
UNIVERSITÀ DEGLI STUDI DI ROMA “L A SAPIENZA”

DOTTORATO DI RICERCA IN INGEGNERIA INFORMATICA

XVII C ICLO – 2005

Scheduling with Uncertainty
A Proactive Approach using Partial Order Schedules

Nicola Policella

UNIVERSITÀ DEGLI STUDI DI ROMA “L A SAPIENZA”

DOTTORATO DI RICERCA IN INGEGNERIA INFORMATICA

XVII C ICLO - 2005

Nicola Policella

Scheduling with Uncertainty
A Proactive Approach using Partial Order Schedules

Thesis Committee

Prof. Amedeo Cesta (Advisor)
Prof. Umberto Nanni
Prof. Andrea Schaerf
Prof. Marco Schaerf

Reviewers

Dr. Claude Le Pape
Prof. Kenneth N. McKay
Prof. Stephen F. Smith

AUTHOR’ S ADDRESS:
Nicola Policella
Dipartimento di Informatica e Sistemistica “Antonio Ruberti”
Universit̀a degli Studi di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy
E-MAIL : policella@dis.uniroma1.it
WWW: http://pst.istc.cnr.it/ ∼nicola/

Copyright c© 2005
Nicola Policella

To Angelo, Lina, Nicola, and Rosina

Acknowledgment

There are many people whose support and guidance have helped to make this disser-
tation a reality. I would like to acknowledge as many of them as possible here.

First, I would like to thank my advisor, Amedeo Cesta. None of this would
have been possible without his guidance and support. His insights into the research
process, his faith in my abilities, and his friendship enabled me to complete this work.

Next, I would like to express my gratitude to the members of the Planning and
Scheduling Team for discussions that have lead my thoughts in directions that other-
wise may not have been considered fully. I would like to specifically acknowledge:
Gabriella Cortellessa, Simone Fratini, Angelo Oddi, Marcelo Oglietti, Federico Pec-
ora, and Riccardo Rasconi.

Thanks to Steve Smith and all the members of the ICL laboratory. They hosted me
for more than one year providing me a stimulating environment that has fundamental
merits in the outcome of my dissertation.

Thanks also go to the members of my thesis committee, Umberto Nanni, Andrea,
and Marco Schaerf, and the additional reviewers, Claude Le Pape and Ken McKay.
Their advice and guidance throughout my thesis research have been immeasurable.

Special thanks go to my family for its financial, intellectual and emotional support
throughout this long process. Last but not least, I would like to thank my girlfriend,
Fausta, for her love, support, and encouragement. I could not have done this without
her.

v

Abstract

Over the last decades, many approaches have been developed for application to a va-
riety of different scheduling problems. Most of these techniques assume erroneously
a complete information about the scheduling problem to be solved. Moreover a fur-
ther limitation arises from the assumption that the schedule will be executed in a
well-known environment. Unfortunately, the real word is not so predictable: ma-
chines break down, activities last longer than expected and further activities can be
inserted into the problem. This creates the need to study specific techniques to face
these aspects.

The aim of this dissertation is the production of robust schedules, i.e., solutions
that are able to absorb scheduling uncertainty during their execution. In particular
we consider the Resource Constrained Project Scheduling Problem with Generalized
Precedence Relations (RCPSP/max) as a reference. For this problem we give a def-
inition of schedule robustness in terms of identification of aPartial Order Schedule
(POS). A POS is defined as a set of solutions for the scheduling problem that can
be compactly represented within a temporal graph. This implicit representation pro-
vides both a means to promptly answer to temporal changes (e.g. the durations of the
activities change or the start-time of the activities are delayed) and a base to hedge
against further changes (e.g., new activities to serve or resource capacity variations).

After defining thePOS, we investigate how to generate flexible schedules with
good robustness properties. In particular, two main solving methodologies are found.
First, a least commitment methodology in which computed bounds on cumulative
resource usage are used to identify potential resource conflicts, and progressively
winnows the total set of temporally feasible solutions into a smaller set of resource
feasible solutions by resolving detected conflicts.

A different, less intuitive, approach toPOS synthesis is based on a goal separa-
tion and calledSolve-and-Robustify: under this schema, a feasible fixed-time sched-
ule is first generated in stage one, and then, in the second stage, the initial solution is
transformed into a temporally flexible schedule. In particular we analyze a heuristic
technique, calledchaining, for obtainingPOSs starting from a fixed-time schedule
obtained with one of the current available techniques.

vii

Contents

Acknowledgment v

Abstract viii

Contents xi

1 Introduction 1
1.1 Project Scheduling. 2
1.2 Scheduling with Uncertainty. 3
1.3 Organization of the Thesis. 5
1.4 Contributions . 6

2 Scheduling with Uncertainty: Current Research Scenario 9
2.1 From Scheduling Theory to Real Applications. 9
2.2 A classification of current trends. 11
2.3 Analyzing Different Approaches. 14

2.3.1 Synthesis of Robust Schedules. 14
2.3.2 The Rescheduling Problem. 18
2.3.3 Partially Defined Schedules. 21
2.3.4 Managing Contingencies. 23
2.3.5 Further Relevant Research. 24
2.3.6 Execution of temporal plans. 27

2.4 Further Remarks on Current Scenario. 28
2.4.1 The Complexity of Scheduling Problems. 28
2.4.2 The Necessity of Baseline Schedules. 29

2.5 Conclusions. 29

3 Robustness through Flexible Schedules 31
3.1 Introduction. 31

ix

3.2 Robustness. 33
3.3 The Reference Scheduling Problem: RCPSP/max. 35
3.4 Flexible Solutions. 37

3.4.1 Partial Order Schedule. 39
3.5 Metrics to Compare Partial Order Schedules. 43
3.6 Conclusions. 47

4 Constraint-based Scheduling 49
4.1 Constraint Satisfaction Problem. 50

4.1.1 Partial Order Schedules: why a constraint-based approach?. 52
4.2 Scheduling + CSP = Constraint-based Scheduling. 53
4.3 Precedence Constraint Posting. 55

4.3.1 The Core Constraint-based Scheduling Framework. 58
4.4 Summary . 62

5 A Least Commitment Approach 63
5.1 Introduction. 63
5.2 Compute Resource Bounds. 65

5.2.1 Resource Envelopes. 67
5.3 Boosting the Resource Envelope Computation. 70

5.3.1 Other incremental approaches in the literature. 75
5.4 EBA: the resource Envelope Based Algorithm. 76

5.4.1 Detecting peaks on resource envelopes. 76
5.4.2 Results . 79
5.4.3 A note on envelope efficiency. 81

5.5 Increasing the efficiency ofEBA 82
5.5.1 Constraint Propagation. 84
5.5.2 An Iterative Sampling Procedure. 86
5.5.3 Results . 87

5.6 Conclusions. 90

6 Solve & Robustify 91
6.1 Introduction. 91
6.2 Coupling a solver with a robustify step. 94

6.2.1 The Earliest Start Time Algorithm -ESTA 94
6.2.2 Producing a Partial Order Schedule with Chaining. 95
6.2.3 TheESTAC algorithm: Results. 98

6.3 Partial order schedules in chaining form. 100
6.3.1 Remarks on the chaining method. 102

6.4 Increasing Robustness Features through Iterative Chaining. 104
6.4.1 Generating different Partial Order Schedules. 105

6.4.2 Results . 108
6.5 Investigating the use of different fixed-time solutions. 110

6.5.1 The Iterative Sampling Procedure. 111
6.5.2 The Grasp-Chaining. 112
6.5.3 Results . 113

6.6 Makespan versus robustness. 115
6.7 Conclusions. 117

7 Discussion and Final Analysis 119
7.1 Stability Analysis. 119
7.2 A large scale experimentation. 122
7.3 Thesis work: limitations and open issues. 124

7.3.1 Partial Order Schedules and their applicability. 124
7.3.2 Methods to produce Partial Order Schedules. 126

8 Conclusions 129
8.1 Contributions . 130

8.1.1 Analysis and Classification of the Current Research Scenario130
8.1.2 Formalization of a Flexible Approach: the Partial Order Sched-

ule . 131
8.1.3 Flexible Solutions through Least Commitment. 132
8.1.4 Formalization of the Solve & Robustify method. 133

8.2 Future Work. 134
8.3 Conclusion . 135

Bibliography 137

Chapter 1

Introduction

This thesis addresses the broad question of how to build schedules that are robust
in the face of a dynamic execution environment. This question is of considerable
practical importance, as a major obstacle to the use of schedules in practice is their
brittleness when activities can not be executed as planned. Different scheduling tech-
niques have been developed to analyze scheduling problems and produce high qual-
ity solutions. Unfortunately, in the real world a high degree of uncertainty is present;
therefore it is hard to have an exact estimation of the evolution of the world. In the
case of a scheduling problem, the latter point may represent a serious restriction to
the application of state-of-the-art schedulers. In fact, classical approaches both in
Artificial Intelligence and Operational Research aim at optimizing a given objective
function. These approaches, and the solutions they find, are based upon the hypoth-
esis that it is possible to determinea priori all the aspects of the problem. For this
reason, efforts toward the optimization of classical objective functions might turn out
to be useless once no-deterministic problems are considered.

The main thesis of this dissertation is that flexible solutions turn out to be useful in
hedging against uncertainty. Flexible schedules are solutions that are able to provide
a fast answer to external and/or internal changes (i.e., changes that stem from the
executional environment or problem updates). This approach is specifically tailored
for problems for which the execution is uncontrollable a priori. A flexible solution
will retain a set of solutions to answer to the different contingencies. Of course, to
guarantee fast recovery during execution, it is necessary to go beyond this definition
but also include mechanisms which will guide from one solution to another when the
current solution is no longer consistent.

1

2 1. Introduction

1.1 Project Scheduling

The project scheduling problem is defined in literature as the assignment of start and
end times to a set of tasks (or actions), which are generally constrained among each
other. Constraints are typically either time constraints or resource constraints. Coor-
dination of production in a factory, management of space missions, and transportation
scheduling to support crisis management are representative examples. However, fea-
sibility alone is seldom the goal of scheduling: in fact usually the scheduling action
has to be performed together with the satisfaction of a set of objectives and prefer-
ences. Therefore, the scheduling problem is primarily concerned with figuring out
whentasks should be executed so that the final solution guarantees “good” perfor-
mance through the optimization of given objective functions.

Real-life scheduling problems, like those in industrial applications, typically in-
volve constraints that are often wide ranging and complex in nature. In manufacturing
production environments for example, resource allocation decisions must be consis-
tent with capacity limitations, machine setup requirements, etc. Similarly, production
activities have associated durations and precedence constraints, and may require the
availability of multiple resources (e.g., machines, operators, tooling, raw materials).
For these reasons, scheduling problems are generally very complex and it can be
shown that many of them are NP-hard. For the purpose of this dissertation, we can
recognize the scheduling problem as composed of the following elements:

Activities: A = {a1, ..., an} is the set containing the jobs, operations or tasks. All
the tasks have to be executed in order for the schedule to be completed. Every
activity is characterized by a processing timepi.

Resources:R = {r1, ..., rm} is the set containing the resources required to exe-
cute the activities. Execution of each activityai can require an amountreqik

of resourcerk during its processing. There are different kinds of resources:
disjunctive or cumulative, renewable or consumable, among others1.

Constraints: The constraints are rules or restrictions that limit the possible alloca-
tions of the activities. They can be divided into two types: (1) theresource
constraintslimit the maximum capacity of each resource. For example, there
may only be a certain number of machines or people available to work on some
activities at any given time. (2) thetemporal constraintsimpose limitations on
the times at which activities can be scheduled. A unary constraint restricts a
single activity, usually with a release time or a deadline. A binary constraint
is imposed between to activities, for instance in order to bind the instant of
occurrence of their start times.

1Along the dissertation we will consider only cumulative, renewable, resources: when an activity

finishes, the resources it used become available for other activities. Common examples of renewable

resources include machines, equipment and people.

1.2. Scheduling with Uncertainty 3

(a) Initial allocation of three ac-

tivities on the same resource

(b) A resource conflict arises

when the first, yellow, activity

lasts longer than expected dur-

ing the execution

Figure 1.1:Brittleness of the classical fixed-time schedules

Because it has so many real-world applications, the scheduling problems has been
widely studied by many scientific communities, such as the Artificial Intelligence
(AI), Management Science (MS), and Operations Research (OR) community. Sys-
tematic approaches search for optimal schedules. Although they are able to achieve
the highest solution quality, they rarely scale well and are limited to problems of lim-
ited size. Heuristic algorithms, instead, sacrifice optimality to find good solutions in
a reasonable amount of time. Finally, local search is a heuristic approach that im-
proves solutions by iteratively considering their “neighborhood” in the search space
to obtain a better solution.

Approaches to project scheduling can be also subdivided in constructive and iter-
ative repair. Iterative repair methods differ from the constructive methods in the fact
that they begin with a first complete, possibly flawed, solution (or set of assignments)
and then they iteratively modify (or repair) the solution to obtain a consistent sched-
ule. Constructive scheduling methods, instead, incrementally extend a valid partial
schedule (in terms of assigned activities) until a solution is achieved2.

1.2 Scheduling with Uncertainty

The main motivation behind the work described in this dissertation stems from the
limitation of classical scheduling approaches. In fact, the usefulness of schedules in
most practical scheduling domains is limited by their brittleness. Though a schedule
offers the potential for a more optimized execution than would otherwise be obtained,
it must in fact be executed as planned to achieve this potential. In practice this is gen-
erally made difficult by a dynamic execution environment, where unforeseen events
quickly invalidate the schedule’s predictive assumptions and bring into question the
continuing validity of the schedules’s prescribed actions. The lifetime of a schedule
tends to be very short, and hence its optimizing advantages are generally not realized.
For instance let us consider the example in Fig.1.1. The figure shows the allocation
of three different activities on the same machine. The solution associates exact time

2Of course both the methods can require backtracking.

4 1. Introduction

(a) Fixed-time schedule: each

activity is anchored to a precise

start time.

(b) Partial Order Schedule

(POS): each activity is free

to be allocated in the interval

defined by the temporal graph.

Figure 1.2:Partial order schedules vs. fixed-time solutions

instants in which the activities have to start and end. Even though this kind of sched-
ule represents a classical solution for a scheduling problem, it is very brittle in case
the definition of the problems change during the execution. In Fig.1.1(b)we have
that if the first activity lasts more than expected this will produce a conflict in the
usage of the machine requiring a new solution.

As we have seen part of the schedule brittleness problem stems from reliance on
a classical, fixed-time formulation of the scheduling problem, which designates the
start and end times of activities as decision variables and requires specific assign-
ments to verify resource feasibility. By instead adopting a graph formulation of the
scheduling problem, wherein activities competing for the same resources are simply
ordered to establish resource feasibility, it is possible to produce schedules that re-
tain temporal flexibility where allowed by the problem constraints. In essence, such
a “flexible schedule” encapsulates a set of possible fixed-time schedules, and hence
is equipped to accommodate some amount of executional uncertainty. These are the
reasons behind the definition of thePartial Order Schedules, orPOS. This consists
in a set of feasible solutions for the scheduling problem that can be represented im-
plicitly by a temporal graph, that is, a graph in which any activity is associated to
a node and temporal constraints3 define the order in which these activities have to
be executed. It is worth noting that in case of changes of temporal aspects of the
problem, like activity durations or release times, this representation allows to move
from the current, flawed, solution to a new, consistent, one by simply propagating the
change over the temporal graph. And this is possible with polynomial algorithms (see
for instance[Dechteret al., 1991]). This turns out to be a relevant property because
it guarantees a fast answer to unforeseen events.

To generate partial order schedules in this dissertation we describe two methods
both based on theConstraint Satisfaction Problem(CSP) paradigm. This has been
chosen because it allows to model scheduling problem with complex constraints and

3Temporal constraints are binary constraints, that is constraints defined on at most two variables

(nodes).

1.3. Organization of the Thesis 5

because a consistent amount of efficient solving algorithms has been described in the
literature (see for instance[Baptisteet al., 2001]). Constraint satisfaction and propa-
gation rules are successfully used to model, solve and reason about many classes of
problems such as scheduling, temporal reasoning, resource allocation, network op-
timization and graphical interfaces. The first approach implemented consists in an
iterative repair method that at each step of the solving process considers the set of
all the possible temporal solutions and analyzes this set by computing resource usage
bounds (these bounds are obtained using the resource envelope concept introduced
in [Muscettola, 2002]). Therefore the current situation will be repaired until a partial
order schedules is achieved.

A second, less intuitive approach to obtain flexible solutions is based on a two
step procedure. In the first stage, a classical fixed-time schedule is searched for.
Hence this solution is used to obtain aPOS via method called chaining4. Essentially,
the approach exploits the idea of splitting the solving phase from the robustifying
step. In the remainder we also refer to this approach as Solve & Robustify.

Along the dissertation we will describe different implementations of the two ap-
proaches from simple greedy search to more intensive methods. To have an eval-
uation of the solutions generated we also have used different and complementary
measures (Sect.3.5). The results that have been obtained will show that the second
approach, even though it is not direct, dominates the first one. One of the reasons
for this behavior stems from the fact that the knowledge given by the resource usage
bounds can overwhelm the solving process, reducing the overall performance.

1.3 Organization of the Thesis

The dissertation is split in two parts. In the first part the problem of scheduling with
uncertainty is taken under consideration analyzing the current scenario and, therefore,
the partial order schedule,POS, is introduced. The second part instead aims at
describing different methods to build such flexible solutions.

More in detail the various issues are organized as follow: Chapter2 presents an
analysis of the current research scenario concerning the construction and the manage-
ment of scheduling problem solutions under uncertainty. Starting from two opposite
directions, on-line and off-line approaches, different methodologies are described and
faced off. The goal is to have not only a mere list of the different works but to rather
provide a critical analysis of the current state of the art.

Chapter3 concerns the description of the robustness topic and the introduction
of the flexible solution paradigm for scheduling problems. The aim of the solution
described is the generation of schedules that offer some robustness in the face of a
dynamic and uncertain execution environment. This gives rise to the introduction

4The method has been obtained by generalizing an initial proposal made in[Cestaet al., 1998].

6 1. Introduction

of partial order schedules. Moreover, along the chapter different properties of this
solution are described.

To provide a generic framework for generatingPOSs in Chapter4 a constraint-
based approach to solve a scheduling problem is described. As mentioned before the
framework is based on the Constraint Satisfaction Problem paradigm, CSP. Effec-
tive methodologies based on this paradigm, can be obtained for both modeling the
problem knowledge and guiding search to a solution.

In Chapter5 we define a first approach to produce Partial Order Schedules. The
method is based on a well-known paradigm calledLeast Commitment. The basic idea
behind the least commitment approach is to reduce as much as possible the commit-
ment implied by a decision. This is reflected in two aspects of the search strategy:
postponing all no-necessary decisions as much as the search procedure allows it, and
choosing the least commitment decision once one has to be taken.

In Chapter6 a different approach to build partial order schedules is introduced.
This method consists in building a flexible solution starting from a classical – fixed-
time – schedule, where a start time value for any activity is defined. We show how
starting from a single solution of the scheduling problem it is possible to apply a
procedure which generates a set of solutions in the form of a Partial Order Schedule
(POS). This approach has been motivated by the need to exploit the characteristics
of the fixed-time solutions in a flexible solution. In fact, maintaining the optimality
while a partial order schedule is generated, can yield an appealing result. We proved
that the procedure used to obtain a flexible solution maintains the original fixed-time
solution among the set of schedules described by thePOS. This assures that in the
best case possible (i.e., no disruptions happen) the characteristics of the fixed-time
solution are preserved.

Chapter7 provides a final analysis and discussion of the partial order schedule
paradigm as well as the approaches used to produce these solutions. Finally, in Chap-
ter8, we conclude summarizing the results obtained and discussing both the pros and
the cons of the various methods. Furthermore, we will suggest possible directions for
future work.

1.4 Contributions

The main contributions of this dissertation can be briefly summarized in the following
points:

- An analysis of current research contributions to scheduling with uncertainty.
Different state-of-the-art approaches are described. In particular we provide
a classification of the various approaches into a two-dimension framework,
on-line & off-line contributions, considering the various impact of the single
method on the two phases.

1.4. Contributions 7

- Definition of a Partial Order Schedule as an implicit representation for flexible
solutions. This kind of solution aims at satisfying the reactiveness requirement
during the execution of a schedule. In practice, through a quick reaction5 it is
possible to switch from one solution to an other.

Even though the reaction method present in partial order schedules is oriented
to give fast answers, the minimality of these repairs may also guarantee the
preservation of both the stability and the qualities of the initial solution.

- A Least Commitment Approach. Using a complete computation of the re-
source bounds this method represents the first least commitment approach
to scheduling problems. The resource usage bounds are computed integrat-
ing the resource envelope described in[Muscettola, 2002] into a constraint
based framework. The integration gives rise to both a method for analyzing
the bounds, and to techniques to compute them incrementally[Policellaet al.,
2004b] and then speed up the solving process.

- A two-step procedure: Solve and “Robustify”. This approach can be viewed
as orthogonal to the previous one. In fact, in this case the aim of producing
flexible solutions (i.e.,POS), is split into two consecutive steps. In a first step
a state-of-the-art scheduler is used to compute a feasible fixed-time solution.
Hence, the solution of the previous step is used as starting point to obtain a
partial order schedule.

5A polynomial algorithm with respect the number of activities in the schedule.

8 1. Introduction

Chapter 2

Scheduling with Uncertainty

Current Research Scenario

In the previous chapter we have described the project scheduling problem and the
issue of scheduling with uncertainty. This chapter pertains the analysis of the cur-
rent approaches present in literature concerning the construction and management
of scheduling problem solutions with uncertainty. The described methodologies are
classified according to different aspects: the efforts for producing baseline schedules
– essential in project scheduling – and the use of recovery techniques to keep up with
real-time execution. The goal is to have not only a mere list of different works, rather,
to provide a critical analysis of the current state of the art. The works presented do not
represent an exhaustive list; rather, they describe the realm of approaches to hedge
against scheduling uncertainty. Moreover, this classification is also essential to define
our approach, as presented in the remainder of this thesis.

2.1 From Scheduling Theory to Real Applications

The application of scheduling theory and scheduling systems to real domains remains
a fundamental issue. In a work of some years ago,[Mc Kay et al., 1988], the authors,
after conducting a field study on the job shop problem, have thoroughly ascertained
the extent of the actual impact of the application of scheduling theory and automated
system in real cases. They claim that the characteristics of real scheduling problems
can hardly be faced using a theoretical scheduling approach.

Indeed, there are a number of issues that can produce a big gap between theoreti-
cal studies and actual applications. One of these, concerns the lack of expressiveness
in the definition of the problem. The problem lies in the presence of several sources
of information that are often difficult to integrate in order to produce a unique and

9

10 2. Scheduling with Uncertainty: Current Research Scenario

complete set of data, due to the fact that the related information may be ambiguous,
outdated, incomplete. This aspect can produce scheduling solutions that do not take
into account the real nature of the problem, therefore generating schedules which are
in fact unusable for practical purposes.

Another aspect is the “inherent” instability of the scheduling problem – there is
always something happening unexpectedly in the shop, and the schedule is seldom
stable for longer than half an hour. Uncertainty in scheduling may arise from several
sources: machine breakdown, unforeseen arrival of new orders, changes in existing
orders, modification of release dates and deadlines, uncertainty in the duration of
activities, etc. Therefore, the dynamic nature of a real environment, does not allow to
take decisions based upon rigid assumptions about real world behavior. This implies
that in real environments it may not generally be useful to spend significant efforts
to produce optimal solutions, since the optimality is achieved only if the solution
can be executed as planned. On the contrary, a sub-optimal schedule that contains
some built-in flexibility for dealing with unforeseen events, might provide useful
characteristics for the execution.

A different aspect to observe is that in real applications, several tools are used
to achieve a solution for the scheduling problem. This provides a major flexibility
to the scheduler which for instance might be able to alter both the short-term and
the long term processing logic. Unfortunately these means are not formalized in the
scheduling theory, due also to their inherent complexity. Hence, they are not taken
into consideration during the scheduling resolution phase. This issue represents a
limit in the ability of tackling the problem. Moreover due to the great number of
available tools, human schedulers may be able to produce better solutions than an
automatic scheduler, increasing the skepticism toward scheduling theory techniques.

An important observation we can find in[Mc Kay et al., 1988], is that to bridge
this gap it is necessary that both scheduling theory and real domains make some
steps towards each other. On one hand, in real domain applications like factories, it is
necessary to reduce the variability of the different characteristics. On the other hand,
scheduling theory should extend its scheduling models to describe and understand
how schedulers actually behave.

In the last decades, several efforts have been made in scheduling theory and sys-
tems, toward different directions. Different systems have been actually applied to real
domains (i.e., ILOG Scheduler, CHIP), and most of the research work described so
far has been developed since then. Nonetheless, as it has been pointed out in[Mon-
tana, 2002; Smith, 2003], the scheduling problem is all but a solved problem, and
the research on the deployment of scheduling for real domain applications is still a
challenging and a relevant issue.

In this chapter, one of the most significant aspect among those creating the gap
between the scheduling theory and real world applications is taken into account:
scheduling with uncertainty. This involves the analysis of different dynamic issues
that can arise during the execution of a schedule, from the aspects related to the lack

2.2. A classification of current trends 11

in the definition of the problem, to the occurrence of unforeseen events.

2.2 A classification of current trends

In a scheduling problem the project activities are subject to precedence constraints
(which can represent causal ordering or technological needs) and resource constraints.
Most of research in project scheduling has concerned the study and the development
of procedures to generate optimal solutions assuming a deterministic environment
and complete information. However, during the actual execution, the components of
a scheduling problem have seldom a complete predictable behavior. Even though an
initial solution can be built on the basis of expected values and/or statistical analysis,
the evolution of the environment is hardly foreseeable and it is often necessary to
“fight” against adverse events.

For these reasons, in the last years, the literature regarding scheduling with un-
certainty is growing rapidly. Different contributions come from both Operations Re-
search, Management Science, and Artificial Intelligence. These techniques try to
answer the different needs which arise from different sectors, from space to indus-
trial applications. The different methodologies for scheduling with uncertainty can
be categorized as follows:

Synthesis of Robust solutions:the approaches that fall in this category exploit the
knowledge about possible and uncertain events in order to produce schedules
able to absorb some amount of execution unpredictability.

Partially Defined Schedules: these approaches usually define a partial order of the
scheduling tasks and use such a flexibility to hedge against unforeseen events.
In this case no uncertainty knowledge is used.

Rescheduling: in this case the current schedule is adjusted on-line, once an unex-
pected change does not allow the execution[Smith, 1994a; El Sakkout and
Wallace, 2000]. Among these approaches, it is possible to make a further
distinction between the methods which try to maintain the repair as local as
possible to preserve the stability of the solutions, and those which exploit the
possibility of a more global repair to obtain better quality schedules.

Dynamic Scheduling in this case there is no baseline schedule. At any time inter-
val during the execution, the next set of activities to be executed is selected
according to specific policies and/or priorities.

In order to organize the different approaches to scheduling with uncertainty in a log-
ical schema, we consider the two main phases of the schedule life cycle:

Off-line phase: the goal of this stage is to build an initial schedule that is the ref-
erence point for the next execution. In practice, here a predictive schedule is

12 2. Scheduling with Uncertainty: Current Research Scenario

local reactive

dynamic scheduling

on−line

o
ff

−
li

n
e

robust solutions

partial predictive schedule

global reactive

Figure 2.1: Classification of some approaches with respect to the off-line and the

on-line phases that are involved.

computed based on the current knowledge of the problem and of the possible
evolution of the execution.

On-line phase: The following step aims at managing the actual execution of the
problem while hedging against possible, unforeseen events which stem from
both the lack of sufficient information about the problem and the unpredictabil-
ity of the external environment.

Figure2.1shows a classification of different approaches according to the off-line
and on-line phases. Both axis represent a qualitative estimation of the efforts on such
directions rather than an exact quantitative value. It is possible to see that, as men-
tioned above, in this space the dynamic scheduling approach lies on the on-line axis
since it does not use any predictive solution (i.e. there is no off-line effort). Contin-
uing the description toward increasing values of the efforts in the off-line phase, we
find the reactive scheduling approaches. The two types of reactive approach, local
and global, require different on-line efforts since they involve respectively a subset of
activities of the whole problem. Next, we find the approaches that produce partially
defined solutions. In general their flexibility guarantees minor requirements during
execution than in the case of reactive approaches. The methods that require a more
expensive off-line phase (trying to assure a minor on-line impact) are those which
build robust solutions. In this case there is a greater effort during the off-line phase
to consider the knowledge about uncertainty in the solving process. We would also
like the reader to notice that no approach can lie on the off-line axis because, as men-
tioned before, this would require an ideal, unachievable, situation. Therefore, it is
possible to note that considering the two phases it is possible to classify the different
works. In fact there exist approaches that, though they present a predominant on-line
(off-line) aspect, they also present an off-line (on-line) phase. In other words, we

2.2. A classification of current trends 13

show that any approach can be represented by a combination of a construction and a
management phase, and moreover, by exploiting the ratio between the two steps it is
possible to have a classification of the different works.

A further aspect can be recognized considering solely the on-line phase. The goal
of this phase is to monitor the execution of the solution and in case of need, to recover
the situation. This can be modeled as aRescheduling problem. In fact, given a project
schedule (eventually empty), the on-line phase of a solution consists in managing
both the changes in the scheduled activities (resources) and the unforeseen events
that modify the environment. This implies the presence of an execution manager
with the task of monitoring the evolution of the schedule. The presence of such
an execution manager introduces a further classification of the different approaches
according to the characteristics of the possible repair actions during the on-line step.
The following items represent the two opposites of the spectrum:

- approaches which require an execution manager which is able to reason about
the changes and to synthesize an adjustment (new solution): it is the case of
both dynamic scheduling and reactive approaches.

- Approaches in which the execution manager only has to switch toward a new
“pre-defined” solution. The repairs in this case simply propagate the changes
over the current situation.

It is worth noting that in the first case the solution is updated during the actual exe-
cution, whereas in the second case, the solutions consists of a set of schedules which
can be represented implicitly.

To conclude, in the life cycle of a schedule (off-line, on-line phases), the exe-
cution phase is not only a consecutive step but mainly a complementary step to the
construction phase and vice versa. For this reason it is possible to find a dependency
between the predictive method chosen to construct a baseline schedule and the reac-
tive approach necessary to assure its execution. In general, there are different factors
which can suggest a more developed predictive phase or, on the contrary, a more
sophisticated on-line management:

- a major effort in the reactive method could be necessary because of the unfore-
seeable nature of the events;

- a major effort during the execution phase is also useful to avoid redundant
baseline schedules and to exploit the ability to find (sub-)optimal solutions;

- on the contrary, if the reaction methods are time consuming, it is preferable
to make a greater effort on the construction of the baseline schedule. This is
necessary in order to have a low impact during system reconfiguration.

For the above reasons, important aspects in the choice of the method are both the
complexity of the scheduling problem and the complexity of the execution manage-
ment of a schedule (i.e., the complexity of the rescheduling problem). For instance, a

14 2. Scheduling with Uncertainty: Current Research Scenario

completely reactive approach is more appropriate for problems where no constraints
exist between pairs of activities than for problems where time windows may define
complex relations among activities.

2.3 Analyzing Different Approaches

In this section different approaches to scheduling with uncertainty are described. Par-
ticular attention has been given to those works based on the construction of baseline
schedules. In fact, in most real applications, the construction of these initial schedules
is recognized as central; it allows the anticipation of potential performance obstacles
(e.g., resource contention) and provides opportunities to minimize their harmful ef-
fects on the overall system behavior.

We start by introducing different techniques used to achieve robust schedules.
Section2.3.2is dedicated to the description of different reactive approaches. In what
follows, we consider different approaches that try to achieve a compromise between
the advantages which either predictive or reactive approaches may give. In Sect.2.3.5
other approaches are described. These approaches highlight interesting aspects which
may give directions for future works.

Of course, we do not claim to provide a complete list of works, but our efforts
are aimed at mentioning the main directions. Furthermore, we analyze more in detail
those works that are more connected to the goals of our research. Different comple-
mentary surveys on this topic have been published lately, for instance the reader can
refer to[Davenport and Beck, 2000; Vieira et al., 2003; Herroelen and Leus, 2004a;
Aytug et al., 2005].

2.3.1 Synthesis of Robust Schedules

The idea of robust schedules consists in solutions that can tolerate a certain degree
of uncertainty during execution. In other words, they should be able to absorb dy-
namic variations in the problem due to both external reasons (exogenous events), and
internal reasons (false definitions in the problem). As previously stated, the funda-
mental assumption of these approaches requires a certain knowledge of the possible
evolution of the execution.

An intuitive approach to obtain robust schedules consists in adding redundancy
to the solution. A first example is represented by[Leonet al., 1994]: here a genetic
algorithm (GA) for producing robust schedules in the case of job shop problems is
described. The authors define an evaluation function, used in the algorithm to synthe-
size robust solutions, according to the actual makespan of the schedule during the exe-
cution,M(s), and the schedule delayδ(s) (i.e., the differenceδ(s) = M(s)−M0(s),
whereM(s) is the executed makespan andM0(s) is the pre-schedule makespan). The

2.3. Analyzing Different Approaches 15

evaluation function takes the following form:

R(s) = rE[M(s)] + (1− r)E[δ(s)] = E[M(s)]− (1− r)M0(s)

whereE[] represents the expected value andr is a real value weighted in the interval
[0, 1]. The authors demonstrate that the value ofR(s) can be easily computed for
schedules with only one disruption. Since an exact calculation ofR(S) is generally
intractable1 the authors propose three surrogate measures to overcome the problem.
The simplest to compute is defined as follows:

RM3(s) = M0(s)−
∑

i∈Nf
slacki

|Nf |
whereNf is the set of activities executing on fallible machines andslacki = lsti −
esti denotes the slack time of any activityai. In order to test the solutions obtained
by this approach, the authors propose a simulation which demonstrates that the mean
activity slack is as good a predictor ofE[δ(s)] as the surrogates become more so-
phisticated, and it performs even better than the exact computation of the expected
delay for the single disruption case, when only one machine in the shop is fallible.
Furthermore, it is also shown that using a linear combination ofRM3(s) as an opti-
mization criteria, it is possible to find schedules with smaller expected delays as well
as a low worsening of the makespan value with respect the value obtained using the
very makespan as the optimization criteria (i.e., it is able to keep low the makespan
value).

Further techniques which are based on the use of genetic algorithm are described
in [Jensen, 2001; Sevaux and S̈orensen, 2002]. In the first, the author studies the
quality of baseline schedules using a neighborhood based robustness measure. The
function takes the form:

RP (s) =
∑

s′∈N1(s)

φ(s, s′)P (s′)

whereN1(s) is the neighborhood of the solutions (the set of schedules achievable by
swapping two consecutive operations in the solutions), φ(s, s′) is weighting function
(it is 1

N1(s) in this case), andP (s) is a scheduling metric (i.e., lateness or tardiness).
Scheduling was done using a genetic algorithm which tends to optimize the robust-
ness criterion. The validity of the solutions achieved with this method has been tested
in an empirical framework. In this context, rescheduling has been accomplished us-
ing several methods: right-shifting,N1-based scheduling (in which the execution
switches to the best solution in the neighborhood), hill-climbing, partial and com-
plete rescheduling. The experiments have proved that starting from a robust schedule
it is easier to have a good behavior in spite of possible, unforeseen, events.

1Since the effect of any event depends upon the effect of the previous ones.

16 2. Scheduling with Uncertainty: Current Research Scenario

In [Sevaux and S̈orensen, 2002] a genetic algorithm for a single machine schedul-
ing problem is modified in order to find a robust solutions. The authors show how the
genetic algorithm can be used to find solutions which are able to preserve the quality
of the initial schedule and to avoid nervousness in the project2. To allow the genetic
algorithm to find robust solutions, the following robust evaluation function is used:

f∗(s) =
1
m

m∑

i=1

cif(s, Si(P))

wheref() is an evaluation function for the scheduling problem, andSi(P) specifies
a particular derived solution from the initial one. Moreover,ci is a weight andm is
the number of possible derived solutions to evaluate.

Different techniques that concern the use of temporal slack are described in[Dav-
enportet al., 2001]. Here the authors describe an approach to construct robust solu-
tions by inserting temporal slack, that is, by associating to each activity a temporal
slot greater than their nominal duration. The aim is to provide the ability to absorb
some level of unpredicted events without rescheduling (where for rescheduling we
mean any mechanism beyond the simple shift). Rather than redefining the activity
durations by adding a slack interval for each of them, the authors modify the def-
inition of the problem including a minimal amount of slack for any activity. The
method, named Time Window Slack (TWS) by the authors, allows to reason about
temporal protection during the solving process. They define this value for an activity
ai as it follows:

slackai(R) ≥
∑

aj∈Acts(R) durj

µtbf (R)
µdt(R)

whereActs(R) is the set of activities executing on resourceR andµtbf (R) µdt(R)
are respectively the mean time between two consecutive failures of the resourceR
and the mean down time of resourceR.

