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Chapter 1

Introduction

Data integration is the problem of combining data residing at different sources, and providing
the user with a unified view of these data [92, 96, 150, 108]. Such unified view is called global
schema: it represents the intensional level of the integrated and reconciled data, and provides
the elements for expressing user queries. In formulating the queries, the user is freed from the
knowledge on where data are, how data are structured at the sources, and how data are to be
merged and reconciled to fit into the global schema.

The interest in data integration systems has been continuously growing in the last years. The
recent developments of Computer and Telecommunication technology, such as the expansion of
the Internet and the World Wide Web, have made available to users a huge number of information
sources, generally autonomous, heterogeneous and widely distributed. As a consequence, infor-
mation integration has emerged as a crucial issue in many application domains, e.g., distributed
databases, cooperative information systems, data warehousing, data mining, data exchange, as
well as in accessing distributed data over the web. Nevertheless, state of the art techniques do
not properly support users in effectively gathering data relevant to achieve their aims.

Designing a data integration system is a very complex task, and is characterized by a number
of issues, including the following:

1. modelling a data integration system, i.e., how to define both the global schema, and the
relationships between the global schema and the sources;

2. materialized vs. virtual integration;

3. querying a data integration system, i.e., how to process queries expressed on the global
schema;

4. dealing with incomplete data sources;

5. dealing with inconsistent data sources;

6. dealing with limitations on accessing the sources;

7. data cleaning and reconciliation.

In the following we describe in details each of the above points.

1



2 Chapter 1: Introduction

1.1 Modelling Data Integration Systems

Sources that are to be integrated in a data integration system are typically heterogeneous, mean-
ing that they adopt different models and systems for storing data. This poses challenging prob-
lems in both representing the sources in a common format within the integration system, and
specifying the global schema. As for the former issue, data integration systems make use of suit-
able software components, called wrappers, that present data at the sources in the form adopted
within the system, hiding the original structure of the sources and the way in which they are
modelled. The representation of the sources in the system, is generally given in terms of a source
schema.

With regard to the specification of the global schema, the goal is to design it so as to provide
an appropriate abstraction of all the data residing at the sources. An aspect deserving special
attention is the choice of the language used to express the global schema. Since such a view
should mediate among different representations of overlapping worlds, the language should pro-
vide flexible and powerful representation mechanisms, i.e., it should allow for the specification of
several forms of integrity constraints.

However, the design of the global schema is not the only issue in modelling a data integration
system. Indeed, another crucial aspect is the definition of the mapping, i.e., the specification of
the relationship holding between the sources and the global schema. To this purpose, two basic
approaches have been proposed in the literature: the local-as-view (or simply LAV) approach,
and the global-as-view (or simply GAV) approach.

The LAV approach requires the global schema to be specified independently of the sources.
In turn, the sources are defined as views, i.e., queries, over the global schema [103, 1, 34]. In
particular, to each element of the source schema, a view over the global schema is associated.
Thus, in the local-as-view approach, we specify the meaning of the sources in terms of the
elements of the global schema. The following example, adapted from [111], shows a LAV system.

Example 1.1.1 Consider a relational global schema with the following relations:

movie(Title,Year ,Director)
european(Director)
review(Title,Critique)

The source schema consists of three source relations s1, s2, and s3: s1 stores title, year and
director of movies produced since 1960, while s2 stores title and critique of movies with European
director, and s3 stores European directors.

s1(Title,Year ,Director)
s2(Title,Critique)
s3(Director)

The LAV mapping is given by the following views (in this example we use conjunctive queries
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with arithmetic comparisons [2]):

s1(X, Y, Z) ← movie(X, Y, Z), (Y ≥ 1960)
s2(X,W ) ← movie(X, Y, Z), review(X, W ), european(Z)

s3(X) ← european(X)

Examples of LAV systems are Infomaster [59, 58], Information Manifold [103], and the system
presented in [125].

The GAV approach requires that the global schema is expressed in terms of the data sources.
More precisely, to every element of the global schema, a view over the data sources is associated,
so that its meaning is specified in terms of the data residing at the sources, as shown in the
following example.

Example 1.1.2 Consider a data integration system with source and global schemas as in Ex-
ample 1.1.1. The GAV mapping associates to each relation symbol of the global schema a view
over the sources as follows:

movie(X,Y, Z) ← s1(X, Y, Z)
european(X) ← s3(X)
review(X, Y ) ← s2(X, Y )

Examples of data integration systems based on GAV are TSIMMIS [80], Garlic [42], Squir-
rel [162], MOMIS [11], DIKE [134] and IBIS [25].

It should be easy to see that the LAV approach favors the extensibility of the integration
system, and provides a more appropriate setting for its maintenance. For example, adding a new
source to the system requires only to provide the definition of the source, and does not necessarily
involve changes in the global schema. On the contrary, in the GAV approach, adding a new
source typically requires changing the definition of the concepts in the global schema. On the
other hand, defining the views associated to the global elements implies precisely understanding
the relationships among the sources, that is in general a non-trivial task. A comparison between
the two approaches is reported in [150, 111, 108, 23].

A different approach could be to specify the mapping by combining LAV and GAV views
together. This approach, called global-local-as-view (GLAV), is more recent and has so far drawn
little attention in the literature. [78, 69, 70] are interesting examples of the GLAV approach.

1.2 Materialized vs. Virtual Integration

With respect to the data explicitly managed by a data integration system, it is possible to follow
two different approaches, called materialized and virtual. In the materialized approach, the
system computes the extensions of the structures in the global schema by replicating the data
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at the sources. In the virtual approach, data residing at the sources are accessed during query
processing, but they are not replicated in the integration system.

The materialized approach to data integration is the most closely related to Data Warehousing
[99, 55, 148, 34, 100]. In this context, data integration activities are relevant for the initial
loading and for the refreshing of the Warehouse, but not directly for query processing. Obviously,
maintenance of replicated data against updates to the sources is a central aspect in this context,
and the effectiveness of maintenance affects timeliness and availability of data. A näıve way to
deal with this problem is to recompute materialized data entirely from scratch in the presence
of changes at the sources. This is expensive and makes frequent refreshing impractical. The
study of the materialized data management is an active research topic that is concerned with
both the problem of choosing the data to be materialized into the global schema, and reducing
the overhead in the re-computation. However, an in-depth analysis of this problem is outside the
scope of this thesis and we refer the interested reader to [156, 97, 14].

As already said, in the virtual approach to data integration, sources are accessed on the
fly, i.e., each time a user query is posed to the system, since it provides the user only with a
virtual global schema, i.e., a schema whose extension is not stored, e.g., in a Data Warehouse.
Despite such differences, most of the issues that arise for the virtual approach, are relevant also
for the materialized approach: from the initial loading, where the identification of the relevant
data within the sources is critical, to the refreshment process, which may require a dynamic
adaptation depending on the availability of the sources, as well as on their reliability and quality
that may change over time. Moreover, the extraction of data from a primary Data Warehouse
for Data Mart applications, where the primary Warehouse is now regarded as a data source, can
be treated in a similar way.

In this thesis, we focus on the virtual approach. In particular we do not address the problem
of updates on the sources. However, according to the above discussion, our studies are relevant
to some extent for the materialized approach as well.

1.3 Querying Data Integration Systems

The problem of query processing is concerned with one of the most important issues in a data
integration system, i.e., the choice of the method for computing the answer to queries posed in
terms of the virtual global schema only on the basis of the data residing at the sources. The
main issue is that the system should be able to re-express such queries in terms of a suitable set
of queries posed to the sources, hand them to the sources, and assemble the results into the final
answer.

It is worth noticing that, whereas query processing in the LAV approach has been always
regarded as a difficult task, this problem has traditionally been considered much easier in the
GAV approach, where it has been assumed that answering a query means unfolding its atoms
according to their definitions on the sources. The reason can be seen in the fact that, in LAV,
the views in the mapping provide in general only a partial knowledge about the data that satisfy
the global schema, hence query processing is inherently a form of reasoning in the presence of
incomplete information [98, 1]. In other words, since several possibilities of populating the global
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schema with respect to the source extensions may exist, the semantics of a LAV system has to
be given in terms of several database instances for the global schema, which have to be taken
into account in processing a user query. We say that each such database satisfies the global
schema with respect to the mapping. Conversely, in GAV, the mapping essentially specifies a
single database for the global schema: evaluating the query over this database is equivalent to
evaluating its unfolding over the sources [80, 11].

Example 1.3.1 Consider again Example 1.1.2, and suppose we have the following user query:

q(X, Z) ← movie(X, 1998, Y ), review(X, Z)

asking for title and critique of movies produced in 1998. The unfolding produces the query

q(X,Z) ← s1(X, 1998, Y ), s2(X, Z)

The unfolded query can be directly evaluated on the sources, thus retrieving the answers.

In the LAV approach, query processing has been traditionally solved by means of query
rewriting, where query processing is forced to be performed in two steps: in the first step the
query is reformulated in terms of the views, and in the second the obtained query is evaluated
on the view extensions, i.e., a database instance for the source schema. In query rewriting we
want to reformulate the user query in terms of a fixed language referring to the alphabet used
for specifying the source schema; the problem is that, since such language is fixed, and often
coincides with the language used for the user query, there may be no rewriting that is equivalent
to the original query. To face this problem, works on the LAV approach have concentrated on
computing the maximally contained rewriting, that is the “best” possible rewriting, in the sense
that it contains all other rewritings for the given query.

Example 1.3.2 Consider again Example 1.1.1, and suppose to have the same user query of
Example 1.3.1:

q(X, Z) ← movie(X, 1998, Y ), review(X, Z)

A rewriting of such a query is

qr(X, Z) ← s1(X, 1998, Y ), s2(X, Z)

Indeed, the body of qr refers only to the source relations, and hence can be directly evaluated
over the source extensions. Moreover, if we unfold qr according to the view definitions we obtain
the following query over the global schema

qr(T, R) ← movie(T, 1998, D),movie(T, Y, D′), review(T,R), european(D′)

in which we deleted the atom 1998 ≥ 1960, which evaluate to true. It is immediate to verify that
qr is contained in q. Furthermore qr is th maximally contained rewriting.
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A different approach, more general than query rewriting, consists in not posing any limitation
on how the query is to be processed: all possible information, in particular the view extensions,
can be used now for computing the answers to the query. This approach is commonly called
query answering. We point out that the ultimate goal of query answering is to provide the
certain answers to a user query, i.e., compute the intersection of the answer sets obtained by
evaluating the query over any database that satisfies the global schema. Therefore, the notions
of query answering and query rewriting are different, and we cannot always conclude that the
evaluation on the sources of the maximally contained rewriting returns the certain answers to the
user query. Nonetheless, this property holds for the common and widely studied case in which
the views in the mapping are conjunctive queries [37]. Rewritings that are able to solve the query
answering problem are called perfect rewriting.

An accurate survey on query processing in both the LAV and the GAV approaches will
be given in Chapter 4. However, it is worth noticing since by now that more complex GAV
frameworks have been recently considered in the literature, in which the semantics of the system
is given in terms of a set of databases rather than the single database constructed according
to the mapping, and techniques for query answering have been proposed that are more involved
than simple unfolding [22, 24]. These approaches are tightly connected with the problem of query
processing under integrity constraints in the presence of incomplete data, which is addressed in
the next section.

1.4 Dealing with Incomplete Data

As already said, query processing in LAV has been traditionally considered a form of reasoning
in the presence of incomplete information. Hence, sources in LAV data integration systems are
generally assumed to be sound, but not necessarily complete, i.e., each source concept is assumed
to store only a subset of the data that satisfy the corresponding view on the global schema. Not
the same approach has been followed for processing queries in GAV, where, actually, the form
of the mapping straightforwardly allows for the computation of a global database instance over
which the user queries can be directly evaluated. Notice that proceeding in this way is analogous
to unfolding the user queries as described in the above section.

Example 1.4.1 Consider again Example 1.1.2, and suppose to have the following source exten-
sion D = {s1(Platoon, 1980, O. Stone), s3(F. Fellini)}, and a user query q(Z) ← movie(X, Y, Z)
asking for all the directors in the relation movie. It is easy, according to the GAV mapping,
to construct the global database B = {movie(Platoon, 1986, O. Stone), european(F. Fellini)}, over
which we evaluate the user query, thus obtaining the answer set {O. Stone}.

Answering a user query as done in the above example, actually means assuming that the views
in the mapping are exact, i.e., that they provide exactly the data that satisfy the corresponding
global relation. However, also in GAV systems it may happen that the sources provide only a
subset of the data that satisfy the corresponding relations in the global schema, hence views in
the mapping should be considered sound rather than exact. This becomes particularly relevant
when integrity constraints are specified on the global schema, as shown in [24, 20].
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Example 1.4.1 (contd.) Assume now that a constraint on the global schema schema imposes
that every director in the relation european is a director of at least one movie. Assume also that
the mapping is sound. In this case we know that Fellini is a director of at least one movie, even
if we do not know which is the movie and in which year it has been realized. Nonetheless, under
the sound assumption, the answer to our user query q asking for all directors should be now
{O. Stone, F. Fellini}.

The above example shows that in the presence of incomplete data with respect to integrity
constraints specified on the global schema, unfolding is in general not sufficient to answer a user
query in GAV, whereas reasoning on the constraints is needed in order to compute the certain
answers to the query. Moreover, it should be easy to see that reasoning on the constraints is
needed also in the LAV approach: consider again Example 1.1.1, where now integrity constraints
on the global schema, user query and source extensions are as in Example 1.4.1; without taking
into account the inclusion dependency, we would not get the certain answers also in this case.

In conclusion, in order to model complex data integration scenarios, the specification of
different forms of integrity constraints on the global schema should be allowed, and different
assumptions on the mapping should be enabled, in both the LAV and the GAV framework.
Roughly speaking, such assumptions indicate how to interpret the data that can be retrieved
from the sources with respect to the data that satisfy the corresponding portion of the global
schema, and allow for different forms of reasoning on the constraints.

1.5 Dealing with Inconsistent Data

In the above section we have dealt with the problem of query answering in the presence of incom-
plete information, and we have shown that, in this setting, some forms of integrity constraints
expressed on the global schema, e.g., inclusion dependencies as in Example 1.4.1, allow us to
deduce missing information that is needed to compute certain answers to user queries. In such a
situation, the violation of an inclusion dependency cannot be considered a “real” inconsistency,
since data migrating form the sources through the global schema can be actually reconciled in
the global schema in such a way that both the constraints and the assumption on the mapping
are satisfied.

Of course, situations arise in which this does not happen. Consider, for instance, the case in
which the mapping is sound and a key dependency is violated on a relational global schema: the
soundness assumption on the mapping does not allow us to disregard tuples with duplicate keys,
hence the data are inconsistent with respect such constraint.

This is a common situation in data integration, since integrity constraints are not related
to the underlying data sources, but they are derived from the semantics of the global schema,
or, in other words, from the real world. Hence, we cannot expect independent and autonomous
data sources to produce data which respect these constraints. On the other hand, since most
of the data could satisfy such constraints, it seems unreasonable to consider the entire system
inconsistent.
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Classical assumptions on the views do not allow us to properly handle data inconsistency,
since they generally lead to a situation in which no global database exists that satisfy both
the integrity constraints and the assumption on the mapping, and it is not possible to provide
meaningful answers to user queries. Conversely, we need now a characterization that allows
us to get consistent answers from inconsistent data integration systems. A possible solution
to this problem is to characterize the semantics of a data integration system in terms of those
databases that satisfy the integrity constraints on the global schema, and approximate “at best”
the satisfaction of the assumptions on the mapping, i.e., that are as close as possible to the
semantics interpretation of the mapping.

The semantic problem that arises in this context is similar to the one underlying the notion
of database repair introduced by several works in the area of inconsistent databases [71, 17, 7,
8, 123, 57, 86]. Such works propose techniques aiming to both repair databases, i.e, obtaining
consistent database instances from inconsistent ones, and compute consistent query answers from
inconsistent databases.

We point out that such studies basically apply to a single database setting [71, 17, 7, 8], and
that almost all the proposed techniques can be employed in a data integration setting only by as-
suming that the mapping is GAV and views in the mapping are exact [123, 57, 86]. Only recently,
data inconsistency in a LAV data integration setting has been studied in [13, 16]. Furthermore, in
all mentioned works, the methods proposed for consistent query answering basically apply only to
the class of “universally quantified constraints” [2]. Two exceptions are [86], where a preliminary
study on existentially quantified inclusion dependencies is presented, and [16], where, however,
the same problem is tackled under restricted assumptions. No other proposals explicitly deals
with the problem of query answering in data integration systems with inconsistent data sources:
actually, the current integration methodologies deal with inconsistency in a preliminarily data
cleaning and reconciliation phase, in which all inconsistencies are “cleaned”, by ad-hoc updating
algorithms. Therefore, query answering is performed when data are consistent. We will briefly
discuss this matter in Section 1.7.

1.6 Source Access Limitations

Both in the LAV and in the GAV approach, it may happen that a source presents some limitations
on the types of accesses it supports. A typical example is a web source accessible through a
form where one of the fields must necessarily be filled in by the user. This can be modelled
by specifying the source as a relation supporting only queries with a selection on a column.
Suitable notations have been proposed for such situations [143], and the consequences of these
access limitations on query processing in integration systems have been investigated in several
papers [143, 121, 77, 159, 126, 62, 119, 21].

Generally speaking, to answer queries over such sources one generally needs to start from a
set of constants (provided e.g., by the user filling in a form, or taken from a source without access
limitations) to bind attributes. Such bindings are used to access sources and there obtain new
constants which in turn can be used for new accesses, as shown in the following example, taken
from [20].
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Example 1.6.1 Suppose we have two sources with access limitations, say s1 and s2. Source
s1 stores information about cars: given a person (required constant), s1 provides model, plate
number, and color of the cars owned by the person. Source s2 provides a list of persons with
their address. Suppose we are searching for all the plate numbers of Ferrari’s. Accessing only
source s1, where the information of interest is stored, is impossible, because we do not know any
name of a car owner. But we can retrieve owner names from s2, use them to query s1, and select
from the obtained tuples those in which the car model is Ferrari.

The example above shows how apparently useless sources can be exploited by retrieving from
them values that are used to access other sources. In general, query answering in the presence of
access limitations requires the evaluation of a recursive query plan, as shown in [62] for the LAV
approach and in [119] for the GAV approach.

Since source accesses are costly, an important issue is how to minimize the number of accesses
to the sources while still being guaranteed to obtain all possible answers to a query. [119, 120]
discuss several optimizations that can be made at compile time, during query plan generation.
The basic idea is to exploit knowledge about the sources expressed by means of integrity con-
straints over the source schema in order to detect unnecessary source accesses. The technique
works for a subclass of the conjunctive queries. In [21], a more general technique is presented that
applies to the class of conjunctive queries: besides the integrity constraints on the sources, also
the tuples extracted from the sources are taken into account so as to infer information necessary
to avoid useless accesses.

In this thesis we do not deal with the problem of limitations in accessing data sources. For
more details on this matter we refer the reader to [143, 77, 20].

1.7 Data Cleaning and Reconciliation

Data retrieved from the sources have to be reconciled, converted and combined in order to make
them fit into the structures of the global schema. This is especially true when the sources are
independent on each other, and they are not under the control of the integration system. Data
Cleaning and Reconciliation refers to a number of issues arising when considering integration at
the extensional/instance level.

A first issue in this context is the interpretation and merging of the data provided by the
sources. Interpreting data can be regarded as the task of casting them into a common repre-
sentation. Moreover, the data returned by various sources need to be converted and merged to
provide the data integration system with the requested information. Accordingly, data cleaning
problems can be grouped in two main categories: differences in representation of the same data
and invalid data.

(i) When gathering information from different data sources, it is likely that the same infor-
mation is represented in different ways in different sources. [142] identifies three main
categories of such conflicts. Naming conflicts arise when the same name is used for dif-
ferent objects, or when different names are used for the same object. Structural conflicts
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are more general, and occur when the difference in the representation lies in the structure
of the representation itself. Examples of structural conflicts are the use of different data
formats in different sources for the same field, or the fact that data that are represented by
more than one field in a source may be represented in a single field in another one. Other
structural conflicts, in the relational model, are due to different relational modelling in dif-
ferent sources, e.g., attribute vs. relation representation, different data types, etc. Finally,
data conflicts appear only at the instance level, and are mainly related to different value
representations. For example, the currency may be expressed in Japanese Yen in a source
and in German Marks in another.

(ii) Invalid data can be caused by extracting data from multiple sources, or they can exist in
a single source, due to incorrect data entries. A slightly more complex problems is due to
inconsistencies among different fields of the same record; for example, a record regarding
a person may have the value “12 December 1973” for the date of birth and the value
“12” for the age. Violation of functional dependencies within a table is another typical
example of such inconsistencies. We have already discussed this problem when considering
incomplete and inconsistent data with respect to integrity constraints expressed on the
global schema of an integration system. In particular we have faced the problem from a
“semantic” point of view, in the same spirit of several works on reasoning in the presence
of incomplete information and on inconsistent databases. We point out here that such
“semantic approach” can be seen as an alternative to using data cleaning techniques, in
general based on heuristics and characterized by a more pragmatic spirit [15].

A major problem in data cleaning is that of overlapping data [95, 130, 131, 144, 132], also
referred as duplicate elimination problem or merge/purge problem. This problem arises when
different records of data representing the same real-world entity are gathered in a data integration
system. In this case, duplicates have to be detected and merged. Most efforts in data cleaning
have been devoted to the solution of the duplicate detection problem, which proves to be a central
issue.

In [95, 131] methods are proposed which are based on the use of a sliding windows moving
along an ordered list of records to be analyzed: a key is associated to each record and records
in the windows having the same key are merged into a single record. Obviously, these methods
heavily depends on the sorting, and therefore on the key, both based on heuristics.

An alternative to window scan consists in partition the records in clusters, where in each
cluster records are stored, that match each other according to a certain criterion (see, e.g., [131]).
Duplicate elimination can be performed on each cluster separately, and in parallel.

Finally, knowledge-based approaches have been used in data cleaning [79, 124]. This ap-
proaches favor the use of declarative specifications for the matching operations. However, human
validation and verification of the results is in general needed at the end of the data cleaning
process.

In this thesis, we will not deal with all the aspects of the problem of data cleaning and
reconciliation, but we will concentrate on the problem of invalid data with respect to integrity
constraints on the global schema. As already said, our approach can be seen to some extent as
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a “semantic” data cleaning.

1.8 Contribution of the Thesis

This thesis addresses the topic of data integration from several points of view, and faces many
of the issues that we have analyzed so far in this introduction. We briefly summarize in the
following the main contributions we provide.

(i) First of all, we address the task of modelling data integration systems, described in Section
1.1, and provide a comprehensive formal framework which allows for the specification of
powerful forms of integrity constraints on the global schema, and of both LAV and GAV
mappings between the global schema and the sources. More specifically, we consider a
setting in which both the sources and the global schema are relational, and it is possible
to define on the global schema classical Key Dependencies (KDs), Inclusion Dependencies
(IDs), expressing that (a projection of) a relation is included in (a projection of) another
relation, and Exclusion Dependencies (EDs), expressing that two relations (or projections
on them) are disjoint.

It is worth noticing that, even if described in terms of the relational model, our framework
can be easily generalized in order to classify all data integration approaches found in the
literature that are based on the design of a global schema [31].

(ii) We consider data sources that may result incomplete or inconsistent with respect the in-
tegrity constraints allowed in our framework. To properly deal with such scenario, we first
consider three classical assumptions on the mapping (either LAV or GAV): besides the
sound and exact assumptions that we have described in Section 1.4, we also consider the
complete assumption, adopted when data that can be retrieved at the sources are complete
with respect to the satisfaction of the corresponding portion of the global schema, but are
not necessarily sound. Then, in the spirit of the works on inconsistent databases, we in-
troduce suitable relaxations of such assumptions, thus defining the loose semantics, which
allow us also to deal with inconsistent data.

( iii) For both strict and loose semantics, we study non-trivial cases of query answering un-
der constraints: we identify the frontier between decidability and undecidability for this
problem, and we establish the computational complexity of the decidable cases. More
specifically, for KDs and IDs specified on the global schema, we first show undecidability of
query answering in the general case, and then we define the maximal class of IDs for which
query answering is decidable. We call such IDs non-key-conflicting inclusion dependencies
(NKCIDs). An interesting property of NKCIDs is that they do not interact with KDs,
therefore they can be processed separately from the KDs in order to provide certain an-
swers to user queries. Then, the question arises if also in the presence of EDs the separation
property holds. We show that actually EDs preserve such property, and that we can solve
query answering by separately taking into account the set of IDs and the set of KDs and
EDs that are logical consequence of the IDs and the original EDs.
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(iv) We provide a sound and complete query rewriting technique for the GAV framework un-
der the loosely-sound semantics, a suitable relaxation of the sound semantics that allows
for consistent query answering of incomplete and inconsistent data. In our technique, the
integrity constraints and the user query are intensionally compiled in function-free logic pro-
gram, which is then evaluated over the source extensions. We point out that the treatment
of integrity constraints is strongly modular, since it is based on the separation property de-
scribed at point (iii). In particular, the logic program we produce is a union of conjunctive
queries if the data retrieved at the sources are consistent with KDs and EDs, otherwise it is
a Datalog¬ program, a well-known extension of Datalog that allows for the use of negation
in the body of the rules [105, 67]. In the latter case, the query has to be evaluated by a
stable model engine, such as DLV [109] or Smodels [133].

(v) We provide a sound and complete query rewriting technique under the sound semantics
in the LAV framework. More specifically, we define an off-line compiling technique that,
starting from a LAV system specification, produces the specification of a GAV system which
is query-equivalent to the initial LAV system. After such a compilation, we can reuse the
query processing technique defined for GAV systems also in the LAV case.

(vi) We define optimization techniques for speeding up the evaluation over large databases of
the logic programs produced in the rewriting phase. Indeed, a drawback of this approach
is that with current implementations of stable model engines the evaluation of queries over
large data sets quickly becomes infeasible because of lacking scalability. This calls for
suitable optimization methods [16]. We point out that the technique that we propose here
apply also to the class of universally quantified constraints (in the absence of existentially
quantified IDs).

(vii) Finally, we present the DIS@DIS system, a data integration prototype incorporating tech-
niques described in the thesis. A first version of the system has been released [27], and the
first experiments are very encouraging.

To the best of our knowledge, our work is the first to provide a thorough analysis of data
integration (both in the GAV and in the LAV approach) in the presence of KDs, EDs, and cyclic
IDs. Moreover, our prototype represents the first implementation of query processing techniques
in the presence of incomplete and inconsistent data.

It is worth noticing that the intensional and modular characteristics of our techniques greatly
simplified the implementation of the algorithm and the architecture of our system, in which com-
ponents for query processing are decoupled from the extensional layer devoted to the extraction
of the data from the sources.

Finally, we point out that the classes of dependencies studied in this thesis, i.e., IDs, KDs
and EDs, are the kinds of constraints specified on relational schemas that are constructed on the
basis of Entity Relationship (ER) specifications of the domain of interest. Furthermore, these
dependencies represent the core constraint language of the ER model itself, and hence integrating
data in the presence of such constraints can be seen as a first step towards the integration of
(simple) ontologies.
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1.9 Organization of the Thesis

The thesis is organized as follows. In Chapter 2 we present some theoretical background. In
particular, we illustrate the query languages which we deal with in the thesis, present the basic
notions of the relational model, and the computational complexity theory. In Chapter 3 we
present a formal framework for data integration which is based on the relational model with
integrity constraints described in Chapter 2. We also provide a definition of our loose semantics
for inconsistent data. In Chapter 4 we survey the most important query processing algorithms
proposed in the literature for LAV, and we describe the principal GAV data integration systems
and the form of query processing they adopt. Part of this material has been published in [28].
In Chapter 5 we study decidability and complexity of query answering when inclusion, key and
exclusion dependencies are expressed on the global schema. For the sake of clarity, in this chapter
we abstract from the integration context, and address the problem in a single database setting.
The results provided in this chapter extend our previous studies presented in [29]. In Chapter 6,
we study query answering and rewriting in GAV data integration systems. We generalize to this
framework undecidability and complexity results obtained in Chapter 5, and provide effective
algorithms for query answering by rewriting under the loosely-sound semantics. A preliminary
version of this material appeared in [107, 30]. In Chapter 7, we address the LAV framework. We
extend here to the LAV case the undecidability and complexity results of Chapter 5, and provide
effective algorithms for query answering and rewriting in LAV data integration systems under
the sound semantics. In Chapter 8, we provide techniques for the efficient evaluation of logic
programs modelling query answering in data integration systems. This chapter is a (slightly)
extended version of [63]. In Chapter 9 we present the DIS@DIS system. The material in this
chapter is based on [26]. Finally, Chapter 10 concludes the thesis.
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Chapter 2

Theoretical Background

In this chapter we recall some theoretical notions that will be useful for following discussions.
In particular, we illustrate the classes of queries which we deal with in the thesis, present the
basic notions of the relational model, on which we will construct our formal framework for data
integration, and briefly recall the complexity classes that will be mentioned in the thesis. This
chapter is intended to be a brief introduction to such matters, while an exhaustive treatment of
them is out of our scopes. For further background we refer the reader to [82, 2, 136].

2.1 Query Languages

A term is either a variable or a constant. An atom is an expression p(T1, . . .,Tn), where p is a
predicate (relation) of arity n and T1, . . . , Tn are terms.

A Datalog¬ rule ρ is an expression of the form

r(~u) ← r1(~u1), . . . , rk(~uk), not rk+1(~uk+1), . . . , not rk+m(~uk+m) (2.1)

where k,m ≥ 0, r(~u), r1(~u1), · · · , rk+m(~uk+m) are atoms, and there do not exist 1 ≤ i ≤ k and
k + 1 ≤ j ≤ k + m such that ri = rj (i.e., the rule is consistent). Each variable occurring in
~u must occur in at least one of ~u1, . . . , ~uk+m (i.e., the rule is safe). r(~u) is the head of the
rule, denoted head(ρ), while the conjunction r1(~u1), . . . , not rk+m(~uk+m) constitutes the body,
denoted body(ρ). The number of terms in ~u is the arity of ρ. If ~u is empty, the arity is 0 and
the rule is boolean. Variables in head(ρ) are called distinguished variables, whereas variables
appearing only in body(ρ) are called non-distinguished variables. If k + m = 0, the rule is called
fact, and we omit the “←” sign. If k 6= 0 and m = 0 then ρ is a positive Datalog (or simply a
Datalog) rule, also called conjunctive query (CQ). A literal l is either an atom p, or a negated
atom not p. In the former case l is positive, in the latter l is negative.

A Datalog¬ program P is a finite set of Datalog¬ rules. P is a positive Datalog (or simply, a
Datalog) program, if all its rules are positive. We can associate the program P with a labelled
graph G = 〈V,E〉, where the set of vertices V coincides with the set of predicates appearing in
P, and E is the set of edges. An edge from r to s belongs to E if and only if there exists a

15
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rule ρ in P such that r is the predicate in head(ρ) and s appears in a literal ls in body(ρ). If
ls is positive the edge is labelled with p, whereas if ls is negative the edge is labelled with n. If
every cycle in G comprises only edges labelled with p, the program P is said stratified Datalog¬

program, denoted Datalog¬s . Furthermore, if the graph G is acyclic, P is said non-recursive
A (positive) non-recursive Datalog program in which all the rules present the same head

predicate is a also called union of conjunctive queries (UCQ), and is often written in the form

r(~u) ← conj 1(~u, ~w1) ∨ · · · ∨ conjm(~u, ~wm) (2.2)

where for each i ∈ {1, . . . ,m} conj i(~u, ~wi) is a conjunction of atoms.
Predicate symbols in P can be either extensional (EDB predicates), i.e., defined by the facts

of a database (see Section 2.2), or intensional (IDB predicates), i.e., defined by the rules of the
program.

For any program P, let UP (the Herbrand Universe) be the set of all constants appearing in
P (if no constants appear in P, UP contains an arbitrary constant). A substitution of variables σ

is a finite set of the form σ = {X1 → T1, . . . , Xn → Tn} where each Xi is a variable and each Ti

is a term, and the variables X1, . . . , Xn are distinct. For each i we say that Xi and Ti unify in σ.
Given a set of atoms D (resp. a rule ρ, a program P) we indicate with σ(D) (resp. σ(ρ), σ(P))
the set obtained from D (resp. ρ, P) by simultaneously replacing each occurrence of Xi with Ti.
A term (resp. an atom, a literal, a rule or a program) is ground, if no variables occur in it. For
any rule ρ in P, ground(ρ) denotes the set of rules obtained by applying all possible substitutions
from the variables in ρ to elements of UP . Let BP be the set of all ground literals constructible
from the predicate symbols appearing in P and the constants of UP . An interpretation for P is
any subset of BP . The value of a ground positive literal g w.r.t. an interpretation I, valueI(g), is
true if g ∈ I and false otherwise. The value of a ground negative literal not g is not valueI(g).
The truth value of a conjunction of ground literals C = g1, . . . , gn is the minimum over the values
of the gi, i.e. valueI(C) = min({valueI(gi) | 1 ≤ i ≤ n}). If n = 0, valueI(C) = true. A ground
rule ρ is satisfied by I if head(ρ) ≥ body(ρ). An interpretation M for P is a model of P if M

satisfies all ground rules of P, denoted by ground(P).
Let P be a positive Datalog program, the model-theoretic semantics assigns to P the set

MM(P) of its minimal models, where a model M for P is minimal, if no proper subset of M is
a model for P.

The stable model semantics applies also to programs with negation. The reduct of a ground
program P w.r.t. a set X ⊆ BP is the positive ground program PX , obtained from P by

• deleting each rule having a ground literal not p, such that p is in X;

• deleting the negative body from the remaining rules.

An interpretation M is a stable model of P if and only if M ∈ MM(PM ). The set of stable
models of P in denoted by SM(P)

It is well-known that for positive programs minimal models and stable models coincide, and
that positive (resp. stratified) programs have a unique minimal (resp. stable) model.
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In the following, given a Datalog¬ program P, and a set of facts D that represent the extension
of EDB predicates (i.e., facts of a database), we indicate with PD the union P ∪D, and say that
PD is the evaluation of P over D.

2.2 The Relational Model

We consider to have an infinite, fixed database domain U whose elements can be referenced by
constants c1,. . . , cn under the unique name assumption, i.e., different constants denote different
real-world objects.

A relational schema (or simply schema) RS is a pair 〈Ψ, Σ〉, where:

• Ψ is a set of predicates or relations, each with an associated arity that indicates the number
of its attributes. The attributes of a relation r ∈ Ψ of arity n (denoted as r/n) are
represented by the integers 1, . . . , n;

• Σ is a set of integrity constraints expressed on the relations in Ψ, i.e., assertions on the
relations in Ψ that are intended to be satisfied by database instances.

A database instance (or simply database) DB for a schema RS = 〈Ψ, Σ〉 is a set of facts of
the form r(t) where r is a relation of arity n in Ψ and t is an n-tuple of constants of U . We
denote as rDB the set {t | r(t) ∈ DB}. A database DB for a schema RS is said to be consistent
with RS if it satisfies all constraints expressed on RS. The notion of satisfaction depends on
the type of constraints defined over the schema.

The integrity constraints that we consider are inclusion dependencies (IDs), functional depen-
dencies (FDs), key dependencies (KDs) and exclusion dependencies (EDs). Some other minor
classes of constraints will be introduced when needed. More specifically,

• an inclusion dependency is an assertion of the form r1[A] ⊆ r2[B], where r1, r2 are relations
in Ψ, A = A1, . . . , An (n ≥ 0) is a sequence of attributes of r1, and B = B1, . . . , Bn is a
sequence of distinct attributes of r2. Therefore, we allow for repetition of attributes in the
left-hand side of the inclusion1. A database DB for RS satisfies an inclusion dependency
r1[A] ⊆ r2[B] if for each tuple t1 ∈ rDB1 there exists a tuple t2 ∈ rDB2 such that t1[A] =
t2[B], where t[A] indicates the projection of the tuple t over A;

• a functional dependency is an assertion of the form r : A → B2, where r is a relation in
Ψ, A = A1, . . . , An, is a sequence of distinct attributes of r, and B is an attribute of r. A
database DB for RS satisfies a functional dependency r : A → B if for each t1, t2 ∈ rDB

such that t1[A] = t2[A] we have that t1[B] = t2[B];

• a key dependency is an assertion the form key(r) = A, where r is a relation in Ψ, and
A = A1, . . . , An is a sequence of distinct attributes of r. A database DB for RS satisfies

1Repetitions in the right hand side force equalities between attributes of the relation in left hand side, hence

they imply constraints that we do not study in the thesis. See [43, 128] for more details on these dependencies.
2Functional dependencies are given in normal form [2], i.e., with a single attribute in the right-hand side.

Non-normal form FDs can be always expressed by means of a set of FDs in normal form.
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a key dependency key(r) = A if for each t1, t2 ∈ rDB with t1 6= t2 we have t1[A] 6= t2[A].
We assume that at most one key dependency is specified for each relation;

• an exclusion dependency is an assertion of the form (r1[A]∩r2[B]) = ∅, where r1 and r2 are
relations in Ψ, A = A1, . . . , An and B = B1, . . . , Bn are sequences of attributes of r1 and r2,
respectively. A database DB for RS satisfies an exclusion dependency (r1[A] ∩ r2[B]) = ∅
if there do not exist two tuples t1 ∈ rDB1 and t2 ∈ rDB2 such that t1[A] = t2[B].

Notice that KDs are particular FDs, and thus they could be expressed in the form that we
use for FDs. However, since the class of KDs plays a crucial role in our framework, we make use
of the different notations described above.

Sets of inclusion, functional, key and exclusion dependencies expressed on the database
schema are denoted by ΣI , ΣF , ΣK , and ΣE , respectively. Furthermore, we use RS =
〈Ψ,ΣI ,ΣK , ΣE , ΣF 〉 as a shortcut for RS = 〈Ψ, ΣI ∪ ΣK ∪ ΣE ∪ ΣF 〉. In the absence of some
kind of dependencies, we disregard the corresponding symbol. When a database DB satisfies all
dependencies in Σ (resp. ΣI , ΣF , ΣK , or ΣE), we say that DB is consistent with Σ (resp. ΣI ,
ΣF , ΣK , or ΣE).

Finally, a relational query (or simply query) over RS is a formula (generally expressed in a
language which amounts to a fragment of Datalog¬) whose EDB predicates are relations in Ψ.
Each query q is intended to extract a set of tuples of constants of U , thus q has an associated
arity that indicates the number of constants of each tuple.

2.3 Complexity Classes

We assume that the reader is familiar with the basic notions of computational complexity, and
NP-completeness [136, 81]. PA (NPA) is the class of problems that are solved in polynomial time
by a deterministic (nondeterministic) Turing machine using an oracle for A, i.e., that solves in
constant time any problem in A. Furthermore, co-A is the class of problems that are complement
of a problem in A. The classes Σp

k and Πp
k of the Polynomial Hierarchy are defined as follows:

Σp
0 = Πp

0 = P and for all k ≥ 1, Σp
k = NPΣp

k−1 and Πp
k = co-Σp

k

In particular Σp
2 = NPNP , and Πp

2 = co-Σp
2, i.e., Σp

2 is the class of problems that are solved
in polynomial time by a nondeterministic Turing machine that uses an NP-oracle, and Πp

2 is the
class of problems that are complement of a problem in Σp

2. Finally, PSPACE (NPSPACE) is
the class of problems that can be solved by a deterministic (nondeterministic) Turing machine
that uses a polynomially bounded amount of memory. By Savitch’s theorem [146] it follows
that PSPACE=NPSPACE (the theorem actually applies to a much more general class of space
bounds).

In this thesis we consider the complexity of the query languages described in Section 2.1 in
different relational settings. In particular we address two kinds of complexity [153]:

• the data complexity, which is the complexity with respect to the size of the underlying
database instance, i.e., when the relational query and the schema are considered fixed
whereas the database instance is considered as an input to the problem, and
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• the combined complexity, which is the complexity with respect to the size of the database
instance, the query and the schema, i.e., when the query, the schema and the database are
considered as the input to the problem3.

3The query (or expression, schema) complexity, which is the complexity with respect to the query and the

schema (but not the database) is not addressed in this thesis.
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Chapter 3

Formal Framework for Data

Integration

Informally, a data integration system consists of a (virtual) global schema, which specifies the
global (user) elements, a source schema, which describes the structure of the sources in the
system, and a mapping, which specifies the relationship between the sources and the global
schema. User queries are posed on the global schema, and the system provides the answers to
such queries by exploiting the information supplied by the mapping and accessing the sources
that contain relevant data. Thus, from the syntactic viewpoint, the specification of an integration
system depends on the following parameters:

• The form of the global schema, i.e., the formalism used for expressing global elements
and relationships between global elements. Several settings have been considered in the
literature, where, for instance, the global schema can be relational [83], object-oriented
[11], semi-structured [125], based on Description Logics [103, 33], etc.;

• The form of the source schema, i.e., the formalism used for expressing data at the sources
and relationships between such data. In principle, formalisms commonly adopted for the
source schema are the same mentioned for the global schema;

• The form of the mapping. Two basic approach have been proposed in the literature, called
respectively global-as-view (GAV) and local-as-view (LAV) [111, 150, 108] . The GAV
approach requires that the global schema is defined in terms of the data sources: more
precisely, every element of the global schema is associated with a view, i.e., a query, over
the sources, so that its meaning is specified in terms of the data residing at the sources.
Conversely, in the LAV approach, the meaning of the sources is specified in terms of the
elements of the global schema: more exactly, the mapping between the sources and the
global schema is provided in terms of a set of views over the global schema, one for each
source element;

• The language of the mapping, i.e., the query language used to express views in the mapping;

21



22 Chapter 3: Formal Framework for Data Integration

• The language of the user queries, i.e., the query language adopted by users to issue queries
on the global schema.

