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Chapter 1

Introduction

Experiences and knowledge are recalled and hold in memory by the activation of
their neural representations in the cerebral cortex. Two questions are central in
understanding this process:

1. What are the mechanisms that underly the activation of the representation?
2. Which neural processes create the representation?

It is widely believed that neural representations are maintained into an active
state mainly by means of the feedback dynamics within local neural circuits.
In turn, the neural representations are passively stored in the set of synaptic
couplings in the neural circuits, and can be switched on and off by transient
inputs. This work set out to attempt answering the second question, by studying
spike-driven synaptic plasticity at the network level, in the context of attractor
networks. This introductory chapter outlines a series of motivations, describes
broadly the methodology followed, and provides a summary of the results. The
detailed reports of the results, with comprehensive discussion, are in Chapters 2
to 5, which consist of papers published in peer-reviewed journals.

1.1 Experimental findings

Neurophysiology aims to link brain activity to behavior. Starting in 1970s, neu-
rophysiologists have investigated this question by recording single-cell discharge
patterns in awake animals (usually monkeys) performing a delayed response task.
A classic protocol is the delayed-match-to-sample (DMS) task: A sample image
is presented for a fraction of a second, followed by a delay interval during which
the sample is not longer present. A test image is then presented, and the monkey
is rewarded for indicating whether it is the same as the sample or different. To
correctly perform such a task, the brain of the monkey must be able to carry out
several, important computations: It must be able to recognize images; it must
maintain the memory of the image presented during the delay interval; it must
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evaluate the similarity between the item in memory and the image presented
during the test period, and then act accordingly.

This entire syndrome is monitored, on the physiological side, by recording
spikes from single cells. The basic interpretative criterion for these data is that
any variation in the discharge pattern manifests the involvement of the cell in car-
rying out some task-related computation. The main finding is the phenomenon
of selective persistent activity exhibited by some cells during the delay period,
thus in absence of stimulation, which has been documented in many brain re-
gions. It consists of enhanced emission rates within small neural subpopulations
in the interval between the cue instruction and the motor response, encoding in-
formation about the preceding/forthcoming stimulus or the impending response.
Selective, persistent activity appears to be a natural neural correlate of any com-
plex computational function, representing a way in which brain could implement
task-related internal states required for any behavioral scheme beyond the simple
stimulus-response. Thus, the identification of the machinery underlying the brain
ability to generate persistent activity is central in understanding the neural basis
of high-level, cognitive functions.

The characteristics of persistent activity are found to vary with both the
recorded brain regions and the behavioral task performed. Let us summarize the
phenomenology of persistent activity in inferotemporal (IT) cortex, as exposed
by the experiments of Miyashita (1988) and Miyashita & Chang (1988). In these
experiments, the monkey is trained on the basic DMS task. Recordings are made
after extensive training, that is after the performance level has reached a stable,
high level. The presentation of a stimulus elicits enhanced rate in a small subset
of cells, which varies depending on the stimulus. Typically, a cell is found to
respond to 3-4 stimuli out of 100. When the stimulus is removed, most of the
responsive cells continues to emit at enhanced rate all along the delay interval
(16 seconds). The discharge rate is fairly constant throughout the interval and
highly reproducible, i.e. the same stimulus consistently elicits the same average
activity at the single-cell level.

This kind of activity is often referred to as retrospective activity, because of
the high correlation between the activity during visual presentation and during
the subsequent delay interval. At the single-cell level, the highest amount of delay
activity is observed after stimuli that elicited good response, and the least delay
activity after stimuli that elicited poor or no response. However, retrospective
activity is elicited only by familiar stimuli, i.e. a set of stimuli repeatedly seen
by the monkey. When novel (i.e. never seen before) stimuli are used, despite
strong responses during presentation, no enhanced delay activity is observed. In-
terestingly, no significant difference in the performance level between novel and
familiar stimuli is found. This would lead to the conclusion that selective delay
activity in IT cortex is not required for effective performance: It appears auto-
matically following extensive training, independently of its behavioral relevance.
Its appearance is likely to be related to long-term synaptic modifications induced
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by repeated presentation of stimuli.

1.2 The theoretical framework

A comprehensive framework has been developed by Amit and collaborators to
account for the phenomenology of persistent activity as summarized above. In
this account, retrospective activity results from the attractor dynamics gener-
ated by local synaptic interactions among the neurons belonging to the cortical
column where it is observed. The suitable synaptic structuring is formed in the
course of training. The presentation of an image results in a strong increase of
spiking rates in a subset of neurons. The distribution of high rates is supposed
to activate plasticity mechanisms which modifies the circuitry involved by in-
creasing/decreasing the efficacy of the corresponding synaptic populations. In
particular, the synapses among neurons responsive to the same stimulus are po-
tentiated, while the synapses among neurons responsive to different stimuli are
weakened. Once synaptic structuring (produced by the repeated presentation of
the stimuli) reaches a suitable level, the enhanced emission rates elicited by stim-
ulus presentation survive its removal, mainly due to the strong recurrent synaptic
efficacies among the corresponding selective neurons.

The theoretical framework has been substantiated in a recurrent network of
spiking neurons, modeling a cortical column (Amit and Brunel 1997a,b). In these
studies, cells respond to at most one stimulus. Synaptic structuring is introduced
as Hebbian learning in the excitatory recurrent connectivity: The synapses among
cells selective to the same stimulus have potentiated average efficacies, while those
among cells selective to different stimuli have depressed average efficacies. Due
to synaptic structuring, the network exhibits a variety of different steady states
of global activity. By using mean-field techniques, Amit and Brunel (1997b)
showed that these are attractor states, i.e. they are stationary and relatively small
variations on this state lead it back to the same state. They also obtained average
emission rates within the various neural subpopulations in attractor states as a
function of the microscopic network parameters. In particular, for suitably high
potentiation levels, the network is able to exhibit coexistence between two global
states of activity:

• The spontaneous activity (SA) state, in which all neurons emit with the
same, low average rate.

• The selective delay activity or working memory (WM) state, in which the
neurons selective to a given stimulus emit at enhanced rate, while the re-
maining fire at low rate, in absence of external stimulation. There exists a
different WM state for each of the memorized stimuli (multi-stability).

Numerical simulations of the microscopic model confirmed the reliability of the
mean-field analysis (Amit and Brunel 1997a). Despite of the schematic descrip-
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tion of both cortical anatomy and physiology, it is worth to note that the phe-
nomenology observed in the simulated network captures most of the basic exper-
imental findings of in vivo cortical recordings (Amit and Brunel 1997a).

1.2.1 Stochastic Hebbian learning

The formation of synaptic structuring leading to enhanced delay activity was
the starting point for developing a general framework providing a description for
a wide class of biologically plausible learning rules. This framework has been
introduced by Amit and Fusi (1992, 1994), and relies on basic constraints likely
to pose limitations on any type of material synaptic device. The assumptions are:
The signal triggering long-term modification should be local in space and time,
i.e. it should depend on the current values of variables available at the site of the
synapse. All variables describing the synaptic state are bounded, and long-term
modifications of these variables cannot be arbitrarily small. See (Fusi 2002) for a
recent review. According these guiding principles, the simplest learning scenario
is

• Plastic synapses have only two long-term efficacy states: potentiated and
depressed. These are stable states in that they persist indefinitely in absence
of significant pre- and postsynaptic neural activity.

• Stimulus presentation raises emission rates to a level that can lead to plas-
ticity. Transitions between the two states are induced stochastically in a
Hebbian way: A depressed synapse between two neurons emitting at high
rate tends to become potentiated (LTP), while a potentiated synapse from
a high- to a low-rate neuron tends to become depressed (LTD). In all other
cases, no transition occurs.

The resulting learning process has been extensively studied (Amit and Fusi 1992;
Amit and Fusi 1994; Brunel 1996; Brunel et al. 1998).

1.3 The key role of synaptic plasticity

The notion of computation by convergence to an attractor is a key theoretical
concept in understanding brain functions (Amit 1989). Determining whether at-
tractor models apply to real biological networks is clearly a central question. To
make comparison between experimental data and model prediction are necessary
realistic models. Most of the actual attractor network models, however, assume
quenched synaptic structuring (Hopfield 1982; Amit 1989), which should corre-
spond either to a steady state reached after suitably long training or to some
microcolumnar architecture. On the other hand, it has been firmly established
that synaptic efficacy is not stationary but changes with neural activity. Exper-
iments report various forms of synaptic plasticity, which differ in time scale as
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well as in condition required for induction. In particular, the longer-lasting forms
(hours or longer) of synaptic plasticity, on which we focus in the present work,
depend on some conjunctions of pre- and postsynaptic activity (Markram et al.
1997; Bi and Poo 1998; Petersen et al. 1998; Sjöström et al. 2001). A true cou-
pled neural/synaptic dynamics could significantly affect performance, and even
the functioning of the network. The necessity to endow the current modeling
with dynamics of synaptic efficacies should be, at this point, evident.

Our approach combines the systemic phenomena observed at a macroscopic
level with the modeling of effective microscopic elements, i.e. they are not bio-
physical implementation (although biophysically constrained). The underlying
assumption is that macroscopic phenomena, resulting from the emergent, col-
lective dynamics of large populations of cells, are quite independent of the fine
details of constitutive elements, relying more on some operational features of the
latter. Furthermore, the set of observables in neurophysiological experiments are
usually average discharge rates for each cell over each task period. This does
not presuppose very detailed characteristics of neurons beyond spike emission.
Thus, it may not be necessary to model network elements in great detail to cap-
ture the essential features related to the collective dynamics of neural assemblies,
achieving at the same time comparison with experimentally available data.

Working with simplified elements allows for large-scale simulations, and for
an accompanying theory. Theory is used to scan the parameters space effectively,
to find realistic zones in which the behavior of the simulated network matches
the experimentally observed behavior. It provides also the relevant variables
to monitor the neural assembly dynamics at the biological level. This way of
proceeding exposes constraints to be met in order to reproduce the desired be-
haviors, leading to experimentally testable predictions as well as to insights into
the computational machinery of the biological networks. For an overall view of
the methodology see (Amit 1998).

The experimental (macro) aspect we aim for in the behavior of the network,
is the generation of selective persistent activity in the course of repeated pre-
sentation of sequences of stimuli. Studying the process by which the synaptic
structuring is dynamically built in by the ongoing neural activity is likely to
expose deep constraints in the functioning of biological networks, because of
the stability problem: The stability problem arises primarily because cortical
networks are highly recurrent, and the recurrent connectivity is mostly excita-
tory. Furthermore, it has to be strong enough to maintain enhanced, persistent
activity in absence of the eliciting external input. This can easily lead to in-
stabilities either in the form of runaway excitation or in the form of collective
oscillatory behavior. Learning makes a hard stability problem even harder, as
excitatory recurrent efficacy is expected to locally (i.e. within the selective neural
subpopulations) increase with training. Thus, studying the process of attractor
formation is expected to furnish valuable insights into the functioning of cortical
circuitry suitable for persistent activity. Moreover, a model with coupled neu-
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ral/synaptic dynamics is highly predictive, since the training protocol represents
the independent, experimentally manipulable variable, while the neural activity
the dependent, experimentally measurable variable.

1.4 Prospective activity

The basic framework in which elevated rate distributions produce a synaptic
structuring which can maintain selective persistent activity, leads naturally to the
generation of complex neural correlates, as observed in more elaborate delayed
response tasks. A case in point is the evolution of the patterns of neural activity
during training on the pair-associate matching paradigm. In these experiments
the images involved are divided into fixed pairs. In each trial the sample image
(predictor) is one image of a pair and the monkey is rewarded for recognizing,
following the delay, the presentation of the other image of that pair (choice)
– its pair associate. In order to correctly perform the pair-associate task the
long-term memory of the associations is necessary, as the information about the
pair-associate image is not present in the presentation of the sample image. It
must be formed during the training, as the pairings of the images are completely
arbitrary.

Two neural correlates of associative memory are found in monkeys extensively
trained on pair-associate matching: the pair-recall cells and the pair-coding cells.
The pair-recall cells are neurons, visually responsive to a given picture, which
show increasing activity in the delay subsequent the presentation of the corre-
sponding pair-associate, i.e. when the monkey expects that picture to be shown
as a test. This kind of activity is referred to as prospective, because the magnitude
of the delay activity between the predictor and the choice is determined by the
cell’s selectivity for the choice stimulus. The pair-coding cells are neurons which
have visual responses to the pair-associates highly correlated, that is a neuron
which responds well to the predictor, also tends to respond well to the choice.

The hypothesis that the appearance of these neural correlates is related to a
structural and functional reorganization of the neural circuitry, which would be
accomplished through a cellular program of gene expression (Bailey and Kandel
1993), has been tested in a series of studies carried out in monkeys (Okuno
and Miyashita 1996; Tokuyama et al. 2000; Tokuyama et al. 2002). In these
experiments, different monkeys are trained on either a pair-associate task or on
a simple visual discrimination task, where no associative memory is required for
good performance. After suitably long training, the expression of gene encoding
proteins thought to be involved in long-term plasticity, is evaluated in the two
experimental conditions. It was found that gene expression was significantly
higher in the temporal lobe of the monkey trained on the pair-associate task, with
respect to the monkey trained on the visual discrimination task. Recent studies
(Erickson and Desimone 1999; Messinger et al. 2001) provide direct evidence that
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the neural correlates of associative memory appear as a consequence of suitably
long training stages. In other words, the appearance of pair-coding and pair-
recall cells depends critically on the length of the training, i.e. on the number of
presentations/stimulus.

In Chapter 2, we show that stochastic Hebbian learning naturally accounts
for generation of the neural correlates described above. We simulate the cou-
pled neural/synaptic dynamics within a model network, which undergoes train-
ing according to the protocol of Erickson and Desimone (1999). The network is
composed by excitatory and inhibitory integrate-and-fire neurons randomly and
sparsely connected, mimicking cortical anatomy and physiology. The excitatory-
to-excitatory synapses are plastic, that is they change their efficacy depending
on the pre- and post-synaptic emission rates. In a first stage, training leads to
the appearance of retrospective activity. Once retrospective activity has become
stable, it persists across the delay until the presentation of the choice stimulus.
There would be, then, a short time window in which the neurons coding for the
predictor and those coding for the choice are both active at high rates, and po-
tentiation can take place in synapses between the two populations. Thus, as pairs
of stimuli are sistematically seen in a fixed temporal order, the inter-pair synap-
tic population (i.e. the synapses connecting the neurons coding for predictor to
the neurons coding for the choice) becomes stronger and stronger with increasing
number of trials.

In this way memories become associated: The delay activities, as well as the
visual responses, become increasingly similar, independently of how similar they
are at the start. Indeed, when the predictor population is active at high rates,
either during stimulus presentation or during the delay interval, the neurons
belonging to the choice population receive stronger excitatory currents (due to
stronger inter-pair efficacies) with respect to the other populations. As a result
they will emit at higher rates, increasing the similarity between the patterns of
neural activity elicited by the predictor and by the choice. The model repro-
duces most of the neurophysiological data obtained during pair-associate tasks,
makes experimentally testable predictions and demonstrates how persistent ac-
tivity brings about the learning of long-term associations (Mongillo et al. 2003).

1.5 Toward realistic learning processes

Two main limitations were present in our account of prospective activity. First,
the synaptic plasticity mechanism is still rudimentary, since what drives synaptic
changes at individual synapses is average rates (in a sliding window of 100 ms) of
pre- and postsynaptic neurons. Second, we have used non-overlapping stimuli: a
neuron responds visually to at most one stimulus. We proceeded to remove both
simplifications.
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1.5.1 Spike-driven synaptic plasticity

Stochastic Hebbian learning provides a good tool for studying quantitatively the
process of attractor formation. The collective behavior of coupled neural and
synaptic populations is described in a compact form, in terms of probabilities of
potentiation/depression per presentation. It is not clear whether such a descrip-
tion could be more general, so as to be qualitatively independent of the detailed
neural and synaptic dynamics. A priori, this seems plausible as a general con-
sequence of the stochasticity of neural activity. Of course, the construction of
a detailed model of long-term synaptic plasticity, which matches the available
experimental data, is necessary to address this question.

In vitro experiments reveal that cortical long-term plasticity depends on var-
ious factors, such as the firing rate, the spike timing, and cooperativity among
inputs. However, how these factors interact during realistic patterns of activity
still awaits clarification. On the other hand, a direct experimental access in vivo
to the interplay between the neural and synaptic dynamics is very remote. Thus,
at this stage, the modeling of long-term plasticity is guided mainly by consider-
ations of plausibility, rather than by the attempt to obtain detailed quantitative
agreement with in vitro experimental data or with biochemistry.

In Chapter 3 we introduce a recently proposed model for spike-driven dynam-
ics of a plastic synapse (Fusi et al. 2000). The device is driven locally in time
and space, i.e. by instantaneous variables of the two neurons connected by it:
the presynaptic spikes and the coincident level of the postsynaptic depolarization.
The device has a short internal time constant and (a dynamic) long-term stability
of two discrete efficacy states is ensured by an intrinsic refresh mechanism. Thus
long-term modifications of the synaptic efficacy cannot be arbitrarily small. We
show that the model synapse is not inconsistent with the wealth of findings con-
cerning synaptic plasticity at the individual synaptic level. For a suitable choice
of the constitutive parameters, it implements rate-dependent plasticity, and ex-
hibits both LTP and homosynaptic LTD under diverse experimental stimulation
protocols. We also argue that a synapse in natural conditions may behave more
like the model synapse described here than as in the special protocols in which
precise timing is observed.

The model synapse is then embedded in a full-scale simulation of a large net-
work of spiking neurons. The synaptic dynamics is driven purely by the actual
spikes emitted by the neurons, as a consequence of a preassigned protocol of
stimulus presentation, mimicking those used in DMS tasks. Again, stimuli are
non-overlapping, i.e. neurons respond at most to one stimulus. Even in this
basic case, the process of synaptic structuring, and the consequent appearance
of selective delay activity is not trivial, as various instabilities tend to appear
during training. The main source of instabilities is found to be related to the ex-
cessive increase, with training, of the emission rate upon stimulus presentation.
As things stand, it seems to be an artifact of the simplicity of single-cell dynam-
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ics as well as of the synaptic transmission model. In a more realistic situation,
this problem is resolved by the short-term adaptation features of the synaptic
transmission (see below). In the simulation, we artificially kept the rate of stimu-
lated neurons approximately constant by adjusting the external signal during the
learning process, when the rates were becoming too high. As the increase of stim-
ulus response during training is reduced, persistent activity is actually formed in
the process and its slow formation can be qualitatively understood (Amit and
Mongillo 2003).

1.5.2 Overlapping memories

Neurons in experiment are rarely responsive to only one stimulus, nor are they
very selective in delay activity. In (Miyashita and Chang 1988; Miyashita 1988)
it is found that a column 1mm in diameter of IT cortex is able to sustain 100
distinct, selective delay activity distributions, each employing 2-3% of the cells in
the column (Brunel 1996). Each of these delay activity states corresponds to one
fractal image, hence cells must be active in the delay activity state of more than
one image. Mean-field (MF) theory for realistic network of spiking neurons has
been pursued only for the case of disjoint memories corresponding to different
stimuli, for technical reasons. In other words, each neuron is responsive to at
most one stimulus, and thus following training, it participates to the selective
delay activity of just that stimulus.

Mean-field approach consists in dividing the network into distinct and statis-
tically homogeneous subpopulations – a neuron belongs to at most one subpop-
ulation, and two neurons belonging to the same subpopulation have the same
statistics of afferent synapses. One then assumes that all neurons in the same
subpopulation have an equal average spike emission rate. This renders the statis-
tics of afferent currents homogeneous within each subpopulation. The statistics
of the afferent currents, in turn, determines the average emission rate in the sub-
population. The steady mean emission rate in each subpopulation is obtained
requiring self-consistency, i.e. that the output rates (generated via the transduc-
tion function) be equal to the input rates (the rates which determine the input
currents). MF theory is essential in scanning the parameter space to find realistic
yet computationally interesting zones of microscopic parameters in an effective
way. This becomes even more pressing when one investigates the collective prop-
erties of learning, in the case of spike-driven plastic synapses.

In Chapter 4 we present an extension of the MF theory for recurrent networks
of spiking neurons to the case in which the neurons can respond to more than
one stimulus. In absence of detailed informations about stimulus selectivity,
the response patterns in the model are set up randomly: a neuron responds
independently to each stimulus with probability f . f is the coding level, as it
is the average fraction of cells responding to a given stimulus. The quenched
synaptic structuring used in the analysis is the result of the long-term synaptic
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dynamics described in Sec. 1.2.1, upon repeated presentation of the set of stimuli
to be stored. The network is divided into distinct subpopulations of neurons,
according to the number of stimuli to which they are responsive – multiplicity
of a neuron. In other words, we lump together neurons responding to the same
number of stimuli. It is then verified that, if average rates within each of these
populations are equal, the statistics of afferent currents (mean and variance) to
the cells in each of these populations is equal, given that synaptic structuring.
Hence these populations are natural candidates for MF analysis.

Theoretical estimates compare well with recordings of delay activity rate dis-
tributions in simulations of the underlying microscopic network of 10,000 neurons.
Furthermore, MF description allows for a detailed study of the storage capacity,
that is, the maximal number of memories that can be stored in the synaptic cou-
plings and retrieved by the network dynamics. This is done in various regions of
the space of constitutive parameters for the neurons and for the learning process
(Curti et al. 2004).

1.6 The full double dynamics

Finally, in Chapter 5 we study the learning dynamics of a realistic network of
spiking neurons connected by spike-driven plastic synapses. The model network
is realistic in several important aspects:

• The populations selected as visually responsive for the stimuli to be learned
are selected at random. Each neuron responds randomly and independently
to each stimulus in the training set, with probability f (coding level). Thus,
neurons can respond to more than one stimulus. This step was made possi-
ble by the progress made in developing a mean-field theory for overlapping
memories (Chapter 4). Furthermore, both excitatory and inhibitory neu-
rons respond selectively, with the same coding level, and with roughly the
equal mean emission rates (Tamura et al. 2004)

• Synapses are plastic on both long- and short-term time scales. Long-term
synaptic dynamics is given in Chapter 3. Short-term synaptic dynam-
ics is described by the phenomenological model of Tsodyks and Markram
(Tsodyks and Markram 1997; Tsodyks et al. 1998). The resulting short-
term synaptic depression upon activation prevents excessive increase of vi-
sual response during synaptic structuring, allowing for the removal of ex-
ternal manual intervention used in Chapter 3.

• Excitatory recurrent currents are both fast and slow decaying, mimicking
AMPARs and NMDARs kinetics. In particular, we have found it necessary
to add slow NMDA-like currents to ensure the proper functioning of the
network, especially to offset short-term synaptic depression immediately
following the removal of a stimulus.
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When subjected to the repeated presentation, in a random sequence, of the stimuli
in the training set, the model network autonomously develops a synaptic structure
allowing for selective delay activity for each of the stimuli. Synaptic structuring
occurs as an exclusive consequence of the patterns of neural activity produced by
the stimuli, until a steady state for both neural activity and synaptic structuring is
reached, after a suitably long training stage. Patterns of network spiking activity
before, during and after training reproduce most of the physiological observations
in vivo. As a matter of fact, they are consistent in deep detail:

• The discharge patterns of the neurons are quite irregular, and the distribu-
tion of the firing times is characterized by a long tail. The CVs measured
in the simulation are similar to those experimentally reported (Softky and
Koch 1993; Shadlen and Newsome 1998).

• The distributions of the selective average emission rates, during stimulus
presentation as well as during delay interval, are wide, and largely overlap
with those experimentally reported (Fuster and Alexander 1971; Miyashita
and Chang 1988; Nakamura and Kubota 1995; Erickson and Desimone
1999; Naya et al. 2003).

• The time course of the stimulus response is consistent with profiles observed
in in vivo recordings (Tamura and Tanaka 2001; Tamura et al. 2004): for
excitatory neurons – fast initial transient at high rate, followed by a steady
response at lower rate; for inhibitory neurons – tonic response throughout
the stimulation.

The model makes experimentally testable predictions and, because of its biolog-
ical plausibility, may constitute a useful tool in tracing learning-related modifi-
cations of neural activity in experiment, as well as in designing new, informative
experiments. The study clarifies the specific roles of short-term synaptic depres-
sion, long-term plasticity, NMDA receptors, and stimulus representation overlaps
in ensuring both a successful learning process and the reliable functioning of the
network as working memory. It is also studied the behavior of the synaptic de-
vice when driven by the in vivo-like patterns of neural activity exhibited by the
network along training. In particular, we studied the dependence of long-term
plasticity dynamics on the characteristics of the stimulus response (average emis-
sion rate, time course, spike synchrony during the inital transient), and on the
single cell emission statistics (CV).
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Chapter 2

Retrospective and prospective
persistent activity
induced by Hebbian learning in a
recurrent cortical network

Mongillo G, Amit DJ, Brunel, N, European Journal of Neuroscience, 18:2011-
2024 (2003).

2.1 Introduction

Neurophysiological experiments have established persistent delay activity as the
main candidate for a neuronal substrate of working memory (see e.g. Fuster
and Alexander 1971; Funahashi and Goldman-Rakic 1989; Goldman-Rakic 1995;
Fuster 1995). Persistent delay activity was first discovered in prefrontal cortex
(PFC), and later in IT cortex (Fuster and Jervey 1981; Miyashita and Chang
1988), and other areas of the temporal lobe (Nakamura and Kubota 1995).
Miyashita (1988) found links between persistent activity and long-term associa-
tive memory: if training in the delay-match-to-sample (DMS) task is performed
with a fixed sequence of sample images, single cells in the temporal lobe show
elevated delay activity, following presentations of several images that are neigh-
bors in the sequence. Thus, correlations between delay activity patterns reflect
temporal associations between stimuli.

Sakay and Miyashita (1991) and Naya et al (2001, 2003) used a pair-associate
task to investigate further links between associative memory and persistent activ-
ity. Images shown to the monkey were divided into fixed pairs (see Figure 2.1A).
A trial consisted of the presentation of one image of a pair (the cue or predictor),
followed by a delay, and finally by a test (or choice) stimulus, that includes the
pair-associate of the cue together with a distractor. The monkey was rewarded
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Figure 2.1: Pair-associate task (adapted from Naya et al 1996, Rainer et al 1999).
A. A set of images is divided into fixed pairs (associates) (A,A′), (B,B′), etc
(adapted from Naya et al 1996). B. Protocol of the task: pre-stimulus interval,
sample presentation, delay period, and test (choice) presentation.

for touching the ‘pair-associate’ of the cue. Following long training some neurons,
visually responsive for a particular picture, showed increasing activity in the de-
lay period, preceding the presentation of that picture as a test stimulus, i.e. when
the monkey expected that picture to be shown as test (prospective activity, see
also Rainer and Miller 1999; Fuster 2001). These neurons have been termed
‘pair-recall’ neurons. For some neurons, visual responses to the pair-associates
became highly correlated (‘pair-coding’ neurons).

More recently, Erickson and Desimone (1999) devised a task that allowed to
record during the learning of new pairs. The task associates a fixed test stim-
ulus to a go/no-go choice. In 85% of the trials, the test stimulus was preceded
by its pair associate (‘predictor’) stimulus (Figure 2.1B). Such protocol reduces
the learning phase (monitored by the monkey’s performance level) to one or two
sessions. It was found that the delay activity between predictor and choice pre-
sentations in perirhinal (PRh) cortex changed, during learning, from representing
purely the predictor (retrospective activity), to representing both predictor and
choice (prospective activity). With novel stimuli there was no similarity in visual
responses of paired stimuli and inter-stimulus delay activity was purely retro-
spective. With familiar stimuli, PRh neurons showed high correlation of visual
responses to consistently paired stimuli, and the delay activity was correlated
with both the predictor and the choice stimuli.

Possible mechanisms for persistent activity have been explored by theoretical
modeling (see e.g. Amit 1995; Durstewitz et al. 2000; Wang 2001). The main can-
didate is the reverberation mechanism through excitatory feedback (Hebb 1949).
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The synaptic structure sustaining persistent activity can be a consequence of
Hebbian plasticity induced by stimuli (Amit 1995; Amit and Brunel 1997b). The
link between persistent activity and stimulus-stimulus associations (Miyashita
1988) has been explored in several studies (Griniasty et al. 1993; Amit et al.
1994; Brunel 1996). However, these studies dealt only with stationary properties
in the delay period, using mean-field approaches. Temporal dynamics during the
delay period has not been explored by modeling studies.

The pair-associate paradigm provides a unique terrain for studying the inter-
play between learning and persistent activity. Thus, we investigated the evolution
of persistent activity during learning in a pair-associate task in a model cortical
network with plastic synapses. We find that learning naturally leads first to the
appearance of ‘retrospective’ persistent activity, and later to the appearance of
‘prospective’ activity.

2.2 Methods

2.2.1 The model network

We model a ‘cortical module’ of an area of the temporal lobe where selective
persistent activity related to objects is observed. The model is composed of
NE pyramidal cells and NI inhibitory interneurons. Each neuron receives, on
average, CE synaptic contacts from excitatory neurons and CI from inhibitory
neurons inside the network (selected at random) and Cext excitatory synaptic
contacts representing external afferents (Amit and Brunel 1997b). The external
afferents are activated independently by a Poissonian process, with rate νext. The
current resulting from the activation represents both noise from the rest of the
cortex as well as selective afferents due to the presentation of stimuli. Excitatory
neurons in the network are assumed to be selective to a discrete set of p external
stimuli (representing the images or objects shown in the experiments). To the p
stimuli correspond p sub-populations, each consisting of fNE excitatory neurons,
where f (f ¿ 1) is the ‘coding level’. For the sake of simplicity, we assume sub-
populations are non-overlapping, i.e. all neurons in a given population respond to
a single stimulus. Stimuli are organized in p/2 associated pairs: Stimulus (A,A′),
(B,B′), . . .. In our case, p = 16 stimuli are divided in 8 pairs. The presentation
of a stimulus is simulated by selectively increasing the external rates afferent to
the corresponding population, νext −→ (1 + λ)νext, where λ is the ‘contrast’ of
external stimuli. The architecture of the model is shown in Fig. 2.2.

The neurons of the network are leaky integrate-and-fire (IF) neurons. The
state of a neuron is described by its depolarization V (t), obeying the equation:

τmV̇ (t) = −V (t) + I(t) (2.1)

where I(t) is the total afferent current (in units of V) due to spikes arriving from
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A A’ B B’

inhibitory
network

Figure 2.2: Architecture of the model network. The network is composed of a
large number of excitatory neurons and inhibitory neurons. Circles denote func-
tional populations, labeled by the objects they encode. Arrows connecting pop-
ulations (circles) are directional synaptic connections, whose thickness indicates
their relative strength. Both excitatory and inhibitory neurons receive connec-
tions from 20% of excitatory neurons and 20% of inhibitory neurons (inhibitory
to inhibitory connections not shown), as well as connections from outside the
network (not shown). Inhibitory connections are stronger (on average) than exci-
tatory connections, in order to render spontaneous activity stable (see e.g. Amit
and Brunel 1997). Disjoint populations of excitatory neurons A, B, . . . repre-
sent the ‘predictor’ images and A′, B′, . . . are their corresponding pair-associates.
Following learning, connections within subpopulations are much stronger than
average, while connections between pair-associate populations (e.g. A→ A′) are
only slightly stronger than average. The figure represents a network with a sym-
metric synaptic matrix. In the asymmetric scenario, connections from A to A′

are stronger than connections from A′ to A (see text).
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presynaptic neurons; τm is the membrane time constant. When V (t) reaches a
threshold θ, the neuron emits a spike and V is reset to Vr, following a refractory
period. The synaptic current I(t) is the sum of individual post-synaptic currents
induced by the CE excitatory synapses and the CI inhibitory synapses. Individual
post-synaptic currents obey the equation,

τS İS(t) = −IS(t) + τmJ
∑

k

δ(t− tk − δS) (2.2)

where τS is the decay time constant of the synaptic current; J is proportional
to the total charge transmitted by a single spike across the synapse (its efficacy,
in mV units) and δS is the associated latency; tk is the time of the synaptic
activation, due to the k-th presynaptic spike. Eq. (2.2) implies that, upon emis-
sion of a presynaptic spike, the postsynaptic current has, following a delay δS,
an instantaneous jump proportional to the efficacy, followed by an exponential
decay with a time constant τS. Dependence on the neurotransmitter involved
is taken into account by using different τS. The inhibitory synapses produce a
fast inhibitory current mimicking the GABA current (τS = 5ms). The recur-
rent excitatory synapses have both a fast (τS = 2ms) and a slow (τS = 100ms)
component, corresponding, respectively, to AMPA and NMDA currents. A frac-
tion x of the total charge is assumed to be transmitted by the slow component,
and the remaining fraction (1 − x) by the fast component. External excitatory
synapses have only a fast component. The total current afferent on a neuron,
I(t) in Eq. 2.1, is the sum of the different components, each evolving with its
own time constant. The voltage-dependence of NMDA is not modeled.

We have studied the behavior of the model in two successive steps: First,
the neural dynamics was studied during single trials, with a fixed, pre-structured
synaptic matrix. Second, we studied the full learning scenario, in which the
synaptic efficacies could vary as a function of the pre- and postsynaptic activity.

2.2.2 The learning protocols

We have simulated the pair-associate protocols with ordered pairs (Erickson and
Desimone 1999), i.e. the first member of a pair (A) is used only as a cue (predic-
tor), while the second member appears only as a test (choice). The simulations
reproduce two days of the experiment of Erickson and Desimone (1999), consist-
ing of a series of 1000 trials (2 days of 500 trials each). Each trial consists of four
intervals:

1. Pre-stimulus (1000ms): no selective external inputs.

2. Cue (predictor) presentation (500ms): a randomly chosen stimulus from the
set of predictor cues (e.g. A) is shown to the network. The activation rate
of the afferents to the neurons of the corresponding population is increased
to (1 + λ)νext.
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3. Delay interval (1000ms): no selective external inputs.

4. Test (choice) presentation (500ms): in 85% of trials, the pair-associate (A′)
of the cue (A) is shown to the network (‘valid’ trials). In 15% of trials,
another randomly chosen, stimulus from the set of choice stimuli (e.g. C’)
is presented. In the simulations, the fraction of ‘valid’ trials was either
100% or 85%.

Other protocols have used unordered pairs (Sakay and Miyashita 1991; Naya
et al. 1996). In these protocols, any of the stimuli of a pair (A or A′) can appear
as a cue. The test stimulus is composed of the pair-associate of the cue image,
together with a distractor image.

2.2.3 Network with pre-structured synaptic matrix

The synaptic matrix is constructed at the beginning of the simulation and stays
fixed thereafter. The process of building the synaptic matrix is done in two steps.
First, for each excitatory neuron, we select the set of CE excitatory pre-synaptic
neighbors of that neuron, randomly and independently from neuron to neuron.
This defines the set of functional synapses of the network, at which plasticity
can take place. A similar procedure is done for other populations of synapses
(inhibitory synapses on excitatory neurons, excitatory and inhibitory synapses
on inhibitory neurons) but these synapses have all a fixed and equal efficacy
JIE, JEI and JII , respectively. Next, each existing excitatory synapse on an
excitatory neuron Jij (where j denotes the pre-symaptic neuron, and i the post-
synaptic neuron) is assigned one of two possible states, a potentiated state with
efficacy Jij = J1 and a depressed state with efficacy Jij = J0. Structuring due to
learning is expressed in shifting the proportion of synapses in the up and down
states. In the final outcome of the training stage, the probability for a synapse
to be in the up state depends on whether the protocol uses ordered or unordered
pairs (see below).

In the general case, the structure in the resulting synaptic matrix is potentially
asymmetric, with

Prob(Jij = J1) =







































1 if i, j in same population
a if j (post-synaptic) in predictor population (e.g. A)

and i (pre-synaptic) in choice population (e.g. A′)
a′ if j in choice population (e.g. A′)

and i in predictor population (e.g. A)
0 otherwise.

(2.3)
where a is a forward pair learning parameter (strength of synapses whose pre-
synaptic neuron is selective for a ‘predictor’, e.g. A, while the post-synaptic
neuron is selective for a ‘choice’, e.g. A′), and a′ is a backward pair learning
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Figure 2.3: Regions of synaptic transitions in the space of pre- and post-synaptic
rates. LTP occurs when both pre- and post-synaptic rates are high, above a
high threshold T+ = 65Hz; LTD occurs when one rate is high (above T+) and one
below a low threshold, Ta = 15Hz; weak LTP occurs when one rate is high (above
T+) and one intermediate (between Ta and T+); otherwise no change occurs.

parameter (vice versa). If in training the pairs are of fixed order (first A, then
A′), the resulting synaptic matrix may have a 6= a′ – asymmetric structuring.
If the images within the pairs are presented at random, the resulting synaptic
matrix will have a = a′ – symmetric structuring. The symmetry/asymmetry of
the synaptic matrix depends not only on ordering of the pairs, but also on the
symmetry/asymmetry of the learning dynamics (see below). Hence, in principle,
even in the ordered pair case, the resulting inter-population synaptic structure
may end up symmetric.

In the following, for the pre-structured case, we will consider the two extremes:
a = a′ (symmetric) and a′ = 0 (fully asymmetric).

2.2.4 Network with learning dynamics

The synaptic matrix is initialized by assigning to each existing excitatory synapse
in the connectivity scheme described above, the efficacy J1 with probability 0.05,
and J0 otherwise, irrespective of the identity of pre- and postsynaptic neurons
(tabula rasa). The learning process is implemented in a Hebbian, rate-dependent
way between excitatory neurons only. Plasticity takes place only in existing
synapses of the random connectivity arrangement. The average spike rate of
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every excitatory neuron is estimated as the ratio of the number of spikes emitted
into a time window T divided by T . The time window slides by T/2 increments,
so that each trial is divided into overlapping bins of T ms. If in a window T
both cells emit at a rate above a high threshold T+, chosen to be lower than
the rate of visual response, but higher than the rate in delay activity, and the
synapse has efficacy J0, its efficacy is potentiated to J1, with probability p+

(strong LTP condition); if the pre-synaptic cell emits at a rate below T+ but
above a low threshold Ta (lower than delay activity rate but higher than the rate
in spontaneous activity), while the post-synaptic cell emits at a rate above T+,
the efficacy J0 → J1 with probability pw (weak LTP condition 1); in the opposite
case, if the pre-synaptic cell emits at a rate above T+, while the post-synaptic
rate is below T+ but above Ta, the efficacy J0 → J1, with probability pw′ (weak
LTP condition 2); if the rate of one of the two cells is above T+ and that of
the other cell is below Ta, J1 → J0, with probability p− (LTD condition); in the
remaining cases, when none of the two cells emits at high rate, no change occurs.
This plasticity dynamics is motivated in the Discussion.

To summarize:

Prob(J0 → J1) =



















p+ strong LTP condition
pw weak LTP condition 1
pw′ weak LTP condition 2
0 otherwise

Prob(J1 → J0) =

{

p− in LTD condition
0 otherwise

(2.4)

The regions where plasticity takes place, in the plane of pre- and postsynaptic
rates, are shown in Fig. 2.3.

If pw′ 6= pw and the ordering of the images within the pairs is fixed, this
learning dynamics leads asymptotically to an asymmetric structure, Eq. 2.3 with
a 6= a′. However, if during training, the pairs are not ordered, i.e. each element
of the pair is as often presented as predictor or as choice, the structuring will
end up symmetric (Eq. 2.3, with a = a′). The simulation of the full learning
dynamics were carried out in the fully asymmetric case (pw′ = 0), as in Erickson
and Desimone (1999). The main goal has been to check that the dynamics indeed
converges to the expected synaptic matrix.

