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ABSTRACT 
 
This thesis is focused on beam vibration control using piezoelectric transducers and passive electric 
networks.  
The first part of this study deals with the modeling and the analysis of stepped piezoelectric beams. 
A refined one-dimensional model is derived and experimentally validated. The modal properties are 
determined with four numerical methods. A homogenized model of stepped periodic piezoelectric 
beams is derived by using two-scale convergence.  
The second part deals with the performance analysis of three passive circuits in damping structural 
vibrations: the piezoelectric shunting, the second order transmission line and the fourth order 
transmission line. The effects of uncertainties of the electric parameters on the system performances 
are analyzed. Theoretical predictions are validated through different experimental setups. 
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“Che triste sbaglio, pensò Drogo, forse è tutto così, crediamo che attorno ci siano
creature simili a noi e invece non c’è che gelo, pietre che parlano una lingua straniera,
stiamo per salutare l’amico ma il braccio ricade inerte, il sorriso si spegne, perché ci
accorgiamo di essere completamente soli.” D. Buzzati, Il deserto dei Tartari



Contents

Summary v

Sommario vii

Résumé ix

Acknowledgements xi

Chapter 1. Introduction 1
1. Review of the vibration control literature 1
2. Objectives 4
3. Overview 5

Chapter 2. Modeling stepped piezoelectric beams 7
1. Linear piezoelectricity 7
2. Modeling a piezoelectric transducer 9
3. Modeling the whole stepped beam 12

Chapter 3. Modal analysis of stepped piezoelectric beams 16
1. Problem formulation 17
2. Last Energy Norm method 17
3. Galerkin methods 20
4. Experimental setup 22
5. Numerical comparisons 25

Chapter 4. Homogenized model of periodic stepped piezoelectric beams 28
1. Problem setting 28
2. Two-scale convergence 30
3. Numerical tests 33

Chapter 5. Resonant piezoelectric shunting 37
1. Governing equations 37
2. Optimization 39
3. Effect of parameters variations 41
4. Effect of parameters uncertainties 42
5. Experimental and numerical results 44

Chapter 6. Second order transmission line 52
1. Homogenized model 52
2. Refined model 58
3. Sensitivity analysis 62
4. Effect of parameters uncertainties 64
5. Experimental Setup 68

Chapter 7. Fourth order transmission line 73

iii



CONTENTS iv

1. Problem formulation 74
2. Multiport synthesis of the analog circuit 81
3. Synthesis of the analog circuit based on a variational formulation 91
4. Analysis of the PEM beam 97

Chapter 8. Concluding remarks and recommendations 101
1. Conclusions 101
2. Recommendations for future works 105

Bibliography 107



Summary

The recent technological developments in the production of piezoelectric transducers,
and the relevant consumers’ attention towards the suppression of structural vibrations,
increased the research efforts in their effective exploitation in control systems for actual
engineering structures. An efficient control of structural vibrations leads to several ben-
efits, such as the precision in mechanisms manoeuvres, the reduced fatigue loads, the
reliability and durability of machineries. These are the main reasons to attract the inter-
est of both mechanical and aerospace industries in this topic. This study is focused on
beam vibration control using piezoelectric transducers and passive electric networks.

The first part of this study deals with the modeling and the analysis of stepped piezo-
electric beams, i.e. beams hosting piezoelectric transducers. Classical beam theory and
linear piezoelectricity are applied to derive a refined one-dimensional model of the stepped
piezoelectric beam, which represents a reasonable trade-off between accuracy and com-
plexity. An experimental setup assesses the accuracy of the model in describing the beam
dynamics over a wide frequency range. The effects of piezoelectric transducers on the
beam modal properties are investigated and the eigenvalue problem related to a system
consisting of several one-dimensional continuous substructures is solved with four differ-
ent numerical methods: last energy norm, assumed modes, enhanced assumed modes and
finite-element. A homogenized model of stepped periodic piezoelectric beams is derived
by using two-scale convergence and its accuracy is validated through numerical tests. The
choice of the vibration control technique determines the most appropriate model for the
stepped piezoelectric beam.

The second part deals with the performance analysis of three different passive circuits
in damping structural vibrations: the resonant piezoelectric shunting, the second order
transmission line and the fourth order transmission line.

In the first case, a single piezoelectric transducer is shunted with a resistor and an
inductor. The presented refined model is used to derive a reduced-order model of the
vibrating electromechanical system. The inductance and resistance are optimized in order
to minimize the ∞-norm of the mechanical mobility. The effects of variations of the
electric parameters on the system performances are analyzed. Closed-form expressions
arising from the sensitivity analysis are validated with numerical tests. The results of
the sensitivity analysis are used to model the effects of random variations of the electric
parameters on the system norm. The application of this technique for the identification
of piezoelectric capacitances and modal coupling is presented. The identification method
is applied in an experimental setup.

In the second case, an array of piezoelectric transducers is positioned on the host
beam and every element is connected to the adjacent one via a floating RL impedance.
The homogenized model together with the results from the H∞ control problem for the
piezoelectric shunting are used for optimizing the electric boundary conditions and line
impedances. Its forecasts are validated by the analysis of the transmission line when
retaining the lumped nature of the circuit. The sensitivity of the electrical eigenproperties
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SUMMARY vi

with respect to the variations of the inductance is examined. The effects of uncertainties
on the line inductances are studied and closed-form results are exhibited. An experimental
prototype is realized for proving the transmission line effectiveness in abating the needed
inductances and reducing the effects of electric uncertainties.

In the third case, an array of piezoelectric transducers is also used, but their electric
terminals are interconnected via a more sophisticated network. The network is the circuit
analog of a beam with structural damping endowed with dual boundary conditions with
respect to the mechanical ones. The homogenized model is used for proving the effective-
ness of the fourth order transmission line in damping multimodal vibrations. The concept
of dual boundary conditions is presented and the relations between the spectral proper-
ties of the original and the dual problem are explained. The problem of synthesizing a
lumped electric network approximating the distributed beam circuit analog is addressed
by two different methods. In the first method the equilibrium and constitutive equations
of the beam element are finite-difference approximated and a four port circuit analog to
the beam element is conceived. In the second method the Lagrangian of the beam is dis-
cretized and by establishing an electromechanical analogy between the flux-linkages and
the displacements, a lumped circuit governed by the discretized Lagrangian is assembled.
The resulting circuit is constituted only by inductors, capacitors and two-port transform-
ers. The problem of suitably inserting resistors for achieving the multimodal damping is
tackled. A prototype is designed for proving the device effectiveness in simultaneously
damping several structural modes and abating the needed inductances. The circuit analog
is analyzed also as a lumped system and comparisons with the homogenized predictions
are drawn.



Sommario

I recenti sviluppi tecnologici nella produzione di trasduttori e la crescente attenzione
dei consumatori nei confronti della riduzione delle vibrazioni strutturali, hanno portato ad
un aumento delle attività di ricerca nell’applicazione dell’effetto piezoelettrico al controllo
delle vibrazioni meccaniche in strutture reali. Un efficiente controllo delle vibrazioni
strutturali conduce a molti benefici, tra i quali annoveriamo: la precisione nei meccanismi,
i ridotti carichi di fatica, l’affidabilità e la longevità dei macchinari. Queste sono le
principali ragioni che attraggono gli interessi delle industrie aerospaziali e meccaniche
in questo campo. Questo studio è finalizzato al controllo di vibrazione di travi usando
trasduttori piezoelettrici e reti elettriche passive.

La prima parte di questo lavoro si occupa della modellazione e dell’analisi di travi
piezoelettriche segmentate, vale a dire travi che ospitano trasduttori piezoelettrici. La
teoria classica delle travi e la piezoelettricità lineare sono utilizzate nella derivazione di
un raffinato modello unidimensionale della trave piezoelettrica segmentata, che rappre-
senta un ragionevole compromesso fra esattezza e complessità. Un apparato sperimentale
dimostra l’accuratezza del modello nella descrizione del moto della trave in una ampia
gamma di frequenze. Gli effetti dei trasduttori piezoelettrici sulle proprietà modali della
trave sono studiati, e il problema agli autovalori relativo ad un sistema che consiste di
diverse sottostrutture continue unidimensionali è risolto con quattro metodi numerici dif-
ferenti: “last energy norm”, “assumed modes”, “enriched assumed modes” ed elementi-
finiti. Un modello omogeneizzato di travi piezoelettriche segmentate periodiche è derivato
sfruttando tecniche di convergenza a doppia scala, e la sua esattezza è dimostrata attra-
verso simulazioni numeriche. La scelta della tecnica di controllo determina il modello più
consono alla trave piezoelettrica segmentata.

La seconda parte si occupa dell’analisi delle prestazioni di tre differenti circuiti passivi
nella soppressione delle vibrazioni strutturali (il bipolo RL risonante, la linea di trasmis-
sione del secondo ordine e la linea di trasmissione del quarto ordine). Nel primo caso, un
singolo trasduttore piezoelettrico è connesso in parallelo ad un resistore e ad un induttore.
Il modello raffinato è usato per derivare un modello ridotto del sistema elettromeccanico
vibrante e l’induttanza e la resistenza sono ottimizzate per minimizzare la norma-∞ della
mobilità meccanica. Gli effetti delle variazioni dei parametri elettrici sulle prestazioni del
sistema sono analizzati. Le espressioni in forma chiusa dedotte dall’analisi di sensibilità
sono validate da simulazioni numeriche. I risultati dell’analisi di sensibilità sono usati
per modellare gli effetti delle variazioni aleatorie dei parametri elettrici sulla norma del
sistema. Questa tecnica è applicata con successo anche all’identificazione delle capacità
piezoelettriche e dell’accoppiamento modale in un prototipo sperimentale.

Nel secondo caso, una schiera di trasduttori piezoelettrici è posizionata sulla trave
ospite ed ogni suo elemento è collegato all’adiacente da un’impedenza RL flottante. Il
modello omogeneizzato e i risultati del problema di controllo H∞ per il bipolo RL sono
impiegati nell’ottimizzazione delle impedenze di bordo e di linea; le relative previsioni
sono validate da una analisi della linea di trasmissione che tiene in conto della natura
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discreta del circuito. La sensibilità delle proprietà spettrali elettriche rispetto alle vari-
azioni dell’induttanza è esaminata. Gli effetti delle incertezze delle induttanze di linea
sono studiati e risultati in forma chiusa sono esibiti. Un prototipo sperimentale è realizzato
per dimostrare l’efficacia della linea di trasmissione nel ridurre le induttanze necessarie e
nel mitigare gli effetti delle incertezze elettriche.

Nel terzo caso si utilizza ancora una schiera di trasduttori piezoelettrici, ma i loro
terminali elettrici sono collegati da una rete più sofisticata. La rete elettrica è analoga
ad una trave dotata di smorzamento strutturale e munita di condizioni al contorno du-
ali a quelle meccaniche. Il modello omogeneizzato è sfruttato per dimostrare l’efficacia
della linea di trasmissione del quarto ordine nello smorzamento di vibrazioni strutturali
multimodali. Il concetto di condizioni al bordo duali è presentato e le relazioni fra le
proprietà spettrali del problema originale e di quello duale sono analizzate. Il problema
della sintesi di un circuito discreto che approssimi la rete distribuita analoga alla trave
è risolto con due metodi differenti. Nel primo metodo le equazioni di equilibrio e le
equazioni costitutive di un elemento di trave sono approssimate con uno schema a dif-
ferenze finite e un circuito analogo ad un elemento di trave è concepito. Nel secondo
metodo la Lagrangiana della trave è discretizzata e, stabilendo un’analogia elettromecca-
nica fra le tensioni elettriche e le velocità meccaniche, si sintetizza un circuito discreto che
è governato da tale Lagrangiana. Il circuito risultante è costituito soltanto da induttori,
condensatori e trasformatori a due porte. Il problema di inserire oculatamente resistori
per smorzare vibrazioni multimodali è affrontato. La progettazione di un prototipo sper-
imentale dimostra l’efficacia del dispositivo nella soppressione di vibrazioni multimodali e
nella riduzione delle induttanze necessarie. Inoltre, il circuito analogo è analizzato come
un sistema discreto e sono effettuati confronti con le previsioni del modello omogeneizzato.



Résumé

Les récents développements technologiques dans les modalités de production des trans-
ducteurs piézoélectriques et l’augmenté intérêt général pour l’amortissement de vibrations
structurales, sont des facteurs qui ont contribué à intensifier les recherches dans le do-
maine de l’exploitation des transducteurs piézoélectriques dans les systèmes de contrôle
les structures réelles. Un contrôle efficace des vibrations structurales mène à beaucoup
d’avantages comme plus de précision dans les manœuvres des mécanismes, des charges de
fatigue réduites, des meilleures fiabilité et longévité des machineries. Ces raisons sont les
principaux centres d’intérêt des industries mécaniques et aérospatiales dans cette matière.
Cette étude est concentrée sur le contrôle de vibration des poutres par l’utilisation des
transducteurs piézoélectriques et des circuits électriques passifs.

La première partie traite de la modélisation et de l’analyse des poutres piézoélectriques
segmentées, i.e. les poutres équipées avec transducteurs piézoélectriques. La théorie
classique des milieux unidimensionnels et de la piézoélectricité linéaire sont appliquées
pour définir un modèle unidimensionnel raffiné de la poutre piézoélectrique segmentée,
qui représente un compromis entre la précision et la complexité. Une installation ex-
périmentale évalue l’exactitude du modèle en décrivant la dynamique de la poutre sur
un grand intervalle de fréquences. Les effets des transducteurs piézoélectriques sur les
propriétés modales de la poutre sont étudiés, et le problème de la détermination des
valeurs principales pour un système se composant de plusieurs sous structures unidimen-
sionnelles est résolu avec quatre méthodes numériques différentes: “last energy norm”,
“assumed modes”, “enhanced assumed modes” et éléments finis. Un modèle homogénéisé
des poutres piézoélectriques segmentées périodiques est dérivé en employant une conver-
gence à deux échelles et est validé par des essais numériques. Le choix de la technique de
contrôle de vibration détermine le modèle le plus approprié pour la poutre piézoélectrique.

La deuxième partie traite de l’analyse des performances de trois circuits passifs dif-
férents pour atténuer les vibrations structurales (le shuntage piézoélectrique résonant, la
ligne de transmission du deuxième ordre et la ligne de transmission du quatrième ordre).
Dans le premier cas, un seul transducteur piézoélectrique est shunté avec une résistance
et un inducteur. Le modèle raffiné présenté est employé pour dériver un modèle d’ordre
réduit du système électromécanique vibrant. L’inductance et la résistance sont optimisées
afin de réduire au minimum la∞-norme de la mobilité mécanique. Les effets des variations
des paramètres électriques sur les performances de système sont analysés et les expressions
analytiques dérivées de l’analyse de sensibilité sont validées avec des essais numériques.
Les résultats de l’analyse de sensibilité sont employés pour modeler les effets des vari-
ations aléatoires des paramètres électriques sur la norme du système. L’application de
cette technique pour l’identification des capacités piézoélectriques et du couplage modal
est présentée. La méthode d’identification est appliquée dans une installation expérimen-
tale.

Dans le deuxième cas, une rangée de transducteurs piézoélectriques est placée sur la
poutre et chaque élément est connecté à l’adjacent par l’intermédiaire d’une impédanceRL
flottante. Le modèle homogénéisé, ainsi que les résultats du problème de contrôleH∞ pour
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le shuntage piézoélectrique, sont employés pour optimiser les conditions aux limites et les
impédances électriques distribuées. Ces prévisions sont validées par l’analyse de la ligne
de transmission, en retenant la nature discrète du circuit. La sensibilité des propriétés
spectrales électriques en ce qui concerne les variations de l’inductance est examinée. Les
effets des incertitudes sur les inductances sont étudiés et des résultats analytiques sont
exhibés. Une installation expérimentale est réalisée pour prouver l’efficacité de la ligne
de transmission en diminuant les inductances nécessaires et en réduisant les effets des
incertitudes électriques.

Aussi, dans le troisième cas, une rangée de transducteurs piézoélectriques est utilisée,
mais un réseau électrique passif plus sophistiqué est ici exploité. Le réseau électrique
est analogue à une poutre avec l’atténuation structurale, dotée de conditions aux limites
duales en ce qui concerne la mécanique. Le modèle homogénéisé est employé pour prou-
ver l’efficacité de la ligne de transmission du quatrième ordre en atténuant des vibrations
multimodales. Le concept de conditions aux limites duales est présenté et les relations
entre les propriétés spectrales de l’original et du problème dual sont expliquées. Deux
méthodes différentes sont présentées pour réaliser un circuit électrique discret analogue
à la poutre. Dans la première méthode les équations d’équilibre et les lois de comporte-
ment de l’élément de la poutre sont approximées par la méthode des différences finies
et un circuit analogue à l’élément de poutre est conçu. Dans la deuxième méthode le
Lagrangien de la poutre est discrétisé et, en établissant une analogie électromécanique
entre les voltages et les vitesses, un circuit discret régi par le Lagrangien discrétisé est
réuni. Le circuit résultant est constitué seulement par des inducteurs, des condensateurs et
des transformateurs. Le problème d’insérer convenablement des résistances pour réaliser
l’atténuation multimodal est abordé. Un prototype est conçu pour prouver l’efficacité de
dispositif en atténuant simultanément plusieurs modes structuraux et en diminuant les
inductances nécessaires. Le circuit analogue est analysé comme un système discret et des
comparaisons avec les prévisions du model homogénéisé sont dessinées.
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CHAPTER 1

Introduction

1. Review of the vibration control literature

Extensive vibrations in mechanical systems can limit the performances of a struc-
ture, reduce its lifetime and affects its reliability. By using piezoelectric transducers
in conjunction with appropriate electric networks (see e.g. [Lesieutre (1998)] and
[Wang (2001)]), the mechanical vibrational energy can be dissipated, strengthening the
performance and extending the lifetime of the structure.

Piezoelectricity was discovered by the Curie brothers (Pierre and Jacques Curie) in
1880, but it took several decades before this phenomenon could be exploited in real
applications. It is reasonable to assess that the first use of piezoelectric materials dates
back to the 1940s, during the second World War, as an ultrasonic detector for submarines.
Piezoelectrics undergo deformation when an electric field is applied across their terminals
(motor action, converse effect), and conversely produce voltage when strain is imposed
(generator action, direct effect). For a concise description of the piezoelectric effect see e.g.
[IEEE (1987)]. With the discovery of piezoceramics and the consequent development
of sophisticated transducer architectures (for more details on the novel concepts used
in the design of piezoelectric transducers see [Niezreski et al. (2001)]), the domain
of the applications of piezoelectric materials has expanded considerably. Applications
include space systems, aircraft, automotives, machine tools and medical systems (for more
detailed information about new trends in the application of piezoelectric transducers for
transportation vehicles, see e.g.[Boller (1998)]).

1.1. Electronic damping. The so-called electronic damping (see [Olsen (1956)],
[Forward and Swigert (1981)], [Hanagud (1985)] and [Hanagud et al. (1992)])
was one of the first applications conceived for the developed family of transducers in
the field of active vibration control. A set of piezoelectric devices is placed on a host
structure to sense and control the mechanical vibrations. The deformation of the sensing
elements results in electrical signals, which are conditioned by suitably-designed feedback
electronics and then applied to actuating elements. The actuators convert the applied
electrical energy into mechanical energy, transmitting mechanical control actions to the
host structure. Such a concept proved to be effective, as the available actuators can ex-
ert forces of several hundred newtons as a response to voltage signals of several hundred
volts without losing their dielectric properties or undergoing destructive strain deforma-
tions (see e.g. [Chopra (2002)]). Indeed, the most remarkable feature of the modern
piezoelectric transducers is their capability to remain in the linear range in the presence
of strains on the order of 0.1% (see again [Niezreski et al. (2001)]). When electronic
damping is used, the piezoelectric transducers’ driving requires complex power amplifiers
and associated precise sensing electronics, resulting in the consumption of a significant
amount of electrical power. Furthermore, the presence of an active controller can cause
instability in the closed-loop system, the plant (vibrating structure) of which is naturally
passive. Spillover phenomena can also be introduced, inducing dramatic oscillations of
the structure at high frequencies.

1



1. REVIEW OF THE VIBRATION CONTROL LITERATURE 2

An interesting development of the electronic damping is found in
[Canon and Lenczner (1999)], [Bernadou and Haenel (2000)] and [Kader (2001)],
where the design of optimal distributed electronic active controllers is addressed. This
includes a distributed array of piezoelectric elements uniformly positioned over a host
structure and a distributed interconnecting active electronic circuit. The piezoelectric
layer is employed to measure the deformation of the flexible structure and to exert a con-
trol action at every point. The purpose of the distributed electronic circuit is to extract
the complete state of the plant from the sensors, to optimally condition these signals, and
to feed the actuators at high voltage. The resulting smart structure is able to efficiently
suppress mechanical vibrations induced by broadband disturbances. Nevertheless, the
intrinsic active nature of the controller and the complexity of the required circuitry may
limit its technical feasibility and exploitation in industrial applications.

1.2. Piezoelectric shunting. In [Hagood and von Flotow (1991)] the possibil-
ity of damping mechanical vibrations by means of a single piezoelectric transducer po-
sitioned on a structural element and shunted with completely passive electric circuits is
investigated. In particular two different shunting circuits are considered: a resistive (R)
one and a resistive-inductive (RL) one. By placing such an electrical impedance across
the terminals of the piezoelectric transducer, the passive network is capable of damping
structural vibrations. If a simple resistor is placed across the terminals of the trans-
ducer, the piezoelectric element will act as a viscoelastic damper. If the network consists
of an inductor-resistor circuit, the passive network combined with the inherent capac-
itance of the piezoelectric transducer creates damped electromechanical beating. The
resonance can be tuned so that the piezoelectric element acts as a vibration absorber
(paralleling the classical mechanical vibration absorber in [Den Hartog (1934)]). The
piezoelectric shunting proposed in [Hagood and von Flotow (1991)] allows for an ef-
ficient single-mode control of structural vibrations whenever the resonant circuit is tuned
to the mechanical mode to be suppressed. Nevertheless, the efficiency of the electro-
mechanical coupling strongly depends on the position of the transducer over the host
structure. Moreover, the technical feasibility of the passive piezoelectric controller pro-
posed in [Hagood and von Flotow (1991)] is limited, since impossibly large induc-
tances are required to produce low-frequency electrical resonance with the small inherent
capacitance of the piezoelectric transducer. Indeed, for typical values of piezoelectric
inherent capacitances (10 ÷ 100 nF), very high inductances (10 ÷ 1000 H) are needed
to tune the electrical resonance frequency to the structural one. Furthermore, the large
internal parasitic dissipation of such a large inductor may exceed the optimal design
dissipation for low frequency vibration suppression. Many efforts have been devoted
to simulating huge inductors by means of active electronic circuits. In particular, in
[Fleming et al. (2000)], an implementation method using a digital signal processor is
presented, while in [Keun-Ho and In (2001)] an analog realization exploiting opera-
tional amplifiers and multipliers is addressed. Nevertheless, when considerable structural
vibrations are taken into account, several drawbacks can appear in these synthetic induc-
tors due to saturation and nonlinearities. In order to decrease the needed inductance, some
authors proposed (see e.g. [Park and Inman (2003)] and [Fleming et al. (2003)]) to
place an additional capacitance across the transducer terminals thus reducing the opti-
mal shunting inductance. Nevertheless, as underlined also by [Fleming et al. (2003)],
an increase of the overall capacitance (with respect of the inherent piezoelectric capaci-
tance) induces a performance loss (see e.g. the experimental results in Figures 7 and 8 of
[Park and Inman (2003)]).
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The comparison between this approach and the classical constrained layer damping
has been presented in [Hollkamp (1994)]. In [Corr and Clark (2002)] its perfor-
mances are compared with those of switching shunt circuit. In [Tang and Wang (2001)]
different active-passive control methodologies based on the classical piezoelectric shunt-
ing are addressed and in [Tsai1 and Wang (2002)] their robustness is examined. In
[Caruso (2001)] the inherent mechanical damping is accounted for in the circuit tuning.
In [Park (2003)] a clear presentation of the technique is provided. In [Kim et al. (2000)]
an alternative approach for optimizing the shunt circuit parameters is discussed.

The principles of the piezoelectric shunting have been applied to the multimodal con-
trol of vibrations (as done in [Wu (1996)], [Hollkamp (1994)] and
[Fleming et al. (2002)]), by using intricate shunting and block impedances. These con-
trol methodologies seem to present severe inconveniences: the used inductances are still
very high and the damping efficiency, even for few modes, may be reduced.

1.3. Piezo-ElectroMechanical (PEM) beams.
In [dell’Isola and Vidoli (1998, 1)], the possibility of damping the structural vibra-
tions of a truss modular beam by means of an array of piezoelectric transducers embed-
ded in the truss and interconnected by a distributed circuit is investigated. Every truss
module is endowed with a piezoelectric bar; each transducer is shunted with a grounded
RL impedance and the transducers of two adjacent modules are interconnected by a
floating RL impedance. This attempt represents the first realization of what is known
as a Piezo-ElectroMechanical (PEM) beams (see [dell’Isola et al. (2003, 1)] for a sur-
vey). A PEM beam is constituted by a beam on which an array of uniformly distributed
piezoelectric elements is positioned, and a passive electric network which interconnects
the transducers’ terminals. In this way one provides a synthetic support for low-speed
electrical signals, to be effectively coupled to mechanical waves (a precursory work of the
aforementioned technique can be found in [Valis et al. (1991)]).

In [dell’Isola et al. (2004)], a PEM beam prototype obtained by interconnecting
distributed piezoelectric elements either by RL impedances (second order transmission
line or RL network) is presented. The main advantage of this strategy, shown in
[dell’Isola et al. (2004)], is the drastic reduction of employed optimal inductances with
an increasing number of transducers, thus making conceivable the realization of a truly
passive control network. Nevertheless, in this framework a multimodal resonant control
is not achievable, but an acceptable viscous-like damping is added at higher frequencies.

The optimization problem of finding the best distributed passive electric network
(piezoelectrically coupled to the vibrating host structure) for achieving the most effec-
tive multimodal energy transduction has been partially addressed in
[Vidoli and dell’Isola (2000)]. There, it is heuristically proven that in order to guar-
antee the maximum energy transfer between the mechanical and electric systems, they
should be governed by the same partial differential equations. This property is often
summarized by stating that the sought optimal distributed network should be the elec-
tric analog of the host structure. Therefore, the analog electrical circuit exhibits the same
modal characteristics as those defining the host structure, so that a multiresonance electro-
mechanical coupling can be established. Nevertheless, in [Vidoli and dell’Isola (2000)],
no attention is paid to the suppression of structural vibrations and boundary conditions
are only marginally examined. In [dell’Isola et al. (2003, 2)] the problem of finding an
optimal distributed electric controller, within a rather wide class of local controllers, to
attenuate propagating waves over any frequency range is tackled. The results presented
in [dell’Isola et al. (2003, 2)] expand those shown in [Vidoli and dell’Isola (2000)],
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assessing that for infinite beams the optimal continuous network for beam vibration damp-
ing should be governed by the same partial differential equations as the vibrating structure
(i.e. the beam equation). But, at the same time, the network should be endowed with an
internal dissipation proportional to the rate of change of the electric curvature (i.e. the
second spatial derivative of the electric potential). Nevertheless both the works ignored
the problems related to the boundary conditions. Some efforts in understanding the ef-
fects of boundary conditions may be found in [Porfiri et al. (accepted)] where simply
supported beams are examined.

In [dell’Isola and Vidoli (1998, 2)], an active lumped electric circuit governed by
a discrete approximation of the beam equation is proposed. The problem of synthesiz-
ing a completely passive circuit analog of the Euler-Bernoulli beam has been extensively
analyzed in [Alessandroni et al. (2002)] and in [dell’Isola et al. (2001)]. Never-
theless, the proposed circuits have stern practical inconveniences, either due to negative
inductors or multiport transformers. The former are typical active elements needing to
be electronically simulated, and the latter are, in general, very heavy and their weights
can represent a significant part of the mass of the overall smart structure. For a crit-
ical analysis of this control technique and comparisons among the electric controllers
proposed in [dell’Isola and Vidoli (1998, 1)] and [Alessandroni et al. (2002)], see
[Maurini et al. (2004, 1)].

The synthesis of a passive electric analog of an Euler-Bernoulli beam by using induc-
tances, capacitors and two-port transformers has been presented in
[Andreaus et al. (2004)] and [Porfiri et al. (2004)]. In these works different synthe-
sis techniques are exploited to achieve a satisfactory electric analog. In
[Andreaus et al. (2004)], a Lagrangian based approach is used: the Lagrangian of a
Timoshenko beam is discretized and by establishing an electromechanical analogy between
the flux-linkages (currents) and the displacements (forces) a discrete circuit governed by
the discretized beam Lagrangian is assembled. In [Porfiri et al. (2004)], on the other
hand, the equilibrium and constitutive equations of a Timoshenko beam element are finite-
difference approximated and following two distinct analogies a four port circuit analog to
the beam element is conceived.

2. Objectives

The focus of this work is the vibration suppression of beams via piezoelectric trans-
ducers and passive electric networks. The detailed objectives are as follows:

• Present the basic tools for modeling a stepped piezoelectric beam, i.e. a beam
hosting piezoelectric transducers;

• Develop different and reliable algorithms for computing the modal characteristics
of a stepped piezoelectric beam;

• Develop a homogenized model suitable for distributed control applications;
• Develop some identification methods for estimating the key modal parameters of

a stepped piezoelectric beam;
• Present the basic concepts of the piezoelectric shunting technique;
• Demonstrate the use of RL distributed circuits for damping narrow-band struc-

tural vibrations;
• Analyze the effects of uncertainties of the electric parameters on the passive

damping performances;
• Prove the effectiveness of the concept of electric analogs in the design of distrib-

uted passive controllers.
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3. Overview

The Chapters constituting the dissertation can be basically organized into two groups.
The first one (Chapters 2, 3 and 4) is focused on the modeling and analysis of stepped
piezoelectric beams. The main results obtained in this part include a refined one-dimensional
model of the stepped piezoelectric beam which accounts for the discontinuities intro-
duced by the transducers, and a homogenized model which averages the periodically
varying electromechanical constitutive properties. The choice of the vibration control
technique (piezoelectric shunting/PEM) naturally determines the most suitable model for
the stepped piezoelectric beam (refined/homogenized). The second group (Chapters 5, 6
and 7) deals with the analysis of three different passive circuits in damping structural vi-
brations. The classical piezoelectric shunting is used to present a general discussion about
resonantly coupled systems and to introduce a novel modal identification technique. This
knowledge together with the results stemming from the homogenized model are applied
to the design of the second order transmission line for narrow band vibration suppression,
and the fourth order transmission line for multimodal control.

