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Introduction

This thesis covers topics that recently emerged in the fiettboisions
under risk and uncertainty. The main topic of this work is tiuget-based
approachto utility theory. A rich literature has been devoted in thstl
decade to this approach to economic decisions (870, 28, 29, 141,
142)). Originally, interest has been concentrated orstihgle-attributecase
[19, 28, 29and, more recently, extensions to multi-attribute case leen
studied RO, 141, 142 This literature is still growing, with a main focus on
applied aspects (see, for example3 [149, 150. We will, on the contrary,
concentrate attention on some aspects of theoretical tgfsed with the
multi-attribute case.

Various mathematical concepts, such as non-additive messaggre-
gation functions, multivariate probability distributisnand notions of sto-
chastic dependence emerge in the formulation and the amaliy$arget-
based models, se8g]. It is to be said that notions in the field of non-
additive measures and aggregation functions are quite conimthe mod-
ern economic literature. They are used in game theory (se@ximple,
[71, 1493) and multi-criteria decision aid (se8&,[62, 63, 69, 81, 8. In
such fields, one aims to finding the best alternative for a fi@ciMaker
(DM), or classifying the set of good alternatives in choieath many cri-
teria, for situations where uncertainty is not present. seheotions have
generally been used to go beyond the classical principleafimmzation
of expected utility in decision theorng9, 77, 80, 92, 124, 144Along our
work, on the contrary, we show how non-additive measuresagugega-
tion functions are of interest even in the frame of the clzsitility theory.
More precisely we show that they emerge in a natural way intdget-
based approach when considering the multi-attribute dagghermore we
explain how they combine with the analysis of multivariatelability dis-
tributions and with concepts of stochastic dependence.

For what concerns non-additive measures, we pay partietti@ntion
to the concept ofapacity or fuzzy measurehat constitutes a specific class
of such measures that enjoys the property of monotonicigpaCities, on
the family of subsets of a finite space, have been introdugechoquet in
[34] and independently defined by Sugeno 138 in the context of fuzzy
integrals. Given a finite sé?, with corresponding power set, a capacity
is a set functionn : 2 — [0, 1] satisfying

° m(@) =0,m(Q) =1;
e m(J) < m(I)forall setsl, J € 2° suchthat/ C I.

Vv



Vi INTRODUCTION

Such capacities find many applications. For example, asiaomstt above,
in game theory, where they are used to assess the right iamperto each
component of a coalition, or in multi-criteria decision nrak representing
degrees of satisfaction of investors fulfilling a defineds$etbjectives (see,
for example, 4]). Capacities can be better studied through the use of some
algebraic transforms, like thiglobius transform{116], the Shapley[12§
and theinteraction transform$104], and others.

In particular the Mobius transform/,, of a capacitym is a function
satisfying the equality

M (1) = (=1)"*m(J),

JCI

for any set/ € 2%. This object turns out to be very useful in multi-
criteria decisional problems (seé€]) as, in particular, for problems de-
scribed by the target-based model, as we will see later. Adpplica-
tion of the Mobius transform for capacities arises in theotly of aggre-
gation functions and of non-additive integrals. Aggregatiunctions are
built from capacities and inherit their basic feature of wikmmicity. The
idea of aggregation consists in summarizing the infornmationtained in
ann—dimentional vector to a single representative value. Thise/is a
sort of average and it is expressed in terms of the underbapgcity. Also
non-additive integralsre built by means of capacities, of which they rep-
resent a natural extension. They are also knowiuzgy integraland take
this name from the fuzzy measures from which they derive. rApdrtant
feature of this kind of integrals is that, in their turn, thaypvide an exten-
sion of Lebesgue-kind integrals based on additive measures

The most common fuzzy integral is t#oquet integralintroduced by
Choquet in 1953 and rediscovered in 1986, when David ScHarditi?4]
first put forward an axiomatic model of choice with non-ateitbeliefs.
Let m be a capacity defined on a discrete set of indites= {1,...,n}
and letz,...,z, € R,. The discrete Choquet integral of a function
N — R, with respect to the capacity is then defined as

n

Chp(z) == Z[x(i) — zu-nm({o(i),...,o(n)}),

=1

whereo (i) is the element ofV corresponding ta;), z(1) < ... < x(, and
L) ‘= 0.

| )The Choquet integral, together with Sugeno integt@d and other
fuzzy integrals, has been largely used in the context ositatimaking and
analysis of decisions under uncertainty, s@2, [63, 69. In this paper we
will show how the Choquet integral emerges as natural indhget-based
approach to utilities, in the case in which the coordinatesetarget vector
manifest comonotonicity. In this view, we will show how ouodel may
represent an extension of the Choquet integral for capaciti
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The concept of decision analysis under uncertainty has adiest for-
malization in 1944 145, when Von Neumann and Morgenstern (NM) laid
the foundations of what is known as the axiomatic thesxgected utility
theory It should however be remember that a first hint to the usectgfde
utility (instead of the simple average) was introduced bynBalli during
the 18 century, in the evaluation of the proceeds of a lottery.

Consider a set of random variabl&swith values inZ and consider a
preference ordering that we want to use to describe our preference&’pn
considerZ as a complete and separable metric space with its sigmbralge
o(Z). The set¥, assumed finite for our purposes, takes the meaning of the
set of possible choices, or the setlaiteries while Z is the set of possible
consequences of such choices, or possible outcomes ofttbiede, named
prospects The best possible choice will then be the one with best ptessi
outcome. In this perspective, to give a qualitative analydithe prefer-
ences, Decision Makers will try to measure, or at least t@Qrautcomes
by means of somatility function

First of all we have to notice that the goodness of the outsois@ot
evaluated in the same way by all the Decision Makers, sineedtdgree
of satisfaction for a same result shall be different acewydo the feelings
of each DM. The choice of the utility function is evidentlylgective and
linked to the behavior of the DM toward risk and uncertain§o every
DM is asked to choose his own function in order to express fatepences
among elements of. Hence, the utility function will be expressedas
Z — R, whereu is assumed to be non-decreasing, following the idea that
better outcomes shall be associated with bigger valuese Todre precise,
according to the preference relatisnand to NM principles, we have

X+Y & EuX)]>EuY)] VX,Y€AX,

whereE has the meaning of the expected value of the funation

Von Neumann and Morgenstern also devoted attention to thoy sif
the attitudes of DMs towards risk. They classified them atiogrto three
categories of behavior, namefisk neutral risk-seekingand risk-averse
Decision Makers. The former are indifferent in choosingassn two risky
prospects, but with the same expected value; risk-aversesior Makers,
among prospects with the same expected value, prefer theisky (for
them you have,(E[X]) > E[u(X)], then they make use of a concave util-
ity function); risk-seeker DMs, finally, will manifest thegyposite attitude
towards risk (and hence will choose a convex utility funegjio

In this perspective it is interesting to compare investarsugh their
attitudes toward risk. Between two DM playing the same gdmé with
two different utility functions, it is interesting, for ergle, to establish
which of them is the more risk averse. De Finetti 87][was the first to
give a solution of this problem, by introducing the conceptr@asure of
risk aversion Such a concept is strictly linked to the onerisk premium
that is the quantity the DM is willing to pay in order to repaihe utility
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of her risky prospect with its expected value. De Finettisasure of risk
aversion is a function that quantifies the risk premium ohela® on the
basis of her utility function, describing as more risk aeeas individual
willing to pay a bigger risk premium.

Other substantial contributions in this direction, haverbenade over
the years by Samuelsot19, Pratt [110, Rothschild and Stiglitz117,
Arrow [7], and Fishburn$7]. However, objections have also been made to
the models based on the maximization of expected utilitgt &f all Allais,
in 1953, offered a paradox in contrast to the theory propagedeumann
and Morgenstern; Ellsber$] casted doubts on the axiomatic formulation
of Savage12(Q, giving rise to a expected utility theory based on gengeali
Choquet integrals. However, it was only around 1980 thatribe alterna-
tive to the expected utility began to be proposed (with thevagartici-
pation of scholars from disciplines different from the itemhal economic,
statistical, and mathematical, as philosophers and p$ygists). Among
the main contributions in this period: Kahneman and Tve[3k}, Machina
[92, 93, Quiggin [112, Karni [80], Gilboa [59], Schmeidler 124, and
others. The theory of choice under uncertainty has takeseghen, very
different features than before.

Among the newest concepts of utilities, the ondarfjet-based utility
plays a central role in our work. Firstly introduced by Castali and Li-
Calzi in 1996 R8], then extended by Bordley and LiCalzi in 20009], it
gives a quite innovative perspective in the frame of denisieory under
risk. In such a model the classical utility function is sesrmaaistribution
function of a (random) target, which the DM wants to overcosiid the
largest confidence possible. The principle of maximizatibthe expected
utility, in these settings, will then be applied by the DM be fprobability of
achieving her target. It is interesting to notice that, ie ¢me-dimensional
case, the model built in this way is still a utility model iretsense of Von
Neumann Morgenstern (NM), while in higher dimensions thasafiel, in
general, fails. One of the most important and amazing rasthis paper is
that, the multi-dimensional model that we are going to idtrce perfectly
fits with the utility models built according to the NM prindgs, although
we make use of non-additive measures to describe preferemadved in
it.

Consider, for instance, a utility functian increasing and with values
in [0, 1]. The degree of satisfaction of a DM adopting such a functids
then ranged, without loss of generality, in this intervahenre1 represents
full accomplishment of DM’s objective anlstand for a total failure. Now
consider a random variablg with values inR, with the meaning of a target
to fulfill, and consider its distribution function

Fr(z) =P(T < x).

As a function ranging iff0, 1], the utility « can be considered as the distri-
bution functionF’; of the targetl’. Then the degree of satisfaction of the
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DM will be a non-decreasing function according fp. For any prospect
X € Zitwill be of interest, then, to analyze and maximize the ditgan

P(T < X)
as the expected utility of the prospeXt In fact one has

E(X) = / w(X) dFy(z) = / P(T < z)dFx(x) = P(T < X).

The one-dimensional model naturally follows the one of exge util-
ity, but extensions of the target-based model to the mitiitibaite case
are not immediate and may not describe multi-attributetytilinctions.
Some proposal have been made in the recent years, for exémyier-
dley and Kirkwood £0], that considered multi-attribute target-based deci-
sional model with independent targets, by Tsetlin and VénKl41, 142,
that look for correspondence between a target-orientedutation corre-
sponding to a multi-attribute utility function, with pagtilar attention to the
two-dimensional case. Given two targéts 7> with cdf £}, F;, and joint
law F7i,, Tsetlin and Winkler describe their target-oriented tytifunction

by
(1, 2) = ur Fi(x1) + ueFo(xs) + (1 — uy — ug) Fia(xy, 2),

whereu,, u, are coefficient representing utilities of single targetsieed.
In our work we introduce and study a more extended versiorhnisf t

multi-attribute model. Our model considersorrelated target$;, ..., T,

and describes the importance of achieving each one of themeays of a
capacitym and its Mobius transfornmd/,,,. More in particular, letn be a
capacity defined on a indices s€t= {1,...,n}; forany/ C N, consider
now F; 7 as the probability of achieving exactly the targets withiced in

I and to fail with respect to the others. The utility functiortan now be

written as
u(x) = Y m(I)F;7(x).
ICN
By means of the Mobius transform ef, an analogous representation can
be given by
u(x) =Y My (I)Fi(x),
ICN
whereF; is the joint law of the targets whose indices ard inThe utility
is then described by the capacityand by the marginal contribution @f,
both evaluated over all the subsets\af The analysis of the capacity can
then be shifted to the study of its transfoff),,, analogously the joint laws
F; of the targets can be rewritten in terms of their connectimgutasC,
foranyl C N.

The concept of copula constitutes a very important tool s work.
Properties of the copulas are for first studied to betterridssthe target-
based multi-attribute model: to represent the interacioong goods in
which a DM invests and to define properties of risk aversiah@mrelation
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aversion of the DM. Moreover they draw a link between tatggeted model
and the Choquet integral, since, in the case when the cangempula
of the targets is the comonotonicity copula, the expressfdhe expected
utility is actually given by a Choquet integral.

Copulas play an important role also in the last part of thekwar
which we discuss the comparison between classical stochaster and
the concept oktochastic precedencd he stochastic precedence between
two real-valued random variables has often emerged inrdifteapplied
frameworks: it finds applications in various statisticaht&xts, including
testing and sampling (se&q]), reliability modeling, tests for distributional
equality versus various alternatives, and the relativéop@ance of com-
parable tolerance bounds (s&e 119). Furthermore, this concept arises in
the probabilistic context of Markov models for waiting tig® occurrences
of words in random sampling of letters from an alphabet @erences, see
[40, 41, 42, 43.

For two given random variableX; and X5, with distributionsF; and
F,, we have thafX; <,; X5 in the sense of the usual stochastic order if

Fi(xz) > Fy(x), atany pointz,

while we say thafX; stochastically precedeX; (X; <, X5) if

P(X; < Xy) >

Do | =

In this paper we consider a slightly more general, and cotalyi@at-
ural, concept of stochastic precedence and analyze itsoretawith the
notions of stochastic ordering. Motivations for our studiga from differ-
ent fields, in particular from the frame of Target-Based Ayggh in deci-
sions under risk. Although this approach has been mainlgldped under
the assumption of stochastic independence between TangetSrospects,
our analysis concerns the case of stochastic dependeat&ydgmodel by
means of a special class of copulas, introduced for the gerpgxamples
are provided to better explain the behavior of the targeedanodel un-
der changes in the connecting copulas of the random vasiab$pecially
regarding their properties of symmetry and dependence.

Along our work we also trace connections to reliability theavhose
aim is studying the lifetime of a system through the analgdithe life-
time of its components. In these settings, the target-basmtkl finds an
application in representing the behavior of the whole ab&arsd system by
means of the interaction of its components.

More in particular our work consists of five Chapters that lanefly
summarized as follows:

¢ In the first Chapter we outline some basic notions of monotone
(non-additive) measures and related concepts of integfhlis
topic has been of large importance in last decades and foamng m
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applications in decision theory under risk and game theopar-
ticular. Here we introduce the basic concept of capacity @od
vide an insight to what is called “theory of aggregation”.

¢ In Chapter 2 we fix attention on the concept of copula. Copulas
are the most common aggregation function that are used for ex
pressing joint laws of random variables in terms of their givaal
distributions. We will review some of the main charactecsof
such functions and provide examples useful for our work.

e Chapter 3 gives an overview of the theory of risk and decsion
der risk and uncertainty. It introduces the von Neumanngdor
stern theory of expected utility and gives a brief discussibout
the main features of behavior of Decision Makers facingyrisik
uations.

¢ In Chapter 4 we discuss the target-based approach to ttiétyry
and we show the related role of capacities and multi-dineradi
copulas. The multi-attribute model for target-based tytilntro-
duced in the work also provides connections with differezitif,
such as the ones of aggregation theory and system relalWi
provide extensions and application of such a model for bettdi
Furthermore, we investigate properties of risk aversioth eor-
relation aversion for Decision Makers who adopt this mode! f
establishing their utility in investments involving morgan one
asset.

e The results presented in Chapter 5 are focused on the compari
son between the classicgtbchastic ordeand the quite new con-
cept of stochastic precedenc@mong random variables. Such a
relationship is explained in terms of their connecting dapwand
relative properties and it is enclosed with an applicatomne-
dimensional target-based model for utilities. We also jates sev-
eral examples showing disagreement between stochasécamnd
stochastic precedence, principally due to propertiesew mag de-
pendence and symmetry of connecting copulas.

At the end of this work, a final Section will present concluglnremarks
and perspectives for future work.






CHAPTER 1

Non-Additive Measures

Non-additive measure theory has made a significant progressent
years and has been intensively used in many fields of appla&dematics,
in economics, decision theory and artificial intelligeneparticular, non-
additive measures are used when models based on classiasilires are
not appropriate.

In this work we will concentrate our attention in the possibpplica-
tions for the study of expected utility models. Von Neumand &orgen-
stern proposed inl45 a model that have been widely used for solving
decision theoretical problems through decades, thougtsitth limitations.
Savage in12( improved it significantly by including subjective probébi
ties. However, probabilities used in his model remainedtagd To make
expected utility models more flexible, additive subjecpvebabilities were
later replaced by non-additive probabilities, caltegbacitiesor fuzzy mea-
sures

Capacities used in expected utility models prove to be a flegyble
tool to model different kinds of behavior. Most Decision Mag, for exam-
ple, overestimate small and underestimate large prokiabiliFurther, most
Decision Makers prefer decisions where more informatioaviilable to
decisions with less available information. Such a behagi&nown asun-
certainty aversiorand turns out to be impossible to be expressed through an
additive model. On the other side, it is possible to desdvdmac properties
of risk aversionthrough additive model by transforming utility functions.
For a deeper analysis of the aversion towards risk it is rsacg40 pass to
non-additive measures.

Many other results and concepts related with additive nreasproba-
bility theory have natural generalizations to non-additiveory. Integration
with respect to nonadditive measures, for example, ca beiadeplacing
the usual Lebesgue integral with the more general concépray integral
Fuzzy integrals, in particular, are important tools usesidive problems of
decision under risk in finance as well as in game theory.

We start this Chapter recalling the very basic aspects dfglitity mea-
sures. We will then introduce the more general concepaphcityor fuzzy
measure obtained by dropping some of the main properties of the grob
bility measures, and many of its most important properf@sally we will
briefly discuss about integrals built with respect to fuzzgasures, with
particular attention to the well known Choquet integralr Bar purposes
we restrict our study to the case of finite sets.

1



2 1. NON-ADDITIVE MEASURES

1. The Inclusion-Exclusion Principle

In combinatorics, the inclusionexclusion principle is aieting tech-
nigue which generalizes the familiar method of obtaining ttumber of
elements in the union of finite sets. Giancarlo Rota said ir§f “One of
the most useful principles of enumeration in discrete podlg and com-
binatorial theory is the celebrated principle of inclug®olusion. When
skillfully applied, this principle has yielded the solutito many combina-
torial problems”. Actually, this basic combinatorial toalso finds many
applications in number theory and in measure theory andfopurposes,
will be very useful for the statement of the Target-Based ehéat utility.

We start by introducing some useful notation. We considersit of
indicesN := {1,...,n}, with I a subset ofV with cardinality|/|. Further-
more, we consider a collection of finite sét&;, ..., E,}. We will denote
with E; the Seﬂie]Ei.

The inclusion-exclusion principle can be used to calculagecardinal-
ity of the union of the set§E; };c v, as follows.

THEOREM 1.1 (Inclusion-Exclusion PrincipleLetE1, . .., E, be finite
sets. The cardinality of their union is given by
UE|=>_ ()" E| (1.1)
i=1 ICN

Notice that, when the cardinality of intersections is reguihamely
|Er| = ay, forall I C N), the formula can be rewritten as follows

;QEk - Zn: (—1)”1(6‘)@1. (1.2)

I:|I]=1
A similar formula can be found in probabilistic terms, wheuadying the
probability of events in a given probability space. For thigpose fix a
finite state spac@ and define by* its power set. In these hypothesis we
can introduce the following Definitions.

DEFINITION 1.2. A c—algebraF is a family of sets i2® such that

1) 0eF;
(2) for any setF, if £ € F then its complemerii € F;
(3) given a countable family of sef#,, },,>1, U, E,, € F.

DEFINITION 1.3. A probability measurever (2, F) is a functionP :
F —[0,1] such that

(1) for all setE € F,P(FE) > 0;

(2) P(Q2) =1 (andP(D) = 0);

(3) for any countable collection of mutually disjoint s¢fs, },,~1, one
has thatP(U,E,,) = ), P(E,) (countably additivity.
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A triplet (2, F,P) will be called a (finite)probability space Under
these hypothesis we are ready to introduce the probabilistision of the
principle.

PROPOSITION 1.4. Given a probability spac€(2, 7,P) and a finite

family of event§ F;, . .., E,,} € F, the inclusion-exclusion principle reads
]P’( U E) - Z(—n”lp(ﬂ E) (1.3)
i=1 ICN icl

For practical purposes we give explicit formula for the case 2, for
which the principle reduces to

P(E, U Ey) = P(E)) + P(E,) — P(E, N E). (1.4)

An analogous of formula (1.2) can be given in probabiliséttiags, when
the measure of each event depends only on its cardinalityhave

We remember that no hypothesis about dependence of e{&nis,
are given. In case that the events are mutually pairwisepenident, for
the countably additivity property of the probability meesuformula (1.3)

reduces to
IP( U Ek) = P(E).
k=1 k=1

2. Capacities

n

3 (- ((IL‘)]P’(EI). (1.5)

I:|I]=1

In this Section we will discuss about measures that do nagfitednom
the additivity, typical property of probability measur&y the way we will
concentrate our attention on the weaker property of monctgnand to its
extensions, by introducing the concepttefmonotonicity This property is
strictly linked to the inclusion-exclusion principle pegged in the previous
Section. We start considering the following

DEFINITION 1.5. Given a sef), a relationshipC over2® with the prop-
erties of reflexivity, antisymmetry and transitivity isledl a partial order
The set2? endowed with such relationship will be then called a palyial
ordered set, i.e. poset

The notation(2?, C) is sometimes used in literature to identify such a
poset. Over this structure the following property can besabered.

DEFINITION 1.6. Let the pose2® be given. A functiom: : 2% — R is
calledmonotonef and only if, for all setst, I € 2 such thatE C I,

m(E) <m(I). (1.6)
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It is straightforward to notice that any probability measenjoys the
property of monotonicity. Notice also that Definition 1.6hdae given for
set functions by replacin@ by any finite set of indexed/. Let nowk be
an integer such that > 2. We have the following

DEFINITION 1.7. Let K := {1,..., k}. A functionm is saidk—mono-
toneif and only if

m<g(Ej) > é(—w'“m(z@@), (1.7)

for all E; € 2%, j € K. Furthermore we will say that such a functienis
totally monotonef it is k—monotone for alk > 2.

For the special case= 2 formula (1.7) can be rewritten as

Such a property o2—monotonicity is also calledupermodularity Notice
that if m is k—monotone for somé > 2, than it isk’—monotone for any
k' < k. Notice furthermore that, ifn is a probability measure, we have
an equality in (1.7) (and in (1.8)), and such an equationadas with the
one of inclusion-exclusion principle given in (1.3) (respeely in (1.4)).
This fact is due to the additivity of the measure and can legpnéted in the
sense that any probability measurexs-monotone.

As we were saying at the beginning of this Section, we wantudys
functions that are not assumed to be additive. Even for sunhbtibns,
some useful properties can be given, such as the followisglttedue to
Chateneuf and Jaffray (se&l]).

PROPOSITION 1.8. Letm : 2% — R be ak—monotone function. If
m({w}) > 0 for all w € Q, then the functionn is also monotone (and
hence non-negative).

By means of Definition 1.6 and Proposition 1.8 we are now ready
introduce the following

DEFINITION 1.9. A fuzzy measurer capacityis a bounded function
m : 2% — R that satisfies
(1) m(0) = 0;
(2) m(E,) < m(E,) for any Ey, F, sets in2 such thatF, C E,.

Since a capacity is a bounded set function, it is usual taftescto the
set of valueg0, 1], so thatn(2) = 1. We now give some basic example of
capacities.

ExAampPLE 1.10.Let N = {1,...,n} as usual. For any setk C N
define
1, if E=N;
0 - ) )
m(E) = { 0, otherwise.
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Such a capacity is the minimal possible over the/¢etOn the other side
one can define the maximal capacity by a function

1 _J o, ifE= 0:
m'(E) = { 1, otherwise.

Both minimal and maximal capacities are exampleg of1 capacities, i.e.
capacities assuming only valuesand 1. This kind of capacities are much
used in reliability theory and describe the functioning efies and parallel
systems respectively. For further details on the topic feesxample[10].
Notice that the former enjoys the propertysaf—monotonicity, while the
latter is co—alternating, property that we introduce in the following fide-
tion.

DEFINITION 1.11. A functionm : 2 — R is saidk—alternatingif for
all families of subsets d? of £ elements

m(jQ(Ej) < é(—l)”'“m(g&), (1.9)

where once more< stands for the sefl,...,k}. A totally alternating
function isk—alternating for every: > 2.

A 2—alternating set function is also calledbmodularand its expres-
sion reads

DEFINITION 1.12. A fuzzy measure: : 2% — R is called symmetric if
its values depend only on the cardinality of the underlyiatssi.e. if for
any settl € 2%, m(E) = m(|E|).

Generally speaking to know a capacity down pat one neétipieces
of information, for a symmetric one the amount of informatimeeded is
drastically reduced t@2|. Under such condition one can rewrite equation

(1.7) as
|K|

w(Us)z X com (. @
jeEK I:|I|=1 1]
An analogous formula for condition (1.9) can be written inrai&r way.

DEFINITION 1.13. A functionm : 2% — R is saidsuperadditivef, for
any family of set§ F,, },,>1 € 2%,

m( U En) > m(E,). (1.12)

It will be called subadditiveif the inequality in(1.12) is reversed. The
functionm will be called additive if both superadditive and subaddti

A more general notion of additivity can be given for capadtas fol-
lows.
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DEFINITION 1.14. A fuzzy measure: : 2 — R is saidk—additive if,

for any family of sets dR with £ elements,, . . ., Ex,
> (—niEV (UE) = 0. (1.13)
ICK i€l

We introduce now the concept dtial of a fuzzy measure.

