

University of Rome
La Sapienza
Department of Computer Science

Mauro Mezzini

ANSWERING SUM-QUERIES :
A SECURE AND EFFICIENT
APPROACH

Advisor: Prof. F. M. Malvestuto

u

r

arc(u)

arc(v)

v

−λ −λ

0

 λ

 λ

0

1

2 3

45

to my sons Oskar and Lorenzo
and to my wife Arenika

Content

Introduction..3

The inference model...9
1.1 Introduction..9

1.2 View bases ...10

1.3 The updating procedure for a view base ..15

1.4 Evaluability and Derivability ...17
1.4.1 Computational aspects ..22

1.5 Reduction procedure for a view base and for a view base instance...23

Efficiently Answering Statistical Sum-Queries ...28
2.1 Introduction..28

2.1 The query-execution plan D...29
2.1.1 Proving the NP-completeness of the NAS problem...31

2.2 The query-execution plan E ...37
2.2.1 Proving coNp-completeness of computing a Z+−invariant sets..42

Auditing Sum-Queries to Make a Statistical Database Secure..45
3.1 Introduction..45

3.2 Basic Definitions..46

3.3 The snooper’s model..48

3.4 How to beat the snooper...50

3.5 A polynomial test for evaluability ...53

3.6 Management of the normal form ...58

Finding The Invariant Edges In An Edge Weighted Graph..62

4.1. Introduction...62

4.2. Background ...65

4.3. Invariant Edges ...66

4.4. Finding The Co-Loop Set ...69
4.4.1 Algebraic bridges ..69
4.4.2 Odd edges..70

4.5. Finding The Kernel ...73

4.6. Security Of Statistical Data...77

4.7 Protecting privacy for data of additive type...81
4.7.1 Find a compatible edge labeling ...81
4.7.2 Characterization of invariant edges...83

Computing Feasible Ranges..87
5.1 Introduction..87

5.2 The bipartite case ...87

Pag. 2

5.3 Bounds on the weight of an edge ...90

5.4 A special Case..94

5.5 Computing feasible range of a sum for an arbitrary set of variables96

A linear time algorithm to solve the NAS problem in a graph ..98
6.1. Introduction...98

6.2. Algebraic set ...98

6.3. The kernel of an edge set ..101

6.4. Finding a nonempty algebraic subset of the kernel...104

6.5. Computational aspects ..106

Minimal invariant sets in a vertex-weighted graph ..111
7.2. Definitions...112

7.3. Invariance tests..114

7.4. Algebraic sets..116

7.5. Minimal algebraic sets ..118

Conclusions ...126

References ...128

Pag. 3

Introduction

The use of computer systems for collecting data has exploded during the last 40 years allowing the
storage and the query of an immense quantity of information. Governmental organizations, census
institutes, industries and corporations usually have large information systems that collect and store
information about individuals. Such databases can be very large and are often used to produce
statistics over certain population. Statistics can ask for a sum, average, maximum or minimum of
the value of a numerical attribute for certain category of individual (i.e. a set of records). These
databases are referred in this paper to as statistical databases (SDB).
A statistical database is an ordinary database whose users are allowed to ask for statistical
information. Consider a bank database which contains a file called DEPOSITOR whose records
have the following fields: Name, Account, Gender, Age, Balance. The statistical users can
ask for summary statistics on Balance over arbitrary categories of depositors and the categories
can be specified by logical formulae involving the fields of the file. Typically, such summary
statistics are obtained using the five aggregation functions: sum, count, max, min, average. If f is
any of these aggregation functions, the following are three possible instances of a statistical query
expressed in an SQL-like language

q select f(Balance)
 from DEPOSITOR
 where Gender = Male and Age ≥ 25

q' select f(Balance)
 from DEPOSITOR
 where Gender = Female and Age ≥ 25

q" select Gender, f(Balance)
 from DEPOSITOR
 where Age ≥ 25
 groupBy Gender

It should be noted that q" is equivalent to the couple {q , q'}; therefore, without loss of generality,
we can limit our considerations to statistical queries from which the groupBy clause is missing.
According to the terminology introduced in [9, 10], the aggregation functions sum and count are
called additive, the aggregation functions min and max are called semiadditive, and the aggregation
function average is called computed. In this thesis, as in [9, 10] we focus on the special class of
additive aggregation functions that take on their values from a commutative group (e.g., the set of
reals or the set of integers). In other words, we only consider sum-queries, which in our bank
database are the statistical queries of the type sum(Balance). By the response of such a sum-
query we mean exactly the total sum of the values of Balance reported in the records of the file
DEPOSITOR that fall in the category specified by the logical formula contained in the where
clause.

We address two issues concerning the processing of sum-queries in large statistical database
system. The first one is concerning the privacy of the data stored in the database. Collecting and
storing information about individuals raises concerns on the compromise of individual privacy.
Insurance or employer could collect information to discriminate between who to insure or employ.
For example suppose a medical database has a boolean attribute storing, for each individual,
whether she or he has got or has not got a certain disease. Medical researcher could ask the sum of
the boolean attribute over certain categories to assess the spreading of this disease. The risk is, if the
category is small or, worse, is a singleton, that such statistic could lead to the disclosure of

Pag. 4

confidential information. The problem here is to allow the query-system to answer statistical queries
as long as no confidential information is, directly or indirectly, given to the users. We refer in this
paper to this problem as the security problem.
The second issue we address in this thesis is related to the performance of processing of sum-
queries in a large statistical database. As in the example above in a medical database a user could
ask for the number of male people affected by a certain disease. To produce the answer require
scanning exhaustively all the records falling in that category. Clearly this process can takes a lot of
time if the database is very large. The idea to speed up this process is to pre-compute a set of
statistics when the database is created and use these pre-computed statistics to find whole or part of
the answer of a query q thus saving time. We refer to this problem as the performance problem.
We will show that this two problems are related each other. In fact technique used to solve the first
problem can be used to solve the second.
The idea is that after answering a set V of queries or equivalently given a set V of pre-computed
queries, one can combine the information conveyed by V to obtain further information, not
explicitly given by the database. We also see that this information can be obtained in a very
efficient manner.

The security problem
Answering sum-queries (and, more in general, statistical queries) raises concerns on the
compromise of individual privacy and protection of confidential data should be afforded. We call
intrusive a sum-query asking for total of a sensitive statistic [17, 61, 62]. Let q be a sum-query of
the type sum(Balance) on our bank database. If Balance is a confidential field and the response
of q is sensitive (e.g., according to the threshold criterion), then q is intrusive. When an intrusive
sum-query is asked, the query-answering system (QAS) should issue a “non-informative” response
(see below). The statistical security of a database can also be attacked by a nonintrusive sum-query.
In our bank database, this is the case if q is not intrusive, but its response combined with the
responses to previously answered sum-queries of the type sum(Balance) can lead to the
disclosure of the total balance for some sensitive category of depositors. Then, we call q tricky and
the QAS should answer q as if q were intrusive. Finally, if a sum-query is neither intrusive nor
tricky, the QAS can be safely answer it by releasing its value. The situation can be depicted as a
competitive game played by the QAS, which has as its opponent a hypothetical user, henceforth
referred to as the snooper, who at all times is well-informed of all answered sum-queries and is able
to identify and compute the data that are derivable from their responses, that is, those data that are
implicitly released. To beat the snooper, the QAS should control the amount of information released
each time a new query is answered by auditing the whole set of answered sum-queries. More
precisely, given a new sum-query q, the auditing procedure should first find those data that are
derivable from the responses to q and to previously answered sum-queries; next, if no derivable
data is sensitive, then the QAS can safely answer q, otherwise in response to q the QAS will issue a
“non-informative” answer, e.g., the set of feasible values of q consistent with the values of
previously answered sum-queries.

Example 0.1. Consider again the file called DEPOSITOR, where Balance is a field of real type,
and the value-set of the field Age consists of the following three intervals: Age < 25, 25 ≤ Age <
45, Age ≥ 45. We assume that Balance is a confidential field and that

q select sum(Balance)
 from DEPOSITOR
 where Gender = Male and Age < 25

 is the only intrusive sum-query. Consider the four sum-queries

Pag. 5

q1 select sum(Balance)
 from DEPOSITOR
 where Gender = Male and Age < 45

q2 select sum(Balance)
 from DEPOSITOR
 where Age < 25 or Gender = Male and Age ≥ 45

q3 select sum(Balance)
 from DEPOSITOR
 where Age ≥ 45 or Gender = Male and 25 ≤ Age < 45

q4 select sum(Balance)
 from DEPOSITOR
 where Gender = Female and Age < 45

and assume that the values of q1, q2, q3 and q4 are 24, 29, 18 and 12, respectively. If the values
of the four sum-queries are all released, the amount of information conveyed by their answers is
modelled by the following equation system

 x1 + x2 = 24
 x1 + x3 + x4 = 29 (0.1)
 x2 + x3 + x6 = 18
 x4 + x5 = 12

where the variables x1, x2, x3, x4, x5 and x6 stand for the total balances of the depositors belonging to
the categories specified by the following six atomic formulae:

V1 = (Gender = Male and Age < 25)
V2 = (Gender = Male and 25 ≤ Age < 45)
V3 = (Gender = Male and Age ≥ 45)
V4 = (Gender = Female and Age < 25)
V5 = (Gender = Female and 25 ≤ Age < 45)
V6 = (Gender = Female and Age ≥ 45)

Note that the value of the intrusive sum-query q is represented by x1. Since the general solution of
the equation system (0.1) is

 (x1 = a, x2 = 24 – a, x3 = 29 – a – b, x4 = b, x5 = 12 – b, x6 = –35 + 2a + b)

where a and b are two arbitrary real numbers, the value of x1 is not determined and, hence, the
response of q is protected. Suppose now that a new sum-query arrives:

q5 select sum(Balance)
 from DEPOSITOR
 where Gender = Female and Age ≥ 25

and assume that the response of q5 is 7. If the QAS answers q5, then the amount of information
conveyed by the answers to q1, …, q5 is obtained by adding the equation x5 + x6 = 7 to equation
system (0.1). The general solution is now

Pag. 6

 (x1 = 15, x2 = 9, x3 = 14 – b, x4 = b, x5 = 12 – b, x6 = –5 + b)

so that the response of q is disclosed. Therefore, the QAS should not answer q5 by releasing its
response, but should issue the set of feasible values of q5 consistent with the answers to q1, …, q4,
that is, the whole set of real numbers.

Auditing sum-queries raises some computational problems (recognizing evaluable sum-queries,
updating the information model), whose solutions depend on the data type of the response variable.
If it is of real type, then standard algebraic methods can be used to solve all of them efficiently;
If it is of non negative real type then a natural approach for solving the security problem consists in
resorting to standard linear-programming algorithms (e.g., the simplex method [13, 19]).
Unfortunately, none of them is polynomial even if they are polynomial on the average and have
good performances in practice [13, 19]. Therefore, in order to solve the computational problems
raised by the security of the SDB, it is convenient to make a parsimonious use of standard linear-
programming algorithms and “there is considerable interest in finding alternative techniques” [22].
Accordingly we devise procedures and algorithms that minimise the use of linear programming and
in a special case we see how to solve the security problem making use only of polynomial graphs
and networks algorithms.

The performance problem
When a sum-query about a numeric attribute selects a large number of records, the query-answering
system should scan through a large portion of the database exhaustively, and thus inefficiently. A
better approach consists in trying to answer the sum-query using materialised sum-views that
correspond to more frequently asked sum-queries.
Previous approaches to planning the execution of sum-queries [9, 10, 14, 26, 28, 31, 56] aim at
rewriting the query set of query in terms of the query sets of views using as “rewriting language”
the very query language. For example, in [9, 10] a sum-query is called derivable from a list of views
if the query set can be expressed by disjoint union and proper difference of the query sets of views.
However, in general the situation is more complex and the choice of the very query language as
rewriting language is poor as we can see in the following example

Example 0.1 (continued). Consider the file DEPOSITOR and suppose the query system has a set
V={q1, q2, q3, q5} of materialised sum-views. Then the amount of information conveyed by V is
modelled by the following equation system

 x1 + x2 = 24
 x1 + x3 + x4 = 29 (0.2)
 x2 + x3 + x6 = 18
 x4 + x5 = 12
 x5 + x6 = 7

As stated before the general solution of system 0.2 is

(x1 = 15, x2 = 9, x3 = 14 – b, x4 = b, x5 = 12 – b, x6 = –5 + b)

clearly the query q can be answered without accessing the database. Also the query asking for the
value of the sum for category V2 can be answered without accessing the database since the value of
x2 is uniquely determined under system 0.2. Note that not only x1 and x2 are uniquely determined
but also the value of x3 + x6 and the value of x3 + x4 are uniquely determined. It should be noted too

Pag. 7

that x1, x2, x3 + x6, and x3 + x4 are uniquely determined no matter what was the response of the five
query.
We see in the Example 0.1 that the contents of a given materialised sum-views can be modelled by
a linear equation system, which naturally leads to the notions of “evaluability” of a sum-query (the
answer is uniquely determined by the values of the materialised views) and of “derivability” (the
answer is uniquely determined no matter which values the materialised views may assume).
Accordingly, two query-execution plans for answering a sum-query are proposed and the connected
computational aspects are discussed. One (called plan D), which is not sensitive to the values the
materialised views, first checks if the sum-query is derivable and, if this is not the case, finds a
“contained” sum-query that is derivable and accesses the database only to evaluate the residual part
of the original sum-query. The other (called plan E), which is sensitive to the values the
materialised views, first checks if the sum-query is evaluable from materialised views and, if this is
not the case, finds a “contained” sum-query that is evaluable and accesses the database only to
evaluate the residual part of the original sum-query. As to plan D, it is proven that (1) the problem
for recognising derivable sum-queries is independent of the domain of the response variable and can
be solved in polynomial time, and (2) the problem of finding a “maximally contained” sum-query is
NP-hard. As to plan E, it is proven that (1) the problem for recognising evaluable sum-queries is
dependent on the domain of the response variable, can be solved in polynomial time if the domain
of the response variable is the set of reals, or of integers, or of nonnegative reals, but is coNP-hard if
the domain of the response variable is the set of nonnegative integers, and (2) the problem of
finding a “maximally contained” sum-query remains NP-hard. Finally we will show a special cases
where the problem of finding a “maximally contained” sum-query can be solved in polynomial
time.

Organization of the work
The work is organised in the following manner: Chapter 1 discusses the information model called
the inference model used to represent the amount of information conveyed by a set V of answered
sum-queries. This mathematical model is used to solve both the performance and the security
problems. Part of the work of this Chapter was used in the work made in collaboration with F. M.
Malvestuto and Moscarini M. “Answering Statistical Sum-Queries Using Materialised Sum-Views:
An Analytic Approach” submitted for publication in 2005 to TODS [51].
Chapter 2 discusses the performance problem. It is described how to use the set of V of answered
queries for efficiently find the answer to new queries. In Chapter 3, the problem of answering sum-
queries without disclosing, directly or indirectly, confidential information is addressed. Some
original results described in this Chapter were used in the work “Auditing Sum-Queries to Make a
Statistical Database Secure” [50] made in collaboration with Malvestuto F. M. and Moscarini M.
and accepted for publication to TISSEC (2005). In Chapter 4, we start to deal with a graphical
information model. The information model is said to be graphical when the coefficient matrix of the
system of linear equations is the node-edge incidence matrix of a graph. So Chapter 4 is devoted to
solve the important problem of finding the invariant edges of an edge-weighed graph. Almost the
entire Chapter 4 comes from the work made in collaboration with Malvestuto F. M, “A Linear time
algorithm for finding the invariant edges of edge-weighted graph” [41]. In section 4.7 of Chapter 4
we discuss the invariant edges problem for an edge-weighted graph where the weights of the edges
take their values from a commutative (abelian) group. This section was derived from the work made
in collaboration with Malvestuto F. M. “Privacy preserving and data mining in an on-line
statistical database of additive type” [43]. In Chapter 5, we solve the problem of finding the feasible
range of the sum of the weights of a set of edges of an edge-weighted graph. This Chapter is
derived from the work made in collaboration with Malvestuto F. M. “Auditing sum-queries”[42].
Chapter 6 solve the problem of finding a “maximally contained” sum-query when the information
model is graphical. This problem is proved (see Section 2.1.1) to be an NP-hard problem in the
general case. Finally Chapther 7 a carachterization of algebraic edge sest on graphs is given.

Pag. 8

Acknowledgements
First of all I wish to thank my advisor, Prof. F. M. Malvestuto, for having given me the opportunity
to start this scientifical work which eventually has made possible make this thesis and has enabled
me to attend the Ph.D. course. I wish also to thank him for his constant help, his many valuable
comments and suggestions. Next I wish to thank Prof. Moscarini M.. I become graduate under her
supervision and many of the results of Chapter 4 come from the work done with her. Special thanks
goes to Prof. Pavel Serafimov for his help in correcting the English language’s errors of the
original manuscript.

Pag. 9

Chapter 1

The inference model

1.1 Introduction
Consider an ordinary database containing information on individuals (persons, households,
companies, organizations et cetera), which either is static (e.g., a census database) or is updated
periodically (e.g., daily, weekly, monthly, …). Statistical queries ask for summary statistics over
categories of individuals, possibly for “analytic processing” purposes. For example, consider a
database which is monthly updated and contains a relation name Personnel with scheme {NAME,
SSN, GENDER, AGE, DEPT, SALARY}. A statistical query may ask for the summary statistic on the
attribute SALARY (using aggregate functions such as sum, count, …) for some group of
employees selected using the attributes GENDER, AGE and DEPT but not NAME and SSN which are
private attributes. We focus on statistical sum-queries such as

 q1: select sum(SALARY)
 from Personnel
 where AGE = young

 q2: select sum(SALARY)
 from Personnel
 where GENDER = male and AGE = young

(Sum-queries containing the group-by clause will not be taken into account explicitly since they
are equivalent to sets of sum-queries that the group-by clause is missing from). In a sum-query q
such as q1 or q2, the attribute SALARY is called the response variable and the attributes involved in
the where clause are called the categorical variables of q. The where clause specifies a relation
over the set of categorical variables of q, we call the target of q and denoted by Q, which is
computed when q is compiled. Accordingly, the targets of q1 and q2 are the one-tuple relation
{(young)} over {AGE} and the one-tuple relation {(male, young)} over {GENDER, AGE},
respectively. If I is the current database relation of name Personnel, then the answer to a sum-
query such as q1 and q2 is given by

 ∑t t(SALARY)

the summation being extended over the tuples t in I that “fall” in the target of q, that is, that are
qualified by the condition involved in the where clause.
Suppose that at the beginning of a new life period of the database, in order to speed up the process
of evaluating incoming sum-queries, the database administrator decides to create certain sum-views
over SALARY, that is, named sum-queries with response variable SALARY such as

 create view v1 as
 select sum(SALARY)
 from Personnel
 where AGE in {middle, old}

 create view v2 as
 select sum(SALARY)
 from Personnel
 where AGE in {young, old}

Pag. 10

 create view v3 as
 select sum(SALARY)
 from Personnel
 where AGE in {young, middle}

Also the database system can store all the answered queries for auditing purposes. The set of all
answered queries can be seen as a set of sum-views.
Let V = (v1, v2, v3) and let v = (v1, v2, v3), where v1, v2 and v3 are the answers to v1, v2 and v3
computed on the current relation I of name Personnel. When a user will submit a sum-query q
with response variable SALARY, a question that naturally arises is whether the query-answering
system can answer q from v without accessing the database.
Here we describe the inferential model (also called the information model) that allow us to evaluate
query q from a set of sum-views or equivalently, from a set of previously answered sum-queries.
Informally, we say that q is evaluable from v if the answer to q is uniquely determined by v, and is
derivable from V if it is evaluable from any v. Accordingly, the sum-query q1 is derivable from V
since, for every instance of the database relation of name Personnel, the answer to q1 can be
obtained as

1
2

 (–v1 + v2 + v3)

On the other hand, it is easily seen that the sum-query q2 is not derivable from V and that, under the
realistic assumption that the attribute SALARY is of nonnegative type, q2 is evaluable from v only if
v1 = v2 + v3 for, then, the answer to q1 is 0 and, hence, also the answer to q2 must be 0.