Let us now turn our attention on the semantics. According to [108], the semantics of a data
integration system is given in terms of instances of the elements of the global schema (e.g., one
set of tuples for each global relation if the global schema is relational, one set of objects for
each global class if it is object-oriented, etc.). Such instances have to satisfy (i) the integrity
constraints expressed between elements of the global schema, and (ii) the mapping specified
between the global and the source schema.

Roughly speaking, the notion of satisfying the mapping depends on how the data that can be
retrieved from the sources are interpreted with respect to the data that satisfy the corresponding
portion of the global schema. Three different assumptions have been considered for such inter-
pretation: the assumption of sound mapping, adopted when all data that can be retrieved at
the sources satisfy the corresponding portion of the global schema but may result incomplete;
the assumption of complete mapping, adopted when no data other than those retrieved at the
sources satisfy the corresponding portion of global schema, i.e., they are complete but not all
sound; the assumption of exact mapping, when data are both sound and complete.

In the following we provide a precise characterization of the concepts informally explained
above. In particular, we consider a relational setting, i.e., the global and the source schema
are expressed in the relational model. Nonetheless, our framework can be easily generalized to
different data models.

3.1 Syntax

A data integration system I is a triple 〈G,S,M〉, where:

• G is the global schema expressed in the relational model with inclusion, key and exclusion
dependencies, i.e., G = 〈Ψ, Σ〉, where Σ = ΣI ∪ ΣK ∪ ΣE ;

• S is the source schema expressed in the relational model without integrity constraints,
i.e., S = 〈ΨS , ∅〉. Dealing with only relational sources is not restrictive, since we can
always assume that suitable wrappers present sources in the relational format. Furthermore,
assuming that no integrity constraint is specified on S is equivalent to assuming that data
satisfy constraints expressed on the sources in which they are stored. This is a common
assumption in data integration, because sources are in general autonomous and external to
the integration system, and satisfaction of constraints at the sources should be guaranteed
by local data management systems;

• M is the mapping between G and S. In our framework we consider both the GAV and the
LAV mapping. More precisely,

– the GAV mapping is a set of assertions of the form 〈rG , qS〉, where rG is a global
relation and qS is the associated query over the source schema S. In this thesis, we
study the setting in which the language used to express queries in the GAV mapping
is non-recursive Datalog¬;
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– the LAV mapping is a set of assertions of the form 〈rS , qG〉, where rS is a source
relation and qG is the associated query over the global schema G. In this thesis, we
study the setting in which queries in the LAV mapping are Conjunctive Queries.

Finally, a query over I (also simply called user query in the following) is a formula that specifies
which data to extract from the integration system. Each user query is issued over the global
schema G, and we assume that the language used to specify user queries is Union of Conjunctive
Queries.

3.2 Semantics

Intuitively, to define the semantics of a data integration system, we have to start with a set of
data at the sources, and we have to specify which are the data that satisfy the global schema
with respect to such data at the sources, according to the assumption adopted for the mapping.
Thus, in order to assign the semantics to a data integration system I = 〈G,S,M〉, we start
by considering a source database for I, i.e., a database D for the source schema S. Then, we
consider the assumption on M, and denote it with as(M), and pose as(M) = s, c, or e, for the
sound, complete, and exact assumption, respectively.

Based on D and as(M), we now specify what the information content of the global schema
G is. We call any database B for G a global database for I. Formally, the semantics of I w.r.t.
D and as(M), is the set of global databases B for I such that:

(i) B is consistent with G;

(ii) B satisfies as(M) with respect to D, i.e.,

– if M is GAV, B satisfies as(M) if for each assertion 〈rG , qS〉 ∈ M we have that

(a) rBG ⊇ qDS if as(M) = s;

(b) rBG ⊆ qDS if as(M) = c;

(c) rBG = qDS if as(M) = e;

– if M is LAV, B satisfies as(M) if for each assertion 〈rS , qG〉 ∈ M we have that

(a) rDS ⊆ qBG if as(M) = s;

(b) rDS ⊇ qBG if as(M) = c;

(c) rDS = qBG if as(M) = e;

Intuitively, in GAV (and in LAV) the three different assumptions allow us to model different
situations in which queries over S (resp. relations in S) provide (a) any subset of tuples that
satisfy the corresponding relation in G (resp. query over G), (b) any superset of such tuples, or
(c) exactly such tuples.

The semantics of I w.r.t. D and as(M), is denoted with semas(M)(I,D), where as(M) =
s, c, e respectively for the sound, complete, or exact assumption. Obviously, semas(M)(I,D)
contains in general several global databases for I.
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Finally, we give the semantics of queries. Formally, given a source database D for I and an
assumption as(M) on M, we call certain answers (or simply answers) to a query q of arity n

with respect to I, D and as(M), the set

ansas(M)(q, I,D) = {〈c1, . . . , cn〉 | 〈c1, . . . , cn〉 ∈ qBfor each B ∈ semas(M)(I,D) }

The problem of query answering is the problem of computing the set ansas(M)(q, I,D). It
should be easy to see that query answering in data integration systems is essentially a form of
reasoning in the presence of incomplete information [152].

Example 3.2.1 Consider the relational schema G0 = 〈Ψ0, Σ0〉 where Ψ0 contains the two rela-
tions1 player(Pname,Pteam) and team(Tname,Tcity), and Σ0 contains the ID player [Pteam] ⊆
team[Tname], stating that every player is enrolled in a team of a city.

GAV mapping. Let us first construct a GAV data integration system in which G0 is the
global schema, i.e., let us consider IG = 〈G0,SG,MG〉, where SG contains three binary relations
s1, s2 and s3, and the mapping MG is as follows:

〈player , player(X, Y ) ← s1(X, Y )
player(X, Y ) ← s2(X, Y )〉

〈team, team(X, Y ) ← s3(X,Y )〉.

Assume to have the source database DG = {s1(a, b), s1(e, f), s2(a, d), s3(b, c)} for IG, where
a, b, c, d, e, f are constants of U . It should be easy to see that seme(IG,DG) = ∅, since s3 does
not store the cities of the teams f and d. This in turn implies that query answering under the
exact semantics in this example is meaningless, since every possible fact is a logical consequence
of I and D: for instance, the answer to the query that asks for all team names in team, i.e.,
q(x) ← team(x, y), is the whole interpretation domain U (that is, every possible constant belongs
to the extension of the query).

On the other hand, semc(IG,DG) = {{player(a, b), team(b, c)}, {team(b, c)}, ∅}. Further-
more, let be B = {player(a, b), player(a, d), player(e, f), team(b, c)}, sems(IG,DG) contains all
global databases that can be obtained by adding to B (among others) at least one fact of the
form team(d, α) and one fact of the form team(f, β), where α and β are constants of the domain
U . Notice that, since ∅ ∈ semc(IG,DG), ansc(q,RS,D) = ∅, i.e., there is no answer to the query
in the complete semantics, whereas anss(q, IG,DG) = {b, d, f}.

LAV mapping. Let us now construct a LAV data integration system IL = 〈G0,SL,ML〉,
where G0 is the same as the GAV system IG, SL contains the binary relation s3 and s4 and the
mapping ML is as follows:

〈s4, s4(X,Y ) ← player(X, Y )〉
〈s3, s3(X,Y ) ← team(X, Y )〉.

Consider the source database DL = {s3(b, c), s4(a, b), s4(e, f), s4(a, d), }. It is easy to see that
seme(IL,DL) = seme(IG,DG) = ∅, sems(IL,DL) = sems(IG,DG), and semc(IL,DL) =

1For the sake of clarity, in the examples we use names to denote attributes, rather than integers.
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semc(IG,DG). Obviously, the answers to the query q, under the sound, complete, and exact
semantics are the same of the GAV case.

Commonly, the problem of query answering in data integration has been addressed by means
of query rewriting techniques. In query rewriting the computation is separated in two steps:
the first one exploits the mapping M to reformulate the query q into another query qr, the
rewriting, that can be evaluated on the source database D, and the second one evaluates qr on
D. Conversely, in generic query answering we do not pose any limit to the method adopted to
compute the answers to the query and exploit also the data at the sources to this aim [36].

We say that qr is a perfect rewriting of q w.r.t. I and an assumption as(M) on M if
qDr = ansas(M)(q, I,D) for each D.

3.3 Semantics for Inconsistent Data Sources

Since sources are in general autonomous and heterogeneous, data retrieved from them are likely
not to satisfy the constraints expressed on the global schema G. According to the semantics above
defined, the situation may arise in which data retrieved from the sources cannot be reconciled in
the global schema in such a way that both the constraints expressed on G and the assumption
on the mapping are satisfied, thus the integration system should be regarded as inconsistent. In
particular, the simple violation of a single dependency (under the sound and exact semantics) may
lead to the non-interesting case in which seme(I,D) = ∅ (see Example 3.2.1), and sems(I,D) = ∅,
for both the GAV and the LAV mapping. On the other hand, since most of the data could satisfy
global constraints, it seems unreasonable to consider the entire system inconsistent and unable
to provide significant answers to queries. If we do not want to conclude in these cases that no
global database exists in the semantics of a data integration system I = 〈G,S,M〉 with respect
to a source database D and an assumption as(M), we need a different characterization of the
mapping.

Example 3.2.1 (contd.) Assume now to specify the key dependency key(player) = {Pname}
on G0, stating that a player cannot be enrolled in more than one team. For both the GAV and the
LAV approach (hence we adopt now the same symbol I0 for both IG and IL, and D0 for both DG

and DL), it is now also sems(I0,D0) = ∅, other than seme(I0,D0) = ∅. Indeed, every database
B in sems(I0,D0) should contain the facts player(a, b) and player(a, d) that are not consistent
with the key dependency, and it is not possible to make B satisfy this constraint by adding other
facts to B. On the other hand, each such B should contain also team(b, c) and player(e, f), where
team(b, c) is consistent with the dependencies in the schema, whereas the inconsistency caused
by player(e, f) can be resolved under the sound semantics by adding a suitable fact to B of the
form team(f, α), where α is a constant of U . Therefore, rather than the whole domain U , the
query q(x) ← team(x, y) should return the answer set {b, f} under the sound semantics. For the
exact assumption, we can show in an analogous way that, taking into account those tuples that
can be retrieved from the sources and that do not violate the constraints, the answer set to our
query might be {b}, for both the LAV and the GAV system.
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A possible solution to this problem is to characterize the semantics of I in terms of those
databases that

• satisfy the integrity constraints on G, and

• approximate “at best” the satisfaction of the assumptions onM, i.e., are as close as possible
to the semantics interpretation of M.

In other words, the integrity constraints of G are considered “hard”, whereas the assumptions
on M are considered “soft”, and we resort to satisfy the mapping at best when we are not able
to satisfy it in rigorous way.

In the spirit of a common approach in the literature on inconsistent databases [71, 123, 7], we
now propose a modified definition of the semantics that reflects the above idea. Given a source
database D for I and an assumption as(M) on the mapping M, we define an ordering on the
set of all global databases for I that are consistent with G. If B1 and B2 are two such databases,
we define B1 ≤D B2 as follows:

• if M is GAV, for each assertion 〈rG , qS〉 ∈ M

(a) rB1
G ∩ qDS ⊇ rB2

G ∩ qDS if as(M) = s;

(b) rB1
G − qDS ⊆ rB2

G − qDS if as(M) = c;

(c) rB1
G ∩ qDS ⊇ rB2

G ∩ qDS and rB1
G − qDS ⊆ rB2

G − qDS if as(M) = e;

• if M is LAV, for each assertion 〈rS , qG〉 ∈ M

(a) qB1
G ∩ rDS ⊇ qB2

G ∩ rDS if as(M) = s;

(b) qB1
G − rDS ⊆ qB2

G − rDS if as(M) = c;

(c) qB1
G ∩ rDS ⊇ qB2

G ∩ rDS and qB1
G − rDS ⊆ qB2

G − rDS if as(M) = e;

Furthermore, B1 <D B2 stands for B1 ≤D B2 ∧ B2 6≤D B1.

With this notion in place, we can modify the definition of semantics of a data integration
system I = 〈G,S,M〉 with respect to a source database D for I and an assumption as(M) on
M. In order to distinguish between the semantics of Section 3.2 and their modified version, in the
following we refer to the former as strict semantics, while we call the latter loose semantics, and
denote them with seml as(M)(I,D) (where, as usual, as(M) ∈ {s, c, e}). Namely, we call strictly-
sound, strictly-complete, and strictly-exact the sound, complete, and exact semantics, whereas we
respectively call loosely-sound, loosely-complete, and loosely-exact the three corresponding loose
semantics. Formally, a global database B for I is in seml as(M)(I,D), if

(i) B is consistent with G;

(ii) B is minimal with respect to ≤D, i.e., for no other global database B′ for I consistent with
G, we have that B′ <D B.
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The notion of answers to a user query q coincides with the one given for the strict semantics,
and we indicate the set of answers to q under the loose semantics with ans l as(M)(q, I,D). It
is immediate to verify that, if semas(M)(I,D) 6= ∅ for any as(M) ∈ {s, c, e}, then the strict
semantics and the loose one coincide, in the sense that, for each query q, ansas(M)(q, I,D) =
ans l as(M)(q, I,D). Consequently, since (as illustrated in Section 3.2) semc(I,D) 6= ∅ for each I
and for each D, it follows that the strictly-complete and the loosely-complete semantics always
coincide.

Moreover, notice that the loose semantics is never empty, i.e., it always holds that
seml as(M)(I,D) 6= ∅ for any as(M) ∈ {s, c, e}, even if semas(M)(I,D) = ∅.

Example 3.2.1 (contd.) With regard to our ongoing example, for both the LAV and GAV
system we have that:

1. semle(I0,D0) contains the database B1 = {player(a, b), team(b, c)}, and all the databases
of the form B2 = {player(a, d), team(b, c), team(d, α)} for each α ∈ U , B3 = {player(a, b),
player(e, f), team(b, c), team(f, α)} for each α ∈ U , and B4 = {player(a, d), player(e, f),
team(b, c), team(d, α), team(f, β)} for each α, β ∈ U ;

2. semls(I0,D0) contains the databases of the form B3 and B4, and each global database for
I0 consistent with G0 that can be obtained by consistently adding facts to a database of
the form B3 or B4;

3. semlc(I0,D0) = semc(I0,D0).

Therefore, under the three semantics, the answers to the query q(x) ← team(x, y) are respectively
ans le(q, I0,D0) = {b}, ans ls(q, I0,D0) = {b, f} and ans lc(q, I0,D0) = ∅.

3.4 Related Work

Our loose semantics follows the principles that underlie the notion of database repair introduced
by previous works in the area of inconsistent databases that have proposed several semantics
relying either on set-containment or cardinality-based ordering [71, 57, 17, 123, 7, 8]. However,
such studies basically apply to a single database setting [71, 17, 7, 8], and to GAV integration
systems under the exact assumption on the mapping [123, 57, 86]. Conversely, our approach
considers a pure data integration framework, and our semantics seriously takes into account the
interpretation of the mapping. Nonetheless, with this consideration in place, we can say that our
loosely-sound semantics is similar in the spirit to the semantics described in [71], whereas the
loosely-exact semantics has been thoroughly studied in [86, 7, 8]2.

More recently, data inconsistency in a LAV data integration setting has been studied in
[13] and [16]. The semantics proposed in [13] and [16] turns out to be different from the loose
semantics for LAV of Section 3.3. Indeed, whereas our proposal focuses on the mapping and define
a suitable relaxation of it in the presence of inconsistency, [13, 16] characterize the semantics in

2A more detailed description of the works on inconsistent databases will be given at the end of Chapter 5.
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terms of the repairs of the different global databases that can be obtained populating the global
schema according to the LAV mapping. More specifically, [13, 16] assume that the sources are
sound, and consider the set min(G) of the minimal (w.r.t. set inclusion) global databases that
satisfy the mapping. Then, the repairs are the global databases consistent with the constraints
that are minimal w.r.t. ≤DB for some DB ∈ min(G), where B ≤DB B′ if 4(B,DB) ⊆ 4(B′,DB),
where in turn 4(X,Y ) indicates the symmetric difference between X and Y .

We point out that, in this semantics, even if the sources are assumed to be sound, the repairs
are computed as if the retrieved data were exact. Under such assumption, the repair semantics
can be different from the sound semantics even when the latter is not empty. In other words, one
resorts to repair the system even when the system actually does not need to be repaired. This is
shown in the following example.

Example 3.4.1 Consider a simple LAV system I in which there are two global relations g1/2 and
g/2, an inclusion dependency g1[1, 2] ⊆ g2[1, 2], a source relation s/2, and a mapping assertion
s(x, y) ← g1(x, y). Then, let D = {s(a, b)} be a source database for I. In this case we have
min(G) = {g1(a, b)}. This unique minimal global database is inconsistent w.r.t. the ID expressed
on the global schema. According to [13, 16], two repairs have to be considered in this situation
R = ∅ and R′ = {g1(a, b), g2(a, b)}. Hence, every query over the global schema has an empty
consistent answer.

Notice that, in our framework, when we assume the sources to be sound, we are able to
solve the inconsistency in the above example without actually relaxing the mapping, since in this
case sems(I,D) = semls(I,D). Furthermore, given a simple query q(X, Y ) ← g1(X, Y ) we have
anss(q, I,D) = {〈a, b〉}, rather than the empty set. Other details on the techniques proposed in
[13, 16] will be given at the end of Chapter 6.

We point out that, in all mentioned works, an in-depth investigation of the role of inclusion
dependencies expressed on the database schema is actually missing, and the methods proposed to
get consistent answers from inconsistent databases basically apply only to the class of “universally
quantified constraints”. Two exceptions are [86], where a preliminary study on existentially
quantified inclusion dependencies is presented, and [16], where, however, the problem is tackled
by taking into account only a particular class of finite global databases, viz. the global repairs
that can be computed by using only constants appearing in the source database.

Conversely, in the following chapters we will provide a thoroughly study of query answering
under the different semantics, when inclusion, key and exclusion dependencies are expressed on
the global schema.



Chapter 4

State of the Art of Query

Processing in Data Integration

Systems

The problem of query processing is to find efficient methods for answering queries posed to the
global (virtual) schema of a data integration system on the basis of the data stored at sources.

In this chapter, we examine some algorithms and techniques proposed in the literature to
solve this problem in both the LAV and the GAV frameworks.

As already noticed in the introduction, whereas query processing in the LAV approach has
been always regarded as a difficult task, this problem has commonly been considered much easier
in the GAV approach. Indeed, query processing in LAV has been traditionally seen as a form
of reasoning in the presence of incomplete information, whereas in GAV it has been assumed
that answering a query means unfolding its atoms according to their definitions on the sources.
As shown in Section 1.4, this means assuming that in GAV only a single database satisfies the
global schema, i.e., the database obtained by evaluating the views in the mapping over the
source extensions. Only recently, more complex GAV frameworks have been studied, in which
the semantics of the system is given in terms of a set of databases rather than a single one, and
more complex techniques than simple unfolding have been proposed.

We survey here the most important query answering algorithms proposed in the literature
for LAV, and we describe the principal GAV data integration systems and the form of query
processing they adopt. Furthermore, we review recent studies showing that query processing in
GAV is harder than simple unfolding.

4.1 Query Processing in LAV

Since in LAV the mapping between the sources and the global schema is described as a set of
views over the global schema, query processing amounts to finding a way to answer a query
posed over a database schema using a set of views over the same schema. This problem, called

29



30 Chapter 4: State of the Art of Query Processing in Data Integration Systems

answering queries using views, is widely studied in the literature, since it has applications in
many areas. In query optimization [47], the problem is relevant because using materialized views
may speed up query processing. A data warehouse can be seen as a set of materialized views,
and, therefore, query processing reduces to query answering using views [94, 148, 157, 91]. In the
context of database design, using views provides means for maintaining the physical perspective
of the data independent from its logical perspective [149]. It is also relevant for query processing
in distributed databases [102] and in federated databases [117].

The most common approach proposed in the literature to deal with the problem of query
answering using views is by means of query rewriting. In query rewriting, a query and a set of
view definitions over a database schema are provided, and the goal is to reformulate the query
into an expression, the rewriting, whose evaluation on the view extensions supplies the answer to
the query. Consider, for instance a data integration system I in which both the user query q and
its rewriting qr are Datalog queries. In such a case, the EDB predicates of q are relations of the
global schema, while the EDB predicates of qr are relations of the source schema. Hence, qr can
be evaluated directly over a source database for I, i.e., an extension for the views in the mapping.
Notice that, the user query language LQ and the rewriting language L′Q may be different.

In conclusion, query answering via query rewriting is divided in two steps, where the first one
consists of reformulating the query in terms of the given query language L′Q over the alphabet
of the views (possibly augmented with auxiliary predicates), and the second one evaluates the
rewriting over the view extensions.

In general, given a data integration system I, a source database D for I, and a user query
q, we are interested in computing the set of certain answers to q (see Section 3.2). In the query
rewriting approach, we do not take into account the source extensions in the reformulation step,
so that, the capability of the rewriting to retrieve the set of certain answers depends on the query
language L′Q in which it is expressed. Such a situation can constitute a limitation on computing
the set of certain answers for q.

A more general approach, simply called query answering using views [1, 85, 36, 38, 33], is that
to consider, besides the query and the views, also the extensions of the views, i.e., the source
database. Here, no limits are posed to query processing, and the only goal is to compute the
set of certain answers to the query by exploiting all possible information, in particular the view
extensions.

According to [39], many of the papers concerning query processing in LAV do not distinguish
between query answering and query rewriting using views, and give rise to a sort of confusion
between the two notions. Part of the problem comes from the fact that when the query and
the views are conjunctive queries, there are algorithms (like the bucket or the inverse rules
algorithm that are described in the following) for computing the best possible rewriting as union
of conjunctive queries, where the best possible rewriting is a rewriting that actually is able to
provide the certain answers to the user query. Therefore, in these cases the best possible rewriting
is basically expressible in the same language as the original query and views. However for other
query languages this does not happen, and state of the art query rewriting techniques are not able
to solve the query answering problem. So, in spite of the large amount of work on the subject, the
relationship between query rewriting and query answering using views is not completely clarified
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yet.
In order to shed light on this problem, [39, 40] define a rewriting of a query q with respect to

a set V of views as a function that, given the extension D of the views, returns a set of tuples that
are contained in the certain answers of q w.r.t. V and D. The rewriting that returns precisely
the set of certain answers for each source database is called the perfect rewriting of the query
w.r.t. the views. Actually, the above definition coincides with the definition of perfect rewriting
given in Section 3.2, when applied to the LAV framework.

In the following we survey several papers that deal with query processing in LAV, and distin-
guish between those concerning query rewriting and those referring to generic query answering.

Notice that, with respect to our framework described in Chapter 3, these algorithms assume
that the views in the mapping are all sound.

4.1.1 Query Rewriting

First of all we recall the definition of rewriting traditionally adopted in the literature [111, 150, 92].
To be able to compare different reformulations of queries, we first introduce the notion of

containment between queries. Given two queries q1 and q2 over a database schema RS, we say
that q1 is contained in q2 if for all databases DB for RS we have that qDB1 ⊆ qDB2 . We say that
q1 and q2 are equivalent if q1 is contained in q2 and q2 is contained q1.

The problem of query containment has been studied in various settings. In [46], NP-
completeness has been established for conjunctive queries, and in [50] a multi-parameter analysis
has been performed for the same case, showing that the intractability is due to certain types of
cycles in the queries. In [104, 151], Πp

2-completeness of containment of conjunctive queries with
inequalities was proved, and in [145] the case of queries with the union and difference operators
was studied. For various classes of Datalog queries with inequalities, decidability and undecid-
ability results were presented in [48] and [151], respectively. Query containment under constraints
has also been the subject of several investigations. For example, decidability of conjunctive query
containment was investigated in [5] under functional and multi-valued dependencies, in [101] un-
der functional and inclusion dependencies, in [45, 116, 118] under constraints representing is-a
hierarchies and complex objects, and in [56] in the case of constraints represented as Datalog
programs. For queries over semistructured data, query containment for conjunctive regular path
queries, in which the atoms in the body are regular expressions over binary predicates, has been
studied in [32, 76], and EXPSPACE completeness has been established in [37].

To formally define the notion of rewriting, we consider a relational data integration setting
and assume that queries and views defining the source relations, i.e., views in the mapping, are
unions of conjunctive queries over the global schema.

Given a data integration system I, where the mapping is given in terms of the set of views
V = {V1, . . . , Vm} over the global schema G, and given a user query q over I, the query qr is a
rewriting of q using V if

• qr ∪ V is contained in q, and

• qr does not refer to the relations in G, i.e., the relations of the global schema appear only
in the view definitions and not in the bodies of the clauses of qr.
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In general, the set of available sources may not store all the data needed to answer a user
query, and therefore the goal is to find a query expression that provides all the answers that
can be obtained from the views. So, whereas in different contexts, i.e., query optimization
or maintaining physical data independence, the focus is on finding rewritings that are logically
equivalent to the original query, in data integration systems the interest has been mainly devoted
to maximally contained rewritings [92], formally defined as follows.

Given a query q over I, a set of views V = {V1, . . . , Vm} over G, and a query language LQ,
the query qm is a maximally contained rewriting of q using V w.r.t. LQ if

• qm is a rewriting of q using V,

• there is no rewriting q′ 6= qm in LQ such that qm ∪ V is contained in q′ ∪ V.

Notice that the maximally contained rewriting is defined in terms of a specified query language
LQ. As already said, dealing with a fixed language might not lead us to obtain the best possible
rewriting for a user query q. Hence, in spite of its original aim, the evaluation over the source
extensions of the maximally contained rewriting does not in general provide the set of certain
answers to the query. However, in the practical (and widely studied) case in which queries are
union of conjunctive queries and views are conjunctive queries the two notion coincide, and hence
computing the maximally contained rewriting means actually solve the query answering problem.

An important theoretical result concerning the problem of query rewriting, in the case that
views and queries are conjunctive queries, is presented in [112]. In that paper the authors show
that, when a query a q is a union of conjunctive queries, if an equivalent conjunctive rewriting of
q exists, then such a rewriting has at most as many atoms as q. Such a result leads immediately
to nondeterministic polynomial-time algorithms to find either equivalent conjunctive rewritings
or maximally contained rewritings that are union of conjunctive queries [150]. In both cases it
is sufficient to consider each possible conjunction of views that produces a candidate rewriting
whose size is less or equal to the size of the original query, and then check the correctness of the
rewriting. Note that the number of candidate rewritings is exponential in the size of the query.

Bucket algorithm and its extensions In order to compute all the rewritings that are con-
tained in (and not necessarily equivalent to) the original query, the bucket algorithm, presented
in [114], improves the technique described above since it exploits a suitable heuristic for pruning
the space of candidate rewritings. The algorithm was proposed in the context of the Information
Manifold (IM) system [117], a project developed at AT&T. IM handles the presence of inclusion
and functional dependencies over the global schema and limitations in accessing the sources, and
uses conjunctive queries as the language for describing the sources and querying the system.

To compute the rewriting of a query q, the bucket algorithm proceeds in two steps:

1. for each atom g in q, create a bucket that contains the views from which tuples of g can be
retrieved, i.e., the views whose definition contains an atom to which g can be mapped in a
rewriting of the query;

2. consider as candidate rewriting each conjunctive query obtained by combining one view
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from each bucket, and check by means of a containment algorithm whether such a query
is contained in q. If so, the candidate rewriting is added to the answer.

If the candidate rewriting is not contained in q, before discarding it, the algorithm checks if it can
be modified by adding comparison predicates in such a way that it is contained in q. The proof
that the bucket algorithm generates the maximal contained rewriting when the query language
is union of conjunctive queries, is given in [85].

Note that, on the basis of the results in [112], the algorithm considers only rewritings that
have at most the same number of atoms as the original query. As shown in the same paper
and in [143], the given bound on the size of the rewriting does not hold in the presence of
arithmetic comparison predicates, functional dependencies over the global schema, or limitations
in accessing the sources. In such cases we have to consider rewritings that are longer than the
original query. More precisely, let p be the number of atoms in the query q:

• In the presence of functional dependencies, a minimal rewriting has at most p + d atoms,
where d is the sum of the arities of the atoms in q;

• In the presence of limitations in accessing the sources, a minimal rewriting has at most
p + m atoms, where m is the number of different variables in q;

• In the presence of comparison predicates, the size of a minimal rewriting is at most expo-
nential in the size of q.

According to [113] the bucket algorithm, in practice, does not miss solutions because of
the length of the rewritings it considers, but other results [61, 89, 88] demonstrate that in the
presence of functional dependencies and limitations in accessing the sources, union of conjunctive
queries does not suffice to obtain the maximal contained rewritings, and one needs to resort to
recursive rewritings. We refer the interested reader to [61, 106] for a more detailed treatment of
the problem.

Two improved versions of the bucket algorithm are the MiniCon algorithm [140] and the
shared-variable bucket algorithm [129]. In both the algorithms the basic idea is to examine the
interaction among variables of the original query and variables in the views, in order to reduce
the number of views inserted in the buckets, and hence the number of candidate rewritings to be
considered. Experimental results related to the performance of MiniCon show that this algorithm
scales very well and outperform the bucket algorithm.

Inverse rules algorithm The previous algorithms search the space of possible candidate
rewritings by using buckets and then checks whether each computed rewriting is contained in
the original query. In the following, we describe a different algorithm, namely the inverse rules
algorithm [61], that generates a rewriting (query plan) in time that is polynomial in the size of the
query. The algorithm was developed in the context of the Infomaster system [59], an information
integration tool developed at Stanford University . The inverse rules algorithm constructs a set
of rules that invert the view definitions and provides the system with an inverse mapping which
establish how to obtain the data of the global concepts from the data of the sources. The basic
idea is to replace existential variables in the body of each view definition by a Skolem function.
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Example 4.1.1 Given a view definition

v(X) ← a1(X, Y ), a2(X, Y )

the set of inverse rules obtained from it is

a1(X, f(X)) ← v(X)

a2(X, f(X)) ← v(X)

Given a non-recursive Datalog query q and a set of view definitions V, the rewriting is the Datalog
program consisting of both the query and the inverse rules obtained from V.

Note that in the skolemization phase, we just introduce function symbols in the head of the
inverse rules and never introduce a symbol within another, which leads to a finite evaluation
process. Since bottom-up evaluation of the rewriting can produce tuples with function symbols,
these need to be discarded. A polynomial time procedure to eliminate these function symbols by
adding new predicates is described in [60]. It is also shown that the inverse rules algorithm returns
a maximally contained rewriting w.r.t. union of conjunctive queries, in time that is polynomial in
the size of the query.Even if the computational cost of constructing the query plan is polynomial,
the obtained rewriting contains rules which may cause accessing views that are irrelevant for the
query. In [110] it is shown that the problem of eliminating irrelevant rules has exponential time
complexity. The inverse rules algorithm can handle also recursive Datalog queries, the presence
of functional dependencies over the global schema, or the presence of limitations in accessing the
sources, by extending the obtained query plan with other specific rules.

Other algorithms and results Finally, we cite the unification-join algorithm [141], an
exponential-time query answering algorithm based on a skolemization phase and on the repre-
sentation of conjunctive queries by means of hypergraphs. In [141] is also described a polynomial
time version of the algorithm developed for the case in which queries are acyclic conjunctive
queries. The unification join algorithm is extended in [90] in order to deal with inclusion or
functional dependencies expressed over the global schema.

Other studies are concerned with the problem of query rewriting using views, under the
different assumptions that queries are recursive queries [4], description logics queries [10, 34],
queries for semi-structured data [35, 139], queries with aggregates [87, 53], or in presence of
limitations in accessing the views [143, 106, 115, 77].

4.1.2 Query Answering

The complexity of answering queries using views for different languages (both for the query and
for the views) is studied in [1]. The authors deal with the two assumptions that all the views
are sound (called open world assumption in the paper), or that all the views are exact (called
closed world assumption in the paper). Under open world assumption they show that in the case
where the views are conjunctive queries, the problem becomes coNP-hard already in the case



4.1: Query Processing in LAV 35

Sound CQ CQ 6= PQ Datalog FOL

CQ PTIME coNP PTIME PTIME undec.

CQ 6= PTIME coNP PTIME PTIME undec.

PQ coNP coNP coNP coNP undec.

Datalog coNP undec. coNP undec. undec.

FOL undec. undec. undec. undec. undec.

Exact CQ CQ 6= PQ Datalog FOL

CQ coNP coNP coNP coNP undec.

CQ 6= coNP coNP coNP coNP undec.

PQ coNP coNP coNP coNP undec.

Datalog undec. undec. undec. undec. undec.

FOL undec. undec. undec. undec. undec.

Table 4.1: Complexity of query answering using views

where the query is a conjunctive query with inequality. Instead, assuming queries be conjunctive
queries, the problem is already coNP-hard when the views are positive queries (PQ). As shown
in [39, 40], the problem is already coNP-hard for very simple query languages containing union.
Under the different assumption that the views are exact (closed world assumption) it is shown
in [1] that the problem is coNP already in the case that views and queries are conjunctive queries.
Finally, it is sketched an effective way to compute the certain answers by representing the global
database by means of conditional tables and querying them using the techniques for databases
with incomplete information [98]. Table 4.1 summarizes the results presented in [1].

In [36], the problem is studied for a setting where the global schema models a semistructured
database, i.e., a labeled directed graphs. It follows that both the user queries, and the queries
used in the LAV mapping should be expressed in a query language for semistructured data. The
main difficulty arising in this context is that languages for querying semistructured data enable
expressing regular-path queries [3, 19, 74]. A regular-path query asks for all pairs of nodes in
the database connected by a path conforming to a regular expression, and therefore may contain
a restricted form of recursion. Note that, when the query contains unrestricted recursion, both
query rewriting and query answering using views become undecidable, even when the views are
not recursive [60]. Table 4.2 summarizes the results presented in [36]1.

While regular-path queries represent the core of any query language for semistructured data,
their expressive power is limited. Several authors point out that extensions are required for
making them useful in real settings (see for example [18, 19, 127]). Indeed, the results in [36]
have been extended to query language with the inverse operator in [38], and to the class of union
of conjunctive regular-path queries in [41].

1In the table, also expression complexity (complexity with respect to the size of the query and the view

definitions) is taken into account.
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domain views Complexity

data expression combined

all sound coNP coNP coNP

closed all exact coNP coNP coNP

arbitrary coNP coNP coNP

all sound coNP PSPACE PSPACE

open all exact coNP PSPACE PSPACE

arbitrary coNP PSPACE PSPACE

Table 4.2: Complexity of query answering for regular-path queries

4.2 Query Processing in GAV

As already said, in GAV integration systems it is in general assumed that, to answer a query q

posed over the global schema, it is sufficient to unfold each atom of q with the corresponding
view over the sources. Even if the process of unfolding is a simple mechanism, defining the
views associated to the global elements implies precisely understanding the relationships among
the sources, that is in general a non-trivial task. We can say that, in the GAV approach, query
processing by unfolding is realized at design time, and the main issue turns out to be the definition
of wrappers and mediators [155]. As already mentioned, wrappers are software components that
present data at the sources in a suitable form adopted in the integration system, and handle
the access to the data taking into account source capabilities to answer queries posed to the
sources [121, 158]. Mediators are modules that establish how to access and merge data residing
at the sources, i.e., synthesize the view definitions associated to the global relations.

In the first GAV integration systems proposed in the literature the notion of global schema
was actually missing, in the sense that the global schema was simply the collection of relations
exported by the mediators and no rules or integrity constraints were actually expressed over the
global concepts. In these systems, mediators simply realize an explicit layer between the user
application and the data sources. Furthermore, even when a global schema was provided, the
assumption that the views over source schemas were exact was implicitly considered (closed world
assumption). In such a situation exactly one global legal database exists, i.e., the retrieved global
database that is obtained by populating the global schema according to the view definitions, and
evaluating the query over this unique database is equivalent to evaluating its unfolding over the
sources.

In the rest of this section, we first describe some integration systems that follow the GAV
approach in the simplified setting we have described above, then we turn our attention to more
recent approaches that deal with GAV integration in more complex scenarios.

4.2.1 Methods and Systems Based on Unfolding

We now describe the main integration systems following the GAV approach that are essentially
based on query unfolding.
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The TSIMMIS Project TSIMMIS (The Stanford-IBM Manager of Multiple Information
Sources) is a joint project of the Stanford University and the Almaden IBM database research
group [49]. It is based on an architecture that presents a hierarchy of wrappers and mediators,
in which wrappers convert data from each source into a common data model called OEM (Ob-
ject Exchange Model) and mediators combine and integrate data exported by wrappers or by
other mediators. Hence, the global schema is essentially constituted by the set of OEM objects
exported by wrappers and mediators. Mediators are defined in terms of a logical language called
MSL (Mediator Specification Language), which is essentially Datalog extended to support OEM
objects. OEM is a semistructured and self-describing data model, in which each object has an
associated label, a type for the value of the object and a value (or a set of values). User queries are
posed in terms of objects synthesized at a mediator or directly exported by a wrapper. They are
expressed in MSL or in a specific query language called LOREL (Lightweight Object REpository
Language), an object-oriented extension of SQL.

Each query is processed by a module, the Mediator Specification Interpreter (MSI) [137, 158],
consisting of three main components:

• The View Expander, which uses mediator specification to reformulate the query into a logical
plan by expanding the objects exported by the mediator according to their definitions. The
logical plan is a set of MSL rules which refer to information at the sources.

• The Plan Generator, also called Cost-Based Optimizer, which develops a physical plan spec-
ifying which queries will be sent to the sources, the order in which they will be processed,
and how the results of the queries will be combined in order to derive the answer to the
original query.

• The Execution engine, which executes the physical plan and produces the answer.

The problem of query processing in TSIMMIS in the presence of limitations in accessing
the sources is addressed in [121] by devising a more complex Plan Generator comprising three
modules:

• a matcher, which retrieves queries that can process part of the logical plan;

• a sequencer, which pieces together the selected source queries in order to construct feasible
plans;

• an optimizer, which selects the most efficient feasible plan.

It has to be stressed that in TSIMMIS no global integration is ever performed. Each mediator
performs integration independently. As a result, for example, a certain concept may be seen in
completely different and even inconsistent ways by different mediators. This form of integration
can be called query-based, since each mediator supports a certain set of queries, i.e., those related
to the view it provides.

The Garlic Project The Garlic project [42], developed at IBM Almaden Research Center,
provides the user with an integrated data perspective by means of an architecture comprising a
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middleware layer for query processing and data access software called Query Services & RunTime
System. The middleware layer presents an object-oriented data model based on the ODMG stan-
dard [44] that allows data from various information sources to be represented uniformly. In such
a case the global schema is simply constituted by the union of local schemas, and no integrity
constraints are defined over the OMDG objects. The objects are exported by the wrappers using
the Garlic Data Language (GDL), which is based on the standard Object Definition Language
(ODL). Each wrapper describes data at a certain source in the OMDG format and gives descrip-
tions of source capabilities to answer queries in terms of the query plans it supports. Note that
the notion of mediator, central in the TSIMMIS system, is missing in Garlic, and most of the
mediator tasks, as the integration of objects from different sources, are submitted to the wrap-
pers. Users pose queries in terms of the objects of the global schema in an object-oriented query
language which is an object-extended dialect of SQL. The Query Services & RunTime System
produces a query execution plan in which a user query is decomposed in a set of sub-queries
to the sources, by expanding each involved object with its definition provided by the relative
wrapper. The query execution plan is obtained by means of some sequence of parsing, semantic
checking, query reformulation and optimization, based on the information (provided by a sys-
tem catalog) about where data is stored, what wrapper it is associated with, its schema, any
available statistics, etc. Each involved wrapper translates the sub-queries into the source native
query language taking into account the query processing power of the source. The description of
the source query capabilities is used by the query optimizer to create a set of feasible plans and
to select the best for execution.

The Squirrel Project In the approaches to data integration described so far, the data at
the sources are not replicated in the integration system (virtual approach). In contrast, in the
materialized approach, the system computes the extension of the concepts in the global schema
and maintains it in a local repository. Maintenance of replicated data against updates to the
sources is a central aspect in this context and the effectiveness of maintenance affects timeliness
and availability of data.

The Squirrel System, developed at the University of Colorado [162, 161, 160, 97], provides
a GAV framework for data integration based on the notion of integration mediator. Integra-
tion mediators are active modules that support data integration using a hybrid of virtual and
materialized data approaches.

The initial work on Squirrel [162, 160] does not consider virtual views and studies the problems
related to data materialization. A key feature of Squirrel mediators, which consist of software
components implementing materialized integrated views over multiple sources, is their ability to
incrementally maintain the integrated views by relying on the active capabilities of sources. More
precisely, at startup the mediator sends to the source databases a specification of the incremental
update information needed to maintain the views and expects sources to actively provide such
information.

