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Glossary

Rn space of real n-dimensional vector

Sn space of real n× n symmetric matrices

Dn space of real n× n diagonal matrices

det(A) determinant of a matrix

rank(A) rank of a matrix

Im(A) span of the columns of a matrix

ker(A) kernel of a matrix

� Löwner partial order

A � 0 A symmetric semidefinite positive matrix

A � 0 A symmetric definite positive matrix

A •B scalar product over matrices

A(·) linear operator over matrices

AT (·) adjoint linear operator of A(·)
I identity matrix of appropriate dimension

In identity matrix of dimension n

U matrix of all ones of appropriate dimension

Un matrix of all ones of dimension n

u vector of all ones of appropriate dimension

un vector of all ones of dimension n

ei vector of all zero, expect 1 in position i

Eij square matrix of all zero, expect 1 in position ij

diag(A) diagonal vector of a matrix

Diag(v) diagonal matrix with main diagonal the vector v

⊗ Kronecker product

vec(A) vector obtained by stacking columns of A
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mat(v) inverse operation of vec(·)
(α)+ scalar max(0, α)

Bρ(x) sphere centered at x with ray ρ
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Preface

This thesis deals with nonlinear differentiable formulations and algorithms for partic-

ular problems in Semidefinite Programming (SDP) and in Eigenvalue Optimization

(EO). These nonlinear techniques will be used as a tool to solve exactly or approx-

imately general integer quadratic problems: in particular, we will consider general

integer quadratic problems, with no assumption of convexity, as well as the particular

integer formulation for the Max-Cut.

SDP belongs to the class of Conic Programming and it consists in minimizing a linear

function over the intersection of the cone of semidefinite matrices with an affine sub-

space.

Convexity and duality theory in SDP led to the definition of theoretically and prac-

tically efficient solution algorithms, such as Interior Point Methods. Nevertheless, the

widespread applications of SDP have thus brought to the need of having efficient SDP

solvers for large-scale problems. Among the possible approaches for large-scale SDP

problems, there is the so called Low-Rank SDP formulation based on rectangular fac-

torization of semidefinite matrices. This approach led to a special structured nonlinear

non-convex problem, for which is possible to define necessary and sufficient global op-

timality conditions.

Others nonlinear formulations of SDP problems are based on EO. The relevance of

EO is beyond the equivalence with SDP. Given A(x), a symmetric affine function of

x ∈ Rm, the problem is to minimize some convex combination of the eigenvalues of

A(x) with x subject to linear constraints.

In the first part of the thesis, Chapter 3, we address the special SDP problem coming

out as the SDP relaxation of the {−1, 1} Quadratic Problem, which can represent an

integer formulation for the Max-Cut. We consider the Low-Rank formulation (LRSDP),
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which corresponds to a nonlinear programming problem of minimizing a quadratic

function subject to separable quadratic equality constraints. We prove the equivalence

of this constrained non-convex problem with the unconstrained problem defined by

means a continuously differentiable merit function. We define an efficient and globally

convergent algorithm, called SpeeDP, for finding critical points of the LRSDP problem

and integrated with the global optimality conditions known for LRSDP. We provide

evidence of the effectiveness of SpeeDP by comparing it with other existing codes on

an extended benchmark. We further include SpeeDP within an enhanced version of the

Goemans-Williamson algorithm and we show that the corresponding heuristic SpeeDP-

MC can generate high-quality cuts for very large and sparse graphs in reasonable time.

In the second part, Chapter 4, we consider the extreme eigenvalue optimization problem

(EEO). Based on the Low-Rank approach, we reformulate this non-smooth problem as

a smooth and non-convex optimization problem and define new global optimality con-

ditions which can not be derived from the ones for the general Low-Rank SDP problem.

This results in the definition of an efficient algorithm for the solution of EEO, for which

we report preliminary computational evidence.

Using the same machinery, we also rewrite the problem of finding the k smallest eigen-

values of a symmetric matrix with a new constrained formulation. For the special case

of the smallest eigenvalue, we also derive a new unconstrained formulation, suitable for

large-scale instances.

In the last part, Chapter 5, we address the general integer quadratic problem, with

bound on variables and with no assumption of definiteness on the quadratic term.

With the aim of finding a good lower bound on the integer problem, we consider

as a relaxation the minimization of the objective function over an ellipsoid enclosing

the feasible region. In order to strength the relaxation, we propose to solve a non-

smooth constrained problem to find a good ellipsoid. Moreover, we concentrate also

on nonlinear techniques to accelerate the solution of the relaxation. Finally, we embed

this relaxation in a particular branch-and-bound scheme and examine the performance

of the overall algorithm by extensive experiments.

viii



1

Semidefinite Programming

Semidefinite Programming came out in the last two decades as powerful tool in several

areas, such as system and control theory, combinatorial optimization, approximation

theory and robust optimization.

In Semidefinite Programming, a linear function is optimized over the space of symmetric

matrices, subject to affine constraints and semidefinite constraints. In this sense, it can

be viewed as the simplest nonlinear extension of Linear Programming as well as a

particular case of the most general Conic Programming.

Respect to Linear Programming, Semidefinite Programming keeps convexity, duality

theory, theoretically and practically efficient solution algorithms, such as Interior Point

methods.

In this chapter we recall all main topics in Semidefinite Programming: standard formu-

lation, duality, Interior Point methods and geometry. For a very exhaustive coverage

of these topics for Semidefinite Programming, the book [56] is highly advised.

1.1 Semidefinite Programming problem

Given matrices C,A1, . . . , Am ∈ Sn and b ∈ Rm, the SDP problem in primal standard

form is

min
X

C •X

Ai •X = bi i = 1, . . . ,m,

X � 0.

(P)

1



1. SEMIDEFINITE PROGRAMMING

To keep statements clear, we introduce the linear operator A : Sn → Rm defined as

A(X) =

 A1 •X
...

Am •X

 ,
and its adjoint operator AT : Rm → Sn defined as

AT (y) =
m∑
i=1

yiAi.

Under this notation, we rewrite the primal problem as

min
X

C •X

A(X) = b,

X � 0.

(P)

The associated dual problem in standard form is given by

max
y,S

bT y

AT (y) + S = C

y ∈ Rm, S � 0.

(D)

The dual (D) is obtained by expressing the primal (P) as min-max problem, namely

min
X�0

max
y∈Rm

C •X + yT (b−A(X)) ,

exchanging the min with the max,

max
y∈Rm

min
X�0

(
C −AT (y)

)
•X + bT y,

and solving the inner minimization.

Although (P) and (D) look like different, they own an hidden symmetry between

each other. For this purpose, we need an assumption on the linear independence of

A1, . . . , Am, which is a standard requirement in Semidefinite Programming. Actually,

if this were not true then we would have two cases:

(i) for any y such that AT (y) = 0 we have bT y = 0. In this case, we could safely

remove the redundant primal constraints and the corresponding dual variables,

keeping the problem equivalent;

2



1.1 Semidefinite Programming problem

(ii) there exists ȳ ∈ Rm such that AT (ȳ) = 0 and bT y > 0. It follows that (D) is

unbounded and (P) unfeasible.

The assumption implies we can always find a Z ∈ Sn such that A(Z) = b. Moreover,

chosen a basis G1, . . . , Gk for the orthogonal complement to the span(A1, . . . , Am),

scalars hj = C •Gj , with j = 1, . . . , k, are defined.

Lemma 1.1.1 Problem (P) can be rewritten in standard dual form, namely as

max
w,X

−hTw + [C • Z]

AT (w) +X = Z,

w ∈ Rk, X � 0.

Problem (D) can be rewritten in standard primal form, namely as

min
S

−Z • S + [C • Z]

Gi • S = hi, i = 1, . . . , k,

S � 0.

Proof By definition of Z and G1 . . . Gk, a matrix X satisfies A(X) = b if and only if

X = Z −
k∑
i=1

wiGi,

for a certain w ∈ Rk. This equivalence proves the first statement.

As before, from Z and G1 . . . Gk, it follows that (y, S) are such that AT (y) + S = C if

and only if S satisfies

Gj • S = hj , j = 1, . . . , k.

Therefore, also the second statement follows.

Later on, we denote the primal feasible set with Fp and the dual feasible set with Fd,

that are

Fp = {X ∈ Sn : A(X) = b,X � 0} ,

Fd =
{

(y, S) ∈ Rm × Sn : AT (y) + S = C, S � 0
}
.

In addition, we denote with F0
p and F0

d the interior of the above sets, namely

F0
p = Fp ∩ {X ∈ Sn : X � 0} ,

F0
d = Fd ∩ {(y, S) ∈ Rm × Sn : S � 0} .

Finally, we denote with p∗ and d∗ the primal and the dual optimal values, respectively.

3



1. SEMIDEFINITE PROGRAMMING

1.2 Duality Theory

As in linear programming, (P) and (D) are by construction closely related as result of

the duality theory. The first result is known as weak duality.

Proposition 1.2.1 For any X ∈ Fp and (y, S) ∈ Fd, the following condition holds

C •X − bT y = X • S ≥ 0.

Proof

C •X − bT y =
(
AT (y) + S

)
•X − bT y = yTA(X) + S •X − bT y = S •X ≥ 0.

For any primal feasible solution X and any feasible dual solution (y, S), the quantity

C • X − bT y is called duality gap. If the duality gap is zero, namely strong duality

holds, then X and (y, S) are proved to be optimal, respectively for the primal and dual

problems.

As opposed to Linear Programming, in Semidefinite Programming it might not hold

that duality gap is zero at an optimal solutions pair. Actually, some unpleasant situa-

tions can occur:

• p∗ = d∗, but one of the problem does not admit solution;

• both problems admit solution, but p∗ > d∗;

• one of the problems admits solution, but p∗ − d∗ is unbounded.

Actually, it is easy to build small counterexamples of strong duality, as you can see in

[59]. Fortunately, we can easily check problems where strong duality necessarily holds:

in particular problems where Slater Constraint Qualification (SCQ) holds, namely prob-

lems where feasible set has a non-empty interior.

Theorem 1.2.2 If Fp and F0
d are not empty, then (P) admits optimal solution and

p∗ = d∗.

4



1.2 Duality Theory

Proof Let X̂ ∈ Fp and (ŷ, Ŝ) ∈ F0
d. For any optimal solution X∗, C •X∗ ≤ C • X̂,

so that

Ŝ •X∗ =
(
C −AT (ŷ)

)
•X∗ = C •X∗ − bT ŷ ≤ (C −AT (ŷ)) • X̂ = Ŝ • X̂.

Adding the redundant constraint Ŝ • X∗ ≤ Ŝ • X̂, another formulation for (P) is

obtained, namely
min
X

C •X

A(X) = b

Ŝ •X ≤ Ŝ • X̂

X � 0.

(P’)

The subset
{
X ∈ Sn : Ŝ •X ≤ Ŝ • X̂, X � 0

}
is compact because Ŝ � 0. Therefore,

(P’) admits an optimal solution and hence also (P).

For a fixed ε > 0, it is possible to find a feasible dual solution with objective function

at least p∗ − ε. Consider the following two sets

F1 = {X ∈ Sn : X � 0},

F2 = {X ∈ Sn : A(X) = b, C •X ≤ p∗ − ε},

which are closed convex sets and also disjoint. As result of the Separating Hyperplane

Theorem (see, e.g.,[12]), there exists (σ, S) ∈ R× Sn such that

sup
X∈F2

S •X < σ < inf
X∈F1

S •X. (1.1)

Because F1 is also a cone, the null vector belongs surely to F1 and hence σ < 0.

In addition it follows that S � 0, because otherwise the second problem would be

unbounded below. Moreover, because of the first inequality in (1.1), there not exists

an X ∈ Sn such that 
A(X) = b,

C •X ≤ p∗ − ε,

S •X > σ.

Therefore, as a consequence of a theorem of the Alternative, there exists (y, η) ∈ Rm+1

such that 
Cη −AT (y) = S,

(p∗ − ε)η − bT y ≤ σ,

η ≥ 0.

5



1. SEMIDEFINITE PROGRAMMING

If η were zero then −bT y ≤ σ < 0, which would be in contradiction with

−bT y = −yTA(X) = AT (y) • X̂ = S • X̂ ≥ 0.

We can so assume η = 1 by scaling y and S. Finally, we get (y, S) ∈ Fd, with

bT ≥ p∗ − ε− σ ≥ p∗ − ε. This result and weak duality give

p∗ − ε ≤ bT y ≤ p∗.

For the arbitrariness in choosing ε, it follows p∗ = d∗.

Using the symmetry result given in Lemma 1.1.1, the previous result is commuted from

the primal to the dual point of view.

Corollary 1.2.3 If Fd and F0
p are not empty, then (D) admits optimal solution and

p∗ = d∗.

Of course we can combine the above results.

Corollary 1.2.4 If F0
p and F0

d are not empty, then (P) and (D) both admit optimal

solution and p∗ = d∗.

In conclusion, for problems where (SCQ) holds for both side, we can define the following

necessary and sufficient optimality conditions:

A(X) = b, X � 0,

AT (y) + S = C, S � 0,

XS = 0.

(1.2)

The last condition derives from the fact that for feasible points, C •X − bT y = X • S,
so that C •X = bT y if and only if XS = 0.

Those optimality conditions are the basis for Interior Points algorithms, used generally

for solving Semidefinite Programming problems.

1.3 Interior Point methods

Semidefinite Programming is a particular class of problems in convex optimization, so

that SDP problems can be solved in polynomial time to any prescribed precision using

for instance the Ellipsoid method (see, e.g., [30]). From the practical point of view,

6



1.3 Interior Point methods

the Ellipsoid method cannot be used for the prohibitively high running time. In turn,

Interior Points methods guarantee polynomial time convergence and are practically

efficient at least for small/medium SDP instances.

Interior Point Methods is a very large class of algorithms with many variants developed.

For a complete survey refer to the book [39]. In order to give an idea how they work,

we describe briefly the primal-dual Path Following subclass, which turns out to be one

of the most efficient algorithm among the Interior Point class.

For problems where (SCQ) holds for the primal and dual side, the optimality char-

acterization (1.2) holds. The idea of the path following algorithms is to relax the

complementarity slackness condition in (1.2): given the parameter µ > 0, consider the

following perturbed optimality system

Sµ


A(X) = b,

AT (y) + S = C,

XS = µI.

The system above admits always a unique solution. Indeed the above conditions can be

interpreted as the KKT conditions of a convex problem with strictly convex objective

function. If we denote the solution with (Xµ, yµ, Sµ), we define the following set

{(Xµ, yµ, Sµ) : µ > 0} ,

the central path. It can be shown that the central path is a smooth curve parametrized

by µ and that it leads to the optimal primal-dual solution.

Path Following methods generate a sequence of primal-dual solution in the interior of

the primal-dual feasible set, close to the central path, so that the optimal solution is

reached forcing µ to 0. The way they stay close to the central path relies on applying

Newton method to Sµ.

Sµ is not a square system, so that Newton method can not be directly applied. Actually,

because the product XS is not symmetric, the system Sµ is overdetermined. A possi-

ble correction consists in replacing the complementarity condition with an equivalent

symmetric one, such as

XS + SX

2
= µI.

7



1. SEMIDEFINITE PROGRAMMING

Given a strictly feasible (X, y, S), the idea is to reduce the violation of the complemen-

tarity condition, namely the quantity

c(X,S) =
X • S
n

,

by getting closer to the point in the central path with µ = σc(X,S), where σ ∈ (0, 1).

This is done by computing the Newton direction (∆X,∆y,∆S) on system Sµ, namely

the solution of the following linear system

Sµ(X, y, S)


A(∆X) = 0,

AT (∆y) + ∆S = 0,

∆XS + S∆X + ∆SX +X∆S = 2µI − (XS + SX).

The solution of the above system is uniquely defined if (X, y, S) is sufficiently close to

the central path, for example, if (X, y, S) belongs to the following set

Nγ =
{

(X, y, S) ∈ F0
p × F0

d : ‖X
1
2SX

1
2 − c(X,S)I‖ ≤ γc(X,S)

}
,

with γ ∈
(

0,
√
2
2

)
.

An outline of the algorithm is given in the following.

primal-dual Path Following algorithm

Parameter. γ ∈
(

0,
√
2
2

)
, ε > 0.

Initialization. (X, y, S) ∈ Nγ .

While c(X,S) > ε

1. Choose σ ∈ (0, 1) and set µ = σc(X,S).

2. Compute (∆X,∆y,∆S) as a solution of Sµ(X, y, S).

3. Choose α ∈ (0, 1) such that

X = X + α∆X,

y = y + α∆y,

S = S + α∆S,

the updated point belongs to Nγ .

End While

8



1.4 Geometry

Different choices for σ and α represent the trade-off between theoretical convergence

and practical efficiency. For example, for a given δ ∈ (0, 1) such that

2γ2 + 2δ2

(1−
√

2γ)2
≤ γ

(
1− δ√

n

)
,

the choice σ = 1− δ√
n

makes the entire sequence strictly feasible even for α = 1 and it is

possible to show that the Path Following algorithm converges in at most O(
√
n| log ε|)

iterations. On the other side, a faster convergence in practice is obtained choosing

dynamically σ and setting α = 0.99α̂, with

α̂ = min

 1

max
(

0,−λmin(X−
1
2 ∆XX−

1
2 )
) , 1

max
(

0,−λmin(S−
1
2 ∆SS−

1
2 )
)
 ,

so that the iterates are at least strictly feasible.

Without going to much in the details, main tasks per iteration include the solution of a

linear system of dimension m (whose data need to be computed), forming the directions

and the new points, performing two extreme spectral decomposition. So, the cost per

iteration is of the order of O(mn3 +m2n2 +m3). Even if the data of the SDP problems

are sparse, savings are not so much as expected. Actually some operations are sparse

independent.

1.4 Geometry

In this section we discuss some important geometric properties of the primal and dual

feasible set.

The sets we consider are given by the intersection of affine subspaces with the cone of

semidefinite matrices. From the latter they inherit the geometric structure, e.g. the

shape of its faces.

Definition 1.4.1 Given a convex set S, a subset F ⊆ S is a called a face of S if for

any two elements x, y ∈ S such that αx + (1 − α)y ∈ F for some α ∈ (0, 1), then

x, y ∈ F .

The faces of the semidefinite cone can be qualified as the subset of semidefinite matrices

whose eigenvectors corresponding to nonzero eigenvalues are restricted to a certain

subspace of Rn(see [35]).

9



1. SEMIDEFINITE PROGRAMMING

Proposition 1.4.2 Faces of the semidefinite cone fall in one of the following three

cases:

(i) F = ∅;

(ii) F = {0};

(iii) F = {X ∈ Sn : Im(X) ⊆ Im(P ), X � 0}.

Proof The first two cases are trivially verified.

For the third case, we first show that F defined in point (iii) is a face. Assume by

contradiction that F is not a face. Then there exists Z ∈ F such that

Z = αX + (1− α)Y,

with α ∈ (0, 1), at least X 6∈ F , but with X,Y � 0. This means there exists an

v 6∈ Im(P ) such that Xv 6= 0. It follows that

v ∈ Im(P )⊥ ⊆ Im(Z)⊥ = ker(Z).

All together we have

0 = vTZv = αvTXv + (1− α)vTY v > 0,

which is a contradiction.

Now, we show that every face in the semidefinite cone can be rewritten as in (iii).

First of all, we observe that 0 belongs to any nonempty face, so that there is only one

face with just one element.

Consider a face F with more than one element. In this situation we can find a ma-

trix Z in the relative interior. Given P ∈ Rn×k with columns the eigenvectors of Z

corresponding to nonzero eigenvalues, we define the following set

F̂ = {X ∈ Sn : Im(X) ⊆ Im(P ), X � 0} ,

which, from the point before, we already know it is face.

By construction, F and F̂ are both faces and they both contain Z in the relative

interior. It follows that F = F̂ .

10



1.4 Geometry

It is easy to verify that the characterization of a face in the SDP cone is equivalent to

F =
{
X ∈ Sn×n : X = PSP T , S � 0, S ∈ Sk

}
.

Then F is isomorphic to Sk and hence with dimension

(
k + 1

2

)
.

An SDP problem is given by the intersection of the semidefinite cone with an affine

subspace: faces for Fp and Fd can be directly derived from Proposition 1.4.2.

Corollary 1.4.3 Any face of Fp is in the form

{X ∈ Fp : Im(X) ⊆ Im(P )} ,

for a certain matrix P ∈ Rn×k.

Any face of Fd is in the form

{(y, S) ∈ Fs : Im(S) ⊆ Im(Q)} ,

for a certain matrix Q ∈ Rn×r.

An important geometric property is related to the rank of a matrix contained in a

certain face, as it can not to be too large respect to the dimension of the face (see [50]).

Proposition 1.4.4 Let F be a face of Fp of dimension d and X ∈ F of rank r, then(
r + 1

2

)
≤ m+ d.

Let F be a face of Fd of dimension d and (y, S) ∈ F , with S of rank r, then(
r + 1

2

)
≤

(
n+ 1

2

)
−m+ d.

Proof Let prove the first statement. By rank assumption, we can write X = QEQT

where Q ∈ Rn×r and E ∈ Sr with E � 0. Moreover, feasibility leads to

QTAiQ • E = bi, i = 1, . . . ,m.

The system above has m equations in r(r+1)
2 variables. Assume by contradiction that

r(r+1)
2 > m+ d. Therefore, there exist ∆1, . . . ,∆d+1 ∈ Sr linear independent such that

QTAiQ •∆j = 0, i = 1, . . . ,m, j = 1, . . . , d+ 1.

11



1. SEMIDEFINITE PROGRAMMING

Since E � 0, there exists an ε > 0 such that

∆j,1 = E + ε∆j , ∆j,2 = E − ε∆j � 0, j = 1, . . . , d+ 1.

Based on these matrices, we define

Xj,1 = Q∆j,1Q
T , Xj,2 = Q∆j,2Q

T , j = 1, . . . , d+ 1.

By construction, for any j = 1, . . . , d+1, Xj,1, Xj,2 ∈ Fp and X =
Xj,1+Xj,2

2 . Therefore,

because F is face, Xj,1, Xj,2 ∈ F . Moreover, ∆1, . . . ,∆d+1 are linear independent, so

that matrices E,∆1,1, . . . ,∆d+1,1 and hence also X,X1,1, . . . , Xd+1,1 are affine indepen-

dent. Therefore, it follows dim(F ) ≥ d+ 1, which is a contradiction.

The second statement follows directly writing down (D) in standard primal form as

in Lemma 1.1.1. In this form, the number of equations equals the dimension of

span(A1, . . . Am)⊥, namely

(
n+ 1

2

)
− m. So, the second statement holds as result

of the first one.

Corollary 1.4.5 If Problem (P) admits an optimal solution, then there exists an op-

timal solution X∗ such that (
r + 1

2

)
≤ m,

where r is the rank of X∗.

If Problem (D) admits an optimal solution, then there exists an optimal solution (y∗, S∗)

such that (
r + 1

2

)
≤

(
n+ 1

2

)
−m,

where r is the rank of S∗.

Proof If an SDP problem admits an optimal solution, then there exits an optimal

solution being an extremal matrix, namely belonging to a face with dimension zero.

Statements follow from Proposition 1.4.4.

An extension of the results in Proposition 1.4.4 and Corollary 1.4.5 can be obtained

for a more general primal SDP problem (see [50]). In some situations, variables are

12



1.4 Geometry

required to be semidefinite in terms of blocks and it is convenient to make this fact

explicit:

min
X1∈Sn1 ,...,Xp∈Snp

p∑
j=1

Cj •Xj

p∑
j=1

Aij •Xj = bi i = 1, . . . ,m,

X1, . . . , Xp � 0,

(GP)

where data are properly defined.

Proposition 1.4.6 Let F be a face of the feasible set of problem (GP), with dimension

d. For any (X1, . . . , Xp) ∈ F , it holds

p∑
j=1

(
rj + 1

2

)
≤ m+ d,

where rj = rank(Xj), with j = 1, . . . , p.

Proof As in Proposition 1.4.4, the rank assumption allows to rewrite, for any j =

1, . . . , p, Xi = QiEiQ
T
i , where Qi ∈ Rn×r and Ei ∈ Sr with Ei � 0. It follows that

QTj AijQj • Ej = bi, i = 1, . . . ,m, j = 1, . . . , p.

The system above has m equations in

p∑
j=1

rj(rj + 1)

2
variables. The proof can be com-

pleted as in the first part of the proof in Proposition 1.4.4.

Corollary 1.4.7 If Problem (GP) admits an optimal solution, then there exists an

optimal solution X∗ = (X∗1 , . . . , X
∗
p ) such that

p∑
j=1

(
rj + 1

2

)
≤ m

where rj = rank(X∗j ), with j = 1, . . . , p.

13
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2

Low-Rank formulation of SDP

problems

In Chapter 1, we refer to Interior Point methods as the main class of algorithms for

Semidefinite Programming. Actually, Interior Point methods are theoretically efficient

in solving linear SDP problems: they are proved to converge to an ε−optimal solution

in polynomial time. Practically, on the one side these methods show high accuracy in

reasonable time for small and medium instances. On the other side they are time and

memory consuming, so that large instances can not be tackled.

To overcome dimension restrictions, several solution approaches were proposed in lit-

erature based on relaxing the theoretical requirements in favor of practical efficiencies.

The general recipe is to quit with second-order methods and to exploit just first-order

information. Another key point is to try to get rid of semidefinite constraints, as the

most challenging part in linear SDP problems.

An efficient approach is the one proposed in [32], where a first-order bundle method is

used to solve a restricted class of SDP problems: first, an SDP problem, with an implicit

constant trace constraint, is reformulated as an eigenvalue optimization problem and

then it is applied a particular bundle method. This eigenvalue reformulation exploits

the fact that a matrix is semidefinite positive if and only if the smallest eigenvalue is

nonnegative.

In the spirit of bypass semidefinite constraints other approaches rely on some kind of

factorization. The first work in this direction goes back to the one of Homer and Peinado

15



2. LOW-RANK FORMULATION OF SDP PROBLEMS

in [36]: in order to solve the SDP relaxation of the Max-Cut problem, it proposed the

change of variables X = V V T , where V ∈ Rn×n. Difficulties of this approach are

mainly due to the number of variables (n2) and also the loss of convexity.

As a way to decrease the dimension of the reformulation, Burer and Monteiro in [15]

proposed to use a transformation of variables based on factorizations with triangular

matrices.

In [16, 17], Burer and Monteiro improved and extended their approach to general SDP

problems, applying the factorization X = V V T with V ∈ Rn×r and r < n. This rect-

angular transformation reduces the number of variables to nr.

Respect to this nonlinear reformulation called Low-Rank, the most important theoreti-

cal result is the definition of some global optimality conditions [1, 16, 27], which allows

to recognize which stationary points are optimal.

In practice it may happen to compute stationary points several times. Therefore, a

key aspect in the Low-Rank approach is how to efficiently compute a stationary point

for this nonlinear reformulation. In [14, 16, 17], for solving general linear SDP prob-

lems, an Augmented Lagrangian approach is defined, which leads to the solution of a

sequence of unconstrained problems. On the other side, looking at a restricted class

of SDP problems, it is possible to think of an Exact Penalty approach which allows to

get a stationary point of the Low-Rank formulation with just a single unconstrained

minimization.

In this chapter we recall properties of the Low-Rank formulation and related solution

algorithms.

2.1 Low-Rank formulation of the standard primal SDP

problem

For sake of simplicity, we recall the primal SDP problem

min
X

C •X

A(X) = b,

X � 0,

(P)

16



2.1 Low-Rank formulation of the standard primal SDP problem

and the corresponding dual

max
y

bT y

C −AT (y) � 0,

y ∈ Rm.

(D)

Without loss of generality, we assume matrices A1 . . . , Am (defining A(·)) being linear

independent as well as the fulfillment of the Slater Constraint Qualification for the

primal and the dual. By Corollary 1.2.4, these assumptions make both problems admit

an optimal solution and the following conditions

A(X) = b, X � 0, (primal feasibility)

C −AT (y) � 0, (dual feasibility)

C •X = bT y, (zero duality gap)

be necessary and sufficient for primal-dual optimality.

