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Abstrat

Due to the de�ieny of linear models in apturing some ommonly observed fea-

tures of time series data, many non-linear time series models have been proposed

in the literature. Two models that have gained muh attention are the so-alled

self-exiting threshold autoregressive (SETAR) model and the outlier model. Setar

model has been found very e�etive for modeling and foreasting non linear time

series in a wide range of appliation �elds. Furthermore, SETAR model is able

to apture nonlinear harateristis as limit yles, jump resonane, and time irre-

versibility. Outlier models are important in time series analysis beause they an be

improve model identi�ation, parameter estimation and foreasting.

Tehniques for vetor nonlinear time series modeling have only reently begun

to be investigated but multivariate nonlinearity analysis requires more researh. In

this thesis we dealt with outliers and threshold models in a multivariate framework.

In partiular the attention is foused on a multivariate SETAR (MSETAR) model

where eah linear regime follows a vetor autoregressive (VAR) proess and the

thresholds are multivariate and the detetion of multiple outliers, espeially those

ourring lose in time.

In hapter 2, we propose a methodology based on geneti algorithms (GAs) for

building MSETAR models. The GA is designed to estimate the strutural parame-

ters, that is to determine the appropriate number of regimes and �nd multivariate

thresholds parameters. The proposed methodology is tested by means of simulated

and real time series.
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In hapter 3, a lass of meta-heuristi methods to detet multiple additive out-

liers in multivariate time series is proposed. This lass inludes: simulated annealing,

threshold aepting and geneti algorithms. In ontrast with many of the existing

methods, they do not require to speify a vetor ARMA model for the data and de-

tet any number of potential outliers simultaneously reduing possible masking and

swamping e�ets. A generalised AIC-like riterion is used as an objetive funtion

where the penalty onstant is suggested by both a simulation study and a theoreti-

al approximation. The omparison and the performane of the proposed methods

are illustrated by simulation studies and real data analysis. Simulation results show

that the proposed approahes perform well also for deteting pathes of additive

outliers.
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Chapter 1

Introdution

1.1 Linearity and non linearity

From the pioneering work of Yule (1927) on AR modelling of the sunspot numbers to

the work of Box & Jenkins (1970) that marked the maturity of ARMA modeling in

terms of theory and methodology, linear Gaussian time series models �ourished and

dominated both theoretial explorations and pratial appliations (Fan & Yao 2003).

The popularity of these models is ertainly due to their relatively simple mathemat-

ial tratability and also to the existene of omputer software inorporating the

Box-Jenkins methodology. The basis for suh modelling approahes was the Wold

representation theorem: any stationary proess {Xt} with a purely ontinuous spe-

trum and (non-normalized) spetral density funtion h(ω) an be represented as a

linear ombination of the term of an unorrelated proess ǫt (Priestley 1981):

Xt =
+∞
∑

u=−∞

γuǫt−u

+∞
∑

u=−∞

γ2u <∞ (1.1)

Moreover, if the spetral density funtion h(ω) satis�es the Paley-Wiener ondi-

tion:

∫ π

−π

log{h(ω)}dω > −∞, (1.2)

then the proess X(t) assume the one-sided form:

Xt =

+∞
∑

u=0

γuǫt−u. (1.3)
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The ondition 1.2 plays a fundamental role in real predition theory. It's a fairly

weak ondition, and we may expet it to hold in the vast majority of ases (ertainly,

in any situations of pratial interest). Wold's theorem shows that any stationary

proess may be approximated by linear models. This makes us understand the

enormous importane of linearity in the study of time series. The statement, how-

ever, shows some limitations of suh models: the variables are unorrelated and

not independent and the representation may require a potentially in�nite number

of oe�ients. Some onsiderations are needed to larify the importane of the

dihotomy unorrelation-independene. The aim of eah model is to produe in-

dependent residuals (and possibly Gaussian) order to extrat all the information

in the data. Unorrelated residuals do not ensure that the struture of the data

has been aptured by the model. For example, onsider the problem of prediting

the future value of the proess, given observations up to time t. In the ase of the

stritly independent proess, et, the past ontains no information on the future, and

hene the best preditor of a future value of et is simply its (unonditional) mean.

For the unorrelated proess, ǫt, it is still true that if we restrited attention to

linear preditors then, in this sense, the past ontains no information on the future.

However, the past may well ontain useful information on the future values if we

allow preditors whih are non-linear funtions of the observations. The following

example illustrates this point. Let the proess ηt be de�ned by (Priestley 1981):

ηt = et + βet−1et−2 (1.4)

where et is an independent proess with zero mean and onstant variane. It is

a lear that ηt also has zero mean and onstant variane, and its autoovariane

funtions assume value zero for all lag s 6= 0. Then, ηt is an unorrelated proess,

and, as far as its seond order properties are onerned, it behaves just like an

independent proess. However, given observations up to time t one an learly

onstrut a non-trivial preditor of ηt+1. Spei�ally, if we adopt the mean square

error riterion, the optimal preditor of ηt+h is its onditional expetation, i.e.:

η̂t+h = E [ηt+h|ηt, ηt−1, . . .] , (1.5)

and for h = 1 we �nd from (1.5):

η̂t+1 = βetet−1 (1.6)

As noted by Granger & Andersen (1978), if a proess ηt of the above form was

obtained as the residual from a more general model, all the onventional test for
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white noise based on the behaviour of the autoovariane or autoorrelation funtion

would on�rm that the residuals were, white noise, and hene there was no further

model struture left to �t. However, as we have seen, one ould ertainly exploit

the non linear struture of the ηt proess in order to improve the preditors of the

original series.

Then, linear models for stationary series may not be adequate even though they

produe unorrelated residuals. In fat, unorrelated residuals may be very far from

the independene. In summary, a model an be said satisfatory when extrating all

information from the data, that is, when the residuals of the model are independent.

This means that the ovariane matrix is not su�ient to fully haraterize a

proess. But it's well known that, under hypothesis of normality and in this ase

only, unorrelation is equivalent to the independene and the ovariane matrix

ompletely haraterizes the proess. In onlusion, if the proess is Gaussian, then

the Wold representation is an appropriate model.

Wold's theorem provides one of several possible representations, and therefore

does not exlude that the nature of relationships between the variables of the proess

is nonlinear, or that there is a representation of Xt through the use of nonlinear

funtions, whih is simpler and less expensive in terms of parameters of (1.3) that

involves an in�nite number of parameters hu (Battaglia 2007).

Some nonstandard features, whih we refer to as nonlinear features from now on,

have been well-observed in many real time series data:

In the early 1950s, the Australian statistiian, Pat Moran, spent many of his

working hours at the library of the Department of Zoology, Oxford, whih beame

his o�e. As a result, he beame interested in eology and met the Oxford eologist,

Charles Elton. In partiular, he was interested in the famous 10-year lynx yle,

whih was and still is of immense interest to the eologists. In Moran (1953a),

among the many available annual reords of lynx trappings, he hose the longest

one, namely the 1821-1934 reord of the MaKenzie River distrit in Canada. He

remarked on the asymmetry of the lynx yle and that lynx dynamis would have

to be represented by nonlinear equations (Moran (1953b), p.292).

Whittle (1954) analyzed the seihe time series of 660 observations at 15 seond

intervals of the water level in a rok hannel at Island Bay on the Wellington oast

in his native ountry, New Zealand. Whittle noted a signi�ant arithmetial rela-

tionship among the periods of the prominent peaks of the spetral density funtion

estimate on time series. Suh a relationship is beyond the sope of linear models.

Tong et al. (1985) studied the Jokulsa river system, onsisting of three time series
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in 1972: river-�ow, preipitation and temperature. The nonlinearity is a result of

the phase hange from ie to water. The inadequay of linear models is self-evident

in this ase.

Modeling these nonstandard features or other nonstandard as nonnormality,

asymmetri yles, bimodality, non linear relationship between lagged variables, time

irreversibity, strutural breaks or outliers is beyond the sope of Gaussian time series

models.

Due to the de�ieny of linear models in apturing some ommonly observed

features of time series data, many non-linear time series models have been proposed

in the literature. The �rst systemati study of non-linear models is due to Wiener

in 1958, whih onsidered an extension of the Volterra model of the following form

(this representation exists under general onditions):

Xt =
∞
∑

u=0

γuǫt−u +
∞
∑

u=0

∞
∑

i=0

γuiǫt−uǫt−i +
∞
∑

u=0

∞
∑

i=0

∞
∑

j=0

γuijǫt−uǫt−iǫt−j +

+

∞
∑

u=0

∞
∑

i=0

∞
∑

j=0

∞
∑

l=0

γuijlǫt−uǫt−iǫt−jǫt−l + . . . (1.7)

The Volterra expansion provides a general representation of a nonlinear time

series. If we stop the Volterra series expansion of the �rst term, we obtain the linear

model that represents the purely random omponent of the Wold deomposition if ǫt

is a weakly stationary white noise and if the ondition (1.2) is satis�ed. The general

relationship between a linear time series and a nonlinear time series is easy to see:

the nonlinear equation has a lot of ross-produt terms.

The lass of non-linear models is muh larger than that of linear models. One

we deide to estimate a nonlinear model, we have the task of deiding whih of

an arbitrary large number of funtions to estimate. The nonlinear models have

evolved to represent di�erent possible non-linearity features. The ontributions in

the literature an be divided roughly into two ategories: nonlinearity in onditional

mean and nonlinearity in onditional variane (onditional heterosedastiity).

The �rst ategory inludes, for example, the non-linear autoregressive models,

(NLAR, Jones (1978)), the threshold models (SETAR, Tong & Lim (1980)), the ex-

ponential autoregressive models (EXPAR, Ozaki (1982)), outlier models (Fox (1972);

Tsay (1988)) and hanges in level (Tsay (1986); Tsay (1986); Bai & Perron (2003)).

The seond ategory inludes, for example, the onditional variane models ARCH

(Engle (1982)) and GARCH (Bollerslev (1986)). Other models are not easily lassi-

�ed in this sheme: bilinear models (BL, Subba (1981)) generate sudden explosions
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in the values of a series. These explosions an also be interpreted as hanges in

variane and this aounts for the relationship between BL and ARCH.

Priestley (1988) presented a general model (SDM = State Dependent Models),

whih inludes as speial ases ARMA, SETAR, BL and EXPAR models. This

formulation is perhaps little known for omputational di�ulties enountered in

pratial appliation of the SDM.

This brief overview is not the end of the reent history of non-linearity. Around

the same time when non-linear statistial models were developed, another line of

investigation on the non-linearity was just beginning, the study of omplex nonlinear

dynamis or haos. It is usually believed that Poinaré is the �rst one who studied

haos. Then Lorenz (1963) revealed the butter�y e�et in studying the weather

predition and is thus reognized as the father of haos. But the formal use of

haos is from the works of May (1976) and Li & Yorke (1975). After that, haos

have been widely studied and a lot of important onepts has been introdued, suh

as the dimensions, Lyapunov exponents, Fourier transform and Hilbert transform,

and attrator reonstrution. Certain deterministi non-linear system may show

haoti behaviour. Time series derived from suh system seem stohasti when

analyzed with linear tehniques. However, unovering the deterministi struture is

important beause it allows for onstrution of more realisti and better models and

thus improved preditive apabilities. Chaoti behaviour in deterministi dynamial

system is an intrinsily non-linear phenomenon. A harateristi feature of haoti

system is an extreme sensitivity to hanges in initial onditions.

It an easily happen that the di�erent forms of nonlinearity an be onfusing.

Also it an be di�ult to distinguish between nonstationarity and nonlinearity. An

example in this sense is the following: if the Fisher equation for the United States

is estimated, a hange in the model in the late 1970s and early 1980 is expeted due

to the oil prie shoks and subsequent Federal Reserve poliy. Traditional unit root

tests, suh as the augmented Dikey-Fuller (Dikey & W.A. (1979);Dikey & W.A.

(1981)), the Phillips & Perron (1988), and the (Kwiatkowski et al. (1992)), interpret

this hange in the model parameters as non-stationarity. Nevertheless, the model

has undergone a shift in the parameters before and after the event (oil prie shoks)

and ould very well be stationary if we run the tests in the pre and post event data

separately (Ghos & Dutt (2008)).

The hoie of a model for a time series is driven by many onsiderations, often

depending on the purpose of researh. In most ases, this hoie is fundamentally

subjetive and based on a priori knowledge or expetations of the researher.

Tehniques for vetor nonlinear time series modeling have only reently begun
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to be investigated. Harvill & Ray (1999) provide a general test of nonlinearity in a

vetor time series. Granger & Teräsvirta (1993) mention multivariate extensions of

nonlinear autoregressive (NLAR), nonlinear moving average (NLMA), and bilinear

models in passing, but onentrate on statistial inferene for univariate nonlinear

models. More reent work by Tsay (1998) disusses testing and modeling multivari-

ate threshold autoregressive models.

The multivariate nonlinearity analysis requires more researh. In this thesis we

develop tehniques for analyzing some forms of multivariate nonlinearity in on-

ditional mean. In partiular, we dealt with outliers and threshold models in a

multivariate framework.

Several papers that generalize the univariate threshold priniple to a multivari-

ate framework have appeared in the literature during the past years. Tiao and Tsay

(1994) proposed a univariate SETAR model for the United States gross national

produt (GNP) series where the thresholds are ontrolled by two lagged values of

the transformed GNP series re�eting the situation of the eonomy. Tsay (1998) de-

veloped a strategy for testing and estimating multivariate threshold models where

the threshold variable was ontrolled by known linear ombination of individual

variables. Arnold and Gunther (2011) proposed a de�nition of MSETAR models

where eah linear regime follows a VAR proess and the threshold variable is multi-

variate. Furthermore, they developed an estimation proedure of the orresponding

autoregressive (AR) oe�ient matries. However, the authors suppose that the

strutural parameters of the model (delay, threshold variable, number and position

of thresholds, model order) have to be known a priori.

In the present thesis, we adopt a less restritive formulation, assuming that the

strutural parameters are unknown and are jointly estimated with the other param-

eters of the model.We formulate the task of �nding the threshold variable and the

other strutural parameters as a ombinatorial optimization problem. We suggested

a geneti algorithm-based proedure for identifying and estimating an MSETAR

model with univariate or bivariate threshold variable. The proedure uses a speial

binary enoding omposed of several fragments eah of whih represents an integer

parameter of the MSETAR model.

A simulation experiment demonstrated the validity of the geneti algorithms for

implementing the identi�ation and estimation proedure for building a nonlinear

model in a multivariate setting.

In this ontext the most important ontribution lies in the hoie and estimation

of strutural parameters of the MSETAR model. The hoie of these strutural

parameters is very di�ult sine it is not possible to make use of the instruments
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generally used for the hoie of the strutural parameters of the SETAR models.

A wrong hoie of strutural parameters also a�ets the overall performane of

the model in explaining the dynamis of the multivariate time series and on the

foreasting ability of the model. We realized also a GUI program for estimating

a MSETAR model. With the program is also possible to estimate SETAR models

whih are onsidered as a partiular ase of a model MSETAR.

Regarding the problem of outlier detetion, in the thesis we have been onerned

on deteting multiple outliers, espeially those ourring lose in time, often have

severe masking e�et (one outlier masks a seond outlier) and smearing e�et (mis-

spei�ation of orret data as outliers) that an easily render the iterative outlier

detetion methods ine�ient. A speial ase of multiple outliers is a path of ad-

ditive outliers. For univariate time series this problem has been addressed �rstly

by Brue & Martin (1989) and after by Justel et al. (2001). For multivariate time

series, only three proedures have been proposed but none of they deal spei�ally

with the problem of onseutive outliers. Tsay et al. (2000) proposed a sequential

detetion proedure, whih we will all the TPP method, based on individual and

joint likelihood ratio statistis; this method requires an initial spei�ation of a ve-

tor ARMA model. Galeano et al. (2006), Baragona & Battaglia (2007) proposed a

method based on univariate outlier detetion applied to some useful linear ombi-

nations of the vetor time series. The optimal ombinations are found by projetion

pursuit in the �rst paper and independent omponent analysis (ICA) in the seond

one.

We propose a lass of meta-heuristi algorithms to overome the di�ulties of

iterative proedures in deteting multiple additive outliers in multivariate time se-

ries. Our proedures are less vulnerable to the masking and smearing e�ets beause

they evaluate several outlier pattern where all observations that are possibly out-

lying ones are simultaneously onsidered. In this way, meta-heuristi methods deal

e�iently the detetion of path of additive outliers. Eah outlier on�guration is

evaluated by a generalised AIC-riterion where the penalty onstant is suggested

by both a simulation study and a theoretial approximation. The meta-heuristi

algorithms used a approximation of multiple linear interpolator given in Rozanov

(1957). More preisely, we use an unbiased estimator of the anomalies for any outlier

on�guration.

The main ontribution of this thesis for the problem of outlier detetion in mul-

tivariate time series is to redue the limitations of the iterative proedures in the

searh of onseutive outliers. Moreover, we attempt to provide an approximation

of the penalty term of AIC general riterion whih is of a paramount importane in
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the identi�ation of outliers.

The omparison and the performane of the proposed methods are illustrated by

simulation studies and real data analysis. Simulation results show that the proposed

approahes perform well for deteting onseutive (pathes) additive outliers, while

TPP method, used as a omparison, show evident limitations in the ase of onse-

utive outliers. These bad results of the TPP method are also justi�ed analytially.

1.2 Multivariate Time Series

A s−dimensional vetor time series or multivariate time series arise when several

related time series, x1(t), x2(t), . . . , xs(t), are observed simultaneously over time,

instead of observing just a single time series as is the ase in univariate time series

analysis (Reinsel 1993).

Multivariate time series are onsiderable in a variety of �elds suh as engineering,

physial sienes, partiularly earth sienes (e.g., meteorology and geophysis),

eonomis and business (Reinsel 1993). For example, in an engineering ontext one

may be interested in the study of the simultaneous behaviour over time of urrent

and voltage, or of pressure, temperature, and volume, whereas in eonomis, we

may be interested in the variations of interest rates, money supply, unemployment,

and so on, or in sales volume, prie, and advertising expenditures for a partiular

ommodity in a business ontext (Reinsel 1993).

Two of the reasons for analyzing and modeling suh multiple time series jointly

are:

1. To understand the dynami relationships among them. They may be ontem-

poraneously related, one series may lead the others or there may be feedbak

relationships.

2. To improve auray of foreasts. When there is information on one series

ontained in the historial data of another, better foreasts an result when

the series are modeled jointly.

Models that are of possible use in representing suh multiple time series, onsider-

ations of their properties, and methods for relating them to atual data have been

extensively disussed in the literature. Quenouille (1957), Whittle (1963), Hannan

(1970), Brillinger (1975), Lütkepohl (1993), Hamilton (1994), Reinsel (1993) are

just some of the many that have studied and made ontribution to the �elds of

multivariate time series analysis.
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1.3 Some Basis

1.3.1 Random Variable

Univariate Real Random Variable. Let (Ω,A, P ) be a probability spae, where
Ω is the set of elementary events (sample spae), A is a sigma-algebra of events

or subsets of Ω and P is a probability measure de�ned on A. A random variable

X is a mapping from the sample spae Ω onto the real line R suh that to eah

element ω ∈ Ω there orresponds a unique real number, X(ω). We denote the mean

of X with µX = E(X), the variane of X with V ar(X) = E[(X − µX)
2], and the

ovariane between X and Y with cov(X, Y ) = E[(X − µX)(Y − µY )].

Univariate Complex Random Variables. A omplex random variable X

is de�ned as a random variable of the form X = XR + iXI , where the real and

imaginary parts, XR, and XI , are real random variables and i =
√
−1. The ex-

petation of real random variable is naturally generalized to the omplex ase as

µX = E(X) = E(XR) + iE(XI) = µXR
+ µXI

. The variane of X is equal to

V ar(X) = E[|(X − µX)|2] while the ovariane between X and Y is de�ned as

cov(X, Y ) = E[(X − µX)(Y − µY )].

Vetor of Real Random Variable. A s−dimensional random vetor vari-

able X = [X1, X2, . . . , Xs]
′
is a funtion from Ω into the s−dimensional Eulidean

spae R
s
suh that to eah element ω ∈ Ω there orresponds a unique vetor,

X(ω). Mean vetor of X is the olumn vetor of the means of eah omponent

µ = E(X) = [E(X1),E(X2), . . . ,E(Xs)]
′
. The ovariane matrix is de�ned as

Σ = E[(X− µ)(X− µ)′ ].

Vetor of Complex Random Variable. A s−dimensional omplex ran-

dom vetor variable X = [X1, X2, . . . , Xs]
′
is de�ned as a vetor random variable

of the form X = XR + iXI, where the real and imaginary parts, XR, and XI ,

are s−dimensional real random vetor variable. Mean vetor of X is de�ned by

µ = E(XR) + E(XI). The ovariane matrix is de�ned as Σ = E[(X− µ)(X− µ)∗].
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1.3.2 Multivariate Stohasti Proess

A s−dimensional vetor stohasti proess or multivariate stohasti proess X(t) =

[X1(t), X2(t), . . . , Xs(t)]
′
, is a family of random variables indexed by the symbol t,

where t belongs to some given index set, T. If t takes a ontinuous range of real

values (�nite or in�nite), so that X(t) is said to be a ontinuous parameter proess.

If t takes a disrete set of values, typially, t = 0,±1,±2, . . ., then X(t) is said

to be a disrete parameter proess. Alternatively, and in an equivalent way, an

s−dimensional vetor stohasti proess may be thought as a funtion X(t, ω) :

T ×Ω→ R
s
, where for eah �xed t ∈ T , X(t, ω) is a s−dimensional random vetor

variable.

A realization of a vetor stohasti proess is a sequene of vetors X(t, ω), t ∈ T ,
for a �xed ω. In other word a realization of a stohasti proess is a funtion

X(t, •) : T → R
s
. A multiple time series is regarded as suh a �nite part of a

realization, that is, it onsist, for example, of values vetors x1(ω), x2(ω), . . . , xN(ω).

The underlying stohasti proess is said to have generated the multiple time series

or it is alled the generating or generation proess of time series. A multiple time

series x1(ω), x2(ω), . . . , xN(ω) will be denoted by x1, x2, . . . , xN . The number of

observation N is alled the sample size or time series length.

Stationary Multivariate Proesses

An important onept in the representation of models and analysis of time series,

whih enables useful modeling results to be obtained from a �nite sample realization

of the time series, is that of stationarity.

An s vetor-valued proess X(t) is strongly stationary if the probability dis-

tributions of the random vetors [X(t1), X(t2), . . . , X(tn)] and [X(t1 + l), X(t2 +

l), . . . , X(tn + l)] are the same for arbitrary times t1, t2, . . . , tn, all n and all lags

or leads l = ±1,±2, . . .. Thus, the probability distribution of observations from

stationary vetor proess is invariant with respet to shift in time. An example

of stritly stationary proess is a proess of independent identially distributed s

vetor-valued variates with mean vetor 0 and ovariane matrix equal to Is. This

proess is alled strong sense white noise and is denoted by e(t).

