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Preface

Data Mining problems are very important and frequent in several applicative
fields. Extracting knowledge from large datasets is a demanding problem
that requires indeed powerful computational resources. However, succeeding
in these tasks depends not only on brute computational strength, but also,
and often critically, on the mathematical quality of the models and of the
algorithms underlying the solution procedures.

Linear optimization models with integer, binary or continuous variables
possess a high expressive power, and are especially suitable to represent
several Data Mining problems. Continuous variables can be used for example
to represent a wide variety of real-valued quantities, possibly bounded to be
non-negative. Discrete variables, on the other hand, allow the representation
of options in the cases where indivisibility is required or where there is not
a continuum of solutions, as it happens in many real problems characterized
by a choice.

The presence of discrete variables generally makes the problem more dif-
ficult. The finite number of alternatives is in fact not a simplification, with
respect to the case of a continuum of possibilities, because of the impres-
sive number of such alternatives in real world problems. However, recent
years have witnessed a huge amount of research in this field, and consequent
decisive algorithmic improvements.

A number of new approaches to classical Data Mining problems are
presented in this thesis. Some of them have been applied to Agricultural
data, because the author is employed in the Italian National Institute of
Statistics (Istat), in particular in the Census data service, and during the
years of his PhD study the main issue of the service was treating data
from the Italian Census of Agriculture 2010. This was the occasion for
applying the proposed techniques to very important real-world problems.
The contents of this thesis have been presented to some conferences and
published in international journals.

This work is organized as follows.

v



vi PREFACE

Chapter 1 provides a brief overview of Data Mining and Information
Reconstruction. After this, a general introduction to Integer and Mixed
Integer Linear Programming is reported. Some introductory elements of
Propositional Logic are also given, and the conversion of logical rules into
linear inequalities is explained.

Chapter 2 presents an innovative classification procedure based on dis-
cretization and statistical analysis that allow to classify with a good degree
of accuracy and in short times even when the available training sets are
small. The proposed methodology uses, as much as possible, all the infor-
mation extracted from the training set. The problems are formulated as
mixed integer linear programming. The procedure has been tested on a test
bed of public available datasets from UCI repository. Results are reported
and discussed.

Chapter 3 presents an innovative methodology for solving the problem of
balancing of Agricultural Census data by using a mixed integer linear model.
This mathematical problem is called matrix balancing. The proposed pro-
cedure has been applied in the case of the Italian Census of Agriculture 2010
to restore data consistency when a total cultivation area, or a total number
of livestock, is not equal to the sum of the detailed values representing the
parts of the above totals.

Chapter 4 presents an innovative automatic procedure for assigning the
correct cultivations to the area for which the farm declarations have been
detected as unreliable. The proposed procedure is based on a discrete math-
ematical optimization model. This approach has been applied in the specific
case of vineyard data reconstruction of the mentioned Agricultural Census.

Finally, Chapter 5 presents an innovative automatic procedure for finding
contradictions into a set of rules, that operates by converting those rules into
linear inequalities. The problem is thus converted into a linear programming
problem. The proposed procedure has been tested in the case of a set of
simulated rules for economical regulation.

Obviously, the techniques described in Chapters 3 and 4 by referring
to agricultural data can be used to solve many other problems of different
origin but sharing the same logical characteristics.

Roma, Italy, September 2013. Gianpiero Bianchi



Chapter 1

Introduction to Data Mining
and Information
Reconstruction

1.1 Generalities of Data Mining

Data mining is an interdisciplinary field of computer science, involving meth-
ods at the intersection of artificial intelligence, machine learning, statistics,
optimization and database systems. The objective of data mining is to
identify previously unknown, potentially useful, and understandable corre-
lations and patterns in large datasets. Aside from the raw analysis step, it
involves database and data management aspects, data preprocessing, model
development, inference, study of metrics, complexity considerations, post-
processing of discovered structures, visualization, updating. Consequently,
data mining consists of more than collection and managing data, it also
includes analysis and prediction.

The term Knowledge Discovery in Databases (KDD) is generally used to
refer to the overall process of discovering useful knowledge from data, where
data mining becomes a particular step in this process. Note, however, that
there are communities in which the whole process in also called data mining.
The KDD process consists of the following steps:

• Data cleaning: in this phase, noise and errors in data are removed
from the dataset, and missing values are imputed. This may in many
cases be a difficult problem, a specially in the case of very large
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2 CHAPTER 1. DATA MINING AND INFORMATION RECONSTR.

datasets.

• Data integration: at this stage, multiple data sources, often hetero-
geneous, are combined in a common dataset. Relevant linkage problem
may be involved.

• Data selection: at this step, the data relevant to the analysis are
isolated and retrieved from the dataset, and are converted into forms
appropriate for the mining procedure. The latter operation is also
known as data transformation or data consolidation.

• Data mining: it is the crucial analysis step in which clever tech-
niques are applied to extract the potentially useful patterns, i.e. the
knowledge. Several types of techniques exist for doing this.

• Pattern evaluation: in this step, interesting patterns representing
useful knowledge are identified, evaluated and, if required, visualized
(knowledge representation).

Figure 1.1: Knowledge Discovery (KDD) Process.

It is common to combine some of these steps together. For instance, data
cleaning and data integration can be performed together as a pre-processing
phase to generate a data warehouse. The KDD process can also work in-
crementally. Once the discovered knowledge is presented to the user, the
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evaluation measures can be enhanced, the mining can be further refined,
new data can be selected or further transformed, or new data sources can
be integrated, in order to get different, more appropriate results.

Data mining techniques are nowadays used in several applicative fields, for
example:

• Database Analysis (Extraction of rules, Associations).

• Market Analysis (Customer profiling, Marketing).

• Risk Analysis (Finance planning, Investments).

• Fraud Detection (Credit cards, Food adulteration).

• Decision Support (Resource management, Allocation).

• Medical Analysis (Diagnosis, Management donors).

• Text mining (news group, email, documents) on the Web.

• Economic and Social Policy Analysis (Rule learning).

• Analysis of Rare Events.

1.2 Data Mining Tasks

Several types of data mining problem, or analysis tasks are typically encoun-
tered during a data mining project. Depending on the desired outcome, sev-
eral data analysis techniques with different goals may be applied successively
to achieve a desired result. For example, to determine which customers are
likely to buy a new product, a business analyst may need first to use cluster
analysis to segment the customer database, then apply regression analysis
to predict buying behavior for each cluster. The data mining tasks typically
fall into one of the general categories listed below.

Classification: assumes that the objects should be associable with classes,
that are the elements of a discrete set of labels. The objective is to build
classification models, i.e. classifiers, that assign the correct class to pre-
viously unseen and unlabeled objects. Classification approaches normally
use a training set where all objects are already associated with known class
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labels. This constitute the source of information for the classification algo-
rithm, which learns from the training set and builds the classifier(s). Clas-
sifier(s) are then used to classify new objects. Examples of classification
methods are decision trees, k-nearest neighbors, neural networks, support
vector machines, boolean approaches, bayesian approaches, logistic regres-
sion. Since a function is inferred from labeled training data, classification
constitute a case of supervised learning.

Prediction: is very similar to classification. The difference is that in pre-
diction, the class is not a discrete attribute but a continuous value. The goal
of prediction is to find a numerical value for unseen objects by using a train-
ing set of objects already associated with similar values. This task is also
known as regression, and if the prediction deals with time series data, then
it is often called forecasting. Examples of prediction methods are statistical
techniques used for regression analysis, decision trees, neural networks.

Segmentation or Clustering: separates the data into interesting and
meaningful sub-groups or clusters, by simply using the object description
and some similarity criterion. Automatic clustering techniques can detect
previously unsuspected and hidden structures in data that allow segmenta-
tion. Clustering is a case of unsupervised learning, because, no training set
is used. For this reason, it is sometimes called unsupervised classification.

Dependency Analysis: deals with finding a model that describes signif-
icant dependencies (or associations) between data items or events. Depen-
dencies can be used to predict the value of an item given information on
other data items. Dependency analysis may have connections with classifi-
cation and prediction because the dependencies are implicitly used for the
formulation of predictive models. Correlation analysis, regression analysis,
association rules, case-based reasoning and visualization techniques are often
applied.

Data Summarization: gives the user a compact description of the struc-
ture of the data, providing the property or the properties that describe each
element of a dataset. This type of initial exploratory data analysis can
help to understand the nature of the data and to find potential hypothe-
ses for hidden information. Simple descriptive statistical and visualization
techniques are often used.
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1.3 Overview on Data Mining Classification
Methods

In data mining, classification is one of the most important task, and in this
thesis we will focus on that. As seen, the aim of the classification is to
build a classifier based on a set of already classified cases (the training set).
Then, the classifier is used to predict the class of new cases based on the
values of their attributes. Commonly used methods for classification can be
subdivided into the following groups. Note, however, that the following list
is not meant to cover all possible classification techniques, since this task
could be pursued by using the most heterogeneous approaches.

Decision Trees (DTs): are flowchart-like tree structures, where each inter-
nal node denotes a test on an attribute, each branch represents an outcome
of the test, and each leaf node (or terminal node) holds a class label [80].
The topmost node in a tree is the root node. During tree construction,
attribute selection measures are used to select the attribute which best par-
titions the tuples into distinct classes. Three popular attribute selection
measures are Information Gain, Gain Ratio, and Gini Index. When DTs
are built, many of the branches may reflect noise or outliers in the training
data. Tree pruning attempts to identify and remove such branches, with the
goal of improving classification accuracy on unseen data.

k-Nearest Neighbor: is based on learning by analogy, that is by com-
paring a given test tuple with training tuples which are similar to it [38].
The training tuples are described by n attributes. Each tuple represents a
point in an n-dimensional space. In this way, all of the training tuples are
stored in an n-dimensional pattern space. When given an unknown tuple,
a k-nearest neighbor (k-NN) classifier searches the pattern space for the k
training tuples which are closest to the unknown tuple. These k training
tuples are the k-nearest neighbors of the unknown tuple. “Closeness” is
defined in terms of a distance metric, such as Euclidean distance. The Eu-
clidean distance between two points or tuples X1 = (x11, x12, . . . , x1n) and
X2 = (x21, x22, . . . , x2n) obtained from the following equation:

dist(X1, X2) =

√√√√ n∑
i=1

(x1i − x2i)2 (1.1)

The basic steps of the k-NN algorithm are:
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• to compute the distances between the new sample and all previous
samples that have already been classified into clusters;

• to sort the distances in increasing order and select the k samples with
the smallest distance values;

• to apply the voting principle. A new sample will be added (classified)
to the largest cluster out of k selected samples [68].

Neural Networks (NN): are those systems modeled based on the human
brain working citerosenblatt. As the human brain consists of millions of
neurons that are interconnected by synapses, a neural network is a set of
connected input/output units in which each connection has a weight asso-
ciated with it. The network learns in the learning phase by adjusting the
weights so as to be able to predict the correct class label of the input. An
artificial neural network consists of connected set of processing units. The
connections have weights that determine how one unit will affect other. Two
subsets of such units act as input nodes and output nodes, while remaining
nodes constitute the hidden layer. By assigning activation to each of the
input node, and allowing them to propagate through the hidden layer nodes
to the output nodes, neural network performs a functional mapping from
input values to output values [100].

Support Vector Machine (SVM): attempts to find a linear hyperplane
separating the different classes. Since very often they are not directly lin-
early separable, this technique uses a nonlinear mapping to transform the
original training data into a higher dimension. Within this new dimen-
sion, it searches for the linear optimal separating hyperplane. A hyperplane
is a “decision boundary” separating the tuples of one class from another.
With an appropriate nonlinear mapping to a sufficiently high dimension,
data from two classes can always be separated by a hyperplane. The SVM
finds this hyperplane using support vectors (“essential” training tuples) and
margins (defined by the support vectors) [37]. SVM performs classification
tasks by maximizing the margin separating both classes while minimizing
the classification errors.

Logical and boolean approaches: these methodologies aim at extracting
or discovering knowledge from data in logical form. The most known boolean
approach is the Logical Analysis of Data (LAD) [18]. The key features of the
LAD are the discovery of minimal sets of features necessary for explaining
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all observations and the detection of hidden patterns in the data capable of
distinguishing observations describing positive outcome events from negative
outcome events. Combinations of such patterns are used for developing
general classification procedures. LAD methodology is based on discrete
mathematics, and all data should be encoded into binary form by means of
a process called “binarization”. This process consisting in the replacement of
each numerical variable by binary indicator variables, each showing whether
the value of the original variable is present or absent, or is above or below
a certain level. This is done by using the training set for computing specific
values for each field.

Näıve Bayes: are statistical classifiers. They can predict class membership
probabilities [101]. Näıve Bayes (NB) probabilistic classifiers are commonly
studied in machine learning. The basic idea in NB approaches is to use the
joint probabilities of words and categories to estimate the probabilities of
categories given a document. The näıve part of NB methods is the assump-
tion of word independence, i.e. the conditional probability of a word given a
category is assumed to be independent from the conditional probabilities of
other words given that category. This assumption makes the computation
of the NB classifiers far more efficient than the exponential complexity of
non-näıve Bayes approaches because it does not use word combinations as
predictors.

Boosting: is a meta-algorithm which can be viewed as a model averaging
method and belongs to the class of ensemble techniques [86]. We first create
a “weak” classifier, such that its accuracy on the training set is only slightly
better than random guessing. A succession of models are built iteratively,
each one being trained on a dataset in which it is assigned more weight
to misclassified points by the previous model. Finally, all of the successive
models are weighted according to their success and then the outputs are
combined using voting thus creating a final model.

Logistic Regression (LR): measures the relationship between a categor-
ical dependent variable and one or more independent variables, which are
usually (but not necessarily) continuous, by using probability scores as the
predicted values of the dependent variable [77]. Rather than choosing pa-
rameters that minimize the sum of squared errors (like in ordinary regres-
sion), estimation in logistic regression chooses parameters that maximize
the likelihood of observing the sample values. Frequently LR is used to refer
specifically to the problem in which the dependent variable is binary, that
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is, the number of available categories is two. LR is being used as a binary
classification model. To measure the suitability of a binary regression model,
one can classify both the actual value and the predicted value of each ob-
servation as either 0 or 1 [75]. The predicted value of an observation can be
set equal to 1 if the estimated probability that the observation equals 1 is
above 1/2, and set equal to 0 if the estimated probability is below 1/2.

Genetic Algorithms / Evolutionary Programming: are algorithmic
optimization strategies that are inspired by the principles observed in nat-
ural evolution [92]. Of a collection of potential problem solutions that com-
pete with each other, the best solutions are selected and combined with each
other. In doing so, one expects that the overall goodness of the solution set
will become better and better, similar to the process of evolution of a popu-
lation of organisms. Genetic algorithms and evolutionary programming are
used in data mining to formulate hypotheses about dependencies between
variables, in the form of association rules or some other internal formalism.
A disadvantage of Genetic algorithms is that the solutions are difficult to
explain. Also, they do not provide interpretive statistical measures that
enable the user to understand why the procedure arrived at a particular
solution.

Fuzzy Sets: form a key methodology for representing and processing un-
certainty [98]. Uncertainty arises in many forms in todays databases: im-
precision, non-specificity, inconsistency, vagueness, etc. Fuzzy sets exploit
uncertainty in an attempt to make system complexity manageable. As such,
fuzzy sets constitute a powerful approach to deal not only with incomplete,
noisy or imprecise data, but may also be helpful in developing uncertain
models of the data that provide smarter and smoother performance than
traditional systems. Fuzzy classification is the process of grouping elements
into a fuzzy set whose membership function is defined by the truth value
of a fuzzy propositional function [102]. A fuzzy propositional function is
an expression containing one or more variables, such that, when values are
assigned to these variables, the expression becomes a fuzzy proposition in
the sense of [99].

1.4 Information Reconstruction Problems

In the past, for several fields, an automatic information processing has often
been prevented by the scarcity of available data. Nowadays data are very
abundant, but the problem that frequently arises is that such data may



1.4. INFORMATION RECONSTRUCTION PROBLEMS 9

contain errors. This again makes an automatic processing not applicable,
since the result is not reliable. Data correctness is indeed a crucial aspect of
data quality. The relevant problems of error detection and correction should
therefore be solved. When dealing with massive datasets, such problems are
particularly difficult to formalize and very computationally demanding to
solve. Since these problems have been studied in different fields of research
they received different names. While in the field of database management
they are called data cleaning, in the field of statistics they are called data
editing and imputation, and the correction process is often subdivided into
an error localization phase and a data imputation phase.

As customary for structured information, data are organized into records.
The structure of records, called record scheme R, consists in a set of fields
fi, with i = 1 . . .m. A record instance r, also simply called record, consists
in a set of values vi, one for each field of the scheme.

R = f1, . . . , fm r = v1, . . . , vm (1.2)

Each field fi, with i = 1 . . .m, has its domain Di, which is the set of every
possible value for that field. Since we are dealing with errors, the domains
include all values that can be found in data, even the erroneous ones. A
record instance p is declared correct if and only if it respects a set of rules
denoted by R = r1, . . . , ru. Each rule can be seen as a mathematical function
rk from the Cartesian product of all the domains to the Boolean set {0,1},
as follows.

rk : D1 × · · · ×Dm → {0, 1}
p 7→ 0, 1

(1.3)

Rules are such that p is a correct record if and only if rk(p) = 1 for all
k = 1 . . . u.

Error Localization The problem of error localization is to find a set H of
fields of minimum total cost such that a corrected record pc can be obtained
from an erroneous record pe by changing (only and all) the values of H.
Since H is a subset of the set of all fields {1, . . . ,m}, this problem has a
combinatorial optimization structure.

Data Imputation Imputation of actual values of H can then be performed
in a deterministic or probabilistic way. This causes the minimum changes
to erroneous data, but may have little respect for the original frequency
distributions. A donor record pd is a correct record which should be as
similar as possible to the (unknown) original record po. This is obtained by
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selecting pd being as close as possible to pe, according to a suitable function
δ giving a value v called the distance between pe and pd.

δ : (D1 × · · · ×Dm)× (D1 × · · · ×Dm) → IR+

(pe, pd) 7→ v
(1.4)

The problem of imputation through a donor is to find a set K of fields of
minimum total cost such that pc can be obtained from pe by copying from
the donor pd (only and all) the values of K. This is generally recognized to
cause low alteration of the original frequency distributions, although changes
caused to erroneous data may be not minimum. This is deemed to produce a
record which should be as close as possible to the original record (the record
that would be present in absence of errors). The correction by means of a
donor is also referred to as data driven approach. Because of its relevance
and spread, the above problem has been extensively studied in a variety of
scientific communities. Several different rules encoding and solution algo-
rithm have been proposed (e.g. [8, 43, 78, 94]). A very well-known approach
to the problem, which implies the generation of all rules logically implied
by the initial set of rules, is due to Fellegi and Holt [47]. In practical case,
however, such methods suffer from severe computational limitations [78, 94],
with consequent heavy limitations on the number of rules and records that
can be considered.

Several approaches to data correction problems use mathematical pro-
gramming techniques. By requiring to change at least one of the values
involved in each violated rule, a (mainly) set covering model of the error
localization problem has been considered by many authors. Such model
have been solved by means of cutting plane algorithms in [53] for the case of
categorical data, and in [54, 81] for the case of continuous data. The above
procedures has been adapted to the case of a mix of categorical and contin-
uous data in [43], were a branch-and-bound approach to the problem is also
considered. Such model, however, does not represent all the problem‘s fea-
tures, in the sense that the solution to such model may fail to be a solution
to the localization problem, the separation of the error localization phase
from the imputation phase may originate artificial restrictions during the lat-
ter one, and computational limitations still hold. An automatic procedure
for generic data correction by using a more effective discrete mathematical
model of the problem is presented in [24, 26, 27]. This approach overcomes
the computational limits of other techniques (see e.g. [8, 71, 94]), based on
the Fellegi Holt approach, and allows to preserve, as far as it is possible, the
marginal and joint distribution within the data.
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1.5 Integer and Mixed Integer Linear Program-
ming Models

Integer and mixed integer programming are subsets of the broader field of
mathematical programming. Mathematical programming formulations use
a set of decision variables, which represent actions or decisions that can be
taken in the system being modeled. One then attempts to optimize (either
in the minimization or maximization sense) an objective, that is a function
of these variables which maps each possible set of decisions into a single
score that assesses the quality of the solution. The limitations of the system
are included as a set of constraints, which are usually stated by restricting
functions of the decision variables to be equal to, not more than, or not
less than, a certain numerical value. Another type of constraint can simply
restrict the set of values to which a variable might be assigned.

Several applications involve decisions that are discrete (e.g., to which
hospital an emergency patient should be assigned), while some other de-
cisions are continuous in nature (e.g., determining the dosage of fluids to
be administered to a patient). When a problem contains only continuous
variables and linear objective and constraints, the problem is called linear
programming. When on the contrary a problem contains only discrete vari-
ables and linear objective and constraints, the problem is called integer linear
programming. Note that a parallelism can be traced between integer linear
programming and combinatorial optimization with linear objective function
[76]. When a problem contains both types of variables and linear objective
and constraints, the problem is called mixed integer linear programming.

While discrete variables may appear easy to handle, the number of com-
binations of their values is usually huge, and so complete enumeration tech-
niques have important implications on processing time. As the problem size
increases, complete enumeration approaches are not computationally viable.
Computer speedups, however impressive, are simply no match for exponen-
tial enumeration problems. Therefore, more efficient techniques are required
to solve problems containing discrete variables. Those techniques do not ex-
plicitly examine every possible combination of discrete solutions, but instead
examine a subset of possible solutions, and use optimization theory to prove
that no other solution can be better than the best one found. This type of
technique is referred to as implicit enumeration.
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Linear Programming Linear Programming problems (LP, also called
“linear programs”) use a set of decision variables, which are the unknown
quantities or decisions that are to be optimized. In the context of linear
and mixed integer programming problems, the function that assesses the
quality of the solution, called the “objective function”, should be a linear
function of the decision variables. An LP will either minimize or maximize
the value of the objective function. Finally, the decisions that must be
made are subject to certain requirements and restrictions of a system. We
enforce these restrictions by including a set of constraints in the model.
Each constraint requires that a linear function of the decision variables is
either equal to, not less than, or not more than, a scalar value. A common
condition simply states that each decision variable must be nonnegative. In
fact, all linear programming problems can be transformed into an equivalent
minimization problem with nonnegative variables and equality constraints
[9].

A solution that satisfies all constraints is called a feasible solution. Fea-
sible solutions that achieve the best objective function value (according
to whether one is minimizing or maximizing) are called optimal solutions.
Sometimes no feasible solution exists, and the optimization problem itself
is called infeasible. On the other hand, some feasible LP problems have no
optimal solution, because it is possible to achieve infinitely good objective
function values with feasible solutions. Such problems are called unbounded.

Thus, suppose we denote x1, . . . , xn to be our set of decision variables.
Linear programming problems take on the form:

min or max c1x1 + c2x2 + · · ·+ cnxn

subject to a11x1 + a12x2 + · · ·+ a1nxn (≤,=, or ≥) b1
a21x1 + a22x2 + · · ·+ a2nxn (≤,=, or ≥) b2
. . .
am1x1 + am2x2 + · · ·+ amnxn (≤,=, or ≥) bm

xj ≥ 0 ∀j = 1, . . . , n

(1.5)

Values cj ,∀j = 1, . . . , n, are referred to as objective coefficients, and are
often associated with the costs associated with their corresponding deci-
sions in minimization problems, or the revenue generated from the corre-
sponding decisions in maximization problems. The values b1, . . . , bm are
the right-hand-side values of the constraints, and often represent amounts
of available resources (especially for ≤ constraints) or requirements (espe-
cially for ≥ constraints). The aij-values thus typically denote how much
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of resource/requirement i is consumed/satisfied by decision j. Note that
nonlinear terms are not allowed in the model, prohibiting for instance the
multiplication of two decision variables, the maximum of several variables,
or the absolute value of a variable.