Moreover, in a further improvement they consider that the probability of unfore-
seen events may depend on where an activity is scheduled along the temporal hori-
zon (Focused Time Window Slack, FTWS). To implement this new method they
introduce the probability that then unexpected events occur before or at timet:
P (N(µ(n), σ(n)) ≤ t) whereµ(n), σ(n) are respectively the expected time in which
the nth breakdown occurs and its deviation. Based on this distribution, the new slack
value is:

slackai(t, R) ≥
M∑

n=1

P (N(µ(n), σ(n)) ≤ t)µdt(R)

whereM is a large number representing the maximum number of possible failures
that may occur during execution of a solution. In the provided simulation, the two

2The authors introduce two types of robustness: quality and solution robustness. This aspect is taken

into account again in the next chapter.

2.3. Analyzing Different Approaches 17

methods show a better behavior than the simple temporal slack method with respect
to the tardiness metric.

An operations research approach for producing robust schedules is presented in
[Leus, 2003; Herroelen and Leus, 2004b]: the authors introduce a comparison of
different methods to obtain robust solutions that are able to minimize the expected
deviation in activity start times. They present a mathematical model for defining this
problem and highlight that this implies a dual model that corresponds to a minimum
cost network flow problem, which can be solved efficiently. To have a comparison
of this approach the authors have also adapted two different methods: the float fac-
tor model[Tavareset al., 1998] and the linear programming based heuristic, LPH,
[Mehta and Uzsoy, 1998]. The former increases the earliest activity start time by the
total float of the activity and a factorα ∈ [0, 1], to face the risk of a project, while the
LPH method developed by[Mehta and Uzsoy, 1998] introduces idle time in case of
job shop scheduling. The results presented in[Herroelen and Leus, 2004b] show that
the network flow based procedure outperforms both the adapted methods.

In conclusions, it is necessary to remark that, even if the redundancy-based method
can increase the robustness of the solutions in terms of tolerance to external events,
the use of this technique unfortunately produces sub-optimal solutions. Even though
an activity can be anticipated in case the introduced slack is not necessary during the
actual execution, this does not work in case the initial solution is used to plan external
activities like material procurement. In this light the solution proposed in[Herroelen
and Leus, 2004b] seems to be more plausible, although it can imply a major system
nervousness.

Supermodels & Supersolutions

A particular class of robust schedules which have been investigated lately is the one
which stems from thesupermodelsconcept introduced in[Ginsberget al., 1998].
In the following, we first introduce the original work and then we describe a further
work which extends the original idea to different domains among which, the job shop
scheduling domain.

The supermodel is a class of models in which any element can represent a robust
solution and moreover it allows to quantify its degree of robustness. The authors
highlight how the ability to allow fast and small repairs is an essential factor in the
definition of a robust solution. This model is defined in this work for the SAT and
the Random3SAT problems. They define an(a,b)-supermodelas a model such that if
the values of the variables into a set of cardinality equals toa change, then an other
model can be obtained changing the value of at mostb variables in the disjoint set.

The previous work has been lately extended in the area of Constraint Program-
ming and its possible applications in the case of the job shop scheduling problem
[Hebrardet al., 2004b; Hebrardet al., 2004a]. The authors also apply the fault toler-
ant concept previously described in[Weigel and Bliek, 1998]: a solutionS for a CSP

18 2. Scheduling with Uncertainty: Current Research Scenario

is said to be befault tolerant, iff for a valuea for any variableX of S, there exists
another variable valueb in the domain ofX, such thatS remains a solution replacing
a with b. Based on the previous definitions in[Hebrardet al., 2004b], the concept
of (a,b)-supersolutionfor a CSP has been defined as a solution of the problem such
that the loss of the values of at mosta variables can be repaired by modifying the
assignments for these variables and at mostb further variables. The authors concen-
trate their attention on the(1, b)−supersolutions, and also introduce a first algorithm
to find them as well as the most robust optimal solutions. They also consider the job
shop scheduling problem, where it is possible to obtain more robust solutions without
sacrificing the makespan.

The idea behind supermodels and supersolutions is interesting and can produce
significant results. Nevertheless, we want to underline two possible issues which can
limit its development. The first, as mentioned in the original works, is the complexity
of finding supermodels (supersolutions). For instance, in[Hebrardet al., 2004b] it is
proved that deciding if a CSP has an(a, b)−super solution is NP-complete for any
fixeda. The second aspect is that both supermodels and supersolutions are based on
a qualitative estimation of the problem. By definition, this estimation considers only
the number of changes and repairs and not their magnitude. If this approach can work
for problems like SAT (boolean value, the change is always of magnitude 1) and job
shop scheduling (only precedence constraint are present, hence it is always possible
to find a solution), it may present some limitations on more complex problems. For
instance, the number of repairs can change according to the magnitude of a change.
In general we think it is necessary to add a third dimension, beyond the number of
changes and repairs, to bound the magnitude of their impact. This approach might
also contribute to identifying tractable sub-problems.

2.3.2 The Rescheduling Problem

In this section, two significant methods for a reactive approach toward scheduling
uncertainty is described. Unlike robust schedule methodologies, such approaches do
not consider any uncertainty source during the construction of the initial solution, but
they rather concentrate their efforts in the on-line phase, where the schedule is ad-
justed once a change compromises execution. The approach is based on the implicit
assumption that it is not generally possible to bound the scope of change required to
the current schedule in advance.

In [Smith, 1994a; Smith, 1994b] the author describes OPIS, a scheduling sys-
tem designed to incrementally revise schedules in response to changes in solution
constraints3. This system implements a constraint-directed approach4 to reactive

3OPIS, which stands for OPportunistic Intelligent Scheduler, has been developed originally for man-

ufacturing production scheduling at Carnegie Mellon University.
4For a brief introduction to constraint-directed search and to the constraint satisfaction problem

2.3. Analyzing Different Approaches 19

scheduling. Constraint analysis is used to prioritize outstanding problems in the cur-
rent schedule. More specifically, two types of conflicts can be detected: time and
resource conflicts. This information, in turn, provides a basis for selecting among a
set of alternative modification actions, which differ in conflict resolution and sched-
ule improvement capabilities, computational requirements and expected disruptive
effects.

Schedule Maintaining Subsystem

Sched2Sched1 Schedn

Anal1 Analm
Model
Update

Prob.
Sel.

Control
State

TLM

External
Events

Subtask assignment

Subtask assignment

Figure 2.2:The OPIS Scheduling Architecture

Figure2.2schematically describes the control architecture defined in OPIS. The
architecture presumes a portfolio of scheduling methods (or knowledge sources) that
carry out designated scheduling tasks and make changes to a commonly accessible
representation of the current solution (this can be viewed as a Constraint Data Base).
An additional “model update” knowledge source is invoked upon receipt of exter-
nal notification of constraint changes (e.g., new requirements, longer than expected
activity durations, machine breakdowns) to reflect their consequences on the current
solution. The introduction of changes to the current schedule results in the posting
of control events in a global description of the system’s current control state. At
each instant, the control state characterizes the set of outstanding problems that re-
main (i.e., current conflicts in the schedule, set of commitments that remain to be
made, unexplored opportunities for improving the solution). A separate set of anal-
ysis knowledge sources extends this control description to provide the information
necessary to support the formulation of subsequent scheduling tasks.

The OPIS approach is based on the idea that schedule adjustments should pro-
ceed opportunistically, keeping in mind that revision actions may have unforeseen
interactions which may create a domino effect over the scheduling. For this reason,

paradigm on which it is based on, the reader can refer to Chapter4.

20 2. Scheduling with Uncertainty: Current Research Scenario

different recovery strategies are available: they range from generic heuristics to more
specialized revision procedures, for instance, the positioning of schedule components
back and forth.

It is worth noting how the idea behind the OPIS system has been applied to more
complex domains, like distributed domains. For instance, its generalization, DITOPS
(DIstributed Transportation Scheduling in OPIS), has been applied to problems in
military crisis action deployment logistics.

A different, not local, direction has been pursued in[El Sakkout and Wallace,
2000]. Here the authors introduce a particular rescheduling problem: theminimal
perturbation problem. It consists in a 5-tuple(Θ, αΘ, Cdel, Cadd, δ) where

- Θ = (V, D, CΘ) is theCSP representing the initial, deterministic, problem;

- αΘ is one of the solutions ofΘ;

- Cdel andCadd are respectively the sets of added and removed constraints which
model changes regarding the initial problem;

- the functionδ(α′, α′′) measures the difference between two different assign-
ments.

The objective of the problem is to find a solution forΘ′ = (V, D,CΘ′), whereCΘ′ =
(CΘ−Cdel)∪Cadd, such that it minimizes the value of the functionδ(αΘ, αΘ′). This
problem has been introduced to formalize the need of minimally disruptive reschedul-
ing. The solving process is based on the interleaving of constraint programming and
linear programming. The latter has been used to find solutions for the temporal sub-
problem (probes). These solutions are then integrated into constraint programming.
As a result, a complete, repair-based search is obtained (probe backtracking). It is
worth noting that in order to minimize the disruption, or on the other hand, in order
to preserve the solution’s stability, for any variablex ∈ V the equationdx = |x− c|
is considered, wherec is the value given tox in the assignmentaΘ. Therefore the
variablesdx are added to the linear programming objective function while the linear
constraintsdx ≥ x− c anddx ≥ c− x are added to the constraint set. This allows to
control the “distance” between two subsequent solutions, and the presence of thedx

component in the objective function penalizes the choice of solutions which exhibit
a great difference from the starting solution.

An important aspect to consider in the reactive approach is when to apply a
rescheduling procedure. Of course an intuitive solution would be to reschedule the
actual solution only when a change in the problem occurs. However, in case of fre-
quent changes this may imply a nervousness in the solution which can hardly be
tolerated. Therefore it would be useful to obtain flexible solutions which can give a
certain degree of tolerance in order to avoid an overly frequent rescheduling phase.
Nevertheless, when to reschedule the solution remains an important issue. In[Vieira
et al., 2003] the authors include the timing of rescheduling as a dimension in their

2.3. Analyzing Different Approaches 21

rescheduling framework (rescheduling can be periodic, event-driven, or a combina-
tion of the two), while in[Aytug et al., 2005] it is pointed out that the frequency of
rescheduling is an important factor in scheduling performance.

Before concluding, it is worth remarking the difference between the two reactive
approaches: the local approach, represented here by OPIS, is based on an analysis
of the outstanding problems due to unpredicted events; in order to eliminate the dif-
ferent flaws, the method proceeds by triggering local modifications which can have
different impacts on the whole solution. On the other hand, the approach based on the
resolution of the minimal perturbation problem, pursues a global approach to solve
the problem. This in general guarantees to find a higher quality solution with respect
to a local method. Moreover, the method described above[El Sakkout and Wallace,
2000] allows also to explicitly preserve the original solution (stability). Even though
these aspects are important, the global approach can present a lack in reactivity with
respect to a local approach, requiring a greater time for system reconfiguration. Both
methods present pros and cons: only after a thorough analysis of the characteristics
of the particular scheduling problem, it is possible to express a preference. For in-
stance, in order to control the execution of very complex problems, a local approach
might be more indicated. This aspect is considered again in Sect.2.4.1.

2.3.3 Partially Defined Schedules

Partial predictive scheduling consists in an intermediate approach between the use
of a baseline schedule and the completely dynamic approach. Such approaches are
based on the consideration that robustness can be increased by introducing flexibility
in the schedule generation phase. A solution is considered flexible if it is easily
repairable, hence a flexible solution allows a fast reaction. This can be achieved by
computing several schedules, instead of a single and brittle one. As a result, during
the execution of the schedule it is possible to switch from a solution to another in
case of unforeseen events and/or changes in the scheduling problem definition.

The main characteristic of this kind of approach lies in the way in which such a set
of solutions is represented. In fact, an explicit representation (e.g., a set of start-time
vectors) can be expensive, thus limiting the number of possible solutions. Therefore,
the different approaches are singled out with respect to how the set of solutions is
implicitly represented.

The idea behind the work described in[Wu et al., 1999] is based on the classical
disjunctive graph representation,G(N,A, E), of job-shop scheduling problems and
on the associated conjunctive, or directed, acyclic graph representing one of its solu-
tions[Roy and Sussman, 1964]. The authors point out how a complete resolution of
a scheduling problem can limit its flexibility. They rather propose a partial resolution
of the problem which entails a decomposition of the problem into a series of ordered
subproblems. The method in its turn divides the disjunctive graph into a sequence of
subgraphs. This decomposition is obtained by solving some of the disjunctive arcs in

22 2. Scheduling with Uncertainty: Current Research Scenario

the setE, turning them into conjunctive arcs.

(a) Initial Problem

(b) Decomposed problem

Figure 2.3:Decomposition method

To better explain this concept we have borrowed Fig.2.3from the original work.
We see that in the proposed solution (Fig.2.3(b)) only some constraints are posted
to solve some of the disjunctive arcs defined in the problem (Fig.2.3(a)). Any sin-
gle subgraph has the same configuration in the original problem, but the constraints
posted create a new order among them. Based on this decomposition, the authors
then introduce aPreprocess First Schedule Later(PFSL) scheme. This consists in
a first, off-line, step in which a selected subset of disjunctive arcs are solved; in the
following on-line phase, the remaining scheduling decisions are taken dynamically
throughout the problem horizon. Depending on the quality of the efforts made in the
preprocessing step (or on the contrary in the on-line phase) the PFSL scheme can be
made arbitrarily “close” to static or dynamic scheduling.

A similar approach is proposed in[Artigueset al., 2004]. Here the authors de-
scribe an ordered group assignment (OGA) representation, defined in terms of a se-
quence of groups for each machine, where the activities within a group are totally
permutable. Therefore, during the execution phase, the decision maker is able to
choose any activity in the group. The authors also compare four different dynamic

2.3. Analyzing Different Approaches 23

algorithms to either minimize the number of groups and maximize the number of
solutions represented by the ordered group assignment.

Both the approaches presented here extend the flexibility of a scheduling solu-
tion though leaving some choices unmade. The latter is taken under consideration
during the actual execution of the solution. However, this aspect may turn out to be
a limitation in case these methods are extended to more complex scheduling prob-
lems. In fact, this may imply facing a hard rescheduling problem which might make
it impossible to keep up the pace with the execution.

2.3.4 Managing Contingencies

In this section a different approach is introduced, concerning the synthesis of solu-
tions which entail the possibility of particular contingencies. Like the techniques
which produced the predictive partial solutions, the techniques described below pro-
vide a set of executable schedules even though they are based on the knowledge of
possible disruptions modeled with a probabilistic distribution deriving from a statis-
tical analysis.

In [Drummondet al., 1994] the authors present an algorithm, namedJust-in-
Case, which produces robust schedule to face uncertainty in a real telescope schedul-
ing domain. The most important constraint in this domain is represented by the
observing windows: any observation request can be executed only in specific time
intervals (or windows). The authors consider uncertainty as variability of the activity
durations.

Given the importance of maximizing the usage of the time windows, a robust
approach which feeds time slack in the solution turns out to produce a significant
amount of wasted time. On the other hand, the use of a complete on-line scheduler
can also waste time while producing a new solution. To overcome these problems the
authors propose to consider the statistical models of duration uncertainty in order to
produce a set of solutions or “multiple contingent” schedules starting from an initial
solution. Furthermore, to avoid that the number of considered contingencies grow
exponentially, the authors propose to consider only the most probable interruptions.
Specifically, the algorithm is composed of the following steps: (1) the temporal un-
certainty is estimated, (2) the most probable break is computed, (3) a solution that
takes into account such a possibility is produced, (4) the current multiple contingent
schedule is updated5 with this new solution.

A different approach that consists in building solutions able to partially cover the
set of possible contingencies is the one which stems from the application ofArtificial
Immune System(AIS) to scheduling problems. An example is[Hart et al., 1998].
Here the authors propose an AIS to produce robust schedules for a dynamic job-shop
scheduling problem in which jobs arrive continuously, and the environment is subject

5At the beginning, the multiple contingent is equivalent to the input schedule.

24 2. Scheduling with Uncertainty: Current Research Scenario

to changes. AISs are computational systems inspired by theoretical immunology and
observed immune functions, principles and models, which are applied to complex
problem domains. The authors investigated whether an AIS could be evolved using
a genetic algorithm approach and then be used to produce sets of schedules which
together cover a range of predictable and unpredictable contingencies. The model
includes evolution through gene libraries, affinity maturation of the immune response
and the clonal selection principle. Further works in this direction from the same
authors can be found in[Hart and Ross, 1999a; Hart and Ross, 1999b].

The strength of these approaches derives from the use of the knowledge about
possible exogenous events. However, this can also represent a limitation, primarily
because it does not allow to extend these methods to not well-defined domains, sec-
ondly the methods can produce solutions that are over-fit on the statistical data and
which are not able to respond in case of ignored situations6.

2.3.5 Further Relevant Research

The approaches shown above cover part of the broader spectrum of alternatives present
in literature. All these methods face scheduling uncertainty on the basis of an initial
solution (baseline schedule). This solution is then updated during execution in case of
unforeseen events or changes in the problem. The magnitude of the repairs depends
on the way the baseline schedule is built. For instance, a flexible solution generally
entails minimal disruptions after the changes have occurred.

Particular attention has been given to these approaches because of the importance
retained by predictive solutions in the field of project scheduling. In Sect2.4.2we
describe different issues that make the presence of baseline schedules essential. Any-
way, there are further methods which are worth describing. These methods represent
valid alternatives to consider as they might inspire new directions and improvements
for future research.

Dynamic Scheduling

As we mentioned before, the Dynamic Scheduling approach consists in an on-line
allocation of the activities. At each timet during the execution, a decision is taken
using only the information available before or at timet. Therefore the schedule is
constructed incrementally without using any predictive schedule. Decisions are taken
according to scheduling policies which usually aim at optimizing a specific objective
function (i.e., the expected makespan, the tardiness, etc.).

A scheduling policy describes the order in which a set of pending activities has to
be executed. A first definition of scheduling policy can be given according to priority
values associated with the set of activities. These values imply an order in which two

6Theoverfittingproblem has been thoroughly studied in the area of Machine Learning.

2.3. Analyzing Different Approaches 25

or more competing activities have to be scheduled. A different well-known policy
is the earliest-start policy which is based on the analysis of the minimal forbidden
sets. A minimal forbidden set is defined as a set of activities requiring an amount of
resource greater than the available resource capacity, and such that none of its proper
subset is a forbidden set (the set is minimal). In this case, in order to solve the conflict,
one of the activities in the minimal forbidden set has to be executed after another one
has terminated its execution. The goal is then to select this “waiting” activity. Of
course, the computation of earliest-start policies may be very expensive. In fact the
number of minimal forbidden sets may be exponential in the number of problem
activities. One way to overcome this problem is to use a priority ordering of the
activities, for instance the linear preselective policies (LIN). In this case the waiting
activity is the one with lower priority. There are different works which exploit these
aspect as well as the construction of policies for dynamic scheduling. A compendium
can be found in[Demeulemeester and Herroelen, 2002]. We also refer the reader to
[Stork, 2001], where the author explores a set of algorithms to find good dynamic
scheduling policies.

In [Mc Kay et al., 2000] an interesting aspect of the execution of a schedule is
pointed out: the physical repair following the breakdown of a machine might not cor-
rectly fix the problem. In this case, to avoid that “important” activities are adversely
affected, a good strategy would be to use less critical activities to “test” the quality
of the repair. To pursue this idea in[Mc Kay et al., 2000] a meta-heuristic named
aversion dynamichas been introduced. This heuristic has the effect of changing the
nominal priorities to alter the sequencing of the activities, favoring the execution of
less important jobs. Once the impact of having temporarily unpaired machines is not
a concern, scheduling reverts to nominal procedures. In other words, the procedure
pursues, for a limited time after a repair, a sub-optimal strategy. This assures that
low priority activities are affected before the high priority ones. In the work the au-
thors present the application of the aversion dynamic to the R&M heuristic[Morton
and Rachamadugu, 1982]. Of course, this is not the only heuristic to apply with this
strategy: any heuristic that builds the sequence in a dynamic fashion would suffice.

An approach that fits between dynamic scheduling and more static algorithm is
theMatch-up Scheduling[Beanet al., 1991]. This methodology consists in adapting
a preplanned schedule to a changing scheduling environment. The overall strategy
is to follow the schedule until a disruption occurs. After a disruption, part of the
schedule is reconstructed to match up with the schedule at some future time.

To conclude it is possible to note that the dynamic scheduling approaches permit
to consider the exact evolution of the system at every instant. Unfortunately the com-
plexity of the problem can require an expensive amount of time in order to compute
optimal (or sub-optimal) solutions. Hence, in order to keep the pace with the execu-
tion, the decision process entails the use of methods which ensure a quick answer.

26 2. Scheduling with Uncertainty: Current Research Scenario

Sensitivity Analysis

One way to check if a given schedule is able to hedge against unexpected events, con-
sists of applying sensitivity analysis. The approach is based on the study of possible
changes of parameters according to thewhat if ... ? paradigm. If the solution toler-
ates a wide set of possible changes, then the schedule can be executed confidently.
For instance, in[Sotskov, 1991] the author describes the stability radius, that is, the
maximum amount of parameters change that maintains schedule optimality.

In [Hall and Posner, 2004] the authors introduce a systematic study of sensitivity
analysis for both polynomially solvable and intractable scheduling problems. The
authors start from the following typical questions: (1) what are the limits to a param-
eter change (or several changes) such that the solution remains optimal? (2) Given a
specific change on one or more parameters, what is the new optimal cost? (3) Given
a specific change on one or more parameters, what is a new optimal solution? An-
alyzing the preceding issues gives rise to different examples where it is possible to
compute a new optimal schedule efficiently (with a low cost) by using the initial so-
lution, as well as examples where it is worthwhile to spend additional (or different)
computation to facilitate later analysis. The authors also provide some worst-case
performance bounds in the case of intractable scheduling problems.

A similar approach has been described in[Ali et al., 2004]. Here the authors in-
troduce the FePIA procedure: performance (Fe)atures, the (P)erturbation parameters,
the (I)mpact of perturbation parameters on performance features, and the (A)nalysis
to determine the robustness. The FePIA procedure consists of the following steps:
(1) describing quantitatively the requirement that makes the system robust, (2) de-
scribing the perturbation parameters, (3) identifying the impact of the perturbation
parameters on the system features, (4) determining the smallest collective variation
in the values of perturbation parameters that cause any of the performance features to
violate the robustness requirement.

Even though these approaches are aimed at introducing different improvements
to face scheduling uncertainty, they are prone to some critic. In[Wallace, 2000] the
author points out that characteristics related to flexibility are not properly recognized
because sensitivity analysis is based on deterministic models. These techniques are
useful only as far as variation of controllable parameters is concerned.

Multi-agent Systems

Multi-Agent Systems[Weiss, 1999] represent a different approach to take into ac-
count uncertainty into scheduling problems. Indeed, this approach can be relevant, if
not essential, to tackle domains where the activities which have to be coordinated are
characterized by an inherently distributed nature, like large manufacturing organiza-
tions or transportations systems. In practice, each agent is responsible of the solution
and the execution of a particular subproblem. Furthermore, a multi-agent system

2.3. Analyzing Different Approaches 27

may promote local changes to hedge against unexpected events preserving solution
stability.

A first example of this kind of approach worth mentioning is described in[Ow et
al., 1988]. In this each resource uses activity time-bounds (a kind of flexible sched-
ule) to assist in accommodating future activities that might become known. The
CORTES project developed at CMU at the beginning of the 90’s[Sycaraet al., 1991]
consists in a decentralized, heterogeneous, multi-agent production control system.
The work extends a constraint directed search within a centralized framework to a
multi-agent system. The search is based on a set of “texture measures” which aim
at quantifying the search space characteristics. They show how by using these mea-
sures it is possible to allow each agent to focus on its individual search space while
at the same time remaining aware of the beliefs and intentions of other agents, thus
bounding the impact of local decisions on global goals.

A further example is given in[Montanaet al., 2000] where the authors use
a multi-agent approach to automatically solve a military transportation scheduling
problem. This involves a set of different issues due to the large number of tasks and
resources involved as well as the large number of scheduling subproblems eventu-
ally generated. The approach used by the authors consists in the implementation of a
genetic algorithm for each agent. The algorithm continually creates new schedules.
This process allows to periodically reintroduce diversity into the population.

2.3.6 Execution of temporal plans

Even though temporal plans are specific problems in which no resource are consid-
ered, research works on execution of temporal plans have to be mentioned. In[Vidal
and Ghallab, 1996] a formalism called Simple Temporal Network with Uncertainty
(STNU) is introduced in order to explicitly model plans that contain bothexecutable
(or requirement) andcontingent(or uncontrollable) time-points. For such plans it is
insufficient to merely ensure that the plan is consistent. It is necessary to do some
off-line reasoning in order to determine if it is possible, during the execution, to make
consistent scheduling decisions in any situation.

In [Vidal and Ghallab, 1996; Vidal and Fargier, 1997] three levels of controlla-
bility have been identified.Strong controllabilityif there is a fixed execution strategy
that works in all the situations.Dynamic controllabilityif there is an on-line exe-
cution strategy that depends only on observed time-points and that can always be
extended to a complete schedule whatever may happen in the future.Weak control-
lability if there exists at least one execution strategy for every situation.

Regarding the plans dynamically controllable, an important aspect is represented
by the process of reformulating STNs into minimumdispatchablenetworks, that
is, into STNs that can always be correctly executed by a dispatcher.[Muscettola
et al., 1998; Tsamardinoset al., 1998] introduced a means to produce an efficient
dispatchable network for plans that do not contain uncertainty.[Morris et al., 2001]

28 2. Scheduling with Uncertainty: Current Research Scenario

extended this work for plans that contain uncertainty, STNUs. Specifically it presents
a polynomial algorithm to perform this reformulation.

2.4 Further Remarks on Current Scenario

This section is dedicated to analyzing further issues that may play a relevant role
in facing scheduling uncertainty, as well as the procedures which can be adopted
for this purpose. On one hand, there is the need to consider the complexity of the
scheduling problem before choosing a method. On the other hand, we highlight how
the production of baseline schedules can be useful in different real domains.

2.4.1 The Complexity of Scheduling Problems

Different scheduling environments invariably present different challenges. We wit-
ness diversity related tor several aspects: in the structure of different domains (e.g.,
type of manufacturing system and discipline), in the types of dominating constraints,
in the performance objectives and preferences which need compliance, and in the
types of uncertainty which must be considered. The problem characteristics along
each of these dimensions determines the modeling assumptions, the scheduling heuris-
tics, and the most appropriate solution procedures for a successful application.

In fact the definition of these problems may give a strong bias on the validity of
the approach. Two issues can arise:

- the approach may show good performance due to the relative simplicity of the
scheduling considered problem;

- the approach may be tailored on an overly specific problem, and its generaliza-
tion to other problems may not be so effective.

Hence, it is important to recognize these hidden aspects in scheduling problems. In
the works described so far it is possible to find different examples of such “prob-
lem biases”. For instance, let us consider the supersolutions approach described in
Sect.2.3.1. In this case the authors have applied their approach to the job shop
scheduling problem and defined (1,b)-supersolutions for this specific case. However
this approach still considers the qualitative aspects of the scheduling problem rather
than the quantitative ones. For example, in more complex scheduling problems it is
not sufficient to only define the number of disruptive events but also their magnitude.

Another example is the one which arises from the analysis of reactive approaches.
Here the choice between two different methodologies, local or global, depends on the
scheduling problem. A very complex problem can require a large amount of time to
be rescheduled by a global procedure like[El Sakkout and Wallace, 2000]. Therefore,
despite their inherent sub-optimality, the approaches based on local modifications are
preferable in order to keep up with execution.

2.5. Conclusions 29

2.4.2 The Necessity of Baseline Schedules

Along Sect.2.3 we have mostly concentrated our attention toward methods which
face scheduling uncertainty on the basis of an initial solution. The necessity of base-
line schedules is highlighted in this section.

Previous works[Mehta and Uzsoy, 1998; Aytug et al., 2005] have remarked how
baseline schedules, built in a first off-line phase, have an important function for sev-
eral reasons. The first reason concerns the ability of checking whether it is possible
to complete the work as planned. In fact, even though the provided solution is not
followed during execution, it ensures the admissibility of the planned project that
turns out to be relevant in industrial practice.

A further point to note is that through an initial schedule it is possible to plan
external activities such as material procurement and delivery of orders to customers
[Wu et al., 1999]. Furthermore it can be used to re-organize production resources
in the light of an analysis of the resource requirements that can identify peaks and
low capacity requirement periods. The last aspect can turn out to be very useful to
increase the robustness of a solution. The visibility of future actions is of crucial im-
portance within the inbound and outbound supply chain. Especially in multi-project
environments, a schedule often needs to be sought before the start of the project that is
in accord with all parties involved (clients and suppliers, as well as workers and other
resources). It may be necessary to agree on a time window for work to be done by
subcontractors and to organize production resources to best support smooth schedule
execution. For instance large companies can share their production schedules with
their suppliers in order to allow just-in-time material delivery.

A baseline schedule is also vital for cash flow projections and provides a yard-
stick by which to measure the performance of both management and shop floor per-
sonnel. Indeed, reliable baseline schedules enable organizations to estimate the com-
pletion times of their projects and take corrective action when needed. They allow
for scheduling and resource allocation decisions that in turn should allow quoting
competitive and reliable due dates.

2.5 Conclusions

Along this chapter different techniques based on scheduling with uncertainty have
been described. We have seen that all the works can be classified according to the off-
line and the on-line phase (see Fig.2.1). The analysis has shown how in the current
state-of-the-art there is not a single approach which emerges from the set. Rather,
different approaches are more tailored for different purposes. Therefore, there is a
great dependency between the single approach proposed and the kind of scheduling
problem that it takes into account.

In conclusion, scheduling is a problem that occurs in a large variety of forms with

30 2. Scheduling with Uncertainty: Current Research Scenario

huge cumulative economic and social consequences. Proper scheduling can provide
better utilization of scarce and expensive resources as well as higher satisfaction for
individuals such as customers and employees. There are a few reasons why schedul-
ing is such a difficult problem:

- the size and complexity of the search space;

- scheduling is an inherently dynamic process, schedules only remain valid for
a limited amount of time. After a certain duration, the world generally has
changed enough that the scheduling algorithm has to find a different schedule;

- different domains and applications require solutions of different variations of
the scheduling problem.

It is our opinion that dealing with scheduling uncertainty may represent a significant
step toward bridging the existing gap between scheduling theory and real domains. In
fact this still represents one of the more difficult aspect in real scheduling problems.

In the next chapter we introduce our approach to scheduling uncertainty. This
is based on a partial order of the activities to be scheduled. The idea is to provide
enough flexibility to absorb execution unpredictability. Moreover the idea is also to
provide a means to promptly answer to unforeseen events. This has been accom-
plished by forcing an answer with minimal disruption to also preserve the stability of
the solution.

Chapter 3

Robustness through Flexible

Schedules

Research efforts aimed at generating solution and quality robust schedules in combi-
nation with an effective reactive scheduling mechanism are still in a burn-in phase. In
the previous chapter different approaches to scheduling with uncertainty have been
shown. Among these, those based on a major effort during the construction of a par-
tial predictive schedule (Sect.2.3.3) may have characteristics that, in our opinion,
make them preferable. For example, they seem very appropriate in the case of scarce
knowledge about possible exogenous events and the need of an initial plan to better
manage the scheduled activities.

This chapter describes the concept of robustness and introduces a flexible solution
model for scheduling problems. Its main concern is the generation of schedules that
offer some robustness in the face of a dynamic and uncertain execution environment.

3.1 Introduction

The approach described in this thesis aims at increasing the robustness by introducing
flexibility in the scheduling generation phase. Flexible solutions consist in a set of
possible schedules that can be followed during the execution, and, at the same time, in
guaranteeing, in case of necessity, an easy and fast recovery of the current situation.
In fact, as mentioned before, we are concerned with the generation of schedules that
offer some degree of robustness in the face of a dynamic and uncertain execution
environment.

In any given scheduling domain, there can be different sources of executional
uncertainty: durations may not be exactly known, there may be less resource capacity
than expected (e.g., in a factory context, due to a breakdown of a sub-set of the

31

32 3. Robustness through Flexible Schedules

available machines), or new tasks may need to be taken into account pursuant to new
requests and/or goals. The approaches described in the previous chapter are based
on different meanings of robust solutions. The concept of robustness, on which this
work is based on, can be viewed as execution-oriented; a solution to a scheduling
problem will be consideredrobust if it provides two general features: (1) the ability
to absorb exogenous and/or unforeseen events without loss of consistency, and (2)
the ability to keep the pace with the execution guaranteeing a prompt answer to the
various events.

To obtain these qualities we based our approach on the generation of flexible
schedules, i.e., schedules that retain temporal flexibility. We expect a flexible sched-
ule to be easy to change, and the intuition is that the degree of flexibility in this
schedule is indicative of its robustness. More precisely, our approach adopts a graph
formulation of the scheduling problem and focuses on generation ofPartial Order
Schedules(POSs). A partial order schedule is a set of feasible solutions to a schedul-
ing problem that can be represented by a temporal graph in which at any activity is
associated a node and the edges represent the constraints1 between the activities.
Within aPOS, each activity retains a set of feasible start times, and these options
provide a basis for responding to unexpected disruptions.

An attractive property of aPOS is that reactive response to many external changes
can be accomplished via simple propagation in an underlying temporal network (a
polynomial time calculation); only when an external change exhausts all options for
an activity it is necessary to recompute a new schedule from scratch. Given this
property and given a predefined horizonH, thesizeof aPOS – the number of fixed-
time schedules (or possible execution futures) that it “contains” – is suggestive of its
overall robustness2. In general, the greater the size of aPOS the more robust it is.
Furthermore, together with the size of the set of schedules, it is also worth considering
the way in which all such solutions are distributed, i.e., how many alternatives each
activity has. Therefore, the challenge is to generatePOSs of maximum possible size
equally distributed over the problem.

The remaining of the chapter is organized as it follows: first we remark the differ-
ent aspects that the concept of robustness entails, recalling some of the proposals that
can be found in the literature. Afterward, to better specify the concept of robustness
a specific scheduling problem, RCPSP/max, will be introduced. Then in Sect.3.4we
introduce the definition of a solution paradigm: the partial order schedule,POS. In
Sect.3.5we also introduce two metrics which will be used to evaluate the quality of
thePOSs found, and compare the different approaches described in the remainder
of the thesis.

1In a temporal graph any constraint is, at most, binary, that is, relates at most the values of two

variables.
2The use of an horizon, as it will be described in Sect.3.5, is justified by the need to compare partial

order schedules of finite size.

3.2. Robustness 33

3.2 Robustness

Even though different approaches have been pursued so far, the concept of robust-
ness for scheduling solutions, as well as in other areas, remains vague and not well
defined. In fact, in the analysis of the related literature to the topic of scheduling
with uncertainty provided in Chapter2 it is possible to note different scheduling def-
initions of robustness with respect the different aspects that want to be taken into
account. Some of these definitions have emphasized the ability to preserve some
level of solution quality, such as preservation of the completion time or makespan in
[Leonet al., 1994; Leus and Herroelen, 2004]. For instance, in[Leonet al., 1994]
the robustness of a solution is defined with respect its ability to preserve the solution
quality. It takes into account the difference between the expected makespan,M0(S),
and the actual result of the execution,M(S):

δ(S) = M(S)−M0(S)

A different example is given in[Sevaux and S̈orensen, 2002] where the authors pro-
vide a distinction of robustness according to the following two characteristics: quality
robustness and solution robustness. The first is a property of a solution whose quality
does not change much from the initial one when small changes in the problem occur.
The latter, instead, occurs when in the same situation (small changes) a solution does
not deviate much. Then the authors conclude that the two robustness concepts can
be viewed in two different spaces: the objective function space and solution space
respectively for quality and solution robustness.

Alternatively, other works have considered robustness to be an execution-oriented
quality. For example, in[Ginsberget al., 1998] robustness is defined as a property
that depends on the repair action entailed by a given unexpected event. This view
singles out two distinct, co-related aspects of robustness: the ability to keep pace
with the execution (implying bounded computational cost) and the ability to keep
the evolvingsolution stable (minimizing disruption). In fact a small perturbation
to a scheduled event can, in general, cause a large ripple of changes through the
current schedule. For this reason, it is claimed that a robust solution will be obtained
once repairs, both small and fast, will be guaranteed. In[Hebrardet al., 2004b] this
idea is brought further: a solution will be robust if it is able to bound the number
of changes entailed by the repair to problem changes. Finally, in[Jen, 2003] the
author concentrates her attention on both the stability and the robustness aspects.
She poses a series of questions: What is stability? What do stability and robustness
have in common? What is robustness beyond stability? She argues that the theory
of stability is not always able to capture all the characteristics that a more general
robustness concept does3.

3 There are also web sites where these themes are being discussed. We would

like to mention the informal French association of researchers in scheduling, GOThA

34 3. Robustness through Flexible Schedules

Based on the aspects underlined above it is possible to define a taxonomy of the
different definitions according to the following aspects:

Reactiveness.An important aspect in the execution of a schedule is to promptly re-
spond to unforeseen evolution of the external environment or to changes in the
scheduling problem definition. A slow answer can compromise the ability to
keep the pace with execution, and, in practice, lead to a failure of the execution
itself.

