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1.1 A brief history of Metabolomics 
 

The term metabolomics made its debut in the scientific literature barely fifteen years ago. Stephen 

Oliver was the first to suggest the word “metabolome” to describe the metabolite complement of 

living tissues (Oliver et al. 1998) but metabolomics application goes back to ancient times, just think 

of the Middle Ages, when the medical doctor recognized urine as an important source of health-

related information and used “urine charts” to diagnose diseases by the colour and smell of the 

patient’s urine. These charts linked supposedly metabolic features to various medical conditions 

such as diabetes (Nicholson et al. 2008).  

In the late 1970s, the development of chromatographic techniques that allowed the quantitative 

determination of various substances in complex mixture marked the beginning of the modern-day 

metabolomics. The first publication on metabolomics, though not called metabolomics at the time, 

was by Pauling in 1971 and concerned the quantitative analysis of urine vapor and breath by gas-

liquid partition chromatography (Pauling et al. 1971). Subsequently, the application of 1H-NMR 

spectroscopy to study the metabolic composition of biofluids, cells and tissues, led to define the 

concept of “metabonomics” as the “quantitative measurement of the dynamic multiparametric 

metabolic response of living systems to pathophysiological stimuli or genetic modification” 

(Nicholson et al. 1999). In a short time, metabolomics has gone from being just an ambitious 

concept to being a rapidly growing, powerful tool to gain a more global picture of the molecular 

organization of all multicellular organisms. Finally, in 2002 Oliver Fiehn (Max Plank Institute, Golm, 

Germany) introduced the word “metabolomics” to designate a comprehensive analysis in which all 

the metabolites of an organism were supposed to be identified and quantified (Fiehn 2002).  

Currently, metabolomics is generally defined as the comprehensive, qualitative and quantitative study 

of all the small molecules, the metabolites, present within a biological system under specific 

conditions (Verpoorte et al. 2007, Nicholson et al. 2008, Allwood et al. 2008).  

As a member of the ‘-omics’ family in the systems biology, metabolomics aims at system-level 

understanding of biological systems, at the study of the interactions between the components of 
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biological systems and how these interactions give rise to the function and behaviour of that system 

(Kitano 2002).  

The organism’s metabolome, that is the whole set of its metabolites, varies in response to 

perturbations and/or environmental conditions. This is in contrast to its genome, representing the 

organism’s set of genes and its transcriptome, which is the changing range of mRNA molecules 

expressed by those genes in each cell type. Both, genome and transcriptome are fixed for life, except 

when mutations occur, and can be seen as medium in the flow of gene expression, while the 

metabolome represents the final omic level in a biological system and reflects changes in phenotype 

and function (Hunter 2009). In this sense, whereas gene and protein expression represent the 

potential of an organism to respond to adverse conditions, metabolites represent the outcome of 

gene expression and define the biochemical phenotype of a cell, tissue, organ and organism.  

Achieving the ability to visualize the metabolome of any organism, is currently still a difficult task 

because the metabolome is vastly complex. Just imagine all the metabolic pathways that need to be 

mapped, every intermediate and chemical compounds that to be determined, and the mechanisms 

by which they flow through various cycles into a cell. The whole picture is enormous and it is 

difficult to envision in its entirety. Moreover, the complexity of the metabolome increases 

particularly when the different levels of the biological organization (tissues, organs, whole 

organisms) and the effect of the environment on the metabolism of an organism, have been 

considered. 

Despite its relative youth (in comparison to genomics, transcriptomic and proteomics), 

metabolomics is a key technology for understanding the molecular complexity of life and its 

integrated application with genomics, transcriptomics, and proteomics provides greater 

understanding of global system biology (Weckwerth 2003). 
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1.2 Modern-day Metabolomics  

Over the last decade, the field of metabolomics continues to grow rapidly and a wide range of 

biological systems have benefited from metabolomics studies, from microbes to plants and complex 

multi-organism systems such as mammals; metabolomics is also widely applied to diagnose human 

diseases, biomarker discovery, pharmacology, toxicology, nutrition and food technology.  

Microbes are important biological systems in the field of metabolomics since they have been initially 

used for development of experimental procedures, especially the optimization of sample preparation 

and metabolite measurements. Recently, interesting metabolomics studies have been carry out to 

describe the metabolic pathways in S. cerevisiae (Clasquin et al. 2011), to analyse the interactions 

between two organisms in co-culture system (Nakanishi et al. 2011), to develop metabolic 

engineering strategies aimed to finding of target genes to optimize fermentation processes 

(Hasunuma et al. 2011). All examples demonstrating that the metabolomics analysis of 

microorganisms will remain invaluable for the development of methods used in the study of higher 

organisms.  

In the field of plant biochemistry/biotechnology, the extensive use of metabolomics tools is due the 

benefit produced on human health of various products of plant origin, including food, 

pharmaceuticals, and industrial raw materials, as well as its use in plant breeding and nutrition 

assessment. In addition, the vast chemical diversity of plants also contributes to the prominence of 

metabolomics in plant research. Plant tissues consist of heterogeneous cell populations and multiple 

cell compartments. Consequently, multiple metabolite concentration gradients and duplicate 

pathways are present in tissue samples. Moreover, the plants exhibit constantly changing, transient 

behaviour in response to diurnal, circadian, and seasonal cycles. These plant-specific properties of 

highly compartmentalized metabolic networks and the resulting complexity of metabolite 

connectivity present great challenges for metabolomics (Gomez-Casati et al. 2013). 

In the field of food science, metabolomics is emerged as an important tool to evaluate food quality 

and safety (Cevallos-Cevallos et al. 2012). The quality of food products is greatly affected by pre-
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harvest (genetic origin, cultivation area and growing environment) and post-harvest (milling, 

modified/controlled and atmosphere storage) processes. Changes in metabolite composition that 

occur during these processes are important for safety, acceptability and nutritional value of foods. 

Recently, metabolomics has been employed to identify the relationship between metabolite profiles 

of food and quality. For example, it has been applied for the analysis of major crops potato, tomato, 

cereals and fruits and popular beverages as wine and beer (Carreno-Quintero et al. 2012, Kusano et 

al. 2013, Rasmussen  et al. 2012, Mannina et al. 2012, Inui et. al 2013, Schmidtke et al. 2013) but also 

for the manufacturing, formulation and optimization of food processing or authentication of cheese, 

meat, fish and oils (Ochi et al 2013, Liu et al. 2013, Wagner et al. 2014, Dais et al. 2013), for the 

monitoring of the different fermentation phases of milk (Bouteille et al. 2013) and for the 

quantitative evaluation of preservatives in complex matrices such as margarine, syrup, avocado 

paste, sausages (Simmler et al. 2014).  

With the recent breakthrough in metabolomics technologies, application of metabolomics is 

increasing in the medical field mainly to acquire knowledge on the mechanisms of the drug action or 

of the diseases and to explore biomarkers used as indicators for early diagnosis of diseases, or for 

toxicity and therapeutic effects. Recently, several researches have conducted to identify biomarkers 

and to clarify the detailed pathogenic mechanisms of diabetes, obesity and cancer (Zhang AH et al. 

2013, Zhang A et al. 2013,  Kinross et al. 2013). Metabolomics tools are applied in nutrition research 

to understanding the interactions that can occur between the variety of chemical components of 

food and the biochemical networks of complex organisms, to evaluate their bioavailability and 

metabolism, the role of gut microbiota and the physiological response to a particular diet regimen, 

food or nutraceuticals (Astarita et al. 2013). It is reasonable to think that in the foreseeable future, 

the integration of metabolomics with other omics sciences, as genomics, transcriptomics and 

proteomics will lead to a better understanding of the link between changes that occur in body and 

pathological conditions. On the other hand, the discovery of novel disease-related biomarkers will 

allow to diagnose diseases as cancer in its early stages thus contributing to improve prognosis.  
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1.3 Strategies for metabolomic analysis 

The general goal of most metabolomics studies is to generate a snapshot of the metabolic state of a 

biological system (cells, tissues, organs or whole organism) and to characterize the changes in the 

measured metabolites at a given time point and arising from specific physiological conditions such 

as natural fluctuations or external, experimental biotic or abiotic perturbations (Schuhmacher et al. 

2013). Different metabolomics strategies have thus been developed for different applications and 

depending on the goal of each experiment, the approach used will differ.  

The principal approaches for the metabolome analysis are the untargeted metabolomics, the targeted 

metabolomics, metabolite fingerprinting, metabolite footprinting, metabolic profiling and 

metabonomics (Putri et al. 2013). 

The untargeted metabolomics is the measurement of the levels of all detected metabolites in a 

biological sample, including substances which are currently unknown (or at least unidentified) at the 

time of measurement without the need of previous sample knowledge. It is usually considered a 

hypothesis-free approach since reveals the behaviour of known and unknown metabolites allowing 

to detect the synergic effects between metabolites which cannot be observed at an individual level 

and to potentially probing the entire metabolic space.  

The targeted analysis is the qualitative and quantitative analysis of one, or several metabolites 

related to a specific metabolic reaction but for practical reasons this is generally feasible for a limited 

set of predefined known substances, which are generally chosen on the basis of metabolites available 

as authentic reference standards. Such approach relies on optimised metabolite extraction, 

separation and detection.  

Metabolite fingerprinting is the global and rapid analysis of the metabolic composition of an 

organism or tissue aims to provide sample comparison and classification. It is also utilized as a 

screening tool to discriminate between samples from different biological status or origin (i.e., 

treated/control, disease/healthy). In general, metabolites are neither quantified nor identified. 

Metabolite footprinting is the measurement of metabolites secreted from the intracellular 
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complement of an organism (or biological system) into its extracellular medium or matrix. This 

approach is commonly used in microbial metabolomics.  

Metabolic profiling is the identification and quantification of a selective number of predefined 

metabolites, which are generally related to a specific metabolic pathway.  

Finally, metabonomics is a term coined by Jeremy Nicholson and is normally used in non-plant 

systems. Generally it refers to the quantitative detection of endogenous metabolites that are 

dynamically altered within a living system in response to pathophysiological stimuli or genetic 

modification. More specifically, the overall aim is to measure the small molecules in biological 

samples, be they urine, blood samples, tissue from a patient or a small cluster of yeast cells 

(Nicholson et al. 2008).  
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1.4 Analytical technologies employed in metabolomics: Nuclear Magnetic Resonance 

Spectroscopy (NMR) 

A wide range of analytical technologies may be used in metabolomics, including gas 

chromatography-mass spectrometry (GC-MS), capillary electrophoresis-mass spectrometry (CE-

MS), liquid chromatography-mass spectrometry (LC-MS), liquid chromatography-electrochemistry-

mass spectrometry (LC-EC-MS), nuclear magnetic resonance (NMR) spectroscopy, and Fourier-

transform infrared (FT-IR)- and Raman spectroscopies. Among these, NMR has been widely used 

for metabolomics research since the last decade (Kim et al. 2010).  

The use of NMR-based metabolomics marked the beginning of metabolomics as a tool in 

biochemistry and phytochemical analysis. NMR spectroscopy is an unbiased, rapid, non-destructive 

technique that requires little sample preparation and none analyte separation process (as is the case 

in chromatographic analyses). It is a qualitative and quantitative method that detects the specific 

resonance absorption profiles of metabolites in a magnetic field (which is dependent on chemical 

structure). When samples in a deuterated solvent are placed in a strong magnetic field and irradiated 

with a radio frequency, the absorption of energy allows the nuclei to be promoted from low-energy 

to high-energy. Only atomic nuclei with odd numbers of protons are perturbed by the magnetic 

field, including hydrogen, which is fortunately present in almost every metabolite. The spectral signal 

intensity is directly proportional to the number of nuclei that give rise to a specific resonance. 

Despite its lower sensitivity (limit of detection, in the low µM range) when compared to other 

techniques as mass spectrometry (limit of detection in the low pM range), improvement in NMR 

instrumentation and technology such as solvent suppression technique, versatile pulse sequences, 

cryoprobes and the use of labeled compounds (e.g., using 13C or 15N NMR) have led significant 

improvements in sensitivity. Although NMR spectroscopy can yield detailed information on the 

quantity and identity of metabolites present in the extracts, the chemical elucidation of NMR-

detected compounds is highly complex as a result of overlapping signals and shielding effects by 

neighbouring electrons. However, the development of multidimensional techniques such as Total 
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Correlation Spectroscopy (TOCSY), Correlation Spectroscopy (COSY), Heteronuclear multiple-

bond correlation spectroscopy (HMBC) and Heteronuclear Single Quantum Coherence (HSQC), 

allowed to spread the spectral content over a two-dimensional plane, therefore the identification of 

compounds is facilitated and minor compounds can be better observed, even allowing for structural 

elucidation in extracts. Moreover, NMR spectroscopy offers an unbiased view of the sample 

composition and the possibility to simultaneously quantify multiple compounds, as well as to 

elucidate the structure of unknown and natural compounds. One major advantage of NMR analysis 

is its non-invasiveness and thus the samples can be recovered for further analyses. Another 

advantage of NMR is that the chemical shift scale is reasonably constant, there can be some small 

changes between samples, but nothing of the magnitude of the elution time shift in 

chromatography, allowing to a method that is relatively reproducible. Spectra are fast to acquire and 

for interesting spectra it is possible to perform many further experiments such as pulse sequences to 

further probe the structure of compounds in a mixture.  

Given its characteristics, NMR has become the method of choice for metabolomics studies, but also 

for quality control of complex mixture such as foods, plants or herbal remedies, and biofluids.  
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1.5 The workflow for metabolomic analysis 

Regardless of used approach, the metabolomics analysis comprises three main experimental stages:  

sample preparation, acquisition of the data using analytical methods and data mining using 

chemometric methods followed by compound identification. The resulting analysed data from the 

various experimental phases form the basis for meaningful biochemical interpretation.  

Sample preparation is a critical step in transforming the sample into a solution that can be analysed. 

This step involves a series of different experimental stages: selection and harvesting of samples, 

drying or enzyme quenching procedures, extraction of metabolites and preparation of the samples 

for analysis. The selection and harvesting of samples depend mainly on the biological question that 

seeks to investigate.  Quenching is the process of stopping biological reactions in a cell necessary to 

measure the true quantity of metabolites at a given time, it should be rapid to limit the leakage of 

metabolites. The extraction method is the process to obtain metabolites from the cells and must be 

chosen considering the biochemical composition of the system under investigation, the 

physicochemical properties of the target metabolites and the properties of the solvent used. Data 

acquisition or sample analysis requires advanced analytical platforms each with its own advantages 

and limitations, either in selectivity or sensitivity.  

In order to provide a holistic picture of the examined system a large number of metabolites should 

be quantified and all the obtained variables should be considered simultaneously, making univariate 

and other classical statistical methods unfeasible. In order to take into account also the correlations 

between the measured variables, multivariate statistical methods must be applied. Mathematical and 

statistical methods that allow to extract important information from multivariate data set belong to 

chemometrics discipline. In chemometrics, the most important task is to construct an organized data 

matrix containing the several samples and their measurements. In NMR spectroscopy, it is possible 

record a spectrum at hundreds of measurements (concentrations of metabolites) on a single sample. 

Since the resulting data matrix is usually extremely large, it is useful highlight significant differences 

and the main relationships between samples using multivariate analysis.  
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1.6 Plant Metabolomics 

Metabolomics is a key technology for understanding plant metabolism. It is well known that plants, 

being sessile obligate autotrophs, have been forced to evolve complex multicellular structures such 

as leaves, roots, stems and tubers each of which comprise multiple specialized cell types (epidermis, 

guard cells, parenchyma, glandular hairs, etc.) with a dedicated metabolism in order to perform its 

desired function and survive environmental changes (Hall 2006). In effect, plants are continually 

affected by abiotic (light, UV, water) and biotic (herbivory, parasitism and pathogen attack) stress 

factors and for this reason have developed complex defence responses based predominantly on 

metabolic changes. Speculative estimations of the total number of metabolites which are produced 

within the plant kingdom, including the ‘secondary’ metabolites which play specific roles in allowing 

adaptation to specific environmental changes, vary considerably but the real number is likely be 

more than 250 000. When a metabolic pathway is activated, precursors and intermediates are 

channelled to produce a metabolite. The production of these compounds can be regulated in turn by 

other compounds (signalling molecules, such as plant hormones) not related to the regulated 

pathway or intermediates that can feedback activate or inactivate different metabolic steps. This high 

complexity due to the enormous chemical diversity of the compounds, represents the main 

hindrance when characterizing the plant metabolome. Much of plant biochemistry can, 

unfortunately, still be defined in terms of unidentified compounds derived from undefined pathways 

and with unknown function. It is also for this reason that, owing to our restricted knowledge of 

plant biochemistry, the untargeted metabolomics is a particularly suitable approach. Having a more 

complete insight into the metabolic composition of plant, it will be possible to apply this knowledge 

both in fundamental research in order to provide a better understanding of plant metabolism and 

applicative research in order to discover plant compounds that could be important in improving 

human health. 