Parameters of the network of integrate-and-fire neurons

The simulated network of integrate-and-fire neurons had the following parame-
ters:
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Number of excitatory neurons NE 8000
Number of inhibitory neurons NI 2000
Number of recurrent excitatory connections per neuron CE 1600
Number of external excitatory connections per neuron Cext 1600
Number of inhibitory connections per neuron CI 400
Coding level f 0.05
Number of stimuli p 16
Membrane time constant, pyramidal cells τmE 20ms
Membrane time constant, interneurons τmI 10ms
Firing threshold (both types) θ 20mV
Reset membrane potential, pyramidal cells Vr 10mV
Reset membrane potential, interneurons Vr 15mV
Refractory period, (both types) τARP 2ms
Average E→E efficacy JEE 0.05mV
E→I efficacy JIE 0.11mV
I→E efficacy JEI 0.15mV
I→I efficacy JII 0.26mV
External E→E efficacy JEext 0.055mV
External E→I efficacy JIext 0.1mV
Potentiated E→E efficacy J1 3.2 JEE

Depressed E→E efficacy J0
(JEE−fJ1)

(1−f)

Synaptic decay type: fast excitation (AMPA-like) τAMPA 2ms
Synaptic decay type: slow excitation (NMDA-like) τNMDA 100ms
Synaptic decay type: fast inhibition (GABA-like) τGABA 5ms
Fraction of slow excitatory current x 0.05-0.30
Latency (transmission delay) δ 0.5-3.5ms
Initial probability of potentiation p0 0.05
Background external rates νext 15Hz
Contrast of external stimulus λ 0.7
High learning threshold T+ 65Hz
Low learning threshold Ta 15Hz
LTP probability p+ 0.007
weak LTP probability pw 0.0035
LTD probability p− 0.007
Learning bin T 100ms
Pair learning parameter (for fixed synaptic matrix) a 0-0.04

The parameters related to the network architecture were chosen to be compat-
ible with realistic cortical anatomy. Individual neuronal parameters and synaptic
temporal parameters were chosen in accordance with known physiological data
(see e.g. McCormick et al. 1985; Mason et al. 1991; Markram et al. 1997). The
synaptic latency was drawn randomly and independently from a uniform distri-
bution, in an interval (δ) given in the Table. The amplitude of synaptic efficacies
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and of external rates were chosen to obtain background ‘spontaneous’ activity at
around 5Hz for pyramidal cells, 10Hz for interneurons. J1 was chosen to ensure
stable persistent activity (for fixed network structure), or to lead to such stable
activity in the learning process (for evolving network structure). The relationship
between J0 and J1 is chosen so that spontaneous activity is unchanged as J1 is
varied (Amit and Brunel 1997b). The contrast of external stimuli, λ, was chosen
to render the visual response, at the beginning of the learning process, higher
than the high learning threshold T+. In simulations with pre-structured synaptic
matrix, λ was chosen to produce a visual response of around 80Hz. The value of
T+ ensures that synaptic modifications occurs only during visual presentations,
and not during delay activity or spontaneous activity, for structural stability rea-
sons, see Amit and Mongillo (2003). The low learning threshold, Ta, was chosen
to be higher than spontaneous activity, but otherwise as low as possible, to allow
synaptic modifications in the initial part of the interval of the choice stimulus
presentation. Finally, the synaptic transition probabilities, p+, pw (recall that
pw′ = 0), were chosen to be low, so that learning occurs gradually over the course
of many presentations; the weak LTP probability was chosen to be lower than the
high LTP probability again for stability reasons: Too high learning probabilities
(in particular too high weak LTP probability) lead to an epileptic state, when
too many inter-population synapses become potentiated to J1.

2.2.5 Simplified (population-rate) model

We also studied the network dynamics by using a simplified model. The full
simulation of the network of spiking neurons, subject to the entire experimental
protocol, including the synaptic formation, is quite time consuming. For example,
to run the full set of 1000 trials in the pair-associate paradigm takes several days
on a fast work-station. By contrast, a ‘mean-field’ approach provides an explicit,
complete and rapid picture of the attractor landscape of the network, hence the
available stationary states of its dynamics. The large scale simulation of the
network of spiking neurons is used to confirm the results of the mean-field model
and to explore the role of transitions between attractors due to the intrinsic
fluctuations related to the finite size of the system, absent in the mean-field
approach.

Note that the simplified model is not meant as an approximation to the full
simulation, as in e.g. (Amit and Brunel 1997a), but rather as a simple tool for a
qualitative study of possible stationary network states as the synaptic matrix is
varied.

Excitatory neurons in the simplified network are chosen to have an f-I curve
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Figure 2.4: The simplified model: A. f-I curve, φ(I) of an excitatory neuron,
Eq. (2.5), with Ic = 1, νc = 1. B. Bifurcation diagram for the average spike rates
in spontaneous and persistent delay activity states, as function of the LTP pa-
rameter, JS, in absence of pair-associate learning: a = 0. Dotted line, boundary
between the basins of the two stable states, when they coexist. For JS <0.62 only
spontaneous activity is stable; above 0.62, both spontaneous activity and selec-
tive delay activity of each of the 20 subpopulations coexist. The arrow indicates
the value of JS (=0.65) used in figures 2.5, 2.6.
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of the form:

φ(I) =















0 I < 0

νc
(

I
Ic

)2
0 < I < Ic

2νc
√

I
Ic
− 3

4
Ic < I

, (2.5)

giving the firing rate ν vs the mean input current I, shown in Fig. 2.4A, where we
have set Ic = 1, νc = 1. Ic can be thought of as a threshold current, while νc is the
typical firing rate of cells at this threshold current in presence of realistic noise.
Typical orders of magnitudes of these parameters for real cells are: Ic ∼ 0.2 nA
and νc ∼ 10 Hz. The f-I curve of Eq. 2.5 is chosen for its simplicity, and because
it reproduces the qualitative features of spiking neurons in presence of noise. It
has a convex sub-threshold region (for I < Ic), mimicking the noise-driven region
in spiking neurons (note that the power law behavior is a good approximation of
the f-I curve in a wide parameter range for many neuronal models, see Hansel and
van Vreswijk 2002). It has a suprathreshold region (for I > Ic), with a square
root dependence on the input current, as expected for type I neurons (Ermentrout
1996).

A state of the network is described by the mean rate of the p non-overlapping
excitatory sub-populations, each selective for a particular stimulus, and the mean
ate of the non-selective inhibitory population. For simplicity, the activity of
inhibitory population is assumed to depend linearly on the average activity of
the excitatory populations. The fraction of excitatory neurons selective to a
given image, the ‘coding level’, is chosen f = 1/p. In other words, there are
fN neurons coding for each stimulus, and every excitatory neuron finds itself in
one of the p, non-overlapping sub-populations. The input current to a neuron
in population α, i.e. selective to stimulus number α, is denoted by Iα, and the
mean spike rate in this population is να.

The total synaptic strength from all neurons in population β to a single neuron
in population α is Jαβ. The input current to population α is

Iα = Iext + Ist +
p
∑

β=1

Jαβνβ − JI
p
∑

β=1

νβ (2.6)

where the first term on the right hand side corresponds to the background (non-
selective) external afferent current, the second term is the selective input due to
presentation of a stimulus, the third is the excitatory recurrent feedback, and
the last term represents the inhibitory feedback, which we assume to be linearly
proportional to the average activity in the excitatory network.

The stationary average rates in the network are given by να = φ(Iα), Eqs. (2.5,2.6).
A simplified spike rate dynamics is used (see e.g. Wilson and Cowan 1972; Er-
mentrout 1998)

τ ν̇α = −να + φ(Iα) (2.7)

where τ is a time constant associated with the neural dynamics.
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The synaptic matrix incorporating the effect of pair learning is expressed as:

Jαβ = JE +



















JS if α = β, intra-population
−fJS/(1− f) if α 6= β not pair associates
(a− f)JS/(1− f) if α choice and β predictor
(a′ − f)JS/(1− f) if α predictor and β choice

(2.8)

a, a′ are the pair learning parameters, introduced in Eq. 2.3). The synaptic ma-
trix has two components: an average background excitatory component JE and,
on top, a selective component, presumed due to learning in the course of the
pair-associate protocol (Fig. 2.1B). The total synaptic strength within a given
population (intra-population connections) is potentiated to a maximal level JS
due to strong LTP. The total synaptic strength connecting two different popu-
lations which are not pair associates is depressed to a minimal level < JE, due
to LTD. Finally, synapses connecting two populations which are selective for as-
sociated stimuli have, on average, an intermediate potentiated strength, due to
competition between LTP and LTD. The particular relationships between the
various synaptic efficacies, renders the rate in spontaneous activity constant as
learning proceeds, and JS increases. It is chosen so for convenience in the theo-
retical analysis.

The stationary states of the network can be represented as a ‘bifurcation
diagram’, Fig. 2.4B, where the stable rates are shown as a function of the poten-
tiation strength JS, for a = a′ = 0 (Amit and Brunel 1997b; Brunel 2000). Two
types of attractor states are shown in Fig. 2.4B: 1. unstructured spontaneous ac-
tivity, for which all populations have spontaneous activity levels (thin horizontal
line); 2. selective delay activity states, in which one population (the one that last
received selective external inputs) has elevated activity (thick horizontal line)
while all other populations remain close to spontaneous activity levels. Other
types of states exist, as we will see later.

The spontaneous activity branch corresponds to the horizontal line in Fig. 2.4B.
The selective activity branch (solid bold curve) starts at JS = 0.62. Qualitative
results, however, do not depend on the precise value of JS, provided it is in the
bi-stable range shown in Fig. 2.4B (0.62 < JS < 0.96).

From a computational point of view, the attractor dynamics gives to the
network properties similar to a winner-take-all network (e.g. Ermentrout 1992),
when attractors represent single images. This computational property is here a
by-product of the dynamics of a recurrent network of excitatory and inhibitory
neurons with Hebbian learning of discrete stimuli.

The parameters of the simplified network are: Number of learned stimuli: p =
20; Total excitatory efficacy (pre-learning): JE = 0.5; Total inhibitory efficacy:
JI = 0.6; Selective LTP excitatory efficacy enhancement: JS = 0.65; Background
external inputs : Iext = 0.5; Selective external inputs during stimulus presenta-
tion: Ist = 2; Time constant of rate dynamics : τ = 5ms. The pair learning
indices a and a′ were varied systematically. Note that the parameters of the
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simplified mean-field model are rather different than those of the spiking net-
work model. This reflects the fact that the simplified model is not intended to
describe quantitatively the dynamics of the network model, as mentioned above,
but rather to explore qualitatively, in the simplest possible setting, the stationary
states of the network as a function of possible synaptic structuring.

2.3 Results

2.3.1 Simplified (population-rate) model

We start by analyzing the stationary states of the simplified model. The synaptic
matrix of the network, Eq. (2.8), is characterized by two pair-learning parameters
(a and a′), which represent the strength of the connection (A→ A′ and A′→ A)
between populations corresponding to pair associate stimuli. Figs. 2.5 and 2.6
show how the stable stationary states of the network (attractors) change as the
pair-learning parameters vary. Fig. 2.5 describes the case with symmetric synap-
tic matrix (a = a′), which would be obtained, for example, if training takes place
with no particular order within the pairs (Sakay and Miyashita 1991). Fig. 2.6
describes the case with an asymmetric matrix, which would correspond to train-
ing with pairs of fixed order (Erickson and Desimone 1999), and an asymmetric
learning dynamics (see Methods). For illustration we show in Fig. 2.6 the extreme
case a′ = 0.

In both cases the analysis reveals the existence of three types of attractor
states:

1. Unstructured spontaneous activity state (SAS) in which all populations
are active at low rates (black curve and black inset in Fig. 2.5). The spontaneous
spike rates are essentially unaffected by the values of a and a′.

2. Individual attractor states (IAS), one for each stimulus, in which a single
population is active at elevated rate (red curves and red inset in Fig. 2.5). The
delay period activity of the cue population (A) remains almost constant as a is
varied. Because of the enhanced synapses connecting pair-associate populations,
this persistent activity enhances the activity in the pair-associate population A′

(dashed red curve), above spontaneous rates. This rate increases with a and a′.
3. Pair attractor states (PAS) in which both populations of a given pair

(A and A′) have elevated spike rates (green curves and green inset in Fig. 2.5).
The pair state coexists with the individual state at low values of a and a′, down
to a = a′ = 0. At a = 0, all possible pair states (e.g. (A,A′), (A,B), (A,B′),
(A′,B), (A′,B′), (B,B′)) are attractors and are equivalent. These states can be
interpreted as simultaneous working memory of two items. As a increases, the
basins of attraction of the learned pairs (e.g. (A,A′) and (B,B′)) expand, while
the basins of attraction of other pairs shrink.
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Figure 2.5: Stationary states in the simplified model with symmetric learning.
Spike rates (arbitrary units) in stable network states vs the pair learning param-
eter, a. Three types of states are shown: 1. Spontaneous activity state (SAS,
black line), in which all populations are in spontaneous activity. This state is
identical to the unstructured spontaneous activity of Fig. 2.4B and exists in the
entire range of 0 < a < 0.1. 2. Individual attractor state (IAS, red lines), in
which one of the populations (here A) emits at elevated rates (full line), while
the pair-associate (A′) emits at a rate which is slightly higher than spontaneous
activity (dashed line), due to increased connections between pair-associate pop-
ulations. Other populations (dotted line, B, B′, . . .) emit at slightly lower rates
than spontaneous activity, due to higher inhibitory activity caused by the delay
activity. The IAS state is the analog, in the pair-associate protocol, of the usual
persistent activity state shown in Fig. 2.4B. It exists only at small values of a,
(a < 0.06). 3. Pair attractor state (PAS, green lines), both populations of a pair
(here A, A′) emit at elevated and equal delay rates (full line). Other populations
(B, B′, . . .) emit at low rates (dotted line). This state exists in the whole range
of 0 < a < 0.1. For a < 0.06, the three types of states coexist; for a > 0.06, only
spontaneous and the pair attractor states are stable. Insets show a schematic
histogram of the rates in different populations in the network for the three types
of states (SAS, IAS, PAS).
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Figure 2.6: Attractors in the simplified model with asymmetric learning of tem-
porally ordered pairs. Rates in different network states vs the pair learning
parameter a. Three types of selective states are shown (indicated schematically
in the panels marked IAS (A), PAS, IAS (A′)): an IAS in which the first item
of the pair (A) is active at an elevated rate, and the second item (A′) is weakly
above spontaneous activity level. It exists only in the range a < 0.05. The IAS,
in which the second item of the pair (A′) is active at elevated rates is stable in
the range 0 ≤ a ≤ 1. This is because elevated activity in A′ does not lead to
increased activity in its pair associate, which acts to destabilize the IAS in the
symmetric scenario and the IAS (A) in the asymmetric scenario. Finally, the
PAS exists in the range a < 0.55. The value of a where the PAS state becomes
unsatble strongly depends on the strength of inhibition. This PAS differs from
the PAS of the symmetric learning case since the activity of A′ is stronger than
the activity of A. When a is sufficiently strong, upon presentation of stimulus
A, the network will make a transition either to the asymmetric PAS (both retro-
spective and prospective delay activity), or to the IAS of the second item (purely
prospective delay activity).
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Symmetric case (a = a′)

Fig. 2.5 shows that both types of states (individual and pair) coexist until a =
0.06. For a > 0.06, the individual attractor states (IAS) are no longer station-
ary states of the dynamics and the pair attractor states remain the only stable
selective states of the system. This implies that for a < 0.06, if the network is
stimulated by a single stimulus of a pair, it will end up in an IAS, while to reach
a PAS it should be stimulated simultaneously by the two stimuli of the corre-
sponding pair. Above a = 0.06, stimulating the network by any of the individual
stimuli of a pair would lead to a pair stationary state, corresponding to the pair
of which the stimulus is a member. For these values of a the network is not able
to maintain working memory of a single item of a pair.

Depending on the level of pair learning, we can expect two types of ‘prospec-
tive’ delay activity in a given trial of a pair-associate task: If a is small, and A is
shown as a cue, the network settles in an IAS, the individual predictor state, and
the activity of neurons in population A′ will be only slightly enhanced compared
to baseline – weak prospective delay activity. If a is large enough, and A is shown
as a cue, the network settles in the pair state (PAS) and the delay activity of
neurons in population A′ will be elevated – strong prospective delay activity.

Asymmetric case (a′ = 0)

From Fig. 2.6 one can read two qualitative differences in the structure of the
state compared to the symmetric case : 1. The IAS corresponding to the pre-
dictor stimulus (A) becomes unstable at a = 0.04, while the one corresponding
to A′ remains stable up to high values of a. As a consequence, when a becomes
sufficiently strong (0.05 < a < 0.55), the network finds two selective states acces-
sible: the IAS corresponding to A′ and the PAS; 2. In the PAS the rate of the
choice stimulus is higher than that of the predictor. As in the symmetric case,
until a critical value (a = 0.05) both IAS and PAS coexist, in the sense explained
above. Note that in the first state, retrospective activity is absent.

2.3.2 Network of spiking neurons: ‘prospective’ activity

Next, we turn to a microscopic simulation of a model of a ‘cortical’ network of
integrate-and-fire neurons. This was done in two stages: 1. observing the neural
dynamics in the network with a pre-learned, fixed synaptic matrix incorporating
pair learning; 2. observing the learning process in the microscopic simulation
with coupled neural/synaptic dynamics.
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Figure 2.7: Random transitions to prospective activity in the delay interval. Time
course of population-averaged activity, with pre-structured synaptic matrix, in
the fully asymmetric condition with a = 0.02 and x = 0.05. The remaining
parameters are reported in Table 1. The epochs of the trial are indicated in the
bottom panel (prestimulus: 0-500ms; cue presentation: 500-1000ms; delay period:
1000-2000ms; test presentation: 2000-2500ms). Black curve: average rate in the
predictor population. Red curve: average rate in the choice population. Rates
are sampled in bins of 10 ms. Top 3 panels: Single-trial examples of transition
at different times during the delay period. At the top of each panel, we present
a spike raster of one representative cell belonging to the predictor population
(black) and one to the choice population (red). Note that retrospective activity
can either persist (Trial 1 and 3) or die out (Trial 2). Bottom: predictor and
choice population activity averaged over 40 trials (PSTH). The average delay
activity in the pair-associate population shows a continuously increasing activity
during the delay period.
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Random transitions towards strong prospective activity occur in the
delay period

As for the simplified network, the network of spiking neurons exhibits various
steady states of selective delay (persistent) activity. In particular, a state in which
an individual population has elevated delay rates while the remaining ones have
much lower rates (IAS); and one in which two populations have elevated delay
spike rates (PAS). The main difference from the simplified network is that the
finite size of the microscopic network causes random fluctuations in the average
activity of each population (see e.g. Brunel and Hakim 1999), and those provoke
transitions between states. When such a transition occurs, the rate of neurons in
the choice population rises – from weak to strong ‘prospective’ activity.

Depending on the degree of symmetry in the structuring and on the pair
learning parameter a, the retrospective activity can either persist all along the
delay interval, or die out when the transition takes place. In the first case, the
transition is between an IAS, corresponding to the predictor, and the correspond-
ing PAS (i.e. the other active population is that of the paired choice). In the
second case, the transition is between the IAS corresponding to the predictor and
the IAS corresponding to the choice.

Examples of stochastic transitions can be viewed in Fig. 2.7, which shows
the average activity of two populations, predictor and choice, during single tri-
als. Neurons selective for the predictor stimulus (black curve) show high visual
response during cue presentation, and elevated delay activity, when the stimulus
is removed (retrospective activity). Neurons selective for the pair associate stim-
ulus (red curve) see their activity increase sharply at different instances during
the delay period. These are spontaneous transitions induced by fluctuations and
occur at random times during the delay period. The same neurons continue to be
active as a visual response to the pair associate (choice), when it is presented as
test. As the transition takes place, the delay activity of the predictor population
can either persist (PAS, Fig. 2.7, first and third panel) or die out (choice IAS,
Fig. 2.7, second panel). If the transition does not occur, the retrospective delay
activity persists all along the delay interval (i.e. until the presentation of the
choice).

The situation is somewhat analogous to the escape rate of a random walker
with a high threshold: the average time to escape is much longer than the time
constants of the single neuron or of the synaptic dynamics, since the barrier is
difficult to cross on these time scales. The distribution of escape times is close
to exponential. The average delay activity of ‘pair associate’ neurons becomes a
slowly increasing function of time, with the slope at the origin inversely propor-
tional to the average ‘lifetime’ of the individual attractor state. This slow rise of
prospective activity is shown in the lower panel of Fig. 2.7.
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Figure 2.8: Effect of pair-learning parameter a on prospective activity. Network
with fully asymmetric pre-structured synaptic matrix. A: Temporal evolution of
averaged prospective activity. Curves are trial-averaged activity of choice pop-
ulation during the cue presentation and the delay interval. The increase of the
emission rate is due to the fact that the probability of having made a transition to
a prospective state increases with the passage of the time. It becomes steeper as
a increases due to the decrease in the average lifetime of the IAS. For a = 0.04,
transition occurs during cue presentation. B: Temporal evolution of ’prospec-
tive’ activity, synchronized on transition time (t = 0), defined by the first time
at which population activity, averaged over 10ms bin, exceeds 20Hz and remains
higher until the end of the delay period. The time course is unaffected by a.
x = 0.05, other parameters indicated in Methods.

Slope of rising prospective activity depends on pair learning parameter

Fig. 2.8A presents the time course of prospective activity during the delay pe-
riod, averaged over 100 trials, for several values of a. One observes a monotonic
rise of the ’prospective’ activity, expressing the fact that the number of trials
in which the transition has occurred increases with the passage of time. As a
increases, the lifetime of the individual (A) attractor state decreases, and hence
transitions to prospective activity occur earlier, leading to a higher slope of the
trial-averaged activity. However, the dynamics of the transition itself, as revealed
by synchronizing all rasters at the transition time is quite sharp for any value
of a (Fig. 2.8B). The transition takes place in approximately 100-200ms. For
small values of a, a ≤ 0.015, the average transition time is much longer than
the delay period. Hence, almost no transitions occur in the delay period, and
the activity of the choice population remains approximately constant during the
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Figure 2.9: Effect of synaptic kinetics on prospective activity. Network with fully
asymmetric pre-structured synaptic matrix, for different values of x. A: Temporal
evolution of trial-averaged prospective activity for four values of the fraction of
the slow currents x. As x increases, the increase of delay rate becomes slower.
B: Dynamics of the transition as a function of the fraction of the slow currents.
Curves are trial-averaged activity of the choice population, synchronized at the
transition time (t = 0). Larger x leads to slower transitions. For x = 0.05,
the transition takes place in about 100ms; for x = 0.20 it takes place in about
500ms. Transition time is defined as in Fig. 2.8. a = 0.025, other parameters as
in Fig. 2.8.

delay period. For a about 0.02, the average transition time becomes comparable
to the delay period, hence the rise of prospective activity observed in Fig. 2.8.
For larger values of a (a ∼ 0.04) the transition to the PAS (prospective activity)
occurs even earlier, during the cue presentation. This leads to strong correlations
between visual responses to pair-associate stimuli.

Synaptic kinetics affects time scale of transitions in individual trials

To study the dependence of the dynamics of transitions on the kinetics of excita-
tory synapses, we varied the fraction of slow (100ms, NMDA-like) to fast (2ms,
AMPA-like) excitatory recurrent currents, keeping constant the pair-learning pa-
rameter a. In Fig. 2.9A, one observes the rise of prospective population activity
at various levels of x. As x increases, the ‘prospective’ activity rises more slowly,
due to the slower dynamics of recurrent excitation, as is made clearer when the
activity is synchronized at the transition time (Fig. 2.9B). The choice neurons
take approximately 1s to complete the transition from the spontaneous activ-
ity state to the elevated activity state, compared to 100ms for a low fraction of
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Figure 2.10: Distinguishing fast/slow transitions in single cell recordings. Trial-
averaged prospective activity (A,B) and rate histograms for single cell during the
delay period, in bins of 200ms (C,D). A,C: x = 0.05, a = 0.15. B,D: x = 0.2,
a = 0.25. Despite the similarity in the time course of prospective activity, in the
case of fast transition (x = 0.05), single-cell rate distribution is bi-modal (A,C),
indicating low rates at beginning of interval and high after a short transient; For
slow transition ( x = 0.2), the distribution is uni-modal (B,D), since gradual rise
samples all rates until saturation.

slow recurrent excitation. As a consequence, when slow excitation is significant,
the dynamics at the level of single trials becomes similar to the trial-averaged
dynamics.

In conclusion, the basic mechanism of stochastic transitions between attractor
states does not depend on the fraction of slow receptors, but the time course of
the transition does. Prospective activity can rise sharply or gradually in the
course of single trials. In both cases, the average of activity over many trials
shows a ramping up of activity in neurons selective to the choice stimulus.

Individual spike trains distinguish fast/slow transitions

Can these two scenarios be distinguished experimentally? In experiment, spike
trains of single neurons are recorded in single trials. A possible procedure is
to select cells that show prospective activity. In each delay period of a trial in
which the corresponding predictor stimulus is shown,the instantaneous spike rate
is computed, using a bin size that should be longer than the average interspike
interval, yet shorter than the average lifetime of the individual attractor states.
Such a distribution of rates would be bi-modal for abrupt transitions. The peak
at low rates would correspond to the time spent in the individual attractor state
of the predictor, before the transition. The peak at high rates would correspond
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to the part of the delay interval following the transition. In the states reached
after the transition, the choice neurons have elevated activity. On the other hand,
slow transitions give rise to uni-modal distribution of rates, due to the fact that
in all trials the rate of choice neurons rises gradually from spontaneous activity
to elevated persistent activity. In Fig. 2.10, we compare the histograms from
network simulations in two cases, one with fast transitions (x = 0.05), the other
with slow transitions (x = 0.2). Parameters are chosen such that the time course
of trial-averaged prospective activity is similar in both cases (see Fig. 2.10A,B).
Fig. 2.10C is the single cell rate histogram for low fraction of slow receptors
(x), and hence a fast transition and the corresponding bi-modal distribution.
Fig. 2.10D is the histogram of the single cell rate for the gradual case, which is
uni-modal.

Symmetric vs asymmetric synaptic structuring

The results exposed refer to simulations with pre-structured synaptic matrix in
the fully asymmetric condition, i.e. a′ = 0. We also carried out simulations
with a symmetric pre-structured synaptic matrix. The main difference is that
retrospective activity is more likely to die out when transitions occurs in the
delay period.

2.3.3 Learning in the Erickson-Desimone protocol

Next we perform a full simulation in which the neural dynamics is accompanied
by synaptic plasticity, to mimick two days of the experiment of Erickson and
Desimone (1999). In this process, we can monitor the evolution of the neural
activities in different stages of the on-line learning process, which can be compared
to experiment. We go further and monitor the evolution of the synaptic structure,
beyond experimental access, to see if it actually converges to the type of structures
assumed in the previous section; expose the different stages of the structuring;
and check the asymptotic stability of the evolving synaptic structure.

The structuring is monitored by the fraction of potentiated synapses in the
various homogeneous synaptic populations. Of interest are three types of popula-
tions of excitatory-to-excitatory synapses: synapses connecting neurons selective
to the same stimulus (A→A); synapses connecting a neuron selective for a pre-
dictor stimulus to a neuron selective for a choice stimulus (A→A′); and finally,
synapses connecting neurons which are selective for stimuli which belong to differ-
ent pairs (A→B). The fraction of potentiated synapses in these three populations
of synapses are denoted by CA→A, CA→A′ and CA→B. In each trial, a small frac-
tion of excitatory synapses switch from low to high state (LTP) of from high to
low state (LTD), due to predictor and/or choice presentation.

In the following, we show the results obtained with fully asymmetric rule, i.e.
pw′ = 0. Synaptic plasticity with the symmetric rule leads to results that are
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qualitatively rather similar.

Three stages in the evolution of the network

In the first stage (trials 0-300, Fig. 2.11A-B), synaptic potentiation occurs only
in synapses connecting neurons selective to the same stimulus, since all other
neurons are at spontaneous levels (see Fig. 2.3 regions). The fraction of poten-
tiated synapses in this synaptic population, CA→A increases monotonically with
the number of presentations, reaching saturation at CA→A = 1, Fig. 2.11A. In
the same period, LTD takes place in synapses connecting the neurons responsive
to different images, and hence both CA→A′ and CA→B decrease monotonically
(Fig. 2.11B). In this phase, the presentation of a stimulus evokes only visual
response at high rate in the corresponding population for the duration of the
presentation. As soon as the stimulus is removed, emission rates decay back to
the spontaneous level (Fig. 2.11C, curves black, red), since the average strength
of synapses connecting neurons selective for the stimulus is not yet large enough
to sustain delay activity. This stage continues until the resulting synaptic struc-
ture renders a state of persistent activity stable after the stimulus is removed,
i.e. during the delay period. Retrospective delay activity appears.

In the second stage (trials 300-600, Fig. 2.11A-B) , retrospective activity has
become stable and it allows synaptic potentiation in the inter-population connec-
tions. The enhanced emission rate of the predictor populations persists until the
presentation of the choice stimulus (Fig. 2.11C, curves green, blue, brown and
magenta). The neurons coding for the predictor are thus active at elevated rates,
in close temporal proximity to those coding for the choice and synaptic potentia-
tions can take place in (predictor→ choice) synapses (see Methods). The fraction
of potentiated synapses CA→A′ begins to increase with the number or pairings, as
shown in Fig. 2.11B. It does not reach saturation CA→A′ = 1, because LTD also
takes place in this synaptic population, when the delay activity of the predictor
has returned to spontaneous level while the choice population is still emitting
at high rate. LTD also take place in trials in which the predictor is not fol-
lowed by the corresponding choice (invalid trials, see Methods). This leads to an
asymptotic fraction of potentiated synapses in the inter-population connections
CA→A′ ¿ 1, whose value depends on the ratio between the probabilities of LTP
and LTD and reflects the balance between potentiating and depressing processes
in these synaptic populations. The asymptotic level of potentiated synapses in
the inter-population connections corresponds to the forward pair learning param-
eter a. When the fraction of synapses CA→A′ becomes of order 0.02, transitions
between states become possible in the delay period. Prospective activity appears,
as shown in Fig. 2.11D.

In the third stage (Fig. 2.11A-B, beyond trial no. 600), the network has
reached an asymptotic synaptic structure. This structure may still fluctuate from
trial to trial, due to random LTP and LTD transitions, especially in synapses
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Figure 2.11: Evolution of synaptic matrix and neuronal dynamics during learn-
ing. A-B: Synaptic structuring vs number of trials. A: Fraction of potentiated
intra-population synapses. CA→A increases monotonically with the number of
presentations until it reaches the saturated level CA→A = 1. B: Fraction of po-
tentiated inter-population synapses for 100% (red) and 85% (black) of valid trials.
CA→A′ decreases monotonically from the initial level CA→A′ = 0.05 until retro-
spective activity becomes stable, then increases with the number of presentations.
It does not reach the level CA→A′ = 1, because also LTD takes place among inter-
population connections. C-D: Characteristics of neural activity vs number of
trials, for 85% of valid trials. C: Retrospective activity average across successive
100 trials. Color code: black 0-100; red 100-200; green 200-300; blue 300-400;
brown 400-500; magenta 500-600; yellow beyond 600. Retrospective activity be-
gins to appear between 200-300 trials (green curve), and becomes stable after
about 400 trials. Further trials do not affect retrospective activity. D: Prospec-
tive activity appears only after retrospective activity is in place, between trials
400 and 500 (brown curve). Network parameters as in Methods, with x=0.05.
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connecting predictor to choice neurons, but the global variables CA→A, CA→A′

and CA→B remain essentially constant. As in the case of the simulations with a
fixed synaptic matrix retrospective and/or prospective activity occur in individual
trials.

The asymptotic level of potentiated synapses, CA→A′ , depends on the per-
centages of pairings between the images during the training stage (valid trials).
Fig. 2.11B shows the evolution of CA→A′ with the number of trials, for two dif-
ferent percentage of valid trials in the protocol, 100% (red line) and 85% (black
line). Lower percentage of valid pairings leads to lower percentage of potentiated
synapses, CA→A′ .

Statistical analysis of spike rates

To compare the evolution of the neural activity patterns in the course of training
in the simulation with Erickson and Desimone (1999), we use the average corre-
lation between visual responses to pair-associate stimuli; between predictor visual
response and delay activity and between choice visual response and delay activity,
vs the number of trials, in the course of training. We estimate the average rates
of a sample (10%) of cells in predictor, delay, and choice periods, separately for
each of the 8 (predictor-choice) pairs. The sample contains the same number of
cells for each pair. For each cell and in each trial, the rate during cue and test pre-
sentations is estimated in a window 75ms to 250ms from the presentation; delay
period rate is estimated in a window 200ms after cue removal to 200ms before
test presentation. The average responses are obtained by averaging single-cell
rates across trials with the same pair of stimuli, for each cell.

The simulation is divided into successive groups of 100 trials, and correlations
between predictor and choice rates, predictor and delay rates, and delay and
choice rates are computed in each group. The correlation between the predictor
visual response and the delay activity begins to increase right from the begin-
ning (Fig. 2.12), while both correlation between visual responses and between
delay activity and choice visual response remain initially at chance level. After
the first 300 trials, delay activity is significantly correlated with the response to
the predictor stimulus (Fig. 2.12). This is due to the presence of retrospective
activity (see also Fig. 2.11). As the training proceeds, the correlation between
the visual responses to paired stimuli increases (Fig. 2.12). Similarly, the correla-
tion between choice visual response and the delay activity significantly increases
(Fig. 2.12). In contast, the correlation between predictor visual response and the
delay activity reaches a steady level, which is not substantially affected beyond
400 trials.

These results are a direct consequence of the increase of the pair learning
parameter a in the course of training. As can be seen from Fig. 2.11, after about
200-300 trials, the (A→ A) connections reach a potentiation level that sustain
retrospective activity. At the same time, the (A → A′) connections remain in

40



0

0.2

0.4

0.6

0.8

200 400 600 800
−0.1

0

0.1

0.2

0.3

Number of trials

A
ve

ra
ge

 c
or

re
la

tio
n

predictor−delay 

choice−delay 
predictor−choice 

Figure 2.12: Average correlations between visual responses to paired-stimuli,
between predictor response and delay activity and between choice response and
delay activity, vs number of trials. Predictor response and delay activity become
strongly correlated as soon as retrospective persistent activity becomes stable,
i.e. around trials 200-300. It then reaches an asymptotic high level of about 0.7.
Correlations between predictor and choice visual responses and between choice
response and delay activity begin to increase between 400 and 500 trials, only
after correlation between predictor response and delay activity reaches a high
level, i.e. retrospective activity has appeared. The correlation between choice
response and delay activity reaches an asymptotic level of about 0.3, while the
correlation between predictor and choice visual responses reaches about 0.07, only
after trial 500. Average values are computed in each successive group of 100 trials
separately. See text for more details.
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their low state. As training proceeds, the mean level of potentiation CA→A′

increases, reaching the asymptotic level after 500-600 trials (corresponding to a
in the pre-structured synaptic matrix), leading to prospective activity.

2.4 Discussion

In the present paper, we have investigated the learning dynamics of a cortical
network model subjected to the pair-associate protocol. In a first stage, the plas-
ticity leads to the formation of neural representations for single images (selective
delay activity). During the visual presentation, the concurrent activation at high
rate of the cells coding for the same stimulus, causes potentiation of the synapses
connecting the neurons activated by the same stimulus. When the efficacy within
each of these synaptic populations reaches a suitably high level, the neural popu-
lation becomes capable of sustaining reverberating activity, in absence of external
inputs. This persistent activity maintains an active memory of a stimulus shown
in the past (the ‘predictor’ stimulus) – retrospective activity. These states are
attractor states, expressing the fact that a large variety of neighboring stimuli
evoke the same self-sustained distribution of the level of average rates.

Once retrospective activity becomes stable, it persists across the delay in-
terval, until the presentation of the choice stimulus. The delay period activity
allows neurons coding for the predictor to be active in close temporal proximity
to the visual response of the choice neurons, which leads to the potentiation of
the synapses between the two neural populations (inter-population connections).
This potentiation is weak, relative to that within each population, and its am-
plitude is governed by the percentage of trials in which the second image is the
fixed pair-associate (in contrast to those where it is a randomly chosen image). It
is important to point out that the level of inter-population potentiation reaches
a stable (low) asymptotic level during learning, governed by a balance between
LTP and LTD. TD in the inter-population synapses intervenes either during the
cue presentation, or in the part of the choice presentation when the retrospective
delay activity had died down, or in the course of non-valid trials (see Results).
None of these bring about LTD in intra-population synapses. These connections
give rise to transitions, after the cue presentation, to other types of persistent
states available to the network: either pair states, combining the neurons of both
the predictor and the choice of the corresponding pair, or the individual persis-
tent activity state of the choice stimulus. The activation of the choice neurons,
prior to the presentation of the choice stimulus, is referred to as prospective ac-
tivity (see e.g. (Fuster 2001) and refs therein). In the first scenario, retrospective
activity persists, while in the second it dies out during the delay period.

The transitions are caused by the fluctuations in the neural spiking dynamics.
The probability of occurrence of such a transition depends mainly on the strength
of inter-population connections and on the level of noise in the system. As the
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strength of inter-population connections increases, the basin of attraction of the
individual attractor states shrinks in favor of that of the corresponding pair states,
rendering the transitions more and more frequent. As a matter of fact, pair
states exist even without inter-population strengthening (Amit et al. 2003), yet
transitions due to noise, from an individual to the associated pair state, become
significant only after the inter-population potentiation reaches a sufficiently high
level.

In this account the potentiation of the inter-population connections depends
on the existence of the predictor persistent state. The appearance of the retro-
spective activity, prior both to the pair-coding neurons and to the prospective
activity is therefore a logical prerequisite, and prediction (see below), of the sce-
nario proposed. In absence of the predictor persistent state, no inter-population
potentiation is possible.

2.4.1 Comparison with experiment

Prospective activity in perirhinal cortex and IT

Our model reproduces most of the available neuro-physiological data obtained
during delayed pair-associate tasks in the temporal lobe of the monkey. Sakay
and Miyashita (1991) and Naya et al (2001, 2003) found two types of cells in
their recordings of area TE of IT cortex and of area 36 of PRh cortex: pair-
coding cells and pair-recall cells. Our model explains the response characteristics
of both types of cells in a unifying framework.

Both types of cells arise due to learning dynamics, which potentiate the con-
nections between cells that are selective for pair-associate stimuli, while the rel-
ative occurrence of both types is related to the magnitude of the pair learning
parameter. If a is small (of order 0.02 in the simulations of Fig. 2.8), transitions
from the predictor attractor to a pair-associate attractor (either individual or pair
state) take place only during the delay period. The visual responses to paired
stimuli are only weakly correlated, while delay activity is strongly correlated with
choice response. Such neurons have all the characteristics of pair-recall neurons.

By contrast, if the pair learning parameter is large (of order 0.04 in the sim-
ulations of Fig. 2.8), transitions to the ‘prospective’ states occur during the cue
presentation, yielding strong correlations between the visual response to pair-
associate stimuli. Hence, at large a, cell activities have the characteristics of
pair-coding neurons.

Naya et al. (2001) found that neurons in perirhinal cortex are typically pair-
coding neurons (see also Naya et al. 2003), while neurons in area TE are typically
pair-recall neurons. Differences between these areas could be due to differences
in learning dynamics between areas 36 and TE. Naya et al. (2001) hypothesize
that backward projections from perirhinal cortex to IT are responsible for the
transitions during the delay period to prospective activity in IT. Lesions in PRh
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cortex suppress correlations between visual responses to pair associates in IT
(Higuchi and Miyashita 1996), lending further support to the role of backward
projections.