Stability. The solution has to avoid an amplification of the effects of a change over
all its components, creating a so called domino effect. Keeping a solution
as stable as possible assures notable advantages: for instance, let us consider
the case of a scheduling that involves a group of people each with different
skills and different tasks to accomplish. In this case, the greater the number
of people involved in the schedule reconfiguration, the greater the confusion
(solution nervousness).

Solution quality. The last aspect regards the quality of a solution, i.e., makespan,
weighted lateness, and so on. This point highlights the ability of the solution
to preserve the performance of the initial (baseline) solution in a changing en-
vironment. Bounding the possible changes with respect to one or more quality
functions is fundamental. In fact the plan has to respect “external” constraints
like predefined budget for production cost or delivery due to customers.

It is worth noting the difference between the last two points. Indeed it is possible
to have a great instability but the preservation of the solution quality and vice versa.
Therefore, even though the two aspects seem (and often are) connected, in general
they allow to consider two different perspectives of the robustness of a solution.

A final remark is that the concept of robustness is not a context free concept but is
rather tightly related to the particular scheduling problem that is taken into account.
In fact, even though the three aspects described above, reactiveness, stability and so-
lution quality, are the basic ingredients of a robustness criterion, one of the three may
dominate the other two according to the scheduling problem. In the case of a com-
plex problem reactiveness will be a predominant aspect. In fact, when rescheduling
is very expensive, a particular solution that allows to promptly compute a new, cor-
rected, one can be the main need. On the contrary the reactiveness will not be an
issue in the case of a manufacturing system in which temporal constraints are not so
tight.

(http://www.loria.fr/ aloulou/pages/bibliogotha.html), and the Santa Fe Institute robustness web site

(http://discuss.santafe.edu/robustness).

http://www.loria.fr/~aloulou/pages/biblio_gotha.html
http://discuss.santafe.edu/robustness

3.3. The Reference Scheduling Problem: RCPSP/max 35

3.3 The Reference Scheduling Problem: RCPSP/max

In this section we describe the scheduling problem on which our approach is based
on. We adopt the Resource-Constrained Project Scheduling Problem with minimum
and maximum time lags, RCPSP/max, as a reference problem[Bartuschet al., 1988].
The basic entities of interest in this problem areactivities. The set of activities is de-
noted byV = {a1, a2, . . . an}. Each activity has a fixedprocessing time, orduration,
pi. Any given activity must be scheduled without preemption.

A scheduleis an assignment of start times to activitiesa1, a2, . . . an, i.e. a vector
S = (s1, s2, . . . , sn) wheresi denotes the start time of activityai. The time at which
activity ai has been completely processed is called itscompletion timeand is denoted
by ei. Since we assume that processing times are deterministic and preemption is not
permitted, completion times are determined by:

ei = si + pi (3.1)

Schedules are subject to two types of constraints,temporal constraintsand re-
source constraints. In their most general form temporal constraints designate arbi-
trary minimum and maximum time lags between the start times of any two activities,

lmin
ij ≤ sj − si ≤ lmax

ij (3.2)

wherelmin
ij andlmax

ij are the minimum and maximum time lag of activityaj relative
to ai. A scheduleS = (s1, s2, . . . , sn) is time feasible, if all inequalities given by the
activity precedences/time lags3.2and durations3.1hold for start timessi.

During their processing, activities require specific resource units from a setR =
{r1 . . . rm} of resources. Resources arereusable, i.e. they are released when no
longer required by an activity and are then available for use by another activity. Each
activity ai requires of the use ofreqik units of the resourcerk during its processing
timepi. Each resourcerk has a limited capacity ofck units.

A schedule isresource feasibleif at each timet the demand for each resource
rk ∈ R does not exceed its capacityck, i.e.

∑

si≤t<ei

reqik ≤ ck. (3.3)

A scheduleS is calledfeasibleif it is both time and resource feasible.

Example 3.1 Figure 3.1 describes a 5-activity RCPSP/max instance. Any activity

ai is composed of two time points,si andei, which correspond to its start and end

time. Temporal constraints are the durations (defined between the pair of time points

(si, ei)) and time lags (for instance activitya5 should not start before 3 time units

36 3. Robustness through Flexible Schedules

2

6

4

2

[2, 5]

3

[0, 3]

[3, 9]

[0, 9]

[0, 3]

a5

a4

a2

a3

a1

e4s4e3s3

e5s5e2s2e1s1

Figure 3.1:5-activities RCPSP/max instance.

after that activitya2 begins). Moreover we suppose that any activity requires during

its processing one single unit of an unary resourcer1, that is, according to the termi-

nology introduced above,req11 = req12 = req13 = req14 = req15 = 1 andc1 = 1.

Note that in general the resource capacity can be greater than one and the activities

can require one or more units of one or more resources.

1

Figure 3.2:Resource profile for the temporal solutions1 = s3 = s4 = 0, s2 = 2 and

s5 = 5.

A first temporal solution is the following:s1 = s3 = s4 = 0, s2 = 2 ands5 = 5.

However if we consider the resource constraint we find a conflict in the use of the

resource (see Figure3.2). In fact this solution implies a parallel execution of more

than one activity (four,a1, a2, a3 and a4, in the interval[2, 3]) and because of the

resource capacity and the activities requirement, this is not allowable.

A different temporal solution that respects also the resource constraint iss1 = 0,

s2 = 3, s3 = 5, s4 = 9, ands5 = 11. This solution in fact, avoids the execution of

two or more activities simultaneously.

In spite of the simplicity of the example shown above the RCPSP/max problem
is a very complex scheduling problem. In fact not only the optimization version but
also the feasibility problem is NP-hard[Bartuschet al., 1988]. The reason for this
NP-hardness result lies in the presence of maximum time-lags. In fact these imply the

3.4. Flexible Solutions 37

presence of deadline constraints, transforming feasibility problems for precedence-
constrained scheduling to scheduling problems with time windows4.

3.4 Flexible Solutions

As introduced above, our approach concerns the production of flexible solutions. The
idea is that flexibility can assure a certain degree of robustness because it assures a
prompt reaction that will allow to keep the pace with the execution.

Figure3.3(a)describes the execution of a schedule. This is given to an executor
(it can be either a machine or a human being) that manages the different activities.
If something happens (i.e., an unforeseen event occurs) the executor will give feed-
back to a scheduler module asking for a new solution. Then, once a new solution is
computed, it is given back to the executor. In Fig.3.3(a), instead, the execution of a
flexible schedule is highlighted. The substantial difference in this case is that the use
of flexible solutions allows to consider two separate phases of rescheduling: the first
consists in facing the change by immediate means like its propagation over the set of
activities. In practice, in this phase the flexibility characteristics of the solution are
exploited (for this reason we named this modulelight & fast scheduler). Of course it
is not always possible to face an unforeseen event by using only “light” adjustments.
In this case, it will be necessary to ask for a more complete scheduling phase. This
will involve a greater number of operations than in the light phase. This module
has been namedhard & slow scheduling. It is worth noting that the use of flexible
schedules allows to bypass the last, more complicated, phase in favor of a prompt
answer5.

A flexible solution can turn out to be very efficient with respect to execution.
Before we introduce a possible solution let us now analyze deeper the concept of
flexibility. There are several aspects that a flexible solution should guarantee:

The ability of representing a set of solutions.Intuitively, having a huge set of sched-
ules which cover all the possible evolutions of the world is the best one can

4The reader can notice that the makespan minimization problem of the relaxed version without

maximum time lags is still NP-hard. But even more, it is among the most intractable combinatorial

optimization problems. This has been proved in[Scḧaffter, 1997] transforming the vertex coloring

problem in graphs to a special case of a resource constrained project scheduling problem with makespan

objective. For an instance of vertex coloring, introduce a jobj with unit processing timepj = 1 for

each vertex. Then, add a resourcek for each edge, letrk = 1 and setreqjk = 1 for the two jobs which

are incident to the edge, andreqjk = 0, otherwise. The makespan of the so-constructed scheduling

instance equals the minimal number of colors required to color the vertices of the graph. Thus, as for

vertex coloring, there is no polynomial-time approximation algorithm with a performance guarantee

less thannε for someε > 0, unlessP = NP [Feige and Kilian, 1998].
5However the reader should note that these solutions are in general sub-optimal.

38 3. Robustness through Flexible Schedules

schedule

repairs
changes

execution monitoring

scheduler

(a) General rescheduling phase

schedule

scheduler

"hard & slow"

"light & fast"

repairs
changes

execution monitoring

scheduler

(b) Rescheduling phase using a flexible so-

lution

Figure 3.3:Rescheduling actions during the execution.

expect. On the other hand, it is also necessary to have an implicit, compact,
representation of this set. An explicit representation (e.g. a set of start-time
vectors) can be expensive and then limit the number of solutions (this issue has
been also pointed out in Sect.2.3.3).

A means to select a new solutions.When a huge set of alternatives is given, one
question arises: which one do you have to select? To choice among different
alternatives can become complex, and expensive. For this reason it will be nec-
essary to have a mechanism, compiled in the solution, which helps the decision
maker to find a new solution. Therefore the need is to have a sort of “guess”
that always points the right way to follow. This aspect plays also a key role in
the next point.

The ability of promptly answering to an external event. This point is tightly re-
lated with the reactiveness aspect of a robust solution. Above we have seen
that good flexible solutions should be able to represent different schedules, but
also they should be able to detect a new, best, solution when it is necessary.
However it is also fundamental to consider how expensive it is to obtain a new
solution. In some cases to keep the pace with the execution, it will be better to
have a sub-optimal solution and wait less.

Preservation of robustness.The last aspect concerns the fact that several problem

3.4. Flexible Solutions 39

changes and/or unforeseen events may happen during the execution of a solu-
tion. Therefore it is necessary that once a solution has been adjusted it con-
tinues to maintain robustness characteristics. Therefore it is necessary that the
repair be as minimal as possible.

It is worth noting that the second and the third point make a distinction between the
ability of finding a new solution and the swiftness of achieving it. Considering the
first aspect it is important to underline that in case the set of solutions is big and the
repair method assures minimal repairs, then also the solution quality, for instance the
makespan, will be preserved.

Of course the necessity of an implicit representation of the solutions and the use
of mechanisms that assure a prompt answer to scheduling uncertainty will require a
“sacrifice” with regard to the number of solutions represented. In the next section a
paradigm for flexible solutions is introduced. This has been implemented to answer
to the requirements listed above.

3.4.1 Partial Order Schedule

This section provides a solution paradigm to answer to the need of finding an implicit
representation of the set of schedules. To represent the scheduling problem we refer
to the activity on the node representation: given a problemP , this is represented by a
graphGP (VP , EP), where the set of nodesVP = V ∪ {a0, an+1} consists of the set
of activities specified inP and two dummy activities representing the origin (a0) and
the horizon (an+1) of the schedule, and the set of edgesEP containsP ’s temporal
constraints between pairs of activities. In particular for each time lag constraint (3.2)
there is an edge in the graph(ai, aj) ∈ EP labeled with the values[lmin

ij , lmax
ij].

A solution of the scheduling problem can be represented as an extension ofGP ,
where a setER of simple precedence constraints,ai ≺ aj , is added to remove all the
possible resource conflicts. In particular, letF ⊆ V be any subset of activities such
that there exists a timet where the following holds:

∑

si≤t<ei

reqik > ck.

that is, a resource conflict is present. This subset is called a forbidden set[Bartusch
et al., 1988] (or contention peak), and aminimal forbidden set(or resource conflict)
is a forbidden setFmin ⊆ F such that each of its proper subsets is not a forbidden
set6. A property of these is that any minimal forbidden setFmin is removed by
adding a single precedence constraint between any pair of activities inFmin, and
these additional constraints become the elements ofER. Noting these concepts and

6The minimal forbidden sets are taken under consideration in[Laborie and Ghallab, 1995] where it

is namedminimal critical set, or MCS. We analyzed theMCS later in Sect.4.3.1

40 3. Robustness through Flexible Schedules

recalling that a time feasible schedule is a schedule that satisfies all the constraints
defined in3.1 and3.2, and a feasible schedule is a schedule that is both time and
resource feasible, we can define aPartial Order Scheduleas follows:

Definition 3.1 (Partial Order Schedule) Given a scheduling problemP and the as-

sociated representing graphGP (VP , EP), a Partial Order Schedule, POS, is a set

of solutions that can be represented by a graphGPOS(VP , EP ∪ ER) such that any

time feasibleschedule defined by the graph is also afeasibleschedule.

In practice aPOS is a set of partially ordered activities such that any possible com-
plete order that is consistent with the initial partial order, is a resource and time
feasible schedule.

It is worth noting that a partial order schedule provides the opportunity to reac-
tively respond to external changes by simply propagating the effects of these changes
over the “graph”, by using a polynomial time calculation. In fact the augmented dura-
tion of an activity, as well as a greater release time, can be modeled as a new temporal
constraint to post on the graph. To propagate all the effects of the new edge over the
entire graph it is necessary to achieve thearc-consistencyof the graph. That is, en-
sure that any activity has a legal allocation with respect the temporal constraints of
the problem. To obtain this status of the graph it is possible to apply the Bellman Ford
algorithm that finds the shortest paths from a single source vertex to all other vertices
in a weighted, directed graph7 (Single-Source Shortest Path) with a time complexity
equals toO(nm) wheren andm are, respectively, the number of activities and the
number of constraints in the problem. However it is possible to obtain better results
considering incremental algorithms that avoid to compute the solution from scratch at
each step. For instance[Cesta and Oddi, 2001] introduces an incremental algorithm
with time complexityO(δnδm) whereδn ≤ n is the number of vertices (activities)
whose shortest path has changed, andδm ≤ m is the number of arcs (constraints)
with at least one affected end-point. The last result can not be extended in the case
where a constraint is removed from the graph. This can be the case, for instance, of
the reduction of an activity duration. In this case during the execution it is possible
to have two different approaches: either recompute a new solution from scratch by
using a complete algorithm or simply do nothing.

It is worth noting that, even though the propagation process does not consider the
consistency with respect the resource constraints, it is guaranteed to obtain a feasible
solution by definition. Therefore a partial order schedule provides a mean to find a
new solution and ensures to compute it in a fast way.

Example 3.2 Figure 3.4(a) represents a 4-activity problem. Any activity requires

one unit of a resourcer1 with capacityck = 2. One possible partial schedule for
7Note that weights may be negative.

3.4. Flexible Solutions 41

4

2

a2

e2s2

a4

e4s4

2

s1 e1

s3 e3

a1

a3

3

(a) Scheduling Problem

4

2

a2

e2s2

a4

e4s4

2

s1 e1

s3 e3

a1

a3

3

(b) A Partial Order Schedule

Figure 3.4:Example of a partial order schedule.

this problem is given in Fig.3.4(b). Here it is possible to see that two precedence

constraints are posted to avoid a over-request of the resource. Moreover any possible

temporal constraint can be posted maintaining the consistency of every solution in

the resultingPOS.

The example above also highlights the following interesting property:

Property 3.1 Given a partial order schedulePOSi, the result of posting on it one

or more temporal constraints, is still a partial order schedule,POS ′i.

This property turns out to be relevant as it assures that during its execution, the solu-
tion (i.e. thePOS) preserves robustness characteristics.

In the following, two concepts connected to the partial order schedule are intro-
duced: respectively the earliest start schedule and the makespan of aPOS.

Definition 3.2 The earliest start schedule of aPOS, ES(POS), is defined as the

scheduleS = (s1, s2, . . . , sn) in which each activity is scheduled to start at its earli-

est start time, that is,si = est(ai) for 1 ≤ i ≤ n.

Definition 3.3 The makespan of a partial order schedule is defined as the makespan

of its earliest start schedule, that is,

mk(POS) = mk(ES(POS)) = maxai∈V {est(ai) + pi}.

Before concluding we want to introduce a further remark on partial order sched-
ules. In[Roy and Sussman, 1964] the authors introduce the disjunctive graph repre-
sentation of the classical job shop scheduling problem and describe how a solution
can be achieved by solving all the disjunctive constraints transforming any of these
in a conjunctive one. Also in our case, solving all the disjunctive constraints is re-
quired in order to achieve aPOS. Now, the disjunctive graph representation can be

42 3. Robustness through Flexible Schedules

extended in a more general case where multi-capacity resources are defined. In this
case “disjunctive” hyper-constraints among activities that use the same resource are
introduced. Based on this representation we can note that a partial order schedule is
obtained once any disjunctive hyper-constraint is solved. In this case, a set of prece-
dence constraints is posted to solve each hyper-constraint. The number of constraints
necessary is of the order ofO(n

ck
) wheren is the number of activities andck the

capacity of the involved resource.

Facing different changes

Even though the characteristics of partial order schedules are tailored on temporal
changes that can happen during execution, this kind of solution can turn out useful
also to face other kinds of change. For instance, during execution it is possible to have
the request of adding new activities and/or the resource availability can be reduced
(also completely) for certain time intervals. Both these events can be modeled as
adding a new activity to the problem. In fact the reduction ofredk < ck units of
the capacity of the resourcerk during the time interval[t′, t′′] can be modeled by an
activity ar with resource requirementreqk = redk, start timestr = t′ and duration
pr = t′′ − t′.

Even though the start time and the duration of the activity are already defined,
posting this new element does not imply a single solution. In fact, let us consider the
following situation: on a resourcerk with capacityck = 3 there are three activities
(a1, a2 anda3) all allocated during the time interval[3, 17]. If we have a reduction of
the capacity of one unit during the time interval[3, 9] this can be represented with a
dummy activitya4 with req4 = 1 that starts atst4 = 3 and lasts6. The problem is
which activity amonga1, a2 anda3 to postpone?

The situation above highlights that unlike the case of temporal changes, thePOS
is not able to give a unique solution but it is necessary to take a decision. However,
the partial order schedule providing a certain degree of flexibility can allow a fast
propagation of the decision taken. One possible solution we can suggest for the
situation above, is based on the consideration of the critical path. The idea is to avoid
decisions that can affect the set of activities belonging to the critical path, in order to
obtain a smaller disruption of the makespan value. In this light, the work of[Artigues
and Roubellat, 2000] provides a starting point to consider this sort of extension.

Final remarks

Along this section different and relevant advantages introduced by the use of flexible
solutions have been described. The proposed solution, which we namedPartial Order
Schedule, consists in a set of feasible solutions of the scheduling problem that can be
represented by a temporal graph. This paradigm guarantees a set of characteristics
that can be summarized as follows:

3.5. Metrics to Compare Partial Order Schedules 43

- the temporal graph allows to implicitly define a new solution to recover the
situation after a disruptive action. In fact the temporal graph describes the
partial order that the set of activities must respect. Therefore to obtain a new
consistent solution it will be sufficient simply to propagate the change over the
temporal graph.

- the underlying temporal graph allows also to compute the new solution quickly.
In fact as said before a new solution is obtained by propagating the change over
the graph and this can be accomplished by using polynomial algorithms.

- the propagation step by definition computes the minimal repairs necessary to
take into account the change in input, and to obtain a new consistent solution.
This minimality aspect might avoid unnecessary domino effects preserving the
stability of the solution.

- the minimal repairs produced during the propagation step also allow to avoid
a great “consumption” of the set of solutions represented in thePOS. This
allows to preserve the flexibility (or robustness) characteristics of the solution
that can be used to face further changes.

While the first two points are structural properties of anyPOS, in the case of the last
two, the efficiency will depend on the quality of the singlePOS. In the next section
we introduce two different metrics to evaluate the quality ofPOSs in terms of their
flexibility. A solution with great flexibility can allow to avoid domino effects: this
aspect turns out to be relevant in terms of the preservation of both the stability and
the flexibility of the solution.

3.5 Metrics to Compare Partial Order Schedules

This section is dedicated to the introduction and analysis of metrics to compare dif-
ferent partial order schedules. This represents an important aspect to analyze the
effectiveness of different problem solvers.

As described before, a singlePOS represents a set of temporal solutions that are
also resource feasible. Thanks to this set of schedules it is possible to provide a means
for tolerating some amount of executional uncertainty. When an unexpected event
occurs (e.g., a start time delay), the temporal propagation mechanism (a polynomial
time calculation) can be applied to update the start times of all activities and, if at
least one temporal solution remains viable, produces a newPOS. Therefore, it is
intuitive that the quality of a partial order schedule is tightly related to the set of
solutions that it represents. In fact the greater the number of solutions, the greater
the expected ability of facing scheduling uncertainty. Furthermore, another aspect to
consider in the analysis of the solutions clustered into a partial order schedule is the

44 3. Robustness through Flexible Schedules

distribution of these alternatives over all the activities. This distribution will be the
result of the configuration given by the constraints present in the solution.

For this reason it is necessary to use metrics that consider these aspects. A first
measure is taken from[Aloulou and Portmann, 2003]. In this work the authors de-
scribe a metric, namedflex, that can be defined as it follows:

flex =
n∑

i=1

n∑
j>i∧

ai⊀aj∧aj⊀ai

1
n(n− 1)

(3.4)

wheren is the number of activities andai ⊀ aj ∧ aj ⊀ ai defines a no precedence
relation betweenai andaj and vice versa8. This measure counts thenumber of pairs
of activities in the solution which are not reciprocally related by simple precedence
constraints. This allows to provide a first analysis of the configuration of the solu-
tion. The rationale is that when two activities are not related it is possible to move
one without moving the other one. Hence, the higher the value offlex the lower
the degree of interaction among the activities. The following example explains the
rational behind theflex metric.

Example 3.3 Let us consider the example in Fig.3.5in which the labels on the edges

define the time constraints between pairs of activities. Not labeled edges represent

simple precedence constraints[0, +∞). In the figure two different problems are rep-

resented. Note that in the first there are only precedence constraints, Fig.3.5(a).

3

4

a3

e3s3

2

a2

e2s2
s1 e1

a1

(a) Solution with valueflex =

0.66

3

4

a3

e3s3

2

a2

e2s2

[0, 9]

s1 e1

a1

(b) Solution with valueflex =

0.66

Figure 3.5:The two network have the same value according to theflex metric even

though the right-hand one is clearly worse

If the metricflex is computed for both problems, we obtain the same results,

that is, flex = 4
3×2 = 0.66. But after a deeper analysis of the two solutions it is

8For instance, ifai ⊀ aj then no positive path may exist fromai to aj , in the graph associated with

the temporal constraints of the scheduling problem.

3.5. Metrics to Compare Partial Order Schedules 45

possible to note a basic, fundamental, difference. In fact in the case in Fig.3.5(b), the

presence of the maximum constraints bounds the domain of botha2 anda3. These

are, consideringst1 = 0, respectively[3, 5] and[5, 7].

Conversely, for the problem in Fig.3.5(a)also fixing the value of activitya1, i.e.

st1 = 0, the domains of the other two activity are still infinite, i.e.,[3, +∞) and

[5,+∞).

The previous example underlines an important limitation of theflex metric; in-
deed, this is able to give only a qualitative evaluation of the solution. Even though
this may be sufficient for a scheduling problem with no time lag constraints like the
one used in[Aloulou and Portmann, 2003], in a problem like the RCPSP/max it is
necessary to integrate the flexibility measure described above with an other one that
is able to take into account also the quantitative aspect of the problem (or solution).

Furthermore, the example above also suggests to use of a temporal bound, or
horizon, for the problem in order to havePOSs that represent a finite, measurable,
set of solutions. In fact it is worth noting that in order to compare two or morePOSs
it is necessary to have a finite number of solutions. This is possible assuming that all
the activities in a given problem must be completed within a specified, finite, horizon.
Hence, it follows that within the same horizonH, the greater the number of solutions
represented in aPOS, the greater its robustness.. Let us consider again the example
in Fig. 3.5(b): if we post a constraintH = 10, it is possible compute all the possible
solutions, that is, the start time vectors(0, 3, 5), (0, 3, 6), (0, 4, 6), and(1, 4, 6). The
goal is then to compute a fair bound (or horizon) that does not introduce any bias in
the evaluation of a solution. Therefore a time interval that allows all the activities
to be executed. The following points are useful to define an upper bound for the
minimum completion time or makespan:

1. there is no idle time on the resources unless it is requested by the problem;

2. in the worst case, all the activities are executed sequentially;

3. the minimum distance between any pair of activities should be respected.

From these points it is possible to formulate the following horizon value:

H =
n∑

i=1

pi +
∑

∀(i,j)
lmin
ij (3.5)

that is, the sum of all activity processing timespi and the sum of all the minimal time
lags lmin

ij . The minimal time lags are taken into account to guarantee the minimal
distance between pairs of activities. In fact considering the activities in a complete
sequence (then the sum of all the durations) may not be sufficient.

46 3. Robustness through Flexible Schedules

The presence of a fixed horizon allows to introduce a further metric taken from
[Cestaet al., 1998]: this is defined as the average width, relative to the temporal
horizon, of the temporal slack associated with each pair of activities(ai, aj):

fldt =
n∑

i=1

n∑

j=1∧j 6=i

slack(ai, aj)
H × n× (n− 1)

× 100 (3.6)

whereH is the horizon of the problem defined above,n is the number of activities,
slack(ai, aj) is the width of the allowed distance interval between the end time of
activity ai and the start time of activityaj , and100 is a scaling factor.9 This metric
characterizes thefluidity of a solution, i.e., the ability to use flexibility to absorb tem-
poral variation in the execution of activities. Furthermore it considers that a temporal
variation concerning an activity is absorbed by the temporal flexibility of the solution
instead of generating deleterious domino effects (the higher the value offldt, the
lower the risk, i.e., the higher the probability of localized changes).

Example 3.4 Figure 3.6 presents two different partial order schedules for two dif-

ferent problems. Both have the same activities while they have a different set of

constraints: only precedence constraints in the latter, also time lags in the former.

Also in this case, the twoPOSs having “qualitatively” the same relations among

s1

2

s4 e4

a4

s2 e2

a2

2
[0, 10]

[2, 6]
s3

2

2

a3

a1

e3

e1

(a)

s1

2

s4 e4

a4

s2 e2

a2

2

s3

2

2

a3

a1

e3

e1

(b)

Figure 3.6:Two differentPOSs for two different problems. While they have the

sameflex value they are different with regard tofldt.

the activities have the same flexibility.

Let us consider the fluidity metric instead. We use the same horizon valueH = 10

for both the situations (this is computed for thePOS in Fig. 3.6(a)). It is possible

to see that the twoPOSs have different values of the fluidity metricfldt. In fact we

obtain the following valuesfldt(a) = 1
6 andfldt(b) = 1

5 .

9In the original work this was defined as robustness, using the symbolRB, of a solution.

3.6. Conclusions 47

The example above has proved the necessity of integrating the fluidity metric with
one that is able to consider also the kind of relation between two activities.

The two metrics introduced above give an evaluation correlated with the number
of feasible solutionscontainedin aPOS. An other aspect that is important to quan-
tify is the stability of the solutions found. For this reason we define a further metric
named disruptibility,dsrp; it measures the impact of a temporal change over the set
of activities; we consider executions where only one unexpected event at a time can
occur. The metric is defined as it follows:

dsrp =
1
n

n∑

i=1

slackai

numchanges(ai, slackai)
(3.7)

where the functionnumchanges(x, y) returns the number of activities that move from
their original start time when the activityx is delayed byy units. In this case we
always consider that the activity is moved to its latest start time,slackai , in other
words we evaluate the worst case situation.

In the next chapters the measures presented above are used to evaluate the quality
of the solutions found and, then, the efficiency of the methods used. In order to
produce an evaluation of the three criteriafldt, flex anddsrp that is independent
from the problem dimension, we present the normalization of the results according
to an upper bound. The latter is obtained for each metricµ() considering the value
µ(P) that is the quality of the initial network that represents the temporal aspect of
the problem. In fact, for each metric the addition of precedence constraints between
activities that are necessary to establish a resource-consistent solution can only reduce
the initial valueµ(P). Then the normalized value for the solutionS of the problem
P will have the following form:

|µ(S)| = µ(S)
µ(P)

(3.8)

It is worth noting that the higher|flex|, |fldt|, and|dsrp| the better.

3.6 Conclusions

In this chapter the crucial aspect of defining temporal flexible solutions has been
tackled. The proposed solution lies in the introduction of a partial ordering among
the activities which represents a set of feasible schedules. The model introduced has
been namedPartial Order Schedule, orPOS. As described in definition3.1aPOS
consists in a set of activities partially ordered such that any possible complete order
that is consistent with the initial partial order, is a resource and time feasible schedule.

Therefore as a scheduling problem consists itself of a set of partially ordered ac-
tivities, generating aPOS requires to post further temporal constraints on the initial

48 3. Robustness through Flexible Schedules

problem to guarantee that, once obtained, no further (temporal) constraint is able to
produce a resource conflict. In other words, the solving process to obtain a partial
order schedule, will return a new “problem” in which only the temporal aspect is
presented while the combinatorial one has been “solved”.

This aspect represents a significant point. In fact, any external change or unfore-
seen event that can be modeled as a temporal change in the problem, can be faced
promptly thanks to the characteristics of thePOS. In general such a temporal flexi-
bility can also be exploited in the face of different changes that stem from scheduling
uncertainties. In general aPOS retains a set of characteristics.

- It is a way to represent implicitly a set of different solutions.

- It provides a structure that allows a fast recovery.

- The minimality of repair actions avoids unnecessary domino effects preserving
both the stability and the flexibility of the solution.

One important open question, though, is how to generate flexible schedules with good
robustness properties. In the next chapters we investigate two different methods to
obtainPOSs. The first, shown in Chapter5, is an iterative repair method in which
the set of all possible temporal solutions of the problem is considered at each stage
of the solving process, pruning heuristically some of these alternatives until aPOS
is obtained. The second, detailed in Chapter6, is a less intuitive approach in which
partial order schedules are built on the basis of fixed-time solutions.

Chapter 4

Constraint-based Scheduling

In this chapter a generic framework to implementPOS generation methods is de-
scribed. This framework is based on theConstraint Satisfaction Problem paradigm,
or CSP. A CSP consists of a network of constraints defined over a set of variables
where a solution is an assignment to the variables that satisfies all the constraints. Ef-
fective methodologies based on this paradigm, can be obtained for both modeling the
problem knowledge and guiding the search to a solution. Constraints do not simply
represent the problem but play also an important role in the solving process narrow-
ing the space of possible solutions. Constraint satisfaction and propagation rules
are successfully used to model, solve and reason about many classes of problems
such as scheduling, temporal reasoning, resource allocation, network optimization
and graphical interfaces.

In particular the CSP approach has been proved to be efficient to model and solve
complex scheduling problems (see for instance[Fox, 1990; Sadeh, 1991; Smith,
1994a; Beck et al., 1998; Baptisteet al., 2001; Cestaet al., 2002]). A Constraint-
based approach offers a solution to the problem of generating fixed-time schedules.
The use of variables and constraints provides representational flexibility and reason-
ing power. For example, variables can represent the start and the end times of an
activity, and these variables can be constrained in arbitrary ways. Along this chapter
and in the rest of the thesis we exploit CSPs to face the problem of generating partial
order schedules.

The chapter starts by introducing the concept of constraint satisfaction problem
giving an high level description of the different aspects involved. Then, the CSP
approach to scheduling problems is described. This is known in the literature as
Constraint-based, or Constraint directed, Scheduling. Therefore, the general frame-
work will be described. As mentioned before this will be the base on which different
methods to producePOSs, will be implemented.

49

50 4. Constraint-based Scheduling

4.1 Constraint Satisfaction Problem

A constraint satisfaction problem, CSP, consists of a finite set of variables, each
associated with a domain of values, and a set of constraints that define the relation
between the values that the variables can assume. More precisely, a CSP can be
defined as a tuple〈V,D, C〉 where:

- V = {v1, v2, . . . , vn} is a set ofn variables,

- D = {D1, D2, . . . , Dn} is the set of corresponding domains for any variable,
that is,v1 ∈ D1, v2 ∈ D2 andvn ∈ Dn,

- C = {c1, c2, . . . , cm}, is a set ofm constraints,ck(v1, v2, . . . , vn), that are
predicates defined on the Cartesian product of the variable domains,D1 ×
D2 × . . .×Dn.

A solutionis a value assignment to each variable, from its domain,

{λ1, λ2, . . . , λn} ∈ D1 ×D2 × . . .×Dn

such that the set of constraints is satisfied. Constraint processing tasks include not
only the satisfaction task, but also constraint optimization problems (COP or CSOP).
In this case the solutions are not considered as equivalent, but a preference among the
solutions is expressed. This is done by using an objective function (or cost function)
that evaluates any single feasible assignment. Therefore, the goal will be to find the
best solution (to optimize the objective function).

A fundamental aspect of constraint satisfaction problems is that an instance of a
CSP〈V,D, C〉 can be conceptualized as a constraint graph,G = {V, E}. For every
variablevi ∈ V, there is a corresponding node inV . For every set of variables
connected by a constraintcj ∈ C, there is a corresponding hyper-edge in E1. In the
particular case in which only binary constraints (each constraint involves at most two
variables) are defined the hyperedges become simply edges. A well known example
of binary CSP is, for example, the Simple Temporal Network, or STP,[Dechteret al.,
1991].

Constraint Programming, or CP, is an approach to solving combinatorial, opti-
mization, problems based on the CSP representation. In this framework the search
for a solution to a CSP can be viewed as modifying the associated constraint graph by
addition and removal of constraints. Thus the constraint graph is an evolving repre-
sentation of the search state, where a solution is a state with a single value remaining
in the domain of each variable, and all constraints are satisfied. Let us consider exam-
ple 4.1 to show a constraint programming approach to the well known map coloring
problem.

1We can observe that the formalism introduced in[Roy and Sussman, 1964] can be seen as a first

attempt to model a scheduling problem like a CSP instance. In this work the authors describe a graph

based formalism to represent a job-shop scheduling problem. This is clearly a CSP instance.

4.1. Constraint Satisfaction Problem 51

problem definition
partial current

solution

(add constraints)

inference

(add/remove constraints)

decision

constraint propagation

backtracking strategy

search heuristic and

Figure 4.1:Constraint Programming at glance.

Example 4.1 In the map coloring problem it is necessary to color each region of

the map without assigning to any two adjacent regions the same color. This problem

can be model by a (binary) CSP. Figure4.2 shows an example: each region (four

in the example) is represented by a variable, or node of the graph. The domain of

each variable is the given set of colors (i.e., red, green, and yellow). For any pair of

adjacent regions, there is a binary constraint, or edge in the graph.

ac
a

b

d d

c b

Figure 4.2:Map coloring problem.

Now we can add a unary constraint that assignsa = green. Based on this

constraint it is possible to infer the following changes of the domain of the remaining

variable (regions):b ∈ [red, yellow], c ∈ [red, yellow] andd ∈ [red, yellow, green].

At this stage, as soon as either b or c will be assigned, the presence of the constraints

it will infer the final assignment. For instance a feasible assignment isb = red,

c = yellow, andd = green.

52 4. Constraint-based Scheduling

Constraint Programming is based on the combination of sophisticated search
technologies and constraint propagation. This combination is represented in Fig.4.1
previously introduced in[Baptiste, 1998]. Constraint propagation consists of using
constraints actively to prune the search space. Different filtering algorithms have
been defined for different kinds of constraints. Their aim is to reduce the domains
of variables involved in the constraints by removing the values that cannot be part of
any feasible solution. This algorithm is invoked any time a domain of some variable
is changed (both for search decision and constraint propagation) to propagate such
a change over all the variables of the problem. As described in[Dechter and Rossi,
2002], “in general, constraint satisfaction tasks, like finding one or all solutions or
the best solution, are computationally intractable, NP-hard”. For this reason the con-
straint propagation process cannot be complete, that is, some infeasible values may
still sit in the domains of the variables and thus decisions are necessary to find a com-
plete feasible valuation of the variables. In general, propagation is aimed at achieving
local consistency among subsets of variables.

With respect to the last point the concept ofk-consistencyis worth recalling: it
guarantees that any locally consistent instantiation ofk − 1 variables is extensible
to anykth variable. Unfortunately, enforcingk−consistency can be accomplished in
time and space exponential ink: if the problem hasn variables, the cost of achieving
k−consistency isO(nk). Therefore, it is clear that to achieve a global consistency
(and prune then all the unfeasible solutions) it is necessary to assurek−consistency
for any valuek = 1, . . . , n. Two tractable concepts of consistency are those defined
for k = 2 andk = 3: respectively, arc and path consistency.

For the implementation of our framework, we have considered the Constraint
Satisfaction Problem formalism, CSP, since it has the generality we desire to model
scheduling problems. In fact, CSPs have successfully been used for a wide range of
problems[Montanari, 1974; Kumar, 1992; Tsang, 1993].

4.1.1 Partial Order Schedules: why a constraint-based approach?

The ability of constraints to capture arbitrary relations make them “natural” model-
ing paradigm for our purposes. Unlike linear or integer programming frameworks,
constraints are not restricted to linear equality and inequalities. In fact, it is possible
to easily represent both mathematical or logical formulae and arbitrary relations with
constraints. Therefore, the constraint programming approach satisfies the necessity
of being able to represent the different aspects of the problem and retain the capa-
bility of guiding the search exploiting the knowledge of the problem. This requires,
first, the creation of a rich constraint representation to capture relevant features and,
second, to represent them in a way suitable for search techniques to reason upon
them.