The application of metabolomics to plant science was pioneered by research groups at the Max 

Planck Institute. In 2004, Weckwerth and coworkers obtained a series of metabolomic data from 
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potato tubers using GC/MS (Weckwerth et al. 2004). They presented an approach to study of silent 

plant phenotypes and demonstrated that the structure of the correlation network could be changed 

in a mutant with a silent phenotype, in which metabolic changes were observed despite a lack of 

visible changes.  In recent years, metabolomics have drawn attention of researchers in different areas 

of plant science such as phytopathology, botany and systematics, stress and environmental 

physiology and phytochemistry.  

In particular, metabolomic research is utilized in studies relating to evaluation of the impact of biotic 

and abiotic stresses, of wounding, herbivory and infections on plant metabolism, to the 

characterization or classification of different species/cultivars, to determine genetic origin and 

cultivation conditions, to discriminate wild/transgenic plants, to discover new metabolites and to 

identify potential biochemical markers for contamination detection and product adulteration, but 

also to perform quality control of medicinal plants or of plant food, as previously described. 

Furthermore, metabolomics studies have been carried out to monitor metabolic changes during 

plant developmental, biomass accumulation and secondary metabolite production (Hall 2006).  

By way of example, Sardans and collaborators studied the metabolic changes of leaves of 

mediterranean sclerophyllous tree Quercus ilex after wounding treatment, simulating herbivore attack 

(Sardans et al. 2013). They observed a rapid increase in glucose, a shift in N-storing amino acids, 

from leucine and isoleucine to asparagine and choline and an increase in C-rich secondary 

metabolites content such as quinic acid and quercitol, both related to the shikimic acid pathway and 

linked to defence against biotic stress. 1H-NMR and multivariate data analysis were used to 

demonstrate the correlation between the specific metabolic profile of leaves, stems, roots and 

flowers of Catharanthus roseus and the expression of different flower colours suggesting an interesting 

application in the plant breeding industry (Pan et al. 2014). Metabolomics approach based on 1H-

NMR spectroscopy and  multivariate data analysis was also used to detecting both primary and 

secondary metabolites in Salvia miltiorrhiza and screening potential geographical biomarkers (Jiang et 

al. 2014), to monitor the metabolite response of plants to jasmonic acid (Kim et al. 2013), to 



15 

 

investigate samples of Greek grape marc spirits according to their provenance, variety, vintage year 

and production process (Fotakis et al. 2013), to quality assessment and authentication of virgin olive 

oil (Dais et al. 2013). NMR metabolic profiling were also applied to rice subjected to different 

stresses such as drought, extreme temperatures, and flooding to understanding the complex 

biochemical and molecular response of rice plants to submergence and provides insights into 

biological response mechanisms that can influence survival (Barding et al. 2013).  

Interestingly, NMR-based metabolomics was applied to the study of medicinal plants. In the field of 

herbal medicines or natural products, metabolomics is actually focus on the authentication and 

identification of herbal medicines and biomarker discovery required for both pharmaceutical and 

industrial purposes. Herbal medicines and their preparations have been widely used for hundreds of 

years all over the world. Among the characteristics of herbal medicine preparations, is that they are 

all presented either as single herbs or as a combination of several herbs in composite formulae. The 

incomparable molecular diversity and biological functionality that characterize the metabolites 

present in plant extracts are the major features that distinguish them as a potential drug source. 

However, the natural products-based drug discovery, poses some challenges, mostly connected with 

their inclusion in a complex matrix composed of mostly uncharacterized compounds with a large 

dynamic range (i.e. the difference in the levels of major compounds as compared to that of minor 

compounds, differences in polarity, in boiling points, or in melting points, etc.). On the other hand, 

one or two markers or pharmacologically active components in herbs and/or herbal mixtures have 

been used for evaluating the quality and authenticity of herbal medicines, both in the identification 

and quantitation of single herbs and in multicomponent preparations (Gad et al. 2013). However, in 

any medicinal plant and its extract, there are hundreds of unknown components, many of them 

present only in trace amounts. These multiple constituents, difficult if not impossible to separate 

into active parts, may work ‘synergistically’ and be responsible for its therapeutic effects. Moreover, 

the chemical constituents in medicinal plant may vary depending on harvest season, habitat, drying 

processes and many other factors. Consequently, to obtain a complete picture of the herbal 
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preparations that represent pharmacologically active and chemically characteristic components is not 

an easy task, but it seems necessary in order to ensure the reliability and repeatability of 

pharmacological and clinical research, to understand their bioactivities and possible side effects and 

to enhance product quality control.  

In herbal medicine researches, metabolomics approach based on 1H-NMR spectroscopy has become 

one of the most suitable technique to carry out comprehensive plant qualitative and quantitative 

analysis. It offers an integral view of the extract composition allowing the detection and quantitation 

of all metabolites contributing to the pharmacological activity. Metabolomics approach was used to 

screening bioactive metabolites responsible for antitussive and expectorant activities of Tussilago 

farfara L. For this purpose, different parts (roots, flower buds, and leaves) of the title plant were 

analyzed systematically (Li ZY et al. 2013). Untargeted metabolic profiling coupled to transcriptome 

analysis has been applied in Ophiorrhiza pumila hairy roots to understand the biosynthesis of the anti-

cancer alkaloid camptothecin, a potent inhibitor of DNA topoisomerase I activity, and of the 

anthraquinones, derived from the combination of the isochorismate and hemiterpenoid pathways 

(Yamazaki et al. 2013). A metabolic fingerprinting has been used to quantitative analysis of 

monoterpenoids, sesquiterpenoids, and cannabinoids in Cannabis sativa L.,. an important medicinal 

plant, and to clear chemotaxonomic discrimination between different C. sativa varieties for drug 

standardization purposes (Flores-Sanchez et al. 2012). A metabolomic profiling of Catharanthus roseus 

L. infected by phytoplasmas has been carried out using 1H- NMR spectroscopy and principal 

component analysis to identify those metabolites that were present at different levels in 

phytoplasma-infected C. roseus leaves than in healthy ones, indicating that the biosynthetic pathway 

of terpenoid indole alkaloids, together with that of phenylpropanoids, were stimulated by the 

infection of phytoplasma (Choi et al. 2004). Another popular and widely used herbal medicinal is 

Echinacea purpurea. Studies of its interactions with conventional drugs are of particular importance. 

Modarai et al. showed that Echinacea preparations and some common alkylamides, an important 

class of active constituents, weakly inhibited several cytochrome P450 (CYP) isoforms, with 
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considerable variation in potency. They used 1H-NMR and multivariate data analysis to investigate 

the nature of the compounds responsible for CYP3A4 inhibition, discovering extensive differences 

in the composition of the commercially available preparations, with an inevitably impact on the 

product efficacy, safety and pharmacological effects (Modarai et al. 2010). Metabolomics analysis has 

also been applied in Echinacea angustifolia cell suspension cultures under light controlled revealing 

accumulation of specific secondary metabolites, mainly caffeic acid derivatives never previously 

described (Guarnerio et al. 2012). Agnolet et al. (2010) used 1H NMR-based metabolomics and 

other metabolomics technologies to investigate different commercially available preparations of 

Ginkgo biloba, identifying unexpected and extract constituents. Commercial preparations of Ginkgo 

biloba are prepared from raw leaf extracts and pharmacological activity is attributed to a number of 

flavonoid glycosides and unique terpene trilactones (TTLs), but the composition of the entire 

preparation remains largely uncharacterized. Among medicinal plants, Panax ginseng is certainly the 

more studied example. Considering that the age of the ginseng plant is considered an important 

criterion to determine the quality of this species, metabolite profiling has been applied to 

discriminate the age of P. ginseng samples confirming a potential tool to standardize quality control in 

the P. ginseng industry (Kim et al. 2011). Moreover, non-targeted metabolomics approach has been 

applied in hairy roots of P. ginseng to identify key metabolites that can be used as biomarker 

candidates for quality assurance in ginseng (Kim et al. 2012). Among medicinal plants, Hypericum 

perforatum is one of the most prominent and best investigated medical plants.  
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1.7 Hypericum perforatum 

1.7.1  Taxonomy and morphological characters 

In earlier classifications, Hypericum perforatum L. was included in the family Clusiaceae (Guttiferae), 

under the subfamily Hypericoideae. Recent molecular phylogenetic analyses suggested that 

Hypericoideae do not form a monophyletic group with other Clusiaceae but is a distinct family, 

Hypericaceae (Stevens et al. 2007).  

The plant is a glabrous perennial, erect and usually woody at the base. The leaves are opposite, 

simple and characterized by the presence of different types of secretory structure including 

translucent glands, black nodules and secretory canals that accumulate pharmacologically active 

compounds (Ciccarelli et al. 2001). In particular the glands translucent, distributed over the entire 

surface of the leaf blade, mainly contain essential oils, while black nodules are generally localized on 

the stem, leaves, flowers and contain hypericin and pseudohypericin. The flower has five short, 

subequal, entire, imbricate, basally connate sepals, and five persistently withering yellow petals. The 

ovary is superior, capsicular, and three-styled whereas the stamens are many, arranged in bundles of 

threes. The flowers are profuse, arranged in branched cymes which bloom from June until 

September (Crockett et al. 2011).  
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1.7.2 Hypericum perforatum in history 

Hypericum perforatum, also known as St John' s wort, is a herbaceous plant native to Europe and Asia 

but naturalized in many parts of the world, notably North America and Australia (Nurk et al. 2013). 

There are several explanations as to the origins of the names hypericum and St John's wort. 

Commonly, the name υπερεικον was given just by the ancient Greek who attributed to the plant also 

the ability to protect from the devil or evil spirits (υπέρ – above, εικών – image) and used it to 

decorate religious images. In the Middle Ages, the name for this plant was fuga daemonum (flight of 

the demons) and was originally used against melancholy, mood swings, nervous agitation, and some 

forms of hysteria, which were once attributed to evil influences. The first Christians gave the name 

“St John's wort” because it flourished around the June 24St (Baptish John's Day) (Barnes et al. 2001, 

Saddique et al. 2010).  

Long before drugs were invented, herbs were proved to have strong therapeutic properties and H. 

perforatum is one of the oldest and best investigated medicinal herbs, since antiquity.  

The first to describe the therapeutic properties of the plant as a healing, diuretic, analgesic, and a 

drug antimalaria, was Pedanius Dioscorides, the most popular pharmacologist of antiquity (1st 

century a.c.). In his work, “About Medical Material”, a synopsis regarding plants, he describes 

Hypericum as follows: “It is a big, tufted, red bush; its flower resembles the leucoia and, if rubbed 

between the fingers, it produces a juice that resembles human blood”. For this reason the plant has 

been named “Androhaimon” (human blood) (Istikoglou et al. 2010). His contemporary Greek and 

Roman physicians, Galen and Plenius respectively, found it extremely effective for the healing of 

snake bites, when mixed with wine. For many centuries, Hypericum has been associated with 

pharmacy and folklore and among the first most effective and widely spread pharmaceutical uses of 

H. perforatum in Europe after the 16th century was the use of the distilled oil of the herb as a therapy 

for wounds and bruises. It was so effective that surgeons not only used it to clean wounds but also 

included it in the first official pharmacopoeia of London as Oleum Hyperici (Urdang 1944). Other 

popular folk-uses recorded for St. John’s Wort included as a decoction for gravel and ulcerations of 
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the ureter (Hill 1808), for ulcerations of the kidneys, as a febrifuge or vermifuge, and for jaundice, 

gout, and rheumatism (Greene 1824). In the last century, Duke et al. (1985) recounted its use in folk 

medicine in the treatment of ovarian carcinoma, uterine cancers, stomach cancers, and tumors of the 

lymph. Duke cites a Russian application in bronchial asthma and numerous others: diarrhea, 

dysentery, neurasthenia, nervous depression, hysteria, chronic catarrh, rabies, worms, hemorrhages, 

and bladder problems, to name a few.  

For a long time, St. John's wort was used extensively in herbal products as well as in homoeopathic 

preparations, in order to treat a vast number of disease, like neuralgia, sciatica, menopausal neurosis, 

anxiety, as a nerve tonic, skin infections and wounds (Newall et al. 1996). In reality today, H. 

perforatum is best known for its use in the treatment of mild-to-moderately severe depression 

(Butterweck  2003, Crockett and Robson 2011, Nahrstedt et al. 2010).  
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1.7.3 Bioactive compounds and pharmacological effects of Hypericum perforatum 

preparations  

The term “bioactive compound” is defined as the specialized metabolite presents in particular plants 

for which there is either direct evidence of a biological effect on other biological systems or a 

structural similarity to known other bioactive compounds. In many cases specific bioactive 

compounds or their combinations, useful in human health are not completely known. Since it was 

found that the effectiveness of medical preparations of Hypericum is based on the entire mixture of 

the metabolites, through a synergistic action of the different components, rather than on the single 

constituent, finding suitable methods that enable the analysis of the entire extract has become the 

current challenge (Tatsis et al. 2007).  

Hypericum perforatum contains a wide spectrum of chemical compounds, among which flavonoids, 

biflavones, naphtodianthrones, phloroglucinols, phenylpropanes, procyanidines. Additionally, lesser 

amounts of tannins, xanthones, essential oils, and amino acids are present (Butterweck et al. 2007, 

Saddique et al. 2010). Flavonol glycosides represent with an amount of up to 4% the largest group of 

secondary metabolites. The major components, rutin, hyperoside, isoquercitrin, quercitrin, 

miquelianin, and quercetin, in smaller amount, are found in the aboveground portions of the plant, 

including the leaves, stalk, flowers, and buds. The biflavonoids such as I3, II8-biapigenin and 

amentoflavone exclusively occur in the flowering part of plant. The naphtodianthrones hypericin, 

pseudohypericin, protohypericin and protopseudohypericin occur in the flowers and leaves of the 

crude drug material in concentrations of 0.03 to 0.3%. The amount of pseudohypericin is 

approximately 2 to 4 times higher than that of hypericin. The main representative of the 

phloroglucinol group of constituents is hyperforin. Together with adhyperforin it occurs in the “pale 

glands” of the leaves (Crockett and Robson 2011). Hyperforin occurs in amounts up to 2–5% in the 

crude drug material and can reach about 6% in some extracts. The phenylpropanes mainly occur as 

esters of hydroxycinnamic acids, such as p-coumaric acid and caffeic acid. Besides, ferulic, isoferulic, 

and gentisic have also been observed. The proanthocyanidins are represented by tannins. The 
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essential oil of H. perforatum contains aliphatic compounds (2-methyl octane, n-nonane, n-decane, n-

undecane, n-tetradecanol, 2-methyl-decane, and 2-methyl-dodecane) along with terpenoids (α-

pinene, β-pinene, geraniol, β-caryophyllene, β-farnesene, humulene, and germacrene D) (Saddique et 

al. 2010). Differences in the biosynthesis of sesquiterpene and aliphatic hydrocarbons, and in 

oxygenated aliphatics, in flowers and leaves have been indicated. The data have shown that 

concentrations of β-caryophyllene and caryophyllene oxide in essential oils from the leaves are 

higher than those from the flowers, whereas dodecanol, spathulenol, viridiflorol, carotol and 

tetradecanol are present in higher quantities in the flowers (Radusiene et al. 2005). Other chemical 

constituents are xanthones and kielcorin C, acids (isovalerianic, nicotinic, myristic, palmitic, and 

stearic), carotenoids, choline, nicotinamide, pectin, β -sitosterol, pectin, fatty acids, amino acids, and 

vitamin C. Xanthones, in particular kielcorin, 1,3,6,7- tetrahydroxyxanthone and mangiferin, are 

present at higher concentrations in the roots, whereas the upper parts contain 1,3,6,7- 

tetrahydroxyxanthone at 0.0004% and traces of mangiferin in the dried material (Jürgenliemk et al.  

2002). The concentrations of all these constituents in medical preparations depend on many factors: 

geographic origin of the plant, harvest of wild cultivated plants, harvest time (there is a decrease in 

naphthodianthrones and an increase in phloroglucinols from flowering to fructification), processing 

of fresh or dried plant material, lipophilicity and temperature of the extraction solvent and final 

formulation, exposure to sunlight, time and conditions of storing (Isacchi et al. 2007). Therefore, 

information on the specific preparation used in experiments or clinical trials is crucial for 

interpretation and reproducibility of data.  

Although >150 constituents that exhibit many synergistic and partly antagonistic effects have thus 

far been identified in H. perforatum, most intensively studied constituents are naphthodianthrones 

(hypericin and pseudohypericin) and phloroglucinols (hyperforin and adhyperforin) (Butterweck et 

al. 2007), for their antidepressive activity.  

Depression is a mental illness characterized by symptoms such as anxiety, hopelessness, loss of 

energy and appetite, insomnia, and thoughts of death. It is one of the leading causes of disability 
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worldwide, with approximately 120 million persons affected in industrial countries. In recent years, 

the consumption of H. perforatum derived products has increased dramatically, and H. perforatum is 

presently one of the most consumed medicinal plants in the world for the treatment of mild to 

moderate forms of depression More than 50 controlled clinical studies in depressed patients have 

been performed with a dosage of 600-900 mg of extract per day (equivalent to approximately 3 to 5 

g of crude drug material), showing efficacy equal to standard antidepressants including the modern 

selective serotonin reuptake inhibitors (SSRIs) in the treatment of mild to moderate depressive 

episodes and for the short-term treatment of symptoms in mild depressive disorders (Nahrstedt et 

al. 2010, Chen et al. 2011, Kasper et al. 2010). Studies on chronic stress and antidepressant animal 

models (e.g. forced-swimming test) have shown that the treatment with H. perforatum extracts caused 

downregulation of β-adrenergic receptors (De Marchis et al. 2006), and altered animal behaviour, 

consistent with the effects of conventional antidepressants (i.e. fluoxetine; De Marchis et al. 2006, 

Butterweck 2003, Crupi et al. 2011, Bukhari et al. 2013). 