An s vetor-valued proessX(t) is weakly or seond order stationary if the proess

possesses �nite �rst and seond moments and whih satis�es the ondition that mean

does not depend on t and ovariane depends only on lag u:
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1. E[X(t)] = µ = (µ1, µ2, . . . , µs)
′, ∀t

2. E{[X(t)− µ][X(t+ u)− µ]′} = Γ(u), ∀t

Covariane Matries for a Stationary Vetor Proess

If we have an s vetor-valued proess X(t) with µ = 0, we de�ne the ovariane

matrix at lag u by:

Γ(u) = E{[X(t+ u)][X(t)]
′} =











γ11(u) γ12(u) ... γ1s(u)

γ21(u) γ22(u) ... γ2s(u)

... ... ... ...

γs1(u) γs2(u) ... γss(u)











(1.8)

For i 6= j, γij(u) = E[Xj(t + u)Xi(t)] denotes the ross-ovariane funtion

between Xi(t) and Xj(t + u), while for i = j, γii(u) denotes the autoovariane

funtion of Xi(t) that depend only on lag u, not on time t, for i, j = 1, . . . , s,

u = 0,±1,±2, . . ..

In this thesis, the term stationary will generally be used in sense of weak stationar-

ity. For a stationarity vetor proess, the ross-ovariane matrix struture provides

a useful summary of information on aspets of dynami interrelations among the

omponents of the proess. However, beause of higher dimensionality of the vetor

proess, the ross-ovariane matries an generally take on omplex strutures and

may be muh more di�ult to interpret as a whole as ompared with the univariate

time series ase.

Complex valued multivariate proess

So far we have disussed only real valued proesses, i.e. proesses whih at eah time

point, assume real values. Although, of ourse, proesses whih arise in pratie

are all real valued it is nevertheless onvenient sometimes regard them as omplex

valued, just as in eletrial iruit theory it is sometimes onvenient to regard a

voltage as a omplex variable.

A omplex valued proess may be de�ned as a sequene of omplex random

variable indexed by the symbol t, where t ∈ T : X(t) = U(t)+iV(t) whereU(t),V(t)

are both real valued proess. If we suppose that X(t) is stationary up to order 2,

then the mean of X(t) is de�ned by:
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E[X(t)] = E[U(t)] + iE[V(t)] = µ a onstant vetor independent of t (1.9)

The ovariane matrix X(t) is de�ned by (if we suppose that µ = 0):

Γ(u) = E{[X(t+ u)][X(t)]∗} (1.10)

where γij(u) = E[Xi(t+ u)Xj(t)]

Spetral property for a Stationary Vetor Proess

Spetral Density Matrix. Similar to the univariate ase we de�ne the spetral

density matrix of the stationary vetor proess X(t) as:

f(λ) = (2π)−1
∞
∑

u=−∞

Γ(u)exp(−iλu), −π < λ < π (1.11)

Then f(λ) is the Fourier transform of the ovariane matrix funtion. The (i, j)th

element of the matrix f(λ) denoted as fij(λ) is:

fij(λ) = (2π)−1
∞
∑

u=−∞

γij(u)exp(−iλu)

For i = j, fii(λ) is the spetral density funtion of the proess Xi(t) and is the

Fourier transform of the auto-ovariane funtion γii(u), while for i 6= j, fij(λ) is

the ross-spetral density funtion between the proess Xi(t) and Xj(t), that is, the

Fourier transform of the ross-ovariane funtion γij(u).

Notie that fii(λ) is real-valued and non-negative, but sine γij(u) 6= γij(−u) for
i 6= j, the ross-spetral density funtion fij(λ) is in general omplex-valued with

fij(λ) begin equal to fji(λ) = fji(−λ), the omplex onjugate of fij(λ). Therefore,

the spetral density matrix f(λ) is Hermitian, that is, f∗(λ) = f(λ). Moreover, f(λ)

is a non-negative de�nite matrix in the sense that b
′

f(λ)b ≥ 0 for any s−dimensional

vetor b, sine b
′

f(λ)b is the spetral density funtion of a linear ombination b
′

X(t)

and hene must be non-negative.

Spetral Representations Let X(t) be a zero mean s−dimensional stationary

vetor proess. Then exists a s−dimensional omplex-valued ontinuous-parameter

proess, Z(λ) = [Z1(λ), Z2(λ), . . . , Zs(λ)], de�ned on the interval [−π, π] suh that

for all integer t (Rozanov (1957); pag 18):
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X(t) =

∫ π

−π

eiλtdZ(λ) or Xi(t) =

∫ π

−π

eiλtdZi(λ) (1.12)

where the olumn vetor dZ(λ) has elements dZ1(λ), dZ2(λ), . . . , dZs(λ). The rep-

resentation (1.12) is alled spetral representation of the multivariate stationary

proess X(t).

The s−dimensional random proess, Z(λ), also alled random spetral measure

of s−dimensional proess X(t), has the following properties:

1. E[dZ(λ1)dZ
∗(λ2)] = 0 if λ1 6= λ2,

2. E[dZi(λ1)dZj(λ2)] = 0 ∀i, j = 1, 2, . . . , s if λ1 6= λ2,

3. E[dZ(λ)dZ∗(λ)] = f(λ)dλ

Hene, properties (1) and (2) show that dZ1(λ), dZ2(λ), . . . , dZs(λ) are not only

orthogonal but also ross-orthogonal. From property (3) we have:

fii(λ)dλ = E[dZi(λ)dZi(λ)] = E[|dZi(λ)|2], (1.13)

fij(λ)dλ = E[dZi(λ)dZj(λ)] i 6= j

Hene, f(λ)dλ represents the ovariane matrix of dZ(λ),the random vetor at

frequeny λ in the spetral representation of the vetor proess X(t). That is,

fii(λ)dλ represent the variane of dZi(λ) and fij(λ)dλ represent the ovariane be-

tween dZi(λ) and dZj(λ). Alternatively, we may say that, whereas fii(λ)dλ repre-

sents the average value of the square of the oe�ient of eiλt, fij(λ)dλ represents

the average value of the produt of the oe�ients of eiλt in Xi(t) and Xj(t).

We an note also that substituting (1.12) in (1.8) the spetral representation of

the ovariane matrix funtion is:

Γ(u) =

∫ π

−π

e−iλte−iλ
′

(t+u)
E[dZ(λ)dZ∗(λ

′

)] (1.14)

=

∫ π

−π

e−iλu
E[dZ(λ)dZ∗(λ)]

=

∫ π

−π

e−iλudH(λ)

that is:
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γij(u) =

∫ π

−π

e−iλte−iλ
′

(t+u)
E[dZi(λ)dZj(λ

′)] (1.15)

=

∫ π

−π

e−iλu
E[dZi(λ)dZj(λ)]

=

∫ π

−π

e−iλudHij(λ)

where:

dHij(λ) = E[dZi(λ)dZj(λ)] = fij(λ)dλ, i 6= j, (1.16)

dHii(λ) = E[|dZi(λ)|2] = fii(λ)dλ,

The matrix H(λ) is alled spetral distribution matrix. The diagonal elements

Hii(λ) are the integrated spetra of the proess Xi(t), while Hij(λ) is the integrated

ross-spetrum between Xi(t) and Xj(t).

Substituting equations(1.16) in (1.15) obtained,

γij(u) =

∫ π

−π

fij(λ)e
−iλudλ u = ±1,±2, . . . (1.17)

that may be written more onisely in the form:

Γ(u) =

∫ π

−π

f(λ)e−iλudλ u = ±1,±2, . . . (1.18)

In some texts the spetrum is de�ned using the ovariane matrix generating

funtion, whih is a power series with omplex terms. The ovariane matrix gen-

erating funtion F (z) (where z is a omplex number) is de�ned by:

F(z) =

∞
∑

u=−∞

Γ(u)zu (1.19)

The ovariane matrix generating funtion oinides with the spetral density

matrix f(λ) if z = eiλ: F(z) = f(λ).

1.3.3 Linear Filtering of a Stationary Vetor Proess

Fundamental to the study of multivariate linear system of stohasti proess is

the representation of dynami linear relationship through the formulation of linear
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�lters. A multivariate linear (time-invariant) �lter relating an r−dimensional input

stohasti proess X(t) to a s−dimensional output stohasti proess Y (t) is given

by the form:

Y(t) =
∞
∑

u=−∞

Ψ(u)X(t− u) (1.20)

where Y(t) and X(t) are olumn vetors, the Ψ(u) are s × s matries, and

{Ψ(u)}, u = 0,±1,±2, . . . , are alled the impulse response matries. From (1.20)

we may write the ith output as:

Yi(t) =

∞
∑

u=−∞

Ψi1(u)X1(t− u) + . . .+

∞
∑

u=−∞

Ψir(u)Xr(t− u), i = 1, . . . , s (1.21)

The �lter is physially realizable or ausal when the Ψ(u) = 0 for u < 0, so that

∑∞
u=0Ψ(u)X(t − u) is expressible in terms of only present and past values of the

input proess X(t). The �lter is said to be stable if

∑∞

u=−∞ ‖Ψ(u)‖ < ∞, where

‖A‖ denotes a norm for the matrix A suh as ‖A‖2 = tr{A′A}.

When the �lter is stable and the input proess X(t) is stationary with ovariane

matries Γx(u), the output proess Y(t) =
∑∞

u=−∞Ψ(u)X(t − u) is a stationary

proess.

Introduing the spetral representation:

Xi(t) =

∫ π

−π

eiλtdZ
(x)
i (λ), i = 1, . . . , r (1.22)

Yj(t) =

∫ π

−π

ejλtdZ
(y)
j (λ), j = 1, . . . , s (1.23)

the jth terms of (1.21) an be written as:

∫ π

−π

eiλtGij(λ)dZ
(x)
i (λ), (1.24)

where Gij(λ) =
∑

u ψij(u)e
−iλu

represents the transfer funtion between the ith

input and the jth output.

Equation (1.21) now gives, for eah λ,:

dZ
(y)
j (λ) = Gj1(λ)dZ

(x)
1 (λ) + . . .+Gjr(λ)dZ

(x)
r (λ), j = 1, . . . , s (1.25)
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This equation is of onsiderable importane. In the time domain desription

(1.21), the relationship between the jth output at time t involves weighted linear

ombination of past, present and future values of all the input proesses. However,

the frequeny domain form (1.25) has a muh simpler struture. In fat (1.25) is sim-

ply the lassial multiple linear regression model, and, as in the single input/single

output ase, has the feature that the spetral proprieties of the output at frequeny

λ depend only on the spetral properties of the input at the same frequeny λ.

Writing (1.25) in matrix form we have:

dZ(y)(λ) = G(λ)dZ(x)(λ) (1.26)

where the (s×s) square matrixG(λ) =
∑

u Ψ(u)e−iλu
is alled the transfer funtion

matrix. The system is thus desribed ompletely by the transfer funtion matrix

G(λ) whih, when written out in full, takes the form:

G(λ) =











G11(λ) G12(λ) ... G1s(λ)

G21(λ) G22(λ) ... G2s(λ)

... ... ... ...

Gr1(λ) Gs2(λ) ... Grs(λ)











where the entry in the ith row and jth olumn being the transfer funtion relating the

ith input to the jth output. Equation (1.26) gives us immediately the relationship

between the spetral matries of the input and output. For we have:

E[dZ(y)(λ)dZ(y)∗(λ)] = G(λ)E[dZ(x)(λ)dZ(x)∗(λ)]G∗(λ) (1.27)

whih, on using property (3) of random spetral measure, the spetral density matrix

of output proess Y (t), fy(λ), is:

fy(λ) = G(λ)fx(λ)G
∗(λ) (1.28)

where fx(λ) is the spetral density matrix of input proess X(t).

Noting that the variane of Yj(t) is given by integrating the jth diagonal element

of fx(λ), the ondition for eah output to have �nite variane is:

tr{
∫ π

−π

G(λ)fx(λ)G
∗(λ)dλ} <∞ (1.29)

where, for any square matrix A, tr(A) denotes the trae of A, namely, the sum of

the diagonal elements of A.

The ovariane matries of the stationary proess Y (t) are given by:
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Γy(u) = E[Y(t),Y∗(t+ u)] =
∞
∑

i=−∞

∞
∑

j=−∞

Ψ(i)Γx(u+ i− j)Ψ∗(j). (1.30)

In Reinsel (1993)) the spetral density matrix of the output Y (t) has the repre-

sentation:

fy(λ) = G(eiλ)fx(λ)G
∗(e−iλ)

,

where the transfer funtion (matrix) of the linear �lter is de�ned as G(z) =
∑∞

j=−∞Ψ(j)zj .

Inverse ovariane matrix and inverse proess

Inverse ovarianes and inverse proess of a stationary multivariate stohasti pro-

ess have been de�ned independently and ontemporaneously by Battaglia (1984)

and Vitale (1984), one moving from frequeny domain and one from time domain.

The two de�nitions oinide. The inverse ovariane an also play a role in the

analysis of relationships between the omponents of a multivariate series.

Let X(t) = [X1(t), X2(t), . . . , Xs(t)]
′

be a disrete-parameter s-variate seond-

order stationary proess with mean zero for eah omponent and ovariane matrix

Γ(h) de�ned in (1.8). We suppose thatX(t) has absolutely ontinuous spetrum and

for eah λ, the inverse of spetral density matrix f(λ) de�ned in (1.11)(Battaglia

(1984), pag 118) exists and is integrable. Then we de�ne the matries of inverse

ovariane Γi(h)(h = 0,±1,±2, . . .) by:

Γi(u) =
1

(2π)2

∫ π

−π

f−1(λ)eiλudλ =











γi11(u) γi12(u) ... γi1s(u)

γi21(u) γi22(u) ... γi2s(u)

... ... ... ...

γis1(u) γis2(u) ... γiss(u)











(1.31)

so that:

f−1(λ) = 2π
∞
∑

u=−∞

Γi(u)e
−iλu =











p11(u) p12(u) ... p1s(u)

p21(u) p22(u) ... p2s(u)

... ... ... ...

ps1(u) ps2(u) ... pss(u)











(1.32)
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As f−1(λ) is also Hermitian for eah λ, we have Γi(h) = Γi(−h)′.

For inverse ovariane matries an orthogonality relation may be derived in the

same way as in the univariate ase (Battaglia 1983). In fat, using (1.31) and the

analogous spetral representation (1.18), it is easily seen that:

∞
∑

u=−∞

Γi(u)Γ
′

(u+ k) = δkIs (1.33)

where δk denotes Kroneker's delta.

Further we de�ne the inverse proess of X(t) as a linear �lter with weights equal

to the inverse ovarianes:

Z(t) = 2π
∞
∑

u=−∞

Γi(u)X(t− u). (1.34)

Using (1.33) it may be veri�ed that Z(t) is a seond-order stationary proess with

mean zero and ovariane matrix equal to the inverse ovariane matrix of X(t):

E[Z(t)Z∗(t + u)] = Γi(u). (1.35)

In addition, the ovarianes between the omponents of the proess and the

omponent of its inverse proess is provided by:

E[X(t)Z∗(t+ u)] =
∑

u

Γ(u)Γi(u+ h) = δkIs. (1.36)

Thus, the omponents of X(t) are unorrelated with the non-homologous om-

ponents of Z(t) for eah lag, while the homologous omponents of the two proesses

are ontemporaneously orrelated, but unorrelated when lagged.

We may use two di�erent ways to estimate the inverse ovariane matrix. A �rst

approah is based on the estimation of the spetral density matrix and the Fourier

transform of its inverse (Battaglia (1984)). The seond one �ts a high-order vetor

autoregressive model to the data and derives estimates of the inverse ovariane

matrix from the estimated parameters of the model (Battaglia (1984)). Bhansali

(1980) has shown that under reasonable regularity onditions both methods give

onsistent and asymptotially Gaussian estimates. We reported here the seond
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approah where the estimates of the inverse ovariane are obtained as follows:

Γ̂iu =











∑m
j=u Φ̂

′
j−uΣ̂

−1Φ̂j 0 ≤ u ≤ m

0 u > m

Γ̂i
′

−u u < 0

(1.37)

where Φ̂1, Φ̂2, . . . , Φ̂m are the least squares estimates of the parameter matries of

the VAR(m) model, Σ̂ is the estimated variane matrix of the noise and where we

set Φ̂0 = −I.

Spae of values of a stationary vetor proess

Let X(t) = [X1(t), X2(t), . . . , Xs(t)]
′
be an s−dimensional stationary proess, and

Hx be the linear manifold spanned by variables Xk(t),k = 1, . . . , s, −∞ < t < ∞,

losed with respet to onvergene in mean square. This spae with salar produt

(Rozanov (1957), pag 3):

(Xi(t), Xj(t)) = E[Xi(t)Xj(t)] ∀i, j = 1, . . . , s, t ∈ Z (1.38)

is a Hilbert spae; we will all it the spae of values of the proess X(t).

We an demonstrate that for any element h ∈ Hx there exist a vetor funtion

ϕ(λ) = [ϕ1(λ), . . . , ϕs(λ)]
′
belonging to L2(F ) suh that h is representing in the

form of integral with respet to the random spetral measure Z(λ):

h =

∫

ϕ(λ)dZ(λ) =

∫ s
∑

k=1

ϕk(λ)dZk(λ) (1.39)

We will all the vetor funtion ϕ(λ) the spetral harateristi of the random

variable h.

We will say that ϕ(λ) belongs to the spae L2(F ), if the funtion:

ϕ(λ)f(λ)ϕ∗(λ) =

s
∑

k,l=1

ϕk(λ)ϕk(λ)fkl(λ) (1.40)

is integrable.

Minimal Proess

Theorem 1. . In order that an n-dimensional stationary proess X(t) with spetral

density f be minimal, it is neessary and su�ient that:
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∫ π

−π

tr(f−1(λ))dλ <∞.

where tr denotes the trae of a matrix.

1.4 Linear Interpolation of Stationary Vetor Pro-

ess

An important problem in the theory of s-variate (s ≥ 1) weakly stationary stohasti

proess X(t) is to obtain formulas for linear interpolator and interpolation error

matrix. This problem seem to have potential appliation to many di�erent areas

of physial, natural and soial sienes, that is in the ases where the values of

a stohasti proess that represent a partiular phenomena either are missing at

some points or it is not possible to obtain diret measurement at these points. This

problem has generated a rather extensive literature beginning with Kolmogorov's

fundamental artile (Kolmogorov 1941).

Masani (1960) onsidered a full-rank minimal s − variate proess (the missing

value is at one point) over Z and obtained an expliit expression, for the interpolation

error matrix in terms of spetral density of the proess, thereby extending the s = 1

result due to Kolmogorov (1941).

There are a number of di�erent proof of linear interpolation of a stationary ve-

tor proess, some of whih revealed interesting relationship between the spetral

theory of stationary vetor proess and other branhes of pure mathematis. Ex-

pliit expressions for linear interpolator and interpolation error matrix were obtained

by (Rozanov (1957); pag 100-101) using elaborated Fourier and Harmoni analysis

tehniques. Rozanov's proedure onsiderate also the ase of partially missing ob-

servations of the proess X(t). Exat formulas are also given in Battaglia (1984)

and Hannan (1970). All formulas suppose that the omplete past and the omplete

future of the stationary proess X(t) are known. We now give a brief sketh of these

alternative proofs.
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1.4.1 Geometrial Approah to Interpolation

Let X(t) = [X1(t), X2(t), . . . , Xs(t)]
′
be a disrete-parameter s-variate seond-order

stationary proess with mean zero for eah omponent, t ∈ Z = [0,±1, . . .]. We

suppose that X(t) has absolutely ontinuous spetrum and for eah λ, the inverse

of spetral density matrix f(λ) exists and is integrable.

Let Tk, k = 1, . . . , s, be �nite subsets of the set of all integers Z. We suppose

that all the values Xk(t) of the s−dimensional stationary proess X(t) are known,

exept for the values Xk(t), t ∈ Tk, k = 1, . . . , s, and it is required to interpolate the

unknown values Xk(t).

If we measure the error in terms of mean square deviation, the best linear method

of interpolation onsists in �nding the projetions of the Xk(t), t ∈ Tk, on losed

linear manifold generated by the known variables Xk(t), t /∈ Tk, k = 1, . . . , s, whih

we denote by H̄(T ).

Let A be s−dimensional vetor spae, and Bλ the subspae of A onsisting of all

vetors b = {bk(λ)} of the form:

b = af(λ) a ∈ A (1.41)

By the expression bf−1(λ) for b ∈ Bλ, we will understand any of the vetors

a ∈ A satisfying 1.41.

Obviously, if two vetors a1 and a2 lead to the same element b in (1.41), then:

a1(b
′)∗ = a2(b

′)∗ (1.42)

for any b
′

= a
′

f(λ) ∈ Bλ, sine, by virtue of self-adjointness of the matrix f(λ),

(a1 − a2)(b
′)∗ = (a1 − a2)[a

′

f(λ)]∗ = [(a1 − a2)f(λ)](a
′

)∗ = (b− b)(a
′

)∗ (1.43)

We de�ne B(T ) as the spae of vetor funtions b(λ) = {bk(λ)} whose ompo-

nents bk(λ) are trigonometri polynomials of the form:

bk(λ) =
∑

t∈Tk

ak(t)e
iλt

(1.44)

suh that b(λ) ∈ Bλ for almost all λ, and suh that ‖b‖ = (b,b)1/2 <∞, where

(b,b
′

) is a salar produt in B(T ) de�ned by:
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(b,b
′

) =

∫ π

−π

[b(λ)f−1(λ)(b′)∗]dλ (1.45)

We denote by ∆(T ) the subspae in Hx spanned by the di�erene :

Xk(t)− X̂k(t), t ∈ Tk k = 1, 2, . . . , s (1.46)

where X̂k(t) is the projetion of Xk(t) on H̄(T ).

Lemma 1. . The subspae ∆(T ) is isometrially isomorphi to the spae B(T ) of

vetor funtions.

Proof. Let Z(λ) = [Z1(λ), Z2(λ), . . . , Zs(λ)]
′

be random spetral measure ofX(t).

The elements h of the subspae ∆(T ) an be represented in the form:

h =

∫ π

−π

ϕ(λ)dZ(λ), (1.47)

where the vetors funtion ϕ = {ϕk} belongs to the spae L2(F ), i.e.,

∫ π

−π

ϕfϕ∗dλ <∞. (1.48)

The orthogonality of h to the subspae H̄(T ) means that:

E[hX̄l(t)] =

∫ π

−π

e−iλt

s
∑

k=1

[ϕk(λ)fkl(λ)]dλ = 0, (1.49)

for all l and t (l = 1, . . . , s,−∞ < t < ∞) exept for t ∈ Tl. If we put b(λ) =

ϕ(λ)f(λ) the (1.49) shows that the vetor funtion b(λ) = {bk(λ)} belongs to the

spae B(T ):

bk(λ) =

s
∑

l=1

ϕl(λ)flk(λ) =
∑

t∈Tk

ak(t)e
−iλt, k = 1, . . . , s (1.50)

‖b‖2 =
∫ π

−π

b(λ)f−1(λ)b∗(λ)dλ =

∫ π

−π

ϕ(λ)f(λ)ϕ∗(λ)dλ = E |h|2 (1.51)

On the other hand, if one takes an arbitrary vetor funtion b(λ) from B(T ) and

sets ϕ(λ) = b(λ)f−1(λ) then
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∫ π

−π

ϕ(λ)f(λ)ϕ∗(λ)dλ =

∫ π

−π

b(λ)f−1(λ)ϕ∗(λ)dλ <∞ (1.52)

and the random variable of the form

∫ π

−π
ϕ(λ)dZ(λ) is orthogonal to H̄(T ):

E[hX̄l(t)] =

∫ π

−π

e−iλt

s
∑

k=1

[ϕk(λ)fkl(λ)]dλ =

∫ π

−π

e−iλtbl(λ)dλ = 0, (1.53)

for all l and t, exept for t ∈ Tl. But this means that h belongs to the subspae

∆(T ), and, moreover, by virtue of (1.53),

E |h|2 = ‖b‖2

We proeed now to a diret determination of the quantities X̂k(t), t ∈ Tk whih

gives the best foreast by linear interpolation. Let Tk = t0, Tl = 0 for l 6= k. As we

already know, X̂k(t0) an be represented in the following form:

X̂k(t0) =

∫ π

−π

ϕ̂k(λ)dZ(λ) (1.54)

The problem of linear interpolation onsist, essentially, of determining the vetor

funtions ϕk(λ) = [ϕk1(λ), ϕk2(λ), . . . , ϕks(λ)].