As mentioned before, constraint programming – that is a framework to solve
problems based on the CSP representation – satisfies the need to represent the differ-

4.2. Scheduling + CSP = Constraint-based Scheduling 53

ent techniques and retains the ability of guiding the search exploiting the knowledge
of the problem. These aspects turn out to be effective to approach complex combina-
torial problems like in the case of project scheduling.

But there is a further motivation for using a constraint programming approach
to generate partial order schedules. This stems from the definition of Partial Order
Schedule. In Sect.3.4.1a partial order schedule is in fact defined as a set of solutions
that can be represented by a temporal graphGPOS(VP , EP ∪ ER) such that any
time feasibleschedule defined by the graph is also afeasibleschedule for a given
scheduling problem represented by the graphGP (VP , EP). Therefore it is clear how
to obtain a partial order schedule, by posting a set of constraints over the original
problem (the setER). It is worth noting that those constraints will be precedence
constraints, that is constraints which relate the execution between pairs of activities.
Of course, these constraints will have to be selected intelligently in order to have a
POS. Therefore the need to post new constraints to obtain aPOS matches perfectly
with the constraint programming approach. Indeed the latter allows to deal directly
with constraints and particularly with precedence constraints.

The ability of managing precedence constraints during the solving process repre-
sents the main reason for which we have spent this chapter describing the Constraint
Satisfaction paradigm and, in particular, the Precedence Constraint Posting model.
In fact, solutions generated in this way generally represent a set of feasible schedules
(i.e., the sets of activity start times that remain consistent with posted sequencing
constraints), as opposed to a single assignment of start times. In the following chap-
ters we will describe several algorithms based on the PCP model, in whichPOSs are
produced by adding (removing) new precedence constraints.

4.2 Scheduling + CSP = Constraint-based Scheduling

Scheduling problems belong to the area of combinatorial optimization problems there-
fore they can be easily represented as constraint satisfaction problems. In fact, dif-
ferent approaches have been developed. The work of Constraint directed Scheduling
of the 80’s (see for example[Fox, 1990; Sadeh, 1991; Smith, 1994a]) has devel-
oped into Constraint based Scheduling approaches in the late 90’s (see[Baptiste and
Le Pape, 1995; Nuijten and Aarts, 1996; Becket al., 1998]). These approaches are
based on the representation of a scheduling problem and the search for a solution to
it by focusing upon the constraints in the problem.

Given that even simple scheduling problems like job-shop scheduling are NP-
hard[Garey and Johnson, 1979], the search process typically depends on heuristic
commitments, propagation and retraction. In complex scheduling problems the goal
is not simply to meet due dates but also to satisfy complex constraints. Therefore,
scheduling represents an important application for constraint directed search. Dif-
ferent constraint programming approaches have been developed in this direction, for

54 4. Constraint-based Scheduling

Algorithm 4.1 Constraint Posting Scheduling Procedure
Input: A problemP
Output: A solutionS

S0 ← P
loop

if termination condition are metthen

S ← S0

EXIT

if S0 is not consistentthen

retract commitment(s)

if no commitment to retractthen

FAILURE

else

make heuristic commitmentO(i, j, r) onS0

instance, the reader can refer to[Baptisteet al., 2001] for a thorough analysis of
different constraint based techniques for scheduling problems.

As mentioned above, the search for a solution to a CSP can be viewed as modify-
ing the constraint graphG = {V,E} by addition and removal of constraints, where
the constraint graph is an evolving representation of the search state, and a solution
is a state with a single value remaining in the domain of each variable, and all con-
straints are satisfied.

Research in constraint-based scheduling (see[Nuijten and Le Pape, 1998]) has
typically formulated the problem as that of finding a consistent assignment of start
times for each goal activity. Under this model, decision variables are time points
that designate the start times of various activities and CSP search focuses on deter-
minating a consistent assignment of start time values. For instance, the RCPSP/max
problem (Sect.3.3) can be straightforwardly formulated in this way. A variablevi is
introduced for each activity; henceV is the set of CSP variables. For each variablevi

a domainDi = [0;H − pi] is assigned (whereH is an upper bound on the schedul-
ing horizon), specifying its possible start times. Two types of constraint combine to
further restrict the values that may be assigned to the setV of variables: (1) binary
constraints (involving pairs of variables) for representing the start-to-start temporal
relations between activities; and (2) n-ary constraints to describe the capacity con-
straints that each resource imposes on all feasible schedules.

In contrast, we are pursuing a model to scheduling that operates with a problem
formulation more akin to least-commitment planning frameworks: thePrecedence
Constraint Posting, PCP, model (see[Smith and Cheng, 1993; Cheng and Smith,
1994; Oddi and Smith, 1997; Cestaet al., 2002]). This approach consists of post-

4.3. Precedence Constraint Posting 55

ing a sufficient set of additional precedence constraints; these constraints will relate
pairs of activities that contend the same resources ensuring the feasibility with respect
to time and resource-capacity constraints. The decision variables correspond alterna-
tively to the various ordering decisions that need to be made between sets of activities
that are competing for the same resources, and CSP search focuses on specifying (or
posting) a consistent set of precedence constraints that eliminates any possibility of
resource contention. One principal advantage of this sequencing approach is that it
avoids over-commitment, as activities need not be anchored to specific start times
during the search or in the final solution (this provides representational flexibility).

Algorithm 4.1describes a high level procedure for a constraint programming ap-
proach to a scheduling problem in a PCP perspective. To formulate RCPSP/max
under this model, a variable is defined for each set of activities that simultaneously
require resourcerk with a total capacity requirement greater thanck (i.e., each po-
tential resource conflict). For each variablevi, the domainDi = {pci,1, . . .} consists
of the set of precedence constraints that can be feasibly posted to eliminate the con-
flict. Operationally, the ongoing determination of the domainDi for each ordering
decision variablevi requires the propagation of activity start times in an underlying
time-point network. Thus, a precedence constraint posting model can be seen as a
meta-CSP formulation, which utilizes a start-time assignment model as a ground-
CSP representation.

In the next section we describe the details of the precedence constraint posting
approach and, then, introduce the framework used to generate partial order schedules.

4.3 Precedence Constraint Posting

Precedence constraint posting approaches aim at synthesizing additional precedence
constraints between pairs of activities for the purpose of pruning all inconsistent allo-
cations of resources to activities. The general schema of these approaches is provided
in Fig 4.3. The approach consists in representing, analyzing, and solving different as-
pects of the problem into two separate layers. In the former the temporal aspects of
the scheduling problem like activities duration, constraints between pair of activities,
due dates, release time, etc., are considered. The second layer, instead, represents
and analyzes the resource aspects of the problem2. Let us now explain the details of
the two layers.

Time layer. The temporal aspects of the scheduling problems are represented through
an STP (simple temporal problem) network[Dechteret al., 1991]. This is a tempo-
ral graph in which the set of nodes represents a set of temporal variables named

2A similar distinction between temporal and resource aspects of the scheduling problem is pursued

in [El Sakkout and Wallace, 2000].

56 4. Constraint-based Scheduling

temporal
flexible
solution

precedence
constraint

resource

time

resource profile analysis

temporal constraint propagation

Figure 4.3:Precedence Constraint Posting Schema.

time-points,tpi, while temporal constraints, of the formtpi − tpj ≤ dij , define the
distances among them. Each time point has initially a domain of possible values
equals to[0,H] whereH is the horizon of the problem (generallyH can be infinite).
The problem is represented associating to each activity a pair of time points which
represent, respectively, the start and the end time of the activity. Therefore a temporal
constraint may be defined between a pair of time points that can “belong” or not to
the same activity. In the latter case (when they do not belong to the same activity)
the temporal constraints represent constraints between two activities of the problem,
while if the two time-points belong to the same activity the temporal constraints rep-
resent the duration, or processing time, of the activities. By propagating the temporal
constraints it is possible to bound the domains of each time-point,tpi ∈ [lbi, ubi].
In the case of empty domains for one ore more time-points the temporal graph does
not admit any solution. In[Dechteret al., 1991] has been proved that it is possible
to completely propagate the whole set of temporal constraints in polynomial time,
O(n3), and, moreover, a solution can be obtained selecting for each time-point its
lower bound value,tpi = lbi (this solution is namedearliest start-time solution).

The temporal layer then, given the temporal aspects of a scheduling problem,
provides, in polynomial time (using constraint propagation) a set of solutions defined
by a temporal graph. This result is taken as input in the second layer. In fact, at this
stage we have a set of temporal solutions (time feasible) that should be proved to be
also resource feasible.

Resource layer. This layer takes into account the other aspect of the scheduling
problem, namely resources. The problem is that there are constraints to resource uti-
lization (i.e., capacity). Resources can be binary or multi capacitive, and reusable or
consumable. As described above the input of this layer in the PCP approach is a tem-
porally flexible solution – a set of temporal solutions (see also Fig4.3). Like in the
previous layer to reduce the search space it is possible to use constraint propagation
(i.e. resource propagation). Even though there are different methodologies described
in the literature, see[Nuijten and Aarts, 1996; Laborie, 2003]), these are not suffi-

4.3. Precedence Constraint Posting 57

(a) Bounds of the resource utilization

for the set of solutions defined by a

temporal graph

(b) Resource utilization of a single

temporal solution

Figure 4.4:Two different ways to consider the resource utilization

cient in general. In fact these are not complete, that is, they are not able to prune
all the inconsistent temporal solutions. Therefore, it is necessary to use a method
which allows to decide among the possible alternatives. For this reason the method
uses aResource Profileto analyze resource usage over time and detect periods of re-
source conflict or contention peaks. The method proceeds posting further constraints
to solve some of the detected peaks. These new constraints are propagated in the un-
derlying layer to check the temporal consistency. Then the time layer provides a new
temporally flexible solution that is analyzed using the resource profiles. The search
stops when either the temporal graph becomes inconsistent or the resource profiles
are consistent with the resource capacities.

The next section is dedicated to describing heuristics for the analysis of the re-
source profile and the synthesis of new constraints. However, the main issue that
needs to be explored is how to compute these profiles. In fact, the input temporal
graph represents a set of solutions, possibly infinite, and to consider all the possible
combinations is impossible in practice. A possible affordable alternative consists in
computing bounds for the resource utilization. Examples of bounds can be found in
[Drabble and Tate, 1994; Cesta and Stella, 1997; Laborie, 2003; Muscettola, 2002].
It is worth noting that considering the resource bounds as resource profiles assures
to generate a partial order schedule at the end of the search process. In fact, this
stops when the resource profile is consistent with respect to the capacity constraints,
that means that all the temporal solutions represented by the temporal graph are also
resource feasible (see Definition3.1).

A different approach to deal with resources consists in focusing the attention on

58 4. Constraint-based Scheduling

a specific temporal solution and its resource utilization. Even though the precedence
constraint posting method produce a temporal graph when the resource utilization is
consistent with resource capacity, this graph, in general, is not aPOS. Indeed, this
process only assures that the final graph contains at least one resource feasible solu-
tion (the one for which the resource utilization is considered); some of the temporal
solutions may not be resource feasible. Thus it is necessary to use a method which is
capable of transforming the resulting temporal graph into a partial order schedule.

Figure 4.4 summarizes the two alternative resource profiles. In the first case
resource bounds are used to consider all the temporal solutions and their associated
resource utilization (Fig.4.4(a)). Alternatively, only one temporal solution of the set
is considered. This allows to reason about one precise resource profile but, in fact,
produces temporal graphs that are not in generalPOSs.

In the next chapter we will see how different ways of computing and using re-
source profiles lead to different PCP-like algorithms. The next section, as anticipated,
describes, instead, the very framework used in the implementation of methods aiming
at generatingPOSs.

4.3.1 The Core Constraint-based Scheduling Framework

The core of the implemented framework is based on the greedy procedure described
in Algorithm 4.2. Within this framework, a solution is generated by progressively
detecting time periods where resource demand is higher than resource capacity and
posting sequencing constraints between competing activities to reduce demand and
eliminate capacity conflicts. As explained above, after the current situation is initial-
ized with the input problem,S0 ← P, the procedure builds an estimate of the re-
quired resource profile according to the current temporal precedences in the network.
This analysis can highlight contention peaks, where resource needs are greater then
resource availability (Select-Conflict-Set(S0)). If the set of conflictCs is not empty
then new constraints are synthesized (Select-Leveling-Constraint(Cs)) and posted on
the current situation. The search proceeds until either the temporal graph becomes
inconsistent or a solution is found.

We proceed now by introducing the core components that need to be explained to
complete the description of the approach. The first issue consists in how to identify
activities which are in a conflicting situation. This allows to know the points in the
current situation that need to be solved. The second point is represented by both
heuristics and methods used to respectively select and solve one of the conflicts that
have been singled out.

How to identify conflicts. The starting point in identifying the possible conflicts
in a situation is to compute the possible contention peaks or resource violations. A
couple of definitions are necessary before proceeding. First, acontention peakis

4.3. Precedence Constraint Posting 59

Algorithm 4.2 greedyPCP(P)
Input: a problemP
Output: a solutionS

S0 ← P
if Exists an unresolvable conflict inS0 then

FAILURE

else

Cs ← Select-Conflict-Set(S0)

if Cs = ∅ then

S ← S0

else

(ai{before}aj) ← Select-Leveling-Constraint(Cs)

S0 ← S0 ∪ {ai{before}aj}
S ← greedyPCP(S0)

return S

a set of activities whose simultaneous execution exceeds the resource capacity. A
contention peak designates a conflict of a certain size (corresponding to the number
of activities in the peak). Second, aconflict is a pair of activities〈ai, aj〉 belonging to
the same contention peak. The function Select-Conflict-Set(S0) of Figure4.2collects
all the peaks in the current schedule, ranks them, picks the more critical one and then
selects a conflict from this last peak. The conflict is solved by ordering the conflicting
activities with a new precedence constraint,ai ≺ aj .

A first way to extract a conflict from a peak is thepairwise selection[Smith and
Cheng, 1993]. This consists of collecting any competing activity pairs associated
with each peak. The myopic consideration on any pair of activities in a peak can,
however, lead to an over commitment. For example, consider a resourcerj with
capacitymaxj = 4 and three activitiesa1, a2 anda3 competing for this resource.
Assume that each activity requires respectively1, 2 and3 units of the resource. Tak-
ing into account all possible pairs of activities will lead to consideration of the pair
〈a1, a2〉. But the sequencing of this pair will not resolve the conflict because the
combined capacity requirement does not exceed the capacity.

An enhanced conflict selection procedure which can avoid this problem is based
on the identification ofMinimal Critical Sets[Laborie and Ghallab, 1995] inside
each contention peak. AMinimal Critical Set, MCS, is a conflict such that no proper
subset of activities contained in theMCS is itself a conflict. The important advantage
of isolatingMCSs is that a single precedence relation between any pair of activities in
theMCS eliminates the resource conflict. Let us consider again the previous example:
in this case the onlyMCS is {a2, a3} and both the precedence constraintsa2 ≺ a3

60 4. Constraint-based Scheduling

anda3 ≺ a2 solve the peak. Application of this method can be seen generally as
a filtering step. Indeed, it extracts from each contention peak those subsets that are
necessary to solve.

MCS analysis has been used in[Laborie and Ghallab, 1995], whereMCSs are
seen as particular cliques that are collected via systematic search of an activity “in-
tersection graph” (which is constructed starting from the temporal information). The
unfortunate drawback of this approach is the exponential nature3 of the intersection
graph search, which prohibits the use of this basic approach on scheduling problems
of any interesting size. In[Cestaet al., 1998], it is shown that much of the advantage
of this type of global conflict analysis can be retained by using an approximate proce-
dure for computingMCSs. For these reasons here we import the following sampling
strategies:

Linear sampling. A queueQ is used to select anMCS from a contention peak P.
Activities ai are considered sequentially and inserted inQ until the sum of the
resource requirement is greater than the resource availability. Then the setQ is
saved in a list ofMCS and the first element inQ is removed. The previous steps
are iterated until there are no more activities. The complexity of this method is
O(p), wherep is the size of the peak;

Quadratic sampling. This is an extension of the previous schema in which the sec-
ond step is expanded as follows. Once the correctMCS has been collected,
instead of removing the first element fromQ a forward search through the
remaining activities is performed to collect allMCS that can be obtained by
dropping the last item placed inQ and substituting it with single subsequent
activities until anMCS is composed. Under this scheme, a larger subset of
MCSs are selected using a procedure of complexityO(p2).

In what follows we utilize three different operators for gathering conflicts: the simple
pairwise selection, and the increasingly accuratelinear andquadraticMCS sampling
strategy.

3 In [Laborie and Ghallab, 1995] minimal critical sets are detected as maximum cliques on a specific

representation of temporal constraints, thepossible intersection graph(PIG). For any resourcerk an

associated PIG is computed: this consists of graphGk(U, E) whereU is the set of activities that

require the use of resourcerk (i.e., U = {ai|reqik 6= 0}), andE is a set of edges between the pair

(ai, aj) ∈ U × U such that they may possibly overlap (i.e.,ai ⊀ aj andaj ⊀ ai). PIGs are a special

kind of weakly triangulated graphs that are themselves a sub-class of perfect graph.

In [Haywardet al., 1989] it has been proved that the maximum cliques for a weakly triangulated

graphs can be found in polynomial time. Nevertheless this algorithm is very inefficient in average and

furthermore it would give only someMCS and not necessarily the most interesting.

4.3. Precedence Constraint Posting 61

Select and solve conflicts. Independently of whether the conflict selection is per-
formed directly from activity pairs or from sampledMCSs, a single conflict is selected
for resolution according to the “most constrained first” principle. Given a selected
pair of conflicting activities, the order between them will be chosen according to a
“least constraining” principle. As it is underlined in[Smith and Cheng, 1993], given
a pair〈ai, aj〉 of activities in a given contention peak, four possible conditions can
be held between the two activities according to the maximum distance,d(), between
two events:

condition 1 : d(eai , saj) < 0 ∧ d(eaj , sai) < 0. In this case there is no way to order
the activities. This is identified as apairwise unresolvable conflict.

condition 2 : d(eai , saj) < 0 ∧ d(eaj , sai) ≥ 0 ∧ d(sai , eaj) > 0. There is only one
feasible ordering the two activitiesaj{before}ai.

condition 3 : d(eai , saj) ≥ 0 ∧ d(eaj , sai) < 0 ∧ d(saj , eai) > 0. Like the previous
one this is also apairwise uniquely resolvable conflict. In this case the relation
is ai{before}aj .

condition 4 : d(eai , saj) ≥ 0 ∧ d(eaj , sai) ≥ 0. In this case we have apairwise re-
solvable conflict. Both orderingsai{before}aj andaj{before}ai are feasible
and a choice is needed.

This procedure returns the ordering constraint that leaves the most temporal flexibil-
ity: ai{before}aj if d(eai , saj) > d(eaj , sai) andaj{before}ai otherwise.

As the reader can see, decisions are taken according to a least commitment prin-
ciple, trying to retain the maximum amount of temporal flexibility. For that reason
the values of the distancesd(eai , saj) andd(eaj , sai) have a key role. The basic idea
is to resolve the conflict that is the most “dangerous” and solve it with a commitment
as small as possible. More specifically, the following heuristics are assumed:

Ranking conflicts: for evaluating the contention peaks we have used the heuristic
estimator K() described in[Laborie and Ghallab, 1995]. Given a contention
peak and a set of possible ordering constraints{oc1, . . . , ock} which can be
posted between pairs of the activities the estimatorK() is defined:

1
K()

=
k∑

i=1

1
1 + commit(oci)− commit(ocmin)

(4.1)

wherecommit(oci) estimates the loss in temporal flexibility of posting the
ordering constraintoci = {ai ≺ aj}

commit(oci) =
min(dmax

ij , 0)min(dmin
ij , 0)

dmax
ij − dmin

ij

(4.2)

62 4. Constraint-based Scheduling

wheredmin
ij anddmax

ij are, respectively, the minimum and maximum distance
betweenai andaj . The heuristic estimatorK() chooses the contention peak
with highest value. The conflict resolution heuristic simply choosesocmin.
A conflict is unsolvable if no pair of activities in the conflict can be ordered.
Basically,K() will measure how close a given conflict is to being unsolvable.

Slack-based conflict resolution: to choose an order between the selected pair of
activities we applydominance conditionsthat analyze the reciprocal flexibility
between activities[Smith and Cheng, 1993]. In the case where both orderings
are feasible, the choice which retains the most temporal slack is taken.

It is worth underscoring that the above PCP framework establishes resource feasibil-
ity strictly by sequencing conflicting activities. It remains non-committal on activity
start times. As such, PCP preserves temporal flexibility that follows from problem
constraints. Further, the two heuristic choices adopt a minimal commitment strategy
with respect to preserving temporal slack, and this again favors temporal flexibility.

4.4 Summary

This chapter describes the framework within which we shall introduce the methods
that are the objects of the remainder of this work. This is based on a well known
paradigm: Constraint Satisfaction Problem (CSP). In the literature it is possible to
find different examples that exploit the effectiveness of this model to tackle complex
scheduling problems.

More precisely, we use a particular CSP formulation of a scheduling problem:
the Precedence Constraint Posting model. This approach consists of posting the set
of additional precedence constraints that are needed among the sets of activities that
are competing for the same resources. One principal advantage of this sequencing
approach is that it avoids over-commitment, as activities need not be anchored to
specific start times during the search or in the final solution.

The model is based on the separation of the time and the resource aspects (see
Fig. 4.3). At a first layer time aspects of the problem are considered producing a
temporally flexible solution. This solution is analyzed in a different layer to check
resource feasibility. This analysis is based on the construction of resource profiles;
as it has been shown, these can be associated to either a set of solutions or a single
one (this distinction creates in the next chapters two different alternatives to produce
POSs). Then different techniques have been introduced for analyzing the resource
profile, identifying conflicts (i.e., subsets of conflicting activities), selecting, and then
solving, one of them.

Chapter 5

A Least Commitment Approach

This chapter describes an approach to generate Partial Order Schedules, that is based
on the well-known paradigm namedLeast Commitment. The basic idea behind least
commitment consists of reducing as much as possible the commitment implied by
a decision during the solving process. There are two fundamental aspects related to
this strategy: postponing all not necessary decisions as much as the search procedure
allows it and choosing the least constraining for the current solution process.

In particular, the described method can be viewed as an iterative repair method in
which the set of all possible temporal solutions of the problem is considered at each
stage of the solving process. This set is then analyzed computing resource usage
bounds (i.e. resource envelope[Muscettola, 2002]) and based on this analysis some
of the temporal solutions are heuristically pruned. The process continues until aPOS
is produced, i.e., the resource usage bounds are consistent with the resource capacity.

5.1 Introduction

In the perspective of a “pure” least commitment approach a scheduler should con-
sist in carrying out a refinement search that incrementally restricts a partial solution
(the possible temporal solutionsτ ∈ ST) with resource conflicts until a set of so-
lutions (aPOS in our case) is identified. For this reason, in the construction of a
baseline schedule it is necessary to have a kind of lens to analyze and manage the
current situation. For instance, the PCP framework described in Sect.4.3 represents
the current solution by using aTime Networkor Simple Temporal Problem, STP. In
this representation each activity is a node while the edges represent all the temporal
constraints which the activities have to respect. Moreover to keep trace of the re-
source usage, a resource profile is built for each resource in order to check possible
contention peaks (or peaks). In case a peak exists then, in order to remove it, the

63

64 5. A Least Commitment Approach

search process proceeds by synthesizing a new precedence constraint between a pair
of activities. Applying the least commitment approach requires analyzing the three
following aspects:

- the way in which contention peaks are detected, i.e. which is the algorithm
used to identify peaks;

- the way in which a conflict – a set of activities which are responsible for the
peak – is selected;

- the way in which the selected conflict is solved.

It is worth noting that an important limitation to the application of a least commit-
ment approach so far, has been the lack of accurate bounds for the resource profile.
The recent introduction of the concept of resource envelope[Muscettola, 2002] can
contribute to the effectiveness of this type of approach. This technique in fact allows
an exact computation of thetightest possible resource-level bound for a flexible plan.
The Resource Envelope can be defined as follows:

Definition 5.1 (Resource Envelope)Let ST be the set of temporal solutions. For

each resourcerj we define the Resource Envelope in terms of two functions:

Lmax
j (t) = max

τ∈ST

{Qτ
j (t)}

Lmin
j (t) = min

τ∈ST

{Qτ
j (t)}

The integration of the envelope computation into a PCP algorithm is quite natural.
In fact, it is used to restrict resource profile bounds, in accordance with the current
temporal constraints in the underlying “simple temporal network”. In[Muscettola,
2002] it is proved that it is possible to find the Resource Envelope through a poly-
nomial algorithm. The advantage of using the resource envelope is that all possible
temporal allocations are taken into account during the solving process.

This chapter describes the first scheduling algorithm that uses this technical re-
sult. Our goal is twofold: (a) to obtain a method to compute partial order schedules;
(b) to analyze the effective improvement that the integration of the resource envelope
into a precedence constraint posting framework can give. This chapter starts recalling
the concept of resource envelope. Sect.5.3 presents a set of rules to incrementally
compute the envelopes that are very useful to speed up the resource envelope com-
putation, after which Sect.5.4 introduces a first greedy implementation of a resource
envelope based scheduler. Even though it is a rather simple algorithm, it has been im-
portant to understand critical points in the implementation of the resource envelope
solver and, above all, to identify the drawbacks of this approach and to lead possible
ways to solve them. Finally Sect.5.5presents an improved algorithm that integrates
resource propagation into a more intensive analysis of the search space.

5.2. Compute Resource Bounds 65

5.2 Compute Resource Bounds

To introduce the concept of resource envelope we need a slightly different notation
to represent scheduling problems. It is based on events that change the resource
availability rather than the whole activity.

s1 e1 s2 e2

1
2

[p1min, p1max]

[p2min, p2max]

[dmin, dmax]

[dmin, dmax]

+2 -2

+1 -1

activities

time points

Figure 5.1:Events-based representation.

Event-based Representation. Figure5.1shows an example of the event-based rep-
resentation for a two activities, one resource, problem. The left hand activity requires
two resource units to be executed, then at the end of the execution it releases them.
The second activity, instead needs one resource unit to be executed but this is not
released (consumer activity). The events based representation consists in associating
at each activity time point, the start and the end time, the resource usage event. For
instance, in the case of the first activity you have two time points with two associated
events:ru = +2 at the start time andru = −2 at end time. For the second activity
you have respectively:ru = +1 andru = 0. It is worth noting that between two time
points (or events) it is possible to have constraints which have a different semantics:
(1) precedence constraints when the time points belong to two different activities and
(2) activity duration when the time points belong to the same activity. We recall that
in the case of the problem we refer to, RCPSP/max, there are only the first type of
activities, thus for each activityai which requiresreqij units of resourcerj , there is
an event at the start time with associated resource usageru = reqij and and event
with an associated resource usage equals toru = −reqij at the end time. To refer
to an event, in the remaining of the section we use without distinction both the term
event and time point.

Partition. Once represented the problem with the event based notation we can use
it to describe how the resource envelope can be computed. For the computation of the

66 5. A Least Commitment Approach

Et

t

Bt
At

Figure 5.2:The partition intoBt, Et andAt.

tightest resource bound, i.e. the maximum (minimum) value of the resource level at
any instantt, the following partition of the set of time points (or events) is considered:

- Bt: the set of eventsti s.t. lst(ti) ≤ t, i.e., the events which must have occurred
by the instantt;

- Et: the set of eventsti s.t. est(ti) ≤ t < lst(ti), i.e., the events which can
occurr at timet;

- At: the set of eventsti s.t. est(ti) > t, i.e., the events which have to occur
after timet.

Based on this partition, the contribution of any eventti to the maximum (minimum)
resource value can be computed according to which of the three sets the eventti be-
longs to. In fact, since the events inBt are those which happen before or at time
t, they all contribute - with the associated resource usageruij - to the value of the
resource profile ofrj in the instantt. By the same argument we can exclude from this
computation the events inAt, as they happen aftert. Thus is evident that the maxi-
mum (minimum) resource value depends on the maximum (minimum) contribution
that the events inEt may give. For instance, the maximum resource usage at timet
is:

Lmax
j (t) =

∑

ti∈Bt

ruij +
∑

Pmax(Et)

ruij (5.1)

wherePmax(Et) is a subset ofEt which gives the maximum contribution among any
combination of elements inEt can give.

A trivial and, unfortunately, expensive approach to extract the subsetPmax from
the set of pending eventsEt consists in enumerating all the possible combinations.
Indeed this approach might require an exponential CPU time to compute the resource
bounds which makes this approach unrealistic. A method to overcome this problem

5.2. Compute Resource Bounds 67

has been introduced in[Muscettola, 2002]. There the author describes a polynomial
algorithm to compute the setPmax (Pmin). The following section describes this
concept.

5.2.1 Resource Envelopes

In [Muscettola, 2002] the author proves that to find subset ofEt for computing the
upper (lower) bound, it is possible to avoid enumerating all the possible combinations
of events inEt. Muscettola shows that a polynomial algorithm can be found through
a reduction of the problem to the Max-Flow problem[Ford and Fulkerson, 1962], a
well-known tractable problem. The effectiveness of the reduction is due to the fact
that it is possible to exploit the relations among the set of events and to consider only
a subset of all the combinations.

The Max-Flow Problem. In the following we briefly review the theory behind the
Max-Flow problem[Cormenet al., 1990]. A flow network G(V, E) is a directed
graph whereV is a set of nodes andE is a set of edges(u, v) with nonnegative
capacityc(u, v) ≥ 0. The flow network has two special nodes: a sources and a sink
t. A flow in G is a real-valued functionf : V × V → R that satisfies the following
three properties:

- for all u, v ∈ V , f(u, v) ≤ c(u, v)

- for all u, v ∈ V , f(u, v) = −f(v, u)

- for all u ∈ V ∪ {s, t}, ∑
v∈V f(u, v) = 0.

The value of a flowf into the graphG, is defined as

f =
∑

v∈V

f(s, v),

that is the total flow out of the source. In the Max-Flow problem given a flow network
G, the goal is to find a flow of maximum value from source to sink. A fundamental
concept in flow theory is theresidual network: a graph with an edge for any pair
of nodes which has a positive residual capacity, i.e., the differencec(u, v) − f(u, v)
between the capacity and flow through the edge.

The Resource Envelope Computation. As we mentioned before the method com-
putes the resource envelope values building a Max Flow problem. More precisely to
find the setPmax(Et) a Max-Flow problem is constructed using the anti-precedence
graph defined as follows:

68 5. A Least Commitment Approach

Definition 5.2 The anti-precedence graph for the resourceR, Aprec(R) is a graph

with the same events and such that for any two eventse1 ande2 with |e1e2| = 0 there

is a path frome1 to e2 in Aprec(R).

Given the anti-precedence graph the Max-Flow problem is built according to the
following rules:

1. all eventsti ∈ Et are represented by nodesti of the flow problem. Two further
nodes are added to represent the sourceσ and the sinkτ .

2. if exists a precedenceti ≺ tj between the two eventsti and tj in the anti-
precedence graph, then the flow problem contains an edge with infinite capacity
between the nodes associated with the two events;

3. for any producer eventti, i.e. ruij > 0, there is an edge between the sourceσ
andti with capacityruij ;

4. for any consumer eventti, i.e. ruij < 0, there is an edge between the nodeti
and the sinkτ with capacity|ruij |;

An example of flow problem construction is shown in Fig.5.3. Let us consider the
instantt = 4. For this time point, Fig.5.3(a)and5.3(b) represent respectively the
scheduling problem and the associated partition described above. Figure5.3(c)shows
the anti-precedence graph associated toE4. Based on this a flow network is built
(Fig. 5.3(d)). It is possible to note that in the Max Flow problem obtained following
the rules above, any maximum flow through the flow network matches all possible
producer event with all possible consumer events according to the precedence con-
straints. In[Muscettola, 2002] it has been proved1 that the set of events reachable
from the source through the residual flow is equivalent to the setPmax. In the exam-
ple you have that only one node is reachable form the source (see Fig.5.3(f)). Then
the setPmax contains only the time-points associated with these nodes which have a
value equals to+1. Therefore, the resource envelope value fort = 4 is equals to

Lmax
j (4) =

∑

ti∈B4

ruij +
∑

Pmax(E4)

ruij = +6 + 1 = 7

according to (5.1).
To summarize the algorithm consists in building a Max-Flow problem from the

set of events belonging toEt and, after the max flow is found, the subsetPmax ⊆ Et

(Pmin ⊆ Et), of events that gives the maximum (minimum) value of the resource
level at the instantt, is computed performing a linear analysis of the residual graph.
An important point is that it is not necessary to compute the resource-level envelope

1Theorem 1 in[Muscettola, 2002].

5.2. Compute Resource Bounds 69

<[0,2], +6>

<[7,14], −1><[3,10], +1>

<[0,5], +2> <[3,8], −2>

<[7,15], −3><[2,10], +3>

<[3,5], −6>

(a) Initial Problem

E4

B4

A4

(b) Partition intoB4, E4 andA4

+1

+2

−2

+3

−6

(c) Anti-

precedence

graph ofE4

2

1

6
3

2

(d) Flow Network

0/1

2/2

3/3

2/2

3/6

(e) A Maximum Flow solu-

tion

(f) Residual Graph

Figure 5.3:Resource Envelope Computation: Example

in all possible instantst. Indeed, you only need to computeLmax
j at times when ei-

therBt or Et changes. For any time pointti this can only happen either at its earliest
time valueest(ti) = −d(ti, t0) or at its latest time valuelst(ti) = d(t0, ti). Thus the
approach has a complexity ofO(nO(maxflow(n))) wheren is the number of events
in the problem andO(maxflow(n)) is the time complexity of a Max Flow problem
with n elements. Depending on the solving method2 the time complexity of the Max
Flow problem can beO(n3), in case of the original augmenting path method pro-
posed in[Ford and Fulkerson, 1962] or O(n2m), wherem is the number of edges, in
case of the augmenting path version of Edmond-Karp or in thepreflow-pushmethod
[Goldberg and Tarjan, 1988]. Therefore computing the resource envelope has a com-
plexity of O(n4) or O(n3m) with respect to the Max-Flow algorithm used.

On this last point, unfortunately, lies a critical aspect of the algorithm proposed
by Muscettola. In the next section we analyze this point and we propose a set of rules
to limit the CPU time requested to compute the resource envelope.

2A thorough treatment can be found for instance in[Ahujaet al., 1993]

70 5. A Least Commitment Approach

5.3 Boosting the Resource Envelope Computation

A potential drawback in using an envelope computation within a scheduling algo-
rithm like the base PCP solver introduced in Sect.4, is the computational burden
of the Max-Flow computation. Despite being polynomial, the computational cost
is significant and can become a limiting factor to scale up the addressed scheduling
problem. In fact, they require a new computation of the resource envelope for each
resource, each time a new constraint is posted.

In this section, we establish some properties for computing the envelope incre-
mentally across points of discontinuity. Moreover since the incremental methods to
computePmin andPmax can be obtained from each other with obvious term substitu-
tions, we only develop the method forPmax. Our goal is to avoid the computation of
Pmax using the maximum flow algorithm, or, at least, to reduce the number of times
that the resolution of the associated Max-Flow problem is requested, and, in that case,
identify the sub-network which determines the differences between two “successive”
Max Flow instances. The basic idea is to exploit the knowledge which comes from
the computation of the valueLmax

j (t− 1), to compute the value ofLmax
j (t); that is,

we are looking for the hypothesis under which is possible to compute the value:

∆Lmax
j (t) = Lmax

j (t)− Lmax
j (t− 1)

avoiding the use of the Max-Flow reduction.
To introduce the rules for an incremental computation of the resource envelope

we first need to define the overall contribution of a time pointti to the resource
envelope value.

Definition 5.3 Given a time pointti and a resourcerj we define its overall contribu-

tion to be the value:

Σruij = ruij +
∑

∀tk|d(ti,tk)<0

rukj

We can observe that a time pointti ∈ Et does not belong toPmax if its overall
contribution is negative. Indeed addingti atPmax implies a reduction of the value of
the resource level at the instantt.

Figure5.4(a)shows an anti-precedence graph in which there are two production
events and a consumption one. It is possible to note that the contribution of each
production is negative,Σru2j = ru2j + ru1j = 5 + (−6) = −1 andΣru3j =
ru3j + ru1j = 4 + (−6) = −2 while the set{e1, e2} gives a positive contribution,
ru1j +ru2j +ru3j . This implies that only a conjunctive presence inPmax of the two
events is allowed.