DEFINITION 1.15. Given a fuzzy measure : 2% — [0,1], its dual
measuren* is defined by

m*(E) =1—-m(E°), (1.14)
for all setsE € 2. The setE*, as usual, stands for the complemenfbf

The dualn* is a fuzzy measure itself and can enjoy all the properties of
fuzzy measures. In particular, if a fuzzy measures superadditive its dual
m™* will be subadditive and, viceversayif is subadditive its dual will enjoy
the property of superadditivity; th is supermodular them* is submodular
and reciprocally; finally if one of them is=—monotone the other one will
be k—alternating (seedb] for further details). An example in this direction
is given by the minimal and maximal capacities introducedvab It is
straightforward to notice that one is the dual of the othex.on

Capacities may arise by manipulating probability measwag$ollows.

EXAMPLE 1.16. LetP a given class of probability measures defined on
(Q, F). For any givenE C (, the functions

Meup(E) = sup P(E)
PeP
Mint(E) = H}>r€17f>]P>(E>

are examples of capacities built in this way. Notice that{or2} the first
capacity is submodular while the second is supermodulanthiéamore
they are reciprocally dual measures.

Capacities can be also obtained through the compositiopafizability
measure® with adistortion~, in the following way.

DEFINITION 1.17. LetP a probability measure defined on a state space
(2. Let furthermorey : [0, 1] — [0, 1] be an increasing function with(0) =
0 and~(1) = 1. The functionn = ~ o IP is called distorted probability
while ~ is the correspondingistortion

The functionm is actually a capacity and satisfies the following prop-
erty.

PROPOSITION1.18. A function built by means of a probability measure
and a distortion, as in Definition 1.17, is monotone and hemoapacity.
Furthermore, ify is convex then the capacity is supermodular; withy
concavejmn is submodular.

For the proof of the proposition above and for further dstaée for
example #4].
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3. Mobius Transforms

Due to August Mobius (1790 - 1868), the so called Mobiusnfarm
is a particular and very useful tool that belongs to numbeotty but finds
many applications also in other fields, especially in the @ingon-additive
measures. In this Section we introduce only the basic caacegeded for
our dissertation. For further details sd4.§.

Let O be a poset, witl2® the associated power set. To any function
m : 2% — [0, 1] (or more in general with values iR) it can be associated
another functionV/,,, : 2 — [0, 1] by

M,,(I) IZ(—l)“\J'm( U Jk) forall I € 2°. (1.15)

JCI k:JpCJ

If furthermore(? is finite, equation (1.15) can be rewritten as

My, (1) =Y (=1)MIm(J) forall I € 2%, (1.16)

JCI

We will often refer to(2 as to a finite index sev := {1,...,n}. A par-
ticular feature of the above correspondence is that it istor@ne, since
conversely

m(I) =Y My(J) forallle 2 (1.17)
JCI
The validity of formula (1.17) is proved by Shafer ihg].

The Mobius transform is very useful in the study of capasitsince
many of the properties of such measures can be expressegythtioeir
Mobius representation. First of all notice that any seR®fcoefficients
{m(E)}gcq does not necessarily correspond to the Mobius transforan of
capacity o). The boundary and monotonicity conditions must be ensured
(see B1)), i.e. we must have

My, (0) =0, > My(J)=1, and Y M,(J)>0VIe2"
JCQ JCI
(1.18)
A very important property concerms-monotonicity and reads as follows.

PROPOSITION1.19. A fuzzy measure: is k—monotone if and only if
its Mobius transform\/,,, is non-negative for any set of cardinality less or
equal thank i.e., for all E € 2% with |E| < k, M,,(E) > 0.

As a corollary of the above proposition, we can say that thabiMs
transform of a totally monotone fuzzy measure is always negative.

PROPOSITION1.20. A fuzzy measure: is k—additive if and only if its
Mobius transform\/,,, of order greater thark are null i.e., for all/ € 29
with |I| > k, M,,(I) = 0, andM,,(J) > 0 for at least one element with
|J| = E.
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The result above follows directly from Definition 1.14 fadditivity.
Finally, an alternative useful representation, given bgf&hin [126, is the
following.

DEFINITION 1.21. The co-Mbius representatioi/,, of m is defined
by
My (1) =Y m(J). (1.19)

JDI

This definition let to an useful property linking the transfoof a ca-
pacitym to its dualm*.

PROPOSITIONL.22. Letm andm* a pair of dual measures and,,, and
M, be their Mdbius representation respectively. Then, for dny N,

My (I) = (1) " () = (=) M, (1), (1.20)

4. Interaction Indices

In the framework of cooperative game theory, the concephtafrac-
tion index, which can be regarded as an extension of thatloéyhas been
recently proposed to measure timeraction phenomenamong players.
The expression “interaction phenomena” refers to eithemgementarity
or redundancy effects among players of coalitions resgftiom the non-
additivity of the underlying game. Thus far, the notion akiraction index
has been primarily applied to multi-criteria decision nmakin the frame-
work of aggregation by the Choquet integral. We will provateinsight of
these concepts in the following Sections.

For a better comprehension of the interaction phenomenaieddy
a capacity, several numerical indices can be computed g£ee9f). In
the sequel, we present two of them in details, 8t@pley valuand the
interaction transformThe Shapley value was introduced in 1953 by Lloyd
Shapley and itis a very important tool in cooperative garttesnain func-
tion is that of defining the importance of a single player witihe coalition
to which he belongs. As an extension of the Shapley valuanteeaction
transform assigns importance to subsets of any cardir@itgerning such
a given coalition. Further information on the topic can barfd in [L04]
and [128.

Shapley noticed inl28 that the overall importance of a criteriore N
into a decision problem is not solely determined by the numigg:}), but
also by allm(E) such that: € E. Indeed, we may havei({i}) = 0,
suggesting that elemenis unimportant, but it may happen that for many
subsets € N \ {i}, m(E U {i}) is much greater tham({i}), suggesting
that is actually an important element in the decision. To overedhe
difficulties in attributing the right weight to each componeof a coalition,
Shapley proposed a definition of a coefficient of importaiicefollows.
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DEFINITION 1.23. Theimportance indexf criterion ¢ with respect to
m is defined by:

: n—t—1)! :
o) = 3 " g U me) way
ECN\{i} '
wheret = |E|. The Shapley values the vector of importance indices
{9,,(1),...,9,,(N)}.

Having in mind that, for each subset of critetia € N, m(F) can
be interpreted as the importancefofn the decision problem, the Shapley
value ofi can be thought of as an average value of the marginal cotitibu
m(E U {i}) — m(FE) of criterioni to a subsef not containing it. To make
this clearer, it is informative to rewrite the index as foli

n—1

D, (i) := %Z ﬁ > ImEU{i})-m(E).  (1.22)

t=0 \ t ) ECN\{i}:|E|=t

Afundamental property is that the numbeéxs(1), ..., ®,,(n) form a prob-
ability distribution overN, in fact

¢, (i) >0Vie N and > @,(i) =1
i=1
Properties about the Shapley value are given by the follgwin
THEOREM 1.24. The numberspb,, (i), with m : 2V — [0,1], i =
,...,n, satisfy the following conditions:

(1) are linear w.r.t. the fuzzy measure: there exist realstantsp’;
(E C N) such that

(i) = Y ppm(E);
ECN
(2) are symmetric: for any permutationon N, we have
D, (1) = Pom(0(1));
(3) fulfill the null criterionaxiom:
VE C N\ {i} m(EU{i}) =m(E)= ®,(i) =0;
(4) fulfill the efficiency axiomi.e.

Zcpm(z) = 1.

Let us comment on the axioms presented in this charactiemzatirst
of all we ask the importance indices to be linear w.r.t. theesponding
fuzzy measure. Next, the symmetry axiom demands that theesdre
independent of the name (label) given to each criterion. thivd axiom,
which is quite natural, says that when a criterion does notridmute in

1
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the decision problem then it has a zero global importance. |ast axiom
naturally acts as a normalization property.

A very useful property consists in the possibility of rewrg Shapley
value in terms of the Mobius representatiomaofas

1
Oy, (1) = Z. 1 Mn(EU{3}). (1.23)
ECN\{i}

Another interesting concept is that of interaction amontgca. Of
course, it would be interesting to appraise the degree efantion among
any subset of criteria. Let'’s start considering a pair decia{:, j} € N. It
may happen that.(i) andm(j) are small and at the same timé {3, j}) is
large. Clearly, the numbeF,, (i) merely measures the average contribution
that criterion: brings to all possible combinations, but it does not explain
why criterioni may have a large importance. In other words, it gives no
information on the interaction phenomena existing amormgre. Sup-
pose that and; are positively correlated @ubstitutablgresp. negatively
correlated ocomplementarny Then the marginal contribution gfto ev-
ery combination of criteria that containshould be strictly less than (resp.
greater than) the marginal contributionofo the same combination when
1 is excluded. Thus, depending on whether the correlationdsst; andj
is positive or negative, the quantity

(Aiym)(E) :=m(E U {i,j}) —m(EU{i}) —m(EU{j}) +m(E)

is<0or>0forall E C N\{i,j}, respectively. We call this expression the
marginal interactionbetween; and;j. Now, an interaction index fofi, j}

is given by an average value of this marginal interaction.rdflushi and
Soneda in104] proposed to calculate this average value as for the Shapley
value.

DEFINITION 1.25. Theinteraction indexf criteriai and; related tom
is defined by

n—t—2)t!
D M e o RO N
ECN\{i,j}

We immediately see that this index is negative as soonaasl j are
positively correlated or substitutable. Similarly, it isgitive when: and j
are negatively correlated or complementary. Moreovegstlieen shown in
[65] that [,,,(4, j) € [—1,1] for all i, j € 2V. The interaction index among a
combinationF, of criteria was introduced by Grabisch i85 as a natural
extension of the casgs,| = 2 and lately axiomatized by Grabisch and
RoubensT1].

DEFINITION 1.26. The interaction index of; (| E»| > 2) related tom,
is defined by

e = 3 MR Gem ). 029)
E1CN\Es ’
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wheret, = |E;| and

(Ap,m)(Er) == > (1) "m(E; U Ey).

E3CE>

Finally, it can be also written, in terms of the Mobius reg@etation, as

1
I, (E2) = Z P My (Ey U Ey). (1.26)
EICN\E; '

There is a rich literature regarding this kind of index irdihg, for ex-
ample, theBanzhaf indexandnessaind ornessindices,vetoandfavor and
others more. For such a literature reference is madéxp94.

5. Aggregation Functions

Aggregation functions became in the last decade a very itapofield
of mathematics and information sciences. The idea of aggjmygfunc-
tions is rather simple: they aim to summarize the infornrationtained in
a vector ofn values by means of a single representative one. Starting fro
the simplest example, the arithmetic mean, many other kaggdsegation
functions were applied in various sectors of research.

The basic feature of all aggregation functions is their remmelasing
monotonicity, as fuzzy measures have. Another axiomatisiraint of ag-
gregation functions concerns the boundary conditionsiesging the idea
that “minimal (or maximal) inputs are aggregated into miaifgmaximal)
output of the scale we work on”.

By these first definitions, the class of aggregation funstiomns out to
be really huge and the problem of choosing the right functosra given
application really difficult. The study of the main classésaggregation
functions is then very complex, so we just report some of tammexamples
and features relative to such operators. More informatimutaggregation
functions and operators can be found, for examplelh [

Before recalling the basic definitions, it is opportune toaduce some
notations. We will us& for the extended real ling-oo, oo], while T will
stand for a generic closed subsetRf The symbolN, when not dif-
ferently specified, will refer to a set of indices withelements, namely
N :={1,...,n}.

DEFINITION 1.27. An aggregation function ifi” is a functionA™ :
" — I that

(1) is non-decreasing in each variable;
(2) satisfiednf,c; A™(x) = inf I andsup,; A™(x) = sup;
(3) AW (x) =z forall z € L.

The integer(n) represents the number of variables consideredAfor
From now on, when no possibility of mistakes may occur, we avitit to
write it. Now we introduce some basic aggregation functions
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¢ the arithmetic mean AM, defined by
1 n

AM(x) == — g ;

(x) n < Ly

that represents an aggregation function for any doriigin
e the producflI(x) = [[;_, #; on[0, 1] or on[1, co];
e the minimum and the maximum, defined on dnyespectively by

Min(x) = min{zy, ..., x,} andMazx(x) = max{xy,..., T, };

e the k—order statistic¥) S, : I" — 1, defined for any choice df
asOS(x) = z), Wwherez, is thek—th elements of the ordered
vector(z(y, . .., Tm));

e thek—th projectionP;, : I" — T with Py(x) = xy;

e for anyi € N, theDirac measurecentered on, defined for any
E CQas

lifie FE,
0i(E) = { 0 otherwise
¢ thethreshold measure, defined, for any integetr € N, by

_J LIf[E| = &,
Te(E) = { 0 otherwise

As for fuzzy measures, it can be introduced tlual of the aggregation
function, in the special case in whiéls limited. If not specified, from now
on we will assumé = [0, 1].

DEFINITION 1.28. Let A : " — T be an aggregation function. The dual
of A is a functionA? : I — I such that

AMx)=1—A(1 —ay,...,1—x,). (1.27)

Notice that the dual of an aggregation function is an agdregéunc-
tion itself. Moreover it can be easily extended to any limitgerval|a, b] C
R,asAd(x) =a+b—Ala+b—x1,...,a+b—xz,).

The aggregation functions may have many properties thariefyblist
below.

DEFINITION 1.29 (Monotonicity). The aggregation functiod : 1" —
Tisstrictly increasingn each argument if for any two different vectarand
x' with x < x" (z; < « for at least for one indeX) one hasA(x) < A(x').
It is calledjointly strictly increasingf for anyx, x’ € 1", such that:; < z
for all entriesi = 1,...,n, A(x) < A(X').

Itis immediate to notice that any strictly increasing aggwteon function
is also jointly strictly increasing, while the viceversas true. The product
ITon |0, 1] is an example of aggregation function that has the lattqygnty
but not the former.
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DEeFINITION 1.30 (Lipschitz condition).Let || - ||: R* — R, be a
norm. If A : I" — I satisfies
[A(x) = A)] < clx -y (1.28)

for all x,y € R" and for some positive constantthen A is called Lips-
chitzian. The infimum valuefor which equatior(1.28)holds is called the
Lipschitz constant

Important examples of norms are given by thenorm, i.e. the Min-
kowski norm of ordep

el = () " (1.29)

i=1

and its limit cas€|x||«, := max; |z;| which is the Chebyshev norm. Notice
that the aggregation function®in, Max, AM are Chebyshev norms of
constantl, while IT on [0, 1] is 1—Lipschitz w.r.t. to normZ, but no more
thann—Chebyshev.

DEFINITION 1.31 (Symmetry).The aggregation functiod : 1" — T is
symmetricif A(x) = A(o(x)) for any vectorx € 1™ and any permutation
o of the elements of the vectey namelyo(x) = (2, ..., Zw)).

The symmetry property is essential when considering ciitigrat do
not depend on the order in which they are chosen, maybe betashave
the same importance or the original importance attribujeaifbanonymous
Decision Maker is unknown. Notice that all the aggregatigrctions intro-
duced so far, a8/in, Max, AM, Il and so on, are symmetric. An example
of non-symmetric aggregation function is given by Weighted Arithmetic
Mean

WAM(x) =Y wa, (1.30)
=1

where the weights); are such tha} ", w; = 1. This aggregation function
represents the simplest way to assess importance to diffenieeria in a de-
cision problem. Notice that it is a simple extension of théhametic mean
in fact, when all weights are equal tgn, it trivially reduces toAM. Any
non-symmetric function can, anyway summarized by reptatire vari-
ablesz; with the corresponding order statistieg), ¢ = 1,...,n. One of
the simplest examples in this direction is given by @elered Weighted
Averagefunction defined as

OW Ay (x) = Z Wil (7). (1.31)
i=1

This function trivially reduces tdl” AM when considering an ordered vec-
tor and, in turn, toA M if symmetrized.
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DEFINITION 1.32 (Idempotence)An idempoteniaggregation function
A :T" — Tis one that satisfied(n - z) = x, where withn -  we stands for
a vector with all identical componenisi.e. (z1,...,x,) = (z,..., ).

Many of the aggregation functions mentioned above, Hke, W AM,
OSy, Py, Min, andMax enjoy this property while, for exampl#, doesn't.

DEFINITION 1.33 (Associativity).Let A : 12> — T an aggregation func-
tion. Then itis calledhssociativef for all x1, x5, 23 € I we have

A(A(Qfl,l'g),l’g) = A(Qfl,A(l‘z,Jfg)). (132)

This property can be suitably extended to genericary aggregation
functions, as shown ir7D]. Such functions are easy to build, starting from
any2—ary associative one, once all inputs to be aggregated axgrkno

Other interesting properties to highlight regard the eletm¢o be ag-
gregated.

DEFINITION 1.34 (Neutral element)An element € I is calledneutral
elementof an aggregation functiod : I" — I if A(z;e) = x, where the
vectorz ;e is the one with all components equald@xcept the—th one
which iszx.

DEFINITION 1.35 (Annihilator). An element: € I is calledannihilator
elementof an aggregation functior : I" — I if for any vectorx € I" such
thata € {z1,...,z,} (atleast one element of the vectois equal toa) we
haveA(x) = a.

Finally, like fuzzy measures do, aggregation functions reajy the
following properties.

DEFINITION 1.36. An aggregation function is called
e additive, if for anyx,y € I" such thatx + y € 1" we have

Ax+y) = Ax) + Ay);

itis then superadditive (subadditive) if the equality igleeced with
the symbol> (<);
e modular, if for anyx, y € 1" we have

AxVy) +AxAy) = Ax) + Aly);

itis supermodular (submodular) if the equality is replaeath the
symbol> ().

The arithmetic meam M satisfies all the four properties mentioned
above, whildI on [0, 1] is supermodular and superadditive, but neither mod-
ular nor additive.
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6. Fuzzy Integrals based on Aggregation Functions

Fuzzy measures can be seen as a tool useful to resume alltles @&
a function to a single point. To this aim Sugeno 13§ extended such a
concept to the one of fuzzy integral. These integrals arkt bnithe real
with respect to a fuzzy measure, like Lebesgue integraliis \with an or-
dinary (additive) one. As an ordinary integral can be seendartain sense
as the average of a function, a fuzzy integral can be seen asegiaging
aggregation operator. At the same time the classical nationeasure ex-
tends the notion of weight to infinite universes, and the lsgie integral on
a finite universe coincides with the weighted arithmetic me&herefore,
the existence of more general notions of measure than theictd additive
one, together with the appropriate integrals, offer a nealmmeof aggrega-
tion functions when these integrals are limited to a finiteverse. Since
additivity is replaced by monotonicity, we deal with monméameasures al-
though the most common name, which we will use, is capacitspduced
by Choquet in 4] and resumed in Section 2. The term fuzzy measure
introduced by Sugeno is often used in the fuzzy set community

There are many types of integrals defined with respect to actgp
The most common ones are the Choquet integral and the Sugegal,
leading to two interesting classes of aggregation funstiaeveloped in
this section. To introduce these arguments we will need swtadion first.
Let N :={1,...,n} an set of indexes of elements.

DEFINITION 1.37. For any subsef C N, e; represents theharacter-
istic vectorof I, i.e. the vector of0, 1}" whosei—th component ig if and
only if: € 1.Geometrically, the characteristic vectors are ttfevertices of
the hypercubéo, 1]™.

In game theoryV represents a group afplayers, whose subgroups
indicatecoalitionsamong such players. The functiorallows to assign to
each coalition the proper worth (for example the amount oh@ycearned
if the game is played). One can also definedhanimity gamdor / C N
as the game, such that,(7) = 1 if and only if / C I, and0 otherwise.

DEFINITION 1.38. A pseudo-Booleafunction is a function defined as
f:{0,1}" = R.

Any real valued set functiom : 2% — R can be assimilated unam-
biguously with a pseudo-Boolean function. The correspondés straight-

forward: we have
Fl)=> m@) [z ] - ) (1.33)

ICN el igl

for x € {0,1}", andm(I) = f(e;) forall I € N. In particular, a pseudo-
Boolean function that corresponds to a fuzzy measure, is@sing in each
variable and fulfils the boundary conditiofif0) = 0 and f(1) = 1, where

0 indicates the vector with all null components, whils components are
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all equal tol. Hammer et al. in72] showed that any pseudo-Boolean
function has a unique expression as a multilinear polynbimia variables:

fla) = Mu() [] . (1.34)
ICN iel
for z € {0,1}". The coefficients\/,,(I) are the ones of the Mobius trans-
form, defined in (1.16). In game theory, these coefficienéscalled the
dividendsof the coalitions ingamem (for further details see, for exam-
ple, [109). In view of Definition 1.37, equation (1.34) can be seentw.r
unanimity games as

o(I) = fler) = Y Mu()) [Jler)i = Mu(J)vs(I).  (1.35)
JCN ieJ JCN
Thus, any game has a canonical representation in terms of unanimity
games that determine a linear basisifd@extensions of this topic to general
(infinite) spaces of players can be found @d])).
Let now m be a fuzzy measure defined on a discrete/¢etind let
x1,...,T, € R. We are now ready to introduce the following

DEFINITION 1.39. The (discrete) Choquet integral of a functian:
N — R, with respect to a fuzzy measureon N, is defined by
Chyn(x) 1= _[16) — z-n]m(o(i), ..., o(n)) (1.36)
=1
where, as usual;;) < ... < x(,) andx ) := 0. An equivalent formulation
of the integral can also be given

Chp(z) = Zx(i) m(o(i),...,o(n)) —m(e(i+1),...,0(n))] (1.37)

Notice that the link with the Lebesgue integral is strongycsi both
coincide when the measunre is additive:

Chp(x) == i m;x;.
i=1

In this sense the Choquet integral can be seen as a gengoalind the
Lebesgue integral.

DEFINITION 1.40. The (discrete) Sugeno integral of a function N —

0, 1], with respect to a fuzzy measureon N, is defined by
St (x) = \/[x(i) Am(o(i),...,o(n)). (1.38)
=1

Given a fuzzy measure on IV, the Choquet and Sugeno integrals can
be regarded as aggregation operators definé'and|0, 1|, respectively.
But they are essentially different in nature, since thestatt based on non-
linear operatorsiiin andmax), and the former on usual linear operators.
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It can be said that the Choquet integral is suitable for caldaggregation
(where numbers have a real meaning), while the Sugeno aitegems to
be more suitable for ordinal aggregation (where only ordakes sense).
One of the common properties of the two integrals, insteadhat both
compute a kind of distorted averagexqt . . ., z,,.

Let now introduce another kind of integral useful for its pimity in
aggregation models. Let us consider first the additive funeasurep,
derived from the Shapley valude,, defined in 1.23:

p(1) = Pu({i}), (1.39)
i€l
for any set/ C N. Then we can define thghapley integrahs follows.

DEFINITION 1.41. The Shapley integral of a function: N — [0, 1]

with respect to a fuzzy measureis defined by
Shin () =Y Pm({i})zs. (1.40)
1EN

Thus defined, the Shapley integral is actually a weightethraetic
mean operator’ AM,, whose weights are the Shapley power indicgs-
®,,({i}), foralli = 1,...,n. Starting from any fuzzy measure, we can
define the Shapley additive measure and aggregate by thesporrding
weighted arithmetic mean. Note that, contrary to the Chbgod Sugeno
integrals, the Shapley integral w.r.t. the fuzzy measuis not an extension
of m. Indeed, for any C N, we generally have

Sha(er) =Y ®m({i}) # m(D).
i€l
More general definitions and properties can be found, fomgse, in
[62] and [63].
7. The Choquet Integral and its Extensions

In what follows, we give particular attention to the Choqumggral, its
extensions and properties. We start recalling that Lou@$21] observed
that anyz € R} \ {0} can be written uniquely in the form

k
v =Y \eg, (1.41)
=1

with \; > Oforalli =1,...,kand() # E; C ... C Ex C N. Hence any
function f : {0,1}" — Rwith f(0) = 0 can be extended tf : R} — R,
with f(0) = 0 and

k
flz) = Z Aif(ep,). (1.42)

Notice thatf it is unique and represents an extensiornf aince f = f on
{0,1}"™. Such an extensiofiis called the Lovasz extension of the function
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f and it benefits of many interesting properties (that on maj; fior exam-
ple, in [97]). The most important, for this dissertation, are the foilng.

THEOREM 1.42. Let f : {0,1}" — R, with Lo\asz extensioffi : R? —
R. For anyo € Xy, set of all the permutation oV = {1,...,n}, and for
anyr € R" we set

Then the following are equivalent:

(1) f is submodular;
(2) fis convex;

(3) we have
f(x) = f(0) + max ¥, (2), for o € RY;
oELN
(4) we have

f(z) = f(0) + max U, (z), forz € {0,1}".

In this view we have that the convexity (concavity, linegritf / corre-
sponds to the submodularity (supermodularity, modulpatyf. The proof
of the Theorem can be found i131. From (1.43) we get a useful for-
mulation for the extension of pseudo-Boolean functionat e give in the
following

PROPOSITION1.43. Let f a pseudo-Boolean function. Then its Bex
extensionf is given by

fla)=>" M (1) N\, (1.44)

ICN i€l

for x € R’}. The coefficientd/,, are the Mdbius representation of.