Although H. perforatum is most widely used for either the treatment of depressive syndromes, the 

literature reveals uses of this plant for other pharmacological and medical purposes.  

Recently, it has been proposed the use of H. perforatum preparations for the prevention of 

Alzheimer’s disease because hypericin may interfere with the processes of polymerization of beta-

amyloid peptide responsible for the onset of Alzheimer’s disease (Griffith et al. 2010). Moreover, it 

is also has been hypothesized a protective effect of H. perforatum on gastritis and gastric ulcer 

(Zdunić et al. 2009). Lately, it has been also demonstrated that H.perforatum compounds protect rat 

and human pancreatic islets against cytokine effects by counteracting key mechanisms of cytokine-

mediated β-cell injury and represent promising pharmacological tools for prevention or limitation of 

β-cell dysfunction and loss in type 1 diabetes (Novelli et al. 2013).  

Increasing evidence also suggested that H. perforatum possess anti-inflammatory activity which could 

be potentially be used to alleviate conditions like inflammatory bowel disease, diarrhea, and 

respiratory infection (Birt et al. 2009, Zdunic et al. 2009). Huang et al. (2011) have shown that H. 
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perforatum ethanol extract inhibited LPS-induced prostaglandin E2 (PGE2) and nitric oxide (NO) 

production, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in RAW 264.7 mouse 

macrophages, attributing  part of the activity of the extract to a group of four compounds including 

pseudohypericin, amentoflavone, quercetin and chlorogenic acid.   

Pharmacological research has revealed two different fields in anticancer effects of H.perforatum: light-

dependent mechanisms related to photoactivation of the hypericins and light-indipendent 

mechanisms attributable to hyperforin. Huntosova et al. (2012) investigated cell death response of 

U87 glioma cells on hypericin photoactivation and observed that was strongly influenced by the 

dynamics of hypericin subcellular redistribution processes and its aggregation in cellular organelles. 

Sharma et al. (2012) treated human squamous cell carcinoma cells in vitro with hypericin (1-7 µM) 

photoactivated resulting in greatly increased rates of cell death: the authors postulated a caspase-

independent apoptotic mechanism of cell death. Menichini et al. (2013) reported significant 

phototoxicity with 50% cell destruction in A375 human melanoma keratinocyte cells at a 

concentration of 78 µg/mL of a hydroalcoholic H. perforatum extract and UV light. Light –

independent anticancer mechanisms of hyperforin were reported by Schempp et al. (2002). A novel 

activity of hyperforin, namely its ability to inhibit the growth of tumour cells by induction of 

apoptosis, has been described. Hyperforin was able to inhibite the growth of various human and rat 

tumour cell lines in vivo, generating dose-dependent apoptotic oligonucleosomes, typical DNA-

laddering and apoptosis-specific morphological changes. Moreover, hyperforin was capable of 

releasing cytochrome c from isolated mitochondria, suggesting that hyperforin activates a 

mitochondria-mediated apoptosis pathways as confirmed in acute myeloid leukemia (AML) cell lines 

by Merhi et al. (2011). Additionally, numerous studies have supported wound-healing effects, 

antimicrobial properties (one of the oldest historical uses of HP, predominantly as St John’s wort 

oil) against a number of bacterial and fungal strains and antiviral activity of H. perforatum.  

Dermatological applications of St. John’s wort have a long tradition. As previously said, topical St. 

John’s wort preparations are used for the treatment of minor wounds and burns, sunburns, 
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abrasions, bruises, contusions, ulcers, psoriasis, rheumatism and myalgia (Wolfle et al. 2013). 

Pharmacological research supports the use in these fields suggesting interesting pharmacological 

effects that include antioxidant, anti-inflammatory, anticancer and antimicrobial activities. The 

antibacterial activity of an ethanolic extract of H. perforatum was investigated against several Gram-

negative bacteria such as Pseudomonas, Erwinia, Enterobacter, Klebsiella, Agrobacterium, Azotobacter and  

Gram-positive bacteria such as Bacillus subtilis. These species (except Klebsiella pneumonia) showed 

extreme sensitivity to the extract of H. perforatum (Saddiqe et al. 2010). Recently, it has been 

demonstrated the antifungal activity of root extract of H. perforatum against plant (Crockett et al. 

2011) and human pathogens (Tocci et al. 2010, 2011, 2012, 2013). Antifungal activity has been 

attributed to xanthones, secondary metabolites belonging to the class of polyphenols. Antiviral 

activity of several Hypericum constituents against many forms of viruses in vitro has been 

demonstrated over the last years, including herpes simplex virus type 1 and 2 and anti-hepatitis B 

virus (HBV). In particular, it has been observed that ethanol extracts of H. perforatum L. are able to 

inhibit HBV transcription in HepG2 2.2.15 cells, a stable HBV-producing cell line, suppressing the 

secretion of HBsAg and HBeAg in a dose-dependent manner, as well as the extracellular HBV 

DNA (Pang et al. 2010). However, clinical research in these fields is still scarce. Furthermore, 

considering that 30-40% of the compounds present in H. perforatum extracts are as yet not 

structurally assigned, and among these could be further constituents directly or indirectly 

contributing to the overall clinical efficacy, identification of the active constituents is highly 

important in order to ensure pharmaceutical and thereby therapeutic quality of the crude drug and 

its extracts. On the other hand, to a lesser extent the identified active compounds may be used as 

leads for the development of highly active synthetic drugs. The knowledge of active compounds also 

helps to optimize the crude drug material by selection and breeding. Once the active constituents are 

known, further investigations on the mechanism(s) of action can be performed. Finally, not only 

active constituents of an herbal preparation should be known but also its entire phytochemistry, 

because interactions between constituents are possible in a positive and a negative manner.  
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2.1 Plant material and organ culture 
 
Seeds of H. perforatum were surface sterilized in accordance with Zobayed et al. (2004) and 

transferred on Murashige and Skoog (MS) medium (Duchefa Biochemie, Haarlem, The 

Netherlands) supplemented with 3% (w/v) sucrose and solidified with agar. Seed cultures were 

grown under a photoperiod of 16/8 h (light/dark) at 26°C (photon lux density, 70 μmol m−2 s−1). 

To induce the formation of callus, leaf and stem explants were excised from 2-month-old seedlings 

and placed on solid MS medium supplemented with 5 mg l−1, 2,4-dichlorophenoxyacetic acid 

(Duchefa Biochemie, Haarlem, The Netherlands), 1 mg l−1 kinetin (Duchefa Biochemie, Haarlem, 

The Netherlands), and 3% (w/v) sucrose; the cultures were maintained under continuous darkness. 

After 28 days of culture, the callus were transferred to hormone-free (HF) agarized MS medium to 

induce the formation of roots. Regenerated roots, 2–3 cm in length, were isolated from the callus 

(after 30 days) and subcultured in the same medium. To induce branching (lateral root formation) 

and to increase biomass, the roots (after 30 days) were cultured in MS medium supplemented with 

glucose (2,2 g l-1) and indole-3-butyric acid (IBA) (1 mg l−1). 

Liquid cultures were established after 30 days, by inoculating 1 g fresh weight (FW) of roots in 

magenta vessels containing 80 ml liquid MS medium supplemented with glucose (2,2 g l-1) and IBA 

(1 mg l-1). The magenta vessels were shaken at 100 rpm at 25±1°C and maintained in the 

continuous darkness. Since optimum nutrient concentration is a critical point in controlling growth 

of regenerated roots and accumulation of secondary metabolites (Lian et al 2002), the medium was 

renewed every 4 days, time necessary for biomass duplication. The roots were elicited using chitosan 

(medium molecular weight; Sigma-Aldrich, Milan, Italy), dissolved in acidified water with HCl (1M),  

at a final concentration of 200 mg l−1 which was added using 0,22 µm sterile filter. An adequate 

amount of water was added to the control samples.  
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2.2  NMR sample preparation 

The metabolic quenching of the root samples was performed by a rapid freezing in liquid N2. 

Frozen biomass (1.5 g) was powdered by steel pestle in liquid N2 and extracted by a solvent mixture 

of methanol, chloroform and distilled water at 2: 2: 1.2 (v/v ratio), according to the modified Bligh-

Dyer procedure for plant samples (Miccheli et al. 1988, Manetti et al. 2004). 4.5 ml CH3 OH: CHCl3 

(2:1 v/v ratio) mixture was added to frozen powder and after mixing 1.5 ml CHCl3 and 1.8 ml H2O 

were added. The samples were mixed by vortex for 1 min and kept overnight at 4°C then 

centrifuged for 30 min at 11,000 × g at 4°C. The resulting upper hydro-alcoholic and lower organic 

phases were carefully separated and dried under N2 flow. The dried phases were stored at -80°C until 

the NMR analysis. 
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2.3  NMR spectroscopy 

The dried residue of the hydro-alcoholic phase was dissolved in 0,6 ml CD3OD/D2O (1:2 v/v ratio) 

containing 3-(trimethylsilyl)- propionic-2,2,3,3,-d4 acid sodium salt (TSP, 2mM) as internal standard 

(chemical shift reference).  The dried residue of the chloroformic phase was dissolved in 0,6 ml 

CDCl3, (Cambridge Isotope Laboratories, Inc.), (99,8%), containing 1,1,3,3,5,5-hexamethyl-cyclo-tri-

siloxane (HMS) (Sigma-Aldrich, Usa), as internal standard (2mM). NMR spectra were carried out 

using a Bruker Avance 400 spectrometer operating at a frequency of 400,13 MHz for the proton. 

Monodimensional proton spectra were acquired at a temperature of 298 K with a spectral width of 

15 ppm, 64k data points, 128 scans with an acquisition time of 5.45 s and a relaxation delay of 5.05 s 

for a total repetition time of 10.5 s complying with the full relaxation condition after a 90 degree 

pulse. 

The univocal assignation of proton resonances was achieved by means of bidimensional 1H 

homonuclear Total Correlation Spectrosopy (TOCSY) experiments and by bidimensional 1H-13C 

heteronuclear Single Quantum Coherence (HSQC) experiments. 

Homonuclear experiments were recorded at 298 K with a spectral width of 15 ppm in both 

dimensions employing a matrix of 2k x 512 data points, a repetition time of 2 s and 64 scans. The 

mixing time for the 1H–1H TOCSY was 110ms. HSQC experiments were acquired with a spectral 

width of 15 ppm in proton dimension and 220 ppm in the carbon one employing a matrix of 2k x 

256 data points for the proton and the carbon dimensions respectively, a repetition delay of 2 s and 

128 scans. The water signal was suppressed using solvent pre-saturation, with the irradiation time 

following the relaxation delay. In order to minimize the variability of the signals intensity due to 

water suppression, a careful calibration of the soft pulse for water suppression was always 

performed. 

1D-NMR spectra were processed with 1D-NMR Manager ver. 12.0 software (Advanced Chemistry 

Development, Inc., Toronto, Ontario, Canada), whereas 2D-NMR spectra were processed by using  

Bruker Top Spin (Bruker, Germany). 
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The quantification of  the signals of  extracts was based on the respective reference used as internal 

standard at a known concentration (2mM). The integral of  each signal was normalized by the 

number of  protons and the value obtained was reported in concentration through the relationship: 

  

where  and  represent the concentration of  the single metabolite and the reference respectively, 

while  represent the area of  the corresponding integral. The concentration obtained was 

normalized to the weight of  the sample compared to the volume of  600 μl and then expressed in 

mmol/g. 
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2.4 Multivariate data analysis 

Multivariate data were analysed by Principal Component Analysis (PCA), ANOVA simultaneous 

component analysis (ASCA) and Partial Least Square 2 (PLS2).  

 

2.4.1  Principal Component Analysis (PCA) 

The most widely-used multivariate techniques in metabolomics study are those based on projection 

methods which combine the measured variables into so-called latent variables.  

Principal components analysis (PCA) is the most widespread multivariate chemometric technique 

performed to explore samples in a data set (Brereton 2003). Multivariate datasets can be represented 

as a matrix X. Each row of this matrix contains the measurements of one sample n and each column 

contains the measurement of one variable j. Given a dataset, described by j variables, each variable 

could be regarded as constituting a different dimension, in a p-dimensional hyperspace. Multi-

dimensional hyperspace is often difficult to visualize and thus the main objectives of PCA are to 

simplify and reduce dimensionality of original data set extracting the smallest number components 

that account for most of the variation in the original multivariate data and to summarize the data 

with little loss of information. The new obtained set of variables is formed by linear combinations of 

the original variables which maximize the variance in the data set and are called principal 

components (PCs). These PCs are extracted in decreasing order of importance so that the first PC 

accounts for as much of the variability in the data as possible and each successive component 

accounts for as much of the remaining variability as possible. To reproduce the total system 

variability of the original n variables, we need all PCs. However, if the first few PCs account for a 

large proportion of the variability (80-90%), we have achieved our objective of dimension reduction. 

From a mathematical point of view, PCA results in an abstract transformation of the original data 

matrix, which takes the form X = T.P + E, where T is a matrix containing the component scores of 

the model, P is a matrix containing the component loadings and E is a matrix containing the 

residuals of the model. Hence, each PC is characterized by two types of information, the score and 
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the loading. The scores or coordinates of the samples along a component describe the structure of 

the data in terms of similarities and differences between the samples. The loadings are correlation 

coefficients between the PC scores and the original variables and measure the importance of each 

variable in accounting for the variability in the PC. On the other hand, the loading represent the 

weight for each original variable when calculating the principal component. Samples with similar 

scores along a component will be similar for variables with a high loading for that component. 

There are two way to interpret the obtained results: the score plot that summarize the relationship 

among the observations (or samples) and the loading plot that summarize the relationship among 

the variables.  

Although PCs are abstract mathematical entities they are represented as vectors in an imaginary 

multidimensional space, in which each vector represents an axis. The first principal component is 

the direction in multidimensional space along which projections have the largest variance. The 

second principal component is the direction which maximizes variance among all directions 

orthogonal to the first.  

In practice, PCA acts as a form of variable reduction, reducing the large original dataset to a much 

smaller more manageable dataset which can be interpreted more easily.  
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2.4.2 Partial Least Square (PLS) 

PCA does not always extract hidden information that explains system behaviour because this may 

not correspond to the information summarized in the latent variables. In these cases, latent variable 

regression methods as Partial Least Square (PLS) may be preferred. PLS is a supervised pattern 

recognition method to identify interesting metabolites through orthogonal score vectors, also called 

latent variables (LV) or components, maximizing the covariance between different blocks of 

variables (Brereton 2003), called X and Y. It is particularly useful when we need to predict a set of 

dependent variables from a (very) large set of independent variables (i.e., predictors). In PLS 

modelling we assume that the investigated system is influenced by a few underlying LVs. The 

number of these LVs is usually not known, and one aim with the PLS analysis is to estimate this 

number.  

Although there are several algorithms to describe PLS, it is often presented in the form of two 

equations: 

X = T. P + E 

c = T. q + f 

where X represents the experimental measurements (metabolites) and c the concentrations. The 

vector q has some analogy to a loadings vector, although is not normalized. E is an error matrix for 

the x block and f an error vector for the c block.  

It is important to emphasize that T and P for PLS are different to T and P obtained in PCA, and 

unique sets of scores and loadings are obtained for each compound in the dataset. Moreover, scores 

and loadings are dependent both on experimental measurements (i.e. spectra) and the 

concentrations. The optimum number of significant PLS components can be estimated using cross-

validation. Unlike applications in PCA for pattern recognition, in PLS most prefer to use the c block 

performance as a criterion. Typically cross-validation errors level off and then increase after the true 

number of components has been calculated. In contrast, auto-prediction errors always decrease with 

increasing number of components. The reason for this is that the later components model noise, 
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and so samples left out of the original calibration set are predicted worse when using more 

components. Hence the shapes of graphs for auto-prediction and cross-validation will diverge at a 

certain point. This information is important because, to be effective, calibration models will be used 

to determine the concentration of unknowns, so the user must understand at which point he or she 

is ‘over-fitting’ the data. 

Two variants of PLS are the most frequently used as PLS regression methods: the most common 

PLS1 is used when one of the block of data consists of a single variable) and PLS2 is used when 

both blocks are multidimensional. 