Now to find possible rules to compute the resource envelope incrementally, we
consider the possible evolution of the three setsBt, Et andAt of the partition, across
points of discontinuity. It is possible to note the following cases:

5.3. Boosting the Resource Envelope Computation 71

e1

<[2, 10], 4>

<[3, 9], 5>

<[1, 5], −6>

e2

e3

(a) Each production has a negative

contribution while their conjunction

is positive

<[1, 5], −6>

e1

e3

e2

<[3, 8], +7>

<[2, 7], −2>

(b) The setEt is empty fort < 5

Figure 5.4:Examples of the event contribution over the resource bounds

1. eventti moves fromEt to Bt+1, that isti ∈ Et ∩Bt+1;

2. eventti which remains pending with the increment of timet, that isti ∈ Et ∩
Et+1;

3. eventti which becomes pending, that isti ∈ At ∩ Et+1.

4. eventti moves fromAt to Bt+1, that isti ∈ At ∩Bt+1.

In the last case, it is possible to note that anyti ∈ At ∩Bt+1 contributes to the value
of Lmax

j (t) in the amount corresponding to its resource usageruij . In the second
case listed above, the following theorem allows us to restrict the set of time points for
whichPmax must be computed:

Theorem 5.1 If there exists a time pointti ∈ Et ∩ Et+1 and ti ∈ Pmax(Et), then

ti ∈ Pmax(Et+1).

Proof: Reductio ad absurdum.If ti ∈ Pmax(Et) andti /∈ Pmax(Et+1) holds, then
in t + 1 the contribution of the time pointti is negative. In turn, this entails that
there must exist a time pointtk, with rukj < −Σruij , such thattk ∈ Et+1 ∩At and
d(ti, tk) < 0. But the last two formulas are mutually inconsistent, thus ifd(ti, tk) <
0 thentk ∈ Bt ∪ Et. This contrasts withtk ∈ At. ¤

From this theorem it follows that at each instantt it is sufficient to consider only
the events inEt\Pmax(Et−1) to figure out which events have to be collected into
Pmax(Et). Indeed any time-pointti ∈ Pmax(Et−1) still contributes to the value of
Lmax

j (t) both if ti ∈ Bt and if ti ∈ Et. Furthermore, from the previous theorem, it is
possible to prove the following corollary:

72 5. A Least Commitment Approach

Corollary 5.1 If Et+1\Pmax(Et) = Et\Pmax(Et) thenPmax(Et+1) = Pmax(Et).

Now considering the subsetPmax ⊆ Et we can rewrite the first point of the
previous list as:

1.a events move fromPmax(Et) to Bt+1

1.b events move fromEt − Pmax(Et) to Bt+1

Since we know the value ofLmax
j (t) in the case (1) we compute the value ofLmax(t+

1) as it follows:

- the eventsti in case (1.a) do not change their contribution inLmax
j (t). In fact,

their contribution was already present in the computation ofLmax(t) because
ti ∈ Pmax and it continues to be present becauseti ∈ Bt+1.

- the eventsti in case (1.b) are introduced in the computation ofLmax
j (t).

Unfortunately, for those events that belong toEt andEt+1 but not toPmax(Et) we
can not claim anything. In fact, let us consider the precedence graph in Fig.5.4(b).
At instant t = 3 all are inE3 but not inPmax because the overall contribution is
negative. The situation does not change untilt < 5. In fact, fort = 5 you have that
B5 = {t1} andE5 = {t2, t3}, thus the value ofru1j affectsLmax

j and moreover
botht2 andt3 are inserted intoPmax; the overall contribution is now,ru2j + ru3j =
−2 + 7 = 5 > 0, positive.

Even tough we cannot say anything aboutti /∈ Pmax(Et) andti ∈ Et+1, it is
possible to prove the following necessary condition:

Theorem 5.2 An elementt /∈ Pmax(Et) belongs toPmax(Et+1) only if one of the

following two conditions hold:

1. ∃t+i , with ruij > 0, s.t. t+i ∈ At ∩ (Et+1 ∪Bt+1)

2. ∃t−i , with ruij < 0, s.t. t−i ∈ (Et\Pmax(Et)) ∩Bt+1.

Proof: We prove the two cases separately:
Case 1: if ti ∈ At ∩ (Et+1 ∪ Bt+1) then a further element is added toPmax only
if ruij > 0. Indeed ifruij 6 0 then there exists at least one productiont+k that is
implied byt−i . Thus it is possible to put onlyt+k in the setPmax having a bigger value
of Lmax. Thenruij > 0.
Case 2: if it exists ti ∈ (Et\Pmax(Et)) ∩ Bt+1 then a further element is added to
Pmax only if ruij < 0. Indeed ifruij > 0 then there exists a time pointtk s.t. its
contributionΣrukj > 0 and the combined contribution ofti andtk is negative. But
this is possible only ifΣruij<0 that is at least a time pointtz ∈ (Et\Pmax(Et)) ∩
Bt+1 s.t. ruzj < 0. ¤

5.3. Boosting the Resource Envelope Computation 73

From the theorems introduced so far it is possible to deduce a set of rules which
allow an improvement in the computational cost of computing the resource envelope
reducing the number of times that it is necessary to recompute the setPmax (Theo-
rem5.1), and the size of set from which to extract it, fromEt+1 to Et+1\Pmax(Et)
(Theorem5.2). It is worth noting that this is also a fundamental improvement for
solving a given problem instance with a variant of a PCP-like solver that incorporates
resource envelopes for guidance.

Algorithm. Algorithm 5.1 describes how to incrementally compute the resource
envelope for a resourcerj . In this case we only show how to compute the value of
Lmax

j . The algorithm can be easily modified to compute the value forLmin
j .

As explained above an important point is thatLmax
j has been computed only at

at time instants in which eitherBt or Et changes. For any time pointti this can only
happen either at its earliest time valueest(ti) = −d(ti, t0) or at its latest time value
lst(ti) = d(t0, ti). We collect this set of significant instants as the first step of the
algorithm. In the main loop two aspects are taken in consideration:

- the events that move fromEt−1 to Bt;

- the possible change ofEt − Pmax.

These two aspects allow to reduce both the number of times a Max-Flow algorithm
is requested and the size of the Max-Flow problem: fromPmax to Et−1 − Pmax.

For the first case the variablesLmax andPmax are brought up to date easily. In the
other case if the situation described in theorem5.2holds then a Max-Flow algorithm
is requested to find possible new time points to insert intoPmax and to update the
value ofLmax

j .

Evaluation. Summarizing in this section we have introduced a new incremental
approach to compute the envelope for a stepwise-constant resource allocation. Unlike
the method proposed in[Muscettola, 2002] we do not apply a complete algorithm to
each time point but we try to take some advantages from the computation of the
maximum resource level value in the previous time point.

The first important contribution is that we describe for all possible kinds of
changes that can happen what to do and, moreover, just in some of these cases we
need to apply a complex approach. Even though in the worst case the bounds value
have to be computed at each time point, as in[Muscettola, 2002], the reader can
note that the proposed method can be applied on a reduced number of events, namely
those belonging to the setEt−Pmax(Et−1) which is a subset of the setEt taken into
account in[Muscettola, 2002]. This is the second contribution of the present work.

In conclusion, the analysis presented in this section has given the following con-
tributions:

74 5. A Least Commitment Approach

Algorithm 5.1 Compute the Resource Envelope Incrementally
Input: A scheduling problem

Output: The resource envelope

collect and sort all the significant time instant,est(ti) andlft(ti) ∀ti
computeB0, E0, andA0

Lmax
j (−1) =

∑
ti∈B0

ruij

Pmax = ∅
for all the significant time instantt do

Lmax
j (t) = Lmax

j (t− 1)

updateBt, Et andAt

for each eventsti such that(ti ∈ Bt) ∧ (ti ∈ Et−1) do

if ti ∈ Pmax then

Pmax = Pmax − {t1}
else

Lmax
j (t) = Lmax

j (t) + ruij

if (∃ti : ruij > 0 ∧ ti ∈ Et ∩ Bt−1) ∨ (∃ti : ruij < 0 ∧ ti ∈ Bt ∩ (Et−1 − Pmax))

then

∆Pmax ← maxflow(Et−1 − Pmax)

Pmax = Pmax ∪∆Pmax

Lmax
j (t) = Lmax

j (t) +
∑

ti∈∆Pmax
ruij

return Lmax
j

- the use of the “maxflow” algorithm is not neccessary in all the time points.
Indeed it is possible to apply a trivial operation to update the value ofLmax

j

- the “maxflow” algorithm is applied on the problem associated to the setEt −
Pmax(Et−1) rather than the one associated to its supersetEt.

To evaluate the actual improvement obtainable using these two rules we have have
carried out a set of experiments using the benchmark problems described in[Neu-
mann and Schwindt, 1999]. This benchmark consists of fours sets of different size
10 × 5, 20 × 5, 50 × 5 and100 × 5 (number of activities× number of resources).
Figure5.5shows a comparison of the average CPU times required to compute the re-
source envelope for any instance of the benchmark. The three curves show the CPU
time with the original approach, using the first rule and using both the incremental
rules. It is evident how these rules are able to overcome the drawback of applying
a Max Flow method at each step making it useful also for larger problems. In the
Sect.5.4.3we also show the effects of these rules embedded in a resource envelope
scheduler.

5.3. Boosting the Resource Envelope Computation 75

0

2000

4000

6000

8000

10000

12000

14000

10 20 30 40 50 60 70 80 90 100

original envelope
with first rule

with both rules

Figure 5.5:Comparison of the CPU times required to compute the resource envelope

with the different methods

5.3.1 Other incremental approaches in the literature

Some other works have recently addressed the problem of reducing the high compu-
tational cost that the use of the resource envelope to guide the search process implies.
In general, there are two places where incremental computation can be leveraged:
(1) in the computation of the envelopes across points of discontinuity (for the same
set of events and constraints), and (2) in the computation of the envelopes when new
events and constraints (reflecting the refinement of partial plans) are added.

While our work follows the first approach, the work described in[Satish Kumar,
2003] investigates the second point. Starting from the maximum flow at one stage,
the method consists in computing the maximum flow for the next stage by either
minimally reducing the flow (if nodes and/or edges have been deleted) or minimally
increasing the flow (in case new nodes and/or edges are posted). Even though the
approach is based on the incremental computation of a Max-Flow problem, it does
not consider the ordering of the time points present in the problem, and this leads to
missing the improvement of the asymptotic complexity.

The work by[Muscettola, 2004] is on the same line as ours. In particular the ap-
proach described in the previous section and Muscettola’s work has been developed
independently and first presented at the same conference[Policellaet al., 2004b].
Muscettola describes similar properties and additionally proves that the combination
of these properties with specific Max-Flow algorithms leads to a time complexity
O(Maxflow(n,m,U)), wheren is the number of nodes,m the number of con-
straints,U the maximum capacity of an edge from the sourceσ or to the sinkτ , and

76 5. A Least Commitment Approach

Maxflow(n,m, U) is the time complexity of the Max-Flow algorithm.
It is worth noting as among the algorithm for which this results can be proved

there is the preflow-push algorithm[Goldberg and Tarjan, 1988] that has been used in
the actual implementation of our approach (for more details about the Max-Flow al-
gorithms which respect the previous property see Table 1 and Theorem 12 in[Muscet-
tola, 2004]).

5.4 EBA: the resource Envelope Based Algorithm

This section describes the first version of the Resource Envelope based scheduler,
EBA. The algorithm has been implemented following the template described in
Fig. 4.2. This consists in a greedy solver which iteratively analyzes the resource
envelope and posts a new constraint. Three variants of this algorithm have been ob-
tained using the different heuristics to solve contention peaks described in Sect.4.3.
In spite of its simplicity, this approach has been pursued to identify the drawbacks of
using resource envelope based solver and to single out possible ways to solve them.

Even though different points, heuristics, resource envelope computation (incre-
mental or not), have been already described, one aspect is still missing: how to detect
a peak on a resource envelope. In Sect.5.4.1we discuss this aspect and analyze two
different alternatives. We then give the results obtained applying the three different
variants of theEBA algorithm to well known RCPSP/max benchmark sets.

5.4.1 Detecting peaks on resource envelopes

As mentioned before the resource envelope represents the tightest bound for the re-
source usage given a set of temporal alternatives3 for each activity. In practice the
envelope can be used as a means to analyze the current situation looking for possible
flaws. Indeed, if the value of the resource envelope does not respect the capacity
constraints then the current situation is not admissible, or more precisely, there exists
at least a temporal solutions ∈ ST which is not feasible (s /∈ S). At this point it
is necessary to extract from the current situation thecontention peak– i.e. a set of
activities – which leads to a flaw.

A basic method to collect peaks is used in[Policellaet al., 2003] in the case that
the activities require only renewable resources4. In this case the effect of an activity
stops as soon as the its execution stops and then it is possible to find the activities
which contribute to the peak by just looking at the time interval associated with an
over-allocation (under-allocation). The method consists of the following three steps:

1. compute the resource envelope profile;

3This situation can be represented as a graph.
4This is the case of the RCPSP/max.

5.4.EBA: the resource Envelope Based Algorithm 77

1

a2

a3

a1

2

Figure 5.6:Resource Envelope: aliasing effect in the conflict collection.

2. detect intervals of over-allocation (under-allocation);

3. collect the set of activities which can be potentially executed in this interval.

Unfortunately this approach presents a major drawback. Indeed it can pick activities
which are already ordered. This is a not negligible aspect, in fact once a contention
peak is selected we look for any pair of its activities to find a new ordering precedence
to post. Thus this way of selecting the peaks can lead to either consider already or-
dered activities or, worse, to post redundant constraints. For example, let us consider
the following problem (see Fig.5.6): a binary resource and a set of three activities
a1, a2 anda3. Any activity has the same interval of allocation,[0,∞), and moreover
a precedence constraint between the pair(a1, a2) is defined,a1 ≺ a2. In this case
the previous method collects the peak{a1, a2, a3}. This set implies to erroneously
consider the pair(a1, a2) among the possible conflicting activities. Whereas the only
two conflicts are(a1, a3) and(a2, a3).

To avoid this aliasing effect a more careful method has been introduced. This
method derives from considering the setsBt, Et, At andPmax(Et) described in the
previous section. This method is based on the particular assumption that each activity
simply uses resources; without production and/or consumption. It is worth noting that
the sets above are collected during the resource envelope computation thus their use
does not imply any computational overhead.

Also for this enhanced method the two first steps coincide with the first two of
the previous method: compute the resource envelope and match it with the resource
capacity to find possible intervals of over-allocation. Then in the following step, the
contention peaks are collected according to the following rules:

- pick any activityai such that the time point associated with its start time is
in Pmax(Et) whereas the time point associated with its end time is not in
Pmax(Et), that is:

contention peak = {ai|sti ∈ Pmax(Et) ∧ eti /∈ Pmax(Et)}.

- to avoid collecting redundant contention peaks, the collection of a new con-
tention peak is performed only if:

78 5. A Least Commitment Approach

1

a4

a1

a3 a5

a2

Figure 5.7:Resource Envelope: detection of maximal peaks.

(a) there exists at least an activityai such that the time point associated to its
end time,eti, moves fromAt−1 to Bt ∪Et (i.e. eti ∈ At−1 ∩ (Bt ∪Et));

(b) there exists at least an activityaj such that the time point associated to
its start time,stj , moved inPmax since the last time a conflict peak has
been collected.

The first rule is necessary to identify if an activityai is actually contributing to the
value ofLmax

j . In fact while the end time belongs toPmax the start time belongs
to Pmax ∪ Bt. Thus the effects of the two events are balanced out, giving a void
contribution to the resource envelope value. For instance in the case in Fig.5.6 the
more informed method selects the two peaks:{a1, a3} and{a2, a3}.

The second rule is necessary to avoid the collection of redundant peaks. Let us
consider the example in Fig.5.7: here you are five activities each one requiring the
same binary resource. The arrows represent the possible interval of allocation of each
activity. If the peaks were collected considering only the interval of over allocation,
we would have the following result:{a1, a2}, {a1, a2, a3}, {a1, a4} and{a1, a4, a5}.
It is possible to note that the first and the third set are subsets of, respectively, the
second and the fourth. Considering instead the changes into bothAt andBt, we
are able to compute non-redundant sets, in the case of the example{a1, a2, a3} and
{a1, a4, a5}.

Algorithm 5.2summarizes the approach to collect the conflicting peaks. It starts
by sorting all the time points, then, it runs over them. Ifti is the start time of an
activity and is also a new element ofPmax then the activity is added to the setPeak.
If ti is instead the end time of an activity, if at least one new element has been added in
Peak since the lastPeak was collected, thenPeak is added intoCollected Peaks.
We conclude by recalling that in the results shown in the next section we consider
only the second method to collect peaks.

5.4.EBA: the resource Envelope Based Algorithm 79

Algorithm 5.2 Collecting Peak on the Resource Envelope
Input: the resource envelope for the current situation

Output: the set of contention peaks

sort the time pointsti

Collected Peaks = ∅
Peak = ∅
for all the time pointsti do

if ti is start time ofak then

opp

if ti ∈ Pmax(Et)− Pmax(Et−1) then

Peak = Peak ∪ {ak}
new element = true

else

if ti ∈ (At−1 ∩ (Bt ∪ Et)) then

if new element then

Collected Peaks = Collected Peaks ∪ {Peak}
new element = false

Peak = Peak − {ak}
return Collected Peaks

5.4.2 Results

In this section we compare the proposed set of algorithms with respect to our def-
inition of robustness and, moreover, we analyze to what extent temporally flexible
solutions are alsorobustsolutions, i.e. solutions which are able toabsorbunexpected
modifications. We compare the performance of each algorithm5 on the benchmark
problems defined in[Kolisch et al., 1998]. This benchmark consists of three sets
J10, J20 andJ30 of 270 problem instances of different size10 × 5, 20 × 5 and
30× 5 (number of activities× number of resources).

In Sect.3.5we have introduced two metrics for robustness:fldt andflex. Both
these metrics are related with the number of feasible solutionscontainedin aPOS.
In particular,flex is directly related to the number of independent pairs of activities
(no precedence constraint) in a partial order schedule. On the contrary, the disruptibil-
ity dsrp is related with thestability of a solution, such that we consider executions
where only one unexpected event at a time can occur (e.g., activity duration lasts
longer than expected or the start time of an activity is shifted forward). We report as

5All the algorithms presented here are implemented in C++ and the CPU times presented in the

following tables are obtained on a Pentium 4-1500 MHz processor under Windows XP.

80 5. A Least Commitment Approach

|flex| |fldt|
J10 J20 J30 J10 J20 J30

EBA 0.14 0.16 0.23 0.63 0.64 0.69

EBA+MCS linear 0.17 0.15 0.18 0.65 0.60 0.59

EBA+MCS quadratic 0.16 0.13 0.16 0.65 0.58 0.56

Table 5.1:|flex| and|fldt|

|dsrp|
J10 J20 J30

EBA 0.53 0.58 0.58

EBA+MCS linear 0.56 0.56 0.57

EBA+MCS quadratic 0.55 0.57 0.56

Table 5.2:|dsrp|

a result a value related to the average number of activities affected (number of start
time changes) by the set of unexpected events.

Table5.1and5.2present the main results according to the three normalized val-
ues|flex|, |fldt|, and|dsrp|. In each case, the higher the value, the better the quality
of the corresponding solutions. In addition, Table5.3complements our experimental
analysis with four more results: (1) percentage of problems solved for each bench-
mark set, (2) average CPU-time in seconds spent to solve instances of the problem,
(3) average minimum makespan and (4) the number of leveling constraints posted to
solve a problem. It is important to observe that the three variants of theEBA algo-
rithm present different degrees of effectiveness (see%solved in Table5.3). Thus, to
have a fair comparison among the different variants, the experimental results in this
section are computed with respect to the subset of problem instances solved by all
three approaches.

It is possible to note from the results shown in Table5.1 that the simplestEBA

variant overcomes the other two: in fact we found that in the case of the larger bench-
mark set,J30, its |flex| value is0.23 whereas it is0.16 in the “quadraticMCS”
variant. The gap becomes larger if we consider|fldt|: 0.69 versus0.56. Unfortu-
nately this result has to be reconsidered in the light of the different effectiveness of the
EBA variants. Indeed even though the “quadraticMCS” variant presents worse qual-
ity values, it is able to solve almost twice the instances solved through the simplest
variants.

The results obtained with respect to the disruptibility metric (Table5.2) show

5.4.EBA: the resource Envelope Based Algorithm 81

%solved makespan

J10 J20 J30 J10 J20 J30

EBA 77.04 50.74 43.33 58.31 96.48 118.17

EBA+MCS linear 85.19 71.11 68.89 55.29 92.65 112.14

EBA+MCS quadratic 97.78 89.63 82.22 55.47 94.03 116.10

CPU-time (secs) posted constraints

J10 J20 J30 J10 J20 J30

EBA 0.11 1.37 7.53 11.54 33.40 63.29

EBA+MCS linear 0.18 1.83 8.82 11.12 32.87 56.84

EBA+MCS quadratic 0.19 1.99 10.94 12.38 34.98 59.64

Table 5.3:Comparison of both theEBA approaches.

the same behavior of the threeEBA variants, even if in this case the differences are
less noticeable. On the other hand the use of more sophisticated heuristics requires a
greater CPU time as it is possible to see in Table5.1but it also allows to obtain better
makespan values, though the approach is not oriented to optimize it.

5.4.3 A note on envelope efficiency

We end the section with a final remark about our research goals. The main aim of this
analysis has been producing robust solutions. In this respect,EBA is the first schedul-
ing algorithm to integrate the recent research results on exact bound computation
into a scheduling framework, and, in addition, we have improved the efficiency of
the envelope computation considerably with respect to the very preliminary version
presented in[Policellaet al., 2003].

We also want to underline the role in the reduction of computational cost played
by the properties described in Sect.5.3. Indeed, the computation of the envelope
implies that it is necessary to solve a Max-Flow problem for each time-point. As
indicated in[Muscettola, 2002], this leads to an overall complexity ofO(n4) which
can be reduced toO(n2.5) in practical cases. These computational requirements at
the present limit the effective application of the resource envelope6. The use of the
incremental properties described in the previous section speeds up the solving pro-
cess by avoiding re-computation of the envelope at each step of the search. More-
over Theorem5.2 allows us to apply the Max-Flow algorithm to a subset ofEt+1:
Et+1\Pmax(Et).

6In the current implementation we use a Max-Flow method based on thepre-flowconcept[Goldberg

and Tarjan, 1988].

82 5. A Least Commitment Approach

J10

scratch incremental ∆%

EBA 0.21 0.11 48.1

EBA+MCS linear 0.40 0.18 55.8

EBA+MCS quadratic 0.41 0.19 53.2

J20

scratch incremental ∆%

EBA 3.65 1.37 62.5

EBA+MCS linear 4.64 1.83 60.6

EBA+MCS quadratic 5.13 1.99 61.2

J30

scratch incremental ∆%

EBA 15.37 7.53 51.0

EBA+MCS linear 23.27 8.82 62.1

EBA+MCS quadratic 30.47 10.94 64.1

Table 5.4:Comparison between the CPU-time (secs) required by theEBA approaches

using both the incremental and no-incremental method for computing the resource

envelope.

We have seen in Fig.5.5 the effectiveness of the rules introduced in reducing
the CPU time required to compute a resource envelope. Now, we show the benefits
obtained using these rules in the whole solving process (Table5.4). In particular,
for each configuration of theEBA algorithm and each benchmark set (J10, J20 and
J30) there are three different results: the average CPU-time in seconds for solving
a benchmark set without incremental computation (scratchcolumn), as the previ-
ous one but with the use of the incremental properties (incrementalcolumn) and the
obtained percentage improvement over the non-incremental version ofEBA (∆% col-
umn). The results confirm the effectiveness of the incremental computation which is
able to improve the CPU-time from a minimum of48.1% to a maximum of64.1%
over the scratch computation.

5.5 Increasing the efficiency ofEBA

The results described in the previous sections have shown how theEBA methods are
often not able to find a solution. In this section we introduce some remarks on the

5.5. Increasing the efficiency ofEBA 83

method and we describe a possible expedient to overcome this inefficiency.

One of the problems of the previous approach lies in the heuristics used. Indeed
they are often not able to select the “right” way toward a solution. Let us consider
again how each heuristic works:

- first, the current situation is analyzed using the resource envelope;

- the contention peaks (temporal interval for which the the resource envelope is
greater than the resource capacity) are collected;

- a new constraint is synthesized (and then posted) to remove one of the current
peaks.

These three steps are repeated until a situation without any peak is reached. The main
problem of this approach consists in the fact that the peaks selected at each step are
hypothetical. In other words when a peak is detected it means that one of the possible
temporal allocations of the activities creates a flaw: but not all.

In this hypothetical situation is difficult to find a search method able to pursue
an effective set of decisions. In this respect,EBA methods are somewhat similar to
partial order planning approaches for temporal domains. Also in the latter case a set
of situations is taken into account during the solving process. Even though this ap-
proach allows to directly obtain flexible solutions, it turns out to be very ineffective,
especially, if it is compared with “positioned constrained” planners[Do and Kamb-
hampati, 2003]. In practice, if on one hand the knowledge can improve the efficiency
of the solving process, on the other hand, too much knowledge can overwhelm the
decision process and result in degraded performance (see for instance the results in
[Zwebenet al., 1994]).

Thus one of the reasons for the lack of efficiency in theEBAmethods is the need
to consider several possible situations at each step. To reduce the search space and
then focus the attention of the heuristics toward more promising directions we enrich
the EBA methods with a set of constraint propagation rules. These aim at reducing
the search space by pruning some of the non-feasible alternatives present in the set of
temporal solutions taken into account.

To improve theEBA approaches we also modify the procedures to explore a larger
subset of the search space. The approach consists of an iterative application of the
EBA method. In order to allow this iterative procedure to explore different portions
of the search space we use randomized versions of the three heuristics.

In the remaining of the section we first recall the concept of constraint propaga-
tion and then the set of rules implemented. Afterward, we describe the template of
the iterative procedure and, finally, the results of the new approach are discussed.

84 5. A Least Commitment Approach

5.5.1 Constraint Propagation

In the definition of a problem, constraints are introduced to describe the set of consis-
tent solutions. These constraints can be also used in an active mode to remove values
from the domains of the variables, deduce new constraints and detect inconsistent
decisions. This process is called Constraint Propagation.

As the RCPSP-max problem is NP-hard, constraint propagation cannot be com-
plete. This means that some but not all the consequences of the set of constraints are
deduced. In particular, constraint propagation cannot detect all the inconsistencies.

In the approaches described so far we have used one type of propagation: tempo-
ral propagation. In fact given a set of activities and a set of constraints among them,
we extract all the consistent temporal solutions. This is possible because the temporal
problem of a scheduling problem7 is solvable in polynomial time. Indeed, it can be
represented like a graph where each node is an activity and each temporal constraint
is represented through an edge between the pair of nodes associated with the activi-
ties which it constrains8. Based on this representation, applying an “All pair shortest
path” algorithm, it is possible to deduce the feasible domain for each activity.

A further reduction of the search space can be obtained by considering also the
combinatorial aspects of a scheduling problem: the resource constraints. There are
different techniques for resource propagation. Thetimetablingtechniques consider
the possible usage of the resource at any timet: the domain of any activity is re-
stricted by removing the time instants that would lead to a violation of the resource
constraints. A different kind of technique is based on the analysis of the possible
iterations among activities:edge-findingandenergetic reasoning. These techniques
instead of analyzing the time instantt, consider a subset of activities competing for
the same resource and perform propagation based on the relative position of each
activity in the set. For a thorough analysis of constraint propagation and, more in
general, on constraint programming approaches for scheduling problems we refer
the reader to[Baptisteet al., 2001]. A more specific analysis of existing approaches
to propagate resource constraints can be found also in[Laborie, 2003]. In the re-
maining of the section we describe one of the propagation techniques introduced in
[Laborie, 2003] which has been used in theEBA methods.

Balance Constraints

In this section we recall the balance constraints techniques as they are previously
introduced in[Laborie, 2003].

The basic idea of the balance constraint is to compute, for any time pointti, a
lower and upper bound on the resource level just before and afterti. This approach is
based on a different partition with respect to the one in Fig.5.2. In this case instead of

7i.e., a scheduling problem where there are only temporal constraints and no resource constraints.
8This representation is well known in the literature with the name “Activity on the node”.

5.5. Increasing the efficiency ofEBA 85

considering the time interval of any activity, the relations among them are considered.
From this the following partition arises:

- S(ti), the set of time points simultaneous withti;

- B(ti), the set of time points which proceedti;

- BS(ti), the set of time points that can be scheduled before or in parallel with
ti;

- A(ti), the set of time points afterti;

- AS(ti), the set of time points that can be scheduled after or in parallel withti;

- U(ti), the set of time points which cannot be ranked with respect toti.

Based on these sets it is possible to define four different bounds for the resource
usage:L<

max(ti), L>
max(ti), L<

min(ti) andL>
min(ti), which represent respectively, the

upper bound before and afterti and the lower bound before and afterti. For instance
you have:

L<
max(ti) =

∑

tj∈P∩(B(ti)∪BS(ti)∪U(ti))

q(tj) +
∑

tj∈C∩B(ti)

q(tj)

whereP andC are respectively the set of time points which have associated a pro-
duction and a consumption of a resource9.

Considering these bounds it is possible to discover new precedence relations
among the activities. The previous formula can be re-written as it follows:

L<
max(ti) =

∑

tj∈B(ti)

q(tj) +
∑

tj∈P∩(BS(ti)∪U(ti))

q(tj)

if the first term,
∑

tj∈B(ti)
q(tj), is negative it means that some of the productions in

BS(ti)∪U(ti) have to be scheduled beforeti to have a correct usage of the resource.
Moreover, if there exists a time pointtj ∈ BS(ti) ∪ U(ti) such that

∑

tz∈P∩(BS(ti)∪U(ti))∩(B(tj)∪BS(tj)∪U(tj))

q(tz) < −
∑

tj∈B(ti)

q(tj)

then, if we had the constraintsti ≤ tj we again would not have enough resource for
the time pointti. Thus the constrainttj < ti is deduced.

9that is,tj ∈ P (tj ∈ C) if q(tj) > 0 (q(tj) < 0).

86 5. A Least Commitment Approach

Algorithm 5.3 iEBA template
Input: a problemP

Output: a partial order schedule

POS∗ ← ∅
loop

POS ← EBArndm(P)

if POS better thanPOS∗ then

POS∗ ←POS
if termination criterion= true then

break

return POS∗

5.5.2 An Iterative Sampling Procedure

In this section we describe an extension of theEBA methods introduced above, to-
ward a multi-pass, iterative sampling procedure. This approach aims at improving
the efficiency of the solving process increasing the number of solved problems. Fur-
thermore, the possibility to choose among different solutions for the same problem
allows to increase the quality of the solutions found.

Figure 5.3 describes the template for the iterative sampling procedure named
iEBA. The algorithm consists in the iteration of the functionEBArndm(P) that is a
randomized version – it uses a randomized version of the heuristics described above
– of theEBA algorithm. Given a problemP , iEBA returns a partial order schedule,
POS, if it is able to find it, otherwise it returns the empty set. Even though this
algorithm is not complete, it turns out to be very useful to face difficult problems like
the ones which are the object of our study.

The randomized version of theEBA method is obtained by performing a pseudo-
random selection of the decision[Oddi and Smith, 1997]. Given an heuristich, any
conflict c has an heuristic valueh(c). In theEBA methods the conflict which has the
maximum heuristic valuehmax(c) is selected. In the case of theiEBA method we
rather select, randomly, one among the best conflicts, with respect to their heuristic
value. More precisely, given a value0 ≤ β ≤ 1 we randomly select one of the
conflictsci among those which hold the following inequality:

(1− β)hmax(c) ≤ h(ci) ≤ hmax(c).

It is possible to note that ifβ = 0 the choice is completely random, whereas ifβ = 1
the best heuristic value is selected (as in the case ofEBA). Different termination
criteria can be used to stop the loop: for instance, the CPU time or the number of iter-
ations. In our implementation we used the latter criterion. Moreover, in the empirical
evaluation presented in the next section, the makespan value is used to select the best

5.5. Increasing the efficiency ofEBA 87

solution.
The approach presented assures us to exploit a larger subset of the search space.

Besides the necessity to explore different paths in the search space, the idea of using
a pseudo random selection of the heuristics is useful for the following two factors:
(1) different decisions can have the same heuristic value and in this case they are
discriminated only for the way in which these decisions are ranked; (2) the selection
of the best decision may not lead to the best solution. Indeed the random selection
allows to overcome these two possible faults.

5.5.3 Results

In this section we discuss the results obtained using the iterative sampling version
of the EBA method,iEBA. The results we show refer to the benchmark setJ30. In
producing the results we consider two different levels of iterations: 3 and 10 restarts.
Moreover we compare also the results obtained using or not the “balance constraint”
propagation rules described above. This, together with the use of three alternative
heuristics, produces twelve different variants of theiEBA methods.

Table 5.5 shows the solving ability achieved using an iterative version of the
EBA methods,iEBA, enriched with the use of the resource propagation techniques
described above. We can compare these results with the ones obtained by using the
threeEBA variants (see Table5.3).

%solved 3 restarts 10 restarts

propagation n y n y

iEBA 44.81 47.78 46.67 48.89

iEBA+MCS linear 84.81 88.54 89.63 94.81

iEBA+MCS quadratic 92.59 94.44 95.56 97.41

Table 5.5: iEBAs efficiency with respect to the number of iterations and the use of

resource propagation

It is possible to note that, as expected, using different restarts we are able to
increase the number of solved problems with respect to theEBA variants. Moreover
using the propagation rules we find a further improvement that ranges from 1% to
about 6%, depending to the method and on the number of iterations.

Considering the single variant of theiEBA method, we can notice (first row in
Table5.5) that in case we use the simplest heuristic (i.e. the one withoutMCS) the
percentage of solved problem is still less than 50%: also the use of the propagation
rules does not give a noticeable improvement (slightly greater than 1%).

In the case ofiEBA+MCS linear we have the great improvement both with respect
to the result obtained byEBA+MCS linear, and with respect to the use of resource

88 5. A Least Commitment Approach

propagation. Indeed we found an improvement which ranges from 16%, in the case
of the 3 restart no propagation variant, to 26%, in case of the 10 restarts with resource
propagation variant. Furthermore, it is possible to note that in this case the use of the
resource propagation gives the greater difference over all the results. Indeed we have
a mean difference between using or not the resource propagation of about 5%.

As far as the last variant is concerned, we have that even though it gives the best
value in terms of solved problems it does not benefit from the iterative procedure and
the propagation rules, as the previous variant.

CPU time (secs) 3 restarts 10 restarts

propagation n y n y

iEBA 17.049 15.945 56.83 53.15

iEBA+MCS linear 16.629 16.563 55.43 55.21

iEBA+MCS quadratic 17.799 17.586 59.33 58.62

Table 5.6:CPU time

Table5.6shows the CPU time values for the different variants of theiEBA method.
It is important to note that the use of constraint propagation increases the time re-
quested. This aspect can be neglected in the case ofiEBA+MCS linear where the use
of resource propagation also increases the efficiency from88.51 to 94.81 in the case
of 10 restarts. This is less acceptable in the case of variants which use the quadratic
MCSİn fact in this case the efficiency is already high and propagation rules give a low
improvement.

|flex| 3 restarts 10 restarts

propagation n y n y

iEBA 0.15 0.15 0.15 0.15

iEBA+MCS linear 0.12 0.12 0.12 0.12

iEBA+MCS quadratic 0.13 0.12 0.14 0.14

Table 5.7:Flexibility results

Table 5.7, 5.8 and 5.9 present respectively the results obtained for flexibility
(flex), fluidity (fldt) and makespan (mk) (we remind the reader that for all three
metrics, the higher the better). From these it is possible to notice different aspects:

1. for theflex metric it is possible to note that the results obtained with the new
methods are generally worse than theEBA variants. In fact, for instance, we
have that theEBA+linearMCS has a value of0.18, whereas the iterative version,
iEBA+linearMCS , presents a result equals to0.12 in the case of the10 restarts
variant that uses the propagation rules. The result stems from the use of the

5.5. Increasing the efficiency ofEBA 89

makespan criterion to evaluate the different partial order schedules produced
during the main loop of the algorithm in Fig.5.3. Also comparing the different
results obtained according to the number of restarts (3 or 10) and the use of
resource propagation, we can see that there are no big variations.

|fldt| 3 restarts 10 restarts

propagation n y n y

iEBA 0.59 0.59 0.57 0.57

iEBA+MCS linear 0.61 0.60 0.59 0.59

iEBA+MCS quadratic 0.60 0.59 0.59 0.59

Table 5.8:Fluidity results

2. Considering thefldt metric we have, instead, a preservation of the quality
of the solutions found. We have for both theMCS variants of the iterative
methodiEBA better values than the ones obtained forEBA methods. In case
of iEBA with quadraticMCS (3 restarts no propagation version) we have an
improvement from0.56 to 0.60. A different aspect can be noticed observing
the use of propagation rules. In fact, these turn out to produce partial order
schedules with a lower fluidity factor.

mk 3 restarts 10 restarts

propagation n y n y

iEBA 106.41 106.38 106.92 106.38

iEBA+MCS linear 103.75 103.38 103.05 102.2

iEBA+MCS quadratic 102.44 102.13 101.76 101.35

Table 5.9:Makespan values

3. Table5.9 presents the average makespan values obtained. We have that the
makespan is improved with respect the non-iterative version. In case ofiEBA

+ quadraticMCS with 3 restarts and propagation there is an improvement of
about13% with respect to the non-iterative version (EBA+MCS quadratic in
Table5.3). Regarding the different makespan results obtained according to the
use, or not, of propagation, it is possible to see that, even though the use of
resource propagation helps to achieve better makespan values, there is only a
slight improvement.

