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Introduction

Motivations

In the near future, new types of systems will appear, designed or emerged, of
massive scale, expansive and permeating their environment, of very heteroge-
neous nature, and operating in a constantly changing networked environment.
Despite the dynamics of the environment, they will have to meet their clearly-
defined objectives and provide guarantees about certain aspects of their own
behavior. We expect that most such systems will have the form of a large
society of tiny artifacts. Each such artifact will be unimpressive and with lim-
ited resources such as limited sensing, signal processing, and communication
capabilities, and in particular, being battery-powered, it will be subject to
severe energy constraints.

The challenges emerging from the management of such devices are faced by
the European Project FRONTS (Foundations of Adaptive Networked Societies
of Tiny Artifacts) [4]. A reference scenario considered in FRONTS, deals with
a new class of devices named MURPESS - Multi Radio Pedestrian Energy
Scavenging Sensor Network[49].

A MURPESS is a tiny battery-powered device equipped with heteroge-
neous sensors, that can scavenge energy from pedestrians’ steps [103], enabling
mobile users to collect data while moving around. MURPESSes are equipped
with multiple radio technologies: passive ones, such as RFID tags, have less
communication capabilities but do not require energy supply while active ra-
dios, e.g., 802.15.4, Bluetooth or Near Field Communication (NFC), are more
powerful but also more power consuming. When the level of energy in the
battery is sufficiently high, a MURPESS can exploit active radios. When the
battery is low and the energy scavenging mechanism is recharging it, only
passive communications are possible.

In figure 1 a possible application scenario for MURPESSes is shown. When
the energy is sufficiently high, MURPESSes act as active mobile clients of a
Wireless Sensor Network (WSN) generating an information flow to (request)
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2 INTRODUCTION

Figure 1: A unifying scenario of passive and active information gathering using

low power communication techniques.

and from (answer) the network. In other words, the MURPESS consumes the
information gathered by the WSN. At the same time, an active MURPESS
can interact with passive ones (i.e., MURPESSes with momentary insufficient
energy to start an interaction), to obtain relevant information and carry this
information to other MURPESSes generating in such way an information flow
in two otherwise disconnected areas. This is a typical example of Opportunistic
and Delay-Tolerant networking [105].

The challenges emerging in the MURPESS scenario are faced by the FRONTS
project members by proposing solutions in different research areas: self-stabilizing
communication infrastructures, algorithm and tools to enforce a cooperative
behavior, algorithms and protocols to efficiently share information and algo-
rithms and protocols to protect user privacy. This thesis focuses on problems
and solutions emerging from information gathering in resource constrained
wireless networks. Considering the push (resp. pull) information exchange
technique, we define information gathering as the effort made by an entity
to deliver (resp. retrieve) some kind of information to (resp. from) another
entity. As an example, in our context, information gathering involves the chal-
lenges the WSN must face to reliably gather information on the surrounding
environment and exchange it with MURPESSes in its proximity. In passive
communication, information gathering can relate on how small portions of po-
tentially incomplete local data, opportunistically exchanged, can be used to
derive useful global views on the overall system. From these examples, it is
clear that the heterogeneity of the devices in resource constrained wireless net-
works will lead to heterogeneity in problem formulation, scope and solutions.
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In our work, we have considered two main categories of resource constrained
wireless networks:

• Wireless Sensor Networks are made of battery powered tiny devices
with limited memory, computational power and communication capa-
bilities. These devices, also known as sensor nodes, are equipped with
heterogeneous sensors able to monitor physical phenomena of the sur-
rounding environment. Nodes are able to communicate over long dis-
tances by dynamically building a multi-hop network topology. In such
way, sensed data are forwarded to one or more collection points which
make available this information to end-users. WSNs are expected to run
unattended for several years without the need of battery replacement.
However, because of the energy consumption of radio transceiver, in-
formation gathering cannot take place without the adoption of suitable
energy-aware solutions. Energy Awareness in Wireless Sensor Networks
is a research topic that, despite the extensive research made during the
last decade, still presents several open issues.

• Passive Pervasive Systems are implemented by RfID and NFC tech-
nologies. Passive RfID tags are characterized by very low memory avail-
ability (8KB), the absence of a power supply and, contrary to WSN, they
cannot actively establish and maintain a stable communication path.
RfID tags draw power from the radio waves emitted by the readers, as a
consequence, they are activated only when an RfID reader in their prox-
imity starts a communication. The readers are active battery-powered
devices able to read, elaborate and manipulate the information stored
on passive RfID tags. Similarly to active readers, NFC-based devices
are short-range high frequency wireless communication systems that are
compatible with RfID infrastructure but are also able to exchange data
with other NFC devices.

The interaction between active readers or NFC devices and RfID tags
enables information exchange between active-passive devices, but active
devices allow also the mediated communication between two passive de-
vices. In fact, an active device carried by a mobile user, can carry infor-
mation taken from the first visited passive device to the next one and
so on; in this context, the information exchange among passive devices
is mediated by users’ collective and unpredictable navigation patterns.
Thus, despite the absence of direct links between passive tags, there
is still an indirect multi-hop networking interaction. We refer to this
mechanism as opportunistic networking. In such context, information
gathering relies on the ability of distributing and sharing the informa-
tion locally stored in passive devices through active devices, such as to
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WSN PPS

Computational Power Yes

(4∼12Mhz)

Very limited

(tags)

Memory 8∼40 KB ∼8 KB

Power Supply Battery

(2xAA-type)

No

(passive)

Communication Type Infrastructure

(multi-hop)

Opportunistic

(single-hop)

Autonomously initiate

a communication

Yes No

Table 1: Differences between WSNs and Passive Pervasive Systems (PPS)

obtain a common global view of the available information on top of which
new services can be built.

Despite we do not cover the whole set of technologies involved in resource
constrained wireless networks, WSNs and Passive Pervasive Systems are well
representative of two distinct categories in terms of computational power, com-
munication capability and energy constraints. The main differences are sum-
marized in table 1.

Thesis Outline

Part I The first part of the thesis focuses on information gathering in Wire-
less Sensor Networks. Chapter I is an introduction to wireless sensor networks.
Section 1.1 describes applications and scenarios of commonly known WSNs de-
ployments. It is shown how, for most common deployments related to what we
define in section 1.1 as Periodical Environmental Monitoring (PEM), energy
constraints represents the main obstacle for information gathering in WSNs.
In particular, the energy consumption of radio transceivers, required for data
transmission and reception, quickly drains the batteries of sensor nodes and,
thus, reduces the network lifetime to few days against a requirement of more
than a year. Section 1.2 briefly describes common techniques to face energy
limitations. From this section it emerges that increasing battery capacity or
adopting energy scavenging techniques can mitigate the effect of power con-
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sumption but it is not sufficient to meet lifetime requirements of PEM applica-
tions. Thus, energy awareness needs to be introduced on sensor nodes. Energy
awareness in WSNs operates at different level. At the application level (sec-
tion 1.3) sensor selection and data aggregation both try to reduce the overall
quantity of data gathered by the network. Sensor selection algorithms allow
selecting which nodes should participate in the sensing task to reconstruct
the signal with sufficient accuracy. Data aggregation techniques aggregate or
filter data sensed by nodes that are close to each other or in the same region
of interest. In both cases, the semantic of the gathered data is essential for
such protocols to run properly. In communication-based energy awareness
(section 1.4), energy-aware routing protocols aim at reducing the number of
hops and/or transmissions needed to propagate the sensed data from a sensing
node to a collection point. On the other hand, energy-aware MAC protocols
reduce the energy consumption of radio transceiver by leaving the radio into
sleep state as soon as reception or transmission are not required.

Contributions Chapters 2, 3 and 4 present the main contributions of the
first part of the thesis.

In chapter 2 we present a new Sensor Selection technique, namely Adap-
tive Random Selection (ARS) [113] based on Random Sensor Selection (RSS).
The advantage of RSS approach in respect of the others described in section
1.3 relies on the minimal control overhead and the implicit load balancing.
On the other hand, estimating the correct activation probability is not trivial
furthermore, RSS suffers from non homogeneous network deployments. ARS
randomly selects nodes, as in RSS, but uses locally computed values of the
probability of activation. The rationale behind ARS draws upon the con-
sideration that the probability of activation of a node should depend on its
position with respect of its neighbors, and the number thereof. ARS is able to
reduce the amount of active nodes for effective field reconstruction up to 70%
in a 100 nodes environment (1-Dimensional case) still providing a root mean
square error below 5%. In [50] we have shown how, reducing the number of
active nodes, drastically improves the performance of underlying protocols in
particular in terms of packet delivery and collection time.

These benefits directly affect the performance of DISSense [51] (chapter
3), an adaptive ultralow-power communication protocol for wireless sensor
networks specifically designed for long-term PEM applications. DISSense im-
plements a full communication stack allowing for both data collection and
dissemination. It determines a schedule that alternates short activity phases
during which dissemination, resynchronization and data gathering are exe-
cuted, and long intervals during which nodes operate in an ultralow-power
mode. DISSense provides an Adaptive Engine that computes, in the view of
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collected statistics, the length of the active phase such as to minimize the
protocol duty cycle. The advantage of DISSense in respect of energy-aware
solutions described in 1.4 relies on the adaptivity that enables DISSense to
reach ultra-low duty cycle that in several circumstances can compete with
Dozer [47] which is, to the best of our knowledge, the most performing ultra-
low data gathering protocol for environmental monitoring. However, as op-
posed to Dozer, DISSense is open-source and guarantees lower data latency.
Additionally, the adaptive behavior of DISSense enables a WSN to be easily
deployed without the need to fine tune protocol’s parameters. Moreover, DIS-
Sense supports large networks deployment by adopting multi-sink gathering
solutions.

In chapter 4 we applied ARS over DISSense. In particular, we observed
in [50] that the lower number of active nodes, characterizing sensor selection
schemes, reduces the number of collisions and retransmissions, thus, the overall
gathering time of a collection protocol. This peculiarity is captured by the
Adaptive Engine of DISSense which reduces the scheduled active time and
consequently, the duty cycle. As a result, by applying ARS over DISSense, we
have been able to greatly improve the energy efficiency of the communication
protocol.

Part II The second part of the thesis focuses on information gathering in
Passive Pervasive Systems. In chapter 5 we briefly describe the involved tech-
nologies and the emerging applications. We also describe the main differences
in terms of network infrastructure, traffic pattern, communication type and
memory availability with respect to WSNs. As a consequence of these dif-
ferences, information gathering sharply differs in passive pervasive systems.
In particular, information gathering cannot rely on a stable communication
infrastructure, for this reason centralized solutions are not suitable. The only
way nodes have to store the information is the opportunistic communication
that takes place when a user interacts with a passive device while moving in
the environment. At the same time, the user must compute the information
locally to retrieve some useful information for the implemented application.
Thus, information gathering in passive pervasive systems relates on the design
and evaluation of new application scenarios that must deal with the constraints
imposed by a fully decentralized approach.

Contributions Chapters 6 and 7 represent our contribution related to the
second part of the thesis.

In chapter 6 we present a fully decentralized RfID-based recommendation
system tailored for smart posters applications (i.e., new items recommenda-
tion based on the previously visited posters) that is able to suggest items of
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potential interest on the basis of the succinct information obtained interact-
ing with the smart poster. The system defines a probabilistic model of user
behavior and uses statistics computed over past user transactions to estimate
parameters of the model. The output of the model is a set of items that
are most likely to meet a user’s interests. The system is fully decentralized
and easily matches the low-computational, low-memory and low-bandwidth
requirements of passive pervasive systems.

In chapter 7 we present an SMS-based recommendation system able to
provide social recommendations, e.g., new friendships, based on the exchange
of succinct representation of the list of contacts dubbed sketches encoded in the
residual space of Short Messages. Despite Short Messages rely on the mobile
phone communication system, which sharply differs from passive pervasive
systems, we show how the application can be easily implemented on NFC
based devices.

Publications

Part of this thesis has been published in the following journal articles, confer-
ence and workshop proceedings:
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Spirakis, and Andrea Vitaletti. Murpess - multi radio pedestrian energy
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27-29 October 2010

Part I

• Ugo Colesanti, Silvia Santini, and Andrea Vitaletti. DISSense: An
Adaptive Ultralow-Power Communication Protocol for Wireless Sensor
Networks. ACCEPTED, to be presented at the 7th IEEE International
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• Daniele Puccinelli, Omprakash Gnawali, SunHee Yoon, Silvia Santini,
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Bonn (Germany), February 23-25, 2011
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Chapter 1

Wireless sensor networks

1.1 Applications and scenarios

Wireless Sensor Networks (WSNs) are made of battery-powered tiny devices
with processing capabilities, equipped with sensors and a radio transceiver
that enables communications over long distances through multi-hop traffic
patterns. Nodes in WSN have the ability to coordinate themselves to reach
a common goal which typically consists in retrieving some kind of informa-
tion or sending commands to some actuators. WSNs are commonly used for
monitoring applications. In Area Monitoring the network is deployed over
a region and monitors different ambient values to detect possible intrusions,
track hostile vehicles or detect unattended events [29, 68]. In Environmen-
tal Monitoring, applications are designed to periodically retrieve information
from the surrounding environment (e.g., humidity, temperature or pressure)
and collect them to one or more gateways for offline analysis [39, 86]. Envi-
ronmental Monitoring can also integrate event-based detection that generates
alarms when, for example, a given threshold is met. Event-based detection
is useful for critical scenarios like fire-prevention or flood-detection [131]. In
Machine Health Monitoring, the wireless network is deployed over an indus-
trial area so as to monitor industrial machineries. By gathering mechanical
parameters, the WSN is able to predict possible malfunctioning [75].

In the following of the thesis we will focus our attention on Periodical En-
vironmental Monitoring (PEM) applications, i.e., Environmental Monitoring
without event-detection support. PEM represents the most popular research
area with several testbeds already deployed. In recent deployments like [38],
two networks of 25 nodes each, deployed over the Jungfraujoch and Mattern-
horn mountains in the Alps, are able to periodically measure temperature,

11



12 CHAPTER 1. WIRELESS SENSOR NETWORKS

electric conductivity, crack motion, ice stress and water pressure. The testbed
is able to adjust the sampling interval from 1 to 60 minutes still guarantee-
ing over 99% of delivery rate and more than 3 years of network lifetime. In
[36], 16 nodes were deployed over Le Génépi rock glacier in Switzerland. The
network was able to retrieve, each 2 minutes, values related to air tempera-
ture and humidity, surface temperature, incoming solar radiation, wind speed
and direction, precipitation, soil water content, and soil water suction. The
network has been tested for 2 months but, thanks to the low power consump-
tion and the built-in solar panel, several years of network lifetime is expected.
In [48], 17 nodes monitoring a medieval tower in Trento (Italy) were period-
ically retrieving, each 10 minutes, temperature, relative humidity, light and
deformation. Additionally, the testbed was able to support high frequency
measurements related to tower vibrations and download them at the end of
each sampling session with bursty downloads. The testbed which has been ac-
tive for 4 months, reached over 99.9% of delivery rate and a year of expected
lifetime.

Based on the already described scenarios and on testbeds deployed in the
past [45, 86, 121], we can assess that in Periodical Environmental Monitoring
the sampling period ranges from few minutes to some hours and the per-node
amount of data generated during each sampling period is low (typically fits
into a packet except for some special high frequency measurements [48]). Ad-
ditionally, a high delivery rate of the sensed data is required (more than 95%,
but recent testbeds reach 99%), while latency requirements may vary depend-
ing on the scenario: for statistical analysis, a per-day latency is tolerated, on
the contrary, in other scenarios such as vineyard monitoring [45], the latency
must be sufficiently low (few seconds) to enable possible human intervention
in the system. As for most of sensor networks scenarios, battery lifetime is
expected to exceed the year. In table 1.1 we report the PEM requirements
already described.

It is important to note that unlike common WSN surveys where network
size can reach thousands or millions of nodes [26, 130], practical nowadays
PEM applications refer to network size ranging between ten and hundred of
nodes.

1.2 Power management in WSN

In Periodical Environmental Monitoring, tens or hundreds of nodes may be
deployed over a large area making battery replacement a cumbersome and time
consuming task. Despite the distributed nature of wireless sensor networks
and their scalability, node malfunctioning related to battery exhaustion may
lead to connectivity problems such as network partitioning, i.e., network split
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Network Size (nodes) 10 - 100

Sampling Period (minutes) 1 - 60

Expected Lifetime (years) 1 - 5

Data Delivery Rate (%) > 95

Latency (time) 1s - 1day

Data Traffic (pkt/node/sampling period) 1

Table 1.1: Periodical Environmental Monitoring requirements

in two or more sets without connectivity between them. Minimizing energy
consumption to extend network lifetime is thus a primary requirement entering
the design of WSNs protocols and applications.

Battery capacity Nodes in a WSN are commonly powered by a pair of AA-
type batteries. At full load (i.e., active radio and CPU), the power drain of
most common nodes in a WSN is 21.8mA [107]. Assuming 2000mAh AA-type
alkaline batteries, this translates in 4-5 days autonomy before reaching node’s
cut-off voltage (1.8 Volts). Increasing the battery size or the battery number
can bring the overall capacity up to 20-30Ah which corresponds to 50-70 days
of nodes lifetime. Thus, the lifetime remains far below PEM requirements
while the cost, the size and the weight of such solutions increase. Additionally,
as figure 1.1 shows, despite the improvements, over the last decade, of battery
capacity, the relative improvement is far below those related to CPU, wireless
communication and storage capacity.

Energy scavenging Energy scavenging techniques consist in recharging the
batteries by converting power from ambient sources. Several sources may be
available in the environment where the WSN is deployed: photovoltaic cells
can capture solar energy in indoor/outdoor deployments while piezoelectrics
can retrieve energy from vibrations or thermoelectric generators from thermal
sources. However, different obstacles need to be faced when using such tech-
niques. The main one is that energy sources are not always available or may
not be distributed homogeneously. As an example, in a deployment of sensor
nodes with built-in photovoltaic cells, the nodes deployed in a shadowed area
will die much quicker than the others, thus, requiring specific design choice
before deployment. Moreover, the energy retrieved from energy scavenging
techniques is typically low and not sufficient to fully power a sensor node.
Last but not least, the adoption of energy scavenging techniques increases the
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Figure 1.1: Relative improvements of different technologies (source [104])

overall cost of hardware nodes. As for battery capacity, energy scavenging
techniques are not sufficient to meet PEM requirements.

Energy awareness The most effective solution to meet PEM requirements
consists in adopting energy-aware software stack on sensor nodes. In particu-
lar, since the operation of the wireless transceiver causes high energy spending
on sensor nodes [107], energy saving techniques for WSNs typically aim at op-
timizing the communication stack. Energy awareness in WSN is able to lower
the current drain of sensor nodes below the 1% in respect of full powered nodes
enabling a WSN to reach several years lifetime. Energy awareness affects dif-
ferent layers in the communication stack. In the remainder of this chapter, we
will present the different existing techniques at application, routing and mac
layers.

1.3 Application-based energy awareness

As depicted in the previous paragraph, typical application scenarios for WSNs
envision a large number of sensor nodes being distributed at various locations
over a region of interest to capture data about some physical quantity, like tem-
perature, atmospheric pressure or a pollutant concentration [34, 46, 117, 118].
Sensor readings are then further processed locally and/or reported to a central
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server to comply with specific application goals, like reconstructing the tempo-
ral and spatial developing of the observed physical quantities. To report their
readings to one or more data collectors, sensor nodes communicate through
their integrated radio-transceivers and collaboratively build an ad-hoc, possi-
bly multi-hop relay network. The traffic generated to deliver the sensed data
to the collectors increments collision probability and retransmissions, thus, it
increases transceivers usage.

In application-based energy-aware protocols the semantic of the informa-
tion encoded in data packets is used to determine the relevance of each packet
for the accomplishment of the application’s goal. The rationale is that in
several circumstances, a subset of packets is sufficient to meet application’s
requirements, thus, the overall quantity of data packets can be reduced so
as to decrease the average usage of the transceivers. In this chapter we fo-
cus on the two main application-based techniques: Sensor Selection and Data
Aggregation.

1.3.1 Sensor selection

Sensor selection tries to limit communication among nodes so as to increase
the overall reliability and data throughput of the network and consequently,
reduce the overall energy consumption. To this aim, sensor selection tech-
niques check whether all nodes should actually participate in a sensing task
or not. In target detection and tracking application, for instance, one could
select a subset of the nodes to guarantee spatial coverage and put the rest to
sleep so as to save energy. Upon detection of a target, however, activating
the sleeping nodes may guarantee better tracking performances, although at
the cost of increased overall energy consumption. By trading off energy con-
sumption with data granularity, sensor selection algorithms allow to optimize
resource usage within a WSN and, consequently, to improve its lifetime and
reliability. Sensor selection is usually performed at the application layer, since
the question about which nodes should actively sense and report their obser-
vations clearly depends on the specific application requirements in terms of
data granularity.

A particularly challenging scenario for sensor selection algorithms is that of
typical long-term periodical environmental monitoring applications, in which
the network’s ultimate goal is the reconstruction, at a central server, of the
temporal and spatial developing of a specific physical phenomenon. We re-
fer to this issue as the field reconstruction problem in WSNs. To ensure a
reliable reconstruction, a sufficiently large number of nodes must sample this
physical quantity at sufficiently close time intervals. In other words, the spa-
tial and temporal sampling rates of the network must be sufficiently high and
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determining these values may be seen as an instance of the sensor selection
problem. Indeed, the default values of these rates are often fixed a priori on
the basis of conservative estimations of the data accuracy requirements of the
application and compatibly with other constraints, like the total number of
available nodes and the extension of the region to cover. However, the val-
ues of the sampling rates actually necessary to comply with the application
quality requirements may change over time and across different sectors of the
network, since they depend on the actual dynamics of the observed signal and
even on the physical topology of the network. In particular, it may be possible
to, at least temporarily, reduce these rates without affecting the overall data
quality. Clearly, reducing the spatial sampling rate may allow for energy sav-
ings, since only a subset of the nodes will be active in each sampling interval.
Similarly, reducing the temporal sampling rate preserves resources since the
nodes are required to sense and communicate data less frequently. We refer to
spatial and temporal sensor selection strategies to mean algorithms operating
on either the spatial or the temporal sampling rate of the network.

Conch [115] uses a combination of both, spatial and temporal sensor se-
lection named Approximation Caching. In [115], each node stores the sensed
value as the difference between old and new measurements. During the sensing
task, when the new value differs from the previous one, an update is broad-
casted to the neighbors. Upon the reception of an update, the node stores the
incoming value as the difference with respect to the local value. Thus, at each
node, for each incoming edge (i.e., update from a neighbor), the difference be-
tween the local value and the incoming one is kept in memory. Conch sends all
these values to the sink through multiple previously build spanning trees. The
relationship between a monitored node (i.e., a node belonging to the spanning
tree) and its edges enables the sink to reconstruct the whole sensing field.

Region Sampling [81] is a budget-based sensor selection protocol. Given
a budget (i.e., power consumption), Region Sampling tries to minimize the
approximation error of the reconstructed sensed field. The budget design of
Region Sampling enables the protocol to keep an upper-bound on the power
consumption of the WSN. Region Sampling runs an approximation algorithm
that creates k clusters inside which a region head is responsible to select the
nodes participating to the sampling phase. The sampled values are collected
by each region head which computes the Cross Validation Error (CVE) for its
region and forwards both, the number of sampling nodes and the CVE to the
sink. Based on those collected statistics, the sink computes the first sampling
plan that minimizes the approximation error within budget requirements. Af-
ter the first sampling plan, an online approximation algorithm adjusts the plan
at each round based on the newly collected statistics.

Event Contour[92] is a data-collection scheme for event monitoring. It is
based on Contour maps construction. A contour map is composed of several
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lines, where each line in a map connects points of equal value while neighboring
lines have values that differ by a pre-determined threshold. More contour lines
indicate fine-grained data, which comes at cost of collecting more information.
By adjusting the step-values, the trade-off between information and cost of
obtaining it can be tuned to suit situational requirements. For the construction
of a contour map, Event Contour uses spatial and temporal suppression locally
and along the routing path and implements a reconstruction algorithm at the
sink using interpolation and smoothing of the received data. The algorithm
makes no assumptions on the density of the network neither on the mac and
routing protocol used, but on the other side, it requires that the knowledge of
the sensor locations and the topology are available at the sink.

Backcasting [126] provides an initial estimate of the field being sensed by
reporting only a subset of measurements to a fusion center. Based on the initial
estimate, the fusion center asks additional nodes to report their measurements
in order to reach a predefined error level. The key idea is that the preview step
can detect correlations between data indicating that other sensors can avoid
transmitting their one. The overall process is called backcasting to emphasize
the role of the feedback of the preview step. The adaptive mechanism is based
on the hierarchical field estimation: the sensor measurements can be viewed
as sampling the field over a partition of n nested sub-squares of side length
1/
√
n.

In [106], a spatially band-limited signal is reconstructed by a randomly
deployed WSN using a blue noise sampling pattern. The advantage of a blue
noise pattern, with respect to a common white noise sampling strategy, is
that it achieves a higher accuracy with the same number of sampling points.
The authors provide a distributed algorithm to generate blue noise sampling
patterns. Each node, in the WSN, sets a backoff timer based on the node den-
sity and the filter used to create the blue noise sampling pattern. A shorter
backoff will correspond to a higher deactivation priority. In fact, when the
timer expires, the node broadcasts a deactivation beacon. Upon the reception
of a deactivation beacon, a node updates its backoff timer. During a sam-
pling round, those sensors whose timer exceeds a predefined threshold, will
participate to the sensing task.