We would argue that this data could be accounted for if one assumes that
in area TE the pair learning parameter is small (or even zero). In that case, in
absence of backward projections from PRh cortex, the average transition times
are very long. Backward projections would then provide a biased input favoring
transitions to prospective activity in area TE. In the present model, the gradual
rise of activity seen in pair-recall neurons (Sakay and Miyashita 1991) is compat-
ible with two scenarios: one in which the rise is gradual on a single trial basis,
and another in which the rise is abrupt in a single trial, but occurs at random
instances during the delay, and thus is gradual when averaged across trials (see
Fig. 2.9). Naya et al. (2001) provide evidence that the transition duration is
short, of order 100ms. This would indicate that in area TE, the fraction of slow
excitatory receptors is small.

The studies of Erickson and Desimone (1999) and Messinger et al. (2001)
provide evidence that modifications of neuronal selectivity due to learning of new
associations can occur on the time scale of hours. Our model operates at the
same timescale (in terms of numbers of trials needed). of appearance of retro-
spective and prospective activity seen in experiment. In the model, this time
scale is related to LTP and LTD transition probabilities. Our results are con-
sistent in more detail. During the learning of a new pair, there is a first stage
(first day), in which the delay activity in the perirhinal cortex is correlated only
with the predictor (‘retrospective’ working memory), while after a second day of
training, delay activity is correlated also with the choice (‘prospective’ activity).
Our model accounts for these two distinct stages: indeed, the presence of ‘ret-
rospective’ activity is a prerequisite, before synapses connecting populations of
cells selective for pair-associates can potentiate, and hence ‘prospective’ activity
starts to develop. The simulation experiments reported in Fig. 2.11, show that
during the first 400 trials (corresponding to the ‘novel’ condition, one day in the
experiment of Erickson and Desimone 1999), ‘retrospective’ activity has already
become robust, while ‘prospective’ activity has barely appeared. In the next
400 trials (corresponding to ‘familiar’ condition, second day of the experiment),
‘prospective’ activity becomes prominent, since transitions between individual
and pair attractor states occur quite often during the delay period.

Our model also accounts for structure of correlations in spike rates. In the
‘novel’ condition, i.e. following a relatively short training, the delay activity is
correlated only with the predictor visual response. By contrast, in the ‘familiar’
condition, i.e. following a relatively long training (2 days), the delay activity
becomes correlated also with the choice visual response. The magnitudes of the
correlations in our simulations are rather similar to the experimentally observed
ones: The average correlation between predictor and delay is in experiment 0.316
for ‘novel’ and 0.404 for familiar stimuli (0.36 average over all first 400 trials, and
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0.69 average over the last 400 trials, in our simulations,); the correlation between
choice visual response and delay activity is 0.079 for ‘novel’, 0.269 for ‘familiar’
(0.002 and 0.28, in our simulations); the correlations between the visual responses
of predictor and choice are -0.002, for ‘novel’ and 0.145 for ‘familiar’ stimuli (0.015
and 0.053 in our simulations). In accordance with experiment, the correlation
between visual responses does not account for the correlation between choice
visual response and delay activity. This is due to the fact that at this relatively
low level of a, visual responses to pair-associates are weak, and most ‘prospective’
effects occur during the delay period, and not during the cue period.

There are two significant quantitative differences between simulations and ex-
periment: (i) between predictor visual response and delay, for familiar stimuli,
(0.404 vs 0.69). This difference could be due to the fact that in experiment retro-
spective activity dies out more often. It would be remedied by a somewhat lower
value of excitatory potentiation, or a higher value of the pair association pa-
rameter; (ii) between ‘predictor’ and ‘choice’ visual responses for familiar stimuli
(0.145 vs 0.053). This difference could be explained by differences in the magni-
tude of the rate of selective visual responses. In our simulations, the correlations
between visual responses increase from 0.053 to 0.119 if the visual response of
selective neurons is decreased from 160Hz to 80Hz.

Some studies have failed to find evidence of associative learning, i.e. cells
exhibiting ‘prospective’ activity. Gochin et al. (1994) used a protocol similar to
that of Sakay and Miyashita (1991) and Erickson and Desimone (1999), with the
difference that individual stimuli were used in more than one pair. Our model
would account for the absence of ‘prospective’ activity, since if the percentage of
trials in which the two stimuli are paired is lowered, the pair learning parameter
does not reach the threshold to produce significant prospective activity. Another
possible reason for discrepancies between different studies stems from differences
between different areas of the temporal lobe, and in particular between PRh
cortex (area 36) and area TE of IT cortex (Naya et al. 2001; Naya et al. 2003).

Prospective activity in prefrontal cortex

Prefrontal cortex (PFC) has long been involved in the expectation and prepa-
ration of anticipated events (see e.g. Fuster 2001 and refs therein). Prospective
activity, i.e. increased firing of cells in apparent anticipation of the motor response
or another stimulus related to it, has been observed in PFC (Niki and Watanabe
1979; Fuster et al. 1982; Sawaguchi et al. 1989; Rainer and Miller 1999; Quintana
and Fuster 1999; Fuster et al. 2000). Changes of neuronal activity in the delay
period have been shown to arise due to associative learning (Asaad et al. 1998;
Rainer and Miller 1999; Fuster et al. 2000). As training takes place, the delay
activity shifts from purely retrospective to prospective, and the shift takes place
dynamically during the delay period (Rainer and Miller 1999). This is again con-
sistent with our findings. Indeed, in our model, activity is mostly ‘retrospective’
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until the beginning of the delay period, and becomes more and more ‘prospec-
tive’ as the network has time to make transitions to the pair attractor states,
or to gradually move into these states when recurrent excitatory synapses have
a sufficiently strong slow component. This data suggests that the basic mech-
anisms of the generation of prospective activity, through the interplay between
retrospective persistent activity and Hebbian learning apply also to PFC. This,
despite significant functional differences between PFC and areas of the temporal
lobe, such as the facts that in PFC, cells represent not only the external stimuli,
but also motor responses and errors, and cell responses are less selective.

2.4.2 Experimental predictions of the model

The main prediction from our study is that in delayed response tasks, prospective
activity can only appear if retrospective activity is stable. This prediction could
be tested experimentally by manipulating persistent activity in the delay period,
using iontophoresis of any neurotransmitter that is known to affect persistent
activity, such as dopamine (Williams and Goldman-Rakic 1995) or GABA (Rao
et al. 2000). Iontophoresis leading to suppression of retrospective activity could
be performed in the fraction of trials in which there is retrospective activity but
no prospective activity (first day, ‘novel’ stimuli in Erickson and Desimone 1999).
Then, no prospective activity, would develop.

Our study makes a second clear prediction: as the pair-learning parameter
increases, the correlation between visual responses to paired stimuli should also
increase, while the time of appearance of prospective activity (measured from
cue onset) should decrease. The magnitude of a can be manipulated by vary-
ing the relative frequency of trials in which pair-associate stimuli are shown to-
gether (‘valid trials’, in Erickson and Desimone 1999). As the percentage of ‘valid
trial’ increases so should the mean correlation between visual responses to pair-
associate images. Correspondingly, ’prospective’ activity should appear earlier
in a trial or, equivalently, the slope of the rise of averaged prospective activity
should increase, as shown in Fig. 2.8.

A third prediction is that if fast excitatory synaptic transmission predomi-
nates, the transition in a given trial should be very steep, and not gradual as
seen on average. An alternative scenario would be that the increase of activity
is gradual in every trial, as is the case fo higher proportions of slow excitatory
synaptic component. The type of transition can be identified in experiments with
single cell recording, by analyzing the binned spike rate histogram of a single neu-
ron over several trials (Fig. 2.10). A similar procedure was used by (Chafee and
Goldman-Rakic 1998) to characterize a slow increase of persistent activity in
the delay period of a delayed oculomotor task. Manipulation of NMDA and/or
AMPA levels in parallel with neurophysiological recordings during pair-associate
tasks may put this prediction to a test.

One would also expect that, if ‘prospective’ activity is actually related to
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behavior, part of the variability in the reaction time, as well as in the performance
level, of the monkey could be due to the variability in the transition times in the
delay period. This should be true particularly in the early stage of learning,
when a is expected to be low. Our study predicts that for low a, the transition
to the pair-associate state occurs during the delay period, with a probability
that depends on a. Thus, one can expect shorter reaction times and higher
performance level, correlated with instances when the transition actually took
place in the delay period, with respect to the instances when transitions did not
take place.

2.4.3 Theoretical issues

Synaptic plasticity

A serious limitation of the present study is that the synaptic plasticity mechanism
is still rudimentary, since what drives synaptic changes at individual synapses is
average rates (in sliding windows of 100ms) of pre- and post-synaptic neurons.
Recently, much experimental work has been devoted to the details of what actu-
ally controls synaptic changes, at the level of pre- and post-synaptic spike trains
(Markram et al. 1997; Bi and Poo 1998; Sjöström et al. 2001). Thus, one may
expect that in the near future plasticity will be better grounded in the biophysics
and biochemistry of synapses. Such mechanisms should then be incorporated in
network studies to confirm that the dynamics of persistent activity as shown in
this paper is indeed a realistic scenario. An indication that this is feasible is pro-
vided by a study showing that spike-driven synaptic dynamics (Fusi et al. 2000)
succeed in generating a synaptic structure that sustains retrospective activity
(Amit and Mongillo 2003).

Non-overlapping vs overlapping stimuli

We have used non-overlapping stimuli, in the sense that a neuron responds vi-
sually to at most one stimulus. This choice is made for several reasons, beside
its simplicity: (i) in the temporal lobe cells in the temporal lobe, diplaying delay
activity, are typically very selective, often for only one of the stimuli involved;
(ii) preliminary simulations with randomly overlapping stimuli show that the for-
mation of retrospective activity occurs as in the case of non-overlapping stimuli
(Mongillo and Amit, unpublished results); (iii) In a way, non-overlapping stimuli
have an advantage in exposing more clearly the effects under study: when stimuli
share neurons, the issue of pair-coding cells risks being obscured.

Transitions during delay period

On the theoretical side, most studies of persistent activity have not dynamical
effects in the delay period, but focused on the properties of stationary attractor
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states. Recently, Koulakov (2001) has studied the degradation of delay activity
due to the unreliability of synaptic transmission. Reutimann et al. (2001) have
interpreted the rise of spike rates in some cells during delay period in a DMS ex-
periment, (the “expectation cells”), as due to short-term synaptic dynamics dur-
ing the delay period. Noise-driven transitions between selective attractor states
had only been previously considered in networks with binary neurons (Buhmann
and Schulten 1987; Amit 1988). In networks with continuous rather than dis-
crete attractors, random drifts of the network state is observed in presence of
noise (Ben Yishai et al. 1995; Seung 1996; Camperi and Wang 1998; Compte
et al. 2000; Laing and Chow 2001), due to the translational invariance of the
continuous attractor.

The present work shows a richer and more dynamical picture of persistent ac-
tivity. Previously, delay period activity was considered a fast relaxation towards
a fixed point attractor, used as a vehicle for working memory. Including Hebbian
learning and allowing for transitions between attractor states which are nearby
in state space, changes significantly the picture. The system explores the space
during the delay period, as a consequence of fluctuations. Transitions are not
made to arbitrary attractors (which would be a rather pathological situation for
a memory system), but rather to states which have been linked by associative
Hebbian learning. These transitions may form the substrate of cognitive oper-
ations used when stimulus-stimulus associations are required. Learning allows
the system to ‘garden’ its attractor landscape, allowing barriers between attrac-
tors representing associated stimuli to be lowered, and hence transitions between
these states become easier. As a result, the system becomes capable of predicting
the appearance of future stimuli on the basis of past experience.
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Chapter 3

Spike-driven synaptic dynamics
generating working memory

Amit, DJ and Mongillo, G, Neural Computation, 15:565-596 (2003).

3.1 Introduction

Long-term modifications of the synaptic efficacies are believed to affect infor-
mation processing in the brain. The occurrence of such modifications would be
manifest as the appearance of new patterns of neural activity. Both in IT and PF
cortex of monkeys, trained to perform a Delayed-Match-to-Sample (DMS) task,
small neural assemblies have been found to exhibit selective, persistent enhanced
spike rates during the delay interval between successive stimulations (see e.g.
Miyashita 1988; Miller et al. 1996). This kind of activity is related to the ability
of the monkey to actively hold an item in memory (Amit 1995), indeed it reflects
the last stimulus seen. It will be referred to as Working Memory (WM) activity.
However, WM appears only after a substantial training stage, during which, pre-
sumably, the local synaptic structure is modified by the incoming stimuli.1 Then,
new patterns of neural activity appear.

Spiking neural network models indicate that the phenomenology observed in
DMS tasks can be reproduced by coherent modifications of the synaptic efficacies
(Amit and Brunel 1997b; Amit 1998). Specifically, the mean excitatory synap-
tic efficacy among neurons belonging to the selective population must increase,
while the efficacies in synaptic population connecting selective to other neurons
must decrease. Hence, one expects that the neural activity evoked by stimuli
presentation during learning stage, produces such a modifications, so that WM
can appear. This raises the question on how the synaptic dynamics is related to

1There are zones in cortex where the synaptic structure giving rise to delay activity may be
built-in (Kritzer and Goldman-Rakic 1995; Compte et al. 2000). Those are outside the scope
of our discussion.
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the neural activity.
A simulation like the one presented here has multiple utility: 1. It calls into

focus certain features of the single synapse that should be clarified in biological
investigation; 2. It provides a more complete benchmark (relative to simulations
with fixed synapses), in the bridge between experiment and theory (Amit 1998);
3. Once the simulation clarifies the essential features of the microscopic synaptic
dynamics, simplified (and hence faster) learning algorithms can be identified, to
be used in simulating complex behavioral situations.

In what follows we first review the experimental protocols which have been
used to induce long-term synaptic modifications. Then, we recapitulate a general
model of spike-driven synaptic plasticity, proposed by Fusi et al. (2000), and
discuss the extent to which this dynamics satisfies general desiderata and concords
with experimental findings. The plastic synapse is then embedded in a full scale
simulation of a large network of spiking neurons. The synaptic dynamics is
propelled purely by the actual spikes emitted by the neurons, as a consequence
of a preassigned protocol of stimulus presentation, mimicking those used in the
DMS tasks. It is shown that WM is actually formed in the process, and that its
slow formation can be qualitatively understood.

3.2 Experimental protocols for LTP/LTD

LTP and LTD are persistent changes in synaptic efficacy that are expected to be
induced by patterns of pre- and post-synaptic activity. Hebbian tradition had
these changes related to pre- and post-synaptic spike rates. A bridge between
spikes and plasticity has been recently confirmed by detailed experimental studies.
Specific, well-controlled stimulation protocols have been developed that reliably
induce LTP/LTD in both hippocampal and cortical synapses. However, certain
questions remain open. Most important, we consider, the passage from spike
induced synaptic plasticity to rate dependent plasticity, so essential for learning
of working memory. The difficulty in providing such a bridge, from spikes to
rates, opens up questions concerning the dependence of the effects observed, on
the specific details of the protocols used, see e.g. Sec. 3.7.1. This calls for a
closer identification of the neural activity parameters that control the synaptic
transitions and select the type of modification that occurs: LTP or LTD.

Some protocols for the induction of LTP and LTD involve repetitive pre-
synaptic stimulation by electrical pulses (Dudek and Bear 1992). The induction
consists of a fixed number of several hundred (e.g. 600-900) pulses, delivered at
various frequencies. No experimental control is exercised on the post-synaptic
activity, which is determined by the pre-synaptic activation. The experiments
are carried out in slices from the CA1 region of the hippocampus, stimulating
the Schaffer collateral afferents. Depending on the stimulation frequency, LTP
or LTD is induced. The same protocols induce reliably synaptic changes also in
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the neocortex.
High frequency stimulation is particularly effective in inducing LTP. On the

other hand, pre-synaptic activation at low frequencies is likely to trigger homosy-
naptic LTD. More precisely, no plasticity is observed at frequencies less than 0.1
Hz, LTD is observed using 1 Hz stimulation and LTP is observed using stimula-
tion frequencies greater than 10 Hz, see e.g. (Bear 1996).

This phenomenology is explained in the following way (Bear 1996): Up/down
regulation of synaptic strength depends on the post-synaptic intracellular concen-
tration of calcium, which in turn depends on the level of post-synaptic membrane
potential. If the level of [Ca2+] exceeds a threshold, the synapse tends to be po-
tentiated. Otherwise, it tends to be depressed. High frequency stimulation of a
cell produces higher level of post-synaptic depolarization, due to the fast tem-
poral summation of excitatory post-synaptic potentials (EPSPs). Hence higher
levels of [Ca2+]. Stimulation at 10 Hz produces, on average, neither LTD nor
LTP, which may indicate a critical level of post-synaptic [Ca2+] corresponding
to the pre-synaptic activation. This hypothesis seems corroborated by other ex-
periments, see e.g. (Steele and Mauk 1999), in which, during the stimulation,
the level of recurrent inhibition is pharmacologically controlled by using either
agonist or antagonist of the GABA receptor. When antagonist is applied, the
threshold frequency for LTP is decreased while if agonist is present, it is increased.
When GABA antagonist is present, the recurrent inhibition is less effective. Ac-
cordingly, the depolarization level allowing for LTP can be reached with lower
frequencies. The reasoning is analogous in presence of the GABA agonist.

More recently, other stimulation protocols have been developed to induce
long-term synaptic modifications, in which also post-synaptic activity is experi-
mentally controlled (Markram et al. 1997; Bi and Poo 1998). In this experimental
setup, both pre- and post-synaptic events are evoked by injecting current pulses
into the cell body. Events are then coupled according to various protocols, vary-
ing either the temporal order between the pre- and post-synaptic events; the
number and/or the frequency of pairing.

The role of the number of pre- and post-synaptic spike pairings is studied in
(Markram et al. 1997). A post-synaptic spike is evoked several milliseconds after
pre-synaptic emission. Such pairing is repeated 2, 5 and 10 times and the sequence
is repeated 10 times every 4 seconds. The post-synaptic spikes are evoked at 20
Hz. In all these cases LTP is observed. Subsequently, the frequency dependence
has been studied, according to the following protocol: five pre-synaptic spikes are
paired, as previously described, with post-synaptic spikes, at various frequencies.
Again the pairing is repeated 10 times every 4 seconds. It was found that no
potentiation occurs if the frequency is lower than 10Hz. For the dependence
on the relative timing between pre- and post-synaptic spikes, it is found that
LTP occurs if the pre-synaptic spike precedes the post-synaptic one, while if the
pre-synaptic spike follows the post-synaptic one, the synaptic efficacy undergoes
LTD. It is also noted that if the temporal interval between the two events is too
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large no synaptic modifications occur.
Bi and Poo (1998) determined the exact temporal window in which the oc-

currence of both pre- and post-synaptic emission is effective to induce long-term
synaptic modifications. They coupled 60 pre-synaptic spikes delivered at 1 Hz,
with post-synaptic spikes, by varying both the temporal order of occurrence of
the events (pre-post or post-pre) and the time difference between them. Synapses
are strengthened if the pre-synaptic spikes precede post-synaptic spikes by less
than 20 milliseconds and are weakened if, instead, pre-synaptic spikes follow
post-synaptic spikes within the same interval.

Markram et al. (1997) did not find potentiation for pre-synaptic activation
rates lower than 10 Hz, while Bi and Poo (1998) did find both potentiation and
depression at 1Hz. The seemingly inconsistent behavior could be due to the
fact that, while the Markram’s experiment is carried out in the cortex, Bi and
Poo work with hyppocampal synapses. An alternative explanation is based on
the difference in the number of pairings in the two cases. In other words, five
pairings at 1 Hz do not provoke LTP whereas sixty, at the same frequencies,
increase the synaptic efficacy. This fact could be understood in the following
way: Each pairing of pre- and post-synaptic spikes tends to modify the synaptic
efficacy, but a single event does not trigger long-term modification. The effect of a
single pairing should, therefore, decay with time and it is the accumulation of the
effects of several pairings that is required to trigger a long-lasting modification.
To provoke LTP or LTD, a specific number of couplings must occur in a given
time interval, so the individual effects are not totally forgotten. The number of
pairings with respect to the time interval could in principle be experimentally
determined, furnishing information about the effect of a single pairing and its
decay time.

Despite the somewhat contrasting conclusions, reached using different proto-
cols, as to the event which ultimately triggers the modifications, other properties
of synaptic plasticity are widely accepted: Experiments, both in vitro and in vivo,
have shown that a synapse is bidirectionally modifiable (Dudek and Bear 1993).
In other words, the same synapse can undergo both LTP and LTD. Moreover, the
same synapse once depressed, can be newly potentiated by a suitable stimulation
and vice versa. However, the modification of the synaptic strength is prevented
when NMDA receptors are blocked, regardless of the stimulation used, (Dudek
and Bear 1992; Markram et al. 1997). An immediate action of the NMDA release
is the opening of voltage-gated Ca2+ channels, and the consequent influx of the
calcium ions. When this is prevented, the expression of the synaptic plasticity
is impaired, i.e. no transitions are observed. This fact seems to support the
model in which intracellular calcium concentration as a fundamental parameter
controlling LTP/LTD.
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3.3 From experiments to the model

We now proceed to recapitulate the model of synaptic dynamics (Fusi et al.
2000) to be used as the learning element in the simulation. As argued in the
above study, a plausible synaptic device would be able to maintain only a small
number of discrete stable efficacies on long time scales. We choose the synapses to
have two such states and to move between them stochastically. There is also some
experimental evidence that synapses may in fact have only two stable values on
long time scale (Petersen et al. 1998). In Section 3.7.1 we show that our synapse
is not inconsistent with the wealth of findings concerning synaptic plasticity at
the individual synaptic level described in the Section 2. We have not opted for a
detailed agreement with all these findings, first because not few of them are still
rather tentative, and second, because our objective has been to have a reasonable
synapse for a first study of the formation of selective delay activity by the spikes
produced in the course of the natural behavior of the neurons.

3.3.1 A model of the plastic synapse

The plastic synapse is characterized by an internal analog variable X, and by
a two-state value for its stable efficacy Jd, Jp (depressed and potentiated, re-
spectively). The stable efficacy is in turn determined by X (Fusi et al. 2000;
Del Giudice and Mattia 2001). When X is above a threshold θX , the synapse is
in its potentiated state of efficacy Jp. Otherwise, the synapse is in its depressed
state Jd(< Jp). A transition occurs when X crosses the synaptic threshold: if X
crosses from below to above, the result is LTP (Jd → Jp); if X crosses from above
to below the result is LTD (Jp → Jd). X is restricted to the interval (0 and 1),
whose end-points are reflecting barriers for the dynamics of X, and it obeys:

Ẋ(t) = R(t) +H(t), (3.1)

where R(t) is a refresh term, responsible for long-term state preservation. It
drives X toward 0(1), depending on whether it is below(above) the synaptic
threshold θX . This term mimics the biochemical mechanisms that keep synaptic
efficacy stable in absence of stimulation, against erasure by spontaneous activity.
The dynamics of the drift we choose to be linear, i.e.

R(t) = −αΘ(−X + θX) + βΘ(X − θX). (3.2)

where Θ(·) is the Heaviside function, Θ(x) = 1 for x > 0 and 0 otherwise.
This bi-stability is analogous to that of a computer DRAM memory bit. H(t)
relates the synaptic dynamics to the pre- and post-synaptic neural activities and
is responsible for synaptic transitions. The synaptic efficacy is modifiable only
when the synapse is activated by a pre-synaptic action potential. Hence, H(t)
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Figure 3.1: Synaptic dynamics. The time evolution of X(t) (center); following
pre-synaptic emission (top), X(t) is regulated up(down) if the post-synaptic de-
polarization V (t) is greater(smaller) than θV (= θ1 ≡ θ2) (bottom). In the time
intervals between spikes, X(t) drifts linearly up or down, according to Eq. 3.2,
see text for details. Left: LTP; the synapse starts from its depressed value Jd,
(X < θX), by the end of the interval, it is potentiated to Jp, (X > θX). Right: No
transition; at the end of the interval X returns to its initial value. The evolution
of V (t) is that of an integrate-and-fire neuron with a linear leakage current. For
details see Section 3.4.1 (reproduced from Fusi et al. 2000).

should be different from zero only upon arrival of a pre-synaptic spike, which we
express writing,

H(t) =
∑

k

F (tprek )δ(t− tprek ), (3.3)

i.e. a sum over all pre-synaptic spike emission times. A priori, the time of
the synaptic activation does not coincide with the pre-synaptic emission. As a
matter of fact, once an action potential was generated in the soma, it travels
along the axon reaching the synaptic boutons (synaptic activations). Here, the
spike provokes the release of the neurotransmitter which in turn provokes the
current influx into the post-synaptic cell. The time elapsed from the pre-synaptic
spike emission to the post-synaptic variation of the depolarization is the synaptic
delay and is of the order of a couple of milliseconds. However, most of this time
is associated with post-synaptic ionic flow along dendrites. The axonal delay is
very short and the synaptic activation coincides with the pre-synaptic emission.

Each spike induces a jump in X whose value is determined by F (·), that in
turn depends on the state of the post-synaptic neuron at the time of the pre-
synaptic emission. The complete specification of H(t) requires the introduction
of a neural model, which we assume to be that of an integrate-and-fire neuron (see
Section 3.4.1). One possibility is that F is determined by the intracellular con-
centration of calcium, as proposed by (Bear 1996). F (·) would be positive when
intracellular [Ca2+] exceeds some critical level and negative if it is below another
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Figure 3.2: Synaptic dynamics. Left: LTD; a pre-synaptic burst allows X to
cross the threshold θX from above, provoking down-regulation of synaptic efficacy
(Jp → Jd). Right: No transition. Conventions as in Fig. 3.1. (reproduced from
Fusi et al. 2000).

critical level. We model this complex mechanism taking F (·) to be a function
of the post-synaptic depolarization2. This may not be the final answer, but it
can be judged by its performance for the special protocols used in experiments
on plasticity, and with respect to the distributed learning dynamics it generates
in a network. The synaptic dynamics is then related to the neural dynamics, by
postulating:

F (tpre) = F (Vpost(t
pre)) =











a if Vpost > θ1

−b if Vpost < θ2

0 otherwise,
(3.4)

with θ2 ≤ θ1 < θ, where θ is the neural threshold for spike emission. Vpost is
the membrane depolarization of the post-synaptic neuron. Examples of synaptic
dynamics for LTP and LTD are depicted in Figs. 3.1, 3.2, respectively.

3.3.2 Transition probabilities

The temporal evolution of H(t), and hence the dynamics of the synaptic inter-
nal variable X(t), could in principle be determined by specifying the pre- and
post-synaptic neural activity. The situation we are interested in is for neurons
embedded in a large recurrent network. In this case, neural firing is stochas-
tic, principally due to the random pattern of connectivity (van Vreeswijk and
Sompolinsky 1996). As a consequence, long term synaptic transitions are them-
selves stochastic and it is possible to characterize them by a frequency dependent
transition probability. We define PLTP (νpre, νpost, T ) as the probability that a

2This assumption seems to be corroborated by recent experimental evidences (Sjöström et al.
2001). See also Section 3.7.1.
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depressed synapse undergoes LTP during a time interval T of constant external
afferents. νpre and νpost are, respectively, the mean emission rates of the pre- and
post-synaptic neuron. The probability of LTD, PLTD(νpre, νpost, T ), is defined
analogously.

PLTP (νpre, νpost, T ) and PLTD(νpre, νpost, T ) contain the information relevant
for the unsupervised learning dynamics. They can be estimated by simulating
the coupled neural/synaptic dynamics, as described in (Fusi et al. 2000). Once
they are known, it becomes possible to determine the regimes of network activity
of plasticity (i.e. significant modifications of synaptic structure) and regimes of
overall structural stability (i.e. negligible modifications). It also becomes possible
to estimate the number of synaptic transitions in a given synaptic population,
per stimulus presentation or, equivalently, the probability of transition per pre-
sentation. When these probabilities are known, the structuring process can be
described in a compact form, obtaining the fraction of potentiated synapses in
each population as a function of the number of stimulus presentations.

A simplified classification of the synaptic dynamics can be obtained in terms
of PT ≡ PLTP + PLTD and PR ≡ PLTP/PT , see also (Fusi et al. 2000). PT is
defined as the total transition probability, i.e. the probability that a long term
transition occurs during T , either potentiation or depression; PR as the relative
probability of LTP with respect to LTD. When PR ∼ 1, LTP is likely to occur.

Suppose a < θX and b < (1− θX), so that several jumps are required to cross
synaptic threshold. When the pre-synaptic neuron fires, X is modified according
to the value of the post-synaptic depolarization. If a further spike does not
arrive to push X toward the threshold, the synaptic internal state is reset by the
refresh current, either to 0 or to 1, depending on whether X is above or below
its threshold, Eq. 3.2. The time to forget completely a given jump in X, is the
ratio between the amplitude of the jump and the synaptic refresh current. In the
synaptic device described here, we have a reset time for potentiation τp(= a/α)
and one for depression τd(= b/β). To simplify the reasoning, we suppose τp = τd.

Transitions would be typically provoked by bursts of pre-synaptic spikes. A
burst can cause a transition if the time intervals between successive spikes (ISI)
are (on average) shorter than τp. In this case (high pre-synaptic rate regime),
a long term synaptic transition, either up or down, can occur. When the mean
ISI is greater than τp (low pre-synaptic rate regime), the probability of a synap-
tic transition is negligible. Consequently, PT is zero if νpre ¿ 1/τp and is an
increasing function of the pre-synaptic emission rates for νpre > 1/τp.

The direction of a jump in the synaptic internal variable depends on the
value of the post-synaptic depolarization, Eq. 3.4. The relative frequency of
upregulation of X (X → X + a) with respect to that of downregulation (X →
X− b) increases with post-synaptic emission rates. Indeed, to emit at high rates,
the post-synaptic depolarization must be often near the threshold and hence
V > θ1. On the other hand, when the post-synaptic neuron is emitting at low
rate, its depolarization is fluctuating around the rest potential, and hence below

56



θ2. So PR would be an increasing function of νpost.
We have argued above that the synaptic device behaves, grosso modo, in a

Hebbian way. In other words, a synapse between two neurons, both emitting
at high rate, tends to be potentiated (PT > 0, PR ∼ 1). While, a synapse
connecting a high rate pre-synaptic neuron to a low rate post-synaptic one tends
to be depressed (PT > 0, PR ∼ 0). As a matter of fact, as we shall see below,
a dynamic synapse naturally extends the plasticity scenario: synapses in neural
populations where one would expect LTP, may undergo LTD and vice versa. This
may be due to fluctuations, or to the width of the emission rate distribution in a
functionally uniform neural population. When the average rate are high and close
in the pre- and post-synaptic cells, or if there is a very large difference between
the two, deviations are few and Hebb is maintained to a very good accuracy.
But if the average rates are closer, as would for example be the case when one
population of neurons is stimulated and another is in enhanced delay activity
(the substrate for the generation of context-correlations (Miyashita 1988; Brunel
1996), or of pair-associate representations (Sakay and Miyashita 1991; Erickson
and Desimone 1999)), LTP and LTD probabilities for the synapses connecting the
two populations, would be both significant. The one for LTP would be higher,
to allow the association. But, the structuring in that population will not go
on indefinitely (creating representation collapse), but would saturate at a level
determined by the ratio of the two probabilities. A very welcome modification,
which will be explored in depth elsewhere (see e.g. Mongillo and Amit 2001b).

3.4 Simulations

3.4.1 Single cell model

As a model of the spiking neuron we use the Linear-Integrate-and-Fire (LIF)
model (Fusi and Mattia 1999), because it has been found to be consistent with
the behavior of real cells in noisy conditions (Rauch et al. 2003) and also because
of its analytical tractability. Despite its simplicity this neural model is able
to reproduce much of the phenomenology of networks of RC-integrate-and-fire
neurons, (Fusi and Mattia 1999; Mongillo and Amit 2001a). It is characterized by:
a firing threshold θ, a (post-spike) reset potential Vr, a constant leakage current
βI and a refractory period τarp. The evolution of the membrane depolarization
below threshold is:

V̇ =

{

−βI + I(t) if V (t) > 0

0 if V (t) = 0 and V̇ < 0.
(3.5)

I(t) is the afferent current charging the cell’s membrane. When V crosses the
threshold a spike is emitted, the depolarization is reset to Vr and kept constant
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for τarp milliseconds. If I(t) is stationary, Gaussian, and independent at differ-
ent times (delta-correlated), the distribution of the depolarization P (V ) and the
mean emission rate ν are calculated to be (Fusi and Mattia 1999)

P (V ) =
ν

µ

[

1− exp
(

−2 µ
σ2

(θ − V )
)]

for V ∈ [0, θ] (3.6)

ν ≡ Φ(µ, σ2) =

[

τarp +
σ2

2µ2

(

2µθ

σ2
− 1 + e−

2µθ

σ2

)]−1

. (3.7)

The hypotheses on the statistics of the afferent current are quite well satisfied
in a large spiking network (Amit and Brunel 1997a). This model does not in-
clude adaptation effects, essential for fitting neural response dynamics of real
cells (Rauch et al. 2003), limiting the increase in neural emission rates during
sustained stimulation. In our simulations, this simplification is corrected by hand
(see Section 3.4.2).

3.4.2 The learning process

The network architecture

The network (modeling a cortical module) is composed by NE pyramidal cells
and NI interneurons. Each neuron receives, on average, CE synaptic contacts
from excitatory and CI from inhibitory neurons inside the network and Cext

excitatory synaptic contacts representing external afferents (see e.g. Amit and
Brunel 1997a). The current resulting from the activation of the external synapses
represents both noise from the rest of the cortex as well as selective afferents due
to stimuli.

When the network is set up, the afferent pre-synaptic neighbors of a given
neuron are selected as follows: for each (post-synaptic) neuron (excitatory or
inhibitory) one selects the pre-synaptic neighbor, independently and at ran-
dom, by a binary process in which a pre-synaptic excitatory (inhibitory) neu-
ron is a neighbor with probability CE/NE (CI/NI). The existing inhibitory as
well as the excitatory synapses onto interneurons are assigned continuous val-
ues, drawn, each, from a Gaussian distribution with its pre-assigned mean and
variance. These synapses remain fixed throughout the simulation. The plastic
excitatory-excitatory synapses (prior to training) are distributed independently
and randomly, with P(Jij(0) = Jp) = C0

p . This is equivalent to a distribution for
excitatory-excitatory synapses with mean JEE/θ = C0

pJp + (1 − C0
p)Jd = 0.022

and variance ∆2JEE/θ
2 = C0

p(1 − C0
p)(J

2
p + J2

d ) = 0.00063. Numerical values
correspond to the parameters in Table 3.1.

Furthermore, to each synapse is associated a transmission delay δ, which
represents the time needed by pre-synaptic spike to affect the post-synaptic de-
polarization. In our simulations we chose δ = 1ms for all the synapses. This is
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the unstructured state of the network, supposed to sustain spontaneous activity.
The complete list of parameters used in the simulations is reported in Table 3.1.

The dynamics

The simulation consists in a numerical integration of the discretized dynamical
equations of both neurons and plastic synapses. The temporal step ∆t is cho-
sen to be shorter than the time between two successive afferent spikes. In our
simulations, we take ∆t = 0.05ms.

The initial distribution of depolarization in the network is set uniform. Spikes
begin to be emitted due to external excitatory afferents. All neurons are receiving
a non-selective external current I

(ext)
i = Jextρ(t), where ρ(t) is a Poisson process

with mean Cextνext per unit time. νext, is taken of the order of the rate of
excitatory neurons in the spontaneous state, and is kept fixed. At each ∆t,
the afferent external current is Jextρ(t)∆t.

The initial distribution of the neural depolarization is found not to be impor-
tant. The network reaches its stationary state (depending on the synaptic matrix
and level of external signal) within short relaxation times, see Fig. 3.6 and dis-
cussion in Section 3.5.1. The network is allowed to evolve freely (i.e. without
stimulus presentation) for ∼ 100ms, to reach stationary spontaneous activity and
then the training stage begins.

The depolarization of all neurons is sequentially updated, accordingly to Eq.
3.5. If Vj(t + ∆t) > θ, a spike is delivered to all post-synaptic neurons and
the depolarization is reset to Vj = Vr. The spike adds to the value of the de-
polarization of post-synaptic neuron i, at the time t + ∆t + δ, the value of the
synaptic efficacy connecting the neuron j to i, if they are connected. Moreover,
if the emitting neuron is excitatory, all plastic synapses connecting it to other
excitatory neurons, are updated according to Eqs. 3.1, 3.2, 3.4. The level of
the post-synaptic depolarization, determining the direction of the jump in X(t)
according to Eq. 3.4, is read at the time of the pre-synaptic emission, see Section
3.3.1. If Xij(t+∆t) (the internal variable of the plastic synapse connecting neu-
ron j to i) crosses the threshold θX , the efficacy Jij(t+∆t) is suitably modified,
producing either LTP or LTD.

Statistics of stimuli

The set of p stimuli to be used in “training” is set up when the simulation is
initialized, and is kept fixed. Each stimulus corresponds to a pool of fNe, ‘visually
responsive’ excitatory neurons. f is the coding level of the stimuli, chosen low
(f ¿ 1). These pools are selected non-overlapping, i.e. neurons have a perfectly
sharp tuning curve, and pf < 1. They are p consecutive groups of fNe neurons.
While this is not a realistic constraint, it is very useful in allowing the monitoring
of the complex double dynamics by mean-field theory and in simplifying greatly
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Network parameters

NE - Number of pyramidal cells 5000
NI - Number of interneurons 1250
CE - Number of recurrent E connections per cell 380
CI - Number of recurrent I connections per cell 120
Cext - Number of connections from outside 380
νext[Hz] - Spike rate at external synapses 5
p - Number of selective populations 5
f - Fraction of cells responding to a stimulus 0.1

Single cell parameters E I

θ[θ] - Spike emission threshold 1 1
Vr/θ - Post-spike reset potential 0 0
βI/θ[ms

−1] - Leakage current .011 .0113
τarp[ms] - Absolute refractory period 2 2

Synaptic parameters

Jext/θ - EPSP produced by external afferent .019
JEI/θ - IPSP amplitude on pyramidal cells .063
JIE/θ - EPSP amplitude on interneurons .025
JII/θ - IPSP amplitude on interneurons .055
Jp/θ - EPSP produced by potentiated synapse .057
Jd/θ - EPSP produced by depressed synapse .01
C0
p - Fraction of Jp in unstructured network .25

δ[ms] - Synaptic delay 1

Synaptic dynamics parameters

θX - Threshold for synaptic transition .374
θ1/θ - Threshold for up regulation of X .7
θ2/θ - Threshold for down regulation of X .5
α[ms−1] - Drift toward 0 .0067
β[ms−1] - Drift toward 1 .01
a - Amplitude of up jump .17
b - Amplitude of down jump .14

Table 3.1: Parameters used in the simulations. Units given in square brack-
ets. Before structuring the mean and variance of the excitatory efficacy in the
excitatory population are given by: JEE/θ = C0

pJp + (1 − C0
p)Jd = 0.022 and

∆2JEE/θ
2 = C0

p(1− C0
p)(J

2
p + J2

d ) = 0.00063 .
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the analysis of the learning dynamics. This fact, however, does not render the
process trivial, see Section 3.5.1. For low memory loading levels, p¿ 1/f , it is a
good approximation to the case of unconstrained random choice of stimuli. See
e.g. (Amit and Brunel 1997a). At higher loading levels one must confront the
full issue of the network memory capacity, whose details are beyond this study.

