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Abstract

The emerging field of quantum information concerns ways in which quantum me-

chanics can be exploited to transmit and process information. The milestones of this

field are indubitably represented by the development, by C. Bennett and G. Bras-

sard in the early 80s, of the so-called “quantum cryptography”, a provably secure

way of sharing a key distribution through a public channel, and by the discovery

of the polynomial-time algorithm of P. Shor for finding the prime factors of large

integers.

The interesting aspect to remark is that a philosophical debate about locality

in quantum mechanics, usually referred as the Einstein-Podolski-Rosen paradox,

originated a new method for information processing. One of peculiar aspects of

quantum mechanics, the postulate of the reduction of the wave packet, considered

so far as a limit, becomes a resource and projective measurements are exploited

giving rise to unexpected phenomena, such as quantum teleportation.

The starting element of any description of quantum information is the qubit,

the state of a two-level system, which represents the counterpart of the bit, known

to be the unit of classical information. Various two-level systems are being con-

sidered as physical realization of qubits for quantum information processing. It is

worth citing NMR in bulk liquids, cold ions, cold atoms, superconducting circuits

(SQUIDs), semiconductor electronic devices containing electron spin and charge

(quantum dots), and photons, especially in the framework of the so-called Linear
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Optics Quantum Computation (LOQC). Both theoretical and experimental fronts

have seen remarkable progresses in the past several years in any of these fields. Ex-

perimentalists address their attention towards a full control of coherent dynamics of

extended quantum systems, while most theoreticians are motivated by the idea of

deeply understanding the fundamental properties of such systems.

A solid state approach to quantum information seems to be the most likely sce-

nario for the realization of hardware, since large-scale integration is possible within

the present chip technology. On the other hand, solid state devices suffer deco-

herence, that is the loss of quantum behaviour because of the interaction with an

external environment. Thus the study of methods and techniques to avoid decoher-

ence are themselves an arena where to concentrate interest and energies.

Conversely, photons are, with obvious motivations, the best vehicle of informa-

tion over long distances. Then, although LOQC contains non trivial aspects that

it is worth considering, the natural battle ground where to use and exploit pho-

tons is the subfield of quantum communication, which concerns the possibility of

manipulating and transferring qubits in the space.

This thesis arises from the fusion of two different “ways of life” inside the world

of quantum information. The first one is that of my supervisor, Prof. Ferdinando

de Pasquale, a physicist who has studied for long times statistical mechanics, with

particular attention to the topic of phase transitions, and would apply many-body

techniques to develop and characterize new configurations for the definition and the

transfer of qubits. The second one derives from my prior experience in a quantum

optics laboratory. I tried to preserve what I learned, and continue to think to

photons and to their possible use.

Therefore the aim of this work is to provide a series of original schemes for quan-

tum information processing both in solid state devices and in optical ones. In the

latter case it is worth speaking about true experimental proposals, perfectly feasible
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using today’s technology, whereas, referring to solid state applications, the exper-

imental implementation is not obvious, and the scope is that of pointing towards

new methods and ideas which could stimulate experimentalists.

The thesis is articulated as follows. Chapter 1 is a brief collection of general

concepts and instruments which will be used in the subsequent chapters. In partic-

ular, I shall present some of the reasons that make interesting the study of quantum

information, and focus on two typical concepts, the first one being entanglement,

tight connected to quantum non-locality, and the second one being decoherence, the

loss of quantum behaviour in open systems due to qubit-environment coupling in

the time evolution.

The original work presented here is contained in chapters 2,3,4, and 5. Chapter

2 is mostly devoted to the description of a method to create macroscopic qubits

through an array of a large number of quantum-dot pairs. Starting from the very

common situation where a pair of quantum dots defines a charge qubit, it will be

shown how a strong interaction between nearest neighbors dot pairs creates an ef-

fective two-level system which is defined over all the array. In the thermodynamical

limit, a phase transition appears at zero absolute temperature. Moreover, the analy-

sis of decoherence effects demonstrates a counterintuitive feature: the more extended

is such system, the more resilient it is against zero-temperature decoherence effects.

As an application of these properties, a teleportation protocol will be applied by

adiabatic variation of the system’s parameters.

A more general approach to solid state quantum information processing is pre-

sented in chapter 3, where the concept of quantum bus is introduced. A quantum

state, encoded in a local site, can be transferred asymptotically unchanged in a dis-

tant site, by using a chain as a channel. The main result of this part is that quantum

diffusion is avoided whenever the energy of the state to transfer is outside of the

energy band of the quantum bus, or when the channel has a discrete spectrum and
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the energy is resonant with one of the channel energies. The model Hamiltonian

introduced to describe this mechanism allows one to choose the preferred physical

realization of the channel, because of the independence from the quantum statistics.

In the last two chapters (4 and 5) I shall focus my attention on optical realiza-

tions of quantum information protocols. In particular, chapter 4 will be devoted

to the introduction of a scheme which allows one to realize a non-deterministic

two-qubit gate using linear optics and single photons, following the idea introduced

recently by Knill, Laflamme, and Milburn, and whose the present model represents

a simplification. Finally, in chapter 5, I shall present a setup that could be used

for cryptographic purposes. It consists in a mechanism of bit exchange between

two sites which enables the sharing of a secret key. In each of two last chapters an

introductory paragraph will be useful to frame the work in its own milieu.

Two appendices conclude the thesis. The appendix A contains the analytical

derivation of a function defined in the third chapter, and has been introduced merely

to lighten the discussion. The second appendix has a different role. In fact, I present

the results of a study about the possibility of transferring quantum information

through a spin chain exploiting redundant encoding methods. Being the results not

completely satisfying, I decided to treat this argument without emphasizing it.
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Chapter 1

Introductory concepts

The scope of this chapter is to review and focalize some aspects about the world

of quantum information and computation and to familiarize with the language and

the instruments which will be utilized widely throughout the thesis. In Sec. 1.1 a

list of physical requirements to realize a quantum processor is presented. In Sec. 1.2

the concept of entanglement is introduced together with the protocol of quantum

teleportation. Finally, Sec. 1.3 contains a brief description of decoherence in open

systems.

1.1 Why quantum information and computation?

Quantum computation and quantum information is the study of the information

processing tasks that can be accomplished using quantum mechanical systems [1].

The theoretical and experimental work carried out in the past several years has

greatly clarified the potential of the field.

The first intuition about the possibility of exploiting quantum mechanics for com-

putational purposes is due to Feynman [2], who pointed out that, being Newtonian

mechanics just a limit of quantum mechanics, it is not reasonable to suppose that
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1 – Introductory concepts

systems obeying quantum laws should have the same limitations in their computa-

tional power as classical machines. The computational power of a classical machine

can represent a lower bound in the quantum world.

Enlightening evidences about the potentialities of quantum information are the

algorithms introduced by P. Shor and L. Grover. Shor invented an algorithm which

exploited quantum parallelism to offer an exponential speed-up over classical ma-

chines for solving the problem of the factorization of large integers [3]; Grover in-

troduced an algorithm for unstructured search problems [4].

In a quantum computer the indivisible unit of information is the qubit, that is the

state of a two-level system, which represents the analog of the classical bit. A large

variety of approaches has arisen towards the physical realization of qubits. Studies

in such direction involve different branches as mesoscopic physics, atom physics,

quantum optics, quantum electronics, superconducting device physics, NMR.

The requirements for the implementation of quantum computation have been

synthesized by D. DiVincenzo [5], and are the following:

• a scalable physical system with well characterized qubits

• the ability to initialize of the qubits to a simple fiducial state

• long relevant decoherence times, much longer than the gate operation time

• a universal set of quantum gates

• a qubit-specific measurement capability

The five criteria above mentioned suffice for computational scopes. With the

idea of extending the advantages deriving from quantum tools to other information-

processing tasks, two further requirements are in order:

• the ability to inconvert stationary and flying qubits
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1.2 – Entanglement and teleportation

• the ability to faithfully transmit flying qubits between specified locations

I shall not give a detailed description of all the issues introduced so far. The

last two points raised will be largely discussed in the Chapter 3, which is devoted

specifically to the study of conditions that allow one to transmit qubit in the space

with high fidelity, and decoherence will be the subject of one of following paragraphs.

Here, I give just some detail about the fourth of DiVincenzo’s criteria. It has been

shown [6] that quantum gates operating on just two qubits at a time are sufficient

to construct a general quantum circuit.

1.2 Entanglement and teleportation

Entanglement is a distinctive feature of quantum mechanics and a fundamental

resource for quantum information.

Given a Hilbert state H = ⊗n
i=1Hi, a quantum pure state |Ψ〉 is separable with

respect to the partition {H1, . . .Hn} when it admits the following decomposition:

|Ψ〉 = ⊗n
i=1 |ψ〉i , |ψ〉i ∈ Hi. (1.1)

If this condition is not satisfied, |Ψ〉 is said to be entangled. An example of two-qubit

entangled state is the singlet state of two spin 1/2 :

∣∣∣Ψ−〉
=

1√
2

(|01〉 − |10〉) . (1.2)

This state is one of four so-called Bell states (known also as EPR, or Einstein-

Podolski-Rosen pairs [7]), which represent a complete set of vectors in the two-qubit

state. Using conventional notations they are

∣∣∣Ψ±〉
=

1√
2

(|01〉 ± |10〉) ,

∣∣∣Φ±
〉

=
1√
2

(|00〉 ± |11〉) . (1.3)
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1 – Introductory concepts

When the state under study is not a pure one, but it is a statistical mixture ρ,

the definition of entanglement is generalized as follows. Given the composite space

H1 ⊗H2 ⊗ . . .Hl, the state ρ is called separable if it can be written as

ρ =
∑

i

µiρ
(1)
i ⊗ ρ

(2)
i ⊗ . . . ρ

(l)
i , (1.4)

where ρ
(j)
i ∈ Hj, and with weights µi > 0 satisfying the sum rule

∑
i µi = 1.

Otherwise, it is entangled.

Quantifying the entanglement degree of a multipartite state is not a trivial ques-

tion. The exclusive requirement for a function of a multipartite quantum state to

be a good measure of entanglement is that it be non-increasing, on average, under

the set of local quantum operations and classical communication (LOCCs). When

dealing with pure bipartite states, a natural way to measure entanglement is to use

the “entropy of entanglement”, which derives from the definition of Von Neumann

entropy of a state ρ:

S = −Tr {ρ log2 ρ} . (1.5)

Given a bipartite system H1 ⊗H2 and a state |ψ〉the entropy of entanglement is

ES = S (ρ1) = S (ρ2) , (1.6)

where ρ1 (ρ2) is the reduced density matrix:

ρ1(2) = Tr2(1) {|ψ〉 〈ψ| log2 (|ψ〉 〈ψ|)} , (1.7)

where Tri indicates the partial trace on the subsystem i.

On the other hand, if the state is a statistical mixture, classical correlations

sums to quantum ones, and entropy of entanglement is no longer a good indicator.

In this case, we recur to “concurrence” C, introduced by W. Wootters [8], defined as

follows. Given a bipartite state ρ and its spin-flip ρ̃ = σy ⊗ σyρ
∗σy ⊗ σy (ρ∗ denotes

the complex conjugate of ρ and σy is one of Pauli matrices),

C (ρ) = max {0,λ1 − λ2 − λ3 − λ4} (1.8)
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1.2 – Entanglement and teleportation

where the λis are the square roots of the eigenvalues of the non-Hermitian matrix

ρρ̃.

Entanglement is responsible of nonlocal quantum correlation and allows quantum

information to overcome some of the limitations posed by classical information, as

exemplified by some peculiar application, as dense coding and teleportation.

Quantum teleportation is a counterintuitive and fascinating idea which relies on

entanglement in a indissoluble way [9]. Let us suppose that Alice has an unknown

quantum state |χ〉 and wants to send it to Bob, who is far apart. Furthermore,

suppose that they can communicate only through a classical channel. Entanglement

is the resource that allows them to perfectly accomplish the transfer. A quantitative

description of teleportation can be done as follows. Assume that Alice has the state

|χ1〉 = α |01〉+ β |11〉 and she does not know either α nor β. Assume also that Alice

and Bob share an EPR pair, for instance
∣∣∣Ψ−

2,3

〉
. Thus the initial state is

|Ψ1,2,3〉 =
1√
2

[α |01〉+ β |11〉] [|0213〉 − |1203〉] (1.9)

A simple algebraic manipulation allows one to write

|Ψ1,2,3〉 =
1

2
[
∣∣∣Φ+

1,2

〉
(α |13〉 − β |03〉) +

∣∣∣Φ−1,2

〉
(α |13〉+ β |03〉)

+
∣∣∣Ψ+

1,2

〉
(−α |03〉+ β |13〉) +

∣∣∣Ψ−
1,2

〉
(α |03〉+ β |13〉)] (1.10)

or, better,

|Ψ1,2,3〉 =
1

2

[∣∣∣Φ+
1,2

〉
iσy

3 |χ3〉+
∣∣∣Φ−1,2

〉
σx

3 |χ3〉+
∣∣∣Ψ+

1,2

〉
σz

3 |χ3〉+
∣∣∣Ψ−

1,2

〉
|χ3〉

]
, (1.11)

where σx
3 ,σy

3 , and σz
3 are the standard Pauli matrices acting on the Hilbert space of

the third qubit. Then, Alice performs a local Bell measurement (that is a measure-

ment in the basis represented by the Bell states) on the qubits 1 and 2, and transmits

the result on the classical channel. Bob receives the classical data and acts on the

third qubit with a proper unitary operation in order to recover the state |χ〉. For

instance, if Alice would measure
∣∣∣Φ−1,2

〉
, Bob’s had to make the unitary rotation σx

3 ,

and so on. Fig. 1.1 illustrates in a pictorial way the process of teleportation.
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Bell state 
measurement classical 

bits 

unitary 
operation 

EPR state 

input state 

output state 

U 
BM 

Figure 1.1. Schematic description of the teleportation protocol. BM stays for Bell
measurement , while U indicates the classically selected unitary transformation.

1.3 Decoherence

It is a common wisdom that a quantum state will, soon or later, loose coherence due

to the interaction with an environment. If the whole system is described by quantum

mechanics, because of the time reversibility of the evolution, decoherence is observed

in the time scale where energy has been dispersed in the degrees of freedom of the

environment [10, 11]. This time scale is macroscopic if the number of degrees of

freedom of the environment is macroscopic. On the time scale of decoherence, the

environment is considered to have a continuous energy spectrum and decoherence

occurs when the energies of the isolated quantum system belong to the spectrum

of the environment. Many basic ideas have been developed in various formulations,

such as master equation to study the behaviour of open systems.

As said in Sec. 1.1, one of essential ingredients to build a quantum computer is

to deal with decoherence times much longer than the gate operation time. Then, it

is essential to identify those systems that interact weakly with their environment,

or, better, find particular subspaces whose evolution is preserved from dissipation.

In this latter case one speaks about “decoherence-free subspaces” [12].

A very general method to treat the problem of decoherence is represented by the
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1.3 – Decoherence

use of system-bath theories. Roughly speaking, the world is divided in two parts,

“system” and “bath”. The system is the part we are really interested in, while the

bath is the rest of the world, and we do not care about what happens there. The

Hilbert space is defined as the tensor product system+bath:

H = HS ⊗HB, (1.12)

with obvious notations, while the Hamiltonian is

H = HS + HB + HSB, (1.13)

where the last term takes into account interaction between system and bath. When-

ever HSB = 0, the system is isolated from the environment and the usual quantum

mechanical treatment takes place. Starting at the time t = 0 from a factorized state

(ρ (0) = |S〉 〈S| ⊗ |B〉 〈B|), the effect of the interaction is to entangle the system

with the bath. Then, at any time t > 0, the whole system is no longer factorized.

The typical tool to isolate the evolution of the system alone is the reduced density

matrix:

ρS (t) = TrB {ρSB (t)} , (1.14)

where the symbol TrB denotes the partial trace realized on the bath’s degrees of

freedom. As a consequence of the system-bath entanglement, ρS (t) is a statistical

mixture. In general there is no way to study exactly the time evolution of the system,

and approximations are in order. Due to the interaction, the evolution of the system

implies the excitation of phonons in the bath. As we shall see in the next chapter, it

is possible that, considering a weak coupling regime and zero temperature, all bath’s

states which present phonons can be neglected to the leading order in the coupling

constant, and only self-energy contribution are kept. In that case, the calculation

of the Green functions for the system is all we must do. In practice, entanglement

between system and bath manifests itself through the corrections to the unperturbed

system’s energies.

7
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Chapter 2

Elementary excitations of an array

of double quantum dots

Realizing macroscopic qubits would be very advantageous for many aspects. In

fact, the macroscopic character implies an enhancement of robustness with respect

to decoherence.

Moreover, it is well known that a quantum system which undergoes a phase

transition lives in one of a particular set of states, for a time which becomes infinitely

large in the thermodynamical limit. Considering the number of states large but

finite, it appears an energy separation between these states, and oscillations are

expected, if the system is initialized in a state which is a superposition of these

eigenstates. In particular, if the ground state is twofold degenerate, one can associate

these states to a macroscopic quantum bit.

In this chapter I study of the elementary excitations of an array of double quan-

tum dots (DQDs), showing that this physical system is a suitable candidate as a

macroscopic qubit. In Sec. 2.1 I introduce the charge qubit and define the nature

of interactions that appear in a DQD array. Sec. 2.2 is devoted to the study of the

time evolution of the array. As a result, an effective two-level system behaviour will

9



2 – Elementary excitations of an array of double quantum dots

appear [13]. In Sec. 2.3 the study of decoherence effects is performed by means of

the introduction of a bath of acoustic phonons interacting with the electron charge.

The robustness of the array in the macroscopic limit is the main result of this chap-

ter. Finally (Sec. 2.4), the time evolution of the DQD array is exploited to achieve

quantum teleportation [14]. A brief conclusion is given in Sec. 2.5.

2.1 Quantum dots and quantum information

Quantum dots (QDs) are artificial atoms (molecules) in which atomic (molecular)-

like electronic states can be controlled with external voltages [15, 16]. They provide

confinement in three spatial dimensions and have a size that can range from a few

nanometers up to one hundred nanometers, which is comparable to the de Broglie

wavelength of electrons in semiconductors, showing well-separated discrete levels for

electronic states. The first idea to realize the qubit using pairs of coupled of quan-

tum dots is due to D. Loss and D. DiVincenzo [17]. In their proposal, two QDs,

each having one excess electron are coupled through electric gates, and the qubit

is given by the superposition of the two-spin state. Alternatively, charge states can

be used to define the qubit. In this scenario two coupled quantum dots share just

one excess electron, which can stay coherently around the first or the second dot,

defining in such a way a two-level state. The charge can oscillate between the two

dots through a tunneling barrier, whose height is determined by an external electro-

static potential. Coherent charge oscillations in these systems have been observed

experimentally [18, 19]. The array we have in mind has the geometry of Fig. 2.1.

There is tunneling between dots of each of N pairs, and nearest neighbors inter-

action due to electrostatic repulsion between electrons which appears only between

dots belonging to the same row, while dots of different pairs and different rows never

interact. Double occupation on a single dot, as well as double occupation on a DQD

10



2.1 – Quantum dots and quantum information
 

Figure 2.1. Array of double quantum dots. Red lines indicate tunneling between
dots of the same pair. Blue lines represent electrostatic repulsion
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2 – Elementary excitations of an array of double quantum dots

will be completely neglected. The model Hamiltonian is

HS = U
N−1∑

l=1

2∑

α=1

nl,αnl+1,α − w
N∑

l=1

(
c†l,1cl,2 + h.c.