In particular PLS2, is an extension to PLS1. Considering that the concentration (or c) block consists 

of more than one variable, PLS2 is helpful especially since it would predict all the concentrations 

simultaneously. Instead of obtaining several independent models, we can analyse all the data in one 

go. In PLS1 one variable is modelled at a time, whereas in PLS2 all known variables can be included 

in the model simultaneously. If there are interactions between variables this method can have 

advantages. A second advantage is that only one PLS2 model is required however many c variables 

are measured, whereas separate PLS1 models (often with different numbers of significant 

components) are required for each c variable.  In PLS2, the regression is carried out by projecting 

both blocks onto a reduced space of latent variables (LVs), selected as the ones into which the 

covariance between X and Y is maximal. Hence, the corresponding X- and Y-scores possess the 

property of explaining as much as possible of the variation in the respective block under the 

constraint of being linearly correlated. Therefore, together with the overall regression relation linking 

the two blocks, PLS2 provides a wealth of tools to interpret the correlation structure. The inspection 

of the distribution of the samples into the space spanned by the significant LVs (scores plot) allows 

defining similarities and differences between the analysed samples. On the other hand, the 

examination of the contribution of the experimental variables to the definition of the latent vectors 

(X- and Y-loadings) allows interpreting the correlation structure within each block and, when the 

two sets of loadings are plotted together in what can be called a biplot, to unravel the relations 
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between variables in the different blocks. Operationally, when analysing a loadings biplot, useful 

information can be obtained; first of all, the variables lying farthest from the origin are those 

contributing the most to the model. Moreover, variables falling close to one another on the plot are 

highly positively correlated, and negatively correlated to the variables lying on the opposite side of 

the plot with respect to the origin. Lastly, when comparing the scores and the loadings plot (which 

refer to the same set of latent vectors), one can state that samples occupying a position of the scores 

plot where one or a group of variables lies in the corresponding loadings plot, have the highest value 

of this(ese) variable(s). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 

 

2.4.3  ANOVA-Simoultaneous component analysis (ASCA) 

A novel approach for the analysis of multivariate data is ANOVA-simultaneous component analysis 

(ASCA). In this method the parameter estimation aspect of ANOVA is merged with PCA or 

Simultaneous Component Analysis (SCA), such that the drawbacks of both methods are removed 

(Jansen et al. 2005). As a matter of fact, ANOVA is a univariate method used to determine the effect 

of different experimental factors on the variation in a dataset but cannot take the covariance 

between different variables into account. SCA can be seen as PCA for multiple matrices and is a 

widely used method that models the relationships between the different variables in a multivariate 

dataset by analyzing its covariance or correlation matrix. However, PCA or SCA, does not take the 

experimental design into account, which means that the different contributions to the variation 

caused by the experimental design are confounded in the model. Indeed, ASCA takes both the 

covariance between the multiple variables and the design of the experiment into account and is 

particularly useful when the significance of the effect of one or more factors on the experimental 

data can be evaluated. In particular, it operates by partitioning the variation of the experimental 

signal collected on different samples into the contributions induced by the effect of controlled 

factors, usually a treatment or an experimental condition, or of their interactions, and by analyzing 

the resulting matrices by SCA (Smilde et al. 2005). Simultaneous component analysis is then 

performed on the individual matrices to model the variability corresponding to each effect. From a 

purely mathematical standpoint, SCA is identical to PCA: the difference is only philosophical in 

nature. Indeed, in SCA different samples are modelled at the same time. Accordingly, each of the 

matrices resulting from the ANOVA partitioning is decomposed as: 

     i

T

iii EPTX 
  (1) 

where Ti and Pi are the scores and loadings for the ith partition, respectively, and Ei is the 

corresponding residual matrix.  

It must be stressed that for mean centred two level balanced design like the one in this study, all the 

partitions corresponding to main effects and interactions are rank one, resulting in zero errors.  
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As previously described, ASCA partitions the variation of the original matrix into the contribution 

of the main effects of the controlled factors, of their interactions and residuals. The extent of each 

contribution is expressed in the form of the sum of squares of the elements of the matrix 

corresponding to the effect: 

 2
i j

k

ijkk xSSQ X
 (2) 

where xk
ij is the ith row, jth column entry of the matrix Xk. In order to assess whether an effect is 

significant or not, the experimental sum of squares has to be compared with the distribution of 

values corresponding to the null hypothesis. In this study, for each factor and interaction, the 

distribution of the values of the sum of squares corresponding to the null hypothesis (no 

significance of the considered effect) was estimated non parametrically by means of a permutation 

(randomization) test. The permutation test works by uncoupling the group labels from the data and 

randomly reassigning them: it does not change the metabolite value for a sample, but just reassigns 

the sample randomly to one of the treatment groups. Partitioning the permuted data according to 

the ANOVA scheme and computing the corresponding sum of squares 

     
 2,

i j

permk

ij
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k
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            (3) 

allows it to be checked whether the results with randomized data are as different from zero as those 

obtained from the experimental data. Repeating the randomization procedure for an appropriate 

number of times, each time calculating the corresponding sum of squares, provides an empirical 

distribution of the SSQk values for the null hypothesis. Validation of the significance of the effect is 

then carried out by comparison of the SSQk obtained from the experimental data with this 

distribution (Vis et al. 2007). 

The total variation of the experimental matrix was then partitioned according to equation 1 and the 

significance of the main effects (time and/or elicitation) and of their interaction was evaluated by 

permutation test (Vis et al. 2007).  
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SCA (after Pareto scaling) was used to model the variation in the two corresponding matrices Xtreatment 

and Xtime. As only two levels were considered for each factor, single component models explained 

100% of the variance of the individual matrices, i.e. each matrix Xi was decomposed into the 

product of one score and one loading vector. 

In order to use SCA results for the interpretation of the metabolic effect of the considered factors, 

the significance of the contribution of the experimental variables to the definition of the models (i.e. 

the significance of the loadings) had to be assessed: if the loading of a variable is statistically 

different from zero, then the factor has an effect on the concentration of that metabolite. In 

particular, a bootstrap procedure was used to calculate the empirical distribution of the loadings, so 

as to be able to check their significance. Operationally, at each bootstrap cycle, a new partition Xi
bstp 

was constructed from the mean centered matrix by including, for each level, a random subset of the 

original samples with repetitions, taking care that the numerosity of each treatment group was 

preserved. For instance, if the effect considered has two levels and, in the original matrix, samples 1-

10 correspond to level 1 and samples 11-20 correspond to level 2, one bootstrap cycle could 

produce a matrix made up of samples [1 2 2 2 5 5 6 7 9 10 12 13 13 14 16 16 16  18 19 19]. ASCA 

analysis on this matrix will result in an estimate of the loading vector for the effect so that repetition 

of the procedure for a significant number of times (in our study 100000) will produce an empirical 

distribution of the values of the loadings for each variable. A metabolite is then considered to 

contribute significantly to the model if, based on this distribution, its loading is statistically different 

from zero. 
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2.5  Histological analysis 

To investigate the effect of culture time and chitosan elicitation on root anatomy, sections of fresh 

samples and fixed samples embedded in resin were analysed. 

To obtain fresh sections, in vitro regenerated roots were embedded in agar (4%), longitudinally and 

transversely sectioned at 30 µm thikness with a vibratome (T.P.I. series 1000), stained with 0.1% 

toluidine blue, and directly observed under a light microscope (Zeiss Axioscop 2 Plus) equipped 

with a digital camera (Zeiss AxioCam MRc5).   

To obtain resin sections, root samples were fixed for 24 h in 70% ethanol and dehydrated for 12 h 

trough two soak in absolute ethanol series. Pre-infiltration phase was carried out by transferring root 

samples in a mixture (basic solution) composed by equal parts of absolute ethanol and base liquid 

Technovit 7100 (1:1 v/v) at 4 °C, for 2-3 h. Samples were infiltrated for 24 h in a working solution 

constituted by 1 g hardener I (=1 bag) dissolved in 100 ml base liquid Technovit 7100 and mixed for 

10 minutes. Polymerization phase was carried out in a mixture composed by 1 ml hardener II added 

to 15 ml of working solution. Root samples were embedded into 1-3 ml of polymerization solution 

and poured in histoforms, at room temperature (23 °C) for 24 h. To mount samples, a mixture of 

Technovit 3040 in a volume ratio of 2 parts powder to 1 part liquid was used. The mixture was 

poured into the recess at the back of the histoblocs to a level of about 2 mm above the base of the 

histoblocs. After about 10 min, the histoblocs together with the fixed roots was removed from the 

histoforms. Fixed roots were longitudinally and transversely sectioned at 7 µm with a microtome 

(Microm HM 350 SV microtome, Microm, Germany), stained with 0.1 % toluidine blue and 

observed under a light microscope.  

To investigate the effect of culture time and chitosan elicitation on roots morphology, whole roots 

samples were analyzed by a Zeiss stereomicroscope equipped with reflected and transmitted light.  
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2.6  Histochemical analysis 

Regenerated in vitro roots were analyzed through histochemical essay for the terpenes detection.  

Roots samples were embedded in agar (4%), longitudinally and transversely sectioned at 30 µm 

thikness with a vibratome (T.P.I. series 1000), stained with Nadi reagent and observed under a light 

microscope. Nadi solution was prepared at the time of use, mixing 0.5 ml of a 1% α-naphthol 

solution in 40% alcohol with 0.5 ml of 1% dimethyl-p-phenylenediamine chloride in water and with 

49 ml of 0.05 M phosphate buffer [pH 7.2]) (David et al. 1964). Some roots were directly treated 

with the reagent Nadi, fixed on slides and examined with a Zeiss optical microscope.  The analyses 

were also performed on roots of seedlings obtained by in vitro seed germination.  
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CHAPTER 3 

STUDY I 

A non-targeted metabolomics approach to evaluate the effects of biomass growth and 

chitosan elicitation on primary and secondary metabolism of Hypericum perforatum in vitro 

roots after 24 and 72 hours 
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3.1  Introduction 

Hypericum perforatum (common St. John’s wort) is a perennial herb which is distributed globally 

(except Antarctica) (Nürk et al. 2013) and is commonly used worldwide for the treatment of mild 

and moderate depression (Butterweck 2003, Crockett and Robson 2011, Nahrstedt et al. 2010). 

Research on St. John’s wort has been focused primarily on hypericins and hyperforins as the major 

constituents of the aerial parts of the plant and responsible for the antidepressant activity (Walker et 

al. 2002). H. perforatum plant extracts also show a broad range of other pharmacological activities, 

including anti-cancer, anti-inflammatory, antiviral, antioxidant, and antibacterial properties (Birt et al. 

2009, Saddiqe et al. 2010, Caraci et al. 2011) that may be correlated to other bioactive compounds.   

Although much is known about the medicinal properties of the aerial parts, little is known about the 

chemical composition or the potential applications of the H. perforatum root extracts (Tocci et al. 

2013, Crockett et al. 2011). Roots of many species have been studied because of the presence of 

high value bioactive molecules (Baque et al. 2012, Paek et al. 2009) but the composition of products 

obtained from wild-grown plants can be greatly affected by several environmental biotic and abiotic 

factors and the content of bioactive secondary metabolites can be variable and not always 

satisfactory for application purposes. Since the production of biomass and metabolites is 

significantly affected by various parameters that need to be optimized, plant cell, tissue and organ 

cultures are considered effective systems to produce natural products for bioprocessing applications 

(Rao et al. 2002, Pasqua et al. 2003, Ferrari et al. 2005, Zhang DW et al. 2013). It has been 

demonstrated that H. perforatum root cultures, because of their high rate of proliferation and high 

genetic and metabolic stability, are an efficacious alternative system for controlling the factors that 

affect metabolic pathways and for biosynthesizing phytochemical compounds (Cui et al. 2010, 2011, 

Zobayed et al. 2004).  

Chitosan is frequently used as an elicitor to stimulate the production of pharmaceutically useful 

compounds both in in planta and in in vitro systems (Yin et al. 2012). Chitosan elicitation has been 

also adopted as an effective strategy to enhance secondary metabolite production, such as xanthones 
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and other polyphenols, in H. perforatum in vitro roots (Tocci et al. 2012, 2013) but up to date how the 

chitosan affects the root metabolome has not been studied. 

Metabolomic analysis is a powerful tool by which to gain a comprehensive view of how metabolic 

networks are regulated and has indeed been applied in many researches in recent years (Nicholson et 

al. 1999). 

An analytical technique employed to study the metabolome and to obtain a large quantity of data is 

nuclear magnetic resonance (NMR) spectroscopy. In non-targeted metabolomic analysis, NMR 

spectroscopy has afforded some important advantages that can be summarized as ease of 

quantification, reproducibility, straightforward metabolite identification and its ability to determine 

unexpected metabolites (Kim et al. 2011). NMR based metabolomic has been applied in quality 

controls for medicinal plants (Rasmussen et al. 2006, Agnolet et al. 2010, Yang et al. 2006, Falasca et 

al. 2013), in chemotaxonomy studies (Kim et al. 2010, Matsuda et al. 2010), in the study of the 

biological activity of plant preparations (Modarai et al. 2010) of plant interactions with other 

organisms (Jahangir et al. 2008) of the fruit ripening process (Capitani et al. 2010) and of genetically 

transformed plants (Manetti et al. 2006). Finally, NMR-based metabolomic analysis has been applied 

to investigate the interplay between primary and secondary metabolism in Opium poppy cells treated 

with a fungal elicitor (Zulak et al. 2008). Recently, NMR fingerprinting was used to investigate the 

natural product diversity within the genus Hypericum and its correlation to bioactivity, exemplified by 

cytotoxic properties (Porzel et al. 2013). 

Applying multivariate analysis to NMR spectroscopy data it is possible to obtain comprehensive 

information about the biochemical constituents of a biological system and to achieve the 

quantitative assessment of time-related multiparametric metabolic responses to patho-physiological 

stimuli (Nicholson et al. 1999,  Lindon et al. 2001). 
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3.2  Objective 

The aim of the present study was to characterize the changes in the primary and secondary 

metabolism of in vitro regenerated roots of H. perforatum during growth in a confined culture 

environment and in response to chitosan after 24 and 72 hours after elicitation in order to obtain 

baseline information to be used in the design of optimal bioprocesses employing this 

biotechnological system.  

A metabolomic platform integrating non-targeted NMR-based metabolic profiling and multivariate 

analysis such as ANOVA-simultaneous component analysis (ASCA) was used.  

An histological analysis was carried out to investigate the effect of chitosan elicitation on the 

morphology and anatomy of Hypericum perforatum in vitro roots after 24 and 72 hours of treatments. 
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3.3  Material and Methods 

Liquid cultures were established inoculating 1 g fresh weight (FW) of roots in magenta vessels 

containing 80 ml liquid MS medium supplemented with glucose (2,2 g l-1) and IBA (1 mg l-1). The 

medium was renewed every 4 days, time necessary for biomass duplication. The roots were elicited 

using chitosan (medium molecular weight; Sigma-Aldrich, Milan, Italy), dissolved in acidified water 

with HCl (1M), at a final concentration of 200 mg l−1, which was added on the twelfth day of 

culture using 0,22 µm sterile filter. An adequate amount of water was added to the control samples.  

In vitro regenerated roots were harvested at twelfth day (time 0), at thirteenth day (24 h, time 1) and 

at fifteenth day (72 h, time 2) and divided into five groups: basal (time 0), control and treated at 24 

hours after elicitation (time 1) and control and treated to 72 hours after elicitation (time 2). The 

samples were subjected to metabolic quenching and prepared for the NMR acquisition (as explained 

in the paragraph 2.1). NMR spectra were acquired and analysed (as explained in the paragraph 2.2).  

Multivariate data analysis was carried out using Unscrambler 10 Software (CAMO, Oslo, Norway) 

and routines operating in a Matlab R2012a environment (The MathWorks, Inc., Natick, MA).  

Spectral data were mean-centered and scaled before analysis. To explore the whole data set and 

highlight significant differences among sample, inherent clustering and potential outliers, thus 

obtaining a simple visual idea as to the main relationships between these samples, principal 

component analysis (PCA) was used. PCA was applied to the data matrix containing data relative to 

root samples (control and treated) consisting of 24 rows and 49 columns, each row contains the 

measurements (concentrations) for a given sample and each column the measurement for a given 

variable (metabolites).  

In order to assess whether treatment, time (corresponding to biomass density) and their interaction 

could have an effect on the metabolic profile of the samples as determined by NMR spectroscopy, 

ANOVA-Simultaneous component analysis (ASCA) was used (Smilde et al. 2005, Jansen et al. 

2005). In order to have a balanced design, only the data collected at time 24 h and 72 h were 

considered for the analysis, which was then carried out on a data matrix made of 20 observations, 
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i.e. 5 replicates for each of the 4 time/treatment combinations (control 24 h; control 72 h; treated 24 

h; treated 72 h). Accordingly, the mean-centered matrix Xc of the experimental data was partitioned 

into the individual matrices accounting for the effects of time, treatment, time-treatment interaction, 

and for the residual variation (associated to the experimental error): 

Xc = X -Xmean = X treatment +X time +X timé treatment +X residual
 

where Xmean is a matrix whose rows are all identical to the overall mean profile. Operationally the 

computation of each of the matrices corresponding to the main effects was carried out as follows.  

For each of the considered factors, the rows of the centered matrix Xc corresponding to the 

different levels of the design were found and averaged, and these calculated mean values were used 

to build the matrix associated with the effect: if the ith sample corresponds to the 1st level of factor 

A, the ith row of the matrix XA will contain the average vector calculated on all samples for which 

factor A is at level 1, and so on. Computation of the interaction matrix was made analogously, after 

deflation (=subtraction) of the matrices corresponding to the main effects (Figure 1). 