The detailed organization of the work is:

• In Chapter 2, we develop a one dimensional model of stepped piezoelectric beams.
We start by briefly covering the fundamental concepts of linear piezoelectricity.
By the use of those concepts and elementary beam theory, we derive a simple and
valuable model of a stepped piezoelectric beam and we indicate possible amelio-
rations. We provide the governing equations of the resulting electromechanical
system both in the strong and weak formulations.

• In Chapter 3, we study the modal properties of a stepped piezoelectric beam.
The computation of the exact modal frequencies and mode shapes of a stepped
piezoelectric beam is not a trivial task, since piezoelectric elements introduce
several material discontinuities to the initially homogeneous beam. The modal
analysis is tackled by the exploitation of four different techniques relying on either
classical (assumed modes, finite-element analysis) or recent methods (least energy
norm method, special jump functions). The numerical results are also compared
with those arising from an experimental setup, which is aimed at the validation
of the proposed model.

• In Chapter 4, we present the homogenization of a beam clamped on both ends
excited by voltages applied at the periodically distributed piezoelectric elements.
Homogenization techniques allows for the transformation of differential equations
with rapidly oscillating coefficients into simpler ones (homogenized) characterized
by effective coefficients which are calculated from the solution of so-called unit
cell problem. The adopted technique is the classical two-scale convergence, which
enables to simultaneously obtain homogenized equations and prove convergences.
Numerical tests are performed and the homogenized model is validated with,
even, different boundary conditions.

• In Chapter 5, we review the basic concepts of the resonant piezoelectric shunting
technique. In addition to presenting the basic knowledge from the wide literature
in the field, we address some unexplored related topics. Indeed, we show a
detailed sensitivity analysis aimed at evaluating the effects of changes in the
electrical elements on the damping performances, conveyed in the system ∞-
norm. We treat the effects of large variations and provide closed-form expressions
for small perturbations. The results are used to model the effects of electrical
parameters’ uncertainties on the damping effectiveness. Finally we mention a
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possible application of piezoelectric shunting in identification processes and test
the method on an experimental prototype.

• In Chapter 6, we consider a PEM beam, whose electric control circuit is comprised
of a simple second order transmission line. Every piezoelectric element of the
array is connected to the adjacent one via a floating RL impedance. We initially
analyze the resulting PEM structure as a continuous medium by the usage of
its homogenized model and draw general considerations. Then, we resort to
the treatment of the electric circuit as a finite degrees of freedom system. The
H∞ control problem is solved and optimal values of the line inductance and the
line resistance are found for both the homogenized and the discrete cases, and
comparisons are made. We consider the effects of uncertainties of the inductances
on the system performances. The theoretical results are validated through an
experimental prototype. The resulting network is capable of effectively damp
narrow-band structural vibrations, moderate the required optimal inductances
and abate the influence of the uncertainties of the electric parameters on the
system performance.

• In Chapter 7, we consider a PEM beam, whose electric controller is the electric
analog of a beam endowed with structural damping (fourth order transmission
line) and constrained with dual boundary conditions. We study the vibrations
of the resulting PEM beam as continuous medium and prove that, by the use
of this network, multimodal vibrations can be suppressed and the damping effi-
ciency is mode independent. The treatment of the resulting system makes use of
fundamental features of the fourth order derivative operator which are reviewed.
A realization of a finite-difference approximation of the fourth order transmis-
sion line is presented and two distinct synthesis methods are indicated (multiport
synthesis and Lagrangian based synthesis). A PEM beam prototype is designed,
its technical feasibility and its damping effectiveness are confirmed. Finally, the
homogenized model of the electric circuit is questioned and the modal analysis
of its lumped realization is sketched.

• Chapter 8 is left for conclusions.



CHAPTER 2

Modeling stepped piezoelectric beams

Layers of electroded piezoelectric ceramics are integrated in structural elements, by ei-
ther surface bonding or direct embedding, resulting into piezocomposite structures. The
sensing and actuation capability of piezoelectric layers is used for designing vibration
control systems. To realize reliable devices, many research efforts have been devoted
to develop accurate structural models of piezoelectric composites and efficient numerical
tools for solving the associated governing equations. Complete review of the works about
beam and plate models of piezoelectric composites can be found in
[Saravanos and Heyliger (1999)], [Gopinathan et al. (2000)] and [Chopra (2002)];
for finite-element formulations one can refer to [Gaudenzi and Bathe (1995)],
[Mackerle (1998)], [Benjeddou (2000)] and [Mackerle (2003)].

The objective of the present Chapter is to present a simple 1D model of beams
hosting piezoelectric elements, which represents a reasonable trade-off between accu-
racy and complexity. We start by reviewing the basic concepts of linear piezoelec-
tricity, focusing on piezoceramics, which are very common in vibration control. Next,
we present a simple model of a piezoelectric transducer adhesively bonded on a host
beam. The classical Euler-Bernoulli beam theory is used for modeling the host beam
and rude hypotheses are made on the piezoelectric laminae behavior. The stepped
piezoelectric beam constitutive coefficients are computed by using simple formulas sim-
ilar to those found in [Crawley and de Luis (1987)], [Strambi et al. (1995)]and
[Chopra (2002)]. From a short review of the technical literature, possible ameliora-
tions of the needed constitutive parameters are suggested. The governing equations of
the stepped piezoelectric beam are presented in both the strong and the weak formula-
tions.

1. Linear piezoelectricity

We consider a solid body B which is composed of an anisotropic non homogeneous
linear piezoelectric medium, i.e. a non-magnetizable linear elastic dielectric that is not
heat and electric conducting. We assume that the body has a natural configuration B,
which will be used as reference. B is assumed to be a subset of the three-dimensional
Euclidean point space E3, which is referred to a Cartesian inertial frame of reference con-
sisting of an origin o and an orthonormal basis {e1, e2, e3}. Moreover, we refer only to
small electric fields and small deformation fields superimposed on the reference configu-
ration, so that the linear theory of piezoelectricity is adequate. In linear piezoelectricity,
the piezoelectric effect couples the equations of linear elasticity to the equations of elec-
trostatics. However, the electric variables are not purely static; because of their coupling
to the dynamic mechanical equations they vary in time and they are usually named
quasistatic. The governing equations are (see e.g. [Tiersten (1969)], [IEEE (1987)],
[Parton and Kudryavtev (1988)] and [Ikeda (1990)])

DivT = ρ ü, S =Sym∇u, DivD = 0, RotE = 0,
T = cES− eTE, D = ²

S
E+ eS

7
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where T is the stress tensor, D is the electric displacement vector, E is the electric
field vector, u is the displacement vector. cE, e and εS are the elastic, piezoelectric,
and electric permittivity tensors, respectively, whose Cartesian components satisfy the
symmetry properties:

cEijkl = cEijlk = cEjikl = cEklij,
S
ij =

S
ji, eijk = eikj.

Usually, in technical literature, the compressed matrix notation is used to study the
material symmetry of piezoelectric materials and the following indices correspondence
arises:

ij or kl p or q
11 1
22 2
33 3

23 or 32 4
31 or 13 5
12 or 21 6

The constitutive behavior becomes:

Tp = cEpqSq − ekpEk, Di = eiqSq +
S
ikEk,

where Sq indicates the engineering strains and repeated indices denote summation. By
the use of this notation the elastic and piezoelectric constants as well as the dielectric
constants can be written as matrices:

cE =

⎡⎢⎢⎢⎢⎢⎣
cE11 cE12 cE13 cE14 cE15 cE16
cE12 cE22 cE23 cE24 cE25 cE26
cE13 cE23 cE33 cE34 cE35 cE36
cE14 cE24 cE34 cE44 cE45 cE46
cE15 cE25 cE35 cE45 cE55 cE56
cE16 cE26 cE36 cE46 cE56 cE66

⎤⎥⎥⎥⎥⎥⎦ ,

e =

⎡⎢⎢⎢⎢⎢⎣
e11 e21 e31
e12 e22 e32
e13 e23 e33
e14 e24 e34
e15 e25 e35
e16 e26 e36

⎤⎥⎥⎥⎥⎥⎦ , ²S =

⎡⎣ S
11

S
12

S
13

S
12

S
22

S
23

S
12

S
23

S
33

⎤⎦ .
Therefore, the number of constitutive constants is in general 21 + 18 + 6 = 45.

In control applications, usually piezoceramics are used (see e.g. [Chopra (2002)]).
The ceramic is initially isotropic and, being composed of the random orientation of piezo-
electric crystallites, is inactive, i.e., the effects from the individual crystals cancel each
other and no discernible piezoelectricity is present. Poling is a commonly used method
to orient the domains (regions of equally oriented polarization vectors are known as do-
mains), by polarizing the ceramic through the application of a static electric field, say
in the 3 direction. Appropriate electrodes are applied to the ceramic and a sufficiently
high electric field is applied such that the domains rotate and switch in the direction
of the electric field. Hence, the isotropy is destroyed in the poling direction (see e.g.
[Jordan and Ounaies (2001)]). The material is transversely isotropic, with the axis
of transverse isotropy in the poling direction. The symmetry elements are an axis of
rotation of infinite order in the direction of poling and an infinite set of planes parallel
to the polar axis as reflection planes. In crystallographic notation (Hermann-Mauguin),
this symmetry is described as∞mm and is equivalent to the hexagonal polar crystal class
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6mm (see e.g. [IEEE (1987)]). The elastic, dielectric and piezoelectric matrices for the
cylindrical symmetry of poled PZT are shown in the equations below.

cE =

⎡⎢⎢⎢⎢⎢⎢⎣
cE11 cE12 cE13 0 0 0
cE12 cE11 cE13 0 0 0
cE13 cE13 cE33 0 0 0
0 0 0 cE44 0 0
0 0 0 0 cE44 0
0 0 0 0 0 1

2

¡
cE11 − cE12

¢

⎤⎥⎥⎥⎥⎥⎥⎦ ,

e =

⎡⎢⎢⎢⎢⎢⎣
0 0 e31
0 0 e31
0 0 e33
0 e15 0
e15 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ , ²S =

⎡⎣ S
11 0 0
0 S

11 0
0 0 S

33

⎤⎦ ,

and the number of constitutive coefficients reduces to 5 + 3 + 2 = 10. Sometimes it is
convenient to express the constitutive behavior in a different form, i.e.

Sp = sEpqTq + dkpEk, Di = diqTq +
T
ikEk,

where, for piezoceramics polarized in the 3 direction:

sE =

⎡⎢⎢⎢⎢⎢⎢⎣
sE11 sE12 sE13 0 0 0
sE12 sE11 sE13 0 0 0
sE13 sE13 sE33 0 0 0
0 0 0 sE44 0 0
0 0 0 0 sE44 0
0 0 0 0 0 2

¡
sE11 − sE12

¢

⎤⎥⎥⎥⎥⎥⎥⎦ ,(1.1)

d =

⎡⎢⎢⎢⎢⎢⎣
0 0 d31
0 0 d31
0 0 d33
0 d15 0
d15 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ , ²T =

⎡⎣ T
11 0 0
0 T

11 0
0 0 T

33

⎤⎦ .

2. Modeling a piezoelectric transducer

A bimorph pair of piezoceramics elements adhesively bonded on a host beam is shown
in Figure 1. A beam of rectangular cross section is considered, the origin of the frame
is located at the centroid of an arbitrary cross section, the coordinates x2 and x3 are
principal, and x1 = x is on the beam axis. The piezoelectric elements are poled in
the same direction, symmetrically positioned on the beam surfaces and their electrodes
are parallel connected in the so-called bender configuration (in this way pure bending
occurs see e.g. [Chopra (2002)]). The beam material is homogeneous and isotropic.
Furthermore, the beam behaves as a perfect conductor which short-circuit two electrodes
of the laminae to ground.
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V

Piezoelectric layer
poling direction

h

x

x3

lPx- x+

x2

aB




aP

Figure 1. Sketch of a bimorph pair bonded on a host beam.

We model the piezoelectric beam by using the classical Euler-Bernoulli beam theory.
Many interesting and rigorous works have been dedicated to increase the model accuracy
by introducing more and more state variables to describe higher order shear effects. How-
ever, the associated corrections have been shown to be relevant only for relatively thick
beams
[Maxwell and Asokanthan (2004)] and, especially for control applications, the Euler-
Bernoulli model is still the most popular because of its simplicity.

We assume that the thickness δ of the piezoelectric transducers is negligible com-
pared to the thickness h of the beam and that a perfect adhesive bonding between
the beam and the actuators is realized (for analysis of the effects of finite bonding see
[de Faria (2003)]). Moreover we assume that in each patch the stress and the elec-
tric field are of the following form (for more details see [Crawley and de Luis (1987)],
[Hagood and von Flotow (1991)] and [Hanagud et al. (1992)]):

T =

⎡⎢⎢⎢⎢⎢⎣
T11 (x)
0
0
0

T13 (x, x3)
0

⎤⎥⎥⎥⎥⎥⎦ , E =

⎡⎣ 0
0
E3

⎤⎦ .

In particular. the electric field is assumed to be constant and to lie in the 3 direction. Plane
stress in the 13 plane is assumed, where the only nonvanishing stresses are the traction
in the beam direction (depending only on x) and the 13 shear. These assumptions are
physically well-grounded when δ << h (see [Krommer (2001)]).

Once the constitutive equations in (1.1) are assumed, the one-dimensional constitutive
equations for the piezoelectric patches reduce to

(2.1)
∙
S11
D3

¸
=

∙
sE11 −d31
−d31 T

33

¸ ∙
T11
E3

¸
.
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We assume that the variation of the strain along the thickness of the actuators is
negligible, so that

Su
11 = −

h

2
w00 (x) , Sl

11 = +
h

2
w00 (x) ,

where the superscripts u and l indicate respectively the upper and lower lamina, w indi-
cates the beam deflection field (i.e. the component of the displacement along e3 evaluated
on the beam axis), prime indicates strong differentiation with respect to the abscissa x,
and the Euler-Bernoulli beam hypotheses have been used.

Furthermore, we assume that also the electrical displacement field is constant over the
thickness of the patch. As the flux of D3 over the two patches electrodes is equal to the
charge stored in each actuator, then integrating the electric displacement field over the
surface of the piezo-layer it is easy to obtain:

Q = 2
aP lP

¡
sE11

T
33 − d231

¢
sE11δ

V − haPd31
sE11

¡
w0
¡
x+
¢− w0

¡
x−
¢¢

,

where Q is the charge stored in the bimorph pair, aP and lP are respectively the width
and length of each lamina, w0 (x±) are the rotations of the cross sections of the beam at
the edges of the patches and V is the voltage drop measured with respect to the ground.
Sometimes the electromechanical coupling coefficient k31 (see e.g. [IEEE (1987)]) is used
and the previous expression takes the form:

Q = 2
aP lP

T
33

δ

¡
1− k231

¢
V − haPd31

sE11

¡
w0
¡
x+
¢− w0

¡
x−
¢¢

,

with:

k31 = d31

s
1

sE11
T
33

.

The bending moment along e2 at a generic cross section between x+ and x− is equal
to:

M (x) = −
Z aB/2

−aB/2

Z h/2+δ

−h/2−δ
T11x3dx2dx3,

where aB is the beam width. By considering the constitutive relation in (2.1) and ne-
glecting higher order terms, the above equation gives:

M (x) =

µ
EI +

h2aP δ

2sE11

¶
w00 (x) +

haPd31
sE11

V,

where I is the moment of inertia of the cross section (I = aBh
3/12) and E is the Young

modulus of the beam. Hence, the constitutive equations for the stepped beam element in
Figure 1 can be written as:

M (x) = kPw
00 (x)− gV,(2.2a)

Q = CV + g
¡
w0
¡
x+
¢− w0

¡
x−
¢¢

,(2.2b)

with:

kP = kB +
h2aP δ

2sE11
, kB = EI,(2.3a)

C = 2
aP
¡
sE11

T
33 − d231

¢
sE11δ

lP = 2
aP lP

T
33

δ

¡
1− k231

¢
,(2.3b)

g = −haPd31
sE11

.(2.3c)
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The constant kP is the bending stiffness of the three-layers piezocomposite beam for short-
circuited transducers (V = 0) and it is made of two summands, namely the beam bending
stiffness kB and the piezoelectrics’ stiffnesses. The constant C measures the piezoelectric
capacitance when the relative rotation at the laminae ends is zero (w0 (x+) = w0 (x−)).
The constant g measures the piezoelectric coupling, i.e. the additional bending moment
due to a unitary negative applied voltage and, simultaneously, the additional stored charge
due to a unitary relative rotation at the laminae ends1. From an electric point of view the
piezoelectric transducer can be viewed as a capacitor in parallel connection with a charge
source driven by the mechanical deformation; while, from the mechanical point of view it
adds stiffness to the host beam and it introduces a constant amount of bending moment
dependent only the applied voltage.

We emphasize that equations (2.3) provide the estimations of the constitutive para-
meters of a three layers composite beam modelled as an Euler-Bernoulli beam. Within
the same Euler-Bernoulli modeling of the composite beam, different techniques, see e.g.
[Maurini et al. (2004, 2)], can be used to estimate the above constitutive parameters.

Remark 1. For a single piezoelectric lamina bonded on the given structure, the trans-
ducer capacitance C, the added bending stiffness and the coupling coefficient g are half of
the bimorph value reported above.2

When one wants to consider more refined model of piezoelectric transducers, dispens-
ing with the hypothesis of negligible piezoelectric thickness, the problem of consistent
electromechanical modeling arises. Only recently beam models fully accounting for the
two-fold electromechanical coupling have been proposed (see e.g. [Kapuria et al. (2003)])
and consistent distributions of the electromechanical fields have been established (see
e.g.[Sze et al. (2004)]). A careful electromechanical modeling is required especially
for passive vibration control applications, where besides mechanical and coupling pa-
rameters, also the purely electrical properties, such as the piezoelectric capacitance, can
strongly influence the controller design (see e.g. [Hagood and von Flotow (1991)] and
[Andreaus et al. (2004)] for single-mode and multimodal passive vibration control, re-
spectively).

In the present work the stepped beam is assumed to be under plane stress conditions
in the 13 plane. Recent works (see [Beckert and Pfundtner (2002)] and
[Maurini et al. (2004, 2)]) have investigated the validity of this hypothesis by studying
the the effect of transversal (along the width) interactions between different layers. In par-
ticular, in [Maurini et al. (2004, 2)] it has been shown that it can lead to errors in the
estimation of the electromechanical constitutive parameters (especially for the equivalent
piezoelectric capacitance) and corrected constitutive equations have been proposed.

3. Modeling the whole stepped beam

In the present Section, we establish the equations of motion for the generic beam seg-
ment (distinguishing between purely elastic and piezocomposite ones) and the continuity
conditions between adjacent segments. Moreover, an alternative global weak formulation
of the problem, suitable for numerical analysis, is proposed.

1If the poling direction is reversed, the sign of g should be changed.
2When a single piezoelectric element is used, the host beam bends and extends (see e.g.

[Strambi et al. (1995)]).
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3.1. Geometry. We consider a beam of length l with NP adhesively bonded piezo-
electric transducers. The resulting stepped piezoelectric beam consists of N regular seg-
ments, each one of them being a beam with constant constitutive properties. Purely
elastic segments alternate with multi-layered segments composed of one elastic core and
one or two piezoelectric laminae, as that described in Section 2. The generic material
point of the beam axis is labelled by the abscissa x. The generic beam node is indicated
by Xh and the generic beam segment of length lh between Xh and Xh+1 is indicated by
Sh (see Figure 2). For the sake of convenience, we introduce the subsets of indices IB and
IP associated, respectively, to elastic and piezocomposite segments.

l1 l4l3

V2 V4

S1 S2 S3 S4

X1 X2 X3 X4 X5

l2

SNSN-2SN-3

XN+1XNXN-1XN-2XN-3

VN-1VN-3

lN-3 lN-2 lN-1 lN

x

Figure 2. Sketch of a stepped piezoelectric beam.

3.2. Equations of motion. The generic segment of stepped beam Sh is modelled as
an Euler-Bernoulli beam and, for plane motions, its kinematical state is described by the
beam axis deflection field wh and the voltage Vh across the terminals of the transducer
(which is defined only if Sh is a piezocomposite segment).

3.2.1. Strong Formulation.
Elastic segment. For a purely elastic segment Sh (h ∈ IB), the mechanical equilibrium

equation is (here and henceforth rotational inertia is neglected):

(3.4) Mh(x, t)
00 + ρBẅh (x, t)− bh(x, t) = 0,

where Mh is the bending moment, bh the external transversal load, t the time variable,
ρB is the linear mass density and the superimposed dot denotes the time-derivative. The
constitutive relation for the bending moment is

(3.5) Mh(x, t) = kBw
00
h (x, t) ,

where kB denotes the bending stiffness3. Hence, the mechanical equation of motion in the
generic elastic segment is given by

kBw
IV
h (x, t) + ρBẅh (x, t) = bh(x, t).

Piezocomposite segment. For a piezocomposite segment Sh (h ∈ IP ), the mechanical
equilibrium equation is completed by the charge equilibrium at the electric terminals of
the bimorph pair, namely:

Mh(x, t)
00 + ρhẅh (x, t)− bh(x, t) = 0,(3.6a)

Qh (t) = Q̂h (t) ,(3.6b)

3The stiffnesses of all the elastic segments and their linear mass densities do not vary.
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where Qh is the stored charge and Q̂h is the overall prescribed charge. That charge may be
externally blocked, either by open circuiting the piezoelectric terminal or by using a charge
source, or it may be related to the time evolution of an auxiliary control circuit, either
passive or active, coupled to the vibrating stepped beam. The electrical and mechanical
fields are coupled by constitutive equations of the type (2.2):

Mh(x, t) = khw
00
h(x, t)− ghVh (t) ,(3.7a)

Qh(t) = gh [w
0
h(Xh+1, t)− w0h(Xh, t)] + ChVh (t) ,(3.7b)

where gh is the piezoelectric coupling coefficient and Ch the piezoelectric capacitance4.
The inertial forces are taken into account as for (3.4), with properly modified linear mass
density. Hence, the electromechanical equations of motion for the generic piezocomposite
segment are

khw
IV
h (x, t) + ρhẅh (x, t)− bh(x, t) = 0(3.8a)

gh [w
0
h(Xh+1, t)− w0h(Xh, t)] + ChVh (t) = Q̂h(t).(3.8b)

Continuity conditions. The continuity conditions between the h-th and the (h+1)-th
segments are assured by imposing the continuity of deflections, rotations, bending moment
and shear forces, i.e.:

wh (Xh+1, t) = wh+1 (Xh+1, t) ,(3.9a)

w0h (Xh+1, t) = w0h+1 (Xh+1, t) ,(3.9b)

Mh (Xh+1, t) = Mh+1 (Xh+1, t)⇒ khw
00
h (Xh+1, t)− ghVh (t) = kBw

00
h+1 (Xh+1, t) ,(3.9c)

Th (Xh+1, t) = Th+1 (Xh+1, t)⇒ khw
000
h (Xh+1, t) = kBw

000
h+1 (Xh+1, t) ,(3.9d)

where, without loss of generality, we assume that the (h+ 1)-th element is elastic and the
h-th is piezocomposite. In the above expression Th = −M 0

h (x, t) indicates the shear force
in the h-th segment.

3.2.2. Weak formulation. The function defining the deflection of the entire beam axis
is defined in terms of the local deflections wh satisfying the kinematic continuity condi-
tions (3.9a) and (3.9b), and the prescribed kinematic boundary conditions by:

(3.10) w (x, t) =
NX
h=1

wh (x, t) (H (x−Xh)−H (x−Xh+1)) ,

where H is the Heaviside function. Whenever it is convenient we drop the distinction
between the mechanical properties of the elastic and piezocomposite segments, by writing
simply ρh and kh for the linear mass density and stiffness of the h-th segment.

A weak formulation for the mechanical equilibrium equations (3.4) (accounting for the
natural continuity conditions (3.9c), (3.9d), and homogeneous natural boundary condi-
tions) is obtained by imposing that for all the admissible (i.e. regular and satisfying the
kinematic boundary conditions) test fields w̃, the following equality holds:

(3.11)
NX
h=1

Z
Sh

Mh(x, t)w̃
00(x)dx =

NX
h=1

Z
Sh

bh(x, t)w̃(x)dx−
NX
h=1

Z
Sh

ρhẅ(x, t)w̃(x)dx.

4The stiffness, linear mass density, coupling coefficient and capacitance of the piezoelectric segments
are in general different for each active segment.
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By substituting the constitutive equations for the bending moment and the inertial ac-
tions, (3.11) becomes:

(3.12)
NX
h=1

Z
Sh

khw
00(x, t)w̃00(x)dx−

X
h∈IP

ghVh (t) (w̃
0(Xh+1)− w̃0(Xh)) =

−
NX
h=1

Z
Sh

ρhẅ(x, t)w̃(x)dx+
NX
h=1

Z
Sh

bh(x, t)w̃(x)dx.

We leave to Chapter 4 more mathematical details on the choices of suitable spaces for
the strong and weak formulations. The weak formulation above is the starting point to
derive approximate solutions to the coupled electromechanical problem by Galerkin-type
discretizations of the stepped beam.



CHAPTER 3

Modal analysis of stepped piezoelectric beams

Piezoelectric elements, besides providing the electromechanical coupling that can be
used for sensing and actuating, modify also the structural properties by adding mass and
stiffness and consequently material discontinuities. It has been shown that, especially for
lightweight structures, neglecting these additional contributions can result in significant
errors in estimating the modal properties of the overall structure. On the other hand, the
precise knowledge of the stepped beam modal properties represents the starting point for
the design of reduced-order controllers (see e.g. [Hagood and von Flotow (1991)]).
Therefore, accurate tools for the theoretical prediction of the modal properties of stepped
beams are needed. In literature, modal analysis is usually performed either by the assumed
modes methods (i.e. by expanding the solution of the stepped beam on a finite number
of mode shapes of the homogeneous beam, see e.g. [Hagood and von Flotow (1991)]
and [Park (2003)]), or by finite-element methods [Kusculuoglu et al. (2004)]. The
problem of finding exact modal properties of a stepped piezoelectric beam has been for-
mulated in [Yang and Lee (1994, 1)], [Yang and Lee (1994, 2)] and
[Maxwell and Asokanthan (2004)]. The main problem in this contest is to solve a
trascendental eigenvalue problem. The method applied in the cited papers is the nat-
ural extension of that used for uniform beams and requires the inversion of usually ill-
conditioned matrices for finding mode shapes. Consequently, it implies numerical prob-
lems that become quickly unsolvable when increasing the number of piezoelectric elements.

In this Chapter, different methods for finding mode shapes and natural frequencies of a
stepped piezoelectric beam are described. The starting point is the frequency domain for-
mulation of the system equations of motion. Aiming at deriving modal models to be used
in control applications, we study the modal characteristics of the stepped beam with the
piezocomposite segments simultaneously short-circuited to ground. Therefore, no distinc-
tion occurs between elastic and piezocomposite segments. The analysis of stepped beam
including passive electric circuits may be directly tackled by following similar procedures.

We propose four different methodologies (see [Maurini et al. (submitted)] for de-
tails). The first one is based on a reliable and efficient method recently proposed in
[Zhaohui et al. (2004)] to solve the exact trascendental eigenvalue problem, once for-
mulated in terms of the dynamic stiffness matrix, and it will be denoted as Last Energy
Norm (LEN) method. Hence, three different Galerkin methods for obtaining a discretized
finite-dimensional version of the systems are proposed and compared, by assessing their
accuracies with respect to results from the LEN method. Namely, besides the standard
and popular Assumed Modes (AM) method and Finite-Element (FE) method, we test a
novel enhanced version of the assumed modes method, where special jump functions are
introduced to enrich the standard basis functions (Enhanced Assumed Modes, EAM). Fi-
nally an experimental set up is described (see [Maurini et al. (submitted)] for details)
, aiming at the validation of the model proposed in Chapter 2. The numerical techniques
are tested on the considered prototype and general considerations are presented.

16
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1. Problem formulation

The eigenvalue problem for the stepped piezoelectric beam can be posed by looking
for harmonic solutions in the form

(1.1) wh(x, t) = wh(x)e
iωt,

where wh is the spectral component of the mechanical displacement. Hence, the N govern-
ing equations obtained from the beam equation by discarding external loads and setting
the piezoelectric voltages to zero, can be rewritten as

(1.2) wIV
h (ξh)− η4hwh(ξh) = 0,

where

(1.3) ηh = lh
√
ω 4

r
ρh
kh
, ξh =

x−Xh

lh
,

ξh being the normalized local coordinate of the h-th segment. The corresponding conti-
nuity conditions (3.9) of Chapter 2 become:

wh(1) = wh+1(0),(1.4a)

w0h(1) = w0h+1(0),(1.4b)

khw
00
h(1) = kh+1w

00
h+1(0),(1.4c)

khw
000
h (1) = kh+1w

000
h+1(0),(1.4d)

In addition, let us assume that Nw constraints (including at least 4 boundary conditions
at the beam ends) are imposed on the deflection fields. Finally, the eigenvalue problem
for the stepped piezoelectric beam is posed by looking for

(1) the angular frequencies ω (modal frequencies),
(2) the sets of N deflection fields wh (mode shapes),

satisfying the N beam equations equations (1.2) with the continuity conditions (1.4)
and the Nw mechanical boundary conditions. We explicitly remark that the whole modal
shape w is found by the use of (3.10) of Chapter 2, upon substituting wh with wh.

The corresponding weak formulation of the eigenvalue problem is obtained by substi-
tuting the harmonic type solution (1.1) into (3.12) of Chapter 2 and assuming vanishing
voltages.

2. Last Energy Norm method

The general solution of equation (1.2) is

(2.5) wh(ξh) = A1h cos(ηhξh) +A2h sin(ηhξh) +A3h cosh(ηhξh) +A4h sinh(ηhξh),

where A1h, A2h, A3h and A4h are arbitrary real constants. For each segment, we introduce
the nodal displacement vector wh

(2.6) wh =
£
wh (0) w0h (0) wh (1) w0h (1)

¤T
,

and the nodal force vector fh defined by:

fh =
£ −Th (0) −Mh (0) Th (1) Mh (1)

¤T
,

where

Mh (0) = khw
00
h (0) , Mh (1) = khw

00
h (1) , Th (0) = −M0

h (0) , Th (1) = −M0
h (1) ,

and superscripted T indicates matrix transposition.
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For a generic segment the nodal forces are related to nodal displacement by

fh = Khwh,

where the so-called segment dynamic stiffness Kh is given by:

Kh =
kh
r

⎡⎢⎢⎣
a −c f −d
−c b d g
f d a c
−d g c b

⎤⎥⎥⎦ ,
with a, b, c, d, f, g, r functions of ηh and lh, defined by by

a = −η3h (cosh (ηh) sin (ηh) + cos (ηh) sinh (ηh)) ,
b = l2hηh (− cosh (ηh) sin (ηh) + cos (ηh) sinh (ηh)) ,
c = lhη

2
h sin (ηh) sinh (ηh) ,

d = l2hηh (cosh (ηh)− cos (ηh)) ,
f = η3h (sin (ηh) + sinh (ηh)) ,

g = l2hηh (sin (ηh)− sinh (ηh)) ,
r = l3h (−1 + cos (ηh) cosh (ηh)) .