1.2 View bases
Let us assume that we are given a relation name Rel whose scheme contains a numeric attribute σ
with domain d. Typically, d is the set R of reals, or the set Z of integers, or the set R+ of
nonnegative reals or the set Z+ of nonnegative integers. Let R be the set of attributes in the scheme
of Rel that can be used to ask statistical queries on σ. The values of each attribute in R are assumed
to be mutually exclusive and globally exhaustive from a semantic viewpoint. Let S be a nonempty
subset of R. An element of the domain of S, written dom(S), is an S-cell, and a set of S-cells is an S-
category; accordingly, every S-category is a relation over S. For any subset S' of R that contains S,
the extension of an S-category Q to S' is the S'-category dom(S'–S) × Q if S' ≠ S, and is the S-
category Q otherwise.
We will consider sum-queries with response variable σ in “positive normal form” [44] such as

 q : select sum(σ)
 from Rel
 where (A1, …, Ar) in Q

where Q, the target of q, is an S-category with S = {A1, …, Ar} ⊆ R. Thus, the condition involved
in the where clause stands for the logical formula

 ∨c∈Q A1 = c(A1) ∧ … ∧ Ar = c(Ar).

We also consider the sum-query

 u : select sum(σ)
 from Rel

Pag. 11

which has no categorical variables. By convention, we say that the target of u is the universal
category and the extension of the universal category to any nonempty subset S of R is dom(S).

Such sum-queries with response variable σ will be referred to as σ-queries.

Remark 1.1 If the target Q of a σ-query q is an S-category which is the extension to S of some S'-
category Q', S' ⊂ S, then q is equivalent to the σ-query q' with target Q' in that the answers to q
and q' computed on every instance of the database relation of name Rel do coincide.

Note that, owing to the assumptions of mutual exclusiveness and global exhaustiveness, every sum-
query q with response variable σ has associated with it exactly one σ-query which is equivalent to
q.
An sum-view v over σ (a σ-view, for short) is a named σ-query (over the scheme of Rel) whose
answer is computed by the query-answering system as soon as the database is updated. A view base
over σ (a σ-view base, for short) is a nonempty list of σ-views. We can also see a view base as a set
of answered σ-queries. Let V = (v1, …,vn) be a σ-view base. Let Si be the set of categorical
variables of vi, 1 ≤ i ≤ n, and let S = ∪i = 1,…,n Si be the set of categorical variables of V. Let Vi be
the extension to S of the target of vi. Then, it is uniquely determined (e.g., see [38], pages 132-133])
the coarsest X of the partitions of Ω = ∪i = 1,…,n Vi. such that each Vi can be recovered by taking the
union of one or more classes of X. The partition X is composed by the non empty elements, each
one obtained as

 ∩i∈µ Vi − ∪i∉µ Vi µ∈2[n]

where by [n] we denote the set {1, …, n} and 2[n] is the set of all subset of [n]. We call X the
classification system of V.

Remark 1.2 A category Vi is itself a class of X if and only if, for each i', either Vi ⊆ Vi' or Vi ∩ Vi' =
Ø.

Let X = {X1, …, Xm}. Then, each Vi can be expressed as

 Vi = ∪j∈Ji
 Xj (i ∈ [n])

where Ji = {j ∈ [m]: Xj ⊆ Vi}. The set of these equalities defines the dictionary of V. In what
follows, we arbitrarily choose an ordering of the views in V and of the classes of X. Thus, the
dictionary of V is fully specified by the n × m dimensional 0-1 matrix H with entries

hij =

1 if j ∈Ji
0 else

which will be referred to as the dictionary matrix of V.

Example 1.1. Consider a database which is monthly updated and contains a relation name
Personnel with scheme {NAME, SSN, GENDER, AGE, DEPT, SALARY}. We assume that
domains of GENDER, AGE and DEPT are {female, male}, {young, middle, old} and {A, B,
C, D, E, F, G, H, I}, respectively. Suppose that, at the beginning of a certain month, the database
administrator decides to utilize the following eight views:

Pag. 12

 create view v1 as create view v2 as
 select sum(SALARY) select sum(SALARY)
 from Personnel from Personnel
 where DEPT in {A,B}

 create view v3 as create view v4 as
 select sum(SALARY) select sum(SALARY)
 from Personnel from Personnel
 where DEPT in {A,C,D,E} where DEPT in {F,G}

 create view v5 as create view v6 as
 select sum(SALARY) select sum(SALARY)
 from Personnel from Personnel
 where DEPT in {H,I} where DEPT in {B,C,F}

 create view v7 as create view v8 as
 select sum(SALARY) select sum(SALARY)
 from Personnel from Personnel
 where DEPT in {D,H} where DEPT in {E,G,I}

The set of categorical variables of the view base V = (v1, …, v8) is S = {DEPT} and the extensions
V1, …, V8 to S of the targets of v1, …, v8 are the following relations over S:

 V1 = {A, B, C, D, E, F, G, H, I} V2 = {A, B}
 V3 = {A, C, D, E} V4 = {F, G}
 V5 = {H, I} V6 = {B, C, F}
 V7 = {D, H} V8 = {E, G, I}

The classes of the classification system of V are:

 X1 = {A} X2 = {B} X3 = {C}
 X4 = {D} X5 = {E} X6 = {F}
 X7 = {G} X8 = {H} X9 = {I}

The dictionary of V is

 V1 = X1 ∪ X2 ∪ X3 ∪ X4 ∪ X5 ∪ X6 ∪ X7 ∪ X8 ∪ X9
 V2 = X1 ∪ X2
 V3 = X1 ∪ X3 ∪ X4 ∪ X5
 V4 = X6 ∪ X7
 V5 = X8 ∪ X9
 V6 = X2 ∪ X3 ∪ X6
 V7 = X4 ∪ X8
 V8 = X5 ∪ X7 ∪ X9

and the dictionary matrix of V is

Pag. 13

 H =

1 1 1 1 1 1 1 1 1
1 1 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1
0 1 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 1

Let v = (v1, …, vn) be a vector of dn, where vi stands for a possible value of vi. For each class Xj of
X, j ∈ [m], let us introduce a variable xj which stands for the (a priori unknown) answer to the σ-
query with target Xj. Then, the amount of information conveyed by v can be described by the
following linear equation system

 ∑ j∈Ji
 xj = vi (i ∈ [n])

which we denote by Σ(X, v) and re-write in compact form as

 H x = v (1.1)

where x = (x1, …, xm). A solution x of Σ(X, v) is d-feasible if xj ∈ d for each j ∈ [m], and the
equation Σ(X, v) is d-consistent if it admits at least one d-feasible solution. If this is the case, then
we call v an instance the σ-view base V. Note that, if is I be the current database relation of name
Rel and each vi is the value of vi computed on I, then v is definitely an instance of V and I
determines a d-feasible solution of Σ(X, v), we call the true solution for I.

Example 1.1 (continued). Consider the instance v = (v1, …, v8) of V where

 v1 = 22 v2 = 4 v3 = 6 v4 = 8
 v5 = 4 v6 = 10 v7 = 10 v8 = 4

Then, Σ(X, v) reads

=++
=+
=++
=+
=+
=+++
=+
=++++++++

4
10
10
4
8
6
4
22

975

84

632

98

76

5431

21

987654321

xxx
xx

xxx
xx
xx

xxxx
xx

xxxxxxxxx

If the domain of SALARY is R (or Z), then the general feasible solution of Σ(X, v) has

 x1 = 0 x2 = 4 x3 = λ

Pag. 14

 x4 = 6+µ x5 = –λ–µ x6 = 4–λ
 x7 = 4+λ x8 = 4–µ x9 = µ

where (λ, µ) is any couple of reals (integers, respectively).
If the domain of SALARY is R+ or Z+, then Σ(X, v) has exactly one feasible solution:

 x1 = 0 x2 = 4 x3 = 0
 x4 = 6 x5 = 0 x6 = 4
 x7 = 4 x8 = 4 x9 = 0

Let J be a subset of [m], and let b be the characteristic vector of J, that is, the m-dimensional 0-1
vector defined as

 ∈

=
else0
 if1 Jj

b j

We say that the sum-expression

 ∑ j∈J xj

is a d-invariant of Σ(X, v) if it assumes the same value for every d-feasible solution of Σ(X, v) or,
equivalently, if

 inf {(b, x): H x = v, x ∈ dm} = sup {(b, x): H x = v, x ∈ dm} (1.2)

where (b, x) denotes the inner product. We now introduce a special class of d-invariants. We say
that b belongs to the row space of H if b can be expressed as a linear combination of rows of H,
that is, if the following equation system

 HT a = b, (1.3)

where HT denotes the transpose of H, admits a real-valued solution a = (a1, …, an). Equivalently, b
belongs to the row space of H if and only if b is orthogonal to the null space of H, that is, if and
only if the inner product (b, z) = 0 for every solution z of the homogeneous equation system H z =
0.

Lemma 1.1 Let V = (v1, …, vn) a σ-view base, d the domain of σ, H the dictionary matrix of V and
J a subset of [m]. If d ⊆ R and the characteristic vector of J belongs to the row space of H then, for
every instance v of V, the sum-expression ∑j∈J xj is a d-invariant of Σ(X, v).
Proof. Assume that the characteristic vector of J can be written as a linear combination of rows of
the dictionary matrix H with coefficients a1, …, an. Then, for every instance v of V and for every
real-valued solution x of Σ(X, v), one has

 (b, x) = (HT a, x) = (a, H x) = (a, v) = const.

The statement then follows from the fact that, for every d ⊆ R, every d-feasible solution of Σ(X, v)
is also a real-valued solution.

Pag. 15

Example 1.1 (continued). Consider the two (elementary) sum-expressions x1 and x2 corresponding
to J = {1} and J = {2}. If b1 and b2 denote the characteristic vectors of these two singletons, then
b1 and b2 belong to the row space of the dictionary matrix H since

 b1 = h1 – h6 – h7 – h8
 b2 = – h1 + h2 + h6 + h7 + h8

where hi denotes the i-the row of H. Moreover, it is easy to see that, for none of the remaining
seven variables, the characteristic vector of the corresponding singleton belongs to the row space of
H. By Lemma 1.1, both variables x1 and x2 are d-invariants of Σ(X, v) for every instance v and for
every subset d of R. Thus, for the instance v = (22, 4, 6, 8, 4, 10, 10, 4) of V, one has x1 = 0 and
x2 = 4.

1.3 The updating procedure for a view base
Given a σ-view base V, let v be a σ-view and let v the value of v. In this section, we see how to
update the classification system, the dictionary matrix and its associated equation system when we
add to V the new σ-view v. In fact computing all the non empty set in the form of

 ∩i∈µ Vi − ∪i∉µ Vi µ∈2[n]

can be time consuming even when the value of n is small. A better approach is to construct the
classification system incrementally. Also we give some basic definition needed in the next Section.
Let V = (v1, …, vn), let S be the set of categorical variables of V, let X = {X1, …, Xm} be the
classification system of V, and let S' be the union of S with the set of categorical variables of v. Let
X'j be the extension of Xj to S', and let Q be the extension to S' of the target of v. Let Ω = ∪j =1,…,m
X'j (see Figure 1.1) and let:

Jo = {j ∈ [m]: Q ∩ X'j = Ø} J = {j ∈ [m]: X'j ⊆ Q} J' = [m] – (Jo ∪ J)

The sets J and J' will be referred to as the Ω-support and the Ω-cosupport of v.

Q

X′jh

Ω

Q-Ω
Yjh

J′

J

Ω′

Ym+h

Ym+p+1

Figure 1.1

Let p = |J'| and, if p > 0, let J' = {j1, …, jp}. Let Ω' = Ω ∪ Q and let Y be the partition of Ω' defined
as follows (see Figure 1.1):

 If p > 0, then set Ym+h := X'jh – Q and Yjh := Q ∩ X'jh for h = 1, …, p.

Pag. 16

 If Ω' ≠ Ω, then set Ym+p+1 := Q – Ω

Then Y is the classification system of V' = V ∪ {v}.
Without loss of generality, henceforth we assume that J' ≠ Ø and Ω' ≠ Ω. Let y be an (m+p+1)-
dimensional variable, where p = |J'|, and let Σ(Y, v') be the equation system

 K y = v'

obtained from Σ(X, v) as follows

— the variable xj is replaced by yj for j ∈ Jo∪J, and

— if J' = { j1, …, jp}, then the variable xjh is replaced by yjh + ym+h for h ∈ [p].

— the equation ∑j∈J∪J' yj + ym+p+1 = v is added to Σ(Y, v') along with the variable ym+p+1

where v' = (v1,…, vn, v). Accordingly, for j ∈ Jo∪J, the variable yj stands for the (a priori
unknown) answer to the σ-query with target the category Yj and, for h ∈ [p], the variables yjh and
ym+h stand for the (a priori unknown) answers to the σ-queries with targets Yjh and Ym+h,
respectively. Finally the variable ym+p+1 stands for the (a priori unknown) answer to the σ-query
with target the category Ym+p+1.

Example 1.1 (continued). Consider the σ-query

create view v as
 select sum(SALARY)
 from Personnel
 where (GENDER=male and DEPT in {A,B,C}) or (DEPT in {D,E,I})

The set of categorical variables of v is {GENDER, DEPT} and, hence, S' = {GENDER, DEPT}. The
extension to S' of Xj is X'j = {male, female} × Xj, (j = 1, …, 9), and the extension to S' of the
target of v is

 GENDER DEPT
 male A
 male B
 male C
 male D
 female D
 male E
 female E
 male I
 female I

Then, Jo = {6, 7, 8}, J = {4, 5, 9} and J' = {1, 2, 3}. The partition Y of the domain of S' consists of
the following twelve categories:

 Y1 = {male} × X1 = {(male, A)}
 Y2 = {male} × X2 = {(male, B)}
 Y3 = {male} × X3 = {(male, C)}

Pag. 17

 Y4 = {male, female} × X3 = {(male, C), (female, C)}
 …
 Y9 = {male, female} × X9 = {(male, I), (female, I)}
 Y10 = {female} × X1 = {(female, A)}
 Y11 = {female} × X2 = {(female, B)}
 Y12 = {female} × X3 = {(female, C)}

After substituting x1 by y1 + y10, x2 by y2 + y11, x3 by y3 + y12 and xj by yj (4 ≤ j ≤ 9) in Σ(X, v), we
obtain the equation system Σ(Y, v')

 y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y4 + y10 + y11 + y12 = 22
 y1 + y2 + y10 + y11 = 4
 y1 + y3 + y4 + y5 + y10 + y12 = 6
 y6 + y7 = 8
 y8 + y9 = 4
 y2 + y3 + y6 + y11 + y12 = 10
 y4 + y8 = 10
 y5 + y7 + y9 = 4
 y1 + y2 + y3 + y4 + y5 + y9 = 6

1.4 Evaluability and Derivability
In this section we want to establish the condition when a new query q can be evaluable or derivable
from a set V of materialised views. Let S be the set of categorical variables of V, let X = {X1, …,
Xm} be the classification system of V, and let S' be the union of S with the set of categorical
variables of q. Let X'j be the extension of Xj to S', and let Q be the extension to S' of the target of q.
Let Ω = ∪j=1,…,mX'j . As said in the previous Section let

Jo = {j ∈ [m]: Q ∩ X'j = Ø} J = {j ∈ [m]: X'j ⊆ Q} J' = [m] – (Jo ∪ J)

We are interested in the (a priori unknown) total of σ for the S-category Q. The tightest lower
bound, the total of σ for the S-category Q denoted by lower(Q), it is taken to be

 lower(Q) = inf {∑j∈J xj: H x = v, x ∈ dm } .

The tightest upper bound, denoted by upper(Q), is set to +∞ if Q is not contained in Ω; otherwise, it
is taken to be

 upper(Q) = sup {∑j∈J∪J' xj: H x = v, x ∈ dm } .

The interval [lower(Q), upper(Q)] is called the feasibility range of the total of σ for Q. If lower(Q)
= upper(Q), then the total for Q is said to be evaluable.

Remark 1.3 If Q−Ω≠∅ then q is neither evaluable nor derivable.

Pag. 18

Recall from previous section that Y is the classification system obtained from X by adding q to V
and Σ(Y, v') the associated equation system.
If Q is included in Ω we also will consider the equation system denoted by Σ(Y, v) obtained from
Σ(Y, v') by deleting the equation corresponding to the σ-view q. In fact, observe that the sets of d-
feasible solutions of Σ(X, v) and Σ(Y, v) are closely related to each other by the following obvious
property: given a d-feasible solution x = (x1, …, xm) of Σ(X, v), we can obtain a d-feasible solution
y = (y1, …, ym+p) of Σ(Y, v) by taking

 yj = xj for j ∈ Jo ∪ J
 yjh = αh ym+h = xjh – αh for h ∈ [p]

where αh is any element of d such that xjh – αh also belongs to d. On the other hand, given a d-
feasible solution y = (y1, …, ym+p) of Σ(Y, v), we can obtain a d-feasible solution x = (x1, …, xm) of
Σ(X, v) by taking

 xj = yj for j ∈ Jo ∪ J
 xjh = yjh + ym+h for h ∈ [p]

Therefore q is evaluable from V if and only if

 ∑j∈J∪J' xj = lower(Q) = upper(Q) = ∑j∈J∪J' yj

that is if and only if ∑j∈J∪J' yj is a d-invariant of Σ(Y, v). Therefore we call

∑j∈J∪J' yj

the sum expression associated to q.
If J' = Ø, then Σ(Y, v) is essentially the same as Σ(X, v) and q is evaluable from the instance v of V
if and only if the sum-expression ∑j∈J xj is a d-invariant of Σ(X, v). For J' = { j1, …, jp}, p > 0, we
now state a characterisation of evaluability.

Lemma 1.2 Let V be a σ-view base, and let d ∈ {R, Z, R+, Z+} be the domain of σ. Let q be a σ-
query and let J and J' = { j1, …, jp}, p ≥ 1, be the Ω-support and the Ω-cosupport of q, respectively.
Then, if the target Q of q is contained in Ω

(i) if d is R or Z, then q is evaluable from no instance v of V;

(ii) if d is R+ or Z+, then q is evaluable from an instance v of V if and only if
 (a) the sum-expression ∑j∈J xj is a d-invariant of Σ(X, v), and
 (b) for each h ∈ [p], the variable xjh is a d-invariant of Σ(X, v) with value zero.

Proof. (i) Let h* be from [p]. Let Y be the classification system obtained adding q to V. Let Σ(Y, v)
be the system associated to Y obtained from Σ(Y, v′) by deleting the equation associated to q.
Then, given an instance v of V and a d-feasible solution x = (x1, …, xm) of Σ(X, v), consider the
following two d-feasible solutions y = (y1, …, ym+p) and y' = (y'1, …, y'm+p) of Σ(Y, v):

 yj = xj for j ∈ [m]

Pag. 19

 ym+h = 0 for h ∈ [p]

and

 y'j = xj for j ∈ [m] – {jh*}
 y'jh* = xjh* – 1 and y'm+h* = + 1
 y'm+h = 0 for h ∈ [p] – {h*}

Then, the sum-expression associated with q assumes two distinct values

 ∑j∈J∪J' xj and ∑j∈J∪J' xj – 1

which proves that q is not evaluable from v.

Part (if) of (ii). By condition (a) the sum-expression ∑j∈J xj is a d-invariant of Σ(X, v). By condition
(b), for each h, xjh = 0 for every d-feasible solution x of Σ(X, v) so that, owing to the nonnegativity
constraint, one has

 yjh = ym+h = 0

for every d-feasible solution y of Σ(Y, v). Therefore, for every d-feasible solution y of Σ(Y, v), the
sum-expression associated with q assumes the unique value of the sum-expression ∑j∈J xj, which
proves that q is evaluable from v.

Part (only if) of (ii). Suppose by contradiction that condition (a) does not hold. Then, there exist
two d-feasible solutions x = (x1, …, xm) and x' = (x'1, …, x'm) of Σ(X, v) such that

 ∑j∈J xj < ∑j∈J x'j.

Let us consider the following two d-feasible solutions y = (y1, …, ym+p) and y' = (y'1, …, y'm+p) of
Σ(Y, v) defined as follows:

 yj = xj for j ∈ Jo ∪ J

 yjh = 0 and ym+h = xjh h ∈ [p]

and

 y'j = x'j for j ∈ Jo ∪ J

 y'jh = 0 and y'm+h = x'jh for h ∈ [p]

Then

 ∑j∈J∪J' yj = ∑j∈J yj = ∑j∈J xj < ∑j∈J x'j = ∑j∈J y'j = ∑j∈J∪J' y'j

which contradicts the evaluability of q. Therefore, condition (a) must hold. Suppose by
contradiction that condition (b) does not hold. Then, there exist h* ∈ [p] such that either xjh* is not a

Pag. 20

d-invariant or xjh* is a d-invariant but its value is greater than zero so that there is a d-feasible
solution x = (x1, …, xm) of Σ(X, v) with xjh* > 0. Consider the following two d-feasible solutions y
= (y1, …, ym+p) and y' = (y'1, …, y'm+p) of Σ(Y, v):

 yj = xj for j ∈ [m]
 ym+h = 0 for h ∈ [p]

and

 y'j = xj for j ∈ [m] – {jh*}
 y'jh* = 0 and y'm+h* = xjh*
 y'm+h = 0 for h ∈ [p] – {h*}

Then, since xjh* > 0, the sum-expression associated with q assumes two distinct values

 ∑j∈J∪J' xj and ∑j∈J∪J' xj – xjh*

which proves that q is not evaluable from v.

