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Introduction

This thesis covers topics that recently emerged in the field of decisions
under risk and uncertainty. The main topic of this work is thetarget-based
approachto utility theory. A rich literature has been devoted in the last
decade to this approach to economic decisions (see [19, 20, 28, 29, 141,
142]). Originally, interest has been concentrated on thesingle-attributecase
[19, 28, 29] and, more recently, extensions to multi-attribute case have been
studied [20, 141, 142]. This literature is still growing, with a main focus on
applied aspects (see, for example, [13, 149, 150]). We will, on the contrary,
concentrate attention on some aspects of theoretical type,related with the
multi-attribute case.

Various mathematical concepts, such as non-additive measures, aggre-
gation functions, multivariate probability distributions, and notions of sto-
chastic dependence emerge in the formulation and the analysis of target-
based models, see [38]. It is to be said that notions in the field of non-
additive measures and aggregation functions are quite common in the mod-
ern economic literature. They are used in game theory (see, for example,
[71, 145]) and multi-criteria decision aid (see [3, 62, 63, 69, 81, 86]). In
such fields, one aims to finding the best alternative for a Decision Maker
(DM), or classifying the set of good alternatives in choiceswith many cri-
teria, for situations where uncertainty is not present. These notions have
generally been used to go beyond the classical principle of maximization
of expected utility in decision theory [59, 77, 80, 92, 124, 144]. Along our
work, on the contrary, we show how non-additive measures andaggrega-
tion functions are of interest even in the frame of the classical utility theory.
More precisely we show that they emerge in a natural way in thetarget-
based approach when considering the multi-attribute case.Furthermore we
explain how they combine with the analysis of multivariate probability dis-
tributions and with concepts of stochastic dependence.

For what concerns non-additive measures, we pay particularattention
to the concept ofcapacity, or fuzzy measure, that constitutes a specific class
of such measures that enjoys the property of monotonicity. Capacities, on
the family of subsets of a finite space, have been introduced by Choquet in
[34] and independently defined by Sugeno in [138] in the context of fuzzy
integrals. Given a finite setΩ, with corresponding power set2Ω, a capacity
is a set functionm : 2Ω → [0, 1] satisfying

• m(∅) = 0,m(Ω) = 1;
• m(J) ≤ m(I) for all setsI, J ∈ 2Ω such thatJ ⊆ I.

v



vi INTRODUCTION

Such capacities find many applications. For example, as mentioned above,
in game theory, where they are used to assess the right importance to each
component of a coalition, or in multi-criteria decision making, representing
degrees of satisfaction of investors fulfilling a defined setof objectives (see,
for example, [64]). Capacities can be better studied through the use of some
algebraic transforms, like theMöbius transform[116], the Shapley[128]
and theinteraction transforms[104], and others.

In particular the Möbius transformMm of a capacitym is a function
satisfying the equality

Mm(I) =
∑

J⊆I

(−1)|J |+1m(J),

for any setI ∈ 2Ω. This object turns out to be very useful in multi-
criteria decisional problems (see [66]) as, in particular, for problems de-
scribed by the target-based model, as we will see later. A first applica-
tion of the Möbius transform for capacities arises in the theory of aggre-
gation functions and of non-additive integrals. Aggregation functions are
built from capacities and inherit their basic feature of monotonicity. The
idea of aggregation consists in summarizing the information contained in
ann−dimentional vector to a single representative value. This value is a
sort of average and it is expressed in terms of the underlyingcapacity. Also
non-additive integralsare built by means of capacities, of which they rep-
resent a natural extension. They are also known asfuzzy integralsand take
this name from the fuzzy measures from which they derive. An important
feature of this kind of integrals is that, in their turn, theyprovide an exten-
sion of Lebesgue-kind integrals based on additive measures.

The most common fuzzy integral is theChoquet integral, introduced by
Choquet in 1953 and rediscovered in 1986, when David Schmeidler [124]
first put forward an axiomatic model of choice with non-additive beliefs.
Let m be a capacity defined on a discrete set of indicesN := {1, . . . , n}
and letx1, . . . , xn ∈ R+. The discrete Choquet integral of a functionx :
N → R+ with respect to the capacitym is then defined as

Chm(x) :=

n∑

i=1

[x(i) − x(i−1)]m({σ(i), . . . , σ(n)}),

whereσ(i) is the element ofN corresponding tox(i), x(1) ≤ . . . ≤ x(n) and
x(0) := 0.

The Choquet integral, together with Sugeno integral [138] and other
fuzzy integrals, has been largely used in the context of decision making and
analysis of decisions under uncertainty, see [62, 63, 69]. In this paper we
will show how the Choquet integral emerges as natural in the target-based
approach to utilities, in the case in which the coordinates of the target vector
manifest comonotonicity. In this view, we will show how our model may
represent an extension of the Choquet integral for capacities.
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The concept of decision analysis under uncertainty has seena first for-
malization in 1944 [145], when Von Neumann and Morgenstern (NM) laid
the foundations of what is known as the axiomatic theoryexpected utility
theory. It should however be remember that a first hint to the use expected
utility (instead of the simple average) was introduced by Bernoulli during
the18th century, in the evaluation of the proceeds of a lottery.

Consider a set of random variablesX with values inZ and consider a
preference ordering≻ that we want to use to describe our preferences onX ;
considerZ as a complete and separable metric space with its sigma-algebra
σ(Z). The setX , assumed finite for our purposes, takes the meaning of the
set of possible choices, or the set oflotteries, whileZ is the set of possible
consequences of such choices, or possible outcomes of the lotteries, named
prospects. The best possible choice will then be the one with best possible
outcome. In this perspective, to give a qualitative analysis of the prefer-
ences, Decision Makers will try to measure, or at least to order, outcomes
by means of someutility function.

First of all we have to notice that the goodness of the outcomes is not
evaluated in the same way by all the Decision Makers, since the degree
of satisfaction for a same result shall be different according to the feelings
of each DM. The choice of the utility function is evidently subjective and
linked to the behavior of the DM toward risk and uncertainty.So every
DM is asked to choose his own function in order to express his preferences
among elements ofZ. Hence, the utility function will be expressed asu :
Z → R, whereu is assumed to be non-decreasing, following the idea that
better outcomes shall be associated with bigger values. To be more precise,
according to the preference relation≻ and to NM principles, we have

X ≻ Y ⇔ E[u(X)] > E[u(Y )] ∀X, Y ∈ X ,

whereE has the meaning of the expected value of the functionu.
Von Neumann and Morgenstern also devoted attention to the study of

the attitudes of DMs towards risk. They classified them according to three
categories of behavior, namelyrisk neutral, risk-seekingand risk-averse
Decision Makers. The former are indifferent in choosing between two risky
prospects, but with the same expected value; risk-averse Decision Makers,
among prospects with the same expected value, prefer the less risky (for
them you haveu(E[X ]) ≥ E[u(X)], then they make use of a concave util-
ity function); risk-seeker DMs, finally, will manifest the opposite attitude
towards risk (and hence will choose a convex utility function).

In this perspective it is interesting to compare investors through their
attitudes toward risk. Between two DM playing the same game,but with
two different utility functions, it is interesting, for example, to establish
which of them is the more risk averse. De Finetti in [37] was the first to
give a solution of this problem, by introducing the concept of measure of
risk aversion. Such a concept is strictly linked to the one ofrisk premium,
that is the quantity the DM is willing to pay in order to replace the utility
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of her risky prospect with its expected value. De Finetti’s measure of risk
aversion is a function that quantifies the risk premium of each DM on the
basis of her utility function, describing as more risk averse an individual
willing to pay a bigger risk premium.

Other substantial contributions in this direction, have been made over
the years by Samuelson [119], Pratt [110], Rothschild and Stiglitz [117],
Arrow [7], and Fishburn [57]. However, objections have also been made to
the models based on the maximization of expected utility: first of all Allais,
in 1953, offered a paradox in contrast to the theory proposedby Neumann
and Morgenstern; Ellsberg [52] casted doubts on the axiomatic formulation
of Savage [120], giving rise to a expected utility theory based on generalized
Choquet integrals. However, it was only around 1980 that theories alterna-
tive to the expected utility began to be proposed (with the active partici-
pation of scholars from disciplines different from the traditional economic,
statistical, and mathematical, as philosophers and psychologists). Among
the main contributions in this period: Kahneman and Tversky[77], Machina
[92, 93], Quiggin [112], Karni [80], Gilboa [59], Schmeidler [124], and
others. The theory of choice under uncertainty has taken, since then, very
different features than before.

Among the newest concepts of utilities, the one oftarget-based utility
plays a central role in our work. Firstly introduced by Castagnoli and Li-
Calzi in 1996 [28], then extended by Bordley and LiCalzi in 2000 [19], it
gives a quite innovative perspective in the frame of decision theory under
risk. In such a model the classical utility function is seen as a distribution
function of a (random) target, which the DM wants to overcomewith the
largest confidence possible. The principle of maximizationof the expected
utility, in these settings, will then be applied by the DM to the probability of
achieving her target. It is interesting to notice that, in the one-dimensional
case, the model built in this way is still a utility model in the sense of Von
Neumann Morgenstern (NM), while in higher dimensions this parallel, in
general, fails. One of the most important and amazing resultin this paper is
that, the multi-dimensional model that we are going to introduce perfectly
fits with the utility models built according to the NM principles, although
we make use of non-additive measures to describe preferences involved in
it.

Consider, for instance, a utility functionu, increasing and with values
in [0, 1]. The degree of satisfaction of a DM adopting such a functionu is
then ranged, without loss of generality, in this interval, where1 represents
full accomplishment of DM’s objective and0 stand for a total failure. Now
consider a random variableT , with values inR, with the meaning of a target
to fulfill, and consider its distribution function

FT (x) = P(T ≤ x).

As a function ranging in[0, 1], the utility u can be considered as the distri-
bution functionFT of the targetT . Then the degree of satisfaction of the
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DM will be a non-decreasing function according toFT . For any prospect
X ∈ Z it will be of interest, then, to analyze and maximize the quantity

P(T ≤ X)

as the expected utility of the prospectX. In fact one has

E(X) =

∫
u(X) dFX(x) =

∫
P(T ≤ x) dFX(x) = P(T ≤ X).

The one-dimensional model naturally follows the one of expected util-
ity, but extensions of the target-based model to the multi-attribute case
are not immediate and may not describe multi-attribute utility functions.
Some proposal have been made in the recent years, for exampleby Bor-
dley and Kirkwood [20], that considered multi-attribute target-based deci-
sional model with independent targets, by Tsetlin and Winkler [141, 142],
that look for correspondence between a target-oriented formulation corre-
sponding to a multi-attribute utility function, with particular attention to the
two-dimensional case. Given two targetsT1, T2 with cdf F1, F2 and joint
law F12, Tsetlin and Winkler describe their target-oriented utility function
by

u(x1, x2) = u1F1(x1) + u2F2(x2) + (1− u1 − u2)F12(x1, x2),

whereu1, u2 are coefficient representing utilities of single targets achieved.
In our work we introduce and study a more extended version of this

multi-attribute model. Our model considersn correlated targetsT1, . . . , Tn
and describes the importance of achieving each one of them bymeans of a
capacitym and its Möbius transformMm. More in particular, letm be a
capacity defined on a indices setN = {1, . . . , n}; for anyI ⊆ N , consider
nowFI,I as the probability of achieving exactly the targets with indices in
I and to fail with respect to the others. The utility functionu can now be
written as

u(x) =
∑

I⊆N

m(I)FI,I(x).

By means of the Möbius transform ofm, an analogous representation can
be given by

u(x) =
∑

I⊆N

Mm(I)FI(x),

whereFI is the joint law of the targets whose indices are inI. The utility
is then described by the capacitym and by the marginal contribution ofF ,
both evaluated over all the subsets ofN . The analysis of the capacitym can
then be shifted to the study of its transformMm, analogously the joint laws
FI of the targets can be rewritten in terms of their connecting copulasCI ,
for anyI ⊆ N .

The concept of copula constitutes a very important tool for this work.
Properties of the copulas are for first studied to better describe the target-
based multi-attribute model: to represent the interactionamong goods in
which a DM invests and to define properties of risk aversion and correlation
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aversion of the DM. Moreover they draw a link between target-based model
and the Choquet integral, since, in the case when the connecting copula
of the targets is the comonotonicity copula, the expressionof the expected
utility is actually given by a Choquet integral.

Copulas play an important role also in the last part of the work, in
which we discuss the comparison between classical stochastic order and
the concept ofstochastic precedence. The stochastic precedence between
two real-valued random variables has often emerged in different applied
frameworks: it finds applications in various statistical contexts, including
testing and sampling (see [18]), reliability modeling, tests for distributional
equality versus various alternatives, and the relative performance of com-
parable tolerance bounds (see [5, 119]). Furthermore, this concept arises in
the probabilistic context of Markov models for waiting times to occurrences
of words in random sampling of letters from an alphabet (for references, see
[40, 41, 42, 43]).

For two given random variablesX1 andX2, with distributionsF1 and
F2, we have thatX1 ≺st X2 in the sense of the usual stochastic order if

F1(x) ≥ F2(x), at any pointx,

while we say thatX1 stochastically precedesX2 (X1 �sp X2) if

P(X1 ≤ X2) ≥
1

2
.

In this paper we consider a slightly more general, and completely nat-
ural, concept of stochastic precedence and analyze its relations with the
notions of stochastic ordering. Motivations for our study arise from differ-
ent fields, in particular from the frame of Target-Based Approach in deci-
sions under risk. Although this approach has been mainly developed under
the assumption of stochastic independence between Targetsand Prospects,
our analysis concerns the case of stochastic dependence, that we model by
means of a special class of copulas, introduced for the purpose. Examples
are provided to better explain the behavior of the target-based model un-
der changes in the connecting copulas of the random variables, especially
regarding their properties of symmetry and dependence.

Along our work we also trace connections to reliability theory, whose
aim is studying the lifetime of a system through the analysisof the life-
time of its components. In these settings, the target-basedmodel finds an
application in representing the behavior of the whole considered system by
means of the interaction of its components.

More in particular our work consists of five Chapters that arebriefly
summarized as follows:

• In the first Chapter we outline some basic notions of monotone
(non-additive) measures and related concepts of integral.This
topic has been of large importance in last decades and found many
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applications in decision theory under risk and game theory in par-
ticular. Here we introduce the basic concept of capacity andpro-
vide an insight to what is called “theory of aggregation”.

• In Chapter 2 we fix attention on the concept of copula. Copulas
are the most common aggregation function that are used for ex-
pressing joint laws of random variables in terms of their marginal
distributions. We will review some of the main characteristics of
such functions and provide examples useful for our work.

• Chapter 3 gives an overview of the theory of risk and decisions un-
der risk and uncertainty. It introduces the von Neumann-Morgen-
stern theory of expected utility and gives a brief discussion about
the main features of behavior of Decision Makers facing risky sit-
uations.

• In Chapter 4 we discuss the target-based approach to utilitytheory
and we show the related role of capacities and multi-dimensional
copulas. The multi-attribute model for target-based utility intro-
duced in the work also provides connections with different fields,
such as the ones of aggregation theory and system reliability. We
provide extensions and application of such a model for both fields.
Furthermore, we investigate properties of risk aversion and cor-
relation aversion for Decision Makers who adopt this model for
establishing their utility in investments involving more than one
asset.

• The results presented in Chapter 5 are focused on the compari-
son between the classicalstochastic orderand the quite new con-
cept of stochastic precedenceamong random variables. Such a
relationship is explained in terms of their connecting copulas and
relative properties and it is enclosed with an application to one-
dimensional target-based model for utilities. We also provides sev-
eral examples showing disagreement between stochastic order and
stochastic precedence, principally due to properties concerning de-
pendence and symmetry of connecting copulas.

At the end of this work, a final Section will present concluding remarks
and perspectives for future work.





CHAPTER 1

Non-Additive Measures

Non-additive measure theory has made a significant progressin recent
years and has been intensively used in many fields of applied mathematics,
in economics, decision theory and artificial intelligence.In particular, non-
additive measures are used when models based on classical measures are
not appropriate.

In this work we will concentrate our attention in the possible applica-
tions for the study of expected utility models. Von Neumann and Morgen-
stern proposed in [145] a model that have been widely used for solving
decision theoretical problems through decades, though it has its limitations.
Savage in [120] improved it significantly by including subjective probabili-
ties. However, probabilities used in his model remained additive. To make
expected utility models more flexible, additive subjectiveprobabilities were
later replaced by non-additive probabilities, calledcapacitiesor fuzzy mea-
sures.

Capacities used in expected utility models prove to be a veryflexible
tool to model different kinds of behavior. Most Decision Makers, for exam-
ple, overestimate small and underestimate large probabilities. Further, most
Decision Makers prefer decisions where more information isavailable to
decisions with less available information. Such a behavioris known asun-
certainty aversionand turns out to be impossible to be expressed through an
additive model. On the other side, it is possible to describebasic properties
of risk aversionthrough additive model by transforming utility functions.
For a deeper analysis of the aversion towards risk it is necessary to pass to
non-additive measures.

Many other results and concepts related with additive measure or proba-
bility theory have natural generalizations to non-additive theory. Integration
with respect to nonadditive measures, for example, ca be made by replacing
the usual Lebesgue integral with the more general concept offuzzy integral.
Fuzzy integrals, in particular, are important tools used tosolve problems of
decision under risk in finance as well as in game theory.

We start this Chapter recalling the very basic aspects of probability mea-
sures. We will then introduce the more general concept ofcapacityor fuzzy
measure, obtained by dropping some of the main properties of the proba-
bility measures, and many of its most important properties.Finally we will
briefly discuss about integrals built with respect to fuzzy measures, with
particular attention to the well known Choquet integral. For our purposes
we restrict our study to the case of finite sets.

1
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1. The Inclusion-Exclusion Principle

In combinatorics, the inclusionexclusion principle is a counting tech-
nique which generalizes the familiar method of obtaining the number of
elements in the union of finite sets. Giancarlo Rota said in [116]: “One of
the most useful principles of enumeration in discrete probability and com-
binatorial theory is the celebrated principle of inclusionexclusion. When
skillfully applied, this principle has yielded the solution to many combina-
torial problems”. Actually, this basic combinatorial toolalso finds many
applications in number theory and in measure theory and, forour purposes,
will be very useful for the statement of the Target-Based model for utility.

We start by introducing some useful notation. We consider the set of
indicesN := {1, . . . , n}, with I a subset ofN with cardinality|I|. Further-
more, we consider a collection of finite sets{E1, . . . , En}. We will denote
with EI the set∩i∈IEi.

The inclusion-exclusion principle can be used to calculatethe cardinal-
ity of the union of the sets{Ei}i∈N , as follows.

THEOREM 1.1 (Inclusion-Exclusion Principle).LetE1, . . . , En be finite
sets. The cardinality of their union is given by

∣∣∣∣
n⋃

i=1

Ei

∣∣∣∣ =
∑

I⊆N

(−1)|I|+1|EI |. (1.1)

Notice that, when the cardinality of intersections is regular (namely
|EI | = αI , for all I ⊆ N), the formula can be rewritten as follows

∣∣∣∣
n⋃

k=1

Ek

∣∣∣∣ =
n∑

I:|I|=1

(−1)|I|+1

(
n

|I|

)
αI . (1.2)

A similar formula can be found in probabilistic terms, when studying the
probability of events in a given probability space. For thispurpose fix a
finite state spaceΩ and define by2Ω its power set. In these hypothesis we
can introduce the following Definitions.

DEFINITION 1.2. A σ−algebraF is a family of sets in2Ω such that

(1) ∅ ∈ F ;
(2) for any setE, if E ∈ F then its complementEc ∈ F ;
(3) given a countable family of sets{En}n≥1, ∪nEn ∈ F .

DEFINITION 1.3. A probability measureover (Ω,F) is a functionP :
F → [0, 1] such that

(1) for all setE ∈ F , P(E) ≥ 0;
(2) P(Ω) = 1 (andP(∅) = 0);
(3) for any countable collection of mutually disjoint sets{En}n≥1, one

has thatP(∪nEn) =
∑

n P(En) (countably additivity).
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A triplet (Ω,F ,P) will be called a (finite)probability space. Under
these hypothesis we are ready to introduce the probabilistic version of the
principle.

PROPOSITION 1.4. Given a probability space(Ω,F ,P) and a finite
family of events{E1, . . . , En} ∈ F , the inclusion-exclusion principle reads

P

( n⋃

i=1

Ei

)
=
∑

I⊆N

(−1)|I|+1P

(⋂

i∈I

Ei

)
. (1.3)

For practical purposes we give explicit formula for the casen = 2, for
which the principle reduces to

P(E1 ∪ E2) = P(E1) + P(E2)− P(E1 ∩ E2). (1.4)

An analogous of formula (1.2) can be given in probabilistic settings, when
the measure of each event depends only on its cardinality. Wehave

P

( n⋃

i=1

Ei

)
=

n∑

I:|I|=1

(−1)|I|+1

(
n

|I|

)
P(EI). (1.5)

We remember that no hypothesis about dependence of events{En}n
are given. In case that the events are mutually pairwise independent, for
the countably additivity property of the probability measure, formula (1.3)
reduces to

P

( n⋃

k=1

Ek

)
=

n∑

k=1

P(Ek).

2. Capacities

In this Section we will discuss about measures that do not benefit from
the additivity, typical property of probability measures.By the way we will
concentrate our attention on the weaker property of monotonicity, and to its
extensions, by introducing the concept ofk−monotonicity. This property is
strictly linked to the inclusion-exclusion principle presented in the previous
Section. We start considering the following

DEFINITION 1.5. Given a setΩ, a relationship⊆ over2Ω with the prop-
erties of reflexivity, antisymmetry and transitivity is called a partial order.
The set2Ω endowed with such relationship will be then called a partially
ordered set, i.e. aposet.

The notation(2Ω,⊆) is sometimes used in literature to identify such a
poset. Over this structure the following property can be considered.

DEFINITION 1.6. Let the poset2Ω be given. A functionm : 2Ω → R is
calledmonotoneif and only if, for all setsE, I ∈ 2Ω such thatE ⊆ I,

m(E) ≤ m(I). (1.6)
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It is straightforward to notice that any probability measure enjoys the
property of monotonicity. Notice also that Definition 1.6 can be given for
set functions by replacingΩ by any finite set of indexesN . Let nowk be
an integer such thatk ≥ 2. We have the following

DEFINITION 1.7. LetK := {1, . . . , k}. A functionm is saidk−mono-
toneif and only if

m

( ⋃

j∈K

Ej

)
≥
∑

I⊆K

(−1)|I|+1m

(⋂

i∈I

Ei

)
, (1.7)

for all Ej ∈ 2Ω, j ∈ K. Furthermore we will say that such a functionm is
totally monotoneif it is k−monotone for allk ≥ 2.

For the special casek = 2 formula (1.7) can be rewritten as

m(E1 ∪ E2) ≥ m(E1) +m(E2)−m(E1 ∩ E2). (1.8)

Such a property of2−monotonicity is also calledsupermodularity. Notice
that if m is k−monotone for somek ≥ 2, than it isk′−monotone for any
k′ ≤ k. Notice furthermore that, ifm is a probability measure, we have
an equality in (1.7) (and in (1.8)), and such an equation coincides with the
one of inclusion-exclusion principle given in (1.3) (respectively in (1.4)).
This fact is due to the additivity of the measure and can be interpreted in the
sense that any probability measure is∞−monotone.

As we were saying at the beginning of this Section, we want to study
functions that are not assumed to be additive. Even for such functions,
some useful properties can be given, such as the following result, due to
Chateneuf and Jaffray (see [31]).

PROPOSITION 1.8. Let m : 2Ω → R be ak−monotone function. If
m({ω}) ≥ 0 for all ω ∈ Ω, then the functionm is also monotone (and
hence non-negative).

By means of Definition 1.6 and Proposition 1.8 we are now readyto
introduce the following

DEFINITION 1.9. A fuzzy measureor capacityis a bounded function
m : 2Ω → R that satisfies

(1) m(∅) = 0;
(2) m(E1) ≤ m(E2) for anyE1, E2 sets in2Ω such thatE1 ⊆ E2.

Since a capacity is a bounded set function, it is usual to rescale it to the
set of values[0, 1], so thatm(Ω) = 1. We now give some basic example of
capacities.

EXAMPLE 1.10. Let N = {1, . . . , n} as usual. For any setE ⊆ N
define

m0(E) :=

{
1, if E = N ;
0, otherwise.
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Such a capacity is the minimal possible over the setN . On the other side
one can define the maximal capacity by a function

m1(E) :=

{
0, if E = ∅;
1, otherwise.

Both minimal and maximal capacities are examples of0− 1 capacities, i.e.
capacities assuming only values0 and1. This kind of capacities are much
used in reliability theory and describe the functioning of series and parallel
systems respectively. For further details on the topic see,for example,[10].
Notice that the former enjoys the property of∞−monotonicity, while the
latter is∞−alternating, property that we introduce in the following Defini-
tion.

DEFINITION 1.11. A functionm : 2Ω → R is saidk−alternatingif for
all families of subsets ofΩ of k elements

m

( ⋂

j∈K

Ej

)
≤
∑

I⊆K

(−1)|I|+1m

(⋃

i∈I

Ei

)
, (1.9)

where once moreK stands for the set{1, . . . , k}. A totally alternating
function isk−alternating for everyk ≥ 2.

A 2−alternating set function is also calledsubmodularand its expres-
sion reads

m(E1 ∩ E2) ≤ m(E1) +m(E2)−m(E1 ∪ E2). (1.10)

DEFINITION 1.12. A fuzzy measurem : 2Ω → R is called symmetric if
its values depend only on the cardinality of the underlying sets, i.e. if for
any setE ∈ 2Ω,m(E) = m(|E|).

Generally speaking to know a capacity down pat one needs2|Ω| pieces
of information, for a symmetric one the amount of information needed is
drastically reduced to|Ω|. Under such condition one can rewrite equation
(1.7) as

m

( ⋃

j∈K

Ej

)
≥

|K|∑

I:|I|=1

(−1)|I|+1

(|K|
|I|

)
m(|I|). (1.11)

An analogous formula for condition (1.9) can be written in a similar way.

DEFINITION 1.13. A functionm : 2Ω → R is saidsuperadditiveif, for
any family of sets{En}n≥1 ∈ 2Ω,

m

( ⋃

n≥1

En

)
≥
∑

n≥1

m(En). (1.12)

It will be called subadditiveif the inequality in(1.12) is reversed. The
functionm will be called additive if both superadditive and subadditive.

A more general notion of additivity can be given for capacities as fol-
lows.
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DEFINITION 1.14. A fuzzy measurem : 2Ω → R is saidk−additive if,
for any family of sets ofΩ with k elementsE1, . . . , Ek,

∑

I⊆K

(−1)|K\I|m

(⋃

i∈I

Ei

)
= 0. (1.13)

We introduce now the concept ofdualof a fuzzy measure.

DEFINITION 1.15. Given a fuzzy measurem : 2Ω → [0, 1], its dual
measurem∗ is defined by

m∗(E) = 1−m(Ec), (1.14)

for all setsE ∈ 2Ω. The setEc, as usual, stands for the complement ofE.

The dualm∗ is a fuzzy measure itself and can enjoy all the properties of
fuzzy measures. In particular, if a fuzzy measurem is superadditive its dual
m∗ will be subadditive and, viceversa, ifm is subadditive its dual will enjoy
the property of superadditivity; ifm is supermodular thenm∗ is submodular
and reciprocally; finally if one of them isk−monotone the other one will
bek−alternating (see [65] for further details). An example in this direction
is given by the minimal and maximal capacities introduced above. It is
straightforward to notice that one is the dual of the other one.

Capacities may arise by manipulating probability measures, as follows.