Sine the di�erene Xk(t0) - X̂k(t0) belongs to the spae ∆(t), we obtained, from

Lemma 1, that the vetor funtion:

bk(λ) = [eiλt0δk − ϕ̂k(λ)]f(λ) = [bk1(λ), bk2(λ), . . . , bks(λ)]

belongs to the spae B(T), and, in partiular, that:

bkj =
∑

t∈Tk

akj(t)e
iλt, j = 1, 2, . . . , s.

Thus, the vetor funtion (row vetor) ϕ̂k(λ) has the form

ϕ̂k(λ) = eiλt0δk − bk(λ)f
−1(λ), (1.55)

where δk is a s-dimensional vetor whih has a 1 in the k-th position and zero

in the other positions and the problem of linear interpolation redues to �nding

the oe�ients akj of the trigonometri polynomials bkj(λ). These oe�ients an
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easily be found from a linear system of equations, expressing the fat that X̂k(t0) is

orthogonal to ∆(T ).

If the proess X(t) is minimal then the vetor funtions of the form eiλtδl , t ∈
Tl, l = 1, . . . , s, form a basis in the spae B(T ), and if one denotes by hl,t the

orresponding variables in the spae ∆(T ), then the orthogonality of X̂k(t0) to ∆(T )

is equivalent to the following:

E[X̂k(t0)h
l,t] =

∫ π

−π

e−iλt[ϕ̂k(λ)f(λ)p̄l(λ)]dλ = 0 (1.56)

where pl(λ) = [pl1(λ), pl2(λ), . . . , pls(λ)] is the lth row of the inverse f−1(λ) of

f(λ). Taking into onsideration the form (1.55) of the vetor funtion ϕ̂k(λ), system

(1.56) an be rewritten in the form:

n
∑

j=1

∑

s∈Tj

γijl(s− t)akj(s) = 0 for t ∈ Tl t 6= t0, l 6= k (1.57)

n
∑

j=1

∑

s∈Tj

γijk(s− t0)akj(s) = 1 for t ∈ Tk t = t0, l = k (1.58)

Here the γijl(s) are Fourier oe�ients of the elements pjl(λ) of the matrix f−1
,

that is, inverse ovariane:

γijl(s) =
1

2π

∫ π

−π

eiλspjl(λ)dλ.

Theorem 2. . Suppose that the spetral density f of the s-dimensional proess X(t)

satis�es theorem 1. Then the random variables X̂k(t0), giving the best linear inter-

polation, an be found from formula (1.54), in whih the vetor funtions ϕ̂k(λ) are

determined from the system of equations (1.57).

Case 1: partial missing value for one omponent series

We suppose that T1 = {t0} and T2 = . . . = Tn = {∅}. In this ase we have to

determine X̂1(t0) and then only the vetor funtion ϕ̂1(λ). The vetor funtion

b1(λ) assume following form:
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b1(λ) = [a11(t0)e
iλt0 , 0, . . . , 0]

.

The system (1.57) is de�ned only for t ∈ T1:

γi11(0)a11(t0) = 1 ⇒ a11(t0) = [γi11(0)]
−1, (1.59)

Substituting the value of a11(t0) found by (1.59) in equation (1.55):

ϕ̂1(λ) = eiλt0δ1−b1(λ)f
−1 = eiλt0δ1− eiλt0 [

1

γi11(0)
f11(λ), . . . ,

1

γi11(0)
fn1(λ)] (1.60)

Then:

X̂1(t0) =

∫ π

−π

eiλt0δ1dZ(λ)−
∫ π

−π

eiλt0 [
1

γi11(0)
f11(λ), . . . ,

1

γi11(0)
fn1(λ)]dZ(λ) (1.61)

whene:

X̂1(t0) =

∫ π

−π

eiλt0dZ1(λ)−
∫ π

−π

eiλt0
1

γi11(0)
f11(λ)dZ1(λ)− . . .−

−
∫ π

−π

eiλt0
1

γi11(0)
fn1(λ)dZn(λ) (1.62)

Hene, writing:

f−1
ij (λ) =

1

2π

∞
∑

u=−∞

e−iλuγiij(u) (1.63)

we have:

∫ π

−π

eiλt0
1

γi11(0)
fij(λ)dZi(λ) =

∫ π

−π

eiλt0
1

γi11(0)

∞
∑

u=−∞

e−iλuγiij(u)dZi (1.64)

If we used equation of spetral representation, the ith integral of (1.62) beomes:

∞
∑

u=−∞

∫ π

−π

eiλ(t0−u) 1

γi11(0)
dZi =

γiij(u)

γi11(0)

∞
∑

u=−∞

γiij(u)X(t0 − u) (1.65)
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Using this last relation we an write (1.62) as:

X̂1(t0) = X1(t0)−
1

γi11(0)

∞
∑

u=−∞

γi11(t)X1(t0 − u)−
1

γi11(0)

∞
∑

u=−∞

γi21(u)X2(t0 − u)− . . .−

− 1

γi11(0)

∞
∑

u=−∞

γis1(t)Xn(t0 − u) (1.66)

that an be written as:

X̂1(t0) = X1(t0)−
1

γi11(0)

∞
∑

u=−∞

s
∑

j=1

γij1(u)Xj(t0 − u)

Obviously the summation on the right of equation(1.66) is not de�ned for missing

data X1(t0) . This quantity appears when u = 0 and in this ase we have: X1(t0)−
a11(t0)γi11(0)X1(t0) = 0 aording to the system (1.59).

Case 2: partial missing value for two omponent series

We suppose that T1 = {t1}, T2 = {t2} and T3 = . . . = Tn = {∅} and have to

interpolate X1(t1), that is, determine X̂1(t1).

When we have to interpolate the missing data of omponent k-th of stohasti

proess it is only neessary to determine the vetor funtion bk(λ). In our ase, as

k = 1 we have to determine the funtion b1(λ). If there is only one missing data in

a single omponent then this funtion has only one nonzero element at k-th olumn

(b1(λ) is a row vetor). If there are two missing data in the k-th omponent then the

funtion bk(λ) has always only one element di�erent from zero in orrespondene of

the k-th olumn but this element is the sum of two exponentials with oe�ients

di�erent from zero. If instead there are two omponents that eah have one missing

then the funtion bk(λ) has two elements di�erent from zero. In our ase the funtion

has two omponents di�erent from zero in olumn 1 and 2. In fat we have:

b11(λ) = a11(t1)e
iλt1 , b12(λ) = a12(t2)e

iλt2 , b13 = b14 = . . . = 0

and then:

b1(λ) = [a11(t1)e
iλt1 , a12(t2)e

iλt2 , 0, . . . , 0]

We have to determine through the system (1.57) the two oe�ients a11(t1) and

a12(t2). The equations are the onditions that arise from the following reasoning: if
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we interpolate one missing data but there are two missing data we an not use the

two data. So when we make the linear ombination of the available data we have to

ensure that these data do not appear. In this ase the system (1.57) beomes:











γi11(0)a11(t1) + γi21(t2 − t1)a12(t2) = 1

γi12(t1 − t2)a11(t1) + γi22(0)a12(t2) = 0

then:











a11(t1) = [γi21(t2 − t1)− γi11(0)γi22(0)
γi12(t2−t1)

]−1

a12(t2) = − γi22(0)
γi21(t2−t1)γi12(t1−t2)−γi11(0)γi22(0)

Substituting the values of the oe�ients a11(t1) e a12(t2) in (1.55) we have:

ϕ̂1(λ) = eiλt1δ1 − b1(λ)f−1

= eiλt1δ1 − [a11(t1)e
iλt1f11(λ) + a12(t2)e

iλt2f21(λ), . . . , a11(t1)e
iλt1f1s(λ) +

+ a12(t2)e
iλt2f2s(λ)]

(1.67)

ϕ̂1(λ) =











eiλt1

0

...

0











′

1×s

−

















a11(t1)e
iλt1f11(λ) + a12(t2)e

iλt2f21(λ)

a11(t1)e
iλt1f12(λ) + a12(t2)e

iλt2f22(λ)

...

a11(t1)e
iλt1f1s(λ) + a12(t2)e

iλt2f2s(λ)

















′

1×s

X̂1(t1) =

∫ π

−π

eiλt0δ1dZ(λ)−
∫ π

−π

a11(t1)e
iλt1f11(λ)dZ1(λ)−

−
∫ π

−π

a12(t2)e
iλt2f21(λ)dZ1(λ)− . . .−

∫ π

−π

a11(t1)e
iλt1f1s(λ)dZs(λ)−

−
∫ π

−π

a12(t2)e
iλt2f2s(λ)dZs(λ) (1.68)

X̂1(t1) = X1(t1)− a11(t1)
∑

u

γi11(u)X1(t1 − u)− a12(t2)
∑

t

γi21(u)X1(t2 − u)− . . .−

− a11(t1)
∑

t

γi1s(u)Xs(t1 − u)− a12(t2)
∑

t

γi2s(t)Xs(t2 − u) (1.69)
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Case 3: one missing value for all omponent series

In this ase we suppose that T1 = T2 = . . . = Tn = T = {t0}. Then, the values

X̂k(t0) of the proess X(t) are all unknown for the same time t0. Let X̂(t0) =

[X̂1(t0), . . . , X̂s(t0)]. We have:

X̂(t0) =

∫ π

−π

ϕ̂(λ)dZ(λ) (1.70)

where, by virtue of (1.55), the matrix funtion (s× s) ϕ̂(λ) has the form:

ϕ̂(λ) = eiλt0Is −
∑

s∈T

eiλsa(s)f−1(λ) (1.71)

For the matrix oe�ients (s×s) a(s) we obtained from (1.57) the following system

of equations:

∑

s∈T

Γi(s− t0)a(s) = Is,

∑

s∈T

Γi(s− t0)a(s) = 0s for t 6= t0 (1.72)

where:

Γi(s) =
1

2π

∫ π

−π

eiλsf−1dλ. (1.73)

The system of equations (1.72) will then appear as:

Γi(0)a(t0) = Is (1.74)

We �nd that:

a(t0) = [Γi(0)]−1
(1.75)

The expression of interpolator is then:

X̂(t0) =

∫ π

−π

eiλtIsdZ(λ)−
∫ π

−π

[Γi(0)]−1f−1dZ(λ)

= X(t0)− [Γi(0)]−1
∑

u

Γi(u)X(t0 − u) (1.76)
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If we denote with ǫk = Xk(t0) − ˆXk(t0) the errors interpolation and with σkj =

E[ǫk ǭj ], then the matrix of error σ2 = {σkj} of linear interpolation is easily found

from the representation:

Σ = 2π[Γi(0)]
−1

(1.77)

Case 4: Two missing values for all omponent series

We suppose that T1 = T2 = . . . = Tn = T = {t0, t1}. We have:

X̂(t0) =

∫ π

−π

ϕ̂(λ)dZ(λ) (1.78)

where, by virtue of (1.55), the matrix funtion (s× s) ϕ̂(λ) has the form:

ϕ̂(λ) = eiλt0Is − eiλt0a(t0)f−1(λ)− eiλt1a(t1)f−1(λ) (1.79)

For the matrix oe�ients (s×s) a(s) we obtained from (1.57) the following system

of equations:

Γi(0)a(t0) + Γi(t1 − t0)a(t1) = Is, (1.80)

Γi(t0 − t1)a(t0) + Γi(0)a(t1) = 0s for t 6= t0 (1.81)

[

Γi(0) Γi(t1 − t0)
Γi(t0 − t1) Γi(0)

][

a(t0)

a(t1)

]

=

[

Is

0s

]

a(t0) = [Γi(0)− Γi(t1 − t0)Γi−1(0)Γi(t0 − t1)]−1
(1.82)

a(t1) = −[Γi(0)− Γi(t1 − t0)Γi−1(0)Γi(t0 − t1)]−1Γi(t1 − t0)Γi−1(0) (1.83)

The expression of interpolator is:

X̂(t0) =

∫ π

−π

eiλt0Is −
∫ π

−π

a(t0)f
−1dZ(λ)−

∫ π

−π

a(t1)f
−1dZ(λ) (1.84)

= X(t0)− a(t0)
∑

u

Γi(u)X(t0 − u)− a(t1)
∑

u

Γi(u)X(t1 − u)
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The two summations are unde�ned for X(t0) and X(t1). In the �rst sum, X(t0)

appears when u = 0 while in the seond sum when u = (t1 − t0):

X(t0)− a(t0)Γi(0)X(t0)− a(t1)Γi(t1 − t0)X(t0) = Is

beause a(t0)Γi(0)− a(t1)Γi(t1− t0) = Is. X(t1) appears when u = t0− t1 in the

�rst sum and when u = 0 in the seond sum:

a(t0)Γi(t0 − t1)X(t1)− a(t1)Γi(0)X(t1) = 0s

beause a(t0)Γi(t0 − t1)− a(t1)Γi(0) = 0s

1.4.2 Frequeny domain approah to interpolation

Hannan (1970) deals with the linear interpolator problem onsidering the ase where

T1 = T2 = . . . = Ts = T = {t0}. The author determines the optimal linear

interpolator trying the linear ombination X̂(t0) ofX(t0−j), j 6= t0, whih minimizes

the error of interpolation

∥

∥

∥
X(t0)− X̂(t0)

∥

∥

∥

2

. The demonstration that leads to the

optimal linear interpolator is reported below.

We introdue the response funtions:

hN (e
iλ) =

N
∑

j=−N

AN(j)e
ijλ, (1.85)

where the term for j = t0 is omitted. Now we seek for a response funtion h suh

that:

lim
N→∞

[

∫ π

−π

(h− hN)dH(λ)(h− hN)∗] = 0 (1.86)

and

[

∫ π

−π

(Is − h)dH(λ)(Is − h)∗]

is minimized. If we determined the transfer funtion h, the optimal interpolator

results to be given by:

X̂(t) =

∫ π

−π

e−itλh(e−iλ)dZ(λ)

while the ovariane matrix of interpolation errors is given by:
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Σ = E{[X(t)− X̂(t)][X(t)− X̂(t)]
′}.

Evidently may take t0 = 0 without any loss of generality. If H(λ) is not a.., we

know that the singular part of F(λ) orresponds to a perfetly preditable proess

and thus one whih may be perfetly interpolated. This leads us to treat the a..

ase. We assume that there is no non-null vetor α suh that α
′

X(t) ≡ 0, almost

surely.

Theorem 3. . Let X(t) satisfy the above assumption and have a.. spetrum and

let f−1(λ) be the inverse of f(λ). The neessary and su�ient ondition that Σ be

nonsingular is the ondition that f−1(λ) be integrable. Then the response funtion

of the optimal interpolating �lter is:

h = Is − {
1

2π

∫ π

−π

f−1(λ)dλ}f−1(λ) (1.87)

and ovariane matrix of interpolation errors is:

Σ = { 1

2π

∫ π

−π

[2πf(λ)]−1}−1
(1.88)

Proof. Evidently, sine [X(0)− X̂(0)] is orthogonal to X(t) ∀t 6= 0, for eah pair

of vetors α, β of omplex numbers we must have:

E{α∗[X(0)− X̂(0)]X(t)
′

β} = 0, t 6= 0 (1.89)

and using the de�nition of salar produt we have:

α∗

∫

(Is − h)f(λ)eitλdλβ = 0, t 6= 0

Sine the Fourier oe�ients are zero in the ase of a onstant funtion, this

implies that:

(Is − h)f = C

where C is a onstant matrix. Thus

(Is − h) = Cf−1

This solution is not unique, but any solution di�ers from it by a matrix whih, when

multiplied on the right by f , is annihilated and thus leads to the same Σ. Moreover,

(1.89) also shows that:
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∫ π

−π

(Is − h)fh∗dλ = 0,

sine h is a limit in mean square of expression of the form of (1.85). Thus:

Σ =

∫

(Is − h)fdλ = 2πC,

whih shows that C = C∗ = C̄. Now, assuming the integrability of f−1
for the �rst

time, we have

Σ = C

∫ π

−π

f−1ff−1dλ = C

∫ π

−π

f−1dλC,

and

C = C{ 1

2π

∫ π

−π

f−1(λ)dλ}C

of whih a solution is

C = { 1

2π

∫ π

−π

f−1(λ)dλ}−1. (1.90)

From last equation we have:

(Is − h) = {
1

2π

∫ π

−π

f−1(λ)dλ}−1f−1 = Γi(0)f
−1

(1.91)

and

Σ = 2π[Γi(0)]
−1, (1.92)

that oinides with the equation(1.77).

Thus we an take C given by (1.90) and the theorem results, save for the asser-

tion onerning the nonsingularity of Σ. If f−1(λ) is integrable then ertainly Σ is

nonsingular for otherwise there must be a vetor α, so that

∫

α
′

f−1(λ)αdλ = 0, α
′

α = 1 (1.93)

Taking α as �rst row of an orthogonal matrix P this implies that Pf(λ)P
′

must

have null elements, for all λ, in the �rst row and olumn, whih implies that α
′

X(t) ≡
0, almost surely. On the other hand, if Σ is nonsingular then sine

∫

(Is − h)f(Is −
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h)
′

dλ =
∫

(4π)−2Σf−1Σdλ we see that Σf−1Σ is integrable and thus so must f−1
be

integrable. This ompletes the proof.

Substituting the equation (1.92) in equation (1.87) we obtained the formula (1.76)

of optimal interpolator found by Rozanov (1957).

1.4.3 Time domain approah to interpolation

Battaglia (1984) onsider the linear interpolation problem for a multivariate station-

ary proess X(t) and suppose that T1 = T2 = . . . = Ts = T = {t = 0}. The problem
is to determine a linear transformation of {. . . ,X(t − 2),X(t − 1),X(t + 1),X(t +

2), . . .}:

∑

u 6=0

a(u)X(t− u)

with {a(u)} real matries s×s, suh that the linear ombination

∑

u 6=0 a(u)X(t−
u) is as lose possible to X(t). To this aim, Battaglia (1984) onsider the variane

matrix:

E{[X(t)−
∑

u 6=0

a(u)X(t− u)][X(t)−
∑

u 6=0

a(u)X(t− u)]′}. (1.94)

and minimize it aording to the positive-de�niteness ordering. This ordering is

de�ned for Hermitian matries by A ≥ B if A − B ≥ 0 where M ≥ 0 means that

the matrix M is positive semide�nite, and mathes with the orderings indued by

the values of determinants and traes. To �nd the matrix that minimize the mean

square error, the author has expressed it as a sum of a matrix independent of the cu

and a positive semide�nite matrix. The demonstration was done in the frequeny

domain, replaing the variane-ovariane matrix with the integral of its spetral

density.

Let I(t) =
∑

u 6=0 a(u)X(t − u), and denote by A(λ) = Is −
∑

u 6=0 a(u)e
−iλu

the transfer funtion of I(t). The residual (or interpolation error) X(t) − I(t) has

variane-ovariane matrix given by:

E{[X(t)− I(t)][X(t)− I(t)]′} =
∫ π

−π

A(λ)f(λ)A(λ)∗dλ, (1.95)

Now,
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A(λ)f(λ)A(λ)∗ = Γi
−1(0)A(λ)∗ +A(λ)∗Γi

−1(0)− Γi
−1(0)f−1(λ)Γi

−1(0) +

+{A(λ)− Γi
−1(0)f−1}f(λ){A(λ)− Γi

−1(0)f−1}∗ (1.96)

Sine the last matrix in the seond line of (1.96) is positive semide�nite (f(λ) is

positive semide�nite), it follows that:

A(λ)f(λ)A(λ)∗ ≥ Γi
−1(0)A(λ)∗ +A(λ)∗Γi

−1(0)− Γi
−1(0)f−1(λ)Γi

−1(0) (1.97)

integrating, and onsidering that:

∫ π

−π

f−1(λ)dλ = Γi(0);

∫ π

−π

A(λ)dλ =

∫ π

−π

A(λ)∗dλ = Is (1.98)

he obtained:

E{[X(t)− I(t)][X(t)− I(t)]′} = Γi(0) (1.99)

The minimum is attained when:

{A(λ)− Γi
−1(0)f−1}f(λ){A(λ)− Γi

−1(0)f−1}∗ (1.100)

equals to zero matrix for eah λ, i.e. when:

A(λ) = Γi
−1(0)f−1(λ), (1.101)

so that a(u) = −Γi
−1(0)Γi(u). We an see that the equation (1.101) oinides

with equation (1.91) found by Hannan (1970).



Chapter 2

Multivariate Self-Exiting Threshold

Autoregressive Modeling by Geneti

Algorithms

2.1 Introdution

Several papers that generalize the univariate threshold priniple to a multivariate

framework have appeared in the literature during the past years. Tiao & Tsay

(1994) proposed a univariate SETAR model for the United States gross national

produt (GNP) series where the thresholds are ontrolled by two lagged values of

the transformed GNP series re�eting the situation of the eonomy. Tsay (1998) de-

veloped a strategy for testing and estimating multivariate threshold models where

the threshold variable was ontrolled by known linear ombination of individual vari-

ables. Arnold & Gunther (2001) proposed a de�nition of MSETAR models where

eah linear regime follows a VAR proess and the threshold variable is multivariate.

Furthermore, they developed a estimation proedure of the orresponding autore-

gressive (AR) oe�ient matries. However, the authors suppose that the model

strutural parameters (delay, threshold variable, number and position of thresholds,

model order) have to be known a priori. In the present framework, we adopt a

less restritive formulation, assuming that the strutural parameters are unknown

and are jointly estimated with the other parameters of the model. We formulated

the task of �nding the threshold variable and the others strutural parameters as a

ombinatorial optimization problem (Medeiros et al. 2002).

Combinatorial optimization is a �eld of applied mathematis that treats a spe-

ial type of mathematial optimization problem where the set of feasible solutions
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is �nite. The gradient based methods annot be used in suh a spae as the searh

spae is disrete and derivatives and usual notions of ontinuity and onvexity do

not apply. If the size of the problem is small often exhaustive enumeration of all

potential solutions is feasible and it is the best way to obtain an exat solution.

However, often suh method is unfeasible beause in ombinatorial problems the

solution spae grows very large as a funtion of the problem size. For moderate

size dynami programming o�ers several algorithms that an provide good solutions

or even exat solutions. Nonetheless, more omplex problems may be takled only

with the use of heuristi methods. Moreover, as the omputing time needed to

get a solution beomes usually exponentially large even heuristis may be un�t for

optimization and we have to resort to meta heuristi algorithms that may provide

in polynomial time a good sub-optimal solution or even the exat solution in some

speial ases. These problems are inluded in the lass of the NP-omplete ombi-

natorial optimization problems as no polynomial time algorithm is known that may

produe the optimum solution.