)
, (2.1)

where c†l,α creates an electron on the l(th) dot on the α(th) row of the array and

nl,α = c†l,αcl,α, and having indicating with w the tunneling amplitude and with U

the electrostatic energy.

Each pair can be mapped to spin 1/2 system, where up and down correspond

to the extra charge on one of the two dots, and Coulomb interaction between pairs

corresponds to antiferromagnetic interaction. Therefore, making the mapping σz
l =

(nl,1−nl,2) and σx
l = (c†l,1cl,2+h.c.), the Hamiltonian describing this system becomes

H = −w
N∑

l=1

σx
l +

U

2

N−1∑

l=1

(
σz

l σ
z
l+1 + 1

)
. (2.2)

2.2 Asymptotic two-level behaviour of the DQD

array

The Hamiltonian of Eq. (2.2) reproduces exactly the one-dimensional Ising model

in a transverse magnetic field, whose solution has been carried out some decades ago

[20, 21, 22]. It is our intention to obtain, using perturbation theory, some asymptotic

limit that shows very interesting and unexplored features. To do it, we adopt the

resolvent method [23], writing

H = H0 + HI , (2.3)

and identifying respectively −w
∑

σx
l with HI and U/2

[∑
l

(
σz

l σ
z
l+1 + 1

)]
with H0.

The idea is to assume U À w and consider HI as a perturbation with respect to

H0. The resolvent method allows one to write the evolution of a generic state |ψ〉in
the Laplace space as

|ψ (ω)〉 =
1

ω −H
|ψ (t = 0)〉 (2.4)

12



2.2 – Asymptotic two-level behaviour of the DQD array

or

|ψ (ω)〉 =
1

ω −H0

|ψ (t = 0)〉+
1

ω −H
HI

1

ω −H0

|ψ (t = 0)〉 . (2.5)

The absence of boundary conditions in Eq. (2.2) plays an essential role in the

following development. Let us define the two antiferromagnetic states (with zero

Coulomb energy) |Φ〉 ≡ |↓ , ↑ , ↓ , ↑ , . . . ↑〉 and |Ψ〉 ≡ |↑ , ↓ , ↑ , ↓ , . . . ↓〉 and apply

HI to each of them. Applying HI on |Φ (t = 0)〉 the system is driven in a new

configuration labeled as |Φ1 (t = 0)〉. The action of HI generates a sum of states

each of them differentiates from |Φ (t = 0)〉 due to one spin flip in a different place

along the array. Here it is important to note that flips on the first and the last qubit

put the system in a state with Coulomb energy U , while all intermediate transitions

lead to a state with a 2U electrostatic energy. In the limit of U large with respect

to w, we shall neglect all configurations involving intermediate states with energy

greater than U . In each step of a repeated application of HI it is possible to go

towards new configurations or to come back. Then, for n > 0, we write

HI |Φn (t = 0)〉 = −w [|Φn−1 (t = 0)〉+ |Φn+1 (t = 0)〉] . (2.6)

After N steps the system reaches |Ψ〉 and after 2N steps it comes back to the

initial configuration. Relabeling |Ψ〉 = |ΦN〉 and |Φ〉 = |Φ2N〉 = |Φ0〉, we study the

evolution in the Laplace space:

|Φn (ω)〉 =
1

ω −H
|Φn (t = 0)〉 (2.7)

or

|Φn (ω)〉 =
1

ω −H0

|Φn (t = 0)〉 − w
1

ω −H
H1

1

ω −H0

|Φn (t = 0)〉 . (2.8)

Noting that

1

ω −H0

|Φn (t = 0)〉 =
1

ω − U + U (δn,0 + δn,N)
|Φn (t = 0)〉 , (2.9)

13



2 – Elementary excitations of an array of double quantum dots

we obtain the following equation which holds for all n from 0 to 2n− 1:

(ω − U) |Φn (ω)〉 = |Φn (t = 0)〉−w [|Φn−1 (ω)〉+ |Φn+1 (ω)〉]−U (δn,0 + δn,N) |Φn (ω)〉 .
(2.10)

The system is solved by means of the discrete Fourier transform defined through

∣∣∣Φ̃k (ω)
〉

=
1√
2N

2N−1∑

n=0

|Φn (ω)〉 eink, (2.11)

|Φn (ω)〉 =
1√
2N

2N−1∑

k=0

∣∣∣Φ̃k (ω)
〉

e−ink. (2.12)

As a consequence of periodicity conditions, k = 2πn/N .

From Eq. 2.10 follows

[ω − U + 2w cos k]
∣∣∣Φ̃k (ω)

〉
=

∣∣∣Φ̃k (t = 0)
〉
− U√

2N

(
|Φ0 (ω)〉+ eiNk |ΦN (ω)〉

)
.

(2.13)

It is now possible to extract two equations connecting |Φ0〉 to |ΦN〉:

|Φ0 (ω)〉 =
[1 + B0 (ω)] |A0 (ω)〉 − BN (ω) |AN (ω)〉

[1 + B0 (ω)]2 −B2
N (ω)

, (2.14)

|ΦN (ω)〉 =
[1 + B0 (ω)] |AN (ω)〉 −BN (ω) |A0 (ω)〉

(1 + B0 (ω))2 −B2
N (ω)

, (2.15)

where

|An (ω)〉 =
1√
2N

2π( 2N−1
2N )∑

k=0

e−ink
∣∣∣Φ̃k (t = 0)

〉

ω − U + 2w cos k
, (2.16)

Bn (ω) =
1

2N

U

ω − U

2N−1∑

q=0

e−in π
N

q

1− a (ω) cos π
N

q
, (2.17)

with a (ω) = 2w/ (U − ω) and noting that BN = B−N .

The asymptotic behaviour is determined by values of ω close to zero. Then

a (ω) << 1 and the denominator of Bn (ω) reads as geometric series:

Bn (ω) =
1

2N

U

ω − U

2N−1∑

q=0

e−in π
N

q
∞∑

l=0

al (ω) cosl π

N
q, (2.18)
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2.2 – Asymptotic two-level behaviour of the DQD array

or

Bn (ω) =
1

2N

U

ω − U

2N−1∑

q=0

∞∑

l=0

l∑

m=0

(
l

m

) (
a (ω)

2

)l

exp
[
i
π

N
(l − 2m− n) q

]
. (2.19)

The sum over q gives

Bn (ω) =
1

2N

U

ω − U

∞∑

l=0

l∑

m=0

(
l

m

) (
a (ω)

2

)l
1− e2iπ(l−2m−n)

1− ei π
N

(l−2m−n)
. (2.20)

The condition for a non vanishing Bn (ω) is (l − 2m− n) = 2NK, where K is any

integer between −∞ and +∞:

Bn (ω) =
U

ω − U

∞∑

l=0

l∑

m=0

l!

m! (l −m)!

(
a (ω)

2

)l

δ(l−2m−n),2NK , (2.21)

or, using the Kronecker Delta function

Bn (ω) =
U

ω − U

∞∑

l=0

∞∑

K=−∞

l!(
l+n+2NK

2

)
!
(

l−n−2NK
2

)
!

[
a (ω)

2

]l

. (2.22)

Since the coefficients of a Newton’s binomial formula have to be real and positive,

in the limit a (ω) << 1 we obtain

B0 (ω) ' U

ω − U
(1 + M) , (2.23)

where

M = 1− 1

2N

2N−1∑

q=0

1

1− 2w
U

cos q
(2.24)

contains powers of w/U and has to be calculated at the desired order in q, and

BN (ω) ' − 1

2N

(
2w

U

)N

. (2.25)

Here we note that the last contribution cannot be ignored because it gives rise to

the energy separation between |Φ0〉 and |ΦN〉.
Furthermore we obtain

|A0 (ω)〉 ' 1

U
|Φ0 (t = 0)〉 (2.26)
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2 – Elementary excitations of an array of double quantum dots

and

|AN (ω)〉 ' 1

U
|ΦN (t = 0)〉 . (2.27)

As a result, after an inverse Laplace transform, we get

|Φ0 (t)〉 = eiMUt [|Φ0 (t = 0)〉 cos ∆t + i |ΦN (t = 0)〉 sin ∆t] + O
(

w

U

)
, (2.28)

and

|ΦN (t)〉 = eiMUt [|ΦN (t = 0)〉 cos ∆t + i |Φ0 (t = 0)〉 sin ∆t] + O
(

w

U

)
, (2.29)

having introduced the energy gap

∆ = 2w (2w/U)N−1 . (2.30)

We eventually obtain the long time behaviour of a two-level system with energy

separation exponentially vanishing in the large N limit. Actually, in Ref. [20] (see

equation (3.32c)) the eigenvalue of Eq. 2.30 was derived. On the basis of this result

the phenomenon of asymptotic degeneracy was established and shown to be directly

related to the appearance of the ordered phase in the large N limit.

The result just obtained shows that in the limit of weak tunneling amplitude, the

array behaves as an effective qubit defined in the basis {|Φ0 (t)〉 , |ΦN (t)〉}. Tran-

sitions from one state to the other are possible and require the transition through

N intermediate configurations. This is the cause of the exponential growth of the

transition frequency ∆. In the limit N →∞ the phase space is divided in two sep-

arate regions that cannot communicate. Then there is a phase transition associate

to this symmetry breaking.

2.3 Decoherence effects in the DQD evolution

As said in the concluding remarks of Sec. 2.2, the two-level behaviour of the DQD

array emerges whenever w ¿ U . On the other hand, the computational time re-

quired for any kind of logical operation grows with ∆, and decoherence effects can

16



2.3 – Decoherence effects in the DQD evolution

limit the length of the array.

Under these premises, a study of decoherence is in order. The main environmen-

tal effect to consider is due to the presence of acoustic phonons which interact with

the electron charge of any quantum dot [24]. The overall Hamiltonian describing

the array-phonon bath interaction is

H = HS + HB + HSB, (2.31)

HS = −w
∑

l

σx
l +

U

2

∑

l

(
σz

l σ
z
l+1 + 1

)
, (2.32)

HB =
∑
q

ωqa
†
qaq, (2.33)

HSB =
∑

q,l

gqnle
iq cos θl

(
a†q + a−q

)
, (2.34)

where the symbols HS,HB, and HSB have been already introduced in Sec. 1.3. We

indicate with θ the angle between the phonon mode q and the dot chain direction.

This notation is useful for describing a generic d-dimensional environment coupled

with a one-dimensional system. The constant gq represents the coupling of the dot

charge with the mode q. The explicit mathematical expression for gq depends on

the specific configuration of the system and the type of interaction. In Ref. [25] the

explicit form for gq in some remarkable case is given.

The system introduced represents a variation of the spin-boson model [26],

whose exact solution is not known. In the following we shall assume a regime

of zero temperature and calculate, through the resolvent method, a solution using

perturbation theory. At the initial time t = 0 system and bath are uncoupled:

|Ξ (t = 0)〉 = |S〉⊗|0〉, where |0〉 is the vacuum phonon state. The time evolution of

the state |Ξ (t)〉 = exp (−iHt) |Ξ (t = 0)〉 is studied in the complex Laplace space.

Using the identity already introduced in Eq. (2.5) and performing a projection on

the vacuum phonon state, we define a new system state |ΦS (ω)〉 = 〈0|Ξ (ω)〉 that

17



2 – Elementary excitations of an array of double quantum dots

obeys to the evolution equation

|ΦS (ω)〉 =
1

ω −HS

|ΦS (t = 0)〉+ 〈0| 1

ω −HS

HSB
1

ω −H
|Ξ (t = 0)〉 . (2.35)

Here the bath ground state energy is set to zero, H0 = HS + HB and HI = HSB.

The aim of this derivation is to keep only self-energy contributions to |ΦS (ω)〉,
which can give rise to an imaginary part, neglecting the rest. To feature the impor-

tant terms, first we iterate (ω −H)−1 inside the right hand side of Eq. (2.35) and

introducing a complete set of intermediate phonon states:

|ΦS (ω)〉 =
1

ω −HS

|ΦS (t = 0)〉+ 〈0| 1

ω −HS

HSB
1

ω −HS −HB

|Ξ (t = 0)〉+

∑

k

〈0| 1

ω −HS

HSB
1

ω −HS −HB

HSB |k〉 〈k| 1

ω −H
|Ξ (t = 0)〉 .(2.36)

The term of the sum leading to self-energy corresponds to k = 0, since the element

〈0| (ω −H)−1 |Ξ (t = 0)〉 is exactly |ΦS (ω)〉. Then, all other linear and quadratic

contributions in HSB will be neglected. Hence, Eq. 2.36 becomes

[
1− 1

ω −HS

G(HS)
]
|ΦS (ω)〉 =

1

ω −HS

|ΦS (t = 0)〉 , (2.37)

where

G (HS) = 〈0|HSB
1

ω −HS −HB

HSB |0〉 (2.38)

is the self-energy operator acting on the system subspace. The right term of Eq.

(2.37) describes the evolution of the macroscopic state isolated from phonons. As

we have shown in Sec. 2.2, in the limit of w/U ¿ 1, the macroscopic dot chain

behaves as a two level system oscillating between the HS’s asymptotic eigenstates

|±〉 = 2−1/2(|Φ〉 ± |Ψ〉) (2.39)

with energies E±. So, Eq. (2.37) becomes

[
1− 1

ω −HS

G(HS)
]
|ΦS (ω)〉 =

1

ω − E+

|+〉 〈+|ΦS (t = 0)〉

+
1

ω − E−
|−〉 〈−|ΦS (t = 0)〉 . (2.40)
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2.3 – Decoherence effects in the DQD evolution

Noting that the operator G(HS) maps the subspace spanned by |±〉 into itself, it is

possible to reduce Eq. (2.40) in terms of two coupled equations:

(
ω − E+ −G++

)
〈+|ΦS (ω)〉 −G+− 〈−|ΦS (ω)〉 = 〈+|ΦS (t = 0)〉 , (2.41)

(
ω − E− −G−−)

〈−|ΦS (ω)〉 −G−+ 〈+|ΦS (ω)〉 = 〈−|ΦS (t = 0)〉 , (2.42)

where G±± = 〈±|G |±〉.
To the leading order in the system-bath coupling, we obtain

〈+|ΦS (ω)〉 =
1

ω − E+ −G++
〈+|ΦS (t = 0)〉 , (2.43)

〈−|ΦS (ω)〉 =
1

ω − E− −G−− 〈−|ΦS (t = 0)〉 . (2.44)

The solution in the time domain is obtained assuming first the correction intro-

duced by the matrix elements of G as negligible, and then calculating the latter in

ω = E+ or ω = E−.

For instance, the integral

∫

C

e−iωt

ω − E+ −G++
dω (2.45)

is calculated assuming first G++ = 0, obtaining for the pole ω = E+, and then

substituting this value inside G++, which depends on ω. After, the principal value

of G++ will be ignored, and only the imaginary part will matter.

In order to check the validity of the approximation performed, let us apply our

method to a model whose solution is already known. We introduce a double quantum

dot in contact with a bosonic bath with Hamiltonian H = HS + HB + HSB, where

HS =
ε

2
σz + Tσx, (2.46)

HB =
∑
q

ωqa
†
qaq, (2.47)

HSB =
1

2
σz

∑
q

gq

(
a†q + aq

)
. (2.48)
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2 – Elementary excitations of an array of double quantum dots

This model has been discussed extensively in Ref. [24]. Here a one-dimensional bath

is considered for simplicity. Labeling with |L〉 and |R〉 the eigenstates of σz with

respective eigenvalues +1 and−1, the eigenstates of HS are

|±〉 =
1

N±
[±2T |L〉+ (∆∓ ε) |R〉] , (2.49)

where ∆ =
√

ε2 + 4T 2 and N± =
√

(∆∓ε)2 + 4T 2 while the respective eigenvalues

are ε± = ±1
2
∆.

By inversion we obtain

|L〉 = N+
∆ + ε

4T∆
|+〉 −N−

∆− ε

4T∆
|−〉 , (2.50)

|R〉 =
N+

2∆
|+〉+

N−
2∆

|−〉 . (2.51)

Eq. 2.37 has now to be solved using

G (HS) =
1

4

∑
q

|gq|2 σz
1

ω − ωq −HS

σz. (2.52)

We need to calculate 〈+|G (HS) |+〉 and 〈−|G (HS) |−〉. Actually, obtaining G++

will be enough, due the intrinsic robustness of the ground state |−〉 [27] which implies

that G−− has to be zero (this feature is easily checked in the present formalism). To

do it first we write |+〉 in the |L,R〉 basis, then apply σz, come back in the |±〉 basis

in order to apply (ω−ωq−HS)−1, rewrite the new state through |L,R〉 to apply the

second σz operator, and finally re-express the result in terms of |+〉 and |−〉. The

result is

G++ =
1

4

∑
q

|gq|2
[

1

ω − ωq − ∆
2

(
ε

∆

)2

+
1

ω − ωq + ∆
2

(
∆− ε

∆

)2
]
. (2.53)

The sum over q is performed as an integral through the introduction of the density

of states ρ which is assumed to be different from zero only for positive values of its

argument [24]. The second term inside the square bracket gives the contribution to

the imaginary part, which is γ = − [πT 2ρ (∆)] /∆2. The evolution is thus

〈+|ΦS (t)〉 = 〈+|ΦS (t = 0)〉 e−i ∆
2

te−π T2

∆2 ρ(∆)t, (2.54)
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2.3 – Decoherence effects in the DQD evolution

〈−|ΦS (t)〉 = 〈−|ΦS (t = 0)〉 ei ∆
2

t. (2.55)

The density matrix in the basis |±〉 is then

ρ(t) =




ρ++ (0) e−2γt ρ−+ (0) e−γtei∆t

ρ−+ (0) e−γtei∆t 1− ρ++ (0) e−2γt


 . (2.56)

with the same dephasing rate obtained in [24], in the regime of zero temperature,

using markovian assumptions.

After this digression, let us come back to our main problem, that is the study

of decoherence of the DQD array. According to the previous analysis we can limit

ourself to consider only the first two states |±〉 of the array. The decoherence rate

will be however modified by the extensive interaction with the bath.

We have to calculate the matrix elements of G (HS) in the subspace of |+〉 and

|−〉 taking into account the particular system-bath interaction HSB defined in Eq.

2.34. Here

G (HS) =
∑

q,l,l′
eiq cos θ(l−l′) |gq|2 nl′

1

ω −HS − ωq

nl, (2.57)

where the sum over l,l′ runs over the array sites where electrons are present.