Any maximization (minimization) problem can be converted into a min-
imization (maximization) problem by multiplying the coefficients of the ob-
jective function by -1.

max

n∑
j=1

cjxj = −min

n∑
j=1

−cjxj

Moreover, each linear programming problem in generic form can be trans-
formed into an equivalent problem in canonical form:

min
∑n

j=1 cjxn

subject to
∑n

j=1 aijxj ≥ bi ∀i = 1 . . .m

xj ≥ 0 ∀j = 1, . . . , n

(1.6)

This canonical form can be expressed in a compact notation as follows.

min cTx
Ax ≥ b
x ∈ IRn

(1.7)

where x represents the vector of variable (to be determined), c e b are vector
of coefficients, A is a (known) matrix of coefficients. The inequalities Ax ≥ b
are constraints which specify a convex politope over which the objective
function is to be optimized. Linear programming problems can be converted
into canonical form as follows:

• For each variable xj , add the equality constraint xj = x+j − x
−
j and

the inequalities x+j ≥ 0 and x−j ≥ 0.

• Replace any equality constraint
∑

j aijxj = bi with two inequality
constraints

∑
j aijxj ≥ bi and

∑
j aijxj ≤ bi.

• Replace any constraint
∑

j aijxj ≤ bi with the equivalent constraint∑
j −aijxj ≥ −bi.
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Another useful format for linear programming problems is standard form,
which is expressed as:

min cTx
subject to Ax = b
and x ≥ 0

(1.8)

Note that a LP not in standard form can be converted to standard form by
eliminating inequalities by introducing slack and/or surplus variables and
replacing variables that are not sign-constrained with the difference of two
sign-constrained variables.

Mixed Integer Linear Programming When some of the variables are
restricted to take integer values, the problem becomes a Mixed Integer Lin-
ear Programming one (MILP, also called “mixed integer linear programs”).
When variables are restricted to take on either 0 or 1 values the term “in-
teger” is replaced with “0-1” or “binary”. All that was specified for the
case of linear programming holds, mutatis mutandis, for the mixed integer
case. Typically, modeling MILP requires the definition of a set of decision
variables, that represent choices that must be optimized in the system, and
the statement of an objective function and constraints (see also [93]).

It is very common, though, to recognize during model construction that
the initial set of decision variables defined for the model are inadequate. Of-
ten, decision variables that seem to be implied consequences of other actions
must also be defined. The addition of new variables after an unsuccessful at-
tempt at formulating constraints and objectives is the “loop” in the process.
The correct definition of decision variables can be especially complicated in
modeling with integer variables. If one is allowed to use binary variables in
a formulation, it is possible to represent yes-or-no decisions, enforce if-then
statements, and even permit some sorts of nonlinearity in the model (which
can be transformed to an equivalent mixed integer linear program).

Some common tips and tricks in modeling with integer variables are:

1. Integrality of quantities. In staffing and purchasing decisions, it is often
impossible to take fractional actions. One cannot hire, for instance, 6.5
new staff members, or purchase 1.3 hospital beds. The most obvious
use of integer variables thus arises in requesting integer amounts of
quantities that can only be ordered in integer amounts. In general,
the optimal solution of an integer program need not be a rounded-off
version of an optimal solution to a linear program.

2. If-then statements. Consider two continuous (i.e., possibly fractional)
variables, x and y, defined so that 0 ≤ x ≤ 10 and 0 ≤ y ≤ 10.
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Suppose we wish to make a statement that if x > 4, then y ≤ 6.
On the surface, since no integer quantities are requested, it does not
appear that integer variables will be necessary. However, the general
form of linear programs as given in equations (1.5) does not permit
if-then statements like the one above. Instead, if-then statements can
be enforced with the aid of a binary variable, z. We wish to make
z = 1 if x > 4 (note that we make no claims on z if x ≤ 4). This can
be accomplished by adding the constraint:

x ≤ 4 + 6z (1.9)

since the event that x > 4 implies that z = 1 (even if z = 1, the
largest value for x is 10, which now makes a constraint of the form x is
10 unnecessary). If z = 1, then we must also require that y ≤ 6. This
is achieved by reducing the upper bound of 10 on y to 6 if z is equal
to 1 as follows:

y ≤ 10 + 4z (1.10)

where once again, the bound constraint y ≤ 10 may now be omitted.
In general, suppose we wish to make the following statement: “if q1x1+
· · ·+ qnxn > Q, then r1x1 + · · ·+ rnxn ≤ R”. The following conditions
should be included in the model:

q1x1 + · · ·+ qnxn ≤ q +M ′z (1.11)

r1x1 + · · ·+ rnxn ≤M ′′ − (M ′′ −R)z (1.12)

z binary (1.13)

where M ′ and M ′′ are “sufficiently large” constants. These values
should be just large enough to not add unintentional restrictions to
the model. For instance, we are not attempting to place any hard
restriction on the quantity q1x1 + · · ·+ qnxn (written conveniently as
qTx in vector form). If z = 1, the upper bound on qTx is Q + M ′,
and hence M ′ must be large enough so that even if constraint (1.11) is
removed from the model, qTx would still never be more than Q+M ′.
Likewise, if z = 0, a large enough value of M ′′ must be chosen in
(1.12) such that rTx could never be more than M ′′ even without the
restriction (1.12). It is worth noting that assigning arbitrarily large
values for M ′ and M ′′ is not recommended.

3. Enforce at least k out of p restrictions. This situation is similar to
if-then constraints in the way we model such restrictions. For a simple
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example, suppose we have nonnegative variables x1, . . . , xn, and wish
to require that at least three of these variables take on values of 5
or more. Then we can define binary variables z1, . . . , zn, such that if
zj = 1, then xj ≥ 5, ∀j = 1, . . . , n. This simple if-then constraint can
easily be modeled by employing the following constraints:

xj ≥ 5zj ∀j = 1, . . . , n (1.14)

Clearly, if zj = 1, then xj ≥ 5. If zj = 0, it is still possible for xj ≥ 5,
but no such restrictions are enforced. It is necessary to guarantee
that three variables take on values of 5 or more, and so the following
“k-out-of-p” constraint is added:

z1 + · · ·+ zn = 3 (1.15)

Again, this constraint does not state that exactly three variables will
be at least 5, but rather that at least three variables are guaranteed
to be at least 5. This same trick can be used to enforce the condition
that at least k out of p sets of constraints are satisfied, and so on, often
by using M-values as introduced in the point on if-then constraints.

4. Non linear product terms. In some circumstances, nonlinear terms
can be transformed into linear terms by the use of linear constraints.
First, note that if xj is a binary variable, then xj = xqj for any positive
constant q. After that substitution is made, suppose that we have a
nonlinear term of the form x1 ·x2 · · ·xk ·y, where x1, . . . , xk are binary
variables and 0 ≤ y ≤ u is another variable, either continuous or
integer. That is, all but perhaps one of the terms is a binary variable.
First, replace the nonlinear term with a single continuous variable, w.
Using the if-then concept expressed above, note that if xj equals zero
for any j ∈ {1, ..., k}, then w equals zero as well. Also, note that w
can never be more than the upper bound, u, on the y-variable. Hence,
we obtain the constraints

w ≤ uxj ∀j = 1, . . . , k (1.16)

Of course, to guarantee that w equals zero in case any xj-variable
equals to zero, we must also state a non-negativity constraint:

w ≥ 0 (1.17)

Now, suppose that all x1 = · · · = xk = 1. In this case, it is necessary
to add constraints that enforce the condition that w = y. Regardless
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of the x-variable values, w cannot be more than y, and so we state the
constraint:

w ≤ y (1.18)

However, in order to get the constraint “w ≥ y if x1 = · · · = xk = 1,”
we include the constraint:

w ≥ u(x1 + · · ·+ xk − k) + y (1.19)

If each x-variable equals to 1, then (1.19) states that w ≥ y, which
along with (1.18) guarantees that w = y. On the other hand, if at
least one xj = 0, j ∈ {1, . . . , k}, then the term u(x1 + · · · + xk − k)
is not more than −u, and the right-hand-side of (1.19) is not positive;
hence, (1.19) allows w to take on the correct value of zero (as would be
enforced by (1.16) and (1.17) ). As a final note, observe that even if y
is an integer variable, we need not insist that w is an integer variable
as well, since (1.16) - (1.19) guarantee that w = x1 · · ·xk · y, which
must be an integer given integer x- and y-values.

1.6 Branch&Bound and Branch&Cut Solution
Techniques

Often, there are alternative ways of modeling optimization problems as
MILP. There sometimes exist trade-offs in these different modeling ap-
proaches. Some models may be smaller (in terms of the number of con-
straints and variables required), but may be more difficult to solve than
larger models. It is important to understand the basics of MILP solution
algorithms in order to understand the key principles in MILP modeling. To
illustrate the branch-and-bound process, we consider the following example
MILP:

min 4x1 + 6x2
s.t. 2x1 + 2x2 ≥ 5

x1 − x2 ≤ 1
x1, x2 ≥ 0 and integer

(1.20)

A relaxation of an MILP is a problem such that (a) any solution to the
MILP corresponds to a feasible solution to the relaxed problem, and (b)
each solution to the MILP has an objective function value greater than or
equal to that of the corresponding solution to the relaxed problem. The
most commonly used relaxation for an MILP is its LP relaxation, which is
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identical to the MILP with the exception that variable integrality restrictions
are eliminated. Clearly, any integer-feasible solution to the MILP is also a
solution to its LP relaxation, with matching objective function values.

When describing the branch-and-bound algorithm for MILP, it is helpful
to know how LP is solved. See [9, 63, 88, 95] for an explanation of linear
programming theory and methodology. Graphically, Figure 1.2 illustrates
the feasible region (set of all feasible solutions) to the LP relaxation of
formulation (1.20). The point (1.75, 0.75), is the optimal solution to the
LP relaxation, and has an objective function value of 11.5. In general, the
optimal solution to the LP is not supposed to be unique, and so it is possible
that different MILP solutions exist with an identical objective function to
the optimal LP solution. The important result is that a lower bound on the
optimal MILP solution is obtained from the LP relaxation. No solution to
the MILP can be found with an objective function value less than 11.5.

Of course, the solution (1.75, 0.75) is not a feasible solution to (1.20).
All feasible solutions have the trait that either x1 ≤ 1 or x1 ≥ 2. In fact,
the problem (1.20) can be splitted into two subproblems: one in which
x1 ≤ 1 (called region 1), and one in which x1 ≥ 2 (called region 2). All
solutions to the original MILP are contained in exactly one of these two
new subproblems. This process is called branching, and we could have also
branched on x2 instead, by requiring that either x2 ≤ 0 or x2 ≥ 1.

The feasible regions of the two new subproblems are depicted in Fig-
ure 1.3. When x1 ≤ 1, the optimal solution is (1, 1.5) with objective func-
tion value 13. When x1 ≥ 2, the optimal solution is (2, 1) with objective
function value 14. In the x1 ≤ 1 region, the lower bound is 13. In the
x1 ≥ 2 region, though, the best solution happens to be an integer solution.
Therefore, the best integer solution in the x1 ≥ 2 region has an objective
function value of 14; there is no need to further search that region. This
region is said to be fathomed by integrality. We store the solution (2, 1),
and call it incumbent solution. If no better solution is found, it will become
our optimal solution.

At this point, there is one active region (or “active node” in the context
of branch-and-bound trees), which is region 1. An active region is one that
has not been branched on, and that must still be explored, because there is
a possibility that it contains a solution better than the incumbent solution.
The initial region is not active, because we have branched on it. Region 2
is not active since the best integer solution has been found in that region.
Region 1, however, is still active and must be explored. The lower bound
over this region is 13; thus, the optimal solution to the entire problem must
have an objective function value somewhere between 13 and 14 (inclusive).
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Figure 1.2: Feasible region of the LP relaxation.
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Figure 1.3: Feasible regions of the subproblems.
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We recursively divide region 1, in which x1 ≤ 1. Since the optimal solution
in this region was (1, 1.5), we branch by creating two new subproblems: one
in which both x1 ≤ 1 and x2 ≤ 1 (called region 3), and one in which both
x1 ≤ 1 and x2 ≥ 2 (called region 4). Once again, all integer solutions in
region 1 are contained in either region 3 or region 4.

Figure 1.4: Branch-and-Bound tree.

However, note that region 3 is empty, because the stipulation that both x1
and x2 are no more than 1 makes it impossible to satisfy (1.20). There are
therefore no integer solutions in this region either, and so we stop searching
region 3. This region is said to be fathomed by infeasibility. The optimal
solution to region 4‘s linear relaxation is (0.5, 2), with objective function
value 14. However, our incumbent solution has an objective function value
of 14. We have not found the best integer solution in region 4, but we know
that the best solution in region 4 will not improve the incumbent solution we
have found. Thus, we are not interested in any integer feasible solution in
region 4, and we stop searching that region. (An alternative optimal integer
solution can exist in that region, but we are not seeking to find all optimal
solutions, just one.) Region 4 is said to be fathomed by bound.

Figure 1.4 depicts a tree representation of this search process, which is called
the “branch-and-bound tree”. Each node of the tree represents a feasible
region. Now, there are no more regions to be examined (no more active
nodes), and the algorithm terminates with the incumbent solution, (2, 1),



22 CHAPTER 1. DATA MINING AND INFORMATION RECONSTR.

as an optimal solution.

A formal description of the branch-and-bound algorithm for minimiza-
tion problems is given as follows.

Step 0 Set the incumbent objective v = ∞ (assuming that no initial
feasible integer solution is available). Set the active node count k = 1
and denote the original problem as an “active” node. Go to Step 1.

Step 1 If k = 0, then stop: the incumbent solution is an optimal
solution. (If there is no incumbent, i.e., v = ∞, then the original
problem has no integer solution.) Else, if k > 1, go to Step 2.

Step 2 Choose any active node, and call it the “current” node. Solve
the LP relaxation of the current node, and make it inactive. If there
is no feasible solution, then go to Step 3. If the solution to the current
node has objective value z∗ ≥ v, then go to Step 4. Else, if the solution
is all integer (and z∗ < v), then go to Step 5. Otherwise, go to Step 6.

Step 3 Fathom by infeasibility. Decrease k by 1 and return to Step 1.

Step 4 Fathom by bound. Decrease k by 1 and return to Step 1.

Step 5 Fathom by integrality. Replace the incumbent solution with
the solution to the current node. Set v = z∗, decrease k by 1, and
return to Step 1.

Step 6 Branch on the current node. Select any variable that is frac-
tional in the LP solution to the current node. Denote this variable as
xs and denote its value in the optimal solution as f. Create two new
active nodes: one by adding the constraint xs ≤ |f | to the current
node, and the other by adding xs ≥ |f | to the current node. Add 1 to
k (two new active nodes, minus one due to branching on the current
node) and return to Step 1.

Note that in Step 0, a heuristic procedure could be executed to quickly obtain
a good-quality solution to the MILP with no guarantees on its optimality.
This solution would then become our initial incumbent solution, and could
possibly help conserve branch-and-bound memory requirements by increas-
ing the rate at which active nodes are fathomed in Step 4. In Step 2, we
may have several choices of active nodes on which to branch, and in Step 6,
we may have several choices on which variable to perform the branching op-
eration. There has been much empirical research designed to establish good
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general rules to make these choices, and these rules are implemented in com-
mercial solvers. However, for specific types of formulations, one can often
improve the efficiency of the branch-and-bound algorithm by experimenting
with node selection and variable branching rules.

The best-case scenario in solving a problem by branch-and-bound is that
the original node yields an optimal LP solution that happens to be integer,
and the algorithm terminates immediately. Indeed, in (1.20), by simply
adding the constraint x1 + x2 ≥ 3 and solve the LP relaxation, we would
obtain the optimal solution (2, 1) immediately.

Thus, a classical way to reduce the presence of fractional solutions is
to find valid inequalities, which do not cut off any integer solutions, but
do cut off some fractional solutions. A cutting plane is a valid inequality
that removes the optimal LP relaxation solution from the feasible region.
The cutting plane method is an umbrella term for optimization methods
which iteratively refine a feasible set or objective function by means of linear
inequalities. Such procedures are generally used to find integer solutions to
integer and mixed integer linear programming problems, and may be used
also to solve other general optimization problems.

The theory of linear programming dictates that under mild assumptions
(if the linear program has an optimal solution, and if the feasible region
does not contain a line), one can always find a vertex that is optimal. The
obtained optimal solution is tested for being integer. If it is not, there is
guaranteed to exist a linear inequality that separates this LP relaxation
solution from the convex hull of the set of integer solutions. Finding such
an inequality is known as the separation problem, and such an inequality is
a cut. A cut can be added to the relaxed linear program. Then, the current
non-integer solution is no longer feasible to the relaxation. This process is
repeated until an optimal integer solution is found.

In theory, MILP can be solved without branching either by (a) including
enough valid inequalities before solving the LP relaxation, so that the LP
relaxation provides an integer solution, or (b) looping between solving the
LP relaxation, adding a cutting plane, and re-solving the LP relaxation,
until the LP relaxation yields an integer solution.

However, using these approaches by themselves may suffer from numer-
ical instability problems or require the solution of intractable problems.
Therefore, the most effective implementations often use a combination of
valid inequalities added a priori to the model, after which branch-and-bound
is executed, with cutting planes periodically added to the nodes of the
branch-and-bound tree. This approach is called “branch-and-cut”. Valid
inequality and cutting-plane approaches can either be generic or problem-
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specific. Clearly, the second approach needs a problem-by-problem analy-
sis, but can provide very efficient solution techniques. A large amount of
research work on these subjects during the last 50 years lead to the develop-
ment of many different cut types. Many classical cutting plane approaches
are described in greater detail for instance in [76].

1.7 Rules based on Propositional Logic

Propositional logic, sometimes called sentential logic, may be viewed as a
grammar for exploring the construction of complex sentences (propositions)
from atomic statements, using the logical connectives. In prepositional logic
we consider formulas (sentences, propositions) that are built up from atomic
propositions that are unanalyzed. In a specific application, the meaning of
these atomic propositions will be known.

The traditional (symbolic) approach to prepositional logic is based on a
clear separation of the syntactical and semantical functions. The syntactics
deals with the laws that govern the construction of logical formulas from
the atomic propositions and with the structure of proofs. Semantics, on
the other hand, is concerned with the interpretation and meaning associ-
ated with the syntactical objects. Prepositional calculus is based on purely
syntactic and mechanical transformations of formulas leading to inference.

Propositional formulae are syntactically built by using an alphabet over
the two following sets:

• The set of primary logic connectives {¬,∨,∧}, together with the brack-
ets () to distinguish start and end of the field of a logic connective.

• The set of proposition symbols, such as x1, x2, . . . , xn.

The only significant sequences of the above symbols are the well-formed
formulas (wffs). An inductive definition is the following:

• A propositional symbol x or its negation ¬x.

• Other wffs connected by binary logic connectives and surrounded, in
case, by brackets.

Both propositional symbols and negated propositional symbols are called
literals. Propositional symbols represent atomic (i.e. not divisible) proposi-
tions, sometimes called atoms. An example of wff is the following:

(¬x1 ∨ (x1 ∧ x3)) ∧ ((¬(x2 ∧ x1)) ∨ x3) (1.21)
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A formula is a wff if and only if there is no conflict in the definition of
the fields of the connectives. Thus a string of atomic propositions and
primitive connectives, punctuated with parentheses, can be recognized as
a well-formed formula by a simple linear-time algorithm. We scan the string
from left to right while checking to ensure that the parentheses are nested
and that each field is associated with a single connective. Incidentally, in
order to avoid the use of the awkward abbreviation “wffs”, we will henceforth
just call them propositions or formulas and assume they are well formed
unless otherwise noted.

The calculus of propositional logic can be developed using only the three
primary logic connectives above. However, it is often convenient to permit
the use of certain additional connectives, such as⇒ which is called implies.
They are essentially abbreviations that have equivalent formulas using only
the primary connectives. In fact, if S1 and S2 are formulas, we have:

(S1 ⇒ S2) is equivalent to (¬S1 ∨ S2)

The elements of the set B = {T, F} (or equivalently {1, 0}) are called truth
values with T denoting True and F denoting False. The truth or falsehood
of a formula is a semantic interpretation that depends on the values of the
atomic propositions and the structure of the formula. In order to examine
the above, we need to establish a correspondence between propositional
symbols and the elements of our Domain. This provides a truth assignment,
which is the assignment of values T or F to all the atomic propositions.
For this reason, propositions are often, although slightly improperly, called
binary variables, but no connection with the concept of variable such as in
the case of first-order logic exists.

To evaluate a formula we interpret the logic connectives, with their ap-
propriate meaning of “not”, “or”, and “and”. As an illustration, consider
the formula (1.21). Let us start with an assignment of true (T ) for all
three atomic propositions x1, x2, x3. At the next level, of subformulas, we
have ¬x1 evaluates to F , (x1 ∧ x3) evaluates to T , (x2 ∧ x1) evaluates to
T , and x3 is T . The third level has (¬x1 ∨ (x1 ∧ x3)) evaluating to T and
((¬(x2 ∧ x1)) ∨ x3) also evaluating to T . The entire formula is the “and” of
two propositions both of which are true, leading to the conclusion that the
formula evaluates to T . This process is simply the inductive application of
the rules:

• S is T if and only if ¬S is F .

• (S1 ∨ S2) is F if and only if both S1 and S2 are F .
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• (S1 ∧ S2) is T if and only if both S1 and S2 are T .

The assignment of truth values to atomic propositions and the evaluation
of truth/falsehood of formulas is the essence of the semantics of this logic.
We now introduce a variety of questions related to the truth or falsehood of
propositions. The propositional logic uses symbolic valuations of proposi-
tions as either True or False. Mathematical programming, however, works
with numerical valuations.

By introducing suitable bounds on the variables, it is possible to restrict
variables to only take values in the nonnegative integers or even just values
of 0 and 1. This “boolean” restriction captures the semantics of proposi-
tional logic since the values of 0 and 1 may be naturally associated with
False and True. It is natural therefore to express the formulas with clauses
represented by constraints and atomic propositions represented by 0-1 vari-
ables [31]. All the inequality constraints have to be satisfied simultaneously
(in conjunction) by any feasible solution.

A positive atom (xi) corresponds to a binary variable (xi), and a negative
atom (¬xi) corresponds to the complement of a binary variable (1 − xi).
Consider, for example, the single clause

x2 ∨ ¬x3 ∨ x4

This clause can be converted in the following inequality over (0,1) variables.

x2 + (1− x3) + x4 ≥ 1

Similarly the formula

(x1) ∧ (x2¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ x5)

is equivalent to the following system of linear inequalities:

x1 ≥ 1
x2 + (1− x3) + x4 ≥ 1
(1− x1) + (1− x4) ≥ 1
(1− x2) + x3 + x5 ≥ 1

x1, . . . , x5 ∈ {0, 1}

It is conventional in mathematical programming to clear all the constants
to the right-hand side of a constraint. Thus a clause Cj is represented by
ajx ≥ bj , where for each i, aji is +1 if xi is a positive literal in Cj , is -1 if
¬xi is a negative literal in Cj , and is 0 otherwise. Also, bj equals 1−n(Cj),
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where n(Cj) is the number of negative literals in Cj . We shall refer to such
inequalities as clausal. So the linear inequalities converted to clausal form
are given by

x1 ≥ 1
x2 − x3 + x4 ≥ 0
−x1 − x4 ≥ −1

−x2 + x3 + x5 ≥ 0
x1, . . . , x5 ∈ {0, 1}

The rules used for checking data correctness (see Section 1.4) can be ex-
pressed by using propositional logic. Therefore, in general, the set of such
checking rules is equivalent to the following system of linear inequalities

Ax ≥ b, x ∈ {0, 1}n

where the inequalities of Ax ≥ b are clausal. Notice that A is a matrix
over {0,±1}, and each bj equals 1 minus the number of -1’s in row j of the
matrix A. Further details on the conversion into linear inequalities are given
in Chapter 5.
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Chapter 2

Classification based on
Discretization and MILP

2.1 The Problem of Data Classification

Given a set of data grouped into classes, the problem of predicting which
class new data should receive is called classification problem. The first set
of data is called training set, while the set of new data is called test set. In-
stances from the training set should have the same structure and the same
nature than those of the test set. Classification is of fundamental signifi-
cance in the fields of data analysis and data mining, and several important
practical decision problems are actually classification problems.