What immediately follows from (1.44) is that, whenis a fuzzy mea-
sure onN, the Choquet integral’h,,, on R’} defined in (1.36) is nothing
else than the Lovasz extension of the pseudo-Booleanifumgf, which
representsn:

Chup = fim (1.45)

onR”. Thus, the Choquet integral is a piecewise affine functiofdonj”;
moreover it can be seen as the unique liner interpolationéehtces of the
hypercub€0, 1]*. In fact, the vertices 0f0, 1] correspond to the vectors
er, SO that

Chp(ef) =m(I) foralll CN.

Moreover, we clearly see thath,, is an increasing function if and only if
m is as well. Proposition 1.43 can be rewritten as follows @dse [31]).
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PROPOSITION1.44. AssumeB D [0, 1]. Any Choquet integral’h,,, :
B™ — R can be rewritten as

Chy(x) =Y My (I) )\ 2, (1.46)

ICN iel
wherex € B" and M, is the Mbbius transform of the capacity.

Notice that the integral is unique since the representatignof m is.
Many other properties of Choquet integral can be found @rditure, as the
ones listed below.

PROPOSITION1.45. The Choquet integral satisfies the following prop-
erties (seq95] for further details).
(1) The Choquet integral is linear with respect to the capador any
two capacitiesn,, m, on N and any two real numbers, 3 > 0
we have

Chamy+pms = - Chyy + 8- Chy,.

(2) The Choquet integral is monotone w.r.t. capacities: day two
capacitiesm andm’ we have thatn < m/ if and only ifCh,, <
Chp.

(3) fmisa0 — 1 capacity then

Chm(x) = \/ /\xi, vx € [0, 1]".
ICN:m(I)=11i€l
(4) The Choquet integral'h,,, is symmetric if and only if the capacity
m IS symmetric.
(5) The Choquet integral is invariant under positive affirmsforma-
tions: for anyc > 0 and anya € R,

Chp(cx + aly) = ¢ - Chy(x) + a.

(6) For any capacityn we haveCh} = Ch,,, i.e. the dual of the
Choquet integral with respect to the capacity is the Choquet
integral with respect to the dual of the capacity

A property that, in general, a Choquet integral lacks of & tne of ad-
ditivity, since the corresponding capacityis not additive itself. However
there is a particular situation in which the property of éigidy is granted,
that is when the integrand vectors satisbmonotonic additivityThere are
many definitions of comonotonic additivity (briefly said conotonicity)
as, for example, the following regarding real vectors.

DEFINITION 1.46. Two vectorsx,x’ € R" are said comonotonic if
there exists a permutatianon N that gives the same order to both vectors,
e. 2,1) < ... < Tom) and:p;(l) <...< x’a(n). Equivalently we can say
that there are no couples of indicésj for whichz; < z; andz] > z/; at
the same time.

Under this hypothesis we have the following result.
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PROPOSITION 1.47. If x,x" are comonotonic vectors @& then, for
any capacitym,

Chy(x + %) = Chy (%) + Chp (X). (1.47)
The following gives a characterization of the Choquet irdég

THEOREM 1.48. Let F' : R® — R be a given function. Then there
exists a unique capacity. such thatF' = Ch,, if and only if the functior¥’
satisfies the following properties:

(1) comonotonic additivity;
(2) nondecreasing monotonicity;
(3) boundary conditions, i.&'(0) = 0, F((1) = 1.

Moreover,m is defined througlt’ asm([) := F(1;) foranyl C N.

This result was showed by De Campos and Jorg8%h [In their work
they assumed a further condition of positive homogeneiynddion that
can be deduced from hypothesis (1) and (2). The proof in théramus
case is due to Schmeidler and can be found &¥].

We now present the connections between the Choquet intagdathe
most common aggregation functions introduced in the pres/iection.

PROPOSITION 1.49. Let m be a capacity and considdr = R. The
following holds

(1) Ch,, = Min if and only ifm = my;, IS the minimal capacity;
in the same way we can state th@h,, = Max if and only if
m = Mpjaz,

(2) Ch,, = OSi, thek—th order statistic, if and only if the capacity
m is the threshold measure ;. 1;

(3) Ch,, = Py, the k—th projection, if and only ifm is the Dirac
measurey;

(4) Ch,,, = W AM,, if and only ifm is additive, withw; = m({i}) for
alli e N;

(5) Ch,, = OW A, if and only ifm is symmetric, with weights; =
m(Ep_iy1)—m(E,—;)foralli =2,... ,nandw; = 1-"", w;;
any subset?; of 2 is such that F;| = ¢ and its measuren(E) =
S Waj-

We already mentioned the problem of the complexity of theacapm:
one requires, in fac™ — 2 information to know it completely. To reduce
this problem significatively one can make use of capacitias ¢njoy the
property ofk—additivity, like proposed by Grabisch i%%]. The Choquet
integral considerably simplifies in this case: in particukhen the underly-
ing capacity i —additive (or equivalentlyy is a2—order fuzzy measure),
we have the following result, due to Marich@y].
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THEOREM 1.50. Letm a 2—order fuzzy measure aN. Then the best
weighted arithmetic mean that minimizes

/ [Chp(z) — WAM,(2)]? dx (1.48)
[0,1]

is given by the Shapley integr&h,,,. Moreover, ifB D [0, 1], we have

Chon(x) = Shon() — % S LDV — s Awgl, (149)

{i,J}CN
forx € B".

Equation (1.49) shows that the Choquet integral can be decsed in
a linear part, represented I$4,,, and a non-linear part divided, in turn,
into 2 components: the one considering positive indi€gs, j}) and the
second one consisting in the negative indices. The posiave for which
I({i,j}) € [0, 1] implies a complementary behavior, which means that both
criteria need to be satisfied to have a better global scoeenehative com-
ponents/ ({i, j}) € [—1,0] describe negative interaction between the cou-
ples{i, j}, for which the components are substitutable, i.e. thefsatisn
of eitheri or j is sufficient to have a significant effect on the global score.
A more specific result in this direction is showed by Grabiscf64].

THEOREM 1.51. Letm be a2—order fuzzy measure o and assume
B 2 [0,1]. Then we have

() = 3 (®alli) =5 3 Mal{i )]

€N JEN\{i}
+ > D@ ve) - Y La{i i) A
Im ({4,5}1)>0 Im ({i,5})<0

(1.50)

forall z € B". Moreover, we havé,,,({i}) — 5 3. n gy ({4, 7}) > 0
foralli € N.

This decomposition emphasizes the role of the positive aghtive
components: a Choquet integral with strong positive (negatomponent
will be strongly conjunctive (disjunctive); if the valuds, ({7, j}) are low
the integral will be, with good approximation, linear. Inghview it is
possible to write the integral as the sum of two componeis\aly

Chp(z) = Chyr (x) + Chyp— (), (1.51)

wherem™ andm ™ are defined through their interaction representation

Lt (E) = max{I(E),0} I (E) = min{I(E),0}.
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Due to linearity ofI,, on set functions we haves = m™ + m~ and
equation (1.51) holds true. More in particular it can be rdem as

Chin(z) = Y My (BE) Nwi+ Y My (B)\/ @, (1.52)
ECN i€k ECN ieE
wherel,,+ represents the Mobius transform of the positive component
while M,,,- is the co-Mdbius representation of .

A more general extension of formula (1.50) can be given fgrianad-
ditive measuren. Grabisch in §4] reports an example of ord8r For such
measures it seems that an interpretation similar to thagus\wne can no
longer be given.

Many other extensions of the Choquet integral, that we de@aonsider
in this work, have been presented in literature in the lastg,esee for exam-
ple theconcave integraproposed by Lehrei80)], or theuniversal integral
by Klement et al. in$4].



CHAPTER 2

Copulas: an overview

Copulas are specific aggregation operators, that are dpjliaggre-
gate marginal distribution functions into an output joimgtdbution func-
tion. Nelsen in 107 referred to copulas as “functions that join or couple
multivariate distribution functions to their one-dimemsal marginal dis-
tribution functions” and as “distribution functions whosee-dimensional
margins are uniform”. But neither of these statements idfiaitlen, hence
we will devote this Chapter to giving a precise definition opalas and to
examining some of their elementary properties.

1. Basic Concepts and Definitions

We first define subcopulas as a class of grourzlethcreasing func-
tions with margins; then copulas as subcopulas with donffaia [0, 1]2.

DEFINITION 2.1. A two-dimensional subcopula (@—subcopula, or
briefly, a subcopula) is a functiofi’ with the following properties
(1) Dom(C") = 51 x Sy with S1, Ss subset of containing0 and 1;
(2) C'(u,1) =wandC’'(1,v) = v, forall u,v € I;
(3) C’is grounded, i.eC’(0,v) = C'(u,0) = 0 for all u,v € I,
(4) C" is 2—increasing, namely for eveny,, u,, v1, v, € I such that
U1 < Usg andv1 < Vg,

VC/([U, V]) = O/(UQ,UQ) — C/(UQ,Ul) — O/(Ul,vg) + C’(ul,vl) Z 0.

The valueV/,([u, v]) can be seen as the volume of the subcopula over
the set|uy, us] x [v1,v5]. Notice that a&2—increasing function is also in-
creasing in each variable.

DEFINITION 2.2. A two-dimensional copula (or briefly a copula) is a
2—subcopulaC whose domain i$2. Equivalently, a copula is a functiofi
from 12 to I with the following properties:

(1) Foreveryu,v € I,C(u,1) =uwandC(1,v) = v;
(2) C is grounded an@—increasing.
We give now some general properties of copulas, for refereae 107].

PROPOSITIONZ2.3. The following hold for any copul&'.

e (' isincreasing in each argument;
e (is Lipschitz (and hence uniformly) continuous;
e fori = 1,2, the derivative$);C exists a.e. and < 9;,C < 1;

23
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e The functiong — 0,C(u,t) andt — 0,C(t,v) are defined and
increasing a.e. or.

There are three distinguished copulas, namely

W(u,v) =max(u+v—1,0); M(u,v)=min(u,v); II(u,v)=uv,
(2.1)
see Figure 2.1. Copula¥ andW are called thé-réchet-Hoeffdingipper
and lower bounds, respectively, since for any cogukand anyu, v € I we
have
W(u,v) < C(u,v) < M(u,v). (2.2)

FIGURE 2.1. CopulasiV, 11, M respectively

One of the most important results about copulas, that ortditka them
with the concepts of joint distribution function, is thelfaking due to Sklar.

THEOREM 2.4. Let H be a joint distribution function with marging
andG. Then there exists a copu@such that for allz, y € R,
H(z,y) = C(F(x), G(y))- (2.3)

If FF and G are continuous, theiW' is unique; otherwise(' is uniquely
determined on the rang&anF x RanG C R2?. Conversely, ifC is a
copula andf’ and G are distribution functions, then the functiéghdefined
by (2.3)is a joint distribution function with marging’ andG.

LEMMA 2.5. Let H be ajoint distribution function with marging and
G. Then there exists a unique subcop@fasuch that
(1) DomC’ = RanF x RanG;
(2) forallz,y € R, H(z,y) = C'(F(x),G(y)).
DEFINITION 2.6. Let F' be a distribution function. Then a quasi-inverse
of F'is any function/(—1 with domain/ such that
e if £ is in RanF, then F=Y(t) is any number in R such that
F(z) =t,i.e. forallt € RanF,
F(FED(t) =t
e if t ¢ RanF, then
FEU(t) = inf{z|F(z) > t} = sup{z|F(z) < t}.
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If F'is strictly increasing, then it has but a single quasi-irs&rwhich is of
course the ordinary inverse, for which we use the customatgtion 7.

COROLLARY 2.7. Let H, F,G, and C’ be as in Lemma 2.5, and let
~1 and G-V be quasi-inverses df and G, respectively. Then for any
(u,v) in DomC,

C'(u,v) = H(FY (), GEV(v)).

When F and G are continuous, the above result holds for capasawell
and provides a method of constructing copulas from jointrdhistion func-
tions.

LEMMA 2.8. LetC’ be a subcopula. Then there exists a copulauch
thatC'(u,v) = C'(u,v) for all (u,v) € Dom(C"; i.e., any subcopula can be
extended to a copula. The extension is generally non-unique

THEOREM 2.9. Let X andY be continuous random variables. Th&n
andY are independent if and only @'y, = II.

THEOREM 2.10. Let X and Y be continuous random variables with
copulaCxy. If @ andb are strictly increasing onrRanX and RanY’, re-
spectively, therC, xy,v) = Cxy. ThusCxy is invariant under strictly
increasing transformations of andY'.

THEOREM 2.11. Let X and Y be continuous random variables with
copulaCxy. Leta andb be strictly monotone o®anX and RanY’, re-
spectively. Then

(1) if a is strictly increasing and is strictly decreasing, then
Caxypvy(u,v) = v — Cxy (u, 1 — v);
(2) if a is strictly decreasing andlis strictly increasing, then
Caxpyy(u,v) = v — Cxy (1 — u,v);
(3) if a andb are both strictly decreasing, then
Coxpyy(u,v) =u+v—14+Cxy(l —u,1 —v).

A copula is a continuous functiofi : [0, 1]* — [0, 1], but is not nec-
essarily absolutely continuous. Any copulacan, in fact, be written as
C(u,v) = Ac(u,v) + Sc(u,v), where

o(u,v) //asa (s,8) dtds, Sc(u,v) = C(u,v) — Ac(u,v).

A copulaC coinciding with A (S¢ = 0) is then absolutely continuous,
while if C' = S¢ (A¢ = 0) the copula is said singular. Otherwise it has a
singular component: and an absolutely continuous oAge. The Fréchet-
Hoeffding bounddV and M are singular copulas: the mass/dfis con-
centrated on the line = v while W is distributed on the line + v = 1; on

the other hand, the independence coplia absolutely continuous.
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In many applications, the random variables of interestasgnt the life-
times of individuals or objects in some population. The p@tabty of an
individual living or surviving beyond time: is given by the survival func-
tion (or reliability function) F(z) = P(X > z) = 1 — F(x), where as
before,F' denotes the distribution function of. For a pair(X,Y") of ran-
dom variables with joint distribution functioH, the joint survival function
is given byH (z,y) = P(X > z,Y > y). The margins offf are the func-
tions are the univariate survival functiodsand G, respectively. We are
going to show the relationship between univariate and jgimvival func-
tions. Suppose thdt is the copula between the variabl&sandY. Then

H(x,y)=1- F(z) — G(z) + H(x,y)
= F(z) + G(z) — 1+ C(F(2),G(x))
1

=F(z) + G(z) — 1+ C(1 - F(2),1 - G(x))

so we can defin€’ : [0,1]2 — [0, 1] by
Clu,v)=u+v—14+C(1—u1-0), (2.4)
then we haved (z, y) = C(F(z), G(x)).
Two other functions closely related to copulas (and suhaegulas)
are thedual of a copulaand theco-copula(Schweizer and Sklar 1983).
The dual of a copul@’ is the functionC' defined by

C(u,v) =u+v—C(u,v) (2.5)
and the co-copula is the functi@n* defined by
C*(u,v) =1-C(1 —u,1 —0). (2.6)

Neither of these is a copula, but whéhis the copula of a pair of random
variablesX andY’, the dual of the copula and the co-copula each express a
probability of an event involvindd andY". More in details we know that

C(F(z),G(y)) =P(X <z,Y <y),
C(F(x),G(y) =P(X >z,Y >y),
and we also have
C(F(x),Gly) =P(X <z VY <y),
C*(F(x),Gy)) =P(X >x VY >y).

Extension to generic dimensiancan be given as we are going to report
below.

DEFINITION 2.12. An n—dimensional subcopula (or—subcopula) is
a functionC” with the following properties:

(1) DomC" = S;x...xS, ,where eacly; is a subset of* containing
0 andl;
(2) C"is grounded andh—increasing;
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(3) C" has (one-dimensional) margids, : = 1,...,n, which satisfy
Cl(u) =uforallu € S;.
Note that for everyn € DomC’, 0 < C’(u) < 1, so thatRanC" is also a
subset of .

DEFINITION 2.13. Ann—dimensional copula (or simply an—copula)
is ann—subcopulaC’ whose domain i$”. Equivalently, am—copula is a
functionC' : I — I with the following properties:

(1) for everyu € I, C(u) = 0 if at least one coordinate af is 0,
and if all coordinates of; are 1 exceptuy, thenC(u) = wy;

(2) for everya,b € I" such thata < b, then—volumeV([a, b]) >
0.

It is easy to show that for any—copulaC' with n > 3, eachk—margin of
Cisak—copula,2 < k <n.

The main properties of the copulas as well as Sklar's The@enstill
valid in dimensionn. Any n—dimensional copul&’ satisfy the Fréchet-
Hoeffding upper and lower bounds, so takes values between

Wiuy, ..., u,) =max(u; + ... +u, —n+1,0) (2.7)
and
M(uy, ..., u,) = min(ug, ..., uy,).
It is important to notice that, fon > 2, W(uy,...,u,) is no longer a
copula.

For the2—dimensional case, the Fréchet-Hoeffding bounds inetyuali
introduced in (2.2), suggests a partial order on the set piles.

DEFINITION 2.14. If C; and (), are copulas, we say that; is smaller
than Cy, and writeC; < Cy (or Cy = C), if Cy(u,v) < Cy(u,v) for all
u,v €.

Recalling thatV (u,v) < C(u,v) < M(u,v) for every copulaC' and
all u,v € 1, the lower bound copul@’ is smaller than every copula, and
the upper bound copul# is larger than every copula. This point-wise par-
tial ordering of the set of copulas is called tt@ncordance orderinglt is
a partial order rather than a total order because not everyopaopulas
is comparable. It assumes importance in the study of therdigmee of
random variables, through the use of their connecting @guR similar
definition can be given for the multi-dimensional case. Weaylé discus-
sion to next Section, in which we introduce the main ideasepfethdence
among random variables.

1.1. Archimedean Copulas.An important class of copulas is that of
Archimedean copulas. This class has a wide range of apiplsatdue to
the great variety of copulas belonging to it, the ease witiclvithey can
be built and the many properties they enjoy. We encountdregbarticu-
lar case of independence between variables, whose copexpliessed by
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the product copuldl. From a practical point of view, we are interested
in similar simple expressions useful for the constructidbrcapulas, like
d(C(u,v)) = ¢(u) + ¢(v), for some functionp. So we need to find an
appropriate inversel~!, with opportune properties, that solves

C(u,v) = ¢ (p(u) + ¢(v)). (2.8)

DEFINITION 2.15. Let ¢ : I — [0,00] be continuous, strictly de-
creasing and with¢(1) = 0. The pseudo-invers®f ¢ is the function
=12 [0, 0] — I given by

[—1] . (b*l(t), ifo<t<
P = { 0, ifo(0) <
Notice thato(¢l=1(¢)) = min(t, ¢(0)) and if $(0) = oo thengl~1(t) =
¢~H(t).

A function C defined as in (2.8) is, indeed, a copula, since the following
holds.

LEMMA 2.16. Let ¢ and ¢[~! be as in Definition 2.15 and also let
C : I* — I be a function satisfying Eq(2.8). If ¢ is convex, ther' is
2—increasing and satisfies the &het-Hoeffding boundary conditions.

#(0);
s( ) (2.9)

t < oo.

Moreover, it can be given a characterization as follows.

THEOREM2.17. Let¢ and¢l~' andC as in the previous Lemma. Then
C'is a copula if and only it is convex.

Some important properties of Archimedean copulas are tlening.

THEOREM 2.18. Let C' be an Archimedean copula with generatar
Then:

(1) C'is symmetric, i.eC'(u,v) = C(v,u) for all u,v € I,

(2) C is associative, namelg'(C(u,v), w) = C(u,C(v,w)) for all
u,v,w € I,

(3) c¢ is a generator of”, for any constant > 0.

A first simple example of Archimedean copulas is given by tiaet
pendence copulfl. Considerp = —Int, sopl~!) = exp(—t) and with
straightforward calculation we get, from (2.8),

Cu,v) = o (p(u) + ¢p(v)) = exp(Inu + Inv) = uv = I(u,v).

In a similar way one can prove that also the minimal copiMais
Archimedean, whileV/ is not. Other important families of Archimedean
copulas the ones attributed to Clayton, Ali-Mikhail-Hagafk and Gum-
bel. These classes of copulas are called one-parametdrefgnsince all
the copulas belonging to any of this families can be obtalmedhanging
the value of the generating parameter. Consider, for exantipé copulas
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from the Ali-Mikhail-Haq family (see Figure 2.2), namelyase that can be

written as
uv

1—60(1—u)(l—0v)

with paramete# ranging in[—1, 1] and generator given by
In(1 —6(1—1¢)/t).

The independence copula belongs to this family, since cabtaened sub-

stituting to¢ the value0. Many other examples and interesting properties
will not be discussed in this paper, but can be found, for gatamn [107].

Co(u,v) = (2.10)

FIGURE 2.2. Copula from the Ali-Mikhail-Hag family, with pa-
rameterd = —0.5 and its support

1.2. Copulas for capacities.lt is interesting to highlight connections
between copulas and non-additive measures, especiallyceftacities. As
for additive probabilities, copulas for non-additive ma&&s can be defined,
with just some minor requirements.

Consider, for instance, the extended liRe= R U {—o00,00} and a

capacity on (R”, B(R")). Let y; thei—th projection ofu: for S € B(R),
pi(S) =R xR x...x S x...R),

whereS is in thei—th coordinate of the vector. It can be defined, as natural,
the distribution functior¥), : R — R associated tp as follows:

F,U«(xh cee ,.Td) = ILL([—OO,.CL'l] XX [_oovxd])'
Marginal components are defined as well, nantély: R — R such that

Fy.(x) = pi([—o0, ]).

It is easy to see thak), is increasing, since the capacijty for definition,

is monotone. In general), is not right continuous and, of course, does
not characterize: on the whole Boreb—field, since even the distribution
function of a finitely additive probability measure in gesledloes not have
these properties. Some properties can, in any case, dmigttititoy, as the
following.
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DEFINITION 2.19. Let
Agj:xif(sl,...,si,...,sd) = f(s1,---sYir--s8q) — [(S1,-- -, Tiy. .., 8q)-
AfunctionF : R? — Riis calledn—increasingn < d) if
AL gy AV f(Si ey i) >0

for any possible values of the indicgs. . ., i,,.

Any d—variate distribution function associate with a finitely @l
probability measure is-increasing for alln < d. This is true also for
d—monotone capacities. In the case of probability measuresasult is
a consequence of the fact that the probability of dmdimensional rec-

tangle inR” is nonnegative and this probability can be expressed as the
multiple finite difference of the distribution function. &same procedure
cannot be applied for capacities, due to lack of additivaty, the definition

of d—monotonicity gives the result, resumed as follows.

LEMMA 2.20. If u is d—monotone, thert’, is n—increasing for every
n <d.

This result is due to Scarsini, se&2fj. In particular for the case
d = 2, the distribution function of any convex capacity is in@ieg and
2—increasing. Other important properties are the following.

COROLLARY 2.21.If ;1 is ad—monotone capacity ofR”, B(R")), then

there exists a finitely additive probability measwen (R*, B[R")) such
thatF, = F,.

THEOREM 2.22. If v is convex therF), satisfies the Fechet-Hoeffding
upper and lower bounds (s€2.2)), namely

maX<F#1 (.%’1) + F/—LQ (33'2) - 17 O) < F#<x17 .%’2) < min(Fm (.%’1), F/—LQ (33'2))
The same result holds far-dimensional bounds, like i{2.7).

These two results allow us to state the following Theorem.

THEOREM2.23. Lety be a convex capacity oiR”, B(R")). Then there
exists a functiorC’, : I — I, calledsemi-copulasuch that
(1) Fu(xlv s 7xd> = C#(Fm (33'1), R Fﬂd(xd));
(2) Cu(z1,...,2q) = 0if x; = 0 for atleast one indexe {1,...,n};
(3) C#(l,,l,.flj'z,l,,l) = T,
(4) C, is increasing.

The proof of this statement is left td23. Notice that, when the un-
derlying measure is a probability measure, then the semi-copula coincide
with the usual copula, defined in 2.2. If the measure d—monotone, then
the semi-copuld@’, isn—increasing for alh < d. Generally, itis enough to
assume convexity of the capacity to establish the existefheéunction that
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relates the joint distribution function to its margins, bButmonotonicity is
required for this function to have all the analytic propestof a copula.

2. Dependence

The concepts of dependence are needed in the analysis a¥anale
models. The literature is rich of such models, so we list sofrtbe most
important concept of dependence that we have found usefaluiostudy.
These are:

¢ thepositive quadrant dependen(feQD) and theeoncordance or-
dering, basic for copulas to determine wherever a multivariate pa-
rameter is a dependence parameter;

e thestochastic increasingositive dependence (Sl);

e theT P, dependence, necessary for constructing families of closed
form copulas with wide range of dependence;

¢ thetail dependencéor extreme values copulas;

e Kendall's tay Spearman’s rh@andGini’'s gamma as functions to
study concordance among variables from the analysis af¢ber
necting copulas.