A widespread lass of meta heuristis that have been found e�etive in statis-

tial appliation involving NP-omplete optimization task are the GAs. GAs have

been employed to solve optimization problems that arise in the design of many om-

plex systems, e.g. ommuniation systems, networks, operations researh, mediine

and biohemistry. Formulation of basi priniples is due to Holland (1975) while

introdution and disussion of detailed theory and appliations of GAs as optimiza-

tion algorithms may be found in many textbooks. See, e.g., Goldberg (1989) and

Mithell (1996), two nie introdutory books, Bak et al. (1997), where related �elds

too suh as evolution strategies and geneti programming are illustrated, Gen &

Cheng (1997) and Haupt & Haupt (2004), who ope with appliations and present

examples from several di�erent �elds. In the present framework we have to deal

with a very large spae of potential optimal solutions as threshold variable (ompo-

nents and delay), the thresholds and the AR orders have to be found that optimize

some suitable objetive funtion. Appliations of GAs to threshold modeling in the

univariate ase have been suggested by Wu & Chang (2002) and Baragona et al.

(2004), and extensions have been studied to non stationary ase by Battaglia &

Protopapas (2011, 2012), to double threshold generalized autoregressive onditional

heterosedasti (GARCH) models by Baragona & Cuina (2008).

The rest of the paper is organized as follows. Setion 2.2 gives a general de-

sription of MSETAR model. Setion 2.3 presents the GAs methodology used for

identi�ation and estimation of MSETAR models. Setion 2.4 presents some numer-

ial examples illustrating the performane of the proposed proedure for MSETAR

model building. Several models are onsidered and results from a Monte Carlo ex-
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periment are displayed and ommented. Setion 2.5 shows an appliation onerned

with a real data set.

2.2 The MSETAR model formulation

Consider a K-dimensional time series Yt = (y1t, y2t, ..., yKt)
′
. Let l1, l2, . . . , lK be

positive integers and for eah 1 ≤ i ≤ K (Ri
ji
)ji=1,2,...,li a disjuntive deomposition

of the real axis:

R =

li
⋃

ji=1

Ri
ji

i = 1, 2, . . .K

Ri
ji
= (r

(i)
ji−1

, r
(i)
ji
] −∞ = r

(i)
0 < r

(i)
1 < . . . < r

(i)
li

=∞

Let J = (j1, j2, ..., jK). A K-dimensional MSETAR model is de�ned as

Yt =
∑

J

[

Φ
(J)
0 +

PJ
∑

i=1

Φ
(J)
i Yt−i + U

(J)
t

]

I(J)(Yt−d) (2.1)

where d is the delay parameter and the indiator funtion I(J) : Yt−d → {0, 1}
whih determines the urrent regime is de�ned by the relation

I(J)(Yt−d) = 1⇔ yi(t−d) ∈ Ri
ji

i = 1, 2, . . . , K.

A drawbak with Model (2.1) may our when the value of li is greater than 2

or the number of omponents K is greater than 2, beause the number of regimes

inreases quikly. Indeed a model with a large number of regimes is di�ult to in-

terpret. For this reason we onsider only MSETAR with bivariate threshold variable

Yt−d = (yi1,t−d1 , yi2,t−d2)
′, i1, i2 = 1, 2, . . . , K, l1 = l2 = 2, and d1, d2 are assumed

to vary in the set of the integers {1, . . . , dmax}. The integer dmax is hosen as a

onvenient upper bound for the allowed lags. A bivariate SETAR model may be

written

Yt =
2

∑

j1=1

2
∑

j2=1

I(j1,j2)(Yt−d)



Φ
(j1,j2)
0 +

Pj1,j2
∑

i=1

Φ
(j1,j2)
i Yt−i + U

(j1,j2)
t



 , (2.2)
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where the threshold variable is a bivariate vetor where the entries are two lagged

series hosen among the omponents of the multivariate time series (y1,t−d1, y2,t−d2 , . . . , yK,t−dK)
′
.

Now let us onsider these partitions of the real line

R =

l1
⋃

j=1

R1
j =

2
⋃

j=1

R1
j = R1

1 ∪ R1
2 = (−∞, r(1)1 ] ∪ (r

(1)
1 ,∞)

R =

l2
⋃

j=1

R2
j =

2
⋃

j=1

R2
j = R2

1 ∪R2
2 = (−∞, r(2)1 ] ∪ (r

(2)
1 ,∞),

then the indiator funtions of Model (2.2) assume the form

I(1,1)(Yt−d) =































1 ⇔











yi1,t−d1 ∈ R1
1

yi2,t−d2 ∈ R2
1

⇔











yi1,t−d1 ≤ r
(1)
1

yi2,t−d2 ≤ r
(2)
1

0 otherwise

I(1,2)(Yt−d) =































1 ⇔











yi1,t−d1 ∈ R1
1

yi2,t−d2 ∈ R2
2

⇔











yi1,t−d1 ≤ r
(1)
1

yi2,t−d2 > r
(2)
1

0 otherwise

I(2,1)(Yt−d) =































1 ⇔











yi1,t−d1 ∈ R1
2

yi2,t−d2 ∈ R2
1

⇔











yi1,t−d1 > r
(1)
1

yi2,t−d2 ≤ r
(2)
1

0 otherwise

I(2,2)(Yt−d) =































1 ⇔











yi1,t−d1 ∈ R1
2

yi2,t−d2 ∈ R2
2

⇔











yi1,t−d1 > r
(1)
1

yi2,t−d2 > r
(2)
1

0 otherwise.

These funtions determine the urrent regime that is de�ned by a sub-region of

the real plane R × R with x-axis equal to yi1,t−d1 and y-axis equal to yi2,t−d2 . In

Fig. 2.2 an example is given where the threshold omponents are y1,t−d and y2,t−d,
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Figure 2.1: Threshold variables spae for bivariate MSETAR model

yit ∈ (−1, 1) and the thresholds r
(1)
1 and r

(2)
1 are assumed to be zero and divide

(−1, 1)× (−1, 1) ⊂ R× R into four sub-regions, one for eah regime.

The most important step in the identi�ation and estimation of Model (2.2)

onsists in �nding the orret elements of threshold variable Yt−d and the position

of thresholds. One the threshold variables and the orresponding thresholds are

spei�ed, the orders PJ are determined with the use of the Akaike (1974) automati

identi�ation riterion (AIC). Though several other suh riteria have been suggested

and omparisons have been made (see, e.g., Sayyareha et al. 2011) no de�nite results

have been o�ered whether some may be onsidered the best one in all irumstanes.

So we adopt the well known and widely used AIC riterion adjusted to support model

order hoie, i.e. the minimum AIC estimate (Tong 1990). Given a andidate set of

lags, p1, ..., pmax, we have to estimate several linear models and selet the order that

minimizes the information riteria. One strutural parameters of model (threshold

variable, number and position of thresholds, model order) have been determined,

the remaining oe�ients of the model an be estimated by ordinary least squares.

The strutural parameters take disrete values and their ombinations amount

to a very large number. In this work we formulated the task of �nding the elements

of threshold variable and the position of thresholds as a ombinatorial optimization

problem and we develop GAs to solve the problem.
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2.3 The geneti algorithm for MSETAR modeling

GAs are simpli�ed shemes of the evolutionary proesses that develop in nature

and have been used as all purposes optimization tools one the assoiation between

adaptation to the environment and objetive funtion, and individual ompeting

for survival and possible alternative solutions has been established. Results from

appliation in several distant �elds justi�ed the development of GAs as numerial

optimizers with the introdution of problem oriented variants of their basi features.

The general sheme of the GAs optimizers inludes an initial population of po-

tential solutions and an iterative loop where the urrent population is evaluated in

terms of the �tness funtion of its individuals. The three usual geneti operators are

seletion, rossover and mutation. Though others have been suggested, e.g. inver-

sion and spliing (see Mihalewiz 1996) these only operators have been widely used

in pratial appliations and many variants have been suggested to improve their

potential in improving the average and the best �tness funtion and ontemporane-

ously maintaining diversity among individuals. The three operators produe a new

generation by hoosing the most �t individuals, reombining their geneti material

and allowing mutation to our. This new generation replaes either partially or in

full the old population aording to some de�nite rules. The new population may

either be onstrained to have the same size than the past one or it may even be

allowed to inrease its size. An important feature in this 'reprodution' proess is

the 'elitist strategy', i.e. if the best individual found in the past generation is not

seleted for reprodution, it is inluded anyway in the new generation provided that

no better individual has been produed. This ensures that the best �tness funtion

never dereases through iterations. In addition, if an optimum exists, then the eli-

tist GA onverges asymptotially to this optimum (Rudolph 1997, Reeves & Rowe

2003).

Now we may explain the three operators as they have been used in our opti-

mization problem and the enoding that has been adopted. Eah solution (the

'individual') is represented as a string of digits (the 'hromosome'). Eah digit may

be thought of as a 'gene' whih may take values ('alleles') in a given set aording

to its position (the 'lous') and meaning. The de�nition of the sets of alleli values

allows possible onstraints to be taken properly into aount. Some features have

been assumed that have beome standards in GAs appliations. For instane, the

elitist strategy has been applied in suh a way the best individual in the past gener-

ation that has to be inluded in the new population replaes the worst individual in

the new generation. Finally, no stopping rule has been spei�ed and the algorithm

is allowed to run all iterations whose number has been �xed in advane. Indeed the
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asymptoti onvergene results do not give information about the rate of onver-

gene in real world data appliations and the suggested number of iterations (e.g.

Aytug & Koehler 2000) often results in an impratial large number. So usually the

number of iterations is assumed rather large ompared to the available omputing

resoures and the requested timeliness of estimation results.

2.3.1 Enoding

The enoding uses a hromosome of length 15 for eah individual in the urrent

population. The 'lous' of eah gene in the hromosome is important not only

beause it de�nes the meaning of the gene but also beause only some genes have

binary digits as alleli values while most of them have integer numbers as alleles

with possibly di�erent minimum and maximum values. Notie that eah integer

number is represented as a binary string (�eld) and the geneti operators apply

on eah �eld, for instane the rossover operator only operates at the boundaries

between the binary �elds. The hromosome we adopted in our GA is omposed of

the following genes:

• (1) A binary digit that ats as a swith, its value is 0 if the threshold variable is

univariate, i.e. it refers to a single omponent series, 1 if the threshold variable

is multivariate. The deoding of the rest of the hromosome depends on this

�rst gene.

Genes 2− 7 alleles under onsideration provided that the �rst gene is 0.

• (2) This gene enodes whih omponent series has to be assumed as the thresh-

old variable. It may assume the alleli values 1, 2, . . . , K.

• (3) Number of regimes (either 2, 3 or 4).

• (4-6) Positions of the thresholds. Assuming t = 1 the timing of the �rst

observation, eah of suh positions is the time t assoiated to an observation

in the hosen sequene (gene 2). So eah position may range from 1 to n.

How many genes have to be onsidered depends on the number of regimes as

spei�ed by the preeding gene 3.

• (7) Delay d for the salar threshold variable, d ∈ {1, 2, . . . , dmax}.
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This and the subsequent genes are meaningful for the urrent individual in the

population if the �rst gene allele is equal to 1.

• (8) This gene enodes the index i1 of the omponent series whih is to be on-

sidered as the �rst element of the vetor threshold variable, i1 ∈ {1, 2, . . . , K}.

• (9) The seond element i2 of the vetor threshold variable, i2 ∈ {1, 2, . . . , K}, i2 6=
i1.

• (10) Position of the threshold for the �rst omponent series. The enoding

follows the same rules as for genes (4-6).

• (11) Position of the threshold for the omponent series used as a seond element

in the threshold vetor. The same rules as before are used for enoding.

• (12) Delay d1 for the �rst element of the vetor threshold variable, d1 ∈
{1, 2, . . . , dmax}.

• (13) Delay d2 for the seond element of the vetor threshold variable, d2 ∈
{1, 2, . . . , dmax}.

• (14) This gene is a binary digit. If it is equal to 1 then two regions in the

partition indued by the vetor threshold variable in the spae of the values of

the MSETAR model may merge, and the number of regimes is determined by

following gene (15). Otherwise the number of regimes remains 4 as depited

in Fig. 2.2.

• (15) This gene spei�es whih of the regions merge together. With referene

to Fig. 2.2, values are:

� (1) the regimes I and II merge and the number of regimes is 3,

� (2) the regimes III and IV merge and the number of regimes is 3,

� (3) the regimes I and III merge and the number of regimes is 3,

� (4) the regimes II and IV merge and the number of regimes is 3,

� (5) the regimes I and IV merge and the number of regimes is 3,

� (6) the regimes II and III merge and the number of regimes is 3,

� (7) the regimes I merges with IV and II merges with III and the number

of regimes is 2.
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The enoding as de�ned above is rather elaborated and requires a speial deoding

algorithm. In addition, speial algorithms have to be designed for the omputation

of the �tness funtion in the seletion step, and non standard rossover and mu-

tation operators are needed. However, this does not impats too muh the overall

omputational burden provided that eah one of the deoding steps are arefully

programmed.

For example, let us onsider the following hromosome, whih is intended to

enode aK-dimensionalMSETAR withK = 4 and 2-dimensional threshold variable.

For the sake of simpliity the genes whose alleles are integer numbers are written

as integers, though their internal representation is a binary string, for instane the

integer 3 in the third genes is reserved three bits so that it is atually enoded as

011.

1 1 3 180 100 50 1 1 3 40 120 1 1 0 3

The �rst gene denotes that the threshold variable is bivariate so the deoding

ontinues at lous 8. The omponents indexed as 1 and 3 are to be assumed as

threshold variables (8-9). The thresholds values have to be taken equal to the

40-th observation of the �rst omponent and the 120-th observation of the third

omponent, i.e. r
(1)
1 = y1,40 and r

(2)
1 = y3,120. The delay parameters follow equal

to 1 for both threshold variable omponents, whih is Yt−d = (y1,t−1, y3,t−1)
′
. The

alleli value in lous 14 means that we don't allow regions de�ned by the thresholds

to merge, so the number of regimes is equal to 4. The last gene may be negleted.

2.3.2 Fitness funtion

The �tness funtion measures the adaptation of the individual to the environment.

In the present ontext the hromosome of eah individual enodes a MSETAR model

whih is to be onsidered as better as smallest its AIC index. A transform of the

AIC may be used to obtain positive �tness funtion values so that the optimization

problem may be put in terms of maximization of the �tness funtion as it is usual

in the GAs. So let

Fitness = exp{−AIC}, (2.3)

where
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AIC =
1

n

ℓ
∑

j=1

AICj ,

AICj = nj log
{

det(Σ̃(j)
u )

}

+ 2mjK
2, (2.4)

Σ̃(j)
u =

1

nj

∑

t

û
(j)
t (û

(j)
t )′.

In Eqn. (2.4) the number of regimes is set equal to ℓ, while the number of obser-

vations in the j-th regime is nj , with n =
∑

j nj the total number of observations,

and {û(j)t } are the estimated model residuals in regime j.

2.3.3 Seletion

Basially the well known 'roulette wheel rule' is used for seleting from the ur-

rent population the individuals andidate for inlusion in the next generation. The

roulette wheel rule amounts to hoose individuals with probability proportional to

their respetive �tness funtion value. The widespread usage of this rule explains

the reason why in GAs the �tness funtion is usually onstrained to positive values

as otherwise suh rule would be impratial. Individuals are allowed to be seleted

more than one and the number of hoies is a fration Gs of the population size

s, G being the generational gap. The elitist strategy is adopted as a orretion of

this rule that ensures asymptotial onvergene and onstrains the �tness to be a

non dereasing funtion of the iteration number. The elitist strategy may be imple-

mented either diretly or indiretly by setting G < 1 and hoosing deterministially,

i.e. the best ones or even the single best one, the (1 − G)s individuals that are se-
leted outside the intervention of the roulette wheel rule mehanism. Normalization

of the �tness funtion may be used for saling the transform (2.3) in suh a way

the seletion probabilities de�ned by the roulette wheel rule are lose eah other.

For instane, the 'sigma trunation saling' onsists in applying the normalization

transform

Fitness∗ = Fitness−
(

F̄ − cσ
)

,

where F̄ is the population mean, c is a suitable real positive onstant and σ the

standard deviation, and in trunating the low �tness individuals.
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2.3.4 Crossover and mutation

The general rossover operator generates new individual hromosomes aording to

the following rules:

• Pairs of individuals randomly hosen mate and produe a pair of o�springs

that may share genes of both parents.

• This operator is applied with a �xed probability (usually larger than 0.5 but

smaller than one) to eah pair.

• Several di�erent types of rossover are ommon, the simplest is alled one

point rossover.

� A same lous in the hromosomes of the two paired individuals is hosen

at random: the genes whih appear before that lous remain unhanged,

while the genes appearing after the rossover point are exhanged.

� This operation applies to eah binary �eld in the hromosome.

As for mutation, general riteria may be the following:

• Mutation is needed to introdue innovation into the population (sine seletion

and rossover only mix the existing genes)

• It is generally onsidered a rare event (like it is in nature).

• A small probability pm is seleted, usually less than 0.1, and eah gene of eah

individual hromosome is subjet to mutation with probability pm, indepen-

dently of all other genes.

• If the gene oding is binary, for instane, a mutation simply hanges 0 to 1 or

vie versa.

The new generation is reated by seleting individuals from both the parent

generation and the o�spring generation. There are several alternative methods for

replaing population individuals with new o�springs, e.g. 'rowding' (de Jong 1975).

As a matter of fat there are two objetives that seem most important to de�ne

the transition from the past generation to the new one, i.e. to maintain diversity

among the individuals and to avoid that the population is biased towards the best

individual. The two objetives seem reasonable as we have to avoid simultaneously

both premature onvergene to some loal optimum and poor or limited exploration
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of the solution spae, i.e. the set of all feasible potential solutions. Many di�erent

tehniques that we may adopt to deal with these problems have been proposed in

the literature and allow suitable modi�ations of the standard rules for hoosing the

individuals that have to be inluded in the next urrent population.

2.3.5 Convergene of geneti algorithms

If GAs are employed as optimization methods we are onerned with the problem of

de�ning in probability terms how lose the best solution found in the last iteration

is to the atual optimum. Let x
(g)
best be the hromosome of the �ttest individual

found at generation g, then {f [x(g)best], g = 1, 2, . . .} de�nes a sequene of random

variables. Jennison & Sheehan (1995) provided a revised updated version of the

'shema theorem'. Rudolph (1997) demonstrated theorems onerned with global

optimum onvergene of GAs in an elitist strategy framework. The Markov hains

theory o�ers some insights into the asymptoti onvergene property of GAs, here we

only reall a result for hromosomes omposed of genes that take binary alleli values.

Let eah hromosome haveM binary genes and let the population be omposed by s

individuals. The possible populations are

(

s+2M−1
s

)

(ombinations with repetition of

the 2M possible di�erent individuals in sets of ardinality s). Though very large, the

number of states of the proess is �nite, and it may be onsidered a �nite Markov

hain. Then suppose that there is only an optimal individual, oded by hromosome

y. Let j denote the state orresponding to the population omposed of all individuals

equal to y: the transition matrix P has a 1 in the diagonal at position j, it is an

absorbing state and onvergene is ertain. Details and a omplete disussion may

be found e.g. in Rudolph (1997), Reeves & Rowe (2003).

2.4 A simulation experiment

To evaluate the performane of the GA, we simulated three MSETAR models dis-

arding the �rst 500 observations to avoid any initialization e�ets. From the �rst

two models we simulated 100 repliations eah with 150, 400 and 1000 observations.

For the last model we simulated 100 repliations eah with 400, 600 and 1000 obser-

vations. The number of observations has been hosen so that enough observations

fall in eah regime. For the �rst two models (Eqn.s (2.5) and (2.6)) the regimes

are de�ned by only a single partition of the real axis for the �rst omponent of the

proess, that is the urrent regime is exlusively determined by the �rst omponent.

For the third model (Eqn. (2.7)) the regimes are de�ned by a partition of R×R and
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both omponent series provide the bivariate threshold variable. The GA parameters

have been hosen 100 the population size, 1000 the number of generations, 0.9 the

rossover probability and 0.01 the mutation probability. The maximum VAR order

is pmax = 4 and the maximum delay is dmax = 10.

The evaluation of the proedure performane is onerned with three aspets,

i.e. (1) orret seletion of threshold variable, (2) orret spei�ation of threshold

values and number of regimes, and (3) auray of the parameter estimates.

2.4.1 Example 1

In the �rst simulation experiment we onsider time series generated by the MSETAR

model (Tsay 1998)

Yt =

{

Φ
(1)
1 Yt−1 + U

(1)
t y1,t−1 ≤ 0

Φ
(2)
1 Yt−1 + U

(2)
t y1,t−1 > 0

(2.5)

where

Φ
(1)
1 =

[

0.7 0.0

0.3 0.7

]

Σ1 =

[

1.0 0.2

0.2 1.0

]

, Φ
(2)
1 =

[

−0.7 0.0

−0.3 −0.7

]

Σ2 =

[

1.0 −0.3
−0.3 1.0

]

.

The innovations U
(1)
t e U

(2)
t are independent multivariate normal with mean 0

and variane Σ1 and Σ2 respetively. The threshold variable is onsidered to be the

�rst entry of the series with delay parameter equals to one. The threshold value is

set equal to zero.

In Table 2.1 the perentages of orret identi�ation over 100 repliations of the

number of regimes and of the threshold variable are shown. The label 'Thr.Var' de-

notes the orret seletion of the omponent series that is used as threshold variable.

'Delay' label denotes the lag of the threshold variable. The label 'N.Reg.' denotes

the number of regimes. The results displayed in Table 2.1 show that detetion of

the threshold variable and identi�ation of the number of regimes and delay are

performed satisfatorily. The perentages are greater than 88%.

In Table 2.2 the average bias and root mean square error (RMSE) of the estimates

of oe�ients and threshold parameters for Model (2.5) are displayed. Only the

estimates from the repliations where exat math of strutural parameters (variable

threshold and number of regimes) ourred are onsidered. In this ase we an see
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Table 2.1: Relative frequeny of orretly seleting the omponent series whih

performs as threshold variable, the delay parameter and the number of regimes for

sample sizes 150, 400 and 1000 observations, based on 100 repliations

n = 150 n = 400 n = 1000

Thr.Var Delay N.Reg. Thr.Var Delay N.Reg. Thr.Var Delay N.Reg.