The presentation of a stimulus is expressed by an increase in the rates of
the external afferents to the selective cells (the corresponding pool). The rate
of spikes arriving at these neurons is increased by a factor ge > 1. ρk(t) is still
a Poisson process, but with mean geCextνextdt, where the index k runs over the
visually responsive population. External currents to the other excitatory neurons
are unaltered. Similarly, the afferents to all interneurons increase their activation
rates by a factor gi > 1 (Miller et al. 1996). Accordingly, the neurons selective to
the stimulus presented emit at elevated rates. In other words, a stimulus elicits
a visual response in the same subset of cells, whenever it is presented. There is
no noise in the process of presentation.

In a more realistic situation, the subset of cells excited may be slightly different
on different presentations of the same stimulus. Accordingly, we carried out
simulations with a noisy version of the stimuli. In these simulations, each stimulus
was considered a prototype of specific fNE cells. In each presentation a fraction
1−f1 of the prototype were excited, as well as f2 of all other (1−f)NE excitatory
cells. f1 is the noise level and f1 = f2 = 0 is the noiseless case. To have a constant
(on average) number of stimulated cells in each presentation, we chose f2 so that

f2 = f1f/(1− f).

Training protocol

The training protocol is as follows: the set of stimuli is repeatedly presented to
the network. Each stimulus appears for Tstim milliseconds. Then it is removed
and, following a delay period of Tdelay, during which none of the populations
is stimulated, another stimulus is presented. The presentation sequence of the
stimuli is either kept fixed (1 → ... → p → 1), or the sequence is generated by
choosing each stimulus to be presented, independently and randomly with prob-
ability 1/p. All along the simulation, during and between stimulus presentation,
the neural and synaptic dynamics are free and are described by Eqs. 3.1 and 3.5.

Control of visual response

As structuring takes place, the increasing of the average recurrent excitatory
synaptic efficacy causes significant increase of neural emission rates, at parity of
external signal (contrast, ge). Such increase is doubly undesirable. First, because
it is not observed experimentally (see e.g. Erickson and Desimone 1999). Second,
and more relevant for the present purposes, it distorts the learning process. As
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things stand, it seems to be an artifact of the simplicity of the single cell dynamics
as well as of the synaptic transmission model, rather than of the learning process.
In a more realistic situation, this problem is resolved by the adaptation features
of the neurons and of the synaptic transmission (Tsodyks and Markram 1997).
This tendency of increased visual response during training is partially balanced
by the stimulation of the inhibitory neurons during stimulus presentation. The
enhanced firing of interneurons limits the visual response of the pyramidal cells,
via the hyperpolarizing currents. Moreover, it enhances the synaptic depression
process between stimulated and unstimulated neurons, because the stronger hy-
perpolarizing currents, arising from stimulated interneurons, decrease the mean
depolarization level of neurons of the unstimulated population. This enhances
the depression of synapses afferent on them. The stimulation of inhibitory neu-
rons, and its effects, appears to be consistent with experimental findings (Steele
and Mauk 1999). However, the activity of the inhibitory population cannot grow
beyond a certain level, because the interneurons also inhibit each other. On
the other hand, inhibitory contacts among interneurons cannot be weakened too
much, or else the emission rate of inhibitory population becomes so high, as to
suppress completely the activity of the excitatory cells.

When inhibition was no longer sufficient, we artificially kept the rate of stimu-
lated neurons approximately constant, during the learning process. The emission
rates during stimulus presentation, are suggested by the properties of the single
synapse (Sec. 3.3.2), and are chosen at the start of the simulation. When, as a
consequence of synaptic structuring, these rates exceed the initial level by more
than 15%, stimulus presentation is interrupted. The synaptic structuring reached
is used to calculate, by mean field analysis (see Appendix), a new level of contrast
(ge) for the stimuli, keeping gi fixed. ge is calculated to produce the original rate
of visual response, and the simulation resumes.

Observables monitored

During the simulation various observables, related to the collective neural activ-
ity as well as the synaptic dynamics, are sampled. To describe the evolution of
the structuring among excitatory neurons in the network we define functional
neural populations and functional synaptic populations. The neural populations
are of excitatory neurons such as 1. the population corresponding to one of the p
stimuli; 2. when a particular stimulus is presented, the union of the p− 1 popu-
lations corresponding to the other stimuli, not now recalled; 3. the population of
background cells. In every phase of the simulation the neurons in each of these
populations receive the same average external input, and have, on average, the
same synaptic structure.

The functional synaptic populations are the synapses connecting pairs of neu-
rons within a functional neural population, or between two different functional
neural populations. Therefore, a synaptic population is fully defined once the
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functional properties of its pre- and post-synaptic neurons are specified. The
state of any synaptic population (its structuring) is quantified by the fraction,
Cp, of potentiated synapses in that population.

In practice we monitor only two structuring parameters, Cp: 1. C
HH
p , between

neurons in one of the p selective populations. It is one parameter and not p since
we observe very small variability of structuring corresponding to the different
stimuli, and so we monitor their average; 2. CHL

p , between neurons corresponding
to a selective population and those in the background or other, not stimulated
neurons. Again, the average over p such populations is monitored. Recall that
only synapses with high rate pre-synaptic neuron have a significant transition
probability.

We do not distinguish between post-synaptic neurons in the background and
neurons of non-selected populations, because their rates are rather close: This is
obvious before the network is significantly structured. It remains so after struc-
turing, due to the enhanced inhibitory activity. Most of the (non-stimulated)
neurons emit at very low rates and the distributions of frequencies in those pop-
ulations are quite similar. This was checked carrying out a set of simulations
and comparing the structuring of synaptic population between visually respon-
sive and background neurons with the structuring between visually responsive
and neurons responsive to a different stimulus. Moreover, we do not consider
the structuring between background, or non selected neurons, and other popula-
tions, because the pre-synaptic rates are low, and so structuring is negligible, as
confirmed by the simulations.

Because the selective neural populations are non-overlapping, the functional
synaptic populations defined above are also non-overlapping. This is true also
for the synaptic populations between selected neurons and the rest, because even
when the synapses of the two populations share post-synaptic neurons, the pre-
synaptic neurons are different. The synaptic structuring reached in one synaptic
population is not disrupted by the presentation of a different stimulus, and this
fact simplifies the analysis of synaptic structuring.

The level of synaptic structuring required for WM states may be estimated by
mean field analysis (see Appendix). When synaptic structuring reaches the level
theoretically estimated, the training stage is interrupted. Then each stimulus is
presented for 150ms, is removed and the network evolves for one second in absence
of further stimulations. If following the removal, the network exhibits a WM
state for all stimuli, the learning stage is interrupted. Otherwise it is resumed.
If stimulus presentation continues after WM activity appeared, the structuring
reaches an asymptotic level and further presentations do not affect anymore the
synaptic matrix. The asymptotic structuring level expresses a detailed balance
between potentiating and depressing processes, see Section 3.6.1
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3.5 Results

3.5.1 The structuring process

The simulations presented here are for non-overlapping stimuli. The parameters
are given in Table 3.1. Even in this basic case, the process of synaptic structur-
ing, and the consequent appearance of WM states, is not trivial. Indeed, various
instabilities tend to appear during learning. The most common instabilities en-
countered in our simulations were oscillatory behavior; uncontrolled growth of
the network global activity; or depression where one expects potentiation and/or
vice versa. The essential underlying reason is that to reach stable, selective WM
states, synapses must not only be potentiated, among visually selective neurons,
but this potentiation must be accompanied by adequate depression from selective
to non-selective cells (see e.g. Brunel 2000). On the other hand, with the synaptic
dynamics proposed here, in any population of synapses one finds potentiations
as well as depressions, as we explain below.

Depressing synapses that should be potentiated can prevent the formation
of WM states, because the fraction of potentiated synapses remains too low, at
fixed Jp and Jd. Often, these effects appear when the level of visual response
becomes too high. As a consequence, the rate of synaptic modifications increases
appreciably and, hence, the effects of unwanted synaptic transitions, occurring
due to the wide distribution of rates inside the neural populations, are amplified.
Alternatively, the ratio between the probabilities of potentiation and depression
could vary, again provoking unwanted synaptic modifications.

Another source of unwanted plasticity is the correlation between the stim-
ulated and the unstimulated pyramidal cells. Due to the increased inhibitory
activity, the activity in the background population is quite low. The spike emis-
sion of a neuron belonging to the background population is provoked principally
by the spikes afferent from the visually responsive population. As a consequence,
spike emission in a pre-synaptic neuron of the selective population consistently
tends to precede the emission of the post-synaptic neuron, if it belongs to the
background population, see e.g. (Rubin et al. 2001). Thus, despite the low
emission rate, the post-synaptic depolarization could be found often at a high
level, when the synapse is activated by pre-synaptic emission. This could pro-
voke LTP, instead of the appropriate LTD. However, this effect is negligible when
the network is sufficiently large and the single EPSP is small with respect to the
threshold for spike emission.

Hence, in a way, the results we report represent a demonstration that in the
rich and complex space of parameters of the synapses and the neurons there exists
a zone in which the fundamental structuring for working memory can take place.
It would have been more satisfactory had the scenario been more robust, in the
sense of self-organization. In other words, learning would induce neural activity
conducive to structuring. But the complexity of the situation limits us to one
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Figure 3.3: Synaptic structuring, Cp in the two monitored synaptic populations,
as a function of the number of presentations (non-overlapping populations). Hor-
izontal line: the unstructured, initial, state (C0

p = 0.25). CHH
p (between vi-

sually responsive neurons) increases monotonically with stimulus presentation;
CHL
p (between visually responsive to non-responsive neurons) decreases monoton-

ically. The values of CHH
p and CHL

p are averaged over all functionally equivalent
synaptic populations. The inter-population variability is included in the circles
representing the points. Synaptic structuring allowing for WM is reached after
105 presentations of each stimulus. See also Fig. 3.7. Parameters of Table 3.1.

step at a time.
Fig. 3.3 reports the average fraction of potentiated synapses in both the

HH and HL synaptic populations, as a function of the number of presentations
per stimulus. Cp increases monotonically in the HH populations with stimulus
presentation, while the fraction of potentiated synapses decreases with stimulus
presentation (in the HL populations). Fig. 3.4 reports the average number (aver-
aged over stimuli) of synaptic potentiations/depressions per presentation in both
the HH and HL synaptic populations. Note that there are depressions in the
HH populations as well as potentiations in the HL populations. This is due to
the wide distribution of rates in each population (see Fig. 3.5) which produces
a finite probability that synapses within a selective population of neurons find
a high rate pre-synaptic neuron and a low rate post-synaptic neuron. Similarly,
there is a finite probability that synapses between selective and non-selective
populations find two high rate neurons. However, with the parameters of Table
3.1 and the relevant rates, the number of ‘correct’ transitions is overwhelmingly
greater than the number of ‘wrong’ transitions. The outcome is an increase of
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Figure 3.4: Number of synaptic transitions (stimulus average) per presentation
vs presentation number, for first 20 presentations. Squares: number of poten-
tiations. Circles: number of depressions. Left: the HH population - number of
potentiations greater than the number of depressions. Right: the HL population
- number of depressions greater than the number of potentiations. The differ-
ence between the absolute numbers of transitions in the two figures is due to the
greater number of synapses in the HL population. Parameters as in Fig. 3.3

CHH
p and a strengthening of the mean synaptic efficacy among selective neurons,

and a monotonic decrease of CHL
p and a depression of the mean synaptic efficacy

from selective to non-selective neurons. In this situation we recover the classical
Hebb rule.

As a control we have verified that similar results are obtained when the set of
stimuli is noisy. We carried out simulations with f1 = 0.1 and f1 = 0.2. Recall
that 1−f1 is the probability that a neuron of the prototype be effectively activated
by its presentation, in presence of noise. The only noticeable, and expected, effect
was that WM states require more presentations to appear: 140/150 presentations
per stimulus instead of 100/110 required in the noiseless case.

Appearance of Working Memory

Working memory (selective delay activity) states appear for CHH
p = 0.875 and

CHL
p = 0.0045. The appearance of WM states is related not only to the level of

synaptic structuring, i.e. the values of Cp in the various synaptic populations, but
also to the other parameters of the network, principally the ratio Jp/Jd between
potentiated and depressed synaptic efficacy. For example, decreasing Jp, once
the structuring level allowing for WM states is reached, prevents the appearance
of WM states. On the other hand, increasing Jp could destabilize spontaneous
activity. All network parameters, as connectivity, mean synaptic efficacies, level
of synaptic structuring for WM states, etc. should be chosen to lie in a biologically
plausible range.

Starting from an unstructured synaptic matrix (C0
p = 0.25) 100-150 presen-

tations per stimulus are required to reach stable WM, i.e. selective delay states.
Fig. 3.6 shows the neural activity in a visually responsive population before,
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Figure 3.5: Population distribution of spike rates during stimulation. Left: stim-
ulated population; the mean emission rate is νstim = 60Hz. Right: unstimulated
pyramidal cells; νbg = 0.9Hz. Despite the low mean emission rate, neurons are
found with high rate. Note that the high-frequency tail of the background distri-
bution overlaps with the stimulated distribution. This could impair the synaptic
structuring. Recurrent inhibition is effective in reducing this overlap, see main
text for details.
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during and following the presentation of a stimulus at various level of synaptic
structuring. What is plotted is the number of spikes emitted per neuron, in bins
of 5ms, averaged over the selective populations and normalized to Hz (dividing
by the bin size). One observes that the transients into the various stationary
states, spontaneous activity, WM, or stimulated state are short, of the order of
50–100ms. In (a) and (b) the level of synaptic structuring is still too low, and
the stimulated population returns to spontaneous activity when the stimulus is
removed. In (c) one observes a WM state in which the cells of the selective popu-
lations emit at elevated rates (24.3Hz) following the removal of the stimulus. MF
predictions for the mean emission rates during spontaneous and WM activity
(dashed horizontal lines) are in good agreement with the simulations.

During WM activity, we observed very large fluctuations of the average emis-
sion rate. This is due to finite-size effects, namely to reduce the duration of
the simulations with the double dynamics, the selective populations were taken
relatively small and, given the low connectivity, a neuron receives only about
38 connections from other neurons in the same selective population (see Table
3.1). Due to the small number of connections from other selective cells and to
the stochastic nature of spike emission, the current afferent on a cell has large
fluctuations (of relative order 1/

√
N , N is the number of pre-synaptic neurons)

around its mean and this, in turn, produces fluctuations in the emission rate.

3.6 Estimates of the structuring process

3.6.1 Population dynamics of the structuring level

We define q+ as the probability that a depressed synapse undergoes LTP during
stimulus presentation; and q− as the probability of depression of a potentiated
synapse per presentation. It is expected that q+ > q− in a HH synaptic population
and vice versa in a HL population. The fraction of potentiated synapses follows
a population evolution, as a function of the number of stimulus presentations

Cp(n+ 1) = Cp(n)[1− q−(n)] + q+(n)[1− Cp(n)], (3.8)

where Cp(n) represents the fraction of potentiated synapses in a given synaptic
population after n presentations of the same stimulus. The dependence of q+ and
q− on n takes into account the possibility that they could vary along the learning
process.

If both the frequencies of visual response and the statistics of the emission
process do not vary appreciably during learning, q+ and q− would remain ap-
proximately constant. In this case, for non-overlapping populations, after a large
number of presentations,
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Figure 3.6: Selective population activity during trial at 3 structuring stages: Popula-
tion averaged neural activity (in 5ms bins) converted to Hz (see text), before, during
and following stimulation. Arrows indicate 150ms stimulation interval. Note the short
transients from one stationary state to another. MF predictions of mean emission
rates, νth, during stimulation (ST), spontaneous (SA) and working memory (WM) ac-
tivity are compared with the results of the simulation. (a) 55 presentations/stimulus;
CHH
p = 0.755; CHL

p = 0.0245. ST: νth = 51.5Hz νsim = 44.5±1.5Hz; SA: νth = 1.3Hz

νsim = 1.21 ± 0.21Hz. (b) 70 presentations/stimulus; CHH
p = 0.8; CHL

p = 0.016. ST:
νth = 51.5Hz νsim = 45.7± 2.9Hz; SA: νth = 1.3Hz νsim = 1.17± 0.18Hz. Horizontal
dashed line: average emission rate during stimulus presentation and SA. In both (a) and
(b) no WM: population returns to spontaneous state after removal of stimulus. (c) Ap-
pearance of WM state: 105 presentations/stimulus; CHH

p = 0.875 and CHL
p = 0.0045.

WM: νth = 27Hz νsim = 24.3 ± 4.25Hz. Horizontal dashed lines: average emission
rate during WM activity. Large fluctuations are due to strong finite-size effects, see
text for details.
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Figure 3.7: Population dynamics description of synaptic structuring, during ini-
tial 20 presentations/stimulus. Left: average Cp in HH populations. Right: in HL
populations. Dashed lines represent the solution of Eq. 3.10, with q+ = 0.0233
and q− = 0.0426, constant (independent of n). Error bars are included in the
circles. Horizontal lines: unstructured state of the network.

{

CHH
p = qHH

+ /(qHH
+ + qHH

− ) for HH populations
CHL
p = qHL

+ /(qHL
+ + qHL

− ) for HL populations.
(3.9)

Note that, when the selective populations overlap, the structuring of a given
population could change even if its preferred stimulus is not presented. In this
case, Eq. 3.8 becomes more complicated, and one must take into account also
the structuring due to the presentation of different stimuli. We do not expand
on this issue here.

In our case (see e.g. Fig. 3.3) the number of wrong transitions, i.e. depressions
instead of potentiations in the selective population and potentiation between
selective and non-selective, is rather small. We neglect these transitions and Eq.
3.8 becomes

{

Cp(n+ 1) = Cp(n) + q+(n)[1− Cp(n)] for HH populations
Cp(n+ 1) = Cp(n)[1− q−(n)] for HL populations.

(3.10)

The dashed curves in Fig. 3.7 are a least-square fit of Cp, in the HH and
HL populations, measured in the simulation, by the solution of Eq. 3.10, with
constant q+ and q−, during the first 20 stimulations. The degree of agreement
between the curves indicates that these probabilities are approximately constant
during learning, partly, of course, because the rates under stimulation are ap-
proximately constant.
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3.6.2 Population transition probabilities and transition
numbers

The probability of an LTP transition in a homogeneous population of synapses,
per stimulus presentation of duration T , could be estimated as follows3: let c be
the probability of a synaptic contact from a neuron in the pre-synaptic popula-
tion to a neuron in the post-synaptic one. The population of synapses connects
neurons in two populations, one of Npre pre-synaptic neurons and one of Npost

post-synaptic ones (the physical neurons in the two populations can, of course,
be the same). The number of potentiations in such a synaptic population, per
presentation of a stimulus, is a random variable

Npot =
∑

i,j

cij · γij

where the index j runs over the pre-synaptic neurons and i over the post-synaptic
ones. cij = 1 if there exists a synapse between the two neurons, or zero. γij = 1
if the synapse was potentiated during the stimulation, or zero. Hence, γij = 1
with probability PLTP (νi, νj, T ) · δ(Jij − Jd), where Jij is the synaptic efficacy
before the stimulation and δ(·) is 1 if its argument is zero, and zero otherwise.
The mean number of potentiations is:

Npot =
∑

i,j

cijδ(Jij − Jd) · PLTP (νi, νj, T ) (3.11)

The sum on the r.h.s. can be converted to a sum over pairs of activity (νi, νj).
Let Ppost(pre)(ν) be the probability of finding a neuron with rate ν in the post-
(pre-)synaptic neural neural population, respectively. The probability of having
a depressed synapse with a pre-synaptic neuron at rate νj afferent on a post-
synaptic neuron at rate νi, is c(1−Cp)Ppre(νj)Ppost(νi). Hence, when the number
of neurons is large, Eq. 3.11 becomes

Npot ' c(1− Cp)NpreNpost

∫ ∫

dνidνjPLTP (νi, νj, T )Ppre(νj)Ppost(νi). (3.12)

Correspondingly, the mean number of synaptic depressions is

Ndep ' cCpNpreNpost

∫ ∫

dνidνjPLTD(νi, νj, T )Ppre(νj)Ppost(νi). (3.13)

If during learning, the integrals on the right hand side of Eqs. 3.12 and 3.13
do not vary significantly, they can be identified, respectively, with q+ and q−. In
that case, it becomes straightforward to obtain Eqs. 3.10 from Eqs. 3.12 and
3.13.

3The reasoning is analogous for LTD.
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In order to compare the theoretical estimates with the values of q+ and q−
obtained from simulations, we have to estimate PLTP and PLTD over the range of
frequencies observed in the simulation. For PLTP , the rate intervals of both pre-
and post-synaptic activity cover the distribution in the stimulated population.
Similarly, for PLTD, νpre varies over the emission rates of stimulated neurons,
while νpost over the rates of unstimulated neurons. See e.g. Fig. 3.5.

To obtain the currents giving rise to the observed emission rates, we pro-
ceeded as follows. In the stimulated population, the neurons operate in a signal-
dominated regime (Fusi and Mattia 1999), i.e. small fluctuations. We assume
that the variance of the current is constant within the population and is that
given by mean-field analysis (see Appendix). The mean current corresponding to
a given frequency is simply obtained (for constant σ) by inverting the transduc-
tion function, Eq. 3.7, which is a monotonic function of µ. In the unstimulated
population, the neurons operate in the noise-dominated regime (Fusi and Mattia
1999), i.e. spike emission is due to sporadic large fluctuations in the afferent cur-
rent, which tends to hyperpolarize the membrane. Mean emission rates are very
low, and the corresponding population distribution of rates is peaked around the
mean-field result. We assume that all neurons in the population are in this state
of activity. Mean-field then provides the mean and variance of the currents.

Then, we proceed by simulating the coupled neural/synaptic dynamics, as
described in (Fusi et al. 2000), to obtain PLTP and PLTD. The extent to which
the assumptions used are justified in the real network, can be judged comparing
the theoretical estimates Eqs. 3.12, 3.13 and the probabilities observed during
the simulation : qth+ = 0.017 and qsim+ = 0.023 ± 0.005, while for LTD we have
qth− = 0.038 and qsim− = 0.043± 0.009.

3.6.3 Estimating lifetime of synaptic structure

The synaptic structure may be affected by synaptic transitions provoked by spon-
taneous or by selective delay activity. This may cause progressive erasure of the
stored memories, in absence of stimulation. The mean lifetime of the acquired
synaptic structure depends on the probability of having such synaptic transitions.
After stable WM states appeared, a separate set of simulations was carried out
in order to check the stability of the synaptic structure against both spontaneous
and selective delay activity. First we checked the stability of synaptic struc-
ture when the network exhibits spontaneous activity. Simulations as long as 60
seconds were carried out, with no stimulation. There were no modifications in
synaptic matrix. Similarly, a WM state was elicited by presenting the corre-
sponding stimulus, for 150ms and the network evolved freely for 4 seconds. The
time difference, with respect to the case of the spontaneous activity, is due to the
shorter lifetime of WM state, as a consequence of finite-size effects. Again, there
were no synaptic modifications.

The probability of a synaptic transition during spontaneous activity is very
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small, because the average rate ∼ 1Hz ¿ 1/τp. Thus, the number of repetitions
needed to obtain a reasonable estimate of these probabilities becomes enormous.
To obtain a rough estimate of q in spontaneous activity, we proceeded in the
following way: we ran simulations to obtain the PLTP for neurons at a rate of
20Hz, and then rescaled this probability to rates of 1Hz. To obtain the first,
we ran 106 repetitions of the single synapse simulation, of T = 400ms each,
with νpre ≡ νpost = 20Hz. No transition occurred. The default estimate of the
transition probability is, then, PLTP (20, 20, T = 400) ∼ 10−6. In other words, the
mean time one has to wait until the synapse makes a spontaneous transition (at
20Hz) is about 4 days. Next we approximately rescale this probability to 1Hz.

For n up-jumps to provoke LTP within a time interval T ′, one must have,

na− βT ′ ≥ θX (3.14)

where a is the single up-jump amplitude and β is the synaptic refresh current
(Eqs. 3.2,3.4). For n fixed, the longest time interval within which the pre-synaptic
spikes must arrive and yet be able to produce LTP, is Tmax(n) = (na−θX)/β. For
the parameters of Table 3.1, three spikes, all provoking up-jump, within 20ms is
the most probable burst which can produce LTP, considering the low emission
rates of both pre- and post-synaptic neurons. Hence, to provoke the transition,
such a burst must occur within the 400 milliseconds, over which we have measured
the transition probabilities above. During spontaneous activity, the statistics of
the emission process of the neurons is well approximated by a Poisson process
(see e.g. Amit and Brunel 1997a), then

P3(T
′ = 20; ν = 20) ≤ 203 · P3(T

′ = 20; ν = 1)

where Pn(T
′; ν) is the probability that n pre-synaptic spikes occur within a time

interval T ′, when emission rate is ν. Neglecting other factors, as the dependence
of the probability of an up-jump on the post-synaptic emission rate, we obtain

qSA(400) = PLTP (1, 1, 400) ∼ 20−3PLTP (20, 20, 400),

leading to a mean lifetime of the order of 10 years.

3.7 Discussion

The principal result of this study is a feasibility test. The spike-driven synaptic
dynamics, introduced in (Fusi et al. 2000), for a suitable choice of the parameters,
implements rate-dependent plasticity and exhibits both long-term potentiation
and long-term homosynaptic depression under diverse experimental stimulation
protocols,4 see below. It is not to be excluded that a synaptic device in natural

4This synaptic dynamics does not generate long-term heterosynaptic depression.
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conditions behaves more like the synapse discussed here than as in the special
protocols in which precise timing is observed.

Moreover, leaving from an unstructured synaptic state, the synaptic dynamics
is able to drive the network into a structured state, sustaining selective delay
activity, or working memory. The generated synaptic structure is robust against
spontaneous and delay activity, in the absence of stimulation. The question of
stability of the acquired synaptic structure, and hence the related neural activity,
is also addressed.

The appearance of WM states, following the repetitive presentation of a set
of stimuli, is not simply a direct consequence of the rate-dependent plasticity,
implemented by the synaptic model. Several constraints must be met during the
structuring stage:

• The effects of LTP should be adequately balanced by LTD to avoid in-
stabilities along the learning process. This implies a balance between the
probabilities of LTP and LTD, imposing constraints on the synaptic and
neural parameters. Further work is needed to relate such constraints to the
neural and synaptic parameters in a simple form.

• The frequency distributions in the stimulated and unstimulated populations
should not overlap significantly. Or, alternatively, the synapse should be
highly sensitive to small variations of the frequencies in the overlap region
(Del Giudice and Mattia 2001). Indeed, this could be a source of unwanted
plasticity that, in turn, impairs the structuring process. We have found
that recurrent inhibition could play a significant role in separate the dis-
tributions, reducing the high-rate tail of the frequency distribution of the
unstimulated populations.

A significant bi-product, mentioned here only briefly, is the resulting extension
of the Hebbian plasticity rule. A realistic synaptic model would generate both
LTP as well as LTD in any population of synapses. In the particular situation
(parameters) considered in detail here, the difference between ‘right’ and ‘wrong’
transitions is so large that classical Hebbianism ensues. But when one deals with
the emergent coupling between two neural populations whose mean rates are
not that different (as between stimulus driven cells and delay activity cells), the
extension of the Hebbian scenario promises saturation in structuring, which is an
essential ingredient in maintaining independent representations alongside WM.

3.7.1 Back to timing dependent plasticity

The sharp cutoff in the time difference between the arrival of pre- and post-
synaptic spike, observed in experiment (Bi and Poo 1998), could be a consequence
of the experimental procedure. In the model presented here, the two thresholds,
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Eq 3.4, can be chosen to reproduce the results of (Markram et al. 1997), when
the two neurons connected by the synapse operate in deterministic conditions.
This may, in fact, be the case in the experiments mentioned.

In a deterministic situation one can consider the two neurons stimulated by a
constant noiseless current. The evolution of the depolarization is deterministic.
Thus, there is a relation between the value of V at a given instant and the time
elapsed from the emission of the last spike. If one chooses the two synaptic
thresholds θ1 and θ2, of Eq. 3.4, to be

θ1 = θ − T1µ, θ2 = T2µ (3.15)

where µ is the total current, the following picture emerges: Upon the emission of
a pre-synaptic spike, the post-synaptic neuron has V < θ2, only if the it emitted
a spike at most T2 before, and the synaptic activation causes down-regulation.
Similarly, the post-synaptic neuron has V > θ1, only if the time of the pre-
synaptic spike emission precedes the post-synaptic spike by at most T1. It will
then be followed by an up-regulation of the synapse. If this is the case, one should
conclude that up-/down-regulation depends on the level of post-synaptic depo-
larization and timing effect is only a consequence of the experimental setup, as
argued above. Recent experimental findings seem to corroborate this hypotheses,
(Sjöström et al. 2001).

Recently, Abbott and Song (1999) and Rubin et al. (2001) studied the be-
havior of a synaptic model into which the exact temporal relation, observed
experimentally (Bi and Poo 1998) is built in. Efficacy is modified according to
the temporal interval ∆t = tpost − tpre, where tpre and tpost are the times of the
pre- and post-synaptic spike emission. When ∆t > 0 efficacy is up-regulated,
while the efficacy is down-regulated for ∆t < 0.

Such a synaptic mechanism tends to potentiate synapses connecting corre-
lated neurons, e.g. a pre-synaptic neuron that consistently fires before the post-
synaptic one. On the other hand, pre-synaptic inputs that are not causally corre-
lated with post-synaptic firing are weakened. The overall effect is the convergence
of the synaptic distribution to an asymptotic stationary distribution. Depending
on the update rule, the equilibrium distribution can be either unimodal or bi-
modal, (Rubin et al. 2001). However, in both cases, the asymptotic distribution
is largely insensitive to the firing rates of pre- and post-synaptic cells. Therefore,
such a model of plastic synapse is unable to structure the synaptic matrix to
sustain selective delay activity.

3.7.2 Open issues

1. The collective behavior of coupled homogeneous neural/synaptic populations
has been described in a compact form, in terms of probabilities of potentiation
PLTP and depression PLTD, functions of the pre- and post-synaptic emission rates.
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Here these functions were obtained from the detailed model of the plastic synapse.
It is not clear whether such a description could be more general, so as to be quali-
tatively independent of the detailed neural and synaptic dynamics? A priori, this
seems plausible, as a general consequence of the stochasticity of the neural ac-
tivity. If so, we could characterize the properties of PLTP and PLTD, allowing for
successful structuring, regardless of the specific model of the synapse. Of course,
the construction of a detailed synaptic model, which matches both available ex-
perimental data and theoretical desiderata, should be the natural conclusion of
such a study.
2. The constraints on the transition probabilities become tighter when the issue
of network capacity is considered. If stimuli are sparsely coded (f ¿ 1) and the
probabilities of transition are low (slow learning), a necessary condition to recover
the optimal storage capacity is that the number of potentiations approximately
balances the number of depressions in each presentation, requiring q− ∼ fq+,
(Amit and Fusi 1994; Brunel et al. 1998). This ensures that the difference
between Cp in HH populations and Cp in HL populations, reached asymptotically,
is maximal, depending on the number of stimuli to be learnt. However, the
appearance of WM states is not granted. It depends not only on the level of
structuring, but also on the other network parameters. It remains to be seen
whether the network exhibits WM activity in a biologically plausible range of
parameters. The behavior of the synaptic device is manipulable. By choosing
suitably the parameters a, b, α, β and θX , the balance constraint may be satisfied.
Simulations should be carried out to check the behavior of large networks at
high loading level. Those require very efficient algorithms, such as (Mattia and
Del Giudice 2000).

But little is guaranteed, the results reported in (Amit and Fusi 1994; Brunel
et al. 1998) are obtained under simplifying hypothesis: 1. the neurons are
binary; 2. the existence of the attractors is checked by using a signal-to-noise
ratio analysis. A further step toward the networks of spiking neurons is made by
Herz and colleagues (see for a review Herz 1996). They studied the capacity of
network with analogue neurons (no spiking) but with a symmetric connectivity
matrix. The situation may be quite different when one deals with a recurrent
network of spiking neurons, as that studied here.

3.8 Appendix: Mean Field for non-overlapping

populations

The MF analysis developed allows to calculate the mean firing frequencies of
each of the populations in stationary (asynchronous) states of the network, as
a function of the instantaneous synaptic structure and the level of the external
signal. The instantaneous synaptic structuring is described by the fraction of
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potentiated synapses in the various synaptic populations. Plastic synapses are
divided by an incoming stimulus in three homogeneous populations, according
pre- and post-synaptic activities:

• High pre- and post-synaptic activity. It is expected that in this pop-
ulation the fraction of potentiated synapses increase to CHH

p (> C0
p).

• High pre-synaptic and low post-synaptic activity. The fraction of
potentiated synapses decrease to CHL

p (< C0
p).

• Low pre-synaptic activity. In this population the probability of a synap-
tic transition is negligible, thus the fraction of potentiated synapses is un-
altered.

Following the presentation of a stimulus that has been previously “learnt”, the
network divides in four functionally different populations of cells: cells belonging
to the population that is activated by the stimulus (denoted sel); cells representing
other stimuli, not activated (denoted +); cells not responsive to any stimulus
(denoted bg); and interneurons (denoted I).

The mean firing rates in each in the four neural populations are given by
mean-field equations (Amit and Brunel 1997b)

νsel = Φ(µsel, σ
2
sel), ν+ = Φ(µ+, σ

2
+), νbg = Φ(µbg, σ

2
bg), νI = Φ(µI , σ

2
I ).

The statistics of the afferent currents is calculated as function of synaptic
structuring. The recurrent currents are

µsel = −β(e)
I + CE[fJ+νsel + f(p− 1)J−ν+ + (1− fp)J0νbg]− CIJEIνI

µ+ = −β(e)
I + CE[fJ−νsel + f [J+ + (p− 2)J−]ν+ + (1− fp)J0νbg]− CIJEIνI

µbg = −β(e)
I + CE[fJ−νsel + f(p− 1)J−ν+ + (1− fp)J0νbg]− CIJEIνI

µI = −β(i)
I + CEJIE[fνsel + f(p− 1)ν+ + (1− fp)νbg]− CIJIIνI ,

(3.16)

where

J+ = CHH
p Jp + (1− CHH

p )Jd

J− = CHL
p Jp + (1− CHL

p )Jd

J0 = C0
pJp + (1− C0

p)Jd

(3.17)

The variances of the recurrent currents are
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σ2
sel = CE[f∆J+νsel + f(p− 1)∆J−ν+ + (1− fp)∆J0νbg] + CIJ

2
EIνI

σ2
+ = CE[f∆J−νsel + f [∆J+ + (p− 2)∆J−]ν+ + (1− fp)∆J0νbg] + CIJ

2
EIνI

σ2
bg = CE[f∆J−νsel + f(p− 1)∆J−ν+ + (1− fp)∆J0νbg] + CIJ

2
EIνI

σ2
I = CEJ

2
IE[fνsel + f(p− 1)ν+ + (1− fp)νbg] + CIJ

2
IIνI

where
∆J+ = CHH

p J2
p + (1− CHH

p )J2
d

and analogous for ∆J−, ∆J0. The external currents depend on the level of the
external signal

µ
(ext)
sel = geCextJextνext , σ

(ext)
sel

2
= geCextJ

2
extνext

µ
(ext)
+ ≡ µ

(ext)
bg = CextJextνext , σ

(ext)
+

2 ≡ σ
(ext)
bg

2
= CextJ

2
extνext

µ
(ext)
I = giCextJextνext , σ

(ext)
I

2
= giCextJ

2
extνext

In a steady state the density function of V will be also stationary. It is given
by Eq. 3.6. Both the mean and the variance of the afferent currents are linear
function of ν, hence P (V ) is parametrized only by the mean emission rates. In
other words, there is a one-to-one correspondence between the emission rates and
the distribution of the depolarization.

Here we use the theory to determine: 1. the range of CHH
p and CHL

p for which
the network is able to sustain selective delay activity states; 2. the mean emission
rate of stimulated populations as a function of the instantaneous level of synaptic
structuring. 3. To confront simulation results in stationary states with theory.
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Chapter 4

Mean-field and capacity in
realistic networks of spiking
neurons storing sparsely coded
random memories

Curti E, Mongillo G, La Camera G, and Amit, DJ, Neural Computation, 16:2597-
2637 (2004).

4.1 Introduction

Mean-field (MF) theory has provided a useful tool for obtaining a fast and re-
liable insight into the stationary states (alias, persistent delay activity states,
attractors, working memory) of recurrent neural networks. For networks of bi-
nary neurons (the Amari-Hopfield model, (Amari 1972; Hopfield 1982)) it allowed
a very detailed description of the landscape of stationary states and even an ac-
curate estimate of the storage capacity, i.e. the maximal number of memories
that can be stored in the synaptic matrix and recalled (Amit et al. 1987; Amit
1989). Its effectiveness is due to the high connectivity of the network, i.e. the
large number of pre-synaptic contacts afferent on each neuron, and to the rela-
tively weak effect of a single neuron on another. Its precision is substantiated by
detailed microscopic simulations.

The systematic MF study of the Amari-Hopfield model relied in a fundamental
way on two features: 1. the symmetry of the synaptic matrix, which allowed the
application of techniques of statistical mechanics; 2. the separability of synaptic
efficacies, which allowed a description of the states of the network in terms of
global, collective variables. These studies were extended to the storage of (0-1)
neurons with low coding levels (Tsodyks and Feigelman 1988; Buhmann et al.
1989) and to neurons with continuous response curves (Kuhn 1990). In all these
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cases it was found possible to describe the stationary states of the network in
terms of collective variables, i.e. in terms of population averaged similarities
(overlaps) of the state of the system and the memories embedded in the synapses.

The Willshaw model (Willshaw et al. 1969), which is fully symmetric has
not found a mean-field description, due to the non separability of its synaptic
efficacies, except in the limit of low coding level and high storage (Golomb et al.
1990). As we show below, this treatment is a particular case of the approach we
present – the limit of vanishing depression probability in training.

The experimental reality that such models capture is learned persistent se-
lective delay spiking activity in temporal and pre-frontal cortex (Miyashita and
Chang 1988; Miller et al. 1996). To come nearer to the biological systems the ele-
ments are chosen as spike emitting units, of two types, excitatory and inhibitory,
occurring in different proportions, and with different characteristics. The synap-
tic matrix connecting the neurons expresses the randomness of the connectivity,
as well as the efficacies that existing synapses assume. In such networks the affer-
ent currents are driven by pre-synaptic spikes and these currents feed the neural
membrane depolarization. A neuron emits a spike whenever its depolarization
crosses the threshold. Given a choice of the numbers of neurons of both types
and their individual characteristics as well as the synaptic matrix, the dynamics
of the system can be simulated at the microscopic level. Such simulation serves
as a substrate for ‘recordings’, upon presentation of stimuli in protocols repre-
senting various tasks, as would be the case for the corresponding experimental
situation (see e.g. (Amit 1998)). In such recordings one can register spike rasters
for samples of neurons and monitor average rates (or higher level statistics) on
relevant time intervals, as is commonly done in experiment.

The space of parameters, though, is vast: each type of neurons has several
parameters, the synapses of different types (excitatory-excitatory, excitatory-
inhibitory, inhibitory-excitatory, inhibitory-inhibitory) can have different mean
amplitudes and can involve different delays etc etc (see below). This renders a
MF description quite essential. Scanning the parameter space to find realistic,
yet computationally interesting, zones of parameters in microscopic simulations
with a sensible number of spiking units (∼ 10,000) is computationally very in-
tensive, while MF scanning of network state space is very rapid. This becomes
even more pressing when one investigates the collective properties of learning,
with dynamic plastic, spike-driven synapses.