Integration by means of hybrid virtual or materialized views is addressed in [97] in the context
of the relational model. However, the presented techniques can also be applied in the context
of object-oriented database models. In the sequel we refer to classes and objects to indicate
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data exported by mediators. The architecture of a Squirrel mediator described in [97] consists of
components that deal with the problem of refreshing the materialized portion of the supported
view, namely the update queue and the Incremental Update Processor (IUP), and components
related to the problem of query processing, namely the Query Processor (QP) and the Virtual
Attribute Processor (VAP). The QP provides the interface of the integrated view to the users.
When it receives a user query, it tries to answer the query on the basis of the materialized
portion of the view, maintained in a local store. If the QP needs virtual data to answer the
query, the VAP constructs temporary relations containing the relevant data. To obtain temporary
relations the VAP uses information provided by a Virtual Decomposition Plan (VDP) maintained
in the local store. The notion of VDP is analogous to that of Query Decomposition Plan in
query optimization. More specifically, the VDP specifies the classes that the mediator maintains
(materialized, virtual, or hybrid), and provides the basic structure for retrieving data from the
sources or supporting incremental maintenance2.

Either for the materialized version of the mediator or for the hybrid one, an automatic
generator of Squirrel integrators has been developed. Such a module takes as input a specification
of the mediator expressed in a high-level Integration Specification Language (ISL). A specification
in ISL includes a description of the relevant subschemas of the source databases, and the match
criteria between objects of families of corresponding classes, in particular a list of the classes
that are matched and a binary matching predicate specifying correspondences between objects
of two classes. The output of this module is an implementation of the mediator in the Heraclitus
language, a database programming language whose main feature is the ability of representing and
manipulating collections of updates to the current database state (deltas). An object-oriented
extension of Heraclitus, called H20, is used in [161].

The problem of object matching in Squirrel mediators is addressed in [162]. In particular, a
framework is presented for supporting intricate object identifier (OID) match criteria, such as
key-based matching, lookup-table-based matching, historical-based-matching, and comparison-
based matching. The last criterion allows for both considering attributes other than keys in
object matching, and using arbitrary boolean functions in the specification of object matching.

The MOMIS Project The MOMIS system [11, 12], jointly developed at the University of
Milano and the University of Modena and Reggio Emilia, provides semi-automatic techniques for
the extraction and the representation of properties holding in a single source schema (intraschema
relationships), or between different source schemas (interschema relationships), and for schema
clustering and integration, to identify candidates to integration and synthesize candidates into
an integrated global schema. The relationships are both intensional (e.g., lexical relationships
extracted according to a Wordnet supplied ontology) and extensional (e.g., lexical relationships
which strengthen the corresponding intensional relationships), either defined by the designer or
automatically inferred by the system. The integration process is based on a source independent
object-oriented model called ODMI3 , used for modeling structured and semistructured data
sources in a common way. The model is described by means of the ODLI3 language. In MOMIS
mediators are composed of two modules:

2For a description of the update process and the relative update queue and IUP see [97].



40 Chapter 4: State of the Art of Query Processing in Data Integration Systems

1. the Global Schema Builder, which constructs the global schema by integrating the ODLI3

source descriptions provided by the wrappers, and by exploiting the intraschema and the
interschema relationships.

2. the Query Manager, which performs query processing and optimization. The Query Man-
ager exploits extensional relationships to first identify all sources whose data are needed to
answer a user query posed over the global schema. Then, it reformulates the original query
into queries to the single sources, sends the obtained sub-queries to the wrappers, which
execute them, and report the results to the Query Manager. Finally, the Query Manager
combines the single results to provide the answer to the original query.

Currently, the query processing aspect is in a preliminary stage of development, and still needs
further investigation.

The DIKE Project The DIKE system [134], developed at the University of Calabria in
collaboration with the University of Reggio Calabria, exploits a conceptual model called SDR-
Network [135, 147] in order to uniformly handle and represent heterogeneous data sources. Each
source has an associated SDR-Network, constituted by a set of nodes representing concepts and a
set of arcs representing relationships between pairs of concepts. DIKE provides the user with an
algorithm for data source integration which takes as input two SDR-Networks, which are either
associated directly to the sources or are derived from previously constructed SDR-Networks, and
computes an output global SDR-Network. The process is carried out by exploiting synonymies,
and homonymies between arcs and nodes of the SDR-Networks, and similarity relationships
between sub-nets. To each derived node (resp., arc) a mapping is associated that describes the
way the node has been obtained from one or more nodes (resp., arcs) belonging to the original
SDR-Networks. Finally, to each mapping between nodes a view is associated that allows to
obtain the instances of the target node of the mapping, from the instances of the source nodes of
the mapping. At the moment the system is under development and does not present a completely
defined method to answer queries posed over the global SDR-Networks. To answer a user query
it simply uses the views associated to the global nodes involved in the query.

4.2.2 Beyond Unfolding

All the approaches described so far, do not provide an in-depth study of the problem of query
processing in GAV, which basically is solved via unfolding. As shown in [108, 20], this limits
the ability of such systems in dealing with complex integration scenarios, e.g., in the presence of
incomplete data sources and integrity constraints on the global schema. On the other hand, the
importance of allowing integrity constraints on the global schema has been stressed in several
works on data integration [34, 75, 74]. A first attempt to deal with integration under constraints
in GAV is [24], which presents a technique to process queries in the case when the global schema
and sources are relational, key and foreign key constraints are expressed on the global schema,
views are assumed to be sound, and queries over the global schema are union of conjunctive
queries. In that paper the authors show that, starting from the retrieved global database, it



4.2: Query Processing in GAV 41

is possible to build a canonical database that has the property of faithfully representing all
the databases that satisfy the global schema, in the sense that the set of certain answers to
a given query can be obtained by evaluating the query over it. Furthermore, an algorithm is
given that makes it possible to find the answers to a query over the given canonical database
without actually building it. The algorithm makes use of Skolem functions and SLD-resolution
to construct a suitable reformulation of the query, called query expansion, such that the answer
to the expansion computed over the retrieved global database is equal to the answer to the
original query over the canonical database. In [22], the same technique is used to deal with the
mandatory participation and functional attribute constraints imposed by a conceptual model
adopted to represent the global schema. However, notice that in these papers it is assumed
that data at the sources are such that the global retrieved database does not violate the key
constraints on the global schema, while foreign key constraints may not be satisfied.

The algorithms described above have been implemented in the IBIS system, which is described
in the following.

The IBIS system The Internet-Based Information System (IBIS) [25] is a tool for the semantic
integration of heterogeneous data sources, developed in the context of a collaboration between the
University of Rome “La Sapienza” and CM Sistemi. IBIS adopts innovative solutions to deal with
all aspects of a complex data integration environment, including source wrapping, limitations on
source access, and query answering under integrity constraints. IBIS uses a relational global
schema to query the data at the sources, and is able to cope with a variety of heterogeneous data
sources, including data sources on the Web, relational databases, and legacy sources. Each non-
relational source is wrapped to provide a relational view on it. Also, each source is considered
sound. The system allows for the specification of integrity constraints on the global schema;
in addition, IBIS considers the presence of some forms of constraints on the source schema, in
order to perform runtime optimization during data extraction. In particular, key and foreign key
constraints can be specified on the global schema, and functional dependencies and full-width
inclusion dependencies, i.e., inclusions between entire relations, can be specified on the source
schema.

Query processing in IBIS is separated in three phases:

1. the query is expanded to take into account the integrity constraints in the global schema;

2. the atoms in the expanded query are unfolded according to their definition in terms of the
mapping, obtaining a query expressed over the sources;

3. the expanded and unfolded query is executed over the retrieved source databases (see
below), to produce the answer to the original query.

Query unfolding and execution are the standard steps of query processing in GAV data
integration systems, while for the expansion phase IBIS makes use of the algorithm presented
in [24] that we have described above. As we already said, the expanded query has to be evaluated
over the retrieved global database in order to produce the certain answers to the original query.
As the construction of the retrieved global database is computationally costly, the IBIS Expander
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module does not construct it explicitly. Instead, it unfolds the expanded query and evaluates
the unfolded query over the retrieved source database, whose data are extracted by the Extractor
module that retrieves from the sources all the tuples that may be used to answer the original
query.

Studies on limitations in accessing the sources Other studies deal with the problem of
query processing in GAV in the presence of limitations on how sources can be accessed [119, 120,
21]. Generally speaking, to answer queries over such sources one generally needs to start from
a set of constants (provided e.g., by the user filling in a form, or taken from a source without
access limitations) to bind attributes. Such bindings are used to access sources and there obtain
new constants which in turn can be used for new accesses. Hence, query processing in GAV in
the presence of access limitations in general requires the evaluation of a recursive query plan
[119]. It is worth noticing that also in this case unfolding is not sufficient to answer the query.
Since source accesses are costly, an important issue is how to minimize the number of accesses
to the sources while still being guaranteed to obtain all possible answers to a query. [119, 120]
discuss several optimizations that can be made at compile time, during query plan generation.
In these papers, the authors adapt to the GAV approach the ideas of [62], where the problem
is studied in the LAV approach. Roughly speaking, the proposed technique exploits knowledge
about data sources, expressed by means of integrity constraints on the source schema, in order
to detect unnecessary accesses. However, the optimizations proposed in [119, 120] work only
for the so-called connection queries, a restricted form of conjunctive queries, while the problem
of finding an optimization technique for the full class of conjunctive queries is left open by the
authors. The problem is solved in [21], where a run-time optimization technique is presented,
that takes into account, besides the integrity constraints on the sources, the tuples extracted
from the sources at a certain step so as to infer, during the extraction of the data, information
necessary to avoid useless accesses.



Chapter 5

Decidability and Complexity of

Query Answering

In this chapter we focus on the relationship between the expressiveness of the global schema
and the decidability and complexity of query answering. We recall that, in our data integration
framework described in Chapter 3, the formalism adopted for modelling the global schema allows
us to specify complex dependencies between global relations, by making use of different forms
of integrity constraints. Furthermore, different assumptions on the mapping (strict semantics),
enable for the specification of different interpretations on the data at the sources with respect
to data satisfying the corresponding portion of the global schema. Then, suitable relaxations of
such assumptions (loose semantics) properly allow us also to deal with inconsistency of data at
the sources with respect to the constraints on the global schema.

The interaction between the classes of constraints allowed, namely, inclusion, key and exclu-
sion dependencies, makes query answering difficult under the different semantics described, and
may lead to non decidable cases. Hence, it is in general necessary to impose some restrictions
on the simultaneous presence of different kinds of constraints on the global schema in order to
obtain correct answers to user queries.

For the sake of simplicity, in this chapter we study query answering in the setting of a
single database. Such a setting allows us to overlook here the mapping, and concentrate on
the formalism adopted for the global schema, i.e., on the interaction between the constraints.
Undecidability and complexity results obtained in this setting will be extended to the data
integration framework in Chapters 6 and 7.

Briefly, In in the following,

(i) we identify the frontier between decidability and undecidability of query answering for both
strict and loose semantics;

(ii) for the decidable cases, we establish the computational complexity of the query answering
problem.

We remark that the results we have obtained for the sound semantics in a single database
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setting extend previous studies on query containment under integrity constraints [101], while
the results for the loose semantics extend known results in the field of inconsistent databases
[86, 52], by taking into account inclusion dependencies, which add significant complexity to the
problem. In particular, the key issue in our work is that we are able to deal with infinite models
for a database schema, that are to be taken into account when cyclic inclusion dependencies are
present in the schema. In this chapter, we present the results on IDs and KDs recently published
in [29], and provide new results on EDs and their interaction with IDs and KDs.

Before proceeding we formalize in the following the connection between a single database and
a data integration system, and provide both strict and loose semantics definition in this setting.

5.1 Preliminary Discussion

Actually, a relational schema RS corresponds to the global schema G of a data integration system
I = 〈G,S,M〉 in which relations in G are in a one-to-one correspondence with relations in S, i.e.,
if s1/h1, . . . , sn/hn are the source relations, then the global relations are g1/h1, . . . , gn/hn, and
the GAV (or LAV) mapping is given by the n assertions 〈gi, gi(X1, . . . , Xhi) ← si(X1, . . . , Xhi)〉
(resp. 〈si, si(X1, . . . , Xhi) ← gi(X1, . . . , Xhi)〉) for each i, 1 ≤ i ≤ n. Let us now construct
from a source database DS for I a global database for I, namely, a database instance D for the
schema RS such that gDi = sDSi . It is easy now to shift the assumptions that can be adopted on
the mapping M directly to the database instance D, denoted as(D). More precisely,

• if M is sound, then D can be assumed sound, that is the semantics of RS with respect to
D, denoted by sems(RS,D), is the set of database instances B for RS such that B ⊇ D;

• if M is complete, then D can be assumed complete, that is the semantics of RS with
respect to D, denoted by semc(RS,D), is the set of database instances B for RS such that
B ⊆ D;

• if M is exact, then D can be assumed exact, that is the semantics of RS with respect to D,
denoted by seme(RS,D), is actually the single database instances D, i.e., seme(RS,D) =
{D}.

We also indicate with ansas(D)(q,RS,D) the set of answers to a query q posed to RS, where
as(D) = s, c or e for the sound, complete and exact semantics, respectively. As usual, a tuple
t is in the answer to q iff t ∈ qB for each B ∈ semas(D)(RS,D). Furthermore, we denote with
seml s(RS,D), seml c(RS,D) and seml e(RS,D) respectively the loosely-sound, loosely-complete
and loosely-exact semantics, defined analogously to the loose semantics for a data integration
system described in Section 3.3. More precisely, given a possibly inconsistent database D for
RS an assumption as(D) on D, and two databases B1 and B2 consistent with RS, we define
B1 ≤D B2 if:

• B1 ∩ D ⊇ B2 ∩ D, if as(D) = s;

• B1 −D ⊆ B2 −D, if as(D) = c;
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• B1 ∩ D ⊇ B2 ∩ D and B1 −D ⊆ B2 −D, if as(D) = e.

As usual, R1 <D R2 stands for R1 ≤D R2 ∧R2 6≤D R1.
Hence, a database B for RS is in seml as(D)(RS,D), if

(i) B is consistent with RS;

(ii) B is minimal with respect to ≤D.

Example 3.2.1 (contd.) Disregard now the mapping and focus only on the relational schema
G0. Consider the database instance

D = {player(a, b), player(a, d), player(e, f), team(b, c)}

where a, b, c, d, e, f are constants of U . It is easy to see that the strict and the loose semantics are
the same of the integration setting.

In the following we provide an in-depth analysis of the query answering problem in relational
databases, when inclusion, key and exclusion dependencies are expressed over a schema RS, and
different assumptions on database instances for RS are adopted. In particular, we address the
decision problem associated to query answering, that is, given a relational schema RS = 〈Ψ,Σ〉,
where Σ = ΣI ∪ΣK ∪ΣE , a database instance D for RS, an assumption as(D) on D, a query q of
arity n and an n-tuple t of constants of the domain U , to establish whether t ∈ ansas(D)(q,RS,D).

5.2 Query Answering under the Strict Semantics

We focus here on query answering under the sound, complete and exact semantics. As illustrated
in Section 3.2, when the data are considered complete the empty database always belongs to
semc(RS,D), independently of ΣI , ΣK and ΣE ; therefore, for any query q we have immediately
ansc(q,RS,D) = ∅; hence, the answer to the decision problem is always negative for any tuple
t. When the data are considered exact, we have two cases:

1. D satisfies Σ, therefore seme(RS,D) = {D} and anse(q,RS,D) = qD. So, query answering
reduces to classical query processing in relational databases, and it is immediate to establish
whether t ∈ anse(q,RS,D);

2. D violates at least one constraint in Σ, therefore seme(RS,D) = ∅ and anse(q,RS,D)
consists of all tuples of the same arity as q; the answer to the decision problem is therefore
affirmative, independently of q and t.

The case where the data are considered sound is more interesting: in fact, if the inclusion
dependencies in ΣI are not satisfied, we may think of adding suitable facts to D in order to satisfy
them (according to the sound semantics, we are not allowed to repair such violations by deleting
facts). In this case, if D key and exclusion dependencies on G, the semantics of RS is constituted
in general by several (possibly infinite) databases, each of which may have infinite size, since
there are several ways of adding facts to D. Query answering with sound data is therefore a
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difficult task, that is not decidable in all cases. Therefore, in the following we concentrate on
the sound semantics and investigate the interaction between IDs, KDs, and EDs. In particular,
we identify decidable classes of integrity constraints, i.e., classes of inclusion, key and exclusion
dependencies that allow for sound and complete query answering.

5.2.1 Query Answering under the Strictly-sound Semantics

First of all, it is worth noticing that, if Σ contains only KDs and EDs, a situation arises that is
analogous to the one described for the exact semantics. Indeed, according to the sound semantics,
we are only allowed to add facts to D in order to satisfy constraints, but KDs and EDs cannot
be satisfied by adding facts. Hence, if D is not consistent with constraints in ΣK or ΣE , then
sems(RS,D) = ∅, thus query answering is meaningless, whereas if D satisfies ΣK ∪ ΣE , then
anss(q,RS,D) = qD. Furthermore, KDs and EDs do not interfere with each other, where
interfering means that satisfying a constraint may lead to the violation of other constraints. This
immediately allows us to “repair” KDs and EDs separately. Notice that also different KDs (or
different EDs) do not interfere with each other, whereas this is not true for IDs. Hence, we
can assert that the presence of IDs significantly complicates query answering under the sound
semantics.

For the sake of clarity, we next separately study query answering in the presence of IDs only,
in the presence of IDs and EDs, and in the presence of IDs and KDs. Finally, we tackle the
general setting.

Query Answering in the presence of IDs

In this section, we extend previous studies on query containment under integrity constraints,
and show that query answering in the presence of IDs is decidable. To this aim, we need some
preliminary results, presented in the milestone paper of Johnson and Klug [101], which addresses
the problem of conjunctive query containment in a relational schema, in the presence of inclusion
dependencies1. According to this paper, given a relational schema RS = 〈Ψ, ΣI〉, and two
conjunctive queries of the same arity q1 and q2 expressed over RS, to test whether q1 ⊆ q2,
we first have to “freeze” the body of q1, considering its atoms as facts in a database instance
D for RS, and then applying the chase procedure to such a database. The resulting (possibly
infinite) database, denoted as chase(RS,D), is constructed by repeatedly applying, as long as it
is applicable, the following rule:

Inclusion Dependency Chase Rule.

Suppose there is a tuple t in rchase(RS,D), and there is an ID in ΣI of the form
r[Xr] ⊆ s[Xs]. If there is no tuple t′ in schase(RS,D) such that t′[Xs] = t[Xr], then
we add a new tuple tchase in schase(RS,D) such that tchase [Xs] = t[Xr], and for any
attribute A of s, such that A /∈ Xs, tchase [A] is a fresh constant from U , not appearing
elsewhere in chase(RS,D).

1In [101], results on query containment of CQs under IDs are also generalized to the case in which there is a

limited interaction between IDs and FDs. This generalization is actually not interesting for our discussion.
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It should be easy to see that chase(RS,D) can be infinite. In particular, this happens if
IDs in ΣI are cyclic. Nonetheless, it enjoys a fundamental property, as stated by the following
Lemma (adapted from [24]) .

Lemma 5.2.1 Let RS = 〈Ψ, ΣI〉 be a relational schema, and D a database instance for RS,
then chase(RS,D) does not violate any inclusion dependencies in ΣI .

Proof. Suppose by contradiction that the inclusion dependency r[X] ⊆ s[Y] is violated in
chase(RS,D). This implies that there is a tuple t in rchase(RS,D) such that, for no tuple t′ in
schase(RS,D), t′[Y] = t[X]. This would imply that we can apply the chase rule and insert a new
tuple tchase in schase(RS,D) such that tchase [Y] = t[X], and for each attribute A of s such that
A /∈ Y, tchase [A] is a fresh constant; but this contradicts the assumption.

Johnson and Klug have proved that q1 ⊆ q2 if and only if the tuple tf in the frozen head of
q1 belongs to q

chase(RS,D)
2 . Moreover, they have shown that, to check whether tf ∈ q

chase(RS,D)
2 ,

only a finite portion of chase(RS,D) needs to be considered. Based on this property, they have
defined a PSPACE algorithm that checks if tf ∈ q

chase(RS,D)
2

2.
To this aim, we need to maintain distinct the set of constants of the domain U that occur

in the database D, that is the active domain of D, from the other constants of U , which can be
used in the construction of the chase. Hereinafter, we indicate with UD the active domain of a
database D.

In the case of query answering, we are able to exploit the technique of Johnson and Klug.
More specifically, we make use of the notion of chase as specified by the following result.

Theorem 5.2.2 Let RS = 〈Ψ, ΣI〉 be a relational schema and D a database instance for RS;
let q be a conjunctive query of arity n, and t an n-tuple of constants of UD. We have that
t ∈ anss(q,RS,D) if and only if t ∈ qchase(RS,D).

Proof.

“⇒”Since chase(RS,D) satisfies I, it belongs to sems(RS,D). From the definition of
anss(q,RS,D), it follows that t ∈ qchase(RS,D).

“⇐”Analogously to [24], it can be proved by induction on the structure of chase(RS,D)
that, for any database instance B ∈ sems(RS,D), there exists a homomorphism µ that sends
the tuples of chase(RS,D) to the tuples of B. By hypothesis t ∈ qchase(RS,D), so there exists
a homomorphism λ from the atoms of q to the facts of chase(RS,D); the composition λ ◦ µ

witnesses that t ∈ anss(q,RS,D).

Based on the above property, we can apply the algorithm of [101] for query answering, i.e.,
to check whether a tuple t belongs to anss(q,RS,D). More specifically, given an UCQ q(~x) ←
conj 1(~x, ~y1) ∨ . . . ∨ conjm(~x, ~ym) of arity n, an n-tuple t of constants of UD, and a database
instance D for RS, we construct a query q1 of the form q1(t) ← d1, . . . , dk where d1, . . . , dk

are all facts in D. Then, t ∈ anss(q,RS,D) iff q1 is contained in at least one CQ of the form

2Actually, Johnson and Klug have considered the case of boolean queries, for which q1 ⊆ q2 iff q
chase(RS,D)
2 is

non-empty. According to our version of the algorithm, this is equivalent to check that the empty tuple 〈〉, which

represents the frozen head of q1, is contained in q
chase(RS,D)
2 .
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q(~x) ← conj i(~x, ~yi), for each i, 1,≤ i ≤ n. We indicate with AnswerJK (RS,D, q, t) the algorithm
for query answering that makes use of the algorithm for query containment of [101] as above
described. From the results of [101] it easily follows that AnswerJK is a PSPACE algorithm.

Query Answering in the presence of IDs and EDs

Let us now add EDs to the set of integrity constraints specified on RS, i.e., let be Σ = ΣI ∪ΣE .
It should be easy to see that, in general, chase(RS,D) is not a database in sems(RS,D).

Example 5.2.3 Consider the relational schema RS0 = 〈Ψ0,Σ0〉, where Ψ0 contains three unary
relations r1, r2 and r3, and Σ0 = ΣI0 ∪ ΣE0 contains the constraints

r1[1] ⊆ r2[1], and
(r2[1] ∩ r3[1]) = ∅,

and assume that D0 = {r1(a), r3(a)} is a database instance for RS0. Such database is consistent
with ΣE0 , but it is not consistent with ΣI0 . By applying just once the inclusion dependency
chase rule we obtain chase(RS0,D0) = {r1(a), r2(a), r3(a)}. chase(RS0,D0) is now consistent
with ΣI0 , but it is not consistent with ΣE0 . Furthermore, no database satisfying both Σ0 and
the soundness of D0 exists, i.e., sems(RS0,D0) = ∅.

Consider now D1 = {r1(a)}. It is easy to see that chase(RS0,D1) = {r1(a), r2(a)} is con-
sistent with both ΣI0 and ΣE0 , and that all databases in sems(RS0,D1) can be obtained by
consistently adding facts to chase(RS0,D1).

From the above example, we can argue that it should still be possible to answer a query posed
on RS by looking only at chase(RS,D), provided some mechanism for checking if sems(RS,D)
is not empty.

Our feeling is that, in order to assert that sems(RS,D) 6= ∅, we should consider explicitly the
set of exclusion dependencies that are logical consequences of ΣI and ΣE and then verify wether
D is consistent with it. We recall that a constraint δ is a logical consequence of (or is logically
implied by) a set of constraints Σ, denoted Σ |= δ, if all database instances that satisfy Σ satisfy
also δ. The set of EDs that are logically implied by the set Σ = ΣI ∪ ΣE is denoted with Σ∗,ΣE ,
or simply Σ∗E when Σ is clear from the context.

For instance, in Example 5.2.3, Σ∗E0
= ΣE0 ∪ {(r1[1] ∩ r3[1]) = ∅}, and D0 is not consistent

with Σ∗E0
, whereas D1 is consistent with it.

In the following we formally prove that we can make use of the chase to answer queries in the
presence of IDs and EDs.

Lemma 5.2.4 Let RS = 〈Ψ, ΣI , ΣE〉 be a relational schema, and D a database instance for RS.
Then chase(RS,D) satisfies ΣI ∪ ΣE if and only if D is consistent with Σ∗E.

Proof. “⇒”We first show that if D violates any exclusion dependency in Σ∗E , then
chase(RS,D) is not consistent with ΣI ∪ΣE . By contradiction, let us assume that chase(RS,D)
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satisfies ΣI ∪ ΣE . This would imply that chase(RS,D) satisfies also Σ∗E , but, since in the con-
struction of chase(RS,D) facts are only added and never removed, also D would satisfy Σ∗E , and
this contradicts the assumption.

“⇐”We now prove that if D is consistent with Σ∗E , then chase(RS,D) satisfies ΣI ∪ ΣE .
From Lemma 5.2.1 it follows that chase(RS,D) does not violate any inclusion dependency in
ΣI , hence it remains to prove that, chase(RS,D) satisfies ΣE . We first show that chase(RS,D)
satisfies Σ∗E . The proof is by induction on the structure of chase(RS,D). In the following we
indicate with chasei(RS,D) the portion of chase(RS,D) obtained by applying i times the chase
rule.

As for the base step, chase0(RS,D) = D, then, by the assumption, it satisfies Σ∗E . As
for the inductive step, assume by contradiction that chasei(RS,D) is consistent with Σ∗E , but
chasei+1(RS,D) is not. Let r1[X] ⊆ r2[Y] be an ID in ΣI that is violated by chasei(RS,D),
t1 ∈ r

chasei(RS,D)
1 is a tuple that violates such ID, t2 ∈ r

chasei+1(RS,D)
2 is the tuple generated by

the chasing rule, i.e., let be t2[Y] = t1[X], and let (r2[Z]∩ r3[W]) = ∅ be the ED in ΣE violated
in chasei+1(RS,D). Then, there must exist t3 ∈ r

chasei+1(RS,D)
3 such that t3[W] = t2[Z].

According to the chase rule, for any attribute A of r2 such that A /∈ Y, t2[A] is a fresh constant
of U that does not appear in chasei(RS,D). Hence, since also t3 ∈ r

chasei(RS,D)
3 , we have that

Z ⊆ Y. It should be easy to see now that Σ∗E contains the ED (r1[X′] ∩ r3[W]) = ∅, where X′

is a sequence of attributes of r1 such that X′ ⊆ X and t1[X′] = t2[Z]. Hence, t1[X′] = t3[W],
and so chasei(RS,D) does not satisfy Σ∗E , but this contradicts the inductive assumption.

From the fact that chase(RS,D) satisfies Σ∗E , it immediately follows that chase(RS,D)
satisfies ΣE .

With this result in place, we are able to extend the result of [101] to the case of IDs and EDs.

Theorem 5.2.5 (IDs-EDs Separation) Let RS = 〈Ψ,ΣI ,ΣE〉 be a relational schema, and
let RS1 = 〈Ψ, ΣI〉 be the relational schema obtained from RS by removing the EDs. Let D be a
database instance for RS and RS1, q a query of arity n over RS, and t an n-tuple of constants
of UD. We have that t 6∈ anss(q,RS,D) iff D is consistent with Σ∗E and t 6∈ anss(q,RS1,D).

Proof. “⇒”By hypothesis t 6∈ anss(q,RS,D); this means that there exists B ∈ sems(RS,D),
such that t /∈ qB. Since B satisfies ΣI ∪ ΣE , and D ⊆ B, it easily follows that D satisfies Σ∗E . It
is also immediate to verify that B ∈ sems(RS1,D), therefore t 6∈ anss(q,RS1,D), thus proving
the claim.

“⇐”By hypothesis t 6∈ anss(q,RS1,D) and D satisfies Σ∗E . From the former condition,
according to Theorem 5.2.2, it follows that t /∈ qchase(RS1,D), whereas from the latter con-
dition, according to Lemma 5.2.4, it follows that chase(RS,D) satisfies ΣI ∪ ΣE . Since
chase(RS,D) = chase(RS1,D) by construction, then chase(RS1,D) ∈ sems(RS,D). The claim
follows immediately.

Before concluding, we provide now a set of inference rules IED that allows for the computation
of Σ∗,ΣE , where Σ = ΣI ∪ ΣE , and we prove that such inference rules are correct and complete
with respect to the problem of inferring logical implication of EDs by IDs and EDs.
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In the following set IED of inference rules, r, s, r1, r2 are relations, whereas X, Y, Z, W, X′

and Y′ range over sequence of attributes of such relations.

ID-ED1 : If (r[X] ∩ r[Y]) = ∅, where X = X1, . . . , Xn and Y = Y1, . . . , Yn,
then (r[X′] ∩ s[Y′]) = ∅, where X′ is every set of attributes in r such that X′ =
X1, . . . , Xn, Xn+1, . . . , Xm and Y′ is every set of attributes in s such that Y′ =
Y1, . . . , Yn, Yn+1, . . . , Ym.

ID-ED2 : If (r[Z]∩r[Z]) = ∅, then (r[X]∩s[Y]) = ∅ for all relations s and for all sequences
of attributes X and Y3.

ID-ED3 : If r1[X] ⊆ r2[Y] and (r2[Z] ∩ r3[W]) = ∅ such that Z ⊆ Y, then (r1[X′] ∩
r3[W]) = ∅ where X′ ⊆ X is such that r1[X′] ⊆ r2[Z].

We now prove soundness and completeness of the above rules, i.e., we show that Σ `IED
δ

if and only if Σ |= δ, where δ is an ED, and Σ `IED
δ indicates that δ is provable from Σ using

IED (we omit the subscript IED when clear from the context). We say that the ED δ is provable
from Σ using IED if there exists a sequence of IDs and EDs (called proof ) δ1, . . . , δn = δ, (n ≥ 1)
such that for each i ∈ {1, . . . , n} either

(a) δi ∈ Σ, or

(b) there is a substitution for some rule ρ ∈ IED such that δi corresponds to the consequence
of ρ, and such that for each ID and ED in the antecedent of ρ, the corresponding ID and
ED is in the set {δj | 1 ≤ j < i}.

Theorem 5.2.6 The set IED = {ID-ED1,ID-ED2,ID-ED3} is sound and complete for logical
implication of EDs by IDs and EDs.

Proof. Soundness of the rules is easily verified. For completeness, let RS = 〈Ψ, Σ〉 be a
relational schema where Σ = ΣI ∪ΣE is a set of IDs and EDs over RS, and let δ be the exclusion
dependency (r[X] ∩ s[Y]) = ∅ such that Σ |= δ.

We construct a database instance DB for RS such that DB 6|= δ and we use it to demonstrate
that Σ ` δ.

Let r/n and s/m, be two relations in Ψ, and X = X1, . . . , Xk and Y =
Y1, . . . , Yk be two sequences of attributes of r and s, respectively. Suppose by con-
tradiction that Σ 6` δ, and consider a database instance D for RS such that D =
{r(a1, . . . , ak, b1, . . . , bn−k), s(a1, . . . , ak, c1, . . . , cm−k)}4, where ai 6= al, ai 6= bj , ai 6= ch and
bj 6= ch for i = 1, . . . , k, l = 1, . . . , k and l 6= i, j = 1, . . . , n− k, and h = 1, . . . , m− k. It’s easy
to see that D does not satisfy δ, and that chase(RS,D) does not satisfy δ as well.

We next show that chase(RS,D) is consistent with Σ (thus contradicting the assumption
that Σ |= δ).

As for IDs, from Lemma 5.2.1 it follows that chase(RS,D) is consistent with ΣI .

3Notice that, (r[Z] ∩ r[Z]) = ∅ is satisfied by a database instance B if rB is empty.
4Without loss of generality we assume that X and Y are the first k attributes in r and s, respectively.
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We consider now the EDs. Let Σ′ be the set of constraints obtained by adding to Σ the EDs
inferred by Σ using IED. We first show that chase(RS,D) does not violate EDs in Σ′. The
proof is by induction on the construction of chase(RS,D). We indicate with chase(RS,D)i the
portion of chase(RS,D) obtained by applying i times the chase rule.

As for the base step, chase(RS,D)0 = D, hence, according to the construction of D,
chase(RS,D)0 does not violate (i) EDs that do not involve r and s, (ii) EDs of the form
(r[X′]∩ s[Y′]) = ∅ where X′ * X or Y′ * Y, and (iii) EDs of the form (r[Z]∩ r[W]) = ∅ (resp.
(s[Z] ∩ s[W]) = ∅) where Z = Z1, . . . , Zk and W = W1, . . . ,Wk and there exists i ∈ {1, . . . , k}
such that Zi 6= Wi .

It remains to prove that chase(RS,D)0 does not violate

(iv) EDs of the form (r[X′] ∩ s[Y′]) = ∅, where X′ is every set of attributes in r such that
X′ = X1, . . . , Xk, Xk+1, . . . , Xh and Y′ is every set of attributes in s such that Y′ =
Y1, . . . , Yk, Yk+1, . . . , Yh;

(v) EDs of the form (r[X] ∩ r[X]) = ∅ and (s[X] ∩ s[X]) = ∅).

However, constraints of the form (iv) (reps. (v)) cannot be in Σ′, otherwise according to rule
ID-ED1 (resp. ID-ED2) it should be Σ′ ` δ.

As for the inductive step, assume by contradiction that chasei(RS,D) is consistent with Σ′,
but chasei+1(RS,D) is not. Let r1[X] ⊆ r2[Y] be an ID in Σ′ that is violated by chasei(RS,D),
t1 ∈ r

chasei(RS,D)
1 is a tuple that violates such ID, t2 ∈ r

chasei+1(RS,D)
2 is the tuple generated by

the chasing rule, i.e., let be t2[Y] = t1[X], and let (r2[Z]∩ r3[W]) = ∅ be the ED in Σ′ violated
in chasei+1(RS,D). Then, there must exist t3 ∈ r

chasei+1(RS,D)
3 such that t3[W] = t2[Z].

According to the chase rule, for any attribute A of r2 such that A /∈ Y, t2[A] is a fresh constant of
U that does not appear in chasei(RS,D). Hence, since also t3 ∈ r

chasei(RS,D)
3 , we have that Z ⊆

Y. It should be easy to see now that, according to the ID-ED3 rule, from the above ID and ED
we can prove the exclusion dependency (r1[X′]∩r3[W]) = ∅, where X′ is a sequence of attributes
of r1 such that X′ ⊆ X and t1[X′] = t2[Z]. Hence, t1[X′] = t3[W], and so chasei(RS,D) does
not satisfy (r1[X′] ∩ r3[W]) = ∅, but this contradicts the inductive assumption.

Since ΣE ⊆ Σ′, it immediately follows that chase(RS,D) is consistent with ΣE , but since it
does not satisfy δ, we can conclude that δ is not a logical consequence of Σ.

Finally, we provide a complexity result for logical implication of EDs by IDs and EDs.

Theorem 5.2.7 Let RS = 〈Ψ,Σ〉 be a relational schema, where Σ = ΣI ∪ ΣE, and let δ be an
exclusion dependency. Then, the problem of deciding wether Σ |= δ is PSPACE-complete.

Proof. As for the membership, we show that there exist a non-deterministic polynomial
space algorithm for deciding logical implication of δ by Σ. Then, by Savitch’s theorem [146]
this can be transformed into a deterministic algorithm that runs in polynomial space. More
precisely, in order to prove that Σ |= δ, we check if Σ `IED

δ, i.e., we look for a proof δ1, . . . , δn,
such that δn = δ. Without loss of generality, we assume that no useless dependencies are in the
proof, i.e., every dependency, except δn, appears in the antecedent of at least one inference rule
of IED. According to the set IED, to generate in the proof δi, such that 1 ≤ i ≤ n and δi /∈ Σ,
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we need only δi−1 (if δi is generated by applying ID-ED1 or ID-ED2) or δi−1 and δj such that
1 ≤ j < i − 1 (if δi is generated by applying ID-ED3). Since in this last situation one among
δi−1 and δj is an ID belonging to ΣI , the additional space required in both cases is bounded to
the space required for storing a single ED, rather than the complete proof at the (i− 1)-th step.
Moreover, the number of EDs that are logical consequence of Σ is bounded to O(2n log n), where
n is the maximum between the number of relations in Ψ and the maximum arity of the relations
in Ψ. Hence, a counter of n log n bits allows us to stop the non-deterministic computation after
2n log n steps if δ has not still been proved.

Hardness easily follows from the fact that deciding logical implication of EDs by IDs and
EDs actually subsumes deciding logical implication of IDs. Since logical implication of IDs is a
PSPACE-complete problem [2], the hardness follows.

Query Answering in the presence of IDs and KDs

Let us now study the case in which IDs and KDs are expressed over a relational schema, i.e.,
consider the schema RS = 〈Ψ, Σ〉, where Σ = ΣI ∪ ΣK . Differently from the situation studied
before, query answering in such a setting is not decidable in all cases.

We now define a restricted class of dependencies under which query answering is decidable.

Definition 5.2.8 Given a relational schema RS = 〈Ψ,ΣI ,ΣK〉, an inclusion dependency in ΣI

of the form r1[A1] ⊆ r2[A2] is a non-key-conflicting inclusion dependency (NKCID) with respect
to ΣK if either: (i) no KD is defined on r2, or (ii) the KD key(r2) = K is in ΣK , and A2 is not
a strict superset of K, i.e., A2 6⊃ K. Moreover, the schema RS is non-key-conflicting (NKC) if
all the IDs in ΣI are NKCIDs with respect to ΣK .

Informally, a set of dependencies is NKC if no ID in ΣI propagates a proper subset of the key
of the relation in its right-hand side. We point out that the class of NKCIDs comprises the well-
known class of foreign key dependencies, which corresponds to IDs of the form r1[A1] ⊆ r2[A2]
such that key(r2) = A2.

We first show that, as soon as we extend the class of dependencies beyond the non-key-
conflicting case, query answering is undecidable. In particular, we introduce, together with KDs,
inclusion dependencies of the form r1[A1] ⊆ r2[A2] such that, if the KD key(r2) = K is in
ΣK , A2 is allowed to cover K plus at most one attribute of r2. We will call such IDs 1-key-
conflicting IDs (1KCIDs) with respect to ΣK . A 1-key-conflicting (1KC) relational schema is
defined analogously to a NKC schema. We first show undecidability of implication of KDs and
1KCIDs.

Theorem 5.2.9 The problem of implication for KDs and 1KCIDs is undecidable.

Proof. The proof is by reduction from the more general problem of implication of functional
dependencies and inclusion dependencies. Consider a generic instance of this problem, i.e., given
a relational schema RS = 〈Ψ, ΣI , ΣF 〉, where ΣI is a set of IDs and ΣF is a set of FDs, and
an inclusion dependency δ. We assume that all FDs in ΣF are in normal form, i.e. of the form
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r : A → B, where a single attribute B is in the right-hand side. We construct an ad hoc problem
of implication of KDs and 1KCIDs, consisting of a relational schema RS1 = 〈Ψ1,ΣI1 , ΣK1〉,
where ΣI1 is a set of 1KCID with respect to ΣK1 , and the same dependency δ. We will show
that the two problems are equivalent, i.e. (ΣI ∪ ΣF ) |= δ if and only if (ΣI1 ∪ ΣK1) |= δ.
The dependencies ΣI1 and ΣK1 , defined in a new relational schema RS1 = 〈Ψ1,ΣI1 , ΣK1〉, are
constructed as follows.

• The new set of relations Ψ1 includes all relations in Ψ (plus those added as below).

• ΣI1 includes all IDs in ΣI (plus those added as below).

• For each FD ϕ in ΣF of the form
r : A → B,

we add to Ψ1 an auxiliary relation rϕ of arity |A|+ 1, and we add to ΣI1 the dependencies

γ1 : rϕ[A, B] ⊆ r[A, B]
γ2 : r[A, B] ⊆ rϕ[A, B],

and to ΣK1 key dependency
κ : key(rϕ) = A.

Note that all the IDs in ΣI1 are 1KCIDs with respect to ΣK1 , since keys in ΣK1 are only those
expressed on the auxiliary relations rϕ, and the only IDs on rϕ are of the form γ2. The following
result will be used in the rest of the proof.

Lemma 5.2.10 For any database B1 for RS1, we have that B1 satisfies {ϕ, γ1, γ2} if and only
if B1 satisfies {κ, γ1, γ2}.