100 88 91 96 100 96 100 100 100

Table 2.2: Average bias and RMSE over 100 repliations of the estimates of the

autoregressive oe�ients and threshold parameter based on sample size of 150, 400

and 1000 observations

Coe�ient n = 150 n = 400 n = 1000

bias RMSE bias RMSE bias RMSE

φ
(1)
11 0.0270 0.1080 0.0018 0.0107 -0.0115 0.0123

φ
(1)
21 0.0241 0.1259 -0.0181 0.0460 -0.0099 0.0137

φ
(1)
12 -0.0703 0.1248 0.0469 0.0541 -0.0038 0.0081

φ
(1)
22 -0.0360 0.2204 0.0196 0.0887 -0.0069 0.0083

φ
(2)
11 0.0457 0.1681 -0.0226 0.0422 0.0014 0.0047

φ
(2)
21 0.0844 0.2198 0.0430 0.0596 0.0282 0.0288

φ
(2)
12 0.0752 0.1640 0.0540 0.0610 -0.0006 0.0090

φ
(2)
22 -0.0323 0.1290 -0.0172 0.0498 0.0174 0.0188

r∗ -0.0231 0.2311 -0.0164 0.1404 -0.0065 0.0185

that the estimated oe�ients are quite aurate, i.e. they are lose on the average

to their true values. The auray of the estimates improves as the sample size

inreases. It has to be onsidered that our GA method does not aim at estimating

the exat threshold parameter but at deteting the observation that divides the time

series in the two regimes. If we onsider the misplaed observations, it results that

these are, on the average and for sample size n = 150, n = 400 and n = 1000

respetively, 13%, 8% and 3%. So the assignment of observations to regimes may

be onsidered quite satisfatory and more aurate as larger the sample size, even

in the presene of rather large RMSE for n = 150 and n = 400.
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Table 2.3: Relative frequeny (based on 100 repliations) of seleting orretly the

index of the omponent to be used as threshold variable, the delay parameter and

the number of regimes for sample sizes 150, 400 and 1000 observations

n = 150 n = 400 n = 1000

Thr.Var Delay N.Reg. Thr.Var Delay N.Reg. Thr.Var Delay N.Reg.

100 94 93 94 97 89 100 100 100

2.4.2 Example 2

The seond simulation experiment is onerned with the MSETAR model (Tsay

1998)

Yt =











Φ
(1)
1 Yt−1 + U

(1)
t y1,t−1 ≤ −3.3

Φ
(2)
1 Yt−1 + U

(2)
t −3.3 < y1,t−1 ≤ 3.3

Φ
(3)
1 Yt−1 + U

(3)
t y1,t−1 > 3.3

(2.6)

where

Φ
(1)
1 =

[

−0.7 0.0

0.2 −0.9

]

Φ
(2)
1 =

[

1.2 0.0

0.0 0.6

]

Φ
(3)
1 =

[

−0.8 0.0

0.2 0.8

]

Σ1 = Σ2 = I.

The innovations U
(1)
t e U

(2)
t are independent multivariate normal with mean 0

and variane Σj = I, j = 1, 2 where I denotes the identity matrix. The model has

three regimes and the �rst omponent of the bivariate series with delay parameter

1 determines the urrent regime. The threshold values are −3.3 and 3.3.

The perentages of orret identi�ation of the number of regimes and threshold

omponent over 100 repliations are summarized in Table 2.3. From Table 2.3 we

may observe that our GAs-based proedure determines the orret threshold variable

and number of regimes with high perentages whih inrease as the sample size is

larger.

In Table 2.4 the estimates for Model (2.6) are reported. The estimates were

onsidered only for the repliations where exat math of strutural parameters

(exluding thresholds) ourred (about 90%). Bias and RMSEs seem rather small

and derease as the sample size inreases, but both bias and RMSE of the estimates

of the thresholds r
(1)
1 and r

(2)
1 . However, if we onsider again the number of misplaed
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Table 2.4: Average bias and RMSE over 100 repliations of the estimates of the

autoregressive oe�ients and threshold parameters based on sample sizes 150, 400

and 1000 observations

Coe�ient n = 150 n = 400 n = 1000

bias RMSE bias RMSE bias RMSE

φ
(1)
11 0.0685 0.1606 0.0313 0.0503 0.0168 0.0170

φ
(1)
21 -0.0342 0.2200 -0.0224 0.0312 -0.0023 0.0062

φ
(1)
12 0.0504 0.1914 0.0057 0.0320 0.0009 0.0015

φ
(1)
22 0.0563 0.1825 0.0063 0.0226 0.0029 0.0119

φ
(2)
11 -0.0460 0.1556 0.0137 0.0316 0.0050 0.0984

φ
(2)
21 -0.0333 0.2284 0.0022 0.1021 -0.0002 0.0874

φ
(2)
12 0.0603 0.1600 0.0086 0.0170 -0.0094 0.0098

φ
(2)
22 -0.0198 0.1352 0.0085 0.0353 0.0056 0.0077

φ
(3)
11 -0.0271 0.1136 -0.1103 0.1107 0.0167 0.0168

φ
(3)
21 -0.0853 0.1366 -0.0330 0.0660 -0.0121 0.0131

φ
(3)
12 -0.0031 0.1854 -0.0011 0.0220 -0.0004 0.0041

φ
(3)
22 0.0240 0.2656 -0.0332 0.0351 0.0895 0.0896

r
(1)
1 -0.3791 0.4329 -0.2060 0.2222 -0.2916 0.2916

r
(2)
1 0.1668 0.1909 0.3336 0.3350 0.3105 0.3105
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Table 2.5: Relative frequeny of orretly seleting the threshold variable, delay

parameter and number of regimes for sample sizes of 400, 600 and 1000 observations

based on 100 repliations

n = 400 n = 600 n = 1000

Thr.Var Delay N.Reg. Thr.Var Delay N.Reg. Thr.Var Delay N.Reg.

79 72 79 89 78 84 93 90 91

observations we obtain the perentages 11%, 10%, 4% for n = 150, n = 400 and

n = 1000 respetively. This irumstane seems to indiate that in this ase too the

assignment of observations to regimes has been performed rather satisfatorily.

2.4.3 Example 3

In the third simulation experiment we onsider time series generated aording to

the model

Yt =



















Φ
(1)
1 Yt−1 + U

(1)
t y1,t−1 > 0 y2,t−1 ≤ 0

Φ
(2)
1 Yt−1 + U

(2)
t y1,t−1 > 0 y2,t−1 > 0

Φ
(3)
1 Yt−1 + U

(3)
t y1,t−1 ≤ 0 y2,t−1 ≤ 0

Φ
(4)
1 Yt−1 + U

(4)
t y1,t−1 ≤ 0 y2,t−1 > 0

(2.7)

where

Φ
(1)
1 =

[

0.7 −0.2
−0.1 0.6

]

Φ
(2)
1 =

[

0.5 −0.4
0.1 0.3

]

Φ
(3)
1 =

[

−0.5 0.2

−0.1 0.5

]

Φ
(4)
1 =

[

−0.5 −0.9
0.8 −0.1

]

Σj = I, j = 1, . . . , 4.

The U
(j)
t are independent bivariate normal random variables with mean 0 and

variane Σj = I, j = 1, . . . , 4 where I denotes the identity matrix. The model has

four regimes whih depend on the lagged omponent series with delay equal to 1.

The threshold values are equal to 0 for both threshold omponents.

The perentages of repliations for whih the orret threshold variable and num-

ber of regimes were seleted are given in Table 2.5. The results displayed in Table 2.5
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Table 2.6: Average bias and RMSE over 100 repliations of the estimates of the

autoregressive oe�ients and threshold parameters based on sample sizes 400, 600

and 1000 observations

Coe�ient n = 400 n = 600 n = 1000

bias RMSE bias RMSE bias RMSE

φ
(1)
11 0.0311 0.1909 -0.0218 0.1058 0.0198 0.0225

φ
(1)
21 0.0112 0.1743 0.0182 0.0334 0.0046 0.0060

φ
(1)
12 0.0676 0.1504 -0.0263 0.0958 0.0059 0.0064

φ
(1)
22 0.0157 0.1860 -0.0146 0.0363 -0.0002 0.0085

φ
(2)
11 -0.0441 0.1828 0.0021 0.0341 -0.0080 0.0101

φ
(2)
21 -0.0778 0.2012 -0.0348 0.0437 -0.0051 0.0073

φ
(2)
12 0.0430 0.1922 -0.0046 0.0130 -0.0034 0.0054

φ
(2)
22 -0.0495 0.2073 -0.0272 0.0809 0.0008 0.0084

φ
(3)
11 0.0360 0.1690 0.0368 0.1068 -0.0155 0.0188

φ
(3)
21 0.0193 0.1383 0.0183 0.0283 0.0054 0.0063

φ
(3)
12 -0.0455 0.2052 -0.0377 0.0398 0.0070 0.0070

φ
(3)
22 0.0212 0.1851 -0.0089 0.0569 0.0015 0.0064

φ
(4)
11 0.0360 0.1411 0.0368 0.0564 -0.0155 0.0172

φ
(4)
21 -0.0208 0.1202 0.0060 0.0376 -0.0027 0.0061

φ
(4)
12 0.0306 0.1780 -0.0294 0.0887 0.0169 0.0175

φ
(4)
22 0.0304 0.1908 -0.0177 0.0313 0.0175 0.0179

r
(1)
1 -0.0097 0.1341 -0.0063 0.0666 -0.0040 0.0041

r
(2)
1 -0.0022 0.1173 -0.0036 0.0059 -0.0002 0.0037

show that the exat reovery of the threshold variable and number of regimes seems

more di�ult for models with bivariate threshold variable, and perentages of su-

ess greater than 90% are attained only if n = 1000 whereas perentages of exat

math are below 90% if n = 400 and n = 600. Detetion of strutural parameters is

performed satisfatorily by the GAs-based proedure if n = 1000 while onvergene

seems slow if only n = 400 or n = 600 observations are available.

In Table 2.6 the average bias and RMSE of the estimates of oe�ients and

thresholds for Model (2.7) are displayed. Only the estimates from the repliations

where exat math of strutural parameters (exept thresholds) ourred (more than

70%) are onsidered. In this ase, too, the estimated oe�ients are quite aurate,

i.e. they are lose on the average to their true values. Both bias and RMSEs derease

as the sample size inreases.
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Figure 2.2: Exhange Rate Data

2.5 An appliation to real world data

As an illustration, we applied the MSETAR model to study an exhange rate data

set. Exhange rate data have be found to exhibit a non linear behavior and many non

linear models have been suggested whih inlude univariate threshold models (e.g.,

Chappell et al. 1996), and univariate threshold GARCH models (e.g., Baragona &

Cuina 2008). The exhange rates are the British pound, Canadian dollar, German

Deutshmark, Duth guilder, all expressed as number of units of the foreign urreny

per United States dollar. The time frame of the study is January 1980 to Marh

1984. Then there are 1000 observations. The data are daily data. The plot of the

omponents time series are displayed in Fig. 2.2.

We run our GAs-based proedure with the same parameters used in the simula-

tion experiment in Setion 2.4. The �nal estimated model is a two-regime MSETAR

with the following form:

Yt =

{

Φ
(1)
1 Yt−1 + U

(1)
t y1,t−1 ≤ 0.5770

Φ
(2)
1 Yt−1 + U

(2)
t y1,t−1 ≥ 0.5770

where
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Φ
(1)
1 =











0.9772 −0.0065 −0.1173 −0.2084
0.0021 1.0015 0.0270 0.0464

0.0004 −0.0022 0.9868 −0.0403
0.0015 0.0013 0.0110 1.0282











Φ
(2)
1 =











0.9994 0.0117 −0.0255 0.0751

−0.0026 0.9949 0.0738 0.0588

0.0029 −0.0018 0.8974 −0.1301
−0.0006 0.0005 0.0289 1.0335











.

The number of observations in eah regime are 644 and 355. The driving variable

is the British pound whih determines the regime swith for the exhange rates.

The ritial exhange rate is the value 0.57 when the British pound approximately

doubles the value of the United States dollar. The goodness of �t of the estimated

model may be onsidered satisfatory on the basis of the residual varianes that are,

on the entire time span, 0.0000119, 0.0000087, 0.0002587, and 0.0018356 for eah of

the four omponent series respetively.



Chapter 3

Meta-heuristi Methods for Outliers

Detetion in Multivariate Time

Series

3.1 Introdution

Outliers are ommonly de�ned as observations whih appear to be inonsistent with

the remainder of the data set, and may be due to oasional unexpeted events. The

detetion of outliers is an important problem in time series analysis beause they

an have adverse e�ets on model identi�ation, parameter estimation (see Chang

& Tiao (1983)) and foreasting (see Chen & Liu (1993)). The presene of just a

few items of anomalous data an lead to model misspei�ation, biased parameter

estimation, and poor foreasts. Therefore, it is essential to identify outliers data,

estimate their magnitude and orret the time series, avoiding false identi�ations

(i.e. observations that are identi�ed as outliers while they are not). Several ap-

proahes have been proposed in the literature for handling outliers in univariate

time series. Among these methods we an distinguish those based on an expliit

model (parametri approah) from the ones using non-expliit models (nonparamet-

ri approah). For the parametri approah, Fox (1972) developed a likelihood ratio

test for deteting outliers in a pure autoregressive model. Chang & Tiao (1983),

Chang et al. (1988), Tsay (1986, 1988), Chen & Liu (1993) extended this test to

an autoregressive integrated moving-average (ARIMA) model and proposed an it-

erative proedure for deteting multiple outliers. For the non-parametri approah,

Ljung (1989), Ljung (1993), Peña (1990), Gómez et al. (1993), Baragona & Battaglia

(1989) and Battaglia & Baragona (1992) proposed spei� proedures based on the



3.1 Introdution 56

relationship between additive outliers and linear interpolator, while Baragona et al.

(2001) used a geneti algorithm.

For multivariate time series, only three proedures have been proposed. Tsay

et al. (2000) proposed a sequential detetion proedure, whih we will all the TPP

method, based on individual and joint likelihood ratio statistis; this method requires

an initial spei�ation of a vetor ARMA model. Galeano et al. (2006), Baragona &

Battaglia (2007) proposed a method based on univariate outlier detetion applied to

some useful linear ombinations of the vetor time series. The optimal ombinations

are found by projetion pursuit in the �rst paper and independent omponent anal-

ysis (ICA) in the seond one. Barbieri (1991) used a Bayesian method and �nally a

graphial method was explored by Khattree & Naik (1987).

Multiple outliers, espeially those ourring lose in time, often have severe mask-

ing e�et (one outlier masks a seond outlier) and smearing e�et (misspei�ation

of orret data as outliers) that an easily render the iterative outlier detetion

methods ine�ient. A speial ase of multiple outliers is a path of additive out-

liers. For univariate time series this problem has been addressed �rstly by Brue &

Martin (1989). They de�ne a proedure for deteting outlier pathes by deteting

bloks of onseutive observations. Other useful referenes for the path detetion

are MCulloh & Tsay (1994), Barnett et al. (1997) and Justel et al. (2001). For

multivariate time series, only Baragona & Battaglia (2007) report simulation results

for an outlier path.

Unlike the univariate ase where there are spei� proedures on the identi�-

ation of onseutive outliers, in multivariate time series framework, methods for

identi�ation of onseutive outliers do not exist.

We propose a lass of meta-heuristi algorithms to overome the di�ulties of it-

erative proedures in deteting multiple additive outliers in multivariate time series.

This lass inludes: simulated annealing (SA)(Kirkpatrik et al. (1983), Rayward-

Smith et al. (1996)), threshold aepting (TA) (Winker (2001)) and geneti algo-

rithm (GA) (Holland (1975); Goldberg (1989)). These methods are illustrated in

appendix. Our proedures are less vulnerable to the masking and smearing e�ets

beause they evaluate several outlier pattern where all observations that are possibly

outlying ones are simultaneously onsidered. In this way, meta-heuristi methods

deal e�iently the detetion of path of additive outliers.

Eah outlier on�guration is evaluated by a generalised AIC-riterion where the

penalty onstant is suggested by both a simulation study and a theoretial approxi-

mation. So, the meta-heuristi algorithms seem able to provide more �exibility and

adaptation to the outlier detetion problem.
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3.2 Algorithm Features

This setion further desribes the algorithms implementation we used for outlier

detetion. A suessful implementation of meta-heuristi methods is ertainly ruial

to obtain satisfatory results. Before a meta-heuristi method an be applied to

a problem some important deisions have to be made. The three meta-heuristi

methods require a suitable enoding for the problem and an appropriate de�nition

of objetive funtion. In addition, the algorithms TA and SA require the struture

of the neighborhood while for geneti algorithms, operators of seletion, rossover

and mutation have to be hosen. The following setions desribe the hoies made.

3.2.1 Solution Enoding

An appropriate enoding sheme is a key issue for meta-heuristi methods. For all

algorithms we use a binary enoding for the solutions of the outliers problem as

suggested in Baragona et al. (2001). Any solution ξc is a binary string of length

N , where N is the number of observations of the time series: ξc = (ξc1, ξ
c
2, . . . , ξ

c
N),

where ξci takes the value 1 if at time i there is an outlier (we assume that all the

s omponents are in�uened) and 0 otherwise. Then, ξc represent a hromosome

of GA and ξci a gene. Obviously, the number of outliers for a given time series is

unknown. We allow for solutions with a maximum number of outliers equal to g.

The value of g should be hosen aording to the series length and every relevant a

priori information on its auray and instability. The onstant g should be hosen

large enough to allow for the detetion of any reasonable number of outliers in the

series.

Binary enoding implies that the solution spae Ω onsists of

∑g
k=0

(

N
k

)

distint

elements, sine the total number of outliers is limited to a onstant g.We an see

that Ω is really large even when g is onsiderably lower than the length of the

time series. All our algorithms either severely penalise solutions with a maximum

number of outliers larger then g , or do not onsider suh solutions at all. TA and SA

algorithms are built so that they do not evaluate solutions with more than g outliers.

With regard to the GA, hromosomes not belonging to Ω will be severely penalised

subtrating a positive quantity (the penalty fator pen) to the �tness (funtion to

be maximised), so that the algorithm tends to avoid these hromosomes. We set the

value of pen to 1,000.
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3.2.2 Neighbourhood searh in simulated annealing and thresh-

old aepting

Eah solution ξc ∈ Ω has an assoiated set of neighbours, N(ξc) ⊂ Ω, alled the

neighbourhood of ξc where every ξn ∈ N(ξc) may be reahed diretly from ξc by an

operation alledmove.Given the urrent solution ξc, its neighborhood is onstruted

using three di�erent moves: add an outlier; remove an outlier; hange the position

of an outlier.Sine a maximum of g outliers is allowed, moves are applied aording

to the urrent solution in the following way: if ξc doesn't ontain outliers (i.e., it is a

string where every bit is 0), algorithms an only introdue an outlier; if ξc ontains

less than g outliers, algorithms an add, remove or hange the position of an outlier,

with probability 1/3; if ξc already ontains g outliers, algorithms annot proeed

adding an outlier but an only remove or hange the position of one of them, with

probability 1/2.

3.2.3 Objetive funtion

Let yt = [y1,t, . . . , ys,t]
′
be a vetor time series generated from a Gaussian s-dimensional

jointly seond order stationary real-valued proess Yt, with mean zero for eah om-

ponent, ovariane matrix Γu and inverse ovariane matrix Γiu for integer lag u.

When outliers are present, yt is perturbed and unobservable. We suppose that k

perturbations ωt = [ω1,t, . . . , ωs,t]
′
impat the series yt at time points tj , j = 1, . . . , k

suh that at eah tj they a�et all s omponents. The total number of outlying

data is equal to h = ks. Denote the observed time series by zt = [z1,t, . . . , zs,t]
′

generated by the observable multivariate stohasti proess Zt. Given a sample of

N observations we may write the following model

z = y +Xω, (3.1)

where z = [z′1, . . . , z
′
N ]

′
is the vetor obtained by staking the s omponent ob-

servations at eah time point, y = [y′1, . . . , y
′
N ]

′
is the vetor obtained by staking

the s omponent of the unobservable outlier free time series at eah time point,

ω = [ω′
t1
, . . . , ω′

tk
]′ is the vetor obtained by staking the s omponents of the k

outliers and X is a Ns× h pattern design matrix de�ned as follows.

For eah tj with j = 1, . . . , k, the [(tj − 1)s + r, (j − 1)s + r]-th entry is one for

r = 1, . . . , s. All the remaining entries are zero.

Matrix X ontains information about the perturbed time indies of a given outlier

pattern. Thus, eah feasible solution ξ orresponds to a matrix X.
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The natural logarithm of the likelihood for z may be written

L(z;X,ω) = −
Ns

2
log(2π)− 1

2
log(detΓ)− 1

2
(z −Xω)′Γ−1(z −Xω), (3.2)

where Γ denotes the Ns×Ns blok Toeplitz matrix with Γi−j as the (i, j)-th blok.

Assuming both Γ and X known, the maximisation of (3.2) with respet to ω yields:

ω̂ = (X′Γ−1X)−1X′Γ−1z. (3.3)

If we approximate Γ−1
with Γi (Shaman (1976)), where Γi denotes the Ns × Ns

blok Toeplitz matrix with Γii−j as the (i, j)-th blok, the maximum likelihood

estimate (3.3) of ω takes the form:

ω̂ = (X′ΓiX)−1X′Γiz. (3.4)

Sine Γi is unknown, we have to estimate it from the data. We used here the

autoregressive approah desribed in setion (1.3.3).

If we look at the expression (1.37) an see that the estimate of the inverse ovari-

ane depends on estimates of autoregressive parameters and the estimated variane-

ovariane matrix Σ̂ of innovations. In the presene of outliers the residuals of VAR

model are ontaminated, hene Σ̂ may be biased. For obtaining a better estimate

we use the α% trimmed method. To ompute the α% trimmed variane-ovariane

matrix Σ̂, we �rst remove the 5% largest values (aording to their absolute values)

and then ompute Σ̂ based on trimmed sample.

The natural logarithm of the maximised likelihood is obtained by replaing ω by

ω̂ and Γ−1
by Γ̂i in (3.2) :

L̂(z;X,ω) = −
Ns

2
log(2π)−1

2
log(det Γ̂i)−1

2
z′Γ̂iz−1

2
(X′Γ̂iz)′(X′Γ̂iX)−1X′Γ̂iz. (3.5)

The matrix Γ̂i is �xed for any outlier pattern X, so that the maximised likelihood

in (3.5) depends only on matrix X. Sine matrix X onveys all information about

the outlier's loation, it seems natural to detet the outlier pattern by determining

the matrix X maximising the quadrati form in (3.4)

LX =
1

2
(X′Γ̂iz)′(X′Γ̂iX)−1X′Γ̂iz. (3.6)

Obviously the likelihood inreases when the number of estimated parameters ω̂, i.e.

the number of outliers, is inreased. Thus, in a similar fashion as identi�ation

riteria for model seletion (see Bhansali & Downham (1977)), we ontrast the

likelihood with a linear funtion of the number of outliers. So, the searh of outliers
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in a multivariate series is equivalent to searh the hromosome ξ or the design matrix

X that minimizes the following objetive funtion:

f(ξ) = −2LX + ch, (3.7)

where c is an arbitrary onstant and h is the atual number of outliers. The funtion

f(ξ) depends on both the matrix X and the penalty onstant c. Di�erent values

are suggested in literature for the onstant c (see Bhansali & Downham (1977)).

We propose two alternative approahes for seleting appropriate c values in Setion

(3.4.1). In a geneti algorithm, the �tness funtion assigns a positive real number

to any possible solution in order to evaluate its plausibility, therefore in the GA we

adopt the following non-dereasing transform of (3.7):

fitness = exp(−f(ξ)/β) (3.8)

where β is a parameter of sale. In the following experiments this parameter is set

equal to 100.

3.2.4 Cooling shedules

The hoie of a shedule is a disussed issue as there was a on�it, sine early

appliations of SA, between theory (logarithmi oolings) and pratie (geometri

shedules). No universally valid onlusion seems to emerge from the literature.