The difficulty is that in the more realistic situations the synaptic matrix is
strongly non-symmetric, so there is no recourse to statistical mechanics. Nor
can one expect a factorizable synaptic matrix. In the case considered here, the
sparse and weak connectivity renders the neuronal firing rather weakly correlated.
As a consequence, the high number of synaptic connections renders the afferent
current to a neuron approximately Gaussian and uncorrelated in time (for a step
toward more general situations, see e.g. (Brunel and Sergi 1998; Fulvi Mari 2000;
Moreno and Parga 2004)). This allows for a mean-field description in terms of just
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the average rates in functionally distinct populations1 (Amit and Brunel 1997b).
In this situation, it is possible to pass from the dynamics of the depolarization
of all neurons (in the microscopic description) to the dynamics (when slow) of
the quantities driving the neural spike rates - the means and the variances per
unit time2 of the afferent currents. The dynamics of these quantities is driven
by the rates of all neurons in the system. Given these two quantities for a given
neuron, the average emission rate of the neuron is determined via its transduction
function. Thus the dynamics is closed, in that the rates determine the dynamics
of the afferent currents, and those in turn, determine the rates (Amit and Tsodyks
1991; Amit et al. 1994; Hopfield 1984).

But thus far the theory was pursued only for the case of disjoint populations
corresponding to different stimuli. In other words, each neuron was responsive
to at most one visual stimulus.3

While this approach turned out to be useful and rather accurate in its results,
compared with the microscopic simulations (Brunel 2000), it suffered from several
defects. First, the extremely sharp tuning curves are not realistic; neurons in
experiment are rarely responsive to only one stimulus. Nor are they so selective
in delay activity. Second, disjoint populations imply a very low storage capacity
of the network. If the fraction of excitatory neurons in a selective population is
f , one can store at most 1/f different stimuli in the network.

On the empirical side, progress in this field must cope with the finding of
Miyashita and Chang (1988), and Miyashita (1988) who observed that a column
of 1mm in diameter, of IT cortex, is able to sustain as many as 100, distinct,
selective delay activity distributions, each employing about 2-3% of the cells in
the column (Brunel 1996). Each of these delay activity states corresponds to one
fractal image. Hence, cells must be active in the delay activity state of more than
one image, since 100×(2-3%) is >100%.

Here we present an extension of the MF (population rate) dynamics to the
case in which the populations selected (as responsive) for p different stimuli are
selected at random. Hence, if the coding level is f , any two populations have a
fraction f of each common to both (a fraction f 2 of the total number of cells);
a fraction f 3 of the neurons in the network will be common, on average, to
any three populations coding for different stimuli, etc. The basic ideas have
been suggested by La Camera (La Camera 1999): to classify neurons in the
network by the number of stimuli (of the training set) to which they are responsive
(multiplicity of a cell) and by whether the selected stimulus is or is not among

1For a precursor of this approach see e.g. (Wilson and Cowan 1972).
2In the following we will refer to them as the mean and the variance, to main-

tain the language used in e.g. (Amit and Brunel 1997b).
3‘Visual’ is used here in the restricted sense that cells in IT and PF express

an elevated rate when visual stimuli are presented. These responses are not
considered to be directly related to specific featured of the visual objects.
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them. Previously, when one population was selected by a stimulus (either in
response to stimuli, or in selective delay activity), the excitatory neurons were
divided into three homogeneous populations: one for the cells currently selected;
one for all neurons selective to some stimulus, not currently selected; one for all
neurons not selective to any stimulus (background). Now there are 2p populations
of excitatory neurons: p for selected neurons with all multiplicities (1,. . . , p);
p for non-selected neurons, with all possible multiplicities (0,. . . , (p − 1)), the
latter include neurons of multiplicity 0 (not selective to any stimulus). Including
inhibition, the MF dynamics would deal with 2p+1 populations.

It is then verified that if average rates of cells within each of these 2p+1 popu-
lations are equal and the synaptic matrix is generated in a rather organic learning
process of LTP/LTD transitions between two, discrete states of synaptic efficacy
(Brunel et al. 1998), the statistics of afferent currents (mean and variance) to
the cells in each of these populations is equal and hence these populations are
natural candidates for a MF analysis.

The approach is further reinforced by observing that, in the sparse coding
limit, for any finite value of p, the number of populations that actually affect the
afferents of all neurons is very much lower than 2p+1. This is due to the fact that
the number of neurons in a population varies strongly with the multiplicity of the
population. In fact, when f ¿ 1, this number is very sharply peaked around the
mean pf . As a consequence, only a reduced number of ‘relevant’ populations (of
order

√
pf), contributes significantly to the feedback. The rates of neurons in all

other populations are determined by the afferents from the relevant populations.
We first present a general description of the MF approach. Then come the

Methods used to solve the full and reduced MF equations for the stationary
states, as well as of the simulation process employed to test the MF predictions.
These are followed by Results, including MF bifurcation diagrams compared with
simulation rates and the dependence of the critical capacity of the network on
potentiation-to-depression efficacy, potentiation-to depression probability, the in-
hibitory efficacy and the coding level. In the Discussion we consider prospects
of the applications of the new approach as well as its relation with the Willshaw
model.

4.2 Mean-field approach and synaptic structur-

ing

4.2.1 Generalities

In this Section we recapitulate general ideas which allow for a network of spiking
neurons to be described by collective variables, i.e. mean rates in statistically
homogeneous neural populations, and extend these ideas to the case of randomly
chosen selectivity for stimuli and to a synaptic matrix generated by slow learning
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of many repeated presentations of such sets of stimuli. The Methods section will
deal with the technical aspects of the resulting framework with a specific model
for the spiking neuron.

Mean-field approach consists in dividing the network into distinct and statis-
tically homogeneous subpopulations – a neuron belongs to at most one subpop-
ulation, and two neurons belonging to the same subpopulation have the same
statistics of afferent synapses. One then assumes that all neurons in the same
subpopulation have an equal average spike emission rate. This renders the statis-
tics of afferent currents homogeneous within each subpopulation. The statistics
of the afferent currents, in turn, determines the average emission rate in the sub-
population. The steady mean emission rate in each subpopulation is obtained
requiring self-consistency, i.e. that the output rates (generated via the transduc-
tion function) be equal to the input rates (the rates which determine the input
currents).

When neurons within the network respond to more than one stimulus, the
subpopulations formed by collecting neurons responding to a given stimulus are
in general not distinct. Cells responding to more than one stimulus belong to more
than one subpopulation. The consequence is that these overlapping populations
cannot be used to carry out a mean-field analysis, in the sense described above,
as was done in (Amit and Brunel 1997b). In order to obtain subpopulations
suitable for MF analysis, we follow La Camera (La Camera 1999) and lump
together neurons responding to the same number of stimuli, regardless of their
identity. These, we show next, solve the problem.

4.2.2 The model

The model network is much as in (Amit and Brunel 1997b): It is composed
by NE excitatory and NI inhibitory spiking neurons. Each neuron receives, on
average, CE excitatory and CI inhibitory synaptic contacts, from presynaptic
neighbours (i.e. neurons with a direct afferent on the given neuron), randomly
and independently selected. Neurons also receive Cext excitatory contacts, with
efficacy Jext, coming from outside the network and carrying noise as well as
signals of presented stimuli. They emit spikes independently, in a Poissonian
process with mean rate νext.

Plasticity is restricted to the excitatory-to-excitatory (EE) synapses. An
existing EE-synapse has two possible efficacies: potentiated, Jp, or depressed,
Jd < Jp. In the present study the distribution of the EE-synapses is conceived
as the outcome of a long and slow training stage, in which the p stimuli to be
memorized are repeatedly presented in a random sequence. The synaptic distri-
bution is kept fixed throughout the analysis (see below). The remaining synapses
have fixed, unstructured efficacies. The distribution of these efficacies (mean and
variance) depends on the type of pre- and postsynaptic neurons (EI, IE, II).

A stimulus is characterized by the set of excitatory neurons that are responsive
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to it. Of particular interest is the subset of cells whose rate is enhanced by the
stimulus presentation to a level that can lead to synaptic plasticity. When the
cell populations are selected at random, with a given coding level f (average
fraction of cells in the assembly responsive to the stimulus), cells responsive to
one stimulus may respond to another (fraction f 2) and to more than 2 etc. Every
cell can be characterized (uniquely) by specifying the list of stimuli it responds
to and does not respond to. If the network has been exposed systematically to p
stimuli, a cell is fully defined by the p-bit word, its response pattern, with 1 (0) at
position k indicating that it is responsive (non-responsive) to stimulus k. Thus
the p-bit word (0,1,1,1,0,0,...,0) corresponding to a given cell, indicates that the
cell responds exclusively to stimuli 2, 3 and 4 out of p, although the rates are not
necessarily equal. The number of 1’s in the response pattern of a neuron will be
called its multiplicity, α, β, . . . . It should be emphasized that the (0/1) are not
the responses of the neurons to a stimulus, but merely a short-hand of whether
a neuron has a strong or weak response to the stimulus.

Consider two given cells and synapse connecting them. The corresponding two
p-bit response patterns determine what will occur to the synapse connecting them
when a given stimulus is presented. The structuring process is envisaged to be
stochastic, and slow. If the bit corresponding to the stimulus is 1 in both response
patterns, and if the synapse is in its low state, the synapse will potentiate with
probability q+, (Jd → Jp, LTP); if the presynaptic bit is 1 and the postsynaptic is
0 and if the synapse is in its high state , the synapse will depress with probability
q− (Jp → Jd, LTD)4; and if both are 0, it will not change. In the following we
use

q+ = q, q− = fρq. (4.1)

This scaling of q−/q+ optimizes network capacity (Amit and Fusi 1994). ρ is a
parameter of order 1, defined by Eq. 4.1, regulating LTD to LTP ratio.

Suppose that during training the p stimuli are shown at a uniform rate, i.e.
with equal probability. The total number, P , of potentiation conditions (1,1)
seen by a given synapse, and the total number D of depression conditions (0,1)
is determined by the two p-bit response patterns corresponding to the two cells
connected by it.

4.2.3 Asymptotic synaptic structuring

The synaptic dynamics is a Markov process – a random walk is induced among
the two states of every synapse by the presentation of the stimuli. In general,
the final state of the synapse, following a given sequence of stimuli, could depend
on the order of presentation, due to the fact that the synapse has only two
states. If the transition probabilities are low (slow learning limit, small q+, q−),

4This LTD mechanism can be easily generalized. See e.g. (Brunel et al. 1998).
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the variability from sequence to sequence becomes negligible – what matters is
only the number of potentiating/depressing patterns seen by the synapse as a
consequence of the presentation of the whole training set and not the order in
which they occurred(Brunel et al. 1998). In this limit, the probability of finding
a synapse in its potentiated state, Jp, is obtained, by averaging over all possible
realizations of the random sequences of presentation (Brunel et al. 1998), as

γ(P,D) =
q+P

q+P + q−D
=

P

P + fρD
. (4.2)

P (D) is the number of potentiating (depressing) pairs of activity seen by the
synapse as a consequence of the presentation of the sequence. This is the case
(Eq. 4.2) when at least one of the p stimuli tends to potentiate or depress the
synapse. Otherwise, the synapse is not affected and the final probability (i.e.
following training) that the synapse be in the potentiated state coincides with
the initial probability γ0 (i.e. prior to training and uncorrelated with any of the
stimuli), or

γ(P = 0, D = 0) = γ0. (4.3)

In absence of depression (the limit ρ → 0), the statistical description of the
synaptic structuring (Eqs. 4.2 and 4.3) provides a description also for a Willshaw-
like synaptic matrix. The formal correspondence is exact if Jp = 1, Jd = 0 and
γ0=0 (Willshaw et al. 1969). In this limit, Eq. 4.2 becomes

lim
ρ→0

γ(P,D) =

{

γ0 if P = 0
1 if P > 0

(4.4)

Every synapse which experiences at least one potentiating pattern of activity, is
in its potentiated state with probability 1. Otherwise, it remains unstructured,
i.e. potentiated with probability γ0. In other words, the stimuli can only poten-
tiate the synaptic efficacy. Thus, MF equations for a recurrent network with a
Willshaw-like synaptic matrix (see e.g. (Golomb et al. 1990) can be obtained
from the MF theory developed below, in the limit of vanishing ρ.

4.2.4 Afferent currents and multiplicity

Next we show that cells with the same multiplicity form natural populations
for a mean-field analysis. Note first that the average (replacing spikes by rates,
e.g. (Amit and Tsodyks 1991) current afferent to neuron i from other excitatory
neurons is

〈Ii〉 =
∑

j

〈Jij〉νj (4.5)
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j goes over all presynaptic neurons. If neurons with the same multiplicity, have
the same mean emission rate, νβ, the sum can be rewritten as a sum over multi-
plicities:

〈Ii〉 = CE

∑

β

〈Jij〉βπ(β)νβ (4.6)

where CE is the average EE-connectivity; π(β) is the probability that the presy-
naptic neuron is of multiplicity β and 〈Jij〉β is the average synaptic efficacy from
a neuron of multiplicity β to postsynaptic neuron i. This last average of Jij is
over all possible presynaptic response patterns of neurons of multiplicity β.

It is given by

〈Jij〉β =
∑

P,D

[γ(P,D)Jp + (1− γ(P,D))Jd]ψ
i
β(P,D), (4.7)

where γ(P,D) is given by Eqs 4.2 and 4.3, and ψ
(i)
β (P,D) is the joint probability

distribution of P and D (in an average, MF sense, see e.g. (Brunel et al. 1998).
Given the response pattern of neuron i (of multiplicity α), ψi

β(P,D) can be
determined (see below). Suppose, without loss of generality, that the postsynaptic
neuron responds to the first α stimuli and that α < β. The maximal value of P
is α, since α is the maximal number of coincident active bits in the two response
patterns. If α+β ≤ p, the minimal value of P is zero. If α+β > p, there must be
at least α+ β − p coincident bits in the two response patterns. Hence, P ranges
from 0 (or from α + β − p when α + β > p) to α. The reasoning is analogous
when α > β, exchanging α and β.

The actual value of P is determined by the number of ones among the first α
bits in the response pattern of the presynaptic cell. Each active bit in this position
will find a corresponding active bit in the response pattern of the postsynaptic
cell. The corresponding value of D is the number of 1’s among the remaining
p− α bits of the response pattern of the presynaptic neuron: Each active bit in
this position in the presynaptic response pattern will find an inactive bit in the
response pattern of the postsynaptic cell. Because the presynaptic cell responds
to just β stimuli, D is given by D = β − P .

There are

(

p
β

)

possible response patterns for a neuron of multiplicity β.

Among these

(

α
h

)(

p− α
β − h

)

have h 1’s among the first α bits and β − h 1’s

among the remaining p − α. For all these, P = h and D = β − h. Hence, if
neuron i is of multiplicity α,

ψ
(i)
β (P,D) =

(

α
P

)(

p− α
D

)

/

(

p
β

)

, with D = β − P, (4.8)
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depending only on the multiplicity α of the postsynaptic neuron and not on its
particular response pattern. Replacing ψ

(i)
β (P,D) ≡ ψαβ(P,D) in Eq. 4.7 and

Eq. 4.7 in 4.6, for the afferent current, we find

µα = CE

∑

β

Jαβπ(β)νβ, (4.9)

where µα is the mean current to a neuron of multiplicity α, while Jαβ is given by

Jαβ =
∑

P,D

[γ(P,D)Jp + (1− γ(P,D))Jd]ψαβ(P,D) (4.10)

Thus, all neurons with the same multiplicity receive the same mean afferent
current, with the same variance, provided the rates in a population of equal
multiplicity are equal. Consequently, the cells in each such population would emit
at the same mean emission rate, which expresses the consistency of the underlying
assumption. As a matter of fact, the mean emission rate varies from neuron to
neuron, mostly due to the random connectivity in the network. However, for large
networks, the distribution of rates within a statistically homogeneous population
is strongly peaked around its (population) mean value. This is confirmed by
simulations (see below) and makes the cells with the same multiplicity a neural
population suitable for mean-field analysis.

To exemplify the import of the above arguments we present in Fig. 4.1 the
average fraction of potentiated synapses afferent on a neuron, as a function of
the multiplicity α of that neuron, defined as

〈γ〉α =
∑

β





∑

P,D

γ(P,D)ψαβ(P,D)



 π(β) (4.11)

with γ(P,D) and ψαβ(P,D) given by Eqs. 4.2 and 4.8 respectively. As can be
seen, the fraction of potentiated synapses varies with the multiplicity. Conse-
quently, in a steady state, the mean emission rates of the neurons responding to
the same stimulus are not homogeneous: They depend on the multiplicity of that
neuron. Thus, the number of sub-populations of excitatory neurons of potentially
different rates, required for MF analysis, is p+1, one for each multiplicity (0,...,p).

The above discussion was limited to the case without selective activity. When
neurons selective to a given stimulus are active, not all populations of a given
multiplicity are expected to have the same rate: Those responsive to the stim-
ulus will emit at higher rate than the others within the same subpopulation.
The arguments presented above can be extended (see Appendix A), leading to
the conclusion that 2p excitatory populations would be required, with rates νsβ
for selective neurons of multiplicity β and νnβ , for non-selective neurons of the
same multiplicity. The resulting 2p populations consist of p non-selective ones,
of multiplicity 0,1, ..., p − 1, and p selective ones, of multiplicity 1,2, ..., p. By
contrast, in the case of non-overlapping memories the description of the retrieval
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Figure 4.1: Sensitivity of afferent synaptic potentiation to neural multiplicity:
Mean fraction of potentiated synapses vs postsynaptic multiplicity, in a network
with f = 0.05, ρ = 1 and p = 40. This precludes the use of a single excitatory
population for MF purposes.

state needs only 3 excitatory populations (selective with multiplicity 1, and non-
selective neurons with multiplicities 0 or 1), regardless of the number of stored
memories (Amit and Brunel 1997b).

4.2.5 Mean-field analysis

To study whether the network can sustain single-item working memory states,
we consider 2p+1 populations, adding the population of inhibitory neurons to
the 2p populations mentioned above. The mean currents to selective (s) and
non-selective (n) neurons in the excitatory populations of multiplicity α, from
selective and non-selective neurons of multiplicity β, are

µsα = CE





p
∑

β=1

Jss
αβπs(β)ν

s
β +

p−1
∑

β=0

Jsn
αβπn(β)ν

n
β



+ µI + µext

µnα = CE





p
∑

β=1

Jns
αβπs(β)ν

s
β +

p−1
∑

β=0

Jnn
αβπn(β)ν

n
β



+ µI + µext (4.12)

CE is the average number of recurrent excitatory collaterals received by a neuron;
Jss
αβ is the mean efficacy of synapses received by a selective neuron with multiplic-

ity α from selective neurons with multiplicity β, J sn
αβ is the mean efficacy received

by a selective neuron with multiplicity α from non-selective neurons with multi-
plicity β. Jns

αβ and Jnn
αβ are defined analogously; πs(β)(πn(β)) is the probability
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that a selective (non-selective) neuron has multiplicity β; νsβ (νnβ ) is the mean
emission rate in subpopulation of selective (non-selective) neurons of multiplicity
β; µI and µext are, respectively, the mean afferent inhibitory current and the
mean external current, given in Eqs. A.13.

Analogously, the variances of the afferent currents are obtained as

(σsα)
2 = CE





p
∑

β=1

∆Jss
αβπs(β)ν

s
β +

p−1
∑

β=0

∆Jsn
αβπn(β)ν

n
β



+ σ2
I + σ2

ext

(σnα)
2 = CE





p
∑

β=1

∆Jns
αβπs(β)ν

s
β +

p−1
∑

β=0

∆Jnn
αβπn(β)ν

n
β



+ σ2
I + σ2

ext (4.13)

where σ2
I and σ2

ext are, respectively, the variance of the inhibitory current and the
variance of the external current, given in Eqs. A.14. The Jxy

αβ, ∆J
xy
αβ and πx(β)

are computed in Appendix A.
Note that in computing the variance of the currents we have ignored the cor-

relations between synaptic efficacies which have a common pre-synaptic neuron.
This is justified as long as the ratio between the correlated contribution to the
variance is small compared to the uncorrelated one. This ratio is, for low f and
high loading (∼ 1/f 2), is ∼ Cf 2 · pf 2 exp−2pf 2 ¿ 1 (see (Amit and Fusi 1994;
Golomb et al. 1990). In our simulations it is always ¿0.72. Moreover, with our
parameters the variance of the afferent currents is dominated by the external and
the inhibitory contributions, while the potential correlations affect exclusively the
recurrent excitatory contribution.

The statistics of the current, i.e. its mean and variance, determines in turn
the mean emission rate of the neuron according to

ν(s,n)
α = Φ(µ(s,n)

α , σ(s,n)
α ) (4.14)

where the functional form of the transduction function Φ(·) depends on the neural
model chosen. The mean emission rates within the subpopulations determine the
statistics of the afferent currents. Self-consistency then implies that the mean
emission rates determining a given statistics of the currents, be equal to the rates
at which spikes are produced in the various subpopulations given those currents















νsα = Φ(µsα
({

νsβ, ν
n
β

})

, σsα
({

νsβ, ν
n
β

}

)
)

νnα = Φ(µnα
({

νsβ, ν
n
β

})

, σnα
({

νsβ, ν
n
β

}

)
)

. (4.15)

µxα
({

νsβ, ν
n
β

})

, σxα
({

νsβ, ν
n
β

})

represent the dependence of the means and the vari-
ances of the afferent currents on all the population rates. The dependence on the
inhibitory and the external emission rates is not explicitly indicated.
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A solution of Eqs. 4.15 provides the mean emission rates of all subpopulations
in a stationary state of activity. The phenomenology one expects is(Amit and
Brunel 1997b):

• Spontaneous activity (SA): For low values of Jp/Jd ∼ 1 there exists a
single solution of Eqs. 4.15 with νsβ = νnβ for β = 1, ..., p−1. In other words,
selective and non-selective populations have the same mean emission rate.
Rates may depend on the multiplicity of the cells, due to potentiations that
did take place between certain groups of neurons. The system is ergodic.
See Results.

• Retrieval state or working memory (WM): Above some value of Jp/Jd
a bifurcation takes place and, besides the SA solution, a new solution of Eqs.
4.15 appears with νsβ > νnβ for β = 1, ..., p− 1. In this state, one population
of neurons, responsive to a given stimulus, has elevated activity and the
remaining neurons, not selective to that stimulus, emit at low rates. But
within each of the two populations (selective and not selective) the rates
will depend on the multiplicity of the cells. There exist p different retrieval
states, each for one of the learned stimuli.

• Destabilized SA: When Jp/Jd becomes too high, the spontaneous activity
state becomes unstable and only selective delay activity states exist.

Reduced mean-field

Since one expects the number of stored memories to become large, a system
of 2p+1 dynamical variables in mean-field is still excessive and may become as
large as the number of cells in the network, or larger. A further step, beyond the
2p+1 reduction, can be achieved by observing that the πx(β) becomes negligible
for values of β distant from the peak of the distribution, at fp. Disregarding
selectivity for the sake of simplicity, π(β) is

π(β) =

(

p
β

)

fβ(1− f)p−β (4.16)

where fβ(1− f)p−β is the probability that a neuron respond to exactly β out of
p stimuli. For large values of p, this distribution becomes Gaussian, with mean
and variance given by

µp = fp, σ2
p = f(1− f)p.

But, if f is low enough, even for pf ∼ 2, 3 the distribution is quite peaked, as we
show below.

If, for example, one considers populations within 3σ of the peak, ∼ 99% of
the totality of excitatory neurons of the network are included. But σ ∼

√
fp
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and hence this number of populations is quite low compared to 2p. One then
takes this reduced number of populations as the only ones that contribute to
the currents, reducing the number of equations to be treated for self-consistency.
The rates of neurons in the other populations are computed directly from the
afferent currents produced by the populations retained. For example, for f=0.05
and p = 100, σp ' 2.24, 3σ ∼7 and when selective and non-selective populations
are considered, one needs only 24 populations, instead of the initial 200.

4.3 Methods

4.3.1 Spiking Neuron Model

The underlying single unit in our network is the standard integrate-and-fire ele-
ment, without adaptation. Membrane depolarization integrates the afferent cur-
rent I(t) according to,

V̇ = −V
τ

+ I(t), (4.17)

where τ is the membrane time constant. Whenever the depolarization reaches a
threshold θ, the cell emits a spike and remains refractory for a time τarp. Then
V is reset to Vr and normal dynamics resumes. The current I(t) to a neuron,
produced by the afferent spikes, is,

I(t) = Iext(t) +
∑

j

Jj
∑

k

δ(t− t(k)
j − δj) (4.18)

where Iext is the current coming from outside the network (see e.g. (Amit and
Brunel 1997b); j goes over the pre-synaptic sites, Jj is the efficacy of the cor-

responding synapse; k runs over all spikes arriving at a given site; t
(k)
j is the

emission time of the k-th spike by neuron j; δj is the associated transmission
delay. The effect of a spike is very brief.

When I(t) is stationary, Gaussian and independent at different times, the
transduction function of a neuron Φ(·) is (Amit and Tsodyks 1991; Ricciardi
1977)

ν = Φ(µ, σ) =

(

τarp + τ
∫

θ−µ
σ

V r−µ
σ

√
πeu

2

(1 + erf(u))du

)−1

(4.19)

where µ and σ2 are respectively the mean and the variance of the afferent cur-
rent. Since in a randomly and weakly connected network the afferent current is
Gaussian to a good approximation (Amit and Brunel 1997b), we use Eq. 4.19 as
the transduction function in our MF studies.

91



4.3.2 Stationary states in Mean-Field

The full case

For most of the results obtained in MF we used a simplified set of dynamical
equations for the evolution of the rates. In the ‘full’ case we integrate the following
2p+ 1 equations (all multiplicities),



















τE ν̇
s
α(t) = −νsα(t) + ΦE

(

{νsβ(t)}, {νnβ (t)}, νI(t)
)

, α = 1, . . . , p

τE ν̇
n
α(t) = −νnα(t) + ΦE

(

{νsβ(t)}, {νnβ (t)}, νI(t)
)

, α = 0, . . . , p− 1

τI ν̇I(t) = −νI(t) + ΦI

(

{νsβ(t)}, {νnβ (t)}, νI(t)
)

,

(4.20)
performing a first-order numerical integration, with a time step ∆t = 0.01ms
(about 10−3 of the time constants involved). τE, τI are fictitious excitatory and
inhibitory time constants, whose actual values are immaterial, since we consider
only stationary states. We take them equal to the membrane time constants of
the excitatory and inhibitory spiking neurons, respectively (see e.g. Table 4.1).
{νsβ(t)}, {νnβ (t)} are, respectively, the set of rates in the selective and non-selective
populations of multiplicity β. The Φ’s are the transduction functions defined in
Eq 4.19. Their dependence on the type of neuron, i.e., excitatory and inhibitory,
is via τ , Vr and Θ. Their dependence on the rates is via the mean and variance
of the afferent current to each type of neuron, Eqs. 4.12 and 4.13.

We looked for the steady states of this dynamical system, which are the so-
lutions of Eqs. 4.15. The test for stationarity is that all 2p + 1 rates, upon the
next integration step, undergo a relative variation less than a given tolerance
∆f ∼ 10−6, i.e.

∣

∣

∣

∣

∣

νxα(t+∆t)− νxα(t)
νxα(t)

∣

∣

∣

∣

∣

< ∆f .

The iterative approach to the stationary states, via equations like 4.20, guarantees
their stability with respect to this dynamics.

Initial conditions

To find the solution corresponding to spontaneous activity (SA), the initial con-
ditions are chosen to be

νsα(t = 0) ∼ νnα(t = 0) ∼ νI(t = 0) ∼ νext (4.21)

with νext the rate of the afferent external noise, see Sec. 4.2.2. For the retrieval
state (delay activity, WM), if they exist, we start with

νsα(t = 0) ∼ 10 · νext νnα(t = 0) ∼ νI(t = 0) ∼ νext (4.22)
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Single-cell parameters E I
θ - Spike emission threshold 20mV 20mV
Vr - Reset potential 10mV 10mV
τ - Membrane time constant 20ms 10ms
τarp - Absolute refractory period 4ms 2ms

Network parameters Values
CE - Number of recurrent excitatory connections per cell 1600
CI - Number of recurrent inhibitory connections per cell 400
Cext - Number of external connections per cell 3200
νext - Spike rate from external neurons 5.00Hz

Synaptic parameters Values

J
(E)
ext - Synaptic efficacy ext→ E 0.070mV

J
(I)
ext - Synaptic efficacy ext→ I 0.115mV
JIE - Synaptic efficacy E → I 0.080mV
JEI - Synaptic efficacy I → E 0.275mV
JII - Synaptic efficacy I → I 0.178mV
Jd - Depressed efficacy of plastic EE synapses 0.030mV
Jp - Potentiated efficacy of plastic EE synapses gJd
γ0 - Fraction of potentiated synapses before learning 0.05

Variable parameters Values
g - Ratio between potentiated/depressed efficacies (Jp = gJd) 1− 10
ρ - Ratio between LTD/LTP probabilities (q− = fρq+) 0− 10
f - Fraction of E cells responding to a stimulus 0.005− 0.2
p - Number of stored memories 1− 80

Spiking network parameters (SIMULATION) Values
NE - Number of excitatory cells 8000
NI - Number of inhibitory cells 2000
c - Probability of synaptic contact 0.2
δ - Synaptic delay 1− 10ms
Tstim - Duration of visual presentation 500ms
Tdelay - Interval between two successive presentations 1000ms
Gstim - External rate increase during presentation (νext → Gstimνext) 1.5

Table 4.1: Parameters used in MF calculations and simulations. The first four
sections are common to both. The bottom one are parameters specific to the
simulation.
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which mimics the presentation of a stimulus. The behavior of the system is
rather insensitive to the precise values of the initial conditions, except near critical
points.

We consider three scenarios, which depend on the various network parameters:

• No selective delay activity – ergodic dynamics: The stationary rates
in populations of the same multiplicity are equal, irrespective of whether
they are selective or not and independently of the initial conditions. The
resulting rate distributions are denoted as νxβ(SA).

• Coexistence of single-item WM and spontaneous activity: The
stationary solutions arrived at from initial condition 4.21 and 4.22 are dif-
ferent: For 4.21, νsβ(SA) = νnβ (SA) for β = 1, ..., p− 1. The solution corre-
sponding to the WM initial conditions, 4.22, has νsβ(WM) > νnβ (WM) for
β = 1, ..., p− 1. Ergodicity is broken – the final state depends on the initial
condition. There will be one single-item5 WM solution for each selected
stimulus.

• Disappearance of spontaneous activity: Upon integration with initial
conditions 4.21 the system does not end up in a symmetric state as in the
above two cases. Instead, it is always attracted to a WM state. Which of the
p patterns is actually in the active state, is determined by a fluctuation in
the initial conditions or in the dynamics. Upon presentation of a stimulus,
initial condition 4.22, the system ends up in a WM state corresponding to
the stimulus presented.

Observables in MF

To obtain a compact description of the state of activity of the excitatory sub-
network, we use the rate averaged over multiplicities in the selective populations,
ν̃s, and in the non-selective populations ν̃n, given by

ν̃s =

∑

β ν
s
βπs(β)

∑

β πs(β)
, ν̃n =

∑

β ν
n
βπn(β)

∑

β πn(β)
(4.23)

We are interested primarily in determining the region in the space of the
parameters in which the network is able to exhibit both the SA and the WM
states of activity. In particular we study the space of states of the network as we
vary the ratio g(≡ Jp/Jd), between the potentiated and the depressed synaptic
efficacy, varying actually Jp, at fixed Jd; the number p of stored patterns; ρ – the

5There may be also multi-item solutions, i.e. states in which several popu-
lations sustain high delay activity simultaneously, as for with non-overlapping
stimuli (e.g Amit et al. 2003). Those could be studied by the present approach,
but this goes beyond the scope of the present work.
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ratio between the potentiation and depression synaptic transition probabilities,
Eq. 4.1, and the coding level f , varying one parameter at a time.

Reduced population number

To reduce the number of dynamical equations in (4.15), we proceeded as follows:
The number of relevant rates was determined starting from the mean multiplicity
fp and including only the rates, in selective and non-selective populations, of
multiplicity within 3σ(= 3

√
pf) of the mean, as discussed in Sec. 4.2.56. In

some instances this number of populations is cut off at the lower end, e.g. if it
reaches the lowest possible multiplicity (0 or 1). We denote the reduced set of
multiplicities {nr}, where nr is the number of subpopulation considered in the
reduced treatment.

The number of equations in the dynamical system (Eq. 4.20) reduces corre-
spondingly to nr Eqs. like 4.20, with nr variables. Then nr is increased to n′r,
adding one population on each side of the previously retained set of populations
(where possible) and comparing the solution with the one of {nr}. If

max
α

{

|νxα({nr})− νxα({n′r})|
νxα({nr})

,
|νI({nr})− νI({n′r})|

νI({nr})

}

< ∆r = 10−2, (4.24)

where α ∈ {nr} and x = s, n, then nr is assumed as the number of populations to
be retained. Otherwise, if the condition is not satisfied, the number of populations
is increased and the condition checked again.

Finally, the neglected rates νxα’s are obtained, via the transduction function,
by computing the mean and variance of the currents afferent on neurons of each
neglected multiplicity, using the rates of the retained populations, i.e.







































µxα = CE





∑

β∈{nr}

Jxs
αβν

s
βπs(β) +

∑

β∈{nr}

Jxn
αβν

n
βπn(β)



+ µI + µext,

(σxα)
2 = CE





∑

β∈{nr}

∆Jxs
αβν

s
βπs(β)

∑

β∈{nr}

∆Jxn
αβν

n
βπn(β)



+ σ2
I + σ2

ext.

(4.25)

In some cases we compare the solution with the reduced number of populations
to the ‘full’ MF solution (2p + 1 populations). In some sample situations we
also double checked the convergence of our dynamics by considering the MF
dynamical equations for the evolution of the means and variances of the currents,
as in (Amit and Brunel 1997b), rather than the simplified equations, Eqs. 4.20,
for the evolution of the rates.

6A limiting case of this approach, i.e. f → 0, pf very large, was employed in
(Golomb et al. 1990) to study the MF of the Willshaw model.
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Bifurcation diagram: varying g at fixed p

As examples of the different possible stationary states of the network, we generate
sample bifurcation diagrams. At fixed p, the synaptic structure is set up according
to Eqs. A.2. Then gis varied from 1 up. For each value of g the MF equations,
Eqs. 4.20, are solved for the stationary states with both initial conditions, 4.21
and 4.22. We then plot the average rates ν̃s and ν̃n, Eqs. 4.23, vs g. The
phenomenology is the following:

• for 1 ≤ g < g(1)
c (p), there is a single solution at low rate, with ν̃s ∼ ν̃n –

spontaneous activity;

• g(1)
c (p) is a bifurcation point: for g(1)

c (p) ≤ g < g(2)
c (p), a second solution

appears, with ν̃s À ν̃n, i.e. selective activity rates are significantly higher
than non-selective rates. Both increase with increasing g.

• for g ≥ g(2)
c (p), there is again a single solution: either the WM state, for

p¿ 1/f , or symmetric (SA) at high rate, for p > 1/f (see below).

Storage capacity

For a given set of parameters, the network, if it has WM states, will have a crit-
ical capacity, namely there will be a highest value of p(≡ pc) for which the WM
solutions still exist and for pc+1 there is only stationary state is spontaneous ac-
tivity. For a given set of parameters and a given p, the synaptic couplings among
the various neural populations are computed, according to Eqs. A.2 and the cor-
responding steady state solutions are obtained, as above. Keeping all parameters
fixed and increasing p we obtain pc corresponding to that set of parameters. Then
one parameter is varied at a time, giving pc as a function of that parameter.

4.3.3 Simulations

The Network Architecture

The model network is composed of NE excitatory and NI inhibitory integrate-
and-fire spiking neurons, Eq. 4.17. The direct afferent presynaptic cells of a
given neuron are selected, independently and randomly, by a binary process with
probability c, so that each neuron receives, on average, cNE = CE excitatory and
cNI = CI inhibitory contacts. The structure of the connectivity remains fixed
all along the simulation. The existing excitatory as well as inhibitory synapses
onto inhibitory neurons are assigned a uniform value. The structuring of the
excitatory-to-excitatory synapses, i.e. the statistics of the potentiated/depressed
synapses, is generated according to the set of stimuli supposed to have been
presented in training (see below).
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To each recurrent synapse is associated a transmission delay δ – the time af-
ter which the emitted spikes are delivered to the postsynaptic cell. The synaptic
delays are uniformly distributed within a bounded interval. Cext excitatory con-
tacts are afferent on each neuron from outside the network. Each is modeled by
a random and independent Poissonian spike train of rate νext. Hence, all neurons
are receiving a nonselective external current Iext = Jextη(t), where Jext is the
efficacy of the external synapses; η(t) is a Poisson process with mean Cextνext per
unit time. See e.g. Table 4.1.

The simulation process

The simulation consists of numerical integration of the discretized dynamical
equations of the membrane depolarizations, Eq. 4.17, of all (NE +NI) neurons.
The temporal step is ∆t(= 0.05ms), shorter than the time between two successive
afferent spikes. The initial distribution of depolarization in the network is set
uniform at a sub-threshold value. The actual value has little effect on the network
dynamics – the network reaches its stationary state, corresponding to the SA
state, within short relaxation times (∼ 50ms).

Spikes begin to be emitted due to the external currents. The depolarization
of every neurons is sequentially updated. If Vj(t + ∆t) > θ, a spike is delivered
to all postsynaptic neurons, and the depolarization is reset to Vj = Vr and kept
fixed for τarp milliseconds. The spike adds to the value of the depolarization of
the postsynaptic neuron i, at time t+∆t+ δij, the value Jij of the corresponding
synaptic efficacy. For more details on the simulation process see e.g (Amit and
Brunel 1997a). The complete list of parameters is reported in Table 4.1.

Statistics of Stimuli and Learning

The p stimuli to be learned are set up, when the simulation is initialized, by a
binary process: An excitatory neuron responds independently to each stimulus
with probability f . Each stimulus corresponds (on average) to a pool of fNE

visually responsive excitatory neurons. These pools are kept fixed all along the
simulation. Hence, one can associate to each neuron a response pattern {ξµi },
µ = 1, . . . , p, where ξµi = 1 if neuron i responds to (i.e. is selective to) the
stimulus number µ, and 0 otherwise. To repeat, the ξs are not rates, but merely
a bookkeeping of the selectivity of the cells.

The asymptotic effect of learning is expressed in the following way: The (two-
state) synapse between the presynaptic excitatory neuron j and the postsynaptic
excitatory neuron i, if it exists, is set in the up state (Jij = Jp) with probability

Pr(Jij = Jp) =

{

γ0 if Pij = Dij = 0
Pij/(Pij + fρDij) otherwise

(4.26)
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where

Pij =
p
∑

µ=1

ξµi ξ
µ
j ; Dij =

p
∑

µ=1

(1− ξµi )ξµj (4.27)

where Pij and Dij are, respectively, the P and D introduced at the end of
Section 4.2.2, for the specific synapse connecting neuron j to i. γ0, the synaptic
distribution prior to learning, is defined in Eq. 4.3. The synaptic matrix is
generated for every value of p according to this recipe. This structuring on top of
an unstructured synaptic background, follows the tradition of Brindley (1969).