Proof. “⇒”By hypothesis, for any two tuples t1, t2 ∈ RB1 , it cannot happen that t1[A] = t2[A]
and t1[B] = t2[B]. Since by dependencies γ1, γ2 we have RB[A, B] = RBϕ[A, B], we deduce that
the same property holds for all tuples in RB1

ϕ ; therefore κ is satisfied by definition.
“⇐”By hypothesis, for any two tuples t1, t2 ∈ RB1

ϕ , it cannot happen that t1[A] = t2[A] and
t1[B] = t2[B]. Since by dependencies γ1, γ2 we have RB1 [A, B] = RB1

ϕ [A, B], we deduce that the
same property holds for all tuples in RB1 ; therefore ϕ is satisfied by definition.

From this result it follows that we are able to simulate general FDs by using KDs and 1KCIDs
only. Now we end the reduction by showing that (ΣI ∪ ΣF ) |= δ if and only if (ΣI1 ∪ ΣK1) |= δ.

“⇒”By contradiction, suppose (ΣI1 ∪ΣK1) 6|= δ; then there exists a database B1 for RS1 such
that B1 satisfies (ΣI1 ∪ΣK1) and violates δ. Consider a database B for RS obtained from B1 by
removing the facts associated with the relations of the form rϕ introduced in the reduction. By
Lemma 5.2.10, B satisfies (ΣI ∪ ΣF ); moreover, B cannot satisfy δ because B coincides with B1

on the relations in Ψ.
“⇐”By contradiction, suppose (ΣI ∪ ΣF ) 6|= δ; then there exists a database B for RS such

that B satisfies (ΣI ∪ ΣF ) and violates δ. We construct a database B1 for RS1 that coincides
with B on the relations in Ψ, and such that the facts associated with the relations of the form
rϕ, introduced in the reduction, are such that the dependencies of the form γ1, γ2 are satisfied.
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By Lemma 5.2.10, B1 satisfies (ΣI1 ∪ ΣK1); moreover, it cannot satisfy δ because B1 coincides
with B on the relations in Ψ.

The reduction is clearly computable in a finite amount of time. Since implication of IDs and
FDs is undecidable, the thesis follows.

As similar result on undecidability of the implication problem for multiple key dependencies
and foreign key dependencies has been established in [73, 72]. The connection between the two
problems can be intuitively seen from the fact that a foreign key constraint that presents in
its right-hand side a key K1, may also be a key conflicting inclusion dependency with respect
to another key K2 of the same relation, if K2 ⊂ K1. However, our result (that has been
developed independently of the one in [73, 72]) is slightly more general since proves undecidability
of implication for 1KCIDs.

We now show that query answering is undecidable in the presence of KDs and 1KCIDs.

Theorem 5.2.11 Let RS = 〈Ψ,ΣI ,ΣK〉 be a 1KC schema, D a database instance for RS, q

a query of arity n over RS, and t an n-tuple of constants of UD. The problem of establishing
whether t ∈ anss(q,RS,D) is undecidable.

Proof. The proof is analogous to a proof of PSPACE-hardness of an analogous result (ad-
dressed in the context of query containment) proved by Vardi and published in [101]. We will
show a counterexample in which the problem is undecidable. Let δ be the following inclusion
dependency:

r[A1, . . . , Ak] ⊆ s[B1, . . . , Bk]

where r has arity n and s has arity m. Without loss of generality, δ involves the first k attributes
of r and s respectively. We choose a database instance D for RS containing the single fact
r(c1, . . . , cn). Then we consider the following boolean query:

q ← r(X1, . . . , Xn), s(X1, . . . , Xk, Yk+1, . . . , Ym)

Note that the query q has a positive answer (i.e., 〈〉 ∈ anss(q,RS,D)) if and only if the fact
s(c1, . . . , ck, dk+1, . . . , dm) is in all databases in sems(RS,D). It is immediate to see that this is
true if and only if (ΣI ∪ ΣK) |= δ. Since implication of 1KCIDs and KDs is undecidable, the
thesis follows.

As an immediate consequence of this theorem, undecidability of query answering in the pres-
ence of KDs and general IDs follows. Moreover, the problem is still undecidable if we restrict to
the class of instances consistent with the key dependencies.

Corollary 5.2.12 Let RS = 〈Ψ, ΣI , ΣK〉 be a 1KC schema, D a database instance for RS
consistent with ΣK , q a query of arity n over RS, and t an n-tuple of constants of UD. The
problem of establishing whether t ∈ anss(q,RS,D) is undecidable.

Proof. The case where D does not satisfy ΣK is clearly decidable, since in that case the
answer to the problem is always affirmative. The claim follows immediately.
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Now we come to query answering in the case of NKCIDs and KDs, and prove that this
problem is decidable. The most relevant property of NKCIDs is that they do not interfere with
KDs, so that we can operate with NKCIDs just as if the KDs were not defined in the schema.
In particular, we can again make use of the chase to answer queries in the presence of IDs and
KDs. This property is expressed by the following result.

Lemma 5.2.13 Let RS = 〈Ψ, ΣI , ΣK〉 be a NKC schema, and D a database instance for RS.
Then chase(RS,D) satisfies ΣI and ΣK if and only if D is consistent with ΣK .

Proof. “⇒”We show that if D violates any key dependency in ΣK , then chase(RS,D) is not
consistent with ΣI ∪ ΣK . By contradiction, let us assume that chase(RS,D) satisfies ΣI ∪ ΣK .
Since in the construction of chase(RS,D) facts are only added and never removed, also D would
satisfy ΣK , and this contradicts the assumption.

“⇐”We now prove that if D is consistent with ΣK , then chase(RS,D) satisfies ΣI ∪ ΣK .
From Lemma 5.2.1 it follows that chase(RS,D) does not violate any inclusion dependency in
ΣI , hence it remains to prove that, chase(RS,D) satisfies ΣK . The proof is by induction on the
structure of chase(RS,D). First, by hypothesis D is consistent with ΣK , and this verifies the
base step. For the induction step, suppose we insert in chase(RS,D) a tuple t into a relation
r, on which a key dependency key(r) = K is defined, according to the ID s[A] ⊆ r[B]. We
will show that there is no violation of the key dependencies on r, by showing that t does not
agree on K with any pre-existing tuple t in rchase∗(RS,D), where chase∗(RS,D) is the portion of
chase(RS,D) constructed until the insertion of t.

According to the definition of NKCIDs, the possible cases are the following.

1. B = K. In this case we have a foreign key dependency; t and t̄ cannot agree on K, because
in that case t wouldn’t have been added.

2. B ⊂ K. The two tuples differ on the constants of B (otherwise only one of the two would
have been added), so they differ also on K.

3. B ∩K 6= ∅ and B −K 6= ∅. In this case B partially overlaps with key(r); we necessarily
have K−B 6= ∅, otherwise B would be a strict superset of K. Therefore t and t differ in
the constants in K−B, where t has fresh constants, thus they differ a fortiori on K.

4. B ∩ K = ∅. In this case the two tuples differ in the constants in K, where t has fresh
constants.

Analogously to the case of IDs and EDs, we exploit the above lemma to extend the result
of [101] to the case of IDs and KDs.

Theorem 5.2.14 (IDs-KDs Separation) Let RS = 〈Ψ,ΣI ,ΣK〉 be a NKC relational schema,
and let RS1 = 〈Ψ, ΣI〉 be the relational schema obtained from RS by removing the KDs. Let D be
a database instance for RS and RS1, q a query of arity n over RS, and t an n-tuple of constants
of UD. We have that t 6∈ anss(q,RS,D) iff D is consistent with ΣK and t 6∈ anss(q,RS1,D).
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Proof. Easily obtainable from the proof of Theorem 5.2.5 by replacing ΣE and Σ∗E with ΣK ,
and Lemma 5.2.4 with Lemma 5.2.13.

Query Answering in the presence of IDs, KDs, and EDs

Finally, we consider the general case in which IDs, KDs and EDs are expressed over a relational
schema RS. Obviously, according to Theorem 5.2.11, in the presence of 1KCIDs with respect
to the KDs on RS, query answering is undecidable, being the case in which only IDs and KDs
are expressed over RS a special case of the setting studied here. In particular, the problem
is undecidable if we restrict to the class of instances consistent with the key and exclusion
dependencies, as stated by the following corollary that is a straightforward generalization of
Corollary 5.2.12 and that will be useful in the following.

Corollary 5.2.15 Let RS = 〈Ψ, ΣI , ΣK , ΣE〉 be a 1KC schema5, D a database instance for RS
consistent with ΣK ∪ Σ∗E, q a query of arity n over RS, and t an n-tuple of constants of UD.
The problem of establishing whether t ∈ anss(q,RS,D) is undecidable.

As for the case of NKC schemas, the following theorem states that query answering is de-
cidable. The theorem, whose proof follows straightforwardly from Theorem 5.2.5 and Theorem
5.2.14, integrates the results that we have presented separately for IDs and EDs, and for IDs and
KDs.

Theorem 5.2.16 (IDs-EDs-KDs Separation) Let RS = 〈Ψ, ΣI , ΣK , ΣE〉 be a NKC schema,
and let RS1 = 〈Ψ, ΣI , 〉 be the relational schema obtained from RS by removing the KDs and
EDs. Let D be a database instance for RS and RS1, q a query of arity n over RS, and t an
n-tuple of constants of UD. We have that t 6∈ anss(q,RS,D) iff D is consistent with ΣK and Σ∗E
and t 6∈ anss(q,RS1,D).

Based on the above theorem, we define the algorithm AnswerS, that solves query answering
in the case of NKCIDs, KDs and EDs.

Algorithm AnswerS(RS,D, q, t)
Input: NKC database schema RS = 〈Ψ, ΣI , ΣK , ΣE〉, database instance D,

query q of arity n over RS, n-tuple t of constants of UD;
Output: true if t ∈ anss(q,RS,D), false otherwise;
if D is not consistent with ΣK ∪ Σ∗E
then return true
else return AnswerJK (〈Ψ,ΣI〉,D, q, t)

Soundness and completeness of the algorithm follow immediately from Theorem 5.2.16 and from
soundness and completeness of AnswerJK [101].

To conclude the section, we present a complexity result for query answering in our setting
under the sound semantics.

5Hereinafter, we use the terns NKC and 1KC schemas even when also EDs are issued over the global schema.
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Theorem 5.2.17 Let RS = 〈Ψ, ΣI , ΣK , ΣE〉 be a NKC schema, D a database instance for RS,
q a query of arity n over RS, and t an n-tuple of constants of UD. The problem of establishing
whether t ∈ anss(q,RS,D) is PSPACE-complete with respect to combined complexity. Moreover,
it is in PTIME in data complexity.

Proof. From the results in [101], it follows directly that the problem in the case of IDs alone
is PSPACE-complete in combined complexity; being such a case a particular case of NKCIDs,
KDs and EDs (when no KD is defined, any ID is non-key-conflicting), PSPACE-hardness in our
general case follows trivially.

Membership is proved by showing that the algorithm AnswerS runs in PSPACE. Consider a
database schema RS = 〈Ψ, ΣI , ΣK , ΣE〉 where ΣI , ΣK and ΣE are sets of NKCIDs, KDs, and
EDs, respectively. Our algorithm AnswerS proceeds as follows. The first step, checks whether
D satisfies ΣK ∪ Σ∗E . Checking if D satisfies ΣK is clearly feasible in PTIME (and a fortiori in
PSPACE). Analogously, given an ED δ ∈ Σ∗E , checking if D satisfies δ can be done in PTIME.
From Theorem 5.2.7, it follows that checking wether δ ∈ Σ∗E is a PSPACE complete problem.
Then, the first step of the algorithm is computable in PSPACE. If D does not satisfy ΣK ∪ Σ∗E ,
the answer is trivial; if it does, we disregard ΣK and ΣE , and apply the PSPACE algorithm
AnswerJK . Hence, All steps of AnswerS are computable in PSPACE.

Membership in PTIME in data complexity follows immediately since AnswerJK runs in time
polynomial in data complexity.

Furthermore, the above complexity characterization of the problem holds even if we restrict
to instances consistent with the key and the exclusion dependencies.

Corollary 5.2.18 Let RS = 〈Ψ,ΣI ,ΣK ,ΣE〉 be a NKC database schema, D a database instance
for RS consistent with ΣK ∪Σ∗E, q a query of arity n over RS, and t an n-tuple of constants of
UD. The problem of establishing whether t ∈ anss(q,RS,D) is PSPACE-complete with respect
to combined complexity.

Proof. Membership follows immediately from the general case treated in Theorem 5.2.17. Also
hardness can be proved as done in Theorem 5.2.17. Indeed, as already said, from the results
of [101] it immediately follows that the problem of query answering in the presence of IDs only
is PSPACE-complete; moreover, the case of only IDs is a particular case of NKCIDs, KDs and
EDs, in which the database instance is consistent with the KDs and the EDs that are logical
consequence of the IDs and EDs originally issued over the schema.

It should be easy to see that the above results also hold for the case in which only EDs and
IDs are expressed over the relational schema, and for the case of only KDs and NKCIDs (proofs
for these cases are analogous to the above proofs).

5.3 Query Answering under the Loose Semantics

In this section we analyze the problem of computing answers to queries under the loose semantics.
In particular, since (as shown in Section 3.3) the loosely-complete and the strictly-complete
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semantics coincide, we study query answering under the loosely-sound semantics and the loosely-
exact semantics.

5.3.1 Query Answering under the Loosely-sound Semantics

As we already said, differently from the strictly-sound semantics, given a relational schema
RS = 〈Ψ, ΣI , ΣK , ΣE〉 and a database instance D, it always holds that semls(RS,D) 6= ∅,
because we are now allowed to also eliminate facts from D in order to satisfy integrity constraints.
Notice that, while to satisfy key and exclusion dependencies we are forced to delete facts from D,
we always try to satisfy inclusion dependencies by adding new facts, and resort to facts deletion
also in this case only if there is no other chance to obtain a database consistent with RS. This
because databases in semls(RS,D) are the ones that are “as sound as possible”, thus we have
to consider only databases consistent with the constraints that “minimize” elimination of facts
from D.

We first show undecidability of query answering for 1-key-conflicting relational schemas.

Theorem 5.3.1 Let RS = 〈Ψ,ΣI ,ΣK , ΣE〉 be a 1KC relational schema, D a database instance
for RS, q a query of arity n over RS, and t a n-tuple of constants of UD. The problem of
establishing whether t ∈ ans ls(q,RS,D) is undecidable.

Proof. Consider the case in which D is consistent with ΣK ∪ Σ∗E . Undecidability in this
case follows from Corollary 5.2.15 since, in the case in which D is consistent with ΣK ∪ Σ∗E ,
t ∈ ans ls(q,RS,D) iff t ∈ anss(q,RS,D).

As for the class of non-key-conflicting relational schemas, we give a method for computing
answers to a query q under the loosely-sound semantics that can be informally explained as
follows: we first identify the maximal subsets of D that are consistent with ΣK ∪ Σ∗E , then for
each such database D′ we make use of the algorithm AnswerS presented in Section 5.2.1. Indeed,
it can be shown that a tuple t is a consistent answer to a query q with respect to RS and D, i.e.,
t ∈ ans ls(q,RS,D), iff AnswerS(RS,D′, q, t) returns true for each such database D′.

More specifically, we define the following algorithm:

Algorithm AnswerLS(RS,D, q, t)
Input: non-key-conflicting relational schema RS = 〈Ψ,ΣI ,ΣK , ΣE〉, database instance D,

query q of arity n over RS, n-tuple t of constants of UD;
Output: true if t ∈ ans ls(q,RS,D), false otherwise;
if there exists D1 ⊆ D
such that

(1) D1 is consistent with ΣK ∪ Σ∗E ;
(2) for each r(t) ∈ D −D1,

D1 ∪ {r(t)} is not consistent with ΣK ∪ Σ∗E ;
(3) AnswerS(RS,D1, q, t) returns false

then return false
else return true



5.3: Query Answering under the Loose Semantics 59

Informally, conditions (1) and (2) together check that D1 is a maximal subset of D consistent
with ΣK ∪Σ∗E ; this implies the existence of a database B ∈ semls(RS,D) such that B ∩D = D1.
Then, condition (3) verifies that t /∈ qB.

Theorem 5.3.2 Let RS = 〈Ψ, ΣI , ΣK , ΣE〉 be a NKC relational schema, D a database in-
stance for RS, q a query of arity n over RS, and t a n-tuple of constants of UD. Then,
t ∈ ans ls(q,RS,D) iff AnswerLS(RS,D, q, t) returns true.

Proof. We first provide the following result that is needed in the proof

Lemma 5.3.3 Let RS = 〈Ψ, ΣI , ΣK , ΣE〉 be a NKC relational schema and D a database instance
for RS. Then, semls(RS,D) =

⋃
D′ sems(RS,D′) for each D′ maximal subset of D consistent

with ΣK ∪ Σ∗E.

Proof. Given B ∈ semls(RS,D), then D′ = B ∩ D is a maximal subset of D consistent with
ΣK ∪ Σ∗E . Indeed, since B satisfies ΣK ∪ Σ∗E , then every subset of B satisfies such constraints,
and if there would exist D′′ ⊆ D such that D′′ satisfies ΣK ∪Σ∗E and D′′ ⊃ D′, B did not belong
to semls(RS,D). It easily follows that B ∈ sems(RS,D′), since B is consistent with RS, and
B ⊇ D′. Consider now D′ maximal subset of D consistent with ΣK ∪Σ∗E . From Theorem 5.2.16
it follows that sems(RS,D′) is not empty. Hence, for each B′ ∈ sems(RS,D′) we have also
that B′ ∈ semls(RS,D). Indeed, B′ is consistent with RS, and is minimal w.r.t. ≤D. The last
property can be easily verified by assuming that there exist B′′ <D B′, i.e., B′′ is consistent with
RS and B′′ ∩ D ⊃ B′ ∩ D. Since B′ ∩ D ⊃ B′ ∩ D′ = D′, this would imply B′′ ∩ D ⊃ D′, thus
contradicting the assumption.

We now provide the proof of the theorem.
“⇒”If t ∈ ans ls(q,RS,D) then t ∈ qB for each B ∈ semls(RS,D). From Lemma 5.3.3 it

follows that t ∈ anss(q,RS,D1) for each D1 maximal subset of D consistent with ΣK ∪ Σ∗E ,
and from soundness and completeness of algorithm AnswerS, it follows that AnswerS(RS,D1, q, t)
returns true for each such database D1. Hence, AnswerLS(RS,D, q, t) returns true.

“⇐”Suppose by contradiction that t /∈ ans ls(q,RS,D) and AnswerLS(RS,D, q, t) returns true.
This means that for each D1 maximal subset of D consistent with ΣK∪Σ∗E , AnswerS(RS,D1, q, t)
returns true. From soundness and completeness of algorithm AnswerS, it follows that t ∈
anss(q,RS,D1) for each such database D1, i.e., t ∈ qB for each B ∈ sems(RS,D1). From
Lemma 5.3.3 it follows that t ∈ qB for each B ∈ semls(RS,D), but this contradicts the assump-
tion.

We give now the computational characterization of the problem of query answering under the
loosely-sound semantics in the presence of NKCIDs, KDs, and EDs. We start by analyzing data
complexity. For the sake of clarity, we first provide an upper bound for the complexity of the
problem, and then study its hardness.

Lemma 5.3.4 Let RS = 〈Ψ, ΣI , ΣK , ΣE〉 be a NKC relational schema, D a database instance
for RS, q a query of arity n over RS, and t an n-tuple of constants of UD. The problem of
establishing whether t ∈ ans ls(q,RS,D) is in coNP with respect to data complexity.
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Proof. Membership in coNP follows from the algorithm AnswerLS(RS,D, q, t) and from Theo-
rem 5.2.17. Indeed, in the algorithm the problem of establishing whether t /∈ ans ls(q,RS,D),
that is the complement of our problem, is carried out by guessing a database and checking
conditions (1), (2), and (3) that can be verified in polynomial time.

It is easy to see that the above complexity characterization holds also in the absence of IDs
on the relational schema RS, i.e., when ΣI = ∅, and in all the cases in which at least one between
ΣK or ΣE is not empty. It is also worth noticing that query answering in the presence of only
IDs over RS under the loosely-sound semantics is analogous to the same problem under the
strictly-sound semantics, which has been addressed in the previous section.

Let us now turn our attention to lower bounds. We first consider the case of only KDs.

Theorem 5.3.5 Let RS = 〈Ψ, ΣK〉 be a relational schema, D a database instance for RS, q

a query of arity n over RS, and t an n-tuple of constants of UD. The problem of establishing
whether t ∈ ans ls(q,RS,D) is coNP-hard with respect to data complexity.

Proof. In order to prove the hardness, we reduce the 3-colorability problem to the complement
of our problem.

Consider a graph G = 〈V,E〉 with a set of vertices V and edges E. We define a relational
schemaRS = 〈Ψ, ΣK〉 where Ψ consists of the two binary relations edge and col , and ΣK contains
the dependency key(col) = {1}. The instance D is defined as follows:

D = {col(n, i)|i ∈ {1, 2, 3} and n ∈ V } ∪
{edge(x, y)|〈x, y〉 ∈ E}

Finally, we define the query

q ← edge(X, Y ), col(X, Z), col(Y,Z)

We prove that G is 3-colorable (i.e., for each pair of adjacent vertices, the vertices are associated
with different colors) if and only if 〈〉 6∈ ans ls(q,RS,D) (i.e., the boolean query q has a negative
answer)6. In fact, it is immediate to verify that, for each possible coloring C of the graph (i.e.,
a set of pairs of vertices and colors, where the three colors are represented by the values 1,2,3)
there exists B ∈ semls(RS,D) that exactly corresponds to C, i.e., colB is exactly the set of pairs
in the coloring C. Therefore, if there exists a coloring that is a 3-coloring, then 〈〉 6∈ qB for some
B ∈ semls(RS,D), consequently 〈〉 6∈ ans ls(q,RS,D). Conversely, it is immediate to verify that,
for each B ∈ semls(RS,D), colB∩D corresponds to a possible coloring of the graph. Hence, if
each possible coloring is not a 3-coloring, then 〈〉 ∈ qB, therefore 〈〉 ∈ ans ls(q,RS,D).

An analogous result holds also for schemas containing only EDs.

Theorem 5.3.6 Let RS = 〈Ψ, ΣE〉 be a relational schema, D a database instance for RS, q

a query of arity n over RS, and t an n-tuple of constants of UD. The problem of establishing
whether t ∈ ans ls(q,RS,D) is coNP-hard with respect to data complexity.

6〈〉 represents the empty tuple. According to a common notation in relational databases [2], given a boolean

query q, 〈〉 ∈ qB iff q evaluates to true over a database instance B.
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Proof. Also in this case we prove coNP hardness by reducing the 3-colorability problem to the
complement our problem. Consider a graph G = 〈V, E〉 with a set of vertices V and edges E.
We define a relational schema RS = 〈Ψ, ΣE〉 where Ψ consists of the binary relation edge and
the three unary relations col1 , col2 and col3 . Then, ΣE contains the dependencies

col1 [1] ∩ col2 [1] = ∅;
col1 [1] ∩ col3 [1] = ∅;
col2 [1] ∩ col3 [1] = ∅.

The instance D is defined as follows:

D = {col1 (n), col2 (n), col3 (n)|n ∈ V } ∪
{edge(x, y)|〈x, y〉 ∈ E}

Finally, we define the query

q ← edge(X,Y ), col1 (X), col1 (Y ) ∨
edge(X,Y ), col2 (X), col2 (Y ) ∨
edge(X,Y ), col3 (X), col3 (Y ).

It is easy to see that, also in this case, G is 3-colorable if and only if 〈〉 6∈ ans ls(q,RS,D). Indeed,
for each possible coloring C of the graph there exists B ∈ semls(RS,D) that exactly corresponds
to C, i.e., col1B, col2B and col3B store exactly the set of nodes associated in the coloring C with
color 1, 2 and 3, respectively. Therefore, if there exists a coloring that is a 3-coloring, then 〈〉 6∈ qB

for some B ∈ semls(RS,D), consequently 〈〉 6∈ ans ls(q,RS,D). Conversely, it is immediate to
verify that, for each B ∈ semls(RS,D), col1B∩D, col2B∩D and col3B∩D correspond to a possible
coloring of the graph. Hence, if each possible coloring is not a 3-coloring, then 〈〉 ∈ qB, therefore
〈〉 ∈ ans ls(q,RS,D).

It should be easy to see that whenever KDs or EDs are specified on the relational schema,
the problem of query answering is coNP-complete with respect data complexity. In particular,
we can provide the following theorem.

Theorem 5.3.7 Let RS = 〈Ψ,ΣI ,ΣK , ΣE〉 be a NKC relational schema, D a database instance
for RS, q a query of arity n over RS, and t an n-tuple of constants of UD. The problem of
establishing whether t ∈ ans ls(q,RS,D) is coNP-complete with respect to data complexity.

Proof. The claim follows from Lemma 5.3.4, and from Theorem 5.3.5 or Theorem 5.3.6

Let us now deal with combined complexity. We first consider query answering in the absence
of IDs, and then address the general setting.

Theorem 5.3.8 Let RS = 〈Ψ,Σ〉 be a relational schema, where either Σ = ΣK or Σ = ΣE (or
Σ = ΣK ∪ ΣE). Moreover, let D be a database instance for RS, q a query of arity n over RS,
and t an n-tuple of constants of UD. The problem of establishing whether t ∈ ans ls(q,RS,D) is
Πp

2-complete with respect to combined complexity.
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Proof. To prove membership in Πp
2, consider the algorithm AnswerLS(RS,D, q, t). Since there

are no IDs specified over RS, the algorithm AnswerS(RS,D1, q, t) in condition (3) simply verifies
if t /∈ qD1 , i.e., it performs classical query answering in the absence of integrity constraints. Since
classical query processing over relational databases is combined complete for NP , the claim easily
follows. Notice that the above proof holds either if Σ = ΣK or if Σ = ΣE (or if Σ = ΣK ∪ ΣE).

Hardness can be proved by a reduction to our problem of the 2-QBF validity problem, i.e.,
the validity problem for quantified boolean formulae. Two different reductions can be given in
the two cases in which Σ = ΣK or Σ = ΣE .

Consider first the case in which Σ = ΣK . We prove hardness with respect to Πp
2, by reducing

to our problem the 2-QBF validity problem, i.e., the validity problem for quantified boolean
formulae.

Let g be the 2-QBF formula ∀x1 . . . xn∃y1 . . . ymf(x1, . . . , xn, y1, . . . , ym) where f is a 3-CNF,
i.e., a propositional formula of the form

(l1,1 ∨ l1,2 ∨ l1,3) ∧ . . . ∧ (lk,1 ∨ lk,2 ∨ lk,3). (5.1)

where each li,j is a literal of the form a or a, with a ∈ {x1, . . . , xn, y1, . . . , ym}.
We construct a relational schema RS = 〈Ψ,ΣK〉 as follows:

- Ψ consists of the relations (with associated arities): xi/2 for 1 ≤ i ≤ n, yi/1 for 1 ≤ i ≤ m,
and ci/3 for 1 ≤ i ≤ k;

- ΣK consists of the key dependencies key(xi) = {1} for 1 ≤ i ≤ n.

Moreover, we build an instance D for RS, containing the following facts:

1. for each i such that 1 ≤ i ≤ n, the facts xi(c0, 0), xi(c0, 1);

2. for each i such that 1 ≤ i ≤ m, the facts yi(0), yi(1);

3. for each i such that 1 ≤ i ≤ k the facts of the form ci(bi,1, bi,2, bi,3) such that bi,j ∈ {0, 1}
for 1 ≤ j ≤ 3, and when applying the substitution σ{li,1 → bi,1, li,2 → bi,2, li,3 → bi,3} to
f , the conjunct li,1 ∨ li,2 ∨ li,3 evaluates to 1, i.e., to true.

Finally, let q be the query

q ← x1(C1, X1), . . . xn(Cn, Xn), y1(Y1) . . . ym(Ym), c1(Z1,1, Z1,2, Z1,3), . . . ck(Zk,1, Zk,2, Zk,3)

where either

(i) Zi,j = Xr if li,j = Xr or li,j = Xr for r ∈ {1, . . . n}, or

(ii) Zi,j = Yr if li,j = Yr or li,j = Y r for r ∈ {1, . . . m}.

We prove that g is valid if and only if 〈〉 ∈ ans ls(q,RS,D).
First, suppose that g is valid. Then, for each propositional evaluation µ of x1, . . . , xn there

exists a propositional evaluation µ′ of y1, . . . , ym such that the interpretation of f with respect to µ

and µ′ is true. Let Bµ be the database obtained from D by removing each fact of the form xi(c0, 1)
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if µ(xi) = false and xi(c0, 0) if µ(xi) = true. It is immediate to see that Bµ ∈ semls(RS,D).
Now, since the interpretation of f with respect to µ and µ′ is true, it follows that each conjunct
li,1 ∨ li,2 ∨ li,2 in f evaluates to true. Then, according to the construction of D (point 3), for
1 ≤ i ≤ n, Bµ contains the facts ci(bi,1, bi,2, bi,3), where bi,j = 1 if ν(li,j) = true, or bi,j = 0 if
ν(li,j) = false, where ν = µ ∪ µ′. It should be easy to see that the query q evaluates to true
over Bµ, i.e., 〈〉 ∈ qBµ . Consider now the set {µ1, . . . , µh} of possible propositional evaluations
of x1, . . . , xn in g, then each B ∈ semls(RS,D) is such that B ⊇ Bµi

, for some i ∈ {1, . . . , h}. It
follows that 〈〉 ∈ ans ls(q,RS,D).

Suppose now that g is not valid. Therefore, there exists an evaluation µ of x1, . . . , xn such
that for each evaluation µ′ of y1, . . . , ym, the interpretation of f with respect to µ and µ′ is false.
Let B be the database obtained from D by removing each fact of the form xi(c0, 1) if µ(xi) = false
and xi(c0, 0) if µ(xi) = true It is immediate to see that B ∈ semls(RS,D), since it corresponds to
a maximal subset of D consistent with ΣK . Since g is not valid, then at least one conjunct in f

is not satisfied for each evaluation µ′ of y1, . . . , ym. Hence, in the evaluation of the query q over
B, at least one atom of the form ci(Zi,1, Zi,2, Zi,3) does not unify with the facts in B. Therefore,
〈〉 6∈ qB, which implies that 〈〉 6∈ ans le(q,RS,D).

Consider now the case in which Σ = ΣE . To prove Πp
2-hardness, we use a reduction from

2-QBF validity problem similar to the one described above. Indeed, in this case we construct a
relational schema RS = 〈Ψ, ΣE〉 as follows:

- Ψ is as in the above reduction;

- ΣE consists of the exclusion dependencies xi[1] ∩ xi[2] = ∅ for 1 ≤ i ≤ n.

The instance D for RS, contains the following facts:

1. for each i such that 1 ≤ i ≤ n, the facts xi(1, 0), xi(0, 1);

2. the same facts indicated at point 2 and 3 in the above reduction.

Finally, the query q is the same as above.
Proceeding as in the previous reduction, we can analogously prove that g is valid if and only

if 〈〉 ∈ ans ls(q,RS,D).

As for the general case, we prove in the following that the presence of IDs significantly
complicate the problem.

Theorem 5.3.9 Let RS = 〈Ψ,ΣI ,ΣK , ΣE〉 be a NKC relational schema, D a database instance
for RS, q a query of arity n over RS, and t an n-tuple of constants of UD. The problem of es-
tablishing whether t ∈ ans ls(q,RS,D) is PSPACE-complete with respect to combined complexity.

Proof. Hardness follows from Corollary 5.2.18 and from the fact that, for NKC schemas when
D is consistent with ΣK ∪ Σ∗E , t ∈ ans ls(q,RS,D) if and only if t ∈ anss(q,RS,D).

Membership in PSPACE follows from algorithm AnswerLS(RS,D, q, t) and Theorem 5.2.17.
Indeed, it is easy to see that conditions (1), (2), and (3) can be verified in polynomial space.
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Then, by Savitch’s theorem [146] AnswerLS can be transformed into a deterministic algorithm
that runs in polynomial space.

Notice that, since PSPACE-completeness of query answering under the strictly-sound seman-
tics also holds in the presence of only IDs and EDs, and only IDs and NKCIDs on the relational
schema, as said at end of Section 5.2.1, an analogous result holds for NKC schemas of the form
RS = 〈Ψ,ΣI , ΣK〉 and of the form RS = 〈Ψ, ΣI , ΣE〉.

5.3.2 Query Answering under the Loosely-exact Semantics

We now study the query answering problem under the loosely-exact semantics. We recall that,
differently from the loosely-sound semantics, in this case IDs can be always satisfied by either
adding or deleting facts. Hence, semle(RS,D) accounts for databases that minimize both elimi-
nation and insertion of facts, i.e., that are “as exact as possible”.

We first prove that query answering under the loosely-exact semantics is undecidable in the
general case, i.e., when no restriction is imposed on the form of IDs, KDs and EDs.

Theorem 5.3.10 Let RS = 〈Ψ, ΣI , ΣK ,ΣE〉 be a relational schema, D a database instance
for RS, q a query of arity n over RS, and t an n-tuple of constants of UD. The problem of
establishing whether t ∈ ans le(q,RS,D) is undecidable.

Proof. We reduce query answering in the loosely-sound semantics to query answering in the
loosely-exact semantics. We can restrict our attention to schemas without EDs. Furthermore,
we can consider instances D consistent with ΣK , since for this class of instances the problem of
establishing whether t ∈ ans ls(q,RS,D) is undecidable (see end of Section 5.2.1). Starting from
such a problem instance (RS,D, q, t), we define a new problem instance (RS ′,D′, q′, t′) such that
t ∈ ans ls(q,RS,D) iff t′ ∈ ans le(q′,RS ′,D′). Precisely:

• RS ′ = 〈Ψ′, Σ′I , Σ′K〉 is obtained from RS by:

– defining Ψ′ as the schema obtained from Ψ by adding an attribute to each relation in
Ψ (in the last position);

– changing each inclusion in order to propagate such a new attribute from r to s, i.e.,
Σ′I is obtained from ΣI by replacing each I = r[i1, . . . , ik] ⊆ s[j1, . . . , jk] with I ′ =
r[i1, . . . , ik, n] ⊆ s[j1, . . . , jk, m], where n is the arity of r in Ψ′ and m is the arity of
s in Ψ′;

• D′ is the set D′1 ∪ D′2, where D′1 = { r(u, t0)|r(u) ∈ D } and

D′2 = { r(u, t1) | r ∈ Ψ and u is a tuple of constants of UD ∪ {t1} }

where t0, t1 are constants of U not belonging to UD. Notice that the set D′ is finite;

• if the query q has the form

q(~x) ← conj 1(~x, ~y1) ∨ · · · ∨ conj k(~x, ~yk)
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the query q′ is as follows:

q′(~x, Y ) ← conj 1(~x, ~y1, t0) ∨ · · · ∨ conj k(~x, ~yk, t0) ∨ body ′

where body ′ is the disjunction
∨
{r(u, t1) | r(u) ∈ D and there is a KD for r in ΣK}

• t′ is obtained from t by adding the value t0 at the end of the tuple t.

It can be shown that t ∈ ans ls(q,RS,D) iff t′ ∈ ans le(q′,RS ′,D′), since for each database B in
semle(RS,D), there are two possible cases:

1. B ∩ D = D. In this case, due to the key dependencies ΣK , B does not contain any tuple
of the form r(u, t1) such that r(u) ∈ D and a key dependency for r is defined in ΣK .
Consequently, t′ ∈ q′B iff t ∈ qB. Moreover, it is immediate to verify that there exists at
least one such B in semle(RS ′,D′);

2. B ∩ D ⊂ D. In this case, there exists at least one tuple in B of the form r(u, t1) such that
r(u) ∈ D and a key dependency for r is defined in ΣK , consequently t′ ∈ q′B for each such
B. In other words, this kind of databases does not affect ans le(q′,RS ′,D′), since in B every
possible tuple is in the answer of q′.

Therefore, t ∈ ans ls(q,RS,D) iff t′ ∈ ans le(q′,RS ′,D′).
Finally, since the above reduction is effectively computable and since, by Theorem 5.3.1,

establishing whether t ∈ ans ls(q,RS,D) is undecidable, the thesis follows.

Differently from the previous semantics, in the case when the instance D is consistent with
ΣK ∪ Σ∗E , we obtain a surprising result: query answering is decidable under the loosely-exact
semantics even without any restriction on the form of KDs and IDs.

Theorem 5.3.11 Let RS = 〈Ψ,ΣI ,ΣK ,ΣE〉 be a relational schema, D a database instance
consistent with ΣK ∪Σ∗E, q a query of arity n over RS, and t be an n-tuple of constants of UD.
The problem of establishing whether t ∈ ans le(q,RS,D) can be decided in polynomial time with
respect to data complexity and is NP-complete with respect to combined complexity.

Proof. To prove the thesis, we define the following algorithm:

Algorithm AnswerConsLE(RS,D, q, t)
Input: relational schema RS = 〈Ψ, ΣI , ΣK ,ΣE〉,

database instance D consistent with ΣK ∪ Σ∗E ,
conjunctive query q of arity n, n-tuple t of constants of UD

Output: true if t ∈ ans le(q,RS,D), false otherwise
D1 = D;
repeat
D0 = D1;
for each r(t′) ∈ D1
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if there exists r[i1, . . . , ik] ⊆ s[j1, . . . , jk] ∈ ΣI

such that
for each s(t′′) ∈ D1, t′′[j1, . . . , jk] 6= t′[i1, . . . , ik]

then D1 = D1 − {r(t′)}
until D1 = D0;
if t ∈ qD1

then return true
else return false

Correctness of the algorithm AnswerConsLE follows from the fact that the database D1 com-
puted by the algorithm is such that (i) D1 ∈ semle(RS,D); (ii) for each B ∈ semle(RS,D),
B ⊇ D1. Therefore, t ∈ ans le(q,RS,D) if and only if t ∈ qD1 . It is well-known that this last
condition (corresponding to standard query answering over a relational database) can be com-
puted in polynomial time with respect to data complexity and in nondeterministic polynomial
time with respect to combined complexity.

Let us turn our attention on query answering under the loosely-exact semantics in the case of
NKC relational schemas. To this aim, we first define a particular query Q(δi, t) associated with
a tuple t and an inclusion dependency δi.

Definition 5.3.12 Let δi be an inclusion dependency of the form r[i1, . . . , ik] ⊆ s[j1, . . . , jk],
where r has arity n and s has arity m, and let t be an n-tuple. We denote as Q(δi, t) the boolean
conjunctive query q ← s(z1, . . . , zm), where, for each ` such that 1 ≤ ` ≤ m, each z` is as follows:
if there exists h such that ` = jh then z` = t[ih], otherwise z` = X`.

In the following, the query Q(δi, t) is used in order to verify whether a relational schema RS
and an instance D imply the existence in all databases B ∈ sems(RS,D) of a fact of the form
s(t′) such that t[i1, . . . , ik] = t′[j1, . . . , jk].

Below we define the algorithm AnswerLE for query answering under the loosely-exact seman-
tics.

Algorithm AnswerLE(RS,D, q, t)
Input: NKC relational schema RS = 〈Ψ,ΣI ,ΣK , ΣE〉, database instance D,

query q of arity n over RS, n-tuple t of constants of UD
Output: true if t ∈ ans le(q,RS,D), false otherwise
if there exists D′ ⊆ D such that

(a) D′ is consistent with ΣK ∪ Σ∗E and
(b) AnswerS(〈Ψ,ΣI〉,D′, q, t) returns false and
(c) for each D′′ such that D′ ⊂ D′′ ⊆ D

(c1) D′′ is not consistent with ΣK ∪ Σ∗E or
(c2) there exists δi ∈ ΣI and r(t1) ∈ D′′

such that
AnswerS(〈Ψ, ΣI〉,D′, Q(δi, t1), 〈〉) returns false and
AnswerS(〈Ψ, ∅〉,D′′, Q(δi, t1), 〈〉) returns false



5.3: Query Answering under the Loose Semantics 67

then return false
else return true

Intuitively, to return false the algorithm looks for the existence of a database B′ in
semle(RS,D) such that t 6∈ qB

′
. As in the algorithm AnswerLS, the database B′ is represented by

its intersection with the initial instance D (denoted as D′ in the algorithm): the fact that t 6∈ qB
′

is verified by condition (b), while the fact that B′ ∈ semle(RS,D) is verified by conditions (a) and
(c) of the algorithm. In particular, condition (c) verifies that, for each database B′′ (represented
by its intersection with D denoted as D′′), it is not the case that B′′ <D B′. In conditions (c1)
and (c2), the symbol 〈〉 denotes the empty tuple.

Soundness and completeness of the algorithm is established by the following theorem.

Theorem 5.3.13 Let RS = 〈Ψ, ΣI , ΣK , ΣE〉 be a NKC relational schema, D a database in-
stance, q a query of arity n over Ψ, and t an n-tuple of constants of UD. Then, t ∈ ans le(q,RS,D)
iff AnswerLE(RS,D, q, t) returns true.

Proof. In order to prove correctness of the above algorithm, we need a preliminary lemma. In the
following, given an instance D of a relational schema RS = 〈Ψ,ΣI〉, we denote as chase1(RS,D)
the set of new facts obtained by applying the chase rule to the facts in D, i.e., the set of facts of
the form s(t2) such that there exist δi = r[i1, . . . , ik] ⊆ s[j1, . . . , jk] ∈ ΣI and r(t1) ∈ D such that
t1[i1, . . . , ik] = t2[j1, . . . , jk] and there exists no s(t3) ∈ D such that t1[i1, . . . , ik] = t3[j1, . . . , jk].