Many approaches to this problem have been proposed, based on dif-
ferent considerations and data models. Established ones include: Neural
Networks, Support Vector Machines, k-Nearest Neighbors, Bayesian ap-
proaches, Decision Trees, Logistic regression, Boolean approaches (see for
references [60, 62, 70, 73, 80, 91, 100]). Each approach has several variants,
and algorithms can also be designed by mixing approaches. Specific ap-
proaches may fit to specific classification contexts, but one approach that is
considered quite effective for many practical applications are Support Vec-
tor Machines (SVM). They are based on finding a separating hyperplane
that maximizes the margin between the extreme training data of opposite
classes, possibly after a mapping in an higher dimensional space, see also
[32, 37]. However, no single algorithm is currently able of providing the best
performance on all datasets, and this seems to be inevitable [96]. Predicting
which algorithm will perform best on a specific dataset has become a learn-
ing task on its own, belonging to the area called meta-learning [67]. There-

29
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fore, techniques based on the aggregation of a set of different (and hopefully
complementary) classifiers have been investigated. They are called ensemble
techniques, and they include Boosting [86, 50] and Bagging [22]. Roughly
speaking, those techniques generate many weak learners and combine their
outputs in order to obtain a classification that is both accurate and robust.
Ensemble techniques based on tree classifiers, such as Random Forest [23],
are often able to provide a good performance. A Random Forest, in particu-
lar, is a combination of many tree classifiers, each of which grown on a subset
of data randomly sampled independently, and the classification output is a
combination (i.e. the mode) of the outputs of the individual trees.

On the other hand, one interesting Boolean approach is the Logical Anal-
ysis of Data (LAD), developed since the 1990’s by Hammer et al. (see
[18, 19, 21, 29, 40]). It is inspired by the mental processes that a human
being applies when learning from examples a classifier. In the LAD method-
ology, data should be encoded into binary form by means of a discretiza-
tion process called binarization. This is done by using the training set for
computing specific values for each field, called cut-points in the case of nu-
merical fields, that split each field into binary attributes. Discretization is
also adopted in other classification methodologies, such as decision trees,
and several ways for selecting cut-points exists, such as entropy based ones
(see e.g. [46, 70]). The selected binary attributes, constituting a support
set, are then combined for generating logical rules called patterns. Patterns
are used to classify each unclassified record, on the basis of the sign of a
weighted sum of the patterns activated by that record. A main feature of
such approach is that patterns constitute also a compact description of the
data, i.e. a generally understandable set of rules that describes the clas-
sification rationale (see e.g. [39]). LAD methodology is closely related to
decision trees and nearest neighbor methods, and constitutes an extension
of those two approaches, as shown in [21].

In this Chapter the following original enhancements to the LAD method-
ology are proposed. First, the idea of evaluating the quality of each cut-point
for numerical fields and of each binary attribute for numerical fields, and
a criterion for doing so. Such quality values are computed by using in-
formation extracted from the training set, and are taken into account for
improving the selection of the support set. The support set selection can
therefore be modeled as a weighted set covering problem, and also as a binary
knapsack problem (see e.g. [76, 88]). In a related work, Boros et al. [20]
consider the problem of finding essential attributes in binary data, which
again reduces to finding a small support set with a good separation power.
They give alternative formulations of such problem and propose three types
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of heuristic algorithm for solving them. An analysis of the smallest support
set selection problem within the framework of the probably approximately
correct learning theory, and algorithms for its solution, is also in [2].

Moreover, the classification of the test set is not given here simply on
the basis of the sign of the weighted sum of activated patterns, but by com-
paring that weighted sum to a suitable classification threshold. Indeed, we
propose to compute both the values of pattern weights and the value of
classification threshold in order to minimize errors, by solving a mixed in-
teger linear programming problem. The objective of minimizing errors is
pursued by (i) minimizing classification errors on records of the training set
and by (ii) reproducing in the test set the class distribution of the training
set. Pattern weights and classification threshold are in fact parameters for
the classification procedure, and, in our opinion, this should allow obtaining
the best choice of these parameters for the specific dataset, overcoming the
parameter tuning or guessing phase that always represents a difficult and
questionable step. The proposed approach, based on statistical considera-
tions on the data, allows to classify with a good degree of accuracy and in
short times even when the available training sets are small as in the case of
rare events and uncontrollable events.

The known LAD procedure is recalled in Section 2.2. In this Chapter,
the “standard” procedure, as described in [19], has been mainly considered,
although other variants have been investigated in the literature ([58]). The
original contributions of this work begin with Section 2.3, which explains
motivations and possible criteria for evaluating the quality of cut-points. In
particular, we derive procedures for dealing with cut-points on continuous
fields having normal (Gaussian) distribution, on discrete fields having bino-
mial (Bernoulli) distribution, or on general numerical fields having unknown
distribution. This latter approach is used also for qualitative, or categorical,
fields. The support set selection problem is then reformulated as weighted
set covering and as binary knapsack in Section 2.4. After that, patterns are
generated, and computation of pattern weights and classification threshold
are described in Section 2.5. Results of the proposed procedure on publicly
available datasets of the UCI repository [49] are analyzed and compared
to those of the standard LAD methodology, and also to those of the Sup-
port Vector Machines (SVM [37, 32]) methodology in its implementation
LIBSVM [33], which is currently deemed to be one of the more effective
classifiers, in Section 2.6.
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2.2 Classifying with the LAD Methodology

Data used for classification are organized in records. The structure of
records, called record scheme R, consists in a set of fields fi, with i = 1 . . .m.
A record instance r, also simply called record, consists in a set of values vi,
one for each field. Fields are essentially of two types: quantitative, or numer-
ical, and qualitative, or categorical. A record r is classified if it is assigned
to an element of a set of possible classes C. In many cases, C has only two
elements, and we speak of binary classification. This case will be considered
hereinafter. Note, however, that the proposed procedure, mutatis mutandis,
could also be used for the case of multiple classes. A positive record instance
is denoted by r+, a negative one by r−.

For classifying, a training set S of classified records is given. Denote by
S+ the set of its positive records and by S− the set of its negative ones. Sets
S+ and S− constitute our source of information for learning a classifier. A
set of records used for evaluating the performance of the learned classifier is
called test set T . The real classification of each record t ∈ T should be known.
We compare the classification of T given by the learned classifier, also called
predicted classification, to the real classification of T : the differences are the
classification errors of our classifier. A positive training record is denoted by
s+, a negative one by s−. A positive test record is denoted by t+, a negative
one by t−. Very roughly speaking, the larger S is, the more information it
contains, the more accurate our learned classifier will be, even if clearly there
are several aspects involved. However, in many important applications, the
availability of training records is scarce, and a classification methodology
able to be accurate using small training sets would be very useful.

LAD methodology begins with encoding all fields into binary form. This
process, called binarization, converts each (non-binary) field fi into a set of
binary attributes aji , with j = 1 . . . ni. The total number of binary attributes
is n =

∑m
i=1 ni. Note that the term “attribute” is not used here as a synonym

of “field”. A binarized record schemeRb is therefore a set of binary attributes
aji , and a binarized record instance rb is a set of binary values bji ∈ {0, 1}
for those attributes.

Rb = {a11, . . . , a
n1
1 , . . . , a

1
m, . . . , a

nm
m }

rb = {b11, . . . , b
n1
1 , . . . , b

1
m, . . . , b

nm
m }

For each qualitative fields fi, all values can simply be encoded by means of
a logarithmic number of binary attributes aji , so that ni binary attributes
can binarize a quantitative field having up to 2ni different values. For each
numerical field fi, on the contrary, we introduce ni thresholds called cut-
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points α1
i , . . . , α

ni
i ∈ IR, and the binarization of a value vi is obtained by

considering whether vi lies above or below each αji . Cut-points αji should
be set at values representing some kind of watershed, or being otherwise
relevant, for the analyzed phenomenon. Generally, αji are placed in the
middle of specific couples of data values v′i and v′′i :

αji = (v′i + v′′i )/2

This can be done for each couple v′i and v′′i belonging to records from opposite
classes and adjacent on fi, i.e.:

• v′i ∈ r+ ∈ S+ and v′′i ∈ r− ∈ S−, or vice versa;

• no other training record has a value v′′′i such that v′i < v′′′i < v′′i if
v′i < v′′i , or vice versa if v′′i < v′i.

Cut-points αji are then used for binarizing each numerical field fi into the

binary attributes aji (also called level variables). The values bji of such aji
are

bji =

{
1 if vi ≥ αji
0 if vi < αji

Note that αji is not required to belong to Di, but only to be comparable, by
means of ≥ and <, to all values vi ∈ Di.

Example 2.1 Consider the following training set of records representing
persons having fields weight (in Kg.) and height (in cm.), and a positive
[respectively negative] classifications meaning “is [resp. is not] a professional
basketball player”.

weight height pro.bask.player.?

90 195 yes

S+ 100 205 yes

75 180 yes

105 190 no
S−

70 175 no

We now plot values belonging to positive [resp. negative] records by using a
framed + [resp. −]. Cut-points obtainable from this set S are α1

weight=72.5,
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α2
weight=102.5, α1

height=177.5, α2
height=185, α3

height=192.5. Correspond-

ing binary attributes obtainable are a1weight, meaning: weight ≥ 72.5 Kg.,

a2weight, meaning: weight ≥ 102.5 Kg., a1height, meaning: height ≥ 177.5

cm., a2height, meaning: height ≥ 185 cm., a3height, meaning: height ≥
192.5.

weight
75 90 100 105

72.5 102.5

70

+- + -+

height
180 190 195 205

177.5 192.5

175

+- +- +

185

A set of binary attributes {aji} used for binarizing a dataset S is called
support set U . A support set is exactly separating if no pair of positive and
negative records of S have the same binary encoding. A single data-set may
have several possible exactly separating support sets. Since the number of
binary attributes obtainable in practical problems is often very large, and
many of them may be not needed to explain the analyzed phenomenon, we
are interested in selecting a small (or even the smallest) exactly separating
support set. By using a binary variable xji for each aji , such that

xji =

{
1 if aji is retained in the support set

0 if aji is excluded from the support set

the integer programming problem (2.1) should be solved. For every pair
of positive and negative records s+, s− we define I(s+b , s

−
b ) to be the set of

couples of indices (i, j) where the binary representations of s+ and s− differ,
except, under special conditions [19], for the indices that involve monotone
values. This problem has a peculiar mathematical form called set covering
[76, 88]: the objective (sum of all the binary variables) minimizes the car-
dinality of the support set; the constraints (sums of binary variables ≥ 1)
impose retaining at least one binary attributes for each set of them produc-
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ing different binarizations for any pair of positive and negative records.

min

m∑
i=1

ni∑
j=1

xji

s.t.
∑

(i,j)∈I(s+b ,s
−
b )

xji ≥ 1 ∀I(s+b , s
−
b ), s+∈ S+, s−∈ S−

xji ∈ {0, 1}

(2.1)

Note that this selection does not have the aim of improving the classification
power, and actually “the smaller the chosen support set, the less informa-
tion we keep, and, therefore, the less classification power we may have” [19].
Instead, it is necessary for reducing the computational complexity of the
remaining part of the procedure, which may otherwise become impractica-
ble. Indeed, a non-optimal solution to such problem would not necessarily
worsen the classification power [19, 20]. Since different support sets cor-
respond to different alternative binarizations, hence to actually different
binarized record, the support set selection constitutes a key point.

Example 2.2. Continuing Example 2.1, by solving to optimality the above
set covering problem (2.1), we have the alternative support sets U1 =
{a2weight, a1height} and U2 = {a1weight a2weight}. Moreover, an approximate

solution is U3 = {a1weight, a2weight, a1height, }. The corresponding alternative
binarizations of the records in S are:

U1 U2 U3

b2we. b1he. b1we. b2we. b1we. b2we. b1he.

0 1 1 0 1 0 1
S+ 0 1 1 0 1 0 1

0 1 1 0 1 0 1

1 1 1 1 1 1 1
S−

0 0 0 0 0 0 0

The selected support set U is then used to create patterns. A pattern P is
a conjunction (∧) of literals, which are binary attributes aji ∈ U or negated

binary attributes ¬aji . Given a binarized record rb, that is a set of binary

values {bji} for the above binary attributes, each literal of P receives a value:

bji ∈ {0, 1} for literal aji ; (1−bji ) ∈ {0, 1} for literal ¬aji . We have that P = 1
if all literals of P are 1, P = 0 otherwise. We say that a pattern P covers
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a record r if the set of values rb = {bji} makes P = 1. A positive pattern
P+ is a pattern covering at least one positive record r+ but no negative
ones. A negative pattern P− is defined symmetrically. Patterns admit an
interpretation as rules governing the analyzed phenomenon. We write P (r)
for denoting the value of pattern P applied to record r :

P (r) =

{
1 if P covers r
0 if P does not cover r

Example 2.3. By continuing Example 2.2, a positive pattern obtained
using the support set U1 is P1 = ¬a2weight ∧ a1height. This means weight <
102.5 Kg. and height ≥ 177.5 cm. Recall P1 is a pattern if P1(s

+) = 1
for at least some s+ ∈ S and P1(s

−) = 0 for all s− ∈ S. Indeed, we have
P1(s

+) = 1 for all s+ ∈ S and P1(s
−) = 0 for all s− ∈ S. Another pattern,

obtained using support set U3, is P2 = a1weight∧¬a2weight∧a1height. P2 appears
to be even more appropriate than P1, since it means “one is a professional
basketball player if has a medium weight (weight ≥ 72.5 Kg. and weight

< 102.5 Kg.) and height above a certain value (height ≥ 177.5 cm.)”.
P2(s

+) = 1 for all s+ ∈ S and P2(s
−) = 0 for all s− ∈ S.

Positive patterns can be generated by means of two types of approaches:
top-down, i.e. by removing one by one literals from the conjunction of lit-
erals covering a single positive record until no negative records are covered,
or bottom-up, i.e. by conjoining one by one single literals until obtaining a
conjunction covering only positive records. Negative patterns can be gen-
erated symmetrically. Also the number of generated patterns may be too
large, so a pattern selection step can be performed. This is done in [19] by
solving another set covering problem, whose solution gives the set of the in-
dices H+ of selected positive patterns and that of the indices H− of selected
negative patterns, with H = H+ ∪ H−. Weights wh are now assigned to
all patterns in H, with wh ≥ 0 for h ∈ H+ and wh ≤ 0 for h ∈ H−, by
using criteria described in [19]. We skip detail here since we will discuss this
again and propose a new approach in Section 2.5. Finally, each new record
r is classified according to the positive or negative value of the following
weighted sum, called discriminant and denoted by ∆(r).

∆(r) =
∑
h∈H+

whPh(r) +
∑
h∈H−

whPh(r) =
∑
h∈H

whPh(r)
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2.3 Evaluation of Binary Attributes

We remarked that selecting a small support set is computationally neces-
sary, but that excluding attributes means losing information. Therefore,
we propose to evaluate the quality (the separating power) of each attribute
and to perform such a selection taking into account this evaluation. In the
following Figure 2.1, we give three examples of numerical fields (a,b,c). In
each case we draw (in the area above the horizontal line) “qualitative” dis-
tributions densities of a consistent number of values of positive and negative
records, and report (on the same line) a smaller sample of positive and neg-
ative records having the above distributions. Very intuitively, cut-points
obtainable in case a) are the worst ones (they do not appear very useful for
separating the two classes), while the cut-point of case c) is the best one
(it has a good “separating power”). Moreover, the different cut-points of
case b) do not have the same quality. We now need to formalize this evalu-
ation. The approach is based on how αji splits the data, i.e. it divides the
two classes, even if the real classification step will be performed by using
patterns. Different estimators could of course be designed, however results
show that using the proposed one is able to improve accuracy with respect
to the standard LAD procedure (that do not use estimators).

a)
-+ +

c)
++ -

b)
+

distribution of + distribution of -

distribution of +

distribution of +

distribution of -

distribution of -

1

a
α

3

a
α

5

a
α

4

a
α

6

a
α

2

a
α

1

b
α

2

b
α

3

b
α

1

c
α

4

b
α

5

b
α

+ - - +

++ --

+ --+-+

Figure 2.1: Examples of cut-points in different conditions.
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Given a single cut-point αji and a record r, denote by + the fact that r
is actually positive, and by − the opposite situation. Moreover, denote by
class + (αji ) the fact that r is classified as positive by αji , i.e. stays on the

positive side of cut-point αji , and by class − (αji ) the fact that r is in the
opposite situation. Given a generic set of records N , let A+ be the set of
the records which are class + (αji ), and A− be the set of records which are

class − (αji ). Denote instead by N+ and N− the (possibly unknown) real
positive and negative sets. Errors occur when a negative record is classified
as positive, and vice versa. The first kind of errors, called false positive, are
N− ∩A+; the second kind of errors, called false negative, are N+ ∩A−. The
confusion matrix is given in Table 2.1 below.

Real
+ −

+ N+ ∩A+ N− ∩A+Predicted by αji − N+ ∩A− N− ∩A−

Table 2.1: Confusion matrix.

Since the described support set selection problem is a non-trivial decision
problem, it seems reasonable to model it as a binary linear programming
problem. For doing so, we need to use a criterion for evaluating the quality
of each binary attribute such that the overall quality value of a set of binary
attributes can be given by the sum of their individual quality values. We
obtain this as follows. A basic measure of the accuracy of the positive
classification obtained from αji can be the probability of producing a true
positive divided by the probability of producing a false positive.

o+(αji ) =
Pr(+ ∩ class + (αji ))

Pr(− ∩ class + (αji ))

A similar measure can evaluate the accuracy of the negative classification
obtained from αji .

o−(αji ) =
Pr(− ∩ class − (αji ))

Pr(+ ∩ class − (αji ))

Clearly, o+(αji ) ∈ [0,+∞) and o−(αji ) ∈ [0,+∞). The higher the value, the

better positive [resp. negative] classification αji provides. In order to have

a complete evaluation of αji , we consider the product o+(αji ) × o−(αji ) ∈
[0,+∞).
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Moreover, rather than the numerical value of such evaluation, we are
interested in the relative differences among the values obtained for the dif-
ferent cut-points. Therefore, we can sum 1 to such product, obtaining a
value in [1,+∞).

1 +
Pr(+ ∩ class + (αji ))

Pr(− ∩ class + (αji ))
·
Pr(− ∩ class − (αji ))

Pr(+ ∩ class − (αji ))

Denote now by A the set of couples of indices (i, j) of a generic set of cut-
points: {αji : (i, j) ∈ A}. The overall accuracy of a classification using the
cut-points in A is now related to the product of the individual evaluations:

∏
(i,j)∈A

[
1+

Pr(+ ∩ class + (αji ))

Pr(− ∩ class + (αji ))
·
Pr(− ∩ class − (αji ))

Pr(+ ∩ class − (αji ))

]

As noted above, more than the numerical values, we are interested in pro-
ducing, for each set of cut-points, values that can be compared. Therefore,
we can apply a scale conversion and take the logarithm of the above value.

ln
∏

(i,j)∈A

[
1+

Pr(+ ∩ class + (αji ))

Pr(− ∩ class + (αji ))
·
Pr(− ∩ class − (αji ))

Pr(+ ∩ class − (αji ))

]

This allows to convert it in a sum, as requested, obtaining:

∑
(i,j)∈A

ln

[
1+

Pr(+ ∩ class + (αji ))

Pr(− ∩ class + (αji ))
·
Pr(− ∩ class − (αji ))

Pr(+ ∩ class − (αji ))

]

In conclusion, the quality qji of a single cut-point αji can be evaluated as
follows (so that the quality of a set of cut-points results in the sum of their
individual quality values).

qji = ln

[
1+

Pr(+ ∩ class + (αji ))

Pr(− ∩ class + (αji ))
·
Pr(− ∩ class − (αji ))

Pr(+ ∩ class − (αji ))

]

Clearly, qji ∈ [0,+∞). Computing the above probabilities by counting in-
stances (and denoting by | · | the cardinality of a set), we have:

qji = ln

1 +

|N+ ∩A+|
|N+|

|N− ∩A+|
|N+|

·

|N− ∩A−|
|N−|

|N+ ∩A−|
|N−|

 = ln

[
1 +
|N+ ∩A+|
|N− ∩A+|

· |N− ∩A−|
|N+ ∩A−|

]
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However, this evaluation needs the correct classification {N+, N−} of the
dataset N . We obviously prefer an a priori quality evaluation, i.e. com-
putable by knowing only the correct classification of the training set S. We
can do this by using a non-parametric method for fields having unknown
distribution, and a parametric one for fields having known distribution.

In the case of fields having unknown distribution, qji is simply obtained
by considering the training set S instead of the generic N , while for each
cut-point αji sets A+ and A− are clearly known (they respectively are the

sets or records that are class +(αji ) and class−(αji )). Now, the quality of each

attribute aji over a numerical field fi is that of its corresponding cut-point

αji , that is the defined qji .
In the case of fields where the hypothesis of a known distribution is

satisfactory, their positive and negative density functions can be computed
using the training set S, and the above quantities |N+ ∩ A+|, etc. can be
evaluated by using such density functions. In other words, we just know
data from the training set S, but we may infer where other data will be,
and compute how useful αji would be for all of them. In particular, for any
continuous-valued field fi, we make the hypothesis of a normal (Gaussian)
distribution. Such distribution can indeed model the majority of real-world
values, as a consequence of the central limit theorem [48]. Denote now
by mi+ the mean value that positive records have for fi and by σi+ their

(population) standard deviation (defined as

√∑
s∈S+ (vsi−mi+)2

|S+| ), denote by

mi− and σi− the same quantities for the negative records, and suppose
w.l.o.g. that cut-point αji represents a transition from − to +. By computing

the above parameters from the training set S, our evaluation of quality qji
becomes:

qji = ln

1 +

+∞∫
αji

1√
2π(σi+)2

e
− (t−mi+)2

2(σi+)2 dt

+∞∫
αji

1√
2π(σi−)2

e
− (t−mi−)2

2(σi−)2 dt

·

αji∫
−∞

1√
2π(σi−)2

e
− (t−mi−)2

2(σi−)2 dt

αji∫
−∞

1√
2π(σi+)2

e
− (t−mi+)2

2(σi+)2 dt


In case of a discrete-valued field fi, on the contrary, we make the hypothe-
sis of binomial (Bernoulli) distribution. This should indeed describe many
discrete real-world quantities [48]. Denote now by mi+ and Mi+ the min-
imum and the maximum values on field i for positive records, and by mi−
and Mi− the same quantities for the negative records. Denote also by
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ni+ = Mi+ −mi+ the number of possible positive values for fi, and by p+
the characteristic positive probability of success (also called Bernoulli proba-
bility parameter, estimated as |S+|/ni+). Denote by ni− = Mi− −mi− and
by p− the same quantities for negative records. Suppose, again, that αji is
a transition from − to +. By computing the above parameters from S, our
evaluation of quality qji becomes now:

qji = ln

1+

ni+∑
t=αji−mi+

(
ni+
t

)
(pi+)t(1− pi+)ni+−t

ni+∑
t=αji−mi+

(
ni−
t

)
(pi−)t(1− pi−)ni−−t

·

αji−mi−−1∑
t=0

(
ni−
t

)
(pi−)t(1− pi−)ni−−t

αji−mi−−1∑
t=0

(
ni+
t

)
(pi+)t(1− pi+)ni+−t



Moreover, we modify the above qji in order to reduce possible overfitting
and to avoid selecting attributes in an unbalanced manner (e.g. all from the
same fields).

We penalize each attribute aji corresponding to a cut-point αji originated
by a few isolated points of one class laying near many points of the opposite
class. More precisely, we set two thresholds ν1 and ν2 and put qji := qji /2

for each aji such that: i) a number of training records ≤ ν1 lie on one side

of αji , and ii) a number of training records ≥ ν2 (of the opposite class) lie

on the other side of αji .

We also penalize the binary attributes over a field fi from which other
binary attributes have already been selected. Clearly, this can be applied
only during a sequential solution (see Section 2.4) of the support set selection
problem. More precisely, each time an attribute from fi is selected, we put
qji := qji /2 for each still unselected attributes of fi.