Testing protocol

To check the MF predictions, the network is subjected to a testing stage during
which the entire set of stimuli is presented, to check which of the stimuli has
a corresponding delay activity with the given synaptic structure at the given
loading level. The presentation of a stimulus is expressed by an increase in the
rates of external afferents to the selective cells (the corresponding pool) for an
interval of Tstim. The rate of spikes arriving at these neurons is increased by a
factor Gstim > 1, Table 4.1. External currents to other excitatory neurons, as well
as to the inhibitory neurons, are unaltered. Accordingly, the neurons selective to
a given stimulus emit at elevated rates, during the presentation of the stimulus.
Note that no synaptic plasticity takes place during stimulus presentation.

The typical trial consists of a presentation interval of Tstim, followed by a
delay interval of Tdelay, during which none of the populations is stimulated. The
presentation sequence of the stimuli is either kept fixed (1→ 2→ . . . p→ 1), or
generated by choosing each stimulus to be presented independently and randomly,
with probability 1/p, until each stimulus has been presented at least once.

Recordings and observables

In order to compare MF predictions with the behavior of the simulated spiking
network, the average emission rates within selective and non-selective popula-
tions are estimated by Eq. 4.23, within each trial period, for the entire set of
stimuli. The mean emission rate of a population in an interval T is estimated as
the total number of spikes emitted by the neurons belonging to that population
in the interval divided by T and by the total number of neurons within the pop-
ulation. Single-cell data is measured in a randomly selected subset of excitatory
neurons (10% of the total). The subset of neurons sampled is kept fixed during
the ‘recordings’, to mimic experimental procedures. The mean emission rate of
neuron i in an interval T is estimated as the number of spikes emitted by the
neuron in the interval divided by T .

The mean emission rate of a neuron in the delay period is estimated starting
200 ms following the removal of the stimulus until Tdelay after the removal of a

98



stimulus µ, and is denoted by vµi . This is to avoid the transient following the
stimulus.

From the single-cell rate estimates {vµi }, measured in the simulations, we
compute the average rates in populations of cells which are selective and non-
selective to stimulus #µ, with a given multiplicity β, off line, as

V s
µ (β) =

∑

i∈β ξ
µ
i v

µ
i

∑

i∈β ξ
µ
i

, (4.28)

where
∑

i∈β v
µ
i is over all neuron of multiplicity βselective to stimulus µ. V s

µ (β)→
νsβ for each µ, as N →∞. Analogously,

V n
µ (β) =

∑

i∈β(1− ξµi )vµi
∑

i∈β(1− ξµi )
, (4.29)

which → νnβ as N →∞.
The compact average rates, i.e. selective and non-selective rates averaged over

all multiplicities, are obtained directly from the simulations, as

〈V s
µ 〉 =

∑

i ξ
µ
i v

µ
i

∑

i ξ
µ
i

→
∑

β πs(β)ν
s
β

∑

β πs(β)
= ν̃s (4.30)

〈V n
µ 〉 =

∑

i(1− ξµi )vµi
∑

i(1− ξµi )
→

∑

β πn(β)ν
n
β

∑

β πn(β)
= ν̃n (4.31)

could also be obtained from single-cell recordings.
Note that 〈V s

µ 〉, 〈V n
µ 〉 are the analogs of the overlaps in the Hopfield model

(Amit et al. 1985). In this way we obtain a 〈V s
µ 〉 and 〈V n

µ 〉, for each µ. To
compare with ν̃x of the MF analysis, Eq. 4.23, we compute:

〈〈V x〉〉 = 1

p

∑

µ

〈V x
µ 〉 → ν̃x (4.32)

The corresponding error is estimated as the standard deviation of the (p-
component) vector of the 〈V s

µ 〉’s from its mean. In some cases, when we studied
only compact average rates, we presented only half of the stimulus set, to reduce
simulation time.

4.4 Results

4.4.1 Bifurcation diagrams in MF and Simulations

The equations 4.15 for the stationary states of the network, in MF, with the set
of parameters given in Table 4.1 and the synaptic matrix set up as described in
Methods, are solved with 2p+1 populations for p=40 and 60. Figs. 4.2A, and 2C
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present the population rates, averaged over all multiplicities, in three populations:
1. the selective, active population (ν̃s); 2. the remaining non-selective neurons,
including those responsive to no stimulus (ν̃n); 3. the inhibitory neurons (νI).

The rates are plotted vs g ≡ Jp/Jd ≥1 (Jd fixed). For low values of this
parameter, there is a single low rate solution with ν̃s ∼ ν̃n (spontaneous activity),
independent of the initial condition. Both rates, as well as the mean emission rate
in the inhibitory population, increase with the potentiation level. Above a critical
value g = gc, which increases with p, gc=7.37 (Fig. 4.2A: p=40), and gc=8.35
(Fig. 4.2C: p=60), a second solution appears, in which one selective population
has a persistent elevated rate (ν̃s À ν̃n), starting at 23.02 Hz in A and 29.83 Hz
in C. Also the average, selective enhanced rate increases with increasing g.

From the microscopic simulation, we estimate (as described in Sec. 4.3.3)
the average emission rate in the selective population (i.e. neurons responsive to
the stimulus, for which ξµi =1) and in the non-selective population (i.e. neurons
non-responsive to the stimulus, ξµi =0), following stimulus removal. In this way,
p values for ν̃s and p values for ν̃n are obtained (see Methods). The population
emission rates averaged over all p stimuli, with the corresponding error bars
(standard errors over the p emission rates) are also reported in Fig. 4.2(A,C),
for five values of g – two below and two above gc and one near gc. The results of
the numerical simulations are in good agreement with theory, except near gc.

Fig. 4.2B shows the distribution of the measured (simulation) selective av-
erage emission rate, during the delay period, over the p(= 40) populations, for
three values of g, marked (a,b,c). Far from gc, the distribution is unimodal,
either at low rates (a) or at high rates (c). By contrast, for g ∼ gc (point b)
the distribution is bimodal, with a peak at low rates, for populations unable to
sustain WM and a peak at high rates, for those that sustain WM. The same
distribution is reported in Fig. 4.2D for p =60. In this case, the distribution of
the rates is bimodal at all measured points (as witnessed also by the large error
bars in C). This is due to the fact that p=60 is very close to the critical capacity,
pc(g), of the network and, as we show below, pc(g) does not vary much with g, in
this region. At still higher values of g there is another critical value beyond which
there are two different behaviors: for low p ¿ 1/f , the network is close to one
with non-overlapping stimuli, the SA state destabilizes and only WM states are
stable. For higher p (> 1/f) the system displays only a symmetric stable state,
much as the one for g < gc, but at high rates. The data for these high values of
g are not shown.

Fig. 4.3 presents the detailed dependence of the rates of selective and non-
selective cells, in the delay activity state (WM) vs the multiplicity β, for g above
gc, (A,B): p=40, g =8 and (C,D): p=60, g =9. On the left (A and C) are
the rates in populations of all multiplicities as obtained by MF theory. On the
right, (B and D) are zooms of the part of the figures on the left for the relevant
multiplicities, i.e. those actually found in the simulation (β ≤7 for p=40 and β ≤9
for p=60). Shown are MF rates together with the corresponding rates measured
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in the simulation, each with its standard error, as found across the subset of
sampled neurons (10%). Again, simulations results are in good agreement with
the theory. Also here the fluctuations for p=60 are much larger, see above. The
relevant multiplicities (the ones retained in the reduction) vary relatively slowly
with the multiplicity.

The large standard errors near gc are due to inhomogeneities. These have
several sources: There is structural inhomogeneity due to the random selection
of the number of pre-synaptic afferent cells (we fix only the average number C);
another source of inhomogeneity is due to the fluctuations in the coding level
(around the mean fN), see e.g. Sec. 4.3.3 and 4.3.3. The random connectivity
produces different afferent currents to different, equivalent neurons (see (Amit
and Brunel 1997a)). Similarly, the randomness in coding level leads to different
numbers of neurons in different (equivalent) selective populations. These fluctu-
ations are quenched (i.e. fixed in a simulation, once the network and the stimuli
have been determined). Their main effect consists in allowing, for the same value
of g, some populations to be able to sustain enhanced delay activity and others
not. Consequently, the critical value of g varies from population to population,
see e.g. (Brunel 2000). If one were to define a critical g in the simulation as the
lowest value for which all populations have persistent delay activity, it would be
higher than the value obtained from MF-theory, as is to be expected and as is
confirmed by Figs. 4.2 (A and C) where it is seen that: for (A) it would be >7.5
(compared to theoretical, MF, 7.37) and for (C) >9.5 (compared to theoretical
8.35). Yet, this empirical gc may vary from simulation to simulation of the same
network.

To exhibit these effects we report in Table 4.2 the results of simulations, with
one or both of these parameters – connectivity and coding level – uniform, to
compare the fluctuations with the case when they are both free (distributed as
described in Methods). We do this for p =40, at several values of g. Uniform
connectivity implies that all neurons receive exactly the same number of afferent
connections, cNE excitatory and cNI inhibitory; Uniform coding level implies
that all selective populations have the same number of neurons fNE. As can be
read from the standard errors, the inhomogeneity which more strongly affects the
dynamics of the network around gc is the variability in the coding level. When
the number of neurons is set equal (at fNE) for all populations, the standard
errors are small even very near gc, despite the variability in connectivity. They
are essentially the same as if both parameters were kept uniform. In the opposite
case, uniform connectivity and random coding level, the standard errors are as
large as if both variables were free. For instance, at g=7.5 the standard error at
uniform f and random C is 1.90 (col 3 in Table 4.2), while it grows to 12.28 for
random coding level and uniform connectivity (col 4). Far from gc, the various
inhomogeneities affect mildly the mean emission rate (averaged also over the
stimuli) predicted by MF (last row in Table 4.2).

For the network tested here, the residual inhomogeneities, such as in the
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Figure 4.2: Bifurcation diagrams in MF and in simulation with sample (mea-
sured) rate distributions in several network states. (A,B): networks with p=40;
(C,D): p=60. (A,C) average rates vs potentiation parameter g, in MF-theory
(curves, no fitting) and in simulation (points), in three populations: (black)
selective, (red) non-selective, averaged over all multiplicities, and (green) in-
hibitory. Dashed curves: Retrieval (delay activity) state; Continuous curves:
SA state. The vertical dotted lines correspond to the bifurcation points in MF.
Points in the figures on the left are average rates measured in the simulation,
over an interval of 800ms, starting 200ms after the removal of the stimulus (see
Methods). Error bars are standard errors computed over the p populations cor-
responding to the set of stimuli. Error bars for the inhibitory rates and the
non-selective rates are too small to be noticed. (B,D) are rate histograms for
selective populations, measured in the simulations, for three values of g, corre-
sponding to the network on the left, and to the point in the bifurcation diagram
marked by the same letter. For p=40, the rate distributions are unimodal away
from the bifurcation point: B(a), at low rates for g = 6.5 < gc and B(c), at
high rates for g = 8.5 > gc. For g = 7.5 ∼ gc, the distribution is bimodal, due
to inhomogeneities B(b). For p=60, all distributions are bimodal, since 60∼ pc
(critical capacity) for all three sample values: g=(7.5, 8.5, 9.5). See e.g. Section
4.4.2 and Fig. 4.6. Parameters of Table 4.1, with f = 0.05, ρ=1.
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Figure 4.3: Average rate vs multiplicity of neural response in a delay activity
state, in selective and non-selective cells, in MF and in simulations. (A,B):
p=40, g =8; (C,D): p=60, g =9. (A,C): Rates for all (2p+1) multiplicities
(in MF); (B,D): Rates for those multiplicities on the left actually found in the
simulation. β ≤7 for p=40; β ≤9 for p=60, together with the corresponding
simulation results. Upper curves: selective cells; Lower curves: non-selective
cells. Errors bars in simulation data is the standard error over the neural sample.
Network parameters as in Fig. 4.2.

synaptic structuring; in the number of neurons with a given multiplicity in a
given selective population, or the finite number of neurons (finite-size effects),
have a rather mild effect, for the average rates.

Effectiveness of multiplicity reduction

Fig. 4.4 is an example of the effectiveness of the multiplicity reduction approach.
It shows the relative errors, defined as: (rate in the reduced solution - rate in
full solution)/( rate in full solution), for all rate branches in Fig 4.2, all along
the potentiation process (g). The system memorized 60 stimuli with f=0.05,
so the full solution involves 121 populations. The reductions, performed around
β = pf = 3, are done in three ways: with nr=5, and nr=7 and automatic, i.e.
until condition (4.24) is fulfilled (see Methods). For nr=5, in some branches the
relative error is as large as 15-20%; with nr=7, it is contained, along the entire
g interval, below 2%. The automatic process constrains the error to below 1%,
by construction. It is rather striking that in all three approximations the critical
value of g is equal to within about 2.5%.

4.4.2 Storage capacity in MF

Phenomenology of storage capacity

One expects that a given system (fixed constitutive parameters), memorizing ran-
dom stimuli as stationary states, arrives at a critical point at which adding more
memories results in overloading. This was foreseen by Hopfield (Hopfield 1982)
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g = Jp
Jd

both uniform uniform coding uniform connec. both free MF

7 3.32±1.95 2.35±1.17 11.04±11.32 7.97±9.59 2.08
7.37∗ 27.94±2.12 26.08±2.46 26.99±11.07 25.92±11.90 23.02
7.5 31.28±1.72 29.39±1.90 29.73±12.28 29.75±11.15 28.53
8 41.75±1.63 40.65±1.69 45.25±3.41 42.68±4.66 40.82

Table 4.2: Effect of inhomogeneities: Average selective emission rates and cor-
responding standard errors measured in the microscopic simulation for several
values of g around gc. Network parameters as in Fig. 4.2A. Col 2 – uniform
connectivity and unifrom coding level; col 3 – uniform coding level and random
connectivity; col 4 –uniform connectivity and random coding level; col 5 –random
connectivity and random coding level; col 6 – theoretical (MF) emission rates.
The asterisk indicates the MF critical potentiation level, gc=7.37. For uniform
coding level, regardless of the connectivity distribution, the standard errors are
as small as when both variables are uniform, even at gc (columns 2,3). In par-
ticular, for uniform coding level, at the MF gc, all populations exhibit persistent
delay activity. By contrast, when the coding level is random, the standard errors
are as large as if both parameters were free (columns 4,5). These large standard
errors, express the fact that some populations are in a WM state, while others
are in SA. Each entry in columns 2-5 is obtained from a single simulation. The
delay activity rate (in a time window of 800ms, starting 200ms following the re-
moval of the stimulus, see Methods) is averaged over the cells belonging to each
stimulus. The reported rate (in Hz) is the average over the 40 stimuli of the re-
sulting population-averaged delay rates, is given together with its corresponding
standard error.
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Figure 4.4: Convergence of MF rates for reduced population number – p=60,
f=0.05. Relative rate differences between reduced solution and the full MF
solution (121 populations) vs potentiation level g (range corresponding to the
bifurcation diagram in Fig. 4.2C). Top: nr=5 (for non-selective (n) α=0,1,2,3,4
- for selective (s) α=1,2,3,4, total 9+1 populations); Middle: nr=7 (n, α=0,..,6;
s, α=1,..,6, total 13+1 populations); Bottom: automatic reduction, converged
at nr = 7 for g < 7; at nr = 8 for 7 < g < 9; and at nr = 9 for g > 9 (see
Methods). The relative error <1%. Color coding as in Fig. 4.2. Full curves:
spontaneous activity, dashed curves: working memory.
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Figure 4.5: Selective and non-selective average rates vs the number of stored
memories, in MF and simulations, for g =9 and ρ =5, at coding level f =
0.05. The full curves represent average MF rates, selective (marked ν̃s) and non-
selective (ν̃n), in the retrieval (WM) state. Points represent the corresponding
average rates measured in the simulation. Error bars as in Fig. 4.2. For p >
pc(=40), MF selective rate collapses to spontaneous level, ν̃s ∼ ν̃n – the retrieval
state disappears. The transition in the spiking network takes place around the
value of pc predicted by MF-theory. It appears smooth because of structural
fluctuations in the connectivity; synaptic structuring; coding level etc (see text).
For p < pc, but nearby, some populations are unable to sustain WM activity.
Similarly, for p > pc a subset of populations (< p) can still sustain elevated delay
activity. See also Fig. 4.2 and (Amit 1989, Sompolinsky 1987).

and proved by Amit et al (Amit et al. 1987), for ±1 neurons. The considerations
were extended to 0-1 neurons and low coding by (Tsodyks and Feigelman 1988;
Buhmann et al. 1989). Here we basically follow the logic of (Amit et al. 1987),
namely for a given set of parameters we look for the value of p for which the Eqs.
4.15 cease to have retrieval solutions, with ν̃s > ν̃n.

In Fig. 4.5 we report the average emission rates, selective and non-selective,
in the retrieval (WM) state, as a function of the number of stored memories, p.
The set of parameters is that of Table 4.1 with g=Jp/Jd=9 and ρ=5, at coding
level f=0.05. The selective emission rate ν̃s smoothly decreases as the number
of memories increases until p =40. Between p =40 and p = 40 + 1, the MF
selective delay rate collapses to the non-selective level, i.e. ν̃s ∼ ν̃n. The retrieval
solution disappears. pc=40 is the storage capacity of the network. Note that
the disappearance of the delay activity at this loading level is tantamount to a
“blackout”, i.e. disappearance of delay activity for all stimuli. This is due to
the fact that the slow repetitive training, implied by the synaptic matrix used,
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Figure 4.6: Storage capacity vs g = Jp/Jd, for several values of ρ at f = 0.05. pc
rises with g up to a maximum value, gmax, which rises with ρ. Near gmax, pc is
insensitive to the value of g. Beyond gc the capacity begins to decrease. For g not
too high, capacity increases when ρ decreases, i.e. when depression is reduced
relative to potentiation. The curves are not smooth due to the discrete nature of
pc.

renders the network fully symmetric under permutations of the different stimuli.
In Fig. 4.5 we also present the average selective and non-selective rates in the

p retrieval states, measured in the simulation of the spiking network, with the
corresponding standard errors over the p rates. The results are in good agreement
with theoretical predictions.

As p approaches pc, the error bars increase. This is a signature of the bi-
modality of the distribution of the p selective rates, as presented, e.g. in Fig.
4.2: some populations sustain WM activity at enhanced rates while others do
not. Similar effects appear in the measured average selective rate in the spiking
network, for p > pc: It smoothly decreases to the spontaneous level as p increases.
By contrast, in MF the transition is abrupt and all memories are lost together.

Memory capacity vs model parameters

We study the dependence of the storage capacity, pc, on the ratio between the
potentiated and depressed efficacies, g = Jp/Jd; on the balance of potentiation to
depression probabilities in the learning process ρ ≡ q−/(fq+); on the inhibitory
to excitatory synaptic efficacy JEI , all at fixed coding level f=0.05. Then we
study its dependence on f , with the parameters mentioned above kept fixed.

In Fig. 4.6 we plot pc vs g, at several values of ρ. The storage capacity pc is
obtained, at fixed g and ρ, as the largest p at which Eqs. 4.15 still have a retrieval
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Figure 4.7: Storage capacity vs g = Jp/Jd, for several values of JEI , at ρ = 1 and
f = 0.05 . It rises and reaches a maximum at gmax, and starts to decrease. As
JEI increases so does gmax and the capacity at gmax (squares). The lower JEI ,
the lower the bifurcation value of g, corresponding to pc = 1, where WM starts.

solution, while for p = pc + 1, Eqs. 4.15 have only the ergodic, spontaneous
activity solution (see Methods). For each value of ρ, pc rises monotonically as
g increases, until it reaches a maximum at gmax(ρ). Near the maximum, pc
is insensitive to g and then starts to decrease. This is connected to the large
fluctuations observed in the discussion of Fig. 4.2C,D.

In Fig. 4.7 we plot pc vs g at ρ = 1 for three values of the inhibitory synaptic
efficacy onto excitatory neurons, JEI . As can be seen, gmax increases with JEI ,
as the inhibitory currents are made stronger. As expected on the basis of the
signal-to-noise analysis, the storage capacity increases as gmax increases. Note
that decreasing JEI results in a lowering of the minimal g for which the network
sustains the retrieval (WM) state. As long as the inhibitory sub-network is able to
ensure the right inhibition-excitation balance (see e.g. (Amit and Brunel 1997b)),
the storage capacity increases with g and decreases with increasing ρ, i.e. curves
with higher ρ lie lower (see Fig. 4.6).

At fixed g, the storage capacity increases as the ratio of LTD to LTP transition
probabilities decreases (ρ→ 0). For instance, for g = 7.5 the storage capacity is
∼ 10 at ρ =10, while it grows to ∼50 when ρ decreases to 0.02, Fig. 4.6. This is
further elaborated in Fig. 4.8, which shows the dependence of pc on ρ, for g = 8,
g = 9 and g →∞ (the Willshaw model (Willshaw et al. 1969)). As in Fig 4.6, pc
is higher for higher g, and decreases with ρ for fixed g, due to excess LTD (large
ρ), see e.g. (Amit and Fusi 1992; Amit and Fusi 1994; Brunel et al. 1998). This
is so because the number of depressing patterns is of order f while the number
of potentiating ones is of order f 2, so for fρ ∼ 1, the resulting mean potentiation
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within a selective population is quite low, and cannot sustain WM.
To trace the dependence of the storage capacity on the relative strength of

depression, ρ, we proceed as follows: pc was estimated using the criterion of the
synaptic structuring dynamics (see e. g. (Brunel et al. 1998)). There the storage
capacity for stationary states was estimated as the value of p at which the fraction
of potentiated synapses within a selective population was higher than the average
potentiation level of all excitatory synapses by 0.5. This condition implies that
pc is the solution of the equation:

p
∑

k=0

k

k + ρa

akexp(−a)
k

=
1

2(ρ+ 1)
, (4.33)

with a = pf 2. But in ref. (Brunel et al. 1998), Jd=0, which in our case cor-
responds g → ∞. As such it would be expected to give an overestimate of the
capacity at finite g. Solving this equation at a discrete set of points 0 ≤ ρ ≤ 15
gives the higher set of points in Fig. 4.8. These points were fitted with a func-
tional form suggested by the signal-to-noise analysis(Amit and Fusi 1994), to-
gether with the consideration that pc must be finite at ρ=0, where the model
coincides with the Willshaw model. The ansatz used was

pc(ρ) =
1

1 + ρ

{

A+B · ln
(

ρ2

1 + ρ
+ C

)}

. (4.34)

The success of the fit (see figure) led us to use the same functional form to fit the
MF results. This was done for two values of g (8 and 9). The data points (MF
pc) and the fitting curves are presented in Fig. 4.8.

Finally we study the dependence of the critical capacity on the coding level f ,
at fixed g for q− = fq+, i.e. ρ = 1. If trends are well captured by (Amit and Fusi
1994; Golomb et al. 1990; Willshaw et al. 1969), then pc should vary as f−2 when
f goes to zero. Fig. 4.9 shows pc vs f , for g = 7: pc increases with decreasing f ,
(circles). However, when f reaches the value f0(=0.07), for the parameters used,
the critical capacity pc starts to fall off, as the coding level is further decreased.
This is due to the fact that the selective signal scales as f , for small f , while non-
selective currents as well as inhibition remain of O(1). See below and Discussion.
The rising part of pc(f) is fit with the function pc(f) = a/f + b, Fig. 4.9 dotted
line. The trend is well captured by the fit, but a fit by 1/f 2 would be only
marginally worse.

To compensate for the decrease of signal with f , the efficacy of potentiated
synapses and the selective contributions to the inhibitory neurons was scaled
by 1/f , so that all contributions to the signal remain O(1) as f → 0 (see also
(Golomb et al. 1990)). This is obtained by multiplying g, as well as J s

IE (the
excitatory-to-inhibitory synapses from selective cells) by f0/f , with f0 = 0.07.
The contributions to the variances of the currents scale correspondingly. In this
case the critical capacity continues to grow below f < f0, Fig. 4.9, squares. The
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Figure 4.8: Storage capacity (in MF) vs ρ (f=0.05). Diamonds: storage capacity
of the structuring criterion Eq. 4.33, (Brunel et al. 1998), at a discrete set of
point 0 ≤ ρ ≤ 15; Squares: MF, g = 8; Circles: MF, g = 9. Curves: Least-square
fit with Eq. 4.34. Left: extended range of pc: to highlight quality of the fit
for the structuring criterion, which produces also the exact value corresponding
to the Willshaw model for ρ=0. Coefficients: A =348.1, B =31.76, C =0.026.
Right: data and fit to Eq. 4.34 for MF results: for g =8, A =95.10, B =27.82,
C =0.901; for g =9, A =154.4, B =44.91, C =0.346.
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Figure 4.9: Storage capacity (in MF) vs coding level f . q− = fq+ (ρ=1) and
g = 7. Circles: fixed parameters (no scaling); Squares: with scaling of g
and Js

IE (excitatory-to-inhibitory synapses from selective populations), by f/f0

(f0 = 0.07). Dotted line: Least-square fit of the rising part of pc(f) by a/f + b:
a=3.45 e b=-7.14. Dashed line: Least-square fit to a/f 2 + b: a=0.23 e b=-4.93.

dashed curve is a least-square fit to a/f 2 + b. In general we observe that f is the
most relevant variable for the variation of the capacity, rather than the number
of cells N or the connectivity, much as in the Willshaw model (Willshaw et al.
1969; Golomb et al. 1990), see also Sec. 4.5.2.

4.5 Discussion

4.5.1 Mean field theory

The main achievement of the present study is the development of an effective
mean-field theory for the delay activity states of a network of spiking neurons,
in a situation that is very close to realistic. It is realistic in several important
aspects: the network is composed of randomly connected spiking IF-neurons (the
IF model used for the neurons fits well with in-vitro studies, (see e.g. (Rauch
et al. 2003)); neurons are divided into excitatory and inhibitory and learning re-
spects this division; no symmetry is assumed in the synaptic matrix; the network
sustains spontaneous as well as selective activity and it is the intensity of train-
ing that determines whether only the first or both are present (see e.g. (Erickson
and Desimone 1999)); the stimuli learned excite random (non-exclusive) subsets
of cells in the network and the synaptic matrix that is generated is naturally
connected to one that would be generated by unsupervised Hebbian learning in
a system of synapses with two discrete stable states(Brunel et al. 1998).
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The existence of cells responsive to several different stimuli renders the theory
more complicated than previous developments, with stimuli that elicited exclusive
“visual” responses (Amit and Brunel 1997b; Amit and Brunel 1997a).7 The
natural populations for the study of MF theory, given overlapping stimuli, are
of cells responding to a given number of stimuli. This is because the learning
process envisaged respects the same population structure: It generates a synaptic
structuring in which the probability of a synapse being potentiated depends only
on the multiplicity of its pre- and post-synaptic neurons.

The main complication is the need to consider a coupled system of equations
(for population rates) whose number grows linearly with the number of stimuli
learned. However, we show that the actual number of relevant multiplicities is
much smaller, due to the fact that at low coding level, corresponding to the
experimental situation, the number of neurons of multiplicity away from the
mean, decreases very rapidly. Hence the number of population rates, and of the
equations required, reduces sharply. The mean multiplicity is fp and the number
of required populations is of order

√
fp around the mean, where p is the number

of memorized stimuli. For example, obtain precise solutions for the rates in the
stationary states of the network, in cases of order hundred memories at 5% coding
level, with about 20 populations whose coupled rates have to be solved for. The
solutions are precise, both in the sense that they vary little when the number of
populations is increased and also in their good correspondence with simulations
of the underlying microscopic system of 10,000 IF spiking cells with the same
synaptic matrix.

This result may open the way to a MF description of networks learning much
more general sets of stimuli, not necessarily chosen at random, or when the coding
level of different stimuli is different. The availability of an effective MF theory
is also an important tool for the exploration of the space of states of networks
in experimental situations of delay response tasks of higher complexity, such as
the pair-associate task (Sakay and Miyashita 1991; Erickson and Desimone 1999;
Mongillo et al. 2003), or tasks generating context correlations (Miyashita 1988;
Amit et al. 1994). Typically, in modeling such tasks, in order to be able to
explore the large parameter space, using MF theory, it was assumed that stimuli
had no overlaps in the populations of neurons that coded for them. In other
words, neurons had perfectly sharp tuning curves. This limitation is eliminated
by the present study.

This study also opens the way for the detailed study of the learning dynamics,
when synaptic plasticity is driven by spikes, modulated by the emerging synaptic
structure and by unconstrained afferent stimuli. This double dynamics amplifies
the number of parameters and MF theory becomes an indispensable tool. Again,

7After the submission of the ms we have become aware of the experimental
study of Tamura et al. (Tamura et al. 2004), which measures the multiplicities
of the cells in IT cortex during stimulus presentation (e.g. their Fig. 4).
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in the past, this problem was approached with non-overlapping stimuli, see e.g.
(Amit and Mongillo 2003; Del Giudice and Mattia 2001).

4.5.2 Mean-field at vanishing ρ

It was mentioned in Section 4.2.3 that, in the limit of vanishing ρ, the synaptic
structure becomes that of the Willshaw model (Willshaw et al. 1969), when
Jp = 1, Jd=0 and the initial fraction of potentiated synapses γ0=0. However,
Willshaw’s original network was a fully synchronized system of a single-layer
(feedforward) architecture. Golomb et al. (Golomb et al. 1990) developed a
MF theory for a fully connected recurrent network with asynchronous Glauber
dynamics and Willshaw synaptic matrix. This theory is closely related to the
theory presented here, from which it can be formally obtained in the limit ρ →
0. In fact the two models share several characteristics. We defer the formal
correspondences to another report.

Here we mention some of the common results:
1. The dependence of the capacity on the connectivity (the number of neurons
in (Willshaw et al. 1969) is weak;
What renders the capacity insensitive to the connectivity (N in the Wilshaw
model) is the fact that in both, the difference in the signals (mean current), to
neurons of enhanced rate and those at low rates in a given attractor, decreases
with increasing p, the number of memorized items. This in contrast to models as
that of Amari-Hopfield (Amari 1972; Hopfield 1982), or Tsodyks and Feigelman
(Tsodyks and Feigelman 1988), in which the signal is constant and only the noise
depends on p.
2. If parameters are appropriately scaled when f is varied, the storage capacity
increases like 1/f 2 (see below and Results);
The scaling of the parameters is implicit in the capacity estimates in the Willshaw
model, where the selective signal is proportional to f , and if the threshold were
to remain constant as f →0, the states would have been destabilized. Hence one
could either rescale the efficacies by 1/f , to maintain the signal constant, or scale
down the threshold. This is explicitly effected in (Golomb et al. 1990).

4.5.3 Storage capacity, blackout and palimpsest

The reliability of the MF description allows for a detailed study of the storage ca-
pacity of the network, i.e. the maximal number of memories which can be stored
in the synaptic couplings and retrieved by the network dynamics. The desta-
bilization of the retrieval state depends principally on the balance between the
excitatory and the inhibitory sub-networks. As the number of stored memories
grows, the fraction of potentiated synapses between two selective populations,
as well as within the whole excitatory sub-network increases. Near saturation,
when a population is at elevated rates, the current afferent to the other selective
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populations becomes large. These, as a consequence, tend to emit at high rates,
further increasing the inhibitory feedback. When the inhibitory feedback exceeds
a given level, depending on the couplings within the inhibitory population and
between the two sub-networks, the resulting effect is the destabilization of the
retrieval state and a collapse of the network into the spontaneous activity state.

When overloading takes place it eliminates all memories together: a blackout
as in classical models (Willshaw et al. 1969; Amit et al. 1987). This, as was
already mentioned, is due to the fact that the slow repeated learning renders all
stimuli symmetric for the network. Yet here the situation is different, since the
synaptic matrix employed derives from a realistic framework of learning (Amit
and Mongillo 2003) and (Fusi 2002) for a review) and includes depression as well
as potentiation. Hence, following saturation, learning of the same or a different set
of stimuli can recommence and a new functioning synaptic matrix asymptotically
generated. This is not part of the older paradigms of associative memory. The
evolution of synaptic structuring upon retraining has been studied in (Brunel
et al. 1998), where the speeds of learning and of forgetting were computed.
Despite the fact that in that study persistent delay activity was not explicitly
considered, it strongly indicates a palimpsest effect (Nadal et al. 1986), i.e. as
new stimuli enter the training set, the memory of the old ones is erased to make
room for the new ones. It remains to be confirmed also in the wider context
of the double dynamics of neurons and synapses, where the interplay between
neural activity and synaptic dynamics could generate various instabilities, see
e.g. (Amit and Mongillo 2003).

Moreover, it is tempting to speculate that perhaps, given long-time experi-
ence, most associative networks (like those in the temporal and pre-frontal lobe)
work near saturation. If that were the case one could reap yet another bonus:
the emission rates of the network near saturation, for random stimuli, become
relatively low – that is, not very much higher than spontaneous activity. The
rates are significantly lower than those at low loading of the network. See e.g.
Fig. 4.5. This feature has been observed over a wide range of parameters for
which the system was tested. The low delay rates are a feature observed in ex-
periment and is a lingering problem of neural modeling. The solutions projected
for this problem are usually additional complexity in modeling, e.g. slow recep-
tors, adaptive neural and/or synaptic elements, etc. Here low delay rates are a
natural feature of the network with overlapping memories near saturation.

It is worth noting that the dependence of the storage capacity on network pa-
rameters like the ratio of LTD/LTP probabilities, the ratio of potentiated/depressed
efficacies and on the coding level, turns out to be consistent with the simple esti-
mates of (Amit and Fusi 1994; Brunel et al. 1998), as long as the network operates
in a balanced regime (excitation vs inhibition (Amit and Brunel 1997b)). For this
to hold, the mean inhibitory rate must be proportional to the mean emission rate
within the excitatory sub-network. The storage capacity increases with increas-
ing ratio of potentiated/depressed efficacies (see Fig. 4.6) and logarithmically
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decreases with increasing ratio of LTD/LTP probabilities.
One also observes the increase of capacity with decreasing coding level f ,

foreshadowed in (Willshaw et al. 1969; Tsodyks and Feigelman 1988; Buhmann
et al. 1989; Gardner 1986). On the basis of S/N considerations (Amit and Fusi
1994), the storage capacity would increase as f−2, in the limit of vanishing f
and q− ∼ fq+ (ρ=1). The agreement of MF results with these S/N expectations
is notable, see e.g. Fig. 4.9. Furthermore, estimating capacity by the criterion
(fraction of potentiated synapses within a selective population)-(fraction of po-
tentiated synapses within the whole excitatory sub-network)> 0.5, for ρ = 1,
(Brunel et al. 1998) found pc ∼ 0.3/f 2, surprisingly near our 0.23/f 2 (see Fig.
4.9).

The present results are deeper in that they relate the potential signal separa-
tion directly to the existence of retrieval solutions of the underlying MF equations.
In some sense, the signal separation, as evaluated by S/N analysis, is a necessary
condition for the existence of the retrieval solution of MF equations. It may be
compared to the relation between results for the Amari-Hopfield model, such as
Weisbuch and Fogelman-Souliè (46) and those of Amit et al (Amit et al. 1987).

4.6 Appendix: MF populations for selective ac-

tivity

A subpopulation of neurons in the network, corresponding to a given stimulus,
may be active at selective rates, higher than the others, due either to external,
selective stimulation, or to selective delay activity. In that case we double the
number of populations into which we divide the network. A sub-population
of neurons of a given multiplicity will be further subdivided in two (exclusive)
populations one of the neurons selective to the active stimulus and the other
for those that are not. There will be populations of multiplicity α = 1, . . . , p,
composed of neurons that are selective to the stimulus, and populations with
α = 0,. . ., p − 1 of the neurons which are not selective to the special stimulus.
Altogether, 2p populations of excitatory neurons. Note that the population with
α = 0 cannot be divided, because its neurons cannot be selective. Similarly, the
population with α = p cannot, because its neurons must be selective.

These 2p excitatory populations are our candidates for MF homogeneous pop-
ulations. We therefore assume that the rates within each of them are equal, and
equal to νsβ (for selective cells of multiplicity β) and νnβ (for non-selective cells of
the same multiplicity). The generalization of Eq. 4.6 is:

〈Ii〉 = CE





p
∑

β=1

〈Jij〉sβνsβπs(β) +
p−1
∑

β=0

〈Jij〉nβνnβπn(β)


 , (A.1)

πs(β)(πn(β)) is the probability that a selective(non-selective) neuron be of mul-
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tiplicity β. 〈Jij〉xβ is an average over synapses with selective (x = s) and non-
selective (x = n) presynaptic neurons of multiplicity β connected to the postsy-
naptic neuron i.

The joint probability distributions of P potentiations and D depressions dur-
ing the training with p stimuli, defined following Eq. 4.7, has now to be computed
separately for selective and non-selective pre- and post-synaptic neurons, but do
not depend on the particular postsynaptic response pattern of the neuron. They
depend on the multiplicity and on the selectivity of the two neurons: ψxy

αβ(P,D)
where x(y) is the postsynaptic(presynaptic) selectivity, while α and β are the
post- and pre-synaptic multiplicity.

The generalization of Eq. 4.7 becomes,

Jxy
αβ =

∑

P,D

[γ(P,D)Jp + (1− γ(P,D))Jd]ψ
xy
αβ(P,D) (A.2)

where xy stand for the four possibilities for having an (n,s) selectivity pair for
the post- and pre-synaptic neurons. Following the reasoning leading to Eq. 4.8,
one obtains, for the four possible combinations xy:

ψss
αβ(P,D) =

(

α− 1
P − 1

)(

p− α
D

)

(

p− 1
β − 1

) , P ≥ 1, D = β − P (A.3)

ψsn
αβ(P,D) =

(

α− 1
P

)(

p− α
D

)

(

p− 1
β

) , P ≥ 0, D = β − P (A.4)

ψns
αβ(P,D) =

(

α
P

)(

p− α− 1
D − 1

)

(

p− 1
β − 1

) , P ≥ 0, D = β − P (A.5)

ψnn
αβ(P,D) =

(

α
P

)(

p− α− 1
D

)

(

p− 1
β

) , P ≥ 0, D = β − P . (A.6)

πs(β) =

(

p− 1
β − 1

)

fβ(1− f)p−β (A.7)

and
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πn(β) =

(

p− 1
β

)

fβ(1− f)p−β. (A.8)

In the first case the p-1 and β-1 are due to the fact that for the presynaptic

cell the selective bit must be on. Hence, there are

(

p− 1
β − 1

)

ways of distributing

the remaining β − 1 1’s among the remaining p− 1 bits. In the second case, for
non-selective presynaptic neurons with multiplicity β, since the first bit must be

inactive, there are

(

p− 1
β

)

ways of distributing the β 1’s among the remaining

p-1 bits.
Using Eqs. A.3 and A.4 for selective postsynaptic neurons and Eqs. A.5 and

A.6 for non-selective ones, together with the expressions for πs(β) and πn(β) in
Eq. A.1, one obtains for the average current afferent on selective and non-selective
cells of multiplicity α, respectively:

µsα ≡ 〈Ii〉 = CE





∑

β

Jss
αβν

s
βπs(β) +

∑

β

Jsn
αβν

n
βπn(β)



 (A.9)

µnα ≡ 〈Ii〉 = CE





∑

β

Jns
αβν

s
βπs(β) +

∑

β

Jnn
αβν

n
βπn(β)



 (A.10)

For the variances of the afferent currents we obtain:

(σxα)
2 = CE

∑

y=s,n

∑

β

∆Jxy
αβν

y
βπy(β) (A.11)

where

∆Jxy
αβ =

∑

P,D

[γ(P,D)J2
p + (1− γ(P,D))J2

d ]ψ
xy
αβ(P,D). (A.12)

Finally, for completeness, we write down the expressions for the mean external
and inhibitory currents, µext and µI :

µext = CextJextνext; µI = CIJEIνI . (A.13)

The corresponding variances are given by

σ2
ext = CextJ

2
extνext; σ2

I = CIJ
2
EIνI . (A.14)
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Chapter 5

Learning in realistic networks of
spiking neurons and spike-driven
plastic synapses

Mongillo G, Curti E, Romani S, Amit DJ, submitted to European Journal of
Neuroscience, (2004).