Lemma 5.3.14 Let D′,D′′ be instances of a relational schema RS = 〈Ψ, ΣI〉 such that D′ ⊂ D′′
and, for each δi ∈ ΣI of the form δi = r[i1, . . . , ik] ⊆ s[j1, . . . , jk] and for each r(t1) ∈ D′′,
either AnswerS(〈Ψ, ΣI〉,D′, Q(δi, t1), 〈〉) returns true or AnswerS(〈Ψ, ∅〉,D′′, Q(δi, t1), 〈〉) returns
true. Then, chase(RS,D′′)−D′′ ⊆ chase(RS,D′)−D′.
Proof. It is straightforward to verify that the hypothesis implies that chase1(RS,D′′) ⊆
chase1(RS,D′); this in turn implies that each new fact added in chase(RS,D′′) by an ap-
plication of the chase rule in chase(RS,D′′) is also added by the chase rule in chase(RS,D′).
Consequently, the thesis follows.

We now prove the theorem.
“⇒”Suppose AnswerLE(RS,D, q, t) returns false. Then, there exists D′ ⊆ D such that con-

ditions (a), (b) and (c) of the algorithm hold for D′. Let B′ = chase(RS,D′). Now, suppose
B′ 6∈ semle(RS,D): hence, there exists a database instance B′′ such that B′′ is consistent with
ΣK and B′′ <D B′, which implies that B′′−D ⊆ B′−D. Since by hypothesis condition (c) holds
for D′, it follows that condition (c2) holds for D′′, i.e., there exists a fact r(t1) ∈ D′′ and an
inclusion δi = r[i1, . . . , ik] ⊆ s[j1, . . . , jk] ∈ ΣI such that:

1. AnswerS(〈Ψ, ΣI〉,D′, Q(δi, t1), 〈〉) returns false, which implies that there is no fact in B′ of
the form s(t2) such that t1[i1, . . . , ik] = t2[j1, . . . , jk];

2. AnswerS(〈Ψ, ∅〉,D′′, Q(δi, t1), 〈〉) returns false, which implies that there is no fact in D′′ of
the form s(t2) such that t1[i1, . . . , ik] = t2[j1, . . . , jk]. On the other hand, a fact of the form
s(t2) such that t1[i1, . . . , ik] = t2[j1, . . . , jk] must be present in B′′, due to the presence of
r(t1) in D′′ and to the inclusion δi.
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The two above conditions imply that there exists a fact of the form s(t2) in B′′ −D which does
not belong to B′. Consequently, B′′−D ⊆ B′−D does not hold, thus contradicting the hypothesis
that B′′ <D B′. Therefore, B′ ∈ semle(RS,D), and since conditions (a) and (b) hold for D′, it
follows that t 6∈ qB

′
, hence t 6∈ ans le(q,RS,D).

“⇐”Suppose t 6∈ ans le(q,RS,D). Therefore, there exists B′ ∈ semle(RS,D) such that t 6∈
qB

′
. Let D′ = D ∩ B′. Since B′ ∈ semle(RS,D), then B′ satisfies ΣI ∪ Σ∗E , and since D′ ⊆ B′,

condition (a) of the algorithm holds. From t 6∈ qB
′
and from soundness and completeness of the

algorithm AnswerS it follows that condition (b) holds for D′. Now, suppose condition (c) does
not hold for D′: then, there exists D′′ such that conditions (c1) and (c2) do not hold for D′ and
D′′, i.e., D′′ is consistent with ΣK ∪ Σ∗E and, for each δi ∈ ΣI of the form δi = r[i1, . . . , ik] ⊆
s[j1, . . . , jk] and for each r(t1) ∈ D′′, either AnswerS(〈Ψ,ΣI〉,D′, Q(δi, t1), 〈〉) returns true or
AnswerS(〈Ψ, ∅〉,D′′, Q(δi, t1), 〈〉) returns true. By Lemma 5.3.14, it follows that chase(RS,D′′)−
D′′ ⊆ chase(RS,D′) − D′. Now let B′′ = chase(RS,D′′): since B′ ⊇ chase(RS,D′), it follows
that B′′ − D ⊆ B′ − D, and by hypothesis D′′ ⊃ D′, therefore B′′ ∩ D ⊃ B′ ∩ D, hence B′′ <D
B′. Moreover, since D′′ is consistent with ΣK ∪ Σ∗E , B′′ is consistent with ΣK , ΣE and ΣI ,
consequently B′ 6∈ semle(RS,D), thus contradicting the hypothesis. Therefore, condition (c)
holds for D′, which implies that AnswerLE(RS,D, q, t) returns false.

Finally, based on the above algorithm, we analyze the computational complexity of query
answering under the loosely-exact semantics for NKC relational schemas.

Theorem 5.3.15 Let RS = 〈Ψ, ΣI , ΣK , ΣE〉 be a NKC relational schema, D a database in-
stance, q a query of arity n over RS, and t an n-tuple of constants of UD. The problem of
establishing whether t ∈ ans le(q,RS,D) is Πp

2-complete with respect to data complexity and
PSPACE-complete with respect to combined complexity.

Proof. The analysis of the algorithm AnswerLE shows that the problem is in Πp
2 w.r.t. data

complexity. Indeed, it is immediate to verify that:

• condition (a) can be verified in polynomial time;

• condition (b) can be verified in polynomial time, as shown in Section 5.2.1;

• conditions (c1) and (c2) can be verified in polynomial time: therefore, condition (c) can be
verified in nondeterministic polynomial time.

Consequently, if considered as a nondeterministic procedure, the algorithm runs in Σp
2 w.r.t. data

complexity, hence our problem (that is the complement of the problem solved by AnswerLE) is in
Πp

2 w.r.t. data complexity.
Hardness with respect to Πp

2 can be proved by a reduction from 2-QBF validity. In this
respect we consider here an instance of our problem in which no ED is specified on the relational
schema RS. Let g be the 2-QBF formula ∀x1 . . . xn∃y1 . . . ymf(x1, . . . , xn, y1, . . . , ym) where f

is a 3-CNF, i.e., a propositional formula of the form c1 ∧ . . . ∧ ck, in which each conjunct ci is of
the form l1 ∨ l2 ∨ l3 and each li is a literal of the form a or a, with a ∈ {x1, . . . , xn, y1, . . . , ym}.
We construct a relational schema RS = 〈Ψ,ΣI ,ΣK〉 as follows:
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1. Ψ consists of four relations (with associated arities): r1/3, r2/2, r3/2, s/1;

2. ΣI is constituted of four unary IDs:

r2[2] ⊆ r1[2] (ID1)

r1[3] ⊆ r3[1] (ID2)

r2[1] ⊆ r3[1] (ID3)

r3[2] ⊆ r2[1] (ID4)

3. ΣK consists of the KD key(r1) = 1.

Moreover, we build an instance D for RS, containing the following facts:

1. for each i such that 1 ≤ i ≤ n, the facts r1(xi, xi, c0), r1(xi, xi, c0);

2. for each i such that 1 ≤ i ≤ m, the facts r1(yi, yi, c1), r1(yi, yi, c1);

3. for each i such that 1 ≤ i ≤ k and for each aj occurring in ci, the fact r2(ci, aj);

4. for each i such that 1 ≤ i < k, the fact r3(ci, ci+1), plus the fact r3(ck, c1);

5. the facts r1(c0, c0, c0), r2(c0, c0), r3(c0, c0);

6. the facts s(ci) for each i such that 1 ≤ i ≤ k.

Finally, let q be the query q ← s(X), r3(X, Y ). We prove that g is valid if and only if 〈〉 ∈
ans le(q,RS,D).

First, suppose that g is valid. Then, for each propositional evaluation µ of x1, . . . , xn there
exists a propositional evaluation µ′ of y1, . . . , ym such that the interpretation of f with respect
to µ and µ′ is true. Let Bµ be the database obtained from D by:

(i) removing each fact of the form r1(xi, xi, c0) if µ(xi) = false and r1(xi, xi, c0) if µ(xi) = true;

(ii) removing each fact of the form r1(yi, yi, c1) if µ′(yi) = false and r1(yi, yi, c1) if µ′(yi) = true;

(iii) removing each fact of the form r2(ci, xj) (respectively, r2(ci, xj)) if µ(xj) = false (respec-
tively, µ(xj) = true) and removing all facts of the form r2(ci, yj) (respectively, r2(ci, yj)) if
µ′(yj) = false (respectively, µ′(yj) = true).

Now, since the interpretation of f with respect to µ and µ′ is true, it follows that for each i such
that 1 ≤ i ≤ k there is a fact of the form r2(ci, V ) in Bµ (from now on the symbols V, V ′ represent
generic values), which implies that Bµ satisfies all the IDs in ΣI ; moreover, it is immediate to
see that Bµ is consistent with ΣK . Then consider any B′ such that B′ ∈ semle(RS,D). It can
be immediately verified that, due to ΣK and ΣI , B′ must be such that there exists an evaluation
µ of x1, . . . , xn such that the set of facts in B′ of the form r1(xi, V, V ′) coincides with the set of
facts in Bµ of the form r1(xi, V, V ′). Now suppose that in B′ there is no fact of the form r3(ci, V )
such that 1 ≤ i ≤ k. Due to (ID3) and to the fact that B′ is consistent with ΣI , it follows that
in B′ there is no fact of the form r2(ci, V ) such that 1 ≤ i ≤ k. This in turn implies that, due
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to (ID4), in B′ there is no fact of the form r1(V, V ′, c1), consequently no fact in D of the form
r1(yi, V, V ′) is in B′. Therefore, B′ ∩ D ⊂ Bµ ∩ D, and since Bµ − D = ∅ and Bµ is consistent
with ΣI and ΣK , it follows that B′ 6∈ semle(RS,D), thus contradicting the hypothesis. Hence,
for each B′ such that B′ ∈ semle(RS,D), there is at least one fact of the form r3(ci, V ) such that
1 ≤ i ≤ k, and since each such B′ contains the fact s(ci) for each i such that 1 ≤ i ≤ k, it follows
that 〈〉 ∈ ans le(RS,D, q).

Suppose now that g is not valid. Therefore, there exists an evaluation µ of x1, . . . , xn such
that for each evaluation µ′ of y1, . . . , ym, the interpretation of f with respect to µ and µ′ is false.
Let B be the database obtained from D by:

(i) removing each fact of the form r1(xi, xi, c0) if µ(xi) = false and r1(xi, xi, c0) if µ(xi) = true;

(ii) removing all facts of the form r1(yi, V, V ′);

(iii) removing all facts of the form r2(V, V ′) and each fact of the form r3(ci, V ) such that
1 ≤ i ≤ k.

It is immediate to see that B ∈ semle(RS,D), since it corresponds to a maximal subset of D
consistent with ΣI and ΣK . Hence, in B there is no fact of the form r3(ci, V ) such that 1 ≤ i ≤ k.
Therefore, 〈〉 6∈ qB, which implies that 〈〉 6∈ ans le(RS,D, q).

As concerns combined complexity, it is immediate to verify that each of the conditions of
the algorithm is computed in nondeterministic polynomial space, therefore the algorithm runs
in nondeterministic polynomial space w.r.t. combined complexity, which proves membership in
PSPACE of the problem. PSPACE-hardness can be proved by reducing query answering under
loosely-sound semantics for databases without key dependencies to this problem. The reduction
is obtained by a slight modification of the reduction from query answering under loosely-sound
semantics exhibited in the proof of Theorem 5.3.10, and observing that, if the original problem
instance is such that, for each I = r[~A] ⊆ s[~B] ∈ ΣI , ~B does not cover the set of all the attributes
of s, then the derived database schema RS ′ is a NKC schema. Moreover, it is immediate to verify
that restricting to such a kind of problem instances does not affect PSPACE-hardness of the query
answering problem under the loosely-sound semantics. Finally, the reduction is modified in a way
such that the database instance D′ obtained from the original instance D has size polynomial
w.r.t. combined complexity.

From the proof of the above theorem, it is easy to see that the complexity of the query
answering problem in the absence of EDs, i.e., when RS = 〈Ψ, ΣI , ΣK〉, actually coincides with
the complexity of the general case. Then, the question arises whether the complexity is the same
also in the presence of only IDs and EDs. The following theorem affirmatively replies to this
question.

Theorem 5.3.16 Let RS = 〈Ψ, ΣI , ΣE〉 be a relational schema, D a database instance, q a query
of arity n over RS, and t an n-tuple of constants of UD. The problem of establishing whether
t ∈ ans le(q,RS,D) is Πp

2-complete with respect to data complexity and PSPACE-complete with
respect to combined complexity.
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Proof. Membership for both data and combined complexity is as in Theorem 5.3.15.

Hardness with respect to Πp
2 can be proved by a reduction from 2-QBF validity. To this

aim, we consider here an instance of our problem in which no ED is specified on the relational
schema RS. Let g be the 2-QBF formula ∀x1 . . . xn∃y1 . . . ymf(x1, . . . , xn, y1, . . . , ym) where f

is a 3-CNF, i.e., a propositional formula of the form c1 ∧ . . . ∧ ck, in which each conjunct ci is of
the form l1 ∨ l2 ∨ l3 and each li is a literal of the form a or a, with a ∈ {x1, . . . , xn, y1, . . . , ym}.
We construct a relational schema RS = 〈Ψ, ΣI , ΣK〉 as follows:

1. Ψ consists of four relations (with associated arities): r1/3, r2/2, r3/2, s/1;

2. ΣI is constituted of four unary IDs:

r2[2] ⊆ r1[2] (ID1)

r1[3] ⊆ r3[1] (ID2)

r2[1] ⊆ r3[1] (ID3)

r3[2] ⊆ r2[1] (ID4)

3. ΣK consists of the KD key(r1) = 1.

Moreover, we build an instance D for RS, containing the following facts:

1. for each i such that 1 ≤ i ≤ n, the facts r1(xi, xi, c0), r1(xi, xi, c0);

2. for each i such that 1 ≤ i ≤ m, the facts r1(yi, yi, c1), r1(yi, yi, c1);

3. for each i such that 1 ≤ i ≤ k and for each aj occurring in ci, the fact r2(ci, aj);

4. for each i such that 1 ≤ i < k, the fact r3(ci, ci+1), plus the fact r3(ck, c1);

5. the facts r1(c0, c0, c0), r2(c0, c0), r3(c0, c0);

6. the facts s(ci) for each i such that 1 ≤ i ≤ k.

Finally, let q be the query q ← s(X), r3(X, Y ). We prove that g is valid if and only if 〈〉 ∈
ans le(q,RS,D).

First, suppose that g is valid. Then, for each propositional evaluation µ of x1, . . . , xn there
exists a propositional evaluation µ′ of y1, . . . , ym such that the interpretation of f with respect
to µ and µ′ is true. Let Bµ be the database obtained from D by:

(i) removing each fact of the form r1(xi, xi, c0) if µ(xi) = false and r1(xi, xi, c0) if µ(xi) = true;

(ii) removing each fact of the form r1(yi, yi, c1) if µ′(yi) = false and r1(yi, yi, c1) if µ′(yi) = true;

(iii) removing each fact of the form r2(ci, xj) (respectively, r2(ci, xj)) if µ(xj) = false (respec-
tively, µ(xj) = true) and removing all facts of the form r2(ci, yj) (respectively, r2(ci, yj)) if
µ′(yj) = false (respectively, µ′(yj) = true).
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Now, since the interpretation of f with respect to µ and µ′ is true, it follows that for each i such
that 1 ≤ i ≤ k there is a fact of the form r2(ci, V ) in Bµ (from now on the symbols V, V ′ represent
generic values), which implies that Bµ satisfies all the IDs in ΣI ; moreover, it is immediate to
see that Bµ is consistent with ΣK . Then consider any B′ such that B′ ∈ semle(RS,D). It can
be immediately verified that, due to ΣK and ΣI , B′ must be such that there exists an evaluation
µ of x1, . . . , xn such that the set of facts in B′ of the form r1(xi, V, V ′) coincides with the set of
facts in Bµ of the form r1(xi, V, V ′). Now suppose that in B′ there is no fact of the form r3(ci, V )
such that 1 ≤ i ≤ k. Due to (ID3) and to the fact that B′ is consistent with ΣI , it follows that
in B′ there is no fact of the form r2(ci, V ) such that 1 ≤ i ≤ k. This in turn implies that, due
to (ID4), in B′ there is no fact of the form r1(V, V ′, c1), consequently no fact in D of the form
r1(yi, V, V ′) is in B′. Therefore, B′ ∩ D ⊂ Bµ ∩ D, and since Bµ − D = ∅ and Bµ is consistent
with ΣI and ΣK , it follows that B′ 6∈ semle(RS,D), thus contradicting the hypothesis. Hence,
for each B′ such that B′ ∈ semle(RS,D), there is at least one fact of the form r3(ci, V ) such that
1 ≤ i ≤ k, and since each such B′ contains the fact s(ci) for each i such that 1 ≤ i ≤ k, it follows
that 〈〉 ∈ ans le(RS,D, q).

Suppose now that g is not valid. Therefore, there exists an evaluation µ of x1, . . . , xn such
that for each evaluation µ′ of y1, . . . , ym, the interpretation of f with respect to µ and µ′ is false.
Let B be the database obtained from D by:

(i) removing each fact of the form r1(xi, xi, c0) if µ(xi) = false and r1(xi, xi, c0) if µ(xi) = true;

(ii) removing all facts of the form r1(yi, V, V ′);

(iii) removing all facts of the form r2(V, V ′) and each fact of the form r3(ci, V ) such that
1 ≤ i ≤ k.

It is immediate to see that B ∈ semle(RS,D), since it corresponds to a maximal subset of D
consistent with ΣI and ΣK . Hence, in B there is no fact of the form r3(ci, V ) such that 1 ≤ i ≤ k.
Therefore, 〈〉 6∈ qB, which implies that 〈〉 6∈ ans le(RS,D, q).

As concerns combined complexity, PSPACE-hardness can be proved by reducing query an-
swering under loosely-sound semantics for databases without key dependencies to this problem.
The reduction is obtained by a slight modification of the reduction from query answering under
loosely-sound semantics exhibited in the proof of Theorem 5.3.10, and observing that, if the
original problem instance is such that, for each I = r[~A] ⊆ s[~B] ∈ ΣI , ~B does not cover the set
of all the attributes of s, then the derived database schema RS ′ is a NKC schema. Moreover,
it is immediate to verify that restricting to such a kind of problem instances does not affect
PSPACE-hardness of the query answering problem under the loosely-sound semantics. Finally,
the reduction is modified in a way such that the database instance D′ obtained from the original
instance D has size polynomial w.r.t. combined complexity.

We finally point out that query answering under the loosely-exact semantics in the absence
of IDs coincides with the same problem under the loosely-sound semantics, hence algorithms and
complexity results are the same in the two cases.
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Data/Combined complexity for general database instances:

EDs KDs IDs strictly-sound loosely-sound loosely-exact

no no GEN PTIME♠/PSPACE♠ PTIME/PSPACE PTIME/NP
yes-no yes no PTIME♠/NP♠ coNP♠/Πp

2 coNP♠/Πp
2

yes yes-no no PTIME♠/NP♠ coNP♠/Πp
2 coNP♠/Πp

2

yes-no yes NKC PTIME/PSPACE coNP/PSPACE Πp
2/PSPACE

yes no GEN PTIME/PSPACE coNP/PSPACE Πp
2/PSPACE

yes-no yes 1KC undecidable undecidable undecidable
yes-no yes GEN undecidable♠ undecidable undecidable

Data/Combined complexity for databases consistent with KDs and EDs:

EDs KDs IDs strictly-sound loosely-sound loosely-exact

no no GEN PTIME♠/PSPACE♠ PTIME/PSPACE PTIME/NP
yes-no yes no PTIME♠/NP♠ PTIME♠/NP♠ PTIME♠/NP♠

yes yes-no no PTIME♠/NP♠ PTIME♠/NP♠ PTIME♠/NP♠

yes-no yes NKC PTIME/PSPACE PTIME/PSPACE PTIME/NP
yes no GEN PTIME/PSPACE PTIME/PSPACE PTIME/NP

yes-no yes 1KC undecidable undecidable PTIME/NP
yes-no yes GEN undecidable♠ undecidable PTIME/NP

Legenda: GEN = general IDs, NKC = non-key-conflicting IDs, 1KC = 1-key-conflicting IDs,
♠ = already known results.

Figure 5.1: Complexity of query answering under EDs, KDs and IDs (decision problem)

5.4 Summary of Results

The summary of the results we have obtained is reported in Figure 5.1, in which we have two
distinct tables, that present, respectively, the complexity of query answering for the class of gen-
eral database instances and for instances consistent with KDs and EDs7. Each column (with the
exception of the first three) corresponds to a different semantics, while each row corresponds to
a different combination of dependencies (specified in the first three columns, where yes indicates
the presence of the dependencies, no the absence, and yes-no that the corresponding complexity
is independent by these dependencies). Each cell of the tables reports data complexity and com-
bined complexity of query answering: for each decidable case, the complexity of the problem is
complete with respect to the class reported (with the exception of the cases in which the com-
plexity is PTIME). We have marked with the symbol ♠ the cells corresponding either to already
known results or to results straightforwardly implied by known results.

In the first table, complexity under the strictly-sound semantics for the case in which no
IDs are specified on the schema coincide with the complexity of standard query answering over

7We assume here that the EDs are closed w.r.t. logical implication of IDs and EDs.
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relational databases [2]. Notice also that in the presence of only IDs the strictly-sound and the
loosely-sound semantics coincide, whereas complexity under the loosely-exact semantics in this
case has been proved in Theorem 5.3.11 (in the absence of IDs and EDs a generic database
instance satisfies the assumptions of such theorem).

We underline also that, in the second table, the strictly-sound and the loosely-sound semantics
coincide. Furthermore, in this table, all results for the loosely-exact semantics can be proved as
done for Theorem 5.3.11.

We point out that, due to the correspondence between query answering and query contain-
ment illustrated in Section 5.2.1, all the complexity results established for the problem of query
answering also hold for the conjunctive query containment problem.

5.5 Related Work

The problem of reasoning with inconsistent databases is closely related to the studies in belief
revision and update [6]. This area of Artificial Intelligence studies the problem of integrating new
information with previous knowledge. In general, the problem is studied in a logical framework,
in which the new information is a logical formula f and the previous knowledge is a logical theory
(also called knowledge base) T . Of course, f may in general be inconsistent with T . The revised
(or updated) knowledge base is denoted as T ◦ f , and several semantics have been proposed for
the operator ◦. The semantics for belief revision can be divided into revision semantics, when
the new information f is interpreted as a modification of the knowledge about the world, and
update semantics, when f reflects a change in the world.

The problem of reasoning with inconsistent databases can be actually seen as a problem of
belief revision. In fact, with respect to the above illustrated knowledge base revision framework,
if we consider the database instance D as the initial knowledge base T , and the set of integrity
constraints Σ as the new information f , then the problem of deciding whether a tuple t is in
the answer set of a query q with respect to the database schema RS = 〈Ψ, Σ〉 and the instance
D corresponds to the belief revision problem D ◦ Σ |= q(t). Based on such a correspondence,
the studies in belief revision appear very relevant for the field of inconsistent databases: indeed,
almost all the approaches to inconsistent databases that we have considered in this section can be
reconstructed in terms of direct applications of well-known semantics for belief revision/update
in a particular class of theories.

On the other hand, from a computational perspective, there are no results concerning the
particular kind of belief revision/update that is of interest for database applications: in particular,
the class of relational integrity constraints as revision/update knowledge has not been taken into
account in the belief revision literature, where the computational results mostly concern a setting
in which knowledge is specified in terms of propositional formulae of classical logic [64, 65].
Instead, the typical database setting is considered by the literature on inconsistent databases,
which we briefly survey in the following.

The notion of consistent query answers over inconsistent databases was originally given in [17].
However, the approach in [17] is completely proof-theoretic, and no computational technique for
obtaining consistent answers from inconsistent database is provided.
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In [123] the authors describe an operator for merging databases under constraints which allows
for obtaining a maximal amount of information from each database by means of a majority
criterion used in case of conflict. Even if a large set of constraints is considered, namely the
constraints that can be expressed as first-order formulae, the computational complexity of the
merging procedure is not explored, and no algorithm to compute consistent query answers is
provided. Furthermore, the problem of dealing with incomplete databases is not taken into
account. Notice also that, different from all the other studies mentioned in the following, this
approach relies on a cardinality-based ordering between databases (rather than a set-containment-
based ordering).

In [71] the authors propose a framework for updating theories and logical databases (i.e.,
databases obtained by giving priorities to sentences in the databases) that can be extended also
to the case of updating views. The semantics proposed in such a paper is based on a particular
set-containment based ordering between theories that “accomplish” an update to an original
theory. A theory T1 accomplishes an insertion of σ into T if σ ∈ T1, and accomplishes a deletion
of σ if σ is not a logical consequence of T1. Then, a theory T1 accomplishes an update u to T

with a smaller change than T2, and thus is preferred to T2, if both T1 and T2 accomplish u, but
T1 has fewer deletions than T2, or they have the same deletions but T1 has fewer insertions than
T2. The basic idea is to maintain as many as possible of the facts that are known to be true.
This semantics is similar to the loosely-sound semantics presented in Section 5.1.

In [7] the authors define an algorithm for consistent query answers in inconsistent databases
based on the notion of residues, originally defined in the context of semantic query optimization.
The method is proved to be sound and complete only for the class of universally quantified
binary constraints, i.e., constraints that involve two database relations. In [8] the same authors
propose a new method that can handle arbitrary universally quantified constraints by specifying
the database repairs into logic rules with exceptions (LPe). The semantics underlying the notion
of consistent query answers both in [7] and in [8] is defined on a set-containment ordering between
databases, which corresponds to the loosely-exact semantics of our framework.

Moreover, a different semantics for database repairing has been considered in [52, 51]. Specif-
ically, in such works a semantics is defined in which only tuple elimination is allowed; therefore,
the problem of dealing with infinite models is not addressed. Then, a preference order over the
database repairs is defined, in such a way that only minimal repairs (in terms of set containment)
are considered. Hence, the semantics is a “maximal complete” one, in the sense that only maxi-
mal consistent subsets of the database instance are considered as repairs of such an instance. In
[52] the authors establish complexity results for query answering under such a semantics in the
presence of denial constraints, a generalization of key dependencies and exclusion dependencies,
while in [51] also inclusion dependencies are considered. Such a “maximal complete” semantics
is different from the complete semantics considered in the present paper.

Finally, [86] proposes a technique to deal with inconsistencies that is based on the refor-
mulation of integrity constraints into a disjunctive datalog program with two different forms of
negation: negation as failure and classical negation. Such a program can be used both to repair
databases, i.e., modify the data in the databases in order to satisfy integrity constraints, and
to compute consistent query answers. The technique is proved to be sound and complete for
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universally quantified constraints. The semantics adopted to support this method corresponds
to our loosely-exact semantics.



Chapter 6

Query Answering and Rewriting

in GAV Data Integration Systems

In this chapter, we turn our attention to a data integration context and restrict our analysis to
the GAV approach. We recall that in our integration framework, the integrity constraints allowed
for the global schema are inclusion, key and exclusion dependencies, the language adopted for
queries in the GAV mapping is non-recursive Datalog¬, while the language allowed for user
queries is that of union of conjunctive queries.

In the following, we first provide decidability and complexity results on query answering in
GAV for all the semantics introduced in Section 3, then we focus on strictly-sound and loosely-
sound mappings.

6.1 Contributions

The main contributions of this chapter are the following:

1. we extend to GAV data integration systems the decidability and complexity results for
query answering given in Chapter 5 in the setting of a single database;

2. we provide a sound and complete query rewriting technique under the strictly-sound se-
mantics, first for the case of IDs alone, and then for the case of EDs, KDs and NKCIDs;

3. we present a sound and complete query rewriting technique in the presence of the same
constraints under the loosely-sound semantics, thus allowing for consistent query answering
when data retrieved from the sources may violate EDs and KDs.

Results in this chapter advance the state of the art in data integration in terms of: (i)
decidability and complexity results; (ii) new algorithms: to the best of our knowledge, our
methods are the first that solve query answering in the presence of EDs, KDs and cyclic IDs,
for both incomplete and inconsistent data; (iii) effective techniques for data integration which
exploit intensional processing of queries. Indeed, our algorithms are able to intensionally carry
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out query processing, since treatment of integrity constraints is essentially done at the query and
schema level. As we will see in Chapters 8 and 9, this strongly augments the feasibility of the
approach, and allows for interesting optimizations.

Before proceeding we introduce an example that we will use throughout this chapter.

Example 6.1.1 Let I0 = 〈G0,S0,M0〉 be a data integration system referring to the context of
football teams. The global schema G0 = 〈Ψ0,Σ0〉 consists of the three relations

player(Pcode,Pname,Pteam)
team(Tcode,Tname,Tleader)
coach(Ccode,Cname,Cteam)

and the following constraints:

key(player) = {Pcode}
key(team) = {Tcode}
key(coach) = {Ccode}

team[Tleader ] ⊆ player [Pcode]
player [Pcode] ∩ coach[Ccode]) = ∅

where the last two constraints state that a team leader has to be a player, and that a coach can
neither be a player nor a team leader.

The source schema S0 comprises the relation s1 of arity 4, and the relations s2, s3 and s4, of
arity 3. The mapping M0 is defined by the three assertions

〈player , player(X, Y, Z) ← s1(X, Y, Z, W )〉
〈team, team(X, Y, Z) ← s2(X,Y, Z)

team(X, Y, Z) ← s3(X,Y, Z)〉
〈coach, coach(X, Y, Z) ← s4(X, Y, Z)〉

Finally, let Q0 be the user query of the form q(X) ← player(X,Y, Z) that asks for the codes of
all players.

6.2 Decidability and Complexity of Query Answering

In Chapter 5, we have abstracted from the integration context and have focused on the setting of
a single relational schema in which (strict and loose) sound, complete or exact interpretations on
the stored data could be adopted. In order to clarify the relationship between such interpretations
and the ones that can be assumed on the mapping of a data integration system, we have described
a relational schema RS in terms of the global schema of a data integration system I = 〈G,S,M〉
(that can be either LAV or GAV) where there is a one-to-one correspondence between global and
source relations (see Section 5.1). Then we have provided decidability and complexity results for
query answering in the framework of a single relational schema.

We now go back to the GAV integration framework and generalize to such a setting the results
provided in Chapter 5. To this aim, we first exploit the correspondence between RS and I de-
scribed in Section 5.1. More precisely, assuming that RS contains the relations g1/h1, . . . , gn/hn,
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we consider a database D′ for RS, a query Q over RS and a tuple t of constants of the active
domain UD1. Then, we can construct I, in time that is polynomial in the size of the schema and
the query, as follows:

• G = RS;

• the source schema S contains the relations s1/h1, . . . , sn/hn;

• the mapping M is given by the n assertions of the form 〈gi, gi(X1, . . . , Xk) ←
si(X1, . . . , Xk)〉, for each i, 1 ≤ i ≤ n;

• a source database D for I is obtained by assigning to each source relation si the tuples
that D′ assigns to the corresponding global relation gi, i.e., sDi = gD

′
i ;

• Q and t remain unchanged.

It should be easy to see that semas(D′)(RS,D′) = semas(M)(I,D)2, hence, t ∈
ansas(D′)(Q,RS,D′) iff t ∈ ansas(M)(Q, I,D). The above reduction actually proves the fol-
lowing theorem.

Theorem 6.2.1 Let I = 〈G,S,M〉 be a GAV data integration system, where G =
〈Ψ, ΣI , ΣK , ΣE〉, in which ΣK is a set of KDs, ΣE is a set of EDs and ΣI is a set of 1KCIDs
w.r.t. ΣK . Let D be a source database for I, Q a user query of arity n over G, and t an
n-tuple of constants of UD. Then, the problem of calculating ansas(M)(Q, I,D) is undecidable
for the sound, the loosely-sound and the loosely-exact assumption on the mapping M, i.e., for
as(M) = s, ls or le, respectively.

In the following we call 1-key-conflicting integration systems the systems where the global
schema G is a 1KC relational schema, and non-key-conflicting integration systems the ones in
which G is a NKC schema.

Notice that the above reduction allows us also to extend to the GAV integration framework
all the complexity lower bounds provided in Chapter 5. To conclude that also the same upper
bounds hold in this setting, we need to establish membership results for all the combinations
of IDs, KDs and EDs under the different semantics considered in Chapter 5. To this aim, we
provide the following definition.

Definition 6.2.2 Given a data integration system I = 〈G,S,M〉 and a source database D for I,
we call retrieved global database, denoted ret(I,D), the global database obtained by evaluating
each query of the mapping M over D, i.e., ret(I,D) = {rG(t) | t ∈ qDS for each 〈rG , qS〉 ∈ M}.

Since queries in M are non-recursive Datalog¬ queries, then ret(I,D) is unique.
A significant property of the retrieved global database is that it satisfies the mapping, what-

ever assumption on M is adopted. In particular, under the exact assumption ret(I,D) is the
1We recall that the active domain for D is the subset of the domain U that contains the constants occurring

in the source database D
2Notice that in the left-hand side sem refers to a data integration system, whereas in the right hand side it

refers to a database schema.
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only database that satisfies the mapping, whereas under the sound or the complete assump-
tion, it is in general one of several databases that satisfy the mapping, viz. all the databases
that contain ret(I,D), or that are contained in ret(I,D), in the two cases, respectively. It
should be easy now to generalize to each GAV data integration system the property holding
for the particular case in which in I there is a one-to-one correspondence between relations in
G and relations in S. Indeed, the semantics of I with respect of a source database D and an
assumption as(M) on M, coincides with the semantics of the global schema G with respect
to the database instance ret(I,D) and the same assumption as(ret(I,D)) on ret(I,D), i.e.,
as(M) = as(ret(I,D)). Hence, answering a user query Q in such a setting can be tackled in
two steps, where the first one aims at computing the retrieved global database, and the second
one at calculating the certain answers to Q over ret(I,D), taking into account the assumption
on ret(I,D), i.e., ansas(M)(Q, I,D) = ansas(ret(I,D)(Q,G, ret(I,D)).

We are now able to provide the separation theorem for GAV integration systems thus extend-
ing to this setting the result established in Theorem 5.2.16.

Theorem 6.2.3 Let I = 〈G,S,M〉 be a NKC GAV system, where G = 〈Ψ, ΣI , ΣK , ΣE〉, let
I ′ = 〈G′,S,M〉, where G′ = 〈Ψ, ΣI〉, be the system obtained by I by eliminating the KDs and the
EDs of G; let D be a source database for I and I ′. Moreover, let Q be a query of arity n over
G and G′, and t an n-tuple of constants of UD. We have that t /∈ anss(Q, I,D) iff ret(I,D) is
consistent with ΣK∪Σ∗E and t /∈ anss(Q, I ′,D), where Σ∗E indicates the set EDs that are logically
implied by the dependencies in ΣE ∪ ΣI .

Proof. The thesis is an immediate consequence of Theorem 5.2.16, and of
ansas(M)(Q, I,D) = ansas(ret(I,D)(Q,G, ret(I,D)).

Finally, we can conclude that all membership results given in Chapter 5 still hold in our
framework for NKC GAV systems. Indeed, the computation of the retrieved global database
is in PTIME in data complexity and is it PSPACE-complete in combined complexity, since
evaluating non-recursive Datalog¬ is PTIME-complete in data complexity and PSPACE-complete
in combined complexity3 [54]. Obviously, this generalizes to GAV systems all complexity results
reported in Figure 5.1.

6.3 Query Rewriting under the Strictly-sound Semantics

In this section we present algorithms for computing the perfect rewriting of a UCQ query in GAV
integration systems with NKCIDs, KDs, and EDs, under the strictly-sound semantics. We recall
that the perfect rewriting of a user query Q over a data integration systems I = 〈G,S,M〉, is
a reformulation Qr of Q that can be evaluated over the source schema S, and that provides the
certain answers to Q for each source database for I, i.e., QD

r = anss(Q, I,D) for each D. We
first study the case in which only IDs are expressed on the global schema, then we deal with the
simultaneous presence of NKIDs, KDs and EDs.

3Notice that allowing recursion in the mapping, both with or without stratified negation, would lead to different

combined complexity results, since Datalog and Datalog¬s are combined complete for EXPTIME [54].
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6.3.1 Query Rewriting in the presence of IDs

We start by studying query rewriting when only IDs are expressed on the global schema. To
this aim, we present an algorithm that computes the perfect rewriting of a UCQ in a single
database with inclusion dependencies under the strictly-sound semantics4 (see Section 5.1 for
the definition of strictly-sound semantics in a single database setting). Before proceeding, we
need some preliminary definitions.

Preliminary definitions

Given a conjunctive query q over a relational schema RS = 〈Ψ, ΣI〉, we say that a variable
X is unbound in q if it occurs only once in q, otherwise we say that X is bound in q. Notice that
variables occurring in the head of the query are necessarily bound, since each of them must also
occur in the query body. A bound term is either a bound variable or a constant.

Following the standard notation used in deductive databases, we adopt a special symbol for
all unbound variables in the query q: specifically, we use the special term “ξ” for such variables
(deductive database systems use the symbol “ ” to this purpose).

Definition 6.3.1 Given an atom g = s(X1, . . . , Xn) and an inclusion dependency I ∈ ΣI of the
form r[i1, . . . , ik] ⊆ s[j1, . . . , jk], we say that I is applicable to g if the following conditions hold:

1. for each ` such that 1 ≤ ` ≤ n, if X` 6= ξ then there exists h such that jh = `;
2. there exists a variable substitution σ such that σ(s[jh]) = σ(s[jh′ ]) for each h, h′ such that

ih = ih′ . If such a σ exists, we denote with σg,I the most general substitution that verifies
this condition (we recall that σ is a most general substitution if for every other substitution
σ′ that verifies this condition there exists a substitution γ such that σ′ = γσ5).

Moreover, if I is applicable to g, we denote with gr(g, I) the atom r(Y1, . . . , Ym) (m is the
arity of r in Ψ) where for each ` such that 1 ≤ ` ≤ m, Y` = σg,I(Xjh

) if there exists h such that
ih = `, otherwise Y` = ξ.

Roughly speaking, an inclusion I is applicable to an atom g if the relation symbol of g corre-
sponds to the symbol in the right-hand side of I and if all the attributes for which bound terms
appear in g are propagated by the inclusion I (condition 1 of the above definition). Moreover,
if the left-hand side of the inclusion contains repeated attributes, then the inclusion is applica-
ble only if the corresponding terms in g unify (condition 2 of the above definition). When I is
applicable to g, gr(g, I) denotes the atom obtained from g by using I as a rewriting rule, whose
direction is right-to-left.

For instance, let I = r[1, 2] ⊆ s[1, 3], g = s(X, ξ, c) and let r be of arity 4. I is applicable to g,
since the attributes of s which contain bound terms (i.e., attributes 1 and 3) are propagated by
the inclusion, and gr(g, I) = r(X, c, ξ, ξ). As another example, consider now I = r[1, 1] ⊆ s[1, 3],
g = s(X, ξ, c) and let r be of arity 4. I is applicable to g since the terms X and c unify and
σg,I = {X → c}. Therefore, gr(g, I) = r(c, c, ξ, ξ).

4In this setting, the perfect rewriting of a query Q over a schema RS is another query Qr over RS such that

QDr = anss(Q,RS,D) for each database instance D of RS.
5Given two substitutions σ1 and σ2 we use σ1σ2(D) as a shortcut for σ1(σ2(D)).
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Definition 6.3.2 Given an atom g1 = r(X1, . . . , Xn) and an atom g2 = r(Y1, . . . , Yn), we say
that g1 and g2 unify if there exists a variable substitution σ such that σ(g1) = σ(g2). Each such
a σ is called unifier. Moreover, if g1 and g2 unify, we denote as U(g1, g2) a most general unifier
(mgu) of g1 and g2.

Informally, two atoms unify if they can be made equal through a substitution of the variable
symbols with other terms (either variables or constants) occurring in the atoms. We recall
that each occurrence of ξ in the two atoms actually represents a different, new variable symbol,
therefore each occurrence of ξ in g1 and g2 can be assigned to a different term.

For example, let g1 = r(X, ξ, c, ξ) and an atom g2 = r(ξ, Y, Z, ξ). Actually, g1 and g2 corre-
spond to g1 = r(X, ξ1, c, ξ2), g2 = r(ξ3, Y, Z, ξ4). Then, g1 and g2 unify, and U(g1, g2) = {ξ3 →
X, ξ1 → Y, Z → c, ξ2 → ξ4}.

The algorithm ID-rewrite

In Figure 6.1 we define the algorithm ID-rewrite that computes the perfect rewriting of a
UCQ Q over a relational schema RS = 〈Ψ,ΣI〉. In the algorithm, it is assumed that unbound
variables in the input query Q are represented by the symbol ξ.

