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Preface

Many difficult statistical problems arising in censuses or in other large scale sur-
veys have an underlying Combinatorial Optimization structure and can be solved
with Combinatorial Optimization techniques. These techniques are often more ef-
ficient than the ad hoc solution techniques already developed in the field of Statis-
tics. This thesis considers in detail two relevant cases of such statistical problems,
and proposes solution approaches based on Combinatorial Optimization and Graph
Theory. The first problem is the delineation of Functional Regions, the second one
concerns the selection of the scope of a large survey, as briefly described below.
The purpose of this work is therefore the innovative application of known tech-
niques to very important and economically relevant practical problems that the
“Censuses, Administrative and Statistical Registers Department” (DICA) of the
Italian National Institute of Statistics (Istat), where I am senior researcher, has
been dealing with.

In several economical, statistical and geographical applications, a territory must
be partitioned into Functional Regions. This operation is called Functional Region-
alization. Functional Regions are areas that typically exceed administrative bound-
aries, and they are of interest for the evaluation of the social and economical phe-
nomena under analysis. Functional Regions are not fixed and politically delimited,
but are determined only by the interactions among all the localities of a territory. In
this thesis, we focus on interactions represented by the daily journey-to-work flows
between localities in which people live and/or work. Functional Regionalization of
a territory often turns out to be computationally difficult, because of the size (that
is, the number of localities constituting the territory under study) and the nature
of the journey-to-work matrix (that is, the sparsity). In this thesis, we propose an
innovative approach to Functional Regionalization based on the solution of graph
partition problems over an undirected graph called transitions graph, which is gen-
erated by using the journey-to-work data. In this approach, the problem is solved
by recursively partitioning the transition graph by using the min cut algorithms
proposed by Stoer and Wagner and Brinkmeier. This approach is applied to the
determination of the Functional Regions for the Italian administrative regions.

v
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The target population of a statistical survey, also called scope, is the set of sta-
tistical units that should be surveyed. In the case of some large surveys or censuses,
the scope cannot be the set of all available units, but it must be selected from this
set. Surveying each unit has a cost and brings a different portion of the whole
information. In this thesis, we focus on the case of Agricultural Census. In this
case, the units are farms, and we want to determine a subset of units producing
the minimum total cost and safeguarding at least a certain portion of the total in-
formation, according to the coverage levels assigned by the European regulations.
Uncertainty aspects also occur, because the portion of information corresponding
to each unit is not perfectly known before surveying it. The basic decision aspect
is to establish the inclusion criteria before surveying each unit. We propose here to
solve the described problem using multidimensional binary knapsack models.

The thesis is organized as follows:

Chapter 1 resumes the main results of the research collaborations held be-
tween Istat and the Department of Computer, Control and Management Engineer-
ing (DIAG) of the Sapienza University of Rome. The subject of those collabo-
rations was the use of Combinatorial Optimization techniques for the solution of
relevant problems arising from statistical surveys.

Chapter 2 describes in detail the approach developed for the solution of prob-
lems of Functional Regionalization. We provide results on the real-world instances
generated with the data of the 2001 Italian Population Census that show the effec-
tiveness of the proposed approaches. This work is also described in [13].

Chapter 3 describes the knapsack models developed for the solution of prob-
lems of statistical units selection. We provide results on real-world instances aris-
ing from the 2010 Italian Agricultural Census that show the effectiveness of the
proposed approach. This work is also described in [12].

Clearly, the techniques described in Chapters 2 and 3 by referring to Census
data can be used to solve other problems of different origin but sharing the same
logical characteristics. In particular, we can use the same techniques proposed in
Chapter 2 to define functional regions when data refer to many types of commuting
patterns, for example in the study of health service usage or for the analysis of
educational workflows. The selection method proposed in Chapter 3 can also be
used in the design of several sample surveys, in order to increase data quality.

Finally, Appendix A provides a brief introduction to some Combinatorial Op-
timization aspects and describes the main features of some basic solution tech-
niques. The discussion is not intended to be exhaustive of the matter, but only to
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clarify which mathematical instruments have been used to design the approaches
described in Chapters 2 and 3.

Roma, Italy, October 2015. ALESSANDRA REALE
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Chapter 1

Combinatorial Optimization in
Surveys

1.1 The Role and the Importance of Operations Research
in Statistical Data Processing

In recent years, Operations Research techniques increased their already important
role in solving statistical problems, especially in the handling of large data set, as
it is the case of Census data. Their usefulness is twofold. On the one hand, more
advanced optimization models are able to better fit the specific characteristics of
the real problems, that often have peculiarities and traits different from the stan-
dard examples. On the other hand, faster algorithms allow to drastically reduce the
computational time without loss of accuracy, thus allowing (along with the devel-
opments of computing hardware) the treatment of dataset so large as never before.

Censuses are very complex, important and expensive tasks for a National Statis-
tic Office. They are total survey, periodically performed, for monitoring the socio-
demographic, economic and agricultural topics. As in any other large-scale sur-
veys, however, the gathered data may contain errors or missing values, due to many
reasons. Nonetheless, the correct information must be discovered and published.
Therefore, error detection and correction become crucial tasks. This kind of activ-
ity is generally called Data Editing and Imputation, Information Reconstruction, or
also Data Cleaning.

Several problems of Data Editing and Imputation have been solved using op-
erations research techniques. These approaches have been studied and applied to
census data. During the last two decades, several models based on Integer Linear

1



2 CHAPTER 1. COMBINATORIAL OPTIMIZATION IN SURVEYS

Programming for editing and imputation problems were developed during the re-
search collaborations between Istat and the Department of Computer, Control and
Management Engineering (DIAG), Sapienza University of Rome. These results
have been discussed in international conferences and published in international
journals. Some of them are briefly shown in this section. The formalized research
collaborations between the two organizations mentioned above have been the fol-
lowing:

1. Research agreement on “Modelli e algoritmi per problemi di edit and impu-
tation” (Rep. N. 37/2001);

2. Research agreement on “Modelli e metodi per problemi di linkage e cluster-
ing di dati” (Rep. N. 30/2003);

3. Research agreement on “Individuazione di solutori open source per problemi
di Programmazione Lineare Intera” (Rep. N. 45/2009);

4. Research agreement on “Nuove metodologie per il controllo a livello micro-
macro dei dati e per limputazione di dati quantitativi” (Rep. N. 132/2010).

The first collaboration, held during the 14th Population and Housing Census 2001,
focused on the problem of data completeness and consistency. An optimization
approach was developed to handle erroneous data records and to reconstruct the
corrupted information in order to obtain correct data records. This approach is
based on the solution of Integer Linear Models encoding the objective of intro-
ducing minimum alterations in the erroneous data, but with constraints imposing
that the erroneous records should be converted into correct records. The described
approach is able to deal with both qualitative and quantitative variables, and over-
comes the computational limits of the well-known and widely used Fellegi-Holt
methodology ([49] ), while maintaining its positive statistical feature.

A software system called DIESIS (Data Imputation and Editing System - Ital-
ian Software) was developed for the editing and imputation of hierarchical demo-
graphic data. DIESIS performs error localisation and data imputation of invalid or
inconsistent responses in a general process of statistical data collection. The per-
formance of DIESIS has been evaluated against the Canadian Nearest-neighbour
Imputation Methodology (NIM) [4], by means of an evaluation study based on real
data from the 1991 Italian Population Census, perturbed by introducing various
amounts of artificial errors and missing values. The evaluation has been performed
by computing, for each variable, accuracy indicators of preservation of individual
original values as well as of preservation of the marginal distributions. DIESIS
has also been used for the Editing and Imputation process for both 2001 and 2011
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Italian Population Census and for the 2010 Agricultural Census. The results of this
collaboration have been published in [21, 22, 89].

The second collaboration improved on the results of the first collaboration.
Techniques were developed for solving data imputation problems by first stratify-
ing the data by using nearest neighbors methods. Erroneous values are replaced by
the correct values selected from statistical units named donors. A list of potential
donors must be selected for each erroneous record. The donors selection is based
on the use of similarity functions. For large data-sets, an accurate selection could
be computationally prohibitive. Therefore, to reduce the computational burden,
a clustering approach to define strata for donors selection has been applied. The
donors were grouped into many subsets taking into account the similarities among
the strata variables, by applying a spherical neighborhood algorithm. The results
of this collaboration have been published in [8].

The third collaboration was based on the study of the performance of inter-
nationally recognized open source Integer Linear Programming solvers, compared
to a reference commercial solver Cplex on real-world data having only numerical
fields. The aim was to produce a stressing test environment for selecting the most
appropriate open source solver for performing error localization in numerical data.
The results of this collaboration have been published in [11].

The fourth collaboration lead to the development of new Editing and Imputa-
tion methods for the 2010 Agricultural Census and for the 2011 Italian Population
Census. We specifically considered two kind of research problems:

• The use of micro and macro editing, that is the problem of detecting erro-
neous data records by considering, simultaneously, rules applied to a single
record (micro edit) and rules applied to all records at the same time (macro
edit). Macro edit are very useful in a number of applications, but their use
generally makes the problem computationally intractable.

• The reconstruction of quantitative data that may have been corrupted, or also
intentionally incorrectly answered, in cases that are particularly difficult, for
example for numerical reasons.

For each of these two categories of problems, we briefly report, in the following
subsections, two important practical examples and the optimization models devel-
oped for their solution during the described research collaboration. These results
have been published in [9, 10].
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1.1.1 Balancing problem in Agricultural Census data

When performing an Agricultural Census, data obtained from each farm contain
detail information about the cultivation area used by that farm for each cultivation
and the number of livestock for each type of animal. Those data may sometimes be
erroneous or missing, due to a variety of reasons. In such cases, errors should be
automatically detected and corrected, i.e. the information that was corrupted and
lost should be “reconstructed” in order to be as similar as possible to the unknown
exact value. Moreover, each farm also declares other information (called macro-
data, information about totals): the total cultivation area and the total number of
livestock, and in some cases those totals are also divided into subtotals by year of
planting. Clearly, balancing conditions must hold between all the above microdata
and the corresponding macrodata: each total (or year subtotal) must be equal to the
sum of those details concerning its parts. When such conditions do not hold, data
are inconsistent, and they should be changed in order to become consistent.

Records incurring in this problem are detected by checking the balancing con-
ditions, which are called balance edits. However, when a balance edit is violated,
the error could be either on the detail side or on the total side of the equation. The
less reliable information should now be changed in order to restore consistency.
It is generally assumed, in similar cases, that details constitute the less reliable
information, since totals have already been confirmed from other sources. How-
ever, there are several ways to change the detail information in order to make it
consistent, so this constitutes an optimization problem.

The models proposed for this problem will be hereinafter explained by refer-
ring to the specific case of vineyards. This is one of the most important cases:
dozens of grapes varieties exist, and they determine type and quality of wines pro-
duced. However, the proposed models are clearly not limited to that case, but can
be used for any other similar problem. Each farm could have several vine types,
and each of them could have been planted in a different time period (e.g. a specific
year). Denote by

I = {1,. . . , n} the set of indices of all possible vine types; with n = 442;

K = {1,. . . , m} the set of indices of all possible time periods; with m = 6.

For each farm, denote by

aik (real valued ≥ 0) the area of vine type i planted in period k declared by
the farm, with i ∈ I and k ∈ K;

ai0 (real valued ≥ 0) the total area of vine type i (planted during any of the
periods) declared by the farm, with i ∈ I;
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Tk (real valued ≥ 0) the total vine area planted in period k declared by the
farm, with k ∈ K;

T (real valued ≥ 0) the total vine area owned by the farm.

In order to reconstruct the erroneous information, we need the following set of
decision variables:

xik (real valued ≥ 0, ≤ S) = the area of vine type i that, according to our
reconstruction, has been planted in period k by the farm, with i ∈ I and
k ∈ K;

xi0 (real valued ≥ 0, ≤ mS) = the total area of vine type i that, according to
our reconstruction, has been planted (during any of the periods) by the farm,
with i ∈ I .

In other words, xik is the correct value for aik. When reconstructing information
for a Census, as in the case of other large-scaled surveys, it is generally assumed
that the changes introduced in the data should be somehow minimized. This be-
cause, in absence of further information, being as similar as possible to the exact
(unknown) data corresponds to being as similar as possible to the available (even if
possibly erroneous) data. By following this minimum change paradigm, two basic
alternatives exist: one is minimizing the number of changes, the other minimizing
the amount of those changes.

If we need to distinguish when our reconstruction provides a result which is
different form the available declaration (i.e. a change), we need the following set
of binary variables:

yik =

{
1 if xik is different from aik ∀i = 1, . . . , n ∀k = 0, . . . ,m
0 otherwise

The presence of binary variables clearly has its impact on the complexity of the
model: by adding the other constraints needed for this problem, which are linear,
we obtain an Integer Linear Program. Minimizing the total number of changes
corresponds to the following objective function

min

n∑
i=1

m∑
k=1

yij (1.1)

When variables y are used, they should be linked to the x variables by constraints
imposing that yik takes value 1 when xik <> aik (using a certain numerical pre-
cision), otherwise those variables could be inconsistent. There is no need for con-
straints imposing yik = 0 when xik = aik because the objective (1.1) itself does
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that. Value M is a real number greater than all possible values of the left-hand side
of the following inequalities.

aik − xik ≤Myik ∀i = 1, . . . , n ∀k = 0, . . . ,m

xik − aik ≤Myik ∀i = 1, . . . , n ∀k = 0, . . . ,m

When, on the other hand, we are interested in measuring the difference (distance)
between our reconstruction xik and the available declaration aik, we should con-
sider a funcion of this difference. Several types of distance functions are available.
We consider more suitable to our reconstruction problems the following three:

• The squared Euclidean distance, defined as
∑n

i=1

∑m
k=0(xik − aik)2;

• The Manhattan distance, defined as
∑n

i=1

∑m
k=0 |xik − aik|;

• The Chebyshev distance, defined as maxik{|xik − aik|}.

Clearly, the structure of the optimization model that we must solve depends now on
this choice. In particular, in the second case (Manhattan distance), there are abso-
lute values in the objective. However, they can be easily linearized by introducing
additional variables:

sik (real valued ≥ 0) = the value of |aik−xik|, ∀i = 1, . . . , n ∀k = 0, . . . ,m

and linear constraints enforcing their meaning

sik ≥ aik − xik, sik ≥ xik − aik ∀i = 1, . . . , n ∀k = 0, . . . ,m

We can now minimize the linear function
∑n

i=1

∑m
k=0 sik. When adding the other

constraints needed for this problem, which are linear, the problem becomes an
easily solvable linear program.

In our case, however, we consider the following objective more representative
of the real problem’s aim the minimization of the total number of changes, and,
in second place, the minimization of the amount of those changes. This because a
change with respect to a value that has been deliberately declared has intrinsically
a very high cost. Therefore, we prefer maintaining the maximum number of those
declared values, even if this may result in a greater amount of the changes that we
are forced to introduce. Consequently, the objective function becomes:

min (M ′
n∑
i=1

m∑
k=0

yik +

n∑
i=1

m∑
k=0

sik)
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where the first sums are multiplied by a numerical value M ′ weighting the relative
importance of the first part with respect to the second one. We chose M ′ = S, so
that a single change weights as much as the maximum amount of a change.
We now describe the balancing conditions that should be respected in our case.
The sum of vine areas of any type planted in period k must be equal to the total
vine area planted in period k (called balancing over vine types)

n∑
i=1

xik = Tk ∀k ∈ K

The sum of the areas of vine type i planted in periods from 1 to m must be equal to
the area of the same vine type planted along all the periods (called balancing over
time periods)

xi0 =

m∑
k=1

xik ∀i ∈ I

The sum of vine areas of any type planted in any period must be equal to the total
vine area owned by the farm (called overall balancing)

n∑
i=1

m∑
k=1

xik = T
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The complete mixed integer linear programming model is therefore the following:

min(M ′
n∑
i=1

m∑
k=0

yik +
n∑
i=1

m∑
k=0

sik)

n∑
i=1

xik = Tk ∀k ∈ K

xi0 =
m∑
k=1

xik ∀i ∈ I

n∑
i=1

m∑
k=1

xik = T

aik − xik ≤Myik ∀i = 1, . . . , n ∀k = 0, . . . ,m
xik − aik ≤Myik ∀i = 1, . . . , n ∀k = 0, . . . ,m
sik ≥ aik − xik ∀i = 1, . . . , n ∀k = 0, . . . ,m
sik ≥ xik − aik ∀i = 1, . . . , n ∀k = 0, . . . ,m
0 ≤ xik ≤ S ∀i ∈ I ∀k ∈ K
0 ≤ xi0 ≤ mS ∀i ∈ I
sik ≥ 0 ∀i = 1, . . . , n ∀k = 0, . . . ,m
xik, sik ∈ IR ∀i = 1, . . . , n ∀k = 0, . . . ,m
yik ∈ {0, 1} ∀i = 1, . . . , n ∀k = 0, . . . ,m

The above model has been used by Istat in the case of the Italian Census of Agri-
culture 2010 to restore data consistency when total cultivation area, or total number
of livestock, was not equal to the sum of the detailed values representing the parts
of the above totals. The results of this approach are described in detail [10].

1.1.2 Reconstruction of Cultivation Data in Agriculture

Another relevant problem, in the described Census, concerns the development of
a procedure for assigning the correct cultivations to the area for which the farm
declarations are unreliable. Indeed, each farm specifies the cultivation area used for
each cultivation. A classical problem is verifying the accuracy of this information,
and correcting those detected as unreliable. Errors in these declarations should be
detected and corrected by mathematically “guessing” the correct values, since it is
clearly impossible to contact again the farm or inspect somehow the cultivations.

Farms can extend on one or more districts, and the area owned by each farm
in each district is known. Therefore, the compatibility of each cultivation with
each district can also be evaluated (some cultivation can grow only on specific
types of soils, or need specific climatic conditions, latitude, altitude, etc.). In the
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specific case of vineyards, considered again as a representative example, there may
be cultivation areas with missing or erroneous vineyard codes. For these areas, it
is required to assign a code, according to a set of consistency constraints, taking
also into account the compatibility between each district and the type of vineyard.
Theoretically, the elements for solving the above problem are available, but the
problem is doing this on large datasets both efficiently and in an unbiased manner.

The Italian territory is subdivided into many districts, and each farm can extend
on one or more district. We denote by

I = {1,. . . , n} the set of all possible cultivations;

J = {1,. . . , m} the set of all possible districts.