The idea in [16] is to reformulate (P) using rectangular factorizations. The innovative

aspect, respect to square factorizations used in [36], is to consider a factorization which

is not valid for all primal feasible points, but simply one that holds at least for an

optimal solution of (P). The transformation used is given by X = V V T with V ∈ Rn×r,
for r ≤ n. Feasible solutions with large rank are driven out: if X = V V T then

rank(X) ≤ r. This is the reason why this approach is referred as Low-Rank formulation

for SDP problems.

The matter is to preserve at least an optimal solution. If we knew the minimal rank of

an optimal solution, that is

r∗ = min{rank(X∗) : X∗optimal solution for (P)},

we could safely choose r = r∗. Even if r∗ is generally unknown, Proposition 1.4.4

provides an upper bound, defined as

r̂ = max

{
r ∈ N :

r(r + 1)

2
≤ m

}
=

⌊√
1 + 8m− 1

2

⌋
. (2.1)

More generally, for a fixed r < n we consider the following problem

min
V

C • V V T

A(V V T ) = b,

V ∈ Rn×r,

(LRr)

where the equivalence with (P) is stated in the next proposition.
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2. LOW-RANK FORMULATION OF SDP PROBLEMS

Proposition 2.1.1 Given r ≥ r∗, problems (P) and (LRr) are equivalent in terms of

global optimality.

Proof First of all, if V is feasible for (LRr), then V V T is feasible for (P) and with

the same objective values. It follows that the optimal value of (LRr) can not be smaller

than the optimal value of (P).

Let X∗ be an optimal solution for (P) with rank(X∗) = r∗, so that there exists R∗ ∈
Rn×r∗ such that X∗ = R∗R∗T . Then, V ∗ =

[
R∗ 0n×r−r∗

]
is feasible for (LRr) and

with objective value equals to C •X∗. It follows that the optimal value of (LRr) can

not be larger than the optimal value of (P).

In conclusion, optimal values of (P) and (LRr) are equal and optimal solutions can be

defined from each other.

Equivalence is guaranteed, but difficulties come out because (LRr) is nonlinear and

generally non-convex problem. Fortunately, on the one side global optimality condi-

tions are available. On the other side, experimental tests in literature for the Low-Rank

approach show that first-order nonlinear algorithms (developed for finding simple sta-

tionary points) provide almost directly global solutions for (LRr), hence for (P).

Before to recall optimality conditions, we rewrite (LRr) in nonlinear standard form

using vectors instead of matrices, namely setting v = vec(V ). To rewrite the objec-

tive function and constraints we use properties of the Kronecker product and the vec

operator: given M ∈ Sn, it follows that

M •V V T = MV •V = vec(MV )Tvec(V ) = ((Ir ⊗M)vec(V ))T vec(V ) = vT (Ir⊗M)v.

Therefore, the Low-Rank formulation can be rewritten in this way

min
v

vT (Ir ⊗ C)v

vT (Ir ⊗Ai)v − bi = 0, i = 1, . . . ,m

v ∈ Rnr.

(LRr)

2.2 Optimality conditions

First, we define the Lagrangian function

L(v, y) = vT (Ir ⊗ C)v +
m∑
i=1

yi
(
bi − vT (Ir ⊗Ai)v

)
= vT

(
Ir ⊗ C −AT (y)

)
v + bT y,
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2.2 Optimality conditions

where y ∈ Rm is the vector of multipliers associated to the constraints.

Second, we recall first and second order KKT conditions for the nonlinear programming

problem (LRr): if v̂ is regular and is a local minimizer for (LRr), then there exists

ŷ ∈ Rm such that

First-Order KKT conditions (FOC)(
Ir ⊗ C −AT (ŷ)

)
v̂ = 0,

v̂T (Ir ⊗Ai)v̂ = bi, i = 1, . . . ,m.
(2.2)

Second-Order KKT conditions (SOC)

zT
(
Ir ⊗ C −AT (ŷ)

)
z ≥ 0,

for any z ∈ Rnr such that zT (Ir ⊗Ai)v̂ = 0, with i = 1, . . . ,m.

In the following, we call v̂ a stationary point for (LRr) if condition (FOC) is satisfied.

If also (SOC) holds then we call v̂ a second-order stationary point.

Proposition 2.2.1 If v̂ a stationary point for (LRr) with multiplier ŷ, then

bT ŷ = v̂T (Ir ⊗ C)v̂.

Proof Exploiting first condition in (2.2) and feasibility of v̂, we have

0 = v̂T
(
Ir ⊗ C −AT (ŷ)

)
v̂ = v̂T (Ir ⊗ C) v̂ − v̂T

(
Ir ⊗AT (ŷ)

)
v̂

= v̂T (Ir ⊗ C) v̂ −
m∑
i=1

ŷiv̂
T (Ir ⊗Ai) v̂

= v̂T (Ir ⊗ C) v̂ −
m∑
i=1

ŷibi,

so that the thesis follows.

Therefore, if the multiplier ŷ associated to a stationary point v̂ results to be feasible

for (D), then v̂ is optimal for (LRr) and ŷ is dual optimal for (D), [16]. Truly, this

condition is not only sufficient for optimality but also necessary, [27].

Proposition 2.2.2 Given r ≥ r∗, a point v∗ is a global minimizer for (LRr) if and

only if v∗ is stationary point for (LRr) with multiplier y∗ and

C −AT (y∗) � 0. (2.3)
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2. LOW-RANK FORMULATION OF SDP PROBLEMS

Proof As for the sufficient part, the multiplier y∗ is dual feasible for (D) by condition

(2.3) and

X∗ = mat(v∗)mat(v∗)T

is primal feasible for (P) because v∗ is feasible for (LRr). Moreover, Proposition 2.2.1

proves optimality of X∗ and y∗ by strong duality, namely

bT y∗ = v∗T (Ir ⊗ C)v∗ = C •X∗.

It follows optimality of v∗ by Proposition 2.1.1.

Let us now prove the necessity part. By assumption v∗ solves problem (LRr) and by

strong duality between (P) and (D), combined with results in Proposition 2.1.1, there

exists a dual feasible solution y∗ such that

bT y∗ = v∗T (Ir ⊗ C)v∗. (2.4)

Because feasibility of y∗ recasts(2.3), it remains only to show that v∗ is a stationary

point for (LRr) with multiplier y∗. From feasibility of v∗ it follows that

bT y∗ =

m∑
i=1

yibi =

m∑
i=1

yiv
∗T (Ir ⊗Ai)v∗ = v∗T (Ir ⊗AT (y∗))v∗. (2.5)

Subtracting (2.5) from (2.4) we get

v∗T (Ir ⊗ C −AT (y∗))v∗ = 0. (2.6)

By (2.3) and by properties of Kronecker products, we have also

(Ir ⊗ C −AT (y∗)) � 0,

so that equation (2.6) implies that v∗ belongs to the Kernel of (Ir⊗C−AT (y∗)), namely

(Ir ⊗ C −AT (y∗))v∗ = 0.

This finally proves that v∗ is a stationary point with the right multiplier y∗.

Observe that an assumption on the regularity of the feasible set of (LRr) is not required,

but just conditions on the primal-dual SDP pair: conditions for strong duality for (P)

and (D) are sufficient to ensure that any global minimizer of (LRr) is a stationary

point.
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2.2 Optimality conditions

As we said before, another global optimality condition for (LRr) has been presented:

the sufficient side was presented in [16], while the extension as necessary condition was

proved in [27].

Proposition 2.2.3 Given r ≥ r∗, a point v∗ is a global minimizer for (LRr) if and

only if

(i) v∗ stationary point for (LRr) with multiplier y∗;

(ii) the point v̂ ∈ Rn(r+1) defined as

v̂ =

(
v∗

0n

)
,

is a second-order stationary point for (LRr+1) with the same multiplier y∗.

Proof In the sufficient part, for a given vector w ∈ Rn, we define the vector

z =

(
0nr
w

)
.

By construction, for any i = 1, . . . ,m, z is such that

zT (Ir+1 ⊗Ai)v̂ =
(
0Tnr wT

)(Ir ⊗Ai 0
0 Ai

)(
v∗

0n

)
= 0,

so that, because v̂ is a second-order stationary point for (LRr+1), we have

0 ≤ zT
(
Ir+1 ⊗ C −AT (y∗)

)
z =

(
0Tnr wT

)(Ir ⊗ C −AT (y∗) 0
0 C −AT (y∗)

)(
0nr
w

)

= wT (C −AT (y∗))w

For the generality of w it follows that C −AT (y∗) is semidefinite positive. Combining

this result with the assumption on v∗, Proposition 2.2.2 ensures that v∗ is a global

minimum for (LRr).

As the necessary part, by Proposition 2.2.2, if v∗ is a global solution for (LRr), then it

is a stationary point with multiplier y∗, optimal solution for (D). Hence, we need just

to show that v̂ is a second-order stationary point for (LRr+1).

Feasibility of v∗ forces v̂ to be feasible (LRr+1), namely

v̂T (Ir+1 ⊗Ai)v̂ =
(
v∗ 0n

)(Ir ⊗Ai 0
0 Ai

)(
v∗

0n

)
= (v∗)T (Ir ⊗Ai)v∗ = bi,
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2. LOW-RANK FORMULATION OF SDP PROBLEMS

for any i = 1, . . . ,m. Likewise

(
Ir+1 ⊗ C −AT (y∗)

)
v̂ =

(
Ir ⊗ C −AT (y∗) 0

0 C −AT (y∗)

)(
v∗

0n

)

=

((
Ir ⊗ C −AT (y∗)

)
v̂

0

)
= 0,

so that v̂ is at least a simple stationary point for (LRr+1). The second-order KKT

condition for v̂ is given by dual feasibility of y∗, so that also(
Ir+1 ⊗ C −AT (y∗)

)
� 0.

Finally, we recall a sufficient global condition appeared in [1] for a slightly more general

convex SDP problem, which includes as a special case problem (P): any local minimizer

V̂ for (LRr) is global if V̂ is rank deficient, namely if rank(V̂ ) < r. Actually, looking at

the proof, it turns out that the assumption of V̂ being a local minimizer can be relaxed

to satisfying the second-order KKT conditions for (LRr) problem.

Proposition 2.2.4 Given r ≤ r∗, let v∗ a second order stationary point for (LRr):

1. if r < n and the vectors

(e1 ⊗ In)T v∗, . . . , (er ⊗ In)T v∗,

are linear dependent, then v∗ is a global solution for (LRr);

2. if r = n then v∗ is a global solution for (LRr).

The above proposition is very important because it ensures that when r = n there not

exists a second-order stationary point which is not global.

2.3 Solution approach for the Low-Rank formulation

Generally speaking, algorithms for nonlinear programming provide (approximately)

simple stationary points with the associated multiplier vector. Therefore, without

convexity, there is no guarantee that the provided point solves globally the problem.

Fortunately, for problem(LRr), thanks to Proposition 2.2.2, it is possible to recognize
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2.3 Solution approach for the Low-Rank formulation

stationary points which are global from those they are not. If the condition (2.3) is

satisfied then the global solution for (LRr) provides a solution for the original SDP

problem (P). On the other side, if the condition is not true then the current stationary

point is not global.

In the latter case Proposition 2.2.3 gives an hint how to escape from it: going from

(LRr) to (LRr+1), the injection of the computed stationary point can not be a local

minimum, so that it can be escaped from. Nevertheless, from the practical point of view,

it is better to increase arbitrarily r (not just by one) and to start each minimization

from scratch.

An hidden difficulty in the Low-Rank approach is how to choose the initial rank r0.

We remind that equivalence of (LRr) with (P) holds if r ≥ r∗. The fact that r∗ is

typically unknown could make think to start from r̂ (the upper bound on r∗). By the

way r̂ is probably much bigger than r∗, so that we would solve a problem much bigger

than needed. Moreover, if r < r∗, condition (2.3) could never be satisfied by stationary

point of (LRr) and then we would never stop too early.

Therefore, the general recipe is to choose the initial r reasonably small and to increase

it until it is found a stationary point for the current problem, such that condition (2.3)

is satisfied.

More formally, we summarize the Low-Rank approach in the following scheme.

Low-Rank Approach for problem (P)

Parameter. r0 ∈ [1, r̂], β > 1.

Initialization. r = r0.

While r ≤ n

1. Compute stationary point v̂ for (LRr) with multiplier ŷ.

2. If Q−AT (ŷ) � 0 then return with X̂ = mat(v̂)mat(v̂)T and ŷ,

3. otherwise set r = dβre.

End While
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2. LOW-RANK FORMULATION OF SDP PROBLEMS

In the unlikely case we reach r = n without getting an optimal solution, we can use a

second-order algorithm (see, e.g., [4]) applied to (LRn), which guarantees convergence

to a second-order stationary point and hence to an optimal solution by Proposition

2.2.4.

The only point which needs more explanation is, once r is fixed, how to practically

compute a stationary point and the corresponding multiplier.

2.3.1 Augmented Lagrangian approach for general Low-Rank prob-

lems

If we consider general SDP problem, and consequently general Low-Rank formulation,

the solution approach proposed in [14, 16, 17] is based on the Augmented Lagrangian

function. For problem (LRr) this function is defined as

La(v, y; ε) = vT (Ir ⊗ C)v +
m∑
i=1

yi
(
bi − vT (Ir ⊗Ai)v

)
+

1

ε

m∑
i=1

(
bi − vT (Ir ⊗Ai)v

)2
,

hence given by adding to the Lagrangian function a term that measures the violation

of the constraints scaled by the penalty parameter ε > 0.

Motivations for using this function are related to the fact if we knew the multiplier y∗

associated to an optimal solution v∗, then there would exist a threshold value ε∗ > 0

such that

v∗ = arg min
v
La(v, y

∗; ε)

for any ε ∈ (0, ε∗]( see [8]). Then a single minimization would be enough to find the

stationary point v∗. This result is very important because it mitigates phenomena of

ill-conditioning typical in penalty methods (because of the need of forcing the penalty

parameter to 0).

Because the optimal multiplier is unknown as well as the threshold value ε∗, in the Aug-

mented Lagrangian approach it is generated a sequence {yk, εk} converging to (y∗, ε∗)

and consequently a sequence {vk} where each element is defined as the unconstrained

stationary point of

min
v
La(v, y

k; εk).

At each iteration, current solution vk is used to update multipliers and the penalty

parameter: if the feasibility has sufficiently increased, then the multiplier yk is updated

as

yk+1 = yk +
1

εk

(
bi − vk

T
(Ir ⊗Ai)vk

)
i = 1, . . . ,m. (2.7)
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2.3 Solution approach for the Low-Rank formulation

Otherwise, the penalty parameter is reduced. Update (2.7) stands for one gradient-type

iteration to maximize locally the dual function (see [8]).

Under suitable assumptions, {vk} converges to v̂ stationary point for (LRr) and {yk}
to the multiplier ŷ associated to v̂.

Based on works [14, 16, 17] it has been developed a very efficient code called SDPLR. In

particular, a key aspect is the use of an Augmented Lagrangian algorithm specialized

to the Low-Rank SDP structure. Practical performances are promising and behaves

quite well for SDP problems with no very particular structure.

2.3.2 Exact Penalty approach for particular Low-Rank problems

The Augmented Lagrangian approach allows to cope with large dimension and sparsity,

but it suffers on the need of solving a sequence of unconstrained problems.

Restricting the range of applications, the properties of a particular problem can be

exploited to find in an easier way a stationary point of the Low-Rank formulation.

The key point is the possibility to express multipliers in closed-form expression for a

stationary point.

From now on, we focus on problems satisfying the following assumption.

Assumption 2.3.1 Constraints matrices A1, . . . , Am satisfy

AiAj = 0, i = 1, . . . ,m, j = i+ 1, . . . ,m.

As usual in nonlinear programming, we require the feasible set in (LRr) being regular,

namely with (Ir ⊗A1)v, . . . , (Ir ⊗Am)v linear independent for any feasible v.

Proposition 2.3.2 If v̂ is a stationary point for (LRr), then the associated multiplier

ŷ can be expressed as a function of v̂, namely as

ŷl =
v̂T (Ir ⊗AlC)v̂

v̂T (I ⊗A2
l )v̂

l = 1, . . . ,m. (2.8)

Proof Regularity on the feasible set of (LRr) implies that

v̂T (Ir ⊗A2
l )v̂ = ‖(Ir ⊗Al)v‖2 6= 0, l = 1, . . . ,m.

More, exploiting (2.2), for any l = 1, . . . ,m, we have

0 = v̂T (Ir ⊗Al)

(
Ir ⊗ (C −

m∑
i=1

ŷiAi)

)
v̂ = v̂T (Ir ⊗AlC)v̂ −

m∑
i=1

ŷiv̂
T (Ir ⊗AlAi)v̂

= v̂T (Ir ⊗AlC)v̂ − ŷlv̂T (Ir ⊗A2
l )v̂,

so that (2.8) follows.
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2. LOW-RANK FORMULATION OF SDP PROBLEMS

Therefore, we can define a multiplier function y(v) in this way

yl(v) =
vT (Ir ⊗AlC)v

vT (I ⊗A2
l )v + (vT (Ir ⊗Al)v − bl)2

l = 1, . . . ,m. (2.9)

Function y(v) is continuously differentiable over Rnr. Moreover, if v̂ is a stationary

point for (LRr), then y(v̂) gives the right multiplier vector associated to v̂.

These properties are the most important to define an Exact Penalty function for (LRr),

namely a function whose minimization gives directly a stationary point for (LRr).

Indeed, function (2.9) is a simple reduction of the multiplier function proposed in

[42, 43] for general regular constrained problems. Assumption 2.3.1 gives an easier form

for the multiplier function, simplifying theoretical properties and practical aspects.

As a particular case, we exploit entirely the theory in [42, 43]. Hence, for all propositions

that follow we do not report any proof, just refer to [42, 43].

For simplicity, we assume that the primal feasible set in (P) is bounded (or at least the

primal optimal solution set). So there exists α > 0 such that In •X < α for any primal

feasible X. Then, we define the function

A(v) = α− vT (Ir ⊗ In)v,

and the open set A = {v ∈ Rnr : A(v) > 0}. By assumption, A contains the feasible

set of (LRr) and its closure is compact.

For a fixed parameter ε > 0, we consider the merit function

Pε(v) = vT (Ir⊗C)v+
1

a(v)

m∑
i=1

yi
(
bi − vT (Ir ⊗Ai)v

)
+

1

εa(v)

m∑
i=1

(
bi − vT (Ir ⊗Ai)v

)2
,

defined over A and the optimization problem

min
v∈A

Pε(v). (ULRr)

In the following we report the properties of this problem

Proposition 2.3.3 Given any ε > 0 and a feasible point v̂, then

(i) Lε(ṽ) = {v ∈ A : Pε(v) ≤ Pε(ṽ)} is compact and Pε(v) admits a global minimizer

in Lε(ṽ);

(ii) Pε(v) is continuously differentiable in A ⊇ Lε(ṽ).

Proposition 2.3.4 There exists an ε∗ > 0 such that for any ε ∈ (0, ε∗] the following

equivalences hold:
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2.3 Solution approach for the Low-Rank formulation

(i) v̂ is stationary point for (LRr) if and only if v̂ is a stationary point for (ULRr).

(ii) v̂ is local minimizer for (LRr) if and only if v̂ is a local minimizer for (ULRr).

(iii) v̂ is global minimizer for (LRr) if and only if v̂ is a global minimizer for (ULRr).

Proposition 2.3.4 states the equivalence between (LRr) and (ULRr) for ε sufficiently

large and so (ULRr) can be used instead of (LRr). In this sense we refer Pε(v) as an

Exact Penalty function for (LRr).

Consider standard first-order unconstrained algorithms, such that the generated se-

quence belongs to level set of the initial point. These algorithms can be used to find a

stationary point for (LRr): properties in Proposition 2.3.3 make any standard uncon-

strained optimization algorithms applied to (ULRr) be globally convergent at least to

a stationary point for (ULRr).

In conclusion, we underline a nice property of Low-Rank algorithms. As first-order

algorithms use only function and gradient evaluations, Low-Rank approaches are able

to fully exploit sparsity of the data. Actually, given any M ∈ Sn with k nonzero entries,

the matrix (Ir⊗M) has exactly rk nonzero entries. Hence costs to compute of (Ir⊗M)v

and vT (Ir ⊗M)v are both of the order of rk.
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3

Low-Rank SDP Heuristic for

large-scale Max-Cut

The Max-Cut is one of the most important in Graph Partitioning problems and it is a

good example of difficult problem in Combinatorial Optimization. Main applications

of Max-Cut come out from Circuit Design Problems and Statistical Physics (see [5]).

For a detailed survey on Max-Cut refer to [51].

In the Max-Cut the aim is to partition the nodes of a graph in two subsets such that

the sum of the weights of the edges crossing from one subset to the other is maximized.

Main effective solution approaches for Max-Cut are based on an SDP relaxation. Ac-

tually, producing efficiently a solution to this SDP problem is then of great interest for

solving exactly the Max-Cut or for designing good heuristics.

One possibility is to reformulate this SDP problem through Low-Rank factorizations

as a nonlinear programming problem. This approach allows to solve large instance in

a reasonable time.

In this chapter, we recall the general integer formulation, the SDP relaxation and its

Low-Rank Formulation. Then, after giving a fast overview of the Low-Rank approaches

proposed in literature, we define a new unconstrained formulation and the correspond-

ing algorithm to solve the SDP relaxation. Afterwards, based on this fast large-scale

algorithm, we define a new heuristic algorithm to find good feasible solutions to large

instances of Max-Cut. Finally, in last section we report numerical results on the so-

lution of the SDP relaxation and on the approximated solution of huge instances of

Max-Cut.
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3. LOW-RANK SDP HEURISTIC FOR LARGE-SCALE MAX-CUT

3.1 Max-Cut

Consider an edge-weighted undirected graph G(N,A), where N is the set of nodes, with

cardinality n, and A ⊆ N × N is the set of edges between nodes, with cardinality m.

The connectivity of the graph is represented by the weighted adjacency matrix A ∈ Sn:

if ij ∈ A then aij is equal to weight associated to the edge ij, otherwise aij is 0.

Any subset S ⊆ N induces a bipartition in the graph, namely {S,N − S}. We denote

by δ(S) the cut defined by S, namely the set of edges with an endpoint in S and the

other in N − S. So the Max-Cut problem can be formulated in this way

m∗ = max
S⊆N

∑
ij∈δ(S)

aij . (MC)

In order to have an algebraic formulation of this problem, we represent a bipartition

with a vector x ∈ {−1, 1}n, where each xi is equal to 1 if i ∈ S, −1 otherwise. For a

fixed partition x, the vector z(x) ∈ Rm, defined as

z(x) =

[
1− xixj

2

]
ij∈A

,

gives the incidence vector of the cut δ(x). So the weighted sum of the edges in the cut

induced by x can be written in this way

∑
ij∈δ(x)

aij =
1

2

n∑
i=1

n∑
j=1

aijzij(x) =
1

4

n∑
i=1

n∑
j=1

aij(1− xixj)

=
1

4

n∑
i=1

 n∑
j=1

aijxixi −
n∑
j=1

aijxixj

 =
1

4
xT (Diag(Au)−A)x.

The matrix L = Diag(Au) − A is called Laplacian of G. Finally, the Max-Cut can be

rewritten as an integer quadratic problem

m∗ = max
x

1
4x

TLx

x ∈ {−1, 1}n.
(MC)

In order to tackle this NP−Hard problem, several approaches have been developed.

Roughly speaking, we can separate them in exact and heuristic algorithms.

Exact algorithms are based on some pseudo-enumeration techniques, with the growth

of the number of subproblems limited by computation of lower and upper bounds on

the Max-Cut Problem. Upper bounds are obtained by the definition and the solution

of a suitable relaxation for (MC) (or some equivalent formulations), while lower bounds
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3.1 Max-Cut

are given by finding “good” cut. An exact algorithm stops as soon as the best lower

bound equals the best upper bound and it outputs an optimal solution of (MC). Of

course, as consequence of the implicit workload, the dimension of the problems that

can be effectively solved is limited to few hundreds.

On the opposite, heuristic algorithms provide only feasible cuts, obtained by applying

some heuristic approach (such as evolutionary, simulated annealing, tabu and local

search) to the simple structure of bi-partitions. On the one side these algorithms can

tackle large instances and on the other side there is no safeguard on the quality of the

provided solutions. For a reference of these approaches see [11].

In truth, among the heuristic approaches, there are some based on some relaxation of

the Max-Cut, so that a lower and an upper bound are both provided, namely a bound

on the optimality error for the generated solutions. Of course, exact algorithms, if

interrupted at an early stage, provide an heuristic cut and as a side product an upper

bound on the optimal value.

First exact approaches proposed for Max-Cut were based on Linear Programming re-

laxations. In particular, the polyhedral relaxation based approach in [41] seems to work

quite well for very sparse instances.

More recently, Semidefinite Programming came at hand as more effective relaxation

for the Max-Cut. In this direction the most significant work is the one of Goemans

and Williamson in 1995, [24], where it has been developed an approximation algorithm

based on a SDP relaxation. The relevance of their work derives from two facts: first,

they drastically improved the best known approximation for the Max-Cut, from 0.5 to

0.87856. Second, they put a light of interest in Semidefinite Programming, as a useful

tool in Combinatorial Optimization.

Next, we recall the key points in the approach proposed by Goemans and Williamson,

the SDP relaxation, the heuristic procedure and the relative performance guarantee.

Given x ∈ {−1, 1}n the matrix X = xxT is semidefinite positive and with diagonal

entries equal to 1. In the space of matrices the objective function can be written as

xTLx = L • xxT = L •X.

Dropping the implicit rank one constraint we get the following SDP relaxation for the

Max-Cut

m′ = max
X

1
4L •X

diag(X) = u,

X � 0,

(SDPMC)
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3. LOW-RANK SDP HEURISTIC FOR LARGE-SCALE MAX-CUT

so that m′ ≥ m∗. This SDP problem and the relative dual admit strict feasible points,

so they both admit optimal solution and with equal optimal values. Therefore, an

approximated solution can be obtained in polynomial time by Interior Point methods.

The randomized approximation algorithm proposed in [24] can be summarized in the

following steps.

Goemans-Williamson algorithm (GWA)

Data. L.

1. SDP Relaxation: compute optimal solution X∗ for (SDPMC).

2. Gramiam Matrix: factorize X∗ with V = [v1 . . . vn] ∈ Rr×n with r ≤ n,

such that X∗ = V TV .

3. Random Hyperplane: generate randomly h ∈ Rr with ‖h‖ = 1.

4. Rounding: set x as

xi =

1 if hT vi ≥ 1,

−1 otherwise,
i = 1, . . . , n.

End For

Return x, zlb = xTLx
4 and zub = m′.

The hyperplane defined by h separates the space in two half-spaces and an edge ij

belongs to the cut(x) if vi and vj belong to different half-spaces. Randomness of h

implies randomness of x and of the corresponding cut. Therefore, we need to refer about

expected value for the cut. Goemans and Williamson showed that their randomized

algorithm produces a cut with an expected value not too far from the optimal one: if

A ≥ 0 then

m∗ ≥ 1

4
E[xTLx] ≥ α0m

′ ≥ α0m
∗,

where α0 = 0.87856. We stress that the above result just holds for graphs with non-

negative weights. More generally, graphs with weights such that the Laplacian L is

semidefinite positive, α0 reduces to 2
π (see [46]).

Problem (SDPMC) and GWA form the basis for other SDP approaches for the Max-Cut.

For example, in [31, 53], exact algorithms are defined using these two ingredients, where
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3.2 SDP relaxation

(SDPMC) is even strengthened by adding triangle inequalities, directly to the feasible

set or to the objective function in a dual Lagrangian fashion. Of course these ap-

proaches can not tackle large-instances: the solution of (SDPMC) and the computation

of the Gramiam matrix represent bottlenecks of the method. Actually, (SDPMC) can

be solved efficiently by Interior Point methods just for small and medium instances.

Moreover, the Gramiam matrix is computed through a Cholesky factorization, which

has a cost proportional to O(n3). A lot of effort has been done in literature in order to

make lighter these two tasks.

3.2 SDP relaxation

To be slightly more general, we consider the SDP relaxation of the Max-Cut in this

form

min
X

C •X

diag(X) = u,

X � 0.

(SDP)

Actually (SDPMC) corresponds to (SDP) letting C = −1
4L.

The dual of (SDP) is given by

max
y

uT y

C −Diag(y) � 0

y ∈ Rn.