Specifically, the algorithm generates a set of conjunctive queries that constitute a perfect
rewriting of Q, by computing the closure of the set Q with respect to the following two rules:

1. if there exists a conjunctive query q ∈ Q such that q contains two atoms g1 and g2 that
unify, then the algorithm adds to Q the conjunctive query reduce(q, g1, g2) obtained from
q by the following algorithm6:

Algorithm reduce(q, g1, g2)
Input: conjunctive query q, atoms g1, g2 ∈ body(q)

such that g1 and g2 unify
Output: reduced conjunctive query q′

q′ = q;
σ := U(g1, g2);
body(q′) := body(q′)− {g2};
q′ := σ(q′);
q′ := τ(q′);
return q′

Informally, the above algorithm reduce starts by eliminating g2 from the query body; then,
the substitution U(g1, g2) is applied to the whole query (both the head and the body), and
finally the function τ is applied. Such a function replaces with ξ each variable symbol X

such that there is a single occurrence of X in the query. The use of τ is necessary in order
to guarantee that, in the generated query, each unbound variable is represented by the
symbol ξ.

6With a little abuse, in the algorithms we use set operators on the body of conjunctive queries.
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Algorithm ID-rewrite(RS, Q)
Input: relational schema RS = 〈Ψ, ΣI〉,

where ΣI is a set of inclusion dependencies, UCQ Q

Output: perfect rewriting of Q

Q′ := Q;
repeat

Qaux := Q′;
for each q ∈ Qaux do
(a) for each g1, g2 ∈ body(q) do

if g1 and g2 unify
then Q′ := Q′ ∪ {reduce(q, g1, g2)};

(b) for each g ∈ body(q) do
for each I ∈ ΣI do

if I is applicable to g

then Q′ := Q′ ∪ {atom-rewrite(q, g, I)}
until Qaux = Q′;
return Q′

Figure 6.1: Algorithm ID-rewrite

2. if there exists an inclusion I and a conjunctive query q ∈ Q containing an atom g such that
I is applicable to g, then the algorithm adds to Q the query obtained from q by replacing
g with gr(g, I) and by applying the substitution σg,I to q. Namely, this step adds new
queries obtained by applying inclusion dependencies as rewriting rules (applied from right
to left), through the following algorithm atom-rewrite:

Algorithm atom-rewrite(q, g, I)
Input: conjunctive query q, atom g ∈ body(q),

ID I such that I is applicable to g

Output: rewritten conjunctive query q′

q′ = q;
body(q′) := body(q′)− {g};
q′ := σg,I(q′);
body(q′) := body(q′) ∪ {gr(g, I)};
return q′

The above two rules correspond respectively to steps (a) and (b) of the algorithm.
Termination of the algorithm is immediately implied by the fact that the number of conjunc-

tive queries that can be generated by the algorithm is finite, since the maximum length (i.e., the
number of atoms) of a generated query is equal to the maximum length of the queries in Q, and
the number of different atoms that can be generated by the algorithm is finite, since the alphabet
of relation symbols used is finite (and corresponds to the relation symbols occurring in Q and in



84 Chapter 6: Query Answering and Rewriting in GAV Data Integration Systems

ΣI), as well as the set of terms used (corresponding to the set of variable names and constants
occurring in the query Q plus the symbol ξ).

Example 6.3.3 Consider the relational schema RS1 = 〈Ψ1, ΣI1〉, where Ψ1 contains the follow-
ing relations:

employee(Ename,Salary ,Dep,Boss)
manager(Mname,DOB)
department(Code,Director)

and ΣI1 contains the following inclusion dependencies:

employee[4] ⊆ manager [1] (I1)
manager [1] ⊆ department [2] (I2)

department [1] ⊆ employee[3] (I3),

where I1 states that a boss has to be also a manager, I2 states that a manager has to be the
director of a department, and I3 states that at least one employee works in each department.

Consider the user query Q1 constituted by the only CQ q(Dr) ←
department(C,Dr), employee(Dr, S,D, B), which asks for directors of departments that
are also employees.

For ease of exposition we pose Q1 = {q0} where q0 indicates the CQ in Q1. Then we execute
ID-rewrite(RS1, Q1). At the beginning, Qaux = Q′ = Q1 = {q0}. It is easy to see that step
(a) has not to be performed for q0, whereas, for step (b), the ID I2 is applicable to the atom
g1 = department(ξ,Dr). Hence, gr(g1, I2) = manager(Dr, ξ) and Q′ = {q0}∪ {q1}, where q1 has
the form q(Dr) ← manager(Dr, ξ), employee(Dr, ξ, ξ, ξ). As for the query q1, I1 is applicable
to the atom g2 = manager(Dr, ξ), and gr(g2, I1) = employee(Dr, ξ). Hence, we have that
Q′ = {q0, q1}∪{q2}, where q2 has the form q(Dr) ← employee(ξ, ξ, ξ, Dr), employee(Dr, ξ, ξ, ξ)}.
Since condition in step (a) holds for the two atoms of q2, ID-rewrite suitably executes the algorithm
reduce that returns the query q3 having the form q(Dr) ← employee(Dr, ξ, ξ, Dr), which is added
to Q′. Since there are no other IDs applicable to atoms in Q′, ID-rewrite returns the following
UCQ:

q(Dr) ← department(C,Dr), employee(Dr, S,D, B)
q(Dr) ← manager(Dr,D′), employee(Dr, S, D, B)
q(Dr) ← employee(N, S,D, Dr), employee(Dr, S′, D′, B)
q(Dr) ← employee(Dr, S, D,Dr)

where, for the sake of clarity, the symbols ξ have been replaced by the new fresh variable symbols
B, C, C ′D, D′, N, S, S′.

Example 6.1.1 (contd.) Let us assume that only the inclusion dependency team[Tleader ] ⊆
player [Pcode], is expressed on the global schema G0, and disregard the KDs and the ED. Such
inclusion dependency is applicable to the unique atom in the user query q(X) ← player(X, Y, Z).
By running the algorithm ID-rewrite, we obtain the following UCQ:

q(X) ← player(X, Y, Z)
q(X) ← team(V, W,X)
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For ease of exposition, in the following we denote as ΠID the UCQ returned by
ID-rewrite(RS, Q).

Theorem 6.3.4 Let RS = 〈Ψ,ΣI〉 be a relational schema, where ΣI is a set of inclusion depen-
dencies, and let Q be a UCQ over RS. Then, ΠID is a perfect rewriting of Q w.r.t. RS.

Proof. In the proof we make use of the following definition: let q be a conjunctive query of
arity n, and let t be an n-tuple; a set of facts G is an image of q(t) if there exists a substitution
σ such that σ(head(q)) = q(t) and σ(body(q)) = G. It is easy to see that a tuple t belongs to the
evaluation of the query q over a database instance D, i.e., t ∈ qD, iff there exists G ⊆ D such
that G is an image of q(t).

First, we prove that the algorithm is sound, i.e., for each q ∈ ΠID and for each instance
D, qD ⊆ anss(Q,RS,D). The proof is by induction on the structure of the set ΠID, which
can be seen as inductively defined from the initial set Q by the two operations (a) and (b)
in the algorithm in Figure 6.1. Let D be a database for RS. The base step is immediately
proven since, for each q ∈ Q and for each D, qD ⊆ anss(Q,RS,D). As for the inductive step,
let q be a conjunctive query such that qD ⊆ anss(Q,RS,D) for each instance D (inductive
hypothesis), and let q1 be a query obtained from q by applying step (a) of the algorithm. Then,
q1 = reduce(q, g1, g2), i.e., there exist two atoms g1, g2 ∈ body(q) such that g1 and g2 unify.
Then, if there exists a tuple t and a set of facts G ⊆ D such that G is an image of q1(t), then
G is also an image of q(t). Consequently, qD1 ⊆ qD, which implies that qD1 ⊆ anss(Q,RS,D).
Under the same inductive hypothesis, now let q1 be a query obtained from q by applying step
(b) of the algorithm. Suppose t ∈ qD1 . Let g be the atom of q transformed by step (b) of the
algorithm, i.e., q1 = atom-rewrite(q, g, I). It is immediate to see that there exists a fact in D to
which the ID chase rule triggered by I is applicable7, which implies that there exists an image
of q(t) in chase(RS,D). Therefore, t ∈ anss(q,RS,D), which implies that qD1 ⊆ anss(q,RS,D),
consequently qD1 ⊆ anss(Q,RS,D).

Then, we prove completeness of the algorithm. Let D be a database and t an n-tuple such
that t ∈ anss(Q,RS,D). We prove that there exists q ∈ ΠID such that t ∈ qD. First, since
t ∈ anss(Q,RS,D), it follows that there exists q0 ∈ Q such that t ∈ anss(q0,RS,D). Therefore,
from Lemma 5 of [101], it follows that there exists a finite number k such that there is an image
Gk of q0(t) in chasek(RS,D), where chasek(RS,D) represents the database obtained from D
after k applications of the ID chase rule. Moreover, without loss of generality we can assume
that every application of the ID chase rule is necessary in order to generate such an image Gk:
i.e., chasek(RS,D) can be seen as a forest (set of trees) where: (i) the roots correspond to the
facts of D ; (ii) there are exactly k edges, where each edge corresponds to an application of the
ID chase rule; (iii) each leaf is either a fact in D or a fact in Gk. In the following, for each i such
that 0 ≤ i ≤ k, we denote as Gi the pre-image of q0(t) in chasei(RS,D), i.e.,

Gi = {f ∈ chasei(RS,D) | there exists f ′ ∈ Gk s.t. f is an ancestor of f ′ in

7See Section 5.2.1 for the definition of ID chase rule.
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chasek(RS,D) and in chasei(RS,D) there exists no successor of
f which is an ancestor of f ′ in chasek(RS,D)}

Now we prove that, starting from Gk, we can “go back” through the rule application and find a
query q in ΠID such that the pre-image G0 of q0(t) in chase0(RS,D) = D is also an image of
q(t), i.e., such that t ∈ qD. To this aim, we prove that there exists q ∈ ΠID such that G0 is an
image of q(t) and |body(q)| = |G0|. The proof is by induction on the structure of chasek(RS,D).

Base step: There exists q′ ∈ ΠID such that Gk is an image of q′(t) and |body(q′)| = |Gk|. This
is an immediate consequence of the facts that: (i) q0 ∈ ΠID; (ii) ΠID is closed with respect to
step (a) of the algorithm. Indeed, if |Gk| < |body(q0)| then there exist two atoms g1, g2 ∈ body(q0)
and a fact f in Gk such that f and g1 unify and f and g2 unify, which implies that g1 and g2

unify, therefore by step (a) of the algorithm it follows that there exists a query q1 ∈ ΠID (with
q1 = reduce(q0, g1, g2)) such that Gk is an image of q1(t) and |body(q1)| = |body(q0)| − 1. Now,
if |Gk| < |body(q1)|, we can iterate the above proof, thus we conclude that there exists q′ ∈ ΠID

such that Gk is an image of q′(t) and |body(q′)| = |Gk|.
Inductive step: suppose that there exists q ∈ ΠID such that Gi is an image of q(t) and

|body(q)| = |Gi|. Let I = r1[X] ⊆ r2[Y] be the ID applied to chasei−1(RS,D) to obtain
chasei(RS,D). Since non-propagated attributes in r2 contain new constants, i.e., constants not
appearing elsewhere in Gi, and since |body(q)| = |Gi|, it follows that the corresponding variables
of the atom r2 in body(q) are unbound variables (represented by ξ); moreover, if Xi = Xj then
r2[Yi] = r2[Yj ], by the ID chase rule. Therefore, there exists an atom g = r2(Z) ∈ body(qi) such
that I is applicable to g. Therefore, by step (b) of the algorithm it follows that there exists
a query q1 ∈ ΠID (with q1 = atom-rewrite(q, g, I)) such that Gi−1 is an image of q1(t). Now,
there are two possible cases: either |body(q1)| = |Gi−1|, and in this case the thesis follows; or
|body(q1)| = |Gi−1| + 1. This last case arises if and only if the fact of the form f = r1(t

′) to
which the ID chase rule is applied is both in Gi−1 and in Gi. This implies that there exist two
atoms g1, g2 ∈ body(q1) such that f and g1 unify and f and g2 unify, hence g1 and g2 unify,
therefore by step (a) of the algorithm (applied to q1) it follows that there exists q2 ∈ ΠID (with
q2 = reduce(q1, g1, g2)) such that Gi−1 is an image of q2(t) and |body(q2)| = |Gi−1|, which proves
the thesis.

Data Integration Setting

We now go back to the data integration setting. According Theorem 6.3.4, the algorithm
ID-rewrite provides a perfect rewriting ΠID of a UCQ Q with respect to the global schema G.
However, since data are stored at the sources, we are interested in reformulating the user query
in terms of the source relations in S rather than in another query on the global relations in G.
To this aim, we make use of the mapping M. Our use of M corresponds in principle to unfold,
i.e., replace, each atom in ΠID with a query over the sources. More precisely, we define the
non-recursive Datalog¬ program ΠM = {qS | 〈rG , qS〉 ∈ M}, and use it to produce the perfect
rewriting of Q.

Theorem 6.3.5 Let I = 〈G,S,M〉 be a data integration system and let Q be a user query over
I. Then, ΠID ∪ΠM is a perfect rewriting of q w.r.t. I.
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Proof. It is easy to see that the evaluation of ΠM over each source database D for I produces
the retrieved global database ret(I,D). Then, the thesis follows immediately from Theorem 6.3.4.

Example 6.1.1 (contd.) Let us now to take into account the mappingM0. The perfect rewrit-
ing for the query Q0 w.r.t. I0, is as follows

q(X) ← player(X,Y, Z)
q(X) ← team(V, W,X)

player(X,Y, Z) ← s1(X, Y, Z, W )
team(X,Y, Z) ← s2(X, Y, Z)
team(X,Y, Z) ← s3(X, Y, Z)
coach(X,Y, Z) ← s4(X, Y, Z)

6.3.2 Query Rewriting in the presence of IDs, KDs, and EDs

Let us now consider the general setting in which NKCIDs, KDs, and EDs are expressed on the
global schema. As for the setting of a single database addressed in Section 5.2.1, in the case of a
NKC data integration system, we can apply the same technique developed for IDs alone, provided
that data at the sources are consistent with the key and the exclusion dependencies on the global
schema, i.e., the retrieved global database ret(I,D) does not violate the key dependencies, and
the closure of EDs w.r.t. to implication by IDs and EDs.

Theorem 6.3.6 Let I = 〈G,S,M〉 with G = 〈Ψ, ΣI , ΣK , ΣE〉 be a NKC data integration system,
D is a source database for I such that ret(I,D) is consistent with ΣK ∪ Σ∗E, and Q is a user
query over I. Then, (ΠID ∪ΠM)D = anss(Q, I,D).

Proof. Follows directly from Theorems 5.2.16 and 6.3.4.

Observe, however, that, once ret(I,D) is computed, the unfolding step becomes unnecessary,
since it is possible to obtain the answers to Q by directly evaluating ΠID over ret(I,D). We will
see in Chapter 9, that this will be exploited in the implementation of the algorithm.

Conversely, when data at the sources are such that ret(I,D) is not consistent ΣK ∪Σ∗E , then,
under the strictly-sound semantics, any tuple is in the answer to any query, i.e., the answer to
the query is meaningless.

Notice that (ΠID ∪ ΠM)D = anss(Q, I,D) only for those source databases D for which
ret(I,D) is consistent with ΣK ∪Σ∗E , hence we cannot say that (ΠID∪ΠM) is a perfect rewriting
for Q. Nonetheless, as shown in [30], in order to obtain a perfect rewriting of Q, it is sufficient
to augment ΠID ∪ ΠM with another set of rules that, evaluated over D, return all the tuples
of length n, where n is the arity of Q, in the case in which ret(I,D) is not consistent with
ΣK ∪ Σ∗E . Since, as we will show in the next section, in this case we resort to query answering
under the loosely-sound semantics, and compute consistent answers to the query rather than
meaningless answers, we prefer here explicitly distinguish between the case in which retrieved
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data are consistent and the case in which they are not, and refer the reader to [30] for more
details on the perfect rewriting under the strictly-sound semantics.

6.4 Query Rewriting under the Loosely-sound Semantics

We now address the problem of query answering under the loosely-sound semantics. Specifically,
we present a sound and complete rewriting technique to compute certain answers to queries posed
to NKC systems.

Our method relies on Theorem 6.2.3 stating that for NKC systems it is possible to first
deal with inclusion dependencies and then with key and exclusion dependencies, provided the
computation of Σ∗E : actually, for the IDs we exploit the algorithm ID-rewrite(RS, Q), whereas
for the other dependencies we make use of a set of Datalog¬ rules, constructed according to KDs
and EDs in ΣK and Σ∗E . Intuitively, such rules, together with the rules in the mapping, allow us
to compute the maximal subsets of ret(I,D) that are consistent with ΣK ∪ Σ∗E , in such a way
that we can then evaluate the program ΠID produced by the algorithm ID-rewrite over each such
subset.

For the sake of clarity, we first consider the case of IDs and KDs, and then the general setting.
In this case, we define a Datalog¬ program ΠKD that, for each relation r ∈ G, comprises the
rules

r(~x, ~y) ← rD(~x, ~y) , not r(~x, ~y)

r(~x, ~y) ← rD(~x, ~y) , r(~x,~z) , Y1 6= Z1

· · ·
r(~x, ~y) ← rD(~x, ~y) , r(~x,~z) , Ym 6= Zm

where: in r(~x, ~y) the variables in ~x correspond to the attributes constituting the key of the
relation r; ~y = Y1, . . . , Ym and ~z = Z1, . . . , Zm

8.
Informally, for each relation r, ΠKD contains (i) a relation rD that represents rret(I,D); (ii)

a relation r that represents a subset of rret(I,D) that is consistent with the KD for r; (iii) an
auxiliary relation r. The above rules force each stable model M of ΠKD, i.e., M ∈ SM(ΠKD),
to be such that rM is a maximal subset of tuples from rret(I,D) that are consistent with the KD
for r.

Let us now consider the case in which also exclusion dependencies are specified on the global
schema, i.e., G = 〈Ψ, ΣI , ΣK , ΣE〉. We have now to force each stable model M of our program
to be such that rM is a maximal subset of tuples from rret(I,D) consistent with both the KD for
r and the EDs in Σ∗E that involve r.

To this aim, for each exclusion dependency (r[A] ∩ s[B]) = ∅ in Σ∗E we add to ΠKD the set
of rules:

r(~x, ~y) ← rD(~x, ~y) , s(~x,~z) ,

s(~x, ~y) ← sD(~x, ~y) , r(~x,~z) ,

8Without loss of generality we assume that the attributes in the key precede all other attributes in r.
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where in r(~x,~z) the variables in ~x correspond to the sequence of attributes A of r, and in s(~x,~z)
the variables in ~x correspond to the sequence of attributes B of s9. Let us call ΠED such set of
rules.

Then, we consider the Datalog¬ program Π = ΠID ∪ ΠMD ∪ ΠKD ∪ ΠED, where ΠID is
obtained through ID-rewrite(RS, q), and ΠMD is obtained from ΠM by replacing each symbol r

with rD.

Example 6.1.1 (contd.) According to the above discussion, the program Π in our ongoing
example, is as follows:

q(X) ← player(X,Y, Z)

q(X) ← team(V, W,X)

playerD(X,Y, Z) ← s1(X, Y, Z, W )

teamD(X,Y, Z) ← s2(X, Y, Z)

teamD(X,Y, Z) ← s3(X, Y, Z)

coachD(X,Y, Z) ← s4(X, Y, Z)

player(X,Y, Z) ← playerD(X, Y, Z) , not player(X, Y, Z)

player(X,Y, Z) ← player(X,V, W ) , playerD(X, Y, Z) , Y 6= V

player(X,Y, Z) ← player(X,V, W ) , playerD(X, Y, Z) , Z 6= W

team(X,Y, Z) ← teamD(X,Y, Z) , not team(X, Y, Z)

team(X,Y, Z) ← team(X, V,W ) , teamD(X, Y, Z) , Y 6= V

team(X,Y, Z) ← team(X, V,W ) , teamD(X, Y, Z) , Z 6= W

coach(X,Y, Z) ← coachD(X,Y, Z) , not coach(X, Y, Z)

coach(X,Y, Z) ← coach(X, V,W ) , coachD(X, Y, Z) , Y 6= V

coach(X,Y, Z) ← coach(X, V,W ) , coachD(X, Y, Z) , Z 6= W

player(X,Y, Z) ← playerD(X, Y, Z) , coach(X, V, W )

coach(X,Y, Z) ← coachD(X,Y, Z) , team(V, W,X)

coach(X,Y, Z) ← coachD(X,Y, Z) , player(X, V, W )

team(X,Y, Z) ← teamD(X,Y, Z) , coach(Z, V,W )

where ΠID is constituted by the first two rules, ΠMD by the rules ranging from the 3rd to the 6th,
ΠKD by the rules ranging from the 7th to the 15th, and ΠED by the last four rules. Notice that in
the rules of ΠED we considered also the exclusion dependency team[T leader]∩ coach[Ccode] = ∅
that is a logical consequence of the ID and the EDs expressed on G0.

We are now able to prove soundness and completeness of our technique with respect to the
problem of computing the certain answer to a user query under the loosely-sound semantics.

Theorem 6.4.1 Let I = 〈G,S,M〉 be a NKC system, and Q be a query over G. Then, ΠKD ∪
ΠED ∪ΠID ∪ΠMD is a perfect rewriting of q w.r.t. I.

9Without loss of generality, we assume that A and B precede all other attributes in r and s, respectively.
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6.5 Discussion and Related Work

Discussion In this chapter we have presented techniques for query processing in GAV data
integration systems under the strictly-sound and the loosely-sound semantics, in the relational
setting, when inclusion, key, and exclusion dependencies are expressed on the global schema.
We underline that our approach is strongly intensional, since treatment of constraints is carried
out at the query and schema level, and query answering is solved by first computing the perfect
rewriting of a query issued on the global schema, and then evaluating the rewritten query. As
we will see in Chapter 9, this allowed us to realize a prototype implementing our algorithms
where components for query processing are decoupled from the extensional layer devoted to the
extraction of the data from the sources. With regard to query answering under the strictly-
sound semantics, the feasibility of our approach is also witnessed by the fact that, since perfect
rewritings are expressed in terms of union of conjunctive queries, they can be easily handled by
standard database query evaluation techniques. Furthermore, the tractability of our algorithms
can be easily proved, since evaluating a UCQ over a database is in PTIME in data complexity.
Finally, our overall technique resorts to more complex rewritings expressed in Datalog¬ only
when needed, i.e., only in the case in which data at the sources are inconsistent with KDs or
EDs, and classical methods developed under the strict semantics would not be able to provide
significative answers to queries.

Related work Several works in the literature address the problem of query answering in data
integration in the presence of integrity constraints on the global schema. In this respect, query
rewriting under integrity constraints has been first studied in the LAV setting. In particular,
the inverse rules algorithm, that we briefly described in its basic version in Section 4.1, has been
suitably extended by its author in order to deal with functional dependencies expressed over the
global schema [61]. The algorithm computes the perfect rewriting in the case of queries and
mapping expressed in terms of conjunctive queries, and “maximally contained” rewritings in the
case of recursive queries.

Then, in [90] Gryz analyzes query rewriting under inclusion dependencies in LAV systems.
Moreover, a method is presented which is able to deal simultaneously with acyclic IDs and
functional dependencies. It is worth noticing that, in that paper, an algorithm for computing
the rewriting of a conjunctive query in a database with inclusion dependencies is presented. The
algorithm is based on a brilliant intuition, i.e., rewriting a conjunctive query by computing the
rewriting of each atom in a way “almost independent” of the other atoms. This can be obtained
if the body of the initial query q is preliminarily transformed (“minimized”). However, we have
found out that Gryz’s algorithm does not actually compute the perfect rewriting, in the sense
that some conjunctions of the perfect rewriting are missing. Indeed, the algorithm ID-rewrite

presented in Section 6.3.1 is certainly inspired by Gryz’s main intuition, but overcomes the
above mentioned incompleteness through a new technique for generating the conjunctions of the
rewriting.

In GAV integration systems, the role played by integrity constraints for query processing
has been in general overlooked. A first attempt to deal with integration under constraints in
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the GAV approach has been addressed in [24]. Compared to our approach, this work is able
to handle a more restricted class of integrity constraints (KDs and foreign key dependencies).
Moreover, such an approach is technically more involved than the one presented in this paper,
since it makes use of Skolem functions and SLD-refutation for computing the perfect rewriting
of a CQ10.

Moreover, [69] presents an approach for dealing with integrity constraints in the context of
data exchange, where the mapping is GLAV (a generalization of LAV and GAV). However, in
data exchange the global schema (called target schema) has to be materialized, therefore the
class of dependencies that is considered in this work (and that is incomparable with the classes
we consider in this paper) is such that the chase of the retrieved global database is always finite.

We point out that all the above mentioned approaches do not address the problem of incon-
sistent data, hence they can be compared only with our algorithms for query answering under
the strictly-sound semantics.

As already said, works that deal with data inconsistencies have been developed mainly in a
context of a single database. Furthermore, techniques for computing consistent answers proposed
so far in the literature are able to deal only with universally quantified constraints, or treat
existentially quantified constraints under restrictive assumptions [7, 86, 9]. Furthermore, they
consider repair semantics that are different from the loosely-sound semanitcs considered in this
chapter. A more detailed description of these works has been presented in Section 5.5.

More recently, data inconsistency in a purely data integration setting has been studied in
[13] and [16]. Differently from our approach, both these papers address a LAV framework and
hence their results cannot be directly compared with the technique described in this chapter.
Furthermore, as widely discussed in Section 3.4, the semantics proposed in [13] and [16] is different
from the loose semantics for LAV introduced in Section 3.3.

More in details, [13] extends to LAV integration systems the method for consistent query
answering originally presented in [7] in a single database context. Such result is achieved by
combining the query reformulation technique of [7] with the Duschka inverse rules algorithm [61],
that is extended here to the case in which the query over the global database is a non-recursive
Datalog¬ query. The obtained rewriting is shown to be a maximally contained rewriting. As in
[7], only binary universally quantified constraints and non-existentially quantified global queries
are considered.

Conversely, [16] takes into account a very general class of constraints and queries, namely
almost all constraints expressed as first order logic formulae, and stratified Datalog¬ queries.
However, the authors introduce the assumption that the constants used for repairing are only
the constants in the active domain, i.e., the constants occurring in the source database. Hence,
they consider only the cases in which the chase is finite. Repairs in [16] can be obtained from
the stable models of a suitable Datalog∨,¬ program, i.e., Datalog¬ where disjunction is allowed
in the head of the rules.

In conclusion, we point out that none of the above mentioned works provides a solution to
the query answering problem for the case of cyclic inclusion dependencies under the semantics
(both strict and loose) considered in this thesis.

10See Section 4.2.2 for more details on this paper.
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Chapter 7

Query Answering and Rewriting

in LAV Data Integration Systems

Whereas in Chapter 6 we have addressed the data integration framework in which the mapping
is given in the GAV approach, we now focus our attention on LAV integration systems, and
provide an in-depth study of the problem of query answering in such a framework. As usual, we
consider integration systems in which inclusion, key and exclusion dependencies are issued on
the global schema and user queries are union of conjunctive queries. differently from the GAV
case, queries in the mapping in our LAV framework are conjunctive queries.

The main contributions of this chapter are the following:

1. we show that query answering is undecidable in LAV systems in the presence of 1KCIDs
w.r.t. KDs specified over the global schema for the strictly-sound, loosely-sound and
loosely-exact semantics;

2. we extend to LAV systems some complexity results for query answering given in Chapter
5 in the setting of a single database;

3. we provide actual methods for query answering under integrity constraints for the strictly-
sound semantics;

4. we provide a sound and complete query rewriting technique under the strictly-sound seman-
tics, for the case of IDs and EDs. More precisely, we define an off-line compiling technique
that, starting from a LAV system specification, produces the specification of a GAV system
which is query-equivalent to the initial LAV system. After such a compilation, we can reuse
the query processing technique defined for GAV systems also in the LAV case.

We point out that, analogously to the the GAV setting, our technique allows for a modular
treatment of (i) the integration systems in the presence of integrity constraints, through the
compilation of LAV into GAV, and of (ii) KDs and IDs, through the separability property of
NKC dependencies. Furthermore, the compilation of a LAV system into a GAV one can be
executed off-line, only at each change of the system specification. Based on such a modularity,

93
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we exploit both off-line and intensional processing of queries in order to provide an effective
approach to query processing, as witnessed by the implementation described in Chapter 9.

7.1 Decidability and Complexity of Query Answering

We extend now to LAV integration systems some results originally provided in Chapter 5 in the
framework of a single relational schema. To this aim, we first reduce query answering in this
latter setting to query answering in a LAV integration system, as done in Section 6.2 for GAV
systems. The only difference here is in the construction of the mapping, which is now given by
n assertions of the form 〈si, si(X1, . . . , Xk) ← gi(X1, . . . , Xk)〉, for each i, 1 ≤ i ≤ n.

On the basis of this reduction, we can easily prove that query answering is undecidable for
1KC LAV integration systems under the strictly-sound, the loosely-sound and the loosely-exact
semantics. Moreover, we are able to extend to NKC LAV integration systems all hardness results
provided in Chapter 5.

Now, the question arises of whether the separation property between NKCIDs and KDs holds
for LAV systems, i.e., whether the analogous of Theorem 6.2.3 exists for the LAV framework.
Furthermore, we would also establish the complexity classes for which the query answering prob-
lem for LAV systems is complete under the different semantics for different combinations of
integrity constraints on the global schema.

In Section 6.2, we introduced the notion of retrieved global database that allowed us to solve
query answering in a GAV system I = 〈G,S,M〉 essentially by means of the query answering
algorithms of Chapter 5 applied to the global schema G, once provided the computation of the
retrieved global database. Hence, we have been able to extend to GAV systems the separation
property originally stated in Theorem 5.2.16, and generalize to such framework all the complexity
results provided in Chapter 5 for a single relational schema. Actually, the complexity of query
answering over GAV integration systems coincides with the complexity of query answering over a
relational schema, modulo the complexity of computing the retrieved global database ret(I,D).

Unfortunately, there does not exist a particular global database that plays for LAV systems
the same role played by the retrieved global database for GAV systems. This can be easily seen,
since LAV mappings provide in general only partial information about the data that satisfy the
global schema, and several ways of populating the global schema according to the mapping may
exist (even if the mapping is considered exact).

However, even if it is not possible to characterize query answering in LAV under the strict
and loose semantics as done for the GAV systems, we are able to provide a definition of retrieved
global database in LAV that is specific for the strictly-sound semantics, and that allow us to
show that a separation theorem also holds for NKC LAV systems.

In order to achieve this final result, in the next subsection we first study query answering
under the strictly-sound semantics in the presence of only IDs, then we consider IDs and EDs,
and finally, we address the general setting of NKCIDs, KDs and EDs.
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7.1.1 Query Answering under the Strictly-sound Semantics

Our plan of attack is as follows. First, we consider LAV systems without constraints, and define
the notion of retrieved global database for this kind of systems. We show that, analogously to the
GAV case, in LAV systems without constraints the answer to a user query Q can be calculated
by evaluating Q over the retrieved global database. With this notion in place, we can apply the
results of Section 5.2, which show that, in the presence of IDs, the answer to a query Q over
a database DB is computed by evaluating Q over the chase of DB. We then consider the case
of IDs and EDs, and show that the notion of retrieved global database still allows for query
answering in this setting. Finally, for the case in which also KDs are specified on the global
schema a different definition of retrieved global database will be taken into account.

In order to distinguish between the retrieved global database of GAV systems and LAV
systems, hereinafter we denote the former with retG and the latter with retL.

Definition 7.1.1 Let I = 〈G,S,M〉 be a LAV data integration system, and D a source database
for I. The retrieved global database retL(I,D) is defined constructively as follows. Consider a
mapping assertion 〈s, Vs〉 ∈ M where s ∈ S and Vs is of the form

s(~x,~c) ← conj (~x,~e, ~y)

where conj is a conjunction of predicates, ~x = X1, . . . , Xnd
is a sequence of nd distinguished

variables, ~c = c1, . . . , cnc,h
and ~e = e1, . . . , enc are constants of the domain U , and ~y = Y1, . . . , Ynn

is a sequence of nn non-distinguished variables. Without loss of generality, and for the sake of
clearness of presentation, we assume that, for all predicates in conj , the symbols (when present)
appear in the following order: first the distinguished variables, then the constants, and finally
the non-distinguished variables.

To each tuple (a1, . . . , and
, c1, . . . , cnc,h

) ∈ sD we associate the constant ai to Xi, and
a fresh constant zi of U (not appearing elsewhere in the database, and that has never
been introduced in the construction) to Yi. Then, for each atom g ∈ conj of the
form g(X1, . . . , Xk, e1, . . . , e`, Y1, . . . , Ym), where {X1, . . . , Xk} ⊆ ~x, {e1, . . . , e`} ⊆ ~e, and
{Y1, . . . , Ym} ⊆ ~y, we add the fact g(a1, . . . , ak, e1, . . . , e`, z1, . . . , zm) in retL(I,D). Note that
the join variables in the body of the view are assigned with the same fresh constants. Moreover,
the construction process is finite.

Lemma 7.1.2 Let I = 〈G,S,M〉 be a LAV data integration system, with G = 〈Ψ, ∅〉 and D a
source database for I. We have that for any database B ∈ sems(I,D) there exists a well-defined
homomorphism from retL(I,D) to B that sends constants of the active domain UD to themselves
and fresh constants to constants of U , and such that each fact of gretL(I,D) is sent to a fact of
gB.

Proof. By definition of sound mapping M, and by construction of retL(I,D), any database
in sems(I,D) is forced to have a minimum set of facts Bm, constituted by the facts obtained
from retL(I,D) by replacing each fresh constant with some constant in U . The homomorphism
µ is easily constructed by mapping each fact of retL(I,D) to the corresponding fact of Bm.
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Theorem 7.1.3 Let I = 〈G,S,M〉 be a LAV data integration system, with G = 〈Ψ, ∅〉; let D
be a source database for S, and Q a query over G of arity n. Moreover, let t be an n-tuple of
constants of UD, i.e., t does not contain any of the fresh constants zi introduced in the construction
of retL(I,D). Then, we have that t ∈ anss(Q, I,D) iff t ∈ qretL(I,D).

Proof.

“⇒”This is trivial because retL(I,D) belongs to sems(I,D).
“⇐”Consider a tuple t ∈ QretL(I,D); we show that t is in QB for any database B ∈ sems(I,D).

The existence of t witnesses the existence of a query homomorphism κ from the atoms of Q to
facts of retL(I,D), that sends the distinguished variables of Q to the constants of t. Consider
a generic database B ∈ sems(I,D); by applying Lemma 7.1.2, we know that there exists a
homomorphism µ from retL(I,D) to B. The composition κ ◦ µ is a homomorphism from the
atoms of Q to B, that preserves the image of the distinguished variables, and witnesses that
t ∈ anss(q, I,D).

Hence, in the case in which no dependency is specified on the global schema query answering
in LAV is analogous to query answering over a single relational schema, modulo the computation
of retL(I,D). Since such computation is polynomial both in data and combined complexity it
easily turns out that computational complexity in LAV without constraints is in PTIME in data
complexity and NP-complete in combined complexity [2].

The above Theorem can be easily extended to the case in which IDs are specified over the
global schema.

Theorem 7.1.4 Let I = 〈G,S,M〉 be a LAV data integration system, with G = 〈Ψ,ΣI〉; let D
be a source database for I, and Q a query over G of arity n. Moreover, let t be an n-tuple of
constants of UD Then, we have that t ∈ anss(Q, I,D) iff t ∈ Qchase(G,retL(I,D)).

Proof.

“⇒”This follows from the fact that chase(G, retL(I,D)) belongs to sems(I,D). Indeed, from
Lemma 5.2.1 it follows that chase(G, retL(I,D)) satisfies ΣI and hence it is consistent with G,
whereas satisfaction of the mapping M can be easily seen from the fact that retL(I,D) satisfies
the mapping, and adding new facts to retL(I,D) cannot make any mapping assertion to be
violated.

“⇐”Consider a tuple t ∈ qchase(G,retL(I,D)); we show that t is in QB for any database
B ∈ sems(I,D). Analogously to Theorem 7.1.3, the existence of t witnesses the existence of
a query homomorphism κ from the atoms of Q to facts of chase(G, retL(I,D)), that sends
the distinguished variables of Q to the constants of t. Then, as in Theorem 5.2.2, it can be
proved by induction on the structure of chase(G, retL(I,D)) that, for any database instance B ∈
sems(G, retL(I,D)), there exists a homomorphism µ that sends the tuples of chase(G, retL(I,D))
to the tuples of B. It is also easy to see that sems(G, retL(I,D)) = sems(I,D). Indeed
every B ∈ sems(G, retL(I,D) is consistent with G and contains retL(I,D), modulo renam-
ing the fresh constants introduced in the construction of retL(I,D). Hence, each such B
satisfies the mapping, since it contains necessarily the minimum set of facts that guaran-
tee sB = V D

s , thus sems(G, retL(I,D)) ⊆ sems(I,D). In a similar way we can prove that
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sems(I,D) ⊆ sems(G, retL(I,D)). Hence, the composition κ ◦ µ is a homomorphism from the
atoms of Q to B ∈ sems(I,D), that preserves the image of the distinguished variables, and
witnesses that t ∈ anss(q, I,D).

Obviously, the above Theorem provides an actual procedure to answer a query over a LAV
system in the presence of IDs on the global schema. Also in this case, the computational com-
plexity is the same as in the framework of a single relational schema, i.e., it is in PTIME in data
complexity and PSPACE-complete in combined complexity (see Section 5.4).

It should be easy to see that the above Theorem also holds in the case in which IDs and
EDs are specified on the global schema, provided that retL(I,D) is consistent with the closure
of EDs w.r.t. logical implication of IDs and EDs. Intuitively, this holds since the introduction of
fresh constants in retL(I,D) cannot lead to the violation of exclusion dependencies (constants
are never equal), and that ED violations can be caused only by the data stored at the sources.

Theorem 7.1.5 Let I = 〈G,S,M〉 be a LAV data integration system, with G = 〈Ψ, ΣI , ΣE〉; let
D be a source database for I, and Q a query of arity n over G. Moreover, let t be an n-tuple of
constants of UD Then, we have that t ∈ anss(Q, I,D) iff retL(I,D) is consistent with Σ∗E and
t ∈ Qchase(G,retL(I,D)).

Proof. Proceed as in Theorem 7.1.4 taking into account Lemma 5.2.4.

From the above theorem it follows that query answering is in PTIME in data complexity and
PSPACE-complete in combined complexity.

Now, we are able to answer our initial question and show that the analogous of Theorem 6.2.3
holds for LAV systems. In the following, we show that indeed a separation theorem also holds
for NKC LAV systems, which in turn allows to establish decidability of query answering in such
systems.

To this aim, we define the notion of retrieved global database for a LAV system I = 〈G,S,M〉,
where G = 〈Ψ,ΣI ,ΣK ,ΣE〉. Such a database, denoted as retLK (I,D), is obtained starting from
the database retL(I,D) formalized in Definition 7.1.1, by repeatedly applying the following
rule that unifies fresh constants (the new constant symbols introduced in the construction of
retL(I,D)):

KD-rule: if the KD key(r) = A is in ΣK and there are two facts r(t1), r(t2) in retLK (I,D) such
that t1[A] = t2[A], then, for each non-key attribute X of r: if t1[X] is a fresh constant zi , then
replace each occurrence of zi with t2[X] in retLK (I,D); otherwise, if t2[X] is a fresh constant zj ,
then replace each occurrence of zj with t1[X] in retLK (I,D).

Informally, in the presence of key dependencies, the retrieved global database retL(I,D) of
Definition 7.1.1 is not a good representative of the data that, through the mapping, the source
data in D force to be present in the global relations, since, due the presence of key dependencies,
some of the fresh constants introduced in the construction process of retL(I,D) could be made
equal. Instead, by applying the KD-rule, we obtain a correct representative of such data, which
are common to all databases in sems(I,D).

It is immediate to verify that retLK (I,D) can be computed in time polynomial in the size of
D.
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Analogously to the GAV case, when retLK (I,D) is consistent with ΣK ∪ Σ∗E , we are able to
separately deal with ΣI and ΣK ∪ ΣE .

Theorem 7.1.6 Let I = 〈G,S,M〉 be a NKC LAV system, where G = 〈Ψ, ΣI , ΣK , ΣE〉, let
I ′ = 〈G′,S,M〉, where G′ = 〈Ψ, ΣI〉, be the system obtained by I by eliminating the KDs and the
EDs of G; let D be a source database for I and I ′. Moreover, let Q be a query of arity n over G
and G′, and t an n-tuple of constants of UD. We have that t /∈ anss(Q, I,D) iff retLK (I,D) is
consistent with ΣK ∪ Σ∗E and t /∈ anss(Q, I ′,D).

Proof. As in the proof of Theorem 7.1.4, we can show that sems(I,D) =
sems(G, retLK (I,D)). Hence, from Theorem 5.2.16 the thesis follows.

Therefore, the above theorem implies decidability of query answering in NKC LAV systems.

7.2 Query Rewriting under the Strictly-sound Semantics

In this section we present a procedure for computing the perfect rewriting of a UCQ Q posed to
a LAV integration system under the strictly-sound semantics in the presence of IDs and EDs on
the global schema. The basic idea of our approach is to first compile the LAV system into an
equivalent GAV one, and then make use of the algorithm developed for the GAV case.