Note, finally, that for fields having a considerable overlapping between
the two classes, cut-points cannot be generated when inverting the class,
because almost every region of the field contains both classes. On the con-
trary, they are generated when inverting the class predominance, i.e. when
passing from a region with positive predominance to one with negative pre-
dominance and vice versa. By considering the fraction of negative records

in the training |S
−|
|S| , a region has positive predominance when its percentage

of negative records is ≤ g |S
−|
|S| %. Values for g was set at 70.
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2.4 Reformulations of the Support Set Selection
Problem

When the quality value of each attribute have been computed, the exactly
separating support set selection problem can be modeled as follows. We
would like minimizing a weighted sum (and not only the number) of se-
lected attributes, where the weights are the reciprocal 1/qji of the quality

qji , while selecting at least an attribute for each of the above defined sets

I(r+b , r
−
b ). Note that 1/qji can be viewed as a measure of the uselessness

of aji . By using the binary variables xji already introduced in Section 2.2,
the following weighted set covering problem should be solved, using the non-
negative weights 1/qji .

min
m∑
i=1

ni∑
j=1

1

qji
xji

s.t.
∑

(i,j)∈I(r+b ,r
−
b )

xji ≥ 1 ∀I(s+b , s
−
b ), s+∈ S+, s−∈ S−

xji ∈ {0, 1}

(2.2)

This formulation takes now into account the individual qualities of the at-
tributes. One may observe that this would discard attributes that have
a poor isolated effect but may have important effect when combined with
other attributes during the pattern generation step. However, a selection
is necessary for the computational viability of the entire procedure, and
the proposed approach aims at discarding the attributes that appear more
suitable to be discarded.

Moreover, such weighted set covering formulation (2.2) has strong com-
putational advantages on a non-weighted one (2.1). Although still NP-hard
[76], solution algorithms become considerably faster when the model vari-
ables receive different weight coefficients in the objective function. Depend-
ing on the size of the model and on available computational time, such
weighted set covering problem may be either solved to optimality or by
searching for an approximate solution. In the former case, it is guaranteed
that the pattern generation step is performed by using a set of attributes
U which is a minimal set for which no positive and negative records have
the same binary encoding. In the latter case, if the approximate solution is
feasible but non-optimal, it is not guaranteed that U is minimal, i.e. it may
exist also a proper subset U ′ ⊂ U such that no positive and negative records
have the same binary encoding. This could have the effect of increasing the
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computational burden of the pattern generation step, but not of worsening
the classification accuracy. If, on the contrary, the approximate solution is
(slightly) infeasible, U is such that (few) positive and negative records have
the same binary encoding. This could have the effect of accelerating the
pattern generation step, but of decreasing the classification accuracy.

In the cases when the above model still remains computationally de-
manding, e.g. for large datasets, or when there are very tight time require-
ments, e.g. real time applications, the support set selection problem can be
modeled differently. The computational burden added to the whole classi-
fication procedure could be evaluated by retaining each single attribute aji ,

and call it its size sji . When no specific evaluations can be done, those sizes
could be set all at 1. Moreover, a maximum affordable computational bur-
den b can be established, for instance on the basis of the time available for
preforming the classification, or of the available computing hardware, etc.
Note that such requirement may be independent from the minimum size of
an exactly separating support set: the available resources are limited, and,
if they allow obtaining an exactly separating support set, the better, but
this cannot be imposed. By using the same binary variables xji , the support
set selection problem can now be modeled as binary knapsack problem:



max

m∑
i=1

ni∑
j=1

qji x
j
i

s.t.

m∑
i=1

ni∑
j=1

sji x
j
i ≤ b

xji ∈ {0, 1}

(2.3)

Solving the above model is again NP-hard [76], so it may in general be as
hard as (2.2). However, in the case when all sizes sji are 1, it becomes

polynomially solvable by just sorting the qji values and by taking the best
b of them. Note that, in this case, attributes can be selected sequentially,
and the weights be modified after each single attribute selection, in order
to incorporate penalty techniques such as the one described in the end of
previous Section. The above selections are performed independently on pos-
itive and negative attribute, so as to find the set U+ of selected positive
attributes and the set U− of selected negative ones.
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2.5 Pattern Generation and Use

A pattern P is a logic function of attributes aji , typically a conjunction of

literals, which are binary attributes aji ∈ U or negated binary attributes

¬aji . Given a binarized record rb, that is a set of binary values {bji}, each
literal of a generic pattern P receives a value, and so P itself receives a value,
denoted by P (r) ∈ {0, 1} (see also Section 2.2). We say that a pattern P
covers a record r if P (r) = 1, and that pattern P is activated by r. In the
standard LAD procedure, a positive pattern P+ has to cover at least one
positive record r+ but no negative ones, and a negative pattern P− is defined
symmetrically. This, however, can lead to improper pattern generation in
the case of noisy or otherwise difficult datasets. In the procedure presented
in this Chapter, patterns are produced in a bottom-up fashion. For obtaining
a positive pattern, we generate every possible logic conjunction grouping up
to p literals, using one after another all literals obtainable from U+. When
a conjunction P̄ verifies the following coverage conditions

• P̄ covers at least ηc positive records of S

• P̄ covers at most ηe negative records of S

we save P̄ as a pattern and never repeat P̄ as part of other conjunctions.
A negative pattern is generated symmetrically. This simple generalization
of the original covering condition can generate patterns being more robust,
since patterns not covering any element of the opposite class may be rare in
the mentioned cases. Thresholds ηc and ηe should be tuned on the specific
dataset. However, in general, we use ηc ≥ 2ηe, with ηc proportional to data
density and ηe proportional to the noise contained in the data.

In order to produce a complete classifier, each test record should be cov-
ered by at least one pattern. However, generating bottom-up patterns could
leave uncovered some regions of the data space. Therefore, an additional
pattern generation step is required, in a top-down fashion: patterns describ-
ing single training records covering the still uncovered regions of the data
space are taken, and then simplified, by iteratively removing literals from
them in all possible ways, until they satisfy other two coverage thresholds
ηca and ηea. Their meaning is respectively analogous to ηc and ηe, but the
requirements should in general be more relaxed.

Now, unclassified records can be classified by examining which patterns
cover them. Clearly, a record activating only positive patterns should be
classified as positive, and vice versa. A positive pattern is indeed a (par-
tial) compact description of positive records. However, in the majority
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of the cases, unclassified records activate both positive and negative pat-
terns. Some kind of “voting” criterion is needed. LAD methodology uses
a weighted sum of the activated patterns, also called discriminant ∆. The
weight given to pattern Ph in this sum is denoted by wh, with h ∈ H. The
discriminant must be compared to a classification threshold δ for classifying
record r: ∑

h∈H
whPh(r) = ∆(r) > δ ⇔ r ∈ R+

∑
h∈H

whPh(s) = ∆(r) ≤ δ ⇔ r ∈ R−

Using patterns can also be seen as Boosting [50, 86]: learning weak classifiers
(the patterns) and combining them by means of weights in order to obtain a
strong classifier. Evaluating the mentioned weights, i.e. the “power” of each
pattern in the classification process, can be done using different criteria. A
first criterion can be based on the coverage values of each pattern, as in the
original LAD [19]. For instance, if uh is the number of positive records cov-
ered by a positive pattern Ph, its weight is wh = u2h, and symmetrically for
a negative one (squared pattern coverage). However, in the case of patterns
covering overlapping sets of records, this criterion could be misleading.

A more ambitious criterion is assigning weights and classification thresh-
old in order to minimize classification errors. Since the only classification
errors that can be detected at this stage are those on the training set, we
try to minimize them. We assume, in absence of further information, that
this would produce a similar effect on the test set, being such data of the
same nature of the training set. For doing so, denote by c(r) the value 1 if
r is a positive record, 0 otherwise (the real classification). Clearly, c(s) is
known for each training record s ∈ S.

On the other hand, applying the learned classifier on the training set S
produces a predicted classification for each s ∈ S. By comparing real and
predicted classification of a training record s ∈ S, we obtain es ∈ {0, 1},
that we call classification error for the training record s.

es =

{
1 if ∆(s+) ≤ δ or ∆(s−) > δ
0 otherwise

Values es clearly depend on all elements of the procedure: cut-point selec-
tion, pattern generation, pattern weights, classification threshold, so they
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are not easily expressible. However, when knowing whether each pattern
Ph, with h ∈ H, covers or not each record s ∈ S, the above es are simple
functions of pattern weights {wh} and classification threshold δ. There-
fore, given the set of generated pattern {Ph}, we compute the coverages
Ph(s) ∈ {0, 1} for all h ∈ H and s ∈ S, obtaining a |H| × |S| matrix PS
having binary elements dhs:

PS = [dhs] with dhs = Ph(s)

The same can be done for each pattern Ph, with h ∈ H and each test record
t ∈ T , obtaining a |H| × |T | matrix PT having binary elements dht:

PT = [dht] with dht = Ph(t)

On the other hand, for each test record t ∈ T , we only know (at this stage)
the classification given by the learned classifier, which is again function of
{wh} and δ.

ct =

{
1 if

∑
h∈H whPh(r) > δ

0 if
∑

h∈H whPh(r) ≤ δ

Moreover, we want to learn from the training set the class distribution, that

is the fraction of positive |S
+|
|S| (or of negative |S

−|
|S| ) records contained in

the training set (clearly, given one of the two, the other is also fixed). We
therefore introduce a value, called tolerance and denoted by γ, measuring
the “difference” from the class distribution of the training set and that of
the test set. Hence, we have a bi-objective: minimizing the number of
errors on the training set and minimizing the tolerance γ. By introducing a
scalarization parameter G > 0, our objective becomes:

min
∑
s∈S

es +Gγ

A reasonable choice for G is |S|/10, so that the second term of the objective
cannot override the first one (whose theoretical maximum is |S|, but with
typical values between 0.01|S| and 0.4|S|). The description of constraints is
following.
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We need to impose that the classification error es is 1 for each record s ∈ S
such that the classification that s would receive using {wh} and δ does not
match its real class c(s).

∑
h∈H

whdhs − δ ≤M(c(s) + es) ∀s ∈ S (2.4)∑
h∈H

whdhs − δ > −M(1− c(s) + es) ∀s ∈ S (2.5)

M is a positive constant greater than any possible value of the first mem-
ber (see also [93]). The mathematical behavior of those constraints is the
following. When

∑
h∈H whdhs − δ > 0, record s is predicted positive. In

this case, the second member of (2.4) must be ≥ than a positive number, so
it must be positive, while the second member of (2.5) must be < than the
same positive number, so it can be either 0 or negative: if c(s) = 0 (= the
prediction is an error), es is forced to be 1 by the (2.4), while it is free for
the (2.5); if c(s) = 1 (= the prediction is not an error), es is free for both
constraints.

On the other hand, when
∑

h∈H whdhs − δ ≤ 0, record s is predicted
negative. In this case, the second member of (2.4) must be ≥ than a number
≤ 0, so it can be either 0 or positive, while the second member of (2.5) must
be < than the same number, so it must be negative: if c(s) = 1 (= the
prediction is an error), es is forced to be 1 by the (2.5), while it is free for
the (2.4); if c(s) = 0 (= the prediction is not an error), es is free for both
constraints. Note that, when es is free for both constraints, the minimization
of the objective will make it 0. In order to have a closed feasible region, (2.5)
is converted into ≥ by introducing a small ε > 0

∑
h∈H

whdhs − δ ≥ −M(1− c(s) + es) + ε ∀s ∈ S

In order to evaluate the class distribution that {wh} and δ would produce
in T , we need to compute the predicted classification of its records. We
therefore need constraints connecting values {wh} and δ to the class ct that
would be predicted for each record t ∈ T . The machinery is similar to that
of the above analyzed constraints, but note that we do not use at all the
real class of the test records, that must obviously remain unknown during
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classification process.

∑
h∈H

whdht − δ ≤Mct ∀t ∈ T (2.6)∑
h∈H

whdht − δ > −M(1− ct) ∀t ∈ T (2.7)

Constraint (2.7) is converted into ≥ by using again a small ε > 0

∑
h∈H

whdht − δ ≥ −M(1− ct) + ε ∀t ∈ T

Finally, we need constraints imposing that {wh} and δ reproduce in T the

class distribution of S, so |T+| should be as similar as possible to |S+| · |T |
|S|

,

and connecting the difference to the introduced γ.

∑
t∈T

ct ≤
∑
s∈S

c(s) · |T |
|S|

+ |T |γ + ρ (2.8)

∑
t∈T

ct ≥
∑
s∈S

c(s) · |T |
|S|
− |T |γ − ρ (2.9)

Note that, when we need to classify just one or a few records, obtaining the
same class distribution of S could be impossible. For example, if we need

to classify two records, and the fraction of positive |S
+|
|S| is 0.2, targeting at

that class distribution for the two records is clearly useless. Hence, (2.8-
2.9) should have no effect when T is very small. This is obtained by using
value ρ, that, when set for instance at 3, relaxes constraints (2.8-2.9) of 3
units. For large |T | this relaxation is negligible (so it is not considered in
the tests of Section 2.6), while for small |T | the problem gradually reduces
to minimizing only the classification error on S.

The overall mixed integer linear model for finding optimal pattern weights
wh and classification threshold δ is now the following. Weight values are
bounded by a value W , in order to avoid giving excessive importance to any
single pattern, since that could be a source of overfitting.
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

min
∑
s∈S

es +Gγ

∑
h∈H

whdhs − δ ≤M(c(s) + es) ∀s ∈ S∑
h∈H

whdhs − δ ≥ −M(1− c(s) + es) + ε ∀s ∈ S∑
h∈H

whdht − δ ≤Mct ∀t ∈ T∑
h∈H

whdht − δ ≥ −M(1− ct) + ε ∀t ∈ T∑
t∈T

ct ≤
∑
s∈S

c(s) · |T |
|S|

+ |T |γ + ρ∑
t∈T

ct ≥
∑
s∈S

c(s) · |T |
|S|
− |T |γ − ρ

−W ≤ wh ≤W ∀h ∈ H

es ∈ {0, 1} ∀s ∈ S
ct ∈ {0, 1} ∀t ∈ T
wh ∈ IR ∀h ∈ H
δ ∈ IR
γ ∈ IR+

(2.10)

2.6 Implementation and Computational Results

Tests are carried out on an Intel Pentium IV PC with 3GHz processor and
3.24 Gb RAM. The proposed methodology has been implemented in C++
using MS Visual Studio. The quality values qji are numerically approximated
by using C functions described in [79]. Pattern are generated by grouping
up to p literals (see Tables), using ν1 = 5, ν2 = 50, ηc = 2, ηe = 1, ηca = 1,
and ηea = 0. The support set selection problem, when modeled as knapsack
(2.3) with all sji = 1, is solved by simply ordering by quality values the bi-
nary attributes. When modeled differently, as in (2.1) or (2.2), is solved by
means of IBM Cplex [65], a state-of-the-art implementation of branch-and-
cut procedure (e.g. [76, 88]). The same solver is used for solving the pat-
tern weights and classification threshold selection problem (2.10). Datasets
used for the experiments are “Ionosphere”, “Spambase”, “Pima Indians Dia-
betes”, “Statlog Heart”, “Mushroom”, “Adult” and “Poker Hand”, publicly



50 CHAPTER 2. CLASSIFICATION BASED ON MILP

available from the UCI Repository of machine learning problems [49]. They
were chosen in order to have a test bed containing different types of datasets
(with many or few records, many or few fields, numerical or categorical, easy
or difficult, etc.), so as to analyze the classifiers behavior under all condi-
tions.

The first set, Ionosphere, is composed by 351 instances, each having 34
fields (plus the class). In particular, there are 32 real-valued fields and 2
binary ones. All 32 real-valued fields could be considered having normal dis-
tribution, one binary field could be considered having binomial distribution,
the other is always 0. They are “data collected by a radar system in Goose
Bay, Labrador. The targets were free electrons in the ionosphere. Good
radar returns are those showing evidence of some type of structure in the
ionosphere. Bad returns are those that do not; their signals pass through
the ionosphere”, from UCI Repository [49].

The second set, Spambase, is composed by 4,601 instances, each having
57 fields (plus the class), all numerical. In particular, 55 are real-valued
and 2 are integer; however they are the frequencies of “particular words
or characters” and numbers of capital letters in an email, so all 57 were
considered having normal distribution. Records of this dataset correspond
to received emails, and the class “denotes whether the e-mail was considered
spam (1) or not (0), i.e. unsolicited commercial e-mail”, from the UCI
Repository [49].

The third set, Pima Indians Diabetes, is composed by 768 instances, each
having 8 fields (plus the class). In particular, there are 2 real-valued fields
and 6 integer ones. However, since 3 integer fields have a number of possible
values high enough, 5 field could be considered having normal distribution,
while 3 could be considered having binomial distribution. Fields are medical
informations about “females patients of Pima Indian heritage living near
Phoenix, Arizona, the class is whether the patient shows signs of diabetes”,
from the UCI Repository [49].

The forth set, Statlog Heart, is composed by 270 instances, each having
13 fields (plus the class). In particular, there are 7 real-valued fields and 6
categorical or binary. The first 7 were considered having normal distribution.
The last 6 could not be considered having binomial distribution, so they were
treated as those with normal distribution but generating cut-points when
inverting the class predominance due to the few number of possible values
(see Section 2.3). Fields are several medical informations about patients,
the class is whether the patient “has absence or presence of heart disease”,
from the UCI Repository [49].

The fifth set, Mushroom, is composed by 8,124 instances, each having
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22 fields (plus the class). All fields are categorical with very few possi-
ble values (no more than 12, some are just 2), so they were treated as
those with binomial distribution but generating cut-points when inverting
the class predominance (see Section 2.3). The records correspond to “mush-
rooms described in terms of physical characteristics, from Audobon Society
Field Guide”, and the “classification is poisonous or edible”, from the UCI
Repository [49].

The sixth set, Adult, is composed by 48,842 instances, each having 14
fields (plus the class). In particular, there are 6 real-valued fields that could
be considered having normal distribution, the other 8 are categorical and
were treated as fields with unknown distribution. They are “a set of rea-
sonably clean person records extracted from the 1994 US Census database”,
from the UCI Repository [49]. The class is whether that person earns more
than 50,000 USD per year or not.

The seventh set, Poker Hand, is composed by 1,025,010 instances, each
having 10 fields (plus the class). For this dataset, the training set is pre-
defined and composed by 25,010 records, corresponding to 2.44% of the
total. Records have 5 categorical and 5 integer fields, but such integer fields
should be considered categorical, since they are values of cards: just labels.
All fields were treated as fields with unknown distribution, but the first 5 did
not produce any cut-points, so they were excluded also for LIBSVM in oder
to make the classifiers work in the same conditions (note that including them
would produce worse results for LIBSVM). Each record is suit and rank of
the 5 cards received in the poker game, drawn from a standard deck of 52.
The class is the ranking of the entire poker hand, from 0 to 9. In order to
obtain a binary classification problem, we assigned 0 to “nothing in hand”
and 1 to any other point (pair, two pairs, etc.). The above data-sets have
been classified using the following procedures:

1. The proposed one, called SLAD (Statistical and Logical Analysis of
Data), solving the knapsack version (2.3) of the Support set selection prob-
lem and the described Pattern weights and classification threshold selection
problem (2.10).

2. The standard LAD (Logical Analysis of Data) procedure, obtained
from the former by not assigning values to binary attributes and solving
an unweighted set covering problem (2.1) for the Support set selection, and
using pattern weights wh based on squared pattern coverage (see Section
2.5) and classification threshold δ = 0.

3. A simplified version of SLAD, called RLAD (Reduced Logical Analy-
sis of Data), solving the knapsack version (2.3) of the Support set selection
problem and simply using the binary attributes for performing the classifi-
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cation. In other words, patterns are composed by only one literal, and use
pattern weights wh based on squared pattern coverage (see Section 2.5) and
classification threshold δ = 0.

4. The publicly available LIBSVM 3.17 (Library for Support Vector
Machines [33]), a very good C++ implementation of the Support Vector
Machines methodology [32, 62], developed by Chih-Chung Chang and Chih-
Jen Lin, possibly working on dataset previously scaled to a restricted range
by means of svm-scale [33] (a preprocessing for improving accuracy).

Tests reported in Tables 2.2-2.8 are conducted as follows. A small number
of record instances, representing respectively 5% and 10%, of the total, are
randomly extracted from each data-set, and used as training set (except for
Poker Hand, which is already subdivided into training and test). The rest of
the data-set constitutes the test set. Such extraction is performed 10 times,
and the results reported are averaged on the 10 trials. Tests are conducted
on a best-against-best basis: we selected, for each dataset and training per-
centage, the classifier parameters producing the best accuracy. Tables report
classification accuracy, computational times required by the whole classifi-
cation procedure (in seconds, with time limit of 3600), parameters used for
obtaining those results.

Algorithm
Training 5% (18/351)

Accuracy Time Parameters

LAD 69.60 % 0.60 standard, ηc = 1, ηe = 0

RLAD 70.98 % 0.04 b = 35

SLAD 85.41 % 0.04 b = 10, p = 3, G = 1.8,W = 104

LIBSVM 82.66 % 0.58 unscaled, -s 0 -t 2 -g 0.25
-c 1.6818 -e 0.001

Algorithm
Training 10% (36/351)

Accuracy Time Parameters

LAD 71.13 % 0.75 standard, ηc = 1, ηe = 0

RLAD 75.10 % 0.10 b = 46

SLAD 89.58 % 0.18 b = 11, p = 3, G = 3.6,W = 104

LIBSVM 86.64 % 0.63 unscaled, -s 0 -t 2 -g 0.1486
-c 1 -e 0.001

Table 2.2: Ionosphere (351 records, 34 fields) average on 10 trials.

As a general outcome, our experiment show that the effort invested in eval-
uating the quality of the different binary attributes returns a superior clas-
sification accuracy with respect to the standard LAD procedure. In the
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Algorithm
Training 5% (230/4601)

Accuracy Time Parameters

LAD 83.10 % 2.14 standard, ηc = 1, ηe = 0

RLAD 75.70 % 0.18 b = 240

SLAD 88.90 % 0.92 b = 100, p = 3, G = 23,W = 104

LIBSVM 85.74 % 1.05 scaled, -s 0 -t 2 -g 0.5
-c 8.0 -e 0.001

Algorithm
Training 10% (460/4601)

Accuracy Time Parameters

LAD 84.32 % 2.21 standard, ηc = 1, ηe = 0

RLAD 78.55 % 0.50 b = 370

SLAD 89.51 % 1.61 b = 200, p = 3, G = 46,W = 104

LIBSVM 89.12 % 1.36 scaled, -s 0 -t 2 -g 0.5
-c 8.0 -e 0.001

Table 2.3: Spambase (4601 records, 57 fields) average on 10 trials.

Algorithm
Training 5% (38/768)

Accuracy Time Parameters

LAD 70.48 % 0.88 standard, ηc = 1, ηe = 0

RLAD 66.10 % 0.03 b = 60

SLAD 72.77 % 0.40 b = 60, p = 3, G = 3.8,W = 104

LIBSVM 70.54 % 0.80 scaled, -s 0 -t 2 -g 0.000173
-c 4096 -e 0.001

Algorithm
Training 10% (76/768)

Accuracy Time Parameters

LAD 72.36 % 1.15 standard, ηc = 1, ηe = 0

RLAD 67.90 % 0.06 b = 64

SLAD 73.96 % 0.62 b = 64, p = 3, G = 7.6,W = 104

LIBSVM 72.38 % 2.84 scaled, -s 0 -t 2 -g 0.25
-c 11.31 -e 0.001

Table 2.4: Pima Indians Diabetes (768 records, 8 fields) average on 10 trials.

totality of the analyzed cases, indeed, SLAD is more accurate than LAD.
That additional effort clearly required an additional computational time, but
that was almost negligible, and moreover, in the solution of the support set
selection problem, weighted set covering problems can generally be solved
in times which are much shorter than those needed for the corresponding
non-weighted ones, so performing the above quality evaluation appears in
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Algorithm
Training 5% (14/270)

Accuracy Time Parameters

LAD 62.40 % 0.78 standard, ηc = 1, ηe = 0

RLAD 64.25 % 0.02 b = 54

SLAD 77.23 % 0.02 b = 14, p = 4, G = 1.4,W = 104

LIBSVM 76.44 % 0.20 scaled, -s 0 -t 2 -g 0.00035
-c 512 -e 0.001

Algorithm
Training 10% (27/270)

Accuracy Time Parameters

LAD 68.80 % 0.78 standard, ηc = 1, ηe = 0

RLAD 69.00 % 0.04 b = 64

SLAD 80.24 % 0.04 b = 22, p = 4, G = 2.7,W = 104

LIBSVM 77.52 % 0.34 scaled, -s 0 -t 2 -g 0.125
-c 512 -e 0.001

Table 2.5: Statlog Heart (270 records, 13 fields) average on 10 trials.