EXAMPLE 1.16. LetP a given class of probability measures defined on
(Ω,F). For any givenE ⊆ Ω, the functions

msup(E) = sup
P∈P

P(E)

minf(E) = inf
P∈P

P(E)

are examples of capacities built in this way. Notice that on{1, 2} the first
capacity is submodular while the second is supermodular. Furthermore
they are reciprocally dual measures.

Capacities can be also obtained through the composition of aprobability
measureP with adistortionγ, in the following way.

DEFINITION 1.17. LetP a probability measure defined on a state space
Ω. Let furthermoreγ : [0, 1] → [0, 1] be an increasing function withγ(0) =
0 and γ(1) = 1. The functionm = γ ◦ P is called distorted probability
whileγ is the correspondingdistortion.

The functionm is actually a capacity and satisfies the following prop-
erty.

PROPOSITION1.18. A function built by means of a probability measure
and a distortion, as in Definition 1.17, is monotone and hencea capacity.
Furthermore, ifγ is convex then the capacitym is supermodular; withγ
concave,m is submodular.

For the proof of the proposition above and for further details see for
example [44].
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3. Möbius Transforms

Due to August Möbius (1790 - 1868), the so called Möbius Transform
is a particular and very useful tool that belongs to number theory, but finds
many applications also in other fields, especially in the oneof non-additive
measures. In this Section we introduce only the basic concepts needed for
our dissertation. For further details see [116].

Let Ω be a poset, with2Ω the associated power set. To any function
m : 2Ω → [0, 1] (or more in general with values inR) it can be associated
another functionMm : 2Ω → [0, 1] by

Mm(I) =
∑

J⊆I

(−1)|I\J |m

( ⋃

k:Jk⊆J

Jk

)
for all I ∈ 2Ω. (1.15)

If furthermoreΩ is finite, equation (1.15) can be rewritten as

Mm(I) =
∑

J⊆I

(−1)|I\J |m(J) for all I ∈ 2Ω. (1.16)

We will often refer toΩ as to a finite index setN := {1, . . . , n}. A par-
ticular feature of the above correspondence is that it is one-to-one, since
conversely

m(I) =
∑

J⊆I

Mm(J) for all I ∈ 2Ω. (1.17)

The validity of formula (1.17) is proved by Shafer in [126].
The Möbius transform is very useful in the study of capacities since

many of the properties of such measures can be expressed through their
Möbius representation. First of all notice that any set of2n coefficients
{m(E)}E⊆Ω does not necessarily correspond to the Möbius transform ofa
capacity onΩ. The boundary and monotonicity conditions must be ensured
(see [31]), i.e. we must have

Mm(∅) = 0,
∑

J⊆Ω

Mm(J) = 1, and
∑

J⊆I

Mm(J) ≥ 0 ∀I ∈ 2Ω.

(1.18)
A very important property concernsk−monotonicity and reads as follows.

PROPOSITION 1.19. A fuzzy measurem is k−monotone if and only if
its Möbius transformMm is non-negative for any set of cardinality less or
equal thank i.e., for allE ∈ 2Ω with |E| ≤ k,Mm(E) ≥ 0.

As a corollary of the above proposition, we can say that the M¨obius
transform of a totally monotone fuzzy measure is always non-negative.

PROPOSITION1.20. A fuzzy measurem is k−additive if and only if its
Möbius transformMm of order greater thank are null i.e., for allI ∈ 2Ω

with |I| > k, Mm(I) = 0, andMm(J) > 0 for at least one elementJ with
|J | = k.
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The result above follows directly from Definition 1.14 ofk−additivity.
Finally, an alternative useful representation, given by Shafer in [126], is the
following.

DEFINITION 1.21. The co-M̈obius representatioňMm of m is defined
by

M̌m(I) :=
∑

J⊃I

m(J). (1.19)

This definition let to an useful property linking the transform of a ca-
pacitym to its dualm∗.

PROPOSITION1.22.Letm andm∗ a pair of dual measures andMm and
Mm∗ be their M̈obius representation respectively. Then, for anyI ⊆ N ,

Mm∗(I) = (−1)|I|+1
∑

J⊃I

m(J) = (−1)|I|+1M̌m(I). (1.20)

4. Interaction Indices

In the framework of cooperative game theory, the concept of interac-
tion index, which can be regarded as an extension of that of value, has been
recently proposed to measure theinteraction phenomenaamong players.
The expression “interaction phenomena” refers to either complementarity
or redundancy effects among players of coalitions resulting from the non-
additivity of the underlying game. Thus far, the notion of interaction index
has been primarily applied to multi-criteria decision making in the frame-
work of aggregation by the Choquet integral. We will providean insight of
these concepts in the following Sections.

For a better comprehension of the interaction phenomena modeled by
a capacity, several numerical indices can be computed (see [95, 96]). In
the sequel, we present two of them in details, theShapley valueand the
interaction transform. The Shapley value was introduced in 1953 by Lloyd
Shapley and it is a very important tool in cooperative games.Its main func-
tion is that of defining the importance of a single player within the coalition
to which he belongs. As an extension of the Shapley value, theinteraction
transform assigns importance to subsets of any cardinalityconcerning such
a given coalition. Further information on the topic can be found in [104]
and [128].

Shapley noticed in [128] that the overall importance of a criterioni ∈ N
into a decision problem is not solely determined by the numberm({i}), but
also by allm(E) such thati ∈ E. Indeed, we may havem({i}) = 0,
suggesting that elementi is unimportant, but it may happen that for many
subsetsE ∈ N \ {i},m(E ∪ {i}) is much greater thanm({i}), suggesting
that i is actually an important element in the decision. To overcome the
difficulties in attributing the right weight to each component i of a coalition,
Shapley proposed a definition of a coefficient of importance like follows.
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DEFINITION 1.23. The importance indexof criterion i with respect to
m is defined by:

Φm(i) :=
∑

E⊆N\{i}

(n− t− 1)!t!

n!
[m(E ∪ {i})−m(E)], (1.21)

where t = |E|. The Shapley valueis the vector of importance indices
{Φm(1), . . . ,Φm(N)}.

Having in mind that, for each subset of criteriaE ∈ N , m(E) can
be interpreted as the importance ofE in the decision problem, the Shapley
value ofi can be thought of as an average value of the marginal contribution
m(E ∪ {i})−m(E) of criterioni to a subsetE not containing it. To make
this clearer, it is informative to rewrite the index as follows:

Φm(i) :=
1

n

n−1∑

t=0

1(
n−1
t

)
∑

E⊆N\{i}:|E|=t

[m(E ∪ {i})−m(E)]. (1.22)

A fundamental property is that the numbersΦm(1), . . . ,Φm(n) form a prob-
ability distribution overN , in fact

Φm(i) ≥ 0 ∀i ∈ N and
n∑

i=1

Φm(i) = 1.

Properties about the Shapley value are given by the following

THEOREM 1.24. The numbersΦm(i), with m : 2N → [0, 1], i =
1, . . . , n, satisfy the following conditions:

(1) are linear w.r.t. the fuzzy measure: there exist real constantspiE
(E ⊆ N) such that

Φm(i) =
∑

E⊆N

piEm(E);

(2) are symmetric: for any permutationσ onN , we have

Φm(i) = Φσm(σ(i));

(3) fulfill thenull criterionaxiom:

∀E ⊆ N \ {i} m(E ∪ {i}) = m(E) ⇒ Φm(i) = 0;

(4) fulfill theefficiency axiom, i.e.
n∑

i=1

Φm(i) = 1.

Let us comment on the axioms presented in this characterization. First
of all we ask the importance indices to be linear w.r.t. the corresponding
fuzzy measure. Next, the symmetry axiom demands that the indices are
independent of the name (label) given to each criterion. Thethird axiom,
which is quite natural, says that when a criterion does not contribute in
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the decision problem then it has a zero global importance. The last axiom
naturally acts as a normalization property.

A very useful property consists in the possibility of rewriting Shapley
value in terms of the Möbius representation ofm, as

ΦMm
(i) :=

∑

E⊆N\{i}

1

t + 1
Mm(E ∪ {i}). (1.23)

Another interesting concept is that of interaction among criteria. Of
course, it would be interesting to appraise the degree of interaction among
any subset of criteria. Let’s start considering a pair of criteria{i, j} ∈ N . It
may happen thatm(i) andm(j) are small and at the same timem({i, j}) is
large. Clearly, the numberΦm(i) merely measures the average contribution
that criterioni brings to all possible combinations, but it does not explain
why criterion i may have a large importance. In other words, it gives no
information on the interaction phenomena existing among criteria. Sup-
pose thati andj are positively correlated orsubstitutable(resp. negatively
correlated orcomplementary). Then the marginal contribution ofj to ev-
ery combination of criteria that containsi should be strictly less than (resp.
greater than) the marginal contribution ofj to the same combination when
i is excluded. Thus, depending on whether the correlation betweeni andj
is positive or negative, the quantity

(∆i,jm)(E) := m(E ∪ {i, j})−m(E ∪ {i})−m(E ∪ {j}) +m(E)

is≤ 0 or≥ 0 for allE ⊆ N\{i, j}, respectively. We call this expression the
marginal interactionbetweeni andj. Now, an interaction index for{i, j}
is given by an average value of this marginal interaction. Murofushi and
Soneda in [104] proposed to calculate this average value as for the Shapley
value.

DEFINITION 1.25. Theinteraction indexof criteria i andj related tom
is defined by

Im(i, j) :=
∑

E⊆N\{i,j}

(n− t− 2)!t!

(n− 1)!
(∆i,jm)(E). (1.24)

We immediately see that this index is negative as soon asi andj are
positively correlated or substitutable. Similarly, it is positive wheni andj
are negatively correlated or complementary. Moreover, it has been shown in
[65] that Im(i, j) ∈ [−1, 1] for all i, j ∈ 2N . The interaction index among a
combinationE2 of criteria was introduced by Grabisch in [65] as a natural
extension of the case|E2| = 2 and lately axiomatized by Grabisch and
Roubens [71].

DEFINITION 1.26. The interaction index ofE2 (|E2| ≥ 2) related tom,
is defined by

Im(E2) :=
∑

E1⊆N\E2

(n− t1 − t2)!t1!

(n− t2 + 1)!
(∆E2m)(E1), (1.25)
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whereti = |Ei| and

(∆E2m)(E1) :=
∑

E3⊆E2

(−1)t2−t3m(E3 ∪ E1).

Finally, it can be also written, in terms of the Möbius representation, as

IMm
(E2) :=

∑

E1⊆N\E2

1

t1 + 1
Mm(E1 ∪ E2). (1.26)

There is a rich literature regarding this kind of index including, for ex-
ample, theBanzhaf index, andnessandornessindices,vetoandfavor and
others more. For such a literature reference is made to [69, 94].

5. Aggregation Functions

Aggregation functions became in the last decade a very important field
of mathematics and information sciences. The idea of aggregation func-
tions is rather simple: they aim to summarize the information contained in
a vector ofn values by means of a single representative one. Starting from
the simplest example, the arithmetic mean, many other kindsaggregation
functions were applied in various sectors of research.

The basic feature of all aggregation functions is their nondecreasing
monotonicity, as fuzzy measures have. Another axiomatic constraint of ag-
gregation functions concerns the boundary conditions, expressing the idea
that “minimal (or maximal) inputs are aggregated into minimal (maximal)
output of the scale we work on”.

By these first definitions, the class of aggregation functions turns out to
be really huge and the problem of choosing the right functionfor a given
application really difficult. The study of the main classes of aggregation
functions is then very complex, so we just report some of the main examples
and features relative to such operators. More information about aggregation
functions and operators can be found, for example, in [12].

Before recalling the basic definitions, it is opportune to introduce some
notations. We will useR for the extended real line[−∞,∞], while I will
stand for a generic closed subset ofR. The symbolN , when not dif-
ferently specified, will refer to a set of indices withn elements, namely
N := {1, . . . , n}.

DEFINITION 1.27. An aggregation function inIn is a functionA(n) :
In → I that

(1) is non-decreasing in each variable;
(2) satisfiesinfx∈IA(n)(x) = inf I andsupx∈IA

(n)(x) = sup I;
(3) A(1)(x) = x for all x ∈ I.

The integer(n) represents the number of variables considered forA.
From now on, when no possibility of mistakes may occur, we will omit to
write it. Now we introduce some basic aggregation functions.
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• the arithmetic mean AM, defined by

AM(x) :=
1

n

n∑

i=1

xi,

that represents an aggregation function for any domainIn;
• the productΠ(x) =

∏n
i=1 xi on [0, 1] or on [1,∞];

• the minimum and the maximum, defined on anyI, respectively by

Min(x) = min{x1, . . . , xn} andMax(x) = max{x1, . . . , xn};
• thek−order statisticsOSk : In → I, defined for any choice ofI

asOSk(x) = x(k), wherex(k) is thek−th elements of the ordered
vector(x(1), . . . , x(n));

• thek−th projectionPk : In → I with Pk(x) = xk;
• for any i ∈ N , theDirac measurecentered oni, defined for any
E ⊆ Ω as

δi(E) =

{
1 if i ∈ E,
0 otherwise;

• thethreshold measureτk defined, for any integerk ∈ N , by

τk(E) =

{
1 if |E| ≥ k,
0 otherwise;

As for fuzzy measures, it can be introduced thedual of the aggregation
function, in the special case in whichI is limited. If not specified, from now
on we will assumeI = [0, 1].

DEFINITION 1.28. LetA : In → I be an aggregation function. The dual
ofA is a functionAd : In → I such that

Ad(x) = 1− A(1− x1, . . . , 1− xn). (1.27)

Notice that the dual of an aggregation function is an aggregation func-
tion itself. Moreover it can be easily extended to any limited interval[a, b] ⊂
R, asAd(x) = a + b− A(a+ b− x1, . . . , a+ b− xn).

The aggregation functions may have many properties that we briefly list
below.

DEFINITION 1.29 (Monotonicity).The aggregation functionA : In →
I isstrictly increasingin each argument if for any two different vectorsx and
x′ with x < x′ (xi < x′i for at least for one indexi) one hasA(x) < A(x′).
It is called jointly strictly increasingif for anyx,x′ ∈ In, such thatxi < x′i
for all entriesi = 1, . . . , n, A(x) < A(x′).

It is immediate to notice that any strictly increasing aggregation function
is also jointly strictly increasing, while the viceversa isnot true. The product
Π on [0, 1] is an example of aggregation function that has the latter property
but not the former.
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DEFINITION 1.30 (Lipschitz condition).Let ‖ · ‖: Rn → R+ be a
norm. IfA : In → I satisfies

|A(x)−A(y)| ≤ c‖x− y‖ (1.28)

for all x,y ∈ Rn and for some positive constantc, thenA is called Lips-
chitzian. The infimum valuec for which equation(1.28)holds is called the
Lipschitz constant.

Important examples of norms are given by theLp norm, i.e. the Min-
kowski norm of orderp

‖x‖p :=
( n∑

i=1

|xi|p
)1/p

(1.29)

and its limit case‖x‖∞ := maxi |xi| which is the Chebyshev norm. Notice
that the aggregation functionsMin,Max,AM are Chebyshev norms of
constant1, whileΠ on [0, 1] is 1−Lipschitz w.r.t. to normLp but no more
thann−Chebyshev.

DEFINITION 1.31 (Symmetry).The aggregation functionA : In → I is
symmetricif A(x) = A(σ(x)) for any vectorx ∈ In and any permutation
σ of the elements of the vectorx, namelyσ(x) = (x(1), . . . , x(n)).

The symmetry property is essential when considering criteria that do
not depend on the order in which they are chosen, maybe because they have
the same importance or the original importance attributed by an anonymous
Decision Maker is unknown. Notice that all the aggregation functions intro-
duced so far, asMin,Max, AM , Π and so on, are symmetric. An example
of non-symmetric aggregation function is given by theWeighted Arithmetic
Mean

WAMw(x) =
n∑

i=1

wixi, (1.30)

where the weightswi are such that
∑n

i=1wi = 1. This aggregation function
represents the simplest way to assess importance to different criteria in a de-
cision problem. Notice that it is a simple extension of the arithmetic mean
in fact, when all weights are equal to1/n, it trivially reduces toAM . Any
non-symmetric function can, anyway summarized by replacing the vari-
ablesxi with the corresponding order statisticsx(i), i = 1, . . . , n. One of
the simplest examples in this direction is given by theOrdered Weighted
Averagefunction defined as

OWAw(x) =
n∑

i=1

wix(i). (1.31)

This function trivially reduces toWAM when considering an ordered vec-
tor and, in turn, toAM if symmetrized.
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DEFINITION 1.32 (Idempotence).An idempotentaggregation function
A : In → I is one that satisfiesA(n · x) = x, where withn · x we stands for
a vector with all identical componentsx, i.e. (x1, . . . , xn) = (x, . . . , x).

Many of the aggregation functions mentioned above, likeAM ,WAM ,
OSk, Pk,Min, andMax enjoy this property while, for example,Π doesn’t.

DEFINITION 1.33 (Associativity).LetA : I2 → I an aggregation func-
tion. Then it is calledassociativeif for all x1, x2, x3 ∈ I we have

A(A(x1, x2), x3) = A(x1, A(x2, x3)). (1.32)

This property can be suitably extended to genericn−ary aggregation
functions, as shown in [70]. Such functions are easy to build, starting from
any2−ary associative one, once all inputs to be aggregated are known.

Other interesting properties to highlight regard the elements to be ag-
gregated.

DEFINITION 1.34 (Neutral element).An elemente ∈ I is calledneutral
elementof an aggregation functionA : In → I if A(x{i}e) = x, where the
vectorx{i}e is the one with all components equal toe except thei−th one
which isx.

DEFINITION 1.35 (Annihilator).An elementa ∈ I is calledannihilator
elementof an aggregation functionA : In → I if for any vectorx ∈ In such
thata ∈ {x1, . . . , xn} (at least one element of the vectorx is equal toa) we
haveA(x) = a.

Finally, like fuzzy measures do, aggregation functions mayenjoy the
following properties.

DEFINITION 1.36. An aggregation function is called

• additive, if for anyx,y ∈ In such thatx+ y ∈ In we have

A(x+ y) = A(x) + A(y);

it is then superadditive (subadditive) if the equality is replaced with
the symbol≥ (≤);

• modular, if for anyx,y ∈ In we have

A(x ∨ y) + A(x ∧ y) = A(x) + A(y);

it is supermodular (submodular) if the equality is replacedwith the
symbol≥ (≤).

The arithmetic meanAM satisfies all the four properties mentioned
above, whileΠ on[0, 1] is supermodular and superadditive, but neither mod-
ular nor additive.
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6. Fuzzy Integrals based on Aggregation Functions

Fuzzy measures can be seen as a tool useful to resume all the values of
a function to a single point. To this aim Sugeno in [138] extended such a
concept to the one of fuzzy integral. These integrals are built on the real
with respect to a fuzzy measure, like Lebesgue integral is built with an or-
dinary (additive) one. As an ordinary integral can be seen ina certain sense
as the average of a function, a fuzzy integral can be seen as anaveraging
aggregation operator. At the same time the classical notionof measure ex-
tends the notion of weight to infinite universes, and the Lebesgue integral on
a finite universe coincides with the weighted arithmetic mean. Therefore,
the existence of more general notions of measure than the classical additive
one, together with the appropriate integrals, offer a new realm of aggrega-
tion functions when these integrals are limited to a finite universe. Since
additivity is replaced by monotonicity, we deal with monotone measures al-
though the most common name, which we will use, is capacity, introduced
by Choquet in [34] and resumed in Section 2. The term fuzzy measure
introduced by Sugeno is often used in the fuzzy set community.

There are many types of integrals defined with respect to a capacity.
The most common ones are the Choquet integral and the Sugeno integral,
leading to two interesting classes of aggregation functions, developed in
this section. To introduce these arguments we will need somenotation first.
LetN := {1, . . . , n} an set of indexes ofn elements.

DEFINITION 1.37. For any subsetI ⊆ N , eI represents thecharacter-
istic vectorof I, i.e. the vector of{0, 1}n whosei−th component is1 if and
only if i ∈ I.Geometrically, the characteristic vectors are the2n vertices of
the hypercube[0, 1]n.

In game theoryN represents a group ofn players, whose subgroupsIs
indicatecoalitionsamong such players. The functionv allows to assign to
each coalition the proper worth (for example the amount of money earned
if the game is played). One can also define theunanimity gamefor I ⊆ N
as the gamevJ such thatvJ(I) = 1 if and only if J ⊆ I, and0 otherwise.

DEFINITION 1.38. A pseudo-Booleanfunction is a function defined as
f : {0, 1}n → R.

Any real valued set functionm : 2N → R can be assimilated unam-
biguously with a pseudo-Boolean function. The correspondence is straight-
forward: we have

f(x) =
∑

I⊆N

m(I)
∏

i∈I

xi
∏

i/∈I

(1− xi), (1.33)

for x ∈ {0, 1}n, andm(I) = f(eI) for all I ∈ N . In particular, a pseudo-
Boolean function that corresponds to a fuzzy measure, is increasing in each
variable and fulfils the boundary conditionsf(0) = 0 andf(1) = 1, where
0 indicates the vector with all null components, while1’s components are



16 1. NON-ADDITIVE MEASURES

all equal to1. Hammer et al. in [72] showed that any pseudo-Boolean
function has a unique expression as a multilinear polynomial in n variables:

f(x) =
∑

I⊆N

Mm(I)
∏

i∈I

xi, (1.34)

for x ∈ {0, 1}n. The coefficientsMm(I) are the ones of the Möbius trans-
form, defined in (1.16). In game theory, these coefficients are called the
dividendsof the coalitions ingamem (for further details see, for exam-
ple, [109]). In view of Definition 1.37, equation (1.34) can be seen w.r.t.
unanimity games as

v(I) = f(eI) =
∑

J⊆N

Mm(J)
∏

i∈J

(eI)i =
∑

J⊆N

Mm(J)vJ(I). (1.35)

Thus, any gamev has a canonical representation in terms of unanimity
games that determine a linear basis forv (extensions of this topic to general
(infinite) spaces of players can be found in [60]).

Let now m be a fuzzy measure defined on a discrete setN and let
x1, . . . , xn ∈ R. We are now ready to introduce the following

DEFINITION 1.39. The (discrete) Choquet integral of a functionx :
N → R, with respect to a fuzzy measurem onN , is defined by

Chm(x) :=

n∑

i=1

[x(i) − x(i−1)]m(σ(i), . . . , σ(n)) (1.36)

where, as usual,x(1) ≤ . . . ≤ x(n) andx(0) := 0. An equivalent formulation
of the integral can also be given

Chm(x) :=

n∑

i=1

x(i)[m(σ(i), . . . , σ(n))−m(σ(i+ 1), . . . , σ(n))] (1.37)

Notice that the link with the Lebesgue integral is strong, since both
coincide when the measurem is additive:

Chm(x) :=

n∑

i=1

mixi.

In this sense the Choquet integral can be seen as a generalization of the
Lebesgue integral.

DEFINITION 1.40.The (discrete) Sugeno integral of a functionx : N →
[0, 1], with respect to a fuzzy measurem onN , is defined by

Sum(x) :=

n∨

i=1

[x(i) ∧m(σ(i), . . . , σ(n))]. (1.38)

Given a fuzzy measurem onN , the Choquet and Sugeno integrals can
be regarded as aggregation operators defined onRn and[0, 1]n, respectively.
But they are essentially different in nature, since the latter is based on non-
linear operators (min andmax), and the former on usual linear operators.
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It can be said that the Choquet integral is suitable for cardinal aggregation
(where numbers have a real meaning), while the Sugeno integral seems to
be more suitable for ordinal aggregation (where only order makes sense).
One of the common properties of the two integrals, instead, is that both
compute a kind of distorted average ofx1, . . . , xn.

Let now introduce another kind of integral useful for its simplicity in
aggregation models. Let us consider first the additive fuzzymeasurep,
derived from the Shapley valueΦm defined in 1.23:

p(I) :=
∑

i∈I

Φm({i}), (1.39)

for any setI ⊆ N . Then we can define theShapley integralas follows.

DEFINITION 1.41. The Shapley integral of a functionx : N → [0, 1]
with respect to a fuzzy measurem is defined by

Shm(x) =
∑

i∈N

Φm({i})xi. (1.40)

Thus defined, the Shapley integral is actually a weighted arithmetic
mean operatorWAMω whose weights are the Shapley power indicesωi =
Φm({i}), for all i = 1, . . . , n. Starting from any fuzzy measure, we can
define the Shapley additive measure and aggregate by the corresponding
weighted arithmetic mean. Note that, contrary to the Choquet and Sugeno
integrals, the Shapley integral w.r.t. the fuzzy measurem is not an extension
of m. Indeed, for anyI ⊆ N , we generally have

Shm(eI) =
∑

i∈I

Φm({i}) 6= m(I).

More general definitions and properties can be found, for example, in
[62] and [63].

7. The Choquet Integral and its Extensions

In what follows, we give particular attention to the Choquetintegral, its
extensions and properties. We start recalling that Lovászin [91] observed
that anyx ∈ Rn

+ \ {0} can be written uniquely in the form

x =
k∑

i=1

λieEi
, (1.41)

with λi ≥ 0 for all i = 1, . . . , k and∅ 6= E1 ( . . . ( Ek ⊆ N . Hence any
functionf : {0, 1}n → R with f(0) = 0 can be extended tôf : Rn

+ → R,
with f̂(0) = 0 and

f̂(x) =

k∑

i=1

λif(eEi
). (1.42)

Notice thatf̂ it is unique and represents an extension off sincef̂ = f on
{0, 1}n. Such an extension̂f is called the Lovász extension of the function
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f and it benefits of many interesting properties (that on may find, for exam-
ple, in [97]). The most important, for this dissertation, are the following.

THEOREM 1.42. Letf : {0, 1}n → R, with Lov́asz extension̂f : Rn
+ →

R. For anyσ ∈ ΣN , set of all the permutation ofN = {1, . . . , n}, and for
anyx ∈ Rn we set

Ψσ(x) :=

n∑

i=1

xσ(i)[f(e{σ(i),...,σ(n)})− f(e{σ(i+1),...,σ(n)})]. (1.43)

Then the following are equivalent:

(1) f is submodular;
(2) f̂ is convex;
(3) we have

f̂(x) = f(0) + max
σ∈ΣN

Ψσ(x), for x ∈ Rn
+;

(4) we have

f(x) = f(0) + max
σ∈ΣN

Ψσ(x), for x ∈ {0, 1}n.

In this view we have that the convexity (concavity, linearity) of f̂ corre-
sponds to the submodularity (supermodularity, modularity) of f . The proof
of the Theorem can be found in [131]. From (1.43) we get a useful for-
mulation for the extension of pseudo-Boolean functions, that we give in the
following

PROPOSITION1.43. Letf a pseudo-Boolean function. Then its Lovász
extensionf̂ is given by

f̂(x) =
∑

I⊆N

Mm(I)
∧

i∈I

xi, (1.44)

for x ∈ Rn
+. The coefficientsMm are the M̈obius representation off .

What immediately follows from (1.44) is that, whenm is a fuzzy mea-
sure onN , the Choquet integralChm on Rn

+ defined in (1.36) is nothing
else than the Lovász extension of the pseudo-Boolean function fm which
representsm:

Chm = f̂m (1.45)

onRn
+. Thus, the Choquet integral is a piecewise affine function on[0, 1]n;

moreover it can be seen as the unique liner interpolation thevertices of the
hypercube[0, 1]n. In fact, the vertices of[0, 1]n correspond to the vectors
eI , so that

Chm(eI) = m(I) for all I ⊆ N.

Moreover, we clearly see thatChm is an increasing function if and only if
m is as well. Proposition 1.43 can be rewritten as follows (seealso [31]).
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PROPOSITION1.44. AssumeB ⊇ [0, 1]. Any Choquet integralChm :
Bn → R can be rewritten as

Chm(x) =
∑

I⊆N

Mm(I)
∧

i∈I

xi, (1.46)

wherex ∈ Bn andMm is the M̈obius transform of the capacitym.