A general advie is however to ool the system slowly enough at stages where the

objetive funtion is rapidly improving. An appropriately tuned geometri shedule

seems able to satisfy this requirement and yields good results in a reliable manner.

Then, in our work the geometri shedule is used :

Tt = aTt−1, (3.9)

where a is a onstant lose to 1.

This shedule assumes that the annealing proess will ontinue until the temper-

ature reahes zero. In pratise, it is not neessary to let the temperature reah zero

beause as it approahes zero the hanes of aepting a worse move are almost the

same as the temperature being equal to zero. Therefore, the stopping riteria an

either be a suitably low temperature or when the system is frozen at the urrent

temperature. Some implementations keep the temperature dereasing until some

other ondition is met. For example, no hange in the best state for a ertain period

of time.That is, a partiular phase of the searh normally ontinues at a ertain
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temperature until some sort of equilibrium is reahed. This might be a ertain num-

ber of iterations or it ould be until there has been no hange in state for a ertain

number of iterations.

3.2.5 Operators and other implementation issues in the ge-

neti algorithms

We do not use the �standard� randomly generated initial populations (Goldberg

(1989)), while in the algorithms used here, the initial populations onsist of hromo-

somes with just one outlier, di�erent from eah other (the size of the population is

less than the number of observations). At the beginning, all possible single-outlier

hromosomes are generated and sorted in terms of �tness value and the initial pop-

ulation onsists of the hromosomes having the largest �tness. In this way we

evaluate from the beginning the most promising one-outlier patterns (see Baragona

et al. (2001)).

The �roulette wheel� rule is used for parent seletion. The probability of a hro-

mosome being seleted as a parent is proportional to the rank of its �tness. Eah

seleted ouple of parents will produe two �hildren� by methods of rossover and

mutation.

The rossover operator used is �uniform rossover� Goldberg (1989). For eah

gene of the �rst hild, one of the parents is seleted at random (with equal probability

of seletion) and its orresponding gene is inherited at the same position. The other

parent is used to determine the seond hild's orresponding gene.

Finally, a probability is hosen for randomly hanging the value of eah gene

of the hild-hromosome (mutation). In our enoding, where we have only two

admissible values for a gene (�0� and �1�) the appliation of the mutation operator

is pretty straightforward.

The entire population of hromosomes is replaed by the o�springs reated by the

rossover and mutation proesses at eah generation exept for the best hromosome,

whih survives to the next generation. This elitist strategy ensures that the �tness

will never derease through generations (Rudolph (1994)).

3.3 The TPP proedure

Let yt = [y1,t, . . . , ys,t]
′
be a k-dimensional vetor time series following the stationary

and invertible vetor autoregressive moving average (VARMA) model:
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Φ(B)yt = Θ(B)ǫt, t = 1, . . . , N, (3.10)

where B is the bakshift operator suh thatByt = yt−1, Φ(B) = (I−Φ1B−Φ2B
2−

. . .ΦpB
p
) and Θ(B) = (I −Θ1B −Θ2B

2 − . . .ΘpB
p
) are k × k matrix polynomials

of �nite degrees p and q and ǫt = (ǫ1t, . . . , ǫkt) is a sequene of independent and

identially distributed (iid) Gaussian random vetors with mean 0 and positive-

de�nite ovariane matrix Σ. For the VARMA model in equation (3.10), we have

the AR representation Π(B)yt = ǫt where Π(B) = Θ(B)−1Φ(B) = I −∑∞
i=1ΠiB

i
.

Given an observed time series z = [z1, . . . , zN ] where zt = [z1,t, . . . , zs,t]
′
Tsay

et al. (2000) generalized additive univariate outliers to the vetor ase in a diret

manner using the representation

zt = yt + ωI
(h)
t (3.11)

where I
(h)
t is a dummy variable suh that I

(h)
h = 1 and I

(h)
t = 0 if t 6= h, ω =

(ω1, ω2, . . . , ωk)
′
is the size of the outlier, and yt follows a VARMA model.

Tsay et al. (2000) showed that when the model order is known, the estimate of

the size of an additive multivariate outlier at time h is given by:

ω̂A,h = −(
N−h
∑

i=0

Π̂′
iΣ

−1Π̂i)
−1

N−h
∑

i=0

Π̂′
iΣ

−1
(3.12)

The ovariane matrix of this estimate is Σ−1
A,h = (

∑N−h
i=0 Π̂′

iΣ
−1Π̂i)

−1
. Tsay et al.

(2000) proposed an iterative proedure similar to that of the univariate ase to

detet multivariate outliers. Assuming no outlier, the proedure starts building a

multivariate ARMA model for the series under study and let ât be the estimated

residuals and Π̂i the estimated oe�ients of the autoregressive representation. The

seond step of the proedure requires the alulation of the test statisti:

Jmax = max
1≤t≤N

{Jt},

where Jt = ω̂′
A,tΣ

−1
A,hω̂A,h. As in the univariate ase, if Jmax is signi�ant at time

index t0 we identify a additive multivariate outlier at t0. One an outlier is identi�ed,

its impat on underlying time series is removed, using the model in equation (3.11).

The adjusted series is treated as a new time series and the deteting proedure is

iterated. The TPP method terminates when no signi�ant outlier is deteted. Tsay

et al. (2000) used simulation to generate �nite sample ritial values of statisti

Jmax.
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3.4 Performane of meta-heuristi methods

To test the performane of meta-heuristi algorithms for identifying outliers in multi-

variate time series we applied the proposed methods to simulated time series models

of the lass VARIMA. We onsider eight vetor VARMA models, four bivariate

(s = 2) and four trivariate models (s = 3). The sample sizes used are N = 200 and

N = 400. The models onsidered in this simulation study and reported in Galeano

et al. (2006), Lütkepohl (1993), Tsay et al. (2000) are listed below.

Model 1 - VAR(1) bivariate model: Φ1 =

[

0.6 0.2

0.2 0.4

]

.

Model 2 - VAR(1) bivariate model: Φ1 =

[

0.2 0.3

−0.6 1.1

]

.

Model 3 - VAR(2) bivariate model: Φ1 =

[

0.5 0.1

0.4 0.5

]

Φ2 =

[

0.0 0.0

0.25 0.0

]

.

Model 4 - VARMA(1,1) bivariate model: Φ1 =

[

0.6 0.2

0.2 0.4

]

Θ1=

[

−0.7 0.2

−0.1 0.4

]

.

Model 5 - VAR(1) trivariate model: Φ1 =







0.6 0.2 0.0

0.2 0.4 0.0

0.6 0.2 0.5






.

Model 6 - VAR(1) trivariate model: Φ1 =







0.2 0.3 0.0

−0.6 1.1 0.0

0.2 0.3 0.6






.

Model 7 - VAR(2) trivariate model:

Φ1 =







−0.3 0.15 0.95

0.0 −0.15 0.3

0.0 0.2 −0.25






Φ2 =







−0.15 0.1 0.9

0.0 0.0 0.0

0.0 0.35 0.0






.

Model 8 - VARMA(1,1) trivariate model:

Φ1 =







0.6 0.2 0.0

0.2 0.4 0.0

0.6 0.2 0.5






Θ1 =







−0.7 0.0 0.0

−0.1 −0.3 0.0

−0.7 0.0 −0.5






.

where the ovariane matrix of the Gaussian noise is the identity matrix for seven

models. For the Model 2, it has diagonal entries equal to 1.0 and all o�-diagonal

entries equal to -0.2.
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We have onsidered three di�erent outlier on�gurations. The �rst two instanes

have a small ontamination: the �rst on�guration has two isolated outliers at time

indies t = 100, 150, and the seond one has a path of two outliers introdued at

time indies t = 100, 101. The last one onsists in a heavier ontamination, that

inludes two isolated outliers and a path of three outliers introdued at time indies

t = 40, 100, 101, 102, 150. For the �rst two ases the size of eah outlier is hosen

equal to ω = (3.5, 3.5)′ for bivariate models and is hosen equal to ω = (3.5, 3.5, 3.5)′

for the trivariate models. When the ontamination is heavier we set the size of eah

outlier equal to ω = (5.0, 5.0)′ for bivariate models and we set ω = (5.0, 5.0, 5.0)′ for

the trivariate models. For eah model, sample size and outliers on�guration, we

generate a set of 100 time series.

We may onsider several riteria for evaluating the performane proedure. Sine

the proposed proedures are designed to detet the outliers avoiding false identi�-

ations, we used as riteria of evaluation the relative frequeny of orret outlier

detetion, de�ned as a orret identi�ation of outlier pattern. For the ase of two

outliers (100, 150 or 100, 101) this means the relative frequeny of deteting both

outliers and only them, while for the ase of �ve outliers the relative frequeny of

deteting all �ve outliers and only them. For eah method, we inlude the relative

frequeny of partial orret on�guration detetion (the relative frequeny of only

one outlier orretly deteted or the relative frequeny of less than �ve outliers or-

retly deteted) and the relative frequeny of wrong identi�ations (i.e., solutions

where at least one observation identi�ed as outlier in fat is not).

To apply the algorithms we need to determine the values of two types of pa-

rameters, one onerning the outlier problem itself and the other one regarding the

meta-heuristi algorithms. The parameters of the outlier detetion problem are

three: the onstant c in (3.7), the order of the multivariate autoregressive proess

m in (1.37) and the maximum number of outliers g.

3.4.1 The problem of parameters tuning

The onstant c

In order to obtain the ritial values of the test statistis for outlier detetion (in

univariate and multivariate time series) one an rely on simulation, using a large

number of series from di�erent models (Tsay et al. (2000), Galeano et al. (2006)).

Programs TRAMO and SCA, for example, have outlier detetion routines that use

ritial values obtained by suh a simulation study. In our work we follow the same

idea to establish the value of the onstant c through a Monte Carlo experiment.
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We onsider the eight vetor VARMA models listed above and sample sizes

N = 200, 400. For eah model and sample size, we generate a set of 500 time

series and apply the algorithms to eah set, employing di�erent values of c and

reording the orresponding values of the type I error α (where α is the frequeny

of lean observations identi�ed as outliers).

Table 3.1 provides the c values obtained via simulation aording to di�erent

values of α, models, dimensions and sample sizes. We observed that the three meta-

heuristi algorithms lead to similar simulation results, therefore in Table 3.1 we do

not onsider the e�et of these algorithms on the onstant c. Table 3.1 suggests

the following observations. First, for eah α, we see only minor di�erenes in the

c values among di�erent models given dimension and sample size. Seond, the

estimated c values inrease with the sample size N and derease with the dimension

s. In general, the sample size and the time series dimension are important fators

a�eting the behaviour of onstant c, while the type of model does not seem to have

a signi�ant e�et.

Table 3.1: Simulation study: c values orresponding to di�erent type I error α

N s Model α

0.10 0.05 0.01

200 2 1 7.17 7.68 9.53

2 7.33 7.93 9.25

3 7.29 7.89 9.20

4 7.18 7.84 9.50

3 5 5.71 6.13 7.03

6 5.78 6.30 7.20

7 5.72 6.20 7.50

8 5.67 6.17 7.50

400 2 1 8.10 8.83 10.20

2 8.05 8.59 10.50

3 7.93 8.55 9.80

4 7.57 8.19 9.68

3 5 6.13 6.70 8.13

6 6.23 6.78 8.13

7 6.15 6.67 8.00

8 5.80 6.33 7.80
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In real appliation, it may be neessary to analyze time series with di�erent

sample sizes and di�erent number of omponents. To address this need, we suggest

a theoretial approximation to derive the onstant c.

Let us onsider a test where under the null hypothesis the time series is outlier

free and under the alternative hypothesis a single outlier ours at unknown time t.

We may use as statisti test:

Λmax = max
1≤t≤N

{Λt},

where Λt = (X′
t
Γ̂iz)′(X′

t
Γ̂iXt)

−1(X′
t
Γ̂iz) andXt is the pattern design orresponding

to just one outlier at time t. The statisti Λt is a quadrati form and is distributed

approximately as a hi-squared random variable with s degrees of freedom under

the null hypothesis of no outliers. The �nite sample distribution of Λmax is ompli-

ated beause of the orrelation between the Λt. We may obtain the approximate

perentiles of Λmax assuming the independene among the Λt (though a relatively

strong hypothesis)

P (Λmax < λα) = [P (χ2
s < λα)]

N = 1− α

or

P (χ2
s < λα) = (1− α)1/N ,

where λα is the (1 − α)th quantile of the hi-square distribution with s degrees of

freedom. We rejet the null hypothesis if Λmax is greater than the quantile λα at

the α signi�ane level.

Now, a problem arises, when the value of N inreases the quantity (1−α)1/N → 1

and λα →∞. To solve this problem we approximate the distribution of Λmax with

the Gumbel distribution:

P

(

Λmax − dN
cN

< να

)

= exp(−e−να) = 1− α,

where dN = 2(logN + ( s
2
− 1) log(logN)− log Γ( s

2
)) and cN = 2, and we obtain the

quantiles for Λmax as λα = cnνα + dN .

Now we an hoose the onstant c so that, whenever the null hypothesis of no

outlier is aepted, the �tness of the hromosome with no outlier is larger than

the one of the best one-outlier hromosome, or similarly Λmax < cs, therefore put

c = λα/s.

In Table 3.2 we observe that the resulting theoretial c values are always slightly

larger than the simulated ones, so that by using them the test is more onservative.
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The disrepany between the theoretial and simulated c values may be aused by

the dependene among the Λt variables.

The c values used in our simulation experiments are the simulated ones values

reported in Table 3.2 orresponding to α = 0.05

Table 3.2: Simulated and theoretial c values orresponding to di�erent type I error

α, dimensions s and sample sizes N

N s α

0.10 0.05 0.01

200 2 7.2 7.9 9.4

7.5 8.3 9.9

3 5.7 6.2 7.3

5.9 6.4 7.5

400 2 7.9 8.5 10.0

8.2 8.9 10.6

3 6.0 6.6 8.0

6.3 6.7 8.0

The parameters m and g

To determine the value of order m in (1.37) we used the FPE riterion (Lütkepohl

(1993)). Alternatively we ould use Akaike's Information Criterion whih di�ers

from FPE essentially by a term of order O(N−2) and thus the two riteria are

almost equivalent for large N (Lütkepohl (1993)).

The value of the parameter g should be hosen by taking into aount the length

of the time series and all other relevant information. The value g a�ets the hoie

of the iteration number. If we inrease the value for g it seems reasonable to inrease

also the iteration number of the meta-heuristi algorithms beause a larger solution

spae has to be explored. The seleted value for g is 5 for all algorithms.
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3.4.2 Meta-heuristi ontrol parameters tuning

A orret hoie of the value of the ontrol parameters is important for the perfor-

mane of the meta-heuristi algorithms. For the geneti algorithms, hoies have to

be made for the rossover probability (pcross), mutation probability (pmut), popu-

lation size (pop) and the number of generations or termination riterion (gen) (see

setion A.4 in appendix).

For the simulated annealing algorithm we have to determine the initial tempera-

ture (T0), �nal temperature (Tf), number of internal loop iterations at any temper-

ature (SAiter), and the onstant a in (3.9), haraterising the ooling shedule. As

reported in setion (A.2) in appendix, the number of evaluations of the objetive

funtion ISAtot depends on the hoie of these parameters. Generally we establish a

number of ISAtot and the parameters are hosen in order to meet this onstraint (see

setion A.2 in appendix).

Threshold aepting requires two parameters: the number of thresholds (Nt) and

the number of internal loop iterations at any threshold (TAiter). Also in this ase, if

we set ITA
tot , Nt and TAiter must be hosen in suh a way that their produt is equal

to ITA
tot (see setion A.3 in appendix).

Unfortunately, the orret hoie of the suitable parameter values is a di�ult

task beause a wide range of values needs to be onsidered for eah parameter and

some parameters may be orrelated with eah other. Few theoretial guidelines are

available while experiene with pratial appliations of meta-heuristi algorithms

is o�ered by a vast literature.

Regarding the TA, two simple proedures that an be used to generate the thresh-

old sequenes are reported in setion (A.3) of appendix. First, one might use a linear

threshold sequene dereasing to zero and, alternatively, one might use a data driven

generation of the threshold sequene (see algorithm (3) in the appendix) suggested

by Winker & Fang (1997). In our simulation experiments we set the value of M in

algorithm (3) to 2,000. There are several examples in literature suggesting that the

two proedures are equivalent, while in some appliations the method proposed by

Winker & Fang (1997) yields better results. As far as the number of thresholds Nt

is onerned, Gilli & Winker (2009) suggested the minimum value for Nt around 10.

However, when the total number of iterations ITA
tot beomes very large, Nt might be

inreased.

Some guidelines for the hoie of GA parameters may be found in de Jong (1975),

Sha�er et al. (1989), da Graça Lobo (2000), Eiben et al. (1999), South et al. (1993).

de Jong (1975) studies the e�ets of some ontrol parameters of GA on its perfor-
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mane, onerning the population size, and the rossover and mutation probabilities.

Using �ve di�erent funtion optimisation senarios, De Jong systematially varies

these parameters, analyses the results and thus establishes guidelines for robust pa-

rameter hoie. De Jong suggests population size pop = 50, probability of rossover

pcross = 0.6, probability of mutation pmut = 0.001 and the adoption of the elitist

strategy. However, other empirial studies (Eiben et al. (1999), South et al. (1993),

da Graça Lobo (2000), Gao (2003), Grefenstette (1986)) indiate di�erent values for

these parameters.

Regarding the SA algorithm, the initial temperature must be set to a high value

enough to allow a move to almost any neighbourhood state. However, if the temper-

ature starts at too high a value then the searh an move to any neighbour and thus

transform the searh (at least in the early stages) into a random searh. Then, a very

high initial temperature may in�uene the quality of the performane and the length

of the omputational time. If we know the maximum distane (objetive funtion

di�erene) between one neighbour and another then we an use this information to

alulate a starting temperature. Another method, suggested in (Rayward-Smith,

1996), is to start with a very high temperature and ool it rapidly until about 60%

of worst solutions are being aepted. This forms the real starting temperature and

it an now be ooled more slowly. A similar idea, suggested in (Dowsland, 1995), is

to rapidly heat the system until a ertain proportion of worse solutions are aepted

and then slow ooling an start. This an be seen to be similar to how physial

annealing works in that the material is heated until it is liquid and then ooling

begins (i.e. one the material is a liquid it is pointless arrying on heating it).

Theoretially, the ooling rate parameter a in (3.9) assumes values between 0 and

1, while Eglese (1990) reports that values used in pratie lie between 0.8 and 0.99.

Park & Kim (1998) suggest a systemati proedure, based on the simplex method

for non linear programming, to determine parameter values.

In onlusion we an say that there is no uniformly best hoie of parameters,

but spei� problems may require di�erent values. Baragona et al. (2011) suggest

that a good hoie may be obtained by onsidering a range of possible values for the

same problems. In our appliations these parameters values are hosen by a tuning

experiment. For eah algorithm, di�erent ombinations of parameters values are

tried, keeping the number of the objetive funtion evaluations onstant. We selet

the parameter ombination that yields the largest frequeny of true outlier pattern

detetion.
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A simulation experiment for tuning parameters

The remaining parameter values are hosen by means of a tuning experiment where

a set of 200 time series with N = 400 have been generated by Model 2, and outliers

at time indies 100 and 150 are analysed. All the algorithms run with a total of

2,000 evaluations of the objetive funtion.

For the SA, the Tf is always kept equal to 0.05. Sine Tf has the role of stopping

riterion, a value lose to zero seems reasonable, thus the probability of aepting

a worse solution during the last iterations is very small. The examined values for

a are [0.90, 0.94, 0.95, 0.96℄ and for T0 are [2, 4, 6, 8, 10℄. For eah ombination,

the number of internal loop iterations SAiter is equal to the ratio between the total

number of evaluations of the objetive funtion (2000) and the number of di�erent

temperatures (the number depending on T0 and a). Table 3.3 shows the frequenies

of orret identi�ations (based on 200 time series) for eah pair of a and T0. When

dereasing the value of a, the best performane is obtained by inreasing the value

of T0. The pair a = 0.95 and T0 = 8 is used.

Table 3.3: SA tuning experiment: frequenies of orret identi�ations for di�erent

values of T0 and a.

a T0

2 4 6 8 10

0.90 0.825 0.845 0.850 0.830 0.870

0.94 0.820 0.850 0.860 0.880 0.880

0.95 0.835 0.880 0.840 0.900 0.855

0.96 0.820 0.835 0.875 0.870 0.845

For the GA algorithms, we ompare the frequeny of the orret outlier pattern

identi�ation for 8 di�erent ombinations of population size pop and number of gen-

erations gen, keeping the mutation probability pmut and the rossover probability

pcross onstant for all experiments. The values onsidered for the population size

are [10, 20, 30, 40, 50, 70, 100, 200℄, for the number of generations are [10, 20, 30, 40,

50, 70, 100, 200℄, while pcross = 0.001 and pmut = 0.6 (these values were suggested

by de Jong (1975)).

Table 3.4 suggests for the parameter pop an average value (between 70 and 100).

In a seond stage, di�erent ombinations of pmut and pcross are onsidered from

pmut = {0.1, 0.01, 0.001, 0.0005} and pcross = {0.4, 0.6, 0.8, 0.9} whereas the

population size and the number of generations are kept onstant at 100 and 20,

respetively. The results of some ombinations of pmut and pcross are reported in
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table 3.4. The results indiate that better results are obtained for average values

of rossover probability pcross and very low values, but not too muh, of mutation

probability pmut. Based on these results, we use as values: pmut = 0.001 and

pcross = 0.6.

For TA algorithm, we ompared a linear sequene of thresholds and a sequene

generated by the method given in Winker & Fang (1997). The linear sequenes were

generated onsidering di�erent initial thresholds and di�erent rates of derease. The

initial thresholds {6, 8, 10, 14} are used while the values {0.90, 0.96} are onsidered

as rates of derease. For the method proposed by (Winker & Fang (1997)) , we

onsidered 8 ombinations of the number of thresholds Nt and number of iterations

SAiter hoies from Nt ={10, 20, 30, 40 , 50, 70, 100, 200} and SAiter = {10,

20, 30, 40, 50, 70, 100, 200 }. With regard to the linear sequene, the results

suggest to use a high threshold and a rate of derease of the thresholds not very

rapid. For the method proposed by (Winker & Fang (1997)) the best result is

obtained in orrespondene to number of thresholds Nt equal to 100. However,

there is not a onstant improvement as the number of thresholds is inremented

and also the di�erenes are not very marked. Observing the thresholds provided by

Winker & Fang (1997) method, we observed that the initial threshold is large enough

(slightly more than 14) and the thresholds derease very slowly. This partiular

result depends on the type of problem onsidered. The value of the objetive funtion

for the solutions that belong to a neighborhood an be very di�erent beause the

removal or insertion of a given anomaly an lead to great hanges in the value of

the AIC. This means that the distribution F (∆) (see algorithm (3) in the appendix)

does not appear to be symmetrial around zero, but is asymmetri towards higher

values. From these results it was deided to use a sequene of thresholds Nt = 100

obtained by the method of Winker.

Table 3.4: TA and GA tuning experiment: frequenies of orret identi�ations for

di�erent ombinations of parameters.