We will consider principally dependence concepts for batar distribu-
tions. For references to this literature see, for examdé), [76], and
[107]. We start with the following

DEFINITION 2.24 (Lehmann§8]). LetX = (X3, X,) a bivariate ran-
dom vector with cdf’. We say thaX (or F)) is positive quadrant dependent
(PQD) if

Vxl, T9 € R ]P(Xl > l‘l,XQ > l’g) > ]P(Xl > l‘l)]P(XQ > ZL‘Q). (211)
Condition(2.11)is equivalent to
v.%'l,l'g eR ]P)(Xl S Zy, X2 S .CL'Q) 2 P(Xl § .Z'l)]P)(XQ S .CL'Q). (212)

The reason why this consists in a positive dependence corscéyat
X7 and X, are more likely to be large (or small) together than two other
variables with same marginal laws but independent. If tlegimlities in
(2.11) and (2.12) are reversed we will talk abmgigative quadrant de-
pendencgNQD). A similar definition can be given for multidimensidna
random vectors.

DEFINITION 2.25. LetX = (X;, ..., X,,) a multivariate random vec-
tor with cdf . We say thaiX (or F') is positive upper orthant dependent
(PUOD) if

VX = (21, ,2,) ER P(Xy > 2, Xy > 1) > [[PXG > a0),
=1
(2.13)



32 2. COPULAS: AN OVERVIEW

and that ispositive lower orthant dependefRLOD) if

P(Xy <@y, Xo 1) 2 [[PXG < 25) Vx=(21,...,2,) ER.
=1
(2.14)
If both conditiong2.13)and(2.14)hold, thenX (F’) is saidpositive orthant
dependen{POD). Notice that, in the multivariate case, these two egpr
sions are not necessarily equivalent.

If the inequality are reversed, we can state, in a similar, Weg/concepts
of negative upper orthant depender(®8JOD), negative lower orthant de-
pendencéNLOD), andnegative orthant dependence

The Definitions given above can be restated in terms of cgp@an-
sider, for instance, two random variabl&s, X, with continuous marginal
distributionsG1, G, cdf F, and connecting copul&’. Notice that Eq.
(2.12) can be also written as

F(ZL‘l,ZL‘Q) Z Gl(ZL'l)GQ(I'Q), \V/(ZL'l,fEQ) € RQ.

Thus, by means of Sklar's Theorem, we can state the Defirofi@DQ for
copulas as follows.

DEFINITION 2.26. We say that a copul&’ is PQD if
C(u,v) > M(u,v), V(u,v) € I (2.15)
If the inequalities in(2.15)are reversed, then the copulais said NQD.

Similar arguments can be used to define PLOD, PUOD, and POD con
ditions in terms of multivariate copulas (and NLOD, NUODdaOD too).
According to the definition of concordance ordering for dagugiven in
2.14, we can make comparisons between couples of randoabiesito
establish their degree of concordance on the basis of theeeleyj con-
cordance expressed by their connecting copulas resplgctifFer exam-
ple a2—copulaC; is more PQD than anotheércopulaCs if C(u,v) >
Co(u,v) for all (u,v) € [0,1]%. In dimensionn, C; will be more PLOD
thanCs if C;(u) > Cy(u), and more PUOD it (u) > Cy(u), for every
u € [0, 1]™ (then POD if both hold).

A further concept of dependence is the following, regardaigmono-
tonicity of copulas.

DEFINITION 2.27. Let X = (X3, X») a bivariate random vector with
cdf F'. We say thafX; is stochastically increasing X, or the conditional
distribution Fy); is stochastically increasing SY(|.X4), if

]:ED(XQ > To | X1 = ZL‘1) =1- FQH(ZL‘2|ZE1) (216)

is an increasing function of,, for all o € R. By reversing the direction
of the monotonicity irf2.16), the stochastically decreasi@D) condition
results.

In terms of copulas, this result can be restated as follows.
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DEFINITION 2.28. Let X; and X, be continuous random variables with
copulaC. Then SI¥,|X;) holds if and only if for anw € [0, 1] and for
almost allu, 0,C(u,v) is non-increasing inu or, equivalently, ifC' is a
concave function of.

Other important definitions are that onesright tail increasing(RT]),
right tail decreasing RTD) ortotally positivity of order ATP2), with some
properties defining connections among them, can be fourttDi}.[
Dependence is also modeled by some concept better knomeasure
of associatiorbetween random variables. Given a pair of random variables
(X,Y), we say that two observatidm, y;) and(x2, y2) from the pair are
concordant if{x; —z5)(y1 —y2) > 0, discordant if the inequality is reversed.
This means that the values of one of the random variables tertak big or
small in the same way as the values of the other variable dshde now
some examples in this direction.

DEFINITION 2.29. Let (X7, Y7) and (X5, Y>) be independent and iden-
tically distributed random vectors with joint distribuhaf’. Kendall’s tau
measure of association is defined as

Ty =P[(X1 — Xo) (V1 = Ya) > 0] = P[(X; — Xo)(Y1 — Ya) < 0]. (2.17)

For independent vectors of random variables not sharingahe joint
distributions, one can define a “concordance functighas follows. If
(4, Cy are the connecting copulas for the couplés, Y;), (X3, Ys) then
we can write

Q =P[(X1 — X5)(Y1 — Y2) > 0] = P[(X; — X5)(Y1 — Y2) < 0]
and obtain the following integral representation ¢ar

Q=Q((C,Cy) = 4/ Cy(u,v)dCy(u,v) — 1. (2.18)

]IQ
Such a representation can be used to express Kendall's taneéys of the
copulaC"

Txy =Tc = Q(C,C) = 4/ C(u,v)dC(u,v) — 1. (2.19)
]IQ

It is interesting to notice that this value, although expegkin terms of
integrals, can be used to compute dependence also for sdpalecontains
a singular component. To do this we just need to rewrite theginal in
(2.19) as

=1 4/80 80 dud (2.20)

Tc=1-— , Bu (u,’u)% (u,v) dudv. :

The proof of this result rises from an application of intégma by parts. An
interesting example of Kendall’s tau for the copulas of NhatsOlkin fam-
ily is given in [107] (see also section 5). In this particular case the measure
of association coincides with the measure of the singularpoment of the
copula.
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Other useful measures are given®yyearman’s rh@andGini's Gamma
Both of them can be defined by means of functipriNamelyp = 3Q(C, II)
while v = Q(C, M) + Q(C,W). In a sense, Spearman’s rho measures a
concordance relationship or “distance” between the thstion of X and
Y as represented by their copudlaand independence as represented by the
copulall. On the other hand, Gini's gamma measures a concordance rela
tionship or “distance” betweafi and monotone dependence, as represented
by the copulas\/ andWV.

Notice that, for Archimedean copulas, this expressionsheawritten
by means of their generators, and assume a simpler form. Xaong@e,
given an Archimedean copuld with generatorp, Kendall's Tau can be
written as

1
o(t)
Te =1+ 4/ dt. (2.21)
¢ 0 9(0)
Any set of desirable properties for a “measure of concordanould
include those in the following definition, se&Z1].

DEFINITION 2.30. A numeric measuré of association between two
continuous random variable¥ andY whose copula i€’ is a measure of
concordance if it satisfies the following properties (wetevkix y or k¢):

e k is defined for every pair of continuous random variables;

o 1 < /ﬂX7y <1, kX,X =1, ande7,X =1;

o kxy = kyx;

o if X, Y are independent thehy y = kg = 0;

o koxy =kx_yv = —kxy,;

o if Ci < Cy thenkfcl < k}c2;

o if {(X,,Y,)} is a sequence of continuous random variables with
copulasC,,, and if {C,,} converges pointwise t6, then we have
thathmnﬁoo ]ﬂcn = kc.

It is proved that Kendall's Tau, Spearman’s Rho and Gini'sn@e are
measures of concordance, since they satisfy conditiomngivDefinition
2.30. For further details and properties of dependenceuneasee]07)].

3. Methods of constructing copulas

Nelsen in LO7] presents several general methods of constructing bivari-
ate copulas. By means of Sklar’'s theorem one can producdasoguectly
from joint distribution functions. Using geometric metlsp@éne may con-
struct singular copulas whose support lies in a specifiegrgktopulas with
sections given by simple functions such as polynomials. Isie discusses
some geometrical procedures that produce copulas knowrdambsums,
shuffles of M, and convex sums. In the algebraic method, he constructs
copulas from relationships involving the bivariate and gnaal distribu-
tions functions. In this Section we briefly report some ofsthenethods and
provide examples for them.
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We start introducing the “inversion method”, based on S&laversion
theorem presented in 2.7. Given a bivariate distributiorcfion # with
continuous marginé/; andG,, we can obtain a copula by “inverting” via
the expression 2.7:

Clu,v) = H(Gy (), G5 (v).
With this copula, we can construct new bivariate distribog with arbitrary
margins, say
H'(z,y) = C(G}(x), G3(y)).
Of course, this can be done equally as well using survivattfans: by
recalling 2.4

Cu,v) = AG (), Gy " (v).

whereG' " denotes a quasi-inverse @f defined analogously t6(—") in
(2.6), like

GV =a"1-1.
An example of a family of copulas builtin this way is given ngMarshall-
Olkin system of bivariate exponential distributions (see & [L03, 10]).

This family is modeled by two parameter, say, o, with values in[0, 1],
and its expression reads

Ce102) (y v) := wo min{u~™, v°2}. (2.22)

This model is suitable to describe the lifetime a system with compo-
nents, which are subject to shocks that are fatal to one drdfahem. For
this reason it is a model that fits well with reliability preiohs and finds
many applications in such field. We discuss its construdtio@hapter 5,
also giving some of its properties, useful for our purposes.

FIGURE 2.3. Copulas from the Marshall-Olkin family with pa-
rameterg oy, az) respectively(0.3,0.6), (0.5,0.5) and(0.9,0.3)

Other examples of copulas constructed by using the inversiethod
can be found in107).

Another kind of approach in building copulas arise for getiiogype
methods. One can, indeed, construct grouritleshcreasing functions on
I2 with uniform margins, by using some information of a geoncatature,
such as the shape of the graphs of horizontal, vertical ayatial sections.
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Nelsen in L07] examinesordinal sumconstruction, wherein the members
of a set of copulas are scaled and translated in order torcahstnew cop-
ula; theshuffles ofM, which are constructed from the Fréchet-Hoeffding
upper bound; and theonvex sungonstruction, a continuous analog of con-
vex linear combinations. For our purposes we will discussstiicond kind
of geometric method mentioned, the shuffles\6fthe maximal copula.

It is known thatM andWW are singular copulas, whose support consists
in a single segment. FaV/ it consists of the line connecting, 0) with
(1,1), with slopel, while W is supported by the line connectirig, 1) to
(1,0), with slope—1. The shuffles ofM/ have then support consisting in
segments of slope 1 and1.

Informally speaking, we can say that such functions areiobtaby
cutting the support o/ in small parts and rearranging into the unit square
by translating and flipping them.

More formally, a shuffle of\/ is determined by a positive integer a
finite partition{.J; };—1.._, of I into n closed subintervals, a permutation
onN = {1,2,...,n}, and a functionv : N — {—1,1} wherew(i) is —1
or 1 according to whether or not the strip x I is flipped. The shuffle of
M resulting from a permutatios will be denoted byM (n, {J;},0,w). A
shuffle of M with w = 1, i.e., for which none of the strips is flipped, is a
straight shuffle, and a shuffle 8f with w = —1 is called a flipped shuffle.
We will also writeZ,, for {J;} when it is a regular partition df, i.e., when
the width of each subinterval is 1/n.

As an example of shuffle consider the following copdla described
by a parameter € (0, 1).

min(ua v = 7)7 if (U, U) € [07 1 - '7] X ['77 1]
Cy(u,v) = min(u+ v —1,0), if (u,0) € [1—7,1] x [0,]
W(u,v), otherwise.
(2.23)

This copulas are built by one single cutaind represents a straight shuffle
of M, since no strip is flipped. The graph of the support consistsvd
lines with slopel connecting(0,~) to (1 —~,1) and(1 — ~,0) to (1,~).
This example arise when considering two uniform randomavdesty and
V, with V' = U & ~, with the meaning that the value bf is given by the
fractional part of the suny + . Then one can see that the joint behavior
of U andV is expressed in terms of the copula. We make a deeper
investigation of this copula in Section 5, see Propositidi®5

Many other methods of constructing copulas exist in litgmatas the al-
gebraic methods, involving both bivariate and marginatriigtions of the
random variables considered. Some examples of copulaswathl these
methods are given by the Plackett family and the Ali-MikHddq family
of distributions. These and other examples are studiedaisty in [107).
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4. Symmetry and exchangeability

An important concept in the study of copulas is due to its prtypof
symmetry. Symmetry of copulas is strictly liked with the cept of ex-
changeabilityof the random variables described by them. The first to intro-
duce the concept of exchangeability was De FinettBi].[

DEFINITION 2.31. We say that two random variablés, and X5, with
marginal lawsG; and G, and joint law F7 ,, are exchangeable if and only
if G| =G,y andFLQ = F271.

A similar definition can be given for groups of random vareablIf we
considern identically distributed random variables,, . .., X,,, they are
exchangeable ity ., = F,q),. -mn), for any permutation of the indices
1,...,n.

It is immediate to think to, when two random variables are &ot
changeable, how to measure they degree of non-exchanigeabil

DEFINITION 2.32. Let H(F') be the class of all random paifsY;, X5)
such thatX; and X, are identically distributed with continuous d.f. A
functiony : H(F') — R, is ameasure of non-exchangeabilfty H(F') if
it satisfies the following properties:

Al: 1 is bounded, viz. there exists € R, such that, for all
(Xl, XQ) € H(F), ,l/I(Xl, XQ) < K;

A2: (X, Xs) = 0if, and only if, (X, X,) is exchangeable;

A3: (X, X3) is symmetric, i.e., for al{ Xy, X») € H(F'), one has
1( X1, Xo) = 1i(Xo, Xy);

Ad: (X1, Xo) = u(f(X1), f(X2)) for every strictly monotone func-
tion f and for all (X, X») € H(F);

A5 if (X7, X7) and (X, X,) are pairs of random variables with
joint distribution functiongd,, and H, respectively, and if,, con-
verges weakly té/ asn tends too, thenu( X7, X7') converges to
(X1, Xs) asn tends too.

Axioms Al andA2 ensures that the measure is bounded and not always
equal to0. The other axioms state that the measure must be invaridetun
permutation of components, strictly monotone transforomatand distri-
butional limit. This Definition is due to Durante et al. (sei)), where
they showed in addition that, by means of Sklar's Theorengeanvalent
formulation of measure of non-exchangeability can be given. the con-
necting copula of the random variabl&s and X.

PROPOSITION 2.33. Let X5, X, be continuous r.v.s and l&tx, x, be
their connecting copula. The random variabl&s and X, are exchange-
able if, and only if, they are identically distributed, i.éxy, = F,, and
Cx, x, IS symmetric, viz.C, x,(u,v) = Cx, x,(v,u) for everyu,v €
[0, 1].

In this view one can rewrite Definition 2.32 by
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DEFINITION 2.34. LetC the class of all copulas. A functign: C —
R, is a measure of non-exchangeabilityr C if it satisfies the following
properties:

B1: p is bounded, viz. there existS € R, such that, for allC' € C,
n(C) < K;

B2: u(C) = 01if, and only if,C' is symmetric;

B3: u(C) = (Ct) for everyC € C,;

(C
B4: u(C) = pu(C )for everyC € C,
B5: if (C,,) andC are inC and if C,, converges uniformly t¢’, then
u(C,,) converges tqi(C') asn tends toco.

Several measures of non-exchangeability, that safisfy- B5, have
been presented id9]. Consider, for examplei,, the classical, distance
in C (with p € [1, 00]). For allA, B € C one has

d)(A, B) == ( /0 1 /0 1 |A(u, v) — B(u,’u)\pdudv) " (2.24)

for p finite and, forp = oo,
dwo(A, B) :== max_|A(u,v) — B(u,v)|. (2.25)

(u,v)€I?

It has been showed @] that i, : C — R, is a measure of non-exchan-
geability for everyp € [1,o0]. Klement and Mesiar ing3] and Nelsen in
[108 showed that, for every copuld, 1. (C) < 1/3 and that the upper
bound is attained. More in particular two copulas are carsid for this
purpose, hamely

2 1
Ci(u,v) =min (u,v,max <u — 5,0> + max <’U — 5,0>>,
1 1 2
Cy(u,v) = max <u+v— 1,§ — max <§ —u,O) — max <§ —v,O),O),

whose support are described by Figure 2.4.
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FIGURE 2.4. The supports of; andCs
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Notice that copuld’; is part of the one-parameter family, introduced
in (2.23) (in particular, it corresponds to the valye= 1/3). In Chapter 5
we will investigate, among other things, some propertiesyoimetry and
dependence of copulas, also by means of the fadlilicited above (see
Proposition 5.10).






CHAPTER 3

Decisions under Risk and Utility Theory

The field of decision theory under risk and uncertainty repnés a very
important area of interest in economics and finance. Canditof uncer-
tainty are typically considered in situations involving @&dision Maker
(from now on, a DM) that is facing a choice among different apppnities,
or acts whose consequences are not deterministic. These choagsm
volve investments in financial assets or insurances as wbbts in gambles
or lotteries, and so on. All these situations involve obyediacts (known or
unknown), regarding the possible choices and its consegiseand subjec-
tive matters, as the will of the DM when facing risky or unegmtsituations,
as well.

Utility theory had arisen and developed in time, to descdiversities
among DMs and their attitudes toward risk and uncertaintye Main prac-
tical argument studied in this Chapter is the onetdity functions that are
used to describe the behavior of the DM by attempting to otlgerset of
consequences corresponding to her choices.

1. Choice under Uncertainty

The modern analysis of decisions under uncertainty has isedinst
formalization in 1944 145, when Von Neumann and Morgenstern (NM)
laid the foundations of what is known as tAgiomatic theory of expected
utility. Their starting point is the study of people’s preferencéh vegard
to choices that have uncertain outcomes, namgelyibles Their hypoth-
esis states that if certain axioms are satisfied, the siNgecalue associ-
ated with a gamble by an individual is the expectation of thdividual's
valuations of the outcomes of that gamble. According to thecjple of
maximization of the utility, Decision Makers make use ofitlfgsubjective)
utility functions to evaluate gambles and then they try toximéze their
expected outcome.

In their work, Von Neumann and Morgenstern also payed attertb
the attitude of investors towards risk. Decision Makerslwanin particular,
classified according to three categories of behavisk neutral risk averse
andrisk seekerThe first one represents people that, when facing two risky
prospects with the same expected value, will feel indifiera the choice
between them. The second one is the attitude of DMs that, vasked
to choose between two such prospects, will prefer the leky one, in
contraposition to the risk seeker people that will behaviaexcompletely
opposite way.

41
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Consider, for instance, the set of random variables takaiges in the
finite setZ. Since variables are characterized by their probabiliyslave
are led to consider a preference relatieron P(Z), the set of all prob-
ability measures oif or on theo—algebrac(Z); by abuse of language,
each elemenp € P(Z) will be called a lottery. The representation of
the expected utility according to NM principles for the gehce relations
consists now in establishing a utility functiéh: P(Z) — R built from a
functionu : Z — R such that

Ulp) = E(u(X)) =Y p(z)u(2) (3.1)
zEZ
for any random variabl&X € Z with law p, E being the expected value
evaluated oveu(X).
Let now recall some basic properties that are required fefepence
relations.
Asymmetry: z > y impliesy ¥ z;
Negative transitivity: = 3 y andy % z imply z # z.
From astrict preference relation we can immediately define some related
ones: the equivalence, theweakrelation’=, and the reverse relatios,
with the same characteristicsef Concerning the first one, we wriie~ y
whenz % y andy % z simultaneously. This is aimdifference relatior(or
equivalence relatiop as it is reflexive, symmetric and transitive. On the
other hand, we write > y wheny % z or, equivalently, when both > y
or x ~ y may occur: the weak relation is a complete and transitivagioal.
We now focus on the relatios and give some of its basic properties in
what follows.

DEFINITION 3.1. The preference relatios is said to berationalif it
satisfies the following two axioms:
Continuity or Archimedean: For all p,q,r € P(Z),ifp = q > r,
then there exist, 5 € (0, 1) such that

ap+(1—a)r=q>=PBp+ (1 —0)r (3.2)
Independence:For all p,q,r € P(Z) anda € (0, 1], if p > ¢ then
ap+ (1 —a)r>ag+ (1 —a)r (3.3)

Furthermore we recall the following two lemmas.

LEMMA 3.2. If the preference relation is rational, then the following
hold:

(1) for two given real numbers, b € [0, 1], witha < b, one has
prq=bp+(1-b)g>ap+(1-a)g

(2) the conditiony > ¢ = r andp > r implies that there exist an
uniquea*® € [0, 1] such that

g~ ap+(1—a’)r
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(3) fora € [0, 1], p ~ q imply, for anyr € P(Z)
ap+ (1 —a)r ~ag+ (1 —a)r

In the following we indicate, with the symbél(A), Dirac’s delta for
the element into setA, as a quantity equal toif z € A and0 otherwise.

LeEMMA 3.3. If > satisfies the axioms of Definition 3.1, then there exist
2o andz? in Z such thaty,o = p = ¢,, foranyp € P(Z).

Finally, we can state the following

THEOREM 3.4. Any rational preference relatior+ can be uniquely
represented by a functiom up to a positive linear transformation, i.e., if
u: Z — Ris such that

p=as Yy pEulz) > a(z)ulz)
z2EZ z€Z
then the same holds withbeing replaced by(-) = au(-) + b, for any two
real numbers:, b with a > 0.

Proofs of the two lemmas together with Theorem 3.4 can bedaan
[133.

We turn now to consider more realistic random quantitieb tie mean-
ing of economic tools, as possible losses in investmentgms. Consider
Z as a possibly infinite set of random variables, with raRgd_et Z be a
complete and separable metric space with its Borel siggebaio(Z).
As a generalization of the finite case, the numerical reptesen of a
preference relatio on a class of random variablés, according to the
NM-principles, is the following. For any DM with preferencelation >
there exists a unique (or unigue up to positive linear ti@msétions) utility
functionu : Z — R such that

X =Y o EuX)) >EuY)),

forany X, Y € X, provided the expectations exist. This is known as the
von Neumann-Morgenstern expected utility representatiqmeference re-
lations (for references, sed 49).

Let now Z = R for simplicity, with its usual topology generated by
open intervals; the Borel—field of R is denoted a8 (R). SoP(Z) (P(R))
will be the set of all probability measures defined®(R ). A topology on
P(R) is defined by specifying a concept of convergence in it. Hezesay
that p,, converges weakly t@ in P(R) if, for any f € C,(R) (bounded
continuous functions with suppdgl),

/R £(2) dpa(z) — / £() dp(2). (3.4)

The associated topology, generated by the neighborhocetsctp, will be
called the weak topology oR(R).
We now need to extend the axiom of continuity defined in (3.2).
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PROPOSITION3.5. Given a separable and complete metric SpA¢E),
foranyp,,p € P(Z) withp, — pinthe weak topology, the following hold:

(1) if p = g for someg € P(Z), thenp,, - q for sufficiently largen;
(2) if ¢ = p, theng > p, for all sufficiently largen.

By means of this result about weak continuity, we can extersdilt
given in Theorem 3.4 t®(R).

THEOREM 3.6. Let X, Y random variables in¥’ with probability laws
p,q € P(R) respectively. A preference relation on P(R) satisfies the
independence and the weak continuity axioms if and onlyerketlexists a
bounded and continuous utility functian R — R (u € C,(R)) such that

pr 0o B(u() = [ u()dn) > [ u) daz) = Ey(u(y),
Z Z
(3.5
Moreover this representation is unique up to positive atiiaesformations.

2. The Expected Utility Principle and Risk Attitudes

In this Section we sketch the basics of the attitudes of Dacislakers
facing risky or uncertain situations. From a qualitativenpof view, we
can say that there are essentially three types of risk edt#tor three kind
of people), namelyisk neutral risk averseandrisk seeker As we said in
the previous Section, the former are indifferent in chog9etween two
risky prospects, but with the same expected vaiis&:averseones, among
prospects with the same expected value, prefer the legs(rislan be seen
that they make use of a concave utility function); thask seekerfinally,
share the opposite attitude (and hence make use of a cohvex

For example, suppose that our DM is asked to choose betweeptaty
100<€ or playing the following game. The DM flips a coin, if head occu
she gets 20€, otherwise nothing. The expected value of both prospects
is the same, 1064, but DMs with different concepts of risk will act differ-
ently in deciding what to do. A risk neutral DM will be indiffent in the
choice of prospect, maybe she will decide to toss the coimsitté decide
whether accepting money or playing the lottery. A risk agdd$/ will in-
stead accept the money (as a risk seeker will try to win thé fpessible
prize).

To be more precise we restate the problem in the following. wast
X be a random variable taking valuesr 200, both with probabilityl /2.
So we have that the expected value of the lottery is giveR({Yy) = 100.
Now the three conditions of neutrality, aversion, and prity to risk can
be restated as follows. A DM is

Risk Neutral: when the utility functionu is such that(E(X)) =
E(u(X));

Risk Averse: when she preferg(100) to E(u(X)), so if she chooses
100€ instead of flipping the coin;
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Risk Seeker: whenu(100) < E(u(X)).