We choose the basis elements |+〉 and |−〉 defined in Eq. (2.39). The matrix

element of G (HS) are obtained explicitly. Considering that |Ψ〉 and |Φ〉 have excess

electrons in alternate sites,

∑

l

nle
iql cos θ |Φ〉 =

N−1∑

l=0

ei2ql cos θ |Φ〉 , (2.58)

∑

l

nle
iql cos θ |Ψ〉 =

N−1∑

l=0

ei2q(l+1) cos θ |Ψ〉 . (2.59)

Then,
∑

l

nle
iql cos θ |+〉 =

1√
2
Λq

(
|Φ〉+ eiq cos θ |Ψ〉

)
, (2.60)

∑

l

nle
iql cos θ |−〉 =

1√
2
Λq

(
|Φ〉 − eiq cos θ |Ψ〉

)
, (2.61)
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2 – Elementary excitations of an array of double quantum dots

where

Λq cos θ =
1− ei2qN cos θ

1− ei2q cos θ
. (2.62)

Rewriting |Φ〉 and |Ψ〉 through |+〉 and |−〉, we get

∑

l

nle
iql cos θ |+〉 = Λq cos θe

i q cos θ
2

(
cos

q cos θ

2
|+〉 − i sin

q cos θ

2
|−〉

)
, (2.63)

∑

l

nle
iql cos θ |−〉 = Λq cos θe

i q cos θ
2

(
cos

q cos θ

2
|−〉 − i sin

q cos θ

2
|+〉

)
, (2.64)

which implies

G (HS) |+〉 =
∑

q,l′
e−iql′ cos θ |gq|2 nl′e

i q cos θ
2 Λq cos θ

×
(

cos q cos θ
2

ω − E+ − ωq

|+〉 − i
sin q cos θ

2

ω − E− − ωq

|−〉
)

, (2.65)

G (HS) |−〉 =
∑

q,l′
e−iql′ cos θ |gq|2 nl′e

i q cos θ
2 Λq cos θ

×
(

cos q cos θ
2

ω − E− − ωq

|−〉 − i
sin q cos θ

2

ω − E+ − ωq

|+〉
)

. (2.66)

By applying the second operator nl′ one finds the following matrix elements:

G++ =
∑
q

|gq|2 |Λq cos θ|2
[

cos2 q cos θ
2

ω − E+ − ωq

+
sin2 q cos θ

2

ω − E− − ωq

]
, (2.67)

G−− =
∑
q

|gq|2 |Λq cos θ|2
[

cos2 q cos θ
2

ω − E− − ωq

+
sin2 q cos θ

2

ω − E+ − ωq

]
, (2.68)

G+− = i
∑
q

|gq|2 |Λq cos θ|2 cos
q cos θ

2
sin

q cos θ

2

[
1

ω − E− − ωq

− 1

ω − E+ − ωq

]
,

(2.69)

G−+ = i
∑
q

|gq|2 |Λq cos θ|2 cos
q cos θ

2
sin

q cos θ

2

[
1

ω − E+ − ωq

− 1

ω − E− − ωq

]
.

(2.70)

Introducing a set of generalized densities of states, defined as

ρ+− (ε) = −i
∑
q

|gq|2 |Λq cos θ|2 cos
q cos θ

2
sin

q cos θ

2
δ (ε− ωq) , (2.71)
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2.3 – Decoherence effects in the DQD evolution

ρ−+ (ε) = i
∑
q

|gq|2 |Λq cos θ|2 cos
q cos θ

2
sin

q cos θ

2
δ (ε− ωq) , (2.72)

ρ1 (ε) =
∑
q

|gq|2 |Λq cos θ|2 cos2 q cos θ

2
δ (ε− ωq) , (2.73)

ρ2 (ε) =
∑
q

|gq|2 |Λq cos θ|2 sin2 q cos θ

2
δ (ε− ωq) , (2.74)

we obtain

G++ =
∫

dε

[
ρ1 (ε)

ω − E+ − ε
+

ρ2 (ε)

ω − E− − ε

]
, (2.75)

G+− = −i
∫

dερ+− (ε)

[
1

ω − E+ − ε
− 1

ω − E− − ε

]
, (2.76)

G+− = −i
∫

dερ+− (ε)

[
1

ω − E+ − ε
− 1

ω − E− − ε

]
, (2.77)

The real part of G gives a negligible contribution to the pole location if compared

with E− and E+. Thus, assuming a density of state different from zero only for

positive ε, as in Ref. [24], the only non vanishing contribution is γ = − Im G−−:

γ = −πρ2 (∆) , (2.78)

where ∆ = E−−E+ is the energy gap of the two level system and is positive (being

|+〉 the ground state).

Then the solution for 〈+|ΦS (t)〉 and 〈−|ΦS (t)〉 is

〈+|ΦS (t)〉 = eiE+t 〈+|ΦS (t = 0)〉 , (2.79)

〈−|ΦS (ω)〉 = eiE−t−γt 〈−|ΦS (t = 0)〉 . (2.80)

As expected, the ground state is not affected by decoherence, while the excited

state relaxes. Damping is proportional to the density of states calculated at the

energy gap. The density of states is however quite different from that of a single dot

pair. Two competitive effects appear. The first one is represented by the presence of

the form factor Λq cos θ inside ρ2, which, in the large N limit, increases the dephasing
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2 – Elementary excitations of an array of double quantum dots

rate by a factor proportional to N2. The second, predominant, effect to be considered

is the exponential reduction with N of the energy separation.

For instance, in the simple case of |gq|2 = 1/N and ωq = cq (longitudinal

phonons)

γ (∆) ∝
∫

d cos θddq
sin2 qN

sin2 q cos θ
sin2 q cos θ

2
δ

(
∆− c2q2

)
, (2.81)

where d is the dimension of the bath and c is the speed of sound. If we compare

this quantity with the system oscillation frequency we obtain

γ (∆)

∆
∝ N2∆d/2−1. (2.82)

This result indicates that, for a phonon bath in three dimensions, the macroscopic

limit involves a growth of the robustness with respect to decoherence.

2.4 A teleportation scheme

As an application of the two-level behaviour of the DQD array, we propose a possible

original implementation of quantum teleportation in a solid state device. So far,

experimental realizations of teleportation have been performed with optical systems

[28, 29, 101], NMR techniques [31], and, recently, also working with atomic states [32,

33]. On the other hand, turning to solid state systems, experimental demonstration

of teleportation in charge qubits is still lacking, and only few theoretical schemes

are proposed [34, 35].

Let us consider a system composed by a DQD with just one excess electron with

respect to the ground state. We indicate the basis elements of the two-level system

with |01,12〉 and |11,02〉. If dots are coupled by tunneling, in the presence of a vector

potential A directed from dot 1 to dot 2, the system is described by the following

Hamiltonian:

H12 = −(we−iϕc†1c2 + weiϕc†2c1) + ε(c†2c2 + c†1c1), (2.83)
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2.4 – A teleportation scheme

where ci(c
†
i ) represents the annihilation (creation) fermionic operator on the site

i and ϕ = eA/h̄. For the sake of simplicity and without loss of generality we

shall assume ε = 0. This Hamiltonian has eigenvalues E± = ±w associated to the

eigenvectors |E±〉 = 1√
2
[e∓iϕ |01,12〉 ∓ |11,02〉].

If, we suppose that the system is in a particular state at t = 0 (e.g. |φ(0)〉 =

|01,12〉), the time evolution creates the coherent superposition |φ(t)〉 = cos wt |01,12〉+
i sin wte2iϕ |11,02〉. Thus, by instantaneously switching off the tunneling at a suitable

time t̄, we can encode the generic qubit |φ(t̄)〉 = |χ〉 = α |01,12〉+ β |11,02〉.

Figure 2.2. QD’s 1 and 2 represent the unknown qubit to teleport. QD’s 3 → 6
are in the entangled state 1√

2
[|03,14,05,16〉+ |13,04,15,06〉]. Initially the system

are separated. Solid lines represent tunneling, while dash lines represent Coulomb
repulsion

The entangled support for teleportation is an array of four QDs labeled with

subscripts 3,4,5,6 disposed as indicated in Fig. 2.2. The Hamiltonian

H3456 = −w
(
c†3c4 + c†5c6 + h.c.

)
+ U (t) (n3n6 + n4n5) (2.84)

takes into account both the tunneling interaction along vertical lines and the Coulomb

repulsion along horizontal lines. Starting from U(0) = 0 the Hamiltonian is separa-

ble: H3456 = H34+H56. For convenience we shall assume that the system is prepared

in its ground state:
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2 – Elementary excitations of an array of double quantum dots

|ψ(0)〉 =
1

2
[|03,14〉+ |13,04〉] [|05,16〉+ |15,06〉] . (2.85)

An adiabatic growth of Coulomb repulsion between dots localized on the same

row will create a near maximally entangled state. Here adiabatic means slow with

respect to the lower frequency of the system. Due to the adiabatic theorem [36],

the overall system will remain in its instantaneous ground state. The asymptotic

behaviour is a good approximation of a maximally entangled state in the limit of

w/U → 0:

|ψ(t →∞)〉 ∝ |03,14,05,16〉+ |13,04,15,06〉 − 2w

U

∣∣∣ψ̃
〉

, (2.86)

where
∣∣∣ψ̃

〉
= |03,14,15,06〉 + |13,04,05,16〉 and U = U(t → ∞). Note that we are

applying the two-level behaviour discussed in Sec. 2.2 to the simple case N = 2.

Considering a finite time T of Coulomb switching, the adiabatic approximation

works if the condition T >> ε/∆2
min is satisfied. Here ε is the maximum rate of

the interaction variation and ∆min the minimum energy gap between ground and

first excited state [37]. In our case T >> h̄U3/w4. Bearing in mind the limit of

approximation we consider as starting point for the following manipulation the state

of Eq. 2.86, where the correction due to
∣∣∣ψ̃

〉
is neglected.

The creation of these entangled states permits one to implement a quantum

teleportation protocol, as discussed in Sec. 1.2. The Bell measurement process can

be performed (as suggested by G. Brassard and coworkers) in two sequential steps

[38]: first, Bell states are rotated in the computational basis (|0,0〉,|0,1〉,|1,0〉,|1,1〉),
then the projective measure is performed in this latter basis. Here we propose a

slightly modified procedure wherein the Bell states involved are two instead of four;

furthermore, we exploit temporal evolution to perform the first step of Brassard

method, making simple the final one. Our protocol exploits an adiabatic switching

on of Coulomb interaction between the qubit we want to teleport and the entangled

state. Now we deal with a system composed by three DQDs (see Fig. 2.3), one of
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2.4 – A teleportation scheme

them is used to encode the unknown qubit and the other two as entangled support.

The Hamiltonian is

H123456 = −w
(
a†3a4 + a†4a3

)
− w′(t)

(
a†5a6 + a†6a5

)
− w′′(t)

(
a†1a2 + a†2a1

)

+U (t) (n3n6 + n4n5) + U ′ (t) (n1n4 + n2n3) , (2.87)

where U ′ (0)and w′′(0) are zero, while w′(0) = w.

Figure 2.3. Final step of quantum teleportation: Bob’s qubit is separated by
others QD’s which evolve providing a Bell measurement process

Making use of encoding technique and entanglement generation above described,

the incoming overall state is

|Ψ〉 =
1√
2

(α |01,12〉+ β |11,02〉) (|03,14,05,16〉+ |13,04,15,06〉) . (2.88)

If U ′ (t) is adiabatically increased until it reaches the value U , the state evolves and

reaches its new ground state

|Ψ (t)〉 = α |01,12,03,14,05,16〉+ β |11,02,13,04,15,06〉 . (2.89)

So far we have described the coupling between unknown qubit and entangled

state. Next step represents the analogous of Bell measurement. To prepare it
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2 – Elementary excitations of an array of double quantum dots

we need to detach Bob QDs (5 and 6) from the others and to start a temporal

evolution of the state which involves dots from 1 to 4. By instantaneously turn-

ing on the tunneling w′′(t), and turning off the tunneling w′(t) and the Coulomb

interaction U (t) (from now on the time will be measured starting form the switch-

ing instant), the system is forced to belong to a state in which dots from 1 to

4 evolve following the Hamiltonian of Eq. 2.84 (with appropriate indices), while

Bob’s dots are frozen. Neglecting terms of the order of w/U , |01,12,03,14〉 evolves

into (cos ωt |01,12,03,14〉+ i sin ωt |11,02,13,04〉), while the state |11,02,13,04〉 evolves

into (cos ωt |11,02,13,04〉+ i sin ωt |01,12,03,14〉), where ω = 4w2/U . Thus, the whole

state becomes

|Ψ (t)〉 =
1√
2
(|01,12,03,14〉

∣∣∣χ+ (t)
〉

56
+ i |11,02,13,04〉

∣∣∣χ− (t)
〉

56
), (2.90)

having introduced |χ± (t)〉56 = [(cos ωt) α |05,16〉 ± i (sin ωt) β |15,06〉]. Waiting a

suitable time (ωt = π/4) we obtain, associated with two orthogonal computational

states on the four Alice’s dots, α |05,16〉+ iβ |15,06〉 and α |05,16〉 − iβ |15,06〉. Mea-

suring the charge on a dot (e.g. the number 1), Alice transmits the result as classical

bit to Bob, that can choose the correct unitary rotation to perform in order to com-

pletely recover |χ〉 on its site. Note that due to the nonlinearity of interactions

involved in this model, there are no conceptual obstacles for which Bell measure-

ments cannot reach a 100% of success probability [39, 40, 41].

2.5 Conclusions

Among all possible physical realizations of quantum information devices, quantum

dots present several advantages, such as scalability and possibility of defining very

small effective Hilbert spaces using coupled quantum dots, where Coulomb inter-

actions between electrons can be exploited. On the other hand, short decoherence

times are the main drawback. We have introduced a channel of coupled double
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quantum dots which permits quantum teleportation protocols, and shown that the

longer is the channel, the shorter is its decoherence time. This model could be very

useful towards the realization of the hardware of a quantum computer, i.e. for infor-

mation transfer in devices where photon use is discouraged by the fact the channel

needs to be more short than optical wavelengths.
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Chapter 3

High efficiency quantum

information transfer in mesoscopic

quantum channels

In this chapter, I point out my attention on a general problem of quantum infor-

mation processing, i.e. the possibility of realizing a reliable quantum state transfer

(QST) from one point in the space to another. In the preceding chapters we have

spoken about quantum teleportation, which has exactly this scope. An alternative

scenario provides the use of physical quantum channels, which could be very useful

when considering very small quantum information processing devices such as con-

densed matter systems, where the length scale both of the component parts and of

their separation will be generally below typical optical wavelengths, and photons

cannot work as flying qubits. The chapter has the following organization. In Sec.

3.1 I describe how diffusion limits the possibility of using a quantum chain to trans-

fer quantum information. In Sec. 3.2 I introduce a suggestion (quantum chain as a

quantum bus) which is promising to overcome the problem of diffusion. The heart of

the chapter is Sec. 3.3, where I introduce a Hamiltonian model and I study various
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3 – High efficiency quantum information transfer in mesoscopic quantum channels

asymptotic limits which allow high efficiency QST [42]. In Sec. 3.4 the model is

extended to the presence of disorder. It will be shown that weak disorder does not

affect QST. Then, in Sec. 3.6 I will conclude the chapter.

3.1 Quantum state transfer in a spin chain

The use of local excitations in quantum chains, first suggested by S. Bose [43],

is far from being optimal, due to quantum diffusion [44, 45]. Different physical

realizations of quantum channels have been suggested: ferromagnetic spin chains

[43, 46], Josephson arrays [47], nanoelectromechanical oscillators [49]. Diffusion

appears in each of these models.

To understand what happens in these cases, we review the basic ideas present in

the model proposed by Bose in a slightly different context.

We define a one-dimensional spin chain of N sites with XY interaction:

H = −w
N−1∑

i=0

[
(1 + γ) σ+

i σ−i+1 + (1− γ) σ−i σ+
i+1

]
, (3.1)

where γ measures the anisotropy, and w is the tunneling amplitude.

When γ = 0, the Hamiltonian reduces to

H = −w
N−1∑

i=0

[
σ+

i σ−i+1 + σ−i σ+
i+1

]
, (3.2)

the operator of the total z component of the spin,

σz
tot =

N∑

i=1

σz
i , (3.3)

commutes with H, and the total z component of spin is a constant of motion.

Let us start from the ground state |G〉 = |↑0 , ↑1 , . . . ↑N−1〉 and flip the first spin

with a probability amplitude β. Then we have the state

|Φ〉 = α |↑0 , ↑1 , . . . ↑N−1〉+ β |↓0 , ↑1 , . . . ↑N−1〉 , (3.4)
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3.1 – Quantum state transfer in a spin chain

where |α|2 + |β|2 = 1. Alice would send this state to Bob, who is far apart in the

chain. An alternative notation can help to study the time evolution of |Φ〉. We

indicate with |n〉 the state |↑0 , ↑1 , . . . , ↓n, . . . ↑N−1〉. Relatively to the subspace

with exactly one spin up and all other spins down (one-magnon subspace), the N

eigenvectors of H are

|q〉 =
1√
N

∑
n

e−iqn |n〉 , (3.5)

whose eigenvalues are

εq = −2w cos q, (3.6)

where q = 2πk/N (k = 0,1, . . . ,N − 1).

The inversion of Eq. (3.5) allows one to write

|n〉 =
1√
N

∑
q

eiqn |q〉 (3.7)

Then

|Φ (t)〉 = α |G〉+
∑
n

βn (t) |n〉 , (3.8)

where

βn (t) =
β√
N

∑
q

eiεqte−iqn. (3.9)

Let us suppose that Bob, who is placed in the r(th) site of the chain, wants to

receive the state |Φ〉. The state on his site, obtained by tracing out all sites but r,

is a statistical mixture:

ρr (t) =
(
1− |βr (t)|2

)
|↑〉 〈↑|+ |βr (t)|2 |↓〉 〈↓|+ αβ∗r (t) |↑〉 〈↓|+ α∗βr (t) |↓〉 〈↑| .

(3.10)

A quantitative measure of the distance of two states ρ1 and ρ2 is the fidelity:

F (ρ1,ρ2 ) =
[
Tr

√
ρ

1/2
1 ρ2ρ

1/2
1

]2

. (3.11)

When one of two states is a pure one, the fidelity assumes the intuitive structure

F (ρ1, |Φ〉 ) = 〈ϕ| ρ1 |ϕ〉 . (3.12)
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3 – High efficiency quantum information transfer in mesoscopic quantum channels

In our case the average fidelity, obtained by integrating over all possible input states,

is given as [43]

FAv (ρr (t) , |Φ〉 ) =
|βr (t)|2

6
+
|βr (t)| cos γ

3
+

1

2
, (3.13)

where γ = arg {βr (t)}. It will exist a time t̄ which maximize FAv, but, for any

N > 3, there is no way to reconstruct perfectly the input state. The spin chain acts

as an “amplitude damping channel” [48].

Another way to observe the dissipative character of the channel is to study the

evolution of entanglement as a function of time [46]. Now we start from the state

|ΦE〉 =
1√
2

(|↑0 , ↓1 , ↑2 , . . . ↑N−1〉+ |↓0 , ↑1 , ↑2 , . . . ↑N−1〉) , (3.14)

which exhibits the maximum degree of entanglement on the sites 0 and 1. The

evolution of |ΦE〉 is calculated with the same rules used for |Φ〉. We obtain

|ΦE (t)〉 =
1

N
√

2

∑
q,n

eiεqt
(
1 + e−iqn

)
|n〉 . (3.15)

In the limit N →∞ we have
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Figure 3.1. Concurrence as a function of time (see text for details). A two-site
entangled state evolves in the chain. There exists an ideal time where Concurrence

reaches a maximum. However, this peak value is far from 1

|ΦE (t)〉 =
1

N
√

2

∑
q,n

[
e−i π

2
nJ−n (2wt) + ei π

2
(1−n)J1−n (2wt)

]
, (3.16)
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3.2 – Beating diffusion through the use of external couplings

where Jm (x) is the Bessel function of order m and argument x. Entanglement

evolution can be studied by means of concurrence (see Sec. 1.2). One can choose

two sites in whatever place of the chain, calculate the reduced density matrix, and

then obtain the degree of entanglement. Fig. 3.1 shows the concurrence for an

infinite chain calculated on the sites 4 and 5, starting from |ΦE〉. Even in this case

we observe a transmission by no means reliable.

The results obtained have a simple physical interpretation. The state we want

to transfer is encoded through a local excitation, while the eigenstates of the chains

are collective modes (the |q〉 states). Thus the initial state is a superposition of all

the eigenstates with the same weight. During the evolution the wave packet spreads

quite rapidly and the probability of reproducing the initial state in a different site

is strongly limited by quantum diffusion.