Algorithm
Training 5% (406/8124)

Accuracy Time Parameters

LAD 76.90 % 2.67 standard, ηc = 1, ηe = 0

RLAD 76.39 % 0.32 b = 176

SLAD 98.79 % 0.69 b = 20, p = 4, G = 40,W = 104

LIBSVM 98.34 % 1.12 unscaled, -s 0 -t 2 -g 0.03125
-c 8.0 -e 0.001

Algorithm
Training 10% (812/8124)

Accuracy Time Parameters

LAD 80.15 % 3.85 standard, ηc = 1, ηe = 0

RLAD 78.48 % 0.45 b = 200

SLAD 99.72 % 0.83 b = 25, p = 4, G = 81,W = 104

LIBSVM 99.13 % 1.25 unscaled, -s 0 -t 2 -g 0.03125
-c 8.0 -e 0.001

Table 2.6: Mushroom (8124 records, 22 fields) average on 10 trials.

any case convenient. Furthermore, the solution of the support set selection
problem as binary knapsack (2.3) using the above quality evaluation and all
sji = 1 is even faster and produces a very good classification accuracy.

The comparison with LIBSVM, which is currently deemed to be one of the
most effective classifiers, show the effectiveness of the proposed approach.
Indeed, SLAD obtains a classification accuracy that is always comparable
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Algorithm
Training 5% (2442/48842)

Accuracy Time Parameters

LAD 76.32 % 35.10 standard, ηc = 1, ηe = 0

RLAD 75.39 % 0.78 b = 150

SLAD 82.16 % 7.10 b = 80, p=3, G=244,W = 105

LIBSVM 83.60 % 10.02 scaled, -s 0 -t 2 -g 0.125
-c 8.0 -e 0.001

Algorithm
Training 10% (4884/48842)

Accuracy Time Parameters

LAD 75.72 % 75.30 standard, ηc = 1, ηe = 0

RLAD 77.48 % 0.95 b = 200

SLAD 83.68 % 8.64 b=100, p=3, G=488,W =105

LIBSVM 84.28 % 12.58 scaled, -s 0 -t 2 -g 0.125
-c 8.0 -e 0.001

Table 2.7: Adult (48842 records, 14 fields) average on 10 trials.

or better than that of LIBSVM, in times that are often comparable and be-
come much shorter on the larger data-sets, so the scalability of the proposed
approach appears fully satisfactory.

Algorithm
Training 2.44% (25010/1025010)

Accuracy Time Parameters

LAD - >3600 standard, ηc = 1, ηe = 0

RLAD 63.75 % 48.6 b = 80

SLAD 83.86 % 1497.0 b=10,p=4,G=2501,W=106

LIBSVM 64.74 % 2640.0 scaled, -s 0 -t 2 -g 0.125
-c 8.0 -e 0.001

Table 2.8: Poker Hand (1025010 records, 10 fields) one trial.

Moreover, the simple classifier RLAD is considerable faster than any
other of the considered procedures because no time consuming problems
must be solved in the different steps of this procedure. Its accuracy is
clearly inferior to that of the other classifiers, but is sometimes comparable.
Therefore, it could be useful in practical applications where a timely (or
even a real-time) classification is needed, or when very large datasets should
be treated.
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2.7 Summary and remarks

Classify with a good degree of accuracy and in short times on the basis of
small training sets is required in a variety of practical applications. Un-
fortunately, obtaining these three desirable features together can be very
difficult. We consider here the framework of the Logical Analysis of Data
(LAD), and propose several enhancements to this methodology based on sta-
tistical considerations on the data. In particular, we use more information
extracted from the training set to guide the support set selection step, and
propose two reformulations of such a problem having several advantages.
Moreover, we consider the problem of selecting the best parameters for the
procedure (pattern weights and classification threshold), and formulate it as
an optimization problem, overcoming this way the parameter tuning step.
The proposed methodology, called Statistical and Logical Analysis of Data
(SLAD), is tested on a test bed of publicly available datasets from the UCI
repository, and compared to the standard LAD methodology and to the
Support Vector Machines (SVM) methodology. Experiments show that the
presented enhancements are able to increase the classification accuracy and
reduce computation times with respect to standard LAD methodology. The
comparison with SVM methodology, currently deemed one of the best classi-
fication technique, proves that SLAD provides good accuracy and timing re-
sults using very small training sets. Moreover, a simplified version of SLAD,
called Reduced Logical Analysis of Data (RLAD), is proposed. All steps of
this latter procedure can be solved in very short times, allowing a sensible
speed-up of the whole classification procedure. As a consequence, real-time
classification, or fast classification of massive datasets, can be undertaken.



Chapter 3

Balancing Problem in
Agriculture

3.1 The Problem of Matrix Balancing

A Census of Agriculture is a very complex, important and expensive oper-
ation for a National Statistic Office. It is an essential activity, periodically
performed for monitoring the agricultural sector (see e.g. [44]). Data col-
lected in such a process have therefore a great intrinsic economic value,
and moreover, in the case of EU countries, constitute a basis for assigning
financial resources, planning production, and for several other economical
European policies. As in any other large-scale survey, however, those data
may contain errors or missing values, due to a variety of reasons. Nonethe-
less, the correct information must be published and provided to the EU
level, also considering that large financial resources are allocated to the sec-
tor. Therefore, error detection and correction become crucial tasks. This
kind of activity is generally called Information Reconstruction, or also Data
Cleaning, within the field of Data Mining (see also [61, 70]), or Data Editing
and Imputation within the field of Statistics (see also [41, 94]). Note that,
in contexts different from the Census, the possibility of reconstructing exact
values could be useful also for counteracting possible opportunistic behav-
iors (e.g. willingly erroneous declarations), and knowing that exact values
can be reconstructed could indeed prevent such opportunistic behaviors.

Data are generally organized into conceptual units called records (see
also [82]). In the case of a Census of Agriculture, data are typically consti-
tuted by farm codes, cultivation codes, size of cultivation areas and other
amounts, years, etc., so we restrict our attention to numerical data. Agri-
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culture is a rich source of large data mining problems, and a recent overview
on the use of data mining techniques in this field is in [74]. The above
Information Reconstruction tasks, in particular, can be performed by fol-
lowing different approaches, each of which having its own features. A main
approach is based on the use of rules, called edits, that each data record
must respect in order to be declared exact (see e.g. [7, 71]). Records not re-
specting such rules are declared erroneous. A seminal paper on the subject
is [47]. However, satisfactory rules accuracy and computational efficiency
often appear to be at odds. For this reason, rules are often converted into
mathematical expressions, e.g. inequalities (see also [12]), and finding within
a record the most probably erroneous fields or the most suitable values cor-
recting those fields become nontrivial optimization problems (see e.g. [52]
for an introduction to computational complexity). This allows to overcome
the computational limits of other techniques (see e.g. [8, 71, 94]) based on
the Fellegi Holt approach. Such a methodology has been adopted within the
data Editing and Imputation software system DIESIS [26, 27] and in other
works such as [41, 84].

In the described Census, each farm specifies the cultivation area used
for each cultivation and number of livestock for each type of animal, divided
in some cases also by year. Moreover, they specify total areas and total
numbers of livestock. However, those totals may be inconsistent with the
mentioned detailed information, and a classical problem is restoring data
consistency by correcting errors. These errors should be corrected by math-
ematically “guessing” the correct values, since it is clearly impossible to
contact again the farm or inspect it somehow. The main issue is doing this
on large datasets both efficiently and in order to obtain corrected data as
similar as possible to the exact (but unknown) data.

This Chapter presents an innovative procedure for solving this prob-
lem based on optimization. In particular, Section 3.2 describes possible
alternative models for the above problem and explains the development of
the proposed mixed integer linear programming model. Section 3.3 reports
computational results in the case of the Italian Census of Agriculture 2010
(“Censimento Generale dell’Agricoltura 2010”), both for plants cultivations
and for livestock. Clearly, the proposed model is not limited to the case
of an Agricultural Census, but can be used for any other problem sharing
the same characteristics, in particular the presence of balancing conditions.
Note that, to the best of our knowledge, no previous attempt to treat this
large-size Census problem with a discrete optimization approach was made,
and only ad hoc procedures, designed by experts after an analysis of the
specific available data, were used. This work has been published in [13].
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3.2 Formulating the MILP Model

Data obtained from each farm during the described Census contain detail
information about the cultivation area used by that farm for each cultivation
and the number of livestock for each type of animal. Those data may some-
times be erroneous or missing, due to a variety of reasons. In such cases,
errors should be automatically detected and corrected, i.e. the information
that was corrupted and lost should be “reconstructed” in order to be as
similar as possible to the unknown exact value. Moreover, each farm also
declares other information (called macrodata, information about totals): the
total cultivation area and the total number of livestock, and in some cases
those totals are also divided into subtotals by year of planting. Clearly,
balancing conditions must hold between all the above microdata and the
corresponding macrodata: each total (or year subtotal) must be equal to
the sum of those details concerning its parts. When such conditions do not
hold, data are inconsistent.

Records incurring in this problem are detected by checking the balancing
conditions, which are called balance edits. However, when a balance edit is
violated, the error could be either on the detail side or on the total side of
the equation. The less reliable information should now be changed in order
to restore consistency. It is generally assumed, in similar cases, that de-
tails constitute the less reliable information, since totals have already been
confirmed from other sources. This mathematical problem of adjusting the
entries (here the microdata) of a large matrix to satisfy prior consistency
requirements (here given by the macrodata) is called matrix balancing [87]
and occurs in several fields, such as economics, urban planning, statistics,
demography, etc. The problem is also related to the matrix rounding prob-
lem [5], consisting in rounding off the elements of a matrix consistently with
its row and column sums, often arising in economic statistics, and belongs
to the broad category of matrix scaling problems [6].

In some cases of matrix balancing problems the only aim is restoring
balancing without further objectives, and iterative scaling algorithms can
be used, e.g. the RAS algorithm [69]. In other cases, on the contrary, the
variations introduced for balancing the matrix should pursue an objective
that typically depends on the specific application. In the case of Census data,
the choice of the objective is a delicate issue for avoiding data distortions,
and makes this problem different from other types of balancing problems.
Errors in microdata could broadly be divided into systematic errors and
random errors [51]. Systematic errors are those caused by specific (and
often traceable) mechanisms, e.g. usage of a wrong unit of measurement,



60 CHAPTER 3. BALANCING PROBLEM IN AGRICULTURE

OCR error, etc., and are generally treated during a preliminary correction
phase [42]. Our central problem is therefore correcting microdata values
affected by random errors. In this case, changes from the available microdata
values should be minimized, according to specific distance criteria, since it
is generally deemed that this should produce data as similar as possible to
the unknown exact data (Fellegi-Holt paradigm [47, 71]). An optimization
approach is therefore required.

The models proposed for the above problem will be hereinafter explained
by referring to the specific case of vineyards. This is one of the most im-
portant cases: dozens of grapes varieties exist, and they determine type
and quality of wines produced. The case has great economic relevance and,
due to its large dimension, is also computationally demanding. Moreover,
those data are used when allocating European financial resources and when
reorganizing wine production. However, the proposed models are clearly
not limited to that case, but can be used for any other similar problem.
Each farm could have several vine types, and each of them could have been
planted in a different time period (e.g. a specific year). Denote by

I = {1,. . . , n} the set of indices of all possible vine types; with n = 442;

K = {1,. . . , m} the set of indices of all possible time periods; with
m = 6.

For each farm, denote by

aik (real valued≥ 0) the area of vine type i planted in period k declared
by the farm, with i ∈ I and k ∈ K;

ai0 (real valued ≥ 0) the total area of vine type i (planted during any
of the periods) declared by the farm, with i ∈ I;

Tk (real valued ≥ 0) the total vine area planted in period k declared
by the farm, with k ∈ K;

T (real valued ≥ 0) the total vine area owned by the farm.

In order to reconstruct the erroneous information, we need the following set
of decision variables:

xik (real valued ≥ 0, ≤ S) = the area of vine type i that, according
to our reconstruction, has been planted in period k by the farm, with
i ∈ I and k ∈ K;
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xi0 (real valued ≥ 0, ≤ mS) = the total area of vine type i that,
according to our recon-struction, has been planted (during any of the
periods) by the farm, with i ∈ I.

In other words, xik is the correct value for aik. When reconstructing in-
formation for a Census, as in the case of other large-scaled surveys, it is
generally assumed that the changes introduced in the data should be some-
how minimized. This because, in absence of further information, being as
similar as possible to the exact (unknown) data corresponds to being as
similar as possible to the available (even if possibly erroneous) data. By
following this minimum change paradigm, two basic alternatives exist: one
is minimizing the number of changes, the other minimizing the amount of
those changes.

If we need to distinguish when our reconstruction provides a result which
is different form the available declaration (i.e. a change), we need the fol-
lowing set of binary variables:

yik =

{
1 if xik is different from xik ∀i = 1, . . . , n ∀k = 0, . . . ,m
0 otherwise

The presence of binary variables clearly has its impact on the complexity of
the model: by adding the other constraints needed for this problem, which
are linear, we obtain an integer linear program. Minimizing the total number
of changes corresponds to the following objective function

min

n∑
i=1

m∑
j=1

yij (3.1)

When variables y are used, they should be linked to the x variables by
constraints imposing that yik takes value 1 when xik <> aik (using a certain
numerical precision), otherwise those variables could be inconsistent. There
is no need for constraints imposing yik = 0 when xik = aik because the
objective (3.1) itself would do that. Value M is a real number greater than
all possible values of the left-hand side of the following inequalities.

aik − xik ≤Myik ∀i = 1, . . . , n ∀k = 0, . . . ,m (3.2)

xik − aik ≤Myik ∀i = 1, . . . , n ∀k = 0, . . . ,m (3.3)

When, on the other hand, we are interested in measuring the difference
between our reconstruction xik and the available declaration aik, we should
consider a generic norm of this difference:
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‖ aik − xik ‖p (3.4)

Several norm types and norm-induced functions exist [10]. We consider
more suitable to our reconstruction problems the following three:

• The squared Euclidean norm, defined as (‖ u − v ‖2)2 =
∑q

h=1(uh −
vh)2;

• the so-called Manhattan norm, defined as ‖ u− v ‖1=
∑q

h=1 |uh− vh|;

• the so-called Chebyshev norm, defined as ‖ u−v ‖∞= maxh{|uh−vh|}.

Clearly, the structure of the optimization model that we must solve depends
now on this choice. In the first case (squared Euclidean norm), minimizing
the total amount of the changes corresponds now to the following objective
function, containing quadratic terms.

min
n∑
i=1

m∑
k=0

(aik − xik)2 = min
n∑
i=1

m∑
k=0

(a2ik − 2aikxik + x2ik) (3.5)

However, all of them are simply squared variables (xik)
2, so they are strictly

convex, and a conic combination of those strictly convex terms produces a
separable strictly convex function [17]. By adding to that the linear terms
of (3.5) and the constraints needed for this problem (described later), which
are linear, the problem remains efficiently solvable (see e.g. [15, 64]).

In the second case (Manhattan norm), there are absolute values in the
objective. However, they can be easily linearized by introducing additional
variables:

sik (real valued ≥ 0) = the value of |aik−xik|, ∀i = 1, . . . , n ∀k = 0, . . . ,m

and linear constraints enforcing their meaning

sik ≥ aik − xik, sik ≥ xik − aik ∀i = 1, . . . , n ∀k = 0, . . . ,m (3.6)

We can now minimize the linear function
∑n

i=1

∑m
k=0 sik. When adding the

other constraints needed for this problem, which are linear, the problem
becomes an easily solvable linear program.

In the third case (Chebyshev norm), we have a min-max objective in the
problem that again can be easily linearized by introducing one additional
variable

t(real valued ≥ 0) = value of maxik{|aik−xik|}, ∀i = 1, . . . , n ∀k = 0, . . . ,m
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and linear constraints enforcing the above meaning

t ≥ aik − xik, t ≥ xik − aik ∀i = 1, . . . , n ∀k = 0, . . . ,m (3.7)

We now simply minimize t. When adding the other constraints needed for
this problem, which are linear, the problem becomes again an easily solvable
linear program.

Clearly, also a combination of the above alternatives can be considered.
The characteristics of the specific real problem will determine, from case to
case, the choice of the objective among the described ones or their possible
combinations. In our case, we consider more representative of the real prob-
lem’s aim the minimization of the total number of changes, and, in second
place, the minimization of the amount of those changes. This because a
change with respect to a value that has been deliberately declared has in-
trinsically a very high cost. Therefore, we prefer maintaining the maximum
number of those declared values, even if this may result in a greater amount
of the changes that we are forced to introduce. The objective function be-
comes:

min (M ′
n∑
i=1

m∑
k=0

yik +
n∑
i=1

m∑
k=0

sik) (3.8)

where the first sums are multiplied by a numerical value M ′ weighting the
relative importance of the first part with respect to the second one. We
chose M ′ = S, so that a single change weights as much as the maximum
amount of a change. We now describe the balancing conditions that should
be respected in our case. The sum of vine areas of any type planted in
period k must be equal to the total vine area planted in period k (called
balancing over vine types)

n∑
i=1

xik = Tk ∀k ∈ K (3.9)

The sum of the areas of vine type i planted in periods from 1 to m must be
equal to the area of the same vine type planted along all the periods (called
balancing over time periods)

xi0 =
m∑
k=1

xik ∀i ∈ I (3.10)

The sum of vine areas of any type planted in any period must be equal to
the total vine area owned by the farm (called overall balancing)

n∑
i=1

m∑
k=1

xik = T (3.11)
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Clearly, any other type of balancing condition could be expressed as other
linear constraints. Note that the structure of balancing constraints (3.9)
and (3.10) could be considered as defining a transportation problem (see
e.g. [10, 89]) with a set of origins I and a set of destinations K, values ai0
being the supply at origin i, values Tk being the demand at destination k,
variables xik being the amount to be shipped from source i to destination
k. However, the values ai0 are in our case declared values that we may
change (using the xi0 variables), and moreover there is no guarantee that the
following condition, essential for the feasibility of a transportation problem,
is respected:

n∑
i=1

ai0 =

m∑
k=1

Tk (3.12)

The complete mixed integer linear programming model is therefore the fol-
lowing:

min(M ′
n∑
i=1

m∑
k=0

yik +
n∑
i=1

m∑
k=0

sik)

n∑
i=1

xik = Tk ∀k ∈ K

xi0 =
m∑
k=1

xik ∀i ∈ I

n∑
i=1

m∑
k=1

xik = T

aik − xik ≤Myik ∀i = 1, . . . , n ∀k = 0, . . . ,m
xik − aik ≤Myik ∀i = 1, . . . , n ∀k = 0, . . . ,m
sik ≥ aik − xik ∀i = 1, . . . , n ∀k = 0, . . . ,m
sik ≥ xik − aik ∀i = 1, . . . , n ∀k = 0, . . . ,m
0 ≤ xik ≤ S ∀i ∈ I ∀k ∈ K
0 ≤ xi0 ≤ mS ∀i ∈ I
sik ≥ 0 ∀i = 1, . . . , n ∀k = 0, . . . ,m
xik, sik ∈ IR ∀i = 1, . . . , n ∀k = 0, . . . ,m
yik ∈ {0, 1} ∀i = 1, . . . , n ∀k = 0, . . . ,m

(3.13)

3.3 Computational Analysis

By sequentially solving the above model for each farm, we perform the
requested Information Reconstruction process. This procedure was imple-
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mented in C++, using ILOG Concert Technology [66] in order to express
the described optimization models. The models themselves are solved by
means of the state-of-the-art branch-and-cut (see e.g. [10, 76]) procedure
implemented by the solver ILOG Cplex [65], running on a 16 cores server
having 128Gb of RAM and Linux Operating System. An analysis of the
behavior of open source solvers was published in [11]. The resulting soft-
ware system has been applied for the treatment of data from the Italian
Census of Agriculture 2010 (“Censimento Generale dell’Agricoltura 2010”),
with specific respect to the cases of:

1. Vineyards suitable for “controlled origin” wine, considered in
Table 3.1;

2. Vineyards not suitable for “controlled origin” wine, considered in
Table 3.2;

3. Generic cultivations, considered in Table 3.3;

4. Livestock, considered in Table 3.4.

Note that, in the last two cases, microdata are not subdivided by year of
planting but by geographical area. In the above four cases, we report results
for each Italian region and for all Italy (1st column); the total number of
farms not respecting the balancing conditions (2nd column); the total number
of records involved in those unsatisfied balancing conditions (3rd column);
the total number of changes operated by the reconstruction process (4th

column).

Moreover, we analyze in greater detail those changes: we report the percent-
ages of area (or heads) modified by the procedure, computed with respect
to the total area involved in that case (or to the total number of animals).
Such modifications can be done by adding (5th column) and/or by subtract-
ing (6th column), and note that those quantities are not bounded to be
equal, since errors are not so. Finally, we report the total processing time
in seconds (7th column).

The practical behavior of the proposed procedure should now be evalu-
ated both from the computational and from the data quality points of view.
As observable, the procedure is very fast: each single model is solved to
optimality in extremely short times (generally about 0.02 sec.) so that the
processing of all the Italian farms requires, for the 4 cases together, only
about 50 minutes.

The quality of the obtained data has been evaluated by considering: (i)
the ability to restore balancing; and (ii) the variation produced in the data



66 CHAPTER 3. BALANCING PROBLEM IN AGRICULTURE

Added Subtracted
Region Farms Records Changes Area Area Time

Piemonte 696 2055 1866 0.15% -1.70% 23.5
Valle d’Aosta 22 55 46 0.00% -0.00% 0.6
Lombardia 468 1488 1423 0.16% -0.75% 17.0
Veneto 3817 6916 5602 4.23% -0.96% 79.2
Friuli-Venezia Giulia 286 1528 945 0.13% -0.38% 17.5
Liguria 124 257 493 0.01% -0.04% 2.9
Emilia-Romagna 336 940 640 0.07% -0.74% 10.8
Toscana 3392 6099 4332 3.20% -1.01% 69.8
Umbria 73 248 173 0.05% -0.13% 2.8
Marche 1359 2243 1541 0.79% -0.21% 25.7
Lazio 432 925 1455 0.13% -0.55% 10.6
Abruzzo 197 324 300 0.04% -0.36% 3.7
Molise 407 479 428 0.12% -0.01% 5.5
Campania 420 953 1212 0.13% -0.41% 10.9
Puglia 6954 7895 8016 3.04% -0.72% 90.4
Basilicata 61 78 104 0.02% -0.06% 0.9
Calabria 168 223 369 0.04% -0.12% 2.6
Sicilia 620 973 1764 0.43% -0.94% 11.1
Sardegna 221 394 668 0.05% -0.45% 4.5
Bolzano 125 446 241 0.01% -0.35% 5.1
Trento 268 899 482 0.04% -0.34% 10.3
Italy total 20346 35418 32100 12.85% -10.21% 405.5

Table 3.1: Vineyards suitable for controlled origin wine.

by the reconstruction process.

As for the first aspect, data obtained by the procedure were able to
satisfy the balancing conditions in the totality of the cases (100%). As for
the second aspect, a positive feature for a general information reconstruction
procedure is satisfying requirements while not changing the data exceedingly.
In the analyzed cases, in addition to the theoretical guarantee that the
number of changes is minimal, we observe that the amount of the variations
is always a small percentage. This means that the procedure was able to
reconstruct information without distorting the data.

