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Abstra
t

Due to the de�
ien
y of linear models in 
apturing some 
ommonly observed fea-

tures of time series data, many non-linear time series models have been proposed

in the literature. Two models that have gained mu
h attention are the so-
alled

self-ex
iting threshold autoregressive (SETAR) model and the outlier model. Setar

model has been found very e�e
tive for modeling and fore
asting non linear time

series in a wide range of appli
ation �elds. Furthermore, SETAR model is able

to 
apture nonlinear 
hara
teristi
s as limit 
y
les, jump resonan
e, and time irre-

versibility. Outlier models are important in time series analysis be
ause they 
an be

improve model identi�
ation, parameter estimation and fore
asting.

Te
hniques for ve
tor nonlinear time series modeling have only re
ently begun

to be investigated but multivariate nonlinearity analysis requires more resear
h. In

this thesis we dealt with outliers and threshold models in a multivariate framework.

In parti
ular the attention is fo
used on a multivariate SETAR (MSETAR) model

where ea
h linear regime follows a ve
tor autoregressive (VAR) pro
ess and the

thresholds are multivariate and the dete
tion of multiple outliers, espe
ially those

o

urring 
lose in time.

In 
hapter 2, we propose a methodology based on geneti
 algorithms (GAs) for

building MSETAR models. The GA is designed to estimate the stru
tural parame-

ters, that is to determine the appropriate number of regimes and �nd multivariate

thresholds parameters. The proposed methodology is tested by means of simulated

and real time series.
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In 
hapter 3, a 
lass of meta-heuristi
 methods to dete
t multiple additive out-

liers in multivariate time series is proposed. This 
lass in
ludes: simulated annealing,

threshold a

epting and geneti
 algorithms. In 
ontrast with many of the existing

methods, they do not require to spe
ify a ve
tor ARMA model for the data and de-

te
t any number of potential outliers simultaneously redu
ing possible masking and

swamping e�e
ts. A generalised AIC-like 
riterion is used as an obje
tive fun
tion

where the penalty 
onstant is suggested by both a simulation study and a theoreti-


al approximation. The 
omparison and the performan
e of the proposed methods

are illustrated by simulation studies and real data analysis. Simulation results show

that the proposed approa
hes perform well also for dete
ting pat
hes of additive

outliers.
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Chapter 1

Introdu
tion

1.1 Linearity and non linearity

From the pioneering work of Yule (1927) on AR modelling of the sunspot numbers to

the work of Box & Jenkins (1970) that marked the maturity of ARMA modeling in

terms of theory and methodology, linear Gaussian time series models �ourished and

dominated both theoreti
al explorations and prati
al appli
ations (Fan & Yao 2003).

The popularity of these models is 
ertainly due to their relatively simple mathemat-

i
al tra
tability and also to the existen
e of 
omputer software in
orporating the

Box-Jenkins methodology. The basis for su
h modelling approa
hes was the Wold

representation theorem: any stationary pro
ess {Xt} with a purely 
ontinuous spe
-

trum and (non-normalized) spe
tral density fun
tion h(ω) 
an be represented as a

linear 
ombination of the term of an un
orrelated pro
ess ǫt (Priestley 1981):

Xt =
+∞
∑

u=−∞

γuǫt−u

+∞
∑

u=−∞

γ2u <∞ (1.1)

Moreover, if the spe
tral density fun
tion h(ω) satis�es the Paley-Wiener 
ondi-

tion:

∫ π

−π

log{h(ω)}dω > −∞, (1.2)

then the pro
ess X(t) assume the one-sided form:

Xt =

+∞
∑

u=0

γuǫt−u. (1.3)
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The 
ondition 1.2 plays a fundamental role in real predi
tion theory. It's a fairly

weak 
ondition, and we may expe
t it to hold in the vast majority of 
ases (
ertainly,

in any situations of prati
al interest). Wold's theorem shows that any stationary

pro
ess may be approximated by linear models. This makes us understand the

enormous importan
e of linearity in the study of time series. The statement, how-

ever, shows some limitations of su
h models: the variables are un
orrelated and

not independent and the representation may require a potentially in�nite number

of 
oe�
ients. Some 
onsiderations are needed to 
larify the importan
e of the

di
hotomy un
orrelation-independen
e. The aim of ea
h model is to produ
e in-

dependent residuals (and possibly Gaussian) order to extra
t all the information

in the data. Un
orrelated residuals do not ensure that the stru
ture of the data

has been 
aptured by the model. For example, 
onsider the problem of predi
ting

the future value of the pro
ess, given observations up to time t. In the 
ase of the

stri
tly independent pro
ess, et, the past 
ontains no information on the future, and

hen
e the best predi
tor of a future value of et is simply its (un
onditional) mean.

For the un
orrelated pro
ess, ǫt, it is still true that if we restri
ted attention to

linear predi
tors then, in this sense, the past 
ontains no information on the future.

However, the past may well 
ontain useful information on the future values if we

allow predi
tors whi
h are non-linear fun
tions of the observations. The following

example illustrates this point. Let the pro
ess ηt be de�ned by (Priestley 1981):

ηt = et + βet−1et−2 (1.4)

where et is an independent pro
ess with zero mean and 
onstant varian
e. It is

a 
lear that ηt also has zero mean and 
onstant varian
e, and its auto
ovarian
e

fun
tions assume value zero for all lag s 6= 0. Then, ηt is an un
orrelated pro
ess,

and, as far as its se
ond order properties are 
on
erned, it behaves just like an

independent pro
ess. However, given observations up to time t one 
an 
learly


onstru
t a non-trivial predi
tor of ηt+1. Spe
i�
ally, if we adopt the mean square

error 
riterion, the optimal predi
tor of ηt+h is its 
onditional expe
tation, i.e.:

η̂t+h = E [ηt+h|ηt, ηt−1, . . .] , (1.5)

and for h = 1 we �nd from (1.5):

η̂t+1 = βetet−1 (1.6)

As noted by Granger & Andersen (1978), if a pro
ess ηt of the above form was

obtained as the residual from a more general model, all the 
onventional test for
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white noise based on the behaviour of the auto
ovarian
e or auto
orrelation fun
tion

would 
on�rm that the residuals were, white noise, and hen
e there was no further

model stru
ture left to �t. However, as we have seen, one 
ould 
ertainly exploit

the non linear stru
ture of the ηt pro
ess in order to improve the predi
tors of the

original series.

Then, linear models for stationary series may not be adequate even though they

produ
e un
orrelated residuals. In fa
t, un
orrelated residuals may be very far from

the independen
e. In summary, a model 
an be said satisfa
tory when extra
ting all

information from the data, that is, when the residuals of the model are independent.

This means that the 
ovarian
e matrix is not su�
ient to fully 
hara
terize a

pro
ess. But it's well known that, under hypothesis of normality and in this 
ase

only, un
orrelation is equivalent to the independen
e and the 
ovarian
e matrix


ompletely 
hara
terizes the pro
ess. In 
on
lusion, if the pro
ess is Gaussian, then

the Wold representation is an appropriate model.

Wold's theorem provides one of several possible representations, and therefore

does not ex
lude that the nature of relationships between the variables of the pro
ess

is nonlinear, or that there is a representation of Xt through the use of nonlinear

fun
tions, whi
h is simpler and less expensive in terms of parameters of (1.3) that

involves an in�nite number of parameters hu (Battaglia 2007).

Some nonstandard features, whi
h we refer to as nonlinear features from now on,

have been well-observed in many real time series data:

In the early 1950s, the Australian statisti
ian, Pat Moran, spent many of his

working hours at the library of the Department of Zoology, Oxford, whi
h be
ame

his o�
e. As a result, he be
ame interested in e
ology and met the Oxford e
ologist,

Charles Elton. In parti
ular, he was interested in the famous 10-year lynx 
y
le,

whi
h was and still is of immense interest to the e
ologists. In Moran (1953a),

among the many available annual re
ords of lynx trappings, he 
hose the longest

one, namely the 1821-1934 re
ord of the Ma
Kenzie River distri
t in Canada. He

remarked on the asymmetry of the lynx 
y
le and that lynx dynami
s would have

to be represented by nonlinear equations (Moran (1953b), p.292).

Whittle (1954) analyzed the sei
he time series of 660 observations at 15 se
ond

intervals of the water level in a ro
k 
hannel at Island Bay on the Wellington 
oast

in his native 
ountry, New Zealand. Whittle noted a signi�
ant arithmeti
al rela-

tionship among the periods of the prominent peaks of the spe
tral density fun
tion

estimate on time series. Su
h a relationship is beyond the s
ope of linear models.

Tong et al. (1985) studied the Jokulsa river system, 
onsisting of three time series
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in 1972: river-�ow, pre
ipitation and temperature. The nonlinearity is a result of

the phase 
hange from i
e to water. The inadequa
y of linear models is self-evident

in this 
ase.

Modeling these nonstandard features or other nonstandard as nonnormality,

asymmetri
 
y
les, bimodality, non linear relationship between lagged variables, time

irreversibity, stru
tural breaks or outliers is beyond the s
ope of Gaussian time series

models.

Due to the de�
ien
y of linear models in 
apturing some 
ommonly observed

features of time series data, many non-linear time series models have been proposed

in the literature. The �rst systemati
 study of non-linear models is due to Wiener

in 1958, whi
h 
onsidered an extension of the Volterra model of the following form

(this representation exists under general 
onditions):

Xt =
∞
∑

u=0

γuǫt−u +
∞
∑

u=0

∞
∑

i=0

γuiǫt−uǫt−i +
∞
∑

u=0

∞
∑

i=0

∞
∑

j=0

γuijǫt−uǫt−iǫt−j +

+

∞
∑

u=0

∞
∑

i=0

∞
∑

j=0

∞
∑

l=0

γuijlǫt−uǫt−iǫt−jǫt−l + . . . (1.7)

The Volterra expansion provides a general representation of a nonlinear time

series. If we stop the Volterra series expansion of the �rst term, we obtain the linear

model that represents the purely random 
omponent of the Wold de
omposition if ǫt

is a weakly stationary white noise and if the 
ondition (1.2) is satis�ed. The general

relationship between a linear time series and a nonlinear time series is easy to see:

the nonlinear equation has a lot of 
ross-produ
t terms.

The 
lass of non-linear models is mu
h larger than that of linear models. On
e

we de
ide to estimate a nonlinear model, we have the task of de
iding whi
h of

an arbitrary large number of fun
tions to estimate. The nonlinear models have

evolved to represent di�erent possible non-linearity features. The 
ontributions in

the literature 
an be divided roughly into two 
ategories: nonlinearity in 
onditional

mean and nonlinearity in 
onditional varian
e (
onditional heteros
edasti
ity).

The �rst 
ategory in
ludes, for example, the non-linear autoregressive models,

(NLAR, Jones (1978)), the threshold models (SETAR, Tong & Lim (1980)), the ex-

ponential autoregressive models (EXPAR, Ozaki (1982)), outlier models (Fox (1972);

Tsay (1988)) and 
hanges in level (Tsay (1986); Tsay (1986); Bai & Perron (2003)).

The se
ond 
ategory in
ludes, for example, the 
onditional varian
e models ARCH

(Engle (1982)) and GARCH (Bollerslev (1986)). Other models are not easily 
lassi-

�ed in this s
heme: bilinear models (BL, Subba (1981)) generate sudden explosions
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in the values of a series. These explosions 
an also be interpreted as 
hanges in

varian
e and this a

ounts for the relationship between BL and ARCH.

Priestley (1988) presented a general model (SDM = State Dependent Models),

whi
h in
ludes as spe
ial 
ases ARMA, SETAR, BL and EXPAR models. This

formulation is perhaps little known for 
omputational di�
ulties en
ountered in

pra
ti
al appli
ation of the SDM.

This brief overview is not the end of the re
ent history of non-linearity. Around

the same time when non-linear statisti
al models were developed, another line of

investigation on the non-linearity was just beginning, the study of 
omplex nonlinear

dynami
s or 
haos. It is usually believed that Poin
aré is the �rst one who studied


haos. Then Lorenz (1963) revealed the butter�y e�e
t in studying the weather

predi
tion and is thus re
ognized as the father of 
haos. But the formal use of


haos is from the works of May (1976) and Li & Yorke (1975). After that, 
haos

have been widely studied and a lot of important 
on
epts has been introdu
ed, su
h

as the dimensions, Lyapunov exponents, Fourier transform and Hilbert transform,

and attra
tor re
onstru
tion. Certain deterministi
 non-linear system may show


haoti
 behaviour. Time series derived from su
h system seem sto
hasti
 when

analyzed with linear te
hniques. However, un
overing the deterministi
 stru
ture is

important be
ause it allows for 
onstru
tion of more realisti
 and better models and

thus improved predi
tive 
apabilities. Chaoti
 behaviour in deterministi
 dynami
al

system is an intrinsi
ly non-linear phenomenon. A 
hara
teristi
 feature of 
haoti


system is an extreme sensitivity to 
hanges in initial 
onditions.

It 
an easily happen that the di�erent forms of nonlinearity 
an be 
onfusing.

Also it 
an be di�
ult to distinguish between nonstationarity and nonlinearity. An

example in this sense is the following: if the Fisher equation for the United States

is estimated, a 
hange in the model in the late 1970s and early 1980 is expe
ted due

to the oil pri
e sho
ks and subsequent Federal Reserve poli
y. Traditional unit root

tests, su
h as the augmented Di
key-Fuller (Di
key & W.A. (1979);Di
key & W.A.

(1981)), the Phillips & Perron (1988), and the (Kwiatkowski et al. (1992)), interpret

this 
hange in the model parameters as non-stationarity. Nevertheless, the model

has undergone a shift in the parameters before and after the event (oil pri
e sho
ks)

and 
ould very well be stationary if we run the tests in the pre and post event data

separately (Ghos & Dutt (2008)).

The 
hoi
e of a model for a time series is driven by many 
onsiderations, often

depending on the purpose of resear
h. In most 
ases, this 
hoi
e is fundamentally

subje
tive and based on a priori knowledge or expe
tations of the resear
her.

Te
hniques for ve
tor nonlinear time series modeling have only re
ently begun
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to be investigated. Harvill & Ray (1999) provide a general test of nonlinearity in a

ve
tor time series. Granger & Teräsvirta (1993) mention multivariate extensions of

nonlinear autoregressive (NLAR), nonlinear moving average (NLMA), and bilinear

models in passing, but 
on
entrate on statisti
al inferen
e for univariate nonlinear

models. More re
ent work by Tsay (1998) dis
usses testing and modeling multivari-

ate threshold autoregressive models.

The multivariate nonlinearity analysis requires more resear
h. In this thesis we

develop te
hniques for analyzing some forms of multivariate nonlinearity in 
on-

ditional mean. In parti
ular, we dealt with outliers and threshold models in a

multivariate framework.

Several papers that generalize the univariate threshold prin
iple to a multivari-

ate framework have appeared in the literature during the past years. Tiao and Tsay

(1994) proposed a univariate SETAR model for the United States gross national

produ
t (GNP) series where the thresholds are 
ontrolled by two lagged values of

the transformed GNP series re�e
ting the situation of the e
onomy. Tsay (1998) de-

veloped a strategy for testing and estimating multivariate threshold models where

the threshold variable was 
ontrolled by known linear 
ombination of individual

variables. Arnold and Gunther (2011) proposed a de�nition of MSETAR models

where ea
h linear regime follows a VAR pro
ess and the threshold variable is multi-

variate. Furthermore, they developed an estimation pro
edure of the 
orresponding

autoregressive (AR) 
oe�
ient matri
es. However, the authors suppose that the

stru
tural parameters of the model (delay, threshold variable, number and position

of thresholds, model order) have to be known a priori.

In the present thesis, we adopt a less restri
tive formulation, assuming that the

stru
tural parameters are unknown and are jointly estimated with the other param-

eters of the model.We formulate the task of �nding the threshold variable and the

other stru
tural parameters as a 
ombinatorial optimization problem. We suggested

a geneti
 algorithm-based pro
edure for identifying and estimating an MSETAR

model with univariate or bivariate threshold variable. The pro
edure uses a spe
ial

binary en
oding 
omposed of several fragments ea
h of whi
h represents an integer

parameter of the MSETAR model.

A simulation experiment demonstrated the validity of the geneti
 algorithms for

implementing the identi�
ation and estimation pro
edure for building a nonlinear

model in a multivariate setting.

In this 
ontext the most important 
ontribution lies in the 
hoi
e and estimation

of stru
tural parameters of the MSETAR model. The 
hoi
e of these stru
tural

parameters is very di�
ult sin
e it is not possible to make use of the instruments
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generally used for the 
hoi
e of the stru
tural parameters of the SETAR models.

A wrong 
hoi
e of stru
tural parameters also a�e
ts the overall performan
e of

the model in explaining the dynami
s of the multivariate time series and on the

fore
asting ability of the model. We realized also a GUI program for estimating

a MSETAR model. With the program is also possible to estimate SETAR models

whi
h are 
onsidered as a parti
ular 
ase of a model MSETAR.

Regarding the problem of outlier dete
tion, in the thesis we have been 
on
erned

on dete
ting multiple outliers, espe
ially those o

urring 
lose in time, often have

severe masking e�e
t (one outlier masks a se
ond outlier) and smearing e�e
t (mis-

spe
i�
ation of 
orre
t data as outliers) that 
an easily render the iterative outlier

dete
tion methods ine�
ient. A spe
ial 
ase of multiple outliers is a pat
h of ad-

ditive outliers. For univariate time series this problem has been addressed �rstly

by Bru
e & Martin (1989) and after by Justel et al. (2001). For multivariate time

series, only three pro
edures have been proposed but none of they deal spe
i�
ally

with the problem of 
onse
utive outliers. Tsay et al. (2000) proposed a sequential

dete
tion pro
edure, whi
h we will 
all the TPP method, based on individual and

joint likelihood ratio statisti
s; this method requires an initial spe
i�
ation of a ve
-

tor ARMA model. Galeano et al. (2006), Baragona & Battaglia (2007) proposed a

method based on univariate outlier dete
tion applied to some useful linear 
ombi-

nations of the ve
tor time series. The optimal 
ombinations are found by proje
tion

pursuit in the �rst paper and independent 
omponent analysis (ICA) in the se
ond

one.

We propose a 
lass of meta-heuristi
 algorithms to over
ome the di�
ulties of

iterative pro
edures in dete
ting multiple additive outliers in multivariate time se-

ries. Our pro
edures are less vulnerable to the masking and smearing e�e
ts be
ause

they evaluate several outlier pattern where all observations that are possibly out-

lying ones are simultaneously 
onsidered. In this way, meta-heuristi
 methods deal

e�
iently the dete
tion of pat
h of additive outliers. Ea
h outlier 
on�guration is

evaluated by a generalised AIC-
riterion where the penalty 
onstant is suggested

by both a simulation study and a theoreti
al approximation. The meta-heuristi


algorithms used a approximation of multiple linear interpolator given in Rozanov

(1957). More pre
isely, we use an unbiased estimator of the anomalies for any outlier


on�guration.

The main 
ontribution of this thesis for the problem of outlier dete
tion in mul-

tivariate time series is to redu
e the limitations of the iterative pro
edures in the

sear
h of 
onse
utive outliers. Moreover, we attempt to provide an approximation

of the penalty term of AIC general 
riterion whi
h is of a paramount importan
e in
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the identi�
ation of outliers.

The 
omparison and the performan
e of the proposed methods are illustrated by

simulation studies and real data analysis. Simulation results show that the proposed

approa
hes perform well for dete
ting 
onse
utive (pat
hes) additive outliers, while

TPP method, used as a 
omparison, show evident limitations in the 
ase of 
onse
-

utive outliers. These bad results of the TPP method are also justi�ed analyti
ally.

1.2 Multivariate Time Series

A s−dimensional ve
tor time series or multivariate time series arise when several

related time series, x1(t), x2(t), . . . , xs(t), are observed simultaneously over time,

instead of observing just a single time series as is the 
ase in univariate time series

analysis (Reinsel 1993).

Multivariate time series are 
onsiderable in a variety of �elds su
h as engineering,

physi
al s
ien
es, parti
ularly earth s
ien
es (e.g., meteorology and geophysi
s),

e
onomi
s and business (Reinsel 1993). For example, in an engineering 
ontext one

may be interested in the study of the simultaneous behaviour over time of 
urrent

and voltage, or of pressure, temperature, and volume, whereas in e
onomi
s, we

may be interested in the variations of interest rates, money supply, unemployment,

and so on, or in sales volume, pri
e, and advertising expenditures for a parti
ular


ommodity in a business 
ontext (Reinsel 1993).

Two of the reasons for analyzing and modeling su
h multiple time series jointly

are:

1. To understand the dynami
 relationships among them. They may be 
ontem-

poraneously related, one series may lead the others or there may be feedba
k

relationships.

2. To improve a

ura
y of fore
asts. When there is information on one series


ontained in the histori
al data of another, better fore
asts 
an result when

the series are modeled jointly.

Models that are of possible use in representing su
h multiple time series, 
onsider-

ations of their properties, and methods for relating them to a
tual data have been

extensively dis
ussed in the literature. Quenouille (1957), Whittle (1963), Hannan

(1970), Brillinger (1975), Lütkepohl (1993), Hamilton (1994), Reinsel (1993) are

just some of the many that have studied and made 
ontribution to the �elds of

multivariate time series analysis.
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1.3 Some Basi
s

1.3.1 Random Variable

Univariate Real Random Variable. Let (Ω,A, P ) be a probability spa
e, where
Ω is the set of elementary events (sample spa
e), A is a sigma-algebra of events

or subsets of Ω and P is a probability measure de�ned on A. A random variable

X is a mapping from the sample spa
e Ω onto the real line R su
h that to ea
h

element ω ∈ Ω there 
orresponds a unique real number, X(ω). We denote the mean

of X with µX = E(X), the varian
e of X with V ar(X) = E[(X − µX)
2], and the


ovarian
e between X and Y with cov(X, Y ) = E[(X − µX)(Y − µY )].

Univariate Complex Random Variables. A 
omplex random variable X

is de�ned as a random variable of the form X = XR + iXI , where the real and

imaginary parts, XR, and XI , are real random variables and i =
√
−1. The ex-

pe
tation of real random variable is naturally generalized to the 
omplex 
ase as

µX = E(X) = E(XR) + iE(XI) = µXR
+ µXI

. The varian
e of X is equal to

V ar(X) = E[|(X − µX)|2] while the 
ovarian
e between X and Y is de�ned as

cov(X, Y ) = E[(X − µX)(Y − µY )].

Ve
tor of Real Random Variable. A s−dimensional random ve
tor vari-

able X = [X1, X2, . . . , Xs]
′
is a fun
tion from Ω into the s−dimensional Eu
lidean

spa
e R
s
su
h that to ea
h element ω ∈ Ω there 
orresponds a unique ve
tor,

X(ω). Mean ve
tor of X is the 
olumn ve
tor of the means of ea
h 
omponent

µ = E(X) = [E(X1),E(X2), . . . ,E(Xs)]
′
. The 
ovarian
e matrix is de�ned as

Σ = E[(X− µ)(X− µ)′ ].

Ve
tor of Complex Random Variable. A s−dimensional 
omplex ran-

dom ve
tor variable X = [X1, X2, . . . , Xs]
′
is de�ned as a ve
tor random variable

of the form X = XR + iXI, where the real and imaginary parts, XR, and XI ,

are s−dimensional real random ve
tor variable. Mean ve
tor of X is de�ned by

µ = E(XR) + E(XI). The 
ovarian
e matrix is de�ned as Σ = E[(X− µ)(X− µ)∗].
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1.3.2 Multivariate Sto
hasti
 Pro
ess

A s−dimensional ve
tor sto
hasti
 pro
ess or multivariate sto
hasti
 pro
ess X(t) =

[X1(t), X2(t), . . . , Xs(t)]
′
, is a family of random variables indexed by the symbol t,

where t belongs to some given index set, T. If t takes a 
ontinuous range of real

values (�nite or in�nite), so that X(t) is said to be a 
ontinuous parameter pro
ess.

If t takes a dis
rete set of values, typi
ally, t = 0,±1,±2, . . ., then X(t) is said

to be a dis
rete parameter pro
ess. Alternatively, and in an equivalent way, an

s−dimensional ve
tor sto
hasti
 pro
ess may be thought as a fun
tion X(t, ω) :

T ×Ω→ R
s
, where for ea
h �xed t ∈ T , X(t, ω) is a s−dimensional random ve
tor

variable.

A realization of a ve
tor sto
hasti
 pro
ess is a sequen
e of ve
tors X(t, ω), t ∈ T ,
for a �xed ω. In other word a realization of a sto
hasti
 pro
ess is a fun
tion

X(t, •) : T → R
s
. A multiple time series is regarded as su
h a �nite part of a

realization, that is, it 
onsist, for example, of values ve
tors x1(ω), x2(ω), . . . , xN(ω).

The underlying sto
hasti
 pro
ess is said to have generated the multiple time series

or it is 
alled the generating or generation pro
ess of time series. A multiple time

series x1(ω), x2(ω), . . . , xN(ω) will be denoted by x1, x2, . . . , xN . The number of

observation N is 
alled the sample size or time series length.

Stationary Multivariate Pro
esses

An important 
on
ept in the representation of models and analysis of time series,

whi
h enables useful modeling results to be obtained from a �nite sample realization

of the time series, is that of stationarity.