Next, by introducing the global 2 (N + 1) displacement-vector ŵ and imposing the
continuity conditions (1.4) one obtains the following equation

(2.7) K̂ ŵ = 0,

where the global 2 (N + 1) × 2 (N + 1) stiffness matrix, K̂ is found by assembling the
segment matrices with standard procedures (completely analogous to those used in FE
analysis). When accounting for the Nw mechanical boundary conditions the dynamic
stiffness is modified by deleting respective rows and columns1. For instance, for a cantilever
beam with the left side clamped one has to delete the first two rows and column and remove
the first two mechanical nodal displacements. Hence the following constrained version of
(2.7) is obtained

(2.8) KD(ω)w = 0,

in terms of the free n = (2N + 2−Nw) displacement-vector w. From the nodal vectors
w the deflection fields at each beam segment are found by using (2.6). The n × n dy-
namic stiffness matrix KD(ω) is real symmetric, non-negative definite and its entries are
trascendental functions of ω.

The problem of finding the eigenvalues of the stepped beam requires to find the roots of
the characteristic equation associated to equations (2.8). Due to the distributed nature of
the mechanical system the characteristic equation is trascendental in ω and finding is roots
is not trivial. Moreover, whenever a modal frequency is found, standard algorithms gen-
erally fail in finding associated mode shapes since the inversion of usually ill-conditioned
matrices is required. In what follows we apply the accurate algorithm developed in
[Zhaohui et al. (2004)] as an improvement of the well-known Wittrick-Williams algo-
rithm (see [Williams and Wittrick (1970)] and [Wittrick and Williams (1971)])
for the solution of trascendental eigenvalue problem. By means of this technique one
can find simultaneously the eigenvalues and the corresponding mode shapes without any
matrix inversion. In particular, the natural frequencies are found as the roots of the last

1More general linear mechanical constraints may be considered by properly reducing the appearing
matrices and degrees of freedom.
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energy norm, defined in equation (2.11), and the corresponding modal nodal displace-
ment vectors by the recursive relations (2.13). Once modal nodal displacement vectors
are found, the corresponding mode shape w(i) (x) at the given modal radian frequency ω(i)

is easily found from (2.5), (2.6) and the harmonic version of (3.10). Here and henceforth,
we will assume that the mode shape w(i) (x) is normalized so as to satisfy

NX
h=1

Z
Sh

ρh
¡
w(i) (x)

¢2
dx = m,

where m is the total mass of the stepped piezoelectric beam. Therefore the normalized
mode shape w(i) (x) is dimensionless.

2.1. Algorithm. In this Section, we briefly review the procedure presented in
[Zhaohui et al. (2004)] (and called in the present work LEN method) for solving the
trascendental eigenvalue problem (2.8).

At any trial frequency ω̄ the symmetric matrix KD can be decomposed in terms of a
non singular lower triangular matrix L with unit diagonal elements and a diagonal matrix
D:

(2.9) KD = LDL
T.

Or equivalently,
PTKDP = D,

where the upper triangular matrix P, satisfying

(2.10) P = L−T,

has been introduced. The last entry of D is called last energy norm and is given by

(2.11) dn = P
T
nKDPn,

where the matrix subscript k indicates the k-th column, i.e. Pk is the last column vector
of P. From equations (2.9) and (2.10) we find:

KDPn = (KDP)n = (LD)n ,

and by noticing that L is lower triangular with unit diagonal elements and D is diagonal
we obtain

(2.12) KDPn=dnIn,

where I is the n dimensional identity matrix. Therefore, if dn vanishes at ω̄, then ω̄ is a
natural frequency and Pn is the corresponding eigenvector. For every trial frequency ω̄,
the vector Pnmy be found without any matrix inversion, by using the following recursive
relations:

P1 = I1,(2.13a)

F1 = (KD)1 ,(2.13b)

Pk = Ik −
k−1X
i=1

(Fk)i
(Fi)i

Pi,(2.13c)

Fk = (KD)k −
k−1X
i=1

(Fk)i
(Fi)i

Fi,(2.13d)

where F is a lower triangular matrix defined by

(2.14) F = P−TD = KDP.
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In this way, the eigenvalues can be found as the root of the last energy norm dn com-
puted from (2.12) where Pn is evaluated from the above recursive relations. Therefore, the
natural frequencies and the corresponding eigenvectors are simultaneously found. More-
over, it is possible to show [Zhaohui et al. (2004)] that dn is a monotonically decreasing
function of the frequency ω and its graph is composed of infinite branches separated by
singular points, where the function is approaching −∞ from the left and +∞ from the
right. Therefore, for each branch there is a unique root of dn which can be easily found
by applying standard root-searching algorithms (e.g. bisection [Press (1992)]).

The problem of properly locating each eigenvalue, i.e. giving suitable upper and lower
bounds on any specific eigenvalue, can be solved by using the Wittrick-Williams mode
count function ([Wittrick and Williams (1971)])

J (ω̄) =
nX

k=1

Jk (ω̄) + s (KD (ω̄)) ,

giving the number J of natural frequencies lying below a trial frequency ω̄. The term Jk is
the number of natural frequencies of the k-th substructure which would be exceeded by ω̄ if
its ends were to be clamped (i.e. the nodal displacements set to zero). For Euler-Bernoulli
beams a simple formula for Jk may be derived (see [Williams and Wittrick (1970)]):

Jk = j − 1
2

³
1− (−1)j sign (1− cosh ηk cos ηk)

´
,

where ηk is defined in (1.3), where the trial frequency ω̄ replaces ω, j is the largest integer
< ηk/π and sign(·) gives the argument sign. The term s (KD (ω̄)) is the so-called sign
count of the symmetric matrix KD, which can be calculated as the number of negative
elements along the diagonal of D appearing in (2.9). From (2.14) and (2.10) we notice
that the elements of the diagonal matrix D equal the elements on the diagonal of the
lower triangular matrix F, which is found from the set of recursive relations.

With this procedure only the eigenvalues related to eigenvectors having zero displace-
ment for the last node are missed [Zhaohui et al. (2004)]. Indeed, by assuming that v̄
is the eigenvector associated to ω̄ and that dn (ω̄) 6= 0, from decomposition (2.9), one can
straightforwardly see that

0 = (KDv̄)n = dn (v̄)n ;

therefore, the nodal displacement (v̄)n vanishes. In [Zhaohui et al. (2004)] it is shown
how to determine these particular eigenvalues by re-numbering the nodes or, for modes
characterized by zero displacement at each node, by introducing some additional node.

3. Galerkin methods

Approximate solutions for the natural frequencies and mode shapes of the considered
stepped beam can be found starting from the weak formulation (3.12) in Chapter 2, by
using standard Galerkin methods.

In this framework, one looks for approximate harmonic solution for the mechanical
displacement of the form

(3.1) w(x, t) =
¡
φT(x)W

¢
eiωt,

where W and φ(x) are NG dimensional vectors, NG being the number of basis functions
for the Galerkin expansion of the mechanical displacement. The vector φ(x) collects the
NG basis functions, satisfying the kinematical boundary conditions, and W is composed
of the respective weighting coefficients.
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Hence, from the harmonic version of the weak formulation in (3.1) and by choosing
the test functions from the same space of the basis functions, one gets

−ω2MGW+KGW = 0,

where

KGij =
NX
h=1

kh

Z
Sh

³
φ(i)(x)

´00 ³
φ(j)(x)

´00
dx,

MGij =
NX
h=1

ρh

Z
Sh

φ(i)(x)φ(j)(x)dx,

and i, j vary in {1, ..., NG}. In this case, the eigenvalue problem is linear in ω2 and can
be easily solved with standard techniques (see e.g. [Press (1992)]).

As the number NG of basis functions increases, the solution becomes more accurate.
Nevertheless, ad-hoc choices of basis functions may lead to fast convergence of the ap-
proximate solutions to the exact one. In the following work we compare three different
methods for generating the basis functions. The first method is very common and relies
on the mode shapes of the homogeneous beam, i.e. the beam without the piezoelectric
elements (assumed modes). In the second method we propose to enrich the simple beam
basis function with special jump functions, which allow to grasp the curvature discon-
tinuities at the end of each segment. The third method is the standard Finite-Element
method for Euler-Bernoulli Beams, and is based on Hermitian basis functions.

3.1. Assumed Modes method. Very often, approximate solutions are found by
considering as basis functions the mode shapes of the continuous beam without the array
of piezoelectric elements, i.e. as the solutions of:

φIV (ξ)− η4φ(ξ) = 0, η = l
√
ω 4

r
ρB
kB

, ξ =
x

l
,

with given purely mechanical boundary conditions. The resulting approximate mode
shapes are smooth functions which are not describing the curvature discontinuities at the
interphase between elastic and piezocomposite segments.

For a cantilever beam the eigenvalues are the roots of the following trascendental
equation:

1 + cosh η cos η = 0.

The numerical values for the eigenvalues η(i) and the corresponding mode shapes φ(i) can
be found in several handbooks (see e.g. [Meirovitch (2000)]). The φ’s are normalized
to satisfy

(3.3)
NX
h=1

Z
Sh

ρh (φ (x))
2 dx = m.

3.2. Enhanced Assumed Modes method. A more refined approximate solution
can be found by completing the homogeneous beam mode shapes with suitable discontinu-
ity functions (see e.g. [Krongauz and Belytschko (1998)] and [Batra et al. (2004)])
aiming at introducing in the mode shapes the effects of material discontinuities. Here we
propose to introduce NE discontinuity functions

©
χ(h)

ªNE

h=1
; each one of them is generated

as the static deflection of the homogeneous beam when a concentrated moment is applied
in correspondence of the h-th interface between elastic and piezocomposite segments in
the stepped beam.
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For a left cantilevered beam, with the first and the last elastic segments NE = 2NP ,
the solution of the simple static problem of a concentrated moment applied at Xh+1 is

(3.4) χ(h) =

⎧⎪⎨⎪⎩
αh

x2

2l
, x ∈ [0,Xh+1]

αh
Xh+1

2l
(2x−Xh+1) , x ∈ [Xh+1, l]

.

The constant αh can be chosen in order to normalize the special jump functions as in
(3.3). The introduced function χ(h) (3.4) is continuous with its first derivative, satisfy the
boundary conditions and its second derivative jumps at Xh+1 from αh to 0.

3.3. Finite-Element method. In the Finite-Element work each beam segment is
divided into a number of disjoint elements. The trial solution in the generic element is
constructed from the values of the deflection and rotation at the element nodes (nodal
displacements) by using classical Hermite polynomials. Therefore W is comprised of the
amplitudes of the nodal displacements at all the beam nodes and the mass and stiffness
matrices of the e-th element are (see e.g. [Juang and Phan (2001)]):

Me = ρe

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

13

35
le

11

210
l2e

9

70
le − 13

420
l2e

11

210
l2e

1

105
l3e

13

420
l2e − 1

140
l3e

9

70
le

13

420
l2e

13

35
le − 11

210
l2e

− 13
420

l2e −
1

140
l3e −

11

210
l2e

1

105
l3e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.5a)

Ke = ke

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12

l3e

6

l2e
−12
l3e
− 13
420

l2e

6

l2e

1

105
l3e − 6

l2e

2

le

−12
l3e

− 6
l2e

12

l3e
− 6
l2e

− 13
420

l2e
2

le
− 6
l2e

4

le

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(3.5b)

where le is the element size, and the values of the mass density ρe and stiffness ke are those
of the segment including the e-th element. The global stiffness, mass and coupling ma-
trices are computed by assembling the element matrices and by imposing the kinematical
constraints.

4. Experimental setup

A cantilever aluminum beam (Al6061-T6) hosting two surface bonded bimorph pairs
of piezoelectric transducers (Piezo-System T110-H4E-602) has been realized2, so as to
form a stepped piezoelectric beam composed of 5 regular segments, three elastic and two
piezoelectric (see Figure 1 and 2).

2All the experimental tests have been performed in the Laboratory of “Meccanica delle Vibrazioni”
of the University of Rome “La Sapienza” directed by Prof. Sestieri.
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Table 1. Dimensions of the stepped piezoelectric beam.

Dimensions (mm)
l1 = 5.0 l2 = 35.65 l3 = 6.0 l4 = 36.5 l5 = 117.0
l = 201.0 aP = 17.6 aB = 20 δ = 0.267 h = 2.85

Top view
l1 l4l3 l5

V2

Side view

V4

l

S1 S2 S3 S4 S5

X1 X2 X3 X4 X5
X6

l2

Figure 1. Sketch of the stepped beam under experimental investigations.

Figure 2. Picture of the stepped prototype.

Its frequency response has been measured and its relevant modal properties have been
identified. The corresponding geometric and material properties are reported in Tables
1 and 2. In particular ρVB,P represent the volumetric mass densities and the linear mass
densities are easily computed from the volumetric ones with

ρB = ρVBaBh, ρP = ρB + 2δaPρ
V
P

where ρP is denoting the common linear mass density in the piezocomposite segments
and the factor of 2 is due to the presence of 2 active laminae. The piezoelectric patches
have been adhesively bonded on the beam by a thin-layer of non-conductive epoxy resin
and each bimorph pair has been electric interconnected as shown in Figure 1 of Chapter



4. EXPERIMENTAL SETUP 24

Table 2. Material data for aluminum and piezoelectric ceramics.

Aluminum (Al6061-T6) Piezoelectric ceramics (PZT-5H-S4-ENH)
ρVB 2700 kg/m3 ρVP 7800 kg/m3

E 69× 109 N/m2 ¡
sE11
¢−1

62× 109 N/m2
d31 −320× 10−12 m/V
T
33 3800ε0

2, in the so-called bender configuration. The single piezoelectric transducer is made of a
layer of thickness-polarized piezoelectric ceramic (PZT-5H) having the upper and lower
surfaces electroded by a nickel film. The electric contact between the lower electrode of
each transducer and the grounded beam has been achieved by applying a small spot of
electrically conductive adhesive at the central region of the piezoelectric transducer, where
interfacial stresses are low (see [Crawley and de Luis (1987)]).

The beam frequency response has been determined by exciting the structure with a
frequency sweep signal at one of the two piezoelectric pairs and measuring the beam tip
velocity by a laser velocimeter (Polytec OFV 350) (see Figure 3 for the experimental
setup).

PCI-4452

AT-MIO
16E-10

Laser velocimeter
controller

Laser
velocimeter

PC: Lab View

Amplifier

Figure 3. Experimental Setup.

The input signal has been generated digitally in Labview, converted by the D/A con-
verter National Instruments AT-MIO-16E-10, and amplified by ad-hoc designed voltage
amplifier. The analog output of the laser and the voltage applied at the exciting trans-
ducer have been measured by the A/D converter National Instruments PCI-4452 and a
personal computer was used for digital signal processing. The entire experimental set up
was designed in order to do not alter the stepped beam modal properties. Noninvasive
measurements have been performed by exciting the beam with one of the surface-bonded
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Table 3. First four natural frequencies of the stepped beam with short-
circuited piezoelectric transducers. Comparisons between experimental val-
ues and numerical values obtained with the different methods. The per-
centage errors with respect to the values found with the LEN method are
reported.

f (1) (Hz) f (2) (Hz) f (3) (Hz) f (4) (Hz)

Experimental
66.25
(−1.56%)

360.2
(−1.54%)

990
(−1.79%)

1943
(−1.37%)

LEN 65.3662 360.596 991.088 1941.85

AM
65.7985
(+0.66%)

362.174
(+0.44%)

995.802
(+0.48%)

1952.54
(+0.55%)

EAM
65.3666

(+5.04E−4%)
360.604

(+2.13E−3%)
991.148

(+6.01E−3%)
1941.99
(+7.18E−3%)

FE
65.3664

(+2.05E−4%)
360.611

(+4.15E−3%)
991.325
(+0.0238%)

1943.88
(+0.104%)

Uniform beam
57.61
(−11.9%)

361.02
(−0.117%)

1010.86
(+1.99%)

1980.88
(+2.01%)

transducers (included in the model, being part of the stepped beam itself), and by mea-
suring the tip velocity with the laser-vibrometer (which does not introduce any additional
mass to the structure).

In the first line of Table 3 the measured natural frequencies of the first four structural
modes f (1), f (2), f (3) and f (4) are reported.

5. Numerical comparisons

The constitutive properties of the considered stepped beam resulting from formulas
(2) are:

k1 = k3 = k5 = kB = 2.66215Nm
2,(5.1a)

g2 = g4 = g = 1.006× 10−3NmV−1,(5.1b)

k2 = k4 = kP = 3.85884Nm
2,(5.1c)

while the linear mass densities are:

ρ1 = ρ3 = ρ5 = ρB = 0.1539 kgm
−1,

ρ2 = ρ4 = ρP = 0.228041 kgm
−1.

The numerically computed first four natural frequencies for short-circuited piezoelectric
elements are listed in Table 3 and the results obtained with the proposed numerical meth-
ods are compared. The values computed with the LEN method are chosen as a reference
for the approximate methods and the errors are tabulated in brackets. Indeed, the LEN
methods is based on the exact formulation of the trascendental eigenvalue problem for the
infinite dimensional stepped piezoelectric beam and errors are limited to those implied
by the numerical accuracy used for computing the roots of the last energy norm and can
be easily controlled. On the other hand, the results obtained by the other methods, in
addition to the numerical errors implied by the numerical computation of the solution of
the associated (linear) eigenvalue problems, are affected by the errors due to the approx-
imation of the infinite dimensional system with a finite dimensional one. In particular,
the numerical results computed through the assumed modes method relies on the first
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Table 4. Comparison between the four numerical methods for modal
analysis

LEN AM EAM FE
Accuracy

on frequencies
– Good High High

Accuracy

on mode shapes
– Poor High Acceptable

Basis functions –

Mode shapes of

the homogeneous

beam

Mode shapes

oft he

homogeneous

beam and

special jump

functions

Hermite

polynomials

Stiffness matrix

Trascendental

function

of the frequency,

symmetric,

banded

Symmetric,

not-banded

Symmetric,

not-banded

Symmetric,

banded

Assembly of

matrices
Easy Not needed Not needed Easy

Accuracy on

modal curvatures
– Very poor High

Poor, without

post-processing

eight mode shapes of the homogeneous cantilever beam (8 d.o.f.); in the enhanced as-
sumed modes method four special jump functions of the type (3.4) are used to enrich the
assumed modes basis functions (12 d.o.f.); in the finite-element formulation each beam
segment is divided into elements of the same length and the first segment is discretized
with one element, the second with three, the third with one, the fourth with three, and
the fifth with five (13 nodes and 26 d.o.f.).

In Figure 4, the first four mode shapes and modal curvatures are plotted by using all
of the four proposed numerical methods. In the Finite-Element work, only the average
element curvatures, calculated as the mean value of the nodal rotations, are reported.

Table 4 summarizes the characteristic features of the presented numerical methods,
based on the analyses of the achieved results and on the efforts required to get the numeri-
cal solutions. Although the assumed modes method is the most popular, it exhibits several
drawbacks. Indeed, due to the excessive smoothness of the assumed basis functions, it is
not capable to capture the curvature jumps at the material discontinuities and does not
lead to very accurate estimations of the beam natural frequencies. On the other hand,
the special jump functions introduced in its enhanced version allow to simultaneously
increase the frequencies accuracies and account for the effects of the beam segmentation.
The finite-element method provides accurate estimates of the lowest natural frequencies.
However, the mode shapes are not accurately computed, due to the lack of continuity of
the curvatures at the element junctions. It is remarkable that, while the errors implied by
the finite-element estimations is rapidly increasing with the mode number, the enhanced
assumed modes method provide good estimates for even higher natural frequencies.
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Figure 4. Mode shapes of the stepped beam computed by the use of the
presented algorithm (dashed blu: homogeneous beam; dashed orange: LEN;
dotted grey: FE; dashed black: EAM; dashed purple: AM). The abscissa
is in meters.



CHAPTER 4

Homogenized model of periodic stepped piezoelectric beams

When studying stepped piezoelectric beams with a considerable number of periodi-
cally distributed piezoelectric transducers, it is advisable to adopt homogenized models.
In this way differential equations with rapidly oscillating coefficients (density, stiffness
and coupling) are transformed into simpler ones (homogenized) characterized by effective
coefficients which are calculated from the solution of the so-called unit cell problem. In the
present chapter, we present the homogenization of a beam clamped on both ends excited
by constant voltages applied at the periodically distributed piezoelectric elements. The
used technique is the classical two-scale convergence (see e.g. [Allaire (1992)]). The
main advantage of this technique lies in its self-containedness, since it enables to simul-
taneously obtain the homogenized equations and prove the convergence. Similar results
may be obtained by the application of the method of asymptotic formal expansion (see
e.g. [Sanchez-Palencia (1980)]), but a subsequent proof is required. The presented
model is validated through some numerical tests and also different boundary conditions
are treated.

The study of more complicated problems involving geometric nonlinearities
[Hoffman and Botkin (1998)], transient problems [Hoffman and Botkin (2000)],
reinforcements [Kalamkarov and Georgiades (2002)] and electric circuits
[Canon and Lenczner (1999)], [Kader (2001)], [Lenczner and Mercier (2004)]
may be worked out similarly. The notation is slightly different from the previous Chapters,
since spatial derivatives are performed with respect of two distinct space variables (two
scales) and it is convenient to account for the structure periodicity.

1. Problem setting

1.1. Geometry. In this instance, we assume that the NP equal piezoelectric trans-
ducers are periodically bonded on the beam of length l (as shown in Figure 1). The
resulting stepped piezoelectric beam is a periodic structure. Purely elastic segments al-
ternate with piezocomposite segments. The length of each piezocomposite segment is
denoted by lP , the length of each elastic segment is called d. Therefore the period of the
structure, say ε, is equal to lP + d. The region of the stepped beam domain S = [0, l]
occupied by the i-th piezoelectric element is denoted by SPi, the overall piezoelectric do-

main by SP =

NP[
i=1

SPi and the overall elastic domain by SB = S\SP . It is also convenient

to introduce the unit cell Y = [0, 1] and its subset YP =
∙
d

2ε
, 1− d

2ε

¸
, representing the

piezoelectric covering on the unit cell.

1.2. Governing equations. The stepped beam is modelled as an Euler-Bernoulli
beam and, for plane motions, its kinematical state is simply described by the beam axis
deflection field wε, where the superscript ε emphasizes the dependence of the solution on

28
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l

x

ε

lP
d/2 d/2

Figure 1. Sketch of the periodic stepped piezoelectric beam.

the period of the structure. The governing equation reads

(1.1) D2
¡
kD2 (wε)

¢
= g

NPX
i=1

ViD
2 (Ci) + b,

where Ci is the characteristic function of SPi, k is the bending stiffness, g the piezoelectric
coupling coefficient, D is the weak space-derivative and b the external applied load. The
stiffness is varying along the beam abscissa x according to

k (x) =

½
kP , x ∈ SP
kB, x ∈ SB

.

The continuity of the deflection, the slope, the bending moment and the shear are ensured
by the following additional interface conditions, which are equivalent to (3.9) in Chapter 2:

(1.2) [|wε|] = 0, [|D (wε)|] = 0,
"̄̄̄̄
¯kD2 (wε)− g

NPX
i=1

ViCi

¯̄̄̄
¯
#
= 0,

£̄̄
D
¡
kD2 (wε)

¢¯̄¤
= 0,

where [|(·)|] indicates the jump of (·) at the generic discontinuity (interphase between
different segments) in the stepped beam. For the sake of simplicity we consider clamping
boundary conditions:

(1.3) wε|x=0 = 0, D (wε)|x=0 = 0, wε|x=l = 0, D (wε)|x=l = 0.
We assume that the applied control voltages are chosen in order to sample and hold

the average of a voltage distribution, v ∈ L2 (S) , prescribed over the whole beam, i.e.

(1.4) Vi = hviSPi =
1

lP

Z
SPi

v (x) dx,

where the bracketsh·i indicate mean values. Furthermore we assume that also the distrib-
uted load b is in L2 (S) . Next, we define the voltage distribution vε being equal to v on the
elastic segment and to the averaged constant voltages on the piezocomposite segments.
We emphasize that as ε goes to zero vε converges to v in L2 (S) .

The periodicity of the stepped beam constitutive behavior, may be accounted for by
introducing the Y -periodic function k# defined by:

k# (y) = kPC (y) + kB (1− C (y)) ,
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where C is the characteristic function of YP on Y. Therefore (1.1) becomes

(1.5) D2
³
k#
³x
ε

´
D2wε

´
= gD2

³
vεC

³x
ε

´´
+ b.

2. Two-scale convergence

2.1. Weak Formulation. A weak formulation for the considered problem may be
found by multiplying equation (1.5) by a smooth test function w̃ (satisfying the boundary
conditions (1.3)), integrating twice in space, accounting for the boundary conditions (1.3),
and the continuity conditions (1.2). Therefore, we obtain the integral equation:

(2.1)
Z
S

h
k#
³x
ε

´
D2 (wε) D2w̃ − gvεC

³x
ε

´
D2w̃ − bw̃

i
dx = 0,

which should hold for every admissible test function.
The previous statement may be made rigorous by the following definition:

Definition 1. A function wε ∈ H2
0 (S) is a weak solution of the system (1.1), (1.3)

and (1.2) if (2.1) holds for all w̃ ∈ H2
0 (S) .

2.2. A-priori estimates. The lemma below provides an important a-priori estimate
on the solution which enables us to apply the fundamental results in [Allaire (1992)].

Lemma 1. For every ε there exists a unique weak solution wε. Furthermore, it is
possible to find a constant C independent of ε such that:

(2.2) kwεkH2(S) < C.

Proof. Uniqueness: the weak formulation in (2.1) may be written in the form

A (wε, w̃) = L (w̃) , wε, w̃ ∈ H2
0 (S)

where

A (wε, w̃) =

Z
S

k#
³x
ε

´
D2 (wε) D2w̃ dx, L (w̃) =

Z
S

gvεC
³x
ε

´
D2w̃ + bw̃ dx.

It can be shown that A is bilinear, continuous and coercive in H2
0 (S) , and that L is

a linear continuous functional on H2
0 (S) (i.e. L ∈ H−2 (S)). Therefore, by the applica-

tion of the well-known Lax-Milgram theorem (see e.g. [Lebedev and Vorovich (2002)]
and [Sanchez-Hubert and Sanchez-Palencia (1989)]), we are guaranteed that there
exists a unique solution of the considered problem and that

(2.3) kwεkH2(S) ≤
1

α
kLkH−2(S) ,

where α is the coercivity constant. The bilinearity of A and the linearity of L are trivial.
A is continuous since

|A (wε, w̃)| =
¯̄̄̄Z

S

k#

³x
ε

´
D2 (wε) D2w̃ dx

¯̄̄̄
≤ kP

°°D2 (wε)
°°
L2(S)

°°D2w̃
°°
L2(S)

≤ kP kwεkH2(S) kw̃kH2(S) .

The first inequality stems from the stiffness definition and from the Cauchy-Schwartz
inequality, and the second one from Sobolev spaces norm definition. A is coercive since

|A (wε, wε)| =
¯̄̄̄Z

S

k#
³x
ε

´ ¡
D2 (wε)

¢2
dx

¯̄̄̄
≥ kB

°°D2 (wε)
°°2
L2(S)

≥ α kwεkH2(S) .
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The first inequality stems from the stiffness definition and the L2 norm definition, and
the second one from Poincaré-Friedrichs inequality. The linear functional L is continuous
since it is bounded, indeed:

|L (w̃)| =
¯̄̄̄Z

S

gvεC
³x
ε

´
D2w̃ + bw̃ dx

¯̄̄̄
≤
¯̄̄̄Z

S

gvεC
³x
ε

´
D2w̃ dx

¯̄̄̄
+

¯̄̄̄Z
S

bw̃ dx

¯̄̄̄
≤ |g| kvεkL2(S)

°°D2 (w̃)
°°2
L2(S)

+ kbkL2(S) kw̃kL2(S) ≤
³
|g| kvεkL2(S) + kbkL2(S)

´
kw̃kH2(S) .

The first inequality is derived from the triangle inequality, the second one from the ap-
plication of the Cauchy-Schwartz inequality and the last one from Sobolev spaces norm
definition.
Inequality (2.2): The coercivity constant in (2.3) is clearly independent of ε. The

norm of L is bounded by
³
|g| kvεkL2(S) + kbkL2(S)

´
, therefore we only need to prove that

kvεkL2(S) is independent of ε. To this aim

kvεk2L2(S) =
Z
S/SP

v2dx+

NPX
i=1

ÃZ
SPi

vdx

!2
≤ kvk2L2(S/SP ) +

NPX
i=1

kvk2
L1(SPi)

≤ kvk2L2(S) .

The applied inequalities follow directly from standard integration theory. ¤
Remark 2. Since H2

0 (S) is a separable Hilbert Space, the boundedness of the sequence
wε pointed out in the previous lemma, assures that the sequence wε contains a weak con-
vergent subsequence in H2

0 (S) (see e.g. [Lebedev and Vorovich (2002)]). Now we
derive the equation that defines the limit function w (homogenized equation) and show
that it admits a unique solution and that its coefficients are independent of the chosen
subsequence.

2.3. Two-scale homogenized system. Following the comments in the previous
remark, we define two-scale convergence by (see [Allaire (1992)]):

Definition 2. Let ζε ∈ L2 (S) , ζ ∈ L2 (S × Y ) . It is said that ζε 2−scale→ ζ if

lim
ε→0

Z
S

ζε (x)ψ
³
x,

x

ε

´
dx =

Z
S

Z
Y

ζ (x, y)ψ (x, y) dydx,

for every ψ ∈ C∞0
¡
S;C∞# (Y )

¢
, C∞# (Y ) being the space of Y periodic functions of

C∞ (−∞,∞) , and C∞0 (S) being the set of infinitely differentiable functions on S vanish-
ing at 0 and l with all their derivatives.

The main result of the homogenization theory that we use (see [Allaire (1992)]) is
based on the hypothesis that kwεkH2(S) < C and yields the existence of εj, w ∈ H2

0 (S)

and w̄ ∈ L2
¡
S;H2

# (Y )
¢
, H2

# (Y ) being the completion of C∞# (Y ) for the norm of H2 (Y ) ,
such that

(2.4)
wεj weak→ w, in H2

0 (S) ;

wεj 2−scale→ w, D (wεj)
2−scale→ Dw, D2 (wεj)

2−scale→ D2w +D2
yw̄.