Ideally, this drawback can be overcome by using parallel chains and conditional

gates [50] or through the adoption of engineered couplings between the nodes of the

network [51, 52]. However, these proposal are very hard to be realized.

3.2 Beating diffusion through the use of external

couplings

QST among optical cavities, as proposed by Cirac et al. some years ago [53], is

possible due to the fact that each atom inside the cavity interacts only with a nearly

monochromatic photon of the radiation field, and that photon can be transmitted

unchanged to a distant site, before interacting with another atom in a second cavity.

As said, in mesoscopic devices, an interaction localized in the space involves all the

modes of the support and the state reconstruction is affected by interference.

On the other hand, it has been shown [54, 55] that there are some configurations

which reproduce a bahaviour similar to that found in optical systems. In particular,
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3 – High efficiency quantum information transfer in mesoscopic quantum channels

Plenio and Semião [54] have proposed a model which allows high fidelity entan-

glement transfer on a chain of harmonic oscillators, or equivalently on a XY spin

chain. The idea is as follows. A ring of interacting quantum systems forms the

quantum data bus. At arbitrary positions on the ring two further quantum systems

may be coupled weakly to the ring. The subsequent time evolution will allow the

transfer of quantum information or the establishment of entanglement between the

two distinguished quantum systems. The authors show by means of numerical re-

sults the efficiency of the system and justify the result by introducing a simplified

model which reproduces very well the exact evolution. In practice, the two external

quantum systems interact effectively only with one of eigenmodes of the quantum

data bus (the center of mass mode). Then, interference is avoided and perfect QST

is reached asymptotically.

3.3 Mesoscopic continuous and discrete channels

for quantum information transfer

In Sec. 3.2 we have learned that faithful QST using solid state channels is possible.

In the following we want to understand why and to derive all possible conditions

which allow this behaviour.

To treat this problem in a more genera way, we consider the Fano-Anderson

model [56, 57, 58, 59] extended to two impurities:

H =
∑

k

εkc
†
kck + Ω

(
c†AcA + c†BcB

)
− g√

N

∑

k

[
c†k

(
cA + eikLcB

)
+ H.c.

]
. (3.17)

The scheme is depicted in Fig. 3.2. We have two quantum systems (A and B)

with creation and annihilation operators c†A, cA, c†B, and cB, a chain with N modes,

described by c†k (ck) which creates (annihilates) an excitation in the mode k, and

interaction with the modes and A and B which amounts to tunneling processes in
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3.3 – Mesoscopic continuous and discrete channels for quantum information transfer

the case when both A and B are associated with a solid state tight binding model,

or to a transfer of energy when A and B are atomic systems interacting with a

radiation field. The coupling constant g measures the strength of the interaction

and the phase factor exp (ikL) takes into account the distance L between A and B.

In the case of a continuous spectrum, sums must be thought as integrals. Due to

the quadratic nature of the Hamiltonian, the evolution equation of each operator is

independent from the corresponding quantum statistics. Then, the model works for

fermions as well as for bosons and spins. All the characteristics of the system are

synthesized by the energy dispersion εk.

 

A 

B 

0 

1 
2 L . . . 

Figure 3.2. Schematic description of the quantum bus. We have two localized
quantum systems (A and B) locally coupled with two different sites of a quantum
chain with nearest neighbor interaction. L measures the distance between the sites

connected respectively to A and B.

In the case of continuum of states, possible candidates as mesoscopic channels are

conductors in the tight binding limit or one-dimensional wires with magnetic edge

states [60], where there are experimental proofs of coherent hopping with quantum

dots [61, 62]. As far as discrete sets of states are considered, the model is suitable

to be implemented by arrays of quantum dots, or by nanoelectromechanical oscil-

lators, or by a radiation confined in a finite-size cavity. An experimental evidence
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3 – High efficiency quantum information transfer in mesoscopic quantum channels

of coherent oscillations in an all solid state realization of a Jaynes-Cummings-like

scheme has been recently reported [63]. Keeping in mind this variety of suitable

configurations, we will work assuming a tight binding model, and, consequently we

will assume εk = −w cos ka, where k is defined in the first Brillouin zone limited

by 0 and 2π (k = 2πn/N), being n any integer between 0 and N − 1, and a is the

lattice constant. Without loss of generality, we shall assume in the following a = 1

and w = 1. When necessary, we will specify whether the considerations that will be

done are valid in general or only for the tight binding case.

3.3.1 The model

Let us start considering an initial state where an excitation is present in the impurity

A and both the second impurity and the channel are in their respective vacuum

states: |ψin〉 = c†A |0〉. The time evolution can be studied writing the Heisenberg

equations

d

dt
ck = iεk

[
c†kck,ck

]
− i

g√
N

[
c†k

(
cA + cBe−ikL

)
,ck

]
, (3.18)

d

dt
cA = iΩ

[
c†AcA,cA

]
− i

g√
N

∑

k

[
c†Ack,cA

]
, (3.19)

d

dt
cB = iΩ

[
c†BcB,cB

]
− i

g√
N

∑

k

[
c†Bcke

ikL,cB

]
, (3.20)

which give

d

dt
ck = −iεkck + i

g√
N

(
cA + cBe−ikL

)
, (3.21)

d

dt
cA = −iΩcA + i

g√
N

∑

k

ck, (3.22)

d

dt
cB = −iΩcB + i

g√
N

∑

k

cke
ikL, (3.23)

and then introducing the Laplace transform, defined as

c̃† (ω) =
∫ ∞

0
eiωtc† (t) dt. (3.24)
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The system we obtain is

(ω − εk) c̃k (ω) = ick(t = 0)− g√
N

[
c̃A (ω) + e−ikLc̃B (ω)

]
, (3.25)

(ω −Ω) c̃A (ω) = icA(t = 0)− g√
N

∑

k

c̃k (ω) , (3.26)

(ω −Ω) c̃B (ω) = icB(t = 0)− g√
N

∑

k

c̃k (ω) eikL. (3.27)

In the following we simplify the notation substituting ci(t = 0) (i = k,A,B) with ci.

The formal solution leads to

c̃†A (ω) =
i

D (ω)
ΛL (ω)

(
c†B −

g√
N

∑

k

eikL

ω − εk

c†k

)

+
i

D (ω)
[ω −Ω − Λ0 (ω)]

(
c†A −

g√
N

∑

k

1

ω − εk

c†k

)
, (3.28)

where we have introduced the kernel

Λd (ω) =
g2

N

∑

k

eikd

ω − εk

(3.29)

and

D (ω) = [ω −Ω − Λ0 (ω)]2 − Λ2
L (ω) . (3.30)

Studying the zeroes of the spectral function D (ω), we extract all information about

the system. Note that, from parity considerations, Λd (ω) depends on d only through

its absolute value. The explicit derivation of Λd (ω) is given in appendix A. It will

be shown that

Λd (ω) =
g2

(ω2 − 1)1/2

Kd (ω) + KN−d (ω)

1−KN (ω)
, (3.31)

where

Kr (ω) =
[
−ω +

(
ω2 − 1

)1/2
]r

. (3.32)

In order to evaluate its zeroes, the spectral function can be decomposed in two

factors: D(ω) = D+(ω)D−(ω), where

D± (ω) = ω −Ω − g2

(ω2 − 1)1/2

1 + KN (ω)± [KL (ω) + KN−L (ω)]

1−KN (ω)
. (3.33)
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The analytic structure of Eq. (3.28) consists in 2(N + 1) real poles for every finite

N , and, in the limit N → ∞, only 4 real poles, related to the band extrema,

remain, and poles inside the energy band are substituted by a cut. It can be useful

to visualize the structure of poles considering the simple case of just one quantum

system interacting with the chain, obtained considering L = 0. In Fig. 3.3 the

emergence of all the poles is illustrated graphically.

-3 -2 -1 0 1 2 3

-4

-2

0

2

4

6

ω

 

---  ( )0 ωΛ  

---   ω − Ω  

Figure 3.3. This plot illustrates the structure of the solutions of the equation
ω − Ω − Λ0 (ω) = 0. We have chosen N = 8, Ω = 2, and g = 1. The poles are
given by the intersections of the blue straight line representing ω−Ω with the red
function Λ0 (ω). Incrementing N , the poles within the energy band limited by +1

and −1 approach each others, and in the limit N →∞ a cut appears.

So far no approximations have been made, and the mathematical derivation illus-

trated in this paragraph is exact. In the following paragraphs, we will limit ourselves

to study some asymptotic limits of this problem, looking for those configurations

which warrant high efficiency quantum information transfer. In particular, we will

consider weak coupling (g ¿ 1) and strong coupling (g À 1), analyzing which

are the conditions to fulfill in order to realize QST. We will show that coherent

oscillations between A and B can be achieved using both continuous and discrete

channels. In particular, discrete channels are suitable for our purposes when A and

B are weakly coupled with the chain and Ω is resonant with one of its eigenvalues
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εk. In this situation, only the resonant modes play a significant role and the effec-

tive Hamiltonian is that of a few-body problem. This result justifies the simplified

model introduced in Ref. [54]. The same behaviour can be attained with continuous

channels in the case of strong coupling, or, in the weak coupling limit, whenever Ω

lies outside the energy band.

3.3.2 Strong coupling limit

In the strong coupling limit Eq.(3.33) is solved assuming that, at least in the case

of tight binding we are considering, Ω does not play a really significant role, being

compared with a term of the order of g2/ω. Then we set Ω = 0, and look for

solutions of

ω − Λ0 (ω)± ΛL (ω) = 0. (3.34)

We consider that ω will be approximatively of the order of g, develop Λ0 (ω) and

ΛL (ω) in powers of g−1, and keep all terms up to g−2. Another important remark

to make is that, considering g À 1 and ω of the order of g, the solutions will be

certainly far from the energy band. Then we can neglect the internal structure of

the band itself, and assume N →∞. In this case

Λ0 (ω) =
g2

(ω2 − 1)1/2
, (3.35)

which leads to

Λ0 (ω) ' g2

ω
, (3.36)

while

ΛL (ω) '
g2

[
− 1

2ω

]L

ω
. (3.37)

Then the spectral function reduces to

D (ω) '
(
ω − g2

ω

)2

−
g4

[
− 1

2ω

]2L

ω2
=

(ω2 − g2)
2 − g4

[
− 1

2ω

]2L

ω2
. (3.38)
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Considering that the second term will be smaller than the first, it is correct to

assume the zero order solution ω = ±g and write

D (ω) ' 1

ω2




(
ω2 − g2

)2 − g4

[
− 1

2g

]2L

 . (3.39)

Therefore the zeroes of D (ω) are given by

ω1,2,3,4 ' ±g

√√√√1± 1

(2g)L , (3.40)

or

ω1 ' g

(
1 +

1

2 (2g)L

)
,

ω2 ' g

(
1− 1

2 (2g)L

)
,

ω3 ' −g

(
1 +

1

2 (2g)L

)
,

ω4 ' −g

(
1− 1

2 (2g)L

)
. (3.41)

The calculus of residues associated to the poles, to the end of calculating the time

evolution of c†A (see Eq. (3.28)) is very lengthy and will not given here. The reduced

density matrix of the systems A and B can be calculated by projecting c†A (t) |1,0; 0〉
onto the vacuum of the chain

〈0|1,0; 0〉t =
1

4

[(
eiω1t + eiω2t + eiω3t + eiω4t

)
|1,0〉+

(
eiω1t − eiω2t + eiω3t − eiω4t

)
|0,1〉

]

(3.42)

Since ω1 = −ω4 and ω2 = −ω3

〈0|1,0; 0〉t =
1

2
[(cos ω1t + cos ω2t) |1,0〉+ i (sin ω1t− sin ω2t) |0,1〉]

= cos gt

(
cos

gt

2 (2g)L |1,0〉+ i sin
gt

2 (2g)L |0,1〉
)

. (3.43)

The reduced density matrix is then

ρ̄ = cos2 gt cos2 gt

2 (2g)L |1,0〉 〈1,0|+ cos2 gt sin2 gt

2 (2g)L |0,1〉 〈0,1|
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+i cos2 gt cos
gt

2 (2g)L sin
gt

2 (2g)L (|0,1〉 〈1,0| − |1,0〉 〈0,1|)

+ sin2 gt |0,0〉 〈0,0| , (3.44)

where the last term has been obtained considering that Tr{ρ̄} = 1.

In this case, we have high frequency oscillations between A and B and the channel

modulated by a low frequency signal which enables QST. Note that the spectral

weight is not entirely concentrated on the impurities, because at intermediate times

the probability of finding the excitation in the channel is finite. It is clear that the

channel is perfect only if corrections of the order of g−2 are neglected. In Fig. 3.4 the

probabilities of finding the excitation on A and B are depicted as functions of time.

The lower panel shows the high frequency oscillation. The discussion of this limit

fails when infinitely extended discrete spectra are considered, as, for instance, in the

case of finite-length cavities, because we need to consider only a polar singularity

well far from all other poles.

3.3.3 Weak coupling limit

Now we are interested to the case g ¿ 1. The zeroes of Eq. (3.33) can be calculated

by iterating the zero order solution ω = ω0 obtained in the limit g → 0. Two

very different discussions arise considering the impurities’ energy Ω inside the band

(|Ω| < 1) or outside the band (|Ω| > 1).

Let us start from |Ω| < 1. In this case it can be useful to introduce an auxiliary

complex variable γ defined by ω = − cos γ, with the constraint that 0 ≤ Re{γ} ≤ π.

So

D±(γ) = cos γ − cos Γ + g2 1

sin γ sin γN/2
[cos γN/2± cos γ(L−N/2)], (3.45)

having defined Ω = − cos Γ . Now we assume that Ω coincides with one of the

unperturbed poles (what means the word “coincides” will appear clear at the end
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3 – High efficiency quantum information transfer in mesoscopic quantum channels

 

Figure 3.4. Strong coupling limit: g = 10, Ω = 0, L = 4, N = 50. In the upper
panel the low frequency oscillations are compared with the theory, the time unit is
ω = g/[2(2g)L]. In the lower panel the same comparison is reported for the higher

frequencies.
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of this discussion). Since in the weak coupling limit the original energy levels are

slightly modified, it is reasonable to assume that the resonant ones give the main

contribution to the evolution and an expansion around them can be done. We write

γ = Γ + δ, with δ expected to vanish in the limit of g = 0. In the small δ limit

δ ' g2

sin2 Γ

[
cot

δN

2
(1± cos ΓL)± sin ΓL

]
. (3.46)

Two different regimes appear for |δ|N À 1 or |δ|N ¿ 1. In the first case the

system is well approximated by its continuum limit, obtained replacing cot δN/2

with −i sign{Im{δ}}. It is easy to show that Eq. (3.46) does not provide polar

solutions, but only singularities deriving from the cut. Under these conditions, the

excitation diffuses in the channel and the QST efficiency is lost.

On the other hand, when δN ¿ 1 the cotangent in Eq.(3.46) is expanded

into 2/ (δN) and sin ΓL is negligible. The solutions one obtains are then δ±1 =

±g
√

2 (1− cos ΓL) /N sin2 Γ and δ±2 = ±g
√

2 (1 + cos ΓL) /N sin2 Γ . The time evo-

lution of c†A looks very simple when Ω = 0 and L is even: in such a case

c†A (t) = cos2 gt√
N

c†A + (−1)1+L/2 sin2 gt√
N

c†B +
i

2
sin

2gt√
N

(
c†
k̄
+ c†−k̄

)
, (3.47)

where ±k̄ are the modes in resonance with Ω = 0. This formula shows that, despite

the non vanishing probability of finding the excitation in the channel, perfect QST

is achieved. As in the strong coupling limit, we stress that we are performing an

expansion, neglecting terms in g2. In Fig. 3.5 we report the time evolution of PA

and PB, which represent the occupation probabilities of A and B. On the other

hand, assuming L odd, the second impurity is never populated:

c†A (t) = cos gt

√
2

N
c†A +

i√
2

sin gt

√
2

N

(
c†
k̄
+ c†−k̄

)
. (3.48)

The result of Eq. (3.47) is somewhat similar to that obtained in Ref. [54], showing

an efficiency of transfer independent (limiting ourselves to even values of L) from
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the distance. The condition δN ¿ 1 (or g
√

N ¿ 1) can be interpreted as follows:

the interaction splits the resonant pole in two levels with an energy separation of the

order of g/
√

N , while the energy spacing between different modes is about 1/N . If

none of the other modes falls inside this energy interval, then the excitation interacts

effectively only with the resonant modes and the coherent behaviour appears. Vice

versa, when g/
√

N À 1/N , the resonance is no more separated from the other

modes and a continuum-like behaviour is expected.
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Figure 3.5. (Color online) Numerical simulation of the evolution of PA (t) and
PB (t) in weak coupling and resonance with the following parameters: g = 0.01,
Ω = 0, N = 16, and L = 8. The time is normalized with respect to ω = g

√
2/
√

N .
The theoretical behaviour, calculated in the text, coincides perfectly with the

numerical one.

Although the derivation performed above has the advantage of showing the phys-

ical meaning of resonance condition, the result can be obtained working directly with

the expression

D (ω) =

[
ω −Ω − g2

N

∑

k

1

ω − εk

]2

−
[∑

k

eikL

ω − εk

]2

. (3.49)

Indeed we can keep in each sum only the modes k̄ and −k̄, corresponding to the

resonance condition Ω = εk̄. Further, we assume Ω = 0, and then k̄ = π/2. The
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kernels become

Λ (ω) ' 2g2

Nω
, (3.50)

ΛL (ω) ' 2g2 cos πL
2

Nω
, (3.51)

and the spectral function is

D (ω) =


ω −

2g2
(
1 + cos πL

2

)

Nω





ω −

2g2
(
1− cos πL

2

)

Nω


 , (3.52)

or

D (ω) =

[
ω − 4g2 cos2 πL

4

Nω

] [
ω − 4g2 sin2 πL

4

Nω

]
. (3.53)

Limiting ourselves to even values for L,

D (ω) =

(
ω2 − 4g2

N

)
ω, (3.54)

and there are three poles in ω1 = 0, ω2 = 2g/
√

N , ω3 = −2g/
√

N . At this stage the

Laplace transform of the coefficients in Eq. (3.28) can be calculated easily, and the

result found is the same as in Eq. (3.47).

The other interesting physical situation to study corresponds to Ω outside the

band (|Ω| > 1). In this case the zero order solution is ω0 = Ω and, by iteration,

ω1,2 = Ω + Λ0 (Ω)± ΛL (Ω) . (3.55)

All roots are real and oscillations are expected. Residues associated to poles ω1 and

ω2 in Eq.(3.28) are obtained neglecting terms in powers of order g2. In such limit

we find that all the spectral weight is concentrated on the impurities’ modes. Then,

we obtain a coherent oscillation between the two impurities:

c†A (t) = e
− iω+t

2

(
cos

ω−t

2
c†A − i sin

ω−t

2
c†B

)
, (3.56)

where ω+ = 2 [Ω + Λ0 (Ω)] and ω− = 2ΛL (Ω). In the limit of infinite number

of modes, which is a good approximation also for N not so large, ω+ = 2Ω +
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2g2/ (Ω2 − 1)
1/2

and

ω− = 2g2
[
Ω −

√
Ω2 − 1

]L
/
√

Ω2 − 1. (3.57)

These solutions illustrate that the open system A+B experiences a Rabi oscillation,

and actually behaves as a closed one. Then, the system is suitable for QST or to

create entanglement. In the case discussed above the dependence on the size-system

is not crucial and the continuous limit is achieved even for not very large values of

N . In Fig. 3.6 we report the probabilities of the excitation to be localized either on

the first impurity or on the second one. It is worth outlining that this results holds

only for systems with band structure in the energy spectrum.
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Figure 3.6. (Color online) Time evolution of the occupation probabilities of A
and B (PA and PB) in weak coupling and off-resonance. The coupling strength is
g = 0.05, the impurities’ energy is Ω = 1.5, the number of the channel’s elements
is N = 30, and the distance between A and B is L = 6. Here are reported both

the numerical (exact) and theoretical curves.