Let us consider a utility functiom € C?*(R), the space of differentiable
functions with continuous derivatives until ord2r It is intuitive to no-
tice, for first, that when considering monetary incomes grkand of prof-
itable goods as prospects, the satisfaction in receiviaigntbhall grow as the
amount of the prospect grows. This is the reason for which gieinerally
assumed (as we do in this work) that the utility function mstnonde-
creasing. Namely, for a given utility, its first derivativeu’ is supposed to
be greater than or equal to zero. Moreover the sign of thenskederivative
plays an important role, since it univocally determinestiebavior of the
DM towards risk, placing her in one of the three categoriessi listed
above. We can claim that

THEOREM 3.7. A DM with nondecreasing utility is risk averse if and
only if u is concave, risk seeker if and onlyifs convex.

The proof of this Theorem mainly follows from a direct applion of
Jensen’s inequality.

Let us now focus our attention on comparisons between riskrisk
aversion. Risk aversion is the attitude to avoid uncenaastwell as to in-
sure oneself against unpredictable events. So, up to vomblen-Morgenstern
principles of utility maximization, a risk averse DM will have as follows.

Suppose that our DM has an initial capital that is a deterministic
(positive) amount of money. Suppose that she is also risksayso that
her utility functionu will be nondecreasing and concave. The DM is now
going to make an investment whose uncertain profit consfsasrandom
variableZ (that is not necessarily nonnegative). In these terms, ghbav
ready to pay a premium in order to replace’ by its expected valug(Z).
This premium will depend on both the initial capitaland the law of the
random profitZ, sor = w(z, Fz). So we can uniquely define it as the value
satisfying

u(lz +E(Z) —7n(x, Fz)) = E(u(x + 2)). (3.6)

DEFINITION 3.8. Given an initial capitalz and a random profitZ, the
quantityr(x, F7) satisfying equatiorf3.6)is calledrisk premium

For the sake of simplicity, I€E(Z) = 0 and indicate withr% the vari-
ance ofZ. By Taylor expansion we have

u(z — ) = u(z) — 7/ (x) + O(7?) (3.7)
E(u(z + 2)) = E(u(z) + Zu/(z) + %Z%”(w) +O(2%)
= u(z) + %aéu"(az) + 0(0%). (3.8)
Thus, rearranging the terms in (3.7) and (3.8) we obtain

iz, Fy) = %C@A(x) +0(02), (3.9)
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where ") 4
u \r
= ——logu/(z). 3.10
DEFINITION 3.9. The functionA(z) introduced in(3.10)is calledab-
solute local measure of risk aversj@nd represents the local propensity to

insure at pointc under the utility function.

Alx) = —

If Z is not actuarially neutral, namely §(Z) # 0, the expression for
the risk premium will take the form

m(x, Fy) = %a%A(w +E(Z)) + o(oy). (3.11)

If the profit of the investment is expressed by a multiplieatutility, the
proportional risk premiumr™* will be defined as the value that satisfies

uw(zB(Z) — xm*(x, Fyz)) = E(u(z2)). (3.12)
In case thal(Z) = 0, the expression for* will be

(@, Fy) = %agR(x) +o(02), (3.13)
whereR(z) = zA(x).

DEFINITION 3.10. The functionR(z) satisfying(3.13)is calledrelative
local measure of risk aversion

One can notice that there is a relationship linking the twk premiums,
that is expressed by
m(x, Fpz) = xn*(x, Fy).
Notice furthermore that the above representations of nisknpum are “lo-
cal” representations, since they describe DM’s behavivatds small (in-
finitesimal) risks. The following Theorem shows that thesean analogy
between local and global behaviors in terms of risk aversion

THEOREM 3.11 (Arrow, Pratt).Let uq, us be two utility functions with
absolute local measures of risk aversidn, A, and risk premiumsr, m,
respectively. Then, for any choicexofind 7, the following conditions are
equivalent:

(1) Ai(x) > Ag(x);
(2) mi(z, Fyz) > mo(z, Fy);
(3) u1(+) = k(uz(-)), with k increasing and concave.

See B] and [111] for further details.

DEFINITION 3.12. If the hypotheses of Theorem 3.11 are satisfied, then
a DM with utility functionu, is said more risk averse than a DM preferring
U2.

Connections between small risks and measures of risk arelsive
been noticed for first by De Finetti (se&]).
Another important property is given by the following result
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THEOREM 3.13. The following conditions holdA(x) is decreasing in
x ifand only ifw(x, Fz) is decreasing inc for all Z. AnalogouslyR(z) is
decreasing inc if and only if7*(x, F) is decreasing inx: for all Z.

If the conditions of Theorem 3.13 are met we say thaxhibits de-
creasing (absolute or relative) risk aversion.

3. Multi-attribute utilities and related properties

Recent years withessed numerous attempts to generalimiyaas-
pects of these notions to the case of multivariate risk @eexample, the
works by Duncan48], Karni [79], Kihlstrom and Mirman 82], and Stiglitz
[136]). The univariate case is qualitatively different from tmeiltivariate
one: in the first case the ordinal preferences of all decisiakers are iden-
tical, whereas in the latter the preference orderings miégrdimong them.

Letx = (z1,...,z,) be the (deterministic) commodity vector of an in-
vestor facing a riskZ, that is expressed, in turn, byna-dimensional (ran-
dom) vector(Zy, ..., Z,). Letu any real-valued function which is in the

equivalence class of von Neumann-Morgenstern utility fioms consistent
with the individual’s preferences. We assume thét strictly increasing in
each component and tht(x + Z) is finite.

We define a family of risk premium functions(x, Z) in the following
way. For a given risk vectdt, with E(Z) = 0, the vectorr = (m,...,7,)
must satisfy

ux —m) = Eu(x + Z). (3.14)

Note that the risk premium is unique in the univariate casdenh the
multivariate case the existence of a veetas granted but uniqueness does
not necessarily hold. A simple example of this situationiiseeg by the
following utility function: u(z;, x2) = x129. Equation (3.14) is satisfied if
Ty — TM1Xg — Tl = O012.

A matrix measure omultivariate local risk aversioywhich is directly
related to the multivariate risk premiums, can be given Bevis. Consider
the Taylor series expansion of both members of equatior)3.At first
considernu;;(x) = 0*u(x)/dz;0x; to be continuous; we obtain

u(x —m) = u(x) — Z miui(X) + % Z T (x — 07)

i,j=1

with 6 € [0, 1]. Secondly, if VafZ) = £ = [o;;] exists,

Eu(x+ Z) = u(x Zawu” ) + o(try),

1] 1
wheretrY = " | 0;;. Combining these two approximation one gets to

1
u'nm = —étTUE, (3.15)
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where then x n Hessian matrixU = [u;;(x)] and then—vectoru =
(u;(x)). Any approximate solution of (3.15) will be of the form

1
& = SdgAT (3.16)

where

A=[a"] = {—ﬂ} — [diagu]~'U. (3.17)
Reducing the problem to one dimensional casepoincides with the abso-
lute measurel presented in (3.10), so we can cAllabsolute risk aversion
matrix. The importance of off-diagonal elements is given by théfeing
two results (proofs are irg]).

PROPOSITION3.14. The matrixA is diagonal if and only if. is addi-
tive. In this case the commodities are mutually risk indejeern.

PROPOSITION3.15. If there exists a nonnegative risk premium vector
7 for all two-point gamble4, thenu is concave. The viceversa also holds
true.

In this direction, itis clear that interactions among ad¢éy @ fundamen-
tal role in assessing risk and defining aversion to it. Comspas among
risk between risk averse DMs can be made by the comparisdrewfrisk
premiums, but one can see that this model is suitable onlyhvdealing
with small risks. Kihlstrom and Mirman, in fact, showed B2] that under
these hypotheses, a DM that is more risk averse than anotiien®ne
direction will be more risk averse in any direction. This igedo the strong
hypothesis that two utility functions represent the saneéguence ordering.

Extensions of the Arrow-Pratt concept of risk aversion ®@riultivari-
ate case are somehow problematic. A more precise concepilovaniate
aversion is that one aforrelation aversion(CAV), introduced by Epstein
and Tanny in $3]. For the sake of simplicity we restrict ourselves, for the
moment, to the—dimensional case.

Consider two vectors of outcomés,, ) and (y;, y2), with z; < y,
Ty < 1y, and two lotteried.;, L, such that

I — (z1,22), W.p.1/2; I, — (z1,92), wW.p.1/2;
! (ylu 92)7 W.p. ]-/Qa 2 (yh x2)7 W.p. ]-/Qa

In this respect, we can say thatis the vector of “bad” outcomes, while
y is the “good” one (seedb, 51). So lottery L, associates bad with good
outcomes whilel,; is some kind of “all or nothing”. Since the marginal
outcomes of the two lotteries are the same, intuitively a Disfqrring Lo

to L; will manifest a form of bivariate risk aversion. The aboveference
holds for allx <y if and only if DM’s utility function « satisfies

u(y, o) + u(yr, y2) < u(xr, y2) + u(y, 22), (3.18)
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condition that corresponds wubmodularityof the functionu (compare
with equation (1.10) in Definition 1.11). Furthermore,uifis twice dif-
ferentiable, condition (3.18) can be simply rewritten as

Notice that, in dimensiog, such a formulation follows the one of multivari-
ate local risk aversion introduced above. A deeper anabfsisk attitudes
has been made in this direction, based on the sign of highler aleriva-
tives of the utility function. This led to the introductiori properties like
prudenceandtemperancéandcross-prudencecross-temperancir mul-
tivariate case) and other general properties, that canuefdor example,
in [45, 46, 51, 14B

4. Non-Expected Utility Theory

Decision Makers, intending to be rational in the sense obfémm 3.4,
usually try to maximize their expected utility accordingtte so-called
expected utility maximization principleBut in the real world, assuming
that everybody is rational is pure utopia. In fact, many otigms to this
principle have been formulated, by means of paradoxicah@kas. First of
all Allais, in 1953, proposed a paradox in contrast to themheroposed
by von Neumann and Morgenstern; Ellsberg (1961) doubtedximmatic
formulation of Savage (1954), subsequently giving rise ricaliernative
expected utility theory based on generalized Choquetiate¢1965).

Actually, the very first example of this contradiction wagposed by
Daniel Bernoulli over thel8* century, which became over the years the
well-known St. Petersburg paradoxThis example presents a casino that
offers a lottery for a single player, described as follows.

At each stage a fair coin is tossed. The pot start® dvllars and is
doubled every time a head appears. The first time a tail appta game
ends and the player wins whatever is in the pot. Thus the playes 2
dollars if a tail appears on the first togsdollars if a head appears on the
first toss and a tail on the second, and so on. In short, theplains 2*
dollars, where: equals the number of tosses. These events may appear with
probability, respectivelyl /2,1/4, ...,27*. To evaluate the expected value
of the gamble, on just need to evaluate the quantity

E:§2i'<%>i:glzoo. (3.20)

Assuming that the game can continue as long as the gambdst hkd that
both gambler and casino have an infinite amount of money,dheegurns
out to have infinite expected utility, as the expected wimseaot finite.
Under this viewpoint any gambler should be willing to pay amyount of
money to have the chance of participating to such a game hizuituation
is obviously unfeasible. The paradox is then in the disatepdetween



50 3. DECISIONS UNDER RISK AND UTILITY THEORY

what people seem willing to pay to enter the game and its tefexpected
value.

Another interesting example is the one of Allais’s paradb®53), that
describes inconsistencies in choices when people areidgtdtween op-
tions in two gambling games, one of which involves a certaittome.

GambleA consists in a choice betweeh and A,, with

e A;: 1 million € with certainty;
e A,: 1% chance of zero89% chance ofl million €, and10%
chance ob million €.

GambleB is the following

e B;: 89% chance of zerol1% chance ofl million €;
e B5: 90% chance of zero anth% chance of million €.

Standard economic theory predicts that a person with cemgigreferences
will chose B, in the second gamble if prefers, in the first (orB, if A,).
The expected value fot; and forB; are, respectively, smaller than the ones
for A, and B,, but chances to get zero are diminished (or completely elim-
inated). However, experimental evidence shows that regdlpecommonly
choose the inconsistent combinatians,, B,) and (As, B;). Kahneman
and Tversky attributed this violation of expected utilityniples to a “cer-
tainty effect”, as they explain ir7[7], introducing the formulation of the so
called “Prospect Theory”. This new concept was mainly basetivo prin-
ciples, such as the effect of context in which decisions asemed and the
investor’s aversion to losses. According to the former oa® to consider
that an investor usually makes different choices for a samsesbnal prob-
lem depending on the context in which such problem is presefie latter
makes the investor more risk seeker than she would have eaverse
in case of gain.

Ellsberg paradox (1961) can be illustrated by an urn game.urn
contains90 balls, 30 of which are red, and the remainirtg are divided
into black and yellow balls, with unknown proportion. Sutigeplaying the
game are asked for their preferences over two gambles. mdanbles
one ball is drawn from the urn and players have to guess its.col

GambleC' is given by

e (;: the ball is red;
e (5: the ball is black.

GambleD is divided into

e D;: the ball is red or yellow;
e D, the ball is black or yellow.

Ellsberg found that many people prefer to bet on gambleand Ds, vi-
olating the “sure thing principle”, which requires thatdf, is preferred
to (s, than D, should be preferred td,. Ellsberg attributed this inconsis-
tency toambiguity aversiotn the face of Knightian uncertainty. As defined
by Knight in 1921 (seefq)), it describes fundamental uncertainty and un-
knowable probabilities. Knightian risk describes proliébs that can be
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guantified because they capture observable, repeatalvitsewdich can be
measured or which are given as prior information about prtaga  With
this example Ellsberg showed that the expected utility rfadls in situa-
tions in which uncertain events are associated with prditiabithat cannot
be quantified, subsequently giving rise to an alternatiyeeted utility the-
ory based on generalized Choquet integrals (1965).

Other alternative theories have been proposed since the'@ds, like
the ones from Machina (1982), Karni (1985), Yaari (1987) atiter au-
thors.






CHAPTER 4

The target Based Model for utility

We introduce a formal description of the Target-Based agogrdo util-
ity theory for the case ai > 1 attributes and point out the connections with
aggregation-based extensions of capacities on finite Ateough capaci-
ties have been used in the literature to go beyond the cigsiaciple of
maximization of expected utility, we show how such measeregrge in
a natural way in the frame of the target-based approach ssici utility
theory, when considering the multi-attribute case. Ouculsion provides
economic interpretations of different concepts of the thebcapacities. In
particular, we analyze the meaning of extensions of capadiased on-
dimensional copulas. The latter describe stochastic akgree for random
vectors of interest in the problem. We also trace the commesbetween
the case of0, 1}-valued capacities and the analysis of “coherent” religbil
systems.

1. Introduction to Target Based model

A rich literature has been devoted in the last decade tddhget-Based
Approach(TBA) to utility functions and economic decisions (sd®] 20,
28, 29, 141, 14p. This literature is still growing, with a main focus on
applied aspects (see, for examplE3,[149, 150).

Even from a theoretical point of view, however, some issuesterest
demand further analysis. In this direction, the presenp@hawill consider
some aspects that emerge in the analysis of the multi-ati¢ribcase. Gen-
erally TBA can provide probabilistic interpretations offdrent notions of
utility theory. Here we will in particular interpret in tesof stochastic de-
pendence the differences among copula-based extensi@nsavhe fuzzy
measure.

In order to explain the basic concepts of the TBA it is, in aage; con-
venient to start by recalling the single-attribute case.3d.e= { X, }.ca be
a family of real-valued random variables, that are disteduaccording to
probability distribution functiong, respectively. Each elemeiX, € =
IS seen as @rospector a lottery and a Decision Maker is expected to
conveniently select one element out®f(or, equivalently € A). Let
U : R — R be a (non-decreasing) utility function, that describesDkei-
sion Maker’s attitude toward risk. Thus, according to Engected Utility

53
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Principle (see L49), the DM’s choice is performed by maximizing the in-
tegral

E[U (X,)] = /RU(QJ) dF,(z). (4.1)

In the Target-Based approach one in addition assumtsbe right-conti-
nuous and bounded so that, by means of normalization, it eaeén as a
probability distribution function over the real line. Thapproach suggests
looking atU as at the distribution functio’r of a random variabld'".
This variable will be considered astarget, stochastically independent of
all the prospects,,. If T'is a (real-valued) random variable stochastically
independent of, in fact, one has

B(Fy(X.) = [P <o)F(n) =BT < X.),  (42)

and then, by settiny = Fr, the Expected Utility Principle prescribes a
choice ofa € A which maximizes the quantifg [U (X,)] = P (T < X,).

The conceptual organization and formalization of basiasdeave been
proposed at the end of nineties of last century by Castagnidialzi, and
Bordley. Some arguments, that can be regarded nowadaytatedrevith
the origins of TBA, had been around however in the econortecdiure for
a long time (seell9, 29 and references therein).

After the publication of these papers, several developsmappeared
in the subsequent years concerning the appropriate waynergleze the
TBA to the case of multi-attribute utility functions, see particular RO,
141, 142. As already mentioned such an approach, when applicatiégso
probabilistic interpretations of notions of utility thgpand this is accom-
plished in terms of properties of the probability distriloat of a random
target. Such interpretations, in their turn, are easilyansthndable and
practically useful. In particular, they can help a Decididaker in the pro-
cess of assessing her/his own utility function.

A natural extension of the concept of Target-Based utityf the case
n = 1 to the case o > 1 attributes is based on a specific principle of
individual choice pointed out in20]. In this Chapter, we formalize such
a principle in terms of the concept of capacity and analyzé3A multi-
attribute utility as a paifm, F') wherem is a capacity oveN = {1,...,n}
and F' is ann-dimensional probability distribution function. For ouarp
poses it is convenient to use the Sklar decompositiof’ af terms of its
one-dimensional margins and of its connecting copula. bhsuframe,
some aspects of aggregation functions and of copula-badedseons of
capacities emerge in a straightforward way.

More precisely, the Chapter will present the following sture. In the
next section, we will introduce the appropriate notatiod datail the basic
aspects of the multi-criteria Target-Based approachtiS¢girom the argu-
ments presented i”20], we show how every Target-Baseekcriteria utility
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is basically determined by a couple of objects:radimensional probabil-
ity distribution function and a fuzzy measure ovér:= {1,...,n}. This
discussion will allow us to point out, in Section 3, that soofi¢he results
presented by Kolesarova et al. &7 admit, in a completely direct way,
probabilistic interpretations and applications in ternishe TBA. It will

in particular turn out that.-dimensional copulas, which can be used for
the extension of fuzzy measures, describe stochastic depea among the
components of random vectors relevant in the problem. &eétiwill be
devoted to the special case {df, 1} —valued capacities. We shall see how,
under such a specific condition, our arguments are direetbted to the
field of reliability and of lattice polynomial functions. 8e final remarks
concerning the relations between the parameters of TBAiegiland eco-
nomic attitudes of a Decision Maker will be presented in ®acb. The
notation we used is motivated by our effort to set a bridge/ben the two
different settings. The term “attribute”, as used in thespré Chapter, is
substantially a synonymous of “criteria”.

2. Multi-Attribute Target-Based Utilities

In this section we deal with the TBA form of utility functionsith
n > 1 attributes. As recalled in the introduction, in the singté&ibute
caseyn = 1, a TBA utility is essentially a non-decreasing, right-aonbus,
bounded function that, after suitable normalization, gareled as the distri-
bution function of a scalar random varialdlenith the meaning of a target.
Actually even more general, non-necessarily increasiaglittes” can be
considered in the TBA when possibility of stochastic deparoa is admit-
ted between the target and the prospect (46 Eee also 38]), but our
interest here is limited to the case of independence betseeim two ob-
jects.

At a first glance, one could consider the functidn&, . .., z,) as the
appropriate objects for a straightforward generalizatibthe definition of
the TBA utilities to then-attributes case. A giveR should be interpreted
as the joint distribution function of &arget vectorT := (73,...,7,). But
such a choice would be extremely restrictive, however. Aencanvincing
definition, on the contrary, can be based on the following@ple: in the
cases when a single deterministic targdé = 1, ..., n) has been assessed
for any attribute by the Decision Maker, the utility/,,, + (x) corresponding
to an outcome := (x4, ..., z,) depends only on the subset of those targets
that are met by (as in 0], Definition 1). More precisely, we assume the
existence of a set functian : 2 — R, such that

Upt(x) = m(Q(t,x)), (4.3)
whereQ (t, x) is the subset oiV defined by
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It is natural to require that the function is finite, non-negative, and
non-decreasing, namely such that

0=m(0) <m(I) <m(N) < oo

Without loss of generality one can also assumethat scaled, in such

a way that

m(N) = 1. (4.5)
In other words, we are dealing withcapacityor afuzzy measure: : 2V
— [0, 1].

Rather than deterministic targets however, it is generatigresting to
admit the possibility that the vect@r of the targets is random, as it happens
in the single-attribute case. Denoting By the joint distribution function
of T, we replace the definition of a multi-attribute utility furan given in
(4.3) by the following more general

DEFINITION 4.1. A multi-attribute target-based utility function, with
capacitym and with a random target’ has the form

Un,p(x) =Y _m(I)P (ﬂ{ﬂ <z} {T > xi}> . (48)
ICN iel i¢l

It is clear thatl/,,, (x) = U,, +(x) when the probability distribution de-
scribed byFr is degenerate over the poitie R”. On the other hand the
special choicé/,, r(x) = Fr(x), mentioned above, is obtained by impos-
ing the condition (4.5) together with

m(l)=0 foralll C N 4.7)

This position corresponds then to a Decision Maker who iy satisfied
when all then targets are achieved.

The class of-attributes utilities is of course much wider than the one
constituted by the functions of the form (4.6). The lattexssl is however
wide enough and the choice of a utility function within it &her flexible,
since a single function is determined by the pair-), Fr). Sufficient or
necessary conditions, under which a utility function is loé form (4.6),
have been studied by Bordley and Kirkwood RO]. Several situations,
where such utilities can emerge as natural, have also beeusdied.

For our purposes, the following notation will be useful. Wmdte by
M,, : [0,1] — R the set-function obtained by letting, fére 2%,

My (1) = (=1 () (4.8)
JCI
where|I| indicates the cardinality of the sét The functioni/,,(-) is the
Mobius Transfornof m(-) and, as a formula of thiaverse Mybius Trans-
form, we also haven(l) = ) ,-, M,.(J) (see e.g.116]). Forx € R" and
I C N, we set -
.fL'j j € ],

+o00 otherwise. (4.9)

x; = {w,...,u,} whereu; = {
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If F'(x) is a probability distribution function ové”, FU)(xz;,, ..., x;, ) =
F(xr) will be its |I|-dimensional marginal. Now we denote b¥(-) the
marginal distribution oft" fori = 1, ..., n and we assume it to be continu-
ous and strictly increasing. Furthermore we will denotétijreconnecting
copulaof F:

C(y) == F(G{ (w), ..., G (yn)). (4.10)
Using a notation similar to (4.9), for € [0, 1] we set

‘ y; J €1,
yr:={vi,...,v.} Wwhereuv; = { 1 otherwise.

In this way for the connecting copu{a,(f) of F) we can write

Cg)(yJU?y]m) :C(YI) (411)

The following result can be seen as an analogue of severdisgse-
sented in different settings (see in particulr][and [94)).

ProOPOSITION4.2. The utility functionl/,,, » can be written in the equiv-
alent form

Up,p(x) = Y Myu(DP(T < x/). (4.12)

ICN

PROOF The proof amounts to a direct application of the inclusion-
exclusion principle. Se#\; = {7; < z;} and we denote its complement

by A¢; we also setd; = N;c;A; and A; = NigrAf. Then Equation (4.6)

1

can be rewritten as

Un,r(x) = Y m(I)P(A; N Ay).

ICN
By a direct application of the inclusion-exclusion prifleigve have
Unp(x) =Y _m(I) Y (-1)"P(A; N A),
ICN JCN\I

then

Unr(x) =) > (~1)m(H)P(Ar) = ) Mu(I)P(Ap),

ICN HCI ICN
which is the right hand side of (4.12). g
We now consider the functioti,, (G (y1), ..., G (yn)). In view

of (4.10) we see that this function dependsfoonly through the connect-
ing copulaC' and it will be denoted bﬁmc. Furthermore, the quantities
Gi(z1),...,Gn(z,) can be given the meaning of utilities, thﬁfslvc be-
comes theggregation functiof the marginal utilities,, . . ., y,.



58 4. THE TARGET BASED MODEL FOR UTILITY

COROLLARY 4.3. In the case in which the one-dimensional distribu-
tionsGy(x1),...,G,(x,) Of F are continuous and strictly increasing, one
can also write

Unc(y) =Y _ Mu()Clyr). (4.13)

ICN

For any fixed paifm, F’), we now turn to considering the expected util-
ity corresponding to the choice opaospecX := (X1, ..., X,,) distributed
according tofx:

Ex (U r(X)) = / U () dFx (x)

RTL
=) M, (I)P(T; < X). (4.14)

ICN

By taking into account (4.14) and by interchanging the irdégn order,
we can also write

Ex (Up,r(X)) = Ex [Ex(Up,1(X))]
:/Rn { s Mm([(t,x))dFX(x)} dFp(t).  (4.15)

See also the logic scheme of Figure 4.1.

TB Utility - Deterministic Target
Un (%) = m(Q(t, x))
Integrating w.r.t.