The accuracy of the reconstructed information has been further evalu-
ated by setting up a specific experiment. A large dataset of 274,687 records
representing all vineyards obtained from about 126,000 farms, all exact,
were perturbed by introducing random errors with uniform distribution at
3 different intensities, so that respectively about 1%, 5% and 10% of the
microdata values have been changed. This was performed 20 times, in or-
der to obtain statistically significant results, so 60 different large erroneous
datasets were obtained. After this, the reconstruction procedure was applied
on all of them, and the 60 obtained (corrected) datasets were compared to
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Added Subtracted
Region Farms Records Changes Area Area Time

Piemonte 528 866 1961 0.05% -0.28% 9.9
Valle d’Aosta 168 254 173 0.01% -0.01% 2.9
Lombardia 2312 3761 3172 0.38% -0.25% 43.1
Veneto 1346 3811 2593 0.33% -1.05% 43.7
Friuli-Venezia Giulia 1489 2931 2223 0.19% -0.19% 33.6
Liguria 868 1465 1321 0.06% -0.04% 16.8
Emilia-Romagna 436 918 814 0.10% -0.62% 10.5
Toscana 4558 11481 6747 0.83% -4.88% 131.6
Umbria 2200 4924 2466 0.18% -0.17% 56.4
Marche 3005 5850 3472 0.33% -0.09% 67.0
Lazio 4333 7363 7768 0.43% -0.80% 84.4
Abruzzo 5392 10664 5673 0.71% -0.94% 122.2
Molise 1732 3392 1841 0.24% -0.05% 38.9
Campania 10904 18092 13728 0.92% -0.67% 207.3
Puglia 10897 15251 13383 2.86% -1.48% 174.8
Basilicata 370 486 659 0.04% -0.15% 5.6
Calabria 2455 3391 4513 0.41% -0.89% 38.9
Sicilia 4224 7497 9630 2.00% -3.54% 85.9
Sardegna 642 1385 2528 0.07% -0.72% 15.9
Bolzano 11 21 19 0.00% -0.01% 0.2
Trento 1936 2400 1977 0.13% -0.05% 27.5
Italy total 59806 106203 86661 10.25% -16.87% 1217.0

Table 3.2: Vineyards not suitable for controlled origin wine.

the original exact one.

Statistical indicators commonly used for measuring the differences be-
tween real and predicted values, such as Relative Root Mean Square Error
(RRMSE), are practically 0 (< 10−5) for all the corrected datasets. This
means that the quality of the reconstruction is satisfactory. However, in
order to obtain more insight, we analyzed the reconstruction with an even
greater detail: we compared each single reconstructed value to its original
value, and checked whether it was exactly identical or not. Note that such
test is extremely strict, probably beyond the requirements of a similar recon-
struction process. The results are presented in Table (3.5). The percentage
of reconstructed values that are exactly equal to the original values has been
computed by subdividing the datasets on the basis of the number of errors
actually introduced in each farm. Clearly, those percentages lower when the
number of errors introduced in the farm increases, but accuracy is anyway
extremely high. Even when the farm data contain a considerable number of
errors (from 4 to 10, that is often more than what happens in usual prac-
tice), the reconstructed values are exactly equal to the original ones in a
very high percentage of the cases.
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Added Subtracted
Region Farms Records Changes Area Area Time

Piemonte 624 1682 1191 0.037% -0.016% 19.2
Valle d’Aosta 84 221 157 0.000% 0.000% 2.5
Lombardia 1436 3784 2162 0.030% -0.069% 43.3
Veneto 5715 13604 11033 0.383% -0.670% 155.8
Friuli-Venezia Giulia 734 1955 1123 0.010% -0.002% 22.4
Liguria 264 645 458 0.001% 0.000% 7.3
Emilia-Romagna 252 742 976 0.168% -0.042% 8.5
Toscana 3006 6571 6274 0.486% -0.319% 75.2
Umbria 513 1160 931 0.007% -0.003% 13.2
Marche 2210 5347 4615 0.229% -0.088% 61.2
Lazio 912 2023 1553 0.009% -0.002% 23.1
Abruzzo 1960 4540 2650 0.038% -0.103% 52.0
Molise 2006 4649 3817 0.047% -0.035% 53.2
Campania 2854 6538 4403 0.015% -0.003% 74.9
Puglia 18205 41924 34881 0.561% -0.527% 480.3
Basilicata 433 996 710 0.011% -0.005% 11.4
Calabria 506 1166 851 0.007% -0.008% 13.3
Sicilia 1117 2546 1772 0.035% -0.002% 29.1
Sardegna 223 512 407 0.006% -0.004% 5.8
Bolzano 23 96 83 0.012% -0.037% 1.1
Trento 889 2280 1344 0.005% -0.003% 26.1
Italy total 43966 102981 81391 2.098% -1.938% 1180.0

Table 3.3: Other cultivations.

Added Subtracted
Region Farms Records Changes Area Area Time

Piemonte 704 947 719 0.317% -0.107% 9.7
Valle d’Aosta 38 51 38 0.000% 0.000% 0.5
Lombardia 528 784 574 0.390% -0.130% 8.0
Veneto 3797 4449 4489 7.348% -2.763% 45.4
Friuli-Venezia Giulia 164 210 169 0.017% -0.285% 2.1
Liguria 71 92 71 0.000% 0.000% 0.9
Emilia-Romagna 333 593 500 5.585% -8.403% 6.1
Toscana 1554 1878 1973 0.265% -0.037% 19.2
Umbria 124 160 124 0.000% -0.554% 1.6
Marche 1171 1488 1592 0.823% -0.428% 15.2
Lazio 302 380 305 0.000% 0.000% 3.9
Abruzzo 215 286 217 1.634% 0.000% 2.9
Molise 1003 1303 1281 0.437% -0.477% 13.3
Campania 387 471 394 0.001% 0.000% 4.8
Puglia 3734 4144 4556 0.595% -0.570% 42.3
Basilicata 123 173 126 0.001% 0.000% 1.8
Calabria 266 320 270 0.000% 0.000% 3.3
Sicilia 338 441 340 0.000% 0.000% 4.5
Sardegna 276 489 281 0.004% 0.000% 5.0
Bolzano 127 181 127 0.000% 0.000% 1.8
Trento 97 111 97 0.000% 0.000% 1.1
Italy total 15352 18951 18243 17.418% -13.754% 193.5

Table 3.4: Livestock.
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Percentage of Exactly Reconstructed Values

Errors per Farms Pertubation at 1% Pertubation at 5% Pertubation at 10%

1 99.9% 99.9% 99.9%

2 98.1% 98.2% 98.2%

3 86.0% 86.6% 83.4%

4÷10 81.8% 56.3% 49.1%

Table 3.5: Accuracy of the reconstruction process.

3.4 Summary and Remarks

Information Reconstruction is a crucial task in the case of large surveys,
such as a Census of Agriculture, as well as for other applications of database
processing. A typical problem arising in the described Census consists in
checking, and correcting when needed, the areas declared by each farm for
each cultivation. This type of balancing problem is extremely important
and has a great economical relevance. Moreover, in contexts different from
the Census, the possibility of reconstructing exact values could be useful for
counteracting opportunistic behaviors, e.g. willingly erroneous declarations
for influencing resources allocation or production plans.

Similar problems could be formulated in different manners. This par-
ticular Census problem has very specific aims and requirements, and it was
deemed that they were better represented by the proposed mixed integer
linear model (3.13). This problem has not been previously solved by using
discrete optimization or some other model similar to the one proposed in
this Chapter. Before the development of this approach, data were exam-
ined by statistical experts and the changes that appeared necessary were
introduced, generally in a deterministic way and often interactively.

The procedure has been applied in the case of the Italian Census of Agri-
culture 2010 with specific respect to the 4 most important cases. Clearly,
the proposed class of models is not limited to the case of an Agricultural
Census, but can be used for other problems sharing the same characteristics,
in particular the presence of balance requirements and minimum change ob-
jective. Results are very encouraging both form the computational and from
the data quality point of view. The sequence of arisen mixed integer prob-
lems can be solved to optimality by using a state-of-the-art implementation
of branch-and-cut procedures. Each single model is solved in extremely short
times. In the totality of the cases the reconstructed information was able to
satisfy the balancing conditions without excessively distorting the data, as
resulted from the analysis of the variations introduced in the whole datasets.
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Moreover, a specific experiment proves that the reconstructed information
was exactly equal to the original uncorrupted one in an exceedingly high
percentage of the cases.



Chapter 4

Reconstruction of
Cultivation Data in
Agriculture

4.1 Reconstruction of Cultivation Data

Data collected in a Census of Agriculture, as in any other large-scale survey,
may contain errors or missing values, and their automatic detection and cor-
rection are crucial tasks. This kind of activity is generally called Information
Reconstruction, or also Data Cleaning, within the field of Data Mining [61],
or Data Editing and Imputation within the field of Statistics [41, 94].

Several approaches to these problems have been developed, dating back
to the work of Fellegi-Holt [47]. An approach to verify the accuracy of these
informations and to restore data consistency is based on the use of rules
(edits), that each data record must respect in order to be declared exact
[7, 26]. Rules can be converted into linear inequalities, and the problem of
finding within a record the most probably erroneous fields or the most suit-
able values correcting those fields can be modeled as nontrivial optimization
problems. This approach allows to overcome the computational limits of
the Fellegi Holt methodology and it has been implemented within the data
Editing and Imputation software system DIESIS [26, 27].

Agricultural Census data typically are numerical values, such as farm
codes, cultivation codes, size of cultivation areas, etc. Similar data are gen-
erally organized into very large numerical records. In the described Census,
each farm specifies the cultivation area used for each cultivation. A clas-
sical problem is verifying the accuracy of this information. In the event
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that farm declarations are considered unreliable, it’s necessary to assign the
correct cultivations to the area for which it’s not known. Errors should be
detected and corrected, by mathematically “guessing” the correct values,
since it is clearly impossible to contact again the farm or inspect somehow
the cultivations.

Farms can extend on one or more districts, and the area owned by each
farm in each district is known. Therefore, the compatibility of each culti-
vation with each district can also be evaluated (some cultivation can grow
only on specific types of soils, or need specific climatic conditions, latitude,
altitude, etc.). In the specific case of vineyards, considered in this Chapter,
there may be cultivation areas with missing or erroneous vineyard codes.
For these areas, it is required to assign a code, according to a set of consis-
tency constraints, taking also into account the compatibility between each
district and the type of vineyard. Theoretically, the elements for solving the
above problem are available, but the problem is doing this on large datasets
both efficiently and in an unbiased manner.

This Chapter presents an innovative automatic procedure for solving this
problem based on a discrete mathematical optimization model. In partic-
ular, Section 4.2 describes problem details and the proposed mixed integer
linear programming model [10, 76], explaining its features. Section 4.3 re-
ports computational results in the case of the Italian Census of Agriculture
2010, with specific respect to the case of vineyards. This is probably the
most important case for the considered problem, since dozens of vine vari-
eties exist, and they determine the type and the quality of wines produced.
Relevant economic aspects are therefore involved, and vine cultivation and
use are also regulated by legislation. Clearly, the proposed model is not
limited to the case of a Census of Agriculture, but can be used for any other
problem sharing the same characteristics. This work has been published in
[14].

4.2 A Discrete Mathematical Model

Data obtained from each farm during the described Census contain infor-
mation about the area used by that farm for each cultivation. Those data
may sometimes be erroneous or missing, due to a variety of reasons. In
such cases, errors should be automatically detected and corrected, i.e. the
information that was corrupted and lost should be “reconstructed” in order
to be as similar as possible to the (unknown) exact value.
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Farms are located over the state territory. This territory is subdivided
into many districts. Each farm can extend on one or more district. Denote
by

I = {1,. . . , n} the set of all possible cultivations;

J = {1,. . . , m} the set of all possible districts.

Focusing on a single farm, and denoting by f its total area, all the cultiva-
tions declared by that farm are checked. Some of them verify a set of rules
and conditions prepared for this aim and are therefore considered reliable,
while some other do not. This may happen either because some of the dec-
larations appear erroneous, or because there is a discordance between the
total area declared and the sum of the areas declared for each cultivation.
Denote by a the total farm area reliably assigned, i.e. the area for which
the farm declaration are considered reliable. On the contrary, by grouping
all the unreliable declarations, a nonempty area often remains for which the
cultivation is not known. That area will be called unassigned area and de-
noted by u. Clearly, f = a + u. The central problem of our Information
Reconstruction process consist now in assigning the cultivations to the men-
tioned unassigned area. In this Section a discrete mathematical model for
this problem is proposed. For each farm, denote by

si (real value ≥ 0) the total area that the farm uses for cultivation i,
with i ∈ I. Note that this area may span on one or more districts, and
the farm does not declare, nor generally even consider, such subdivi-
sion. These values are only the ones, among all the cultivation data
declared by farms, that can be considered reliable, so

∑
i(si) = a.

dj (real value ≥ 0) the total area owned by the farm in district j, with
j ∈ J . These values are not surveyed during the considered Census
but are already available and are reliable.

pij (real value ∈ [0, 1]) the likelihood of having cultivation i in district
j, with i ∈ I and j ∈ J . Values near to 1 means high likelihood,
near to 0 means very low likelihood. This values are estimated on the
basis of agricultural registrations and studies, not surveyed during the
considered Census.

Moreover, there are areas where specific cultivations may be used to produce
foods having “controlled origin” (in Italian DOC). In particular, for the
unassigned area u, it is possible to partition it into a portion that is suitable
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for “controlled origin” and a portion that is not suitable for that. Denote
by

C (reale value ≥ 0) the total unassigned area owned by the farm in
cultivations suitable for “controlled origin”;

N (real value ≥ 0) the total unassigned area owned by the farm in
cultivations not suitable for“controlled origin”, so that C +N = u.

Those areas C and N should be assigned in order to maximize the likelihood
of the assignment. Note that it is not known which district the unassigned
area u is located into. On the other hand, the likelihood values depend on
the districts. As a consequence, we need to locate the unassigned area u
on the districts. This is apparently hard to obtain. A way of doing so is
locating on the districts each of the reliable cultivation areas si, and then
obtaining the location of u as the portion of farm area f not covered by a.
In order to model the described problem, we need to introduce the following
sets of decision variables:

xij (real value ≥ 0) the area of cultivation i that, according to our
reconstruction, is localized in district j, with i ∈ I and j ∈ J ;

vij (real value ≥ 0) the portion of C that, according to our reconstruc-
tion, is used for cultivation i and localized in district j, with i ∈ I and
j ∈ J ;

wij (real value ≥ 0) the portion of N that, according to our recon-
struction, is used for cultivation i and localized in district j, with i ∈ I
and j ∈ J .

Moreover, each of the farm unassigned areas C and N generally contains
only a specific cultivation, and not a mixture of different cultivations. We
therefore want to assign all C to one single type of cultivation, and not to
fragment it among all the cultivations compatible with that area. A similar
requirement holds for N . This requires the use of additional binary decision
variables

yi =

{
1 if C is assigned in our reconstruction to cultivation i ,with i ∈ I
0 otherwise

zi =

{
1 if N is assigned in our reconstruction to cultivation i ,with i ∈ I
0 otherwise
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Now it’s possible to formulate a mixed integer linear programming model
for each farm. Cultivation assignment to areas should be done in order to
maximize the likelihood. Our objective function is therefore

max
∑
∀i,j

pijxij +
∑
∀i,j

pijvij +
∑
∀i,j

pijwij (4.1)

This assignment should obviously verify a set of constraints. First of all, the
sum of the areas assigned to the different cultivations in each district j must
be equal to the area owned by the farm in district j:∑

∀i
xij +

∑
∀i

vij +
∑
∀i

wij = dj ∀j = 1, . . . ,m (4.2)

The sum of the areas used by the farm for cultivation i over all the districts
must be equal to the total area used by the farm for cultivation i:∑

∀j
xij = si ∀i = 1, . . . , n (4.3)

The sum of the portions of C assigned to all cultivations in all districts must
be equal to C. A similar condition must hold for N .∑

∀i,j
vij = C

∑
∀i,j

wij = N (4.4)

In order to connect the y variables to v, we need to impose that it is not
possible assigning a portion of C to cultivation i (regardless to the district)
when the corresponding variable yi is 0. A similar condition must hold for
to connect the z variables to w. Note that M is a constant value greater
than all possible left-hand-side values.

vij ≤Myi ∀i = 1, . . . , n ∀j = 1, . . . ,m (4.5)

wij ≤Mzi ∀i = 1, . . . , n ∀j = 1, . . . ,m (4.6)

The whole C must be assigned to only one cultivation. A similar condition
must hold for N . ∑

∀i
yi = 1

∑
∀i

zi = 1 (4.7)
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The above constraints have the effect of letting only one y (only one z) be
1, and so the previous constraints can only assigning C (respectively N) to
a unique cultivation.

Finally, an assignment for C or for N cannot be accepted when the likeli-
hood of that assignment, although being the greatest possible for the current
problem, is too low. In such a case, indeed, that assignment cannot be con-
sidered reliable. For this reason we introduce, in the following constraints,
two thresholds, denoted by SC and SN , respectively for the assignments
made on C and N .

∑
∀j

vij −
∑
∀j

pijvij − SC ≤M(1− yi) ∀i = 1, . . . , n (4.8)

∑
∀j

wij −
∑
∀j

pijwij − SN ≤M(1− zi) ∀i = 1, . . . , n (4.9)

In the constraints (4.8), the assignment of C can be possible if the likelihood
of assigning C to cultivation i is good (= near to 1) for the different districts
where C have been located, that means yi can assume value 1. On the other
hand, when that likelihood is not good (= near to 0), that assignment is
not allowed, that means yi must be forced to value 0. Note that, if no
assignment has a sufficient likelihood, those constraints cannot be satisfied
and the model correctly becomes infeasible.

The above is obtained because, for assignments having good likelihood, the
value of

∑
∀j pijvij is only a bit smaller than the value of

∑
∀j vij, and by

subtracting SC the left-hand-side of the inequality (4.8) becomes smaller
than or equal to 0, leaving yi free.

When on the contrary the likelihood is not good, the value of
∑
∀j pijvij

is much smaller than the value of
∑
∀j vij, and even subtracting SC (whose

reasonable value is therefore just a fraction of
∑
∀j vij, for instance one half)

the left-hand-side of the inequality (4.8) becomes positive. As a consequence,
M(1− yi) must have a strictly positive value, and so yi must have value 0.

In the constraints (4.9) the logic of the assignment of N is the same as that
previously described for C in the the constraints (4.9).

On the whole, the complete mixed integer linear programming model for
assigning the unassigned area of a single farm is the following:
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max
∑
∀i,j

pijxij +
∑
∀i,j

pijvij +
∑
∀i,j

pijwij

∑
∀i

xij +
∑
∀i

vij +
∑
∀i

wij = dj ∀j = 1, . . . ,m∑
∀j

xij = si ∀i = 1, . . . , n∑
∀i,j

vij = C
∑
∀i,j

wij = N

vij ≤Myi ∀i = 1, . . . , n ∀j = 1, . . . ,m
wij ≤Mzi ∀i = 1, . . . , n ∀j = 1, . . . ,m∑
∀i

yi = 1
∑
∀i

zi = 1∑
∀j

vij −
∑
∀j

pijvij − SC ≤M(1− yi) ∀i = 1, . . . , n∑
∀j

wij −
∑
∀j

pijwij − SN ≤M(1− zi) ∀i = 1, . . . , n

xij ≥ 0 ∀i = 1, . . . , n ∀j = 1, . . . ,m
vij ≥ 0 ∀i = 1, . . . , n ∀j = 1, . . . ,m
wij ≥ 0 ∀i = 1, . . . , n ∀j = 1, . . . ,m
xij ∈ IR ∀i = 1, . . . , n ∀j = 1, . . . ,m
vij ∈ IR ∀i = 1, . . . , n ∀j = 1, . . . ,m
wij ∈ IR ∀i = 1, . . . , n ∀j = 1, . . . ,m
yi ∈ {0, 1} ∀i = 1, . . . , n
zi ∈ {0, 1} ∀i = 1, . . . , n

(4.10)

4.3 Computational Results

The requested Information Reconstruction process has been performed by
solving the above model for each farm sequentially. This procedure was
implemented in C++, using ILOG Concert Technology [66] in order to ex-
press the described optimization models. The models themselves are solved
by means of the state-of-the-art branch-and-cut [10, 76] procedure imple-
mented by the solver ILOG Cplex [65], running on a 16 cores server having
128Gb of RAM and Linux Operating System. The resulting software system
has been applied for the treatment of data from the Italian Census of Agri-
culture 2010, with specific respect to the case of vineyards. This is probably
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the most important case for the considered problem, since dozens of vine
varieties exist, and they determine the type and the quality of wines pro-
duced. The case has therefore great economic relevance and, due to its large
dimension, is also computationally demanding. Moreover, the total area
that a region uses for each vine type determines the European Community
funding obtained for that region. Note that, to the best of our knowledge,
no previous attempt to treat this problem with a discrete optimization ap-
proach was practically successful. Clearly, the proposed model is not limited
to the case of vineyards, but can be used for any other problem sharing the
same characteristics.

The practical behavior of the proposed procedure has been evaluated
both from the computational and from the data quality points of view, as
follows. One large dataset including all farms producing vine from all Italian
regions has been assembled. This dataset included 388,487 farms, and the
total number of vineyard areas declared was 804,930, corresponding to a
total area of 625,700 ha (hectares, 1 hectare being 10,000m2). Each vineyard
declaration constitutes a record, so the dataset is considerably large. After
this, the cultivation declarations where checked by means of rules, and an
unassigned area resulted for 18,263 farms. The total unassigned area was
34,783 ha, with 30,226 ha suitable for “controlled origin” and 4,557 ha not
suitable for “controlled origin”. As remarked in Section 4.1, thresholds
were assigned in order to reject low likelihood cultivation assignments, in
particular SC = 1/2

∑
∀j vij and SN = 1/2

∑
∀j wij. In order to evaluate

the computational behavior, Table 4.1 reports regional detail, that are: the
total unassigned area for each region, and the corresponding computational
times for processing the whole region. As observable, the procedure is very
fast, and the processing of all the Italian farms having an unassigned area
requires only about 17 minutes.

The quality of the reconstructed information has been evaluated by con-
sidering: (i) the ability to assign the unassigned area; and (ii) the variation
produced in the data by the reconstruction process. As for the first aspect,
the procedure was able to assign the unassigned area with likelihood val-
ues high enough to satisfy the thresholds SC and SN in the totality of the
cases (100%). As for the second aspect, Table 4.2 reports an analysis of the
percentages of the two big groups of vine cultivations (red and white) on
the initial data, i.e. before applying the described reconstruction process,
and on the final data, i.e. after the reconstruction process, followed by the
computation of the variation introduced by this process. Note that, in the
general case of the correction of a survey, a small variation of the frequency
distributions of the data means that the reconstruction procedure was able
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Region Total unassigned area (ha) Times (sec.)

Piemonte 42.89 0.82
Valle d’Aosta 10.08 1.98
Lombardia 271.19 34.61
Veneto 12510.09 165.75
Friuli-Venezia Giulia 87.94 13.95
Liguria 52.87 15.60
Emilia-Romagna 20.24 0.44
Toscana 8293.34 160.14
Umbria 100.75 14.50
Marche 2517.57 65.76
Lazio 263.03 38.02
Abruzzo 259.62 34.39
Molise 397.68 22.80
Campania 511.53 86.31
Puglia 8939.25 303.37
Basilicata 13.09 0.66
Calabria 331.33 24.45
Sicilia 49.41 1.15
Sardegna 8.35 0.49
Bolzano 0.88 0.05
Trento 101.47 22.74
Italy total 34782.60 1008.00

Table 4.1: Total correction times for each region and for all Italy

to reconstruct information without distorting the data, so it is a positive
feature. In this case, as observable from the Table, the variation value has
been very small, so the quality of the reconstructed information is extremely
satisfactory. Moreover, in the same Table the described percentages com-
puted only over the farms not having unassigned areas (“Exact only”) is
reported. Those percentages are again very similar to the percentages after
reconstruction, confirming the high quality of the reconstructed information.

4.4 Summary and Remarks

A typical problem arising in an Agricultural Census is assigning the cor-
rect cultivations to the area for which the farm declarations are considered
unreliable. This assignment should take into account the compatibility be-
tween each district and the type of cultivation. The problem is extremely
important due to its economical and normative aspects, and is also com-
putationally demanding due to its large dimension. This Chapter presents
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Before Reconstruction After Reconstruction Variation Exact only

White 43.55% 42.84% -0.71% 43.95%
Red 56.45% 57.16% +0.71% 56.05%

Table 4.2: Analysis of frequency distributions before and after the recon-
struction process

an automatic approach to this information reconstruction problem based on
the formulation of mixed integer linear programming models. The proposed
procedure has been applied in the specific case of vineyards of the Italian
Census of Agriculture 2010. In this important case there may be areas with
missing or erroneous vineyard codes. For these areas, it is required to as-
sign a code, according to a set of consistency constraints. Results are very
encouraging both form the computational and from the data quality point
of view. The sequence of arisen mixed integer programming problems can
be solved to optimality by using state-of-the-art implementation of branch-
and-cut procedures. Each single model is solved to optimality in extremely
short times (generally about 0.1 sec.). In the totality of the cases the re-
constructed information was able to satisfy the thresholds introduced to
reject low likelihood cultivation assignments. Moreover, the reconstruction
process did not distort data, as resulted from the analysis of the variations
introduced in the frequency distributions of the whole dataset. The method-
ology described in this Chapter can again be used to solve other problems
of different origin but having the same mathematical structure.