90 5. A Least Commitment Approach

5.6 Conclusions

In this chapter we have described a least commitment approach for generating flex-
ible solutions. To obtain a least commitment approach we have used the resource
envelope recently introduced by Muscettola. This allows to compute the minimal
ad maximal bounds for the resource usage considering all the possible temporal so-
lutions admissible by a time ordering of the activities. This has produced the first
scheduler which integrates the resource envelope knowledge in the solving process.
The use of the resource envelope knowledge has required/allowed the study of differ-
ent related aspects:

- How to boost the envelope computation: in Sect5.3a set of properties to reduce
the complexity of computing the resource envelope have been described.

- How to manage the resource envelope to extract real conflicts: in Sect5.4.1
we have underlined how a superficial analysis of the resource envelope can
produce aliasing effects in identifying the activities that produce resource con-
flicts.

- Pruning useless information through constraint propagation: the use of re-
source constraint propagation has been investigated to discover possible un-
feasible solutions and increase the efficiency of using the resource envelope.

- More intensive analysis of the search space. To improve the solving process a
more intensive algorithm has been implemented to overcome the possible lack
of potency of heuristics choices.

To better understand the prospects of this approach it is worth comparing it with a
different method. In the next chapter we see the results that can be obtained using a
different approach for producing flexible solutions.

Chapter 6

Solve & Robustify

This chapter presents a different approach for building partial order schedules. Basi-
cally, this new method consists in building a flexible solution starting from a fixed-
time schedule, where a start time value for every activity is defined. We show here
that starting from a single solution of the scheduling problem it is possible to generate
a set of solutions in the form of a Partial Order Schedule,POS.

This alternative way of building flexible solutions has been motivated by the need
to exploit the characteristics of the fixed-time solutions to produce flexible solutions.
In fact preserving the quality of the fixed-time solutions in the final partial order
schedule, can give an appealing result. We show that the procedure used to obtain a
flexible solution maintains the original fixed-time solution among the set of sched-
ules described by thePOS. This guarantees that in the best case possible – i.e.,
no disruptions happen – the characteristics of the fixed-time solution are, at least,
preserved.

6.1 Introduction

Different needs – and, dually, different trade-offs between quality and computational
times – are addressed by different algorithms or combinations of solving techniques
in a meta-heuristic schema. The Solve & Robustify approach consists in a two step
procedure where fixed-time solutions built in a first phase are used to obtain partial
order schedules in an ensuing step. The proposed approach analyzes the two aspects
of finding a solution and building a flexible schedule, separately.

Basically, the approach is based on the assumption of independence between the
classical scheduling objectives – like minimizing the makespan – and the need to
obtain a robust (or flexible) solution. Even though this assumption is in general not
true, the two step approach can allow to exploitstate-of-the-artschedulers to ob-

91

92 6. Solve & Robustify

fail

solve robustifyproblem solution

Figure 6.1:The general two step – solve & robustify – schemata

tain optimal solutions with respect to the classical objectives. Therefore in a next
step a flexible solution is generated trying to preserve the optimality of the starting
schedule. Preserving the optimality can be very important when a low degree of un-
certainty is present. In this case the actual execution of the problem remains “close”
to theexpected value problem(i.e., the problem as described in input), therefore, the
characteristics of aPOS tend to maintain, due to necessary repairs, the new alloca-
tion of the activities close to the original schedule. It is intuitive that the closer the
two allocations the fewer the loss in objective function optimality.

Figure6.1shows a possible sketch of the two step approach. This is based on the
use of two separate modules: a greedy solver that has the aim of finding a first fixed-
time solution, and a “robustify” module where a partial order schedule is synthesized.
Different variants of the two step approach can be obtained by different combinations
of the two modules:

- find a solution through the greedy solver and then robustify it;

- find a solution through the greedy solver and then explore the space of all the
POSs obtainable from the starting solution and select the one which optimizes
a particular robustness metric;

- iterate a pseudo-random version of the greedy module to optimize the fixed-
time solution with respect to a specific metric. In the next step, robustify this
optimized solution;

- iterate a pseudo-random version of the greedy module to optimize the fixed-
time solution with respect to a specific metric. In the next step, explore the
space of all thePOSs obtainable from this optimized solution and select the
one which optimizes a particular robustness metric;

- for each fixed-time solution generated by the pseudo-random version of the
greedy algorithm find aPOS and select the one which optimizes a particular
robustness metric;

6.1. Introduction 93

- for each fixed-time solution generated by the pseudo-random version of the
greedy algorithm explore the space of allPOSs achievable from the fixed-time
solution and select the one which optimizes a particular robustness metric;

As the figure highlights, only in the first phase, in which the search for a solution
occurs, it is possible to fail (i.e., when it is not possible to find a first fixed-time
schedule), whereas in the Robustify step, whenever a starting schedule exists, it is
always possible to generate a partial order schedule.

A further remark concerns the generation of flexible schedules. In the case of
multi-capacitive resource problems, we have in general more than one possiblePOS
corresponding to a fixed-time schedule. On the contrary in the case of binary re-
sources, i.e. job shop problem, a fixed-time solution gives also a unique “lineariza-
tion” of all the activities. This aspect has supported and suggested the idea of explor-
ing the space of possiblePOSs obtainable from the same fixed-time schedule with
the aim of increasing robustness characteristics.

In the remaining of the chapter we describe the implementation of the introduced
approach and the results obtained. Section6.2 introduces a first, greedy, schemata
for the two step approach. Then in the following sections more intensive methods are
described and analyzed. But first, we conclude this introduction giving some further
comments about how the the Solve-and-Robustify compares with the envelope based
approaches described in Chapter5.

Solve & Robustify vs. Envelope based Approaches

Figure6.2 gives a sketched view of both the approaches with respect to the search
space. The different sets represent temporal solutions (they are subsets ofST) as-
sociated to a graph obtainable by posting new constraint on the initial scheduling
problem.

least commitment

Figure 6.2:Solve & Robustify vs. Envelope based Approaches

The use of the resource envelope (on the left hand picture) implies an iterative re-
duction of the space of all the possible temporal solutions until this set contains only

94 6. Solve & Robustify

feasible solutions. On the contrary, the two-step procedure first computes a single
solution (a point in the search space) then generalizes the result to obtain a set of so-
lutions (see the right hand picture in Fig.6.2). Thus on one hand the envelope-based
approach considers all the temporal solutions at each stage and tries to select deci-
sions which reduce as less as possible this set (i.e. least commitment). Conversely,
in the two step procedure the final objective, i.e. to obtain a partial order schedule,
is neglected in the first step where the actual goal is to find a feasible fixed-time so-
lution. Only in the successive phase the aim of building flexible solutions is taken
under consideration.

6.2 Coupling a solver with a robustify step

This section describes the implementation of the first alternative of the list introduced
in Sect.6.1. The approach is based on the use of a greedy algorithm to find a first –
fixed-time – solution. Therefore a post processing procedure (that is namedchaining)
is applied to obtain a partial order schedule. It is worth noting that it is possible to use
different methods for both producing the initial fixed-time solution and for generating
the flexible solution.

The section is organized in the following way: first, the greedy solver used to pro-
duce fixed-time solutions is described. Then the following subsection introduces the
chainingprocedure, the method used to synthesize flexible solutions starting from a
fixed-time schedule. The section ends showing the results obtained using this method.

6.2.1 The Earliest Start Time Algorithm - ESTA

The Earliest Start Time Algorithm –ESTA – is a greedy solver previously introduced
in [Cestaet al., 1998]. This algorithm has been used in the actual implementation of
a first solve and robustify method[Policellaet al., 2004b]. The algorithm consists
in a Precedence Constraint Posting approach (see Fig.4.2). Like the envelope based
methods it consists in the following three steps: evaluate the current situation; iden-
tify possible flaws (or conflicts) and the reasons which cause them; select and solve
one conflict by posting a new constraint. These steps are repeated until a solution –
situation without any flaw – is found. The main difference between Envelope based
methods andESTA is in the use of a different resource profile to evaluate the current
situation. In fact, theESTA algorithm reasons on theearliest start time profile. This
profile is obtained considering any activity allocated in its earliest start time.

Definition 6.1 (Earliest Start Time Profile) Let est(ti) be the earliest time value

for the time pointti. For each resourcerj we define the Earliest Start Time Profile as

6.2. Coupling a solver with a robustify step 95

the function:

Qest
j (t) =

∑

ti∈T ∧est(ti)6t

ruij

We recall that given a temporal constraint problem, that is a set of activities and
a set of temporal constraints1, the earliest and the latest start time for any activity
can be obtained through a polynomial algorithm based on the computation of the
shortest and longest path between a (dummy) source – posted at the origin – and
any activity. This can be accomplished with a computational complexityO(n2) by
using Dijkstra’s algorithm[Dijkstra, 1959]. Furthermore it is possible to prove that
two solutions of the temporal problem can be obtained allocating all the activities to
either their earliest or their latest start time2.

In the ESTA method the resource profile is computed according to one precise
fixed-time solution: the Earliest Start Time Solution. Therefore, unlike the Resource
Envelope, it analyzes a well-defined scenario rather than the range of all possible
temporal behaviors. It is worth noting that the key difference between the two ap-
proaches is that while the latter gives a measure in the worst-case hypothesis, the
former identifies “actual” conflicts in a particular situation. In other words, the first
approach says whatmayhappen in such a situation relative to the entire set of pos-
sible solutions, the second one, instead, whatwill happen in such a particular case.
Even though, using a precedence constraint posting method to solve the problem, we
always have a set of temporally consistent solutionsST , the ESTA method ensures
resource-consistency of only one of these solutions (i.e.,ST * S). Below, we de-
scribe a method for overcoming this limitation and generalizing an early start time
solution into a partial ordered schedule.

Likewise the resource envelope analysis, in the particular case of activities that do
not consume/produce resources, we use a peak detection approach to avoid sampling
redundant peaks. Specifically, we have followed the strategy described in[Cestaet
al., 2002] that collects sets of maximal peaks, i.e., sets of activities such that none
of the sets is a subset of the others. Even though this approach allows to avoid the
collection of redundant peaks, it is still possible to have a sameMCS in two (or more)
different peaks. Furthemore, like theEBA method, also forESTA we have three ver-
sions according to which of the three heuristics introduced in Sect.4.3 is used to
guide the search process.

6.2.2 Producing a Partial Order Schedule with Chaining

A first method for producing flexible solutions from an earliest start time solution
has been introduced in[Cestaet al., 1998]. This consists in producing a flexible so-
lution where achainof activities is associated with each unit of each resource. In this

1See inequalities (3.1) and (3.2).
2Further details about temporal constraint problem can be found in[Dechteret al., 1991].

96 6. Solve & Robustify

Algorithm 6.1 Chaining procedure
Input: a problemP and one of its fixed-time schedulesS

Output: A partial order solutionPOS
POS← P

Sort all the activities according to their start times inS

Initialize the all chains empty

for all resourcerj do

for all activity ai do

for 1 to reqij do

k ← SelectChain(ai, rj)

ak ← last(k)

AddConstraint(POSch, ak ≺ ai)

last(k) ← ai

return POS

section we generalize that method for the more complex resource model included in
the scheduling problem considered here (RCPSP/max). Given a solution, a transfor-
mation method, namedchaining, is defined that proceeds to create sets of chains of
activities. Algorithm6.1 describes the chaining process. This operation is accom-
plished by deleting all previously posted leveling constraints and using the resource
profiles of the earliest start solution to post a new set of constraints.

The concept of chaining form refers to aPOS in which a chain of activities
is associated with each unit of each resource. In the case of scheduling problems
involving activities which require only a single unit of a resource, a solution is in a
chaining formif for each unitj of a resourcerk it is possible to identify a set (possibly
empty) of activities{aj,0, aj,1, . . . , aj,Nj} such thataj,i−1 is executed beforeaj,i,
aj,i−1 ≺ aj,i for i = 1, . . . , Nj . This definition can be easily extended to the general
case where each activity can require one or more units of one or more resources. In
this case, any activity requiringreqik > 1 resource units can be replaced with a set
of reqik activities (each requiring one unit) that are constrained to execute in parallel.
As a consequence, in the general case, an activity is allocated to as many chains as
necessary to fulfill its resource requirements.

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

f e

d

a

c

b g

f

Figure 6.3:A partial order schedule in chaining form

6.2. Coupling a solver with a robustify step 97

The example in Fig.6.3 represents a partial order schedule for a problem with a
single resourcerk with capacityck = 4. The bold edges represent the set of chains
and the thin edges designate further constraints defined in the problem. The size of
each activity reflects both its duration and its resource requirement, respectively, the
length represent the duration while the height the request. Hence, the gray activities
require more than one unit of resource. This implies that both of them are allocated
to more than one chain. Algorithm6.1 uses a set of queues,queuejk, to represent
each capacity unit of the resourcerj . The algorithm starts by sorting the set of activ-
ities according to their start time in the solutionS. Then it proceeds to allocate the
capacity units needed for each activity. It selects only the capacity units available at
the start time of the activity. Then when an activity is allocated to a queue, a new con-
straint between this activity and the previous one in the queue is posted. Letm and
maxcap be respectively the number of resources and the maximum capacity among
the resources, the complexity of the chaining algorithm isO(n log n+n·m·maxcap)
wheren is the number of activities.

By coupling the chaining method with theESTA algorithm described above it is
possible to obtain three different algorithm variants according to the heuristic used in
theESTA algorithm (see Sect.4.3):

- ESTAC – theESTA algorithm uses the slack based heuristic as it has been de-
scribed in[Smith and Cheng, 1993];

- ESTAC+MCS linear – theESTA algorithm uses theMCS linear sampling;

- ESTAC+MCS quadratic – theESTA algorithm uses theMCS quadratic sampling.

In the next section we compare the results obtained by using these algorithms with
the three variants of theEBA algorithm.

Before concluding we want to remark that concepts similar to the idea of aChain-
ing Form schedule have also been used elsewhere: for example, the Transportation
Network introduced in[Artigues and Roubellat, 2000], and the Resource Flow Net-
work described in[Leus and Herroelen, 2004] are based on equivalent structural
assumptions. The common thread underlying these particular representations of the
schedule is the characteristic that activities which require the same resource units
are linked via precedence constraints into precedence chains. Given this structure,
each constraint becomes more than just a simple precedence. It also represents a
producer-consumerrelation, allowing each activity toknowthe precise set of prede-
cessors whichsupplythe units of resource it requires for execution. In this way, the
resulting network of chains can be interpreted as a flow of resource units through the
schedule; each time an activity terminates its execution, it passes its resource unit(s)
on to its successors. It is clear that this representation is robust if and only if there is
enough temporal slack allowing chained activities to move “back and forth”.

98 6. Solve & Robustify

6.2.3 TheESTAC algorithm: Results

In this section we compare the results obtained in Sect.5.4.2with the threeESTAC

variants. This comparison is obtained using the same benchmark problemsJ10, J20
andJ30. Also in this case in order to produce an evaluation of the three metrics
fldt, flex anddsrp that is independent from the problem dimension, we show their
normalized value (see formula (3.5)).

|flex| |fldt|
J10 J20 J30 J10 J20 J30

EBA 0.14 0.16 0.23 0.63 0.64 0.69

EBA+MCS linear 0.17 0.15 0.18 0.65 0.60 0.59

EBA+MCS quadratic 0.16 0.13 0.16 0.65 0.58 0.56

ESTAC 0.19 0.20 0.25 0.67 0.65 0.60

ESTAC+MCS linear 0.20 0.20 0.26 0.66 0.65 0.62

ESTAC+MCS quadratic 0.20 0.19 0.25 0.68 0.64 0.64

Table 6.1:|flex|, |fldt|.

|dsrp|
J10 J20 J30

EBA 0.53 0.58 0.58

EBA+MCS linear 0.56 0.56 0.57

EBA+MCS quadratic 0.55 0.57 0.56

ESTAC 0.64 0.74 0.73

ESTAC+MCS linear 0.65 0.73 0.72

ESTAC+MCS quadratic 0.65 0.72 0.72

Table 6.2:|dsrp|.

First, we observe that all six tested strategies are not able to solve all the prob-
lems in the benchmark setsJ10, J20 andJ30. The first column of Table6.3shows
the percentage of solved problems by each strategy. This observation is particularly
important, because the rest of the experimental results in this section are computed
with respect to the subset of problem instances solved by all six approaches (both
EBA’s andESTAC ’s variants).

Table6.1and Table6.2present the main results for the six different approaches,
according to the three incremental metrics introduced above. In each case, the higher

6.2. Coupling a solver with a robustify step 99

% solved makespan

J10 J20 J30 J10 J20 J30

EBA 77.04 50.74 43.33 58.31 96.48 118.17

EBA+MCS linear 85.19 71.11 68.89 55.29 92.65 112.14

EBA+MCS quadratic 97.78 89.63 82.22 55.47 94.03 116.10

ESTAC 96.30 95.56 96.30 47.35 72.90 79.21

ESTAC+MCS linear 98.15 96.67 96.67 46.63 72.45 78.45

ESTAC+MCS quadratic 98.15 96.67 97.04 46.70 72.75 78.55

CPU-time (secs) posted constraints

J10 J20 J30 J10 J20 J30

EBA 0.11 1.37 7.53 11.54 33.40 63.29

EBA+MCS linear 0.18 1.83 8.82 11.12 32.87 56.84

EBA+MCS quadratic 0.19 1.99 10.94 12.38 34.98 59.64

ESTAC 0.02 0.12 0.41 6.40 18.69 35.10

ESTAC+MCS linear 0.03 0.18 0.74 6.23 17.49 34.07

ESTAC+MCS quadratic 0.03 0.19 0.83 6.26 17.40 34.00

Table 6.3:Comparison of both theEBA and theESTA approaches.

the values, the better the quality of the corresponding solutions. In addition, Table6.3
complements our experimental analysis with four more results: (1) percentage of
problems solved for each benchmark set, (2) average CPU-time in seconds spent to
solve instances of the problem, (3) average minimum makespan and (4) the number
of leveling constraints posted to solve a problem.

From Table6.1 we first observe that theESTAC approaches dominate the basic
EBA approaches across all problem sets for the two metrics directly correlated to
solution robustness. This observation is confirmed in Table6.1where better values of
flexibility correspond to better values of disruptibility (stability). Hence, the solutions
created withESTAC are more appropriate to absorb unexpected events.

This fact induces further observations about the basic strategies behind the two
algorithms.EBA removes all possible resource conflicts from a problemP by post-
ing precedence constraints and relying on an envelope computation that produces the
tightestpossible resource-level bounds for a flexible schedule. When these bounds
are less than or equal to the resource capacities, we have a resource-feasible partial or-
der ready tofacewith uncertainty. However, in order to remove all possible conflicts
EBA has to impose more precedence constraints thanESTAC (see column labeled
with posted constraintsin Table6.3), with the risk of overcommitment in the final
solution. In fact, in comparingEBA with ESTAC , it can be seen that theEBA approach

100 6. Solve & Robustify

is actually less effective. It solves significantly fewer problems thanESTAC in each
problem set, obtains solutions with higher makespans, incurs into higher CPU times
and posts more precedence constraints. By addingMCS analysis to theEBA search
configuration, we obtain a noticeable improvement of the results. In fact, in the case
of quadratic sampling the number of problems solved is closer to that achieved with
theESTAC approach. However, we pay a higher price in terms of CPU time and there
are no significant improvements in the makespan and in the number of constraints
posted (Table6.3).

On the other hand, as previously explained,ESTAC is a two step procedure: the
ESTA step creates a particular partial order that guarantees only the existence of the
early start time solution; the chaining step converts this partial order into aPOS.
It is worth reminding that the number of precedence constraints is alwaysO(n) and
for each resource, theform of the partial order graph is a set ofparallel chains.
These last observations probably identify the main factors which enable a more robust
solution behavior, i.e.,ESTAC solutions can be seen as a set oflayers, one for each
unit of resource capacity, which canslideindependently to hedge against unexpected
temporal shifts.

6.3 Partial order schedules in chaining form

In the previous section we showed that the two step approach is capable of generating
partial order schedules more efficiently than a least commitmentPOS generation
procedure while simultaneously producing solutions with better robustness proper-
ties. These results indicate the potential of this two-stage approach for generating
robust schedules. At the same time, the chaining procedure underlying this work was
developed originally to provide a means for generatingPOSs.

Our goal in this section is to examine the concept ofChaining Formsolutions
from the broader perspective of generating robustPOSs and to establish properties
that can guide the development of chaining procedures capable of generating more
robust partial order schedules. We describe a canonical graph form, theChaining
Form (POSch) for representing a partial order schedule and show that any given
POS is expressible in this form. Thanks to this result we can restrict our attention
to the design of procedures that explore the space of partial order schedules in such a
form. This is then accomplished introducing a family of operators for transforming
a generic fixed-time schedule into a partial order schedule in chaining form,POSch.
Before proceeding, we recall that in our approach a solution is robust if it allows a
rapid system reconfiguration whenever an unforeseen event happens.

We start by considering a flexible solution obtained by the chaining procedure:
indeed, by definition, a solution in chaining form is a partial order schedule. It is also
possible to prove that any partial order schedulePOS admits at least an equivalent

6.3. Partial order schedules in chaining form 101

POS in chaining form3.

Theorem 6.1 Given a partial order schedulePOS there exists a partial order sched-

ule in chaining form,POSch, that represents at least the same set of solutions.

Proof. Let POS(VP , E) be the transitive closure of the graphPOS whereE =
EP ∪ ER ∪ ET andET is the set of simple precedence constraintsah ≺ al added
to POS when there is a precedence constraint betweenah andal induced by the
constraints represented in the setEP ∪ER. It is always possible to construct a graph
POSch(VP , EP ∪Ech) with Ech ⊆ E such thatPOSch represents at least the same
set of solutions ofPOS. In fact, given the setE, for each resourcerk, we can always
select a subset of simple precedence constraintsEch

k ⊆ E such that it induces a
partition of the set of activities requiring the same resourcerk into a set of chains.
In particular, for each resourcerk and unitj of resourcerk, it is possible to identify
a (possibly empty) set of activities{aj,0, aj,1, . . . , aj,nj} such that(aj,i−1, aj,i) ∈
Ech

k ⊆ E with i = 1, . . . , nj andEch =
⋃m

k=1 Ech
k .

Proof by contradiction: let us assume as not possible the construction of such
a POSch. Then, there is at least one resourcerk for which there is an activityak

which does not belong to any chain ofrk. This means that there exists at least a set
of mutual overlapping activities{ai1, ai2, . . . , aip}, where each activityaij belongs
to a different chain andp = ck, such that the set{ak, ai1, ai2, . . . , aip} represents a
forbidden set. This last fact contradicts the hypothesis thatPOS is a partial order
schedule. Thus, it is always possible to build aPOSch from aPOS with Ech ⊆ E.
¤

Given this result, we can restrict our attention, without loss of generality, to the
set ofPOSs which are in chaining form. Hence, a general operator for transforming
a fixed-time schedule into aPOS can be defined as follows:

Definition 6.2 (Chaining operator) Given a fixed-time scheduleS a chaining oper-

ator ch() is an operator that applied toS returns a partial order schedule

POSch
S = ch(S)

such thatPOSch
S is in chaining form andS is contained in the set of solutions it

describes.

Algorithm6.1describes a basic chaining operator. The functionSelectChain(ai, rj)
represents the core of this procedure; it admits different definitions giving different
results. In basic implementation it chooses, for each activity, the first available chain

3An analogous result has been proved in[Leus and Herroelen, 2004].

102 6. Solve & Robustify

of rj . Given an activityai, a chaink is availableif the end time of the last activity
allocated on it,last(k), is not greater than the start time ofai. Note that since the
input to a chaining operator is a consistent solution it is always possible to find the
chains that the activityai needs.

A chaining operator can be seen as a post-processing step which dispatches (or al-
locates) tasks to specific resource units once a resource feasible (fixed-time) solution
has been built. Given that a common objective of the first step in many scheduling
domains is to construct a feasible fixed-time solution that minimizes makespan, the
following property plays an important role:

Property 6.1 Given a fixed-time scheduleS and itsPOSch
s

mk(ES(POSch
s)) ≤ mk(S) (6.1)

that is, the makespan of the earliest solution ofPOSch
S is not greater than the

makespan of the input solutionS.

Equation (6.1) can be explained considering that by definitionS is one of the so-
lutions represented byPOSch

S . Practically, since only simple precedence constraints
already contained in the input solutionS are added, the makespan of the output solu-
tion is not greater than the original one. Thus, in the case of a makespan objective, the
robustness of a schedule can be increased without degradation to its solution quality.

Because the original solution is always included in the generatedPOS it is in-
tuitive that in the produced partial order schedule there exists at least one fixed-time
solution which preserves the original characteristics. Moreover, given an objective
functionµ, it can be proved that the Earliest Start Time solution of a givenPOS is
such that:

µ(ES(POSch
s)) ≤ µ(S) (6.2)

This is because the objective functions take into account how far an activity is allo-
cated in time and any activity in the Earliest Start Time solution of aPOS is not
allocated later than in the original fixed-time solution.

6.3.1 Remarks on the chaining method

A common way to approach scheduling problems is based on considering a set of
identical binary resources4 like a single multi-capacitive resource. This section aims
at describing the role that this aspect can have on the synthesis of scheduling problem
solutions and, in particular, of robust schedules.

To illustrate more clearly the resource abstraction aspect we consider the follow-
ing example composed of a set of tasks, or activities, which require one machine to

4That is, withmaxk = 1.

6.3. Partial order schedules in chaining form 103

be processed, among a set ofl identical machines. This problem can be modeled
as a set of activities which require one unit of a multi-capacitive resource. In other
words, instead of considering a set of binary resourcesR′ = {r1′ , . . . , rl′}, a set with
a unique resourceR′′ = {r1′′}, with max1′′ = l, is taken into account.

This resource abstraction turns out to be very useful to approach scheduling prob-
lems. Indeed it avoids taking into account complicated disjunctive constraints, sim-
plifying the solving process. Let us consider the previous example: in case a taskai

requires a single machine without the resource abstraction it is necessary to consider
the following constraint:

(ri1′ = 1 ∧ ri2′ = 0 ∧ . . . ∧ ril′ = 0)∨
(ri1′ = 0 ∧ ri2′ = 1 ∧ . . . ∧ ril′ = 0)∨

...

(ri1′ = 0 ∧ ri2′ = 0 ∧ . . . ∧ ril′ = 1)

which represents the fact that one and only one resource (machine) is necessary for
processing activityai. On the contrary, to substitute the set of binary resources with
a cumulative resource it is sufficient to only specify the requirementri1′′ = 1.

This resource abstraction on the binary resources allows to postpone the alloca-
tion of each scheduled activity on a sub-set of the resources. In fact, to execute a
schedule it is necessary to know which resources are assigned to each activity. The
schedule resulting from the first step, defines a temporal allocation for any activity
and ensures that for each of them there exists a set of available machines that can be
accommodated, but specifies nothing about which machine has to be used. For this
reason it is necessary to introduce this step of “resource allocation”, in which the bi-
nary resources are consistently allocated to the whole set of activities. The two steps,
scheduling and resource allocation, work on two different levels of abstraction. It is
worth noting that while a failure is possible during the first phase, it is always possible
to generate a resource allocation starting from a schedule. In fact, a resource alloca-
tion for a schedule can be easily computed with a polynomial algorithm assigning
each activity to the first available resource.

Despite its simplicity, the resource allocation step can play a fundamental role in
generating robust schedules. Let us consider the following example: Fig.6.4shows
two different resource allocations for a common schedule. On they axis the different
binary resources (machines in the case of the example above) are represented. From
the graph it is possible to extract the usage timetable of each resource. As noted
earlier, it is clear that this representation is robust if and only if there is some temporal
slack that allows chained activities to move “back and forth”.

Analyzing the two solutions it is possible to note that in the solution of Fig.6.4(a)
there is a critical allocation on the second binary resource (second row from below),
as the starting time of the second activity coincides with the completion time of the

104 6. Solve & Robustify

(a) (b)

Figure 6.4:Two different resource allocations of a common schedule.

first one. Thus any possible delay of the first activity, during the execution phase,
implies an equivalent delay of the second activity. On the contrary the resource allo-
cation in Fig.6.4(b)ensures a minimal slack between any pair of consecutive activ-
ities. The presence of these slacks allows to absorb possible disruption. Obviously
the ability to absorb a delay is directly proportional to the extent of the slack.

On the basis of this example it should be clear how an “intelligent” resource
allocation method may lead to an increase of the robustness of a schedule. In the
example for instance the method should lead to the second allocation rather than the
first one. As it is shown in Fig.6.4 the second step (resource allocation or robustify)
may take place by properly distributing the available binary resources over all the
activities, leaving their starting times untouched.

6.4 Increasing Robustness Features through Iterative Chain-

ing

In Sect.6.1we introduced the idea of an iterative method to robustify a given fixed-
time schedule (see Fig.6.1). Based on this goal the previous section has introduced
two important aspects:

- given a fixed-time solution, it is possible to generate one or morePOSs or, in
other words, it is possible to obtain different resource allocations;

- given a resource allocation (or aPOS) generated from a fixed-time schedule,
it is alway possible to generate it with a chaining method or, in other words,
there exists an equivalent chaining form for thePOS .

These two aspects support the introduction of an iterative chaining method. The
chaining operator introduced in the previous section transforms a feasible fixed-time
solution into aPOS in chaining form by dispatching activities to specific resource
units5. In the basic implementation (Algorithm6.1) this dispatching process is car-
ried out in a specific deterministic manner; theSelectChain(ai, rj) sub-procedure

5Note that this procedure is required to enable schedule execution.

6.4. Increasing Robustness Features through Iterative Chaining 105

always dispatches the next activityai to the first available resource unit (chain) as-
sociated with its required resourcerj . However, since there are generally choices
concerning how to dispatch activities to resource units, it is possible to generate dif-
ferentPOSs from a given initial fixed-time schedule, and these differentPOSs can
be expected to have different robustness properties. In this section, we follow up on
this observation, and define a set of procedures for searching this space of possible
chaining solutions. The goal in each case is to maximize the size of the finalPOS
produced by the chaining process. Given the results of the previous section, we can
search this space of possiblePOSs with assurance that the “optimal” solution is
reachable.

We adopt an Iterative Sampling search procedure as a basic framework for ex-
ploring the space of the possiblePOSs in chaining form. Specifically, the chaining
operator (Algorithm6.1) is executedn times starting from the same initial fixed-time
solution, and non-determinism is added to the strategy used bySelectChain(ai, rj)
to obtain differentPOSs across iterations. Each generatedPOS is evaluated with
respect to some designated measure of robustness, and the bestPOS found overall
is returned at the end of the search.

As a baseline for comparison, we define an initial iterative search procedure in
which SelectChain(ai, rj) allocates activities to available chains in a completely
random manner. Though this completely random iterative procedure certainly exam-
ines a large number of candidatePOSs, it does so in an undirected way and this is
likely to limit overall search effectiveness. More effective procedures are obtained
by using heuristics to bias the way in which chains are built. Of course the use of
heuristics requires an analysis of the chaining form solution with the aim of finding
properties which can give an increase in the effectiveness of the solution produced.
These properties are used to implement new chaining operators. The next subsec-
tion has these aims, while, in Sect.6.4.2, we show the results obtained using these
operators.

6.4.1 Generating different Partial Order Schedules

To design a more informed heuristic for dispatching activities to chains, it is neces-
sary to examine the structure of solutions produced by the chaining procedure. Let us
start by considering the example in Fig.6.3. We note that both the activities require
multiple resource units (the gray activities) and the precedence constraints between
activities that are situated in different chains tie together the execution of different
chains. These interdependencies, orsynchronization points, tend to degrade the flex-
ibility of a solution. In fact, if we consider each single chain as being executed as
a separate process, each synchronization point mutually constrains two, otherwise
independent processes. When an unforeseen event occurs and must be taken into ac-
count, the presence of these points works against thePOSs ability to both absorb the
event and retain flexibility for future changes. Hence it is desirable to minimize the

106 6. Solve & Robustify

number of synchronization points where possible. A synchronization point originates
from one of two different sources:

- a constraint defined in the problem which relates pairs of activities belongs to
different chains;

- an activity that requires two or more resource units and/or two or more re-
sources has to be allocated on two or more chains.

In the first case, the synchronization point is a strict consequence of the schedul-
ing problem. However, in the second case, the synchronization point could follow
from the way the chains are built and might be preventable. For example, consider
thePOS given in Fig.6.5. Here a more flexible solution than the one previously
discussed in Fig.6.3 is obtained by simply allocating the two gray activities to the
same subset of chains. In thePOS in Fig. 6.3 the two gray activities span all four
chains. They effectively split the solution into two parts, and the whole execution
phase depends on the execution of these two activities. On the contrary, choosing
to allocate these activities to common chains results in at least one chain that can be
independently executed.

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� �� �

cba

e

d

f
g

Figure 6.5:A more flexiblePOS

Based on this observation, we define a first heuristic chain selection procedure
that favors allocation of activities to common chains:MAX CC, maximizing common
chains. Under this procedure, allocation of an activityai proceeds according to the
following four steps:

(1) an initial chaink is randomly selected from among those available forai and
the constraintak ≺ ai is posted, whereak is the last activity in chaink.

(2) If ai requires more than one resource unit, then the remaining set of available
chains is split into two subsets: the set of chains which hasak as the last
element,Cak

, and the set of chains which does not,C̄ak
.

(3) To satisfy all remaining resource requirements,ai is allocated first to chains
belonging to the first subset,k′ ∈ Cak

and,

(4) in case this set is not sufficient, the remaining units ofai are then randomly
allocated to the first available chains,k′′, of the second subset,k′′ ∈ C̄ak

.

6.4. Increasing Robustness Features through Iterative Chaining 107

To see the benefits of using this heuristic, let us reconsider once again the example
in Fig. 6.3. As described above, the critical allocation decisions involve the two gray
activities, which require 3 and 2 resource units respectively. If the first resource unit
selected for the second gray activity happens to coincide with one that is already
allocated to the first gray activity, then use of the above heuristic forces the selection
of a second common chain for the second gray activity. A possible result of using
this heuristic chain selection procedure is in fact thePOS in Fig. 6.5.

The example in Figure6.5 allows us to show a second anomaly that can be ob-
served in chaining formPOSs. Notice the presence of a synchronization point due
to the problem constraint between activityc ande. While these problem constraints
cannot be eliminated, they can in fact be made redundant if both activities can be
allocated to the same chain(s).

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� �� �

d

ecba

g
f

Figure 6.6:A even more flexiblePOS

This observation leads to the definition of a second heuristic chain selection pro-
cedure:MIN ID, minimizing interdependencies. This augments the first by replacing the
random selection of the first chain for a given activity, step (1), with a more informed
choice that takes into account existing ordering relations with those activities already
allocated in the chaining process. More precisely, step (1) of our first heuristic is
replaced by the the following sequence of steps:

(1a) the chainsk for which their last element,last(k), is already ordered with
respect to the activityai, are collected in the setPai .

(1b) If Pai 6= ∅ a chaink ∈ Pai is randomly picked, otherwise

(1c) a chaink is randomly selected among the available ones.

(1d) A constraintak ≺ ai is posted, whereak is the last activity of the chaink.

At this point the procedure proceeds with the steps (2), (3), and (4) described above.

Figure6.6 shows the result of applying of this second heuristic chain selection
procedure to our example. Since both activityc and activitye are dispatched to the
same chain the synchronization point present in Fig.6.5 is eliminated.

108 6. Solve & Robustify

|flex| |fldt| cpu npc mk

ESTAC 0.25 0.59 0.41 38.7 107.1

ESTAiC+rndmflex 0.28 0.62 1.28 44.8 106.8

ESTAiC+MAX CCflex 0.33 0.63 1.27 39.1 106.7

ESTAiC+MIN IDflex 0.48 0.67 1.21 28.3 105.7

ESTAiC+rndmfldt 0.26 0.63 1.28 44.7 106.1

ESTAiC+MAX CCfldt 0.31 0.65 1.27 39.6 106.4

ESTAiC+MIN IDfldt 0.46 0.70 1.21 28.9 105.4

Table 6.4:Performance of the algorithms

6.4.2 Results

Table6.4summarizes the main results, in particular we compare the following three
sets of chaining methods applied at the same solving process,ESTA:

- the basic chaining operator described in Algorithm6.1, ESTAC ;

- the iterative chaining procedure6 which maximizes only the flexibility metric,
flex. There are three different variants: the pure randomized version,ESTAiC

+rndmflex, the first heuristic biased version aimed at maximizing chain over-
lap between activities that require multiple resource units,ESTAiC +MAX CCflex,
and the enhanced heuristic biased version which adds consideration of current
activity ordering constraints,ESTAiC +MIN IDflex.