 

Figure 1. Simultaneous component analysis was then performed on the individual matrices to 

model the variability corresponding to each effect. The total variation of the experimental matrix 

was then partitioned according to equation (1) and the significance of the main effects and of the 

interaction was tested by permutation tests, as described in the Materials and Methods section. 

 

Having verified that treatment and time had a significant effect on the metabolic profiles of samples, 

SCA (after Pareto scaling) was used to model the variation in the two corresponding matrices 

Xtreatment and Xtime. As two levels only were considered for each factor, single component models 
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explained 100% of the variance of the individual matrices, i.e. each matrix Xi was decomposed into 

the product of one score and one loading vector. 

In order to use SCA results for the interpretation of the metabolic effect of treatment and time, the 

significance of the contribution of the experimental variables to the definition of the models (i.e. the 

significance of the loadings) had to be assessed: if the loading of a variable was statistically different 

than zero, then the factor had an effect on the concentration of that metabolite. In particular, a 

bootstrap procedure was used to calculate the empirical distribution of the loadings, so to be able to 

check their significance. Operationally, at each bootstrap cycle a new partition Xibstp was built from 

the mean centered matrix by including, for each level, a random subset of the original samples with 

repetitions, having care that the numerosity of each treatment group was preserved. A metabolite 

was then considered to contribute significantly to the model if, based on this distribution, its loading 

was statistically different than zero.  

To assess the statistical significance of the metabolic changes among experimental groups and 

compare with the results obtained by multivariate analysis, Student's t test was applied.  To evaluate 

the time effect compared to elicitation effect, Student's t test for paired data was used. To evaluate 

the variations between experimental groups, Student's t test for unpaired data was applied. 

Differences showing P-values less than 0.05 were considered statistically significant.  

To investigate the effect of culture time and chitosan elicitation on root anatomy, sections of fresh 

samples and fixed samples embedded in resin were analysed. To investigate the effect of culture time 

and chitosan elicitation on roots morphology, whole roots samples were analysed by a Zeiss 

stereomicroscope equipped with reflected and transmitted light.  

Histochemical assay for the detection of terpenic compounds was conducted both on in vitro 

regenerated roots (control and elicited) and on roots of seedlings obtained by in vitro seed 

germination. Root samples were directly treated with the Nadi reagent, mounted on glass slides and 

observed under an optical microscope. Some root samples, before being treated and observed, were 
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included in 4 % agar and sectioned with a thickness of approximately 30 μm using a vibrating 

microtome. 
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3.4  Results  

The growth curve of both elicited and non-elicited H. perforatum in vitro roots was measured during 

the course of fifteen days and is plotted in Figure 2.  

In control roots, it is possible observe an exponential phase of growth curve from day 0 to day 13, 

whereas the stationary phase can be observed from day 13 to day 15. 

In elicited roots, the chitosan addition at day 12 caused a sudden slowdown of growth, whereas the 

growth of the control roots continued.  

 

 

Figure 2. The growth curve of H. perforatum in vitro roots over a period of 15 days. Growth is 

expressed as a natural logarithm of fresh weight biomass. Data are presented as the mean ± standard 

deviation  (SD) of five samples in five independent experiments. 

 

The hydroalcoholic and chloroformic total extracts obtained from chitosan elicited and control 

roots were investigated by 1H-NMR spectroscopy. Typical 1H-NMR spectra of control and treated 

roots obtained are shown in Figure 3. 

 

 

 

Chitosan Elicitation 
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Figure 3. Typical 1H-NMR spectra of hydroalcoholic phase of control and treated roots. a) Control 

sample at time 0; b) elicited sample at time 24 h; c) elicited sample at time 72 h.  

 

The hydroalcoholic and chloroformic spectra were analysed and sixty-four metabolites were 

assigned (Table 1).  
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Table 1. 1H chemical shifts of metabolite signals in hydroalcoholic and chloroformic root extracts.  

 
Hydroalcoholic extract 

Class No Compound Chemical shifts and coupling constants 

Amino Acids   
 1 Alanine δ 3.70 (α-CH,q), δ 1.48 (β-CH3,d) 
 2 Arginine δ 3.69 (α-CH), δ 3.25 (δ-CH2, t), δ 1.9 (β -CH2), δ 1.72 (γ-CH2) 
 3 Glutamic Acid δ 3.67 (α-CH), δ 2.42 (γ-CH2), δ 2.14 (β-CH), δ 2.04 (β'-CH) 
 4 Glutamine δ 3.70 (α-CH,t), δ 2.46 (γ-CH2, m), δ 2.13 (β -CH2, m) 
 5 Histidine δ 8.03 (CH-2 ring), δ 7.16 (CH-4 ring), δ 3.93 (α-CH), δ 3.27 (β-CH), δ 3.16 (β'-CH)  
 6 Isoleucine δ 3.68 (α-CH), δ 1.96 (β-CH), δ 1.54(γ'-CH2),δ 1.26 (γ-CH2), δ 1.02 (β-CH3),δ 0.97 (δ-CH3) 
 7 Leucine δ 3.62 (α-CH), δ 1.77 (β-CH2), δ 1.67 (γ-CH), δ 0.97 (δ-CH3), δ 0.92 (δ'-CH3) 
 8 Threonine + Lactate δ 4.22 (β-CH), δ 3.49 (α-CH, d), δ 1.34 (γ-CH3) 
 9 Tryptophan  δ 7.73 (CH-4 ring, d), δ 7.54 (CH-7 ring, d), δ 7.40 (CH-2 ring, s), δ 7.32 (CH-6 ring),  

 10 Valine 
δ 7.19 (CH-5 ring) 
δ 3.53 (α-CH), δ 2.28 (β-CH), δ 1.06 (γ-CH3), δ 1.01 (γ'-CH3)  

Organic Acids   
 11 α-Hydroxy-n-valeric Acid δ 1.60 (β-CH2), δ 1.38 (γ-CH2), δ 0.92 (CH3, t) 
 12 γ-Aminobutyric Acid δ 3.01 (γ-CH2), δ 2.33 (α-CH2) δ 1.90 (β-CH2) 
 13 Acetic Acid δ 1.95 (β-CH3, s) 
 14 Citric Acid δ 2.73 (α,γ-CH, dd), δ 2.50 (α',γ'-CH, dd) 
 15 Formic Acid δ 8.48  (HCOO-, s) 
 16 Lactic Acid δ 4.03 (α-CH), δ 1.33 (β-CH3,d) 
 17 Malate (conjugated) δ 5.33 (α-CH, dd, J=3.30 Hz, 10.08 Hz), δ 2.87 (β-CH, dd), δ 2.77 (β’-CH, dd) 
 18 Pyruvic Acid δ 2.33 (β-CH3, s) 
 19 Shikimic Acid δ 6.52 (H-3, m), δ 4.36 (H-4), δ 3.96 (H-6), δ 3.64 (H-5), δ 2.77 (H-7'), δ 2.18 (H-7) 
Phenols and 
Polyphenols   
 20 Benzoyl moiety δ 8.10 (H-2, H-6, d, J=7.34 Hz), δ 7.69 (H-4, pt), δ 7.54 (H-3, H-5, pt) 

 
21 Epicatechin δ 7.00 (CH-2’ ring B), δ 6.85 (CH-5’,CH-6’ ring B),δ 6.02 (CH-8 ring A, d), δ 5.99 (CH-6 ring A, d), δ 

4.87 (CH-2 ring C), δ 4.25 (CH-3 ring C), δ 2.89 (CH-4 ring C), δ 2.75 (CH-4' ring C) 
 22 Gallic acid δ 7.02 (s) 
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Carbohydrates 
 23 Fructose δ 4.13 (H-3, d, J=8.99 Hz), δ 4.00 (H-5), δ 3.79 (H-6'), δ 3.63 (H-6'') 
 24 α-Glucose δ 5.17  (H-1, d, J=3.67 Hz), δ 3.80 (H-6), δ 3.70 (H-3), δ 3.45 (H-5), δ 3.35 (H-2) 
 25 β-Glucose δ 4.56 (H-1,d, J=7.89 Hz), δ 3.87 (H-5), δ 3.69 (H-3), δ 3.36 (H-4), δ 3.18 (H-2) 

 
26 Sucrose δ 5.41 (CH-1, Glc), δ 3.82 (CH-5, Glc), δ 3.75 (CH-3, Glc), δ 3.49 (CH-2, Glc), δ 3.41 (CH-4, Glc), δ 

4.15 (CH-3, Fru, d, J=8.62 Hz), δ 4.03 (CH-4, Fru), δ 3.81 (CH-6, Fru) 
Miscellaneous  
Compounds    
 27 Acetoacetate δ 2.59 (α-CH2, s) 
 28 DMAPP δ 5.20 (γ-CH=), δ 4.06 (α-CH), δ 1.81 (δ-CH3), δ 1.65 (δ-CH3) 
 29 Ethanol δ 3.61 (α-CH), δ 1.19 (β-CH3) 
 30 Ethanolamine δ 3.80 (CH2-OH), δ 3.11 (CH2-NH) 
 31 Trigonelline δ 9.16 (CH-1, s), δ 8.87 (CH-5, CH-3, m), δ 8.10 (CH-4, m), δ 4.45 (CH3-N, s) 
 32 UXP δ 7.99 (CH-6, d), δ 5.94 (CH-5, d), δ 5.94 (CH-1'), δ 5.10 (CH-2'), δ 3.82 (CH-5') 
 33 Adenosine δ 8.35 (CH-8, s), δ 8.22 (CH-2, s) 
    
Unknown  
Compounds 

   

 34 U0 δ 0.65 (s) 
 35 U1 δ 0.78, δ 1.31 
 36 U2 δ 0.82, δ 1.28 
 37 U3 δ 1.31 (s) 
 38 U4 δ 5.14 (s) 
 39 U5 δ 5.38 (d, J=3.85 Hz), δ 3.96 
 40 U6 δ 5.44 (d, J=3.85), δ 4.03, δ 3.84, δ 3.72, δ 3.49 
 41 U7 δ 5.79 (s) 
 42 U8 δ 6.19 (s) 
 43 U9 δ 6.56 (d, J= 2.02 Hz), δ 6.27 (d, J=2.0 Hz) 
 44 U10 δ 6.29 (s) 
 45 U11 δ 7. 40 (s) 
 46 U12 δ 7.46 (CH-8, s)  
 47 U13 δ 7.90 (s) 
 48 U14 δ 5.74 (d, J=7.52 Hz), δ 3.57 



53 

 

 49 U15 δ 6.23 (CH-2, d, J=2.02 Hz), δ 6.39 (CH-4, d, J=2.02 Hz) 
 50 U16 δ 6.32 (s) 
 51 U17 δ 6.96 (s) 
 52 U18 δ 7.61 (s) 
 53 U19 δ 7.59 (s) 
 54 U34 δ 5.45 (s) 
 55 UY δ 6.19 (s) 
 56 UX δ 6.29 (s) 
 57 U21 δ 7.27 (s) 
 58 U22 δ 7.33 (s) 
 59 U23 δ 7.52 (s) 
    
Chloroformic extract 

Class No Compound Chemical shifts and coupling constants 

Fatty Acids    

 
1 Polyunsatured Fatty Acids (linolenic) δ 5.35 (CH=CH), δ 2.82 (CH=CH-*CH2-CH=CH), δ 2.33 (*CH2COO-), δ 2.04 (*CH2CH=CH), δ 

1.30 ((*CH2)nCH2CH2COO-), δ 0.98 (CH3) 

 
2 Polyunsatured Fatty Acids (linoleic) δ 5.35 (CH=CH), δ 2.77 (CH=CH-*CH2-CH=CH), δ 2.33 (*CH2COO-), δ 2.04 (*CH2CH=CH), 

δ 1.30 ((*CH2)nCH2CH2COO-), δ 0.88 (CH3) 
 3 Satured Fatty Acids δ 2.33 (*CH2COO-), δ 1.61 (*CH2*CH2CH2COO-), δ 1.28 ((*CH2)nCH2CH2COO-), δ 0.88 (CH3) 

 

4 
5 

Omega-6 
Omega-3 

δ 2.72 (1/2 t) 
δ 2.78 (1/2 t) 
 

    
    
Glycerols    

 
6 Triacylglycerols δ 5.27 (*(sn2)CHOCOR, pd, J=6.14), δ 4.30 (*(sn3)CH2OCOR, dd, J=4.22), δ 4.15 

(*(sn1)CH2OCOR, dd, J=6.14) 
 5 Diacylglycerols (Phospholipids) δ 5.09 (*(sn2)CHOCOR), δ 4.28 (*(sn3)CH2OCOR, d), δ 3.72 (*(sn1)CH2OP) 
Sterols    

 
7 β-Sitosterol δ 3.54 (CH-4, ring A), δ 2.26 (CH-3, ring A), δ 1.86 (CH-2, ring A), δ 1.51 (CH-1, ring A), δ 1.09 

(CH-1', ring A), δ 0.81 (CH3-21, s), δ 0.69 (CH3-18, s) 
 8 Stigmasterol δ 0.71 (CH3-18, s) 
 9 Other Sterols δ 0.68 (CH3-18, s) 
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 10  δ 0.66 (CH3-18, s) 
 11  δ 0.60 (CH3-18, s) 
 12  δ 0.55 (CH3-18, s) 
Xanthones    

 
13 
14 

Xanthone (Furanic ring)* 
Other xanthone (Furanic ring)* * 

δ 8.04 (CH-2', d, J= 10.09 Hz), δ 5.83 (CH-1', d, J= 10.09 Hz) 
δ 8.02 (CH-2', d, J= 10.09 Hz), δ 5.83 (CH-1', d, J= 10.09 Hz), δ 1.50 (CH3-6'6'',s) 

 15 Brasilixanthone B δ 8.05 (CH-2', d, J= 10.12 Hz), δ 5.83 (CH-1', d, J= 10.12 Hz), δ 1.50 (CH3-6'6'',s) 
 16 Rheediaxanthone  δ 4.55 (CH-q), 1.43 (CH3-d) 
 17 Xanthone X δ 5.55 (1/2 d) 
 18 Xanthone Y δ 5.56 (1/2 d) 
    
    
    
Unknown 19 U35 δ 1.14 (d), 3.48, 4.01 
Compounds 20 U36 δ 1.15 (d), 3.48, 4.24 
 21 U37 δ 6.92 (1/2 d) 
 22 U38 δ 7.13 (1/2 d) 
 23 U39 δ 7.44 (1/2 d) 
 24 U40 δ 7.63 (1/2 d) 

Signals used for quantitative analysis by integration are highlighted in bold.  

Abbreviations: d, doublet; dd, double  

doublet; dt, double triplet; m, multiplet; q, quartet; s, singlet; t, triplet; U0-U40, unassigned signals. 

*Xanthone (STUDY I) corresponds to Brasilixanthone like in STUDY II; **Other xanthones (STUDY I) correspond to Total brasilixanthones in 

STUDY II 

 



55 

 

The concentrations of forty-three metabolites measured at basal time, 24 and 72 h both in the 

control and the chitosan-elicited roots are reported in Figures 4-7.  
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 4-7. Metabolic composition of the root extracts.  Histograms representing the quantitative 

composition of the assigned metabolites grouped into distinct classes.  Data are expressed in µmol/g 

of fresh weight and are presented as the mean ± standard deviation  (SD) of five samples in five 

independent experiments.  White and grey bars represent control and chitosan elicited samples, 

respectively, at various experimental times. * Different from control at time 0; ** Different from 

corresponding treatment at 24 hours;  *** Different from control at the same experimental time as 

assessed by univariate unpaired Student’s t-test. P < 0.05.  

 

Several changes of primary and secondary metabolites, including levels of amino acids, 

carbohydrates, small organic acids, lipids, phenolic, isoprenoid, and other compounds related to 

plant metabolism were observed.   

An initial exploration of the whole data set to identify a possible clustering of samples and possible 

outliers was performed by Principal Component Analysis (PCA). PCA was performed on the 

concentration of metabolites measured at time 0 (day 0), 24 and 72 h after elicitation, and the 

resulting score plot is shown in Figure 8. 

 

Figure 8. The PC scores plot relative to whole set of  H. perforatum root data.  

    Control sample at time 0 (day 0);    control samples  at 24 h;      control samples at 72 h;      

chitosan-elicited samples at 24 h;      chitosan-elicited samples at 72 h.  

Total variance explained by PCs was 40% and 15.4 % for PC1 and PC2, respectively.  
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PCA score plot showed that root samples were clustered on the basis of PC1 and PC2 scores 

corresponding to chitosan elicitation and to biomass growth-related changes, respectively. Total 

variance explained by PCs was 40% and 15.4 % for PC1 and PC2, respectively. 

However, the PC2 scores did not allow a separation between basal and 24 h root samples. 

Furthermore, the PCA model does not allow to obtain an easy interpretation of the metabolic 

variations induced by the different factors (treatment and time) distinguishing ‘between’ and ‘within’ 

of factors identified. 

For this reason, in order to discriminate the metabolic variations related to root biomass growth and 

to chitosan treatment, and to their interaction, ASCA modelling was applied. A balanced 

experimental design has been built considering only the data at time 24 h and 72 h, excluding the 

basal samples. 

ASCA modelling showed that chitosan treatment and biomass growth accounted for 24.1% and 

23.5% of the variation in the original matrix, while their interaction explained 3.7% of the variance. 