Two coverage preserving algorithms are presented in [125] and [129]. This
family of algorithms is mostly used for tracking applications, but in [112] it
is shown how, under some specific assumptions, field reconstruction can be
reduced to a coverage problem.

In [125], each node running the Configurable Coverage Protocol (CCP)
basically remains in sleep state. Each node periodically wakes up and checks
for broadcast messages (Hello, Withdraw or Join messages). If one of those
messages is received, the node checks its eligibility based on the covered area
of its neighbors. If the node is eligible, it starts a Join timer, otherwise it
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goes back to sleep. If the Join timer expires and the node is still eligible,
it broadcasts a Join message and turns active. An active node periodically
checks its eligibility such that, if it becomes ineligible, it can withdraw from
the set of active nodes and turn back to sleep state.

In [129] the PEAS algorithm “selects only a necessary set of sensors in
working mode. Sleeping nodes wake up once in a while to probe their neighbor-
hood and replace any failed working nodes as needed”. The probing frequency
is self-adjusted using an adaptive sleeping algorithm in order to meet a good
trade-off between energy consumption and working node density. Addition-
ally, the probe is sent using a Probe broadcast message within its local probing
range Rp. This feature is enabled assuming nodes with isotropic antennas and
selectable power transmission. Upon the reception of a Probe message, any
working node sends back a Reply message. If a probing node receives a Reply
message, it goes back to sleep and adapts its probing rate.

Costs of sensor selection. The main drawback of the previously described
sensor selection techniques is represented by the control overhead required to
run those solutions. In particular, [115] and [81] require the construction and
maintenance of complex routing topologies (i.e., multiple spanning trees for
[115] and a clustered topology for [81]). In [92] the whole topology needs to
be known by the collection point thus, topology information is periodically
forwarded somehow. In [126] several preview steps (i.e., control traffic) need
to be run before reaching the required quality while in [106], [125] and [129]
local broadcast messages are periodically used to notify the neighborhood (i.e.,
deactivation beacons for [106], Hello, Join and Withdraw messages for [125]
and Probe messages for [129]).

It is clear that the advantages of sensor selection approaches are mitigated
by the cost of the control overhead required to run those solutions. To over-
come these limitations, in chapter 2 we will introduce random-based sensor
selection techniques and present an evolution of such kind of solutions.

1.3.2 Data aggregation

Similarly to sensor selection, data aggregation aim at reducing the overall net-
work traffic so as to reduce network collisions and retransmissions affecting the
overall power consumption of the network. To reach its goal, in-network data
aggregation evaluates, at each intermediate node, whether the information
coming from different sensors can be merged together before being forwarded
to the sink. In [61] two different aggregation methodologies are defined:

• In-network aggregation with size reduction combines and com-
presses data coming from different sources and, as a result, sends a single
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packet whose content is a function of the merged values. Functions as
the minimum, maximum or average are commonly used in such context
where sampled values are typically represented by temperature, humidity
or other common physical values. Similarly, distinct counting functions
can be used to recognize the same event sensed by two nearby nodes and
consequently, activating packet suppression for duplicated events.

• In-network aggregation without size reduction is a technique that
merges together different packets from different sources without data
processing. In such context, two or more sampled values are concate-
nated inside a single packet payload. The longer packet size is compen-
sated by the control overhead that is spread over two or more sensed
values. Moreover, the lower number of packets reduces channel con-
tention.

As opposed to in-network aggregation with size reduction, data concatena-
tion used in the latter technique does not require data homogeneity. Actually,
the semantic of transmitted data is useless for the in-network aggregation
without size reduction. This latter technique, which is more related to routing
layer rather than application layer, is commonly used in most of the rout-
ing protocols presented in section 1.4.1 and will not be further discussed.
Rather, in this section we describe the Tiny AGgregation protocol (TAG) [85]
which uses in-network aggregation with size reduction and is specifically de-
signed for PEM applications. TAG builds an aggregation tree by periodically
broadcasting beacon messages. In a first phase, named distribution phase,
TAG disseminates a query where the selection and aggregation follows the
SQL query language. During the collection phase, the data is transmitted
to the sink following the aggregation tree. Data aggregation is performed at
each intermediate nodes (for this reason each parent needs to wait for all its
children before sending its own packet) and an extended set of functions is
supported in addition to common aggregation functions of the SQL language
(count,min,max,sum and average).

1.4 Communication-based solutions

1.4.1 Energy-aware routing protocols

Possible power failures and the well-known wireless channel instability [116]
can cause significant topological changes in a multi-hop WSN. The high dy-
namics in wireless networks may require rerouting or retransmission of packets
and reorganization of the network. Energy-aware Routing protocols in WSNs
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for Periodical Environmental Monitoring aim at minimizing the overall quan-
tity of (re)transmission required by a network to gather the sensed data from
the nodes. Different approaches have lead to a classification of routing proto-
cols defined in [25] and [27] that differentiates between flat-based, hierarchical-
based and location-based routing protocols. Flat-based routing, also known as
data-centric routing, assumes each node to play the same role in the network.
There is no knowledge concerning the addressing of nodes rather, an attribute-
based naming that specifies the property of the data is used. In general, in
flat-based routing the sink requests data through the dissemination of a query
and waits for nodes, having data matching the attributes of the query, to reply.
In hierarchical routing clusters are formed so that only one node per cluster,
the cluster-head, is responsible to forward the data to the sink. By this way,
intra-cluster computation can reduce the overall quantity of data that need
to be forwarded to the sink, thus, increasing the scalability and throughput
of the network. Location-based routing assumes nodes being aware of their
geographical position or, as an alternative, having an estimate of their relative
distance. The absolute positioning enables a sink to efficiently retrieve infor-
mation from a selected area of the network, while the relative distance allows
a node to estimate the energy cost of a multi-hop packet transmission.

Directed diffusion (DD) [72] is a data-centric routing protocol that saves
energy through data negotiation and elimination of redundant data. In DD,
all the data is represented by attribute-value couples. An interest is generated
by the sink and is propagated through the network. Upon the reception of
an interest, gradients are setup such that data satisfying the query can be
conveyed toward the requesting node. In fact, when interests fit gradients,
paths of information flow are formed from multiple paths and best paths are
reinforced so as to prevent further flooding. The interest dissemination and
gradients generation enables the construction of a good aggregation tree in
order to perform data aggregation on the way.

CTP [64] is a flat-based collection protocol for WSNs. Differently from
more traditional data-centric approaches, CTP is not query initiated rather,
beacon messages are used to build and maintain a routing tree, and data mes-
sages to report application data to the sink. The tree construction is based on
a gradient dubbed Expected Transmissions (ETX) which estimates the aver-
age number of (re)transmissions required by a node to successfully transmit
a packet to its neighbor. Based on this metric, the tree is build by choos-
ing the minimum node-to-sink aggregated ETX for each node of the network.
The standard implementation of CTP consists of three main logical software
components: the Link Estimator, the Routing Engine and the Forwarding
Engine. The Routing Engine takes care of sending and receiving beacons as
well as creating and updating the routing table. The Forwarding Engine for-
wards data frames. Each transmitted data frame is acked at the link layer,
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enhancing the reliability of the protocol. Furthermore, the FE implements
a duplicate-detection mechanism and it has the ability to detect and repair
routing loops. The Link Estimator is mainly responsible for computing the
ETX by determining the inbound and outbound quality of a communication
link.

The LEACH protocol [69] is a hierarchical-based protocol that randomly
selects few sensor nodes as cluster-heads (CH) and rotate this role to distribute
the energy load among the sensors in the network. Intra-cluster computation
is performed by cluster-heads to suppress duplicates and compress data that
need to be sent to the sink. After a given time interval, a randomized rota-
tion of the CH is performed to load balance the power consumption of each
node within the cluster. LEACH is organized in rounds. Each round is made
of a setup phase so as to build clusters, and a steady-state phase for data
collection. The round-based design of LEACH makes it suitable for Period-
ical Environment Monitoring applications. However, LEACH assumes 1-hop
distance from CH to sink and for intra-cluster communications. This assump-
tion represents a limit for large sensor networks deployments. Additionally,
LEACH requires control overhead for cluster construction and maintenance
that limits the power savings of this approach. LEACH represents one of the
first hierarchical protocols for WSNs and has inspired several other solutions
[83, 84, 88, 89].

Geographic Adaptive Fidelity (GAF) [128] is a location-based routing pro-
tocol that forms a virtual grid where nodes inside each zone collaborate with
each other to efficiently perform the sensing task. Each node uses its GPS
device to associate itself with a point in the virtual grid. In each zone of
the grid the energy efficiency is performed, as an example, by demanding the
sensing task to one node at time following a round-robin policy that enables
the remaining nodes to sleep, thus, saving their energy.

Recent developments, related to the creation of suitable routing protocols
for the Internet of Things (i.e., Internet communication of everyday objects),
have led to the introduction of address-based routing protocols for resource
constrained wireless devices. Along these lines, the IPv6 stack implementation
for WSNs, namely µIPv6, has been introduced. The Routing Protocol for Low
power and Lossy Networks (RPL) [10] is the reference protocol for IPv6 routing
on WSNs. RPL builds Destination-Oriented Direct Acyclic Graphs (DODAG),
i.e., Direct Acyclic Graphs rooted at one single node, based on the observation
that most of the traffic flows through few nodes. RPL builds several DODAGs
optimized on different criterion (e.g., latency, reliability, energy). For graphs
construction and maintenance, RPL uses different types of ICMPv6 messages.
Despite the promising outlook, the RPL protocol is still at an Internet draft
stage and will not be discussed in the following of the thesis.



22 CHAPTER 1. WIRELESS SENSOR NETWORKS

1.4.2 Energy-aware MAC protocols

There exist a plethora of energy-aware MAC protocols for WSNs. In [77], these
are classified in slotted, random, frame-based, and hybrid protocols. Slotted
protocols make the nodes share a common schedule that alternates sleep and
active phases. The length of active slots typically ranges between tens to
hundreds of milliseconds, while sleep slots last significantly longer resulting
in low duty cycles. Within each active slot CSMA-based techniques are used
to manage channel contention. Random access protocols avoid the use of a
shared schedule. Instead, they demand most of the communication effort to
the transmitter, which must inform the receiver if a transmission will take
place. Frame-based protocols group slots into frames and assign one or more
slots to each node. In this way, nodes can avoid collisions and channel con-
tention. Keeping this schedule requires tight synchronization between nodes
and induces a large memory footprint, making frame-based protocols hard to
use in practice. Hybrid protocols aim at combining the advantages of both ran-
dom and frame-based protocols. With respect to their random counterparts,
hybrid protocols limit collisions but cause more control overhead.

T-MAC [122] is a slotted protocol that uses a CSMA/CA MAC with
RTS/CTS mechanism for packet transmission. T-MAC achieves energy ef-
ficiency by keeping the active phase as short as possible with respect to the
sleep period. If no traffic is sensed after a pre-specified timeout, a node can
switch to sleep mode until the next active period will start. T-MAC sets the
default length of the timeout to 15ms for a period of 610ms. Thus, the duty
cycle of the radio is 2.4%, which is considerably high for PEM scenarios. In-
creasing the length of the sleep period introduces synchronization issues and
high latencies that may hamper the correct operation of routing protocols.

BoX-MAC-2 [97] is a random protocol that is part of the standard low-
power MAC of the TinyOS operating system [12]. Each node running BoX-
MAC-2 wakes up periodically from the sleep mode and checks for channel
activity. This mechanism, called Low Power Listening (LPL), enables a trans-
mitter to communicate with a receiver by continuously transmitting data pack-
ets during an activity period. As soon as all transmissions are acknowledged,
nodes go back to sleep mode. BoX-MAC-2 moves energy consumption for com-
munication from receivers to transmitters and works well on 1-hop scenarios
with low traffic loads. However, in multi-hop scenarios that require a routing
protocol, overhearing and collisions as well as the transmission overhead of
broadcast messages such as routing beacons, significantly degrade the energy
efficiency of LPL-based protocols [77]. As an example, in [65] BoX-MAC-2
and CTP have been tested on a 100 nodes network with 5 minutes sampling
period: despite the 1.08% duty cycle set for BoX-MAC-2 (1s sleep interval),
the overall duty cycle related to the multi-hop routing activity increases as
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high as 3.8%.

WiseMac [60] is a random protocol that uses LPL but, unlike BoX-MAC-2,
it maintains a neighbor table with poll schedules, updated each time a packet
is received, which allows a node to send short preambles only. The preamble
length also takes into account the maximum clock drift from the last message
exchange and, if no poll schedule is available, it simply falls back to long LPL
preambles. Despite in [77] WiseMac is considered the most performing MAC
protocol for low data rate applications, it is also mentioned that, similarly to
Box-MAC-2, its performance quickly degrades when broadcast communication
pattern is required.

Z-MAC [109] is a hybrid approach that works as a contention-based proto-
col for low traffic levels, but it turns into TDMA mode for high levels. Z-MAC
uses global time synchronization once during setup. Subsequently, only local
synchronization between sender and receiver is required. Despite the hybrid
design, Z-MAC becomes energy efficient for high traffic load only (more than
3 packets per second per node), but it is still far from reaching the energy
efficiency required by PEM applications.

1.4.3 Cross-layer energy-aware protocols

Designing a sensor network application that meets PEM requirements, based
on the matching of a routing and MAC protocol presented in the previous
sections, is not unproblematic. As observed in 1.4.2, several MAC protocols
(i.e., LPL-based [60, 97]) quickly degrade their performance when transmit-
ting broadcast messages. Other protocols [109, 122], being general-purpose,
are not designed for ultra-low duty cycles (e.g., below 1%), thus, cannot reach
the network lifetime required for PEM applications. To overcome these lim-
itations, a new family of cross-layer communication protocols specifically de-
signed for Periodical Environmental Monitoring applications has been recently
introduced.

Koala [98] implements an efficient asynchronous wake up strategy and on-
the-fly route computation whenever data download is requested by the sink.
The energy saved avoiding the control overhead during inactivity periods com-
pensates the higher cost of wake up and route construction. The sampled data
is logged on the flash memory of each node and can be sent when requested.
To ensure energy efficiency, Koala needs to log a significant amount of data
before initiating the wake up strategy. However, the low data rate of PEM
applications implies that several days are required to log a sufficiently large
volume of data such that the energy efficiency of Koala becomes reasonably
high.

Dozer [47] is a data-gathering protocol designed for Environmental Moni-
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toring. It integrates MAC layer, topology control and routing to reduce energy
wastage of the communication subsystem. The data gathering in Dozer re-
lies on a tree-based network, while the data exchange is enabled by a TDMA
protocol. To avoid global synchronization, each node has two independent
TDMA schedules, one for its parent role and one for its child role. Link-
layer acknowledgement is enabled for each packet transmission to enhance the
protocol reliability. Dozer provides mechanisms for load balancing, parent se-
lection and hidden-node collision avoidance. With its lazy TDMA approach,
Dozer is able to reach an ultralow-power consumption, which increases net-
work lifetime up to 8-10 years. To the best of our knowledge, Dozer is the
most performing ultralow-power communication protocol available nowadays.
However, Dozer is a commercial closed-source protocol available only for the
TinyNode platform [11]. Moreover, it cannot provide any guarantees on data
latency and requires a fine tuning of its parameters during setup.



Chapter 2

Adaptive random selection

(ARS)

2.1 Introduction

One of the simplest ways to perform sensor selection is to make the nodes
randomly decide upon their participation in the sensing task. In particular,
each node can be assigned a probability of activation p, which can be computed
locally or be disseminated by a central server. Each time data collection is
required, sensor nodes can autonomously decide whether to participate in the
sensing task or not by generating a random number r between 0 and 1. If
r < p, the node collects and reports data, and it remains idle otherwise.
This simple random sensor selection (RSS) protocol clearly requires very little
control overhead. Indeed, once the value p has been fixed and disseminated
to all the nodes, the protocol must intervene only to update possibly newly
added nodes or to opportunely adapt the value of p. Its efficacy is indirectly
demonstrated by the results reported in [81], which show that the RSS can
perform comparably, or even far better, than other more elaborated (and
costly) sensor selection protocols. As we will detail in section 2.2, however,
the RSS also suffers some major drawbacks that may hamper its ability to
continuously provide a reliable data base to reconstruct the developing of a
physical phenomenon in time and space.

In this chapter, we provide an adaptive, random sensor selection (ARS)
strategy to efficiently distribute sensing across the network. ARS can amend
for the drawbacks of the simple RSS while keep its most desirable features.

25
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In particular, ARS enables achieving high degree of (sensing) coverage of the
region of interest (RoI) while limiting the number of nodes involved in sensing.
We describe the advantages and drawbacks of the RSS strategy in section 2.2
and present our ARS algorithm in section 2.3. We finally investigate the
performance of ARS through simulations in section 2.4.

2.2 Random sensor selection (RSS)

As we outlined above, a random sensor selection strategy may provide good
performance while requiring minimal control overhead [81]. Additionally, the
RSS strategy also shows an implicit load-balancing feature. Indeed, if all
nodes use the same value of the probability of activation p, the participation
in sensing and data communication will, on average, be the same for all nodes.
On the long term, therefore, the RSS enables a balanced spending of energy
across all nodes of the network.

Despite its many advantages, some relevant drawbacks hamper the ability
of a simple RSS-algorithm to continuously provide a reliable data base to
reconstruct the developing of a physical phenomenon in time and space. The
choice of an adequate value of p, for instance, is all but trivial. Being Ntot the
total number of nodes in the network, p controls the number of nodes Np =
p · Ntot that, on average, sample and report their data to a central collector.
For the RSS to be effective, Np should be as close as possible to the number Nr

of readings the data sink needs reconstruct the sensor field within the desired
accuracy. If Np << Nr the reconstruction error may grow unpredictably,
while having Np >> Nr makes the network generate a disproportionately high
amount of sensor data and, thus, waste energy and possibly also congest the
communication channel. The goal, therefore, is to choose p so that Np ' Nr,
which in turn requires a good estimation of Nr to be available. The value of
Nr depends on both the spatial bandwidth of the sensor field and the actual
physical distribution of the nodes [67]. A rough estimation of Nr and, thus, of
p, can indeed be computed on the basis of available a priori knowledge on the
physical process of interest and can possibly be refined as actual sensed data
become available.

A further critical issue that may undermine the practical usage of a plain
RSS approach arises when the nodes are not evenly distributed throughout
the RoI (as it is typically the case in WSNs settings). Due to peculiar char-
acteristics of the terrain, for instance, nodes may aggregate in dense clusters
and let some sectors of the field uncovered. This may happen also after a
careful deployment due to the failure of some of the nodes or even due to
environmental influences. If all the nodes use the same, fixed value of p for
deciding upon their activation, areas of the network with high density of nodes
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will provide too many readings while more scarcely populated sectors will end
up delivering an insufficient amount of data. In section 2.3, we will show how
our ARS scheme can cope with this problem by enabling each individual node
to compute its probability of activation based upon the number and positions
of its neighbors. By adapting the value of p to the actual local density of the
nodes, the ARS can indeed better balance the number of readings generated by
each sector of the network. On the other side, local adaptation of p weakens
the automatic load-balancing effect obtainable with a unique, network-wide
value of p.

2.3 Adaptive random selection

In section 2.2, we have praised the benefits of a plain random sensor selection
strategy, but also outlined its inherent drawbacks. In our effort to preserve the
first while mitigating the latter, we developed ARS, a spatial sensor selection
strategy that randomly selects nodes, as in RSS, but uses locally computed
values of the probability of activation p. The main rationale behind ARS
draws upon the consideration that the probability of activation of a node
should depend on its position with respect to its neighbors, and the number
thereof.

The operations of the ARS may be divided in four main phases, to which
we will refer as dissemination, discovery, computation of p and sensing and
update. In this chapter, we mainly concentrate on the third phase, dealing
with the computation of the local values of the probability of activation and
we only briefly describe the function fulfilled by the other phases that will be
further discussed in chapter 4. Before going into further details, however, we
need to introduce some notation and clarify the assumption ARS relies upon.

2.3.1 Notation and assumptions

We assume the RoI to be 1- or 2-dimensional however, to keep the exposi-
tion simple, we will focus on the 1-dimensional case. Note that the following
definitions can be easily extended to the 2-dimensional case as well. The RoI
consists in the segment [0,Lx]. We indicate with Ntot the total number of
deployed nodes and we assume all nodes within the RoI to have the same
transmission range Rtx and can communicate according to a unit disk model.
We further assume that a sensor node ni can gather, at each time instant, a
noisy value of the sensor field f(xi) at its specific location xi. We also assume
that each node is aware of its position xi. The sampled value f̃(xi) is given by
the superposition of the “true” value f(xi) and a realization ni of a gaussian
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random variable of mean 0 and variance σ2n, which models the measurement
error. Thus, f̃(xi) = f(xi)+ni. Additionally, we will refer to dij = |xi−xj | as
the (Euclidean) distance between any two nodes ni and nj . Further, we define
the sensing range Rs of a node i as the segment [xi − Rs, xi + Rs] represent-
ing the area within which a node can perform its sensing activity (typically,
Rs ≤ Rtx). Finally, the maximal allowed distance between any two consecu-
tive sampling points is called spatial resolution ∆s and in the context of this
work we assume ∆s to be constant and known a priori or estimated, along
with the computation of the reconstruction, by running the ACT algorithm1

[91, Chapter 6].

2.3.2 Dissemination

During the dissemination phase, ARS distributes the value of Rs to all nodes
within the network. To this scope, ARS can resort to a standard dissemination
protocol [79]. Alternatively, it can “misuse” the control traffic (beacons) of
the data collection protocol of choice as a back-channel to the network, as
proposed in [47]. In the context of this work, we will use this second strategy
and assume that the network relies upon the Collection Tree Protocol (CTP)
to safely route data to the central collector [63, 64]. This choice is motivated
by the good performance showed by CTP in real-world experiments and the
fact its beaconing mechanism enables nodes to keep information about their
neighbors updated spending only limited amount of communication.

2.3.3 Discovery

During the discovery phase, each node running ARS gathers information about
its neighborhood leveraging the information reported in CTP’s control bea-
cons. In particular, the computation of the local values of the probability of
activation pi of a node ni requires knowledge of the number of neighbors of
ni and their positions. Gathering the latter information requires adding an
additional value (the < x, y > coordinates of the node) to the standard CTP
beacon. To evaluate the feasibility and impact on this modification, as well as
the whole functionality of our ARS scheme in networks with high number of
nodes, we are currently implementing both CTP and the ARS on top of the
Castalia wireless sensor networks simulator [1].

1Note that in general, ∆s ≤ 2Rs
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Figure 2.1: Nodes selection for the computation of p (2D case).

2.3.4 Computation of p

After the discovery phase, each node ni holds an updated list of the Ntx,i

nodes that are within its transmission range, along with their positions sj ,
j = 1, .., Ntx,i. To compute the probability of activation, we resort to the
following heuristic. First, the neighbors are divided into Nsets sets Sik, k =
1, .., Nsets. If the network is deployed on a line (1-dimensional case), the node
ni can assign each neighbor nj to its “left” (|si| >= sj) or “right” ((|si| < sj)
neighborhood. If the nodes are deployed on a plane (2-dimensional case), the
sets correspond to Nsets = 4 circular sectors spanning the circle centered on
the node and having radius Rs (figure 2.1). In both the 1- and 2-dimensional
case, only the NRs,i neighbors whose distance dij to ni is strictly smaller than
Rs are included in the sets. If all sets are non-empty, the node computes, for
each neighbor nj , the quantities:

φij = 1− dij
Rs

To understand the meaning of this factor one should recall that, considered
alone, the node ni is “responsible” for covering an entire sector of radius Rs
and centered at ni. But a node nj with distance dij < Rs, can “relieve” the
node ni from part of its “sensing responsibility”. The factor φij is proportional
to the distance occurring between node ni and its neighbor nj : the closer the
neighbor nj is to ni, the higher the factor φij will be2.

In addition, the sensing responsibility of node ni further decreases as the
number of neighbors within its sensing range increases. As a consequence,

2Note that the factor φij ranges between 0 and 1
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by summing the quantities φij for each neighbor of ni, we obtain an aggre-
gated value that represents the “sensing relevance” of ni with respect to its
neighborhood. Thus, the activation probability of node ni will be inversely
proportional to this aggregated value. To take into account the non-uniform
deployment of the neighbors, the activation probability is computed separately
for each sector k:

Ψik =
1

1 +
∑

j∈Sik
φij

For each set k the value Ψik represents the probability of activation pik the
node ni should assume to “cover” the region span by the set k. An appropriate
aggregate (e.g., minimum or average) of the Ψik is then chosen as the activation
probability pi of the node ni. For an empty set the probability of activation
is 1 and in this case we force the pi to be 1 too.

2.3.5 Sensing and update

Once each node ni holds its own local value of the probability of activation
pi, the simple RSS algorithm is repeatedly executed. During operation, the
node may also receive further updates from its neighbors and embed them
on-the-fly to refine the value of pi.