Notice that the integral is unique since the representationMm of m is.
Many other properties of Choquet integral can be found in literature, as the
ones listed below.

PROPOSITION1.45. The Choquet integral satisfies the following prop-
erties (see[95] for further details).

(1) The Choquet integral is linear with respect to the capacity: for any
two capacitiesm1, m2 onN and any two real numbersα, β ≥ 0
we have

Chαm1+βm2 = α · Chm1 + β · Chm2 .

(2) The Choquet integral is monotone w.r.t. capacities: forany two
capacitiesm andm′ we have thatm ≤ m′ if and only ifChm ≤
Chm′ .

(3) If m is a0− 1 capacity then

Chm(x) =
∨

I⊆N :m(I)=1

∧

i∈I

xi, ∀x ∈ [0, 1]n.

(4) The Choquet integralChm is symmetric if and only if the capacity
m is symmetric.

(5) The Choquet integral is invariant under positive affine transforma-
tions: for anyc > 0 and anya ∈ R,

Chm(cx + a1x) = c · Chm(x) + a.

(6) For any capacitym we haveCh∗m = Chm∗ , i.e. the dual of the
Choquet integral with respect to the capacitym is the Choquet
integral with respect to the dual of the capacitym.

A property that, in general, a Choquet integral lacks of is that one of ad-
ditivity, since the corresponding capacitym is not additive itself. However
there is a particular situation in which the property of additivity is granted,
that is when the integrand vectors satisfycomonotonic additivity. There are
many definitions of comonotonic additivity (briefly said comonotonicity)
as, for example, the following regarding real vectors.

DEFINITION 1.46. Two vectorsx,x′ ∈ Rn are said comonotonic if
there exists a permutationσ onN that gives the same order to both vectors,
i.e. xσ(1) ≤ . . . ≤ xσ(n) andx′σ(1) ≤ . . . ≤ x′σ(n). Equivalently we can say
that there are no couples of indicesi, j for whichxi < xj andx′i > x′j at
the same time.

Under this hypothesis we have the following result.
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PROPOSITION 1.47. If x,x′ are comonotonic vectors ofRn
+ then, for

any capacitym,

Chm(x+ x′) = Chm(x) + Chm(x
′). (1.47)

The following gives a characterization of the Choquet integral.

THEOREM 1.48. Let F : Rn → R be a given function. Then there
exists a unique capacitym such thatF = Chm if and only if the functionF
satisfies the following properties:

(1) comonotonic additivity;
(2) nondecreasing monotonicity;
(3) boundary conditions, i.e.F (0) = 0, F (1) = 1.

Moreover,m is defined throughF asm(I) := F (1I) for anyI ⊆ N .

This result was showed by De Campos and Jorge in [35]. In their work
they assumed a further condition of positive homogeneity, condition that
can be deduced from hypothesis (1) and (2). The proof in the continuous
case is due to Schmeidler and can be found in [124].

We now present the connections between the Choquet integraland the
most common aggregation functions introduced in the previous Section.

PROPOSITION 1.49. Let m be a capacity and considerI = R. The
following holds

(1) Chm = Min if and only ifm = mMin is the minimal capacity;
in the same way we can state thatChm = Max if and only if
m = mMax;

(2) Chm = OSk, thek−th order statistic, if and only if the capacity
m is the threshold measureτn−k+1;

(3) Chm = Pk, the k−th projection, if and only ifm is the Dirac
measureδk;

(4) Chm = WAMw if and only ifm is additive, withwi = m({i}) for
all i ∈ N ;

(5) Chm = OWAw if and only ifm is symmetric, with weightswi =
m(En−i+1)−m(En−i) for all i = 2, . . . , n andw1 = 1−∑n

i=2wi;
any subsetEi of Ω is such that|Ei| = i and its measurem(E) =∑i−1

j=0wn−j.

We already mentioned the problem of the complexity of the capacitym:
one requires, in fact,2n − 2 information to know it completely. To reduce
this problem significatively one can make use of capacities that enjoy the
property ofk−additivity, like proposed by Grabisch in [65]. The Choquet
integral considerably simplifies in this case: in particular, when the underly-
ing capacity is2−additive (or equivalently,m is a2−order fuzzy measure),
we have the following result, due to Marichal [94].
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THEOREM 1.50. Letm a 2−order fuzzy measure onN . Then the best
weighted arithmetic mean that minimizes

∫

[0,1]n
[Chm(x)−WAMω(x)]

2 dx (1.48)

is given by the Shapley integralShm. Moreover, ifB ⊇ [0, 1], we have

Chm(x) = Shm(x)−
1

2

∑

{i,j}⊆N

Im({i, j})[xi ∨ xj − xi ∧ xj ], (1.49)

for x ∈ Bn.

Equation (1.49) shows that the Choquet integral can be decomposed in
a linear part, represented byShm, and a non-linear part divided, in turn,
into 2 components: the one considering positive indicesI({i, j}) and the
second one consisting in the negative indices. The positivepart, for which
I({i, j}) ∈ [0, 1] implies a complementary behavior, which means that both
criteria need to be satisfied to have a better global score; the negative com-
ponentsI({i, j}) ∈ [−1, 0] describe negative interaction between the cou-
ples{i, j}, for which the components are substitutable, i.e. the satisfaction
of eitheri or j is sufficient to have a significant effect on the global score.
A more specific result in this direction is showed by Grabischin [64].

THEOREM 1.51. Letm be a2−order fuzzy measure onN and assume
B ⊇ [0, 1]. Then we have

Chm(x) =
∑

i∈N

(
Φm({i})−

1

2

∑

j∈N\{i}

|Im({i, j})|
)
xi

+
∑

Im({i,j})≥0

Im({i, j})(xi ∨ xj)−
∑

Im({i,j})≤0

Im({i, j})(xi ∧ xj)

(1.50)

for all x ∈ Bn. Moreover, we haveΦm({i})− 1
2

∑
j∈N\{i} |Im({i, j})| ≥ 0

for all i ∈ N .

This decomposition emphasizes the role of the positive and negative
components: a Choquet integral with strong positive (negative) component
will be strongly conjunctive (disjunctive); if the valuesIm({i, j}) are low
the integral will be, with good approximation, linear. In this view it is
possible to write the integral as the sum of two components, namely

Chm(x) = Chm+(x) + Chm−(x), (1.51)

wherem+ andm− are defined through their interaction representation

Im+(E) = max{Im(E), 0} Im−(E) = min{Im(E), 0}.
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Due to linearity ofIm on set functions we havem = m+ + m− and
equation (1.51) holds true. More in particular it can be rewritten as

Chm(x) =
∑

E⊆N

Mm+(E)
∧

i∈E

xi +
∑

E⊆N

M̌m−(E)
∨

i∈E

xi, (1.52)

whereMm+ represents the Möbius transform of the positive componentm+

while M̌m− is the co-Möbius representation ofm−.
A more general extension of formula (1.50) can be given for any k−ad-

ditive measurem. Grabisch in [64] reports an example of order3. For such
measures it seems that an interpretation similar to the previous one can no
longer be given.

Many other extensions of the Choquet integral, that we do notconsider
in this work, have been presented in literature in the last years, see for exam-
ple theconcave integralproposed by Lehrer [89], or theuniversal integral
by Klement et al. in [84].



CHAPTER 2

Copulas: an overview

Copulas are specific aggregation operators, that are applied to aggre-
gate marginal distribution functions into an output joint distribution func-
tion. Nelsen in [107] referred to copulas as “functions that join or couple
multivariate distribution functions to their one-dimensional marginal dis-
tribution functions” and as “distribution functions whoseone-dimensional
margins are uniform”. But neither of these statements is a definition, hence
we will devote this Chapter to giving a precise definition of copulas and to
examining some of their elementary properties.

1. Basic Concepts and Definitions

We first define subcopulas as a class of grounded2−increasing func-
tions with margins; then copulas as subcopulas with domainI2 = [0, 1]2.

DEFINITION 2.1. A two-dimensional subcopula (or2−subcopula, or
briefly, a subcopula) is a functionC ′ with the following properties

(1) Dom(C ′) = S1 × S2 with S1, S2 subset ofI containing0 and1;
(2) C ′(u, 1) = u andC ′(1, v) = v, for all u, v ∈ I;
(3) C ′ is grounded, i.e.C ′(0, v) = C ′(u, 0) = 0 for all u, v ∈ I;
(4) C ′ is 2−increasing, namely for everyu1, u2, v1, v2 ∈ I such that

u1 < u2 andv1 < v2,

VC′([u,v]) = C ′(u2, v2)− C ′(u2, v1)− C ′(u1, v2) + C ′(u1, v1) ≥ 0.

The valueV ′
C([u,v]) can be seen as the volume of the subcopula over

the set[u1, u2] × [v1, v2]. Notice that a2−increasing function is also in-
creasing in each variable.

DEFINITION 2.2. A two-dimensional copula (or briefly a copula) is a
2−subcopulaC whose domain isI2. Equivalently, a copula is a functionC
from I2 to I with the following properties:

(1) For everyu, v ∈ I, C(u, 1) = u andC(1, v) = v;
(2) C is grounded and2−increasing.

We give now some general properties of copulas, for reference see [107].

PROPOSITION2.3. The following hold for any copulaC.

• C is increasing in each argument;
• C is Lipschitz (and hence uniformly) continuous;
• for i = 1, 2, the derivatives∂iC exists a.e. and0 ≤ ∂iC ≤ 1;

23
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• The functionst → ∂1C(u, t) and t → ∂2C(t, v) are defined and
increasing a.e. onI.

There are three distinguished copulas, namely

W (u, v) = max(u+ v − 1, 0); M(u, v) = min(u, v); Π(u, v) = uv,
(2.1)

see Figure 2.1. CopulasM andW are called theFréchet-Hoeffdingupper
and lower bounds, respectively, since for any copulaC and anyu, v ∈ I we
have

W (u, v) ≤ C(u, v) ≤M(u, v). (2.2)

FIGURE 2.1. CopulasW,Π,M respectively

One of the most important results about copulas, that one that links them
with the concepts of joint distribution function, is the following due to Sklar.

THEOREM 2.4. LetH be a joint distribution function with marginsF
andG. Then there exists a copulaC such that for allx, y ∈ R,

H(x, y) = C(F (x), G(y)). (2.3)

If F andG are continuous, thenC is unique; otherwise,C is uniquely
determined on the rangeRanF × RanG ⊆ R2. Conversely, ifC is a
copula andF andG are distribution functions, then the functionH defined
by (2.3) is a joint distribution function with marginsF andG.

LEMMA 2.5. LetH be a joint distribution function with marginsF and
G. Then there exists a unique subcopulaC ′ such that

(1) DomC ′ = RanF ×RanG;
(2) for all x, y ∈ R,H(x, y) = C ′(F (x), G(y)).

DEFINITION 2.6. LetF be a distribution function. Then a quasi-inverse
ofF is any functionF (−1) with domainI such that

• if t is in RanF , thenF (−1)(t) is any numberx in R such that
F (x) = t, i.e., for all t ∈ RanF ,

F (F (−1)(t)) = t;

• if t /∈ RanF , then

F (−1)(t) = inf{x|F (x) ≥ t} = sup{x|F (x) ≤ t}.
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If F is strictly increasing, then it has but a single quasi-inverse, which is of
course the ordinary inverse, for which we use the customary notationF−1.

COROLLARY 2.7. Let H,F,G, andC ′ be as in Lemma 2.5, and let
F (−1) andG(−1) be quasi-inverses ofF andG, respectively. Then for any
(u, v) in DomC,

C ′(u, v) = H(F (−1)(u), G(−1)(v)).

When F and G are continuous, the above result holds for copulas as well
and provides a method of constructing copulas from joint distribution func-
tions.

LEMMA 2.8. LetC ′ be a subcopula. Then there exists a copulaC such
thatC(u, v) = C ′(u, v) for all (u, v) ∈ DomC ′; i.e., any subcopula can be
extended to a copula. The extension is generally non-unique.

THEOREM 2.9. LetX andY be continuous random variables. ThenX
andY are independent if and only ifCXY = Π.

THEOREM 2.10. Let X and Y be continuous random variables with
copulaCXY . If a and b are strictly increasing onRanX andRanY , re-
spectively, thenCa(X)b(Y ) = CXY . ThusCXY is invariant under strictly
increasing transformations ofX andY .

THEOREM 2.11. Let X and Y be continuous random variables with
copulaCXY . Let a and b be strictly monotone onRanX andRanY , re-
spectively. Then

(1) if a is strictly increasing andb is strictly decreasing, then

Ca(X)b(Y )(u, v) = u− CXY (u, 1− v);

(2) if a is strictly decreasing andb is strictly increasing, then

Ca(X)b(Y )(u, v) = v − CXY (1− u, v);

(3) if a andb are both strictly decreasing, then

Ca(X)b(Y )(u, v) = u+ v − 1 + CXY (1− u, 1− v).

A copula is a continuous functionC : [0, 1]n → [0, 1], but is not nec-
essarily absolutely continuous. Any copulaC can, in fact, be written as
C(u, v) = AC(u, v) + SC(u, v), where

AC(u, v) =

∫ u

0

∫ v

0

∂2

∂s∂t
C(s, t) dtds, SC(u, v) = C(u, v)−AC(u, v).

A copulaC coinciding withAC (SC = 0) is then absolutely continuous,
while if C = SC (AC = 0) the copula is said singular. Otherwise it has a
singular componentSC and an absolutely continuous oneAC . The Fréchet-
Hoeffding boundsW andM are singular copulas: the mass ofM is con-
centrated on the lineu = v whileW is distributed on the lineu+ v = 1; on
the other hand, the independence copulaΠ is absolutely continuous.
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In many applications, the random variables of interest represent the life-
times of individuals or objects in some population. The probability of an
individual living or surviving beyond timex is given by the survival func-
tion (or reliability function)F (x) = P(X > x) = 1 − F (x), where as
before,F denotes the distribution function ofX. For a pair(X, Y ) of ran-
dom variables with joint distribution functionH, the joint survival function
is given byH(x, y) = P(X > x, Y > y). The margins ofH are the func-
tions are the univariate survival functionsF andG, respectively. We are
going to show the relationship between univariate and jointsurvival func-
tions. Suppose thatC is the copula between the variablesX andY . Then

H(x, y) = 1− F (x)−G(x) +H(x, y)

= F (x) +G(x)− 1 + C(F (x), G(x))

= F (x) +G(x)− 1 + C(1− F (x), 1−G(x))

so we can definêC : [0, 1]2 → [0, 1] by

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v), (2.4)

then we haveH(x, y) = Ĉ(F (x), G(x)).
Two other functions closely related to copulas (and survival copulas)

are thedual of a copulaand theco-copula(Schweizer and Sklar 1983).
The dual of a copulaC is the functionC̃ defined by

C̃(u, v) = u+ v − C(u, v) (2.5)

and the co-copula is the functionC∗ defined by

C∗(u, v) = 1− C(1− u, 1− v). (2.6)

Neither of these is a copula, but whenC is the copula of a pair of random
variablesX andY , the dual of the copula and the co-copula each express a
probability of an event involvingX andY . More in details we know that

C(F (x), G(y)) = P(X ≤ x, Y ≤ y),

C̃(F (x), G(y)) = P(X > x, Y > y),

and we also have

C̃(F (x), G(y)) = P(X ≤ x ∨ Y ≤ y),

C∗(F (x), G(y)) = P(X > x ∨ Y > y).

Extension to generic dimensionn can be given as we are going to report
below.

DEFINITION 2.12. Ann−dimensional subcopula (orn−subcopula) is
a functionC ′ with the following properties:

(1) DomC ′ = S1×. . .×Sn , where eachSi is a subset ofIn containing
0 and1;

(2) C ′ is grounded andn−increasing;
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(3) C ′ has (one-dimensional) marginsC ′
i, i = 1, . . . , n, which satisfy

C ′
i(u) = u for all u ∈ Si.

Note that for everyu ∈ DomC ′, 0 ≤ C ′(u) ≤ 1, so thatRanC ′ is also a
subset ofI.

DEFINITION 2.13. Ann−dimensional copula (or simply ann−copula)
is ann−subcopulaC whose domain isIn. Equivalently, ann−copula is a
functionC : In → I with the following properties:

(1) for everyu ∈ In, C(u) = 0 if at least one coordinate ofu is 0,
and if all coordinates ofu are1 exceptuk, thenC(u) = uk;

(2) for everya,b ∈ In such thata ≤ b, then−volumeVC([a,b]) ≥
0.

It is easy to show that for anyn−copulaC with n ≥ 3, eachk−margin of
C is ak−copula,2 ≤ k ≤ n.

The main properties of the copulas as well as Sklar’s Theoremare still
valid in dimensionn. Any n−dimensional copulaC satisfy the Fréchet-
Hoeffding upper and lower bounds, so takes values between

W (u1, . . . , un) = max(u1 + . . .+ un − n+ 1, 0) (2.7)

and
M(u1, . . . , un) = min(u1, . . . , un).

It is important to notice that, forn > 2, W (u1, . . . , un) is no longer a
copula.

For the2−dimensional case, the Fréchet-Hoeffding bounds inequality
introduced in (2.2), suggests a partial order on the set of copulas.

DEFINITION 2.14. If C1 andC2 are copulas, we say thatC1 is smaller
thanC2, and writeC1 ≺ C2 (or C2 ≻ C1), if C1(u, v) ≤ C2(u, v) for all
u, v ∈ I.

Recalling thatW (u, v) ≤ C(u, v) ≤ M(u, v) for every copulaC and
all u, v ∈ I, the lower bound copulaW is smaller than every copula, and
the upper bound copulaM is larger than every copula. This point-wise par-
tial ordering of the set of copulas is called theconcordance ordering. It is
a partial order rather than a total order because not every pair of copulas
is comparable. It assumes importance in the study of the dependence of
random variables, through the use of their connecting copulas. A similar
definition can be given for the multi-dimensional case. We delay it discus-
sion to next Section, in which we introduce the main ideas of dependence
among random variables.

1.1. Archimedean Copulas.An important class of copulas is that of
Archimedean copulas. This class has a wide range of applications, due to
the great variety of copulas belonging to it, the ease with which they can
be built and the many properties they enjoy. We encountered the particu-
lar case of independence between variables, whose copula isexpressed by
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the product copulaΠ. From a practical point of view, we are interested
in similar simple expressions useful for the construction of copulas, like
φ(C(u, v)) = φ(u) + φ(v), for some functionφ. So we need to find an
appropriate inverseφ[−1], with opportune properties, that solves

C(u, v) = φ[−1](φ(u) + φ(v)). (2.8)

DEFINITION 2.15. Let φ : I → [0,∞] be continuous, strictly de-
creasing and withφ(1) = 0. The pseudo-inverseof φ is the function
φ[−1] : [0,∞] → I given by

φ[−1](t) =

{
φ−1(t), if 0 ≤ t ≤ φ(0);
0, if φ(0) ≤ t ≤ ∞.

(2.9)

Notice thatφ(φ[−1](t)) = min(t, φ(0)) and if φ(0) = ∞ thenφ[−1](t) =
φ−1(t).

A functionC defined as in (2.8) is, indeed, a copula, since the following
holds.

LEMMA 2.16. Let φ and φ[−1] be as in Definition 2.15 and also let
C : I2 → I be a function satisfying Eq.(2.8). If φ is convex, thenC is
2−increasing and satisfies the Fréchet-Hoeffding boundary conditions.

Moreover, it can be given a characterization as follows.

THEOREM 2.17. Letφ andφ[−1] andC as in the previous Lemma. Then
C is a copula if and only ifφ is convex.

Some important properties of Archimedean copulas are the following.

THEOREM 2.18. Let C be an Archimedean copula with generatorφ.
Then:

(1) C is symmetric, i.e.C(u, v) = C(v, u) for all u, v ∈ I;
(2) C is associative, namelyC(C(u, v), w) = C(u, C(v, w)) for all

u, v, w ∈ I;
(3) cφ is a generator ofC, for any constantc > 0.

A first simple example of Archimedean copulas is given by the inde-
pendence copulaΠ. Considerφ = − ln t, soφ[−1] = exp(−t) and with
straightforward calculation we get, from (2.8),

C(u, v) = φ[−1](φ(u) + φ(v)) = exp(ln u+ ln v) = uv = Π(u, v).

In a similar way one can prove that also the minimal copulaW is
Archimedean, whileM is not. Other important families of Archimedean
copulas the ones attributed to Clayton, Ali-Mikhail-Haq, Frank and Gum-
bel. These classes of copulas are called one-parameter families, since all
the copulas belonging to any of this families can be obtainedby changing
the value of the generating parameter. Consider, for example, the copulas
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from the Ali-Mikhail-Haq family (see Figure 2.2), namely those that can be
written as

Cθ(u, v) =
uv

1− θ(1− u)(1− v)
, (2.10)

with parameterθ ranging in[−1, 1] and generator given by

ln(1− θ(1− t)/t).

The independence copula belongs to this family, since can beobtained sub-
stituting toθ the value0. Many other examples and interesting properties
will not be discussed in this paper, but can be found, for example, in [107].

FIGURE 2.2. Copula from the Ali-Mikhail-Haq family, with pa-
rameterθ = −0.5 and its support

1.2. Copulas for capacities.It is interesting to highlight connections
between copulas and non-additive measures, especially with capacities. As
for additive probabilities, copulas for non-additive measures can be defined,
with just some minor requirements.

Consider, for instance, the extended lineR = R ∪ {−∞,∞} and a

capacityµ on (R
d
,B(Rd

)). Letµi thei−th projection ofµ: for S ∈ B(R),
µi(S) = µ(R× R× . . .× S × . . .R),

whereS is in thei−th coordinate of the vector. It can be defined, as natural,
the distribution functionFµ : R

d → R associated toµ as follows:

Fµ(x1, . . . , xd) = µ([−∞, x1]× . . .× [−∞, xd]).

Marginal components are defined as well, namelyFµi
: R → R such that

Fµi
(x) = µi([−∞, x]).

It is easy to see thatFµ is increasing, since the capacityµ, for definition,
is monotone. In generalFµ is not right continuous and, of course, does
not characterizeµ on the whole Borelσ−field, since even the distribution
function of a finitely additive probability measure in general does not have
these properties. Some properties can, in any case, be attributed toµ, as the
following.



30 2. COPULAS: AN OVERVIEW

DEFINITION 2.19. Let

∆yi
si=xi

f(s1, . . . , si, . . . , sd) = f(s1, . . . , yi, . . . , sd)−f(s1, . . . , xi, . . . , sd).

A functionF : R
d → R is calledn−increasing(n ≤ d) if

∆
yi1
si1=xi1

· · ·∆yin
sin=xin

f(. . . , si1, . . . , sin, . . .) ≥ 0

for any possible values of the indicesi1, . . . , in.

Any d−variate distribution function associate with a finitely additive
probability measure isn-increasing for alln ≤ d. This is true also for
d−monotone capacities. In the case of probability measures the result is
a consequence of the fact that the probability of anyd−dimensional rec-
tangle inR

d
is nonnegative and this probability can be expressed as the

multiple finite difference of the distribution function. The same procedure
cannot be applied for capacities, due to lack of additivity,but the definition
of d−monotonicity gives the result, resumed as follows.

LEMMA 2.20. If µ is d−monotone, thenFµ is n−increasing for every
n ≤ d.

This result is due to Scarsini, see [123]. In particular for the case
d = 2, the distribution function of any convex capacity is increasing and
2−increasing. Other important properties are the following.

COROLLARY 2.21. If µ is ad−monotone capacity on(R
d
,B(Rd

)), then

there exists a finitely additive probability measureν on (R
d
,B(Rd

)) such
thatFµ = Fν .

THEOREM 2.22. If µ is convex thenFµ satisfies the Fŕechet-Hoeffding
upper and lower bounds (see(2.2)), namely

max(Fµ1(x1) + Fµ2(x2)− 1, 0) ≤ Fµ(x1, x2) ≤ min(Fµ1(x1), Fµ2(x2)).

The same result holds ford−dimensional bounds, like in(2.7).

These two results allow us to state the following Theorem.

THEOREM 2.23. Letµ be a convex capacity on(R
d
,B(Rd

)). Then there
exists a functionCµ : Id → I, calledsemi-copula, such that

(1) Fµ(x1, . . . , xd) = Cµ(Fµ1(x1), . . . , Fµd
(xd));

(2) Cµ(x1, . . . , xd) = 0 if xi = 0 for at least one indexi ∈ {1, . . . , n};
(3) Cµ(1, . . . , 1, xi, 1, . . . , 1) = xi;
(4) Cµ is increasing.

The proof of this statement is left to [123]. Notice that, when the un-
derlying measureµ is a probability measure, then the semi-copula coincide
with the usual copula, defined in 2.2. If the measureµ is d−monotone, then
the semi-copulaCµ isn−increasing for alln ≤ d. Generally, it is enough to
assume convexity of the capacity to establish the existenceof a function that
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relates the joint distribution function to its margins, butd−monotonicity is
required for this function to have all the analytic properties of a copula.

2. Dependence

The concepts of dependence are needed in the analysis of multivariate
models. The literature is rich of such models, so we list someof the most
important concept of dependence that we have found useful for our study.
These are:

• thepositive quadrant dependence(PQD) and theconcordance or-
dering, basic for copulas to determine wherever a multivariate pa-
rameter is a dependence parameter;

• thestochastic increasingpositive dependence (SI);
• theTP2 dependence, necessary for constructing families of closed-

form copulas with wide range of dependence;
• thetail dependencefor extreme values copulas;
• Kendall’s tau, Spearman’s rhoandGini’s gamma, as functions to

study concordance among variables from the analysis of their con-
necting copulas.

We will consider principally dependence concepts for bivariate distribu-
tions. For references to this literature see, for example, [10], [76], and
[107]. We start with the following

DEFINITION 2.24 (Lehmann [88]). LetX = (X1, X2) a bivariate ran-
dom vector with cdfF . We say thatX (or F ) is positive quadrant dependent
(PQD) if

∀x1, x2 ∈ R P(X1 > x1, X2 > x2) ≥ P(X1 > x1)P(X2 > x2). (2.11)

Condition(2.11)is equivalent to

∀x1, x2 ∈ R P(X1 ≤ x1, X2 ≤ x2) ≥ P(X1 ≤ x1)P(X2 ≤ x2). (2.12)

The reason why this consists in a positive dependence concept is that
X1 andX2 are more likely to be large (or small) together than two other
variables with same marginal laws but independent. If the inequalities in
(2.11) and (2.12) are reversed we will talk aboutnegative quadrant de-
pendence(NQD). A similar definition can be given for multidimensional
random vectors.

DEFINITION 2.25. LetX = (X1, . . . , Xn) a multivariate random vec-
tor with cdfF . We say thatX (or F ) is positive upper orthant dependent
(PUOD) if

∀x = (x1, . . . , xn) ∈ R P(X1 > x1, . . . , Xn > xn) ≥
n∏

i=1

P(Xi > xi),

(2.13)
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and that ispositive lower orthant dependent(PLOD) if

P(X1 ≤ x1, . . . , Xn ≤ xn) ≥
n∏

i=1

P(Xi ≤ xi) ∀x = (x1, . . . , xn) ∈ R.

(2.14)
If both conditions(2.13)and(2.14)hold, thenX (F ) is saidpositive orthant
dependent(POD). Notice that, in the multivariate case, these two expres-
sions are not necessarily equivalent.

If the inequality are reversed, we can state, in a similar way, the concepts
of negative upper orthant dependence(NUOD), negative lower orthant de-
pendence(NLOD), andnegative orthant dependence.

The Definitions given above can be restated in terms of copulas. Con-
sider, for instance, two random variablesX1, X2 with continuous marginal
distributionsG1, G2, cdf F , and connecting copulaC. Notice that Eq.
(2.12) can be also written as

F (x1, x2) ≥ G1(x1)G2(x2), ∀(x1, x2) ∈ R2.

