, F...s, given by:

Econs = Tn + Te + ‘/e (317)

However, this constant of motion has no physical meaning. The physical
energy of the system (E,p,s) is instead given by:

Ephys - Tn + ‘/e = Econs - Te (318)

If T. << FEepns, i.e. if the fictitious electron kinetic energy is very small
with respect to the total energy, F,,,s is essentially constant on the rele-
vant energy and time scale. Thus, it behaves approximately like the strictly
conserved total energy in classical Molecular Dynamics (with only nuclei as
dynamical degrees of freedom), or in the Born-Oppenheimer Molecular Dy-
namics (with fully optimized electron degrees of freedom) [47]. This implies
that the resulting dynamics of the nuclei yields an excellent approximation
to microcanonical dynamics. It is clear that the validity of the Car-Parrinello
approach depends on the maintenance of adiabaticity between the fictitious
electron dynamics and the ionic motion. The adiabatic separation is main-
tained if T,, which can be considered as a measure of the deviations from the
Born-Oppenheimer surface, is small and performs bound oscillations around
a constant, i.e. the electrons do not heat up systematically in the presence of
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the hot nuclei. This condition in practice is achieved by adjusting the time
step of the simulation and the electron fictitious mass [47].
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Chapter 4

X-ray absorption spectroscopy

4.1 Introduction

X-ray absorption spectroscopy (XAS) measures the X-ray absorption co-
efficient, u(E), as a function of the X-ray energy of the incident photon,
E = hw (measured in eV). A XAS spectrum, in which the absorption coef-
ficient is plotted as a function of E, shows an overall decrease of the X-ray
absorption with increasing energy, with the exception of very sharp peaks at
certain energies (called edges) due to the transitions of core electrons to high
energy states (see Figure 4.1). The energies of these peaks correspond to the
ionization energies of the core electrons. Each absorption edge is related to
a specific atom present in the material and, more specifically, to a quantum-
mechanical transition that excites a particular atomic core electron to the
free or unoccupied continuum levels. The nomenclature for X-ray absorption
reflects the origin of the core electron (see Figure 4.2). K edge refers to the
transition that excites the innermost 1s electron, L; edge is due to the exci-
tation of the 2s electron, while L, and L3 edges are related to the excitations
of the 2p electrons with electronic states 2P, /2 and 2P, /2, respectively. The
transitions are always to unoccupied states with the photoelectron above the
Fermi energy, which leaves behind a core hole. The energies of the edges are
unique to the type of atom that absorbs in the X-ray and thus themselves are
signatures of the atomic species present in a material.

From what has been said, it is clear that XAS, being an atomic probe,
places few constraints on the samples that can be studied. All atoms have
core level electrons, and XAS spectra can be measured for essentially every
element on the periodic table. Moreover, crystallinity is not required for XAS
measurements (even if it is also possible to measure XAS spectra of crystalline
samples), making it one of the few structural probes available for noncrys-
talline and highly disordered materials, including solutions, amorphous solids
and fluid samples in general. In many cases, XAS measurements can be made
on elements of minority and even trace abundance, giving a unique and direct
measurement of chemical and physical state of dilute species in a variety of
systems. XAS spectra are recorded using the properties of synchrotron radi-
ation, which provides tunable X-ray beams with high brilliance. In this way
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Figure 4.1: Typical XAS spectrum showing the K, L;, Lo and L3 absorption edges.
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Figure 4.2: Schematic representation of the transitions that take place at the various
absorption edges.
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it is possible to obtain spectra with a very high signal /noise ratio.

A typical XAS spectrum is shown in Figure 4.1. When the energy of the
incident photon, FE| is greater than the ionization potential, Fj, of a given
electron, this electron is emitted by the photoabsorber atom with a kinetic
energy equal to the difference £ — Ej and undergoes a scattering process on
the nearest atoms. This phenomenon produces a series of wiggles or oscil-
latory structures above the edge that modulate the absorption, typically by
a few percent of the overall absorption cross section. These features contain
detailed structural information on the atoms around the photoabsorber, such
as interatomic distances and coordination numbers. However, it is impor-
tant to stress that the information on bond angles and distances that can
be obtained from a XAS spectrum is limited in a range of 4-5 A from the
photoabsorber atom [70]. The short-range character of XAS is due to the
limited mean free path of the photoelectron and to the excited state lifetime
(core hole lifetime). In fact the high-energy excited photoelectron state is not
long lived, but must decay as a function of time and distance and thus cannot
probe long-range effects. This decay is due primarily to inelastic losses (i.e.
“extrinsic losses”) as the photoelectron traverses the sample, either by inter-
acting with and exciting other electrons, or by creating collective excitations
(plasmon production). In addition, the intrinsic lifetime of the core-hole state
(“intrinsic losses”) has to be clearly considered [70]. The net effect is that
XAS can only measure the local atomic structure over a range limited by the
net lifetime of the excited photoelectron. In this sense, XAS is very differ-
ent from other techniques such as X-ray diffraction or neutron diffraction, in
which also long-range interactions provide a detectable contribution to the
experimental spectrum.

A XAS spectrum is conventionally divided into two regions: the X-ray
Absorption Near Edge Structure (XANES) up to about 50 eV beyond the ab-
sorption edge, and the Extended X-ray Absorption Fine Structure (EXAFS)
at higher energies. The border between XANES and EXAFS regions is shown
in Figure 4.3. The division of a XAS spectrum is only formal and it is due
to the different theoretical treatment and approximations used to calculate
the absorption cross section in the two regions. In both cases, a full quantum
description of the X-ray absorption phenomenon is not possible, and, as a
consequence, approximate models have to be employed. In these models the
emitted electron is treated as a quasi-particle (photoelectron) that moves in
an effective potential which takes into account both the interaction with the
other electrons of the photoabsorber atom and the potential generated by the
surrounding atoms. However, as the energy of the photoelectron increases,
further approximations can be made to obtain a simpler data analysis proto-
col. For this reason, historically the first quantitative analyses were made on
the high energy part of the absorption spectrum (EXAFS) while the XANES
spectra have been analysed for many years only on a qualitative way.

XAS phenomenon was discovered around 1930 but only 40 years later be-
came a structural investigation technique, following the incoming of better
X-ray sources in the experiments and the development of theories able to
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Figure 4.3: Division of the absorption spectrum between XANES and EXAFS regions.

provide a quantitative interpretation of experimental data. The first works
were published by Sayers et al. in 1971 and 1975 [71, 72]; in these works a
semi-empiric parametrization of the EXAFS signal is proposed for the first
time. Later, the work of different groups lead to the development of theories
able to explain the many physical phenomena involved in radiation absorp-
tion, confirming the validity of Sayers’ approach.

Some years ago a unifying scheme of interpretation of the X-ray absorp-
tion spectra, based on the Multiple Scattering (MS) theory and valid for
the whole energy range, has been developed [73]. An important result of
this MS approach, which is based on the Green’s function formalism, is that
the expression for the absorption cross section (o(£)) can be factored in an
atomic term (o} (E)) depending only on atomic electronic properties, and in
a structure factor (x'(F)) containing all the structural information on the
environment:

o(E) o og(E)X'(E) (4.1)
The expression for x!(E) obtained within the MS theory is given by [74]:

1 _
Y(E) = AT DR > Im[(I+ T,G) T, 1, (4.2)
Lm

where [ is the unit matrix, GG is the matrix describing the spherical wave
propagation of the photoelectron from one site to another around the pho-
toabsorber, T is the diagonal matrix describing the scattering process of the
photoelectron by the atoms located at the various sites around the photoab-
sorber and 47 is the phase shift of the photoabsorbing atom (located at site
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0) for angular momentum [. Therefore, the fundamental problem in XAS
calculations is the inversion of the matrix reported in equation 4.2. In the
high energy region, this problem can be overcome by expanding the matrix
inverse in a series in which each term corresponds to the contribution of a
scattering path, or in other words, the matrix inverse can be written as a sum
over all of the multiple scattering paths [74]. This is possible because in the
high energy regime the series is convergent. Conversely, in the XANES region
the series does not converge, and the structure factor has to be calculated by
the exact matrix inversion. This is one of the most fundamental differences
between the theoretical approaches used in the EXAFS and XANES regions
of the spectrum. The physical reason of this difference is that in the XANES
regime the electron kinetic energy is small and the scattering on the neigh-
bouring atoms tends to be strong, while the effect of the scatterers becomes
smaller at higher energies and the photoelectron is only weakly scattered.

In this framework, several data analysis programs have been developed to
analyze the experimental data. In this codes two fundamental approximations
are generally used. The first one is the so called muffin-tin approximation, in
which the potential generated by the atoms surrounding the photoabsorber is
spherically averaged inside muffin-tin spheres around each atom, and averaged
to a constant in the interstitial region (delimited by a convenient outer sphere
enclosing the cluster used in the calculations). The second approximation con-
cerns the choice of the effective optical potential in which the photoelectron
moves. The most used approximation is the complex Hedin-Lundqvist energy
dependent potential whose imaginary part accounts for extrinsic losses [75].
While this approach is a good approximation in the EXAFS region, in the
low-energy regime the complex part of the Hedin-Lundqvist potential intro-
duces an excessive loss in the transition amplitude of the primary channel
and thus other approximations are exploited, as we shall see in section 4.3.

In the remainder of this chapter a brief introduction to the techniques
used in the EXAFS and XANES data analysis will be given, with particular
emphasis on their application to the study of disordered systems.

4.2 EXAFS analysis

The fundamental quantities used in the analysis of EXAFS spectra are
defined as follows:

e u(FE) is the atomic absorption coefficient, defined as the attenuation of
the X-ray beam per distance unit, which is proportional to the absorp-
tion cross section.

e 1o(F) is the absorption coefficient of the isolated atom.

2me )
o k= % =4/ ;; (E — Ey) is the photoelectron wave number.

o x(k) = “;g”o is the normalized oscillating part of the spectrum, which
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Figure 4.4: Relation between u(F), po(E) and x(E).

is obtained by eliminating the absorption of the isolated atom from the
signal and normalizing it to unity.

The relation between these quantities is shown in figure 4.4. x (k) contains all
the structural information on the system in an analogous way to the structure
factor S(¢) in diffraction techniques.

Sayers et al. developed a quantitative parametrization of x(k) which has
become the standard for current EXAFS analysis and it is given by [71]:

5221\[ i R2 SIn(2kR: + 20,(k) + i (k))e "W e 2 (4.3)

where S? is a phase reduction factor, the index i is related to the N; equiva-
lent scattering atoms at distance R; from the photoabsorber, 6.(k) and ¢;(k)
are the phase displacements due to the photoabsorber atom and to the scat-
terers, respectively. o; is the average square fluctuation of the bond distances
(or Debye-Waller factor) and contains the structural disorder, and f; is the
diffusion amplitude. The substantial validity of this expression is due to the
above mentioned fact that in the high energy range the contributions of the
different scattering paths can be factorized and for the special case in which
only two-body paths are accounted for, the functional form of equation 4.3 is
recovered.

The Debye-Waller factor in equation 4.3 accounts for the fact that, due
to the thermal vibrations, the atomic positions oscillate and thus R; is only
the average value of a distance distribution. For low enough temperatures,
i.e. in the harmonic approximation limit, this distribution is well approx-
imated by a Gaussian function of width proportional to the Debye-Waller
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factor (this is the origin of the e~27** term in equation 4.3). The analysis
of crystalline samples is usually made describing the coordination around the
photoabsorber atom using these Gaussian shells. On the other hand, at ele-
vated temperatures or in disordered systems, such as aqueous ionic solutions,
the distribution functions become broad and asymmetric towards the large
distances, the harmonic approximation is no longer valid and the appropriate
description of these systems can be performed in terms of radial distribution
functions (g(r)). When an asymmetric distribution is present the first peak of
the radial distribution functions can be modeled using a set of Gamma func-
tions. These functions are described by an average distance R, a coordination
number (N,), a standard deviation o, and an asymmetry factor (skewness)
0= Qp%. Their general expression is given by:

r—R

NP
F) =Nt o T

D=

(r—1) el
] o[t (4.4)

where I'(p) is the Euler Gamma function associated to the parameter p.
The EXAFS spectroscopy is particularly suited to the study of the lo-
cal environment around a photoabsorber atom, such as an ion in aqueous
solution, since the EXAFS signal depends only on the distribution functions
related to photoabsorber atom; this is one of its main advantages over diffrac-
tion techniques where the structure factor S(g) is the superimposition of the
N(N +1)/2 different distribution functions associated to the N atoms of the
systems, and it is very difficult to isolate single contributions. Therefore, in
systems like ionic solutions the greater contribution to the structure factor is
from bulk water and diffraction techniques can be employed only in rather
concentrated solutions (1-2 M), while EXAFS can be used at very low con-
centrations. Moreover, EXAFS provides values of bond distances with very
high accuracy, typically of the order of 0.01 A, about one order of magni-
tude greater than the majority of diffraction techniques. On the other hand,
EXAFS can only give short range (up to 4-5 A) information, as it has been
already discussed in the previous section, and, in the case of disordered sys-
tems, the fitting parameters are often correlated and the EXAFS data anal-
ysis can lead to ambiguous result. A strategy to help in the extraction of the
structural details contained in the EXAFS spectra of disordered systems is to
include independent information derived from computer simulations. In par-
ticular, in recent years it has been shown that EXAFS data analysis of ions
and molecules in solution can derive strong benefit by using the radial distri-
bution functions calculated from Molecular Dynamics simulations as starting
models. In this case the theoretical signal x(k), associated for example to the
ion-oxygen distribution in an aqueous ionic solution, is expressed as a function
of the ion-oxygen g(r) calculated from the Molecular Dynamics trajectories:

x(k) = /000 dramr?pg(r)A(k,r) sin(2kr + ¢(k, 7)) (4.5)
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where A(k,r) and ¢(k,r) are amplitude and phase functions and p is the den-
sity of scattering atoms. With such a procedure, it is possible to analyze the
EXAFS data using a realistic structural model and including the contribution
of the second hydration shell.

The theoretical signal is then compared with the experimental one by
minimizing the following function:

RA{\}) = Z [Ceap(Ei) — Qmoa(Eis A1 ... A\p)] (4.6)

=1 O-i2

where N is the number of experimental points E;, {\;} is the set of p parame-
ters that are optimized and ¢? is the variance associated to each experimental
datum o, (E;). On the basis of the final value of R;({\}) and of the agree-
ment between the experimental and theoretical spectra, the correctness of the
starting g(r) can be evaluated. Therefore, this combined EXAFS-Molecular
Dynamics approach on the one hand allows one to verify the reliability of the
Molecular Dynamics simulations by comparing the theoretical results with
the experimental data, on the other hand provides a useful starting model in
the EXAFS analysis of disordered systems. The structural parameters of the
starting model can be fitted in order to obtain the better possible agreement
with the experimental data, and an accurate description of the first coordi-
nation shell can thus be obtained.

It is important to stress that besides the radial (two-body) distribution
functions, also information on three-body, four-body ... distribution functions
can be obtained from the EXAFS analysis, that are calculated by means of the
MS theory as implemented in the GNXAS software package [76]. Obviously,
this is possible only when MS processes provide a detectable contribution to
the EXAFS experimental spectrum.

4.3 XANES analysis

The XANES region of the spectrum is extremely sensitive to the geomet-
ric environment of the absorbing atom and, in principle, an almost complete
recovery of the three-dimensional structure can be achieved from it. The pos-
sibility to gain structural information from the XANES spectra is extremely
important for dilute and biological systems where the low signal-to-noise ratio
of the experimental data hampers a reliable analysis of the EXAFS region.
Moreover, in the study of disordered systems coordination numbers cannot
be accurately determined from the EXAFS data due to their large correla-
tion with the Debye-Waller factors, and for these systems the analysis of the
XANES region can thus be essential to address some of the shortcomings of
EXAFS. However, the analysis of the low-energy part is much more difficult
to be performed and requires the use of heavy time-consuming algorithms to
calculate the absorption cross section in the framework of the full MS ap-
proach. For this reason, this technique has been for a long time used as a
qualitative method and only some years ago a method has been proposed

o4



4.3 XANES analysis

in the literature which performs a quantitative analysis of XANES. In par-
ticular a new software procedure, named MXAN, has been developed [77].
This method is based on the comparison between the XANES experimental
spectrum and several theoretical calculations performed by varying selected
structural parameters associated with a given starting model. Starting from
a putative geometrical configuration around the photoabsorber atom, the
MXAN package is able to reach the best-fit conditions in a reasonable time,
by minimizing a residual function Ry, in the space of the structural and non-
structural parameters defined as:

i w [ — ) )

D iy Wi

where n is the number of independent parameters, m is the number of ex-
perimental points, y" and y;*® are the theoretical and experimental values
of the cross section, ¢; is the error on each experimental point and w; the
statistical weights. The X-ray absorption cross section is calculated using
the full MS scheme within the muffin-tin approximation for the shape of the
potential. The exchange and correlation part of the potential are determined
on the basis of the local density approximation of the self-energy of the pho-
toelectron using an appropriate complex optical potential. The real part of
the self-energy is calculated either by the Hedin-Lundqvist energy-dependent
potential or by the X, approximation. However, to avoid over-damping at
low energies due to the complex part of the Hedin-Lundqvist potential, the
MXAN method can account for all inelastic processes by convolution with a
broadening Lorentzian function having an energy-dependent width 'y, (E) of

the form [77]:

Ry = (4.7)

Ftot(E) == Fc + mep(E)

The constant part I'. accounts for both the experimental resolution and the
core-hole lifetime, while the energy dependent term I'yg,(E) represents all
the intrinsic and extrinsic inelastic processes. The I'yg,(E) is zero below an
energy onset F (which, in extended systems, correspond to the plasmon ex-
citation energy), and starts increasing from a given value A, following the
universal form of the mean free path in solids [78].

The MXAN procedure has been successfully applied to the study of several
systems, both in the solid and liquid state, allowing a quantitative extraction
of the relevant geometrical information about the absorbing site [79, 80, 81].
However, in the case of ionic solutions the XANES spectra have been usually
computed reducing the system to a single structure since the contribution
from molecules and arrangements instantaneously distorted cannot be calcu-
lated using the analysis standard methods. A promising strategy to overcome
this problem is to analyze the XANES spectra using the microscopic dynam-
ical description of the system derived from Molecular Dynamics simulations.
In this framework, we have developed a computational procedure which uses
MXAN and Molecular Dynamics simulations to generate a configurational av-
eraged XANES spectrum and we have applied it to the study of ionic aqueous
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solutions.
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Chapter 5

Ab initio generation of
cation-water effective potentials

5.1 Introduction

As already mentioned in the Introduction chapter, in this work the struc-
tural and dynamic properties of the Zn?*, Cd®", and Hg?" aqua ions have
been studied by means of classical Molecular Dynamics simulations. In par-
ticular, Zn?T aqueous solutions were investigated at normal pressures and in
high-density water, while Cd?>T and Hg?t aqueous solutions have been sim-
ulated at ambient conditions, since the hydration structure of these ions are
still poorly defined even at 1 bar and 300 K. This study has been carried out
further developing and applying a general procedure which combines ab-initio
calculations, classical Molecular Dynamics simulations and X-ray absorption
spectroscopy. The validity of this methodology has been already assessed by
an extensive study on aqueous solutions of Zn?*, Co?* and Ni** at ambient
conditions [6, 7].

The general scheme of the procedure used in this work is shown in Figure
5.1. The first step of the method consists in the generation of a Potential
Energy Surface (PES) of the M*"-H,O system by means of ab initio calcu-
lations. Then a two-body ion-water potential is calculated by fitting the ab
initio energies with an analytical function and this potential is subsequently
used to carry out the Molecular Dynamics simulations. Finally, the theoret-
ical results obtained by the analysis of Molecular Dynamics simulations are
compared with the XAS experimental data.