An s ve
tor-valued pro
ess X(t) is strongly stationary if the probability dis-

tributions of the random ve
tors [X(t1), X(t2), . . . , X(tn)] and [X(t1 + l), X(t2 +

l), . . . , X(tn + l)] are the same for arbitrary times t1, t2, . . . , tn, all n and all lags

or leads l = ±1,±2, . . .. Thus, the probability distribution of observations from

stationary ve
tor pro
ess is invariant with respe
t to shift in time. An example

of stri
tly stationary pro
ess is a pro
ess of independent identi
ally distributed s

ve
tor-valued variates with mean ve
tor 0 and 
ovarian
e matrix equal to Is. This

pro
ess is 
alled strong sense white noise and is denoted by e(t).

An s ve
tor-valued pro
essX(t) is weakly or se
ond order stationary if the pro
ess

possesses �nite �rst and se
ond moments and whi
h satis�es the 
ondition that mean

does not depend on t and 
ovarian
e depends only on lag u:
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1. E[X(t)] = µ = (µ1, µ2, . . . , µs)
′, ∀t

2. E{[X(t)− µ][X(t+ u)− µ]′} = Γ(u), ∀t

Covarian
e Matri
es for a Stationary Ve
tor Pro
ess

If we have an s ve
tor-valued pro
ess X(t) with µ = 0, we de�ne the 
ovarian
e

matrix at lag u by:

Γ(u) = E{[X(t+ u)][X(t)]
′} =











γ11(u) γ12(u) ... γ1s(u)

γ21(u) γ22(u) ... γ2s(u)

... ... ... ...

γs1(u) γs2(u) ... γss(u)











(1.8)

For i 6= j, γij(u) = E[Xj(t + u)Xi(t)] denotes the 
ross-
ovarian
e fun
tion

between Xi(t) and Xj(t + u), while for i = j, γii(u) denotes the auto
ovarian
e

fun
tion of Xi(t) that depend only on lag u, not on time t, for i, j = 1, . . . , s,

u = 0,±1,±2, . . ..

In this thesis, the term stationary will generally be used in sense of weak stationar-

ity. For a stationarity ve
tor pro
ess, the 
ross-
ovarian
e matrix stru
ture provides

a useful summary of information on aspe
ts of dynami
 interrelations among the


omponents of the pro
ess. However, be
ause of higher dimensionality of the ve
tor

pro
ess, the 
ross-
ovarian
e matri
es 
an generally take on 
omplex stru
tures and

may be mu
h more di�
ult to interpret as a whole as 
ompared with the univariate

time series 
ase.

Complex valued multivariate pro
ess

So far we have dis
ussed only real valued pro
esses, i.e. pro
esses whi
h at ea
h time

point, assume real values. Although, of 
ourse, pro
esses whi
h arise in pra
ti
e

are all real valued it is nevertheless 
onvenient sometimes regard them as 
omplex

valued, just as in eletri
al 
ir
uit theory it is sometimes 
onvenient to regard a

voltage as a 
omplex variable.

A 
omplex valued pro
ess may be de�ned as a sequen
e of 
omplex random

variable indexed by the symbol t, where t ∈ T : X(t) = U(t)+iV(t) whereU(t),V(t)

are both real valued pro
ess. If we suppose that X(t) is stationary up to order 2,

then the mean of X(t) is de�ned by:
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E[X(t)] = E[U(t)] + iE[V(t)] = µ a 
onstant ve
tor independent of t (1.9)

The 
ovarian
e matrix X(t) is de�ned by (if we suppose that µ = 0):

Γ(u) = E{[X(t+ u)][X(t)]∗} (1.10)

where γij(u) = E[Xi(t+ u)Xj(t)]

Spe
tral property for a Stationary Ve
tor Pro
ess

Spe
tral Density Matrix. Similar to the univariate 
ase we de�ne the spe
tral

density matrix of the stationary ve
tor pro
ess X(t) as:

f(λ) = (2π)−1
∞
∑

u=−∞

Γ(u)exp(−iλu), −π < λ < π (1.11)

Then f(λ) is the Fourier transform of the 
ovarian
e matrix fun
tion. The (i, j)th

element of the matrix f(λ) denoted as fij(λ) is:

fij(λ) = (2π)−1
∞
∑

u=−∞

γij(u)exp(−iλu)

For i = j, fii(λ) is the spe
tral density fun
tion of the pro
ess Xi(t) and is the

Fourier transform of the auto-
ovarian
e fun
tion γii(u), while for i 6= j, fij(λ) is

the 
ross-spe
tral density fun
tion between the pro
ess Xi(t) and Xj(t), that is, the

Fourier transform of the 
ross-
ovarian
e fun
tion γij(u).

Noti
e that fii(λ) is real-valued and non-negative, but sin
e γij(u) 6= γij(−u) for
i 6= j, the 
ross-spe
tral density fun
tion fij(λ) is in general 
omplex-valued with

fij(λ) begin equal to fji(λ) = fji(−λ), the 
omplex 
onjugate of fij(λ). Therefore,

the spe
tral density matrix f(λ) is Hermitian, that is, f∗(λ) = f(λ). Moreover, f(λ)

is a non-negative de�nite matrix in the sense that b
′

f(λ)b ≥ 0 for any s−dimensional

ve
tor b, sin
e b
′

f(λ)b is the spe
tral density fun
tion of a linear 
ombination b
′

X(t)

and hen
e must be non-negative.

Spe
tral Representations Let X(t) be a zero mean s−dimensional stationary

ve
tor pro
ess. Then exists a s−dimensional 
omplex-valued 
ontinuous-parameter

pro
ess, Z(λ) = [Z1(λ), Z2(λ), . . . , Zs(λ)], de�ned on the interval [−π, π] su
h that

for all integer t (Rozanov (1957); pag 18):
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X(t) =

∫ π

−π

eiλtdZ(λ) or Xi(t) =

∫ π

−π

eiλtdZi(λ) (1.12)

where the 
olumn ve
tor dZ(λ) has elements dZ1(λ), dZ2(λ), . . . , dZs(λ). The rep-

resentation (1.12) is 
alled spe
tral representation of the multivariate stationary

pro
ess X(t).

The s−dimensional random pro
ess, Z(λ), also 
alled random spe
tral measure

of s−dimensional pro
ess X(t), has the following properties:

1. E[dZ(λ1)dZ
∗(λ2)] = 0 if λ1 6= λ2,

2. E[dZi(λ1)dZj(λ2)] = 0 ∀i, j = 1, 2, . . . , s if λ1 6= λ2,

3. E[dZ(λ)dZ∗(λ)] = f(λ)dλ

Hen
e, properties (1) and (2) show that dZ1(λ), dZ2(λ), . . . , dZs(λ) are not only

orthogonal but also 
ross-orthogonal. From property (3) we have:

fii(λ)dλ = E[dZi(λ)dZi(λ)] = E[|dZi(λ)|2], (1.13)

fij(λ)dλ = E[dZi(λ)dZj(λ)] i 6= j

Hen
e, f(λ)dλ represents the 
ovarian
e matrix of dZ(λ),the random ve
tor at

frequen
y λ in the spe
tral representation of the ve
tor pro
ess X(t). That is,

fii(λ)dλ represent the varian
e of dZi(λ) and fij(λ)dλ represent the 
ovarian
e be-

tween dZi(λ) and dZj(λ). Alternatively, we may say that, whereas fii(λ)dλ repre-

sents the average value of the square of the 
oe�
ient of eiλt, fij(λ)dλ represents

the average value of the produ
t of the 
oe�
ients of eiλt in Xi(t) and Xj(t).

We 
an note also that substituting (1.12) in (1.8) the spe
tral representation of

the 
ovarian
e matrix fun
tion is:

Γ(u) =

∫ π

−π

e−iλte−iλ
′

(t+u)
E[dZ(λ)dZ∗(λ

′

)] (1.14)

=

∫ π

−π

e−iλu
E[dZ(λ)dZ∗(λ)]

=

∫ π

−π

e−iλudH(λ)

that is:
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γij(u) =

∫ π

−π

e−iλte−iλ
′

(t+u)
E[dZi(λ)dZj(λ

′)] (1.15)

=

∫ π

−π

e−iλu
E[dZi(λ)dZj(λ)]

=

∫ π

−π

e−iλudHij(λ)

where:

dHij(λ) = E[dZi(λ)dZj(λ)] = fij(λ)dλ, i 6= j, (1.16)

dHii(λ) = E[|dZi(λ)|2] = fii(λ)dλ,

The matrix H(λ) is 
alled spe
tral distribution matrix. The diagonal elements

Hii(λ) are the integrated spe
tra of the pro
ess Xi(t), while Hij(λ) is the integrated


ross-spe
trum between Xi(t) and Xj(t).

Substituting equations(1.16) in (1.15) obtained,

γij(u) =

∫ π

−π

fij(λ)e
−iλudλ u = ±1,±2, . . . (1.17)

that may be written more 
on
isely in the form:

Γ(u) =

∫ π

−π

f(λ)e−iλudλ u = ±1,±2, . . . (1.18)

In some texts the spe
trum is de�ned using the 
ovarian
e matrix generating

fun
tion, whi
h is a power series with 
omplex terms. The 
ovarian
e matrix gen-

erating fun
tion F (z) (where z is a 
omplex number) is de�ned by:

F(z) =

∞
∑

u=−∞

Γ(u)zu (1.19)

The 
ovarian
e matrix generating fun
tion 
oin
ides with the spe
tral density

matrix f(λ) if z = eiλ: F(z) = f(λ).

1.3.3 Linear Filtering of a Stationary Ve
tor Pro
ess

Fundamental to the study of multivariate linear system of sto
hasti
 pro
ess is

the representation of dynami
 linear relationship through the formulation of linear
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�lters. A multivariate linear (time-invariant) �lter relating an r−dimensional input

sto
hasti
 pro
ess X(t) to a s−dimensional output sto
hasti
 pro
ess Y (t) is given

by the form:

Y(t) =
∞
∑

u=−∞

Ψ(u)X(t− u) (1.20)

where Y(t) and X(t) are 
olumn ve
tors, the Ψ(u) are s × s matri
es, and

{Ψ(u)}, u = 0,±1,±2, . . . , are 
alled the impulse response matri
es. From (1.20)

we may write the ith output as:

Yi(t) =

∞
∑

u=−∞

Ψi1(u)X1(t− u) + . . .+

∞
∑

u=−∞

Ψir(u)Xr(t− u), i = 1, . . . , s (1.21)

The �lter is physi
ally realizable or 
ausal when the Ψ(u) = 0 for u < 0, so that

∑∞
u=0Ψ(u)X(t − u) is expressible in terms of only present and past values of the

input pro
ess X(t). The �lter is said to be stable if

∑∞

u=−∞ ‖Ψ(u)‖ < ∞, where

‖A‖ denotes a norm for the matrix A su
h as ‖A‖2 = tr{A′A}.

When the �lter is stable and the input pro
ess X(t) is stationary with 
ovarian
e

matri
es Γx(u), the output pro
ess Y(t) =
∑∞

u=−∞Ψ(u)X(t − u) is a stationary

pro
ess.

Introdu
ing the spe
tral representation:

Xi(t) =

∫ π

−π

eiλtdZ
(x)
i (λ), i = 1, . . . , r (1.22)

Yj(t) =

∫ π

−π

ejλtdZ
(y)
j (λ), j = 1, . . . , s (1.23)

the jth terms of (1.21) 
an be written as:

∫ π

−π

eiλtGij(λ)dZ
(x)
i (λ), (1.24)

where Gij(λ) =
∑

u ψij(u)e
−iλu

represents the transfer fun
tion between the ith

input and the jth output.

Equation (1.21) now gives, for ea
h λ,:

dZ
(y)
j (λ) = Gj1(λ)dZ

(x)
1 (λ) + . . .+Gjr(λ)dZ

(x)
r (λ), j = 1, . . . , s (1.25)
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This equation is of 
onsiderable importan
e. In the time domain des
ription

(1.21), the relationship between the jth output at time t involves weighted linear


ombination of past, present and future values of all the input pro
esses. However,

the frequen
y domain form (1.25) has a mu
h simpler stru
ture. In fa
t (1.25) is sim-

ply the 
lassi
al multiple linear regression model, and, as in the single input/single

output 
ase, has the feature that the spe
tral proprieties of the output at frequen
y

λ depend only on the spe
tral properties of the input at the same frequen
y λ.

Writing (1.25) in matrix form we have:

dZ(y)(λ) = G(λ)dZ(x)(λ) (1.26)

where the (s×s) square matrixG(λ) =
∑

u Ψ(u)e−iλu
is 
alled the transfer fun
tion

matrix. The system is thus des
ribed 
ompletely by the transfer fun
tion matrix

G(λ) whi
h, when written out in full, takes the form:

G(λ) =











G11(λ) G12(λ) ... G1s(λ)

G21(λ) G22(λ) ... G2s(λ)

... ... ... ...

Gr1(λ) Gs2(λ) ... Grs(λ)











where the entry in the ith row and jth 
olumn being the transfer fun
tion relating the

ith input to the jth output. Equation (1.26) gives us immediately the relationship

between the spe
tral matri
es of the input and output. For we have:

E[dZ(y)(λ)dZ(y)∗(λ)] = G(λ)E[dZ(x)(λ)dZ(x)∗(λ)]G∗(λ) (1.27)

whi
h, on using property (3) of random spe
tral measure, the spe
tral density matrix

of output pro
ess Y (t), fy(λ), is:

fy(λ) = G(λ)fx(λ)G
∗(λ) (1.28)

where fx(λ) is the spe
tral density matrix of input pro
ess X(t).

Noting that the varian
e of Yj(t) is given by integrating the jth diagonal element

of fx(λ), the 
ondition for ea
h output to have �nite varian
e is:

tr{
∫ π

−π

G(λ)fx(λ)G
∗(λ)dλ} <∞ (1.29)

where, for any square matrix A, tr(A) denotes the tra
e of A, namely, the sum of

the diagonal elements of A.

The 
ovarian
e matri
es of the stationary pro
ess Y (t) are given by:
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Γy(u) = E[Y(t),Y∗(t+ u)] =
∞
∑

i=−∞

∞
∑

j=−∞

Ψ(i)Γx(u+ i− j)Ψ∗(j). (1.30)

In Reinsel (1993)) the spe
tral density matrix of the output Y (t) has the repre-

sentation:

fy(λ) = G(eiλ)fx(λ)G
∗(e−iλ)

,

where the transfer fun
tion (matrix) of the linear �lter is de�ned as G(z) =
∑∞

j=−∞Ψ(j)zj .

Inverse 
ovarian
e matrix and inverse pro
ess

Inverse 
ovarian
es and inverse pro
ess of a stationary multivariate sto
hasti
 pro-


ess have been de�ned independently and 
ontemporaneously by Battaglia (1984)

and Vitale (1984), one moving from frequen
y domain and one from time domain.

The two de�nitions 
oin
ide. The inverse 
ovarian
e 
an also play a role in the

analysis of relationships between the 
omponents of a multivariate series.

Let X(t) = [X1(t), X2(t), . . . , Xs(t)]
′

be a dis
rete-parameter s-variate se
ond-

order stationary pro
ess with mean zero for ea
h 
omponent and 
ovarian
e matrix

Γ(h) de�ned in (1.8). We suppose thatX(t) has absolutely 
ontinuous spe
trum and

for ea
h λ, the inverse of spe
tral density matrix f(λ) de�ned in (1.11)(Battaglia

(1984), pag 118) exists and is integrable. Then we de�ne the matri
es of inverse


ovarian
e Γi(h)(h = 0,±1,±2, . . .) by:

Γi(u) =
1

(2π)2

∫ π

−π

f−1(λ)eiλudλ =











γi11(u) γi12(u) ... γi1s(u)

γi21(u) γi22(u) ... γi2s(u)

... ... ... ...

γis1(u) γis2(u) ... γiss(u)











(1.31)

so that:

f−1(λ) = 2π
∞
∑

u=−∞

Γi(u)e
−iλu =











p11(u) p12(u) ... p1s(u)

p21(u) p22(u) ... p2s(u)

... ... ... ...

ps1(u) ps2(u) ... pss(u)











(1.32)
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As f−1(λ) is also Hermitian for ea
h λ, we have Γi(h) = Γi(−h)′.

For inverse 
ovarian
e matri
es an orthogonality relation may be derived in the

same way as in the univariate 
ase (Battaglia 1983). In fa
t, using (1.31) and the

analogous spe
tral representation (1.18), it is easily seen that:

∞
∑

u=−∞

Γi(u)Γ
′

(u+ k) = δkIs (1.33)

where δk denotes Krone
ker's delta.

Further we de�ne the inverse pro
ess of X(t) as a linear �lter with weights equal

to the inverse 
ovarian
es:

Z(t) = 2π
∞
∑

u=−∞

Γi(u)X(t− u). (1.34)

Using (1.33) it may be veri�ed that Z(t) is a se
ond-order stationary pro
ess with

mean zero and 
ovarian
e matrix equal to the inverse 
ovarian
e matrix of X(t):

E[Z(t)Z∗(t + u)] = Γi(u). (1.35)

In addition, the 
ovarian
es between the 
omponents of the pro
ess and the


omponent of its inverse pro
ess is provided by:

E[X(t)Z∗(t+ u)] =
∑

u

Γ(u)Γi(u+ h) = δkIs. (1.36)

Thus, the 
omponents of X(t) are un
orrelated with the non-homologous 
om-

ponents of Z(t) for ea
h lag, while the homologous 
omponents of the two pro
esses

are 
ontemporaneously 
orrelated, but un
orrelated when lagged.

We may use two di�erent ways to estimate the inverse 
ovarian
e matrix. A �rst

approa
h is based on the estimation of the spe
tral density matrix and the Fourier

transform of its inverse (Battaglia (1984)). The se
ond one �ts a high-order ve
tor

autoregressive model to the data and derives estimates of the inverse 
ovarian
e

matrix from the estimated parameters of the model (Battaglia (1984)). Bhansali

(1980) has shown that under reasonable regularity 
onditions both methods give


onsistent and asymptoti
ally Gaussian estimates. We reported here the se
ond
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approa
h where the estimates of the inverse 
ovarian
e are obtained as follows:

Γ̂iu =











∑m
j=u Φ̂

′
j−uΣ̂

−1Φ̂j 0 ≤ u ≤ m

0 u > m

Γ̂i
′

−u u < 0

(1.37)

where Φ̂1, Φ̂2, . . . , Φ̂m are the least squares estimates of the parameter matri
es of

the VAR(m) model, Σ̂ is the estimated varian
e matrix of the noise and where we

set Φ̂0 = −I.

Spa
e of values of a stationary ve
tor pro
ess

Let X(t) = [X1(t), X2(t), . . . , Xs(t)]
′
be an s−dimensional stationary pro
ess, and

Hx be the linear manifold spanned by variables Xk(t),k = 1, . . . , s, −∞ < t < ∞,


losed with respe
t to 
onvergen
e in mean square. This spa
e with s
alar produ
t

(Rozanov (1957), pag 3):

(Xi(t), Xj(t)) = E[Xi(t)Xj(t)] ∀i, j = 1, . . . , s, t ∈ Z (1.38)

is a Hilbert spa
e; we will 
all it the spa
e of values of the pro
ess X(t).

We 
an demonstrate that for any element h ∈ Hx there exist a ve
tor fun
tion

ϕ(λ) = [ϕ1(λ), . . . , ϕs(λ)]
′
belonging to L2(F ) su
h that h is representing in the

form of integral with respe
t to the random spe
tral measure Z(λ):

h =

∫

ϕ(λ)dZ(λ) =

∫ s
∑

k=1

ϕk(λ)dZk(λ) (1.39)

We will 
all the ve
tor fun
tion ϕ(λ) the spe
tral 
hara
teristi
 of the random

variable h.

We will say that ϕ(λ) belongs to the spa
e L2(F ), if the fun
tion:

ϕ(λ)f(λ)ϕ∗(λ) =

s
∑

k,l=1

ϕk(λ)ϕk(λ)fkl(λ) (1.40)

is integrable.

Minimal Pro
ess

Theorem 1. . In order that an n-dimensional stationary pro
ess X(t) with spe
tral

density f be minimal, it is ne
essary and su�
ient that:
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∫ π

−π

tr(f−1(λ))dλ <∞.

where tr denotes the tra
e of a matrix.

1.4 Linear Interpolation of Stationary Ve
tor Pro-


ess

An important problem in the theory of s-variate (s ≥ 1) weakly stationary sto
hasti


pro
ess X(t) is to obtain formulas for linear interpolator and interpolation error

matrix. This problem seem to have potential appli
ation to many di�erent areas

of physi
al, natural and so
ial s
ien
es, that is in the 
ases where the values of

a sto
hasti
 pro
ess that represent a parti
ular phenomena either are missing at

some points or it is not possible to obtain dire
t measurement at these points. This

problem has generated a rather extensive literature beginning with Kolmogorov's

fundamental arti
le (Kolmogorov 1941).

Masani (1960) 
onsidered a full-rank minimal s − variate pro
ess (the missing

value is at one point) over Z and obtained an expli
it expression, for the interpolation

error matrix in terms of spe
tral density of the pro
ess, thereby extending the s = 1

result due to Kolmogorov (1941).

There are a number of di�erent proof of linear interpolation of a stationary ve
-

tor pro
ess, some of whi
h revealed interesting relationship between the spe
tral

theory of stationary ve
tor pro
ess and other bran
hes of pure mathemati
s. Ex-

pli
it expressions for linear interpolator and interpolation error matrix were obtained

by (Rozanov (1957); pag 100-101) using elaborated Fourier and Harmoni
 analysis

te
hniques. Rozanov's pro
edure 
onsiderate also the 
ase of partially missing ob-

servations of the pro
ess X(t). Exa
t formulas are also given in Battaglia (1984)

and Hannan (1970). All formulas suppose that the 
omplete past and the 
omplete

future of the stationary pro
ess X(t) are known. We now give a brief sket
h of these

alternative proofs.
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1.4.1 Geometri
al Approa
h to Interpolation

Let X(t) = [X1(t), X2(t), . . . , Xs(t)]
′
be a dis
rete-parameter s-variate se
ond-order

stationary pro
ess with mean zero for ea
h 
omponent, t ∈ Z = [0,±1, . . .]. We

suppose that X(t) has absolutely 
ontinuous spe
trum and for ea
h λ, the inverse

of spe
tral density matrix f(λ) exists and is integrable.

Let Tk, k = 1, . . . , s, be �nite subsets of the set of all integers Z. We suppose

that all the values Xk(t) of the s−dimensional stationary pro
ess X(t) are known,

ex
ept for the values Xk(t), t ∈ Tk, k = 1, . . . , s, and it is required to interpolate the

unknown values Xk(t).

If we measure the error in terms of mean square deviation, the best linear method

of interpolation 
onsists in �nding the proje
tions of the Xk(t), t ∈ Tk, on 
losed

linear manifold generated by the known variables Xk(t), t /∈ Tk, k = 1, . . . , s, whi
h

we denote by H̄(T ).

Let A be s−dimensional ve
tor spa
e, and Bλ the subspa
e of A 
onsisting of all

ve
tors b = {bk(λ)} of the form:

b = af(λ) a ∈ A (1.41)

By the expression bf−1(λ) for b ∈ Bλ, we will understand any of the ve
tors

a ∈ A satisfying 1.41.

Obviously, if two ve
tors a1 and a2 lead to the same element b in (1.41), then:

a1(b
′)∗ = a2(b

′)∗ (1.42)

for any b
′

= a
′

f(λ) ∈ Bλ, sin
e, by virtue of self-adjointness of the matrix f(λ),

(a1 − a2)(b
′)∗ = (a1 − a2)[a

′

f(λ)]∗ = [(a1 − a2)f(λ)](a
′

)∗ = (b− b)(a
′

)∗ (1.43)

We de�ne B(T ) as the spa
e of ve
tor fun
tions b(λ) = {bk(λ)} whose 
ompo-

nents bk(λ) are trigonometri
 polynomials of the form:

bk(λ) =
∑

t∈Tk

ak(t)e
iλt

(1.44)

su
h that b(λ) ∈ Bλ for almost all λ, and su
h that ‖b‖ = (b,b)1/2 <∞, where

(b,b
′

) is a s
alar produ
t in B(T ) de�ned by:
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(b,b
′

) =

∫ π

−π

[b(λ)f−1(λ)(b′)∗]dλ (1.45)

We denote by ∆(T ) the subspa
e in Hx spanned by the di�eren
e :

Xk(t)− X̂k(t), t ∈ Tk k = 1, 2, . . . , s (1.46)

where X̂k(t) is the proje
tion of Xk(t) on H̄(T ).

Lemma 1. . The subspa
e ∆(T ) is isometri
ally isomorphi
 to the spa
e B(T ) of

ve
tor fun
tions.

Proof. Let Z(λ) = [Z1(λ), Z2(λ), . . . , Zs(λ)]
′

be random spe
tral measure ofX(t).