The randomization test with 100,000 permutations showed that only the effects of chitosan 

treatment and biomass increase were significant (the p-values for elicitation and biomass increase 

were 0.0048 and 0.0053, respectively), while the effect of the their interaction was not statistically 

different from zero (p=0.2493). Having verified that elicitation and biomass growth had a significant 

effect on the metabolic profiles of H. perforatum roots, simultaneous component analysis (SCA) was 

used (after Pareto scaling) to model the variation in the two corresponding matrices X elicitation and X 

biomass growth. The distribution of the loadings for the SCA models of the two main effects is reported in 

Figure 9.  
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Figure 9. Evaluation of the significance of the multivariate effect of treatment and time of biomass 

growth. Evaluation of the significance of the multivariate effect of treatment (A), time (B), by means 

of permutation tests. SCA analysis on the effect matrices for treatment (C) and time (D): variable 

loadings for the one-component SCA model (blue line) and their 95% confidence intervals (red).  

Heatmap for loadings metabolites that contribute significantly to the model for time and treatment 

effects. Red corresponds to the loadings with positive direction (increase); blue corresponds to the 

loading with negative direction (decrease) (E).  

 

Primary and secondary metabolic variations related to root biomass growth. 

The metabolic variations related to root biomass growth concerned levels of flavonoid compounds 

such as epicatechin and other phenolics, such as shikimic acid and total xanthones that increased. 

Moreover, a significant correlation between tryptophan and epicatechin levels (r = 0.78) was 

observed.  

Regarding the metabolism of aminoacids, opposite trends were observed in γ-aminobutyric acid 

(GABA), glutamine and histidine levels. In particular, a decrease in GABA and histidine and an 

increase in glutamine occurred with increasing culture time. A significant correlation between 

GABA and glutamine levels (r = -0.72) was observed.  

A decrease in α- and β- glucose and an increase in fructose levels were also observed. Furthermore, 

fructose levels correlated significantly with shikimate (r = 0.89, Pearson's correlation) and with total 

xanthones (r = 0.72), but correlated inversely with histidine (r = -0.77). Among the small organic 

acids, a decrease in formate level was observed.  

Finally, significant metabolic variations related to root biomass growth concerned likewise levels of 

unknown metabolites, such as U3, U6 and U11 that increased and U14 that decreased.  

All metabolites (loadings in ASCA analysis) that contribute significantly to the model ASCA were 

statistically significant also by univariate analysis (P < 0.05), (as shown in Figure 4-7). 

 

 

 



64 

 

 

Primary and secondary metabolic variations related to chitosan treatment. 

The metabolic variations related to chitosan treatment concerned levels of phenylpropanoid-derived 

secondary metabolites. In particular, epicatechin and xanthone levels were two- and eight-fold 

higher, respectively, than the corresponding control samples at 72 h after elicitation (Figures 4-7). In 

chitosan-treated roots, the level of shikimate, was lower than in control roots, while benzoyl-moiety 

levels were ten-fold higher.  

A considerable increase in dimethylallyl-pyrophosphate (DMAPP), precursor of the isoprenoid 

compounds, was observed. DMAPP content in treated roots was seven-fold higher at 24 h and nine-

fold higher at 72 h than their respective controls.  

Regarding the metabolism of aminoacids, a significant increase in aminoacid levels, such as 

isoleucine, valine, glutamine, GABA, alanine, were observed together with a decrease in histidine.  

Among carbohydrates, significant increase in sucrose and fructose at 24 h and 72 h after elicitation 

were observed. Moreover, an increase in adenosine and trigonelline levels were observed. In 

chloroformic extract, high stigmasterol levels as well as high polyunsaturated fatty acids levels were 

found in chitosan-treated roots. Among the small organic acids, an increase in lactate levels were 

observed.  

Finally, significant metabolic variations related to root biomass growth concerned likewise levels of 

unknown metabolites, such as U1, U4, U5, U8, U9, U12, U14, U15, U16, U17, U18 and U19 that 

increase, while U7, U10, U11 and U13 decreased.  

All metabolites (loadings in ASCA analysis) that contribute significantly to the model ASCA were 

statistically significant also by univariate analysis (P < 0.05), (as shown in Figure 4-7). 

A scheme of the metabolic changes in treated roots is reported in Figure 10. 
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Figure 10. Schematic representation of root metabolic network. The metabolite level changes 

observed after 24 and 72 h of chitosan elicitation are shown. The significant metabolites as evaluated 

by ASCA modeling for chitosan treatment effect are represented by coloured boxes. The color code 

designates changed and unchanged metabolite abundances as follows: red: significantly increased; 

yellow: not significantly changed; blue: significantly decreased. The significant differences between 

treated and control at corresponding experimental times were assessed by using Student’s t test.  

Solid arrows in the network diagram specify a single step connecting two metabolites; dashed arrows 

indicate at least two steps. CHS: chalcone synthase; BPS: benzophenone synthase. 
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Morpho-anatomical analysis of control and chitosan-treated Hypericum perforatum in vitro 

roots  

Histological analysis was carried out to investigate the effect of chitosan elicitation on the 

morphology and anatomy Hypericum perforatum in vitro roots. Chitosan-treated roots, showed morpho-

anatomical alterations compared to the control roots, both at 24 h and at 72 h. Morphological 

analysis after 24 h of treatment with chitosan showed a swelling in the roots in the region of 

distension and differentiation, after 72 h swelling appeared more pronounced (Figure 11). In 

response to chitosan elicitation the maximum diameter of the root increased approximately 1.5 times 

compared to the control, from 256 µm to 375 µm at a distance from the apex of 600 µm. The 

microscopic analysis revealed that the swelling of the root was mainly due to hypertrophy of the 

cortical cells, in particular of the first two subepidermal layers. The cell expansion did not involve 

the rizoderma which subsequently underwent tensile forces such as to cause often thinning and 

breakage. Furthermore, the direction of stretching of the cortical cells in the elicited roots took place 

predominantly in the radial direction, thus the opposite than normal. Finally, in addition to the 

normal anticlinal divisions, in hypertrophic cortical layers were observed frequently periclinal 

divisions that resulted in any increase in some areas of the cortical layers (Figure 12). 
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Figure 11. Morphology of H. perforatum in vitro roots. Stereomicroscopic view of control (A) and 

chitosan treated (B) roots at 72 hours. A swelling in the region of distension and differentiation was 

observed in chitosan treated roots. Bars represent 250 µm (A and B), and 2,5 mm (C and D). 
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Figure 12. Anatomy of H. perforatum in vitro roots. Resin-embebbed sections stained with 0.1% 

toluidine blue to show the anatomical structure. Longitudinal sections of control (A), and chitosan 

treated roots at 24 (B) and at 72 (C) hours. Longitudinal section (D) and cross sections (E-G) of 

chitosan treated root at 72h showing primary growth zone (D), elongation zone (E) and apical 

meristem (F). Bars represent 100 µm. 
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The tests with histochemical Nadi reagent conducted on fresh sections revealed the presence of 

terpenes in the lumen of the secretory ducts, localized at the periphery of the vascular cylinder, both 

in the roots regenerated in vitro and in those of the seedlings. In the entire roots (not sectioned), 

purple stain imparted by the Nadi reagent is especially strong in the area of primary structure, while 

in the apex and in the elongation and differentiation zone the signal was very weak (Figure 13 A). 

These results suggest that the terpene compounds are present in plant root and in vitro regenerated 

roots, in both control and treated roots, and they accumulated in specific secretory ducts (Figure 13 

B), mainly localized in the primary structure zone. 

 

 

 

Figure 13. H. perforatum control in vitro roots stained with Nadi reagent. Secretory ducts showing 

terpenoid accumulation, stained in violet, are localised in the primary structure zone of the root (A). 

F fresh cross section of the same root (B). Bars represent 250 µm (A) and 50 µm (B). 
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3.5  Discussion  

NMR–based metabolomics allowed the primary and secondary metabolism of H. perforatum 

regenerated roots to be characterized and the effects due to the increasing biomass density or to the 

elicitation process to be determined. 

The most significant metabolic variations involved levels of amino acids, carbohydrates, 

phenylpropanoids, lipids, and isoprenoids. In response to chitosan elicitation, valine, isoleucine, 

glutamine, γ-aminobutyric acid, fructose, sucrose, poly-unsaturated fatty acids, epicatechin, 

xanthones, dimethylallyl-pyrophosphate, and stigmasterol increased, while histidine decreased.  

 

Effect of root biomass growth on primary and secondary metabolism. 

The results of ASCA modelling, associated with the root growth curve data, enable the “time effect” 

to be defined as the effect of the increase of biomass density in a confined environment. Control 

roots showed an increase in flavonoid levels, such as epicatechin and other phenolics, such as 

shikimic acid and total xanthones associated with an increase in biomass density and with a decrease 

in growth ratio.  

The relationship between biomass density, the slowdown in biomass growth and phenol 

biosynthesis was also observed by Cui et al. (2010) in H. perforatum roots cultured in a bioreactor.  

In the control roots the significant correlation between tryptophan and epicatechin increased levels 

was observed and this result pointed to a stimulation of the phenylpropanoid pathway caused by a 

higher root biomass density in a confined environment.  

Regarding the aminoacid metabolism, opposite trends were observed in GABA, histidine, and 

glutamine levels. The increase in glutamine levels associated with a decrease in GABA levels is of 

interest. GABA is a ubiquitous non-protein amino acid that in plants has been linked to stress, 

signalling and storage (Fait et al. 2008). It has long been known that GABA is derived from 

glutamate, through glutamate decarboxylase (GAD) activity, and is then converted to succinic 

semialdehyde  and succinate, which enters the tricarboxylic acid cycle. GAD activity is confined to 
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the cytosol, specific for glutamate, and regulated by pH and Ca2+-calmodulin (Shelp et al. 2012). It 

has been reported that this proton-consuming reaction can limit cytosolic acidosis in certain species 

during exposure to various stress conditions such as hypoxia (Shelp et al. 2012). The relationship 

observed between time-related decrease in GABA and increase in glutamine suggests a metabolic 

flux shift from GABA synthesis towards glutamine synthesis which enhances nitrogen storage. 

It is a known fact that the slower growing plants invest more of their total root metabolites in 

carbon- and nitrogen-storage compounds (Atkinson et al. 2012). In our results the significant 

increase in glutamine, which plays a role in nitrogen storage, associated to a slight increase in 

fructose and no significant changes in sucrose levels could be explained by a slowdown in the 

growth rate.  

In control roots, fructose levels correlated significantly with shikimate  and with xanthones, but 

correlated inversely with histidine. This correlation pattern seems to illustrate the biochemical 

relationship between the synthesis of fructose, through transaldolase or transketolase, and histidine 

synthesis, starting from other intermediates in the pentose phosphate pathway. A competition 

between metabolic fluxes involving pentose phosphate pathway intermediates towards 

fructose/erythrose-4-phosphate (via transketolase and transaldolase reactions), channelled through 

the biosynthesis of shikimate and phenylpropanoid metabolites and histidine biosynthesis (via 

oxidative penthose phosphate pathway and isomerase reactions), could be hypothesized. 

 

Effects of chitosan elicitation on primary and secondary metabolism 

In elicited roots, the chitosan addition at day 12 caused a sudden slowdown of growth, whereas the 

growth of the control roots continued. This inhibitory effect of chitosan on biomass growth in root 

cultures has been also reported for other species such as Ocimum basilicum L. (Bais et al. 2002) and 

Withania sominifera (L.) Dunal (Sivanandhan et al. 2012).  

In the chitosan-treated roots ASCA results (Figure 9) showed a significant increase in sucrose and 

fructose but not in glucose levels at 24 h and 72 h after elicitation. Moreover, a significant increase 
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in aminoacid levels, such as isoleucine, valine, glutamine, GABA, alanine, were observed together 

with a decrease in histidine.  

The observed metabolic profile of root extracts is consistent with slowdown or arrested growth, 

which causes a metabolic shift towards a storage of carbon and nitrogen compounds, such as 

sucrose and aminoacids (Atkinson et al. 2012). However, this metabolic profile reflects also a 

process of adaptation to stress conditions induced by chitosan treatment. 

Since it is well known that the early defence responses elicited by chitosan include a raising of 

cytosolic H+ and Ca2+ concentrations (Zhao et al. 2005), the observed levels of GABA that are 

higher than control roots, in particular at 24 hours after the chitosan treatment, can be related to a 

higher GAD activity stimulated by an altered intracellular H+ and Ca2+ homeostasis (Kinnersley et al. 

2000, Snedden et al. 1995). 

In chitosan-elicited roots, an increase in phenylpropanoid-derived secondary metabolites such as 

epicatechin and xanthones was displayed by the ASCA model. Xanthones and flavonoids are 

synthesized from phenylalanine through shikimate pathway. In elicited roots, the level of shikimate, 

a key intermediate in the phenylpropanoid pathway, was lower than in control roots, while benzoyl-

moiety levels were ten-fold higher. These results indicate that both the phenylpropanoid and 

xanthone pathways were specifically stimulated by chitosan treatment, which is in agreement with 

previous results obtained using the same experimental system by Tocci et al. (2011). A scheme of 

the above metabolic pathways is reported in Figure 10. 

Chitosan has been extensively studied with regard to its effects on enzymes involved in the 

phenylpropanoid pathway (Baque et al. 2012, Chakraborty et al. 2009). It is known that chitosan 

mimics a fungal infection, inducing a non-host resistance through PRR-mediated recognition and 

priming a systemic acquired immunity (Iriti et al. 2009). The observed increase in xanthones 

supports the hypothesis proposed by Franklin et al. (Franklin et al. 2009) that these metabolites act 

as phytoalexines, playing a role in plant chemical defence against pathogen attack. 
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Also of interest is the increase in DMAPP observed in chitosan elicited roots of H. perforatum. 

DMAPP, together with its isomer isopentenyl pyrophosphate (IPP), is the precursor of the 

isoprenoid compounds, including molecules such as sterols, dolichols, triterpenes, ubiquinone, 

components of macromolecules such as prenyl groups, and isopentenylated tRNAs (Sacchettini et 

al. 1997, Kuzuyama et al. 2003). The diversity of isoprenoids reflects the variety of important 

biological functions, including electron transport in respiration and photosynthesis, hormone-based 

signalling, the regulation of transcriptional and post-translational processes that control lipid 

glycoprotein biosynthesis, protein cleavage degradation, meiosis and apoptosis. The isoprenoids are 

also important structural components of cell and organelle membranes (Hunter 2007, 2011). In 

addition, they can play a crucial role as phytoalexins, because many of them exert antibiotic, antiviral 

and fungitoxic or fungistatic activities (Ahuja et al. 2012). An increase in concentration of the 

isoprenoid phytoalexins in response to fungal elicitors in the roots has been also observed in Oryza 

sativa L., in which fungal chitin oligosaccharide stimulated the roots to biosynthesize and release 

several diterpenoids into the medium (Toyomasu et al. 2008). 

DMAPP and IPP may be produced through two independent metabolic pathways: the acetate-

mevalonate (MVA) pathway and the non-mevalonate pathway (non-MVA), also called the 1-deoxy-

D-xylulose-5-phosphate (DXP) or the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway 

(Hunter 2007). In plants, the MVA and non-MVA pathways are compartmentalized in the 

cytoplasm and plastid, respectively. Sesquiterpenes, sterols, and polyterpenes are derived via the 

cytosolic MVA pathway, whereas isoprene, phytol, carotenoids, and the plant hormones gibberellic 

and abscisic acid are synthesized via the plastid non-MVA pathway (Hsieh et al. 2005). Mono- and 

sesquiterpenes were isolated in Hypericum perforatum L. roots by GC-MS (Motavalizadehkakhky 2012).  

It is interesting that high stigmasterol levels have been found in chitosan-treated roots. Stigmasterol 

is synthesized inside the cytosol through the cytochrome P450 CYP710A1 via C22 desaturation 

from β-sitosterol originating from reactions involved in the sterol branch of the isoprenoid pathway 

(Benveniste 2004). Despite an increased synthesis of stigmasterol, the results show that β-sitosterol 
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levels were found to remain constant at 24 h and 72 h after chitosan treatment, indicating that the 

chitosan treatment stimulated the de novo synthesis of β-sitosterol and its desaturation through the 

sterol biosynthetic pathway.  

An increased synthesis of stigmasterol was found in different plant-pathogen interactions. The 

conversion of β-sitosterol to stigmasterol in Arabidopsis thaliana leaves was observed 10 and 48 h 

after inoculation of virulent and avirulent Pseudomonas syringae strains (Griebel et al. 2010). These 

authors found that the pathogen-stimulated stigmasterol was triggered by the perception of 

pathogen-associated molecular patterns (PAMPs) and the generation of reactive oxygen species 

(ROS) (Griebel et al. 2010). The role of stigmasterol in plants during stress is still poorly understood. 

Sitosterol and stigmasterol, like brassinosteroids, are involved in the regulatory function of plant 

development, affecting gene expression involved in cell expansion and division, vascular tissue 

differentiation and several developmental programs (Sasse 2003). Several reports have proposed the 

existence of sterol-membrane microdomains, so-called lipid rafts, which may play a role in the 

recruitment of molecular components involved in plant defence signalling (Bhat et al. 2005).  In 

particular, it has been suggested that a pathogen-induced change in stigmasterol/sitosterol ratio can 

influence different physicochemical properties of membrane micro-domains and thereby modulate 

plant defence signalling (Griebel et al.  2010).  