Example 1.1 (continued). We saw that the σ-query q with Ω−support J = {4, 5, 9} and Ω−cosupport
J' = {1, 2, 3} is not evaluable from v. If d is R or Z, then Lemma 2(i) confirms that q is not
evaluable from v. If d is R+ or Z+, then we saw that there is exactly one d-feasible solution of Σ(X,
v)

 x1 = 0 x2 = 4 x3 = 0
 x4 = 6, x5 = 0 x6 = 4
 x7 = 4 x8 = 4 x9 = 0

Therefore, condition (a) of Lemma 1.2(ii) holds but, since x2 = 4, condition (b) of Lemma 1.2(ii)
does not hold, which confirms that q is not evaluable from v.

We can summarise the above results by the following evaluability criterion.

Theorem 1.1 (Evaluability Criterion) Let V be a σ-view base and let d ∈ {R, Z, R+, Z+} be the
domain of σ. Let H be the dictionary matrix of V and q a σ-query with Ω-support J and Ω-
cosupport J'.

(i) The target Q of q is contained in Ω.

(ii) For d = R or d = Z, q is evaluable from an instance of V if and only if the characteristic
 vector of J belongs to the row space of H, and J' = Ø.

(iii) For d = R+ or d = Z+, q is evaluable from an instance v of V if and only if the sum-
expression ∑j∈J xj is a d-invariant of Σ(X, v), and either J' = Ø or, for each j ∈ J', xj is a d-
invariant of Σ(X, v) with value 0.

Proof. Statement (i) is a necessary condition for Remark 1.3. For d = R, statement (ii) is a well-
known result of linear algebra. Consider now the case that d = Z. By Lemma 1.1, it is sufficient to

Pag. 21

prove the “only-if” part. By Lemma 1.2(i), J' = Ø. Suppose by contradiction that the characteristic
vector of J, say b, does not belong to the row space of H. Then, b is not orthogonal to the null space
of H. It follows that J ≠ Ø (for, otherwise, b would belong to the row space of H), and the
dimension of the null space of H is not zero (for, otherwise, the null space of H would be equal to
{0} and b would be orthogonal to the null space of H). Since b is not orthogonal to the null space of
H and H is a 0-1 matrix, there is a rational-valued solution z of the homogeneous equation system

H z = 0 such that (b, z) ≠ 0. Let zj =
j

j

q
p

 with qj ≥ 1 (j = 1, …, m). Let q be the least common

multiple of q1, …, qm. Let x be the true solution of Σ(X, v) for the current relation I so that x is Z-
valued. Consider the Z-valued solution x' of Σ(X, v) defined as x' = x + q z. Indeed, x' is a Z-valued
solution since each x'j is definitely an integer. Finally, the value of the sum-expression ∑j∈J xj
corresponding to x' is

 (b, x') = (b, x) + q (b, z) ≠ (b, x)

since neither q nor (b, z) is zero (contradiction). Therefore, b must belong to the row space of H.
Statement (ii) follows from Lemma 1.2(ii).

Remark 1.4 For d = R+ or d = Z+, xj is a d-invariant of Σ(X, v) with value 0 if and only if

 sup {xj: H x = v, x ∈ dm} = 0.

Recall that a σ-query is derivable from a σ-view base V if it is evaluable from every instance of V.
The following derivability criterion characterises the σ-queries that are derivable from V.

Theorem 1.2 (Derivability Criterion) Let V be a σ-view base. A σ-query q with Ω−support J and
Ω−cosupport J' is derivable from V if and only if

(a) the target Q of q is contained in Ω.

(b) the characteristic vector of J belongs to the row space of the dictionary matrix of V, and

(c) J' is empty.

Proof. (if) By Theorem 1.1 and Lemma 1.1.
(only if). Condition (a) is a necessary condition from Remark 1.3.
Proof of (c). Theorem 1.1 must hold for every instance v of V. Let I be a base relation such that the
true solution x of Σ(X, v) has xj = 1 for each j. Then, by Theorem 1.1, J' must be empty.
The proof of (b) is similar to the proof of part (i) of Theorem 1.1 for d = Z, with the following
change. Let p = max {|p1|, …, |pm|} and let x with xj = pq for each j be the true solution of Σ(X, v)
for some base relation. Then, x' = x + q z is a Z+-feasible solution of Σ(X, v) and, hence, a d-
feasible solution of Σ(X, v) for each d ∈ {R, Z, R+, Z+}.

Let λ(V) be the set of S-categories Q such that the σ-query with target Q is derivable from V. By
Theorem 1.2, a σ-query q is derivable from V if and only if q is equivalent to some σ-query whose
target belongs to λ(V), that is, if and only if the target of q is an extension of some S-category from
λ(V). We now state some useful properties of λ(V). Of course, each Q in λ(V) can be obtained as
union of zero or more classes of the classification system X of V; so, λ(V) is a subfamily of the set
field generated by X. Moreover, if Q = ∪j∈J Xj and b is the characteristic vector of J, then Q

Pag. 22

belongs to λ(V) if and only if equation system (1.1) is consistent. Therefore, λ(V) contains the
empty S-category, the extension to S of the target of each view vi in V and, if present, the universal
S-category dom(S). It is also closed under disjoint union and proper difference [9, 10, 52]; that is,

— if Q and Q' are in λ(V) and Q ∩ Q' = Ø, then the disjoint union Q ∪ Q' is in λ(V);

— if Q and Q' are in λ(V) and Q ⊆ Q', then the proper difference Q' – Q is in λ(V).

Note that, if λ(V) contains the universal S-category then it is closed under proper difference and it is
also closed under complementation, which makes λ(V) a “λ-system” (see p. 41 in [4]). The minimal
(with respect to the set-theoretic inclusion) nonempty S-categories in λ(V) are called the atoms of
λ(V) so that, by the closure under proper difference, every nonempty category in λ(V) is the disjoint
union of atoms. Note that the number of atoms of λ(V) may be exponential to n [47].

Example 1.1 (continued). The atoms of λ(V) are ten:

 X1 = {A} X2 = {B}
 X3 ∪ X4 ∪ X5 = {C, D, E} X3 ∪ X5 ∪ X9 = {C, E, I}
 X3 ∪ X6 = {C, F} X4 ∪ X5 ∪ X7 = {D, E, G}
 X4 ∪ X8 = {D, H} X5 ∪ X7 ∪ X9 = {E, G, I}
 X6 ∪ X7 = {F, G} X8 ∪ X9 = {H, I}

1.4.1 Computational aspects
We now discuss the computational complexities of the problems of deciding whether a σ-query q is
or is not evaluable from an instance v of V and, in the affirmative case, of computing the answer q
to q from v. If d is R or Z then, by Theorem 1.1(a), q is evaluable from v if and only if equation
system (1.3) is consistent and J' = Ø, which can be checked in O(n3) time using standard linear-
algebra methods. Moreover, if a is a solution of equation system (1.3), then q can be computed as

 ∑i=1,…,n ai vi

Therefore, deciding if q is evaluable from v and, if this is the case, computing q from v requires
O(n3) time.
If d is R+, then testing the evaluability of q from v and computing q can be done using any
polynomial-time algorithm for linear programming. However, we will see in Chapter 2 that it can
be solved using the same cubic algorithm as for d = R.
If d = Z+, then testing the evaluability of q from v may be hard since integer-linear-programming
methods [55] are required. Indeed, as proven in Section 2.2.1, the problem of deciding if there
exists some variable of Σ(X, v) that is Z+-invariant is coNP-complete. In practice, in the case d = Z+
it is convenient to relax the integrality constraints and apply the evaluability test developed for the
case d = R+. In other words, we will use a sound (and possibly incomplete) evaluability test for d =
Z+, but this is the best we can get since its possible incompleteness will be well compensated by its
efficiency. However, it is well-known [55] that, if the dictionary matrix H is totally unimodular
(that is, all squared submatrices of H have determinants +1, –1 or 0), then the evaluability test for d
= R+ is also complete for d = Z+.
By Theorem 1.2, testing derivability requires O(n3) time; however, if H is the incidence matrix of a
graph G, then a derivability test that runs in time linear in the size of G can be found in [46].

Pag. 23

1.5 Reduction procedure for a view base and for a view base instance
Let v be an instance of a σ-view base V. Henceforth, we only consider the cases d = R, d = Z and d
= R+ since, as we said in Section 1.4.1, if d = Z+ then we will relax the integrality constraints and
apply the results that hold for d = R+.
It is convenient to work with a σ-view base equivalent to V and with the minimum storage
requirement for its dictionary. The natural storage representation of Σ(X, v) consists of an edge-
labelled and node-weighted hypergraph (H, X, v), we call the map of Σ(X, v), which is obtained
from H, X by weighting each node i by the i-th component of v and. Thus, H is a hypergraph with
node set [n] and m edges

 ej = {i ∈ [n]: hij = 1} (j ∈ [m])

and the quantity ∑j=1,…,m |ej| its size. Moreover, each edge ej of H is labelled by the class Xj of the
classification system X of V. We leave open the problem of finding a σ-view base that is equivalent
to V and whose dictionary has a minimum-size map. However, we will give a procedure to find a σ-
view base that is equivalent to V and is such that the map of its dictionary has a size not greater than
the size of the map of the dictionary of V.
An edge ej of H is d-invariant if xj is a d-invariant of Σ(X, v). If this is the case and α is the value of
xj, then the instance v' of the σ-view base V' = {v'o, v'1, …, v'n}, where

 v'o is the σ-query with target Xj and value v'o = α, and

 v'i, i ∈ [n], is the σ-query with target Vi – Xj and value

 v'i =

 ⊆−

else
 if

i

iji

v
VXv α

is definitely equivalent to the instance v of V; furthermore, the size of the map of Σ(X, v') is equal
to the size of the map of Σ(X, v) minus |ej| – 1.
If an edge is d-invariant edges regardless of the instance of v of V then it is said to be algebraic. By
Theorem 1.2 an edge is algebraic if and only if its characteristic vector can be expressed as a linear
combination of row of H.
Given two σ-view bases V and V' that have the same set of categorical variables and the same
classification system, we say that an instance v of V and an instance v' of V' are equivalent with
respect to evaluability, if each view in V' is evaluable from v and each view in V is evaluable from
v'. If this is the case, then a sum-query is evaluable from v if and only if it is evaluable from v'.
Analogously we say that two σ-view bases V and V' that have the same set of categorical variables
and the same classification system are equivalent with respect to derivability, if each view in V' is
derivable from V and each view in V is derivable from V'. If this is the case, then a sum-query is
derivable from V if and only if it is derivable from V'.

A node i of the map (H, X, v) of Σ(X, v) is redundant, with respect to evaluability if the view vi is
evaluable from the instance v' of V' = V – {vi}, where v' is obtained from v by ignoring vi. If this is
the case, then v' is definitely equivalent to the instance v of V and the size of the map of Σ(X, v') is
equal to the size of the map of Σ(X, v) minus the number of edges containing the node i.
Analogously a node i of the map (H, X, v) of Σ(X, v) is redundant, with respect to derivability, if the
view vi is derivable from V – {vi} or equivalently, by Theorem 1.2, if the i-th row of H can be

Pag. 24

written as a linear combination of the other rows of H. For example, if H is a connected graph then,
since the rank of H is n–1 or n depending on whether H is or is not bipartite [15, 57], H has exactly
one redundant node if H is bipartite, and no redundant nodes otherwise. If i is a redundant node of
the map of the dictionary of V, then the σ-view base V' = V – {vi} is definitely equivalent to V and
the size of the map of the dictionary of V' is equal to the size of the map of the dictionary of V
minus the number of edges containing the node i.

We say that the map of Σ(X, v) is reduced if it contains no d-invariant edges and no redundant
nodes wit respect to derivability if the derivability criterion is used or with respect to evaluability
otherwise. If the map of Σ(X, v') is reduced, then Σ(X, v') is called a reduced form of Σ(X, v).
The algorithm below, takes as input the map (H, X, v) of Σ(X, v), and yields a reduced map (H*, X,
v*) of Σ(X, v*) where v* is a view-base instance equivalent to v.

reduction procedure for a view base instance

Input: (H, X, v).

Output: (H*, X, v*).

Step 1. H* = Ø, l := 0.

Step 2. Find the set of d-invariant edges of H. If it is empty, then go to Step 3. Otherwise, set l to its
cardinality. Let ej1, …, ejl be the d-invariant edges of H and let α1, …, αl be their values. For k = 1,
…, l, do:

 add to H* the node k and set v*k := αk;

 add to H* the loop {k} and label the loop by the label (Xjk) of ejk;

 for each node i of H contained in ejk, set vi := vi – αk;

 delete ejk from H.

If the edge set of H is empty, then Exit.

Step 3. For each node i of H, delete i from H if it is redundant. If the node set of H is empty, then
Exit.

Step 4. Let {i1, …, ir} be the node set of H. After renaming its nodes by l+1, …, l+r, add (H, X, v)
to (H*, X, v*).

Example 1.1 (continued). If the domain of SALARY is R or Z, then the output of the reduction
procedure is the map shown in Figure 1.2.

Pag. 25

45 64

1 2

A

0

710

B

4 3 4

F

8

G

4

IH

C D E

Figure 1.2

If the domain of SALARY is R+, then we saw that each edge is invariant so that the output of the
reduction procedure is the map shown in Figure 1.3.

1 2

A

0

B

4 3

C

0

4 5

D

6

E

0 6

F

4

7 8

G

4

H

4 9

I

0

Figure 1.3

When the criterion utilised is derivability the following algorithm, we call the reduction procedure
for a view base, takes as input the map (H, X) of the dictionary of V and yields the map (H*, X) of
the dictionary of a reduced σ-view base V* equivalent to V, we call a reduced form of V. In what
follows, an edge e is said to be incident to node i if i ∈ e, and is called a loop if |e| = 1.

reduction procedure for a view base

Input: (H, X)

Output: (H*, X).

Step 1. H* = Ø, l := 0.

Pag. 26

Step 2. Find the set of algebraic edges of H. If it is empty, then go to Step 3. Otherwise, set l to its
cardinality. Let ej1, …, ejl be the algebraic edges of H. For k = 1, …, l, do:

 add to H* the node k and the loop {k}, and label the loop by the label (Xjk) of ejk;

 delete ejk from H.

If the edge set of H is empty, then Exit.

Step 3. For each node i of H, delete i from H if it is redundant. If the node set of H is empty, then
Exit.

Step 4. Let {i1, …, ir} be the node set of H. After renaming its nodes by l+1, …, l+r, add (H, X) to
(H*, X).

Example 1.1 (continued). Let us apply the reduction procedure to the map (H, X) of V = (v1, …,
v8).

Step 1. H* = Ø.

Step 2. We saw that the only algebraic edges of H are e1 and e2. Therefore, two nodes 1 and 2 and
two loops {1} and {2} are added to H* with labels {A} and {B}, respectively. At this point, the
edges e1 and e2 are deleted from H. So, H has now eight nodes and seven edges (namely, e3, …,
e9), and the incidence matrix of H is

 H =

1 1 1 1 1 1 1
0 0 0 0 0 0 0
1 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
1 0 0 1 0 0 0
0 1 0 0 0 1 0
0 0 1 0 1 0 1

h1

h2

h3

h4

h5

h6

h7

h8

Step 3. Since h1, h2 and h3 are all linear combinations of h4, …, h8:

 h1 = h6 + h7 + h8
 h2 = 0
 h3 = – h4 – h5 + h6 + h7 + h8

the nodes 1, 2 and 3 are redundant and are deleted. At this point, the nodes of H are 4, …, 8, and the
edges of H are

 e3 = {6}
 e4 = {7} e5 = {8} e6 = {4, 6}
 e7 = {4, 8} e8 = {5, 7} e9 = {5, 8}

Pag. 27

Step 4. After renaming the nodes 4, …, 8 of H as 3, …, 7, we add H with the labels of its edges to
(H*, X).

The output of the reduction procedure is the map shown in Figure 1.4

5 6

1 2

A

7

B

3 4

F G IH

C D E

Figure 1.4

Pag. 28

Chapter 2

Efficiently Answering Statistical Sum-Queries

2.1 Introduction

When a user submit a sum-query q with response variable SALARY, a question that naturally arises
is whether the query-answering system can answer q from v without accessing the database. We
saw in Chapter 1 that q is evaluable from v if the answer to q is uniquely determined by v, and is
derivable from V if it is evaluable from any v.
We propose two distinct query-execution plans, based on the notions of evaluability and
derivability. Given

— the current database relation I of name Rel whose scheme contains a numeric attribute σ,
— a list V of views over σ, which at least contains the σ-view u, whose target is the universal

category
— the tuple v containing the values of views in V computed on I,
— the target of a sum-query q with response variable σ and defined over the scheme of
 Rel,

the query-execution plan based on derivability is as follows:

Plan D

(1) If q is derivable from V, then compute the answer to q from v.

(2) Otherwise,
find a subset Q' (or a superset) of Q such that the sum-query q' with target Q' is derivable
from V, and compute the answer to q' from v;

 evaluate the sum-query q" with target Q–Q' (Q'–Q, respectively) on I;
 answer q by issuing the sum (difference, respectively) of the answers to q' and q".

The query-execution plan based on evaluability (Plan E) is obtained from Plan D by changing (the
two occurrences of) “derivable from V” to “evaluable from v”.

As to Plan D we will show that:

(i) the implementation of Step 1 requires O(n3) time and is independent of the domain of the
response variable σ;

(ii) Step 2 requires polynomial time, but the problem of finding a maximal subset (a minimal
superset, respectively) of Q such that sum-query with target Q' is derivable from V is NP-hard.

As to the query-execution plan E we will show that:

(i) if the domain of the response variable σ is the set of reals or the set of integers, then evaluability
coincides with derivability so that the implementation of Step 1 still requires O(n3) time; if the
domain of the response variable is the set of nonnegative reals, Step 1 requires solving a linear-
programming problem; however, if v is in a suitable form (“reduced form”), then the

Pag. 29

implementation of Step 1 still requires O(n3) time; if the domain of the response variable is the set
of nonnegative integers, Step 1 requires solving a coNP-hard problem.

(ii) Step 2 requires polynomial time, but the problem of finding a maximal subset (a minimal
superset, respectively) of Q such that sum-query with target Q' is evaluable from v is NP-hard.

2.1 The query-execution plan D

Let V be a reduced σ-view base, and let (H, X, v) be the map of the dictionary of V. An edge set {ej:
j ∈ J}, J ⊆ [m], in the map (H, X, v)) of the dictionary of V is algebraic if the characteristic vector
of J belongs to the row space of H. Accordingly, a single edge ej is algebraic if the characteristic
vector of the singleton {j} belongs to the row space of H. For example, if H is a connected graph,
then an edge is algebraic if and only if either it lies in all odd cycles or it is a bridge with a bipartite
end-graph (see Chapter 4).

Henceforth, we adopt the following notation:

 {ej: j ∈ L} is the set algebraic edges of H

 for each j ∈ L, i(j) is the node of H that the edge ej is incident to

 M is the complement of L, that is, M = [m] – L

 G = (N, E) is the subhypergraph of H induced by M; that is, E = {ej: j ∈ M}

 G = (gij)i∈N,j∈M is the incidence matrix of G.

It is easily seen that, for each connected component G' = (N', E') of G, one has

— E' is an algebraic set, and
— no edge of G' is algebraic.

Moreover, observe that a set F of edges of H is algebraic if and only if, for each connected
component G' = (N', E') of G, F ∩ E' is an algebraic set. With the notation just introduced, the
derivability criterion reads

Corollary 2.1 Let V be a reduced σ-view base. A σ-query q with support J and co-support J' is
derivable from V if and only if

(a) for each connected component G' = (N', E') of G, the intersection of {ej: j ∈ J} with E' is an
algebraic set, and

(b) J' is empty.