Thus, by means of Sklar’s Theorem, we can state the Definitionof PDQ for
copulas as follows.

DEFINITION 2.26. We say that a copulaC is PQD if

C(u, v) ≥ Π(u, v), ∀(u, v) ∈ I2. (2.15)

If the inequalities in(2.15)are reversed, then the copulaC is said NQD.

Similar arguments can be used to define PLOD, PUOD, and POD con-
ditions in terms of multivariate copulas (and NLOD, NUOD, and NOD too).
According to the definition of concordance ordering for copulas, given in
2.14, we can make comparisons between couples of random variables to
establish their degree of concordance on the basis of the degree of con-
cordance expressed by their connecting copulas respectively. For exam-
ple a2−copulaC1 is more PQD than another2−copulaC2 if C1(u, v) ≥
C2(u, v) for all (u, v) ∈ [0, 1]2. In dimensionn, C1 will be more PLOD
thanC2 if C1(u) ≥ C2(u), and more PUOD ifC1(u) ≥ C2(u), for every
u ∈ [0, 1]n (then POD if both hold).

A further concept of dependence is the following, regardingtail mono-
tonicity of copulas.

DEFINITION 2.27. Let X = (X1, X2) a bivariate random vector with
cdfF . We say thatX2 is stochastically increasingin X1, or the conditional
distributionF2|1 is stochastically increasing SI(X2|X1), if

P(X2 > x2 |X1 = x1) = 1− F2|1(x2|x1) (2.16)

is an increasing function ofx1, for all x2 ∈ R. By reversing the direction
of the monotonicity in(2.16), thestochastically decreasing(SD) condition
results.

In terms of copulas, this result can be restated as follows.
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DEFINITION 2.28. LetX1 andX2 be continuous random variables with
copulaC. Then SI(X2|X1) holds if and only if for anyv ∈ [0, 1] and for
almost allu, ∂1C(u, v) is non-increasing inu or, equivalently, ifC is a
concave function ofu.

Other important definitions are that ones ofright tail increasing(RTI),
right tail decreasing(RTD) or totally positivity of order 2(TP2), with some
properties defining connections among them, can be found in [107].

Dependence is also modeled by some concept better known asmeasure
of associationbetween random variables. Given a pair of random variables
(X, Y ), we say that two observation(x1, y1) and(x2, y2) from the pair are
concordant if(x1−x2)(y1−y2) > 0, discordant if the inequality is reversed.
This means that the values of one of the random variables tends to be big or
small in the same way as the values of the other variable do. Weshow now
some examples in this direction.

DEFINITION 2.29. Let (X1, Y1) and(X2, Y2) be independent and iden-
tically distributed random vectors with joint distribution F . Kendall’s tau
measure of association is defined as

τX,Y = P[(X1−X2)(Y1−Y2) > 0]−P[(X1−X2)(Y1−Y2) < 0]. (2.17)

For independent vectors of random variables not sharing thesame joint
distributions, one can define a “concordance function”Q as follows. If
C1, C2 are the connecting copulas for the couples(X1, Y1), (X2, Y2) then
we can write

Q = P[(X1 −X2)(Y1 − Y2) > 0]− P[(X1 −X2)(Y1 − Y2) < 0]

and obtain the following integral representation forQ:

Q = Q(C1, C2) = 4

∫

I2
C2(u, v)dC1(u, v)− 1. (2.18)

Such a representation can be used to express Kendall’s tau bymeans of the
copulaC:

τX,Y = τC = Q(C,C) = 4

∫

I2
C(u, v)dC(u, v)− 1. (2.19)

It is interesting to notice that this value, although expressed in terms of
integrals, can be used to compute dependence also for copulas that contains
a singular component. To do this we just need to rewrite the integral in
(2.19) as

τC = 1− 4

∫

I2

∂

∂u
C(u, v)

∂

∂v
C(u, v) dudv. (2.20)

The proof of this result rises from an application of integration by parts. An
interesting example of Kendall’s tau for the copulas of Marshall-Olkin fam-
ily is given in [107] (see also section 5). In this particular case the measure
of association coincides with the measure of the singular component of the
copula.
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Other useful measures are given bySpearman’s rhoandGini’s Gamma.
Both of them can be defined by means of functionQ. Namelyρ = 3Q(C,Π)
while γ = Q(C,M) + Q(C,W ). In a sense, Spearman’s rho measures a
concordance relationship or “distance” between the distribution ofX and
Y as represented by their copulaC and independence as represented by the
copulaΠ. On the other hand, Gini’s gamma measures a concordance rela-
tionship or “distance” betweenC and monotone dependence, as represented
by the copulasM andW .

Notice that, for Archimedean copulas, this expressions canbe written
by means of their generators, and assume a simpler form. For example,
given an Archimedean copulaC with generatorφ, Kendall’s Tau can be
written as

TC = 1 + 4

∫ 1

0

φ(t)

φ′(t)
dt. (2.21)

Any set of desirable properties for a “measure of concordance” would
include those in the following definition, see [121].

DEFINITION 2.30. A numeric measurek of association between two
continuous random variablesX andY whose copula isC is a measure of
concordance if it satisfies the following properties (we writekX,Y or kC):

• k is defined for every pair of continuous random variables;
• 1 ≤ kX,Y ≤ 1, kX,X = 1, andkX,−X = 1;
• kX,Y = kY,X ;
• if X, Y are independent thenkX,Y = kΠ = 0;
• k−X,Y = kX,−Y = −kX,Y ;
• if C1 ≺ C2 thenkC1 ≤ kC2 ;
• if {(Xn, Yn)} is a sequence of continuous random variables with

copulasCn, and if {Cn} converges pointwise toC, then we have
that limn→∞ kCn

= kC .

It is proved that Kendall’s Tau, Spearman’s Rho and Gini’s Gamma are
measures of concordance, since they satisfy conditions given in Definition
2.30. For further details and properties of dependence measures see [107].

3. Methods of constructing copulas

Nelsen in [107] presents several general methods of constructing bivari-
ate copulas. By means of Sklar’s theorem one can produce copulas directly
from joint distribution functions. Using geometric methods, one may con-
struct singular copulas whose support lies in a specified setand copulas with
sections given by simple functions such as polynomials. He also discusses
some geometrical procedures that produce copulas known as ordinal sums,
shuffles ofM , and convex sums. In the algebraic method, he constructs
copulas from relationships involving the bivariate and marginal distribu-
tions functions. In this Section we briefly report some of these methods and
provide examples for them.
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We start introducing the “inversion method”, based on Sklar’s inversion
theorem presented in 2.7. Given a bivariate distribution functionH with
continuous marginsG1 andG2, we can obtain a copula by “inverting” via
the expression 2.7:

C(u, v) = H(G
(−1)
1 (u), G

(−1)
2 (v)).

With this copula, we can construct new bivariate distributions with arbitrary
margins, say

H ′(x, y) = C(G′
1(x), G

′
2(y)).

Of course, this can be done equally as well using survival functions: by
recalling 2.4

Ĉ(u, v) = H(G
(−1)

1 (u), G
(−1)

2 (v)).

whereG
(−1)

denotes a quasi-inverse ofG, defined analogously toG(−1) in
(2.6), like

G
(−1)

(t) = G
(−1)

(1− t).

An example of a family of copulas built in this way is given by theMarshall-
Olkin system of bivariate exponential distributions (see e.g [76, 103, 107]).
This family is modeled by two parameter, sayα1, α2, with values in[0, 1],
and its expression reads

Ĉ(α1,α2)(u, v) := u v min{u−α1, v−α2}. (2.22)

This model is suitable to describe the lifetime a system withtwo compo-
nents, which are subject to shocks that are fatal to one or both of them. For
this reason it is a model that fits well with reliability problems and finds
many applications in such field. We discuss its constructionin Chapter 5,
also giving some of its properties, useful for our purposes.

FIGURE 2.3. Copulas from the Marshall-Olkin family with pa-
rameters(α1, α2) respectively(0.3, 0.6), (0.5, 0.5) and(0.9, 0.3)

Other examples of copulas constructed by using the inversion method
can be found in [107].

Another kind of approach in building copulas arise for geometric-type
methods. One can, indeed, construct grounded2−increasing functions on
I2 with uniform margins, by using some information of a geometric nature,
such as the shape of the graphs of horizontal, vertical, or diagonal sections.
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Nelsen in [107] examinesordinal sumconstruction, wherein the members
of a set of copulas are scaled and translated in order to construct a new cop-
ula; theshuffles ofM , which are constructed from the Fréchet-Hoeffding
upper bound; and theconvex sumconstruction, a continuous analog of con-
vex linear combinations. For our purposes we will discuss the second kind
of geometric method mentioned, the shuffles ofM , the maximal copula.

It is known thatM andW are singular copulas, whose support consists
in a single segment. ForM it consists of the line connecting(0, 0) with
(1, 1), with slope1, whileW is supported by the line connecting(0, 1) to
(1, 0), with slope−1. The shuffles ofM have then support consisting in
segments of slope−1 and1.

Informally speaking, we can say that such functions are obtained by
cutting the support ofM in small parts and rearranging into the unit square
by translating and flipping them.

More formally, a shuffle ofM is determined by a positive integern, a
finite partition{Ji}i=1,...,n of I into n closed subintervals, a permutationσ
onN = {1, 2, . . . , n}, and a functionω : N → {−1, 1} whereω(i) is −1
or 1 according to whether or not the stripJi × I is flipped. The shuffle of
M resulting from a permutationσ will be denoted byM(n, {Ji}, σ, ω). A
shuffle ofM with ω = 1, i.e., for which none of the strips is flipped, is a
straight shuffle, and a shuffle ofM with ω = −1 is called a flipped shuffle.
We will also writeIn for {Ji} when it is a regular partition ofI, i.e., when
the width of each subintervalJi is 1/n.

As an example of shuffle consider the following copulaCγ, described
by a parameterγ ∈ (0, 1).

Cγ(u, v) =





min(u, v − γ), if (u, v) ∈ [0, 1− γ]× [γ, 1]
min(u+ γ − 1, v), if (u, v) ∈ [1− γ, 1]× [0, γ]
W (u, v), otherwise.

(2.23)
This copulas are built by one single cut atγ and represents a straight shuffle
of M , since no strip is flipped. The graph of the support consists in two
lines with slope1 connecting(0, γ) to (1 − γ, 1) and(1 − γ, 0) to (1, γ).
This example arise when considering two uniform random variablesU and
V , with V = U ⊕ γ, with the meaning that the value ofV is given by the
fractional part of the sumU + γ. Then one can see that the joint behavior
of U andV is expressed in terms of the copulaCγ . We make a deeper
investigation of this copula in Section 5, see Proposition 5.10.

Many other methods of constructing copulas exist in literature, as the al-
gebraic methods, involving both bivariate and marginal distributions of the
random variables considered. Some examples of copulas built with these
methods are given by the Plackett family and the Ali-Mikhail-Haq family
of distributions. These and other examples are studied accurately in [107].
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4. Symmetry and exchangeability

An important concept in the study of copulas is due to its property of
symmetry. Symmetry of copulas is strictly liked with the concept ofex-
changeabilityof the random variables described by them. The first to intro-
duce the concept of exchangeability was De Finetti in [36].

DEFINITION 2.31. We say that two random variablesX1 andX2, with
marginal lawsG1 andG2 and joint lawF1,2, are exchangeable if and only
if G1 = G2 andF1,2 = F2,1.

A similar definition can be given for groups of random variables. If we
considern identically distributed random variablesX1, . . . , Xn, they are
exchangeable ifF1,...,n = Fσ(1),...,σ(n), for any permutationσ of the indices
1, . . . , n.

It is immediate to think to, when two random variables are notex-
changeable, how to measure they degree of non-exchangeability.

DEFINITION 2.32. LetH(F ) be the class of all random pairs(X1, X2)
such thatX1 andX2 are identically distributed with continuous d.f.F . A
functionµ̂ : H(F ) → R+ is a measure of non-exchangeabilityfor H(F ) if
it satisfies the following properties:

A1: µ̂ is bounded, viz. there existsK ∈ R+ such that, for all
(X1, X2) ∈ H(F ), µ̂(X1, X2) ≤ K;

A2: µ̂(X1, X2) = 0 if, and only if,(X1, X2) is exchangeable;
A3: µ̂(X1, X2) is symmetric, i.e., for all(X1, X2) ∈ H(F ), one has
µ̂(X1, X2) = µ̂(X2, X1);

A4: µ̂(X1, X2) = µ̂(f(X1), f(X2)) for every strictly monotone func-
tion f and for all (X1, X2) ∈ H(F );

A5: if (Xn
1 , X

n
2 ) and (X1, X2) are pairs of random variables with

joint distribution functionsHn andH, respectively, and ifHn con-
verges weakly toH asn tends to∞, thenµ̂(Xn

1 , X
n
2 ) converges to

µ̂(X1, X2) asn tends to∞.

AxiomsA1 andA2 ensures that the measure is bounded and not always
equal to0. The other axioms state that the measure must be invariant under
permutation of components, strictly monotone transformations and distri-
butional limit. This Definition is due to Durante et al. (see [49]), where
they showed in addition that, by means of Sklar’s Theorem, anequivalent
formulation of measure of non-exchangeability can be givenw.r.t. the con-
necting copula of the random variablesX1 andX2.

PROPOSITION 2.33. LetX1, X2 be continuous r.v.s and letCX1,X2 be
their connecting copula. The random variablesX1 andX2 are exchange-
able if, and only if, they are identically distributed, i.e.FX1 = FX2 , and
CX1,X2 is symmetric, viz.CX1,X2(u, v) = CX1,X2(v, u) for everyu, v ∈
[0, 1].

In this view one can rewrite Definition 2.32 by
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DEFINITION 2.34. Let C the class of all copulas. A functionµ : C →
R+ is a measure of non-exchangeabilityfor C if it satisfies the following
properties:

B1: µ is bounded, viz. there existsK ∈ R+ such that, for allC ∈ C,
µ(C) ≤ K;

B2: µ(C) = 0 if, and only if,C is symmetric;
B3: µ(C) = µ(Ct) for everyC ∈ C;
B4: µ(C) = µ(Ĉ) for everyC ∈ C;
B5: if (Cn) andC are inC and ifCn converges uniformly toC, then
µ(Cn) converges toµ(C) asn tends to∞.

Several measures of non-exchangeability, that satisfyB1 − B5, have
been presented in [49]. Consider, for example,dp, the classicalLp distance
in C (with p ∈ [1,∞]). For allA,B ∈ C one has

dp(A,B) :=

(∫ 1

0

∫ 1

0

|A(u, v)− B(u, v)|pdudv
)1/p

(2.24)

for p finite and, forp = ∞,

d∞(A,B) := max
(u,v)∈I2

|A(u, v)−B(u, v)|. (2.25)

It has been showed in [49] thatµp : C → R+ is a measure of non-exchan-
geability for everyp ∈ [1,∞]. Klement and Mesiar in [83] and Nelsen in
[108] showed that, for every copulaC, µ∞(C) ≤ 1/3 and that the upper
bound is attained. More in particular two copulas are considered for this
purpose, namely

C1(u, v) =min
(
u, v,max

(
u− 2

3
, 0
)
+max

(
v − 1

3
, 0
))
,

C2(u, v) =max
(
u+ v − 1,

1

3
−max

(1
3
− u, 0

)
−max

(2
3
− v, 0

)
, 0
)
,

whose support are described by Figure 2.4.

FIGURE 2.4. The supports ofC1 andC2
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Notice that copulaC1 is part of the one-parameter familyCγ introduced
in (2.23) (in particular, it corresponds to the valueγ = 1/3). In Chapter 5
we will investigate, among other things, some properties ofsymmetry and
dependence of copulas, also by means of the familyCγ cited above (see
Proposition 5.10).





CHAPTER 3

Decisions under Risk and Utility Theory

The field of decision theory under risk and uncertainty represents a very
important area of interest in economics and finance. Conditions of uncer-
tainty are typically considered in situations involving a Decision Maker
(from now on, a DM) that is facing a choice among different opportunities,
or acts, whose consequences are not deterministic. These choices may in-
volve investments in financial assets or insurances as well as bets in gambles
or lotteries, and so on. All these situations involve objective facts (known or
unknown), regarding the possible choices and its consequences, and subjec-
tive matters, as the will of the DM when facing risky or uncertain situations,
as well.

Utility theory had arisen and developed in time, to describediversities
among DMs and their attitudes toward risk and uncertainty. The main prac-
tical argument studied in this Chapter is the one ofutility functions, that are
used to describe the behavior of the DM by attempting to orderthe set of
consequences corresponding to her choices.

1. Choice under Uncertainty

The modern analysis of decisions under uncertainty has seenits first
formalization in 1944 [145], when Von Neumann and Morgenstern (NM)
laid the foundations of what is known as theaxiomatic theory of expected
utility. Their starting point is the study of people’s preferences with regard
to choices that have uncertain outcomes, namelygambles. Their hypoth-
esis states that if certain axioms are satisfied, the subjective value associ-
ated with a gamble by an individual is the expectation of thatindividual’s
valuations of the outcomes of that gamble. According to the principle of
maximization of the utility, Decision Makers make use of their (subjective)
utility functions to evaluate gambles and then they try to maximize their
expected outcome.

In their work, Von Neumann and Morgenstern also payed attention to
the attitude of investors towards risk. Decision Makers canbe, in particular,
classified according to three categories of behavior:risk neutral, risk averse
andrisk seeker. The first one represents people that, when facing two risky
prospects with the same expected value, will feel indifferent in the choice
between them. The second one is the attitude of DMs that, whenasked
to choose between two such prospects, will prefer the less risky one, in
contraposition to the risk seeker people that will behave inthe completely
opposite way.

41
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Consider, for instance, the set of random variables taking values in the
finite setZ. Since variables are characterized by their probability laws, we
are led to consider a preference relation≻ on P(Z), the set of all prob-
ability measures onZ or on theσ−algebraσ(Z); by abuse of language,
each elementp ∈ P(Z) will be called a lottery. The representation of
the expected utility according to NM principles for the preference relations
consists now in establishing a utility functionU : P(Z) → R built from a
functionu : Z → R such that

U(p) = E(u(X)) =
∑

z∈Z

p(z)u(z) (3.1)

for any random variableX ∈ Z with law p, E being the expected value
evaluated overu(X).

Let now recall some basic properties that are required for preference
relations.

Asymmetry: x ≻ y impliesy ⊁ x;
Negative transitivity: x ⊁ y andy ⊁ z imply x ⊁ z.

From astrict preference relation we can immediately define some related
ones: the equivalence∼, theweakrelation�, and the reverse relation≺,
with the same characteristics of≻. Concerning the first one, we writex ∼ y
whenx ⊁ y andy ⊁ x simultaneously. This is anindifference relation(or
equivalence relation), as it is reflexive, symmetric and transitive. On the
other hand, we writex � y wheny ⊁ x or, equivalently, when bothx ≻ y
or x ∼ y may occur: the weak relation is a complete and transitive relation.
We now focus on the relation≻ and give some of its basic properties in
what follows.

DEFINITION 3.1. The preference relation≻ is said to berational if it
satisfies the following two axioms:

Continuity or Archimedean: For all p, q, r ∈ P(Z), if p ≻ q ≻ r,
then there existα, β ∈ (0, 1) such that

αp+ (1− α)r ≻ q ≻ βp+ (1− β)r (3.2)

Independence:For all p, q, r ∈ P(Z) andα ∈ (0, 1], if p ≻ q then

αp+ (1− α)r ≻ αq + (1− α)r. (3.3)

Furthermore we recall the following two lemmas.

LEMMA 3.2. If the preference relation≻ is rational, then the following
hold:

(1) for two given real numbersa, b ∈ [0, 1], with a < b, one has

p ≻ q ⇒ bp + (1− b)q ≻ ap + (1− a)q;

(2) the conditionsp � q � r and p ≻ r implies that there exist an
uniquea∗ ∈ [0, 1] such that

q ∼ a∗p+ (1− a∗)r;
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(3) for a ∈ [0, 1], p ∼ q imply, for anyr ∈ P(Z)

ap+ (1− a)r ∼ aq + (1− a)r.

In the following we indicate, with the symbolδz(A), Dirac’s delta for
the elementz into setA, as a quantity equal to1 if z ∈ A and0 otherwise.

LEMMA 3.3. If ≻ satisfies the axioms of Definition 3.1, then there exist
z0 andz0 in Z such thatδz0 � p � δz0 for anyp ∈ P(Z).

Finally, we can state the following

THEOREM 3.4. Any rational preference relation≻ can be uniquely
represented by a functionu up to a positive linear transformation, i.e., if
u : Z → R is such that

p ≻ q ⇔
∑

z∈Z

p(z)u(z) >
∑

z∈Z

q(z)u(z)

then the same holds withu being replaced byv(·) = au(·) + b, for any two
real numbersa, b with a > 0.

Proofs of the two lemmas together with Theorem 3.4 can be found in
[133].

We turn now to consider more realistic random quantities with the mean-
ing of economic tools, as possible losses in investment portfolios. Consider
Z as a possibly infinite set of random variables, with rangeR. Let Z be a
complete and separable metric space with its Borel sigma-algebraσ(Z).
As a generalization of the finite case, the numerical representation of a
preference relation≻ on a class of random variablesX , according to the
NM-principles, is the following. For any DM with preferencerelation≻
there exists a unique (or unique up to positive linear transformations) utility
functionu : Z → R such that

X ≻ Y ⇔ E(u(X)) > E(u(Y )),

for anyX, Y ∈ X , provided the expectations exist. This is known as the
von Neumann-Morgenstern expected utility representationof preference re-
lations(for references, see [145]).

Let nowZ = R for simplicity, with its usual topology generated by
open intervals; the Borelσ−field ofR is denoted asB(R). SoP(Z) (P(R))
will be the set of all probability measures defined onB(R). A topology on
P(R) is defined by specifying a concept of convergence in it. Here we say
that pn converges weakly top in P(R) if, for any f ∈ Cb(R) (bounded
continuous functions with supportR),

∫

R

f(x) dpn(x) →
∫

R

f(x) dp(x). (3.4)

The associated topology, generated by the neighborhoods ofeachp, will be
called the weak topology onP(R).

We now need to extend the axiom of continuity defined in (3.2).
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PROPOSITION3.5. Given a separable and complete metric spaceP(Z),
for anypn, p ∈ P(Z) with pn → p in the weak topology, the following hold:

(1) if p ≻ q for someq ∈ P(Z), thenpn ≻ q for sufficiently largen;
(2) if q ≻ p, thenq ≻ pn for all sufficiently largen.

By means of this result about weak continuity, we can extend result
given in Theorem 3.4 toP(R).

THEOREM 3.6. LetX, Y random variables inX with probability laws
p, q ∈ P(R) respectively. A preference relation≻ on P(R) satisfies the
independence and the weak continuity axioms if and only if there exists a
bounded and continuous utility functionu : R → R (u ∈ Cb(R)) such that

p ≻ q ⇔ Ep(u(X)) =

∫

Z

u(z) dp(z) >

∫

Z

u(z) dq(z) = Eq(u(Y )).

(3.5)
Moreover this representation is unique up to positive affinetransformations.

2. The Expected Utility Principle and Risk Attitudes

In this Section we sketch the basics of the attitudes of Decision Makers
facing risky or uncertain situations. From a qualitative point of view, we
can say that there are essentially three types of risk attitudes (or three kind
of people), namelyrisk neutral, risk averseandrisk seeker. As we said in
the previous Section, the former are indifferent in choosing between two
risky prospects, but with the same expected value;risk-averseones, among
prospects with the same expected value, prefer the less risky (it can be seen
that they make use of a concave utility function); thoserisk seeker, finally,
share the opposite attitude (and hence make use of a convexu).

For example, suppose that our DM is asked to choose between accepting
100e or playing the following game. The DM flips a coin, if head occur
she gets 200e, otherwise nothing. The expected value of both prospects
is the same, 100e, but DMs with different concepts of risk will act differ-
ently in deciding what to do. A risk neutral DM will be indifferent in the
choice of prospect, maybe she will decide to toss the coin at first to decide
whether accepting money or playing the lottery. A risk averse DM will in-
stead accept the money (as a risk seeker will try to win the best possible
prize).

To be more precise we restate the problem in the following way. Let
X be a random variable taking values0 or 200, both with probability1/2.
So we have that the expected value of the lottery is given byE(X) = 100.
Now the three conditions of neutrality, aversion, and propensity to risk can
be restated as follows. A DM is

Risk Neutral: when the utility functionu is such thatu(E(X)) =
E(u(X));

Risk Averse: when she prefersu(100) toE(u(X)), so if she chooses
100e instead of flipping the coin;
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Risk Seeker: whenu(100) < E(u(X)).

Let us consider a utility functionu ∈ C2(R), the space of differentiable
functions with continuous derivatives until order2. It is intuitive to no-
tice, for first, that when considering monetary incomes or any kind of prof-
itable goods as prospects, the satisfaction in receiving them shall grow as the
amount of the prospect grows. This is the reason for which it is generally
assumed (as we do in this work) that the utility function mustbe nonde-
creasing. Namely, for a given utilityu, its first derivativeu′ is supposed to
be greater than or equal to zero. Moreover the sign of the second derivative
plays an important role, since it univocally determines thebehavior of the
DM towards risk, placing her in one of the three categories ofrisk listed
above. We can claim that

THEOREM 3.7. A DM with nondecreasing utilityu is risk averse if and
only if u is concave, risk seeker if and only ifu is convex.

The proof of this Theorem mainly follows from a direct application of
Jensen’s inequality.

Let us now focus our attention on comparisons between risk and risk
aversion. Risk aversion is the attitude to avoid uncertainty as well as to in-
sure oneself against unpredictable events. So, up to von Neumann-Morgenstern
principles of utility maximization, a risk averse DM will behave as follows.

Suppose that our DM has an initial capitalx, that is a deterministic
(positive) amount of money. Suppose that she is also risk averse, so that
her utility functionu will be nondecreasing and concave. The DM is now
going to make an investment whose uncertain profit consists of a random
variableZ (that is not necessarily nonnegative). In these terms, she will be
ready to pay a premiumπ in order to replaceZ by its expected valueE(Z).
This premium will depend on both the initial capitalx and the law of the
random profitZ, soπ = π(x, FZ). So we can uniquely define it as the value
satisfying

u(x+ E(Z)− π(x, FZ)) = E(u(x+ Z)). (3.6)

DEFINITION 3.8. Given an initial capitalx and a random profitZ, the
quantityπ(x, FZ) satisfying equation(3.6) is calledrisk premium.

For the sake of simplicity, letE(Z) = 0 and indicate withσ2
Z the vari-

ance ofZ. By Taylor expansion we have

u(x− π) = u(x)− πu′(x) +O(π2) (3.7)

E(u(x+ Z)) = E(u(x) + Zu′(x) +
1

2
Z2u′′(x) +O(Z3))

= u(x) +
1

2
σ2
Zu

′′(x) + o(σ2
Z). (3.8)

Thus, rearranging the terms in (3.7) and (3.8) we obtain

π(x, FZ) =
1

2
σ2
ZA(x) + o(σ2

Z), (3.9)
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where

A(x) = −u
′′(x)

u′(x)
= − d

dx
log u′(x). (3.10)

DEFINITION 3.9. The functionA(x) introduced in(3.10) is calledab-
solute local measure of risk aversion, and represents the local propensity to
insure at pointx under the utility functionu.

If Z is not actuarially neutral, namely ifE(Z) 6= 0, the expression for
the risk premium will take the form

π(x, FZ) =
1

2
σ2
ZA(x+ E(Z)) + o(σ2

Z). (3.11)

If the profit of the investment is expressed by a multiplicative utility, the
proportional risk premiumπ∗ will be defined as the value that satisfies

u(xE(Z)− xπ∗(x, FZ)) = E(u(xZ)). (3.12)

In case thatE(Z) = 0, the expression forπ∗ will be

π∗(x, FZ) =
1

2
σ2
ZR(x) + o(σ2

Z), (3.13)

whereR(x) = xA(x).