3.4 Effects of disorder and Anderson localization

So far we have considered the case of a perfect chain and we have shown which

are the conditions that permit high efficiency QST. In this section we devote our
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attention to the possibility that the channel can be affected by some kind of disorder.

We connect the effects of disorder with the Anderson localization [58]. Our aim is to

show that in the limit of weak disorder high efficiency in QST processes is preserved.

3.4.1 Anderson Localization

Although Anderson localization is a largely studied physical phenomenon, having

discussed so far systems whose size can be either finite or infinite, we find useful

to derive the conditions which can cause localization considering explicitly the de-

pendence on the size system. For this end, we derive localization in a tight binding

disordered model using the resolvent formalism. We will use second order pertur-

bation theory. Disorder is modelled considering on-site energies which are random

variables distributed around zero with mean square deviation equal to σ: the Hamil-

tonian is

H =
∑

k

εkc
†
kck +

∑

l

σlc
†
l cl. (3.58)

where k is a label for the modes, while l indicates the sites of the chain. In terms of

modes we have

H0 =
∑

k

εkc
†
kck +

1√
N

∑

k,k′
σk−k′c

†
kck′ . (3.59)

The Heisenberg equation in the Laplace space for ck is

(ω − εk) ck (ω) = ick +
1√
N

∑

k′
σk−k′ck′ (ω) . (3.60)

Perturbation theory can be performed by iterating the zero order solution in the

right hand side of Eq. (3.60),

(ω − εk) ck (ω) = ick +
1√
N

∑

k′
σk−k′

[
ick′ (t = 0)

ω − εk′
+

1√
N

∑

k′

σk′−k′′

ω − εk′
ck′′ (ω)

]
, (3.61)

and then keeping just self-energy corrections:

ck (ω) =
i

ω − εk − 1
N

∑
k′

σk−k′σk′−k

ω−εk′

ck, (3.62)
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that is

ck (ω) =
i

ω − εk − σ2

N

∑
k′

1
ω−εk′

ck. (3.63)

Thus, the effect of disorder is to shift the eigenenergies of the chain by an amount

dependent on the frequency under observation.

Let us introduce the Green function

G+
0L (ω) = lim

η→0+
〈L| 1

ω + iη −H
|0〉 , (3.64)

representing the propagator from the site 0 to the site L. In terms of modes

G+
0L (ω) = lim

η→0+

∑

k

eikL

ω + iη − εk

. (3.65)

We see that G+
0L (ω) coincides with the kernel ΛL introduced in Eq. (3.29), aside

from the explicit dependence on the coupling parameter g.

The localization length λ can be defined in the following way [64]:

1

λ
= − lim

L→∞

log
∣∣∣G+

0L (ω)
∣∣∣
2

2L
. (3.66)

Intuitively, localization is possible only if G+
0L (ω) ∝ exp (−αL). Let us stress that

localization appears in the thermodynamical limit: in that case we know that

G+
0L (ω) =

[
−ω + (ω2 − 1)

1/2
]L

(ω2 − 1)1/2
, (3.67)

or, using the mapping ω = − cos γ,

G+
0L (ω) =

eiγL

i sin γ
. (3.68)

In absence of disorder, considering those frequencies which fall inside the energy

band, γ is a real number and there is no localization. This result is somewhat

obvious, considering that the eigenfunctions of the system are Bloch waves.
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The presence of disorder changes the terms of the problem. In fact, we have to

change ω in ω̄ = ω − σ2/ (ω2 − 1)
1/2

. It can be useful to map this new quantity in

− cos z. Then

cos z = cos γ − i
σ2

sin γ
. (3.69)

In the case of weak disorder we can write z = z1 + z2, and identify z1 = γ and

z2 = iσ2/ sin2 γ. Therefore
1

λ
=

σ2

ω2 − 1
. (3.70)

This result, aside from numerical factors deriving from contributes which are ignored

at the second order in the perturbation theory [64], is in agreement with the existing

literature.

3.4.2 Anderson localization and quantum communication

Now we extend the description of Anderson localization to the Hamiltonian intro-

duced in Eq. (3.17) describing our quantum bus. It is simple to show that, using

second order perturbation theory, and neglecting also sums with argument σk−k′ ,

considering that σ has mean value equal to 0, c†A (ω) has the same expression ob-

tained in Eq. (3.28), apart from the energy shift ω → ω̄. Hence, the propagator

is

G+
0L (ω̄) =

ΛL (ω̄)

[ω̄ −Ω − Λ0 (ω̄)]2 − Λ2
L (ω̄)

. (3.71)

Actually, for the localization length, it can be shown that the sole significative

contribution comes from ΛL (ω̄) and is the same as in absence of impurities, apart

from the frequency shift. Therefore,

G+
0L (z) =

eizL

i sin z
, (3.72)

where z has been defined in Eq. (3.69). To obtain a finite value for λ we need to

have a non vanishing imaginary part in z.
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Then, we analyze the cases described in Sec. 3.3. We start assuming Ω outside

the energy band (|Ω| > 1). For these energies the time evolution of the quantum

bus is dominated by the new frequency Ω̄ = Ω − σ2/
√

Ω2 − 1. Being Ω̄ real, dis-

order simply renormalizes the isolated eigenvalue, slightly modifying the oscillation

frequency in Eq. (3.56). Actually, it is worth noting that, for Ω only slightly larger

than 1, it is possible that Ω̄ < 1, and the pole falls inside the band, changing the

oscillation regime. In some sense, σ is related to the minimum distance between the

energy band edge and Ω to consider Ω itself as an isolated eigenvalue.

Next we consider the case |Ω| < 1 in the thermodynamic limit (N → ∞). For

this physical situation the result is that of Eq. (3.70). Now localization appears, but

we have already learned that this limit does not allows efficient QST (see considera-

tions below Eq. (3.46)). Disorder sums its effect with that of diffusion. On the other

hand, in finite N limit,
(
g
√

N ¿ 1
)
, the shift εk → εk − (σ2/N)

∑
k′ (ω − εk′)

−1 is

always a real quantity, and localization does not appear. Then we can conclude that

our system is robust with respect to weak disorder, considering those configurations

which permit reliable QST.

3.5 Thermal effects on the QST protocol

The argument of this sections applies to the case where the chain is an array of

quantum dots, and the impurity we are considering is one electron charge hopping

from one site to another. For the sake of clarity, being the scope of this section the

calculus of a decay rate, we write explicitly all physical parameters, such as h̄, the

tunneling amplitude w, and the lattice constant a.

We consider electron-phonon interaction extended to all the chain sites and study

how thermal effects influence the spectrum of the tight binding model, described by
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the Hamiltonian

HS =
∑

k

εkc
†
kck. (3.73)

The bath is described in terms of harmonic oscillators:

HB =
∑
q

h̄ωqa
†
qaq, (3.74)

where a†q (aq) creates (destroys) a phonon on the mode q. As far as electron-phonon

interaction is considered, a key role is represented by the coupling parameter which

encloses the nature of the interaction.

Actually, we should consider the effect of phonons on the total Hamiltonian

introduced in Eq. (3.17), describing our quantum bus, but, as in the case of disorder,

in the limit of weak coupling, the effect of the interaction is to renormalize the

eignevalues εk. Here, we expect that a macroscopic bath induces finite lifetimes

for the system ’s eignemodes, and we must compare these decay rates with the

frequencies which allow QST in the bus.

First of all, according with the order of magnitude of tunneling in dot arrays,

which is up to a few milli-electron-volts [65], only acoustic phonons near the Bril-

louin zone center q ∼ 0 are involved in the process. Electrons couple to longitudinal

acoustic phonons through a deformation potential, and to longitudinal and trans-

verse acoustic phonons through piezoelectric interaction [66]. However, piezoelectric

interaction is essentially due to the lack of symmetry in the crystal, thus for ma-

terials such as Si, which has crystal inversion symmetry, it is not present. Then,

we will limit ourselves to this context, already proposed as a solid state quantum

information support [67], and consider only the deformation potential, which is

Hep = D
∑
q

(
h̄

2ρmV ωq

)1/2

|q|ρ(q)(aq + a†−q), (3.75)

where D is the deformation constant, ρm is the mass density of the material, V is

the volume of the sample, ωq ' c |q|, c is the speed of sound, and ρ(q) is the electron
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density operator:

ρ(q) = ρ(qx) =
1

N

∑

k,k′
c†kck′

∑

l

e−iqxlei(k−k′)l, (3.76)

where the sum runs over all the chain sites, and qx is the component of the wave

vector along the chain direction.

Due the periodic boundary conditions of the chain, we consider qx as a discrete

quantity. This implies ρ(qx) =
∑

k c†k+qx
ck.

Next, we study the time evolution of the mode |k〉, with the bath in equilibrium

at a given temperature corresponding to β = 1/KT . The density matrix is

ρ (0) = |k〉 〈k| ⊗ e−βHB =
∑

{n}
e−βE{n}c†k |0, {n}〉 〈0, {n}| ck, (3.77)

where {n} is a label which runs over all possible phonon configurations. The time

evolution will be given by

ρ (t) =
∑

{n}
e−βE{n}e−iHt/h̄c†k |0, {n}〉 〈0, {n}| cke

iHt/h̄, (3.78)

and the reduced density matrix, describing the chain alone is

ρ̄ (t) =
∑

{n},{m}
e−βE{n} 〈{m}| e−iHt/h̄c†k |0, {n}〉 〈0, {n}| cke

iHt/h̄ |{m}〉 . (3.79)

This quantity can be calculated in a second-order perturbation theory in λq =

D (h̄/2ρmV ωq)
1/2 |q|. Working in the ω-space, we have to consider

ρ̄ (ω,ω′) = c†k |0〉 〈0| ck
1

(ω − εk) (ω′ − εk)
+ c†k |0〉 〈0| ck

1

Z
∑

{n},{m}
e−βE{n}

×[〈{m}| 1

ω −H0

HSB
1

ω −H0

HSB
1

ω −H0

c†k |0, {n}〉 〈0, {n}| ck
1

ω′ −H0

|{m}〉

+ 〈{m}| 1

ω −H0

c†k |0, {n}〉 〈0, {n}| ck
1

ω′ −H0

HSB
1

ω′ −H0

HSB
1

ω′ −H0

|{m}〉],
(3.80)

where c†k |0〉 〈0| ck is the zero order contribution, Z is the partition function, and

H0 = HS +HB. It can be shown that other second-order terms do not contribute to
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self-energy corrections, and will be neglected. After some algebraic manipulations

we obtain

ρ̄ (ω,ω′) = c†k |0〉 〈0| ck{ 1

(ω − εk) (ω′ − εk)
+

1

Z
∑
q,nq

λ2
q

×[
e−βnqh̄ωq

(ω − εk)
2 (ω′ − εk)

(
nq + 1

ω − h̄ωq − εk−qx

+
nq

ω + h̄ωq − εk+qx

)

+
e−βnqh̄ωq

(ω − εk) (ω′ − εk)
2

(
nq + 1

ω′ − h̄ωq − εk−qx

+
nq

ω′ + h̄ωq − εk+qx

)
]},
(3.81)

or, performing the sum over nq,

ρ̄ (ω,ω′) = c†k |0〉 〈0| ck

×
{

1

(ω − εk) (ω′ − εk)
+

[
1

(ω − εk)
2 (ω′ − εk)

Γk (ω) +
1

(ω − εk) (ω′ − εk)
2Γk (ω′)

]}
,

(3.82)

where Γks are

Γk (ωi) =
∑
q

λ2
q

1

e
βh̄ωq

2 − e−
βh̄ωq

2


 e

βh̄ωq
2

ωi − h̄ωq − ε
k−qx

+
e−

βh̄ωq
2

ωi + h̄ωq − εk+qx


 , (3.83)

with ωi = ω,ω′. From Eq. (3.82) follows that ρ̄ (ω,ω′) evolves as in absence of

interaction, provided that εk is shifted in εk+Γk. Than we interpret Γk as self-energy

correction, and neglect all terms that are not suitable for this kind of resummation.

Considering that phonons are usually very dense, we treat the sum as an integral,

and write

Γk (ω) =
D2h̄

2ρmcV

∑
qx

∫
dq̃dΩq

|q|
e

βh̄ωq
2 − e−

βh̄ωq
2


 e

βh̄ωq
2

ω − c|q| − ε
k−qx

+
e−

βh̄ωq
2

ω + c|q| − εk+qx


 ,

(3.84)

where

q̃ =
√
|q|2 − q2

x, (3.85)
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and Ωq is the solid angle in q-space. The integral in q̃ gives, using

lim
α→0

1

x + iα
→ P

(
1

x

)
− iπδ (x) ,

and neglecting the small real correction deriving form the principal part,

Γk (ω) = i
D24π2

2h̄2ρmc4V

×∑
qx

1

e
βh̄ωq

2 − e−
βh̄ωq

2

{
(
ω − ε

k−qx

)2
e

βh̄ωq
2 θ

(
ω − ε

k−qx

)
θ

[(ω − ε
k−qx

h̄c

)2

− q2
x

]

+ (ω − εk+qx)
2 e−

βh̄ωq
2 θ

(
ε

k−qx
+ ω

)
θ

[(ω − ε
k+qx

h̄c

)2

− q2
x

]
}. (3.86)

Let us analyze which is the influence of Γks on our quantum bus, in the case g ¿ w.

First, we assume the resonant condition Ω ≡ εk̄. As described in Sec. 3.3.3, only

the resonant mode is involved in the transmission, important frequencies are about

εk̄, and then it is enough to calculate Γk̄ (εk̄). Considering small values for qx,

εk̄ − εk̄−qx
' −waqx, and εk̄ + ε

k̄
' waqx. At temperature T = 0 we get

Γ T=0
k̄ = i

D2π2w2 sin2 k̄a

3h̄22ρmc4a
f

(
k̄
)
, (3.87)

where f
(
k̄
)

is a number varying from 0 and 1 that measures the fraction of eigen-

modes with energy smaller than ε
k̄
, while for high temperatures

Γ β
k̄

= i
D2w sin k̄a

h̄2ρmc4a

π

β
f ′

(
k̄
)
. (3.88)

Let us estimate Γk̄ in a concrete situation, e.g. when the quantum bus is an array of

Si:P quantum dots with interdot distance which amounts to about 10nm [65, 67]. In

this case one finds Γ T=0
k̄ ∝ w2. Then, assuming w ∝ 10−3eV , we find a decoherence

time of the order of 10−6eV , which implies that we can choose a value of g/
√

N

(the frequency of the QST protocol) smaller than w but larger than Γk̄, and the

protocol can work correctly. We can also assess that for finite temperatures up to

about 10K, coherent tunneling prevails against thermal noise.
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3.6 – Conclusion

The results are different when we consider |Ω| > w. Now Γ T=0
k̄ is similar to

that obtained in resonance. The main difference is that w should be replaced by

Ω. In this case the frequency of the QST protocol ΛL can be very large and we

expect damped oscillations also at zero temperature. However, so far we have not

considered the Debye energy cut-off ωD in the spectrum of phonons, that in Silicon

is about 10−2eV . QST efficiency relies on the possibility of reaching for Ω values

greater than ωD.

We can conclude this section stating that QST for electrons can be achieved by

means of a suitable choice of the system’s parameters. Whereas in resonance this

choice is perfectly compatible with the present technology, this is not completely

obvious for values of Ω outside the band.

3.6 Conclusion

In this chapter we have discussed a reliable model for QST protocols [42]. After a

preliminary discussion about the general problem of transferring a quantum state

through a multi-mode channel, we have found a scheme that overcomes interference

between modes, based on the interaction of external quantum systems with a chain,

that acts merely as a bus. This model applies on a variety of physical scenarios. We

have discussed various limits, finding those regimes that are actually favorable for our

goal. Furthermore, we have also analyzed robustness of the bus considering a weakly

disordered chain. Finally, we have analyzed the effects of a thermal environment in

the physical situation of a quantum dot array.
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Chapter 4

Conditional sign flip via

teleportation

So far I have described possible implementations of quantum information protocols

mainly based on solid state devices. Now we face optical implementation of quantum

information protocols. First, in Sec. 4.1 I introduce the argument of linear optics

quantum computation (LOQC) in general terms. In 4.2 a simple physical system,

the beam splitter, is described. Then, Sec. 4.3 contains the description of the KLM

protocol, which represents a milestone of LOQC. An original protocol to perform

a two-qubit gate is presented in Sec. 4.4 and Sec. 4.5. In particular, Sec. 4.4 is

devoted to the study of teleportation from an original point of view. Exploiting

these concepts, one can formulate a proposal for a C-Sign gate (4.5). Conclusions

are presented in Sec. 4.6.
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4.1 Linear optics quantum computation

In the last decade, quantum optics represented a privileged sector where to realize

peculiar schemes of quantum computation, such as quantum teleportation, opti-

mal quantum cloning, entanglement purification, etc. The great advantage with

respect to the others physical implementation [17, 69, 70] corresponds to the fact

that photonic systems can be easily transferred from one place to another in the

space, and moreover the weak interaction with the environment makes decoherence

not so dangerous. They propagate very quickly, namely with velocity v = c/n in a

material with refractive index n, where c is the vacuum speed of light and typically

n = 1 for transparent materials. Using fiber optics, photons can also be directed

along arbitrary paths. Among many other advantages, such properties permit secure

transmission of information over long distances, as we shall see in the next chapter

[71, 72].

On the other hand, the robustness of photons with respect to interactions cre-

ates a serious obstacle to the realization of conditional gates essential for quantum

computation (see Sec. 1.1) due to the large amount of resources required to create

nonlinear coupling between qubits.

This scenario has been completely modified due the pioneering work of Knill,

Laflamme, and Milburn [73], who proposed an efficient and fault tolerant lay-out of

Quantum Information Processing (QIP) “designed” exclusively with linear optical

components. Specifically, single photon sources, beam-splitters, phase-shifter and

high efficiency detectors are required. Together with these instruments, KLM pro-

tocol requires the use of a number of photons bigger than those where the signal is

encoded (ancilla photons) and postselection measurements over these auxiliary pho-

tons. The number of ancilla photons grows linearly with the number of operations

requested from a generic circuit, keeping in this way the computational power that

distinguishes QC from its classical analogous.
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4.2 – The beam splitter

The realization of logic operations requires intrinsically the use of non-linear

processes. Generally, non-linear coupling between single photons is not trivial to

be achieved. To solve this obstacle KLM proposed to exploit the non-linearity

associated to any measurement process. In fact, from a measure we learn about

the photon whether or not it has been detected, independently from the applied

field. Non-linearity induced by measurement is one of the relevant concepts of

KLM scheme. In order to exploit this feature, one needs to use photon-number

resolving detectors; moreover, since the “detection” of the vacuum state is also

needed, detectors must have very high quantum efficiency (QE): the threshold value

is 99%. The circuits used for implementing gates are usually probabilistic. One can

see that N gates characterized by a probability p force us to repeat the operation

p−N times to have an acceptable result.