Let V = (v1, …, vn) be a reduced σ-view base. Without loss of generality, we assume that the
subhypergraph G = (N, E) of H is connected. Let I be the current database relation and v the
instance of V associated with I. Given a σ-query q with Ω-support J and Ω-cosupport J', we can
decide whether q is or is not derivable from V using Corollary 2.1. If q is derivable from V, then
the characteristic vector b of J∩M can be expressed as a linear combination of rows of the
incidence matrix G of G, say with coefficients ai (i ∈ N), so that the answer q to q can be computed
from v as

Pag. 30

 q = ∑j∈J∩L ai vi(j) + ∑i∈N ai vi

Consider now the case that q is not derivable from V. For the sake of simplicity, we assume that
J∪J' ⊆ M. With slight obvious modifications, what we will say can be easily applied to the general
case J∪J' – M ≠ Ø. Let S be the set of categorical variables of V, S' the union of S with the set of
categorical variables of q, and Q the extension to S' of the target of q. The execution plan looks for
an S'-category Q' that is contained in (or containing) Q and is such that the σ-query q' with target Q'
is derivable from V. By Theorem 1.2, Q' will be the extension to S' of some S-category with Ω-
support K where K ⊆ J (K ⊆ J∪J', respectively). Once Q' has been determined, in order to find the
answer q to q, the execution plan first computes the answer q' to q' from v; next, it will evaluate on
I the σ-query q" with target Q" = Q – Q' (Q' – Q, respectively) and, finally, set q = q' + q" (q = q' –
q", respectively) where q" is the answer to q".

Example 1.1 (continued). Consider again the σ-query q with Ω-support J = {4, 5, 9} and Ω-
cosupport J' = {1, 2, 3}. The S-category

 ∪j∈J Xj = X4 ∪ X5 ∪ X9

contains no atoms of λ(V), so that the empty S-category is the only subset of ∪j∈J Xj that belongs to
λ(V). The S-category

 ∪j∈J∪J' Xj = X1 ∪ X2 ∪ X3 ∪ X4 ∪ X5 ∪ X9

has two supersets that belong to λ(V):

 X1 ∪ X2 ∪ X3 ∪ X4 ∪ X5 ∪ X8 ∪ X9 dom(S)

We now show how Q' can be optimally chosen if, for each view vi in V, we are also given the
number of tuples ri in I that fall in the category Vi. First of all, observe that, if the characteristic
vector of the set K is a linear combination of rows of the incidence matrix G of G with coefficients
ai (i ∈ N), then the number r' of tuples in I that fall in Q' is given by

 r' = ∑i∈N ai ri . (2.1)

Let r be the (unknown) numbers of tuples in I that fall in the category Q. If Q' is required to be a
subset of Q, then the number of additions required by the evaluation of q" on I is given by r – r'. If
Q' is required to be a superset of Q, then the number of additions required by the evaluation of q"
on I is given by r' – r. We now discuss the two cases separately.

Case 1: If Q' is required to be a subset of Q, then the set K is to be chosen among the subsets of J.
Thus, the number of additions required by the evaluation of q" on I is r–r' and is minimum if and
only if K maximises the sum (2.1). So, the choice of Q' is optimal if and only if the pair (a, b),
where b stands for the characteristic vector of K, is an optimal solution of the following mixed
linear-programming problem:

 maximise ∑i∈N ai ri (2.2)

 subject to ∑i∈N ai gij = bj for j ∈ M
 ai ∈ R for i ∈ N

Pag. 31

 bj ∈ {0, 1} for j ∈ J
 bj = 0 for j ∈ M – J

Case 2: If Q' is required to be a superset of Q, then the set K is to be chosen among the supersets of
J∪J'. Thus, the number of additions required by the evaluation of q" on I is r'–r and is minimum if
and only if K minimises the sum (2.1). So, the choice of Q' is optimal if and only if the pair (a, b),
where b stands for the characteristic vector of K, is an optimal solution of the following mixed
linear-programming problem:

 minimise ∑i∈N ai ri (2.3)

 subject to ∑i∈N ai gij = bj for j ∈ M
 ai ∈ R for i ∈ N
 bj = 1 for j ∈ J∪J'
 bj ∈ {0, 1} for j ∈ M – (J∪J')

We now show that problem (2.3) is reducible to problem (2.2). Since the edge set E of G is
algebraic, its characteristic vector (i.e., the vector 1) is a linear combination of rows of the incidence
matrix of G, say

 ∑i∈N ci gij = 1 (j ∈ M)

Hence, (a, b) is an optimal solution of problem (2.3) if and only if (a', b') where

 a' = c – a b' = 1 – b

is an optimal solution of the maximisation problem

 maximise ∑i∈N ri a'i

 subject to ∑i∈N a'i gij = b'j for j ∈ M
 a'i ∈ R for i ∈ N
 b'j = 0 for j ∈ J∪J'
 b'j ∈ {0, 1} for j ∈ M – (J∪J')

which is the instance of the problem (2.2) where J is instantiated by M – (J∪J'). Therefore, we can
limit our considerations to problem (2.2). Of course, it is not less hard than the problem of finding a
nonempty subset K of J such that the set {ej: j ∈ K} of edges of G is algebraic. In the next section,
we will prove that the problem of finding a Nonempty Algebraic Subset of a given edge set in a
connected hypergraph such as G (NAS problem, for short) is NP-complete, which implies that the
problem of finding an optimal solution of problem (2.2) is NP-hard. To sum up, if J∪J' ⊆ M then
K := Ø is the only choice that can be made efficiently. In the general case (that is, when J∪J' – M ≠
Ø), K will be set to J ∩ L.

2.1.1 Proving the NP-completeness of the NAS problem

In this section we prove that the NAS problem is NP-complete. First of all, we begin with the
precise formulation the NAS problem:

Pag. 32

Let G = (N, E) be a connected hypergraph such that E is an algebraic set and no edge of G is
algebraic. Given a nonempty subset F of E, find a nonempty algebraic subset of F (if any).

Our proof of its NP-completeness is obtained by providing a polynomial reduction of the NP-
complete “Subset Sum” (SS) problem [25]. Before proving the statement, we first recall the SS
problem and, then, sketch the proof lines.

(SS) Given a number k ≥ 2, and an integer-valued vector s = (s1, …, sk), where s1, …, sk–1 are all
positive and sk is negative, is there a nonnull binary vector a = (a1, …, ak) such that

 ∑h=1,…,k ah sh = 0 ?

We now state a characteristic property of solutions of the SS problem which will be used to prove
that the NAS problem is NP-complete.

Let n ≥ k, let F = {i1, …, ik} be a subset of [n], let t = (t1, …, tn) be a vector such that tih = sh for
each h ∈ [k], and let R be the n × (n+1) matrix obtained from the n × n identity matrix by adding
one more column given by t, that is,

 R =

1 0 … 0 t1
0 1 … 0 t2

… … … … …
0 0 … 1 tn

Note that R is a full row-rank matrix, that is, the rank of R (and, hence, the dimension of the row
space of R) is n. Then, the solutions of the SS problem can be characterised as follows.

Lemma 2.1 Let a = (a1, …, ak) be a nonnull binary vector and let b = (b1, …, bn, bn+1) be the
binary vector such that bih = ah for each h ∈ [k], and bi = 0 for each i ∈ [n+1] – F. The vector a is a
solution of the SS problem if and only if the vector b belongs to the row space of R.
Proof. Recall that b belongs to the row space of R if and only if b is orthogonal to the null space of
R. This space is the set of solutions z = (z1, …, zn, zn+1) of the homogenous equation system

 R z = 0,

which consists of the n equations

 zi + ti zn+1 = 0 . (i = 1, …, n)

Therefore, the null space of R has dimension 1 and is spanned by the vector (t1, …, tn, –1) and b
belongs to the row space of R if and only if b is orthogonal to (t1, …, tn, –1), that is, if and only if

 ∑i=1,…,n bi ti – bn+1= 0.

On the other hand, bi = 0 for each i ∉ F so that b belongs to the row space of R if and only if

 ∑h=1,…,k bih tih = 0.

Pag. 33

Finally, since bih = ah and tih = sh for each h ∈ [k], one has b belongs to the row space of R if and
only if

 ∑h=1,…,k ah sh = 0 ,

that is, if and only if a is a solution of the SS problem.

In what follows, the matrix R and the vector b will be referred to as the matrix associated with t
and the extension of a, respectively.

 We will show that, given n, F, t and R, there exists an invertible linear transformation of R into the
incidence matrix G of a hypergraph G with n nodes and n+1 edges. Then, by Lemma 2.1, a is a
solution of the SS problem if and only if the extension b of a belongs to the row space of G or,
equivalently, if and only if in G the set of edges with characteristic vector b is algebraic. Therefore,
a is a solution of the SS problem if and only if in G the edge set with characteristic vector b is a
nonempty algebraic subset of the edge set corresponding to F.

We now show how, given the parameters k and s of the SS problem, it is possible to construct in
polynomial time (1) a vector t, and (2) an invertible linear transformation of the matrix R associated
with t into a binary matrix G.

(1) The vector t is taken to be t = (τ1, …, τk, τk+1) where the vectors τ1, …, τk, τk+1 are defined as
follows. We first state the procedure for τ1, …, τk–1, next for τk and, finally, for τk+1.

— The vector τl for each l ∈ [k–1]. Let ml = log2 sl, where x denotes the highest integer that is
not greater than x. If ml = 0 (that is, if sl = 1), then τl has one component which is equal to sl, that is,
τl = (sl); otherwise, τl has 3ml + 1 components and is defined as follows:

 ()lll m
l

m
l

m
lllll sssssss 2/2/2/2/2/2/ +−−…+−−

— The vector τk. Let mk = log2 |sk|, where x denotes the least integer that is not less than x. If
mk = 0 (that is, if sk = –1), then τk = (sk, 1, 1); otherwise (that is, if sk < –1), τk has 3mk components
and is defined as follows:

 ()++…−++ kk m
k

m
kkkkk ssssss 2/||2/||2/||2/||2/||

— The vector τk+1. Let |τl| denote the sum of components of τl, k ∈ [l]. Let r = ∑l=1,…,k |τl| and let
τk+1 be the (r+1)-dimensional vector with components

 (–1 –1 … –1 1)

So, |τk+1| = 1 – r.

Accordingly, the matrix R associated with t has

 n = (∑l=1,…,k–1 3ml + 1) + 3mk + r + 1

rows and n+1 columns.

Pag. 34

Example 2.1. Consider the SS problem with k = 3 and s1 = s2 = 1 and s3 = –2. Trivially, it has
exactly one solution: a = (1, 1, 1). Then τ1 = (1), τ2 = (1) and τ3 = (–2, 1, 1). Since |τ1| = |τ2| = 1 and
|τ3| = 0, one has τ4 = (–1, –1, 1) and the matrix R associated with the vector t = (τ1, τ2, τ3, τ4) is

 R =

−
−

−

110000000
101000000
100100000

100010000
100001000
200000100

100000010
100000001

The null space of R is spanned by the 9-dimensional vector y* = (1, 1, –2, 1, 1, –1, –1, 1, –1) so that
the extension b = (1, 1, 1, 0, 0, 0, 0, 0, 0) of a is orthogonal to the null space of R and hence,
belongs to the row space of R.

Lemma 2.2 The (n+1)-dimensional vector (1, 1, …, 1) belongs to the row space of R. Moreover,
for each j ∈ [n+1], the characteristic vector of the singleton {j} does not belong to the row space of
R.
Proof. For each column index j ∈ [n] of R, one has ∑i=1,…,n ri,j = 1; moreover, for j = n+1 one has

 ∑i=1,…,n ri,n+1 = ∑l=1,…,k+1 |τl| = ∑l=1,…,k |τl| + |τk+1| = r + (1 – r) = 1,

which proves the first part of the statement. As to the second part, let a be the characteristic vector
of the singleton {j}. We now prove that the equation in the unknowns c1, …, cn

 a = ∑i=1, …,n ci ri

has no solutions. We first consider the case j ≤ n and, then, the case j = n + 1. In the former case, the
equation above reads

 0 = c1
 …
 0 = cj–1
 1 = cj
 0 = cj+1
 …
 0 = cn
 0 = ∑i=1, …,n ci ti

Replacing the values of c1, …, cn in the last equation, one obtains

 0 = tj

which is impossible since, by construction, each ti is nonzero. Therefore, a does not belong to the
row space of G. In the latter case, the equation above reads

Pag. 35

 0 = c1
 …
 0 = cn
 1 = ∑i=1, …,n ci ti

Replacing the values of c1, …, cn in the last equation, we obtain

 1 = 0

which is impossible. Therefore, a does not belong to the row space of G.

(2) Consider the matrix G with rows g1, …, gn, which results from the application of the following
procedure to the matrix R associated with t. We first partition the rows of R into groups, each of
which contains rows of R ending with the components of one of the vectors τ1, …, τk, τk+1. Let {rp,
…, rq} be the group corresponding to the vector τl. We first consider the case 1 ≤ l ≤ k–1, then the
case l = k and, finally, the case l = k+1.

— (1 ≤ l ≤ k–1). The vectors gp, …, gq are obtained as follows

 i := p
 if q = p, then gi := ri;
 otherwise, while i < q do

 begin
 gi := ri + ri+1 + ri+2
 gi+1 := ri+1 + ri+3
 gi+2 := ri+2 + ri+3
 i := i + 3
 end

— (l = k). The vectors gp, …, gq are obtained as follows

 i := p
 while i < q do

 begin
 gi := ri + ri+1 + ri+2
 if i + 3 ≤ q then do

 begin
 gi+1 := ri+1 + ri+3
 gi+2 := ri+2 + ri+3
 end

 i := i + 3
 end

— (l = k+1). The vectors gp, …, gq are obtained as follows

 For i = p to q–1, gi := ri + rq ;
 gq := rq.

Pag. 36

It is easy to check that the vectors g1, …, gn are all binary vectors and, hence, G is the incidence
matrix of a hypergraph.

Example 2.1 (continued). Starting from R, we obtain the following matrix

 G =

110000000
011000000
010100000
100010000
100001000
000011100
100000010
100000001

Lemma 2.3 The matrices R and G have the same row space.
Proof. The matrix G is obtained form R by iterating an elementary matrix operation which consist
in adding a row to another row. In fact the only case in which we add two rows on another row

 gi := ri + ri+1 + ri+2

can be rewritten in two distinct steps as

 gi′ := ri + ri+1
 gi := gi′ + ri+2

It is very well known, from linear algebra, that iterating such elementary matrix operation on a
matrix M preserve the row space of M.
In fact let M and M′ be two matrix with n rows, where M′ is obtained from M by adding a row ma
to another row mb. So if mi are the rows of M then the rows of M′ are

 mi if i ≠ b
 mi′ =
 ma+mb if i = b

Suppose that x is a vector in the row space of M. Then there exist a linear combination of rows of
M with real coefficients ci, i=1,…,n such that

 ∑i=1, …,n ci mi = x

Now let

 ∑i=1, …,n di mi′ = x′

where di = ci if i ≠ a and di = ca − cb if i = a. It is easy to check that x′ = x. So x is also in the row
space of M′. On the other hand let x′ be a vector in the row space of M′. Then there exist a linear
combination of rows of M′ with real coefficients di, i=1,…,n such that

∑i=1, …,n di mi′ = x′

Pag. 37

now let

∑i=1, …,n ci mi = x

where ci = di if i ≠ a and ci = db + da if i = a. Again it is easy to check that x′ = x. So x′ is also in the
row space of M. This proves that G and R have the same row space.

Corollary 2.2 The matrix G is the incidence matrix of a hypergraph which contains no algebraic
edges and whose edge set is algebraic.
Proof. Let G be the hypergraph with incidence matrix G. By Lemma 2.3, the row spaces of R and
G are the same. So, by Lemma 2.2, the edge set of G is algebraic and no edge of G is algebraic,
which proves the statement.

Theorem 2.1 The NAS problem is NP-complete.
Proof. First of all, given an edge set F of a hypergraph G, the problem of checking that another edge
set is a nonempty algebraic subset of F is polynomial since it requires (1) testing non emptiness and
inclusion in F, and (2) checking the consistency of an equation system such as equation system
(1.3). Therefore, the problem is in NP. Moreover, by Lemmas 2.1, 2.2 and 2.3 the SS problem can
be reduced to the NAS problem. Finally, our reduction is polynomial since the sizes of t and G are
polynomial in the size of the SS problem.

2.2 The query-execution plan E
Let V be a σ-view base and v an instance of V such that the map (H, X, v) of Σ(X, v) is reduced
with respect to evaluability, and let q be a σ-query. Recall that if V is a reduced σ-view base then
the set of isolated loop of H correspond to the d-invariant edges of H. In particular the set of loop
incident to zero-weighted nodes of H are also called the set of null edges. The set of variables of
system Σ(X, v) associated to the set of null edges is called the set of null variables. We now provide
a merely algebraic evaluability test, which reduces to the derivability test if d is R or Z. Henceforth,
we adopt the following notation:

 {ej: j ∈ L} is the set of isolated loops of H

 for each j ∈ L, i(j) is the node of H that the loop ej is incident to

 Lo ={j ∈ L: si(j) = 0} is the set of isolated loops incident to zero-weighted nodes of H

 M is the complement of L

 G = (N, M) is the subhypergraph of H induced by M

 G = (gi)i∈N is the incidence matrix of G.

By re-phrasing Theorem 1.1, a σ-query q with Ω-support J and Ω-cosupport J' is evaluable from v
if and only if

(a) the sum-expression ∑j∈J xj is a d-invariant of Σ(X, v), and

(b) if d is R or Z, then J' = Ø; if d = R+, then J' is a (possibly empty) subset of Lo.

We now state an algebraic method for testing condition (a) for d = R+.

Pag. 38

Affine Form of Farkas’s Lemma (e.g., see [55], page 93). Let H x ≤ b be a system of n linear
inequalities with m unknowns such that the set X of its solutions is not empty. Suppose that the
linear inequality ∑j=1,…,m uj xj ≤ d holds for each x in X. If c is the maximum value of the linear
function ∑j=1,…,m uj xj over X, then there exist n real nonnegative numbers y1, …, yn, such that

(i) uj = ∑i=1,…,n yi hij (j = 1, …, m)

(ii) c = ∑i=1,…,n yi bi.

The following is a direct consequence of Farkas’s Lemma.

Lemma 2.4 [39] Let A x = q be a system of n linear equations with m unknowns, such that the set X
of its nonnegative solutions is not empty. If c is the maximum value of the linear function ∑j=1,…,m
uj xj over X, then there exist n real numbers λ1, …, λn, and m nonnegative real numbers v1, …, vm
such that

(i) uj = ∑i=1,…,n λi aij – vj (j = 1, …, m)

(ii) c = ∑i=1,…,n λi qi.

Proof. First of all, we re-write the constrained equation system A x = q, x ≥ 0 as a system of linear
inequalities: A x ≤ q, –A x ≤ –q, –x ≤ 0, whose coefficient matrix H and constant vector b are

 H =

−
−

1
A

A
 b =

q
−q
−0

.

By the Affine Form of Farkas’s Lemma, there exist 2n+m real nonnegative numbers y1, …, y2n+m
such that

(i) uj = ∑i=1,…,2n+m yi hij = ∑i=1,…,n yi aij – ∑i=1,…,n yn+i aij – y2n+j

 = ∑i=1,…,n (yi – yn+i) aij – y2n+j (j = 1, …, m)

(ii) c = ∑i=1,…,2n+m yi bi = ∑i=1,…,n yi qi – ∑i=1,…,n yn+i qi = ∑i=1,…,n (yi – yn+i) qi

The statement follows from setting λi = yi – yn+i, 1 ≤ i ≤ n, and vj = y2n+j, 1 ≤ j ≤ m.

Using Lemma 2.4, we can prove the following.

Lemma 2.5 Let A x = q be a system of n linear equations with m unknowns, such that the set X of
its nonnegative solutions is not empty. If a linear function ∑j=1,…,m uj xj is constant over X with
value c, then there exist n real numbers λ1, …, λn, and m nonnegative real numbers v1, …, vm such
that

(i) uj = ∑i=1,…,n λi aij – vj (j = 1, …, m)

(ii) c = ∑i=1,…,n λi qi

Pag. 39

(iii) for each j, if vj ≠ 0 then xj is a null variable.

Proof. (If) By Lemma 2.4, for every x in X, one has that

 ∑j=1,…,m uj xj = ∑j=1,…,m (∑j=1,…,m λi aij – vj) xj =

 = ∑j=1,…,m λi (∑j=1,…,m aij xj) – ∑j=1,…,m vj xj =

 = ∑i=1,…,n λi qi

(Only if) Let c be the constant value of the function ∑j=1,…,m uj xj. By Lemma 2.4, one has

 uj = ∑i=1,…,n λi aij – vj (j = 1, …, m)

 c = ∑i=1,…,n λi qi.