The elements h of the subspa
e ∆(T ) 
an be represented in the form:

h =

∫ π

−π

ϕ(λ)dZ(λ), (1.47)

where the ve
tors fun
tion ϕ = {ϕk} belongs to the spa
e L2(F ), i.e.,

∫ π

−π

ϕfϕ∗dλ <∞. (1.48)

The orthogonality of h to the subspa
e H̄(T ) means that:

E[hX̄l(t)] =

∫ π

−π

e−iλt

s
∑

k=1

[ϕk(λ)fkl(λ)]dλ = 0, (1.49)

for all l and t (l = 1, . . . , s,−∞ < t < ∞) ex
ept for t ∈ Tl. If we put b(λ) =

ϕ(λ)f(λ) the (1.49) shows that the ve
tor fun
tion b(λ) = {bk(λ)} belongs to the

spa
e B(T ):

bk(λ) =

s
∑

l=1

ϕl(λ)flk(λ) =
∑

t∈Tk

ak(t)e
−iλt, k = 1, . . . , s (1.50)

‖b‖2 =
∫ π

−π

b(λ)f−1(λ)b∗(λ)dλ =

∫ π

−π

ϕ(λ)f(λ)ϕ∗(λ)dλ = E |h|2 (1.51)

On the other hand, if one takes an arbitrary ve
tor fun
tion b(λ) from B(T ) and

sets ϕ(λ) = b(λ)f−1(λ) then
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∫ π

−π

ϕ(λ)f(λ)ϕ∗(λ)dλ =

∫ π

−π

b(λ)f−1(λ)ϕ∗(λ)dλ <∞ (1.52)

and the random variable of the form

∫ π

−π
ϕ(λ)dZ(λ) is orthogonal to H̄(T ):

E[hX̄l(t)] =

∫ π

−π

e−iλt

s
∑

k=1

[ϕk(λ)fkl(λ)]dλ =

∫ π

−π

e−iλtbl(λ)dλ = 0, (1.53)

for all l and t, ex
ept for t ∈ Tl. But this means that h belongs to the subspa
e

∆(T ), and, moreover, by virtue of (1.53),

E |h|2 = ‖b‖2

We pro
eed now to a dire
t determination of the quantities X̂k(t), t ∈ Tk whi
h

gives the best fore
ast by linear interpolation. Let Tk = t0, Tl = 0 for l 6= k. As we

already know, X̂k(t0) 
an be represented in the following form:

X̂k(t0) =

∫ π

−π

ϕ̂k(λ)dZ(λ) (1.54)

The problem of linear interpolation 
onsist, essentially, of determining the ve
tor

fun
tions ϕk(λ) = [ϕk1(λ), ϕk2(λ), . . . , ϕks(λ)].

Sin
e the di�eren
e Xk(t0) - X̂k(t0) belongs to the spa
e ∆(t), we obtained, from

Lemma 1, that the ve
tor fun
tion:

bk(λ) = [eiλt0δk − ϕ̂k(λ)]f(λ) = [bk1(λ), bk2(λ), . . . , bks(λ)]

belongs to the spa
e B(T), and, in parti
ular, that:

bkj =
∑

t∈Tk

akj(t)e
iλt, j = 1, 2, . . . , s.

Thus, the ve
tor fun
tion (row ve
tor) ϕ̂k(λ) has the form

ϕ̂k(λ) = eiλt0δk − bk(λ)f
−1(λ), (1.55)

where δk is a s-dimensional ve
tor whi
h has a 1 in the k-th position and zero

in the other positions and the problem of linear interpolation redu
es to �nding

the 
oe�
ients akj of the trigonometri
 polynomials bkj(λ). These 
oe�
ients 
an
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easily be found from a linear system of equations, expressing the fa
t that X̂k(t0) is

orthogonal to ∆(T ).

If the pro
ess X(t) is minimal then the ve
tor fun
tions of the form eiλtδl , t ∈
Tl, l = 1, . . . , s, form a basis in the spa
e B(T ), and if one denotes by hl,t the


orresponding variables in the spa
e ∆(T ), then the orthogonality of X̂k(t0) to ∆(T )

is equivalent to the following:

E[X̂k(t0)h
l,t] =

∫ π

−π

e−iλt[ϕ̂k(λ)f(λ)p̄l(λ)]dλ = 0 (1.56)

where pl(λ) = [pl1(λ), pl2(λ), . . . , pls(λ)] is the lth row of the inverse f−1(λ) of

f(λ). Taking into 
onsideration the form (1.55) of the ve
tor fun
tion ϕ̂k(λ), system

(1.56) 
an be rewritten in the form:

n
∑

j=1

∑

s∈Tj

γijl(s− t)akj(s) = 0 for t ∈ Tl t 6= t0, l 6= k (1.57)

n
∑

j=1

∑

s∈Tj

γijk(s− t0)akj(s) = 1 for t ∈ Tk t = t0, l = k (1.58)

Here the γijl(s) are Fourier 
oe�
ients of the elements pjl(λ) of the matrix f−1
,

that is, inverse 
ovarian
e:

γijl(s) =
1

2π

∫ π

−π

eiλspjl(λ)dλ.

Theorem 2. . Suppose that the spe
tral density f of the s-dimensional pro
ess X(t)

satis�es theorem 1. Then the random variables X̂k(t0), giving the best linear inter-

polation, 
an be found from formula (1.54), in whi
h the ve
tor fun
tions ϕ̂k(λ) are

determined from the system of equations (1.57).

Case 1: partial missing value for one 
omponent series

We suppose that T1 = {t0} and T2 = . . . = Tn = {∅}. In this 
ase we have to

determine X̂1(t0) and then only the ve
tor fun
tion ϕ̂1(λ). The ve
tor fun
tion

b1(λ) assume following form:
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b1(λ) = [a11(t0)e
iλt0 , 0, . . . , 0]

.

The system (1.57) is de�ned only for t ∈ T1:

γi11(0)a11(t0) = 1 ⇒ a11(t0) = [γi11(0)]
−1, (1.59)

Substituting the value of a11(t0) found by (1.59) in equation (1.55):

ϕ̂1(λ) = eiλt0δ1−b1(λ)f
−1 = eiλt0δ1− eiλt0 [

1

γi11(0)
f11(λ), . . . ,

1

γi11(0)
fn1(λ)] (1.60)

Then:

X̂1(t0) =

∫ π

−π

eiλt0δ1dZ(λ)−
∫ π

−π

eiλt0 [
1

γi11(0)
f11(λ), . . . ,

1

γi11(0)
fn1(λ)]dZ(λ) (1.61)

when
e:

X̂1(t0) =

∫ π

−π

eiλt0dZ1(λ)−
∫ π

−π

eiλt0
1

γi11(0)
f11(λ)dZ1(λ)− . . .−

−
∫ π

−π

eiλt0
1

γi11(0)
fn1(λ)dZn(λ) (1.62)

Hen
e, writing:

f−1
ij (λ) =

1

2π

∞
∑

u=−∞

e−iλuγiij(u) (1.63)

we have:

∫ π

−π

eiλt0
1

γi11(0)
fij(λ)dZi(λ) =

∫ π

−π

eiλt0
1

γi11(0)

∞
∑

u=−∞

e−iλuγiij(u)dZi (1.64)

If we used equation of spe
tral representation, the ith integral of (1.62) be
omes:

∞
∑

u=−∞

∫ π

−π

eiλ(t0−u) 1

γi11(0)
dZi =

γiij(u)

γi11(0)

∞
∑

u=−∞

γiij(u)X(t0 − u) (1.65)
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Using this last relation we 
an write (1.62) as:

X̂1(t0) = X1(t0)−
1

γi11(0)

∞
∑

u=−∞

γi11(t)X1(t0 − u)−
1

γi11(0)

∞
∑

u=−∞

γi21(u)X2(t0 − u)− . . .−

− 1

γi11(0)

∞
∑

u=−∞

γis1(t)Xn(t0 − u) (1.66)

that 
an be written as:

X̂1(t0) = X1(t0)−
1

γi11(0)

∞
∑

u=−∞

s
∑

j=1

γij1(u)Xj(t0 − u)

Obviously the summation on the right of equation(1.66) is not de�ned for missing

data X1(t0) . This quantity appears when u = 0 and in this 
ase we have: X1(t0)−
a11(t0)γi11(0)X1(t0) = 0 a

ording to the system (1.59).

Case 2: partial missing value for two 
omponent series

We suppose that T1 = {t1}, T2 = {t2} and T3 = . . . = Tn = {∅} and have to

interpolate X1(t1), that is, determine X̂1(t1).

When we have to interpolate the missing data of 
omponent k-th of sto
hasti


pro
ess it is only ne
essary to determine the ve
tor fun
tion bk(λ). In our 
ase, as

k = 1 we have to determine the fun
tion b1(λ). If there is only one missing data in

a single 
omponent then this fun
tion has only one nonzero element at k-th 
olumn

(b1(λ) is a row ve
tor). If there are two missing data in the k-th 
omponent then the

fun
tion bk(λ) has always only one element di�erent from zero in 
orresponden
e of

the k-th 
olumn but this element is the sum of two exponentials with 
oe�
ients

di�erent from zero. If instead there are two 
omponents that ea
h have one missing

then the fun
tion bk(λ) has two elements di�erent from zero. In our 
ase the fun
tion

has two 
omponents di�erent from zero in 
olumn 1 and 2. In fa
t we have:

b11(λ) = a11(t1)e
iλt1 , b12(λ) = a12(t2)e

iλt2 , b13 = b14 = . . . = 0

and then:

b1(λ) = [a11(t1)e
iλt1 , a12(t2)e

iλt2 , 0, . . . , 0]

We have to determine through the system (1.57) the two 
oe�
ients a11(t1) and

a12(t2). The equations are the 
onditions that arise from the following reasoning: if
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we interpolate one missing data but there are two missing data we 
an not use the

two data. So when we make the linear 
ombination of the available data we have to

ensure that these data do not appear. In this 
ase the system (1.57) be
omes:











γi11(0)a11(t1) + γi21(t2 − t1)a12(t2) = 1

γi12(t1 − t2)a11(t1) + γi22(0)a12(t2) = 0

then:











a11(t1) = [γi21(t2 − t1)− γi11(0)γi22(0)
γi12(t2−t1)

]−1

a12(t2) = − γi22(0)
γi21(t2−t1)γi12(t1−t2)−γi11(0)γi22(0)

Substituting the values of the 
oe�
ients a11(t1) e a12(t2) in (1.55) we have:

ϕ̂1(λ) = eiλt1δ1 − b1(λ)f−1

= eiλt1δ1 − [a11(t1)e
iλt1f11(λ) + a12(t2)e

iλt2f21(λ), . . . , a11(t1)e
iλt1f1s(λ) +

+ a12(t2)e
iλt2f2s(λ)]

(1.67)

ϕ̂1(λ) =











eiλt1

0

...

0











′

1×s

−

















a11(t1)e
iλt1f11(λ) + a12(t2)e

iλt2f21(λ)

a11(t1)e
iλt1f12(λ) + a12(t2)e

iλt2f22(λ)

...

a11(t1)e
iλt1f1s(λ) + a12(t2)e

iλt2f2s(λ)

















′

1×s

X̂1(t1) =

∫ π

−π

eiλt0δ1dZ(λ)−
∫ π

−π

a11(t1)e
iλt1f11(λ)dZ1(λ)−

−
∫ π

−π

a12(t2)e
iλt2f21(λ)dZ1(λ)− . . .−

∫ π

−π

a11(t1)e
iλt1f1s(λ)dZs(λ)−

−
∫ π

−π

a12(t2)e
iλt2f2s(λ)dZs(λ) (1.68)

X̂1(t1) = X1(t1)− a11(t1)
∑

u

γi11(u)X1(t1 − u)− a12(t2)
∑

t

γi21(u)X1(t2 − u)− . . .−

− a11(t1)
∑

t

γi1s(u)Xs(t1 − u)− a12(t2)
∑

t

γi2s(t)Xs(t2 − u) (1.69)
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Case 3: one missing value for all 
omponent series

In this 
ase we suppose that T1 = T2 = . . . = Tn = T = {t0}. Then, the values

X̂k(t0) of the pro
ess X(t) are all unknown for the same time t0. Let X̂(t0) =

[X̂1(t0), . . . , X̂s(t0)]. We have:

X̂(t0) =

∫ π

−π

ϕ̂(λ)dZ(λ) (1.70)

where, by virtue of (1.55), the matrix fun
tion (s× s) ϕ̂(λ) has the form:

ϕ̂(λ) = eiλt0Is −
∑

s∈T

eiλsa(s)f−1(λ) (1.71)

For the matrix 
oe�
ients (s×s) a(s) we obtained from (1.57) the following system

of equations:

∑

s∈T

Γi(s− t0)a(s) = Is,

∑

s∈T

Γi(s− t0)a(s) = 0s for t 6= t0 (1.72)

where:

Γi(s) =
1

2π

∫ π

−π

eiλsf−1dλ. (1.73)

The system of equations (1.72) will then appear as:

Γi(0)a(t0) = Is (1.74)

We �nd that:

a(t0) = [Γi(0)]−1
(1.75)

The expression of interpolator is then:

X̂(t0) =

∫ π

−π

eiλtIsdZ(λ)−
∫ π

−π

[Γi(0)]−1f−1dZ(λ)

= X(t0)− [Γi(0)]−1
∑

u

Γi(u)X(t0 − u) (1.76)
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If we denote with ǫk = Xk(t0) − ˆXk(t0) the errors interpolation and with σkj =

E[ǫk ǭj ], then the matrix of error σ2 = {σkj} of linear interpolation is easily found

from the representation:

Σ = 2π[Γi(0)]
−1

(1.77)

Case 4: Two missing values for all 
omponent series

We suppose that T1 = T2 = . . . = Tn = T = {t0, t1}. We have:

X̂(t0) =

∫ π

−π

ϕ̂(λ)dZ(λ) (1.78)

where, by virtue of (1.55), the matrix fun
tion (s× s) ϕ̂(λ) has the form:

ϕ̂(λ) = eiλt0Is − eiλt0a(t0)f−1(λ)− eiλt1a(t1)f−1(λ) (1.79)

For the matrix 
oe�
ients (s×s) a(s) we obtained from (1.57) the following system

of equations:

Γi(0)a(t0) + Γi(t1 − t0)a(t1) = Is, (1.80)

Γi(t0 − t1)a(t0) + Γi(0)a(t1) = 0s for t 6= t0 (1.81)

[

Γi(0) Γi(t1 − t0)
Γi(t0 − t1) Γi(0)

][

a(t0)

a(t1)

]

=

[

Is

0s

]

a(t0) = [Γi(0)− Γi(t1 − t0)Γi−1(0)Γi(t0 − t1)]−1
(1.82)

a(t1) = −[Γi(0)− Γi(t1 − t0)Γi−1(0)Γi(t0 − t1)]−1Γi(t1 − t0)Γi−1(0) (1.83)

The expression of interpolator is:

X̂(t0) =

∫ π

−π

eiλt0Is −
∫ π

−π

a(t0)f
−1dZ(λ)−

∫ π

−π

a(t1)f
−1dZ(λ) (1.84)

= X(t0)− a(t0)
∑

u

Γi(u)X(t0 − u)− a(t1)
∑

u

Γi(u)X(t1 − u)
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The two summations are unde�ned for X(t0) and X(t1). In the �rst sum, X(t0)

appears when u = 0 while in the se
ond sum when u = (t1 − t0):

X(t0)− a(t0)Γi(0)X(t0)− a(t1)Γi(t1 − t0)X(t0) = Is

be
ause a(t0)Γi(0)− a(t1)Γi(t1− t0) = Is. X(t1) appears when u = t0− t1 in the

�rst sum and when u = 0 in the se
ond sum:

a(t0)Γi(t0 − t1)X(t1)− a(t1)Γi(0)X(t1) = 0s

be
ause a(t0)Γi(t0 − t1)− a(t1)Γi(0) = 0s

1.4.2 Frequen
y domain approa
h to interpolation

Hannan (1970) deals with the linear interpolator problem 
onsidering the 
ase where

T1 = T2 = . . . = Ts = T = {t0}. The author determines the optimal linear

interpolator trying the linear 
ombination X̂(t0) ofX(t0−j), j 6= t0, whi
h minimizes

the error of interpolation

∥

∥

∥
X(t0)− X̂(t0)

∥

∥

∥

2

. The demonstration that leads to the

optimal linear interpolator is reported below.

We introdu
e the response fun
tions:

hN (e
iλ) =

N
∑

j=−N

AN(j)e
ijλ, (1.85)

where the term for j = t0 is omitted. Now we seek for a response fun
tion h su
h

that:

lim
N→∞

[

∫ π

−π

(h− hN)dH(λ)(h− hN)∗] = 0 (1.86)

and

[

∫ π

−π

(Is − h)dH(λ)(Is − h)∗]

is minimized. If we determined the transfer fun
tion h, the optimal interpolator

results to be given by:

X̂(t) =

∫ π

−π

e−itλh(e−iλ)dZ(λ)

while the 
ovarian
e matrix of interpolation errors is given by:
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Σ = E{[X(t)− X̂(t)][X(t)− X̂(t)]
′}.

Evidently may take t0 = 0 without any loss of generality. If H(λ) is not a.
., we

know that the singular part of F(λ) 
orresponds to a perfe
tly predi
table pro
ess

and thus one whi
h may be perfe
tly interpolated. This leads us to treat the a.
.


ase. We assume that there is no non-null ve
tor α su
h that α
′

X(t) ≡ 0, almost

surely.

Theorem 3. . Let X(t) satisfy the above assumption and have a.
. spe
trum and

let f−1(λ) be the inverse of f(λ). The ne
essary and su�
ient 
ondition that Σ be

nonsingular is the 
ondition that f−1(λ) be integrable. Then the response fun
tion

of the optimal interpolating �lter is:

h = Is − {
1

2π

∫ π

−π

f−1(λ)dλ}f−1(λ) (1.87)

and 
ovarian
e matrix of interpolation errors is:

Σ = { 1

2π

∫ π

−π

[2πf(λ)]−1}−1
(1.88)

Proof. Evidently, sin
e [X(0)− X̂(0)] is orthogonal to X(t) ∀t 6= 0, for ea
h pair

of ve
tors α, β of 
omplex numbers we must have:

E{α∗[X(0)− X̂(0)]X(t)
′

β} = 0, t 6= 0 (1.89)

and using the de�nition of s
alar produ
t we have:

α∗

∫

(Is − h)f(λ)eitλdλβ = 0, t 6= 0

Sin
e the Fourier 
oe�
ients are zero in the 
ase of a 
onstant fun
tion, this

implies that:

(Is − h)f = C

where C is a 
onstant matrix. Thus

(Is − h) = Cf−1

This solution is not unique, but any solution di�ers from it by a matrix whi
h, when

multiplied on the right by f , is annihilated and thus leads to the same Σ. Moreover,

(1.89) also shows that:
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∫ π

−π

(Is − h)fh∗dλ = 0,

sin
e h is a limit in mean square of expression of the form of (1.85). Thus:

Σ =

∫

(Is − h)fdλ = 2πC,

whi
h shows that C = C∗ = C̄. Now, assuming the integrability of f−1
for the �rst

time, we have

Σ = C

∫ π

−π

f−1ff−1dλ = C

∫ π

−π

f−1dλC,

and

C = C{ 1

2π

∫ π

−π

f−1(λ)dλ}C

of whi
h a solution is

C = { 1

2π

∫ π

−π

f−1(λ)dλ}−1. (1.90)

From last equation we have:

(Is − h) = {
1

2π

∫ π

−π

f−1(λ)dλ}−1f−1 = Γi(0)f
−1

(1.91)

and

Σ = 2π[Γi(0)]
−1, (1.92)

that 
oin
ides with the equation(1.77).

Thus we 
an take C given by (1.90) and the theorem results, save for the asser-

tion 
on
erning the nonsingularity of Σ. If f−1(λ) is integrable then 
ertainly Σ is

nonsingular for otherwise there must be a ve
tor α, so that

∫

α
′

f−1(λ)αdλ = 0, α
′

α = 1 (1.93)

Taking α as �rst row of an orthogonal matrix P this implies that Pf(λ)P
′

must

have null elements, for all λ, in the �rst row and 
olumn, whi
h implies that α
′

X(t) ≡
0, almost surely. On the other hand, if Σ is nonsingular then sin
e

∫

(Is − h)f(Is −
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h)
′

dλ =
∫

(4π)−2Σf−1Σdλ we see that Σf−1Σ is integrable and thus so must f−1
be

integrable. This 
ompletes the proof.

Substituting the equation (1.92) in equation (1.87) we obtained the formula (1.76)

of optimal interpolator found by Rozanov (1957).

1.4.3 Time domain approa
h to interpolation

Battaglia (1984) 
onsider the linear interpolation problem for a multivariate station-

ary pro
ess X(t) and suppose that T1 = T2 = . . . = Ts = T = {t = 0}. The problem
is to determine a linear transformation of {. . . ,X(t − 2),X(t − 1),X(t + 1),X(t +

2), . . .}:

∑

u 6=0

a(u)X(t− u)

with {a(u)} real matri
es s×s, su
h that the linear 
ombination

∑

u 6=0 a(u)X(t−
u) is as 
lose possible to X(t). To this aim, Battaglia (1984) 
onsider the varian
e

matrix:

E{[X(t)−
∑

u 6=0

a(u)X(t− u)][X(t)−
∑

u 6=0

a(u)X(t− u)]′}. (1.94)

and minimize it a

ording to the positive-de�niteness ordering. This ordering is

de�ned for Hermitian matri
es by A ≥ B if A − B ≥ 0 where M ≥ 0 means that

the matrix M is positive semide�nite, and mat
hes with the orderings indu
ed by

the values of determinants and tra
es. To �nd the matrix that minimize the mean

square error, the author has expressed it as a sum of a matrix independent of the cu

and a positive semide�nite matrix. The demonstration was done in the frequen
y

domain, repla
ing the varian
e-
ovarian
e matrix with the integral of its spe
tral

density.

Let I(t) =
∑

u 6=0 a(u)X(t − u), and denote by A(λ) = Is −
∑

u 6=0 a(u)e
−iλu

the transfer fun
tion of I(t). The residual (or interpolation error) X(t) − I(t) has

varian
e-
ovarian
e matrix given by:

E{[X(t)− I(t)][X(t)− I(t)]′} =
∫ π

−π

A(λ)f(λ)A(λ)∗dλ, (1.95)

Now,
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A(λ)f(λ)A(λ)∗ = Γi
−1(0)A(λ)∗ +A(λ)∗Γi

−1(0)− Γi
−1(0)f−1(λ)Γi

−1(0) +

+{A(λ)− Γi
−1(0)f−1}f(λ){A(λ)− Γi

−1(0)f−1}∗ (1.96)

Sin
e the last matrix in the se
ond line of (1.96) is positive semide�nite (f(λ) is

positive semide�nite), it follows that:

A(λ)f(λ)A(λ)∗ ≥ Γi
−1(0)A(λ)∗ +A(λ)∗Γi

−1(0)− Γi
−1(0)f−1(λ)Γi

−1(0) (1.97)

integrating, and 
onsidering that:

∫ π

−π

f−1(λ)dλ = Γi(0);

∫ π

−π

A(λ)dλ =

∫ π

−π

A(λ)∗dλ = Is (1.98)

he obtained:

E{[X(t)− I(t)][X(t)− I(t)]′} = Γi(0) (1.99)

The minimum is attained when:

{A(λ)− Γi
−1(0)f−1}f(λ){A(λ)− Γi

−1(0)f−1}∗ (1.100)

equals to zero matrix for ea
h λ, i.e. when:

A(λ) = Γi
−1(0)f−1(λ), (1.101)

so that a(u) = −Γi
−1(0)Γi(u). We 
an see that the equation (1.101) 
oin
ides

with equation (1.91) found by Hannan (1970).



Chapter 2

Multivariate Self-Ex
iting Threshold

Autoregressive Modeling by Geneti


Algorithms

2.1 Introdu
tion

Several papers that generalize the univariate threshold prin
iple to a multivariate

framework have appeared in the literature during the past years. Tiao & Tsay

(1994) proposed a univariate SETAR model for the United States gross national

produ
t (GNP) series where the thresholds are 
ontrolled by two lagged values of

the transformed GNP series re�e
ting the situation of the e
onomy. Tsay (1998) de-

veloped a strategy for testing and estimating multivariate threshold models where

the threshold variable was 
ontrolled by known linear 
ombination of individual vari-

ables. Arnold & Gunther (2001) proposed a de�nition of MSETAR models where

ea
h linear regime follows a VAR pro
ess and the threshold variable is multivariate.

Furthermore, they developed a estimation pro
edure of the 
orresponding autore-

gressive (AR) 
oe�
ient matri
es. However, the authors suppose that the model

stru
tural parameters (delay, threshold variable, number and position of thresholds,

model order) have to be known a priori. In the present framework, we adopt a

less restri
tive formulation, assuming that the stru
tural parameters are unknown

and are jointly estimated with the other parameters of the model. We formulated

the task of �nding the threshold variable and the others stru
tural parameters as a


ombinatorial optimization problem (Medeiros et al. 2002).

Combinatorial optimization is a �eld of applied mathemati
s that treats a spe-


ial type of mathemati
al optimization problem where the set of feasible solutions
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is �nite. The gradient based methods 
annot be used in su
h a spa
e as the sear
h

spa
e is dis
rete and derivatives and usual notions of 
ontinuity and 
onvexity do

not apply. If the size of the problem is small often exhaustive enumeration of all

potential solutions is feasible and it is the best way to obtain an exa
t solution.

However, often su
h method is unfeasible be
ause in 
ombinatorial problems the

solution spa
e grows very large as a fun
tion of the problem size. For moderate

size dynami
 programming o�ers several algorithms that 
an provide good solutions

or even exa
t solutions. Nonetheless, more 
omplex problems may be ta
kled only

with the use of heuristi
 methods. Moreover, as the 
omputing time needed to

get a solution be
omes usually exponentially large even heuristi
s may be un�t for

optimization and we have to resort to meta heuristi
 algorithms that may provide

in polynomial time a good sub-optimal solution or even the exa
t solution in some

spe
ial 
ases. These problems are in
luded in the 
lass of the NP-
omplete 
ombi-

natorial optimization problems as no polynomial time algorithm is known that may

produ
e the optimum solution.