Integrating w.r.t.
Fr / \ Fx

Expected TB Utility

T8 Utility - Random Target Random Prospect, Deterministic Targe
Um’FT <X) - ET[UM’T(X)] ]EX[Um t(X>]

Integrating w.r.t. \ / Integrating w.r.t.
Fx FT

Expected TB Utility - Random Prospect|
Ex []ET[Um,T(X)” =Er [EX[UWL,T(X)H

FIGURE 4.1. TB Utility Scheme

The formula (4.14) points out that, when evaluating the chaf a
prospeciX, the random vector of interestid = T — X. Let us assume that
the marginal distribution function ab;, denoted byH;(¢), is continuous
and strictly increasing ig = 0fori = 1,...,n, and puty = (y1,...,%)
with

Vi = H;(0). (4.16)
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Similarly to (4.11), let us furthermore denote (6‘)22 the connecting copula
of the marginal distribution corresponding to the coortisaubsef C N.
Then (4.14) becomes

ﬁme(")’) = EX Z M O}Ig
ICN
= Z My (I)Crp (Y1) (4.17)
ICN

This formula highlights that, concerning the joint distriion of D, we only
need to specify the vectarandCy,, = C}JZ), the connecting copula dd.

FromCp,, we can derive in fact the family of all marginal coputﬁ% by
means of the formula (4.11) above.

3. Multi-Attribute TBA and Extensions of Fuzzy Measures

Let a capacitymn(-) over2" and an-dimensional copuld : [0, 1]" —
[0, 1] be given. Fory € [0, 1]", we can consider theggregation function

= > M, (I)Clyr), (4.18)

ICN

where),,(-) denotes the Mobius transform of(-) andC'(y;) is the con-
necting copula of"), see (4.11). We remind

DEFINITION 4.4. An aggregation functiod : [0, 1]* — [0, 1] is a func-
tion non-decreasing in each component and satisfy the anyrabnditions
A(0)=0andA(1) =

(see e.g. 24)). By the usual identification of0, 1}™ with 2V (where
a subsetl C N is identified with its indicator function) one has, fore
{0,1}™ and for any copuld’,

Vin,c(y) = m(I), (4.19)

wherel = {ily; = 1}. Thus any aggregation function of the form (4.18)
can be seen as the extension[@pl]” of the capacitym(-) defined over
{0,1}". Extensions of a capacity ovéd, 1}" have been of interest in the
fuzzy sets literature. Several properties of these extessiave been in par-
ticular studied by Kolesarova et al i@7]. In that paper the authors consider
extensions of the form (4.18), whe€eis replaced by a more general ag-
gregation functiord. As corollaries of their general results, it follows that
- in the special cases whehcoincides with a copula’ - V,, ¢ is actually
an aggregation function, and special properties of it aedyaed therein.
Itis in particular noticed that, whefl is theproduct copulaone obtains
the Owen extensioand, when' is thecopula of comonotonicitynamely

C(uy, ... uy) =minfuy, ... u,}, (4.20)
then one obtains thieovasz extensigror the Choquet integral of.
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In the present framework, it is useful to give the aggregefimction in
(4.18) the form of a Riemann-Stiltjes in integral oyer1]™ as follows.

THEOREM 4.5. Let m be a capacity ove2” and C' ann-dimensional
copula. Fory € [0, 1]" one has

Ve = [ mlQEa.y)]dcta (@.21)

whereQ(z,y) is the set defined as {@.4).

PROOF Let/ C N. By definition of@ we have that)(z,y) = I holds
ifand only if z; < y; fori € I andz; > y; fori ¢ I. Hence

m[Q(z,y)] =Y m(D) [[ 1z <oy [ [ 1ees5u)

ICN jeI jél
= Z M (1) H Lz <y
ICN jeI

By integrating this function ovep), 1] w.r.t. the probability measure asso-
ciated toC', one has

/[O 1)» mlQ(z,y)]dC(z) = / Z My (1) H Liz<ypy dC(z)

04" rcn jel
=S Mu0) [ [T 10 €
ICN 0.4 jer
=3 Mo (1)C(y). (4.22)
ICN

n

REMARK 4.6. Theorem 4.5 shows in which serigg- can be seen as
a generalization of the Choquet integral. In fa¢f ~ reduces to a Choquet
integral whenC' is the copula of comonotonicity.

REMARK 4.7. Consider now the case whérj. is the probability dis-
tribution function degenerate over € [0, 1]". In this case, as shown by
(4.21) V,,, ¢, reduces to

Vo (y) = mlQ(z,y)]. (4.23)

One can notice that, for any copul@, V,, c.(y) = Vi.c(w), wherew €
{0,1}™ is defined by

Yi=3 0 if Zi > Y.

Notice also that Equatio®.23)is just a different way to read the principle
that led us to the Definitio(d.1) of a TB multi-attribute utility function.
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As seen in the previous section, aggregation functionseoficthm (4.18)
emerge in a natural way in the frame of TBA utilities. In suctiaane the
copulaC takes a specific meaning as the copula that describes stischas
dependence properties of random vectors relevant in thsidegroblem
at hand.

Let us consider the expected utility, associated to a natitibute pros-
pectX, of the target-based utility with targ8t. As shown by expression
(4.17), such an expected utility has the form (4.18), whes geen as a
function of the quantities; = H;(0), i = 1,...,n, introduced in (4.16).

In this case(”' has then the meaning of the connecting copula of the vector
D=(T)-Xy,....,T, — X,,).

Let furthermore&+,, . . ., G, the one-dimensional marginal distributions
of T1,...,T,, be assumed continuous and strictly increasing and' lée-
note, this time, the connecting copula @i, ...,7,). Under these hy-
pothesesV,, «(v1, ..., y,) takes the meaning of an aggregation function
Un.c(y1, - - ., yn) of the marginal utilities),, . . ., y,, as (4.13) shows.

We then see that both the functidﬁ,g,CT (-) andU,, ¢, (+), defined over
[0,1]", have the same formal expression (4.18) and are thus tweretiff
extensions of the capacity. Starting from a same TBA utility function as
in (4.13), they get different economic meanings. Both ofitree definite
integrals oveR™, however. In particular, fdrAfm,cT andU,, » we can obtain,
as a corollary of Theorem 4.5,

PROPOSITION4.8. The aggregation functiorﬁ’m,cT and ﬁm,F are re-
spectively given by

O (y) = /[ Q@ yacy(). (4.24)
Our) = [ miQte7)dCote). (.25

PROOF As to the integral corresponding tAQmCT (y), recall that, for
t € R” andx €R"”, we had set)(t,x) := {i|t; < z;}. By using formula
(4.15), whereF' is the distribution function of the target vectdr one has

Unn,p(x) = Ex(Unr(x)) = Ex[m(Q(T, x))] = /Rn m[Q(t, x)] dFr(t).

Notice now that)(t, x) andQ(z,y) are exactly the same set, singg; <
r;} = {i|G7H(t;) < G Yx;)} = {ilzi < y;}. Thus, recalling thak =
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(G7 (), -+ -, G (yn)), ONe has

~

Unp(y)= [ mQt, G (1), ...G, (yn))] dFr(t)

Rn

= m[Q(Gfl(zl)> R G;Ll(ZTZ)? Gfl(y1)> R G;Ll(yn))] dO(Z)

m

= [ m[Q(z,y)]dC(z) = Vinc(y)- (4.26)

In

A similar argument can be used to prove (4.25). O

REMARK 4.9. In the present frame, the Choquet integral admits the fol-
lowing economic interpretation. The choice of the copuleamhonotonicity
stands for the choice of a-dimensional target, where all the random co-
ordinates are just deterministic transformations of one arsame random
variable. In this cas@m,CT (y) reduces to a Choquet integral.

4. Reliability-structured TBA utilities

A very special class of capacities(-) emerges as an immediate gener-
alization of the case in (4.7) and is of interest in the frafh&RA utilities.
For a brief introduction to the topic of reliability of systs we refer to
Appendix A and to 10].

DEFINITION 4.10 (See20Q], Definition 4). A Target-Based utility func-
tion has a reliability structure when the capacity-) satisfies the condition

m(I) € {0,1} forall I € N.

Any suchm(-) can then be seen as thiucture functiorof a coherent
reliability systemS or, more generally, of aemi-coherenbne (for further
details see](] and [113).

We concentrate our attention on the case when both the catedi
(T1,...,T,) of the target and the coordinates,, ..., X,,) of the prospect
are non-negative random variables that can then be intetpes the vec-
tors of the lifetimes of the components 6f The above reliability-based
interpretation applies in a completely natural way, in tase.

For¢ € R, we denote by (&) the lifetime of S when¢,, .. ., &, are the
values taken by these lifetimes, respectively. Then, astpdiout in P7],
7(-) is a lattice polynomial function. Then (se&d]) it can be written both
in adisjunctiveand in aconjunctiveform as a combination of the operators
A andV (see also97], Proposition 2). When, in particular, the system
admittingm as its structure function is coherent, these forms can bedbas
on thepath setsaand thecut setf the system (see agaih(] and [113)).

The random variable(T) is the lifetime ofS when the lifetimes of the
components coincide with the coordinates of the DM’s tasgetr(X) is
the lifetime of the system when the lifetimes of componewois@de with
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the coordinates of a (random) prosp&ctUnder these positions, the utility
functionU,, r(x1, ..., x,) can be read as a probability. More exactly

Unr(zi,...,z,) =P(1(T) < 7(x)), (4.27)
and the expected utility in (4.14) becomes
E (Up.r(X)) =P(7(T) < 7(X)). (4.28)

We can then summarize as follows our conclusions. Considdiadbility-
structured multi-attribute Target-Based utility, r(z1, ..., z,) with I’ the
joint distribution function of» non-negative random variables anddgt>
0,7=1,...,n. Denote furthermore by

Grm)(€) = P(7(T) <§)
the marginal distribution function of the lifetimeT). Then we have

PROPOSITION4.11.
Um7F(.%'1, P ,l'n) = GT(T)(T(X)). (429)

This result shows that, in the reliability-structured ¢asmulti-attribute
Target-Based utility/,,, » reduces to a single-attribute Target-Based with a
prospectr(X) and a target(T). In particular the operataris amean(see
e.g. [70): for x > 0, 7(z, ..., x) = x. Thus we obtain from (4.27) that the
probability distribution function of('T) is given by

Grry(&) = Unr(&, ... &) (4.30)
For a different but strictly related expression@fr)(&) see B7].

The formula (4.29) can be used in the two different direiaone can
analyze questions about systems’ reliability by usinggaolthe theory of
aggregation operators and of extensions of capacitiesoeversa, different
aspects of aggregation operators can be interpreted irstefmeliability
practice, when the capacities afe, 1}-valued. In particular, the aggre-
gation functionﬁmvc in (4.13) can be given special interpretations in the
present setting. From a technical point of view, in a religbstructured
frame, G4, ..., G, are the one-dimensional marginal distributions of the
components’ lifetimeq?, ..., T,, of a system and’ denotes the connect-
ing copula of T. By taking into account Equation (4.29) we obtain, for
y € [0, 1],

ﬁm,C()’) = G’T(T) (T(Gfl(yl>7 M) G;1<yn>>> (431)

Notice that the operatar(x) appearing in (4.27) and (4.31) is only de-
termined by the capacity,, whereas the probability la® ) also depends
on the copula’ of F'. In any casé?m,c(y) is an integral, w.r.t. the capacity
m, and the function to be integrated depend<bn

We also notice that, from a purely mathematical viewpaointcan be
paired with any copulé@’. Any capacitym, for instance, can be paired with
the comonotonicity copula to obtain ttﬁ,tl,c(y) is a Choquet Integral. We
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also notice in this respect that, in this cag,(y) is a lattice polynomial
as well. From the economic point of view, on the contrary, @sipg con-
ditions describing the attitudes towards risk by part of aiBien Maker,
creates some constraints on the choice of the(pai'). See also the brief
discussion in the next section.

4.1. Symmetric Reliability-Structured Cases.Here we consider spe-
cial conditions of invariance with respect to permutatiofisst we look at
the very restrictive, but important, casesyfmmetricyeliability-structured
capacities. The reliability systems admitting permutaiilavariant struc-
ture functionsp are those of the typk-out-of-n. More precisely, a system
is k-out-of-n when, forx € {0, 1}", its structure function has the form

1 S >k,

This is then the case of a system which is able to work as far lagst
k of its components are working or, in other words, which fathe instant
of the(n — k + 1)—th failure among its components. In (4.32), the structure
function is seen as a function ovat. Equivalently, wheny,..,, is seen as a
set function, the valuéy.,,(I) is 0 or 1, only depending on the cardinality
of I being larger or smaller thain

PROPOSITION4.12. In the case of &-out-of« capacitym = ¢y.,, we
have
I|—1
Unp(x)= > (—1)I—k(‘[| k)IP’(T < x1).
ICN,|I|>k 17—

PROOF Recall Equation (4.12) and notice that, far= ¢,.,,, the coef-
ficients of the Mobius transform are given by

k(=1
Mo(1) = é” (k) 112k

otherwise
0
It is clear that, in the case offaout-of-n systems, we have that
7(5) = f(n—k—‘,—l)v
where¢, . . ., {») denote the order statistics §f, . . ., &, and the formula

(4.29) takes the special form
U¢Ic:mF(X) = GT(n_k.H) (x(nfk+1))~
From (4.30), we in particular obtain the probability lawigf, ;. 1):
Gri (€)= P(T i) &) = Upppl6 1) (439)

A different remarkable case of reliability-structured TBAlities is ob-
tained by imposing the condition of permutation-invariamwer the joint
distribution F, rather than over the capacity. This is the case when
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Ty, ...,T,, the coordinates of the targ#t, are assumed to be non-negative
exchangeableandom variables, namely the joint distributibi, . . ., z,,)

is assumed invariant under permutations of its arguments.. , z,,. In this
case the concept aignatureof the system enters in the expression of the
utility function U,,, p.

Given the structure function : {0,1}" — {0,1} of a semi-coherent
system, the signatur€®) = s = (s,...,s,) is a probability distribu-
tion over N = {1,...,n} (as a basic reference, see e.dl1g). For
j=1,...,n,consider the events

Ej = (r(T) = Ty;)) ,
with 71, ..., T, denoting again the lifetimes of the components a(idl)
the lifetime of the system. Wheén,, . . ., T,, are such that
P (Ty = Ty, for somei’,i") = 0, (4.34)

Ey, ..., E, are exhaustive and pair-wise disjoint, and we have

> P(E) =1

j=1
The components,, ..., s, of the signature are defined as = P(E;).
It is easy to prove that, when, ..., T, are exchangeable, the following

properties hold:

a): s does not depend on the joint probability distribution of the
targetsry, ..., T,

b): For{ > 0andj = 1,...,n,the event7|; < &) is stochastically
independent oy, ..., F,.

By the formula of total probabilities we then can write, foryg > 0,

P(7(T) <¢) = ZP(EJ)]P(T(T) <¢|E))
= ZP(T(T) = T())P(r(T) < &|7(T) =T()

= Z S§~¢)P(T(j) <¥&). (4.35)
j=1

By the propertya) the signature(® is a combinatorial invariant of the
system. See in particula®@| for the relations between the signatué
and the “reliability function” of the system in case of i.icbmponents. For
a discussion about the relations betwe&th and symmetry properties see
also [L32).

In view of (4.35) the signaturg® has a role in the representation of the
utility function U, » whenF' is exchangeable. By (4.30) we obtain
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PROPOSITION4.13. Let F' be an exchangeable joint distribution func-
tion overR?, satisfying the conditio(4.34) For any reliability-structured
capacitym : 2V — {0, 1} and forx € R, one has

Zs P(T(;) < 7(x)). (4.36)

The term55§.m) and7(x) in (4.36) are determined by, whereasF
determines the probability law @f;, for j = 1,...,n. The formula (4.35)
is a special case of (4.36): far= (¢, ..., ) we obtain once more

Grr)(§) = Un,r(§ ZS ) < &)

_Z Wy, plE,...,6).

5. TBA utilities and attitudes toward goods and risk

Here we think of a Decision Maker who describes her/hisuatés to-
wardsn goodsg, .. ., G, through a capacityn and defines her/his utility
by choosing a targeT with joint distribution functionF’. ThusU,, r(x)
evaluates the satisfaction of the DM in receiving the quwntj for the
good G;, z, for the goodG, and so on. Different properties with eco-
nomic meaning of a multi-attribute utility function can &k special form
in the TBA case and in the reliability-structured TBA cas@renin partic-
ular. One should analyze how can different properties baenfied by the
choice of the parameters, F or, in other terms, which constraints on the
pair (m, F') are induced by fixing the attitudes of the DM. In this Section,
we concentrate our attention on the basic concepts of supkdarity and
submodularity (seelf39, 14(Q) and present some related comments.

For a function/ : R" — R and forx’, x” € R", set

W x") =UX vX")+UX AX") - UX) - UKX"). (4.37)

DEFINITION 4.14. The functiornl/ is supermodular when? (x/,x”) >
0 for all x',x” € R", and submodular when” (x’, x"”) < 0. If U is both
supermodular and submodular, then it is called modular.

Under the condition that the functi@nis twice differentiable, an equiv-
alent formulation in terms of the second order derivativigs oan be given.
In particular the condition of supermodularity is given by

2U(x)/0z;0z; > 0 (4.38)

forallx e R*andi # j,i,7=1,...,n
For a utility function, it is well-known that supermodulgridescribes
the case o€omplementargoods (seeq0, 119, 14(), while submodularity
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is associated tsubstitutablegoods. Two or more goods are calledm-
plementaryf “they have little or no value by themselves, but they areeno
valuable when combined together”, while they are cadlglistitutablevhen
“each of them satisfies the same need of the DM that the otloe fgdfills”.

In these settings we can say that a collection of goods arpleonents (and
each pair is said to be complementary) if they have a realecesupermod-
ular utility function (Bulow et al. 23] use the ternstrategic complements
to describe any twactivities: and; for which formula (4.38) holds).

As a related interpretation, the propertiessapermodularitysubmod-
ularity, andmodularityof a multi-attribute utilityU respectively describe,
in an analytic language, the propertiesoafrrelation affinity correlation
aversion andcorrelation neutrality(see e.g.139 and [14Q). In particular
the concept of submodularity gives rise to a specific definivf greater
correlationbetween two joint probability distributions (see Definitid in
[53)).

Let us now come to TB utilities and to related problems of pexts
choosing. We are essentially interested in decision pnoblehere the fol-
lowing objects are considered to be fixed: the capaeityhe marginal dis-
tributionsGy, . . ., G,, of the targets’ components, ..., T,, and the mar-
ginal distributions7x, . . . , Gx,, for the components of the prospect. Since
we have assumed stochastic independence betXeerd T, the marginal
probability distribution functiort;(-) of D; = T; — X; is suitably obtained
by convolution fromG; andGx,. Then, at least in principle, the vector
¥ = (71,--.,7) IS known, wherey; = H;(0). The DM is supposed to
declare the copul&’ of the target vectol" and, on this basis, to select a
copula for the random prospekt The choice of a prospect then amounts
to the choice of a copul@p for the vectorD = T — X.

For a TB utility functionU, the expression in (4.37) becomes

Wi, x") = Z M, (1vF (x5, x7) (4.39)

ICN

for any pair of vectorst’, x” € R™. The notationk;, x; is as used in (4.9).
Then the conditions of supermodularity, or submodulabggome

> M ()" (x5,x1) Z 0. (4.40)

ICN

Let the DM manifest correlation aversion or correlationraf§i. Namely
she/he wants to use a submodular, or supermodular, utilitgtion. Of
course correlation aversion/affinity concerns attitucegard dependence
among the coordinates of the prospect. On the other hantixéarm, the
properties of supermodularity and submodularity are esqwé through the
choice of the connecting coputd for the targetT. Such properties are
generally determined by the interplay betweem@and £'. In conclusion, we
are interested in conditions on the péin, ') for which condition (4.40)
holds. In this direction we now discuss some special cases.
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First of all we consider the case in which the capagitis totally mono-
tone We remind that a capacity: is said totally monotone if its Mobius
transform/ (1) is positive for all/ C N (see p6]). Since all the multi-
variate distribution functions are supermodular, we imiatedy see from
(4.40) that ifm is totally monotone, the utility functioty,, r is supermod-
ular whatever the distribution functiafi of the target is. So, in this special
case, the condition of supermodularity is completely aeieed by the ca-
pacitym.

A further interesting case is met when the capagitis additive: in this
situation the interplay among variables has no effect orotleeall amount
of the utility U,,, ». In fact, the formula fol/,,, » reduces to

Up,r(x) = ZmiP(Ti < ),
i=1

with m; +...4+m, = 1. The expression in the r.h.s. represents an Ordered
Weighted Average (se®&§]) of the marginal distributions of the targéets

It is immediate to notice thdt,, »(x) is modular for any choice af. Fur-
thermore it does not depend on the copdilaf F. We notice that, in this
case, the expected value of the util&y(/,,, »(X)] (see formulas (4.14) and
(4.17)) for a fixed prospec becomed/,,, p(v) = 327, m;v;.

Another likely situation is that in which the DM only consrdenterac-
tions among small groups of goods, $agt most. In other words the DM is
not interested in how they behave when considered in grougerdinality
larger thank. This condition leads to the choice ofka-additive capacity
(see e.g.65]). More in details

DEFINITION 4.15. A capacitym is saidk-additive if the coefficients of
its Mdbius transform}/,,, satisfy the condition\/,,(I) = 0 for all I such
that|/| > k, andM,,(I) # 0 for at least one elemedtwith |/| = k.

The assumption df-additivity generally simplifies the study of the util-
ity function. Under this hypothesis condition (4.40) redsito

VX x) = Y My (xdx") 2 0.

14

We notice, in any case, that the possible validity of the @omts of sub-
modularity and supermodularity generally depends on duogtcapacityn
and the distributiorf’. In particular, in the cask = 2, a sufficient condi-
tion for supermodularity (submodularity) readl, ({7, j}) > 0(< 0), for
all 7 # 7.

Also of interest is the special case of reliability-struet utility func-
tions, that we have considered in the previous sectiont Wesnotice that
m being{0, 1}-valued has a direct economic interpretation: likbiaary
system, that can b&p or downaccording to the current stategor down)
of each of itsn components, so the DM is completedatisfiedor com-
pletely unhappyaccording to which is the subset of targets that have been
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achieved. Cases where such utilities can be of economiarete are dis-
cussed in20]. Also, the special forms of TB utilities with» describing
series systems or parallel systems are discussed these dhe the cases
whenm is the minimal or the maximal capacity, respectively, antdeo
spond to the two extreme casegeffectcomplementarity angerfectsub-
stitutability. In such cases we encounter supermodulanty submodular-
ity, respectively, independently of the form 6t In all the other cases the
condition of supermodularity, or submodularity respeairyreads

Grr)(T(X'V X")) + Grory (T(xX A X))
—Grr)(T(X') — Gy (T(X")) ; 0. (4.41)

The validity of such a condition depends on the behavior ¢ biwe capac-
ity m and the distribution functio’ of the targets. Notice that, whéhis
exchangeabléy . 1) is of the form (4.35), then condition (4.41) becomes

Z si7 - [Guy(r (K V") + G (r(x AX"))

~Gy(r(x) = Gy (r(x")] 2 0,
Whel’eG(j)(:L‘) = P(T(j) < ZL‘)
Still concerning the properties of supermodularity/sudmarity, a very

clear situation is met in the special case- 2. We first notice that, in this
case, formula (4.12) becomes

Up,p(x1,22) = My P(Ty < 21) + Mo P(T < x5)
+ Mo P(Ty < 29, T < x3), (4.42)

where we have used, fon and M,, the shorter notatiom; = m({1}),

M, = M,,({1}), and so on. As a strongly simplifying feature of the present
case, the utility functiorUV,,, » in (4.42) is, in any case, supermodular or
submodaular. In fact condition (4.39) reads

“(

W(x,x") = My v (%, x").

Hence, since any joint distribution functidn is supermodular, submodu-
larity and supermodularity are respectively equivaleriheoconditions
M, <0 and M, >0, (4.43)
or, in terms ofm,
my+me>1 and my +my < 1. (4.44)

Focus now attention, in particular, to the casegpeifect complementar-
ity andperfect substitutability The first one is equivalent to the condition
my = my = 0 or, equivalentlyM/; , = 1, and describes the maximal possi-
ble affinity to correlation of the DM. Here the expressioniu# utility U,,,
reduces to

Um,F(x17x2> = F(371, 91?2)7 (4-45)
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which is exactly the joint distribution function of the twbmensional tar-
get. In the opposite case, the utility reducedtpr(x1, x2) = Gi(x1) +
Ga(z2) — F(21,z2) or, analogouslyl/,,, ¢ (y1,y2) = C*(y1,y2), whereC*
stands for the dual of the copula(for further details se€lf07]). All other
cases can be grouped mainly into two sets, the strictly supgular ones,
with m; + ms < 1, and the submodular ones, with;, + ms > 1. Fi-
nally we notice a region of neutrality, along the diagonaresponding to
my + my = 1: this is the case of additivity of the capacity, already
discussed above. All these cases are summarized in Fidure 4.

mip+mo =1
Correlation Neutrality

ma

my=mg=1
Perfect Substitutability

my +mo > 1
Substitutability
Correlation Aversion

my +mo <1
Complementarity
Correlation Affinity

mp =mo =0

Perfect Complementarity 0 1 m

FIGURE 4.2. Scheme for complementarity and substitutability

among two goods depending on their utility parametersms
_ We already noticed that, w.r.t. the capaacity the aggregation function
Un.c is an integral ofn, depending or”, the connecting copula df. For
a fixedm, there is no restriction in the choice 6f, from a purely mathe-
matical point of view. We can see, on the contrary, that aedanstraints
on the pair{m, C') can arise from an economic point of view, depending on
the attitudes of our Decision Maker. In other WOI’dE, the tgpmtegral of
m, that the DM is led to consider as an aggregaftion:, depends omn
itself once the attitudes of the DM have been fixed. As a sireglample,
let us consider the case of perfect complementarity in {4.4bsuch case
ﬁm,c becomesﬁm,(;(yl,yg) = C(y1,y2). Thus the aggregation function
Upn.c: Will grow with the growth of the copula. This entails that a DM,
who will manifest risk aversion besides correlation affinwill choose the
target which exhibits the greatest possible copula. Thaisritbst profitable
choice is the maximal copul&;(u, v) = u A v, namely the one of comono-
tonicity. Similar arguments can be developed for the studhe extreme
opposite casen; = my =1 (M; 5 = —1).