Then, for every x in X, one has that

 c = ∑j=1,…,m uj xj = ∑i=1,…,n λi qi – ∑j=1,…,m vj xj = c – ∑j=1,…,m vj xj

and, hence,

 ∑i=1,…,m vj xj = 0 .

By the nonnegativity constraints, each term vj xj = 0 for all j, which implies that it is not the case
that for some j there exists x in X for which vj ≠ 0 and xj ≠ 0.

Lemma 2.6 Let A x = q be a system of n linear equations with m unknowns, such that the set X of
its nonnegative solutions is not empty. Let {xj: j ∈ Lo} be the set of null variables. Let A' x' = q be
the equation system obtained from A x = q by deleting each occurrence of xj, for all j ∈ Lo. A linear
function ∑j=1,…,m uj xj is constant over X if and only if the vector u = (uj)j∈Z is a linear combination
of rows of A'. Furthermore, if u = ∑i=1,…,n λi a'i, then the value of the function is given by ∑i=1,…,n
λi qi.

Proof. Let X' be the set of nonnegative solutions A' x' = q. Of course, the function ∑j=1,…,m uj xj is
constant over X if and only if the function ∑j∈Z uj x'j is constant over X'. By parts (i) and (iii) of
Lemma 2.5, the function ∑j∈Z uj x'j is constant over X' if and only if there exist n real numbers λ1,
…, λn, and, for each j ∈ Lo, there exists a nonnegative real number vj such that

 uj = ∑i=1,…,n λi aij – vj (j ∈ Lo)

 for each j ∈ Lo, if vj ≠ 0 then x'j is a null variable.

Since the equation system A' x' = q contains no null variables, one has that each vj is zero so that
the function ∑j∈Lo uj x'j is constant over X' if and only if there exist n real numbers λ1, …, λn such
that

 uj = ∑i=1,…,n λi aij (j ∈ Lo)

Finally, for every x in X, one has that

Pag. 40

 ∑j=1,…,m uj xj = ∑ j∈Lo uj x'j = ∑ j∈Lo (∑i=1,…,n λi aij) x'j = ∑i=1,…,n λi (∑j ∈ Lo aij x'j)

 = ∑i=1,…,n λi qi .

The following are two straightforward consequences of Lemma 2.6.

Corollary 2.3 Let A x = q be a system of n linear equations with m unknowns, such that the set X of
its nonnegative solutions is not empty. Let {xj: j ∈ Lo} be the set of null variables. Let A' x' = q be
the equation system obtained from A x = q by deleting each occurrence of xj, for all j ∈ Lo. A
variable xj* is determined over X if and only if either j* ∈ Lo or the characteristic vector of the
singleton {j*}, that is, the (m–|Lo|)-dimensional binary vector u with

 =

=
else0

* if1 jj
u j

is a linear combination of rows of A'. In the latter case, if u = ∑i=1,…,n λi a'i then the value of xj* is
∑i=1,…,n λi qi.

Corollary 2.4 Let A x = q be a system of n linear equations with m unknowns, such that the set X of
its nonnegative solutions is not empty. Let A' x' = q be the equation system obtained from A x = q
by deleting all null variables. An equation in A x = q is redundant if and only if its corresponding
equation in A' x' = q is a linear combination of remaining equations.

We now turn to the problem of testing condition (c) of Theorem 1.1 Since the equation system G
xM = w has no null variables, by Lemma 2.6 the function ∑j∈J∩M xj is constant if and only if the
characteristic vector u of J∩M, that is, the vector u with

 ∩∈

=
else0

 if1 HJj
u j

is a linear combination of rows of G. If r is the number of rows of the matrix G, then we have to
check the consistency of an equation system with r unknowns, say λ1, …, λr :

 u = ∑i=1,…,r λi gi

If a solution exists, then the function ∑j∈J∩M xj is constant with value

 ∑i=1,…,r λi wi

and the total for K amounts to ∑j∈J∩L cj + ∑i=1,…,r λi wi . Finally, since a solution (if any) of an
equation system of size s can be found in O(s3) time [13], the following holds.

Lemma 2.7 Let V be a σ-view base and v an instance of V such that the map (H, X, v) of Σ(X, v) is
reduced. A sum-expression ∑j∈J xj is an R+-invariant of Σ(X, v) if and only if the set {ej: j ∈ J∩M}
of edges of G is algebraic. If this is the case and the characteristic vector of J∩M can be written as

 ∑i∈N ai gi

then the value of the sum-expression is given by

Pag. 41

 ∑j∈J∩L vi(j) + ∑i∈N ai vi . (2.4)

Proof. The statement follows from Corollary 2.4.

By Lemma 2.7, the R+-invariance of the sum-expression ∑j∈J xj can be decided simply by checking
the consistency of the following equation system in the unknowns ai:

 ∑i∈N ai gi = b (2.5)

where b is the characteristic vector of the set {ej: j ∈ J∩M} of edges of G. Combining Theorem 1.1
and Lemma 2.7, one has

Theorem 2.1 Let V be a σ-view base and v an instance of V such that the map (H, X, v) of Σ(X, v)
is reduced. A σ-query q with Ω-support J and Ω-cosupport J' is evaluable from (V, v) if and only if

(a) if G is not empty, then the set {ej: j ∈ J∩M} of edges of G is algebraic, and

(b) either J' = Ø or d = R+ and J' ⊆ Lo.

Moreover, if q is evaluable from v and the characteristic vector of the edge set {ej: j ∈ J–L} can be
expressed by (2.4), then the answer to q is given by (2.5).

By Theorem 2.1 the query-execution plan can easily decide whether q is or is not evaluable from v
and, if this is the case, compute the answer to q from v. If q is not evaluable from v, then as in
Section 2.1 the query-execution plan looks for an S'-category Q' such that the σ-query q' with target
Q' is evaluable from v and Q' is contained in (or contains) the extension Q to S' of the target of q.

Example 1 (continued). Consider again the σ-query q with support J = {4, 5, 9} and co-support J' =
{1, 2, 3}, and the map for v* (see Figure 5) corresponding to the case that the domain of SALARY
is R+. Thus, one has Lo = {1, 3, 5, 9} and M = Ø. We saw that q is not evaluable from v*. An S'-
category Q' that is (maximally) contained in the target of q and is the target of a σ-query q'
evaluable from v* is given by the following relation over {GENDER, DEPT}

 GENDER DEPT
 male A
 male C
 male D
 female D
 male E
 female E
 male I
 female I

and the answer to q' is 6.

If d is R or Z, then plan E is like plan D and we proved that finding an S'-category that is maximally
contained in Q is an NP-hard problem. Of course, the case d = R+ is at least hard as the case d = R,
so that

 Q' := (∪j∈J'∩Lo Yj) ∪ (∪j∈J∩L Yj)

Pag. 42

is the only choice for the target of q' that can be made efficiently; then, the answer to q' can be
computed as

 ∑j∈J∩L vi(j).

2.2.1 Proving coNp-completeness of computing a Z+−invariant sets.
As stated at the end of Section 1.4.1, the problem of deciding if there exists some variable of the
equation system (1.1) that is a Z+-invariant is coNP-complete and we now give its proof. Note that
an analogous result holds for {0, 1}-invariants and the result is known as the coNP-completeness of
the Boolean Auditing Problem [37] (see Remark below).

Let A be an r × n dimensional binary matrix, where each row contains at most three 1’s. It is well-
known that deciding if the set

 Z = {z ∈ {0, 1}n : A z = 1}

is not empty, is an NP-complete problem [25]. We now provide a polynomial reduction of this
problem to an instance of the problem of deciding if no variable of H x = v is a Z+-invariant.

For each i ∈ [n], let us introduce fifteen Z+-valued variables xi,1, …, xi,15 and the nine equations

 xi,1 + xi,2 + xi,3 + xi,7 + xi,8 + xi,15 = 3 1(i)

 xi,4 + xi,5 + xi,6 + xi,9 + xi,10 + xi,15 = 3 2(i)

 xi,1 + xi,4 = 1 xi,2 + xi,5 = 1 xi,3 + xi,6 = 1 3(i)

 xi,7 + xi,11 = 1 xi,8 + xi,12 = 1 4(i)

 xi,9 + xi,13 = 1 xi,10 + xi,14 = 1 5(i)

First of all, note that, by equations 3(i)-5(i) in every Z+-valued solution xi = (xi,1, …, xi,15) of this
equation system, xi,1, …, xi,14 can only assume the values 0 and 1 and the sum-expression

 xi,1 + xi,2 + xi,3

can only assume the values 1 and 2 for, otherwise, if xi,1 + xi,2 + xi,3 = 0, then one would have xi,4 +
xi,5 + xi,6 = 3 by 3(i), xi,15 = 0 by 2(i) and equations 1(i) would be inconsistent, and if xi,1 + xi,2 +
xi,3 = 3, then one would have xi,15 = 0 by 1(i), xi,4 + xi,5 + xi,6 = 0 by 3(i) and equations 2(i) would
be inconsistent. Moreover, since the sum-expression xi,1 + xi,2 + xi,3 can only assume the value 1
and 2, one has that also xi,15 can only assume the values 0 and 1, so that every Z+-valued solution xi
is binary. Explicitly, there are twelve Z+-valued solutions with if xi,1 + xi,2 + xi,3 = 1 and twelve Z+-
valued solutions with if xi,1 + xi,2 + xi,3 = 2. Explicitly, one has that

— if xi,1 + xi,2 + xi,3 = 1, then the Z+-valued solution set is the Cartesian product of

 xi,1 xi,2 xi,3 xi,4 xi,5 xi,6

 0 0 1 1 1 0
 0 1 0 1 0 1

Pag. 43

 1 0 0 0 1 1

 with

 xi,7 xi,8 xi,9 xi,10 xi,11 xi,12 xi,13 xi,14 xi,15

 1 1 0 1 0 0 1 0 0
 1 1 1 0 0 0 0 1 0
 0 1 0 0 1 0 1 1 1
 1 0 0 0 0 1 1 1 1

— if xi,1 + xi,2 + xi,3 = 2, then the Z+-valued solution set is the Cartesian product of

 xi,1 xi,2 xi,3 xi,4 xi,5 xi,6

 0 1 1 1 0 0
 1 0 1 0 1 0
 1 1 0 0 0 1

 with

 xi,7 xi,8 xi,9 xi,10 xi,11 xi,12 xi,13 xi,14 xi,15

 0 1 1 1 1 0 0 0 0
 1 0 1 1 0 1 0 0 0
 0 0 0 1 1 1 1 0 1
 0 0 1 0 1 1 0 1 1

Note that none of the fifteen variables is a Z+-invariant of the equation system 1(i)-5(i) even if the
value of xi,1 + xi,2 + xi,3 is fixed.

At this point, for each i ∈ [n], replace the binary variable zi in the equation system A z = 1 by the
sum-expression xi,1 + xi,2 + xi,3 – 1 and add the nine equations 1(i)-5(i). Let

 B x' = b

be the resulting equation system, where

 x' = (x1, …, xn)

 b = (b1, …, bm) (m = r + 9n).

Note that each bh is not greater than 4. The set of Z+-valued solutions of B x' = b is the set of
vectors x' such that

 (a) each xi is a Z+-valued solution of the equation system 1(i)-5(i), and

 (b) the vector z = (z1, …, zn), where zi = xi,1 + xi,2 + xi,3 – 1, is a binary solution of

 A z = 1.

Pag. 44

Therefore, the set of Z+-valued solutions of B x' = b is empty if and only if Z = Ø and, if Z ≠ Ø,
then no variable of B x' = b is a Z+-invariant.

Finally, let us introduce seven more Z+-valued variables: xo,1, …, xo,7 and the six equations

 xo,1 + xo,5 = 1 xo,2 + xo,5 = 1 xo,2 + xo,6 = 1
 xo,3 + xo,6 = 1 xo,3 + xo,7 = 1 xo,4 + xo,7 = 1

Note that system of these six equations has exactly two Z+-valued (and binary) solutions:

 xo,1 = xo,2 = xo,3 = xo,4 = 0 xo,5 = xo,6 = xo,7 = 1
 xo,1 = xo,2 = xo,3 = xo,4 = 1 xo,5 = xo,6 = xo,7 = 0.

Finally, for each h ∈ [m], add to the left-hand side of the h-th equation in B x' = b the sum-
expression

 ∑k=1,…,bh xo,k

and add the six equations above with unknowns xo,1, …, xo,7. Let H x = v be the resulting equation
system where x = (xo, x'). A trivial Z+-valued solution of H x = v can be obtained by taking

 xo = (1 1 1 1 0 0 0) x' = 0

Let X be the set of variables of H x = v that are Z+-invariants. We now prove that X = Ø if and only
if Z ≠ Ø, which implies that deciding if there exists some variable of H x = v that is a Z+-invariant
is a coNP-complete problem.

(if) If Z ≠ Ø and z ∈ Z, then we can obtain at least 12n nontrivial Z+-valued solutions x = (xo, x') of
H x = v by taking xo = (0 0 0 0 1 1 1) and setting xi, 1 ≤ i ≤ n, to each of the twelve Z+-valued
solutions of the equation system 1(i)-5(i) having xi,1 + xi,2 + xi,3 equal to zi +1. It follows that no
variable of H x = v is a Z+-invariant, that is, X = Ø.

(only if) If Z = Ø, then the trivial solution of H x = v is the only Z+-valued solution so that each
variable of H x = v is a Z+-invariant, that is, X ≠ Ø (|X| = 7 + 15n).

Remark. We saw that the Z+-valued solutions of the equation system H x = v are all binary. It
follows that the set of variables of H x = v that are {0, 1}-invariants is empty if and only if Z ≠ Ø,
which implies the coNP-completeness of the Boolean Auditing Problem [37]. (The proof of the
coNP-completeness of the Boolean Auditing Problem in [37] contains a flaw and in a private
communication the authors of [37] agreed with us on the above proof of their statement.)

Pag. 45

Chapter 3

Auditing Sum-Queries to Make a Statistical Database Secure

3.1 Introduction
Consider a statistical database SDB containing a relation name Personnel with scheme {NAME,
SSN, GENDER, AGE, SALARY}. The users of the SDB can ask for summary statistics on the
attribute SALARY for groups of employees which at the conceptual level are specified by predicates
involving the attributes GENDER, AGE and DEPARTMENT but not NAME and SSN which are private
attributes.
Let D be an instance of the SDB containing the relation R of name Personnel. If SALARY is a
confidential attribute, then answering q (and, more in general, answering a statistical query whose
response variable is a confidential attribute) raises concerns on the compromise of individual
privacy since releasing the value of q could lead to the (“exact” or “approximate”) disclosure of the
value of SALARY for some element of the query-set of q [17, 18, 61, 62]. Such a sum-query, which
risks the confidentiality of the response variable and, hence, the security of the SDB, is called
intrusive and the category S specified by its “where”-clause is said to be sensitive in D. Typically,
for a fixed positive integer k, S is sensitive if the number of tuples in R that fall in S are less than k
(exact disclosure) or there are k or fewer tuples in R that give a dominant contribution to the value
of q (approximate disclosure) [17, 18, 61, 62].
The confidentiality of a response variable σ can be attacked either (in a directed way) by an
intrusive sum-query or (in an indirect way) by a non-intrusive sum-query whose value on D,
combined with the responses to previously-answered sum-queries on D, leads to an accurate
estimate of the total of σ for some category that is sensitive in D. In the latter case, we call the sum-
query tricky.
In order to make an SDB secure, when a new instance D is created, for each confidential attribute σ
the sensitive categories in D are identified and each of them is assigned a fixed nonnegative
number, called its protection level [61, 62]. Such a category S will be considered protected at a
certain time if its protection level comes out to be less than the width of the interval, called the
feasibility range [61, 62], of the feasible values for the total of σ for S that are permitted by the
responses to previously answered sum-queries. In our proposal, if the current sum-query q is
recognized to be intrusive or tricky, then the query system of the SDB will give a non-informative
response to q by issuing the feasibility range for q determined by the responses to all previously
answered sum-queries with response variable σ. Now, it is easy to decide whether q is or is not
intrusive since it is sufficient to check the presence of the category specified by q in the list of the
categories that are sensitive in D for σ; but, deciding whether q is or is not tricky requires ‘auditing’
[11, 12, 40, 42, 46] the previously answered sum-queries on D with response variable σ and, for
each sensitive category S, comparing the protection level assigned to S with the width of the
feasibility range for the total of σ for S determined by the value of q and by the responses to the
previously answered sum-queries on σ. If each sensitive category is protected, then we say that q
can be safely answered and the value of q will be issued. A special case occurs when q is evaluable
from previously answered sum-queries, that is, when the value of q is uniquely determined by
them; then, q is neither intrusive nor tricky and it can be safely answered.
The scenario we are considering can be depicted as a competitive game played by the query system,
which has as its opponent a hypothetical statistical user, henceforth referred to as the (data)

Pag. 46

snooper, who (with no prior information) attempts to pry an accurate estimate of the total of a
response variable σ for some sensitive category out of the responses to all answered sum-queries on
D with response variable σ. This assumption is not unrealistic if the query system of an SDB (also
in order to lighten its workload) allows every user to look into the archive of answered sum-queries
on D.
In most previous work [1, 11, 12, 40, 42, 46], the technique of auditing was applied under the
assumption that the snooper also knows the query-set of each answered sum-query. Thus, for each
answered sum-query the snooper can write down an equation, whose unknowns represent the
unknown values of the response variable for the tuples in its query-set. As a consequence, the size
of the snooper’s model comes out to be proportional to the size of the instance D of the SDB, which
may contain a very large number of tuples [1]. On the other hand, the hypothesis that the snooper
knows the query-sets of answered sum-queries is not realistic. In order to make the snooper’s model
independent of the size of the instance of the SDB, some authors [9, 10, 11, 48] have suggested
working with categories instead of query-sets. Accordingly, in order to model the information
conveyed by a set of answered sum-queries, we shall introduce an equation system whose
unknowns correspond to the classes of a suitable partition of the union of the categories specified by
the answered sum-queries. Thus, typically (i.e., with a very large database) the size of our equation
system comes out to be far less than the size of the equation system based on query-sets.
To repel the attacks of the snooper, the query system will make use of its own information model,
which essentially is the same as the snooper’s model and will be constructed incrementally as the
value of a new-sum query is issued. Such an information model was described in Chapter 1. Finally,
using a the information model, we shall address the question whether or not a new sum-query can
be safely answered.
Answering this question raises some computational problems (recognizing evaluable sum-queries,
updating the information model, computing a feasibility range), whose solutions depend on the data
type of the response variable as seen in Section 1.4. If it is of real type, then standard algebraic
methods can be used to solve all of them efficiently (see Section 1.4.1); moreover, if sum-queries
contain all the “group-by” clause, that is, if they are table queries (or “cuboids” [58, 59]), then there
also exist cardinality-based conditions that are sufficient for them to be inference free [58, 59, 63].
If it is of nonnegative type, then we can resort to linear-programming or integer linear-programming
methods depending on the specific data type. In general, the case that the response variable is of
nonnegative-integer type is extraordinarily difficult from a computational viewpoint as we seen in
Section 2.2.1 where finding a in general computing a Z+-invariant set is an coNP-Complete problem
and, a general theory has yet to be developed [22].
In this Chapter, we only consider the case that the response variable is of nonnegative real type.
Then, a natural approach consists in resorting to standard linear-programming algorithms (e.g., the
simplex method [13, 55]). Unfortunately, none of them is polynomial even if they are polynomial
on the average and have good performances in practice [13, 55]; on the other hand, existing
polynomial linear-programming algorithms (e.g., the ellipsoid method [13, 55]) have bad
performances in practice. Therefore, in order to solve the computational problems raised by the
security of the SDB, it is convenient to make a parsimonious use of standard linear-programming
algorithms and “there is considerable interest in finding alternative techniques” [22]. Accordingly,
using the techniques presented in Chapter 1 and Chapter 2, we will present a cubic evaluability test
based on standard algebraic methods, and we shall show in Chapter 5 that, in the case that the
current information model is “graphical”, then also the problem of finding a feasibility range can be
solved efficiently without resorting to linear programming at all.

