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Abstract

Due to the deficiency of linear models in capturing some commonly observed fea-
tures of time series data, many non-linear time series models have been proposed
in the literature. Two models that have gained much attention are the so-called
self-exciting threshold autoregressive (SETAR) model and the outlier model. Setar
model has been found very effective for modeling and forecasting non linear time
series in a wide range of application fields. Furthermore, SETAR model is able
to capture nonlinear characteristics as limit cycles, jump resonance, and time irre-
versibility. Outlier models are important in time series analysis because they can be

improve model identification, parameter estimation and forecasting.

Techniques for vector nonlinear time series modeling have only recently begun
to be investigated but multivariate nonlinearity analysis requires more research. In
this thesis we dealt with outliers and threshold models in a multivariate framework.
In particular the attention is focused on a multivariate SETAR (MSETAR) model
where each linear regime follows a vector autoregressive (VAR) process and the
thresholds are multivariate and the detection of multiple outliers, especially those

occurring close in time.

In chapter 2, we propose a methodology based on genetic algorithms (GAs) for
building MSETAR models. The GA is designed to estimate the structural parame-
ters, that is to determine the appropriate number of regimes and find multivariate
thresholds parameters. The proposed methodology is tested by means of simulated

and real time series.
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In chapter 3, a class of meta-heuristic methods to detect multiple additive out-
liers in multivariate time series is proposed. This class includes: simulated annealing,
threshold accepting and genetic algorithms. In contrast with many of the existing
methods, they do not require to specify a vector ARMA model for the data and de-
tect any number of potential outliers simultaneously reducing possible masking and
swamping effects. A generalised AIC-like criterion is used as an objective function
where the penalty constant is suggested by both a simulation study and a theoreti-
cal approximation. The comparison and the performance of the proposed methods
are illustrated by simulation studies and real data analysis. Simulation results show
that the proposed approaches perform well also for detecting patches of additive

outliers.
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Chapter 1

Introduction

1.1 Linearity and non linearity

From the pioneering work of Yule (1927) on AR modelling of the sunspot numbers to
the work of Box & Jenkins (1970) that marked the maturity of ARMA modeling in
terms of theory and methodology, linear Gaussian time series models flourished and
dominated both theoretical explorations and pratical applications (Fan & Yao 2003).
The popularity of these models is certainly due to their relatively simple mathemat-
ical tractability and also to the existence of computer software incorporating the
Box-Jenkins methodology. The basis for such modelling approaches was the Wold
representation theorem: any stationary process {X;} with a purely continuous spec-
trum and (non-normalized) spectral density function h(w) can be represented as a

linear combination of the term of an uncorrelated process ¢; (Priestley 1981):

+o0 +oo
X, = Z Vui—u Z 12 < o0 (1.1)

U=—00 U=—00

Moreover, if the spectral density function h(w) satisfies the Paley-Wiener condi-

tion:

/7r log{h(w)}dw > —o0, (1.2)

—T

then the process X (t) assume the one-sided form:

—+00
Xt = Z’}/uﬁg,u. (13)
u=0
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The condition 1.2 plays a fundamental role in real prediction theory. It’s a fairly
weak condition, and we may expect it to hold in the vast majority of cases (certainly,
in any situations of pratical interest). Wold’s theorem shows that any stationary
process may be approximated by linear models. This makes us understand the
enormous importance of linearity in the study of time series. The statement, how-
ever, shows some limitations of such models: the variables are uncorrelated and
not independent and the representation may require a potentially infinite number
of coefficients. Some considerations are needed to clarify the importance of the
dichotomy uncorrelation-independence. The aim of each model is to produce in-
dependent residuals (and possibly Gaussian) order to extract all the information
in the data. Uncorrelated residuals do not ensure that the structure of the data
has been captured by the model. For example, consider the problem of predicting
the future value of the process, given observations up to time ¢. In the case of the
strictly independent process, e;, the past contains no information on the future, and
hence the best predictor of a future value of ¢, is simply its (unconditional) mean.
For the uncorrelated process, ¢, it is still true that if we restricted attention to
linear predictors then, in this sense, the past contains no information on the future.
However, the past may well contain useful information on the future values if we
allow predictors which are non-linear functions of the observations. The following

example illustrates this point. Let the process 7; be defined by (Priestley 1981):

Ne =€+ Per1€io (1.4)

where e; is an independent process with zero mean and constant variance. It is
a clear that 7, also has zero mean and constant variance, and its autocovariance
functions assume value zero for all lag s # 0. Then, 7, is an uncorrelated process,
and, as far as its second order properties are concerned, it behaves just like an
independent process. However, given observations up to time ¢ one can clearly
construct a non-trivial predictor of 7,,1. Specifically, if we adopt the mean square

error criterion, the optimal predictor of 7;,; is its conditional expectation, i.e.:

Neyn = B [nt+h|77t> Ne—1, - - ] ) (1-5)

and for h = 1 we find from (1.5):

M1 = Perer (1.6)

As noted by Granger & Andersen (1978), if a process 1, of the above form was

obtained as the residual from a more general model, all the conventional test for
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white noise based on the behaviour of the autocovariance or autocorrelation function
would confirm that the residuals were, white noise, and hence there was no further
model structure left to fit. However, as we have seen, one could certainly exploit
the non linear structure of the 7, process in order to improve the predictors of the

original series.

Then, linear models for stationary series may not be adequate even though they
produce uncorrelated residuals. In fact, uncorrelated residuals may be very far from
the independence. In summary, a model can be said satisfactory when extracting all

information from the data, that is, when the residuals of the model are independent.

This means that the covariance matrix is not sufficient to fully characterize a
process. But it’s well known that, under hypothesis of normality and in this case
only, uncorrelation is equivalent to the independence and the covariance matrix
completely characterizes the process. In conclusion, if the process is Gaussian, then

the Wold representation is an appropriate model.

Wold’s theorem provides one of several possible representations, and therefore
does not exclude that the nature of relationships between the variables of the process
is nonlinear, or that there is a representation of X; through the use of nonlinear
functions, which is simpler and less expensive in terms of parameters of (1.3) that

involves an infinite number of parameters h, (Battaglia 2007).

Some nonstandard features, which we refer to as nonlinear features from now on,

have been well-observed in many real time series data:

In the early 1950s, the Australian statistician, Pat Moran, spent many of his
working hours at the library of the Department of Zoology, Oxford, which became
his office. As a result, he became interested in ecology and met the Oxford ecologist,
Charles Elton. In particular, he was interested in the famous 10-year lynx cycle,
which was and still is of immense interest to the ecologists. In Moran (1953a),
among the many available annual records of lynx trappings, he chose the longest
one, namely the 1821-1934 record of the MacKenzie River district in Canada. He
remarked on the asymmetry of the lynx cycle and that lynx dynamics would have

to be represented by nonlinear equations (Moran (19530), p.292).

Whittle (1954) analyzed the seiche time series of 660 observations at 15 second
intervals of the water level in a rock channel at Island Bay on the Wellington coast
in his native country, New Zealand. Whittle noted a significant arithmetical rela-
tionship among the periods of the prominent peaks of the spectral density function

estimate on time series. Such a relationship is beyond the scope of linear models.

Tong et al. (1985) studied the Jokulsa river system, consisting of three time series



1.1 Linearity and non linearity 4

in 1972: river-flow, precipitation and temperature. The nonlinearity is a result of
the phase change from ice to water. The inadequacy of linear models is self-evident

in this case.

Modeling these nonstandard features or other nonstandard as nonnormality,
asymmetric cycles, bimodality, non linear relationship between lagged variables, time
wrreversibity, structural breaks or outliers is beyond the scope of Gaussian time series

models.

Due to the deficiency of linear models in capturing some commonly observed
features of time series data, many non-linear time series models have been proposed
in the literature. The first systematic study of non-linear models is due to Wiener
in 1958, which considered an extension of the Volterra model of the following form

(this representation exists under general conditions):

oo o o0

Xy = Z Vu€t—u 1 Z Z Vui€t—u€t—i + Z Z Z Vi €t—u€t—i€t—j +

u=0 u=0 i=0 u=0 i=0 ;=0
9] o o 9]

+ E E E Vuiji€t—u€t—i€t—j€t—1 T - .. (1.7)
u=0 i=0 j=0 =0

The Volterra expansion provides a general representation of a nonlinear time
series. If we stop the Volterra series expansion of the first term, we obtain the linear
model that represents the purely random component of the Wold decomposition if ¢,
is a weakly stationary white noise and if the condition (1.2) is satisfied. The general
relationship between a linear time series and a nonlinear time series is easy to see:

the nonlinear equation has a lot of cross-product terms.

The class of non-linear models is much larger than that of linear models. Once
we decide to estimate a nonlinear model, we have the task of deciding which of
an arbitrary large number of functions to estimate. The nonlinear models have
evolved to represent different possible non-linearity features. The contributions in
the literature can be divided roughly into two categories: nonlinearity in conditional

mean and nonlinearity in conditional variance (conditional heteroscedasticity).

The first category includes, for example, the non-linear autoregressive models,
(NLAR, Jones (1978)), the threshold models (SETAR, Tong & Lim (1980)), the ex-
ponential autoregressive models (EXPAR, Ozaki (1982)), outlier models (Fox (1972);
Tsay (1988)) and changes in level (Tsay (1986); Tsay (1986); Bai & Perron (2003)).
The second category includes, for example, the conditional variance models ARCH
(Engle (1982)) and GARCH (Bollerslev (1986)). Other models are not easily classi-
fied in this scheme: bilinear models (BL, Subba (1981)) generate sudden explosions
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in the values of a series. These explosions can also be interpreted as changes in

variance and this accounts for the relationship between BL and ARCH.

Priestley (1988) presented a general model (SDM = State Dependent Models),
which includes as special cases ARMA, SETAR, BL and EXPAR models. This
formulation is perhaps little known for computational difficulties encountered in

practical application of the SDM.

This brief overview is not the end of the recent history of non-linearity. Around
the same time when non-linear statistical models were developed, another line of
investigation on the non-linearity was just beginning, the study of complex nonlinear
dynamics or chaos. It is usually believed that Poincaré is the first one who studied
chaos. Then Lorenz (1963) revealed the butterfly effect in studying the weather
prediction and is thus recognized as the father of chaos. But the formal use of
chaos is from the works of May (1976) and Li & Yorke (1975). After that, chaos
have been widely studied and a lot of important concepts has been introduced, such
as the dimensions, Lyapunov exponents, Fourier transform and Hilbert transform,
and attractor reconstruction. Certain deterministic non-linear system may show
chaotic behaviour. Time series derived from such system seem stochastic when
analyzed with linear techniques. However, uncovering the deterministic structure is
important because it allows for construction of more realistic and better models and
thus improved predictive capabilities. Chaotic behaviour in deterministic dynamical
system is an intrinsicly non-linear phenomenon. A characteristic feature of chaotic

system is an extreme sensitivity to changes in initial conditions.

It can easily happen that the different forms of nonlinearity can be confusing.
Also it can be difficult to distinguish between nonstationarity and nonlinearity. An
example in this sense is the following: if the Fisher equation for the United States
is estimated, a change in the model in the late 1970s and early 1980 is expected due
to the oil price shocks and subsequent Federal Reserve policy. Traditional unit root
tests, such as the augmented Dickey-Fuller (Dickey & W.A. (1979);Dickey & W.A.
(1981)), the Phillips & Perron (1988), and the (Kwiatkowski et al. (1992)), interpret
this change in the model parameters as non-stationarity. Nevertheless, the model
has undergone a shift in the parameters before and after the event (oil price shocks)
and could very well be stationary if we run the tests in the pre and post event data
separately (Ghos & Dutt (2008)).

The choice of a model for a time series is driven by many considerations, often
depending on the purpose of research. In most cases, this choice is fundamentally

subjective and based on a priori knowledge or expectations of the researcher.

Techniques for vector nonlinear time series modeling have only recently begun
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to be investigated. Harvill & Ray (1999) provide a general test of nonlinearity in a
vector time series. Granger & Terdsvirta (1993) mention multivariate extensions of
nonlinear autoregressive (NLAR), nonlinear moving average (NLMA), and bilinear
models in passing, but concentrate on statistical inference for univariate nonlinear
models. More recent work by Tsay (1998) discusses testing and modeling multivari-

ate threshold autoregressive models.

The multivariate nonlinearity analysis requires more research. In this thesis we
develop techniques for analyzing some forms of multivariate nonlinearity in con-
ditional mean. In particular, we dealt with outliers and threshold models in a

multivariate framework.

Several papers that generalize the univariate threshold principle to a multivari-
ate framework have appeared in the literature during the past years. Tiao and Tsay
(1994) proposed a univariate SETAR model for the United States gross national
product (GNP) series where the thresholds are controlled by two lagged values of
the transformed GNP series reflecting the situation of the economy. Tsay (1998) de-
veloped a strategy for testing and estimating multivariate threshold models where
the threshold variable was controlled by known linear combination of individual
variables. Arnold and Gunther (2011) proposed a definition of MSETAR models
where each linear regime follows a VAR process and the threshold variable is multi-
variate. Furthermore, they developed an estimation procedure of the corresponding
autoregressive (AR) coefficient matrices. However, the authors suppose that the
structural parameters of the model (delay, threshold variable, number and position

of thresholds, model order) have to be known a priori.

In the present thesis, we adopt a less restrictive formulation, assuming that the
structural parameters are unknown and are jointly estimated with the other param-
eters of the model.We formulate the task of finding the threshold variable and the
other structural parameters as a combinatorial optimization problem. We suggested
a genetic algorithm-based procedure for identifying and estimating an MSETAR
model with univariate or bivariate threshold variable. The procedure uses a special

binary encoding composed of several fragments each of which represents an integer
parameter of the MSETAR model.

A simulation experiment demonstrated the validity of the genetic algorithms for
implementing the identification and estimation procedure for building a nonlinear

model in a multivariate setting.

In this context the most important contribution lies in the choice and estimation
of structural parameters of the MSETAR model. The choice of these structural

parameters is very difficult since it is not possible to make use of the instruments
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generally used for the choice of the structural parameters of the SETAR models.
A wrong choice of structural parameters also affects the overall performance of
the model in explaining the dynamics of the multivariate time series and on the
forecasting ability of the model. We realized also a GUI program for estimating
a MSETAR model. With the program is also possible to estimate SETAR models

which are considered as a particular case of a model MSETAR.

Regarding the problem of outlier detection, in the thesis we have been concerned
on detecting multiple outliers, especially those occurring close in time, often have
severe masking effect (one outlier masks a second outlier) and smearing effect (mis-
specification of correct data as outliers) that can easily render the iterative outlier
detection methods inefficient. A special case of multiple outliers is a patch of ad-
ditive outliers. For univariate time series this problem has been addressed firstly
by Bruce & Martin (1989) and after by Justel et al. (2001). For multivariate time
series, only three procedures have been proposed but none of they deal specifically
with the problem of consecutive outliers. Tsay et al. (2000) proposed a sequential
detection procedure, which we will call the TPP method, based on individual and
joint likelihood ratio statistics; this method requires an initial specification of a vec-
tor ARMA model. Galeano et al. (2006), Baragona & Battaglia (2007) proposed a
method based on univariate outlier detection applied to some useful linear combi-
nations of the vector time series. The optimal combinations are found by projection
pursuit in the first paper and independent component analysis (ICA) in the second

one.

We propose a class of meta-heuristic algorithms to overcome the difficulties of
iterative procedures in detecting multiple additive outliers in multivariate time se-
ries. Our procedures are less vulnerable to the masking and smearing effects because
they evaluate several outlier pattern where all observations that are possibly out-
lying ones are simultaneously considered. In this way, meta-heuristic methods deal
efficiently the detection of patch of additive outliers. Each outlier configuration is
evaluated by a generalised AIC-criterion where the penalty constant is suggested
by both a simulation study and a theoretical approximation. The meta-heuristic
algorithms used a approximation of multiple linear interpolator given in Rozanov
(1957). More precisely, we use an unbiased estimator of the anomalies for any outlier

configuration.

The main contribution of this thesis for the problem of outlier detection in mul-
tivariate time series is to reduce the limitations of the iterative procedures in the
search of consecutive outliers. Moreover, we attempt to provide an approximation

of the penalty term of AIC general criterion which is of a paramount importance in
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the identification of outliers.

The comparison and the performance of the proposed methods are illustrated by
simulation studies and real data analysis. Simulation results show that the proposed
approaches perform well for detecting consecutive (patches) additive outliers, while
TPP method, used as a comparison, show evident limitations in the case of consec-

utive outliers. These bad results of the TPP method are also justified analytically.

1.2 Multivariate Time Series

A s—dimensional vector time series or multivariate time series arise when several
related time series, x1(t),zo(t),...,zs(t), are observed simultaneously over time,
instead of observing just a single time series as is the case in univariate time series
analysis (Reinsel 1993).

Multivariate time series are considerable in a variety of fields such as engineering,
physical sciences, particularly earth sciences (e.g., meteorology and geophysics),
economics and business (Reinsel 1993). For example, in an engineering context one
may be interested in the study of the simultaneous behaviour over time of current
and voltage, or of pressure, temperature, and volume, whereas in economics, we
may be interested in the variations of interest rates, money supply, unemployment,
and so on, or in sales volume, price, and advertising expenditures for a particular

commodity in a business context (Reinsel 1993).

Two of the reasons for analyzing and modeling such multiple time series jointly

are:

1. To understand the dynamic relationships among them. They may be contem-
poraneously related, one series may lead the others or there may be feedback

relationships.

2. To improve accuracy of forecasts. When there is information on one series
contained in the historical data of another, better forecasts can result when

the series are modeled jointly.

Models that are of possible use in representing such multiple time series, consider-
ations of their properties, and methods for relating them to actual data have been
extensively discussed in the literature. Quenouille (1957), Whittle (1963), Hannan
(1970), Brillinger (1975), Liitkepohl (1993), Hamilton (1994), Reinsel (1993) are
just some of the many that have studied and made contribution to the fields of

multivariate time series analysis.
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1.3 Some Basics

1.3.1 Random Variable

Univariate Real Random Variable. Let (2, .4, P) be a probability space, where
Q2 is the set of elementary events (sample space), A is a sigma-algebra of events
or subsets of Q2 and P is a probability measure defined on A. A random variable
X is a mapping from the sample space €2 onto the real line R such that to each
element w € ) there corresponds a unique real number, X (w). We denote the mean
of X with ux = E(X), the variance of X with Var(X) = E[(X — px)?], and the
covariance between X and Y with cov(X,Y) = E[(X — pux)(Y — puy)].

Univariate Complex Random Variables. A complex random variable X
is defined as a random variable of the form X = Xpg 4 ¢X;, where the real and
imaginary parts, Xz, and X;, are real random variables and ¢ = /—1. The ex-

pectation of real random variable is naturally generalized to the complex case as

pux = E(X) = E(Xg) +iE(X;) = px, + px,. The variance of X is equal to
Var(X) = E[|(X — ,UX)‘ | while the covariance between X and Y is defined as
cov(X,Y) = E[(X — px)(Y = py)].

Vector of Real Random Variable. A s—dimensional random vector vari-
able X = [Xj, Xy,..., X, is a function from 2 into the s—dimensional Euclidean
space R® such that to each element w € () there corresponds a unique vector,
X(w). Mean vector of X is the column vector of the means of each component
p = E(X) = [E(X;y),E(X3),...,E(X,)]. The covariance matrix is defined as
% = E[(X — 1)(X — ).

Vector of Complex Random Variable. A s—dimensional complex ran-
dom vector variable X = [X7, X5, ..., X,]" is defined as a vector random variable
of the form X = Xg + Xy, where the real and imaginary parts, Xg, and Xj,
are s—dimensional real random vector variable. Mean vector of X is defined by
p = E(XR) + E(Xy). The covariance matrix is defined as 3 = E[(X — p)(X — p)*].
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1.3.2 Multivariate Stochastic Process

A s—dimensional vector stochastic process or multivariate stochastic process X(t) =
[X1(t), Xo(t), ..., Xs(t)], is a family of random variables indexed by the symbol t,
where t belongs to some given index set, T. If ¢ takes a continuous range of real
values (finite or infinite), so that X(¢) is said to be a continuous parameter process.
If ¢ takes a discrete set of values, typically, ¢ = 0,£1,%2,..., then X(¢) is said
to be a discrete parameter process. Alternatively, and in an equivalent way, an
s—dimensional vector stochastic process may be thought as a function X(t,w) :
T x Q — R®, where for each fixed t € T', X(¢,w) is a s—dimensional random vector

variable.

A realization of a vector stochastic process is a sequence of vectors X(t,w), t € T,
for a fixed w. In other word a realization of a stochastic process is a function
X(t,®) : T — R®. A multiple time series is regarded as such a finite part of a
realization, that is, it consist, for example, of values vectors x;(w), zo(w), ..., xx(w).
The underlying stochastic process is said to have generated the multiple time series
or it is called the generating or generation process of time series. A multiple time
series 71 (w), x2(w), ..., xy(w) will be denoted by xy,x9,...,zx. The number of

observation N is called the sample size or time series length.