This feature apparently leads to an exponential grow up of the computational

resource. It is shown that, over a threshold value for the success probability of

a gate, resources follow a polynomial law, allowing QC to maintains its peculiar

computational power respect than classical computer. The threshold of success of

the gate is about to 99,99%.

4.2 The beam splitter

In this section we describe briefly the fundamental tool which will be used in the

following to create a two-qubit gate, the beam splitter (BS). A BS can be represented

as a linear operator which couples two input modes to two different output modes.

In Fig. 4.1 we give a pictorial representation of the BS. The input-output relations

between the field operators, in the case of a 50:50 BS (that is a BS with reflection

and transmission characterized by the same amplitude) can be set as

a†1 =
1√
2

(
b†1 + b†2

)
(4.1)
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Figure 4.1. Pictorial representation of a beam splitter, which acts as a unitary
transformation between input modes and output modes.

and

a†2 =
1√
2

(
b†1 − b†2

)
. (4.2)

Whenever a single photon is injected onto one of the input arms, the BS acts as an

entangling machine. Indeed, introducing the beam-splitting operator B̂S, from Eqs.

(5.3,5.4) follows that

B̂S |1a10a2〉 =
1√
2

(|1b10b2〉+ |0b11b2〉) , (4.3)

B̂S |0a11a2〉 =
1√
2

(|1b10b2〉 − |0b11b2〉) , (4.4)

that is, when the single photon is injected onto the mode a1 the output state is a

triplet one, while when the single photon is injected onto the mode a2 we deal with

a singlet state as output. It is worth noting that the phase convention introduced

above is completely arbitrary, and a simple rotation in the space of the BS can

generate different outputs. The action of the BS realizes one of one-qubit operations

that are fundamental for quantum computation, the so-called Hadamard gate:

H =
1√
2




1 1

1 −1


 (4.5)
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4.3 – The KLM scheme

All the consideration reported here can appear obvious, but they lie at the heart

of the two-qubit gate that will be introduced in the next sections. Furthermore,

chapter 5 will be largely based on such simple devices.

4.3 The KLM scheme

Let us describe in some details the idea of Knill, Laflamme and Milburn to implement

a all-optical quantum computer. The authors adopt the “dual-rail” logic to encode

qubits, i.e. a single photon over two spatial modes with the same polarization

[74, 75]. Despite the lack of robustness of this encoding method with respect to

the use of polarization, it allows a full-realization of a QC. Moreover, it is always

possible to convert easily one representation in the other using only a polarizing

beam splitter, PBS, and a half-wave plate oriented at 45◦, that exchanges horizontal

and vertical polarization.

The work is based on three main results:

1. the possibility of implementing a non-trivial two qubits gate employing only

beam-splitters and phase shifter and non-linearity induced by detection of

auxiliary photons;

2. the exploitation of a generalized teleportation protocol to enhance the success

probability of the gate over the threshold bound for efficient computation;

3. the development of a code for qubits that ensures the operation robustness

against possible imperfections of circuit elements, like photon losses, non-ideal

detector, and phase decoherence.

To implement a scalable computation this scheme requires highly efficient photon-

number-detector, QE ≥ 99%, very low loss short term photon storage and long state
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preparation time in order to achieve the minimum accuracy required for reliable

quantum computation.

Let us analyze in more details the first two results.

4.3.1 Two-qubit gate

Following [73], an essential ingredient for the realization of a non-deterministic two-

qubit gate is the non-linear sign shift gate. This gate acts on a single bosonic mode

iin the following way:

|Ψ〉in = α |0〉+ β |1〉+ γ |2〉 → |Ψ〉out = α |0〉+ β |1〉 − γ |2〉 . (4.6)

The success probability of Knill, Laflamme and Milburn C-sign gate is equal

to 1/16, because the NS gate works with p = 1/4. In spite of this probabilistic

behaviour, the C-sign can be made near-deterministic adopting a generalized version

of the “vacuum-single photon qubit” teleportation [76], a method that brings to a

linear growth of resource and to an arbitrary enhancement of success probability (n

auxiliary photons =⇒ p = 1− 1/(n + 1)).

 

Figure 4.2. KLM Non linear sign gate.

The scheme provides two auxiliary modes, a and b (see Fig. 4.2). At the initial

stage a single photon belongs on the mode a, while the mode b is unoccupied. The

success of the gate is conditioned by the detection of an output photon in the mode

a.
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4.3 – The KLM scheme

The beam-splitters used in this scheme are chosen in a way that the sign “-” of

Eqs.(5.3,5.4) corresponds to reflection onto the blue surface.

Moreover the reflection coefficients, denoted in Fig. 4.2 by ηi, are chosen in order

to achieve the “balancing” of the gate.

Let us consider the operation of the scheme:

• for |Ψ〉 = |0〉 the probability amplitude C to have a photon on the output

mode a is :

C =
√

η1η2η3 +
√

(1− η1) (1− η3); (4.7)

• for |Ψ〉 = |1〉 the probability amplitude, C ′, to have a photon on the output

mode a and no photon on the mode b is :

C ′ = (1− η2)
√

η1η3 −√η2[
√

η1η2η3 +
√

(1− η1) (1− η3)], (4.8)

or

C ′ = (1− η2)
√

η1η3 − C
√

η2. (4.9)

Setting C = C ′, we have:

C =
(1− η2)

√
η1η3

1 +
√

η2

; (4.10)

• for |Ψ〉 = |2〉 , we require that the probability amplitude corresponding to 1

photon in mode a and 0 photons in mode b must be equal to −C, in order to

realize the NS gate. We obtain:

−C = − (1− η2)
√

η1η2η3 −√η2[(1− η2)
√

η1η3 − C
√

η2]

= η2C − 2 (1− η2)
√

η1η2η3. (4.11)
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From the preceding equation we obtain η2 = (
√

2− 1)2, and choosing for η1, η3

the values that optimize C we finally derive: η1 = η3 = 1/(4− 2
√

2), which implies

C = 0.5. Then, the NS gate is deterministic and work with a probability equal to

p = C2 = 1/4. A simplified version of this gate has been formulated by T. Ralph et

al. [77], achieving the value p ' 0.227.

In Ref. [73] the authors employ the NS gate to realize a probabilistic C-sign

gate (the definition of the C-sign gate will be given in Sec. 4.6). Here we do not

give details of the gate, which is very complex. It is enough to say that the success

probability reaches the value 1/8.

After the work of KLM other schemes have been proposed to perform conditional

operations. Specifically, it is worth mentioning the works of Pittman et al. [78,

79, 80], which use entangled ancilla states to perform a C-NOT gate with success

probability p = 1/4. The original scheme proposed in Sec. 4.6 is strictly related to

them.

4.3.2 Teleportation and KLM

The second main result of [73] consists in the use of teleportation protocol, as in-

dicated in the seminal work of Gottesman and Chuang [81], that leads to an en-

hancement of the success probability of a gate, reducing the problems related to

the implementation of the C-sign between two independent qubits to a remote state

preparation problem. Due to the ”dual-rail” encoding and to the use of only lin-

ear elements, the teleportation protocol employs the ”vacuum-single photon” qubit

encoding [76, 82]. This protocol achieves an efficiency that reaches 1/2. For this

particular encoding we can perform the Bell measurement necessary to implement

the teleportation in two different step [73]: a first measurement determines the par-

ity p of the photon number over the two modes, a second one determines the sign s

of the superposition.
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Assume as input state on mode 1 the state |φ〉 = α |0〉+ β |1〉, if p is odd and s

=“+” over mode 3 we obtain the state α |0〉+ β |1〉, corresponding to success of the

protocol, if s = “− ”, we have the state α |0〉 − β |1〉. Thus we can get the original

state using a phase shifter. For even p in order to complete the protocol we must

flip the vacuum state with the single photon state, and this cannot be achieved

easily with linear optics. The realization of a C-sign gate “on-line” requires two

distinct teleportation processes, so the success probability of the gate, starting from

the “right” input state on the teleportation scheme, is p = 1/4. This value is well far

from the threshold condition for efficient computation. Nevertheless it is possible,

as enlightened in [73], to achieve arbitrary high probability adopting a generalized

teleportation protocol where the usual Bell state is replaced by a larger entangled

system spanning 2n bosonic modes, a n qubits state, expressed by:

|tn〉 =
n∑

j=00

|1〉j |0〉n−j |0〉j |1〉n−j (4.12)

In this way the teleportation efficiency grows up to (n + 1)−1. Moreover using a

simple code, that doubles the resource, this probability becomes n2 (n + 1)−2.

The Bell measurement is replaced by a (n + 1) Dim discrete Fourier transform.

If 0 < k < n + 1 photons are detected, the teleported state will emerge on the

(n + k) (th) mode and the opportune transformation will be realized.

4.4 Heretical approach to quantum teleportation

Let us resume briefly the teleportation protocol. A quantum state |α1〉 = a |01〉 +

b |11〉 is combined with a two-qubit maximally entangled Bell state |Ψ23〉. A Bell

measurement, performed on the qubits 1 and 2, causes the transfer on the third

qubit of the superposition initially encoded on the first one, except for a unitary

transformation determined by the result of the Bell measurement. From a formal
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point of view, the teleportation is represented by a basis change in the combined

Hilbert spaceH1⊗H2⊗H3, plus a measurement. Usually the state |Ψ23〉 is considered

as fixed, but this is not a necessary prescription. In a more complete description,

the global input state is written in terms of all possible Bell states, each of them

with a probability amplitude ui where i = 0,z,x,y (the choice of symbols will appear

clear in what follows), that we can use to perform the process: recalling that the

Bell states are
∣∣∣Φ±

〉
=

1√
2

(|00〉 ± |11〉) (4.13)

and
∣∣∣Ψ±〉

=
1√
2

(|10〉 ± |01〉) , (4.14)

we have

|Φ〉 = |α〉1
(
u0

∣∣∣Ψ+
23

〉
+ uz

∣∣∣Ψ−
23

〉
+ ux

∣∣∣Φ+
23

〉
+ uy

∣∣∣Φ−23

〉)
. (4.15)

After the basis change we obtain a new expression in terms of Bell states on 1 and

2:

|Φ〉 =
∑

i

(
∣∣∣Ψ+

12

〉
uia0iσi |α3〉+

∣∣∣Ψ−
12

〉
uiaziσzσi |α3〉

+
∣∣∣Φ+

12

〉
uiaxiσxσi |α3〉+

∣∣∣Φ−12

〉
uiayiσyσi |α3〉), (4.16)

having introduced the Pauli matrices acting on the third qubit and

aij =




1 −1 1 i

1 −1 −i −1

1 −i 1 1

−i 1 1 1




. (4.17)

If a measurement is done by projection, e.g. on the the singlet state
∣∣∣Φ−12

〉
, we

obtain a different state of the third qubit according to the ui selected. This result

shows that teleportation acts as a controlled gate: the teleported state experiences
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a unitary transformation determined by the Bell state used as an input. In the

most general case both C-NOT and C-sign are contemplated respectively when u0

and ux or u0 and uz are non vanishing and by the establishment of a connection

between the logic value of a qubit used as control and the suitable pair of Bell states

|Ψ23〉 selected. In particular, we found a simple model where this behaviour emerges

giving rise to a C-sign gate. We stress that we are using teleportation in a very

unusual way, fixing the Bell measurement result, and varying the input Bell state in

a controlled way.

4.5 Conditional sign flip via teleportation

Next, we proceed to formulate a proposal for a feasible two-qubit gate (the C-Sign

gate) following the KLM criteria. A conditional sign flip gate is a two-qubit gate:

the target qubit experiences a sign change between its components |0〉 and |1〉 if and

only if the control qubit is in the logic state |1〉. In the basis {|00〉 , |01〉 , |10〉 , |11〉}
the unitary operator representing the gate is

U = |0〉 〈0|(1) ⊗ I(2) + |1〉 〈1|(1) ⊗ σ(2)
z (4.18)

( I and σz are respectively the identity operator and one of Pauli matrices), and has

the following matrix representation:

U =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1




(4.19)

As requested in [73] each qubit is realized on two spatial modes: the presence of

the photon in the first (second) rail corresponds to the logic state |1〉 (|0〉). For the

sake of clarity we shall utilize the second quantization language, using occupation

numbers instead of logic values, writing |01〉 for |0〉 and |10〉 for |1〉.
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4.5.1 Teleportation of a vacuum–one-photon qubit

The starting point of our description is the experimental realization of vacuum-one

photon qubit teleportation [76, 82, 83], whose set-up is sketched in Fig. 4.3.
 

BS 

D1 

D2 

1 

2 

3 

4 

Figure 4.3. Teleportation of vacuum–one-photon quantum bit. Target and ancilla
qubits are each defined by a single photon occupying two optical modes. When
detector D1 records a single photon, the state in modes 1-4 reproduces the initial
state of the target. In particular, the coherence between modes 1-2 of the target

can be transferred to a coherence between modes 1-4.

The modes 1 and 2 define an entangled single-photon state (say a singlet state):

|Ψ12〉 =
1√
2

(|1102〉 − |0112〉) , (4.20)

while an unknown state is realized onto the modes 3 and 4:

|Ψ34〉 = α |1304〉+ β |0314〉 (4.21)

A BS mixes the modes 2 and 3 giving for the overall state

|Ψ〉 =
α

2
(|11120304〉 − |11021304〉 − |01220304〉+ |01022304〉)

+
β

2

(√
2 |11020314〉 − |01120314〉 − |01021314〉

)
, (4.22)

or

|Ψ〉 = −1

2
(α |1104〉+ β |0114〉) |1203〉+

1

2
(α |1104〉 − β |0114〉) |0213〉

+
β√
2
|11020314〉 − α

2
(|01220304〉 − |01022304〉) . (4.23)
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The prior result has the following interpretation. Whenever one and only one pho-

ton is detected by one of the detectors, the system realizes a teleportation from the

modes 1 and 2 to the modes 1 and 4. As in the general version of teleportation, a

deterministic unitary rotation is necessary when the photon is detected by the detec-

tor D2. On the other hand, in the case of detection of zero photons or two photons

the operation fails. This occurrence fixes the efficiency to 1/2. The preceding result

is also suitable to be read in terms of entanglement swapping [83].

4.5.2 Destructive C-sign gate

The machine introduced in the previous paragraph is the building block to realize

a conditional gate, as depicted in Fig. 4.4. In agreement with the general definition

of the C-sign gate, we define a target qubit and a control qubit, each of them being

defined over two spatial modes. The rails of the control qubit are the input arms of

a 50% beam splitter (BS1) that acts as an Hadamard gate (see Eq. (4.5)). Then, if

the input photon is in the state |01〉, the output state is an entangled singlet state,

while if it is in the state |10〉 we deal with a triplet one on the output arms. The

entangled states created in such a way are used to perform teleportation.

One of spatial modes outgoing from BS1 is mixed on a second 50% beam splitter

(BS2) with one of spatial modes of the target qubit. With reference to Fig. 4.4,

we denote with 1 and 2 the modes associated to the control qubit, with 1′ and 2′

the output modes of BS1 and with 3 and 4 the modes corresponding to the target

qubit.

Let us consider first the case in which the control qubit is in the state |1102〉.
Due to the action of the Hadamard gate the state after the photon has impinged

BS1 is 1/
√

2 (|01′12′〉+ |11′02′〉). This is a triplet entangled state realized over the

output spatial modes of BS1.

If the target qubit is in the arbitrary superposition α |0314〉+ β |1304〉 the whole

71



4 – Conditional sign flip via teleportation

 

1 

2 

3 
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2’ 

Figure 4.4. Destructive conditional sign flip gate: the modes 1 and 2 correspond
to the control qubit, while the modes 3 and 4 correspond to the target qubit. The
beam splitter BS1 acts as an Hadamard gate on the control qubit and BS2 is used

to perform quantum teleportation.

state is

|Ψ〉 =
1√
2

(α |01′12′0314〉+ β |01′12′1304〉+ α |11′02′0314〉+ β |11′02′1304〉) (4.24)

The portion of this state corresponding to the spatial modes 2′ and 3 is con-

veniently rewritten in terms of Bell states |Φ±〉 = 1/
√

2 (|00〉 ± |11〉) and |Ψ±〉 =

1/
√

2 (|10〉 ± |01〉). After this substitution we have

|Ψ〉 =
1

2
[
∣∣∣Ψ+

2′3

〉
(α |01′14〉+ β |11′04〉) +

∣∣∣Ψ−
2′3

〉
(α |01′14〉 − β |11′04〉)

+
∣∣∣Φ+

2′3

〉
(α |11′14〉+ β |01′04〉) +

∣∣∣Φ−2′3
〉

(α |11′14〉 − β |01′04〉)] (4.25)

Our idea is to perform a projective measurement over the modes 2′ and 3 by selecting

only those events corresponding to the state
∣∣∣Ψ−

2′3

〉
as result. The measurement is

performed using these modes as the input arms of BS2. The state
∣∣∣Ψ−

2′3

〉
corresponds

to the detection of one and only one photon on the detector D1 and to the absence

of counts on the second detector D2. As a result, the state emerging on the spatial

modes 1′ and 4 is α |01′14〉 − β |11′04〉. We observe that an entanglement swapping

has been realized together with a sign flip with respect to the incoming target state.
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4.5 – Conditional sign flip via teleportation

Next, we study the situation corresponding to a control qubit in the state |0112〉.
In such a situation the Hadamard gate creates a singlet entangled state on the out-

put modes of BS1: 1/
√

2 (|01′12′〉 − |11′02′〉). Then Eq. 4.25 has to be opportunely

modified. Limiting our interest to the term associated with the singlet as output

result, now we have
∣∣∣Ψ−

2′3

〉
(α |01′14〉+ β |11′04〉). Thus, we observe again an entan-

glement swapping, but the difference with the former situation is that no sign flip

arises from the process.

The previous results can be synthesized stating that the target qubit, initially

encoded using the modes 3 and 4, is transferred on 1′ and 4 with a sign change

conditional to the logic state of the control qubit, as required from the definition

of the C-sign gate. The gate is deterministic: it does not work with a success

probability equal to 1, but we know whether it works correctly. In our case the

probability is 1/4, determined by the postselection procedure selecting one of four

Bell states, and it can increased up to 1/2 accepting single counts on D2, with an

adjunctive single qubit rotation. If both singlet and triplet state are accepted we

deal with the so-called active teleportation [82].

Unluckily, the control qubit is destroyed by the projection and the gate above

illustrated is not complete. To make the scheme useful for quantum computation a

method to restore the control state has to be introduced.

4.5.3 Nondestructive C-sign gate

To overcome the previous obstacle we use the technique of quantum encoding. From

the “no cloning theorem” [84] we learn that a physical machine able to copy an

arbitrary quantum state in a blank state cannot be realized. However, the theorem

does not exclude the possibility of copying two selected orthogonal states and this

is the working principle of a quantum encoder. Roughly speaking, the conversion

(α |0〉+ β |1〉) → (α |0〉+ β |1〉)⊗ (α |0〉+ β |1〉) is forbidden while (α |0〉+ β |1〉) →
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4 – Conditional sign flip via teleportation

(α |0〉 ⊗ |0〉+ β |1〉 ⊗ |1〉) is (at least in a probabilistic way) allowed leaving α and

β out of consideration.
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D1 

D2 
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Da1 

Da2 
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2’ 
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4 

Figure 4.5. Nondestructive conditional sign flip gate: the modes a1, a2, b1 and
b2 represent the quantum encoder, control and target qubit are yet implemented
respectively on the modes 1 and 2 and 3 and 4 . The auxiliary beam splitter BSa

and the auxiliary detectors Da1 and Da2 are used to “double” the control qubit in
an entangled state on a1, a2, b1 and 2. BS1 and BS2 perform the conditional gate
and the output is represented by the control qubit on the modes a1and a2 and the

(modified by the gate) target qubit on the modes 1′and 4.