A widespread 
lass of meta heuristi
s that have been found e�e
tive in statis-

ti
al appli
ation involving NP-
omplete optimization task are the GAs. GAs have

been employed to solve optimization problems that arise in the design of many 
om-

plex systems, e.g. 
ommuni
ation systems, networks, operations resear
h, medi
ine

and bio
hemistry. Formulation of basi
 prin
iples is due to Holland (1975) while

introdu
tion and dis
ussion of detailed theory and appli
ations of GAs as optimiza-

tion algorithms may be found in many textbooks. See, e.g., Goldberg (1989) and

Mit
hell (1996), two ni
e introdu
tory books, Ba
k et al. (1997), where related �elds

too su
h as evolution strategies and geneti
 programming are illustrated, Gen &

Cheng (1997) and Haupt & Haupt (2004), who 
ope with appli
ations and present

examples from several di�erent �elds. In the present framework we have to deal

with a very large spa
e of potential optimal solutions as threshold variable (
ompo-

nents and delay), the thresholds and the AR orders have to be found that optimize

some suitable obje
tive fun
tion. Appli
ations of GAs to threshold modeling in the

univariate 
ase have been suggested by Wu & Chang (2002) and Baragona et al.

(2004), and extensions have been studied to non stationary 
ase by Battaglia &

Protopapas (2011, 2012), to double threshold generalized autoregressive 
onditional

heteros
edasti
 (GARCH) models by Baragona & Cu
ina (2008).

The rest of the paper is organized as follows. Se
tion 2.2 gives a general de-

s
ription of MSETAR model. Se
tion 2.3 presents the GAs methodology used for

identi�
ation and estimation of MSETAR models. Se
tion 2.4 presents some numer-

i
al examples illustrating the performan
e of the proposed pro
edure for MSETAR

model building. Several models are 
onsidered and results from a Monte Carlo ex-
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periment are displayed and 
ommented. Se
tion 2.5 shows an appli
ation 
on
erned

with a real data set.

2.2 The MSETAR model formulation

Consider a K-dimensional time series Yt = (y1t, y2t, ..., yKt)
′
. Let l1, l2, . . . , lK be

positive integers and for ea
h 1 ≤ i ≤ K (Ri
ji
)ji=1,2,...,li a disjun
tive de
omposition

of the real axis:

R =

li
⋃

ji=1

Ri
ji

i = 1, 2, . . .K

Ri
ji
= (r

(i)
ji−1

, r
(i)
ji
] −∞ = r

(i)
0 < r

(i)
1 < . . . < r

(i)
li

=∞

Let J = (j1, j2, ..., jK). A K-dimensional MSETAR model is de�ned as

Yt =
∑

J

[

Φ
(J)
0 +

PJ
∑

i=1

Φ
(J)
i Yt−i + U

(J)
t

]

I(J)(Yt−d) (2.1)

where d is the delay parameter and the indi
ator fun
tion I(J) : Yt−d → {0, 1}
whi
h determines the 
urrent regime is de�ned by the relation

I(J)(Yt−d) = 1⇔ yi(t−d) ∈ Ri
ji

i = 1, 2, . . . , K.

A drawba
k with Model (2.1) may o

ur when the value of li is greater than 2

or the number of 
omponents K is greater than 2, be
ause the number of regimes

in
reases qui
kly. Indeed a model with a large number of regimes is di�
ult to in-

terpret. For this reason we 
onsider only MSETAR with bivariate threshold variable

Yt−d = (yi1,t−d1 , yi2,t−d2)
′, i1, i2 = 1, 2, . . . , K, l1 = l2 = 2, and d1, d2 are assumed

to vary in the set of the integers {1, . . . , dmax}. The integer dmax is 
hosen as a


onvenient upper bound for the allowed lags. A bivariate SETAR model may be

written

Yt =
2

∑

j1=1

2
∑

j2=1

I(j1,j2)(Yt−d)



Φ
(j1,j2)
0 +

Pj1,j2
∑

i=1

Φ
(j1,j2)
i Yt−i + U

(j1,j2)
t



 , (2.2)
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where the threshold variable is a bivariate ve
tor where the entries are two lagged

series 
hosen among the 
omponents of the multivariate time series (y1,t−d1, y2,t−d2 , . . . , yK,t−dK)
′
.

Now let us 
onsider these partitions of the real line

R =

l1
⋃

j=1

R1
j =

2
⋃

j=1

R1
j = R1

1 ∪ R1
2 = (−∞, r(1)1 ] ∪ (r

(1)
1 ,∞)

R =

l2
⋃

j=1

R2
j =

2
⋃

j=1

R2
j = R2

1 ∪R2
2 = (−∞, r(2)1 ] ∪ (r

(2)
1 ,∞),

then the indi
ator fun
tions of Model (2.2) assume the form

I(1,1)(Yt−d) =































1 ⇔











yi1,t−d1 ∈ R1
1

yi2,t−d2 ∈ R2
1

⇔











yi1,t−d1 ≤ r
(1)
1

yi2,t−d2 ≤ r
(2)
1

0 otherwise

I(1,2)(Yt−d) =































1 ⇔











yi1,t−d1 ∈ R1
1

yi2,t−d2 ∈ R2
2

⇔











yi1,t−d1 ≤ r
(1)
1

yi2,t−d2 > r
(2)
1

0 otherwise

I(2,1)(Yt−d) =































1 ⇔











yi1,t−d1 ∈ R1
2

yi2,t−d2 ∈ R2
1

⇔











yi1,t−d1 > r
(1)
1

yi2,t−d2 ≤ r
(2)
1

0 otherwise

I(2,2)(Yt−d) =































1 ⇔











yi1,t−d1 ∈ R1
2

yi2,t−d2 ∈ R2
2

⇔











yi1,t−d1 > r
(1)
1

yi2,t−d2 > r
(2)
1

0 otherwise.

These fun
tions determine the 
urrent regime that is de�ned by a sub-region of

the real plane R × R with x-axis equal to yi1,t−d1 and y-axis equal to yi2,t−d2 . In

Fig. 2.2 an example is given where the threshold 
omponents are y1,t−d and y2,t−d,
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Figure 2.1: Threshold variables spa
e for bivariate MSETAR model

yit ∈ (−1, 1) and the thresholds r
(1)
1 and r

(2)
1 are assumed to be zero and divide

(−1, 1)× (−1, 1) ⊂ R× R into four sub-regions, one for ea
h regime.

The most important step in the identi�
ation and estimation of Model (2.2)


onsists in �nding the 
orre
t elements of threshold variable Yt−d and the position

of thresholds. On
e the threshold variables and the 
orresponding thresholds are

spe
i�ed, the orders PJ are determined with the use of the Akaike (1974) automati


identi�
ation 
riterion (AIC). Though several other su
h 
riteria have been suggested

and 
omparisons have been made (see, e.g., Sayyareha et al. 2011) no de�nite results

have been o�ered whether some may be 
onsidered the best one in all 
ir
umstan
es.

So we adopt the well known and widely used AIC 
riterion adjusted to support model

order 
hoi
e, i.e. the minimum AIC estimate (Tong 1990). Given a 
andidate set of

lags, p1, ..., pmax, we have to estimate several linear models and sele
t the order that

minimizes the information 
riteria. On
e stru
tural parameters of model (threshold

variable, number and position of thresholds, model order) have been determined,

the remaining 
oe�
ients of the model 
an be estimated by ordinary least squares.

The stru
tural parameters take dis
rete values and their 
ombinations amount

to a very large number. In this work we formulated the task of �nding the elements

of threshold variable and the position of thresholds as a 
ombinatorial optimization

problem and we develop GAs to solve the problem.
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2.3 The geneti
 algorithm for MSETAR modeling

GAs are simpli�ed s
hemes of the evolutionary pro
esses that develop in nature

and have been used as all purposes optimization tools on
e the asso
iation between

adaptation to the environment and obje
tive fun
tion, and individual 
ompeting

for survival and possible alternative solutions has been established. Results from

appli
ation in several distant �elds justi�ed the development of GAs as numeri
al

optimizers with the introdu
tion of problem oriented variants of their basi
 features.

The general s
heme of the GAs optimizers in
ludes an initial population of po-

tential solutions and an iterative loop where the 
urrent population is evaluated in

terms of the �tness fun
tion of its individuals. The three usual geneti
 operators are

sele
tion, 
rossover and mutation. Though others have been suggested, e.g. inver-

sion and spli
ing (see Mi
halewi
z 1996) these only operators have been widely used

in pra
ti
al appli
ations and many variants have been suggested to improve their

potential in improving the average and the best �tness fun
tion and 
ontemporane-

ously maintaining diversity among individuals. The three operators produ
e a new

generation by 
hoosing the most �t individuals, re
ombining their geneti
 material

and allowing mutation to o

ur. This new generation repla
es either partially or in

full the old population a

ording to some de�nite rules. The new population may

either be 
onstrained to have the same size than the past one or it may even be

allowed to in
rease its size. An important feature in this 'reprodu
tion' pro
ess is

the 'elitist strategy', i.e. if the best individual found in the past generation is not

sele
ted for reprodu
tion, it is in
luded anyway in the new generation provided that

no better individual has been produ
ed. This ensures that the best �tness fun
tion

never de
reases through iterations. In addition, if an optimum exists, then the eli-

tist GA 
onverges asymptoti
ally to this optimum (Rudolph 1997, Reeves & Rowe

2003).

Now we may explain the three operators as they have been used in our opti-

mization problem and the en
oding that has been adopted. Ea
h solution (the

'individual') is represented as a string of digits (the '
hromosome'). Ea
h digit may

be thought of as a 'gene' whi
h may take values ('alleles') in a given set a

ording

to its position (the 'lo
us') and meaning. The de�nition of the sets of alleli
 values

allows possible 
onstraints to be taken properly into a

ount. Some features have

been assumed that have be
ome standards in GAs appli
ations. For instan
e, the

elitist strategy has been applied in su
h a way the best individual in the past gener-

ation that has to be in
luded in the new population repla
es the worst individual in

the new generation. Finally, no stopping rule has been spe
i�ed and the algorithm

is allowed to run all iterations whose number has been �xed in advan
e. Indeed the
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asymptoti
 
onvergen
e results do not give information about the rate of 
onver-

gen
e in real world data appli
ations and the suggested number of iterations (e.g.

Aytug & Koehler 2000) often results in an impra
ti
al large number. So usually the

number of iterations is assumed rather large 
ompared to the available 
omputing

resour
es and the requested timeliness of estimation results.

2.3.1 En
oding

The en
oding uses a 
hromosome of length 15 for ea
h individual in the 
urrent

population. The 'lo
us' of ea
h gene in the 
hromosome is important not only

be
ause it de�nes the meaning of the gene but also be
ause only some genes have

binary digits as alleli
 values while most of them have integer numbers as alleles

with possibly di�erent minimum and maximum values. Noti
e that ea
h integer

number is represented as a binary string (�eld) and the geneti
 operators apply

on ea
h �eld, for instan
e the 
rossover operator only operates at the boundaries

between the binary �elds. The 
hromosome we adopted in our GA is 
omposed of

the following genes:

• (1) A binary digit that a
ts as a swit
h, its value is 0 if the threshold variable is

univariate, i.e. it refers to a single 
omponent series, 1 if the threshold variable

is multivariate. The de
oding of the rest of the 
hromosome depends on this

�rst gene.

Genes 2− 7 alleles under 
onsideration provided that the �rst gene is 0.

• (2) This gene en
odes whi
h 
omponent series has to be assumed as the thresh-

old variable. It may assume the alleli
 values 1, 2, . . . , K.

• (3) Number of regimes (either 2, 3 or 4).

• (4-6) Positions of the thresholds. Assuming t = 1 the timing of the �rst

observation, ea
h of su
h positions is the time t asso
iated to an observation

in the 
hosen sequen
e (gene 2). So ea
h position may range from 1 to n.

How many genes have to be 
onsidered depends on the number of regimes as

spe
i�ed by the pre
eding gene 3.

• (7) Delay d for the s
alar threshold variable, d ∈ {1, 2, . . . , dmax}.
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This and the subsequent genes are meaningful for the 
urrent individual in the

population if the �rst gene allele is equal to 1.

• (8) This gene en
odes the index i1 of the 
omponent series whi
h is to be 
on-

sidered as the �rst element of the ve
tor threshold variable, i1 ∈ {1, 2, . . . , K}.

• (9) The se
ond element i2 of the ve
tor threshold variable, i2 ∈ {1, 2, . . . , K}, i2 6=
i1.

• (10) Position of the threshold for the �rst 
omponent series. The en
oding

follows the same rules as for genes (4-6).

• (11) Position of the threshold for the 
omponent series used as a se
ond element

in the threshold ve
tor. The same rules as before are used for en
oding.

• (12) Delay d1 for the �rst element of the ve
tor threshold variable, d1 ∈
{1, 2, . . . , dmax}.

• (13) Delay d2 for the se
ond element of the ve
tor threshold variable, d2 ∈
{1, 2, . . . , dmax}.

• (14) This gene is a binary digit. If it is equal to 1 then two regions in the

partition indu
ed by the ve
tor threshold variable in the spa
e of the values of

the MSETAR model may merge, and the number of regimes is determined by

following gene (15). Otherwise the number of regimes remains 4 as depi
ted

in Fig. 2.2.

• (15) This gene spe
i�es whi
h of the regions merge together. With referen
e

to Fig. 2.2, values are:

� (1) the regimes I and II merge and the number of regimes is 3,

� (2) the regimes III and IV merge and the number of regimes is 3,

� (3) the regimes I and III merge and the number of regimes is 3,

� (4) the regimes II and IV merge and the number of regimes is 3,

� (5) the regimes I and IV merge and the number of regimes is 3,

� (6) the regimes II and III merge and the number of regimes is 3,

� (7) the regimes I merges with IV and II merges with III and the number

of regimes is 2.
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The en
oding as de�ned above is rather elaborated and requires a spe
ial de
oding

algorithm. In addition, spe
ial algorithms have to be designed for the 
omputation

of the �tness fun
tion in the sele
tion step, and non standard 
rossover and mu-

tation operators are needed. However, this does not impa
ts too mu
h the overall


omputational burden provided that ea
h one of the de
oding steps are 
arefully

programmed.

For example, let us 
onsider the following 
hromosome, whi
h is intended to

en
ode aK-dimensionalMSETAR withK = 4 and 2-dimensional threshold variable.

For the sake of simpli
ity the genes whose alleles are integer numbers are written

as integers, though their internal representation is a binary string, for instan
e the

integer 3 in the third genes is reserved three bits so that it is a
tually en
oded as

011.

1 1 3 180 100 50 1 1 3 40 120 1 1 0 3

The �rst gene denotes that the threshold variable is bivariate so the de
oding


ontinues at lo
us 8. The 
omponents indexed as 1 and 3 are to be assumed as

threshold variables (8-9). The thresholds values have to be taken equal to the

40-th observation of the �rst 
omponent and the 120-th observation of the third


omponent, i.e. r
(1)
1 = y1,40 and r

(2)
1 = y3,120. The delay parameters follow equal

to 1 for both threshold variable 
omponents, whi
h is Yt−d = (y1,t−1, y3,t−1)
′
. The

alleli
 value in lo
us 14 means that we don't allow regions de�ned by the thresholds

to merge, so the number of regimes is equal to 4. The last gene may be negle
ted.

2.3.2 Fitness fun
tion

The �tness fun
tion measures the adaptation of the individual to the environment.

In the present 
ontext the 
hromosome of ea
h individual en
odes a MSETAR model

whi
h is to be 
onsidered as better as smallest its AIC index. A transform of the

AIC may be used to obtain positive �tness fun
tion values so that the optimization

problem may be put in terms of maximization of the �tness fun
tion as it is usual

in the GAs. So let

Fitness = exp{−AIC}, (2.3)

where
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AIC =
1

n

ℓ
∑

j=1

AICj ,

AICj = nj log
{

det(Σ̃(j)
u )

}

+ 2mjK
2, (2.4)

Σ̃(j)
u =

1

nj

∑

t

û
(j)
t (û

(j)
t )′.

In Eqn. (2.4) the number of regimes is set equal to ℓ, while the number of obser-

vations in the j-th regime is nj , with n =
∑

j nj the total number of observations,

and {û(j)t } are the estimated model residuals in regime j.

2.3.3 Sele
tion

Basi
ally the well known 'roulette wheel rule' is used for sele
ting from the 
ur-

rent population the individuals 
andidate for in
lusion in the next generation. The

roulette wheel rule amounts to 
hoose individuals with probability proportional to

their respe
tive �tness fun
tion value. The widespread usage of this rule explains

the reason why in GAs the �tness fun
tion is usually 
onstrained to positive values

as otherwise su
h rule would be impra
ti
al. Individuals are allowed to be sele
ted

more than on
e and the number of 
hoi
es is a fra
tion Gs of the population size

s, G being the generational gap. The elitist strategy is adopted as a 
orre
tion of

this rule that ensures asymptoti
al 
onvergen
e and 
onstrains the �tness to be a

non de
reasing fun
tion of the iteration number. The elitist strategy may be imple-

mented either dire
tly or indire
tly by setting G < 1 and 
hoosing deterministi
ally,

i.e. the best ones or even the single best one, the (1 − G)s individuals that are se-
le
ted outside the intervention of the roulette wheel rule me
hanism. Normalization

of the �tness fun
tion may be used for s
aling the transform (2.3) in su
h a way

the sele
tion probabilities de�ned by the roulette wheel rule are 
lose ea
h other.

For instan
e, the 'sigma trun
ation s
aling' 
onsists in applying the normalization

transform

Fitness∗ = Fitness−
(

F̄ − cσ
)

,

where F̄ is the population mean, c is a suitable real positive 
onstant and σ the

standard deviation, and in trun
ating the low �tness individuals.
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2.3.4 Crossover and mutation

The general 
rossover operator generates new individual 
hromosomes a

ording to

the following rules:

• Pairs of individuals randomly 
hosen mate and produ
e a pair of o�springs

that may share genes of both parents.

• This operator is applied with a �xed probability (usually larger than 0.5 but

smaller than one) to ea
h pair.

• Several di�erent types of 
rossover are 
ommon, the simplest is 
alled one

point 
rossover.

� A same lo
us in the 
hromosomes of the two paired individuals is 
hosen

at random: the genes whi
h appear before that lo
us remain un
hanged,

while the genes appearing after the 
rossover point are ex
hanged.

� This operation applies to ea
h binary �eld in the 
hromosome.

As for mutation, general 
riteria may be the following:

• Mutation is needed to introdu
e innovation into the population (sin
e sele
tion

and 
rossover only mix the existing genes)

• It is generally 
onsidered a rare event (like it is in nature).

• A small probability pm is sele
ted, usually less than 0.1, and ea
h gene of ea
h

individual 
hromosome is subje
t to mutation with probability pm, indepen-

dently of all other genes.

• If the gene 
oding is binary, for instan
e, a mutation simply 
hanges 0 to 1 or

vi
e versa.

The new generation is 
reated by sele
ting individuals from both the parent

generation and the o�spring generation. There are several alternative methods for

repla
ing population individuals with new o�springs, e.g. '
rowding' (de Jong 1975).

As a matter of fa
t there are two obje
tives that seem most important to de�ne

the transition from the past generation to the new one, i.e. to maintain diversity

among the individuals and to avoid that the population is biased towards the best

individual. The two obje
tives seem reasonable as we have to avoid simultaneously

both premature 
onvergen
e to some lo
al optimum and poor or limited exploration
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of the solution spa
e, i.e. the set of all feasible potential solutions. Many di�erent

te
hniques that we may adopt to deal with these problems have been proposed in

the literature and allow suitable modi�
ations of the standard rules for 
hoosing the

individuals that have to be in
luded in the next 
urrent population.

2.3.5 Convergen
e of geneti
 algorithms

If GAs are employed as optimization methods we are 
on
erned with the problem of

de�ning in probability terms how 
lose the best solution found in the last iteration

is to the a
tual optimum. Let x
(g)
best be the 
hromosome of the �ttest individual

found at generation g, then {f [x(g)best], g = 1, 2, . . .} de�nes a sequen
e of random

variables. Jennison & Sheehan (1995) provided a revised updated version of the

's
hema theorem'. Rudolph (1997) demonstrated theorems 
on
erned with global

optimum 
onvergen
e of GAs in an elitist strategy framework. The Markov 
hains

theory o�ers some insights into the asymptoti
 
onvergen
e property of GAs, here we

only re
all a result for 
hromosomes 
omposed of genes that take binary alleli
 values.

Let ea
h 
hromosome haveM binary genes and let the population be 
omposed by s

individuals. The possible populations are

(

s+2M−1
s

)

(
ombinations with repetition of

the 2M possible di�erent individuals in sets of 
ardinality s). Though very large, the

number of states of the pro
ess is �nite, and it may be 
onsidered a �nite Markov


hain. Then suppose that there is only an optimal individual, 
oded by 
hromosome

y. Let j denote the state 
orresponding to the population 
omposed of all individuals

equal to y: the transition matrix P has a 1 in the diagonal at position j, it is an

absorbing state and 
onvergen
e is 
ertain. Details and a 
omplete dis
ussion may

be found e.g. in Rudolph (1997), Reeves & Rowe (2003).

2.4 A simulation experiment

To evaluate the performan
e of the GA, we simulated three MSETAR models dis-


arding the �rst 500 observations to avoid any initialization e�e
ts. From the �rst

two models we simulated 100 repli
ations ea
h with 150, 400 and 1000 observations.

For the last model we simulated 100 repli
ations ea
h with 400, 600 and 1000 obser-

vations. The number of observations has been 
hosen so that enough observations

fall in ea
h regime. For the �rst two models (Eqn.s (2.5) and (2.6)) the regimes

are de�ned by only a single partition of the real axis for the �rst 
omponent of the

pro
ess, that is the 
urrent regime is ex
lusively determined by the �rst 
omponent.

For the third model (Eqn. (2.7)) the regimes are de�ned by a partition of R×R and
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both 
omponent series provide the bivariate threshold variable. The GA parameters

have been 
hosen 100 the population size, 1000 the number of generations, 0.9 the


rossover probability and 0.01 the mutation probability. The maximum VAR order

is pmax = 4 and the maximum delay is dmax = 10.

The evaluation of the pro
edure performan
e is 
on
erned with three aspe
ts,

i.e. (1) 
orre
t sele
tion of threshold variable, (2) 
orre
t spe
i�
ation of threshold

values and number of regimes, and (3) a

ura
y of the parameter estimates.

2.4.1 Example 1

In the �rst simulation experiment we 
onsider time series generated by the MSETAR

model (Tsay 1998)

Yt =

{

Φ
(1)
1 Yt−1 + U

(1)
t y1,t−1 ≤ 0

Φ
(2)
1 Yt−1 + U

(2)
t y1,t−1 > 0

(2.5)

where

Φ
(1)
1 =

[

0.7 0.0

0.3 0.7

]

Σ1 =

[

1.0 0.2

0.2 1.0

]

, Φ
(2)
1 =

[

−0.7 0.0

−0.3 −0.7

]

Σ2 =

[

1.0 −0.3
−0.3 1.0

]

.

The innovations U
(1)
t e U

(2)
t are independent multivariate normal with mean 0

and varian
e Σ1 and Σ2 respe
tively. The threshold variable is 
onsidered to be the

�rst entry of the series with delay parameter equals to one. The threshold value is

set equal to zero.

In Table 2.1 the per
entages of 
orre
t identi�
ation over 100 repli
ations of the

number of regimes and of the threshold variable are shown. The label 'Thr.Var' de-

notes the 
orre
t sele
tion of the 
omponent series that is used as threshold variable.

'Delay' label denotes the lag of the threshold variable. The label 'N.Reg.' denotes

the number of regimes. The results displayed in Table 2.1 show that dete
tion of

the threshold variable and identi�
ation of the number of regimes and delay are

performed satisfa
torily. The per
entages are greater than 88%.

In Table 2.2 the average bias and root mean square error (RMSE) of the estimates

of 
oe�
ients and threshold parameters for Model (2.5) are displayed. Only the

estimates from the repli
ations where exa
t mat
h of stru
tural parameters (variable

threshold and number of regimes) o

urred are 
onsidered. In this 
ase we 
an see
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Table 2.1: Relative frequen
y of 
orre
tly sele
ting the 
omponent series whi
h

performs as threshold variable, the delay parameter and the number of regimes for

sample sizes 150, 400 and 1000 observations, based on 100 repli
ations

n = 150 n = 400 n = 1000

Thr.Var Delay N.Reg. Thr.Var Delay N.Reg. Thr.Var Delay N.Reg.

100 88 91 96 100 96 100 100 100

Table 2.2: Average bias and RMSE over 100 repli
ations of the estimates of the

autoregressive 
oe�
ients and threshold parameter based on sample size of 150, 400

and 1000 observations

Coe�
ient n = 150 n = 400 n = 1000

bias RMSE bias RMSE bias RMSE

φ
(1)
11 0.0270 0.1080 0.0018 0.0107 -0.0115 0.0123

φ
(1)
21 0.0241 0.1259 -0.0181 0.0460 -0.0099 0.0137

φ
(1)
12 -0.0703 0.1248 0.0469 0.0541 -0.0038 0.0081

φ
(1)
22 -0.0360 0.2204 0.0196 0.0887 -0.0069 0.0083

φ
(2)
11 0.0457 0.1681 -0.0226 0.0422 0.0014 0.0047

φ
(2)
21 0.0844 0.2198 0.0430 0.0596 0.0282 0.0288

φ
(2)
12 0.0752 0.1640 0.0540 0.0610 -0.0006 0.0090

φ
(2)
22 -0.0323 0.1290 -0.0172 0.0498 0.0174 0.0188

r∗ -0.0231 0.2311 -0.0164 0.1404 -0.0065 0.0185

that the estimated 
oe�
ients are quite a

urate, i.e. they are 
lose on the average

to their true values. The a

ura
y of the estimates improves as the sample size

in
reases. It has to be 
onsidered that our GA method does not aim at estimating

the exa
t threshold parameter but at dete
ting the observation that divides the time

series in the two regimes. If we 
onsider the mispla
ed observations, it results that

these are, on the average and for sample size n = 150, n = 400 and n = 1000

respe
tively, 13%, 8% and 3%. So the assignment of observations to regimes may

be 
onsidered quite satisfa
tory and more a

urate as larger the sample size, even

in the presen
e of rather large RMSE for n = 150 and n = 400.