Stationary Multivariate Processes

An important concept in the representation of models and analysis of time series,
which enables useful modeling results to be obtained from a finite sample realization

of the time series, is that of stationarity.

An s vector-valued process X(t) is strongly stationary if the probability dis-
tributions of the random vectors [X(t1), X (t2),..., X (t,)] and [X(¢; + 1), X(t2 +
l),...,X(t, +1)] are the same for arbitrary times t¢q,%s,...,t,, all n and all lags
or leads | = 4+1,42,.... Thus, the probability distribution of observations from
stationary vector process is invariant with respect to shift in time. An example
of strictly stationary process is a process of independent identically distributed s
vector-valued variates with mean vector 0 and covariance matrix equal to I;. This

process is called strong sense white noise and is denoted by e(t).

An s vector-valued process X (t) is weakly or second order stationary if the process
possesses finite first and second moments and which satisfies the condition that mean

does not depend on t and covariance depends only on lag wu:
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L. E[X(t)] = K= (:U’la K2 .- a/‘LS)lv vt

2. BAIX(t) = pl[X(t +u) = p'} = Tw), Vi

Covariance Matrices for a Stationary Vector Process

If we have an s vector-valued process X(t) with g = 0, we define the covariance

matrix at lag u by:

yu(u) ma(u) .o ms(u)

Yor(u) yaa(u) oo vas(u)

L(u) = B{X(t +u)][X(1)]'} = (1.8)

Ysr(w)  ysa(w) o yss(u)

For i # j, vij(u) = E[X;(t + u)X;(t)] denotes the cross-covariance function
between X;(t) and X;(t + u), while for ¢ = j, 7;;(u) denotes the autocovariance
function of X;(¢) that depend only on lag u, not on time t, for i,7 = 1,...,s,
w=0,41,42,. ...

In this thesis, the term stationary will generally be used in sense of weak stationar-
ity. For a stationarity vector process, the cross-covariance matrix structure provides
a useful summary of information on aspects of dynamic interrelations among the
components of the process. However, because of higher dimensionality of the vector
process, the cross-covariance matrices can generally take on complex structures and
may be much more difficult to interpret as a whole as compared with the univariate

time series case.

Complex valued multivariate process

So far we have discussed only real valued processes, i.e. processes which at each time
point, assume real values. Although, of course, processes which arise in practice
are all real valued it is nevertheless convenient sometimes regard them as complex
valued, just as in eletrical circuit theory it is sometimes convenient to regard a

voltage as a complex variable.

A complex valued process may be defined as a sequence of complex random
variable indexed by the symbol ¢, where t € T: X(t) = U(t)+iV(t) where U(t), V(t)
are both real valued process. If we suppose that X(t) is stationary up to order 2,
then the mean of X (t) is defined by:
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E[X(t)] = E[U(t)] +iE[V(t)] = p a constant vector independent of t (1.9)

The covariance matrix X(¢) is defined by (if we suppose that p = 0):

[(u) = B{X(t +u)][X(6)]"} (1.10)
where 7;;(u) = E[X;(t + u) X; ()]

Spectral property for a Stationary Vector Process

Spectral Density Matrix. Similar to the univariate case we define the spectral

density matrix of the stationary vector process X(t) as:

FA) = (2m)7" ) T(uexp(—idu), —m<A<m (1.11)
Then f()) is the Fourier transform of the covariance matrix function. The (7, j)th
element of the matrix f(\) denoted as f;;(A) is:

o0

fis () = @2m) ™" Y (wexp(—iu)
For i = j, fi;(\) is the spectral density function of the process X;(¢) and is the
Fourier transform of the auto-covariance function ~;), while for 7 # j, fi;(A) is
the cross-spectral density function between the process X;(t) and X;(t), that is, the

Fourier transform of the cross-covariance function ~;;(u).

Notice that f;()) is real-valued and non-negative, but since 7;;(u) # ;;(—u) for
i # j, the cross-spectral density function f;;()\) is in general complex-valued with
fi;(\) begin equal to f;;(A\) = fji(—\), the complex conjugate of f;;(\). Therefore,
the spectral density matrix f(\) is Hermitian, that is, £*(\) = f(\). Moreover, f(\)
is a non-negative definite matrix in the sense that b f(\)b > 0 for any s—dimensional
vector b, since b f(\)b is the spectral density function of a linear combination b X ()

and hence must be non-negative.

Spectral Representations Let X(¢) be a zero mean s—dimensional stationary
vector process. Then exists a s—dimensional complex-valued continuous-parameter
process, Z(\) = [Z1(N\), Za(A), ..., Zs(\)], defined on the interval [—m, 7| such that
for all integer ¢ (Rozanov (1957); pag 18):
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™

X(t) = / ' eMdZ(N) or X;(t) = / eMdZ;(N) (1.12)

where the column vector dZ()\) has elements dZ;(\), dZs(N),...,dZs(\). The rep-
resentation (1.12) is called spectral representation of the multivariate stationary

process X(t).

The s—dimensional random process, Z(\), also called random spectral measure

of s—dimensional process X(t), has the following properties:

1. E[dZ(M\)dZ*(N2)] = 0 if Ay # Ao,

2. E[dZZ()\l)dZ]()\Q)] =0 VZ,j = 1, 2, e, S if )\1 75 )\2,

3. E[dZ(N)dZ*(\)] = f(\)dA

Hence, properties (1) and (2) show that dZ;(\),dZy(N), ..., dZs()\) are not only

orthogonal but also cross-orthogonal. From property (3) we have:

fadX = E[dZ;(N)dZ;(\)] = E[ldZ:(\)[], (1.13)
fiiNdA - = E[dZi(N)dZ;(N)] i # j

Hence, f(A\)d\ represents the covariance matrix of dZ(\),the random vector at
frequency A in the spectral representation of the vector process X(¢). That is,
fii(A)dA represent the variance of dZ;(\) and f;j(A)d\ represent the covariance be-
tween dZ;(\) and dZ;(\). Alternatively, we may say that, whereas f;;(\)d\ repre-
sents the average value of the square of the coefficient of €', f;;(A\)d\ represents

the average value of the product of the coefficients of e in X;(¢) and X;(¢).

We can note also that substituting (1.12) in (1.8) the spectral representation of

the covariance matrix function is:

T(u) = / =M= HFOEIZ(\)dZ* (N )] (1.14)
= / ' e ME[AZ(N)dZ* (V)]

= / " ()

that is:
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Yij(u) = /7r e~ e N TOR[AZ,(\)AZ; (V) (1.15)
— / e ME[dZ;(\)dZ;(N)]
— / ' e~ MUdH ;(\)

where:

dHy;(A) = E[dZ;(\)dZ;(N)] = fi;(A)dA, @ # j, (1.16)
dH;;(N) = E[ldZ;(N)’] = fi(A)dA

The matrix H(\) is called spectral distribution matriz. The diagonal elements
H;;(X\) are the integrated spectra of the process X;(t), while H;;()) is the integrated
cross-spectrum between X;(t) and X;(?).

Substituting equations(1.16) in (1.15) obtained,

72] / fzj _Mud)\ U = It]. ZEQ (]_]_7)

that may be written more concisely in the form:

I‘(u):/ f(\)e ™Md\  u=41,+2,... (1.18)

-7
In some texts the spectrum is defined using the covariance matrix generating

function, which is a power series with complex terms. The covariance matrix gen-

erating function F'(z) (where z is a complex number) is defined by:

F(z) = Y T(u)" (1.19)

U=—00

The covariance matrix generating function coincides with the spectral density
matrix f(\) if z = e?: F(z) = f(\).
1.3.3 Linear Filtering of a Stationary Vector Process

Fundamental to the study of multivariate linear system of stochastic process is

the representation of dynamic linear relationship through the formulation of linear
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filters. A multivariate linear (time-invariant) filter relating an r—dimensional input
stochastic process X (t) to a s—dimensional output stochastic process Y () is given

by the form:

[e o]

Y(t) =) w(w)X(t—u) (1.20)
where Y (¢) and X(¢) are column vectors, the W(u) are s X s matrices, and
{¥(u)},u =0,£1,£2,..., are called the impulse response matrices. From (1.20)

we may write the ith output as:

Yi(t) = i U () Xq(t—u)+ ...+ i U (u) X, (t—u), i=1,...,s (1.21)

U=—00 U=—00

The filter is physically realizable or causal when the ¥(u) = 0 for u < 0, so that
Yooe o W (u)X(t — u) is expressible in terms of only present and past values of the
input process X(¢). The filter is said to be stable if >~ || ®(u)|| < oo, where
|A|| denotes a norm for the matrix A such as ||A||> = tr{A’A}.

When the filter is stable and the input process X(¢) is stationary with covariance
matrices I';(u), the output process Y(¢t) = > o2 W(u)X(t — u) is a stationary

process.

Introducing the spectral representation:

X;(t) :/ eMdZP (), i=1,...r (1.22)

—T

Yj(t):/ MAZP(N), j=1,....5 (1.23)

—T

the jth terms of (1.21) can be written as:

/ ' MG (NdZT (), (1.24)

where Gij(\) = >, 1ij(u)e”* represents the transfer function between the ith
input and the jth output.

Equation (1.21) now gives, for each \;:

dZV(\) = GpNdZP (N + ..+ G (NdZP (), =1, (1.25)
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This equation is of considerable importance. In the time domain description
(1.21), the relationship between the jth output at time ¢ involves weighted linear
combination of past, present and future values of all the input processes. However,
the frequency domain form (1.25) has a much simpler structure. In fact (1.25) is sim-
ply the classical multiple linear regression model, and, as in the single input/single
output case, has the feature that the spectral proprieties of the output at frequency
A depend only on the spectral properties of the input at the same frequency A.

Writing (1.25) in matrix form we have:

dZW(\) = G(\)dZ®@(N) (1.26)

where the (s x s) square matrix G(\) = Y., ¥(u)e " is called the transfer function
matriz. The system is thus described completely by the transfer function matrix
G(A) which, when written out in full, takes the form:

G1i(A) Gia(N) ... Gis(A)

GO = Go1(A) Gaa(N) ... Gas(N)
Gra(\) G\ ... G.s(N)

where the entry in the ¢th row and jth column being the transfer function relating the

ith input to the jth output. Equation (1.26) gives us immediately the relationship

between the spectral matrices of the input and output. For we have:

E[dZY (\)dZ®*(N)] = G(N)E[dZ® (N\)dZ@*(X\)]G*(N) (1.27)

which, on using property (3) of random spectral measure, the spectral density matrix

of output process Y (¢), f,()), is:

() = GVENG () (1.28)
where f,()) is the spectral density matrix of input process X(t).

Noting that the variance of Y;(t) is given by integrating the jth diagonal element

of f.(\), the condition for each output to have finite variance is:

i / T GOIEOM)G (VAN < % (1.29)

where, for any square matrix A, ¢r(A) denotes the trace of A, namely, the sum of

the diagonal elements of A.

The covariance matrices of the stationary process Y (¢) are given by:
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T, (u) = E[Y(t), Y*(t + u)] Z Z T (u+i—j) (). (1.30)

1=—00 j=—00

In Reinsel (1993)) the spectral density matrix of the output Y (¢) has the repre-

sentation:

£,(A\) = G(e™)E(\)G" (™)

where the transfer function (matrix) of the linear filter is defined as G(z) =

Inverse covariance matrix and inverse process

Inverse covariances and inverse process of a stationary multivariate stochastic pro-
cess have been defined independently and contemporaneously by Battaglia (1984)
and Vitale (1984), one moving from frequency domain and one from time domain.
The two definitions coincide. The inverse covariance can also play a role in the

analysis of relationships between the components of a multivariate series.

Let X(t) = [Xi(t), Xa(t), ..., Xs(t)]" be a discrete-parameter s-variate second-
order stationary process with mean zero for each component and covariance matrix
I'(h) defined in (1.8). We suppose that X(¢) has absolutely continuous spectrum and
for each A, the inverse of spectral density matrix f()\) defined in (1.11)(Battaglia
(1984), pag 118) exists and is integrable. Then we define the matrices of inverse
covariance I';(h)(h = 0,£+1,£2,...) by:

Yin(u) vie(u) .. yivs(u)
R e Rl Il e
Vist(u) yisa(u) . yiss(u)
50 that:
pi(u) pia(u) .. pis(u)
() = 2 i Iyuye i = | P2 () o) o pas() (1.32)

psi(u) psa(u) . pss(u)
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As f71()\) is also Hermitian for each A\, we have T'y(h) = T;(—h)’.

For inverse covariance matrices an orthogonality relation may be derived in the
same way as in the univariate case (Battaglia 1983). In fact, using (1.31) and the

analogous spectral representation (1.18), it is easily seen that:

oo

> Ty (u+ k) = 61, (1.33)

U=—00

where 0, denotes Kronecker’s delta.

Further we define the inverse process of X(t) as a linear filter with weights equal

to the inverse covariances:

Z(t) =27 Y Ti(u)X(t—u). (1.34)

Using (1.33) it may be verified that Z(t) is a second-order stationary process with

mean zero and covariance matrix equal to the inverse covariance matrix of X(¢):

E[Z(t)Z*(t + u)] = Ti(u). (1.35)

In addition, the covariances between the components of the process and the

component of its inverse process is provided by:

EX(H)Z*(t+u)] = > T(w)Ti(u+ h) = 5L,. (1.36)

Thus, the components of X(¢) are uncorrelated with the non-homologous com-
ponents of Z(t) for each lag, while the homologous components of the two processes

are contemporaneously correlated, but uncorrelated when lagged.

We may use two different ways to estimate the inverse covariance matrix. A first
approach is based on the estimation of the spectral density matrix and the Fourier
transform of its inverse (Battaglia (1984)). The second one fits a high-order vector
autoregressive model to the data and derives estimates of the inverse covariance
matrix from the estimated parameters of the model (Battaglia (1984)). Bhansali
(1980) has shown that under reasonable regularity conditions both methods give

consistent and asymptotically Gaussian estimates. We reported here the second
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approach where the estimates of the inverse covariance are obtained as follows:

> &)gfufflfi)j 0<u<m
0

Ii, = u>m (1.37)
f‘il,u u<0
where <i>1, <i>2, ey &, are the least squares estimates of the parameter matrices of

the VAR(m) model, 3 is the estimated variance matrix of the noise and where we
set @0 =—-L

Space of values of a stationary vector process

Let X (t) = [X1(t), Xa(t),...,Xs(t)]’ be an s—dimensional stationary process, and
H, be the linear manifold spanned by variables X (t),k = 1,...,s, —o0 < t < 00,
closed with respect to convergence in mean square. This space with scalar product
(Rozanov (1957), pag 3):

(Xi(1), X;(1) = EX:()X;(8)] Vi, j = 1,....s, t € Z (1.38)

is a Hilbert space; we will call it the space of values of the process X(t).

We can demonstrate that for any element h € H, there exist a vector function
©(A) = [p1(N), ..., 0s(N)] belonging to L*(F) such that h is representing in the

form of integral with respect to the random spectral measure Z(\):

b= [z = [ Yoz (1.39)

We will call the vector function ¢(\) the spectral characteristic of the random

variable h.

We will say that ©()\) belongs to the space L?(F), if the function:

PEN)"A) = Y or(Ner(A) fu(N) (1.40)

k=1
is integrable.

Minimal Process

Theorem 1. . In order that an n-dimensional stationary process X (t) with spectral

density f be minimal, it is necessary and sufficient that:
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where ¢r denotes the trace of a matrix.

1.4 Linear Interpolation of Stationary Vector Pro-

cess

An important problem in the theory of s-variate (s > 1) weakly stationary stochastic
process X(t) is to obtain formulas for linear interpolator and interpolation error
matrix. This problem seem to have potential application to many different areas
of physical, natural and social sciences, that is in the cases where the values of
a stochastic process that represent a particular phenomena either are missing at
some points or it is not possible to obtain direct measurement at these points. This
problem has generated a rather extensive literature beginning with Kolmogorov’s

fundamental article (Kolmogorov 1941).

Masani (1960) considered a full-rank minimal s — variate process (the missing
value is at one point) over Z and obtained an explicit expression, for the interpolation
error matrix in terms of spectral density of the process, thereby extending the s = 1

result due to Kolmogorov (1941).

There are a number of different proof of linear interpolation of a stationary vec-
tor process, some of which revealed interesting relationship between the spectral
theory of stationary vector process and other branches of pure mathematics. Ex-
plicit expressions for linear interpolator and interpolation error matrix were obtained
by (Rozanov (1957); pag 100-101) using elaborated Fourier and Harmonic analysis
techniques. Rozanov’s procedure considerate also the case of partially missing ob-
servations of the process X(t). Exact formulas are also given in Battaglia (1984)
and Hannan (1970). All formulas suppose that the complete past and the complete
future of the stationary process X(t) are known. We now give a brief sketch of these

alternative proofs.
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1.4.1 Geometrical Approach to Interpolation

Let X(t) = [X1(t), Xa(t), ..., X(t)]" be a discrete-parameter s-variate second-order
stationary process with mean zero for each component, t € Z = [0,£1,...]. We
suppose that X(¢) has absolutely continuous spectrum and for each A, the inverse

of spectral density matrix f(\) exists and is integrable.

Let Ty, k = 1,...,s, be finite subsets of the set of all integers Z. We suppose
that all the values Xj(¢) of the s—dimensional stationary process X(¢) are known,
except for the values Xy (t), t € T,k =1,...,s, and it is required to interpolate the

unknown values Xy ().

If we measure the error in terms of mean square deviation, the best linear method
of interpolation consists in finding the projections of the X (), t € T}, on closed
linear manifold generated by the known variables Xy (t), t ¢ Ty, k=1, ..., s, which
we denote by H(T).

Let A be s—dimensional vector space, and B, the subspace of A consisting of all
vectors b = {b;(\)} of the form:

b=af(\) ac A (1.41)

By the expression bf~1()\) for b € B, we will understand any of the vectors
a € A satisfying 1.41.

Obviously, if two vectors a; and a, lead to the same element b in (1.41), then:

al(b')* = ag(b,)* (142)

for any b’ = a'f()\) € By, since, by virtue of self-adjointness of the matrix f(\),

(a1 — a2)(B)" = (a1 — &) [ E(V))* = [(a1 — a)f(V](a)" = (b—b)(a)"  (1.43)

We define B(T') as the space of vector functions b(\) = {bx(A\)} whose compo-

nents bi(\) are trigonometric polynomials of the form:

be(A) =Y ax(t)e™ (1.44)

teTy

such that b(\) € By for almost all A, and such that ||b|| = (b, b)"/? < oo, where
(b,b') is a scalar product in B(T) defined by:
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(b,b) = /_ " Ib()EL () (b)) (1.45)

We denote by A(T') the subspace in H, spanned by the difference :

Xp(t) = Xp(t), teTp k=1,2,...,s (1.46)

where Xj(t) is the projection of X,(t) on H(T).

Lemma 1. . The subspace A(T) is isometrically isomorphic to the space B(T) of
vector functions.

Proof. Let Z()\) = [Z1(\), Za(N), . .., Z4(\)] be random spectral measure of X(t).
The elements h of the subspace A(T') can be represented in the form:

h= / " NAZON), (1.47)

—T

where the vectors function ¢ = {¢;} belongs to the space L*(F), i.e.,

/ ofp*d\ < 0. (1.48)

—T

The orthogonality of h to the subspace H(T) means that:

E[hXi (1)) = /_ "M S (M) feW)JdA = 0, (1.49)

forall land t (I = 1,...,s5,—00 < t < o0) except for t € T;. If we put b(\) =
©(A)f(A) the (1.49) shows that the vector function b(\) = {bx(A)} belongs to the
space B(T):

(A =D @M fu(N) =) ap(t)e™, k=1,...s (1.50)
=1 teTy
17 = [ byt b i = [ e WA =EIRE (151)

On the other hand, if one takes an arbitrary vector function b(\) from B(T") and
sets ©(A) = b(A)f1()\) then
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™

/7r V(NEN)p*(AN)d\ = / b(A)f (AN (A)dA < oo (1.52)

—T —T

and the random variable of the form ["_¢(X)dZ()) is orthogonal to H(T):

E[hX(t)] = / e Z[‘Pk()‘)fkl(/\)]d)‘ = / e~ My(A)dA = 0, (1.53)
T k=1 -
for all [ and ¢, except for ¢ € T;. But this means that A belongs to the subspace
A(T), and, moreover, by virtue of (1.53),

E |h|* = ||b||”

We proceed now to a direct determination of the quantities Xy (¢),¢ € T} which
gives the best forecast by linear interpolation. Let T = to, T; = 0 for [ # k. As we

already know, X, (fo) can be represented in the following form:

K(to) = / " 6 NdZ () (1.54)

—T

The problem of linear interpolation consist, essentially, of determining the vector
functions i (A) = [@r1(A), @r2(N), - - ., Prs(A)].