7.2.1 Compiling LAV into GAV

We now present a technique for compiling a LAV system into an equivalent GAV one. The
notion of equivalence is given in terms of queries, and it is the same as in [23]. In particular,
given two integration systems I = 〈G,S,M〉 and I ′ = 〈G′,S,M′〉 over the same source schema
S and such that all relations of G are also relations of G′, we say that I ′ is query-preserving with
respect to I, if for every query Q over I and for every source database D for I, we have that
anss(q, I,D) = anss(q, I ′,D). In other words, we say that I ′ is query-preserving with respect
to I if, for any query over the global schema of I, and for any source database D, the answers
we get for the query on the two integration systems are identical.

Our compiling technique extends a similar procedure presented in [23], which does not allow
for query processing and is not able to deal with integrity constraints. Furthermore, in [23] only
mapping queries without constants are considered. Here, we improve this technique as follows:

(i) we extend the class of LAV systems that can be compiled into GAV ones, allowing the
presence of IDs and EDs on the global schema;

(ii) we allow mapping queries having constants of the domain U appearing in the body and/or
in the head;

(iii) we avoid the use of the simple equality-generating dependencies introduced in the transfor-
mation of [23] together with IDs: we only make use of IDs where attributes may appear
more than once in the left-hand side.
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We point out that the simplification indicated at point (iii) allows for adopting, in the com-
piled system, the algorithm ID-rewrite for query processing in GAV under IDs that has been
described in Section 6.3.1. Indeed, such an algorithm is able to deal with also IDs with repetition
in their left-hand side1.

We now present the actual transformation of a LAV system into a query-preserving GAV one.
Let I = 〈G,S,M〉 be the initial LAV system, with G = 〈Ψ, ΣI , ΣE〉, and I ′ = 〈G′,S,M′〉, with
G′ = 〈Ψ′,Σ′I ,ΣE〉, be the transformed GAV one. The transformation is performed as follows.

• The set of sources S remains unchanged.

• The global schema G′ is obtained from G by introducing in Ψ′, for each relation s/n in S:

(i) a new relation image s/(n + nc), where nc is the number of constants appearing in
body(Vs), where Vs is the view associated to s2;

(i) a new relation expand s/(n + nc + nn), where nn is the number of non-distinguished
variables appearing in Vs.

• The GAV mapping M′ associates to each global relation image s the query

image s(X1, . . . , Xnd
, e1, . . . , enc) ← s(X1, . . . , Xnd

, c1, . . . , cnc,h
)

where Xh
1 , . . . , Xh

nd
are the distinguished variables of Vs, e1, . . . , enc are constants in

body(Vs), and c1, . . . , cnc,h
are constants in head(Vs). We do not associate any query to the

remaining global relations.

• The set of inclusion dependencies Σ′I contains the dependencies in ΣI plus the IDs con-
structed as follows. We suppose to enumerate distinguished variables, constants and non-
distinguished variables in Vs as Z1, . . . , Znd+nc+nn , where Z1, . . . , Znd

are distinguished
variables and Znd+1, . . . , Znd+nc are constants.

(i) For each relation image s/(n + nc) in Ψ′ we add the inclusion dependency

image s[1, . . . , n + nc] ⊆ expand s[1, . . . , n + nc];

(ii) for each relation expand s in Ψ′ and for each atom g(Zi1 , . . . , Zik+`+m
) occurring in

body(Vs), we add the inclusion dependency

expand s[i1, . . . , ik+`+m] ⊆ g[1, . . . , k + ` + m].

Note that the inclusion dependencies introduced here may have repeated attributes
on the left-hand side, since the same variable may occur more than once in each atom.

• The set of EDs ΣE remains unchanged.

1Notice that the algorithm ID-rewrite presented in this thesis extends the one presented in [30] that cannot

handle such form of IDs.
2Hereinafter Vs indicates the view that the mapping associates to s.
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It is immediate to verify that, given a LAV integration system I , the corresponding GAV
integration system I ′ defined as above can be constructed in time that is linear in the size of I.

Example 7.2.1 Consider now the LAV system IL = 〈G,SL,ML〉 where the global schema co-
incides with the relational schema RS1 described in Example 6.3.3, i.e. G = RS1

3, SL comprises
the two relations s3 and s4 and ML is as follows.

s3(N, Db, S) ← manager(N,Db), employee(N, S,D, N)
s4(E, B) ← employee(E, S,D, B)

Compile IL into a query equivalent GAV system ILG = 〈G′,SL,M′〉, where G′ = 〈Ψ′, Σ′I〉. Ac-
cording to the algorithm above described, Ψ′ is obtained by adding to Ψ the relations image s3/3,
image s4/2, expand s3/3 and expand s4/4, whereas Σ′I is obtained by adding to ΣI = {I1, I2, I3}
the following inclusion dependencies

image s3[1, 2, 3] ⊆ expand s3[1, 2, 3] (I4)
image s4[1, 2] ⊆ expand s4[1, 4] (I5)

expand s3[1, 2] ⊆ manager [1, 2] (I6)
expand s3[1, 3, 4, 1] ⊆ employee[1, 2, 3, 4] (I7)
expand s4[1, 2, 3, 4] ⊆ employee[1, 2, 3, 4] (I8).

Moreover, the mapping M′ is

image s3(N, Db, S) ← s3(N,Db, S)
image s4(E, B) ← s4(E, B)

We now prove that our transformation is query-preserving.

Theorem 7.2.2 Let I = 〈G,S,M〉 be a LAV integration system, with G = 〈Ψ, ΣI , ΣE〉 and let
I ′ = 〈G′,S,M′〉, with G = 〈Ψ′, Σ′I , ΣE〉 be the corresponding GAV integration system defined as
above. Then I ′ is query-preserving with respect to I, i.e., for every query Q over I and for every
source database D for I, we have that anss(Q, I,D) = anss(Q, I ′,D).

Proof. In this proof we make use of the notion of chase, defined in Section 5.2.1.
Let us initially overlook the EDs in ΣE , and consider the two systems I = 〈G,S,M〉 and

I ′ = 〈G′,S,M′〉, in which G = 〈Ψ,ΣI〉 and G′ = 〈Ψ′, Σ′I〉. Let Q be a query over G, and D a
source database for I and I ′; we will show that anss(q, I,D) = anss(q, I ′,D).

As for the LAV system I, from Theorem 7.1.4 it follows that anss(q, I,D) =
qchase(〈Ψ,ΣI〉,retL(I,D)) (where we exclude from the answer set the tuples that contain at least
one of the newly introduced constants for the construction of retL(I,D)).

Regarding the GAV system I ′, we have that anss(q, I ′,D) = qchase(〈Ψ′,Σ′I〉,retG(I′,D)) (we
exclude here the answers that contain at least one of the newly introduced constants for the
construction of the chase).

3Since EDs remain unchanged in the transformation, we consider a schema without EDs.
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Now, let Σnew be the IDs introduced in I ′ during the transformation, with Σ′I = ΣI ∪Σnew ;
observe that chase(〈Ψ′, Σnew 〉, retG(I ′,D)) is finite, since the dependencies in Σnew are acyclic.

Moreover, it is straightforward to see that, modulo renaming of the fresh constants zi in-
troduced in the construction of the retrieved global database for the LAV system I and in
the construction of the chase for the GAV system I ′, we have that, for each relation symbol
g in G (and therefore in G′), gchase(〈Ψ′,Σnew 〉,retG(I′,D)) = gretL(I,D). In fact, by applying the
ID chase rule for chase(〈Ψ′,Σnew 〉, retG(I ′,D)), we populate the relations of G′ that are also
in G exactly in the same way in which they are populated in the construction of retL(I,D).
The fresh variables are first generated by applying the chase rule for the IDs of the form
image s[1, . . . , n + nc] ⊆ expand s[1, . . . , n + nc], and then propagated to the global relations
gi in the positions where the non-distinguished variables appear. The constants appearing in
the body of the LAV mapping queries are properly introduced in the head of the GAV mapping
queries, and then propagated to the global relations gi in the positions where the constants ap-
pear. Finally, constants of the source database D, are introduced in retG(I ′,D) according to the
mappingM′, and then propagated to the global relations in the positions where the distinguished
variables appear.

Now, observe that, since the dependencies in ΣI do not involve the relations introduced in the
transformation from I to I ′, the application of the ID chase rule to chase(〈Ψ′, Σnew 〉, retG(I ′,D))
is independent of the newly introduced relations. Therefore, for each relation symbol in G
(and also in G′), we have gchase(〈Ψ,ΣI〉,retL(I,D)) = gchase(〈Ψ′,ΣI〉,chase(〈Ψ′,Σnew 〉,retG(I′,D))) =
gchase(〈Ψ′,Σ′I〉,retG(I′,D)).

Now, let us reintroduce the EDs ΣE both in I and in I ′. We recall that, given a relational
schema RS = 〈Ψ,ΣI , ΣE〉, a database instance DB for RS and a query Q over RS, we have
that anss(Q,RS,D) = Qchase(RS,D) iff D satisfies Σ∗,ΣE , where Σ = Σ′I ∪ ΣE indicates the set
of constraints which the logical implication of EDs by IDs and EDs is computed for (see Section
5.2.1). As proved in Theorem 5.2.4, this means that chase(RS,D) satisfies ΣE . Conversely,
if D does not satisfy Σ∗,ΣE , query answering is meaningless, indeed some ED in ΣE should be
violated by chase(RS,D). Notice now that EDs in ΣE in G′ involve only global relation g

that belong also to G. Hence, since gchase(〈Ψ,ΣI〉,retL(I,D)) = gchase(〈Ψ′,Σ′I〉,retG(I′,D)) it follows
that (a) if retL(I,D) does not satisfy Σ∗,ΣI∪ΣE

E , then retG(I ′,D) does not satisfy Σ∗,Σ
′
I∪ΣE

E ,
or (b) if retL(I,D) satisfy Σ∗,ΣI∪ΣE

E , then retG(I ′,D) satisfy Σ∗,Σ
′
I∪ΣE

E . Notice that in the
case (a) query answering is meaningless for both I and I ′, i.e., every tuple is in the answer
to any query, whereas in case (b) query answering is analogous to the case in which no ED is
specified on the global schema, i.e., anss(q, I,D) = Qchase(〈Ψ,ΣI〉,retL(I,D)) and anss(Q, I ′,D) =
Qchase(〈Ψ′,Σ′I〉,retG(I′,D)).

Since Q involves only global relations that belong both to G and G′, and the fresh con-
stants are not considered in the evaluation of Q over chase(〈Ψ′,Σ′I〉, retG(I ′,D)) and over
chase(〈Ψ, ΣI〉, retL(I,D)), the claim follows immediately.



102 Chapter 7: Query Answering and Rewriting in LAV Data Integration Systems

7.2.2 Query Rewriting in the Presence of IDs and EDs

With the results of the previous section in place, we can now address the problem of computing
the answers to a query posed to a LAV data integration system, in the presence of IDs and EDs
on the global schema. Since we are able to transform a LAV system into a query-preserving GAV
one, we can apply the same technique we developed for GAV systems.

Theorem 7.2.3 Let I = 〈G,S,M〉 be a data integration system, where G = 〈Ψ,ΣI ,ΣE〉, Q a
query over G, and D a source database for I; moreover, let I ′ = 〈G′,S,M′〉 the system obtained
by compiling I into an equivalent GAV system, where G′ = 〈Ψ′,Σ′I ,ΣE〉, and let ΠID be the UCQ
returned by ID-rewrite(Ψ′, Σ′I , Q) and ΠM′ the program {Vg | 〈g, Vg〉 ∈ M′}. Then, we have that
ΠID ∪ΠM′ = anss(Q, I,D) iff retL(I,D) is consistent with Σ∗,ΣI∪ΣE

E .

Proof. The theorem is an immediate consequence of Theorem 7.2.2 and Theorem 6.3.5.

Example 7.2.1 (contd.) Consider now the same query of Example 6.3.3 Q1 that contains the
only CQ q0 of the form q(Dr) ← department(C,Dr), employee(Dr, S,D, B) that asks for directors
of departments that are also employees. After compiling the LAV system IL = 〈G,SL,ML〉 into
the query-preserving GAV system ILG = 〈G′,SL,M′〉, we are able to compute the answers to
the query Q1, by executing ID-rewrite(Ψ′, Σ′I , Q1)4. At the beginning, Qaux = Q′ = Q1 = {q0},
and inclusion dependencies I1, I2, I3 are applicable to the atoms of the queries in Q′ exactly as
performed by the execution of ID-rewrite(Ψ,ΣI , Q) described in Section 6.3.1. Hence, we can
describe the execution of ID-rewrite(Ψ′, Σ′I , Q1) starting from the output of ID-rewrite(Ψ, ΣI , Q1),
i.e., when Q′ = {q0, q1, q2, q3}.

Consider for example q3 and its unique atom g3 = employee(Dr, ξ, ξ, Dr). It is easy to see
that I7 is applicable to the atom in g3 and that gr(I7, g3) = expand s3(Dr, ξ, ξ, ξ). Then, by
applying I4 to such an atom we obtain image s3(Dr, ξ, ξ) to which no ID in Σ′I is applicable. The
algorithm proceeds analogously for the other queries in Q′. The result of the computation is

q(Dr) ← image s3(Dr,Db, S)
q(Dr) ← image s3(Dr,Db, S), image s4(Dr,B)
q(Dr) ← image s4(Dr,Dr)
q(Dr) ← image s3(Dr,Db, S), image s4(E, Dr)

image s3(N, Db, S) ← s3(N, Db, S)
image s4(E, B) ← s4(E,B)

7.2.3 Query Rewriting in the Presence of KDs

We conclude this section by briefly considering query rewriting for NKC LAV systems. According
to Theorem 7.1.6, query answering in this setting is decidable, and it is possible to separately
deal with IDs and KDs. Hence, an actual procedure for processing a query Q over a NKC LAV

4Since no ED is specified over G the the retrieved global database of IL trivially satisfies the EDs.
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system I = 〈G,S,M〉, where G = 〈Ψ, ΣI , ΣK , ΣE〉 consists of computing ID-rewrite(Ψ,ΣI , Q),
then computing retLK (I,D), and finally evaluating ID-rewrite(Ψ, ΣI , Q) over retLK (I,D). If
retLK (I,D) is not consistent with ΣK , then query answering is meaningless, i.e., every tuple is
in the answer of any query.

Comparing the two query processing techniques presented for GAV and LAV systems with
KDs and IDs, we note that, while in the GAV case we can evaluate the query ΠID ∪ ΠM over
the source database D, where ΠID is the output of ID-rewrite and ΠM is the program associated
to the mapping, in the LAV case we necessarily have to evaluate ΠID over retLK (I,D).

Now the question arises if, also in the presence of KDs, it is possible to first compile a LAV
system into a query equivalent GAV one, and then proceed as GAV. However, such a possibility
does not actually hold, since in LAV systems with KDs it is not possible to obtain a perfect
rewriting of a UCQ expressed in terms of a UCQ.

Indeed, through the following example we prove that recursive queries are needed to answer
a UCQ in a LAV system with key dependencies on the global schema. The example is adapted
from the one used in [61] to show that a recursive query rewriting is needed in the presence of
functional dependencies, i.e., a more general class of dependencies than KDs.5

Example 7.2.4 Let I = 〈G,S,M〉 be a system in which G comprises the relations
pilot(Name,Airline) and aircraft(Code,Airline) where the key dependencies key(pilot) = {1},
and key(aircraft) = {1} are expressed on G. Consider the source relation s(Pilot ,Aircraft) and
the LAV mapping s(P, C) ← pilot(P, A), aircraft(C, A). Finally, let us pose the following query
Q on the global schema: q(P ) ← pilot(Mike, A), pilot(P,A), asking for pilots of the same com-
pany of Mike. Since s does not maintain information about which airlines pilots work for, it is
not possible to answer the query disregarding the KDs on G. Moreover, it can be shown that
no UCQ is a perfect rewriting of the query, and that the perfect rewriting must necessarily be
expressed in terms of a recursive query: for instance, the following recursive query is a perfect
rewriting of Q:

q(P ) ← s(Mike, C), s(P,C)
q(P ) ← q(P1), s(P1, C), s(P, C)

7.3 Discussion

In this chapter we have addressed the problem of query answering in LAV integration systems, and
have presented techniques for query answering, when key, inclusion and exclusion dependencies
are expressed on the global schema. In the presence of only IDs and EDs our approach is purely
intensional, since query answering is solved by first computing the perfect rewriting of a query
issued on the global schema, and then evaluating the rewritten query. On the other hand, in the
presence of KDs, we resort to query answering, i.e., we use constructively data at the sources in
order to provide answers to the user query. As said in the above section, this is needed in order

5Actually, [61] refers to maximally contained rewritings: however, when queries in the mapping are conjunctive

queries, the maximally-contained rewriting coincides with the perfect rewriting.
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to take into account KDs in the construction of the retrieved global database, which may force
fresh constants introduced during such a process to be equal. Nonetheless, the definition of a
perfect rewriting also for this setting turns out to be a challenging and interesting problem that
has not been addressed in this thesis, but can be seen as a future work on such matters.

We point out that, although developed for dealing with integrity constraints, our technique for
query rewriting in LAV turns out to be simpler than the Duschka inverse rules algorithm [61], even
in the absence of inclusion and exclusion dependencies. Indeed, the perfect rewriting produced by
the algorithm in [61] is a logic program with Skolem functions representing existential variables
in the head of the rules. In order to evaluate such a rewriting over a database, a non-trivial
procedure to eliminate Skolem function from the program has to be performed for each query
issued on the system. Conversely, by applying our technique for query processing in LAV, which
is based on the transformation of the system into an equivalent GAV one, we directly obtain a
UCQ that can be easily handled without resorting to other pre-processing procedures.

We also underline that the compilation of a LAV system into a GAV one can be executed
off-line, only at each change of the system specification.



Chapter 8

Efficient Evaluation of Logic

Programs for Consistent Query

Answering

In Chapter 6 we have provided a sound and complete query rewriting technique that allows
for computing the certain answers to a query posed over a GAV data integration system under
the loosely-sound semantics in the presence of IDs, KDs and EDs on the global schema. More
specifically, we have shown that the perfect rewriting to a user query in this setting can be given
in terms of a suitable Datalog¬ program whose stable models correspond to the databases in the
loosely-sound semantics of the system.

As already said, several approaches dealing with inconsistent databases have been proposed
in the last years (see Section 5.5). In all such approaches, the inconsistency is eliminated by
modifying the original database and reasoning on the “repaired” database. The suitability of a
possible repair depends on the underlying semantic assertions which are adopted for the database.
Analogously to our approach, some of these works have proposed to formalize repair semantics
by using logic programs [8, 86, 13, 16]. The common basic idea is to encode the constraints
specified on the global schema into a function-free logic program, Π, using unstratified negation
or disjunction, such that the stable models of this program yield the repairs of the global database.
Answering a user query amounts to cautious reasoning over the logic program Π augmented with
the query, cast into rules, and the retrieved facts.

An attractive feature of this approach is that logic programs serve as executable logical spec-
ifications of repair, and thus allow to state repair policies in a declarative manner rather than in
a procedural way. However, a drawback of this approach is that with current implementations of
stable model engines, such as DLV [109] or Smodels [133], the evaluation of queries over large data
sets quickly becomes infeasible because of lacking scalability. This calls for suitable optimization
methods that help in speeding up the evaluation of queries expressed as logic programs [16].

In this paper, we face this problem and make the following contributions:

105
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(1) We present a basic formal model of data integration via logic programming specification,
which abstracts from several proposals in the literature [8, 86, 13, 30, 16]. Results which are
obtained on this model may then be inherited by the respective approaches.

(2) We foster a localization approach to reduce complexity, in which irrelevant rules are dis-
carded and the retrieved data is decomposed into two parts: facts which will possibly be touched
by a repair and facts which for sure will be not. The idea which is at the heart of the approach is
to reduce the usage of the nonmonotonic logic program to the essential part for conflict resolu-
tion. This requires some technical conditions to be fulfilled in order to make the part “affected”
by a repair small (ideally, as much as possible).

(3) We develop techniques for recombining the decomposed parts for query answering, which
interleave logic programming and relational database engines. This is driven by the fact that
database engines are geared towards efficient processing of large data sets, and thus will help to
achieve scalability. To this end, we present a marking and query rewriting technique for compiling
the reasoning tasks which emerge for user query evaluation into a relational database engine.

In our overall approach, the attractive features of a nonmonotonic logic programming system,
such as DLV, can be fruitfully combined with the strengths of an efficient relational database
engine. The experimental results are encouraging and show that this combination has potential
for building advanced data integration systems with reasonable performance.

8.1 A Logic Framework for Query Answering

In this section, we present an abstract framework for modelling query answering in data inte-
gration systems using logic programs. We first describe the integration setting addressed in this
chapter, and then we introduce a comprehensive logic programming framework for computing
certain (or consistent) answers from inconsistent data integration systems.

8.1.1 Data Integration Scenario

In this chapter we consider GAV integration systems I = 〈G,S,M〉 where queries in the mapping
M are Datalog¬s , user queries over I are non-recursive Datalog¬, and constraints on the global
schema are universally quantified constraints [2], i.e., first order formulas of the form:

∀(~x)
l∧

i=1

Ai ⊃
m∨

j=1

Bj ∨
n∨

k=1

φk, (8.1)

where l + m > 0, n ≥ 0, ~x is a list of distinct variables, A1, . . . , Al and B1, . . . , Bm are positive
literals, and φ1, . . . , φn are built-in literals.

We point out that such class of constraints comprises key and exclusion dependencies, which
have been considered in the integration framework studied so far in this thesis, as well as func-
tional dependencies and inclusion dependencies of the form ∀(~x)p1(~x) ⊃ p2(~x). On the other
hand, we do not consider here existentially quantified IDs on the global schema. Actually, this
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does not limit the application of the optimization technique that we present in this chapter to
the approach to query answering in GAV systems described in Chapter 6. Indeed, in such an
approach IDs are suitably preprocessed by means of the ID-rewrite algorithm, and then query
answering is carried out as if IDs were not specified on the global schema, but the constraints
taken into account are only the KDs and the EDs that are logical consequence of the IDs and
the EDs originally specified over the global schema. Finally, it is also worth noticing that the
user query and the mapping language considered in this chapter subsume the user query and the
mapping language adopted in the GAV framework studied so far. Hence, the framework studied
in Chapter 6 perfectly fits the one addressed in this chapter also for the query and mapping
language.

Example 8.1.1 As a running example, we consider here the same integration system I0 =
〈G0, S0, M0〉 of Example 6.1.1. We recall that in the global schema G0 = 〈Ψ0, Σ0〉,
Ψ0 consists of the relations player(Pcode,Pname,Pteam), team(Tcode,Tname,Tleader), and
coach(Ccode,Cname,Cteam), whereas constraints in Σ0 impose that the keys of player , team,
and coach are respectively the attributes Pcode, Tcode, and Ccode, that a leader has to be a
player (ID), and that a coach cannot be a player (ED). According to the integration setting
studied in this chapter, we do not consider here the ID in Σ0, whereas we take into account also
the ED that is logically implied by the original ED and ID, i.e., we add to Σ0 an ED stating that
a coach cannot be a team leader (other than a player). Σ0 can be formally defined as set of first
order formulae as follows (quantifiers are omitted):

player(X, Y, Z) ∧ player(X, Y 1, Z1)⊃Y =Y 1; player(X, Y, Z) ∧ player(X, Y 1, Z1)⊃Z=Z1

team(X, Y, Z) ∧ team(X, Y 1, Z1)⊃Y =Y 1; team(X, Y, Z) ∧ team(X, Y 1, Z1)⊃Z=Z1

coach(X, Y, Z) ∧ coach(X, Y 1, Z1)⊃Y =Y 1; coach(X, Y, Z) ∧ coach(X, Y 1, Z1)⊃Z=Z1

coach(X, Y, Z) ∧ player(X1, Y 1, Z1)⊃X 6=X1; coach(X, Y, Z) ∧ team(X1, Y 1, Z1)⊃X 6=Z1

The first three rows encode the key dependencies, whereas the last row models the two exclusion
dependencies.

The source schema S0 comprises the relations s1, s2, s3 and s4, whereas, the mapping
M0 is defined by the Datalog program player(X, Y, Z) ← s1(X, Y, Z,W ); team(X, Y, Z) ←
s2(X, Y, Z); team(X, Y, Z) ← s3(X, Y, Z); coach(X, Y, Z) ← s4(X, Y, Z).

Finally, we consider the user query q(X) ← player(X,Y, Z); q(X) ← team(V, W,X), which
asks for the codes of all players and team leaders. Note that this query is actually the rewriting
of the query q(X) ← player(X,Y, Z) of Example 6.1.1 that has been produced by the algorithm
ID-rewrite, as described in Section 6.3.1.

As for the semantics of I, we assume in this chapter that the domain the discourse U is finite,
and that the mapping is loosely-exact1, i.e., given a source database D for I we have that

semls(I,D) = {B | B is consistent with G and is minimal w.r.t. ≤ret(I,D)}
1The loosely-exact semantics has been defined in Section 3.3. Here we recall its definition given in terms of

the retrieved global database ret(I,D).
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player ret(I0,D0):
10 Totti RM

9 Beckham MU
teamret(I0,D0):

RM Roma 10

MU Man. Utd. 8

RM Real Madrid 10

coachret(I0,D0): 7 Ferguson MU

Figure 8.1: Retrieved global database for the football teams scenario.

where B1 ≤DB B2 iff 4(B1,DB) ⊆ 4(B2,DB), where 4(X, Y ) denotes the symmetric difference
between sets X and Y .

According to a classical terminology in the area of inconsistent databases, in the following
we say that the global databases in semls(I,D) are the repairs of the integration system I w.r.t.
D. Generally speaking, given a relational schema RS = 〈Ψ, Σ〉 and a database instance DB for
RS, we indicate with rep(DB) w.r.t. Σ the set of repairs of DB computed with respect to the
constraints in Σ; when clear from the context, Σ is omitted. Hence, we have that semls(I,D) is
actually the set rep(ret(I,D)) w.r.t. Σ.

We point out that, in the presence of only KDs and EDs the loosely-exact semantics coincides
with the loosely-sound semantics addressed in Chapter 6, i.e., the databases in the two semantics
are the same. Furthermore, since in this case repairing is performed only by deleting facts,
assuming that the domain U is finite or infinite does not make any difference. Hence, modulo
the preprocessing of IDs, the framework studied in Chapter 6 is perfectly compliant with these
two assumptions.

Example 8.1.1 (contd.) Assume that the information content of the sources is given
by the database D0 = { s1(10, Totti, RM, 27), s1(9, Beckham,MU, 28), s2(RM, Roma, 10),
s3(MU, Man. Utd., 8), s3(RM, Real Madrid, 10), s4(7, Ferguson, MU)}. Then, the retrieved global
database ret(I0,D0) shown in Fig. 8.1 violates the key constraint on team, witnessed by the
facts team(RM,Roma, 10) and team(RM, Real Madrid, 10), which coincide on Tcode but differ on
Tname. A repair results by removing exactly one of these facts; hence, semls(I0,D0) = {B1,B2},
where B1 and B2 are as shown in Figure 8.2.

playerB1 :
10 Totti RM

9 Beckham MU
teamB1 :

RM Roma 10

MU Man. Utd. 8
coachB1 : 7 Ferguson MU

playerB2 :
10 Totti RM

9 Beckham MU
teamB2 :

MU Man. Utd. 8

RM Real Madrid 10
coachB2 : 7 Ferguson MU

Figure 8.2: Repairs of I0 w.r.t. D0.

For the query q(X) ← player(X, Y, Z); q(X) ← team(V, W,X), we thus obtain that
ans ls(q, I0,D0) = {8, 9, 10}. If we consider the query q′(Y ) ← team(X, Y, Z), we have that
ans ls(q′, I0,D0) = {Man. Utd.}, while considering q′′(X, Z) ← team(X,Y, Z), we have that
ans ls(q′′, I0,D0) = {〈RM, 10〉, 〈MU, 8〉}.
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8.1.2 Logic Programming for Consistent Query Answering

We now describe a generic logic programming framework for computing certain answers to queries
posed to a data integration system in which inconsistency possibly raises.

According to several proposals in the literature, we provide answers to user queries by encod-
ing the mapping assertions in M and the constraints in Σ in a Datalog program enriched with
unstratified negation or disjunction, in such a way that the stable models of this program map
to the repairs of the retrieved global database.

Definition 8.1.2 Let I = 〈G,S,M〉 be a data integration system where G = 〈Ψ,Σ〉, D is a source
database for I, and q is a non-recursive Datalog¬ query over G. Then, a logic specification for
querying I is a Datalog∨,¬ program ΠI(q) = ΠM ∪ΠΣ ∪Πq such that

1. ret(I,D)  SM(ΠDM), where ΠM is a Datalog¬s program,

2. semls(I,D)  SM(Πret(I,D)
Σ ), and

3. ans ls(q, I,D)  {t | q(t) ∈ M for each M ∈ SM((Πq ∪ΠΣ)ret(I,D))},
where Πq is a non-recursive Datalog¬ program,

where  denotes a polynomial-time computable correspondence between two sets.

This definition establishes a connection between the semantics of ΠI(q) and the certain an-
swers to a query posed to I (Item 3) provided some syntactic transformations, which typically
are simple encodings such that  is a linear-time computable bijection. In particular, ΠI(q) is
composed by three modules that can be hierarchically evaluated, i.e., ΠM . ΠΣ . Πq [66], using
Splitting Sets [122]:

• ΠM is used for retrieving data from the sources: the retrieved global database can be
derived from its unique stable model (Item 1);

• ΠΣ is used for enforcing the constraints on the retrieved global database, whose repairs can
be derived from the stable models of ΠΣ[ret(I,D)] (Item 2);

• finally, Πq is used for encoding the user query q.

The above framework generalizes logic programming formalizations proposed in different in-
tegration settings, such as the one described in Chapter 6 of this thesis and the ones recently
proposed in [13, 16]. In this respect, the precise structure of the program ΠI(q) depends on the
form of the mapping, the language adopted for specifying mapping views and user queries, and
the nature of constraints expressed on the global schema. In particular, compared to the perfect
rewriting ΠKD∪ΠED∪ΠID∪ΠMD of Section 6.4, we have that ΠM = ΠMD, ΠΣ = ΠKD∪ΠED,
and Πq = ΠID.

We point out that, logic programming specifications proposed in the setting of a single incon-
sistent database [86, 8] are also captured by the above framework. Indeed, a single inconsistent
database can be conceived as the retrieved global database of a GAV data integration system in
which views of the mapping are assumed exact. The logic programs for consistently querying a
single database are of the form ΠI(q) = ΠΣ ∪Πq.
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8.2 Optimization of Query Answering

The source of complexity in evaluating the program ΠI(q) defined in the above section, actually
lies in the conflict resolution module ΠΣ, and in the evaluation of Πq. Indeed, ΠM is a Datalog¬s

program that can be evaluated in polynomial time over the source database D for constructing
ret(I,D), whereas Πq is a non-recursive Datalog¬ program that has to be evaluated over each
repair of the retrieved global database, and ΠΣ is in general a Datalog∨,¬ program whose eval-
uation complexity is at the second level of the polynomial hierarchy in data complexity [86].
Furthermore, also evaluating programs with lower complexity over large data sets by means of
stable models solvers, such as DLV [109] or Smodels [133], quickly becomes infeasible. This calls
for suitable optimization methods speeding up the evaluation (as recently stated in [16]).

Concentrating on the most relevant and computational expensive aspects of the optimiza-
tion, we focus here on ΠΣ, assuming that ret(I,D) is already computed, and devise intelligent
techniques for the evaluation of Πq.

Roughly speaking, in our approach we first localize in the retrieved global database ret(I,D)
the facts that are not “affected” (formally specified below) by any violation. Then, we compute
the repairs by taking into account only the affected facts, and finally we recombine the repairs
to provide answers to the user query. Since in practice, the size of the set of the affected facts is
much smaller than the size of the retrieved global database, the computation of the stable models
of ΠΣ, i.e., repairs of ret(I,D) (Item 2 in Def. 8.1.2), over the affected facts is significantly faster
than the naive evaluation of ΠI(q) on the whole retrieved global database.

In a nutshell, our overall optimization approach comprises the following steps:

Pruning: We first eliminate from ΠI(q) the rules that are not relevant for computing answers
to a user query q. This can be done by means of a static syntactic analysis of the program
ΠI(q). In this step we also localize the portion of ret(I,D) that is needed to answer the
query q.

Decomposition: We localize inconsistency in the retrieved global database, and compute the
set of facts that are affected by repair. Finally, we compute repairs, R1, . . . ,Rn, of this set.

Recombination: We suitably recombine the repairs R1, . . . ,Rn for computing the answers to
the query q.

In the rest of this section, we describe in detail the three steps.

8.2.1 Pruning

In this step, we localize the portion of ret(I,D) that is needed to answer the query q, thus
avoiding to retrieve from the sources tuples that do not contribute to answering the query;
moreover, we also select the rules of ΠI(q) that are necessary for handling constraint violations
in such a portion of the retrieved global database, thus disregarding non relevant rules. Indeed,
ret(I,D) is in general a superset of the data that are needed to answer the query q. For instance,
when no integrity constraint is specified on the global schema it is not necessary to consider the
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extension of global relations that do not appear in the body of the rules in q, i.e., that are not
EDB predicates of q. Of course, when integrity constraints are specified on the global schema
the situation is not so easy.

We next provide some definitions that allow us to suitably prune the retrieved global database
and the logic program ΠI(q). We point out that our studies on pruning are in a preliminary
stage, and that the solution provided can be optimized in several directions. Indeed, the pruning
step strongly depends on the user query and the form of constraints on the global schema,
and proper solutions for particular and significant classes of queries and constraints should be
adopted. For example, solutions that exploit information provided by selections in the query, or
take advantage from the form of the dependencies if they are particularly simple. For instance,
the case in which only key dependencies are specified on the relations involved in the query
can be basically faced by computing only the extension of the EDB predicates of the query q.
Nonetheless, our proposal, even if preliminary, should shed light on this point of the overall
approach to the efficient evaluation of the logic programs ΠI(q).

Definition 8.2.1 Given a data integration system I = 〈G,S,M〉, where G = 〈Ψ, Σ〉, and a
query q over I, we say that a relation r in G is relevant w.r.t. q if

(a) r is a predicate in the body of the rules of q, or

(b) r is involved in a dependency in Σ∗ with a relation s relevant w.r.t. q, where Σ∗ denotes
the set of dependencies that are logically implied by Σ.

We denote by retr(I,D, q) the subset of ret(I,D) that contains only the extension of relations
that are relevant w.r.t. q, i.e., retr(I,D, q) = {r(t)|r(t) ∈ ret(I,D) and r is relevant w.r.t. q}.

For instance, in our ongoing example, the relations player and team are relevant due to
condition (a), whereas relation coach is relevant due to condition (b), witnessed by the EDs
coach(X, Y, Z)∧player(X1, Y 1, Z1) ⊃ X 6=X1 and coach(X,Y, Z)∧ team(X1, Y 1, Z1) ⊃ X 6=Z1.
Hence, in this case retr(I0,D0, q) = ret(I0,D0).

Let us now turn our attention to the program ΠI(q), and extend the notion of relevance to
its rules.

Definition 8.2.2 Given a data integration system I, and a logic specification ΠI(q) for I, we
say that a rule ρ in ΠI(q) is relevant w.r.t. q if ρ contains a predicate expressed in terms of
a relation r that is relevant w.r.t. q. We denote by ΠIr(q) the set of rules in ΠI(q) that are
relevant w.r.t. q.

The following proposition, whose proof is straightforward, allows us to focus on ΠIr(q), and
retr(I,D, q) in order to compute the certain answers to the query q.

Proposition 8.2.3 Given a data integration system I = 〈G,S,M〉, a source database D for I,
and a query q over I, we have that

ans ls(q, I,D)  {t | q(t) ∈ M for each M ∈ SM((Πq ∪ΠΣ)retr(I,D,q)
r )}

where (Πq ∪ΠΣ)r indicates the relevant portion of Πq ∪ΠΣ.
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In the following we implicitly consider retr(I,D, q) and ΠIr(q). Nonetheless, to keep things
simple, we do not use the subscript r, and refer to ret(I,D) and ΠI(q)

8.2.2 Decomposition

We start with some concepts for a single relational schema. Let RS = 〈Ψ, Σ〉 be a relational
schema. We call two facts p1(a1, . . . , an) and p2(b1, . . . , bm), where p1, p2 ∈ Ψ and each ai, bj

is in the domain U , constraint-bounded in RS, if they occur in the same ground constraint
σg ∈ ground(Σ). Furthermore, for any σg ∈ ground(Σ), we use facts(σg) to denote the set of all
facts p(t), p ∈ Ψ, which occur in σg.

Let DB be a database for RS. Then, the conflict set for DB w.r.t. RS is the set of facts
CRSDB = {p(t) | ∃σg ∈ ground(Σ) ∧ p(t) ∈ facts(σg) ∧ σg is violated in DB}, i.e., the set of facts
occurring in the constraints of ground(Σ) that are violated in DB.

For instance, in our ongoing example, the conflict set consists of the facts that violate the
key constraints on team, i.e., ADB(I0,D0) = {team(RM,Roma, 10), team(RM, Real Madrid, 10)}.

Definition 8.2.4 Let RS=〈Ψ, Σ〉 be a relational schema and DB a database for RS. Then,
the conflict closure for DB, denoted by CRSDB

∗, is the least set such that t ∈ CRSDB
∗ if either

(i) t ∈ CRSDB , or (ii) t is constraint-bounded in RS with a fact t′ ∈ CRSDB
∗. Moreover, we call

SRSDB = DB−CRSDB
∗ and ARSDB = DB∩CRSDB

∗ the safe database and the affected database for DB,
respectively.

We drop the superscript RS if it is clear from the context. Intuitively, C∗DB contains all facts
involved in constraint violations, i.e., facts belonging to CDB, and facts which possibly must be
changed in turn to avoid new inconsistency with Σ by repairing.

We now consider the following two subsets of ground(Σ):

(i) ΣA
DB consists of all the ground constraints in which at least one fact from C∗DB occurs, i.e.,

ΣA
DB = {σg ∈ ground(Σ) | facts(σg) ∩ C∗DB 6= ∅}, and

(ii) ΣS
DB consists of all the ground constraints in which at least one fact occurs which is not in

C∗DB , i.e., ΣS
DB = {σg ∈ ground(Σ) | facts(σg) 6⊆ C∗DB}.

We first show that ΣA
DB and ΣS

DB form a partitioning of ground(Σ).

Proposition 8.2.5 Let RS = 〈Ψ,Σ〉 be a relational schema, and let DB a database for RS.
Then,

1.
⋃

σg∈ΣA
DB

facts(σg) ⊆ C∗DB;

2.
⋃

σg∈ΣS
DB

facts(σg) ∩ C∗DB = ∅;

3. ΣA
DB ∩ ΣS

DB = ∅ and ΣA
DB ∪ ΣS

DB = ground(Σ).

Proof. 1. All facts occurring in a ground constraint σg ∈ ΣA
DB must belong to C∗DB. Indeed,

by definition of ΣA
DB, σg contains at least one fact t in C∗DB; each other fact in σg is constraint-

bounded in RS with t, and hence it also is in C∗DB.
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2. Assume by contradiction that some σg ∈ ΣS
DB with facts(σg) ∩ C∗DB 6= ∅ exists. Then,

Definition 8.2.4 implies facts(σg) ⊆ C∗DB, which contradicts σg ∈ ΣS
DB. Part 3 is straightforward

from Part 1 and Part 2.

The separation property allows us to shed light on the structure of repairs:

Proposition 8.2.6 (Safe Database) Let RS = 〈Ψ, Σ〉 be a relational schema, and let DB be
a database for RS. Then, for each repair R ∈ rep(DB) w.r.t. Σ, SDB = R− C∗DB.

Proof. Towards a contradiction, suppose there exists a repair R for DB w.r.t. Σ such that
R − C∗DB 6= SDB. Let us construct a new database R′ in the following way: R′ contains all
the facts of R that are also in C∗DB, and all the facts of DB that are not in C∗DB. Consider any
σg ∈ ground(Σ). By Proposition 8.2.5, either (i) σg ∈ ΣA

DB or (ii) σg ∈ ΣS
DB. Moreover, since

R satisfies σg, it follows that in Case (i) R′ also satisfies σg. Similarly, since SDB satisfies σg in
Case (ii) R′ also satisfies σg.

Thus, R′ is consistent with Σ. However, it differs from R only in the tuples that are not in
C∗DB, and all these tuples do not need to be repaired; it follows that ∆(R′,DB) ⊆ ∆(R,DB).
This contradicts that R is a repair of DB.

Prior to the main result of this section, we give the following lemma:

Lemma 8.2.7 Let RS = 〈Ψ,Σ〉 be a relational schema, and let DB be a database for RS. Then,
for each S ⊆ SDB, we have that

1. for each R ∈ rep(S ∪ADB) w.r.t. Σ, (R∩ C∗DB) ∈ rep(ADB) w.r.t. ΣA
DB;

2. for each Ra ∈ rep(ADB) w.r.t. ΣA
DB, there exists some set of facts S′, S′ ∩ C∗DB = ∅, such

that (Ra ∪ S′) ∈ rep(S ∪ADB) w.r.t. Σ.