Moreover, the increase in polyunsaturated fatty acids observed is in agreement with the results 

found for A. thaliana leaves treated with P. syringae (Yaeno et al. 2004).  

On the basis of the above evidence, the increase in polyunsaturated fatty acids and the increase in 

stigmasterol levels suggest a stimulation of a lipid desaturation process that may have altered the 

membrane microdomains, favouring a change in membrane permeability.  
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CHAPTER 4 

STUDY II 

NMR-based metabolomics to evaluate the effects of biomass growth and chitosan 

elicitation on primary and secondary metabolism of Hypericum perforatum in vitro roots 

after 96 and 192 hours 
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4.1  Introduction  

Plant roots are the potential source of an enormous diversity of metabolites and therefore are 

considered as the site of unique secondary metabolism of the whole plant. 

Recent advances in plant biotechnological research have shown that in vitro root cultures are an 

attractive and alternative method to the whole plant, cell or hairy root culture for biomass and 

pharmaceutically useful compounds production. Over the last few years, in vitro root cultures have 

gained popularity and interest, especially in the possibility to modify the production of bioactive 

molecules (Bais et la. 2002, Baque et al. 2012).  

Up to now, despite potential advantages of bioactive molecules production by root cultures, only 

some compounds such as paclitaxel, shikonin, ginsenosides and berberine have been produced on a 

commercial scale (Sivakumar et al. 2005, Bourgaud et al. 2001, Baque et al. 2012). 

In the last years, in vitro root cultures of Hypericum perforatum (L.) have received great attention, due to 

the possibility to obtain a wide variety of bioactive compounds such as phenolics, flavonols, 

xanthones, essential oils and other metabolites, which have been reported to have different 

pharmacological activities (Crockett et al. 2011, Tocci et al. 2012, 2013).  

H. perforatum (St. John’s wort) is a traditional medicinal plant that for centuries has been utilized in 

popular medicine for a range of purposes (Nahrstedt et al. 2010). However, the industrial application 

of roots of this plant is still in its beginning probably due to the restriction of genetically-modified 

organisms for medicinal purpose and to a lack of accurate knowledge of action mechanisms of H. 

perforatum root extracts.   

It is well known that the production of biomass and metabolites produced by in vitro cultures can be 

greatly affected by various parameters such as inoculum density, medium components, oxygen 

transfer and mixing, and other physics-chemical factors and that these parameters should be 

optimized to maximize production of biomass and useful plant metabolites.   

Recently, Cui and collaborators (2010) have investigated the effects of different concentrations of 

auxin and auxin/cytokinin combinations, inoculum sizes and Murashige and Skoog (MS) medium 
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dilutions on biomass and accumulation of total phenols and flavonoids in adventitious roots of H. 

perforatum. Subsequently, they investigated the effects of inoculum density, aeration volume and 

culture period on accumulation of both biomass and secondary metabolites in adventitious roots of 

H. perforatum in balloon type airlift bioreactors. This work contributed to optimize and develope the 

bioreactor technology for root cultures of H. perforatum and the production of several bioactive 

metabolites such as chlorogenic acid, quercetin and hyperoside and demonstrating that scale-up of 

adventitious root cultures of H. perforatum is feasible (Cui et al. 2011).  

To investigate and define the important biological functions and roles of plant metabolites in the 

growth of plant biomass and potentially utilize them for practical purposes, it is essential to have a 

simple, sensitive, and reliable methodology for their simultaneous quantification in plant.  

For instance, an interesting study proposed by Jin et al. (2012) showed an efficient enrichment 

method using immobilized metal affinity chromatography (IMAC) coupled with LC-MS/MS for 

sensitive and selective extraction and quantification of sphingolipids, from adventitious roots of H. 

perforatum cultured in bioreactor. Moreover, in this study a particular attention was given at the 

culture time, another important parameter which affects the performance of plant growth. Cui et al 

(2011) and Jin et al. (2012) demonstrated that there are not so much advantages culturing the root 

biomass more then 4 weeks in terms of production of useful secondary metabolites including 

phenolics, flavonoids and chlorogenic acid, suggesting a relation between the time-dependent 

growth rate and production of plant metabolites from the adventitious roots. It is reasonable to 

believe that these secondary metabolites could have a direct role in controlling growth rate of the 

root biomass. Despite optimization of these parameters for the efficient production of commercially 

important bioactive compounds, one of the major obstacles in the industrial application of organ 

culture is the low target product yield. In this context, several strategies have been adopted to 

improve production of plant-derived secondary metabolites such as elicitation, two-phase and two-

stage culture system, genetic transformation, metabolic and bioreactor engineering. Of the various 

efforts, elicitation is seen as an effective strategy to enhance production of commercially important 
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bioactive compounds such as anthraquinones (Komaraiah et al. 2005), ginsenosides (Paek et al. 

2009), saikosaponin (Chen et al. 2007) and scopolamine (Biondi et al. 2000). Elicitors are 

compounds from various biotic or abiotic sources that can modulate a plant defense reaction, which 

may enhance secondary metabolism in plant cell and root cultures (Zhao et al. 2005). The effect of 

elicitor chitosan has been studied in detail on biosynthesis of xanthones in H. perforatum roots (Tocci 

et al. 2011).  

Although several studies have been performed to optimize biomass growth and secondary 

metabolite production in bioreactor of H. perforatum adventitious roots, the effect of culture time and 

chitosan elicitation on primary and secondary metabolism of in vitro regenerated root cultures of H. 

perforatum has to be further investigated. A deeper attention should be addressed to define the culture 

parameters to achieve the optimal biomass density and the requested secondary metabolite yield. In 

addition, the qualitative and quantitative characterization of metabolite composition of a plant 

extract is of crucial importance to obtain standard preparations for their use aims to human health. 

In the previous study (STUDY I), the non-targeted metabolomic approach has allowed to 

characterize the primary and secondary metabolism of H. perforatum regenerated roots and the effects 

due to the increasing biomass density and to the elicitation process.  

In particular, NMR-based metabolic profiling associated with ANOVA-simultaneous component 

analysis allowed to determine the primary metabolic changes and the secondary metabolite 

production linked to root biomass growth in a confined environment and chitosan elicitation at 0, 

24 and 72 hours. On the basis of the obtained results, a further experiment changing the culture 

conditions has been carried out. In this experiment, we have shortened the pre-elicitation phase 

from twelve to eight days, by removing a renewal of culture medium, and furthermore we have 

prolonged the observation time until to sixteen day, corresponding to 192 hours after the chitosan 

or solvent addition. These conditions were performed to assess the effect of failure to renew of 

culture medium, such as the renewal of auxins on biomass growth and on the primary and 

secondary metabolism of the H. perforatum roots, and to evaluate the effect of chitosan elicitation at 
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longer time compared to the previous experiment. Moreover, we have investigated how these 

changes in culture parameters could affect the primary metabolism and the secondary metabolites 

yield.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



80 

 

4.2  Objective 

The aim of the present study was to characterize the changes in the primary and secondary 

metabolism of in vitro regenerated roots of H. perforatum during growth in a confined culture 

environment and in response to chitosan eliciattion after 96 and 192 h. In this experiment, the effect 

of an unique renewal of culture medium on time-dependent biomass growth and on chitosan 

elicitation response at longer times after the elicitation was evaluated by exploring the primary and 

secondary metabolism of the H. perforatum roots. Furthermore, we compared the obtained results on 

secondary metabolites yield with those of previous experiment. A metabolomic platform integrating 

non-targeted NMR-based metabolic profiling and multivariate analysis such as Partial Least Square 2 

(PLS2) and ANOVA simultaneous component analysis (ASCA) has been used.  

As in the first study, an histological analysis was carried out to investigate the effect of chitosan 

elicitation on the morphology and anatomy of Hypericum perforatum in vitro roots after 96 and 192 

hours of treatments. 

Due to the high levels of DMAPP, precursor of isoprenoid compunds, observed in the first study in 

the chitosan-treated roots, a preliminary analysis by GC/MS has been carried out to verify the 

terpene production. 
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4.3  Material and Methods 

Liquid cultures were established inoculating 1 g fresh weight (FW) of roots in magenta vessels 

containing 80 ml liquid MS medium supplemented with glucose (2,2 g l-1) and IBA (1 mg l-1). The 

medium was renewed at 4° day. The roots were elicited using chitosan (medium molecular weight; 

Sigma-Aldrich, Milan, Italy), dissolved in acidified water with HCl (1M), at a final concentration of 

200 mg l−1, which was added on the eighth day of culture using 0,22 µm sterile filter. In vitro 

regenerated roots were harvested at eighth day (time 0), at eleventh day (72 h, time 2), thirteenth day 

(96 h, time 3) and sixteenth day (192 h, time 4) and divided into seven groups: basal (time 0), control 

and treated to 72 hours after elicitation (time 1), control and treated at 96 hours after elicitation 

(time 2) and control and treated at 192 hours after elicitation (time 4).  The samples were subjected 

to metabolic quenching and prepared for the NMR acquisition (as explained in the paragraph 2.1). 

NMR spectra were acquired and analysed (as explained in the paragraph 2.2).  

Multivariate data analysis was carried out using Unscrambler 10 Software (CAMO, Oslo, Norway) 

and routines operating in a Matlab R2012a environment (The MathWorks, Inc.,Natick, MA).  

Spectral data were mean-centered and scaled before analysis. To explore the whole data set and 

highlight significant differences among sample, inherent clustering and potential outliers, thus 

obtaining a simple visual idea as to the main relationships between these samples, principal 

component analysis (PCA) was used. PCA was applied to the data matrix containing data relative to 

root samples (control and treated) consisting of 30 rows and 66 columns, each row contains the 

measurements (concentrations) for a given sample and each column the measurement for a given 

variable (metabolites).  

To maximize the covariance between the predictor matrix X (matrix of NMR data) and the response 

matrix Y (matrix of the information on “external factor” (time and treatment) to which root samples 

belong), a Partial Least Square 2 (PLS 2) regression model was built. The matrix X contained the 

concentration of metabolites detected in all samples at all experimental times. Each row represented 

a sample and each column represented a variable (metabolite). The Y is a ‘‘dummy’’ matrix was 
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constituted by two columns, represented by the time (hours) and treatment and containing zero for 

the y variable corresponding to the control and 1 for the y variable corresponding to the treated 

samples and many rows as were variables (metabolites) considered.  

Cross-validation was used to select the optimal number of latent variables (LVs; linear combinations 

of the measured signals) for PLS 2 model. Statistical validity of the calculated model and the 

reliability of results were assessed by permutation tests and cross-model validation (Szymanska et al. 

2012). 

In order to assess whether and how treatment, time and their interaction could have an effect on the 

metabolic profile of the samples as determined by NMR spectroscopy, ANOVA-Simultaneous 

component analysis (ASCA) was used (Smilde et al. 2005, Jansen et al. 2005). The data collected at 

time 0, 72, 96 and 192 h were considered for the analysis. The detailed description of the ASCA 

model is reported in section 3.3.  

Having verified that treatment and time had a significant effect on the metabolic profiles of samples, 

SCA (after Pareto scaling) was used to model the variation in the two corresponding matrices 

Xtreatment and Xtime. Considering that for N levels can be obtained N-1 components that explain the 

100% of the variance and that two levels only were considered for treatment factor 

(control/treated), a single component explaining 100% of the variance of the individual matrix was 

obtained. On the other hand, as four levels were considered for time factor (0, 72, 96 and 192 h), 

three components explaining 100% of the variance of the individual matrix were obtained. 

Subsequently, the individual matrices were decomposed into the product of one score and one 

loading vector. In order to use SCA results for the interpretation of the metabolic effect of 

treatment and time, the significance of the contribution of the experimental variables to the 

definition of the models (i.e. the significance of the loadings) had to be assessed (see Section 3.3).   

To assess the statistical univariate significance of the metabolic changes among experimental groups, 

previously individuated by multivariate analysis, a Two-Way ANOVA and Tukey test were applied. 

Differences showing P-values less then 0.05 were considered statistically significant.  
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In order to verify the presence of terpenes in H. perforatum in vitro roots, control and treated root 

samples harvested at time 192 h were pulverized in liquid nitrogen and extracted by 

dichloromethene (DCM). DCM-fractions of the root samples were analyzed by Gas 

chromatography (GS) associated to Mass Spectrometry (MS). These analyzes were conducted in 

collaboration with the “Núcleo de Investigações Químico-Farmacêuticas” (NIQFAR), 

“Universidade do Vale do Itajaí”.  

To investigate the effect of culture time and chitosan elicitation on root anatomy, sections of fresh 

samples and fixed samples embedded in resin were analysed. To investigate the effect of culture time 

and chitosan elicitation on roots morphology, whole roots samples were analysed by a Zeiss 

stereomicroscope equipped with reflected and transmitted light.  
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4.4  Results  

The growth curve of both elicited and non-elicited H. perforatum in vitro roots was measured during 

the course of sixteen days and is plotted in Figure 1.  

In control roots, it was possible observe an exponential phase of growth curve from day 0 to day 12, 

whereas a decreasing growth rate could be observed from day 13 to day 16. 

In elicited roots, the chitosan addition at day 8 caused a sudden slowdown of growth, approaching 

to the stationary growth phase after the day 12. 

  

 

 

Figure 1. The growth curve of H. perforatum in vitro roots over a period of 16 days. Growth is 

expressed as a natural logarithm of fresh weight biomass. Data are presented as the mean ± standard 

deviation  (SD) of five samples in five independent experiments. 

 

Seventy-six metabolites were identified and assigned. 1H and 13C data are reported in Table 1 (see 

Study I).  

1H-NMR spectra of control and treated roots consisted of a vast array of metabolites including 

amino acids, carbohydrates, organic acids, polyphenols, isoprenoids, fatty acids and sterols. Among 

the polyphenols, several furanic rings that can be attributed to xanthone compounds were identified. 

However, the univocal assignment of these resonances to a specific molecular structure of xanthone 

was hindered due to the extreme signal overlapping. Nevertheless, these resonance were quantified 

Chitosan Elicitation 
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by integration and considered for multivariate analysis. Moreover, at 96 and 192 h after chitosan 

elicitation, it has been possible to identify different signals belonging to Rheediaxanthone and a new 

xanthone named Brasilixantone B (Figure 2).  1H and 13C data of Brasilixanthone B are reported in 

Table 2. 

 
 
Table 2. 1H and 13C data of Brasilixanthone B in chloroformic extracts of chitosan treated roots. 
 
 

Position δ 1H multiplicity (J Hz) Integral δ 13C 

1 \ \ \ 157.8 

2 \ \ \ 104.4 

3 \ \ \ 159.9 

4 6.26 s 1 93.1 

4a \ \ \ 156.5 

5 6.84 s 1 101.9 

6 \ \ \ 153.0 

7 \ \ \ 136.8 

8 \ \ \ 119.7 

8a \ \ \ 108.5 

9 \ \ \ 182.5 

9a \ \ \ 103.9 

10a \ \ \ 150.9 

11 6.73 d (10.1) 1 115.6 

12 5.57 d (10.1) 1 127.1 

13 \ \ \ 78.0 

14,15 1.47 s 3+3 26.7 

21 8.05 d (10.1) 1 157.8 

22 5.84 d (10.1) 1 132.2 

23 \ \ \ 78.1 

24,25 1.50 s 3+3 27.3 
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Figure 2. 1H-NMR spectra of chloroformic phase of treated roots at 192 h. In blue assigned signals 

of Brasilixanthone B and in red assigned signals of Rheediaxanthone from 8.5 to 5.5 ppm (A) and 

from 5 to 1 ppm (B). 

 

 

B 

A 
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The concentrations of metabolites measured at time 0 (day 8), 72 h (day 11), 96 h (day 12) and 192 h 

(day 16) both in the control and the chitosan-elicited roots are reported in Figure 3. 
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Figure 3. Metabolic composition of the root extracts.  Histograms representing the quantitative 

composition of the assigned metabolites grouped into distinct classes.  Data are expressed in µmol/g 

of fresh weight and are presented as the mean ± standard deviation (SD) of five samples in five 

independent experiments.  White and grey bars represent control and chitosan elicited samples, 

respectively, at various experimental times. * Significally different from control at the same 

experimental time. * Significant difference between controls at 72 h and 96 h. ** Significant 

difference between controls at 72 h and 192 h. *** Significant difference between controls at 96 h 

and 192 h. * Significant difference between treated at 72 h and 96 h.  ** Significant difference 

between treated at 72 h and 192 h. *** Significant difference between treated at 96 h and 192 h as 

assessed by Two-Way ANOVA. P < 0.05.  

 

An initial exploration of the whole data set to identify a possible clustering of samples and possible 

outliers was performed by Principal Component Analysis (PCA). PCA was applied on the data set 

constituted by metabolite concentrations measured at basal time (day 0), 72 h (day 11), 96 h (day 12) 

and 192 h (day 16) after elicitation, and the resulting score plot is shown in Figure 4. 