49

Multivariate Self-Ex
iting Threshold Autoregressive Modeling by Geneti


Algorithms

Table 2.3: Relative frequen
y (based on 100 repli
ations) of sele
ting 
orre
tly the

index of the 
omponent to be used as threshold variable, the delay parameter and

the number of regimes for sample sizes 150, 400 and 1000 observations

n = 150 n = 400 n = 1000

Thr.Var Delay N.Reg. Thr.Var Delay N.Reg. Thr.Var Delay N.Reg.

100 94 93 94 97 89 100 100 100

2.4.2 Example 2

The se
ond simulation experiment is 
on
erned with the MSETAR model (Tsay

1998)

Yt =











Φ
(1)
1 Yt−1 + U

(1)
t y1,t−1 ≤ −3.3

Φ
(2)
1 Yt−1 + U

(2)
t −3.3 < y1,t−1 ≤ 3.3

Φ
(3)
1 Yt−1 + U

(3)
t y1,t−1 > 3.3

(2.6)

where

Φ
(1)
1 =

[

−0.7 0.0

0.2 −0.9

]

Φ
(2)
1 =

[

1.2 0.0

0.0 0.6

]

Φ
(3)
1 =

[

−0.8 0.0

0.2 0.8

]

Σ1 = Σ2 = I.

The innovations U
(1)
t e U

(2)
t are independent multivariate normal with mean 0

and varian
e Σj = I, j = 1, 2 where I denotes the identity matrix. The model has

three regimes and the �rst 
omponent of the bivariate series with delay parameter

1 determines the 
urrent regime. The threshold values are −3.3 and 3.3.

The per
entages of 
orre
t identi�
ation of the number of regimes and threshold


omponent over 100 repli
ations are summarized in Table 2.3. From Table 2.3 we

may observe that our GAs-based pro
edure determines the 
orre
t threshold variable

and number of regimes with high per
entages whi
h in
rease as the sample size is

larger.

In Table 2.4 the estimates for Model (2.6) are reported. The estimates were


onsidered only for the repli
ations where exa
t mat
h of stru
tural parameters

(ex
luding thresholds) o

urred (about 90%). Bias and RMSEs seem rather small

and de
rease as the sample size in
reases, but both bias and RMSE of the estimates

of the thresholds r
(1)
1 and r

(2)
1 . However, if we 
onsider again the number of mispla
ed
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Table 2.4: Average bias and RMSE over 100 repli
ations of the estimates of the

autoregressive 
oe�
ients and threshold parameters based on sample sizes 150, 400

and 1000 observations

Coe�
ient n = 150 n = 400 n = 1000

bias RMSE bias RMSE bias RMSE

φ
(1)
11 0.0685 0.1606 0.0313 0.0503 0.0168 0.0170

φ
(1)
21 -0.0342 0.2200 -0.0224 0.0312 -0.0023 0.0062

φ
(1)
12 0.0504 0.1914 0.0057 0.0320 0.0009 0.0015

φ
(1)
22 0.0563 0.1825 0.0063 0.0226 0.0029 0.0119

φ
(2)
11 -0.0460 0.1556 0.0137 0.0316 0.0050 0.0984

φ
(2)
21 -0.0333 0.2284 0.0022 0.1021 -0.0002 0.0874

φ
(2)
12 0.0603 0.1600 0.0086 0.0170 -0.0094 0.0098

φ
(2)
22 -0.0198 0.1352 0.0085 0.0353 0.0056 0.0077

φ
(3)
11 -0.0271 0.1136 -0.1103 0.1107 0.0167 0.0168

φ
(3)
21 -0.0853 0.1366 -0.0330 0.0660 -0.0121 0.0131

φ
(3)
12 -0.0031 0.1854 -0.0011 0.0220 -0.0004 0.0041

φ
(3)
22 0.0240 0.2656 -0.0332 0.0351 0.0895 0.0896

r
(1)
1 -0.3791 0.4329 -0.2060 0.2222 -0.2916 0.2916

r
(2)
1 0.1668 0.1909 0.3336 0.3350 0.3105 0.3105
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Table 2.5: Relative frequen
y of 
orre
tly sele
ting the threshold variable, delay

parameter and number of regimes for sample sizes of 400, 600 and 1000 observations

based on 100 repli
ations

n = 400 n = 600 n = 1000

Thr.Var Delay N.Reg. Thr.Var Delay N.Reg. Thr.Var Delay N.Reg.

79 72 79 89 78 84 93 90 91

observations we obtain the per
entages 11%, 10%, 4% for n = 150, n = 400 and

n = 1000 respe
tively. This 
ir
umstan
e seems to indi
ate that in this 
ase too the

assignment of observations to regimes has been performed rather satisfa
torily.

2.4.3 Example 3

In the third simulation experiment we 
onsider time series generated a

ording to

the model

Yt =



















Φ
(1)
1 Yt−1 + U

(1)
t y1,t−1 > 0 y2,t−1 ≤ 0

Φ
(2)
1 Yt−1 + U

(2)
t y1,t−1 > 0 y2,t−1 > 0

Φ
(3)
1 Yt−1 + U

(3)
t y1,t−1 ≤ 0 y2,t−1 ≤ 0

Φ
(4)
1 Yt−1 + U

(4)
t y1,t−1 ≤ 0 y2,t−1 > 0

(2.7)

where

Φ
(1)
1 =

[

0.7 −0.2
−0.1 0.6

]

Φ
(2)
1 =

[

0.5 −0.4
0.1 0.3

]

Φ
(3)
1 =

[

−0.5 0.2

−0.1 0.5

]

Φ
(4)
1 =

[

−0.5 −0.9
0.8 −0.1

]

Σj = I, j = 1, . . . , 4.

The U
(j)
t are independent bivariate normal random variables with mean 0 and

varian
e Σj = I, j = 1, . . . , 4 where I denotes the identity matrix. The model has

four regimes whi
h depend on the lagged 
omponent series with delay equal to 1.

The threshold values are equal to 0 for both threshold 
omponents.

The per
entages of repli
ations for whi
h the 
orre
t threshold variable and num-

ber of regimes were sele
ted are given in Table 2.5. The results displayed in Table 2.5
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Table 2.6: Average bias and RMSE over 100 repli
ations of the estimates of the

autoregressive 
oe�
ients and threshold parameters based on sample sizes 400, 600

and 1000 observations

Coe�
ient n = 400 n = 600 n = 1000

bias RMSE bias RMSE bias RMSE

φ
(1)
11 0.0311 0.1909 -0.0218 0.1058 0.0198 0.0225

φ
(1)
21 0.0112 0.1743 0.0182 0.0334 0.0046 0.0060

φ
(1)
12 0.0676 0.1504 -0.0263 0.0958 0.0059 0.0064

φ
(1)
22 0.0157 0.1860 -0.0146 0.0363 -0.0002 0.0085

φ
(2)
11 -0.0441 0.1828 0.0021 0.0341 -0.0080 0.0101

φ
(2)
21 -0.0778 0.2012 -0.0348 0.0437 -0.0051 0.0073

φ
(2)
12 0.0430 0.1922 -0.0046 0.0130 -0.0034 0.0054

φ
(2)
22 -0.0495 0.2073 -0.0272 0.0809 0.0008 0.0084

φ
(3)
11 0.0360 0.1690 0.0368 0.1068 -0.0155 0.0188

φ
(3)
21 0.0193 0.1383 0.0183 0.0283 0.0054 0.0063

φ
(3)
12 -0.0455 0.2052 -0.0377 0.0398 0.0070 0.0070

φ
(3)
22 0.0212 0.1851 -0.0089 0.0569 0.0015 0.0064

φ
(4)
11 0.0360 0.1411 0.0368 0.0564 -0.0155 0.0172

φ
(4)
21 -0.0208 0.1202 0.0060 0.0376 -0.0027 0.0061

φ
(4)
12 0.0306 0.1780 -0.0294 0.0887 0.0169 0.0175

φ
(4)
22 0.0304 0.1908 -0.0177 0.0313 0.0175 0.0179

r
(1)
1 -0.0097 0.1341 -0.0063 0.0666 -0.0040 0.0041

r
(2)
1 -0.0022 0.1173 -0.0036 0.0059 -0.0002 0.0037

show that the exa
t re
overy of the threshold variable and number of regimes seems

more di�
ult for models with bivariate threshold variable, and per
entages of su
-


ess greater than 90% are attained only if n = 1000 whereas per
entages of exa
t

mat
h are below 90% if n = 400 and n = 600. Dete
tion of stru
tural parameters is

performed satisfa
torily by the GAs-based pro
edure if n = 1000 while 
onvergen
e

seems slow if only n = 400 or n = 600 observations are available.

In Table 2.6 the average bias and RMSE of the estimates of 
oe�
ients and

thresholds for Model (2.7) are displayed. Only the estimates from the repli
ations

where exa
t mat
h of stru
tural parameters (ex
ept thresholds) o

urred (more than

70%) are 
onsidered. In this 
ase, too, the estimated 
oe�
ients are quite a

urate,

i.e. they are 
lose on the average to their true values. Both bias and RMSEs de
rease

as the sample size in
reases.



53

Multivariate Self-Ex
iting Threshold Autoregressive Modeling by Geneti


Algorithms

Figure 2.2: Ex
hange Rate Data

2.5 An appli
ation to real world data

As an illustration, we applied the MSETAR model to study an ex
hange rate data

set. Ex
hange rate data have be found to exhibit a non linear behavior and many non

linear models have been suggested whi
h in
lude univariate threshold models (e.g.,

Chappell et al. 1996), and univariate threshold GARCH models (e.g., Baragona &

Cu
ina 2008). The ex
hange rates are the British pound, Canadian dollar, German

Deuts
hmark, Dut
h guilder, all expressed as number of units of the foreign 
urren
y

per United States dollar. The time frame of the study is January 1980 to Mar
h

1984. Then there are 1000 observations. The data are daily data. The plot of the


omponents time series are displayed in Fig. 2.2.

We run our GAs-based pro
edure with the same parameters used in the simula-

tion experiment in Se
tion 2.4. The �nal estimated model is a two-regime MSETAR

with the following form:

Yt =

{

Φ
(1)
1 Yt−1 + U

(1)
t y1,t−1 ≤ 0.5770

Φ
(2)
1 Yt−1 + U

(2)
t y1,t−1 ≥ 0.5770

where
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Φ
(1)
1 =











0.9772 −0.0065 −0.1173 −0.2084
0.0021 1.0015 0.0270 0.0464

0.0004 −0.0022 0.9868 −0.0403
0.0015 0.0013 0.0110 1.0282











Φ
(2)
1 =











0.9994 0.0117 −0.0255 0.0751

−0.0026 0.9949 0.0738 0.0588

0.0029 −0.0018 0.8974 −0.1301
−0.0006 0.0005 0.0289 1.0335











.

The number of observations in ea
h regime are 644 and 355. The driving variable

is the British pound whi
h determines the regime swit
h for the ex
hange rates.

The 
riti
al ex
hange rate is the value 0.57 when the British pound approximately

doubles the value of the United States dollar. The goodness of �t of the estimated

model may be 
onsidered satisfa
tory on the basis of the residual varian
es that are,

on the entire time span, 0.0000119, 0.0000087, 0.0002587, and 0.0018356 for ea
h of

the four 
omponent series respe
tively.



Chapter 3

Meta-heuristi
 Methods for Outliers

Dete
tion in Multivariate Time

Series

3.1 Introdu
tion

Outliers are 
ommonly de�ned as observations whi
h appear to be in
onsistent with

the remainder of the data set, and may be due to o

asional unexpe
ted events. The

dete
tion of outliers is an important problem in time series analysis be
ause they


an have adverse e�e
ts on model identi�
ation, parameter estimation (see Chang

& Tiao (1983)) and fore
asting (see Chen & Liu (1993)). The presen
e of just a

few items of anomalous data 
an lead to model misspe
i�
ation, biased parameter

estimation, and poor fore
asts. Therefore, it is essential to identify outliers data,

estimate their magnitude and 
orre
t the time series, avoiding false identi�
ations

(i.e. observations that are identi�ed as outliers while they are not). Several ap-

proa
hes have been proposed in the literature for handling outliers in univariate

time series. Among these methods we 
an distinguish those based on an expli
it

model (parametri
 approa
h) from the ones using non-expli
it models (nonparamet-

ri
 approa
h). For the parametri
 approa
h, Fox (1972) developed a likelihood ratio

test for dete
ting outliers in a pure autoregressive model. Chang & Tiao (1983),

Chang et al. (1988), Tsay (1986, 1988), Chen & Liu (1993) extended this test to

an autoregressive integrated moving-average (ARIMA) model and proposed an it-

erative pro
edure for dete
ting multiple outliers. For the non-parametri
 approa
h,

Ljung (1989), Ljung (1993), Peña (1990), Gómez et al. (1993), Baragona & Battaglia

(1989) and Battaglia & Baragona (1992) proposed spe
i�
 pro
edures based on the
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relationship between additive outliers and linear interpolator, while Baragona et al.

(2001) used a geneti
 algorithm.

For multivariate time series, only three pro
edures have been proposed. Tsay

et al. (2000) proposed a sequential dete
tion pro
edure, whi
h we will 
all the TPP

method, based on individual and joint likelihood ratio statisti
s; this method requires

an initial spe
i�
ation of a ve
tor ARMA model. Galeano et al. (2006), Baragona &

Battaglia (2007) proposed a method based on univariate outlier dete
tion applied to

some useful linear 
ombinations of the ve
tor time series. The optimal 
ombinations

are found by proje
tion pursuit in the �rst paper and independent 
omponent anal-

ysis (ICA) in the se
ond one. Barbieri (1991) used a Bayesian method and �nally a

graphi
al method was explored by Khattree & Naik (1987).

Multiple outliers, espe
ially those o

urring 
lose in time, often have severe mask-

ing e�e
t (one outlier masks a se
ond outlier) and smearing e�e
t (misspe
i�
ation

of 
orre
t data as outliers) that 
an easily render the iterative outlier dete
tion

methods ine�
ient. A spe
ial 
ase of multiple outliers is a pat
h of additive out-

liers. For univariate time series this problem has been addressed �rstly by Bru
e &

Martin (1989). They de�ne a pro
edure for dete
ting outlier pat
hes by dete
ting

blo
ks of 
onse
utive observations. Other useful referen
es for the pat
h dete
tion

are M
Cullo
h & Tsay (1994), Barnett et al. (1997) and Justel et al. (2001). For

multivariate time series, only Baragona & Battaglia (2007) report simulation results

for an outlier pat
h.

Unlike the univariate 
ase where there are spe
i�
 pro
edures on the identi�-


ation of 
onse
utive outliers, in multivariate time series framework, methods for

identi�
ation of 
onse
utive outliers do not exist.

We propose a 
lass of meta-heuristi
 algorithms to over
ome the di�
ulties of it-

erative pro
edures in dete
ting multiple additive outliers in multivariate time series.

This 
lass in
ludes: simulated annealing (SA)(Kirkpatri
k et al. (1983), Rayward-

Smith et al. (1996)), threshold a

epting (TA) (Winker (2001)) and geneti
 algo-

rithm (GA) (Holland (1975); Goldberg (1989)). These methods are illustrated in

appendix. Our pro
edures are less vulnerable to the masking and smearing e�e
ts

be
ause they evaluate several outlier pattern where all observations that are possibly

outlying ones are simultaneously 
onsidered. In this way, meta-heuristi
 methods

deal e�
iently the dete
tion of pat
h of additive outliers.

Ea
h outlier 
on�guration is evaluated by a generalised AIC-
riterion where the

penalty 
onstant is suggested by both a simulation study and a theoreti
al approxi-

mation. So, the meta-heuristi
 algorithms seem able to provide more �exibility and

adaptation to the outlier dete
tion problem.
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3.2 Algorithm Features

This se
tion further des
ribes the algorithms implementation we used for outlier

dete
tion. A su

essful implementation of meta-heuristi
 methods is 
ertainly 
ru
ial

to obtain satisfa
tory results. Before a meta-heuristi
 method 
an be applied to

a problem some important de
isions have to be made. The three meta-heuristi


methods require a suitable en
oding for the problem and an appropriate de�nition

of obje
tive fun
tion. In addition, the algorithms TA and SA require the stru
ture

of the neighborhood while for geneti
 algorithms, operators of sele
tion, 
rossover

and mutation have to be 
hosen. The following se
tions des
ribe the 
hoi
es made.

3.2.1 Solution En
oding

An appropriate en
oding s
heme is a key issue for meta-heuristi
 methods. For all

algorithms we use a binary en
oding for the solutions of the outliers problem as

suggested in Baragona et al. (2001). Any solution ξc is a binary string of length

N , where N is the number of observations of the time series: ξc = (ξc1, ξ
c
2, . . . , ξ

c
N),

where ξci takes the value 1 if at time i there is an outlier (we assume that all the

s 
omponents are in�uen
ed) and 0 otherwise. Then, ξc represent a 
hromosome

of GA and ξci a gene. Obviously, the number of outliers for a given time series is

unknown. We allow for solutions with a maximum number of outliers equal to g.

The value of g should be 
hosen a

ording to the series length and every relevant a

priori information on its a

ura
y and instability. The 
onstant g should be 
hosen

large enough to allow for the dete
tion of any reasonable number of outliers in the

series.

Binary en
oding implies that the solution spa
e Ω 
onsists of

∑g
k=0

(

N
k

)

distin
t

elements, sin
e the total number of outliers is limited to a 
onstant g.We 
an see

that Ω is really large even when g is 
onsiderably lower than the length of the

time series. All our algorithms either severely penalise solutions with a maximum

number of outliers larger then g , or do not 
onsider su
h solutions at all. TA and SA

algorithms are built so that they do not evaluate solutions with more than g outliers.

With regard to the GA, 
hromosomes not belonging to Ω will be severely penalised

subtra
ting a positive quantity (the penalty fa
tor pen) to the �tness (fun
tion to

be maximised), so that the algorithm tends to avoid these 
hromosomes. We set the

value of pen to 1,000.
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3.2.2 Neighbourhood sear
h in simulated annealing and thresh-

old a

epting

Ea
h solution ξc ∈ Ω has an asso
iated set of neighbours, N(ξc) ⊂ Ω, 
alled the

neighbourhood of ξc where every ξn ∈ N(ξc) may be rea
hed dire
tly from ξc by an

operation 
alledmove.Given the 
urrent solution ξc, its neighborhood is 
onstru
ted

using three di�erent moves: add an outlier; remove an outlier; 
hange the position

of an outlier.Sin
e a maximum of g outliers is allowed, moves are applied a

ording

to the 
urrent solution in the following way: if ξc doesn't 
ontain outliers (i.e., it is a

string where every bit is 0), algorithms 
an only introdu
e an outlier; if ξc 
ontains

less than g outliers, algorithms 
an add, remove or 
hange the position of an outlier,

with probability 1/3; if ξc already 
ontains g outliers, algorithms 
annot pro
eed

adding an outlier but 
an only remove or 
hange the position of one of them, with

probability 1/2.

3.2.3 Obje
tive fun
tion

Let yt = [y1,t, . . . , ys,t]
′
be a ve
tor time series generated from a Gaussian s-dimensional

jointly se
ond order stationary real-valued pro
ess Yt, with mean zero for ea
h 
om-

ponent, 
ovarian
e matrix Γu and inverse 
ovarian
e matrix Γiu for integer lag u.

When outliers are present, yt is perturbed and unobservable. We suppose that k

perturbations ωt = [ω1,t, . . . , ωs,t]
′
impa
t the series yt at time points tj , j = 1, . . . , k

su
h that at ea
h tj they a�e
t all s 
omponents. The total number of outlying

data is equal to h = ks. Denote the observed time series by zt = [z1,t, . . . , zs,t]
′

generated by the observable multivariate sto
hasti
 pro
ess Zt. Given a sample of

N observations we may write the following model

z = y +Xω, (3.1)

where z = [z′1, . . . , z
′
N ]

′
is the ve
tor obtained by sta
king the s 
omponent ob-

servations at ea
h time point, y = [y′1, . . . , y
′
N ]

′
is the ve
tor obtained by sta
king

the s 
omponent of the unobservable outlier free time series at ea
h time point,

ω = [ω′
t1
, . . . , ω′

tk
]′ is the ve
tor obtained by sta
king the s 
omponents of the k

outliers and X is a Ns× h pattern design matrix de�ned as follows.

For ea
h tj with j = 1, . . . , k, the [(tj − 1)s + r, (j − 1)s + r]-th entry is one for

r = 1, . . . , s. All the remaining entries are zero.

Matrix X 
ontains information about the perturbed time indi
es of a given outlier

pattern. Thus, ea
h feasible solution ξ 
orresponds to a matrix X.
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The natural logarithm of the likelihood for z may be written

L(z;X,ω) = −
Ns

2
log(2π)− 1

2
log(detΓ)− 1

2
(z −Xω)′Γ−1(z −Xω), (3.2)

where Γ denotes the Ns×Ns blo
k Toeplitz matrix with Γi−j as the (i, j)-th blo
k.

Assuming both Γ and X known, the maximisation of (3.2) with respe
t to ω yields:

ω̂ = (X′Γ−1X)−1X′Γ−1z. (3.3)

If we approximate Γ−1
with Γi (Shaman (1976)), where Γi denotes the Ns × Ns

blo
k Toeplitz matrix with Γii−j as the (i, j)-th blo
k, the maximum likelihood

estimate (3.3) of ω takes the form:

ω̂ = (X′ΓiX)−1X′Γiz. (3.4)

Sin
e Γi is unknown, we have to estimate it from the data. We used here the

autoregressive approa
h des
ribed in se
tion (1.3.3).

If we look at the expression (1.37) 
an see that the estimate of the inverse 
ovari-

an
e depends on estimates of autoregressive parameters and the estimated varian
e-


ovarian
e matrix Σ̂ of innovations. In the presen
e of outliers the residuals of VAR

model are 
ontaminated, hen
e Σ̂ may be biased. For obtaining a better estimate

we use the α% trimmed method. To 
ompute the α% trimmed varian
e-
ovarian
e

matrix Σ̂, we �rst remove the 5% largest values (a

ording to their absolute values)

and then 
ompute Σ̂ based on trimmed sample.

The natural logarithm of the maximised likelihood is obtained by repla
ing ω by

ω̂ and Γ−1
by Γ̂i in (3.2) :

L̂(z;X,ω) = −
Ns

2
log(2π)−1

2
log(det Γ̂i)−1

2
z′Γ̂iz−1

2
(X′Γ̂iz)′(X′Γ̂iX)−1X′Γ̂iz. (3.5)

The matrix Γ̂i is �xed for any outlier pattern X, so that the maximised likelihood

in (3.5) depends only on matrix X. Sin
e matrix X 
onveys all information about

the outlier's lo
ation, it seems natural to dete
t the outlier pattern by determining

the matrix X maximising the quadrati
 form in (3.4)

LX =
1

2
(X′Γ̂iz)′(X′Γ̂iX)−1X′Γ̂iz. (3.6)

Obviously the likelihood in
reases when the number of estimated parameters ω̂, i.e.

the number of outliers, is in
reased. Thus, in a similar fashion as identi�
ation


riteria for model sele
tion (see Bhansali & Downham (1977)), we 
ontrast the

likelihood with a linear fun
tion of the number of outliers. So, the sear
h of outliers
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in a multivariate series is equivalent to sear
h the 
hromosome ξ or the design matrix

X that minimizes the following obje
tive fun
tion:

f(ξ) = −2LX + ch, (3.7)

where c is an arbitrary 
onstant and h is the a
tual number of outliers. The fun
tion

f(ξ) depends on both the matrix X and the penalty 
onstant c. Di�erent values

are suggested in literature for the 
onstant c (see Bhansali & Downham (1977)).

We propose two alternative approa
hes for sele
ting appropriate c values in Se
tion

(3.4.1). In a geneti
 algorithm, the �tness fun
tion assigns a positive real number

to any possible solution in order to evaluate its plausibility, therefore in the GA we

adopt the following non-de
reasing transform of (3.7):

fitness = exp(−f(ξ)/β) (3.8)

where β is a parameter of s
ale. In the following experiments this parameter is set

equal to 100.

3.2.4 Cooling s
hedules

The 
hoi
e of a s
hedule is a dis
ussed issue as there was a 
on�i
t, sin
e early

appli
ations of SA, between theory (logarithmi
 
oolings) and pra
ti
e (geometri


s
hedules). No universally valid 
on
lusion seems to emerge from the literature.

A general advi
e is however to 
ool the system slowly enough at stages where the

obje
tive fun
tion is rapidly improving. An appropriately tuned geometri
 s
hedule

seems able to satisfy this requirement and yields good results in a reliable manner.

Then, in our work the geometri
 s
hedule is used :

Tt = aTt−1, (3.9)

where a is a 
onstant 
lose to 1.