(DSDP)

Observe that X = I is strictly feasible for the primal and y = (λmin(C)−1)u is strictly

feasible for the dual. Therefore, thanks to Corollary 1.2.4, (SDP) and (DSDP) both

admit optimal solution and strong duality holds.

Under those conditions, Interior Point methods are the natural candidates to solve

(SDP). Unfortunately, these methods typically become less attractive for instances

with n very large: those that make use of an explicit representation of the matrix X,

because of the evident excessive space requirements; those that are based on iterative

methods (usually based on the dual), because are still too much slow for large instances.

These limitations have motivated searching for methods that are less demanding in

terms of memory allocation and of computational cost. In this perspective, the con-

straint structure of problem (SDP) has been exploited in the literature to define special

purpose algorithms.
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3. LOW-RANK SDP HEURISTIC FOR LARGE-SCALE MAX-CUT

One possibility is to reformulate (DSDP) as an eigenvalue optimization problem. Ac-

tually, for any primal feasible solution X the trace is equal to n, so that adding this

redundant constraint and passing to dual we get

max
y,λ

nλ+ uT y

C −Diag(y)− λI � 0,

y ∈ Rn, λ ∈ R,

which is equivalent to

max
y,λ

nλmin (C −Diag(y)) + uT y.

The objective function is concave, non-smooth and with a particular structure. To

maximize this function a Spectral Bundle method was designed in [32]. This algorithm

involves per iteration an extreme spectral decomposition of a (sparse) matrix and the

solution of a small quadratic SDP problem. As usual in bundle methods, the algorithm

is very fast at the beginning and it suffers asking for high accuracy. We refer to the

inherent algorithm with SB.

The other option is based on the Low-Rank approach as described in Chapter 2. Non-

linear formulations are obtained by means of rectangular factorizations.

3.3 Low-Rank SDP relaxation

With a look to the Max-Cut, we think of factorizations with r × n matrices instead

of n × r. All the results given in Chapter 2 continue to hold, just the form is slightly

different.

Every X � 0 with rank r > 0 can be factorized with V ∈ Rr×n, that is X = V TV .

Under this notation and applying the vector representation v = vec(V ), we get the

Low-Rank formulation for (SDP)

min
v

vT (C ⊗ Ir)v

vT (Eii ⊗ Ir)v = 1 i = 1, . . . , n

v ∈ Rnr.

(LRr)

Originally, Goemans and Williamson in [24] were the first proposing this formulation

as relaxation of (MC) and then they exploited the equivalence with (SDP) to compute

a solution. They did the way round because at that time the convex problem (SDP)

seemed to be of easier solution than the nonlinear non-convex problem (LRr).
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3.3 Low-Rank SDP relaxation

Main improvements respect to that time were brought by Burer and Monteiro in [16],

where they gave a better understanding of the Low-Rank approach for general linear

SDP problem. In particular, one of the results implies the equivalence of (LRr) with

(SDP) just for r reasonably large (see Proposition 2.1.1).

Moreover, although problem (LRr) is non-convex, they provided sufficient conditions

for stationary points to be global, which they turned out to be also necessary conditions,

see [27, 29]. We refer to global optimality conditions given in Propositions 2.2.2 and

2.2.3.

In particular, a point v̂ is stationary point of problem (LRr) if there exists a Lagrange

multiplier ŷ ∈ Rn such that

(C −Diag(ŷ)⊗ Ir) v̂ = 0,

v̂T (Eii ⊗ Ir)v̂ = 1 i = 1, . . . , n
(3.1)

In [29], based on the above conditions, it is provided a multiplier function y(v) defined

as

yi(v) = vT (EiiC ⊗ Ir), v i = 1, . . . , n, (3.2)

such that it gives the right Lagrange multiplier for a stationary point. This fact can be

also derived specializing results in Proposition 2.3.2.

Finally, as direct result of Proposition 2.2.2, a point v∗ is a global minimizer for (LRr)

if and only if v∗ is stationary point for (LRr) and y(v∗) is dual feasible for (DSDP).

In the spirit of Low-Rank approach, (LRr) is solved in terms of stationary points for

increasing value of r, until the related multiplier is dual feasible. The initial rank is

never chosen larger than

r̂ =

⌊√
8n+ 1− 1

2

⌋
,

as it represents an upper bound on the minimal rank of an optimal solution of (SDP).

This bound derives from the general bound given in (2.1).

More formally, all these results lead to the Incremental Rank Algorithm (IRA) for the

solution of problem (SDP), that encompasses most of the Low-Rank methods proposed

in the literature.
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3. LOW-RANK SDP HEURISTIC FOR LARGE-SCALE MAX-CUT

Incremental Rank Algorithm (IRA)

Data. C, integer p.

Initialization. set integers 2 ≤ r1 < r2 < · · · < rp, with rp ∈ [r̂, n].

For i = 1, . . . , p

1. Set r = ri.

2. Compute stationary point v̂ for (LRr).

3. Compute smallest eigenvalue λ̂min of C −Diag(y(v̂)).

4. If λ̂min ≥ 0 then exit.

End For

Return λ̂min, V̂ = mat(v̂), X̂ = V̂ T V̂ , ŷ = y(v̂) + min(0, λ̂min)u, m
′′

= uT ŷ.

The (IRA) algorithm always outputs a primal feasible solution X̂, its Gramian matrix

V̂ and a dual feasible solution ŷ. If λ̂ ≥ 0 then X̂ and ŷ are respectively optimal

for (SDP) and (DSDP), and hence m
′′

= m
′
. Otherwise, ŷ remains by construction

dual feasible and then m
′′
< m

′
by weak duality. It follows that at least the (IRA)

algorithm provides a lower bound on (SDP). In truth, in practice it always happens to

find optimal solutions.

Generally speaking, all the Low-Rank methods proposed in literature for solving (SDP)

vary just on the way a stationary point for (LRr) is computed, generally by means of

an unconstrained reformulation. We give a brief overview of the different approaches,

focusing more on the Quotient formulation because it represents the starting point for

our work.

The first method relies on the Augmented Lagrangian approach proposed in [14, 16, 17]

for general Low-Rank problems and explained in Subsection 2.3.1: based on

La(v, y; ε) = vT (C ⊗ Ir)v +
n∑
i=1

yi
(
1− vT (Eii ⊗ Ir)v

)
+

1

ε

n∑
i=1

(
1− vT (Eii ⊗ Ir)v

)2
,

several unconstrained minimizations, for different values of the multiplier y and the

penalty parameter ε, are required in order to get a stationary point of (LRr). We refer

to the inherent algorithm with SDPLR.
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3.3 Low-Rank SDP relaxation

In [29] the structure of the problem is exploited to define the multiplier function y(v)

given in (3.2). The use of this function in the Augmented Lagrangian allows to define

the merit function

P (v, ε) = vT (C ⊗ Ir)v +

n∑
i=1

vT (EiiC ⊗ Ir)v
(
1− vT (Eii ⊗ Ir)v

)
+

1

ε

n∑
i=1

(
1− vT (Eii ⊗ Ir)v

)2
,

which has been proved to be exact respect to (LRr) for ε sufficiently small. Therefore,

just an unconstrained minimization of a continuously differentiable function is required.

We refer to the inherent algorithm with EXPA.

More recently, in [1] it has been proposed a trust region method for the optimization

over a manifold, which relies on a particular quotient manifold. We refer to the inherent

algorithm with GenRTR.

3.3.1 Quotient formulation

This formulation heavily exploits the simple structure of the constraints and the shape

of the objective function. It is useful to express explicitly the n vectors v1, . . . , vn ∈ Rr

which compose the vector v ∈ Rnr, so that the problem becomes

min
v

fr(v) =
n∑
i=1

n∑
j=1

cijv
T
i vj

‖vi‖2 = 1 i = 1, . . . , n.

(LRr)

Under this notation, respect to the single blocks, we rewrite the KKT conditions as

n∑
j=1

cijvj − yi(v)vi =
n∑
j=1

cij
(
vj − vTi vjvi

)
= 0, i = 1, . . . , n

‖vi‖2 = 1 i = 1, . . . , n

where it is explicitly used the closed form expression for the multiplier, namely

yi(v) =
n∑
j=1

qijv
T
i vj i = 1, . . . , n.

The idea in this formulation is to force the feasibility of v1 . . . , vn: by direct normaliza-

tion of these vectors on fr(v), the following function is obtained

qr(v) =

n∑
i=1

n∑
j=1

cij
vTi vj
‖vi‖‖vj‖

.

Based on the so-called Quotient function, there have been some interesting works and

it represents also the starting point for ours. The first time of an unconstrained model
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3. LOW-RANK SDP HEURISTIC FOR LARGE-SCALE MAX-CUT

based on qr(v) came out in [36] for r = n, but the dimension of the resulting problem

makes the method prohibitive for large-scale problems. Later on, in [16] function qr(v)

has been proposed again, but in a Low-Rank framework. We refer to the inherent

algorithm with SDPLR-MC. On the one side, numerical results presented in [16] were

quite promising, but, on the other side, some theoretical and practical issues were not

considered.

As initial part of our work we deeply analyzed the Quotient function as a basis to

solve (LRr). First, to justify the use of the Quotient function, it should be proved the

equivalence with (LRr). In this sense, in [28] we proved such correspondence, in terms

of stationary points, local and global minimizers.

Nevertheless, practical pitfalls reside in the application of an optimization method to

the Quotient function. Generally speaking, a standard unconstrained procedure can be

proven to be globally convergent if it is applied to the minimization of a continuously

differentiable function with compact level sets. As opposed, qr(v) is defined only over

Q = {v ∈ Rnr : ‖vi‖ 6= 0, i = 1, . . . , n}.

A workaround for this problem is to restrict to the class of gradient-type methods.

Function qr(v) is continuously differentiable over Q, with gradient components

∇viqr(v) =
2

‖vi‖

 n∑
j=1

cij

(
Ir −

vi
‖vi‖

vi
T

‖vi‖

)
vj
‖vj‖

 , i = 1, . . . , n,

For the gradients the following property holds

vTi ∇viqr(v) =
2

‖vi‖

 n∑
j=1

qij

(
vTj vi

‖vj‖
− vi

T vj
‖vi‖‖vj‖

vi
T vi
‖vi‖

) = 0, i = 1, . . . , n. (3.3)

In a gradient-type step for a point v ∈ Q, the next point v+ is computes as

v+i = vi − α∇viqr(v), i = 1, . . . , n,

with a suitable α > 0. The orthogonality condition in (3.3) gives

‖v+i ‖
2 = ‖v+i ‖

2 + α2‖∇viqr(v)‖2 − 2αvi
T∇viqr(v) = ‖vi‖2 + α2‖∇viqr(v)‖2 ≥ ‖vi‖2, (3.4)

for any i = 1, . . . , n. This condition shows that a gradient-type method keeps the

entire sequence in Q. As opposed, with a Newton-type step, with d = −H∇vqr(vk), it

should be forced the following condition to be true

α2‖di‖2 − 2αvTi di ≥ 0 i = 1, . . . , n.
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3.3 Low-Rank SDP relaxation

Unfortunately another problem is left: in order to prove convergence of an uncon-

strained standard algorithm, it is required that the entire sequence belongs to a certain

compact set, so that the sequence admits at least an accumulation point. In the mini-

mization of the Quotient function qr(v), the sequence generated is very probably to be

unbounded (look at (3.4)).

In conclusion, we feel that convergence of an unconstrained method applied to the

Quotient function cannot be guarantee. Nevertheless, this approach appeared to be very

efficient in practice, so that we propose a regularization of the Quotient function that

retains efficiency and allows to prove global convergence for any standard algorithm.

3.3.2 Regularized Quotient function

We modify the objective function qr(v) adding the regularization term

n∑
i=1

(‖vi‖2 − 1)2

d(vi)
,

where the term

d(vi) = δ2 −
(
1− ‖vi‖2

)2
+
, 0 < δ < 1, (3.5)

acts as a shifted barrier on the open set

Sδ =
{
v ∈ Rnr : ‖vi‖2 > 1− δ, i = 1, . . . , n

}
.

For fixed ε > 0 and r ≥ 1, we consider the unconstrained minimization problem

min
v∈Sδ

rε(v) = qr(v) +
1

ε

n∑
i=1

(‖vi‖2 − 1)2

d(vi)
. (QLRr)

Both rε and Sδ depend on r, but we omit the explicit indication of this dependency to

simplify notation. Moreover, we use F to denote the feasible set of problem (LRr), i.e.

F =
{
v ∈ Rnr : ‖vi‖2 = 1, i = 1, . . . , n

}
.

Observe that F ⊆ Sδ ⊆ Q.

We start by investigating the theoretical properties of rε. This function is continuously

differentiable on the open set Sδ, with gradient components

∇virε(v) = ∇viqr(v) +
4

ε

(‖vi‖2 − 1)

d(vi)

[
1− (‖vi‖2 − 1)(1− ‖vi‖2)+

d(vi)

]
vi.

The first important property is the compactness of the level sets of function rε, which

guarantees the existence of a solution for problem (QLRr).
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Proposition 3.3.1 Given ε > 0 and v0 ∈ F, the level set

Lε(v
0) =

{
v ∈ Sδ : rε(v) ≤ rε(v0)

}
is compact and

Lε(v
0) ⊆

{
v ∈ Rnr : ‖vi‖2 ≤

(
2Cεδ2

) 1
2 + 1, i = 1, . . . , n

}
, (3.6)

with C =

n∑
i=1

n∑
j=1

|cij | > 0.

Proof First, for every v ∈ Sδ, we have that

qr(v) =

n∑
i=1

n∑
j=1

cij
vTi vj
‖vi‖‖vj‖

≥ −
n∑
i=1

n∑
j=1

|cij |
|vTi vj |
‖vi‖‖vj‖

≥ −C.

Hence we get

rε(v) ≥ −C +
1

ε

(‖vi‖2 − 1)2

δ2
, i = 1, . . . , n. (3.7)

For every given v ∈ Lε(v
0), as v0 ∈ F, it follows

rε(v) ≤ rε(v0) = qr(v
0) ≤ C,

so that using (3.7) it holds

‖vi‖2 ≤
(
2Cεδ2

) 1
2 + 1 i = 1, . . . n.

This implies that (3.6) holds and hence Lε(v
0) is bounded.

On the other hand, any limit point v̂ of a sequence of points {vk} in Lε(v
0) cannot

belong to the boundary of Sδ. Indeed, if ‖v̂i‖2 = 1 − δ for some i, then (3.5) implies

d(v̂i) = 0 and hence limk→∞ rε(v
k) = ∞. This fact contradicts vk ∈ Lε(v

0) for k

sufficiently large. Therefore, the level set Lε(v
0) is also closed and the claim follows.

The following theorem states the correspondence between (QLRr) and (LRr) in terms

of stationary points, local and global minimizers. This result exploits an interesting

property of the Quotient function, the orthogonality condition expressed by (3.3).

Theorem 3.3.2 Given ε > 0 and r ≥ 1, the following correspondences hold:

(i) v̂ is a stationary point of (QLRr) if and only if v̂ is a stationary point of (LRr).

(ii) v̂ is a global minimizer of (QLRr) if and only if v̂ is a global minimizer of (LRr).
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3.3 Low-Rank SDP relaxation

(iii) v̂ is a local minimizer of (QLRr) if and only if v̂ is a local minimizer of (LRr).

Proof First, for every v ∈ Sδ, by definition of ∇virε(v) and by (3.3), we get

vTi ∇virε(v) =
4

ε

(‖vi‖2 − 1)vTi vi
d(vi)

(
1− (‖vi‖2 − 1)(1− ‖vi‖2)+

d(vi)

)
.

for every i = 1, . . . , n. Therefore, if ‖vi‖2 ≥ 1 then

vTi ∇virε(v) =
4

ε

(‖vi‖2 − 1)‖vi‖2

δ2
, (3.8)

otherwise

vTi ∇virε(v) =
4

ε

(‖vi‖2 − 1)‖vi‖2

d(vi)

(
1 +

(‖vi‖2 − 1)2

d(vi)

)
. (3.9)

Furthermore, if v ∈ F then

rε(v) = fr(v), (3.10)

∇virε(v) = 2

n∑
j=1

cij
(
Ir − viviT

)
vj = ∇viL (v, y(v)) , i = 1, . . . , n. (3.11)

Now we prove the correspondences stated in our claims.

(Correspondence of stationary points).

Necessity. By (3.8) and (3.9), if v̂ ∈ Sδ is a stationary point of rε then v̂ ∈ F. Hence,

as a result of (3.11), v̂ is a stationary point also for problem (LRr).

Sufficiency. Let v̂ be a stationary point for problem (LRr). Then v̂ ∈ F and by (3.11)

it follows ∇rε(v̂) = 0.

(Correspondence of global minimizers).

Necessity. By Proposition 3.3.1, the function rε admits a global minimizer v̂, which is

obviously a stationary point of rε. Hence we have v̂ ∈ F and rε(v̂) = fr(v̂). We

proceed by contradiction. Assume that a global minimizer v̂ of rε is not a global

minimizer of problem (LRr). Then there exists a point v∗, global minimizer of

problem (LRr), such that

rε(v̂) = fr(v̂) > fr(v
∗) = rε(v

∗),

but this contradicts the assumption that v̂ is a global minimizer of rε.
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Sufficiency. The claim is true by similar arguments.

(Correspondence of local minimizers).

Necessity. Since v̂ is a local minimizer of rε, it is also a stationary point of rε, so that

v̂ ∈ F and rε(v̂) = fr(v̂). Furthermore, there exists a ρ > 0 such that

fr(v̂) = rε(v̂) ≤ rε(v) ∀ v ∈ Sδ ∩Bρ(v̂).

Therefore, by using (3.10), we have

fr(v̂) ≤ rε(v) = fr(v) ∀ v ∈ F ∩Bρ(v̂),

namely v̂ is a local minimizer for problem (LRr).

Sufficiency. Since v̂ is a local minimizer of (LRr), there exists a ρ > 0 such that

fr(v̂) = rε(v̂) ≤ fr(v) = rε(v) ∀ v ∈ F ∩Bρ(v̂).

We want to show that there exists γ > 0 such that

rε(v̂) ≤ rε(v) ∀ v ∈ Sδ ∩Bγ(v̂).

Nevertheless, it is sufficient to show that there is a γ > 0 such that for any

v ∈ Sδ ∩Bγ(v̂) we have p(v) ∈ F ∩Bρ(v̂), where p(v) has components

pi(v) =
vi
‖vi‖

i = 1, . . . , n.

Indeed, in this case we would have

fr(v̂) = rε(v̂) ≤ fr(p(v)) = rε(p(v)) ≤ rε(v).

Given any vi 6= 0 ∈ Rr, the projection over the unit norm set is simply
vi
‖vi‖

, that

is

‖vi − v̄i‖ ≥
∥∥∥∥vi − vi

‖vi‖

∥∥∥∥ ∀v̄i : ‖v̄i‖ = 1.

Hence, chosen γ < ρ/2, we can write

‖p(v)− v̂‖2 =
n∑
i=1

∥∥∥∥v̂i − vi
‖vi‖

∥∥∥∥2 =

n∑
i=1

∥∥∥∥v̂i − vi
‖vi‖

+ vi − vi
∥∥∥∥2

≤
n∑
i=1

(
‖v̂i − vi‖2 +

∥∥∥∥vi − vi
‖vi‖

∥∥∥∥2 + 2‖v̂i − vi‖
∥∥∥∥vi − vi

‖vi‖

∥∥∥∥
)

≤
n∑
i=1

4‖v̂i − vi‖2 = 4‖v̂ − v‖2 < 4γ2 < ρ2.
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3.3 Low-Rank SDP relaxation

Therefore, we have rε(v̂) ≤ rε(v) for all v ∈ Sδ ∩ Bγ(v̂), so that v̂ is a local

minimizer also for (QLRr).

In summary, Theorem 3.3.2 states total equivalence between (LRr) and (QLRr), while

Proposition 3.3.1, together with the differentiability of rε, makes any standard optimiza-

tion algorithm globally convergent at least to a stationary point of problem (QLRr)

and hence of (LRr).

Concerning the specific algorithm for finding a stationary point of problem (QLRr), our

choice falls in a gradient-type method. This is motivated by the fact that a gradient-

type method keeps the generated sequence far from the boundary of Sδ, which might

negatively affect the behavior of the algorithm.

To clarify this aspect, we consider a gradient-type method, defined by an iteration of

the form

vk+1
i = vki − αk∇virε(vk) i = 1, . . . , n, (3.12)

where αk ∈ (0, αM ] with αM > 0. The step-length αk is obtained by a suitable line-

search procedure satisfying

rε(v
k+1) ≤ rε(v0), (3.13)

with v0 ∈ F. These choices guarantee for ε sufficiently large that the whole sequence

stays in the set {v ∈ Rnr : ‖vi‖2 ≥ 1, i = 1, . . . , n}. Hence, for ε sufficiently large, the

barrier term (3.5) reduces to a constant.

Proposition 3.3.3 Given ε > 0 and v0 ∈ F, let {vk} be the sequence generated with

the iterative scheme (3.12), where each αk satisfies (3.13) and αk ≤ αM . Then, there

exists ε̄ > 0 such that

‖vki ‖ ≥ 1, i = 1, . . . , n, k = 0, 1, 2 . . .

if ε ≥ ε̄.

Proof The sequence {vk} stays in the compact level set Lε(v
0) for a fixed value ε > 0

as result of (3.13).

The proof is by induction. Assume that there exists ε̄ > 0 such that for any ε ≥ ε̄ it is

true that ‖vki ‖2 ≥ 1. We show that the same is true also for k replaced by k + 1. We

can write

‖vk+1
i ‖2 = ‖vki ‖2 + (αk)2‖∇virε(vk)‖2 − 2αk(vki )T∇virε(vk)

≥ ‖vki ‖2 −
8αM
εδ2

(‖vki ‖2 − 1)‖vki ‖2,
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where we use (3.8). If ‖vki ‖ = 1 then ‖vk+1
i ‖2 ≥ 1. Otherwise, we need to verify that a

value of ε̄ exists such that for all ε ≥ ε̄ we have

(‖vki ‖2 − 1)− 8αM
εδ2

(‖vki ‖2 − 1)‖vki ‖2 ≥ 0,

namely

1− 8αM
εδ2
‖vki ‖2 ≥ 0. (3.14)

By Proposition 3.3.1 we have ‖vki ‖2 ≤ (2Cεδ2)
1
2 +1 for all k, which combined with (3.14),

implies that ε has to satisfy

ε− 8
αM
δ2

(
(2Cδ2ε)

1
2 + 1

)
≥ 0,

which is possible for a sufficiently large value of ε.

In the following, we refer with SpeeDP the algorithm given by the combination of IRA

scheme and the regularized Quotient function.

Finally, we want to stress the advantages of SpeeDP respect to the most efficient Low-

Rank codes for problem (SDP), SDPLR-MC and EXPA. Respect to the former, as already

explained before, SpeeDP covers all the theoretical and practical lacks. While, respect

to the latter, we make the following considerations:

• The theoretical properties of the exact penalty function (3.3) of EXPA depend on

the penalty parameter ε, that is required to be smaller than a certain threshold

value. However, choosing a small value of ε may negatively affects both the effi-

ciency and the accuracy of the algorithm EXPA. On the contrary, the equivalence

properties of rε hold for any value of the parameter ε > 0.

• Each computation of the penalty function (3.3) requires the evaluation the mul-

tiplier function y(v) as in (3.2), which is not needed in the function rε. This

implies that the computation of rε requires less matrix-vector products than the

evaluation of the function (3.3), with a significant reduction of computational

time.

All these advantages are supported by the numerical results reported in Section 3.5.

3.4 Heuristic for large-scale Max-Cut

Our heuristic is essentially the one due to Goemans and Williamson and described in

Section 3.1, integrated with SpeeDP and a few simple additional details.
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3.4 Heuristic for large-scale Max-Cut

In Section 3.1 we underlined that the most expensive tasks in the randomized algorithm

are the computation of the solution X∗ of problem (SDPMC) and the computation of

the gramian vectors v1 . . . , vn of X∗. So far, Interior Point methods and a Cholesky

factorization were used to accomplish these tasks. This fact has limited the use of GWA

just for small and medium graphs.

On the contrary, SpeeDP makes possible to apply GWA to very large graphs since, on the

one hand, it is able to solve problem (SDPMC) in a reasonable amount of time also for

very large graphs and, on the other hand, it outputs the vectors v1 . . . , vn without any

additional cost.

In our procedure the cut provided by GWA is then improved by means of a 1-opt local

search: for every single vertex, we modify the partition moving one node to the opposite

set, checking if this leads to an improvement in terms of cut. If the cut does not improve,

the node is moved back to the original subset. Then, we pass to the next node. The

procedure is repeated several times respect to entire set of nodes, until no further

improvement is possible.

In [23], where a similar heuristic is described but with problem (SDPMC) solved by an

Interior Point algorithm, a particularly successful step is proposed to further improve

on the solution. The whole procedure is repeated a few times where the solution matrix

X∗ of problem (SDPMC) is replaced by the convex combination

X ′ = αX∗ + (1− α)x̂x̂T , 0 < α < 1,

where x̂ is the representative vector of the current best cut. The idea behind this

step is to bias the Goemans-Williams rounding with the current best cut and to force

the rounding procedure to generate a cut in a neighborhood of the current best solu-

tion. This step does not require to solve problem (SDPMC) again, but the Cholesky

factorization of the matrix X ′ is needed.

We use a similar technique in our procedure. However, to avoid the Cholesky factoriza-

tion, which is not suitable for very large instances, we solve a new problem (SDPMC)

after perturbing the objective function. Matrix L is replaced by the perturbed matrix

L′ given by

L′ = L− βx̂x̂T ,

with β > 0. Such perturbation has again the effect of moving the solution of prob-

lem (SDPMC). Actually, given x̂ the current best integral solution, weights of the edges

in cut(x̂) are increased by β, whilst weights of those edges out of the cut are decreased

by the same quantity. Therefore, we expect the solution of the perturbed (SDPMC)

45



3. LOW-RANK SDP HEURISTIC FOR LARGE-SCALE MAX-CUT

and hence the successive Goemans-Williamson rounding are somehow constrained in

the neighborhood of x̂. Based on new objective function C = −L′/4 we solve prob-

lem (SDP) with SpeeDP and perform the rounding, while we use the original L in the

1-opt phase. The whole procedure is repeated a few times with different values of β.

It is important to give a clarification on the perturbed matrix L′. The perturbation

βx̂x̂T , as it is written, would imply as adding edges with no correspondence to the

original graph. In truth, perturbation is meant just on the support of the graph, so

that only real edges are modified. In this way we preserve the degree of sparsity of the

graph.

Summarizing, the scheme of our heuristic algorithm is as follows.

SpeeDP-MC Algorithm

Data. A graph G = (N,A), its Laplacian matrix L, α > 0, an integer kmax > 0.

Initialization. Set x̂ = u, and β = α
∑

i,j |Lij |/|E|.

For k = kmax, . . . , 0

1. Set β = kβ and L′ = L− β(x̂x̂T ).

2. Apply SpeeDP to problem (SDP) with C = −L′/4 and let v1, . . . vn be

the returned solution and zLB the corresponding computed lower bound.

3. Apply the GWA hyperplane rounding phase to the vectors v1, . . . vn. This

gives a bipartition representative vector x̄.

4. Apply the 1-opt improvement to x̄. This gives a new bipartition repre-

sentative vector x̃. If x̃TLx̃ > x̂TLx̂, set x̂ = x̃.

End For

Return Best cut x̂, lower bound x̂TLx̂
4 , upper bound −zLB.

Note that the amount of perturbation decreases after each iteration until it gets to zero.

We stress that repeating Step 1 several times is not as expensive at it may appear. The

key aspect is to use warm start techniques: beginning from the second iteration, we

start SpeeDP from the solution found at the previous step, so that each computation of

the minimum is sensibly cheaper than the first one.
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Besides the ability of treating graphs of very large sizes, another advantage of SpeeDP-MC

is that it also provides a solution with a guaranteed optimality error bound, since it

outputs an upper and lower bound on the value of the optimal cut.

3.5 Numerical results

In this section, we describe our computational experience both with algorithm SpeeDP

for solving problem (SDP) and with the heuristic SpeeDP-MC for finding good Max-Cut

solutions for large graphs.

SpeeDP is implemented in Fortran 90 and all the experiments have been run on a PC

with 2 Gb of RAM.