Focusing on a single farm, and denoting by f its total area, all the cultivations de-
clared by that farm are checked. Some of them verify a set of rules and conditions
prepared for this aim and are therefore considered reliable, while some other do
not. This may happen either because some of the declarations appear erroneous,
or because there is a discordance between the total area declared and the sum of
the areas declared for each cultivation. Denote by a the total farm area reliably
assigned, i.e. the area for which the farm declaration are considered reliable. On
the contrary, by grouping all the unreliable declarations, a nonempty area often re-
mains for which the cultivation is not known. That area will be called unassigned
area and denoted by u. Clearly, f = a + u . The central problem of our Information
Reconstruction process consist now in assigning the cultivations to the mentioned
unassigned area. In this Section a discrete mathematical model for this problem is
proposed. For each farm, denote by

si (real value ≥ 0) the total area that the farm uses for cultivation i, with
i ∈ I . Note that this area may span on one or more districts, and the farm
does not declare, nor generally even consider, such subdivision. These values
are only the ones, among all the cultivation data declared by farms, that can
be considered reliable, so

∑
i(si) = a.

dj (real value ≥ 0) the total area owned by the farm in district j, with j ∈ J .
These values are not surveyed during the considered Census but are already
available and are reliable.

pij (real value ∈ [0, 1]) the likelihood of having cultivation i in district j,
with i ∈ I and j ∈ J . Values near to 1 means high likelihood, near to 0
means very low likelihood. This values are estimated on the basis of agricul-
tural registrations and studies, not surveyed during the considered Census.
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Moreover, there are areas where specific cultivations may be used to produce foods
having “controlled origin” (in Italian DOC). In particular, for the unassigned area
u, it is possible to partition it into a portion that is suitable for “controlled origin”
and a portion that is not suitable for that. Denote by

C (reale value ≥ 0) the total unassigned area owned by the farm in cultiva-
tions suitable for “controlled origin”;

N (real value ≥ 0) the total unassigned area owned by the farm in cultiva-
tions not suitable for“controlled origin”, so that C +N = u.

Those areas C and N should be assigned in order to maximize the likelihood of
the assignment. Note that it is not known which district the unassigned area u is
located into. On the other hand, the likelihood values depend on the districts. As
a consequence, we need to locate the unassigned area u on the districts. This is
apparently hard to obtain. A way of doing so is locating on the districts each of the
reliable cultivation areas si, and then obtaining the location of u as the portion of
farm area f not covered by a. In order to model the described problem, we need to
introduce the following sets of decision variables:

xij (real value ≥ 0) the area of cultivation i that, according to our recon-
struction, is localized in district j, with i ∈ I and j ∈ J ;

vij (real value≥ 0) the portion of C that, according to our reconstruction, is
used for cultivation i and localized in district j, with i ∈ I and j ∈ J ;

wij (real value ≥ 0) the portion of N that, according to our reconstruction,
is used for cultivation i and localized in district j, with i ∈ I and j ∈ J .

Moreover, each of the farm unassigned areas C and N generally contains only a
specific cultivation, and not a mixture of different cultivations. We therefore want
to assign all C to one single type of cultivation, and not to fragment it among all
the cultivations compatible with that area. A similar requirement holds forN . This
requires the use of additional binary decision variables

yi =

{
1 if C is assigned in our reconstruction to cultivation i ,with i ∈ I
0 otherwise

zi =

{
1 if N is assigned in our reconstruction to cultivation i ,with i ∈ I
0 otherwise

Now it’s possible to formulate a mixed integer linear programming model for each
farm. Cultivation assignment to areas should be done in order to maximize the
likelihood. Our objective function is therefore
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max
n∑
i=1

m∑
j=1

pijxij +
n∑
i=1

m∑
j=1

pijvij +
n∑
i=1

m∑
j=1

pijwij

This assignment should obviously verify a set of constraints. First of all, the
sum of the areas assigned to the different cultivations in each district j must be
equal to the area owned by the farm in district j :

n∑
i=1

xij +

n∑
i=1

vij +

n∑
i=1

wij = dj ∀j = 1, . . . ,m

The sum of the areas used by the farm for cultivation i over all the districts must be
equal to the total area used by the farm for cultivation i:

m∑
j=1

xij = si ∀i = 1, . . . , n

The sum of the portions of C assigned to all cultivations in all districts must be
equal to C. A similar condition must hold for N .

n∑
i=1

m∑
j=1

vij = C
n∑
i=1

m∑
j=1

wij = N

In order to connect the y variables to v, we need to impose that it is not possible
assigning a portion of C to cultivation i (regardless to the district) when the cor-
responding variable yi is 0. A similar condition must hold for to connect the z
variables to w. Note that M is a constant value greater than all possible left-hand-
side values.

vij ≤Myi ∀i = 1, . . . , n ∀j = 1, . . . ,m

wij ≤Mzi ∀i = 1, . . . , n ∀j = 1, . . . ,m

The whole C must be assigned to only one cultivation. A similar condition must
hold for N .

n∑
i=1

yi = 1

n∑
i=1

zi = 1

The above constraints have the effect of letting only one y (only one z) be 1, and
so the previous constraints can only assigning C (respectively N ) to a unique cul-
tivation.

Finally, an assignment for C or for N cannot be accepted when the likelihood
of that assignment, although being the greatest possible for the current problem, is
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too low. In such a case, indeed, that assignment cannot be considered reliable. For
this reason we introduce, in the following constraints, two thresholds, denoted by
SC and SN , respectively for the assignments made on C and N .

m∑
j=1

vij −
m∑
j=1

pijvij − SC ≤M(1− yi) ∀i = 1, . . . , n (1.2)

m∑
j=1

wij −
m∑
j=1

pijwij − SN ≤M(1− zi) ∀i = 1, . . . , n (1.3)

In the constraints (1.2), the assignment of C can be possible if the likelihood of
assigning C to cultivation i is good (= near to 1) for the different districts where C
have been located, that means yi can assume value 1. On the other hand, when that
likelihood is not good (= near to 0), that assignment is not allowed, that means yi
must be forced to value 0. Note that, if no assignment has a sufficient likelihood,
those constraints cannot be satisfied and the model correctly becomes infeasible.

The above is obtained because, for assignments having good likelihood, the value
of
∑m

j=1 pijvij is only a bit smaller than the value of
∑m

j=1 vij, and by subtracting
SC the left-hand-side of the inequality (1.2) becomes smaller than or equal to 0,
leaving yi free.

When on the contrary the likelihood is not good, the value of
∑m

j=1 pijvij is
much smaller than the value of

∑m
j=1 vij, and even subtracting SC (whose reason-

able value is therefore just a fraction of
∑m

j=1 vij, for instance one half) the left-
hand-side of the inequality (1.2) becomes positive. As a consequence, M(1 − yi)
must have a strictly positive value, and so yi must have value 0.

In the constraints (1.3) the logic of the assignment of N is the same as that previ-
ously described for C in the the constraints (1.3).

On the whole, the complete mixed integer linear programming model for as-
signing the unassigned area of a single farm is the following:
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max
n∑
i=1

m∑
j=1

pijxij +
n∑
i=1

m∑
j=1

pijvij +
n∑
i=1

m∑
j=1

pijwij

n∑
i=1

xij +
n∑
i=1

vij +
n∑
i=1

wij = dj ∀j = 1, . . . ,m

m∑
j=1

xij = si ∀i = 1, . . . , n

n∑
i=1

m∑
j=1

vij = C

n∑
i=1

m∑
j=1

wij = N

vij ≤Myi ∀i = 1, . . . , n ∀j = 1, . . . ,m
wij ≤Mzi ∀i = 1, . . . , n ∀j = 1, . . . ,m
n∑
i=1

yi = 1
n∑
i=1

zi = 1

m∑
j=1

vij −
m∑
j=1

pijvij − SC ≤M(1− yi) ∀i = 1, . . . , n

m∑
j=1

wij −
m∑
j=1

pijwij − SN ≤M(1− zi) ∀i = 1, . . . , n

xij ≥ 0 ∀i = 1, . . . , n ∀j = 1, . . . ,m
vij ≥ 0 ∀i = 1, . . . , n ∀j = 1, . . . ,m
wij ≥ 0 ∀i = 1, . . . , n ∀j = 1, . . . ,m
xij ∈ IR ∀i = 1, . . . , n ∀j = 1, . . . ,m
vij ∈ IR ∀i = 1, . . . , n ∀j = 1, . . . ,m
wij ∈ IR ∀i = 1, . . . , n ∀j = 1, . . . ,m
yi ∈ {0, 1} ∀i = 1, . . . , n
zi ∈ {0, 1} ∀i = 1, . . . , n

The above model has been used by Istat in the case of the Italian Agricultural
Census of 2010 to restore the consistency of the cultivations data. The results of
this approach are described in detail in [9].
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Chapter 2

Graph Partition Approaches to
Functional Regionalization

2.1 Introduction

The general problem of partitioning a territory, also known as Functional Region-
alization, Territorial Districting or Territory Design, is central to several applicative
tasks, such as the identification of local labour market areas, the design of school
and hospital districts, political districting, sales districting, and so on, see, e.g.,
[43, 113]. According to [116, 30], the methods of functional regionalization can
be subdivided into two main approaches.

The first one is based on statistical methods and employs numerical taxon-
omy principles. These methods typically use a single-step procedure that seeks to
maximize a statistical criterion representing the objective. They include clusters
analysis and specific regionalization algorithms (e.g., [93]). The single-step pro-
cedures use a single classification rule. Techniques are designed for the analysis
of spatial interaction matrices. Among these methods, the most widely used are
based on the Contingency tables analysis, on the Factor analysis (see, e.g., [100])
and on the Markov chains analysis (see, e.g., [20]). The last two methods also al-
low to identify Nodal Regions, such as the method proposed by Nystuen & Dacey
([106]). However, this latter argument is out of the scope of this thesis.

The single-step analytical methods are characterized by:

• the way in which the interaction matrix is transformed;

• the way in which localities are grouped to generate areas on the basis of the
transformed matrix.

15
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The main problems for the single-step algorithms are the difficulties of impos-
ing constraints without the risk of biasing the final results, and the difficulties to
establish the size of the partition because there is no objective criterion to stop the
grouping process. Generally, single-step methods produce the best results when
they are used as exploratory methods.

A particularly well-known single-step procedure, based on the analysis of con-
tingency tables, is the intra-regional interaction maximization, or INTRAMAX,
initially developed by Masser and Brown [93], also implemented in the software
FLOWMAP developed at the University of Utrecht [130]. INTRAMAX proce-
dure is a stepwise hierarchical algorithm based on an interaction matrix, which
contains the interactions (e.g., journey-to-work flows) between all the localities
constituent a given territory, including the interactions of each locality with itself.
In each step, two localities are selected and merged together, producing a new lo-
cality (a region) that is the union of the two, and all the interactions involving this
new locality are updated accordingly. To avoid possible cases of fusions between
nonadjacent localities, a contiguity constraint has also been incorporated into the
grouping procedure [93]. However, this constraint causes some loss of information
on the observed flows and affects the empirical findings as showed in [115]. Inter-
esting results of Intramax approach for identifying functional regions are described
in [48, 103, 135, 94, 84].

The second approach consists of the multi-step procedures based on complex
decision rules derived from empirical experience of the analysts. These methods
do not perform any kind of processing on the interaction matrix data. The matrix is
used as a source of information. Multi-step methods have been used for the identifi-
cation of functional areas such as: Local Labour Market Areas (LLMAs), Travel to
work areas (TTWAs), Standard Metropolitan Labour Area (SMLA). These meth-
ods are named according to the purpose of functional region that they identify.

The main characteristics of these methods involve the following aspects:

• the initial steps to identification of the functional regions are related to the
selection of the focal localities;

• the final steps allow the fine tuning of regional boundaries and the validation
of the obtained regions.

Multi-step methods do not require to transform the interaction matrix, but they
need a set of criteria able to define self-contained regions. Unlike the single-step
methods, the set of criteria which underpin a multi-step approach can be reformu-
lated as long as they do not generate areas that fit the spatial pattern of the daily
journey-to-work flows.
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The TTWA method, initially proposed by Coombes and Openshaw to generate
official statistical reporting areas in Britain, is the mainly adopted multi-step pro-
cedure [28, 29]. It is based on a traditional understanding of cities as focal points
for hinterlands. The assignment of a group of localities to a TTWA is guided by
the maximization of the interaction between those localities. Thus, indirectly, the
interaction that crosses boundaries between TTWAs is minimized. Besides, ev-
ery TTWA must reach a minimum level of self-containment and a minimum size
in terms of resident occupied population. The trade-off between size and self-
containment is the peculiarity of the TTWA algorithm.

A more general version of the TTWA-based algorithm was devised by Sforzi,
Openshaw and Wymer to regionalize Italy in LLMAs with support from Istat, the
Italian National Institute of Statistics [117]. The presence/absence of the trade-off
between size and self-containment is the main difference between the TTWA-based
algorithm and the LLMA-based Italian one. The choice to remove the trade-off
was justified by the discretionality of the size of employment and to preserve the
established threshold of self-containment, recognized as the key criterion. This
algorithm was officially applied by Istat to process journey-to-work data for the
functional regionalization of Italy in 1981, 1991 and 2001.

Van der Laan and Schalke [129] also develop a multi-level classification of
the LLMAs identification methods. They basically distinguish between methods
allowing for heterogeneity among LLMAs and methods which provide homogene-
ity. Then, they subdivide the homogeneous category into deductive methods, which
identify at first urban centres around which the LLMAs are constructed, and induc-
tive methods, which do not use such pre-conceived structures.

The identification of LLMAs is a very important case of functional regionaliza-
tion. LLMAs are widely accepted as the most appropriate units for the statistical
analysis of socio-economic phenomena, such as the detection of industrial districts
([118, 18, 24]), the evaluation of productivity advantages of local economies (see,
e.g., [39]) and, of course, the measurement of the employment and unemployment
rates.

A LLMAs is defined as a functional region ”where the majority of the local
population seeks employment and from which the majority of local employers re-
cruit labour” [62]. Operationally, a LLMAs consists of a group of contiguous lo-
calities defining an area in which there is a concentration of labour demand and in
which workers can change jobs without changing their place of residence ([131]).
In other words, it is an area where demand and supply for labour meet at high
degree, and daily commuters entering the area or going out from it are only a mi-
nority.

LLMAs do not fit administrative boundaries. The boundaries of LLMAs change
over time because of demographic and economic changes. These changes are re-
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flected in the daily home-to-work flows. Therefore, LLMAs are updated periodi-
cally through the Census that collects information on such flows.

Flórez-Revuelta et al. present in [55, 91] a new approach to the identifica-
tion of LLMAs based on evolutionary computation. The procedure is based on
the maximization of a fitness function that measures the aggregate intra-region in-
teraction under constraints of inter-region separation and minimum size. Another
interesting approach to the problem is based on measures of Modularity (see, e.g.,
[45]), since there should be dense connections within each region, but only sparse
connections between regions. Girvan and Newman [60] propose an algorithm that
uses betweenness centrality to find community boundaries.

Modularity is used as quality index of a partition of a network into commu-
nities. It measures internal (and not external) connectivity, but it does so with
reference to a randomized null model. Following this line of research, modularity
has been very influential in recent community detection literature, and one can use
spectral techniques to approximate it [60, 139].

Djidjev [40] shows that the problem of finding a partition maximizing the mod-
ularity of a given graph G can be reduced to a minimum weighted cut problem and
suggests the use of Multilevel algorithms for graph partitioning to efficently solve
this problem. However, Guimerá et al. [64] and Fortunato and Barthélemy [57]
show that random graphs have high-modularity subsets and that exists a size scale
below which modularity cannot identify communities. In particular, [57] shows
that modularity optimization may fail to identify modules smaller than a given
scale, which depends on the total number of the network links and on the degree
of interconnectedness of the modules, even in cases where modules are unambigu-
ously defined.

Following this line of research, Farmer et al. in [45] maximize the modularity
of a network of commuting flows to produce a regionalization that exhibits less
interactions than expected between regions. This approach should have specific
advantages over existing regionalization procedures, particularly in the context of
disaggregate commuting patterns of socio-economics subgroups [45].

Kropp and Schwengler in [82] propose an approach based on a modification
of Nystuen and Dacey‘s dominant flow method [106] and adopt the modularity
measure to assess the quality of the different delineations.

Finally, Kim et al. [80] propose an exact approach to the case of regionalization
problem with a predetermined number of regions and contiguity constraints. The
proposed model simultaneously determines a given number of functional centers
and delimits their sphere of influence simultaneously, while explicity incorporating
contiguity constraints.

In this thesis we propose and evaluate a new approach to functional regionaliza-
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tion problem, with specific reference to the identification of LLMAs.The problem
is converted into a graph partitioning problem. The proposed approach obtains the
solution by solving a sequence of minimum cut problems over an undirected graph
obtained from the interactions among the localities. This graph is here called tran-
sitions graph. The procedure has been implemented in c++ and tested on real data
from the Italian Census of Population 2001.

The results of the proposed approach are compared to those of the procedure
officially used by the Italian National Institute of Statistics (Istat) in 1981,1991 and
2001 to define the Italian LLMAs ([107, 119, 120]). After the choice of a method
highly specialized to determine the Italian LLMAs, another comparison is with the
state-of-the-art procedure for general purpose graph partitioning METIS [78]. The
main contribution of this work is therefore an innovative and effective approach
based on Combinatorial Optimization for solving an economically important and
challenging real-world problem.

The rest of this Chapter is organized as follows.
Section 2 describes in detail the Regionalization Problem related to the identi-

cation of LLMAs.
Section 3 outlines the main characteristics of two consolitaded methods for the

identification of LLMAs. Firstly we describe Intramax, the most applied single-
step procedure, that is considered a reference method from a statistical point of
view. Secondly we describe the multi-step procedure officially used by Istat in
1981, 1991, and 2001 to define LLMAs. This algorithm is used for the comparation
with our proposed procedures.

Section 4 explains the proposed procedure based on the solution of minimum
cut problems.

Section 5 describes the main characteristics of the Multilevel Graph Partition-
ing Approach, with special emphasis on the System Metis.

Section 6 reports the experiments and the comparison on data from the 2001
Italian Population Census, along with a discussion of the empirical results.

Conclusions are given in Section 7.

2.2 The Regionalization Problem

The approach proposed for the problem of the identification of functional regions
will be hereinafter explained by referring to the identification of Local Labour Mar-
kets Areas (LLMAs). This is indeed one of the most important cases of regional-
ization, because it has a great economic relevance and it requires to deal with a
very large set of data.

However, the proposed approach is not intrinsically limited to this case, but
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can be used for other cases of regionalization sharing the structural characteristics
described below.

In the described case, we have the set

A = {a1, . . . , an}

of all the localities ai situated in a territory T , that is the geographical area under
analysis. Set A is such that

⋃n
i=1 ai = T and ai ∩ aj = φ for i 6= j.

Moreover, we have an n× n matrix

F =

 f11 . . . f1n

. . .
fn1 . . . fnn


of the interactions existing between all the pairs of localities. In particular, value
fij ≥ 0 is a measure of the flow of workers that reside in locality ai and work
in locality aj , and is called commuting flow, or also daily journey-to-work flow.
Clearly, F is not necessarily symmetric.

The identification of the LLMAs consists of a partition of the set A into sub-
sets R1, . . . , Rm (the functional regions) such that Rp ∩ Rq = φ for p 6= q and⋃m
p=1Rp = T .

The goals of this partition may be viewed from different perspectives, but basi-
cally consist of maximizing the number of LLMAs such that the obtained regions
remain statistically and economically meaningful. This means that:

(i) each LLMA must be sufficiently self-contained;
(ii) each LLMA must have a sufficient number of workers;
(iii) each LLMA must be composed by a set of localities;
(iv) each LLMA must be internally contiguous.

To impose condition (i) one needs to evaluate self-containment.
The total occupied population working in locality ai (i.e., for short, workers in

ai) is w(ai) =
∑n

k=1 fki. Consequently, the total number of workers in region Rp
is

w(Rp) =
∑
ai∈Rp

n∑
k=1

fki.