This s
hedule assumes that the annealing pro
ess will 
ontinue until the temper-

ature rea
hes zero. In pra
tise, it is not ne
essary to let the temperature rea
h zero

be
ause as it approa
hes zero the 
han
es of a

epting a worse move are almost the

same as the temperature being equal to zero. Therefore, the stopping 
riteria 
an

either be a suitably low temperature or when the system is frozen at the 
urrent

temperature. Some implementations keep the temperature de
reasing until some

other 
ondition is met. For example, no 
hange in the best state for a 
ertain period

of time.That is, a parti
ular phase of the sear
h normally 
ontinues at a 
ertain
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temperature until some sort of equilibrium is rea
hed. This might be a 
ertain num-

ber of iterations or it 
ould be until there has been no 
hange in state for a 
ertain

number of iterations.

3.2.5 Operators and other implementation issues in the ge-

neti
 algorithms

We do not use the �standard� randomly generated initial populations (Goldberg

(1989)), while in the algorithms used here, the initial populations 
onsist of 
hromo-

somes with just one outlier, di�erent from ea
h other (the size of the population is

less than the number of observations). At the beginning, all possible single-outlier


hromosomes are generated and sorted in terms of �tness value and the initial pop-

ulation 
onsists of the 
hromosomes having the largest �tness. In this way we

evaluate from the beginning the most promising one-outlier patterns (see Baragona

et al. (2001)).

The �roulette wheel� rule is used for parent sele
tion. The probability of a 
hro-

mosome being sele
ted as a parent is proportional to the rank of its �tness. Ea
h

sele
ted 
ouple of parents will produ
e two �
hildren� by methods of 
rossover and

mutation.

The 
rossover operator used is �uniform 
rossover� Goldberg (1989). For ea
h

gene of the �rst 
hild, one of the parents is sele
ted at random (with equal probability

of sele
tion) and its 
orresponding gene is inherited at the same position. The other

parent is used to determine the se
ond 
hild's 
orresponding gene.

Finally, a probability is 
hosen for randomly 
hanging the value of ea
h gene

of the 
hild-
hromosome (mutation). In our en
oding, where we have only two

admissible values for a gene (�0� and �1�) the appli
ation of the mutation operator

is pretty straightforward.

The entire population of 
hromosomes is repla
ed by the o�springs 
reated by the


rossover and mutation pro
esses at ea
h generation ex
ept for the best 
hromosome,

whi
h survives to the next generation. This elitist strategy ensures that the �tness

will never de
rease through generations (Rudolph (1994)).

3.3 The TPP pro
edure

Let yt = [y1,t, . . . , ys,t]
′
be a k-dimensional ve
tor time series following the stationary

and invertible ve
tor autoregressive moving average (VARMA) model:
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Φ(B)yt = Θ(B)ǫt, t = 1, . . . , N, (3.10)

where B is the ba
kshift operator su
h thatByt = yt−1, Φ(B) = (I−Φ1B−Φ2B
2−

. . .ΦpB
p
) and Θ(B) = (I −Θ1B −Θ2B

2 − . . .ΘpB
p
) are k × k matrix polynomials

of �nite degrees p and q and ǫt = (ǫ1t, . . . , ǫkt) is a sequen
e of independent and

identi
ally distributed (iid) Gaussian random ve
tors with mean 0 and positive-

de�nite 
ovarian
e matrix Σ. For the VARMA model in equation (3.10), we have

the AR representation Π(B)yt = ǫt where Π(B) = Θ(B)−1Φ(B) = I −∑∞
i=1ΠiB

i
.

Given an observed time series z = [z1, . . . , zN ] where zt = [z1,t, . . . , zs,t]
′
Tsay

et al. (2000) generalized additive univariate outliers to the ve
tor 
ase in a dire
t

manner using the representation

zt = yt + ωI
(h)
t (3.11)

where I
(h)
t is a dummy variable su
h that I

(h)
h = 1 and I

(h)
t = 0 if t 6= h, ω =

(ω1, ω2, . . . , ωk)
′
is the size of the outlier, and yt follows a VARMA model.

Tsay et al. (2000) showed that when the model order is known, the estimate of

the size of an additive multivariate outlier at time h is given by:

ω̂A,h = −(
N−h
∑

i=0

Π̂′
iΣ

−1Π̂i)
−1

N−h
∑

i=0

Π̂′
iΣ

−1
(3.12)

The 
ovarian
e matrix of this estimate is Σ−1
A,h = (

∑N−h
i=0 Π̂′

iΣ
−1Π̂i)

−1
. Tsay et al.

(2000) proposed an iterative pro
edure similar to that of the univariate 
ase to

dete
t multivariate outliers. Assuming no outlier, the pro
edure starts building a

multivariate ARMA model for the series under study and let ât be the estimated

residuals and Π̂i the estimated 
oe�
ients of the autoregressive representation. The

se
ond step of the pro
edure requires the 
al
ulation of the test statisti
:

Jmax = max
1≤t≤N

{Jt},

where Jt = ω̂′
A,tΣ

−1
A,hω̂A,h. As in the univariate 
ase, if Jmax is signi�
ant at time

index t0 we identify a additive multivariate outlier at t0. On
e an outlier is identi�ed,

its impa
t on underlying time series is removed, using the model in equation (3.11).

The adjusted series is treated as a new time series and the dete
ting pro
edure is

iterated. The TPP method terminates when no signi�
ant outlier is dete
ted. Tsay

et al. (2000) used simulation to generate �nite sample 
riti
al values of statisti


Jmax.
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3.4 Performan
e of meta-heuristi
 methods

To test the performan
e of meta-heuristi
 algorithms for identifying outliers in multi-

variate time series we applied the proposed methods to simulated time series models

of the 
lass VARIMA. We 
onsider eight ve
tor VARMA models, four bivariate

(s = 2) and four trivariate models (s = 3). The sample sizes used are N = 200 and

N = 400. The models 
onsidered in this simulation study and reported in Galeano

et al. (2006), Lütkepohl (1993), Tsay et al. (2000) are listed below.

Model 1 - VAR(1) bivariate model: Φ1 =

[

0.6 0.2

0.2 0.4

]

.

Model 2 - VAR(1) bivariate model: Φ1 =

[

0.2 0.3

−0.6 1.1

]

.

Model 3 - VAR(2) bivariate model: Φ1 =

[

0.5 0.1

0.4 0.5

]

Φ2 =

[

0.0 0.0

0.25 0.0

]

.

Model 4 - VARMA(1,1) bivariate model: Φ1 =

[

0.6 0.2

0.2 0.4

]

Θ1=

[

−0.7 0.2

−0.1 0.4

]

.

Model 5 - VAR(1) trivariate model: Φ1 =







0.6 0.2 0.0

0.2 0.4 0.0

0.6 0.2 0.5






.

Model 6 - VAR(1) trivariate model: Φ1 =







0.2 0.3 0.0

−0.6 1.1 0.0

0.2 0.3 0.6






.

Model 7 - VAR(2) trivariate model:

Φ1 =







−0.3 0.15 0.95

0.0 −0.15 0.3

0.0 0.2 −0.25






Φ2 =







−0.15 0.1 0.9

0.0 0.0 0.0

0.0 0.35 0.0






.

Model 8 - VARMA(1,1) trivariate model:

Φ1 =







0.6 0.2 0.0

0.2 0.4 0.0

0.6 0.2 0.5






Θ1 =







−0.7 0.0 0.0

−0.1 −0.3 0.0

−0.7 0.0 −0.5






.

where the 
ovarian
e matrix of the Gaussian noise is the identity matrix for seven

models. For the Model 2, it has diagonal entries equal to 1.0 and all o�-diagonal

entries equal to -0.2.
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We have 
onsidered three di�erent outlier 
on�gurations. The �rst two instan
es

have a small 
ontamination: the �rst 
on�guration has two isolated outliers at time

indi
es t = 100, 150, and the se
ond one has a pat
h of two outliers introdu
ed at

time indi
es t = 100, 101. The last one 
onsists in a heavier 
ontamination, that

in
ludes two isolated outliers and a pat
h of three outliers introdu
ed at time indi
es

t = 40, 100, 101, 102, 150. For the �rst two 
ases the size of ea
h outlier is 
hosen

equal to ω = (3.5, 3.5)′ for bivariate models and is 
hosen equal to ω = (3.5, 3.5, 3.5)′

for the trivariate models. When the 
ontamination is heavier we set the size of ea
h

outlier equal to ω = (5.0, 5.0)′ for bivariate models and we set ω = (5.0, 5.0, 5.0)′ for

the trivariate models. For ea
h model, sample size and outliers 
on�guration, we

generate a set of 100 time series.

We may 
onsider several 
riteria for evaluating the performan
e pro
edure. Sin
e

the proposed pro
edures are designed to dete
t the outliers avoiding false identi�-


ations, we used as 
riteria of evaluation the relative frequen
y of 
orre
t outlier

dete
tion, de�ned as a 
orre
t identi�
ation of outlier pattern. For the 
ase of two

outliers (100, 150 or 100, 101) this means the relative frequen
y of dete
ting both

outliers and only them, while for the 
ase of �ve outliers the relative frequen
y of

dete
ting all �ve outliers and only them. For ea
h method, we in
lude the relative

frequen
y of partial 
orre
t 
on�guration dete
tion (the relative frequen
y of only

one outlier 
orre
tly dete
ted or the relative frequen
y of less than �ve outliers 
or-

re
tly dete
ted) and the relative frequen
y of wrong identi�
ations (i.e., solutions

where at least one observation identi�ed as outlier in fa
t is not).

To apply the algorithms we need to determine the values of two types of pa-

rameters, one 
on
erning the outlier problem itself and the other one regarding the

meta-heuristi
 algorithms. The parameters of the outlier dete
tion problem are

three: the 
onstant c in (3.7), the order of the multivariate autoregressive pro
ess

m in (1.37) and the maximum number of outliers g.

3.4.1 The problem of parameters tuning

The 
onstant c

In order to obtain the 
riti
al values of the test statisti
s for outlier dete
tion (in

univariate and multivariate time series) one 
an rely on simulation, using a large

number of series from di�erent models (Tsay et al. (2000), Galeano et al. (2006)).

Programs TRAMO and SCA, for example, have outlier dete
tion routines that use


riti
al values obtained by su
h a simulation study. In our work we follow the same

idea to establish the value of the 
onstant c through a Monte Carlo experiment.
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We 
onsider the eight ve
tor VARMA models listed above and sample sizes

N = 200, 400. For ea
h model and sample size, we generate a set of 500 time

series and apply the algorithms to ea
h set, employing di�erent values of c and

re
ording the 
orresponding values of the type I error α (where α is the frequen
y

of 
lean observations identi�ed as outliers).

Table 3.1 provides the c values obtained via simulation a

ording to di�erent

values of α, models, dimensions and sample sizes. We observed that the three meta-

heuristi
 algorithms lead to similar simulation results, therefore in Table 3.1 we do

not 
onsider the e�e
t of these algorithms on the 
onstant c. Table 3.1 suggests

the following observations. First, for ea
h α, we see only minor di�eren
es in the

c values among di�erent models given dimension and sample size. Se
ond, the

estimated c values in
rease with the sample size N and de
rease with the dimension

s. In general, the sample size and the time series dimension are important fa
tors

a�e
ting the behaviour of 
onstant c, while the type of model does not seem to have

a signi�
ant e�e
t.

Table 3.1: Simulation study: c values 
orresponding to di�erent type I error α

N s Model α

0.10 0.05 0.01

200 2 1 7.17 7.68 9.53

2 7.33 7.93 9.25

3 7.29 7.89 9.20

4 7.18 7.84 9.50

3 5 5.71 6.13 7.03

6 5.78 6.30 7.20

7 5.72 6.20 7.50

8 5.67 6.17 7.50

400 2 1 8.10 8.83 10.20

2 8.05 8.59 10.50

3 7.93 8.55 9.80

4 7.57 8.19 9.68

3 5 6.13 6.70 8.13

6 6.23 6.78 8.13

7 6.15 6.67 8.00

8 5.80 6.33 7.80
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In real appli
ation, it may be ne
essary to analyze time series with di�erent

sample sizes and di�erent number of 
omponents. To address this need, we suggest

a theoreti
al approximation to derive the 
onstant c.

Let us 
onsider a test where under the null hypothesis the time series is outlier

free and under the alternative hypothesis a single outlier o

urs at unknown time t.

We may use as statisti
 test:

Λmax = max
1≤t≤N

{Λt},

where Λt = (X′
t
Γ̂iz)′(X′

t
Γ̂iXt)

−1(X′
t
Γ̂iz) andXt is the pattern design 
orresponding

to just one outlier at time t. The statisti
 Λt is a quadrati
 form and is distributed

approximately as a 
hi-squared random variable with s degrees of freedom under

the null hypothesis of no outliers. The �nite sample distribution of Λmax is 
ompli-


ated be
ause of the 
orrelation between the Λt. We may obtain the approximate

per
entiles of Λmax assuming the independen
e among the Λt (though a relatively

strong hypothesis)

P (Λmax < λα) = [P (χ2
s < λα)]

N = 1− α

or

P (χ2
s < λα) = (1− α)1/N ,

where λα is the (1 − α)th quantile of the 
hi-square distribution with s degrees of

freedom. We reje
t the null hypothesis if Λmax is greater than the quantile λα at

the α signi�
an
e level.

Now, a problem arises, when the value of N in
reases the quantity (1−α)1/N → 1

and λα →∞. To solve this problem we approximate the distribution of Λmax with

the Gumbel distribution:

P

(

Λmax − dN
cN

< να

)

= exp(−e−να) = 1− α,

where dN = 2(logN + ( s
2
− 1) log(logN)− log Γ( s

2
)) and cN = 2, and we obtain the

quantiles for Λmax as λα = cnνα + dN .

Now we 
an 
hoose the 
onstant c so that, whenever the null hypothesis of no

outlier is a

epted, the �tness of the 
hromosome with no outlier is larger than

the one of the best one-outlier 
hromosome, or similarly Λmax < cs, therefore put

c = λα/s.

In Table 3.2 we observe that the resulting theoreti
al c values are always slightly

larger than the simulated ones, so that by using them the test is more 
onservative.
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The dis
repan
y between the theoreti
al and simulated c values may be 
aused by

the dependen
e among the Λt variables.

The c values used in our simulation experiments are the simulated ones values

reported in Table 3.2 
orresponding to α = 0.05

Table 3.2: Simulated and theoreti
al c values 
orresponding to di�erent type I error

α, dimensions s and sample sizes N

N s α

0.10 0.05 0.01

200 2 7.2 7.9 9.4

7.5 8.3 9.9

3 5.7 6.2 7.3

5.9 6.4 7.5

400 2 7.9 8.5 10.0

8.2 8.9 10.6

3 6.0 6.6 8.0

6.3 6.7 8.0

The parameters m and g

To determine the value of order m in (1.37) we used the FPE 
riterion (Lütkepohl

(1993)). Alternatively we 
ould use Akaike's Information Criterion whi
h di�ers

from FPE essentially by a term of order O(N−2) and thus the two 
riteria are

almost equivalent for large N (Lütkepohl (1993)).

The value of the parameter g should be 
hosen by taking into a

ount the length

of the time series and all other relevant information. The value g a�e
ts the 
hoi
e

of the iteration number. If we in
rease the value for g it seems reasonable to in
rease

also the iteration number of the meta-heuristi
 algorithms be
ause a larger solution

spa
e has to be explored. The sele
ted value for g is 5 for all algorithms.
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3.4.2 Meta-heuristi
 
ontrol parameters tuning

A 
orre
t 
hoi
e of the value of the 
ontrol parameters is important for the perfor-

man
e of the meta-heuristi
 algorithms. For the geneti
 algorithms, 
hoi
es have to

be made for the 
rossover probability (pcross), mutation probability (pmut), popu-

lation size (pop) and the number of generations or termination 
riterion (gen) (see

se
tion A.4 in appendix).

For the simulated annealing algorithm we have to determine the initial tempera-

ture (T0), �nal temperature (Tf), number of internal loop iterations at any temper-

ature (SAiter), and the 
onstant a in (3.9), 
hara
terising the 
ooling s
hedule. As

reported in se
tion (A.2) in appendix, the number of evaluations of the obje
tive

fun
tion ISAtot depends on the 
hoi
e of these parameters. Generally we establish a

number of ISAtot and the parameters are 
hosen in order to meet this 
onstraint (see

se
tion A.2 in appendix).

Threshold a

epting requires two parameters: the number of thresholds (Nt) and

the number of internal loop iterations at any threshold (TAiter). Also in this 
ase, if

we set ITA
tot , Nt and TAiter must be 
hosen in su
h a way that their produ
t is equal

to ITA
tot (see se
tion A.3 in appendix).

Unfortunately, the 
orre
t 
hoi
e of the suitable parameter values is a di�
ult

task be
ause a wide range of values needs to be 
onsidered for ea
h parameter and

some parameters may be 
orrelated with ea
h other. Few theoreti
al guidelines are

available while experien
e with pra
ti
al appli
ations of meta-heuristi
 algorithms

is o�ered by a vast literature.

Regarding the TA, two simple pro
edures that 
an be used to generate the thresh-

old sequen
es are reported in se
tion (A.3) of appendix. First, one might use a linear

threshold sequen
e de
reasing to zero and, alternatively, one might use a data driven

generation of the threshold sequen
e (see algorithm (3) in the appendix) suggested

by Winker & Fang (1997). In our simulation experiments we set the value of M in

algorithm (3) to 2,000. There are several examples in literature suggesting that the

two pro
edures are equivalent, while in some appli
ations the method proposed by

Winker & Fang (1997) yields better results. As far as the number of thresholds Nt

is 
on
erned, Gilli & Winker (2009) suggested the minimum value for Nt around 10.

However, when the total number of iterations ITA
tot be
omes very large, Nt might be

in
reased.

Some guidelines for the 
hoi
e of GA parameters may be found in de Jong (1975),

S
ha�er et al. (1989), da Graça Lobo (2000), Eiben et al. (1999), South et al. (1993).

de Jong (1975) studies the e�e
ts of some 
ontrol parameters of GA on its perfor-
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man
e, 
on
erning the population size, and the 
rossover and mutation probabilities.

Using �ve di�erent fun
tion optimisation s
enarios, De Jong systemati
ally varies

these parameters, analyses the results and thus establishes guidelines for robust pa-

rameter 
hoi
e. De Jong suggests population size pop = 50, probability of 
rossover

pcross = 0.6, probability of mutation pmut = 0.001 and the adoption of the elitist

strategy. However, other empiri
al studies (Eiben et al. (1999), South et al. (1993),

da Graça Lobo (2000), Gao (2003), Grefenstette (1986)) indi
ate di�erent values for

these parameters.

Regarding the SA algorithm, the initial temperature must be set to a high value

enough to allow a move to almost any neighbourhood state. However, if the temper-

ature starts at too high a value then the sear
h 
an move to any neighbour and thus

transform the sear
h (at least in the early stages) into a random sear
h. Then, a very

high initial temperature may in�uen
e the quality of the performan
e and the length

of the 
omputational time. If we know the maximum distan
e (obje
tive fun
tion

di�eren
e) between one neighbour and another then we 
an use this information to


al
ulate a starting temperature. Another method, suggested in (Rayward-Smith,

1996), is to start with a very high temperature and 
ool it rapidly until about 60%

of worst solutions are being a

epted. This forms the real starting temperature and

it 
an now be 
ooled more slowly. A similar idea, suggested in (Dowsland, 1995), is

to rapidly heat the system until a 
ertain proportion of worse solutions are a

epted

and then slow 
ooling 
an start. This 
an be seen to be similar to how physi
al

annealing works in that the material is heated until it is liquid and then 
ooling

begins (i.e. on
e the material is a liquid it is pointless 
arrying on heating it).

Theoreti
ally, the 
ooling rate parameter a in (3.9) assumes values between 0 and

1, while Eglese (1990) reports that values used in pra
ti
e lie between 0.8 and 0.99.

Park & Kim (1998) suggest a systemati
 pro
edure, based on the simplex method

for non linear programming, to determine parameter values.

In 
on
lusion we 
an say that there is no uniformly best 
hoi
e of parameters,

but spe
i�
 problems may require di�erent values. Baragona et al. (2011) suggest

that a good 
hoi
e may be obtained by 
onsidering a range of possible values for the

same problems. In our appli
ations these parameters values are 
hosen by a tuning

experiment. For ea
h algorithm, di�erent 
ombinations of parameters values are

tried, keeping the number of the obje
tive fun
tion evaluations 
onstant. We sele
t

the parameter 
ombination that yields the largest frequen
y of true outlier pattern

dete
tion.
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A simulation experiment for tuning parameters

The remaining parameter values are 
hosen by means of a tuning experiment where

a set of 200 time series with N = 400 have been generated by Model 2, and outliers

at time indi
es 100 and 150 are analysed. All the algorithms run with a total of

2,000 evaluations of the obje
tive fun
tion.

For the SA, the Tf is always kept equal to 0.05. Sin
e Tf has the role of stopping


riterion, a value 
lose to zero seems reasonable, thus the probability of a

epting

a worse solution during the last iterations is very small. The examined values for

a are [0.90, 0.94, 0.95, 0.96℄ and for T0 are [2, 4, 6, 8, 10℄. For ea
h 
ombination,

the number of internal loop iterations SAiter is equal to the ratio between the total

number of evaluations of the obje
tive fun
tion (2000) and the number of di�erent

temperatures (the number depending on T0 and a). Table 3.3 shows the frequen
ies

of 
orre
t identi�
ations (based on 200 time series) for ea
h pair of a and T0. When

de
reasing the value of a, the best performan
e is obtained by in
reasing the value

of T0. The pair a = 0.95 and T0 = 8 is used.

Table 3.3: SA tuning experiment: frequen
ies of 
orre
t identi�
ations for di�erent

values of T0 and a.

a T0

2 4 6 8 10

0.90 0.825 0.845 0.850 0.830 0.870

0.94 0.820 0.850 0.860 0.880 0.880

0.95 0.835 0.880 0.840 0.900 0.855

0.96 0.820 0.835 0.875 0.870 0.845

For the GA algorithms, we 
ompare the frequen
y of the 
orre
t outlier pattern

identi�
ation for 8 di�erent 
ombinations of population size pop and number of gen-

erations gen, keeping the mutation probability pmut and the 
rossover probability

pcross 
onstant for all experiments. The values 
onsidered for the population size

are [10, 20, 30, 40, 50, 70, 100, 200℄, for the number of generations are [10, 20, 30, 40,

50, 70, 100, 200℄, while pcross = 0.001 and pmut = 0.6 (these values were suggested

by de Jong (1975)).

Table 3.4 suggests for the parameter pop an average value (between 70 and 100).

In a se
ond stage, di�erent 
ombinations of pmut and pcross are 
onsidered from

pmut = {0.1, 0.01, 0.001, 0.0005} and pcross = {0.4, 0.6, 0.8, 0.9} whereas the

population size and the number of generations are kept 
onstant at 100 and 20,

respe
tively. The results of some 
ombinations of pmut and pcross are reported in
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table 3.4. The results indi
ate that better results are obtained for average values

of 
rossover probability pcross and very low values, but not too mu
h, of mutation

probability pmut. Based on these results, we use as values: pmut = 0.001 and

pcross = 0.6.

For TA algorithm, we 
ompared a linear sequen
e of thresholds and a sequen
e

generated by the method given in Winker & Fang (1997). The linear sequen
es were

generated 
onsidering di�erent initial thresholds and di�erent rates of de
rease. The

initial thresholds {6, 8, 10, 14} are used while the values {0.90, 0.96} are 
onsidered

as rates of de
rease. For the method proposed by (Winker & Fang (1997)) , we


onsidered 8 
ombinations of the number of thresholds Nt and number of iterations

SAiter 
hoi
es from Nt ={10, 20, 30, 40 , 50, 70, 100, 200} and SAiter = {10,

20, 30, 40, 50, 70, 100, 200 }. With regard to the linear sequen
e, the results

suggest to use a high threshold and a rate of de
rease of the thresholds not very

rapid. For the method proposed by (Winker & Fang (1997)) the best result is

obtained in 
orresponden
e to number of thresholds Nt equal to 100. However,

there is not a 
onstant improvement as the number of thresholds is in
remented

and also the di�eren
es are not very marked. Observing the thresholds provided by

Winker & Fang (1997) method, we observed that the initial threshold is large enough

(slightly more than 14) and the thresholds de
rease very slowly. This parti
ular

result depends on the type of problem 
onsidered. The value of the obje
tive fun
tion

for the solutions that belong to a neighborhood 
an be very di�erent be
ause the

removal or insertion of a given anomaly 
an lead to great 
hanges in the value of

the AIC. This means that the distribution F (∆) (see algorithm (3) in the appendix)

does not appear to be symmetri
al around zero, but is asymmetri
 towards higher

values. From these results it was de
ided to use a sequen
e of thresholds Nt = 100

obtained by the method of Winker.

Table 3.4: TA and GA tuning experiment: frequen
ies of 
orre
t identi�
ations for

di�erent 
ombinations of parameters.