DEFINITION 3.10. The functionR(x) satisfying(3.13)is calledrelative
local measure of risk aversion.

One can notice that there is a relationship linking the two risk premiums,
that is expressed by

π(x, FxZ) = xπ∗(x, FZ).

Notice furthermore that the above representations of risk premium are “lo-
cal” representations, since they describe DM’s behavior towards small (in-
finitesimal) risks. The following Theorem shows that there is an analogy
between local and global behaviors in terms of risk aversion.

THEOREM 3.11 (Arrow, Pratt).Let u1, u2 be two utility functions with
absolute local measures of risk aversionA1, A2 and risk premiumsπ1, π2
respectively. Then, for any choice ofx andZ, the following conditions are
equivalent:

(1) A1(x) ≥ A2(x);
(2) π1(x, FZ) ≥ π2(x, FZ);
(3) u1(·) = k(u2(·)), with k increasing and concave.

See [8] and [111] for further details.

DEFINITION 3.12. If the hypotheses of Theorem 3.11 are satisfied, then
a DM with utility functionu1 is said more risk averse than a DM preferring
u2.

Connections between small risks and measures of risk aversion have
been noticed for first by De Finetti (see [37]).

Another important property is given by the following result.
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THEOREM 3.13. The following conditions hold:A(x) is decreasing in
x if and only ifπ(x, FZ) is decreasing inx for all Z. Analogously,R(x) is
decreasing inx if and only ifπ∗(x, FZ) is decreasing inx for all Z.

If the conditions of Theorem 3.13 are met we say thatu exhibits de-
creasing (absolute or relative) risk aversion.

3. Multi-attribute utilities and related properties

Recent years witnessed numerous attempts to generalize various as-
pects of these notions to the case of multivariate risk (see,for example, the
works by Duncan [48], Karni [79], Kihlstrom and Mirman [82], and Stiglitz
[136]). The univariate case is qualitatively different from themultivariate
one: in the first case the ordinal preferences of all decisionmakers are iden-
tical, whereas in the latter the preference orderings may differ among them.

Let x = (x1, . . . , xn) be the (deterministic) commodity vector of an in-
vestor facing a riskZ, that is expressed, in turn, by an−dimensional (ran-
dom) vector(Z1, . . . , Zn). Let u any real-valued function which is in the
equivalence class of von Neumann-Morgenstern utility functions consistent
with the individual’s preferences. We assume thatu is strictly increasing in
each component and thatEu(x+ Z) is finite.

We define a family of risk premium functionsπ(x,Z) in the following
way. For a given risk vectorZ, with E(Z) = 0, the vectorπ = (π1, . . . , πn)
must satisfy

u(x− π) = Eu(x+ Z). (3.14)

Note that the risk premium is unique in the univariate case while in the
multivariate case the existence of a vectorπ is granted but uniqueness does
not necessarily hold. A simple example of this situation is given by the
following utility function: u(x1, x2) = x1x2. Equation (3.14) is satisfied if
π1π2 − π1x2 − π2x1 = σ12.

A matrix measure ofmultivariate local risk aversion, which is directly
related to the multivariate risk premiums, can be given as follows. Consider
the Taylor series expansion of both members of equation (3.14). At first
consideruij(x) = ∂2u(x)/∂xi∂xj to be continuous; we obtain

u(x− π) = u(x)−
n∑

i=1

πiui(x) +
1

2

n∑

i,j=1

πiπjuij(x− θπ)

with θ ∈ [0, 1]. Secondly, if Var(Z) = Σ = [σij ] exists,

Eu(x+ Z) = u(x) +
1

2

n∑

i,j=1

σijuij(x) + o(trΣ),

wheretrΣ =
∑n

i=1 σii. Combining these two approximation one gets to

u′π = −1

2
trUΣ, (3.15)
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where then × n Hessian matrixU = [uij(x)] and then−vectoru =
(ui(x)). Any approximate solution of (3.15) will be of the form

π̂ =
1

2
dgAΣ (3.16)

where

A = [aij ] =

[
−uij
ui

]
= [diagu]−1U. (3.17)

Reducing the problem to one dimensional case,A coincides with the abso-
lute measureA presented in (3.10), so we can callA absolute risk aversion
matrix. The importance of off-diagonal elements is given by the following
two results (proofs are in [48]).

PROPOSITION3.14. The matrixA is diagonal if and only ifu is addi-
tive. In this case the commodities are mutually risk independent.

PROPOSITION 3.15. If there exists a nonnegative risk premium vector
π for all two-point gamblesZ, thenu is concave. The viceversa also holds
true.

In this direction, it is clear that interactions among acts play a fundamen-
tal role in assessing risk and defining aversion to it. Comparisons among
risk between risk averse DMs can be made by the comparison of their risk
premiums, but one can see that this model is suitable only when dealing
with small risks. Kihlstrom and Mirman, in fact, showed in [82] that under
these hypotheses, a DM that is more risk averse than another DM in one
direction will be more risk averse in any direction. This is due to the strong
hypothesis that two utility functions represent the same preference ordering.

Extensions of the Arrow-Pratt concept of risk aversion to the multivari-
ate case are somehow problematic. A more precise concept of multivariate
aversion is that one ofcorrelation aversion(CAV), introduced by Epstein
and Tanny in [53]. For the sake of simplicity we restrict ourselves, for the
moment, to the2−dimensional case.

Consider two vectors of outcomes(x1, x2) and(y1, y2), with x1 < y1,
x2 < y2, and two lotteriesL1, L2 such that

L1 =

{
(x1, x2), w.p. 1/2;
(y1, y2), w.p. 1/2;

L2 =

{
(x1, y2), w.p. 1/2;
(y1, x2), w.p. 1/2;

In this respect, we can say thatx is the vector of “bad” outcomes, while
y is the “good” one (see [45, 51]). So lotteryL2 associates bad with good
outcomes whileL1 is some kind of “all or nothing”. Since the marginal
outcomes of the two lotteries are the same, intuitively a DM preferringL2

to L1 will manifest a form of bivariate risk aversion. The above preference
holds for allx ≤ y if and only if DM’s utility function u satisfies

u(x1, x2) + u(y1, y2) ≤ u(x1, y2) + u(y1, x2), (3.18)
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condition that corresponds tosubmodularityof the functionu (compare
with equation (1.10) in Definition 1.11). Furthermore, ifu is twice dif-
ferentiable, condition (3.18) can be simply rewritten as

u12 ≤ 0. (3.19)

Notice that, in dimension2, such a formulation follows the one of multivari-
ate local risk aversion introduced above. A deeper analysisof risk attitudes
has been made in this direction, based on the sign of higher order deriva-
tives of the utility function. This led to the introduction of properties like
prudenceandtemperance(andcross-prudence, cross-temperancefor mul-
tivariate case) and other general properties, that can be found, for example,
in [45, 46, 51, 143].

4. Non-Expected Utility Theory

Decision Makers, intending to be rational in the sense of Theorem 3.4,
usually try to maximize their expected utility according tothe so-called
expected utility maximization principle. But in the real world, assuming
that everybody is rational is pure utopia. In fact, many objections to this
principle have been formulated, by means of paradoxical examples. First of
all Allais, in 1953, proposed a paradox in contrast to the theory proposed
by von Neumann and Morgenstern; Ellsberg (1961) doubted theaxiomatic
formulation of Savage (1954), subsequently giving rise to an alternative
expected utility theory based on generalized Choquet integrals (1965).

Actually, the very first example of this contradiction was proposed by
Daniel Bernoulli over the18th century, which became over the years the
well-known St. Petersburg paradox. This example presents a casino that
offers a lottery for a single player, described as follows.

At each stage a fair coin is tossed. The pot starts at2 dollars and is
doubled every time a head appears. The first time a tail appears, the game
ends and the player wins whatever is in the pot. Thus the player wins 2
dollars if a tail appears on the first toss,4 dollars if a head appears on the
first toss and a tail on the second, and so on. In short, the player wins2k

dollars, wherek equals the number of tosses. These events may appear with
probability, respectively,1/2, 1/4, . . . , 2−k. To evaluate the expected value
of the gamble, on just need to evaluate the quantity

E =

∞∑

i=1

2i ·
(1
2

)i
=

∞∑

i=1

1 = ∞. (3.20)

Assuming that the game can continue as long as the gambler likes, and that
both gambler and casino have an infinite amount of money, the game turns
out to have infinite expected utility, as the expected win seems not finite.
Under this viewpoint any gambler should be willing to pay anyamount of
money to have the chance of participating to such a game. But this situation
is obviously unfeasible. The paradox is then in the discrepancy between
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what people seem willing to pay to enter the game and its infinite expected
value.

Another interesting example is the one of Allais’s paradox (1953), that
describes inconsistencies in choices when people are deciding between op-
tions in two gambling games, one of which involves a certain outcome.

GambleA consists in a choice betweenA1 andA2, with
• A1: 1 million e with certainty;
• A2: 1% chance of zero,89% chance of1 million e, and 10%

chance of5 million e.
GambleB is the following

• B1: 89% chance of zero,11% chance of1 million e;
• B2: 90% chance of zero and10% chance of5 million e.

Standard economic theory predicts that a person with consistent preferences
will choseB1 in the second gamble if prefersA1 in the first (orB2 if A2).
The expected value forA1 and forB1 are, respectively, smaller than the ones
for A2 andB2, but chances to get zero are diminished (or completely elim-
inated). However, experimental evidence shows that real people commonly
choose the inconsistent combinations(A1, B2) and (A2, B1). Kahneman
and Tversky attributed this violation of expected utility principles to a “cer-
tainty effect”, as they explain in [77], introducing the formulation of the so
called “Prospect Theory”. This new concept was mainly basedon two prin-
ciples, such as the effect of context in which decisions are assumed and the
investor’s aversion to losses. According to the former one has to consider
that an investor usually makes different choices for a same decisional prob-
lem depending on the context in which such problem is presented; the latter
makes the investor more risk seeker than she would have been risk averse
in case of gain.

Ellsberg paradox (1961) can be illustrated by an urn game. Anurn
contains90 balls, 30 of which are red, and the remaining60 are divided
into black and yellow balls, with unknown proportion. Subjects playing the
game are asked for their preferences over two gambles. In both gambles
one ball is drawn from the urn and players have to guess its color.

GambleC is given by
• C1: the ball is red;
• C2: the ball is black.

GambleD is divided into
• D1: the ball is red or yellow;
• D2: the ball is black or yellow.

Ellsberg found that many people prefer to bet on gamblesC1 andD2, vi-
olating the “sure thing principle”, which requires that ifC1 is preferred
toC2, thanD1 should be preferred toD2. Ellsberg attributed this inconsis-
tency toambiguity aversionin the face of Knightian uncertainty. As defined
by Knight in 1921 (see [85]), it describes fundamental uncertainty and un-
knowable probabilities. Knightian risk describes probabilities that can be
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quantified because they capture observable, repeatable events, which can be
measured or which are given as prior information about proportion. With
this example Ellsberg showed that the expected utility model fails in situa-
tions in which uncertain events are associated with probabilities that cannot
be quantified, subsequently giving rise to an alternative expected utility the-
ory based on generalized Choquet integrals (1965).

Other alternative theories have been proposed since the early ’80s, like
the ones from Machina (1982), Karni (1985), Yaari (1987) andother au-
thors.





CHAPTER 4

The target Based Model for utility

We introduce a formal description of the Target-Based approach to util-
ity theory for the case ofn > 1 attributes and point out the connections with
aggregation-based extensions of capacities on finite sets.Although capaci-
ties have been used in the literature to go beyond the classical principle of
maximization of expected utility, we show how such measuresemerge in
a natural way in the frame of the target-based approach to classical utility
theory, when considering the multi-attribute case. Our discussion provides
economic interpretations of different concepts of the theory of capacities. In
particular, we analyze the meaning of extensions of capacities based onn-
dimensional copulas. The latter describe stochastic dependence for random
vectors of interest in the problem. We also trace the connections between
the case of{0, 1}-valued capacities and the analysis of “coherent” reliability
systems.

1. Introduction to Target Based model

A rich literature has been devoted in the last decade to theTarget-Based
Approach(TBA) to utility functions and economic decisions (see [19, 20,
28, 29, 141, 142]). This literature is still growing, with a main focus on
applied aspects (see, for example, [13, 149, 150]).

Even from a theoretical point of view, however, some issues of interest
demand further analysis. In this direction, the present Chapter will consider
some aspects that emerge in the analysis of the multi-attribute case. Gen-
erally TBA can provide probabilistic interpretations of different notions of
utility theory. Here we will in particular interpret in terms of stochastic de-
pendence the differences among copula-based extensions ofa same fuzzy
measure.

In order to explain the basic concepts of the TBA it is, in any case, con-
venient to start by recalling the single-attribute case. Let Ξ := {Xα}α∈A be
a family of real-valued random variables, that are distributed according to
probability distribution functionsFα respectively. Each elementXα ∈ Ξ
is seen as aprospector a lottery and a Decision Maker is expected to
conveniently select one element out ofΞ (or, equivalently,α ∈ A). Let
U : R → R be a (non-decreasing) utility function, that describes theDeci-
sion Maker’s attitude toward risk. Thus, according to theExpected Utility

53
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Principle (see [145]), the DM’s choice is performed by maximizing the in-
tegral

E [U (Xα)] =

∫

R

U(x) dFα(x). (4.1)

In the Target-Based approach one in addition assumesU to be right-conti-
nuous and bounded so that, by means of normalization, it can be seen as a
probability distribution function over the real line. Thisapproach suggests
looking atU as at the distribution functionFT of a random variableT .
This variable will be considered as atarget, stochastically independent of
all the prospectsXα. If T is a (real-valued) random variable stochastically
independent ofXα in fact, one has

E(FT (Xα)) =

∫
P(T ≤ x)Fα(dx) = P(T ≤ Xα), (4.2)

and then, by settingU = FT , the Expected Utility Principle prescribes a
choice ofα ∈ A which maximizes the quantityE [U (Xα)] = P (T ≤ Xα).

The conceptual organization and formalization of basic ideas have been
proposed at the end of nineties of last century by Castagnoli, Li Calzi, and
Bordley. Some arguments, that can be regarded nowadays as related with
the origins of TBA, had been around however in the economic literature for
a long time (see [19, 28] and references therein).

After the publication of these papers, several developments appeared
in the subsequent years concerning the appropriate way to generalize the
TBA to the case of multi-attribute utility functions, see inparticular [20,
141, 142]. As already mentioned such an approach, when applicable, offers
probabilistic interpretations of notions of utility theory, and this is accom-
plished in terms of properties of the probability distribution of a random
target. Such interpretations, in their turn, are easily understandable and
practically useful. In particular, they can help a DecisionMaker in the pro-
cess of assessing her/his own utility function.

A natural extension of the concept of Target-Based utility from the case
n = 1 to the case ofn > 1 attributes is based on a specific principle of
individual choice pointed out in [20]. In this Chapter, we formalize such
a principle in terms of the concept of capacity and analyze a TBA multi-
attribute utility as a pair(m,F ) wherem is a capacity overN = {1, . . . , n}
andF is ann-dimensional probability distribution function. For our pur-
poses it is convenient to use the Sklar decomposition ofF in terms of its
one-dimensional margins and of its connecting copula. In such a frame,
some aspects of aggregation functions and of copula-based extensions of
capacities emerge in a straightforward way.

More precisely, the Chapter will present the following structure. In the
next section, we will introduce the appropriate notation and detail the basic
aspects of the multi-criteria Target-Based approach. Starting from the argu-
ments presented in [20], we show how every Target-Basedn-criteria utility
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is basically determined by a couple of objects: ann-dimensional probabil-
ity distribution function and a fuzzy measure overN := {1, . . . , n}. This
discussion will allow us to point out, in Section 3, that someof the results
presented by Kolesárová et al. in [87] admit, in a completely direct way,
probabilistic interpretations and applications in terms of the TBA. It will
in particular turn out thatn-dimensional copulas, which can be used for
the extension of fuzzy measures, describe stochastic dependence among the
components of random vectors relevant in the problem. Section 4 will be
devoted to the special case of{0, 1}−valued capacities. We shall see how,
under such a specific condition, our arguments are directly related to the
field of reliability and of lattice polynomial functions. Some final remarks
concerning the relations between the parameters of TBA utilities and eco-
nomic attitudes of a Decision Maker will be presented in Section 5. The
notation we used is motivated by our effort to set a bridge between the two
different settings. The term “attribute”, as used in the present Chapter, is
substantially a synonymous of “criteria”.

2. Multi-Attribute Target-Based Utilities

In this section we deal with the TBA form of utility functionswith
n > 1 attributes. As recalled in the introduction, in the single-attribute
case,n = 1, a TBA utility is essentially a non-decreasing, right-continuous,
bounded function that, after suitable normalization, is regarded as the distri-
bution function of a scalar random variableT with the meaning of a target.
Actually even more general, non-necessarily increasing, “utilities” can be
considered in the TBA when possibility of stochastic dependence is admit-
ted between the target and the prospect (see [19], see also [38]), but our
interest here is limited to the case of independence betweensuch two ob-
jects.

At a first glance, one could consider the functionsF (x1, . . . , xn) as the
appropriate objects for a straightforward generalizationof the definition of
the TBA utilities to then-attributes case. A givenF should be interpreted
as the joint distribution function of atarget vectorT := (T1, . . . , Tn). But
such a choice would be extremely restrictive, however. A more convincing
definition, on the contrary, can be based on the following principle: in the
cases when a single deterministic targetti (i = 1, . . . , n) has been assessed
for any attributei by the Decision Maker, the utilityUm,t(x) corresponding
to an outcomex := (x1, . . . , xn) depends only on the subset of those targets
that are met byx (as in [20], Definition 1). More precisely, we assume the
existence of a set functionm : 2N → R+ such that

Um,t(x) = m(Q(t,x)), (4.3)

whereQ (t,x) is the subset ofN defined by

Q(t,x) := {i ∈ N |ti ≤ xi}. (4.4)
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It is natural to require that the functionm is finite, non-negative, and
non-decreasing, namely such that

0 = m(∅) ≤ m(I) ≤ m(N) <∞
Without loss of generality one can also assume thatm is scaled, in such

a way that
m(N) = 1. (4.5)

In other words, we are dealing with acapacityor a fuzzy measurem : 2N

→ [0, 1].
Rather than deterministic targets however, it is generallyinteresting to

admit the possibility that the vectorT of the targets is random, as it happens
in the single-attribute case. Denoting byFT the joint distribution function
of T, we replace the definition of a multi-attribute utility function given in
(4.3) by the following more general

DEFINITION 4.1. A multi-attribute target-based utility function, with
capacitym and with a random targetT has the form

Um,F (x) =
∑

I⊆N

m(I)P

(
⋂

i∈I

{Ti ≤ xi} ∩
⋂

i/∈I

{Ti > xi}
)
. (4.6)

It is clear thatUm,F (x) = Um,t(x) when the probability distribution de-
scribed byFT is degenerate over the pointt ∈ Rn. On the other hand the
special choiceUm,F (x) = FT(x), mentioned above, is obtained by impos-
ing the condition (4.5) together with

m(I) = 0 for all I ⊂ N (4.7)

This position corresponds then to a Decision Maker who is only satisfied
when all then targets are achieved.

The class ofn-attributes utilities is of course much wider than the one
constituted by the functions of the form (4.6). The latter class is however
wide enough and the choice of a utility function within it is rather flexible,
since a single function is determined by the pair(m(·), FT). Sufficient or
necessary conditions, under which a utility function is of the form (4.6),
have been studied by Bordley and Kirkwood in [20]. Several situations,
where such utilities can emerge as natural, have also been discussed.

For our purposes, the following notation will be useful. We denote by
Mm : [0, 1] → R the set-function obtained by letting, forI ∈ 2N ,

Mm(I) :=
∑

J⊆I

(−1)|I\J |m(J) (4.8)

where|I| indicates the cardinality of the setI. The functionMm(·) is the
Möbius Transformof m(·) and, as a formula of theinverse M̈obius Trans-
form, we also havem(I) =

∑
J⊆I Mm(J) (see e.g. [116]). Forx ∈ Rn and

I ⊆ N , we set

xI := {u1, . . . , un} where uj =

{
xj j ∈ I,
+∞ otherwise.

(4.9)
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If F (x) is a probability distribution function overRn, F (I)(xj1, . . . , xj|I|) =

F (xI) will be its |I|-dimensional marginal. Now we denote byGi(·) the
marginal distribution ofF for i = 1, . . . , n and we assume it to be continu-
ous and strictly increasing. Furthermore we will denote byC theconnecting
copulaof F :

C(y) := F (G−1
1 (y1), . . . , G

−1
n (yn)). (4.10)

Using a notation similar to (4.9), fory ∈ [0, 1]n we set

yI := {v1, . . . , vn} where vj =

{
yj j ∈ I,
1 otherwise.

In this way for the connecting copulaC(I)
F of F (I) we can write

C
(I)
F (yj1, . . . , yj|I|) = C(yI). (4.11)

The following result can be seen as an analogue of several results pre-
sented in different settings (see in particular [87] and [94]).

PROPOSITION4.2. The utility functionUm,F can be written in the equiv-
alent form

Um,F (x) =
∑

I⊆N

Mm(I)P(T ≤ xI). (4.12)

PROOF. The proof amounts to a direct application of the inclusion-
exclusion principle. SetAi = {Ti ≤ xi} and we denote its complement
by Ac

i ; we also setAI = ∩i∈IAi andÂI = ∩i/∈IA
c
i . Then Equation (4.6)

can be rewritten as

Um,F (x) =
∑

I⊆N

m(I)P(AI ∩ ÂI).

By a direct application of the inclusion-exclusion principle we have

Um,F (x) =
∑

I⊆N

m(I)
∑

J⊆N\I

(−1)|J |P(AI ∩AJ),

then

Um,F (x) =
∑

I⊆N

∑

H⊆I

(−1)|H|m(H)P(AI) =
∑

I⊆N

Mm(I)P(AI),

which is the right hand side of (4.12). �

We now consider the functionUm,F (G
−1
1 (y1), . . . , G

−1
n (yn)). In view

of (4.10) we see that this function depends onF only through the connect-
ing copulaC and it will be denoted bŷUm,C . Furthermore, the quantities
G1(x1), . . . , Gn(xn) can be given the meaning of utilities, thuŝUm,C be-
comes theaggregation functionof the marginal utilitiesy1, . . . , yn.
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COROLLARY 4.3. In the case in which the one-dimensional distribu-
tionsG1(x1), . . . , Gn(xn) of F are continuous and strictly increasing, one
can also write

Ûm,C(y) =
∑

I⊆N

Mm(I)C(yI). (4.13)

For any fixed pair(m,F ), we now turn to considering the expected util-
ity corresponding to the choice of aprospectX := (X1, . . . , Xn) distributed
according toFX:

EX (Um,F (X)) =

∫

Rn

Um,F (x) dFX(x)

=
∑

I⊆N

Mm(I)P(TI ≤ XI). (4.14)

By taking into account (4.14) and by interchanging the integration order,
we can also write

EX(Um,F (X)) = EX [ET(Um,T(X))]

=

∫

Rn

[∫

Rn

Mm(I(t,x)) dFX(x)

]
dFT(t). (4.15)

See also the logic scheme of Figure 4.1.

TB Utility - Deterministic Target
Um,t(x) = m(Q(t,x))

TB Utility - Random Target
Um,FT

(x) = ET[Um,T(x)]

Expected TB Utility
Random Prospect, Deterministic Targets

EX[Um,t(X)]

Expected TB Utility - Random Prospect
EX[ET[Um,T(X)]] = ET[EX[Um,T(X)]]

Integrating w.r.t.
FT

Integrating w.r.t.
FT

Integrating w.r.t.
FX

Integrating w.r.t.
FX

FIGURE 4.1. TB Utility Scheme

The formula (4.14) points out that, when evaluating the choice of a
prospectX, the random vector of interest isD = T−X. Let us assume that
the marginal distribution function ofDi, denoted byHi(ξ), is continuous
and strictly increasing inξ = 0 for i = 1, . . . , n, and putγ = (γ1, . . . , γn)
with

γi = Hi(0). (4.16)



3. MULTI-ATTRIBUTE TBA AND EXTENSIONS OF FUZZY MEASURES 59

Similarly to (4.11), let us furthermore denote byC(I)
FD

the connecting copula
of the marginal distribution corresponding to the coordinates subsetI ⊆ N .
Then (4.14) becomes

Ũm,F (γ) := EX (Um,F (X)) =
∑

I⊆N

Mm(I)C
(I)
FD

(γ)

=
∑

I⊆N

Mm(I)CFD
(γI). (4.17)

This formula highlights that, concerning the joint distribution ofD, we only
need to specify the vectorγ andCFD

= C
(N)
FD

, the connecting copula ofD.

FromCFD
, we can derive in fact the family of all marginal copulasC(I)

FD
by

means of the formula (4.11) above.

3. Multi-Attribute TBA and Extensions of Fuzzy Measures

Let a capacitym(·) over2N and an-dimensional copulaC : [0, 1]n →
[0, 1] be given. Fory ∈ [0, 1]n, we can consider theaggregation function

Vm,C(y) =
∑

I⊆N

Mm(I)C(yI), (4.18)

whereMm(·) denotes the Möbius transform ofm(·) andC(yI) is the con-
necting copula ofF (I), see (4.11). We remind

DEFINITION 4.4. An aggregation functionA : [0, 1]n → [0, 1] is a func-
tion non-decreasing in each component and satisfy the boundary conditions
A(0) = 0 andA(1) = 1.

(see e.g. [24]). By the usual identification of{0, 1}n with 2N (where
a subsetI ⊆ N is identified with its indicator function) one has, fory ∈
{0, 1}n and for any copulaC,

Vm,C(y) = m(I), (4.19)

whereI = {i|yi = 1}. Thus any aggregation function of the form (4.18)
can be seen as the extension to[0, 1]n of the capacitym(·) defined over
{0, 1}n. Extensions of a capacity over{0, 1}n have been of interest in the
fuzzy sets literature. Several properties of these extensions have been in par-
ticular studied by Kolesárová et al in [87]. In that paper the authors consider
extensions of the form (4.18), whereC is replaced by a more general ag-
gregation functionA. As corollaries of their general results, it follows that
- in the special cases whenA coincides with a copulaC - Vm,C is actually
an aggregation function, and special properties of it are analyzed therein.

It is in particular noticed that, whenC is theproduct copulaone obtains
theOwen extensionand, whenC is thecopula of comonotonicity, namely

C(u1, . . . , un) = min{u1, . . . , un}, (4.20)

then one obtains theLovász extension, or the Choquet integral ofy.



60 4. THE TARGET BASED MODEL FOR UTILITY

In the present framework, it is useful to give the aggregation function in
(4.18) the form of a Riemann-Stiltjes in integral over[0, 1]n as follows.

THEOREM 4.5. Letm be a capacity over2N andC ann-dimensional
copula. Fory ∈ [0, 1]n one has

Vm,C(y) =

∫

[0,1]n
m[Q(z,y)] dC(z) (4.21)

whereQ(z,y) is the set defined as in(4.4).

PROOF. Let I ⊆ N . By definition ofQ we have thatQ(z,y) = I holds
if and only if zi ≤ yi for i ∈ I andzi > yi for i /∈ I. Hence

m[Q(z,y)] =
∑

I⊆N

m(I)
∏

j∈I

1{zj≤yj}

∏

j /∈I

1{zj>yj}

=
∑

I⊆N

Mm(I)
∏

j∈I

1{zj≤yj}.