5.1 Introduction

This study is the culmination of a methodological effort to capture, in a bio-
logically realistic model, the generation of selective delay activity, by repeated
presentations of sequences of stimuli (Amit 1998). The experimental motivations
are studies which expose selective, persistent enhanced emission rates within small
neural subpopulations in delayed response tasks (e.g. Miyashita and Chang 1988;
Miyashita 1988; Nakamura and Kubota 1995; Erickson and Desimone 1999). Such
activity appears after several presentations of each stimulus, and is not produced
by novel stimuli, despite strong selective response. The subpopulations sustain-
ing selective delay activity for different stimuli (as many as 100) share the same
set of synapses.

Modeling is in terms of neurons and synapses, which are chosen to render
comparison with experiment direct. Neurons are spiking elements and one can
record spike rasters and spike emission statistics. Synaptic dynamics is driven by
presynaptic spikes and postsynaptic depolarization (Fusi et al. 2000), and can
be confronted with in vitro experiments (Amit and Mongillo 2003). The choice
of the plastic synapse model is guided mainly by considerations of plausibility,
which are unavoidable given that experimental access to in vivo interplay between
neural and synaptic dynamics is very remote.

Models of spiking neural networks (Amit and Brunel 1997b; Amit 1998; Amit
and Mongillo 2003; Curti et al. 2004), indicate that the observed phenomenology
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is reproduced by modifications of synaptic efficacies: Since each selective delay
population overlaps largely with the population of neurons responsive to the cor-
responding stimulus (Erickson and Desimone 1999; Mongillo et al. 2003), the
synaptic dynamics must strengthen synapses connecting pairs of neurons respon-
sive to a given stimulus and weakens those from responding to non-responding
neurons. Delay activity for stimuli in the training set emerge automatically, due
to repeated presentation.

The model presented in Amit and Mongillo (2003) was limited by: 1. The sets
of stimuli were exclusive – a cell responded to at most one stimulus; 2. Structuring
caused excessive increase of rates during stimulation, which caused instabilities
in the learning process. This defect necessitated manual interventions in the
simulation; 3. Cells were linear IF neurons (Fusi and Mattia 1999; Del Giudice
and Mattia 2001). Here each stimulus is specified by a randomly selected set of
neurons, so that neuron can respond to more than one stimulus, see also (Curti
et al. 2004). Excessive increase of visual response during structuring is pre-
vented by short-term depression of the synaptic efficacies upon activation, which
is introduced as a phenomenological model (Tsodyks and Markram 1997), with
experimentally plausible time constants (Romani 2004). The neural elements are
exponential IF neurons, which capture experimentally observed neural response
characteristics (Rauch et al. 2003). Slow NMDA-like currents are needed to en-
sure the proper functioning of the network, especially to offset excessive synaptic
depression immediately following the removal of a stimulus.

The model network, when subjected to repeated presentations of the stim-
uli in the training set, in a random sequence, autonomously develops a synaptic
matrix expressing selective delay activity for each of the stimuli. Synaptic struc-
turing occurs as a consequence of the patterns of neural activity produced by
the stimuli, until a steady state for both neural activity and synaptic structur-
ing is reached. At asymptotic synaptic structuring, the robust behavior of the
network reproduces most of the details observed at physiological level in delay
experiments.

5.2 Methods

5.2.1 The network

The network is composed of NE excitatory and NI inhibitory point integrate-
and-fire spiking neurons, with exponential leak: The depolarization V evolves
according to

V̇ (t) = −V (t)

τm
+ I(t), (A.1)
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where τm is the membrane time constant and I(t) is the total afferent current.
Whenever the depolarization reaches a threshold θ, the cell emits a spike and
remains refractory for a time τarp. Then V is reset to Vr and normal dynamics
resumes.

Individual postsynaptic currents obey

τsİs(t) = −Is(t) + x(t− δs) · J
∑

k

δ(t− tk − δs) (A.2)

where τs is the decay time constant of channel type s; x(t) is the instantaneous
fraction of available synaptic resources (see below); J is the total efficacy of the
synapse; tk is the time of synaptic activation, due to the k-th presynaptic spike;
δs is a transmission delay. Dependence on neurotransmitter involved is taken
into account in a simplified way: Fast currents, associated to AMPARs (exci-
tatory) and GABARs (inhibitory), are taken to be instantaneous, i.e. τs = 0;
Slow currents, associated to NMDARs (excitatory), have τs = 100ms. The non-
linear voltage-dependence of NMDA kinetics is not modeled. Thus, the recurrent
excitatory currents have a fraction xslow of slow-decaying components and the
rest are instantaneous components; the recurrent inhibitory currents are instan-
taneous. Finite time constants for the fast receptors are introduced in testing the
robustness of the system.

Each neuron also receives excitatory, instantaneous currents from outside the
network, modeled as a gaussian input of assigned mean µE,I

ext and variance (σE,I
ext )

2.
The total current afferent on a neuron, I(t) in Eq. A.1, is the sum of the different
contributions each evolving with its own time constant, i.e.

I(t) =
∑

j,s

Ij,s(t) + Iext(t), (A.3)

where the sum on j is over all presynaptic neurons and all types of channels
relevant for the particular synapse.

Network connectivity is random: The direct afferent presynaptic cells of a
given neuron are selected, independently and randomly, by a binary process with
probability c, so that each neuron receives, on average, cNE = CE local excitatory
and cNI = CI local inhibitory recurrent contacts. Self-connection is excluded.
The structure of the connectivity remains fixed throughout the simulation. The
efficacies of existing excitatory as well as inhibitory synapses onto inhibitory
neurons are assigned a uniform value. The recurrent excitatory-to-excitatory
synapses have two possible efficacy states, potentiated Jp and depressed Jd. Prior
to training, the distribution of potentiated (depressed) synapses, is generated by
setting each existing synapse in the potentiated (depressed) state, randomly and
independently, with probability γ0 (1 − γ0). The synaptic delays are uniformly
distributed within a bounded interval.
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Single-cell parameters E I
θ - Spike emission threshold 20mV 20mV
Vr - Reset potential 10mV 10mV
τ - Membrane time constant 20ms 10ms
τarp - Absolute refractory period 2ms 2ms

Network parameters Values
c - Probability of synaptic contact 0.2
NE,I - Number of excitatory/inhibitory cells 8000 2000
CE,I - Average number of recurrent afferent E/I synapses/cell (c ·NE,I) 1600 400

µE,I
ext - Mean external current on E/I neurons 22.00mV 18.75mV

σE,I
ext - Standard deviation of external current on E/I neurons 1.73mV 1.73mV

Synaptic parameters Values
JIE - Synaptic efficacy E → I 0.08mV
JEI - Synaptic efficacy I → E 0.18mV
JII - Synaptic efficacy I → I 0.18mV
Jd - Depressed level of E → E synapses 0.03mV
Jp - Potentiated level of E → E synapses 0.21mV
γ0 - Fraction of potentiated synapses before learning 0.20
xEslow - Fraction of slow E currents toward E neurons 0.50
xIslow - Fraction of slow E currents toward I neurons 0.10
τslow - Decaying time of slow E currents 100ms
τfast - Decaying time of fast E and I currents 0ms
δ - Synaptic delay 1− 10ms

Long-term synaptic dynamics parameters Values
θX - Threshold for synaptic transition 0.4
θLTP - Threshold for upregulation of X 17.5mV
θLTD - Threshold for downregulation of X 15.5mV
α - Drift toward zero 0.0147ms−1

β - Drift toward one 0.0100ms−1

a - Amplitude of the up jump 0.25
b - Amplitude of the down jump 0.17

Short-term synaptic dynamics parameters Values
u - Fraction of synaptic resources activated per spike 0.45
τr - Recovery time of activated synaptic resources 200ms

Training parameters Values
f - Coding level 0.15
p - Number of stimulus prototypes in the training set 7
xnoise - Noise level in stimulus presentation 0− 0.1− 0.2
Tstim - Duration of visual presentation 500ms
Tdelay - Interval between two successive presentations 1000ms

GE,I
stim - Contrast on excitatory/inhibitory neurons 1.7 1.2

Table 5.1: Parameters used in the simulations
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5.2.2 Short-term synaptic dynamics

Following Tsodyks and Markram (Tsodyks and Markram 1997; Tsodyks et al.
1998), the synaptic connection is characterized by a given amount of ‘resources’,
partitioned into three states: effective, inactive and available. Upon presynaptic
emission, a fraction u of the available resources is activated, becoming effective,
and then inactivated within a few milliseconds. Synaptic resources then recover to
the available state, with a time constant of the order of hundreds of milliseconds
(Tsodyks and Markram 1997). Because the inactivation time is much shorter
than the recovery time, the kinetics of the fraction of resources in each of the
three states simplifies to the evolution of a single variable x(t) – the fraction
of available synaptic resources at time t (Tsodyks et al. 1998). The remaining
equation is

ẋ(t) =
1− x(t)

τr
− ux(t)

∑

k

δ(t− tk), (A.4)

where τr is the time constant for resource recovery; u is the fraction of the avail-
able resources activated upon presynaptic emission; tk are the times at which the
presynaptic neuron emits spikes. The current afferent on the postsynaptic cell,
via the synapse, is given by

I(t) = x(t) · J
∑

k

δ(t− tk) (A.5)

where J , the total synaptic efficacy, is the variation of the postsynaptic depolar-
ization per presynaptic spike at full availability of resources, i.e. x(t) = 1.

Such a mechanism produces rate-dependent short-term synaptic depression
since, upon arrival of a spike, the available resources decrease (Eq. A.4). In
between spikes, they recover to the full value, x = 1, on a time scale τr. At
low rate (¿ 1/τr), the arriving spike finds all resources available at the synaptic
site, producing maximal current (Eq. A.5). As the emission rate increases above
∼ 1/τr, x(t) cannot fully recover, and the transmitted current/spike is reduced.

5.2.3 Long-term synaptic dynamics

The model of plastic synapse is characterized by an internal analog variable X ∈
[0, 1], and by a two-state value for its stable efficacy Jp, Jd(< Jp) (Fusi et al.
2000; Del Giudice et al. 1998; Amit and Mongillo 2003). When X > θX , the
synaptic efficacy is Jp; for X < θX it is Jd. If X crosses from below to above,
the result is LTP (Jd → Jp); if X crosses from above to below the result is LTD
(Jp → Jd). X = 0, 1 are reflecting barriers for the dynamics of X. This dynamics
is

Ẋ(t) = R(t) +H(t), (A.6)
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where R(t) is a refresh term chosen to be

R(t) = −αΘ(−X + θX) + βΘ(X − θX), (A.7)

where Θ(x) = 1 for x > 0 and 0 otherwise. H(t) relates the synaptic dynamics
to the pre- and postsynaptic neural activities and is responsible for synaptic
transitions. It is chosen to be

H(t) =
∑

k

F [Vpost(t)] δ(t− tprek ), (A.8)

i.e. H(t) is different from zero only at presynaptic emission and, in this case, its
value depends on the instantaneous level of depolarization of the postsynaptic
neuron, Vpost(t

pre
k ), through F [·]. In our case

F [Vpost(t)] =































a θLTP ≤ Vpost(t) ≤ θ

−b Vpost(t) ≤ θLTD and refractory

0 otherwise

(A.9)

with θLTD ≤ θLTP < θ, where θ is the spike emission threshold.
This synapse behaves in a Hebbian way (Fusi et al. 2000; Amit and Mongillo

2003): When both pre- and postsynaptic emission rates are high, synaptic efficacy
tends to be potentiated (Jd → Jp), while a synapse connecting a high-rate presy-
naptic neuron to a low-rate postsynaptic one tends to be depressed (Jp → Jd).
Both processes are stochastic, due to the stochasticity of presynaptic spiking and
of the value of the postsynaptic depolarization. No change occurs if presynaptic
neurons emit at low rate.

Fig. 5.1 presents sample synaptic dynamical trajectories, extracted from the
full simulation, to exhibit the stochasticity of LTP and LTD. A is an LTP transi-
tion: Both pre- and postsynaptic neurons are emitting at high rate (∼40Hz); X
starts below θX (J = Jd) and is above θX (J = Jp) at the end of the stimulation
interval. In B, both neurons emit at same mean rate as in A, but LTP does not
occur, due to the particular realizations of the presynaptic spike train and of the
postsynaptic depolarization time course. Similarly LTD is stochastic: In C is
a typical LTD transition, when the presynaptic cell is emitting at high rate (∼
40Hz), while the postsynaptic is emitting at low rate (¿2Hz). In D, at parity of
conditions, LTD does not occur.

5.2.4 Simulation process

Dynamics

The instantaneous state of the network is specified by: NE +NI (10,000) analog
values of the depolarizations, Vi(t), for excitatory and inhibitory neurons; the
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Figure 5.1: Stochasticity of long-term synaptic dynamics: examples of
the coupled neural/synaptic dynamics in-vivo (from the full simulation).
Time evolution of the presynaptic depolarization (Vpre(t), top frames), the synap-
tic internal variable (X(t), middle frames) and the postsynaptic depolarization
(Vpost(t)), bottom frames in each panels. Upon presynaptic emission (dotted ver-
tical lines), X(t) is up/down regulated according to the instantaneous value of
Vpost(t). In between spikes, it drifts linearly toward the corresponding reflecting
barrier. A - LTP transition - both pre- and postsynaptic cell are emitting at high
rates (∼ 40Hz). B - same as in A, but no LTP. C - LTD transition - presynaptic
cell emitting at high rate (∼ 40Hz) and postsynaptic cell at low rate (¿ 2Hz).
D - same as in C but no LTD. Horizontal dashed line in mid-frames: threshold
for synaptic transitions. Horizontal dotted lines in bottom frames: thresholds for
up/down regulations. For both neurons the spike emission threshold is at 20mV,
hence at the top horizontal line of the frame. The format of the present repre-
sentation of the plasticity process is the analog of Fig. 1 of Fusi et al. (2000),
here the data are taken from a full, in-vivo simulation.
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analog values of the synaptic internal variables, Xij(t), of the plastic synapses
among excitatory neurons; the long-term efficacy of the plastic synapse JEE

ij (t);
and the values of the available resources per synapse xij(t) among excitatory neu-
rons. The total number of synaptic variables depends on the randomly generated
connectivity, see Sec. 5.2.1. However, due to the large value of NE (8,000), the
actual number of synaptic variables is close to c · N 2

E, where cNE is the average
number of excitatory synaptic contacts per neuron (c · N 2

E=12,800,000, in the
simulations it was 12.795.748). Note that the JEE

ij (t)’s are kept as additional
variables for computational convenience.

The simulation consists of numerical integration of the discretized dynamical
equations for the membrane depolarizations (Eq. A.1 for Vi(t) + condition for
spike emission), of the short-term synaptic variable (Eq. A.4, for xij(t)), of the
long-term synaptic variables (Eqs. A.6, A.7, A.9 for Xij(t) and JEE

ij (t)). The
temporal step is ∆t = 0.10ms. The initial distribution of the depolarization
in the network is set uniform, at a sub-threshold value. Spikes begin to be
emitted due to the external currents. The actual value has little effect on the
network dynamics – the network reaches its stationary state, corresponding to the
spontaneous activity (SA) state, within short relaxation times (∼ 100ms). The
initial values of the variables for the existing plastic synapses are set up as follows:
(Jij = Jp ∩ Xij = 1) randomly, with probability γ0; (Jij = Jd ∩ Xij = 0), with
probability 1− γ0. The initial fractions of available resources xij are distributed
randomly and uniformly between 0 and 1.

The depolarization of every neuron is sequentially updated. If Vj(t+∆t) ≥ θ,
a spike is delivered to all neurons postsynaptic to neuron j, and Vj is reset to
Vj = Vr and kept fixed for τarp. The spike adds to the value of the depolarization
of the postsynaptic neuron i, at time t+∆t+ δij, the value Jijxij(t). The spike
also decreases the amount of available synaptic resources xij according to Eq.
A.4. In between spikes, both Vj and xij tend deterministically and exponentially
to their steady state values (Eqs. A.1 and A.4).

Whenever cell j emits a spike, all internal variables (Xij) of synapses which
have this cell as a presynaptic cell are updated: The depolarization of each ex-
citatory postsynaptic cell is registered and the internal variable Xij is varied as
described in Section 5.2.3. In addition each X is refreshed linearly, according
to Eq. A.7. If Xij > ΘX , Jij = Jp and if Xij < ΘX , Jij = Jd. Because in
between spikes both synaptic variables xij(t) and Xij(t) evolve deterministically,
their actual updating occur only upon presynaptic spike emission, see (Mattia
and Del Giudice 2000). The complete list of parameters is reported in Table 5.1.

Two different simulation programs have been employed to check each other.
One simulation program: ”Autonomous spike learning WM” is made publicly
accessible at http://titanus.roma1.infn.it/SLR.
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Stimuli and Learning

At the start of the simulation the set of p stimuli to be learned is set up by a binary
process: For every stimulus a subset of cells, both excitatory and inhibitory, is
selected independently and at random with probability f (coding level). This
subset of cells represents the stimulus prototype. To each stimulus prototype
corresponds on average a pool of f(NE + NI) responsive neurons, which is kept
fixed throughout the simulation.

The p stimuli to be learned are repeatedly presented to the network in a
pseudo-random sequence: Blocks of p trials are set up so that in each block the
p stimuli are presented in a random order, without repetition. In each trial,
the stimulus selected is presented for a period Tstim, followed by a delay interval
Tdelay.

The actual stimulus to be presented is a noisy version of the prototype, gen-
erated from it in the following way: A neuron of the prototype belongs to the
noisy version with probability 1− xnoise(1− f), while a neuron not belonging to
the prototype belongs to the noisy version with probability fxnoise. This ensures
that the average number of activated cells upon stimulation remains f(NE +NI)
(Brunel et al. 1998). xnoise = 0 corresponds to the presentation of the pure
prototype. During presentation of the stimulus, the mean and the variance of the
external currents to the selected cells are increased by a contrast factor GE,I

stim >1.
This leads to a higher emission rate in the corresponding subset of cells.

5.2.5 Observables - synaptic structuring and neural activ-
ity states

On-line

During the simulation the following information is collected

• Average rates: The population-averaged emission rate in the stimulated,
selective and non-selective neural populations, along each trial in consecu-
tive bins of 10ms.

• Spike rasters: spike emission times of an unbiased, random sample of 10%
of excitatory cells.

• Fraction of potentiated synapses within functional synaptic pop-
ulations: At the end of each trial we determine the fraction of potentiated
synapses among selective cells and between selective and non-selective cells
for each of the stimuli belonging to the training set. 2p values are obtained:
p values for selective-selective, i.e. pre- and postsynaptic neurons respond
to the same stimulus (γµss(k), k =trial id), synaptic populations and p for
selective-nonselective, i.e. pre- and postsynaptic neurons respond to differ-
ent stimuli, synaptic populations (γµsn(k)).
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• Internal synaptic variables: Xij(t) and xij(t) are collected in a randomly
selected sample of synapses (∼ 0.2% - 2.56·105) between selective neurons
and between selective and non-selective neurons.

• Synaptic transitions: Time and type (LTP or LTD) transition are recorded
for a sample (∼ 0.2%) of synapses.

Off-line

The data collected on-line is elaborated off-line to monitor the network in terms
of the synaptic structuring it undergoes and the corresponding neural dynamics
it sustains. Blocks are used as a unit for monitoring the evolution of the synaptic
structuring and of the emission rates. The pseudo-random protocol we adopt
guarantees that after every consecutive block, all stimuli are presented the same
number of times.

• Block-averaged emission rates during the presentation and dur-
ing the subsequent delay interval: We obtain these rates by further
averaging the binned average rates, within the corresponding intervals, and
over the p presentations within the block. In each interval the first 150ms
(i.e. the first 15 bins) are discarded to avoid transients.

• Block-averaged fraction of potentiated synapses within functional
synaptic populations: We average the p values of γµss and γ

µ
sn at the end

of each block.

• Short- and Long-term synaptic dynamics: The recordings of Xij, xij
and the data on long-term synaptic transitions are used to observe the
behavior of the synaptic device in vivo, i.e. embedded within a network of
spiking neurons.

5.3 Results

The results we report are from a simulation with a training set consisting of
p=7 stimuli and uniform coding level f=0.15, i.e. every selective population
consists of exactly f(NE + NI) neurons. No noise was present in the stimulus
presentation. The number of stimuli p was chosen low to limit the duration of
the simulations; f was set high and uniform to have stable WM activity with the
ratio of potentiated/depressed efficacy not too large and to avoid finite-size effects
(Curti et al. 2004), given the relatively low number of neurons (10,000). The
detailed description of the phenomenology in this constrained network is followed
by tests of the robustness of the synaptic structuring and WM functioning to the
lifting of the constraints.
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Figure 5.2: Synaptic structuring, sample stimulus: Fraction of potentiated
synapses within the population responsive to the stimulus (sel→sel, γµss) and
between that population and all other neurons (sel→non-sel, γµns) vs the number
of trials. Horizontal dashed line: initial, uniform potentiation level. Shaded
columns: Presentation of selected stimulus – γµss increases and γµns decreases. In
between, i.e. during the presentation of other stimuli (total: 7 stimuli), the trend
is reversed. Parameters of Table 5.1.

5.3.1 Synaptic structuring

Basic phenomenology

In Fig. 5.2 we report the evolution of the fraction of potentiated synapses, γµss,
among all neurons responsive to one given stimulus of the set (no. µ), and the
fraction of potentiated synapses, γµns, between neurons responsive to this stimulus
and neurons not responsive to it vs the number of trials. As training proceeds,
structuring takes place, i.e. γµss and γµns begin to vary with respect to their
initial (unstructured) level. Whenever stimulus µ is presented, γµss increases and,
correspondingly, γµns decreases (Fig. 5.2, shaded columns). Variations of γµss
and γµns, however, occur also upon presentation of any of the other stimuli of
the training set: γµss decreases while γµns increases (Fig. 5.2, in between shaded
columns).

The latter variations in the structuring are a consequence of the random
overlaps among the neural populations coding for the stimuli, i.e. the same
neuron may participate in the representation of several different stimuli, i.e. may
be responsive to several stimuli. For instance, upon presentation of stimulus 1,
the neurons common to stimulus 1 and stimulus 2 emit at high rate, potentiating
synapses between them. This leads to an increase in γ(2)

ss . On the other hand,
neurons selective to stimulus 2, but not to stimulus 1, emit at low rates (during
the presentation of 1), thus depressing the synapses between the neurons common
to both stimuli and all other neurons in population 2. This leads to a decrease in
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γ(2)
ss which outweighs the increase mentioned above, just because there are many

more neurons in population 2 which are not shared with population 1, than
neurons belonging to both. At the same time, synapses from neurons selective to
both stimuli and neurons selective only to stimulus 1 will tend to be potentiated.
This would lead to an increase in γ(2)

ns .
To summarize, the potentiation level of a given synaptic population increases/decreases

upon presentation of the corresponding stimulus, while it decreases/increases
upon presentation of the other stimuli. Consequently the structuring does not
saturate, i.e. asymptotically γµss < 1 and γµns > 0. This is a fundamental difference
with respect to the case of non-overlapping stimuli. In that case saturation can
be prevented only if both LTP and LTD probabilities in the functional synaptic
population are different from zero upon presentation of a given stimulus (Amit
and Mongillo 2003).

Population-averaged description of synaptic structuring

As discussed in the previous section, the overlaps among selective neural popu-
lations cause variations in the synaptic structuring associated with a given stim-
ulus upon presentation of the other stimuli (interference effect). This renders
the description of the structuring process more complicated than in the case of
non-overlapping stimuli, see e.g. (Brunel et al. 1998; Curti et al. 2004). In
the latter case, what matters is only the number of times a given stimulus was
presented, because the structuring within the synaptic populations (sel→sel and
sel→non-sel) associated with the stimulus is not affected by the presentation of
other stimuli. The only inter-population variability, at parity of number of presen-
tations, is associated with the intrinsic stochasticity of the synaptic transitions,
which is negligible due to the large number of synapses within each functionally
homogeneous population (Amit and Mongillo 2003).

By contrast, with overlapping stimuli, the structuring of a given synaptic pop-
ulation depends not only on the number of times the corresponding stimulus has
been presented, but on the entire presentation history. Fig. 5.3A reports the av-
erage structuring (over the p functionally equivalent sel→sel populations and the
p equivalent sel→non-sel populations) every p trials. The inter-population vari-
ability is measured by the standard error over each of the two sets of p structuring
variables, and reported in Fig. 5.3A as error bars. The pseudo-random presen-
tation protocol (see Methods) guarantees that, when averaging the structuring
variables of the p synaptic populations at the end of kp-th trials, every stimulus
will have been presented exactly k times. Thus, any residual inter-population
variability is a result of the variability in the presentation sequence.

One observes that, after about 30 pres/st, the average synaptic structuring
has reached a steady, unsaturated, level (〈γss〉 = 0.69 and 〈γns〉 = 0.095). Con-
tinuing stimulus presentation no longer affects the average synaptic structure.
However, the structuring within synaptic populations corresponding to different
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Figure 5.3: Evolution of synaptic structuring: A - The two variables char-
acterizing synaptic structuring, γµss and γµns, for each stimulus, averaged over all
7 stimuli vs number of presentations/stimulus (pres/st) (curves). Error bars:
inter-population variability, standard errors over 7 values at each point. Hori-
zontal dashed line: initial, uniform potentiation level. The synaptic structuring
reaches asymptotically an unsaturated steady level, around which it fluctuates
due to the randomness of the presentation sequence. B - Distribution of γµss
at steady, asymptotic structuring. C - Distribution of γµns at steady, asymp-
totic structuring (mean and standard error given in figure). The width of these
distributions is related to the LTP and LTD probabilities. See Fig. 5.4.
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stimuli differs, at parity of number of presentations, as witnessed by the error
bars. The inter-population variability is not negligible and, grows with increas-
ing number of presentations, until it reaches, asymptotically, a steady level. The
difference in the actual structuring within a given functional population from
the average, is due to the fact that the number of intervening stimuli between
repeated presentations of a given stimulus varies, and the interference caused by
stimulus overlaps fluctuates. Fig. 5.3B shows the distribution of γµss at asymp-
totic synaptic structuring. It is obtained by collecting the fraction of potentiated
synapses in all sel→sel synaptic populations, regardless of the stimulus presented,
from trial no. 217 (31 pres/st) to trials no. 385 (55 pres/st). The same is done
for the γµns’s and the result is Fig. 5.3C. These are steady distributions which
characterize the asymptotic synaptic structuring: when stimulus µ is presented,
γµss and γµns are random variables drawn from the distribution in Fig. 5.3B and
5.3C, respectively.

The width of these distributions is related to the LTP and LTD transition
probabilities per presentation: the larger the transition probabilities the larger the
fluctuations (Brunel et al. 1998). To show this we define qµLTP as the probability
that a depressed synapse undergoes LTP during the presentation of stimulus no.
µ. qµLTD is defined analogously. They are estimated as (Amit and Mongillo 2003)

qµLTP (k) =
γµss(k)− γµss(k − 1)

1− γµss(k − 1)

qµLTD(k) =
γµns(k − 1)− γµns(k)

γµns(k − 1)
(A.10)

where k is the trial number in which stimulus µ is presented. qµLTP and qµLTD
are averaged in each block of p presentations, and the corresponding standard
errors (over the p values in each block, separately for qµLTP and qµLTD) is evaluated.
The result is reported in Fig. 5.4. The transition probabilities increase with the
number of presentations per stimulus (from 0.07 to 0.37 for qLTP , from 0.04 to
0.24 for qLTD), due to the structuring process itself, until they reach a steady
level. Note that, all along the trial sequence, the probability of LTP is larger
than the probability of LTD.

5.3.2 Neural activity

Response to stimulus presentation

Fig. 5.5A reports the time course of the neural activity within the selective
neural population upon presentation of the best stimulus, averaged over first p
trials, together with 10 rasters of sample selective neurons. Fig. 5.5B shows the
time course of the fraction of available synaptic resources of sel→sel synapses
averaged over the first block. In a given trial the xij(t) of the synapses among
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Figure 5.4: Evolution of transition probabilities: Population transition prob-
abilities averaged over all 7 populations (stimuli) vs the number of presentations.
LTP probability is larger than LTD probability all along the training stage. At
asymptotic synaptic structuring, both LTP and LTD probabilities are signifi-
cantly lower than 1. Error bars: standard errors.

neurons selective to the stimulus presented are sampled every 10ms, then the
average is computed over all values at the same time to give 〈x〉ss(t).

Before the presentation of the stimulus, rates are low (Fig. 5.5A, prestimulus
interval), and synaptic resources are nearly at full availability, i.e. 〈x〉ss ∼ 0.8
(Fig. 5.5B). The abrupt increase of the external currents due to stimulus onset
(see Methods), causes a fraction of cells to fire almost synchronously. If that
fraction is sufficiently large, its correlated firing, together with high availability
of synaptic resources, provokes further correlated firing within the population.
The population activity builds up in a very short time: from some 2.5Hz to
65.8Hz within 10ms (peak response - Fig. 5.5A). The peak response, νpeak, is
defined as the maximal population activity level (in bins of 10ms) during stimulus
presentation.

The fast rise of activity causes a temporary imbalance between inhibition
and excitation. A selective neuron can fire three-four times with very short
interspike intervals. Such bursting provokes the fast reduction of the fraction of
available synaptic resources: 〈x〉ss decreases from 0.8 to 0.22 within ∼ 100ms, Fig.
5.5B. Population activity then drecreases to a steady lower level (∼ 40Hz), as a
consequence of the reduced efficacy of the recurrent excitatory synapses and of the
rise of the inhibition (steady response - Fig. 5.5A). We define the steady response,
νsteady, as the average activity level in the last 350ms of stimulus presentation.

At stimulus removal, the population activity suddenly drops off, to a level
lower than the corresponding stationary level (spontaneous or WM) due to the
low fraction of available synaptic resources left over by the high rate during
stimulation. However, a large amount of slow decaying NMDA-like currents has
been accumulated during stimulation. This leads to the overshoot (above the
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Figure 5.5: Response to stimulus presentation: A - Activity in selective pop-
ulation. Top: rasters of 10 sample units along the trial; bottom: activity in the
selective population (in bins of 10ms) averaged over first block. Vertical dashed
lines: beginning and end of the stimulus presentation. During prestimulus inter-
val neurons emit at low rate. At stimulus onset, the population activity reaches
a maximum (peak response), then settles at lower level (steady response).
Inset - First 200ms after stimulus removal: Following the removal of the stimu-
lus, the activity dips, then overshoots and finally returns to spontaneous activity.
B - Trial averaged time course of the fraction of available sel→sel synaptic re-
sources. The fast spiking during the initial transient causes strong reduction of
the fraction of available synaptic resources, with the consequent decrease of the
activity level. The overshoot, following the dip, at the end of stimulation is due
to the slow decaying NMDA-like currents (see Text). Synaptic resources recover
exponentially after stimulus removal.
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stationary level) in the population activity, following the dip (Fig. 5.5A, inset).
At the same time, the activity in the rest of the excitatory sub-network, which
was reduced during stimulation due to increased inhibition, rises to spontaneous
level. Note that the fraction of available synaptic resources recovers on a time
scale τrec(= 200ms) (Fig. 5.5B, delay interval), longer than both the deep drop
and the overshoot.

Basic phenomenology of neural activity

Alongside the synaptic structuring, the character of neural activity evolves as
training proceeds. Samples of the evolution, for the activity within the neural
population corresponding to one of the stimuli in the training set are presented in
Fig. 5.6. Neural emission rate is averaged over cells in the selective population,
in consecutive bins of 10ms. Following 4 presentations of the particular stimulus
chosen, νpeak = 81.2Hz, while νsteady = 43.5Hz, Fig. 5.6(a). When the stimulus is
novel, i.e. has been presented only few times, the average emission rate during the
delay interval (after the presentation) is as in the prestimulus interval, because
the synaptic strengthening is not yet sufficient to sustain reverberating activity.

As the number of presentations of a given stimulus increases, i.e. as the
stimulus becomes familiar, the characteristics of the visual response and of the
delay activity modify. Both νpeak and νsteady increase. The increase of νsteady is
significantly less pronounced than that of νpeak. After 15 pres/st, for example, the
relative increase of νpeak is about 28% (to 103.6Hz), while that of νsteady is 13%
(to 49.0Hz), Fig. 5.6(b). Also selective, enhanced, delay activity emerges, as a
consequence of the repeated presentations, Fig. 5.6(b). At first, however, the
delay activity is not very stable, i.e. it often dies out before the next presentation.

Further training makes the response to stimulus presentation still stronger:
The relative increase of the peak response, with respect to the novel condition,
is about 65% (νpeak =134.2Hz), while that of νsteady(=50.4Hz) is only 16%. It
also renders WM activity stable, since it increases the difference between the
potentiation levels in the sel→sel and sel→non-sel synaptic populations (see Fig.
5.3): After stimulus removal, the corresponding neural population reliably emits
at enhanced rate, all along the delay interval, Fig. 5.6(c). At asymptotic synaptic
structuring, the fraction of potentiated synapses among the neurons selective to
the same stimulus is large (〈γss〉 ∼0.70), while the fraction of potentiated synapses
among neurons with different selectivity is low (〈γns〉 ∼0.1). Delay emission rate
in the stimulated population is about 13.0Hz, to be compared to the average
emission rate within the unstimulated populations (∼2.5Hz).

Continuing stimulus presentation does not further affect the characteristics of
the neural activity in the network.
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Figure 5.6: Evolution of neural activity during training: The population
rate (in bins of 10ms) is sampled in 3 trials along the training history, after the
particular stimulus has been presented 4, 15, 29 times. Peak and steady response
during stimulus presentation increase with the number of presentations. (a) 4
pres/st, no WM: following removal of stimulus, the rate in the delay interval is as
in the prestimulus interval; (b) 15 pres/st, short-lived WM; (c) 29 pres/st, WM
is long lived. Vertical dashed lines: beginning and end of stimulus presentation.
Horizontal dotted lines: peak and steady response level in the fourth presentation.
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Figure 5.7: Evolution of visual response: The peak response and the steady
response are sampled in consecutive blocks, corresponding to one pres/st. The
resulting p rates (one for each trial) are averaged and standard error computed.
These are the points and the error bars. A - Peak response. It increases from
67.8Hz at beginning of the training to around 120Hz at asymptotic synaptic
structuring. The large increase of the error bars is related to the appearance
of WM activity (see Text). B - Steady response. It increases from 40.8Hz to
50.4Hz within 30 pres/st. Further training does not affect the level of the steady
response.

Stimulus response evolution

The repeated presentation of a stimulus provokes synaptic potentiation within
the corresponding populations and, consequently, an increase in νpeak and νsteady,
with increasing number of presentations. To monitor the evolution of the visual
response, we average νpeak and νsteady over the p stimuli in consecutive blocks. The
results vs the number of presentations per stimulus are plotted in Fig. 5.7. The
average peak response increases from 67.8Hz at start of training to around 120Hz
(76.9%), over 30 pres/st (Fig. 5.7A). At the same time, the average steady
response increases from 40.8Hz to around 50Hz (22.5%) (Fig. 5.7B). Further
trials do not affect the average responses, because the synaptic structuring has
reached asymptotic level (Fig. 5.3).

The standard errors (related to inter population variability) in νpeak and νsteady
increase with increasing number of presentations, due to the fact that synaptic
transition probabilities increase during training. Note, however, that the variabil-
ity in νpeak is significantly larger than that of νsteady. This is mainly related to the
appearance of WM: Since the selective population sustains enhanced rate in the
delay following the presentation, the average fraction of available resources in the
corresponding sel→sel synaptic population is at lower level relative to the case
in which the neural population is in spontaneous activity. For the parameters
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of Table 5.1, WM rate is around 13Hz, while spontaneous activity is at around
2.5Hz. The corresponding average fraction of available resources is 〈x〉ss = 0.46
(WM) and 〈x〉ss = 0.82 (spontaneous activity). Hence, when the same stimulus is
presented in two successive trials, the reduced synaptic efficacy upon the second
presentation makes the peak response lower. With the presentation protocol cho-
sen, stimulus repetition can occur only between two successive blocks, i.e. when
the last stimulus in one block is the first stimulus in the next block. Given the
low value of p, repetition occurs with relatively high probability (1/p ' 0.14).

Emergence of WM activity

To monitor the development of selective delay (WM) activity we proceeded as
follows: In each block, we collected the average delay emission rate (see Methods)
within the selective neural populations after the presentation of the corresponding
best stimuli (optimal trials). For each selective neural population, we also collected
the average delay rate in the trial successive to the optimal trial (other trials),
except for the last optimal trial in the block. At the end of a block, we obtained
a p-vector, whose elements are the delay rates in the optimal trials, and a (p −
1)-vector, of the delay rates in other trials. Then we computed the average
separately for the p-vector, ν̃s, and for the (p − 1)-vector, ν̃n, as well as the
corresponding standard errors. This corresponds to measuring the average delay
rate (averaged over the set of stimuli, at parity of number of presentations) in
the selective neural population upon presentation of the best stimulus, and upon
presentation of a non-optimal one. In this manner we test an eventual breaking
of ergodicity, namely whether the delay rate in the selective populations becomes
distinct depending on the stimulus presented. The result, vs the number of
presentations per stimulus, is plotted in Fig. 5.8A.

In early stages of training, the average delay rate within a given selective
neural population is independent of the stimulus presented, i.e. ν̃s ∼ ν̃n (Fig.
5.8A, until 10 pres/st). There is no selective delay activity in the network. This
has been further checked by computing the difference between the delay rate in
the selective population upon presentation of the best stimulus and the delay rate
in the same population in the successive trial, i.e. upon presentation of a different
stimulus. The histogram of these differences, collected from trial no. 14 to trial
no. 55 (2 pres/st to 8 pres/st), is reported in Fig. 5.8B(a). It is strongly peaked
around zero.

It may appear more logical to collect the delay rate before and after stim-
ulus presentation, i.e. in the same trial, to check for the appearance of WM
activity. However, because of plasticity, the presentation of a stimulus provokes
strengthening of the synapses among the neurons selective to it, leading in turn
to the increase of the average emission rate within the neural population. The
rate difference, with respect to the pre-stimulation level, increases with increasing
LTP probability. In our case, from intermediate stages on, the LTP probability
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Figure 5.8: Emergence of WM activity: A - Block-averaged delay rate within
the selective neural population, in optimal and other trials (see Text). Error bars:
Standard errors. B - Distribution of delay rate differences between optimal trials
and other trials. Rate differences are collected (a) from trial no. 14 to trial no.
55; (b) from trial no. 63 to trial no. 104; (c) from trial no. 287 to trial no. 356.
WM activity begins to appear at around 10-15 pres/st and stabilizes at around
20 pres/st. At asymptotic synaptic structuring, the average delay rate is 13.1Hz
in the optimal trials, while it is 2.5Hz in the other trials.

is relatively high (see Fig. 5.4). Thus, there is potentially confounding effect
in detecting the difference in emission rates related to the breaking of ergodic-
ity (bi-stability), and not merely to the different number of presentations. Our
procedure ensures that the average delay rates, upon presentation of the best
stimulus and of a different stimulus, are at parity of number of presentations.
Furthermore, we collected the delay rates in the selective population upon pre-
sentation of a different stimulus, only in the trials successive to the optimal trials,
so that potential LTD effects are negligible.