TA GA

(Nt, TAiter) fTA (pop, gen) fGA (pmut, pcross) fGA

(10, 200) 0.860 (10,200) 0.815 (0.01,0.4) 0.850

(20,100) 0.865 (20,100) 0.830 (0.01,0.6) 0.875

(30,70) 0.860 (30,70) 0.850 (0.01,0.8) 0.835

(40,50) 0.880 (40,50) 0.850 (0.01,0.9) 0.825

(50,40) 0.875 (50,40) 0.840 (0.001,0.4) 0.880

(70,30) 0.885 (70,30) 0.885 (0.001,0.8) 0.880

(100,20) 0.885 (100,20) 0.885 (0.001,0.9) 0.850

(200,10) 0.855 (200,10) 0.880 (0.0005,0.6) 0.830
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We summarize the parameter values used in the simulations. We imposed that

the obje
tive (�tness) fun
tion were evaluated not more than 10,000 times: ITA
tot =

ISAtot =I
GA
tot =10,000. For the algorithm SA we 
hose T0 = 8.0, Tf = 0.05, SAiter = 100,

a = 0.95. For the algorithm TA, we set Nt = 100 and TAiter = 100. For the geneti


algorithm we sele
ted pcross = 0.6, pmut = 0.001, pop = 100, gen = 100. With

g = 5, the solution spa
e Ω is of order 2×109 when the sample size is N = 200, and

it is of order 8 × 1010 when the sample size is N = 400 whereas the meta-heuristi


algorithms rea
h a satisfying 
onvergen
e to the optimum evaluating the obje
tive

fun
tion (�tness) no more than 10, 000 times.

3.5 Results

In Tables 3.5, 3.6 and 3.7 we report the results of the three meta-heuristi
 algorithms

and the TPP dete
tion pro
edure. In Tables 3.5 and 3.6, the rows labelled P2 sum-

marise the relative frequen
y of the 
orre
t outlier pattern (both outliers dete
ted

and only them), the rows labelled P1 summarise the relative frequen
y of only one

outlier 
orre
tly dete
ted and the rows labelled E summarise the relative frequen
y

of the solutions with wrong identi�
ations (i.e., observations that are identi�ed as

outliers while they are not). The 
omplement to one of the sum of these three fre-

quen
ies is the frequen
y of the no outlier solution. In Table 3.7, the rows labelled

P5 summarise the relative frequen
y of the 
orre
t outlier pattern (all �ve outliers

dete
ted and only them), the rows labelled P<5 summarise the relative frequen
y

of less than �ve outliers 
orre
tly dete
ted and the rows labelled E summarise the

relative frequen
y of solutions with wrong identi�
ations (i.e., observations that are

identi�ed as outliers while they are not). The 
omplement to one of the sum of these

three frequen
ies is again the frequen
y of the no outlier solution.

Table 3.5 shows that ea
h of the four algorithms has a high per
entage of su

ess

when the two outliers are far from ea
h other (t = 100, 150). The frequen
ies of full

identi�
ations are nearly equivalent for the four methods. The results are mixed and

no method seems uniformly superior to the others. For some models the frequen
y

of 
orre
t identi�
ation of the TPP method is larger than the 
orresponding meta-

heuristi
 frequen
y, while for other models the 
onverse is true.

Table 3.6 reports simulation results 
on
erning the outliers pat
h dete
tion where

outliers are introdu
ed at time indi
es t = 100, 101. We 
an see from this table that

for almost all models the meta-heuristi
 algorithms dete
t the outlier pat
h with

frequen
ies higher than those a
hieved by the TPP. Only for the model (7) the TPP

method provides satisfa
tory results. Moreover, for almost all the models the TPP's
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frequen
y of wrong identi�
ation E is 
onsiderable larger than the 
orresponding

frequen
ies a
hieved by meta-heuristi
 methods. In 
omparison to the pre
eding


ase (two outliers for ea
h other) here the frequen
y of the no outlier solution is

larger, and the largest for the TPP method. Finally, we 
an see that the frequen
ies

P2 for models with 200 observations are less than same models with 400 observations.

This may be due to the fa
t that the solution spa
e is larger and the meta-heuristi


methods are were easily trapped in some lo
al optimum.

In Table 3.7 are reported the results for the 
on�guration with 5 outliers where

three are 
onse
utive. The 
on�guration is very 
omplex and very di�
ult to dete
t

if the size of the outlier is not large enough. For this reason outlier sizes are set

to 5.0 for the instants 40, 100, 101, 102, 150. In the table 3.7 we 
an see that the

relative frequen
ies of 
orre
t 
on�guration P5 obtained through the meta-heuristi


methods are very di�erent and depending on the model. For some models the

relative frequen
y of 
orre
t outlier dete
tion are very low.

To redu
e the la
k of 
onvergen
e, we reported the simulations allowing for a

total number of obje
tive fun
tion (�tness) evaluations in
reased to 100,000 (instead

of 10,000), both for the most 
omplex 
on�guration (40, 100, 101, 102, 150) and for

thesimpler one (100, 101).

Table 3.8-3.9 shows the results obtained for the 
on�gurations 100, 101 and

40, 100, 101, 102, 150 setting the number of evaluations equal to 100,000. We 
an

see an improvement of the results in both 
ases but the in
rease of the frequen
ies

of 
orre
t identi�
ation is very large for the 
ase of 5 outliers. Now the relative

frequen
ies of 
orre
t 
on�guration dete
tion obtained through the meta-heuristi


methods are high and mu
h larger than those obtained with the TPP method for

seven of the eight models 
onsidered. For some models the 
orre
t pattern is always

found (frequen
y P5 assumes the value 1). The meta-heuristi
 algorithms show a

better performan
e than the TPP also in the third 
on�guration outliers (see Table

3.9).

Tables 3.8 and 3.9 evidently illustrate masking and smearing problems en
oun-

tered by the TPP pro
edure when additive outliers exist in a pat
h. It has been

noti
ed that this problems persist despite the size of outliers whereas the meta-

heuristi
 methods improve their performan
e when the outliers are inserted with a

bigger magnitude. Dete
ting a set of 
onse
utive outliers seems mu
h more di�
ult

and a�e
ted by the underlying models. The good performan
e of TPP in model

7 depends on the parti
ular parameters of the model generating data. The three

algorithms proposed here 
learly outperform the TPP method to dete
t pat
h of

additive outliers.
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To understand the poor TPP's results, let us to 
onsider the situation in whi
h

the time series follows a VAR(1) and there exists a pat
h of two additive outliers at

time indi
es t = T, T + 1, with magnitudes ωt = ω for t = T, T + 1. Suppose that

the model parameters are known, then the expe
ted values of the perturbations at

time indi
es t = T, T + 1 are given by

E(ω̂T ) = ωT + Γi0
−1Γi1ωT+1 = (Is + Γi0

−1Γi1)ω,

E(ω̂T+1) = ωT+1 + Γi0
−1Γi−1ωT = (Is + Γi0

−1Γi−1)ω.

We observe that they are biased. The bias depends on the inverse 
ovarian
e

matri
es and it may 
ause the masking e�e
t. The good performan
e a
hieved by

the TPP in model 7 may depend on the pe
uliar parameters of the models. On the


ontrary in our methods the estimates of the magnitude of outliers are unbiased.

3.5.1 Real time series data

In this subse
tion we illustrate the performan
e of the meta-heuristi
 pro
edures by

analysing a real example. The data are the well-known gas-furna
e series of Box

et al. (1994). This bivariate time series 
onsists of an input gas rate in 
ubi
 feet per

minute and the CO2 
on
entration in the outlet gas as a per
entage, both measured

at 9�se
ond time intervals. There are 296 observations. The TPP method �nds

additive multivariate outliers at positions 42, 54, 113, 199, 235, 264. All the other

algorithms, based on 1,000,000 obje
tive fun
tion (�tness) evaluations (T0= 8.0, Tf=

0.05, SAiter = 10,000, a = 0.95, gen=30,000, pop=30, Nt=100 and TAiter = 10,000,

g = 15, c = 8.2 and m = 6) 
onverge to the solution with 4 outliers at positions:

42, 54, 199 and 264. Additional information may be derived by looking also at the

sub-optimal solutions. Table 3.10 displays the outliers patterns 
orresponding to the

best ten solutions found after 1,000,000 obje
tive fun
tion evaluations. It suggests

that additional time indi
es may be 
onsidered as 
andidates for the true outlier

positions, giving additional insight about the probably outlying observations. It

turns out that for this series the TPP method has not given the best solution, but

the ten-th one in order of de
reasing obje
tive fun
tion.

Let I denote the number of evaluations of the obje
tive fun
tion. In order to


ompare the 
onvergen
e of the algorithms we 
al
ulate, for di�erent values of I

(100, 500, 1,000, 5,000, 10,000), the empiri
al distribution, based on 100 restarts,

of the best obtained obje
tive fun
tion. Table 3.11 reports some relevant statisti
s

(mean, standard deviation, best value and 5-th per
entile) about the empiri
al dis-
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Table 3.5: Comparison of the algorithm performan
es: outliers at t = 100, 150 based

on 104 iteration
N = 200 N = 400

TA SA GA TPP TA SA GA TPP

Model 1

P2 0.90 0.91 0.91 0.94 0.87 0.87 0.92 0.89

P1 0.05 0.04 0.04 0.02 0.10 0.10 0.05 0.06

E 0.05 0.05 0.05 0.04 0.03 0.03 0.03 0.04

Model 2

P2 0.91 0.90 0.91 0.92 0.92 0.92 0.94 0.93

P1 0.03 0.04 0.03 0.03 0.04 0.04 0.02 0.02

E 0.06 0.06 0.06 0.05 0.04 0.04 0.04 0.05

Model 3

P2 0.94 0.94 0.94 0.94 0.91 0.91 0.93 0.93

P1 0.01 0.01 0.01 0.00 0.02 0.02 0.00 0.00

E 0.04 0.04 0.04 0.06 0.06 0.06 0.06 0.07

Model 4

P2 0.94 0.94 0.94 0.90 0.91 0.91 0.91 0.91

P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E 0.06 0.06 0.06 0.10 0.09 0.09 0.09 0.09

Model 5

P2 0.90 0.90 0.90 0.93 0.94 0.94 0.94 0.94

P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E 0.10 0.10 0.10 0.07 0.06 0.06 0.06 0.06

Model 6

P2 0.90 0.90 0.90 0.92 0.90 0.90 0.90 0.94

P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E 0.10 0.10 0.10 0.08 0.10 0.10 0.10 0.06

Model 7

P2 0.95 0.94 0.95 0.94 0.90 0.90 0.90 0.93

P1 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

E 0.05 0.05 0.05 0.06 0.01 0.10 0.10 0.07

Model 8

P2 0.94 0.94 0.94 0.92 0.96 0.96 0.96 0.96

P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E 0.06 0.06 0.06 0.08 0.04 0.04 0.04 0.04

P2= frequen
y of event 'exa
tly two outliers found at times 100 and 150'

P1= frequen
y of event 'exa
tly one outlier found at time 100 or at time 150'

E= frequen
y of solutions with wrong identi�
ations
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Table 3.6: Comparison of the algorithm performan
es: outliers at t = 100, 101 based

on 104 iteration
N = 200 N = 400

TA SA GA TPP TA SA GA TPP

Model 1

P2 0.72 0.71 0.72 0.23 0.55 0.56 0.58 0.19

P1 0.05 0.06 0.05 0.08 0.07 0.06 0.05 0.07

E 0.11 0.11 0.11 0.18 0.13 0.13 0.12 0.14

Model 2

P2 0.74 0.74 0.75 0.22 0.68 0.67 0.69 0.21

P1 0.10 0.10 0.10 0.37 0.15 0.14 0.12 0.40

E 0.13 0.13 0.12 0.25 0.10 0.10 0.10 0.25

Model 3

P2 0.83 0.83 0.84 0.34 0.74 0.75 0.78 0.43

P1 0.03 0.03 0.03 0.06 0.05 0.05 0.04 0.05

E 0.07 0.07 0.06 0.23 0.12 0.11 0.09 0.21

Model 4

P2 0.52 0.52 0.54 0.00 0.40 0.41 0.42 0.01

P1 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01

E 0.21 0.21 0.19 0.30 0.29 0.28 0.27 0.41

Model 5

P2 0.89 0.89 0.89 0.55 0.83 0.82 0.83 0.55

P1 0.00 0.00 0.00 0.08 0.01 0.02 0.01 0.11

E 0.11 0.11 0.11 0.23 0.15 0.15 0.15 0.23

Model 6

P2 0.84 0.84 0.84 0.55 0.81 0.81 0.82 0.52

P1 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01

E 0.13 0.13 0.13 0.32 0.17 0.17 0.17 0.35

Model 7

P2 0.92 0.92 0.92 0.90 0.88 0.88 0.88 0.87

P1 0.01 0.01 0.02 0.02 0.00 0.00 0.00 0.04

E 0.07 0.07 0.07 0.08 0.12 0.12 0.12 0.09

Model 8

P2 0.91 0.91 0.91 0.10 0.89 0.89 0.91 0.03

P1 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.08

E 0.09 0.09 0.09 0.70 0.11 0.11 0.09 0.88

P2= frequen
y of event 'exa
tly two outliers found at times 100 and 150'

P1= frequen
y of event 'exa
tly one outlier found at time 100 or at time 150'

E= frequen
y of solutions with wrong identi�
ations
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Table 3.7: Comparison of the algorithm performan
es: outliers at t =

40, 100, 101, 102, 150 based on 104 iteration

N = 200 N = 400

TA SA GA TPP TA SA GA TPP

Model 1

P2 0.60 0.58 0.63 0.32 0.32 0.32 0.37 0.24

P1 0.28 0.30 0.25 0.39 0.48 0.48 0.44 0.46

E 0.12 0.12 0.12 0.29 0.20 0.20 0.19 0.30

Model 2

P2 0.75 0.00 0.00 0.29 0.68 0.00 0.00 0.27

P1 0.13 0.00 0.00 0.45 0.20 0.00 0.00 0.50

E 0.12 0.00 0.00 0.26 0.12 0.00 0.00 0.23

Model 3

P2 0.72 0.75 0.76 0.28 0.47 0.47 0.49 0.35

P1 0.15 0.13 0.12 0.29 0.24 0.24 0.23 0.25

E 0.13 0.12 0.12 0.43 0.29 0.29 0.28 0.40

Model 4

P2 0.23 0.22 0.26 0.01 0.20 0.21 0.23 0.00

P1 0.31 0.32 0.31 0.22 0.21 0.20 0.20 0.19

E 0.46 0.46 0.43 0.77 0.59 0.59 0.57 0.81

Model 5

P2 0.84 0.84 0.85 0.55 0.72 0.71 0.72 0.54

P1 0.03 0.03 0.02 0.13 0.08 0.09 0.08 0.15

E 0.13 0.13 0.13 0.32 0.20 0.20 0.20 0.31

Model 6

P2 0.95 0.95 0.95 0.41 0.90 0.90 0.90 0.40

P1 0.02 0.02 0.02 0.04 0.02 0.02 0.02 0.03

E 0.03 0.03 0.03 0.55 0.08 0.08 0.08 0.57

Model 7

P2 1.00 1.00 1.00 0.91 1.00 1.00 1.00 0.90

P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

E 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.09

Model 8

P2 0.57 0.58 0.60 0.00 0.66 0.65 0.68 0.01

P1 0.11 0.10 0.08 0.35 0.03 0.04 0.03 0.28

E 0.32 0.32 0.32 0.65 0.31 0.31 0.29 0.71

P5= frequen
y of event 'exa
tly �ve outliers found at times 40, 100, 101, 102, 150'

P<5= frequen
y of event 'some of 
orre
t outliers are dete
ted'

E= frequen
y of solutions with wrong identi�
ations
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Table 3.8: Comparison of the algorithm performan
es: outliers at t = 100, 101 based

on 105 iteration
N = 200 N = 400

TA SA GA TPP TA SA GA TPP

Model 1

P2 0.73 0.73 0.73 0.23 0.61 0.61 0.61 0.19

P1 0.05 0.05 0.05 0.08 0.05 0.05 0.05 0.07

E 0.10 0.10 0.10 0.18 0.09 0.09 0.09 0.14

Model 2

P2 0.75 0.75 0.75 0.22 0.72 0.72 0.72 0.21

P1 0.10 0.10 0.10 0.37 0.11 0.11 0.11 0.40

E 0.12 0.12 0.12 0.25 0.10 0.10 0.10 0.25

Model 3

P2 0.84 0.84 0.84 0.34 0.83 0.83 0.83 0.43

P1 0.03 0.03 0.03 0.06 0.03 0.03 0.03 0.05

E 0.06 0.06 0.06 0.23 0.05 0.05 0.05 0.21

Model 4

P2 0.60 0.60 0.60 0.00 0.64 0.64 0.64 0.01

P1 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01

E 0.13 0.13 0.13 0.30 0.05 0.05 0.05 0.41

Model 5

P2 0.90 0.90 0.90 0.55 0.93 0.93 0.93 0.55

P1 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.11

E 0.10 0.10 0.10 0.23 0.06 0.06 0.06 0.23

Model 6

P2 0.85 0.85 0.85 0.55 0.88 0.88 0.88 0.52

P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

E 0.13 0.13 0.13 0.32 0.10 0.10 0.10 0.35

Model 7

P2 0.92 0.92 0.92 0.90 0.88 0.88 0.88 0.87

P1 0.01 0.01 0.02 0.02 0.00 0.00 0.00 0.04

E 0.07 0.07 0.07 0.08 0.12 0.12 0.12 0.09

Model 8

P2 0.93 0.93 0.93 0.10 0.96 0.96 0.96 0.03

P1 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.08

E 0.07 0.07 0.07 0.70 0.04 0.04 0.04 0.88

P2= frequen
y of event 'exa
tly two outliers found at times 100 and 150'

P1= frequen
y of event 'exa
tly one outlier found at time 100 or at time 150'

E= frequen
y of solutions with wrong identi�
ations
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Table 3.9: Comparison of the algorithm performan
es: outliers at t =

40, 100, 101, 102, 150 based on 105 iteration

N = 200 N = 400

TA SA GA TPP TA SA GA TPP

Model 1

P2 0.89 0.90 0.95 0.32 0.80 0.80 0.92 0.24

P1 0.06 0.05 0.00 0.39 0.09 0.09 0.00 0.46

E 0.05 0.05 0.05 0.29 0.11 0.11 0.08 0.30

Model 2

P2 0.86 0.86 0.87 0.29 0.84 0.85 0.87 0.27

P1 0.10 0.10 0.09 0.45 0.12 0.11 0.09 0.50

E 0.09 0.04 0.04 0.26 0.04 0.04 0.04 0.23

Model 3

P2 0.95 0.97 0.99 0.28 0.86 0.90 0.94 0.35

P1 0.02 0.00 0.00 0.29 0.04 0.02 0.00 0.25

E 0.03 0.03 0.01 0.43 0.10 0.08 0.06 0.40

Model 4

P2 0.74 0.73 0.75 0.01 0.82 0.82 0.84 0.00

P1 0.14 0.15 0.13 0.22 0.05 0.05 0.05 0.19

E 0.12 0.12 0.12 0.77 0.13 0.13 0.11 0.81

Model 5

P2 0.97 0.97 1.00 0.55 0.96 0.96 1.00 0.54

P1 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.15

E 0.03 0.03 0.00 0.32 0.04 0.04 0.00 0.31

Model 6

P2 1.00 1.00 1.00 0.41 0.98 0.98 1.00 0.40

P1 0.00 0.00 0.00 0.04 0.02 0.02 0.00 0.03

E 0.00 0.00 0.00 0.55 0.00 0.00 0.00 0.57

Model 7

P2 1.00 1.00 1.00 0.91 1.00 1.00 1.00 0.90

P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

E 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.09

Model 8

P2 0.93 0.92 0.95 0.00 0.93 0.93 0.94 0.01

P1 0.02 0.03 0.00 0.35 0.02 0.02 0.01 0.28

E 0.05 0.05 0.05 0.65 0.05 0.05 0.05 0.71

P5= frequen
y of event 'exa
tly �ve outliers found at times 40, 100, 101, 102, 150'

P<5= frequen
y of event 'some of 
orre
t outliers are dete
ted'

E= frequen
y of solutions with wrong identi�
ations
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Table 3.10: Meta-heuristi
 algorithm solutions for the gas�furna
e series

Solution f(x) Lo
ations

S1 -53.82 42 54 199 264

S2 -53.29 43 54 199 264

S3 -51.42 42 54 199 235 264

S4 -50.89 43 54 199 235 264

S5 -50.10 42 54 113 199 264

S6 -49.57 43 54 113 199 264

S7 -48.55 42 55 199 264

S8 -48.02 43 55 199 264

S9 -47.78 42 54 198 264

S10 -47.70 42 54 113 199 235 264

Table 3.11: Statisti
s of empiri
al distributions for di�erent values of I (based on

100 runs)

I TA SA

µ̂ σ̂ best q0.05 µ̂ σ̂ best q0.05

100 -19.50 14.77 -44.59 -39.42 -14.81 13.98 -40.32 -36.24

500 -42.54 6.43 -53.82 -53.82 -33.21 7.65 -45.54 -44.58

1,000 -48.68 4.71 -53.82 -53.82 -39.10 6.60 -53.82 -48.69

5,000 -52.83 1.87 -53.82 -53.82 -52.79 1.92 -53.82 -53.82

10,000 -53.16 1.17 -53.82 -53.82 -53.16 1.15 -53.82 -53.82

I GA1 GA2

µ̂ σ̂ best q0.05 µ̂ σ̂ best q0.05

100 -31.69 6.91 -44.92 -44.02

500 -44.59 6.86 -53.82 -53.82

1,000 -49.19 4.53 -53.82 -53.82

5,000 -51.71 2.92 -53.82 -53.82

10,000 -53.01 1.17 -53.82 -53.82
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tributions along the guidelines suggested by Gilli & Winker (2009). As I in
reases,

the distributions shift to the left (µ̂ de
reases) and be
ome less dispersed (σ̂ de-


reases). The GA show a better initial performan
e due to the favourable way the

initial population is 
hosen, but the SA and the TA have a faster 
onvergen
e speed.

At the last iteration (I = 10, 000), the best value (f(x) = −53.82) is found in 59

out of 100 runs for the SA, in 58 out of 100 runs for the TA, in 46 out of 100 for the

GA.





Chapter 4

Con
lusions and Further

Developments

In 
hapter 2, a GAs-based pro
edure for identifying and estimating a MSETAR

model with univariate or bivariate threshold variable is suggested. The pro
edure

uses a spe
ial binary en
oding 
omposed of several fragments ea
h of whi
h represent

a integer parameter of the MSETAR model. In spite of the relative 
omplexity of

the 
hromosome the geneti
 operators are suitable for simple implementation so that

the 
omputational burden is quite low. A simulation experiment demonstrated the

validity of the GAs for implementing the identi�
ation and estimation pro
edure for

building a nonlinear model in a multivariate setting. An appli
ation to real world

data 
on
erned with ex
hange rates of the United States dollar with four other


ountries 
urren
y between January 1980 and Mar
h 1984 proved the e�e
tiveness

of our pro
edure in empiri
al appli
ations.

There are at least two issues that will possibly be interesting subje
t matters for

future resear
h. The �rst one is 
on
erned with the 
onsideration of subset VAR

models in ea
h regime. This may save 
onsiderable estimation e�ort, produ
es more

stable 
oe�
ient estimates and would lead to the identi�
ation of a smaller size

parameter set. On the other hand, the identi�
ation of subset models is known to


onstitute a di�
ult problem for whi
h GAs have been suggested in the 
ontext of

VAR models and univariate threshold models. The additional 
omputational burden

is a non negligible obsta
le that requires both an appropriate en
oding and a 
areful

programming to be over
ome. Next, 
onsideration of more than two 
omponent

series to be used as threshold variables for regime identi�
ation is an intri
ate matter

that surely deserves further resear
h. As before, it involves not only theoreti
al

di�
ulties but the development of dedi
ated programming tools as well.
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In 
hapter 3, three meta-heuristi
 methods for dete
ting additive outliers in mul-

tivariate time series are proposed. Meta-heuristi
 algorithms, unlike other methods

in literature, do not identify and remove outliers one at a time, but examine sev-

eral proposed outlier patterns, where all observations are simultaneously 
onsidered.

This feature seems to be e�e
tive in handling masking (meaning that one outlier

hides others) and swamping (when outliers make other 
lean observations to appear

outliers as well) e�e
ts 
aused by multiple outliers. Furthermore, our methods do

not require the spe
i�
ation of an adequate multivariate model, whi
h is usually a

di�
ult task, espe
ially when the data are 
ontaminated by outliers. The pro
edures

are illustrated by analysing arti�
ial and real data sets. The results obtained from

the simulation experiments seem to support the idea that the meta-heuristi
 algo-

rithms 
onstitute a valid approa
h to dete
t the time points where potential outliers

in ve
tor time series are lo
ated. In our experiment the meta-heuristi
 methods

provide better results than the TPP method to identify outlier pat
h, while the

results are similar for the 
ase of well separated outliers. The examination of the

�gas-furna
e� data of Box and Jenkins yields satisfa
tory results. Comparing the

results obtained by the dete
tion pro
edure of Tsay et al. (2000) with the best solu-

tion provided by meta-heuristi
 algorithms, we observe that they have in 
ommon

four out of six outliers lo
ations. Su
h small dis
repan
y is 
aused by the di�er-

en
e between the two identi�
ation pro
edures. The e�
ien
y of the meta-heuristi


methods proposed in this study, depends 
ru
ially on the 
hoi
e of appropriate val-

ues for some 
ontrol parameters. The simulation and the theoreti
al study used for

determining the value of parameter c, allows us to 
ontrol for the type I error α. For

any given value of α there is a 
orresponding value for c that does not depend on the

underlying model. It only depends on the number of 
omponents (s) and the length

of the time series. In the 
ase of real data, given a value of α, the 
orresponding

value of c, as reported in Table 3.2, 
an be used.

The presen
e of partial outliers, i.e., anomalies that a�e
t only some 
omponents

of the multivariate series, may be an issue to be 
onsidered for future developments.