Specularly, the total occupied population residing in ai (i.e., for short, residents
in ai) is r(ai) =

∑n
j=1 fij . Consequently, the total number of residents in Rp is

r(Rp) =
∑
ai∈Rp

n∑
j=1

fij .



2.2. THE REGIONALIZATION PROBLEM 21

Also, the total number of workers in locality ai that reside outside of ai (the
incoming commuters) is c−(ai) =

∑n
k=1,k 6=i fki. Consequently, the total number

of incoming commuters in region Rp is

c−(Rp) =
∑

(k,i): ak 6∈Rp,ai∈Rp

fki.

Conversely, the total number of residents in locality ai that work outside of
ai (the outgoing commuters) is c+(ai) =

∑n
j=1,j 6=i fij . Consequently, the total

number of outgoing commuters from region Rp is

c+(Rp) =
∑

(i,j): ai∈Rp,aj 6∈Rp

fij .

Finally, the total number of residents in region Rp that also work in Rp (the
internal flow) is

l(Rp) =
∑

(i,j): ai,aj∈Rp

fij .

Hence, value fii is also called the internal flow of locality ai.
The Supply-side self-containment function for ai is defined to evaluate the por-

tion of people residing and working in locality ai within the total workers in ai, as
follows:

scw(ai) =
fii
w(ai)

.

Consequently, the Supply-side self-containment for a region Rp is

scw(Rp) =
l(Rp)

w(Rp)
. (2.1)

The Demand-side self-containment function for ai is defined to evaluate the
portion of people residing and working in ai within the total residents in ai, as
follows:

scr(ai) =
fii
r(ai)

.

Consequently, the Demand-side self-containment for a region Rp is

scr(Rp) =
l(Rp)

r(Rp)
. (2.2)
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Finally, we define the Overall self-containment function for ai to evaluate the
portion of people residing and working in ai within the total number of people
interacting with ai (that is, working and/or residing), as follows:

sc(ai) =
fii

fii + c−(ai) + c+(ai)
.

Consequently, the Overall self-containment for a region Rp is

sc(Rp) =
l(Rp)

l(Rp) + c−(Rp) + c+(Rp)
. (2.3)

Self-containment functions have been used in literature in different manners.
Clearly, the first two only consider partial aspects. We select the Overall self-
containment one, because in our opinion is the more coherent with the definition
of LLMA. Hence, a regionRp is sufficiently self-contained, i.e., respects condition
(i) above, when sc(Rp) ≥ c1, where c1 is a threshold defined for the specific
analysis. Since in any case sc(Rp) ∈ [0, 1], possible thresholds range in (0.5, 1].

We mention, however, that several authors make a different choice, and consid-
ered simultaneously the Supply-side self-containment and the Demand-side self-
containment for their analysis [30].

However, note that sc(Rp) ≥ c1 implies both scw(Rp) ≥ c1 and scr(Rp) ≥
c1, since all the values involved in their computation are nonnegative. Indeed,
given a region Rp, reaching a minimum value for the overall self-containment
function l(Rp)

l(Rp)+c+(Rp)+c−(Rp)
guarantees that both supply- and demand-side self-

containment of Rp reach that value. A simple proof is the following:

min

{
l(Rp)

w(Rp)
,
l(Rp)

r(Rp)

}
= min

{
l(Rp)

l(Rp) + c−(Rp)
,

l(Rp)

l(Rp) + c+(Rp)

}

Since l(Rp) ≥ 0, c+(Rp) ≥ 0 and c−(Rp) ≥ 0, we have:

min

{
l(Rp)

l(Rp) + c−(Rp)
,

l(Rp)

l(Rp) + c+(Rp)

}
≥ l(Rp)

l(Rp) + c+(Rp) + c−(Rp)

Therefore, for any c1 ≥ 0, an overall self-containment
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l(Rp)

l(Rp) + c+(Rp) + c−(Rp)
≥ c1 implies

min

{
l(Rp)

w(Rp)
,
l(Rp)

r(Rp)

}
≥ c1.

A region Rp has a sufficient number of workers, i.e., respects condition (ii)
above, when w(Rp) ≥ c2, where c2 is a natural number, again depending on the
specific analysis and on the size of the ai (as an example for the present case study,
c2 ≥ 1000).

A region Rp respects condition (iii) above when the number of localities com-
posing it is such that |Rp| ≥ c3, where c3 is another natural number, again de-
pending on the specific analysis. For example, c3 = 2, see also [117]. However,
the proposed approach is flexible and allows setting c3 to different natural numbers
whenever the application would require it.

From the mathematical point of view, parameter c3 could perfectly assume
value 1 without affecting the operation of the proposed method. However, we do
not choose such a value in our experiments, because we are interested in having
LLMAs of at least 2 localities, so c3 = 2. We also note that such a condition is not
a novelty in the literature, but it is often required in the case of the identification
of LLMAs. See for instance Istat-Irpet 1989 (p. 16) [119] among our references,
where a LLMA is defined as follows: “A local labour market is an area (which
includes several localities) characterized by a certain concentration of jobs, where
most of the local population can find a job [...] (and the workers resident can change
a job) without changing their locality of residence”. As a consequence, this defini-
tion excludes the possibility that a single locality (a municipality) is considered a
self-standing LLMA.

Condition (iv), finally, is of difficult mathematical formalization. However,
several authors in the literature state that this condition should not be imposed dur-
ing the generation of the LLMAs, because otherwise, at each step of a generic
regionalization procedure, it would limit the possible choices, and this would very
likely lead to the determination of worse LLMAs boundaries, as explained in, e.g.,
[26]. So, the possibility of working with non-contiguous proto-regions before pro-
ducing the final LLMAs should be allowed during the generation process.

On the contrary, contiguity should be checked on the final LLMAs, and, if one
of them does not respect it, one has to disassemble that LLMA and possibly merge
some of its localities with other contiguous LLMAs neighboring to them.

Conditions (i) and (ii) can be slightly relaxed, in the sense that the (almost)
full satisfaction of one condition is considered enough to compensate a little unsat-
isfaction of the other. Hence, the following condition (2.4) can subsume the two
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conditions (i) and (ii), where c is a threshold with a value generally ≥ 0.75 [122].(
min

{
sc(Rp)

c1
, 1

})
.

(
min

{
w(Rp)

c2
, 1

})
≥ c (2.4)

Evidently, all the above conditions are more easily respected by large LLMAs,
and, indeed, one unique LLMA over the whole territory under analysis would
fully satisfy them (assuming of course that the values of c2 and c3 are feasible
for that territory). In order to avoid such kind of solutions, useless from the prac-
tical point of view, and to maximize the number of LLMAs, one usually wants
that the above conditions (i), (ii) and (iii) are satisfied with the minimum values
of self-containment, workers and areas that are able to do that, possibly relaxing
conditions (i) and (ii) with condition (2.4). When this happens, and also condition
(iv) is met, the regionalization task has been successfully performed.

Note that the practical cases of this problem are generally very computationally
demanding, and all the approaches used for this problem are actually approximate
procedures (unless simplifications of the problem are considered, for example by
pre-assigning the number m of LLMAs that should be generated).

2.3 Two consolidated methods for the Functional Region-
alization

In this Section we describe two existing approaches to solve the problem of
identification of Functional Regions.

Firstly, we describe the most applied single-step procedure Intramax ([93]),
based on the analysis of contingency tables, that is considered as a reference method
from a statistical point of view ([92]) and the most successfull it single-step pro-
cedure. We do not compare this method with ours, but we refer to the comparison
with TTWA algorithm described in ([116]). This research highlights that the sec-
ond approach is more appropriate than Intramax method for the delimitation of the
functional regions based on daily journey-to-work flows.

Secondly, we describe the multi-step procedure officially used by Istat in 1981,
1991 and 2001 to define the Italian LLMAs ([120]), and it will be compared with
our proposed approach based on the min-cut procedure because, among the ones
proposed in literature, it appears to be the most appropriate to provide a mean-
ingful functional regionalization of Italy (see, e.g., [39, 24]). As described previ-
ously, this procedure is a more general version of the TTWA-based algorithm. It
was devised by Sforzi, Openshaw and Wymer to regionalize Italy in LLMAs with
support from Istat ([115]). The presence/absence of the trade-off between size
and self-containment is the main difference between the TTWA-based algorithm
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and the LLMA-based Italian one. Take the example of the UK and Italy. In the
UK the function for being a viable TTWA has changed over time.“The 75% self-
containment remains the same, but the 1991-based TTWAs used a second threshold
of 69.5% with an economically active population of 20,000, while the 2001-based
TTWAs used a threshold of 66.67% but with an economically active population
of 25,000” ([17]). In Italy, the target size value for the 2011-based TTWAs used
a second threshold of 60% with an economically active population set by Istat at
10,000.

2.3.1 INTRAMAX algorithm

The INTRAMAX (intrazonal interaction maximization) algorithm was developed
by Masser and Brown (1975) [93]. It is a modified version of Ward’s hierarchical
aggregation procedure [132].

In this algorithm, Ward’s objective function is replaced by criteria that take into
account the overall effect of interaction across group boundaries.

The INTRAMAX algorithm is a stepwise hierarchical algorithm which delim-
its functional areas to produce a regionalization based on the interaction matrix
defined by origin-destination flows between different areas. In each step, two ar-
eas are grouped together and the interaction between them becomes an intra-zonal
interaction of the new grouped area.

As stated by the authors, ”The main objective in the definition of subsystems
for modeling purpose is to maximize the proportion of total interactions which
takes place within the aggregation of basic data units that form the diagonal el-
ements of the matrix, and thereby to minimize the proportion of cross-boundary
movements in the system as whole”.

In practice, this objective is achieved maximizing the proportion of intrazonal
interactions. The process is repeated until all areas are grouped together and all
interactions becomes intra-zonal.

In details,
Let F an n× n interaction matrix

F =

 f11 . . . f1n

. . .
fn1 . . . fnn


F is a square matrix with each row representing an origin (residential area) and

each column denoting a destination (workplace area). fij are the commuter flows
(interactions) between origin area i and destination area j .

fi. =
n∑
j=1

fij is the total of interactions originating from area i.
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f.j =
n∑
i=1

fij is the total of interactions into destination area j.

Tr(F ) =
n∑
i=1

fii is the total intrazonal interaction.

f.. =
n∑
i=1

n∑
j=1

fij =
n∑
i=1

fi. =
n∑
j=1

f.j is the total of all interactions.

The interaction matrix can be considered as a contingency table (see Table 1) where
the observed value of the cell in the i-th row and j-th column is the probability

aij =
fij
f..

Destination Row total
a11 a1n O1

. . .
Origin . . . aij Oi

an1 ann On
Column total D1 Dj Dn 1

Table 1: Contingency table of the interaction matrix.

The row total Oi =
n∑
j=1

aij represents the total outflow from origin area i and

the column total Dj =
n∑
i=1

aij represents the total inflow into destination area j.

Consequently,
n∑
i=1

Oi =
n∑
j=1

Dj = 1

In a contingency table, the expected value a∗ij , under the null hypothesis of
independence for the Chi-square test, is defined as a∗ij = OiDj .

The objective of the Intramax procedure is to maximize the proportion within
the group interaction at each stage of the grouping process. It can be formulated
in terms of the differences between the observed and the expected probabilities
that are associated with their marginal totals. Therefore, the difference between
observed and expected values is considered as a measure of the interaction between
areas. Two areas i and j are grouped together if the objective function
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(aij − a∗ij) + (aji − a∗ji) for i 6= j is maximized.

Note that the objective function can only be calculated for all outflows Oi > 0
and for all inflows Dj > 0. Therefore, areas which have either no inflows or no
outflows will be ignored.

In each step, two areas are grouped together and the interaction between the
two areas becomes the internal interaction for the new resulting area. This new
area takes the place of the two grouped areas at the next step of the analyses. So,
at the last steps, all areas are grouped together into one area and all interactions
become internal.

Masser and Brown (1975) had fixed contiguity constraints on the maximiza-
tion process to avoid creating groups between non-contiguous areas. This choice,
restricting the number of combinations to be examined at each stage of the group-
ing process, reduces the computational time, particularly when large data sets are
involved.

Spatial aggregation by means of the Intramax procedure is incorporated in the
software called FLOWMAP. This software was developed at the Faculty of Geo-
graphical Sciences in Utrecht University, the Netherlands [130].

In FLOWMAP, contiguity constraints may or not be introduced. These con-
straints take the form cij= 1 if area i and area j are contiguous, cij= 0 otherwise.

We use an illustrative example to describe the main outputs of an Intramax
Analysis by FLOWMAP. This example considers only flows within and between a
set of twenty Municipalities. An identification code (Istat Municipality code) has
been assigned to each area.

The results of Intramax Analysis for this set of commuting flows are showed
in the next two Figures. Particularly, Figure 2.1 shows a part of the fusion report.
It describes the aggregation history of the clustering procedure.

The header of the Intramax output denotes the data files which were used. The
total number of interactions isf..= 165,319, while Tr(F )= 98,103 is the total in-
trazonal interaction. The initial percentage intrazonal interaction is 59.34%. For
each step, the algorithm merges two areas which maximize the proportion of the
intrazonal interactions, so each area in the first column is grouped with the corre-
sponding area from the second column. The total intrazonal interaction after this
merge is shown in the third column. The forth column shows the percentage in-
crease which will occur after this merge. The last column represents the cumulative
percentage of intrazonal interaction after the merge. In the first step, area 35014
is added to area 35003, in the second one area 36002 is added to area 36001, then
area 36046 is added to area 36041, and so on. The cumulative intrazonal interac-
tion is gradually increasing. After 20 steps all areas are merged into a single area
and the cumulative intrazonal interaction becomes 100%.



28CHAPTER 2. FUNCTIONAL REGIONALIZATION VIA GRAPH PARTITION

Figure 2.1: Results of Intramax Analysis by FLOWMAP - Fusion report.
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Figure 2.2: Results of Intramax Analysis by FLOWMAP - Dendrogram.
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In Figure 2.2, a dendrogram shows which areas have been grouped. It indicates
the groups created at each steps referring to the total volume of interaction within
groups.

A comparative evaluation of some single-step or multi-step methods was al-
ready carried out in Italy in the 80s, using data referred to the regional urban system
of Tuscany ([116]).

The interactions data are represented by the daily journey-to-work flows be-
tween Tuscany Municipalities (287 localities), collected by the supplementary Gen-
eral Population Census of 1971 conducted by the Italian Region of Tuscany in
cooperation with Istat. Figure 2.3 shows the spatial pattern of the daily journey-to-
work flows.

INTRAMAX method was applied to the above cited interaction data, taking
into account the contiguity constraints of municipalities. The results, shown in
Figure 2.4, are referred to the thirtieth step of the grouping process. The stopping
criterion has been chosen subjectively. Figure 2.5 shows the results of the applica-
tion TTWA method to the same data by applying a minimum threshold of supply
and demand self-containment, at least equal to 0.75.

2.3.2 The Italian LLMA-based algorithm

We describe here the procedure that has been officially used by Istat for the defini-
tion the Italian LLMAs. It is an agglomerative multi-stage heuristic constituted by
five principal phases summarized below:

(1) Identification of potential LLMAs focal points;

(2) Amalgamation of potential LLMAs focal points;

(3) Expansion of focal points into proto LLMAs;

(4) Identification of potential LLMAs;

(5) Optimization of LLMAs boundaries.

This procedure is described in detail in [120]. The main criteria and functions
used for identification of LLMAs are defined below.

The Job ratio function for the area ai is defined as follows:

jr(ai) =
c−(ai)

c+(ai)

where numerator indicate the total incoming flows for area ai related to workers

residents in other areas, while the denominator indicate the total outcoming flows
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Figure 2.3: Spatial pattern of the daily journey-to-work flows in Tuscany, 1971.
(Source: Sforzi 1985)
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Figure 2.4: Functional Regionalization of Tuscany via INTRAMAX. (Source:
Sforzi 1985)
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Figure 2.5: Functional Regionalization of Tuscany via TTWA. (Source: Sforzi
1985)
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related to the economically active residents for ai having the workplace in other
areas.

The Supply-side self-containment function for the area ai, used to evaluate the
portion of people residing and working in locality ai within the total workers in ai,
is defined as follows:

scw(ai) =
fii
w(ai)

.

The Demand-side self-containment function for the area ai, used to evaluate the
portion of people residing and working in ai within the total residents in ai, is
defined as follows:

scr(ai) =
fii
r(ai)

(1) Identification of potential LLMAs focal points
Obiective: Select from the set of the Municipalities M ⊂ A those could be used as
focal points for building LLMAs detected on the basis of job ratio and supply-side
self-containment functions.

For each candidate locality ai ∈ M , it evaluates scw(ai) and jr(ai) and chooses
the localities that have values in the top 20% for either of the two measures.

(2) Amalgamation of potential LLMAs focal points
Obiective: Amalgamate focal points that exhibit a high degree of interaction.

In this phase are only considers links between the focal point themselves.
For focus ai , having a high degree of interaction with another focus aj means that
are verified all the following conditions:

- for the area obtained merging ai and aj either supply-side or demand-side self-
containment must be less than 0.5;

- ai receives at least 10% of the flows coming out of aj , that is
fji ≥ 0.1(c+(aj) + fjj);

- aj receives at least 1% of flow coming out of ai, that is
fij ≥ 0.01(c+(ai) + fii);

Focal point are sorted in descending order by their values of incoming flows c−(ai)
and each is considered in turn, starting from the first focus in the ranking.
If some ai has min{scw(ai), sc

r(ai)} ≥ 0.5 then it is not merged whit other foci
and considered in the next phase.
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Else, if some ai has min{scw(ai), sc
r(ai)} < 0.5, then it is merged, if exists,

with the area aj having a high degree of interaction with it and that maximizes the
following weighted interaction index, provided that this exceeds 0.002,

f2
ji

(fjj + c+(aj)(fii + c−(ai))
+

f2
ij

(fii + c+(ai)(fjj + c−(aj))
. (2.5)

The new combined locality replaces both ai and aj and is considered as a focus.
This process continues until no more of such amalgamations can be done. At
the end of this phase we obtain a small number of localities containing a single
municipality or a few of those.

(3) Expansion of focal points into proto LLMAs
Obiective: Expand amalgamated foci to form proto LLMAs by allocating the foci
themselves and also between foci and non-foci areas. All areas are sorted in de-
scending order of the following function, where t1=t2=0.75, t3=1000.

F (ai) =

(
min

{
scw(ai)

t1
,
scr(ai)

t2
, 1

})
.

(
min

{
w(ai)

t3
, 1

})
(2.6)

If some ai has F (ai) ≥ 0.75 then it is not merged whit other areas and consid-
ered in the next phase.

Else, if some ai has F (ai) < 0.75, then it is merged in a Pk with another
locality aj such that: F (aj) < 0.75 and ai receives at least 10% of the flows
coming out of aj and aj is the one that, when merged to ai, maximizes the above
F (Pk). Any locality ai such that F (ai) ≥ 0.75 is a proto-LLMA by itself.

(4) Identification of potential LLMAs
Obiective: Allocate remaining non-foci area units to proto-TTWA. Iteratively dis-
member proto-TTWA that do not meet the objective value and reallocate compo-
nent area units.