A quantum encoder operating on polarization qubits is described in [80, 85].

It applies also in our case due to the existence of converters from polarization to

dual rail and vice versa that are easily realizable using a polarizing beam splitter

and a λ/2 wave plate. On the other hand, we will show that a quantum encoder

working only with photon number qubits is feasible using non polarizing beam split-

ters. The scheme is depicted in Fig. 4.5. The control qubit (α1 |01〉+ α2 |10〉)
we want to copy is defined on the modes 1 and 2, while modes a1, a2, b1, and

b2 correspond to two ancilla qubits previously prepared in the maximally entangled

state 1/
√

2 (|0a11a20b11b2〉 − |1a10a21b10b2〉). The modes b2 and 1 are mixed on a beam

splitter (BSa) and a projective measurement analogous to that one described in Sec.

4.5.2 takes place selecting only the singlet state
∣∣∣Ψ−

b21

〉
= 1/

√
2 (|0b211〉 − |1b201〉).
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4.5 – Conditional sign flip via teleportation

The projection is performed measuring one and only one photon on Da1 and zero

photons on Da2 . As a result, it remains 1/
√

2 (α1 |0a11a20b112〉+ α2 |1a10a21b102〉).
Thus, we have realized the quantum encoding operation, apart from a swapping

from mode 1 to b1. This gate is probabilistic being conditioned from the output of

the Bell measurement. The success probability is 1/4 and again it reaches 1/2 if

also
∣∣∣Ψ+

b21

〉
= 1/

√
2 (|0b211〉+ |1b201〉) is accepted via a classically feed-forwarded one

qubit rotation. Notice that a qubit can be encoded also on a string of n qubits sim-

ply using a generalized maximally entangled state 1/
√

2 (|0101.....01〉 − |1010.....10〉)
and performing the projection measurement mixing one of the 2n modes with one

mode of the incoming qubit.

Let us return to our main problem. We want to build a gate that transforms a

two qubit state, defined on four spatial modes, in accordance with the operator U

introduced in Eq. 4.19:

U (α1 |0112〉+ α2 |1102〉)⊗ (α3 |0314〉+ α4 |1304〉) =

α1α3 |01120314〉+ α1α4 |01121304〉+ α2α3 |11020314〉 − α2α4 |11021304〉(4.26)

The control state is doubled via the quantum encoder above introduced and, under

the probabilistic condition relied to the postselection process, we deal with the

initialized three qubit state

|Ψ〉 = (α1 |0a11a20b112〉+ α2 |1a10a21b102〉) (α3 |0314〉+ α4 |1304〉) (4.27)

The procedure described in Sec. 4.5.2 can now start: the modes b1 and 2 are

rearranged in 1′ and 2′ via the BS1, the modes 2′ and 3 are mixed on BS2, the

postselection measurement on
∣∣∣Ψ−

2′3

〉
is performed, and as a result of the complete set

of operations we find that U creates the state α1α3 |0a11a201′14〉+α1α4 |0a11a211′04〉+
α2α3 |1a10a201′14〉−α2α4 |1a10a211′04〉, in perfect agreement with the definition of the

C-sign gate. Furthermore, the scheme realizes a teleported gate, as outlined in [81].
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Due to the nondeterministic nature of the destructive gate and the quantum

encoder, the nondestructive C-sign flip can reach 1/4 as overall efficiency.

4.6 Conclusions

We have proposed a method to realize a probabilistic C-sign flip gate for number

state qubits based only on few linear optics elements, specifically three balanced

beam splitters, two single photon sources for target and control qubits, photode-

tectors, postselection measurements, and entangled ancilla photons, which can be

created via single-photon sources [86]. The maximum success probability is 1/4. In

the original proposal contained in [73] the C-sign gate was achieved via two non-

linear sign shift combined with two beam splitters. The network created in such a

scheme was very intricate, and the simplification arising from the idea previously

illustrated is remarkable. To achieve the gate, a four fold coincidences measurement

is required, fully available with the present technology.
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Chapter 5

Quantum key distribution with

single-photon entangled states

In this chapter I will present an original scheme to create a quantum key distribution

[87]. In Sec.5.1 I will introduce the concept of quantum cryptography, together

with some protocol which is particularly important for historical reasons. Then, in

Sec. 5.2 the original model is introduced and discussed in detail. Conclusions are

presented in Sec. 5.3.

5.1 Quantum cryptography

The first suggestion about quantum cryptography, or, more correctly, Quantum Key

Distribution (QKD) is due to Wiesner [88], whereas the concretization derives from

the work of Bennett&Brassard in 1984 and is known with the acronym BB84 [71].

Quantum Key Distribution arises from the idea of using the laws of quantum me-

chanics to perform secure communication. In particular, QKD exploits two theorems

deriving from Heisenberg uncertainty principle: i) the no-cloning theorem [84] states

that it not possible to realize a perfect copy of an unknown quantum state; ii) the
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5 – Quantum key distribution with single-photon entangled states

Lo-Chau lemma [89] states that it is not possible to measure an unknown quantum

state without perturbing it.

A brief introduction to key distribution can be formulated in the following way.

 

 
 
 

ALICE 

 
 
 

BOB 

 

PUBLIC 
CHANNEL 

Figure 5.1. Secure communication via quantum key distribution. Alice wants to
send a message (blue string)to Bob. Alice and Bob share a secret key (red string).
The black string is the sum

⊕
2 of key and message, and is what Alice transmits

using the public channel. Bob accomplishes the same operation (sum
⊕

2, or,
equivalently, difference

⊕
2) and gets the message. The sequence of bits which

is transmitted on the public channel has no relation with the message, and its
knowledge is useless without knowing the key.

The usual way to describe the process is to introduce a sender (Alice) and a

receiver (Bob), who are trying to exchange a private message in a secure way using

a public channel. A key is a string of bits which is shared by Alice and Bob, and

which Alice uses to encrypt the message and Bob uses to decrypt it. Indeed, she

sends on the public channel the sum of the message itself and the key, as depicted

schematically in Fig. 5.1. QKD involves the way to create a shared key whose

secrecy is built up using quantum mechanics..

In the following we give a description of the most important QKD protocols [90].
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5.1 – Quantum cryptography

5.1.1 The BB84 protocol

Let us consider a two-level system (for the sake of concreteness we will refer to a

spin 1/2).

The protocol uses four quantum states that constitute two orthogonal bases, for

example, the states |↑〉, |↓〉, |←〉, and |−→〉. |↑〉 and |↓〉 are eigenstates of Sz, |←〉
and |−→〉 are eigenstates of Sx. For instance, one can assume that |↑〉 and |←〉
correspond to the classical bit “0”, while |↓〉 and |−→〉 correspond to “1”. In the

first phase of the protocol, Alice sends spins to Bob by choosing randomly each

time one of four states. Then, Bob, using a random-number generator independent

from that of Alice, measures the incoming spins in one of the two bases. As a result,

whenever the basis chosen is the same, Alice and Bon get perfectly correlated results.

On the other hand, if the bases are different, they get uncorrelated results. The way

to discard these latter unwanted data is to use a classical channel together with

the quantum one. The classical channel is assumed to be public, but it cannot be

altered by any adversary (usually called Eve). For each bit Bob announces publicly

in which basis he measured the corresponding qubit, without announcing its result.

Alice then reveals only whether or not the state in which she encoded that qubit

is compatible with the basis announced by Bob. Then, they keep only the results

corresponding to the same choice of basis, and share the so called sifted key.

Let us now consider the security of the above ideal protocol against Eve who

intercepts a qubit propagating from Alice to Bob. Obviously, Bob must receive

the qubit. The no-cloning theorem does not allow to copy the qubit. Then, Eve

cannot simply keep the qubit but she must study some eavesdropping strategy. The

simplest attack is the so-called intercept-resend strategy: Eve measures each qubit

in one of the two bases, like Bob. Then, she re-sends to Bob the qubit emerging from

her apparatus in the state corresponding to her measurement result. In about half

of the cases, Eve will choose the basis compatible with the state encoded by Alice.
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5 – Quantum key distribution with single-photon entangled states

In these cases she re-sends a spin in the correct state, and Alice and Bob will not

notice her presence. On the other hand, in the remaining half of the cases, Eve uses

the basis incompatible with the state prepared by Alice. This necessarily happens,

since Eve has no information about Alice’s random-number generator (randomness

is fundamental). In these cases the qubits sent out by Eve are in states with an

overlap of 1/2 with the correct states. A control routine can be introduced at the

end of the bit exchange. Alice and Bob select arbitrarily a given number of bits and

compare their operations using the public channel. In this way they discover Eve’s

intervention in about half of the cases corresponding to her bad basis choice. The

measure of Eve’influence on the key is the quantum bit error rate (QBER). In the

case of the BB84 protocol it amounts to 1/4 of the number of bit intercepted by

Eve. If Alice and Bob find a number of errors largest that a threshold value, which

can be fixed considering unavoidable effects due to noise and losses in the channel,

they discover Eve and abort the transmission.

5.1.2 The B92 protocol

This scheme [91] differs from the BB84 scheme, since it shows that two non-orthogonal

states are sufficient create a secure key. The states Alice can select randomly

are |↑〉 and |−→〉. Bob realizes a POVM measurement [1] using the projectors

P↑ = I − |↑〉 〈↑| or P−→ = I − |−→〉 〈−→|. What happens is that P↑ |↑〉 = 0,

P−→ |−→〉 = 0, 〈−→|P↑ |−→〉 = 1 − |〈−→ | ↑〉|2, 〈↑|P↑ |↑〉 = 1 − |〈−→ | ↑〉|2. The

key is built as follows. Each time Bob obtained a finite value from his apparatus, he

know that if he measured P↑, then Alice prepared |−→〉, and if he measured P−→,

then Alice prepared |↑〉. Then, it is sufficient that Bob publicly tells Alice in which

cases he found a finite result without announcing which measurement he made. All

others runs will be discarded. The presence of Eve could cause events where, e.g.,

Bob find a result different from zero even in cases where Alice sends |↑〉 and he is
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measuring P↑, or Alice sends |−→〉 and he is measuring P−→. A control routine can

reveal easily the presence of the eavesdropper in the channel, as in the previous case

by selecting a random subset of data and verifying the consistency of results with

the premises.

5.1.3 The EPR protocol

The model described in this section has been introduced by A. Ekert [72], following

a suggestion of D. Deutsch [92]. In this case the quantum channel carrying two

qubits from Alice to Bob is substituted by a channel carrying two qubits from a

common source, one qubit being addressed to Alice the other one being addressed

to Bob. The two qubits are prepared in the singlet state

∣∣∣Ψ−〉
=

1√
2

(|↑ , ↓〉 − |↓ , ↑〉) , (5.1)

which is invariant under rotations,

∣∣∣Ψ−〉
=

1√
2

(|↑ , −→〉 − |−→ , ↑〉) . (5.2)

Alice and Bob measure their respective qubits both selecting in random way among

two orthogonal bases, as in the BB84 case. Obviously, whenever the basis selected

by Alice is the same selected by Bob, their respective results are perfectly anti-

correlated. Then, either of them can know the state obtained by the other, and

a key can be obtained. Those data corresponding to a different basis choice are

discarded. In his paper Ekert suggested that the security of this two-qubit protocol

can be connected to the Bell’s inequality, which shows that quantum mechanics

exhibits correlations that cannot be reproduced by any local theory [93]. Some time

ago, it has been shown by Bennett, Brassard, and Mermin [94] that there is complete

equivalence between the EPR scheme and the BB84 scheme.
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5.2 Exploiting single-photon entanglement to gen-

erate a quantum key distribution

In the previous section we described a number of protocols to create a QKD without

considering any physical system in a specific way. Although in principle the polar-

ization of photons is a natural candidate, in long distance communication through

optical fibers birefringence effects advice against the use of polarization. Then,

schemes using the phase-coding technique, i.e. schemes where the degree of freedom

used to define the bits is the phase inside some quantum state [95, 96, 97, 98], are

very useful for practical purposes.

Here we propose a new method of phase encoding based on vacuum-one photon

entangled states, which involves a complete symmetry between Alice and Bob, and

is designed for stable transmission [87]. A very different proposal for quantum

cryptography which uses also single-particle entanglement appears in Ref. [99]. The

scheme is depicted in Fig. 5.2. Alice wants to create a key and to share it with

Bob. She uses a single photon source [100, 101] which injects the photon either on

the mode a1 or on the mode a2. The modes a1 and a2 are mixed in a beam splitter

(BSa) and then the single photon is entangled on the two output modes a′1 and a′2.

In terms of field operators, the BSa action on the input-output modes is represented

by

â†1 =
1√
2

(
â′†1 + â′†2

)
(5.3)

and

â†2 =
1√
2

(
â′†1 − â′†2

)
. (5.4)

(â†i creates a photon on the mode ai) Thus, the output state is 2−1/2 (|01〉+ |10〉) if

the photon is put in the mode a1 or 2−1/2 (|01〉 − |10〉) if the photon is put in the

mode a2. These two possible choices represent the logic values (the bit) which Alice

wants to add in the QKD. Therefore, the bit is encoded in the phase of the entangled
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Figure 5.2. Scheme for QKD using two single photon entangled states. The
shaded area represents the public channel and is the region where eavesdropping
can take place. Alice (left side) and Bob (right side) use the respective single pho-
ton sources to create two entangled states, encoding the bit on the phase, on the
output modes of BSa and BSb. Each of them stores one mode in a secure area
and sends the other mode to the counterpart. The protocol is concluded via the
recombination on the beam splitters BSab and BSba and the statement of Alice
(the scheme works also exchanging the roles) of which detectors (Da1 or Da2) has
counted one photon. Comparing this information with his result (click on Db1 or

Db2), Bob acquires the secret information.
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state emerging from BSa which we conveniently rewrite as 2−1/2 (|01〉+ n |10〉) with

n = −1,1 (n = 1 will correspond to the logic value 1, n = −1 will correspond to the

logic value 0).

Bob, being far apart, realizes the same operation through his own apparatus and

creates the state 2−1/2 (|01〉+ m |10〉) (again, m = −1,1) on the modes b′1 and b′2.

Obviously, n and m are completely uncorrelated.

Afterwards, Alice (Bob) stores the mode a′1 (b′1) and sends to Bob (Alice) the

mode a′2 (b′2). Each of them has a second beam splitter (BSab and BSba) which is

used to mix the mode previously stored with the mode received from the counterpart.

The initial state is

|φ〉 =
1

2

(∣∣∣0a′11a′2

〉
+ n

∣∣∣1a′10a′2

〉) (∣∣∣0b′11b′2

〉
+ m

∣∣∣1b′10b′2

〉)
. (5.5)

Because of the unitary operation associated to BSab and BSba, which consists of

field mode relations analogous to Eqs. (5.3) and (5.4), the state |φ〉 becomes

|φ〉 =
1

2
√

2
[m (|0ab10ab22ba10ba2〉 − |0ab10ab20ba12ba2〉)

+n (|2ab10ab20ba10ba2〉 − |0ab12ab20ba10ba2〉)
+ (mn− 1) (|0ab11ab21ba10ba2〉+ |1ab10ab20ba11ba2〉)
+ (mn + 1) (|0ab11ab20ba11ba2〉+ |1ab10ab21ba10ba2〉)]. (5.6)

The protocol provides a measure realized both by Alice and Bob on the output

modes of BSab and BSba. The scheme works if and only if one and only one photon

is detected by Alice and one and only one photon is detected by Bob. Thus, the

terms corresponding to two photons entering in one beam splitter and zero photons

entering in the other beam splitter do not contribute, fixing to 1/2 the efficiency of

the model.

Here we note that, in order to observe quantum interference on BSab and BSba,

and this is exactly the situation from which Eq. (5.6) is derived, the wavepack-

ets impinging the input arms of the beam splitters are required to be completely
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indistinguishable [106]. To create such a situation the stored modes have to be

opportunely delayed.

Let us suppose that Alice measures one photon on the mode ab1. The state

corresponding to this result is

|φ〉 =
1

2
[(mn + 1) |1ab10ab21ba10ba2〉+ (mn− 1) |1ab10ab20ba11ba2〉]. (5.7)

As a consequence, Bob will detect his photon on the mode ba1 if m = n or on the

mode ba2 if m = −n. If Alice had counted ”1” on the mode ab2 the role of Bob’s

detectors would change with respect to the relation between m and n.

Then, Alice sends on the public channel her result to Bob, who, comparing

the two results, is able to identify the value of n to add to the key. Due to the

complete randomness of the output Alice’s result, there is no connection between

the information sent on the public channel and n. We assume that Alice and Bob

perform the measurements in time coincidence. The public statement of which

detector has counted 1 photon can take place after the entire key has been realized,

as usual in QKD schemes, in analogy with basis reconciliation in the BB84.

Analyzing the scheme, one can state that the bit exchange is realized via entan-

glement swapping [102] from the modes a′1, a′2 and b′1, b′2 to the modes ab1, ab2 and

ba1, ba2, as already suggested in the framework of quantum cryptography [103, 104].

The scheme described is in some aspect related to a cryptographic system recently

realized [105]: also in that system both Alice and Bob create and exchange the key.

The main differences concern the encrypting method (the polarization of photons)

and a time hierarchy between Alice’s and Bob’s operations. As we shall later, this

aspect will appear significant in the security of the scheme.

As in any QKD scheme, we need to consider the possibility that an eavesdropper

(Eve) is trying to gain information, or simply to disturb the transmission in order

to create errors in the reception.

Then, a control procedure has to be introduced. The simple idea is as follows: for
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a random subset of bits, during the public discussion, Alice can claim both which

detector has recorded the photon and the value of n encoded, giving to Bob the

possibility to verify that the global state was not affected by external interactions.

5.2.1 Analysis of security and efficiency

Apart from limitations on QKD arising from experimental imperfections regarding

generation, transmission and detection of qubits [107], we shall focus our attention

on some simple attack strategy by some external eavesdropper.

First we describe the possibility of an attack only aimed to create errors in

the key. If the disturbance consists in the subtraction of one photon the protocol

automatically fails and there are no effects on the QKD creation. Better, Eve can

act modifying the phase of the photons traveling in the public channel by an amount

between 0 to π. In such a circumstance the control procedure is able to detect the

interference: if the phase change is π the role of detector pairs with respect to m

and n is completely inverted, and when Alice announces both the result and n, Bob

immediately discovers Eve’s action. More significant is the case of phase change

equal to π/2: now just about in 50% of cases the action induces an error, and

it’s possible that when Alice launches the control routine Bob does not note the

introduction of a third part. However, after ν control steps, the probability that

Eve is not revealed is (1/2)ν and can be arbitrarily reduced. In the case of phase

variation less than π/2 the number of control routines to get a given confidence level

increases, but the probability that Eve’s action influences the key decreases.