The parameters δ and ε in (QLRr) have been set to 0.25 and 103 · δ−1, respectively.

For the unconstrained optimization procedure we use a Fortran 90 implementation of

the gradient-type method proposed in [25]. This algorithm is a non-monotone version

of the Barzilai-Borwein method which satisfies (3.12) and (3.13).

As for the choice of the starting value r1 of the rank, we use the same rule based on

n as in [29], using values 8 ≤ r1 ≤ 30 for n from 100 up to more than 20 000. The

updating rule for the rank rj is simply rj+1 = min
{
brj · 1.5c, r̂

}
.

Condition Q − Diag(y(v̂)) � 0 is checked by means of the subroutines dsaupd and

dseupd of the ARPACK library, which compute smallest eigenvalues for sparse symmetric

matrices.

As a first test, we consider SpeeDP for solving problem (SDP). We compare the perfor-

mance of SpeeDP with the best codes in literature in the main classes of methods for

solving this problem: Interior Point methods, Spectral Bundle method and Low-Rank

methods.

As Interior Point method we select the dual-scaling algorithm defined in [7] and imple-

mented in the software DSDP (version 5.8) downloaded from the web page1. The code

DSDP is considered particularly efficient for solving problems with low-rank structure

and sparsity in the data (as is the case for Max-Cut instances). In addition, DSDP has

relatively low memory requirements for an Interior Point method and it is indeed able

to solve instances up to around 10 000 nodes.

We also include the Spectral Bundle method SB that can be found in [32] and it is

downloadable from the web page2.

Among the NLP based methods, we test the code SDPLR-MC, proposed by Burer and

1http://www-unix.mcs.anl.gov/DSDP/
2http://www-user.tu-chemnitz.de/∼helmberg/
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Monteiro in [16], downloadable from the web page1, and the code EXPA proposed in [29].

Both EXPA and SDPLR-MC have a structure similar to SpeeDP. Indeed, the main scheme

differs in the way of finding a stationary point for problem (LRr).

In our comparison we do not include neither the code SDPLR defined in [14, 16, 17]

nor the manifold optimization method GenRTR defined in [1], because the analysis of

the computational results reported in [16] and [1] highlights that they are both outper-

formed by SDPLR-MC.

Our benchmark set is given by the SDP relaxation of standard Max-Cut instances,

with number of nodes ranging from 100 to 20 000 and different degrees of sparsity. The

first set of problems belongs to the SDPLIB collection of semidefinite programming test

problems (hosted by B. Borchers) that can be downloaded from the web page2. The

second set of problems belongs to the group Gset of randomly generated problems by

means of the machine-independent graph generator rudy [54]. These problems can also

be downloaded from Burer’s web page3.

SpeeDP, EXPA, SDPLR-MC, and SB solve all the test problems, whereas DSDP runs out

of memory on the two largest problems (G77 and G81 of the Gset collection).

We compare the different codes on the basis of the level of accuracy and of the com-

putational time. Besides reporting detailed results in Tables 3.1 and 3.2 (at the end

of the chapter), we use a graphical description of the results using the performance

profile proposed in [19]: given a set of solvers s and a set of problems p, we compare

the performance of solver s on problem p against the best performance obtained by any

solver on the same problem. To this end, it is defined the performance ratio

rp,s =
tp,s

min{tp,s′ : s′ ∈ S}
,

where tp,s is the performance criterion used and afterwards it is derived a cumulative

distribution function

ρs(τ) =
1

np
size{p ∈ P : rp,s ≤ τ}.

Then ρs(τ) is plot respect to the parameter τ in a logarithmic scale. The higher is the

resulting curve, the better is the corresponding method respect to the chosen criterion;

efficiency is measured by how fast the curve reaches the value of 1. If a method is able

to solve all the test problems, then it will eventually reach the performance value 1 for

sufficiently large τ .

1http://dollar.biz.uiowa.edu/∼sburer/software/SDPLR
2http://euler.nmt.edu/∼brian/sdplib
3http://dollar.biz.uiowa.edu/∼sburer/software/SDPLR
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As for the accuracy, we report in Table 3.1 the primal and/or the dual objective function

values obtained by the five methods: DSDP reports both primal and dual values as

output; SpeeDP , EXPA and SDPLR-MC only report the primal objective value; SB produces

a value for the dual objective function that is a bound on the optimal value of problem

(SDP). Further, we plot in Figure 3.1 the performance profile setting the performance

criterion to the relative duality gap, as suggested in [44]. In particular, we use the

relative difference between the primal value f∗p,s of any solver s on problem p and dual

value f∗p,DSDP given by DSDP, namely we set

tp,s =
f∗p,s − f∗p,DSDP

1 + |f∗p,s|+ |f∗p,DSDP|
.

It emerges that SpeeDP can be considered comparable with DSDP in terms of accuracy,

Figure 3.1: Accuracy - Relative duality gap performance profile

whereas EXPA, SDPLR-MC, and SB are usually worse.

As regard the computational time, we report times in Table 3.2. Moreover, we also

provide the performance profile for the time. We draw two profiles: one in Figure 3.2

with all the methods over test problems where DSDP succeeded. In the second profile,

Figure 3.3, the three Low-Rank methods and SB time performances are reported over

the entire testbed. These profiles show that SpeeDP outperforms all the other methods.

More, it roughly always the fastest code (see the profile for τ = 0) and with times

significantly smaller than the ones of other codes.
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Figure 3.2: Time - All Methods CPU time performance profile

Figure 3.3: Time - NLP Methods CPU time performance profile
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In conclusion for this first group of test, it emerges that SpeeDP is very reliable code

for solving (SDP), being fast as well as accurate on the generated solution.

As second group of tests, we give an overview on the numerical results obtained by the

heuristic algorithm SpeeDP-MC to find good solution for problem (MC). In particular,

we consider large random graphs as instances of the Max-Cut.

SpeeDP-MC is implemented in C and uses the Fortran 90 version of SpeeDP as a rou-

tine. We used the graph generator rudy [54] to produce instances with different sizes,

densities and weights.

First, we considered graphs with number of nodes n equals to 500+i·250, for i = 0, . . . , 8

and with edge density equals to 10%+i·10%, for i = 0, . . . , 9. For each pair (n, density)

we generated three different graphs with positive weights ranging between 1 and 100.

Details on the results can be found in [26]. We draw in Figure 3.4 the average CPU

time and in Figure 3.5 the gap obtained, both as a function of the graph density.

As it emerges from the figures, the heuristic is able to produce a good cut in a small

amount of time. As expected, the performance of the heuristic is better on sparse

graphs in term of time, but the gap decreases when the graph density increases.

Figure 3.4: Time - Average SpeeDP-MC time for random graphs

In the second test, we consider huge graphs in order to verify how far we can go with

the number of nodes. For this set of instances we run SpeeDP-MC on a machine with

6 Gb of RAM.
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Figure 3.5: Gap - Average SpeeDP-MC gap for random graphs

We generate three random graphs with 100 001 nodes, 7 050 827 edges and different

edge weights. The results are shown in Table 3.3, where we report the weight ranges,

the total time, the bound value, the weight of the best cut obtained and the % gap.

We also generated some 6-regular graphs (3D toroidal grid graphs) with 1 030 301 nodes,

3 090 903 edges and different edge weights. The results are reported in Table 3.4.

To the best of our knowledge, no other methods can achieve this accuracy for graphs

of comparable size. Actually, SpeeDP-MC allows to find very good cuts for graphs with

million of edges.
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SpeeDP Expa SDPLR MC SB DSDP

Prob primal primal primal dual primal dual

mcp100 -226,15735 -226.15734 -226.15129 -226.15923 -226.15733 -226.15735

mcp124-1 -141.99048 -141.99041 -141.99003 -141.99370 -141.99044 -141.99048

mcp124-2 -269.88017 -269.88016 -269.88016 -269.88222 -269.88012 -269.88017

mcp124-3 -467.75011 -467.75010 -467.75009 -467.75370 -467.75004 -467.75012

mcp124-4 -864.41186 -864.41183 -864.41181 -864.41997 -864.41166 -864.41187

mcp250-1 -317.26434 -317.26421 -317.26431 -317.27079 -317.26429 -317.26435

mcp250-2 -531.93008 -531.93001 -531.92973 -531.93491 -531.92998 -531.93009

mcp250-3 -981.17257 -981.17248 -981.17239 -981.17796 -981.17239 -981.17257

mcp250-4 -1 681.9601 -1 681.9597 -1 681.9570 -1 681.9750 -1 681.9600 -1 681.9601

mcp500-1 -598.14849 -598.14798 -598.14800 -598.15877 -598.14840 -598.14852

mcp500-2 -1 070.0566 -1 070.0562 -1 045.0727 -1 070.0759 -1 070.0566 -1 070.0568

mcp500-3 -1 847.9700 -1 847.9694 -1 847.9666 -1 847.9836 -1 847.9695 -1 847.9700

mcp500-4 -3 566.7376 -3 566.7357 -3 566.7334 -3 566.7479 -3 566.7377 -3 566.7381

G01 mc -12 083.198 -12 083.197 -12 083.042 -12 083.265 -12 083.196 -12 083.198

G11 mc -629.16298 -629.14611 -629.15995 -629.17007 -629.16472 -629.16478

G14 mc -3 191.5667 -3 191.5654 -3 191.5633 -3 191.5847 -3 191.5661 -3 191.5668

G22 mc -14 135.946 -14 135.943 -14 135.867 -14 136.044 -14 135.945 -14 135.946

G32 mc -1 567.6303 -1 567.5895 -1 567.6323 -15 67.6519 -1 567.6394 -1 567.6397

G35 mc -8 014.7388 -8 014.7379 -8 014.7307 -8 014.8070 -8 014.7376 -8 014.7397

G36 mc -8 005.9552 -8 005.9512 -8 005.9483 -8 006.0213 -8 005.9632 -8 005.9638

G43 mc -7 032.2217 -7 032.2196 -7 032.2078 -7 032.2749 -7 032.2208 -7 032.2219

G48 mc -5 999.9993 -5 999.9968 -5 999.9662 -6 000.0000 -5 999.9985 -6 000.0000

G51 mc -4 006.2553 -4 006.2533 -4 006.2537 -4 006.2745 -4 006.2546 -4 006.2555

G52 mc -4 009.6384 -4 009.6380 -4 009.6202 -4 009.6574 -4 009.6383 -4 009.6388

G55 mc -11 039.460 -11 039.450 -11 039.341 -11 040.159 -11 039.449 -11 039.461

G57 mc -3 885.4783 -3 885.3318 -3 885.4501 -3 885.5189 -3 885.4868 -3 885.4892

G58 mc -20 135.875 -20 135.854 -20 136.032 -20 136.287 -20 136.181 -20 136.190

G60 mc -15 222.239 -15 222.220 -15 222.138 -15 223.193 -15 222.257 -15 222.268

G62 mc -5 430.8903 -5 430.6629 -5 430.8413 -5 430.9512 -5 430.9084 -5 430.9104

G63 mc -28 243.308 -28 243.218 -28 243.876 -28 244.577 -28 244.406 -28 244.418

G64 mc -10 465.836 -10 465.804 -10 465.868 -10 465.970 -10 465.898 -10 465.904

G65 mc -6 205.4852 -6 205.2216 -6 205.4434 -6 205.5822 -6 205.5322 -6 205.5382

G66 mc -7 077.1819 -7 077.0132 -7 077.1139 -7 077.2640 -7 077.2090 -7 077.2137

G67 mc -7 744.3288 -7 744.2624 -7 744.3011 -7 744.4942 -7 744.4245 -7 744.4365

G70 mc -9 861.5209 -9 861.4825 -9 861.3992 -9 861.7340 -9 861.5143 -9 861.5246

G72 mc -7 808.3993 -7 808.1436 -7 808.4139 -7 808.5914 -7 808.5343 -7 808.5393

G77 mc -11 045.624 -11 045.108 -11 045.448 -11 045.751 *** ***

G81 mc -15 656.082 -15 655.574 -15 655.791 -15 656.279 *** ***

Table 3.1: Approximated optimal values on solving problem (SDP)
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Prob SpeeDP Expa SDPLR MC SB DSDP

mcp100 0.016 0.032 0.050 0.240 0.065

mcp124-1 0.024 0.044 0.040 4.800 0.074

mcp124-2 0.016 0.028 0.130 0.230 0.086

mcp124-3 0.016 0.036 0.100 0.200 0.116

mcp124-4 0.020 0.052 0.120 0.160 0.096

mcp250-1 0.040 0.104 0.140 69.840 0.357

mcp250-2 0.028 0.072 0.380 0.430 0.388

mcp250-3 0.040 0.128 0.230 0.470 0.566

mcp250-4 0.064 0.152 0.240 0.420 0.710

mcp500-1 0.112 0.256 0.320 303.710 1.687

mcp500-2 0.104 0.208 51.110 15.820 2.040

mcp500-3 0.116 0.228 1.240 0.980 2.660

mcp500-4 0.164 0.456 1.480 1.000 4.003

G01 mc 0.576 1.448 4.930 3.410 18.690

G11 mc 1.060 1.380 1.010 12.180 4.166

G14 mc 0.464 1.572 3.880 4.580 8.557

G22 mc 0.956 3.768 10.210 9.900 249.800

G32 mc 2.552 3.580 4.800 43.750 55.130

G35 mc 1.864 5.596 26.500 31.130 124.900

G36 mc 2.624 7.260 21.650 36.620 134.000

G43 mc 0.520 1.812 3.200 2.720 30.230

G48 mc 1.164 3.524 7.310 0.060 102.700

G51 mc 0.772 2.980 5.150 6.660 16.210

G52 mc 0.768 2.084 5.760 5.960 17.490

G55 mc 4.144 10.737 24.540 3370.770 1402.000

G57 mc 16.069 14.809 24.440 345.100 755.300

G58 mc 12.877 49.647 122.970 368.540 2053.000

G60 mc 7.932 18.597 25.260 6409.310 4552.000

G62 mc 17.641 21.565 36.240 535.630 2088.000

G63 mc 23.561 83.413 133.570 800.420 6019.000

G64 mc 17.905 56.884 178.380 665.280 6958.000

G65 mc 17.993 28.378 41.060 868.650 3123.000

G66 mc 22.733 33.526 46.580 1410.460 4548.000

G67 mc 16.349 38.094 54.440 1344.120 6191.000

G70 mc 12.545 35.474 71.640 15036.830 8939.000

G72 mc 17.405 34.814 55.180 1470.190 6040.000

G77 mc 57.816 54.227 71.670 4260.610 ***

G81 mc 64.720 86.541 108.260 33538.190 ***

Table 3.2: Time in seconds for solving problem (SDP)
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3.5 Numerical results

Weights Total CPU time Upper Bound Best Cut gap%

1 15 043.98 4 113 227.8 3 959 852 3.87

[1, 100] 15 142.22 212 076 831.2 203 236 495 4.35

[−1 000, 1 000] 15 919.40 21 006 071 437.9 20 129 935 523 4.35

Table 3.3: Random sparse graphs with 100 001 nodes and 7 050 827 edges

Weights Total CPU time Upper Bound Best Cut gap%

1 4 723 3 090 133 3 060 300 0.97

[1, 10] 22 042 15 454 739 15 338 007 0.76

[1, 1 000] 29 072 1 545 550 679 1 534 441 294 0.72

[−100, 100] 47 491 57 288 795 49 111 079 14.27

Table 3.4: 6-regular graphs with 1 030 301 nodes and 3 090 903 edges
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4

Eigenvalue Optimization

Eigenvalues of symmetric matrices play an important role in many different areas of

applied mathematics. Depending on the application, it can be required the computation

of the eigenvalues of a constant matrix or of a matrix submitted to some optimization

process.

In this chapter we consider both eigenvalues problems. In Section 4.1 we provide a

new Low-Rank formulation for the problem of maximizing the smallest eigenvalue of

symmetric matrix constrained to some subspace. As opposed, in Section 4.2 we deal

with the classical problem of finding a bunch of smallest eigenvalues for a constant

symmetric matrix. In particular, we provide a new nonlinear constrained formulation

and for the special case of the smallest eigenvalues we give also a new unconstrained

formulation, suitable for large-scale instances.

4.1 Extreme Eigenvalue Optimization

Optimization problems involving eigenvalues arise in many different application, with

strong implications in Combinatorial Optimization and Structural Analysis. For a com-

plete reference, dealing applications, theory and algorithms in Eigenvalue Optimization

we advise [40].

Given A0, A1, A2, . . . , Am a set of m + 1 symmetric matrices of order n, in eigenvalue

optimization the problem is to find the linear combination of those matrices, con-

strained in some subspace, such that a certain convex combination of its eigenvalues is

minimized. For simplicity and because its wide range of applications, we examine the

problem relative to maximizing the smallest eigenvalue.
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4. EIGENVALUE OPTIMIZATION

For any x ∈ Rm, given the corresponding linear combination of the input matrices,

A0 + AT (x) = A0 +
m∑
i=1

xiAi,

are defined the eigenvalues (in not decreasing order)

λ1(x) ≤ λ2(x) ≤ · · · ≤ λn(x),

and the associated eigenvectors y1(x), y2(x), . . . , yn(x). Without loss of generality, we

consider the eigenvectors as an orthonormalized basis of Rn. Moreover, x is constrained

to the subspace defined by the intersection of t linear equalities with the nonnegative

orthant, namely the set

X = {x ∈ Rm : Bx = b, x ≥ 0},

where B ∈ Rt×m and b ∈ Rt. Overall, we get the following optimization problem

max
x

f(x) = λ1(x)

Bx = b

x ≥ 0.

(P)

Without loss of generality, we assume X regular, namely with the columns of B linear

independent. Moreover, we also suppose that there exists an optimal solution x∗ for

(P).

It is well known that the function λ1(x) defines a concave function, so that problem (P)

is a convex problem. What makes this problem very difficult is that the objective func-

tion is not smooth and probably at the optimal solutions. Actually, it well known that

functions depending on eigenvalue are not continuously differentiable at points where

eigenvalues are not simple. What it is worse is that the optimization process leads gen-

erally to points where the eigenvalues coalescence, triggering the non-differentiability

of the objective function. A theoretically explanation of this phenomenon can be found

in [50], in truth for a more general eigenvalue function. More, as a function of m

and n, are provided some lower and upper bounds on the multiplicity of the smallest

eigenvalue at the optimal solutions.

In literature, nice theories and algorithms were developed for this non-smooth formu-

lation [48, 49] as well as for the formulation of (P) as a convex feasibility problem [47].

Moreover, the most efficient solution approaches can be derived by means of Interior

Point methods applied to the SDP formulations of (P).
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As opposed, our approach tries to overcome non-smoothness by using an equivalent

nonlinear continuously differentiable optimization problem. This formulation can be

obtained by applying the Low-Rank approach to one SDP formulation of (P). Although

this new formulation is non-convex, it is possible to show the standard necessary local

optimality conditions are sufficient for global optimality. It follows that any second-

order standard algorithm could be used to solve this new formulation in order to get a

solution for (P).

Before to describe this new formulation and its properties, we recall the SDP formu-

lations of (P), focusing on some characteristics which shed a light in the Low-Rank

approach.

An obvious remark on notation AT (x): it is used on purpose to recall the standard no-

tation for SDP problems. Actually, it represents the adjoint operator of A(Z), operator

for symmetric matrices, that is

A(Z) =


A1 • Z

...

Am • Z

 .
4.1.1 SDP formulation

First of all, we express the objective function f(x) as a linear SDP problem.

Exploiting the well-known Fan Theorem [21], applied to smallest eigenvalues of A0 +

AT (x), we express f(x) as a nonlinear minimization problem, namely

f(x) = λ1(x) = min
v∈Rn

{
vT
(
A0 + AT (x)

)
v : ‖v‖2 = 1

}
.

Thanks to the Fillmore-Williams result [22], that is

conv
{
vvT : ‖v‖2 = 1

}
= {Z ∈ Sn : I • Z = 1, Z � 0} ,

it follows the SDP formulation for f(x)

f(x) = λ1(x) = min
Z

(
A0 + AT (x)

)
• Z

I • Z = 1,

Z � 0.

(4.1)

As proved in [49], in order to characterize the elements that gives the minimum in (4.1),

we need some spectral information of A0 + AT (x), among which r(x) the multiplicity
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of the eigenspace associated to λ1(x). Moreover, we need to consider the following set

φd = {u ∈ Rd :
∑
i

ui = 1, u ≥ 0}

and the next lemma, whose proof is trivial and it is left to the reader.

Lemma 4.1.1 Let c ∈ Rn and an integer r ≥ 1 such that

c1 = · · · = cr < cr+1 ≤ · · · cr+1 ≤ cn,

then the optimal solution set of

min
γ∈φn

cTx

is given by

Γ∗c = {γ = (γa, γb) ∈ Rn : γa ∈ φr, γb = 0n−r}.

The next proposition shows that any feasible solution is optimal for (4.1) if and only

its image is contained in the smallest eigenspace of A0 +AT (x). This result can be also

derived from a more general one in [49].

Proposition 4.1.2 Given x ∈ Rm and r = r(x), then Z∗ is an optimal solution of

(4.1) if and only

Z∗ =
r∑
i=1

γiyi(x)yi(x)T , (4.2)

where γ ∈ φr.

Proof Take Z∗ optimal solution of (4.1). Because {y1(x), . . . , yn(x)} is an orthonor-

malized basis of Rn and by feasibility of Z∗, there exists γ∗ ∈ φn such that

Z∗ =

n∑
i=1

γ∗i yi(x)yi(x)T ,

The objective value can be rewritten as

(
A0 + AT (x)

)
• Z∗ =

n∑
i=1

γ∗i yi(x)T
(
A0 + AT (x)

)
yi(x) = λ(x)Tγ∗.

As regard of Lemma 4.1.1, γ∗ ∈ Γ∗λ(x), so that Z∗ satisfies (4.2).

On the other hand, assume Z∗ satisfying (4.2) for some γ ∈ φr. Then by construction

Z∗ � 0 and

I • Z∗ =
r∑
i=1

γiI • yi(x)yi(x)T =
r∑
i=1

γiyi(x)T yi(x) =
r∑
i=1

γi = 1,
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so that Z∗ is feasible for the SDP problem in (4.1). Moreover, it is easy to show

(
A0 + AT (x)

)
• Z∗ = λ1(x),

hence that Z∗ is optimal for (4.1).

Proposition 4.1.2 ensures that any optimal solution Z∗ can be rewritten as a convex

combination of the rank-one matrices given by the smallest eigenvectors of A0 +AT (x).

It follows also that 1 ≤ rank(Z∗) ≤ r(x).

In [48] this characterization of the optimal solutions in f(x) was used to derive its

subdifferential

∂f(x) =

A(Z) : Z =

r(x)∑
i=1

γiyi(x)yi(x)T , γ ∈ φr(x)

 .

From the practical point of view this form of the subdifferential is particularly useful

because it does not involve any convex hull.

Exploiting the SDP dual of (4.1), we get another SDP formulation for f(x)

f(x) = λ1(x) = max
s

s

sI −A0 −AT (x) � 0,

s ∈ R.

(4.3)

The equivalence derives from the fact the two SDP feasible sets in (4.1) and (4.3) are

both strictly feasible, so that strong duality holds.

The two SDP formulations of the objective function allow to define equivalent SDP

formulations for (P), respectively dual of each other.

The first SDP formulation comes out from the dual SDP formulation (4.3) of the

objective function in (P), namely

max
s,x

s

tI −AT (x) � A0,

Bx = b,

x ≥ 0.

(SDP)
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Strict feasibility of the previous problem guarantees strong duality and hence equiva-

lence of (P) also with the dual of (SDP), namely the problem

min
Z,µ

bTµ+A0 • Z

A(Z)−BTµ ≤ 0,

I • Z = 1,

Z � 0.

(DSDP)

This SDP pair gives an efficient solution approach for (P). Actually, Interior Point

methods, applied to (SDP) and (DSDP), compute an approximated optimal solution

for (P) in polynomial time. Unfortunately, from the practical point of view, Interior

Point methods slow down as the dimensions increase. For this reason we are interested

in alternative solution approaches, less depending on dimensions n and m.

Consider an optimal solution x∗ of (P), with the spectral information of A0 + AT (x∗)

and in particular r∗ = r(A0 +AT (x∗)). In this situation we can not provide a complete

characterization of the optimal solution set for (DSDP), but just a restriction.

Proposition 4.1.3 Given x∗ optimal solution of (P) and (Z∗, µ∗) an optimal solution

of Problem (DSDP), then Z∗ can be rewritten as

Z∗ =

r∗∑
i=1

γiyi(x
∗)yi(x

∗)T , (4.4)

for some γ ∈ φ∗r.

Proof As in the proof of Proposition 4.1.2, there exists γ∗ ∈ φn such that

Z∗ =

n∑
i=1

γ∗i yi(x
∗)yi(x

∗)T .

By contradiction, assume that (4.4) is not satisfied, hence γ∗ 6∈ Γ∗λ(x∗). Therefore, by

Lemma 4.1.1 applied to λ(x∗), we have that

A0 • Z∗ + AT (x∗) • Z∗ = λ(x∗)Tγ∗ > λ1(x
∗).

On the other hand, exploiting primal-dual feasibility, strong duality and the equivalence

with (P), we have

A0 • Z∗ + AT (x∗) • Z∗ = A0 • Z∗ + A(Z∗)Tx∗ ≤ A0 • Z∗ + (Bµ∗)Tx∗

= A0 • Z∗ + bTµ∗ = λ1(x
∗),

which is obviously a contradiction. Hence Z∗ satisfies (4.4).
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Condition (4.4) is in this case only necessary for optimality. Actually, there exist

convex combinations of the rank-one matrices given by the smallest eigenvectors of

A0 + AT (x∗) that are not optimal for (DSDP), especially that one with small rank.

Proposition 4.1.3 gives information just on the maximal rank, namely it ensures that

any optimal solution (Z∗, µ∗) of (DSDP) satisfies rank(Z∗) ≤ r∗. Therefore, if we knew

r∗ of an optimal solution x∗, we could think to factorize Z = V V T , with V ∈ Rn×r∗ .
This transformation is referable to Low-Rank approaches for standard SDP problems,

as defined in Chapter 2, and its correctness is tied to a priori information about the

minimal rank of an optimal solution.

Proposition 4.1.4 Given x∗ optimal solution of (P), then the minimal rank satisfies

r∗ ≤ r̂ = min

(⌊√
1 + 8(m+ 1− t)− 1

2

⌋
, n

)
. (4.5)

Proof First of all, we rewrite (DSDP) in standard SDP notation, that is

min
Z,µ+,µ−,θ

bTµ+ − bTµ− +A0 • Z

A(Z)−BTµ+ +BTµ− + θ = 0,

I • Z = 1,

µ+, µ−, θ ≥ 0

Z � 0.

Let (Z∗, µ+
∗
, µ−

∗
, θ∗) be the optimal solution of the above problem. In order to derive

an upper bound on rank of Z∗, we apply results of Corollary 1.4.7, relative to SDP

problems with blocks semidefinite variables. Actually, µ+
∗
, µ−

∗
, θ∗ can be viewed as

semidefinite diagonal matrices, with rank corresponding to the number of nonzero en-

tries. Moreover, we assume that, in terms each component, µ+ and µ− can not be both

different than zero. Overall, we have

r∗(r∗ + 1)

2
+ t+ ‖θ∗‖0 ≤ m+ 1,

so that (4.5) follows.

4.1.2 Low-Rank SDP formulation

In this part we apply the Low-Rank approach to (DSDP). However, instead of referring

completely to the methodology described in Chapter 2, we define a stronger Low-

Rank formulation. Main advantages are given from the possibility to define weaker
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global optimality conditions, than the ones for the general Low-Rank approach (see

Propositions 2.2.2 and 2.2.3).

For given integer r ≥ 1, we consider the transformation Z = V V T with V ∈ Rn×r.
Beside the constraints derived from (DSDP), we we require also that V satisfies Ur •
V TV ≥ 1, in order to strength the formulation. Overall, we get the following problem

min
V,µ

bTµ+A0 • V V T

A(V V T )−BTµ ≤ 0,

Ir • V TV = 1,

Ur • V TV ≥ 1,

V ∈ Rn×r, µ ∈ Rt.

(LRr)

The first property for this formulation reminds a weak duality relation with (P) and

this holds for any r.