At first, the algorithm iteratively dismember group of areas withF (Pk) < 0.75,
in order to reallocate its localities. After this, the set of localities not yet allo-
cated to proto-LLMAs is sorted in decreasing order of in-flow c−(ai), and each
of them is joined with the proto-LLMA with which it shows the strongest connec-
tion, i.e., the one maximizing (2.5). Only localities without in-flows and out-flows
are left isolated. Then, iteratively, proto-LLMAs are again checked and those hav-
ing F (Pk) < 0.75 are dismembered and its constituent localities are once again
joined to the remaining proto-LLMA just like at the beginning of phase 4. The
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phase continues until there are only proto-LLMAs with F (Pk) ≥ 0.75 or isolated
localities.

(5) Optimization of LLMAs boundaries
Obiective: Allocate localities of proto-LLMAs having not contiguos localities.

Finally, the algorithm checks if each proto-LLMA is contiguous. Those that
are localities not contiguous are dismembered and each of its constituent localities
is joined to the contiguous proto-LLMA that maximizes (2.5), in a fashion similar
to phase (4).

Figure 2.6, Figure 2.7 and Figure 2.8 show the functional regionalization of
Italy in 1981, 1991 and 2001. There were 955 LLMAs in 1981, 784 in 1991 and
686 in 2001.
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Figure 2.6: Local labour market areas, 1981 (Source: ISTAT-IRPET 1989).
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Figure 2.7: Local labour market areas, 1991 (Source: ISTAT 1997).
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Figure 2.8: Local labour market areas, 2001 (Source: ISTAT 2005).
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2.4 The Proposed Min-Cut Approach

By viewing the set A as the set of the vertices V of a graph, and the set of the
values of F as the weights of a set of edges E′ connecting all the pairs of vertices
in V , the problem evidently becomes a type of graph partitioning problem over a
complete graph G′ = (V,E′).

However, differently from the standard cases, G′ contains also loops, i.e., arcs
of the type (i, i), going from i to i itself and corresponding to the mentioned inter-
nal flows. Since F is not symmetric, G′ will be a directed graph.

Graph partitioning problems have been extensively studied (see [14] for ref-
erences), since they have applications in many areas, e.g., clustering, detection of
cliques in social, pathological and biological networks, programs mapping onto
parallel architectures, image segmentation, numerical analysis, VLSI design.

Typically, graph partitioning problems fall under the category of NP-hard prob-
lems, and practical solutions algorithms are based on heuristics (see, e.g., [104]).

One widely used approach is the so-called multilevel one. Multilevel Partition
algorithms iteratively reduce the size of the graph by collapsing vertices and edges,
partition the smaller graph, then map back and refine this partition on the original
graph. A good example of this approach is implemented in the software METIS
[78]. We analyze the usability of similar approaches for solving the regionalization
problem in the following Section 2.6.

However, we note that expression (2.3) for the computation of sc, has the fol-
lowing property: both numerator and denominator are constituted of sums of com-
muting flows, and fij is contained in one of those sums if and only if also fji is
contained in it.

Therefore, we consider an undirected complete graph G = (V,E) having for
each arc (i, j) ∈ E a weight

w(i, j) = fij + fji

In the framework of our study, to ignore the directionality of flows is not a
negligence. The focus of our study does not require attention to the directionality
of flows, because LLMAs are neither hierarchical functional areas, as in Fusco and
Caglioni ([58]), nor nodal regions, as in Brown and Holmes ([20]). Therefore,
what is important in our case is the total interaction between each pair of units.
Graph G can be used instead of G′ for the computation of (2.3) without any loss of
information.

The advantage is that G has a considerably smaller number of arcs. We also
observe that a partition solving our regionalization problem disconnects G in such
a way that the arcs that are removed constitute a set that should have small total
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sum of the w(i, j) flows and that certainly would not include loops. Therefore,
when searching for such a set of arcs, we can remove all loops from G.

We obtain in this manner an undirected graphG, that we call transitions graph,
having n2−n

2 arcs, instead of the directed graph G′ having n2 arcs. Graph G does
not contain the whole information of the commuting flows. Nevertheless, each
solution to the original problem is obtainable as a partition ofG, since loops would
never be cut.

On the other hand, the internal flows are needed for the evaluation of self-
containment. Therefore, our algorithm includes a validation step, during which
the partitions obtained on G are checked for the satisfaction of condition (2.4) by
computing sc as in (2.3), that is, by considering also the internal flows and the
weights of the cutted edges.

As showed in the previous section 2.2, given a generic LLMA, an Overall self-
containment ≥ c1 implies that both its Supply- and Demand-side self-containment
are≥ c1. As a consequence, we can guarantee that the partitions of G produced by
our algorithm respect the conditions described in the section 2.2.

Note also that the internal flows generally represent the larger values in matrix
F , and some of them may be order of magnitude larger than all non-internal flows.
So, the restriction of the partitioning problem to G also improves the numerical
condition of the problem, that may indeed be originally ill-conditioned.

We now describe the recursive partitioning procedure that we apply. We denote
the set of vertices of a generic graph G as V (G) or simply by V when there is no
ambiguity.

A cut in G is a partition (S, S̄) of V , a cutset is the set of arcs connecting S
and S̄ in G. We define the weight of cut (S, S̄) as

W (S, S̄) =
∑

i∈S, j∈S̄

w(i, j).

Similarly, we define for any two sets A,B of vertices of G, the weight

W (A : B) =
∑

i∈A,j∈B
w(i, j)

A minimum weight cut, also called for brevity minimum cut or min-cut, of
an undirected graph with edge weights is a set of edges with minimum sum of
weights, such that its removal would cause the graph to become disconnected.

The total weight of the edges in a minimum cut of G is denoted by λG and
called, as said before, edge − connectivity of G (see, e.g., [38]).
The transitions graph G is partitioned in order to obtain the subsets of vertices
(S1, . . . , Sm) corresponding to the LLMAs (R1, . . . , Rm) by finding cuts with
minimum weight.
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We also need to define an operation, called contraction, or equivalently join
or merge, of two or more vertices of a graph G, that produces a graph with less
vertices, as follows.

Given a graph G, the contraction of two vertices ν and µ produces a new graph
G/ν ∼ µ, where ν and µ are replaced by a new vertex [ν] = [µ], and the weights
of the edges (v, ν) and (v, µ), for any generic vertex v 6= ν, µ, are summed, i.e.,
w(v, [ν]) = w(v, ν) + w(v, µ).

Figure 2.9 shows an illustrative example of the contraction of two vertices.

Figure 2.9: Contraction of a pair of vertices

The contraction of a set of vertices is the repeated contraction of its pairs of ver-
tices. The contraction of a (sub-)graph is the contraction of the set of all its vertices.

Contraction algorithms rely on the following theorem, relating the edge-connectivity
of a graph with the one of a quotient graph ([19]):

Theorem 1 (Thm 2.1 of [125]). Let ν and µ be two vertices of an undirected
weighted graph G = (V,E). Then the edge-connectivity of G is the minimum of
the weights of a minimum ν-µ-cut and the edge-connectivity of the graphG/ν ∼ µ,
obtained by the contraction of ν and µ, i.e.

λG = min ( λG (ν, µ) , λG/ν∼µ )

Proof. We differentiate two cases. Either each minimum cut of G separates ν and
µ , then λG = λG (ν, µ) and λG/ν∼µ > λG, or there exists at least one minimum
cut not separating ν and µ and hence induces a minimum cut of G/ν ∼ µ, leading
to λG = λG (ν, µ) ≤ λG (ν, µ).

We say that a (sub-)graph G is feasible when it satisfies conditions (2.4) and
|V (G)| ≥ c3. We say that we split a (sub-)graph G when we remove from it all the
arcs of a cutset. We also say that a (sub-)graph G is unsplittable when it is feasible
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but it has values of self-containment, workers and localities such that any further
splitting of G will produce subgraphs that are not feasible.

Since our aim is to partition the transitions graph at the maximum extent, we try
to obtain a partition corresponding to subgraphs that are all unsplittable. Therefore
the proposed approach does not require the value m (cardinality of the partition) to
be specifed a priori.

In the procedure below we use a list of open problems L to store all the sub-
graphs of G that have not yet been identified as unsplittable, and so will undergo
the cutting operation. We also use a list of closed problems T to store the subgraphs
Gp that have been recognized as unsplittable.

Procedure for the generation of LLMAs

Input An undirected complete graph G(V,E) with n vertices associated with the
n localities ai, and edge weights w(i, j) = fij + fji ≥ 0.

Output A partition of V into (S1, . . . , Sm) such that |Sp| ≥ c3 for p = 1, . . . ,m, and
that the corresponding (R1, . . . , Rm) respect condition (2.4) and are contigu-
ous. Value m is not fixed in advance.

Initialization:
Remove from E all the edges with w(i, j) = 0
Identify the connected components of G, call them G0, . . . , Gc and insert
them into the list of open problems L
The list of closed problems T is empty

Iteration:

Cut If L is empty: break the iteration and goto Contiguity enforcement
If L is not empty: extract (sub-)graph Gh from L
Apply procedure MinCut to Gh to obtain the minimum weight cut (S, S̄)h
Remove the corresponding cutset obtaining subgraphs Gh+1 and Gh+2

Valid Check if Gh+1, Gh+2 satisfy condition (2.4) and have at least c3 localities
each

Case 1 If both Gh+1 and Gh+2 satisfy these conditions: insert Gh+1 and Gh+2 in L
and repeat the Iteration

Case 2 If neither Gh+1 nor Gh+2 satisfy these conditions: Gh is unsplittable
Insert Gh in T and repeat the Iteration
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Case 3 If only one of them, say w.l.o.g. Gh+1, satisfies these conditions:
Contract Gh+2 into a single vertex ν,
Contract ν with the vertex µ = argmax

v∈V (Gh+1)
{w(ν, v)}

Add the obtained Gh+3 = Gh+1/ν ∼ µ to L and repeat the Iteration

Contiguity enforcement:

Split For each Gp ∈ T , consider the set Sp = V (Gp). If Sp is non-contiguous,
split it in its contiguous parts Sp1 . . . Spk

Join Join each Spi with the set Sq = argmax
S: co.∧ne.

{W (S : Spi)}, where

co. = contiguous and ne. = neighboring to Spi
Return (S1, . . . , Sm)

During the initialization step, we remove all zero edges from G in order to
further reduce the size of the problem. In case this operation disconnects G, we
simply work independently on each of its connected components. Quite often,
however, G remains connected. We use a depth-first search algorithm for finding
the connected components in linear time (see, e.g., [70]).

After the initialization step, we repeatedly apply the iteration step, that means
we split each (sub-)graph Gh contained in L by removing the edges corresponding
to the minimum weight cut. The procedure for finding such cut is described below.

If the subgraphs Gh+1 and Gh+2 obtained in this way are still feasible, they
may be even further splittable. Therefore, we insert them in L so that they will un-
dergo a new cutting operation. On the contrary, if Gh+1 and Gh+2 are not feasible,
this means that Gh is unsplittable, ans so Gh is inserted in T .

Finally, when exactly one ofGh+1 andGh+2 is feasible, the infeasible one rep-
resents a set of localities that cannot remain alone but are strongly interconnected.
Therefore, we contract them into a single vertex, and join it to the vertex of the
feasible subgraph that maximizes the interaction.

Since the graph obtained by this operation may be even further splittable, we
insert it in L. The procedure stops when L becomes empty, that means all the
generated subgraphs are unsplittable. When this happens, T contains those m
unsplittable subgraphs whose sets of vertices (S1, . . . , Sm) constitute the wanted
partition.

The sets of localities, called proto-LLMAs (R1, . . . , Rm) corresponding to
such sets must now be checked for geographical contiguity. Each non-contiguous
Rp is split in its contiguous parts Rp1 . . . Rpk. Then, each part Rpi is joined with
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a contiguos neighboring proto-LLMA Rq such that the total weights of the arcs
connecting Rpi and Rq is maximum.

The described procedure guarantees that the generated LLMAs satisfy condi-
tions (2.4), (iii ) and (iv ), (or other conditions that may be imposed in the valida-
tion step). The number m of generated LLMAs is not guaranteed to be maximum,
thought it is generally large enought.

Figure 2.10 shows an illustrative example in order to clarify the proto-LLMAs
detection. We assume c = 0.75, c1 = 0.75, c2 = 1000, c3 = 2. The evolution of
the algorithm can be described as follows: we initially convert the directed graph
into the transitions graph; then we cut edge BC; since C does not satisfy conditions
(2.4) we contract it to B; then we cut edge DE; since E does not satisfy (2.4) we
contract it to D; finally we cut edge A(BC) and we obtain two feasible subgraphs.
therefore, the final proto-LLMAs are ADE and BC.

Figure 2.10: Detection of proto-LLMAs

To compute minimum cut on undirected graphs with nonnegative real edge
weights there exist in the literature many methods. One group of algorithms is
based on the well-known result of Ford and Fulkerson [56] regarding the duality of
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maximum s-t-flows and minimum s-t-cuts for arbitrary vertices s and t. Following
this approach, Hao and Orlin [66] shown an algorithm to solve all the necessary
max-flow problems in time asymptotically equal to one max-flow computation,
requiring O(|V | × |E| log(|V |2/|E|)) steps.

Nagamochi and Ibaraki [101] described an algorithm without using maximum
flows. Instead, they construct spanning forests and iteratively contract edges with
high weights. This lead to an asymptotic runtime ofO(|V |×|E|+ |V |2 log |V |) on
undirected graphs with nonnegative real edge weights. Their approach was refined
in [125] by Stoer and Wagner, by replacing the construction of spanning forests
with the construction of Maximum Adjacency (MA) order, and by Brinkmeier
[19] by contracting more than one pair of vertices if possible by introducing an
alternative data structure called priority queues with threshold.

Particularly, the vertices of a graph G = (V,E), are arranged in a MA order,
if, for each vertex vi, with i > 1, the sum of the weights from vi to all preceding
vertices v1, . . . , vi−1 is maximal among all vertices vk with k ≥ i [101, 125, 102,
19].

A Maximum Adjacency (MA) Order is defined as follows.

Definition 2.1 (Maximum Adjacency order). Let G = (V,E) be an undirected
weighted graph. An order v1, v2, . . . , vn on the vertices of G is a Maximum Adja-
cency order, if

w(v1, v2, . . . , vi−1; vi) :=
i−1∑
j=1

w(vi, vj)≥
i−1∑
j=1

w(vk, vj)≥=:w(v1, v2, . . . , vi−1; vk)

for all k ≥ i.

The values w(v1, v2, . . . , vi−1; vi) are called adjacencies .

Lemma 2.2 (Lemma 3.1 of [125]). For each MA order (v1, v2, . . . , vn) of the
undirected weighted graph G = (V,E), the cut ({v1, v2, . . . , vn−1}, {vn}) is a
minimum vn − vn−1-cut.

Therefore, in an MA order the degree of vn is equal to the weight of a minimum
vn − vn−1-cut in G.

Incorporating these improvements, the algorithm obtains an asymptotic run-
time of O(|V |2λG) for undirected graphs with nonnegative integer weights, as it is
the case of our transitions graph, and this is the algorithm that we apply.

The procedure for finding the minimum weight cut is described below.
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Procedure MinCut

Input An undirected connected G(V,E) with edge weights w(i, j) ≥ 0

Output A cut (S, S̄) in G with minimum weight

Initialization:
Chose any vertex ∈ V and call it v1

Let n = |V |. Let S = {v1}

for i = 2 to n:
Let vi be the vertex corresponding to argmax

v∈V \S
W (S : {v})

Let S := S ∪ vi
endfor

if n = 2: return the cut ({v1}, {vn})
else: return the minimum cut between ({v1, . . . , vn−1}, {vn})
and MinCut(G/vn−1 ∼ vn)

The algorithm, as shown in Figure 2.11 starts with any vertex, say v1, and
builds an ordering of the vertices by always adding to the set S of the selected
vertices the vertex whose total weight to S is maximized. This provides an MA or-
dering. After this, the cut induced by the last vertex in the ordering is considered,
as well as the cuts obtained by recursively applying the procedure to the graph ob-
tained by contracting the last two vertices. The minimum among the cuts obtained
during these recursions is the global minimum weight cut of the graph.
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Figure 2.11: Global min-cut using Maximum Adjacency Order.
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2.5 K-way Graph Partitioning Problem

The K-way graph partitioning problem has extensive applications in many scien-
tific and engineering areas. It consists in partitioning the vertices of a graph intoK
subsets with specific properties based on size or cardinality constraints.

The K-way graph partitioning problem is defined as follows:

Given a graph G = (V,E) with nonnegative real edge weights, the problem
ask for a partition Pk of V with K subsets of vertices P = {V1, . . . , Vk} such that:

1)
K⋃
i=1

Vi = V ;

2) Vi ∩ Vj = φ for i 6= j;

3) a balance constraints (optional) demand that for all i ∈ {1, . . . , k} :

|Vi| ≤ Lmax =
|V |
K

(1 + α), for some imbalance parameter α ≥ 0;

4) the edge cut of the partition is minimized.

Generally, graph partitioning problems are NP-complete. Solutions to this
problem are often derived using heuristics and approximation algorithms. They
are a trade-off between run-time and solution quality. The two main classes of
graph partition methods are global and local .

Particularly, global approaches take in account the properties of the entire
graph. A well knows global method is Spectral partitioning, which derives the
partition from the Laplacian Spectrum of the graph [95, 96]. This method uses
the eigenvector of the second smallest eigenvalue of the Laplacian matrix to find
a small separator of a graph. Among all eigenvalues of the Laplacian Spectrum of
graph one of the most popular is the second smallest, called by Fiedler [52, 53] the
algebraic connectivity of a graph. Its importance is due to the fact that it is a good
parameter to measure how a graph is connected.

The spectral method of graph partitioning was proposed by Donath and Hoff-
man (1972) [41, 42], who has first suggested using the eigenvectors of adjacency
matrices of graph to find partitions.

Fiedler investigated the properties of the second smallest eigenvalue and the
corresponding eigenvector of the Laplacian of a graph with its connectivity and
suggested partitioning by splitting vertices according to their value in the corre-
sponding eigenvector.
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Spectral method for graph partitioning have been known to be robust but com-
putationally expensive. Therefore, many heuristic algorithms was proposed in liter-
ature for computing vertex separator from the second eigenvector of the Laplacian
[112].

Other approaches to computing vertex separators in sparse matrix have been
considered by several researchers. Local methods as the Kernighan-Lin alghoritm
[79] and the Fiduccia-Mattheyses algorithm [51] are among the most widely used.
They are iterative min-cut heuristic that find optimal partition maintaining a desired
balance based on size of the subsets.

Kernighan-Lin algorithm starts with an initial bipartition of the graph. In each
iteration, it searches for a subset of vertices from each part of the graph such that
swapping them leads to a partition with a smaller edge-cut. Each iteration takes
O(|E| log(||E|)) ). Fiduccia-Mattheyses algorithm is an improvement on the orig-
inal Kernighan-Lin algorithm. It reduces complexity to O(|E|) by using appropri-
ate data structures.

In the 1990s a number of researchers have proposed Multilevel Graph partition-
ing schemes [23, 67, 5, 78]. These algorithms, in order to improve the computa-
tional time, reduce the size of the graph by collapsing vertices and edges, partition
the smallest graph in the sequence and, finally, project the coarse partition back
through the sequence of graphs improving it with a local refinement algorithm.