Molecular Dynamics simulations are a powerful tool for the investigation
of structural and dynamic properties of ionic aqueous solutions, but a proper
choice of the interaction potentials among all of the atoms of the system is
always a mandatory prerequisite for obtaining reliable results. Much effort
has been made to generate water-water pair potentials which have been de-
termined either empirically or have been fitted on the results of electronic
structure calculations. As a result of this effort many water models are now
available in the literature. As far as the ion-water interactions are concerned,
the most simple approach to treat them consists in using simple two-body
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Generation of ab-initfo potential
energy surface (PES) of
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Fitting of the ab initio PES with an
analytical function which describes the
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Molecular Dynamics simulations

L &

Comparison of the theoretical results
with XAS experimental data

Figure 5.1: General outline of the procedure used in this work.

potentials, implicitly assuming that interactions between the different species
are additive. However, these interactions in reality are not additive, and this
is particularly true when dealing with doubly or triply charged cations. In
this case the non additivity of the pair potentials has two fundamental causes.
The first one concerns the long range behaviour of the M"*-H,O ground state
potential: the electronic affinity of M"* (i.e. the n'* ionization potential of
M) is generally greater than the water ionization potential (which is 12.615
eV) [52]. At great distances the ground state of the system is represented by
the M("~D+_(H,0)* charge transfer configuration [82]. Therefore, the long
range interaction is repulsive while at short distances this charge transfer is
only partial and the ground state of the system is M"*-Hy0. The presence of
an avoided crossing between charge transfer and non-charge transfer states
can be important in vacuum while it is almost irrelevant in solution, since
the n+ cation charge is strongly stabilized by the presence of the other wa-
ter molecules. The many body effects produce thus a qualitative change of
the interaction potential form. The second reason of non additivity concerns
the strength of the interaction between the ion and the second, third,...nth
water molecule. Two fundamental contributions to the ion-water interaction,
i.e. the induction and the charge transfer, are in fact non additive. The
ion-water interactions tend to be overestimated in simulations based on sim-
ple two-body potentials which completely neglect many body contributions,
leading to coordination numbers that are too large and ion-water distances
that are too short.

The problem of non additivity can be dealt with in several ways. The
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5.2 PES generation

Figure 5.2: Geometric parameters of the Hg?T-H,O system. 74, 7in1, and 7,0 are the
ion-oxygen, ion-hydrogenl and ion-hydrogen2 distances, respectively, while o and [ are
the M2*-O-H1 and M?*-0O-H2 bond angles. The tilt angle ¢ is the angle formed by the
M2*-0 direction and the water dipole (u).

more rigorous approach consists in taking into account many body contri-
butions in the simulation, but even including only the three body terms has
serious drawback from the point of view of the computational cost, especially
if very long simulations are required as in this case. Another strategy is the
calculation of the interaction potential between a water molecule and the en-
tire M""-H,O complex; this approach is based on the recognition that non
additive effects are essentially due to first shell water molecules. However,
the limit of this method is that it requires an a priory knowledge of the coor-
dination number (which is generally what one wants to obtain as a result of
the investigation). Another possible approach, which has been used in this
work, consists in generating an effective two-body potential by including the
many-body contributions in an implicit way. This is possible through ab ini-
tio calculations which simulate the presence of the solvent by means of the
Polarizable Continuum Model (PCM), as it has been described in section 2.9.

5.2 PES generation

5.2.1 Ab initio protocol

For the Zn?* aqua ion the ion-water interaction potential already used to
perform the Molecular Dynamics simulation at ambient conditions has been
employed, as it has been shown that it is able to provide a good description
of Zn*T aqueous solutions [6]. The ab initio calculations were carried out
at the RHF level using the LANL2DZ effective potential for the metal ion
(83, 84] and the cc-pVTZ basis set for the oxygen and hydrogen atoms of
the water molecule [85]. For the Cd*T ion, the ion-water potential previously
determined by our group has been used [11]. This potential was developed
using the same protocol of that employed in the case of the Zn?** aqua ion.

On the other hand, since Hg?* is far more heavier than Zn** and Cd?*,

the calculations on this cation have been carried out using a post-SCF method
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Figure 5.3: Comparison of the MP2 and CCSD(T) binding energies for the Hg?T-H,O
system in its minimum energy configuration.

and more extended basis sets. In particular 2"¢ order Mgller Plesset method
(MP2) has been employed (see section 2.6.2), whose validity has been assessed
for the description of similar kind of systems [86]. As far as the basis sets
are concerned, LANL2 effective core potential (ECP) was retained even in
this case to describe the core electrons of the cation, since for Hg?* is very
important to account for scalar relativistic effects that are included in this
ECP. However, to allow for a greater flexibility, the valence part was replaced
with an optimized valence basis set which describes the 5d, 6s, 6p orbitals and
includes multiple d, f and g functions. This basis set has been developed by
Prof. Vincenzo Barone of the Normale University of Pisa and it is reported
in Table 5.1. The water molecule has been described by the cc-pV'TZ basis
set, augmented by diffuse s and p functions on the oxygen atom taken from
the aug-cc-pVTZ [85]. Test computations revealed that at this level the basis
set superposition error (BSSE) is very low (2-3 kJ/mol near the energy mini-
mum), and furthermore have shown that the very reliable CCSD(T) (Coupled
Cluster Singles and Doubles with non-iterative account of Triple excitations)
and the less CPU demanding MP2 provide essentially equivalent results in
the minimum energy configuration of the system, which corresponds to the
geometry in which the o angle defined in Figure 5.2 is 127.745° and all of
the atoms are coplanar. The results for this analysis are shown in Figure 5.3.
Therefore, the computations on the Hg?T aqua ion have been performed by
means of the MP2 method. All the ab initio calculations were carried out

using the GAUSSIANO3 code [87].
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5.2 PES generation

Hg*" Basis set
Shell type | Number of primitives | Exponents | Coefficients
S 5
36.6964560 -0.00010
5.55024360 -0.00045
2.96428670 -0.03047
1.58382950 0.17165
0.84642317 -0.48393
SP 1
0.84642317 1.0 1.0
SP 1
0.45238567 1.0 1.0
SP 1
0.24179521 1.0 1.0
SP 1
0.12923879 1.0 1.0
SP 1
0.06907803 1.0 1.0
D 5
36.69645600 | -0.00097
5.55024360 -0.00459
2.96428670 0.00269
0.24179521 0.09832
0.12923879 0.02794
D 1
1.58382950 1.0
D 1
0.84642317 1.0
D 1
0.45238567 1.0
F 1
1.58382950 1.0
F 1
0.45238567 1.0
G 1
1.58382950 1.0

Table 5.1: Hg?T valence basis set developed by Prof. Vincenzo Barone of the Normale
University of Pisa.

61



5 Ab initio generation of cation-water effective potentials

5.2.2 PCM details

The PCM represents the solvent as an isotropic dielectric medium, with
a cavity of suitable shape to accommodate the solute (see section 2.9). It is
used in this work to include in an implicit way many-body contributions in
the ion-water potential. In this context, the non-additivity of intermolecu-
lar potential can be seen as a modification of the ion-water pair interaction
induced by the environment. According to such a view, an effective pair
potential Uy can be determined by performing supermolecule calculations
for the ion-water system, in which the influence of the environment, i.e. the
surrounding water molecules, is introduced by means of the PCM. The ex-
pression of the interaction energy has to fulfil two conditions: it has to contain
only terms pertaining to the ion-water pair, and it has to take into account
the perturbation due to the environment. Therefore, the Hamiltonian that
we have to use is H°, the Hamiltonian in vacuum, while the wavefunction ¥
should contain the terms originated by the presence of the rest of the solvent,
and then it should be an eigenfunction of H = H° + H°, where H? is the
Hamiltonian generated by the polarization charges on the cavity surface:

Uniw = (U[HO|0) i — (W[HO [ W)y — (W[H [ 0) s (5.1)

where the M, W and MW subscripts refer to the bare ion, the single wa-
ter molecule and the mono-hydrated complex. The main sources of non-
additivity are the polarization of the water molecule in the electric field of
the cation and the electron transfer from water to the cation: both effects give
place to binding interactions and both are reduced if the cation is solvated
by other water molecules. In the PCM, negative surface charges surround
the cation, and their electric field opposes both the polarization of the water
molecule and the charge transfer. Thus the PCM gives qualitatively the right
behaviour, but the extent of the perturbation, i.e. the difference between
the wavefunction calculated in vacuum or with the PCM, depends on some
PCM parameters. The most important of these parameters is the shape of
the PCM cavity. The cavity for the ion-water system is modeled here as a set
of interlocking spheres centered around each atom. For neutral species, the
Van der Waals radii are generally employed. For this reason we have used for
the oxygen and hydrogen atoms the following Van der Waals radii:

po = 1.68A
o = 144 A

The choice of the radius for the cation cavity (p,,) is somewhat more arbitrary
and in order to determine it we have applied a procedure developed by Floris
et al. based on an internal consistency criterion [52]. In particular, we choose
pm such that the following relationship is verified:
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Figure 5.4: Optimization of the cavity radius for the Hg?* ion.

where Uy has been defined in equation 5.1, while Uy p and Uy are
given by:

Upynw = (UHOW) yyw — 200HO W)y — (W HO W), (5.3)
Upw = (U[H[W)ww — 2(V[H°|T)y (5.4)

The subscripts refer to the systems on which the calculations are carried out,
so WMW is a system composed by two water molecules and one cation,
WW is composed by two water molecules and so on. Both sides of equation
5.2 depend on the radius p,, (in particular decrease as the radius increases),
but Uy is more sensitive than Uy ps to this parameter and the equation
will be satisfied only for a certain value of p,,. In order to determine p,,,
(UHO W) s, (PHO W)y and (U[HO| W), have to be computed as
a function of p,,, by keeping fixed the geometry of the M?T-H,0O and M?*-
(H30), systems. For M*"-H,0 the minimum energy configuration was chosen
with an ion-water distance of 2.2 A. The energy of the M?*-(H,0), system has
been instead computed with a face-to face Cy, geometry of the two ligands,
using always the same value of o and ion-oxygen distance, and with an O-
M2T-O angle of 90°, as suggested by Floris et al. in Ref. [52]. Figure 5.4
shows the left- and right-hand sides of equation 5.2 calculated for the Hg?*-
water system as functions of the sphere radius on the cation. As it can be
seen, the two quantities coincide when p,,=1.194 A. This values of the cavity
radius will then be used for the potential energy surface scan. To include
solvent effects the Conductor like PCM (CPCM) [50] has been employed (see
section 2.9).
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5 Ab initio generation of cation-water effective potentials

5.2.3 Surface scan

A grid of points on the PES of the ion-water system has now to be chosen
and the interaction energies related to these configurations have to be calcu-
lated. The water geometry was kept fixed to the experimental value during
the PES scan (H1-O-H2 angle=104.51°, Roz=0.9575 A). The grid of points
has been obtained by varying the ion-oxygen distance ;, from 1.2 A to 4.0 A
with a step of 0.02 A, and the a angle in the range of 7.745° < a < 127.745°,
with a step of 10°, while keeping the ion in the water molecular plane (see
Figure 5.2). We have thus obtained 1833 configurations of the system. Then
we have performed a series of scans by moving the H2 atom outside from
the M-O-H1 plane and towards the cation, i.e. by varying the dihedral angle
formed by the M-O-H1 and M-O-H2 planes. Other 330 configurations were
obtained for values of the dihedral angle of 150°, 135°, 120°, 90°, 60° and 45°,
a angle between 127.745° and 7.745° (step of 30°) and r;, distance between
1.7 A and 2.7 A (step of 0.1 A).

A similar grid was used by our group to determine the Cd?*-water effec-
tive potential [11], while for the Zn?* ion only configurations whith all the
atoms coplanar were chosen since in this case the water molecules are strongly
restrained in their movements by the quite strong ion-water interaction [6].

5.3 Pair potential calculation

Once obtained the PES, the two-body ion-water potential is calculated
by fitting the ab initio energies with a suitable analytical function. The
fitting was carried out using the Newton method as implemented in the SAS
statistical package [88]. The Newton iterative method is used to solve systems
of non-linear equations and it works by regression of the residuals onto a
function of the first and second derivatives of the model with respect to the
parameters, until the estimates converge [89]. In contrast to other available
non-linear fitting methods (such as the Steepest descent) the Newton one uses
the Hessian with respect to the parameters, thus allowing the error minimum
to be reached more efficiently and with higher precision.

At this point of the procedure a water model has to be chosen, since the
form of the analytical function used for the fitting depends on this particular
choice. To perform the Molecular Dynamics simulations of the Cd®* and Hg**
aqua ions we have employed two of the most widely used water models, i.e.
the SPC/E [90] and TIP5P [91], while the simulations of Zn*" ion were carried
out only with the SPC/E water model. The geometries of the water molecule
as described by the SPC/E and TIP5P models are shown in Figure 5.5. In
the case of the SPC/E water model, the ab initio single point energies were
fitted using the following analytical function for the ion-water interaction:
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Figure 5.5: Geometry of the water molecule in the SPC/E (left) and TIP5P (right) models.
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where r;,, min1, and r;,e are the ion-water distances and ¢;, q,, and ¢, are the
electrostatic charges of the cation (-2 a.u.) and of the oxygen and hydrogen
atoms in the SPC/E water model (-0.8476 and 0.4238 a.u., respectively).
Aoy ..., F,, and Ay, ..., Dy are the unknown parameters.

The TIP5P water model has two negative charges centered on two dummy
atoms, instead of the oxygen atom, and therefore the two-body potential has
been adapted to the following form:

A B C, D
V = 242y 20y 0y R e oo
(r) " +r6 +r8 +r12+ e

%0 10 20 20

; A B C
> LS 2 (5.6)
ihminrinz 0 Vi Tin Tin
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where the variables have the same meaning as in equation 5.5; r;z1 and ;79
are the ion-dummy atom distances and q;, is the electrostatic charge of the
dummy atoms (q; and qy, are equal to +0.241 and -0.241 a.u., respectively).

The trend of the fitted Hg?" ion-water interaction potential for the SPC/E
water model is shown in Figure 5.6. An almost identical result was obtained
in the case of the TIP5P model. All the parameters calculated from the fitting
procedure are reported in Table 5.2, 5.3 and 5.4 for the Hg?*, Cd?** and Zn**
ions, respectively.
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Figure 5.6: Fitted potential energy curve for the Hg?t-SPC/E water interaction as a
function of the ion-oxygen distance in the minimum energy configuration of the system.

SPC/E TIP5P

parameters std. dev. parameters std. dev.
A, 1.2712 - 10° 4.50-1072 0.3718 - 10° 6.40 - 1072
B, ~1.181 - 107" 5.31-10°3 0.762-10~1  4.05-1073
C, 8.433-10* 7.40-107° —1.021-1073 5.52-107°
D, —1.178 - 1078 3.58 - 107 4.493-1078 2.54-107°
E, 2.130 - 10*6 6.86 - 1074 —6.681 - 10" 3.97 1073
F, 3.952 - 10*! 3.02-107! 2.015-10*! 2.25-107!
A 4.408 - 102 2.07-103 1.169-10"'  1.85-1073
By, —5.700 - 1074 4.10-107° —6.900 - 1074 4.10-107°
Ch 3.372- 1076 2.29-1077 1.606 - 10~ 8.87-1078
Dy, —2.348 - 1071 1.88-10712
Ap 1.208 - 101 5.18-1073
By, —1.590-1073 1.07-107*
Cr 6.729 - 1076 6.27-1077

Table 5.2: Estimated Hg?T-H,O interaction parameters and relative standard deviations
for the SPC/E and TIP5P water models.
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SPC/E TIP5P

parameters std. dev. parameters std. dev.
A, 5.577-1071 3.89-1072 —5.892- 107! 3.47 - 1072
B, —6.130 - 1072 4.54-1073 7.895 - 1072 2.86-1073
c, 4.909 - 1074 6.30-107° —8.682- 10 3.47-107°
D, —1.200-1078 3.02-107° 2.938 - 1078 1.74-107°
E, 1.255 - 1076 5.71- 1074 6.568 - 107 3.73-1073
F, 3.951 - 10" 4.29 1071 2.224 - 101 2.17-1071
Ay, 5.364 - 1072 1.51-1073 1.797-107¢ 1.08-107*
By, 2.365- 1074 2.80-107° —8.816-107* 1.40-107°
Ch —1.719-10° 1.48-1077 1.982-10°¢ 4.77-1078
Dy, 1.097-107'"  1.09-10"2
Ap 1.710- 1071 3.16-1073
By 2.340-107* 6.50 - 107°
Cr 1.085-107° 3.82-1077

Table 5.3: Estimated Cd?*-H,0O interaction parameters and relative standard deviations
for the SPC/E and TIP5P water models.

SPC/E

parameters std. dev.
A, 2.049 - 1072 1.10-1073
B, 2.910 - 1072 1.30-1073
C, —2.834-1074 1.70-107°
D, 8.011-107° 8.40-10710
E, —3.633 - 10" 2.00 - 103
F, 2.360 - 10+ 1.70 - 1071
Ay, 8.377-1072 1.80- 1073
By —1.563-1073 6.10-107°
Ch, 1.244 -107° 5.30- 1077

Table 5.4: Estimated Zn?*-H,O interaction parameters and relative standard deviations

for the SPC/E water model.
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Chapter 6

Methods employed in the study
of group 12 aqua ions

6.1 Molecular Dynamics simulations

6.1.1 Molecular Dynamics protocol

The simulations of Zn?*, Cd?* and Hg?" aqua ions were carried out us-
ing the GROMACS package version 3.2.1 [92], modified in order to include
the ion-water effective pair potentials determined by means of the procedure
described in the previous chapter. All the simulations were carried out us-
ing the same general protocol. The system was composed by one M2 ion
and 819 water molecules (for a total of 2458 atoms) in a cubic box, using
periodic boundary conditions. A cutoff of 9 A was used to deal with non
bonded interactions, with the Particle Mesh Ewald (PME) method to treat
long range electrostatic effects [60, 61]. A homogeneous background charge
has been used to compensate for the presence of the M** ion [93]. The sys-
tems were simulated in a NVT ensemble using the Berendsen method [64]
with a coupling constant of 0.1 ps. A time step of 1 fs was employed, saving a
configuration every 25 time steps and equilibrating the system for 5 ns before
sampling. In the following, the reported simulation time do not include this
equilibration phase.

The Cd?* and Hg?" aqua ions were simulated at ambient conditions using
both the SPC/E and TIP5P water models in order to evaluate the influence of
the water-water interactions on the structural and dynamic properties of the
solvation shells of these ions. The estimated residence time of water molecules
in the first coordination shell of both Cd?* and Hg?* is in the nanosecond
time scale [14]. Therefore, very long simulations are required to properly
describe the first hydration shell dynamics of these systems. The Cd** ion
is expected to have a slightly longer residence time than Hg?*, and for this
reason simulations of 100 ns were performed for the Cd?* ion, while in the
Hg?* case the system was simulated for 60 ns.

Three simulations of Zn?* in aqueous solution were carried out in order to
reproduce the properties of the system in three different points of the phase
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diagram, i.e. 300 K and 0.1 MPa (d = 1006.8 g/1), 300 K and 1.0 GPa (d
=1271.2 g/1), 360 K and 2.2 GPa (d = 1345.3 g/1). Different box volumes
have been employed in order to reproduce the chosen density, temperature
and pressure conditions. In particular, the box sides used are 29.0 A, 27.1
A and 26.3 A, for the simulations at 0.1 MPa, 1 GPa and 2.2 GPa, respec-
tively. Each simulation was carried out with the SPC/E water model for 10
ns. It is noteworthy to observe that the estimated first hydration shell resi-
dence time is of the microsecond order of magnitude [14], and in the ambient
condition simulation previously published no solvent exchange events were
observed [6]. As a consequence, a 10 ns simulation is long enough to describe
the structural properties of the Zn?* first hydration shell.