TA GA

(Nt, TAiter) fTA (pop, gen) fGA (pmut, pcross) fGA

(10, 200) 0.860 (10,200) 0.815 (0.01,0.4) 0.850

(20,100) 0.865 (20,100) 0.830 (0.01,0.6) 0.875

(30,70) 0.860 (30,70) 0.850 (0.01,0.8) 0.835

(40,50) 0.880 (40,50) 0.850 (0.01,0.9) 0.825

(50,40) 0.875 (50,40) 0.840 (0.001,0.4) 0.880

(70,30) 0.885 (70,30) 0.885 (0.001,0.8) 0.880

(100,20) 0.885 (100,20) 0.885 (0.001,0.9) 0.850

(200,10) 0.855 (200,10) 0.880 (0.0005,0.6) 0.830
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We summarize the parameter values used in the simulations. We imposed that

the objetive (�tness) funtion were evaluated not more than 10,000 times: ITA
tot =

ISAtot =I
GA
tot =10,000. For the algorithm SA we hose T0 = 8.0, Tf = 0.05, SAiter = 100,

a = 0.95. For the algorithm TA, we set Nt = 100 and TAiter = 100. For the geneti

algorithm we seleted pcross = 0.6, pmut = 0.001, pop = 100, gen = 100. With

g = 5, the solution spae Ω is of order 2×109 when the sample size is N = 200, and

it is of order 8 × 1010 when the sample size is N = 400 whereas the meta-heuristi

algorithms reah a satisfying onvergene to the optimum evaluating the objetive

funtion (�tness) no more than 10, 000 times.

3.5 Results

In Tables 3.5, 3.6 and 3.7 we report the results of the three meta-heuristi algorithms

and the TPP detetion proedure. In Tables 3.5 and 3.6, the rows labelled P2 sum-

marise the relative frequeny of the orret outlier pattern (both outliers deteted

and only them), the rows labelled P1 summarise the relative frequeny of only one

outlier orretly deteted and the rows labelled E summarise the relative frequeny

of the solutions with wrong identi�ations (i.e., observations that are identi�ed as

outliers while they are not). The omplement to one of the sum of these three fre-

quenies is the frequeny of the no outlier solution. In Table 3.7, the rows labelled

P5 summarise the relative frequeny of the orret outlier pattern (all �ve outliers

deteted and only them), the rows labelled P<5 summarise the relative frequeny

of less than �ve outliers orretly deteted and the rows labelled E summarise the

relative frequeny of solutions with wrong identi�ations (i.e., observations that are

identi�ed as outliers while they are not). The omplement to one of the sum of these

three frequenies is again the frequeny of the no outlier solution.

Table 3.5 shows that eah of the four algorithms has a high perentage of suess

when the two outliers are far from eah other (t = 100, 150). The frequenies of full

identi�ations are nearly equivalent for the four methods. The results are mixed and

no method seems uniformly superior to the others. For some models the frequeny

of orret identi�ation of the TPP method is larger than the orresponding meta-

heuristi frequeny, while for other models the onverse is true.

Table 3.6 reports simulation results onerning the outliers path detetion where

outliers are introdued at time indies t = 100, 101. We an see from this table that

for almost all models the meta-heuristi algorithms detet the outlier path with

frequenies higher than those ahieved by the TPP. Only for the model (7) the TPP

method provides satisfatory results. Moreover, for almost all the models the TPP's
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frequeny of wrong identi�ation E is onsiderable larger than the orresponding

frequenies ahieved by meta-heuristi methods. In omparison to the preeding

ase (two outliers for eah other) here the frequeny of the no outlier solution is

larger, and the largest for the TPP method. Finally, we an see that the frequenies

P2 for models with 200 observations are less than same models with 400 observations.

This may be due to the fat that the solution spae is larger and the meta-heuristi

methods are were easily trapped in some loal optimum.

In Table 3.7 are reported the results for the on�guration with 5 outliers where

three are onseutive. The on�guration is very omplex and very di�ult to detet

if the size of the outlier is not large enough. For this reason outlier sizes are set

to 5.0 for the instants 40, 100, 101, 102, 150. In the table 3.7 we an see that the

relative frequenies of orret on�guration P5 obtained through the meta-heuristi

methods are very di�erent and depending on the model. For some models the

relative frequeny of orret outlier detetion are very low.

To redue the lak of onvergene, we reported the simulations allowing for a

total number of objetive funtion (�tness) evaluations inreased to 100,000 (instead

of 10,000), both for the most omplex on�guration (40, 100, 101, 102, 150) and for

thesimpler one (100, 101).

Table 3.8-3.9 shows the results obtained for the on�gurations 100, 101 and

40, 100, 101, 102, 150 setting the number of evaluations equal to 100,000. We an

see an improvement of the results in both ases but the inrease of the frequenies

of orret identi�ation is very large for the ase of 5 outliers. Now the relative

frequenies of orret on�guration detetion obtained through the meta-heuristi

methods are high and muh larger than those obtained with the TPP method for

seven of the eight models onsidered. For some models the orret pattern is always

found (frequeny P5 assumes the value 1). The meta-heuristi algorithms show a

better performane than the TPP also in the third on�guration outliers (see Table

3.9).

Tables 3.8 and 3.9 evidently illustrate masking and smearing problems enoun-

tered by the TPP proedure when additive outliers exist in a path. It has been

notied that this problems persist despite the size of outliers whereas the meta-

heuristi methods improve their performane when the outliers are inserted with a

bigger magnitude. Deteting a set of onseutive outliers seems muh more di�ult

and a�eted by the underlying models. The good performane of TPP in model

7 depends on the partiular parameters of the model generating data. The three

algorithms proposed here learly outperform the TPP method to detet path of

additive outliers.
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To understand the poor TPP's results, let us to onsider the situation in whih

the time series follows a VAR(1) and there exists a path of two additive outliers at

time indies t = T, T + 1, with magnitudes ωt = ω for t = T, T + 1. Suppose that

the model parameters are known, then the expeted values of the perturbations at

time indies t = T, T + 1 are given by

E(ω̂T ) = ωT + Γi0
−1Γi1ωT+1 = (Is + Γi0

−1Γi1)ω,

E(ω̂T+1) = ωT+1 + Γi0
−1Γi−1ωT = (Is + Γi0

−1Γi−1)ω.

We observe that they are biased. The bias depends on the inverse ovariane

matries and it may ause the masking e�et. The good performane ahieved by

the TPP in model 7 may depend on the peuliar parameters of the models. On the

ontrary in our methods the estimates of the magnitude of outliers are unbiased.

3.5.1 Real time series data

In this subsetion we illustrate the performane of the meta-heuristi proedures by

analysing a real example. The data are the well-known gas-furnae series of Box

et al. (1994). This bivariate time series onsists of an input gas rate in ubi feet per

minute and the CO2 onentration in the outlet gas as a perentage, both measured

at 9�seond time intervals. There are 296 observations. The TPP method �nds

additive multivariate outliers at positions 42, 54, 113, 199, 235, 264. All the other

algorithms, based on 1,000,000 objetive funtion (�tness) evaluations (T0= 8.0, Tf=

0.05, SAiter = 10,000, a = 0.95, gen=30,000, pop=30, Nt=100 and TAiter = 10,000,

g = 15, c = 8.2 and m = 6) onverge to the solution with 4 outliers at positions:

42, 54, 199 and 264. Additional information may be derived by looking also at the

sub-optimal solutions. Table 3.10 displays the outliers patterns orresponding to the

best ten solutions found after 1,000,000 objetive funtion evaluations. It suggests

that additional time indies may be onsidered as andidates for the true outlier

positions, giving additional insight about the probably outlying observations. It

turns out that for this series the TPP method has not given the best solution, but

the ten-th one in order of dereasing objetive funtion.

Let I denote the number of evaluations of the objetive funtion. In order to

ompare the onvergene of the algorithms we alulate, for di�erent values of I

(100, 500, 1,000, 5,000, 10,000), the empirial distribution, based on 100 restarts,

of the best obtained objetive funtion. Table 3.11 reports some relevant statistis

(mean, standard deviation, best value and 5-th perentile) about the empirial dis-
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Table 3.5: Comparison of the algorithm performanes: outliers at t = 100, 150 based

on 104 iteration
N = 200 N = 400

TA SA GA TPP TA SA GA TPP

Model 1

P2 0.90 0.91 0.91 0.94 0.87 0.87 0.92 0.89

P1 0.05 0.04 0.04 0.02 0.10 0.10 0.05 0.06

E 0.05 0.05 0.05 0.04 0.03 0.03 0.03 0.04

Model 2

P2 0.91 0.90 0.91 0.92 0.92 0.92 0.94 0.93

P1 0.03 0.04 0.03 0.03 0.04 0.04 0.02 0.02

E 0.06 0.06 0.06 0.05 0.04 0.04 0.04 0.05

Model 3

P2 0.94 0.94 0.94 0.94 0.91 0.91 0.93 0.93

P1 0.01 0.01 0.01 0.00 0.02 0.02 0.00 0.00

E 0.04 0.04 0.04 0.06 0.06 0.06 0.06 0.07

Model 4

P2 0.94 0.94 0.94 0.90 0.91 0.91 0.91 0.91

P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E 0.06 0.06 0.06 0.10 0.09 0.09 0.09 0.09

Model 5

P2 0.90 0.90 0.90 0.93 0.94 0.94 0.94 0.94

P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E 0.10 0.10 0.10 0.07 0.06 0.06 0.06 0.06

Model 6

P2 0.90 0.90 0.90 0.92 0.90 0.90 0.90 0.94

P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E 0.10 0.10 0.10 0.08 0.10 0.10 0.10 0.06

Model 7

P2 0.95 0.94 0.95 0.94 0.90 0.90 0.90 0.93

P1 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

E 0.05 0.05 0.05 0.06 0.01 0.10 0.10 0.07

Model 8

P2 0.94 0.94 0.94 0.92 0.96 0.96 0.96 0.96

P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E 0.06 0.06 0.06 0.08 0.04 0.04 0.04 0.04

P2= frequeny of event 'exatly two outliers found at times 100 and 150'

P1= frequeny of event 'exatly one outlier found at time 100 or at time 150'

E= frequeny of solutions with wrong identi�ations
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Table 3.6: Comparison of the algorithm performanes: outliers at t = 100, 101 based

on 104 iteration
N = 200 N = 400

TA SA GA TPP TA SA GA TPP

Model 1

P2 0.72 0.71 0.72 0.23 0.55 0.56 0.58 0.19

P1 0.05 0.06 0.05 0.08 0.07 0.06 0.05 0.07

E 0.11 0.11 0.11 0.18 0.13 0.13 0.12 0.14

Model 2

P2 0.74 0.74 0.75 0.22 0.68 0.67 0.69 0.21

P1 0.10 0.10 0.10 0.37 0.15 0.14 0.12 0.40

E 0.13 0.13 0.12 0.25 0.10 0.10 0.10 0.25

Model 3

P2 0.83 0.83 0.84 0.34 0.74 0.75 0.78 0.43

P1 0.03 0.03 0.03 0.06 0.05 0.05 0.04 0.05

E 0.07 0.07 0.06 0.23 0.12 0.11 0.09 0.21

Model 4

P2 0.52 0.52 0.54 0.00 0.40 0.41 0.42 0.01

P1 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01

E 0.21 0.21 0.19 0.30 0.29 0.28 0.27 0.41

Model 5

P2 0.89 0.89 0.89 0.55 0.83 0.82 0.83 0.55

P1 0.00 0.00 0.00 0.08 0.01 0.02 0.01 0.11

E 0.11 0.11 0.11 0.23 0.15 0.15 0.15 0.23

Model 6

P2 0.84 0.84 0.84 0.55 0.81 0.81 0.82 0.52

P1 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01

E 0.13 0.13 0.13 0.32 0.17 0.17 0.17 0.35

Model 7

P2 0.92 0.92 0.92 0.90 0.88 0.88 0.88 0.87

P1 0.01 0.01 0.02 0.02 0.00 0.00 0.00 0.04

E 0.07 0.07 0.07 0.08 0.12 0.12 0.12 0.09

Model 8

P2 0.91 0.91 0.91 0.10 0.89 0.89 0.91 0.03

P1 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.08

E 0.09 0.09 0.09 0.70 0.11 0.11 0.09 0.88

P2= frequeny of event 'exatly two outliers found at times 100 and 150'

P1= frequeny of event 'exatly one outlier found at time 100 or at time 150'

E= frequeny of solutions with wrong identi�ations
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Table 3.7: Comparison of the algorithm performanes: outliers at t =

40, 100, 101, 102, 150 based on 104 iteration

N = 200 N = 400

TA SA GA TPP TA SA GA TPP

Model 1

P2 0.60 0.58 0.63 0.32 0.32 0.32 0.37 0.24

P1 0.28 0.30 0.25 0.39 0.48 0.48 0.44 0.46

E 0.12 0.12 0.12 0.29 0.20 0.20 0.19 0.30

Model 2

P2 0.75 0.00 0.00 0.29 0.68 0.00 0.00 0.27

P1 0.13 0.00 0.00 0.45 0.20 0.00 0.00 0.50

E 0.12 0.00 0.00 0.26 0.12 0.00 0.00 0.23

Model 3

P2 0.72 0.75 0.76 0.28 0.47 0.47 0.49 0.35

P1 0.15 0.13 0.12 0.29 0.24 0.24 0.23 0.25

E 0.13 0.12 0.12 0.43 0.29 0.29 0.28 0.40

Model 4

P2 0.23 0.22 0.26 0.01 0.20 0.21 0.23 0.00

P1 0.31 0.32 0.31 0.22 0.21 0.20 0.20 0.19

E 0.46 0.46 0.43 0.77 0.59 0.59 0.57 0.81

Model 5

P2 0.84 0.84 0.85 0.55 0.72 0.71 0.72 0.54

P1 0.03 0.03 0.02 0.13 0.08 0.09 0.08 0.15

E 0.13 0.13 0.13 0.32 0.20 0.20 0.20 0.31

Model 6

P2 0.95 0.95 0.95 0.41 0.90 0.90 0.90 0.40

P1 0.02 0.02 0.02 0.04 0.02 0.02 0.02 0.03

E 0.03 0.03 0.03 0.55 0.08 0.08 0.08 0.57

Model 7

P2 1.00 1.00 1.00 0.91 1.00 1.00 1.00 0.90

P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

E 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.09

Model 8

P2 0.57 0.58 0.60 0.00 0.66 0.65 0.68 0.01

P1 0.11 0.10 0.08 0.35 0.03 0.04 0.03 0.28

E 0.32 0.32 0.32 0.65 0.31 0.31 0.29 0.71

P5= frequeny of event 'exatly �ve outliers found at times 40, 100, 101, 102, 150'

P<5= frequeny of event 'some of orret outliers are deteted'

E= frequeny of solutions with wrong identi�ations
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Table 3.8: Comparison of the algorithm performanes: outliers at t = 100, 101 based

on 105 iteration
N = 200 N = 400

TA SA GA TPP TA SA GA TPP

Model 1

P2 0.73 0.73 0.73 0.23 0.61 0.61 0.61 0.19

P1 0.05 0.05 0.05 0.08 0.05 0.05 0.05 0.07

E 0.10 0.10 0.10 0.18 0.09 0.09 0.09 0.14

Model 2

P2 0.75 0.75 0.75 0.22 0.72 0.72 0.72 0.21

P1 0.10 0.10 0.10 0.37 0.11 0.11 0.11 0.40

E 0.12 0.12 0.12 0.25 0.10 0.10 0.10 0.25

Model 3

P2 0.84 0.84 0.84 0.34 0.83 0.83 0.83 0.43

P1 0.03 0.03 0.03 0.06 0.03 0.03 0.03 0.05

E 0.06 0.06 0.06 0.23 0.05 0.05 0.05 0.21

Model 4

P2 0.60 0.60 0.60 0.00 0.64 0.64 0.64 0.01

P1 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01

E 0.13 0.13 0.13 0.30 0.05 0.05 0.05 0.41

Model 5

P2 0.90 0.90 0.90 0.55 0.93 0.93 0.93 0.55

P1 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.11

E 0.10 0.10 0.10 0.23 0.06 0.06 0.06 0.23

Model 6

P2 0.85 0.85 0.85 0.55 0.88 0.88 0.88 0.52

P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

E 0.13 0.13 0.13 0.32 0.10 0.10 0.10 0.35

Model 7

P2 0.92 0.92 0.92 0.90 0.88 0.88 0.88 0.87

P1 0.01 0.01 0.02 0.02 0.00 0.00 0.00 0.04

E 0.07 0.07 0.07 0.08 0.12 0.12 0.12 0.09

Model 8

P2 0.93 0.93 0.93 0.10 0.96 0.96 0.96 0.03

P1 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.08

E 0.07 0.07 0.07 0.70 0.04 0.04 0.04 0.88

P2= frequeny of event 'exatly two outliers found at times 100 and 150'

P1= frequeny of event 'exatly one outlier found at time 100 or at time 150'

E= frequeny of solutions with wrong identi�ations
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Table 3.9: Comparison of the algorithm performanes: outliers at t =

40, 100, 101, 102, 150 based on 105 iteration

N = 200 N = 400

TA SA GA TPP TA SA GA TPP

Model 1

P2 0.89 0.90 0.95 0.32 0.80 0.80 0.92 0.24

P1 0.06 0.05 0.00 0.39 0.09 0.09 0.00 0.46

E 0.05 0.05 0.05 0.29 0.11 0.11 0.08 0.30

Model 2

P2 0.86 0.86 0.87 0.29 0.84 0.85 0.87 0.27

P1 0.10 0.10 0.09 0.45 0.12 0.11 0.09 0.50

E 0.09 0.04 0.04 0.26 0.04 0.04 0.04 0.23

Model 3

P2 0.95 0.97 0.99 0.28 0.86 0.90 0.94 0.35

P1 0.02 0.00 0.00 0.29 0.04 0.02 0.00 0.25

E 0.03 0.03 0.01 0.43 0.10 0.08 0.06 0.40

Model 4

P2 0.74 0.73 0.75 0.01 0.82 0.82 0.84 0.00

P1 0.14 0.15 0.13 0.22 0.05 0.05 0.05 0.19

E 0.12 0.12 0.12 0.77 0.13 0.13 0.11 0.81

Model 5

P2 0.97 0.97 1.00 0.55 0.96 0.96 1.00 0.54

P1 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.15

E 0.03 0.03 0.00 0.32 0.04 0.04 0.00 0.31

Model 6

P2 1.00 1.00 1.00 0.41 0.98 0.98 1.00 0.40

P1 0.00 0.00 0.00 0.04 0.02 0.02 0.00 0.03

E 0.00 0.00 0.00 0.55 0.00 0.00 0.00 0.57

Model 7

P2 1.00 1.00 1.00 0.91 1.00 1.00 1.00 0.90

P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

E 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.09

Model 8

P2 0.93 0.92 0.95 0.00 0.93 0.93 0.94 0.01

P1 0.02 0.03 0.00 0.35 0.02 0.02 0.01 0.28

E 0.05 0.05 0.05 0.65 0.05 0.05 0.05 0.71

P5= frequeny of event 'exatly �ve outliers found at times 40, 100, 101, 102, 150'

P<5= frequeny of event 'some of orret outliers are deteted'

E= frequeny of solutions with wrong identi�ations
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Table 3.10: Meta-heuristi algorithm solutions for the gas�furnae series

Solution f(x) Loations

S1 -53.82 42 54 199 264

S2 -53.29 43 54 199 264

S3 -51.42 42 54 199 235 264

S4 -50.89 43 54 199 235 264

S5 -50.10 42 54 113 199 264

S6 -49.57 43 54 113 199 264

S7 -48.55 42 55 199 264

S8 -48.02 43 55 199 264

S9 -47.78 42 54 198 264

S10 -47.70 42 54 113 199 235 264

Table 3.11: Statistis of empirial distributions for di�erent values of I (based on

100 runs)

I TA SA

µ̂ σ̂ best q0.05 µ̂ σ̂ best q0.05

100 -19.50 14.77 -44.59 -39.42 -14.81 13.98 -40.32 -36.24

500 -42.54 6.43 -53.82 -53.82 -33.21 7.65 -45.54 -44.58

1,000 -48.68 4.71 -53.82 -53.82 -39.10 6.60 -53.82 -48.69

5,000 -52.83 1.87 -53.82 -53.82 -52.79 1.92 -53.82 -53.82

10,000 -53.16 1.17 -53.82 -53.82 -53.16 1.15 -53.82 -53.82

I GA1 GA2

µ̂ σ̂ best q0.05 µ̂ σ̂ best q0.05

100 -31.69 6.91 -44.92 -44.02

500 -44.59 6.86 -53.82 -53.82

1,000 -49.19 4.53 -53.82 -53.82

5,000 -51.71 2.92 -53.82 -53.82

10,000 -53.01 1.17 -53.82 -53.82
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tributions along the guidelines suggested by Gilli & Winker (2009). As I inreases,

the distributions shift to the left (µ̂ dereases) and beome less dispersed (σ̂ de-

reases). The GA show a better initial performane due to the favourable way the

initial population is hosen, but the SA and the TA have a faster onvergene speed.

At the last iteration (I = 10, 000), the best value (f(x) = −53.82) is found in 59

out of 100 runs for the SA, in 58 out of 100 runs for the TA, in 46 out of 100 for the

GA.





Chapter 4

Conlusions and Further

Developments

In hapter 2, a GAs-based proedure for identifying and estimating a MSETAR

model with univariate or bivariate threshold variable is suggested. The proedure

uses a speial binary enoding omposed of several fragments eah of whih represent

a integer parameter of the MSETAR model. In spite of the relative omplexity of

the hromosome the geneti operators are suitable for simple implementation so that

the omputational burden is quite low. A simulation experiment demonstrated the

validity of the GAs for implementing the identi�ation and estimation proedure for

building a nonlinear model in a multivariate setting. An appliation to real world

data onerned with exhange rates of the United States dollar with four other

ountries urreny between January 1980 and Marh 1984 proved the e�etiveness

of our proedure in empirial appliations.

There are at least two issues that will possibly be interesting subjet matters for

future researh. The �rst one is onerned with the onsideration of subset VAR

models in eah regime. This may save onsiderable estimation e�ort, produes more

stable oe�ient estimates and would lead to the identi�ation of a smaller size

parameter set. On the other hand, the identi�ation of subset models is known to

onstitute a di�ult problem for whih GAs have been suggested in the ontext of

VAR models and univariate threshold models. The additional omputational burden

is a non negligible obstale that requires both an appropriate enoding and a areful

programming to be overome. Next, onsideration of more than two omponent

series to be used as threshold variables for regime identi�ation is an intriate matter

that surely deserves further researh. As before, it involves not only theoretial

di�ulties but the development of dediated programming tools as well.
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In hapter 3, three meta-heuristi methods for deteting additive outliers in mul-

tivariate time series are proposed. Meta-heuristi algorithms, unlike other methods

in literature, do not identify and remove outliers one at a time, but examine sev-

eral proposed outlier patterns, where all observations are simultaneously onsidered.