This approach provides a good compromise between the run-time (complexity)
and the quality solution. In fact, Software packages based on this approach as
Chaco [68], Metis [74] and Scotch [110] have been extremely successful. Today,
too, for large problems the partitioning itself must be done in parallel. The most
important parallel software packages for Graph partitioning as ParMetis [75], mt-
Metis[83], PT-Scotch [111], and Zoltan [37] use variations of the Multilevel Graph
partitioning algorithm.

In the next Section, the main phases of the Multilevel Graph Partitioning schemes
and the main characteristics of software package METIS have been described. Af-
ter the choice of a method highly specialized to determine the Italian LLMAs,
another comparison has been made with the state-of-the-art procedure for general
purpose graph partitioning METIS [78], not yet applied in the functional regional-
ization context.

Therefore, METIS is selected for the second comparison with the min-cut
method and used in the following approach proposed based on a Multilevel graph
partition approach.
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2.5.1 Main characteristics of the Multilevel Graph Partitioning Schemes

The Multilevel partitioning scheme has a very simple basic structure having three
main steps [78] summarized below:

(1) Coarsening
Obiective: construct a sequence of increasingly coarse approximations of the orig-
inary graph.
A sequence of successively smaller graphs is constructed. The original graph G0

is used to generate a series of coarser graphs G1, G2, . . . , GN , such that |V0| >
|V1| >, . . . , |VN |. The size of the graph G0 is reduced by collapsing vertices and
edges. The purpose is to create a small graph GN , such as its bisection is not
significantly worse than the bisection directly obtained to G0.

(2) Initial partitioning
Obiective: partitioning of the smallest coarser graph.
An high-quality partition (i.e., small edge-cut) of the coarse graphGN is computed.
Many different algorithms can be used without significantly affecting the overall
runtime and the partition quality.

(3) Uncoarsening and refinement
Obiective: projection of the coarse partition back throughand and reduction of the
edge-cut.
In sequence of graphs derived, the initial partition is improved with a local refine-
ment algorithm. This is done by firstly projecting the partition of Gi+1 to Gi, fol-
lowed by partitioning refinement whose goal is to reduce the edge-cut by moving
vertices among the partitions.

Figure 2.12 shows the main phases of the Multilevel Graph Partitioning schemes.
Dashed lines referred to the partitioning projected from the coarse graph, while
solid shaded lines referred to refined partitioning.

The multilevel partitioning algorithms find reasonably good partitions in a rea-
sonable computational time. The overall effectiveness of the multilevel strategy
depends on the selected algorithms to identify the set of all vertices that will be
contracted during the coarsening phase and the partitioning refinement phase. This
selection also depends on the type of data to be processed and the objectives to be
achieved.

In our application, we have used METIS. It is a general purpose graph parti-
tioner, not specifically designed for identification of Functional Regions, but aim-
ing at finding high quality partitions for several problems. Particularly, METIS
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Figure 2.12: Main phases of the Multilevel Graph Partitioning schemes

is a software package for partitioning large graphs. The algorithms implemented
by METIS are based on the multilevel graph partitioning schemes described in
([73, 76, 77]) . This Software package is copyrighted by the regents of the Univer-
sity of Minnesota.

The hMETIS Multilevel Partitioning Scheme is composed by four phases, de-
scribed below:

(1) Coarsening. During this phase METIS uses algorithms that make it easier
to find a good-quality partition at the coarsest graph. During this phase, a sequence
of successively smaller graphs is constructed. The purpose of coarsening is to cre-
ate a small graph, such that a good bisection of the small graph is not significantly
worse than the bisection directly obtained for the original graph. The group of ver-
tices, that are contracted together to form single vertices in the next level coarse
graph, can be selected in different ways. METIS implements various grouping
schemes (also called matching schemes). A detailed description of some of these
schemes can be found in [73].

(2) Initial Partitioning phase. During this phase a bisection of the coarsened
graph is computed. Since this graph has a very small number of vertices (usually
less than 100 vertices) many different algorithms can be used without significantly
affecting the overall runtime and quality of the algorithm. METIS uses multiple
random bisections followed by the Fiduccia-Mattheyses ([51]) refinement algo-
rithm.
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(3) Uncoarsening and refinement phase. During this phase, the partitioning
of the coarsest graph is used to obtain a partitioning for the finer graph. This is done
by successively projecting the partitioning to the next level finer graph and using a
partitioning refinement algorithm to reduce the cut and thus improve the quality of
the partitioning. Since the next level finer graph has more degrees of freedom, such
refinement algorithms tend to improve the quality.METIS implements a variety of
algorithms that are based on the Fiduccia-Mattheyses algorithm. The details of
some of these schemes can be found in [73].

(4) V-Cycle Refinement (optional). Duringthis phase, METIS focuses primar-
ily on the portion of the graph that is close to the partition boundary. These highly
tuned algorithms allow METIS to quickly produce good-quality partitions for a
large variety of graphs. The idea behind this refinement algorithm is to use the
power of the multilevel paradigm to further improve the quality of a bisection. The
V-cycle refinement algorithm consists of two phases, namely a coarsening and an
uncoarsening phase. The coarsening phase preserves the initial partitioning that is
input to the algorithm. We will refer to this as restricted coarsening scheme. In this
scheme, vertices that belong only to one of the two partitions are merged to form
the vertices of the coarse graphs correspond to. As a result, the original bisection
is preserved throughout the coarsening process, and becomes the initial partition
from which we start performing refinement during the uncoarsening phase. The
uncoarsening phase of the V-cycle refinement algorithm is identical to the uncoars-
ening phase of the multilevel graph partitioning algorithm described earlier. It
moves vertices between partitions as long as such moves improve the quality of the
bisection. Note that the various coarse representations of the original graph, allow
refinement to further improve the quality as it helps it climb out of local minima.

Recently, similar techniques have been rediscovered to find network commu-
nities in real-world networks. Methods used for complex network community de-
tection provide an approach to the identification of LLMAs. An analysis of the
characteristics of the main heuristic used for network community detection is car-
ried out by Leskovec et al. [87]. They explore a range of such methods in order
to compare them and to understand their relative performance and the systematic
biases in the networks community they identify. They evaluate several common
objective functions that are used to formalize the notion of a network community,
and they examine several different classes of approximation algorithms that aim to
optimize such objective functions. In particular, they compare structural properties
of network community extracted by two methods based on two completely differ-
ent computational paradigms: a spectral based graph partitioning method called
Local Spectral [1] and METIS [78]. The latter is an effective graph partitioner
used for finding low-conductance cuts that may be followed by MQI [85], an exact
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flow-based technique for obtaining the lowest conductance cut whose small side is
contained in one of the two half-graphs produced by METIS.

Analyzing the network community profile (NCP) of a large number of com-
munities, they highlight that METIS is generally better than Local Spectral at the
nominal task of finding cuts with low conductance, although some of METIS clus-
ters may be internally disconnected.

In this thesis we evaluated also a regionalization approach to find Functional
Regions based on a Multilevel graph partition approach via Metis. It is important
to consider that the structure of the regionalization problem differs fundamentally
from graph portioning problem, because the size of the subsets (regions) are un-
known in advance and subset are subject of self-containment constraints.

2.6 Experimental Results

The procedure described in Section 4 was implemented in C++ and tested by gen-
erating the LLMAs for all the Italian administrative regions. The commuting flows
considered for this test were gathered via the 2001 Italian Population Census. This
Census collects data about inter-municipal commuting flows. Thus, municipalities
are the localities constituting our basic units of data. The target was to meet con-
ditions (2.4), (iii ) and (iv ), with c = 0.75, c1 = 0.75, c2 = 1000, c3 = 2. The
experiments were conducted on a PC Intel Pentium CPU 3.10 Ghz with 4Gb of
RAM under MS windows7 64 bit Operating System.

We first compare our algorithm with the reference algorithm based on [120]
and described in Section 2.3.2 For each Italian administrative region, Table 1 re-
ports the number of LLMAs generated by our algorithm based on minimum cuts;
their average value of Overall self-containment (mean sc); their minimum value
of Demand- and Supply-side self-containment (min scr, min scw); time required
for processing the whole administrative region; the number of LLMAs generated
by the reference algorithm; all the values already provided for the first algorithm.
Conditions (2.4), (iii ) and (iv ) are always satisfied by the two approaches. Times
are in minutes and are computed on the same machine. Although both methods
were successful in generating feasible LLMAs, our approach showed to be able to
generate a number of LLMAs that is (often considerably) larger than the reference
algorithm in all cases. In addition, the values of self-containment of the LLMAs
generated by our approach are closer (from above) to the self-containment thresh-
old than those provided by the reference algorithm. These are positive features for
a regionalization algorithm, as explained in Section 2. Hence, the proposed method
provides LLMAs with better statistical quality. Times needed by the proposed al-
gorithm are generally much shorter than those of the reference algorithm. While
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the total running time of our procedure, for all Italian administrative regions, is 8
hours and 22 minutes, the total running time of the reference procedure is 16 hours.

Our Algorithm Reference Algorithm

Region LLMAs mean sc min scr min scw time LLMAs mean sc min scr min scw time
Piemonte 36 0.69 0.67 0.71 90 35 0.70 0.71 0.75 239
V. d’Aosta 4 0.71 0.73 0.73 4 3 0.83 0.89 0.86 21
Lombardia 55 0.65 0.63 0.68 320 54 0.67 0.66 0.76 452
Trentino AA 33 0.66 0.61 0.72 4 28 0.74 0.64 0.76 16
Veneto 37 0.66 0.65 0.70 19 35 0.70 0.65 0.76 34
Friuli VG 10 0.68 0.65 0.75 3 6 0.75 0.65 0.78 7
Liguria 17 0.68 0.62 0.72 3 16 0.72 0.64 0.77 13
Emilia Rom. 45 0.68 0.63 0.74 4 41 0.68 0.64 0.76 10
Toscana 47 0.69 0.68 0.69 3 40 0.73 0.73 0.76 7
Umbria 15 0.74 0.66 0.78 1 14 0.73 0.68 0.77 5
Marche 34 0.66 0.67 0.73 2 29 0.69 0.67 0.76 7
Lazio 21 0.70 0.62 0.80 7 18 0.71 0.63 0.80 23
Abruzzo 22 0.68 0.64 0.64 4 20 0.70 0.66 0.76 15
Molise 13 0.69 0.66 0.72 1 9 0.76 0.72 0.80 5
Campania 54 0.66 0.66 0.68 16 49 0.67 0.62 0.75 32
Puglia 48 0.68 0.65 0.67 3 34 0.71 0.68 0.75 8
Basilicata 21 0.71 0.67 0.78 1 18 0.72 0.72 0.76 5
Calabria 60 0.67 0.64 0.69 7 47 0.72 0.66 0.79 25
Sicilia 66 0.69 0.63 0.70 5 48 0.74 0.70 0.76 17
Sardegna 44 0.69 0.65 0.69 5 38 0.72 0.69 0.76 18

Table 2.1: Comparison of our and reference algorithm on all Italian administrative
regions

Then, we compare our algorithm with the state-of-the-art graph partitioner METIS
[78]. METIS takes in input the number of clusters (the LLMAs in our case) that
should be produced. This number was assigned to the same number of LLMAs
produced by our algorithm in order to make a fair comparison of the regionaliza-
tion quality. For each Italian administrative region, Table 2 reports the number of
vertices (localities) and of edges (linkages) of the transitions graph, and an analysis
of the self-containment of the LLMAs produced by the two algorithms, by giving
their minimum and maximum values, their average and their variance. METIS pro-
duces LLMAs that often are not enough self-contained (they often do not satisfy
conditions (2.4) and (iii )), and the self-containement values of the LLMAs gen-
erated by METIS are much more variable than those of the LLMAs generated by
our algorithm. Indeed, some lack of internal cluster connection is quite intrinsic
in METIS approach. Therefore, the proposed algorithm appears a better option for
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performing a similar functional regionalization, although METIS is a faster graph
partitioner.

Our Algorithm METIS Algorithm

Region | V | | E | LLMAs min sc max sc mean sc var sc min sc max sc mean sc var sc
Piemonte 1206 35903 36 0.57 0.89 0.69 0.007 0.26 0.85 0.61 0.033
V. d’Aosta 74 1021 4 0.64 0.89 0.71 0.010 0.58 0.85 0.70 0.017
Lombardia 1546 91625 55 0.56 0.87 0.65 0.006 0.27 0.89 0.55 0.023
Trentino AA 339 5826 33 0.57 0.95 0.66 0.006 0.21 0.89 0.61 0.034
Friuli VG 219 7168 37 0.57 0.82 0.66 0.006 0.31 0.89 0.61 0.020
Veneto 581 24926 10 0.57 0.87 0.68 0.009 0.27 0.90 0.65 0.035
Liguria 235 3523 17 0.57 0.95 0.68 0.017 0.34 0.95 0.64 0.040
Emilia Rom. 341 9529 45 0.57 0.85 0.68 0.006 0.29 0.85 0.58 0.024
Toscana 287 7462 47 0.58 0.91 0.69 0.006 0.30 0.92 0.63 0.025
Umbria 92 1321 15 0.58 0.87 0.74 0.008 0.39 0.90 0.67 0.032
Marche 246 5586 34 0.56 0.84 0.66 0.005 0.30 0.95 0.60 0.023
Lazio 378 8729 21 0.56 0.92 0.70 0.007 0.27 0.89 0.59 0.036
Abruzzo 305 5615 22 0.56 0.87 0.68 0.010 0.32 0.86 0.60 0.033
Molise 136 1785 13 0.59 0.82 0.69 0.006 0.38 0.86 0.61 0.023
Campania 551 20590 54 0.56 0.80 0.66 0.004 0.33 0.84 0.58 0.017
Puglia 258 7372 48 0.56 0.83 0.68 0.005 0.36 0.89 0.60 0.020
Basilicata 131 1958 21 0.61 0.86 0.71 0.004 0.39 0.90 0.68 0.019
Calabria 409 8247 60 0.57 0.87 0.67 0.004 0.30 0.88 0.62 0.015
Sicilia 390 9189 66 0.57 0.93 0.69 0.007 0.33 0.89 0.65 0.019
Sardegna 377 7686 44 0.56 0.88 0.69 0.008 0.31 0.90 0.62 0.028

Table 2.2: Comparison of our algorithm and METIS on all Italian administrative
regions

2.7 Conclusions

We proposed an innovative multi-step approach to the problem of the generation
of LLMAs by using techniques of Combinatorial Optimization. This procedure is
based on the iterative partitioning of the transitions graph, which represents the in-
teraction among the localities of the territory under analysis. The proposed proce-
dure works at the formal level, hence it can be used for other problems of different
origin but sharing the same structure. Since the arising minimum cut problems can
be solved to optimality in extremely short times by using state-of-the-art min-cut
algorithms, the procedure is able to generate LLMAs in large real-world networks
such as the Italian administrative regions in times that are very reasonable and
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much shorter than the official reference method used for comparison. The statisti-
cal quality of the partitions generated by the proposed method is generally better
than that obtained by using the reference method, and clearly better than that ob-
tained by using a general purpose graph partitioner not specifically designed for
this task.
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Chapter 3

A Combinatorial Optimization
Approach to the Selection of
Statistical Units

3.1 Introduction

In a statistical survey, the target population (scope ) is the subset of statistical units
that should be surveyed. In many large surveys, the scope cannot be the list of all
possible units, because otherwise the cost or the complexity would be prohibitive.
In other words, the scope should be selected, also on the basis of economic assess-
ment. In particular, in the case of Agricultural Censuses, slightly differently from
a more traditional approach, the survey population excludes the farms that are too
small or economically irrelevant.

Over the time, the European (EU) legislation has introduced specific restric-
tions to the census scope, in order to reduce survey costs and promote data compa-
rability among countries.

In the past, for the Italian Agricultural Censuses of 1981,1991 and 2001, the
census scope was determined ex-post (before transmitting national data to Eurostat
and after exhaustive data collection of all units), by applying the parameters defined
at European level. Specifically, up to 2007, the census scope according to EU
criteria included all farms (also the exclusively forested or zoo-technique ones)
with at least one hectare of Utilized agricultural Area (UA), or the farms having at
least a fixed amount of products commercialized in the reference year of the survey.

In the last round of agricultural census (2010), for determining the target popu-
lation, the Community Regulation (EC, 2007) has identified a group of compulsory

59
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criteria, based exclusively on physical thresholds, replacing the previous criteria.
The European Regulation introduced the use of a single physical threshold grid, re-
lated to the main cultivations and animal breeding, so that surveyed farms represent
at least 98% of the UA and at least 98% of livestock units. If the suggested thresh-
olds were not sufficient to guarantee the minimum national coverage settled, each
Member Country could have adopted alternative minimum physical thresholds.

In Italy, the adoption of the EU thresholds would have resulted in different
degrees of coverage among the regional areas, mainly for particular specialized
productions (e.g. flowers, olive plantations). The analysis of the regional coverage
levels has highlighted the need to include in the scope some of the units that, due to
their size, would have been excluded by the recommended thresholds. Therefore,
lower minimum levels of UA were identified and applied to the Italian farms with
less than one hectare of UA, thus increasing the total national coverage too.

A main problem, in similar cases, is establishing criteria or somehow tracing
boundaries for dividing the units that should be included or not. Theoretically, the
problem can be described as follows: there is a very large set of statistical units
(e.g. farms, companies, etc.) belonging to the target population. Surveying each
of them has a cost and represents a different portion of the whole statistical infor-
mation (e.g. the state of agriculture, the industrial production, etc.). The coverage
constraints require to select only a subset of the whole statistical information, tak-
ing into account the minimum total cost too.

An important additional challenge is that the information for identifying eligi-
ble units is not perfectly known before surveying it. This often happens because the
units may have been surveyed only during a previous Census, typically held sev-
eral years before, and the information is integrated using administrative data not
properly updated, so their characteristics may have changed in the meanwhile. It
therefore needs to establish reliable inclusion criteria on the basis of the available
data describing the unit, sometimes outdated.

This problem is often called Scope Selection, or statistical Universe Selection,
see e.g. [44, 46], and evidently contains a Combinatorial Optimization structure,
with the optimal solution being one of the feasible subsets of the ground set of
all the units. Defining a scope has connections with the general statistical task
of Population Definition, see e.g. [63, 123]. The selection of statistical units is
also considered in [50]. Other optimization models arising from the treatment of
agricultural data are in [9, 10, 98].

The problem of selecting units from a list can also be viewed as a particular
case of the wider problem of quota sampling, for which several approaches and
techniques of purposive sampling have been proposed, see also [81, 97, 126]. After
the selection problem has been solved, the coverage levels should be checked, or
in other words the risk of undercoverage [7] must be evaluated.
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While similar problems are usually solved by means of a variety of ad hoc
techniques, whose features typically depend on the specific application, we propose
a more general approach, based on the use of a binary linear model and solved by
means of Combinatorial Optimization techniques.

This innovative approach to the problem overcomes the key features of other
methods, and moreover allows taking advantage of effective algorithms already
developed in this latter field. More precisely, by using binary variables associated
with the above mentioned units, the described selection problem is here modelled
as a multidimensional binary knapsack problem (see e.g. [104]).