6.1.2 Structural analysis

The structural properties of the M?* aqua ions are described in terms of
the metal-oxygen and metal-hydrogen radial distribution functions or g(r)’s
[53]:

Na Np

yoy s n (6.1)

icA jEB

(o) 1
(0B)1ocat  NalpB)iocal

gap(r) =

where (pp(r)) is the particle density of type B at a distance r around particles
A, (pB)iocar is the particle density of type B averaged over all the spheres
around particles A with radius r,,,, (which is equal to half of the box side),
N4 and Np is the number of A and B particles, and r;; is the distance between
i (of type A) and j (of type B) particles. Therefore, an average over time
and over the A particles is performed in the g4p(r) calculation. In our case
A=M?* and B=0O or H atoms, and thus only one A particle is present and
only the average over time is performed. The coordination numbers N of the
ions were calculated by integration of the radial distribution functions up to
the first minimum, using the following relation:

Ruin
Np = 47rpB/ gap(r)ridr (6.2)
0

where R,,;, is the first minimum of the gap(r) and pp is the atomic density
of B particles in the system.

Angular distribution functions (a.d.f.) have been calculated to evaluate
the geometrical arrangement of water molecules around the M?* ion. In par-
ticular, a.d.f. have been computed for three different angles, the angle formed
by two different M-O vectors in the first shell (labelled as 1)), the angle formed
by the water molecule dipole and the M-O direction (labelled as ¢), and the
angle formed by the normal to the water plane and the M-O direction (la-
belled as ¢). The definition of these three angles is shown in Figure 6.1 and
6.2.

To describe the distribution of water molecules around the M?* ion,
axial-radial 2D density maps (or cylindrical distribution functions) can also
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6.1 Molecular Dynamics simulations

Figure 6.1: Definition of the ¢ and ¢ angles used in the structural analysis of the M2+
solvation shells.

Figure 6.2: Definition of the 1) angle used to evaluate the geometrical arrangement of water
molecules in the M2+ first hydration shell.
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Figure 6.3: Definition of the three vectors used in the study of water reorientational dy-
namics.

be used. These maps show the distribution of water oxygen atoms with re-
spect to a chosen reference axis containing the ion and the oxygen atom of a
selected first shell water molecule. They have been calculated using a radius
of 6.0 A and a grid spacing of 0.1 A. The structure of the solvation shells can
also be visualized using spatial distribution functions (s.d.f.) of the atomic
densities. 3D isosurfaces, i.e. surfaces in which the particle (oxygen and hy-
drogen atom) density is constant, are plotted in a box of 1 nm? centered on
the ion and using a grid spacing of 0.035 A [94, 95)].

2D density maps and spatial distribution functions have been generated
by means of standard GROMACS analysis tools (g_-densmap and g_sdf, re-
spectively). Conversely, radial and angular distribution functions have been
calculated using in-house written codes.

6.1.3 Dynamic analysis

The mean residence time of water molecules in the ion first hydration shell
has been evaluated using the method proposed by Impey et al. in Ref. [96].
This approach is based on the definition of a survival probability function
P;(t,t,,t"), which takes the value one if the water molecule j lies within the
first hydration shell at both time steps ¢,, and ¢t + ¢,, and does not leave the
coordination shell for any continuous period longer than t*, otherwise it is
zero. From P; it is possible to calculate the dynamical hydration number (or
survival function) npyq(t):

Nt
1 *
nhyd(t) - EZZ%(utmt )
n=1 j

where NV; is the total number of steps and the summation goes over all of
the water molecules. At long times, ny,4(t) decays in an exponential fashion,
with a characteristic correlation time 7 which defines the residence time of
the water molecule in the shell [96].

The M2* diffusion coefficient, D, provides quantitative information on
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the motion of the ion in the solution and it has been calculated from the
mean square displacements using the Einstein relation [58]:

t) — r(0)]?
b L () = rarO)1°)
6 t—oo t

(6.3)

where r)/(t) is the position of the ion at time ¢ while r;/(0) is the ion initial
position.

A detailed view of the dynamics of the water molecules surrounding the
ion can be obtained using reorientational correlation functions, that are given
by [97]:

Co(t) = (P(u*(1) - u®(0))) (6.4)

where P, is the ['" rank Legendre polynomial, and u®(¢) is an unit vector in
a certain direction « at time t. By fitting C;(t) to an exponential function

Ci(t) = 67"%, it is possible to determine the correlation time 7;, defined as
the rotation time of the u® vector. For our analyses we used [ = 1 and three
different directions: the normal to the water molecular plane passing through
the center of the oxygen atom u”, a vector along the HH direction u’#, and
the water dipole vector u? (see Figure 6.3 for the definition of these vec-
tors); u? is correlated to the dielectric relaxation rates while uf’# to 1H-1H
NMR dipolar relaxation experiments [98]. Using an approach already imple-
mented for pure water, we have employed a mixed integration exponential fit
method to evaluate the first rank correlation times, thus minimizing the noise
introduced by the slow convergence of the correlation function tail. Direct
integration was used in the initial part of the function, while the tail contri-
bution was taken into account by means of an exponential fit. Due to the
different behavior of first shell correlation functions caused by the presence of
the ion, we have used different time windows for direct integration: a value
of 15 ps was employed for u”, while the u” and u””# correlation functions
were explicitly integrated up to 5 ps. As far as the correlation times of bulk
water are concerned, the switch value was always 5 ps, the same as used in
Ref. [97].

Standard GROMACS tools have been used to calculate the reorientational
correlation functions and diffusion coefficients (g-rotacf and g-msd, respec-
tively), while an in-house written code was employed for the determination
of residence times of water molecules.

6.2 X-ray absorption spectroscopy

6.2.1 X-ray absorption measurements

A 0.1M Zn?** aqueous solution was obtained by dissolving the appropriate
amount of Zn(NOj3)y in water. X-ray absorption spectra above the Zn K-
edge have been measured in transmission mode using the high pressure setup
based on the Paris-Edinburgh press developed at the BM29 beam line [99]
of the European Synchrotron Radiation Facility (ESRF). Four spectra have
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been recorded at different pressures and temperatures following the melting
curve of the solution phase diagram. In particular spectra were recorded for
pressure values of 0.10 MPa, 0.20 GPa, 1.97 GPa and 2.85 GPa.

A 0.1 M Cd?** water solution was prepared by dissolving the appropriate
amount of Cd(NOj)9-4H,0 in freshly distilled water and adding HNOj3 in
order to prevent hydrolysis. Cd K-edge X-ray absorption spectra were ob-
tained using the EMBL spectrometer at DESY [100]. Spectra were recorded
in transmission mode using a Si(311) double-crystal monochromator detuned
to 30% for harmonic rejection [101]. The DORIS III storage ring was running
at an energy of 4.4 GeV with positron currents between 70 and 40 mA. The
solution was kept in a cell with Kapton film windows and a Teflon spacer of
3 mi.

A 0.1 M Hg?" water solution was obtained by dissolving the appropri-
ate amount of Hg(ClO,), in freshly distilled water that was acified to about
pH=1 by adding HCIO4 in order to prevent hydrolysis. Hg L3 XAS spec-
tra were obtained at the X-ray absorption spectrometer BM29 of the ESRF.
Spectra were recorded in transmission mode using a Si(311) double-crystal
monochromator detuned to 50%.The solution was kept in a cell with Kapton
film windows and Teflon spacers of 4 mm. In all the three cases, the counter-
ions ((NO3)~ for Zn** and Cd?* and (ClO4)~ for Hg?") have been chosen to
prevent the formation of ionic pairs in the solutions.

In all the performed measurements, data points were collected for 1 s each,
and three spectra were recorded and averaged.

6.2.2 EXAFS data analysis

In the standard EXAFS analysis of disordered systems only two-body
distributions are usually included, and the x(k) signal is represented by the
equation 4.5. As already mentioned in section 4.2, y(k) theoretical signals
can be calculated by introducing in equation 4.5 the model radial distribution
functions obtained from Molecular Dynamics simulations. In all the aqueous
solutions studied, both the M-O and M-H g(r)’s obtained from the simulations
have been used to calculate the single scattering first shell x(k) theoretical
signal, as the ion-hydrogen interactions have been found to provide a de-
tectable contribution to the EXAFS spectra of several metal ions in aqueous
solutions [7, 34]. Comparison of the total theoretical and experimental y (k)
signals allows the reliability of the g(r)’s, and consequently of the theoreti-
cal scheme used in the simulations, to be checked. In this case, i.e. when
a direct comparison between the signal obtained from Molecular Dynamics
simulations and the experimental one is performed, the structural parameters
are kept fixed during the minimization, while two nonstructural parameters
are optimized: S2, which is a many-body amplitude reduction factor due to
intrinsic losses, and FEj, which aligns the experimental and theoretical energy
scales. On the other hand, the theoretical (k) signal can also be refined
against the experimental data in order to obtain the better possible agree-
ment between the two spectra. In this latter case, the fitting is performed
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by using a least-squares minimization procedure in which structural and non-
structural parameters are allowed to float [102]. Since a correct description of
the first coordination sphere of hydrated metal complexes has to account for
the asymmetry in the distribution of the ion-solvent distances, the M-O and
M-H g(r)’s associated with the first coordination shells were modelled with
['-like distribution functions which depend on four parameters, namely the
coordination number N, the average distance R, a standard deviation o, and
the skewness (see section 4.2). Moreover, we have calculated the three-body
contributions within the first hydration shell from the g(ry,7q,1) distribu-
tions obtained from the Molecular Dynamics simulations. However, only in
the case of the Zn?* ion the three-body contributions have been used in the
analysis. In fact, in the other studied systems, MS contributions within the
first hydration shell have been found to have negligible amplitude, and there-
fore they have not been considered in the analysis of the EXAFS data.

The EXAFS theoretical signals have been calculated by means of the
GNXAS code which uses an advanced theoretical scheme based on the multiple-
scattering formalism [76]. Phase shifts, A(k,r) and ¢(k,r), have been calcu-
lated starting from a configuration extracted from the Molecular Dynam-
ics simulation, by using muffin-tin potentials and advanced models for the
exchange-correlation self-energy (Hedin-Lundqvist) [75]. The values of the
muffin-tin radii used are 0.2 A and 0.9 A for hydrogen and oxygen, and 1.2,
1.4 and 1.5 A for zinc, cadmium and mercury, respectively. Inelastic losses
of the photoelectron in the final state have been accounted for intrinsically
by complex potential. The imaginary part also includes a constant factor
accounting for the core-hole width.

6.2.3 XANES data analysis

The XANES spectra at high energies are strongly broadened by the core-
hole width and the structural and electronic details are smeared out from
the spectra [103] (the energy of the Cd K-edge is 26711 eV and the core-
hole width is 7.28 eV, while the energy of the Hg Ls-edge is 12290 eV with
a core-hole width of 5.5 eV). Recently, suggestions to apply core-hole width
deconvolution methods to analyze X-ray absorption spectra have appeared
in the literature [104] as this treatment largely facilitates the detection of
spectral features and the comparison with theoretical calculations. For this
reason, the Cd K-edge and Hg Ls-edge raw experimental data have been de-
convolved of the whole tabulated core hole width and a Gaussian filter with
full width at half maximum of about 3 eV and 1.8 eV for the Cd and Hg edges,
respectively, has been applied. The comparisons between the raw and the de-
convolved spectra, depicted in Figure 6.4 and 6.5 for Cd and Hg, respectively,
show that after deconvolution the threshold region is considerably sharpened
with respect to the original spectrum. It is important to underline that even
if in principle the deconvolution procedure could introduce small distortions
in the experimental data, the advantage of this approach is to avoid the use
of the phenomenological broadening function I'(E) in the calculation of the
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Figure 6.4: Cd K-edge X-ray absorption spectrum of Cd?* aqueous solution before (red
line) and after (blue line) deconvolution of a Lorentzian with width of I' = 7.28 eV.

theoretical spectrum to mimic electronic damping. This method is known to
be a shortcoming in the XANES analysis and the deconvolution procedure
allows one to overcome, at least partially, this problem.

A standard analysis of the Hg XANES spectra has been performed by
carrying out static fits of the data using an average first shell structure and
optimizing the Hg-O distances. The XANES data analysis was carried out
with the MXAN code [77]. The X-ray absorption cross section was calculated
in the framework of the full multiple-scattering scheme within the muffin-tin
approximation for the shape of the potential. The real part of the exchange
term was calculated using the Hedin-Lundqvist energy-dependent potential,
while the inelastic losses are accounted for by convolution with a broadening
Lorentzian function (see section 4.3). The constant part I'. accounts for the
core-hole life time and it has not been included in our calculations as it has
been removed from the experimental data, while the energy-dependent term
represents all the intrinsic and extrinsic inelastic processes. A least-square fit
of the experimental data in the space of the structural and non structural pa-
rameters was achieved using the MINUIT routine of the CERN library [105],
which minimizes the R,, function defined in equation 4.7. The resolution
broadening was taken into account using a Gaussian function.

As already mentioned in section 4.3, we have developed a computational
procedure which allows one to analyze the XANES spectra using the micro-
scopic dynamical description of the system derived from Molecular Dynamics
simulations. In this work we have applied this methodology to the study of
the Cd?* and Hg?* aqua ions. In the first step of our procedure, the XANES
spectrum associated with each Molecular Dynamics configuration has been
calculated using only the real part of the HL potential, i.e. theoretical spec-
tra do not account for any intrinsic and extrinsic inelastic process, while the
damping associated with the experimental resolution is accounted for by con-
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Figure 6.5: Hg Lz-edge X-ray absorption spectrum of Hg?* aqueous solution before (blue
line) and after (red line) deconvolution of a Lorentzian with width of I' = 5.5 eV.

volution with a Gaussian function with full width at half maximum of 3 eV
and 2 eV for Cd?* and Hg?*, respectively. In the second step, to perform
a comparison with the experimental data the damping associated with the
inelastic processes has to be included in the calculation. To this purpose we
have modified the MXAN program in order to read an external theoretical
spectrum (the configurational averaged calculated data) and to perform a
minimization only in the non-structural parameter space. As in the static fit
case, the inelastic losses are accounted for by convolution with a broadening
Lorentzian function and does not include the core-hole life-time broadening
as it has been previously eliminated from the experimental spectrum. Least-
square fits of the XANES experimental data have been performed always by
minimizing the Ry, function (equation 4.7), but in this case the minimization
is carried out only in the non-structural parameter space. Since a slightly
different approach has been used for the XANES analysis of the Cd?* and
Hg?* aqua ions, all the details on the computational procedure used will be
given for each of them separately in section 7.4.2 and 8.3.1.
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Chapter 7

Structural and dynamic
properties of the Hg2+ aqua ion

7.1 Molecular Dynamics results

Two Molecular Dynamics simulations have been carried out for Hg** us-
ing the SPC/E and TIP5P water models. The trajectories started from a
six-coordinated first shell configuration, and after a quite long induction time
of 630 ps and 755 ps for the SPC/E and TIP5P simulations, respectively, a
seventh water molecule entered the first solvation shell of the ion. This con-
figuration with seven water molecules has then remained stable for most of
the simulation time. Table 7.1 shows the percentages of the different hydra-
tion numbers observed in the SPC/E and TIP5P simulations, together with
the longest lifetimes of each coordination complex. The 7-fold coordination
is by far the most abundant for both simulations, although a small fraction
of frames with N = 6 and N = 8 is present. This is a quite unexpected result
since in the literature the Hg?* aqua ion has been always described as being
coordinated by six water molecules.

The Hg-O and Hg-H radial distribution functions obtained using the
TIP5P water model are shown in Figure 7.1 (panel A). The two g(r)’s have
well-defined first peaks followed by a depletion zone, showing the existence of
a quite stable first hydration shell. The first shell maximum of the Hg-O g(r)
is at 2.26 A, and the corresponding hydration number is 6.9 for the TIP5P
simulation. The SPC/E first maximum is found at a slightly longer distance

Total lifetime (%) Longest lifetime (ns)
TIP5P SPC/E  TIP5P  SPC/E

N =6 4.6 2.6 1.76 0.37
N=7 953 96.8 6.05 8.02
N =38 0.1 0.6 0.02 0.14

Table 7.1: Total and longest lifetimes of the Hg?t hexa-, hepta- and octacoordinated
complexes for the SPC/E and TIP5P simulations.
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Figure 7.1: Panel A: Hg-O (black line) and Hg-H (green line) g(r)’s and corresponding
running integration numbers calculated from the TIP5P simulation. Panel B: Hg-O g(r)
first peak for the SPC/E (blue line) and TIP5P water model (red line).

(2.28 A) with a coordination number of 7. As far as the Hg-H g(r)’s are con-
cerned, the first shell maxima are found at 2.97 and 2.94 A for the SPC/E
and TIP5P models, respectively, with coordination numbers of 13.8 and 14.
Figure 7.1 shows the comparison between the Hg-O g(r) first peak obtained
from the SPC/E and TIP5P simulations (panel B). To better understand
the origin of the small difference, it is useful to analyze the g(r)’s obtained
from hexa- and heptacoordinated simulation frames, separately. Inspection
of Figure 7.2 shows that the biggest difference is detected for the octahedral
clusters (0.03 A), while the seven-coordinated complexes have similar dis-
tance distribution (octahedral clusters’ peak positions are at 2.23 and 2.20
A for the SPC/E and TIP5P simulations, while heptacoordinated ones are
at 2.28 and 2.27 A). Note that the octahedral structure is present only for
small percentages of the simulation time in both trajectories, and therefore
it has a small effect on the position of the Hg-O g(r) first maxima.

In the following, when only the TIP5P results are shown it means that

2.

. . 2
r(A) r(A)

Figure 7.2: Panel A: Hg-O g(r) first peak for the SPC/E (blue line) and TIP5P water
model (red line) calculated on six-coordinated frames. Panel B: Hg-O g(r) first peak for
the SPC/E (blue line) and TIP5P water model (red line) calculated on seven-coordinated
frames.
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Figure 7.3: Panel A: Angular distribution functions (a.d.f.) of the ¢ angle calculated from
the TIP5P trajectory. a.d.f. of first, second hydration shell and bulk water molecules
are coloured black, red, and green, respectively. Panel B: a.d.f. of the ( angle in the
first hydration shell calculated from the seven- (black line) and six-coordinated (red line)
frames.

identical results were obtained from the SPC/E simulation. Panel A of Figure
7.3 shows the ¢ angular distribution functions calculated for first, second hy-
dration shells and bulk water from the TIP5P simulation. The most probable
value of ¢ for the first hydration shell is 0°, corresponding to a configuration
in which the water dipole is oriented along the Hg-O direction. In the second
hydration shell the peak is always centered at 0° but the distribution is much
broader, as expected since the water molecules are less strongly oriented by
the ion. At longer distances, up to 10 A, no preferred orientation can be
observed. Since it is not possible to establish whether a water molecule is
rotating in its plane or is really tilted using only the ¢ angle distribution,
the ¢ angular distribution function has been calculated for the first six- and
seven-fold coordinated shell (see panel B of Figure 7.3). The distribution peak
is found at ¢ = 90° for both hexa- and heptacoordinated clusters, indicating
that the Hg-O vector is located most of the time in the water molecule plane,
with maximum deviations of 30° above and below the plane (the ¢ distribu-
tion in fact drops to zero at ¢ = 60° and ¢ ~ 120°). Moreover, the curve
associated with the seven-coordinated frames (black line) is slightly broader
since in this case the water molecule dipole is more free to rotate. Figure
7.4 shows the 1 angular distribution functions for the hepta- and hexacoor-
dinated clusters obtained from both simulations (even if also in this case the
results are almost identical, as it can be seen). For the sixfold coordinated
shells the maxima are located at 90° and 180°, as expected for an octahedral
hydration complex. The peak maxima for the sevenfold coordinated structure
are found at values of about 75° and 145° for both simulations. These values
are consistent with a Cy symmetry of the heptacoordinated complex which
corresponds to the minimum energy configuration of the system derived from
ab initio optimizations of the heptahydrated cluster, as we shall see in section
7.2, where the O1-Hg-O2 and O1-Hg-O3 angles are about 75° and 145°.
The flexibility of the Hg?" first hydration shell can be highlighted
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Figure 7.4: O-Hg-O (¢) angular distribution functions (a.d.f.) calculated from the TIP5P
and SPC/E trajectories (black line and red diamonds, respectively). Panel A: a.d.f. calcu-
lated from hexacoordinated first shell structures. Panel B: a.d.f. calculated from heptaco-
ordinated first shell structures.
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Figure 7.5: Axial-radial 2D density maps of water molecules around a fixed Hg-O axis for
the TIP5P simulation. Panel A: Oxygen distribution function calculated from hexacoor-
dinated frames. Panel B: Oxygen distribution function calculated from heptacoordinated
frames.
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Figure 7.6: First rank reorientational correlation functions C{(t) for the water molecules
belonging to the Hg?* first hydration shell: u” (black solid line), u”# (blue dashed line),
and uV (red dot-dashed line). Panel A: Correlation functions obtained using the SPC/E
water model. Panel B: Correlation functions obtained using the TIP5P water model.

using axial-radial 2D density maps for the hexa- and heptacoordinated com-
plexes (panels A and B of Figure 7.5, respectively). The map obtained for
the six-fold coordinated shell is typical of an octahedral cluster, such as that
obtained for the Ni** hydration shell [106]. On the contrary, in the case of the
heptahydrated cluster, the oxygen atoms give rise to a uniform distribution
around the chosen axis, showing the higher mobility of the first shell water
molecules.