2.4 Experimental results

To investigate the ability of our ARS algorithm to efficiently and reliably
perform sensor selection in the spatial domain, we performed a series of pre-
liminary 1D experiments. In particular, we evaluated the ability of the ARS
to provide a set on samples enabling stable and reliable reconstruction of a
reference sensor field. In all our 1D experiments, we consider a sensor network
of Ntot = 50 nodes distributed uniformly at random over a segment of length
Lx = 100m. The transmission range Rtx is fixed and equal to 5m, while the
desired sensing range Rs is varied, so as to make the ratio Ks = Rs

Rtx
vary

from 0.5 to 1. As an example of sensor field f(x), we use the model for a
physical process proposed within the Castalia [1] simulator (with parameters
Nsources = 1, V = 1, K = 0.05, and a = 3). To reconstruct the physical
process from its unevenly spaced samples we resort to nearest neighbor inter-
polation. The resulting reconstructed sensor field is indicated as f̂(x) and the
correspondent reconstruction error signal as e(x) = f(x)− f̂(x).

In our experiments, we consider three main performance metrics: the per-
centage of active nodes %AN , the percentage of the RoI that remains uncov-
ered %URoI and the relative root mean square (rms) error of the reconstruc-
tion Rrms. %AN is defined as the ratio between the number of nodes that
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participate in sensing and the total number of nodes. %URoI expresses the
percentage of the RoI that is not covered by any active node, i.e., the per-
centage of points within the RoI whose distance to any of the active nodes is
bigger than Rs. Finally, the Rrms is defined as the ratio between the energy
of the reconstruction error signal e(x) and the energy of the original signal
f(x). To gather statistically significant values of the above described metrics,
we generated 50 different random network configurations and, for each config-
uration, we run 50 trials of the ARS algorithm. In this preliminary study, we
assume each node to have perfect knowledge of its neighborhood Ntx(i) and of
the value of Rs. The sharing of the sensing range and the neighbor discovery
phase are faced in chapter 4.

For each configuration and trial, we also evaluate the performance of the
plain RSS approach using two different values of the probability of activation
p (we recall that for the RSS the value of p is fixed a priori and equal for
all nodes). The first value, dubbed pmin is computed so that the expected
number of active nodes is equal to the absolute minimum number of nodes
that can guarantee Rs-coverage over the RoI. Clearly, this corresponds to the
case in which the nodes are deployed on a regular grid and the required value
of pmin is thus simply computed as pmin = ANmin

Ntot
, where ANmin = Lx

Rs
. The

second value of the probability of activation considered in our experiments,
dubbed pguess is chosen as pguess = 2 · pmin. Previous work has indeed showed
that random sampling typically requires more than twice the sampling rate of
regular sampling to provide for a reliable reconstruction [101]. Additionally,
if noise in the measurements and in the position estimates of the nodes is
present, the number of required samples further increases. Therefore, pguess
can be seen as a realistic and conservative estimate of the required probability
of activation in the RSS scheme. Finally, all the experiments reported in this
section have been implemented and run on top of the Matlab3 computing
environment.

In the following, we will first show how the ARS modifies the probability
of activation with respect to the RSS and then move over to the performance
analysis based on the above defined metrics. For simplicity and without any
loss of generality, we will present particular results obtained for the first of the
50 considered network configurations (configuration #1) and show complete
results (over all configurations and trials) later in the section.

2.4.1 Local adaptation of the value of p

Figure 2.2 shows the values of the probability of activation pARS for the con-
figuration #1, along with the values of pmin and pguess for comparison. The

3www.mathworks.com

www.mathworks.com
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Figure 2.2: Probability of activation for the configuration #1 (Ks = 1).

horizontal axis reports the position of the nodes within the RoI and since the
probability of activation only depends on the specific physical topology, it does
not change across different trials. As expected, the value of pARS is higher
for those nodes having less or far away neighbors and significantly lower for
nodes lying in “crowded” neighborhoods. The average value of pARS is ∼ 0.5,
which foreshadows that the number of active nodes ANARS resulting by using
the pARS will be, on average, about 10% higher the number resulting by the
adoption of pmin = 0.4, but also considerable lower than the number of active
nodes generated, on average, using the value pguess = 0.8. As we will show
later, this slightly higher number of nodes is largely compensated by the far
better performance of the ARS in terms of obtainable sensing coverage and
the resulting better signal reconstructions.

2.4.2 Number of actives nodes and sensing coverage

Figure 2.3 shows, again for the reference configuration #1, the average values
of the percentage of active nodes, of the percentage of RoI being uncovered
and the relative rms error of the resulting reconstruction (subfigure (a)). As
we anticipated, the %AN is indeed higher for the ARS with respect to the case
in which the RSS scheme with probability of activation pmin is used (∼ 54%
against 43%, respectively). Despite this higher overhead, the ARS shows a far
better ability to cover the RoI, since it obtains an average %URoI of ∼ 5%,
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Figure 2.3: Average values of the %AN , the %URoI and the Rrms of the re-

sulting reconstruction (a) along with the correspondent values of the standard

deviation computed over 50 trials. All results relate to the reference network

configuration #1.

while the RSS with pmin lets uncovered more than 26% of the RoI. In terms
of sensing coverage, ARS has performance comparable to RSS with pguess,
which however requires more than 80% of the nodes to be active. The ability
of ARS to provide sensing coverage of the RoI is also mirrored by the better
performance in reconstructing the physical process f(x). Figure 2.3 shows that
while the average Rrms for RSS with pmin is ∼ 8.5%, ARS is able to provide
an average relative error of 1.1%. We should note at this point that the values
of Rrms reported here are computed using the true values of the physical
process. In real settings, where the original values of the signal of interest are
clearly unavailable, adequate estimations of the reconstruction errors must be
used.

A significant feature of the ARS scheme is observable in the lower part
of figure 2.3, which reports the standard deviations, computed over 50 trials,
relative to the average values reported in the upper plot. The standard devi-
ation of the reconstruction error is practically negligible for ARS (∼ 0.34%),
while the correspondent value for RSS with pmin is as much as 8%. Such a
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Figure 2.4: Average values of the %AN over 50 trials for 50 different configu-

rations (a), and correspondent values of the standard deviation (b).

high value for the standard deviation shows that the reconstruction obtained
through a completely random sampling pattern is typically highly unstable
and, thus, unreliable. This drawback is particularly problematic if the appli-
cation aims at controlling the number of active nodes (or, equivalently, the
value of the sensing range Rs) necessary to reconstruct the physical process of
interest within a given accuracy. To this scope, the application must estimate
the quality of the reconstruction from the collected samples and decide upon
one or more estimates whether to increase (or decrease) the sensing range Rs.
Clearly, a safe controlling mechanism is unfeasible if the estimates are too
unstable.

Until now, we only reported results relative to a specific reference configu-
ration. Obviously, it is interesting to see whether the above praised abilities of
the ARS remain valid for several different physical network topologies. Figure
2.4(a) shows the average %AN obtained for 50 different configurations along
with the correspondent standard deviation (both computed over 50 trials).
As we can see, the number of active nodes in the ARS is constantly slightly
higher than the correspondent figure for the RSS with pmin, but significantly
lower compared to the RSS with pguess. This slightly higher effort is however
praised by a significant better coverage, as showed in figure 2.5(a), which re-
ports the %URoI for all the three considered schemes. As we can see, the
ARS schemes offer coverage performances comparable to those of the RSS
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Figure 2.5: Average values of the %URoI 50 over 50 trials for 50 different

configurations (a), and correspondent values of the standard deviation (b).

with pguess, and behave in this context far better than the RSS with pmin. As
a consequence of its ability to reliably provide sensing coverage, the ARS also
enables to compute reconstruction of signals of interest with low and nearly
constant error.

2.4.3 Number of active nodes for higher network density

Figures 2.6(a) and 2.6(b) report the average %AN obtained by increasing
the total number of nodes Ntot to 100 while keeping all the other simulation
parameters unchanged. The figure shows the effectiveness of random sensor
selection approaches that, thanks to the higher density, enables the evalu-
ated protocols to sensibly decrease the number of active nodes. As in the
previous experiments, the number of nodes selected by the ARS is slightly
higher than the correspondent figure for the RSS with pmin, but significantly
lower compared to the RSS with pguess. However ARS reach significantly bet-
ter reconstruction performance, as showed in figure 2.6(c), which reports the
%Rrms for all the three considered sensor selection schemes. ARS thus offers
reconstruction accuracy comparable to that obtained with the RSS with pguess
(and far better with respect to the RSS with pmin) but requires far less nodes
to actively sample the signal.
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Path Loss Exponent 2.4

Reference distance d0 (m) 1

Path Loss (d0) (dBm) 61.4

Sigma 4

Bidirectional Sigma 1

Table 2.1: Castalia Wireless Channel Parameters

2.4.4 2D experiments

In [112] additional experiments have been performed using the 2D settings.
Keeping the same metrics defined at the beginning of this section and ex-
tending the notation to the 2D case, the new experiments were made on a
Lx = Ly = 100m square area with Ntot = 200 nodes distributed uniformly
at random over it. The radio range of each node is set to Rtx = 25m and a
varying sensing range, from Rs = 9.375m to Rs = 12.5m, is used. To gather
statistically significant values, 25 different topologies have been generated and,
for each one, 25 trials have been performed. As for the 1D experiments, the
Matlab environment has been used to generate the results.

In [112, sect. 4.7.4] it is shown how ARS provides high degree of coverage
even in the 2D settings, thus, validating the protocol design. In particular,
in all the topologies, the RoI steadily remains over the 95% with a standard
deviation below 1%. In addition, it is shown how, based on the sensing range
set, the number of active nodes in such settings varies between 60% and 80%
of Ntot.

In a recent work we provided a new implementation of the CTP collection
protocol over the Castalia 3.1 framework for OMNeT++ 4 [52]. This has al-
lowed us to replicate the experiments made in [112] in a more realistic scenario
and to extend the tests with a comparison between ARS and RSS in terms of
the percentage of active nodes %AN , the percentage of the RoI that remains
uncovered %URoI and the relative root mean square (rms) error of the recon-
struction Rrms. As in [112], we generated 25 different topologies and for each
one, we executed 25 trials. We set a sensing range Rs = 12.5m and kept the
other simulation parameters unchanged. Differently from Matlab, Castalia
provides an advanced wireless channel and radio implementation. The param-
eters used for the wireless channel and the radio model can be found in table
2.1 and 2.2 respectively.

In order to find suitable p values for the RSS approach, we ran Ars over
the previously described setup and obtained the mean activation probability
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Datarate (kbps) 250

Modulation PSK

Bits per symbol 4

Bandwidth (Mhz) 20

Noise Bandwidth (Mhz) 4

Noise Floor (dBm) -100

Sensitivity (dBm) -95

Table 2.2: Castalia Radio Parameters

p = 0.76 computed by Ars. We then compared Ars to RSS applying activation
probabilities ranging from 0.7 to 0.85. Figure 2.7 shows the results of our
experiments.

As expected, the percentage of active nodes follows the activation proba-
bilities used in RSS and the one computed by Ars. It is interesting to note
the higher %AN standard deviation of Ars with respect to RSS approaches.
This difference is related to the fact that Ars adapts the activation probability
to the topology it runs on, thus, the value may fluctuate based on the spa-
tial distribution of the nodes. On the contrary, the RSS approach uses the
same activation probability irrespective of the underlying topology, hence, the
standard deviation of the number of active nodes is lower.

Thanks to the adaptive computation of p, the uncovered RoI of Ars is by
far the lowest one. In fact, the mean %URoI of Ars is 0.1% against 0.33%
of RSS with p = 0.76 (i.e., the same activation probability than Ars but with
RSS scheme) and 0.2% of RSS with p = 0.85 . As in [112], the standard
deviation of %URoI is much lower than 1%, therefore, negligible.

Finally, the relative root mean square error has been evaluated over the
signal reconstruction of a static physical process generated by Castalia (with
parameters Nsources = 1, Position = (0, 0), K = 0.15, and a = 1) represented
in figure 2.8. It is important to note that with the same mean activation
probability p = 0.76 Ars outperforms RSS by 20% . Increasing the activation
probability of the RSS approach, the Rrms decreases and beats Ars start-
ing from p = 0.85, thus, using 12% more nodes during the sampling phase.
Nonetheless, the Rrms standard deviation of Ars (18.9%) is sensibly lower
than the one of RSS which ranges from 44% for p = 0.7 to 33.2% for p = 0.85.
The reason of this difference resides on the capability of Ars to detect sparsely
covered areas as much as nodes close to edges. In fact, recalling section 2.3.4,
Ars keeps the activation probability to 1 if at least one of its spanning sectors
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Figure 2.7: Average values of the %AN , %URoI and Rrms for 25 different

network configurations along with the correspondent values of the standard

deviation (average over 25 trials).
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Figure 2.8: Physical Process used for Rrms computation (Source (0,0), Al-

pha=1.0, K=0.15).

Sik is empty. By this way, the activation probability has a role in densely
covered areas only, thus mitigating Rrms fluctuations.

2.5 Conclusion

In this chapter, we sketched the main component of ARS, an adaptive random
spatial sensor selection protocol. Leveraging the neighborhood information
gathered through the CTP data collection protocol, ARS can compute locally
adapted values of the probability of activation p. Each node ni can then decide
autonomously whether to participate in the sensing task or not depending on
the outcome of a random throw. Our simulation study shows the ability
of ARS to provide for good sensing coverage of the region of interest while
limiting the number of active nodes. Using the same number of nodes, Ars
always outperforms RSS schemes in terms of signal reconstruction error and
better adapts to all the underlying topologies.

As further steps, it would be interesting to check the different performance
of both, Ars and RSS, with a varying sensing range, thus, different require-
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ments in signal reconstruction’s quality. Moreover, evaluating Ars and RSS
in dynamic environments (i.e., with a physical process that varies over time)
would certainly provide a more complete view of the advantages of our solu-
tion.
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Chapter 3

DISSense: an adaptive

energy-aware collection

protocol

3.1 Introduction

As discussed in 1.4, several energy-aware routing and MAC protocols have
been proposed in the past decade. However, because of their general-purpose
design and because of inefficiencies when energy-aware MAC and routing pro-
tocols are combined together, most of the proposed solutions cannot reach
energy requirements of Periodical Environmental Monitoring applications. To
this aim, cross-layer communication protocols such as [47] and [98] have been
recently introduced. The solution presented in this chapter, DISSense, falls
within this category. In particular, DISSense is an adaptive, energy-aware
communication protocol that has been developed taking into account cross-
layer optimization issues. DISSense offers both a collection and dissemina-
tion service, and it is particularly suited to support long-term environmental
monitoring applications. In this chapter we will show how thanks to its abil-
ity to adapt to changing network conditions, DISSense delivers, on average,
more than 98% of the data packets injected into the network. At the same
time, DISSense aggressively reduces the duty cycle of the network, enabling a
mote-based WSN to reach several years of network lifetime that in many case
it is comparable to [47] and [98] but with the advantage of an open source

43
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multi-platform support, low data latency and scalability through multi-sink
deployment.

3.2 Protocol overview

DISSense provides for both a data dissemination and collection service for
WSNs. It targets environmental monitoring applications requiring periodic
sampling of a given physical phenomenon. In particular, DISSense takes as
input the desired sampling period and computes an adaptive time schedule for
the nodes to coordinate in order to build a data collection tree. The schedule
alternates short activity phases during which nodes deliver sensed data to
the sink and long intervals during which nodes operate in an ultralow-power
mode. Additionally, DISSense implements an efficient, one-to-many backward
channel for disseminating the shared schedule to all nodes in the network.

3.2.1 Adaptation

DISSense achieves energy-efficient operation by adaptively shortening the length
of the time interval during which nodes must activate their radio transceivers.
Reducing the length of the active phase clearly enables DISSense to reduce
the duty cycle of the network and, thus, to extend its lifetime. The main
challenge arising in this context consists in making the protocol able to timely
and reliably deliver data to the sink despite the shortening of the active phase.
The diameter, density, and overall link quality of the network also affects pro-
tocol behavior. For example, reliable protocols such as DISSense may require
several (re)transmission attempts over a bad link before at least one succeeds.
Moreover, the denser the network the longer it takes to settle channel con-
tention. And the higher the diameter of the network the higher the average
number of hops packets must be relayed through before reaching the sink. By
taking into account all these factors we make DISSense able to autonomously
adapt its duty cycle to the actual dynamics of the network, and to ensure
both high delivery ratios and energy efficiency. To control DISSense’s adap-
tive behavior, we define two metrics: the Time To Resync (TTR) and Time
To Receive Data (TTRD), which we will describe in detail in section 3.3.4.

3.2.2 Schedule

The sink is responsible for determining and disseminating the schedule accord-
ing to which nodes send and receive their packets. Figure 3.1 illustrates the
different phases of the DISSense schedule: active phases are scheduled at each
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Figure 3.1: DISSense schedule with σsk = 1

sampling period. Because of clock drifts and of the long inactivity period be-
tween active phases, a GuardTime Interval (GT) is foreseen at the beginning of
each phase. Moreover, a resynchronization procedure periodically takes place
during the Resynchronization Interval (RI), so as to realign the schedule and
compensate for clock drifts. Depending on the sampling period and intervals
length, DISSense is able to skip the RI for one or more sampling periods, so as
to optimize the overall protocol duty cycle. The skip functionality depends on
the parameter σsk , whose computation is described in section 3.3.4. During
the RI, nodes exchanges routing beacons and collect the information needed
to build a collection tree having the sink as its root. At the end of the RI,
DISSense ensure that the nodes share a common wake up time for the next
active phase, and have a parent selected in the collection tree for data trans-
mission. After the RI, the Data Collection Interval (DCI) begins. During the
DCI each node sends its data over the already built collection tree, and also
acts as forwarder for other nodes of the network. Between two active phases,
DISSense turns into an Ultra-Low-Power State (ULPS) by switching the radio
to LPL mode with a 0.1% duty cycle. In ULPS the radio is not turned fully
off since some nodes may be added and other ones can go out of synchro-
nization. Both these nodes need to retrieve the protocol schedule in order to
participate to the network. The value of the duty cycle during ULPS is low
such that it does not significantly affect the overall protocol duty cycle. Note
that the sink schedule only adopts an ACTIVE interval, since it does not need
to discriminate the different intervals of the active phase. The active phase
of DISSense runs on a CSMA/CA MAC with 100% duty cycled radio. The
benefits of such a solution are twofold. First, it accelerates the construction of
the collection tree and the data collection process itself, thereby shortening the
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length of the active phase. Second, it prevents the inefficiencies, described in
[77, Paragraph 5.7] related to broadcast transmissions (e.g., routing beacons)
under duty cycled MAC protocols.

3.2.3 Collection and backward channel

Data collection in DISSense is achieved by leveraging and extending the CTP
Collection protocol [65]. CTP is a popular and highly reliable collection pro-
tocol. When running CTP each node computes a metric, called ETX, which
represents the estimated number of transmissions a packet from this node will
go through before reaching the sink. CTP supports link-layer acknowledge-
ment for reliable data collection. It also supports loop detection, duplicate
suppression and quick reaction to topology changes. However, CTP is not
optimized for applications requiring short active phase sessions interleaved
with inactivity periods, such as the scenario we are taking into account. In-
stead, DISSense allows to stop, start, pause, and reset the construction and
maintenance of the collection tree at any time.

The backward channel in DISSense is used by the sink to resynchronize
the network and to send schedule changes to nodes (e.g., intervals length and
changes in sampling period). A node missing a schedule update is likely to
loose synchronization with the other nodes. DISSense implements a backward
channel, namely the Implicit Backward Channel (ICB), that guarantees that
each node having selected a parent in the collection tree, also shares the same
values sent by the sink over the ICB during the active phase. The ICB runs
during the RI and uses the same beacons required for the collection tree con-
struction. The main advantage of this solution is that the RI interval can be
tailored on the collection tree construction only since the ICB execution does
not require any additional time. Further details are discussed in section 3.3.1
and 3.3.2.

3.2.4 Architecture

Figure 3.2 illustrates DISSense’s architecture. DISSense main modules are
the Manager, the Adaptive Engine, the LplManager, and the NtpManager,
which are described below. As mentioned above, DISSense relies on CTP to
build and maintain the routing tree. Thus, DISSenses embeds CTP’s Link
Estimator, Forwarding Engine, and Routing Engine modules.



3.2. PROTOCOL OVERVIEW 47

  

ManagerLplManager

NtpManager

Application

MAC Protocol

DISSense

Forwarding Engine Routing Engine Link Estimator

CTP Routing Protocol

Serial Comm.
(Gateway)

Adaptive Engine

Figure 3.2: DISSense Architecture

Manager

The Manager handles DISSense core functionality, such as network resynchro-
nization and schedule management. The module also provides a Send/Receive
interface to the application layer that enables the send of a single data packet
during each active phase and collects statistics for the Adaptive Engine. The
Manager has the ability to start, pause and reset the underlying CTP protocol.
It can also change the radio duty cycle.

Adaptive Engine

The Adaptive Engine has a dual functionality. On the sink, it computes
intervals length for GT, RI, DCI and skip parameter σsk . These values are
then transmitted over the ICB. On the nodes, the Adaptive Engine retrieves
and stores the values, which can later be read by the manager module.
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LplManager

The LplManager module is responsible for radio communications during Ultra-
Low-Power Mode. As mentioned in section 3.2.2, during ULPM phase, the
nodes turn their radio to a 0.1% duty cycle rather than switching it off. The
LplManager enables a node that looses synchronization or a newly added node
to efficiently retrieve synchronization information from its neighbors during
their inactivity period. This mechanism avoids the need to scan for an active
phase, which requires high power consumption. The LplManager also supports
the additional functionality of state transmission, which consists in sending a
snapshot of the node state for debugging purposes.

NtpManager

The NtpManager module that is active only on the sink, interacts with an
external gateway to synchronize the sink with an external entity (e.g., Ntp
Time). The NtpManager provides an additional functionality that enables the
user acting on the gateway, to dynamically change the sampling period, and
to determine the hour of the day at which data samples need to be generated.

3.3 Implementation

DISSense is implemented in TinyOS 2.1 [12], a lightweight, open-source op-
erating system for WSNs. It supports the TelosB/TmoteSky and MICAz
platforms. Support for Iris and TinyNode 184 is planned in future releases
[6, 11]. DISSense also runs on the TOSSIM simulation environment.

As described in section 3.2, the sink in DISSense acts as an orchestrator
for the network. In particular, the sink is responsible to determine the adap-
tive schedule, share it over the network, and periodically collect the sampled
data from the nodes. To this end, DISSense runs a deeply modified version
of CTP. On one hand, DISSense adapts CTP to run on the specific schedule
described in section 3.2.2, which requires CTP to be paused and resumed peri-
odically following the duty cycle of the protocol. On the other hand, DISSense
embeds a backward channel in CTP namely, the Implicit Backward Channel,
which enables DISSense to send controls for initiating synchronization and
tree construction.

3.3.1 Data collection

In DISSense the CTP protocol is stopped during Ultra-Low-Power Mode and
resumed during the active phase. When resumed, DISSense runs CTP in a
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stateful or stateless mode. In stateful mode the routing information of the
previous sampling period is used. This mode is employed when the DCI is
scheduled without the RI and there is the need to directly collect the sampled
data. Instead, in stateless mode the CTP state (neighbor table, selected par-
ent) is reset in order to refresh the topology information of CTP and enable the
IBC to share new synchronization information as much as the new schedule
parameters values. The stateless mode is run when the RI is scheduled.

3.3.2 Implicit backward channel

The IBC guarantees, during each RI interval, that a node having selected a
new parent also shares the values transmitted by the sink at the beginning of
the RI. DISSense uses the IBC to share schedule’s information updates. In
particular, at each RI, the sink transmit over the IBC the sampling period, the
length of RI and DCI intervals, the skip parameter σsk and the next wake up
time. These values are appended as footer to each routing beacon. For each
incoming beacon, the Routing Engine follows the algorithm in figure 3.3 which
enables a node to store the information carried by the beacon (and retransmit
it as a footer in each subsequent transmitted beacon) if and only if the sender
has been selected as a parent.

Note that during beacons transmission, each node fills the footer with its
local values, thus, at the beginning of the RI, each node that has not yet
selected a parent, transmits stale content. The algorithm, however, implicitly
solve this issue thanks to the parent selection algorithm of CTP. The parent
selection algorithm guarantees that each parent candidate must already have
selected a parent in the tree. Thus, each parent candidate must have run
the IBC update process of algorithm 3.3, hence, carry updated values. As a
consequence, at the end of the RI, each node will be in one of these two states:

• The node belongs to the collection tree, is resynchronized and have up-
dated schedule parameters values;

• The node does not belong to the collection tree, is out of synchroniza-
tion and needs to retrieve the schedule through the LplManager during
ULPM.

3.3.3 Resynchronization

The resynchronization procedure uses the IBC to reliably propagate the times-
tamp related to the beginning of the next active phase. DISSense manages the
Next Wake Up Time field of the IBC footer using the TimeSyncAMSend inter-
face implemented in TinyOS 2.1 by the CC2420TimeSyncMessage component.
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Require: node n

upon rx beacon bi from node i

if parent(n) == null then

temp← footer(bi)

process(bi)

if parent(n) == i then

resync(temp.nwu)

store(temp.ri, temp.dci)

store(temp.sp, temp.σsk )

end if

temp← null

else

process(bi)

end if

Figure 3.3: IBC Algorithm
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This component is a submodule of the Flooding Time Synchronization Proto-
col [90]. It has been written for ChipCon2420 transceivers and allows a sender
to piggyback a local timestamp te, related to an event e, to each transmitted
packet. The receiver, in turn, decodes the timestamp te as a new timestamp
t′e = te + δ representing the event e expressed as the receiver’s timestamp t′e
with an error δ corresponding to the packet propagation time.