- same as above with the difference that the optimized metric is the fluidity,
fldt. In this case the procedures are named respectively,ESTAiC+rndmfldt,
ESTAiC+MAX CCfldt andESTAiC+MIN IDfldt.

The results shown in Table6.4 are the average values obtained over the subset of
solved problems in theJ30 benchmark. For each procedure the values of five met-
rics are shown: flexibility (|flex|), fluidity (|fldt|), CPU-time in seconds (cpu), the
number of precedence constraints posted (npc) and the makespan (mk). With re-
spect to CPU time, we include both the time to find an initial fixed-time solution and
the time required by the chaining procedure. In the case of iterative procedures, the
values shown reflect 100 iterations.

Analyzing the results, we first observe that all search procedures outperform the
basic chaining procedure, it is clearly worthwhile to explore the space of possible
POSs derivable from a given fixed-time solutionS if the goal is to maximize solu-
tion robustness. In fact, all search strategies are also seen to produce some amount of

6For this reason we use the labeliC instead ofC.

6.4. Increasing Robustness Features through Iterative Chaining 109

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

rndm(flex) H(flex) H2(flex)

(a) Flexibility vs number of iterations

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

rndm(fldt) H(fldt) H2(fldt)

(b) Fluidity vs number of iterations

Figure 6.7:ESTAiC : efficiency of iterative sampling

improvement in solution makespan, an interesting side benefit. We further observe
that the two heuristic strategies based on minimizing the number of synchroniza-
tion points clearly outperform the basic iterative randomized procedure. The itera-
tive sampling procedure with heuristic bias,ESTAiC+MAX CCflex, is able to improve
30% over the basic chaining results while the version using the enhanced heuristic,
ESTAiC+MIN IDflex, obtains a gain of about 90% (from 0.25 to 0.48). The informed se-
lection of the first chain thus is clearly a determining factor in achieving good quality
solutions. These results are also confirmed by the corresponding procedures for the
fldt metric. In this case, improvement ranges from about 10% for the first heuristic
ESTAiC+MAX CCfldt, to about 18%, forESTAiC+MIN IDfldt. It is worth noting that in
this case we achieve the best value of fluidity also with respect the previous results
(0.70 versus the 0.69 obtained with theEBA algorithm).

110 6. Solve & Robustify

Another discriminating aspect of the performance ofESTAiC+MIN IDfldt is its abil-
ity of taking advantage of pre-existing precedence constraints and of reducing the
number of posted constraints7 (npc column in Table6.4). This effect, as might
have been predicted, improves both the fluidity and (especially) the flexibility values.
Moreover, use of the enhanced heuristic also yielded the most significant reduction in
solution makespan. Intuitively, the lower number of constraints may contribute to a
compression of the critical path. On the other hand, the use of an iterative procedure
incurs into a non negligible additional computational cost.

Figure6.7highlights a further aspect which differentiates the heuristic biased iter-
ative procedures from the pure randomized procedure. This picture plots the value of
the best solution found by each iterative procedure as the search progresses (with re-
spect to the number of iterations). Fig.6.7(a)represents the results obtained when the
metricflex is taken into account while in Fig.6.7(b)the procedures aim at optimiz-
ing thefldt value. The heuristic biased procedures are seen to find better solutions
at a much faster rate than the basic randomized procedure, and quickly reach solu-
tions better than the best solutions generated by the basic randomized procedure (as
shown in Table6.4). For instance the best solution obtained byESTAiC+MAX CCflex

after 10 iterations is better than the solution obtained byESTAiC+rndmflex after
100 iterations (see Fig.6.7(a)); likewise, ESTAiC+MIN IDflex (ESTAiC+MIN IDfldt) are
able to obtain better solutions that can be obtained by any other procedure in just a
few iterations. It is clear that the use of heuristic bias focuses the search on a more
significant region of the search space for both robustness metrics, and that this bias
both accelerates and enhances the generation of better solutions.

6.5 Investigating the use of different fixed-time solutions

Section6.1 has introduced the idea of coupling two modules to obtain partial order
schedules. The ingredients of this approach are a solving method (to obtain fixed-time
schedules) and a robustify phase to feed flexibility – to safeguard against execution
uncertainty – into the original solution. This section aims at investigating the poten-
tiality of the use of different fixed-time solutions for the same scheduling problem in
order to achieve better robustness values. In the following we present two possible
alternatives among those described by Fig.6.1:

1. an algorithm composed by a first step in which an optimum makespan schedule
is searched for; then one of the chaining methods described so far is applied on
the best solution found;

2. an algorithm which iteratively builds a fixed-time solution and then produces

7Note that in any of the chaining methods a precedence constraintak ≺ ai is posted iffak andai

are not ordered already.

6.5. Investigating the use of different fixed-time solutions 111

Algorithm 6.2 ISESiC

Input: a problemP

Output: a partial order schedulePOS
S∗ ← ∅
loop

find a new fixed-time schedule,S

if S better thanS∗ then

S∗ ← S

if termination criterion istrue then

break

POS ← chaining (S∗)

return POS

a partial order schedule. Finally, thePOS with the best robustness values is
selected.

As the chaining method can be seen as a local search procedure, the last approach
can be seen as a “Greedy Randomized Adaptive Search Procedure”, orGRASP (for
a survey on this meta-heuristic see[Resende and Ribeiro, 2002]). This approach al-
lows to consider both the effectiveness of the solving phase and the efficiency of the
robustify step. This is accomplished by integrating the two goals in the same algo-
rithm. In the first approach, theISESalgorithm is used as the solving method[Cesta
et al., 1999]. This gives us two different algorithmISESiC andGRASPiC , where the
superscriptediC means that an iterative chaining method is used to obtain flexible
solutions. Algorithms6.2and6.3show two template schemata for, respectively, the
iterative and the grasp-like procedure.

6.5.1 The Iterative Sampling Procedure

In this section we recall the iterative procedureISES as it has been previously de-
scribed in[Cestaet al., 1999]. This algorithm consists in an iterative, randomized,
version of theESTA algorithm described in Sect.6.2.1. The iteration is used to over-
come the lack of efficiency that a greedy algorithm can present. Even though it is not
a complete algorithm the iterative procedure can give noticeable results for problems
for which, being hard to solve (i.e. NP-hard problems), a complete algorithm is not
practically useful[Motwani and Raghavan, 1995].

Algorithm 6.2 gives an high level view of the method. It iteratively computes a
new scheduleS, and compares it with the current best found solution. In case the
new new solution is better then the current best one the last one is updated to the
former. The loop continues while the termination criterion is not satisfied. In the

112 6. Solve & Robustify

Algorithm 6.3 GRASPiC

Input: a problemP

Output: a partial order schedulePOS∗
POS∗ ← ∅
loop

find a new fixed-time schedule,S

POS ← chaining (S)

if POS better thanPOS∗ then

POS∗ ←POS
if termination criterion istrue then

break

return POS∗

case ofISES the termination criterion consists of a predefined number of iterations
while two solutions are compared with respect to their makespan.

The randomized version ofESTA is obtained by performing a pseudo-random
selection of the decision. Given a heuristich, any conflictc has a heuristic valueh(c).
In theESTA methods the conflict which has the maximum heuristic valuehmax(c) is
selected. In the case of theISES method one among the best conflicts with respect
their heuristic value is randomly selected. More precisely, given a value0 ≤ β ≤
1 we randomly select one of the conflictsci among those for which the following
inequality holds:

(1− β)hmax(c) ≤ h(ci) ≤ hmax(c).

It is possible to note that in caseβ = 0 the choice is completely random, whereas if
β = 1 the best heuristic value is selected (as in the case ofEBA).

In the following the results of three different variants of theISES algorithm are
presented. These variants are obtained using the three different heuristics introduced
in Sect.4.

6.5.2 The Grasp-Chaining

The Greedy Randomized Adaptive Search Procedure,GRASP, is a multi-start meta-
heuristic for combinatorial problems, in which each iteration consists basically of
two phases: construction and local search. The construction phase builds a feasible
solution, whose neighborhood is investigated until a local minimum is found during
the local search phase. The best overall solution is kept as the result.

The two phases, construction and local search, clearly match with the two steps of
our approach, solve and robustify. Therefore aGRASPprocedure to generate partial
order schedules can be obtained using a randomized version of our greedy algorithm,

6.5. Investigating the use of different fixed-time solutions 113

ESTA, and a chaining operator. Like in the case ofISES, a randomized version of the
greedy algorithm is necessary to explore different branches of the search tree.

Algorithm 6.3 describes aGRASP approach based on the Solve and Robustify
schemata of Fig.6.1. At each step, after a fixed-time schedule is found, a new par-
tial order schedule is generated (by using either the simple or the iterative chaining
operator). Based on a robustness metric the best foundPOS is returned.

It is worth noting the difference between the iterative procedure and theGRASP

approach. While in the first a solution is generated from the best fixed-time solution
found in the latter differentPOSs are generated from different starting points (fixed-
time solutions).

6.5.3 Results

In this section we describe the results obtained applying the two approaches,ISESiC

andGRASPiC , to the J30 benchmark. For each method we have obtained six different
variants according to both the heuristic chosen to guide the search8 and to the criterion
to optimize. In both cases the iterative chaining method withMIN ID heuristic is used
to generate the final partial order schedule.

ISESiC . Table6.5and Table6.6contain the results obtained using the six versions
of the ISESiC method. All the versions in a first phase find a first solution. In this
phase theISESalgorithm is used considering as termination criterion 10 restarts. Next
to obtain a partial order schedule the iterative chaining method is used with a number
of iterations equals to either 10 or 100.

An analysis of these results shows us that the values of both the robustness metrics
do not show great difference. In fact, in case of 10 restarts, the values of|flex| is
0.45 while the values of|fldt| range from0.61 to 0.62. Of course, a major effort in
terms of chaining restarts gives better results (0.48 in case of|flex| and0.63 in case
of |fldt|).

If we compare the results obtained by using the theISESiC variants with the
previous results shown in the chapter it is possible to notice a twofold behavior for
the two robustness metrics. In fact in the case offlex, the values are much better than
the ones obtained using both the simple chaining operator introduced in Sect.6.2.2
and the randomized iterative sampling: the values in these cases are respectively,
0.25 and0.28. Moreover the new values obtained are also very close to the best value
0.48 obtained in the case of usingMIN ID with 100 iterations9. This result becomes
more noticeable if the CPU time values (in seconds) requested in the two cases are
taken under consideration: respectively8.22 for the ISESiC+MIN IDflex +quadratic
MCS version and1.21 for ESTAiC+MIN ID. This is because in both the procedure the

8With or withoutMCS computation, linear or quadratic.
9We achieve this result in case ofESTAiC+MIN IDflex +MCS quadratic with 100 iterations

114 6. Solve & Robustify

|flex| |fldt| cpu npc mk

ISESiC+MIN IDflex 0.45 0.60 4.97 30.47 98.70

ISESiC+MIN IDflex +MCS linear 0.45 0.60 6.17 30.53 98.21

ISESiC+MIN IDflex +MCS quadratic 0.45 0.60 7.08 30.50 98.23

ISESiC+MIN IDfldt 0.43 0.62 4.96 30.95 98.64

ISESiC+MIN IDfldt +MCS linear 0.43 0.62 6.15 30.94 98.22

ISESiC+MIN IDfldt +MCS quadratic 0.43 0.61 7.08 30.82 98.26

Table 6.5:ISESiC 10+10

|flex| |fldt| cpu npc mk

ISESiC+MIN IDflex 0.47 0.60 6.63 30.20 98.52

ISESiC+MIN IDflex +MCS linear 0.47 0.60 8.22 30.26 98.12

ISESiC+MIN IDflex +MCS quadratic 0.48 0.60 9.44 30.09 98.26

ISESiC+MIN IDfldt 0.45 0.63 6.63 30.64 98.44

ISESiC+MIN IDfldt +MCS linear 0.45 0.63 8.22 30.64 98.10

ISESiC+MIN IDfldt +MCS quadratic 0.45 0.63 9.42 30.74 98.22

Table 6.6:ISESiC 10+100

iterative chaining method withMIN ID has an important rule in increasing the flexibility
(in terms offlex) of the final partial order schedule.

On the contrary, the same behavior is not confirmed by the results obtained
through theISESiC variants which try to optimize thefldt metric. In fact thefldt
values showed in Table6.5are lower than the ones obtained with the randomize iter-
ative procedures (with or without the heuristic guidance). The results obtained point
to different aspects: first of all the use of more optimized initial schedules biases the
robustify phase against the construction of flexible partial order schedules. In fact
the tightness (makespan) of the initial solution can preclude the achievement of good
solutions.

A less intuitive aspect is the different trade-off between the makespan value and
both the robustness metrics. From the results shown previously it is possible to note
the even though the values are worse than in the previous cases, theISESiC variants
achieveflex values close to the best value found. This is not the case in which
the fldt is the objective of the optimization. In practice while theISESiC+MIN ID

procedure is efficient in increasing theflex value, the same procedure is not able to
find a “good” partial order schedule for thefldt metric. This behavior is justified
from the different nature of the two metrics:flex is a qualitative criterion whereas

6.6. Makespan versus robustness 115

|flex| |fldt| cpu npc mk

GRASPiC+MIN IDflex 0.46 0.67 6.43 29.17 105.25

GRASPiC+MIN IDflex +MCS linear 0.47 0.67 7.49 28.54 104.65

GRASPiC+MIN IDflex +MCS quadratic 0.47 0.67 8.54 28.85 104.86

GRASPiC+MIN IDfldt 0.44 0.69 6.43 29.36 105.08

GRASPiC+MIN IDfldt +MCS linear 0.45 0.69 7.49 28.85 104.56

GRASPiC+MIN IDfldt +MCS quadratic 0.45 0.69 8.53 28.99 104.59

Table 6.7: GRASPiC

thefldt is a more quantitative metric. Therefore a schedule with a better makespan
value presents a more compact allocation of the activities allowing a lower degree of
intervention to the iterative chaining procedure with theMIN ID heuristic. This aspect
is further analyzed in Sect6.6.

GRASPiC . The GRASPiC method represents the most intensive approach we have
investigated. Its implementation is based on 10 iterations of the main loop, where an
initial fixed-time schedule is computed at each step, and on 10 iterations on the inner
loop, where a differentPOS is computed at each step. Thus the best foundPOS is
selected among a set of 100 alternatives.

Table6.7 shows the results obtained according to both the optimization criteria
(flex or fldt) and the chosen heuristic. Even though the values obtained for the two
metrics are similar to the best obtained in Sect.6.4, the approach it is not efficient
if it is considered in the light of the CPU time requested. In fact these values are
much greater than those requested byESTAiC+MIN ID: about6.5 seconds versus1.21
seconds respectively.

On the other hand, it is worth emphasizing that the use of more intensive ap-
proaches likeISESiC andGRASPiC are necessary not only for the optimization aspect
but mostly to overcome the lack of efficiency that the use of a simple greedy proce-
dure (likeESTA in Sect.6.2.1) can entail.

6.6 Makespan versus robustness

In the previous section we have seen the results of theISESiC method which is based
on the use of theISES method to optimize the makespan value of the initial sched-
ule as well as to increase the efficiency of the solving process. These results have
shown that the optimization of the makespan value reduces the ability to obtain ro-
bust schedules especially if the fluidity metric is taken into account. In this section

116 6. Solve & Robustify

we reconsider this result giving an insight into the nature of this effect.
Figure6.8 underlines the motivations which lead to different behaviors between

flexibility and fluidity with respect to the makespan optimization factor. In Fig.6.8(a)
the problem is represented. This is a one resource problem in which three activities
have to be scheduled. These are ordered according to the constraints in the figure:
betweena andb there is a simple precedence constraint10 while betweena andc the
constraint specifies a time window[1, 3], i.e., c cannot start more than 3 time-units
after or 1 time-unit before the end of activitya. Furthermore, the size of each activity
describes both its duration (the width) and its resource need (the height). Therefore
botha andb require one resource unit for two time units whilec has a duration equals
to 3 and a resource requirement of2. To complete the description of the problem, the
resource capacity is equals to 2.

Figure6.8(b)and6.8(c)show two different solutions with the associated partial
order schedule (the darker arrows represent the additional constraints necessary to
obtain a flexible solution). Note that in this case for both solutions there is a unique
POS: in fact any of the two proposed solutions gives a complete linearization of the
activities. The two schedules have different makespan, respectively 7 and 8.

Let us consider first the flexibility metric. If we look at the two partial order
schedules (on the right hand of Fig.6.8(b)and6.8(c)) it is possible to notice that in
both cases there is the sameflex value. In fact in both cases theflex value is zero
because there is no pair of un-ordered activities.

Now we can shift our attention toward the fluidity metric. This metric considers
the slack value between any pair of activities, that is, the minimum and maximum
distance between them. In the figure, for the pair(a, c) we have the same value for
both solutions,dist(a, c) = [1, 3], which stems from the time window constraint
defined between the two activities. On the other pair instead we have two different
values:dist(a, b) = [0, 1] in the case in Fig.6.8(b)anddist(a, b) = [4, H − 4] in the
case in Fig.6.8(c). This clearly shows that the flexibility value for the sub-optimal
solution is greater than the one in Fig.6.8(b). The same behavior can be found for
the pair(b, c), where we havedist(b, c) = [0, 1] for the case in Fig.6.8(b)while for
the case in Fig.6.8(c)dist(c, b) = [0,H − 8]

The problem is that in the schedule with the optimum makespan (Fig.6.8(b))
the activityb is “caged in” by the other two activities. Therefore the time window
constraint defined betweena andc has the effect of limiting the flexibility of activity
b. Furthermore since the capacity of the resource is equal to the requirement ofc, no
chaining method can overcome this problem.

It is possible to note that this is a peculiar characteristic of RCPSP/max problems
and in particular this is due to the presence of maximum distance constraints. In fact
if the maximum constraint betweena andc did not exist, activityb would have the
ability to move back and forth in a larger interval thus yielding in a more flexible

10Where H represents the temporal horizon of the problem.

6.7. Conclusions 117

[0, H]

[1, 3]

a

b

c

(a) Initial problem

mk = 7

a

cc

bb

a bb
c

(b) Best makespan solution and its associatedPOS

mk = 8

c
bba

a

cc

bb

(c) A sub-optimal solution and its associatedPOS

Figure 6.8:Example: dependency between makespan and robustness

solution.

6.7 Conclusions

In this chapter we have seen a different approach to generate flexible solutions. This
is based on the coupling of two core modules: asolver, used to produce a fixed-time
solution for the scheduling problem, and arobustifierwhich feeds flexibility into the
schedule produced in the first phase (see Fig.6.1). Moreover it has been shown that
the procedure used to obtain the final solution always preserves the characteristics of
the initial fixed-time schedule.

The simple pipeline exhibits a better behavior, with respect the robustness criteria,
than the envelope based approaches (Sect.6.2). Furthermore the possibility of using
state-of-the-artschedulers allows to have a greater efficiency. In fact, as pointed out
in Fig. 6.1whenever a fixed-time solution is produced in the first phase, it is always
possible to generate a partial order schedule.

An improvement on the robustness qualities has been obtained using more in-
tensive search methods and heuristics which exploit the structure of the solutions.

118 6. Solve & Robustify

Especially, the latter aspect has produced methods which present a good trade-off
between quality and CPU time requested.

Finally, we have investigated the relation between the makespan and robustness
criteria. We have found that this trade off can have different behaviors with respect to
both the scheduling problem and the metric chosen as a yardstick for the robustness-
related aspects.

Chapter 7

Discussion and Final Analysis

The aim of this chapter is to provide a final analysis and discussion of the partial order
schedule paradigm as well as the approaches used to produce this kind of solutions.
Specifically, we start with an analysis of another aspect of robust solutions: the ability
of preserving a solution’s stability. In fact, when it is possible to respond to external
changes, maintaining the schedule close to the initial solution is important in order to
avoid system “nervousness”.

Next, in order to deepen the evaluation of the least commitment and solve-and-
robustify approaches, we present the results obtained on a benchmark set of RCPSP/max
instances which are larger (100 activities) than the ones used in the previous chapters
(10 to 30 activities).

Finally, we conclude presenting a discussion about the limitations and the issues
related to the research work shown in this dissertation (thePOS paradigm and the
solving methods).

7.1 Stability Analysis

In the previous chapters we have evaluated the different methods presented according
to two metrics: flexibility (flex) and fluidity (fldt). These measures have been used
to obtain an assessment of the qualities of the produced solutions (POSs) in terms
of the ability to absorb possible, unexpected, events. In fact, as already mentioned, in
case of very complex scheduling problems (e.g. RCPSP/max) answers to unforeseen
events without requiring a new scheduling phase, becomes of fundamental impor-
tance.

Nevertheless, when a solution is repaired it is possible to have several changes in
it; this may produce an instability of the solution and nervousness in the execution.
Furthermore preserving the solution’s stability also has a different meaning; in fact a

119

120 7. Discussion and Final Analysis

s1’=s1+α slack(a1)
δ4(α)δ3(α)

δ5(α)
δ2(α)

Figure 7.1:Stability evaluation: the impact of the shiftαslack(ai) over the activities

is represented by the valuesδj(α).

repair to an exogenous event is accomplished by adding a further set of constraints
and transforming the actualPOS into a new one. In this perspective it is easy to
see that maintaining solution’s stability equates to keeping as many solutions as pos-
sible in the finalPOS (which, in turn, implies having more alternatives for future
changes).

For these reasons, a further analysis of the methods presented along the dis-
sertation is necessary; this has been accomplished by introducing a further metric
to measure stability, or, conversely, sensitivity, of the solutions produced. For ex-
ample, let us suppose that the start timesi of the activity ai is delayed by∆in.
An interesting aspect is the average delay of the other activities∆out. To evalu-
ate the stability of a solution we consider a single type of modification event (see
Fig. 7.1): the start timesi of a single activityai with window of possible start
timesslack(ai) = [est(ai), lst(ai)] is increased to a valuesi + αslack(ai), where
0 ≤ α ≤ 1. This change may produce variations of the start time of the remaining
activitiesaj : δj(α). We consider the mean value over the set of activities normalized
with respect the window of possible start times of the activityai. A more operative
definition of stability is given by the following formula:

stby(α) =
1

n(n− 1)

n∑

i=1

n∑
j=1

j 6=i

δj(α)
slack(ai)

(7.1)

where the stabilitystby(α) is defined as the average valueδj(α)
slack(ai)

over all pairs
(ai, aj), with ai 6= aj , when an increase of start timeαslack(ai) is performed on
each activity’s start time separately.

We observe that the single valueδj(α)
slack(ai)

represents the relative increment of the
start time of the activityaj (the absolute value isδj(α)) when the start time of the
activity ai is increased to the valuesi + αslack(ai). For this reason the lower the
value ofstby(α) the better the quality of the solution.

7.1. Stability Analysis 121

%α 1 2 4 8 16 20 25 50 75 100

ESTAC 0.06 0.10 0.15 0.20 0.24 0.26 0.27 0.30 0.31 0.32

ESTAC MCS l. 0.06 0.10 0.15 0.20 0.24 0.26 0.27 0.30 0.31 0.32

ESTAC MCS q. 0.07 0.11 0.16 0.20 0.24 0.25 0.26 0.28 0.29 0.30

EBA 0.03 0.05 0.07 0.09 0.10 0.10 0.11 0.12 0.14 0.14

EBA MCS l. 0.04 0.06 0.10 0.14 0.18 0.18 0.19 0.22 0.24 0.25

EBA MCS q. 0.04 0.07 0.11 0.16 0.19 0.20 0.21 0.24 0.25 0.27

Table 7.1:Stability evaluation forESTAC andEBA variants on the benchmark set j30.

Results. Table7.1presents the results obtained evaluating the stability for the most
simple algorithms described above (EBA andESTAC variants) on the benchmark set
j30. The data represent the normalized values of the stability metric (stby(α)) for
different values ofα (in percentage). The normalization is obtained considering both
a lower bound and an upper bound for the metric. The lower bound is obtained
relaxing the resource constraints of the single instances and evaluating the stability
of the resulting temporal net1. Conversely an upper bound for the stability values
is represented byα, i.e. stby(α) ≤ α. The values presented represent the average
stability values of the solutions obtained through the various methods. Also in this
case, to have a fair comparison we have considered the subset of common solved
instances.

From the analysis of the data in Table7.1, it is possible to note that the solutions
obtained using theEBA variants present a better behavior with regard to the partial
order schedules obtained through the two-step approaches. Indeed the solutions ob-
tained by theEBA methods achieve the best quality values (i.e.,0.14 for α = 1).
About this result it is necessary to observe the following points: the makespan of the
solutions obtained usingEBA is larger than the values obtained for theESTAC vari-
ants; thus each activity in the former solutions has a larger time window of allocation,
which allows a lower sensitivity to changes and thus a greater stability. The second
point is that theEBA variant has a very low efficiency: in fact, it is able to solve just
43.33% instances of the benchmarkj30 (see Table6.3).

Table7.2 presents the stability results on the subset of solutions obtained using
respectivelyiEBA, ESTAiC with the enhanced heuristicMIN ID, andGRASPiC . This
comparison is motivated on one hand by examining methods that have a similar effi-
ciency (theiEBA is the more efficient method among the those based on the resource
envelope analysis), whereas on the other hand we have considered two solve-and-
robustify approaches to analyze the influence of an “intelligent” chaining process.
The data show that when the efficiency of the envelope based analysis is improved,

1Once the resource constraints are removed the resulting graph constitutes a partial order schedule.

122 7. Discussion and Final Analysis

%α 1 2 4 8 16 20 25 50 75 100

iEBA true 0.06 0.09 0.13 0.18 0.21 0.22 0.24 0.28 0.30 0.32

ESTAC + +MIN ID 0.04 0.06 0.10 0.14 0.17 0.18 0.19 0.22 0.24 0.25

GRASPiC 0.04 0.07 0.10 0.14 0.18 0.19 0.20 0.22 0.24 0.25

Table 7.2:Stability evaluation for improvedESTAC andEBA variants on the bench-

mark set j30.

we have a contemporary reduction of the quality of the solutions produced (0.32).
On the contrary, the use of the enhanced heuristic to producePOSs reduces the sen-
sitivity of the solutions to single changes (from0.30 to 0.25). This result is to be
expected: in fact the heuristics aim at removing possible interdependencies among
chains; this allows to have solutions in which each chain of activities can be executed
asynchronously with respect to the remaining ones. This aspect reduces the sensi-
tivity of the solution with regard to possible changes increasing the stability of the
POS.

The results in this section show that the solve-and-robustify method is able to pro-
duce stablePOSs. This adds to the efficiency of the solve-and-robustify paradigm,
the ability of obtaining good makespan solutions in low CPU-time, and, last but not
least, maintaining the high performance in terms of flexibility or fluidity shown in the
previous chapters.

7.2 A large scale experimentation

A possible remark that can be done considering the empirical evaluations provided
in the previous chapters, is that the use of a single set of benchmark problems can re-
strict the validity of the results. In particular the size of the problems (30 activities and
5 resources in the worst case) can suggest the investigation of larger problems. This
section tackles this aspect presenting a further evaluation of the envelope based anal-
ysis and the solve-and-robustify paradigm on a larger benchmarkj100 introduced in
[Schwindt, 1998]; each of the 540 instances of this benchmark is composed of 100
activities that can require the use (one or more units) of 5 multi-capacitive resources.

In particular in this section we consider the greedy versions of the two method-
ologies (theESTAC andEBA variants). Figure7.2 gives a snapshot of the situation
obtained with respect to two fundamental aspects: the efficiency of the solving pro-
cess (percentage of solved instances) and the CPU-time. On one hand we note that the
threeESTAC variants present a high efficiency (more than99% of solved instances)
whereasEBA finds a small set of solutions. It is important to specify that all algo-
rithms have been executed with a time bound of 300 seconds. This explains why

7.2. A large scale experimentation 123

es
ta

c

es
ta

c+
m

cs
 li

ne
ar

es
ta

c+
m

cs
 q

ua
dr

at
ic

eb
a

eb
a+

m
cs

 li
ne

ar

eb
a+

m
cs

 q
ua

dr
at

ic

%

0
10
20
30
40
50
60
70
80
90

100

% solved

es
ta

c

es
ta

c+
m

cs
 li

ne
ar

es
ta

c+
m

cs
 q

ua
dr

at
ic

eb
a

eb
a+

m
cs

 li
ne

ar

eb
a+

m
cs

 q
ua

dr
at

ic

cpu

0
20
40
60
80

100
120
140
160
180
200

CPU time

Figure 7.2:Benchmark j100. Percentage of solved instances (left-hand graph) and

CPU-time in seconds (right-hand graph). All the algorithms have a time bound of

300 seconds.

|flex| |fldt| CPU (s) npc mk

ESTAC 0.07 0.50 0.48 68.47 374.24

ESTAC +MCS linear 0.07 0.50 0.48 67.94 374.22

ESTAC +MCS quadratic 0.07 0.50 0.48 68.18 374.35

EBA 0.13 0.72 33.00 53.67 501.61

EBA +MCS linear 0.13 0.58 78.64 73.41 606.31

EBA + MCS quadratic 0.11 0.56 183.79 76.88 632.27

Table 7.3:Qualities of the solutions for the subset of common solved instances of the

benchmark j100.

the EBA variant that uses the quadraticMCS approach is less efficient than theEBA

with linearMCS. On the other hand, considering the average CPU-time requested to
solve an instance, we note that also in this case theESTACs variants present better
behaviors; in fact there are two orders of magnitude between theEBA with quadratic
MCS andESTAC (about 2 seconds versus 200 seconds). These results show that while
the solve-and-robustify approach can be applied efficiently to larger problems the en-
velope based analysis combines the two negative qualities of being less powerful as
well as computational heavy.

Table7.3contains the results obtained considering the subset of solutions solved
by all the algorithms. From an analysis of these data it is evident that theEBA variants
produce better solutions both in terms offlex andfldt (also in this case the values
are normalized with respect to the upper bounds obtained by relaxing the resource

124 7. Discussion and Final Analysis

constraints). Nonetheless it is worth reminding that the subset of common instances
solved by all the algorithms represents less than the 20% of the overall instances.
Hence it is not possible to extend these results in the evaluation of the methods. Fur-
thermore considering the CPU time it can be noticed that for this subset of instances
the ESTAC variants require 0.48 seconds while for the whole benchmark there is an
average value four times greater, 2 seconds. This underlines how such a subset is
composed of “easier” instances than the average set, and emphasizes again the lack
of efficency of the envelope based analisys.

To summarize, the evaluation on the benchmark j100 of the different approaches
has underscored the existing gap between the envelope based analysis and the solve-
and-robustify paradigm. Even though the former is able to achieve comparable results
in terms of fluidity/flexibility of the solutions produced, it does not present the same
power of the solving process. On the other hand, the two-step approaches exploit the
use of a state-of-the-art solver, thus yielding a great percentage of solved instances
and the possibility to have solutions with good makespan values.

7.3 Thesis work: limitations and open issues

Robustness and schedule recovery are major issues within project and non-project
scheduling. The work presented in this thesis is twofold in nature, attempting to
generate better schedules with latent robustness and to perform this generation in an
efficient and effective fashion. The work represents a step toward understanding the
nature of robustness and schedule flexibility. There are context in which schedule
generation speed is an issue and others in which it is not. The thesis addresses the
cases when speed is the essence and presents the concept of partial order schedules
as way to improve the responsiveness of the solver. The second part of this chapter
is dedicated to providing a discussion of the issues related with the contributions of
this thesis and their limitations.

7.3.1 Partial Order Schedules and their applicability

Within the considerable body of work on scheduling, few investigations take into
account execution in uncertain environments. In fact most research work is concerned
with methods to obtain specific schedule qualities like minimizing the makespan or
the tardiness, or maximizing possible activity rewards. Introducing the concept of
Partial Order Schedules we have claimed that this can turn out to be very useful
tackle the problem of scheduling uncertainty. In fact it provides a means to promptly
answer to temporal changes (e.g., durations changes or delays of start-time) as well
as a base to hedge against more general changes (e.g., resource capacity variations or
added/deleted activities).

7.3. Thesis work: limitations and open issues 125

(a) Temporal changes: activities can last more than expected or they can be post-

poned until necessary conditions are satisfied.

Resource availability

(b) Resource changes: the two red curves represent the nominal (left) and the ac-

tual (right) resource availability. The reduction of resource availability blocks the

execution of the last two activities which are delayed.

(c) Activity changes: the need to serve a new activity may create a reallocation of

the current scheduled activities.

(d) Causal changes: a new precedence relation between a pair of activities can re-

quire a revision of previous choices.

Figure 7.3:Different possible changes which can be meet during the execution

In general there are different events that might disrupt the execution of the pre-
defined schedule. In this section we analyze the bounds between which the use of
POSs gives a noticeable improvement in facing unforeseen events. A scheduling
problem can be modified mainly along three different directions of uncertainty:

temporal changes : changes that involve the various temporal aspects of the prob-
lem. Among these we have:

- activities that last more than expected – change of the duration;

- delayed or anticipated activities – change of the start time;

resource changes: during the execution of a schedule it is possible to meet a re-
duction of the resource availability. For instance, this can happen due to the
breakdown of one of the available machines;

new activities to be served: this aspect may imply the insufficiency of the available
resources;

126 7. Discussion and Final Analysis

causal changes: new constraints between pairs of activities. The activities can be
the ones in the original set as well as new activities to be served.

Figure7.3shows the different effects that the events described above can have on the
solution during its execution.

Notice that using aPOS it is possible to automatically respond to temporal and
causal changes as well as to use its flexibility to repair the solution in case of resource
changes. In fact in the case of temporal changes as well as causal changes, a new
solution is directly obtained by synthesizing the constraint that represent the change,
and then posting and propagating this constraint over the current temporal network.

In the case of resource changes it will be, in general, necessary to have a deci-
sion phase beside the propagation. The reader should notice that in the case of a new
activity to serve, this might conflict, in general, with more than one of the scheduled
activities. Hence, a decision phase it is necessary to select the activities to be resched-
uled. We have the same in case of resource capacity variations; in fact, a reduction of
capacity can be modeled by a new “dummy” activity that requires an amount of re-
source equal to the variation and has the start time and the duration equal respectively
to the instant in which the event occurs and to its duration.

7.3.2 Methods to produce Partial Order Schedules

In the chapters5 and6 two broad classes of constraint-based scheduling procedures
are defined and investigated: a Least Commitment and a Solve & Robustify approach.
It is worth recalling that the two methods differ in the use of resource profiles to
analyze the set of temporal solutions associated to the time network (see Chapter4).
The least commitment approach is based on resource profile estimation built on the
whole set of solutions, whereas the second approach is based on the earliest start time
profile, that is, the resource profile associated to a specific time solution - the earliest
start time solution.

These two methods have been investigated because they represent the opposite
ends of the spectrum. This analysis has been useful to evaluate the strengths and
weaknesses of the two methods. In fact, while different investigations have high-
lighted the importance of more informed search based on complete resource profiles
like the resource envelope ([Muscettola, 2002]), the results of this thesis show how
a less informed search coupled with a robusty step obtains better results in terms
of both effectiveness and efficiency. These results dampen prior claims about the
expected potential of envelope based schedule generation methods.

On the other hand the reader may argue about the appropriateness of search con-
trol heuristics used for the envelope based analysis. In fact the three heuristics spec-
ified in Chapter4 and then subsequently used within each ofEBA and solve-and-
robustify approaches, were in fact developed to analyze the earliest start time profiles
([Cestaet al., 2002]). During this work different methods have been examined with-

7.3. Thesis work: limitations and open issues 127

out any significant result. This difficulty is still further revealed by recent work con-
cerning the concept of resource envelope[Satish Kumar, 2003; Policellaet al., 2004b;
Muscettola, 2004; Frank, 2004]. These, in fact, limit their analysis to increasing the
quickness in computing the profile rather than to produce heuristic methods to guide
the search process.

128 7. Discussion and Final Analysis

Chapter 8

Conclusions

Scheduling is a problem that occurs in a large variety of forms with huge cumulative
economic and social consequences. Proper scheduling can provide better utilization
of scarce and expensive resources as well as higher satisfaction for individuals such as
customers and employees. There are a few reasons why scheduling is such a difficult
problem:

- the size and complexity of the search space;

- scheduling is an inherently dynamic process, schedules only remain valid for
a limited amount of time. After a certain duration, the world generally has
changed enough that the scheduling algorithm has to find a different schedule;

- different domains and applications require solutions of different variations of
the scheduling problem.

The idea of this work has been supported by the opinion that dealing with scheduling
uncertainty may represent a significant step toward bridging the gap between schedul-
ing theory and real domains. More precisely, the thesis addresses the broad question
of how to build schedules that are robust in the face of a dynamic execution envi-
ronment. This question is of considerable practical importance, as a major obstacle
to the use of schedules in practice is their brittleness when activities do not execute
as planned. Previous research has considered a number of approaches to this aspect
of the scheduling problem, ranging from dynamic scheduling approaches that do not
compute schedules in advance, to reactive approaches which respond to repair sched-
ules when unexpected events force changes, to domain-specific proactive approaches
that attempt to incorporate knowledge of the types of uncertainties that can arise in
the target scheduling domain. In this thesis, a more generic pro-active approach is
investigated, which seeks to represent, retain and exploit temporal flexibility through
the use of partial-order schedules.