 

* 
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Figure 4. The PC scores plot relative to whole set of H. perforatum root data.   basal samples;      

control samples  at 72 h,       control samples at 96 h;      control samples at 192 h;       chitosan-

elicited samples at 72 h;     chitosan-elicited samples at 96 h;      chitosan-elicited samples at 192 h. 

Total variance explained by PCs was 28%, 19% and 12% for PC1, PC2 and PC3, respectively. 

 

A complete separation between control and treated roots was achieved with 3 PCs explaining 28%, 

19% and 12% of the X-variance, respectively. 

In particular PC2 and PC3 scores corresponding to chitosan elicitation- and biomass growth-related 

changes, respectively, whereas PC1 score represents the high variability does not related to time and 

treatment. In particular, PC2 and PC3 separated the samples on the basis of treatment with chitosan 

and time of biomass growth, while PC1 does not seem to be linked to any of the considered factors 

(time and treatment). The latter represents the high variability due to sample size and to large 

number of variables. The PCA highlights that the total variability for the discrimination of the 

factors (time and treatment) is less and in other words, a smaller number of variables are involved in 

the description of principal component compared to the first experiment (see study I).  
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In order to disentangle the contribution of metabolic variations related to root biomass growth in a 

confined environment from that depending on chitosan elicitation, a multivariate regression such as 

partial least squares 2 (PLS2) model has been applied. 

The obtained model were constituted on four significant latent variables for PLS2 model (Figure 5) 

explaining 98.3% of the Y variance, with a cross-validation Q2
  of 0.928 (time effect), and 81.6% with 

a cross-validation Q2
  of 0.745 (treatment effect).  

 

Figure 5. The PLS2 model were constituted on four significant latent variables for PLS2 model 

explaining 98.3% of the Y variance for the time effect and 81.6% of the Y variance for the treatment 

effect.  

 

The PLS2 model show to be able to separate the time-dependent trajectories on the LVs planes of 

elicited and not-elicited root samples. In particular, the PLS2 model built on control and treated root 

sample identified significant differences related to a “time effect” and “treatment effect”. However, 

the metabolic variations induced by the different factors (treatment and time) distinguishing 

“between” and “within” of factors identified cannot be easily interpreted by loading regression 

analysis.   

Figure 4. PLS2 score plot  
 

Samples at time 0 (day 8)      
control samples at 72 h (day 11) 
control samples at 96 h (day 12) 
control samples at 192 h (day 16)       
chitosan-elicited samples at 72 h 
chitosan-elicited samples at 96 h 
chitosan-elicited samples at 192 h 
 
 
      

 
       
,       ;               ;       . Total variance 
explained by PCs was 28%, 19 % and 
12% for PC1, PC2 and PC3, 
respectively. 
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For this reason, in order to discriminate the metabolic variations related to root biomass growth and 

to chitosan treatment, and to their interaction, ASCA modelling was applied.  

ASCA modelling showed that only the effects of chitosan treatment and time were significant (the p-

values for treatment and time were 0.03618 and 0.00194, respectively), while the effect of the their 

interaction was not statistically different from zero (p>0.87) Figure 6 A, B and C. 

 

Figure 6 A. Evaluation of the significance of the multivariate effect of treatment by means of 

permutation tests. 

 

Figure 6 B. Evaluation of the significance of the multivariate effect of time by means of 

permutation tests. 
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Figure 6 C. Evaluation of the significance of the multivariate effect of treatment-time interaction by 

means of permutation tests. 

 

Having verified that treatment and time had a significant effect on the metabolic profiles of H. 

perforatum roots, simultaneous component analysis (SCA) was used (after Pareto scaling) to model 

the variation in the two corresponding matrices X treatment and X time.  

 

Effect of the chitosan treatment on H. perforatum root metabolism as revealed by ASCA 

analysis 

As described in section 4.3, a single component (SC1) was calculated by SCA model and the 

corresponding score plot is shown in Figure 7. 
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Figure 7. SCA score plot for effect of treatment: SC1 shows the significant effect of the chitosan 

elicitation. 

 

Along SC1, control samples were placed at positive values whereas the treated samples were placed 

at negative values of SC1 (figure 7). The distribution of the loadings for the SCA model of the 

treatment effect is reported in Figure 8. 

 

Figure 8. SCA analysis on the effect matrix for treatment: variable loadings for the one-component 

SCA model (blue line) and their 95% confidence intervals (red).  
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Considering that control samples were placed at positive values of SC1, variables with positive 

loadings were higher in control then treated roots. Conversely, chitosan treated samples were placed 

at negative values of SC1 therefore, variables with negative loadings were higher in treated then 

control samples. The SC1 identified as significant metabolites for SCA model: shikimic acid, 

tryptophan and five unknown metabolites such as U0, U2, U12, U23 and U18 that were higher in 

control then in elicited roots and DMAPP, total brasilixanthones, and U6 that were higher in elicited 

then in control roots.  

 

Effect of the time on H. perforatum root metabolism as revealed by ASCA analysis 

As described in section 4.3, two component (SC1 and SC2) were resulted significant for the SCA 

model and the corresponding score plot is shown in Figure 9A. 

 

Figure 9A. SCA score plot for the effect of time: SC1 and SC2 show the significant effect of time.  

 

 

In order to better understand the evolution of the scores in function of time, a score plot with the 

distribution of the scores for each of the two components (SC1 and SC2) is reported in Figure (9B).  
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Figure 9B. SCA score plot for the effect of time: SC1 and SC2 show the significant effect of time.  

 

The two components SC1 and SC2 show two metabolic events which contribute to the total 

variance in two different ways, explaining the 65% and 20% respectively.  

In particular, SC1 displays a monotonous trajectory in function of time: the scores decreased with 

the time went until reaching a minimum. Consequently, the variables with positive loading 

systematically decreased whereas the variables with negative loading systematically increased along 

this component. In order to explain this difference loading analysis was performed. The distribution 

of the loadings for the SCA model of the time effect along the SC1 is reported in Figure 10. 
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Figure 10. SCA analysis on the effect matrix for time along SC1: variable loadings for the one-

component SCA model (blue line) and their 95% confidence intervals (red).  

 

The significant metabolites that decreased were isoleucine, valine, threonine + lactate, pyruvate, 

acetoacetate, etanolamine, α- and β-glucose, trigonelline, sitosterol, stigmasterol, PUFA + MUFA, 

satured and unsatured fatty acid, omega-6, short fatty acids, total PUFA, Omega 3 and two 

unknown metabolites such as U2 and U3. The significant metabolites that increased were alanine, 

asparagine, fructose, sucrose, epicatechin, shikimic acid, gallic acid, formate, DMAPP, total 

brasilixanthones, brasilixanthone B, brasilixanthone like, and four unknown metabolites such as 

U34, UY, UX and U16.   

Conversely, SC2 displays a perturbation that evolves over time returning to the starting point: the 

scores decreased until 72 h and then progressively increased until returning to the initial values.  

Consequently, the variables with positive loading decreased and then increased whereas the variables 

with negative loading increased and then decrease. In order to explain this difference loading 

analysis was performed. The distribution of the loadings for the SCA model of the time effect along 

the SC2 is reported in Figure 11.  
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Figure 11. SCA analysis on the effect matrix for time along SC2: variable loadings for the one-

component SCA model (blue line) and their 95% confidence intervals (red).  

 

The significant metabolites that decreased and then increased were acetoacetate, adenosine and three 

unknown metabolites such as UX, U16, U13. The significant metabolites that increased and then 

decreased were leucine, threonine + lactate, alanine, pyruvate, fructose, α- and β-glucose, and 

sucrose.     

To summarize the loadings metabolites that contribute significantly to the model for time and 

treatment effects an heatmap has been built and is shown in Figure 12.  
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Figure 12. Heatmap for loadings metabolites that contribute significantly to the model for time and 

treatment effects. Treatment effect: blue corresponds to the loading with positive direction 

(increase) in control roots; red corresponds to the loadings with negative direction (increase) in 

treated roots. Time effect: for the SC1, blue corresponds to the loading with positive direction 

(decrease); red corresponds to the loading with negative direction (increase). For the SC2, yellow 

corresponds to the loading with positive direction (decreased and then increased); green 

corresponds to the  loading with negative direction (increased and then decrease). 

 

Histological analysis of control and chitosan-treated Hypericum perforatum in vitro roots at 

96 and 192 h  

Histological analysis was carried out to investigate the effect of chitosan elicitation on the 

morphology and anatomy of roots of Hypericum perforatum at time 96 and 192 hours after chitosan 

elicitation. The marked morpho-anatomical alterations already observed at 72 hours remained 

unchanged at 96 and 192 h (Figure 13). 
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Figure 13. Resin-embedded longitudinal sections of chitosan treated roots (A and B). Cross sections 

of control roots at 96 h (C) and at 192 h (E) and of chitosan treated roots at 96 h (D) and 192 h (F) 

stained with 0.1% toluidine blue. Bars represent 100 µm. 
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Analysis of isoprenoid comopounds by GC/MS 

The main compounds observed by GC/MS analysis of root samples were acids/esters of long chain 

and steroids such as butyric acid (92 % similarity), palmitic acid (88 % similarity), linoleic acid (93 % 

similarity), n-Heptadecane (90 % similarity), di-n-octyl-phthalate (95 % similarity), stigmasterol (87 

% similarity) and γ-sitosterol (94 % similarity). Terpenes compounds were not observed as revealed 

by chromatograms shown in Figure 14.  

 

Figure 14. Overlapping chromatograms of root samples: a and d represent treated roots harvested 

at 192 h; b and c represent control roots harvested at 192 h. The identified compounds are 

numbered from 1 to 8 as follows: 1) Butyric acid, 2) Palmitic acid, 3) Linoleic acid, 4) n-

Heptadecane, 5) Di-n-octyl-phthalate, 6) Unknow compound, 7) Stigmasterol, 8) γ-sitosterol.  
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4.5 Discussion  

Comparing the growth curves of H. perforatum control roots from STUDY I and II, it is possible to 

observe that the shortening of culture time which precedes the elicitation (STUDY II), starting with 

the same amount of inoculum, an equal biomass density has been obtained. In particular, an equal 

biomass density has been obtained in both experiments at day 12 and at the end of culture time (day 

15 for the first experiment and 16 day for the second one).  

Specifically, the removal of a single renewal of culture medium during the exponential phase of the 

biomass growth, did not influence the growth rate and biomass yield, demonstrating that culture 

medium composition is not a limiting factor on the root growth rate in the considered experimental 

times. Conversly, the comparison between the metabolic profiles obtained from the two different 

culture conditions (STUDY I and II), showed deeply different responses in primary and secondary 

metabolism of H. perforatum control roots. Analogously to the previous study, the biomass growth in 

a confined environment stimulated the phenylpropanoid metabolism, as revealed by the increase in 

epicatechin, gallic and shikimic acid levels. 

As an effect, a significant positive correlation between shikimic acid and epicatechin (Pearson 

coefficient r = 0,89) and gallic acid and epicatechin (r= 0,88) levels was observed, and furthermore a 

significant increase in tryptophan level was observed with the time went. These results confirm  the 

existing relationship between increase in biomass density, growth slowdown and phenol 

biosynthesis, as proposed by Cui et al. (2010) in H. perforatum roots cultured in a bioreactor and 

already discussed in the previous study. Although xanthone levels did not significantly change over 

time, it is interesting to observe that control roots showed tenfold higher total xanthone levels in 

this experiment compared to the first study. The relative amounts of total xanthones in different 

days of culture were: 0.35 µmol/g (day 11), 0.38 µmol/g (day 12), 0.44 µmol/g (day 16) in the 

second experiment, and 0.02 µmol/g (day 12) and 0.03 µmol/g (day 15) in the first experiment.  

These results demonstrate that a removal of a renewal of culture medium did not affect the biomass 

growth, but heavily modified the secondary metabolite production. We hypotesize that this effect is 
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due to the lower auxin (IBA) level to which the roots were exposed with the respect of protocol 

with double culture medium renewal (first study). Tocci et al (2011) demonstrated that different 

concentrations of IBA influenced xanthone production in in vitro regenerated roots of H. perforatum. 

However, further investigations are requested to clarify molecolar mechanisms underlying these 

effects.  

In elicited roots, the chitosan addition at day 8 caused a sudden slowdown of growth, as observed 

also in the previous study.  

The PLS2 regression model identified significant differences attributable to a time effect and to a 

chitosan treatment but did not allow to detect possible interactions between the two factors. 

Applying ASCA model the significance of time and treatment factors and the absence of an 

interaction between two effects has been highlighted.   

As revealed by ASCA model, the metabolic signature defining chitosan treatment effect consisted of 

changes in the level of primary and secondary metabolites associated with phenylpropanoid and 

isoprenoid pathways.    

The increase in DMAPP and Total Brasilixanthones associated to a decrease in shikimic acid and 

tryptophan levels suggests a adaptation response to stress conditions induced by elicitation with a 

specific stimulation of secondary metabolism, in agreement with previous results obtained using the 

same experimental system by Tocci et al. (2011).  

The highest level of DMAPP was measured in chitosan elicited roots at 192 h confirming that the 

chitosan elicitation induced a stimulation of isoprenoid pathway. Despite the considerable increase 

in DMAPP levels,  GC/MS analysis of extracts of in vitro roots of H. perforatum elicited with chitosan 

did not reveal the presence of terpenes. Therefore the increase in DMAPP levels can be associated 

to other isoprenoid compounds, such as sitosterol and stigmasterol, identified both trough NMR 

and GS/MS analyses. Concerning xanthones, they were qualitatively and quantitatively higher in the 

present study. In particular, in chitosan elicited roots the total xanthones after 72 h were 0.66 

µmol/g and 0.20 µmol/g, in the experiment with a single and double medium renewal, respectively.  
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Therefore, in chitosan elicited roots of H. perforatum, the yield of xanthones was influenced by 

renewal of the culture medium and probably by a different IBA level during the interval time after 

elicitation, analogously to that observed for non elicited roots. 

Moreover, at 96 and 192 h after chitosan elicitation, it has been possible to identify molecular 

structures relative to brasilixantone B and rheediaxanthone. The brasilixantone B, already isolated 

from roots and stems of Tovomita brasiliensis (Marques et al. 2000), has been recently identified in 

adventitious roots of H. perforatum (Li et al. 2013). An antibacterial activity of brasilixanthone has 

been demonstrated against Staphylococcus aureus in twigs of Garcinia nigrolineata (Rukachaisirikul et al. 

2005). The rheediaxanthone, previously isolated from the roots of Hypericum roeperanum (Rath et al. 

1996) and from other species such as Metaxya rostrata has been demonstrated induce active cell death 

in colorectal tumore cells (Kainz KP et al. 2013).  

In this study, epicatechin levels did not significantly increase in response to chitosan elicitation. 

Nevertheless in both experiments (STUDY I and II) epicatechin levels appeared to be higher in 

treated roots when compared to the respective controls, except in those measured at 192 h which 

were lower than in the respective control roots. Considering elicited roots at 72 h, the epicatechin 

and shikimic acid levels were higher in the first than in the second experiment. In particular, in the 

first experiment, the epicatechin and shikimic acid amounts were 1.15 µmol/g and 0.8 µmol/g 

respectively, whereas in the second experiment were 0.52 µmol/g and 0.38 µmol/g, respectively. 

The modification of the experimental protocol, in term of a single or double culture medium 

renewal, appears to influence the secondary metabolic response to chitosan elicitation, and therefore 

the epicatechin or xanthone yield.  

Despite the observed metabolic changes, the morpho-anatomical alterations ramained unchanged 

after 72 h of elicitation demonstrating that the root structure modifications induced by chitosan are 

a precocious event.  
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Final conclusions 

Non targeted NMR-based metabolomics has been used to explore the primary and secondary 

metabolism of in vitro regenerated roots of Hypericum perforatum. The approach based on metabolic 

profiling and multivariate data analysis such as ANOVA Simultaneous Component Analysis and 

Partial Least Square has allowed to discriminate the metabolic effects due to an increase in biomass 

and chitosan elicitation.  

In the second study, the modification of experimental protocol (a single vs double renewal of culture 

medium) did not affect the biomass growth rate and  the biomass weight and density reached the 

same values at same culture times. However, the single renewal of the culture medium had a strong 

impact on primary and secondary metabolism both in control and elicited H. perforatum roots. 

The metabolomics approach proposed can be considered an efficient  tool for setting up an H. 

perforatum root culture system for large-scale production of specific secondary metabolites useful for 

pharmacological applications, such as epicatechin and xanthones. 

In this context, the obtained results suggest that it is essential to consider that the metabolic profile 

of an extract of in vitro root culture depends on achieved biomass density and on the used culture 

protocols. The auxin levels are reported to have an important role for the improvement of the root 

biomass yield, but they also appear have a strong impact in the qualitative/quantitative definition of 

secondary metabolite production. It is worth considering that the influence of auxin on root 

metabolism in culture should be deeply investigated. 

This information is important from an applicative point of view in order to obtain standardized 

extracts useful for the human health.   

Furthermore, it should be taken into account that variations in the experimental protocols can lead 

to deep changes in the ingredients of the extract and consequently, the biological efficacy migth be 

compromised or at least changed. Finally, studying the biological properties of different mixtures of 

metabolites that can be obtained varying the experimental culture conditions will be able to 

rationalize the production of the metabolite/s of interest. 
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