3.2 Basic Definitions
Suppose we are given an instance D of an SDB which contains a relation R. Let a be an attribute in
the schema of R that is used by such a sum-query. Typically, if the domain of a is large, then the
“where”-clause of the sum-query will contain re-coded values in such a way that the size of the re-

Pag. 47

coded domain of a is made small [61, 62]. For example, the re-coding of the attribute AGE may
consist of year classes instead of numbers of years, or the re-coding of a geographic attribute with a
hierarchical structure (e.g., country, state, county) may consist in ‘chopping off’ some digits of its
values of precision [58, 62].
By Vσ we denote the set of all categorical variables corresponding to the attributes in the schema of
R that can occur in the “where”-clauses of sum-queries with response variable σ.
In order to speed up the evaluation of sum-queries with response variable σ, the query system will
make use of a materialized aggregate view on σ, which will be referred to as the summary table on
σ; it is created initially and reports the total of σ for each Vσ-cell c. As we said, a user can ask for
the total of a statistic of σ by submitting a sum-query q, where the selection criterion is specified be
an arbitrary (consistent) condition P on a (possibly empty) subset S of the set Vσ of categorical
variables built up with logical connectives. Owing to the assumptions of mutual exclusiveness and
global exhaustiveness of cells, P uniquely determines a category Q, we call the target of q, such
that P is logically equivalent [44] to the formula (see also Section 1.2)

 ∨c∈Q (∧a∈S a = c(a)).

The value q of q can then be computed by the query system from the summary table on σ (without
accessing the database relation R) simply as the total of σ for Q.

Example 3.1. Consider an instance of an SDB containing a relation of name Personnel with
schema {NAME, GENDER, AGE, SALARY}. Here, SALARY is assumed to be an attribute of
nonnegative real type. A sum-query with response variable SALARY will take its categorical
variables from the set VSALARY = {GENDER, AGE}. We assume that the domains of GENDER and
AGE are {M, F} and {young, middle, old}, respectively, and that the summary table on
SALARY contains the following data.

 GENDER AGE SALARY
 M young 15.0
 M middle 9.0
 M old 7.5
 F young 6.5
 F middle 1.5
 F old 0.0

Consider the following four sum-queries with response variable SALARY:

q1: select sum(SALARY)
 from Personnel
 where GENDER = M and AGE ≠ old

q2: select sum(SALARY)
 from Personnel
 where (GENDER = M and AGE ≠ young) or (GENDER = F and AGE = middle)

q3: select sum(SALARY)
 from Personnel
 where (GENDER = M and AGE ≠ middle) or (GENDER = F and AGE = young)

q4: select sum(SALARY)
 from Personnel

Pag. 48

 where GENDER = F and AGE ≠ middle.

Their targets are the following relations with schema {GENDER, AGE}:

 V1 V2 V3 V4
 (M, young) (M, middle) (M, young) (F, young)
 (M, middle) (M, old) (M, old) (F, old)
 (F, middle) (F, young)

Using the summary table on SALARY, the query system is able to compute the values

 v1 = 24 v2 = 18 v3 = 29 v4 = 6.5

q1, q2, q3 and q4 without accessing the relation of name Personnel.

In the next section, we shall see how the snooper can use the information released by the query
system in response to sum-queries to get a more-or-less detailed information on the total of σ for a
(possibly sensitive) category of interest.

3.3 The snooper’s model
Let V=(q1, …, qn) be answered sum-queries whose response variable σ is of nonnegative real type.
Recalling the terminology used in Chapter 1, V can be seen as a set of σ-views. The amount of
information conveyed by the answers to V will be defined in such a way to capture all the snooper’s
knowledge about them (that is, their targets and their values). The snooper’s information model
consists of a set of variables, each of which is interpreted as the total of σ for a certain category, and
of a system of linear constraints (1.1).
From now on, for simplicity, we assume that Vi is the extension to Vσ of the target of qi. Also let vi,
i = 1, …, n, be the value of qi. By Ω ⊆ dom(Vσ) we denote the set of cells contained in the
categories Vi, that is, Ω = ∪i = 1,…,n Vi. Let X = {X1, …, Xm} be the classification system of Ω. The
snooper’s information model is described by the system of n linear equations (1.1) where, each
variable xj stands for a feasible value of the total of σ for Xj and, hence, is subject to the
nonnegativity constraint: xj ≥ 0.

To sum up, the information model has a semantic component, given by the classification system X,
and an analytical component, given by system (1.1).

Example 3.1 (continued). Consider again the four sum-queries q1, …, q4. Then Ω = dom({AGE,
GENDER}) and the classification system X of V is formed by the following six elementary
categories (i.e., singletons):

 X1 = {(M, young)} X2 = {(M, middle)} X3 = {(M, old)}
 X4 = {(F, young)} X5 = {(F, middle)} X6 = {(F, old)} .

The targets of q1, …,q4 can be written as

 V1 = X1 ∪ X2
 V2 = X2 ∪ X3 ∪ X5
 V3 = X1 ∪ X3 ∪ X4
 V4 = X4 ∪ X6

Pag. 49

and system (1.1) reads

=+
=++
=++

=+

6.5
29
18

24

64

431

532

21

xx
xxx
xxx

xx

 (3.1)

Of course, system (3.1) has at least one nonnegative solution. Suppose now that the snooper is
interested in the total of σ for a (possibly sensitive) category K of interest. He can obtain the tightest
lower bound and the tightest upper bound on the total σ for K as follows. Let (see Figure 3.1)

 J = {j ∈ [m]: Xj ⊆ K},
 J' = {j ∈ [m]: Xj ∩ K ≠ Ø and Xj – K ≠ Ø}.

K

X′jh

Ω

K-Ω

J′

J

Figure 3.1. Overlap of category K with basis X

As stated in Section 1.4 the tightest lower bound, denoted by lower(K), is set to zero if J = Ø;
otherwise, it is taken to be

 lower(K) = min {∑j∈J xj: H x = v, x ≥ 0} .

The tightest upper bound, denoted by upper(K), is set to +∞ if K is not contained in Ω; otherwise, it
is taken to be

 upper(K) = max {∑j∈J∪J' xj: H x = q, x ≥ 0} .

The interval [lower(K), upper(K)] is called the feasibility range of the total for K. Recall that if
lower(K) = upper(K), then the total for K is evaluable in the information model.

Example 3.1 (continued). The general solution of system (3.1) is

 (x1 = 24–x2, x2, x3, x4 = 5+x2–x3, x5 = 18–x2–x3, x6 = 1.5–x2+x3).

By the nonnegativity constraints, the couple (x2, x3) is any point of the region shown in Figure 3.2.

Pag. 50

5

2x

3x
(6.5, 11.5)

(9.75, 8.25)

1.5

Figure 3.2. The set of nonnegative solutions of system (3.1)

Thus, if the snooper is interested in the total of SALARY for the category

 K
 (F, middle)
 (F, old)

then, after computing the minimum and the maximum of the function x5 + x6 using a standard
linear-programming method, he can find that the feasibility range for the total of SALARY for K is
[0,19.5].

3.4 How to beat the snooper
To repel the attacks of the snooper to the confidentiality of the response variable, the query system
will make use of its own information model, which will be constructed incrementally as the value of
a new-sum query is issued. Suppose that, after a certain number of answered sum-queries, every
sensitive category is protected in the query system’s model and a new sum-query q is submitted.
We call the query system’s model the prior model. As said in Section 3.1, if q is intrusive or tricky,
then q should be answered by issuing the feasibility range of its value given by the prior model;
otherwise, the value of q should be issued. Since recognizing intrusive sum-queries is a matter of
routine, the most demanding task that the query system is called to carry out is how to decide
whether or not q is tricky. Of course, if q is evaluable in the prior model, then q is not tricky. Let us
assume that q is not evaluable. Then, the query system should add to the prior model the piece of
information conveyed by the value of q, and in the “augmented” information model, we call the
posterior model, it should check that each sensitive category is still protected. If this is the case,
then (and only then) q is not tricky. The posterior model is constructed from the prior model given
the target K and the value v of q as described in Section 1.3 of Chapter 1.
After constructing the posterior model, each sensitive category V contained in Ω' is examined by
computing the feasibility range of the total for V in the posterior model which is, then, compared
with the protection level assigned to V. If all the sensitive categories contained in Ω' are protected in
the posterior model, then (and only then) q is not tricky.

Example 3.2. Consider again the database instance of Example 3.1. Suppose there are only two
sensitive categories for SALARY:

 V1 V2
 (M, young) (M, young)
 (F, old)

Pag. 51

both of which have been assigned the protection level 3.0. Assume that the four sum-queries q1,
…, q4 of Example 3.1 are submitted in this order. We now show that each of them can be safely
answered. The following are the four information models resulting from answering the sum-queries
q1, …, q4 respectively, and the feasibility ranges for the sensitive categories. Note that answering
q1, q2 and q3 risks V1 only, but answering q4 risks V2 too.

 x1 = 24{

X1= {(M, young), (M, middle)}

feasibility range for V1: [0,24]

x1 + x2 = 24
x2 + x3 = 18

X1 = {(M, young)} X2 = {(M, middle)}
X3 = {(M, old), (F, middle)}

feasibility range for V1: [6,24]

x1 + x2 = 24
x2 + x3 + x5 = 18
x1 + x3 + x4 = 29

X1 = {(M, young)} X2 = {(M, middle)} X3 = {(M, old)}
X4 = { (F, young)} X5 = {(F, middle)}

feasibility range for V1: [6,24]

x1 + x2 = 24
x2 + x3 + x5 = 18
x1 + x3 + x4 = 29

x4 + x6 = 6.5

X1 = {(M, young)} X2 = {(M, middle)} X3 = {(M, old)}
X4 = { (F, young)} X5 = {(F, middle)} X6 = {(F, old)}

feasibility range for V1: [14.25,24]
feasibility range for V2: [14.25,30.5]

Suppose now that the following sum-query is submitted after q4:

q5: select sum(SALARY)
 from Personnel
 where GENDER = F and AGE ≠ young.

The target of q5 is

Pag. 52

 K5
 (F, middle)
 (F, old)

and the value of q5 is v5 = 1.5 (obtained from the summary table). Neither the category K5 is
sensitive nor the total for K5 is evaluable in the prior model. The posterior model consists of the
following equation system

=+
=+

=++
=++

=+

5.1
6.5

29
18

24

65

64

431

532

21

xx
xx

xxx
xxx

xx

 (3.2)

with the same meaning of the variables as in the prior model. The general solution of system (3.2) is

 (x1 = 15, x2 = 9, x3, x4 = 14–x3, x5 = 9–x3, x6 = –7.5+x3)

By the nonnegativity constraints, x3 is any number in the interval [7.5, 9]. Note that the sensitive
category V1 is exactly the category associated with x1 and, since the value of x1 is uniquely
determined, V1 would not be protected if the value of V5 were released. Therefore, V5 is tricky and,
in response to V5, the query system will issue the feasibility range [0, 19.5] for K5 given by the
prior model (see Example 3.1).

To sum up, a procedure for answering a sum-query q with target K and value v should work as
follows:

(i) If K is sensitive, then the answer to q will be the feasibility range of the total for K in the
prior model.

(ii) If the total for K is evaluable in the prior model, then the answer to q will be v.

(iii) If neither K is sensitive nor the total for K is evaluable in the prior model, then the
 posterior model will be constructed, and for each sensitive category V contained in Ω' =
Ω∪K, the feasibility range of the total for V in the posterior model will be computed and
compared with the protection level associated with V so that, if V is not protected, then the
answer to q will be the feasibility range of the total for K in the prior model.

(iv) If each sensitive category V contained in Ω' is protected in the posterior model, then the
 answer to q will be v, and the posterior model will serve as the prior model for processing
 the next sum-query.

From a computational point of view, tasks (i), (ii) and (iii) require computing the feasibility range of
the total for K and for each sensitive category contained in Ω'. Accordingly, we propose the
following answering procedure.

Answering Procedure

Step 1. If K is sensitive, then

Pag. 53

 compute lower(K) and upper(K) in the prior model,

 answer q by issuing the feasibility range for the total for K, and Exit.

Step 2. If the total for K is evaluable in the prior model, then answer q by releasing its
 value, and Exit.

Step 3. Construct the posterior model and find a normal form.

Step 4. For each sensitive category V contained in K ∪ Ω,

 if the total for V is evaluable in the posterior model, then

 compute lower(K) and upper(K) in the prior model,

 answer q by issuing the feasibility range of the total for K, and Exit;

 otherwise

 compute the feasibility range [lower(V), upper(V)] in the
 posterior model,

 compare its width with the protection level associated with V,

 if V is not protected, then

 compute lower(K) and upper(K) in the prior model,

 answer q by issuing the feasibility range of the total for K,
 and Exit.

Step 5. Answer q by issuing its value.

3.5 A polynomial test for evaluability
The cost of the storage representation of an information model such as system (1.1) depends on the
size of its equation system, by which we mean the sum of the numbers of occurrence of its
variables. A storage representation of the information model proposed in Chapter 1 is the
hypergraph of which the coefficient matrix H of system (1.1) is the (node-hyperedge) incidence
matrix, where the i-th node is “weighted” by vi and the j-th hyperedge is “labelled” by Xj. Such a
storage representation is called the map of V. In Section 1.5 we saw a method to reduce the
dimension of the map of V. Here on the assumption that d=R+ we see how further reduce the size of
the system (1.1) and, hence, the storage cost of the information model.
Let V be a σ-view base and v an instance of V such that the map (H, X, v) of Σ(X, v) is reduced
with respect to evaluability. Henceforth, we adopt the following notation:

 L is the set of isolated loops incident to nonzero-weighted nodes of H

 Lo is the set of isolated loops incident to zero-weighted nodes of H

 M is the complement of L∪Lo

 G = (N, M) is the subhypergraph of H induced by M

Pag. 54

 G = (gi)i∈N is the incidence matrix of G.

Let us consider its determined variables of system (1.1) whose values are zero. They will be
referred to as null variables. If Lo ≠ Ø, then system (1.1) contains the set of equations

 xj = 0 (j ∈ Lo)

which, by the nonnegativity constraints, is equivalent to the single equation

 ∑j∈Lo xj = 0.

Let us introduce a new variable x0 which stands for the sum ∑j∈Lo xj and is to be interpreted as the
total for the category X0 = ∪j∈Lo Xj. Then, we can replace the equations xj = 0, j ∈ Lo, in system
(1.1) by the single equation x0 = 0 so that the resulting equation system has | Lo|–1 variables less and
|Lo|–1 equations less. If Lo ≠ Ø and L ≠ Ø, then, the resulting equation system is like

=
=
=

wxG
cx

M

L

x

00

 (3.3)

System (3.3) with the interpretation of its variables given by the following partition of Ω

 {X0} ∪ {Xj: j ∈ L∪M}

defines what we call a normal form of the information model. Given system (3.3) and a category K,
the feasibility range of the total for K can be obtained as follows (see Figure 3.3).

K
X j

K – Ω

Ω

 j

X 0

 j L ∈ j M ∈ = 0

Figure 3.3. Overlap of the target with the category basis of a normal model

Let

 J = {j ∈ L∪M: Xj ⊆ K} J' = {j ∈ L∪M: Xj ∩ K ≠ Ø and Xj – K ≠ Ø}.

Since the total of the response variable for the category X0 ∩ K is definitely zero, the tightest lower
bound for K is equal to

 lower(K) = ∑j∈J∩L cj + min {∑j∈J∩M xj: G xM = w, xM ≥ 0} (3.4)

Pag. 55

and, if K is contained in Ω, then the tightest upper bound for K is equal to

 upper(K) = ∑j∈(J∪J')∩L cj + max {∑j∈(J∪J')∩M xj: G xM = w, xM ≥ 0} . (3.5)

Remark 3.1 Since cj > 0 for j ∈ L, then one has that

— ∑j∈J∩L cj ≥ 0 where the equality holds if and only if J∩L = Ø, and

— ∑j∈J∩L cj ≤ ∑j∈(J∪J')∩L cj where the equality holds if and only if J'∩L = Ø.

The following is a characterization of evaluability.

Theorem 3.1 Let system (3.3) be the equation system of an information model in reduced form.
The total for a category K is evaluable if and only if

(a) K is contained in Ω,

(b) J' = Ø, and

(c) the function ∑j∈J∩M xj is constant over the set of nonnegative solutions of the equation
 system G xM= w.

Proof. The “if”-part trivially follows from equations (3.4) and (3.5). On the other hand, if the total
for K is evaluable, then by Remark 1.3 condition (a) must hold and from Remark 3.1 it follows that
J'∩L must be empty. Suppose by contradiction that condition (b) does not hold. Then, J'∩M ≠ Ø
and

 max {∑j∈J∩M xj: G xM = w, xM ≥ 0} < max {∑j∈(J∪J')∩M xj: G xM = w, xM ≥ 0}

for, otherwise,

 max {∑j∈J'∩M xj: G xM = w, xM ≥ 0} = 0

and each xj, j ∈ J'∩M would be a null variable (contradiction). So, condition (b) must hold. As to
condition (c), suppose by contradiction that

 min {∑j∈J∩M xj: G xM = w, xM ≥ 0} < max {∑j∈J∩M xj: G xM = w, xM ≥ 0}.

Then, the following contradiction would arise

 lower(K) = ∑j∈J∩L cj + min {∑j∈J∩M xj: G xM = w, xM ≥ 0} <

 < ∑j∈J∩L cj + max {∑j∈J∩M xj: G xM = w, xM ≥ 0} = upper(K).

From a computational point of view, conditions (a) and (b) are easy to test and require O(|Ω|) and
O(1) time, respectively. As to condition (c), it can be tested by comparing

 min {∑j∈J∩H xj: G xH = w, xH ≥ 0}

and

 max {∑j∈J∩H xj: G xH = w, xH ≥ 0},

Pag. 56

whose computation requires solving two linear-programming problems. However, as seen in
Chapter 2 we can do better since we don’t need to resort to linear-programming methods but can
use the result of Theorem 2.1.

Example 3.3. Consider an instance of an SDB containing a relation of name Personnel with
schema {NAME, GENDER, AGE, DEPT, SALARY}, where SALARY is assumed to be of nonnegative
real type. Let {A, B, C, D, …} be the domain of DEPT.
Consider fourteen sum-queries q1, …, q14 with response variable SALARY whose targets (Vi) are
as follows:

 V1 V2 V3 V4
 (M, young, D) (M, middle, B) (M, middle, D) (F, young, A)

 V5 V6 V7 V8
 (F, young, D) (F, middle, A) (F, middle, B) (F, middle, C)

 V9 V10 V11 V12
 (M, young, A) (M, middle, A) (F, young, A) (M, young, A)
 (M, young, B) (M, middle, B) (F, young, B) (M, middle, A)
 (M, young, C) (M, middle, C) (F, young, C) (F, young, A)
 (M, young, D) (M, middle, D) (F, young, D) (F, middle, A)

 V13 V14
 (M, young, B) (M, young, C)
 (M, middle, B) (M, middle, C)
 (F, young, B) (F, young, C)
 (F, middle, B) (F, middle, C)

Let us assume that the values of q1, …, q14 are as follows:

 q1 = 0 q2 = 5 q3 = 10 q4 = 10
 q5 = 10 q6 = 15 q7 = 20 q8 = 10
 q9 = 30 q10 = 25 q11 = 25 q12 = 30
 q13 = 60 q14 = 15

Note that q1, …, q14 can be viewed as being the entries in an incomplete two-dimensional table (see
Figure 3.4), where q1, …, q8 are the internal entries, q9, …, q11 are the row totals and q12, …, q14
are the column totals.

Pag. 57

A

30

10

10

 B C D

25

30 60 15

 0

 5

15 20

2510

10

(male, young)

(male, middle)

(female, young)

(female, middle)

Figure 3.4. An incomplete two-dimensional table

The basis of {V1, …, V14} is formed by the following fifteen elementary categories:

X1 = {(M, young, A)} X2 = {(M, young, B)}
X3 = {(M, young, C)} X4 = {(M, young, D)}
X5 = {(M, middle, A)} X6 = {(M, middle, B)}
X7 = {(M, middle, C)} X8 = {(M, middle, D)}
X9 = {(F, young, A)} X10 = {(F, young, B)}
X11 = {(F, young, C)} X12 = {(F, young, D)}
X13 = {(F, middle, A)} X14 = {(F, middle, B)}
X15 = {(F, middle, C)}

and system (1.1) reads

=+++
=+++
=+++
=+++

=+++
=+++

========

15
60
30
25

25
30

10,20,15,10,10,10,5,0

151173

141062

13951

1211109

8765

4321

151413129864

xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

xxxxxxxx

 (3.6)

Using standard linear-programming methods, we find that each variable xj is determined:

 x1 = 0 x2 = 30 x3 = 0 x4 = 0

x5 = 5 x6 = 5 x7 = 5 x8 = 10
x9 = 10 x10 = 5 x11 = 0 x12 = 10

 x13 = 15 x14 = 20 x15 = 10

The set of these fifteen equalities is the reduced form of system (1.1), and its normal form is

 x0 = 0 x2 = 30 x5 = 5 x6 = 5 x7 = 5 x8 = 10
 x9 = 10 x10 = 5 x12 = 10 x13 = 15 x14 = 20 x15 = 10

Pag. 58

where x0 stands for the total of SALARY for the category

 X0
 (M, young, A)
 (M, young, C)
 (M, young, D)
 (F, young, C)

It follows that the total for a category K is evaluable if and only if K – X0 is the union of zero or
more categories from {X2, X5, X6, X7, X8, X9, X10, X12, X13, X14, X15}.