Proposition 4.1.5 Given r ≥ 1, then for any x ∈ X and (V, µ) feasible for (LRr), the

following inequality holds

λ1(x) ≤ bTµ+A0 • V V T .

Proof Given (V, µ) feasible for (LRr), (V V T , µ) is feasible for (DSDP). Hence, the

optimal value of (LRr) can not be smaller than the optimal value of (DSDP), which is

equal to the optimal value of (P). Then the thesis follows for a generic feasible point

in (P).

One effect of the factorization is that solutions of (DSDP) with small rank are implicitly

cut out from the feasible region of (LRr). In order to preserve at least an optimal

solution of (DSDP), r must be chosen not smaller than r∗.

Proposition 4.1.6 Given r ≥ r∗, problems (DSDP) and (LRr) are equivalent in terms

of global optimality.

Proof First of all, (LRr) admits an optimal solution because the objective function

is linear and the feasible set is not empty and compact.

By weak duality defined in Proposition 4.1.5, the optimal value of (LRr) can not be

smaller than the optimal value of (P).

On the other side, consider the optimal solution x∗ of (P) with associated dual optimal

solution (Z∗, µ∗) of (DSDP). As a result of Proposition 4.1.3, we rewrite Z∗ = V ∗V ∗T

with

V ∗ =
[
γ1y1(x

∗) · · · γr∗yr∗(x
∗) 0n×r−r∗

]
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and γ ∈ φr∗ . It is not hard to see that (V ∗, µ∗) is feasible for (LRr). In particular,

because y1(x
∗), . . . , yr∗(x

∗) are orthogonal between each other, we have

Ur • V ∗TV ∗ = Ir • V ∗TV ∗ = I • V ∗V ∗T = I • Z∗ = 1.

Then, it follows that the optimal value of (LRr) can not be larger than the optimal

value of (DSDP).

In conclusion, optimal values of (DSDP) and (LRr) need to be equal. Moreover, a

global solution of (LRr) defines an optimal solution (DSDP) and viceversa.

Although the equivalence expressed in the above proposition, (LRr) can be used as

alternative formulation for (DSDP) (hence for (P)) if one is able to recognize and

compute global solutions. Actually, (LRr) is a nonlinear constrained programming

problem, non-convex and hence generally difficult to solve globally.

The loss of convexity could be implicitly retrieved as described in Chapter 2, where for

the Low-Rank formulation of a standard primal SDP problem are provided necessary

and sufficient global optimality conditions. For our specific problem, it can be shown

something a bit stronger: first and second order KKT conditions are not only necessary

but also sufficient for global optimality in (LRr).

Using the Kronecker product and the vector representation for V we reformulate (LRr)

in this way

min
v,µ

bTµ+ vT (Ir ⊗A0)v

vT (Ir ⊗Ai)v −BT
i µ ≤ 0, i = 1, . . . ,m

1− vT (Ur ⊗ In)v ≤ 0,

1− vT (Ir ⊗ In)v = 0,

v ∈ Rnr, µ ∈ Rt.

(LRr)

In the following, we refer with g1(v, µ) for the first group of inequality constraints and

with g2(v, µ) for the last inequality constraint. On the other side we use h1(v, µ) for

the only equality constraint.

First of all, we observe that constraints g2 is always active over the entire feasible set.

Proposition 4.1.7 Given (v, µ) feasible for problem (LRr), then

vT (Ur ⊗ In)v = 1. (4.6)
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Proof Assume by contradiction that vT (Ur ⊗ In)v > 1. As opposed, we have that

vT (Ur ⊗ In)v = vT (ur ⊗ In)(ur ⊗ In)T v =
∥∥(ur ⊗ In)T v

∥∥2 =

∥∥∥∥∥
r∑
i=1

(ei ⊗ In)T v

∥∥∥∥∥
2

≤
r∑
i=1

‖(ei ⊗ In)T v‖2 =
r∑
i=1

vT (Eii ⊗ In)v = vT (Ir ⊗ In)v = 1.

The second property of (LRr) is related to the regularity of the feasible set: actually

it can be shown that a qualification condition for the constraints holds, namely a sort

of Mangasarian-Fromovitz conditions.

Proposition 4.1.8 Given (v, µ) feasible for (LRr), then

(i) ∇h1(v, µ) and ∇g2(v, µ) are linear independent;

(ii) there exists d ∈ Rnr+t such that

∇h1(v, µ)Td = 0, ∇g2(v, µ)Td = 0, ∇g1(v, µ)Td < 0.

Proof By Proposition 4.1.7 constraint g2(v, µ) is surely active. Assume that there

exists a linear combination of ∇h1(v, µ) and ∇g2(v, µ), with coefficients α and γ, such

that

α∇h1(v, µ) + γ∇g2(µ, v) = 0.

In terms of variable v we have

2α(Ir ⊗ In)v + 2γ(Ur ⊗ In)v = 0. (4.7)

Pre-multiplying (4.7) with vT gives

0 = 2αvT (Ir ⊗ In)v + 2γvT (Ur ⊗ In)v = 2α+ 2γ,

while with vT (Ur ⊗ In) it gives

0 = 2αvT (Ur ⊗ In)v + 2rγvT (Ur ⊗ In)v = 2α+ 2rγ,

The last two equalities ensure (assumed r > 1) α, γ = 0, hence that ∇h1(v, µ) and

∇g2(v, µ) are linear independent.

By assumption columns of B are linear independent, hence there not exists a not null

vector x such that Bx = 0. In this situation, Gordan’s Theorem guarantees that there

exists a vector s ∈ Rm such that BT s > 0. So, chosen d =
(

0nr s
)T

, the second point

in the proposition follows.
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Regularity of the feasible set makes KKT conditions being necessary to be satisfied for

any local minimizer of (LRr). In order to define these conditions, we introduce the

Lagrangian function

L(µ, v, x, α, γ) = bTµ+ vT
(
Ir ⊗A0 + AT (x)

)
v

+ α
(
1− vT (Ir ⊗ In)v

)
+ γ

(
1− vT (Ur ⊗ In)v

)
.

Under this notation, x ∈ Rm is the multiplier vector associated to the first block of

inequality g1, while α, γ ∈ R are the multipliers associated respectively to h1 and g2.

We recall the first and second order KKT conditions for (LRr): given p̂ = (v̂, µ̂) a local

minimum for (LRr), then there exists (x̂, α̂, γ̂) such that

First-Order KKT conditions (FOC)

1. ∇pL(p̂, x̂, α̂, γ̂) = 0;

2. p̂ feasible;

3. x̂, γ̂ ≥ 0;

4. x̂T g1(p̂) = 0;

5. γ̂g2(p̂) = 0;

Second-Order KKT conditions (SOC)

dT∇2
ppL(p̂, x̂, α̂, γ̂)d ≥ 0 ∀d ∈ D,

where

D =
{
d ∈ Rnr+t : ∇h1(p̂)Td = 0, ∇g2(p̂)Td = 0, ∇gIa1 (p̂)Td ≤ 0

}
,

with Ia =
{
i ∈ {1, . . . ,m} : gi1(p̂) = 0

}
.

Our goal is to show that conditions (FOC) and (SOC) characterize completely global

solutions for (LRr).

Proposition 4.1.9 Given (v̂, µ̂) a point satisfying (FOC) with multiplier (x̂, α̂, γ̂),

then the following conditions are true:

(i) x̂ is feasible for (P);

(ii) (α̂, γ̂) can be expressed in closed form expression as a function of v̂ and x̂, namely

α̂+ γ̂ = v̂T
(
Ir ⊗A0 + AT (x̂)

)
v̂, (4.8)

α̂+ rγ̂ = v̂T
(
Ur ⊗A0 + AT (x̂)

)
v̂; (4.9)
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(iii) an upper bound of the objective value can be computed

bT µ̂+ v̂T (In ⊗A0)v̂ = α̂+ γ̂ ≤ α̂+ rγ̂. (4.10)

(iv) ŷ1 = (ur ⊗ In)T v̂ is an eigenvector of A0 + AT (x̂) with eigenvalue λ̂1 = α̂+ rγ̂.

Proof Condition 1 in (FOC) says that

0 = ∇µL = b−Bx̂, (4.11)

0 = ∇vL = 2
(
Ir ⊗A0 + AT (x̂)

)
v̂ − 2α̂(Ir ⊗ In)v̂ − 2γ̂(Ur ⊗ In)v̂. (4.12)

Condition (4.11) together with non-negativity given by statement 3 in (FOC) proves

that x̂ ∈ X and hence point (i).

As opposed, for the point (ii), we exploit (4.12) and the fact that v̂T (Ur⊗ In)v̂ = 1 (by

Proposition 4.1.7). First, because

0 = v̂T∇vL = 2v̂T
(
Ir ⊗A0 + AT (x̂)

)
v̂ − 2α̂v̂T (Ir ⊗ In)v̂ − 2γ̂vT (Ur ⊗ In)v̂

= 2v̂T
(
Ir ⊗A0 + AT (x̂)

)
v̂ − 2α̂− 2γ̂,

equality (4.8) follows. Second, equality (4.9) results from

0 = v̂T (Ur ⊗ In)∇vL = 2v̂T
(
Ur ⊗A0 + AT (x̂)

)
v̂ − 2α̂v̂T (Ur ⊗ In)v̂ − 2rγ̂vT (Ur ⊗ In)v̂

= 2v̂T
(
Ur ⊗A0 + AT (x̂)

)
v̂ − 2α̂− 2rγ̂.

Using the complementarity equation given by statement 4 in (FOC) and the closed-

form expression for α̂ and γ̂, we obtain

bT µ̂+ v̂T (Ir ⊗A0)v̂ = v̂T
(
Ir ⊗A0 + AT (x̂)

)
v̂ = α̂+ γ̂ ≤ α̂+ rγ̂,

where the last inequality follows from the fact γ̂ ≥ 0. This shows point (iii).

Consider ŷ1 = (ur ⊗ In)T v̂ defined in point (iv). This vector has unit norm,

‖ŷ1‖2 = v̂T (Ur ⊗ In)v̂ = 1.

Moreover, exploiting (4.12), we have that

0 = (uTr ⊗ In)∇vL = 2
(
uTr ⊗A0 + AT (x̂)

)
v̂ − 2α̂(uTr ⊗ In)v̂ − 2rγ̂(uTr ⊗ In)v̂

= 2
(
A0 + AT (x̂)

)
ŷ1 − 2(α̂+ rγ̂)ŷ1,

which proves that ŷ1 is an eigenvector of A0 + AT (x̂) with eigenvalue λ̂1 = α̂+ rγ̂.
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In order to guarantee that (v̂, µ̂) is a global solution, λ̂1 must correspond to the smallest

eigenvalue of A0 + AT (x̂). This is ensured by second-order KKT conditions.

Proposition 4.1.10 Let p̂ = (v̂, µ̂) a point satisfying (FOC) and (SOC) with multi-

plier (x̂, α̂, γ̂.η̂). Then, p̂ is a global solution for (LRr) and x̂ is a global solution for

(P). Moreover, λ̂1 = α̂ + rγ̂ is the smallest eigenvalue of A0 + AT (x̂) with associated

eigenvector ŷ1 = (ur ⊗ In)T v̂.

Proof As p̂ satisfies (FOC), all the results in Proposition 4.1.9 hold. From now on,

we use also the (SOC) conditions. The Hessian computed for p̂ and the corresponding

multipliers is given by

∇2
ppL =

(
2Ir ⊗

(
A0 + AT (x̂)

)
− 2α̂Ir ⊗ In − 2γ̂Ur ⊗ In 0nr×t

0t×nr 0t×t

)
,

By definition of D, a direction d = (dv, dµ) ∈ D if and only if all those conditions are

satisfied:

1. dTv (Ir ⊗ In)v̂ = 0;

2. dTv (Ur ⊗ In)v̂ = 0;

3. 2dTv (Ir ⊗Ai)v̂ ≤ BT
i dµ, for any i ∈ Ia(p̂).

Nevertheless, we can restrict to a subspace of D, where the subvector dv satisfies con-

ditions 1, 2 and dµ = σs, where s such that BT s > 0. Actually, in this case condition

3 is automatically satisfied with σ sufficiently large.

By Proposition 4.1.9, ŷ1 is an eigenvector of A0 +AT (x̂). Assume by contradiction that

ŷ1 is not the smallest eigenvector of AT (x̂), so that

λ̂1 > λ1(x̂), (4.13)

and y1(x̂)T ŷ1 = 0. Therefore, we can define d =
(
ur ⊗ y1(x̂) σs

)
, for which conditions

1 and 2 are satisfied

dTv (Ir ⊗ In)v̂ =
(
uTr ⊗ y1(x̂)T

)
(Ir ⊗ In)v̂ = y1(x̂)T (ur ⊗ In)T v̂ = y1(x̂)T ŷ1 = 0,

dTv (Ur ⊗ In)v̂ =
(
uTr ⊗ y1(x̂)T

)
(Ur ⊗ In)v̂ = ry1(x̂)T (ur ⊗ In)T v̂ = ry1(x̂)T ŷk = 0.

It follows that d ∈ D and that second-order conditions can be used

0 ≤ dT∇2
ppLd = 2

(
uTr ⊗ y1(x̂)T

) (
(Ir ⊗A0 + AT (x̂))− α̂(Ir ⊗ In)− γ̂(Ur ⊗ In)

)
(ur ⊗ y1(x̂))

= 2ry1(x̂)T
(
A0 + AT (x̂)

)
y1(x̂)− 2rα̂− 2r2γ̂.
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Rearranging the above terms, we have

λ1(x̂) = y1(x̂)T
(
A0 + AT (x̂)

)
y1(x̂) ≥ η̂ + rγ̂ = λ̂1,

which is conflict with (4.13). It follows that λ̂1 = λ1(x̂) and ŷ1 is the associated

eigenvector.

By equation (4.10) and weak duality between (P) and (LRr). we have that

bT µ̂+ v̂T (In ⊗A0)v̂ ≤ α̂+ rγ̂ = λ̂1 = λ1(x̂) ≤ bT µ̂+ v̂T (In ⊗A0)v̂,

so that equality holds throughout. Strong duality proves optimality of p̂ for (LRr) and

x̂ for (P).

In summary, we have defined a new Low-Rank formulation for (P). In particular, (LRr)

is a well-posed problem: all the functions are continuously differentiable and the feasible

set is compact and non-empty. Moreover, for r ≥ r∗, problems (LRr) and the SDP

formulation (DSDP) of (P) are equivalent in terms of global solutions. In addition,

optimal solutions for (LRr) are fully characterized by the first and second-order KKT

conditions, with associated optimal multipliers defining the optimal solutions for (P).

Therefore, assumed r ≥ r∗, a second-order method applied to (LRr) can be viewed as a

solution algorithm for (P). Generally speaking, a second-order algorithm, based in first

and second-order derivatives, guarantees global convergence at least to second-order

KKT point. An example of second-order algorithm is the one defined in [4].

The only difficulty that is left is the choice of a suitable r. On the one side, r must

be chosen sufficiently large, in order to have r ≥ r∗. On the other side, choosing r too

large implies a too huge problem that needs to be solved.

In the spirit of Low-Rank approach, this uncertainty is solved sequentially: starting

from r sufficiently small, a second-order stationary point for (LRr) is computed. If the

point is not optimal, namely strong duality does not hold, then r is increased. Because

of Proposition 4.1.4, There is no sense to choose r larger than r̂, the upper bound on

r∗. Overall, we think at the following scheme.
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Low-Rank algorithm (LoREig) for problem (P)

Parameter. r0 ∈ [2, r̂], β > 1, ρ > 0

Initialization. r = r0.

While (r ≤ r̂)

1. compute p̂ = (µ̂, v̂), a second-order stationary point for (LRr), with

multiplier (x̂, α̂, γ̂).

2. compute f̂d = bT µ̂+ v̂T (In ⊗A0)v̂.

3. compute f̂p = λ1(x̂) smallest eigenvalue for A0 + AT (x̂).

4. if
∣∣∣f̂p − f̂d∣∣∣ ≤ ρ then exit.

5. otherwise set r = dβre.

End While

Return x̂, f̂p, (v̂, µ̂), f̂d.

Algorithm LoREig is proved to be globally convergent to an optimal solution of (P) and

to an optimal solution of (LRr), within a fixed tolerance ρ. Actually, because of (4.5),

in a finite number of increasing steps the condition r ≥ r∗ will be satisfied. Therefore,

eventually, the second-order point will results in an optimal solution of (LRr), defining

through the associated multiplier the optimal solution for (P). The tolerance ρ is

needed because of the corresponding tolerances on computing the second-order point

and the smallest eigenvalue.

In the end, we give some practical details in order to improve the performance of the

algorithm. In the first step we use a cheaper first-order algorithm, that guarantees at

least convergence to first-order KKT points. If r is getting too large, without getting

strong duality, we switch to the second-order algorithm. This threshold value can be

chosen as a fraction of the upper bound r̂. Moreover, a smaller fraction of r̂ can be

also chosen as the initial r0.
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4.2 Smallest Eigenvalues of symmetric matrices

Computing few smallest eigenvalues, with the corresponding eigenvectors, of a matrix

is a very important task because it arises in several applications. In particular, we

think of the case relative to large and sparse symmetric matrices. The survey [34]

gives a complete list of the eigensolver software available in literature, with also a brief

description of the implemented methods.

In this section, we reformulate this problem as a nonlinear constrained optimization

problem, a non-convex problem with first and second order conditions as necessary and

sufficient for global optimality. For the special case of the extreme eigenvalues we give

also a nonlinear unconstrained formulation.

Given A ∈ Sn, chosen an integer k � n, the goal is to find the k smallest eigenvalues

and the associated eigenvectors. In particular, we consider the eigenvalues of A labeled

in not decreasing order,

λ1 ≤ λ2 ≤ · · · ≤ λn,

and the corresponding eigenvectors y1, y2, . . . , yn. Under this notation, our problem

consists in finding the k eigenpairs (λ1, y1), . . . , (λk, yk).

4.2.1 Nonlinear constrained formulation

In this subsection, we describe a new nonlinear constrained formulation for finding k

smallest eigenvalues of A.

For this purpose, we define a vector β ∈ Rk such that

β1 > β2 > · · · > βk > 0, (4.14)

and we recall a generalization of the Hoffman-Wielandt theorem (see [33]), which char-

acterizes the solution for the non-convex quadratic problem over the set of orthogonal

matrices.

Theorem 4.2.1 Let A ∈ Sn and B ∈ Sk, where k ≤ n, with given spectral decomposi-

tions A = YDiag(λ)Y T and B = QDiag(β)QT . Then

min
V ∈Rn×k

{
A • V BV T : V TV = Ik

}
= min
φ:{1,...,k}→{1 ...,n}

{
k∑
i

βiλφ(i) : φ injective

}
, (4.15)

with the optimal solution given by

V ∗ =
[
yφ∗(1) · · · yφ∗(k)

] [
q1 · · · qk

]T
.
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The nonlinear formulation that we propose is

min
V

A • V BV T

V TV = Ik

V ∈ Rn×k,

(CPk)

where B = Diag(β). The equivalence with the eigenvalue problem is proved by means

of Theorem 4.2.1. First, because B is already in the diagonal form, the matrix Q in

the Theorem is just the identity matrix. Then, because the eigenvalues of A are in

not decreasing order and β satisfies (4.14), the equivalence in (4.15) implies that the

optimal value of (CPk) is given by

k∑
i=1

βiλi,

with optimal solution

V ∗ = [y1, . . . , yk],

namely with columns the k smallest eigenvectors of A. The problem of finding the k

smallest eigenvalues of a matrix can be recast as nonlinear programming problem with

orthogonality constraints.

To keep description more compact, we define the matrix operator Ē as

Ē(M) = [Ēij •M ]ij i = 1, . . . , k, j = i, . . . , k,

where Ēii = eie
T
i and Ēij = eie

T
j + eje

T
i are matrices in Sk. In addition, we take the

vector δ ∈ R
(k+1)k

2 with each entry defined as

δij =

1 if i = j,

0 otherwise
i = 1, . . . , k, j = i, . . . , k.

Under this notation

V TV = Ik ⇔ Ē(V TV ) = δ.

Using the Kronecker product and the vector representation, we reformulate (CPk) in

this way

min
v

vT (B ⊗A)v

vT (Ēij ⊗ In)v = δij i = 1, . . . , k, j = i, . . . , k,

v ∈ Rnk.

(CPk)
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In the following we refer the objective function with f(v) and the vector of constraints

with h(v) ∈ R
(k+1)k

2 , where each component is defined as

h(v)ij = vT (Ēij ⊗ In)v − δij i = 1, . . . , k, j = i, . . . , k,

For these function we have the following gradients

∇f(v) = 2(B ⊗A)v,

∇hij = 2(Ēij ⊗ In)v i = 1, . . . , k, j = i, . . . , k,

Respect to the gradient of the constraints, for a fixed v ∈ Rnk and coefficient vector

α ∈ R
(k+1)k

2 , the following properties hold for any i = 1, . . . , k and j = i+ 1, . . . , k

∇hii(v)T
k∑
l=1

k∑
r=l

αlr∇hlr(v) = 4αii (hii(v) + 1) + 2
k∑
l=1
l 6=i

αilhil(v), (4.16)

∇hij(v)T
k∑
l=1

k∑
r=l

αlr∇hlr(v) = 4αij (hii(v) + hjj(v) + 2) + 2 (αii + αjj)hij(v),

+ 2
k∑
l=1
l6=i
l 6=j

(αilhil(v) + αjlhjl(v)) . (4.17)

If v is feasible for (CPk) then the above equations reduce simply to

∇hii(v)T
k∑
l=1

k∑
r=l

αlr∇hlr(v) = 4αii, (4.18)

∇hij(v)T
k∑
l=1

k∑
r=l

αlr∇hlr(v) = 8αij . (4.19)

The feasible set of (CPk) is not empty and compact. Moreover, it is also regular.

Proposition 4.2.2 Given v feasible for (CPk), then the columns of ∇h(v) are linear

independent.

Proof Assume that there exists a linear combination of the columns of ∇h(v), with

coefficients α, such that
k∑
r=1

k∑
r=l

αlr∇hrl(v) = 0.

74



4.2 Smallest Eigenvalues of symmetric matrices

Then, for any i = 1, . . . , k and j = i+ 1, . . ., as result of (4.18) and (4.19), we have

0 =∇hii(v)T
k∑
l=1

k∑
r=l

αlr∇hlr(v) = 4αii,

0 =∇hij(v)T
k∑
l=1

k∑
r=l

αlr∇hlr(v) = 8αij .

Because all the coefficients must be zero, the columns of ∇h(v) are linear independent.

For the regularity first and second-order KKT conditions can be used as necessary

optimality conditions. As we already said, for this particular problem these conditions

are also sufficient for global optimality.

We start by introducing the Lagrangian function

L(v, α) = f(v) +

k∑
l=1

k∑
r=l

αlrhlr(v)

= vT (B ⊗A)v + vT (ĒT (α)⊗ In)v − αT δ.

We recall the first and second order KKT conditions for (CPk): if v̂ is local minimum

for (CPk) then there exists α̂ ∈ R
(k+1)k

2 such that

First-Order KKT conditions (FOC)

1. ∇vL(v̂, α̂) = 0;

2. h(v̂) = 0;

Second-Order KKT conditions (SOC)

dT∇2
vvL(v̂, α̂)d ≥ 0 ∀d ∈ D =

{
d : ∇h(v̂)Td = 0

}
.

In the next two propositions we show that conditions (FOC) and (SOC) are necessary

and sufficient for global optimality for (CPk). To make it simple this is proven by

blocks.

Proposition 4.2.3 Given v̂ a point satisfying (FOC) with multiplier α̂, then the fol-

lowing conditions are true:

(i) Multipliers α̂ can be expressed in closed form expression as a function of v̂

α̂ii = −v̂T (ĒiiB ⊗A)v̂ i = 1, . . . , k, (4.20)

α̂ij = − v̂
T (ĒijB ⊗A)v̂

2
= 0 i = 1, . . . , k, j = i+ 1, . . . , k. (4.21)
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(ii) ŷ1 = (e1⊗ In)T v̂, . . . , ŷk = (ek⊗ In)T v̂ are orthonormalized eigenvectors of A with

eigenvalues

λ̂1 = − α̂11

β1
, . . . , λ̂k = − α̂kk

βk
.

Proof Condition 1 in (FOC) says that

0 = ∇vL(v, α) = ∇f(v) +
k∑
l=1

k∑
r=l

αlr∇hlr(v).

Then, for any i = 1, . . . , k and j = i+ 1, . . . , k, as result of (4.18) and (4.19), we have

0 =∇hii(v)T∇vL(v̂, α̂) = 4v̂T (ĒiiB ⊗A)v̂ + 4α̂ii,

0 =∇hij(v)T∇vL(v̂, α̂) = 4v̂T (ĒijB ⊗A)v̂ + 8α̂ij ,

so that the closed-form expression for α are true. The fact that αij = 0 follows from

0 =v̂T (Eij ⊗ In)∇vL(v̂, α̂) = 2v̂T (EijB ⊗A)v̂ + 2α̂ij = 2βj v̂
T (Eij ⊗A)v̂v + 2α̂ij ,

0 =v̂T (Eji ⊗ In)∇vL(v̂, α̂) = 2v̂T (EjiB ⊗A)v̂ + 2α̂ij = 2βiv̂
T (Eji ⊗A)v̂ + 2α̂ij .

Because v̂T (Eji ⊗A)v̂ = v̂T (Eij ⊗A)v̂ and βi > βj , then α̂ij = 0.

In point (ii) we need to show that (λ̂1, ŷ1), . . . , (λ̂k, ŷk) are k distinct eigenpairs of A. By

definition of these vectors and by feasibility of v̂, for any i = 1, . . . , k and j = i+1, . . . , k,

we have

‖ŷi‖2 = v̂(Eii ⊗ In)v̂ = v̂(Ēii ⊗ In)v̂ = 1,

ŷTi ŷj = v̂T (Eij ⊗ In)v̂ = v̂T (Ēij ⊗ In)v̂/2 = 0,

so that ŷ1, . . . , ŷk are orthonormalized vectors. Moreover, for any i = 1, . . . , k, we have

0 = (eTi ⊗ In)∇vL(v̂, α̂) = 2(eTi B ⊗A)v̂ + 2
k∑
l=1

k∑
r=l

α̂lr(e
T
l Ēlr ⊗ In)v̂

= 2βi(e
T
i ⊗A)v̂ + 2αii(e

T
i ⊗ In)v̂ + 2

k∑
l=1
l 6=i

αil(e
T
i ⊗ In)v̂

= 2βiAŷi + 2α̂iiŷi,

which proves that each ŷi is an eigenvector of A with eigenvalue λ̂i = − α̂ii
βi

.

Therefore, any stationary point of (CPk) provides exactly k distinct eigenpairs of A.

To ensure that such eigenpairs are the smallest ones we need additional second order

assumptions on the stationary point.
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Proposition 4.2.4 Given v̂ a point satisfying (FOC) and (SOC) with multiplier α̂,

then

(i) v̂ is a global solution for (CPk).

(ii) (λ̂1, ŷ1), . . . , (λ̂k, ŷk), as defined in Proposition (4.2.3) are the k smallest eigenpairs

of A (in the right order).

Proof As v̂ satisfies (FOC), all the results in Proposition 4.2.3 hold. From now on,

we will start using the second order information. The Hessian computed for v̂ and the

corresponding multiplier α̂ gives

∇2
vvL = 2(B ⊗A) + 2(ĒT (α̂)⊗ In).

By definition of D, d ∈ D if and only if

dT (Ēlr ⊗ In)v̂ = 0, l = 1, . . . , k, r = l, . . . , k.

Let us show that λ̂1, . . . , λ̂k are ordered such that

λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂k. (4.22)

Given i and j = i+ 1, consider the following direction

dij = (Eij ⊗ In)v̂ − (Eji ⊗ In)v̂,

which satisfies

dTij(Ēij ⊗ In)v̂ = hjj(v)− hii(v) = 0,

dTij(Ēii ⊗ In)v̂ = hij(v)/2 = 0,

dTij(Ējj ⊗ In)v̂ = −hij(v)/2 = 0,

dTij(Ēll ⊗ In)v̂ = hjl(v)/2− hil(v)/2 = 0,

dTij(Ēlr ⊗ In)v̂ = 0,

where r and l are indexes different than i and j. It follows that dij ∈ D and so

second-order condition gives

0 ≤ dTij∇2
vvLdij = . . .