As far as the dynamic properties of the Hg?* aqua ion are concerned, we
have calculated the residence time of water molecules in the first solvation
shell, the ion diffusion coefficients and the reorentational correlation func-
tions. The computed first hydration shell residence times are 7.4 and 6.8 ns
for the SPC/E and TIP5P water model, respectively, of the same order of
magnitude of the experimental estimated values (about 1 ns) [14]. The Hg?"
ion exhibits a faster translational dynamics in the simulations as compared
to the experimental description. In fact, the calculated ion diffusion coef-
ficients are 1.02(0.07)-107% cm?/s and 1.06(0.08)-107> c¢m?/s for the SPC/E
and TIP5P, respectively, while the experimental value is of 0.847-107° ¢cm?/s
[107].

Figure 7.6 shows the C{(t) functions for SPC/E and TIP5P first hy-
dration shells and Table 7.2 reports the first shell correlation times. The
dominant motion is the rotation around the water dipole, as expected. In
fact, the reorientation of the water molecular dipole occurs in a time scale
almost one order of magnitude bigger, as compared to the rotation of the u’¥
and u” vectors. This finding is in agreement with the results of our analysis
of angular distribution functions and with the results of previous simulations
carried out on the Ni?* aqua ion [106]. The two water models show a similar
behavior, but the correlation time obtained with the TIP5P water model are
lower. It is important to observe that the reorientation of first hydration
shell water molecules occurs on the picosecond time scale, while the exchange
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vector Correlation times

TIP5P u 1.6 (0.2)
uf 1.6 (0.2)
u? 129 (1.4)

SPC/E u” 2.6 (0.

Table 7.2: Reorientational correlation times (ps) of water molecules belonging to the Hg?*
first hydration shell obtained from the TIP5P and SPC/E simulations. Standard deviations
are given within parentheses.

of water molecules between six- and seven-coordinated complexes occurs in
the nanosecond timescale; thus the breakdown of the solvation shells involves
more complicated mechanisms than simple molecular reorientations.

7.2 Ab initio optimizations of the Hg*"-(H,0),
clusters

As described in the previous section, the results obtained from the Mole-
cular Dynamics simulations has revealed a quite unexpected sevenfold coor-
dination for the Hg?* ion. Since this ion has been always thought to form
an octahedral complex in aqueous solution, we have decided to evaluate the
relative stabilities of the Hg?*-(H,0)g and Hg*"-(H,0); clusters by means of
ab initio optimizations. The calculations have been carried out at the MP2
level of theory both in vacuum and simulating bulk solvent effects by means
of the PCM. The optimizations lead to true energy minima (all positive Hes-
sian eigenvalues) for the two clusters, belonging to the T}, and Cy symmetry
group for the six- and seven-coordinated complex, respectively (see Figure
7.7). The absolute energies and main geometrical parameters of these struc-
tures are shown in Table 7.3. The stability of the two complexes has been
evaluated by comparing the energy of the Hg*"-(H,0); cluster, and the en-
ergy of a complex obtained with the displacement of one water molecule from
the first to the second hydration shell of the Hg?*-(H,0); cluster. A structure
retaining C5 symmetry was obtained in the latter case with the seventh water
molecule forming two hydrogen bonds with two water molecules of the first
coordination sphere, as already found for other metal ions [86]. The structure
with one water molecule in the second hydration shell is significantly more
stable for the isolated clusters, but the hexa and heptacoordinated species be-
come nearly isoenergetic (AE= 0.0003 a.u. = 0.8 kJ/mol) when bulk solvent
effects are taken into account by means of the PCM. It is remarkable that
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Figure 7.7: Perspective views of the MP2 minimum energy structures for Hg?*(Ho0)g
(panel A) and Hg?*(H20)7 (panel B) complexes. The numbers in panel B refer to bond
distances and angles reported in Table 7.3.

VACUUM  PCM
Hg?t (H,0)g E(au.)  -499.5130 -499.8173
Ry o(A) 2.34 2.37
Hg?* (H,0)s(H,0)  E (au.)  -575.8738 -576.1666
E(au.)  -575.8653 -576.1669
R, o01(A) 2.43 2.42
Rug-o01(A) 2.41 2.40
Rig_o03(A) 2.34 2.33
Hg?* (H,0); Rig—04(A) 2.44 2.39
Aot mg-02  141.3° 140.4°
Aor-ng-03  80.9° 80.3°
Aoi-mg-on  T6.3° 77.6°
H,0 E(a.u.) 76.3256  76.3382

Table 7.3: Minimum energy and geometrical parameters obtained from the ab-initio opti-

mizations of the Hg?* first hydration shell clusters.
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such a strong solvent induced energy variation occurs with only negligible
geometry modifications. Inclusion of non potential energy terms (zero point
energy, thermal enthalpic and entropic contributions [108]) does not modify
in an appreciable way the results. Moreover, in all cases the charge transfer
was negligible (maximum charge of 0.02 on a single water molecule).

7.3 EXAFS analysis

X (k) theoretical signals have been calculated by means of equation 4.5
starting from the total Hg-O and Hg-H g(r)’s obtained from the SPC/E and
TIP5P trajectories, and the structural parameters derived from the Molecular
Dynamics simulations were kept fixed during the EXAFS analyses. In this
way, the first hydration shell structure obtained from the simulations can be
directly compared with experimental data, and the validity of the theoreti-
cal framework used in the simulations can be assessed. In the upper panels
of Figure 7.8, the comparison between the EXAFS experimental signal and
the theoretical curves calculated for the SPC/E and TIP5P simulations are
shown. The agreement between the calculated EXAFS spectra and the ex-
perimental data is very good in both cases, proving the correctness of the
structural results obtained from the two simulations. The S3 value was found
to be equal to 0.98, and E, was 12285 eV, in both cases. It is important to
stress that the theoretical x(k) signals calculated from the Hg-O and Hg-H
radial distribution functions obtained from the heptacoordinated frames are
identical to those calculated from the total g(r)’s, as the EXAFS techniques
is not sensitive to the small percentage of hexacoordinated complexes. The
Fourier transform (FT) modules of the EXAFS y(k) x k? theoretical and ex-
perimental signals are also shown in Figure 7.8. The FTs have been calculated
in the k-range of 2.1-13.5 A~!, with no phase shift correction applied. The
FT spectra show a prominent first shell peak that is mainly due to the Hg-O
first shell distance. To gain deeper insight into the structural properties of
the Hg?" aqua ion, we have also calculated the EXAFS theoretical signal as-
sociated with the Hg-O g(r) calculated from the Molecular Dynamics frames
with a first shell octahedral complex. The results of this analysis are shown
in the lower panels of Figure 7.8, and, in this case, the agreement between
the experimental and theoretical data is not good, for both the SPC/E and
TIP5P water models. The same discrepancy is found for the corresponding
FTs. In this case, the S? value was found to be equal to 0.87, and E, was
12283 eV, for both minimizations. Therefore, the EXAFS analysis results
indicate that the structural and dynamical information derived from the two
Molecular Dynamics simulations is basically correct, while the EXAFS signal
cannot be reproduced by the first shell octahedral clusters obtained from the
two trajectories.

Nevertheless, a definite answer on the Hg?* first shell coordination num-
ber cannot be obtained from the EXAFS analysis. In fact, we have carried
out three minimizations of the EXAFS signal (in the structural and non-
structural parameter space), using a single coordination shell with fixed coor-
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Figure 7.8: EXAFS theoretical signal for the Hg?T ion calculated from the Molecular
Dynamics simulations (solid line) and obtained from the experiment (dotted line) for the
SPC/E and TIP5P hexa-hydrated and hepta-hydrated first shell clusters. Lower panel:
Fourier transforms of the calculated (solid lines) and experimental (dotted lines) signals.
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Figure 7.9: Comparison between the experimental k? weighted EXAFS data of Hg?* in
water (dotted line) and the best fit signal corresponding to an octahedral model (solid

line).
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dination numbers of 6, 7 and 8 and we have obtained a very similar agreement
between the experimental and theoretical signals in the three cases; the Hg-
O distance was always 2.32(2) A with ¢? values of 0.025, 0.027, and 0.033
A% and third cumulant Cy values of 0.0065, 0.0074 and 0.0096 A3, for the
hexa-, hepta- and octacoordinated models, respectively. Note that the third
cumulant Cjy is related to the skewness 3 through the relation C5 = o3f.
The results of the fitting procedure carried out using an octahedral model
are shown in Figure 7.9. The coordination number of the Hg?™ hydration
complex cannot thus be accurately determined from the EXAFS data anal-
ysis due to its large correlation with the Debye-Waller factor. Note however
that the structural oscillations decrease very rapidly, giving somehow larger
Debye-Waller factors than expected for an octahedral coordination complex
[7].

7.4 XANES analysis

7.4.1 Static fits

XANES is extremely sensitive to the geometric environment of the absorb-
ing atom as multiple-scattering effects make large contributions to this region
of the X-ray absorption spectra. A quantitative analysis of the XANES which
includes the rising edge and about 200 eV above it, can address some of the
aforementioned shortcomings of EXAFS. To examine the compatibility of the
XANES spectrum with the existence of an octahedral complex for the solvated
Hg?* ion, we performed a minimization of the experimental data imposing a
T, symmetry. In this fit, only the ion-water ligand distance was allowed to
vary, resulting in an Hg-O best-fit distance of 2.29(3) A and R,, = 15.7 (see
Table 7.4 and panel A of Figure 7.10). A second minimization has been car-
ried out using an equatorially constrained Jahn-Teller distorted octahedron
(see panel B of Figure 7.10). In this case the equatorial Hg-O distances ob-
tained from the fit were equal to 2.24(3) A, while the two axial distances were
found at 2.41(3) A, with a R,, = 15.2 (see Table 7.4). Note that even if the
agreement between the experimental and theoretical spectra is not satisfac-
tory, the results of the fitting procedure point towards a structure with a very
large difference (0.17 A) between the equatorial and axial distances. Finally,
to assess the compatibility of the XANES with a more disordered hexacoor-
dinated hydration complex, we performed an additional minimization of the
experimental data using an unconstrained hexacoordinated cluster, where all
of the six ion-oxygen bond distances were refined (panel C of Figure 7.10). In
this case Hg-O distances are spread between 2.19 and 2.44 A, with an average
value of 2.31 A, and R, 15 9.9. Thus all the hexahydrated models lead to a
quite poor agreement between the experiment and the calculated spectra, es-
pecially in the low-energy region of the spectrum. In particular, the measured
XANES spectrum exhibits a shoulder at the main transition edge that could
not be reproduced (insets of Figure 7.10), and a poor agreement between the
experiment and the calculated model is found also in the high-energy range of
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Figure 7.10: Panel A: Comparison of the Hg L3 deconvolved experimental XANES spec-
trum of the Hg?* aqueous solution (dotted line), with the best fit theoretical spectrum
(solid line) associated with an octahedral cluster. Panel B: Comparison of the experi-
mental XANES spectrum (dotted line), with the best fit theoretical spectrum (solid line)
associated with a Jahn-Teller distorted octahedral cluster. Panel C: Comparison of the
experimental XANES spectrum (dotted line), with the best fit theoretical spectrum (solid
line) obtained from a disordered six-coordinated model.
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Figure 7.11: Comparison of the Hg Ls deconvolved experimental XANES spectrum of the
Hg?* aqueous solution (dotted line), with the best fit theoretical spectrum (solid line) as
obtained from a heptacoordinated complex having a Cs symmetry.

the spectrum (12350-12600 eV) for the regular and Jahn-Teller distorted oc-
tahedra. In the case of the unconstrained hexacoordinated model, the Hg-O
distances are quite spread and the structural disorder reduces the amplitude
of the signal at high energy, resulting in a better agreement with the exper-
imental data. Nevertheless, the frequency is not completely correct and the
shoulder at the main edge is not reproduced (see insets of Figure 7.10). All to-
gether these findings suggest that, at variance with all the previously reported
results [1, 2, 13, 18], the Hg?" aqua ion does not adopt an octahedral coor-
dination, and it forms a quite flexible hydration complex. Therefore, since
our combined QM and Molecular Dynamics results strongly suggest that the
hydrated Hg?* aqua ion is characterized by an heptacoordinated first shell
structure (whose energy minimum has a Cy symmetry), we reinterpreted the
XANES spectrum in terms of an heptahydrated Hg?™ ion. We performed
a minimization of the experimental data starting from the ab-initio energy
minimum structure of the Hg*"-(H,0); complex, and refining four structural
parameters while retaining a Cy symmetry (see Figure 7.11). The ion-oxygen
distances obtained from the minimization procedure are reported in Table
7.4. The Hg-O average distance is 2.31 A, in agreement with the EXAFS
determination, and the R, value obtained is 1.6. A second fit was performed
using an unconstrained heptacoordinated model where all the seven Hg-O
distances were refined separately. Also in this case a similar geometry was
obtained from the minimization procedure with a Hg-O average distance of
2.32 A and R, = 1.1. The availability of new degrees of freedom in the min-
imization procedure does not significantly change the quality of the fit, and it
produces a slightly different set of structural parameters, still corresponding
to a Cy symmetry. An additional fit of the experimental data was performed
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starting from a cluster having seven equal Hg-O distances arranged in a Cs
symmetry and keeping such a symmetry during the minimization by refining
a single distance. The optimized Hg-O distance is 2.30 A and the agreement
between the experimental and theoretical data was not good (R, = 15.0)
thus showing that the water molecules in the Hg-O heptacoordinated cluster
are arranged in a less symmetrical fashion. Attempts to fit the XANES spec-
trum with a mixture of hexa- and heptahydrated clusters showed that the
experimental data can be reproduced only for a strong dominance (higher
than 90%) of the heptacoordinated species.

The picture emerging from these tests is both enlightening and intriguing.
If a single first shell model cluster is used to fit the XANES data, the best
agreement is obtained when a seven-fold coordination within a Cy symmetry
and a quite large distance dispersion (defined as the difference between the
maximum and minimum Hg-O bond length) is considered (0.38 A). However,
the dispersion of distances obtained for the heptahydrated cluster from MP2
calculations is much smaller (0.09 A, see Table 7.3) and this is also the case
for the Molecular Dynamics simulations (0.12 and 0.13 A for the SPC/E and
TIP5P trajectories). One might therefore conclude that a proper fit of the
XANES data needs a wider distance dispersion than that obtained from the
theoretical heptahydrated models. This discrepancy can be due to two main
reasons: the need to account for the structural disorder within the first hydra-
tion shell in the analysis of the XANES data, and the influence of the second
hydration shell on the low energy range of the absorption spectrum. Unfor-
tunately, the effect of the high mobility of the second hydration shell does
not allow to build reliable static models including its effect. One must, there-

Parameters Octahedron JT distorted Flexible Cy Flexible
Octahedron  6coordinated 7coordinated 7coordinated

R 2.29 2.24 2.19 2.19 2.17
Ry 2.29 2.24 2.22 2.19 2.17
Ry 2.29 2.24 2.26 2.23 2.30
R, 2.29 2.24 2.29 2.23 2.30
Rs 2.29 2.41 2.44 2.40 2.39
Re 2.29 2.41 2.44 2.40 2.45
R, - - - 2.57 2.45

Reap 0.74 0.71 0.71 0.72 0.72
E, 12286.5 12286.5 12286.5 12286.5

Ryq 15.7 15.2 9.9 1.6 1.1
n 1 2 6 4 7

Table 7.4: Structural and background parameters obtained from the XANES minimiza-
tions. R; (A) are the Hg-O distances, R, (eV) is the resolution broadening, Ey is the
theoretical absorption edge position, R, is the fit index parameter, and n is the number
of independent structural parameters used in the fitting procedure.

91



7 Structural and dynamic properties of the Hg** aqua ion

fore, resort to analysis of the XANES spectra by means of the microscopic
description of the system derived from Molecular Dynamics simulations.

7.4.2 XANES analysis from Molecular Dynamics sim-
ulations

As already pointed out in the previous section, in the static fit analysis
we found a discrepancy between the theoretical and XANES results for the
geometry of the Hg?t heptahydrated cluster. Therefore, we have decided to
extend the study of Hg?* aqua ion, using our Molecular Dynamics trajectories
to interpret the XANES experimental data. Since the results of the SPC/E
and TIP5P simulations are in agreement with each other and essentially both
of them describe the Hg?* as being heptacoordinated in aqueous solution, we
have used only one simulation in the XANES analysis. In particular, we have
computed the XANES spectrum from a set of representative set of geometries
extracted from the SPC/E simulation, without carrying out any minimization
of the structural parameters.

Computational procedure

In the first step of the analysis, a trajectory containing only the Hg?*
ion and its first hydration shell has been extracted from the total Molecular
Dynamics trajectory. The first hydration shell has been defined by includ-
ing all the water molecules separated by the Hg?* ion by a distance shorter
than 3.4 A. From this trajectory we extracted 200 snapshots saved every 12.5
ps. The percentages of hepta- and hexacoordinated first shell clusters of these
snapshots were 97% and 3%, respectively, thus resembling the behavior of the
total Molecular Dynamics simulation. Seven or six water molecules have been
included in the calculation, together with the Hg?* ion. Each snapshot has
been used to generate the XANES associated with the corresponding instan-
taneous geometry, and the averaged theoretical spectrum has been obtained
by summing all the spectra and dividing by the total number of Molecular
Dynamics snapshots used. At this stage only the real part of the HL potential
has been used, i.e. theoretical spectra do not account for any intrinsic and
extrinsic inelastic process (see section 6.2.3).

In the second step of the analysis the influence of the second hydration
shell on the XANES spectrum of Hg?* has been assessed. In the XANES
calculation we included all the water molecules separated from the cation by
a distance shorter than 5.2 A, since water molecules at larger distance have
been found to provide a negligible contribution. To this end a trajectory con-
taining the ion and its first two hydration shells has been extracted from the
total Molecular Dynamics trajectory and 200 snapshots saved every 12.5 ps
have been singled out. Also in this case 200 XANES spectra have been calcu-
lated and averaged starting from the instantaneous configurations obtained
from the Molecular Dynamics calculations.