Chapter 5

A Formal Procedure for
Finding Contradictions into
a Set of Rules

5.1 The Problem of Contradictions Localization

In several fields of knowledge, many tasks are accomplished by using sets of
expressions called rules (see e.g. [47]). Rules are typically used do detect,
among a possibly large set of elements, the ones verifying some condition.
This happens for example in Data Mining, in Database Theory, in Statis-
tics, but also in less mathematical fields such as Normative or Regulation.
The condition may be of any nature, for instance ”being correct”, ”being
wrong”, ”being convenient”, ”respecting the laws”, ”being compliant with a
standard”, etc. The set of rules may have several origins: it could be auto-
matically generated, for instance learned by some dataset, or be written by
human experts, or also be the result of an updating or a merging of other
sets of rules. A major issue is the presence of contradictions into the set of
rules itself. This can frequently arise, in particular when the set of rules has
been assembled from different sources. Generally, the presence of contra-
dictions makes such a set not usable anymore. Each contradiction should
therefore be located and removed, either by deleting or by slightly changing
some of the rules. This is however a very difficult problem in general: a con-
tradiction can be quite hidden, or involve many rules, or there can be several
contradictions. Moreover, this difficulty rapidly increases with the size of
the set of rules [52]. See also [25, 28] for related work on inconsistencies
selection.
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This Chapter presents an automatic procedure for finding a contradic-
tion into a set of rules. The procedure can be iterated until all contradictions
are removed from a set. A main advantage of the proposed approach is that
this procedure works only at the formal level, so it can be performed with-
out the need of going into the semantic meaning of the rules under analysis
and can be applied to rules arising from any field. In particular, Section 5.2
explains how several kind of rules can be formally represented into linear
inequalities. After this, Section 5.3 presents a theoretical condition, based
on a variant of Farkas’ lemma (see e.g. [88]), used to detect a single con-
tradiction. All contradictions are detected by iterating this procedure, and
the structure of the set of all contradictions, together with the relationships
among themselves, are also studied. Finally, Section 5.4 gives a detailed
explanation of the operations performed by the proposed procedure on a
realistic set of rules. This work has been published in [12].

5.2 Encoding Rules into Linear Inequalities

In Database theory, a record schema is a set of fields fi, with i = 1 . . .m,
and a record instance is a set of values vi, one for each of the above fields. In
order to help exposition, we will focus on records representing persons. Note,
however, that the proposed procedure is not influenced by the meaning of
processed data. The record scheme will be denoted by P , whereas a generic
record instance corresponding to P will be denoted by p.

P = {f1, . . . , fm} p = {v1, . . . , vm}

Example 5.1. For records representing persons, fields are for instance age

or marital status, and corresponding examples of values are 18 or single.

Each field fi, with i = 1 . . .m, has its domain Di, which is the set of every
possible value for that field. A distinction is usually made between quantita-
tive, or numerical, fields, and qualitative, or categorical, fields. The proposed
approach is able to deal with both qualitative and quantitative values.

In several applications, records verifying some condition are selected by
using rules. As known in Section 1.4, each rule can be seen as a mathematical
function rk from the Cartesian product of all the domains to the Boolean
set {0,1}, as follows.

rk : D1 × · · · ×Dm → {0, 1}
p 7→ 0, 1
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We call logical rules the rules expressed only with logical conditions, math-
ematical rules the rules expressed only with mathematical conditions, and
logic-mathematical rules the rules expressed using both types of condition.
See [26] for further details on different kind of rules.

Values appearing in the rules are called breakpoints, or cut points, for the
domains. They represent the logical watershed between values of the domain,
and will be indicated with bji . Such breakpoints are used to split every

domain Di into ni subsets Sji representing values of the domain which are

equivalent from the rules’ point of view. We congruently have Di =
⋃ni
j=1 S

j
i .

Example 5.2. Suppose that, by scanning a given set of rules R, the follow-
ing breakpoints are obtained for the field age of a person.

b1age = 0, b2age = 14, b3age = 18, b4age = 26, b5age = 110, b6age = blank

and, by using the breakpoints and the rules to cut Dage, we have the nage = 5
subsets. The last subset is the out-of-range one.

Sage∈{0...13} = {0, . . . , 13}, Sage∈{14...17} = {14, . . . , 17},
Sage∈{18...25} = {18, . . . , 25}, Sage∈{26...110} = {26, . . . , 110},

Sage = out of range = {. . . ,−1} ∪ {111, . . . } ∪ {blank}

Now, the variables for the announced linear inequalities can be introduced:
a set of m real variables zi ∈ [0, U ], one for each domain Di, and a set of
n = n1 + · · ·+ nm binary variables xij ∈ {0, 1}, one for each subset Sij . We
represent each value vi of p with a real variable zi, by defining a mapping
ϕ between values of the domain and real numbers between 0 and an upper
value U . Note that, occasionally, it could be convenient to bound some
of the zi variables to be integer, as described in [26], with obvious specific
modifications in the rest of the procedure. However, in this description we
consider the general case of real z variables.

The membership of a value vi to the subset Sij is encoded by using the
binary variables xij .

xij =

{
1 when vi ∈ Sij
0 when vi 6∈ Sij

Binary and real variables are linked by using a set of linear inequalities
called bridge constraints. They impose that, when zi has a value such that
vi belongs to subset Sij , the corresponding xij is 1 and all others binary
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variables {xi1, . . . , xij−1, xij+1, . . . , xini} of field fi are 0. By using these
variables, all the above types of rule can be expressed. For further details
see [26, 27].

Example 5.3. Consider the following logical rule.

¬(marital status = married) ∨ ¬(age < 14)

By substituting the logical conditions, it becomes the linear inequality:

(1− xmarital status = married) + (1− xage∈{0...13}) ≥ 1

Consider, instead, the following logic-mathematical rule.

¬(marital status = married) ∨ (age− years married ≥ 14)

By substituting the logical and mathematical conditions, we have

(1− xmarital status = married) ∨ (zage − zyears married ≥ 14)

which becomes the following linear inequality

U(1− xmarital status = married) + zage − zyears married ≥ 14

Altogether, from the set of rules R, a set of linear inequalities is obtained.
Each record p determines an assignment of values for the introduced vari-
ables xij and zi. By denoting with x and z the vectors respectively made of
all the components xij and zi, i = 1 . . .m, j = 1 . . . ni, as follows,

x = (x11, . . . , x1n1 , . . . , xm1, . . . , xmnm)T z = (z1, . . . , zm)T

the set of rules R becomes a system of linear inequalities, expressed in com-
pact notation as follows.

B

[
x
z

]
≥ b

0 ≤ zi ≤ U i = 1 . . .m
x ∈ {0, 1}n
z ∈ IRm

(5.1)

Since x has n = n1 + ... + nm components and z has m components, and
letting l be the total number of inequalities, B is in general a l × (n + m)
real matrix, and b a real l-vector.
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5.3 Locating Contradictions by Means of Linear
Programming

A contradiction in the set of rules corresponds to an unsatisfiable set of
inequalities within the above described system of linear inequalities. Such
an unsatisfiable set is called Infeasible Subsystem (IS). When an IS is mini-
mal, i.e. becomes satisfiable by removing anyone of its inequalities, is called
Irreducible Infeasible Subsystem(IIS) [3, 35, 90]. In the case of systems of
linear inequalities having real variables, the problem has been approached
both by means of heuristics [34] and exact algorithms [55]. In the case of
systems of linear inequalities having integer variables (more computation-
ally demanding), the problem has been approached by means of additive or
subtractive heuristics [56]. This Chapter presents a procedure for solving
this problem based on a variant of well known Farkas’ lemma adapted from
the continuous to the discrete case.

Theorem 5.1. (Farkas’ lemma) Let A be an s × t real matrix and let a
be a real s-vector. Then there exists a real t-vector x ≥ 0 with Ax = a if
and only if yTa ≥ 0 for each real s-vector y with yTA ≥ 0.

Geometrically, this means that if an s-vector γ does not belong to the cone
generated by the s-vectors a1, . . . , at (columns of A), there exists a linear
hyperplane separating γ from a1, . . . , at. There are several equivalent forms
of Farkas’ lemma. The following variant is more suitable to our purposes.
Given a matrix A ∈ IRs×t and a vector a ∈ IRs, consider the system:{

Ax ≤ a
x ∈ IRt (5.2)

and the new system of linear inequalities obtained from the former one:
yTA = 0
yTa < 0
y ≥ 0
y ∈ IRs

(5.3)

We have that exactly one of the two following possibilities holds:

• (5.2) is feasible, i.e. there exists x ∈ IRt verifying all its inequalities.

• (5.3) is feasible, i.e. there exists y ∈ IRs verifying all its inequalities.
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An IIS can be selected within (5.2) by solving the following new system [55]:
yTA = 0
yTa ≤ −1
y ≥ 0
y ∈ IRs

(5.4)

The support of a vertex denotes the indices of its non-zero components; 0,
1 and U respectively denote vectors of zeros, ones and Us of appropriate
dimension.

Theorem 5.2. (Gleeson and Ryan) Consider two systems of linear in-
equalities respectively in form (5.2) and (5.4). If (5.4) is infeasible, (5.2)
is feasible. On the contrary, if (5.4) is feasible, (5.2) is infeasible, and,
moreover, each IIS of (5.2) is given by the support of each vertex of the
polyhedron (5.4).

The proof is based on polyhedral arguments using properties of extreme
rays, see [55]. Therefore, checking the feasibility of (5.2), and, if infeasible,
identifying one of its IIS, becomes the problem of finding a vertex of a
polyhedron, that can be easily solved (e.g. with the simplex algorithm [10,
88]).

However, in the case of (5.1), we have a systems of linear inequalities
were we are interested in mixed integer solutions. In order to use the results
given for the linear case, let us consider the linear relaxation of such system
(5.1). 

−B
[
x
z

]
≤ −b[

x
z

]
≤

[
1
U

]
−
[
x
z

]
≤ 0[

x
z

]
∈ IRn+m

(5.5)

The above system (5.5) is now in the form of (5.2). The l inequalities from
the first group will be called rules inequalities, even if, for some of them,
there can be no one-to-one correspondence with rules (see Sect. 5.4). By
denoting with I the identity matrix, the [l+ 2(n+m)]× (n+m) matrix A
and the [l + 2(n + m)]-vector a are composed as follows. Number of rows
for each block is reported on the left.
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A =

 −BI
−I

 l
n+m
n+m

a =


−b

1
U
0


l
n
m

n+m

Therefore, a system which plays the role of (5.4) can now be written.

yT

 −BI
−I

 = 0

yT


−b

1
U
0

 ≤ −1

y ≥ 0, y ∈ IR[l+2(n+m)]

(5.6)

So far, the following result on the pair of systems (5.1) and (5.6) holds.
The restriction of the support of a vertex to rules inequalities will denote
the indices of its non-zero components among those corresponding to rules
inequalities.

Theorem 5.3. Consider two systems of linear inequalities respectively in
form (5.1) and (5.6). In this case, if (5.6) is feasible, (5.1) is infeasible, and
the restriction of the support of each vertex of the polyhedron (5.6) to rules
inequalities contains an IIS of (5.1). On the contrary, if (5.6) is infeasible,
(5.5) is feasible, but it cannot be decided whether (5.1) is feasible or not.

Proof: We first prove that the restriction of the support of a vertex of
(5.6) to rule inequalities contains an integer IIS of (5.1). Assume (5.6) is
feasible, and let v1 be the vertex found. Therefore, (5.5) is infeasible (from
Theorem 5.1), and an IIS in (5.5), called in this Chapter IIS 1, is given
by the support of v1. Such IIS 1 is in general composed by a set RI 1 of
rules inequalities and a set BC1 (possibly empty) of box constraints (the
ones imposing 0 ≤ xij ≤ 1, 0 ≤ zi ≤ U). The set of inequalities RI 1 has
no integer solutions, since removing the BC 1 from IIS 1, while imposing
the more strict integer constraints IC 1 (the ones imposing xij ∈ {0, 1}),
keeps IIS 1 unsatisfiable. Therefore, an integer IIS is contained into RI1.
The integer IIS may also be a subset of the inequalities of RI1, because,
though IIS 1 = RI1 ∪ BC1 is minimally infeasible, RI1 ∪ IC1 may be not
minimal: we are imposing the more strict integer constraints instead of the
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box constraints. Therefore, the procedure produces an integrally infeasible
subsystem containing an integer IIS for (5.1).

On the other hand, not all integer IIS in (5.2) can be obtained by such
procedure. This because, if (5.6) is infeasible, (5.5) is feasible (by Theorem
5.1). When imposing the more strict integer constraints instead of the box
constraints, however, nothing can be said on the feasibility of (5.1).

Example 5.4. Consider a set of rules R on two conditions α1, α2, as follows.
One may already note that R contains an inconsistency.

r1 = (α1), r2 = (α2), r3 = (¬α1 ∨ ¬α2), r4 = (α1 ∨ ¬α2)

In this case, n = 2 and m can be considered 0, since no z variables are needed
to express the above rules. A and a can easily be obtained, as follows.

A =



−1 0
0 −1
1 1
−1 1

1 0
0 1

−1 0
0 −1


a =



−1
−1

1
0

1
1

0
0


Therefore, the system to be solved, in the form of (5.6), is the following.

−y1 + y3 − y4 + y5 − y7 = 0
−y2 + y3 + y4 + y6 − y8 = 0
−y1 − y2 + y3 + y5 + y6 ≤ −1

y1, y2, y3, y4, y5, y6, y7, y8 ≥ 0
y ∈ IR8

Solving such system yields the vertex (1, 1, 1, 0, 0, 0, 0, 0). Therefore, R
contains an inconsistency, and the set of conflicting rules is {r1, r2, r3}.

More than one IIS can be contained in an infeasible system. Some of them
can overlap, in the sense that they can share some inequalities, although
they cannot be fully contained one in another. Formally, the collection of
all IIS of a given infeasible system is a clutter (see e.g. [3]). However, from
the practical point of view, we are interested in IIS composed by a small
number of rules inequalities. Moreover, it may happen that not all of them
are equally preferable for the composition of the IIS that we are selecting.
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Hence, a cost ck for taking each of the [l + 2(n + m)] inequalities into our
IIS can be assigned. Such costs ck for the inequalities of (5.5) corresponds
to costs for the variables of system (5.6). A cost [l + 2(n + m)]-vector
c is therefore computed, and the solution of the following linear program
produces now an IIS having the desired inequality composition.

min cT y

yT

 −BI
−I

 = 0

yT


−b

1
U
0

 ≤ −1

y ≥ 0, y ∈ IR[l+2(n+m)]

(5.7)

The result of Theorem 5.3 is not completely analogous to the linear case. In
order to obtain more analogy, let us define the following property.

Integral-point property. A class of polyhedra which, if non-empty, con-
tain at least one integral point (i.e. a point respecting integrality constraints)
has the integral-point (IP) property.

Theorem 5.4. If the polyhedron (5.5), which is the linear relaxation of
(5.1), has the integral-point property, the following holds. If (5.6) is infea-
sible, (5.1) is feasible. On the contrary, if (5.6) is feasible, (5.1) is infeasible
and each integer IIS is given by the restriction of the support of each vertex
of polyhedron (5.6) to rules inequalities.

Proof: If (5.6) is infeasible, (5.5) is feasible by Theorem 5.1. Since we as-
sumed that the IP-property holds for (5.5), it contains at least one integral
point. Since the box constraints hold for (5.5), this integer point must be
such that x ∈ {0, 1}n, hence (5.1) is feasible. On the contrary, if (5.6) is
feasible, the restriction of the support of a vertex in (5.6) to rule inequali-
ties, that is a set of inequalities denoted by RI1, has no integer solutions by
Theorem 5.3. We now prove by contradiction that RI1 is minimally infea-
sible, hence it is an integer IIS. Suppose RI1 not minimal; then there exists
a smaller set RI ′1 such that RI ′1 ∪ IC1 has no integer solutions. On the
other hand, by Theorem 5.2, RI1 ∪BC1 is minimal, so RI ′1 ∪BC1 must be
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feasible, and since it has the IP-property, it has an integer solution, which
is the contradiction. The thesis follows.

So far, when the IP property holds, solving a linear programming prob-
lem solves our inconsistency selection problem. There are several cases in
which the linear relaxation (5.5) defines a polyhedron having the integral-
point property (see e.g. [30, 36, 76]). Note that, imposing some syntactic
restrictions, rules could be written in order to obtain one of such cases.

5.4 Applying the Proposed Procedure

Assume that each individual is described by a data record (a set of values
for a set of fields). Let the fields be either categorical, e.g. name, profes-
sion, tax1 (= if the individual has to pay a tax called tax1), tax2, tax3, or
numerical, e.g. age, length of career, income.

Let the domain of profession be a set of strings (e.g. pr1, pr2, pr3); blank
being an admissible value, e.g. for non-working people); the domain of tax1,
tax2, tax3 be {yes, no}; the domain of age be a suitable subset of the set of
real non-negative numbers IR+ (or of Z+, with obvious modifications); the
domain of length of career be a suitable subset of IR+ ∪ blank (blank being
an admissible value, e.g. for non-working people); the domain of income be
a suitable subset of R+ (being 0 for non-working people).

Assume there is a set of rules for economical regulation (something sim-
ilar to laws), as follows. Clearly, the focus is not on numerical values ap-
pearing in the rules, that may be unrealistic, but on the structure of the set.
Note that, in order to test the consistency of this set, we need to consider
also rules that a human would consider obvious, but not a machine, called
unexpressed rules.

• Logical rules

Some taxes must be paid for some professions

L1 if profession = (pr1 or pr2) then tax1 must be yes

L2 if profession = pr3 then tax2 must be yes

Some taxes must be paid for some income values

L3 if income ≥ 1000 then tax3 must be yes

For poor people taxes cannot exceed 100
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L4 if income ≤ 200 then total tax must be ≤ 100

• Mathematical rules

Income must be related to length of career

M1 income ≤ 1000 + 20×length of career

M2 income ≥ 200 + 30×length of career

Taxes must be at least one third of the income

M3 total tax ≥ 0.33×income

Taxes cannot exceed income

M4 total tax ≤income

• Logico-mathematical rules

If income is too high for the career, tax 3 must me paid

LM1 if income −30×length of career ≥ 400 then tax3 must be yes

• Unexpressed rules

Professions are mutually exclusive

U1 Pr1 ⊕Pr2 ⊕Pr3

There are relations implied by the meaning of the words

U2 total tax = tax1+tax2+tax3

Some Fields are naturally limited

U3 age ≥ 0 and ≤ 110

U4 length of career ≥ 0 and ≤ 92

U5 ε ≥ 0 and ≤ 0.001

U6 total tax ≥ 0 and ≤ 2000

U7 income ≥ 0 and ≤ 5000
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From the above rules we can identify some variables. Some of them are
logical, and are also called propositions, and some are real-valued.

1) XPRO1 (binary)

2) XPRO2 (binary)

3) XPRO3 (binary)

4) XTAX1 (binary)

5) XTAX2 (binary)

6) XTAX3 (binary)

7) XTTAX0-100 (binary)

8) XINC0-200 (binary)

9) TTAX (real≥ 0)

10) INC (real≥ 0)

11) AGE (real≥ 0)

12) LEN (real≥ 0)

13) EPS (real≥ 0)

In the general case, from the rules we can identify some logical propositions,
that are the elementary concepts expressed in the rules. We may have:

• Level propositions, e.g. L1, L2, L3, L4. They are conditions that
become stronger as their index increases, so L4 ⇒ L3, L2, L1 and
L3 ⇒ L2, L1 and L2 ⇒ L1 and L1 does not imply anything. Con-
versely, ¬L1⇒ ¬L2,¬L3,¬L4 and ¬L2⇒ ¬L3,¬L4 and ¬L3⇒ ¬L4
and ¬L4 does not imply anything. A set of level propositions is com-
plete when at least one of them must hold, so L1 is always true.

They can represent for instance that the value of a certain field of some
data records belongs to some sets S1, S2, S3, S4 in a domain S such
that S1 ⊇ S2 ⊇ S3 ⊇ S4 (and are complete when S1 = S).
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• Exclusive propositions, e.g. E1, E2, E3. They are mutually exclusive:
at most one of them holds, so E1 ⇒ ¬E2,¬E3 and E2 ⇒ ¬E1,¬E3
and E3 ⇒ ¬E1,¬E2. Equivalently, ¬E1 ∨ ¬E2 and ¬E2 ∨ ¬E3 and
¬E1 ∨ ¬E3. A set of exclusive propositions is complete when at least
one of them must hold, so E1 ∨ E2 ∨ E3.

They can represent for instance that the value of a certain field of some
data records belongs to some sets S1, S2, S3 such that S1 ∩ S2 = φ
and S2∩S3 = φ and S1∩S3 = φ (complete when S1∪S2∪S3 = S).

• Standard propositions, e.g. F,G,H, I. They have no predefined re-
lations among them, and any relation among them can be expressed,
e.g. F ⇒ G and F ∧H ⇒ I.

The rules may contain one or more inconsistencies, as explained in Section
5.3. Note that inconsistencies may be either complete, when no record can
respect the rules, or partial, when no record having a specific value vi for a
specific field i (value that should not be forbidden) can respect the rules. In
this example we have:

• No complete inconsistency: there are records respecting all the rules.

• A partial inconsistency for length of career ≥ 67
(M2 says income ≥ 2210 and M3 says total tax ≥ 729.3, while U2 says
total tax can be at most 720 when all tax1, tax2, tax3 are paid. Since
U7 says 0 ≤ income ≤ 5000, that is a contradiction).

• Another partial inconsistency for length of career ≥ 81
(M1 says income ≤ 2620 while M2 says income ≥ 2630, that is a
contradiction).

• Another partial inconsistency for income ≥ 2182
(M3 says total tax ≥ 720.06, while U2 says total tax can be at most 720
when all tax1, tax2, tax3 are paid. Since U7 says 0 ≤ income ≤ 5000,
that is a contradiction).