3.6 Management of the normal form
In our Answering Procedure of Section 3.4, at Step 3, when the posterior model is constructed, it
should be reduced in normal form because it becomes the next prior model if Step 5 is executed.
This also allows to test the evaluability of each sensitive category (Step 4) in cubic time. In this
section, we present a procedure for getting the posterior model in reduced form (Step 3). We start
with the prior model, which is assumed to be in reduced form and to consist of system (3.3) with the
interpretation of its variables given by the partition X = {X0, X1, …, Xm} of Ω where the categories
X1, …, Xm are partitioned into the two groups {Xj: j ∈ L} and {Xj: j ∈ M} as shown in Figure 3.4.
Let

 J = {j ∈ L∪M: Xj ⊆ K} J' = {j ∈ L∪M: Xj ∩ K ≠ Ø and Xj – K ≠ Ø}

Let p = |J'| and, if p > 0, let J' = {j1, …, jp}. The procedure first constructs the semantic part of the
posterior model using the partition X' = {X′0, X′1, …, X′m, …, X′m+p+1} of Ω' = Ω ∪ K defined as
follows (see Figure 3.6):

 If p > 0, then set X′m+h := Xjh – K and X′jh := K ∩ Xjh for h = 1, …, p.
 If Ω' ≠ Ω, then set Cm+p+1 := K – Ω

 X'

K

K – Ω

 j

 X 0

 j L∈ j M ∈ = 0
X

 j

 X' 0

 j L∈ j M ∈ = 0

Ω'

 X j h' X'jh'

 X' m+h'

X' m+p+ 1

X'jh

 X'm+h
 X j h

Ω

Figure 3.5. Updating the basis of a normal model

Without loss of generality, we assume that J' ≠ Ø and Ω' ≠ Ω. For h = 1, …, p, associate with the
variable xjh the category Xjh from X', and introduce the variable xm+h and associate with xm+h the

category Xm+h from X'. Next, introduce the variable xm+p+1 and associate with xm+p+1 the category

Pag. 59

Xm+p+1 from X'. The equation system of the posterior model is then obtained from system (3.3) as
follows. Re-write system (3.3) as

…=∑ =
∈=

=

∈),,1(
)(

00

niwxg
Ljcx

x

Mj ijij

jj

For h = 1, …, p, replace each occurrence of the variable xjh by the expression xjh + xm+h. Finally,
since the total for the category X0 ∩ K is always zero, add the equation

 ∑j∈J∩L cj + ∑j∈J∩M xj + ∑h=1,…,p xjh + xm+p+1 = q

which we re-write as

 ∑j∈J∩M xj + ∑h=1,…,p xjh + xm+p+1 = q'

where q' = q – ∑j∈J∩L cj .

Thus, the equation system of the posterior model reads

∑ ∑ ′=++
…=∑ ∑ =++

∩′∈=+

′−∈=
=

∩∈ …= ++

′−∈ ∩′∈ +

+

MJj ph pmjj

JMj MJj ihmjijjij

hjhmj

jj

qxxx
niwxxgxg
LJjcxx

JLjcx
x

h

h hh

hh

,,1 1

0

),,1()(
)(

)(
0

 (3.7)

At this point, in order to get a normal form of the posterior model, we need a reduced form of
system (3.7), that is, to find its determined variables and its redundant equations. Preliminarily, note
that x0 is a null variable of system (3.7) and that each xj, j ∈ L –J', is a nonnull determined variable
of system (3.7). Moreover, for each jh ∈ J' ∩ L, the variables xjh and xm+h appear only in the
equation xjh + xm+h = cjh and are undetermined since the feasibility range for both is [0, cjh]. Let us
consider the remaining variables and their equation system

∑ ∑ ′=++
…=∑ ∑ =++

∩∈ …= ++

′−∈ ∩′∈ +

MJj ph pmjj

JMj MJj ihmjijjij

qxxx
niwxxgxg

h

h hh

,,1 1

),,1()((3.8)

Finding a determined variable or a redundant equation in system (3.8) can be done using linear-
programming methods. We can do better by exploiting Corollaries 2.3 and 2.4. Thus, if we first find
the set of null variables of system (3.8) using a standard linear-programming algorithm, then we can
decide in cubic time if a nonnull variable in equation system (3.8) is determined or if an equation in
equation system (3.8) is redundant. Indeed, the search for null variables can be restricted to the
variables corresponding to categories for which the summary table gives a zero total; analogously,
the search for nonnull determined variables can be restricted to the variables corresponding to
categories for which the summary table gives a nonzero total. Suppose that we have already found a
reduced form of system (3.8), say

Pag. 60

′=′′
′∈=

′∈=

wxG
)(
)(0

Ljcx
Zjx

jj

j

 (3.9)

Finally, we are in a position to get a normal form of the posterior model. Its equation system is
obtained by combining system (3.7) and system (3.9):

x0 = 0
x j = cj (j ∈(L − ′ J) ∪ ′ L)

x jh + xm+ h = c jh (jh ∈ ′ J ∩ L)
′ G ′ x = ′ w

where the variable x0 has now associated the category

 (∪j∈Z′ Xj) ∪ X0 .

Example 3.2 (continued). Consider again the posterior model constructed when the sum-query Q5 is
processed.

=+
=+

=++
=++

=+

5.1
5.6
29
18

24

65

64

431

532

21

xx
xx

xxx
xxx

xx

X1 = {(M, young)} X2 = {(M, middle)} X3 = {(M, old)}
X4 = { (F, young)} X5 = {(F, middle)} X6 = {(F, old)}

Since X6 is the only category for which the summary table on SALARY gives a zero total, the only
candidate for a null variable is the variable x6. Using the simplex method, we find that the
maximum value of x6 is 1.5 so that x6 is not a null variable. At this point, the nonnull determined
variables are found by exploiting Corollary 2.3. The variables that are candidates for nonnull
determined variables are x1, …, x5, and one finds that the only determined variables are x1 and x2
with values 15 and 9, respectively. For example, the characteristic vector

 [1 0 0 0 0 0]

of the singleton {1} can be written as a linear combination of the rows of the coefficient matrix of
the equation system above

1 1 0 0 0 0
0 1 1 0 1 0
1 0 1 1 0 0
0 0 0 1 0 1
0 0 0 0 1 1

Pag. 61

with coefficients equal to

1
2

 for the odd rows and –

1
2

 for the even rows. So, x1 is determined with

value

1
2

 (24 – 18 + 29 – 6.5 + 1.5) = 15.

After deleting the two determined variables and adding the two equations x1 = 15 and x2 = 9, we
obtain the following equation system

x1 = 15, x2 =9
x3 + x5 =9

x3 + x4 = 14
x4 + x6 =6.5
x5 + x6 = 1.5

At this point, the redundant equations are found by exploiting Corollary 2.4. If the equation x3 + x5
= 9 is first examined, then it comes out to be redundant and none of the remaining equations is
redundant. Explicitly, for the left-hand side and the right-hand side of the equation x3 + x5 = 9 one
has

 x3 + x5 = (x3 + x4) – (x4 + x6) + (x5 + x6)
 9 = (14) – (6.5) + (1.5)

Thus, we have obtained the following reduced form of the equation system of the posterior model:

x1 = 15, x2 =9
x3 + x4 = 14
x4 + x6 =6.5
x5 + x6 = 1.5

Since there are no null variables, this is also the equation system of the normal form of the posterior
model.

Pag. 62

Chapter 4

Finding The Invariant Edges In An Edge Weighted Graph

4.1. Introduction
We saw in Section 2.2 and in the Answering Procedure given in Section 3.5, that testing the
evaluability of a query needs to resort to the linear-programming methods only to solve the
following two problems:

(P1) given the equation system of an arbitrary information model, find the set of its null
variables;

(P2) given the equation system of an information model in normal form, find the feasibility range
for a given sum of variables.

However, some special instances of those problems can be very efficiently solved. For example, if
the information model represents a “decomposable” set of marginals of an unknown
multidimensional table, then the feasibility range for a single variable (corresponding to a cell
entry) can be computed using closed formulas [20]. Also we see that the problem

(P3) given the dictionary matrix H and a nonempty subset A of column of H find a nonempty
algebraic subset of A

is an NP-Complete problem. We will see in the next three Chapters that the three problems can be
efficiently solved for a graphical information model, that is, for an information model where the
dictionary matrix H can be viewed as the incidence matrix of a graph G. Note that this is the case
whenever the information model represents the contents of internal and marginal cells of a (possibly
incomplete) two-dimensional table (see Section 4.6 and Example 4.3).

Also it is possible to chose a set V={q1, q2 ,…, qn} of materialised views such that the dictionary
matrix of V is the incidence matrix of a graph G.
The choice of such V can be possible by limiting the amount of overlapping between the targets of
the views in V. Let S be the set of categorical variables of V. Let Vj be the extension of the target of
the query qj to S. Let X={X1, …, Xm} be the classification system of V. If P is a subset of {1, …, n}
then we say that the set {V1, …, Vn} has overlapping of order r if for any P such that |P|>r we have
∩i∈P Vi=∅. Suppose the set {V1, …, Vn-1} has an overlapping of order r and suppose that we want to
add query (or view) qn to V. Then to enforce that {V1, …, Vn} has overlapping of order r, simply
check that for all subsets P of {1, …, n} with |P|>r, we have ∩i∈P Vi=∅. If this not the case we
discard qn. Now if we take r=2, then the dictionary matrix H of V is the incidence matrix of a
graph where loops are allowed.
Finally suppose the set {V1,…,Vn-1} has an overlapping of order two. Let H be the dictionary matrix
of V. Then H is the node-edge incidence matrix of a graph G where loops are allowed. Given a new
query qn to ensure that {V1,…,Vn} has an overlapping of order two simply check that Vn has a non
empty intersection only with element Xj where j is a loop of G. This can be done by checking that
Vn∩Xj is empty for all j where j is not a loop of G.

Example. A given database consists in a relation R that reports the sales of products and country.
The schema of R in this example is { sales, product, country } where sales is the response
variable of nonnegative real type. Suppose we have the following materialised views

Pag. 63

q1 : select sum (sales)
from R
where product in (”wine” ,”beer”)

q2 : select sum (sales)

from R
where product in (”wine” ,”liquor”)

q3 : select sum (sales)

from R
where product =”wine” and country =”Italy”

q4 : select sum (sales)

from R
where product in (”beer” ,”liquor”)

and let {V1, V2, V3, V4} be the target of each query. The set {V1, V2, V3} has an overlapping of order
three since V1∩V2∩V3≠∅ . On the other hand {V1, V2, V4} has an overlapping of order two and its
dictionary matrix is the incidence matrix of a graph.

As of problem (P1) if G is bipartite, then Gusfield [27] proved that, given a nonnegative solution of
system (1.1), the set of null variables can be found in strongly linear time [27]. In this Chapter we
will prove that the same holds for an arbitrary graph. We also see that the problem of finding all the
determined variables of system (1.1) can be solved in time linear in the size of system (1.1). Finally
in section 4.7, we also solve problem P1 in the case that the variables of system (1,1) take their
values from a commutative (abelian) group.
As for the problem P2, we will prove in the Chapter 5 that can be efficiently solved if the
information model is graphical. Finally problem P3 is solved when H is the incidence matrix of a
graph in Chapter 6.

Let G = (V, E) be a graph without isolated vertices (where self-loops and parallel edges may exist),
and let w = (w(e))e∈E be a vector of nonnegative reals. The pair Γ = (G, w) is referred to as an
edge-weighted graph (an EWG, for short). Let A be the incidence matrix of G and let b = (b(v))v∈V
be the vector of nonnegative reals such that, for each vertex v of G, b(v) equals the sum of the
weights of the edges incident to v. Consider the following system of linear equations

 A x = b (4.1)

For every edge e of G, let L[x(e)] and U[x(e)] denote the minimum and the maximum of the
variable x(e) over the nonnegative solutions of equation system (4.1), respectively. An edge e of G
is an invariant edge of Γ if L[x(e)] = U[x(e)]. Thus, an edge e of G is an invariant edge of Γ if and
only if x(e) = w(e) for every nonnegative solution of equation system (4.1). The following two
examples show two EWGs which have all and no invariant edges, respectively.

Example 4.1. Consider the EWG Γ = (G, w) shown in Figure 4.1 where α, β and γ are any positive
reals. By making use of standard algebraic methods, one finds there is no nonnegative solution of
equation system (4.1) other than w. Therefore, each edge of G is an invariant edge of Γ.

Pag. 64

0

0

0

 α

 β

γ
1

2 3

45

Figure 4.1

Example 4.2. Consider the EWG Γ = (G, w) shown in Figure 4.2.

1

2 3
1

1

00

Figure 4.2

The general expression of a nonnegative solution of equation system (4.1) is

 x(1, 1) = 1 – 2λ x(1, 2) = x(1, 3) = λ x(2, 3) = 1 – λ

where the parameter λ ranges from 0 to 1/2. Therefore, one has

 L[x(1, 1)] = 0 U[x(1, 1)] = 1
 L[x(1, 2)] = L[x(1, 3)] = 0 U[x(1, 2)] = U[x(1, 3)] = 1/2
 L[x(2, 3)] = 1/2 U[x(2, 3)] = 1

and, hence, no edge of G is an invariant edge of Γ.

The problem addressed in this Chapter consists in finding the set of invariant edges of an arbitrary
EWG. The following obvious fact allows us to limit our considerations to EWGs with underlying
simple graphs (i.e., graphs without parallel edges).

Fact 4.1. Let Γ = (G, w) be an EWG where G = (V, E) is a nonsimple graph. Let S be a set of two or
more parallel edges and let eo be an arbitrarily chosen element of S. Let G' = (V, E') be the graph
with edge set E' = (E–S)∪{eo}. Consider the EWG Γ' = (G', w') where w' is defined as follows

 ′ w (e) =
w(e) e ∉S
w(′ e)

′ e ∈S
∑ e = e0

Then, an edge not in S is an invariant edge of Γ if and only if it is an invariant edge of Γ', and an
edge in S is an invariant edge of Γ if and only if w'(eo) = 0 and eo is an invariant edge of Γ'.

Pag. 65

Here we present a linear-time algorithm which finds the set of invariant edges of an arbitrary EWG.

4.2. Background
Let G = (V, E) be a simple graph with vertex-edge incidence matrix A. For any vector x =
(x(e))e∈E, the support of x is the set S = {e∈E: x(e) ≠ 0}, and the signed support of x is the ordered
set pair (S+, S–), where S+ = {e∈E: x(e) > 0} and S– = {e∈E: x(e) < 0}; moreover, the set E–S is
called the zero set of x. The non-zero solutions of the homogeneous equation system A y = 0 are
referred to as circulations in G and the linear space of the solutions of the homogeneous equation
system A y = 0 is referred to as the circulation space. Thus, a nonempty subset S of E corresponds
to a set of columns of A that are linearly dependent (over the field of reals) if and only if S contains
the support of a circulation in G. A minimal circulation in G is a circulation in G with inclusion-
minimal support. The following is a well-known result of linear algebra.

Proposition 4.1 (e.g., see page 107 in [6]). Let S and (S+, S–) be the support and the signed support
of a circulation in G, respectively. For each edge e in S, there is a minimal circulation in G with
support C and signed support (C+, C–) such that e is in C, C+ ⊆ S+ and C– ⊆ S–.

The set of supports of minimal circulations in G can be viewed as the family of circuits of a matroid
[60], we denote by M(G), whose rank (i.e., the rank of A) is given by |V|–q where q is the number
of connected components of G that are bipartite (in that they contain no odd cycles) (see Theorem 1,
page 421 in [19], or [57]). Explicitly, a subset of E is a circuit of M(G) if and only if it is the edge
set of either an even simple cycle or a pair of two edge-disjoint odd simple cycles that either have
exactly one vertex in common or are vertex-disjoint and are connected by a simple path (see Figure
4.3) [15].

odd cycleodd cycle

 (simple path)

odd cycleodd cycle

Figure 4.3

Let Z be a (proper or improper) subset of E. We say that a circuit of M(G) is Z-traversable if it is
the support of a (minimal) circulation whose signed support (C+, C–) is such that Z∩C– = Ø.

Consider now the vectors that are linear combinations of rows of A. The inclusion-minimal
supports of these vectors are the co-circuits of M(G); that is, they are minimal edge sets whose
removal decreases the rank of M(G) [60]. Moreover, an edge e of G is a co-loop of M(G) if the
singleton {e} is a co-circuit of M(G). In other words, an edge e of G is a co-loop of M(G) if and

Pag. 66

only if the incidence vector of {e} is a linear combination of rows of A or, equivalently, if and only
if e is not in any circuit of M(G) [60].

4.3. Invariant Edges
In this section, we state a few characteristic properties of invariant edges of an arbitrary EWG
which will be used later on. We need some preliminary definitions and results.
Let Γ = (G, w) be an EWG with G = (V, E) and let Z be the zero set of w. A circulation in G with
signed support (S+, S–) is said to be legal in Γ if Z∩S– = Ø. Accordingly, a circuit of M(G) is Z-
traversable if and only if it is the support of a (minimal) circulation in G which is legal in Γ. It
should be noted that, if the weights of the edges of G are all positive, then Z is empty so that each
circulation in G is legal in Γ.

Theorem 4.1. Let Γ = (G, w) be an EWG. An edge of G is not an invariant edge of Γ if and only if
it belongs to the support of a circulation in G which is legal in Γ.
Proof. (“only if”) Let e be an edge of G that is not an invariant edge of Γ. Then, there exists a
nonnegative solution x of eq. (1) with x(e) ≠ w(e). The vector y = x–w is then a circulation in G. Let
S and (S+, S–) be the support and the signed support of y, respectively, and let Z be the zero set of
w. Then e is in S and, since y(e') = x(e') ≥ 0 for each e' in Z, one has Z∩S– = Ø; that is, e belongs to
the support of a circulation which is legal in Γ.
(“if”) Let y be a legal circulation with support S and signed support (S+, S–), and let e be in S.
Consider the solution x = w+y of equation system (1). If x is nonnegative everywhere, then the
statement follows from the fact that e in S which implies x(e) ≠ w(e). Otherwise, let

 S' = {e': x(e') < 0} and λ = min {–w(e')/y(e'): e' ∈ S'}.

Since S' is a subset of S– and y is a legal circulation, λ is positive. Then the vector y' = λ y is a
circulation in G having the same support and the same signed support as y. Consider the solution x'
= w+y' of equation system (1). It is easily seen that x' is nonnegative everywhere since, for each e'
not in S', then one has trivially x'(e') ≥ 0 and, for each e' in S', one has

 x'(e') = w(e') + λ y(e') = –y(e') (–w(e')/y(e') – λ) ≥ 0.

Finally, since e is in the support S of y, one has

 x'(e) = w(e) + λ y(e) ≠ w(e),

which proves the statement.

Theorem 4.2. Let Γ = (G, w) be an EWG and let Z be the zero set of w. An edge of G is not an
invariant edge of Γ if and only if it belongs to some Z-traversable circuit of M(G).
Proof. (“if”) It follows from the “if” part of Theorem 4.1.
(“only if”) If e is not an invariant edge of Γ, then by the “only-if” part of Theorem 4.1 there is a
circulation in G with support S and signed support (S+, S–) such that e is in S and Z∩S– = Ø. But,
by Proposition 4.1, there is a minimal circulation in G such that its support contains e and its signed
support (C+, C–) is such that C– ⊆ S–. Therefore, one has Z∩C– ⊆ Z∩S– = Ø which proves the
statement.

Example 4.1 (continued). The zero set of w is Z = {(2, 3), (2, 5), (4, 5)}. The minimal circulations in
G are summarized in Figure 4.4 by taking λ to be any nonzero real. So, M(G) contains one circuit
which is not Z-traversable. By Theorem 4.2, each edge of G is an invariant edge of Γ.