An important question when dealing with the computation of spectra from

92



7.4 XANES analysis

T T T
0.001
E 0.0001 N -
m =
le-05 E
L | L | L | L
0 50 100 150 200
number of spectra
0.001 E
E 0.0001 E
a2
le-05 E
| | |

0 I 50 I 100 150 I 200
number of spectra

Figure 7.12: Residual function RMS of the XANES averaged spectra as a function of the
number of Molecular Dynamics snapshots for the first shell (upper panel) and the first plus
second shell (lower panel) analysis.

Molecular Dynamics simulations is to determine the total sampling length
that is necessary to have a statistically significant average. To this end we
have carried out a statistical treatment of the data. In particular we have
calculated a residual function defined as:

RMS = \/Z[QN(EZ-) — aN-U(E)))? (7.1)

where o (E;) is the theoretical spectrum averaged over N snapshots and
the sum is extended over all the energy points F;. A residual value of 10~
was chosen to establish the number of spectra which are necessary to have
a statistically significant average. The results of this analysis are shown in
Figure 7.12, where the RMS function is plotted against the number of av-
eraged spectra for the first, and first plus second shell theoretical spectra in
the upper and lower panels, respectively. As evident from the Figure, 200
configurations are enough to reach convergence in both cases.

Finally, to assess the compatibility of the XANES experimental data with
a sixfold coordination around the Hg?* jon we extracted two trajectories
from the simulation window around the longest lifetime of the Hg?* hexahy-
drated clusters. The former trajectory contained only first shell hexahydrated
clusters and the latter contained first hexacoordinated clusters plus the sec-
ond shell (also in this case the second hydration shell includes all the water
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Figure 7.13: Left panel: Comparison of the XANES theoretical spectrum obtained from
the Molecular Dynamics average including the first hydration shell (dashed line) and two
spectra associated with individual Molecular Dynamics configurations (solid red, and blue
line). In the upper panel the Hg?* seven-fold hydration complex is shown. Right panel:
Comparison of the XANES theoretical spectrum obtained from the Molecular Dynamics
average including the first and second hydration shells (dashed line) and two spectra as-
sociated with individual Molecular Dynamics configurations (solid red, and blue line). In
the upper panel a typical first and second shell hydration cluster is shown.

molecules at a distance from the Hg?* ion shorter than 5.2 A). From each
trajectory we extracted 200 snapshots saved every 1.85 ps and we calculated
two averaged theoretical spectra corresponding to an octahedral first shell
coordination with and without the second shell, respectively.

XANES-Molecular Dynamics results

The left panel of Figure 7.13 shows the averaged theoretical spectrum
obtained from 200 snapshots (not including intrinsic and extrinsic inelas-
tic process) associated with the Hg?* first shell hydration complex, together
with two individual instantaneous structures. The calculated XANES spectra
present noticeable differences all along the energy range, showing the sensi-
tivity of XANES to geometrical changes, and the importance of making a
proper sampling of the configurational space. As far as the second shell is
concerned our Molecular Dynamics simulation suggests the presence of 17 wa-
ter molecules up to about 5.2 A from the ion. The XANES total theoretical
spectrum obtained from 200 Molecular Dynamics snapshots including both
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Figure 7.14: Comparison of the theoretical XANES spectrum obtained from the Molec-
ular Dynamics average including the first hydration shell (solid line) and the averaged
theoretical XANES spectrum including the first and second shells (dashed line).

the first and second shell is shown in the right panel of Figure 7.13, together
with two spectra computed from instantaneous configurations. In this case
the individual spectra show more marked differences as compared to the first
hydration shell. Considering the large deviation among instantaneous spec-
tra it seems unlikely that a single representative configuration can be used
to properly model the experimental data. A deeper insight into the effect of
the second hydration shell on the XANES spectrum of Hg?* in aqueous solu-
tion can be gained by the direct comparison between the averaged spectrum
calculated using first shell only and the first and second shell clusters (see
Figure 7.14). Significant differences appear in the low energy region up to
about 80 eV from the threshold. In particular the edge intensity is lowered
in the spectrum containing only the first shell water molecules which exhibits
a different shape in the region around the first minimum. The two spectra
become very similar for energy values higher than 80 eV and this finding
underlines the insensitivity of the EXAFS technique toward second shell con-
tributions [7]. To assess the reliability of the entire procedure it is necessary
to compare the total averaged XANES spectra with the experimental data.
To this end all inelastic processes have been accounted for by convoluting
the theoretical averaged spectra with a broadening Lorentzian function, and
the corresponding F; and A non-structural parameters have been optimized.
The agreement between the experimental and theoretical data has been as-
sessed by the goodness-of-fit parameter (R,) (equation 4.7). In panel A of
Figure 7.15, the experimental XANES data are compared with the averaged
theoretical spectrum including the first shell clusters as derived from Molec-
ular Dynamics simulations. The overall agreement of the two spectra is not
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Figure 7.15: Panel A: Comparison between the averaged XANES theoretical spectrum
including the first heptacoordinated shell (solid line) and the experimental data (dotted
line) of Hg?" in aqueous solution. Panel B: Comparison between the averaged XANES
theoretical spectrum including the first heptacoordinated and second shell (solid line) and
the experimental data (dotted line) of Hg?™ in aqueous solution.
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perfect (Ry,=6.2) especially for the energy region above 12320 eV. In panel B
of Figure 7.15, the averaged theoretical spectrum including both the first and
second hydration shells is compared with the experimental spectrum. In this
case, the agreement between the experimental and theoretical spectra is very
good both in the low- and high-energy regions of the spectrum (Rg,=2.1).
As evident from the insets of Figure 7.15, the shoulder at the main edge,
which is sensitive to the symmetry of the cluster, is perfectly reproduced
when a heptacoordinated first shell model as obtained from the Molecular
Dynamics simulations is considered. It is important to remark that all the
XANES spectra have been calculated using the structural information ob-
tained from the Molecular Dynamics simulations without carrying out any
minimization in the structural parameter space. Due to the high sensitivity
of the XANES technique towards the structural environment of the photoab-
sorber this approach is a very strict test on the quality of the potentials used
in the Molecular Dynamics simulations, and the almost perfect agreement
between the averaged theoretical and experimental XANES spectra proves
the reliability of the entire computational procedure.

As mentioned above, in our standard XANES analysis a static heptahy-
drated first shell cluster has been used to fit the XANES spectrum of Hg?"
in aqueous solution. The distance dispersion of the Hg-O first shell distances
obtained from the XANES minimization was about 0.26 A larger than the
Molecular Dynamics results and the QM optimized clusters. The results
of this dynamical XANES analysis demonstrate that the discrepancy we had
found among the Hg-O distance dispersion obtained from static XANES anal-
ysis, MP2 calculations and Molecular Dynamics simulations, is mainly due to
the lack of the second hydration shell contribution in the XANES calculations
and support strongly the need to include statistical structural information on
the first and second coordination shell to quantitatively reproduce the ex-
perimental data. As previously observed [109], the XANES structures are
sensitive to the second shell local geometries and a thorough sampling of the
configurational space has to be made to perform a correct analysis.

As a last analysis, we have examined the possibility of reproducing the
XANES experimental data using a six-coordinated hydration complex. In
panel A of Figure 7.16 we report the comparison between the averaged the-
oretical spectrum including only the hexacoordinated first shell clusters and
the experimental data. In this case the agreement between the two spectra
is not satisfactory (R,,=16.3), proving that the Hg?" is not hexacoordinated.
Note that also six-coordinated structures with distorted angles, as those ob-
tained from the Molecular Dynamics simulations, are not able to reproduce
the experimental data. We analyzed then a trajectory having a hexacoordi-
nated first shell plus the second hydration shell, and the comparison with the
XANES experimental spectrum is shown in panel B of Figure 7.16. Also in
this case the agreement between the experimental and theoretical spectra is
poor (Ry,=15.4) and this finding demonstrates that the XANES data cannot
be reproduced using a hexacoordinated cluster, even if the second hydration
shell is included in the calculation. It is important to stress that the shoul-
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Figure 7.16: Panel A: Comparison between the averaged theoretical XANES spectrum
of Hg?* in aqueous solution including the first hexacoordinated shell (solid line) and the
experimental data (dotted line). Panel B: Comparison between the averaged theoretical
XANES spectrum including the first hexacoordinated and second shell (solid line) and the
experimental data (dotted line).

98



7.4 XANES analysis

der at the main edge, which is sensitive to the symmetry of the cluster, is
never reproduced when a hexacoordinated first shell is considered (see insets
of Figure 7.16).
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Chapter 8

Structural and dynamic
properties of the Cd?* aqua ion

8.1 Molecular Dynamics results

An accurate description of the structural and dynamic properties of the
Cd?* aqueous solution has been gained by a thorough analysis of the two
Molecular Dynamics simulations carried out with the SPC/E and TIP5P wa-
ter models (the same models used for the Hg? aqua ion), previously published
by our group [11]. Figure 8.1 shows the Cd-O and Cd-H radial distribution
functions and running integration numbers obtained from the SPC/E and
TIP5P simulations. In both cases a sharp first peak is observed, followed by
a depletion zone which means that a stable first hydration shell is present.
The first important result is the non integer first shell coordination number
obtained from both trajectories, which means that different hydration struc-
tures are present during the simulation. This is quite unexpected, since in the
literature the Cd?* ion is always described as six-coordinated in aqueous so-
lution. Conversely, our simulations started from a hexacoordinated first shell
configuration around the Cd?* ion, and after 230 and 155 ps for the SPC/E
and TIP5P models, respectively, the system went to hepta-coordination. In
both cases, a very flexible Cd?* first hydration shell was detected, which tran-
sits among coordination numbers of six, seven and, for relatively short times,
eight. The percentages of the different hydration numbers observed in the
two trajectories and the longest lifetimes of each coordination complex are

Total lifetime (%) Longest lifetime (ps)
TIP5P  SPC/E TIP5P SPC/E

N=6 175 65.0 220 2297
N=7 817 34.9 815 1048
N =38 0.8 0.1 15 10

Table 8.1: Total and longest lifetimes of the Cd?t hexa-, hepta- and octacoordinated
complexes for the SPC/E and TIP5P simulations.
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Figure 8.1: Cd-O (black line) and Cd-H (red line) radial distribution functions and corre-
sponding running integration numbers calculated from the SPC/E (left panel) and TIP5P
(right panel) simulations.

reported in Table 8.1. The different dynamical behavior between the two sim-
ulations is due to the relative higher openness of the TIP5P model which gives
rise to a larger number of exchange events between six- and seven-coordinated
complexes and increases the stability of the heptahydrated species as com-
pared to the hexahydrated ones. The higher frequency of solvent exchange in
the TIP5P simulation is reflected in the residence time of the water molecules
in the first solvation shell, calculated with the method of Impey et al. [96]
described in section 6.1.3, which is lower in the TIP5P case (the residence
times are 3.0 and 1.3 ns for the SPC/E and TIP5P simulations, respectively).
However, both results are in agreement with the experimental determination
of the water residence time, which is estimated to be in the nanosecond time
scale [14]. In the top panel of Figure 8.2 a comparison between the first peak
of the Cd-O and Cd-H obtained from the two simulations is shown. As it
can be seen, the TIP5P Cd-O first shell maximum is shifted towards larger
distances as compared to the SPC/E peak (see also Table 8.2). Moreover,
the average coordination numbers of the hydrated Cd?* ion are 6.8 and 6.3
for the TIP5P and SPC/E calculations, respectively, indicating that in the
former case the heptacoordinated cluster is the dominant species, while in
the latter the octahedral complex is present most of the simulation time (see
Table 8.1).

To get a deeper insight into the different behaviour originating from
the two water models we have separately analyzed the Molecular Dynam-
ics configurations in which either the hexa- or the heptahydrated species are
present. The corresponding Cd-O radial distribution functions are shown in
Figure 8.2. In particular, the comparison between the TIP5P and SPC/E
g(r)’s associated with the hexacoordinated complexes is shown in the middle
panel. The Cd-O g(r) first peak maxima are almost coincident, showing that
the geometry of the octahedral complexes is the same in both simulations. A
similar result has been obtained for the heptahydrated cluster (bottom panel
of Figure 8.2) which has a longer Cd-O first shell distance as compared to the
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N rcao (A)
SPC/E  total 6.3 2.22
N=6 ©6 2.19
N=T7 7 2.27
TIP5P  total 6.8 2.25
N=6 6 2.18
N=T7 7 2.26

Table 8.2: Structural parameters of the Cd-O g(r) first peaks calculated from the two
simulations.

24 28
r(A)
Figure 8.2: Top panel: TIP5P (dashed red line) and SPC/E (black solid line) Cd-O g(r)’s
calculated on the total trajectories and corresponding running integration numbers. TIP5P
(dashed blue line) and SPC/E (green solid line) Cd-H g(r)’s. Middle panel: TIP5P (dashed
red line) and SPC/E (black solid line) Cd-O g(r)’s calculated on hexacoordinated simulation
frames and corresponding running integration numbers. Bottom panel: TIP5P (dashed red

line) and SPC/E (black solid line) Cd-O g(r)’s calculated on heptacoordinated simulation
frames and corresponding running integration numbers.
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Figure 8.3: O-Cd-O (%) angular distribution functions (a.d.f.) calculated from the TIP5P
and SPC/E trajectories (black line and red diamonds, respectively). Panel A: a.d.f. calcu-
lated from hexacoordinated first shell structures. Panel B: a.d.f. calculated from heptaco-
ordinated first shell structures.

hexacoordinated one. The structural parameters describing all of the g(r)’s
are reported in Table 8.2. Therefore, the g(r) results show that the geometry
of the Cd*" -(H20)g and Cd**-(H,0); clusters is the same regardless the wa-
ter model used in the simulation, and the differences of the first peak position
of the total TIP5P and SPC/E g(r)’s is only due to the different percentage
of hexa- and heptacoordinated complexes occurring in the simulations.

A further proof of this finding has been gained looking at the geomet-
rical arrangement of the first shell water molecules around the Cd?* ion for
the six and seven-coordinated complexes, obtained from the a.d.f. of the 1),
¢ and ¢ angles plotted as a function of 1 — cos(z) (z = ¥, ¢, (). Figure
8.3 shows the ¥ angular distribution function for the hexa- and heptacoor-
dinated cluster (panel A and B, respectively), obtained from the TIP5P and
SPC/E simulations. The two simulations give identical results and the six-
coordinated cluster maxima are located at 1 —cos(z) = 1 and 1 —cos(z) = 2,
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Figure 8.4: Tilt angle (¢) angular distribution functions (a.d.f). Panel A: a.d.f calculated
for the TIP5P first hydration shell (black line), TIP5P and SPC/E second hydration shell
(blue and red line, respectively) and TIP5P bulk water (green line). Panel B: a.d.f. calcu-
lated for the TIP5P and SPC/E second hydration shell (blue and red line, respectively).
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Figure 8.5: ¢ angular distribution function calculated from the TIP5P trajectory for hexa-
and heptacoordinated first shell structures (red and black line, respectively).

corresponding to ¢ values of 90° and 180°, as expected for an octahedral
hydration complex. The peak maxima for the seven-coordinated cluster are
found at v values of about 75° and 145° that are very close to the O-Cd-O
angles obtained for the stable minimum at C5 symmetry from ab initio calcu-
lations of the Cd**-(H,0); cluster in Ref. [11]. Figure 8.4 shows the ¢ a.d.f.
calculated for first and second hydration shells, and bulk water. As far as the
first hydration shell is concerned, identical distributions are obtained from
the two simulations and only the TIP5P one has been reported (panel A).
The most probable value of ¢ for the first hydration shell is 0°, corresponding
to a water dipole moment vector oriented along the Cd-O direction, and the
¢ distribution for the first shell drops to zero for ¢ =~ 35°. In the case of the
second shell (panel B of Figure 8.4), two different preferred orientations are
obtained: the SPC/E distribution function peak is found at ¢ = 0°, while the
TIP5P ¢ distribution function has a well defined maximum at ¢ = 36°; this
effect is caused by the geometry of the TIP5P water model that, having five
atoms and being more bulky than SPC/E, does not allow the water molecules
to be oriented along the Cd-O direction. Both ¢ distributions drop to zero
at ¢ = 100°, a much bigger angle than that of the first shell, indicating less
tightly oriented water molecules. At longer distances, all of the angles are
allowed and the distribution is very similar to that obtained in the Hg?* case.
Since for the distribution of this angle the SPC/E and TIP5P results are al-
most identical only the TIP5P ¢ distribution function has been reported in
Figure 8.4 (panel A, green line). As all of the remaining Molecular Dynamics
structural analyses reported in this section produced the same results for the
two water models, hereafter we will show only those of the TIP5P model.
The ¢ angular distribution function was calculated on hexa and heptahy-
drated clusters and the results are shown in Figure 8.5. Both distributions
are centered on ( = 90° and the a.d.f. calculated on seven-coordinated frames
is slightly broader, as already observed for the Hg?* ion.

Axial-radial 2D density maps obtained from the TIP5P simulation for
the six and seven-coordinated complexes are shown in Figure 8.6. The map in
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Figure 8.6: Axial-radial 2D density maps of water molecules around a fixed Cd-O axis for
the TIP5P simulation. Panel A: Oxygen distribution function calculated from hexacoor-
dinated frames. Panel B: Oxygen distribution function calculated from heptacoordinated
frames.

the panel A of Figure 8.6 is typical of an octahedral cluster, while in the case
of the seven-coordinated structure the oxygen atoms give rise to a uniform
distribution around the selected axis, as already observed for the Hg?* ion.
All together these results reinforce the finding that the water model does not
affect the first shell hexa and heptahydrated complex structures, while the
higher flexibility of the TIP5P model modifies the dynamical behaviour of
the system.

To get a deeper insight into the dynamic properties of the Cd?* ion in
aqueous solution, we have computed the Cd?* diffusion coefficient. The cal-
culated diffusion coefficients are 0.68(0.08)-107° c¢m?/s and 0.73(0.08)-10°
cm? /s for the SPC/E and TIP5P simulations, respectively. A slightly better
agreement with the experimental value (0.719-107° cm?/s) [107] is found for
the TIP5P water model. The Cd?* ion exhibits a faster translational dy-
namics in the TIP5P simulation, as compared to the SPC/E trajectory. This
result well agrees with the general picture drawn by the TIP5P simulation,
characterized by a greater water mobility, resulting in shorter values of the
water residence time and a greater number of water exchange events between
the first hydration shell and the bulk.