Since the difference Xj,(to) - Xy (o) belongs to the space A(t), we obtained, from
Lemma 1, that the vector function:

bi(A) = [€708, — GV F(A) = [Bra(A), bra(N), -+, brs(N)]
belongs to the space B(T), and, in particular, that:

bij = Y agi(t)e™, j=1,2,.. s

teTy

Thus, the vector function (row vector) ¢ (A) has the form

Gr(\) = g, — b (ME1(N), (1.55)

where 0 is a s-dimensional vector which has a 1 in the k-th position and zero
in the other positions and the problem of linear interpolation reduces to finding

the coefficients ay; of the trigonometric polynomials by;(\). These coefficients can
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easily be found from a linear system of equations, expressing the fact that Xk(to) is
orthogonal to A(T).

If the process X(t) is minimal then the vector functions of the form e, t €
T, | = 1,...,s, form a basis in the space B(T), and if one denotes by h'! the
corresponding variables in the space A(T'), then the orthogonality of X (to) to A(T)

is equivalent to the following:

E[X}(to)h"] = / e M@rNEA)DI(N)]dA = 0 (1.56)
where pi(A) = [pn(\), piz(N), ..., pis(N)] is the Ith row of the inverse f~!(\) of
f(\). Taking into consideration the form (1.55) of the vector function ¢ (), system

(1.56) can be rewritten in the form:

iZ’Y’iﬂ(S—t)akj(S) =0 forteT, t#ty,, [#Ek (1.57)

j=1 seTj

Z Z Yije(s — to)ag;(s) = 1 forteT, t=ty, =k (1.58)

j:1 SETJ'

Here the vi;(s) are Fourier coefficients of the elements pj;;()\) of the matrix £,

that is, inverse covariance:

. 1 " IAS
vij(s) = —/ e pit(A)dA.

2 J_

Theorem 2. . Suppose that the spectral density f of the s-dimensional process X(t)
satisfies theorem 1. Then the random variables Xk(to), giving the best linear inter-
polation, can be found from formula (1.54), in which the vector functions ¢i(X\) are

determined from the system of equations (1.57).

Case 1: partial missing value for one component series

We suppose that T3 = {to} and T, = ... = T,, = {@}. In this case we have to
determine X(to) and then only the vector function (;(A). The vector function

b1 (\) assume following form:
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bl()\) = [an(to)ei’\to, 0, ceey O]

The system (1.57) is defined only for t € T7:

’72'11(0)(111(750) =1 = an(to) = [’yill(O)]_l, (159)

Substituting the value of a1(t) found by (1.59) in equation (1.55):

G1(\) = eM05 — by (\)F ! = Mog, — eiMo]

Su(A), -, == fm(A)] (1.60)

’7211( ) ' ’Yle( )

Then:

%, (to) = / T iNog az(\) — / ' eWO[%j(O)fn<A>,... g e IaZO) (161

whence:

St = [ ez - [ e SNz -

-7 - L 11( )
™ 1
— [ Mo £ (N)dZ, () 1.62
[ e iz, (162
Hence, writing:
1 o
-1 _ —z)\u
I (A)_%Z_oo i (1) (1.63)
we have:
T T 1 > .
e i / e —— e~ Mo (u)dZ; 1.64
| s naz) = [ @ 2 i (1.6

If we used equation of spectral representation, the ith integral of (1.62) becomes:

oo

S [ 1 G =S X0 (06)

U=—00 U=—00
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Using this last relation we can write (1.62) as

Xi(to) = Xi(to) ) X1( w) X (to — —
1(to) 1(to) Wn Z iy () X1 ( Wn Z Yoy (u) Xo(to — u) —
1 [oe)
- — 151 () X, (to — u 1.66
LD IR (1.66)

that can be written as:

Xi(to) = Xi(to) — Z 2%1 i(to — u)

1
711 A

Obviously the summation on the right of equation(1.66) is not defined for missing
data X (t9) . This quantity appears when u = 0 and in this case we have: X;(tg) —
a11(to)yi11(0) X1 (to) = 0 according to the system (1.59).

Case 2: partial missing value for two component series

We suppose that 77 = {t;}, To = {t2} and T3 = ... = T,, = {&} and have to
interpolate X1 (1), that is, determine X (¢1).

When we have to interpolate the missing data of component k-th of stochastic
process it is only necessary to determine the vector function bx(A). In our case, as
k =1 we have to determine the function b (\). If there is only one missing data in
a single component then this function has only one nonzero element at k-th column
(b1(\) is a row vector). If there are two missing data in the k-th component then the
function by () has always only one element different from zero in correspondence of
the k-th column but this element is the sum of two exponentials with coefficients
different from zero. If instead there are two components that each have one missing
then the function by (\) has two elements different from zero. In our case the function

has two components different from zero in column 1 and 2. In fact we have:

bii(A) = an (t1)e? bia(N) = ara(ta)e™2 bz = by = ... =0

and then:

bi(A) = [ar1 (t1)e™, ara(ta)e™, 0, . .., 0]

We have to determine through the system (1.57) the two coefficients a11(¢1) and

a12(t2). The equations are the conditions that arise from the following reasoning: if
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we interpolate one missing data but there are two missing data we can not use the
two data. So when we make the linear combination of the available data we have to

ensure that these data do not appear. In this case the system (1.57) becomes:

i1 (0)agr (t1) + Yior (ta — t1)aa(tz) = 1

vita(t1 — t2)ari(t1) + vize(0)aia(te) = 0

then:
- _ ~i22(0)
12 (tQ) o vi21 (b2—t1)yi12(t1 —t2) —7211(0)7yi22(0)

Substituting the values of the coefficients a1 (¢1) e aja(t2) in (1.55) we have:

G1(A) = e — b (N
= ei/\tl 51 — [an(tl)e”‘tl fll()\) + alz(t2>€i)\t2f21()\), ey an(tl)e”‘tl fls()\) +

+ a2 (tz)eiAtQ Jas(N)]
(1.67)
gid ] [ ann(t)e™ f11(A) + asa(t2)e™2 fr () ] |
0 a1 (t1)e™ fia(A) + ara(ta)e™2 fao (N)
¢1(A) = -
R | an(t)e™ fis(N) + arz(t2)e™ fos (V) ||
Xl(tl) = /ﬂ— i)‘t°5 dZ(/\) — /ﬂ all(tl)ei)‘tlfn()\)le(/\) —
/ a192 tg Z>\t2f21( )le(/\) — ... /ﬂ an(tl)ei)‘tlfls(/\)dZs(/\) —
/ a192 tg At Qfgs()\)dzs()\) (168)

~

Xl(t1> = Xl(tl) — a1 tl Z’}/le Xl(tl — U) — 12 tQ Z’}/’Lgl Xl(tz — U) e

— a1 tl Z’}/’Lls tl — U) — 12 tQ Z’}/ZQS Xs(tg — U) (169)
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Case 3: one missing value for all component series

In this case we suppose that Ty = To = ... = T,, = T = {to}. Then, the values
Xy(to) of the process X(¢) are all unknown for the same time t,. Let X(ty) =
[Xl(t())a c. 7Xs(t0)]- We have:

X (ty) = / " BNz (1.70)

—T

where, by virtue of (1.55), the matrix function (s x s) ¢(A) has the form:

P(A) = eI, =Y " ePa(s)f (N (1.71)

seT
For the matrix coefficients (s x s) a(s) we obtained from (1.57) the following system

of equations:

Y Ti(s —to)a(s) = L,

Z Ii(s —tp)a(s) = 04 fort #ty (1.72)

seT

where:

1 [,
Ti(s) / e f L. (1.73)

T or

—T

The system of equations (1.72) will then appear as:

Ti(0)a(ty) = I, (1.74)

We find that:
a(ty) = [Ti(0)] ™ (1.75)
The expression of interpolator is then:

X(t) = /ﬂ emISdZ(/\)—/F[Fi(o)]‘lf‘le()\)

—T —T

= X(to) — [Ti(0)] ") Ti(u)X(to — u) (1.76)
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~

If we denote with €, = Xj(ty) — Xk(to) the errors interpolation and with oy; =
Eler€;], then the matrix of error 0 = {oy;} of linear interpolation is easily found

from the representation:
¥ =27 [[(0)]* (1.77)

Case 4: Two missing values for all component series

We suppose that T} =Ty = ... =T, =T = {to, t1}. We have:

X(t) = / " H(NdZ() (L.78)

™

where, by virtue of (1.55), the matrix function (s x s) ¢(A) has the form:

P(N) = eMoI, — eMa(ty) fH(N) — ea(ty)fH(N) (1.79)

For the matrix coefficients (s x s) a(s) we obtained from (1.57) the following system

of equations:

Fl(to — tl)a(to) + FI(O)a(tl) = 05 for t 7£ to (].8].)

Ti(0) Ti(ti—to) | | alte) | | L
Ti(ty —t;)  Ti(0) B

a(t)) = —[Ti(0) — T'i(t, — to)Ti Y(0)Ti(ty — )] 'Ti(t, — to)Ti (0) (1.83)

The expression of interpolator is:

X(ty) = /ﬂ Mo, — /ﬂ a(to)f tdZ(\) —/ﬂ a(t)f1dz(\) (1.84)
= X(to) —a(to) > Ti(u)X(to — u) —a(t) Y Ti(u)X(t; —u)
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The two summations are undefined for X(tg) and X(¢;). In the first sum, X(y)

appears when u = 0 while in the second sum when u = (t; — tp):

X (to) — a(to)Ti(0)X (o) — a(ty)Ti(t, — to)X(to) = L,

because a(to)T'i(0) —a(t;)T'i(t; —to) = Is. X(t1) appears when u = ¢y, —¢; in the

first sum and when w = 0 in the second sum:

a(to)Ti(to — t1)X(t1) — a(t1)T'i(0)X(t1) = 0O,

because a(to)Ti(to — t1) — a(t1)Ti(0) = O,

1.4.2 Frequency domain approach to interpolation

Hannan (1970) deals with the linear interpolator problem considering the case where
T, =T, = ... =T, =T = {to}. The author determines the optimal linear

interpolator trying the linear combination X(to) of X(t9—j),j # to, which minimizes
. 2
the error of interpolation HX(tO) — X(tO)H . The demonstration that leads to the

optimal linear interpolator is reported below.

We introduce the response functions:

hy(e?) = ‘Z An(j)e, (1.85)

where the term for j = t; is omitted. Now we seek for a response function h such
that:

Jm ([ "(h— hy)dH(\) (h— hy)] = 0 (1.86)

—T

and

[ / "1~ WAEN)(I, — b))

is minimized. If we determined the transfer function h, the optimal interpolator

results to be given by:

™

X(t) = / e h(e=N)dZ(N)

—T

while the covariance matrix of interpolation errors is given by:
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2 = E{[X(t) - XO)X(t) - X()] }.

Evidently may take to = 0 without any loss of generality. If H()) is not a.c., we
know that the singular part of F()) corresponds to a perfectly predictable process
and thus one which may be perfectly interpolated. This leads us to treat the a.c.
case. We assume that there is no non-null vector « such that a'X(t) = 0, almost

surely.

Theorem 3. . Let X(t) satisfy the above assumption and have a.c. spectrum and
let £71(X\) be the inverse of £(\). The necessary and sufficient condition that 3 be
nonsingular is the condition that £=1()\) be integrable. Then the response function
of the optimal interpolating filter is:

b1, — {% / CE A () (1.87)

—T

and covariance matriz of interpolation errors is:

> - {% /ﬂ 2rE(V)] 1) (1.88)

—T

A~

Proof. Evidently, since [X(0) — X(0)] is orthogonal to X(¢) V¢ # 0, for each pair

of vectors «, 8 of complex numbers we must have:
E{a"[X(0) = X(0)]X(t) 8} = 0, ¢ #0 (1.89)
and using the definition of scalar product we have:
ai/Uy—MHMéWMﬁ:Qt#ﬂ

Since the Fourier coefficients are zero in the case of a constant function, this
implies that:

(I, —hf =C

where C is a constant matrix. Thus

(I, —h) = Cf

This solution is not unique, but any solution differs from it by a matrix which, when
multiplied on the right by f, is annihilated and thus leads to the same 3. Moreover,
(1.89) also shows that:
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/ﬂ(ls —h)fh*d\ =0,

—T

since h is a limit in mean square of expression of the form of (1.85). Thus:

> = /([s — h)fd\ = 27C,

which shows that C = C* = C. Now, assuming the integrability of f=! for the first

time, we have

Y= C/ f 1 td) = C/ f1d\C,

™ —T

and

C:(H%R/ﬂf%ﬂd&c

—T

of which a solution is

C= {% /7r £ (\)d )t (1.90)

—T

From last equation we have:

(I, — h) = {% /7r £ (NN} =T (0)f ! (1.91)

™

and

> = 27[[;(0)] 1, (1.92)

that coincides with the equation(1.77).

Thus we can take C' given by (1.90) and the theorem results, save for the asser-
tion concerning the nonsingularity of 3. If f~1()) is integrable then certainly X is

nonsingular for otherwise there must be a vector «, so that

/o/fl(A)adA =0, da=1 (1.93)

Taking o as first row of an orthogonal matrix P this implies that Pf(\)P’ must
have null elements, for all \, in the first row and column, which implies that o' X(t) =
0, almost surely. On the other hand, if ¥ is nonsingular then since [(I, — h)f(I; —
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h)'d\ = [(47)"2Ef13d\ we see that £f 1Y is integrable and thus so must f~! be
integrable. This completes the proof.

Substituting the equation (1.92) in equation (1.87) we obtained the formula (1.76)
of optimal interpolator found by Rozanov (1957).

1.4.3 Time domain approach to interpolation

Battaglia (1984) consider the linear interpolation problem for a multivariate station-
ary process X(t) and suppose that Ty =To = ... =T, =T = {t = 0}. The problem
is to determine a linear transformation of {..., X(¢ —2),X(t — 1), X(t + 1), X(t +

2),...}:

> a(w)X(t —u)

uF#£0

with {a(u)} real matrices s x s, such that the linear combination ., a(u)X(t—
u) is as close possible to X(¢). To this aim, Battaglia (1984) consider the variance

matrix:

E{[X(t) = Y a(u)X(t —u)][X(t) = Y _a(u)X(t —u)]'}. (1.94)

u7#0 u#0

and minimize it according to the positive-definiteness ordering. This ordering is
defined for Hermitian matrices by A > B if A — B > 0 where M > 0 means that
the matrix M is positive semidefinite, and matches with the orderings induced by
the values of determinants and traces. To find the matrix that minimize the mean
square error, the author has expressed it as a sum of a matrix independent of the ¢,
and a positive semidefinite matrix. The demonstration was done in the frequency
domain, replacing the variance-covariance matrix with the integral of its spectral

density.
Let I(t) = > _oa(w)X(t — u), and denote by A(N) = I, — >,  a(u)e”™
the transfer function of I(¢). The residual (or interpolation error) X(¢) — I(¢) has

variance-covariance matrix given by:

E{[X(t) = I(B)][X(t) = I(1)]'} = i ANENAN) A, (1.95)

—T

Now,
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AWNENANT = T (0)AN)" + AN )*1“"1(0)—Fi’l(U)ffl(A)F"l(U)Jr
HAW) =T (Of T H{AN) T H(0f ' (1.96)

Since the last matrix in the second line of (1.96) is positive semidefinite (f(\) is

positive semidefinite), it follows that:

ANEVAN) > T (0) A + AT (0) - T (0)F (N)T(0) (1.97)

integrating, and considering that:

/Zf (A)dA = Ty( /A )\ = /A )\ =1, (1.98)

he obtained:

E{[X(t) = I®)][X(t) = I(1)]'} = T(0) (1.99)

The minimum is attained when:

{A(N) =T 10)f H){AN) — T (0)f 1} (1.100)
equals to zero matrix for each A, i.e. when:

AN =Ty H0)f (N, (1.101)

so that a(u) = —I'; ' (0)Tj(u). We can see that the equation (1.101) coincides
with equation (1.91) found by Hannan (1970).



Chapter 2

Multivariate Self-Exciting Threshold
Autoregressive Modeling by (Genetic
Algorithms

2.1 Introduction

Several papers that generalize the univariate threshold principle to a multivariate
framework have appeared in the literature during the past years. Tiao & Tsay
(1994) proposed a univariate SETAR model for the United States gross national
product (GNP) series where the thresholds are controlled by two lagged values of
the transformed GNP series reflecting the situation of the economy. Tsay (1998) de-
veloped a strategy for testing and estimating multivariate threshold models where
the threshold variable was controlled by known linear combination of individual vari-
ables. Arnold & Gunther (2001) proposed a definition of MSETAR models where
each linear regime follows a VAR process and the threshold variable is multivariate.
Furthermore, they developed a estimation procedure of the corresponding autore-
gressive (AR) coefficient matrices. However, the authors suppose that the model
structural parameters (delay, threshold variable, number and position of thresholds,
model order) have to be known a priori. In the present framework, we adopt a
less restrictive formulation, assuming that the structural parameters are unknown
and are jointly estimated with the other parameters of the model. We formulated
the task of finding the threshold variable and the others structural parameters as a

combinatorial optimization problem (Medeiros et al. 2002).

Combinatorial optimization is a field of applied mathematics that treats a spe-

cial type of mathematical optimization problem where the set of feasible solutions
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is finite. The gradient based methods cannot be used in such a space as the search
space is discrete and derivatives and usual notions of continuity and convexity do
not apply. If the size of the problem is small often exhaustive enumeration of all
potential solutions is feasible and it is the best way to obtain an exact solution.
However, often such method is unfeasible because in combinatorial problems the
solution space grows very large as a function of the problem size. For moderate
size dynamic programming offers several algorithms that can provide good solutions
or even exact solutions. Nonetheless, more complex problems may be tackled only
with the use of heuristic methods. Moreover, as the computing time needed to
get a solution becomes usually exponentially large even heuristics may be unfit for
optimization and we have to resort to meta heuristic algorithms that may provide
in polynomial time a good sub-optimal solution or even the exact solution in some
special cases. These problems are included in the class of the NP-complete combi-
natorial optimization problems as no polynomial time algorithm is known that may

produce the optimum solution.

A widespread class of meta heuristics that have been found effective in statis-
tical application involving NP-complete optimization task are the GAs. GAs have
been employed to solve optimization problems that arise in the design of many com-
plex systems, e.g. communication systems, networks, operations research, medicine
and biochemistry. Formulation of basic principles is due to Holland (1975) while
introduction and discussion of detailed theory and applications of GAs as optimiza-
tion algorithms may be found in many textbooks. See, e.g., Goldberg (1989) and
Mitchell (1996), two nice introductory books, Back et al. (1997), where related fields
too such as evolution strategies and genetic programming are illustrated, Gen &
Cheng (1997) and Haupt & Haupt (2004), who cope with applications and present
examples from several different fields. In the present framework we have to deal
with a very large space of potential optimal solutions as threshold variable (compo-
nents and delay), the thresholds and the AR orders have to be found that optimize
some suitable objective function. Applications of GAs to threshold modeling in the
univariate case have been suggested by Wu & Chang (2002) and Baragona et al.
(2004), and extensions have been studied to non stationary case by Battaglia &
Protopapas (2011, 2012), to double threshold generalized autoregressive conditional
heteroscedastic (GARCH) models by Baragona & Cucina (2008).

The rest of the paper is organized as follows. Section 2.2 gives a general de-
scription of MSETAR model. Section 2.3 presents the GAs methodology used for
identification and estimation of MSETAR models. Section 2.4 presents some numer-
ical examples illustrating the performance of the proposed procedure for MSETAR

model building. Several models are considered and results from a Monte Carlo ex-
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periment are displayed and commented. Section 2.5 shows an application concerned
with a real data set.

2.2 The MSETAR model formulation

Consider a K-dimensional time series Y; = (yis, Yot, -, Yit). Let 1y, 1o, ..., lx be
positive integers and for each 1 <i < K (Ré‘i)ji=1,2 ,,,,, 1, a disjunctive decomposition

of the real axis:

Ry = ) —oo=rl << <) =00

Let J = (41, j2, -, jx)- A K-dimensional MSETAR model is defined as

Py
Vo= [0+ > oY+ U | 19 (V) (2.1)
J =1

where d is the delay parameter and the indicator function /) : Y, 4 — {0,1}

which determines the current regime is defined by the relation

IDYg) =1 yira €R

Ji

i=12,... K.