By integrating this function over[0, 1]n w.r.t. the probability measure asso-
ciated toC, one has

∫

[0,1]n
m[Q(z,y)] dC(z) =

∫

[0,1]n

∑

I⊆N

Mm(I)
∏

j∈I

1{zj≤yj} dC(z)

=
∑

I⊆N

Mm(I)

∫

[0,1]n

∏

j∈I

1{zj≤yj} dC(z)

=
∑

I⊆N

Mm(I)C(yI). (4.22)

�

REMARK 4.6. Theorem 4.5 shows in which senseVm,C can be seen as
a generalization of the Choquet integral. In factVm,C reduces to a Choquet
integral whenC is the copula of comonotonicity.

REMARK 4.7. Consider now the case whenCz is the probability dis-
tribution function degenerate overz ∈ [0, 1]n. In this case, as shown by
(4.21), Vm,Cz

reduces to

Vm,Cz
(y) = m[Q(z,y)]. (4.23)

One can notice that, for any copulaC, Vm,C
z
(y) = Vm,C(w), wherew ∈

{0, 1}n is defined by

wi =

{
1 if zi ≤ yi,
0 if zi > yi.

Notice also that Equation(4.23)is just a different way to read the principle
that led us to the Definition(4.1)of a TB multi-attribute utility function.
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As seen in the previous section, aggregation functions of the form (4.18)
emerge in a natural way in the frame of TBA utilities. In such aframe the
copulaC takes a specific meaning as the copula that describes stochastic
dependence properties of random vectors relevant in the decision problem
at hand.

Let us consider the expected utility, associated to a multi-attribute pros-
pectX, of the target-based utility with targetT. As shown by expression
(4.17), such an expected utility has the form (4.18), when itis seen as a
function of the quantitiesγi = Hi(0), i = 1, . . . , n, introduced in (4.16).
In this case,C has then the meaning of the connecting copula of the vector
D ≡ (T1 −X1, . . . , Tn −Xn).

Let furthermoreG1, . . . , Gn, the one-dimensional marginal distributions
of T1, . . . , Tn, be assumed continuous and strictly increasing and letC de-
note, this time, the connecting copula of(T1, . . . , Tn). Under these hy-
potheses,Vm,C(y1, . . . , yn) takes the meaning of an aggregation function
Ûm,C(y1, . . . , yn) of the marginal utilitiesy1, . . . , yn, as (4.13) shows.

We then see that both the functionsÛm,CT
(·) andŨm,CD

(·), defined over
[0, 1]n, have the same formal expression (4.18) and are thus two different
extensions of the capacitym. Starting from a same TBA utility function as
in (4.13), they get different economic meanings. Both of them are definite
integrals overRn, however. In particular, for̂Um,CT

andŨm,F we can obtain,
as a corollary of Theorem 4.5,

PROPOSITION4.8. The aggregation functionŝUm,CT
and Ũm,F are re-

spectively given by

Ûm,CT
(y) =

∫

[0,1]n
m[Q(z,y)] dCT (z). (4.24)

Ũm,F (γ) =

∫

[0,1]n
m[Q(z,γ)] dCD(z). (4.25)

PROOF. As to the integral corresponding tôUm,CT
(y), recall that, for

t ∈ Rn andx ∈Rn, we had setQ(t,x) := {i|ti ≤ xi}. By using formula
(4.15), whereF is the distribution function of the target vectorT, one has

Um,F (x) = ET(Um,T(x)) = ET[m(Q(T,x))] =

∫

Rn

m[Q(t,x)] dFT (t).

Notice now thatQ(t,x) andQ(z,y) are exactly the same set, since{i|ti ≤
xi} = {i|G−1(ti) ≤ G−1(xi)} = {i|zi ≤ yi}. Thus, recalling thatx =
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(G−1
1 (y1), . . . , G

−1
n (yn)), one has

Ûm,F (y)=

∫

Rn

m[Q(t, G−1
1 (y1), . . . , G

−1
n (yn))] dFT(t)

=

∫

In
m[Q(G−1

1 (z1), . . . , G
−1
n (zn), G

−1
1 (y1), . . . , G

−1
n (yn))] dC(z)

=

∫

In
m[Q(z,y)] dC(z) = Vm,C(y). (4.26)

A similar argument can be used to prove (4.25). �

REMARK 4.9. In the present frame, the Choquet integral admits the fol-
lowing economic interpretation. The choice of the copula ofcomonotonicity
stands for the choice of an-dimensional target, where all the random co-
ordinates are just deterministic transformations of one and a same random
variable. In this casêUm,CT

(y) reduces to a Choquet integral.

4. Reliability-structured TBA utilities

A very special class of capacitiesm(·) emerges as an immediate gener-
alization of the case in (4.7) and is of interest in the frame of TBA utilities.
For a brief introduction to the topic of reliability of systems we refer to
Appendix A and to [10].

DEFINITION 4.10 (See [20], Definition 4). A Target-Based utility func-
tion has a reliability structure when the capacitym(·) satisfies the condition

m(I) ∈ {0, 1} for all I ∈ N.

Any suchm(·) can then be seen as thestructure functionof a coherent
reliability systemS or, more generally, of asemi-coherentone (for further
details see [10] and [113]).

We concentrate our attention on the case when both the coordinates
(T1, . . . , Tn) of the target and the coordinates(X1, . . . , Xn) of the prospect
are non-negative random variables that can then be interpreted as the vec-
tors of the lifetimes of the components ofS. The above reliability-based
interpretation applies in a completely natural way, in thiscase.

Forξ ∈ Rn
+, we denote byτ(ξ) the lifetime ofS whenξ1, . . . , ξn are the

values taken by these lifetimes, respectively. Then, as pointed out in [97],
τ(·) is a lattice polynomial function. Then (see [15]) it can be written both
in adisjunctiveand in aconjunctiveform as a combination of the operators
∧ and∨ (see also [97], Proposition 2). When, in particular, the system
admittingm as its structure function is coherent, these forms can be based
on thepath setsand thecut setsof the system (see again [10] and [113]).

The random variableτ(T) is the lifetime ofS when the lifetimes of the
components coincide with the coordinates of the DM’s targetandτ(X) is
the lifetime of the system when the lifetimes of components coincide with
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the coordinates of a (random) prospectX. Under these positions, the utility
functionUm,F (x1, . . . , xn) can be read as a probability. More exactly

Um,F (x1, . . . , xn) = P(τ(T) ≤ τ(x)), (4.27)

and the expected utility in (4.14) becomes

E (Um,F (X)) = P(τ(T) ≤ τ(X)). (4.28)

We can then summarize as follows our conclusions. Consider areliability-
structured multi-attribute Target-Based utilityUm,F (x1, . . . , xn) with F the
joint distribution function ofn non-negative random variables and letxi ≥
0, i = 1, . . . , n. Denote furthermore by

Gτ(T)(ξ) := P(τ(T) ≤ ξ)

the marginal distribution function of the lifetimeτ(T). Then we have

PROPOSITION4.11.

Um,F (x1, . . . , xn) = Gτ(T)(τ(x)). (4.29)

This result shows that, in the reliability-structured case, a multi-attribute
Target-Based utilityUm,F reduces to a single-attribute Target-Based with a
prospectτ(X) and a targetτ(T). In particular the operatorτ is amean(see
e.g. [70]): for x > 0, τ(x, . . . , x) = x. Thus we obtain from (4.27) that the
probability distribution function ofτ(T) is given by

Gτ(T)(ξ) = Um,F (ξ, . . . , ξ). (4.30)

For a different but strictly related expression ofGτ(T)(ξ) see [47].

The formula (4.29) can be used in the two different directions: one can
analyze questions about systems’ reliability by using tools in the theory of
aggregation operators and of extensions of capacities or, viceversa, different
aspects of aggregation operators can be interpreted in terms of reliability
practice, when the capacities are{0, 1}-valued. In particular, the aggre-
gation functionÛm,C in (4.13) can be given special interpretations in the
present setting. From a technical point of view, in a reliability-structured
frame,G1, . . . , Gn are the one-dimensional marginal distributions of the
components’ lifetimesT1, . . . , Tn of a system andC denotes the connect-
ing copula ofT. By taking into account Equation (4.29) we obtain, for
y ∈ [0, 1]n,

Ûm,C(y) = Gτ(T)(τ(G
−1
1 (y1), . . . , G

−1
n (yn))). (4.31)

Notice that the operatorτ(x) appearing in (4.27) and (4.31) is only de-
termined by the capacitym, whereas the probability lawGτ(T) also depends
on the copulaC of F . In any casêUm,C(y) is an integral, w.r.t. the capacity
m, and the function to be integrated depends onC.

We also notice that, from a purely mathematical viewpoint,m can be
paired with any copulaC. Any capacitym, for instance, can be paired with
the comonotonicity copula to obtain thatÛm,C(y) is a Choquet Integral. We
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also notice in this respect that, in this case,Ûm,C(y) is a lattice polynomial
as well. From the economic point of view, on the contrary, imposing con-
ditions describing the attitudes towards risk by part of a Decision Maker,
creates some constraints on the choice of the pair(m,C). See also the brief
discussion in the next section.

4.1. Symmetric Reliability-Structured Cases.Here we consider spe-
cial conditions of invariance with respect to permutations. First we look at
the very restrictive, but important, case ofsymmetric,reliability-structured
capacities. The reliability systems admitting permutation-invariant struc-
ture functionsφ are those of the typek-out-of-n. More precisely, a system
is k-out-of-n when, forx ∈ {0, 1}n, its structure function has the form

φk:n(x1, . . . , xn) =

{
1 if

∑
i xi ≥ k,

0 if
∑

i xi < k.
(4.32)

This is then the case of a system which is able to work as far as at least
k of its components are working or, in other words, which fail at the instant
of the(n−k+1)−th failure among its components. In (4.32), the structure
function is seen as a function overN . Equivalently, whenφk:n is seen as a
set function, the valueφk:n(I) is 0 or 1, only depending on the cardinality
of I being larger or smaller thank.

PROPOSITION4.12. In the case of ak-out-of-n capacitym = φk:n, we
have

Um,F (x) =
∑

I⊆N,|I|≥k

(−1)|I|−k

(|I| − 1

|I| − k

)
P (T ≤ xI) .

PROOF. Recall Equation (4.12) and notice that, form = φk:n, the coef-
ficients of the Möbius transform are given by

Mm(I) =





(−1)|I|−k

(|I| − 1

|I| − k

)
|I| ≥ k,

0 otherwise.

�

It is clear that, in the case of ak-out-of-n systems, we have that

τ(ξ) = ξ(n−k+1),

whereξ(1), . . . , ξ(n) denote the order statistics ofξ1, . . . , ξn and the formula
(4.29) takes the special form

Uφk:n,F (x) = GT(n−k+1)
(x(n−k+1)).

From (4.30), we in particular obtain the probability law ofT(n−k+1):

GT(n−k+1)
(ξ) := P(T(n−k+1) ≤ ξ) = Uφk:n,F (ξ, . . . , ξ). (4.33)

A different remarkable case of reliability-structured TBAutilities is ob-
tained by imposing the condition of permutation-invariance over the joint
distributionF , rather than over the capacitym. This is the case when
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T1, . . . , Tn, the coordinates of the targetT, are assumed to be non-negative
exchangeablerandom variables, namely the joint distributionF (x1, . . . , xn)
is assumed invariant under permutations of its argumentsx1, . . . , xn. In this
case the concept ofsignatureof the system enters in the expression of the
utility functionUm,F .

Given the structure functionφ : {0, 1}n → {0, 1} of a semi-coherent
system, the signatures(φ) = s = (s1, . . . , sn) is a probability distribu-
tion overN = {1, . . . , n} (as a basic reference, see e.g. [118]). For
j = 1, . . . , n, consider the events

Ej :=
(
τ(T) = T(j)

)
,

with T1, . . . , Tn denoting again the lifetimes of the components andτ(T)
the lifetime of the system. WhenT1, . . . , Tn are such that

P (Ti′ = Ti′′ , for somei′, i′′) = 0, (4.34)

E1, . . . , En are exhaustive and pair-wise disjoint, and we have
n∑

j=1

P(Ej) = 1.

The componentss1, . . . , sn of the signature are defined assj = P(Ej).
It is easy to prove that, whenT1, . . . , Tn are exchangeable, the following
properties hold:

a): s(φ) does not depend on the joint probability distribution of the
targetsT1, . . . , Tn;

b): Forξ > 0 andj = 1, . . . , n, the event(T(j) ≤ ξ) is stochastically
independent ofE1, . . . , En.

By the formula of total probabilities we then can write, for any ξ > 0,

P(τ(T) ≤ ξ) =

n∑

j=1

P(Ej)P(τ(T) ≤ ξ|Ej)

=
n∑

j=1

P(τ(T) = T(j))P(τ(T) ≤ ξ|τ(T) = T(j))

=

n∑

j=1

s
(φ)
j P(T(j) ≤ ξ). (4.35)

By the propertya) the signatures(φ) is a combinatorial invariant of the
system. See in particular [98] for the relations between the signatures(φ)

and the “reliability function” of the system in case of i.i.d. components. For
a discussion about the relations betweens(φ) and symmetry properties see
also [132]).

In view of (4.35) the signatures(φ) has a role in the representation of the
utility functionUφ,F whenF is exchangeable. By (4.30) we obtain



66 4. THE TARGET BASED MODEL FOR UTILITY

PROPOSITION4.13. LetF be an exchangeable joint distribution func-
tion overRn

+, satisfying the condition(4.34). For any reliability-structured
capacitym : 2N → {0, 1} and forx ∈ Rn

+, one has

Um,F (x) =
n∑

j=1

s
(m)
j P(T(j) ≤ τ(x)). (4.36)

The termss(m)
j and τ(x) in (4.36) are determined bym, whereasF

determines the probability law ofT(j), for j = 1, . . . , n. The formula (4.35)
is a special case of (4.36): forx = (ξ, . . . , ξ) we obtain once more

Gτ(T)(ξ) = Um,F (ξ, . . . , ξ) =

n∑

j=1

s
(m)
j P(T(j) ≤ ξ)

=

n∑

j=1

s
(m)
j Uφk:n,F (ξ, . . . , ξ).

5. TBA utilities and attitudes toward goods and risk

Here we think of a Decision Maker who describes her/his attitudes to-
wardsn goodsG1, . . . ,Gn through a capacitym and defines her/his utility
by choosing a targetT with joint distribution functionF . ThusUm,F (x)
evaluates the satisfaction of the DM in receiving the quantity x1 for the
good G1, x2 for the goodG2 and so on. Different properties with eco-
nomic meaning of a multi-attribute utility function can take a special form
in the TBA case and in the reliability-structured TBA case, more in partic-
ular. One should analyze how can different properties be influenced by the
choice of the parametersm, F or, in other terms, which constraints on the
pair (m,F ) are induced by fixing the attitudes of the DM. In this Section,
we concentrate our attention on the basic concepts of supermodularity and
submodularity (see [139, 140]) and present some related comments.

For a functionU : Rn → R and forx′,x′′ ∈ Rn, set

νU (x′,x′′) := U(x′ ∨ x′′) + U(x′ ∧ x′′)− U(x′)− U(x′′). (4.37)

DEFINITION 4.14. The functionU is supermodular whenνU (x′,x′′) ≥
0 for all x′,x′′ ∈ Rn, and submodular whenνU (x′,x′′) ≤ 0. If U is both
supermodular and submodular, then it is called modular.

Under the condition that the functionU is twice differentiable, an equiv-
alent formulation in terms of the second order derivatives of U can be given.
In particular the condition of supermodularity is given by

∂2U(x)/∂xi∂xj ≥ 0 (4.38)

for all x ∈ Rn andi 6= j, i, j = 1, . . . , n.
For a utility function, it is well-known that supermodularity describes

the case ofcomplementarygoods (see [50, 119, 140]), while submodularity
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is associated tosubstitutablegoods. Two or more goods are calledcom-
plementaryif “they have little or no value by themselves, but they are more
valuable when combined together”, while they are calledsubstitutablewhen
“each of them satisfies the same need of the DM that the other good fulfills”.
In these settings we can say that a collection of goods are complements (and
each pair is said to be complementary) if they have a real-valued supermod-
ular utility function (Bulow et al. [23] use the termstrategic complements
to describe any twoactivitiesi andj for which formula (4.38) holds).

As a related interpretation, the properties ofsupermodularity, submod-
ularity, andmodularityof a multi-attribute utilityU respectively describe,
in an analytic language, the properties ofcorrelation affinity, correlation
aversion, andcorrelation neutrality(see e.g. [139] and [140]). In particular
the concept of submodularity gives rise to a specific definition of greater
correlationbetween two joint probability distributions (see Definition 4 in
[53]).

Let us now come to TB utilities and to related problems of prospects
choosing. We are essentially interested in decision problems where the fol-
lowing objects are considered to be fixed: the capacitym, the marginal dis-
tributionsG1, . . . , Gn of the targets’ componentsT1, . . . , Tn, and the mar-
ginal distributionsGX1, . . . , GXn

for the components of the prospect. Since
we have assumed stochastic independence betweenX andT, the marginal
probability distribution functionHi(·) of Di = Ti −Xi is suitably obtained
by convolution fromGi andGXi

. Then, at least in principle, the vector
γ = (γ1, . . . , γn) is known, whereγi = Hi(0). The DM is supposed to
declare the copulaC of the target vectorT and, on this basis, to select a
copula for the random prospectX. The choice of a prospect then amounts
to the choice of a copulaCD for the vectorD = T−X.

For a TB utility functionU , the expression in (4.37) becomes

νU (x′,x′′) =
∑

I⊆N

Mm(I)ν
F (x′

I
,x′′

I
) (4.39)

for any pair of vectorsx′,x′′ ∈ Rn. The notationx′
I
,x′′

I
is as used in (4.9).

Then the conditions of supermodularity, or submodularity,become
∑

I⊆N

Mm(I)ν
F (x′

I
,x′′

I
) R 0. (4.40)

Let the DM manifest correlation aversion or correlation affinity. Namely
she/he wants to use a submodular, or supermodular, utility function. Of
course correlation aversion/affinity concerns attitudes toward dependence
among the coordinates of the prospect. On the other hand, forfixedm, the
properties of supermodularity and submodularity are expressed through the
choice of the connecting copulaC for the targetT. Such properties are
generally determined by the interplay betweenm andF . In conclusion, we
are interested in conditions on the pair(m,F ) for which condition (4.40)
holds. In this direction we now discuss some special cases.
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First of all we consider the case in which the capacitym is totally mono-
tone. We remind that a capacitym is said totally monotone if its Möbius
transformM(I) is positive for allI ⊆ N (see [66]). Since all the multi-
variate distribution functions are supermodular, we immediately see from
(4.40) that ifm is totally monotone, the utility functionUm,F is supermod-
ular whatever the distribution functionF of the target is. So, in this special
case, the condition of supermodularity is completely determined by the ca-
pacitym.

A further interesting case is met when the capacitym is additive: in this
situation the interplay among variables has no effect on theoverall amount
of the utilityUm,F . In fact, the formula forUm,F reduces to

Um,F (x) =

n∑

i=1

miP(Ti ≤ xi),

withm1+ . . .+mn = 1. The expression in the r.h.s. represents an Ordered
Weighted Average (see [66]) of the marginal distributions of the targetsTi.
It is immediate to notice thatUm,F (x) is modular for any choice ofF . Fur-
thermore it does not depend on the copulaC of F . We notice that, in this
case, the expected value of the utilityE[Um,F (X)] (see formulas (4.14) and
(4.17)) for a fixed prospectX becomes̃Um,F (γ) =

∑n
i=1miγi.

Another likely situation is that in which the DM only considers interac-
tions among small groups of goods, sayk at most. In other words the DM is
not interested in how they behave when considered in groups of cardinality
larger thank. This condition leads to the choice of ak−additive capacity
(see e.g. [65]). More in details

DEFINITION 4.15. A capacitym is saidk-additive if the coefficients of
its Möbius transformMm satisfy the conditionMm(I) = 0 for all I such
that |I| > k, andMm(I) 6= 0 for at least one elementI with |I| = k.

The assumption ofk-additivity generally simplifies the study of the util-
ity function. Under this hypothesis condition (4.40) reduces to

νU (x′,x′′) =
∑

I:|I|=2,...,k

Mm(I)ν
F (xI

′,xI
′′) R 0.

We notice, in any case, that the possible validity of the conditions of sub-
modularity and supermodularity generally depends on both the capacitym
and the distributionF . In particular, in the casek = 2, a sufficient condi-
tion for supermodularity (submodularity) readsMm({i, j}) ≥ 0 (≤ 0), for
all i 6= j.

Also of interest is the special case of reliability-structured utility func-
tions, that we have considered in the previous section. First we notice that
m being{0, 1}-valued has a direct economic interpretation: like abinary
system, that can beup or downaccording to the current state (up or down)
of each of itsn components, so the DM is completelysatisfiedor com-
pletelyunhappyaccording to which is the subset of targets that have been
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achieved. Cases where such utilities can be of economic relevance are dis-
cussed in [20]. Also, the special forms of TB utilities withm describing
series systems or parallel systems are discussed there: these are the cases
whenm is the minimal or the maximal capacity, respectively, and corre-
spond to the two extreme cases ofperfectcomplementarity andperfectsub-
stitutability. In such cases we encounter supermodularityand submodular-
ity, respectively, independently of the form ofF . In all the other cases the
condition of supermodularity, or submodularity respectively, reads

Gτ(T )(τ(x
′ ∨ x′′)) +Gτ(T )(τ(x

′ ∧ x′′))

−Gτ(T )(τ(x
′))−Gτ(T )(τ(x

′′)) R 0. (4.41)

The validity of such a condition depends on the behavior of both the capac-
ity m and the distribution functionF of the targets. Notice that, whenT is
exchangeable,Gτ(T ) is of the form (4.35), then condition (4.41) becomes

n∑

j=1

s
(φ)
j ·

[
G(j)(τ(x

′ ∨ x′′)) +G(j)(τ(x
′ ∧ x′′))

−G(j)(τ(x
′))−G(j)(τ(x

′′))
]
R 0,

whereG(j)(x) = P(T(j) ≤ x).
Still concerning the properties of supermodularity/submodularity, a very

clear situation is met in the special casen = 2. We first notice that, in this
case, formula (4.12) becomes

Um,F (x1, x2) =M1 P(T1 ≤ x1) +M2 P(T2 ≤ x2)

+M1,2 P(T1 ≤ x1, T2 ≤ x2), (4.42)

where we have used, form andMm the shorter notationm1 = m({1}),
M1 =Mm({1}), and so on. As a strongly simplifying feature of the present
case, the utility functionUm,F in (4.42) is, in any case, supermodular or
submodular. In fact condition (4.39) reads

νU(x′,x′′) =M1,2 ν
F (x′,x′′).

Hence, since any joint distribution functionF is supermodular, submodu-
larity and supermodularity are respectively equivalent tothe conditions

M1,2 ≤ 0 and M1,2 ≥ 0, (4.43)

or, in terms ofm,

m1 +m2 ≥ 1 and m1 +m2 ≤ 1. (4.44)

Focus now attention, in particular, to the cases ofperfect complementar-
ity andperfect substitutability. The first one is equivalent to the condition
m1 = m2 = 0 or, equivalently,M1,2 = 1, and describes the maximal possi-
ble affinity to correlation of the DM. Here the expression of the utilityUm,F

reduces to
Um,F (x1, x2) = F (x1, x2), (4.45)
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which is exactly the joint distribution function of the two-dimensional tar-
get. In the opposite case, the utility reduces toUm,F (x1, x2) = G1(x1) +

G2(x2) − F (x1, x2) or, analogously,̂Um,C(y1, y2) = C∗(y1, y2), whereC∗

stands for the dual of the copulaC (for further details see [107]). All other
cases can be grouped mainly into two sets, the strictly supermodular ones,
with m1 + m2 < 1, and the submodular ones, withm1 + m2 > 1. Fi-
nally we notice a region of neutrality, along the diagonal corresponding to
m1 + m2 = 1: this is the case of additivity of the capacitym, already
discussed above. All these cases are summarized in Figure 4.2.

b

b

0 1

1

m1

m2

m1 = m2 = 0
Perfect Complementarity

m1 = m2 = 1
Perfect Substitutability

m1 +m2 < 1
Complementarity

Correlation Affinity

m1 +m2 > 1
Substitutability

Correlation Aversion

m1 +m2 = 1
Correlation Neutrality

FIGURE 4.2. Scheme for complementarity and substitutability
among two goods depending on their utility parametersm1,m2

We already noticed that, w.r.t. the capacitym, the aggregation function
Ûm,C is an integral ofm, depending onC, the connecting copula ofF . For
a fixedm, there is no restriction in the choice ofC, from a purely mathe-
matical point of view. We can see, on the contrary, that certain constraints
on the pair(m,C) can arise from an economic point of view, depending on
the attitudes of our Decision Maker. In other words, the typeof integral of
m, that the DM is led to consider as an aggregationÛm,C , depends onm
itself once the attitudes of the DM have been fixed. As a simpleexample,
let us consider the case of perfect complementarity in (4.45). In such case
Ûm,C becomesÛm,C(y1, y2) = C(y1, y2). Thus the aggregation function
Ûm,C will grow with the growth of the copulaC. This entails that a DM,
who will manifest risk aversion besides correlation affinity, will choose the
target which exhibits the greatest possible copula. Thus the most profitable
choice is the maximal copula,C(u, v) = u∧ v, namely the one of comono-
tonicity. Similar arguments can be developed for the study of the extreme
opposite case,m1 = m2 = 1 (M1,2 = −1).

6. Summary and concluding remarks

By introducing the target-based approach, Bordley and Li Calzi in [19]
and Castagnoli and Li Calzi in [28] had in particular developed a new way
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to look at utility functions, and related extensions, in thefield of decision
problems under risk. In those papers, emphasis was given to the single-
attribute case where, practically, there is no loss of generality in considering
target-based utilities. As to the multi-attribute case, a treatment proposed a
few years later (in [20, 141, 142]) had further added some new ideas to the
field. In fact, the proposed extension is something different from the single-
attribute definition. Actually, a direct generalization ofthe latter would lead
one to consider much too special and restrictive forms of utilities, as we
have remarked in the Introduction.

A principle of individual choice, clearly enucleated in [20], is at the
basis of the given definition of multi-attribute target-based utilities. This
principle is indeed quite natural and is related to the evaluation, by part of
a Decision Maker, about the relative importance attributedto any possible
subset of achieved targets. It emerges then that such an evaluation depends
on the individual propensity toward the possible “coalitions” of attributes
and that it is related with the concept of capacity.

Starting from the latter observation, we have formally considered a
multi-attribute target-based utility (Definition 4.1) as apair (m,F ), where
m is a capacity over2N = {0, 1}n andF is a probability distribution func-
tion overRn. On this basis, we have pointed out that the theory of multi-
attribute target-based utilities can hinge on a formal apparatus, provided by
the field of fuzzy measures, extensions of fuzzy measures, and fuzzy, or
universal, integrals. On the other hand, multi-attribute target-based utili-
ties give rise to applications of the concepts and of resultsin this field. In
particular, under special conditions, the arguments and results presented in
[87] can have an interpretation useful to an heuristic view of the differences
among various fuzzy integrals. As we have briefly recalled inSection 3,
operators of the form

Vm,A(y) =
∑

I⊆N

Mm(I)A(yI) (4.46)

have been analyzed in [87] as extensions of capacitiesm over2N . Generally
speaking, the functionA appearing in (4.46) is an aggregation function. In
our frame, interest is concentrated on the special case whenA is replaced
by ann-dimensional copulaC. The effect of such a particular condition
is two-fold: on the one hand, it makesVm,A = Vm,C to have, itself, the
properties of an aggregation function. On the other hand, itgivesVm,C the
meaning of an aggregation of marginal utilities; the special form of aggre-
gation depends on the special type of stochastic dependencethat is assumed
among the coordinates of the target. An extreme condition ofdependence
with a special decisional meaning of its own, namely positive comonotonic-
ity, lets such an aggregation coincide with a Choquet integral. We thus see
the aggregation functionŝUm,C as a natural class of operators generalizing
such integrals.
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Concerning Choquet integrals, it is well known that they have been very
widely studied and discussed in the past literature concerning utilities and
decision under risk. In particular, in [30] and [124], it is shown how this
concept allows one to build a quite general model of decisionmaking under
uncertainty, generalizing the Expected Utility model, in the frame of single-
attribute decisions. We point out that its role in the present study appears
under a rather different form: it is not used in fact to explain a general
principle for decisions under uncertainty. It emerges as anextremely special
case, just in the frame of Expected Utility. However its meaning in the TB
Approach is peculiar of the multi-attribute case.