In order to get the homogenized equations we set

w̃ (x) = η (x) + ε2ξ
³
x,

x

ε

´
, η ∈ C∞0 (S) , ξ ∈ C∞0

¡
S;C∞# (Y )

¢
in the weak formulation (2.1). We remark that, as suggested by [Veiga (1995)], only
even powers in ε are sufficient for achieving at once the homogenized and the unit-cell
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problem. Therefore, we get:

(2.5)
Z
S

h
k#
³x
ε

´
D2 (wε)− gvεC

³x
ε

´
− b
i

h
D2η (x) +D2

yξ
³
x,

x

ε

´
+ εDyDξ

³
x,

x

ε

´
+ ε2D2ξ

³
x,

x

ε

´i
dx = 0.

By considering

ψ1

³
x,

x

ε

´
:= k#

³x
ε

´h
D2η (x) +D2

yξ
³
x,

x

ε

´
+ εDyDξ

³
x,

x

ε

´
+ ε2D2ξ

³
x,

x

ε

´i
,

and

ψ2

³
x,

x

ε

´
:= −gC

³x
ε

´h
D2η (x) +D2

yξ
³
x,

x

ε

´
+ εDyDξ

³
x,

x

ε

´
+ ε2D2ξ

³
x,

x

ε

´i
as test functions1, we may pass (2.5) to the two-scale limit. We note that as ε goes to zero
the terms multiplied by ε or ε2 goes uniformly to zero, since for every ξ ∈ C∞0

¡
S;C∞# (Y )

¢
the following obvious bounds hold:

min
x∈S
y∈Y

ξ (x, y) ≤ ξ (x, y) ≤ max
x∈S
y∈Y

ξ (x, y) .

Moreover we remind that vε converges to v in L2 (S) . Therefore, we obtain the following

(2.6)
Z
S

Z
Y

£
k# (y)

¡
D2w +D2

yw̄
¢¤ £

D2η (x) +D2
yξ (x, y)

¤
dydx =Z

S

Z
Y

gvC (y)
£
D2η (x) +D2

yξ (x, y)
¤
dydx+

Z
S

bη (x) dx,

which corresponds to two distinct equations:

(2.7)
Z
S

Z
Y

£
k# (y)

¡
D2w +D2

yw̄
¢− gvC (y)

¤
D2η (x) dydx =

Z
S

bη (x) dx,

and

(2.8)
Z
S

Z
Y

£
k# (y)

¡
D2w +D2

yw̄
¢− gvC (y)

¤
D2

yξ (x, y) dydx = 0.

An easy integration by parts show that the above relation is a variational formulation
associated to the following two-scale homogenized system:

(2.9)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D2

y

¡
k# (y)

¡
D2w +D2

yw̄
¢¢
= D2

y (gvC (y)) , in S × Y

D2
¡R

Y

¡
k# (y)

¡
D2w +D2

yw̄
¢¢

dy
¢
= D2

¡R
Y
gvC (y) dy

¢
+ b, in S

w|x=0 = 0, Dw|x=0 = 0, w|x=l = 0, Dw|x=l = 0,
y → w̄ (x, y) Y -periodic.

Endowing the Hilbert space H2
# (S)× L2

¡
S;H2

# (Y )
¢

with the norm
kD2wkL2(S) +

°°D2
yw̄
°°
L2(S×Y ) we easily check the conditions of Lax-Milgram theorem on

(2.6) and we therefore establish the uniqueness of the solution.

1The resulting test functions are not smooth, but we still can pass to the two-scale limit, since (see
[Allaire (1992)]) they two-scale converge strongly to their limits.
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2.4. Homogenized equation and cell problem. In order to give a better under-
standing of the limit problem, it is advisable to manipulate (2.9) in order to decouple the
two equations into a homogenized equation on S and cell problem on Y. To this aim we
express the auxiliary deflection field w̄ as the linear combination

(2.10) w̄ (x, y) = N1 (y)D
2w (x) +N2 (y) gv (x)

of the voltage field and the curvature of the limit deflection. By substituting (2.10) into
(2.8) and by taking test functions of the form ξ = ξ1 (x) ξ2 (y) we obtain the following cell
problems:

(2.11)

( R
Y
k# (y)

¡
1 +D2

yN1 (y)
¢
D2

yξ2 (y) dy = 0R
Y

¡
k# (y)D

2
yN2 (y)− C (y)

¢
D2

yξ2 (y) dy = 0
, ξ2 ∈ H2

# (Y ) .

By following [Botkin (1999)], it is possible to show that (2.11) is equivalent to

(2.12)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k# (y)

¡
1 +D2

yN1 (y)
¢
=

¿
1

k#

À−1
Y

k# (y)D
2
yN2 (y)− C (y) = −

¿
1

k#

À−1
Y

¿
C

k#

À
Y

, for a.e. y ∈ Y.

The computation of the above mean values gives:

(2.13)
¿
1

k#

À
Y

=
1

kP

µ
cf +

kP
kB
(1− cf)

¶
,

¿
C

k#

À
Y

=
1

kP
cf

where the coverage factor cf =
lP
ε

is introduced.

By substituting equations (2.12) into the second equation of (2.9) we obtain the ho-
mogenized equation: ¿

1

k#

À−1
Y

D4w = g

¿
1

k#

À−1
Y

¿
C

k#

À
Y

D2v + b,

or, by using the formulas in (2.13)

(2.14) khomD
4w = ghomD

2v + b,

where the homogenized bending stiffness khom and coupling coefficient ghom are given by

(2.15) khom =
kP

cf +
kP
kB
(1− cf)

, ghom = g
cf

cf +
kP
kB
(1− cf)

.

When the beam is fully covered by piezoelectric elements (cf = 1), the homogenized
constitutive coefficients become:

khom = kP , ghom = g.

3. Numerical tests

When discarding the distributed load, the exact solution of the considered sample sta-
tic problem in each beam segment is a third order polynomial. Therefore, by considering
each segment to be an element of a FE mesh and using standard Hermitian basis func-
tions as element trial function the exact solution is achieved. The global stiffness matrix
is obtained by assembling alternating matrices of the type (3.5) of Chapter 3. The load
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vector is obtained by assembling the element load vectors (assuming to excite the beam
only with the piezoelectric elements):

F =
£
0 −g 0 g

¤T
after multiplication with the element imposed voltage (Vi for piezocomposite segments
and 0 for elastic ones).

We refer again to the aluminum beam and piezoceramic transducers described in
Table 2 of Chapter 3. As an application sample, we consider a parabolic applied voltage
in (2.14) of the following form:

v (x) = Vmax
4x (l − x)

l2
,

with Vmax = 100V. The solution of the homogenized equation is

w (x) = Vmax
ghomx

2 (l − x)2

3khoml2
.

On the other hand, in the refined model the applied voltages are given by (1.4), and
the solution is derived by following the aforementioned finite-element type analysis. We
consider two different distributions of piezoelectric transducers on the considered host
beam; namely: we assume the covering factor to be 40% and we consider 5 and 15
transducers. In Figures 2 and 3 we report the deflection (in meters) of the homogenized
model (solid line) and that of the refined model sampled at the boundary nodes of each
beam segment (dots).

Figure 2. Comparison between the refined (dots) and homogenized pre-
dictions (solid lines) with 5 piezoelectric transducers (beam clamped at both
ends).
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Figure 3. Comparison between the refined (dots) and homogenized pre-
dictions (solid lines) with 15 piezoelectric transducers (beam clamped at
both ends).

Even if the proof has been presented for a beam clamped at both ends, the same results
may be extended to other boundary conditions. For example, for a cantilever beam the
governing equation (2.15) remains unchanged, but the function w is not in H2

0 (S) and
the proper boundary conditions are

w|x=0 = 0, D (w)|x=0 = 0, khomD
2 (w)− ghomv

¯̄
x=l
= 0, khomD

3 (w)− ghomD (v)
¯̄
x=l
= 0.

As an application sample we consider a constant applied voltage

v (x) = Vmax,

which yields the following homogenized solution:

w (x) = −Vmax ghom
2khom

x2.

In Figures 4 and 5 we report the deflection of the homogenized model (solid line) and
that of the refined model (dots) for the same cases analyzed above.

Figure 4. Comparison between the refined (dots) and homogenized pre-
dictions (solid lines) with 5 piezoelectric transducers (camtilever beam).
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Figure 5. Comparison between the refined (dots) and homogenized pre-
dictions (solid lines) with 15 piezoelectric transducers (cantilever beam).



CHAPTER 5

Resonant piezoelectric shunting

The most popular passive single-mode damping technique consists in shunting a piezo-
electric element with a resistor R and an inductor L as proposed firstly in
[Hagood and von Flotow (1991)] (see Figure 1).

L R

Figure 1. Sketch of a cantilever beam with a transducer shunted with a
RL impedance.

As the structure vibrates, the mechanical energy is rapidly transformed into electric
energy which is dissipated through the resistor. The damping efficiency of the used
impedance is maximum when the resonance frequency of the shunt circuit is equal to
the mechanical frequency of the structural eigenmode to be damped, i.e. the shunting
network is tuned to the mechanical system. When this tuning condition is achieved the
resistance R must be properly chosen so as to maximize the damping effectiveness.

In the present Chapter we present a suitable reduced-order model of the considered
stepped piezoelectric beam (presented in Chapter 2) suitable for piezoelectric shunting.
Next, we discuss the optimization of the circuit parameters by choosing the∞-norm of the
mobility function as the cost function (H∞ control problem, see e.g. [Zhou et al. (1996)]).
We treat the effects of large variations of the inductance, resistance and coupling coeffi-
cient and provide closed-form expressions for their small perturbations. The results of this
sensitivity analysis are used to model the effects of uncertainties on the damping effective-
ness. Finally we mention a possible application of piezoelectric shunting in identification
processes and test the novel method on an experimental prototype.

1. Governing equations

We consider the same stepped beam as that presented in Chapter 2, where a given
piezoelectric transducer (say the one occupying the s-th segment) is shunted with an RL
impedance, a different one is used as an actuator driven by a voltage source (say the one
occupying the a-th segment) and all the others are short-circuited to ground.

37
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The mechanical governing equations are derived from (3.12) of Chapter 2

NX
h=1

Z
Sh

khw
00(x, t)w̃00(x)dx− gsVs (t) (w̃

0(Xs+1)− w̃0(Xs))

− gaVa (t) (w̃
0(Xa+1)− w̃0(Xa)) = −

NX
h=1

Z
Sh

ρhẅ(x, t)w̃(x)dx.

On the other hand the time evolution of the voltage Vs (t) is (see equation (2.2b) of
Chapter 2)

Qs (t) = CsVs (t) + gs (w
0(Xs+1, t)− w0(Xs, t)) ,

where Cs indicates the piezoelectric capacitance and Qs the stored charge and the remain-
ing summand represents the piezoelectric charge induced by the mechanical deformation.
From the analysis of the circuit we easily see that Qs is related to Vs by

Q̇s (t)− Q̇s (0) = − 1
L

Z t

0

Vs (τ) dτ − 1

R
Vs (t) .

By considering vanishing initial conditions and introducing the flux linkages ψa and ψs,
defined as the time integral of the corresponding voltages,we obtain the following two
coupled electromechanical equations:

(1.1)
NX
h=1

Z
Sh

khw
00(x, t)w̃00(x)dx−gsψ̇s (t) (w̃

0(Xs+1)− w̃0(Xs))−gaψ̇a (t) (w̃
0(Xa+1)− w̃0(Xa)) =

−
NX
h=1

Z
Sh

ρhẅ(x, t)w̃(x)dx

(1.2)
1

L
ψs (t) +

1

R
ψ̇s (t) + Csψ̈s (t) + gs (ẇ

0(Xs+1, t)− ẇ0(Xs, t)) = 0

In order to optimize the electric parameters (inductance and resistance) for a nar-
row band vibration damping in the neighborhood of the i-th structural frequency ω(i),
a design model is developed. In particular, the modal reduction of (1.1) and (1.2) onto
the i-th mechanical mode shape w(i) (derived by using one of methodologies indicated in
Chapter 3) is developed. By assuming

w (x, t) = w(i) (x)Wi (t) ,

the following coupled evolution equations for the modal coefficient Wi (t) and the flux-
linkage ψs (t) are obtained:

(1.3)

(
mẄi (t) +mω2iWi (t)−Gisψ̇s (t) = Fi (t)
1

L
ψs (t) +

1

R
ψ̇s (t) + Csψ̈s (t) +GisẆi (t) = 0

,

where the modal parameters are defined by:

Gis := gs
³¡
w(i)
¢0
(Xs+1)−

¡
w(i)
¢0
(Xs)

´
, Fi (t) := ga

³¡
w(i)

¢0
(Xa+1)−

¡
w(i)
¢0
(Xa)

´
ψ̇a (t) .

We report the corresponding governing equations in the following non-dimensional form
and, since it does not cause misunderstandings, the same symbols as for the dimensional
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case are used:

(1.4)
½

Ẅi (t) +Wi (t)− γψ̇s (t) = Fi(t)

ψ̈s (t) + δψ̇s (t) + βψs (t) + γẆi (t) = 0
,

where the dimensionless parameters

β : =
1

LCs

1

(ω(i))
2 ,(1.5a)

δ : =
1

RCs

1

ω(i)
,(1.5b)

γ : =
Gis

ω(i)
√
mCs

(1.5c)

appear. Without loss of generality we assume that γ is positive. The time has been non-
dimensionalized with respect of the inverse of the mechanical radian frequency ω(i). The
parameter β measures the tuning effectiveness of the electric network, since it is nothing
than the square of the ratio of mechanical to electrical natural frequency, δ measures the
electric damping and γ the electromechanical modal coupling.

The mechanical mobility function is defined by

Hp (ω) :=
F
h
Ẇi

i
(ω)

F [Fi] (ω)
= − jω (−ω2 + β + jωδ)

−ω4 + ω3jδ + ω2 (β + 1 + γ2)− jωδ − β
,

where F indicates Fourier transform, ω the dimensionless radian frequency, and p the set
of parameters p = (β, δ, γ) .

2. Optimization

A widely adopted criterion for optimizing the considered shunting circuit consists in
minimizing the ∞-norm of the mobility function, defined as the essential supremum of
|Hp| on the positive real axis:

kHpk∞ = esssup
ω∈R+

|Hp| .

In the literature, several criteria for optimizing passive controllers have been proposed, e.g.
the pole placement ([Hagood and von Flotow (1991)], [Porfiri et al. (accepted)])
and the infinite horizon minimization ([Juang (1984)], [Andreaus et al. (2004)]).
Our present choice is motivated by the simplicity of handling uncertainties within the
H∞ control theory.

In this case, by duplicating the argument of [Den Hartog (1934)], it is possible to
derive an exact estimation of the optimal inductance and optimal resistance. Indeed, it is
possible to show (by cumbersome and time consuming manipulations) that in the graph
of |Hp| , there exists a pair of points, say S = (ωS, |Hp (ωS)|) and T = (ωT , |Hp (ωT )|)
defined by:

∀β̄, γ̄ ∈ R+ ∃ωS, ωT : ∀δ1, δ2 ∈ R+¯̄̄
H(β̄,δ1,γ̄) (ωS)

¯̄̄
=

¯̄̄
H(β̄,δ2,γ̄) (ωS)

¯̄̄ ¯̄̄
H(β̄,δ1,γ̄) (ωT )

¯̄̄
=
¯̄̄
H(β̄,δ2,γ̄) (ωT )

¯̄̄
.

These two fixed points can be simply found by equating the square of transfer function
absolute value evaluated in the limit of δ going to infinity to that evaluated when δ is zero¯̄

H(β,0,γ) (ω)
¯̄2
= lim

δ→+∞

¯̄
H(β,δ,γ) (ω)

¯̄2 ⇒ ω2

(1− ω2)2
=

(ω3 − βω)
2

(ω4 − ω2 (β + 1 + γ2) + β)2
;
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thus:

ωT,S (β, γ) =
1

2

r
2 + 2β + γ2 ±

q
−16β + (2 + 2β + γ2)2.

The∞-norm of Hp is minimized by imposing that the values attained by |Hp (ω)|2 at
these two points are the same, and by imposing that these values are its maxima, namely:

(2.1) |Hp (ωS)|2 = |Hp (ωT )|2 ⇒ βopt = 1;

and subsequently

(2.2)
d

dω
|Hp (ω)|2

¯̄̄̄
ω=ωS

=
d

dω
|Hp (ω)|2

¯̄̄̄
ω=ωT

= 0⇒ δopt =

r
3

2
γ;

yielding:

(2.3) min
β∈R+, δ∈R+

°°H(β,δ,γ)

°°
∞ =

°°°H(βopt,δopt,γ)°°°∞ =
√
2

γ
.

Furthermore, when the tuning condition (2.1) is satisfied, the difference between the fixed
point dimensionless radian frequencies is

(2.4) ωT

¡
βopt, γ

¢− ωS

¡
βopt, γ

¢
=

γ√
2
,

and their values are

(2.5) ωT,S

¡
βopt, γ

¢
=
1

2

q
4 + γ2 ± γ

p
4 + γ2.

Therefore from (1.5a) the optimal inductance is

(2.6) Lopt =
1

(ω(i))
2
Cs

,

and from (1.5b) the optimal resistance is

(2.7) Ropt =

r
2

3

√
m

Gis

√
Cs

.

The electric damping ratio ζ defined by (see e.g. [Meirovitch (2000)])

ζ =
δ

2
√
β
,

when conditions (2.1) and (2.2) are satisfied, becomes

ζopt =

r
3

8
γ.

Remark 3. An additional capacitance in parallel connection with the piezoelectric
transducers decreases the needed optimal inductance according to (2.6), but at the same
time reduces the damping effectiveness according to (2.3) together with (1.5c).

Remark 4. The system performances may be strengthened by properly positioning the
piezoelectric transducer on the host beam (see e.g. [Barboni et al. (2000)]). Indeed by
maximizing the modal coupling γ, the system ∞-norm may be minimized.
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3. Effect of parameters variations

In this Section we analyze the effects of changes of the electric parameters on the
system damping performances. We include in the analysis also variations of the coupling
parameter γ, which may arise, for instance, after the partial debonding of the transducer
on the beam and will be important for future discussions on distributed control. We split
the analysis into two parts: we establish general numerical procedures to study the case
of large variations of the system parameter and we provide simple closed-form formulas
to tackle the effects of small variations (sensitivity analysis).

3.1. Effect of large variations. In order to compute the effects of large variations of
the system parameters β, δ, γ on the system∞-norm, we refer to [Zhou et al. (1996)],
[Chandrasekharan (1996)] and [Doyle et al. (1989)]. To this aim, let us consider
the state space realization of the system

R =
∙
A B
C 0

¸
,

with

A =

⎡⎢⎢⎣
0 1 0 0
−1 0 0 γ
0 0 0 1
0 −γ −β −δ

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦ , C =
£
0 1 0 0

¤
;

and define the Hamiltonian matrix

H =

∙
A η−2BBT

−CTC −AT
¸
, η ∈ R+.

Since, A is stable the following lemma hold:

kHpk∞ < η ⇔ H has no eigenvalues on the imaginary axis.

Therefore, for arbitrary β, δ, γ the ∞-norm of Hp may be computed by applying the
following bisection algorithm:

(1) choose two initial bounds for kHpk∞, i.e. ηl < kHpk∞ < ηu
1;

(2) set η =
ηu + ηl
2

and evaluate the eigenvalues of H at η;

(3) if there are any eigenvalues on the imaginary axis set ηl = η, otherwise ηu = η;
(4) compute the difference between ηl and ηu and if it is more than the desired

precision go to the second step, otherwise kHpk∞ ' η.

3.2. Sensitivity analysis. When the considered variations, say ∆β, ∆δ and ∆γ, are
small, the first order approximation may be acceptable:

|Hp (ω)|2 = |Hp (ω)|2
¯̄
popt

+
∂

∂β
|Hp (ω)|2

¯̄̄̄
popt

∆β +
∂

∂δ
|Hp (ω)|2

¯̄̄̄
popt

∆δ

+
∂

∂γ
|Hp (ω)|2

¯̄̄̄
popt

∆γ =: |Hp (ω)|2
¯̄
popt

+
£
∆β ∆δ ∆γ

¤
Spopt (ω)

1Let us remark that, the Hamiltonian has eigenvalues with non zero real part when evaluated at ηu,
on the contrary at ηl it has some eigenvalues on the imaginary axis.
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where the subscript popt denotes the optimal configuration
¡
βopt, δopt, γ

¢
, and the sensitiv-

ity coefficients vector Spopt has been introduced (see e.g. [Lutes and, Sarkani (2004)]).
By working out the cumbersome algebra one gets:

∂

∂β
|Hp (ω)|2

¯̄̄̄
popt

=
4γ2ω4 (−1 + ω2) (2− (4 + 5γ2)ω2 + 2ω4)

(−2 + (8 + γ2)ω2 − 2 (6 + γ2 + γ4)ω4 + (8 + γ2)ω6 − 2ω8)2 ;

∂

∂δ
|Hp (ω)|2

¯̄̄̄
popt

=
4
√
6γ3ω6 (−2 + (4 + γ2)ω2 − 2ω4)

(−2 + (8 + γ2)ω2 − 2 (6 + γ2 + γ4)ω4 + (8 + γ2)ω6 − 2ω8)2 ;

∂

∂γ
|Hp (ω)|2

¯̄̄̄
popt

=
8γ0ω

4 (1− (2 + γ2)ω2 + ω4) (2 + (−4 + 3γ2)ω2 + 2ω4)
(−2 + (8 + γ2)ω2 − 2 (6 + γ2 + γ4)ω4 + (8 + γ2)ω6 − 2ω8)2 .

Furthermore, one can show that the aforementioned functions are smooth functions in
R+.

For small variations ∆β, ∆δ and ∆γ the maxima of |Hp (ω)|2 are still attained at ωT,S.
By substituting the expressions for ωS,T in (2.5) into Spopt (ω) we get:

Spopt (ωS,T ) =

⎡⎢⎢⎢⎢⎣
γ ±p8 + γ2

γ3

0

− 4
γ3

⎤⎥⎥⎥⎥⎦ ,
where the minus (plus) sign in the first entry of Spopt (ωT,S) corresponds to ωT (ωS).
Therefore°°|Hp|2

°°
∞ := maxω∈R+

|Hp (ω)|2 = max
ω∈R+

¯̄
Hpopt (ω)

¯̄2
+

p
8 + γ2

γ3
|∆β|+ 1

γ2
∆β − 4

γ3
∆γ.

The above expression yields:

(3.1) kHpk∞ =
°°Hpopt

°°
∞ +

p
8 + γ2

2
√
2γ2

|∆β|+ 1

2
√
2γ

∆β −
√
2

γ2
∆γ.

For small coupling equation (3.1) becomes:

(3.2) kHpk∞ '
°°Hpopt

°°
∞ +

1

γ2
|∆β|−

√
2

γ2
∆γ,

which provides the following representative relation between the perturbed and the opti-
mal system∞-norm:

kHpk∞°°Hpopt

°°
∞
' 1 + 1

γ
√
2
|∆β|− 1

γ
∆γ.

Remark 5. The damping parameter δ is not influencing the damping performances of
the shunting impedance as long as its variations stay small. On the other hand, the tuning
parameter β strongly affects the system performances since its variations are amplified by
a factor linear with γ−1 which is generally a large number.

4. Effect of parameters uncertainties

Starting from equation (3.1), we study the effects of uncertainties on the system damp-
ing performance. We assume that the parameters ∆β and ∆γ are independent random



4. EFFECT OF PARAMETERS UNCERTAINTIES 43

variables normally distributed with zero mean. The probability density functions are

f∆β (∆β) =
1√
2πσ∆β

exp

Ã
−1
2

µ
∆β

σ∆β

¶2!
, f∆γ (∆γ) =

1√
2πσ∆γ

exp

Ã
−1
2

µ
∆γ

σ∆γ

¶2!
,

where σ∆β and σ∆γ denote the standard deviations of the considered random variables.
Even if the mean value of ∆β is zero the mean value of its absolute value is not zero:

E [|∆β|] =
Z
R

|∆β| f∆β (∆β) d∆β =

r
2

π
σ∆β;

and its variance is

V [|∆β|] =
Z
R

(|∆β|−E [|∆β|])2 f∆β (∆β) d∆β =

µ
1− 2

π

¶
(σ∆β)

2 .

Obviously, the expected value of the product |∆β|∆β is zero. Therefore, the mean value
of the norm of Hp from (3.1) (see e.g. [Breiman (1969)]) is

(4.1) E
£kHpk∞

¤
=
°°Hpopt

°°
∞ +

p
8 + γ2

2
√
2γ2

r
2

π
σ∆β,

that for small coupling becomes:

(4.2) E
£kHpk∞

¤ ' °°Hpopt

°°
∞ +

1

γ2

r
2

π
σ∆β,

which shows that the standard deviation of the tuning parameter influences directly the
expected value of the system norm, reducing the damping effectiveness. Similarly, the
variance of the system ∞-norm is

(4.3) V
£kHpk∞

¤
=

µµ
1− 2

π

¶
1

γ4
+

µ
1− 1

π

¶
1

4γ2

¶
(σ∆β)

2 +

Ã√
2

γ2

!2
(σ∆γ)

2 ,

which for small coupling becomes:

(4.4) V
£kHpk∞

¤ ' µ1− 2
π

¶
1

γ4
(σ∆β)

2 +
2

γ4
(σ∆γ)

2 .

From equations (4.1) and (4.3) we notice that the electric damping δ is not influencing
the system damping performance. Therefore, the uncertainties on the resistance are
not important in a first order approximation theory and only the uncertainties of the
inductance are significant.

The uncertainties on the dimensionless parameters can be immediately related to the
uncertainties on the inductance. Indeed, we assume that the inductance is given as the
sum of the optimal value Lopt and a random variable ∆L, normally distributed with zero
mean and standard deviation σ∆L, i.e.:

L = Lopt +∆L.

Thus, for small deviations of the inductance with respect of its optimal value, the random
variable ∆β can be related to ∆L by (see (1.5a))

∆β = −∆L

Lopt
.
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Therefore, for small coupling γ, the system norm moments are expressed by the following
relations:

(4.5)
E
£kHpk∞

¤− °°Hpopt

°°
∞°°Hpopt

°°
∞

=
1

γ
√
π

σ∆L

Lopt
,

q
V
£kHpk∞

¤°°Hpopt

°°
∞

=
1

γ

s
1

2

µ
1− 2

π

¶
σ∆L

Lopt
.

From the above relations we can give an estimate of the tolerance needed in realizing
the shunting impedance for achieving a certain vibration damping within a prescribed
accuracy.

5. Experimental and numerical results

We refer to the experimental setup described in Section 4 of Chapter 3. We use the first
piezoelectric transducer for damping the first structural mode, and the second transducer
for exciting the beam. The capacitances of the used transducer can be computed from
(2.3) in Chapter 2:

C2 = C4 = 0.1326 µF,

while the piezoelectric coupling are given by equation (5.1b) in Chapter 3. The first
circular resonance frequency from Table 3 in Chapter 3 is

ω(1) = 2π × 65.3662 Hz,

while the average modal curvatures at the transducers’ locations are computed from the
exact (LEN) modal shapes:³¡
w(1)

¢0
(X3)−

¡
w(1)

¢0
(X2)

´
= 5.185m−1,

³¡
w(1)

¢0
(X5)−

¡
w(1)

¢0
(X4)

´
= 3.397m−1.

The dimensionless modal coupling parameter γ is from (1.5c)

γ = 0.183,

since the system mass is

m = 36.35 g.

The predicted values of the optimal inductance and resistance are computed by the use
of (2.6) and (2.7):

Lopt = 44.7 H, Ropt = 81.9 kΩ.

5.1. Numerical results. We start our discussion by considering the effects of the
variations of the dimensionless parameters β, δ and γ with respect of the optimal con-
figuration popt, described by formulas (2.1) and (2.2). We compare the numerical results
achieved by using the procedure described in Section 3.1 with those implied by equation
(3.1) in Figures 2, 3 and 4.
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Figure 2. Variations of the system infinity norm with respect to the tuning
parameter β (solid line: exact behavior, dashed line: results from lineariza-
tion).

Figure 3. Variations of the system infinity norm with respect to the damp-
ing parameter δ (solid line: exact behavior, dashed line: results from lin-
earization).

From Figure 2 we can see that the tuning parameter strongly affects the system per-
formances and that even small changes in the electric resonance may lead to dramatic
losses in the damping efficiency. On the other hand, the electric damping coefficient does
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Figure 4. Variations of the system infinity norm with respect to the cou-
pling coefficient γ (solid line: exact behavior, dashed line: results from
linearization).

not represent a critical parameter and it does only marginally determine the control effec-
tiveness. As a general comment, we remark that the approximate formulas (3.1) represent
a valuable tool for easily establishing the effects of parameters variation on the system
performances.

In order to validate the results in Section 4 (i.e. equations (4.1) and (4.3)), we have
applied the Monte Carlo method (see e.g. [Buslenko et al. (1966)]) to the considered
system by choosing a population of 10000 samples for each numerical test. Several tests
have been performed, by choosing with different values of the parameters standard de-
viations, ranging from 0 to one tenth of the nominal value. The results are reported in
Figure 5, where it is easily understood that for small deviations the approximate formulas
derived in (4.1) and (4.3) give satisfactory results.
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Figure 5. Results of MonteCarlo simulations by using normal random
variables with zero mean and computing exact system infinity norms (dots:
MonteCarlo results, solid line: approximate estimations)

5.2. Experimental evidence. The piezoelectric shunting requires an adjustable in-
ductor, whose inductance is very high. An inductor with these characteristics has been
simulated by exploiting the two operational amplifiers RC-circuit depicted in Figure 6 and
pictured in Figure 7 (modified Antoniou circuit [Senani (1996)] and [Bruton (1980)]).



5. EXPERIMENTAL AND NUMERICAL RESULTS 48

- +

+-

R1 R2 R3 R4 C5

R6

Figure 6. Adjustable inductor.

Figure 7. Picture of the realized inductor.

The corresponding equivalent inductance is given as a function of its components as
follows:

L =
R1R4R6

R2
C5.

Moreover, high quality factors can be achieved by varying the resistance R3. It adds to the
equivalent impedance a series negative resistance which can be exploited to cancel out
parasitic losses, see [Senani (1996)]. High-voltages FET-input operational amplifiers
Burr-Brown OPA445AP driven by a dual outputs power supply TTi EX752M at ±30 V
and high-precision resistors (±1%) have been used.