A drawback with Model (2.1) may occur when the value of [; is greater than 2
or the number of components K is greater than 2, because the number of regimes
increases quickly. Indeed a model with a large number of regimes is difficult to in-
terpret. For this reason we consider only MSETAR with bivariate threshold variable
Yica = Wiy tedis Yist—dp)'s 1,02 = 1,2,..., K, Iy = ly = 2, and d,,dy are assumed
to vary in the set of the integers {1,...,dnax}. The integer dp.x is chosen as a
convenient upper bound for the allowed lags. A bivariate SETAR model may be

written

2 2
Vo= D U (Y (9 4 Y e Y+ U (2)

J1=1j2=1 =1
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where the threshold variable is a bivariate vector where the entries are two lagged

series chosen among the components of the multivariate time series (Y1.1—a,, Y2.t—dps - - -

Now let us consider these partitions of the real line

lo 2
R=|JR =|JR =RIUR; = (—oc0,r
j=1 j=1

(2)
1

Iy 2
R=|JR! = JR! = RIUR} = (~o0,r{"] U ("
j=1 j=1

700)

JU (r?, 00),

then the indicator functions of Model (2.2) assume the form

139(Y,_g) =

These functions determine the current regime that is defined by a sub-region of

the real plane R x R with x-axis equal to y;, ;—q, and y-axis equal to ¥, —4,. In

y’il,t—dl
1 &

Yig,t—ds

0 otherwise

Yiy t—dy

y’ig,t—dg

0 otherwise

y’il,t—dl

Yig,t—ds

0 otherwise

yil,t—dl
1 &

yig Jt—da

\ 0 otherwise.

€ R}

2
€ R?

€ R}

€ R3

€ R}

2
€ R?

€ R}

€ R?

yil,t—dl

Yigt—ds

Yirt—dy

yig Jt—da

yil,t—dl

Yig t—ds

y’il,t—dl

y’ig,t—dg

< rgl)

< rf)

< ril)

> 2

>
< rf)
(1)

>

> T

Fig. 2.2 an example is given where the threshold components are vy, ;4 and y2;_q4,

) yK,t*dl()/‘
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o

=} 1.(1-d)

[}

g 4 | Regime Il Regime

=

‘ T T T T

1.0 05 00 05 10

Figure 2.1: Threshold variables space for bivariate MSETAR model

Yy € (—1,1) and the thresholds TF) and 7"%2) are assumed to be zero and divide

(—1,1) x (=1,1) C R x R into four sub-regions, one for each regime.

The most important step in the identification and estimation of Model (2.2)
consists in finding the correct elements of threshold variable Y;_; and the position
of thresholds. Once the threshold variables and the corresponding thresholds are
specified, the orders P; are determined with the use of the Akaike (1974) automatic
identification criterion (AIC). Though several other such criteria have been suggested
and comparisons have been made (see, e.g., Sayyareha et al. 2011) no definite results
have been offered whether some may be considered the best one in all circumstances.
So we adopt the well known and widely used AIC criterion adjusted to support model
order choice, i.e. the minimum AIC estimate (Tong 1990). Given a candidate set of
lags, p1, ..., Pmax, We have to estimate several linear models and select the order that
minimizes the information criteria. Once structural parameters of model (threshold
variable, number and position of thresholds, model order) have been determined,

the remaining coefficients of the model can be estimated by ordinary least squares.

The structural parameters take discrete values and their combinations amount
to a very large number. In this work we formulated the task of finding the elements
of threshold variable and the position of thresholds as a combinatorial optimization

problem and we develop GAs to solve the problem.
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2.3 The genetic algorithm for MSETAR modeling

GAs are simplified schemes of the evolutionary processes that develop in nature
and have been used as all purposes optimization tools once the association between
adaptation to the environment and objective function, and individual competing
for survival and possible alternative solutions has been established. Results from
application in several distant fields justified the development of GAs as numerical

optimizers with the introduction of problem oriented variants of their basic features.

The general scheme of the GAs optimizers includes an initial population of po-
tential solutions and an iterative loop where the current population is evaluated in
terms of the fitness function of its individuals. The three usual genetic operators are
selection, crossover and mutation. Though others have been suggested, e.g. inver-
sion and splicing (see Michalewicz 1996) these only operators have been widely used
in practical applications and many variants have been suggested to improve their
potential in improving the average and the best fitness function and contemporane-
ously maintaining diversity among individuals. The three operators produce a new
generation by choosing the most fit individuals, recombining their genetic material
and allowing mutation to occur. This new generation replaces either partially or in
full the old population according to some definite rules. The new population may
either be constrained to have the same size than the past one or it may even be
allowed to increase its size. An important feature in this 'reproduction’ process is
the ’elitist strategy’, i.e. if the best individual found in the past generation is not
selected for reproduction, it is included anyway in the new generation provided that
no better individual has been produced. This ensures that the best fitness function
never decreases through iterations. In addition, if an optimum exists, then the eli-
tist GA converges asymptotically to this optimum (Rudolph 1997, Reeves & Rowe
2003).

Now we may explain the three operators as they have been used in our opti-
mization problem and the encoding that has been adopted. Each solution (the
‘individual’) is represented as a string of digits (the ’chromosome’). Each digit may
be thought of as a ’gene’ which may take values (‘alleles’) in a given set according
to its position (the ’locus’) and meaning. The definition of the sets of allelic values
allows possible constraints to be taken properly into account. Some features have
been assumed that have become standards in GAs applications. For instance, the
elitist strategy has been applied in such a way the best individual in the past gener-
ation that has to be included in the new population replaces the worst individual in
the new generation. Finally, no stopping rule has been specified and the algorithm
is allowed to run all iterations whose number has been fixed in advance. Indeed the
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asymptotic convergence results do not give information about the rate of conver-
gence in real world data applications and the suggested number of iterations (e.g.
Aytug & Koehler 2000) often results in an impractical large number. So usually the
number of iterations is assumed rather large compared to the available computing

resources and the requested timeliness of estimation results.

2.3.1 Encoding

The encoding uses a chromosome of length 15 for each individual in the current
population. The ’locus’ of each gene in the chromosome is important not only
because it defines the meaning of the gene but also because only some genes have
binary digits as allelic values while most of them have integer numbers as alleles
with possibly different minimum and maximum values. Notice that each integer
number is represented as a binary string (field) and the genetic operators apply
on each field, for instance the crossover operator only operates at the boundaries
between the binary fields. The chromosome we adopted in our GA is composed of

the following genes:

e (1) A binary digit that acts as a switch, its value is 0 if the threshold variable is
univariate, i.e. it refers to a single component series, 1 if the threshold variable
is multivariate. The decoding of the rest of the chromosome depends on this

first gene.

Genes 2 — 7 alleles under consideration provided that the first gene is 0.

e (2) This gene encodes which component series has to be assumed as the thresh-

old variable. It may assume the allelic values 1,2,..., K.
e (3) Number of regimes (either 2, 3 or 4).

e (4-6) Positions of the thresholds. Assuming ¢ = 1 the timing of the first
observation, each of such positions is the time ¢ associated to an observation
in the chosen sequence (gene 2). So each position may range from 1 to n.
How many genes have to be considered depends on the number of regimes as

specified by the preceding gene 3.

(7) Delay d for the scalar threshold variable, d € {1,2,. .., dyax}-
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This and the subsequent genes are meaningful for the current individual in the

population if the first gene allele is equal to 1.

e (8) This gene encodes the index i; of the component series which is to be con-
sidered as the first element of the vector threshold variable, i; € {1,2,..., K}.

e (9) The second element 5 of the vector threshold variable, iy € {1,2,..., K}, iy #
1.
e (10) Position of the threshold for the first component series. The encoding

follows the same rules as for genes (4-6).

e (11) Position of the threshold for the component series used as a second element

in the threshold vector. The same rules as before are used for encoding.

e (12) Delay d; for the first element of the vector threshold variable, d; €
{1,2,. .., dmax}-

e (13) Delay dy for the second element of the vector threshold variable, dy €
{1,2,. .., dmax}-

e (14) This gene is a binary digit. If it is equal to 1 then two regions in the
partition induced by the vector threshold variable in the space of the values of
the MSETAR model may merge, and the number of regimes is determined by
following gene (15). Otherwise the number of regimes remains 4 as depicted
in Fig. 2.2.

e (15) This gene specifies which of the regions merge together. With reference

to Fig. 2.2, values are:

1) the regimes I and IT merge and the number of regimes is 3,
2) the regimes IIT and IV merge and the number of regimes is 3,

3) the regimes I and III merge and the number of regimes is 3,

- (1)
- (2)
- (3)
— (4) the regimes IT and IV merge and the number of regimes is 3,
— (5) the regimes I and IV merge and the number of regimes is 3,
— (6) the regimes IT and IIT merge and the number of regimes is 3,
- (7)

7) the regimes I merges with IV and IT merges with IIT and the number

of regimes is 2.
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The encoding as defined above is rather elaborated and requires a special decoding
algorithm. In addition, special algorithms have to be designed for the computation
of the fitness function in the selection step, and non standard crossover and mu-
tation operators are needed. However, this does not impacts too much the overall
computational burden provided that each one of the decoding steps are carefully

programmed.

For example, let us consider the following chromosome, which is intended to
encode a K-dimensional MSETAR with K = 4 and 2-dimensional threshold variable.
For the sake of simplicity the genes whose alleles are integer numbers are written
as integers, though their internal representation is a binary string, for instance the

integer 3 in the third genes is reserved three bits so that it is actually encoded as
011.

| 1]1|3]180|100|50|1]1|3]|40]120]|1]1|0]3]

The first gene denotes that the threshold variable is bivariate so the decoding
continues at locus 8. The components indexed as 1 and 3 are to be assumed as
threshold variables (8-9). The thresholds values have to be taken equal to the
40-th observation of the first component and the 120-th observation of the third
component, i.e. TF) = Y140 and 7“9 = ys120- The delay parameters follow equal
to 1 for both threshold variable components, which is Y;_4 = (y14-1,y3:-1)". The
allelic value in locus 14 means that we don’t allow regions defined by the thresholds

to merge, so the number of regimes is equal to 4. The last gene may be neglected.

2.3.2 Fitness function

The fitness function measures the adaptation of the individual to the environment.
In the present context the chromosome of each individual encodes a MSETAR model
which is to be considered as better as smallest its AIC index. A transform of the
AIC may be used to obtain positive fitness function values so that the optimization

problem may be put in terms of maximization of the fitness function as it is usual
in the GAs. So let

Fitness = exp{—AIC}, (2.3)

where
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¢
1

AIC = — AIC;
n; I

AIC; = njlog {det(ig))} + QmjKQ, (2.4)
- 1 e
Eg) = — Z u,g])(ugj))’.
I

In Eqn. (2.4) the number of regimes is set equal to ¢, while the number of obser-
vations in the j-th regime is n;, with n = Zj n; the total number of observations,

and {ﬂij)} are the estimated model residuals in regime j.

2.3.3 Selection

Basically the well known ’roulette wheel rule’ is used for selecting from the cur-
rent population the individuals candidate for inclusion in the next generation. The
roulette wheel rule amounts to choose individuals with probability proportional to
their respective fitness function value. The widespread usage of this rule explains
the reason why in GAs the fitness function is usually constrained to positive values
as otherwise such rule would be impractical. Individuals are allowed to be selected
more than once and the number of choices is a fraction Gs of the population size
s, G being the generational gap. The elitist strategy is adopted as a correction of
this rule that ensures asymptotical convergence and constrains the fitness to be a
non decreasing function of the iteration number. The elitist strategy may be imple-
mented either directly or indirectly by setting G < 1 and choosing deterministically,
i.e. the best ones or even the single best one, the (1 — G)s individuals that are se-
lected outside the intervention of the roulette wheel rule mechanism. Normalization
of the fitness function may be used for scaling the transform (2.3) in such a way
the selection probabilities defined by the roulette wheel rule are close each other.
For instance, the 'sigma truncation scaling’ consists in applying the normalization

transform

Fitness® = Fitness — (F — ca) ,

where F is the population mean, c is a suitable real positive constant and o the

standard deviation, and in truncating the low fitness individuals.
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2.3.4 Crossover and mutation

The general crossover operator generates new individual chromosomes according to

the following rules:

e Pairs of individuals randomly chosen mate and produce a pair of offsprings

that may share genes of both parents.

e This operator is applied with a fixed probability (usually larger than 0.5 but

smaller than one) to each pair.

e Several different types of crossover are common, the simplest is called one

point crossover.

— A same locus in the chromosomes of the two paired individuals is chosen
at random: the genes which appear before that locus remain unchanged,

while the genes appearing after the crossover point are exchanged.

— This operation applies to each binary field in the chromosome.

As for mutation, general criteria may be the following:

e Mutation is needed to introduce innovation into the population (since selection

and crossover only mix the existing genes)
e It is generally considered a rare event (like it is in nature).

e A small probability p,, is selected, usually less than 0.1, and each gene of each
individual chromosome is subject to mutation with probability p,,, indepen-

dently of all other genes.

e If the gene coding is binary, for instance, a mutation simply changes 0 to 1 or

vice versa.

The new generation is created by selecting individuals from both the parent
generation and the offspring generation. There are several alternative methods for
replacing population individuals with new offsprings, e.g. ’crowding’ (de Jong 1975).
As a matter of fact there are two objectives that seem most important to define
the transition from the past generation to the new one, i.e. to maintain diversity
among the individuals and to avoid that the population is biased towards the best
individual. The two objectives seem reasonable as we have to avoid simultaneously

both premature convergence to some local optimum and poor or limited exploration
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of the solution space, i.e. the set of all feasible potential solutions. Many different
techniques that we may adopt to deal with these problems have been proposed in
the literature and allow suitable modifications of the standard rules for choosing the

individuals that have to be included in the next current population.

2.3.5 Convergence of genetic algorithms

If GAs are employed as optimization methods we are concerned with the problem of

defining in probability terms how close the best solution found in the last iteration

is to the actual optimum. Let x,([i)st

found at generation g, then {f[xé?st],g = 1,2,...} defines a sequence of random

be the chromosome of the fittest individual

variables. Jennison & Sheehan (1995) provided a revised updated version of the
’schema, theorem’. Rudolph (1997) demonstrated theorems concerned with global
optimum convergence of GAs in an elitist strategy framework. The Markov chains
theory offers some insights into the asymptotic convergence property of GAs, here we
only recall a result for chromosomes composed of genes that take binary allelic values.
Let each chromosome have M binary genes and let the population be composed by s
individuals. The possible populations are (SHQJ_I) (combinations with repetition of
the 2™ possible different individuals in sets of cardinality s). Though very large, the
number of states of the process is finite, and it may be considered a finite Markov
chain. Then suppose that there is only an optimal individual, coded by chromosome
y. Let 7 denote the state corresponding to the population composed of all individuals
equal to y: the transition matrix P has a 1 in the diagonal at position j, it is an
absorbing state and convergence is certain. Details and a complete discussion may
be found e.g. in Rudolph (1997), Reeves & Rowe (2003).

2.4 A simulation experiment

To evaluate the performance of the GA, we simulated three MSETAR models dis-
carding the first 500 observations to avoid any initialization effects. From the first
two models we simulated 100 replications each with 150, 400 and 1000 observations.
For the last model we simulated 100 replications each with 400, 600 and 1000 obser-
vations. The number of observations has been chosen so that enough observations
fall in each regime. For the first two models (Eqn.s (2.5) and (2.6)) the regimes
are defined by only a single partition of the real axis for the first component of the
process, that is the current regime is exclusively determined by the first component.
For the third model (Eqn. (2.7)) the regimes are defined by a partition of R x R and
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both component series provide the bivariate threshold variable. The GA parameters
have been chosen 100 the population size, 1000 the number of generations, 0.9 the
crossover probability and 0.01 the mutation probability. The maximum VAR order

iS Pmax = 4 and the maximum delay is dy., = 10.

The evaluation of the procedure performance is concerned with three aspects,
i.e. (1) correct selection of threshold variable, (2) correct specification of threshold

values and number of regimes, and (3) accuracy of the parameter estimates.

2.4.1 Example 1

In the first simulation experiment we consider time series generated by the MSETAR
model (Tsay 1998)

- @51)}/;71 + Ut(l) Yie-1 <0 (2.5)
' CD(12)Y2—1 + Ut(Z) Yii—1 >0 .
where
0.7 0.0 1.0 0.2 —0.7 0.0 1.0 -0.3
o) = 5 = ;o eP) = Yy = .
0.3 0.7 0.2 1.0 -0.3 —-0.7 —-0.3 1.0

The innovations Ut(l) e Ut(Z) are independent multivariate normal with mean 0
and variance Y, and X, respectively. The threshold variable is considered to be the
first entry of the series with delay parameter equals to one. The threshold value is

set equal to zero.

In Table 2.1 the percentages of correct identification over 100 replications of the
number of regimes and of the threshold variable are shown. The label "Thr.Var’ de-
notes the correct selection of the component series that is used as threshold variable.
'Delay’ label denotes the lag of the threshold variable. The label 'N.Reg.” denotes
the number of regimes. The results displayed in Table 2.1 show that detection of
the threshold variable and identification of the number of regimes and delay are

performed satisfactorily. The percentages are greater than 88%.

In Table 2.2 the average bias and root mean square error (RMSE) of the estimates
of coefficients and threshold parameters for Model (2.5) are displayed. Only the
estimates from the replications where exact match of structural parameters (variable

threshold and number of regimes) occurred are considered. In this case we can see
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Table 2.1: Relative frequency of correctly selecting the component series which
performs as threshold variable, the delay parameter and the number of regimes for

sample sizes 150, 400 and 1000 observations, based on 100 replications
n = 150 n =400 n = 1000

Thr.Var Delay N.Reg. Thr.Var Delay N.Reg. Thr.Var Delay N.Reg.

100 88 91 96 100 96 100 100 100

Table 2.2: Average bias and RMSE over 100 replications of the estimates of the
autoregressive coefficients and threshold parameter based on sample size of 150, 400

and 1000 observations
Coefficient n = 150 n = 400 n = 1000

bias RMSE bias RMSE bias RMSE

W 0.0270 0.1080 0.0018 0.0107 -0.0115 0.0123
D 0.0241 0.1259 -0.0181 0.0460 -0.0099 0.0137
O -0.0703 0.1248 0.0469 0.0541 -0.0038 0.0081
) -0.0360 0.2204 0.0196 0.0887 -0.0069 0.0083
@ 0.0457 0.1681 -0.0226 0.0422 0.0014 0.0047
2 0.0844 0.2198 0.0430 0.0596 0.0282 0.0288
@ 0.0752  0.1640 0.0540 0.0610 -0.0006 0.0090
2 -0.0323 0.1290 -0.0172 0.0498 0.0174 0.0188
r* -0.0231 0.2311 -0.0164 0.1404 -0.0065 0.0185

that the estimated coefficients are quite accurate, i.e. they are close on the average
to their true values. The accuracy of the estimates improves as the sample size
increases. It has to be considered that our GA method does not aim at estimating
the exact threshold parameter but at detecting the observation that divides the time
series in the two regimes. If we consider the misplaced observations, it results that
these are, on the average and for sample size n = 150, n = 400 and n = 1000
respectively, 13%, 8% and 3%. So the assignment of observations to regimes may
be considered quite satisfactory and more accurate as larger the sample size, even
in the presence of rather large RMSE for n = 150 and n = 400.
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Table 2.3: Relative frequency (based on 100 replications) of selecting correctly the
index of the component to be used as threshold variable, the delay parameter and

the number of regimes for sample sizes 150, 400 and 1000 observations
n = 150 n = 400 n = 1000

Thr.Var Delay N.Reg. Thr.Var Delay N.Reg. Thr.Var Delay N.Reg.

100 94 93 94 97 89 100 100 100

2.4.2 Example 2

The second simulation experiment is concerned with the MSETAR model (Tsay
1998)

oMY + U oy <33
V=< oy, +U® —33<y,1<33 (2.6)
oy, + U Yri1> 3.3

where

7l 02 —009

s _ | ~07 00
0.0 0.6 02 08

1.2 0.0 ~0.8 0.0
o) = [ ] oY = [ ] Yy =%y =1

The innovations Ut(l) e Ut(z) are independent multivariate normal with mean 0
and variance X; = I,j = 1,2 where I denotes the identity matrix. The model has
three regimes and the first component of the bivariate series with delay parameter

1 determines the current regime. The threshold values are —3.3 and 3.3.

The percentages of correct identification of the number of regimes and threshold
component over 100 replications are summarized in Table 2.3. From Table 2.3 we
may observe that our GAs-based procedure determines the correct threshold variable
and number of regimes with high percentages which increase as the sample size is

larger.