129

130 8. Conclusions

8.1 Contributions

The main objective of this dissertation is to study approaches to deal with uncertainty
in the production of project schedules. The thesis is that flexible solutions can present
better qualities to face this problem. This has led to the introduction ofPartial Order
Schedulesor POSs. Indeed, a partial order schedule on one hand allows to repre-
sent implicitly a set of solutions that can be used to follow the possible evolution of
the environment during the execution, and, on the other hand, guarantees a prompt
answer to such disruptive events. In the remainder of this section we list what we
consider be the major contributions of this dissertation.

8.1.1 Analysis and Classification of the Current Research Scenario

In Chapter2 different techniques based on scheduling with uncertainty have been
described. We have seen that all approaches are composed of two basic ingredients:
an off-line and an on-line phase. According to the ratio of these two aspects it is
possible to classify the different approaches (see Fig.2.1).

The analysis has shown how in the current state of the art there is not a single
approach which emerges from the set. Rather, different results are more tailored
for specific purposes. Therefore, there is a great dependency between each of the
proposed approaches and the kind of scheduling problem that is taken into account.
In particular in our survey we have concentrated our attention mostly on methods
based on the presence of a baseline schedule. This has an important function for
several reasons (see Sect.2.4.2). The first concerns the ability of checking if there
is or not the capacity to produce the planned work. Another point is that through an
initial schedule it is possible to plan external activities such as material procurement
and delivery of orders to customer. A baseline schedule is also vital for cash flow
projections and provides a yardstick by which to measure the performance of both
management and shop floor personnel.

Our analysis has established three main categories in which methods based on
the construction of baseline schedules can be divided:

- Building robust schedules: the idea of these methods consists in synthesizing
a solution that can tolerate a certain degree of uncertainty during its execution.
In other words it should be able to absorb variations of the problem due to
both external (exogenous events) and internal (false definitions in the problem)
reasons.

- Rescheduling approach: in this case when during the execution a change, ei-
ther external or internal, makes the current schedule invalid, these approaches
proceed by recomputing a new solution. This new scheduling phase can be
done both from scratch (to find optimum solutions) and locally on the sub-set
of invalid activities (to guarantee a prompt answer).

8.1. Contributions 131

- Building partial or flexible schedules: this approach consists in an intermedi-
ate approach between the use of a baseline schedule and complete dynamic
approaches. This consists in computing several schedules instead of a single,
brittle, one. As a result during the execution of the schedule it is possible to
switch from one solution to another in case of unforeseen events or changes in
the scheduling problem definition.

8.1.2 Formalization of a Flexible Approach: the Partial Order Schedule

Previous research has noted many of the potential advantages of a partial-order sched-
ule representation from the standpoint of managing execution in an uncertain world,
and has also produced some basic techniques for generating flexible schedules for
specific types of scheduling problems. However, this thesis is among the first to
explicitly consider the problem of how to take advantage of temporal flexibility to
hedge against the dynamics of execution.

The proposed solution lies in the introduction of a partial ordering among the
activities: thePartial Order Scheduleor POS. As described in Definition3.1 a
POS consists in a set of activities which are partially ordered such that any possible
complete order that is consistent with the initial partial order, is a resource and time
feasible schedule. More precisely aPOS is a set of feasible schedules that can be
represented by a temporal graph.

Therefore as a scheduling problem consists itself of a set of partially ordered ac-
tivities, generating aPOS requires to post further temporal constraints on the initial
problem to guarantee that, once obtained aPOS, no further (temporal) constraint
is able to produce a resource conflict. In other words, the solving process to ob-
tain a partial order schedule, returns a new “problem” in which only the temporal
aspect is presented while the combinatorial one has been “solved”. This aspect rep-
resents a significant point. In fact, any external change or unforeseen event that can
be modeled as a temporal change in the problem, can be faced promptly thanks to
the characteristicsPOSs. In general a partial order schedule presents the following
features:

- the associated temporal graph allows to implicitly define a new solution to
recover the situation after a disruptive action.

- the underlying temporal graph allows to compute the new solution quickly. In
fact as said before a new solution is obtained by propagating the change over
the graph and this can be accomplished by using polynomial algorithms.

- the propagation step by definition computes the minimal repairs necessary to
take into account the change in input, and to obtain a new consistent solution.
This minimality aspect might avoid unnecessary domino effects preserving the
stability of the solution.

132 8. Conclusions

- the minimal repairs produced during the propagation step also allow to avoid a
great “consumption” of the set of solutions represented in thePOS.

The last two points turn out to be relevant to preserve both the stability and the flexi-
bility (or robustness) characteristics of the solution.

The necessity of posting further precedence constraints to obtain a partial or-
der schedule has implied the use of techniques that allow to directly manage con-
straints during the solving process. For this reason the Constraint Satisfaction Prob-
lem paradigm has been used (Chapter4). Furthermore Constraint Programming –
that is a framework to solve problems based on the CSP representation – satisfies
the need to represent the different techniques and to guide the search exploiting the
knowledge of the problem.

To conclude we want to underline that, even though the characteristics of partial
order schedules are tailored on temporal “change” that can be met during the execu-
tion, this kind of solution can turn out to be useful also to face other kinds of possible
change like, for instance, the events which arise from resource uncertainty.

8.1.3 Flexible Solutions through Least Commitment

A crucial point of this dissertation has been the issue of how to build partial order
schedules that have good robustness properties. In this regard, two broad classes of
constraint-based scheduling procedures are defined and investigated. First, a novel,
least-commitment approach to partial-order schedule generation, based on a recent
result regarding the computation of tight upper and lower bounds on resource usage
in a partial order schedule, is developed and explored. The idea behind the least com-
mitment approach consists in reducing as much as possible the commitment implied
by a decision. This results in a twofold aspect: postponing all unnecessary deci-
sions as much as the search procedure allows it and choosing the least commitment
decision once one has to be taken.

To obtain a least commitment approach we have used the resource envelope de-
scribed recently in[Muscettola, 2002] that allows to compute the minimal ad max-
imal bounds for the resource usage considering all the possible temporal solutions
admissible by a time ordering of the activities. This has produced the first scheduler
that integrates the resource envelope knowledge in the solving process. The use of
the resource envelope knowledge has required/allowed the study of different related
aspects:

- how to boost the envelope computation: in Sect5.3a set of properties to reduce
the complexity of computing the resource envelope have been described.

- How to manage the resource envelope to extract real conflicts: in Sect5.4.1
we have underlined how a superficial analysis of the resource envelope can

8.1. Contributions 133

produce aliasing effects in identifying the activities that produce resource con-
flicts.

- Pruning useless information through constraint propagation: the use of re-
source constraint propagation has been investigated to discover possible in-
feasible solutions and increase the efficiency of using the resource envelope.

- More intensive analysis of the search space. Finally to improve the solving pro-
cess a more intensive algorithm has been implemented overcoming the possible
pitfalls of heuristics choices.

In particular the method described can be viewed as an iterative repair method in
which the set of all possible temporal solution of the problem is considered at each
stage of the solving process. This set is then analyzed by computing the resource
envelope and based on this analysis some of the temporal solutions are heuristically
pruned. The process will continue until aPOS is produced.

8.1.4 Formalization of the Solve & Robustify method

Second, a two-stage approach to partial-order schedule generation, formalized as
the Solve-and-Robustify paradigm, was investigated. Under this approach, an initial
fixed-time schedule is generated in the first step using earliest-start-time resource pro-
files, and this intermediate solution is then transformed into a partial-order schedule
in the second step via a process referred to aschaining. Surprisingly, this solve-and-
robustify approach was found to dominate the envelope-based approach in its ability
to produce schedules with better robustness properties (as measured in a couple of
different ways) on a set of benchmark resource-constrained project scheduling prob-
lems from the Operations Research literature. Additionally, the solve-and-robustify
approach was found to solve greater numbers of problem instances, produce better
makespan results, and solve problems in significantly less computation time. This
result significantly dampens prior claims about the expected potential of envelope-
based schedule generation techniques.

One interesting characteristic of the solve-and-robustify approach is that by def-
inition the robustify step cannot degrade the makespan achieved by the solve step,
which allows for separation of concerns and the substitution of any sort of opti-
mizing schedule generator in the first step. Another interesting observation is that
multiple chaining-form partial order schedules can be derived from a given fixed-
time schedule. Pushing on this observation, the thesis next investigates the use of
chaining search procedures, which utilize heuristics that exploit structural character-
istics of more robust chaining form solutions and attempt to optimize with respect
to different robustness measures. These iterative chaining procedures are found to
produce significantly better partial order schedules with respect to various robustness
measures than the basic solve-and-robustify chaining procedure. Finally, the thesis

134 8. Conclusions

explores additional versions of the solve-and-robustify paradigm, which interleave
search for fixed-time solutions and partial order schedules to various degrees. The
results here indicate a tradeoff between the generation of low-makespan and high
flexibility schedules.

8.2 Future Work

Throughout this dissertation we have briefly commented on aspects of the research
that remain for future work. In this section, we summarize the avenues of research
suggested by the work in this dissertation.

Studying recovering techniques for non-temporal changes. The first direction
we want to highlight is the possibility of exploiting the flexibility guaranteed by par-
tial order schedules to hedge against non-temporal changes like the ones that might
stem from the resource capacity reduction or the need to serve new activities.

As mentioned before a first step of a possible solution consists in noting that
these two events can be represented in a common way: a new activity to be added
in the scheduling problem. In fact, in the case of resource capacity reduction this
can be modeled using an activity which requires an amount of resource equals to
the reduction value. At this point the problem will consist in selecting where to put
the new activity. This allocation will entail the modification of the allocation of other
activities. For this reason selecting the right position can reduce the disruptive impact
over the schedule in execution.

Using partial order schedules for integrating planning and scheduling. Archi-
tectures that integrate planning and scheduling, by interleaving the two phases might
benefit from both the flexibility and the consistency that a partial order schedule can
guarantee.

Even though partial order schedules cannot generally represent all the solutions
that a given plan may imply, they provide a set of feasible solutions on which the
planner can reason upon. In other words, aPOS can be a common structure on
which the two modules, the planner and the scheduler, negotiate.

Simulating the use of partial order schedules. Interesting results may stem from
the use of partial order schedules in an empirical framework which simulates their
execution. There are two main aspects which should be taken into account for the
implementation of an empirical framework:

- how to simulate a “real” execution?

- how to evaluate the behavior of the execution?

8.3. Conclusion 135

Regarding the first question different points have to be taken into account. For in-
stance, a possible approach may lie in using information about statistical distribution
of disruptive events. This can be an efficient approach for well known situations. The
second point can be maybe more important. In fact it is essential to have a yardstick
to evaluate the quality of the execution. But it is generally hard to find a unique cri-
terion: what is more important the stability of a solution or the preservation of the
schedule quality?

Furthermore, important remarks can be made by comparing, in terms of schedule
metrics, the actual execution of the solution and the best execution. This can be ac-
complished by solving the problem which consists of the original scheduling problem
plus the various changes that arose during the execution.

8.3 Conclusion

Plans and schedules always break: tasks take longer than expected, resources are
unexpectedly unavailable, products do not pass quality assessment tests and must be
produced again, etc. As a result, a schedule that looks good “on paper” may quickly
become irrelevant and inapplicable. As explained in this thesis, several approaches
have been explored to hedge against this fact. One of the most significant (probably,
the most significant) approach consists of coupling:

• a predictivescheduling engine, able to propose, under a compact representa-
tion, a set of possible schedules;

• with areactivescheduling engine, able to interpret the represented set of sched-
ules, and make execution decisions based on actual events.

In this approach, it is in general not necessary to call the predictive scheduling en-
gine after each unexpected event. Actually, the predictive scheduling engine shall
be called again only if a significant set of disruptions makes the represented set of
schedules unusable or inappropriate in the resulting situation.

In this thesis we introduce the definition of partial order schedule as a particular
set of schedules and we explicitly consider the problem of how to take advantage of
temporal flexibility to hedge against the dynamics of execution. We produce several
new results and insights into the issue of how to build partial order schedules. In this
regard two broad classes of constraint based scheduling procedure are defined and
investigated: least commitment engines attempt to generate as few (and as little con-
straining) delay constraints as possible, in order to solve potential resource conflicts
and guarantee that all the schedules consistent with the generated delay constraints
are feasible; by contrast, solve-and-robustify approaches generate first one “good”
schedule, and then derive a set of delay constraints from this schedule. Surprisingly,

136 8. Conclusions

these solve-and-robustify approaches have been found to dominate the least com-
mitment ones in their ability to produce schedules with better robustness properties
(as measured in several different ways) on a set of benchmark resource-constrained
project scheduling problems from the Operations Research literature. Additionally,
the solve-and-robustify approaches have been found to solve greater numbers of prob-
lem instances, produce better makespan results, and solve problems in significantly
less computation time.

Bibliography

[Ahujaet al., 1993] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.Network Flows: Theory,

Algorithms, and Applications. Prentice Hall, 1993.

[Ali et al., 2004] S. Ali, A. A. Maciejewski, H. J. Siegel, and J. K. Kim. Measuring the

Robustness of a Resource Allocation.IEEE Transactions on Parallel and Distributed

Systems,, 15(7):630–641, July 2004.

[Aloulou and Portmann, 2003] M. A. Aloulou and M. C. Portmann. An Efficient Proactive

Reactive Scheduling Approach to Hedge against Shop Floor Disturbances. InProceedings

of 1st Multidisciplinary International Conference on Scheduling : Theory and Applica-

tions (MISTA 2003), pages 337–362, 2003.

[Artigues and Roubellat, 2000] C. Artigues and F. Roubellat. A polynomial activity insertion

algorithm in a multi-resource schedule with cumulative constraints and multiple modes.

European Journal of Operational Research, 127(2):297–316, 2000.

[Artigueset al., 2004] C. Artigues, J. C. Billaut, and C. Esswein. Maximization of solution

flexibility for robust shop scheduling.European Journal of Operational Research, 2004.

To appear.

[Aytug et al., 2005] H. Aytug, M. A. Lawley, K. N. McKay, S. Mohan, and R. M. Uzsoy.

Executing production schedules in the face of uncertainties: A review and some future

directions.European Journal of Operational Research, 165(1):86–110, February 2005.

[Baptiste and Le Pape, 1995] P. Baptiste and C. Le Pape. A Theoretical and Experimental

Comparison of Constraint Propagation Techniques for Disjunctive Scheduling. InPro-

ceedings of the14th International Joint Conference on Artificial Intelligence, 1995.

[Baptisteet al., 2001] P. Baptiste, C. Le Pape, and W. Nuijten.Constraint-Based Schedul-

ing, volume 39 ofInternational Series in Operations Research and Management Science.

Kluwer Academic Publishers, 2001.

137

138 BIBLIOGRAPHY

[Baptiste, 1998] P. Baptiste.A Theoretical and Experimental Study of Resource Constraint

Propagation. PhD thesis, University of Compiègne, 1998.

[Bartuschet al., 1988] M. Bartusch, R. H. Mohring, and F. J. Radermacher. Scheduling

project networks with resource constraints and time windows.Annals of Operations Re-

search, 16:201–240, 1988.

[Beanet al., 1991] J. Bean, J. Birge, J. Mittenthal, and C. Noon. Match-Up Scheduling with

Multiple Resources, Release Dates and Disruptions.Operations Research, 39:470–483,

1991.

[Becket al., 1998] J. C. Beck, E. D. Davenport, A. J. Davis, and M. S. Fox. The ODO

Project: Towards a Unified Basis for Constraint-Directed Scheduling.Journal of Schedul-

ing, 1:89–125, 1998.

[Cesta and Oddi, 2001] A. Cesta and A. Oddi. Algorithms for Dynamic Management of

Temporal Constraints Networks. Technical report, ISTC-CNR, Institute for Cognitive

Science and Technology, Italian National Research Council, November 2001.

[Cesta and Stella, 1997] A. Cesta and C. Stella. A Time and Resource Problem for Planning

Architectures. InProceedings of the4th European Conference on Planning (ECP-97),

1997.

[Cestaet al., 1998] A. Cesta, A. Oddi, and S. F. Smith. Profile Based Algorithms to Solve

Multiple Capacitated Metric Scheduling Problems. InProceedings of the4th International

Conference on Artificial Intelligence Planning Systems, AIPS-98, pages 214–223, 1998.

[Cestaet al., 1999] A. Cesta, A. Oddi, and S. F. Smith. An Iterative Sampling Procedure

for Resource Constrained Project Scheduling with Time Windows. InProceedings of the

16th International Joint Conference on Artificial Intelligence, pages 1022–1029. Morgan

Kaufmann, 1999.

[Cestaet al., 2002] A. Cesta, A. Oddi, and S. F. Smith. A Constraint-based method for

Project Scheduling with Time Windows.Journal of Heuristics, 8(1):109–136, January

2002.

[Cheng and Smith, 1994] C. Cheng and S. F. Smith. Generating Feasible Schedules under

Complex Metric Constraints. InProceedings of the12th National Conference on Artificial

Intelligence, AAAI-94, pages 1086–1091. AAAI Press, 1994.

[Cormenet al., 1990] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Al-

gorithms. The MIT Press, 1990.

BIBLIOGRAPHY 139

[Davenport and Beck, 2000] A. J. Davenport and J. C. Beck. A Survey of Techniques for

Scheduling with Uncertainty. available on-line at http://4c.ucc.ie/ jcb/publications.html,

2000.

[Davenportet al., 2001] A. J. Davenport, C. Gefflot, and J. C. Beck. Slack-based Techniques

for Robust Schedules. InProceedings of6th European Conference on Planning, ECP-01,

2001.

[Dechter and Rossi, 2002] R. Dechter and F. Rossi. Constraint Satisfaction. In L. Nadel,

editor,Encyclopedia of Cognitive Science. Nature Publishing Group, 2002.

[Dechteret al., 1991] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks.Arti-

ficial Intelligence, 49:61–95, 1991.

[Demeulemeester and Herroelen, 2002] E. L. Demeulemeester and W. Herroelen.Project

Scheduling: A Research Handbook, volume 49 ofInternational Series in Operations Re-

search & Management Science. Kluwer Academic Publishers, 2002.

[Dijkstra, 1959] E. W. Dijkstra. A note on Two Problems in Connection with Graphs.Nu-

merische Mathematik, 1:269–271, 1959.

[Do and Kambhampati, 2003] M. B. Do and S. Kambhampati. Improving the Temporal

Flexibility of Position Constrained Metric Temporal Plans. InProceedings of the13th

International Conference on Automated Planning & Scheduling, ICAPS’03, 2003.

[Drabble and Tate, 1994] B. Drabble and A. Tate. The Use of Optimisticand Pessimistic

Resource Profiles to Inform Search in an Activity Based Planner. InProceedings of the

2nd International Conference on Artificial Intelligence Planning Systems (AIPS-94), 1994.

[Drummondet al., 1994] M. Drummond, J. Bresina, and K. Swanson. Just-in-Case Schedul-

ing. In Proceedings of the12th National Conference on Artificial Intelligence, AAAI-94,

pages 1098–1104. AAAI Press, 1994.

[El Sakkout and Wallace, 2000] H. H. El Sakkout and M. G. Wallace. Probe Backtrack

Search for Minimal Perturbation in Dynamic Scheduling.Constraints, 5(4):359–388,

2000.

[Feige and Kilian, 1998] U. Feige and J. Kilian. Zero-knowledge and the chromatic number.

Journal of Computer and System Sciences, 57:187–199, 1998.

[Ford and Fulkerson, 1962] L. R. Ford and D. R. Fulkerson.Flows in Networks. Princeton

University Press, 1962.

[Fox, 1990] M. S. Fox. Constraint Guided Scheduling: A Short History of Scheduling Re-

search at CMU.Computers and Industry, 14(1–3):79–88, 1990.

140 BIBLIOGRAPHY

[Frank, 2004] J. Frank. Bounding the Resource Availability of Partially Ordered Events with

Constant Resource Impact. In M. Wallace, editor,Principles and Practice of Constraint

Programming,10th International Conference, CP 2004, volume 3258 ofLecture Notes in

Computer Science, pages 242–259. Springer, 2004.

[Garey and Johnson, 1979] M. R. Garey and D. S. Johnson.Computers and Intractability:

A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York,

1979.

[Ginsberget al., 1998] M. L. Ginsberg, A. J. Parkes, and A. Roy. Supermodels and Robust-

ness. InProceedings of the15th National Conference on Artificial Intelligence, AAAI-98,

pages 334–339. AAAI Press, 1998.

[Goldberg and Tarjan, 1988] A. V. Goldberg and R. E. Tarjan. A New Approach to the Max-

imum Flow Problem.Journal of ACM, 35(4):921–940, October 1988.

[Hall and Posner, 2004] N. G. Hall and M. E. Posner. Sensitivity Analysis for Scheduling

Problems.Journal of Scheduling, 7(1):49–83, 2004.

[Hart and Ross, 1999a] E. Hart and P. Ross. An immune system approach to scheduling in

changing environments. InProceedings of the Genetic and Evolutionary Computation

Conference, GECCO-99, pages 1559–1565. Morgan Kaufman, 1999.

[Hart and Ross, 1999b] E. Hart and P. Ross. The evolution and analysis of a potential anti-

body library for job-shop scheduling. In D. Corne, M. Dorigo, and F. Glover, editors,New

Ideas in Optimization, pages 185–202. McGraw-Hill, 1999.

[Hartet al., 1998] E. Hart, P. Ross, and J. Nelson. Producing Robust Schedules Via an Ar-

tificial Immune System. InEvolutionary Computation Proceedings, 1998. IEEE World

Congress on Computational Intelligence., pages 464–469, 1998.

[Haywardet al., 1989] R. Hayward, C. T. Hoang, and F. Maffray. Optimizing Weakly Tri-

angulated Graphs.Graphs and Combinatorics, 5(4):339–350, 1989.

[Hebrardet al., 2004a] E. Hebrard, B. Hnich, and T. Walsh. Robust Solutions for Constraint

Satisfaction and Optimization. InProceedings of the 6th European Conference on Artifi-

cial Intelligence, ECAI-04, pages 186–190, 2004.

[Hebrardet al., 2004b] E. Hebrard, B. Hnich, and T. Walsh. Super Solutions in Constraint

Programming. InProceedings of the International Conference on Integration of AI and

OR Techniques in Constraint Programming for Combinatorial Optimisation Problems,

CP-AI-OR-04, pages 157–172. Springer, 2004.

BIBLIOGRAPHY 141

[Herroelen and Leus, 2004a] W. Herroelen and R. Leus. Robust and reactive project

scheduling: a review and classification of procedures.International Journal of Production

Research, 42(8):1599–1620, July 2004.

[Herroelen and Leus, 2004b] W. Herroelen and R. Leus. The construction of stable project

baseline schedules.European Journal of Operational Research, 156:550–565, 2004.

[Jen, 2003] E. Jen. Stable or robust? What’s the difference?Complexity, 8(3):12–18, 2003.

[Jensen, 2001] M. T. Jensen. Improving Robustness and Flexibility of Tardiness and Total

Flow-time Job Shops using Robustness Measures.Applied Soft Computing, 1(1):35–52,

June 2001.

[Kolischet al., 1998] R. Kolisch, C. Schwindt, and A. Sprecher. Benchmark Instances for

Project Scheduling Problems. In J. Weglarz, editor,Project Scheduling - Recent Mod-

els, Algorithms and Applications, pages 197–212. Kluwer Academic Publishers, Boston,

1998.

[Kumar, 1992] V. Kumar. Algorithms for Constraint-Satisfaction Problems:A Survey.Arti-

ficial Intelligence Magazine, 13(1):32–44, 1992.

[Laborie and Ghallab, 1995] P. Laborie and M. Ghallab. Planning with Sharable Resource

Constraints. InProceedings of the International Joint Conference on Artificial Intelli-

gence, IJCAI-95, 1995.

[Laborie, 2003] P. Laborie. Algorithms for Propagating Resource Constraints in A.I. Plan-

ning and Scheduling: Existing Approaches and New Results.Artificial Intelligence,

143(2):151–188, 2003.

[Leonet al., 1994] V. Leon, S. D. Wu, and R. H. Storer. Robustness measures and robust

scheduling for job shops.IIE Transactions, 26(5):32–43, September 1994.

[Leus and Herroelen, 2004] R. Leus and W. Herroelen. Stability and Resource Allocation in

Project Planning.IIE Transactions, 36(7):667–682, July 2004.

[Leus, 2003] R. Leus.The generation of stable project plans. PhD thesis, Katholieke Uni-

versiteit Leuven, 2003.

[Mc Kay et al., 1988] K. N. Mc Kay, F. R. Safayeni, and J. A. Buzacott. Job-Shop Schedul-

ing Theory: What Is Relevant?Interfaces, 18:84–90, 1988.

[Mc Kay et al., 2000] K. N. Mc Kay, T. E. Morton, P. Ramnath, and J. Wang. Aversion

dynamics scheduling when the system changes.Journal of Scheduling, 3(2):71–88, 2000.

142 BIBLIOGRAPHY

[Mehta and Uzsoy, 1998] S. V. Mehta and R. M. Uzsoy. Predictable Scheduling of a Job

Shop Subject to Breakdowns.IEEE Transactions on Robotics and Automation, 14(3):365–

378, June 1998.

[Montanaet al., 2000] D. Montana, J. Herrero, G. Vidaver, and G. Bidwell. A multiagent

society for military transportation scheduling.Journal of Scheduling, 3(4):225–246, 2000.

[Montana, 2002] D. Montana. How to Make Scheduling Research Relevant. InProceedings

of the Genetic and Evolutionary Computation Conference, GECCO-02, 2002.

[Montanari, 1974] U. Montanari. Networks of constraints: Fundamental properties and ap-

plications to picture processing.Information Sciences, 7:95–132, 1974.

[Morris et al., 2001] P. Morris, N. Muscettola, and T. Vidal. Dynamic Control of Plans with

Temporal Uncertainty. InProceedings of the17th International Joint Conference on Arti-

ficial Intelligence (IJCAI-01), 2001.

[Morton and Rachamadugu, 1982] T. E. Morton and R. M. V. Rachamadugu. Myopic

Heuristics for the Single Machine Weighted Tardiness Problem. Technical Report CMU-

RI-TR-83-09, Robotics Institute, Carnegie Mellon University, november 1982.

[Motwani and Raghavan, 1995] R. Motwani and P. Raghavan.Randomized Algorithms.

Cambridge University Press, 1995.

[Muscettolaet al., 1998] N. Muscettola, P. Morris, and I. Tsamardinos. Reformulating tem-

poral plans for efficient execution. InProceedings of the 6th International Conference on

Principles of Knowledge Representation and Reasoning (KR’98), 1998.

[Muscettola, 2002] N. Muscettola. Computing the Envelope for Stepwise-Constant Re-

source Allocations. InPrinciples and Practice of Constraint Programming,8th Interna-

tional Conference, CP 2002, volume 2470 ofLecture Notes in Computer Science, pages

139–154. Springer, 2002.

[Muscettola, 2004] N. Muscettola. Incremental Maximum Flows for Fast Envelope Com-

putation. InProceedings of the14th International Conference on Automated Planning &

Scheduling, ICAPS’04, 2004.

[Neumann and Schwindt, 1999] K. Neumann and C. Schwindt. Project Scheduling with In-

ventory Constraints. Technical Report WIOR-572, Institut für Wirtschaftstheorie und Op-

erations Research, Universität Karlsruhe, 1999.

[Nuijten and Aarts, 1996] W. P. M. Nuijten and E. H. L. Aarts. A Computational Study of

Constraint Satisfaction for Multiple Capacitated Job Shop Scheduling.European Journal

of Operational Research, 90(2):269–284, 1996.

BIBLIOGRAPHY 143

[Nuijten and Le Pape, 1998] W. Nuijten and C. Le Pape. Constraint-Based Job Shop

Scheduling with Ilog-Scheduler.Journal of Heuristics, 3(4):271–286, March 1998.

[Oddi and Smith, 1997] A. Oddi and S. F. Smith. Stochastic Procedures for Generating

Feasible Schedules. InProceedings 14th National Conference on Artificial Intelligence

(AAAI-97), pages 308–314, 1997.

[Ow et al., 1988] P. S. Ow, S. F. Smith, and R. E. Howie. CSS: A Cooperative Scheduling

System. In M. D. Oliff, editor,Expert Systems and Intelligent Manufacturing. Elsevier

Science Publishing, 1988.

[Policellaet al., 2003] N. Policella, S. F. Smith, A. Cesta, and A. Oddi. Steps toward com-

puting flexible schedules. InProceedings of Online-2003 Workshop CP 2003, 2003.

[Policellaet al., 2004a] N. Policella, A. Oddi, S. F. Smith, and A. Cesta. Generating Robust

Partial Order Schedules. In M. Wallace, editor,Principles and Practice of Constraint

Programming,10th International Conference, CP 2004, volume 3258 ofLecture Notes in

Computer Science, pages 496–511. Springer, 2004.

[Policellaet al., 2004b] N. Policella, S. F. Smith, A. Cesta, and A. Oddi. Generating Robust

Schedules through Temporal Flexibility. InProceedings of the14th International Confer-

ence on Automated Planning & Scheduling, ICAPS’04, pages 209–218. AAAI, 2004.

[Resende and Ribeiro, 2002] M. Resende and C. Ribeiro. Greedy Randomized Adaptive

Search Procedures. In F. Glover and G. Kochenberger, editors,Handbook of Metaheuris-

tics, pages 219–249. Kluwer Academic Publishers, 2002.

[Roy and Sussman, 1964] B. Roy and B. Sussman. Les problemes d’ordonnancement avec

contraintes disjonctives. Note DS n. 9 bis, SEMA, Paris, 1964.

[Sadeh, 1991] N. M. Sadeh. Look-ahead Techniques for Micro-opportunistic Job Shop

Scheduling. PhD thesis, School of Computer Science, Carnegie Mellon University, Pitts-

burgh PA, March 1991.

[Satish Kumar, 2003] T. K. Satish Kumar. Incremental computation of resource-envelopes

in producer consumer models. InPrinciples and Practice of Constraint Programming,9th

International Conference, CP 2003, volume 2833 ofLecture Notes in Computer Science,

pages 664–678. Springer, 2003.

[Scḧaffter, 1997] M. Scḧaffter. Scheduling with respect to forbidden sets.Discrete Applied

Mathematics, 72:141–154, 1997.

144 BIBLIOGRAPHY

[Schwindt, 1998] C. Schwindt. A Branch and Bound Algorithm for the Resource-

Constrained Project Duration Problem Subject to Temporal Constraints. Technical Re-

port WIOR-544, Institut f̈ur Wirtschaftstheorie und Operations Research, Universität Karl-

sruhe, 1998.

[Sevaux and S̈orensen, 2002] M. Sevaux and K. S̈orensen. A genetic algorithm for robust

schedules in a just-in-time environment. Technical Report LAMIH/SP-2003-1, University

of Valenciennes, 2002.

[Smith and Cheng, 1993] S. F. Smith and C. Cheng. Slack-based Heuristics for Constraint

Satisfactions Scheduling. InProceedings of the11th National Conference on Artificial

Intelligence, AAAI-93, pages 139–144. AAAI Press, 1993.

[Smith, 1994a] S. F. Smith. OPIS: A Methodology and Architecture for Reactive Schedul-

ing. In M. Fox and M. Zweben, editors,Intelligent Scheduling. Morgan Kaufmann, 1994.

[Smith, 1994b] S. F. Smith. Reactive Scheduling Systems. In D. Brown and W. Scherer,

editors,Intelligent Scheduling Systems. Kluwer Academic Publishers, 1994.

[Smith, 2003] S. F. Smith. Is Scheduling a Solved Problem? InProceedings First Multi-

Disciplinary International Conference on Scheduling: Theory and Applications (MISTA

03), 2003. Invited Keynote Talk.

[Sotskov, 1991] Y. N. Sotskov. Stability of an optimal schedule.European Journal of Oper-

ations Research, 55(1):91–102, 1991.

[Stork, 2001] F. Stork. Stochastic Resource-Constrained Project Scheduling. PhD thesis,

Technische Universität Berlin, 2001.

[Sycaraet al., 1991] K. P. Sycara, S. F. Roth, N. Sadeh, and M. S. Fox. Resource Allocation

in Distributed Factory Scheduling.IEEE Expert, 6(1):29–40, 1991.

[Tavareset al., 1998] L. V. Tavares, J. A. Ferreira, and J. S. Coelho. On the optimal man-

agement of project risk.European Journal of Operational Research, 107(2):451–469,

1998.

[Tsamardinoset al., 1998] I. Tsamardinos, N. Muscettola, and P. Morris. Fast transforma-

tion of temporal plans for efficient execution. InProceedings of the 15th National Con-

ference on Artificial Intelligence (AAAI-98), 1998.

[Tsang, 1993] E. P. K. Tsang. Foundations of Constraint Satisfaction. Academic Press,

London and San Diego, 1993.

BIBLIOGRAPHY 145

[Vidal and Fargier, 1997] T. Vidal and H. Fargier. Contingent durations in temporal csps:

from consistency to controllabilities. InProceedings of IEEE TIME-97 International

Workshop, 1997.

[Vidal and Ghallab, 1996] T. Vidal and M. Ghallab. Dealing with uncertain durations in

temporal constraint networks dedicated to planning. InProceedings of the 12th European

Conference on Artificial Intelligence, pages 48–52, 1996.

[Vieira et al., 2003] G. E. Vieira, J. W. Herrmann, and E. Lin. Rescheduling manufacturing

systems: a framework of strategies, policies, and methods.Journal of Scheduling, 6(1):39–

62, 2003.

[Wallace, 2000] S. W. Wallace. Decision making under uncertainty: is sensitivity analysis

of any use?Operations Research, 48(1):20–25, 2000.

[Weigel and Bliek, 1998] R. Weigel and C. Bliek. On Reformulation of Constraint Satisfac-

tion Problems. In13th European Conference on Artificial Intelligence, ECAI98, pages

254–258, Brighton, UK, 1998.

[Weiss, 1999] G. Weiss.Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence. MIT Press, Cambridge, MA, 1999.

[Wu et al., 1999] S. D. Wu, E. S. Beyon, and R. H. Storer. A graph-theoretic decomposi-

tion of the job shop scheduling problem to achieve scheduling robustness.Operations

Research, 47(1):113–124, January – February 1999.

[Zwebenet al., 1994] M. Zweben, E. Davis, B. Daun, and M. J. Deale. Scheduling and

Rescheduling with Iterative Repairs. In M. Fox and M. Zweben, editors,Intelligent

Scheduling. Morgan Kaufmann, 1994.

	Acknowledgment
	Abstract
	Contents
	Introduction
	Project Scheduling
	Scheduling with Uncertainty
	Organization of the Thesis
	Contributions

	Scheduling with Uncertainty: Current Research Scenario
	From Scheduling Theory to Real Applications
	A classification of current trends
	Analyzing Different Approaches
	Synthesis of Robust Schedules
	The Rescheduling Problem
	Partially Defined Schedules
	Managing Contingencies
	Further Relevant Research
	Execution of temporal plans

	Further Remarks on Current Scenario
	The Complexity of Scheduling Problems
	The Necessity of Baseline Schedules

	Conclusions

	Robustness through Flexible Schedules
	Introduction
	Robustness
	The Reference Scheduling Problem: RCPSP/max
	Flexible Solutions
	Partial Order Schedule

	Metrics to Compare Partial Order Schedules
	Conclusions

	Constraint-based Scheduling
	Constraint Satisfaction Problem
	Partial Order Schedules: why a constraint-based approach?

	Scheduling + CSP = Constraint-based Scheduling
	Precedence Constraint Posting
	The Core Constraint-based Scheduling Framework

	Summary

	A Least Commitment Approach
	Introduction
	Compute Resource Bounds
	Resource Envelopes

	Boosting the Resource Envelope Computation
	Other incremental approaches in the literature

	eba: the resource Envelope Based Algorithm
	Detecting peaks on resource envelopes
	Results
	A note on envelope efficiency

	Increasing the efficiency of eba
	Constraint Propagation
	An Iterative Sampling Procedure
	Results

	Conclusions

	Solve & Robustify
	Introduction
	Coupling a solver with a robustify step
	The Earliest Start Time Algorithm - esta
	Producing a Partial Order Schedule with Chaining
	The estaC algorithm: Results

	Partial order schedules in chaining form
	Remarks on the chaining method

	Increasing Robustness Features through Iterative Chaining
	Generating different Partial Order Schedules
	Results

	Investigating the use of different fixed-time solutions
	The Iterative Sampling Procedure
	The Grasp-Chaining
	Results

	Makespan versus robustness
	Conclusions

	Discussion and Final Analysis
	Stability Analysis
	A large scale experimentation
	Thesis work: limitations and open issues
	Partial Order Schedules and their applicability
	Methods to produce Partial Order Schedules

	Conclusions
	Contributions
	Analysis and Classification of the Current Research Scenario
	Formalization of a Flexible Approach: the Partial Order Schedule
	Flexible Solutions through Least Commitment
	Formalization of the Solve & Robustify method

	Future Work
	Conclusion

	Bibliography