This feature seems to be e�etive in handling masking (meaning that one outlier

hides others) and swamping (when outliers make other lean observations to appear

outliers as well) e�ets aused by multiple outliers. Furthermore, our methods do

not require the spei�ation of an adequate multivariate model, whih is usually a

di�ult task, espeially when the data are ontaminated by outliers. The proedures

are illustrated by analysing arti�ial and real data sets. The results obtained from

the simulation experiments seem to support the idea that the meta-heuristi algo-

rithms onstitute a valid approah to detet the time points where potential outliers

in vetor time series are loated. In our experiment the meta-heuristi methods

provide better results than the TPP method to identify outlier path, while the

results are similar for the ase of well separated outliers. The examination of the

�gas-furnae� data of Box and Jenkins yields satisfatory results. Comparing the

results obtained by the detetion proedure of Tsay et al. (2000) with the best solu-

tion provided by meta-heuristi algorithms, we observe that they have in ommon

four out of six outliers loations. Suh small disrepany is aused by the di�er-

ene between the two identi�ation proedures. The e�ieny of the meta-heuristi

methods proposed in this study, depends ruially on the hoie of appropriate val-

ues for some ontrol parameters. The simulation and the theoretial study used for

determining the value of parameter c, allows us to ontrol for the type I error α. For

any given value of α there is a orresponding value for c that does not depend on the

underlying model. It only depends on the number of omponents (s) and the length

of the time series. In the ase of real data, given a value of α, the orresponding

value of c, as reported in Table 3.2, an be used.

The presene of partial outliers, i.e., anomalies that a�et only some omponents

of the multivariate series, may be an issue to be onsidered for future developments.

Moreover, an interesting further problem is the outlier identi�ability, that is, study-

ing how large should the outliers size to ensure that the orret outlier on�guration

has the maximum �tness.



Appendix A

Meta-heuristi methods

A.1 Introdution

Many optimisation problems do not satisfy the neessary onditions to guarantee

the onvergene of traditional numerial methods. For instane, in order to apply

standard gradient methods to maximum likelihood estimation we need a globally

onvex likelihood funtion, however there are a number of relevant ases with non

onvex likelihood funtions or funtions with several loal optima. Another lass of

hard problems is when the solution spae is disrete and large. These problems are

known as ombinatorial problems. There is an objetive funtion to be minimized,

as usual; but the spae over whih that funtion is de�ned is not simply the n-

dimensional spae of n ontinuously variable parameters. Rather, it is a disrete,

but very large, on�guration spae, like the set of possible orders of ities, or the

set of possible alloations of silion real estate bloks to iruit elements. We an

onsider a general statement of ombinatorial optimization problem as:

Minimize f(x1, x2, . . . , xn) : Ω→ R (A.1)

where the variables x1, x2, . . . , xn take disrete values and f(·) represents the

objetive funtion, whih has to be minimized over a disrete n-dimensional searh

spae Ω (the olletion of all feasible solutions). Of ourse, by replaing f(·) with
−f(·), the algorithm an also be applied to maximization problems.

A simple approah for solving an instane of a ombinatorial problem is to list

all the feasible solutions, evaluate their objetive funtion, and pik the best one.

However, for a ombinatorial problem of a reasonable size, the omplete enumeration

of its elements is not feasible, and most available searhing algorithms are likely
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to yield some loal optimum as a result ((Rayward-Smith et al. 1996)). Meta-

heuristi algorithms are often used to solve this kind of problems. Heuristis typially

start with a feasible solution and use an iterative proedure to searh for improved

solutions. For the minimization problem (equation A.1) with feasible searh spae

Ω, an heuristi searhes for a pratial solution lose to the optimal solution x∗

where, for any x ∈ Ω, f(x∗) < f(x). These algorithm are all meta-heuristis

beause onsist of general searh priniples organized in a general searh strategy.

The suess of meta-heuristi methods is due to several fators: they do not rely

on a set of strong assumptions about the optimisation problem, they are robust to

hanges in the harateristis of the problem, they do not produe a deterministi

solution but a high quality stohasti approximation to the global optimum.

In this thesis we are interested in the following meta-heuristi methods: simulated

annealing, threshold aepting and geneti algorithms.

SA and TA are lassi�ed as loal searh methods. Classial loal searh algorithms

are a lass of methods in whih the iterative proedure starts with a feasible solution

ξc, and then at eah iteration attempts to �nd a better solution by searhing in a

neighbourhood of the urrent solution ξc. This neighbourhood is a set of feasible

solutions where the values of the variables are lose to those of the urrent solution.

Eah time a new solution in the neighbourhood is an improvement, it is used to

update the urrent solution. The iterative proedure ends based on pre-spei�ed

stopping riteria, suh as when no further improvement is found or when the total

number of iterations reahes a given limit. However, these algorithms may get stuk

in loal optima. To avoid this problem, the loal searh algorithms we adopt in this

researh may aept worse solutions than the urrent one.

Geneti algorithms were initially developed by Holland (1975) and are lassi�ed

as population based methods, or evolutionary algorithms. They work on a whole set

of solutions that is adapted simultaneously by imitating the evolutionary proess of

speies that �t to the environment and reprodue.

We give a brief sketh of the three methods.

A.2 Simulated annealing

Simulated annealing (SA) is a random searh tehnique based on an analogy to the

physial proess of annealing that ours in thermodynamis, when a heated mate-

rial ools down and hanges its struture under a ontrolled temperature lowering

shedule. At high temperatures, the moleules of a liquid move freely with respet
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to one another. If the liquid is ooled slowly, thermal mobility is lost. The atoms are

often able to line themselves up and form a pure rystal that is ompletely ordered

over a distane up to billions of times the size of an individual atom in all dire-

tions. This rystal is the state of minimum energy for this system. The amazing

fat is that, for slowly ooled systems, nature is able to �nd this minimum energy

state. In fat, if a liquid metal is ooled quikly or quenhed, it does not reah this

state but rather ends up in a polyrystalline or amorphous state having somewhat

higher energy. So the essene of the proess is slow ooling, allowing ample time for

redistribution of the atoms as they lose mobility. This is the tehnial de�nition of

annealing, and it is essential for ensuring that a low energy state will be ahieved.

Metropolis et al. (1953) introdued a simple algorithm, known as Metropolis

algorithm, to simulate the annealing proess. In eah step of this algorithm, an

atom is given a small random displaement and the resulting hange, ∆E, in the

energy of the system is omputed. If ∆E ≤ 0, the displaement is aepted, and the

on�guration with the displaed atom is used as the starting point of the next step.

The ase ∆E > 0 is treated probabilistially: the probability that the on�guration

is aepted is P (∆E) = exp(−∆E/kT ). This hoie of P (∆E) has the onsequene
that the system evolves into a Boltzmann distribution.

Thirty years later, Kirkpatrik et al. (1983) proposed a method, based on Metropolis

algorithm, for �nding the global minimum of a objetive funtion that may possess

several loal minimal. This method, alled simulated annealing, used the objetive

funtion in plae of the energy, on�gurations are feasible solutions of the problem

and the hange of on�guration orresponds to neighbouring solutions.

In analogy with the Metropolis algorithm, simulated annealing is haraterised

by the presene of a ontrol parameter T alled temperature, an annealing shedule

whih tells how it is lowered from high to low values, an aeptane probability and

a stopping rule. Temperature T is a non-inreasing funtion of time; it is designed

to exlude almost all bad moves at the end. In a lassial shedule starting from T0,

the temperature is maintained onstant for SAiter onseutive steps. Then, after

eah series of SAiter steps, it is dereased through multipliation by a �xed fator α

(0 < α < 1). This implies the setting of three parameters, T0, α and SAiter, whih

will be respetively referred to as initial temperature, ooling rate and length of

plateau. Di�erent ooling shedules are suggested in the literature. On the analogy

of thermodynamis, a Boltzmann-like distribution is usually hosen as aeptane

probability. The stopping riteria an either be a suitably low temperature or when

the system is frozen at the urrent temperature (i.e. no better or worse moves are

being aepted).
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SA algorithm is an iterative proedure that extends the loal searh method,

desribed above, to allow for a new solution at some iterations to be worse than the

urrent solution, rather than an improvement. This extension helps to avoid getting

trapped in a loal optimum. By aepting worse solutions in some neighborhoods,

the heuristi searhes more widely within the feasible searh spae, so that it is more

likely to esape a loal optimum and move to the global optimum.

In terms of the minimization problem given by equation (A.1), the algorithm for

a simulated annealing heuristi onsists of the steps reported in algorithm (1).

Algorithm 1 Pseudoode for simulated annealing.

1: Initialise T0, Tf , a and SAiter

2: Generate initial solution ξc

3: T = T0

4: while T > Tf do

5: for r = 1 to SAiter do

6: Compute ξn ∈ N(ξc) (neighbour to urrent solution)

7: Compute ∆ = f(ξn)−f(ξc) and generate u from a uniform random variable

between 0 and 1

8: if ∆ < 0 or e−∆/T > u then

9: ξc = ξn

10: end if

11: end for

12: T ← aT

13: end while

Like the loal searh method, the simulated annealing heuristi searhes for a new

solution ξn at eah iteration in the neighborhood of the urrent solution ξc. If the

new solution is an improvement(f(ξn) < f(ξc)), it is aepted as the update to the

urrent solution, just as in the loal searh method. In addition, if the new solution

is worse to the urrent solution (f(ξn) > f(ξc)), the new solution is sometimes

aepted, with a given probability that depends on the di�erene between the values

of objetive funtion for the new and urrent solutions. The bigger this di�erene,

the smaller the probability that the new (worse) solution is aepted as the update

to the urrent solution. The aeptane probability is determined by whether a

random number u generated between 0 and 1 is less than or greater than the funtion

e−∆/T
, where ∆ is the di�erene between f(ξn) and f(ξc), and T is a temperature

parameter. The temperature is initially set at a high value, in order to aept worse

solutions frequently. In this way, in the initial stage of researh, the algorithm is

able to overome the loal optima, and the spae of the solutions may be explored
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more uniformly. It is then gradually lowered as the iterative proedure progresses

to allow fewer and fewer worse solutions, that is, the algorithm beomes more and

more seletive in aepting new solutions. By the end, only moves that improve

f(ξ) are aepted in pratie. The algorithm then oinides, for low temperatures,

with a loal searh algorithm.

The total number of iterationISAtot is obtained as the number of di�erent temper-

atures Ntemperature (funtion of T0, Tf , a) times the number of steps SAiter.

Reent appliations of the simulated annealing algorithm are disussed by Vera

& Díaz-Garía (2008), Depril et al. (2008), Duzmal & Assunção (2004) and Angelis

et al. (2001).

A.3 Threshold aepting

Threshold aepting (TA) was introdued by Duek & Sheuer (1990) as a deter-

ministi analog to simulated annealing. They applied the algorithm to a Travelling

Salesman Problem and argued that their algorithm is superior to lassial simu-

lated annealing. It is a re�ned loal searh proedure whih esapes loal optima

by aepting solutions whih are worse,but no more than a given threshold. The

algorithm is deterministi as it uses a deterministi aeptane riterion instead of

the probabilisti one used in simulated annealing for aepting worse solutions. The

number of steps where we explore the neighborhood for improving the solution is

�xed. The threshold is dereased iteratively and reahes the value of zero after a

given number of steps. The TA algorithm has an easy parameterization, it is robust

to hanges in problem harateristis and works well for many problem instanes. .

Threshold aepting has been suessfully applied to di�erent areas of statistis and

eonometris (Winker & Fang (1997), Fang et al. (2000), Winker (2000), Winker

(2001), Gilli & Winker (2004), Maringer & Winker (2009), Lin et al. (2010), Lyra

et al. (2010), Winker et al. (2011)). An extensive introdution to TA is given in

Winker (2001).

Algorithm (2) provides the pseudo-ode for a prototype threshold aepting im-

plementation for a minimization problem.

Comparing SA and TA algorithm we an see that, �rst, the sequene of temper-

atures T is replaed by a sequene of Nt thresholds τh with h = 1, . . . , Nt and, the

most important, the statement 8 of algorithm (1) is replaed by:
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Algorithm 2 Pseudoode for Threshold Aepting.

1: Initialise Nt, TAiter,

2: Generate the sequene τh, h = 1, . . . , Nt

3: Generate initial solution ξc

4: for h = 1 to Nt do

5: for r = 1 to TAiter do

6: Compute ξn ∈ N(ξc) (neighbour to urrent solution)

7: Compute ∆ = f(ξn)−f(ξc) and generate u from a uniform random variable

between 0 and 1

8: if ∆ < 0 or ∆ < τh then

9: ξc = ξn

10: end if

11: end for

12: end for

if ∆ < τh then ξc = ξn.

In this ase the total number of iteration ITA
tot is obtained as the produt of the

number of di�erent thresholds Nt and the number of times eah thresholds is used,

TAiter.

A ruial element of TA is its threshold sequene sine it determines TA's ability

to overome loal optima. Basially, the idea is to aept ξn if its objetive funtion

value is better or if it is not muh worse than that of ξc where not muh worse means

the deterioration may not exeed some threshold τ de�ned by the threshold sequene.

In extreme ases of threshold settings, the algorithm behaves like a lassial loal

searh algorithm (if all threshold values are set equal to zero) or like a random

walk (if all values of the threshold sequene are set to a very large value). Althöfer

& Koshnik (1991) demonstrated the onvergene of the TA algorithm under the

hypothesis that an appropriate threshold sequene exists. But in their proof they do

not provide a way to onstrut an appropriate sequene. Consequently, the threshold

sequene is often hosen in a rather ad ho approah. Two simple proedures an be

used to generate the sequene of thresholds. In the �rst plae, one ould use a linear

sequene dereasing to zero. The advantage of a linear threshold sequene onsists

in the fat, that for tuning purposes only the �rst value of the sequene has to be

seleted as it �xes the whole sequene. Alternatively, we an generate a sequene

of seleted thresholds using the a data driven method suggested in Winker & Fang

(1997). This proedure is detailed in algorithm (3).
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Algorithm 3 Pseudoode for generating threshold sequene.

1: Initialise Nt and M

2: for r = 1 to M do

3: Randomly hoose solution ξcr
4: Randomly hoose neighbour solution ξnr ∈ N(ξcr)

5: Compute ∆r =| f(ξcr)− f(ξnr ) |
6: end for

7: Compute the umulative distribution funtion F of ∆r, r = 1, . . . ,M

8: Compute the sequene of thresholds τi = F−1(Nt−1
Nt

), i = 1, . . . , Nt

This method uses a two step proess to onstrut the threshold sequene. For

the �rst step a large number (M) of possible solutions ξc is generated at random.

Then, we ompute the distanes between the values of the objetive funtion at

random point ξcr and its neighbour ξnr , ∆r =| f(ξcr) − f(ξnr ) |, r = 1, 2, . . . ,M .

In the seond step the umulative empirial distribution F of the distanes ∆r is

omputed. This distribution is an approximation of the distribution of loal relative

hanges of the objetive funtion. The thresholds τi are omputed as the quantiles

Qi orresponding to perentiles Pi =
Nt−i
Nt

, i = 1, . . . , Nt. The threshold sequene

will be monotonially dereasing to zero.

A.4 Geneti algorithms

Geneti algorithms (GAs) are global stohasti optimization tehniques that are

based on the adaptive mehanis of natural seletion evolution. They were in-

trodued in Holland (1975), and subsequently made widely popular by Goldberg

(1989). The statistial appliations of the GAs have been disussed by Chatter-

jee et al. (1996) and Chatterjee & Laudato (1997). GAs use two basi proesses

from evolution: inheritane, or the passing of features from one generation to the

next, and ompetition, or survival of the �ttest. Through these proesses individ-

uals whih are most suessful in surviving will have relatively larger numbers of

o�spring. Poorly performing individuals will produe few of even no o�spring at all.

This means that the genes from the highly adapted, or �t individuals will spread

to an inreasing number of individuals in eah suessive generation. The ombina-

tion of good harateristis from di�erent parents an sometimes produe highly �t

o�springs, whose �tness is greater than that of either parent. In this way, speies

evolve to beome more and more well suited to their environment.

The general struture of geneti algorithms is shown in algorithm (4).
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Algorithm 4 Pseudoode for geneti algorithms.

1: Set population size (pop), probability of rossover (pross), probability of mu-

tation (pmut), number of generations (gen)

2: Generate initial population P of solutions

3: for i = 1 to gen do

4: Evaluate eah individual's �tness

5: Initialise P ′ = ∅ (set of hildren)
6: for j =1 to

pop
2
do

7: Selet individuals xa and xb from P with probability proportional to their

�tness

8: Generate p1 and p2 from a uniform random variable U(0, 1)

9: if p1 > pross then

10: Apply rossover to xa and xb to produe xchilda and xchildb

11: else

12: xchilda = xa and x
child
b = xb

13: end if

14: if p2 > pmut then

15: Apply mutation to xchilda and xchildb

16: end if

17: P ′ = P ′ ∪ {xchilda , xchildb }
18: end for

19: P = P ′

20: end for
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A geneti algorithm maintains a population of solution andidates and works

as an iteration loop. First, an initial population is generated randomly. Eah in-

dividual in the population is an enoded form of a solution to the problem under

onsideration, alled a hromosome whih is usually a string of haraters or sym-

bols, e.g., a string of 0's and 1's (a binary string). The hromosomes evolve through

suessive iterations, alled generations. During eah generation, the hromosomes

are evaluated by a �tness evaluation funtion, g(·), and seleted aording to the �t-

ness values using a seletion mehanism, e.g., �tness-proportionate seletion, so that

�tter hromosomes have higher probabilities of being seleted. New hromosomes,

alled o�spring, are formed by either merging two seleted hromosomes from the

urrent generation using a rossover operator, or modifying a hromosome using a

mutation operator. Crossover results in the exhange of geneti material between

relatively �t members of the population, potentially leading to a better pool of solu-

tions. Mutation randomly introdues new features into the population to ensure a

more thorough exploration of the searh spae. A whole new population of possible

solutions is thus produed by seleting the best individuals from the urrent gener-

ation, and mating them to produe a new set of individuals. This new generation

ontains a higher proportion of the harateristis possessed by the good members

of the previous generation. In this way, over many generations, good harateristis

are spread throughout the population, being mixed and exhanged with other good

harateristis as they go. By favouring the mating of the more �t individuals the

population's average �tness will improve and most promising areas of the searh

spae are explored. If the GA has been designed well, the population will onverge

to a best hromosome approahing the optimal or near-optimal solution.

To use geneti algorithms, eah of the following must be developed:

Enoding sheme. In GAs, a population of andidate solutions is maintained

and manipulated by geneti operators. The solutions are enoded as hromosomes

(usually strings of haraters or symbols, e.g., binary strings, real number strings,

or symbol strings) to whih geneti operators an be applied. An enoding sheme

is needed to map andidate solutions into oded strings.

Initialization of population. The initialization is usually done randomly to

sample the searh spae uniformly without bias. A well-initialized population an

improve the algorithm's robustness and e�etiveness in �nding an optimal solution,

while a poorly-initialized population may trap the algorithm in loal optima and

make it hard to reah the global optimum.

Evaluation funtion. During the operation of geneti algorithms, all hro-

mosomes are evaluated to see how �t they are as solutions to the problem. An
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evaluation funtion is required to assign a �tness value to eah hromosome.

Seletion. The key priniple of Darwinian natural evolution theory is that �tter

individuals have a greater hane to reprodue o�spring, and it is by this priniple

of survival of the �ttest that speies evolve into better forms. In geneti algorithms,

the bias towards �tter individuals is ahieved through seletion. The objetive of

any seletion sheme is to statistially guarantee that �tter individuals have a higher

probability of seletion for reprodution. In a GA, seletion is arried out in two

di�erent stages: parent seletion and generational seletion. Parent seletion is the

step in whih individuals from the parent generation are seleted as parents to reate

o�spring. Generational seletion is arried out after a spei�ed number of o�spring

are generated. In general, the new generation is reated by seleting individuals from

both the parent generation and the o�spring generation. Most seletion shemes be-

long to the following two ategories: stohasti seletion and deterministi seletion.

For parent seletion, stohasti seletions are usually applied, and for generational

seletion, deterministi seletions are usually used. Fitness proportionate seletion

(roulette wheel and stohasti universal) and tournament seletion are two of the

most popular stohasti seletion algorithms. Proportionate seletion methods as-

sign probability to an individual aording to its �tness, and this an be problemati.

Indeed, if the �tness range is too large, then only a few good individuals will be se-

leted. This will tend to �ll the entire population with similar hromosomes and

will limit the ability of the GA to explore the searh spae. On the other hand, if

the �tness values are too lose to eah other, then the GA will tend to selet one

opy of eah individual, with only random variations in seletion. Consequently, it

will not be guided by small �tness variations and will be redued to random searh.

Fitness saling and Rank-based seletion are two alternative methods that have been

proposed to ompensate for these issues. Using �tness saling, the �tness of all par-

ents an be saled relative to some referene value, and proportionate seletion then

assigns seletion probability aording to the saled �tness values. Several saling

mehanisms have been proposed. In general, the saled �tness g
′

k derived from the

raw �tness gk for hromosome k an be expressed as g
′

k = G(gk): where the mapping

funtion G(·) transforms the raw �tness into saled �tness. The funtion G(·) may

take di�erent forms to yield di�erent saling methods, suh as linear saling, sigma

trunation, power law saling, et. For example, the 'sigma trunation saling' (e.g.,

Goldberg 1989) onsists in applying the normalization transform

gk
′

= gk − (ḡ − cσ) ,

where ḡ is the population mean, c is a suitable real positive onstant and σ
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the standard deviation, and in exluding the individuals with zero or negative �t-

ness from seletion. For detailed desription of saling methods, (see Gen & Cheng

(1997)).

Rank-based seletion methods utilize the indies of individuals when ordered a-

ording to �tness to alulate the orresponding seletion probabilities, rather than

using absolute �tness values (Baker 1987)).

Deterministi seletion shemes are usually used in generational seletion to se-

let individuals from both the parent generation and o�spring generation to reate

the next generation. Most GA implementation are based on the generational re-

plaement where the entire parent generation is replaed by their o�spring (i.e., the

o�spring generation is taken as the new generation, and the parent generation is

disarded after the o�spring generation is reated).

Crossover. One two hromosomes are seleted, the rossover exhanges parts of

their genes and generates two new strings that share harateristis of both original

hromosomes. Crossover is the most important geneti operator for a GA, and

it is the driving fore for exploration of the searh spae. The performane of

the GA depends to a great extent on the performane of the rossover operator

used (Holland 1975). Crossover operator is not typially applied for all parents

but it is applied with probability pcross whih is normally set equal to a value in

[0.6,1℄. During the last deades, a number of di�erent rossover operators have been

suessfully designed: single-point rossover, two-point rossover, uniform rossover,

non-geometri rossover et. A omparison of di�erent binary rossover operators

was undertaken in Eshelman et al. (1989), both theoretially and empirially. It was

found that none of them is the onsistent winner, and there was not more than 20%

di�erene in speed among the tehniques.

Mutation. After new individuals are generated through rossover, mutation is

applied with a low probability, pmut, to introdue random hanges into the popu-

lation. In a binary-oded GA, mutation means that, with a given probability pmut,

eah bit (gene) of eah string (hromosome) may hange its value from 0 to 1 or

vie versa, while in a nonbinary-oded GA, mutation involves randomly generating

a new value in a spei�ed position in the hromosome. In GAs, mutation serves the

ruial roles of replaing gene values lost from the population during the seletion

proess so that they an be tried in a new ontext, and of providing gene values

that were not present in the initial population. By introduing random hanges into

the population, more regions of the searh spae an be evaluated, and premature
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onvergene an be avoided. A variety of mutation operators have been proposed in

the literature: Flip Bit, uniform, non-uniform, Gausssian et.
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