In Table 2.4 the estimates for Model (2.6) are reported. The estimates were
considered only for the replications where exact match of structural parameters
(excluding thresholds) occurred (about 90%). Bias and RMSEs seem rather small
and decrease as the sample size increases, but both bias and RMSE of the estimates

of the thresholds 7{1) and 7“%2). However, if we consider again the number of misplaced
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Table 2.4: Average bias and RMSE over 100 replications of the estimates of the
autoregressive coefficients and threshold parameters based on sample sizes 150, 400

and 1000 observations
Coefficient n = 150 n = 400 n = 1000

bias RMSE bias RMSE bias RMSE

() 0.0685 0.1606 0.0313 0.0503 0.0168 0.0170
D -0.0342  0.2200 -0.0224 0.0312 -0.0023 0.0062
Q) 0.0504 0.1914 0.0057 0.0320 0.0009 0.0015
o 0.0563 0.1825 0.0063 0.0226 0.0029 0.0119
@ -0.0460 0.1556 0.0137 0.0316 0.0050 0.0984
2 -0.0333 0.2284 0.0022 0.1021 -0.0002 0.0874
@ 0.0603 0.1600 0.0086 0.0170 -0.0094 0.0098
2 -0.0198 0.1352 0.0085 0.0353 0.0056 0.0077
@ -0.0271 0.1136 -0.1103 0.1107 0.0167 0.0168
3 -0.0853 0.1366 -0.0330 0.0660 -0.0121 0.0131
® -0.0031 0.1854 -0.0011 0.0220 -0.0004 0.0041
& 0.0240 0.2656 -0.0332 0.0351 0.0895 0.0896
rit 0.3791 0.4329 -0.2060 0.2222 -0.2916 0.2916

T’?) 0.1668  0.1909 0.3336 0.3350 0.3105 0.3105




Multivariate Self-Exciting Threshold Autoregressive Modeling by Genetic
51 Algorithms

Table 2.5: Relative frequency of correctly selecting the threshold variable, delay
parameter and number of regimes for sample sizes of 400, 600 and 1000 observations
based on 100 replications

n = 400 n = 600 n = 1000

Thr.Var Delay N.Reg. Thr.Var Delay N.Reg. Thr.Var Delay N.Reg.

79 72 79 89 78 84 93 90 91

observations we obtain the percentages 11%, 10%, 4% for n = 150, n = 400 and
n = 1000 respectively. This circumstance seems to indicate that in this case too the

assignment of observations to regimes has been performed rather satisfactorily.

2.4.3 Example 3

In the third simulation experiment we consider time series generated according to
the model

Yit-1 >0 Yai—1 <0

_1>0 _1>0
Y1,t—1 Y2,t—1 (2.7)
Yii—1 <0 Yoi—1 <0

@54)3@71 + Ut(4 Y1-1 <0 Y241 >0

where

0.7 —-0.2 0.5 —0.4
o) — o —
. 0.1 0.3

—0.5 0.2 0.5 —0.9
¥ = oM = S, =1j=1,... 4
~0.1 05 0.8 —0.1

The Ut(j ) are independent bivariate normal random variables with mean 0 and
variance %; = [,7 = 1,...,4 where I denotes the identity matrix. The model has
four regimes which depend on the lagged component series with delay equal to 1.

The threshold values are equal to 0 for both threshold components.

The percentages of replications for which the correct threshold variable and num-

ber of regimes were selected are given in Table 2.5. The results displayed in Table 2.5
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Table 2.6: Average bias and RMSE over 100 replications of the estimates of the
autoregressive coefficients and threshold parameters based on sample sizes 400, 600

and 1000 observations
Coefficient n = 400 n = 600 n = 1000

bias RMSE bias RMSE bias RMSE

oM 0.0311  0.1909 -0.0218 0.1058 0.0198 0.0225
U 0.0112  0.1743 0.0182 0.0334 0.0046  0.0060
) 0.0676  0.1504 -0.0263 0.0958 0.0059  0.0064
oY) 0.0157 0.1860 -0.0146 0.0363 -0.0002 0.0085
o -0.0441 0.1828 0.0021 0.0341 -0.0080 0.0101
2 0.0778 0.2012 -0.0348 0.0437 -0.0051 0.0073
@ 0.0430 0.1922 -0.0046 0.0130 -0.0034 0.0054
2 -0.0495 0.2073 -0.0272 0.0809 0.0008  0.0084
o 0.0360 0.1690 0.0368 0.1068 -0.0155 0.0188
o) 0.0193 0.1383 0.0183 0.0283 0.0054 0.0063
® -0.0455 0.2052 -0.0377 0.0398 0.0070  0.0070
8 0.0212 0.1851 -0.0089 0.0569 0.0015 0.0064
oY 0.0360 0.1411 0.0368 0.0564 -0.0155 0.0172
o -0.0208 0.1202 0.0060 0.0376 -0.0027 0.0061
@) 0.0306 0.1780 -0.0294 0.0887 0.0169 0.0175
& 0.0304 0.1908 -0.0177 0.0313 0.0175 0.0179
r -0.0097 0.1341 -0.0063 0.0666 -0.0040 0.0041
r? -0.0022 0.1173 -0.0036 0.0059 -0.0002 0.0037

show that the exact recovery of the threshold variable and number of regimes seems
more difficult for models with bivariate threshold variable, and percentages of suc-
cess greater than 90% are attained only if n = 1000 whereas percentages of exact
match are below 90% if n = 400 and n = 600. Detection of structural parameters is
performed satisfactorily by the GAs-based procedure if n = 1000 while convergence

seems slow if only n = 400 or n = 600 observations are available.

In Table 2.6 the average bias and RMSE of the estimates of coefficients and
thresholds for Model (2.7) are displayed. Only the estimates from the replications
where exact match of structural parameters (except thresholds) occurred (more than
70%) are considered. In this case, too, the estimated coefficients are quite accurate,
i.e. they are close on the average to their true values. Both bias and RMSEs decrease

as the sample size increases.
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Figure 2.2: Exchange Rate Data

2.5 An application to real world data

As an illustration, we applied the MSETAR model to study an exchange rate data
set. Exchange rate data have be found to exhibit a non linear behavior and many non
linear models have been suggested which include univariate threshold models (e.g.,
Chappell et al. 1996), and univariate threshold GARCH models (e.g., Baragona &
Cucina 2008). The exchange rates are the British pound, Canadian dollar, German
Deutschmark, Dutch guilder, all expressed as number of units of the foreign currency
per United States dollar. The time frame of the study is January 1980 to March
1984. Then there are 1000 observations. The data are daily data. The plot of the

components time series are displayed in Fig. 2.2.

We run our GAs-based procedure with the same parameters used in the simula-
tion experiment in Section 2.4. The final estimated model is a two-regime MSETAR

with the following form:

v Y U g < 05770
! PV, 1 +U®  y1q > 05770

where
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0.9772 —0.0065 —0.1173 —0.2084
0.0021 1.0015  0.0270  0.0464

o)

! 0.0004 —0.0022 0.9868 —0.0403

0.0015 0.0013  0.0110  1.0282

0.9994  0.0117 —0.0255 0.0751

p@ _ | —00026 09949 00738  0.0588
@ _

0.0029 —0.0018 0.8974 —0.1301
—0.0006 0.0005  0.0289  1.0335

The number of observations in each regime are 644 and 355. The driving variable
is the British pound which determines the regime switch for the exchange rates.
The critical exchange rate is the value 0.57 when the British pound approximately
doubles the value of the United States dollar. The goodness of fit of the estimated
model may be considered satisfactory on the basis of the residual variances that are,
on the entire time span, 0.0000119, 0.0000087, 0.0002587, and 0.0018356 for each of

the four component series respectively.



Chapter 3

Meta-heuristic Methods for OQutliers
Detection 1n Multivariate Time

Series

3.1 Introduction

Outliers are commonly defined as observations which appear to be inconsistent with
the remainder of the data set, and may be due to occasional unexpected events. The
detection of outliers is an important problem in time series analysis because they
can have adverse effects on model identification, parameter estimation (see Chang
& Tiao (1983)) and forecasting (see Chen & Liu (1993)). The presence of just a
few items of anomalous data can lead to model misspecification, biased parameter
estimation, and poor forecasts. Therefore, it is essential to identify outliers data,
estimate their magnitude and correct the time series, avoiding false identifications
(i.e. observations that are identified as outliers while they are not). Several ap-
proaches have been proposed in the literature for handling outliers in univariate
time series. Among these methods we can distinguish those based on an explicit
model (parametric approach) from the ones using non-explicit models (nonparamet-
ric approach). For the parametric approach, Fox (1972) developed a likelihood ratio
test for detecting outliers in a pure autoregressive model. Chang & Tiao (1983),
Chang et al. (1988), Tsay (1986, 1988), Chen & Liu (1993) extended this test to
an autoregressive integrated moving-average (ARIMA) model and proposed an it-
erative procedure for detecting multiple outliers. For the non-parametric approach,
Ljung (1989), Ljung (1993), Pena (1990), Gomez et al. (1993), Baragona & Battaglia
(1989) and Battaglia & Baragona (1992) proposed specific procedures based on the
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relationship between additive outliers and linear interpolator, while Baragona et al.

(2001) used a genetic algorithm.

For multivariate time series, only three procedures have been proposed. Tsay
et al. (2000) proposed a sequential detection procedure, which we will call the TPP
method, based on individual and joint likelihood ratio statistics; this method requires
an initial specification of a vector ARMA model. Galeano et al. (2006), Baragona &
Battaglia (2007) proposed a method based on univariate outlier detection applied to
some useful linear combinations of the vector time series. The optimal combinations
are found by projection pursuit in the first paper and independent component anal-
ysis (ICA) in the second one. Barbieri (1991) used a Bayesian method and finally a
graphical method was explored by Khattree & Naik (1987).

Multiple outliers, especially those occurring close in time, often have severe mask-
ing effect (one outlier masks a second outlier) and smearing effect (misspecification
of correct data as outliers) that can easily render the iterative outlier detection
methods inefficient. A special case of multiple outliers is a patch of additive out-
liers. For univariate time series this problem has been addressed firstly by Bruce &
Martin (1989). They define a procedure for detecting outlier patches by detecting
blocks of consecutive observations. Other useful references for the patch detection
are McCulloch & Tsay (1994), Barnett et al. (1997) and Justel et al. (2001). For
multivariate time series, only Baragona & Battaglia (2007) report simulation results

for an outlier patch.

Unlike the univariate case where there are specific procedures on the identifi-
cation of consecutive outliers, in multivariate time series framework, methods for

identification of consecutive outliers do not exist.

We propose a class of meta-heuristic algorithms to overcome the difficulties of it-
erative procedures in detecting multiple additive outliers in multivariate time series.
This class includes: simulated annealing (SA)(Kirkpatrick et al. (1983), Rayward-
Smith et al. (1996)), threshold accepting (TA) (Winker (2001)) and genetic algo-
rithm (GA) (Holland (1975); Goldberg (1989)). These methods are illustrated in
appendix. Our procedures are less vulnerable to the masking and smearing effects
because they evaluate several outlier pattern where all observations that are possibly
outlying ones are simultaneously considered. In this way, meta-heuristic methods
deal efficiently the detection of patch of additive outliers.

Each outlier configuration is evaluated by a generalised AIC-criterion where the
penalty constant is suggested by both a simulation study and a theoretical approxi-
mation. So, the meta-heuristic algorithms seem able to provide more flexibility and

adaptation to the outlier detection problem.
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3.2 Algorithm Features

This section further describes the algorithms implementation we used for outlier
detection. A successful implementation of meta-heuristic methods is certainly crucial
to obtain satisfactory results. Before a meta-heuristic method can be applied to
a problem some important decisions have to be made. The three meta-heuristic
methods require a suitable encoding for the problem and an appropriate definition
of objective function. In addition, the algorithms TA and SA require the structure
of the neighborhood while for genetic algorithms, operators of selection, crossover

and mutation have to be chosen. The following sections describe the choices made.

3.2.1 Solution Encoding

An appropriate encoding scheme is a key issue for meta-heuristic methods. For all
algorithms we use a binary encoding for the solutions of the outliers problem as
suggested in Baragona et al. (2001). Any solution £¢ is a binary string of length
N, where N is the number of observations of the time series: £¢ = (£(,&5,...,&%),
where & takes the value 1 if at time 7 there is an outlier (we assume that all the
s components are influenced) and 0 otherwise. Then, £¢ represent a chromosome
of GA and & a gene. Obviously, the number of outliers for a given time series is
unknown. We allow for solutions with a maximum number of outliers equal to g.
The value of g should be chosen according to the series length and every relevant a
priori information on its accuracy and instability. The constant g should be chosen
large enough to allow for the detection of any reasonable number of outliers in the

series.

Binary encoding implies that the solution space € consists of Y 7_, (]Z) distinct
elements, since the total number of outliers is limited to a constant g.We can see
that €) is really large even when ¢ is considerably lower than the length of the
time series. All our algorithms either severely penalise solutions with a maximum
number of outliers larger then ¢ , or do not consider such solutions at all. TA and SA
algorithms are built so that they do not evaluate solutions with more than g outliers.
With regard to the GA, chromosomes not belonging to 2 will be severely penalised
subtracting a positive quantity (the penalty factor pen) to the fitness (function to
be maximised), so that the algorithm tends to avoid these chromosomes. We set the

value of pen to 1,000.
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3.2.2 Neighbourhood search in simulated annealing and thresh-

old accepting

Each solution £¢ €  has an associated set of neighbours, N(£¢) C €, called the
neighbourhood of £¢ where every " € N(£°) may be reached directly from £¢ by an
operation called move.Given the current solution £, its neighborhood is constructed
using three different moves: add an outlier; remove an outlier; change the position
of an outlier.Since a maximum of ¢ outliers is allowed, moves are applied according
to the current solution in the following way: if {¢ doesn’t contain outliers (i.e., it is a
string where every bit is 0), algorithms can only introduce an outlier; if £ contains
less than ¢ outliers, algorithms can add, remove or change the position of an outlier,
with probability 1/3; if £¢ already contains g outliers, algorithms cannot proceed
adding an outlier but can only remove or change the position of one of them, with
probability 1/2.

3.2.3 Objective function

Let y+ = [y14, - - -, Ys) be a vector time series generated from a Gaussian s-dimensional
jointly second order stationary real-valued process Y;, with mean zero for each com-
ponent, covariance matrix I', and inverse covariance matrix I'i, for integer lag .
When outliers are present, 1, is perturbed and unobservable. We suppose that k
perturbations w; = [wi4,...,ws:] impact the series y; at time points t;, j =1,...,k
such that at each ¢; they affect all s components. The total number of outlying
data is equal to h = ks. Denote the observed time series by 2z = [z14,..., 2s¢)
generated by the observable multivariate stochastic process Z;. Given a sample of

N observations we may write the following model

2=y + Xw, (3.1)
where z = [z],..., 2] is the vector obtained by stacking the s component ob-
servations at each time point, y = [y}, ...,yy] is the vector obtained by stacking

the s component of the unobservable outlier free time series at each time point,
w = [wi,...,w;]" is the vector obtained by stacking the s components of the k
outliers and X is a Ns x h pattern design matrix defined as follows.

For each ¢; with j = 1,...,k, the [(¢; — 1)s + r,(j — 1)s + r]-th entry is one for
r=1,...,s. All the remaining entries are zero.

Matrix X contains information about the perturbed time indices of a given outlier

pattern. Thus, each feasible solution £ corresponds to a matrix X.



59 Meta-heuristic Methods for Outliers Detection in Multivariate Time Series

The natural logarithm of the likelihood for z may be written
N 1 1
Lixw) = —78 log(27) — 5 log(detT") — Q(Z — Xw) Tz — Xw), (3.2)

where I denotes the Ns x N's block Toeplitz matrix with I';_; as the (4, j)-th block.

Assuming both I" and X known, the maximisation of (3.2) with respect to w yields:
o= (XT'X)"'XT 'z (3.3)

If we approximate I'"! with T'i (Shaman (1976)), where T'i denotes the Ns x Ns
block Toeplitz matrix with I'i,_; as the (¢, j)-th block, the maximum likelihood

estimate (3.3) of w takes the form:

& = (X'TiX) ' X'Tiz. (3.4)

Since T'i is unknown, we have to estimate it from the data. We used here the

autoregressive approach described in section (1.3.3).

If we look at the expression (1.37) can see that the estimate of the inverse covari-
ance depends on estimates of autoregressive parameters and the estimated variance-
covariance matrix 3 of innovations. In the presence of outliers the residuals of VAR
model are contaminated, hence 3 may be biased. For obtaining a better estimate
we use the a% trimmed method. To compute the a% trimmed variance-covariance
matrix 3, we first remove the 5% largest values (according to their absolute values)

and then compute 3 based on trimmed sample.

The natural logarithm of the maximised likelihood is obtained by replacing w by

@ and T~! by Tiin (3.2) :
Fe) = =28 1og(27)— = log(det Ti)— =Pz — = (X'Piz) (X' PiX) X Piz. (3.5
(Xw) =~ og( 7r)—§ og(det 1)—52 12—5( iz) (X'TiX) iz. (3.5)
The matrix I'i is fixed for any outlier pattern X, so that the maximised likelihood
in (3.5) depends only on matrix X. Since matrix X conveys all information about

the outlier’s location, it seems natural to detect the outlier pattern by determining

the matrix X maximising the quadratic form in (3.4)
1 A . N
Lx = 5(X’riz)’(XTiX)—leiz. (3.6)

Obviously the likelihood increases when the number of estimated parameters w, i.e.
the number of outliers, is increased. Thus, in a similar fashion as identification
criteria for model selection (see Bhansali & Downham (1977)), we contrast the

likelihood with a linear function of the number of outliers. So, the search of outliers
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in a multivariate series is equivalent to search the chromosome & or the design matrix

X that minimizes the following objective function:

f(&) = —2Lx + ch, (3.7)

where c is an arbitrary constant and h is the actual number of outliers. The function
f(§) depends on both the matrix X and the penalty constant c. Different values
are suggested in literature for the constant ¢ (see Bhansali & Downham (1977)).
We propose two alternative approaches for selecting appropriate ¢ values in Section
(3.4.1). In a genetic algorithm, the fitness function assigns a positive real number
to any possible solution in order to evaluate its plausibility, therefore in the GA we

adopt the following non-decreasing transform of (3.7):

fitness = exp(—f(£)/5) (3-8)

where [ is a parameter of scale. In the following experiments this parameter is set
equal to 100.

3.2.4 Cooling schedules

The choice of a schedule is a discussed issue as there was a conflict, since early
applications of SA, between theory (logarithmic coolings) and practice (geometric
schedules). No universally valid conclusion seems to emerge from the literature.
A general advice is however to cool the system slowly enough at stages where the
objective function is rapidly improving. An appropriately tuned geometric schedule
seems able to satisfy this requirement and yields good results in a reliable manner.

Then, in our work the geometric schedule is used :

E = aT‘t—l, (39)
where a is a constant close to 1.

This schedule assumes that the annealing process will continue until the temper-
ature reaches zero. In practise, it is not necessary to let the temperature reach zero
because as it approaches zero the chances of accepting a worse move are almost the
same as the temperature being equal to zero. Therefore, the stopping criteria can
either be a suitably low temperature or when the system is frozen at the current
temperature. Some implementations keep the temperature decreasing until some
other condition is met. For example, no change in the best state for a certain period

of time.That is, a particular phase of the search normally continues at a certain
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temperature until some sort of equilibrium is reached. This might be a certain num-
ber of iterations or it could be until there has been no change in state for a certain

number of iterations.

3.2.5 Operators and other implementation issues in the ge-

netic algorithms

We do not use the “standard” randomly generated initial populations (Goldberg
(1989)), while in the algorithms used here, the initial populations consist of chromo-
somes with just one outlier, different from each other (the size of the population is
less than the number of observations). At the beginning, all possible single-outlier
chromosomes are generated and sorted in terms of fitness value and the initial pop-
ulation consists of the chromosomes having the largest fitness. In this way we

evaluate from the beginning the most promising one-outlier patterns (see Baragona
et al. (2001)).

The “roulette wheel” rule is used for parent selection. The probability of a chro-
mosome being selected as a parent is proportional to the rank of its fitness. Each
selected couple of parents will produce two “children” by methods of crossover and

mutation.

The crossover operator used is “uniform crossover” Goldberg (1989). For each
gene of the first child, one of the parents is selected at random (with equal probability
of selection) and its corresponding gene is inherited at the same position. The other

parent is used to determine the second child’s corresponding gene.

Finally, a probability is chosen for randomly changing the value of each gene
of the child-chromosome (mutation). In our encoding, where we have only two
admissible values for a gene (“0” and “1”) the application of the mutation operator

is pretty straightforward.

The entire population of chromosomes is replaced by the offsprings created by the
crossover and mutation processes at each generation except for the best chromosome,
which survives to the next generation. This elitist strategy ensures that the fitness

will never decrease through generations (Rudolph (1994)).

3.3 The TPP procedure

Let y: = [y1.4 - - ., Ys.| be a k-dimensional vector time series following the stationary

and invertible vector autoregressive moving average (VARMA) model:
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®(B)y, = O(B)e,,t =1,..., N, (3.10)

where B is the backshift operator such that By; = y; 1, ®(B) = (I-®, B—®,B*—
...®,BP) and O(B) = (I —©,B — ©,B% —...0,BP) are k x k matrix polynomials
of finite degrees p and q and ¢ = (e, ..., €x) is a sequence of independent and
identically distributed (iid) Gaussian random vectors with mean 0 and positive-

definite covariance matrix ¥. For the VARMA model in equation (3.10), we have
the AR representation II(B)y;, = ¢ where II(B) = O(B) " '®(B) =1 —>_° II,B".