8.2 EXAFS analysis

As shown in section 8.1, the TIP5P and SPC/E simulations of the Cd**
aqua ion present a difference of about 0.03 A in the position of the Cd-O first
shell g(r)’s, while the geometry of the Cd*"-(H,0)g and Cd*"-(H,0); clusters
is the same. x(k) theoretical signals have been calculated using equation 4.5,
starting from the total TIP5P and SPC/E Cd-O and Cd-H radial distribution
functions, in an analogous way to that used for the Hg?™ aqua ion. In the
upper panels of Figure 8.7, the comparison between the experimental signal
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Figure 8.7: Upper panels: Comparison between the TIP5P and SPC/E EXAFS theoretical
signals (blue line) calculated from the total Cd-O and Cd-H g(r)’s and experimental data
(red line). The residual signals (green line) are also shown. Lower panels: Nonphase-shifted
corrected Fourier transforms of the experimental data (red line), of the theoretical signals
(blue line), and of the residual curves (green line).

and the theoretical curves is reported for the TIP5P and SPC/E models (left
and right panels, respectively). The v signals are shown multiplied by k
squared for better visualization. The first two curves from the top of each
panel are the Cd-O and Cd-H first shell ¥(® contributions. The reminder
of the Figures shows the total theoretical contributions compared with the
experimental spectra and the resulting residuals. As expected, the dominant
contribution to the total EXAFS signal is given by the ion-O first shell sig-
nal and, as a consequence, the EXAFS structural information is particularly
accurate for the shape of the ion-O g¢(r)’s first peaks, only. Overall, the cal-
culated EXAFS spectra match the experimental data reasonably well in both
cases, with R; values of 0.466 107¢, and 0.147 107°, for TIP5P and SPC/E,
respectively (see section 4.2 for the definition of this index of agreement).
Therefore, the structural and dynamical information derived from the two
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Figure 8.8: Upper panel: Comparison between the TIP5P EXAFS theoretical signal (blue
line) calculated from the hexacoordinated Cd-O and Cd-H g(r)’s and experimental data
(red line). The residual signal (green line) is also shown. Lower panel: Nonphase-shifted
corrected Fourier transforms of the experimental data (red line), of the theoretical signal
(blue line), and of the residual curve (green line).
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simulations is basically correct. However, the TIP5P y(k) theoretical signal
is in better agreement with the experimental data, thus showing that this
simulation provides a better description of the water structure around the
Cd?** ion. In the SPC/E EXAFS analysis the presence of a leading frequency
can be clearly identified in the residual curve. This behavior is due to the
slightly short value of the average Cd-O first shell distance obtained from the
SPC/E as compared to the experimental results. This finding is reinforced
by the Fourier transform (FT) moduli of the EXAFS x(k)k? theoretical, ex-
perimental and residual signals shown in the lower panels of Figure 8.7. The
FT’s have been calculated in the k-range 3.1-12.0 A~! with no phase shift
correction applied. A quite good agreement between the FT’s of the theoret-
ical and experimental signals has been found for the TIP5P simulation, while
the experimental first-neighbour peak is found to be broader and shifted to-
wards longer distances than predicted by the SPC/E simulation. This is a
first indication that the EXAFS experimental data are better reproduced by
a flexible hydration shell with a high percentage of heptacoordinated species.

In the second step of the analysis we have examined the compatibility of
the EXAFS spectrum with the existence of an octahedral geometry of the
solvated Cd?" ion. To this end we calculated the (k) theoretical signal asso-
ciated with the hexacoordinated g(r)’s reported in the middle panel of Figure
8.2. The results are shown in Figure 8.8. Both the frequency and the am-
plitude of the theoretical curve are in poor agreement with the experimental
data. In particular, the Cd-O first shell distance of the hydrated cluster is too
short, and the octahedral complex is too stiff as compared to the experimental
determination. This is reflected in a different width and peak position of the
FT of the x(k) signals, as shown in the lower panel of Figure 8.8. However in
order to determine in an accurate way the coordination number of the Cd?*
ion, one has to go beyond the EXAFS spectroscopy, and resort to the analysis
of the low-energy region of the spectrum.

8.3 XANES analysis

As for the Hg*" ion, a quantitative analysis of the XANES data can
provide a definitive answer on the hydration properties of the Cd?* ion. In
particular, XANES can allow us to determine the percentage of hexa- and
heptacoordinated complexes present in aqueous solution. In fact, while for
the Hg?* aqua ion a uniform picture emerged from the simulations carried
out with different water models, for the Cd?" ion we have obtained from
the two trajectories a different behaviour: in the TIP5P case, the dominant
species existing in solution is the heptacoordinated one, while the SPC/E
simulation increases the stability of the hexacoordinated cluster (see section
8.1). Therefore, we have analysed the XANES spectra starting in this case
from both our SPC/E and TIP5P trajectories.
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8.3.1 Computational procedure

Since our investigation on the Hg?* aqua ion has shown that the second
hydration shell provides a detectable contribution to the XANES spectrum,
in the XANES calculations for Cd?* we have directly included both the first
and second hydration shells in the analysis. In particular, we have considered
all the water molecules separated from the Cd?* ion by a distance shorter
than 5.2 A, since, as already observed for Hg?", water molecules at larger
distance have been found to provide a negligible contribution. Two trajec-
tories containing the Cd?T ion and its first two hydration shells have been
extracted from the total simulation in different time ranges when the ion was
six- and seven-coordinated. As a result the former trajectory contained first
shell hexahydrated clusters only, while the latter contained first shell hepta-
coordinated clusters. From each trajectory we extracted 100 snapshots saved
every 30 ps. Each snapshot has been used to generate the XANES spectrum
associated with the corresponding instantaneous geometry, and the averaged
theoretical spectrum has been obtained by summing all the spectra and di-
viding by the total number of Molecular Dynamics snapshots used.

To evaluate the number of spectra which are necessary to have a sta-
tistically significant average, we have calculated the RMS residual function
defined in equation 7.1, choosing the same residual value of 107%, as used
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Figure 8.9: Residual function RMS of the XANES averaged spectra as a function of the
number of Molecular Dynamics snapshots for hexa- (upper panel) and hepta- (lower panel)
coordinated first shell clusters.
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in the Hg?" XANES analysis. The RMS function obtained from the TIP5P
simulation is simulation is plotted in Figure 8.9 against the number of av-
eraged spectra for the hexa- and heptacoordinated first shell clusters (upper
and lower panels, respectively). It is seen that 100 configurations are enough
to reach convergence in both cases. The results obtained from the SPC/E
simulations are very similar and they are not shown for the sake of brevity.

8.3.2 XANES-Molecular Dynamics results

In the first step of the analysis we have calculated the theoretical XANES
spectra associated with the hexa- and heptahydrated complexes. It is use-
ful to repeat that to this end we have extracted from each simulation two
trajectories, the former containing first shell hexahydrated clusters only, the
latter containing first shell heptacoordinated clusters. In both cases also the
second hydration shell was considered including all the water molecules up
to 5.2 A. The corresponding XANES theoretical spectra obtained from 100
Molecular Dynamics snapshots (not including intrinsic and extrinsic inelastic
processes) are shown in Figure 8.10. In the upper panel we report the XANES
theoretical spectra associated with the octahedral hydration structure for the
TIP5P and SPC/E simulations, while the XANES theoretical spectra calcu-
lated from the heptacoordinated clusters are shown in the lower panel. As
evident from the plots, the spectra obtained from the two simulations are
identical. This finding is in line with the results of our Molecular Dynamics
simulations which have shown that the structure of hexa- and heptahydrated
complexes is the same regardless the water model used in the simulations.
Therefore, in the following analysis we can use only one simulation and in
particular the TIP5P trajectory has been chosen.

In the second step we exploited the potentiality of the XANES technique
to unveil the structural and dynamic properties of the hydration sphere. In
particular we were interested in determining the percentage of the heptaaqua
and hexaaqua ion existing in solution. To this end we calculated several
averaged theoretical spectra with variable percentages of hexa- and hepta-
coordinated complexes, and the obtained trend is depicted in Figure 8.11.
The calculated XANES spectra present noticeable differences all along the
energy range, showing the sensitivity of XANES to the geometry of the Cd**
hydration cluster. In particular, the edge intensity is lowered in the spectrum
containing only the hexacoordinated complex which exhibits a different shape
in the region around 18 eV and a shift of the first maximum around 50 eV.
To determine the effective percentages of the two hydration complexes it is
necessary to compare the total averaged XANES spectra with the experimen-
tal data. To this end, as in the case of Hg?*, all inelastic processes have been
accounted for by convoluting the theoretical averaged spectra with a broad-
ening Lorentzian function, and the corresponding Es and A non-structural
parameters have been optimized. The agreement between the experimen-
tal and theoretical data has been evaluated also here by the goodness-of-fit
parameter (R,,) and in Figure 8.12 the Ry, values are plotted against the
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Figure 8.10: Upper panel: Comparison of the averaged XANES theoretical spectra of
Cd?* in aqueous solution calculated from the TIP5P (solid line) and SPC/E (dotted line)
hexacoordinated simulation frames. Lower panel: Comparison of the averaged XANES
theoretical spectra of Cd** in aqueous solution calculated from the TIP5P (solid line) and
SPC/E (dotted line) heptacoordinated simulation frames.

percentage of hexahydrated clusters used in the calculation of the averaged
XANES theoretical spectrum. The picture that emerges is quite informative,
because the R,, shows a regular trend and the lowest Ry, value is obtained
for a hexacoordinated cluster percentage of 20%, which corresponds to the
result obtained from the TIP5P simulation. Thus, this XANES analysis es-
tablishes that the TIP5P simulation provides a very accurate description of
the hydration properties of the Cd?* ion. In Figure 8.13, the averaged theo-
retical spectra corresponding to hexacoordinated cluster percentage of 100%
and 20% are compared with the experimental spectrum (panel A and B,
respectively). In the former case, as expected, the agreement between the
experimental and theoretical spectra is not very good both in the low- and
high-energy regions of the spectrum. The intensity of the edge is too small
and the position of the first maximun is shifted as compared to the experi-
mental data. Conversely, the averaged theoretical spectrum calculated from
the TIP5P trajectory is in excellent agreement with the experimental data in
all the energy range (panel B of Figure 8.13). Small discrepancies between
the theoretical and experimental spectra are found at about 20 and 70 eV
from the edge. A recent investigation on the multielectron photoexcitations
affecting the Cd K-edge has been carried out by Kodre et al. [110]. The anal-
ysis of the Cd vapour absorption spectrum after natural-width deconvolution
has revealed the presence of anomalous features in the atomic background
due to multielectron excitation. In particular the onset of the 1s4d and 1s4p

112



8.3 XANES analysis

I T T T T I T
2.5~ — 0% 6fold|
— 10% 6-fold
L N — 20% 6-fold .
— 30% 6-fold
B 40% 6fold| |
B 2 50% 6-fold
i= —— 60% 6-fold
5t — 70% 6-fold .
o 80% 6-fold
@ 1.5 90% 6-fold| |
— — 100% 6-fold
%)
L
2
X 1
0.5}
| . | . | . | . | .
0 20 40 60 80
Energy (eV)

Figure 8.11: Averaged XANES theoretical spectra of the Cd?* aqua ion calculated with
different percentages of hexa- and heptacoordinated clusters.

multielectron transitions, was found at about 20 and 70 eV, respectively, and
this phenomenon could be responsible for the small discrepancies found in
our MXAN analysis, which is carried out in the one-electron approximation.
Therefore, according to our XANES analysis, the Cd?* ion in aqueous so-
lution forms a flexible first coordination shell in which an heptacoordinated
structure plays a dominant role.

0 25 50 75 100
six-fold %

Figure 8.12: Goodness-of-fit (R,q) versus percentage of hexacoordinated complex of the
XANES theoretical spectra.
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Figure 8.13: Panel A: Comparison between the averaged XANES theoretical spectrum
including the hexacoordinated first shell clusters (blue solid line) and the deconvolved
experimental data (red dotted line) of Cd?* in aqueous solution. Panel B: Comparison
between the averaged XANES theoretical spectrum calculated from the TIP5P trajectory
with 80% of hepta- and 20% of hexacoordinated clusters (blue solid line) and the decon-
volved experimental data (red dotted line).
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Chapter 9

Zn’t aqua ion in high-density
water

9.1 Hydration structure from Molecular Dy-
namics simulations

As already mentioned, the hydration properties of the Zn?* aqua ion have
been studied in conditions of very high pressures. The Zn-O and Zn-H radial
distribution functions and the corresponding running integration numbers cal-
culated from the three simulations (carried out at pressure values of 0.1 MPa,
1.0 GPa and 2.2 GPa) are shown in Figure 9.1. In all cases a well defined first
peak followed by a depletion zone can be observed, indicating the existence
of a stable first hydration shell. In all the three simulations, the integration
over Zn-O and Zn-H g(r) first peaks gives coordination numbers of six and
twelve, respectively. Therefore, the first important result is that the change
of thermodynamic conditions does not affect the first coordination shell hy-
dration number. Note that no exchange events between first and second shell
water molecules have been observed during the total simulation time in all
the three cases, and this is in agreement with the fact that the residence time
of water molecules in the first hydration shell of Zn?* is estimated to be in
the microsecond time scale (at ambient conditions) [14]. The comparison of
the first peak of the Zn-O radial distribution functions is reported in Figure
9.2. As it can be seen, the radial distribution functions show a shortening of
the peak position (the first peak distances are 2.06, 2.05 and 2.04 A for the
simulations at 0.1 MPa, 1.0 GPa and 2.2 GPa, respectively), and a broaden-
ing of the first peak as pressure increases, meaning that in compressed water
the first coordination shell becomes more disordered. The effect of pressure
changes is more evident on the structure of the second coordination shell, as
shown in Figure 9.3. In this case the shift of the peak positions at shorter
distances is about 0.11 A (the second peak distances are 4.32, 4.26 and
4.21 A for the simulations at 0.1 MPa, 1.0 GPa and 2.2 GPa, respectively),
larger than what observed for the first hydration shell. If we always calculate
the hydration number by integration up to the Zn-O g(r) second minimum,
we obtain from the three simulations increasing coordination number values
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Figure 9.1: Radial distribution functions of the Zn-O (black line) and Zn-H (red line) g(r)’s
and corresponding running integration numbers. Panels A, B and C show the distribution
functions obtained from the trajectories at 0.1 MPa, 1.1 GPa and 2.2 GPa, respectively.
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Figure 9.2: Comparison of the Zn-O g(r) first peak obtained from the three simulations.
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Figure 9.3: Comparison of the Zn-O g(r) second peak obtained from the three simulations.

(they are 10.9, 12.7 and 29.0 for the simulations at 0.1 MPa, 1.0 GPa and 2.2
GPa, respectively). Moreover, the g(r) changes qualitatively increasing the
pressure in the zone after 4.5 A, and at 2.2 GPa the second hydration shell
is not only shifted towards the metal ion but expands outwards and is less
separated from bulk water.

The a.d.f. obtained from the three simulations of the ¢, ( and 1 angles
(plotted as functions of 1 — cos(¢, (, 1)) are depicted in Figure 9.4. Panel A
shows the a.d.f. of the ¢ angle. The distribution functions calculated from the
three trajectories show very sharp peaks at cos(¢) = 1, as the oxygen atoms
point towards the ion and wagging movements are very limited. The curves
related to the simulation at 0.1 MPa and 1.0 GPa go to zero at ¢ = 30° while
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Figure 9.4: Angular distribution functions (a.d.f.) of the ¢, ¢ and ¢ angles obtained from
the simulations at 0.1 MPa (black lines), 1.0 GPa (red lines) and 2.2 GPa (blue lines).
Panel A: First hydration shell a.d.f of ¢. Panel B: Second hydration shell a.d.f. of ¢. Panel
C: First hydration shell a.d.f. of {. Panel D: First hydration shell a.d.f. of .

the a.d.f. obtained at 2.2 GPA drops to zero at ¢ = 38° since the increase
of pressure allows a small increase of rotational freedom of the first shell wa-
ter molecules. Analysis of the second coordination shell a.d.f. gives quite
different results: the simulations at 1.1 and 2.2 GPa show a change of slope
and concavity as compared to the distribution obtained from the trajectory
at 0.1 MPa, as the packing of the second hydration sphere forces the water
molecules to deviate from the minimum potential energy alignment observed
in the first simulation. Moreover, they are much broader, showing that in the
compressed solutions wagging movements in the second hydration shell are
much more important than at 0.1 MPa. Panel C shows the a.d.f. of ( angle.
In all cases there is a well defined peak centered at cos(¢) = 90°, showing that
the Zn-O vector is located most of the time in the water molecular plane with
a maximum deviations at 90° and 120°. The a.d.f.’s for the i) angle calculated
at various pressures on first shell water molecules are shown in Panel D. All
of the distribution functions have nearly coincident maxima at 1 —cos(¢)) = 1
and 1 — cos(y)) = 2 (corresponding to 1 values of 90° and 180°), thus show-
ing the existence of a stable octahedral coordination geometry, even at high
pressures. Moreover, the a.d.f.’s go to zero at intermediate values, as water
molecules are strongly constrained in their positions and large distortions of
the octahedral symmetry are not expected.

The three-dimensional structure of the Zn?* first and second solvation
shell can be observed looking at the spatial distribution functions calculated
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from the simulations at 0.1 MPa and 2.2 GPa, that are shown in Figures 9.5
and 9.6. The isodensity surfaces of oxygen and hydrogen atoms are coloured
green and red, respectively. It can be clearly seen the octahedral symmetry
of the first hydration shell both at 0.1 MPa and at 2.2 GPa, and the compres-
sion of the hydration shells going from ambient to the high-density conditions.
The torus-shaped distribution of hydrogen atoms in the first hydration shell
means that they are free to rotate around the water dipole, in agreement with
the a.d.f. analysis. The outer green rings, which correspond to oxygen atoms
in the second coordination shell, are much thicker and wider at 2.2 GPa, as
more and more water molecules are packed into the second hydration shell
and the second coordination shell becomes more disordered and unstructured.
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Figure 9.5: Spatial distribution functions of oxygen (green) and hydrogen (red) atoms
obtained from the trajectory at 0.1 MPa. The isodensity surfaces at level 2.23 are shown.

Figure 9.6: Spatial distribution functions of oxygen (green) and hydrogen (red) atoms
obtained from the trajectory at 2.2 GPa. The isodensity surfaces at level 2.23 are shown.
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9.2 Dynamic properties from Molecular Dy-
namics simulations

Even if the increase of pressure does not have a huge effect on the struc-
ture of the first hydration shell, it has a stronger effect on the dynamics of
the water molecules surrounding the ion. This effect can be investigated by
calculating the first rank reorientational correlation times of water molecules
belonging to the Zn?* first hydration shell and to bulk water. Figure 9.7
shows the trend of C¢(t) for the trajectories at 0.1 MPa and 2.2 GPa while
all of the reorientational correlation times obtained from the three simula-
tions are reported in Table 9.1. First of all, it is useful to compare the
behaviour of the different vectors within the same simulation and in all cases
the same general trend is observed. As far as the Zn?* first hydration shell
is concerned, the dominant motion is the rotation around the water dipole,
as expected and as already observed for the Hg?* aqua ion. Moreover, this
finding is in agreement with the results of our analysis of angular and spatial
distribution functions. The reorientational dynamics of the u” vector is the
fastest reorientation while the u’# correlation time is slightly greater than
that related to the u’¥ vector. In bulk water the u’¥ vector rotates faster
than u’” and u”, showing that water rotation in the bulk is anisotropic.
This result has been already observed in Molecular Dynamics simulations of
pure water and it is possibly related to the geometry of the water model [97].
By comparing the results of the three simulations, we can clearly see that all
of the correlations times, both in the first shell and in bulk water, decrease
with increasing pressure. This means that water mobility increases and it is
a consequence of the rupture of the hydrogen bond network caused by the
pressure increase. Always as a consequence of the disruption of the hydrogen
bond network the Zn** ion diffusion coefficient increases (it is 0.70(0.07)-107°
cm? /s, 0.91(0.08)-107° cm? /s, 1.10(0.08)-107° cm? /s for the simulations at 0.1
MPa, 1.0 GPa and 2.2 GPa, respectively). Note that at ambient conditions
we have obtained a diffusion coefficient in very good agreement with the ex-
perimental determination, which is equal to 0.703-107° cm? /s [107]. We could
not find any experimental values of this quantity under high pressure.
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Figure 9.7: First rank reorientational correlation functions C{*(t) of water molecules be-
longing to the Zn?* first hydration shell and to bulk water. Continuous lines refer to the
ion first coordination shell, while dashed lines to bulk water. Different colors are related
to the different vectors: @ (black lines), @w7# (blue lines), and @~ (red lines). Panel
A: Reorientational correlation functions obtained at 0.1 MPa. Panel B: Reorientational
correlation functions obtained at 2.2 GPa.

vector 0.1 MPa 1.0 GPa 2.2 GPa

first shell u¥ 7.7(0.2) 5.0(0.3) 2.9(0.3)
u? 8.1 (0.3) 59(0.3) 3.0 (0.4)
u? 57.5 (5.5) 33.8 (5.0) 27.3 (4.2)

bulk water u 25 (0.1) 21(0.1) 1.1(0.2)
uf 39 (0.1) 33(0.1) 1.6(0.2)
u?  39(0.1) 33(0.1) 1.6(0.2)

Table 9.1: Reorientational correlation times (ps) of water molecules belonging to the Zn?*
first hydration shell and to bulk water obtained from the three simulations. Standard
deviations are given within parentheses.
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9.3 EXAFS analysis of Zn*" in high-density
water

For the Zn?* ion, the reliability of the Molecular Dynamics simulation car-
ried out at ambient conditions has been already assessed by our group in Ref.
[7], by comparing the first shell parameters obtained from the EXAFS data
analysis and the structural results of the Molecular Dynamics trajectory. In
particular, an excellent agreement between the theoretical and experimental
Zn-0 first shell distance was obtained.