Using the TimeSyncAMSend interface for CTP beacons transmission en-
ables DISSense to reliably propagate the next wake up time over the network
with a maximum error ∆ = d · δ where d is the network diameter. Note
that, over short distances, the packet propagation time is in the order of few
microseconds and, as it will be shown in section 3.4.2, ∆ is several orders of
magnitude lower than the size of the active phase. Thus, as figure 3.3 shows,
when the parent is selected, the resync commands is called over the Next Wake
Up Time field that realigns the schedule of the next wake up.

3.3.4 Adaptation

As described in section 3.2.1, DISSense uses two metrics, TTR and TTRD,
in order to find a good trade-off between duty cycle minimization and correct
protocol execution. These metrics are computed by the Manager, which sends
them to the Adaptive Engine along with the protocol sampling period. Based
on these values, the Adaptive Engine computes the intervals length of GT, RI,
and DCI as well as the skip parameter σsk .

Time To Resynchronize (TTR) The TTR represents the maximum time
required by DISSense to resynchronize all the nodes of the network. The value
is computed by the Manager module of the sink during each sampling period
where the RI is scheduled. Let n be the number of nodes of the network, the
Manager retrieves TTRi from each node i = 1 . . . n−1 and computes the TTR
asmax{TTR1, . . . TTRn−1}. The TTRi of each node i is computed as the time
elapsed from the beginning of the active period to the resynchronization event
(c.f. resync command in algorithm of figure 3.3). Each locally computed TTRi
is piggybacked to data packets transmitted at each sampling period. Note
that both events, the beginning of the active period and resynchronization,
may vary from node to node. In fact, the former depends on node’s clock drift
which may induce nodes to wake up at different time intervals, while the latter
depends on the resynchronization algorithm that, as seen in 3.3.3, depends on
the node-to-sink distance and, hence, may differ between nodes.

Based on this metric, the Adaptive Engine will try to schedule a Resyn-
chronization Interval (RI) short enough to reduce the overall active phase,
thus, the Duty Cycle of the protocol, but long enough to allow all the nodes
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participating into DISSense to correctly resynchronize.

Time To Receive Data (TTRD) The TTRD represents the time required
by DISSense to collect the sampling data from the network. We recall that, as
for most monitoring application, each node generates one packet per sampling
period that is forwarded to the sink. As a consequence, the Manager module
of the sink computes the TTRD, during each sampling period, as the time
elapsed between the reception of the first and the last data packet during active
phase. Note that the computed TTRD is an approximation of the actual time
required by DISSense to collect sampling period because it ignores the node-
to-sink latency of the first packet received. However, the first packet usually
arrives from a 1 hop neighbor of the sink and, thus, the node-to-sink latency
of the first packet is very small compared to the overall computed TTRD.

The TTRD metric is used by the Adaptive Engine to schedule a Data
Collection Interval (DCI) long enough to let the nodes in the collection tree
to correctly forward their data packets to the sink. A longer DCI interval
will extend the active phase of the schedule, thus, increase the Duty Cycle of
the protocol. On the other side, a too short DCI interval will produce losses
in packets forwarding due to the schedule that switches to ULPM phase in
presence of nodes still attempting to forward data packets.

Duty Cycle Let Tperiod be the sampling period and TGTI , TRI , and TDCI the
GT, RI and DCI lengths. Also let Ton(σsk ) be the fraction of time, within
a sampling period, during which the radio is in active phase. Similarly, let
Tulpm = 1− Ton(σsk ) represent the same ratio for the Ultra-Low-Power Mode
phase. We compute Ton(σsk ) as:

Ton(σsk ) =
TGTI + TRI + TDCI
Tperiod · (σsk + 1)

+
TGTI + TDCI

Tperiod · (σsk + 1)
· σsk (3.1)

Recalling section 3.2.2, during Ton(σsk ) the duty cycle is 100% while during
Tulpm it is set to 0.1%. We define the protocol duty cycle Pdc(σsk ) as weighted
sum of Ton(σsk ) and Tulpm with their corresponding duty cycle, hence:

Pdc(σsk ) = 1 · Ton(σsk ) + 10−3 · Tulpm ≈ Ton(σsk ) + 10−3 (3.2)

Guard Time Interval The Guard Time interval must be greater than the
maximum drift produced within two resynchronization procedures. It depends
on clock precision, sampling period and Skip value. For instance, the clock
precision of TelosB motes is 50 ppm [6] that becomes 100ppm assuming clocks
drift of two nodes in opposite direction. Further, resynchronization takes place
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each σsk +1 sampling periods. Thus, if Tperiod represents the sampling period,
the Adaptive Engine computes the Guard Time Interval as:

TGTI = 3 · 50 · Tperiod · (σsk + 1) · 10−6 (3.3)

Note that to ensure a safety margin (e.g., unpredictable behavior related to
temperature changes) the interval is equal to the maximum drift increased by
50%.

Skip period The Adaptive Engine computes the skip value σsk so as to
minimize the overall duty cycle of the protocol Pdc(σsk ). Recalling equation
(3.2), the minimum duty cycle corresponds to the minimum Ton(σsk ). Thus,
replacing (3.3) in (3.1) we have:

Ton(σsk ) =
150 · (σsk + 1)

106
+

TDCI
Tperiod

+
TRI

Tperiod · (σsk + 1)
(3.4)

It is easy to demonstrate that the minimum of (3.4) is reached for:

σ̃sk =

√
TRI · 106

Tperiod · 150
− 1 (3.5)

However, σsk must be an integer, thus, after having observed that the second
derivative of (3.4) is positive, we can assess that the minimum duty cycle is
reached for:

σsk = arg min(Ton(bσ̃sk c), Ton(dσ̃sk e)) (3.6)

Resynchronization and Data Collection Intervals The RI must be long
enough to allow DISSense to resynchronize all the nodes of the network and
build the collection tree. Recalling the resynchronization algorithm in figure
3.3, a resynchronized node has already selected the parent thus, the RI depends
uniquely on TTR. Similarly, the DCI must be long enough to allow each
generated sample to be routed to the sink, thus, it depends on TTRD.

For each TTR and TTRD update, the Adaptive Engine increases them by
50% to catch values fluctuation and inserts them in an Exponential Weighted
Moving Average (EWMA) obtaining:

TRI =
1.5 · TTRnew + 9 · TRIold

10
(3.7)

TDCI =
1.5 · TTRDnew + 9 · TDCIold

10
(3.8)

Where TTRnew and TTRDnew are the newly inserted values while TRIold and
TDCIold the intervals length before the updates.
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3.4 Evaluation

We evaluated the performance of DISSense on both an indoor testbed and on
the TOSSIM simulator. While the latter allowed us to test DISSense on differ-
ent network topologies, the testbed-based evaluation demonstrates DISSense
feasibility for real-world deployments. As detailed below, our experimental re-
sults show that DISSense can guarantee for reliable data delivery and, thanks
to its power-efficiency, it allows to operate a Tmote Sky-based WSN with
common AA type alkaline batteries for several years.

3.4.1 Metrics

We evaluate the performance of DISSense in terms of achieved duty cycle and
data delivery, as well as in terms of number of duplicate packets. For the
definition of DISSense’s duty cycle we refer to equations 3.1 and 3.2. We
derive an estimation of the lifetime of the network given a specific duty cycle
using the methodology suggested in [47], thus, ignoring power consumption
of application specific sensors. We further assume that a node is powered by
two common AA Alkaline batteries of 2500mAh capacity each and that the
current drain of the TmoteSky during 100% duty cycle and active CPU is
21.8mA [107]. Taking into account battery self-discharge equal to 15% in 4
years [2], a network running DISSense with a duty cycle of 1% can operate for 1
year. Reducing the duty cycle to 0.2% allows extending the network lifetime to
5 years. These considerations show the significant impact of the duty cycle on
the lifetime of a WSN. However, these values represent rough estimates since
temperature, intermittent power drain and chemical deterioration over time
can increase or decrease the speed of battery discharge. Moreover, the lifetime
can be further increased by using more performing type C batteries that can
reach 8000mAh capacity [48] or some kind of energy harvesting technique such
as photovoltaic panels [35].

Besides being able to operate a WSN for long periods of time, DISSense
must provide for reliable data delivery. We thus also evaluate its performance
in terms of data delivery ratio, or DDR, which we define as the ratio between
the number of data packets injected by the nodes into the network and the
number of those successfully collected at the sink. Last but not least we also
consider the number of duplicate packets that eventually reach the sink as a
further metric to describe the performance of DISSense1. In particular, this
number must be kept low in order to increase DISSense’s efficiency.

1Duplicated packets are generated during the collection phase due to possible false neg-

ative acknowledgements at the link-layer level.
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Figure 3.4: WSN Testbed (indoor)

We would like to point out that we do not report results about DISSense
performance in terms of latency (i.e., the time elapsed between packet gener-
ation and its arrival to the sink), since packet latency in DISSense is upper-
bounded by the length of the active phase, in all our experiments this length
has never exceeded 4.5 seconds, which represents the default active phase in-
terval at startup.

3.4.2 Testbed

Setup We run DISSense on a testbed of 15 nodes deployed on the first floor
of an office building, as depicted in figure 3.4. The presence of walls, a WiFi
access point and intense wireless communication activity contributed in cre-
ating an unreliable, unpredictable, and thus realistic wireless communication
channel. We run DISSense on this testbed for 2 months keeping the sampling
period to 1 minute for the first 31 days to 15 minutes for next 10 days, and to
1 hour for the last 20 days. In the following, we indicate with DISSense-x the
instance of DISSense having a sampling period of x minutes.

Results Figure 3.5 shows how the length of the RI, DCI, and GT intervals,
as well as the parameter σsk, varies over time (i.e., each time the Adaptive
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Figure 3.5: DISSense-1 Adaptive Engine Parameters (Testbed)

Engine performs an update) when running DISSense-1. The default startup
value of both TRI and TDCI is 2 seconds. Using equations (3.6) and (3.3),
the default values of σsk and TGT result being 14 and 139ms, respectively.
During each RI interval, the sink’s Adaptive Engine recomputes the values of
these parameters thus enabling DISSense adaptive behavior. Indeed, figure 3.5
shows that the length of both the RI and DCI intervals quickly converges to
values included in the ranges [450ms, 650ms] and [400ms, 500ms], respectively.
It is interesting to point out that since the sampling period is fixed and since
equation (3.3), which controls the evolution of TGT , depends on the values
of the sampling period and skip parameter only, the evolution of TGT follows
that of σsk .

Figure 3.6 reports the same data as in figure 3.5 but for DISSense-15. In
this experiment, the sink has been reset to make the nodes go out of synchro-
nization. Due to this reset, the sink loads the default values for the schedule
and shares them with the nodes. Figure 3.6 shows that the Adaptive Engine is
able to quickly recompute new optimal values for the key protocol parameters.

Table 3.1 summarizes the performance of DISSense. As expected, increas-
ing the sampling interval makes the duty cycle shrink significantly. In particu-
lar, it decreases from 1.09% for DISSense-1 to 0.15% for DISSense-60. This is
due to the fact that, although a longer sampling period induces an increase in
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Figure 3.6: DISSense-15 Adaptive Engine Parameters (sink reset)
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Sampling Period (min.)

1 15 60

Duty Cycle (%) 1.09 0.22 0.15

D.D.R. (%) 97.8 98.6 98.9

Duplicated Packets (%) 0.16 0.24 0.03

Table 3.1: DISSense performance (Testbed)

the length of the guard interval TGTI , the period during which the nodes are
inactive has a proportionally higher increase. This results in an overall lower
duty cycle. Table 3.1 also shows that DISSense’s average delivery ratio oscil-
lates around 98% irrespectively of the sampling period. Our analysis of the
traces stored by the nodes during the execution of DISSense shows that most
of the packet losses are related to the occurrence of routing loops. Although
DISSense can rely on CTP’s loop detection mechanism, the time necessary
to re-establish a valid route is typically larger than the length of the active
phase. Thus, looping packets cannot reach the sink before the network goes
back to sleep. Finally, table 3.1 shows that the number of duplicated packets
reaching the sink is negligible with respect to the total data traffic. This is
due to the fact that DISSense relies on CTP’s effective duplicates suppression
mechanism.

3.4.3 Simulation study

Setup We run DISSense-1, DISSense-2 and DISSense-5 within the TOSSIM
simulation environment. To this end, we generated networks having 10, 20,
30, 40 and 50 nodes (excluding the sink) using TOSSIM’s network generator
tool with parameters set as summarized in table 3.2. For each network size,
we generated 20 different topologies. To reproduce the vagaries of the wireless
channel we resort to the casino-lab noise model [13]. Furthermore, for larger
networks, the queue size of CTP has been increased to 40 packets to avoid
packet drops for full buffer.

Results Figure 3.7 shows the value of the duty cycle of DISSense as the
number of nodes in the network increases. The duty cycle increases with the
number of nodes but decreases as the sampling period increases. In particular,
the duty cycle of DISSense-1 increases from 0.8% for 10 nodes to 3.3% for 50
nodes while for DISSense-2 it increases from 0.5% to 1.75% and for DISSense-
5 from 0.35% to 0.8%. The duty cycle further decreases when the sampling
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Path Loss Exponent 4.7

Shadowing Standard Dev. 3.2

Reference distance d0 (m) 1

Path Loss (d0) (dBm) 25.6

Noise Floor (dBm) -105

White Gaussian Noise 4

Table 3.2: Network Generator Parameters

period progressively grows to 60 minutes. From these results, we observe
the major strength and weakness of DISSense. As described in section 3.4.2,
DISSense is very efficient for relatively long sampling periods (larger than 5
minutes), for which it can achieve duty cycles as low as 0.15%. However,
the performance of DISSense degrades as the sampling period decreases and
the network size increases. This is due to the fact that the CSMA/CA-based
design of DISSense makes the time needed for channel contention increase
with the density of the network. This, in turn, makes the length of DISSense
synchronization and data collection intervals, and, thus, the length of the
active phase, increase, causing the duty cycle to increase too. While for high
sampling periods this effect is mitigated by the largely predominant ULPM
interval, when the sampling period is low, the effect becomes less negligible.
On the other hand, performance in terms of data delivery ratio are not affected
by changes in sampling period or network size. In fact, as figure 3.8 shows,
DISSense achieves a DDR higher than 99% irrespectively of the sampling
period or network size. DISSense achieves this good performance by combining
CTP’s inherent reliability and the ability of the Adaptive Engine to estimate
the appropriate length of the RI, DCI, and GT intervals.

3.4.4 Multi-sink support

To cope with DISSense’s unsatisfactory performance for large network sizes,
it is possible to resort to a multi-sink approach. If several sinks are defined,
CTP will naturally construct several collection trees, each having one of the
sinks as its root. This allows to reduce the overall diameter and density of
the network and, thus, to reduce the length of the active phase. To this end,
though, we have to assume that the sinks are all synchronized (through the
NtpManager). Multi-sink DISSense works as the single-sink version except for
the presence of multiple schedules, one for each sink. In fact, each sink shares
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Figure 3.7: Duty Cycle with different sampling intervals

Figure 3.8: Delivery Ratio with different sampling intervals
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its schedule with the nodes belonging to its sub-tree and adapts it following
the same principles described in section 3.3.2 and 3.3.4. This means that the
schedules will depend on the number of nodes participating to each sub-tree
and, thus, we expect each schedule to have different values for TGTI , TDCI ,
TRI and σsk . As a consequence, a node changing its sub-tree will have a differ-
ent schedule and, with high probability, will go out of synchronization. This
event typically affects nodes halfway between two sinks. One possible solu-
tion consists in enhancing the NtpManager functionality by adding a schedule
sharing service that enables sinks to share the same schedule between them. In
particular, a conservative choice is represented by the selection of the largest
schedule within those computed by each sink. In this way, a node changing
its sub-tree will still share the same schedule and will be easily integrated in
the new sub-tree. This approach requires permanent communication link be-
tween the sinks of DISSense. Because we assume that each sink is connected
to a gateway, from which it retrieves the Network Time Protocol (NTP), we
can safely assume that this requirement is met. Another approach consists in
leaving the sinks to adopt different schedules and let the nodes going in out
of synchronization to retrieve the correct schedule through their LplManager.
Assuming that the nodes will not change their sub-tree too frequently, this
approach doesn’t require any specific action. The choice within the two so-
lutions will depend on application requirements in terms of reliability, energy
efficiency and availability.

Figures 3.9 and 3.10 represent the duty cycle and delivery ratio reached
by two multi-sink version of DISSense compared to the single-sink one. In
particular we have selected one topology for each network size of the previ-
ous experiments and compared DISSense-1 to 2-DISSense-1 and 3-DISSense-1,
where the prefix number corresponds to the number of sinks. No schedule shar-
ing services has been adopted, thus, the nodes changing their sub-tree retrieve
the new schedule through the LplManager. As figure 3.9 shows, the duty cy-
cle is greatly reduced for multi-sink DISSense. In particular, for the 50 nodes
topology, the duty cycle decreases from 3.8% of DISSense-1 to 1.75% of 2-
DISSense-1 and 1.1% of 3-DISSense-1. Figure 3.10 shows that the DDR is not
affected by the multi-sink version of DISSense since it remains always above
99%. This result demonstrates that the number of out of synchronization
events is low.

3.4.5 Comparison to Dozer and Koala

We finally provide a qualitative comparison between DISSense and its closest
competitors: Dozer [47] and Koala [98]. In particular, we compare the per-
formance of the three protocols in terms of data delivery ratio, latency, duty
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Figure 3.9: Duty Cycle with Multi-sink (topology # 1)

Figure 3.10: Delivery Ratio with Multi-sink (topology # 1)
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cycle, adaptability, and openness. Table 3.3 summarizes our findings.

Data Delivery Ratio: DISSense, Dozer, and Koala all show high per-
formance in terms of data delivery ratio. In particular, the end-to-end ac-
knowledgement mechanism of Koala enables the protocol to achieve a DDR
of 99.99%. Instead, both Dozer and DISSense make use of link-layer acknowl-
edgements thereby implicitly accepting some packet losses. In particular, DIS-
Sense automatically drops packets not delivered during the past active phase
while Dozer overwrites packets matching the same origin inside forwarding
queues. Nonetheless, both protocols achieve data delivery ratios of 98-99%.

Latency: DISSense has an overall lower latency than Dozer and Koala.
As mentioned in 3.4.1, latency in DISSense is upper-bounded by the length
of the active period, which is typically lower than 5 seconds. Packet latency
in Dozer (in the worst-case scenario) is equal to the number of hops in the
collection tree times the length of the period of the TDMA schedule, the latter
being fixed and equal to 30 seconds. Additionally, if an acknowledgement
gets lost Dozer makes the transmitting node to stop and wait for the next
TDMA round before retransmitting. This mechanism additionally increases
the latency in Dozer. Koala has an overall higher latency. To keep its duty
cycle short, Koala buffers packets and limits the number of time it needs to
wake-up the network and perform a bulk download of the collected the data.
The minimum buffer size is 32 KB [98]. Considering a 2-minutes sampling
period and 35 bytes of payload per packet (as done in [47]), a 32 KB buffer
would get filled in approximately 1.3 days. This value clearly increases as the
length of the sampling period increases.

Duty Cycle: Dozer has an overall lower duty cycle than Koala and DIS-
Sense. As reported in [47], Dozer can achieve an average duty cycle of 0.168%
on a network of 40 nodes and a 2 minutes sampling period. The actual duty
cycle of each node varies depending on the role the node has in the collection
tree. A node with many children needs to assign accordingly many communi-
cation slots to its children, thus, incurring in a high duty cycle. In the setup
described in [47] leaf nodes have a duty cycle of 0.07% while nodes with many
children achieve 0.32%. If the network topology does not change frequently
enough, this difference may induce significantly uneven lifetimes on different
nodes of the network. Koala manages to keep the duty cycle below 1% but,
as discussed above, at the cost of high data latency. In particular, waking-up
the network too often (e.g., each hour) would produce a sensible increase in
Koala’s duty cycle due to the high energy cost of network wake-up, route com-
putation and bulk data download that the protocol requires. DISSense’s duty
cycle depends on the network size and on the sampling period. As discussed
previously, DISSense’s performance in terms of duty cycle is comparable to
that of Dozer for small network sizes (<20 nodes) or high sampling period
(>5 min.). Also, DISSense induces the same duty cycle to all nodes, which
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DISSense Dozer Koala

Duty Cycle 0.1% - 4% 0.168% 0.1% - 1%

Data Delivery Ratio 98-99% 98-99% >99.99%

Latency <5s minutes days

Platform Dependent no yes no

Open Source yes no yes

Adaptability yes no no

Table 3.3: Protocols qualitative comparison

translates in homogeneous power consumption and, hence, a predictable over-
all network lifetime.

Adaptability: Through its Adaptive Engine DISSense can determine the
optimal schedule for the network irrespectively of its size, topology, or state
of the wireless channel. In particular, the Adaptive Engine autonomously
collects statistics while the protocols runs and thereby determines the key
protocol parameters. Instead, both Koala and Dozer depend on the a priori
specification of crucial parameters. For Koala these include the probe interval
for network wake-up and the buffer size, while Dozer relies on knowledge of the
round period, parents update interval, overhearing phase length and frequency,
and slot length.

Openness: Last but not least, DISSense and Koala are platform inde-
pendent while, due to commercial agreements, Dozer is implemented on the
TinyNode platform only. Also, Dozer is closed-source while DISSense and
Koala are open-source protocols with publicly available implementations.

3.5 Conclusion

In this chapter, we described the design and implementation of DISSense, an
adaptive, low-power communication protocol for WSNs-based periodical en-
vironmental monitoring applications. DISSense is easy to setup thanks to its
adaptive engine that automatically updates the protocol parameters in order
to minimize its power consumption. We tested DISSense on both a testbed
and the TOSSIM WSN simulator. Our experimental results show that DIS-
Sense can guarantee for high data delivery and, thanks to its power-efficiency,
it is able to operate a Tmote Sky-based WSN for several years. As for fu-
ture work, we expect to test the performance of DISSense on wider testbeds
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such as Motelab [7]. Additionally, in [108] we presented a new metric, dubbed
Expected Network Delivery (END), that quantifies the delivery performance
that a collection protocol can be expected to achieve given a network topol-
ogy. We expect to provide a comparison between DISSense and other existing
solutions such as CTP with BoX-MAC-2, Koala or Dozer in terms of duty
cycle, DDR and latency with different network topologies classified following
the END index.
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Chapter 4

ARS over DISSense

4.1 CTP and activation probability

In [50] we evaluated the Collection Tree Protocol (CTP) [65] on Castalia frame-
work for OMNeT++ Simulation Environment [8]. Castalia is a Wireless Sen-
sor Network framework that features advanced channel and radio models, a
MAC protocol with large number of tunable parameters and a highly flexi-
ble model for simulating physical processes [1, 42]. The goal of [50] was to
investigate the interplay between specific collection services and application-
level algorithms. The experiments were made by running CTP on 50 different
topologies of 100 nodes deployed uniformly at random in a 250x250 meters
field. Each run was further subdivided into 50 rounds where, during each
round, the nodes of the network were sending one packet to the sink with ac-
tivation probability p. Additionally, to simulate the behavior of a duty cycled
protocol, each round was subdivided into an active phase, during which the
CTP protocol was gathering the data, and a passive phase where the nodes
were sleeping. Consequently, the data packets not gathered during the active
phase were discarded.

Figure 4.1 represents one of the main results of the experiments made in
[50]. The figure shows the Data Delivery Ratio (DDR), i.e., the ratio between
the number of data packets received by the sink and the number of data
packets actually sent by the nodes, for values of the activation probability p
of 0.5 and 1. The figure shows how for several topologies, the DDR is sensibly
affected by the activation probability. In particular, for p = 0.5 the map is
homogeneously dark-red colored, indicating a DDR near 100%, while for p = 1
several horizontal lines becomes lighter as a consequence of the DDR decrease.
The performance degradation is related to the increasing number of sensing
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nodes that consequently increases the number of packets. The packet increase
affects the limited size of CTP queues that, when full, generate several packet
drops. Additional drops are caused by the increasing time required by CTP
to gather the data that, in several circumstances, exceeds the scheduled active
time.

In section 3.4.3, we solved the first issue by increasing the CTP queue
length. However, the increasing gathering time related to the second issue was
producing an increase in the DISSense duty cycle. In particular we find out
how the CSMA/CA mechanism, on which DISSense is based, poorly scales
when the number of nodes increases. As a result, the Adaptive Engine of
DISSense was increasing the active time, thus, producing an increase of the
duty cycle. A turnaround to this problem has already been faced in chapter
3 by increasing the number of sinks so as to reduce the number of nodes
for each sub-tree. But, based on the results of the previous paragraph, and
recalling that DISSense is CTP based, we want to study, in the remainder of
this chapter, how a sensor selection mechanism such as ARS, which naturally
reduces the number of active nodes, could provide benefits for the DISSense
protocol.

4.2 Integration

In section 2.3 we outlined that ARS can be divided in four main phases:
dissemination, discovery, computation of p and sensing and update. In section
2.3.4 we described the third phase rather, in this chapter, we provide the
implementation of the remainders.