Given an observed time series z = [21,...,2y] where 2 = [214,...,2s¢) Tsay
et al. (2000) generalized additive univariate outliers to the vector case in a direct

manner using the representation

2=y +wl? (3.11)

where It(h) is a dummy variable such that ],Eh) = 1 and It(h) =0ift # h, w =
(w1, ws, ..., wg) is the size of the outlier, and y; follows a VARMA model.

Tsay et al. (2000) showed that when the model order is known, the estimate of

the size of an additive multivariate outlier at time h is given by:

Oap=—(y L)Y Iyt (3.12)

The covariance matrix of this estimate is X, = (NS -L) ! Tsay et al.
(2000) proposed an iterative procedure similar to that of the univariate case to
detect multivariate outliers. Assuming no outlier, the procedure starts building a
multivariate ARMA model for the series under study and let a; be the estimated
residuals and I, the estimated coefficients of the autoregressive representation. The

second step of the procedure requires the calculation of the test statistic:

Jmar = max {J;},

1<t<N

where J; = Cu;l,tE;Llhd;A,h. As in the univariate case, if J,,,, is significant at time
index £y we identify a additive multivariate outlier at 3. Once an outlier is identified,
its impact on underlying time series is removed, using the model in equation (3.11).
The adjusted series is treated as a new time series and the detecting procedure is
iterated. The TPP method terminates when no significant outlier is detected. Tsay

et al. (2000) used simulation to generate finite sample critical values of statistic

Jmax .
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3.4 Performance of meta-heuristic methods

To test the performance of meta-heuristic algorithms for identifying outliers in multi-
variate time series we applied the proposed methods to simulated time series models
of the class VARIMA. We consider eight vector VARMA models, four bivariate
(s = 2) and four trivariate models (s = 3). The sample sizes used are N = 200 and
N = 400. The models considered in this simulation study and reported in Galeano
et al. (2006), Liitkepohl (1993), Tsay et al. (2000) are listed below.

[ 0.6 0.2
Model 1 - VAR(1) bivariate model: ®; = 060 :
0.2 04
[ 02 03
Model 2 - VAR(1) bivariate model: ®; = :
—0.6 1.1
[ 05 0.1 0.0 0.0
Model 3 - VAR(2) bivariate model: &; = oy = :
04 0.5 0.25 0.0

0.6 0.2 —-0.7 0.2
Model 4 - VARMA(1,1) bivariate model: ®; = [ ] 01— [ 01 04 ] .

0.2 04
[ 0.6 0.2 0.0
Model 5 - VAR(1) trivariate model: ®; = | 0.2 0.4 0.0
| 06 02 05
[ 02 03 0.0
Model 6 - VAR(1) trivariate model: ®; = | —0.6 1.1 0.0
| 02 03 06
Model 7 - VAR(2) trivariate model:
-0.3 0.15 0.95 -0.15 0.1 0.9
o, = 0.0 —-0.15 0.3 ®y = 0.0 0.0 0.0
| 0.0 0.2 —0.25 | 0.0 035 0.0
Model 8 - VARMA(1,1) trivariate model:
0.6 0.2 0.0 —-0.7 0.0 0.0
&, =102 04 0.0 ©,=1] -01 —-03 0.0
| 0.6 0.2 0.5 | —0.7 00 -0.5

where the covariance matrix of the Gaussian noise is the identity matrix for seven
models. For the Model 2, it has diagonal entries equal to 1.0 and all off-diagonal
entries equal to -0.2.
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We have considered three different outlier configurations. The first two instances
have a small contamination: the first configuration has two isolated outliers at time
indices ¢ = 100, 150, and the second one has a patch of two outliers introduced at
time indices ¢ = 100,101. The last one consists in a heavier contamination, that
includes two isolated outliers and a patch of three outliers introduced at time indices
t = 40,100, 101, 102, 150. For the first two cases the size of each outlier is chosen
equal to w = (3.5,3.5)" for bivariate models and is chosen equal to w = (3.5, 3.5, 3.5)’
for the trivariate models. When the contamination is heavier we set the size of each
outlier equal to w = (5.0, 5.0)" for bivariate models and we set w = (5.0, 5.0, 5.0)" for
the trivariate models. For each model, sample size and outliers configuration, we

generate a set of 100 time series.

We may consider several criteria for evaluating the performance procedure. Since
the proposed procedures are designed to detect the outliers avoiding false identifi-
cations, we used as criteria of evaluation the relative frequency of correct outlier
detection, defined as a correct identification of outlier pattern. For the case of two
outliers (100,150 or 100,101) this means the relative frequency of detecting both
outliers and only them, while for the case of five outliers the relative frequency of
detecting all five outliers and only them. For each method, we include the relative
frequency of partial correct configuration detection (the relative frequency of only
one outlier correctly detected or the relative frequency of less than five outliers cor-
rectly detected) and the relative frequency of wrong identifications (i.e., solutions

where at least one observation identified as outlier in fact is not).

To apply the algorithms we need to determine the values of two types of pa-
rameters, one concerning the outlier problem itself and the other one regarding the
meta-heuristic algorithms. The parameters of the outlier detection problem are
three: the constant ¢ in (3.7), the order of the multivariate autoregressive process

m in (1.37) and the maximum number of outliers g.

3.4.1 The problem of parameters tuning
The constant c

In order to obtain the critical values of the test statistics for outlier detection (in
univariate and multivariate time series) one can rely on simulation, using a large
number of series from different models (Tsay et al. (2000), Galeano et al. (2006)).
Programs TRAMO and SCA, for example, have outlier detection routines that use
critical values obtained by such a simulation study. In our work we follow the same

idea to establish the value of the constant ¢ through a Monte Carlo experiment.
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We consider the eight vector VARMA models listed above and sample sizes
N = 200,400. For each model and sample size, we generate a set of 500 time
series and apply the algorithms to each set, employing different values of ¢ and
recording the corresponding values of the type I error o (where « is the frequency

of clean observations identified as outliers).

Table 3.1 provides the ¢ values obtained via simulation according to different
values of a;, models, dimensions and sample sizes. We observed that the three meta-
heuristic algorithms lead to similar simulation results, therefore in Table 3.1 we do
not consider the effect of these algorithms on the constant c. Table 3.1 suggests
the following observations. First, for each «, we see only minor differences in the
¢ values among different models given dimension and sample size. Second, the
estimated c values increase with the sample size N and decrease with the dimension
s. In general, the sample size and the time series dimension are important factors
affecting the behaviour of constant ¢, while the type of model does not seem to have

a significant effect.

Table 3.1: Simulation study: ¢ values corresponding to different type I error «

N s Model «
0.10 0.05 0.01

200 2 1 7.17 7.68 9.53
2 733 793 9.25

3 7.29 7.89 9.20

4 7.18 7.84 9.50

3 95 5.71 6.13 7.03

6 5.78 6.30 7.20

7 5.72  6.20 7.50

8 5.67 6.17 7.50

400 2 1 8.10 8.83 10.20
2 8.05 8.59 10.50

3 793 855 9.80

4 7.57 819 9.68

3 95 6.13 6.70 8.13

6 6.23 6.78 8.13

7 6.15 6.67 8.00

8 5.80 6.33 7.80
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In real application, it may be necessary to analyze time series with different
sample sizes and different number of components. To address this need, we suggest

a theoretical approximation to derive the constant c.

Let us consider a test where under the null hypothesis the time series is outlier
free and under the alternative hypothesis a single outlier occurs at unknown time ¢.
We may use as statistic test:

Amae = max {Ac},
where A, = (X} T'iz)(X,TiX,) 1 (X,Tiz) and Xy is the pattern design corresponding
to just one outlier at time ¢. The statistic A; is a quadratic form and is distributed
approximately as a chi-squared random variable with s degrees of freedom under
the null hypothesis of no outliers. The finite sample distribution of A,,,, is compli-
cated because of the correlation between the A;. We may obtain the approximate
percentiles of A,,,,; assuming the independence among the A; (though a relatively

strong hypothesis)
P(Amaz <o) = [POE <)) =1—-a

or
P(X? < /\a) = (1 - O[)l/N’

where )\, is the (1 — a)th quantile of the chi-square distribution with s degrees of
freedom. We reject the null hypothesis if A, is greater than the quantile A\, at

the « significance level.

Now, a problem arises, when the value of N increases the quantity (1 — (x)l/N — 1
and A\, — o0o. To solve this problem we approximate the distribution of A,,,, with
the Gumbel distribution:

A

P(M < I/a) =exp(—e ") =1-—a,
CN

where dy = 2(log N + (5 — 1) log(log N) — logI'(5)) and cy = 2, and we obtain the

quantiles for A,,.. as Ay = ¢y + dy.

Now we can choose the constant ¢ so that, whenever the null hypothesis of no
outlier is accepted, the fitness of the chromosome with no outlier is larger than

the one of the best one-outlier chromosome, or similarly A,,.. < cs, therefore put
c= A/

In Table 3.2 we observe that the resulting theoretical ¢ values are always slightly

larger than the simulated ones, so that by using them the test is more conservative.
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The discrepancy between the theoretical and simulated ¢ values may be caused by

the dependence among the A; variables.

The ¢ values used in our simulation experiments are the simulated ones values

reported in Table 3.2 corresponding to o = 0.05

Table 3.2: Simulated and theoretical ¢ values corresponding to different type I error

«, dimensions s and sample sizes N

N s «
0.10 0.05 0.01
200 2 72 79 94
7.5 8.3 9.9

3 57 62 73
5.9 6.4 79

400 2 79 85 10.0
82 89 10.6

3 60 66 8.0
6.3 6.7 8.0

The parameters m and g

To determine the value of order m in (1.37) we used the FPE criterion (Liitkepohl
(1993)). Alternatively we could use Akaike’s Information Criterion which differs
from FPE essentially by a term of order O(N~2) and thus the two criteria are
almost equivalent for large N (Liitkepohl (1993)).

The value of the parameter g should be chosen by taking into account the length
of the time series and all other relevant information. The value g affects the choice
of the iteration number. If we increase the value for g it seems reasonable to increase
also the iteration number of the meta-heuristic algorithms because a larger solution

space has to be explored. The selected value for g is 5 for all algorithms.
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3.4.2 Meta-heuristic control parameters tuning

A correct choice of the value of the control parameters is important for the perfor-
mance of the meta-heuristic algorithms. For the genetic algorithms, choices have to
be made for the crossover probability (pcross), mutation probability (pmut), popu-
lation size (pop) and the number of generations or termination criterion (gen) (see

section A.4 in appendix).

For the simulated annealing algorithm we have to determine the initial tempera-
ture (7p), final temperature (7%), number of internal loop iterations at any temper-
ature (SA;.,), and the constant a in (3.9), characterising the cooling schedule. As
reported in section (A.2) in appendix, the number of evaluations of the objective
function I2# depends on the choice of these parameters. Generally we establish a

SA

number of ;2 and the parameters are chosen in order to meet this constraint (see

section A.2 in appendix).

Threshold accepting requires two parameters: the number of thresholds (N;) and
the number of internal loop iterations at any threshold (7'Aj.). Also in this case, if
we set Ig);f‘, N; and T Ajs., must be chosen in such a way that their product is equal

to ITA (see section A.3 in appendix).

Unfortunately, the correct choice of the suitable parameter values is a difficult
task because a wide range of values needs to be considered for each parameter and
some parameters may be correlated with each other. Few theoretical guidelines are
available while experience with practical applications of meta-heuristic algorithms

is offered by a vast literature.

Regarding the TA, two simple procedures that can be used to generate the thresh-
old sequences are reported in section (A.3) of appendix. First, one might use a linear
threshold sequence decreasing to zero and, alternatively, one might use a data driven
generation of the threshold sequence (see algorithm (3) in the appendix) suggested
by Winker & Fang (1997). In our simulation experiments we set the value of M in
algorithm (3) to 2,000. There are several examples in literature suggesting that the
two procedures are equivalent, while in some applications the method proposed by
Winker & Fang (1997) yields better results. As far as the number of thresholds IV
is concerned, Gilli & Winker (2009) suggested the minimum value for N; around 10.
However, when the total number of iterations I1# becomes very large, N; might be

increased.

Some guidelines for the choice of GA parameters may be found in de Jong (1975),
Schaffer et al. (1989), da Graga Lobo (2000), Eiben et al. (1999), South et al. (1993).

de Jong (1975) studies the effects of some control parameters of GA on its perfor-
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mance, concerning the population size, and the crossover and mutation probabilities.
Using five different function optimisation scenarios, De Jong systematically varies
these parameters, analyses the results and thus establishes guidelines for robust pa-
rameter choice. De Jong suggests population size pop = 50, probability of crossover
pcross = 0.6, probability of mutation pmut = 0.001 and the adoption of the elitist
strategy. However, other empirical studies (Eiben et al. (1999), South et al. (1993),
da Graga Lobo (2000), Gao (2003), Grefenstette (1986)) indicate different values for

these parameters.

Regarding the SA algorithm, the initial temperature must be set to a high value
enough to allow a move to almost any neighbourhood state. However, if the temper-
ature starts at too high a value then the search can move to any neighbour and thus
transform the search (at least in the early stages) into a random search. Then, a very
high initial temperature may influence the quality of the performance and the length
of the computational time. If we know the maximum distance (objective function
difference) between one neighbour and another then we can use this information to
calculate a starting temperature. Another method, suggested in (Rayward-Smith,
1996), is to start with a very high temperature and cool it rapidly until about 60%
of worst solutions are being accepted. This forms the real starting temperature and
it can now be cooled more slowly. A similar idea, suggested in (Dowsland, 1995), is
to rapidly heat the system until a certain proportion of worse solutions are accepted
and then slow cooling can start. This can be seen to be similar to how physical
annealing works in that the material is heated until it is liquid and then cooling

begins (i.e. once the material is a liquid it is pointless carrying on heating it).

Theoretically, the cooling rate parameter a in (3.9) assumes values between 0 and
1, while Eglese (1990) reports that values used in practice lie between 0.8 and 0.99.
Park & Kim (1998) suggest a systematic procedure, based on the simplex method

for non linear programming, to determine parameter values.

In conclusion we can say that there is no uniformly best choice of parameters,
but specific problems may require different values. Baragona et al. (2011) suggest
that a good choice may be obtained by considering a range of possible values for the
same problems. In our applications these parameters values are chosen by a tuning
experiment. For each algorithm, different combinations of parameters values are
tried, keeping the number of the objective function evaluations constant. We select
the parameter combination that yields the largest frequency of true outlier pattern

detection.
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A simulation experiment for tuning parameters

The remaining parameter values are chosen by means of a tuning experiment where
a set of 200 time series with N = 400 have been generated by Model 2, and outliers
at time indices 100 and 150 are analysed. All the algorithms run with a total of

2,000 evaluations of the objective function.

For the SA, the T is always kept equal to 0.05. Since T’ has the role of stopping
criterion, a value close to zero seems reasonable, thus the probability of accepting
a worse solution during the last iterations is very small. The examined values for
a are [0.90, 0.94, 0.95, 0.96] and for Tj are [2, 4, 6, 8, 10]. For each combination,
the number of internal loop iterations S A;., is equal to the ratio between the total
number of evaluations of the objective function (2000) and the number of different
temperatures (the number depending on Ty and a). Table 3.3 shows the frequencies
of correct identifications (based on 200 time series) for each pair of a and T;,. When
decreasing the value of a, the best performance is obtained by increasing the value
of Ty. The pair a = 0.95 and Ty = 8 is used.

Table 3.3: SA tuning experiment: frequencies of correct identifications for different

values of Ty and a.

a 1o
2 4 6 8 10
0.90 0.825 0.845 0.850 0.830 0.870
0.94 0.820 0.850 0.860 0.880 0.880
0.95 0.835 0.880 0.840 0.900 0.855
0.96 0.820 0.835 0.875 0.870 0.845

For the GA algorithms, we compare the frequency of the correct outlier pattern
identification for 8 different combinations of population size pop and number of gen-
erations gen, keeping the mutation probability pmut and the crossover probability
peross constant for all experiments. The values considered for the population size
are [10, 20, 30, 40, 50, 70, 100, 200|, for the number of generations are [10, 20, 30, 40,
50, 70, 100, 200], while pcross = 0.001 and pmut = 0.6 (these values were suggested
by de Jong (1975)).

Table 3.4 suggests for the parameter pop an average value (between 70 and 100).
In a second stage, different combinations of pmut and pcross are considered from
pmut = {0.1, 0.01, 0.001, 0.0005} and pcross = {0.4, 0.6, 0.8, 0.9} whereas the
population size and the number of generations are kept constant at 100 and 20,

respectively. The results of some combinations of pmut and pcross are reported in
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table 3.4. The results indicate that better results are obtained for average values
of crossover probability pcross and very low values, but not too much, of mutation
probability pmut. Based on these results, we use as values: pmut = 0.001 and

pcross = 0.6.

For TA algorithm, we compared a linear sequence of thresholds and a sequence
generated by the method given in Winker & Fang (1997). The linear sequences were
generated considering different initial thresholds and different rates of decrease. The
initial thresholds {6, 8, 10, 14} are used while the values {0.90, 0.96} are considered
as rates of decrease. For the method proposed by (Winker & Fang (1997)) , we
considered 8 combinations of the number of thresholds N; and number of iterations
SAjter choices from N, ={10, 20, 30, 40 , 50, 70, 100, 200} and SA;.. = {10,
20, 30, 40, 50, 70, 100, 200 }. With regard to the linear sequence, the results
suggest to use a high threshold and a rate of decrease of the thresholds not very
rapid. For the method proposed by (Winker & Fang (1997)) the best result is
obtained in correspondence to number of thresholds N; equal to 100. However,
there is not a constant improvement as the number of thresholds is incremented
and also the differences are not very marked. Observing the thresholds provided by
Winker & Fang (1997) method, we observed that the initial threshold is large enough
(slightly more than 14) and the thresholds decrease very slowly. This particular
result depends on the type of problem considered. The value of the objective function
for the solutions that belong to a neighborhood can be very different because the
removal or insertion of a given anomaly can lead to great changes in the value of
the AIC. This means that the distribution F'(A) (see algorithm (3) in the appendix)
does not appear to be symmetrical around zero, but is asymmetric towards higher
values. From these results it was decided to use a sequence of thresholds N; = 100
obtained by the method of Winker.

Table 3.4: TA and GA tuning experiment: frequencies of correct identifications for
different combinations of parameters.

TA GA

(Nt, T Aiter)  fra  (pop,gen)  fea (

(10, 200) 0.860 (10,200) 0.815 (
(20,100) 0.865 (20,100) 0.830 (0.01,0.6) 0.875
(30,70) 0.860 (30,70) 0.850 (0.01,0.8) 0.835
(40,50) 0.880 (40,50) 0.850 (0.01,0.9) 0.825
( ( (
( ( (
( ( (
( ( (

pmut, pcross)  faa
0.01,0.4) 0.850

50,40) 0.875 (50,40) 0.840 (0.001,0.4 0.880
70,30) 0.885 (70,30) 0.885
100,20) 0.885 (100,20) 0.885
200,10) 0.855 (200,10) 0.880

)

0.001,0.8) 0.880
0.001,0.9) 0.850
0.0005,0.6) 0.830
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We summarize the parameter values used in the simulations. We imposed that
the objective (fitness) function were evaluated not more than 10,000 times: I1/=
ISA=154=10,000. For the algorithm SA we chose Ty = 8.0, Ty = 0.05, S Ay = 100,
a = 0.95. For the algorithm TA, we set N; = 100 and T'A;;.,, = 100. For the genetic
algorithm we selected pcross = 0.6, pmut = 0.001, pop = 100, gen = 100. With
g = 5, the solution space  is of order 2 x 10° when the sample size is N = 200, and
it is of order 8 x 10'° when the sample size is N = 400 whereas the meta-heuristic
algorithms reach a satisfying convergence to the optimum evaluating the objective

function (fitness) no more than 10,000 times.

3.5 Results

In Tables 3.5, 3.6 and 3.7 we report the results of the three meta-heuristic algorithms
and the TPP detection procedure. In Tables 3.5 and 3.6, the rows labelled P, sum-
marise the relative frequency of the correct outlier pattern (both outliers detected
and only them), the rows labelled P; summarise the relative frequency of only one
outlier correctly detected and the rows labelled £ summarise the relative frequency
of the solutions with wrong identifications (i.e., observations that are identified as
outliers while they are not). The complement to one of the sum of these three fre-
quencies is the frequency of the no outlier solution. In Table 3.7, the rows labelled
P5 summarise the relative frequency of the correct outlier pattern (all five outliers
detected and only them), the rows labelled P.5 summarise the relative frequency
of less than five outliers correctly detected and the rows labelled £ summarise the
relative frequency of solutions with wrong identifications (i.e., observations that are
identified as outliers while they are not). The complement to one of the sum of these

three frequencies is again the frequency of the no outlier solution.