Since those models may reach in many cases very large dimensions, a separated
procedure [2, 65, 140] is also needed, to assess the coverage level at the end of each
iteration. A solution to the above knapsack model will be referred to as an Optimal
Selection.

However, due to the above described uncertainty aspects, not just one but a se-
quence of Optimal Selection problems must be solved. More specifically, in order
to develop inclusion criteria based on thresholds, we need to evaluate the safety
margins, related to the risk of undercoverage for different inclusion thresholds.

The procedure has been implemented in c++ and tested, in cooperation with
the Italian National Institute of Statistics (Istat), on real data from the 5th Agricul-
tural census. The results are very encouraging, both from the computational and
the statistical point of view. The main contribution of this work is, therefore, an in-
novative and effective approach based on Combinatorial Optimization for solving
a challenging large-sized and economically important real-world problem.

The work is organized as follows.
Section 2 describes the basic model proposed for the selection of an optimal

subset of statistical units and the techniques to improve the formulation and there-
fore solving the overall model by means of a Branch&Cut approach. Section 3
explains how the solution of the Optimal Selection problem, under different con-
ditions, leads to the determination of the inclusion criteria based on thresholds. In
Section 4, we provide extensive results on real-world data from the Italian Agricul-
tural Census. Finally, in Section 5 the conclusions and in Section 6 a future case
study.

This work has been published in [12].

3.2 Solving the Optimal Selection Problem

The model proposed for the above problem will be hereinafter explained by
referring to the specific case of the Agricultural Census. This is probably the most
important case, because it has a great economic relevance and a very large di-
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mension. Moreover, in the case of EU countries, gathered information must be
published and provided to the EU level, where they constitute a basis for assign-
ing financial resources, for planning production, and for several other economical
European policies. However, the proposed model is not intrinsically limited to that
case, but can be used for similar cases of Scope Selection problems.

In the Agricultural Census, there is a very large list U = {u1, . . . , un} of
all the existing statistical units that could be surveyed. Each unit ui represents a
farm, which is described by the areas used for every cultivation (plus other data not
relevant for this work). Units have therefore the following structure:

ui = {ai1, . . . , aim, aiT} for i = 1, . . . , n

where aij is the area that farm i uses for cultivation j, with i = 1, . . . , n and
j = 1, . . . ,m, and aiT is the total area of farm i used for cultivations, technically
called Utilized agricultural Area (UA).

Unfortunately, at least for the majority of the cases, the data in the list U are
those that were surveyed during the last census, often held several years before,
or were obtained by other possible sources that may still be outdated. Hence,
the available data may very well be different from the current farm situation. In
particular, the single cultivation areas aij may easily have changed, while total
cultivation area aiT of the farm is more stable.

For every cultivation j that we are interested in, including some types of live-
stock, a certain coverage level qj ≥ 0 and ≤ 1 is required, with j = 1, . . . ,m.
Value qj represents the minimum portion of the total area of cultivation j that must
be surveyed: if this total area is

∑n
i=1 aij , we need to survey at least an area

qj
∑n

i=1 aij of cultivation j (e.g. survey at least 0.8 of the total cultivation of or-
anges, at least 0.5 of the total cultivation of apples, etc.). A required coverage level
qT for the total cultivation areas is also given.

For the case of EU countries, coverage levels are generally assigned by Euro-
pean regulations, e.g. [44]. The set of coverage levels is denoted by

{q1, . . . , qm, qT}

Surveying unit ui has a cost wi (evaluated either in terms of expense, or com-
plexity, or other) and produce, for each cultivation j, an amount of statistical infor-
mation that, in absence of further elements, is estimated being equal to the available
value of the cultivation area aij . By defining the cost of a set of units to be the sum
of their individual costs wi, we want to choose a subset S ⊆ U of units producing
the minimum total cost for being surveyed and respecting the above defined m+ 1
coverage levels.
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In order to represent whether to include or not a unit, we introduce a set of
binary decision variables {xi}, with i = 1, . . . , n, such that

xi =

{
1 if unit ui is excluded from the scope;
0 if unit ui is included in the scope.

Now, cost minimization can be expressed by maximizing the total cost of the
units that we do not survey (i.e. the saving).

Respecting the coverage levels, on the other hand, can be expressed by im-
posing that the area that is excluded cannot be more than the maximum area we
are allowed to exclude. This latter condition should be imposed both for each cul-
tivation and for the total area. The described Optimal Selection problem can be
modeled as the following multidimentional binary knapsack problem.



max

n∑
i=1

wixi

s.t.
n∑
i=1

ai1 xi ≤ (1− q1)
n∑
i=1

ai1

. . .
n∑
i=1

aim xi ≤ (1− qm)
n∑
i=1

aim

n∑
i=1

aiTxi ≤ (1− qT)
n∑
i=1

aiT

xi ∈ {0, 1}

(3.1)

Multidimentional binary knapsack is a well-known combinatorial optimization
problem [104]; in its optimization version it is NP-hard. Note that a complemen-
tary choice for the meaning of the xi variables (1 if unit ui is included in the scope,
0 otherwise), that may appear more straightforward, would have led to a multidi-
mensional packing problem [104], that has the same complexity level. However,
the proposed modeling choice will have less variables at 1, with consequent com-
putational advantages.

Model (3.1) has a number of variables equal to the number n of units in list U
and a number of constraints equal to the number of coverage levelsm+1, so it may
reach in practical cases a very large dimension. Therefore, solving such an integer
linear program by means of a simple Branch&Bound approach can be excessively
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time consuming (see e.g. [59]), and we prefer using a Branch&Cut approach to the
solution of model (3.1).

In order to explain this approach, we denote by 0n and 1n the vectors of zeros
and ones having n elements, and we define the matrix A of cultivation areas and
the vector e of admissible exclusions, as follows.

A =


a11 . . . an1

. . .
a1m . . . anm
a1T . . . anT

 e =


(1− q1)

∑n
i=1 ai1

. . .
(1− qm)

∑n
i=1 aim

(1− qT)
∑n

i=1 aiT


We can now represent the polytope P defined by the linear relaxation of model
(3.1), as follows.

P = {x ∈ IRn : Ax ≤ e, 0n ≤ x ≤ 1n}

Effective and practically fast algorithms are available for finding solutions of a
linear formulation (e.g. [33], see also [34, 35, 99]). Even though P is a linear
formulation of the Optimal Selection problem, it will in general be quite different
from the optimal formulation of the problem K = conv{x(f)}, that is the convex
hull of all the feasible binary solutions {x(f)} to the Optimal Selection problem.
So, although solving the linear problem on K would solve (3.1) to optimality, (see
e.g. [104]), solving the same on P will not suffice.

Even though there is no explicit analytic expression of K, and in any case it
would contain a number of constraints that is exponential in n, several procedures
for improving a formulation like P have been proposed in literature, see e.g. [90].
A main one is by using the so called covering inequalities. Given a single knapsack
constraint

∑n
i=1 aij xi ≤ ej , a set C ⊆ {1, . . . , n} is a cover if∑

i∈C
aij > ej (3.2)

In addition, the cover C is said to be minimal if C loses property (3.2) as soon
as any of its element is removed. Given a cover C, we can write a simple valid
inequality expressing that not all variables xi , for i ∈ C, can be simultaneously
one.

Proposition 2.1. Let C ⊆ {1, . . . , n} be a cover. The cover inequality∑
i∈C

xi ≤ |C| − 1 (3.3)
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is valid for K. Moreover, if C is minimal, then the inequality defines a facet of
conv(KC), where KC = K ∩ {x : xi = 0 for i 6∈ C} ([2, 65, 140]).

Therefore, inequality (3.3) can be added to model (3.1) for improving the formula-
tion given by its linear relaxation. The meaning is that we simply cannot exclude
from the survey a whole set C of units having an area that is too big.

Example 2.2. Consider the following set of points given by a binary knapsack:

B = {x ∈ {0, 1}6 : 5x1 + 5x2 + 5x3 + 5x4 + 3x5 + 8x6 ≤ 17}

C = {1, 2, 3, 4} is a minimal cover for K and the corresponding cover inequality
x1+x2+x3+x4 ≤ 3 is valid for the optimal formulation of any linear optimization
problem over B.

So far, one may in principle generate all inequalities in the form (3.3) and add
them to model (3.1). However, this is often impracticable, since the number of
those inequalities can be too large. In practical cases, a constraint generation ap-
proach within a Branch&Cut scheme constitutes an effective technique for practi-
cally solving the problem (see e.g. [104]). This means that model (3.1) is solved
by iteratively solving a number of easier linear problems, where the k-th of them
is denoted by LP (k) and constituted as follows

max c′x

D(k)x ≤ d(k)

0n ≤ x ≤ 1n
x ∈ IRn

(3.4)

To obtain LP (k) we only need the constraint matrix D(k) and the right-hand side
vector d(k), while c is the vector composed by the costs ci for i = 1, . . . n. The gen-
eral scheme follows, composed by: Initialization (Init), Solution (Solve), Bound-
ing (Bound), Updating (Upd), Separation (Sep), and Branching (Bran).
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Branch&Cut scheme for problem (3.1)

Input An instance of multidimensional knapsack problem (3.1), defined by an (m+
1)× n matrix A, an n-vector c and an (m+1)-vector e

Output The global optimal binary solution x? to (3.1)

Init LP (0) is the linear relaxation of (3.1): D(0) := A and d(0) := e. Insert
LP (0) in the list of open problems L that was empty. Current lower bound
LB := −∞ and current binary solution xo is undefined.

Solve If L is not empty, extract problem LP (k) from L and solve it to optimality,
finding the variable values x̄(k) and the corresponding objective value z̄(k).
If L is empty, STOP, current binary solution xo is the global optimal solution
x? to (3.1).

Bound If z̄(k) ≤ LB, problem LP (k) cannot improve the current binary solution,
cancel LP (k), update k := k + 1 and go to step Solve.

Upd If all components of x̄(k) are binary, update current binary solution xo :=
x̄(k) and LB := z̄(k), update k := k + 1 and go to step Solve

Sep Solve the separation problem: find a valid inequality d′x ≤ d0 for cut-
ting away x̄(k), or conclude that such inequality does not exist. If the valid
inequality d′x ≤ d0 is obtained, add it to the formulation LP (k+1) :=
LP (k)∩ {x : d′x ≤ d0}, insert LP (k+1) in L, update k := k + 1 and go
to step Solve.

Bran Otherwise, do a standard branching on one of the non-binary components
x̄

(k)
i : generate LP (k+1) := LP (k)∩ {x : xi ≤ bx̄(k)

i c} and LP (k+2) :=

LP (k)∩{x : xi ≥ dx̄(k)
i e}, insert LP (k+1)and LP (k+2) in L, update k:=k+2

and go to step Solve.

The separation problem, essential element of the above scheme, is defined as fol-
lows:

Definition 2.3. Let x̄ ∈ Rn be a given point and K be a given polytope. The
separation problem is to either prove that x̄ ∈ K or find an inequality, called cut or
cutting plane, that is valid for K but cuts x̄ away from K.

Finding such a valid inequality means in practice determining a vector d and a
number d0 such that d′x ≤ d0 for all x ∈ K but not for x = x̄. We look for a
cut in the form of a cover inequality of one of the knapsack constraints in (3.1).
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Denote by c the incidence vector of the generic subset C of {1, . . . , n}, i.e. the
binary n-vector whose i-th element is 1 if i ∈ C, 0 otherwise. By recalling that
aij ∈ R and ≥ 0, set C is a cover for the j-th knapsack constraint of problem (3.1)
if and only if its incidence vector c satisfies the following condition

n∑
i=1

aijci > (1− qj)
n∑
i=1

aij

that, by introducing ε > 0 equal to the minimum possible difference in the aij
values, can be rewritten as

n∑
i=1

aijci ≥ [(1− qj)
n∑
i=1

aij ] + ε (3.5)

Among all possible covers, we want a coverC such that the components of x̄ corre-
sponding to elements of C sum to a value > |C|− 1, that means x̄ can be cut away
by the cutting plane generated by C. Cover C represents in practice a set of units
that cannot be simultaneously excluded from the survey, but are actually excluded
in solution x̄. The condition of cutting away x̄ can be expressed as follows:

∑
i∈C

x̄i > |C| − 1⇒
n∑
i=1

x̄ici >
n∑
i=1

ci − 1⇒

⇒
n∑
i=1

(x̄i − 1)ci > −1⇒
n∑
i=1

(1− x̄i)ci < 1

(3.6)

Putting together condition (3.5) and (3.6) we have the following optimization prob-
lem encoding our separation procedure for the j-th knapsack constraint of problem
(3.1). 

min
n∑
i=1

(1− x̄i)ci

s.t.
n∑
i=1

aijci ≥ [(1− qj)
n∑
i=1

aij ] + ε

ci ∈ {0, 1}

(3.7)

When model (3.7) is solved to optimality, we obtain vector c? and the correspond-
ing objective value v? =

∑n
i=1(1 − x̄i)c?i . If v? is < 1, there exists a covering

inequality that is valid for K but cuts away x̄ from K, and c? is the incidence vec-
tor of the cover C generating that cover inequality. On the contrary, if v? is ≥ 1,
we cannot obtain from the j-th knapsack constraint a covering inequalities cutting
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away x̄. In this latter case, we must try obtaining it from another one of the knap-
sack constraints of (3.1). If such a covering inequality cannot be obtained after all
knapsack constraints have been tested, it does not exist.

Therefore, solving several problems in the form (3.7) may be needed. Although
(3.7) is a binary problem with n variables, it can be solved quite easily by observing
the following. Its optimal solution c? actually represent the constraint that is more
violated by x̄, since we minimize the objective. However, there may be also other
constraints that are valid for K and violated by x̄. Indeed, any feasible solution
ĉ of of (3.7) such that the corresponding objective value v̂ is < 1, even if sub-
optimal, is the incidence vector of a cover Ĉ whose cover inequality cuts away x̄
from K. Therefore, we may accept those kind of solutions, and search them with
the following procedure. Recall that every variable ci has a cost given by (1− x̄i)
and a value aij . We denote by RHS the right-hand side of the only constraint in
(3.7).

Greedy Algorithm for the solution of problem (3.7)

Input An instance of separation problem (3.7), defined by the cost n-vector (1−x̄),
the values n-vector aj and a value RHS.

Output A binary feasible (and possibly optimal) solution ĉ to (3.7)

1 Order by increasing cost/value ratio the indices of the binary variables.

2 Following the above greedy order, put ĉi = 1 until the left-had side of the
constraint becomes ≥ RHS (i.e. we have a feasible solution), and ĉh = 0
for all the rest of the indices. If the value of this solution is v̂ < 1, there
exists a covering inequality that is valid for K but cuts away x̄ from K, and
ĉ is the incidence vector of the cover generating that.

The above heuristic solution could be evaluated by using the lower bound given by
the solution r? of the linear relaxation of problem (3.7): we put ri = 1 until the
left-had side of the constraint remains ≤ RHS (i.e. we have a maximal infeasible
solution), then r(i+1) = (RHS − LHS)/a(i+1)j , and finally rh = 0 for all the
rest of the indices. If the objective value corresponding to r? is v?r ≥ 1, the value
v? of the integer solution of (3.7) is ≥ v?r , so we know that the j-th knapsack
constraint cannot provide a covering inequalities cutting away x̄. On the contrary,
when v?r < 1 but v̂ ≥ 1, a covering inequalities cutting away x̄ may exist, but was
not found by the procedure. Nonetheless, we try obtaining it from another one of
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the knapsack constraints of (3.1), and if none of them can provide it, we simply
branch following the above Branch&Cut scheme.

Finally, when a cover C is obtained, we can improve the covering inequality
by computing its extension E(C). This is done by adding to C all k ∈ {1, . . . , n}
such that akj ≥ aij for all i ∈ C. So, given the incidence vector c̄ of the cover C
and the incidence vector ē of its extension E(C), the cut to be added becomes

n∑
i=1

ēixi ≤
n∑
i=1

c̄i − 1

Now, the described Branch&Cut scheme is complete and can be successfully ap-
plied for reaching an optimal solution to problem (3.1).

3.3 Determining Reliable Inclusion Criteria

Since data are uncertain, an optimal solution x? of model (1) cannot guarantee
providing a set of units really respecting the required coverage levels. Indeed,
as a trivial example, if the real cultivation areas of some of the selected farms
have become smaller than what described by the available data aij , the risk of
undercoverage (i.e. failing the required coverage levels qj) is present. Hence,we
need to distinguish between:

• solving the Optimal Selection problem, that is solving to optimality model
(1);

• solving the Scope Selection problem, that is finding the set of units that we
use as scope in practice.

For solving the Scope Selection problem, we need to determine a priori inclu-
sion criteria for selecting the set of units respecting the coverage levels. A priori
means here criteria that, for each unit ui, could be checked before surveying ui. A
basic and mostly adopted criterion is using thresholds. Given a threshold value tj ,
for each unit ui one could determine whether to survey it or not: we survey ui if
aij ≥ tj , we do not survey it otherwise. Since in the analyzed case the total utilized
area (UA) is the more reliable among the available informations, it was preferred
to establish a threshold t only on that value.

The coverage levels, initially required by EU [44] and assigned for the whole
Nation, were modified and slightly increased so as to determine more specific cov-
erage levels assigned for each Region. Those new levels were determined by ex-
perts of the field according to specific features of the different regions whose de-
scription goes beyond the aim of this work. The final established regional coverage
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levels, for Citrus plantations, Fruit trees cultivation, Olive cultivations, Arable land,
Vineyard cultivation and UA, are reported in Table 1.

Table 3.1: Regional coverage levels

Region Citrus Fruit Olive Arable land Vineyard UA
Piemonte - 98.5 90.7 99.5 98.7 99.2
Valle d’Aosta - 81.1 - 84.0 83.9 98.6
Lombardia 96.3 93.2 88.3 99.7 - 99.4
Trentino Alto Adige - 99.3 66.1 95.8 97.8 98.8
Veneto - 97.4 95.4 99.3 98.7 98.3
Friuli-Venezia Giulia - 98.0 88.8 98.5 99.1 98.4
Liguria 68.4 84.8 89.5 92.6 82.0 92.7
Emilia-Romagna - 98.7 91.6 99.6 99.5 99.4
Toscana 68.4 95.0 97.5 99.1 98.4 98.3
Umbria - 94.8 96.9 98.8 97.1 98.5
Marche 80.3 94.2 94.3 99.1 98.6 98.8
Lazio 68.3 97.4 92.8 98.5 94.6 97.0
Abruzzo 85.1 94.6 96.0 98.2 99.1 98.5
Molise - 96.3 96.2 99.1 97.2 98.7
Campania 82.4 97.2 95.3 96.8 94.5 96.7
Puglia 98.6 97.4 97.6 98.7 99.4 98.4
Basilicata 96.5 96.3 95.6 98.9 95.7 98.6
Calabria 98.0 97.6 97.1 96.3 95.0 97.3
Sicilia 97.4 97.0 94.6 97.8 99.2 97.6
Sardegna 93.6 93.9 95.8 99.4 97.4 99.3

In order to satisfy the above regional coverage levels, one may in general consider
different options. A first one could be solving the regionals Optimal Selection prob-
lems, in order to determine, for each region, a selected set of units U?. After this,
use U? to determine the value aiT of UA corresponding to the smallest included
farm of the region, then compute how reliable that value is, possibly modify it for
having a safety margin, and use it as inclusion threshold (at the regional level).