In Figure 8, we report the mobility functions obtained by exciting the structure at
transducer 4 and either shunting transducer 2 with the adjustable inductor tuned so to
have the S and T points at the same height, or leaving it open-circuited.
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Table 1. Experimental ecidence versus theoretical predictions of the re-
duced order model.

fS fT Lopt Ropt fshort fopen
Experiments 61.95Hz 70.70Hz 58.1H 119 kΩ 66.25Hz 67.40Hz

Theory 61.27Hz 69.73Hz 44.1H 81.9 kΩ 65.37Hz 67.63Hz
Percentage Errors 1.10% 1.37% 24.1% 31.2% 1.33% −0.341%

59 60 61.95 66.25 67.4 70.7 72 73
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Figure 8. Experimental mobility function with optimized inductance and
different resistances.

In Table 1, we report the experimental observations compared with the theoretical
predictions. The subscripts short and open indicate measurements performed by leaving
the transducer 2 short or open-circuited. From the analysis of Table 1 the following
comments may be drawn:

• The presented model provides a satisfactory estimation of the system frequencies
when the transducer is open or short-circuited;

• The fixed point frequencies are accurately estimated, enabling a prediction of the
piezoelectric shunting damping effectiveness;

• The experimental optimal inductance is much different than the predicted one.
This occurrence is imputed to a coarse estimation of the piezoelectric capacitance
which determine the predicted inductance according to (2.6). More accurate
estimation of the piezoelectric capacitance may be derived by applying the results
in [Maurini et al. (2004, 2)];
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• The experimental optimal resistance is much different than the predicted one.
This circumstance may be attributed to parasitic effects in the synthetic induc-
tance, to the mechanical modal damping which has been completely discarded
and to the improper capacitance estimate.

5.3. Discussions. The piezoelectric shunting technique so far presented, may be
used also for identification purposes. From the knowledge of the stepped beam behavior
under different shunting conditions, it is possible to measure indirectly the values of the
needed coupling coefficients and capacitances. In the following, we propose two different
methods for their identification and underline their advantages and disadvantages.

5.3.1. Open-circuit vs short-circuit (OvS). The piezoelectric coupling coefficient γ,
accounting for the modal coupling of the s-th segment to the i-th mode, is usually found
with the identification method followed in [Hagood and von Flotow (1991)], where a
piezoelectric beam hosting a single transducer is studied. It is determined by the following
measurements:

• resonance frequency ω(i) of the beam with every element short-circuited (some-
times we write ωshort),

• resonance frequency, say ωopen, of the beam with every element short-circuited
except of the s-th segment left open-circuited.

From equations (1.4) the open-circuit frequency ωopen can be readily calculated to be

ωopen = ωshort

p
1 + γ2

upon substituting δ and γ with zeros, corresponding to the open circuit condition. Hence,
the coupling coefficient is estimated by

(5.1) γ =

s
−1 +

µ
ωopen

ωshort

¶2
.

With this method, assuming that the frequencies are measured with an uncertainty
σω, the uncertainty of the coupling estimate is

(5.2)
σγ
γ
=
1

γ

sµ
dγ

dωopen

¶2
+

µ
dγ

dωshort

¶2
σω =

ωi

γ (ωopen)
2

s
(ωopen)

2 + (ωshort)
2

(ωopen)
2 − (ωshort)

2σω '
1

γ2
σω

ωshort
.

The last approximation holds for small differences between the two frequencies, i.e. for
small coupling. Thus, for small couplings, the amplification factor of the uncertainty is
very large.

5.3.2. Resonant shunt vs short-circuit (RvS). An alternative identification method
stems directly from the piezoelectric shunting technique presented above. Indeed by
adjusting the synthetic inductance for having the S and T points at the same height we
obtain from (2.6):

Cs =
1

(ωshort)
2 Lopt

.

Next, by measuring the difference of the frequencies of the S and T points, we obtain
from (2.4)

(5.3) γ =
√
2
(ωT − ωS)

ωshort
,
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Table 2. Comparison between the two identification methods.

OvS RvS

Measured quantities Natural frequencies: ωopen and ωshort
Frequency responses: H
Inductance: L

Identifiable variables Coupling coefficient γ
Coupling coefficient: γ
Capacitance

Accuracy Poor Good
Difficulty Little Considerable

Table 3. Experimentally identified coupling parameters and capacitance.

γ C2
OvS 0.184 -
RvS 0.187 99.3 nF

Theory 0.183 132.6 nF

where ωT and ωS are the dimensional frequencies.
For this method when the frequencies are measured with an uncertainty σω, the un-

certainty of the estimated coupling is

(5.4)
σγ
γ
=

µr
4

γ2
+ 1

¶
σω

ωshort
' 2

γ

σω
ωshort

;

the last approximation being acceptable only for small coupling. By comparing the es-
timation results in (5.4) and (5.2) the second method is shown to be more accurate.
Furthermore, the second approach enables to estimate also the piezoelectric capacitance.
At the same time, it relies on a more complicated experimental setup (a simulated induc-
tor is required) and more experimental data (the whole frequency response around the
natural frequency is required).

In Table 2 these comments are summarized and the required measures together with
the identifiable variables are listed. In Table 3 the results of the two identification methods
applied to the considered sample are reported.



CHAPTER 6

Second order transmission line

In this Chapter we consider the performances of a second order transmission line
interconnecting the electric terminals of an array of piezoelectric transducers positioned
on a host beam. Each piezoelectric element is connected to the adjacent one via a floating
RL impedance, i.e. a resistor in parallel connection with an inductor.

We initially model the PEM structure as a continuum by exploiting the results of the
two-scale homogenization in Chapter 4. Arbitrary boundary conditions are considered for
the electric circuit. By considering a reduced modal model of the PEM structure in the
neighborhood of a structural frequency the line inductance and resistance are optimized
and a criterion for determining the optimal electric boundary conditions is proposed. As
an application sample, we study a cantilever beam and optimize the electric network for
achieving the maximum damping effectiveness in the neighborhood of the lowest structural
mode.

Next, we consider a more refined model of the PEM structure, where the discrete na-
ture of the electric circuit is accounted for. Optimal values of the line inductance and line
resistance are found and compared to the prediction of the homogenized model. Closed
form solutions of the eigenproperties of the electric network are provided, based on an aux-
iliary boundary value difference problem (see e.g. [Samarskii and Nikolaev (1989)]).

The effects of uncertainties on the line-inductances are studied. The sensitivity of the
electrical eigenproperties with respect to the variations of any inductance is examined.
Next, the inductances are treated as independent random variables and a simple formula
for evaluating the consequent loss of damping performance is worked out.

Finally an experimental setup is described, and the modeling results are validated.
The PEM beam prototype consists of a cantilever beam with 5 piezoelectric ceramics
used for control purposes and 1 additional transducer used for exciting the beam in the
neighborhood of its lowest structural frequency. The floating inductances are realized
by the use of RC-circuits and the internal resonance in between the electrical and the
mechanical system is achieved by the use of a variable grounded inductor located at the
beam free end.

1. Homogenized model

1.1. Governing equations. The homogenized governing equations of a PEM beam
exploiting a second-order RL transmission line may derived by the use of a procedure
similar to the one presented for the simple static case in Chapter 4. We refrain from
tackling the involved mathematical issues related to the time dependence and to the
presence of the discrete electric network. We refer to [Canon and Lenczner (1999)],
[Hoffman and Botkin (2000)] and [Lenczner and Mercier (2004)] for a complete
and rigorous treatment. As a rule of thumb, we may claim that the forecasts of the
homogenized model are acceptable for mechanical wave lengths larger than the structure
period ε. Indeed, high frequency oscillations are not captured by the effective models,
which, basically, averages the key descriptors on any periodic cell.

52
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In particular it may be shown that the governing equation for the mechanical deflection
field w is:

(1.1) ρhomẅ + khomw
IV − ghomψ̇

00
= b,

where ψ is the electric flux-linkage field and the homogenized bending stiffness khom and
coupling coefficient ghom are given in equation (2.15) of Chapter 4, while the homogenized
linear mass density ρhom is

(1.2a) ρhom = ρP cf + ρB (1− cf) .

On the other hand, the governing equation for the electric flux-linkage is

(1.3) chomψ̈ − 1

lhom
ψ00 − 1

rhom
ψ̇
00
+ ghomẇ

00 = 0,

where the homogenized capacitance per unit length chom, inductance per unit length lhom
and resistance per unit length rhom have been introduced

chom =
C

ε
, lhom =

L

ε
, rhom =

R

ε
,

C being the piezoelectric capacitance, L the line inductance and R the line resistance.
In what follows, we consider a cantilever beam. The boundary conditions at the

clamped left end are
(1.4)

w (0, t) = 0, w0 (0, t) = 0,
µ
ψ0 (0, t) +

lhom
rhom

ψ̇
0
(0, t)

¶
−α0

µ
ψ (0, t) +

lhom
rhom

ψ̇ (0, t)

¶
= 0,

where the positive constant α0 has been introduced to account for a generic RL boundary
impedance. At the free end we have³

khomw
00 (l, t)− ghomψ̇ (l, t)

´
= 0,

³
khomw

000 (l, t)− ghomψ̇
0
(l, t)

´
= 0,(1.5) µ

ψ0 (l, t) +
lhom
rhom

ψ̇
0
(l, t)

¶
+ αl

µ
ψ (l, t) +

lhom
rhom

ψ̇ (l, t)

¶
= 0,

where another positive constant αl has been introduced. We assume that the constants
α0 and αl belong to R̄+= R+∪{+∞} , where +∞ corresponds to short-circuit the electric
end to ground. We remark that the chosen boundary conditions provide a proportional
damping in the electric circuit, without altering its modal characteristics.

1.2. Reduced model. We consider structural vibrations in the neighborhood of the
i-th mechanical frequency ω(i), and we assume that in that frequency band the electric
circuit is resonating at its j-th mode. In order to optimize the electric parameters, induc-
tances and resistances for this narrow band vibration damping, a reduced order design
model is developed. The modal reduction of (1.1) and (1.3) onto the i-th mechanical
mode shape w(i) and j-th electrical mode shape ψ(j) is developed. Each of the considered
mode shape is found by discarding the piezoelectric coupling, i.e. they represent the mode
shapes of the two uncoupled systems. In particular,³

ψ(j)
´00
= −λ(j)homψ(j),

³
ψ(j)

´0
(0)− α0ψ

(j) (0) = 0,
³
ψ(j)

´0
(l) + αlψ

(j) (l) = 0,

and

khom
¡
w(i)

¢IV
=
¡
ω(i)
¢2
ρhomw

(i),

w(i) (0) = 0,
¡
w(i)

¢0
(0) = 0,

¡
w(i)
¢00
(l) = 0,

¡
w(i)
¢000
(l) = 0.
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As usual, the mechanical mode shape is normalized in order to haveZ l

0

ρhom
¡
w(i)
¢2
dx = m⇒

Z l

0

¡
w(i)

¢2
dx = l,

and similarly the electric one Z l

0

³
ψ(j)

´2
dx = l.

By assuming

w (x, t) = w(i) (x)Wi (t) , ψ (x, t) = ψ(j) (x)Ψj (t) ,

the following coupled evolution equations for the modal coefficients Wi (t) and Ψj (t) are
obtained:

(1.6)

⎧⎨⎩ mẄi (t) +mω2iWi (t)−Ghom ij Ψ̇j (t) = Fi (t)

lchomΨ̈j (t) +
l

lhom
λ
(j)
homΨj (t) +

l

rhom
λ
(j)
homΨ̇j (t) +Ghom ij Ẇi (t) = 0

,

where the modal parameters are defined by:

Ghom ij : = ghom

Z l

0

¡
w(i)
¢00
(x)ψ(j) (x) dx,(1.7a)

Fi (t) : =

Z l

0

b (x, t)w(i) (x) dx.(1.7b)

Without loss of generality, we assume that Ghom ij is positive.

1.3. Optimization. The system (1.6) shares the same structure of that in (1.3)
of Chapter 5 for the resonant piezoelectric shunting. Therefore, it may be cast into
the dimensionless form (1.4) of Chapter 5 by properly defining the key dimensionless
parameters β, δ and γ as follows:

β : =
λ
(j)
hom

lhomchom

1

(ω(i))
2 ,(1.8a)

δ : =
λ
(j)
hom

rhomchom

1

ω(i)
,(1.8b)

γ : =
Ghom ij

ω(i)
√
mchoml

.(1.8c)

Next we optimize the system infinity norm, by exploiting the results in Section 2 of
Chapter 5. The optimality condition (2.1) of Chapter 5 together with (1.8a) yield:

(1.9) β = 1⇒ λ
(j)
hom

lhom
= chom

¡
ω(i)
¢2
,

while the optimality condition (2.2) of Chapter 5 together with (1.8b) give:

(1.10) δ =

r
3

2
γ ⇒ λ

(j)
hom

rhom
=

Ghom ij

l

r
3

2

r
chom
ρhom

.

On the other hand, from (2.3) of Chapter 5 we have that the system norm is minimized
when the modal coupling is maximized. Therefore, we choose the boundary conditions
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α0 and αl in order to maximize the coupling coefficient Ghom ij between the two chosen
electrical and mechanical modes. The following optimization problem arises:

find (α0, αl) ∈ R̄+ × R̄+ :
Z l

0

¡
w(i)

¢00
(x)ψ(j) (x) dx is maximized,

where we notice that ψ(j) (x) is dependent on the two design parameters.
It is evident that the integral defining Ghom ij is maximized whenever ψj is equal to

the normalized i-th modal curvature, i.e.

ψj (x) =

¡
w(i)
¢00
(x)s

1

l

Z l

0

¡
(w(i))

00
(x)
¢2
dx

=

¡
w(i)

¢00
(x)

ω(i)

s
khom
ρhom

.

In this instance its value is

(1.11) maxGhom ij = ghomω
(i)

r
ρhom
khom

l,

and consequently the modal coupling is

(1.12) max γ =
ghom√
khomchom

.

Remark 6. For a second order line, this condition cannot be satisfied, in general, by
a proper choice of the constants α0, αl since the modal beam curvature involves hyperbolic
functions which cannot represent the electric mode shape. This problem will be solved in
Chapter 7 when dealing with the fourth order transmission line.

1.4. Application sample. As an application sample we focus on the vibration sup-
pression of the lowest mechanical mode shape (i = 1) by its coupling with the lowest
(j = 1) electric mode shape. Thus,

w(1) (x) = A1 cos
³
η(1)

x

l

´
+A2 cosh

³
η(1)

x

l

´
+A3 sin

³
η(1)

x

l

´
+A4 sinh

³
η(1)

x

l

´
,(1.13)

¡
ω(1)

¢2
=

µ
η(1)

l

¶4
khom
ρhom

,(1.14)

with ⎧⎨⎩ A1 = −A2 = −1
A3 = −A4 = 0.734095
η(1) = 1.875104

.

On the other hand the electric mode shape is

(1.15) ψ(1) (x) = C1 cos
³
ζ(1)

x

l

´
+ C2 sin

³
ζ(1)

x

l

´
, ζ(1) = l

q
λ
(1)
hom,

where the eigenvalue ζ(1) is the lowest root of

(1.16) tan
³
ζ(1)
´
=
(ᾱ0 + ᾱl) ζ

(1)

ζ(1) − ᾱ0ᾱl

, ᾱ0 = α0l, ᾱl = αll.
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The constants C1 and C2 are given in terms of the constant ᾱ0 and the eigenvalue ζ(1) by
the following:

(C1)
2 =

4
³
ζ(1)
´3µ

1

2

µ³
ζ(1)
´2
− (ᾱ0)2

¶
sin (2η̄(1)) + 2λ̄1

µ³
ζ(1)
´2
+ (ᾱ0)

2 + 2ᾱ0 sin
2
³
ζ(1)
´¶¶ ,

(1.17a)

C2 =
C1ᾱ0

ζ(1)
.(1.17b)

By substituting (1.13) and (1.15) into (1.7a), the modal coupling becomes

(1.18) Ghom 11 (ᾱ0, ᾱl) =

¡
η(1)
¢2 ghom

l

1Z
0

£−A1 cos ¡η(1)ξ¢+A2 cosh
¡
η(1)ξ

¢−A3 sin
¡
η(1)ξ

¢
+A4 sinh

¡
η(1)ξ

¢¤
h
C1 cos

³
ζ(1)ξ

´
+ C2 sin

³
ζ(1)ξ

´i
dξ,

where, after cumbersome manipulations, each integral can be expressed as the product
of two trigonometric functions evaluated at η(1) or ζ(1). The optimization problem can
be numerically solved as any standard two dimensional minimization problem in terms
of the unknown positive variables ᾱ0, ᾱl. Indeed for any pair (ᾱ0, ᾱl) we can find the
corresponding lowest electric eigenvalue ζ(1) by solving the trascendental equation (1.16);
from the eigenvalue ζ(1) and the parameter ᾱ0, the constants C1 and C2 can be found
by evaluating formulas (1.17). Thus for each pair (ᾱ0, ᾱl) the modal coupling Ghom 11 is
computed by the use of (1.18) and its absolute value is maximized.

We remark that the same approach may be applied to any mechanical boundary
condition, and to any choice of the mechanical and electric mode to be resonantly coupled.

l

Figure 1. Plot of lGhom 11/ghom for ᾱ0 ∈ [0, 10] and ᾱl ∈ [0, 100] .
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In this instance, as shown in Figure 1, the numerical maximization yields

ᾱ0 = 0, ᾱl = +∞.

Thus, the electric circuit should be open circuited at the left hand and short circuited to
ground at the right end. The trascendental equation (1.16) gives

(1.19) cos
³
ζ(1)
´
= 0⇒ ζ(1) =

π

2
.

and the generic circuit eigenvalue is:

ζ(j) =
π

2
(2j − 1)⇒ λ

(j)
hom =

1

l2

³π
2
(2j − 1)

´2
.

The constants C1 and C2 are found from (1.17):

(1.20) C1 =
√
2, C2 = 0,

and the generic circuit mode shapes is

ψ(j) (x) =

√
2

l
cos
³π
2
(2j − 1) x

l

´
.

By substituting (1.19) and (1.20) into (1.18) and the coupling becomes:

Ghom 11 (ᾱ0, ᾱl) =
ghom
l

, = 3.3706.

When it is compared to the maximum achievable coupling in (1.11) we have

Ghom 11 (ᾱ0, ᾱl)

maxGhom 11
=
(η(1))

2 = 89.9%,

and similarly, from (1.12), the modal coupling is
γ

max γ
=
(η(1))

2 .

From (1.9), the value of the optimal inductance is

(1.21) lhom =
π2

4l2chom (ω(1))
2 ⇒ L = ε

π2

4chom (ω(1))
2
l2
,

and from (1.10), the value of the optimal resistance is

(1.22) rhom =
1

ghom

π2

4

r
2

3

r
ρhom
chom

⇒ R = ε
1

ghom

π2

4

r
2

3

r
ρhom
chom

.

The optimal inductances and resistances are decreasing linearly with the cell size ε,
for prescribed capacitance per unit length. The quality factor of the floating impedance

QRL :=
R

ω(i)L
=
1

γ

r
2

3

is constant with the cell size ε.

Remark 7. By looking at Figure 1, we notice that the dimensionless coupling para-
meter γ is almost insensitive to variations of the right boundary impedance. This may be
used to design adaptive networks, where all of the floating inductors are fixed and only the
right boundary impedance is slightly adjusted for fine tuning.
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2. Refined model

2.1. Governing equations. For ordinary engineering applications the number of
available transducers is limited and the exact periodicity of the system is not guaranteed.
Therefore, the forecasts of the homogenized model may not be sufficiently reliable when
dimensioning PEM beams. In this Section we start from the design rules stemming from
the homogenized model and account for the discrete nature of the electric circuit, together
with the material discontinuities of the stepped beam.

The optimization of the homogenized PEM beam suggests to short-circuit the last
piezoelectric element to ground and leave the first one open circuited (see equations (1.4)
and (1.5)).

L

R

L

R

L

R

L

R

Figure 2. Sketch of the cantilever PEM beam equipped with the optimized
second order transmission line.

We consider NP piezoelectric elements as transducers for the vibration control system,
while one additional element labeled with a as an actuator ( in this case, we have NP +1
transducers and N segments). In this case, it is convenient to number the piezoelectric
elements used for control purposes from 0 to NP − 1, as we move from the free end to the
clamped end as shown in Figure 3. This renumbering rule1 will be named r,

r : {0, ..., NP − 1}→ {1, ..., N + 1} .
The mechanical governing equations are derived from (3.12) of Chapter 2:

NX
h=1

Z
Sh

khw
00(x, t)w̃00(x)dx− g

NP−1X
h=1

ψ̇h (t)
¡
w̃0(Xr(h)+1)− w̃0(Xr(h))

¢
− gψ̇a (t) (w̃

0(Xa+1)− w̃0(Xa)) = −
NX
h=1

Z
Sh

ρhẅ(x, t)w̃(x)dx,

where the contribution of the piezoelectric actuator has been isolated and equal transduc-
ers are employed (all the g’s and C’s are equal). Since it does not cause misunderstandings,
we use the same letter for either the flux-linkages with the two different numbering.

On the other hand, by considering vanishing initial conditions, the time evolution of
the flux linkages are

(2.1) C ψ̈ +
1

L
N̊ψ + 1

R
N̊ ψ̇ + i = 0,

1The map r associates to each transducer the location of its left node on the stepped beam.
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where the dimensionless (NP − 1)× (NP − 1) matrix

N̊ =

⎡⎢⎢⎢⎢⎣
2 −1 0 ... 0
−1 2 −1 ... ...
0 −1 ... ... 0
... ... ... 2 −1
0 ... 0 −1 1

⎤⎥⎥⎥⎥⎦ ,
the (NP − 1)-vectors ψ and i collecting the non-vanishing transducers flux-linkages and
the corresponding piezoelectric currents induced by the mechanical vibrations have been
introduced. In particular, the h-th entry of the piezoelectric currents vector is

ih = g
¡
ẇ0(Xr(h)+1, t)− ẇ0(Xr(h), t)

¢
.

Top view

l

ψ4

d + lp/2 lp d lp d lp d lp d lp

da

d + lp/2

ψ3 ψ2 ψ1 ψ0

ψa

lp

Side view

Figure 3. Sketch of the stepped beam used for testing the transmission line.

2.2. Reduced model and optimization. We consider the same problem treated
within the homogenized model. We follow the same procedure for deriving a two degrees of
freedom model of the PEM beam, but, instead of using the homogenized modal properties,
we exploit the modal characteristics of the stepped beam and of the lumped circuit. The
modal reduction onto the i-th mechanical mode shape w(i) and j-th electrical mode shape
v̊(j) is developed. The mechanical mode shape is determined by the use of the LEN
method, or any other approximate method, as explained in Chapter 3, while the electric
mode shape is the j-th eigenvector of the matrix N̊ , i.e.:

(2.2) N̊ v̊(j) = λ̊
(j)
v̊(j).

where we normalize v̊(j) to one. By assuming

w (x, t) = w(i) (x)Wi (t) , ψ (t) = v̊(j)Ψj (t) ,

the following coupled evolution equations for the modal coefficients Wi (t) and Ψj (t) are
obtained:

(2.3)

(
mẄi (t) +mω2iWi (t)−Gij Ψ̇j (t) = Fi (t) ,

CΨ̈j (t) +
1

L
λ̊
(j)
Ψj (t) +

1

R
λ̊
(j)
Ψ̇j (t) +Gij Ẇi (t) = 0

,
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where the modal parameters are defined by:

Gij := d
Tv̊(j), Fi (t) := g (w0i(Xa+1)− w0i(Xa)) Ψ̇a (t) ,

with

d = g
£
w0i(Xr(0)+1)− w0i(Xr(0)) · · · w0i(Xr(NP−1)+1)− w0i(Xr(NP−1))

¤T
,

estimating the average beam curvatures at the piezoelectric transducers. The non-dimensio-

-nalization of (2.3) into the form (1.4) of Chapter 5, yields:

(2.4) β =
λ̊
(j)

LC

1

(ω(i))
2 , δ =

λ̊
(j)

RC

1

ω(i)
, γ =

Gij

ω(i)
√
mC

.

The optimal inductance and resistance are found by the use of (2.1) and (2.2) in Chapter 5:

(2.5) L =
λ̊
(j)

C

1

(ω(i))
2 , R =

r
2

3

λ̊
(j)

γω(i)C
.

We remark that the radian frequency appearing in (2.5) accounts for the material
discontinuities of the segmented beam, while that used in (1.21) and (1.22) is based
on the homogenized model. In the following Section we derive closed-form formulas for
evaluating the eigenproperties of the matrix N̊ .

2.3. Eigenproperties of N̊ . We consider the eigenvalue problem (2.2). We write
the tridiagonal system in the form of three-point boundary value difference problem:

(2.6)

⎧⎨⎩ −v̊i−1 +
³
2− λ̊

´
v̊i − v̊i+1 = 0, 1 ≤ i ≤ NP − 2,

v̊0 = 0, −v̊NP−2 +
³
1− λ̊

´
v̊NP−1 = 0.

.

By following [Samarskii and Nikolaev (1989)], the general solution to the given
constant coefficients second order difference equation is

(2.7) v̊i = c1Ti (z) + c2Ui−1 (z) , z = 1− λ̊

2
,

where c1 and c2 are arbitrary constants, and the Chebysev polynomials of the first (T )
and second (U) type have been introduced:

Ti (x) =

(
cos [i arccos [x]] , |x| ≤ 1
1

2

h¡
x+
√
x2 − 1¢i + ¡x+√x2 − 1¢−ii , |x| ≥ 1 ,(2.8a)

Ui (x) =

⎧⎪⎨⎪⎩
sin [(i+ 1) arccos [x]]

sin [arccos [x]]
, |x| ≤ 1

1

2
√
x2 − 1

h¡
x+
√
x2 − 1¢i+1 − ¡x+√x2 − 1¢−(i+1)i , |x| ≥ 1

.(2.8b)
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We remark that these polynomials frequently arise in mathematical physics and that
they may also be obtained by the following recursive relations:⎧⎨⎩ Ti+2 (x) = 2xTi+1 (x)− Ti (x) , i ≥ 0

T0 (x) = 1, T1 (x) = x
T−i (x) = Ti (x)

,(2.9a)

⎧⎨⎩ Ui+2 (x) = 2xUi+1 (x)− Ui (x) , i ≥ 0
U0 (x) = 1, U1 (x) = 2x
U−i (x) = −Ui−2 (x)

.(2.9b)

The constants c1 and c2 are found by imposing the boundary conditions

v̊0 = c1 = 0, −v̊NP−2 +
³
1− λ̊

´
v̊NP−1 = c2 (−UNP−3 (z) + 2zUNP−2 (z)) = 0,

where the above definitions of the Chebysev polynomials have been accounted for. Since
we are seeking a non-trivial solution to (2.6), c2 6= 0, we have the condition

(2.10) (−UNP−3 (z) + 2zUNP−2 (z)) = 0,

which determines the solution in the form

(2.11) vi = c2Ui−1 (z) .

The roots of the polynomial equation (2.10) are found by the use of (2.9b)

(−UNP−3 (z) + (2z − 1)UNP−2 (z)) = UNP−1 (z)− UNP−2 (z) = 0.

Therefore, from (2.8b) we get

sin [NP arccos [z]]

sin [arccos [z]]
=
sin [(NP − 1) arccos [z]]

sin [arccos [z]]
⇒ z = cos

(2k − 1)
(2NP − 1)π, k = 1, ..., NP − 1,

and from the definition of z, the eigenvalues become

(2.12) λ̊
(j)
= 2

µ
1− cos (2j − 1)

(2NP − 1)π
¶
= 4 sin2

(2j − 1)
2 (2NP − 1)π, j = 1, ..., NP − 1.

Similarly from (2.11), the eigenvectors are

(2.13) v̊
(j)
i =

2√
2NP − 1

sin

∙
i
(2j − 1)π
(2NP − 1)

¸
, i, j = 1, ..., NP − 1.

where the constant c2 has been chosen in order to have an orthonormal set.
Therefore, the optimal values of the inductance and resistance can be computed by

substituting (2.12) and (2.13) into (2.5).
It is worthwhile to notice that the eigenvalues λ(j)hom represent an approximation of the

eigenvalues λ̊
(j)

divided by the squared step size ε2:³
λ̊
(j)
/ε2
´

λ̊
(j)

hom

= (NP )
2
4 sin2

π (2j − 1)
2 (2NP − 1)³π

2
(2j − 1)

´2 = 1 +
1

NP
+ o

µ
1

NP

¶
,

where we used NP = l/ε. Similar considerations may be drawn for the eigenvectors.
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3. Sensitivity analysis

In this Section we consider the effects of variations of the inductances, with respect
to their optimal common value, on the system damping performances. The different
inductances are counted from the free end as shown in Figure 4.

L4

R

L3

R

L2

R

L1

R

NP = 5

Figure 4. Numbering of the unequal inductors in the second order trans-
mission line.

The electric governing equation (2.1) becomes

C ψ̈ + Lψ + 1

R
N̊ ψ̇ + i = 0,

with

L =

⎡⎢⎢⎢⎢⎢⎣
1
L1
+ 1

L2
− 1

L2
0 ... 0

− 1
L2

1
L2
+ 1

L3
− 1

L3
... ...

0 − 1
L3

... ... 0
... ... ... 1

LNP−2
+ 1

LNP−1
− 1

LNP−1
0 ... 0 − 1

LNP−1
1

LNP−1

⎤⎥⎥⎥⎥⎥⎦ .
Each inductance Li is deviating with respect to the optimal value in (2.5) of a quantity
∆Li. For small variations, the matrix L may be written as

L ' 1

L
N ,

where the dimensionless matrices

N = N̊ +∆N , ∆N =

⎡⎢⎢⎢⎢⎣
X1 +X2 −X2 0 ... 0
−X2 X2 +X3 −X3 ... ...
0 −X3 ... ... 0
... ... ... XNP−2 +XNP−1 −XNP−1
0 ... 0 −XNP−1 XNP−1

⎤⎥⎥⎥⎥⎦ ,
and the dimensionless variations

Xk = −∆Lk

L
,

have been introduced.
The presence of these deviations induces changes in the modal parameters β and γ,

which affect the system effectiveness according to the sensitivity formula for the small
coupling case (3.2) of Chapter 5, which is here recalled:

(3.1) kHpk∞ =
°°Hpopt

°°
∞ +

1

γ2
|∆β|−

√
2

γ2
∆γ.

The parameters β depends linearly on the j-th eigenvalue of the matrix N , while γ
depends linearly on the j-th eigenvector (see equation (2.4)). Therefore, it is crucial to
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determine the eigenproperties sensitivity of N with respect to the Xj. In particular the
variations of β and γ are related to the deviations Xk and can be expressed by:

(3.2) ∆β =
1

λ̊
(j)

NP−1X
k=1

∂̊,k
h
λ(j)
i
Xk, ∆γ =

γ

dT̊v(j)
dT

NP−1X
k=1

∂̊,k
£
v(j)

¤
Xk,

where ∂̊,k denotes partial differentiation with respect to Xk and consequent evaluation at
the unperturbed state.