4.2.1 Dissemination

During the dissemination phase, ARS distributes the value of the sensing
range Rs to all nodes within the network. By embedding ARS in the DISSense
implementation, the Rs value can be disseminated using the Implicit Backward
Channel (IBC) presented in section 3.3.2. We recall that the IBC is active
during each Resynchronization Interval (RI) and guarantees that, at the end
of the RI, each node is in one of the following states:

• The node belongs to the Collection tree (i.e., it has selected a parent)
and shares the updated values carried by the IBC.

• The node does not belong to the Collection tree and is out of synchro-
nization.
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and p = 1.
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As a result, all the nodes running DISSense and participating to the collection
tree have the sensing range already set before each gathering phase.

4.2.2 Discovery

Recalling section 2.3.4, the activation probability depends on the number of
neighbors and their position. To retrieve these information, ARS can use the
neighbor table of DISSense, which is built upon the reception of beacons from
the node’s neighborhood. To this aim, it might be necessary to increase the
neighbor table size limit depending on the network density. Based on our
experience, 25 entries represent a good trade-off between application scenarios
and memory footprint. In fact, in most cases it is unlikely to have a network
density higher than 25 nodes in a single hop range. Additionally, neighbor
table and DISSense beacons need to be extended in order to store the < x, y >
coordinates of the neighbors.

4.2.3 Sensing and update

Once each node ni holds its own local value of the probability of activation
pi computed following the procedure described in 2.3.4, the node executes the
RSS algorithm of section 2.2. When active, the node sends the data packet
following the Send interface implemented by the Manager of the DISSense
protocol (section 3.2.4). By this way, the data of all the active nodes of the
network is gathered by the sink which, in turn can run the ACT algorithm
[91, Chapter 6] to refine the spatial resolution ∆s and consequently update
the sensing range Rs. Again, the updated Rs value is disseminated from the
sink to the network following the IBC channel abstraction of DISSense. Note
that, whenever a multi-sink DISSense is adopted, the ARS protocol requires
the gathered data to be processed on a central gateway in order to correctly
reconstruct the signal and refine the sensing range.

4.3 Experiments

4.3.1 Setup

We implemented ARS over the DISSense implementation of section 3.3. We
also used the TOSSIM simulator for performance evaluation and the same 20
generated 50-nodes topologies of section 3.4.3. The monitored area is a square
of 75 x 75 meters on which the 50 nodes and the sink have been deployed
uniformly at random. The radio range is 30 meters and the casino-lab noise
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model has been applied. As an example, figure 4.2 represents the first of the 50-
nodes topologies. Based on the link-gain, this topology has an average number
of hops equal to 2.82 and a maximum number of 4. However, considering
the casino-lab noise model and the signal-strength-based radio model used
in TOSSIM, these values represent a lower bound, while the actual values are
sensibly higher. In the following of this section, we will refer to ARS-DISSense-
1 when DISSense-1 is run with ARS activated.

4.3.2 Results

We first evaluated, over a single topology represented in figure 4.2, the Duty
Cycle and the Data Delivery Ratio of DISSense-1 compared to the ARS-
DISSense-1 for different values of the sensing range Rs. As figure 4.3 shows,
the Duty Cycle quickly drops from nearly 4% of DISSense-1 (labeled as No
Ars) to 3.23% of ARS-DISSense-1 with Rs = 15 meters. The Duty Cycle
further decreases when the sensing range increases (2.85% for Rs = 20 me-
ters and 2.65% for Rs = 25 meters). As opposed to DutyCycle, the Data
Delivery Ratio holds steadily above 99.5%, thus, confirming the benefits of
using a sensor selection approach, as ARS, over the DISSense protocol. It
is important to note that arbitrarily increasing the sensing range produces a
decrease of the activation probability and, as a consequence, a decrease of the
duty cycle. However, a lower activation probability also generates a higher
signal reconstruction error. A discussion on the existing trade-off between the
quality of service and the energy efficiency of the protocol certainly represents
an important research topic but goes beyond the scope of this thesis.

Figure 4.4 shows per-node ARS activation probability related to the eval-
uated topology with sensing range Rs = 20 meters. As expected, based on
the neighborhood density, distance and polarization, the activation probability
varies from a minimum of 0.5 for node 19 to a maximum of 1 for edge-nodes
and nodes with no useful neighbors in at least one set Sik (e.g., node 15).

From the previous experiment, we selected the sensing range Rs = 20
meters to compare the duty cycle of ARS-DISSense-1 and DISSense-1 over the
whole set of 20 generated 50-nodes topologies. Figure 4.5 shows a constant
improvement of ARS-DISSense-1 in respect of DISSense-1. The duty cycle of
ARS-DISSense-1 ranges from a minimum of 2.09% for topology n.12 to 3.13%
for topology n.3 while DISSense-1 lies between the 2.72% - 4% interval.
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Figure 4.2: Topology #1 (50 nodes + sink) with sensing range Rs = 20 meters

drawn for nodes 15 and 19

Figure 4.3: Ars-DISSense-1 performance for different sensing ranges Rs
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Figure 4.4: Per-node activation probability for ARS-DISSense-1 running on

the first 50-nodes topology and sensing range Rs = 20 meters

Figure 4.5: DISSense-1 and Ars-DISSense-1 duty cycle comparison for different

topologies and sensing range Rs = 20 meters



74 CHAPTER 4. ARS OVER DISSENSE

4.4 Conclusion

In this chapter we observed how the adaptive sensor selection scheme presented
in chapter 2 greatly improves the duty cycle performance of the DISSense
protocol discussed in chapter 3. The reason relies in the lower traffic that,
thanks to the specific design and the adaptive behavior of DISSense, reduces
the active time scheduled for data gathering and consequently, the protocol’s
duty cycle.

Despite the good performance, the experiments made in the previous sec-
tion do not take into account the signal reconstruction error and the covered
region of interest. The reason basically resides in a lack of the TOSSIM sim-
ulation environment that we expect to overcome implementing DISSense over
the Castalia framework for OMNeT++. The Castalia framework provides
an advanced physical process that has already been used to evaluate ARS in
chapter 2.
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Chapter 5

Passive pervasive systems

5.1 Technology

Nowadays, the pervasive deployment of tiny devices with minimum storage
and limited or no computational capabilities appears a realistic perspective;
one major obstacle is the strict energy constraints of battery-powered devices.
We refer to a class of passive devices (i.e., not powered by batteries) that has
emerged in the last decade, the most prominent examples being RfID and NFC
tags. An RfID tag is an object that can be applied to or incorporated into
a product, animal, or person for the purpose of identification and tracking
using radio waves. Passive RfID tags have no internal power supply and
draw power from the radio waves emitted by the reader. However, passive
tags have minimal or no computational power, the memory is limited to only
few KBs and the distance between the reader and the tag is at most few
meters (ISO 18000-6), but it is typically only few centimeters (ISO 14443).
Near Field Communication or NFC, is a short-range high frequency wireless
communication technology which enables the exchange of data between devices
within short distance aimed at usage in mobile phones. An NFC device can
communicate with both existing ISO 14443 smartcards and readers, and it is
thus compatible with existing RfID infrastructures, as well as with other NFC
devices. The limited costs and the pervasiveness of these devices are paving the
way for new pervasive solutions: mobile ticketing in public transport, mobile
payment, smart shopping and social applications.
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5.2 Communication abstraction

Wireless Sensor Networks discussed in the first part of the thesis were charac-
terized by a multi-hop communication infrastructure and a many-to-one traffic
pattern gathering the sensed data to a central collection unit dubbed sink. Ad-
ditionally, the transmission of a data packet was node-initiated in the sense
that each node was able to actively transmit a packet following the schedule
of the underlying MAC protocol. Despite the restricted size of each single
data packet, WSNs are able, over time, to collect large quantities of data and
deliver them to some external entity.

In Passive Pervasive Systems, the communication abstraction radically
changes. Since passive tags are powered by radio waves emitted by active
readers, no communication can take place until a reader enters within the
range of the tag and initiates a communication process (from now on, we will
refer to this action as a visit). As a consequence, the communication cannot
be initiated by the tag since it is the reader that decides whether to begin a
communication. Moreover, the multi-hop traffic pattern adopted in WSNs is
replaced by a simpler single-hop interaction represented by the active reader
that reads, updates or stores data on the tag it is visiting. Nonetheless, we can
still refer to multi-hop traffic if we consider the active reader visiting different
tags, thus, potentially carrying the data from one tag to another. By the way,
we cannot assume passive tags being connected through paths, as opposed
to the WSN networked infrastructure, since the data exchange does not fol-
low any kind of routing policy rather, it depends on the movement pattern
of active readers that occasionally meets both, the source and the destination
of a communication. We refer to this mechanism as opportunistic and delay-
tolerant networking. The consequence of this communication abstraction is
that the data is not uniformly spread following the unpredictable visit pattern
of active readers. Additionally, the limited memory available (few kilobytes)
limits the storage capacity of passive tags. Since the data is rarely exchanged
in opportunistic networking, the memory of each tag quickly fills up. As a
consequence, those devices will need to store aggregated information in or-
der to increase their capacity. As a result, the aggregated value of each tag
will potentially encode part of the active reader’s history (i.e., the navigation
pattern of the reader) in some form of compact representation.

5.3 Information gathering

It is clear that energy efficiency represents a secondary aspect in Passive Per-
vasive Systems since, in this context, power supply only holds on few active
devices (the active readers). Thus, issues and solutions faced in the first part of
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the thesis are no longer valid. Information gathering in such systems addresses
a more general aspect related on how, the partial and non uniform distribu-
tion of the information can be processed to deliver some kind of services. The
opportunistic networking communication abstraction does not allow the use of
a centralized approach, thus, the information must be computed locally dur-
ing each user’s visit. Consequently, the emerging applications mentioned in
the previous section will have to be developed following a fully-decentralized
design in order to properly run on such systems. Providing fully decentral-
ized services for mobile ticketing, mobile payment, smart shopping or social
applications, based on the compact representation of the information in per-
vasive systems is an emerging research area and, as opposed to centralized
approaches, only few examples are present in literature.

A pheromone-based object-tracking system adopting RfID tags has been
presented in [87]. The system uses a stigmergy approach that leaves digital
pheromones on tags dispersed in the environment. In particular, when moving,
each object spreads digital pheromones, represented by a unique ID and a hop
counter, all over the environment. Followers only need to search for a digital
pheromone and follow subsequent digital traces with an increasing hop counter
values to reach the tracked object. An application aiming at facilitating the
finding of everyday objects has been developed based on this technique. In
[14] a Decentralized Simultaneous Localization And Mapping (DSLAM) for
pedestrians in the context of Urban Search And Rescue (USAR) based on RfID
tags is presented. Simultaneous localization and mapping avoids pedestrians
(e.g., firemen) to make loops while searching for victims. The decentralized
RfID-based implementation relies on an (indoor) deployment of RfID tags that
enables a fireman to update its knowledge of the graph by reading the data
stored on the visited tag and, at the same time, update the tag with data
collected so far by the fireman. The knowledge acquired by reading the data
stored on the tag allows a fireman to learn a subgraph larger than the one
represented by its own trajectory and potentially detect loops in the broader
reconstructed subgraph.

In the next two chapters we present our contributions in developing fully
decentralized applications for Passive Pervasive Systems. In chapter 6 we
present a fully decentralized RfID-based recommendation system tailored for
smart posters that is able to suggest items of potential interest on the basis of
the succinct information obtained interacting with the smart poster. The sys-
tem defines a probabilistic model of user behavior and uses statistics computed
over past user transactions to estimate parameters of the model. The output
of the model is a set of items that are most likely to meet a user’s interests.
The system is fully decentralized and easily matches the low-computational,
low-memory and low-bandwidth requirements of Passive Pervasive Systems.
In chapter 7 we present an SMS-based recommendation system able to pro-
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vide social recommendations, e.g., new friendships, based on the exchange of
succinct representation of the list of contacts dubbed sketches encoded in the
residual space of Short Messages. Despite Short Messages rely on the mobile
phone communication system, which sharply differs from Passive Pervasive
Systems described in this chapter, we will demonstrate how the application
can be easily applied to our reference scenario.



Chapter 6

A fully decentralized

RfID-based recommendation

system

6.1 Introduction

In this chapter we consider fully decentralized collaborative filtering strategies
for item recommendation in passive pervasive systems. For example, the NFC
consortium proposes smart posters for shopping by tagging items of interest
posted in billboards, or any other form of advertising, with a passive tag, from
which a user can exchange data by touching it with her NFC-enabled handset.
The user can buy the item associated with the tag and receive information
on the item or even recommendations on other items of potential interest on
the basis of the succinct information obtained interacting with smart posters.
The distinguishing features of decentralized computation in which low capa-
bility devices observe a local stream of events and have to maintain summary
information about overall system behavior, while obeying stringent memory,
computational and communication constraints. In this scenario, distributed,
local algorithms appear a natural choice to address computational, communi-
cation and storage restrictions of the scenarios outlined above.

The importance of recommender systems has been widely recognized in
e-commerce systems as a tool to suggest products to customers, providing
relevant information in shopping (e.g., Amazon, eBay). In order to recommend
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new items three main approaches have been proposed: collaborative filtering,
content-based filtering and hybrid methods [40]. We consider Collaborative
Filtering (CF for brevity) that classifies users and products in terms of their
past interactions.

We assume that items of interest are advertised by smart tags (e.g., RfIDs
or NFCs) distributed in an area, e.g., a city. In the sequel we will use the
terms smart tag and item interchangeably and the term smart reader to de-
note a smart tag enabled reader device (e.g., an NFC enabled smart phone).
Each user is characterized by a (unknown) ranking of items, describing her
preferences; a smart reader stores her history (e.g., the set of items previously
visited by the user) during the visit and has some computational capability.
When a user interacts with item i the user’s smart reader reads details on
the item. We also assume that i stores a suitable summary of the histories
of users that visited i in the past: smart readers interact with smart tags,
by transparently (to the user) reading and updating the information stored
by the latter. We stress that we do not assume any transmission capabilities
between smart tags, which are assumed to be passive devices. When item i
is visited by user j, her smart reader can recommend a new item (or a set
of items) of potential interest to j, using current summary at i and j’s his-
tory. The recommendation of an item is good if the proposed item is likely
to meet j’s preferences. The above scenario is technologically realistic and it
is closely related to architectures proposed for smart shopping carts [74] and
smart shelves [56]. We remark that it also complies with privacy issues, since
only aggregated information is disclosed from which it is not possible to infer
private information concerning specific users.

Our goal is to show that, even under the stringent constraints outlined
above, simple heuristics allow to effectively profile users and provide good
recommendations in the scenario described above. The recommendation al-
gorithm we consider is simple: upon visiting item i, user j is recommended
one item (or a subset of items) scoring highest among those not yet visited by
j. The core of the whole problem is defining scores that i) can be efficiently
estimated and updated locally by the smart reader upon visiting new items
and ii) that effectively reflect the users’ unknown preferences. Note that scores
and rankings can statistically depend on users’ visit patterns in complex ways.
We tackle this issue by defining suitable models of user behavior.

On the theoretical side, we provide asymptotically tight lower and upper
bounds on the number of examples required by the recommendation algorithm
to compute good estimations of item scores and thus provide good recommen-
dations. While theoretical analysis gives bounds that might be unfeasible in
practical applications, our experiments compare the performance of our algo-
rithms with that of a centralized, state-of-art recommendation algorithm that
knows the overall system history. The tests are based on both synthetic data
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Figure 6.1: Exemplifying scenario: a

smart library

Scenario: every item has an as-

sociated smart tag with a unique

integer ID. The user is visiting

item 6 after visiting items 2 and

4. The smart reader uses aggre-

gate statistics concerning item 6

and user’s history to assign scores

to items other than 6 and to pro-

vide a recommendation (e.g., item

1 has score 3, while item 3 has score

21 and is thus the top item in the

summary).

and real data sets provided by Netflix, a popular on-line DVD rental service;
they show that the performance of our algorithm is very close to that of the
centralized one, in terms of standard metrics normally adopted to assess the
performance of Collaborative Filtering algorithms.

We observe that our algorithms can be considered as an application of stig-
mergy to recommendation algorithms. Stigmergy is a form of self-organization
where traces left in the environment by the action of agents trigger the exe-
cution of subsequent actions, by the same or a different agent, thus, allowing
spontaneous and indirect coordination between agents [32]. Stigmergy has
been exploited in tracking objects tagged by RFIDs [87] and routing messages
in mobile wireless ad-hoc networks [111]; however, to the best of our knowl-
edge, this is the first paper presenting a recommendation system for pervasive
systems based on this interaction paradigm.

6.2 Related work

In the last years recommendation systems have been recognized as an im-
portant research area and much work has been done both in industry and
academia on developing new approaches. As a result, a number of recom-
mender applications are used in a variety of e-commerce systems, e.g., for
recommending books by Amazon [15, 82], movies by MovieLens [94], DVDs
by Netflix [17]. A survey of the main approaches to recommendation appli-
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cations can be found in [22]. On the other hand, future mass deployment of
pervasive networks opens the possibility of new scenarios for recommendation
systems. For example, we refer to MyGROCER [74], a recent proposal for a
ubiquitous computing environment for supermarkets based on a smart shop-
ping cart that exploits shopper’s identity to provide a personalized service.
As observed in [123], improvements are necessary to extend recommendation
systems to new scenarios, “including [...] products to purchase in a store made
by a smart shopping cart”.

Collaborative Filtering allows to extract useful information without requir-
ing cooperation and identification of users and, for this reason, has emerged as
the most effective approach to tackle the privacy issues and for mass deploy-
ment. We briefly review the main related results, referring to [22, 70, 114] for
a thorough survey of literature on Collaborative Filtering. One of the main
approaches to Collaborative Filtering, adopted in [57, 114], relies on the com-
putation of similarity indices among items and on using them for prediction
of user likely preferences. Namely, an n×m item-user matrix R stores binary
information on users’ choices: R(i, j) is 1 if the j-th customer has purchased
item i and zero otherwise. Using matrix R, items are classified and the user
is suggested a set of items similar to items in U where, intuitively, two items
are similar when most users that find one interesting tend to find the other
relevant as well.

In many cases users can be clustered in groups: two users in the same group
have similar preferences. Singular Value Decomposition (SVD) [93] was shown
to be useful to cluster users; we remark that SVD is computationally intensive
and requires centralized information and often requires additional conditions
for its applicability that are not met in practical cases. In [31, 58] the goal is
to approximately recover the latent structure of users’ preferences. However,
proposed solutions require extensive data on each user and a centralized, ex-
pensive computation. Kumar et al. [73, 76] study the off-line problem where
preferences are identified with past choices; items are clustered and each user
has a probability distribution over clusters: a user first chooses a cluster by
her distribution and then chooses a product uniformly at random from that
cluster. The goal is to recommend an item from the user’s preferred cluster.
A different approach is based on the use of ranking-based evaluation measures
for the evaluation of regression models [110]; this is motivated by the fact that
ranking can be the main underlying goal.

The contributions above consider centralized settings. Distributed recom-
mendation strategies have also been considered in the recent past. In [37] the
authors propose to partition item-user matrix R into smaller matrices: each
new smaller matrix contains the ratings of all the users on the items belonging
to a certain topic or domain, e.g., the movies having a particular genre. How-
ever, they assume that these systems can communicate with each other using
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a simple request/response protocol. In [55], the authors explicitly consider
the limitation imposed on CF by mobile devices, and incrementally update R
by connecting near-by devices over Bluetooth without the need for constant
connection to a central server. In [30], a distributed solution is proposed to
on-line recommendation in which a user is in search of an item she likes; the
algorithm is randomized: at each step, the user either selects an item uni-
formly at random or asks another user about her preferences. Although the
above solutions are distributed, we remark that active cooperation between
users is required. A similar remark applies to [28] where the goal of the users
is to learn their complete preference vector (approximately) while minimizing
the cost of probing.

Distributed CF has also been considered for P2P networks. We briefly dis-
cuss two representative approaches; [127] considers recommendation in P2P
file sharing systems using a Distributed Hash Table to allocate the database
of user past transaction among the nodes of the network. [124] uses a similar
approach, but the storage and update of user information is performed differ-
ently and is determined by the navigation of users. Both strategies require
explicit communication among nodes of the network to maintain information
on past user transactions.

6.3 Models terminology and notation

We consider a set of n smart tags, passive devices tagging items in a shop (e.g.,
a library) or in a museum; every item has a unique integer identifier i ∈ [n],
where [n] = {1, . . . , n}. To make terminology simpler, in the sequel we use
the term item extensively when referring to the smart tags attached to them,
since the scenario and the solutions we consider are oblivious to the nature
of tagged items. There are m users and each user visits the shop over time
carrying a smart reader, i.e., a device able to read and update information
stored at smart tags. Every user j enters the system, visits a subset of the
items and then leaves the system. We call this a session. In general, by visiting
an item we mean an active and detectable interaction between a smart reader
and the smart tag tagging an item (e.g., purchasing a tagged item).

The identities of users are not stored, hence, multiple visits of the same
user to the shop are not individually tracked. However, we emphasize that
information about multiple visits of the same user is stored in aggregate form
at smart tags, as we shall see further. We assume that a user visits each item
at most once during her permanence in the system, since this captures typical
visiting patterns in many cases. The alternative model in which a user may
perform multiple visits to the same item during the same session can be of
interest in different scenarios and can be more easily modeled using random
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walks (see, e.g., [66]). Note also that we assume that computation entirely
occurs at the smart reader (e.g., a phone-like device), whereas smart tags only
store the outcome of the computation. For this reason, we think of smart tags
as passive devices (e.g., RFIDs), which are not battery operated. The results
we present also apply to scenarios in which smart tags play an active role in
computation. Clearly, in this case energy issues at smart tags can be no longer
neglected.

Modeling user behavior in the system entails two aspects: i) describing the
way in which users select items of potential interest and ii) the order of visits
of items that determines the way in which information about users’ past visits
is spread across the pervasive system.

i) Cluster based item selection. We assume that every user j = 1, . . . ,m
has an associated vector w(j) = (w1j , . . . , wnj), wij , called user profile in the
sequel, describing j’s potential interest for item i. Note that w(j) is unknown
to the system. In particular, wij ≤ 1 gives the absolute probability that user
j will select item i. Hence,

∑n
i=1wij 6= 1 in general. The selection of items

visited by user j proceeds as follows: for every i = 1, . . . n, j visits item i with
probability wij , independently of other items and of other users. Note that,
by this definition, there is a user-dependent non zero probability that a user
will visit no items.

Following a common assumption in the literature [22, 73, 76], we assume
items are partitioned into disjoint clusters, C1, C2, . . . , Cs, e.g., corresponding
to different topics or categories. We further assume that, for item i and user j,
wij satisfies wij = pkjwi, i ∈ Ck; pkj , the weight of cluster k for user j, denotes
the preference of user j for items in cluster Ck, and wi, the cluster weight of
item i, denotes the popularity of item i within cluster Ck, assumed to be the
same for all users (i.e., pkj = pkj′ if j and j′ belong to the same cluster). Put
simply, this means that, if items were books for example, our model states that
different users may have a different degree of preference for the topic ‘Science
fiction’, but their preferences for science-fiction books mainly depend on item
popularity. Note that, since pkj is the absolute probability that user j visits
cluster Ck,

∑s
k=1 pkj 6= 1 in general.

We also assume that each item is aware of the cluster it belongs to. Namely
we assume that each smart tag contains, among others, a unique label identify-
ing the cluster it belongs to. Though a restriction, this assumption is perfectly
realistic in many scenarios, such as the smart poster application we consider
or also a bookshop, an e-shop or a supermarket, where items are (physically or
virtually) arranged in groups defined by some notion of similarity (e.g., topic
or use).
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ii) Order of visit. We assume a weighted visit model. Namely, if S is the
set of possible items and user j has already visited a subset X of items, then
the probability that the next item visited is i, i ∈ (S−X), is wij/(

∑
r∈S wrj−∑

r∈X wrj) (for items in X this probability is 0); note that this probability is
proportional to wij and depends on the sum of the total weights of the already
visited items. 1 It follows that, the probability that a user visits a given subset
of the items follows a distribution that is a special case of Fisher’s noncentral
hypergeometric distribution2 [62].

Note that, while different users’ visits are independent, the next items vis-
ited by a user clearly depend on the items he/she previously visited induced
by her preferences. To consider the bookshop example, many people are likely
to be first attracted by popular, recently published books in their fields of in-
terest. Experimental evidence discussed in subsection 6.6.3 strongly supports
this assumption, at least for the Netflix recommendation dataset.

Remarks. The above model is intended to strike a balance between simplic-
ity and soundness. It is clear that this choice brings some simplification with
respect to the scenarios of potential interest. The recommendation based on
items’ popularity can be sensitive to changes of users’ visit patterns over time.
Also, assuming that rankings inside clusters only depend on items’ populari-
ties may be unrealistic in some scenarios. Furthermore, visit patterns might
depend on different (e.g., geometric and physical) constraints, such as the
(physical or virtual) structure of the shop. Finally, in the description above,
we have “artificially” separated the selection and the visit phases, since this
way of looking at the model is useful in the analysis.

A few comments about independence of user visits are also in order. An
aspect that is not taken into account in our model is the effect of recommen-
dations themselves on future user behavior. We note that this is in fact a gen-
eral problem in collaborative filtering and other recommendation approaches.
Tackling this aspect easily brings to hardly tractable models. Furthermore,
it can be hard to assess the soundness of such a model on publicly available
datasets, since these (such the Netflix one) typically provide no information
about the impact of recommendations possibly provided by the system on user
behavior.