Table 3.5 shows that each of the four algorithms has a high percentage of success
when the two outliers are far from each other (¢ = 100, 150). The frequencies of full
identifications are nearly equivalent for the four methods. The results are mixed and
no method seems uniformly superior to the others. For some models the frequency
of correct identification of the TPP method is larger than the corresponding meta-

heuristic frequency, while for other models the converse is true.

Table 3.6 reports simulation results concerning the outliers patch detection where
outliers are introduced at time indices ¢ = 100, 101. We can see from this table that
for almost all models the meta-heuristic algorithms detect the outlier patch with
frequencies higher than those achieved by the TPP. Only for the model (7) the TPP

method provides satisfactory results. Moreover, for almost all the models the TPP’s
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frequency of wrong identification F is considerable larger than the corresponding
frequencies achieved by meta-heuristic methods. In comparison to the preceding
case (two outliers for each other) here the frequency of the no outlier solution is
larger, and the largest for the TPP method. Finally, we can see that the frequencies
P, for models with 200 observations are less than same models with 400 observations.
This may be due to the fact that the solution space is larger and the meta-heuristic

methods are were easily trapped in some local optimum.

In Table 3.7 are reported the results for the configuration with 5 outliers where
three are consecutive. The configuration is very complex and very difficult to detect
if the size of the outlier is not large enough. For this reason outlier sizes are set
to 5.0 for the instants 40, 100,101,102, 150. In the table 3.7 we can see that the
relative frequencies of correct configuration P5 obtained through the meta-heuristic
methods are very different and depending on the model. For some models the

relative frequency of correct outlier detection are very low.

To reduce the lack of convergence, we reported the simulations allowing for a
total number of objective function (fitness) evaluations increased to 100,000 (instead
of 10,000), both for the most complex configuration (40,100, 101,102, 150) and for
thesimpler one (100, 101).

Table 3.8-3.9 shows the results obtained for the configurations 100,101 and
40,100, 101, 102, 150 setting the number of evaluations equal to 100,000. We can
see an improvement of the results in both cases but the increase of the frequencies
of correct identification is very large for the case of 5 outliers. Now the relative
frequencies of correct configuration detection obtained through the meta-heuristic
methods are high and much larger than those obtained with the TPP method for
seven of the eight models considered. For some models the correct pattern is always
found (frequency Ps assumes the value 1). The meta-heuristic algorithms show a
better performance than the TPP also in the third configuration outliers (see Table
3.9).

Tables 3.8 and 3.9 evidently illustrate masking and smearing problems encoun-
tered by the TPP procedure when additive outliers exist in a patch. It has been
noticed that this problems persist despite the size of outliers whereas the meta-
heuristic methods improve their performance when the outliers are inserted with a
bigger magnitude. Detecting a set of consecutive outliers seems much more difficult
and affected by the underlying models. The good performance of TPP in model
7 depends on the particular parameters of the model generating data. The three
algorithms proposed here clearly outperform the TPP method to detect patch of
additive outliers.
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To understand the poor TPP’s results, let us to consider the situation in which
the time series follows a VAR(1) and there exists a patch of two additive outliers at
time indices t = T,T + 1, with magnitudes w; = w for t = T, T + 1. Suppose that
the model parameters are known, then the expected values of the perturbations at

time indices t = T,T + 1 are given by

E(C:)T) = wr + Fi0_1Fi1WT+1 = (Is + I‘io_lI‘il)w,
E(&ry1) = wrig + Tip 'Ti_wr = (I, + Tip T w.

We observe that they are biased. The bias depends on the inverse covariance
matrices and it may cause the masking effect. The good performance achieved by
the TPP in model 7 may depend on the peculiar parameters of the models. On the

contrary in our methods the estimates of the magnitude of outliers are unbiased.

3.5.1 Real time series data

In this subsection we illustrate the performance of the meta-heuristic procedures by
analysing a real example. The data are the well-known gas-furnace series of Box
et al. (1994). This bivariate time series consists of an input gas rate in cubic feet per
minute and the C'O, concentration in the outlet gas as a percentage, both measured
at 9-second time intervals. There are 296 observations. The TPP method finds
additive multivariate outliers at positions 42, 54, 113, 199, 235, 264. All the other
algorithms, based on 1,000,000 objective function (fitness) evaluations (Tp= 8.0, Tf=
0.05, SA;e, = 10,000, a = 0.95, gen—30,000, pop—30, N;—100 and T' A, — 10,000,
g = 15, ¢ = 8.2 and m = 6) converge to the solution with 4 outliers at positions:
42, 54, 199 and 264. Additional information may be derived by looking also at the
sub-optimal solutions. Table 3.10 displays the outliers patterns corresponding to the
best ten solutions found after 1,000,000 objective function evaluations. It suggests
that additional time indices may be considered as candidates for the true outlier
positions, giving additional insight about the probably outlying observations. It
turns out that for this series the TPP method has not given the best solution, but

the ten-th one in order of decreasing objective function.

Let I denote the number of evaluations of the objective function. In order to
compare the convergence of the algorithms we calculate, for different values of [
(100, 500, 1,000, 5,000, 10,000), the empirical distribution, based on 100 restarts,
of the best obtained objective function. Table 3.11 reports some relevant statistics

(mean, standard deviation, best value and 5-th percentile) about the empirical dis-



75 Meta-heuristic Methods for Outliers Detection in Multivariate Time Series

Table 3.5: Comparison of the algorithm performances: outliers at t = 100, 150 based

on 10* iteration
N =200 N =400

TA SA GA TPP TA SA GA TPP

Model 1

P, 0.90 0.91 091 0.94 0.87 0.87 0.92 0.89
P 0.06 0.04 0.04 0.02 0.10 0.10 0.05 0.06
E 0.05 0.05 0.05 0.04 0.03 0.03 0.03 0.04
Model 2

P, 0.91 0.90 0.91 0.92 0.92 0.92 0.94 0.93
Py 0.03 0.04 0.03 0.03 0.04 0.04 0.02 0.02
E 0.06 0.06 0.06 0.05 0.04 0.04 0.04 0.05
Model 3

P, 094 094 094 0.94 0.91 0.91 0.93 0.93
P 0.01 0.01 0.01 0.00 0.02 0.02 0.00 0.00
E 0.04 0.04 0.04 0.06 0.06 0.06 0.06 0.07
Model 4

P, 0.94 094 094 0.90 091 0.91 091 091
P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
E 0.06 0.06 0.06 0.10 0.09 0.09 0.09 0.09
Model 5

P, 0.90 0.90 0.90 0.93 0.94 094 094 0094
Py 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
E 0.10 0.10 0.10 0.07 0.06 0.06 0.06 0.06
Model 6

P 0.90 0.90 0.90 0.92 0.90 0.90 0.90 0.94
P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
E 0.10 0.10 0.10 0.08 0.10 0.10 0.10 0.06
Model 7

P, 0.95 094 095 0.94 0.90 0.90 0.90 0.93
P 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
E 0.056 0.05 0.05 0.06 0.01 0.10 0.10 0.07
Model 8

P, 094 094 094 0.92 0.96 0.96 0.96 0.96
Py 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
E 0.06 0.06 0.06 0.08 0.04 0.04 0.04 0.04

P>= frequency of event ’exactly two outliers found at times 100 and 150’
P = frequency of event ’exactly one outlier found at time 100 or at time 150’
E= frequency of solutions with wrong identifications
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Table 3.6: Comparison of the algorithm performances: outliers at ¢ = 100, 101 based

on 10?* iteration

N =200 N =400

TA SA GA TPP TA SA GA TPP
Model 1
P 0.72 0.71 0.72 0.23 0.55 0.56 0.58 0.19
P 0.06 0.06 0.05 0.08 0.07 0.06 0.05 0.07
E 0.11 0.11 0.11 0.18 0.13 0.13 0.12 0.14
Model 2
P, 0.74 0.74 0.75 0.22 0.68 0.67 0.69 0.21
Py 0.10 0.10 0.10 0.37 0.15 0.14 0.12 0.40
E 0.13 0.13 0.12 0.25 0.10 0.10 0.10 0.25
Model 3
P 0.83 0.83 0.84 0.34 0.74 0.75 0.78 0.43
P 0.03 0.03 0.03 0.06 0.06 0.05 0.04 0.05
E 0.07 0.07 0.06 0.23 0.12 0.11 0.09 0.21
Model 4
P 0.52 0.52 0.54 0.00 0.40 0.41 042 0.01
P 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01
E 0.21 0.21 0.19 0.30 0.29 0.28 0.27 041
Model 5
P 0.89 0.89 0.89 0.55 0.83 0.82 0.83 0.55
Py 0.00 0.00 0.00 0.08 0.01 0.02 0.01 0.11
E 0.11 0.11 0.11 0.23 0.15 0.15 0.15 0.23
Model 6
P 0.84 0.84 0.84 0.55 0.81 0.81 0.82 0.52
P 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01
E 0.13 0.13 0.13 0.32 0.17 0.17 0.17 0.35
Model 7
P 0.92 0.92 0.92 0.90 0.88 0.88 0.88 0.87
P 0.01 0.01 0.02 0.02 0.00 0.00 0.00 0.04
E 0.07 0.07 0.07 0.08 0.12 0.12 0.12 0.09
Model 8
P 0.91 091 091 0.10 0.89 0.89 0.91 0.03
Py 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.08
E 0.09 0.09 0.09 0.70 0.11 0.11 0.09 0.88

P>= frequency of event ’exactly two outliers found at times 100 and 150’

P1= frequency of event ’exactly one outlier found at time 100 or at time 150’
E= frequency of solutions with wrong identifications
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Table 3.7: Comparison of the algorithm performances:
40,100, 101, 102, 150 based on 10* iteration
N = 200 N =400
TA SA GA TPP TA SA GA TPP

Model 1

P 0.60 0.58 0.63 0.32 0.32 0.32 037 0.24
Py 0.28 0.30 0.25 0.39 0.48 048 0.44 0.46
E 0.12 0.12 0.12 0.29 0.20 0.20 0.19 0.30
Model 2

P 0.75 0.00 0.00 0.29 0.68 0.00 0.00 0.27
P 0.13 0.00 0.00 0.45 0.20 0.00 0.00 0.50
E 0.12 0.00 0.00 0.26 0.12 0.00 0.00 0.23
Model 3

P 0.72 0.75 0.76 0.28 0.47 047 049 0.35
P 0.15 0.13 0.12 0.29 0.24 024 023 0.25
E 0.13 0.12 0.12 0.43 0.29 0.29 0.28 0.40
Model 4

Py 023 0.22 0.26 0.01 0.20 0.21 0.23 0.00
P 0.31 0.32 0.31 0.22 0.21 0.20 0.20 0.19
E 046 0.46 043 0.77 0.59 0.59 0.57 0.81
Model 5

P 0.84 0.84 0.85 0.55 0.72 0.71 0.72 0.54
P 0.03 0.03 0.02 0.13 0.08 0.09 0.08 0.15
E 0.13 0.13 0.13 0.32 0.20 0.20 0.20 0.31
Model 6

P 0.95 0.95 095 0.41 0.90 0.90 0.90 0.40
P 0.02 0.02 0.02 0.04 0.02 0.02 0.02 0.03
E 0.03 0.03 0.03 0.55 0.08 0.08 0.08 0.57
Model 7

P 1.00 1.00 1.00 0.91 1.00 1.00 1.00 0.90
Py 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
E 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.09
Model 8

P 0.57 0.58 0.60 0.00 0.66 0.66 0.68 0.01
Py 0.11 0.10 0.08 0.35 0.03 0.04 0.03 0.28
E 0.32 0.32 0.32 0.65 0.31 0.31 0.29 0.71

Ps= frequency of event ’exactly five outliers found at times 40, 100, 101, 102, 150’

P_5= frequency of event ’some of correct outliers are detected’

E= frequency of solutions with wrong identifications

outliers at ¢
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Table 3.8: Comparison of the algorithm performances: outliers at ¢ = 100, 101 based

on 10° iteration

N =200 N =400

TA SA GA TPP TA SA GA TPP
Model 1
P 0.73 0.73 0.73 0.23 0.61 0.61 0.61 0.19
P 0.056 0.05 0.05 0.08 0.06 0.05 0.05 0.07
E 0.10 0.10 0.10 0.18 0.09 0.09 0.09 0.14
Model 2
P 0.75 0.75 0.75 0.22 0.72 0.72 0.72 0.21
Py 0.10 0.10 0.10 0.37 0.11 0.11 0.11 0.40
E 0.12 0.12 0.12 0.25 0.10 0.10 0.10 0.25
Model 3
P, 0.84 0.84 0.84 0.34 0.83 0.83 0.83 0.43
P 0.03 0.03 0.03 0.06 0.03 0.03 0.03 0.05
E 0.06 0.06 0.06 0.23 0.06 0.05 0.05 0.21
Model 4
P 0.60 0.60 0.60 0.00 0.64 0.64 0.64 0.01
P 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01
E 0.13 0.13 0.13 0.30 0.06 0.05 0.05 041
Model 5
P 0.90 0.90 0.90 0.55 0.93 0.93 093 0.55
Py 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.11
E 0.10 0.10 0.10 0.23 0.06 0.06 0.06 0.23
Model 6
P 0.85 0.85 0.85 0.55 0.88 0.88 0.88 0.52
P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
E 0.13 0.13 0.13 0.32 0.10 0.10 0.10 0.35
Model 7
P 0.92 0.92 0.92 0.90 0.88 0.88 0.88 0.87
P 0.01 0.01 0.02 0.02 0.00 0.00 0.00 0.04
E 0.07 0.07 0.07 0.08 0.12 0.12 0.12 0.09
Model 8
P 0.93 0.93 0.93 0.10 0.96 0.96 0.96 0.03
Py 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.08
E 0.07 0.07 0.07 0.70 0.04 0.04 0.04 0.88

P>= frequency of event ’exactly two outliers found at times 100 and 150’

P1= frequency of event ’exactly one outlier found at time 100 or at time 150’
E= frequency of solutions with wrong identifications
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Table 3.9: Comparison of the algorithm performances:
40,100, 101, 102, 150 based on 10° iteration
N = 200 N =400
TA SA GA TPP TA SA GA TPP

Model 1

P 0.89 090 0.95 0.32 0.80 0.80 0.92 0.24
Py 0.06 0.05 0.00 0.39 0.09 0.09 0.00 0.46
E 0.05 0.05 0.056 0.29 0.11 0.11 0.08 0.30
Model 2

P 0.86 0.86 0.87 0.29 0.84 0.85 0.87 0.27
P 0.10 0.10 0.09 0.45 0.12 0.11 0.09 0.50
E 0.09 0.04 0.04 0.26 0.04 0.04 0.04 0.23
Model 3

P 0.95 0.97 099 0.28 0.86 0.90 0.94 0.35
P 0.02 0.00 0.00 0.29 0.04 0.02 0.00 0.25
E 0.03 0.03 0.01 0.43 0.10 0.08 0.06 0.40
Model 4

P 0.74 0.73 0.75 0.01 0.82 0.82 0.84 0.00
P 0.14 0.15 0.13 0.22 0.05 0.05 0.05 0.19
E 0.12 0.12 0.12 0.77 0.13 0.13 0.11 0.81
Model 5

P 0.97 0.97 1.00 0.55 0.96 0.96 1.00 0.54
P 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.15
E 0.03 0.03 0.00 0.32 0.04 0.04 0.00 0.31
Model 6

P 1.00 1.00 1.00 0.41 0.98 0.98 1.00 0.40
P 0.00 0.00 0.00 0.04 0.02 0.02 0.00 0.03
E 0.00 0.00 0.00 0.55 0.00 0.00 0.00 0.57
Model 7

P 1.00 1.00 1.00 0.91 1.00 1.00 1.00 0.90
Py 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
E 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.09
Model 8

P 093 092 0.95 0.00 0.93 0.93 0.94 0.01
Py 0.02 0.03 0.00 0.35 0.02 0.02 0.01 0.28
E 0.05 0.05 0.056 0.65 0.05 0.05 0.05 0.71

Ps= frequency of event ’exactly five outliers found at times 40, 100, 101, 102, 150’

P_5= frequency of event ’some of correct outliers are detected’

E= frequency of solutions with wrong identifications

outliers at ¢
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Table 3.10: Meta-heuristic algorithm solutions for the gas—furnace series

Solution  f(z) Locations

S -53.82 42 54 199 264

S -53.29 43 54 199 264

S -01.42 42 54 199 235 264
Sy -00.89 43 54 199 235 264
Ss -50.10 42 54 113 199 264
S -49.57 43 54 113 199 264
St -48.55 42 55 199 264

Ss -48.02 43 55 199 264

S -47.78 42 54 198 264

S1o -47.70 42 54 113 199 235 264

Table 3.11: Statistics of empirical distributions for different values of I (based on

100 runs)
1 TA SA
f o best  qo.os f o best  qo.os
100 -19.50 14.77 -44.59 -39.42 -14.81 13.98 -40.32 -36.24
200 -42.54 6.43 -53.82 -53.82 -33.21 7.65  -45.54 -44.58
1,000 -48.68 4.71 -53.82 -53.82 -39.10 6.60 -53.82 -48.69
5,000 -52.83 1.87 -53.82 -53.82 -52.79 1.92 -53.82 -53.82
10,000 -53.16 1.17 -53.82 -53.82 -53.16 1.15 -53.82 -53.82
1 GA, GA,
f o best  qo.os f o best  qo.os
100 -31.69 6.91 -44.92 -44.02
200 -44.59 6.86 -53.82 -53.82
1,000 -49.19 4.53 -53.82 -53.82
5,000 -51.71 292 -53.82 -53.82
10,000 -53.01 1.17 -53.82 -53.82
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tributions along the guidelines suggested by Gilli & Winker (2009). As I increases,
the distributions shift to the left (4 decreases) and become less dispersed (6 de-
creases). The GA show a better initial performance due to the favourable way the

initial population is chosen, but the SA and the TA have a faster convergence speed.

At the last iteration (I = 10,000), the best value (f(x) = —53.82) is found in 59
out of 100 runs for the SA, in 58 out of 100 runs for the TA, in 46 out of 100 for the
GA.






Chapter 4

Conclusions and Further

Developments

In chapter 2, a GAs-based procedure for identifying and estimating a MSETAR
model with univariate or bivariate threshold variable is suggested. The procedure
uses a special binary encoding composed of several fragments each of which represent
a integer parameter of the MSETAR model. In spite of the relative complexity of
the chromosome the genetic operators are suitable for simple implementation so that
the computational burden is quite low. A simulation experiment demonstrated the
validity of the GAs for implementing the identification and estimation procedure for
building a nonlinear model in a multivariate setting. An application to real world
data concerned with exchange rates of the United States dollar with four other
countries currency between January 1980 and March 1984 proved the effectiveness

of our procedure in empirical applications.

There are at least two issues that will possibly be interesting subject matters for
future research. The first one is concerned with the consideration of subset VAR
models in each regime. This may save considerable estimation effort, produces more
stable coefficient estimates and would lead to the identification of a smaller size
parameter set. On the other hand, the identification of subset models is known to
constitute a difficult problem for which GAs have been suggested in the context of
VAR models and univariate threshold models. The additional computational burden
is a non negligible obstacle that requires both an appropriate encoding and a careful
programming to be overcome. Next, consideration of more than two component
series to be used as threshold variables for regime identification is an intricate matter
that surely deserves further research. As before, it involves not only theoretical

difficulties but the development of dedicated programming tools as well.
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In chapter 3, three meta-heuristic methods for detecting additive outliers in mul-
tivariate time series are proposed. Meta-heuristic algorithms, unlike other methods
in literature, do not identify and remove outliers one at a time, but examine sev-
eral proposed outlier patterns, where all observations are simultaneously considered.
This feature seems to be effective in handling masking (meaning that one outlier
hides others) and swamping (when outliers make other clean observations to appear
outliers as well) effects caused by multiple outliers. Furthermore, our methods do
not require the specification of an adequate multivariate model, which is usually a
difficult task, especially when the data are contaminated by outliers. The procedures
are illustrated by analysing artificial and real data sets. The results obtained from
the simulation experiments seem to support the idea that the meta-heuristic algo-
rithms constitute a valid approach to detect the time points where potential outliers
in vector time series are located. In our experiment the meta-heuristic methods
provide better results than the TPP method to identify outlier patch, while the
results are similar for the case of well separated outliers. The examination of the
“gas-furnace” data of Box and Jenkins yields satisfactory results. Comparing the
results obtained by the detection procedure of Tsay et al. (2000) with the best solu-
tion provided by meta-heuristic algorithms, we observe that they have in common
four out of six outliers locations. Such small discrepancy is caused by the differ-
ence between the two identification procedures. The efficiency of the meta-heuristic
methods proposed in this study, depends crucially on the choice of appropriate val-
ues for some control parameters. The simulation and the theoretical study used for
determining the value of parameter ¢, allows us to control for the type I error a. For
any given value of « there is a corresponding value for ¢ that does not depend on the
underlying model. It only depends on the number of components (s) and the length
of the time series. In the case of real data, given a value of «, the corresponding

value of ¢, as reported in Table 3.2, can be used.