As far as the trajectories in high-density conditions are concerned, a direct
comparison between the structural results of the Molecular Dynamics simula-
tions and EXAFS data analysis is not possible, as the theoretical calculations
and the experimental measurements have been carried out at different pres-
sure values. However, the trend with pressure of the structural parameters
obtained by fitting the EXAFS experimental signals can be compared with
the trend of the theoretical structural results. Figure 9.8 shows the com-
parison between the experimental EXAFS signals and the fitting results for
pressure values of 0.2, 1.97, and 2.85 GPa. Note that both the quality of the
experimental data and the agreement with the theoretical curve are excellent
in all three cases.

The experimental Zn-O g(r) first peaks obtained from the EXAFS mini-
mizations are shown in Figure 9.9 while the corresponding structural parame-
ters are reported in Table 9.2. The experimental g(r)’s confirm that the Zn**
ion first shell hydration number does not vary with pressure and the shift of
the Zn-O g(r) peak position to shorter distances with increasing pressure is

Figure 9.8: Comparison between the experimental (blue dotted line) and theoretical (red
solid line) EXAFS signals for the Zn?* ion at different pressure values.
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Figure 9.9: Pressure dependence of the Zn-O g(r) first peak obtained from the analysis of
EXAFS spectra.

a clear evidence of the first hydration shell compression. The higher mobility
of water molecules in the first coordination sphere is highlighted by the trend
of the Debye-Waller factors, that increase with increasing pressure (see Table
9.2). Moreover, the shift towards shorter distances of the Zn-O rising edge in-
dicates that the oxygen atoms of the first shell water molecules in compressed
water can reach regions of space not normally accessible at ambient condi-
tions. All together, these findings reinforces the theoretical results obtained
from our Molecular Dynamics simulations.

Pressure  R(A) o%(A?)

0.10 MPa 2.078 0.0087 0.2
0.20 GPa 2.074 0.0088 0.2
1.97 GPa 2.053 0.010 0.2
2.85 GPa 2.042 0.011 0.2

Table 9.2: Structural parameters of Zn-O g(r) first peak obtained from the EXAFS analysis.
R is the mean Zn-O distance, o is the Debye-Waller factor, and g is the asymmetry
parameter.
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9.4 Water structure under pressure

As already mentioned in the Introduction chapter, the second aim of our
study on compressed water is the investigation of the structural transforma-
tions occurring to water from the low- to the high-density conditions. To this
end, we have carried out three Molecular Dynamics simulations of pure water
at the same thermodynamic conditions used in the simulations of the Zn?**
ion (and using also the same general Molecular Dynamics protocol described
in section 6.1.1).

The first question we address is: “Does the presence of the ion affect the
structure of water?” To give an answer to this question we have calculated
the oxygen-oxygen g(r) in the pure water simulations and in the second hy-
dration shell of the Zn?* ion. More specifically, the O-O g(r)’s in the second
hydration shell of the ion means that in equation 6.1 particle A is the oxygen
atom of a water molecule in the Zn?* second hydration shell and particles B
are the oxygen atoms of all the other water molecules. An in-house written
code has been used in which an average over all the oxygen atoms in the ion
second coordination shell has been performed. The results of this analysis
for the three simulations are shown in Figure 9.10. At ambient conditions
the two g(r)’s are very similar. The most important difference is the peak at
about 5.5 A which is found only in the g(r) calculated in the second hydra-
tion shell of the ion. However, this peak is only due to the presence of first
shell water molecules that are strongly oriented by the ion. This hypothesis is
confirmed by calculating the oxygen-oxygen g(r) in the second hydration shell
of the Zn** ion but excluding the first shell water molecules from the com-
putation. The result is also shown in Figure 9.10, and it is clearly seen that
the peak in this case disappears. The lower intensity of this g(r) as compared
to the previous one is due to the fact that we did not apply any correction
for the excluded volume effects caused by the removal of the first hydration
shell. The small differences between the g(r)’s calculated in pure water and in
the second shell of the ion completely disappear under high pressure and at
2.2 GPa the two g(r)’s become almost identical. All together, these findings
show that solvent molecules are not significantly influenced by the presence
of the solute, and the impact of the ion on the structure of water does not
extend in an appreciable way beyond the first hydration shell. This is an
interesting result that contradicts the results of neutron diffraction studies
[111, 112] which support the idea that ionic solutes have a strong effect on
the microscopic structure of water and, according to the same studies, this
effect is similar to the application of high external pressures to pure water.
In our opinion the effects of ions on the structure of water surely depends on
the particular ion under investigation, but in general cannot be determined
by neutron diffraction experiments which uses solute concentrations so high
that all the water molecules in practice belong to the first hydration shell of
the cation or of the anion.

The second question we address is: “How does the water structure change
with increasing pressure?” In order to understand this, we compare in Figure
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Figure 9.10: Oxygen-oxygen radial distribution functions calculated from the pure water
simulations (black lines), and for the second hydration shell of the Zn?** ion including (red
lines) or excluding (blue lines) the contribution of the oxygen atoms belonging to the ion
first coordination shell.
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Figure 9.11: Comparison of the O-O g(r) obtained from the Molecular Dynamics simula-
tions of pure water carried out at P=0.1 MPa, 1.0, and 2.2 GPa.
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Figure 9.12: Distance distributions of groups of 1%¢ to 4" 5t to 7" 8th to 11t*, and

12" to 15" oxygen neighbors around a central water molecule for P=0.1 MPa (black), 1.0
(red), and 2.2 GPa (blue).
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Figure 9.13: Definition of the w and 6 angles used in the study of water structure under
high pressure.

9.11 the O-O g(r)’s obtained from the three pure water simulations. Remark-
able differences among the oxygen-oxygen g(r)’s are found with increasing
pressure. At 2.2 GPa a pronounced broadening of the O-O g(r) first peak,
as compared to ambient conditions, is observed. This change is caused by
a collapse of the second coordination shell, as a consequence of the rupture
of the hydrogen bond network. To get a deeper insight into the structural
properties of water under high pressure we have calculated the oxygen-oxygen
g(r)’s of distance ranked groups of neighbours with respect to a given central
water molecule (see Figure 9.12). The group of first neighbours (1-4) which
form the tetrahedral first shell of the water molecule behaves rigidly with
an almost density independent distance from the central molecule, in agree-
ment with neutron diffraction results [29]. On the contrary, distances of all
the other groups of neighbours decrease with increasing density, as more and
more water molecules move towards the central one.

The angular distribution functions of two different angles (whose defini-
tion is reported in Figure 9.13) have been also computed using in-house writ-
ten codes. Figure 9.14 shows the distribution of the oxygen-oxygen-oxygen
angle (labelled as w) calculated on the four closest water molecules around a
central oxygen atom. At ambient conditions the distribution is highly peaked
at 109°, corresponding to a tethaedral arrangement. The intensity and the
position of this peak is only slightly affected by increasing pressure, as the
tetrahedral first shell cluster is minimally distorted in the high density con-
ditions. Conversely, the intensity of the peak at 55° significantly increases at
higher pressures and the position of the peak moves towards larger angles.
This is the angle formed by the central oxygen, a tethraedral neighbouring
oxygen and the oxygen of an interstitial water molecule which is not hydrogen
bonded to any of the first shell molecules. The trend of w distributions then
suggests that the number of interstitial molecules increases under high pres-
sure and that these molecules collapse into the first coordination shell. This
result is reinforced by the analysis of the O;_4-O-O5_g angle (labelled as 6),
i.e. the angle about an oxygen atom formed by its first four (1-4) and second
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Figure 9.14: Angular distribution functions of the O-O-O angle (w) calculated on the four
closest water molecules around a central oxygen atom obtained from the three Molecular

Dynamics simulations of pure water.

four (5-8) neighbours (see Figure 9.15). At ambient conditions two peaks at
48° and 75° are found which merge into a single peak centered at 60° at 2.2
GPa. As already pointed out in Ref. [28], this peak is due to the presence of
interstitial molecules. The growth of interstitial molecules with pressure has
been also highlighted by computing the average number of hydrogen bonds
(n) formed by the first four (1-4) and second four (5-8) neighbours of a central
water molecule. A decrease of n from 0.65 at ambient conditions to 0.43 at
2.2 GPa was found, in line with previous results.
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Figure 9.15: Angular distribution functions of the O1_4-0O-O5_g angle (6) obtained from
the three Molecular Dynamics simulations of pure water. O;_4-O-O5_g is the angle about
an oxygen atom formed by its first four (1-4) and second four (5-8) neighbors.
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Chapter 10

Bromide ion hydration
properties

In the last part of this work we have studied the hydration properties
of one halide, i.e. the bromide ion. Our investigation has been carried out
at ambient conditions, since the coordination structure of this anion is still
controversial even at 1 bar and 300 K [2], as already pointed out in the In-
troduction chapter.

In general, halide ion-water interactions, excluding fluoride, are weaker
than those of most cations and energetically comparable with the water-water
interactions in bulk water. Therefore, the structural properties of the solvent
increase significantly their role and as a result a correct description of the
halide hydration properties can be obtained only with theoretical methods
able to reproduce the delicate compromise among solute-solvent and solvent-
solvent interactions.

Moreover, it has been shown that the polarizability of the anion may be
one of the most important factor in determining the structure of gas phase
clusters [113, 114]. As far as the aqueous solutions are concerned, in most
cases polarizable models can provide qualitative predictions in good agree-
ment with available experimental data. However, it is very important to
obtain an appropriate value of the halogen ion polarizability since there are
no direct measurements of this quantity in aqueous solution, and the available
data are usually extrapolations from ionic crystals and salt solutions [115]. As
a consequence, the contributions of the polarizability are actually not clearly
obtainable.

All together, these findings have prompted us to use in the study of the
bromide aqua ion a completely different approach with respect to that em-
ployed for the group 12 metal cations. In particular, we have resorted to
Car-Parrinello Molecular Dynamics simulations, which are able to describe
the dynamics of the system in a self-consistent fashion, taking into account in
a natural way polarization and many-body interactions. In the Car-Parrinello
approach, any electronic structure method can be used to solve the electronic
Schrodinger equation. In our case, we have decided to employ the DFT
method, as it is able to include to some extent the correlation energy with a
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computational cost comparable to that of the Hartree-Fock method, provided
that a suitable form of the exchange and correlation potential is chosen. More-
over, plane wave basis sets were used, due to their advantages with respect to
Gaussian basis sets when employed in Molecular Dynamics simulations (see
section 2.8.2). Besides the quantum mechanical Car-Parrinello Molecular Dy-
namics simulation, we have performed also a classical Molecular Dynamics
simulation of Br~ in aqueous solution, and we have compared our theoretical
results with the X-ray absorption spectroscopy experimental data, as in the
case of the group 12 aqua ions. With such a procedure it has been possible
to identify which method provides the most reliable structural results.

10.1 Computational methods

10.1.1 Classical Molecular Dynamics Simulation

The classical Molecular Dynamics simulation of the bromide ion in aque-
ous solution has been carried out with the GROMACS package [92] following
the general setup employed also in the case of the group 12 metal cations
described in section 6.1.1. The OPLS parameters [116] were used for the ion-
water interactions, while the TIP3P model [117] was employed to describe the
water-water interactions. This water model adopts the experimental molec-
ular geometry and it is widely used in the literature, especially together with
the OPLS force fields, as in our case, since it is OPLS-consistent. The system,
composed of one bromide ion and 819 water molecules in a cubic box, was
simulated for 15 ns, with a time step of 1 fs. The first 5 ns have been used
for equilibration and discarded in the following analyses.

10.1.2 Car-Parrinello Molecular Dynamics simulation

The Kohn-Sham formulation of DFT, which is implemented in the CPMD
code [118], has been used in the ab initio Molecular Dynamics simulation.
The gradient-corrected BLYP functional has been employed [119, 120]. The
simulated system consists of one bromide ion and 90 water molecules in a
periodic cubic box with 14 A edge. The Martins-Troullier pseudopoten-
tial [121] was used for the bromide ion, while the core electrons of oxygen
and hydrogen atoms have been treated using the recently developed DCACP
pseudopotentials [122]. Recent calculations using DCACP pseudopotentials
in combination with the BLYP functional have shown improved structural
and dynamical properties of liquid water [123]. The electronic wavefunctions
have been expanded in a plane wave basis set up to an energy cut-off of 70
Ry. The simulation was performed using the Car-Parrinello approach [69],
with a fictitious mass associated to the electronic degrees of freedom of 400
a.u.. After an equilibration time of 2 ps, during which thermalization at 300
K has been achieved by a Nosé-Hoover thermostat [65, 66] with a coupling
frequency of 1500 cm™!, the equations of motion have been integrated with a
time step of 4 a.u., for a total simulation time of 4.4 ps in the NVE ensemble.
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It is important to stress that we observed no drift in the electronic kinetic en-
ergy during the total simulation time. Note that a homogeneous background
charge has been used to compensate for the negative charge of the bromide
ion [93].

10.1.3 Structural and dynamic analysis

The structural properties of the bromide ion aqueous solutions were de-
scribed in terms of radial distribution functions, Br-O and Br-H g(r)’s, as
explained in section 6.1.2. Angular distribution functions have been calcu-
lated for three different angles: the angle formed by two Br-O vectors in the
first shell (labelled as 1)), the angle formed by the water molecule dipole and
the Br-O vector (labelled as ¢), and the angle formed by the Br-O and O-H
vectors (labelled as w).

The mean residence time of water molecules in the first hydration shell
has been evaluated, for the classical Molecular Dynamics simulation, using
the approach proposed by Impey et al. [96]. This procedure have been de-
scribed in section 6.1.3. A second approach, called the “direct method” and
proposed by Hofer et al. [124], has been also applied. This method scans
the whole trajectory for movements of the ligands, either entering or leaving
the first coordination shell. Whenever a ligand crosses the boundaries of the
shell, its further path is followed, and if its new placement outside or inside
the shell lasts for more than a chosen t*, the event is accounted for as a “real”
exchange process. Thus t* has the same role as in the Impey procedure. The
water residence 74 is then calculated as:

N@IE
where tg,, is the total simulation time, 7 is the average first shell coordi-
nation number, and N, is the number of “real” solvent exchanges between
the first hydration shell and the rest of the solvent.
All the structural and dynamic analyses have been carried out using in-
house written codes.

(10.1)

Td —

10.2 Computational results

Structural arrangements of water molecules around the bromide ion are
characterized by the Br-O and Br-H radial distribution functions, and the
results obtained from the two Molecular Dynamics simulations are collected
in Figure 10.1. In both cases, the presence of a nonzero first minimum in the
Br-O g(r)’s and of a nonzero second minimum in the Br-H g(r)’s indicates
that the first solvation shell is not well defined, and several exchange events
take place between the first and second hydration sphere. Moreover, the Br-H
g(r)’s show the presence of two peaks, the former at shorter distances and the
latter at longer distances as compared to the Br-O g(r) first maxima, meaning
that the first shell water molecules orient only one hydrogen atom towards
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Figure 10.1: Br-O (black line) and Br-H (red line) radial distribution functions obtained
from the classical and CPMD simulations. Running integration numbers are also shown.

the bromide ion. This result is not obvious for the classical Molecular Dy-
namics simulation since in the classical framework the anion is represented by
a negative charge having electrostatic and Lennard-Jones interactions with
the water molecules. This simple description, which completely neglects the
ion polarizability, could have led to an overestimation of the ion-water dipole
interactions, giving rise to a symmetric arrangement with the two hydrogen
atoms pointing towards the anion almost at the same distances.

The main difference between the classical and the CPMD simulation is
the Br-water first shell distances. Inspection of Figure 10.1 reveals that the
rising edges and the first peak positions are shifted towards shorter distances
in the classical case both in the Br-O and Br-H g(r)’s. The Br-O g(r) first
peak distances are indeed 3.27 A and 3.33 A for the classical and CPMD sim-
ulations, respectively. This result is a first indication that the pair potentials
used in the classical approach are more rigid giving rise to a first hydration
shell which is more tightly bound to the bromide ion. Note that also the
intensity of the classical g(r) peaks is higher as compared to the CPMD one.
This overall tendency is reflected in the number of water molecules present in
the first hydration shell of the anion as obtained from the running integration
numbers of the Br-O g(r)’s that are 7.6 and 6.5 up to the first minima (3.9
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Figure 10.2: Coordination number (n) distribution obtained from the classical and CPMD
simulations.

A in both cases) for the classical and CPMD simulations, respectively (see
Figure 10.1). These results are different from those of Raugei and Klein [38]
who found a first shell coordination number of 5.1. More accurate information
can be obtained by defining an instantaneous coordination number n, as the
number of oxygen atoms at a distance shorter than the Br-O g(r) first min-
imum, and analyzing its variation along the simulations. The coordination
number distributions are shown in Figure 10.2. In both trajectories the bro-
mide ion transits among several coordination numbers, but the distributions
obtained from the two simulations are very different. The dominant species
existing in solution are indeed seven- and eight-fold hydration complexes in
the classical Molecular Dynamics simulation, while the six-fold complex in
the CPMD simulation plays a dominant role, even if the distribution of coor-
dination numbers fluctuates in the range 5 to 9.

The geometrical arrangement of the first shell water molecules around
the bromide ion can be evaluated by looking at the angular distribution func-
tions of the O-Br-O (¢) angle, plotted in Figure 10.3 as 1 — cos(y). The
1 distribution obtained from the classical and CPMD trajectories drops to
zero for 1 — cos(1)) less than 0.25, showing that i) angle values smaller than
41° are prohibited in both simulations. As far as the CPMD trajectory is
concerned, no clear peaks can be observed in the v distribution, showing the
absence of a well defined configuration of water molecules around the bro-
mide ion. This finding differs from the results obtained by Raugei and Klein
[38] in their CPMD simulation where water molecules occupy well defined
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positions around the Br~ ion (the most stable first shell configuration has a
4+2 structure where four water molecules coordinate the anion according to
a hypothetical square pyramidal geometry and the other two molecules coor-
dinate it on the other side). Conversely, in the classical Molecular Dynamics
simulation two broad and low intensity peaks are found at 1 — cos(1) =0.63
and 1 — cos(¢)=1.78 (¢» = 68.3° and 1) = 141.3°, respectively), indicating
the existence of a more structured coordination sphere. The orientation of
a single water molecule in the first hydration shell can be inferred from the
distribution function of ¢ angles (Figure 10.4). In both cases the ¢ distri-
butions show a well defined peak and the maxima are located at ¢=49.5°
for the classical simulation and ¢=>55.3° for the CPMD simulation. These
distributions are consistent with a nearly linear Br- - -H-O hydrogen bond,
in agreement with the results of Raugei and Klein [38] and with previous
calculations on anions in water [2]. The broader and lower-intensity ¢ dis-
tribution obtained from the CPMD simulation provides a further proof of
the higher flexibility of the first hydration shell in agreement with the above
mentioned results. The distributions of the w angle are shown in Figure 10.5.
The sharp peak located at 0° indicates that one hydrogen atom of the first
shell is strongly bound to the anion in a linear Br- - -H-O configuration. The
second hydrogen atom, which is less tightly bound and more free to rotate,
is responsible for the second peak which is less intense and broader than the
first one. As evident from the inset of Figure 10.5, the maxima of the second
peak are found at w values of 103.2° for the classical and of 109.3° for the
CPMD trajectory, coherently with the linear Br- - -H-O configuration. The
form of the w distributions shows once more that the flexibility of the first
coordination shell increases going from the classical to the CPMD simulation.