In multi-attribute decision problems under risk, the profile of a Decision
Maker can be specified by taking into account different typesof attitudes
and forms of behavior, such as risk-aversion (or risk-affinity), correlation-
aversion (or correlation-affinity), cross-prudence, etc.Generally these con-
ditions are described in terms of qualitative properties ofthe utility func-
tions (see e.g. [45, 46, 51]).

Let us come to the specific case of multi-attribute utility functions, that
we had identified with the pairs(m,F ). As a challenging program for fu-
ture research, one should detail how the mentioned qualitative properties
of utility functions determine (or are determined by) the form of m andF
and reciprocal relations between them. For a DM with given attitudes to-
ward risk, the choice ofF - and then, in particular, of the copulaC - is
not completely free, but is influenced by the form ofm itself. In the above
Section 5, we have considered some significant special casesand sketched
some conclusion in this direction. A more general analysis may result from
future achievements about qualitative descriptions of target-based utilities.

Further research suggested by our work also concerns specific aspects
of multivariate copulas. As shown by formula (4.17), the analysis of the
present approach would benefit from new results concerning the connecting
copula of the vectorD obtained as the difference between the vectorsT and
X. Here we have assumed stochastic independence.

More complex arguments would be involved in the cases when the pos-
sibility of some correlation between the vectorsT andX is admitted. Some
specific aspects in this direction, for the special casen = 1, have been dealt
with in [38].



CHAPTER 5

Stochastic Precedence, Stochastic Orderings and
connections to Utility Theory

The concept ofstochastic precedencebetween two real-valued random
variables has often emerged in different applied frameworks. It finds appli-
cations in various statistical contexts, like testing and sampling, reliability
modeling, tests for distributional equality versus various alternatives (see,
for example, [5, 18, 119]). Furthermore, this concept has been studied in
the probabilistic context of Markov models for waiting times to occurrences
of words in random sampling of letters from an alphabet (for references, see
[40, 41, 42, 43]). Further applications can also arise in the fields of reliabil-
ity and in the comparison of pool obtained by two opposite coalitions.

Motivations for our study arise, in particular, from the frame of Target-
Based Approach in decisions under risk. In the previous Chapter we de-
veloped this model for multi-dimensional attributes, under the assumption
of stochastic independence between Targets and Prospects.In this Chapter
our analysis concerns the one-dimensional case, but with the assumption of
stochastic dependence.

For our purposes, we introduce a slightly more general, and completely
natural, concept of stochastic precedence and analyze its relations with the
usual notions of stochastic ordering. Such a study leads us to introducing
some special classes of bivariate copulas, namely the classesLγ. Proper-
ties of these classes are useful to describe the behavior of the Target-Based
model under changes in the connecting copulas of the random variables, es-
pecially regarding their properties of symmetry and dependence. Examples
are provided in this direction.

More precisely the structure of the Chapter is as follows. InSection
1 we introduce the concept ofgeneralized stochastic precedenceand the
classesLγ. In Section 2, we analyze the main aspects of such classes and
present a related characterization. Connections to measures of asymmetry
of copulas are analyzed in Section 3, where we introduce a weak measure of
non-exchangeability for the copulas inLγ . Some further basic properties of
this class are detailed in Section 4, where a few examples arealso presented.
Finally, in Section 5, we trace connections to Target-Basedutilities in the
case of stochastic dependence between targets and prospects.

73
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1. Basic Definitions

LetX1, X2 be two real random variables defined on a same probability
space(Ω,F ,P). We will denote byF the joint distribution function and
by G1, G2 their marginal distribution functions, respectively. Forthe sake
of notational simplicity, we will initially concentrate our attention on the
case whenG1, G2 belong to the classG of all the probability distribution
functions on the real line, that are continuous and strictlyincreasing in the
domain where they are positive and smaller than one. As we shall see later,
we can also consider more general cases, but the present restriction allows
us to simplify the formulation and the proofs of our results.In order to
account for some cases of interest withP(X1 = X2) > 0, we will not
assume that the distribution functionF is absolutely continuous.

The random variableX1 is said tostochastically precedeX2 if P(X1 ≤
X2) ≥ 1/2, writtenX1 �sp X2. The interest of this concept for applications
has been pointed out several times in the literature (see in particular [6],
[18] and [105]). We draw the reader’s attention to the fact that stochastic
precedence does not define a stochastic order in that, for instance, it is not
transitive. However it can be considered in some cases as an interesting
condition, possibly alternative to the usualstochastic orderingX1 �st X2,
defined by the inequalityG1(t) ≥ G2(t), ∀t ∈ R, see [127].

WhenX1, X2 are independent the implicationX1 �st X2 ⇒ X1 �sp

X2 holds (see [6]). It is also easy to find several other examples of bi-
variate probability models where the same implication holds. For instance
the conditionX1 �st X2 even entailsP(X1 ≤ X2) = 1 whenX1, X2 are
comonotonic(see e.g. [107]), i.e. whenP(X2 = G−1

2 (G1(X1))) = 1. On
the other hand, cases of stochastic dependence can be found where the im-
plicationX1 �st X2 ⇒ X1 �sp X2 fails. A couple of examples will be
presented in Section 4. See also Proposition 5.10. On the other hand the
frame of words’ occurrences produces, in a natural way, examples in the
same direction, see e.g. [40].

In this framework we replace the notionX1 �sp X2 with the generalized
concept defined as follows

DEFINITION 5.1 (Generalized Stochastic Precedence).For any given
γ ∈ [0, 1], we say thatX1 stochastically precedesX2 at levelγ if the con-
ditionP(X1 ≤ X2) ≥ γ holds. This will be writtenX1 �(γ)

sp X2.

Let C denote the class of all bivariate copulas (see also [76, 107]). Sev-
eral arguments along the Chapter will be based on the conceptof bivariate
copula. We recall that the pair of random variablesX1, X2, with distribu-
tionsG1, G2, respectively, admitsC ∈ C as itsconnectingcopula whenever
its joint distribution function is given by

F (x1, x2) = C(G1(x1), G2(x2)). (5.1)
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It is well known, by Sklar’s Theorem 2.4 that the connecting copula is
unique whenG1 andG2 are continuous. We will use the notation

A := {(x1, x2) ∈ R2 : x1 ≤ x2}, (5.2)

so that we write

P(X1 ≤ X2) =

∫

A

dF (x1, x2) =

∫

R2

1A(x1, x2) dF (x1, x2). (5.3)

For givenG1, G2 ∈ G andC ∈ C we also set

η(C,G1, G2) := P(X1 ≤ X2), (5.4)

whereX1 andX2 are random variables with distributionsG1, G2 respec-
tively, and connecting copulaC. Thus the conditionX1 �(γ)

sp X2 can also
be writtenη(C,G1, G2) ≥ γ.

Suppose now thatX1, X2 satisfy the conditionX1 �st X2. As a main
purpose of this Chapter, we give a lower bound for the probability P(X1 ≤
X2) in terms of the stochastic dependence betweenX1 andX2 or, more pre-
cisely, in terms of conditions on the integral

∫
A∩[0,1]2

dC. More specifically
we will analyze different aspects of the special classes of bivariate copulas,
defined as follows.

DEFINITION 5.2. For γ ∈ [0, 1], we denote byLγ the class of all copu-
lasC ∈ C such that

η(C,G1, G2) ≥ γ (5.5)

for all G1, G2 ∈ G withG1 �st G2.

Concerning the role of the concept of copula in our study, we point out
the following simple facts. Consider the random variablesX ′

1 = φ(X1)
andX ′

2 = φ(X2) whereφ : R → R is a strictly increasing function. Thus
X ′

1 �st X
′
2 if and only ifX1 �st X2 andX ′

1 �(γ)
sp X ′

2 if and only ifX1 �(γ)
sp

X2. At the same time the pairX ′
1, X

′
2 also admits the same connecting

copulaC.

2. A characterization of the classLγ

This Section will be devoted to providing a characterization of the class
Lγ (see Theorem 5.7 and 5.8) along with related discussions. Westart by
detailing a few basic properties of the quantitiesη(C,G1, G2), forG1, G2 ∈
G andC ∈ C. In view of the conditionG1, G2 ∈ G we can use the change
of variablesu = G1(x1), v = G2(x2). Thus we can rewrite the integral in
(5.3) according to the following

PROPOSITION5.3. For givenG1, G2 ∈ G andC ∈ C, one has

η(C,G1, G2) =

∫

[0,1]2
1A(G

−1
1 (u), G−1

2 (v)) dC(u, v). (5.6)
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The use of the next Proposition is two-fold: it will be usefulboth for
characterizing the classLγ and establishing lower and upper bounds on the
quantityη(C,G1, G2).

PROPOSITION5.4. LetG1, G
′
1, G2, G

′
2 ∈ G. Then

G2 �st G
′
2 ⇒ η(C,G1, G2) ≤ η(C,G1, G

′
2);

G1 �st G
′
1 ⇒ η(C,G1, G2) ≥ η(C,G′

1, G2).

PROOF. We prove only the first relation of Proposition 5.4, since the
proof for the second one is analogous. By hypothesis, and sinceG1, G

′
2 ∈ G

for eachx ∈ (0, 1), one has

G−1
2 (x) ≤ G′−1

2 (x).

Therefore

(G−1
1 (x), G−1

2 (x)) ∈ A⇒ (G−1
1 (x), G′−1

2 (x)) ∈ A.

Hence, the proof can be concluded by recalling (5.6). �

From Proposition 5.4, in particular we get

η(C,G,G) ≤ η(C,G′, G) and η(C,G,G) ≤ η(C,G,G′′), (5.7)

for any choice ofG,G′, G′′ ∈ G such thatG′ �st G �st G
′′.

A basic fact in the analysis of the classesLγ is that the quantities of the
form η(C,G,G) only depend on the copulaC. More formally we state the
following result.

PROPOSITION 5.5. For any pair of distribution functionsG′, G′′ ∈ G,
one has

η(C,G′, G′) = η(C,G′′, G′′). (5.8)

PROOF. Recalling (5.6) one obtains∫

I2
1A(G

′−1(u), G′−1(v)) dC(u, v) =

∫

I2
1A(G

′′−1(u), G′′−1(v)) dC(u, v)

because1A(G
′−1(u), G′−1(v)) = 1A(G

′′−1(u), G′′−1(v)) = 1A(u, v), so
equality in (5.8) is proved. �

As a consequence of Proposition 5.5 we can introduce the symbol

η(C) := η(C,G,G), (5.9)

and, by lettingG1 = G2 = G in (5.6), write

η(C) =

∫

A∩[0,1]2
dC (5.10)

for G ∈ G. From Proposition 5.4 and from the inequalities (5.7), we obtain

PROPOSITION5.6. For G1, G2 ∈ G the following implication holds

G1 �st G2 ⇒ η(C) ≤ η(C,G1, G2).
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We then see that the quantityη(C) characterizes the classLγ, 0 ≤ γ ≤
1, in fact we can state the following

THEOREM 5.7. C ∈ Lγ if and only if η(C) ≥ γ.

We thus have
Lγ = {C ∈ C : η(C) ≥ γ} (5.11)

and we can also write

η(C) = inf
G1,G2∈G

{η(C,G1, G2) : G1 �st G2}. (5.12)

In other words the infimum in formula (5.12) is a minimum and itis attained
whenG1 = G2. We notice furthermore that the definition ofη(C,G1, G2)
can be extended to the case whenG1, G2 ∈ D(R), the space of distribution
functions onR. The classG has however a special role in the present setting,
as shown in the following result.

THEOREM 5.8. Let C ∈ C andG,H ∈ D(R) with G �st H. Then
η(C,G,H) ≥ η(C).

PROOF. Consider two sequences(Gn : n ∈ N), (Hn : n ∈ N) such that
Gn, Hn ∈ G andGn

w→ G, Hn
w→ H. Applying Theorem 2 in [125], we

obtain thatC(Gn, Hn)
w→ C(G,H).

Consider now the new sequence(H̃n : n ∈ N), where we have posed
H̃n(x) := min{Gn(x), Hn(x)}. Notice thatH̃n ∈ G, moreoverGn �st H̃n

andH̃n
w→ H. This impliesC(Gn, H̃n)

w→ C(G,H).
Now, by using the standard characterization of weak convergence on

separable spaces (see [14] p. 67 Theorem 6.3),

lim sup
n→∞

∫

B

dF̃n ≤
∫

B

dF,

for any closed setB ∈ R2, whereF = C(G,H) and F̃n = C(Gn, H̃n).
Taking the closed setA defined in (5.2) one has

η(C) ≤ lim sup
n→∞

∫

A

dF̃n ≤
∫

A

dF = η(C,G,H). (5.13)

�

REMARK 5.9. Theorem 5.8 shows that the minimum ofη(C,G,H), for
G,H ∈ D(R), is attained at(C,G,G), for anyG ∈ G ⊂ D(R). This
result allows us to replace the classG with D(R) in the expression ofLγ

given in (5.12). We notice furthermore that one can haveη(C,G′, G′) 6=
η(C,G′′, G′′) whenG′, G′′ are inD(R).

Concerning the classesLγ, we also define

Bγ := {C ∈ C | η(C) = γ}, (5.14)
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so that
Lγ =

⋃

γ′≥γ

Bγ′ .

We now show that the classesBγ , γ ∈ [0, 1], are all non empty. Several
natural examples might be produced for this purpose. We fix attention on
a simple example built in terms of the random variablesX1, X

(γ)
2 defined

as follows. On the probability space([0, 1],B[0, 1], λ), whereλ denotes the
Lebesgue measure, we takeX1(ω) = ω, and

X
(γ)
2 (ω) =

{
ω + 1− γ if ω ∈ [0, γ],
ω − γ if ω ∈ (γ, 1].

(5.15)

As it happens forX1, also the distribution ofX(γ)
2 is uniform in[0, 1] for

anyγ ∈ [0, 1] and the connecting copula ofX1, X
(γ)
2 , that is then uniquely

determined, will be denoted byCγ.

PROPOSITION5.10. For anyγ ∈ (0, 1], one has

(i) Cγ ∈ Bγ .
(ii) Cγ(u, v) = min{u, v,max{u− γ, 0}+max{v + γ − 1, 0}}.

PROOF. (i) First we notice thatP(X1 ≤ X
(γ)
2 ) = γ. In fact

P(X1 ≤ X
(γ)
2 ) = P(X1 ≤ X1 + 1− γ,X1 ≤ γ)

+ P(X1 ≤ X1 − γ,X1 > γ) = γ.

Whence,η(Cγ) = P(X1 ≤ X
(γ)
2 ) = γ, since both the distributions of

X1, X
(γ)
2 belong toG.

(ii) For x1, x2 ∈ [0, 1] we can write

F
X1,X

(γ)
2
(x1, x2) := P(X1 ≤ x1, X

(γ)
2 ≤ x2)

= P(X1 ≤ x1, X1 + 1− γ ≤ x2, X1 ≤ γ)

+ P(X1 ≤ x1, X1 ≤ x2 + γ, X1 > γ)

= P(X1 ≤ min{x1, x2 + γ − 1, γ}) + P(γ < X1 ≤ min{x1, x2 + γ})
= max{min{x1, x2 + γ − 1, γ}, 0}+max{min{x1, x2 + γ} − γ, 0}
= min{x1, x2,max{x1 − γ, 0}+max{x2 + γ − 1, 0}}.

Since both the marginal distributions ofX1 andX(γ)
2 are uniform, it follows

that

Cγ(u, v) = min{u, v,max{u− γ, 0}+max{v + γ − 1, 0}}.
�

The copulasCγ have also been considered for different purposes in the
literature, see e.g. [108] and [130]. We point out that the identityη(Cγ) = γ
(for γ ∈ (0, 1]) could also have been obtained directly from formula (5.10).
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In this special case the computation ofP(X1 ≤ X2) is however straightfor-
ward.

As an immediate consequence of Proposition 5.10 we have thatLγ′ is
strictly contained inLγ for any0 ≤ γ < γ′ ≤ 1. We notice furthermore
thatL0 = C andL1 = {C ∈ C :

∫
A∩[0,1]2

dC = 1} 6= ∅.
Graphs ofCγ for different values ofγ are provided in Figure 5.1.

FIGURE 5.1. Copulas from the familyCγ with parameterγ =
0.3, 0.5, 0.8 respectively

3. A weak measure of non-exchangeability

For what follows it is now convenient also to consider the quantities
ξ(C,G1, G2) andξ(C) defined as follows:

ξ(C,G1, G2) := P(X1 = X2), (5.16)

ξ(C) := ξ(C,G,G), (5.17)

whereX1 andX2 are random variables with distributionsG1, G2 ∈ G re-
spectively and connecting copulaC.

For a given bivariate model we have considered so far the quantities
η(C) with C denoting the connecting copula. In what follows we point out
the relations amongη(C), η(Ĉ), η(Ct) whereĈ andCt denote thesurvival
copulaand thetransposed copula, respectively. The transposed copulaCt

is defined by
Ct(u, v) := C(v, u) (5.18)

so that ifC is the connecting copula of the pair(X1, X2), thenCt is the cop-
ula of the pair(X2, X1). Whence, ifX1 andX2 have the same distribution
G ∈ G, then

η(Ct) = P(X2 ≤ X1).

On the other hand the notion of survival copula of the pair(X1, X2),
which comes out as natural when considering pairs of non-negative random
variables, is defined by the equation

FX1,X2(x1, x2) = Ĉ
[
G1(x1), G2(x2)

]
, (5.19)

with G1 andG2 respectively denoting the marginal survival functions:

G1(x1) = P(X1 > x1), G2(x2) = P(X2 > x2).
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The relationship between the survival copulaĈ of (X1, X2) and the
connecting copulaC is given by (see [107])

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v). (5.20)

The following result shows the relations tying the different quantities
η(C), η(Ĉ), η(Ct).

PROPOSITION5.11. LetC ∈ C. The following relation holds:

η(Ĉ) = η(Ct) = 1− η(C) + ξ(C). (5.21)

PROOF. By the definition ofη applied toĈ one has

η(Ĉ) =

∫

I2
1A(u, v) dĈ(u, v) =

∫

I2
1A(1− u′, 1− v′) dC(u′, v′)

= 1−
∫

I2
1A\∂A(u

′, v′) dC(u′, v′) = 1− η(C) + ξ(C).

Once again, by definition ofη, we have

η(Ct) =

∫

I2
1A(u, v) dC

t(u, v) =

∫

I2
1A(v

′, u′) dC(u′, v′)

= 1−
∫

I2
1A\∂A(u

′, v′) dC(u′, v′) = 1− η(C) + ξ(C),

and finallyη(Ct) = η(Ĉ). �

Fix nowG ∈ G and letX1, X2 be random variables with a symmetric
connecting copulaC and both marginal distribution functions coinciding
with G. Then their joint distribution functionFX1,X2 is exchangeable and
P(X1 < X2) = P(X2 < X1) = (1− ξ(C))/2. Thus

η(C) = P(X1 < X2) + ξ(C) =
1 + ξ(C)

2
≥ 1

2
. (5.22)

We haveη(C) = 1/2 whenξ(C) = 2η(C)− 1 = 0. As an immediate con-
sequence of Theorem 5.7, we then get that any symmetric copula belongs
to Lγ for anyγ ≤ 1/2, in other words when the copula is symmetric one
has that the stochastic order implies the stochastic precedence.

On the other hand we are also interested in conditions under which the
probabilityP(T ≤ X) is “large enough”, even if the marginal distributions
of T andX are close each other. As a matter of fact, for random vari-
ablesT andX with “close” marginal distributions,P(T ≤ X) can be large
only when the copulaC is far from being symmetric. For this purpose it is
opportune to recall the concept ofexchangeabilityof random variables, in-
troduced in 2.31: two random variablesX1 andX2, with marginsG1 andG2

and joint lawF1,2, are exchangeable if and only ifG1 = G2 andF1,2 = F2,1.
In Chapter 2 we also introduced the concept ofmeasure of non-exchan-

geability, useful to understand the degree of non-exchangeability ofcouples
of random variables or, analogously, the level of asymmetryof their con-
necting copula. Our aim is now to check if the indexη can be considered as
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a suitable measure of asymmetry, or if, in any case, may give us information
about copulas in this direction. To this purpose one can rather consider the
quantity

ν(C) := |η(C)− η(Ct)|, (5.23)

for C ∈ C. We are now going to show that the functionν defined above is
a weak measure of non-exchangeability.

PROPOSITION5.12. The functionν : C ∈ R+ defined in 5.23 satisfies
propertiesB1,B3,B4,B5 of Definition(2.34).

We give hints for the proof of Proposition 5.12.

B1: ν is bounded:|η(C)− η(Ct)| ≤ η(C) + η(Ct) ≤ 2;
B3-B4: ν(C) = ν(Ct) = ν(Ĉ) by a direct application of (5.21);
B5: if (Cn) andC are inC and ifCn converges uniformly toC, then
µ(Cn) converges toµ(C) asn tends to∞, see Theorem 2 in [125].

For what concerns propertyB2, we shall need thatν(C) = 0 if, and only
if, C is symmetric. Of course if the copulaC is symmetric, provided that
ξ(C) = 0, we haveν(C) = 0, but the opposite implication may fail. In this
senseν can be seen as a weak measure, because may lack of this property.
Notice that, for computational purposes,ν can also be written as

ν(C) = |2η(C)− 1− ξ(C)|. (5.24)

In the special case of copulasCγ (see Proposition 5.10) the equivalence
holds, forγ ∈ [0, 1]. In this case we have

ν(Cγ) =

{
|2γ − 1| for γ ∈ (0, 1),
0 for γ = 0, 1.

ξ(Cγ) =

{
0 for γ ∈ (0, 1),
1 for γ = 0, 1.

The curve of the functionν is represented in Figure 5.2. Notice that, for
the special casesγ = 1/3 andγ = 2/3, we haveν(C) = 1/3, value that
coincides with the one given by the measured∞ proposed in [108].

FIGURE 5.2. Graph ofν for the copulasCγ
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4. Further properties of Lγ and examples

We start this Section by analyzing further properties of theclassesLγ

that can also shed light on the relations between stochasticprecedence and
stochastic orderings. First we notice that the previous Definition 5.2 has
been formulated in terms of the usual stochastic ordering�st. However
similar results can also be obtained for other important concepts of stochas-
tic ordering that have been considered in the literature, such as thehazard
rate, the likelihood ratio, and the other orderings (see Appendix B for fur-
ther details about the topic, as well as [127]).

Let us fix, in fact, a stochastic ordering�∗ different from�st. Definition
5.2 can be modified by replacing therein�st with �∗ and this operation
leads us to a new class of copulas that we can denote byL(∗)

γ . More precisely
we set

L(∗)
γ := {C ∈ C : η(C,G1, G2) ≥ γ, ∀G1, G2 ∈ G s.t. G1 �∗ G2}

(5.25)
or equivalently

L(∗)
γ = {C ∈ C : η∗(C) ≥ γ} (5.26)

where
η∗(C) := inf

G1,G2∈G
{η(C,G1, G2) : G1 �∗ G2}. (5.27)

For givenγ ∈ (0, 1), one might wonder about possible relations between
L(∗)

γ andLγ. Actually one has the following result, which will be formulated
for binary relations (not necessarily stochastic orderings) over the space
D(R).

PROPOSITION5.13. Let�∗ be a relation satisfying

(a) for anyG ∈ D(R) one hasG �∗ G;
(b) for anyG1, G2 ∈ D(R) withG1 �∗ G2 one hasG1 �st G2.

ThenLγ = L(∗)
γ .

PROOF. In view of (b), one has thatη(C) ≤ η∗(C). In fact both the
quantitiesη(C) andη∗(C) are obtained as an infimum of the same func-
tional and, compared withη, the quantityη∗ is an infimum computed on a
smaller set.

Due to (a), however,η(C) andη∗(C) are both obtained, in (5.12) and
(5.27) respectively, as minima attained on a same point(G,G). We can then
conclude thatL(∗)

γ = Lγ. �

Concerning Proposition 5.13 we notice that, for example, the hazard rate
and the likelihood ratio orderings,�hr and�lr, both satisfy the conditions
(a) and (b).

In applied problems it can be relevant to remark that imposing stochas-
tic orderings stronger than�st does not necessarily increase the level of
stochastic precedence.
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For the sake of notational simplicity we come back to considering the
usual stochastic ordering�st and the classLγ.

A basic property of the classesLγ andBγ is given by the following
result.

PROPOSITION5.14. For γ ∈ [0, 1], the classesLγ, Lc
γ = C \ Lγ, and

Bγ are convex.

PROOF. We consider two bivariate copulasC1, C2 ∈ Lγ and a convex
combination of them, i.e. takeα ∈ (0, 1) andC := αC1 + (1 − α)C2. We
show thatC ∈ Lγ, indeed

η(C) =

∫

A

dC(u, v) = α

∫

A

dC1(u, v) + (1− α)

∫

A

dC2(u, v)

= αη(C1) + (1− α)η(C2).

Sinceη(C1), η(C2) are larger or equal thanγ thenη(C) ≥ γ, whenceLγ is
convex. Now one can use the same argument in order to show thatLc

γ and
Bγ are convex as well. �

An immediate application of Proposition 5.14 concerns the case when,
given a random parameterΘ, all the connecting copulas of the conditional
distributions of(T,X), belong to a same classLγ. Proposition 5.14 in fact,
guarantees that the copula of(T,X) belongs toLγ as well.

Some aspects of the definitions and results given so far will be demon-
strated here by presenting a few examples. We notice that, asshown by
Proposition 5.10, the condition�st does not imply�(γ)

sp , with γ ∈ (0, 1).
For the special caseγ = 1/2 we now present an example of applied interest.

EXAMPLE 5.15.

LetX, Y be two non-negative random variables, whereY has an expo-
nentially densityfY (y) with failure rateλ and where stochastic dependence
betweenX andY is described by a “load-sharing” dynamic model as fol-
lows: conditionally on(Y = y), the failure rate ofX amounts toα = 1 for
t < y and toβ for t > y. We assume1 < λ < β < 1 + λ. This position
gives rise to a jointly absolutely continuous distributionfor which we can
consider

P(X > x|Y = y) :=

∫ +∞

x

fX,Y (t, y)dt,

fX,Y denoting the joint density ofX, Y . As to the survival function ofX,
for any fixed valuex > 0, we can argue as follows.

FX(x) := P(X > x) =

∫ +∞

0

P(X > x|Y = y)fY (y)dy
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The integral overR+ can be split in two parts, as follows. Over the interval
[0, x], we have

∫ x

0

P(X > x|Y = y)fY (y)dy =

∫ x

0

P(X > y|Y = y)P(X > x|Y = y,X > y)fY (y)dy =

∫ x

0

e−ye−b(x−y)fY (y)dy

while, over[x,+∞],
∫ +∞

x

P(X > x|Y = y)fY (y)dy =

∫ +∞

x

e−xfY (y)dy.

Then we have, for allx > 0,

FX(x) = e−bx λ

1 + λ− b
[1− e−(1+λ−b)x] + e−(1+λ)x

=

(
1− λ

1 + λ− β

)
e−(1+λ)x +

λ

1 + λ− β
e−βx ≤ e−λx.