6. Summary and concluding remarks

By introducing the target-based approach, Bordley and Izi@a[19]
and Castagnoli and Li Calzi ir2B] had in particular developed a new way
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to look at utility functions, and related extensions, in fieéd of decision
problems under risk. In those papers, emphasis was givdmetsingle-
attribute case where, practically, there is no loss of gitgin considering
target-based utilities. As to the multi-attribute caseeatiment proposed a
few years later (inZ0, 141, 14D had further added some new ideas to the
field. In fact, the proposed extension is something diffefierm the single-
attribute definition. Actually, a direct generalizationtbé latter would lead
one to consider much too special and restrictive forms ditia, as we
have remarked in the Introduction.

A principle of individual choice, clearly enucleated (], is at the
basis of the given definition of multi-attribute target-edutilities. This
principle is indeed quite natural and is related to the etadn, by part of
a Decision Maker, about the relative importance attributedny possible
subset of achieved targets. It emerges then that such amaéoeal depends
on the individual propensity toward the possible “coahsd of attributes
and that it is related with the concept of capacity.

Starting from the latter observation, we have formally cdesed a
multi-attribute target-based utility (Definition 4.1) agair (m, F'), where
m is a capacity ove?™¥ = {0,1}" andF' is a probability distribution func-
tion overR™. On this basis, we have pointed out that the theory of multi-
attribute target-based utilities can hinge on a formal egpa, provided by
the field of fuzzy measures, extensions of fuzzy measures fumzy, or
universal, integrals. On the other hand, multi-attribateyét-based utili-
ties give rise to applications of the concepts and of resaltkis field. In
particular, under special conditions, the arguments asultepresented in
[87] can have an interpretation useful to an heuristic view efdlfferences
among various fuzzy integrals. As we have briefly recalle@action 3,
operators of the form

Via(y) = > My (I)Alyr) (4.46)

ICN

have been analyzed iB7] as extensions of capacitiesover2”. Generally
speaking, the functiorl appearing in (4.46) is an aggregation function. In
our frame, interest is concentrated on the special case wheneplaced
by ann-dimensional copul&@’. The effect of such a particular condition
is two-fold: on the one hand, it makés, » = V,, ¢ to have, itself, the
properties of an aggregation function. On the other harglyésV,, - the
meaning of an aggregation of marginal utilities; the spgdoian of aggre-
gation depends on the special type of stochastic depentleside assumed
among the coordinates of the target. An extreme conditiaependence
with a special decisional meaning of its own, namely positismonotonic-
ity, lets such an aggregation coincide with a Choquet iategie thus see
the aggregation functiorﬁmc as a natural class of operators generalizing
such integrals.
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Concerning Choquet integrals, it is well known that theyehbgen very
widely studied and discussed in the past literature coimgnitilities and
decision under risk. In particular, ir8Q] and [124], it is shown how this
concept allows one to build a quite general model of decisiaking under
uncertainty, generalizing the Expected Utility model,he frame of single-
attribute decisions. We point out that its role in the préstady appears
under a rather different form: it is not used in fact to explai general
principle for decisions under uncertainty. It emerges asdaremely special
case, just in the frame of Expected Utility. However its megnn the TB
Approach is peculiar of the multi-attribute case.

In multi-attribute decision problems under risk, the peéf a Decision
Maker can be specified by taking into account different typleattitudes
and forms of behavior, such as risk-aversion (or risk-dff)nicorrelation-
aversion (or correlation-affinity), cross-prudence, &enerally these con-
ditions are described in terms of qualitative propertieshef utility func-
tions (see e.g4p, 46, 5]).

Let us come to the specific case of multi-attribute utilitpdtions, that
we had identified with the pairsn, F'). As a challenging program for fu-
ture research, one should detail how the mentioned queditptoperties
of utility functions determine (or are determined by) thenficof m and F’
and reciprocal relations between them. For a DM with givéituakes to-
ward risk, the choice of' - and then, in particular, of the copua - is
not completely free, but is influenced by the formmefitself. In the above
Section 5, we have considered some significant special easksketched
some conclusion in this direction. A more general analysg nesult from
future achievements about qualitative descriptions gfgabased utilities.

Further research suggested by our work also concerns spasifects
of multivariate copulas. As shown by formula (4.17), thelgsia of the
present approach would benefit from new results concerhmgdnnecting
copula of the vectoD obtained as the difference between the vecibend
X. Here we have assumed stochastic independence.

More complex arguments would be involved in the cases whepdis-
sibility of some correlation between the vect@taindX is admitted. Some
specific aspects in this direction, for the special casel, have been dealt
with in [38§].



CHAPTER 5

Stochastic Precedence, Stochastic Orderings and
connections to Utility Theory

The concept oftochastic precedendeetween two real-valued random
variables has often emerged in different applied framewoitinds appli-
cations in various statistical contexts, like testing aachgling, reliability
modeling, tests for distributional equality versus vas@lternatives (see,
for example, b, 18, 119). Furthermore, this concept has been studied in
the probabilistic context of Markov models for waiting tist® occurrences
of words in random sampling of letters from an alphabet @erences, see
[40, 41, 42, 4B. Further applications can also arise in the fields of eha
ity and in the comparison of pool obtained by two oppositditoas.

Motivations for our study arise, in particular, from therfra of Target-
Based Approach in decisions under risk. In the previous @mnape de-
veloped this model for multi-dimensional attributes, untihee assumption
of stochastic independence between Targets and Prospetiiss Chapter
our analysis concerns the one-dimensional case, but vatagiumption of
stochastic dependence.

For our purposes, we introduce a slightly more general, antptetely
natural, concept of stochastic precedence and analyzaatsons with the
usual notions of stochastic ordering. Such a study leads irdroducing
some special classes of bivariate copulas, namely theesldss Proper-
ties of these classes are useful to describe the behavibe diarget-Based
model under changes in the connecting copulas of the randoiatbles, es-
pecially regarding their properties of symmetry and depecd. Examples
are provided in this direction.

More precisely the structure of the Chapter is as follows.Séttion
1 we introduce the concept generalized stochastic precedermad the
classesC,. In Section 2, we analyze the main aspects of such classes and
present a related characterization. Connections to measfiasymmetry
of copulas are analyzed in Section 3, where we introduce & measure of
non-exchangeability for the copulasAy. Some further basic properties of
this class are detailed in Section 4, where a few exampledsogresented.
Finally, in Section 5, we trace connections to Target-Bagddies in the
case of stochastic dependence between targets and pgspect

73
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1. Basic Definitions

Let X, X, be two real random variables defined on a same probability
space(Q2, F,P). We will denote byF' the joint distribution function and
by GG1, G5 their marginal distribution functions, respectively. Ebe sake
of notational simplicity, we will initially concentrate owattention on the
case wherGy, G, belong to the clasg of all the probability distribution
functions on the real line, that are continuous and stricityeasing in the
domain where they are positive and smaller than one. As wesdwlater,
we can also consider more general cases, but the preseaitdti@stallows
us to simplify the formulation and the proofs of our results. order to
account for some cases of interest withX; = X,) > 0, we will not
assume that the distribution functiénis absolutely continuous.

The random variablé; is said tostochastically preced&, if P(X; <
Xy) > 1/2, written X; <, X,. The interest of this concept for applications
has been pointed out several times in the literature (seauicplar p],
[18] and [L05]). We draw the reader’s attention to the fact that stochasti
precedence does not define a stochastic order in that, f@anices, it is not
transitive. However it can be considered in some cases astaresting
condition, possibly alternative to the ussabchastic orderingX; <,; Xo,
defined by the inequalitg; (t) > G»(t), vt € R, see 127.

When X;, X, are independent the implicatioky, <, X, = X; =,
X5 holds (see §]). It is also easy to find several other examples of bi-
variate probability models where the same implication kolgor instance
the conditionX; <, X, even entail®(X; < X,) = 1 whenX;, X, are
comonotonigsee e.g. 107), i.e. whenP(X; = G;'(G1(X;))) = 1. On
the other hand, cases of stochastic dependence can be ftwend the im-
plication X; < Xy = X; =, X, fails. A couple of examples will be
presented in Section 4. See also Proposition 5.10. On tlex bnd the
frame of words’ occurrences produces, in a natural way, ekssnn the
same direction, see e.gi(].

In this framework we replace the notioh <, X, with the generalized
concept defined as follows

DEFINITION 5.1 (Generalized Stochastic Precedend®). any given
v € [0, 1], we say thatX; stochastically precede&, at level if the con-

dition P(X; < X) > ~ holds. This will be written\; < X,.

Let C denote the class of all bivariate copulas (see al§o 107). Sev-
eral arguments along the Chapter will be based on the coonté&ptariate
copula. We recall that the pair of random variablés X,, with distribu-
tionsG, G, respectively, admit§’ € C as itsconnectingcopula whenever
its joint distribution function is given by

F(z1,19) = C(G1(x1), Ga(x2)). (5.1)
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It is well known, by Sklar's Theorem 2.4 that the connectiogula is
unique wherG; andG, are continuous. We will use the notation

A= {(.1'1,.1’2) € RQ -] < 33'2}, (52)
so that we write
P(X; < X,) = / dF (z1,12) = /2 La(w1, 2) dF (21, 22). (5.3)
A R

For givenG, G, € G andC € C we also set
n(C,G1,Ga) = P(X; < X)), (5.4)

where X; and X, are random variables with distributiois,, G, respec-
tively, and connecting copul@. Thus the conditionX; jﬁ]} X, can also
be writtenn(C, Gy, Gy) > 7.

Suppose now thaX, X, satisfy the conditionX; <,; X,. As a main
purpose of this Chapter, we give a lower bound for the prdipafi(X; <
X,) interms of the stochastic dependence betwg&eand X, or, more pre-
cisely, in terms of conditions on the integg@‘Jm[Oyl]2 dC'. More specifically
we will analyze different aspects of the special classesvairiate copulas,
defined as follows.

DEFINITION 5.2. For v € [0, 1], we denote by, the class of all copu-
las C' € C such that

77<07 G17 GQ) Z Y (55)
forall Gi, Gy € G with G < Go.

Concerning the role of the concept of copula in our study, wiatput
the following simple facts. Consider the random variabl&s= ¢(X;)
and X} = ¢(X,) where¢ : R — R is a strictly increasing function. Thus
X! =, X}ifand only if X; <,, X, andX] <) X} if and only if X, <}/
X,. At the same time the paik;, X} also admits the same connecting
copulaC.

2. A characterization of the class’,

This Section will be devoted to providing a characterizatbthe class
L., (see Theorem 5.7 and 5.8) along with related discussionsstayeby
detailing a few basic properties of the quantiti¢€’, G, G2), for Gy, G5 €
g andC € C. In view of the condition7;, G5, € G we can use the change
of variablesu = G1(z1), v = Ga(x2). Thus we can rewrite the integral in
(5.3) according to the following

PROPOSITIONS.3. For givenGy, G, € G andC' € C, one has

n(C, Gy, Gs) = / 14(G7Hw), G5 H(v)) dC(u, v). (5.6)

[0,1]2
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The use of the next Proposition is two-fold: it will be usehdth for
characterizing the class, and establishing lower and upper bounds on the
quantityn(C, Gy, G2).

PROPOSITIONS.4. Let Gy, G}, Gy, Gy € G. Then

GQ jst GIQ = 77(07 G17 GQ) S 77(07 G17 Gé)?
G1 2t Gy = n(C,G1,Gy) > n(C, G, Ga).
PROOFE We prove only the first relation of Proposition 5.4, since th

proof for the second one is analogous. By hypothesis, arg&in G, € G
for eachzx € (0, 1), one has

Gy'(x) < Gy ' (2).
Therefore
(GT'(2), Gy (2)) € A= (G (x),Gy ' (2) € A.
Hence, the proof can be concluded by recalling (5.6). O

From Proposition 5.4, in particular we get
n(C,G,G) <n(C,G¢".G) and n(C,G,G) <n(C,G,G"), (5.7)
for any choice of7, G', G” € G such that’ <,; G < G".

A basic fact in the analysis of the classésis that the quantities of the
form n(C, G, G) only depend on the coputd. More formally we state the
following result.

PROPOSITIONS.5. For any pair of distribution functions’, G” € G,
one has

n(C,G', G =n(C,G" G"). (5.8)

PROOF Recalling (5.6) one obtains

/12 14(G"(u), G (v)) dC(u,v) = / 14(G" (), " (v)) dC (u,v)

12

becausel 4 (G' 1 (u), G' 1 (v)) = 14(G" (u),G" 1 (v)) = 1a(u,v), SO

equality in (5.8) is proved. O
As a consequence of Proposition 5.5 we can introduce theaymb
n(C) :==n(C,G,G), (5.9)
and, by lettingd; = G5 = G in (5.6), write
n(C) = / dc (5.10)
AN[0,1]2

for G € G. From Proposition 5.4 and from the inequalities (5.7), waob

PROPOSITIONS.6. For G, G5 € G the following implication holds
Gl jst G2 = 77(0) S T](Ov G17 GQ)
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We then see that the quantifyC') characterizes the clags, 0 < v <
1, in fact we can state the following

THEOREMS5.7. C' € L, ifand only if n(C) > ~.

We thus have
L,={CeC:n(C) =7} (5.11)
and we can also write

n(C) =, inf_{n(C,G1,Ga): Gy 2 Ga}. (5.12)

In other words the infimum in formula (5.12) is a minimum anid attained
whenG; = G,. We notice furthermore that the definitionofC, G4, Gs)

can be extended to the case whién G, € D(R), the space of distribution
functions onR. The class; has however a special role in the present setting,
as shown in the following result.

THEOREM 5.8. LetC € C andG, H € D(R) with G < H. Then
n(C,G, H) > n(C).

PROOF Consider two sequencés,, : n € N), (H,, : n € N) such that
G, H, € GandG, 5 G, H, = H. Applying Theorem 2 in125, we
obtain that”(G,,, H,,) = C(G, H).

Consider now the new sequen@é, : n € N), where we have posed
H,(z) := min{G,(z), H,(x)}. Notice thatH,, € G, moreoveiG,, < H,

andH, = H. This impliesC(G,, H,) = C(G, H).
Now, by using the standard characterization of weak comrerg on
separable spaces (sdd]p. 67 Theorem 6.3),

limsup/dF </dF
n— oo

for any closed seB € R?, whereF = C(G,H) andF,, = C(G,, H,).
Taking the closed set defined in (5.2) one has

<11msup/dF </dF—77 (C,G,H). (5.13)

n—oo

n

REMARK 5.9. Theorem 5.8 shows that the minimum)6f', G, H), for
G,H € D(R), is attained at(C,G,G), foranyG € G C D(R). This
result allows us to replace the clagswith D(R) in the expression of
given in(5.12) We notice furthermore that one can hawg”, G',G') #
n(C,G",G") whenG’, G" are in D(R).

Concerning the classés,, we also define
B, :={C e C|n(C) =1}, (5.14)
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so that
L,=|J By
Y

>y

We now show that the classgs, v € [0, 1], are all non empty. Several
natural examples might be produced for this purpose. We tienabn on

a simple example built in terms of the random variablgs X" defined
as follows. On the probability spa¢@, 1], B[0, 1], \), where\ denotes the
Lebesgue measure, we takg(w) = w, and

Ny o J wtl=7 ifwecl0n]
X2 (w)—{ w—" if we (v,1]. (5.15)

As it happens forx;, also the distribution oX'{ is uniform in[0, 1] for
any~ € [0, 1] and the connecting copula ml,XQ(”), that is then uniquely

determined, will be denoted lay,.
PROPOSITIONS.10. For any~ € (0, 1], one has
(i) C, € B,
(i) C,(u,v) = min{u, v, max{u — v,0} + max{v+~y—1,0}}.
PROOF (i) First we notice thaP(X; < X\”) = . In fact

P(X, < X)) =P(Xi < X, +1—7,X; <)
+PXi < X1 =7, X1>79)=1.
Whence,n(C,) = P(X; < X{”) = ~, since both the distributions of

Xl,XZ(”) belong tog.
(i) For z1, x5 € [0, 1] we can write

FX17X§7>(261,$2) =P(X; < xl,Xéw < z3)
=PX) <2, X1+ 1 -7 <29, X1 <)
+P(X1 <21, Xy <224+, X1 > )
=P(X; <min{zy,z0+v—1,7}) + P(y < X; < min{xy, z9 +v})
= max{min{xy, o + v — 1,7}, 0} + max{min{zy, xs + v} — 7,0}
= min{xy, 3, max{x; — v,0} + max{zxs +~v —1,0}}.
Since both the marginal distributions &% and.X.” are uniform, it follows
that

C,(u,v) = min{u, v, max{u — v,0} + max{v+~v —1,0}}.
U

The copulag’, have also been considered for different purposes in the
literature, see e.g1pg and [L30. We point out that the identity(C.,) = v
(for v € (0, 1]) could also have been obtained directly from formula (5.10)
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In this special case the computation®RifX; < X5) is however straightfor-
ward.

As an immediate consequence of Proposition 5.10 we haveCthas
strictly contained inC., for any0 < v < 4/ < 1. We notice furthermore
thatlo =Candl, = {C €C: [, ,pdC =1} #0.

Graphs ofC, for different values ofy are provided in Figure 5.1.
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FIGURE 5.1. Copulas from the familyC, with parametery =
0.3, 0.5, 0.8 respectively

3. A weak measure of non-exchangeability

For what follows it is now convenient also to consider the rjiiies
£(C, Gy, Gy) andé(C) defined as follows:

§(C, G, G) ==P(X) = Xy), (5.16)
(0)=¢(C,G,G), (5.17)

where X; and X, are random variables with distributions, G, € G re-
spectively and connecting copula

For a given bivariate model we have considered so far thetijiesn
n(C) with C' denoting the connecting copula. In what follows we point out
the relations among(C), n(C), n(C*) whereC andC* denote thesurvival
copulaand thetransposed copulaespectively. The transposed copdla
is defined by

C'(u,v) = C(v,u) (5.18)
so that ifC is the connecting copula of the p&iX, X,), thenC" is the cop-
ula of the pair(X,, X;). Whence, ifX; and X, have the same distribution
G € G, then
n(C" =P(Xy < X1).

On the other hand the notion of survival copula of the pair, X5),
which comes out as natural when considering pairs of nomthagrandom
variables, is defined by the equation

FXl,XQ (33'1, .%'2) = 6 Wl(l'l),ag(l'z)] s (519)
with G; andG, respectively denoting the marginal survival functions:
@1(1‘1) = ]P(Xl > 33'1), @2(1’2) = ]:P)(XQ > .1'2).
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The relationship between the survival copdlaof (X, X,) and the
connecting copuld’ is given by (seel07)

~

Clu,v) =u+v—1+C(1 —u,1—0). (5.20)
The following result shows the relations tying the differguantities

~

n(C), n(C), n(C*).
PROPOSITIONS.11. LetC' € C. The following relation holds:
n(C) =n(C") =1 -n(C) +£(C). (5.21)
PROOF By the definition of) applied toC' one has

77(6’):/ﬂ]lA(u,v)d@(u,v):/ﬂ]lA(l—u’,l—v’)dC(u’,v’)

=1- /12 Taoa(u',v")dC(W,v") =1 —n(C) + £(C).

Once again, by definition of, we have
n(C") :/ 1 4(u,v) dC*(u,v) :/ 1A' W) dC W/ v")
12 e

1 / Laoa (i, o) dC (', o)) = 1 — 1(C) + £(C),
12

and finallyn(C?) = n(C). O

Fix now G € G and letX;, X, be random variables with a symmetric
connecting copul&@’ and both marginal distribution functions coinciding
with G. Then their joint distribution functiod'y, x, is exchangeable and
P(Xl < XQ) = IP)(XQ < Xl) = (1 — 5(0))/2 Thus

n(C) =P(X; < Xy)+£(C) = 1%5(0) > % (5.22)
We haven(C) = 1/2 when{(C) = 2n(C) — 1 = 0. As an immediate con-
sequence of Theorem 5.7, we then get that any symmetric zdy@ibngs
to £, for any~ < 1/2, in other words when the copula is symmetric one
has that the stochastic order implies the stochastic pesced

On the other hand we are also interested in conditions undehwhe
probabilityP(7T" < X) is “large enough”, even if the marginal distributions
of T"and X are close each other. As a matter of fact, for random vari-
ablesT" and X with “close” marginal distributionsP(7" < X') can be large
only when the copuld@’ is far from being symmetric. For this purpose it is
opportune to recall the concept @tchangeabilityf random variables, in-
troduced in 2.31: two random variabl&s and.X,, with margins7; andGs
and joint lawF ,, are exchangeable if and onlyGf, = G, andFy, = Fy ;.

In Chapter 2 we also introduced the conceptnafasure of non-exchan-
geability, useful to understand the degree of non-exchangeabilagubles
of random variables or, analogously, the level of asymmetrheir con-
necting copula. Our aim is now to check if the indegan be considered as
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a suitable measure of asymmetry, or if, in any case, may givefarmation
about copulas in this direction. To this purpose one careratbnsider the
guantity

v(C) = In(C) = n(C)], (5.23)

for C' € C. We are now going to show that the functiomefined above is
a weak measure of non-exchangeability.

PROPOSITIONS.12. The functiorv : C € R, defined in 5.23 satisfies
propertiesB1,B3,B4,B5 of Definition(2.34)

We give hints for the proof of Proposition 5.12.
B1: vis boundedin(C) — n(C*)| < n(C) + n(C*) < 2;

B3-B4: 1v(C) = v(C*) = v(C) by a direct application of (5.21);
B5: if (C,,) andC are inC and if C,, converges uniformly t@’, then

u(Cy,) converges ta(C') asn tends toco, see Theorem 2 irlRY.

For what concerns proper2, we shall need that(C') = 0 if, and only

if, C'is symmetric. Of course if the copuld is symmetric, provided that
£(C) =0, we havey(C') = 0, but the opposite implication may fail. In this
sensev can be seen as a weak measure, because may lack of this propert
Notice that, for computational purposes;an also be written as

v(C) = [2n(C) =1 =&(C)]. (5.24)

In the special case of copulds, (see Proposition 5.10) the equivalence
holds, fory € [0, 1]. In this case we have

[ 12y—=1] fory e (0,1), _J 0 forvye(0,1),
”(CW)_{O for v = 0, 1. §C)=11 fory=o0.1.

The curve of the functiow is represented in Figure 5.2. Notice that, for
the special caseg = 1/3 andvy = 2/3, we havey(C') = 1/3, value that
coincides with the one given by the measugteproposed in108.

FIGURE 5.2. Graph ofv for the copulas”,
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4. Further properties of £, and examples

We start this Section by analyzing further properties ofdlasses’,
that can also shed light on the relations between stochasieedence and
stochastic orderings. First we notice that the previousritgfn 5.2 has
been formulated in terms of the usual stochastic ordedng However
similar results can also be obtained for other importantepts of stochas-
tic ordering that have been considered in the literatureh st thehazard
rate, thelikelihood ratio, and the other orderings (see Appendix B for fur-
ther details about the topic, as well 42F)).

Let us fix, in fact, a stochastic ordering different from=;. Definition
5.2 can be modified by replacing theret;, with <, and this operation
leads us to a new class of copulas that we can denofé*bw\/lore precisely
we set

LY ={CeC:n(C,G1,Gs) =7, VG1,Gz € G s.t. Gy =, Go}

(5.25)
or equivalently
LY ={Cec:n(C)=n} (5.26)
where
n (C) : G1}8£€Q{n(07 G17G2) . Gl x G2} (5 27)

For giveny € (0, 1), one might wonder about possible relations between
£%) andL,. Actually one has the following result, which will be fornaid

for binary relations (not necessarily stochastic ordes)ngver the space
D(R).

PROPOSITIONS.13. Let <, be a relation satisfying

(a) foranyG € D(R) one has7 =, G;
(b) forany Gy, Go € D(R) with G <, G5 one has7; < Gs.

Thens, = 7.

PROOF. In view of (b), one has thaj(C) < n*(C). In fact both the
quantitiesn(C') andn*(C') are obtained as an infimum of the same func-
tional and, compared with, the quantityn* is an infimum computed on a
smaller set.

Due to (a), howevery(C) andn*(C) are both obtained, in (5.12) and
(5.27) respectively, as minima attained on a same gainé-). We can then

conclude that!"” = .. O

Concerning Proposition 5.13 we notice that, for exampkehthzard rate
and the likelihood ratio orderingss;,, and=;,., both satisfy the conditions
(a) and (b).