= βiŷ
T
j Aŷj + βj ŷ

T
i Aŷi + α̂ii + α̂jj

= βiλ̂j + βj λ̂i − βiλ̂i − βj λ̂j
= βi(λ̂j − λ̂i)− βj(λ̂j − λ̂i)

= (βi − βj)(λ̂j − λ̂i),
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which implies λ̂i ≤ λ̂j because βi > βj . Hence (4.22) holds.

It remains only to show that λ̂1, . . . , λ̂k are the k smallest eigenvalues of A, that is

λ̂1 = λ1, · · · λ̂k = λk.

Let y ∈ span{y1, . . . , yk}⊥ another eigenvector of A with eigenvalue λ. Consider the

following direction

dk = (Ekk ⊗ y),

which satisfies

dTk (Ēkk ⊗ In)v̂ = yT ŷk = 0,

dTk (Ēkl ⊗ In)v̂ = yT ŷl = 0,

dTk (Ēlr ⊗ In)v̂ = 0,

with l and r are indexes different than k. It follows that dk ∈ D and hence second-order

condition gives

0 ≤ dTk∇2
vvLdk = . . .

= βkŷ
TAy + α̂kk

= βkλ− βkλ̂k
= βk(λ− λ̂k).

Therefore, given a different eigenvector y with eigenvalue λ it follows

λ ≥ λ̂k ≥ . . . ≥ λ̂1,

which proves finally that (λ̂1, ŷ1), . . . , (λ̂k, ŷk) are the k smallest eigenpairs of A. By

definition of (CPk), v̂ is the optimal solution of (CPk).

Corollary 4.2.5 First and second-order KKT conditions are necessary and sufficient

conditions for global optimality for (CPk).

Corollary 4.2.6 For problem (CPk) there are not exists local minimizers which are

not global.

In summary, we reformulate the problem of finding the k smallest eigenpair of a sym-

metric matrix as a nonlinear programming problem, with defined global optimality

conditions.
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4.2.2 Nonlinear unconstrained formulation for the Smallest Eigen-

value

Propositions 4.2.3 and 4.2.4, beyond the characterization of the global solutions of

(CPk) as stationary points, provide a closed-form expression for the multiplier α as-

sociated to KKT points. This information should help on defining an unconstrained

formulation for (CPk).

In this section we focus on (CP1), namely the problem of the smallest eigenvalue of A.

For this case we provide an equivalent unconstrained formulation with nice algorithmic

properties. In particular, it can be shown that any gradient-type method converges

directly to the global minimizer of (CP1).

For the general problem (CPk), with k > 1, the unconstrained formulation for (CP1)

could be also extended. Nevertheless, so far we were not able to prove the complete

equivalence.

In the following we restrict our attention to (CP1), so with k = 1 and β1 = 1. It should

be not hard to specialize all the results in Subsection 4.2.1 to this easier case. For this

problem there is only one equality constraint. We denote the feasible set of (CP1) with

F, that is

F = {v ∈ Rn : ‖v‖2 = 1}.

From Proposition 4.2.3, specialized to (CP1), we can derive the following multiplier

function

α(v) = −vTAv.

Up to the sign, for feasible points this function is equivalent to

λ(v) =
vTAv

‖v‖2
. (4.23)

Function (4.23) is called Rayleigh Quotient and it gives the best estimate of an eigen-

value associated to the vector v. Actually, if v is an eigenvector of A, then λ(v) gives

exactly the associated eigenvalue, otherwise λ(v) represents the scalar that minimizes

the error

‖Av − λv‖.

For given constant δ ∈ (0, 1) and parameter ε > 0, over the open set

Sδ = {v ∈ Rn : ‖v‖2 > 1− δ},
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we define the following merit function

rε(v) = λ(v) +
1

ε

(
‖v‖2 − 1

)2
d(v)

, (4.24)

where the term

d(v) = δ2 −
(

1− ‖v‖2
)2
+
,

acts as a shifted barrier on the open set Sδ. Function (4.24) can be interpreted either

as a regularization of the Rayleigh Quotient function or as an Exact Penalty func-

tion, derived from the corresponding Augmented Lagrangian for (CP1), using −λ(v)

as a multiplier function. Regularization of the Rayleigh Quotient is similar to the one

applied to Quotient function used for the relaxation of the Max-Cut (see Subsection

3.3.2).

The idea is to solve the following problem

min
v∈Sδ

rε(v). (RQ1)

The first important property is the compactness of the level sets of function rε(v),

among which it guarantees the existence of a solution of problem (RQ1).

Proposition 4.2.7 For every given ε > 0 and for every given v0 ∈ F, the level set

Lε(v
0) = {v ∈ Sδ : rε(v) ≤ rε(v0)} is compact and

Lε(v
0) ⊆

{
v ∈ Rn : ‖v‖2 ≤

(
2εδ2‖A‖

) 1
2 + 1

}
. (4.25)

Proof First, for every v ∈ Sδ, we have that

λ(v) =
vTAv

‖v‖2
≥ −‖A‖‖v‖

2

‖v‖2
= −‖A‖.

Hence we get

rε(v) ≥ −‖A‖+
1

ε

(
‖v‖2 − 1

)2
d(v)

≥ −‖A‖+
1

ε

(‖v‖2 − 1)2

δ2
. (4.26)

For every v ∈ Lε(v
0), as v0 ∈ F, we can write

rε(v) ≤ rε(v0) = f(v0) ≤ C,

so that using (4.26) we get

‖v‖2 ≤
(
2εδ2‖A‖

) 1
2 + 1.
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This implies that (4.25) holds and hence that Lε(v
0) is bounded.

On the other hand, any limit point v̂ of a sequence of points {vk} in Lε(v
0) cannot

belong to the boundary of Sδ. Indeed, if ‖v̂‖2 = 1 − δ then d(v̂) = 0 and hence

limk→∞ rε(v
k) = ∞. This fact contradicts vk ∈ Lε(v

0) for k sufficiently large. There-

fore, the level set Lε(v
0) is also closed and the claim follows.

Function (4.24) is continuously differentiable over Sδ, with gradient defined as

∇rε(v) = ∇λ(v) +
4

ε

(‖v‖2 − 1)

d(v)

(
1− (‖v‖2 − 1)(1− ‖vi‖2)+

d(v)

)
,

where

∇λ(v) =
2

‖v‖2
(Av − λ(v)v) .

Observe that, given any v ∈ Sδ, the following ortogonality condition holds

vT∇λ(v) =
2

‖v‖2
(
vTAv − λ(v)‖v‖2

)
= 0. (4.27)

Now, we are ready to show the most significant property for problem (RQ1), the ex-

actness respect to (CP1).

Theorem 4.2.8 For any ε > 0 the following correspondences hold:

(i) a point v̂ is a stationary point of Problem (RQ1) if and only if it is a stationary

point of problem (CP1).

(ii) a point v̂ is a global minimizer of problem (RQ1) if and only if it is a global

minimizer of problem (CP1).

(iii) a point v̂ is a local minimizer of problem (RQ1) if and only if it is a local minimizer

of problem (CP1).

Proof Exploiting property (4.27), for any v ∈ Sδ, we have

vT∇rε(v) =
4

ε

(‖v‖2 − 1)‖v‖2

d(v)

(
1− (‖v‖2 − 1)(1− ‖vi‖2)+

d(v)

)
,

so that if ‖v‖2 ≥ 1 we get

vT∇rε(v) =
4

ε

(‖v‖2 − 1)‖v‖2

δ2
, (4.28)

otherwise

vT∇rε(v) =
4

ε

(‖v‖2 − 1)‖v‖2

d(v)

(
1 +

(‖v‖2 − 1)2

d(v)

)
. (4.29)
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For any point v ∈ F

rε(v) = f(v), (4.30)

∇rε(v) = ∇λ(v) = ∇vL(v,−λ(v)). (4.31)

Now we prove the correspondences stated in our claims.

(Correspondence of stationary points).

Necessity. if v̂ ∈ Sδ is a stationary point of rε, namely with ∇rε(v̂) = 0, then, by

equation (4.28) or (4.29), we have v̂ ∈ F. Therefore (4.31) proves that v̂ is a

stationary point also for problem (CP1).

Sufficiency. Let v̂ be a stationary point for problem (CP1). Then v̂ ∈ F is stationary

point of (CP1) by (4.31).

(Correspondence of global minimizers).

Necessity. By Proposition 4.2.7, the function rε admits a global minimizer v̂, so that

it is a stationary point of rε. It follows v̂ ∈ F, and hence rε(v̂) = f(v̂). We

proceed by contradiction. Assume that a global minimizer v̂ of rε is not a global

minimizer of problem (CP1). Then there exists a point v∗ global minimizer of

problem (CP1) such that

rε(v̂) = f(v̂) > f(v∗) = rε(v
∗),

but this contradicts the assumption that v̂ is a global minimizer of rε.

Sufficiency. The claim is true by similar arguments.

(Correspondence of local minimizers).

Necessity. Since v̂ is a local minimizer of rε over Sδ, it is also stationary point, so that

v̂ ∈ F and rε(v̂) = f(v̂). Furthermore, there exists a ρ > 0 such that

f(v̂) = rε(v̂) ≤ rε(v) ∀ v ∈ Sδ ∩Bρ(v̂).

Therefore by using (4.30)

f(v̂) ≤ rε(v) = f(v) ∀ v ∈ F ∩Bρ(v̂),

hence v̂ is a local minimizer for problem (CP1).
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Sufficiency. Since v̂ is a local minimizer of (CP1), then it is proved to be global by

Corollary 4.2.6. Therefore v̂ is global and hence also local minimizer for (RQ1).

Theorem (4.2.8) states an exact relation between Problem (CP1) and (RQ1). Also, the

equivalence between local minimizers ensures that also for problem (RQ1) there not

exists local minimizer not global.

Moreover, Proposition 4.2.7, together with the differentiability of rε, makes any stan-

dard optimization algorithm globally convergent at least to a stationary point of prob-

lem (RQ1), hence of (CP1). In particular, standard algorithms applied to function rε

produce a sequence {vk} such that

• the sequence {vk} is contained in the compact Lε(v
0);

• the sequence {vk} admits accumulation points;

• every accumulation point v̂ of the sequence {vk} is a stationary point for (RQ1),

namely

∇rε(v̂) = ∇λ(v̂) = 2(Av̂ − λ(v̂)v̂) = 0.

Therefore, any standard algorithm guarantees at least convergence to an eigenvector v̂

of A with eigenvalue λ(v̂). The unconstrained algorithm should fall in the gradient-type

class. This choice is motivated by two reasons.

The barrier term plays a key role to make standard optimization methods be globally

convergent for problem (RQ1). Nevertheless, generally speaking, a barrier term affects

negatively the performance behavior of any optimization method, especially when the

produced sequence gets closer to the boundary of Sδ. Favorably, the use of a gradient-

like method makes the barrier-penalty term behaves just as a penalty term on the

feasibility of problem (CP1).

First of all, we give a description for a general gradient method: starting with v0 ∈ F,

we define an iteration of the form

vk+1 = vk − αk∇rε(vk), (4.32)

where αk > 0 is obtained by a suitable linesearch procedure satisfying at least

rε(v
k+1) ≤ rε(x0). (4.33)
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We prove that for ε sufficiently large the produced sequence stays in the set

{v ∈ Rn : ‖v‖2 ≥ 1},

hence the penalty-barrier term reduces simply to a penalty term. In particular, the

following proposition holds.

Proposition 4.2.9 Let v0 ∈ F and let {vk} be the sequence generated with the iterative

scheme (4.32), where each αk satisfies (4.33) and αk ≤ αM . There exists ε̄ > 0 such

that if ε ≥ ε̄ then

‖vk‖ ≥ 1 k = 1, 2, . . . .

Proof By (4.33), for a fixed value ε > 0, the sequence {vk} stays in the compact level

set Lε(v
0). The proof is by induction. Assume that there exists ε̄ > 0 such that, for

any ε ≥ ε̄, it is true that ‖vk‖2 ≥ 1. We show that is true also for k + 1. By property

(4.27) we get

‖vk+1‖2 = ‖vk‖2 + (αk)2‖∇vrε(vk)‖2 − 2αk(vk)T∇rε(vk)

= ‖vk‖2 + (αk)2‖∇rε(vk)‖2 −
8αk

ε

(‖vk‖2 − 1)‖vk‖2

δ2

≥ ‖vk‖2 − 8αM
εδ2

(‖vk‖2 − 1)‖vk‖2,

Assume that ‖vk‖ ≥ 1. If ‖vk‖ = 1 then ‖vk+1‖2 ≥ 1. Otherwise we need to verify

that a value of ε̄ exists such that for all ε ≥ ε̄

(‖vk‖2 − 1)− 8αM
εδ2

(‖vk‖2 − 1)‖vk‖2 ≥ 0,

namely

1− 8αM
εδ2
‖vk‖2 ≥ 0. (4.34)

By Proposition 4.25 we have that for all iterations k

‖vk‖2 ≤ (εδ2‖A‖)
1
2 + 1. (4.35)

Therefore (4.35) combined with (4.34) implies

ε− 8
αM
δ2

(
(2δε‖A‖)

1
2 + 1

)
≥ 0

which is satisfied for some ε ≥ ε.
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Anyway, the most important advantage in using a gradient-based method, instead of

other unconstrained minimization methods, is that it is guaranteed convergence to an

eigenvector associated to smallest eigenvalue, global solution of (CP1) and (RQ1).

The eigenvectors y1, . . . , yn of A represent an orthonormalized basis of Rn, so that any

starting point v0 can be expressed through this basis, namely

v0 =

n∑
i=1

c0i yi

where c0i = yTi v
0 with i = 1, . . . , n. It follows that the sum can be restricted to the

subset of indexes defined by

I(v0) = {i ∈ {1, . . . , n} : yTi v
0 6= 0}.

Likewise, we can express every point of the sequence {vk} generated by iteration like

(4.32): for example vk+1 can be expressed by

vk+1 =

n∑
i=1

ck+1
i yi,

where each ck+1
i can be evaluated through the previous cki , namely by

ck+1
i = yTi v

k+1

= yTi (vk − αk∇rε(vk))

=

(
1 +

2αk

‖vk‖2
(λ(vk)− λi)−

4αk

ε

(‖vk‖2 − 1)

b(vk)

)
cki .

Therefore, we have that I(vk+1) ⊆ I(vk) ⊆ . . . ⊆ I(v0).

In summary, in order to have convergence to a smallest eigenvalue, the minimal condi-

tion is that v0 is not orthogonal to the eigenspace associated to λ1, which we denote

with Y1. Luckily this is the only condition needed.

Proposition 4.2.10 Given v0 ∈ F such that v0 6∈ Y⊥1 , let {vk} be the sequence gen-

erated by a globally convergent gradient-type method. There exists ε̄ > 0 such that if

ε ≥ ε̄ then every accumulation point of {vk} belongs to Y1, namely a global minimizer

of (CP1).

Proof Because of the assumption on standard gradient algorithms, we have that {vk}
admits accumulation points and that every accumulation point is an eigenvector of A.
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Reasoning by contradiction, let us assume that there exists a subsequence K, redefined

as the entire sequence, such that

lim
k→∞

vk = v̂ with ‖v̂‖ = 1, (4.36)

where v̂ is an eigenvector of A with eigenvalue λ(v̂) > λ1.

Using the basis y1, . . . , yn the eigenvector v̂ can be expressed as

v̂ =

n∑
i=1

ciyi,

where each ci = yTi v̂. Because v̂ is an eigenvector, but not the smallest, there exists an

index s > 1 such that

cs = yTs v̂ 6= 0, λ(v̂) = λs.

Without loss of generality we can assume yTs v̂ > 0.

As opposed, by hypothesis on v0, there exists ym ∈ Y1 such that c0m = yTmv
0 6= 0.

Without loss of generality, we assume ym = y1 and c01 = yT1 v
0 > 0. It is possible

to prove by induction that {ck1} > 0. So let assume that ck1 > 0 and show that also

ck+1
1 > 0. As before we express

ck+1
1 =

[(
2αk

‖vk‖2
(λ(vk)− λ1)

)
+

(
1− 4αk

εδ2
(‖vk‖2 − 1)

)]
ck1.

The first term is surely nonnegative, cause λ(vk) > λ1, while the second term can be

made positive choosing ε ≥ ε̄ as it is done in the last part of proof of Proposition 4.2.9.

Hence we have ck+1
1 > 0.

Moreover, because of (4.36), we have that

lim
k→∞

cks = cs > 0, (4.37)

so that, as results of I(vk+1) ⊆ I(vk), we have {cks} > 0.

As opposed, because v̂ and y1 are eigenvectors associated to different eigenvalues, they

are orthogonal between each other, so that c1 = yT1 v̂ = 0. Again, because of (4.36), we

have that

lim
k→∞

ck1 = c1 = 0. (4.38)

By definition, we have for index 1 and s

ck+1
s

ck+1
1

=

[(
2αk

‖vk‖2 (λ(vk)− λs)
)

+
(

1− 4αk

εδ2
(‖vk‖2 − 1)

)]
[(

2αk

‖vk‖2 (λ(vk)− λ1)
)

+
(

1− 4αk

ε (‖vk‖2 − 1)
)] cks
ck1
<
cks
ck1
,

86



4.3 Numerical results

which shows that
{
cks
ck1

}
is decreasing. This fact is in contradiction with (4.37) and

(4.38). It follows that v̂ belongs to the eigenspace Y1 and hence is a global minimizer

of problem (CP1) and (RQ1).

In conclusion, a general gradient-like method applied to the exact penalty function rε

can be viewed as an iterative method to find the extreme eigenvalue-eigenvector pair

of a symmetric matrix.

In order to extend this unconstrained formulation for (CPk), for k > 1, the idea is to

consider the following merit function

rkε(v) =

k∑
i=1

βi
vTi Avi
‖vi‖2

+
1

ε

k∑
i=1

(‖vi‖2 − 1)2

d(vi)
+

k∑
j=i+1

(
vTi vj
‖vi‖‖vj‖

)2
 .

From the theoretical point of view, respect to the space where rkε(v) is defined, what we

can show is that level sets of rkε(v) are compact and that stationary points have single

block components (vi) with unit norm. Unfortunately, we cannot force stationary points

to satisfies exactly the orthogonality conditions, even forcing to zero the parameter ε.

Nevertheless, we have the feeling that global solutions of rkε(v) (hence also stationary

points) cannot be unfeasible for (CPk), at least for ε sufficiently small. This conjecture

is motivated by the fact the optimal solution of (CPk) and the optimal value are both

known. Moreover, also some preliminary tests confirm this sensation.

4.3 Numerical results

In this section, we describe our computational preliminary tests both with algorithm

LoREig for solving problem (P), the extreme eigenvalue problem, and algorithm RRQ

based on the minimization of (RQ1) for finding the smallest eigenvalue of a symmetric

matrix.

All the experiments have been run on the same PC with 4 Gb of RAM and 3.16 Ghz,

with all algorithms implemented in Fortran.

The first group of experiments regards LoREig and takes as a test problem

min
x

λn

(
A0 +

m∑
i=1

xiAi

)
uTx = m

x ≥ 0,

(4.39)
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namely the minimization of the largest eigenvalue of a symmetric matrix, with the co-

efficients x constrained to the simplex set of length m. This problem is equivalent up

to the sign to a particular (P) and it is completely defined by the dimensions m,n and

the matrices A0, A1, . . . , Am ∈ Sn.

In order of have large number of instances for our test, we use a random generator for

sparse symmetric matrix. In particular, chosen m (number of variables) and n (dimen-

sion of the matrices), we use this random generator to create m+ 1 sparse matrix with

density fixed to d = 5%.

Therefore, our test bed is defined by 16 instances, given by combination of m ∈
{25, 59, 75, 100} and n ∈ {250, 500, 750, 1000}.

Technical details for algorithm LoREig concern choices for r0, for the optimization

algorithm used to find KKT points for (LRr) and for the routine to compute smallest

eigenvalues.

As initial rank we set r0 = max (3, b0.4r̂(m,n)c), where

r̂(m,n) = min

(⌊√
1 + 8m− 1

2

⌋
, n

)
is the upper bound on r∗ for problem (4.39). Moreover, threshold value for switching

from first to second-order algorithm is set directly to r̂(m,n). The updating rule for

the rank is simply r = min {br · 1.5c, r̂}.
As constrained optimization algorithm, we used the Fortran code AlGENCAN, which can

be downloaded from the web page1. This code implements a special Augmented La-

grangian algorithm, which uses first and second-order derivatives and whose references

can be found in [3, 4].

Finally, we use subroutines dsaupd and dseupd of the ARPACK library to compute the

smallest eigenvalue of a sparse symmetric matrix.

In particular, as tolerances, we use for the inner minimization 10−8 and for the strong

duality error just 10−7.

As term of comparison with LoREig, we consider two very efficient Interior Point codes

in Semidefinite Programming, SDPA and CSDP. References for SDPA can be found in

[61, 62] and it can be downloaded in the version 7.3.5 from the web page2, while

CSDP refers to [10] and it can be downloaded in the version 6.1.0 from the web page3.

Obviously, these two algorithms are applied to the SDP formulations for (4.39), namely

1http://www.ime.usp.br/~egbirgin/tango/codes
2http://sdpa.sourceforge.net/download.html
3https://projects.coin-or.org/Csdp
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min
s,x

s

sI −
m∑
i=1

xiAi � A0,

uTx = m,

x ≥ 0,

max
Z,µ

m µ+A0 • Z

Ai • Z − µ ≥ 0, i = 1, . . . ,m

I • Z = 1,

Z � 0.

(4.40)

Moreover, we compare also with the more general Low-Rank method [14, 16, 17] de-

scribed in Subsection 2.3.1 and implemented in the code SDPLR (downloadable from the

web page1). The algorithm is applied to the second SDP problem in (4.40) written in

primal standard form, namely

max
Z,µ+,µ−,θ

m µ+ −m µ− +A0 • Z

Ai • Z − µ+ + µ− − θ = 0, i = 1, . . . ,m

I • Z = 1,

µ+, µ−, θ ≥ 0,

Z � 0.

SDP blocks are explicitly considered because SDPLR takes advantage of this structure.

In all test, for any instance and for any algorithm, we set a time limit of 10 hours to

get a solution within the required accuracy, otherwise a failure is declared. Results of

our tests are summarized in Table 4.1. For any instance, we report dimensions details

and performances of each algorithm. In particular, for any algorithm, beyond the com-

putational time, we also consider (respect to the primal-dual solution provided) the

duality gap and the overall error on primal-dual feasibility. These measures allow to

understand the accuracy of each method on solving (4.39).

LoREig, CSDP and SDPA solve all the test problems with times far enough from the time

limit, whereas SDPLR is not able to converge for two instances and needs a long time

for other three.

From the time point of view, among the SDP algorithms SDPA results slightly faster

for small instances, while CSDP seems to be better for the larger ones. Anyway both of

them are outperformed by LoREig as the latter is on average 4-5 times more rapid on

solving the instances, small and large. It seems that LoREig is less influenced by the

dimensions (particularly by n) comparing with the SDP approaches. Among the Low-

Rank approaches, LoREig results sensibly faster than SDPLR for 13 out 16 instances and

1http://dollar.biz.uiowa.edu/∼sburer/software/SDPLR

89



4. EIGENVALUE OPTIMIZATION

d
im

L
o
R
E
i
g

S
D
P
L
R

C
S
D
P

S
D
P
A

m
n

g
ap

fea
sib

le
tim

e
gap

feasib
le

tim
e

gap
feasib

le
tim

e
gap

feasib
le

tim
e

25
25

0
2
.8

e-08
6.9e-09

2
5.3e-06

3.8e-08
2

1.8e-08
9.9e-10

7
9.5e-08

7.6e-08
4

5
00

2
.3

e-08
1.2e-09

12
1.6e-05

3.9e-08
52

2.0e-07
6.8e-09

57
2.7e-06

1.0e-08
64

7
50

5
.1

e-09
8.5e-11

29
9.6e-05

3.9e-08
231

6.8e-08
1.8e-09

204
7.2e-07

4.7e-08
214

1
000

1
.2

e-08
1.3e-08

1
51

1.8e-05
4.5e-08

210
7.9e-08

1.8e-09
497

3.1e-06
7.8e-08

637

50
25

0
1
.2

e-09
4.2e-08

6
2.4e-06

4.7e-08
56

3.4e-07
9.5e-09

12
6.1e-07

2.4e-08
8

5
00

5
.4

e-08
4.3e-08

26
2.1e-06

2.3e-08
100

2.6e-08
8.1e-10

104
2.3e-06

6.7e-08
101

7
50

1
.2

e-07
1.7e-08

86
1.3e-04

3.6e-08
172

3.5e-08
9.0e-10

363
3.2e-06

7.6e-08
401

50
10

0
0

9
.6

e-09
1.1e-08

1
26

1.6e-05
2.3e-08

181
4.8e-08

1.4e-09
834

5.3e-06
1.2e-08

943

75
25

0
2
.7

e-08
3.9e-08

9
3.2e-04

3.8e-08
6478

1.5e-08
4.7e-10

18
7.7e-07

1.8e-08
9

5
00

1
.9

e-08
4.1e-09

55
1.0e-04

4.8e-08
30

3.5e-08
1.0e-09

152
3.3e-06

4.7e-08
96

7
50

5
.9

e-09
2.1e-08

1
42

***
***

***
3.7e-07

4.9e-09
495

3.6e-06
2.8e-08

460

1
000

1
.3

e-07
6.8e-08

2
87

***
***

***
5.5e-08

1.1e-09
1192

4.4e-06
3.4e-08

1173

100
25

0
1
.6

e-08
6.2e-08

9
1.7e-05

4.9e-08
191

2.8e-08
7.1e-10

24
2.1e-06

1.6e-08
12

5
00

5
.0

e-08
6.2e-09

91
5.1e-05

4.9e-08
63

1.3e-08
1.3e-09

195
8.7e-07

3.9e-08
126

7
50

1
.4

e-07
1.3e-08

1
78

2.1e-05
4.9e-08

13005
5.8e-08

1.4e-09
654

3.5e-06
1.3e-08

559

1
000

6
.7

e-08
5.8e-08

4
61

3.1e-05
4.7e-08

14695
6.9e-08

1.3e-09
1624

5.2e-06
6.2e-08

1478

T
a
b

le
4
.1

:
F

irst
com

p
a
riso

n
over

E
x
trem

e
E

ig
en

va
lu

e
O

p
tim

ization

90
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generally much more stable in terms of expected time. Moreover, quite often SDPLR is

even slower than the two SDP algorithms.

From the accuracy point of view, LoREig compares favorably with both of SDP algo-

rithms. Actually, it provides a primal-dual pair with an error on feasibility and on the

strong duality of the same order of SDPA and slightly worse than CSDP. As opposed,

SDPLR provides worse approximated optimal solution, as the error on strong duality is

usually 2-3 order higher respect to the other algorithms.

In order to highlight limits of SDP approaches on solving (4.39), we provide addi-

tional results on another set of test problems, larger in terms of n: the random

matrix generator is used to create 20 instances varying m ∈ {10, 20, 30, 40, 50} and

n ∈ {2000, 3000, 4000, 5000}. In particular, sparse matrices are generated with density

fixed to d = 1%.

Results of this second group of test are reported in Table 4.2. In this situation, only

LoREig is able to solve all the problems within the time limit and never with more

than one hour. As opposed, SDPLR fails for 2 instances, while CSDP and SDPA fail for

a third of the problems. Morevoer, respect to LoREig, both SDP algorithms are on

average 100 times slower, while SDPLR compares favorably only for few instances and

is outperformed for the rest of problems. Considerations on accuracy are the same as

before: LoREig, CSDP and SDPA have the same order of errors on strong duality and on

feasibility, while SDPLR is not comparable.

Overall, among the first and second group of test, LoREig seems to very suitable to

solve Eigenvalue Optimizations problems, combining speed with a satisfactory accuracy.

Actually, it is extremely more fast and accurate respect to the SDP approaches and

the general Low-Rank algorithm SDPLR. Respect to the latter our approach seems to

be also more reliable and stable.