The presence of partial outliers, i.e., anomalies that affect only some components
of the multivariate series, may be an issue to be considered for future developments.
Moreover, an interesting further problem is the outlier identificability, that is, study-
ing how large should the outliers size to ensure that the correct outlier configuration

has the maximum fitness.



Appendix A

Meta-heuristic methods

A.1 Introduction

Many optimisation problems do not satisfy the necessary conditions to guarantee
the convergence of traditional numerical methods. For instance, in order to apply
standard gradient methods to maximum likelihood estimation we need a globally
convex likelihood function, however there are a number of relevant cases with non
convex likelihood functions or functions with several local optima. Another class of
hard problems is when the solution space is discrete and large. These problems are
known as combinatorial problems. There is an objective function to be minimized,
as usual; but the space over which that function is defined is not simply the n-
dimensional space of n continuously variable parameters. Rather, it is a discrete,
but very large, configuration space, like the set of possible orders of cities, or the
set of possible allocations of silicon real estate blocks to circuit elements. We can

consider a general statement of combinatorial optimization problem as:

Minimize f(z1,22,...,2,): Q2 =R (A1)

where the variables z1, s, ..., 2, take discrete values and f(-) represents the
objective function, which has to be minimized over a discrete n-dimensional search
space €2 (the collection of all feasible solutions). Of course, by replacing f(-) with

—f(+), the algorithm can also be applied to maximization problems.

A simple approach for solving an instance of a combinatorial problem is to list
all the feasible solutions, evaluate their objective function, and pick the best one.
However, for a combinatorial problem of a reasonable size, the complete enumeration

of its elements is not feasible, and most available searching algorithms are likely
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to yield some local optimum as a result ((Rayward-Smith et al. 1996)). Meta-
heuristic algorithms are often used to solve this kind of problems. Heuristics typically
start with a feasible solution and use an iterative procedure to search for improved
solutions. For the minimization problem (equation A.1) with feasible search space
(), an heuristic searches for a practical solution close to the optimal solution z*
where, for any x € 2, f(2*) < f(x). These algorithm are call meta-heuristics
because consist of general search principles organized in a general search strategy.
The success of meta-heuristic methods is due to several factors: they do not rely
on a set, of strong assumptions about the optimisation problem, they are robust to
changes in the characteristics of the problem, they do not produce a deterministic

solution but a high quality stochastic approximation to the global optimum.

In this thesis we are interested in the following meta-heuristic methods: simulated

annealing, threshold accepting and genetic algorithms.

SA and TA are classified as local search methods. Classical local search algorithms
are a class of methods in which the iterative procedure starts with a feasible solution
&¢, and then at each iteration attempts to find a better solution by searching in a
neighbourhood of the current solution £¢. This neighbourhood is a set of feasible
solutions where the values of the variables are close to those of the current solution.
Each time a new solution in the neighbourhood is an improvement, it is used to
update the current solution. The iterative procedure ends based on pre-specified
stopping criteria, such as when no further improvement is found or when the total
number of iterations reaches a given limit. However, these algorithms may get stuck
in local optima. To avoid this problem, the local search algorithms we adopt in this

research may accept worse solutions than the current one.

Genetic algorithms were initially developed by Holland (1975) and are classified
as population based methods, or evolutionary algorithms. They work on a whole set
of solutions that is adapted simultaneously by imitating the evolutionary process of

species that fit to the environment and reproduce.

We give a brief sketch of the three methods.

A.2 Simulated annealing

Simulated annealing (SA) is a random search technique based on an analogy to the
physical process of annealing that occurs in thermodynamics, when a heated mate-
rial cools down and changes its structure under a controlled temperature lowering

schedule. At high temperatures, the molecules of a liquid move freely with respect
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to one another. If the liquid is cooled slowly, thermal mobility is lost. The atoms are
often able to line themselves up and form a pure crystal that is completely ordered
over a distance up to billions of times the size of an individual atom in all direc-
tions. This crystal is the state of minimum energy for this system. The amazing
fact is that, for slowly cooled systems, nature is able to find this minimum energy
state. In fact, if a liquid metal is cooled quickly or quenched, it does not reach this
state but rather ends up in a polycrystalline or amorphous state having somewhat
higher energy. So the essence of the process is slow cooling, allowing ample time for
redistribution of the atoms as they lose mobility. This is the technical definition of

annealing, and it is essential for ensuring that a low energy state will be achieved.

Metropolis et al. (1953) introduced a simple algorithm, known as Metropolis
algorithm, to simulate the annealing process. In each step of this algorithm, an
atom is given a small random displacement and the resulting change, AFE, in the
energy of the system is computed. If AF < 0, the displacement is accepted, and the
configuration with the displaced atom is used as the starting point of the next step.
The case AE > 0 is treated probabilistically: the probability that the configuration
is accepted is P(AE) = exp(—AFE/kT). This choice of P(AF) has the consequence
that the system evolves into a Boltzmann distribution.

Thirty years later, Kirkpatrick et al. (1983) proposed a method, based on Metropolis
algorithm, for finding the global minimum of a objective function that may possess
several local minimal. This method, called simulated annealing, used the objective
function in place of the energy, configurations are feasible solutions of the problem

and the change of configuration corresponds to neighbouring solutions.

In analogy with the Metropolis algorithm, simulated annealing is characterised
by the presence of a control parameter T' called temperature, an annealing schedule
which tells how it is lowered from high to low values, an acceptance probability and
a stopping rule. Temperature 7" is a non-increasing function of time; it is designed
to exclude almost all bad moves at the end. In a classical schedule starting from 7p,
the temperature is maintained constant for SA;., consecutive steps. Then, after
each series of S A, steps, it is decreased through multiplication by a fixed factor a
(0 < o < 1). This implies the setting of three parameters, Ty, v and S Ay, which
will be respectively referred to as initial temperature, cooling rate and length of
plateau. Different cooling schedules are suggested in the literature. On the analogy
of thermodynamics, a Boltzmann-like distribution is usually chosen as acceptance
probability. The stopping criteria can either be a suitably low temperature or when
the system is frozen at the current temperature (i.e. no better or worse moves are

being accepted).
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SA algorithm is an iterative procedure that extends the local search method,
described above, to allow for a new solution at some iterations to be worse than the
current solution, rather than an improvement. This extension helps to avoid getting
trapped in a local optimum. By accepting worse solutions in some neighborhoods,
the heuristic searches more widely within the feasible search space, so that it is more

likely to escape a local optimum and move to the global optimum.

In terms of the minimization problem given by equation (A.1), the algorithm for

a simulated annealing heuristic consists of the steps reported in algorithm (1).

Algorithm 1 Pseudocode for simulated annealing.
1: Initialise Ty, T, a and S A,

2: Generate initial solution &¢
3: T =1

4: while T" > Ty do

5. forr=11to SAj., do

6: Compute " € N(£°) (neighbour to current solution)

7: Compute A = f(£™)— f(£°) and generate u from a uniform random variable
between 0 and 1

8: if A <0ore 7T >y then

9: =&

10: end if

11: end for
12: T < aT
13: end while

Like the local search method, the simulated annealing heuristic searches for a new
solution ™ at each iteration in the neighborhood of the current solution £¢. If the
new solution is an improvement(f(£") < f(£°)), it is accepted as the update to the
current, solution, just as in the local search method. In addition, if the new solution
is worse to the current solution (f(£") > f(£¢)), the new solution is sometimes
accepted, with a given probability that depends on the difference between the values
of objective function for the new and current solutions. The bigger this difference,
the smaller the probability that the new (worse) solution is accepted as the update
to the current solution. The acceptance probability is determined by whether a
random number u generated between 0 and 1 is less than or greater than the function
e /T where A is the difference between f(¢") and f(£°), and T is a temperature
parameter. The temperature is initially set at a high value, in order to accept worse
solutions frequently. In this way, in the initial stage of research, the algorithm is

able to overcome the local optima, and the space of the solutions may be explored
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more uniformly. It is then gradually lowered as the iterative procedure progresses
to allow fewer and fewer worse solutions, that is, the algorithm becomes more and
more selective in accepting new solutions. By the end, only moves that improve
f(&) are accepted in practice. The algorithm then coincides, for low temperatures,

with a local search algorithm.

The total number of iterationI2# is obtained as the number of different temper-

atures Niemperature (function of Ty, Ty, a) times the number of steps SA;.,.

Recent applications of the simulated annealing algorithm are discussed by Vera
& Diaz-Garcia (2008), Depril et al. (2008), Duczmal & Assungao (2004) and Angelis
et al. (2001).

A.3 Threshold accepting

Threshold accepting (TA) was introduced by Dueck & Scheuer (1990) as a deter-
ministic analog to simulated annealing. They applied the algorithm to a Travelling
Salesman Problem and argued that their algorithm is superior to classical simu-
lated annealing. It is a refined local search procedure which escapes local optima
by accepting solutions which are worse,but no more than a given threshold. The
algorithm is deterministic as it uses a deterministic acceptance criterion instead of
the probabilistic one used in simulated annealing for accepting worse solutions. The
number of steps where we explore the neighborhood for improving the solution is
fixed. The threshold is decreased iteratively and reaches the value of zero after a
given number of steps. The TA algorithm has an easy parameterization, it is robust
to changes in problem characteristics and works well for many problem instances. .
Threshold accepting has been successfully applied to different areas of statistics and
econometrics (Winker & Fang (1997), Fang et al. (2000), Winker (2000), Winker
(2001), Gilli & Winker (2004), Maringer & Winker (2009), Lin et al. (2010), Lyra
et al. (2010), Winker et al. (2011)). An extensive introduction to TA is given in
Winker (2001).

Algorithm (2) provides the pseudo-code for a prototype threshold accepting im-

plementation for a minimization problem.

Comparing SA and TA algorithm we can see that, first, the sequence of temper-
atures T is replaced by a sequence of NV; thresholds 7, with h = 1,..., N, and, the

most important, the statement 8 of algorithm (1) is replaced by:
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Algorithm 2 Pseudocode for Threshold Accepting.
. Initialise N;, T A;ter,

1

2: Generate the sequence 7,, h=1,..., N,

3: Generate initial solution &°

4: for h =1 to N; do

5 for r =1 to TAj., do

6 Compute " € N(£°) (neighbour to current solution)

7 Compute A = f(£")— f(£°) and generate u from a uniform random variable

between 0 and 1

8: if A <0or A <7, then
9: ge = ¢n

10: end if

11:  end for

12: end for

if A<, then & =¢"

In this case the total number of iteration IZ# is obtained as the product of the
number of different thresholds /N; and the number of times each thresholds is used,
TAiter-

A crucial element of TA is its threshold sequence since it determines TA’s ability
to overcome local optima. Basically, the idea is to accept " if its objective function
value is better or if it is not much worse than that of £¢ where not much worse means
the deterioration may not exceed some threshold 7 defined by the threshold sequence.
In extreme cases of threshold settings, the algorithm behaves like a classical local
search algorithm (if all threshold values are set equal to zero) or like a random
walk (if all values of the threshold sequence are set to a very large value). Althofer
& Koschnick (1991) demonstrated the convergence of the TA algorithm under the
hypothesis that an appropriate threshold sequence exists. But in their proof they do
not provide a way to construct an appropriate sequence. Consequently, the threshold
sequence is often chosen in a rather ad hoc approach. Two simple procedures can be
used to generate the sequence of thresholds. In the first place, one could use a linear
sequence decreasing to zero. The advantage of a linear threshold sequence consists
in the fact, that for tuning purposes only the first value of the sequence has to be
selected as it fixes the whole sequence. Alternatively, we can generate a sequence
of selected thresholds using the a data driven method suggested in Winker & Fang
(1997). This procedure is detailed in algorithm (3).
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Algorithm 3 Pseudocode for generating threshold sequence.
. Initialise N; and M
: forr=1to M do

1
2
3:  Randomly choose solution ¢

4:  Randomly choose neighbour solution " € N(&5)

5. Compute A, =[ f(£7) — f(&]) |

6: end for

7. Compute the cumulative distribution function F of A, r=1,..., M
8

: Compute the sequence of thresholds 7; = F‘l(N]tV—Zl),z’ =1,...,V;

This method uses a two step process to construct the threshold sequence. For
the first step a large number (M) of possible solutions £¢ is generated at random.
Then, we compute the distances between the values of the objective function at
random point £ and its neighbour &%, A, =| f(&5) — f(&}) |,r = 1,2,..., M.
In the second step the cumulative empirical distribution F' of the distances A, is
computed. This distribution is an approximation of the distribution of local relative
changes of the objective function. The thresholds 7; are computed as the quantiles

Ny—i

Q; corresponding to percentiles P, = =1, N The threshold sequence

will be monotonically decreasing to zero.

A.4 Genetic algorithms

Genetic algorithms (GAs) are global stochastic optimization techniques that are
based on the adaptive mechanics of natural selection evolution. They were in-
troduced in Holland (1975), and subsequently made widely popular by Goldberg
(1989). The statistical applications of the GAs have been discussed by Chatter-
jee et al. (1996) and Chatterjee & Laudato (1997). GAs use two basic processes
from evolution: inheritance, or the passing of features from one generation to the
next, and competition, or survival of the fittest. Through these processes individ-
uals which are most successful in surviving will have relatively larger numbers of
offspring. Poorly performing individuals will produce few of even no offspring at all.
This means that the genes from the highly adapted, or fit individuals will spread
to an increasing number of individuals in each successive generation. The combina-
tion of good characteristics from different parents can sometimes produce highly fit
offsprings, whose fitness is greater than that of either parent. In this way, species

evolve to become more and more well suited to their environment.

The general structure of genetic algorithms is shown in algorithm (4).



A.4 Genetic algorithms 92

Algorithm 4 Pseudocode for genetic algorithms.

1: Set population size (pop), probability of crossover (pcross), probability of mu-
tation (pmut), number of generations (gen)

2: Generate initial population P of solutions

3: for i =1 to gen do

4:  Evaluate each individual’s fitness

5. Initialise P’ = ) (set of children)

6: forj—1to %P do

7

Select individuals z, and x; from P with probability proportional to their

fitness
8: Generate p; and py from a uniform random variable U(0, 1)
9: if p; > pcross then
10: Apply crossover to x, and x;, to produce xghild and xzhﬂd
11: else
12: gehild — g and zghild = g,
13: end if
14: if p, > pmut then
15: Apply mutation to z¢"! and zghild
16: end if
17: P =P U {:L'Zhild, x{c)hz‘ld}
18:  end for
19: P=F

20: end for
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A genetic algorithm maintains a population of solution candidates and works
as an iteration loop. First, an initial population is generated randomly. Each in-
dividual in the population is an encoded form of a solution to the problem under
consideration, called a chromosome which is usually a string of characters or sym-
bols, e.g., a string of 0’s and 1’s (a binary string). The chromosomes evolve through
successive iterations, called generations. During each generation, the chromosomes
are evaluated by a fitness evaluation function, g(-), and selected according to the fit-
ness values using a selection mechanism, e.g., fitness-proportionate selection, so that
fitter chromosomes have higher probabilities of being selected. New chromosomes,
called offspring, are formed by either merging two selected chromosomes from the
current generation using a crossover operator, or modifying a chromosome using a
mutation operator. Crossover results in the exchange of genetic material between
relatively fit members of the population, potentially leading to a better pool of solu-
tions. Mutation randomly introduces new features into the population to ensure a
more thorough exploration of the search space. A whole new population of possible
solutions is thus produced by selecting the best individuals from the current gener-
ation, and mating them to produce a new set of individuals. This new generation
contains a higher proportion of the characteristics possessed by the good members
of the previous generation. In this way, over many generations, good characteristics
are spread throughout the population, being mixed and exchanged with other good
characteristics as they go. By favouring the mating of the more fit individuals the
population’s average fitness will improve and most promising areas of the search
space are explored. If the GA has been designed well, the population will converge

to a best chromosome approaching the optimal or near-optimal solution.
To use genetic algorithms, each of the following must be developed:

Encoding scheme. In GAs, a population of candidate solutions is maintained
and manipulated by genetic operators. The solutions are encoded as chromosomes
(usually strings of characters or symbols, e.g., binary strings, real number strings,
or symbol strings) to which genetic operators can be applied. An encoding scheme

is needed to map candidate solutions into coded strings.

Initialization of population. The initialization is usually done randomly to
sample the search space uniformly without bias. A well-initialized population can
improve the algorithm’s robustness and effectiveness in finding an optimal solution,
while a poorly-initialized population may trap the algorithm in local optima and

make it hard to reach the global optimum.

Evaluation function. During the operation of genetic algorithms, all chro-

mosomes are evaluated to see how fit they are as solutions to the problem. An
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evaluation function is required to assign a fitness value to each chromosome.

Selection. The key principle of Darwinian natural evolution theory is that fitter
individuals have a greater chance to reproduce offspring, and it is by this principle
of survival of the fittest that species evolve into better forms. In genetic algorithms,
the bias towards fitter individuals is achieved through selection. The objective of
any selection scheme is to statistically guarantee that fitter individuals have a higher
probability of selection for reproduction. In a GA, selection is carried out in two
different stages: parent selection and generational selection. Parent selection is the
step in which individuals from the parent generation are selected as parents to create
offspring. Generational selection is carried out after a specified number of offspring
are generated. In general, the new generation is created by selecting individuals from
both the parent generation and the offspring generation. Most selection schemes be-
long to the following two categories: stochastic selection and deterministic selection.
For parent selection, stochastic selections are usually applied, and for generational
selection, deterministic selections are usually used. Fitness proportionate selection
(roulette wheel and stochastic universal) and tournament selection are two of the
most popular stochastic selection algorithms. Proportionate selection methods as-
sign probability to an individual according to its fitness, and this can be problematic.
Indeed, if the fitness range is too large, then only a few good individuals will be se-
lected. This will tend to fill the entire population with similar chromosomes and
will limit the ability of the GA to explore the search space. On the other hand, if
the fitness values are too close to each other, then the GA will tend to select one
copy of each individual, with only random variations in selection. Consequently, it
will not be guided by small fitness variations and will be reduced to random search.
Fitness scaling and Rank-based selection are two alternative methods that have been
proposed to compensate for these issues. Using fitness scaling, the fitness of all par-
ents can be scaled relative to some reference value, and proportionate selection then
assigns selection probability according to the scaled fitness values. Several scaling
mechanisms have been proposed. In general, the scaled fitness g,; derived from the
raw fitness g for chromosome £ can be expressed as g,; = G(gg): where the mapping
function G(-) transforms the raw fitness into scaled fitness. The function G(-) may
take different forms to yield different scaling methods, such as linear scaling, sigma
truncation, power law scaling, etc. For example, the 'sigma truncation scaling’ (e.g.,

Goldberg 1989) consists in applying the normalization transform

gk':gk—(g—ca),

where g is the population mean, c¢ is a suitable real positive constant and o
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the standard deviation, and in excluding the individuals with zero or negative fit-

ness from selection. For detailed description of scaling methods, (see Gen & Cheng
(1997)).

Rank-based selection methods utilize the indices of individuals when ordered ac-
cording to fitness to calculate the corresponding selection probabilities, rather than

using absolute fitness values (Baker 1987)).

Deterministic selection schemes are usually used in generational selection to se-
lect individuals from both the parent generation and offspring generation to create
the next generation. Most GA implementation are based on the generational re-
placement where the entire parent generation is replaced by their offspring (i.e., the
offspring generation is taken as the new generation, and the parent generation is

discarded after the offspring generation is created).

Crossover. Once two chromosomes are selected, the crossover exchanges parts of
their genes and generates two new strings that share characteristics of both original
chromosomes. Crossover is the most important genetic operator for a GA, and
it is the driving force for exploration of the search space. The performance of
the GA depends to a great extent on the performance of the crossover operator
used (Holland 1975). Crossover operator is not typically applied for all parents
but it is applied with probability pcross which is normally set equal to a value in
[0.6,1]. During the last decades, a number of different crossover operators have been
successfully designed: single-point crossover, two-point crossover, uniform crossover,
non-geometric crossover etc. A comparison of different binary crossover operators
was undertaken in Eshelman et al. (1989), both theoretically and empirically. It was
found that none of them is the consistent winner, and there was not more than 20%

difference in speed among the techniques.

Mutation. After new individuals are generated through crossover, mutation is
applied with a low probability, pmut, to introduce random changes into the popu-
lation. In a binary-coded GA, mutation means that, with a given probability pmut,
each bit (gene) of each string (chromosome) may change its value from 0 to 1 or
vice versa, while in a nonbinary-coded GA, mutation involves randomly generating
a new value in a specified position in the chromosome. In GAs, mutation serves the
crucial roles of replacing gene values lost from the population during the selection
process so that they can be tried in a new context, and of providing gene values
that were not present in the initial population. By introducing random changes into

the population, more regions of the search space can be evaluated, and premature
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convergence can be avoided. A variety of mutation operators have been proposed in

the literature: Flip Bit, uniform, non-uniform, Gausssian etc.
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