Another important point is that the structure itself of the shop may in

1Note that, consistently,
∑

i∈S−X

wij∑
r∈S wrj−

∑
r∈X wrj

= 1.
2Fisher’s noncentral hypergeometric distribution arises in a “sampling balls from urns”

model, in which each urn has an associated color and contains a number of balls of that color.

Furthermore, balls are extracted according to weights that only depend on their colors. Our

case is the special one in which every urn contains exactly one ball.
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many cases “shape” the probabilistic distributions of user visits, intuitively
making them look more “similar”. Assessing whether this introduces depen-
dencies in user visit patterns is in general hard and problem-dependent. We
assume independence for simplicity, at the same time noting that this does
not preclude the possibility of similar trends in user visiting patterns, induced
by the shop structure.

We conclude by noting that experimental evidence on a real Netflix dataset,
shows that at least in the scenario the data refer to, even this simple model
captures important trends. For example, experimental evidence reported in
section 7.4 supports the model we consider, showing that a significant corre-
lation exists between the order of users’ visits and items’ popularities within
the same movie cluster.

6.4 Recommendation algorithms

As we have already observed, new items are recommended to the user when
she “visits” an item, e.g., as her smart reader reads the information contained
in the smart tag attached to an item picked up in the shop. As we pointed
out earlier, recommendation is performed locally by the smart reader itself,
on the basis of information contained in the smart tag and of current user’s
history information stored in his/her smart reader. In the rest of this section,
we address the following points: i) which is the nature of the information
carried by the user and by smart tags; ii) how this information is maintained
and updated; iii) how it is used to predict a user’s likely preferences; iv) the
rule followed to provide recommendations. We next discuss points i), iii) and
iv) above. Point ii) poses most challenges; it will be briefly outlined in this
section and addressed in detail in section 6.5.

User histories and item summaries. We assume that each user carries
a vector H(j) (called user history in the sequel), whose components contain
information about items visited by j earlier in her visit. More in detail, if j
visited s at time t, Hs(j) contains Fs(t), i.e., the number of users that visited
s until time t, and the identifier of the cluster s belongs to. On the other
hand, each smart tag also stores aggregate information about past user visits.
More in detail, consider a generic item r belonging to cluster Ck. At any time
t, r stores Fr(t) and, for every other s ∈ Ck, r stores Nsr(t), i.e., the number
of users that visited r after visiting s. As we see more in detail in section
6.5, this information is read by smart readers to update their histories, while
r’s summary is updated as new users visit it. This information is propagated
among cluster by stigmergy, as we discuss more in detail in the next section.
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Summarizing, each item maintains a counter of the number of users that
visited the item in the past, its cluster identifier and, in the worst case, a
counter for every other item in its same cluster. We assume each smart tag
stores this information, that thus becomes accessible to users as they visit
the corresponding items. Note also that this information can be stored at
every item (i.e., its smart tag) using a constant number of bits. We call
the aggregate information stored at an item its summary. Note that items
maintain no private information about specific users.

It is clear that, since each user only visits a small subset of a potentially
large set, H(j) should be stored in compact form in a practical implementation,
which we actually do. We only consider the definition given above to the
purpose of simplifying notation. Furthermore, it is clear that even storing
O(n) bits at every tag can be overly expensive. Streaming techniques [99] can
provide the necessary tools to address these issues. Since this is mainly an
implementation aspect, it will be the focus of future work, our primary goal
in this paper being to assess the feasibility of distributed recommendation
algorithms using the models we consider.

Predicting user preferences. Upon visiting item r belonging to cluster
Ck, the generic user j is recommended items of potential interest among those
belonging to Ck, so that recommendations are cluster-based. Recalling the
models discussed in section 6.3, in order to achieve this goal it is necessary
to estimate wsj = pkjws, for every s ∈ Ck other than r. Since, for a given
user j, pkj is the same for all items in Ck, this amounts to estimating ws, for
every s ∈ Ck. The problem is that user profiles are unknown to the system
and it is unfeasible to estimate them accurately from aggregate information
about past user behavior. Fortunately, in order to provide recommendations,
it is not necessary to know the values of these weights, but only their relative
order.

In fact, we show in the next section that user histories and item summaries
as defined above provide enough information for j’s reader device to locally,
accurately and efficiently compute a suitable monotonic function f(·) of cluster
weights such that, for items i, s ∈ Ck, f(wi) ≥ f(ws) if and only if wi ≥ ws.
In practice, upon visiting r, j’s smart reader computes a vector R(r, t), whose
i-th entry Ri(r) is j’s estimation of f(wi) at time t, for every i ∈ Ck. In the
rest of this paper, we drop t from R(r, t) whenever clear from context. Also,

we set f(wi) = w2
i

∑m(t)
j=1 p

2
kj , where m(t) is the number of users that entered

the system up to time t. f(wi) is monotonically increasing in wi and, thus,
can be used to rank items, as stated by the following lemma, whose proof is
straightforward and therefore omitted.
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Lemma 1. For items i and r function f verifies f(wi) ≥ f(wr) if and only if

wi ≥ wr.

A crucial aspect is the probabilistic nature of the available information:
since the set of items and the order of visit of a user are random variables,
H(j) is the outcome of a random process. As we see in next section, this
implies that R(r) is generated from statistics over the histories of users that
visited r in the past. This implies that the information available at item r does
not allow to exactly compute function f(·); in fact, one of our contributions
is algorithms to compute R(r), so that it is a good estimate of f(·).

Cluster-based recommendations. The general recommendation algorithm
is the obvious one and is modular with respect to how ranking of items is com-
puted: upon visiting r belonging to cluster Ck, j’s smart reader recommends
the T̂ top ranking items in R(r) that i) belong to Ck and ii) have not yet been
visited by j. The overall behavior of the smart reader is summarized in Figure
7.3, with UPDATE(r, j) implementing the core operation of item ranking.

Require: Parameter T̂ : number of recommendations

1: When user j having history H(j) visits item r then

2: R(r) = UPDATE(r, j)

3: Recommend T̂ top elements of R(r) not present in H(j)

Figure 6.2: Recommendation algorithm.

In the algorithm above, R(r) is read from the smart tag, updated and then
it is used by the smart reader to recommend T̂ top scoring elements. Then,
the updated version of R(r) is stored back on the smart tag, replacing the
older one. The key issue of how R(r) is maintained and updated is discussed
in detail in section 6.5.

Remarks. The algorithm described above provides cluster-based recommen-
dations. I.e., upon visiting an item, a user is recommended a set of items be-
longing to the same cluster as the current one. Of course, the above strategy
can be easily generalized to recommend the top T̂ items, regardless of the clus-
ter they belong to. In this paper, we focus on the important case in which we
recommend items belonging to the same cluster3. We also note here that the

3Notice that a user may visit items belonging to different clusters over time and thus be

recommended items belonging to different clusters, even if the recommendation strategy is
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general approach we consider is that of item-based recommendations, which
has proved effective in practice (see for example [57, 82, 114] or [22] for a more
general survey). Our main goal here is to carry this approach, appropriately
adapted, over to the fully decentralized, stigmergy-based scenario we envision.

In some cases, it may be interesting to consider strategies that also rec-
ommend items not belonging to the set of the T̂ top ones, so as to diversify
the basket of recommendations and thus increase the chance of serendipity.
Proceeding this way may increase the probability of recommending items that
do not match the user profile and can negatively affect the average quality of
the recommendations provided. In section 7.4, we test a simple randomized
strategy, which recommends T̂ items, each with probability proportional to
its estimated weight in the user profile. This strategy essentially reproduces
the probabilistic behavior of users in our model.

6.5 Prediction

We next discuss how R(r) is computed when the user visits the generic item
r. Before, we give some additional notation that will be used in the sequel.
In particular, we denote by m(t) the number of users that entered the system
up to time t. Recall that Fi(t) denotes the number of users that visited item i
up to time t. Considered two items i and r, we set Vir(j) = 1 if j visits i and

r in this order, 0 otherwise. Finally, we define Nir(t) =
∑m(t)

j=1 Vir(j). If the
user visits item r at time t, her smart reader reads r’s summary and then, for
every i 6= r it computes R(r), where:

Ri(r) =

(
1 +

Fi(t)

Fr(t)

)
Nir(t).

Here, R(r) is our estimator of f(wi) computed by the user’s smart reader
upon visiting r. Note that Fr(t) and Nir(t) are available at r, while Fi(t) is
information carried and provided to r by the visiting agent itself (see Figure
6.4, also observe that, by definition, Nir(t) > 0 implies Fr(t) > 0). The esti-
mator above translates into the implementation of the UPDATE(·, ·) routine
described in Figure 6.3, to dynamically update R(r) at a generic node r when-
ever a new agent j visits the node. In particular, whenever agent j visits node
r, r initially updates its local counter (line 2), since it is receiving a new visit,
while j records in its history the number of agents that visited r prior to its
visit (line 3). This information will be provided by j to nodes it visits in the
sequel, if any. Finally (for cycle), for every item i previously visited by j,
the user’s smart reader updates Ri(r) using the information carried by j.

cluster-based.
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UPDATE(r, j)

Require: node r, agent j

1: r maintains a vector w(r) of estimates of nodes’ weights

2: Fr = Fr + 1 {A new agent is visiting r}

3: Hr(j) = Fr {j must initialize Hr(j)}

4: for i: 1 . . . n do {and i 6= r}

5: if Hi(j) > 0 then {j visited i}

6: Nir = Nir + 1

7: Ri(r) =
(

1 + Hi(j)
Fr

)
Nir

8: end if

9: end for

10: return R(r)

Figure 6.3: Update algorithm.

Computational aspects and memory requirements. The core of the
computational complexity of the algorithm we propose lies in the update pro-
cedure of a smart tag’s information upon a user’s visit, described in Figure
6.3. The computational cost is clearly linear in the number of items for which
the tag stores information (for cycle). It should be noted that this number
will in general be smaller (possibly much smaller) than the total number n of
items in the shop. On the other hand, in each iteration of the cycle, the smart
reader is required to perform simple computations, which are compatible with
many state-of-art devices (e.g., smart phones). Another issue (related to the
former) concerns the amount of memory required at each smart tag. In the
worst case, this will be the total number of items in the shop. Here, the limit
comes from constraints imposed by the current state-of-art in passive devices.
For example, commercial RFIDs can have capacities as large as 8Kbytes at
the price of 15$, but 32KByte devices are ready for the market [21]. In our
approach and without employing data streaming techniques, each smart tag
needs to store one vector with n integer components (N∗r) and the counter
Fr (note that R(r) is computed by the smart reader on the fly). Assuming 4
Bytes for each component, this implies the possibility of storing the necessary
information for about 2000 items using an 8KByte RFID and four times so
much in the foreseeable future. In fact, N∗r is a vector of frequency counts
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Figure 6.4: Reader-tag interaction.

and it could be maintained in small (polylogarithmic) space using streaming
techniques [54].

Analysis. The main result of this section is the proof that, over time and
for every i 6= r, Ri(r) provides an increasingly accurate estimation of f(wi) =

w2
i

∑m(t)
j=1 p

2
kj . In order to analyze the accuracy of the estimator above and the

rationale behind, we assume that, if user j visits item i at time t1 and item
r at time t2, no other users visit i in the interval (t1, t2]. This assumption is
only done for the purpose of the analysis and is not required by our algorithm.
In the analysis, it is equivalent to assuming that users visit the system one
at the time, i.e., if user j visits i at time t1 and r at time t2 > t1, we have
m(t1) = m(t2).

Note that we are interested in the system behavior as t grows and more and
more users visit the smart shop, so as this approximation becomes increasingly
accurate. The following result holds:

Theorem 1. If i, r belong to the same cluster Ck for some k, Ri(r) becomes

an increasingly accurate estimate of f(wi). In particular, accuracy becomes

arbitrarily high as the number of users visiting r increases over time.

Proof of Theorem 1. In the sequel, we set f i(t) = Ri(r), the estimate of
f(wi) maintained at time t at node r. The proof of Theorem 1 is implied by
proving the following statement:

If i, r ∈ Ck for some k:

f(wi) =

(
1 +

E[Fi(t)]

E[Fr(t)]

)
E[Nir(t)] .

Furthermore, for every r and i belonging to the same cluster Ck, whenever t
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is large enough that
∑m(t)

j=1 p
2
kj ≥

3(wi+wr)
ε2w2

iwr
ln 6

δ with ε ≤ 1/5:

P
[
(1− 3ε)f(wi) ≤ f i(t) ≤ (1 + 4ε)f(wi)

]
≥ 1− δ.

We first give the following Lemma that will be useful later:

Lemma 2. For every i ∈ Ck: E[Fi(t)] = wi
∑m(t)

j=1 pkj. Furthermore, for every

δ, ε > 0, as soon as t is such that
∑m(t)

j=1 pkj ≥
3

ε2wi
ln 2

δ :

P[|Fi(t)−E[Fi(t)|] > εE[Fi(t)]] ≤ δ.

Proof. We obviously have Fi(t) =
∑m(t)

j=1 Xi(j) and P[Xi(j) = 1] = pkjwi,

where Xi(j) = 1 if user j visits item i, 0 otherwise. This immediately gives

E[Fi(t)] = wi
∑m(t)

j=1 pkj . Furthermore, agents visits are independent of each

other. Hence, applying Chernoff bound to
∑m(t)

j=1 Xi(j) [96] yields the result.

In the sequel, we denote by S(j) the set of items visited by user j during
its permanence in the system. If l ≤ |S(j)|, S<l(j) denotes the subset of the
first l − 1 items visited by j. The following lemma holds:

Lemma 3. For every S such that {i, r} ⊆ S, with i, r ∈ Ck for some k, for

every j:

P[Vir(j) = 1 | S(j) = S] =
wi

wi + wr
.

Proof. Denote by Yl(j) the item visited at the l-th step of j’s visit, where

Yl(j) = ∅ if l > |S|. We have:

P[Vir(j) = 1 | S(j) = S] =

|S|−1∑
l=1

P[(S<l(j) ∩ {i, r} = ∅) ∧ (Yl(j) = i) | S(j) = S]

=

|S|−1∑
l=1

P[Yl(j) = i | (S(j) = S) ∧ (S<l(j) ∩ {i, r} = ∅)] P[S<l(j) ∩ {i, r} = ∅ | S(j) = S] ,

where the first equality follows since, given S(j) = S, with {i, r} ⊆ S, Vir(j) =

1 is equivalent to stating that i is visited at some step where r has not been
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visited yet. On the other hand, denote by Sl(i, j, S) the set of all subsets of S

that i) contain l − 1 elements and ii) do not contain {i, j}. We have:

P[Yl(j) = i | (S(j) = S) ∧ (S<l(j) ∩ {i, r} = ∅)]

=
∑

W∈Sl(i,r,S)

P[Yl(j) = i | (S(j) = S) ∧ (S<l(j) = W )] ·

·P[S<l(j) = W | (S(j) = S) ∧ (S<l(j) ∩ {i, r} = ∅)] ,

where the equality follows since S<l(j) = W ∈ Sl(i, j, S) implies S<l(j) ∩

{i, r} = ∅. On the other hand:

P[Yl(j) = i | (S(j) = S) ∧ (S<l(j) = W )] =
wij

1−
∑

f∈W wfj
,

by the definition of the weighted visit process described above. Analogously:

P[Yl(j) = r | (S(j) = S) ∧ (S<l(j) = W )] =
wrj

1−
∑

f∈W wfj
,

and

P[Yl(j) = r | (S(j) = S) ∧ (S<l(j) ∩ {i, r} = ∅)]

=
∑

W∈Sl(i,j,S)

P[Yl(j) = r | (S(j) = S) ∧ (S<l(j) = W )] ·

·P[S<l(j) = W | (S(j) = S) ∧ (S<l(j) ∩ {i, r} = ∅)] .

This implies that the expressions of P[Vir(j) = 1 | S(j) = S] and P[Vri(j) = 1 | S(j) = S]

are the same up to multiplying factors, which are wij = pkjwi and wrj = pkjwr

respectively. Therefore:

P[Vir(j) = 1 | S(j) = S]

P[Vri(j) = 1 | S(j) = S]
=
wi
wr
.

Furthermore, P[Vir(j) = 1 | S(j) = S]+P[Vri(j) = 1 | S(j) = S] = 1, since {i, r} ∈

S and, therefore, (S(j) = S) implies the event (Vir(j) = 1 ∨ Vri(j) = 1). This

yields the result.

Notice that, at every node r and at any time t, we are in fact observing

the variable Nir(t) =
∑m(t)

j=1 Vir(j). As to P[Vir(j) = 1 | r ∈ S(j)], we have:
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Lemma 4. If i, r ∈ Ck: P[Vir(j) = 1] =
p2kjw

2
iwr

wi+wr
.

Proof. We have:

P[Vir(j) = 1 | r ∈ S(j)] =
∑

S:r∈S
P[Vir(j) = 1 | S(j) = S] P[S(j) = S | r ∈ S(j)]

=
∑

S:{i,r}⊆S

P[Vir(j) = 1 | S(j) = S] P[S(j) = S | r ∈ S(j)]

=
wi

wi + wr

∑
S:{i,r}⊆S

P[S(j) = S | r ∈ S(j)] =
wi

wi + wr
P[{i, r} ⊆ S(j) | r ∈ S(j)] =

pkjw
2
i

wi + wr
,

where the second inequality follows since Vir(j) = 0 deterministically if i 6∈

S(j), the third follows from Lemma 3 and the fifth follows since the events

(i ∈ S(j)) and (r ∈ S(j)) are statistically independent. The claim then follows

since P[r ∈ S(j)] = pkjwr.

Lemma 5. If i, r ∈ Ck: E[Nir(t)] =
w2

iwr

wi+wr

∑m(t)
j=1 p

2
kj.

Furthermore: P[|Nir(t)−E[Nir(t)] | > εE[Nir(t)]] ≤ δ, as soon as t is large

enough that
∑m(t)

j=1 pkj ≥
3(wi+wr)
ε2w2

iwr
ln 2

δ :

Proof. The first claim follows immediately from Lemma 4. The second claim

follows from a simple application of Chernoff bound [96] to the variable Nir(t).

The following holds:

Lemma 6. If at most 1 agent visits the system at any time t and i, r ∈ Ck
for some k:

f(wi) = w2
i

m(t)∑
j=1

p2kj =

(
1 +

E[Fi(t)]

E[Fr(t)]

)
E[Nir(t)] .

Proof. The proof follows immediately, by observing that E[Fr(t)] /E[Fi(t)] =

wr/wi from Lemma 2 and substituting wr = wiE[Fr(t)] /E[Fi(t)] in the ex-

pression of E[Nir(t)] in Lemma 5.
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Lemma 6 shows that the estimator we are using is in fact a simple plug-in
estimator for f(wi). We can finally prove the claim of the theorem, i.e., that
the approximation of f(wi) becomes more and more accurate over time.

In the sequel of this proof we drop t from the notation, since it is under-
stood from context. We also recall that Fi, Fr and Nir are each the sum of
binary independent variables by the independence of the agents’ visits. Hence,

if
∑m(t)

j=1 pkj ≥
3(wi+wr)
ε2w2

iwr
ln 6

δ , simple applications of Lemma 2 and Lemma

5 allow to conclude that each of the following events occurs with probabil-
ity at most δ/3: i) |Fi − E[Fi] | > εE[Fi]; ii) |Fr − E[Fr] | > εE[Fr]; iii)
|Nir −E[Nir] | > εE[Nir]. Hence, with probability at least 1− δ we have:

f i ≤
(

1 +
1 + ε

1− ε
E[Fi]

E[Fr]

)
(1 + ε)E[Nir] < (1 + 4ε)

(
1 +

E[Fi(t)]

E[Fr(t)]

)
E[Nir(t)] ,

where the first inequality follows since we have Nir ≤ (1 + ε)E[Nir], Fi ≤
(1+ε)E[Fi] and Fr ≥ (1−ε)E[Fr], while the second inequality holds if ε ≤ 1/5.
Analogously:

f i ≥
(

1 +
1− ε
1 + ε

E[Fi]

E[Fr]

)
(1− ε)E[Nir] > (1− 3ε)

(
1 +

E[Fi(t)]

E[Fr(t)]

)
E[Nir(t)] ,

where the first inequality follows from a similar argument as above, while the
second inequality follows from trivial manipulations. Recalling Lemma 6 we
complete the proof of Theorem 1.

Convergence. The result of Theorem 1 also describes the convergence prop-
erties of our algorithms. It is possible to prove that these bounds are asymp-
totically tight. A complete analysis is not the purpose of this paper. For the
sake of completeness, we briefly address the simpler aspect of the estimation
of E[Fr(t)] at a generic node r. Note that accurately estimating E[Fr(t)] is
crucial for our estimator. It is possible to prove the following theorem:

Theorem 2. Assume the cluster based model. For every i ∈ Ck and for every

0 < δ < 1, Θ( 1
wi

ln 1
δ ) visits are necessary and sufficient to estimate E[Fi(t)]

accurately.

Proof. The definition of our cluster-based model immediately implies that, if

x users visit Ck, then E[Fi(t)] = wix. In particular, every user has an equal

probability wi of visiting the item i, independently of the others. We next

prove that

P[|Fi(t)−E[Fi(t)] | ≥ εE[Fi(t)]] = P[Fi(t) ≤ (1− ε)wix] > δ,
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whenever x is small enough. The case Fi(t) > (1 + ε)wix is handled similarly.

We have:

P[Fi(t) ≤ (1− ε)wix] ≥ P[Fi(t) ≤ b(1− ε)wixc]

=

b(1−ε)wixc∑
y=0

(
x

y

)
(1− wi)x−ywyi >

b(1−ε)wixc∑
y=0

(1− wi)x−ywyi

= (1− wi)x
1−

(
wi

1−wi

)b(1−ε)wixc+1

1− wi
1−wi

> (1− wi)x,

where the fourth inequality follows from simple manipulations, while the last

inequality follows whenever wi/(1−wi) < 1. which is always the case whenever

wi < 1/2. This implies that

P[|Fi(t)−E[Fi(t)] | > εE[Fi(t)]] > (1− wi)x.

Considered any 0 < δ < 1, simple manipulations shows that (1 − wi)x ≥ δ,

whenever

x ln

(
1 +

wi
1− wi

)
≥ ln

1

δ
.

Now, if we assume wi > 1/2, we have wi/(1−wi) < 1 and the inequality above

is true only if

x
wi

1− wi
≥ ln

1

δ
,

which holds whenever

x ≥ 1− wi
wi

ln
1

δ
,

thus proving the claim.

Considering the real case. The results above are obtained under the as-
sumption that agents visit the system in sequence, so that at most one agent
is present at any time t. In practice this is not the case. Still, as the number of
agents that visited the system grows, the approximation we use becomes negli-
gible. In practice, if some agent j enters the system at time t1 and leaves at t2,
if t1 is large enough then we can in practice expect m(t2)−m(t1) << m(t1).
This means that, when j visits r at time t2 after visiting i at time t1, we can

reasonably expect that (
∑m(t1)

j=1 pkj)/(
∑m(t2)

j=1 pkj) ' 1, so that Fr(t2)/Fi(t1)
still provides an accurate estimation of wr/wi.
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6.6 Experimental analysis

The experimental part of this paper focuses on assessing the soundness of our
model (section 6.6.3) and the effectiveness of our recommendation algorithms
(section 6.6.4). As to the second issue, we compared the performance of our
solution with a standard centralized method [57].

6.6.1 Performance metrics for recommendations

We evaluate the performance of the system along two main axes: the ability
to infer a ranking in user preferences and the quality of recommendations.
In particular, we evaluate the former in terms of ranking similarity, while the
latter is evaluated in terms of standard measures of quality used in information
retrieval [33], in particular hit ratio, precision and recall.

Ranking similarity. As described in section 6.3, a user’s preferences are
described in terms of a vector of weights (i.e., the user profile), its i-th com-
ponent measuring the degree of potential interest of the i-th item to the user.
As already remarked in section 6.4, to the purpose of recommending items we
are not interested in estimating the components of the user profile, but only
their relative order, i.e., their ranking. In particular, if user j visits items r
and is recommended a list of items of potential interest, the quality of recom-
mendation depends on how close the ranking of items estimated by j’s smart
reader is close to the real, unknown one determined by j’s profile. To measure
how close the real and the estimated rankings are, we use a standard measure
of the distance between rankings, i.e., Kendall’s τ coefficient (KT for short).
KT measures the degree of similarity between two rankings and it is defined as
τ = 4P/(n(n−1))−1, where P =

∑
i Pi. Here, if x is the i-th item in the first

ranking, Pi denotes the number of items that follow x in both rankings (i.e.,
actual ranking and estimated one). KT enjoys the following properties: i) if
the agreement between the two rankings is perfect (i.e., the two rankings are
the same) the coefficient has value 1; ii) if the disagreement between the two
rankings is perfect (i.e., one ranking is the reverse of the other) the coefficient
has value -1; iii) for all other arrangements the value lies between -1 and 1,
and increasing values imply increasing agreement between the rankings.

HitRatio(T̂). We recall that user j’s smart reader, recommends the T̂ top
items in R(r) belonging to the same cluster as r and that are not present
in H(j). There is a hit if at least one of the T̂ recommended items will
be eventually visited by j. HitRatio( T̂) is defined as the ratio between the
number of hits and the overall number of recommendations given.
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Precision(T̂) and Recall(T̂). Precision and recall are standard measures
of the accuracy in providing relevant documents. Define by D the set of
items (called corpus) and by Dj the set of relevant items for user j and
let (d1, d2, .., dt) be the recommendations provided by the visited item and
(r1, r2, .., rt) where ri = 1 if di ∈ Dj and 0 otherwise. Then:

recall(T̂) = 1
|Dj |

∑
1≤i≤T̂ ri.