We can then conclude thatX �st Y . On the other hand the same position
gives also rise toP(X ≤ Y ) = 1/(1 + λ) < 1/2.

The next example shows that for three random variablesT,X ′, X ′′, the
implicationT �st X

′ �st X
′′ ⇒ P(T ≤ X ′′) ≤ P(T ≤ X ′) can fail when

the connecting copulas of(T,X ′) and(T,X ′′) are different.

EXAMPLE 5.16.

Let Y1, . . . , Y5 be i.i.d. random variables, with a continuous distribution
and defined on a same probability space, and set

T = min{Y1, Y2}, X ′ = max{Y1, Y2}, X ′′ = max(Y3, Y4, Y5).

ThusX ′ �st X
′′, butP(T ≤ X ′) = 1 andP(T ≤ X ′′) < 1.

REMARK 5.17. For some special types of copulaC, the computation
of η(C,G1, G2) can be carried out directly, in terms of probabilistic argu-
ments, provided the distributionsG1, G2 belong to some appropriate class.
This circumstance in particular manifests for the models considered in the
subsequent examples. LetC be a copula satisfying such conditions. Then
Proposition 5.4 can be used to obtain inequalities forη(C,H1, H2) even if
H1, H2 do not belong toG provided, e.g., thatH1 �st G1, G2 �st H2 and
G1, G2 ∈ G.

The next example will be devoted to bivariate gaussian models, i.e. to a
relevant case of symmetric copulas.

EXAMPLE 5.18. Gaussian Copulas.
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The family of bivariate gaussian copulas (see e.g. [107]) is parameter-
ized by the correlation coefficientρ ∈ (−1, 1). The corresponding copula
C(ρ) is absolutely continuous and symmetric, andη(C(ρ)) = 1/2 and, thus,
it does not depend onρ. For fixed pairs of distributionsG1, G2, on the
contrary, the quantityη(C(ρ), G1, G2) does actually depend onρ, besides
on G1 andG2. This class provides the most direct instance of the situa-
tion outlined in the above Remark 5.17. The value forη(C(ρ), G1, G2) is
in fact immediately obtained whenG1, G2 are gaussian. LetX1, X2 de-
note gaussian random variables with connecting copulaC(ρ) and parame-
tersµ1, µ2, σ

2
1, σ

2
2. Since the random variableZ = X1 − X2 is distributed

according toN (µ1 − µ2, σ
2
1 + σ2

2 − 2ρσ1σ2) we can write

η(C(ρ), G1, G2) = P(Z ≤ 0) = Φ

(
µ2 − µ1√

σ2
1 + σ2

2 − 2ρσ1σ2

)
. (5.28)

We recall that, whenXi ∼ N (µi, σ
2
i ) for i = 1, 2, the necessary and

sufficient condition forX1 �st X2 is µ1 ≤ µ2 andσ1 = σ2 (see e.g. [6]).
In other words, forG1, G2 gaussian,G1 �st G2 meansX1 �sp X2 and
σ1 = σ2. By using the formula in (5.28), withσ1 = σ2 = σ, we have

η(C(ρ), G1, G2) = Φ

(
µ2 − µ1

σ
√

2(1− ρ)

)
. (5.29)

ThusG1 �st G2 ⇒ η(C(ρ), G1, G2) ≥ 1/2, as shown by Proposition 5.6
and Theorem 5.8. We notice thatη(C(ρ), G1, G2) is an increasing function
of ρ.

Proposition 5.4 can be extended to obtain, say, that

η(C(ρ), G1, G2) ≤ η(C(ρ), H1, H2),

whenH1 �st G1 andG2 �st H2, for G1, G2 ∈ G andH1, H2 /∈ G. We
then can give inequalities forη(C(ρ), H1, H2) in terms of (5.28), provided
H1, H2 are suitably comparable in the�st sense with gaussian distributions.

In the cases whenξ(C) > 0, we should obviously distinguish between
computations ofP(X1 ≤ X2) andP(X1 < X2), whereC is the connecting
copula ofX1, X2. A remarkable case when this circumstance happens is
considered in the following example.

EXAMPLE 5.19. Marshall-Olkin Models

We consider the Marshall-Olkin copulas (see e.g [76, 103, 107]), namely
those whose expression is the following:

Ĉ(α1,α2)(u, v) := u v min{u−α1 , v−α2}
for 0 < αi < 1, i = 1, 2. We notice that the Marshall-Olkin copula has a
singular part that is concentrated on the curveuα1 = vα2 (see also Figure
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5.3). Actually the measure of such a singular component is given by
α1α2

α1 + α2 − α1α2

.

FIGURE 5.3. Marshall-Olkin Copula (left) and graph ofuα1 =
vα2 (right). Special caseα1 = 0.4, α2 = 0.2.

As for the computation ofη(Ĉ(α1,α2)) we use the expression in (5.10).
By separately considering the curveuα1 = vα2 and the domains where
Ĉ(α1,α2) is absolutely continuous, we obtain

η(Ĉ(α1,α2)) =
1

2− α1 ∧ α2

(
1− (α1 − α1 ∧ α2)(α1 ∧ α2)

α1 − α2

)
.

Consider the copula

C(α1,α2)(u, v) := Ĉ(α1,α2)(1− u, 1− v) + u+ v − 1.

We will see now that the value ofη(C(α1,α2), G1, G2) directly follows from
probabilistic arguments, providedG1, G2 are exponential distributions with
appropriate parameters. Let in factV , W andZ be three random variables
independent and exponentially distributed with parametersµ1 = 1/α1 − 1,
µ2 = 1/α2 − 1 andµ = 1, respectively. The new random variables

X1 := V ∧ Z, X2 :=W ∧ Z,
have survival copulâC(α1,α2), connecting copulaC(α1,α2), and exponential
distributionsG(α1)

1 andG(α2)
2 , with parameters1/α1 and1/α2 respectively.

We now proceed with the computation of

η(C(α1,α2), G
(α1)
1 , G

(α2)
2 ) = P(X1 ≤ X2).

We can write

ξ(C(α1,α2), G
(α1)
1 , G

(α2)
2 ) = P(X1 = X2) = P(Z ≤ V ∧W )

=
1

µ1 + µ2 + 1
=

α1α2

α1 + α2 − α1α2
,

furthermore

P(X1 < X2) = P(V < W ∧ Z) = (1− α1)α2

α1 + α2 − α1α2
,
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and finally we obtain

P(X1 ≤ X2) =
α2

α1 + α2 − α1α2

.

Then
η(C(α1,α2), G

(α1)
1 , G

(α2)
2 ) =

α2

α1 + α2 − α1α2

.

Finally, the evaluation ofν(C) is straightforward and we obtain

ν(C(α1,α2)) =
α1 ∧ α2

2− α1 ∧ α2
.

We notice that, also in the present Marshall-Olkin case, theindexν defined
in (5.23) perfectly fits with the definition of measure of non-exchangeability
given in [49]. In fact one has thatν(C) = 0 only in the caseα1 = α2 = 0,
that corresponds toC(u, v) = uv, the independence copula.

We now conclude this Section with an example showing an extreme
case in the direction of Remark 5.17.

EXAMPLE 5.20. Copulas of order statistics

LetA,B be two i.i.d. random variables with d.f.G ∈ G and denote by
X1, X2 their order statistics, namelyX1 = min{A,B}, X2 = max{A,B}.
The distributions ofX1, X2 depend onG and are respectively given by

F
(G)
1 (x1) = P(min{X1, X2} ≤ x1) = 2G(x1)−G(x1)

2,

F
(G)
2 (x2) = P(max{X1, X2} ≤ x2) = G(x2)

2 .

LetZ := {(u, v) ∈ I2 : v ≥ (1− (1− u)1/2)2}. The connecting copula of
(X1, X2), represented in Figure 5.4, is given by

K(u, v) =

{
2(1− (1− u)1/2)v1/2 − (1− (1− u)1/2)2 if (u, v) ∈ Z,
v otherwise.

We have, by definition,

η(K,F
(G)
1 , F

(G)
2 ) = 1,

and it does not depend onG. We notice, on the other hand, that the com-
putation ofη(K) = η(K,G,G), withG ∈ G, is to be carried out explicitly,
since the pair(G,G) can never appear as the pair of marginal distributions
of order statistics. By recalling (5.6) one obtains

η(K) =

∫

[0,1]2

1A(u, v)

2
√
v
√
1− u

dv du = 2− π

2
<

1

2
,

ν(K) = |2η(K)− 1| = π − 3.

We can extend this example to the case when the connecting copula ofA,B
is a copulaD different from the product copulaΠ, but still A andB are
identically distributed according to a distribution function G. In this case
the connecting copulaK of X1, X2 depends onD, but again it does not
depend onG (see [106] page 478).
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FIGURE 5.4. Ordered Statistic Copula K

5. The classesLγ in the Target-Based Approach

In this Section we trace connections between our results about stochas-
tic precedence, introduced in the previous sections, and the Target-Based
Approach to decision problems under risk.

So far we introduced the Target-Based Model of utility and studied
many of its properties, especially in the multi-attribute case and in the case
of independence between targets and prospects. Here we concentrate at-
tention on the single-attribute case, where(T,X) is a pair of real-valued
random variables. Furthermore, we are interested in the case where there is
dependence betweenT andX.

It is clear that the objects of central interest in the TBA are, for a fixed
targetT , the probabilitiesP(T ≤ X) and the analysis developed in the
previous sections can reveal of interest. Here we assume theexistence of
regular conditional distributions and, in particular, forany prospectX we
assume that we can determine the functionυ

(X)
T (x) := P(T ≤ x|X = x).

Hence we can write

P(T ≤ X) =

∫

R

υ
(X)
T (x) dFX(x).

Before continuing it is useful to remind the special case whenX andT
are stochastically independent. In this case we can write

P(T ≤ X) =

∫

R

υ
(X)
T (x) dFX(x) =

∫

R

FT (x) dFX(x).

In such a case, as we already remarked in Chapter 4,P(T ≤ X) can be
seen as the expected value of a utility: by consideringU = FT as the utility
function, we have (see formula (4.2))

E(U(X)) =

∫

R

U(x) dFX(x) =

∫

R

FT (x) dFX(x) = P(T ≤ X).

Under the condition of independence, any bounded and right-continuous
utility function can thus be seen as the distribution function of a targetT ,
and vice-versa. Such an hypothesis represented a balance point in the study
of Target-Based model illustrated in Chapter 4. In this sense, our model can
be seen as an extension of classical models for utility, although it adapts
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to the expected utility principle. TBA however becomes, in asense, more
general than the expected utility approach by allowing for stochastic de-
pendence between targets and prospects. In fact the TBA considers more
general decision rules, if we admit the possibility of some correlation be-
tweenX andT . In this case,υ(X)

T (x) does not coincide anymore with the
distribution functionFT (x) of the target. We refer to [19, 28] for further
discussion in this sense.

We now briefly summarize the arguments of previous sections in the
perspective of a decision problem where, for a fixed targetT , we aim to
rank two different prospectsX1, X2, with marginal distributionsGX1, GX2 ,
and with connecting copulasC1, C2, corresponding to the pairs(T,X1) and
(T,X2), respectively.

In the case of independence, a prospectX2 should be obviously pre-
ferred to a prospectX1 if X1 �st X2. In the case of dependence, on the
contrary, this comparison is not sufficient anymore. In factthe choice of a
prospectX should be based not only on the corresponding distributionFX ,
but also on the connecting copula of the pair(T,X).

For fixedC, the quantityη(C,GT , GX) = P(T ≤ X) is equal to the
quantityη(C) for all pairs such thatGT = GX = G, with G belonging
to the classG (See Proposition 5.5) while, forGT 6= GX , the implication
T �st X ⇒ P(T ≤ X) ≥ γ does not necessarily hold (see Proposition
5.10 and Example 5.15).

For two different prospectsX1, X2, Proposition 5.4 guarantees that,
whenC1 = C2 = C, the conditionGT �st GX1 �st GX2 implies

η(C,GT , GX1) = P(T ≤ X1) ≤ η(C,GT , GX2) = P(T ≤ X2).

As shown by Example 5.16, whenC1 6= C2, we can have both the
conditionsη(C1, GT , GX1) > η(C2, GT , GX2) andGT �st GX1 �st GX2

(GX1 6= GX2).
Concerning the quantitiesη(C1, GT , GX1) andη(C2, GT , GX2), Theo-

rems 5.7 and 5.8 show that, forGT �st GXi
(i = 1, 2),

P(T ≤ Xi) = η(Ci, GT , GXi
) ≥ η(Ci).

Finally, let us consider the case when the only available information
aboutC1 andC2 is thatη(Ci) ≥ γi (i.e. thatCi belongs to the classLγi).
Then a rough and conservative choice betweenX1 andX2 suggests to select
Xi with the larger value ofγi, providedGX1 �st GX2 or thatX1, X2 are
nearly identically distributed.

All these apparently paradoxical results suggest that the criteria for se-
lection of random variables based only on stochastic orderings are not suit-
able enough for decision-making problems, such as those described by the
TBA, when dependance among variables is present. We have shown, in fact,
that the usual stochastic orderings can give results in disagreement with the
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expected utility concepts expressed by TBA. Furthermore weexplicitly pro-
vided examples in which the choice of a prospect which is “better” in the
stochastic sense may give worse results in the utility context.

In order to describe his preferences to the best, a DM adopting the
Target-Based model will then also need to take into account properties of
dependence of the random variables involved in his choices,trough the
study of their connecting copulas. To this purpose a deeper analysis of the
copulas of the classesLγ is to be performed, especially for what concerns
the properties of dependence and asymmetry.



Conclusions and Future Work

In this work we showed the importance of the target-based model in
decision making and utility theory. We presented an extension of multi-
attribute target-based model, representing preferences according to the von-
Neumann Morgenstern utility theory, although built by means of non-addi-
tive measures. This model provides, in fact, an analysis of the joint behavior
of targets and prospects, describing them in terms of their joint probability
distributions, by means of properties of copulas, and by (non-additive) im-
portance weights defined in terms of capacities. On this basis, we have
pointed out that the theory of multi-attribute target-based utilities can hinge
on a formal apparatus, provided by the field of fuzzy measures, extensions
of fuzzy measures, and fuzzy, or universal, integrals.

Further improvements can be made to this model, from one side, by
deeply investigating the role of capacities in establishing the importance of
groups of prospects. On the other side, properties of risk aversion in high
dimensions have to be mastered, through the analysis of the connecting
copulas of targets and prospects. An overall interaction between copulas
and capacities is to be studied in depth, by taking into account the features
that these objects jointly assume in our model.

A further direction along which our model is to be extended isthe one
that takes into account the property ofambiguity. By allowing the exis-
tence of such a condition, it can be made a further generalization of the
TB model, that considers not only attitudes towards risk of DMs but also
attitudes towards uncertainty and lack of information.

In this work we also presented an extension of the concept of stochastic
precedence and provided comparison with the usual conceptsof stochastic
orders, in terms of properties of copulas. We provided some examples in
this direction and found link to the target-based model of utility.

Extensions of this topic can be made through a more accurate analy-
sis of properties of copulas, especially regarding dependence and asymme-
try. Connections with the existing concept of measures of concordance and
measures of asymmetry can be improved for this purpose.

Finally, all the results presented in this manuscript can becombined
together to give a more general formulation of TB model, withmulti-dimen-
sional targets and prospects that admit dependence among them. The study
of this more complete model could allow to analyze more deep aspects of
economic properties, like the ones regarding multi-dimensional risk and

91
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attitude toward risk of DMs, as much as mathematical properties regarding,
for example, further extension of fuzzy measures and integrals.



APPENDIX A

A brief introduction to Reliability of Systems

Reliability is defined as the probability that a device will perform its in-
tended function during a specified period of time under stated conditions. In
this brief note we will consider reliability of a system for afixed moment of
time, so that the state of the system is assumed to depend onlyon the state
of its components. We will distinguish between only two states: a function-
ing state and a failed one. Let us refer to a variableφ to indicate the state
of the whole system, made up ofn components,{1, . . . , n}. To indicate
the state of a single component, say thei−th component, we use a binary
indicator variablexi that may assume two values:xi = 1 if componenti is
functioning,xi = 0 if componenti is failed. The value ofφ, in turn, can
be0 or 1 if the system is failed or working. The functionφ(x) is called the
structure functionof the system, wherex = (x1, . . . , xn) is the vector of its
components.

The most common examples of systems built in this way are the ones of
series system and parallel system. The series system has structure function
given by

φ(x) =

n∏

i=1

xi = min(x1, . . . , xn),

and represents a system that can only work if all components are working.
Parallel system represents the very opposite case, in whichthe system works
if at least one of its component is functioning. Its structure function is given
by

φ(x) =

n∐

i=1

xi = 1−
n∏

i=1

(1− xi) = max(x1, . . . , xn).

These two are examples ofsymmetric systems, in which the state of the
system only depends on the number of working components, regardless of
what they are. They are particular cases of thek-out-of-n system presented
in (4.32), in which the system works if at leastk components out ofn work.
Notice that the systems introduced above are expressed by means oflattice
polynomial functions, roughly speaking by functions only made by simple
logical operators likemin andmax (for a better explanation and some prop-
erties about lattice polynomial functions see, for example, [47]).

We now list some definitions that will be useful later on.

DEFINITION A.1. Given a structureφ, its dualφ∗ is given by

φ∗(x) = 1− φ(1− x),
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where1− x := (1− x1, . . . , 1− xn).

It is easy to check that the dual of a series system is a parallel one and
vice-versa, while the dual of ak-out-of-n structure is a(n−k+1)-out-of-n
structure.

DEFINITION A.2. Thei−th component isirrelevantto the structureφ if
φ is constant inxi, i.e. ifφ(1i,x) = φ(0i,x) for all φ(·i,x). Namely

φ(·i,x) = (x1, . . . , xi−1, ·i, xi+1, . . . , xn).

Otherwisei will be calledrelevant.

DEFINITION A.3. A system of components iscoherentif its structure
functionφ is increasing and each component is relevant. Ifφ is only non-
decreasing the system will be calledsemi-coherent.

The property of monotonicity is important for physical systems, for
which there is no opportunity that while improving the performance of a
component, the system may tend to deteriorate. Coherent systems also en-
joy the following boundary property:

n∏

i=1

xi ≤ φ(x) ≤
n∐

i=1

xi.

Alternative ways to represent a coherent structure can be given by means
of its working/failing states, as follows. Letx indicate the states of the sets
of componentsCN = {1, . . . , n}. Then we defineCN0(x) = {i|xi = 0}
andCN1(x) = {i|xi = 1}. Assume that the structure(CN, φ) is coherent.

DEFINITION A.4. A path vectoris a vectorx such thatφ(x) = 1 and
CN1(x) is the correspondingpath set. A minimal path vectoris a vector
x such thatφ(x) = 1 and, for anyy < x, φ(y) = 0. The corresponding
minimal path setisCN1(x).

A cut vectoris a vectorx such thatφ(x) = 0 andCN0(x) is the corre-
spondingcut set. Aminimal cut vectoris a vectorx such thatφ(x) = 0 and,
for anyy > x, φ(y) = 1. The correspondingminimal cut setisCN0(x).

If we denote byPj thej−th minimal path set ofφ, we may define

ρj(x) =
∏

xi∈Pj

xi

as thej−th minimal path series structure, which takes values1 if all com-
ponents in the minimal path set function,0 otherwise (j = 1, . . . , p, where
p is the number of minimal path sets ofφ). Then we can write the represen-
tation ofφ through its path sets as

φ(x) =

p∐

j=1

ρj(x) =

p∐

j=1

∏

xi∈Pj

xi.
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A similar result can be obtained in view of the cut sets ofφ,

φ(x) =

k∏

j=1

κj(x) =

k∏

j=1

∏

xi∈Kj

xi,

whereKj is thej−th minimal cut set ofφ, j = 1, . . . , k, andκj is thej−th
minimal parallel cut structure.

We are now ready to introduce the concept of reliability of a system.

DEFINITION A.5. Assume that the states of the components of a system
φ are random variablesX1, . . . , Xn, with

P(Xi = 1) = pi = E[Xi],

for i = 1, . . . , n. We refer topi as thereliability of i. The reliability of the
system is similarly defined by

P(φ(X) = 1) = h = E[φ(X)].

The reliability of the examples mentioned above can be easily evaluated.
Series systems, as well as parallel andk-out-of-n systems, are symmetric,
so every component has the same reliability, sayp. We have

(1) φ(X) = pn for series system;
(2) φ(X) = 1− (1− p)n for parallel systems;
(3) φ(X) =

∑n
i=k

(
n
i

)
pi(1− p)n−i for k-out-of-n systems.

We give a final remark about lower and upper bounds for reliability. Let
Er be the event that all the components in minimal path setPr work. Then

P(Er) =
∏

i∈Pr

pi.

System success corresponds to the eventE = ∪p
r=1Er, if the system hasp

minimal path sets. Then

h = P

( p⋃

r=1

Er

)
.

Let
Sk =

∑

1≤i1<...<ik≤p

P(Ei1 ∩ . . . ∩ Eik),

then, by means of the inclusion-exclusion principle, we have

h =

p∑

k=1

(−1)k−1Sk,

and
h ≤ S1, h ≥ S1 − S2, h ≤ S1 − S2 + S3,

and so on. This method provides, hence, successive upper andlower bounds
on system reliability, which converge to the exact system reliability.

For further properties of systems and a deeper study of theirreliability
we refer to [10].





APPENDIX B

Some notions of Stochastic Orderings

Here we briefly introduce the main stochastic orders with a few proper-
ties useful in this paper.

DEFINITION B.1. LetX andY be two random variables such that

P(X > z) ≤ P(Y > z)

for all z ∈ R. ThenX is said to be smaller thanY in the usualstochastic
order, and it will be writtenX �st Y .

Roughly speaking,X is less likely thanY to take large values, when
“large” means for values bigger than any fixedz ∈ R. Characterization of
stochastic ordering can be given, as the following two results state.

THEOREM B.2. Two random variablesX andY satisfyX �st Y if,
and only if, there exist two random variableŝX and Ŷ , defined on a same
probability space, such that

X̂ =st X, Ŷ =st Y, and P(X̂ ≤ Ŷ ) = 1.

Another way to read the previous Theorem is the following

THEOREM B.3. Two random variablesX andY satisfyX �st Y if,
and only if, there exist a random variableZ and two functionsψ1 andψ2

such thatψ1(z) ≤ ψ2(z) for all z andX =st ψ1(Z) andY =st ψ2(Z).

For proofs of these Theorems and some properties of stochastic order
we refer to [127]. Consider now the following

DEFINITION B.4. If X is a non-negative variable with an absolutely
continuous distribution functionF , then thehazard rateof X at t ≥ 0 is
defined as

r(t) =
d

dt
(− log(F (t))) =

f(t)

F (t)
,

whereF (t) = 1 − F (t) is the survival function andf(t) = ∂tF (t) is the
corresponding density function.

The hazard rate is a very important instrument in reliability theory, since
many properties of systems follow from its definition (we refer to [10] for
further information). Moreover, a new type of ordering can be built upon it.

DEFINITION B.5. LetX andY be two non-negative random variables
with hazard rates, respectively,r(t) andq(t), t ≥ 0. ThenX is smaller than
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Y in thehazard rate order(denoted byX �hr Y ) if, and only if,r(t) ≥ q(t)
for all t ≥ 0.

An equivalent condition is the following: ifF andG are the distribution
functions ofX andY respectively, thenX �hr Y if, and only if,F (t)/G(t)
is a decreasing function oft. The link between hazard rate and stochastic
order is determined by the following

THEOREM B.6. If X andY are two random variables such thatX �hr

Y , thenX �st Y .

Consider now the property ofmonotone likelihood ratio, a property re-
garding the ratio of two probability density functions. As usual for mono-
tonic relationships, the likelihood ratio’s monotonicitycomes in handy in
statistics, particularly when using maximum-likelihood estimation. In our
context, it gives rise to a corresponding ordering, that canbe stated as fol-
lows.

DEFINITION B.7. Two random variablesX andY , with density func-
tions f and g respectively, have decreasing likelihood ratio iff(t)/g(t)
decreases over the union of the supports ofX andY . In this case we say
thatX is smaller thanY in the likelihood ratio order, writtenX �lr Y .

The connection between likelihood ratio and the other two orderings is
given by the following result.

THEOREM B.8. If X andY are two random variables such thatX �lr

Y , thenX �hr Y .

It is then clear that this ordering is stronger than the othertwo orderings
presented here, in fact we have

X �lr Y ⇒ X �hr Y ⇒ X �st Y.

Many other orderings are present in literature, for knowledge we refer again
to [10].
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neria dell’Università di Trieste, serie B. CEDAM, 1952.

[38] E. De Santis, F. Fantozzi, and F. Spizzichino. Relations between stochastic prece-
dence and stochastic orderings, preprint. 2014.

[39] E. De Santis and F. Spizzichino. Change-point models and conditionally pure birth
processes: An inequality on the stochastic intensity.Journal of Applied Probability,
41(4):pp. 939–952, 2004.

[40] E. De Santis and F. Spizzichino. First occurrence of a word among the elements of a
finite dictionary in random sequences of letters.Electron. J. Probab., 17:1–9, 2012.

[41] E. De Santis and F. Spizzichino. Stochastic comparisons between first-passage times
for markov chains.arXiv:1210.1116 [math.PR], pages 1–18, 2012.



BIBLIOGRAPHY 103

[42] E. De Santis and F. Spizzichino. Waiting for ABRACADABRA. Occurrences of
words and leading numbers. Emmer, Michele (ed.), Imagine Math. Between culture
and mathematics. Milano: Springer. 175-185, 2012.

[43] E. De Santis and F. Spizzichino. Random evolution of degradation and occurrences
of words in random sequences of letters.Applied Reliability Engineering and Risk
Analysis: Probabilistic Models and Statistical Inference, page 205, 2013.

[44] D. Denneberg.Non-additive measure and integral, volume 27. Springer, 1994.
[45] M. Denuit, L. Eeckhoudt, and B. Rey. Some consequences of correlation aversion

in decision science.Annals of Operations Research, 176(1):259–269, 2010.
[46] M. Denuit, L. Eeckhoudt, I. Tsetlin, and R. Winkler. Multivariate concave and con-

vex stochastic dominance. 2010.
[47] A. Dukhovny and J. L. Marichal. Reliability of systems with dependent components

based on lattice polynomial description.Stochastic Models, 28(1):167–184, 2012.
[48] G. T. Duncan. A matrix measure of multivariate local risk aversion.Econometrica,

45(4):pp. 895–903, 1977.
[49] F. Durante, E. P. Klement, C. Sempi, and M.Úbeda-Flores. Measures of non-
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fuzzy measures.Fuzzy Sets and Systems, 194:1 – 14, 2012.
[88] E. L. Lehmann. Some concepts of dependence.The Annals of Mathematical Statis-

tics, 37(5):1137–1153, 10 1966.
[89] E. Lehrer. A new integral for capacities.Economic Theory, 39(1):157–176, 2009.
[90] S.-Y. R. Li. A martingale approach to the study of occurrence of sequence patterns

in repeated experiments.Ann. Probab., 8(6):1171–1176, 1980.



BIBLIOGRAPHY 105

[91] L. Lovász. Submodular functions and convexity. In A. Bachem, B. Korte, and
M. Grötschel, editors,Mathematical Programming The State of the Art, pages 235–
257. Springer Berlin Heidelberg, 1983.

[92] M. J. Machina. “Expected Utility”, analysis without the independence axiom.
Econometrica: Journal of the Econometric Society, pages 277–323, 1982.

[93] M. J. Machina. Decision-making in the presence of risk.Science, 236(4801):537–
543, 1987.

[94] J. L. Marichal.Aggregation Operators for Multicriteria Decision Aid. PhD thesis,
Institute of Mathematics, University of Liège, Liège, Belgium, 1998.
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