3.1. Problem statement. The eigenvalue problem is written as

Nv(j) = λ(j)v(j),(3.3a) ¡
v(j)

¢T
v(j) = 1,(3.3b)

where also the normalization condition has been accounted for.
To obtain the derivatives of the eigenpair

³
λ(j),v(j)

´
with respect to the perturbation

Xk, we differentiate equation (3.3) with respect to Xk and evaluate it at the unperturbed
state (see e.g. [El-Kady and Al-Ohaly (1997)]):³

N̊ − λ̊
(j)
1
´³

∂̊,k
£
v(j)

¤´− v̊(j) ³∂̊,k hλ(j)i´ = −³∂̊,k [∆N ]´ v̊(j),(3.4a) ¡̊
v(j)

¢T ³
∂̊,k
£
v(j)

¤´
= 0,(3.4b)

where 1 denotes the (NP − 1)× (NP − 1) identity matrix.

The matrix
³
∂̊,k [∆N ]

´
has the very simple form:

(3.5)
³
∂̊,k [∆N ]

´
= eke

T
k ,

where
eTk =

£
0 · · · −1 1 0 · · · 0

¤
,

and the −1 is at the(k − 1)-th entry, and for k equal to 1 only the first element of eTk is
not vanishing and equal to 1.

3.2. Eigenvalues sensitivity. In order to find the eigenvalues sensitivity, we simply
multiply equation (3.4a) by

¡̊
v(j)

¢T
and obtain

(3.6) ∂̊,k
h
λ(j)
i
=
¡̊
v(j)

¢T ³
∂̊,k [∆N ]

´
v̊(j),

where the unperturbed eigenvalue problem (2.2), with orthonormal eigenvectors, has been
employed.

By using equation (3.5) the sensitivity in (3.6) can be written as

∂̊,k
h
λ(j)
i
=
³¡̊
v(j)

¢T
ek
´2
=µ

1

2NP − 1 sin
∙
j
(2j − 1)π
(2NP − 1)

¸
− 1

2NP − 1 sin
∙
(j − 1) (2j − 1)π

(2NP − 1)
¸¶2

,

which, after some algebraic manipulations becomes:

(3.7) ∂̊,k
h
λ(j)
i
=

4

2NP − 1 λ̊
(j)
cos2

∙
(2j − 1) (2k − 1)π
2 (2NP − 1)

¸
.

The sensitivity of the eigenvalues of the considered system may be found also following
the procedure developed by [Soong and Bogdanoff (1963)], dealing with transmission
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matrices in disordered chains. We remark that the sensitivity (3.7) is positive; therefore,
small deviations Xk always increase the eigenvalues.

By substituting (3.7) into (3.2) we obtain

∆β =
4

2NP − 1
NP−1X
k=1

cos2
∙
(2j − 1) (2k − 1)π
2 (2NP − 1)

¸
Xk,

which provides the global tuning-loss induced by the deviations of the inductances.

3.3. Eigenvectors sensitivity. We multiply equation (3.4a) by
¡̊
v(n)

¢T
with n 6= j

and obtain ³
λ̊
(n) − λ̊

(j)
´ ¡̊
v(n)

¢T ³
∂̊,k
£
v(j)

¤´
= − ¡̊v(n)¢T ³∂̊,k [∆N ]´ v̊(j).

Hence by accounting also for equation (3.4b) we obtain the following modal expansion for
the eigenvector sensitivity:

(3.8) ∂̊,k
£
v(j)

¤
= −

NP−1X
n=1
n6=j

¡̊
v(n)

¢T ³
∂̊,k [∆N ]

´
v̊(j)³

λ̊
(n) − λ̊

(j)
´ v̊(n).

By using equation (3.5) the sensitivity (3.8) becomes:

∂̊,k
£
v(j)

¤
= −

NP−1X
n=1
n6=j

¡
eTk v̊

(j)
¢ ¡
eTk v̊

(n)
¢³

λ̊
(n) − λ̊

(j)
´ v̊(n) =

4

2NP − 1
NP−1X
n=1
n6=j

q
λ̊
(n)
λ̊
(j)³

−λ̊(n) + λ̊
(j)
´ cos ∙(2k − 1) (2n− 1)π

2 (2NP − 1)
¸
cos

∙
(2k − 1) (2j − 1) π
2 (2NP − 1)

¸
v̊(n).

By substituting the above expression into (3.2) we obtain the variation of the modal
coupling ∆γ induced by the inductances deviations.

4. Effect of parameters uncertainties

Starting from the sensitivities of the system eigenpairs with respect to the perturba-
tions Xk, we study the effects of uncertainties. We assume that the parameters Xk are
equally distributed independent random variables normally distributed with zero mean.
The probability density functions are

fX (x) =
1√
2πσX

exp

Ã
−1
2

µ
x

σX

¶2!
,

where σX denotes the common standard deviation.
It is well known (see [Breiman (1969)]) that if the random variables are independent

∀c1, c2, ..., cN E

"
NX
j=1

cjXj

#
=

NX
j=1

ciE [Xj] ,

and

∀c1, c2, ..., cN V

"
NX
j=1

cjXj

#
=

NX
j=1

c2jV [Xj] .

Furthermore, the linear combination of independent normal variables is still normal.
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4.1. Moments of ∆β. Therefore from (3.2) we know hat ∆β is a normal variables
whose mean value and variance are

E [∆β] = 0, V [∆β] =

Ã
1

λ̊
(j)

!2 "NP−1X
k=1

³
∂̊,k
h
λ(j)
i´2#

(σX)
2 .

The factor in square brackets may be evaluated from (3.7):

NP−1X
k=1

³
∂̊,k
h
λ(j)
i´2

= 42
µ

4

2N + 1

¶2
sin4

µ
(2j − 1)
2 (2N + 1)

π

¶
NP−1X
k=1

µ
cos4

∙
(2j − 1) (2k − 1)π

2 (2N + 1)

¸¶
=

3

2NP − 1
³
λ̊
(j)
´2

.

Hence, the variance of ∆β is

V [∆β] =
3

2NP − 1 (σX)
2 .

Its standard deviation σ∆β decreases to zero with the square root of the matrix dimension,
i.e.:

σ∆β =

r
3

2NP − 1σX .

4.2. Moments of ∆γ. From (3.2), also the random variable ∆γ is Gaussian and its
mean value and variance are

E [∆γ] = 0, V [∆γ] =
³ γ

dT̊v(j)

´2 "NP−1X
k=1

³
dT
³
∂̊,k
£
v(j)

¤´´2#
(σX)

2 .

In this case it is not possible to derive a simple closed-form formula as that presented for
the variance of ∆β. Nevertheless, the variance can be easily computed in terms of the
vector d and the number of transducers NP :

V [∆γ] = γ2f
(j)
1 (d, NP ) (σX)

2 ,

where

f
(j)
1 (d, NP ) =

µ
1

dT̊v(j)

¶2µ
4

2NP − 1
¶2

NP−1X
k=1

⎛⎜⎝NP−1X
n=1
n6=j

q
λ̊
(n)
λ̊
(j)³

−λ̊(n) + λ̊
(j)
´ cos ∙(2k − 1) (2n− 1)π

2 (2NP − 1)
¸
cos

∙
(2k − 1) (2j − 1)π
2 (2NP − 1)

¸
dTv̊(n)

⎞⎟⎠
2

,

is a function which depends only on the number of piezoelectric elements NP and on the
modal curvature d. We explicitly remark that if the modal curvature is parallel to the
j-th unperturbed eigenvector v̊(j), the function f

(j)
1 vanishes for every NP .

For example, when the modal curvature is not parallel to the j-th unperturbed eigen-
vector v̊(j), but can be expressed as v̊(j)+ε̊v(h), the function f

(j)
1 gives the following simple

result:

f
(j)
1

¡̊
v(j) + ε̊v(h), NP

¢
= ε2

λ̊
(h)
λ̊
(j)³

−λ̊(h) + λ̊
(j)
´2 µ 2

2NP − 1
¶
.
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As another example, if the modal curvature is instead expressed as v̊(j)+ε1̊v
(h1)+ε2̊v

(h2),

with h1 6= h2, then the function f
(j)
1 gives:

f
(j)
1

¡̊
v(j) + ε1̊v

(h1) + ε2̊v
(h2), NP

¢
= (ε1)

2 λ̊
(h1)

λ̊
(j)³

−λ̊(h1) + λ̊
(j)
´2 µ 2

2NP − 1
¶
+

+ (ε2)
2 λ̊

(h2)
λ̊
(j)³

−λ̊(h2) + λ̊
(j)
´2 µ 2

2NP − 1
¶
+

λ̊
(j)
q
λ̊
(h1)

λ̊
(h2)³

−λ̊(h1) + λ̊
(j)
´³
−λ̊(h2) + λ̊

(j)
´ε1ε2µ 2

2NP − 1
¶
δ|h1−h2|1,

where δij is the Kronecker delta, being 1 if i is equal to j and 0 otherwise. In the general
case for an arbitrary modal curvature

d =

NP−1X
h=1

εh̊v
(j),

we obtain

(4.1) f
(j)
1 (d, NP ) =

1

(εj)
2

µ
2

2NP − 1
¶

⎡⎢⎣NP−1X
k=1
k 6=j

(εk)
2 λ̊

(k)
λ̊
(j)³

−λ̊(k) + λ̊
(j)
´2 + NP−2X

k=1
k 6=j,j−1

λ̊
(j)
q
λ̊
(k)
λ̊
(k+1)³

−λ̊(k) + λ̊
(j)
´³
−λ̊(k+1) + λ̊

(j)
´εkεk+1

⎤⎥⎦ .
We explicitly remark that f

(j)
1 (d, NP ) does not depend on the absolute value of d and

that depends only on its direction. The standard deviation is

σ∆γ = γσX

q
f
(j)
1 (d, NP ).

4.3. Mixed moments. In this case the random variables ∆γ and ∆β are not inde-
pendent, since they both depend on the same deviations Xk. Their correlation is

Γ [∆γ,∆β] = E [(∆γ −E [∆γ]) (∆β −E [∆β])] =

γ

dT̊v(j)
1

λ̊
(j)

Ã
NP−1X
k=1

dT
³
∂̊,k
£
v(j)

¤´
∂̊,k
h
λ(j)
i!
(σX)

2 .

Also in this case no closed-form expressions are available, and the following computer
oriented formula may be worthwhile:

Γ [∆γ,∆β] = γf
(j)
2 (d, NP ) (σX)

2 ,
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with

f
(j)
2 (d, NP ) =

1

dT̊v(j)

µ
4

2NP − 1
¶2

NP−1X
k=1

cos3
∙
(2k − 1) (2j − 1)π

2 (2N + 1)

¸NP−1X
n=1
n6=j

q
λ̊
(n)
λ̊
(j)³

−λ̊(n) + λ̊
(j)
´ cos ∙(2k − 1) (2n− 1)π

2 (2NP − 1)
¸
dTv̊(n).

4.4. Moments of the system norm. From the knowledge of the statistics of ∆β
and ∆γ we can compute the expected value of the system infinity norm in (3.1) as we
have done in (4.2) of Chapter 5:

(4.2) E
£kHpk∞

¤
=
°°Hpopt

°°
∞ +

r
2

π

1

γ2

r
3

2NP − 1σX .
The computation of the variance of kHpk∞ , for small coupling, yields the same result
of (4.3) of Chapter 5, even if ∆β and ∆γ are correlated (when the coupling cannot be
considered small the results should be modified by accounting for the correlation between
∆β and ∆γ, and using the above expression for f (j)2 (d, NP )).

Indeed, the expected value of the product between |∆β| and ∆γ is:

E [(|∆β|) (∆γ)] =
1

λ̊
(j)

γ

dT̊v(j)
dTE

"Ã¯̄̄̄
¯
NP−1X
k=1

∂̊,k
h
λ(j)
i
Xk

¯̄̄̄
¯
!Ã

NP−1X
k=1

∂̊,k
£
v(j)

¤
Xk

!#
,

which is equal to
1

λ̊
(j)

γ

dT̊v(j)
dT

Z
RNP−1

e (x1, ..xNP−1)o (x1, .., xNP−1) dx1...dxNP−1,

where we defined: ¯̄̄̄
¯
NP−1X
k=1

∂̊,k
h
λ(j)
i
xk

¯̄̄̄
¯
NP−1Y
k=1

fX (xk) =: e (x1, .., xNP−1)

and
NP−1X
k=1

∂̊,k
£
v(j)

¤
xk =: o (x1, .., xNP−1) .

By noticing that
o (x1, ..xNP−1) = −o (−x1, ..,−xNP−1) ,

and
e (x1, ..xNP−1) = e (−x1, ..,−xNP−1) ,

it is easy to recognize that
E [(|∆β|) (∆γ)] = 0.

Thus, from (4.4) we obtain

(4.3) V
£kHpk∞

¤
=

∙µ
1− 2

π

¶
1

γ4

µ
3

2NP − 1
¶
+
2

γ2
f
(j)
1 (d, NP )

¸
σ2X .

As the number of transducers increases the effect of the uncertainties Xj on the ex-
pected value of the system norm becomes smaller and smaller (see (4.2)). Similarly, from
(4.1) and (4.3) we can also see that as the number of transducers is increasing the vari-
ance of the system norm is decreasing. Hence, by comparing the achieved results, with
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Table 1. Beam and PZT transducers geometrical properties

l aB h lp aP δ d da
273.6mm 19.5mm 1.90mm 35.6mm 17.8mm 0.27mm 10.0mm 5.0mm

those in equation (4.5) of Chapter 5 we may state that the use of several piezoelectric el-
ements in a transmission line network allows for the mitigation of the effects of statistical
uncertainties on the system performances.

5. Experimental Setup

Experiments were conducted to validate the theoretical models presented above2.

Figure 5. Picture of the PEM beam

Frequency response tests were performed on a cantilever aluminum (Al6061-T6) beam
with five surface-bonded piezoelectric transducers made of PZT-5H piezoelectric ceram-
ics (Piezo-System T110-H4E-602), sketched in Figure 5 (the corresponding geometrical
properties are reported in Table 1, while the constitutive ones are found in Table 2 of
Chapter 3).

The same experimental setup, as in Section 4 of Chapter 3 has been used to conduct
the tests. The first resonance frequency of the beam when all the piezoelectric elements
are short-circuited is

ω(1) = 2π × 20.44Hz.
The piezoelectric capacitances have been measured by using the technique described

in Section 5.3 and their average value is C = 52.846 nF. They differ from the average
within 3% (see e.g. [dell’Isola et al. (2004)]).

The optimal line inductance can be computed by the use of (2.5), (2.12), the measured
resonance frequency ω(1) and the average capacitance C:

L = 138.38 H.

2All the experimental tests have been performed in the Laboratory of “Meccanica delle Vibrazioni”
of the University of Rome “La Sapienza” directed by Prof. Sestieri.
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Table 2. Measured non-dimensional coupling parameters. .

γ4 γ3 γ2 γ1 γ0
12.2× 10−2 9.54× 10−2 5.77× 10−2 2.98× 10−2 0.083× 10−2

In order to compute the optimal resistance in (2.5) we should know the coupling
coefficient γ and the capacitance C. The coupling coefficient γ can be expressed as

γ =

NP−1X
h=0

v̊
(1)
h γh,

where the modal coupling of the separate transducers have been introduced

γj = g

¡
w(1)

¢0
(Xr(j)+1)−

¡
w(1)

¢0
(Xr(j))

ω(1)
√
mC

=
dj

ω(1)
√
mC

.

These parameters may be measured by the technique presented in Section 5.3 of Chapter 5,
and their values are listed in Table 2. They convey all the necessary information about the
beam modal curvature and will be used in what follows to study the statistical properties
of the control system. Therefore the value of the modal coupling coefficient is

γ = 0.16670,

and the optimal resistance is
R = 87.046 kΩ.

The floating inductor can be simulated, according to [Deboo (1967)], by exploiting
the three operational amplifiers RC-circuit depicted in Figure 6.

R R 2 R

R

R

R

R

R

R

2 R

R

+

+

-

- +

-

C

R

R

Figure 6. Schematics of floating inductors.

High-precision resistors must be used in order to reduce circuit losses, and guarantee
a two-terminals behavior of the simulated inductor. A careful dimensioning of the circuit
components may yield very high quality factors, without affecting the maximum allowed
voltage. Meanwhile, attention must be paid towards undesired instability phenomena,
which may eventually be compensated by introducing additional resistors connecting the
circuit terminals to ground. From the analysis of the introduced RC-circuit, it is possible
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Table 3. Nominal values of the electric components used to implement
the floating and grounded inductors

Deboo (L = 130.5 H) R = 2.7 kΩ
C = 17.9 µF (polyester)

Antoniou (L = 19.01 H) R1 = 3 kΩ
R2 = 1 kΩ
R3 = 0 kΩ
R4 = 1 kΩ
R6 = 198 Ω
C5 = 32 µF (polyester)

to show that the circuit is equivalent to a sole floating inductor, the inductance of which
is:

L = R2C.

From a practical point of view, inductance can be varied only by tuning the loading
capacitance C, since otherwise the simultaneous change of all the resistances is required.
The breadboard implementation of the floating inductor is shown in Figure 7.

Figure 7. Picture of the realized inductor.

In order to avoid the simultaneous tuning of all the used inductors, the internal reso-
nance condition (2.1) is achieved by following a simpler approach. Indeed, by looking at
the plot in Figure 1, it is clear that variations of the boundary impedance at the transducer
located at the free end in the range [0, L] do not sensibly affect the electromechanical modal
coupling γ, but, on the other hand, influence the electric resonance frequency. Therefore,
the electric network can be tuned to the structural modal frequency by changing only
that boundary inductance.

The modified Antoniou’s circuit in Figure 6 of Chapter 5 was used to simulate the
tuning grounded inductor.

The values of the components employed for the realization of the five floating inductors
and the grounded one are reported in Table 3. High-voltages FET-input operational
amplifiers Burr-Brown OPA445AP driven by a dual outputs power supply TTi EX752M
at ±30 V and high-precision resistors (±1%) have been used.

In Figure 8, we report corresponding mobility function for different values of the line
resistances R (a boundary resistance in parallel connection with the tuning grounded
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Antoniou inductor was chosen to achieve a proportional damping). From equation (2.4)
of Chapter 5, the difference between the frequencies of the fixed points S and T, can be
evaluated to be 2.41Hz. These theoretical predictions, based on the previous modeling
on the experimental identification technique in Section 5.3 of Chapter 5, are in very close
agreement with the experimental results implied by Figure 8 where it can be shown that
a reduction of the mechanical mobility maximum value of 95.8% occurs around the first
mode. The discrepancy between the theoretically predicted and experimentally measured
optimal line resistance may be attributed to the parasitic resistances of the simulated
inductors and to the neglect of the structural damping.

Figure 8. First mode mechanical mobility with different the line resistances.

From equation (4.2) and the experimental value of the coupling γ, the difference
between the expected value of the system norm and the optimal one is:

E
£kHpk∞

¤− °°Hpopt

°°
∞°°Hpopt

°°
∞

=

r
1

π

1

γ

r
3

2NP − 1σX = 1.954σX ,
where we used °°Hpopt

°°
∞ =

√
2

γ
= 8.484

The computation of the variance of the system infinity norm requires the knowledge of
the beam modal curvature, which is conveyed by the parameters in Table 2, since, as we
already pointed out dealing with equation (4.1), the function f

(j)
1 depends only on the

direction of d. Therefore we can evaluate f
(j)
1 from the couplings in Table 2:

f
(j)
1

³£
γ1 γ2 γ3 γ4

¤T
, 5
´
= 0.451× 10−3.
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which is an extremely small number, since d is almost parallel to the first eigenvector of
the unperturbed circuit. Therefore, from (4.4) we obtainq

V
£kHpk∞

¤
= 12.53σX ,

and q
V
£kHpk∞

¤°°Hpopt

°°
∞

= 1.477σX .



CHAPTER 7

Fourth order transmission line

In this Chapter, we consider the performances of an electric circuit analog1 to an Euler-
Bernoulli beam with structural damping2, interconnecting the electrical terminals of the
array of piezoelectric transducers positioned on the host beam. The used circuit is named
fourth order transmission line in order to emphasize the presence of the fourth derivative
in the electric evolution equation and to preserve the same terminology of Chapter 6.

We initially analyze the resulting PEM structure as a continuum, by making use of
the results in Chapter 4. The eigenvalue problem for the fourth derivative operator with
natural (in the sense of [Russell (1988)]) boundary conditions is reviewed. The concept
of dual boundary conditions is presented and the relations between the spectral properties
of the original and the dual problem are explained. The dual boundary conditions are
used to define the domain of the electric fourth derivative operator. The electric damping
is modeled by the square root of the fourth derivative. It is shown that the distributed
circuit governed by the fourth derivative with dual boundary conditions and inherent
square root damping allows for the simultaneous damping of every structural mode and
that the damping performances are mode independent.

Next, we tackle the problem of synthesizing a lumped electric circuit approximating
the beam circuit analog, i.e. governed by a discrete version of the beam equation. This
problem has been analyzed in [dell’Isola and Vidoli (1998, 2)],
[Alessandroni et al. (2002)] and [dell’Isola et al. (2001)], but the proposed circuits
have stern practical inconveniences, either due to active transconductances, or negative
inductors, or multiport transformers. In the present work two distinct synthesis tech-
niques are exploited to achieve the same electric analog, being constituted only by induc-
tors, capacitors and two-port transformers. Both the approaches involves a Timoshenko
beam model and derive the Euler-Bernoulli beam analog circuit as a limit case. In the
first approach, (see [Porfiri et al. (2004)] for details) the equilibrium and constitu-
tive equations of a Timoshenko beam element are finite-difference approximated and a
four port circuit analog to the beam element is conceived. In the second approach, (see
[Andreaus et al. (2004)] for details) a Lagrangian based approach is used: the La-
grangian of a Timoshenko beam is discretized and by establishing an electromechanical
analogy between the flux-linkages and the displacements a discrete circuit governed by the
discretized beam Lagrangian is assembled. The first method is more intricate and difficult
but gives necessary and sufficient conditions for the transformerless synthesis of analog
circuits. On the other hand, the second method can be easily applied to more complicated
problems (see e.g. [Alessandroni et al. (2004)] and [Alessandroni et al. (2005)]).

1In order to be more rigorous we should say that the circuit is the analog of a massless Euler-
Bernoulli beam with structural damping and equipped with dual boundary conditions with respect to
those prescribed on the stepped piezoelectric beam. Indeed, the inertia term in the electric evolution
equation is provided by the piezoelectric elements, rather than the interconnecting network, and only
dual boundary conditions assure the maximum modal coupling.

2The structural damping of the host beam is still neglected, only the electric circuit is dissipative.

73
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Once a satisfactory beam circuit analog is available the problem of suitably inserting
resistors for achieving the multimodal damping is tackled. A PEM beam prototype is
designed and the broadband damping effectiveness of the proposed device is assessed.
Finally the circuit analog is analyzed as a lumped system.

1. Problem formulation

When studying the second order transmission line (Chapter 6) we have applied the
results found in Chapter 5 to a reduced order model based on the projection of the
electromechanical solution on two modes of the uncoupled systems. We have seen that
by the use of that distributed network it is impossible to simultaneously damp different
structural modes. Indeed, the inductance per unit length is determined for achieving the
internal resonance between two particular electrical and mechanical modes. Also, the
boundary conditions are chosen once for all according to the chosen modes, in order to
maximize the inner product between the beam modal curvature and the electric mode
shape, which is maximum when the electric mode shapes are equal to the mechanical
modal curvatures. Similarly, the resistance per unit length is determined by requiring
that the electric modal damping is proportional to the modal coupling by the factor

p
3/2.

All the shortcomings of the second order transmission line may be overcame by the
use of an electric circuit characterized by the following three properties:

(1) it is resonating at all the structural modes,
(2) its mode shapes are the beam modal curvatures,
(3) it is endowed with an inherent modal damping proportional with the modal

coupling.

In the present Section we present the governing equations of the optimal circuit ful-
filling all the above specifications. We start by analyzing the modal properties of the
fourth derivative operator and its square root. Following [Russell (1988)] we introduce
the concept of dual boundary conditions. We exploit this knowledge to derive the modal
properties of the optimal distributed network.

1.1. Eigenvalue problem.
1.1.1. Properties of the fourth derivative operator. We denote by K the fourth deriv-

ative operator in L2 (0, 1) :

(Kw) (x) = wIV (x) , x ∈ (0, 1) ,
with D (K) , the domain of K, a subspace of H4 (0, 1) dense in L2 (0, 1), characterized by
boundary conditions for which the operator is self-adjoint (in L2 (0, 1)) and nonnegative
definite.

It is possible to show that K is self-adjoint and nonnegative definite for every choice
of natural3 boundary conditions (in the sense of [Russell (1988)]). In order to define
natural boundary conditions we need to define the preliminary concept of symmetric
boundary conditions. To this aim we take two functions w and v in D (K) and by inte-
gration by parts we getZ 1

0

(Kw) vdx =

Z 1

0

w00v00dx+ (w000v − w00v0)|10 ,

3The natural boundary conditions in the classical literature on variational boundary value problems
is completely unrelated to what we are studying now.
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and Z 1

0

(Kv)wdx =

Z 1

0

w00v00dx+ (v000w − v00w0)|10 .
The boundary conditions that ensure the symmetry of K, i.e.:Z 1

0

(Kw) vdx =

Z 1

0

(Kv)wdx, ∀w, v ∈ D (K) ,
are called symmetric. The symmetry of the fourth-derivative operator does not imply its
self-adjointness4. We call natural boundary conditions the symmetric boundary conditions
that:

• assure that K is self-adjoint, i.e. that

K∗ = K, with D (K) = D (K∗) ,
K∗ being the adjoint of K;

• render the quantity

(1.1) w0w00 − ww000

nonpositive at 1 and nonnegative at 0.
Under natural boundary conditions the spectrum of K consists of eigenvalues

0 ≤ ¡η(1)¢4 < ¡η(2)¢4 < · · · < ¡η(k)¢4 < ¡η(k+1)¢4 < · · ·
of single multiplicity when η(k) is different from zero. Moreover, they have the following
form (see e.g. [Russell (1988)])

η(k) = k + ν + εk,

where εk is a sequence in l2 and ν is a constant. The corresponding orthonormal eigen-
functions w(k) form an orthonormal basis for L2 (0, 1) themselves or may be modified (in
the case η(1) = 0) to include a pair of orthonormalized eigenfunctions corresponding to
the zero eigenvalue.

For any positive eigenvalue
¡
η(k)
¢4

the corresponding eigenfunction is

(1.2) w(k) = A1 cos
¡
η(k)x

¢
+A2 cosh

¡
η(k)x

¢
+A3 sin

¡
η(k)x

¢
+A4 sinh

¡
η(k)x

¢
.

The modal curvatures are simply¡
w(k)

¢00
= C1 cos

¡
η(k)x

¢
+ C2 cosh

¡
η(k)x

¢
+ C3 sin

¡
η(k)x

¢
+ C4 sinh

¡
η(k)x

¢
,

where

C1 = −A1
¡
η(k)
¢2
, C2 = A2

¡
η(k)
¢2
, C3 = −A3

¡
η(k)
¢2
, C4 = A4

¡
η(k)
¢2
.

Alternatively the coefficients of the mode shape Ai and modal curvature Ci may be related
by the following matrix relation:

C =
¡
η(k)
¢2
TA,

with

C =

⎡⎢⎢⎣
C1
C2
C3
C4

⎤⎥⎥⎦ , A =

⎡⎢⎢⎣
A1
A2
A3
A4

⎤⎥⎥⎦ , T =

⎡⎢⎢⎣
−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎤⎥⎥⎦ .
4For instance in D (K) = H4

0 (S) the operator K is symmetric. Its adjoint K∗ is the fourth-derivative
defined on the domain D (K∗) = H4 (S) , being strictly larger than D (K) .



1. PROBLEM FORMULATION 76

The effect of the unitary transformation matrix T on a given vector consists of the mul-
tiplication by a constant and the change in the sign of the first and third component.

1.1.2. Dual boundary conditions. Natural boundary conditions account for lumped
elastic elements at the beam ends (either rotational or extensional springs), therefore
the resulting strain energy is not strictly distributed in general and boundary terms may
appear. In the present work, we refrain from considering lumped elastic elements by
accounting for the sole boundary conditions constituted by clamped, free, hinged, and
guided boundary conditions. Thus, the expression in (1.1) is simultaneously vanishing at
both the beam ends5 and the strain energy takes the strictly distributed form:

1

2

Z 1

0

(w00)2 dx.

Following [Russell (1988)], the boundary conditions may be written in the form

w0 = Ez, w1 = εζ,

with

(1.3) w0 =

⎡⎢⎢⎣
w (0)
w0 (0)
w00 (0)
w000 (0)

⎤⎥⎥⎦ , w1 =

⎡⎢⎢⎣
w (1)
w0 (1)
w00 (1)
w000 (1)

⎤⎥⎥⎦ , E =
£
E1 E2

¤
, ε =

£
ε1 ε2

¤
,

and where E1 and E2 (ε1 and ε2) are independent four vectors whose entries are all zeros
but one which is equal to a constant, z (ζ) is an arbitrary two vector.6 In this way we
select which are the components of the vectors w0 and w1 that may attain values different
from zero.

The boundary conditions in terms of the coefficient vector A are

BA = Ez, βA = εζ,

where the following matrices have been introduced:

B : =

⎡⎢⎢⎣
1 1 0 0
0 0 1 1
−1 1 0 0
0 0 −1 1

⎤⎥⎥⎦ , β : =

⎡⎢⎢⎣
cos
¡
η(k)
¢

cosh
¡
η(k)
¢

sin
¡
η(k)
¢

sinh
¡
η(k)
¢

− sin ¡η(k)¢ sinh
¡
η(k)
¢

cos
¡
η(k)
¢

cosh
¡
η(k)
¢

− cos ¡η(k)¢ cosh
¡
η(k)
¢ − sin ¡η(k)¢ sinh

¡
η(k)
¢

sin
¡
η(k)
¢

sinh
¡
η(k)
¢ − cos ¡η(k)¢ cosh

¡
η(k)
¢
⎤⎥⎥⎦ .

The corresponding boundary conditions that are satisfied by the modal curvature coeffi-
cient vector at the beam ends, called dual boundary conditions, are

BT−1C = Ez, βT−1C = εζ,

which, by recalling that T is unitary, become:

BTC = Ez, βTC = εζ.