I.e., recall is the fraction of all relevant items included in the recommendation.
Furthermore:

precision(T̂) = 1
T̂

∑
1≤i≤T̂ ri.

I.e., precision is the fraction of the top T̂ recommendations that are actually
relevant.

In the following we assume that Dj is the set of items that will be visited in
the future by a user.

6.6.2 Datasets

We validated our model through experiments on the Netflix movie dataset4.
This dataset is made of 17770 files, one for each movie. Each file stores a set
of ratings represented as a list of tuples <userId, rating, date>, for an overall
number of 100480507 ratings made by 480000 users.

In our cluster based model, movies are clusterized by genre. Unfortunately,
movies’ genre is not provided by Netflix, but we extracted this information
from the MovieLens dataset5.

6.6.3 Model validation

Distribution of weights. In our experiments on cluster-based recommen-
dation, we considered the Comedy genre, which is one of the most populated
clusters. In particular, we uniformly sampled 100 items out of 744 available
comedy movies. Considered an item i from the above sample, we used its pop-
ularity, obtained by dividing the number of users that visited i by the total
number of users, as a proxy for wi. We did not use users’ ratings directly to
compute weights, since we did not observe a clear connection between the a
priori choice of the movie based on its popularity and user’s taste and the a
posteriori rating of the movie. Our model reasonably fits actual user behavior
if we assume a Zipf’s distribution of the weights, with exponent equal to 1
(see figure 6.5(a)).

4Available at http://www.netflixprize.com/.
5Available at http://www.grouplens.org/node/73
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Figure 6.5: Validation of our model

Visit patterns. As far as the order of visits is concerned, we calculated the
correlation coefficient between the cluster weights and the order of visit on
real data and we obtained a value of −0.6. This strongly supports the use of
the weighted visit model. In contrast, we observed that the distribution of the
number of visited items per user predicted by our model using a Zipf’s distri-
bution for item weights differs with respect to real data (see Figure 6.5(b)).
In fact, Figure 6.5(b) shows that the number of items visited also follows a
Zipf law. This is due to our simplifying assumption that users have the same
profile within each cluster (though having different preferences for the same
cluster). This aspect could be easily taken into account in the model, by suit-
ably redefining weights in the cluster-based model. Since the purpose of the
probabilistic model we consider is to infer a ranking in user preferences and
not to describe user behavior in its complexity, we opted for simplicity and
neglected this issue.

6.6.4 Performance

Algorithms. As a benchmark to evaluate the quality of our recommendation
algorithm alg, we compare its performance to that of a centralized recommen-
dation algorithm deshp and a baseline algorithm rnd that simply recommends
an item chosen uniformly at random among the ones not yet visited by the
user. Furthermore we considered prob, a variant of alg, where instead of rec-
ommending the T̂ top items, each item is recommended with a probability
proportional to its weight.

More formally, considering item r and denoted by Qf the first f items al-
ready recommended to user j in the current interaction with r, the f+1-th rec-
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ommendation is for item i /∈ {r}∪H(j)∪Qf with probability

√
Ri(r)∑

l/∈{r}∪H(j)∪Qf

√
Rl(r)

6.

The possibility of also selecting items not belonging to the set of the T̂ ones,
addresses the issue that the top T̂ recommendations are probably the most ac-
curate, but they might in part correspond to very popular or obvious choices.
Providing some degree of diversification may alleviate this potential issue at
the cost of a loss in accuracy of prediction. Algorithm (prob) tries to achieve
some degree of diversification in a “controlled” way, by essentially reproducing
the probabilistic behavior of users as predicted by our model.

Algorithm (deshp) is a state-of-art centralized recommendation algorithm,
based on conditional probability similarity and it is described in [57, Sub-
section 4.1]. The algorithm was implemented adopting the optimizations sug-
gested in [57] and tuning parameters for best performance under the datasets
we consider.

Note that, differently from our algorithm, (deshp) can access the whole
dataset of user histories. This allows to define a similarity value among any
pair of items i and j, such that they were both visited by at least one user.
For our decentralized algorithm, this is not the case. For example, if x users
visited first i and then j in this order and y users visited them in the inverse
order, estimating the similarity between i and j using (deshp) would require
knowledge of x + y at both i and j, which is unfeasible in the scenario we
envision. Furthermore, the performance of (deshp) depends by the choice of
a frequency scaling parameter α [57, formula (2), page 152], which can have
“a significant impact on the recommendation quality” [57, par. 6.2.1.4, page
164]. In our experiments, we optimized the choice of α for the specific dataset
we considered, but this would be unfeasible in practice in the decentralized
scenario we consider. On the other hand, our model assumes visiting patterns
that probabilistically depend on item popularities within a topic and statis-
tically infers them. This simple model seems to capture important trends in
user behavior that somewhat compensate the lack of information mentioned
above, as experimental evidence suggests.

Ranking similarity. Our first goal is to evaluate the ranking similarity between
the actual cluster weights and the estimated ones by means of KT computed
over 10000 users. It is worth noting that, each item i can estimate only a
subset Si of the other item’s weights, depending on the number of users that
visited the system and their visiting patterns. We calculate the KT of each
item with cardinality |Si| ≥ 2. As predicted by our analysis, figure 6.6 shows

6Recall from section 6.4 that H(j) and Ri(r) are respectively j’s history and the i-th

component of r’s summary and that Ri(r) is proportional to w2
i , up to a factor which is

constant for items belonging to the same cluster.
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that KT tends to one as the number of users increases and, more importantly,
that ranking similarity is significantly high (0.7 for synthetic and 0.8 for real
data) already after collecting statistics over a very small number of users (i.e.,
500). Note that this relatively small number of users supports the feasibility
of our proposal in practice.
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Figure 6.6: Kendall’s τ : cluster-based, 100 items.

Quality of recommendation. We evaluated hit ratio, precision and recall of
our recommendation algorithm on both a real Netflix dataset and synthetic
data generated according to our model. Each performance index has been
computed by averaging the results over 10 independent runs with 100 items
and 10000 users. To generate synthetic inputs, we assume the weighted visit
model with item weights within a cluster distributed according to Zipf’s law;
since we are considering the single cluster of comedy movies, we can assume
that pkj , the cluster preference, is one for all users j.

We distinguish two phases in the execution of our algorithms: the training
phase, during which user profiles are computed (for alg and prob, item weights
are estimated) and the recommendation phase, in which recommendations are
actually given. In light of the results above, we limit the training phase to very
few users. In particular, we consider 100 (tp=100) and 2000 (tp=2000) users,
so as to better evaluate how the considered metrics improve as the length of
the training phase increases.

For hit ratio, the performance of alg is always sensibly better than rnd
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and prob and close to deshp as the length of the training phase increases (see
figure 6.7). HitRatio(T̂) of alg and deshp on real data is between 4 and 2.5
times better than rnd (up to 2 for prob) when tp=2000. It is interesting to
note that the absolute performance of the algorithms is worse on synthetic
data (compare figures 6.8 and 6.7). This fact can be explained considering the
average length ṽ of the number of visited items per users. In fact, ṽ on real data
is about 7 while in synthetic data is about the half. Since the probability of a
hit for a user clearly also depends on the number of visits of the user, it follows
that the higher the ṽ , the higher is the hit ratio (similar considerations can
be made for precision and recall). For precision and recall, the performance
of our fully decentralized algorithm is very close to the centralized one and
both of them significantly out-perform rnd. The precision of rnd is constant
and does not depend on the number of suggestions provided (i.e. T̂ ), as it
can be easily proved considering that the random recommendation process
is governed by a hypergeometric distribution. The precision of alg tends to
decrease as the number of recommendation increases; this is expected since,
as we observed previously, the accuracy of recommendations depends on the
popularity of the items and increasing the number of recommended items
forces the algorithm to choose items of decreasing popularity, so more unlikely
to meet user expectations. Finally, observe that, as expected prob exhibits
performance that are worse than those of alg and deshp, but still well above
the baseline rnd.

Remark. It should be noted that the values of precision and recall that
we obtain on real datasets are indeed relatively high, since they refer to the
prediction of really existing links and not to the judgment given by the user
about the quality of the recommendations provided. In fact, the data we
have do not allows us to directly infer the impact of recommendations on user
behavior.

6.7 Conclusion

The main contribution of the work presented in this chapter is a model of
user behavior that seems to capture important trends in real user data de-
rived from commercial recommendation systems, enabling recommendation
strategies that are fully decentralized and seem suitable to meet average user
expectations. The proposed model is simple enough as to allow the statisti-
cal estimation of parameters from real user activity logs. The resulting rec-
ommendation strategy achieves a performance that is comparable to that of
state-of-art centralized solutions.

Since available data did not allow to assess the impact of recommendations
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directly, results on the quality of recommendation (i.e., precision and recall)
have been obtained in a worsening scenario, i.e., checking the extent to which
items that were judged of potential interest for a user by the system were
actually chosen by that user, which of course leaves out items of potential
interest that did not appear in the user log.

A number of issues remain, which will hopefully encourage further research
in the area. As to the model, while physical constraints can be incorporated
into the model, as discussed at the end of section 6.3, other aspects to ad-
dress remain. A first issue has to do with item popularity. Popularity can
indeed change, sometimes rapidly, over time. A best selling book might be
much less popular within the next month, as the initial wave of interest fades.
Proposing simple ageing mechanisms, while keeping the model simple enough
is an interesting point. On the other hand, we have proposed strategies that
work well when items are clustered, as described in section 6.3. Extending the
approach of this paper to the general case is an interesting issue. Of course
simple heuristics (e.g., recommending the most popular items) can be easily
derived from our approach, but more sophisticated strategies based on more
solid theoretical foundations are needed. Another important extension is to
include the social context in providing recommendations; social context points
on the user’s community such as friends, neighbors and colleagues. Accord-
ing to the social dimension, adapting retrieval aims at leveraging the search
according to implied preferences of the user’s community rather than just the
individual. Social context is used in recommender systems based on collabo-
rative filtering techniques [78, 119] and it will be important to include it in
our approach.

We conclude noting that, as experimental evidence also suggests, our fully
decentralized approach is competitive with state-of-the-art centralized solu-
tions and it is technologically realistic.
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Figure 6.7: Netflix dataset. x coordinate is the number of provided recom-
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Chapter 7

A lightweight sms-based

recommendation algorithm

7.1 Introduction

Mobile social networking is an emerging trend. eMarketer forecasts [3] that
mobile social networking will grow from 82 million users in 2007 to over 800
million worldwide by 2012. In most mobile communities, mobile users can
create their own profiles, make friends, create and participate in chat rooms,
hold private conversations, share photos and videos. Major players in social
networking, such as Facebook, MySpace and LinkedIn, have already deployed
mobile versions of their applications.

Moreover, mobile applications can be extended to support physical pres-
ence detection and thus eventually create a link and some kind of convergence
between the virtual and real world. For example, Centrl (centrl.com/mobile)
is a smart-phone application that lets you see which of your Facebook friends
are around and Pelago (www.pelago.com) provides a similar application for
Twitter users.

On the other hand, while western countries are experiencing the increas-
ing availability of high speed connections and the diffusion of last generation
smart phones with advanced interfaces to access mobile social networks, many
still consider Short Messages the most convenient means for instant message
exchange 1. In any case, SMS traffic is still a consistent part of non-voice traf-

1“If you look at instant messaging, e-mail or even social networking, they don’t have the

ubiquity and the reach to replace messaging” - Bill Dudley, Sybase 365’s group director for
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fic. According to Lloyd’s [19], overall Person-to-Person SMS traffic has been
4.5 trillion of messages in 2008. These figures seem to justify the investments
of some companies in social networking applications based on Short Messages,
such as Jyngle2 [16] and Peekamo [18]. Furthermore, in large parts of the
world, in particular Asia and Africa, SMS are expected to remain the primary
means for data communication, at least in the near future. In 2007, nearly 1.5
trillion mobile messages were sent in the Asia-Pacific region [53].

Mobile social networks are thus rising in popularity, but along with clear
benefits for users and companies, some concerns primarily related to privacy
issues are arising. In the last W3C Workshop on the Future of Social Network-
ing [20], several position papers on this issue appeared. For example, the basic
operation of establishing a “friendship” in a social network, whatever the term
means for the specific application, is a simple operation (e.g., a mouse-click),
but it necessarily entails trust in the likely exchange of private information.
As a matter of fact, privacy is one of the main concerns in mobile communi-
ties. As Jeff Chester, executive director of the Center for Digital Democracy
business model they have developed for mobile advertising is one where lots of
user data is collected and user profiles are analyzed” and ”You’re talking about
multiple layers of surveillance at the heart of the mobile marketing business
model that raise serious privacy concerns.”

In this chapter we propose an approach that uses Short Messages (SMs)
and local information available on mobile phones to design a fully decentral-
ized application for recommending new contacts in the social network of mobile
phone users. Recommending new contacts is a basic service provided by virtu-
ally every social network application. With respect to existing solutions, our
approach is characterized by some distinguishing features:

The social networking application we propose is completely decentralized. This
implies that the social network is not maintained in a centralized fashion, as
usually done in nowadays social networking applications, but it is updated and
managed in a fully distributed way by the collective effort of user devices. It
transparently collects and processes user information that is accessible in any
mobile phone, such as the log of calls, the list of contacts or the inbox/outbox of
short messages possibly enriched by user profile information. This information
is used to recommend new contacts.

The techniques we propose greatly reduce the amount of personal informa-
tion that is disclosed, since it is exchanged with other users in the form of a
compact summary that allows limited extraction of private data. In addition,
we provide a simple and practical cryptographic protocol that can be used
to ensure that the computation required by our recommendation system is

product management.
2Jyngle closed in August 2009.
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performed without revealing any additional private information.

Information necessary to implement the application is exchanged transparently
and opportunistically, by using the residual space in standard short messages
occasionally exchanged by users. As a consequence, we do not ask users to
change their habits in using SMS.

Past research has also considered decentralized systems for item recommen-
dation, such as in [95], where the authors propose the P2P-based PocketLens
architecture. We are aware of this body of work, but recommending items
using statistical information about past user transactions is not the focus of
our work, which is rather on the related but well distinguished “social match-
ing” problem [120], in which we want to infer the latent structure of a social
network.

The rest of the chapter is organized as follows: in section 7.2 we describe the
approach we follow. In particular, we discuss some social networks naturally
arising when analyzing the behaviour of users in a (mobile) telephone network.
We then discuss the issues arising in the recommendation of new contacts in
such networks, in the first place the notion of similarity between users. In
section 7.3 we review and discuss the application of sophisticated hashing
techniques that allow to estimate the degree of similarity between users in
a fully decentralized and privacy preserving way. In section 7.4 we discuss
experimental work assessing the effectiveness of our approach on real, publicly
available datasets.

7.2 Social networking over SMS messaging

In this work, a node in the social network of mobile phone users is a mobile
phone subscriber generating some amount of user-to-user communication. A
link connecting two nodes represents an ongoing social relationship (e.g., nodes
are friends, colleagues, classmates, etc.) between the corresponding users. In
our approach, this social relationship can only be inferred estimating the users’
social profiles similarity. Speaking in general terms, two users are similar
when their social profiles are similar. In fact, the profile of a user is a general
notion that depends on the information available to the system. In some cases
this includes some biographical data, such as date of birth, sex, information
about tastes, interests or activities. A profile is also completed by information
that can be extracted transparently from the system, without explicit user
intervention, such as the log of calls, the list of contacts or the inbox/outbox
of short messages.

We stress that in many cases, even limited information, e.g., the address
book or the log of calls, can be used to infer possible relationships: for example,
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two users appearing in each other’s address books are likely to be socially
related, be it through a shared interest, a professional relationship, or simply
because they are friends.

Mining the social network underlying telephone traffic has been considered
in the past, for example in [23, 24]. Here, there is a (possibly labelled) link
from A to B if A calls B at some point. The main goal in [23, 24] was to study
the way in which such networks evolve over time, so as to infer and analyze
probabilistic generative models [100] describing their evolution.

7.2.1 Recommending social relationships

Recommending new social relationships is one of the most basic services pro-
vided by social network applications. In our context, we are interested in
strategies to recommend new contacts of potential interest to users. The chal-
lenge here is clearly to find contacts that are likely to share some common
traits or, put differently, that are in some way “similar” to the user to whom
the recommendation is being provided. As stated, this problem is very close
to the link prediction problem studied by Liben-Nowell and Kleinberg [80],
whose focus is on statistical indicators of social closeness and not on their
efficient and decentralized computation.

More formally, if a node A recommends a node B to a third node C,
A is suggesting a potential interest or utility for C in establishing a contact
with B (unless this contact already exists). Recommendation is performed
on the basis of knowledge about the social profiles L(B) and L(C), which are
used to estimate the extent to which B and C are “similar”. The underlying
assumption, made more precise in Subsection 7.2.2, is that the more similar
B and C, the more likely it is that they either have a contact, or they might
benefit from establishing one.

Privacy requirements make the explicit exchange of private profile informa-
tion or user contact lists unrealistic for applications. Furthermore, data must
fit into the residual space of person-to-person short messages and thus they
must be represented in a compact form (i.e., a sketch). Figure 7.1 outlines the
general application scenario we consider. In step 1, users A and B compute the
sketches sk(L(A)) and sk(L(B)) of their respective social profiles. As observed
before, this is a compact representation of the user’s social profile preserving
her privacy. In step 2 and 3, A and B occasionally send a short message to C.
The message space is partially filled with some personal text (e.g., SM Text =
“shall we meet this evening?”) while the residual space is exploited to deliver
the sketches. Observe that users interact with the SMS as usual, while the
residual space is transparently managed by a suitable application. In step 4,
user C (i.e., the recommender) infers a high degree of similarity between A
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Figure 7.1: A scenario

and B on the basis of their respective sketches. In steps 5 and 6, C eventually
recommends a possible friendship to users A and B.

7.2.2 Locally inferring community structure

One of the main issues in recommendation systems for social networking is
predicting the potential benefit of new links between users. In the fully de-
centralized scenario we consider here, this amounts to answering the following
question: when should a user A recommend a contact between two other users
B and C she is aware of. This in turn implies a number of other issues: i)
What information about B and C does A combine in order to decide whether
or not she should suggest a contact between B and C if not existing already;
ii) how is this information obtained, manipulated and exchanged; iii) how are
computational, storage and communication constraints met; iv) how is privacy
preserved.
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Like many networking applications, we recommend new contacts on the
basis of similarities between users. Thus, A will recommend B and C to estab-
lish a contact if A assesses that B and C are “similar”. In particular, if we view
profiles as feature sets, we say that two users A and B are similar when their
social profiles L(A) and L(B) overlap significantly. In this perspective, we es-

timate user similarity by the Jaccard coefficient J(L(A), L(B)) = |L(A)∩L(B)|
|L(A)∪L(B)| ,

a widely accepted measure of similarity between sets. In the social network-
ing scenario we consider, it captures the well known fact [80, 100] that social
networks are densely connected at a local level or, roughly put, the folklore
that two friends of the same person are significantly more likely to be friends
than any two randomly chosen people.

7.3 Mining the social network of SMS users

A key aspect in the applications we consider is estimating the size of the
intersection between the social profiles of two users in a fully decentralized
way. More precisely, if a user C receives short messages from A and B, she
should be able to estimate J(L(A), L(B)) from summary information about
L(A) and L(B) piggybacked in the messages themselves. It is clear that short
message size poses stringent constraints on the amount of information that
can be piggybacked. This is at most 140 bytes, but recalling that we only
use the residual space on the message, a variable number of those bytes will
be occupied by the message body itself. We show below how to address these
issues in the following way: i) we adapt a technique initially conceived for Web
page similarity estimation to the scenario we consider. The adoption of this
technique allows to compute compact summaries or sketches of each social pro-
file, which in turn allows efficient estimation of the Jaccard coefficient between
social profiles. The space required by the proposed sketches is in the order of
a few tens of bytes; ii) we address the issue of variable SMS size under the
assumption [132] that SMS sizes are (approximately) uniformly distributed.
Specifically, for those messages created in person-to-person communications,
the length seems to evenly span the whole range of the allowed message sizes
[132], whose maximum value depends on the encoding that is used for each
message, but it is typically 140 bytes. In the following, we refer to profiles
based on users’ contact lists, since contact information is locally available on
virtually every recent commercial device. For this reason, the terms social
profile and contact list will be used interchangeably. We emphasize that the
techniques described in the remainder can be extended to more general notions
of user profile, as described in section 7.2.
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7.3.1 Estimation of the Jaccard coefficient.

Consider the set of possible contact identifiers. Recall that, as motivated
further in this section, they can be regarded as integer numbers falling in the
range [n] = {0, . . . , n − 1} for suitable n. The only assumption we need is
that they are unique, a constraint that is met in practice in the applications
we consider; they are users’ telephone numbers or a suitable representation
of them. As a consequence, considered any two users A and B, their contact
lists L(A) and L(B) may be simply regarded as two subsets of [n]. Our goal
is to measure their overlap using the Jaccard coefficient: J(L(A), L(B)) =
|L(A)∩L(B)|
|L(A)∪L(B)| .

A very simple and elegant technique to estimate the Jaccard coefficient
has been proposed in several equivalent forms by Broder et al. [43, 44]. As-
sume we are able to choose a permutation π(·) mapping [n] onto itself uni-
formly at random. For every X ⊆ [n], denote by π(X) the set of the images
of elements in X when π(·) is applied and let min(π(X)) denote their min-
imum. Then it can be shown [43] that (i) considered a set S ⊆ [n] and
for every a ∈ S, P[a = arg min(π(S))] = 1/|S|; (ii) for every S1, S2 ⊆ [n]:
P[min(π(S1)) = min(π(S2))] = J(S1, S2). This property immediately yields a
technique to estimate J(S1, S2).

The algorithm consists in performing m independent executions of the
following procedure: i) pick one permutation π(·) of [n] uniformly at random
from the n! possible ones; ii) in the i-th iteration, let min(S1) = min(π(S1))
and min(S2) = min(π(S2)). We increment a counter Cm whenever min(S1) =
min(S2). At the end of the process, our estimation of J(S1, S2) is Cm/m.
Standard tools from probability theory tell us that Cm is an increasingly (with
m) accurate estimation of J(S1, S2).

7.3.2 Computing and maintaining contact list sketches.

Unfortunately, generating permutations uniformly at random requires a num-
ber of truly random bits that is in the order of n [43]. Fortunately, suitable
families of simple, linear hash functions perform well in practice (e.g., see
[41, 71]). In particular, we use linear permutations [41], i.e., functions of the
form h(x) = ((ax + b) mod p) mod n. Here, p is large prime, while a and b
are integers belonging to the intervals [1, p− 1] and [0, p− 1] respectively.

We next describe how each node A of the network maintains the local
sketch sk(A) associated to L(A). As pointed out before, we assume below
that every number in L(A) is an integer falling in [n]. To this purpose, it is
enough to perform a first step in which each contact identifier (e.g., a user’s
mobile phone number) is regarded as a string and this string is mapped onto
an integer in [n], using any hash function, as long as the probability of collision
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UPDATE(sk(A), pn)

Require: Sketch sk(A), number pn

1: x = hash(pn) {Hash pn to an integer in [n]}

2: for i: 1 . . .m do

3: Mi = hi(x) {Map x according to a random permutation}

4: if Mi < mini(A) then

5: mini(A) = Mi

6: end if

7: end for

8: return sk(A)

Figure 7.2: Update algorithm.

is sufficiently small. This is for instance the case if we hash contact identi-
fiers to 32-bit integers using a good hash function, e.g., implemented in Java
standard classes. As a second step, m hash functions are generated. The i-th
hash function has the form hi(x) = ((aix+ bi) mod p) mod n. The integers
{a1, b1, . . . , am, bm} are generated independently and uniformly at random, re-
spectively in the interval [1, p−1] for the ai’s and [0, p−1] for the bi’s. Finally,
for i = 1, . . . ,m, let mini(A) = minx∈L(A){hi(x)}. The sketch of L(A) is the
ordered vector sk(A) = (min1(A), . . . ,minm(A)). A version of this algorithm
that allows dynamic updates when new numbers are added to the contact list
is given in Figure 7.2.

The cost of algorithm UPDATE(sk(A), pn) is O(m). The deletion of items
from the contact list is more expensive, since the element removed might be the
one achieving minimum value on one or more of the hash functions. Therefore,
in the case of deletions sk(A) has to be recomputed from scratch and the cost
becomes O(m|L(A)|). Note however, that m is in the order of a few tens at
most (10 in our experiments). This complexity is therefore fully compatible
with standard commercial mobile phones.

In addition to sk(A), A’s device stores sk(B), if available, for every B
in her contact list. The required amount of additional memory, as discussed
further in greater detail, is a few tens of bytes for each entry in the contact list
(40 in the current implementation), thus, perfectly compatible with standard
commercial devices.
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RECOMMEND(A, sk(B), sk(C), θ)

Require: Node A, Sketch sk(A), sk(C), threshold θ

1: Estimate J(L(B), L(C)) from sk(B) and sk(C) {Node must have

both}

2: if J(L(B), L(C)) > θ then

3: A recommends B to C or viceversa

4: end if

Figure 7.3: Recommendation algorithm.