Even if the water molecules do not occupy well defined positions around
the ion, as evidenced from the v a.d.f. analysis, it is possible to evaluate
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Figure 10.3: O-Br-O (¢) angular distribution functions obtained from the classical and
CPMD simulations.
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Figure 10.4: ¢ angular distribution functions obtained from the classical and CPMD sim-
ulations.

the asymmetry of the first coordination shell by analysing the distance be-
tween the center of mass of the first hydration shell cage and the bromide
ion Reqge (see Figure 10.6). From Figure 10.6 a slight asymmetry of the first
hydration shell can be inferred, with the asymmetry being more pronounced
in the CPMD trajectory (the R4 distribution peaks are located at 0.40 and
0.58 A for the classical and CPMD simulations, respectively). The stronger
asymmetry found by Raugei and Klein [38] was due to the highly asymmetric
442 first shell structure which resulted from their CPMD simulation. The
asymmetry of the first coordination is responsible for the presence of an in-
duced net dipole moment on the bromide ion. The anion dipole moment has
been calculated from the CPMD trajectory with respect to the anion nucleus
position, using the Wannier function centers [125, 126]. The positions of the
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Figure 10.5: w angular distribution functions obtained from the classical and CPMD sim-
ulations.
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Figure 10.6: Distributions of the distance between the center of mass of the first hydration
shell cage and the bromide ion (Reqge) obtained from the classical and CPMD simulations.

maximally localized Wannier centers are directly related to the positions of
the electrons in the system, and, as a consequence, it is possible to compute
the molecular (or atomic) dipole moment assuming that the electrons belong
to the nearest neighbour atom. The peak of the anion dipole moment distri-
bution is found at p = 0.85D (see Figure 10.7), indicating that the bromide
electron density is strongly influenced by the presence of the surrounding
water molecules and that the inclusion of polarization effects is essential to
provide a correct description of the anion-water interactions.

The flexible and unstructured layout of the bromide ion first solvation
shell is reflected on its dynamical behavior. Several water exchange events
between the first and the second hydration shell have been observed dur-
ing the two simulations, and the rate of the water exchange processes has
been evaluated by means of mean residence times of the water molecules in
the first hydration shell. This property has been determined using both the
Impey and direct method for the classical simulation and, due to the short
simulation time, only with the direct method for the CPMD one. The prob-
lems encountered when trying to apply the Impey procedure for calculating
the residence time from relatively short Molecular Dynamics simulations have
been already pointed out in the literature [124], and are related to the difficul-
ties of fitting the Impey survival function npy.(t) to the required exponential
form. On the other hand, it is always possible to count the number of ex-
change processes between water molecules belonging to the first and second
coordination shell during a simulation, and then to determine the residence
time by means of the direct method. Nevertheless, it is important to bear in
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Figure 10.7: Distribution of the bromide dipole moment calculated from the CPMD sim-
ulation.

mind that also with the latter method the shorter the simulation time, and
consequently the number of exchange processes, the higher the error on the
calculated residence time. Table 10.1 lists the residence times of first shell
water molecules obtained from the two trajectories for t* values of 0.0, 0.5
and 2.0 ps. A proper choice of the t* parameter is fundamental for systems
with a very flexible first hydration shell, where the g(r)’s show only shallow
minima and the definition of the first hydration shell can be somehow arbi-
trary, as in the present case. Our results show that the calculated residence
times are strongly dependent on the choice of t* with both procedures, the
dependence being stronger for the direct method. A t* values of 0.5 ps has
been found to be the more appropriate choice [124], which corresponds to

t*=0.0 ps t*=0.5 ps t*=2.0 ps
Trajectory Neg I T4 N I T4 N TI T4
Classical 113862 2.4 0.7 28939 3.8 2.6 16305 5.8 4.7
CPMD 77 - 0.4 5 - 5.7 2 - 14.3

Table 10.1: Residence times (ps) of water molecules in the first coordination shell of the
bromide ion, calculated using the Impey procedure (77) and the direct method (74) as a
function of the t* parameter, for the classical and CPMD simulations. N, is the number
of exchange events observed during the total simulation time.
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the average lifetime of a water-water hydrogen bond. With this choice, the
residence time calculated from the CPMD simulation is longer as compared
to the classical one. However, the results obtained from both simulations are
in the order of magnitude of the experimental determination [33]. Note that
the residence time calculated from our CPMD simulation with a t* value of
2.0 ps approaches the value obtained by Raugei and Klein using the Impey
method and the same t*, for the HBr aqueous solution (19 ps) [38]. The same
authors suggested for the Br~ aqueous solution a slightly lower value of the
residence time, as compared to the HBr one.

10.3 EXAFS data analysis

10.3.1 Methods

Br~ K-edge X-ray absorption spectra were recorded at the BM29 beam-

line of the ESRF [99]. The sample was a 0.1M RbBr aqueous solution kept
in a cell with Kapton windows. The absorption coefficient was measured
in transmission mode, and the monochromator was equipped with two flat
Si(311) crystals for high-energy operation with excellent resolution. In order
to reduce harmonic contamination, the crystals were kept slightly detuned
with a feedback system. The incident and transmitted fluxes were monitored
by ionization chambers filled with Kr gas. The storage ring was operating in
2/3 fill mode with a typical current of 200 mA after refill. Data points were
collected for 1 s each, and three spectra were recorded and averaged.
The EXAFS data analysis was carried out using the same procedure as em-
ployed for the group 12 metal ions. All the details can be found in section
6.2.2. The values of the muffin-tin radii used for hydrogen and oxygen are al-
ways 0.2 A and 0.9 A, respectively, while a radius of 2.3 A has been employed
for bromine.

10.3.2 Results

As shown in section 10.2, the classical and CPMD simulations of the
bromide ion in aqueous solution provide a different description of the hydra-
tion properties of the Br~ aqua ion. In particular, the Br-water first shell
distances are shifted towards shorter distances in the classical case and the
distributions of coordination numbers obtained from the two simulations are
very different. In the classical Molecular Dynamics simulation the dominant
species are indeed seven- and eight-fold hydration complexes, while only the
six-fold complexes in the CPMD simulation.

In order to identify which method provides the most reliable structural
results, we have compared the Molecular Dynamics results with the EXAFS
experimental data. x(k) theoretical signals have been calculated by means
of equation 4.5, starting from the classical and CPMD Br-H and Br-O g(r)’s.
The structural parameters derived from the simulations were kept fixed dur-
ing the EXAFS analysis. In this way the first hydration shell structure ob-
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10.3 EXAFS data analysis
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Figure 10.8: Upper panels: Comparison between the EXAFS theoretical signals (solid line)
calculated from the classical and CPMD Br-O and Br-H g(r)’s and experimental data (dot-
ted line). The residual signals (dotted line) are also shown. Lower panels: Nonphase-shifted
corrected Fourier transforms of the experimental data (dotted line), of the theoretical sig-
nals (solid line), and of the residual curves (dot-dashed line).

tained from the simulations can be directly compared with experimental data
and the validity of the theoretical framework used in the simulations can be
assessed. In the upper panels of Figure 10.8, the comparison between the
experimental signal and the theoretical curves is reported for the classical
and CPMD simulations (left and right panels, respectively). The first two
curves from the top are the Br-H and Br-O first shell contributions, while
the reminder of the figures shows the total theoretical contribution compared
with the experimental spectrum, and the resulting residuals. In the case of
the classical Molecular Dynamics simulation the agreement between the cal-
culated and experimental EXAFS spectra is quite poor and the presence of a
leading frequency can be clearly identified in the residual curve. This behav-
ior is due to the short value of the average Br-H and Br-O first shell distances
obtained from the classical Molecular Dynamics simulation as compared to
the experimental results. This finding is reinforced by the Fourier transform
(FT) moduli of the EXAFS y(k) theoretical, experimental and residual sig-
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10 Bromide ion hydration properties

nals shown in the lower panels of Figure 10.8. The FT’s have been calculated
in the k-range 3.0-7.5 A~! with no phase shift correction applied. The the-
oretical first-neighbor peak is found to be shifted towards shorter distances
than predicted by the experiment. Conversely, the theoretical x(k) signal
calculated from the CPMD g(r)’s match the experimental data very well and
a good agreement is found also looking at the FT’s. Therefore, the structural
and dynamical information derived from the CPMD simulation is basically
correct.

Even if the Br-O two body signal provides the most important contribu-
tion to the total x(k), the hydrogen atoms in the first hydration shell provide
a sizeable contribution especially in the k region below 6 A='. The impor-
tance of the hydrogen contribution to the EXAFS spectra of metal cations
in aqueous solution has been pointed out in previous works [7, 34]. To the
best of our knowledge this is the first time that the hydrogen scattering is
included in the EXAFS analysis of anion aqueous solutions. Note that a
reliable calculation of the contribution associated with the hydrogen atoms
in the first hydration shell relies on a proper description of the anion-water
and water-water interaction in the Molecular Dynamics simulations. In this
context use of advanced methods in the CPMD setup has been found to be
essential to provide a correct description of the structural properties of the
Br~ hydration shells.
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Chapter 11

Summary and conclusions

In this work a detailed investigation of the structural and dynamic prop-
erties of Zn?T, Cd?T, Hg?" and Br~ ions in aqueous solution has been carried
out, combining XAS and Molecular Dynamics simulations. Cd**, Hg?" and
Br~ aqua ions have been studied at ambient conditions, while the Zn?* hy-
dration properties were investigated in conditions of very high pressures (up
to 2.85 GPa).

For the group 12 metal cations, it has been further developed and applied
a computational procedure for the generation of effective two-body ion-water
potentials, to be used in the classical Molecular Dynamics simulations. In
this methodology the effective ion-water potential is obtained by fitting the
parameters of a suitable analytical function on an ab initio PES of the M?*-
H50 system generated including many-body effects by means of the PCM.

As far as the Hg?T aqua ion is concerned, the combined use of XAS experi-
mental data, accurate ab initio calculations and classical Molecular Dynamics
simulation allowed us to determine, in contrast to all the previously reported
results, a quite unexpected sevenfold coordination of the hydrated Hg?* com-
plex in aqueous solution. The unusual hydration structure found for the Hg?*
ion prompted us to evaluate the effect of water-water interactions on the struc-
tural and dynamic results obtained, using two different water models, namely
the SPC/E and TIP5P. Both simulations started from the generally accepted
octahedral hydration structure, and only after a very long induction time
(630 and 755 ps for the SPC/E and TIP5P water models, respectively), the
first transition to a heptacoordinated cluster was observed. Thereafter, sev-
eral transitions between stable hexa- and heptacoordinated complexes took
place. As a consequence, a simulation time of 60 ns was necessary to prop-
erly define the first shell coordination number. It is important to stress that
our approach, based on long enough classical simulations with potential not
biased toward a specific first shell coordination number, is the only method
able to determine the coordination geometry of a hydrated ion having a slow
exchange dynamic. QM /MM or Car-Parrinello simulations, in fact, are com-
putationally very expensive, and can model the aqueous solutions only up to
a few ten or hundred picoseconds. Therefore, these techniques are not able
to reproduce exchange events occurring in the nanosecond time scale, and, in
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11 Summary and conclusions

this case, they can provide useful information only if the initial configuration
is the correct one. The two water models used in the simulations provided
quite similar first shell structural parameters, essentially describing the Hg?*
ion as being coordinated by seven water molecules. The simulation results
have been compared with EXAFS experimental data which indicated that the
structural and dynamical information derived from the two trajectories was
basically correct. However, since in the case of disordered systems such as
ionic solution the EXAFS technique is not able to provide unique information
on the coordination number of the photoabsorber atom, in order to obtain a
definite answer on the Hg?" first shell coordination number, we have carried
out also the analysis of XANES region of the spectrum. In the first step
of our investigation, we have carried out a static fit analysis of the XANES
experimental data that has shown that an hexahydrated cluster, even when
a highly disordered model was used to fit the data, was not able to reproduce
the XANES region of the spectrum. Conversely, a very good agreement with
the experimental spectrum has been obtained when a sevenfold cluster with
Cs symmetry was considered. However, the best-fit model cluster obtained
from the XANES data analysis shows a larger distance dispersion as com-
pared to the MP2 and Molecular Dynamics theoretical results. To shed light
on this point, we have decided to extend the study of Hg?" aqua ion, using
our Molecular Dynamics trajectories to interpret the XANES experimental
data. We have thus calculated the XANES spectra using the structural infor-
mation obtained from the Molecular Dynamics simulations without carrying
out any minimization in the structural parameter space. It was possible to
correctly reproduce the experimental spectrum only when a heptacoordinated
first shell model as obtained from the Molecular Dynamics simulations was
considered and when the second coordination shell was included in the cal-
culation. The results of this dynamical XANES analysis demonstrated that
the discrepancy we had found in our static fit analysis was mainly due to the
lack of the second hydration shell contribution in the XANES calculations.
We have obtained quite unexpected results also in the case of the Cd?*
aqua ion. In fact both the SPC/E and TIP5P simulations started from a
hexacoordinated first-shell configuration around the Cd*" ion, and after an
induction time of 230 and 155 ps for the SPC/E and TIP5P models, respec-
tively, the system went to heptacoordination. In both cases, a very flexible
Cd?* ion first hydration shell was detected, which transits among coordina-
tion numbers of six, seven, and, for relatively short times, eight. However,
while for the Hg?* aqua ion a uniform picture emerged from the simula-
tions carried out with different water models, for the Cd?* ion we have ob-
tained from the two trajectories a different behaviour: in the TIP5P case, the
dominant species existing in solution is the heptacoordinated one, while the
SPC/E simulation increases the stability of the hexacoordinated cluster. On
the other hand, the structure of hexa- and heptahydrated complexes was the
same regardless the water model used in the simulations. The EXAFS analy-
sis results have shown that the structural and dynamical information derived
from the two simulations was basically correct but also in this case to assess
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in an unambiguous way the ion coordination and to determine the effective
percentages of the two hydration complexes we had to resort to analysis of the
XANES starting from the Molecular Dynamics simulations. We calculated
several averaged theoretical spectra with variable percentages of hexa- and
heptacoordinated complexes, and by comparing them with the experimental
spectrum we obtained a quite informative picture. Indeed the index of agree-
ment between the theoretical and experimental spectrum has shown a regular
trend and a minimum was obtained for a hexacoordinated cluster percentage
of 20%, which corresponds to the result obtained from the TIP5P simulation.
Thus, the XANES analysis provided a definitive experimental proof of the
flexible nature of the Cd ion, unambiguously showing the presence of a domi-
nant percentage of heptahydrated species. It is noteworthy to observe also in
this case that it is been possible to suitably describe the hydration properties
of the Cd?* ion only by very long Molecular Dynamics simulations.

The results of the Molecular Dynamics simulations of the Zn?* ion in
high-density water have shown that the octahedral structure of the Zn?* first
hydration shell remain stable also under high pressure, while the Zn-O first
shell distance is shortened and the hydrated complex becomes more disor-
dered. The effect of the pressure changes is more evident on the structure
of the second coordination shell which is compressed and becomes more dis-
ordered and unstructured with increasing pressure. Moreover, the increase
of pressure has a strong effect on the dynamics of water, which has been
investigated by calculating the reorentational correlation times of the water
molecules surrounding the ion. The water mobility was found to increase, as
a consequence of the rupture of the hydrogen bond network caused by the
pressure increase. The first shell structural results obtained from the sim-
ulations have been experimentally validated by EXAFS spectroscopy. The
EXAFS analysis confirmed that the Zn?* first shell hydration number does
not vary with pressure, while the first hydration shell is shifted towards the
ion. Moreover, the higher mobility of the water molecules in the first co-
ordination sphere under high pressure was highlighted by the trend of the
Debye-Waller factors, that increase with pressure. The structural transfor-
mations occurring to water with increasing density were also investigated by
Molecular Dynamics simulations. The results of this study have shown that
solvent molecules are not significantly influenced by the presence of the solute
and impact of the ion on the structure of water does not extend in an appre-
ciable way beyond the first hydration shell. Conversely, substantial changes
of the water structural properties were found with increasing pressure. These
changes are caused by a collapse of the second coordination shell, as a con-
sequence of the rupture of the hydrogen bond network. Radial and angular
distribution function analyses have shown that the effect of pressure is to
increase the number of interstitial water molecules, i.e. water molecules that
are not hydrogen bonded to any of the first shell water molecules around a
given central one. This study of the Zn?" ion in high-density water paves the
way for future investigations on the hydration structure under high pressure
conditions of ions having more flexible hydration shells, such as the two ions
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that we have studied here at ambient conditions, namely Cd** and Hg?".

Finally, we have studied the hydration properties at ambient conditions
of one halide, i.e. the bromide ion. In this case we have employed a com-
pletely different approach with respect to that used for the group 12 metal
cations. In particular, we have resorted to Car-Parrinello Molecular Dynam-
ics simulations, since they are able to describe the dynamics of the system
in a self-consistent fashion, taking into account in a natural way polarization
effects, which have a strong impact on the halide-water interactions. More-
over, in the case of the Br™ ion, the estimated residence time of the first shell
water molecules is three orders of magnitude shorter (picosecond timescale)
as compared to Cd** and Hg?" (nanosecond timescale), so that sufficiently
long ab initio Molecular Dynamics can be carried out to achieve a proper
sampling of the phase space of the system. Besides the quantum mechani-
cal Car-Parrinello Molecular Dynamics simulation, we have performed also a
classical Molecular Dynamics simulation of Br~ and we have compared the
results obtained from the two different approaches. The picture that has
emerged from our simulations is that the pair potentials used in the classi-
cal approach are too rigid giving rise to a first hydration shell which is too
tightly bound to the bromide ion. Indeed the classical Br-O and Br-H ra-
dial distribution functions are shifted towards shorter distances as compared
to the CPMD ones and all the angular distribution function results have
shown that the flexibility of the first coordination shell increases going from
the classical to the CPMD simulation. In both trajectories the bromide ion
transits among several coordination numbers, but while in the classical case
the dominant species existing in solution were seven- and eight-fold hydra-
tion complexes, only six-fold complexes played a dominant role in the CPMD
trajectory. The comparison of our theoretical results with EXAF'S experimen-
tal data has allowed us to identify which method provides the most reliable
structural results. In the case of the classical Molecular Dynamics simulation
a quite poor agreement between the theoretical and experimental spectrum
was found, while the spectrum calculated from the CPMD g(r)’s matched the
experimental data very well, thus showing that the structural and dynamical
information derived from the CPMD simulation was basically correct.

In conclusion, the application of both experimental and computational
techniques used in this work paves the route for the systematic use of an
integrated approach, with increased reliability, in the structural investigation
of disordered systems. The characterization of the structural and dynamical
properties of disordered systems is indeed a difficult task, that can hardly be
obtained using a single technique. Conversely, the combined use of experi-
mental and theoretical methods has allowed us to obtain reliable information
on all the investigated systems. It is important to stress that the procedure
which has been further developed and applied in this work to generate the
ion-water pair potential can be extended to the study of other solutions, and
the application of this methodology to investigate ion coordination in organic
solvents will be the subject of future work.

As a last remark, we would like to point out that the procedure we have
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developed to analyze the XANES in combination with Molecular Dynamics
simulations is absolutely general and can be applied to the study of liquid
samples and biological media.
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