The product BT (βT) is simply the matrix B (β) after changing the sign of the first
and third column, therefore it is equal to the matrix B (β) after inverting the first with
the third row and the second with the fourth. Hence, the dual boundary conditions are
simply obtained from the matrices E and ε by changing the first row with the third one,
and the second row with the fourth one. The corresponding matrices are indicated by E#

and ε#. We explicitly point out that the dual constraint of the clamped is the free end,

5In mechanics these constraints are sometimes referred to as perfect.
6The discussion may be extended to any natural boundary condition, if the vectors E1 and E2 (ε1

and ε2) are treated as generic independent vectors varying with η(k) and the boundary matrices B and
β are treated as functions of η(k), as well.
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of the hinged the hinged itself, of the free end is the clamped, of the guided is the guided
end itself (see Figure 1)

duality

duality

duality

Figure 1. Sketch of duality relations between mechanical constraints.

Therefore, given the fourth derivative operator K with domain D (K) characterized
by the matrices E and ε we can define the dual operator K# with domain D ¡K#¢ , by
requiring that K# is still the fourth derivative and its domain D ¡K#¢ is individuated by
the matrices E# and ε# constructed as explained above. Obviously, K# is self-adjoint and
nonnegative definite too, its eigenfunctions may form an orthonormal basis in L2 (0, 1) ,
and the dual of the dual problem is the original problem. The eigenvalues of the dual
problem are the same of those of the original problem, while the eigenfunctions, say
w#(k), are computed from those of the original ones, w(k), after double differentiation7 and
normalization.

The inner product of w#(j) and
¡
w(i)

¢00
• vanishes if η(i) is zero (since

¡
w(i)

¢00
is zero consequently),

• vanishes if w#(j) is not corresponding to a 0 eigenvalue and i is different from j,

• is equal to
¡
η(k)
¢2

if i is equal to j and none of the eigenfunctions correspond to
a zero eigenvalue.

We remark that a distributed electric circuit governed by the dual operator, with
its own boundary conditions, may resonate at all the mechanical mode frequencies and
provide, meanwhile, electric mode shapes parallel to the beam modal curvatures.

1.1.3. Square root of the fourth derivative. In [Chen and Russell (1982)], in order
to account for observed relationships between modal damping and modal frequencies in
structural systems, the square root damping model is introduced. Indeed, this model
leads to mode independent modal damping.

7The zero eigenvalues of the original problem are not inherited by the dual problem. In the dual
problem, zero eigenvalues may arise and the corresponding eigenfunctions are not the second derivative
of any eigenfunction of the original problem.
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The fourth derivative K, with natural boundary conditions, admits a unique nonneg-
ative self-adjoint square root K1/2 whose domain D ¡K1/2¢ is a subset of D (K) (see e.g.
[Kato (1966)]). The eigenfunctions of K1/2 are the same of those of K, and the eigenvalues
are simply the square root of those of K.

In [Russell (1988)], its mathematical properties are deeply analyzed, and it is shown
that it coincides with the negative second order derivative operator when special natural
boundary conditions (called trigonometric) are prescribed. Those boundary conditions
ensure purely trigonometric eigenfunctions for the fourth derivative operator, i.e. van-
ishing A2 and A4 in (1.2). When such boundary conditions are imposed the dissipative
operator is actually a differential operator and by exploiting finite difference approxima-
tions it is possible to synthesize a lumped approximating network. Otherwise, it “is not
a differential operator and its interpretation is rather obscure”, [Russell (1988)].

As mentioned before, in the present work we are interested only in a particular class
of natural boundary conditions constituted only by clamped, free, hinged and guided
boundary. Within this small admissible set of constraints the only trigonometric boundary
conditions are the hinges at both ends. Indeed for a simply supported beam the only non
zero term in (1.2) is A3.

1.2. Vibrations of a PEM beam endowed with the optimal circuit. The gov-
erning equation for the mechanical deflection field w is (see equation (1.1) in Chapter 6):

ρhomẅ + khomw
IV − ghomψ̇

00
= b,

where the same notation as in Chapter 6 is used; in particular the constitutive parameters
are defined in (2.15) of Chapter 4 and (1.2a) of Chapter 6.

The governing equation for the electric flux-linkage is

(1.4) chomψ̈ + ahomψ
IV + bhom

³
ψ̇
IV
´1/2

+ ghomẇ
00 = 0,

where the homogenized capacitance per unit length chom is given in (1.4) of Chapter 4,
and the positive parameters ahom and bhom are design parameters. These two parameters
represent the main properties of the distributed electric circuit and are related to the
circuit topology and the electric components’ values. They are treated as unknowns and
their optimal values are the result of the infinity norm minimization problem for the i-th
electromechanical mode.

Once the mechanical boundary conditions are prescribed, the electric ones are chosen
to be their dual in the sense above specified. Hence, by adapting the notation of equa-
tions (1.3) to the present electromechanical problem, the boundary conditions become:

w0 − ghom
khom

Q ψ̇0 = Ez, ψ0 = E
#x,(1.5a)

wl − ghom
khom

Q ψ̇l = εζ, ψl = ε#ξ,(1.5b)
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with

w0 =

⎡⎢⎢⎣
w (0, t)
w0 (0, t)
w00 (0, t)
w000 (0, t)

⎤⎥⎥⎦ , ψ0 =

⎡⎢⎢⎣
ψ (0, t)
ψ0 (0, t)
ψ00 (0, t)
ψ000 (0, t)

⎤⎥⎥⎦ ,

wl =

⎡⎢⎢⎣
w (l, t)
w0 (l, t)
w00 (l, t)
w000 (l, t)

⎤⎥⎥⎦ , ψl =

⎡⎢⎢⎣
ψ (l, t)
ψ0 (l, t)
ψ00 (l, t)
ψ000 (l, t)

⎤⎥⎥⎦ ,
and

Q =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎤⎥⎥⎦ ,
z, ζ, x and ξ being arbitrary two vectors. We remark that the effect of the matrix Q on
a generic vector is to invert the first component with the third one, the second with the
fourth and then set to zero the first two. ThereforeQE# is the matrix E with the first two
rows set to zero and QE#x can always be written as Ez. Similar arguments hold for the
right boundary. With this choice of electrical boundary conditions the mechanical field
may be expressed in terms of the eigenfunctions of the fourth derivative with boundary
conditions prescribed by E and ε and the flux-linkage in terms of the eigenfunctions of
the dual problem.

We assume that the system is initially at rest, that there are no zero eigenvalues in
both the problems and we write the solution in terms of the two orthonormal bases con-
stituted by the normalized8 eigenfunctions w(i) and w(j)# (see e.g.
[Sanchez-Hubert and Sanchez-Palencia (1989)] and [Curtain and Zwart (1995)]):

w (x, t) =
∞X
i=1

Wi (t)w
(i) (x) , ψ (x, t) =

∞X
j=1

Ψj (t)w
(j)# (x) .

Therefore, the following problem arises⎧⎪⎪⎨⎪⎪⎩
mẄi (t) +m

¡
ω(i)
¢2
Wi (t)− ghom

¡
η(i)
¢2

l
Ψ̇i (t) = Fi (t)

l chomΨ̈i (t) + ahom
(λi)

4

l3
Ψi (t) + bhom

¡
η(i)
¢2

l
Ψ̇i (t) + ghom

¡
η(i)
¢2

l
Ẇi (t) = 0

,

where the i-th modal force and radian frequency are:

Fi (t) :=

Z l

0

b (x, t)w(i)dx,
¡
ω(i)
¢2
=

khom
¡
η(i)
¢4

ρhoml
4

.

8As usual we normalize the eigenfunctions for havingZ l

0

³
w(k)

´2

dx = l,

Z l

0

³
w(k)#

´2

dx = l,

and we still denote with λi the eigenvalues of the fourth derivative with the given natural boundary
conditions in the domain (0, 1) .
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The resulting coupled ordinary differential equations may be cast in the widely discussed
dimensionless form (1.4):½

Ẅi (t) +Wi (t)− γΨ̇i (t) = Fi(t)

Ψ̈i (t) + δΨ̇i (t) + βΨi (t) + γẆi (t) = 0
,

where each set of modal equations has been non-dimensionalized with respect of a different
time scale and the key modal parameters are:

(1.6) β :=
ahom
chom

ρhom
khom

, δ :=
bhom
chom

r
ρhom
khom

, γ :=
ghom

ωi

√
mchoml

¡
η(i)
¢2

l
= max γ.

Remark 8. Let us remark that the above calculated modal parameters are frequency
independent and that the modal coupling attains its maximum defined in equation (1.12)
of Chapter 6. Thus the tuning and damping parameters can be chosen once for all in
order to optimize the damping of every structural mode.

In particular, by the application of the internal resonance condition in (2.1) of Chap-
ter 5 we obtain:

(1.7)
ahom
chom

ρhom
khom

= 1⇒ chom
ahom

=
ρhom
khom

.

Similarly, the optimal choice of the damping parameters in (2.2) of Chapter 5 yields:

(1.8)
bhom
chom

r
ρhom
khom

=

r
3

2

ghom√
khomchom

⇒ bhom =

r
3

2

r
chom
ρhom

ghom.

Therefore, the ∞-norm of the i-th mobility function is (2.3) of Chapter 5:°°°H(βopt,δopt,γ)°°°∞ =
√
2

γ
=

√
2

ghom

p
khomchom.

1.2.1. Electromechanical modal analysis. Here we study the modal properties of the
gyroscopically coupled partial differential equations governing the vibrations of the beam
and the optimized fourth order line. Thus, when the electric dissipation and the external
load are discarded, and the internal resonance condition in (1.7) is satisfied the governing
equations are:

(1.9)
½

ẅ + a4wIV − b2ψ̇00 = 0
ψ̈ + a4ψIV + b2ẇ00 = 0

,

where non-dimensionalized variables have been used and the following non-dimensional
constants appear:

a4 =
1

l4 (ω∗)2
khom
ρhom

, b2 =
1

l2ω∗
ghom√
chomρhom

.

The parameter ω∗ represents a characteristic radian frequency, the abscissa has been
scaled with the beam length and the characteristic flux-linkage and deflection have been
introduced: r

chom
ρhom

=
w∗

ψ∗
.

The boundary conditions for the electromechanical coupled equations are the non-dimensio-
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-nalized version of (1.5):

w0 − b
2

a4
Q ψ̇0 = Ez, ψ0 = E

#x,(1.10a)

w1 − b
2

a4
Q ψ̇1 = εζ, ψ1 = ε#ξ.(1.10b)

The electromechanical modal properties are obtained by looking for a solution of (1.9)
together with the boundary conditions (1.10) in the form∙

w (x, t)
ψ (x, t)

¸
=

∙
m (x)
e (x)

¸
exp ( t) , ∈ C.

Therefore, the following eigenvalue problem is obtained½
2m+ a4mIV − b2 e00 = 0
2e+ a4eIV + b2 m00 = 0 ,

with boundary conditions directly obtained from (1.10).
By adapting the results obtained in [Yang (1991)] to the considered (generalized

Sturm-Liouville) eigenvalue problem we obtain:

(±k) = ±iω(k),
∙
m(±k)

e(±k)

¸
=

"
m
(k)
R

e
(k)
R

#
± i

"
m
(k)
I

e
(k)
I

#
, k = 1, 2, ...;

ω(k) ∈ R+,
"
m
(k)
R

e
(k)
R

#
,

"
m
(k)
I

e
(k)
I

#
∈ R2;

where ω(k) and
£
m(±k) e(±k)

¤T
are the dimensionless modal angular frequency and eigen-

vector of the k-th electromechanical mode of vibration of the distributed gyroscopic system
and are given by:

ω(k) =
1

2

¡
η(k)
¢2
b2

⎛⎝1±
s
1 +

µ
2α2

β2

¶2⎞⎠ , k = 1, 2, ...,

"
m
(k)
R

e
(k)
R

#
=

∙
1
0

¸
w(k),

"
m
(k)
I

e
(k)
I

#
=

∙
0

(−1)k
¸
w#(k), k = 1, 2, ....(1.11)

Hence, the pair of eigenvectors
£
m(±k) e(±k)

¤T
is associated simultaneously to both the

ω(k)’s above introduced.

2. Multiport synthesis of the analog circuit

In this Section we find a completely passive lumped electric circuit analog to a vibrating
beam, that consists only of inductors, capacitors and elementary two-port transformers.
The proposed electric circuit will be synthesized following the subsequent design steps:

(1) finite difference discretization of the constitutive and balance equations for a
vibrating Timoshenko beam,

(2) mobility representation of a beam element,
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(3) synthesis of a four-port grounded circuit9 (i.e., a four-port network containing
only five terminals, one of which is a common ground terminal for all the ports),
the admittance matrix of which parallels the beam element mobility matrix,

(4) cascade connection of the so-found networks to simulate the whole beam,
(5) neglect of beam shear deformability and rotatory inertia terms in the electric

analog to achieve the Euler-Bernoulli beam electric analog.

2.1. Finite difference approximation of the mobility matrix. Every material
particle of the considered Timoshenko beam is labelled by an abscissa x and its state is
characterized by the transverse displacement w and the rotation of the beam cross-section
ϑ.

The governing equations for the vibrations of a Timoshenko beam are, (see for instance
[Soedel (1993)] and [Meirovitch (2000)]):

M 0 + T = I Ω̇,(2.1a)

T 0 = ρ v̇,(2.1b)

Ṁ = kΩ0,(2.1c)

T = k (v0 − Ω),(2.1d)

where M indicates the bending moment, T the shear contact action, I the rotatory inertia,
v = ẇ the deflection velocity, Ω = ϑ̇ the angular velocity of the cross sections, ρ the mass
per unit length, k the shear stiffness, and k the bending stiffness.

The partial differential equations (2.1a) and (2.1b) indicate balance equations of the
couple and shear contact actions, respectively, while (2.1c) and (2.1d) the assumed linear
constitutive behavior.

Let us subdivide the interval from 0 to l on the x axis putting equally spaced points
ε = l/N units apart, where N is the number of intervals (see Figure 2), and label

xi = iε,

for i = 0, ..., N , so x0 = 0 and xN = l. When using the circuit analog for control purposes
the grid size ε coincides with the period of the PEM structure, see Chapter 4, and the
number of intervals N with the number of piezoelectric elements NP .

l

x

i



i+1

Figure 2. Discretization grid on the beam.

By introducing a suitable finite differences approximation for the previous set of equa-
tions with respect to the space variable, it is straightforward to achieve the following set

9The reason why we are not interested in multiport ungrounded networks lies in the impossibility of
guaranteeing that a certain pair of terminals behaves as a port when interconnected with another pair of
terminals.
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of first order ordinary differential equations:

1

ε
(Mi+1 −Mi) + Ti+1 = I Ω̇i+1,(2.2a)

1

ε
(Ti+1 − Ti) = ρ v̇i,(2.2b)

Ṁi =
1

ε
k (Ωi+1 − Ωi) ,(2.2c)

Ti+1 = k (
1

ε
(vi+1 − vi)− Ωi+1),(2.2d)

where we use the subscript i to indicate the sampled value at the i-th node. Let us
explicitly remark that the adopted finite differences schemes alternate between the forward
and the backward rule; this mixed approach will permit us to obtain symmetric higher
order schemes when dealing with higher order governing equations expressed in terms of
the kinematical descriptors, e.g. when determining the finite difference scheme for the
beam equations. Once a finite differences approximation for the mechanical impedance
matrix of a beam element has been found, one well-established synthesis technique (see
e.g. [Alessandroni et al. (2002)]) requires paralleling the velocity with the voltage,
and the contact actions with the currents. The velocities at the beam element ends are
regarded as across variables and the contact actions as through variables.

The correspondence between the mechanical variables in (2.2) and the electrical vari-
ables describing the analog network is:

(V1, I1) =

µ
V ∗

Ω∗
Ωi,− I∗

M∗Mi

¶
,(2.3a)

(V2, I2) =

µ
V ∗

v∗
vi,− I∗

T ∗
Ti

¶
,(2.3b)

(V3, I3) =

µ
V ∗

Ω∗
Ωi+1,

I∗

M∗Mi+1

¶
,(2.3c)

(V4, I4) =

µ
V ∗

v∗
Vi+1,

I∗

T ∗
Ti+1

¶
,(2.3d)

where V ∗ and I∗ denote, respectively, the characteristic voltage and current and M∗, T ∗,
v∗ and Ω∗ denote, respectively, the characteristic bending moment, shear force, velocity
and angular velocity.

By means of this analogy, the impedance matrix representation for the beam element
parallels the admittance matrix representation for the analog four-port grounded network.
The mechanical impedance matrix of a beam element (see e.g. [Molloy (1958)]) is
defined by: ⎡⎢⎢⎢⎣

−fMi

−eTifMi+1eTi+1

⎤⎥⎥⎥⎦ = Zm (s)

⎡⎢⎢⎣
eΩievieΩi+1evi+1

⎤⎥⎥⎦ ,
where superimposed tilde denotes the one-sided Laplace transform10, and s denotes the
Laplace variable.

10Unless explicitly assumed, we set the initial conditions to zero.
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From equations (2.2), one can immediately obtain:

(2.4) Zm (s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

s

k

ε
0 −1

s

k

ε
0

0
1

s

1

ε
+ sρε

1

s
k −1

s

k

ε

−1
s

k

ε

1

s
k

1

s

µ
k

ε
+ kε

¶
+ sI ε −1

s
k

0 −1
s

k

ε
−1
s
k

1

s

1

ε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The mechanical impedance matrix Zm (s) in (2.4) can be decomposed in the Foster
canonical form as follows, see [Newcomb (1966)]:

(2.5) Zm (s) =
1

s
Zm
0 + sZm

∞,

with the residue matrices defined by:

Zm
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

k

ε
0 −k

ε
0

0
1

ε
k − k

ε

−k
ε

k

µ
k

ε
+ kε

¶
−k

0 − k
ε

−k 1

ε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Zm

∞ =

⎡⎢⎢⎣
0 0 0 0
0 ρε 0 0
0 0 I ε 0
0 0 0 0

⎤⎥⎥⎦ .

In order to synthesize an analog circuit for the entire beam, it is sufficient to cascade
connect a number of elementary analog networks of the beam element, thus assuring the
compatibility of the displacement field and the equilibrium of the contact actions.

2.2. Synthesis. The synthesis problem that we tackle is to find a four port grounded
network, the admittance matrix of which is equal to the impedance matrix Zm, given in
(2.5), in the sense of the analogy (2.3).

Hence, we are looking for an electrical circuit (see Figure 3) whose admittance matrix
Y (s) is

Y (s) =
1

s
Y0 + sY∞
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where s represents the Laplace variable and the residue matrices are:

Y0 =
I∗

V ∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω∗

M∗
k

ε
0 − Ω∗

M∗
k

ε
0

0
v∗

T ∗
k

ε

Ω∗

T ∗
k − v∗

T ∗
k

ε

− Ω∗

M∗
k

ε

v∗

M∗ k
Ω∗

M∗

µ
k

ε
+ kε

¶
− v∗

M∗ k

0 − v∗

T ∗
k

ε
−Ω

∗

T ∗
k

v∗

T ∗
k

ε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Y∞ =
I∗

V ∗

⎡⎢⎢⎢⎢⎣
0 0 0 0

0
v∗

T ∗
ρε 0 0

0 0
Ω∗

M∗Iε 0

0 0 0 0

⎤⎥⎥⎥⎥⎦ .

I1 I3

I2 I4

V1

V2 V4

V3YTi+1zm

Mi+1Mi

Ti

analogy

Figure 3. Analog circuit of a beam element utilizing the voltage-velocity analogy.

The strategy developed to solve the addressed synthesis problem consists of the fol-
lowing steps:

(1) synthesis of an inductive network whose admittance matrix is
1

s
Y0,

(2) synthesis of a capacitive network whose admittance matrix is sY∞,
(3) parallel connection of the aforementioned electrical networks (see Figure 4) for

the design of the circuit, the admittance matrix of which is Y (s) .
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Y0

Y∞

Figure 4. Realization of the analog circuit as the parallel connection of
two elementary networks.

In order to guarantee that the analog network is reciprocal (see e.g. [Newcomb (1966)]),
it is necessary to require the symmetry of the admittance matrix Y (s), which yields the
following condition on the scaling parameters:

(2.6) v∗T ∗ = Ω∗M∗.

This condition, from a mechanical point of view, establishes that the power expended of
the bending moment M∗ on the angular velocity Ω∗, is equal to the power of the shear
contact action T ∗ expended on the velocity v∗. Therefore, the scaling parameters cannot
be chosen independently when one wants to design electric networks constituted only by
reciprocal elements. Furthermore, introducing the parameters µ and κ, defined by:

µ =
k

k

(v∗)2

(Ω∗)2
, κ =

kε2

k
,

the residue at zero becomes:

Y0 =
I∗Ω∗

V ∗M∗
k

ε

⎡⎢⎢⎣
1 0 −1 0
0 µ

√
µκ −µ

−1 √µκ 1 + κ −√µκ
0 −µ −√µκ µ

⎤⎥⎥⎦ .
The capacitive network can be designed as two capacitors connected at the second and

third terminals of the grounded network as shown in Figure 5; the capacitance of these
two elements are given by:

C1 =
I∗v∗

V ∗T ∗
ρε, C2 =

I∗Ω∗

V ∗M∗Iε.

Therefore, the ratio of the two capacitances is given by:

C1
C2
=
(v∗)2

(Ω∗)2
ρ

I
.
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Y∞
C1

C2

Figure 5. Realization of the network sY∞.

The design of the inductive circuit is much more involved, since the residue in zero is
not diagonal. It is well known (see e.g. [Slepian and Weinbeg (1958)] and

[Panel (1962)], regarding the synthesis of one-element type networks) that
1

s
Y0 is realiz-

able as the admittance of an n-port network constituted only by inductors and containing
only n + 1 terminals, one of which is a common terminal for all the ports, if and only if
the residue matrix Y0 is dominant11 and each of the off-diagonal terms is non-positive12.
One can easily verify that Y0 is not dominant and that some of the off-diagonal elements

are positive. Therefore, even if the realization of
1

s
Y0 is not unique, it is impossible to

synthesize it without using ideal transformers. In what follows, we synthesize the consid-
ered network with a single two-port transformer. Towards this goal, we decompose Y0 as
the sum of the two following matrices:

(2.7) Y0 =
I∗Ω∗

V ∗M∗
k

ε

⎡⎢⎢⎣
1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

⎤⎥⎥⎦+ Ω∗

M∗
k

ε

⎡⎢⎢⎣
0 0 0 0
0 µ

√
µκ −µ

0
√
µκ κ −√µκ

0 −µ −√µκ µ

⎤⎥⎥⎦ .
By means of this decomposition, the synthesis problem has been drastically reduced to
the design of a three-port inductive grounded network, whose residue at zero matrix is:

Yred
0 =

I∗Ω∗

V ∗M∗
k

ε

⎡⎣ µ
√
µκ −µ√

µκ κ −√µκ
−µ −√µκ µ

⎤⎦ .
In fact, the first term on the RHS of (2.7) can be immediately synthesized as an induc-
tor interconnecting the first and the third terminals (see Figure 6). The value of the
inductance is equal to:

L1 =
V ∗M∗

I∗Ω∗
ε

k
.

11A real matrix is said to be dominant if each of its main-diagonal elements is not less than the sum
of the absoulute values of all the other elements in the same row.

12If one is not restricting to n+ 1 terminals the following results are known: i) a dominant matrix,
with any distribution of signs in the off-diagonal terms, may always be realized with only inductors;
ii) paramountcy is a necessary (and sufficient, for the three-port case) condition for the matrix for its
realizability without transformers.
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Y0

L1

Y0

red

Figure 6. A first step towards the synthesis of
1

s
Y0.

Multiplying the inductance L1 by the capacitance C1 we get:

C1L1 =
(v∗)2

(Ω∗)2
ρ

k
ε2.

The synthesis of a network governed by Yred
0 is still very tricky. Nevertheless, by

noticing that the rank of Yred
0 is equal to one, the following decomposition hold

Yred
0 =

⎡⎢⎢⎣
1r
κ

µ
−1

⎤⎥⎥⎦µ I∗Ω∗

V ∗M∗
k

ε
µ

¶ ∙
1

r
κ

µ
−1

¸
;

and the circuit can be designed (see [Newcomb (1966)]) as shown in Figure 7, were the
appearing inductance given by

Lred =
V ∗T ∗

I∗v∗
ε

k
.
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Y0

red

Lred
1

1

1

-1

1

3

2
4

κ
µ

Figure 7. Direct design of 1/sY0.

The previous topology can be further simplified by noticing that the turns-ratio of the
first and third transformers are equal in absolute value and opposite in sign, as shown in
Figure 8.

Y0

red

L2

1

n

3

2 4

Figure 8. Minimal design of 1/sYred
0 .

In order to find the turns-ratio of the used transformer and the value of the introduced
inductance, let us find the admittance matrix of the network shown in Figure 8 and com-
pare it to Yred

0 . The constitutive equation of the inductor L2 and of the ideal transformer
yields:

Ĩ2 = −Ĩ4,

− Ṽ2 − Ṽ4
n

+ Ṽ3 = sL2 Ĩ3,

nĨ4 = Ĩ3.
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Therefore the admittance of the circuit in Figure 8 is

1

sL2

⎡⎣ 1/n2 −1/n −1/n2
−1/n 1 1/n
−1/n2 1/n 1/n2

⎤⎦ ,
which, when compared with Yred

0 , gives

L2 =
V ∗M∗

I∗Ω∗
1

kε
, n =

Ω∗

v∗
ε

Hence, the inductance Lred is related to L2 by:

L2
Lred

=
(v∗)2

(Ω∗)2
1

ε2
=
1

n2
.

By inspection, one can immediately obtain the following set of relations between all
the parameters so far introduced:

(2.8) n2C1L1 =
ρ

k
ε4,

C1
C2

n2 =
ρ

I
ε2,

L1
L2
=
k

k
ε2.

The previous set of equations provides a group of conditions to be imposed on the em-
ployed circuit elements, completely independent of the arbitrarily chosen scaling parame-
ters. Hence, it is easily seen that for every possible choice of scaling parameters there are
always three fixed constraints on the circuit elements, which depend only on the physical
properties of the beam and on the sampling step of the grid.

In order to synthesize the analog circuit for the whole Timoshenko beam, it is sufficient
to cascade connect a number of the found analog circuits for the generic beam element.
Indeed, the electrical cascade connection corresponds exactly to the mechanical conditions
of continuity of the contact actions and the kinematical descriptors over the length of the
beam.

In order to synthesize the electric analog of an Euler-Bernoulli beam, it is sufficient
to take the limit of (2.8) as the rotatory inertia goes to zero and the shear stiffness goes
to infinity, thus:

L2 → 0, C2 → 0.

Therefore, for the Euler-Bernoulli beam, the analog circuit becomes that one depicted in
Figure 9, with

(2.9) C1L1n
2 =

ρ

k
ε4.

n

1

C1 n

1 1

nC1 C1

L1 L1 L1

ψi ψi+1−ψi 1

Figure 9. Circuit analog of an Euler beam corresponding to the voltage-
velocity analogy.
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We emphasize that once the transformers ratio n and the capacitance C1 have been
chosen, the inductance decreases with the fourth power of the grid size ε.

The equation of equilibrium of the analog circuit sketched in Figure 9 in terms of the
flux-linkage ψi at the generic internal node i is

(2.10)
ψi+2 − 4ψi+1 + 6ψi − 4ψi−1 + ψi−2

L1C1n2
+ ψ̈i = 0,

which represents a discrete form of the beam equation, once condition (2.9) is satisfied.

Remark 9. In order to synthesize the analog circuit for the Euler-Bernoulli beam
using a finite difference approximation and exploiting the standard immittance matrices
synthesis techniques, it is necessary to study initially the Timoshenko beam and then set
the shear deformability and the rotatory inertia to zero. In fact, as the shear stiffness goes
to infinity, the mechanical impedance matrix representation in (2.4) becomes impossible.

2.3. Synthesis of the constraints. The external constraints applied at the beam
ends impose electrical constraints on the analog circuit (representing e.g. the electric
terminations of the circuit depicted in Figure 9), which can be easily synthesized. The
obtained boundary circuits are cascade connected to the ending modules of the analog
network.

For instance, for a simply supported beam, the electrical elements to simulate the
hinged ends are respectively determined by the following set of equations:½

Left hinge: V2 = 0, I1 = 0
Right hinge: V4 = 0, I3 = 0

.

The corresponding analog circuit is shown in Figure 10.

1

nn

1

L1

Figure 10. Boundary elements of the circuit analog to a simply supported
Euler beam.

3. Synthesis of the analog circuit based on a variational formulation

In this Section we present an alternative method for synthesizing the analog circuit
of the vibrating Timoshenko beam described in the previous Section. The proposed
method exploits the basic version of the Euler finite difference method (employed for
instance in numerical analysis as an alternative to the Finite Element Method, see e.g.
[Richards (1977)]) and is articulated as follows:

(1) we recall the variational principle governing the free vibrations of Timoshenko
beams,

(2) we define a mesh over the beam reference configuration and introduce- as a set
of Lagrange coordinates- the sampled values of the fields describing the beam
kinematics at the mesh nodes,
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(3) we approximate the infinite dimensional Lagrangian for Timoshenko beam via a
finite dimensional Lagrangian in terms of introduced Lagrange coordinates,

(4) with a well-known procedure (see e.g. [Karplus and Soroka (1959)],
[Crandall et al. (1968)], [Gantmacher (1980)]) we synthesize a lumped elec-
trical circuit, the evolution of which is governed by the so found finite dimensional
Lagrangian.

3.1. Lagrangian of the lumped network. The Hamilton’s principle is given as:

δ

Z t1

t0

L dt = δ

Z t1

t0

(K− E −Win) dt = 0,

where is the L is the Lagrangian, K is the total kinetic energy, E is the total strain energy,
Win is the total input energy and t0 and t1 are two arbitrary instants in time.

For a Timoshenko beam excited only at its ends, the Lagrangian reads (see for instance
[Soedel (1993)] and [Meirovitch (2000)]):

(3.1)

L =
Z l

0

K(d)
³
ẇ, ϑ̇

´
dx−

Z l

0

E (d) (ϑ,w0, ϑ0) dx−T0w (0, t)−Tlw (l, t)−M0ϑ (0, t)−Mlϑ (l, t) .

In equation (3.1), the density of kinetic energy K(d) and the density of elastic strain energy
E (d) are given by:

K(d)
³
ẇ, ϑ̇

´
=
1

2

³
ρ ẇ2 + I ϑ̇

2
´
,(3.2a)

E (d) (ϑ,w0, ϑ0) = 1

2

³
k (w0 − ϑ)

2
+ k (ϑ0)2

´
,(3.2b)

and T0, Tl ,M0 ,Ml represent in this case the transversal forces and bending moments
applied at the edges of the beam.

The Euler-Lagrange equations associated to (3.1) and (3.2) are:

(3.3)
½

ρ ẅ − k (w0 − ϑ)0 = 0
I ϑ̈− k (w0 − ϑ)− kϑ00 = 0

.