The second part of the experiments deals with the computation of the smallest eigen-

value of constant symmetric matrix for large-scale instances. In particular, we want to

evaluate the computational behavior of the algorithm RRQ. We consider our approach

with δ = 0.25 and ε = 103 ·δ−1 (parameters in (RQ1)) and with the algorithm defined in

[25] as a gradient-type unconstrained algorithm used to minimize (RQ1) . This method

satisfies (4.32),(4.33) and the stopping criterion is defined by

‖Av − λ(v)v‖ ≤ ρ(1 + |λ(v0)|),

where v0 is the starting point and ρ is the tolerance fixed to 10−8.
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4.3 Numerical results

Instance RRQ Arpack

n val residual num Av time residual num Av time

10000 [-10,10] 3.10E-07 343 1.74 1.16E-06 978 3.08

[-10,10] 5.54E-07 419 2.14 1.14E-06 990 3.12

[-10,10] 5.76E-07 357 1.83 1.12E-06 894 2.81

[-1000,1000] 3.19E-05 445 2.25 1.16E-04 978 3.08

[-1000,1000] 4.31E-05 398 2.01 1.14E-04 990 3.14

[-1000.1000] 5.69E-05 383 1.92 1.12E-04 894 2.84

50000 [-10,10] 9.83E-07 722 85.83 2.58E-06 3048 230.67

[-10,10] 1.28E-06 1188 141.66 2.53E-06 3702 279.93

[-10,10] 1.02E-06 685 81.24 2.56E-06 2628 196.39

[-1000,1000] 4.35E-05 747 88.72 2.58E-04 3048 231.57

[-1000,1000] 1.09E-04 1474 175.32 2.53E-04 3702 281.99

[-1000,1000] 1.29E-04 573 68.19 2.56E-04 2628 198.49

100000 [-10,10] 1.15E-06 1197 599.06 3.64E-06 5478 1779.67

[-10,10] 1.23E-06 1015 506.57 3.65E-06 3756 1211.28

[-10,10] 1.80E-06 1323 659.28 3.64E-06 3354 1066.76

[-1000,1000] 1.82E-04 1254 625.79 3.64E-04 5478 1751.88

[-1000,1000] 1.64E-04 1096 543.99 3.65E-04 3756 1203.30

[-1000,1000] 9.96E-05 953 474.67 3.64E-04 3354 1067.15

Table 4.3: Comparison over the Smallest Eigenvalue problem

As term of comparison, we consider the routines of Arpack used before. In particular,

this software is based upon an algorithmic variant of the Arnoldi process called the Im-

plicitly Restarted Arnoldi Method. Because the test matrices are symmetric it reduces

to a variant of the Lanczos process called the Implicitly Restarted Lanczos Method.

These variants may be viewed as a synthesis of the Arnoldi/Lanczos process with the

Implicitly Shifted QR technique that is suitable for large scale problems.

To create our instances we use the same random generator for sparse symmetric ma-

trix described before, but in this case with density d = 1%. For any dimension

n ∈ {10000, 50000, 100000}, we create 6 instances, the first three with entries randomly

in [−10, 10] and the remaining with entries in [−1000, 1000].

In Table 4.3 are reported for any instance matrix details and performances of the two

algorithms. In particular, the residual column refers to the error on the eigenvalue-
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4. EIGENVALUE OPTIMIZATION

eigenvector equation, namely

‖Av̂ − λ̂v̂‖,

where (λ̂, v̂) is the approximated smallest eigenpair provided. Moreover, we give also

the total time and the number of calls of the routine for the sparse matrix-vector

product.

The analysis of the tests is quite simple. On the one side, RRQ provides slightly more

accurate solutions than Arpack and for both residuals get worse as the dimension and

ill-conditioning increase. On the other side, our method results extremely faster than

the other and this is confirmed by the lower number of sparse matrix-vector products.

In conclusion, according to this preliminary tests, we have that RRQ algorithm is suitable

for computing smallest eigenvalues for large-scale matrices and that it outperforms an

efficient code as the one implemented in the well-known Arpack library.
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5

Integer Quadratic Programming

Motivated by the progress made in recent decades both in nonlinear optimization and

in integer programming, the focus of research in optimization has recently moved to the

study of mixed-integer nonlinear optimization problems. These problems are usually

hard to be solved (in theory and in practice) by the presence of two types of noncon-

vexity: first, the objective function or constraints can be non-convex, and second, in

the case of integer variables, the domains of the variables are non-convex.

We consider a general non-convex quadratic integer optimization problem of the form

min
x

q(x) = xTQx+ LTx

li ≤ xi ≤ ui i = 1, . . . , n

x ∈ Zn,

(IQP)

where l, u ∈ Rn define the box where variables are constrained.

Almost all the algorithms for quadratic mixed-integer optimization can handle exactly

just the case where the objective function is convex, see e.g. [9, 13, 38]. In case this

condition is not satisfied, such algorithms can be somehow used, but the provided so-

lution is usually suboptimal.

As far we know, among exact algorithms that cover at least non-convex quadratic

mixed-integer programming, there are two based on the idea of convex estimators com-

bined with branching and bound reduction techniques [6, 55], and one more recent

approach based on a tight SDP relaxation embedded in a branch-and-bound scheme

[18].

Recently, a fast branch-and-bound algorithm for convex quadratic integer minimization

has been proposed in [13]. Its main features are a fast incremental computation of

95



5. INTEGER QUADRATIC PROGRAMMING

lower bounds given by unconstrained continuous minimizers and an improvement of

these bounds by considering lattice-free ellipsoids containing the continuous minimizers.

More precisely, the improved lower bound is given as the minimum of the objective

function over the boundary of such ellipsoid, which can be computed efficiently.

For a non-convex quadratic objective function, this approach is not feasible any more;

the unconstrained continuous minimizer does not even exist in this case.

In this chapter, we present a different approach for computing lower bounds in the

non-convex case. Main ingredients in the algorithm are the definition and the solution

of an appropriate continuous relaxation of problem (IQP). To this end, we choose an

ellipsoid E enclosing entirely the feasible region of problem (IQP). Then we define a

relaxation of problem (IQP) as

min
x

xTQx+ LTx

x ∈ E.
(R)

Taking advantage of dimension restriction for (IQP), the relaxation can be solved from

the dual point of view in a very small amount of time. Actually, once a spectral

decomposition of Q is available, the dual of (R) can be solved by a (univariate) Newton

method, with cost per iteration proportional to n.

Moreover, embedding the relaxation (R) in a branch-and-bound scheme with a priori

order on fixing variables, the spectral decomposition of a sub-matrix for a certain

subproblem is in common with many other nodes. This implies that the number of

spectral decompositions that needs to be performed is at maximum n and all these

tasks can be moved in the preprocessing phase.

This chapter is organized as follows. In Section 5.1, we describe our approach for

solving the continuous relaxation (R) as well as two ways to choose good relaxations.

In Section 5.2, we explain how the solution of this relaxation can be embedded into a

branch-and-bound scheme in an intelligent way. In Section 5.3, we report computational

results of our algorithm on an extensive test problem set for the ternary case.

5.1 Continuous relaxations

We are interested in finding strong lower bounds for problems of the same type of

(IQP) that are efficiently computable. The method we apply depends on whether the

objective function q(x) is convex or non-convex, i.e., whether Q is positive semidefinite

or not. We describe these cases separately in the following.
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5.1.1 Non-convex case

In this part we focus on an integer quadratic problem

min
x

q(x) = xTQx+ LTx

x ∈ Zn ∩ [l, u],
(INC)

with Q 6� 0. In this non-convex case, we aim to solve the continuous relaxation given

by relaxing integrality and box constraints. In particular, we make use of an ellipsoid

that contains the entire feasible region of (INC).

Since integrality is not required here, we simplify this problem in several ways. First,

we may assume l = −1 and u = 1, by properly scaling Q and L as explained in

Subsection 5.1.1.3. For simplicity, we assume Q and L already scaled. Moreover, we

restrict ourselves to ellipsoids that are centered in the origin, hence defined as

E(H) = {x ∈ Rn : xTHx ≤ n},

by an appropriate H � 0. In particular, H must satisfy the following assumption

[−1, 1]n ⊆ E(H),

in order to have a valid relaxation of (INC) (of course already scaled). The addressed

problem becomes

min
x

xTQx+ LTx

x ∈ E(H).

By applying a linear transformation with H−
1
2 to the variable space, we can further

assume H = I, replacing Q by H−
1
2QH−

1
2 and L by H−

1
2L. So, without loss of

generality, we focus on the relaxation defined on the sphere, namely

min
x

xTQx+ LTx

‖x‖2 ≤ n.

By assumption on q(x) ( Q 6� 0), global minimizers x∗ can be found on the boundary

of the feasible set. Actually, assume by contradiction that x∗ lies in the interior of

the feasible region, then x∗ would satisfy the first and second-order local optimality

conditions for unconstrained optimization. The latter would be in conflict with Q 6� 0.

Therefore, the relaxation reduces simply to problem

p∗ = min
x

xTQx+ LTx

‖x‖2 = n.
(P)
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Despite its non convexity, it is well known that optimal solution set of problem (P)

can be fully characterized by some optimality conditions (see, e.g.,[60]): a point x∗ is

a global minimizer for (P) if and only if there exists µ∗ ∈ R such that
2(Q− µ∗I)x∗ = −L,

‖x∗‖2 = n,

Q− µ∗I � 0.

(5.1)

First two conditions correspond to the standard KKT condition for problem (P). Be-

cause of the regularity of the feasible set, the optimal multiplier µ∗ is unique respect

to x∗. Further if Q− µ∗I � 0 then problem (P) has a unique global solution.

Most important, it has also been proved that an approximation to the global solution

can be computed in polynomial time (see, for example, [60]). Therefore, (P) can be

considered an easy problem from a theoretical point of view. These peculiarities led to

the development of ad hoc algorithms for finding a global solution for (P).

In truth, most of the algorithms proposed in literature [45, 52, 58] are based on duality

results: the Lagrangian dual for problem (P), as defined in [58], is given by

d∗ = max
µ

f(µ) = nµ− 1
4L

T (Q− µI)†L

Q− µI � 0.
(D)

where (·)† is the matrix operator for the generalized inverse, better called pseudo-

inverse. It can be shown that strong Lagrangian duality holds, i.e., p∗ = d∗. Problem

(D) has been deeply studied in nonlinear continuous optimization field and the main

aim was the definition of efficient algorithms able to treat large scale problem and to

exploit sparsity pattern. However, within a branch-and-bound scheme for an integer

problem, this is not the case in our context: the dimension of the addressed problems

is usually below one hundred. Therefore, some expensive preliminary operations, such

as spectral decompositions of the quadratic term, can be easily accomplished.

In the following, we take advantage of the availability of the spectral decomposition

of Q: let λ1, . . . , λn the eigenvalues of Q, in not decreasing order, and v1, . . . , vn the

corresponding eigenvectors (assumed orthonormalized). Therefore, we can express

Q = V ΛV T ,

where V = [v1 . . . , vn], with V TV = I, and Λ = Diag(λ1, . . . , λn). By employing the

transformation y = V Tx, we reformulate (P) as

p∗ = min
y

yTΛy + L̃T y

‖y‖2 = n,
(DP)
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where L̃ = P TL. In this situation, the cost per function evaluation reduces from O(n2)

to O(n). The diagonal form simplify the global optimality conditions, that are
2(λi − µ)yi = −L̃i, i = 1, . . . , n

n∑
i=1

y2i = n,

µ ≤ λ1.

(5.2)

The spectral decomposition of Q can be also exploited to reduce the complexity of the

dual, which can be rewritten as

d∗ = max
µ

f(µ) = nµ− 1
4 L̃

T (Λ− µI)†L̃

µ ≤ λ1.
(D)

We recall that for a diagonal matrix we get the pseudo-inverse by taking the reciprocal

of each non-zero element on the diagonal, leaving the zeros in place. This fact under-

lines that the pseudo-inverse is not a continuous operation: slight changes on the zero

diagonal entries result in significant changes on the pseudo-inverse.

Based on L̃, the projection of the linear part L in the eigenspaces of Q, we define the

following sets of indexes

I =
{
i ∈ {1, . . . , n} : L̃i 6= 0

}
,

J = {i ∈ I : λi = λ1} ,

K = {i ∈ I : λi > λ1} .

These sets allow to rewrite the dual function f(µ) in this way

f(µ) =


nµ−

∑
i∈I

L̃2
i

4(λi − µ)
if µ < λ1,

nµ−
∑
i∈K

L̃2
i

4(λi − µ)
if µ = λ1,

in the interval (∞, λ1]. Therefore, for µ < λ1, we have first and second order derivatives

expressed as

f ′(µ) = n−
∑
i∈I

L̃2
i

4(λi − µ)2
(5.3)

f ′′(µ) = −
∑
i∈I

L̃2
i

2(λi − µ)3
, (5.4)
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so that f(µ) is strictly concave in the interval (∞, λ1). Likewise, f ′(λ1) and f ′′(λ1) are

similar to (5.3) and (5.4), just the sum is restricted to K instead of I.

Observe that f(µ) is always twice continuously differentiable in (−∞, λ1). In case

J = ∅, f(µ) is twice continuously differentiable in the larger space (−∞, λ1], because I

equals K.

Now we are ready to characterize the optimal solutions of (D) and (DP).

Proposition 5.1.1 Respect to µ∗, the optimal solution of (D), we have one of the

following situations:

(i) If J 6= ∅, then µ∗ < λ1 is given by f ′(µ∗) = 0.

(ii) If J = ∅ and f ′(λ1) < 0, then µ∗ < λ1 is given by f ′(µ∗) = 0.

(iii) If J = ∅ and f ′(λ1) ≥ 0, then µ∗ = λ1.

Proof Because µ∗ is optimal for (D), there exists y∗ such that conditions (5.2) are

satisfied.

Consider case (i) with J 6= ∅. Without loss of generality, we can assume L̃1 6= 0. It is

not hard to see that global optimality conditions (5.2) can not be satisfied with µ = λ1,

so that µ∗ < λ1. Moreover, because f is strictly concave, µ∗ is given by f ′(µ∗) = 0.

As opposed, consider situations where J = ∅. Because f is strictly concave, if f ′(λ1) < 0

then f(µ) > f(λ1) for any µ < λ1. It follows that µ∗ < λ1 and f ′(µ∗) = 0, so that

point (ii) is proved. On the contrary, if f ′(λ1) ≥ 0 then f(µ) < f(λ1) for any µ < λ1.

Hence µ∗ = λ1 and also last point follows.

Corollary 5.1.2 Given µ∗ the optimal solution of (D), define y(µ∗) ∈ Rn as

yi(µ
∗) =


− L̃i

2(λi−µ∗) if i ∈ K

− L̃i
2(λi−µ∗) if i ∈ I −K and µ∗ < λ1

0 otherwise

i = 1, . . . , n.

If f ′(µ∗) = 0 then y(µ∗) is optimal for (DP).

Proof Expression of y(µ∗) follows from first condition in (5.2). Moreover, if

0 = f ′(µ∗) = n−
n∑
i=1

yi(µ
∗),

all conditions in (5.2) are satisfied. It follows that y(µ∗) is optimal for (DP).
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Proposition 5.1.1 and Corollary 5.1.2 give a solution strategy to find an optimal solution

µ∗ of (D) and probably y∗ optimal solution of (DP):

1. If J = ∅ and f ′(λ1) ≥ 0 then µ∗ = λ1. Moreover, if f ′(µ∗) = 0 then y∗ = y(µ∗).

2. Find µ∗ < λ1 such that f ′(µ∗) = 0, using the algorithm presented in the Subsec-

tion 5.1.1.1. Then compute y∗ = y(µ∗).

From the point of view of relaxation for (INC), we remark that in second case we do

not need to find exactly the stationary point. Actually, by weak duality, any µ ≤ λ1

provides a safe lower bound for (INC).

5.1.1.1 Solution approach

In the situations where the optimal solution µ∗ < λ1, we need a numerical method to

find the zero of the derivative of the dual function in the right interval. As we said

before, problem (P) and its dual were deeply studied in nonlinear optimization, so that

many different efficient algorithms were developed for their solution. Our algorithm is

basically the one defined in [45] with a drastic reduction of many operations, thanks to

the explicit use of the spectral decomposition of Q.

As result of Propositions 5.1.1 and 5.1.2, the optimal solution µ∗ < λ1 is given by the

zero of

f ′(µ) = n−
∑
i∈I

L̃2
i

4(λi − µ)2
= n− ‖y(µ)‖2,

where we denote g(µ) = ‖y(µ)‖2. As opposed, the solution approach proposed in [45]

suggested the use a dumped Newton method to find a zero of

φ(µ) =
1√
n
− 1√

g(µ)
,

in the interval (−∞, λ1). Main motivation for this change is that f ′(µ) is highly ill-

conditioned nearby λ1, while φ(µ) is almost linear in (−∞, λ1). Moreover

φ′(µ) =
1

2
g(µ)−

3
2 g′(µ),

so that φ(µ) is strictly increasing in (−∞, λ1) and also strictly convex, as a combination

of strictly convex functions.

In a Newton framework, given a point µ < λ1 the next point µ+ is computed as

µ+ = µ+ dµ = µ− (φ′(µ))−1φ(µ) = µ− 2g(µ)

g′(µ)

(√
g(µ)−

√
n√

n

)
.
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Of course, µ+ generated by a pure Newton step can be outside of (−∞, λ1), so that we

need to safeguard Newton iterates. Fortunately, we can exploit current informations:

because φ(µ) is convex and strictly increasing for µ < λ1, if φ(µ) > 0 then Newton

method produces a monotonically decreasing sequence converging to the zero of φ,

otherwise µ+ ≥ λ1 or φ(µ+) ≥ 0. In the second case the new point may need to be

redirect in (−∞, λ1).
Let µl, µu such that [µl, µu] is an interval of uncertainty which contains the optimal

solution µ∗. Observe that µl ≤ µ∗ < λ1 < 0 and µu ≤ λ1 < 0. Then, we can safeguard

µ in this way:

1. µ = max(µ, µl);

2. µ = min(µ, µu);

3. if µ ≥ λ1 then µ = max(1.001µu,−
√
µlµu).

The first two steps help on keeping µ in [µl, µu], while the third step forces the interval

to be reduced. If the length of interval remains bounded for zero, the third step can be

applied just a finite number of times.

Therefore, it is essential to update µl, µu during the algorithm:

if µ < λ1 and φ(µ) < 0 then µl = max(µ, µl),

else µu = min(µ, µu).

Initial value for µl, µu are based on the following condition

‖L̃‖
2(λn − µ)

−
√
n ≤ ‖y(µ)‖ −

√
n ≤ ‖L̃‖

2(λ1 − µ)
−
√
n.

If µ < λ1 − ‖L̃‖2
√
n

then ‖y(µ)‖ <
√
n. It follows that µl = λ1 − ‖L̃‖2

√
n

.

If µ > λn − ‖L̃‖2
√
n

then ‖y(µ)‖ >
√
n. It follows that µu = min

(
λn − ‖L̃‖2

√
n
, λ1

)
.

In summary, we get the following algorithm, which we stress it is a simplification of

the algorithm given in [45] designed to compute the trust-region direction in nonlinear

programming.
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Newton method for (D)

Data. L̃, λ1, . . . , λn, ρ > 0, µ0.

Initialization. µl = λ1 − ‖L̃‖2
√
n

, µu = min
(
λn − ‖L̃‖2

√
n
, λ1

)
,

For k = 0, 1, . . .

1. Safeguard µk.

2. Compute f(µk) and φ(µk).

3. Update µl, µu.

4. If
∣∣φ(µk)

∣∣ ≤ ρ then stop.

5. Compute µk+1 = µk − (φ′(µk))−1φ(µk).

End For

From the point of view of relaxation for (IQP), we make the following considerations:

• we keep in memory scalar µM which maximizes max f(µk);

• the algorithm is iterated for a maximum number of iterations;

• the algorithm is forced to quit whenever f(µM ) > zub, where zub is an upper

bound on (INC).

5.1.1.2 Choice of the Ellipsoid

For sake of description, so far we have simply considered the relaxation of (INC) defined

by the sphere. In truth, this may not be the best choice. For instance, consider the

small example in Figure 5.1: 2 variables restricted to {−1, 0, 1} values and an indefinite

quadratic function. The relaxation can be strengthened squeezing the sphere to a more

flat ellipsoid, so that the lower bound is improved. Moreover, the gain obtained

by a more general ellipsoid is not paid by an extra-cost for solving the corresponding

relaxation. Actually, we recall that from the solution point of view there no difference

between the sphere and a general ellipsoid.

In this part, we describe 2 rules to choose the ellipsoid H defining the relaxation for

(INC). In particular, we would like to have H � 0 such that
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Figure 5.1: Lower Bounds - Different ellipsoids enclosing the integer feasible region

(c1) [−1, 1]n ⊆ E(H);

(c2) p∗(H) = min {q(x) : x ∈ E(H)} being as high as possible;

(c3) H is computed in a reasonable time.

In order to simplify this choice, we restrict our attention to diagonal H because point

(c1) is easier to be satisfied. Actually, if we consider H in

Hε = {H ∈ Dn : I •H = n, H ≥ ε} ,

with parameter ε ∈ (0, 1], then H � 0 and (c1) is easily satisfied.

The first rule is based on condition (c2): the choice of H is driven by the problem

max
H∈Hε

p∗(H). (5.5)

The set Hε is a simplex set, so convex, compact and non-empty. Function p∗(H) is not

continuously differentiable at points H ∈ Hε where the corresponding problem admits

more that one optimal solution. For a given H ∈ Hε, if x∗ is a primal optimal solution

of the related problem and µ∗ the associated multiplier, then the following conditions

are satisfied 
2(Q− µ∗H)x∗ = −L,

x∗THx∗ = n,

Q− µ∗I � 0,
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which represent a generalization of (5.1) for a generic ellipsoid H. The scalar product

between the first condition and x∗ gives

µ∗ =
2x∗TQx∗ + LTx∗

2x∗THx∗
=

2x∗TQx∗ + LTx∗

2n
.

Combining this closed-form expression for µ∗ with the feasibility of x∗, we rewrite

p∗(H) = q(x∗) + µ∗(n− x∗THx) =
LTx∗

2
+ n

2x∗TQx∗ + LTx∗

2x∗THx∗
.

Therefore, an element of the generalized gradient then is given by

Sii(H) = −n2x∗TQx∗ + LTx∗

2(x∗THx∗)2
x∗i

2 = −µ∗ x∗i
2 i = 1, . . . , n, (5.6)

where just the diagonal components need to be expressed as Hε ⊂ Dn.

Moreover, we conjecture on the concavity of p∗(H) over Hε, because of the definition

as a minimization problem, although we were not able to prove it yet. If this were true,

then (5.6) would define a supergradient for p∗(H).

The idea to solve (very) approximately problem (5.5) is to use the Subgradient method

briefly described in Appendix A, specialized for simplex sets as Hε. The uncertainty

on concavity of the objective function, as well as limits of accuracy for Subgradient

methods, suggests to understate the maximization. Therefore, the final ellipsoid H can

be chosen as the best point produced (in terms of p∗(H)) after a limited number of

iterations.

The second rule to choose H is related to (c3), namely a cheap way to compute the

ellipsoid. If we assume by restriction that the linear part in q(x) does not appear, then

problem (5.5) reduces to

max
H∈Hε

λ1(Q,H), (5.7)

where λ1(Q,H) is the generalized smallest eigenvalue for the pencil (Q,H). By defini-

tion this is equivalent to

max
H,t

t

Q− tH � 0,

H ∈ Hε.

(5.8)

Because Q 6� 0 then λ1(Q,H) < 0 and hence any optimal solution of (5.8) must have

t∗ < 0. Making the transformation µ = −1
t , we rewrite (5.8) as

max
H,t

µ

µQ+H � 0

H ∈ Hε.

(5.9)
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This problem is a linear SDP problem, where strict feasibility holds for it and for its

dual. Therefore, the second rule is given by applying an SDP Interior Point method to

(5.9), in order to find a solution for (5.7).

5.1.1.3 Scaling quadratic problems

Consider the integer quadratic problem

min
x

q(x) = xTQx+ LTx

x ∈ [l, u] ∩ Zn,

and the continuous relaxation

min
x

q(x) = xTQx+ LTx

x ∈ [l, u].

The relaxation can be rewritten as

min
x

q(x) = xT Q̄x+ L̄Tx+ c̄

x ∈ [−1, 1]n,

using the transformation of variables t : [l, u]→ [−1, 1]n defined as

tj(x) =
2xj − (lj + uj)

uj − lj
, j = 1, . . . , n.

The inverse operation t−1 : [−1, 1]n → [l, u] is given by

t−1j (x) =
yj(uj − lj) + (lj + uj)

2
, j = 1, . . . , n.

By simple operations, the matrix Q̄ ∈ Rn×n is given by

Q̄ = [Q̄ij ] =

[
Qij
4

(ui − li)(uj − lj)
]
,

while the linear term L̄ ∈ Rn is computed as

L̄ = [L̄i] =

 n∑
j=1

Qij
2

(ui − li)(uj + lj) +
Li
2

(ui − li)

 .
The remaining terms merge into the constant c̄ which takes the form

c̄ =

n∑
i=1

n∑
j=1

Qij
4

(ui + li)(uj + lj) +

n∑
i=1

Li
2

(ui + li).
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5.1.2 Convex case

In this section, we are interested in an integer convex quadratic problem

p∗ = min
x

q(x) = xTQx+ LTx

x ∈ Zn ∩X,
(IC)

so with Q � 0 and where X = [l, u]. In this situation, we apply exactly the techniques

presented in [13]. For simplicity, we can assume Q � 0 and that are available Q−1, the

Cholesky factor B of Q and its inverse B−1.

The main ingredient is the computation of the lower bound obtained by neglecting all

the constraints, including integrality. Possibly, the lower bound can be improved by

exploiting the integrality of the variables using suitably-defined lattice-free ellipsoids.

Given H � 0, x̂ ∈ Rn and α ∈ R, we consider the following ellipsoid

E(H, x̂) =
{
x ∈ Rn : (x− x̂)TH(x− x̂) ≤ 1

}
,

and the same ellipsoid scaled by α, namely

E(H, x̂, α) =
{
x ∈ Rn : (x− x̂)TH(x− x̂) ≤ α2

}
.

Solving the optimization problem

µ(H, x̂) = min
α
{α : E(H, x̂, α) ∩ Zn ∩X 6= ∅}

means finding the scaling factor α such that E(H, x̂, α) contains some integer feasible

point on its border but no integer feasible point in its interior.

Defined the unconstrained minimizer of q(x), namely x̄ = −Q−1L/2, then (IC) is

equivalent to compute µ(Q, x̄). Actually, the level sets of q(x) are the border of the

ellipsoid E(Q, x̄, α) for some α. It is easy to visualize the fact that finding the integer

point in X that minimizes q is equivalent to increase the scaling factor α from 0 and

to stop as soon as the border of E(Q, x̄, α) contains an integer feasible point.

Therefore, we can not use Q to define the ellipsoid, because µ(H, x̄) is hard to compute

as solving (IC).

In order to simplify the procedure, the same scaling is done for some other ellipsoid

E(H, x̄) and then E(Q, x̄) is scaled in turn until it touches the border of the first

ellipsoid. This requires one is able to compute µ(H, x̄) as well as the maximum α such

that E(Q, x̄, α) is contained in E(H, x̄), that is

λ(Q,H) = max
α
{α : E(Q, 0, α) ⊆ E(H, 0)} .
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Leaving out computational details, we have the following valid lower bound for (IC)(

see [13]): given any H � 0

p∗ ≥ f(x̄) + λ2(Q,H)µ2(H, x̄).

Difficulties hide on the choice of H and the computation of each term defining the

above lower bound.

In equivalent way λ(Q,H) can be computed as the square root of

max
α
{α : Q− αH � 0} , (5.10)

a linear SDP problem which can be done efficiently. Moreover, in order to have stronger

lower bounds, (5.10) shows that H should be chosen as similar as possible to Q. Nev-

ertheless, the main guideline for choosing H should be that µ(H, x̄) is easy to be

computed.

In [13] it has been shown that for t ∈ Zn/{0} a computable lower bound on µ(ttT , x̄)

is given, namely

µ(ttT , x̄) ≥ µ̄(t, x̄) = max
{
|tT x̄− btT x̄e|, tT x̄− s, z − tT x̄

}
,

where s and z are respectively the maximum and the minimum of tTx over X(or better

over X ∩ Zn).