Proof. 1. Let R be a repair of S∪ADB w.r.t. Σ, and let Ra = R∩C∗DB. Since R is consistent
with Σ, Proposition 8.2.5 implies that Ra satisfies all constraints in ΣA

DB, while R−Ra satisfies
all constraints in ΣS

DB. Assume Ra is not a repair of ADB w.r.t. ΣA
DB. Then, there exists some

R′a ∈ rep(ADB) w.r.t. ΣA
DB, such that R′a <ADB Ra. Since R′a satisfies ΣA

DB, Proposition 8.2.5
implies that R′a ∪ (R−Ra) satisfies Σ. But R′a ∪ (R−Ra) <S∪ADB Ra, which contradicts that
R is a repair of S ∪ADB.
2. Let Ra be a repair of ADB w.r.t. ΣA

DB. We show that there exists a repair R of S ∪ ADB
w.r.t. Σ of form R = Ra ∪ S′, where S′ is a set that satisfies ΣS

DB, such that R∩ADB = Ra. In
particular, let S′ ∈ rep(S) w.r.t. ΣS

DB be arbitrary. Using Prop. 8.2.5, we can see that Ra ∪ S′

satisfies Σ; note that S′ ∩ C∗DB = ∅. Thus, if Ra ∪ S′ is not a repair of S ∪ ADB, there must
exist some R′ consistent with Σ such that R′ <S∪ADB Ra ∪ S′. Since we always can write
R′ = R′a ∪ R′s, where R′a ⊆ C∗DB satisfies ΣA

DB and R′s = R − R′a satisfies ΣS
DB, this implies

either R′a <ADB Ra or R′s <S S′. This contradicts Ra∈rep(ADB) w.r.t. ΣA
DB and S′∈rep(S)

w.r.t. ΣS
DB.

Armed with the above concepts and results, we now turn to the data integration setting in
which we have to repair the retrieved global database ret(I,D). The following theorem shows
that its repairs can be computed by looking only at Aret(I,D).
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Theorem 8.2.8 Let I = 〈G,S,M〉 be a data integration system, where G = 〈Ψ, Σ〉, and let D
be a source database for I. Then,

1. ∀B ∈ semls(I,D), ∃R ∈ rep(Aret(I,D)) w.r.t. Σ such that B = R∩ C∗ret(I,D) ∪ Sret(I,D);

2. ∀R ∈ rep(Aret(I,D)), ∃B ∈ semls(I,D) w.r.t. Σ such that B = R∩ C∗ret(I,D) ∪ Sret(I,D).

Proof. Recall that ret(I,D) = Sret(I,D) ∪ Aret(I,D) and that semls(I,D) coincides with
rep(ret(I,D)) w.r.t. Σ. Thus, applying Lemma 8.2.7, first Part 1 for S = Sret(I,D) and then
Part 2 for S = ∅, we obtain that for every B ∈ semls(I,D), there exists some R ∈ rep(Aret(I,D))
w.r.t. Σ of form R = (B ∩ C∗ret(I,D)) ∪ S′, where S′ ∩ C∗ret(I,D) = ∅. Hence, R ∩ C∗ret(I,D) =
B ∩ C∗ret(I,D). By Prop. 8.2.6, every B∈semls(I,D), i.e., B∈rep(ret(I,D)) is of form B=(B ∩
C∗ret(I,D)) ∪ Sret(I,D). Therefore, B=(R∩ C∗ret(I,D)) ∪ Sret(I,D).

Similarly, applying Lemma 8.2.7, first Part 1 for S = ∅ and then Part 2 for S = Sret(I,D),
we obtain that for every R ∈ rep(Aret(I,D)) w.r.t. Σ, there exists some B ∈ semls(I,D) w.r.t.
Σ such that B = (R ∩ C∗ret(I,D)) ∪ S′, where S′ ∩ C∗ret(I,D) = ∅. Moreover, Prop. 8.2.6 implies
S′ = Sret(I,D), which proves 2.

As a consequence, for computing the repairs of the retrieved global database ret(I,D),
it is sufficient to evaluate the program ΠΣ on Aret(I,D), i.e., to exploit the correspondence
semls(I,D)  SM(ΠΣ[Aret(I,D)]), intersect with C∗ret(I,D), and unite with Sret(I,D). Nonetheless,
computing Aret(I,D) is expensive in general since it requires computing the closure of Cret(I,D).
Furthermore, in repairs of Aret(I,D) many facts not in C∗ret(I,D) might be computed which are
stripped off subsequently. Fortunately, in practice, for many important cases this can be avoided:
repairs can be made fully local and even focused just on the immediate conflicts in the database.

Proposition 8.2.9 Let I = 〈G,S,M〉 be a data integration system, where G = 〈Ψ, Σ〉, and let
D be a source database for I. Then,

1. if each σ ∈ Σ is of the form 8.1 with l > 0, then each R repair of Aret(I,D) w.r.t. Σ satisfies
R ⊆ C∗ret(I,D);

2. if each σ ∈ Σ is of the form 8.1 with m = 0, then

i) each R repair of Aret(I,D) w.r.t. Σ satisfies R ⊆ Cret(I,D),

ii) Cret(I,D) ⊆ ret(I,D), and

iii) rep(Aret(I,D)) w.r.t. Σ coincides with rep(Cret(I,D)) w.r.t. Σ.

This proposition allows us to exploit Theorem 8.2.8 in a constructive way for many significant
classes of constraints, for which it implies a bijection between the repairs of the retrieved global
database, ret(I,D), and the repairs of its affected part Aret(I,D) w.r.t. the constraints Σ. In
particular, Condition 1 is satisfied by all constraints that do not unconditionally enforce inclusion
of some fact in every repair, while Condition 2 is satisfied by constraints that can be repaired
by just deleting facts from the database, such as key constraints, functional dependencies, and
exclusion dependencies.
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According to Theorem 8.2.8, in case of Condition 2 the set semls(I,D) can be obtained by
simply computing the repairs of the conflicting facts, Cret(I,D), in place of Aret(I,D) and by
adding Sret(I,D) to each repair.

The following corollary formalizes the above discussion for Condition 2.

Corollary 8.2.10 Let I = 〈G,S,M〉 be a data integration system, where G = 〈Ψ, Σ〉, and let
D be a source database for I. Assume each constraint in Σ has form 8.1 with m = 0. Then,
there exists a bijection µ : semls(I,D) → rep(Cret(I,D)), such that for each R∈semls(I,D),
B = µ(B)∪Sret(I,D) (where Cret(I,D) ⊆ ret(I,D)).

We point out that constraints specified in the GAV framework of Chapter 6 verify condition 2.
It is also worth noticing that the computation of the set Cret(I,D) can be carried out very
efficiently, by means of suitable SQL statements as described below.

8.2.3 Conflicting set for ret(I,D) in the presence of KDs and EDs

Let us first consider the key dependencies specified over G.
Let r(X1, ..., Xn, Y1, ..., Ym) be a relation in G, such that the variables in X1, ..., Xn correspond

to the attributes constituting the key. Then, the following SQL statement:

INSERT INTO ri
SELECT X1, ...,Xn, COUNT(∗)
FROM r
GROUP BY X1, ...,Xn

HAVING COUNT(∗) > 0;

collects into ri all the tuples that violate the key dependency.

Now turn the attention to the exclusion dependencies. Let r(X1, ..., Xn, Y1, ..., Ym), and
s(X1, ..., Xn, Z1, ..., Zl) be relations in G, such that r[X1, ..., Xn]∩s[X1, ..., Xn] 6= ∅ is an exclusion
dependency over G. Then, the following SQL statement:

INSERT INTO rse
SELECT r.∗
FROM r, s
WHERE r.X1 = s.X1 AND...

AND r.Xn = s.Xn;

collects into rse all the tuples that violate the exclusion dependency.

8.2.4 Recombination

Let us turn our attention to the evaluation of a user query q. According to the definition
of certain answers (Section 3.2), we need to evaluate q over each database B ∈ semls(I,D),
and by Theorem 8.2.8 we can exploit the correspondence semls(I,D)  SM(ΠΣ[Aret(I,D)]) for
computing each such B. More precisely, we need to recombine the repairs of Aret(I,D) computed
in the decomposition step with Sret(I,D) as stated by the following theorem.
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playerm
ret(I0,D0):

10 Totti RM ′11′

9 Beckham MU ′11′
teamm

ret(I0,D0):

RM Roma 10 ′10′

MU Man. Utd. 8 ′11′

RM Real Madrid 10 ′01′

coachm
ret(I0,D0): 7 Ferguson MU ′11′

Figure 8.3: The retrieved global database of our running example after marking.

Theorem 8.2.11 Let I = 〈G,S,M〉 be a data integration system, let D be a source database for
I, and let q be a query over I. Then,

ans ls(q, I,D) =
⋂

R∈rep(Aret(I,D))

Π
R∩C∗ret(I,D)∪Sret(I,D)
q (8.2)

Note that the number of repairs of Aret(I,D) is exponential in the number of violated constraints,
and hence efficient computation of the intersection in (8.2) requires some intelligent strategy.
Clearly, the overall approach is beneficial only if the recombination cost does not compensate the
gain of repair localization. In the next section, we present an efficient technique for the recom-
bination step which allows us to validate the approach in experiments described subsequently.

8.3 A Technique for Efficient Recombination

In this section, we describe a technique for implementing the recombination step in a way which
circumvents the evaluation of Πq on each repair of ret(I,D) separately. For the sake of simplicity,
we deal here with constraints of the form 8.1, when l > 0 and m = 0. In this case, according to
Proposition 8.2.9, rep(Aret(I,D)) coincide with rep(Cret(I,D)), and R ⊆ Cret(I,D) ⊆ ret(I,D)
for each R ∈ rep(Cret(I,D)). Furthermore, thesis in Theorem 8.2.11 can be rewritten as
ans ls(q, I,D) =

⋂
R∈rep(Cret(I,D))

ΠR∪Sret(I,D)
q .

The basic idea of our approach is to encode all repairs into a single database over which the
query Πq can be evaluated by means of standard database techniques. More precisely, for each
global relation r, we construct a new relation rm by adding an auxiliary attribute mark. The
mark value is a string ′b1 . . . b′n of bits bi ∈ {0, 1} such that, given any tuple t, bi = 1 if and only if t

belongs to the i-th repair Ri ∈ rep(Cret(I,D)) = {R1, . . . ,Rn}, for every i ∈ {1, . . . , n} (indexing
the repairs is easy, e.g. using the order in which the deductive database system computes them).
The set of all marked relations constitutes a marked database, denoted by Mret(I,D). Note that
the facts in Sret(I,D) (the bulk of data) can be marked without any preprocessing, as they belong
to every repair Ri; hence, their mark is ′11. . . 1′. For our running example, the marked database
derived from the repairs in Figure 8.2 is shown in Figure 8.3.

We next show how the query Πq can be reformulated in a way such that its evaluation over
the marked database computes the set of certain answers to q. Before proceeding, we point out
that our recombination technique also applies in the presence of constraints of general form. In
such a case, the source of complexity lies in the computation of C∗ret(I,D).
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8.3.1 Query Reformulation

We next focus on non-recursive Datalog queries and provide a technique for rewriting them into
SQL. The extension to non-recursive Datalog¬ queries is straightforward.

Let a query q(~x), where ~x = X1, . . . Xn, be given by the rules q(~x) ← qj(~yj), 1 ≤ j ≤ n, where
each qj(~yj) is a conjunction of atoms pj,1(~yj,1), ..., pj,m(~yj,m), where ~yj =

⋃m
i=1 ~yj,i. Moreover,

let us call each variable Y such that Y ∈ ~yj,i and Y ∈ ~yj,h a join variable of pj,i and pj,h.

In query reformulation, we use the following functions ANDBIT and SUMBIT:

• ANDBIT is a binary function that takes as its input two bit strings ′a1 . . . a′n and ′b1 . . . b′n
and returns ′(a1 ∧ b1) . . . (an ∧ bn)′, where ∧ is boolean and;

• SUMBIT is an aggregate function such that given m strings of form ′bi,1 . . . b′i,n, it returns
′(b1,1 ∨ . . . ∨ bm,1) . . . (b1,n ∨ . . . ∨ bm,n)′, where ∨ is boolean or.

Then, each q(~x) ← qj(~yj) can be translated in the SQL statement SQLqj of the form

SELECT X1, . . .Xn, (pj,1.mark ANDBIT . . . ANDBIT pj,m.mark) AS mark

FROM p1 . . .pm

WHERE pj,i.Y=pj,h.Y (for each join variable Y of pj,i and pj,h, 1 ≤ i, h ≤ m).

In addition to the answers to q(~x) ← qj(~yj), the statement computes the marks of the repairs
in which an answer holds by applying the ANDBIT operator to the mark attributes of the joined
relations. The results of all SQLqj can be collected into a view uqm by the SQL statement
SQLq1 UNION SQLq2 . . . UNION SQLqn . Finally, SQLq is

SELECT X1, . . .Xn, SUMBIT(mark)

FROM uqm

GROUP BY X1, . . .Xn

HAVING SUMBIT(mark) =′ 1 . . . 1′.

It computes query answers by considering only the facts that belong to all repairs.

Proposition 8.3.1 Given a data integration system I = 〈G,S,M〉, a source database D and a
query q over G, the set ans ls(q, I,D) coincides with the set computed by executing SQLq over
the marked database Mret(I,D).

Example 8.3.2 For q(X) ← player(X, Y, Z); q(X) ← team(V,W,X), SQLq is

CREATE VIEW uqm (X, mark) AS

SELECT Pcode,mark FROM player

UNION

SELECT Tleader ,mark FROM team;

SELECT X, SUMBIT(mark)

FROM uqm

GROUP BY X

HAVING SUMBIT(mark) =′ 11′;

It is easy to see that the answers consist of the codes 8, 9, 10.
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Figure 8.4: Additional space for marking w.r.t. the size of the global database ret(I,D)

8.3.2 Scaling the Technique

Since the number of repairs is exponential in the number of violated constraints, the marking
string can be of considerable length. For instance, 10 constraint violations, involving two facts
each, give rise to 210 repairs, and hence 1 Kbit is needed for marking each tuple.

Figure 8.4 shows the additional space needed in our running example, depending on the size of
the retrieved global database, ret(I,D), for different numbers of constraint violations (assuming
each violation has two conflicting facts). This clearly limits the effectiveness of the technique. For
instance, a retrieved global database of ’only’ 100000 facts requires almost 100 Mbits additional
space, most of it for marking the safe part.

We thus refine our technique to mark only the affected database part. More specifically, we
split each global relation r into a “safe” part r

ret(I,D)
safe = {t | r(t) ∈ Sret(I,D)} and an “affected”

part r
ret(I,D)
aff = {t | r(t) ∈ Aret(I,D)}.

With this approach, the additional space depends only on the size of Aret(I,D) but not on
the size of Sret(I,D). For example, for 10 constraint violations involving two tuples each, the
additional space is bound by 20 Kbits, independently of the size of ret(I,D).
We now need to use a different rewriting of q , obtained as follows:

– in each rule q(~x) ← qj(~yj), we replace each atom p(~y), with paff (~y)∨psafe(~y);

– we then rewrite each resulting formula into disjunctive normal form qj,1(~z) ∨ . . . ∨ qj,nj (~z)
and replace each q(~x) ← qj(~yj) with the rules q(~x) ← qj,i(~z) for each 1 ≤ i ≤ nj .

– each qj,i(~z) has form psafej,1
(~z1), . . . , psafej,n

(~zn), paff j,n+1
(~zn+1), . . . , paff j,m

(~zm), and evalu-
ated by a statement SQLqj,i , where ′1 . . . 1′ replaces each psafej,k

.mark.

Notice that this rewriting is exponential in the size of q (more precisely, in the number
of atoms). However, as commonly agreed in the database community, the overhead in query
complexity usually pays off the gain in data complexity.

It should be easy to see that, by allotting 5 Mbytes marking space, our technique may scale
up to 20 violated constraints involving two tuples each. With this marking space, any number
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Figure 8.5: (a) Execution time in DLV system w.r.t. |Aret(I0,Dsyn)|, for different sizes of
Sret(I0,Dsyn). (b) Comparison with the optimization method.

of violations n can be handled by evaluating q incrementally over a sequence of partially marked
databases M i

ret(I,D), 1 ≤ i ≤ dn/20e, grouping the marks of 20 repairs at a time, i.e., each
relation r in M i

ret(I,D) is marked with the bits ′b20(i−1)+1 . . . b′20i of ′b1 . . . b′n.

8.4 Experimental Results

In this section, we present experimental results obtained by means of a prototype implementation
that couples the DLV deductive database system [109] with Postgresql, a relational DBMS which
allows for a convenient encoding of the ANDBIT and SUMBIT operators. Notice that DLV supports
disjunction, which is needed for encoding universal constraints into programs ΠΣ, since computing
certain answers in this setting is Πp

2-complete [86]. The first experiment has been carried out on
a sun4u sparc SUNW ultra-5 10 with 256MB memory and processor working at 350MHz, under
Solaris SUN operating system, whereas the second one has been executes on a 1200MHz - 256MB
AMD processor under the Linux operating system.

Football Teams. For our running example, we built a synthetic data set Dsyn, in which
the facts in coach and team satisfy the key constraints, while facts in player violate it.
Each violation consists of two facts that coincide on the attribute Pcode but differ on the
attributes Pname or Pteam; note that these facts constitute Aret(I0,Dsyn). For the query
q(X) ← player(X, Y, Z); q(X) ← team(V, W,X), we measured the execution time of the pro-
gram ΠI0(q) in DLV depending on |Aret(I0,Dsyn)| for different fixed values of |Sret(I0,Dsyn)|, viz.
(i) 0, (ii) 4000, and (iii) 8000. The results are shown in Fig. 8.5.(a).

We point out that in Case (i), in which ΠI0(q) is evaluated only on the affected part, the
execution time scales well to a significant number of violations. On the other hand, the evaluation
of ΠI0(q) on the whole database is significantly slower; in fact, a small database of 8000 facts
requires up to 40 seconds for 50 violated constraints.

Figure 8.5.(b) shows a comparison (in log scale) between the consistent query answering by a
single DLV program and the optimization approach proposed in this paper. Interestingly, for a
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Figure 8.6: (a) Execution time w.r.t. the size of the global database: advantages of the decom-
position step. (b) Execution time in DLV and in the optimization method.

fixed number of violations (10 in the figure) the growth of the running time of our optimization
method under varying database size is negligible. In fact, a major share (∼ 20 seconds) is used
for computing repairs of the affected database, plus marking and storing them in Postgresql; the
time for query evaluation itself is negligible. In conclusion, for small databases (up to 5000 facts),
consistent query answering by straight evaluation in DLV may be considered viable; nonetheless,
for larger databases, the asymptotic behavior shows that our approach outperforms a naive
implementation

3Coloring. As a further example, we encoded the classical NP-complete graph 3-coloring prob-
lem into querying a data integration system I1=〈G1,S1,M1〉. The global schema G1 has relations
edge(Node,Node) and colored(Node,Color), and Node is the key for colored .

For a retrieved global database DB, we fixed a number of nodes and generated facts in edge
producing a graph; moreover, for each node i, we generated three facts: colored(i, red), colored(i,
blue), colored(i, yellow). Clearly DB is inconsistent, and due to the key constraint only one of the
three facts can remain in the database. The remaining nodes are precolored, i.e., for them only
one of the three facts above is in DB.

Now consider the query q ← edge(X,Y ), colored(X, C), colored(Y, C). As easily seen, it
evaluates to true on DB iff there is no legal 3-coloring for the graph in DB.

Figure 8.6.(a) reports the execution time for deriving certain answers by looking at the whole
database DB and for computing the repairs only of the affected part of DB, varying the size of
DB. Obviously, our approach requires some further effort in the recombination: Figure 8.6.(b)
reports the time needed for the whole process (almost 10 seconds).

We stress that the results can be significantly improved since our implementation is not
optimized. Nonetheless, its advantage over the standard technique is evident.
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8.5 Discussion

In this chapter, we have described an approach to speed up the evaluation of non-monotonic logic
programs modelling query answering in data integration systems. To this end, we have provided
theoretical results that allow for repairing an inconsistent retrieved database by localizing the
computation of repairs to its affected part. As we have shown, for important classes of constraints
such as key constraints, functional dependencies, and exclusion dependencies, repairs can be
restricted to the facts in the database violating the constraints, which may be only a small
fragment of a large database. Furthermore, we have developed a technique for recombining such
repairs to provide answers for user queries. Finally, we have experimented the viability of our
approach, considering two different scenarios.

Notice that our method, which is built upon repair by selection in terms of a particular
preference ordering, is based on abstract properties and may be adapted to other logic pro-
gramming systems as well. Furthermore, it can be generalized to other preference based re-
pair semantics for an inconsistent database DB. In particular, all repair semantics in which
4(R,DB) ⊂ 4(R′,DB), i.e., R is closer to database DB than R′ in terms of symmetric dif-
ference, implies that R is preferred to R′ can be dealt with using our method. For instance,
cardinality-based and weighted-based repair semantics satisfy this non-redundancy condition.

Notice that the logic formalization of LAV systems proposed in [13, 16] might be captured
by our logic framework under suitable adaptations. Actually, given a source extension, several
different ways of populating the global schema according to a LAV mapping may exist, and the
notion of repair has to take into account a set of such global database instances. Nonetheless,
analogously to the GAV framework addressed in this chapter, in [13, 16] the repairs are computed
from the stable models of a suitable logic program.

We point out that the optimization technique provided in this chapter perfectly applies to the
approach to query answering in the presence of constraints in GAV integration systems under the
loosely-sound semantics described in Chapter 6. Indeed, as shown in Section 8.1.1, compiling the
IDs into the user query, which is suitably rewritten by means of the ID-rewrite algorithm, allows
us to carry out query answering considering only KDs and EDs, which are universally quantified
constraints, as the ones addressed in this chapter. Furthermore, in such a case, loosely-sound
semantics and loosely-exact semantics coincide, and the domain of discourse adopted can be
indifferently considered finite of infinite.
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Chapter 9

The DIS@DIS System

In this chapter we present DIS@DIS1, a state-of-the-art prototype for semantic data integration,
that is capable of reasoning about integrity constraints in order to improve query answering. The
problem of designing effective tools for data integration has been addressed by several research
and development projects in the last years [49, 42, 93, 138, 161, 154, 100, 84, 12], some of which
have been described in Section 4. As already noticed, most of such systems, and in particular
those considering the GAV framework, do not allow for the specification of integrity constraints
on the global schema modelling the integration application, or do not properly take into account
the presence of such constraints for query answering. Moreover, there are no systems that provide
support for managing data inconsistency and incompleteness with respect to such constraints,
for both the GAV and the LAV scenario.

As widely discussed in this thesis, since the global schema is a representation of the domain
of interest of integration applications, integrity constraints should be allowed on it in order
to enhance its expressiveness, thus improving its capability of representing the real world. To
this aim, DIS@DIS enables for the design of a relational global schema with several forms of
constraints, namely, key, inclusion, exclusion dependencies. Furthermore, DIS@DIS is able to
properly deal with inconsistent and incomplete data.

More specifically, to deal with incompleteness, DIS@DIS adopts the sound semantics, that we
have introduced in Section 3.2, in which global databases constructed according to the mapping
are interpreted as subsets of the databases that satisfy the global schema. Query processing
under the sound semantics provides answers that are logical consequence of the global schema
and the information available at the sources.

Furthermore, in order to also cope with inconsistency w.r.t. KDs and EDs, the system resorts
to the loosely-sound semantics described in Section 3.3, thus allowing for minimal repairs of the
sound global database instances. Query processing under the loosely-sound semantics allows for
computation of consistent answers from incomplete and inconsistent data.

With regard to the mapping specification, DIS@DIS allows for the design of both GAV and
LAV applications. According to the integration framework described in Chapter 3, the language

1The name of the system is an acronym for Data Integration System at the Dipartimento di Informatica e

Sistemistica
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Figure 9.1: Architecture of the system

adopted for queries in the GAV mappings is non-recursive Datalog¬, whereas for LAV mappings
we consider queries that are conjunctive queries. Notice that the above languages correspond to
fragments of SQL queries (aggregate operations or subqueries are not allowed).

In the current version of the system, query processing under the loosely-sound semantics
is supplied for GAV specifications, whereas for LAV specifications only query processing under
the strictly-sound semantics is allowed. More specifically, for GAV, DIS@DIS implements the
algorithms described in Chapter 6 for query processing in the presence of IDs, KDs and EDs.
For LAV, DIS@DIS implements the off-line compiling technique, described in Section 7.2.1, that
transforms a LAV system specification into a query-equivalent GAV one, in such a way that the
query processing techniques defined for GAV under the strictly-sound semantics could be applied
also in the LAV case, as described in Section 7.2.2. Notice that in such case, KDs on the global
schema are not allowed.

As already said in Chapters 6 and 7, query processing in DIS@DIS is essentially carried
out at the intensional level, since both the treatment of integrity constraints and the off-line
compilation from LAV to GAV are done at the query and schema level. This strongly augments
the feasibility of the approach, which is also witnessed by first encouraging experiments, and
allows for interesting optimizations.
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9.1 System Architecture

In this section we briefly present the architecture of DIS@DIS. The high-level architecture of the
system is displayed in Figure 9.1.

In the system, the Meta-Data Repository stores an internal representation of the intensional
information, i.e., the system specification and the user queries, while the retrieved global database
(RGDB) is an internal relational database that, based on the data at the sources, materializes
the relevant portion of the global relations for answering the query. Also, a User Interface takes
care of the interaction with the system user.

The system architecture comprises five main modules:

1. the System Processor elaborates and reasons about the specification of the data integration
system;

2. the Query Processor has the task of elaborating the user queries, according to IDs expressed
on the global schema;

3. the Source Processor reformulates the query on the global schema taken as input from the
Query Processor in terms of a query over the sources. It also executes the reformulated
query, by retrieving at the sources the data relevant for the query, and stores such data in
the RGDB. In this module, source wrappers provide a relational view of the sources, called
source schema;

4. the Consistency Processor is activated only when IDs or EDs are defined on the global
schema. It detects the situations in which data stored in the retrieved global database are
not consistent with the key dependencies and the exclusion dependencies and, if needed,
computes a further reformulation of the query. Access to RGDB is through the Global
Query Processor;

5. the Global Query Processor evaluates the reformulated query over the RGDB.

Basically, there are two kinds of input to the system, i.e., (i) the data integration system
specification, constituted by the global schema with integrity constraints, the source schema and
the mapping, and (ii) a user query, which is a UCQ expressed over the global schema. The
system output is the answer to the query. The following is a high-level view of the behaviour of
the system:

(i) When the data integration system specification is inserted or updated, the System Proces-
sor analyzes such a specification. Notice that all the tasks performed by the System Processor are
computed off-line, since all the computation is independent of the query that has to be processed.

(ii) When a query Q is issued by the user, the following steps are executed:

1. first, the Query Processor reformulates the query Q according to the inclusion dependencies
expressed over the global schema, thus obtaining a new query Q1;

2. then, the Source Processor, based on the query Q1, retrieves at the sources the portion of
the data that is relevant for the query2. In this way, an instance of the relations in the
global schema is created and materialized in the retrieved global database RGDB;

2Relevant data are computing according to Definition 8.2.1
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3. the RGDB is then analyzed by the Consistency Processor, which checks whether key de-
pendencies and exclusion dependencies expressed over the global schema are violated by
the data in the RGDB. In this case, it computes a further reformulation of the query Q1,
thus producing a new query Q2;

4. finally, the Global Query Processor evaluates the query Q2 with respect to the RGDB,
which corresponds to computing the answers to the initial query Q.

It is important to notice that the whole computation is “pushed up” as much as possible
at the intensional level. Indeed, in the whole Query Processor module and, partially, in the
Source Processor and Consistency Processor, the computation is performed at the intensional
level. Moreover, the system tries to minimize the access to the data sources and to retrieve the
minimal subset of data that are actually needed in order to answer the user query.

We point out that, in the current implementation, DIS@DIS is able to completely perform
all the above steps only for GAV system specifications. Indeed, it should be easy to see that, for
such systems, Q1 is actually the UCQ ΠID produced by the algorithm ID-rewrite described in
Section 6.3.1, whereas Q2 coincides with the Datalog¬ program ΠID ∪ ∪ΠKD ∪ ΠED described
in section 6.4, which provides a suitable encoding of the EDs and KDs under the looesly-sound
semantics. Notice that ΠMD is not needed here, since the computation of the RGDB has been
already performed at step 2.

Conversely, for LAV system specifications, whereas step 1, 2 and 4 are are entirely executed, at
step 3 the reformulation of Q1 into Q2 is never computed. Indeed, this part of the methodology is
concerned with query answering in LAV under the loosely-sound semantics, which is a research
topic currently under investigation. Furthermore, we underline that query rewriting for LAV
systems needs a preliminary processing which compile the LAV system into a query-equivalent
GAV one, as described in Section 7.2.1. Hence query reformulation at step 2 is actually carried
out by taking into account also the new global relations and IDs introduced in the transformation
phase. According to Theorem 7.2.2 and the discussion in Section 7.2.3, such a technique can be
applied only in the absence of KDs on the global schema. In the presence of such dependencies,
we have to resort to a different query answering procedure that relies on the construction of the
retrieved global database in LAV making use of the KD-rule, as described in Section 7.1.1.
Such a technique is currently under implementation.

9.2 System Description

In this section we briefly describe the main components of the system.

9.2.1 System Processor

System Analyzer This module verifies the properties of the data integration system. In partic-
ular: (i) it verifies whether the system is non-key-conflicting; (ii) based on the constraints and
the mapping, it establishes whether two global relations in a GAV or LAV system are equivalent
or contained one into the other.
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As concerns the first of the above points, in Chapter 5 it has been shown that, under the
loosely-sound semantics (which is the one adopted in our system), the problem of query an-
swering under arbitrary KDs and IDs is in general undecidable: however, it is decidable if the
integrity constraints in the global schema belong to the class of non-key-conflicting dependen-
cies. Indeed, if KDs and IDs are non-key-conflicting, they can be processed separately (in this
case we say that the system is separable). Thus, the System Analyzer performs a separability
check over the integrity constraints that are stored in the Meta-Data Repository; if the system
is not separable, the analyzer provides the designer with a report of the constraints that are not
non-key-conflicting.

LAV-GAV Compiler The task of the LAV-GAV Compiler is to transform a specification of a
LAV system into a specification of GAV system, according to the rules of Section 7.2.1, which
is equivalent to the initial one w.r.t. query processing. The transformation is performed in a
purely intensional fashion, and only once for any integration system specification (unless the
specification changes). Therefore, we can see this process as a “compilation” of a LAV system
into an equivalent GAV one.

Both the LAV system specification that is to be transformed, and the GAV system obtained
from the compilation are stored in Meta-Data repository.

ID Expander In order to speed up the query reformulation phase performed by the ID Refor-
mulator, we process the inclusion dependencies by computing the closure of them w.r.t. implica-
tion [2]. We will explain later how the computation of the closure of IDs is useful to make query
rewriting process more systematic and efficient. The computational cost of this calculation is, in
the worst case, exponential in the size of the initial set of IDs; however, since this operation is
to be performed ony once, i.e. when the specification of a system is loaded, such an exponential
blow-up is of not critical from a practical point of view. In order to further optimize the compu-
tation of the closure, indexing structures are used: their introduction allows us to avoid useless
application on the implication rule. The process terminates when no new IDs can be added.

ED Expander The ED Expander has the task of inferring new exclusion dependencies starting
from the given set of EDs and IDs. Such dependencies are obtained through a recursive inference
procedure that computes the closure of the initial set of EDs w.r.t. implication by EDs and IDs,
as described in Section 5.2.1. Such a process is necessary to efficiently deal with inconsistent
data, since it reduces the computational cost of the operations performed by the Consistency
Processor.

9.2.2 Query Processor

ID Reformulator This module implements the algorithm ID-rewrite, described in Section 6.3.1,
by producing a rewriting of any user query posed to the system according to the IDs on the
global schema.

The rewriting is performed by iteratively applying to the conjunctive queries in the user query
the functions reduce and atom-rewrite, that correspond to steps (a) and (b) of the algorithm
ID-rewrite: the former applies unification, producing rewritings that are shorter than the original
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query; the latter takes inclusion dependencies into account, encoding them into the rewriting.
Considering that the inclusion set has been previously closed w.r.t. logical implication by the

ID Expander, the algorithm implemented by the ID Reformulator is actually an optimization of
ID-rewrite, and it can be summarized as follows: conjunctive queries are grouped in subsets, sorted
according to the number of atoms present in the body; then, we apply reduce and atom-rewrite

in all possible ways, proceeding from the query set with maximum length to shorter queries.
Different optimizations are implemented in the ID Reformulator. The most important regards
the unification process: since the algorithm halts when no new query can be generated, the time
needed to compare queries becomes a crucial issue in order to guarantee a reasonable computation
time. In particular, the internal representation of conjunctive queries in the ID Reformulator
allow us to compare queries by a straightforward string comparison; the first tests performed
on the system have shown that this approach significantly improves the overall efficiency of the
module.

Query Optimizer The Query Optimizer performs an optimization of the rewritten query ob-
tained by the ID Reformulator. In particular, it can check a priori whether a query will not
produce any result; such queries are immediately excluded. This module is currently under
development.

9.2.3 Source Processor

Unfolder This module unfolds the query produced by the ID Reformulator according to the
mapping assertions, i.e., expresses the query in terms of the source relations. To this aim, it is
necessary to apply a unification mechanism. Such a module is used to provide answers to queries
in the cases in which no constraints or only IDs are specified on the global schema of either GAV
or LAV systems. Indeed, in such cases there is non need ot chack the consistency w.r.t. EDs
and KDs, and we can simply unfold the query produced by the ID reformulator (or the original
query in the absence of IDs), in order to obtain the certain answers. In the presence of also EDs
or KDs, such a module is exploited for computing the RGDB, as shown below.

RGDB Generator The RGDB Generator builds the RGDB from the system specification, the
user query, and the source data. For GAV systems, the mapping provides a procedural method
to access the sources, thus the generator invokes the unfolder over the mapping queries that are
relevant for the user query, and then uses the obtained rewritings to query the sources, thus
retrieving the relevant data for answering the query; such data are then stored in the RGDB.
For LAV systems, the generator builds the RGDB by extracting data from the sources tuple
by tuple, and suitably adding tuples in the global relations; during this process, fresh constants
are in general introduced, which, according to the key dependencies, may need to be changed
into constants of the source database or into other fresh constants. The construction of the
retrieved global database in LAV in the presence of KDs is a system capability currently under
implementation.

Source Wrappers Such modules provide a relational interface to data sources, which in general
may be heterogeneous and non-relational. Also this module is currently under development.
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9.2.4 Consistency Processor

Consistency Checker The Consistency Checker analyzes the RGDB in order to detect the
presence of violations of key and exclusion dependencies over the global schema. In such a case,
the KD-ED Reformulator is invoked.

KD-ED Reformulator This module is activated only if the Consistency Checker detects in-
consistencies with respect to KDs and EDs expressed over the global schema. In such a case,
the query is further reformulated in Datalog¬, according to the rules presented in Section 6.4.
As explained in that section, such a program encodes at the intensional level the repairing of
the RGDB according to the loosely-sound semantics. Such a rewriting can thus be seen as an
alternative to using data cleaning techniques over the data retrieved at the sources.

KD-ED Optimizer This module has the task of optimizing the rewriting produced by the
KD-ED Reformulator. Indeed, it restricts the rewritten query by eliminating those parts of the
query that cannot actually contribute to the answer, by checking a priori whether a subquery
will not produce any result. This is done according to the pruning step of our optimization
method described in Section 8.2.1. This module is currently under development.

9.2.5 Global Query Processor

The task of this module is to evaluate the perfect rewriting generated by the Query Processor
and the Consistency Processor over the RGDB. If the perfect rewriting is a Datalog query with
negation, then the evaluation is performed by the Datalog-n-Query Handler, that makes use of
the Disjunctive Datalog engine DLV [68], otherwise the query is a standard union of conjunc-
tive queries, therefore the perfect rewriting can be computed by the Global Query Evaluator
that translates the query in SQL and then passes this query to the DBMS (currently, MySQL)
that stores the RGDB. Notice that Datalog-n-Query Handler is in charge of also manage the
decomposition and recombination steps of the optimization technique described in Chapter 8.
The implementation of this technique is currently under development. We point out that the
experiments shown in Section 8.4 have been carried out outside the DIS@DIS system.

9.3 Discussion

To the best of our knowledge, DIS@DIS is the first system that enables query processing under
constraints in both LAV and GAV specifications and that is able to deal with incomplete and
inconsistent data. However, the main goal of the system is to experiment the effectiveness of
the intensional approach to query processing, widely discussed in this thesis. Indeed, pushing
up query processing as much as possible at the intensional level allows in principle to minimize
source accesses, which typically represent a bottleneck in data integration systems.

As shown in Section 9.2, query processing under the sound semantics relies on standard
relational database technology, whereas resorting to a Datalog¬ engine, which causes overhead
in computation, is required for answering queries under the loosely-sound semantics.
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Figure 9.2: User interface of the system

The system has been developed in Java. A limited version of the sys-
tem (and some integration scenarios) can be accessed on the WWW at the URL
http://www.dis.uniroma1.it/∼disatdis. A screenshot of the graphical user interface of
DIS@DIS is shown in Figure 9.2.



Chapter 10

Conclusions

In this thesis we have addressed data integration issues in the presence of incomplete and incon-
sistent data with respect to key, inclusion and exclusion dependencies specified on the relational
global schema of both LAV and GAV data integration systems. More specifically, we have stud-
ied the problem of query answering in this setting, for different combinations of such constraints,
under different semantics. First of all, we have investigated query answering under the sound
semantics, and we have shown that when IDs and KDs are issued on the global schema, the
problem in the general case is undecidable. Then, we have provided the maximum class of IDs
for which the problem is decidable in the presence of KDs, i.e., the class of NKCIDs. We have
also shown that NKCIDs and KDs can be processed separately in order to provide certain an-
swers to user queries. Interestingly, the same property holds also in the presence of EDs on the
global schema: in this case this means that we can solve query answering by separately taking
into account the set of IDs and the set of KDs and EDs that are logical consequences of the IDs
and the original EDs. Then, we have addressed query answering under the loosely-sound and the
loosely-exact semantics, two suitable relaxations of the sound and the exact semantics that allow
us to properly deal with inconsistent data. We have shown that query answering is undecidable
for general IDs and KDs under these two loose semantics, and that for NKC relational schemas
the separation property of query answering holds in such cases.

Then, we have provided an in-depth study of the computational complexity of the problem
under these three semantics. Table 5.1 of Chapter 5 summarizes the results for query answering
under constraints given in these thesis. We point out that such results, that refer to the context
of a single relational schema, have been completely extended in the thesis to the GAV integration
framework, and partially to the LAV framework. In particular, we have not provided algorithms
for query answering in LAV under the loose semantics, but in this framework we have defined
methods for query answering under the sound semantics. Then we have concentrated on the
problem of query rewriting both in LAV and in GAV. In particular, we have provided effective
query rewriting techniques in GAV under the loosely-sound semantics in the presence of IDs,
KDs and EDs, and in LAV under the sound semantics in the presence of IDs and EDs. In order
to speed-up the evaluation of logic programs produced by our techniques for query rewriting
under the loosely-sound semantics, we have described an optimization method that allows for
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efficient query answering in the presence of inconsistent data. Actually, Such a method applies
also to the class of universally quantified constraints. Finally, we have presented the DIS@DIS
system, a data integration prototype incorporating the techniques described in the thesis.

The aim of our ongoing and future research is to investigate the integration settings that we
have not completely analyzed in this thesis. In the following we summarize some ongoing works
and possible future research directions.

• As for the LAV framework, we are currently studying query answering under the loosely-
sound semantics, as well as query rewriting in the presence of IDs. As said in Section 7.2.3,
the need of recursion in the latter case significantly complicates the problem with respect
to the setting in which IDs and EDs are specified on the global schema.

• With respect to the study on the decidability of query answering under constraints, we are
analyzing the interaction between functional and inclusion dependencies, which represents
an interesting and challenging theoretical problem. Indeed, even if it is well-known that the
query answering is undecidable in the general case, it is still not clear which are the maximal
classes of dependencies for which the problem is decidable. Our first studies on this subject
show that in this case, differently from the case of IDs and KDs, “non-separable” classes
exist that are still decidable.

• Connected to the above problem, is the study of query answering under the constraints
imposed by the Entity-Relationship (ER) model. Since ER schemas represent simple forms
of ontologies, providing query answering techniques in this setting means shedding light
on the problem of integration of ontologies, to which much attention has been recently
devoted. We point out that IDs, KDs, and EDs studied in this thesis represent the core
constraint language of the ER model.

• We are currently working on the DIS@DIS systems in order to (i) provide facilities for query
answering under the loosely-sound semantics for LAV mappings, (ii) allow for GLAV map-
pings (a generalized form of mapping that comprises GAV and LAV as special cases);(iii)
develop optimization techniques to further minimize access to the sources and use of the
Datalog¬ engine; (iv) finalize the components currently under development. In this respect,
an aspect deserving particular attention is the interface towards the sources: providing sup-
port for the design of ad-hoc source wrappers, possibly equipped with proper data cleaning
facilities are some of our priorities.

• Finally, we aim at extending the framework to allow for the definition of suitable parameters
that indicate the reliability and the “confidence” of a source with respect to the information
that it exports. This should allow us to indicate, for example, different levels for the quality
of data in different sources. Such a specification may lead us to not only consider certain
answers to queries, but also answers of different levels of reliability.
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