Moreover, an interesting further problem is the outlier identi�
ability, that is, study-

ing how large should the outliers size to ensure that the 
orre
t outlier 
on�guration

has the maximum �tness.
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Meta-heuristi
 methods

A.1 Introdu
tion

Many optimisation problems do not satisfy the ne
essary 
onditions to guarantee

the 
onvergen
e of traditional numeri
al methods. For instan
e, in order to apply

standard gradient methods to maximum likelihood estimation we need a globally


onvex likelihood fun
tion, however there are a number of relevant 
ases with non


onvex likelihood fun
tions or fun
tions with several lo
al optima. Another 
lass of

hard problems is when the solution spa
e is dis
rete and large. These problems are

known as 
ombinatorial problems. There is an obje
tive fun
tion to be minimized,

as usual; but the spa
e over whi
h that fun
tion is de�ned is not simply the n-

dimensional spa
e of n 
ontinuously variable parameters. Rather, it is a dis
rete,

but very large, 
on�guration spa
e, like the set of possible orders of 
ities, or the

set of possible allo
ations of sili
on real estate blo
ks to 
ir
uit elements. We 
an


onsider a general statement of 
ombinatorial optimization problem as:

Minimize f(x1, x2, . . . , xn) : Ω→ R (A.1)

where the variables x1, x2, . . . , xn take dis
rete values and f(·) represents the

obje
tive fun
tion, whi
h has to be minimized over a dis
rete n-dimensional sear
h

spa
e Ω (the 
olle
tion of all feasible solutions). Of 
ourse, by repla
ing f(·) with
−f(·), the algorithm 
an also be applied to maximization problems.

A simple approa
h for solving an instan
e of a 
ombinatorial problem is to list

all the feasible solutions, evaluate their obje
tive fun
tion, and pi
k the best one.

However, for a 
ombinatorial problem of a reasonable size, the 
omplete enumeration

of its elements is not feasible, and most available sear
hing algorithms are likely
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to yield some lo
al optimum as a result ((Rayward-Smith et al. 1996)). Meta-

heuristi
 algorithms are often used to solve this kind of problems. Heuristi
s typi
ally

start with a feasible solution and use an iterative pro
edure to sear
h for improved

solutions. For the minimization problem (equation A.1) with feasible sear
h spa
e

Ω, an heuristi
 sear
hes for a pra
ti
al solution 
lose to the optimal solution x∗

where, for any x ∈ Ω, f(x∗) < f(x). These algorithm are 
all meta-heuristi
s

be
ause 
onsist of general sear
h prin
iples organized in a general sear
h strategy.

The su

ess of meta-heuristi
 methods is due to several fa
tors: they do not rely

on a set of strong assumptions about the optimisation problem, they are robust to


hanges in the 
hara
teristi
s of the problem, they do not produ
e a deterministi


solution but a high quality sto
hasti
 approximation to the global optimum.

In this thesis we are interested in the following meta-heuristi
 methods: simulated

annealing, threshold a

epting and geneti
 algorithms.

SA and TA are 
lassi�ed as lo
al sear
h methods. Classi
al lo
al sear
h algorithms

are a 
lass of methods in whi
h the iterative pro
edure starts with a feasible solution

ξc, and then at ea
h iteration attempts to �nd a better solution by sear
hing in a

neighbourhood of the 
urrent solution ξc. This neighbourhood is a set of feasible

solutions where the values of the variables are 
lose to those of the 
urrent solution.

Ea
h time a new solution in the neighbourhood is an improvement, it is used to

update the 
urrent solution. The iterative pro
edure ends based on pre-spe
i�ed

stopping 
riteria, su
h as when no further improvement is found or when the total

number of iterations rea
hes a given limit. However, these algorithms may get stu
k

in lo
al optima. To avoid this problem, the lo
al sear
h algorithms we adopt in this

resear
h may a

ept worse solutions than the 
urrent one.

Geneti
 algorithms were initially developed by Holland (1975) and are 
lassi�ed

as population based methods, or evolutionary algorithms. They work on a whole set

of solutions that is adapted simultaneously by imitating the evolutionary pro
ess of

spe
ies that �t to the environment and reprodu
e.

We give a brief sket
h of the three methods.

A.2 Simulated annealing

Simulated annealing (SA) is a random sear
h te
hnique based on an analogy to the

physi
al pro
ess of annealing that o

urs in thermodynami
s, when a heated mate-

rial 
ools down and 
hanges its stru
ture under a 
ontrolled temperature lowering

s
hedule. At high temperatures, the mole
ules of a liquid move freely with respe
t
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to one another. If the liquid is 
ooled slowly, thermal mobility is lost. The atoms are

often able to line themselves up and form a pure 
rystal that is 
ompletely ordered

over a distan
e up to billions of times the size of an individual atom in all dire
-

tions. This 
rystal is the state of minimum energy for this system. The amazing

fa
t is that, for slowly 
ooled systems, nature is able to �nd this minimum energy

state. In fa
t, if a liquid metal is 
ooled qui
kly or quen
hed, it does not rea
h this

state but rather ends up in a poly
rystalline or amorphous state having somewhat

higher energy. So the essen
e of the pro
ess is slow 
ooling, allowing ample time for

redistribution of the atoms as they lose mobility. This is the te
hni
al de�nition of

annealing, and it is essential for ensuring that a low energy state will be a
hieved.

Metropolis et al. (1953) introdu
ed a simple algorithm, known as Metropolis

algorithm, to simulate the annealing pro
ess. In ea
h step of this algorithm, an

atom is given a small random displa
ement and the resulting 
hange, ∆E, in the

energy of the system is 
omputed. If ∆E ≤ 0, the displa
ement is a

epted, and the


on�guration with the displa
ed atom is used as the starting point of the next step.

The 
ase ∆E > 0 is treated probabilisti
ally: the probability that the 
on�guration

is a

epted is P (∆E) = exp(−∆E/kT ). This 
hoi
e of P (∆E) has the 
onsequen
e
that the system evolves into a Boltzmann distribution.

Thirty years later, Kirkpatri
k et al. (1983) proposed a method, based on Metropolis

algorithm, for �nding the global minimum of a obje
tive fun
tion that may possess

several lo
al minimal. This method, 
alled simulated annealing, used the obje
tive

fun
tion in pla
e of the energy, 
on�gurations are feasible solutions of the problem

and the 
hange of 
on�guration 
orresponds to neighbouring solutions.

In analogy with the Metropolis algorithm, simulated annealing is 
hara
terised

by the presen
e of a 
ontrol parameter T 
alled temperature, an annealing s
hedule

whi
h tells how it is lowered from high to low values, an a

eptan
e probability and

a stopping rule. Temperature T is a non-in
reasing fun
tion of time; it is designed

to ex
lude almost all bad moves at the end. In a 
lassi
al s
hedule starting from T0,

the temperature is maintained 
onstant for SAiter 
onse
utive steps. Then, after

ea
h series of SAiter steps, it is de
reased through multipli
ation by a �xed fa
tor α

(0 < α < 1). This implies the setting of three parameters, T0, α and SAiter, whi
h

will be respe
tively referred to as initial temperature, 
ooling rate and length of

plateau. Di�erent 
ooling s
hedules are suggested in the literature. On the analogy

of thermodynami
s, a Boltzmann-like distribution is usually 
hosen as a

eptan
e

probability. The stopping 
riteria 
an either be a suitably low temperature or when

the system is frozen at the 
urrent temperature (i.e. no better or worse moves are

being a

epted).
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SA algorithm is an iterative pro
edure that extends the lo
al sear
h method,

des
ribed above, to allow for a new solution at some iterations to be worse than the


urrent solution, rather than an improvement. This extension helps to avoid getting

trapped in a lo
al optimum. By a

epting worse solutions in some neighborhoods,

the heuristi
 sear
hes more widely within the feasible sear
h spa
e, so that it is more

likely to es
ape a lo
al optimum and move to the global optimum.

In terms of the minimization problem given by equation (A.1), the algorithm for

a simulated annealing heuristi
 
onsists of the steps reported in algorithm (1).

Algorithm 1 Pseudo
ode for simulated annealing.

1: Initialise T0, Tf , a and SAiter

2: Generate initial solution ξc

3: T = T0

4: while T > Tf do

5: for r = 1 to SAiter do

6: Compute ξn ∈ N(ξc) (neighbour to 
urrent solution)

7: Compute ∆ = f(ξn)−f(ξc) and generate u from a uniform random variable

between 0 and 1

8: if ∆ < 0 or e−∆/T > u then

9: ξc = ξn

10: end if

11: end for

12: T ← aT

13: end while

Like the lo
al sear
h method, the simulated annealing heuristi
 sear
hes for a new

solution ξn at ea
h iteration in the neighborhood of the 
urrent solution ξc. If the

new solution is an improvement(f(ξn) < f(ξc)), it is a

epted as the update to the


urrent solution, just as in the lo
al sear
h method. In addition, if the new solution

is worse to the 
urrent solution (f(ξn) > f(ξc)), the new solution is sometimes

a

epted, with a given probability that depends on the di�eren
e between the values

of obje
tive fun
tion for the new and 
urrent solutions. The bigger this di�eren
e,

the smaller the probability that the new (worse) solution is a

epted as the update

to the 
urrent solution. The a

eptan
e probability is determined by whether a

random number u generated between 0 and 1 is less than or greater than the fun
tion

e−∆/T
, where ∆ is the di�eren
e between f(ξn) and f(ξc), and T is a temperature

parameter. The temperature is initially set at a high value, in order to a

ept worse

solutions frequently. In this way, in the initial stage of resear
h, the algorithm is

able to over
ome the lo
al optima, and the spa
e of the solutions may be explored
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more uniformly. It is then gradually lowered as the iterative pro
edure progresses

to allow fewer and fewer worse solutions, that is, the algorithm be
omes more and

more sele
tive in a

epting new solutions. By the end, only moves that improve

f(ξ) are a

epted in pra
ti
e. The algorithm then 
oin
ides, for low temperatures,

with a lo
al sear
h algorithm.

The total number of iterationISAtot is obtained as the number of di�erent temper-

atures Ntemperature (fun
tion of T0, Tf , a) times the number of steps SAiter.

Re
ent appli
ations of the simulated annealing algorithm are dis
ussed by Vera

& Díaz-Gar
ía (2008), Depril et al. (2008), Du
zmal & Assunção (2004) and Angelis

et al. (2001).

A.3 Threshold a

epting

Threshold a

epting (TA) was introdu
ed by Due
k & S
heuer (1990) as a deter-

ministi
 analog to simulated annealing. They applied the algorithm to a Travelling

Salesman Problem and argued that their algorithm is superior to 
lassi
al simu-

lated annealing. It is a re�ned lo
al sear
h pro
edure whi
h es
apes lo
al optima

by a

epting solutions whi
h are worse,but no more than a given threshold. The

algorithm is deterministi
 as it uses a deterministi
 a

eptan
e 
riterion instead of

the probabilisti
 one used in simulated annealing for a

epting worse solutions. The

number of steps where we explore the neighborhood for improving the solution is

�xed. The threshold is de
reased iteratively and rea
hes the value of zero after a

given number of steps. The TA algorithm has an easy parameterization, it is robust

to 
hanges in problem 
hara
teristi
s and works well for many problem instan
es. .

Threshold a

epting has been su

essfully applied to di�erent areas of statisti
s and

e
onometri
s (Winker & Fang (1997), Fang et al. (2000), Winker (2000), Winker

(2001), Gilli & Winker (2004), Maringer & Winker (2009), Lin et al. (2010), Lyra

et al. (2010), Winker et al. (2011)). An extensive introdu
tion to TA is given in

Winker (2001).

Algorithm (2) provides the pseudo-
ode for a prototype threshold a

epting im-

plementation for a minimization problem.

Comparing SA and TA algorithm we 
an see that, �rst, the sequen
e of temper-

atures T is repla
ed by a sequen
e of Nt thresholds τh with h = 1, . . . , Nt and, the

most important, the statement 8 of algorithm (1) is repla
ed by:



A.3 Threshold a

epting 90

Algorithm 2 Pseudo
ode for Threshold A

epting.

1: Initialise Nt, TAiter,

2: Generate the sequen
e τh, h = 1, . . . , Nt

3: Generate initial solution ξc

4: for h = 1 to Nt do

5: for r = 1 to TAiter do

6: Compute ξn ∈ N(ξc) (neighbour to 
urrent solution)

7: Compute ∆ = f(ξn)−f(ξc) and generate u from a uniform random variable

between 0 and 1

8: if ∆ < 0 or ∆ < τh then

9: ξc = ξn

10: end if

11: end for

12: end for

if ∆ < τh then ξc = ξn.

In this 
ase the total number of iteration ITA
tot is obtained as the produ
t of the

number of di�erent thresholds Nt and the number of times ea
h thresholds is used,

TAiter.

A 
ru
ial element of TA is its threshold sequen
e sin
e it determines TA's ability

to over
ome lo
al optima. Basi
ally, the idea is to a

ept ξn if its obje
tive fun
tion

value is better or if it is not mu
h worse than that of ξc where not mu
h worse means

the deterioration may not ex
eed some threshold τ de�ned by the threshold sequen
e.

In extreme 
ases of threshold settings, the algorithm behaves like a 
lassi
al lo
al

sear
h algorithm (if all threshold values are set equal to zero) or like a random

walk (if all values of the threshold sequen
e are set to a very large value). Althöfer

& Kos
hni
k (1991) demonstrated the 
onvergen
e of the TA algorithm under the

hypothesis that an appropriate threshold sequen
e exists. But in their proof they do

not provide a way to 
onstru
t an appropriate sequen
e. Consequently, the threshold

sequen
e is often 
hosen in a rather ad ho
 approa
h. Two simple pro
edures 
an be

used to generate the sequen
e of thresholds. In the �rst pla
e, one 
ould use a linear

sequen
e de
reasing to zero. The advantage of a linear threshold sequen
e 
onsists

in the fa
t, that for tuning purposes only the �rst value of the sequen
e has to be

sele
ted as it �xes the whole sequen
e. Alternatively, we 
an generate a sequen
e

of sele
ted thresholds using the a data driven method suggested in Winker & Fang

(1997). This pro
edure is detailed in algorithm (3).
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Algorithm 3 Pseudo
ode for generating threshold sequen
e.

1: Initialise Nt and M

2: for r = 1 to M do

3: Randomly 
hoose solution ξcr
4: Randomly 
hoose neighbour solution ξnr ∈ N(ξcr)

5: Compute ∆r =| f(ξcr)− f(ξnr ) |
6: end for

7: Compute the 
umulative distribution fun
tion F of ∆r, r = 1, . . . ,M

8: Compute the sequen
e of thresholds τi = F−1(Nt−1
Nt

), i = 1, . . . , Nt

This method uses a two step pro
ess to 
onstru
t the threshold sequen
e. For

the �rst step a large number (M) of possible solutions ξc is generated at random.

Then, we 
ompute the distan
es between the values of the obje
tive fun
tion at

random point ξcr and its neighbour ξnr , ∆r =| f(ξcr) − f(ξnr ) |, r = 1, 2, . . . ,M .

In the se
ond step the 
umulative empiri
al distribution F of the distan
es ∆r is


omputed. This distribution is an approximation of the distribution of lo
al relative


hanges of the obje
tive fun
tion. The thresholds τi are 
omputed as the quantiles

Qi 
orresponding to per
entiles Pi =
Nt−i
Nt

, i = 1, . . . , Nt. The threshold sequen
e

will be monotoni
ally de
reasing to zero.

A.4 Geneti
 algorithms

Geneti
 algorithms (GAs) are global sto
hasti
 optimization te
hniques that are

based on the adaptive me
hani
s of natural sele
tion evolution. They were in-

trodu
ed in Holland (1975), and subsequently made widely popular by Goldberg

(1989). The statisti
al appli
ations of the GAs have been dis
ussed by Chatter-

jee et al. (1996) and Chatterjee & Laudato (1997). GAs use two basi
 pro
esses

from evolution: inheritan
e, or the passing of features from one generation to the

next, and 
ompetition, or survival of the �ttest. Through these pro
esses individ-

uals whi
h are most su

essful in surviving will have relatively larger numbers of

o�spring. Poorly performing individuals will produ
e few of even no o�spring at all.

This means that the genes from the highly adapted, or �t individuals will spread

to an in
reasing number of individuals in ea
h su

essive generation. The 
ombina-

tion of good 
hara
teristi
s from di�erent parents 
an sometimes produ
e highly �t

o�springs, whose �tness is greater than that of either parent. In this way, spe
ies

evolve to be
ome more and more well suited to their environment.

The general stru
ture of geneti
 algorithms is shown in algorithm (4).
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Algorithm 4 Pseudo
ode for geneti
 algorithms.

1: Set population size (pop), probability of 
rossover (p
ross), probability of mu-

tation (pmut), number of generations (gen)

2: Generate initial population P of solutions

3: for i = 1 to gen do

4: Evaluate ea
h individual's �tness

5: Initialise P ′ = ∅ (set of 
hildren)
6: for j =1 to

pop
2
do

7: Sele
t individuals xa and xb from P with probability proportional to their

�tness

8: Generate p1 and p2 from a uniform random variable U(0, 1)

9: if p1 > p
ross then

10: Apply 
rossover to xa and xb to produ
e xchilda and xchildb

11: else

12: xchilda = xa and x
child
b = xb

13: end if

14: if p2 > pmut then

15: Apply mutation to xchilda and xchildb

16: end if

17: P ′ = P ′ ∪ {xchilda , xchildb }
18: end for

19: P = P ′

20: end for
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A geneti
 algorithm maintains a population of solution 
andidates and works

as an iteration loop. First, an initial population is generated randomly. Ea
h in-

dividual in the population is an en
oded form of a solution to the problem under


onsideration, 
alled a 
hromosome whi
h is usually a string of 
hara
ters or sym-

bols, e.g., a string of 0's and 1's (a binary string). The 
hromosomes evolve through

su

essive iterations, 
alled generations. During ea
h generation, the 
hromosomes

are evaluated by a �tness evaluation fun
tion, g(·), and sele
ted a

ording to the �t-

ness values using a sele
tion me
hanism, e.g., �tness-proportionate sele
tion, so that

�tter 
hromosomes have higher probabilities of being sele
ted. New 
hromosomes,


alled o�spring, are formed by either merging two sele
ted 
hromosomes from the


urrent generation using a 
rossover operator, or modifying a 
hromosome using a

mutation operator. Crossover results in the ex
hange of geneti
 material between

relatively �t members of the population, potentially leading to a better pool of solu-

tions. Mutation randomly introdu
es new features into the population to ensure a

more thorough exploration of the sear
h spa
e. A whole new population of possible

solutions is thus produ
ed by sele
ting the best individuals from the 
urrent gener-

ation, and mating them to produ
e a new set of individuals. This new generation


ontains a higher proportion of the 
hara
teristi
s possessed by the good members

of the previous generation. In this way, over many generations, good 
hara
teristi
s

are spread throughout the population, being mixed and ex
hanged with other good


hara
teristi
s as they go. By favouring the mating of the more �t individuals the

population's average �tness will improve and most promising areas of the sear
h

spa
e are explored. If the GA has been designed well, the population will 
onverge

to a best 
hromosome approa
hing the optimal or near-optimal solution.

To use geneti
 algorithms, ea
h of the following must be developed:

En
oding s
heme. In GAs, a population of 
andidate solutions is maintained

and manipulated by geneti
 operators. The solutions are en
oded as 
hromosomes

(usually strings of 
hara
ters or symbols, e.g., binary strings, real number strings,

or symbol strings) to whi
h geneti
 operators 
an be applied. An en
oding s
heme

is needed to map 
andidate solutions into 
oded strings.

Initialization of population. The initialization is usually done randomly to

sample the sear
h spa
e uniformly without bias. A well-initialized population 
an

improve the algorithm's robustness and e�e
tiveness in �nding an optimal solution,

while a poorly-initialized population may trap the algorithm in lo
al optima and

make it hard to rea
h the global optimum.

Evaluation fun
tion. During the operation of geneti
 algorithms, all 
hro-

mosomes are evaluated to see how �t they are as solutions to the problem. An
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evaluation fun
tion is required to assign a �tness value to ea
h 
hromosome.

Sele
tion. The key prin
iple of Darwinian natural evolution theory is that �tter

individuals have a greater 
han
e to reprodu
e o�spring, and it is by this prin
iple

of survival of the �ttest that spe
ies evolve into better forms. In geneti
 algorithms,

the bias towards �tter individuals is a
hieved through sele
tion. The obje
tive of

any sele
tion s
heme is to statisti
ally guarantee that �tter individuals have a higher

probability of sele
tion for reprodu
tion. In a GA, sele
tion is 
arried out in two

di�erent stages: parent sele
tion and generational sele
tion. Parent sele
tion is the

step in whi
h individuals from the parent generation are sele
ted as parents to 
reate

o�spring. Generational sele
tion is 
arried out after a spe
i�ed number of o�spring

are generated. In general, the new generation is 
reated by sele
ting individuals from

both the parent generation and the o�spring generation. Most sele
tion s
hemes be-

long to the following two 
ategories: sto
hasti
 sele
tion and deterministi
 sele
tion.

For parent sele
tion, sto
hasti
 sele
tions are usually applied, and for generational

sele
tion, deterministi
 sele
tions are usually used. Fitness proportionate sele
tion

(roulette wheel and sto
hasti
 universal) and tournament sele
tion are two of the

most popular sto
hasti
 sele
tion algorithms. Proportionate sele
tion methods as-

sign probability to an individual a

ording to its �tness, and this 
an be problemati
.

Indeed, if the �tness range is too large, then only a few good individuals will be se-

le
ted. This will tend to �ll the entire population with similar 
hromosomes and

will limit the ability of the GA to explore the sear
h spa
e. On the other hand, if

the �tness values are too 
lose to ea
h other, then the GA will tend to sele
t one


opy of ea
h individual, with only random variations in sele
tion. Consequently, it

will not be guided by small �tness variations and will be redu
ed to random sear
h.

Fitness s
aling and Rank-based sele
tion are two alternative methods that have been

proposed to 
ompensate for these issues. Using �tness s
aling, the �tness of all par-

ents 
an be s
aled relative to some referen
e value, and proportionate sele
tion then

assigns sele
tion probability a

ording to the s
aled �tness values. Several s
aling

me
hanisms have been proposed. In general, the s
aled �tness g
′

k derived from the

raw �tness gk for 
hromosome k 
an be expressed as g
′

k = G(gk): where the mapping

fun
tion G(·) transforms the raw �tness into s
aled �tness. The fun
tion G(·) may

take di�erent forms to yield di�erent s
aling methods, su
h as linear s
aling, sigma

trun
ation, power law s
aling, et
. For example, the 'sigma trun
ation s
aling' (e.g.,

Goldberg 1989) 
onsists in applying the normalization transform

gk
′

= gk − (ḡ − cσ) ,

where ḡ is the population mean, c is a suitable real positive 
onstant and σ
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the standard deviation, and in ex
luding the individuals with zero or negative �t-

ness from sele
tion. For detailed des
ription of s
aling methods, (see Gen & Cheng

(1997)).

Rank-based sele
tion methods utilize the indi
es of individuals when ordered a
-


ording to �tness to 
al
ulate the 
orresponding sele
tion probabilities, rather than

using absolute �tness values (Baker 1987)).

Deterministi
 sele
tion s
hemes are usually used in generational sele
tion to se-

le
t individuals from both the parent generation and o�spring generation to 
reate

the next generation. Most GA implementation are based on the generational re-

pla
ement where the entire parent generation is repla
ed by their o�spring (i.e., the

o�spring generation is taken as the new generation, and the parent generation is

dis
arded after the o�spring generation is 
reated).

Crossover. On
e two 
hromosomes are sele
ted, the 
rossover ex
hanges parts of

their genes and generates two new strings that share 
hara
teristi
s of both original


hromosomes. Crossover is the most important geneti
 operator for a GA, and

it is the driving for
e for exploration of the sear
h spa
e. The performan
e of

the GA depends to a great extent on the performan
e of the 
rossover operator

used (Holland 1975). Crossover operator is not typi
ally applied for all parents

but it is applied with probability pcross whi
h is normally set equal to a value in

[0.6,1℄. During the last de
ades, a number of di�erent 
rossover operators have been

su

essfully designed: single-point 
rossover, two-point 
rossover, uniform 
rossover,

non-geometri
 
rossover et
. A 
omparison of di�erent binary 
rossover operators

was undertaken in Eshelman et al. (1989), both theoreti
ally and empiri
ally. It was

found that none of them is the 
onsistent winner, and there was not more than 20%

di�eren
e in speed among the te
hniques.

Mutation. After new individuals are generated through 
rossover, mutation is

applied with a low probability, pmut, to introdu
e random 
hanges into the popu-

lation. In a binary-
oded GA, mutation means that, with a given probability pmut,

ea
h bit (gene) of ea
h string (
hromosome) may 
hange its value from 0 to 1 or

vi
e versa, while in a nonbinary-
oded GA, mutation involves randomly generating

a new value in a spe
i�ed position in the 
hromosome. In GAs, mutation serves the


ru
ial roles of repla
ing gene values lost from the population during the sele
tion

pro
ess so that they 
an be tried in a new 
ontext, and of providing gene values

that were not present in the initial population. By introdu
ing random 
hanges into

the population, more regions of the sear
h spa
e 
an be evaluated, and premature
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onvergen
e 
an be avoided. A variety of mutation operators have been proposed in

the literature: Flip Bit, uniform, non-uniform, Gausssian et
.
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