On the other side, one would like to find t ∈ Zn/{0} such that λ(Q, ttT ) is large as

possible. This corresponds to a flat direction, namely a direction along it is minimized

the width of E(Q, 0). Because the width of E(Q, 0) along t is given by ‖tTB−1‖, finding

a flat direction is equivalent to finding t ∈ Zn/{0} yielding a shortest non-zero vector in

the lattice generated by the columns of (B−1)T , which is well-known to be NP−Hard.

A natural heuristic to compute short vectors is obtained by taking as candidates the

vectors in a reduced basis of the lattice. Let t1, . . . , tn ∈ Zn/{0} be the columns of the

corresponding transformation matrix T , from the original basis to the reduced basis.

In particular, as proposed in [13], a good ellipsoid H is defined as

H =
n∑
i=1

λ2(Q, tit
T
i )tit

T
i ,

because of the following result

µ(H, x̄) ≥ µ̂(T, x̄) =

√√√√ n∑
i=1

λ2(Q, titTi )µ̄2(ti, x̄).
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5.2 Branch-and-Bound scheme

The straightforward way to use the results of Section 5.1 within a branch-and-bound

scheme is the following: branch on a variable xj by fixing it to a particular value within

its domain {lj , . . . , uj}. The resulting problem is of the same type as (IQP), except

that the dimension decreases by one. In particular, we compute a lower bound in each

node by solving the corresponding continuous relaxation (R). Clearly, this approach

yields an algorithm to solve problem (IQP) to global optimality in finite time, as every

variable has to be fixed to a finite number of variables.

In order to enumerate subproblems as quickly as possible, our aim is to perform the most

time-consuming computations in a preprocessing phase. For this purpose we define a

branch-and-bound scheme with a priori order on fixing variables. For simplicity, we

assume the order 1, 2, . . . , n− 1, n.

Given a certain node s of the branch-and-bound tree, at level d ∈ {0, . . . , n − 1}, the

first d variables will be already fixed to integer values, xi = r
(s,d)
i with i = 1, . . . , d.

The reduced objective function q(s,d) : Rn−d → R is of the form

q(s,d)(x) = q(r(s,d), x) = xTQ(d)x+ L(s,d)Tx+ c(s,d),

where

L
(s,d)
j−d = Lj + 2

d∑
i=1

qijr
(s,d)
i , j = d+ 1, . . . , n,

and

c(s,d) = c+
d∑
i=1

Lir
(s,d)
i +

d∑
i=1

d∑
j=1

qijr
(s,d)
i r

(s,d)
j .

As opposed, the matrix Q(d) does not depend on the values at which the first d variables

are fixed and it is obtained from Q by deleting the first d rows and columns. Therefore,

Q(d) does not depend on s, but just on the level of depth relative to the node. If follows

that several nodes at the same level share the same quadratic term. Likewise, let L(d)

be the common part in the linear term in common with nodes at the same level d. In

particular L(d) is obtained from L by deleting the first d components.

As described in Section 5.1, in order to solve the relaxation of the integer subproblem at

the node, either for the convex or non-convex case, some expensive operations on Q(d)

need to performed in order to simplify the solution of the relaxation. For this reason we

do not change the order of fixing variables, i.e., we always fix the first unfixed variable

according to an order that is determined before starting the enumeration. This implies

that in total we only have to consider n different matrices Q(d), which we know in
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advance as soon as the fixing order is determined. If the variables to be fixed were

chosen freely, the number of such matrices would be exponential.

As typical in a branch-and-bound scheme, we consider a dynamic list of unsolved integer

subproblems, where are reported an index for the node, the level of depth in the tree

and a subvector relative to the components already fixed to feasible integer values. At

each iteration we pick a subproblem in the list, smaller in terms of dimension (hence

a depth-first enumeration strategy) and we solve the relative continuous relaxation, so

that the node is pruned or a bunch of subproblems (obtained by fixing the first free

variable to feasible integer values) are added to the list. Moreover, at each iteration

an integer solution is computed by rounding the primal solution of the relaxation and

in case the current best solution is updated. The algorithm goes on until no more

subproblems are in the list, so that the current best solution is proven to be optimal.

For an outline of the algorithm consider the scheme below.

Branch-and-Bound scheme GQIP for (IQP)

Data. Q ∈ Sn, L ∈ Rn, l, u ∈ Zn.

Pre-processing. Common operations on Q.

Initialization. zub =∞, p∗ = (), L =
{[
s = 1, d = 0, r(s,d) = ()

]}
.

While L 6= ∅

1. Remove problem
[
s, d, r(s,d)

]
with d maximal from L.

2. Compute L(s,d) and c(s,d).

3. Solve relaxation corresponding to the triple

(Q(d), L(s,d), c(s,d)),

with output zlb and x̄ ∈ Rn−d.

4. Compute integer solution p = (r(s,d), dx̄1c, . . . , dx̄n−dc).

5. If q(p) < zub, then p∗ = p and zub = q(p).

6. If zlb < zub and n− d > 1, then set j = 1 and do for all f ∈ [ld+1, ud+1] ∩ Z

(i) add
[
s+ j, d+ 1, (rs,d, f)

]
to L;

(ii) set j = j + 1.

End While

Return. p∗, q∗ = q(p∗).
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In the preprocessing phase we carry out all computational tasks which are part of the

initialization or are level dependent. In this way, we safe all the operations which are

in common between different nodes of the same level. In order, these are the tasks

performed in the preprocessing phase:

• Last non-convex level d̄. Compute maximal d such that Q(d) 6� 0.

• Scaled data for the non-convex level d. Compute (Q̄(d), L̄(d)) from (Q(d), L(d))

scaling variables in [−1, 1].

• Ellipsoid for the non-convex level d. Choose among

1. H(d) = I.

2. H(d) solution of max
H∈Hε

λ1(Q̄
(d), H).

3. H(d) approximated solution of max
H∈Hε

p∗(H).

4. H(d) derived for the previous ellipsoid H(d−1).

Update Q̄(d) = H(d)−
1
2 Q̄(d)H(d)−

1
2 and L̄(d) = H(d)−

1
2 L̄(d).

• Spectral decomposition for the non-convex level d. Compute (Λ(d), V (d)),

eigenvalues-eigenvectors of Q̄(d).

• Initial solution for the relaxation of the non-convex level d. Find an

optimal solution y(d) of

min
y

yTΛ(d)y + (L̄(d))TV (d)y

‖y‖2 = n− d.

• Derived matrices for the convex level d. Compute

1. A(d) = Q(d)−1.

2. B such that Q(d) = BTB and B−1.

3. T (d), transformation matrix from original basis of B−1
T

to the reduced one.

• Ellipsoid for the convex level d. Compute

1. λ
(d)
i = λ(Q(d), tit

T
i ), for any column ti of T (d).

2. H(d) =
n−d∑
i=1

λ
(d)
i

2
tit

T
i .
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3. λ̄(d) = λ(Q(d), H(d)).

• Linear problems for the convex level d. Compute

1. s
(d)
i = max{xT t(i) : x ∈

[
l(d), u(d)

]
}, for any column ti of T (d).

2. z
(d)
i = min{xT t(i) : x ∈

[
l(d), u(d)

]
}, for any column ti of T (d).

Consider now the nodes-processing phase: given a node s at level d, the main task is

to solve the relaxation with data (Q(d), L(s,d), c(s,d)). We need to distinguish between

non-convex and convex level, namely if d ≤ d̄ or not.

Non-convex relaxation

1. Compute (L̄, c̄) from (Q(d), L(s,d), c(s,d)) scaling variables in [−1, 1].

2. Compute L̃ = V (d)TH(d)−
1
2 L̄.

3. Find (approximated) optimal solution µ̄ of

max
µ

f(µ) = (n− d)µ− 1
4 L̃

T (Λ(d) − µI)†L̃

µ ≤ λ(d)1 .
(5.11)

starting from the point

µ =
2y(d)

T
Λ(d)y(d) + L̃T y(d)

2(n− d)
.

Observe that the maximization can be stopped earlier if f(µ) ≥ zub − c̄ for

µ ≤ λ(d)1 .

4. Compute x̄ = H(d)−
1
2V (d)ȳ, where

ȳ = −(Λ(i) − µ̄I)†L̃

2
.

5. Scale x̄ variables from [−1, 1] to [l, u], namely

x̄j =
x̄j(uj+d − lj+d) + (lj+d + uj+d)

2
, j = 1, . . . , n− d.

6. Return zlb = f(µ̄) + c̄ and x̄.

Convex relaxation

1. Compute x̄ = −Q(d)L(s,d)/2 and f(x̄) = c(s,d) − L(s,d)Q(d)L(s,d)/4.

2. Compute µ̄i = µ̄(ti, x̄), for any column ti of T (d).
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3. Compute r =

√√√√n−d∑
i=1

λ
(d)
i

2
µ̄2i .

4. Return zlb = f(x̄) + (λ̄(d))2r2 and x̄.

Preprocessing reduces drastically the computational cost per iteration. Actually, as-

suming a fixed maximum number of iteration on solving problem (5.11), running time

per node of our algorithm has order of n2.

It is clear that the require time for solving the relaxation for non-convex nodes are much

time-consuming than on the relaxation for convex nodes. Moreover, we conjecture on

the quality of the lower bounds, as relatively stronger for convex nodes.

All these considerations provide incentives to find better order of the variables as the

first step in the preprocessing phase: the goal is to make appear as soon as possible

convex nodes. In an equivalent way, one would like to find the permutation of columns

and rows of Q such that the last non-convex level d̄ is small as possible.

On the other side, because we are not totally aware of consequences relative to the

optimal choice in that sense, it is reasonable to think about some heuristic idea. In

particular we exploit the level of diagonal dominance on Q

di = qii −
n∑
j=1
j 6=i

|qij |, i = 1, . . . , n.

If all di were strictly positive, then the matrix Q would be definite positive. The idea is

choose as the first variable to be fixed the index l with the smallest diagonal dominant

factor. Then we update the diagonal dominant factors deleting the l-th column and

row and afterwards we choose the second element to be fixed as the least diagonal

dominant. In a recursive manner we obtain the order of the variables as they should

be considered in the branch-and-bound scheme.

In conclusion of this section we want to underline values and faults of our type of algo-

rithm. Indirectly, we highlight which kind of instances of (IQP) are more suitable to

be solved by algorithm GQIP.

As we structured our branch-and-bound, in case the current node is not pruned, a

bunch of subproblems are generated and added to the list. For example, if the j−th
variable has to be fixed then new subproblems are added to the list, one for each integer

value in [lj , uj ], so in number at least uj− lj . Therefore, roughly speaking, the expected

number of nodes generated by our algorithm will be proportional to the width of the

box [l, u] of the integer problem (IQP).

113



5. INTEGER QUADRATIC PROGRAMMING

As opposed, for a binary branch-and-bound scheme just two subproblems are gener-

ated, where at each iteration new bounds on one variable are fixed. In this case the

expected number of nodes is less influenced by the width of the box [l, u].

On the other side, with the proposed branch-and-bound the processing time per node

is negligible, just paying off an extra cost in the preprocessing phase. With a binary

branch-and-bound scheme the preprocessing phase is not such useful, as the data of

for a node is generally not in common with other nodes. So we expect more costly

operations to solve the relaxation for a node.

Therefore, if the box [l, u] is kept down in terms of width, then the high number of

nodes is fully counterbalanced by the rapidity of our algorithm in processing each node.

For larger width of the box the speed of our algorithm is not enough to tackle a too

huge number of nodes.

For this reason, in the numerical tests, we consider just ternary instances of (IQP),

where each variables is constrained to {−1, 0, 1}. To solve more generally instance we

should pass to a binary branch-and-bound and quit with the advantages of preprocess-

ing. Anyway, the relaxations proposed in Section 5.1 continue to hold, just the cost for

solving them is higher.

5.3 Numerical results

In this section we describe our computational experience on GQIP for solving non-convex

integer quadratic instance. All the experiments have been run on the same PC with

4 Gb of RAM and 3.16 Ghz.

Algorithm GQIP are implemented both in C++ and Fortran. In particular, the branch-

and-bound scheme is written in C++ as well as algorithms for solving the continu-

ous relaxation for convex nodes, while algorithms for solving continuous relaxation for

non-convex nodes and algorithms for finding good ellipsoids are both implemented in

Fortran.

To build our test problems we defined a random generator for the triple (Q,L, c): for

chosen dimension n and level of non-convexity p ∈ [0, 1], namely the percentage of

negative eigenvalues of the matrix, the following operations are performed:

• generation of the eigenvalues Λ ∈ Dn, bpnc eigenvalues randomly in [−1, 0] and

the remaining randomly in [0, 1];

• generation of V ∈ Rn×n, randomly in [−1, 1] and orthonormalized;
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• computation of Q = V ΛV T ;

• generation of L ∈ Rn, randomly in [−1, 1];

• set c=0.

The parameter p allows to control the level of convexity: for the extreme cases, we have

p = 0 for convex problems, while p = 1 for concave problems.

So we defined our test set in this way: we generated instances with dimension n in

{10, 20, 30, 40, 50} and p in {0, 0.1, 0.2, . . . , 1}. In particular, for each pair (n, p) we

generated 10 instances. Moreover, as we said before, for any instance (Q,L, c), the

integer problem is given by restricting each variable to {−1, 0, 1} values.

In our experiments we make internal as well as external comparisons in solving ternary

instances.

On the one side, we would like to understand which strategy should be used to choose

the ellipsoid for the non-convex relaxation. To simplify the number of possibilities,

we consider this choice just at the root node, while in the other nodes the ellipsoid is

derived from the one at the root node. The first possibility is to take the most natural

and easy-to-compute ellipsoid, namely the sphere obtained by setting H = I. We refer

with GQIP1 to the inherent algorithm. As opposed, in GQIP2 the ellipsoid H is given by

the solution of (5.9), namely following the second rule proposed in Subsection 5.1.1.2.

In order to solve this problem we use CSDP ([10]) as linear SDP solver. Finally, in

GQIP3, following instead the first rule in Subsection 5.1.1.2, the ellipsoid is given by

the approximated solution of (5.5), where a projected subgradient is applied for a few

number of iterations.

On the other side, we test also the best codes in literature in the main classes of methods

for solving problem (IQP), namely COUENNE and Q-MIST. The first code, referred in [6]

and downloadable from the web page1, implements a very general purpose algorithm

and is able to solve any mixed-integer nonlinear constrained optimization problems

with no assumption of convexity. The code Q-MIST refers to the approach in [18] and

works for general mixed-integer quadratic programming. In both cases we compare

with more general approaches than GQIP.

Overall performances of the 5 algorithms over the entire test set are reported in Table

5.1. For sake of description, we give only general results respect to dimension of the

instances: for each dimension and each algorithm, we report the number of instances

out of 110 solved in a time limit of 1 hour and respect to the solved instances we give

1https://projects.coin-or.org/Couenne
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the average time, the minimum time, the maximum time and also the average number

of nodes. For GQIP we give also the average time spent in the preprocessing.

n alg avg pre-time min time max time avg time avg node solved

10 COUENNE 0.0 0.4 0.1 18.0 110

Q-MIST 0.0 1.0 0.0 9.1 110

GQIP1 0.0 0.0 0.0 0.0 34.1 110

GQIP2 0.0 0.0 0.0 0.0 37.5 110

GQIP3 0.0 0.0 0.1 0.0 28.7 110

20 COUENNE 0.8 51.4 13.0 3822.0 110

Q-MIST 0.0 1.0 0.2 53.5 110

GQIP1 0.0 0.0 0.0 0.0 1105.0 110

GQIP2 0.0 0.0 0.0 0.0 1143.5 110

GQIP3 0.1 0.0 0.2 0.1 680.9 110

30 COUENNE 26.2 3567.3 1476.7 181127.6 78

Q-MIST 0.0 10.0 2.0 199.7 110

GQIP1 0.0 0.0 1.1 0.1 27933.6 110

GQIP2 0.0 0.0 1.4 0.2 28184.1 110

GQIP3 0.4 0.0 0.8 0.4 7378.7 110

40 COUENNE 876.3 3148.3 2012.3 99500.0 2

Q-MIST 1.0 106.0 16.1 831.6 110

GQIP1 0.1 0.1 54.3 5.8 952880.4 110

GQIP2 0.1 0.1 48.0 5.2 847748.3 110

GQIP3 0.9 0.1 13.4 1.8 123163.7 110

50 COUENNE *** *** *** *** 0

Q-MIST 3.0 1593.0 186.0 5463.7 110

GQIP1 0.2 0.4 1449.9 190.0 27182336.9 109

GQIP2 0.2 0.4 878.8 165.2 24577033.7 108

GQIP3 1.9 0.4 361.2 34.5 4211735.9 110

Table 5.1: Results for ternary instances

First of all, we observe that COUENNE can solve all the instance just for small dimensions.

Actually, since n = 30, it can solve more or less just two-thirds of the instances, only

two for n = 40 and nothing for n = 50. As opposed, the other algorithms are all

able to solve the entire set of instances, with just one failure for GQIP1 and two for

GQIP2 for the largest dimension. So big difference in performance is due to the fact
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that COUENNE is very general purpose algorithm, so that it can not really exploit the

particular structure of (IQP).

Looking at our algorithms results, performances improve proportionally to the effort

done to strength the non-convex relaxation at the root node. Actually, with a bit more

time spent in the preprocessing to find better ellipsoids, the average number of nodes

decreases consistently comparing GQIP1 and GQIP2 with GQIP3. This reduction of nodes

leads to huge savings in terms of time. This big reduction of time and nodes can be

explained by the persistent and consistent improvement of the lower bound provided

by the non-convex relaxation at the root node (which may be also profitable for the

other nodes), comparing the one given in GQIP1 and the one in GQIP3. In Figure 5.2 we

consider the histogram corresponding to the percentage variation of the lower bound

provided by these two algorithms.

Figure 5.2: Lower bound improvement - Histogram of the lower bound variation

from GQIP1 to GQIP3

We do not report any detailed comparison with GQIP2 because the conclusions would

be roughly the same. In particular, the SDP rule used to choose the ellipsoid in GQIP2

does not make any difference respect to sphere used GQIP1. This fact can be explained

observing that in the SDP rule only the quadratic term is considered, hence neglecting

the linear term. This does not guarantee any direct improvement of the lower bound.

Overall, we conclude that defining strong relaxations, for a small extra cost in the

preprocessing, provides the right counterbalance for an easy-to-solve relaxation in terms
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of number of generated nodes.

As matter of fact, just GQIP3 really outperforms the other algorithm Q-MIST. On the

one side, GQIP3 produces much more subproblems than Q-MIST, which makes think

that our non-convex relaxation is provably weaker than the SDP relaxation used for

Q-MIST. On the other side, because for our algorithm the time for solving a single node

is negligible, it turns out that GQIP3 results much faster that Q-MIST, on average 5-6

times more. Moreover, we also compare what happens to the running times respect to

level of non-convexity: in Figure 5.3 we report average running times (in logarithmic

scale) respect to the percentage p of negative eigenvalues.

Figure 5.3: Average times - detailed comparison between GQIP3 and Q-MIST

Dashed lines correspond to GQIP3 and full line to Q-MIST, with different colors relative

to different dimensions. Also in this analysis, it comes out that GQIP3 performs better

than Q-MIST for any level of convexity, which seems to less influence the performance

of our algorithm.

In conclusion, the proposed exact algorithm for (IQP) is extremely suitable to solve

ternary instances. For this case no other approach can compare with GQIP when the

ellipsoid relaxation is chosen as strong as possible.

Going to more general case of (IQP), where variables can take a wider range of integer

values, our algorithm fails quite often, while Q-MIST seems to be less affected by the

width of integer feasible values. This is the reason we have not given any results about
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more general instances, such as {−10, . . . , 10}. Actually, for large instances we get

almost all failures, while Q-MIST can solve in a reasonable time much more than 50%

of the instances.

As we discuss in the end of Section 5.2, in order to solve more general instances we

should switch to another kind of branch-and-bound, getting rid of advantages of pre-

processing.

119



5. INTEGER QUADRATIC PROGRAMMING

120



Appendix A

Subgradient method over the

Simplex

Consider the problem

min
x

f(x)

x ∈ S = {x ∈ Rn : uTx = n, x ≥ 0},
(A.1)

where f(x) is convex and not differentiable over S. We assume that for any x ∈ S

the function value f(x) and a subgradient g(x) can be computed. In this situation

Subgradient methods can be used to solve approximately (A.1).

Subgradient Methods were developed for unconstrained non-smooth optimization (see

e.g. [57]) and later extended to constrained convex case with the use of projection

operators (see e.g. [2]): the idea is to move in the opposite direction of the subgradient

for a certain step-length and then project it back on the feasible set.

Theoretical convergence of Subgradient Methods has to be intended as convergence

to the optimal value. Convergence proofs depend basically on the distance from an

optimal solution, which can be controlled by choosing carefully the step-length.

We recall that the exact projection over the simplex can be computed in O(nlogn), as

it is explained in [20]. We denote with PS(·) the corresponding operator.

For sake of completeness, we outline a possible subgradient method for problem (A.1).
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Projected Subgradient algorithm for (A.1)

Initialization. x0 = u.

For k = 0, 1, . . .

1. Compute function f(xk) and subgradient s(xk).

2. If s(xk) = βu for some β ∈ R then stop.

3. Choose carefully αk > 0.

4. Set zk+1 = xk − αksk.

5. compute xk+1 = PS(zk+1).

End For

In conclusion, we give some more explanations about the algorithm. The condition in

step 2 is sufficient for optimality in problem (A.1), so that if it holds we can return

directly with the optimal solution. Generally, we do not expect this condition to be

satisfied, so we run the algorithm for a finite number of iterations, afterwards we return

with the best point computed in terms of f(xk).

Practically speaking, Subgradient methods are quite good at the beginning, but they

get slower and slower within execution. This fact is because of the step-length must be

chosen smaller and smaller, in order to guarantee convergence to an optimal solution.

Therefore, this algorithm is useful if and only if an exact optimal solution of (A.1) is

not really needed, but it is sufficient an approximated one.
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Appendix B

Backround material

For reference of the topics dealt in this appendix we recommend [37].

B.1 Eigenvalues and Semidefinite matrices

First, we recall definition and properties of eigenvalues of a symmetric matrix A ∈ Sn.

Definition B.1.1 A scalar λ ∈ R is called an eigenvalue of A if the following condition

holds

Ay = λy,

for a non-null y ∈ Rn, which is called eigenvector of A associated to λ.

Let m ≤ n the number of distinct eigenvalues of A. For each distinct eigenvalue λi, it

is associated the eigenspace

Yi = ker (A− λiI) ,

the subspace of all eigenvectors corresponding to that eigenvalue. Symmetry makes

eigenvector associated to different eigenvalue being automatically orthogonal,

λiy
T
j yi = yTi Ayj = λjy

T
j yi.

Because A is symmetric and real, the union of the eigenspaces represents the entire Rn

as

dim(Y1) + · · ·+ dim(Ym) = n.

Moreover, A is diagonalizable by an orthonormalized basis of eigenvectors to the matrix

of eigenvalues, repeated in their own multiplicities. More formally we have the following

theorem.
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Theorem B.1.2 If A is symmetric and real then

(i) Rn = Y1 ⊕ · · · ⊕ Ym

(ii) A = Y ΛY T , with Y ∈ Rn×n orthogonal and Λ ∈ Dn.

Second, we consider definite symmetric matrices and their own properties.

Definition B.1.3

(i) X is semidefinite positive (X � 0) if yTXy ≥ 0 for all y ∈ Rn

(ii) X is definite positive (X � 0) if yTXy > 0 for all y ∈ Rn/{0}

Theorem B.1.4 Given X ∈ Sn, the following statements are equivalent:

(i) X � 0;

(ii) the eigenvalues of X are nonnegative;

(iii) all principal minors of X are nonnegative;

(iv) there exists V ∈ Rn×n such that X = V V T and rank(X) = rank(V ).

Theorem B.1.5 Given X ∈ Sn, the following statements are equivalent:

(i) X � 0;

(ii) the eigenvalues of X are positive;

(iii) the determinant of any principal sub-matrix of X is positive;

(iv) there exists full rank V ∈ Rn×n such that X = V V T .

Using this characterization is possible to show that

{X ∈ Sn : X � 0}

is a closed convex cone, with interior defined as

{X ∈ Sn : X � 0}.

In the following, we recall some useful properties for semidefinite matrices.

Proposition B.1.6 Given X ∈ Sn, the following properties hold.
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1. X � 0 if and only if Y •X ≥ 0 for any Y � 0.

2. If X,Y � 0 then Y •X ≥ 0. Moreover, X • Y = 0 if and only if XY = 0.

3. If X � 0 the set {Y � 0 : X • Y ≤ β} is compact for any β > 0.

4. If X � 0 with rank r, then there exist Q ∈ Rn×r and E ∈ Sr, with E � 0, such

that X = QEQT .

5. If X � 0 then it possible to define X
1
2 such that X

1
2X

1
2 = X.

6. If λ1, . . . , λn are the eigenvalues of X, then

I •X =

n∑
i=1

λi,

det(X) =
n∏
i=1

λi,

rank(X) = ‖λ‖0.

B.2 Kronecker product

The kronecker product is a useful operation between matrices and facilitates the han-

dling of matrix equations and derivatives.

Definition B.2.1 Given A ∈ Rn×m and B ∈ Rp×q, then the Kronecker product is

defined as the matrix 
a11B · · · a1mB

...
. . .

...

an1B · · · anmB

 ∈ Rnp×mq.

Quite often, the kronecker product is combined with the vec operator.

Definition B.2.2 Given A ∈ Rn×m then the vec operator is defined as the vector
A·1

...

A·m

 ∈ Rnm,

obtained by stacking columns of A.

We report some important properties of the Kronecker product.
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Proposition B.2.3 Given matrices A,B,C,D, the following properties hold.

1. (A⊗B)T = (AT ⊗BT ).

2. A⊗B ⊗ C = (A⊗B)⊗ C = A⊗ (C ⊗A).

3. (A+B)⊗ (C +D) = A⊗ C +A⊗D +B ⊗ C +B ⊗D.

4. (A⊗B)(C ⊗D) = (AC ⊗BD).

5. If A,B � 0 then (A⊗B) � 0.

6. vec(ABC) = (CT ⊗A)vec(B).

7. vec(ABC) = (CT ⊗A)vec(B).

8. vec(AB +BC) = (I ⊗A+ CT ⊗A)vec(B).

9. Ai̇ = (ei ⊗ I)Tvec(A).
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[30] M. Grötschel, L. Lovàsz, and A. Schrijver. Geometric Algorithms and Combina-

torial Optimization. Springer Verlag. 6

129



REFERENCES

[31] C. Helmberg and F. Rendl. Solving quadratic (0, 1)-problems by semidefinite pro-

grams and cutting planes. Mathematical Programming, Ser. A, 82(3):291–315,

1998. 32

[32] C. Helmberg and F. Rendl. A Spectral Bundle Method for Semidefinite Program-

ming. SIAM Journal on Optimization, 10:673–696, 2000. 15, 34, 47

[33] C. Helmberg, B. Mohar, S. Poljak, and F. Rendl. A spectral approach to bandwidth

and separator problems in graphs. Linear and Multilinear Algebra, 39:73–90, 1995.

72

[34] V. Hernández, J.E. Román, A. Thomás, and V. Vidal. A survey of software

for sparse eigenvalue problems. Technical Report 6, Universidad Politecnica de

Valencia. 72

[35] R.D. Hill and S.R. Waters. On the cone of semidefinite matrices. Linear Algebra

and its Applications, 90:81–88, 1987. 9

[36] S. Homer and M. Peinado. Design and Performance of Parallel and Distributed

Approximation Algorithms for Maxcut. Journal of Parallel and Distributed Com-

puting, 46(1):48–61, 1997. 16, 17, 38

[37] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

123

[38] ILOG. Inc. ilog cplex 12.1. 95

http://www.ilog.com/products/cplex, 2009.

[39] E. De Klerk. Aspects of Semidefinite Programming: Interior Point Algorithms and

Selected Applications. Kluwer Academic, 2002. 7

[40] A.S. Lewis and M.L. Overton. Eigenvalue optimization. Acta Numerica, pages

149–190, 1996. 57
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