7.3.3 Exchanging sketches.

In the scenario we envision, if both user A and B run the application and B
sends an SMS to A, B will use the available free space of the message to send
its own sketch sk(B), or part of it, to A. Let’s assume for the moment that
there is enough residual space in the message to send the whole sk(B). Note
that this is likely to be often the case since, as we see later, the size of a sketch
is typically a few tens of bytes, 40 in the present implementation. Moreover,
we discuss how to address cases in which the SMS free space is not sufficient
to contain sk(B) in a further paragraph of this section. Whenever A’s device
receives the message, it transparently extracts sk(B) from the message body.
If B is one of A’s contacts, then sk(B) is stored in A’s contact list, associated
to B, possibly replacing an older copy of sk(B).

7.3.4 Fully decentralized recommendation of contacts.

Recall that we assume that two users are similar to the purpose of the applica-
tion whenever their contact lists overlap significantly. The algorithm in Figure
7.3 implements this general idea. In particular, the algorithm describes the
behaviour of the generic, mobile terminal of some user A. If A has the sketches
of both B’s and C’s contact lists, A will recommend B (C) to C (B) whenever
the local estimation of J(L(B), L(C)) exceeds some given threshold θ. In sec-
tion 7.4 we study, among others, how the choice of the threshold affects the
quality of recommended contacts.

7.3.5 Implementation issues.

We discuss in this paragraph several implementation issues.
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If we consider the generic node A, the amount of memory needed to store
its contact list is Θ(L(A)). In our implementation, A also needs to store i)
its own sketch sk(A) and, in the worst case, ii) sk(B), for a subset of nodes
from which A received SMS messages in the past. If we assume that A stores
the sketch of every contact, the required amount of memory is O(m(|L(A)|)).
In practice, if we use m = 10, the additive amount of bytes required for each
contact is about 40. This is in the same order of magnitude of an entry in any
address book of a commercial device.

The computational cost of maintaining sketches and providing recommen-
dations is also compatible with current commercial devices. In particular,
adding a new contact to the contact list of a node A requires updating sk(A)
(algorithm UPDATE(· · · ) in Figure 7.2) and has cost (O(m)). Removing a con-
tact from L(A) (typically a less frequent operation) is more expensive but it
has (up to m) still linear cost, i.e., O(m|L(A)|). Finally, for two nodes B and C
other than A, deciding at A as to whether recommending each of them to the
other requires estimating J(L(B), L(C)), which has cost O(m). Computation
is performed at user devices. Nowadays, these are typically small computers,
whose computational capabilities are perfectly compatible with the computa-
tional effort required by the proposed techniques.

The number of hash functions required (i.e., m) is chosen, so that proba-
bility that the estimation of the Jaccard coefficient differs from the true value
by more than a chosen constant is below a suitably small constant. We re-
fer the reader to specific work (e.g., [43, 44]) for technical details. In our
case, experimental evidence suggests that 10 hash functions are sufficient to
strike a reasonable balance between accuracy of the estimation and memory
requirements.

A further constraint is that all user devices use the same set of hash func-
tions. In practice, hash functions and the algorithms we propose will be imple-
mented and maintained in the device’s memory. This in turn requires storing,
for each hash function, its coefficients and p in binary form. In our imple-
mentation, coefficients are 32-bit integers, while p is the well-known Mersenne
prime 231−1, which does not need to be stored explicitly. So, it turns out that
the actual storage requirements for maintaining hash functions is around 80
bytes. The overall implementation (code, hash functions, runtime data struc-
tures) requires less than 1Kbyte space. To this, we must add the (variable)
size of the user’s (modified) contact list. Thus, the storage requirement of
the modified contact list is in the same order of magnitude as in a standard
implementation.

We observed earlier that we cannot always assume that the message body
of an SMS sent from some node A to another node B has enough free space to
host sk(A). The most direct way to circumvent this problem is for A to send its
sketch whenever the available free space in the message body exceeds |sk(A)|.
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In fact, the distribution of SMS message sizes seems to be approximately
uniform [132]. Assuming for the sake of simplicity that it is exactly uniform
and that message sizes of different messages are independent variables, we
have that half of the messages have 80 bytes available space in the average,
more than 75% have at least 40 bytes available to carry sketches and so on.
This means that, in the average, 1.34 message are enough for A to send its
sketch to B, which means that, in practice, if A sends 2 SMS to B, the latter
is very likely to receive A’s sketch. 3

7.3.6 Enforcing privacy

As described in the previous sections, a sketch is a representation of the contact
list that, besides reducing the amount of data to be exchanged, does not fully
discloses a user’s contact list. As an example of the type of information that is
leaked by the sketch sk(A) = (min1(A), . . . ,minm(A)) of contact list L(A), we
point out that if hi(x) < mini(A) then certainly x 6∈ L(A). In this section we
show how to securely compute the Jaccard coefficient of two contact lists, L(A)
and L(B), without revealing any information except what can be deduced from
the Jaccard coefficient itself.

Let us consider two parties A and B, each holding a vector of length m;
with a slight abuse of notation we identify each party with his/her input vec-
tor. In our application to the computation of the Jaccard coefficient, the
vectors will be the sketches of the respective contact lists. A and B wish to
compute the number of positions i for which A[i] = B[i] without revealing any
additional information on the vectors. We will describe a protocol that uses an
additively homomorphic encryption scheme (E;D;K) like Paillier cryptosys-
tem (see [102] for further information).
Homomorphic encryption scheme. Let (E;D;K) be a homomorphic en-
cryption scheme and assume that the message space for a public key pk re-
turned by the key generator algorithm K on input security parameter m is
Zp for some integer p of length m. The following additive homomorphic prop-
erties hold: ii) the product of two ciphertexts is a ciphertext for the sum
of the plaintexts; that is, for all messages a; b ∈ Zp and public keys pk, we
have D(E(pk, a)·E(pk, b), sk) = a + b; ii) raising a ciphertext for message a
to power r gives a ciphertext for r· a; that is, for all r ∈ Zp we have that
D(E(pk, a)r, sk) = r· a.

3An alternative solution is that A sends to B part of its sketch, compatibly with the

available space in the SMS message body. This solution requires bookkeeping both at A and

B, to keep track of the portions of sk(A) still missing at B. In fact, the former solution can

be more easily implemented than the latter and it requires no additional data structures.
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The protocol. The protocol can be described as follows:

1. A picks a pair of public and secret key (pk, sk) for encryption scheme
(E,D,K) by running the key generator algorithm K on input 1m; for
i ∈ [n], A computes encryption ai = E(pk,A[i]) of A[i]; A sends pk and
(ai)i∈[n] to B;

2. for i ∈ [n], B computes encryption bi = E(pk,−B[i]) of −B[i], picks
random ri ∈ Zp and sets ci = (ai+bi)

ri . Notice that by the homomorphic
properties of (E,D,K), ci is a ciphertext for ri· (A[i]−B[i]). Therefore if
A[i] = B[i] , then ci is an encryption of 0; otherwise ci is an encryption
of a random element of Zp. B randomly permutes the ci’s and sends
them to A.

3. A decrypts the m ciphertexts received from A, counts the number s of
ciphertexts that are an encryption of 0 and sends s to B.

Properties of the protocol. We make the following simple observations:
Correctness. The value s computed by the protocol is the number of indices
i for which A[i] = B[i], with probability exponentially close to 1. Privacy of
the input. Each of A and B gets no information on the other party’s vector,
besides what can be obtained from the output of the protocol. For A, this can
be easily seen by exhibiting a probabilistic polynomial-time simulator S that,
for all vectors A and B, on input vector A and the number s of positions in
which A and B coincide (but not vector B) outputs A’s view of the protocol.
Similarly, we can construct a simulator for B.

Coming back to the recommendation system, we have two parties A and
B, each with a private contact list, L(A) and L(B), that wish to compute
the Jaccard coefficient J(L(A), L(B)) . Obviously, the Jaccard coefficient can
be computed by applying the above protocol to the characteristic vector of
the two sets. The protocol will then run in time linear in the size of the
underlying universe set. A much more efficient protocol is instead obtained by
running the above protocol with each party holding as an input the sketch of
his/her contact list computed using the same sequence of random (or min-wise
independent) permutations.

7.4 Experimental analysis

In this section we present the results of experimental on real, publicly avail-
able data sets, in our opinion supporting the effectiveness of the approach we
propose.
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7.4.1 Experimental setting

Objectives

Our experimental work had the following main goals. In the first place, we
wanted to understand the intrinsic effectiveness of the Jaccard coefficient to
infer social relationships in the mobile phone user network. A further issue was
to assess whether the techniques we use to approximate the Jaccard coefficient
and discussed in section 7.3, are compatible with the hard space constraints,
imposed by Short Message size. In particular, these severely limit the number
of hash functions we can use to compute contact list sketches (we considered
the use of 10 or 20 hash functions in our implementation). This in turn
affects the accuracy of the estimation, especially when the value of the Jaccard
coefficient is relatively small in absolute terms, as is the case for the data set
we consider. Finally, we wanted to investigate the effectiveness of our overall
approach in suggesting contacts to users. The problem here is that the data
do not allow us to directly assess the a posteriori effect of recommendations.
For this reason, in our experiments we considered the ability of our approach
in predicting existing links as a proxy of its effectiveness in providing useful
recommendations.

Data sets and call graph

Accessing telephone traffic data is far from trivial, since very few public
datasets are available. The Reality Mining project [9, 59] represents the largest
mobile phone experiment ever attempted in academia. Its dataset contains
thousands hours of continuous data on daily human behavior and contains
information on call logs, Bluetooth devices in proximity, cell tower IDs, appli-
cation usage, phone status.
We used call logs to build a call graph where nodes are mobile users character-
ized by unique ids (i.e., telephone numbers) and there is an edge connecting
two users i and j if and only if the call log contains a number of calls between
i and j that exceeds a given threshold4. For the purpose of this experimental
analysis, we exploited the call graph to build the contact list of users in the
network. To avoid problems related to data incompleteness, we restricted our
experiments only to the people actually participating in the Reality Mining
project (around 100 people), whose logs are complete and accurate.

4Note that this threshold is the number of calls above which we declare the existence of a

link between the involved users. It is different from the threshold θ in Figure 7.3 of section

7.3, i.e., the value of the estimated Jaccard coefficient above which a contact is recommended.
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Require: Gw(V,E)

1: for v1 . . . vn ∈ V do

2: for each va, vb among the contacts of vi do

3: retrieve sk(A), sk(B) by emulating an SMS reception

4: RECOMMEND(A, sk(A), sk(B), θ)

5: end for

6: end for

Figure 7.4: Simulation algorithm.

Formally, the call graph Gw(V,E) is built as follows:

• V is the set of users appearing in the log of calls

• for each pair (i, j) ∈ V , edge (i, j) ∈ E if and only if at least w calls
occurred between i and j.

Note that the graph Gw is undirected, i.e., we assume that contact lists are
symmetric, i.e., i belongs to the contact list of j (and viceversa) if at least w
calls occurred between i and j during the period of observation. Following the
definition above, changing values of w can originate different graphs modeling
stronger or weaker relations (i.e., a higher w can filter out occasional contacts).
In our experiments we considered G1(V,E) and thus worked directly on the
call graph, since the data set is relatively small and higher values of w further
reduced the data set size.

Experimental scenario for recommendations

We assessed the quality of our technique in providing recommendations of
good quality by using its ability to uncover existing relationships as a proxy.
In particular, for each node vi and for each pair {va, vb} both belonging to vi’s
contact list, we ran our algorithm to predict the existence or non-existence
of link (va, vb). We then checked whether the link existed or not. This is
synthetically described by the algorithm in Figure 7.4, which simulates the
general recommendation algorithm described in section 7.3.

Performance indices

The error of the recommendation strategy we propose is potentially affected
by two factors: i) inaccuracy in the estimation of the actual value of the
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Jaccard coefficient; ii) error in the recommendation itself, i.e., the contact
we recommend is not interesting to the user. These two aspects are clearly
interrelated in complex ways. We treat them separately, which corresponds
to the worst-case assumptions that the effects of the two sources of error sum
up. As for the former aspect, assessing the accuracy of our approximation of
the actual Jaccard coefficient poses some issues. In the first place, our data
show that even values of the Jaccard coefficient related to a significant degree
of social relationship can be low in absolute terms. This makes an accurate
estimation harder to attain given the stringent constraints we have to comply
with. In particular, if we use m hash functions, we only have m possible values
for our estimation of the Jaccard coefficient. When m = 10 as we assume,
this provides very little granularity. Namely, possible values of the estimated
Jaccard coefficient are 0.1j, with j = 0, . . . , 10, whereas values of the true
Jaccard coefficient corresponding to a significant degree of social interaction
are around [0.05, 0.1] in the dataset collection we consider. On the other hand,
our algorithm is threshold-based: it recommends a contact between two nodes
A and B whenever J(L(A), L(B)) is above the threshold. For this reasons, we
consider the Jaccard-Estimation Performance (JEP), defined as the fraction of
times that our algorithm gives the same recommendation as it would give if it
knew the exact values of the Jaccard coefficient. We call the two versions of the
algorithm apxJacc and exactJacc in the definitions that follows. Formally, for
every node i, let Ci denote the number of times that apxJacc and exactJacc
take the same recommendation decision for pairs of nodes belonging to i’s
contact list.

The Jaccard-Estimation Performance (JEP) is formally defined as:

JEP =

∑
1≤i≤|V |Ci

t
where V is the vertex set, i.e., the overall number of users and t is the overall
number of node pairs evaluated.

To assess the quality of our recommendations, we checked to which extent
the contacts that are recommended correspond to actual links evaluating pre-
cision (i.e., the fraction of existing links that have been recommended over
the total number of given recommendations) and recall (i.e., fraction of all
existing links that have been recommended over the total number of actual
links) of our recommendation algorithm.

7.4.2 Experimental results

In this section, we provide experimental results that address the following is-
sues: i) whether or not the Jaccard coefficient is a good indicator of social
ties in the datasets we consider and which are reasonable threshold values
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for the recommendation heuristic we propose; ii) how good is our estimation
of the Jaccard coefficient, at least in the sense made precise in the previous
subsection; iii) how good are the recommendations we provide, which we indi-
rectly answer by to which extent we are able to infer existing contacts between
node pairs. Since our algorithms contain a probabilistic part in the selection
and use of the hash functions used to estimate the Jaccard coefficient, all re-
sults reported below refer to averages taken over 5 independent runs of the
algorithm.

Jaccard coefficient and social ties

Figure 7.5 synthetically describes the correlation existing between values of
the Jaccard coefficient and existence of links between node pairs. More in
detail, the x-axis is divided into interval of width 0.05 each, starting at 0.0
and ending at 0.2. For the j-th interval (j = 0, 1, 2, 3), the ordinate represents
the fraction of pairs (A,B) of users such that i) J(L(A), L(B)) falls in the
interval [0.05j, 0.05(j + 1)] and ii) A and B are contacts, i.e., they are in
each other’s contact lists. The x-intervals stops at the value 0.2, since we
observed too few pairs with Jaccard coefficient beyond this interval, to be
statistically meaningful. This picture clearly shows that the Jaccard coefficient
is a good indicator of social ties in mobile user networks. Furthermore, at
least in the datasets we considered, the Jaccard coefficient allows to identify a
sharp transition around the value 0.05, from a region characterized by sporadic
ties to one characterized by frequent social relationships. In light of these
observations, we chose the value 0.05 as a threshold in our recommendation
algorithm.

Jaccard estimation performance

Figure 7.6 shows the behaviour of the Jaccard-Estimation Performance, as
defined in the previous subsection, as a function of the threshold, both when
10 and 20 hash functions are used to estimate the Jaccard coefficient. In
particular, the function has been computed in 5 points for 20 hash functions.
Each point represents an independent run of the algorithm. More precisely,
for j = 1, . . . , 5, the j-th run is executed with threshold value 0.05j. For 10
hash functions we only considered two points, since for values of the threshold
above 0.1 the distance between the two curves becomes smaller and smaller.
Results show that the algorithm that estimates the Jaccard coefficient using
hash functions takes the same decisions as the one knowing the exact value
of the Jaccard coefficient in most cases. This means that, even under the
stringent constraints for sketch sizes, we are able to follow the ideal algorithm
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Figure 7.5: Existing linked pairs over total pairs

pretty close, as far as the recommendation decision is concerned.

Figure 7.6: Jaccard-Estimation Performance

Quality of recommendation

Figure 7.7 shows the effectiveness of our algorithms in predicting the existence
of contacts in the social network of mobile users. In particular, Figure 7.7 is a
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scatter-plot showing the trade-off between precision and recall as the threshold
and number of hash functions used vary5. For a better reading, values with
precision < 0.2 or recall < 0.2 have been filtered out6. The following remarks
are in order: i) the best trade-off between precision and recall is struck near the
interval [0.05, 0.1] of the threshold, both for the algorithm using exact Jaccard
coefficient and for our heuristics; ii) For higher values precision increases and
recall decreases, meaning that on one hand, a similarity beyond the thresh-
old implies a contact with increasing probability, but we omit to recommend
many contacts that fall below the threshold; iii) the values of precision/recall
we obtain for the best choice of the threshold fall in the interval [0.4, 0.6]. Such
values are indeed relatively high, since they refer to the prediction of really
existing links; if we were only recommending links that already exist, there
would be no point in providing recommendations. These results in our opin-
ion provide an indication that our fully decentralized strategies might prove
effective in providing recommendations of good quality.

Figure 7.7: Precision vs. recall.

5The threshold is represented as a label over each point in the scatterplot.
6This is the reason why only one point of the 10 hash algorithm is represented on the

scatterplot.
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7.5 Recommendation in the MURPESS scenario

Despite the recommendation algorithm presented in this chapter is based on
a centralized infrastructure, in this section we give a flavor of how the same
approach can be applied in passive pervasive systems as well.

Sketch generation In the MURPESS scenario mentioned in the introduc-
tion of this thesis, it is easy to imagine that, instead of a list of contacts L(A) ,
each MURPESS will carry a more general social profile S(A) where each entry
in S(A) represents a social information of user A (e.g., sex, political views,
hobbies, etc. . . ). Recalling section 7.3.1, in order to produce a sketch sk(a)
from the list of contacts L(A) of user A, each entry in L(A) must fall in [n].
But this principle applies to S(A) as well since, as an example, each entry
can be associated to the binary representation of the ASCII characters used
to fill the entry. Thus, the same kind of sketch sk(a) can be generated in the
MURPESS scenario based on the social profile S(A) carried by the user A.

Sketch exchange In the SMS application, sketches are exchanged using
the residual space of Short Messages. Thus, user A and user B, both friends
of user C, send their sketches, appended to Short Messages, to user C. Once
user C receives both sketches, she is able to derive possible social relationships
between user A and B by applying the recommendation algorithm described in
section 7.3.4. In the MURPESS scenario the sketch exchange is enabled by the
short-range communication techniques supported by MURPESSes (Bluetooth,
NFC, RfID). In particular, it is suitable that most of friends occasionally get
close to each other. Thus, at some point in time, user C will meet user A
and the same will happen between user C and user B. Consequently, as in the
SMS application, user A and B will be able to share their sketches with user
C choosing the most appropriate communication technique.

Recommendation algorithm Since the SMS application and MURPESSes
both produce sketches with the same properties, the recommendation algo-
rithm will be the same. Thus, it will be based on the approximation of the
Jaccard Coefficient described in section 7.3.1 and the recommendation algo-
rithm described in 7.3.4.

7.6 Conclusion

In this chapter we have presented a fully decentralized approach for recom-
mending new contacts in the social network of mobile phone users. The appli-
cation does not assume any centralized coordination: it transparently collects
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and processes user information that is accessible in any mobile phone, such as
the log of calls, the list of contacts or the inbox/outbox of short messages and
exchanges it with other users. This information is used to recommend new
friendships to other users. We demonstrated the effectiveness of our approach
with a set of experiments. In particular we demonstrated how the Jaccard
coefficient is a good estimator of social relationships. We provided a succinct
representation of contact lists on which our algorithm well approximates the
Jaccard coefficient computed on the original lists. As a result, recommenda-
tions given using our fully decentralized approach competes both, in terms of
precision and recall, with recommendations given using the Jaccard coefficient.



Conclusion

This thesis has focused on problems and solutions emerging from information
gathering in resource constrained wireless networks. We have investigated the
issues related to information gathering in the two most representative areas,
i.e., Wireless Sensor Networks and Passive Pervasive Systems. We presented
the main differences characterizing WSNs and Passive Pervasive Systems and
showed how the issues related to information gathering tightly differ between
these two research areas. As a consequence of these observations, we organized
the thesis in two main parts.

Part I In Wireless Sensor Networks we identified the power management as
the main obstacle for information gathering. In particular, the energy con-
sumption of radio transceivers, required for data transmission and reception,
quickly drains the batteries of sensor nodes and, thus, reduces the network life-
time. We outlined how the energy awareness in the software running on sensor
nodes is the most effective solution facing the obstacle of energy consumption
in WSNs. Energy awareness operates at different levels. At the application
level, Sensor Selection and Data Aggregation both try to reduce the overall
quantity of data gathered by the network. Sensor Selection algorithms allow
to select which nodes should participate in the sensing task to reconstruct the
signal with a sufficiently low error. Data Aggregation techniques aggregate or
filter data sensed by nodes that are close to each other or in the same region
of interest. In communication based energy awareness, energy-aware routing
protocols aim at reducing the number of hops and/or transmissions needed to
propagate the sensed data from a sensing node to a collection point. On the
other hand, energy-aware MAC protocols reduce the energy consumption of
radio transceiver by leaving the radio into sleep state as soon as reception or
transmission are not required.

In chapter 2 we presented a new Sensor Selection technique, namely Adap-
tive Random Selection, an adaptive random spatial sensor selection protocol.

129
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Based on the neighborhood information gathered through the CTP data col-
lection protocol, ARS can compute locally adapted values of the probability
of activation. Each node in ARS can then decide autonomously whether to
participate in the sensing task or not depending on the outcome of a random
throw. We demonstrated the capability of ARS to provide for good sensing
coverage of the region of interest while limiting the number of active nodes.

In chapter 3 we described the design and implementation of DISSense, an
adaptive, low-power communication protocol for WSNs-based periodical en-
vironmental monitoring applications. We tested DISSense on both a testbed
and the TOSSIM WSN simulator. The experimental results show that DIS-
Sense can guarantee for high data delivery and, thanks to its power-efficiency,
it is able to operate a Tmote Sky-based WSN for several years.

In the last chapter of the first part, we combined the two previously pre-
sented solutions. We observed how ARS greatly improves the duty cycle per-
formance of the DISSense protocol. The reason relies in the lower traffic that,
thanks to the specific design and the adaptive behavior of DISSense, reduces
the active time scheduled for data gathering and consequently, the protocol’s
duty cycle.

Part II The second part of the thesis has focused on information gather-
ing in Passive Pervasive Systems. We described the main differences in terms
of network infrastructure, traffic pattern, communication type and memory
availability with respect to WSNs and introduced the concept of Opportunis-
tic Networking in such systems. These differences have led to a problem for-
mulation that sharply differs from the WSN one. In particular, information
gathering in Passive Pervasive Systems focuses on how to provide services for
the emerging applications, taking into account the opportunistic networking
behavior and memory limitations characterizing passive tags.

In chapter 6 we presented a fully decentralized RfID-based recommenda-
tion system that relies on a model of user behavior to capture important
trends in real user data derived from commercial recommendation systems.
The proposed model is simple enough as to allow the statistical estimation
of parameters from real user activity logs. We demonstrated, through ex-
perimental evaluation, that the resulting recommendation strategy achieved a
performance that is comparable to that of state-of-art centralized solutions.

In chapter 7 we presented a fully decentralized approach for recommend-
ing new contacts in the social network of mobile phone users. The presented
application transparently collects and processes user information that is ac-
cessible in any mobile phone, such as the log of calls, the list of contacts or the
inbox/outbox of short messages and exchanges it with other users. This in-
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formation is used to recommend new friendships to other users. Experiments
demonstrated how recommendations given, based on the succinct representa-
tion of the contact lists exchanged between users, competes both in terms of
precision and recall, with the recommendations made managing whole sets of
lists of contacts.

Future Work As for the first part, a deeper investigation of the interactions
between ARS and DISSense need to be made. To this aim, the implementa-
tion of CTP, DISSense and ARS on the Castalia 3.1 simulation framework
is ongoing. Additionally, DISSense needs to be validated on wider testbeds
(e.g., Motelab) so as to test its performance in more challenging scenarios.
Finally, in [108] we presented a new metric, dubbed Expected Network Deliv-
ery (END), that quantifies the delivery performance that a collection protocol
can be expected to achieve given a network topology. We expect to provide a
comparison between DISSense and other existing solutions such as CTP with
BoX-MAC-2, Koala or Dozer in terms of duty cycle, DDR and latency with
different network topologies classified following the END index.

For what concerns the second part of the thesis, the model presented in
the RfID-based recommendation system can be extended by taking into ac-
count the changes, over time, of items’ popularity. A best selling book might
be much less popular within the next month, as the initial wave of interest
fades. Proposing simple ageing mechanisms, while keeping the model simple
enough is an interesting point. Additionally, the model has been evaluated
with intra-cluster items recommendation; a more general inter-cluster exten-
sion is an interesting issue. As for the second contribution, a proof-of-concept
has already been implemented on the Sim Application Toolkit on the Gemalto
Developer Suite [5], but an NFC-based implementation that better approxi-
mates the MURPESS scenario would represent an interesting issue.
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