In applied problems it can be relevant to remark that impgpstochas-
tic orderings stronger thaf,; does not necessarily increase the level of
stochastic precedence.
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For the sake of notational simplicity we come back to consngethe
usual stochastic ordering,; and the clas£.,.

A basic property of the classe%, and B, is given by the following
result.

PROPOSITIONS.14. For v € [0, 1], the classe£,, £ = C \ £,, and
B, are convex.

PROOF We consider two bivariate copulds, C; € £, and a convex
combination of them, i.e. take € (0,1) andC := aC; + (1 — a)Cy. We
show thatC' € L., indeed

n(C) = /AdC’(u,v) =« AdC’l(u,v) + (1 —a) /Ang(u,v)

— an(Ch) + (1 — a)n(Cy).

Sincen(Ch), n(Cs) are larger or equal thanthenn(C') > ~, whencel, is
convex. Now one can use the same argument in order to show{teatd
B, are convex as well. O

An immediate application of Proposition 5.14 concerns th&eovhen,
given a random parametey, all the connecting copulas of the conditional
distributions of(7", X'), belong to a same clags,. Proposition 5.14 in fact,
guarantees that the copula(@f, X') belongs taC, as well.

Some aspects of the definitions and results given so far witldmon-
strated here by presenting a few examples. We notice thath@sn by
Proposition 5.10, the conditios,, does not imply<{, with v € (0,1).
For the special case= 1/2 we now present an example of applied interest.

EXAMPLE 5.15.

Let X, Y be two non-negative random variables, whErbas an expo-
nentially densityfy (y) with failure rate\ and where stochastic dependence
betweenX andY is described by a “load-sharing” dynamic model as fol-
lows: conditionally on(Y = y), the failure rate of amounts tax = 1 for
t <yandtogfort > y. We assumé < A < 5 < 1+ A. This position
gives rise to a jointly absolutely continuous distribution which we can
consider

—+00
P(X > z|Y =y) := fxvy(t,y)dt,
[x,y denoting the joint density ok, Y. As to the survival function of,
for any fixed valuer > 0, we can argue as follows.

— +0o0
Fa(a)=PX>0)= [ PO aly =)y
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The integral oveRR ;. can be split in two parts, as follows. Over the interval
0, 2], we have

[ B aly =)ty -
/Om P(X > y|lY =y)P(X >zl]Y =y, X > y) fy(y)dy =
| et ety

while, over[z, +oc],

+00 +oo
/ MX%WEwh@@:/ e fy (y)dy.

Then we have, for alt > 0,

— A
Fx(.%’) _ efbx e b[l . 67(1+)\7b)x] + 67(1+)\)x
A A
(1= —= —(14+N)z A < f/\a:'
< 1+A—6)6 Tiia_pg° =°

We can then conclude that <,; Y. On the other hand the same position
givesalsoriset®(X <Y)=1/(1+X) <1/2.

The next example shows that for three random variables’, X", the
implication7T <, X' <, X" = P(T < X") <P(T < X’) can fail when
the connecting copulas ¢7', X’) and(7, X”) are different.

EXAMPLE 5.16.

LetYi,..., Y5 bei.i.d. random variables, with a continuous distribution
and defined on a same probability space, and set

T = min{Yy, Yz}, X' = max{¥1, Y}, X" = max(V3, Yy, V3).
ThusX’ < X", butP(T < X’) =1andP(T < X") < 1.

REMARK 5.17. For some special types of copula the computation
of n(C, Gy, G) can be carried out directly, in terms of probabilistic argu-
ments, provided the distributiods, , G, belong to some appropriate class.
This circumstance in particular manifests for the modelssigered in the
subsequent examples. LEtbe a copula satisfying such conditions. Then
Proposition 5.4 can be used to obtain inequalities§0€', H,, H,) even if
Hy, H, do not belong t@ provided, e.qg., that/; <,; G, G5 <, H, and
G1,Gy €G.

The next example will be devoted to bivariate gaussian ngdel to a
relevant case of symmetric copulas.

EXAMPLE 5.18. Gaussian Copulas.
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The family of bivariate gaussian copulas (see elf)7]) is parameter-
ized by the correlation coefficiemt € (—1,1). The corresponding copula
C¥) is absolutely continuous and symmetric, ajid'?)) = 1/2 and, thus,
it does not depend op. For fixed pairs of distribution&s;, G, on the
contrary, the quantity)(C”, G,, G5) does actually depend gn besides
on G; andG,. This class provides the most direct instance of the situa-
tion outlined in the above Remark 5.17. The valuesfe€”) G, Gs) is
in fact immediately obtained whefi;, G, are gaussian. Lek;, X, de-
note gaussian random variables with connecting copltaand parame-
tersyuy, o, 02, 05. Since the random variablé = X, — X, is distributed
according taV (j1 — pg, 0% + 02 — 2poy05) We can write

n(CV,Gr,Ga) = B(Z <0) = < LM ) - (5.28)
\/a% + 03 — 2p0109
We recall that, whenX; ~ N (u;,0?) for i = 1,2, the necessary and
sufficient condition forX; <, X5 is u; < us ando; = o, (see e.g. §]).
In other words, forGy, G, gaussian(G; <, G2 meansX; =<, X, and
o1 = 0o. By using the formula in (5.28), with; = 0, = o, we have

M2 — 1
n(C¥, Gy, Gy) = <7> : (5.29)
ov/2(1=p)
ThusG, =, Gy = n(C"» Gy,G,) > 1/2, as shown by Proposition 5.6
and Theorem 5.8. We notice thatC”), G, G5) is an increasing function
of p.
Proposition 5.4 can be extended to obtain, say, that

T](O(p)7 G17 GQ) S T](C’(P), H17 H2)7

whenH, <4 Gy andGy =4 H,, for G1,G, € G andHy, Hy, ¢ G. We
then can give inequalities foy(C?), H,, H,) in terms of (5.28), provided
H,, H, are suitably comparable in the,; sense with gaussian distributions.

In the cases whefi(C') > 0, we should obviously distinguish between
computations oP(X; < X,) andP(X; < X;), whereC' is the connecting
copula of Xy, X,. A remarkable case when this circumstance happens is
considered in the following example.

ExAMPLE 5.19. Marshall-Olkin Models

We consider the Marshall-Olkin copulas (see &8} [L03, 10]), namely
those whose expression is the following:

6(&1702)(11/’ U) = Uv min{u_aly ,U_OQ}

for0 < o; < 1,7 = 1,2. We notice that the Marshall-Olkin copula has a
singular part that is concentrated on the cunge = v** (see also Figure
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5.3). Actually the measure of such a singular componenvisgby
109

a1 + oy — a0

FIGURE 5.3. Marshall-Olkin Copula (left) and graph af** =
v (right). Special case; = 0.4, as = 0.2.

As for the computation oty(@(alm)) we use the expression in (5.10).
By separately considering the curué' = v*? and the domains where
C(>1.22) js absolutely continuous, we obtain

77(6(0‘1’0‘2)) B 1 (1 (a1 Aag)(ar A 042)) .

2—0[1/\0[2 a1 — Qg

Consider the copula
Clere2)(y v) = COve2)(1 —u 1 —v) + u4 v — 1.

We will see now that the value @/f(C(ava“?), G1, G9) directly follows from
probabilistic arguments, providéd, , G, are exponential distributions with
appropriate parameters. Let in fa¢t W andZ be three random variables
independent and exponentially distributed with paranseter= 1/a; — 1,
w2 = 1/ay — 1 andu = 1, respectively. The new random variables

X11:V/\Z, XQI:W/\Z,

have survival copul&’®122) connecting copul&’(©12), and exponential
distributionsG\*" andGY**, with parameters /a; and1/a, respectively.
We now proceed with the computation of

n(Clere?) G GEY) = P(X; < Xa).

We can write
g(Clere) Glen) G2y — p(X; = X,) =P(Z <V AW)
. 1 . 109
B p1+ pe +1 Ca oy — gy’
furthermore

P(X1 < X)) =P(V<WAZ)= (L—ar)ay

bl
a1 + oy — g
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and finally we obtain
Qo

P(X, < X,) = .
(X< %) a1+ g — o

Then
(8%

C(al’”),G(al),G(m) _ '
! ! 2 ) a1+ Qg — Qg

Finally, the evaluation of(C') is straightforward and we obtain
aq N (6]

(a1,02)y
V(C )—2—&1/\042.
We notice that, also in the present Marshall-Olkin caseirttiex defined
in (5.23) perfectly fits with the definition of measure of nexchangeability
given in [49]. In fact one has that(C') = 0 only in the casey; = ay = 0,
that corresponds t6'(u, v) = uv, the independence copula.

We now conclude this Section with an example showing an ewre
case in the direction of Remark 5.17.

EXAMPLE 5.20. Copulas of order statistics

Let A, B be two i.i.d. random variables with d. € G and denote by
X1, X, their order statistics, namely; = min{ A, B}, X, = max{A, B}.
The distributions ofX, X, depend orz and are respectively given by

Fl9(2)) = P(min{ X1, X5} < 21) = 2G(21) — G(a1)*,

FL(25) = P(max{ X1, Xo} < 25) = G(2,)?.
Let Z := {(u,v) € I? : v > (1 — (1 —u)"?)2}. The connecting copula of
(X1, X5), represented in Figure 5.4, is given by

K(u,v) _ { 2(1 — (1 — u)1/2)vl/2 . (1 . (1 N u)l/?)? if (U,U) €z

v otherwise
We have, by definition,
(K, K9, F9) =1,

and it does not depend @r. We notice, on the other hand, that the com-
putation ofp(K) = n(K,G,G), with G € G, is to be carried out explicitly,
since the paifG, G) can never appear as the pair of marginal distributions
of order statistics. By recalling (5.6) one obtains

1

T14(u,v) T
K) = —————dvdu=2— - < -,
n(K) /[071}22\/5 —1_uvu 5 <75
v(K)=2n(K)—1] =7 — 3.

We can extend this example to the case when the connectindpcoid, B
is a copulaD different from the product copulH, but still A and B are
identically distributed according to a distribution fuioct . In this case
the connecting copul&” of X, X, depends orD, but again it does not
depend oz (see LOG page 478).
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FIGURE 5.4. Ordered Statistic Copula K

5. The classeg, in the Target-Based Approach

In this Section we trace connections between our resultstabochas-
tic precedence, introduced in the previous sections, aadanget-Based
Approach to decision problems under risk.

So far we introduced the Target-Based Model of utility anadstd
many of its properties, especially in the multi-attribuése and in the case
of independence between targets and prospects. Here wentoate at-
tention on the single-attribute case, whéfé X) is a pair of real-valued
random variables. Furthermore, we are interested in treewhsre there is
dependence betwed@hand X .

It is clear that the objects of central interest in the TBA, &oe a fixed
target7’, the probabilitiesP(7" < X) and the analysis developed in the
previous sections can reveal of interest. Here we assumexieence of
regular conditional distributions and, in particular, Bory prospectX we
assume that we can determine the functiél (z) := P(T < #|X = z).
Hence we can write

P(T < X) = / o$ () dFx ().

R
Before continuing it is useful to remind the special caserwkieandT
are stochastically independent. In this case we can write

P(T < X) = / 5 () dFx (z) = / Fr(z) dFx(z).

R R

In such a case, as we already remarked in Chaptef4,.< X) can be
seen as the expected value of a utility: by consideting Fr as the utility
function, we have (see formula (4.2))

BUCY) = [ U@ dPx(e) = [ Fr(o)dPx(e) = P(T < X),

Under the condition of independence, any bounded and dghtinuous
utility function can thus be seen as the distribution fumctof a targefr’,

and vice-versa. Such an hypothesis represented a balamtéytbhe study
of Target-Based model illustrated in Chapter 4. In this eeaar model can
be seen as an extension of classical models for utilitypatsh it adapts
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to the expected utility principle. TBA however becomes, iseaise, more
general than the expected utility approach by allowing foclksastic de-
pendence between targets and prospects. In fact the TBAdesasnore
general decision rules, if we admit the possibility of soroerelation be-
tweenX and7. In this casep(TX)(x) does not coincide anymore with the
distribution functionFr(x) of the target. We refer tolP, 2§ for further
discussion in this sense.

We now briefly summarize the arguments of previous sectinrtbe
perspective of a decision problem where, for a fixed taiigeive aim to
rank two different prospect’;, X,, with marginal distributiongx,, G x,,
and with connecting copulas,;, C5, corresponding to the paifg’, X;) and
(T, X5), respectively.

In the case of independence, a prospEetshould be obviously pre-
ferred to a prospeck; if X; <,; X,. In the case of dependence, on the
contrary, this comparison is not sufficient anymore. In taetchoice of a
prospectX should be based not only on the corresponding distributipn
but also on the connecting copula of the gdir X).

For fixedC, the quantityn(C,Gr,Gx) = P(T < X) is equal to the
quantityn(C') for all pairs such thatir = Gx = G, with G belonging
to the clasgj (See Proposition 5.5) while, farr # G, the implication
T <4 X = P(T < X) > ~ does not necessarily hold (see Proposition
5.10 and Example 5.15).

For two different prospect(;, X5, Proposition 5.4 guarantees that,
when(C; = Cy = C, the conditionGr < Gx, =<s Gx, implies

7’](0, GT, GXl) = IP)(T S Xl) S 77(0, GT,GXQ) = P(T S XQ)

As shown by Example 5.16, whefl; # C5, we can have both the
ConditionSn(Cl,GT,le) > U(CQ,GT,GXQ) andGT =<t GX1 =<t GX2
(GXl 7£ GX2)'

Concerning the quantitieg C,, Gr, Gx,) andn(Cs, G, Gy,), Theo-
rems 5.7 and 5.8 show that, f6¥, <., Gx, (: =1, 2),

P(T < X;) =n(C;, G, Gx,) =2 n(C;).

Finally, let us consider the case when the only availablermétion
aboutC; and(C; is thatn(C;) > ~; (i.e. thatC; belongs to the class.,).
Then a rough and conservative choice betw&e@and X, suggests to select
X; with the larger value ofy;, providedGy, =< Gx, or thatX,, X, are
nearly identically distributed.

All these apparently paradoxical results suggest that titeria for se-
lection of random variables based only on stochastic andsrare not suit-
able enough for decision-making problems, such as thoszided by the
TBA, when dependance among variables is present. We hawashnofact,
that the usual stochastic orderings can give results irgteeament with the
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expected utility concepts expressed by TBA. Furthermorexpdicitly pro-
vided examples in which the choice of a prospect which istéséin the
stochastic sense may give worse results in the utility cdnte

In order to describe his preferences to the best, a DM adpkia
Target-Based model will then also need to take into accoropgsties of
dependence of the random variables involved in his choicesgh the
study of their connecting copulas. To this purpose a deepadysis of the
copulas of the class&s, is to be performed, especially for what concerns
the properties of dependence and asymmetry.



Conclusions and Future Work

In this work we showed the importance of the target-basedemiod
decision making and utility theory. We presented an extnsif multi-
attribute target-based model, representing preferemoesding to the von-
Neumann Morgenstern utility theory, although built by meahnon-addi-
tive measures. This model provides, in fact, an analysisejdint behavior
of targets and prospects, describing them in terms of tbait probability
distributions, by means of properties of copulas, and by{additive) im-
portance weights defined in terms of capacities. On thisshag have
pointed out that the theory of multi-attribute target-lzhaglities can hinge
on a formal apparatus, provided by the field of fuzzy measu@dsnsions
of fuzzy measures, and fuzzy, or universal, integrals.

Further improvements can be made to this model, from one bigle
deeply investigating the role of capacities in establighire importance of
groups of prospects. On the other side, properties of risksao in high
dimensions have to be mastered, through the analysis ofaheecting
copulas of targets and prospects. An overall interactidwdsen copulas
and capacities is to be studied in depth, by taking into actcthe features
that these objects jointly assume in our model.

A further direction along which our model is to be extendeth&sone
that takes into account the property anbiguity By allowing the exis-
tence of such a condition, it can be made a further genetialiizaf the
TB model, that considers not only attitudes towards risk dMdbut also
attitudes towards uncertainty and lack of information.

In this work we also presented an extension of the concepibohastic
precedence and provided comparison with the usual conoéptechastic
orders, in terms of properties of copulas. We provided soxaengles in
this direction and found link to the target-based model dityit

Extensions of this topic can be made through a more accunatky-a
sis of properties of copulas, especially regarding depeceland asymme-
try. Connections with the existing concept of measures ntocdance and
measures of asymmetry can be improved for this purpose.

Finally, all the results presented in this manuscript carceambined
together to give a more general formulation of TB model, withiti-dimen-
sional targets and prospects that admit dependence amemg Tihe study
of this more complete model could allow to analyze more despeets of
economic properties, like the ones regarding multi-dineered risk and
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attitude toward risk of DMs, as much as mathematical proggeregarding,
for example, further extension of fuzzy measures and iategr



APPENDIX A

A brief introduction to Reliability of Systems

Reliability is defined as the probability that a device wiform its in-
tended function during a specified period of time under dtataditions. In
this brief note we will consider reliability of a system fofized moment of
time, so that the state of the system is assumed to dependonhe state
of its components. We will distinguish between only two esata function-
ing state and a failed one. Let us refer to a variabte indicate the state
of the whole system, made up afcomponents{1,...,n}. To indicate
the state of a single component, say théh component, we use a binary
indicator variabler; that may assume two values; = 1 if component is
functioning,z; = 0 if component; is failed. The value o, in turn, can
be0 or 1 if the system is failed or working. The functiaf{x) is called the
structure functiorof the system, where = (x4, ..., z,) is the vector of its
components.

The most common examples of systems built in this way arertlae of
series system and parallel system. The series system bagisgrfunction
given by

p(x) = Hxl =min(zy,...,T,),
i=1

and represents a system that can only work if all componeata/arking.
Parallel system represents the very opposite case, in whedystem works
if at least one of its component is functioning. Its struetfunction is given

by
o(x) = sz =1- H(l — ;) = max(zry,...,T,).

=1

These two are examples efymmetric system# which the state of the
system only depends on the number of working componentaraksss of
what they are. They are particular cases ofithaut-of-n system presented
in (4.32), in which the system works if at legstomponents out af work.
Notice that the systems introduced above are expressed dyswodattice
polynomial functionsroughly speaking by functions only made by simple
logical operators likenin andmax (for a better explanation and some prop-
erties about lattice polynomial functions see, for examj@dd).

We now list some definitions that will be useful later on.

DEFINITION A.1. Given a structurey, its dual¢™* is given by

¢"(x) =1—-0(1 —x),
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94 A. A BRIEF INTRODUCTION TO RELIABILITY OF SYSTEMS
wherel —x := (1 —xq,...,1 —x,).

It is easy to check that the dual of a series system is a pboaldeand
vice-versa, while the dual of/aout-of-n structure is dn — k + 1)-out-of-n
structure.

DEFINITION A.2. Thei—th component igrelevantto the structurep if
¢ is constant inz;, i.e. if ¢(1;,x) = ¢(0;,x) for all ¢(-;,x). Namely

¢('z‘>X) = ($17 sy Li—15 iy Lig1y - - - ,%)-

Otherwise will be calledrelevant

DEFINITION A.3. A system of componentsadsherentf its structure
function¢ is increasing and each component is relevantp 1§ only non-
decreasing the system will be calleemi-coherent

The property of monotonicity is important for physical smsits, for
which there is no opportunity that while improving the penfiance of a
component, the system may tend to deteriorate. Coheretgnsyslso en-
joy the following boundary property:

ﬁil?i < P(x) < ﬁil?z
i—1 i—1

Alternative ways to represent a coherent structure carMa® ¢y means
of its working/failing states, as follows. Letindicate the states of the sets
of component"N = {1,...,n}. Then we defin€Ny(x) = {i|z; = 0}
andCN, (x) = {i|z; = 1}. Assume that the structu(€’N, ¢) is coherent.

DEFINITION A.4. A path vectoiis a vectorx such thaty(x) = 1 and
CN,(x) is the correspondingath set A minimal path vectois a vector
x such thatp(x) = 1 and, for anyy < x, ¢(y) = 0. The corresponding
minimal path sets CV; (x).

A cut vectoris a vectorx such thatp(x) = 0 and CNy(x) is the corre-
spondingcut set Aminimal cut vectois a vectorx such that(x) = 0 and,
for anyy > x, ¢(y) = 1. The correspondingninimal cut seis CNy(x).

If we denote byP; the j—th minimal path set of), we may define

pi(x) = [ =
z;€P;
as thej—th minimal path series structurgvhich takes values if all com-
ponents in the minimal path set functidnptherwise { = 1,. .., p, where
p is the number of minimal path sets®f. Then we can write the represen-
tation of ¢ through its path sets as

o) = 1100 =11 I =

j=1 j=1z;€P;
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A similar result can be obtained in view of the cut setgpf
k k
ox) =[] m =11 II =~
j=1 j=1z€K;
wherekK; is thej—th minimal cut set ofy, j = 1,.. ., k, andx; is thej—th
minimal parallel cut structure
We are now ready to introduce the concept of reliability oystem.

DEFINITION A.5. Assume that the states of the components of a system
¢ are random variables(y, . .., X,,, with

for: = 1,...,n. We refer top; as thereliability of . The reliability of the
system is similarly defined by
P(¢(X) = 1) = h = E[¢(X)].

The reliability of the examples mentioned above can beyasdluated.
Series systems, as well as parallel @dut-of-n systems, are symmetric,
so every component has the same reliability, sayve have

(1) ¢(X) = p" for series system;
(2) ¢(X) =1— (1 — p)" for parallel systems;
(3) o(X) =31, (1)p'(1 — p)"~ for k-out-of-n systems.

We give a final remark about lower and upper bounds for rditgbiLet
E. be the event that all the components in minimal pathsetork. Then

P(E,) =[] -
1€Py

System success corresponds to the e¥ent UP_, E,., if the system hag
minimal path sets. Then

h:P(QET).

Sk= Y. PE,N..NE,),
1<i1<...<i<p
then, by means of the inclusion-exclusion principle, weehav

p
h=>Y (-1)F"'5,
k=1

Let

and
h<Si, h>58—5, h<S5 — S+ 53,
and so on. This method provides, hence, successive uppvescbounds
on system reliability, which converge to the exact systealgity.
For further properties of systems and a deeper study of takeability
we refer to [LO].






APPENDIX B

Some notions of Stochastic Orderings

Here we briefly introduce the main stochastic orders withwageoper-
ties useful in this paper.
DEFINITION B.1. Let X andY be two random variables such that
P(X >z) <P(Y > z)
for all z € R. ThenX is said to be smaller thalr in the usualstochastic
order, and it will be writtenX < Y.

Roughly speakingX is less likely thany” to take large values, when
“large” means for values bigger than any fixe& R. Characterization of
stochastic ordering can be given, as the following two tesihte.

THEOREM B.2. Two random variablest and Y satisfy X <; Y if,
and only if, there exist two random variablédsandY’, defined on a same
probability space, such that

X=4 X, V=,Y andP(X <Y) = 1.
Another way to read the previous Theorem is the following

THEOREM B.3. Two random variablesy andY satisfy X =<, Y if,
and only if, there exist a random variable and two functions/; and
such that), (z) < ¢q(z) forall zand X =, ¢, (Z) andY =g 19(2).

For proofs of these Theorems and some properties of stacluader
we refer to [L27]. Consider now the following

DEFINITION B.4. If X is a non-negative variable with an absolutely
continuous distribution functiot’, then thehazard ratef X at¢ > 0 is
defined as

= f(t)

() = 4 (~log(F(1)) = 12

whereF(t) = 1 — F(t) is the survival function ang (t) = 9,F(t) is the
corresponding density function.

The hazard rate is a very important instrument in religpiheory, since
many properties of systems follow from its definition (weereto [1L0] for
further information). Moreover, a new type of ordering canboilt upon it.

DEFINITION B.5. Let X andY be two non-negative random variables
with hazard rates, respectivelyt) andq(t), t > 0. ThenX is smaller than
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98 B. SOME NOTIONS OF STOCHASTIC ORDERINGS

Y inthehazard rate ordgdenoted byX =, Y) if, and only if,r(t) > ¢(t)
forall ¢ > 0.

An equivalent condition is the following: ¥ andG are the distribution
functions ofX andY respectively, theiX <, Y if, and only if, F'(t)/G(t)
is a decreasing function of The link between hazard rate and stochastic
order is determined by the following

THEOREMB.6. If X andY are two random variables such that <,
Y, thenX <, Y.

Consider now the property ofionotone likelihood ratioa property re-
garding the ratio of two probability density functions. Asual for mono-
tonic relationships, the likelihood ratio’'s monotonicitgmes in handy in
statistics, particularly when using maximume-likelihocgtismation. In our
context, it gives rise to a corresponding ordering, thatlwastated as fol-
lows.

DEFINITION B.7. Two random variablesy andY’, with density func-
tions f and g respectively, have decreasing likelihood ratiofift) /g(t)
decreases over the union of the supportsXodndY'. In this case we say
that X is smaller thany” in thelikelihood ratio orderwritten X <, Y.

The connection between likelihood ratio and the other twteongs is
given by the following result.

THEOREMB.8. If X andY are two random variables such that <,
Y, thenX <, Y.

Itis then clear that this ordering is stronger than the otlverorderings
presented here, in fact we have
lerYijthijstYi

Many other orderings are presentin literature, for knogkede refer again
to [10].
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