At intermediate stages (10–20 pres/st) ν̃s and ν̃n separate and the correspond-
ing error bars increase (Fig. 5.8A). WM activity begins to appear. But due to
the variability in the synaptic structuring, not all populations are able to sustain
stable enhanced delay activity. When the rate differences are collected from trials
63 → 104, (8 to 14 pres/st), the distribution of the differences is bimodal, i.e. in
some trials there is WM activity (large delay rate differences between consecutive
trials), while in others there is none (small differences). The bimodality of the
distribution increases the error bars (Fig. 5.8B(b)). Further training renders
WM activity stable and robust, and at around 20 pres/st, ν̃s and ν̃n are well
separated, and error bars shrink.

At asymptotic synaptic structuring (30 to 50 pres/st, see Fig. 5.3), both
ν̃s and ν̃n reach a steady level, where ν̃s is significantly larger than ν̃n (13.1Hz
vs 2.5Hz) (Fig. 5.8A). All selective neural populations exhibit enhanced delay
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activity, following the presentation (and removal) of the corresponding stimulus,
as witnessed by the distribution of rate differences collected from trial no. 287 to
trial no. 356 (40 to 50 pres/st) (Fig. 5.8B(c)).

Single-cell behavior at asymptotic synaptic structuring

The spike rasters of a sample of 800 (10%) excitatory cells are collected upon
presentation of the corresponding best stimuli over 140 consecutive trials (20
pres/st), starting at trial no. 209 on (after 30 pres/st). At this stage the synaptic
structuring is at its asymptotic level (see Fig. 5.3). Fig. 5.9A, B reports the
spike rasters together with trial averaged peristimulus time histograms (PSTHs)
for two sample cells upon presentation of the best stimulus for each.

The activity of the cells is consistent from trial to trial, i.e. the cell strongly
responds to the stimulus and, after stimulus removal, exhibits enhanced delay
activity, though these trials are interspersed with trials in which different stimuli
are presented. A closer examination of the discharge patterns reveals significant
variability from trial to trial.

As is commonly done in experiment, to quantify this variability we estimate
(from the corresponding 20 rasters) the distribution of ISIs for the two cells,
separately for stimulus and delay intervals. ISIs are sampled only for spikes
occurring in the interval 150-500ms from stimulus onset (stimulus) and in the
interval 150-1000ms from stimulus offset (delay), where the activity of the cell
is supposed to be stationary. The results are shown in Fig. 5.9C and D. The
distribution of ISIs, for both cells and for both stimulus and delay intervals, is
characterized by a long tail. An exponential distribution would be expected for
a Poisson point process.

In Fig. 5.9E and F we report the distribution of the coefficient of variation
(CV – the ratio between the standard deviation and the mean of the distribution
of the ISIs) within the neural sample (800 excitatory cells – 10%), upon stimulus
presentation (E) and during the subsequent delay interval (F). The average CV
is 0.46, during stimulus presentation, and 0.69, during the delay interval (WM
activity). These values for CV are somewhat lower than those experimentally
reported (Softky and Koch 1993; Shadlen and Newsome 1998), probably because
of the higher emission rates in the model network, see below.

From the collected spike rasters we also extract the single-cell average emission
rate, during stimulation and in the subsequent delay interval. For each cell, the
rate upon stimulus presentation is estimated by counting the total number of
spikes emitted by the cell in a time window 150-500ms from stimulus onset, in
the optimal trials, and dividing by the number of trials (20) and by time window
(350ms). The delay rate is estimated analogously in the interval 150-1000ms
following stimulus removal. The resulting distributions within the neural sample
are reported in Fig. 5.10A for stimulus rate and in Fig. 5.10B for delay rate.

The rate distributions are wide, as commonly observed in experiment. The
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Figure 5.9: Variability in single cell discharge patterns: A, B - Raster
displays and PSTHs for two sample cells in 20 optimal trials for each cell. Both
stimulus and WM activity are reproducible at rate level. Spike times vary from
trial to trial; C, D - Variability of spike times: Trial-per-trial histograms of ISIs
for the two sample cells, during stimulus presentation and during the subsequent
delay interval. Average ISI and coefficient of variation (CV) are reported in each
histogram. E, F - Distribution of CV in the neural sample (10% - 800 excitatory
cells): E - stimulus interval – average CV 0.46; F - delay interval – average CV
0.69.
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Figure 5.10: Distributions of single cell emission rates: Average rates (sam-
ple as in Fig. 5.9). A - during presentation of best stimulus, rates range in 11.7-
81.2Hz (average 53.0Hz); B - during delay interval, rates range in 0.37-27.2Hz
(average 13.2Hz); C - scatter plot of rate during stimulus presentation vs delay
interval rate: Each point represents a single neuron of the sample. The plot
expresses strong positive correlation between rate during stimulation and rate
in delay activity. Both rates are strongly affected by the (random) number of
afferents.
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rates during stimulus presentation range in 11.7–81.2Hz (average 53.0Hz), and
the delay rates range in 0.37–27.2Hz (average 13.2Hz). The variability in the
average emission rate, from neuron to neuron, is mainly related to the variability
in the number of connections afferent on a cell (Amit and Brunel 1997a); the
multiplicity of a cell (Curti et al. 2004); and the randomness of the presentation
protocol. Note, by the way, that a cell with a delay rate of 0.37Hz has a stimulus
response of about 10Hz and would appear like a cell which has no delay activity,
though good stimulus response (Miyashita 1988).

Fig. 5.10C is the scatter plot of the emission rate during stimulus presentation
vs the emission rate during the subsequent delay interval. One sees that neurons
with high stimulus response tend to have enhanced rate in the subsequent delay
interval. Neurons with low stimulus response tend to have low delay rate. This
expresses the high level of correlation between the activity within the network
upon stimulus presentation and in the following delay interval (retrospective ac-
tivity), consistent with experiment (Erickson and Desimone 1999; Mongillo et al.
2003).

The rate distributions measured in the simulation largely overlap with the rate
distributions experimentally reported (Fuster and Alexander 1971; Miyashita and
Chang 1988; Nakamura and Kubota 1995; Erickson and Desimone 1999; Naya
et al. 2003). However, the model network produces somewhat higher emission
rates. This is likely to be related to the strong LTD, which significantly lowers the
potentiation level of sel→non-sel synaptic populations from the initial, unstruc-
tured level (see Fig. 5.3). The average level of neural activity within the excita-
tory sub-network and, consequently, within the inhibitory sub-network, decreases
with training. This makes stimulated and delay rates higher, and non-stimulated
and background rates lower. The average emission rate of non-selective cells dur-
ing stimulus presentation is practically zero, while during the delay interval it is
around 0.15Hz. It is interesting to note that when the average emission rate of
a neuron is within the experimental range, also the corresponding CV is within
the experimental range. This can be read from Fig. 5.11, which is a cell-by-cell
scatter plot of the CV of the neurons of the sample vs their average emission rate
during stimulation (Fig. 5.11A) as well as during the subsequent delay interval
(Fig. 5.11B). Lower, biological emission rates correspond to CVs near 1 – as
would be the case for a Poisson process.

5.3.3 Robustness of learning and functioning

We remove some of the constraints imposed on the simulation process. First, we
allow for random coding of the stimuli in the training set (still without noise in
stimulus presentation): The neurons belonging to a population coding for a given
stimulus are randomly selected in a binary process with probability f . It results
in a variability, from stimulus to stimulus, of the total number of excitatory and
inhibitory coding neurons, as well as in the relative percentage of excitatory and
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Figure 5.11: CV vs average emission rate: Cell-by-cell scatter plot CV vs
average emission rate. A - rate during stimulation by best stimulus. (sample as
in Fig. 5.9); B - delay rate. CV is inversely correlated with the average emission
rate.

inhibitory neurons within a selective population (see Methods). These stimuli
of variable coding constitute the training set. The presentation protocol is as
described in Sec. 5.2.4. No noticeable effects are observed, neither in the average
synaptic structuring nor in the patterns of neural activity all along the course of
trials (data not reported).

Next we have generated the stimuli to be presented to have random coding
(as above) as well as noise in their presentation. This is done by constructing
each of the p stimuli in a given block by choosing one of the p prototypes (of
variable coding) and suppressing the stimulation of an average fraction, xnoise, of
the neurons of the selective population and by stimulating an equal (on average)
number of excitatory cells which are not selective for that stimulus (see Methods).
The particular neurons in the subset of error neurons varies from trial to trial.
We have tried: xnoise =0.10, 0.20.

The evolution of the synaptic structuring with the number of presentations
per stimulus is reported in Fig. 5.12A, where we also report, for comparison, the
case with uniform coding level and no noise (Fig. 5.3). The presence of noise
has two predictable effects on the synaptic structuring: First, noise decreases the
potentiation level in the sel→sel synaptic populations and increases the potentia-
tion level in the sel→non-sel synaptic populations, at all stages. For xnoise = 0.10,
γss = 0.65 and γns = 0.10, asymptotically (Fig. 5.12A, dash-dot curves). For
xnoise = 0.20, γss = 0.60 and γns = 0.12 (5.12A, dotted curves). To be com-
pared with the noise free case where γss = 0.69 and γns = 0.09 (Fig. 5.12A, full
curves). Clearly, the probability of a sel→sel synapse to experience a depressing
pattern of neural activity, i.e. presynaptic high rate and postsynaptic low rate,
increases with increasing noise level. This keeps γss always lower with respect to
the noise free case. Similarly, a sel→non-sel synapse has a finite probability to
experience a potentiating pattern of neural activity (i.e. pre- and postsynaptic
rate both high), which keeps γns asymptotically larger with respect to the noise
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free case. Second, noise slows down the process of synaptic structuring (Amit
and Mongillo 2003). In the noise free case, the potentiation level of the sel→sel
synaptic population after 15 pres/st is 88% of its asymptotic level, decreasing to
86% for xnoise = 0.10, and to 83% for xnoise = 0.20.

In the inset of Fig. 5.12A, we report the evolution of inter stimulus variability
among the sel→sel structuring levels with the number of presentations per stim-
ulus. The sel→non-sel variability is not represented because it is significantly
lower (see Fig. 5.3). The sel→sel variability decreases with increasing noise level
in the presented stimuli, due to the reduced transition probability. Both LTP and
LTD probabilities decrease because, with noise, the amplitude of the initial burst
diminishes (see Sec. 5.3.4). Furthermore, the LTD probability among the sel→sel
synapses is quite low because, even if some selective neurons are not stimulated,
their emission rates are high due to the strong recurrent synaptic efficacy.

The functioning of the network as a WM is not disrupted by the presence of
noise. This can be read from Fig. 5.12B, where we report the evolution, with the
number of presentations per stimulus, of the average delay emission rate within
the selective population in optimal trials (full curves) and in others trials (dashed
curves). The appearance of stable WM activity, in presence of noise, requires
a larger number of trials, as a consequence of the slowing down of the synaptic
structuring (see above). In the noise free case, average delay emission rates in
optimal trials and in other trials are well separated after about 20 pres/st (Fig.
5.12B, top panel). For xnoise = 0.10, about 30-40 pres/st are required (middle
panel). Furthermore, the asymptotic delay emission rate is lower because of the
lower synaptic structuring (see above). Average delay rate in optimal trials is
∼10Hz (13.1Hz for xnoise=0), while in other trials it is ∼4Hz (2.5Hz in the noise-
free case). For xnoise = 0.20 no good separation is achieved even after 55 pres/st
(bottom panel). Average delay rate in optimal trials is ∼7Hz, while in other trials
is ∼5Hz.

At this level of noise, the reliability of the network as a WM is reduced. When
asymptotic synaptic structuring has been reached, the network exhibits stable,
selective WM activity only in a fraction of trials. We did not attempt a quantita-
tive estimate of the performance level. A glimpse at the observed phenomenology
is presented in Fig. 5.12C, showing the neural activity during some sample trials
(at asymptotic structuring). The left-top panel shows, stable, selective WM ac-
tivity: The selected (stimulated) population continues to emit at enhanced rate
(full curve), with respect to other selective populations (dotted curves), following
stimulus removal, throughout the delay interval. In the left-bottom panel, by
contrast, after stimulus removal, the average rate within the stimulated popula-
tion is as in the other selective, non-stimulated populations (left-bottom panel
and inset). There is no WM activity. The right-top panel: During the delay
interval the emission rate activity within the stimulated population goes down
to background level (after 500ms from stimulus offset), while the activity within
one of the non-stimulated, selective populations rises up to the WM level, and
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persists until the end of the trial. Finally, in the right-bottom panel there is an
example of multiple items WM activity (Amit et al. 2003): besides the stimu-
lated population, also another non-stimulated, selective population enters WM
activity after stimulus removal, and both persist all along the delay interval.

In a separate simulation (data not reported), we added noise (xnoise = 0.20) in
stimulus presentation only at asymptotic structuring, i.e. stimulus presentation
is without noise until the asymptotic synaptic structuring has been reached. In
this case, selective, stable WM activity has been observed for 70 consecutive trials
(i.e. 10 pres/st). Additional aspects of robustness are described in Discussion.

5.3.4 In-vivo behavior of plastic synapses

As observed in Sec. 5.3.1, the average synaptic transition probabilities per pre-
sentation grow along the course of training, until they reach steady levels at
asymptotic synaptic structuring. This increase is due to the fact that both νpeak
and νsteady increase with structuring. As the interspike intervals (ISIs) during
stimulus presentation become shorter, the transition probabilities increase.

The average ISI in a sample (10%) of selective cells upon presentation of the
best stimulus is estimated in two periods during the stimulation. For each cell
and in each trial, ISIs are collected over the first 4 spikes (3 values) from stimulus
onset and over the last 350ms of stimulus presentation, uniting values for equal
number of presentations. We consider the first 4 spikes, because 4 is the minimal
number of jumps required for both LTP and LTD to occur. The average ISI
over the first 4 spikes goes from around 23.5ms at the start of training to 16.0ms
asymptotically. Average ISI during steady response goes from 26.4ms to 21.0ms
(Fig. 5.13A). With training, both averages decrease and, consequently, long-term
synaptic transitions tend to occur with increasing probability (see Fig. 5.4).

During the initial transient (i.e. the first 4 spikes), the stimulated neurons
emit with ISIs shorter than those in the subsequent late phase all along training
history (Fig. 5.13A). As a consequence the synaptic transitions tend to occur
earlier in the stimulation interval, where the ISIs are shorter. To show this, we
collect the transition times within the sel→sel (LTP) and sel→non-sel (LTD)
synaptic populations, upon the presentation of each stimulus separately, over
consecutive blocks. The transition time is the time, from stimulus onset, at
which the synaptic internal variable X(t) crosses the threshold (LTP from below
to above, LTD from above to below), and does not return back (see Fig. 5.1).
The stimulation interval is divided into 10 bins of 50ms. In each bin we count
the total number of transitions that occurred in the entire block of p trials. The
probability of transition in a given bin is estimated as the ratio of the number of
transitions in that bin, divided by the total number of transitions that took place
in the entire stimulation interval in the p trials. The upper and lower bounds of
the confidence interval of the estimated probabilities are given by (Meyer 1965)
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Figure 5.12: Effect of noise in stimulus presentation on structuring and
WM: A - Evolution of average synaptic structuring vs number of pres/st in the
noise-free (xnoise = 0) and uniform coding level (full curves); random coding with
xnoise = 0.10 (dash-dot curves); xnoise = 0.20 (dot curves). sel→sel potentia-
tion level decreases with increasing noise level. sel→non-sel potentiation level
increases with increasing noise level. Inset: sel→sel inter-population variability
(standard errors over the p = 7 values) vs the number of pres/st (same line-
pattern code). Variability in structuring decreases with increasing noise level.
B - Delay emission rate within the stimulated population in optimal trials (full
curves) and in other trials (dashed curves), for uniform coding and xnoise = 0
(top panel) – clear separation of WM rate after 15 pres/st; random coding for
xnoise = 0.10 (middle panel) – good separation after 30 pres/st; xnoise = 0.20
(bottom panel) – no satisfactory separation until 55 pres/st. C - Neural activity
in sample trials, at asymptotic structuring. Full curves: average emission rate
in the selective, stimulated population. Dot curves: average emission rate in
the other selective, non-stimulated populations. Left-top: stable, selective WM
activity; Left-bottom: no WM activity; Right-top: (spontaneous) transition of
WM activity during the delay to a non-stimulated population; Right-bottom:
two-item WM activity – two populations maintain elevated delay activity, the
stimulated one and a random second population.
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Figure 5.13: Effect of training on timing of spikes and synaptic transi-
tions during stimulation: A - Average ISI vs the number of pres/st: lower
curve – average ISI over first 4 spikes from stimulus onset; upper curve – average
over the last 350ms of stimulation interval. Error bars are standard errors. B,
C - Probability of synaptic transition vs time elapsed from stimulus onset (bins,
50ms); The distributions of times are estimated after 1 presentation/stimulus
(dotted curves), after 10 pres/st (dashed curves), after 30 (full curves – asymp-
totic). B - LTP transitions; C - LTD transitions. Error bars are confidence
intervals (Eq. A.11, k=2). The neurons emit with shorter ISIs in the early phase
of stimulus response than in late phase. Training decreases ISIs immediately af-
ter stimulus onset, increasing the probability of early transitions. LTP tends to
occur early with respect LTD all along the training, due to the smaller number
of jumps required per transition (2 vs 4).
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Pup/low =
Pn+ k2/2± k [P (1− P )n+ k2/4]

1/2

n+ k2
(A.11)

where n is the total number of transitions, P is the fraction of transitions within a
given bin (i.e. the estimated probability), and k(=2) is the width of the confidence
interval in standard deviations. The distributions of transition occurrence times
(from stimulus onset) during the 1st (dotted line), 10th (dashed line) and 30th
(full line) presentation are reported in Fig. 5.13B and C, for LTP and LTD,
respectively. LTP tends to occur early in the stimulation interval with respect to
LTD, all along the training (Fig. 5.13), because the minimal number of up-jumps
required for LTP is two, while for LTD at least four down-jumps are required.
Later in training, the probability of early transitions increases. The increase of
the transition probability at the beginning of the stimulation interval is more
evident for LTD (Fig. 5.13C). At the beginning of training, the probability that
LTD occurs, becomes significant after about 200ms from stimulus onset, because
4 down-jumps are required for LTD. At asymptotic synaptic structuring, LTD
occurs with elevated probability within the first 50ms, due to the shorter ISIs
(Fig. 5.13C, full line).

Along training history, the average ISI over the first 4 spikes decreases more
significantly than that during the late response (47% vs 26%), mimicking the
corresponding variation of νpeak (with respect to νsteady). A rough inverse propor-
tionality between the average ISI over first 4 spikes and νpeak is indeed expected.
Moreover, one expects also a correspondingly larger contribution to the variation
of the transition probabilities: The larger the burst amplitude (and its variation)
the larger the transition probabilities (and their variations). Interestingly, the
strong dependence of the transition probabilities on the amplitude of the peak
response could be also read from Fig. 5.4, where a significant increase of the error
bars from 15-20 pres/st on can be noticed. This is related to the appearance of
WM activity and its effect on the amplitude of the peak response (see Sec. 5.3.2).

To test the effect of the initial transient of the visual response on the transition
probabilities, we manipulate the amplitude of the initial burst by desynchroniz-
ing the external selective currents during stimulus presentation. In each trial, a
delay is randomly associated with each selective neuron, representing the time
from nominal stimulus onset to the instant in which the external afferent cur-
rent is actually increased (see Methods). The delays are uniformly distributed
between 0 and δact milliseconds, with steps of 0.1ms (equal to the time step used
in simulation).

Fig. 5.14A reports the time course of stimulus response (averaged over all
stimuli) at unstructured synaptic matrix for δact=20ms (full curve), δact=50ms
(dashed curve) and, for comparison, for synchronous activation of external af-
ferents (main simulation – thin solid curve). Desynchronizing the activation of
the afferents during stimulus presentation, results in a reduction of the peak
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response. It also increases the time, from stimulus onset, to reach maximal emis-
sion. Both effects are related to the fact that the fraction of cells firing almost
synchronously at stimulus onset, decreases with increasing δact (see Sec. 5.3.2).
The peak response at start of training decreases from 67.8Hz (for synchronous
activation) to 55.5Hz for δact=20ms (by 22%), and to 52.8Hz for δact=50ms (by
28%). Correspondingly, the time to peak response increases from ∼10ms (syn-
chronous activation), to ∼30ms for δact=20ms, and to ∼70ms for δact=50ms (Fig.
5.14A).

Fig. 5.14B shows the evolution along the training history of the average νpeak
(over all stimuli) for δact=20ms (solid curve), δact=50ms (dashed curve), and in
the case of synchronous activation (thin solid curve) for comparison. For clarity
we report the standard errors (over the p values) only in the case of asynchronous
activation. The standard errors for synchronous activation can be read from Fig.
5.7A. With increasing δact the peak response increases more mildly along the
training history (Fig. 5.14B). For δact=20ms, the average peak response increases
from 55.5Hz at start of the training to 96.9Hz at asymptotic synaptic structuring
(74%); for δact=50ms, from 52.8Hz to 70.2Hz (33%). In the synchronous case the
relative variation of the peak response was 76.9%.

In all cases, the structuring trajectories, and consequently the evolution of the
steady response and of the delay activity, are very close despite of the significant
variation in the evolution of the peak response (data not shown). Asymptotically,
for δact=20ms, γss=0.68 and γns=0.09; for δact=50ms, γss=0.66 and γns=0.09;
(γss=0.69 and γns=0.09, in the main simulation, δact=0ms). Finally, in panels
CD we report the evolution, with the number of pres/st, of the average LTP
and LTD transition probabilities per presentation for δact=20ms (full curves);
δact=50ms (dashed curves). Again, for comparison, we report the corresponding
data (thin curves) for synchronous activation (see Fig. 5.4 for std errors). In
all cases the transition probabilities increase with the number of presentations
per stimulus, and the LTP probability is larger than LTD probability all along
the training. However, in the case of asynchronous activation the increase of the
transition probabilities decreases with increasing δact: for δact=20ms, qLTP goes
from ∼0.07 to 0.33; and to 0.26 for δact=50ms (0.37 in the synchronous case).
qLTD increases, for δact=20ms, from ∼0.04 to 0.21; and to 0.16 for δact=50ms
(0.24 in the synchronous case).

5.4 Discussion

The main result achieved in the present work is the demonstration, by simula-
tions, that in the large space of parameters characterizing the ensemble of simple,
universal microscopic elements – neurons and synapses – a suitable zone can be
found in which the network functions as a system which dynamically stores and
recalls a set of randomly chosen stimuli. The appropriate zone of parameters is
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Figure 5.14: Effects of afferents desynchronization on learning dynamics:
A - Average time course of stimulus response at unstructured synaptic matrix
(before training), for asynchronous stimulation (δact=20ms - full curve; δact=50ms
- dashed curve) and synchronous activation (thin solid curve, δact=0ms). Asyn-
chronous activation decreases the burst amplitude and increases the time to peak
response. B - Average peak response vs the number of pres/st. Asynchronous
activation reduces the variation of the peak response along training history. C -
Average LTP probability vs number of pres/st. D - Average LTD probability vs
number of pres/st. Asynchronous activation reduces the variation of the transi-
tion probabilities along the training. Standard errors are reported, as error bars,
only for asynchronous activation.
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within ranges of biological plausibility. Moreover, the characteristics of the neural
dynamics express most of the details of the corresponding observed physiological
phenomena.

The network is subjected to a stream of trials stimulus-delay in which one of
the stimuli belonging to the training set is presented, followed by a delay dur-
ing which no stimulus is presented. The patterns of neural activity induced by
the repeated presentation of the set of stimuli, via a spike-driven, local synaptic
plasticity dynamics lead to synaptic structuring. During stimulus presentation,
the concurrent activation at high rate of the cells coding for it, increases the
potentiation level (fraction of synapses in the potentiated state) of the synaptic
population connecting the neurons selective to the stimulus. At the same time,
the synaptic dynamics decreases the potentiation level of the synaptic popula-
tion from stimulated to non-stimulated neurons. When the difference between
the potentiation levels reaches a suitably high level, the neural population be-
comes capable of reliably sustaining reverberating activity, in absence of external
selective inputs (Brunel et al. 1998; Curti et al. 2004).

No external intervention is involved at any stage, nor artificial stop-learning
conditions. After sufficiently long training (30-35 pres/st)1, the coupled neu-
ral/synaptic dynamics reaches a stable, asymptotic configuration: Neural activ-
ity, whether the network is stimulated (by familiar stimuli) or not, no longer
affects the synaptic structuring itself (in a statistical sense). Consequently, the
patterns of neural activity exhibited by the network remain stable, apart from
fluctuations (related to the corresponding fluctuations in the synaptic structur-
ing) which do not affect the qualitative functioning of the network. Consequently,
if the training set and the frequency with which stimuli are presented (presenta-
tion rate) remain unchanged, both the synaptic structuring and the corresponding
patterns of neural activity persist.

A particularly interesting feature of the double dynamics of this system is a
type of homeostasis: Neither potentiation nor depression level become saturated.
Both attain a stationary level determined by the coexistence of potentiation and
depression in every functional synaptic population, due to the fact that a sig-
nificant fraction of the neurons belong to the representation of more than one
stimulus.

5.4.1 Robustness of the learning process

The process of synaptic structuring, together with its neural correlates, is very
robust. This was corroborated by removing a number of simplifying assumptions
used in the main simulation. We ran simulations with randomly variable cod-
ing levels for the stimuli together with noise during stimulus presentation (Sec.
5.3.3). We also desynchronized the activation of the external selective currents

1Note that WM appears much earlier in the course of training (see Sec. 5.3.2).
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to different neurons upon stimulus presentation (Sec. 5.3.4). In both cases, the
process of synaptic structuring, as well as the functioning of the network as a
working memory are qualitatively unaffected. Not surprisingly, large levels of
noise during stimulus presentation, throughout the training, degrade the perfor-
mance of the network. But if there was no noise during training, the same noise
levels do not affect performance at asymptotic structuring (see Sec. 5.3.3 for
details).

We are currently testing the robustness of the learning process to several
additional aspects, keeping the average parameters of the network as in the main
simulation:

• Allowing variability of the ’contrast’ factor from neuron to neuron. In each
stimulation, the ’contrast’ factors are randomly drawn from Gaussian dis-
tributions, centered around the ’contrast’ factors in the main simulation.

• Allowing non-selective currents during stimulation: All neurons not selec-
tive to the the stimulus receive increased external currents, during presen-
tation, with ’contrast’ factor lower than that of the selective neurons.

• Allowing finite excitatory and inhibitory finite synaptic time constants. We
choose τs=2ms for the fast excitatory currents, and τs=5ms for the in-
hibitory currents (see Methods). We found it necessary to increase both σE

ext

and Jei, to eliminate oscillatory behaviors (see e.g. (Traub et al. 1999)); to
increase Jp to ensure stable, long living delay activity; and to reduce GE

stim

to maintain the average steady response before structuring as in the main
simulation.

Preliminary results show the phenomenology remains the same as in the main
simulation.

5.4.2 The roles of Short-Term Depression and NMDA

In obtaining robust learning, a fundamental role has been played by the mech-
anism of short-term synaptic depression implemented (Tsodyks and Markram
1997; Tsodyks et al. 1998). It also allows for the removal of external manual
intervention during training (Amit and Mongillo 2003). Upon structuring, stim-
ulus response tends to increase and this increase is a source of instabilities in
the learning process (Del Giudice and Mattia 2001; Amit and Mongillo 2003).
In fact, too high average emission rates upon stimulus presentation, could alter
the balance between excitation and inhibition, leading to the appearance of os-
cillatory behavior or uncontrolled growth of global network activity. Such high
rates can significantly affect the probability of synaptic transitions within the
various functional synaptic populations, leading to undesirable synaptic modifi-
cations (e.g. potentiation instead of depression) which may distort the learning
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process. Short-term, rate dependent depression of the excitatory synaptic effica-
cies contains stimulus response within functional boundaries. During stimulation
the network reliably works in an asynchronous irregular spiking regime (balanced
regime). This ensures that the probability of synaptic transitions is significantly
different from zero, and low, only in synapses among visually responsive neurons
(LTP) and in the synapses from visually responsive to non-responsive neurons
(LTD).

With short-term synaptic depression, we have found it necessary to add slow
NMDA-like currents, to ensure the proper functioning of selective WM activity.
In its absence, after the network had structured itself properly, and had stable
selective delay activity states either according to mean-field analysis (Curti et al.
2004), or by direct access to these states in the simulation, the neural dynam-
ics of the network, following the removal of a stimulus, did not reach the WM
state corresponding to that stimulus. The reason is that at the end of stimulus
presentation, the fraction of available resources of the synapses corresponding to
selective neurons is very low, due to the relatively high emission rate (∼ 50Hz)
during stimulation. They recover on a relatively long time scale (∼ 200-300ms, in
simulation), and the memory of the stimulus presented may be lost: The network
either relaxes to the spontaneous activity state or to a WM state corresponding
to a different, randomly selected stimulus.

The slow (100ms) NMDA-like component (50%) of the excitatory recurrent
current keeps track of the information of the presented stimulus while synaptic
resources recover. In other words, after stimulus removal, there is a selective
recurrent current within the stimulated neural population. This NMDA current
compensates for the temporary low availability of synaptic resources, maintaining
the emission rate within the selected population at relatively higher level. Slow
NMDA-like currents also render WM activity more stable, see e.g. (Wang 1999;
Compte et al. 2000; Brunel and Wang 2001).

Such slow currents also play a role in preventing spontaneous global bursting,
commonly manifested in networks of spiking neurons with short-term depressing
synapses (Tsodyks et al. 2000; Loebel and Tsodyks 2002). Bursts occur because
of occasional synchronous firing of a subset of excitatory cells, and with fast
excitatory currents, synchronous spiking provokes an avalanche of firing activity,
and nearly all neurons in the network spike within a few ms (Tsodyks et al.
2000). A slower recurrent current renders inhibition more effective in controlling
small spontaneous fluctuations of the activity in the excitatory population. The
network operates reliably in an asynchronous firing regime. At the same time,
the network maintains its ability to generate fast developing activity in response
to stimulus presentation. This bursting regime is however limited to neurons
belonging to a selective population, which consist of a small fraction of the entire
excitatory population.
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5.4.3 The model of plastic synapse

The model of plastic synapse is characterized by an analog internal variable with
short time constant (∼20ms), yet the internal refresh dynamics allows for the
synapse to have two stable efficacy values on long time scales (Fusi et al. 2000).
The dynamics of the internal variable is fully controlled by the presynaptic spike
events and the postsynaptic membrane depolarization. The resulting plasticity
mechanism is not inconsistent with experimental findings: most of the in-vitro
stimulation protocols inducing long-term plasticity in biological synapses, pro-
duce the same behavior in the model (Amit and Mongillo 2003). This plasticity
dynamics ensures that, in absence of external stimulation, the acquired synaptic
structure persists over very long time scales, due to the fact that, in order to
have significant probability of synaptic transitions, the average ISI must be of
the order of the synaptic time constant, which is the time the refresh currents
take to reset the stable synaptic internal state after a jump (Fusi et al. 2000;
Amit and Mongillo 2003). This occurs in a small subset of neurons (i.e. the
selective neurons) upon stimulus presentation (νsteady ∼ 50Hz→ 〈ISI〉 ∼ 20ms).
By contrast, in absence of external stimulation, average ISI within the excitatory
sub-network is significantly longer than the synaptic time constant (ν̃s ∼ 10Hz
→ 〈ISI〉 ∼ 100ms À 20ms), leading to negligible transition probabilities.

We check this in spontaneous and in delay activity states, in absence of stim-
ulation: 1. In a simulation of 200 seconds, with an unstructured synaptic matrix
and the network in spontaneous activity (∼ 3Hz); 2. 20 seconds with the synap-
tic matrix at asymptotic structuring and the network in selective delay activity
(∼ 10-15Hz) for one of the stimuli in the training set. We estimate the rate
of synaptic transitions as the difference between the final and initial number of
potentiated synapses, divided by the initial number of depressed synapses and
simulation duration. In both cases, we found an increase of the total number of
potentiated synapses, since LTP is the more probable transition, due to the lower
number of jumps required (2 vs 4 for LTD). Transition rates are: 6.1·10−8 s−1 for
spontaneous activity, and 6.4·10−7 s−1 during selective delay activity.

The fact that in absence of external, relevant stimulation the synaptic transi-
tions occur with negligible rates is another factor conferring stability and robust-
ness to the learning process (Del Giudice and Mattia 2001; Amit and Mongillo
2003).

5.4.4 LTP/LTD transition probabilities and neural activ-
ity

The average transition probabilities per presentation increase with training, as a
consequence of the increase, with structuring, of the average emission rates upon
stimulation. The shorter the average ISI, the larger the transition probabilities.
In particular, the initial burst can significantly affect the transition probabilities.
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During the initial transient, due to the temporary imbalance between excitation
and inhibition, and to the large availability of synaptic resources, single neurons
can fire multiple action potentials with short interspike intervals. In fact, reducing
the amplitude of the peak response (and its relative variation along training)
results in the reduction of the transition probabilities and of its increase during
training. (Sec. 5.3.4).

It must be noted, however, that the relative variation of the LTP/LTD tran-
sition probabilities in the course of training is not fully accounted for by the
corresponding variation of the average ISI upon stimulation. This is due to the
low CVs during stimulus presentation (Sec. 5.3.2). At parity of average ISI
(i.e. same mean emission rate), larger CV implies a long tail of the underlying
ditribution of firing times. This reduces the probability of a synaptic transition.
One also expects that higher CVs upon stimulation, may produce low and quite
constant probabilities of synaptic transitions all along training. Larger CVs can
be obtained by reducing the average emission rates upon stimulus presentation;
by increasing the level of external noise during stimulation; by allowing Hebbian
plasticity in the inhibitory-to-excitatory synapses.

From the theoretical point of view, obtaining transition probabilities low and
constant along the training history has the important consequence that the learn-
ing theory of Brunel et al. (1998) becomes applicable together with its relative,
the mean-field description of the stationary states of the neural system (Curti
et al. 2004). Without the constancy of the synaptic transition probabilities the
first step is not possible. The second can still be partially saved, with much re-
duced effectiveness, by running the simulation up to a given stage and then using
the resulting potentiation levels in different functional synaptic populations to
set up an instantaneous mean-field analysis. On the other hand, the rise in prob-
abilities and their dependence on the burst amplitude may also have a positive
side in the development of associations between delay activity distributions in
associative learning, as in the pair-associate paradigm or in learning sequences of
stimuli with a fixed order. Study of the related effects is under way.

5.4.5 Achievements and perspectives

The model network captures several important aspects of the experimentally
observed phenomenology: 1. Both excitatory and inhibitory neurons respond
selectively to the stimuli, they respond with the same coding level and with
roughly the equal mean emission rates (Tamura et al. 2004); 2. The discharge
patterns of the neurons are quite irregular, and the distribution of the firing
times is characterized by a long tail (Sec. 5.3.2); 3. The distributions of the
selective average emission rates, during stimulus presentation as well as during the
subsequent delay interval, are wide, and similar to those experimentally reported
(Sec. 5.3.2); 4. The time course of the stimulus response is consistent with
profiles observed in in-vivo recordings, (Tamura et al. 2004; Tamura and Tanaka
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2001): for excitatory neurons – fast initial transient at high rate, followed by a
steady response at lower rate; for inhibitory neurons – tonic response throughout
the stimulation.

Because of its biological plausibility, the model may constitute a useful tool in
tracing learning-related modifications of neural activity in experiment, as well as
in designing new, informative experiments. It also makes experimentally testable
statements. The model predicts an increase of the visual response with train-
ing: Presentation of familiar stimuli produces higher rates than those produced
by novel stimuli. At present there is barely preliminary evidence for this. In
(Messinger et al. 2001; Holscher et al. 2004), the emission rate of single neu-
rons in PRh cortex and area TE (IT) during training for a delay task increases
significantly with the number of presentations per stimulus.

Another neural correlate of learning is the narrowing of the single-cell tuning
curves, i.e. before-learning poor responses to the stimuli are completely sup-
pressed, or reduced, with training, see e.g. (Rainer and Miller 2000; Holscher
et al. 2004; Zohary et al. 1994). Rainer and Miller (2000) also report that the
selectivity to the familiar stimuli is more robust with respect to the stimulus
degradation (see also (Amit et al. 1997)). Both effects are easily accounted for in
the model: As the stimulus becomes familiar (i.e. it is repeatedly presented), the
fraction of potentiated synapses among the neurons selective to it, increases. In
this way, even when the stimulus is degraded by noise (see Sec. 5.3.3), the non-
stimulated, selective cells emit at enhanced rates, because of the strong recurrent
synaptic efficacies. Similarly, with training, the fraction of potentiated synapses
from selective to non-selective neurons decreases. Consequently, upon presen-
tation of a given stimulus, the excitatory currents, afferent on the non-selective
neurons decrease, reducing their emission rates. This produces the narrowing of
the tuning curves.

In the simulations reported we did not observe directly this effect, because
during stimulus presentation non-selective cells are practically quiescent, all along
the training. However, we do observe a decrease of the average depolarization
level of the non-selective cells with training, indicating a corresponding reduction
of the afferent current. In preliminary simulations we increased the non-selective
afferent current during stimulation. This, on the one hand, may be interpreted
as a change in the subject’s attention in viewing the stimulus, on the other hand
it endows non-selective cells with significantly higher emission rates, without
harming the structuring process (see Sec. 5.3.3). In these simulations we observe
the narrowing of the single-cell tuning curves as training proceeds.

In this network, one can naturally study the dependence of the structuring and
of the associated neural dynamics on the presentation protocol. The present study
reports a basic case, in which the set of stimuli is stationary (i.e. no stimuli are
added or removed from the training set), and stimuli are presented in a random,
uncorrelated way at the same rate. Moreover, the trial is an elementary stimulus-
delay pair, with no test stimulus and the like. The simulations can be applied to
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modeling the neural correlates observed in more elaborate tasks, starting from the
simple delay-match-to-sample with fixed order sequences (Miyashita 1988), the
pair-associate matching, see e.g. (Erickson and Desimone 1999; Messinger et al.
2001; Naya et al. 2003), and task switching during delay (Naya et al. 1996).
Several of these tasks have been modeled with promising results (Amit et al.
1994; Brunel 1994; Brunel 2003; Mongillo et al. 2003), but not yet with a fully
embedded microscopic synapses. Such applications may reinforce the credibility
of the modeling elements, and may also hide some surprises and lead to new
predictions.

Adding or removing stimuli from the training set, or varying their presenta-
tion rates, could expose learning-related modifications in experiments, in a more
effective way. Finally, the presentation protocol could be relevant with respect
to the issues such as learning and forgetting rates (Brunel et al. 1998), and
the storage capacity (Curti et al. 2004). Preliminary simulations show that in
some cases, the network is unable to store a given number stimuli, if they are all
presented in the same training session. By contrast, if training is made first on
a subset of the stimuli, and then on the entire set, the network develops selec-
tive delay activity for all stimuli. Such a feature of training could account for a
common strategy for memorizing a long text, as for instance a poetry.

Last, among many possible additional ones, we mention the prospect of using
such a network to investigate the unsupervised development of neural represen-
tations expressed by selective delay activity states. The network could be trained
on an arbitrary set of stimuli, not necessarily random, nor of fixed coding level,
pixelizing for example images. The neural dynamics together with the synaptic
plasticity would create delay activity representations for the stimuli which are
likely to be quite different from the presented stimuli and would probably give
rise to higher selectivity (less correlations, less overlaps), and lower coding. Such
an outcome is imaginary at this stage. But if verified, could lead to the resolution
of the puzzle of the collapse of the delay-activity representations of many images
into very restricted columns.

Many of these issues are currently under investigation.
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