In order to approximate the infinite dimensional system governed by the Lagrangian (3.1)
with a finite dimensional Lagrangian system we consider the following extended numerical
formula for the integration of the Lagrangian spatial density K(d)−E (d) appearing in (3.1):

L ' ε
NX
i=0

K(d)i

³
ẇi, ϑ̇i

´
− ε

NX
i=1

E (d)i (ϑi, w
0
i, ϑ

0
i)− T0w0 − TlwN −M0ϑ0 −MlϑN ,

where we have used the notation:

(3.4) (·)i := (·) (xi, t) , (·)0i :=
(·)i − (·)i−1

ε
,

for the sampled values of the mechanical fields. We explicitly remark that for estimating
spatial derivatives the backward finite differences rule has been chosen.

We can express K(d)i and E (d)i , i.e. the kinetic and strain energy densities at xi by:

E (d)i ' 1

2

Ã
k

µ
wi − wi−1

ε
− ϑi

¶2
+ k

µ
ϑi − ϑi−1

ε

¶2!
,

K(d)i =
1

2

³
ρ ẇ2i + I ϑ̇

2

i

´
.
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Hence, the Lagrangian of the Timoshenko beam can be conveniently approximated by:

(3.5) L ' 1

2
ε

NX
i=0

³
ρ ẇ2i + I ϑ̇

2

i

´
+

− 1
2
ε
N−1X
i=0

Ã
k

µ
wi+1 − wi

ε
− ϑi+1

¶2
+ k

µ
ϑi+1 − ϑi

ε

¶2!
+

− T0w0 − TlwN −M0ϑ0 −MlϑN =: Lfin.

The Lagrangian Lfin in (3.5) can be regarded as the Euler finite difference approximation
of the Timoshenko beam Lagrangian given by (3.1). Furthermore, it is easy to see that
Lfin describes the mechanical system reported in Figure 11 in [Roseau (1987)], where
the blocks are rigid bodies, and the bars are massless rigid links. The mass and rotatory
inertia of the rigid blocks are related to the linear mass density ρ and to the cross section
inertia I, respectively; the stiffness of the extensional springs is related to the bending
stiffness k; the stiffness of the rotational springs depends on the shear stiffness k.

wi

ϑi

Figure 11. Sketch of a finite degrees of freedom mechanical system ap-
proximting the Timoshenko beam.

Similarly, the Euler-Lagrange equations obtained by (3.5) can be easily seen to govern
the evolution of a completely passive lumped circuit, once an analogy between mechanical
and electrical kinematical descriptors has been established. The standard procedure for
determining physical analogies requires the introduction of suitable scaling factors for the
kinematical descriptors to be recognized as analogs. In the considered instance we intro-
duce the scaling factors w∗, ϑ∗, ψ∗, ϕ∗ respectively for transverse displacement, section
rotation, and the two flux linkages respectively.
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Therefore the synthesis problem is to find a 2N+2 degrees of freedom electrical circuit
whose Lagrangian is given by:

(3.6) Lel =
1

2
ε

NX
i=0

Ã
ρ (w∗)2

(ψ∗)2
ψ̇
2

i +
I (ϑ∗)2

(ϕ∗)2
ϕ̇2i

!
+

− 1
2
ε
N−1X
i=0

Ã
k

µ
w∗

ψ∗
ψi+1 − ψi

ε
− ϑ∗

ϕ∗
ϕi+1

¶2
+ k

µ
ϑ∗

ϕ∗
ϕi+1 − ϕi

ε

¶2!
+

− T0
w∗

ψ∗
ψ0 − Tl

w∗

ψ∗
ψN −M0

ϑ∗

ϕ∗
ϕ0 −Ml

ϑ∗

ϕ∗
ϕN ,

where the ψi’s and ϕi’s represent the flux linkages of 2N +2 nodes measured with respect
of a common reference ground.

3.2. Synthesis. To each mechanical sampling node must correspond two electrical
nodes in the analog circuit, as shown in Figure 12: ψi is the electrical analog of the
mechanical deflection at node i, while ϕi is the electrical analog of the rotation also at
node i. However the generalized variables of the electrical system are given by ψi and
ϕi with i varying between 0 and N. In this way the flux linkages represent the analog
variables of the displacements and rotations, while the currents are the electrical analogs
of the bending moments and shear contact actions13.

i

wi , ϑi

Analog circuit
ϕi

ψi

Beam

Two corresponding electrical nodes

One mechanical node

Figure 12. Schematic representation of the beam and its analog circuit.

The synthesis of the analog circuit is really straightforward, in fact we connect each
node of the circuit to a grounded capacitor the value of which is

C1 =
ερ (w∗)2

(ψ∗)2
,

if the flux-linkage at that node is analog to the beam deflection, or

C2 =
εI (ϑ∗)2

(ϕ∗)2
,

13Nevertheless the problem may be solved also in a different way, looking for an analog circuit where
the displacements are represented by stored charges and the contact actions by voltage drops.
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if the flux-linkage at that node is analog to the beam rotation. Following the presented
procedure we design a circuit the electric energy of which is given by the kinetic en-
ergy in (3.6): i.e. the mechanical kinetic energy finds its electrical analog in the electric
(capacitive) energy.

By interconnecting a pair of adjacent nodes the flux linkages of which are ϕi+1 and ϕi

via an inductor of inductance

L1 =
ε (ϕ∗)2

kϑ20
,

it is immediate to obtain the strain energy term (3.6) in which the bending stiffness
appears by means of magnetic (inductive) energy. Furthermore, in order to obtain the
remaining term in the strain energy (3.6), again by means of magnetic energy, a set of
auxiliary nodes αi must be introduced (see Figure 13), the flux linkages of which we want
to fix equal to

αi+1 =
ϕ∗w∗

ϑ∗ψ∗
ψi+1 − ψi

ε
.

This is done by means of an ideal transformer interconnected with a port between ψi+1

and ψi and with the other port between ground and αi+1; the turns-ratio is given by

n =
εϑ0ψ

∗

ϕ∗w∗
.

Finally the nodes αi and ϕi must be interconnected by an inductor of inductance

L2 =
(ϕ∗)2

εk (ϑ∗)2
.

The last four terms in (3.6), involving the input work of the concentrated external
loads at the edges of the beam, have as electric analogs four current generators applied in
parallel connections with the four capacitors at the boundary nodes of the circuit analog.
For instance the current generator at the node ψ0 imposes a current of value

I1 = T0
w∗

ψ∗
,

the current imposed by the other three sources are similarly determined (see equations (3.7)
below).

Heretofore, we have designed a completely passive circuit the Lagrangian of which is
given by:

Lel =
1

2

NX
i=0

³
C1 ψ̇

2

i + C2 ϕ̇
2
i

´
+

− 1
2

N−1X
i=0

⎧⎨⎩ 1

L2

Ã¡
ψi+1 − ψi

¢
n

− ϕi+1

!2
+
1

L1

¡
ϕi+1 − ϕi

¢2⎫⎬⎭+
− I1ψ

∗ − I2ψN − I3ϕ0 − I4ϕN ,
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with:

C1 = ερ
(w∗)2

(ψ∗)2
, C2 = εI

(ϑ∗)2

(ϕ∗)2
,(3.7a)

L1 =
ε

k

(ϕ∗)2

(ϑ∗)2
, L2 =

1

εk

(ϕ∗)2

(ϑ∗)2
, n = ε

ϑ∗ψ∗

ϕ∗w∗
,(3.7b)

I1 = T0
w∗

ψ∗
, I2 = Tl

w∗

ψ∗
, I3 =M0

ϑ∗

ϕ∗
, I4 =Ml

ϑ∗

ϕ∗
..(3.7c)

In Figure 13 (being equal to Figure 9 with the exception of the specific nodes la-
belling) the aforementioned analog circuit for the internal nodes of the Timoshenko beam
is exhibited,

L1 L1 L1

n

1

C1 n

1 1

nC1 C1

ψi ψi+1−ψi 1

L2 L2 L2

αi 1− αi αi+1

ϕi 1− ϕi ϕi+1

Figure 13. Internal modules of the electrical analog of the Timoshenko beam.

while Figure 14 explains the connection of the current sources simulating the external
loads at the edges.

1

n

L1L1

n

L2

1

C2

C1I1

I3 I4

I2

C2

C1

L2

Figure 14. Boundary elements of the electrical analog.

Starting from relations (3.7) it is immediate to see that the conditions (2.8), indepen-
dent of the adopted electromechanical scaling factors, hold.

Before concluding the Section we specify the approximation scheme in which the
lumped circuit in Figure 13 verifies the Timoshenko equations. Indeed Euler-Lagrange
equations for the internal nodes are:⎧⎪⎪⎨⎪⎪⎩

C1ψ̈i −
1

L2n2
¡
ψi+1 − 2ψi + ψi−1

¢
+

1

L2n

¡
ϕi − ϕi−1

¢
= 0

C2 ϕ̈i −
1

L2

Ã¡
ψi+1 − ψi

¢
n

− ϕi

!
− 1

L1

¡
ϕi+1 − 2ϕi + ϕi−1

¢
= 0

,
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and as we expected, the previous set of ordinary differential equations represents a finite
difference approximation of the governing equations for the free vibrations of a Timo-
shenko beam given by equations (3.3). Similar considerations hold for the transversality
conditions.

Remark 10. Within this variational framework, the problem of designing electrical
circuits to simulate external constraints acting on the beam have not been addressed. Nev-
ertheless the theory so far developed allows for an immediate solution of this problem.
As an example consider a simply supported beam: the electrical analog of the simply sup-
ported beam can be trivially synthesized short-circuiting the nodes ψ0 and ψN to ground
and leaving open circuited ϕ0 and ϕN , i.e. open-circuiting the two current generators I3
and I4.

4. Analysis of the PEM beam

4.1. Synthesis of the dissipative circuit. For arbitrary boundary conditions the
needed dissipative circuit is not represented by a differential operator. We limit our
analysis to simply supported beams; in this case the square root of the fourth derivative
is equal to the negative second derivative. For other boundary conditions it is possible to
represent the square root of the fourth derivative as a transform of the negative second
derivative (see [Russell (1988)]) and the small sensitivity of the system performance on
the electric damping may allude that the negative second derivative is giving acceptable
results for different boundary conditions.

The negative second derivative is easily synthesized by interconnecting each piezoelec-
tric element to the adjacent one by means of a resistor, whose resistance is R.

L1

1

n

R

1

n

RC1

ψ0=0

1

n

R

1

n

R

ψi-1 ψi ψi+1 ψN=0

L1L1

C1C1C1C1

Figure 15. Analog circuit of a simply supported beam with square root damping.

In Figure 15 we report the circuit analog of a simply supported beam with square root
damping. In this case the homogenized equations of the electric circuit is

chomψ̈ + ahomψ
IV − bhomψ̇

00
= 0,

with boundary conditions

ψ (0, t) = ψ (l, t) = 0, ψ00 (0, t) = ψ00 (l, t) = 0,

and homogenized coefficients

(4.1) chom =
C1
ε
, ahom =

ε3

L1n2
, bhom =

ε

R
.
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While the equations of the lumped circuit are

(4.2)

C1ψ̈j +
1

L1n2
¡
ψi+2 − 4ψi+1 + 6ψi − 4ψi−1 + ψi−2

¢
− 1
R

³
ψ̇i+1 − 2ψ̇i + ψ̇i−1

´
= 0, i = 2, ..., N − 2,

C1ψ̈1 +
1

L1n2
(5ψ1 − 4ψ2 + ψ3)−

1

R

³
ψ̇2 − 2ψ̇1

´
= 0,

C1ψ̈N−1 +
1

L1n2
¡
5ψN−1 − 4ψN−2 + ψN−3

¢− 1

R

³
−2ψ̇N−1 + ψ̇N−2

´
= 0,

ψ0 = 0,
ψN = 0,

4.2. Prototype design. We consider a simply supported aluminum beam fully cov-
ered by piezoelectric ceramics and interconnect the electric elements as the capacitors
C1 in Figure 15. The material properties of the beam and piezoelectric transducers are
the reported in Table 2, while the geometry is reported in the second line of Table 1.
Therefore the homogenized constitutive coefficients are:

khom = kP = 3.859Nm
2,

chom =
C

ε
= 3.633 µF/m,

ghom = g = 1.006× 10−3NmV−1,
ρhom = ρP = 0.2280 kg/m.

From equation (1.6), the modal coupling is

γ =
ghom√
khomchom

= 0.2687.

From equation (1.6) together with (1.7) and (1.8) the optimal constitutive coefficients of
the distributed network, ahom and bhom, are

ahom =
khomchom
ρhom

= 61.48× 10−6m3H−1,

bhom =

r
3

2

r
chom
ρhom

ghom = 4.918× 10−6mΩ−1.

Hence, the optimal values of the inductance, transformer turn-ratio and resistance are:

L1n
2 = 16264 ε3Hm−3, R = 203330 ε Ωm−1.

These values may be expressed in terms of the number of used piezoelectric elements NP ,

since ε =
l

NP
:

L1n
2 = 9807

1

(NP )
3 H, R = 40870

1

NP
Ω,

which shows that by using 10 piezoelectric elements (see Figure 16) and unitary trans-
former the inductance becomes smaller than 10H and the resistance is still greater than
4 kΩ.



4. ANALYSIS OF THE PEM BEAM 99

Analog circuit + dissipative network

Figure 16. Sketch of a simply supported PEM beam with fourth order
transmission line.

4.3. Analysis of the lumped circuit. In the present Section we sketch a method to
analyze the modal properties of the lumped circuit described in Figure 15. The analysis of
the synthesized lumped optimal circuit leads to (4.2) which upon introducing the matrix
where the dimensionless (NP − 2)× (NP − 2) matrix

N̊ =

⎡⎢⎢⎢⎢⎣
2 −1 0 ... 0
−1 2 −1 ... ...
0 −1 ... ... 0
... ... ... 2 −1
0 ... 0 −1 2

⎤⎥⎥⎥⎥⎦ ,
may be written as

C1 ψ̈ +
1

L1n2
N̊ 2ψ +

1

R
N̊ ψ̇ = 0.

Let us notice that the square root damping is inherited by the lumped circuit. As a
consequence the analysis of the lumped interconnecting circuit is drastically simplified,
because the modal properties of the considered circuit are completely known once the
three-point boundary value difference problem associated to N̊ has been solved.

The eigenvalues and eigenvectors of the tridiagonal matrix N̊ are determined by the
set of linear equations:

(4.3)

(
−v̊i−1 +

³
2− λ̊

´
v̊i − v̊i+1 = 0, 1 ≤ i ≤ NP − 1,

v̊0 = 0, −v̊NP
= 0.

By following the same procedure as in Section 2.3, the general solution to the given
constant coefficients second order difference equation is

(4.4) v̊i = c1Ti (z) + c2Ui−1 (z) , z = 1− λ̊

2
,

where c1 and c2 are arbitrary constants, and the Chebysev polynomials in (2.8a) and
(2.8b) in Chapter 6 have been used.

The constants c1 and c2 are found by imposing the boundary conditions

v̊0 = c1 = 0, v̊NP
= c2UNP−1 (z) = 0.

Since we are seeking a non-trivial solution to (4.3), c2 6= 0, we have the condition

(4.5) UNP−1 (z) = 0,

which determines the solution in the form

vi = c2Ui−1 (z) .
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The roots of the polynomial equation (4.5) are found by the use of (2.9b) in Chapter 6

z = cos

∙
kπ

NP + 1

¸
, k = 1, ..., NP .

Therefore, the eigenvalues become

(4.6) λ̊
(j)
= 2

µ
1− cos

∙
jπ

NP + 1

¸¶
= 4 sin2

∙
jπ

2 (NP + 1)

¸
, k = 1, ..., NP .

The eigenvectors are

(4.7) v̊
(j)
i =

√
2√

NP + 1
sin

∙
i

jπ

NP + 1

¸
, i, j = 1, ..., NP .

where the constant c2 has been chosen in order to have an orthonormal set.
Comments similar to those made in Section 2.3 of Chapter 6 may be addressed.



CHAPTER 8

Concluding remarks and recommendations

This work was focused on investigating the vibration control of beams via piezoelectric
transducers and passive electric networks. The objectives were to:

• Present the basic tools for modeling stepped piezoelectric beams, i.e. beams
hosting piezoelectric transducers;

• Develop different and reliable algorithms for computing the modal characteristics
of a stepped piezoelectric beam;

• Develop a homogenized model suitable for distributed control applications;
• Develop some identification methods for estimating the key modal parameters of

a stepped piezoelectric beam;
• Present the basic concepts of the piezoelectric shunting technique;
• Demonstrate the use of RL distributed circuits for damping narrow-band struc-

tural vibrations;
• Analyze the effects of uncertainties of the electric parameters on the passive

damping performances;
• Prove the effectiveness of the concept of electric analogs in the design of distrib-

uted passive controllers.

Each of these objectives has been addressed.

1. Conclusions

In Chapter 2, a one-dimensional model for stepped piezoelectric beams has been pre-
sented. Each segment of the stepped piezoelectric beam has been modelled as a standard
Euler-Bernoulli beam. The bending moment in a piezocomposite segment depends on
the beam curvature and on the voltage applied at the piezoelectric transducer terminals.
On the other hand, the charge stored in a piezoelectric transducer depends on the ap-
plied voltage and on the relative rotation of the end cross sections of the piezocomposite
segment. In the technical literature many research efforts have been devoted to derive
accurate estimations of the constitutive electromechanical coefficients of the considered
1D model from linear 3D piezoelectricity. In the present work simple formulas for esti-
mating these constitutive coefficients have been derived and their range of applicability
has been questioned. The model has been validated through an experimental setup con-
sisting of a cantilever beam hosting two bimorph pairs of piezoceramic transducers. The
estimation of the mechanical coefficients of the 1D model seems to be accurate and re-
liable as it is shown in Table 3 of Chapter 3 where the experimental natural frequencies
are compared with the theoretical predictions. The simple Euler-Bernoulli beam model
guarantees precise forecasts of the resonance frequencies of the slender stepped beam over
a wide frequency range (lowest four natural frequencies).

In Chapter 3, the effects of piezoelectric transducers on the beam modal properties
have been investigated. The eigenvalue problem related to a system consisting of several
one-dimensional continuous substructures has been tackled. Two main strategies have
been considered:

101
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i) to retain the continuous nature of the system and solve the exact trascendental
eigenvalue problem for the infinite-dimensional system;

ii) to project the stepped beam deflection on a finite dimensional space with a stan-
dard Galerkin method, and solve the eigenvalue problem for the resulting finite-
dimensional system.

The solution of the trascendental eigenvalue problem has required the exploitation of
special techniques, since native treatments may generally lead to numerical problems
which become quickly unsolvable as the number of segments increase. The Last Energy
Norm technique has been applied to the considered problem, and the eigenvalues and
the corresponding mode shapes are found without any matrix inversion. The accuracy
of the approximate solutions based on the Galerkin approximation depend strongly on
the choice of the basis functions. We have examined three diverse alternatives for the
basis functions: the popular Assumed Modes method, the Finite-Element method, and an
enhanced version of the assumed modes method that we have named Enhanced Assumed
Modes method. From the comparison among the different methods reported in Table 4
of Chapter 3 one can conclude that

• the assumed modes, even if it is the most widespread, does not provide sat-
isfactory determinations of the modal properties. This is due to the excessive
smoothness of the basis functions which forbids to capture the curvature jumps
at the material discontinuities;

• the enhanced assumed modes method provides very good estimates of the natural
frequencies and of the mode shapes. Its implementation is very easy and it
seems to be directly applicable to 2D problems, i.e. plates and shells hosting
piezoelectric transducers;

• the finite-element method provides accurate predictions only of the lowest natural
frequencies. Furthermore, the computation of the mode shapes is generally not
satisfactory, due to the lack of continuity of their curvatures at the element
junctions. Its implementation is very easy and may be handled with standard
commercial codes;

• the least energy norm method guarantees the highest precision in the compu-
tation of the beam modal properties. Furthermore, its precision may be easily
controlled when tuning the tolerance of the root-finding algorithm for the natural
frequencies. Its implementation is very straightforward, but its extension to 2D
problems seems difficult.

In Chapter 4, the derivation of a homogenized model for stepped periodic piezoelec-
tric beams has been presented. Within the homogenized model the stepped piezoelectric
beam may be treated as a homogeneous beam, whose constitutive coefficients are de-
termined by the solution of a unit-cell problem. The finite set of piezoelectric voltages
is replaced by a unique voltage field defined on the entire beam span. The homogenized
model is extremely valuable in distributed control applications when one is refraining from
discretizing the continuous plant. In this way, it is possible to treat the plant together
with its controller by coupled partial differential equations and achieve deep insights into
the system behavior. When designing piezo-electromechanical structures it is generally
advisable to start from a coarse homogenized model for understanding the qualitative
system behavior and dimensioning the needed electric elements, and then later to refine
the model and improve the design’s parameters by accounting for the discrete nature of
the electric controller. In Chapter 4, the static deflection of a beam clamped at both ends
has been considered as a sample problem. The two-scale convergence has been exploited
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and the homogenized equation together with the convergence proof have been achieved.
The homogenized model has been validated through some numerical tests. The performed
numerical test assess that even with few piezoelectric elements (five) the predictions of
the homogenized model are acceptable for dimensioning purposes.

In Chapter 5 the performances of the resonant piezoelectric shunting has been inves-
tigated. The model presented in Chapter 2 together with the modal analysis techniques
developed in Chapter 3 have been exploited to derive a 2 d.o.f. model of the vibrating
electromechanical system. The key parameters of the reduced-order model are the electric
tuning parameter β, the electric modal damping δ and the gyroscopic modal coupling γ.
The inductance determines only the value of the tuning parameter, and the resistance
determines only the value of the electric damping, and none of them influence the modal
coupling. This model has been used throughout this work, to describe the dynamics of
resonantly coupled systems, and the results stemming from its analysis and optimization
have been applied to the design of other electric networks. The tuning parameter and the
electric damping have been optimized in order to minimize the ∞-norm of the transfer
function of the reduced-order model. The existence of fixed points in the graph of the
absolute value of the system transfer function, has lead to closed-form formulas for the
optimal parameters. As a consequence, optimal values of the inductance and resistance
have been established. It has been shown that the insertion of additional capacitance
in the shunting circuit lowers the value of the optimal inductance, but simultaneously
decreases the damping effectiveness. The effects of variations of the electric parameters
on the system norm have been investigated by the use of two distinct approaches. The
first approach transforms the problem of computing the transfer function ∞-norm into
the simpler problem of bounding the eigenvalues of a certain Hamiltonian; it does not pro-
vide closed-form formulas but its implementation is simple, and it can handle arbitrary
large variations of the system parameters. The second approach relies on the sensitivity
analysis of the transfer function; it provides simple closed-form formulas whose validity
is limited to small parameters variations. Comparisons between the two different meth-
ods have been drawn for a sample case. The results from the sensitivity analysis are
very accurate for small variations of the electric parameters and, since the reduced-order
model is reliable only when the coupling between the considered electromechanical de-
grees and the discarded modes is negligible, it is generally satisfactory to refer simply
to the sensitivity analysis formulas. These formulas have been used to estimate the ef-
fects of uncertainties of the electric elements on the system performances. Closed-form
formulas have been presented and validated through numerical Monte Carlo tests. Small
uncertainties of the tuning parameter (inductance) leads to huge variances of the system
∞-norm, while the variance of the damping parameter (resistance) is not influencing the
system performances. Therefore, it is mandatory to use self-adjusting inductances in real
engineering applications. An identification technique based on the piezoelectric shunting
has been presented. It is capable of accurately estimating at once the piezoelectric capac-
itance and the modal coupling coefficient. The proposed technique has been compared
with a standard technique based on the measurements of the mechanical mode frequen-
cies when either short or open-circuiting the piezoelectric elements. From the comparison
shown in Table 2 of Chapter 5 one can conclude that the present technique, besides some
implementation difficulties related to the need of an adjustable inductor, represents a
more accurate and complete tool for identification. The same experimental setup used
for assessing the stepped beam modeling has been exploited for proving the piezoelectric
shunting damping effectiveness, and testing the proposed identification method. The ad-
justable inductor been simulated by exploiting a two operational amplifiers RC-circuit.
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From the comparison of the identified piezoelectric capacitances and the predicted one,
see Table 3 of Chapter 5, the need of more reliable electrical models of piezocomposite
beams has been outlined and possible ameliorations, from the technical literature, has
been indicated.

In Chapter 6 the performances of the second order transmission line have been inves-
tigated. The homogenized model developed in Chapter 4 together with the results from
the H∞ control problem in Chapter 5 have been used to derive a procedure for optimiz-
ing the electric boundary conditions, line inductance and line resistance for narrow-band
vibration suppression. The presented methodology has been applied to the vibration
suppression of the first mode of a cantilever beam. It has been shown that the optimal
electric boundary conditions consist of open-circuiting the transducer at the clamped end
and to short-circuiting the transducer at the free end. Furthermore it has been proved
that small grounded impedances at the piezoelectric element at the free end do not alter
significantly the modal coupling. Closed form expressions for the optimal line inductance
and line resistance have been found. The inductance per unit length depends only on the
piezoelectric capacitance per unit length and on the resonance frequency; therefore, once
the amount of piezoelectric material on the host beam has been selected, the value of
the needed line inductances decreases linearly with the number of available transducers.
The predictions of the homogenized model have been verified by regarding the electric
circuit as a finite d.o.f. system. Closed-form expressions for the eigenproperties of the
electric network have been derived, by transforming the matrix eigenvalue problem into
a three-point boundary value difference problem. The effects of independent variations
of the inductances, with respect to their optimal value, on the electrical eigenproperties
have been studied and valuable closed-form results have been derived. These expres-
sions together with the results in Chapter 5 have been used to compute the sensitivity of
the damping effectiveness with respect to the inductances’ deviations. In the piezoelec-
tric shunting, the inductance’s deviation influences only the tuning parameter, while in
the second order transmission line the inductances’ deviations influences both the tuning
and the modal coupling parameters. The effects of uncertainties of the inductances on
the system performances have been treated, by regarding the inductances’ deviations as
independent random variables with zero mean value and equal variance. Closed-form
expressions for the mean value and variance of the system∞-norm have been presented.
The second order transmission line reduces the effects of electric uncertainties on the
damping effectiveness with respect to the simple piezoelectric shunting. By increasing the
number of piezoelectric transducers the uncertainties’ effects are drastically reduced. An
experimental setup has been realized to prove the effectiveness of the second order trans-
mission line in suppressing narrow-band structural vibrations. Six equal piezoceramics
have been positioned on a host beam, five of them have been equally distributed on one
beam surface and used for control purposes and the remaining one has been located on
the other surface, close to the clamped end, and used for exciting the beam on its first
mode. The floating inductances have been realized by the use of three operational ampli-
fiers RC-circuits and the internal resonance in between the electrical and the mechanical
system have been achieved by the use of a variable grounded inductor located at the beam
free end. The piezoelectric capacitances and the modal coupling used in the circuit design
have been identified through the technique presented in Chapter 5.

In Chapter 7 the performances of the fourth order transmission line have been investi-
gated. The eigenvalue problem for the fourth derivative operator with natural boundary
conditions has been reviewed. It has been shown that given a beam with perfect me-
chanical constraints, it is possible to uniquely define a dual set of perfect mechanical
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constraints such that the dual problem has the same modal frequencies of the original one
and has the original modal curvatures as mode shapes. The PEM beam has been studied
by the use of the homogenized model in Chapter 4. It has been demonstrated that whence
the electric circuit is governed by the fourth derivative operator, the electric boundary
conditions are the dual of the mechanical ones, and the electric damping is proportional
to the square root of the fourth derivative, it is possible to damp simultaneously all the
structural vibration modes with the same optimal efficiency. The main properties of the
square root of the fourth derivative operator with natural boundary conditions have been
recalled and it has been shown that it is, in general, a nonlocal operator, which only in
few cases is equal to the negative second derivative (e.g. simply supported beams). The
modal frequencies and electromechanical mode shapes of the optimized non dissipative
PEM beam have been found in terms of the original mode frequencies and mode shapes
of the host beam. Two distinct synthesis strategies have been exploited in order to realize
the same electric circuit analog of the Euler-Bernoulli beam. The circuit is constituted
only by inductors, capacitors and elementary two-port transformers. Both the approaches
has relied on the finite-difference discretization of the Timoshenko beam model. Within
the former approach, the multiport synthesis of a circuit whose admittance matrix is the
electric version of the finite-difference approximation of the beam element mechanical im-
pedance has been tackled. It has been demonstrated that the transformerless realization
of the beam element analog circuit is impossible, indicating the optimality of the pro-
posed synthesis based on a single two-port transformer. The analog circuit of an entire
Timoshenko beam has been obtained by cascade connecting the analog circuits of the
beam elements discretizing the beam. The analog circuit of the Euler-Bernoulli beam has
been derived as the limit of the Timoshenko beam analog circuit as the rotatory iner-
tia and shear compliance go to zero. Within the latter approach, the Lagrangian of the
lumped network has been derived by finite-difference approximating that of the contin-
uous Timoshenko beam and by paralleling mechanical displacements with flux-linkages.
The lumped electric analog has been directly assembled by the discrete Lagrangian by
following standard techniques. This Lagrangian based approach can be easily generalized
to the synthesis of electric circuits analog to more complicated structures, e.g. plates, but,
in this framework, conditions for transformerless synthesis are not available. For simply
supported beams, the electric circuit analog to the Euler-Bernoulli beam with structural
damping has been derived. A PEM beam prototype has been designed and its multimodal
damping performances has been discussed. It has been proved that the product of the
optimal inductance per unit length and the square of the transformers turns-ratio per
unit length depends only on the beam constitutive properties and on the piezoelectric
capacitance per unit length. Therefore, once the amount of piezoelectric material on the
host beam together with the he transformers turns-ratio have been selected, the value of
the needed line inductances decreases linearly with the cube of the number of available
transducers. The predictions of the homogenized model have been verified by regarding
the electric circuit as a finite d.o.f. system and by studying its modal properties.

2. Recommendations for future works

The work presented in the dissertation may be expanded to include the following tasks:

• To study the influence of the discarded modes on the experimental identification
of the piezoelectric capacitance and modal coupling;

• To apply the developed modal properties algorithms to more complicated struc-
tures, in order to rank their effectiveness in real engineering structures;
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• To analyze the effects of uncertainties of the inductances and transformers turns-
ratios on the damping effectiveness of the fourth order transmission line for the
simply supported case. It is reasonable to state that the technique used for
treating the second order transmission line is applicable;

• To modify the discretization technique used in the synthesis of the analog circuit
in order to completely dispense with the use of transformers;

• To realize an experimental setup for proving the multimodal damping effective-
ness of the fourth order transmission line.
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