Another alternative would be fixing, according to some predetermined deci-
sion, a number of threshold values on the total utilized area (UA), and solve the
regional Optimal Selection problems for each of them. Given a threshold t, denote
by Ut the set {ui ∈ U : aiT ≥ t} and by U?t the result of the Optimal Selection
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on Ut (the set of units ui ∈ Ut having xi = 0). Define Rt = Ut − U?t the set of
units that satisfy threshold t but are not in the solution of the Optimal Selection
(i.e. the set of units ui ∈ Ut having xi = 1). Sets Ut and Rt can now be used for
computing statistical indicators that evaluate the safety margin with respect to the
risk of undercoverage obtained by using t as inclusion threshold.

After this, the threshold value t? that, among the predetermined ones, corre-
sponds to the best compromise between risk estimation and list reduction for the
region, is selected and adopted as inclusion criterion (again at the regional level).
The solution to the Scope Selection problem would therefore be Ut? This last op-
tion was preferred in the analyzed case, because it could provide more robustness
in the procedure, in the sense of making it more stable and less prone to the changes
that may have occurred in the data.

We now describe the statistical indicators that were built by experts of the field
for evaluating the safety margin from the risk of undercoverage corresponding to
each threshold t.

A basic index number is the percentage of farms taken in addition to U?t when
using threshold t, denoted by β(t) and computed as follows.

β(t) = 100
|Rt|
|Ut|

The larger the value of β(t), the more threshold t is able to provide a set Ut that is
bigger than the minimum set respecting the coverage levels, and consequently the
more secure is the selection by using threshold t.

Another index number, for each cultivation j, is the percentage of cultivation
area taken as safety margin when using threshold t, denoted by γj(t) and computed
as follows.

γj(t) = 100

∑
ui∈Rt

aij∑
ui∈Ut

aij

Again, the larger the value of γj(t), the more threshold t is able to provide an area∑
ui∈Ut

aij that is bigger than the minimum area respecting the coverage levels,
and consequently the more secure is the selection by using threshold t. Clearly, the
higher the values of t, the smaller the above safety margins become, but the larger
the savings in the survey are. Therefore, we need to chose the higher t still having
acceptable values for the above indicators, so as to obtain the maximum savings
with negligible risk.

Given a set of farms Ut, define Sj(Ut) = {ui ∈ Ut : aij > 0} to be the subset
of farms in Ut having cultivation j. Denote now by µ{Sj(Ut)} the average area
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of cultivation j over set Sj(Ut). A third indicator, for each cultivation j, is the
average number of units in Rt that are needed to obtain a portion of information
that is equivalent to the portion of information given by an average unit of U?t , or,
in other words, the average number of units in Rt needed to replace a unit in U?t
(for example in case the latter one does not exist anymore). That will be denoted
by ωj(t) and computed as follows.

ωj(t) =
µ{Sj(U?t )}

µ{Sj(Ut)− Sj(U?t )}

The ω(t) is clearly ≥ 1, and the smaller the values, the more robust is the choice
of threshold t.

3.4 Experimental Results

The described procedure was implemented in C++ and has been tested for the
treatment of data from the Italian Agricultural Census of 2010. The experiments
were conducted on a 16 cores server having 128Gb of RAM under Linux Operating
System. The linear relaxations (3.4) are solved by means of the open source solver
Clp (Coin-or linear programming, available from https://projects.coin-or.org/Clp),
which is a good implementation of primal and dual simplex and barrier meth-
ods, written in C++ by a research group headed by Dr. John J. Forrest, from
the IBM Watson Research Center, within a joint project among IBM, Maximal
and Schneider called COIN-OR (COmputational INfrastructure for Operations Re-
search, http://www.coin-or.org/index.html). This solver was selected because it
appeared the most suitable open source LP solver in a previous study [11].

The predetermined threshold levels on the total utilized area (UA) were 0.0
(meaning all is included); 0.1; 0.2; 0.3; 0.4 hectares.

Table 3.2 reports, as an example of the results, the detail of this analysis for
one Italian region (Marche). Evidently, when increasing the inclusion threshold
t, the cardinality of Ut decreases consistently (less farms satisfy that threshold).
On the other hand, the cardinality of U?t increases (the choices become limited
to farms satisfying that threshold), but this happens very slowly. Consequently,
the differences between Ut and U?t tend to become smaller, and the described β, γ
tend to decrease. Therefore, when increasing t, there is a trade-off between the cost
and complexity reduction caused by the decreasing of |Ut| and the rise in the risk
of undercoverage evaluated by the β, γ. Acceptable values for the β, γ indicators
were considered those respectively above 10%, 0.5%. On the contrary, values for
the ω indicator should be as small as possible. Hence, for the case of Marche
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region, the best compromise is t = 0.4, corresponding to a very acceptable risk
level but producing considerable savings: 66,536 - 60,309 = 6,254 farms.

Table 3.2: Results of the procedure applied to the Marche Region

Thershold |Ut| |U?t | β γvineyard ωvineyard γolive ωolive γT
0.0 66,563 50,051 24.81 3.50 6.10 7.51 3.45 1.35
0.1 65,438 50,051 23.51 3.50 6.10 7.51 3.45 1.35
0.2 64,374 50,051 22.25 3.47 5.95 7.38 3.31 1.34
0.3 62,474 50,051 19.86 3.32 5.61 6.68 3.11 1.29
0.4 60,309 50,057 17.01 3.00 5.27 5.41 3.07 1.20

Figure 3.1 shows the geographical distribution of the threshold values t? se-
lected as best compromise between risk estimation and list reduction. Table 3.3
reports, for each Italian region: the number of all existing statistical units |U |; the
number of units selected when solving model model (3.1) to optimality |U?|; the
value of threshold t? selected; the number |Ut| of existing statistical units above
threshold t; the number |U?t | of units selected from |Ut| when solving model (3.1)
to optimality; computational time in seconds for the overall treatment of the re-
gion, including solving 5 Optimal Selection problems and evaluating the described
indicators (Time All); computational time in seconds for solving to optimality the
single Optimal Selection problem (3.1) corresponding to t?.

Table 3.4 reports, for each Italian Region, the values of some of the described
statistical indicators corresponding to the selected threshold t?. In particular, we
report β, γvineyard, ωvineyard, γolive, ωolive, γT. Vineyard and olive were selected
because they are particularly important, being the two most typical Italian cultiva-
tions and subject to several EU regulations.

Table 3.5, finally, summarizes the Italian situation. It reports, for the case of
threshold = 0 (all U ) and for the threshold t? reported for each region in Table 3.3,
the total number of farms, their total utilized area UA, the number of farm obtained
for the optimal solution, and their total UA.

When using t? as inclusion criterion, we have a reduction in the number of
farms of 206,679, corresponding to a saving of 7.97%, and a reduction in the area
of about 50,948 hectares, corresponding to a loss of only 0.39% of the total infor-
mation and a negligible risk of failing the required coverage levels.

Note, finally, that, if the cultivation data were updated and reliable, the set U?0
could have been surveyed directly, with a reduction in this case of 950,506 farms,



74 CHAPTER 3. COMBINATORIAL APPROACH TO UNITS SELECTION

Figure 3.1: Geographic distribution of the thresholds t?.
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Table 3.3: Results of the procedure applied to all Italian Regions

Region |U | |U?| t? |Ut| |U?t | Time All Time t?

Piemonte 120,965 78,651 0.3 103,347 78,651 605.2 116.0
Valle d’Aosta 6,595 4,050 0.4 5,441 4,051 33.5 7.6
Lombardia 74,867 56,949 0.3 69,890 56,949 374.5 73.8
Trentino Alto Adige 61,253 33,804 0.2 51,816 33,804 306.8 61.2
Veneto 191,085 118,204 0.3 176,251 118,204 955.2 186.0
Friuli-Venezia Giulia 34,963 25,455 0.3 32,953 25,455 175.6 34.1
Liguria 44,266 21,654 0.3 34,167 21,654 221.0 43.2
Emilia-Romagna 107,888 89,468 0.3 103,744 89.468 539.5 104.8
Toscana 139,872 77,823 0.3 119,788 77,823 699.0 136.8
Umbria 57,153 36,538 0.3 51,772 36,538 286.3 57.2
Marche 66,563 50,051 0.4 60,309 50,057 333.0 65.6
Lazio 214,666 123,026 0.3 189,906 123,026 1,073.3 210.6
Abruzzo 82,833 58,478 0.3 78,036 58,478 414.2 81.8
Molise 33,973 25,285 0.3 31,955 25,285 170.8 36.2
Campania 248,932 143,319 0.3 216,635 143,318 1,245.0 246.0
Puglia 352,510 229,118 0.2 348,380 229,118 1,763.0 346.6
Basilicata 81,922 58,460 0.3 76,307 58,460 410.5 82.1
Calabria 196,484 113,719 0.3 173,866 113,719 982.2 193.4
Sicilia 365,346 223,912 0.2 355,038 223,912 1,827.6 358.4
Sardegna 112,689 76,355 0.2 108,545 76,355 563.5 108.6

corresponding to a saving of 36.63%, and a reduction in the area of about 204,848
hectares, corresponding to a loss of only 1.55% of the total information with the
guarantee of respecting the coverage levels.

3.5 Conclusions

We proposed an innovative approach to the Scope Selection problem based on
Combinatorial Optimization. The proposed multidimensional knapsack model can
be solved to optimality in short times by means of a Branch&Cut algorithm based
on the generation of cover inequalities.

The procedure has been implemented and tested on the real-world case of an
Agricultural Census. By solving the Optimal Selection problem in different condi-
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Table 3.4: Values of the indicators corresponding to the selected thresholds

Region β γvine. ωvine. γolive ωolive γT

Piemonte 23.90 4.42 7.35 10.02 3.32 1.15
Valle d’Aosta 25.55 11.01 2.62 - - 1.15
Lombardia 18.52 4.19 8.23 10.53 4.22 0.67
Trentino Alto Adige 34.76 6.59 7.37 33.88 2.43 1.71
Veneto 32.93 5.12 7.07 8.08 3.72 3.64
Friuli-Venezia Giulia 22.75 2.90 8.13 12.50 5.24 1.77
Liguria 36.62 16.25 2.94 12.24 4.09 7.18
Emilia-Romagna 13.76 3.03 5.25 9.86 2.83 0.74
Toscana 35.03 4.36 9.37 5.97 6.92 2.31
Umbria 29.43 5.26 6.02 6.29 5.44 1.98
Marche 17.02 3.00 5.27 5.41 3.07 1.20
Lazio 35.22 8.18 4.49 9.88 4.29 3.98
Abruzzo 25.06 4.19 5.35 7.20 3.82 2.16
Molise 20.87 4.42 4.27 6.47 3.30 1.52
Campania 33.84 8.47 3.45 8.34 3.94 5.22
Puglia 34.23 5.29 5.59 7.00 6.42 3.56
Basilicata 23.39 5.54 3.53 7.24 3.55 1.58
Calabria 34.59 7.79 3.98 6.83 6.38 4.53
Sicilia 36.93 5.11 7.33 9.48 5.16 3.81
Sardegna 29.66 6.48 4.64 7.96 5.08 1.09

Table 3.5: Aggregate results at the National level

Threshold |Ut| Total UA for Ut |U?t | Total UA for U?t
0.0 2,594,825 13,206,296.76 1,644,319 13,001,448.97
t? 2,388,146 13,155,349.09 1,644,326 13,003,198.84

tions, statistical indicators for the determination of reliable inclusion criteria based
on thresholds are computed.

The proposed approach allows to considerably reduce costs and complexity of
the survey while ignoring only a very small portion of the whole information that
can be surveyed.

The risk of failing the required coverage levels, i.e., the risk that such ignored
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portion was larger than the maximum admissible portion we are authorized to ig-
nore, is negligible.

3.6 A future case study

The optimal selection approach proposed can be adopted to solve other issues of
different origin, but presenting the same logical characteristics. For instance, the
selection of a subset of municipalities for the sample surveys to check the quality
and the coverage of the Italian Statistical Farm Register. This frame, currently
under development in Istat, is a key tool in agricultural statistics, particularly for
drawing representative samples of farms in the intercensal period.

The Farm Register is the result of the integration of multiple sources, as the
2010 Agricultural Census, AGEA (Italian Agency for Disbursements in Agricul-
ture), Agricultural Incomes, ASIA (Italian Statistical Records of Active Compa-
nies), Regional Archives, CCIA (Chambers of Commerce), VAT, Italian Land Reg-
istry. These sources contain information on administrative units that could be iden-
tified as agricultural holdings. The need to assess the accuracy and reliability of
some information related to the main crops and livestock could lead to survey a
sample of units from the register.

The design of a sample survey, involving a large number of decision mak-
ers, and the need to ensure high quality operational standards, could cause to deal
with strict organizational constraints. These restrictions may lead to the choice
of alternative methods for the selection of the units to be collected, thus limiting
the representativeness of the selected sample only to particular territorial levels.
Sometimes, under additional financial budget limits, it is necessary to use complex
sampling designs to increase the efficiency and to overcome the constraints im-
posed on the sample size. In this case, a survey of high organizational flexibility
could be more suitable, in order to meet the requirements of the different statistical
offices involved and to obtain high quality standards.

As an example, the design of a two-stage sample could be adopted for the
evaluation of the coverage and the quality of the Farm Register. The survey strategy
to achieve this goal should satisfy both the need to collect the information for
assessing the eligibility of administrative units to agricultural holdings and the need
to manage the organizational and financial constraints.

The survey design could be based fundamentally on a two-stage design: The
1st stage: logical choice of a subset of municipalities, selected according to the
number of firms and regional agricultural specializations. The 2nd stage: selection
of a sample according to a complex probabilistic design, based on methods of
calibration and balancing [36].
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The municipalities to be collected could be chosen according to the data from
the Farm Register and the information provided by the Regions, responsible for
the local implementation of agricultural policy. The trade-off between the survey
costs and data quality can be solved by selecting from a set of units (municipal-
ities), an optimal subset of statistical units (having minimum cardinality, i.e. a
minimum number of elements), which ensures the achievement of fixed coverage
levels. This problem could be formulated using the proposed optimal selection
approach described in 3.2 section.

In brief, the procedure to select the farms to include in the sample can be sum-
marized as follows:

1- a list of potentially selectable provinces according to some criteria is defined
in each region.

2- For each provincial population, by applying the described algorithm, the
minimum subset of municipalities is determined, to meet the pre-arranged coverage
constraints, concerning the most relevant cultivations at provincial level.

3- Subsequently, for each municipality and for the main crops corresponding
to the provincial specialities, the minimum subset of units to be collected to meet
the predetermined coverage levels is selected.

Over the time, the suggested method could support the fulfilment of an agricul-
tural statistical system resulting from the integration of administrative sources and
sample surveys, thus limiting the respondent burden and the costs to gather and
update the available information.
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Appendix A

A.1 The basic Structure of Combinatorial Optimization
Problems

Many problems of both practical and theoretical origin concern with the choice of a
“best” solution among a set of “feasible” solutions, and so they are called optimiza-
tion problems. Optimization problems may assume very different shapes, and can
be classified according to several of their features. However, one very basic sub-
division is in the two following categories: those whose solutions are coded with
real variables and those whose solutions are coded with discrete variables. Among
the latter, we can find the class of the problems of combinatorial optimization, that
have a pronounced combinatorial or discrete structure [27]. In these cases, we are
looking for an object from a countable set. This object is usually an integer, a sub-
set, a permutation or a graph structure [16]. The set of such problems, together
with the methodologies used for their solution, constitute the field called Combi-
natorial Optimization (CO), that is usually considered as a discipline belonging to
applied mathematics and theoretical computer science. CO has an increasing im-
portance because of the large number of important practical problems that can be
formulated and solved in this manner.

Combinatorial Optimization has an increasing importance because of the large
number of important practical problems that can be formulated and solved in this
manner. CO problems may have several different connotations. However, when
they have a linear objective function, as it happens very frequently in practice, they
all share an underlying mathematical structure defined below.

79
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Definition 1.1. A combinatorial optimization problem with linear objective is
defined by

• a finite set B = {b1, . . . , bn} called ground set;

• a collection of feasible solutions F = {F1, . . . , Fm}, each of which is a
subset of the ground set Fj ⊆ B;

• a cost vector c = {c1, . . . , cn} providing the cost of each ground element;

and consists in finding a feasible solution F ? such that

c(F ?) =
∑

i: bi∈F ?

ci

is minimum.

We recall that maximizing an objective function f is the same as minimizing −f ,
hence it is possible to address minimization problems without loss of generality.
By denoting a set by means of its incidence vector, that is a vector having 1 in
correspondence of each element of the set and 0 otherwise, a feasible solution Fj
may be represented by a binary vector x ∈ {0, 1}n. This allows to express every
CO problems by using Integer (or Binary) Linear Programming.

A.2 Notions of Integer Linear Programming

Integer and mixed integer programming are subsets of the broader field of
mathematical programming. Mathematical programming formulations use a set
of decision variables, which represent actions or decisions that can be taken in the
system being modeled. One then attempts to optimize (either in the minimization
or maximization sense) an objective, that is a function of these variables which
maps each possible set of decisions into a single score that assesses the quality of
the solution. The limitations of the system are included as a set of constraints,
which are usually stated by restricting functions of the decision variables to be
equal to, not more than, or not less than, a certain numerical value. Another type
of constraint can simply restrict the set of values to which a variable might be
assigned.
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Several applications involve decisions that are discrete (e.g., to which hospital
an emergency patient should be assigned), while some other decisions are con-
tinuous in nature (e.g., determining the dosage of fluids to be administered to a
patient). When a problem contains only continuous variables and linear objective
and constraints, the problem is called linear programming. When on the contrary
a problem contains only discrete variables and linear objective and constraints,
the problem is called integer linear programming. Note that a parallelism can be
traced between integer linear programming and combinatorial optimization with
linear objective function [104]. When a problem contains both types of variables
and linear objective and constraints, the problem is called mixed integer linear pro-
gramming.

While discrete variables may appear easy to handle, the number of combina-
tions of their values is usually huge, and so complete enumeration techniques have
important implications on processing time. As the problem size increases, com-
plete enumeration approaches are not computationally viable. Computer speedups,
however impressive, are simply no match for exponential enumeration problems.
Therefore, more efficient techniques are required to solve problems containing dis-
crete variables. Those techniques do not explicitly examine every possible combi-
nation of discrete solutions, but instead examine a subset of possible solutions, and
use optimization theory to prove that no other solution can be better than the best
one found. This type of technique is referred to as implicit enumeration.

Linear Programming Linear Programming problems (LP, also called “linear
programs”) use a set of decision variables, which are the unknown quantities or
decisions that are to be optimized. In the context of linear and mixed integer pro-
gramming problems, the function that assesses the quality of the solution, called
the “objective function”, should be a linear function of the decision variables. An
LP will either minimize or maximize the value of the objective function. Finally,
the decisions that must be made are subject to certain requirements and restrictions
of a system. We enforce these restrictions by including a set of constraints in the
model. Each constraint requires that a linear function of the decision variables is
either equal to, not less than, or not more than, a scalar value. A common con-
dition simply states that each decision variable must be nonnegative. In fact, all
linear programming problems can be transformed into an equivalent minimization
problem with nonnegative variables and equality constraints [6].