Partial inconsistencies can be tested with the proposed procedure by simply
imposing the value activating them, for instance by adding a constraint. We
now analyze the above three examples with our procedure. First we convert
rules into inequalities, until putting all of them in the form ≤

L1 if profession = (pr1 or pr2) then tax1 must be yes
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= ¬ XPRO1 ∨ XTAX1 and ¬ XPRO1 ∨ XTAX1

= XTAX1 + (1-XPRO1) ≥ 1 and XTAX1 + (1-XPRO2) ≥ 1

1) -1 XTAX1 +1 XPRO1 ≤ 0

2) -1 XTAX1 +1 XPRO2 ≤ 0

L2 if profession = pr3 then tax2 must be yes

= XTAX2 + (1-XPRO3) ≥ 1

3) -1 XTAX2 +1 XPRO3 ≤ 0

L3 if income ≥ 1000 then tax3 must be yes

= ¬tax3⇒ income < 1000

= tax3 ∨ income ≤ 1000− ε

= -M TAX3 +INC +EPS ≤ 1000

4) -M TAX3 +1 INC +1 EPS ≤ 1000

L4 if income ≤ 200 then total tax must be ≤ 100

= (1-XINC0-200) + XTTAX0-100 ≥ 1

5) 1 XINC0-200 -1 XTTAX0-100 ≤ 0

M1 income ≤ 1000 + 20×length of career

= INC -20 LEN ≤ 1000

6) 1 INC -20 LEN ≤ 1000

M2 income ≥ 200 + 30×length of career

= INC -30 LEN ≥ 200

7) -1 INC +30 LEN ≤ −200

M3 total tax ≥ 0.33×income

= TTAX -0.33 INC ≥ 0

8) -1 TTAX +0.33 INC ≤ 0
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M4 total tax ≤income

= TTAX -INC ≤ 0

9) 1 TTAX -1 INC ≤ 0

LM1 if income −30×length of career ≥ 400 then tax3 must be yes

= -M TAX3 + 30 LEN -INC +EPS ≤ 400

10) -M TAX3 +30 LEN -1 INC +1 EPS ≤ 400

U1 Pr1 ⊕Pr2 ⊕Pr3

= PRO1 +PRO2 ≤ 1 and PRO1 +PRO3 ≤ 1 and PRO2 +PRO3 ≤ 1

11) 1 PRO1 +1 PRO2 ≤ 1

12) 1 PRO1 +1 PRO3 ≤ 1

13) 1 PRO2 +1 PRO3 ≤ 1

U2 total tax = tax1+tax2+tax3 (with tax1=100, tax2=120, tax3=500)

= TTAX -100 XTAX1 -120 XTAX2 -500 XTAX3 = 0

14) 1 TTAX -100 XTAX1 -120 XTAX2 -500 XTAX3 ≤ 0

15) -1 TTAX +100 XTAX1 +120 XTAX2 +500 XTAX3 ≤ 0

• XTTAX0-100=1 iff TTAX≤ 100

= M (1-XTTAX0-100) ≥ TTAX -100 and -M XTTAX0-100 ≥ TTAX
-100 -EPS

16) M XTTAX0-100 +1 TTAX ≤ M+100

17) M XTTAX0-100 +1 TTAX -1 EPS≤ 100

• XINC0-200=1 iff INC≤ 200

= M (1-XINC0-200) ≥ INC -200 and M XINC0-200 ≥ 200 +EPS - INC

18) M XINC0-200 +1 INC ≤ M +200

19) -M XINC0-200 -1 INC +1 EPS ≤ -200

U3 age ≥ 0 and ≤ 110
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= AGE ≥ 0 and AGE ≤ 110

20) -1 AGE ≤ 0 21) 1 AGE ≤ 110

U4 length of career ≥ 0 and ≤ 92

= LEN ≥ 0 and LEN ≤ 92

22) -1 LEN ≤ 0 23) 1 LEN ≤ 92

U5 ε ≥ 0 and ≤ 0.001

= EPS ≥ 0 and EPS ≤ 0.001

24) -1 EPS ≤ 0 25) 1 EPS ≤ 0.001

U6 total tax ≥ 0 and ≤ 2000

= TTAX ≥ 0 and ≤ 2000

26) -1 TTAX ≤ 0 27) 1 TTAX ≤ 2000

U7 income ≥ 0 and ≤ 5000

= INC ≥ 0 and INC ≤ 5000

28) -1 INC ≤ 0 29) 1 INC ≤ 5000

• XPRO1 binary

30) -1 XPRO1 ≤ 0 31) 1 XPRO1 ≤ 1

• XPRO2 (binary)

32) -1 XPRO2 ≤ 0 33) 1 XPRO2 ≤ 1

• XPRO3 (binary)

34) -1 XPRO3 ≤ 0 35) 1 XPRO3 ≤ 1

• XTAX1 (binary)

36) -1 XTAX1 ≤ 0 37) 1 XTAX1 ≤ 1

• XTAX2 (binary)

38) -1 XTAX2 ≤ 0 39) 1 XTAX2 ≤ 1
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• XTAX3 (binary)

40) -1 XTAX3 ≤ 0 41) 1 XTAX3 ≤ 1

• XTTAX0-100 (binary)

42) -1 XTTAX0-100 ≤ 0 43) 1 XTTAX0-100 ≤ 1

• XINC0-200 (binary)

44) -1 XINC0-200 ≤ 0 45) 1 XINC0-200 ≤ 1

Overall, we have the following set of linear inequalities in form ≤

1) -1 XTAX1 +1 XPRO1 ≤ 0

2) -1 XTAX1 +1 XPRO2 ≤ 0

3) -1 XTAX2 +1 XPRO3 ≤ 0

4) -M TAX3 +1 INC +1 EPS ≤ 1000

5) 1 XINC0-200 -1 XTTAX0-100 ≤ 0

6) 1 INC -20 LEN ≤ 1000

7) -1 INC +30 LEN ≤ −200

8) -1 TTAX +0.33 INC ≤ 0

9) 1 TTAX -1 INC ≤ 0

10) -M TAX3 +30 LEN -1 INC +1 EPS ≤ 400

11) 1 PRO1 +1 PRO2 ≤ 1

12) 1 PRO1 +1 PRO3 ≤ 1

13) 1 PRO2 +1 PRO3 ≤ 1

14) 1 TTAX -100 XTAX1 -120 XTAX2 -500 XTAX3 ≤ 0

15) -1 TTAX +100 XTAX1 +120 XTAX2 +500 XTAX3 ≤ 0

16) M XTTAX0-100 +1 TTAX ≤ M+100

17) M XTTAX0-100 +1 TTAX -1 EPS≤ 100
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18) M XINC0-200 +1 INC ≤ M +200

19) M XINC0-200 +1 INC -1 EPS ≤ 200

20) -1 AGE ≤ 0 21) 1 AGE ≤ 110

22) -1 LEN ≤ 0 23) 1 LEN ≤ 92

24) -1 EPS ≤ 0 25) 1 EPS ≤ 0.001

26) -1 TTAX ≤ 0 27) 1 TTAX ≤ 2000

28) -1 INC ≤ 0 29) 1 INC ≤ 5000

30) -1 XPRO1 ≤ 0 31) 1 XPRO1 ≤ 1

32) -1 XPRO2 ≤ 0 33) 1 XPRO2 ≤ 1

34) -1 XPRO3 ≤ 0 35) 1 XPRO3 ≤ 1

36) -1 XTAX1 ≤ 0 37) 1 XTAX1 ≤ 1

38) -1 XTAX2 ≤ 0 39) 1 XTAX2 ≤ 1

40) -1 XTAX3 ≤ 0 41) 1 XTAX3 ≤ 1

42) -1 XTTAX0-100 ≤ 0 43) 1 XTTAX0-100 ≤ 1

44) -1 XINC0-200 ≤ 0 45) 1 XINC0-200 ≤ 1

By ordering the binary (x) and real variables (z), the overall matrix and
the overall vector of system (5.5), corresponding to A and a of system (5.2),
unless an easy reordering of some of the box inequalities, are the following:
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XPRO XPRO XPRO XTAX XTAX XTAX XTTAX XINC TTAX INC AGE LEN EPS vector
1 2 3 1 2 3 0-100 0-200 a

1 ( L1) 1 0 0 -1 0 0 0 0 0 0 0 0 0 0

2 ( L1) 0 1 0 -1 0 0 0 0 0 0 0 0 0 0

3 ( L2) 0 0 1 0 -1 0 0 0 0 0 0 0 0 0

4 ( L3) 0 0 0 0 0 -12000 0 0 0 1 0 0 1 1000

5 ( L4) 0 0 0 0 0 0 -1 1 0 0 0 0 0 0

6 ( M1) 0 0 0 0 0 0 0 0 0 1 0 -20 0 1000

7 ( M21) 0 0 0 0 0 0 0 0 0 -1 0 30 0 -200

8 ( M3) 0 0 0 0 0 0 0 0 -1 0.33 0 0 0 0

9 ( M4) 0 0 0 0 0 0 0 0 1 -1 0 0 0 0

10 ( LM1) 0 0 0 0 0 -12000 0 0 0 -1 0 30 1 400

11 ( U1) 1 1 0 0 0 0 0 0 0 0 0 0 0 1

12 ( U1) 1 0 1 0 0 0 0 0 0 0 0 0 0 1

13 ( U1) 0 1 1 0 0 0 0 0 0 0 0 0 0 1

14 ( U2) 0 0 0 -100 -120 -500 0 0 1 0 0 0 0 0

15 ( U2) 0 0 0 100 120 500 0 0 -1 0 0 0 0 0

16 (U2) 0 0 0 0 0 0 12000 0 1 0 0 0 0 12100

17 (U2) 0 0 0 0 0 0 -12000 0 -1 0 0 0 1 -100

18 (U2) 0 0 0 0 0 0 0 12000 0 1 0 0 0 12200

19 ( U2) 0 0 0 0 0 0 0 -12000 0 -1 0 0 1 -200

20 ( U3) 0 0 0 0 0 0 0 0 0 0 -1 0 0 0

21 ( U3) 0 0 0 0 0 0 0 0 0 0 1 0 0 110

22 ( U4) 0 0 0 0 0 0 0 0 0 0 0 -1 0 0

23 ( U4) 0 0 0 0 0 0 0 0 0 0 0 1 0 92

24 (U5) 0 0 0 0 0 0 0 0 0 0 0 0 -1 0

25 (U5) 0 0 0 0 0 0 0 0 0 0 0 0 1 0.001

26 (U6) 0 0 0 0 0 0 0 0 -1 0 0 0 0 0

27 (U6) 0 0 0 0 0 0 0 0 1 0 0 0 0 2000

28 (U7) 0 0 0 0 0 0 0 0 0 -1 0 0 0 0

29 (U7) 0 0 0 0 0 0 0 0 0 1 0 0 0 5000

30 (U7) -1 0 0 0 0 0 0 0 0 0 0 0 0 0

31 (U7) 1 0 0 0 0 0 0 0 0 0 0 0 0 1

32 (U7) 0 -1 0 0 0 0 0 0 0 0 0 0 0 0

33 (U7) 0 1 0 0 0 0 0 0 0 0 0 0 0 1

34 (U7) 0 0 -1 0 0 0 0 0 0 0 0 0 0 0

35 (U7) 0 0 1 0 0 0 0 0 0 0 0 0 0 1

36 (U7) 0 0 0 -1 0 0 0 0 0 0 0 0 0 0

37 (U7) 0 0 0 1 0 0 0 0 0 0 0 0 0 1

38 (U7) 0 0 0 0 -1 0 0 0 0 0 0 0 0 0

39 (U7) 0 0 0 0 1 0 0 0 0 0 0 0 0 1

40 (U7) 0 0 0 0 0 -1 0 0 0 0 0 0 0 0

41 (U7) 0 0 0 0 0 1 0 0 0 0 0 0 0 1

42 (U7) 0 0 0 0 0 0 -1 0 0 0 0 0 0 0

43 (U7) 0 0 0 0 0 0 1 0 0 0 0 0 0 1

44 (U7) 0 0 0 0 0 0 0 -1 0 0 0 0 0 0

45 (U7) 0 0 0 0 0 0 0 1 0 0 0 0 0 1

Now we solve the dual model (5.7) with objective cost vector c = 1 and
using the above matrix and vector. Model (5.7) is in this case infeasible
so, according to Theorem 5.4, the primal (5.1) has no complete inconsisten-



100CHAPTER 5. FINDING CONTRADICTIONS IN A SET OF RULES

cies. We now search for each partial inconsistency by imposing the value
activating it. In practice we try to impose any possible value for each field,
and every time we find a vertex for model (5.7) we have detected a partial
inconsistency.

If we add the constraint that LEN ≥ 67, that corresponds to adding the
following row to the above matrix,

XPRO XPRO XPRO XTAX XTAX XTAX XTTAX XINC TTAX INC AGE LEN EPS vector
1 2 3 1 2 3 0-100 0-200 a

46 0 0 0 0 0 0 0 0 0 0 0 -1 0 -67

we obtain that (7) has a vertex solution

y = {0, 0, 0, 0, 0, 0, 0.035, 0.11, 0, 0, 0, 0, 0, 0.11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 10.75, 0, 12.9, 0, 53.76, 0, 0, 0, 0, 1.06}

where the support is given by the 7th, the 8th, the 14th, the 37th, the 38th,
the 39th and the 46th. This means that the corresponding inequalities are
forming an IIS. The partial contradiction is between the 6 inequalities cor-
responding to the 4 following rules, and it appears for LEN≥ 67 (46th in-
equality), as showed in the beginning of this Section.

M2 income ≥ 200 + 30×length of career

M3 total tax ≥ 0.33×income

U2 total tax = tax1+tax2+tax3

U7 income ≥ 0 and ≤ 5000

If we add the constraint that LEN ≥ 81, that corresponds to adding the
following row to the above matrix,

XPRO XPRO XPRO XTAX XTAX XTAX XTTAX XINC TTAX INC AGE LEN EPS vector
1 2 3 1 2 3 0-100 0-200 a

46 0 0 0 0 0 0 0 0 0 0 0 -1 0 -81

we obtain that (7) has a vertex solution

y = {0, 0, 0, 0, 0, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}

where the support is given by the 6th, the 7th and the 46th. This means that
the corresponding inequalities are forming an IIS. The partial contradiction
is between the 2 inequalities corresponding to the 2 following rules, and it
appears for LEN≥ 81 (46th inequality), as showed in the beginning of this
Section.
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M1 income ≤ 1000 + 20×length of career

M2 income ≥ 200 + 30×length of career

If we add the constraint that INC ≥ 2182, that corresponds to adding the
following row to the above matrix,

XPRO XPRO XPRO XTAX XTAX XTAX XTTAX XINC TTAX INC AGE LEN EPS vector
1 2 3 1 2 3 0-100 0-200 a

46 0 0 0 0 0 0 0 0 0 -1 0 0 0 -2182

we obtain that (7) has a vertex solution

y = {0, 0, 0, 0, 0, 0, 0, 16.67, 0, 0, 0, 0, 0, 16.67, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1667, 0, 2000, 0, 8333, 0, 0, 0, 0, 5.5}

where the support is given by the 8th, the 14th, the 37th, the 39th, the 41th

and the 46th. This means that the corresponding inequalities are forming
an IIS. The contradiction partial is between the 5 inequalities corresponding
to the following 3 rules, and it appears for INC≥ 2182 (46th inequality), as
showed in the beginning of this Section.

M3 total tax ≥ 0.33×income

U2 total tax = tax1+tax2+tax3

U7 income ≥ 0 and ≤ 5000

Therefore, the proposed procedure was able to discover the sets of conflicting
rules working only at the formal level.

5.5 Summary and Remarks

The Localization of Contradictions, also known as Inconsistency Selection,
is a difficult Artificial Intelligence problem that arises in several different
applications. Its solution can in general be extremely difficult, not only
for computational reasons. A contradiction can be quite hidden, or involve
many rules, or there can be several contradiction. However, when a set of
statement or rules can be converted into linear inequalities, this task can
be performed with a procedure based on Alternative theorems, in partic-
ular Farkas’ lemma, and can therefore be solved quite efficiently when the
integral-point property holds. A main feature of the proposed approach
is that the procedure works only at the formal level, without the need of
domain-specific knowledge.
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[36] M. Conforti, G. Cornuéjols, A. Kapoor and K. Vuskovic. Recognizing balanced 0,
+ or - 1 matrices. In Proceedings 5th annual SIAM/ACM Symposium on Discrete
Algorithms, 103-111, 1994.

[37] C. Cortes and V. Vapnik. Support-Vector Networks. Machine Learning, vol. 20, no.
3, 273-297, 1995.

[38] T.M. Cover and P.E. Hart (1967). Nearest neighbor pattern classification. IEEE
Transactions on Information Theory 13 (1), 2127, 1967.

[39] Y. Crama and P.L. Hammer. Boolean Functions: Theory, Algorithms, and Applica-
tions. Cambridge University Press, New York, 2011. ISBN: 9780521847513.

[40] Y. Crama, P.L. Hammer, and T. Ibaraki. Cause-effect Relationships and Partially
Defined Boolean Functions. Annals of Operations Research vol. 16, 299-326, 1988.

[41] T. De Waal. Computational Results with Various Error Localization Algorithms.
UNECE Statistical Data Editing Work Session, Madrid, Spain, 2003.

[42] T. De Waal, J. Pannekoek and S. Scholtus. Handbook of Statistical Data Editing
and Imputation. Wiley Handbooks in Survey Methodology, John Wiley & Sons,
Inc., New York, NY, 2011.

[43] T. De Waal. Processing of Erroneous and Unsafe Data. Ph.D. Thesis, ERIMPhD
series in Research Management, 2003.

[44] European Council Regulation (EEC) No 357/79 of 5 February 1979 on statistical
surveys. EEC Documentation, 1979.



106 REFERENCES

[45] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy (eds.) Advances
in Knowledge Discovery and Data Mining. AAAI Press / The MIT Press, Menlo
Park, CA, 1996.

[46] U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-valued at-
tributes for classification learning. Artificial Intelligence, vol.13, 1022-1027, 1993.

[47] I.P. Fellegi and I.P.D. Holt. A Systematic Approach to Automatic Edit and Impu-
tation, Journal of the American Statistical Association 71, 17-35, 1976

[48] C. Forbes, M. Evans, N. Hastings, and B. Peacock, Statistical Distributions (fourth
edition). Wiley series in Probability and Statistics, New York, 2010.

[49] A. Frank, A. Asuncion. UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School
of Information and Computer Science, 2010.

[50] Y. Freund, Boosting a Weak Learning Algorithm by Majority. Information and
Computation, vol. 121, no. 2, 256-285, 1995.

[51] W.A. Fuller. Measurement Error Models. Wiley Series in Probability and Statistics,
John Wiley & Sons, Inc., New York, NY, 2006.

[52] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Co, San Francisco, CA, 1979.

[53] R.S. Garfinkel, A.S. Kunnathur and G.E. Liepins. Optimal Imputation of Erroneous
Data: Categorical Data, General Edits. Operations Research 34, 744-751, 1986.

[54] R.S. Garfinkel, A.S. Kunnathur and G.E. Liepins. Error Localization for Erroneous
Data: Continuous Data, Linear Constraints. SIAM Journal on Scientific and Statis-
tical Computing 9, 922-931, 1988.

[55] J. Gleeson and J. Ryan. Identifying Minimally Infeasible Subsystems of Inequalities.
ORSA Journal on Computing 2/1, 61-63, 1990.

[56] O. Guieu and J.W. Chinneck. Analyzing Infeasible Mixed-Integer and Integer Linear
Programs. INFORMS Journal on Computing 11/1, 63-77, 1999.

[57] I. Guyon, N. Matic and V. Vapnik. Discovering Informative Patterns and Data
Cleaning.

[58] P.L. Hammer, A. Kogan, B. Simeone and S. Szedmak. Pareto-Optimal Patterns in
Logical Analysis of Data. Discrete Applied Mathematics, vol. 144, no. 1-2, 79-102,
2004.

[59] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Elsevier, second
edition, 2006.

[60] D.J. Hand, H. Mannila and P. Smyth. Principles of Data Mining. MIT Press,
London, 2001.



REFERENCES 107

[61] T. Hastie, R. Tibshirani and J. Friedman. The Elements of Statistical Learning:
Data Mining, Inference and Prediction. Springer, New York, NY, 2001.

[62] T. Hastie, R. Tibshirani and J. Friedman. The Elements of Statistical Learning.
Springer-Verlag, New York, Berlin, Heidelberg, 2002.

[63] F.S. Hillier and G.J. Lieberman. Introduction to Operations Research. McGraw-Hill,
New York, NY, eighth edition, 2005.

[64] D.S. Hochbaum and J.G. Shanthikuma. Convex separable optimization is not much
harder than linear optimization. Journal of the ACM 37(4), 843-862, 1990.

[65] IBM: Ilog Cplex 12.1 Reference Manual. International Business Machines Corpora-
tion, 2009.

[66] IBM: Ilog Concert Technology 12.1 Reference Manual. International Business Ma-
chines Corporation, 2009.

[67] N. Jankowski, W. Duch, K Grabczewski (eds.) Meta-Learning in Computational
Intelligence. Springer-Verlag, Berlin, 2011.

[68] M. Kantardzic. Data Mining: Concepts, Models, Methods, and Algorithms. John
Wiley & Sons Publishing, 2003.

[69] B. Kalantari, I. Lari, F. Ricca and B. Simeone. On the complexity of general matrix
scaling and entropy minimization via the RAS algorithm. Mathematical Program-
ming, Ser. A 112, 371401, 2008.

[70] W. Klø̈esgen and J.M. Zytkow (eds.). Handbook of Data Mining and Knowledge
Discovery. Oxford University Press: Oxford, UK, 2002.

[71] L.E. Lyberg , P. Biemer, M. Collins, E.D. De Leeuw, C. Dippo, N. Schwarz and
D. Trewin (eds.). Survey Measurement and Process Quality, Section C, post survey
processing and operations. John Wiley & Sons, Inc.: New York, NY, 1997.

[72] T. Menzies. Knowledge Maintenance: The State of the Art. Knowledge Engineering
Review, 14(1), 1-46, 1999.

[73] T.M. Mitchell, Machine Learning. McGraw-Hill, Singapore, 1997.

[74] A. Mucherino, P. Papajorgji and P.M. Pardalos. Data Mining in Agriculture.
Springer: New York, NY, 2009.

[75] J.H. Myers and E.W. Forgy. The Development of numerical credit evaluation sys-
tems. Journal of the American Statistical Association, Vol.58 Issue 303 (Sept) 799-
806, 1963.

[76] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization, J. Wiley
& Sons, Inc., New York, NY, 1999.

[77] F.C. Pampel FC. Logistic regression: A primer. Sage University Papers Series on
Quantitative Applications in the Social Sciences, 07-132. Thousand Oaks, CA: Sage
Publications, 2000.



108 REFERENCES

[78] C. Poirier. A Functional Evaluation of Edit and Imputation Tools. UN/ECE Work
Session on Statistical Data Editing, Working Paper n.12, Rome, Italy, 1999.

[79] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes
in C: The Art of Scientific Computing, second edition. Cambridge University Press,
1992.

[80] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo,
CA, 1993.

[81] C.T. Ragsdale P.G. McKeown. On Solving the Continuous Data Editing Problem.
Computers and Operations Research 23, 263-273, 1996.

[82] R. Ramakrishnan, J. Gehrke. Database Management Systems (third edition).
McGraw-Hill: New York, NY, 2003.

[83] N. Rescher and R. Brandom. The Logic of Inconsistency. Basil Blackwell, Oxford,
1980.

[84] J. Riera-Ledesma and J.J. Salazar-Gonzalez. New Algorithms for the Editing and
Imputation Problem. UNECE Statistical Data Editing Work Session, Madrid, Spain,
2003.

[85] F. Rosenblatt. The Perceptron: A Probalistic Model For Information Storage And
Organization In The Brain. Psychological Review 65 (6): 386-408, 1958.

[86] R.E. Schapire. The Strength of Weak Learnability. Machine Learning, vol. 5, no. 2,
197-227, 1990.

[87] M.H. Schneider and S.A. Zenios. A comparative study of algorithms for matrix
balancing. Operations Research, 38(3), 439-455, 1990.

[88] A. Schrijver. Theory of Linear and Integer Programming. Wiley, New York, 1986.

[89] A. Schrijver. Combinatorial Optimization. Springer, Berlin, New York, 2003.

[90] M. Tamiz, S.J. Mardle and D.F. Jones. Detecting IIS in Infeasible Linear Programs
using Techniques from Goal Programming, Computers and Operations Research 23,
113-191, 1996.

[91] V. Vapnik. Statistical Learning Theory. John Wiley and Sons, New York, 1998.

[92] G. Wei. Comparison Study of Genetic Algorithm and Evolutionary Programming.
Proc. of the Third International Conference on Machine Learning and Cybernetics,
1(1): 204-209, 2004.

[93] H.P. Williams. Model Building in Mathematical Programming. J.Wiley, Chichester,
1993.

[94] W.E. Winkler. State of Statistical Data Editing and current Research Problems. In
Proceedings of the Workshop on Data Editing, UN/ECE, Rome, Italy, 1999.



REFERENCES 109

[95] W.L. Winston and M. Venkataramanan. Introduction to Mathematical Program-
ming: Applications and Algorithms. Volume 1. Duxbury Press (fourth edition),
Belmont, CA, 2002.

[96] D.H. Wolpert. The Lack of A Priori Distinctions Between Learning Algorithms.
Neural Computation vol. 8, 1341-1390, 1996.

[97] Y. Yang and X. Liu. A re-examination of text categorization methods. Annual
ACM Conference on Research and Development in Information Retrieval, 42-49,
USA, 1999

[98] L.A.Zadeh. Fuzzy sets. Information and Control (8), 338-353, 1965.

[99] L.A.Zadeh. Calculus of fuzzy restrictions. In L. A. Zadeh, K.-S. Fu, K. Tanaka and
M. Shimura (eds.), Fuzzy sets and Their Applications to Cognitive and Decision
Processes. Academic Press, New York, 1975.

[100] G.P. Zhang. Neural Networks for Classification: a Survey. IEEE Transactions on
Systems, Man, and Cybernetics. vol. 30, no. 4, 451-462, 2000.

[101] H. Zhang. The Optimality of Naive Bayes. FLAIRS2004 conference.

[102] H.-J. Zimmermann. Practical Applications of Fuzzy Technologies. Springer, 2000.