Let us consider the case that Eve wants actually to get the key. Since the secret is

encoded in the phase of an entangled state, and one of the components of the state is

not accessible to anyone but Alice, there is no way to get information acting only on

the public mode. Formally, this feature is expressed stating that the reduced density

matrix of a single mode is diagonal and corresponds to a one-qubit maximally mixed
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state. The simplest method Eve can use is the intercept/resend strategy using the

same setup as Bob. Naturally, Eve does not know neither n nor m and has to

create a different one-photon entangled state 2−1/2 (|01〉+ p |10〉) (p = −1,1), to

mix her state with Alice’s state and to wait from Alice announcement about the

measurement result to conclude the operation. As in the regular procedure between

Alice and Bob, the scheme fails in half number of cases, while in the remaining cases

Eve acquires the bit. The quantum bit error rate (QBER) introduced by Eve in the

sifted key (here represented by all bit exchanges with one photon detected by Alice

and one photon detected by Bob) is 1/2, due to lack of correlation between n and

p, while the amount of information gained by Eve is 1/2 per bit. Thus, comparing

our model with the BB84, we conclude that, while Eve gets the same amount of

information, she induces a QBER which is twice, and this feature strongly improves

the robustness of the system against these attacks.

On the other hand, even when the eavesdropping action is performed, Bob needs

to receive a mode from Alice. This aspect involves the resending strategy that Eve

can choice. Eve used one photon to copy Bob’s operation, and whichever is the

number of photon sent to Bob (0,1, a combination of 0 and 1) the total number of

photon revealed by Alice and Bob is no longer 2, but depends on the measurement

process. Hence, by checking the numbers of contemporary clicks, Alice and Bob

discover the presence of an eavesdropping action and abort the transmission. More-

over, even if the total photon number is 2, by the control routine above mentioned,

Eve can be detected, due to the complete absence of correlation between n,m,p. One

can argue that the eavesdropper can first find n and then send to Bob the correct

state 2−1/2 (|01〉+ n |10〉), but Alice’s announcement happens after Bob measure, so

that the use of coincidence measurements guarantees against this kind of action.

A more detailed analysis of eavesdropping influence on the counting rate can be

formulated as follows. At the time of her own measurement, Eve learns how many
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photons Alice will count. Let us suppose that she is so able (Eve is a quantum devil)

first to perform the measurement and successively to choice the resending strategy.

The following situations are possible: (i) Eve knows that Alice will measure two

photons: in such a case the best choice she can made is to send nothing to Bob; (ii)

Alice measures zero photons: now the choice to minimize the error is to send ever

one photon to Bob; (iii) Alice measures one photon: now the resending strategy does

not matter. As a result, eavesdropping modifies the number of detected photons in

1/2 of cases.

Therefore, the control about the counting rate represents a powerful method to

reveal eavesdropping to add to the control routine. Actually, in order to exploit

this feature, a multi-photon resolution is needed, and this not yet fully available

in the present laboratory technology, although some important step has been made

[108, 109].

Naturally, Eve can use an alternative strategy. She can create in any circum-

stance two entangled states to share with Alice and Bob, and, moreover, she can

prepare other fake photons to send in order to enforce both Alice and Bob to count

ever one photon. The cost to pay for this strategy is the following: due the prob-

abilistic nature of projections, Alice and Bob expect to measure one photon just

in 1/2 of cases; then Eve should simulate such behaviour leaking a big amount of

information. Thus, this strategy is not convenient.

Another simple eavesdropping strategy is the so called beam splitting attack.

Let us suppose that a coherent, weak source of photons, is used instead of a single

photon source. Then, with a probability small but finite, the source can inject two

(or more) photons. In BB84 schemes, the two photons contain the same information.

Then, Eve can subtract one of them and, after the public discussion, perform the

measurement selecting the right basis. In such a way she acquires the bit without

introducing any kind of noise. Let us analyze what happens in our case, when, for
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example, Alice injects two photons onto BSa. The initial state is

|φ〉 =
1

2
√

2

(∣∣∣0a′12a′2

〉
+

∣∣∣2a′10a′2

〉
+ n

∣∣∣1a′11a′2

〉) (∣∣∣0b′11b′2

〉
+ m

∣∣∣1b′10b′2

〉)
. (5.8)

A simple observation to do is that Eve should be able to act on the state
(∣∣∣0a′12a′2

〉
+

∣∣∣2a′10a′2

〉
+ n

∣∣∣1a′11a′2

〉)
, with the idea of factorizing it in the tensor prod-

uct
(∣∣∣0a′11a′2

〉
+ n

∣∣∣1a′10a′2

〉) (∣∣∣0a′11a′2

〉
+ n

∣∣∣1a′10a′2

〉)
, and to keep one copy. The global

nonlocality and the inaccessibility of the mode a′1 forbid this kind of eavesdropping

strategy. Obviously, also the protocol fails due to the number of photons. What

matters is that the security of the scheme is robust with respect to that situation.

Let us come back to analyze the differences between our proposal and the QKD

realized by Degiovanni et al. [105]. In that case there is a time ordering between

the encoding operations of sender and receiver: that is, Alice create a secrete state,

Bob acts on that state, and then resends it to Alice. Therefore, an eavesdropper

can extract some information by monitoring the state before and after Bob’s action.

In our case we assume that Alice and Bob perform all operations in coincidence.

Therefore, all the information traveling on the public channel is not useful.

On the other hand, the presence of two senders and two receivers makes our

scheme vulnerable versus a subtle strategy: Eve can short-circuit both Alice and

Bob creating two Mach-Zehnder interferometers. In such a case the two speakers

are separated and each single measurement result depends only, in a deterministic

way, by the initial state created by the respective speaker. Thus, Eve has only to

wait for the public communication to perfectly eavesdrop the bit without introducing

noise. Against this kind of attack, we are helped by the control method introduced

by Degiovanni et al.. Actually, checking the correlation between, for instance, the

mode which Alice stores and the mode which she send to Bob, it is possible to reveal

Eve’s presence in 1/2 of cases.

The theoretical efficiency E of the scheme can be evaluated following the criteria
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introduced in Ref. [110]:

E =
bs

qt + bt

, (5.9)

where qt is the number of quantum bit exchanged, bt is the number of classical

bit exchanged, and bs is the number of secret bits added to the key. In our case,

considering the ”single shot” efficiency, and the fact that both Bob and Alice add

one bit, one finds qt = 2, bt = 1 and bs = 1, from which follows E = 1/3. If

the same criterion is applied to Ref. [98], avoiding the use of active switches, that

are not suitable for long distance fiber communication, we get E = 1/6. In the

case of BB84 protocols the maximum efficiency that can be reached is E = 1/4.

Thus, our proposal seems to give some advantage. Actually, one should consider

some unavoidable effect that could lower the practical efficiency of the scheme. For

instance, our proposal requires the contemporary detection of two photons. Thus,

the success probability scales with the square of detection efficiency, in contrast with

the usual situation, where just one detection is needed.

5.3 Conclusions

To summarize, we have introduced a new method to create a random QKD based

on a mechanism of bit exchange between sender and receiver. The secret is encoded

in the phase of a single photon entangled state. Although the encoding is real-

ized only through two orthogonal states, as in the Goldenberg-Vaidman protocol

[111], quantum mechanics guarantees that no information is extracted acting just

on a subsystem, and only the product between Alice’s and Bob’s states allows to

extract the key element. The security of the scheme against simple eavesdropping

techniques, as intercepting/resending strategy and beam splitting attack, has been

analyzed. Finally, a comparison with other phase encoding based schemes has been

performed, showing the advantages of our proposal if addressed to long distance
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optical fiber transmission. The scheme is completely symmetric with respect to the

role of Alice and Bob, and is suitable for information exchange in a sort of quantum

dialogue. Probably, the main obstacle towards a possible realization of the proposed

protocol is represented by the difficulty to achieve photon number resolution, which

enhances the security of the protocol itself.
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The contents of the present dissertation arise from my experience as a Ph. D. stu-

dent, and embody many of the topics I encountered during last three years. Two

main arguments have been the subject of my work: i) methods of statistical me-

chanics and many-body theory applied to quantum information processes (chapters

2 and 3); ii) theoretical design of all-optical quantum information schemes (chapters

4 and 5).

In chapter 1 I introduced some basic concepts (such as quantum teleportation)

which appear a lot of times throughout the thesis, in order to simplify the develop-

ment of the subsequent chapters.

The first chapter containing original result is chapter 2, where I developed a

scheme to perform quantum teleportation through an array of double quantum dots

[13, 14]. The interest of this protocol can be found considering that the robustness of

the quantum channel with respect to the interaction with an external environment is

enhanced as the channel length increases and the system experiences a phase transi-

tion, at least considering, for the bath, the zero temperature limit. The significance

of this result originates from the fact decoherence represents the main obstacle to-

wards the realization of a scalable quantum computer. It should be interesting to

analyze finite temperature effects and to design a real experimental layout. I would

cite that the experimental implementation of this teleportation protocol is the main

subject of a research project submitted within the Sixth Framework Programme by
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the group of I. Ostrovskii (Lviv University).

In chapter 3 I considered the problem of transferring quantum information inside

a mesoscopic device from a more general point of view [42]. To this end I introduced

a model of separated quantum systems coupled through the interaction with a chain

that acts as a channel. The generality of this model is found in the fact that there

are different physical systems which appear as possible candidates: quantum dots,

Josephson junctions, nanoelectromechanical oscillators, optical cavities. It has been

shown that, whenever the energy of the two system lies outside the spectrum of the

chain, or whenever it matches with one of the eigenmodes of the channel (in this case

the spectrum must be discrete), the systems, that can be far each other, undergo

coherent Rabi-like oscillations. Furthermore, it has been shown that such structure

is robust with respect to the presence of weak imperfections in the chain. Finally

a finite temperature analysis has been performed for the case of quantum dots. It

has been shown that coherent oscillations persist in the case of resonance within

the discrete spectrum, and that when the energy of the two system lies outside the

spectrum of the chain what matter is the ratio between this energy the Debye energy

of the host material.

Chapter 4 opens the optical part of the thesis. I presented a scheme to realize a

non-deterministic two-photon gate exploiting a modified version of the teleportation

protocol [68]. This model falls inside the so-called linear optics quantum computa-

tion, introduced by Knill, Laflamme, and Milburn, who have shown that scalable

networks of logic gates can be built using linear optics. The importance of the

scheme presented here is due to the fact that it reaches the maximum of efficiency

allowed by theory, and is suitable for experimental implementation, being strictly

connected to teleportation protocols already realized. Recently, new approaches

to linear optics quantum computation are emerging, considering the use of cluster

states or linked states. The approach to teleportation presented here could be useful
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also in these cases.

In chapter 5 I described an original scheme to realize a quantum cryptography

protocol. Quantum cryptography is, beyond any doubt, the most advanced field of

quantum information, having already achieved a commercial development. Despite

the advances in this sector, long distance communication suffers various technical

limits, such as birefringence effects in optical fibers. The aim of the protocol intro-

duced in this thesis is to design a resilient scheme, being the information encoded in

the phase of a quantum state, and being the efficiency higher than similar proposal.

The originality of this scheme is based on the use of single-photon entanglement as

a resource. I knew in a private communication with XianMin Jin, one of the mem-

bers of the Quantum Physics and Information Laboratory, Department of Modern

Physics, University of Science Technology of China, that they are working on the

experimental realization of this QKD protocol.

For reasons that appear obvious, transferring photons in the space is easy, and

thus they are natural candidates for the implementation of quantum communication

protocols. In fact, many optical experimental implementation of quantum informa-

tion protocols have been realized, such as teleportation, quantum cryptography,

optimal quantum cloning, purification, dense coding. The state of the art is differ-

ent when considering solid state devices. In this case the amount of interactions with

the environment limits the feasibility of experiments. One of the motivations of this

thesis is to suggest ways to make advances in this sector exploiting the knowledge of

optical quantum information. In this sense, the scheme for a conditional gate pro-

posed in the fourth chapter, being based on manipulations of number states, could be

extended to the macroscopic qubit of double-quantum-dot pairs introduced in chap-

ter 2, observing that the nearly degenerate ground state is used both for transferring

information and performing the unitary rotation associated to a beam splitter, and

that zero temperature decoherence decreases as the size increases.
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There are some other arguments that I studied in this period. One of them,

concerning quantum communication through a spin chain, has been presented in

appendix B. Further, I would mention a teleportation protocol on a quantum-dot

chain, which differentiates from that presented in chapter 2, published as a preprint

[112]. That work has a starting point which is an oversimplification that weakens

the content of the paper. I would mention also the attempt to study a quantum

state transfer protocol through the use of the Jordan-Wigner transformations.

At the very end, I would repeat my acknowledgments towards Prof. F. de

Pasquale and S. Paganelli. I worked in continuous contact with them day after

day, and all the results presented in this dissertation are outgrowth of the common

investigations.
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In Sec. 3.3 we have introduced the kernel

Λd (ω) =
g2

N

∑

k

eikd

ω − εk

, (A-1)

stating that

Λd (ω) =
g2

(ω2 − 1)1/2

Kd (ω) + KN−d (ω)

1−KN (ω)
. (A-2)

Here we give the explicit derivation. First of all, one can observe that the sum is

realized on a symmetric range. Than Λd (ω) = Λ−d (ω). Let us write

Λd (ω) =
g2

N

∑

k

fk (ω) , (A-3)

where

fk (ω) =
eikd

ω − εk

(A-4)

is a periodic function of k, which admits to be represented by means of its Fourier

series

fk (ω) =
∞∑

n=−∞
fn (ω) e−ink. (A-5)

The coefficients are

fn (ω) =
1

2π

∫ 2π

0
fk (ω) einkdk (A-6)

or

fn (ω) =
1

2π

∫ 2π

0

eik(d+n)

ω − εk

dk. (A-7)
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Coming back to Λd (ω), we have

Λd (ω) = g2
∞∑

n=−∞




1

N

2πN
(N−1)∑

k=0

e−ink




1

2π

∫ 2π

0

eik′(d+n)

ω − εk′
dk′. (A-8)

Since

1

N

2πN
(N−1)∑

k=0

e−ink =
∞∑

l=−∞
δn,Nl, (A-9)

the result is

Λd (ω) = g2
∞∑

l=−∞
Id+Nl (ω) , (A-10)

where

Id+Nl (ω) =
1

2π

∫ 2π

0

eik(d+Nl)

ω − εk

dk. (A-11)

The sum is now divided separating the terms with n > 0 from those with n < 0:

Λd (ω) = g2
−1∑

l=−∞
Id+Nl (ω) + g2

∞∑

l=0

Id+Nl (ω) . (A-12)

The first sum is manipulated by exchanging l with −l, and by exploiting the depen-

dence on the absolute value of the argument:

Λd (ω) = g2
∞∑

l=1

INl−d (ω) + g2
∞∑

l=0

Id+Nl (ω) . (A-13)

Again,

Λd (ω) = g2
∞∑

l=0

INl−d (ω)− g2I−d (ω) + g2
∞∑

l=0

Id+Nl (ω) . (A-14)

The integral Ir (ω) is calculated in the complex space as follows. First of all, we

change integration variable through the introduction of z = eik, which implies,

assuming εk = − cos k,

Ir (ω) =
−i

2π

∮ zr−1

ω + 1
2
(z + z−1)

dz, (A-15)

or

Ir (ω) =
−i

π

∮ zr

z2 + 2ωz + 1
dz. (A-16)
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The poles are in

z± = −ω ±
(
ω2 − 1

)1/2
. (A-17)

Let us consider the case |ω| > 1. Being the integration area restricted to the unit

circle about the origin, just the pole z+ falls inside this region. This implies

Ir (ω) =
Kr (ω)

(ω2 − 1)1/2
, (A-18)

where Kr (ω) = [z+ (ω)]r. The same result is obtained in the case |ω| < 1, provided

that ω has a non vanishing imaginary part. Then we have

Λd (ω) =
g2

(ω2 − 1)1/2

{ ∞∑

l=0

[KNl−d (ω) + KNl+d (ω)]−K−d (ω)

}
. (A-19)

Since |z+ (ω)| < 1, we can treat the sum as a geometric series, finally getting

Λd (ω) =
g2

(ω2 − 1)1/2

Kd (ω) + KN−d (ω)

1−KN (ω)
, (A-20)

QED.

In the case of infinity of sites (N →∞), KN (ω) = KN−d (ω) = 0, and

Λd (ω) =
g2

(ω2 − 1)1/2
Kd (ω) . (A-21)
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Transferring entanglement in a spin chain exploit-

ing redundance

In this appendix I describe a work whose results have not been published. The

physics I present has some interesting aspects, but the quality of the results is

probably not high enough. Since a Ph. D. thesis should contain (almost) all the

work carried out, I decided to propose this argument in a separate form.

I report a study about the possibility of encoding redundant entangled states to

transfer them in a quantum chain described by a XY Hamiltonian (see Eq. (3.1)).

Roughly speaking, we can think to create a tripartite W state, defined as

|W 〉 =
1√
3

(|↓↑↑〉+ |↑↓↑〉+ |↑↑↓〉) , (B-1)

which evolves following the laws studied in Sec. 3.1, and to look for a bipartite

entangled state in two sites different from those used for the encoding operation.

Labeling with l,m and n the encoding sites, the initial state is

|Ψ (t = 0)〉 =
1√
3

(|↓↑↑〉+ |↑↓↑〉+ |↑↑↓〉)l,m,n |↑↑ . . . ↑↑〉 ≡ 1√
3

(|l〉+ |m〉+ |n〉) ,

(B-2)

or, in terms of modes, defined in Eq. (3.5),

|Ψ (t = 0)〉 =
1√
3

1√
N

∑
q

(
eiql + eiqm + eiqn

)
|q〉 . (B-3)
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Then, defining εq = −2w cos q, the time evolution is given as

|Ψ (t)〉 =
1√
3

1√
N

∑
q

(
eiql + eiqm + eiqn

)
eiεqt |q〉 , (B-4)

which can be rewritten in terms of sites

|Ψ (t)〉 =
1√
3

1

N

∑
q,r

(
eiq(l−r) + eiq(m−r) + eiq(n−r)

)
eiεqt |r〉 . (B-5)

Assuming N →∞, this state is given in terms of Bessel function:

|Ψ (t)〉 =
1√
3

∑
r

(
ei π

2
(l−r)Jl−r (2wt) + ei π

2
(m−r)Jm−r (2wt) + ei π

2
(n−r)Jn−r (2wt)

)
|r〉 .

(B-6)

At this stage, the calculus of the reduced density matrix is easy. Various quan-

tities can be analyzed. As a first question, one can analyze how much rapidly the

state diffuses from the sites l,m and n, and compare this result with degradation of

a Bell (bipartite) entangled state. In Fig. B1 we plot the Fidelity (defined in Sec.

3.1) both for W states and for Bell state, observing that W states are more resilient.
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Figure B-1. Time evolution for the fidelity of W state (blue line) and Bell state
(red line). The concurrence is measured on the encoding sites in both cases.
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Next, we can observe the same quantities on sites which are separated from the

initial ones. In Fig. B2 we measured the fidelity at distance n = 4 from the encoding

sites. Now we start from zero both for W states and Bell states. The maximum

value reached is about the same for all the states, but W states seem to preserve

their entanglement for a much long time.
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Figure B-2. Time evolution for the fidelity of W state (blue line) and Bell state
(red line) measured at a distance of 4 sites from the origin.

Starting from W states, one can observe also bipartite entanglement evolving in

the chain (tracing out all the sites but 2), and compare this degree of entanglement

with that obtained starting from Bell states. In Fig. B3 we show the concurrence

obtained considering the evolution of a W state, from the sites 0,1,2 sites 4,5, and

compare it with the concurrence measured on the sites 4,5 derived from a Bell state

on the sites 0,1. In this case the advantage deriving from a redundant encoding

appears very small.

This kind of work could be extended considering M-partite W states. Traces of

enhancement appear, but the difficulty of controlling a higher number of encoding

sites balances negatively these (weak) advantages.
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Figure B-3. Time evolution for the concurrence of W state (blue line) and Bell
state (red line) measured at a distance of 4 sites from the origin.
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