A solution that satisfies all constraints is called a feasible solution. Feasible
solutions that achieve the best objective function value (according to whether one
is minimizing or maximizing) are called optimal solutions. Sometimes no feasible
solution exists, and the optimization problem itself is called infeasible. On the other
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hand, some feasible LP problems have no optimal solution, because it is possible
to achieve infinitely good objective function values with feasible solutions. Such
problems are called unbounded.

Thus, suppose we denote x1, . . . , xn to be our set of decision variables. Linear
programming problems take on the form:

min or max c1x1 + c2x2 + · · ·+ cnxn

subject to a11x1 + a12x2 + · · ·+ a1nxn (≤,=, or ≥) b1
a21x1 + a22x2 + · · ·+ a2nxn (≤,=, or ≥) b2
. . .
am1x1 + am2x2 + · · ·+ amnxn (≤,=, or ≥) bm

xj ≥ 0 ∀j = 1, . . . , n

(A.1)

Values cj ,∀j = 1, . . . , n, are referred to as objective coefficients, and are often
associated with the costs associated with their corresponding decisions in mini-
mization problems, or the revenue generated from the corresponding decisions in
maximization problems. The values b1, . . . , bm are the right-hand-side values of
the constraints, and often represent amounts of available resources (especially for
≤ constraints) or requirements (especially for ≥ constraints). The aij-values thus
typically denote how much of resource/requirement i is consumed/satisfied by de-
cision j. Note that nonlinear terms are not allowed in the model, prohibiting for
instance the multiplication of two decision variables, the maximum of several vari-
ables, or the absolute value of a variable.

Any maximization (minimization) problem can be converted into a minimiza-
tion (maximization) problem by multiplying the coefficients of the objective func-
tion by -1.

max
n∑
j=1

cjxj = −min
n∑
j=1

−cjxj

Moreover, each linear programming problem in generic form can be transformed
into an equivalent problem in canonical form:

min
∑n

j=1 cjxn

subject to
∑n

j=1 aijxj ≥ bi ∀i = 1 . . .m

xj ≥ 0 ∀j = 1, . . . , n

(A.2)
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This canonical form can be expressed in a compact notation as follows.

min cTx
Ax ≥ b
x ∈ IRn

(A.3)

where x represents the vector of variable (to be determined), c e b are vector of
coefficients, A is a (known) matrix of coefficients. The inequalities Ax ≥ b are
constraints which specify a convex politope over which the objective function is to
be optimized. Linear programming problems can be converted into canonical form
as follows:

• For each variable xj , add the equality constraint xj = x+
j − x−j and the

inequalities x+
j ≥ 0 and x−j ≥ 0.

• Replace any equality constraint
∑

j aijxj = bi with two inequality con-
straints

∑
j aijxj ≥ bi and

∑
j aijxj ≤ bi.

• Replace any constraint
∑

j aijxj ≤ bi with the equivalent constraint
∑

j −aijxj ≥
−bi.

Another useful format for linear programming problems is standard form, which
is expressed as:

min cTx
subject to Ax = b
and x ≥ 0

(A.4)

Note that a LP not in standard form can be converted to standard form by elim-
inating inequalities by introducing slack and/or surplus variables and replacing
variables that are not sign-constrained with the difference of two sign-constrained
variables.

Mixed Integer Linear Programming When some of the variables are restricted
to take integer values, the problem becomes a Mixed Integer Linear Programming
one (MILP, also called “mixed integer linear programs”). When variables are re-
stricted to take on either 0 or 1 values the term “integer” is replaced with “0-1” or
“binary”. All that was specified for the case of linear programming holds, mutatis
mutandis, for the mixed integer case. Typically, modeling MILP requires the defi-
nition of a set of decision variables, that represent choices that must be optimized
in the system, and the statement of an objective function and constraints (see also
[136]).
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It is very common, though, to recognize during model construction that the ini-
tial set of decision variables defined for the model are inadequate. Often, decision
variables that seem to be implied consequences of other actions must also be de-
fined. The addition of new variables after an unsuccessful attempt at formulating
constraints and objectives is the “loop” in the process. The correct definition of de-
cision variables can be especially complicated in modeling with integer variables.
If one is allowed to use binary variables in a formulation, it is possible to repre-
sent yes-or-no decisions, enforce if-then statements, and even permit some sorts of
nonlinearity in the model (which can be transformed to an equivalent mixed integer
linear program).

Some common tips and tricks in modeling with integer variables are:

1. Integrality of quantities. In staffing and purchasing decisions, it is often im-
possible to take fractional actions. One cannot hire, for instance, 6.5 new
staff members, or purchase 1.3 hospital beds. The most obvious use of inte-
ger variables thus arises in requesting integer amounts of quantities that can
only be ordered in integer amounts. In general, the optimal solution of an
integer program need not be a rounded-off version of an optimal solution to
a linear program.

2. If-then statements. Consider two continuous (i.e., possibly fractional) vari-
ables, x and y, defined so that 0 ≤ x ≤ 10 and 0 ≤ y ≤ 10. Suppose we
wish to make a statement that if x > 4, then y ≤ 6. On the surface, since
no integer quantities are requested, it does not appear that integer variables
will be necessary. However, the general form of linear programs as given in
equations (A.1) does not permit if-then statements like the one above. In-
stead, if-then statements can be enforced with the aid of a binary variable,
z. We wish to make z = 1 if x > 4 (note that we make no claims on z if
x ≤ 4). This can be accomplished by adding the constraint:

x ≤ 4 + 6z (A.5)

since the event that x > 4 implies that z = 1 (even if z = 1, the largest value
for x is 10, which now makes a constraint of the form x is 10 unnecessary).
If z = 1, then we must also require that y ≤ 6. This is achieved by reducing
the upper bound of 10 on y to 6 if z is equal to 1 as follows:

y ≤ 10 + 4z (A.6)

where once again, the bound constraint y ≤ 10 may now be omitted. In
general, suppose we wish to make the following statement: “if q1x1 + · · ·+
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qnxn > Q, then r1x1 + · · ·+ rnxn ≤ R”. The following conditions should
be included in the model:

q1x1 + · · ·+ qnxn ≤ q +M ′z (A.7)

r1x1 + · · ·+ rnxn ≤M ′′ − (M ′′ −R)z (A.8)

z binary (A.9)

where M ′ and M ′′ are “sufficiently large” constants. These values should
be just large enough to not add unintentional restrictions to the model. For
instance, we are not attempting to place any hard restriction on the quantity
q1x1 + · · ·+qnxn (written conveniently as qTx in vector form). If z = 1, the
upper bound on qTx is Q+M ′, and hence M ′ must be large enough so that
even if constraint (A.7) is removed from the model, qTx would still never be
more than Q + M ′. Likewise, if z = 0, a large enough value of M ′′ must
be chosen in (A.8) such that rTx could never be more than M ′′ even without
the restriction (A.8). It is worth noting that assigning arbitrarily large values
for M ′ and M ′′ is not recommended.

3. Enforce at least k out of p restrictions. This situation is similar to if-then
constraints in the way we model such restrictions. For a simple example,
suppose we have nonnegative variables x1, . . . , xn, and wish to require that
at least three of these variables take on values of 5 or more. Then we can
define binary variables z1, . . . , zn, such that if zj = 1, then xj ≥ 5,∀j =
1, . . . , n. This simple if-then constraint can easily be modeled by employing
the following constraints:

xj ≥ 5zj ∀j = 1, . . . , n (A.10)

Clearly, if zj = 1, then xj ≥ 5. If zj = 0, it is still possible for xj ≥ 5,
but no such restrictions are enforced. It is necessary to guarantee that three
variables take on values of 5 or more, and so the following “k-out-of-p”
constraint is added:

z1 + · · ·+ zn = 3 (A.11)

Again, this constraint does not state that exactly three variables will be at
least 5, but rather that at least three variables are guaranteed to be at least
5. This same trick can be used to enforce the condition that at least k out
of p sets of constraints are satisfied, and so on, often by using M-values as
introduced in the point on if-then constraints.
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4. Non linear product terms. In some circumstances, nonlinear terms can be
transformed into linear terms by the use of linear constraints. First, note that
if xj is a binary variable, then xj = xqj for any positive constant q. After
that substitution is made, suppose that we have a nonlinear term of the form
x1 · x2 · · ·xk · y, where x1, . . . , xk are binary variables and 0 ≤ y ≤ u is
another variable, either continuous or integer. That is, all but perhaps one of
the terms is a binary variable. First, replace the nonlinear term with a single
continuous variable, w. Using the if-then concept expressed above, note that
if xj equals zero for any j ∈ {1, ..., k}, then w equals zero as well. Also,
note that w can never be more than the upper bound, u, on the y-variable.
Hence, we obtain the constraints

w ≤ uxj ∀j = 1, . . . , k (A.12)

Of course, to guarantee that w equals zero in case any xj-variable equals to
zero, we must also state a non-negativity constraint:

w ≥ 0 (A.13)

Now, suppose that all x1 = · · · = xk = 1. In this case, it is necessary
to add constraints that enforce the condition that w = y. Regardless of the
x-variable values, w cannot be more than y, and so we state the constraint:

w ≤ y (A.14)

However, in order to get the constraint “w ≥ y if x1 = · · · = xk = 1,” we
include the constraint:

w ≥ u(x1 + · · ·+ xk − k) + y (A.15)

If each x-variable equals to 1, then (A.15) states that w ≥ y, which along
with (A.14) guarantees that w = y. On the other hand, if at least one xj =
0, j ∈ {1, . . . , k}, then the term u(x1 + · · · + xk − k) is not more than
−u, and the right-hand-side of (A.15) is not positive; hence, (A.15) allows
w to take on the correct value of zero (as would be enforced by (A.12) and
(A.13) ). As a final note, observe that even if y is an integer variable, we
need not insist that w is an integer variable as well, since (A.12) - (A.15)
guarantee that w = x1 · · ·xk · y, which must be an integer given integer x-
and y-values.
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A.3 Exact Solution Techniques

Often, there are alternative ways of modeling optimization problems as MILP.
There sometimes exist trade-offs in these different modeling approaches. Some
models may be smaller (in terms of the number of constraints and variables re-
quired), but may be more difficult to solve than larger models. It is important to
understand the basics of MILP solution algorithms in order to understand the key
principles in MILP modeling. To illustrate the branch-and-bound process, we con-
sider the following example MILP:

min 4x1 + 6x2

s.t. 2x1 + 2x2 ≥ 5
x1 − x2 ≤ 1
x1, x2 ≥ 0 and integer

(A.16)

A relaxation of an MILP is a problem such that (a) any solution to the MILP cor-
responds to a feasible solution to the relaxed problem, and (b) each solution to the
MILP has an objective function value greater than or equal to that of the corre-
sponding solution to the relaxed problem. The most commonly used relaxation for
an MILP is its LP relaxation, which is identical to the MILP with the exception that
variable integrality restrictions are eliminated. Clearly, any integer-feasible solu-
tion to the MILP is also a solution to its LP relaxation, with matching objective
function values.

When describing the branch-and-bound algorithm for MILP, it is helpful to
know how LP is solved. See [6, 69, 114, 138] for an explanation of linear pro-
gramming theory and methodology. Graphically, Figure A.1 illustrates the feasible
region (set of all feasible solutions) to the LP relaxation of formulation (A.16). The
point (1.75, 0.75), is the optimal solution to the LP relaxation, and has an objective
function value of 11.5. In general, the optimal solution to the LP is not supposed
to be unique, and so it is possible that different MILP solutions exist with an iden-
tical objective function to the optimal LP solution. The important result is that a
lower bound on the optimal MILP solution is obtained from the LP relaxation. No
solution to the MILP can be found with an objective function value less than 11.5.

Of course, the solution (1.75, 0.75) is not a feasible solution to (A.16). All
feasible solutions have the trait that either x1 ≤ 1 or x1 ≥ 2. In fact, the problem
(A.16) can be splitted into two subproblems: one in which x1 ≤ 1 (called region
1), and one in which x1 ≥ 2 (called region 2). All solutions to the original MILP
are contained in exactly one of these two new subproblems. This process is called
branching, and we could have also branched on x2 instead, by requiring that either
x2 ≤ 0 or x2 ≥ 1.
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The feasible regions of the two new subproblems are depicted in Figure A.2.
When x1 ≤ 1, the optimal solution is (1, 1.5) with objective function value 13.
When x1 ≥ 2, the optimal solution is (2, 1) with objective function value 14. In
the x1 ≤ 1 region, the lower bound is 13. In the x1 ≥ 2 region, though, the best
solution happens to be an integer solution. Therefore, the best integer solution in
the x1 ≥ 2 region has an objective function value of 14; there is no need to further
search that region. This region is said to be fathomed by integrality. We store the
solution (2, 1), and call it incumbent solution. If no better solution is found, it will
become our optimal solution.

At this point, there is one active region (or “active node” in the context of
branch-and-bound trees), which is region 1. An active region is one that has not
been branched on, and that must still be explored, because there is a possibility
that it contains a solution better than the incumbent solution. The initial region is
not active, because we have branched on it. Region 2 is not active since the best
integer solution has been found in that region. Region 1, however, is still active
and must be explored. The lower bound over this region is 13; thus, the optimal
solution to the entire problem must have an objective function value somewhere
between 13 and 14 (inclusive). We recursively divide region 1, in which x1 ≤ 1.
Since the optimal solution in this region was (1, 1.5), we branch by creating two
new subproblems: one in which both x1 ≤ 1 and x2 ≤ 1 (called region 3), and
one in which both x1 ≤ 1 and x2 ≥ 2 (called region 4). Once again, all integer
solutions in region 1 are contained in either region 3 or region 4.

However, note that region 3 is empty, because the stipulation that both x1 and x2 are
no more than 1 makes it impossible to satisfy (A.16). There are therefore no integer
solutions in this region either, and so we stop searching region 3. This region is said
to be fathomed by infeasibility. The optimal solution to region 4‘s linear relaxation
is (0.5, 2), with objective function value 14. However, our incumbent solution has
an objective function value of 14. We have not found the best integer solution
in region 4, but we know that the best solution in region 4 will not improve the
incumbent solution we have found. Thus, we are not interested in any integer
feasible solution in region 4, and we stop searching that region. (An alternative
optimal integer solution can exist in that region, but we are not seeking to find all
optimal solutions, just one.) Region 4 is said to be fathomed by bound.

Figure A.3 depicts a tree representation of this search process, which is called the
“branch-and-bound tree”. Each node of the tree represents a feasible region. Now,
there are no more regions to be examined (no more active nodes), and the algorithm
terminates with the incumbent solution, (2, 1), as an optimal solution.

A formal description of the branch-and-bound algorithm for minimization prob-
lems is given as follows.
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Figure A.1: Feasible region of the LP relaxation.
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Figure A.2: Feasible regions of the subproblems.
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Figure A.3: Branch-and-Bound tree.

Step 0 Set the incumbent objective v =∞ (assuming that no initial feasible
integer solution is available). Set the active node count k = 1 and denote the
original problem as an “active” node. Go to Step 1.

Step 1 If k = 0, then stop: the incumbent solution is an optimal solution. (If
there is no incumbent, i.e., v =∞, then the original problem has no integer
solution.) Else, if k > 1, go to Step 2.

Step 2 Choose any active node, and call it the “current” node. Solve the LP
relaxation of the current node, and make it inactive. If there is no feasible
solution, then go to Step 3. If the solution to the current node has objective
value z∗ ≥ v, then go to Step 4. Else, if the solution is all integer (and
z∗ < v), then go to Step 5. Otherwise, go to Step 6.

Step 3 Fathom by infeasibility. Decrease k by 1 and return to Step 1.

Step 4 Fathom by bound. Decrease k by 1 and return to Step 1.

Step 5 Fathom by integrality. Replace the incumbent solution with the so-
lution to the current node. Set v = z∗, decrease k by 1, and return to Step
1.

Step 6 Branch on the current node. Select any variable that is fractional in
the LP solution to the current node. Denote this variable as xs and denote
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its value in the optimal solution as f. Create two new active nodes: one by
adding the constraint xs ≤ |f | to the current node, and the other by adding
xs ≥ |f | to the current node. Add 1 to k (two new active nodes, minus one
due to branching on the current node) and return to Step 1.

Note that in Step 0, a heuristic procedure could be executed to quickly obtain a
good-quality solution to the MILP with no guarantees on its optimality. This so-
lution would then become our initial incumbent solution, and could possibly help
conserve branch-and-bound memory requirements by increasing the rate at which
active nodes are fathomed in Step 4. In Step 2, we may have several choices of
active nodes on which to branch, and in Step 6, we may have several choices on
which variable to perform the branching operation. There has been much empirical
research designed to establish good general rules to make these choices, and these
rules are implemented in commercial solvers. However, for specific types of for-
mulations, one can often improve the efficiency of the branch-and-bound algorithm
by experimenting with node selection and variable branching rules.

The best-case scenario in solving a problem by branch-and-bound is that the
original node yields an optimal LP solution that happens to be integer, and the algo-
rithm terminates immediately. Indeed, in (A.16), by simply adding the constraint
x1 + x2 ≥ 3 and solve the LP relaxation, we would obtain the optimal solution (2,
1) immediately.

Thus, a classical way to reduce the presence of fractional solutions is to find
valid inequalities, which do not cut off any integer solutions, but do cut off some
fractional solutions. A cutting plane is a valid inequality that removes the optimal
LP relaxation solution from the feasible region. The cutting plane method is an
umbrella term for optimization methods which iteratively refine a feasible set or
objective function by means of linear inequalities. Such procedures are generally
used to find integer solutions to integer and mixed integer linear programming
problems, and may be used also to solve other general optimization problems.

The theory of linear programming dictates that under mild assumptions (if the
linear program has an optimal solution, and if the feasible region does not contain
a line), one can always find a vertex that is optimal. The obtained optimal solution
is tested for being integer. If it is not, there is guaranteed to exist a linear inequality
that separates this LP relaxation solution from the convex hull of the set of integer
solutions. Finding such an inequality is known as the separation problem, and such
an inequality is a cut. A cut can be added to the relaxed linear program. Then, the
current non-integer solution is no longer feasible to the relaxation. This process is
repeated until an optimal integer solution is found.

In theory, MILP can be solved without branching either by (a) including enough
valid inequalities before solving the LP relaxation, so that the LP relaxation pro-
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vides an integer solution, or (b) looping between solving the LP relaxation, adding
a cutting plane, and re-solving the LP relaxation, until the LP relaxation yields an
integer solution.

However, using these approaches by themselves may suffer from numerical
instability problems or require the solution of intractable problems. Therefore,
the most effective implementations often use a combination of valid inequalities
added a priori to the model, after which branch-and-bound is executed, with cut-
ting planes periodically added to the nodes of the branch-and-bound tree. This ap-
proach is called “branch-and-cut”. Valid inequality and cutting-plane approaches
can either be generic or problem-specific. Clearly, the second approach needs a
problem-by-problem analysis, but can provide very efficient solution techniques.
A large amount of research work on these subjects during the last 50 years lead
to the development of many different cut types. Many classical cutting plane ap-
proaches are described in greater detail for instance in [104].
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