Pag. 67

−λ −λ

0

 λ

 λ

0

1

2 3

45

Figure 4.4

Example 4.2 (continued). The zero set of w is Z = {(1, 2), (1, 3)}. The minimal circulations in G are
summarized in Figure 4.5 by taking λ to be any nonzero real. So, M(G) contains one circuit which
is Z-traversable. By Theorem 4.2, no edge of G is an invariant edge of Γ.

−2λ

λ

1

2 3

λ

−λ

Figure 4.5

Note that, if the zero set Z of w is empty then, by Theorem 4.2, an edge of G is an invariant edge of
Γ if and only if it is not in any circuit of M(G), that is, if and only if it is a co-loop of M(G). We
now prove that the same holds in a more general case. In what follows, by the kernel of Γ [45] we
mean the intersection of Z with the set of invariant edges of Γ.

Lemma 4.1. Let Γ = (G, w) be an EWG whose kernel is empty. An edge of G is an invariant edge
of Γ if and only if it is a co-loop of M(G).
Proof. (“if”) If an edge of G is a co-loop of M(G), then it is an invariant edge of Γ by the “only-if”
part of Theorem 4.2.
(“only if”) Let e be an invariant edge of Γ. Suppose by contradiction that e is in some circuit of
M(G). Then, as is shown below, e should belong to the support of a legal circulation in Γ which
contradicts Theorem 4.1. To show that, suppose that e is in the circuit Co of M(G). By the “only-if”
part of Theorem 4.2, Co cannot be Z-traversable, where Z is the zero set of w. Thus, if co is any
minimal circulation in G with support Co and signed support (Co+, Co–), one has Z∩Co– ≠ Ø. Let
Z∩Co– = {e1, …, ep}. Since the kernel of Γ is empty, no edge in Z is an invariant edge of Γ. Then,
by the “only-if” part of Theorem 4.1, for each ei, 1 ≤ i ≤ p, there is a legal circulation yi of Γ such
that, if Si is the support of yi, ei is in Si; moreover, if (Si+, Si–) is the signed support of yi, then
yi(ei) > 0 since Z∩Si– = Ø. Consider now the circulation

 ci = [–co(ei)/yi(ei)] yi

Pag. 68

Since co(ei) < 0 (recall that ei ∈Co–) and yi(ei) > 0, ci has the same support and the signed support
as yi, and hence is legal in Γ. Let

 y = co + ∑i=1,…,p ci .

Since the circulation space of A is a linear space, y is still a circulation in G. Let S and (S+, S–) be
the support and signed support of y, respectively. Finally, we now prove that (i) e is in S, and (ii) the
circulation y is legal in Γ.

Proof of (i). Since e is an invariant edge of Γ, by the “if” part of Theorem 4.2, e is in the support of
none of the legal circulations ci so that ci(e) = 0 for each i, 1 ≤ i ≤ p. Therefore, y(e) = co(e) and,
since e is in Co, one has that e is also in S.

Proof of (ii). In order to prove that the intersection of Z with S– is empty, we separately examine the
edges e1, …, ep in Z∩Co– and the edges in Z–Co–. For each i and j, 1 ≤ i, j ≤ p, cj(ei) ≥ 0 since
Z∩Sj– = Ø. Moreover, for each i, 1 ≤ i ≤ p, one has

 ci(ei) = –co(ei)

and hence

 y(ei) = co(ei) + ci(ei) + ∑j≠i cj(ei) = ∑j≠i cj(ei) ≥ 0.

Therefore, each ei is not in S–.

We now consider the edges in Z–Co–. If e' is such an edge, then co(e') ≥ 0. Moreover, since Z∩Si–
= Ø, 1 ≤ i ≤ p, one has ci(e') ≥ 0. Therefore

 y(e') = co(e') + ∑i=1,…,p ci(e') ≥ 0,

and, hence, e' is not in S–.

After proving (i) and (ii), by the “if” part of Theorem 4.1 one has that e is not an invariant edge of Γ
(contradiction).

As a consequence of Lemma 4.1, we obtain the following characterization of invariant edges of an
EWG.

Theorem 4.3. Let Γ = (G, w) be an EWG with kernel K. The set of invariant edges of Γ is the union
of K with the set of co-loops of M(G–K).
Proof. Let Γ' = (G', w') where G' = G–K, and let w' be the restriction of w to the edge set of G'. It is
clear that an edge of G is an invariant edge of Γ if and only if it either is in K or it is an invariant
edge of Γ'. On the other hand, the kernel of Γ' is empty so that, by Lemma 4.1, the invariant edges
of Γ' are exactly the co-loops of M(G').

By Theorem 4.3, the set of invariant edges of Γ = (G, w) can be found by first determining the
kernel K of Γ and, then, the set of co-loops of M(G–K). We shall solve the problem of the kernel of
an EWG in Section 4.5 and, in the next section, we shall give a linear algorithm for finding the set
of co-loops of the matroid on a graph.

Pag. 69

4.4. Finding The Co-Loop Set
Let G = (V, E) be a simple graph. Bearing in mind that a subset of E is a co-circuit of M(G) if and
only if it is a minimal edge set whose removal decreases the rank of M(G), one easily obtains the
following

Proposition 4.2 [15]. An edge of G is a co-loop of M(G) if and only if its removal creates one more
bipartite connected component.

Let e be a co-loop of M(G). The graph G–e has or has not one more connected component than G.
By Proposition 4.2, in the former case e must be a bridge, we call an algebraic bridge of G, and in
the latter case, as is shown below, e is an odd edge, by which we mean that e is common to all odd
cycles of G.

Lemma 4.2. An edge of a simple graph G is a co-loop of M(G) if and only if it is either an
algebraic bridge or an odd edge.
Proof. The statement is trivial if the graph is bipartite since, by Proposition 4.2, each co-loop of
M(G) is a bridge and vice versa. Consider now a graph G which is not bipartite. Without loss of
generality, we assume G is connected. It is sufficient to prove that a co-loop e of M(G) is not a
bridge if and only if it is an odd edge. If e is not a bridge, then, by Proposition 4.2, G–e is bipartite
and connected and, hence, every odd cycle of G must contain e; that is, e is an odd edge of G. On
the other hand, if e is an odd edge of G, then G–e is connected and contains no odd cycles so that,
by Proposition 4.2, e is a co-loop of M(G).

Example 4.1 (continued). The co-loops of M(G) are the two edges missing from the even simple
cycle supporting the minimal circulations shown in Figure 4.4. Both of them are odd edges.

Example 4.2 (continued). M(G) has no co-loops (see Figure 4.5).

Let G = (V, E) be a simple graph which without loss of generality we assume to be connected. We
first show that the problem of finding the set of co-loops of M(G) is polynomial; next, we shall give
a linear algorithm based on Lemma 4.2.
In [39, 46, 49] an O(|E|) algorithm is given to decide whether the incidence vector of a given subset
of E is orthogonal to the space of circulations in G. By applying that algorithm to each singleton,
one can determine the set of co-loops of M(G) in O(|E|2) time. In the next two subsections, we give
two linear algorithms for finding the algebraic bridges and the odd edges of G; so, by Lemma 4.2,
determining the whole set of co-loops of M(G) requires O(|E|) time.

4.4.1 Algebraic bridges
Let G = (V, E) be a connected simple graph, and let B be the set of bridges of G. Consider the tree T
= (N, A) whose nodes represent the connected components of G–B and whose arcs represent the
bridges of G. A node n of T is marked if the corresponding connected component of G–B is not
bipartite. If no node of T is marked, then G is bipartite and the bridges of G are all and the only
algebraic bridges. Otherwise, there is at least one marked node of T; then, arbitrarily choose a
marked node r of T and let Tr be the directed tree obtained by rooting T at r. For each node n of Tr,
n ≠ r, let par(n) be the parent of n in Tr. Of course, a bridge of G is algebraic if and only if the
(directed) arc <par(n), n> of Tr is such that the subtree of Tr rooted at n contains no marked nodes.
Thus, in order to get the algebraic bridges of G, it is sufficient to perform a postorder traversal of
Tr[1]: when node n is examined, n ≠ r, if n is marked then the edge of G corresponding to the arc
<par(n), n> is removed from B and the vertex par(n) is marked if it was unmarked. So, the ultimate

Pag. 70

value of B is exactly the set of algebraic edges of G. Now, since the construction of T and B and the
postorder traversal of Tr require O(|E|) time, we have

Theorem 4.4. The set of algebraic bridges of a connected simple graph can be found in time linear
in the number of its edges.

4.4.2 Odd edges
Let G = (V, E) be a connected simple graph. Trivially, if G is bipartite, then G contains no odd
edges. In the case that G is not bipartite, we shall show that the set of odd edges of G can be found
in O(|E|). To achieve this, we need the following technical lemmas, the first two of which refer to
general properties of the symmetric difference (⊕) of cycles.

Lemma 4.3 (see, e.g., [2]). The symmetric difference of two distinct nondisjoint cycles is a set of
edge-disjoint cycles.

Lemma 4.4. If the symmetric difference of two or more cycles contains an odd number of edges,
then the number of such cycles having odd lengths is odd.
Proof. It easily follows from the fact that, for every two sets C and C', |C⊕C'| is odd if and only if
|C| and |C'| have different parities.

Let T be the edge set of a spanning tree of G. For each back-edge e (i.e., e not in T), the set T∪{e}
contains exactly one simple cycle; such simple cycles, one for each back-edge, are called the
fundamental cycles of G with respect to T [54].

Lemma 4.5 (see, e.g., page 251 in [2]). Let T be the edge set of a spanning tree of a simple graph G.
Every cycle of G can be expressed as symmetric difference of fundamental cycles of G with respect
to T.

Lemma 4.6. Let G be a nonbipartite connected simple graph, and T a spanning tree of G. An edge
of G is an odd edge of G if and only if it is in all odd fundamental cycles with respect to T and in no
even fundamental cycle with respect to T.
Proof. (“if”) Let e be an edge of G that is in all odd fundamental cycles with respect to T and in no
even fundamental cycle with respect to T. Let C be any odd cycle. By Lemma 4.5, C can be
expressed as symmetric difference of fundamental cycles with respect to T and, by Lemma 4.4, the
number of odd fundamental cycles in its expression is odd so that, since e is in all of them and in no
even fundamental cycle with respect to T, e belongs to C.
(“only if”) Let e be an odd edge of G. Of course e is in all odd fundamental cycles with respect to T.
Suppose by contradiction there is an even fundamental cycle C' with respect to T that contains e.
Let C be an odd cycle containing e. By Lemma 4.3, C ⊕ C' contains an odd cycle, say C", because
the lengths of C and C' have different parities. So, since e is in both C and C', e is not in C" which
contradicts the hypothesis that e is in all odd cycles of G.

From a computational point of view, the fundamental cycles of G with respect to a given spanning
tree can be constructed using an O(|V|3) algorithm (see, e.g., Algorithm 8.10 in [54]). So, by Lemma
4.6 one can resort to that algorithm to find the set of odd edges of G in O(|V|3) time. However, we
shall use Lemma 4.6 to work out an algorithm which runs in O(|E|) time. It consists of two phases.

PHASE I. Arbitrarily choose a vertex r of G and perform a traversal of G with the depth-first search
(DFS) technique to produce

— the edge set T of a directed spanning tree of G,

Pag. 71

— the set B of back-edges that create odd fundamental cycles of G with respect to T,

— a vertex table which, for each vertex v, reports the following information items:

• the DFS number of v, denoted by n(v);
• a label, denoted by col(v), which is set to ‘white’ or ‘black’ depending on whether the length

of the path from r to v in the spanning tree is even or odd;
• if v ≠ r, the parent of v, denoted by par(v);
• if v ≠ r, the tree-edge <par(v), v>, denoted by arc(v).

PHASE II. First of all, join a back-edge to Odd if it is the unique element of B. Next, in order to
decide if a tree-edge e can be joined to Odd, compute

— the number of the even fundamental cycles that contain e, denoted by NEC[e], and
— the number of the odd fundamental cycles that contain e, denoted by NOC[e]

as follows. For each vertex u, let N(u) be the set of neighbours of u in G and let C(u) be the set of
children of u in T. Then, set (see Figure 4.6)

 NEC[arc(u)] := |Peven(u)| + ∑v∈C(u) NEC[arc(v)] – |Seven(u)|. (4.2)

where

 Peven(u) = {v ∈ N(u): par(u) ≠ v and col(v) ≠ col(u) and n(v) < n(u)}

 Seven(u) = {v ∈ N(u): par(v) ≠ u and col(v) ≠ col(u) and n(v) > n(u)},

and

 NOC[arc(u)] := |Podd(u)| + ∑v∈C(u) NOC[arc(v)] – |Sodd(u)|. (4.3)

where

 Podd(u) = {v ∈ N(u): par(u) ≠ v and col(v) = col(u) and n(v) < n(u)}

 Sodd(u) = {v ∈ N(u): par(v) ≠ u and col(v) = col(u) and n(v) > n(u)}.

Pag. 72

u

r

arc(u)

arc(v)

v

Figure 4.6

After calculating the quantities NEC[e] and NOC[e] for each edge e in T, determine the set of odd
edges, denoted by Odd, as follows (see Lemma 4.6): for each edge e in T, join e to Odd if NEC[e] =
0 and NOC[e] = |B|.

The following algorithm details the steps of Phase II.

ALGORITHM 4.1

Input: A nonbipartite, connected simple graph G = (V, E), a vertex r of G, T, B and the vertex table
of G.

Output: The set Odd of odd edges of G.

(1) Set Odd := Ø. Set k := |B|. If k = 1, then Odd := Odd∪B.
 For each edge e in T, set NEC[e] := NOC[e] := 0.

(2) For each child u of r in T, TRAVERSE (G, u).
(3) For each edge e in T, if NEC[e] = 0 and NOC[e] = k then add e to Odd.

Procedure TRAVERSE (G, u)
For each neighbour v of u, do:

 begin
 if v is a child of u then do:

 begin
 TRAVERSE (G, v);
 NEC[arc(u)] := NEC[arc(u)] + NEC[arc(v)];
 NOC[arc(u)] := NOC[arc(u)] + NOC[arc(v)]
 end;

Pag. 73

 otherwise, if v is not the parent of u then do:

 Case 1. if n(v) > n(u) and col(v) ≠ col(u) then set
NEC[arc(u)] := NEC[arc(u)] – 1;

 Case 2. if n(v) > n(u) and col(v) = col(u) then set
 NOC[arc(u)] := NOC[arc(u)] – 1;

 Case 3. if n(v) < n(u) and col(v) ≠ col(u) then set
 NEC[arc(u)] := NEC[arc(u)] + 1;

 Case 4. if n(v) < n(u) and col(v) = col(u) then set
 NOC[arc(u)] := NOC[arc(u)] + 1

 end

Theorem 4.5. Let G be a nonbipartite, connected simple graph. The value of Odd computed by
Algorithm 4.1 with input G and vertex r is exactly the set of odd edges of G.

Proof. It is sufficient to prove that the quantities NEC[e] and NOC[e], for each tree-edge e, equal
the number of even fundamental cycles containing e and the number of odd fundamental cycles
containing e, respectively. The statement is proven by structural induction.

BASIS. Assume that u is a leaf of T. Then, u has no children so that, if v is a neighbour of u then v
must be an ancestor of u. If v = u then the self-loop (u, u) contributes to neither NEC[arc(u)] nor
NOC[arc(u)]. If v is a proper ancestor of the parent of u, then n(v) < n(u) and the back-edge (u, v)
correctly adds 1 to either NEC[arc(u)] or NOC[arc(u)].

INDUCTIVE STEP. Let u be not a leaf of T and assume that statement holds for each one of the
children of u. Thus, if v is a child of u, then values of both NEC[arc(v)] and NOC[arc(v)] are right.
It is then easily seen that, by formulae (2) and (3), the statement also holds for u.

From the complexity-theoretic point of view, it is easily seen that the time of Algorithm 4.1 is
dominated by the time required by the DFS traversal and, hence, is O(|E|). So, by Theorem 4.5 one
has

Corollary 4.1. Let G = (V, E) be a nonbipartite, connected simple graph. The set of odd edges of G
can be found in O(|E|) time.

4.5. Finding The Kernel
Let Γ = (G, w) be an EWG with G = (V, E) and kernel K. If the zero set Z of w is empty, then K is
empty too and we are done. Assume that Z is not empty. If G is bipartite, Gusfield [27] proved that
K equals the set of directed edges joining strongly connected components of the mixed graph G(Z)
obtained from G by directing all the edges in Z from one side of the bipartition to the other one so
that it can be computed in time linear in the size of G. In this section we show that, even in the case
that G is not bipartite, the kernel of Γ can be computed in time linear in the size of G.
With Γ we associate a bipartite EWG Γ' = (G', w') we call a bipartite EWG associated with Γ. The
graph G' = (V', E') is constructed as follows. Let B be a maximal bipartite partial graph of G and let
{V1, V2} be a bipartition of V such that each edge of B has one end in V1 and the other end in V2.

Pag. 74

Let V be a “copy” of V, that is, V ∩V = Ø and |V | = |V|. If v is a vertex of G, then by v we denote
the copy of v. The vertex set of G' is taken to be V' = V∪V , and the edge set of G' is taken to be

 E' = ∪e∈E f(e)

where f is function defined on E as follows:

— if e is a self-loop, say (v, v), then f(e) = {(v, v)};

— if e = (u, v) is an edge of B then f(e) = {(u, v), (u , v)};

— if e = (u, v) is neither a self-loop nor an edge of B then f(e) = {(u, v), (u , v)}.

The set f(e) will be referred to as the image of e in G'. Let V'1 = V1∪V 2 and V'2 = V 1 ∪V2, where V i
= {v : v ∈ Vi}, i = 1, 2. The graph G' is bipartite and the partition {V'1, V'2} of V' is such that each
edge of G' has one end in V'1 and the other end in V'2. Furthermore, G' is connected if and only if G
is not bipartite. Finally, to each edge e' of G' we assign the weight w'(e') = w(e) where e is the edge
of G for which e' ∈ f(e). Let A' be the incidence matrix of G' and let b' = (b'(v'))v'∈V' where b'(v')
equals the sum of the weights w'(e') of the edges of G' incident to v'. Consider the equation system

 A' x' = b' (4.4)

For every edge e' of G', let L[x'(e')] and U[x'(e')] denote the minimum and the maximum of the
variable x'(e') over the nonnegative solutions of equation system (4.4), respectively. Moreover, for
every edge e of G, let L[f(e)] and U[f(e)] denote the minimum and the maximum of the expression
∑e'∈f(e) x'(e') over the nonnegative solutions of equation system (4.4), respectively. First of all,
observe that, if x' is a (nonnegative) solution of equation system (4.4), then a (nonnegative) solution
x" of equation system (4.4) can be obtained by setting for each edge e' of G'

 x"(e') = x'(e') if {e'} is the image of a self-loop of G

and

 x"(e') = x'(e") if {e', e"} is the image of an edge of G that is not a self-loop.

It follows that, if {e', e"} is the image of an edge of G that is a not a self-loop, then

 L[x'(e')] = L[x'(e")] and U[x'(e')] = U[x'(e")] . (4.5)

Second, if x is a (nonnegative) solution of equation system (4.1), then a (nonnegative) solution x' of
equation system (4.4) can be obtained by setting for each edge e' of G'

 x'(e') = x(e) where e is the edge of G whose image f(e) contains e'.

On the other hand, if x' is a (nonnegative) solution of equation system (4.4), then a (nonnegative)
solution x of equation system (4.1) can be obtained by setting for each edge e of G

 x(e) = [∑e'∈f(e) x'(e')]/|f(e)|.

Therefore, one has

 L[x(e)] = (1/|f(e)|) L[f(e)] and U[x(e)] = (1/|f(e)|) U[f(e)] . (4.6)

Pag. 75

Example 4.2 (continued). By choosing as maximal bipartite partial graph of G the graph shown in
Figure 4.7

1

2 3

1V

2V

Figure 4.7

we associate with Γ the bipartite EWG Γ' = (G', w') shown in Figure 4.8.

1
V'

2V'

1

2 3

1 1 1

0 00

03 2

1

Figure 4.8

The general expression of a nonnegative solution of equation system (4.4) is

 x'(1, 2) = x'(1 , 3) = µ
 x'(1, 3) = x'(1 , 2) = ν
 x'(1, 1) = 1 – µ – ν
 x'(2, 3) = 1 – µ
 x'(2 , 3) = 1 – ν

where µ and ν are bounded as shown in Figure 4.9:

ν

µ

1

1

Figure 4.9

At this point, it is easy to check formulae (4.5) and (4.6).

We now state some technical results to relate the kernels of Γ and Γ'.

Lemma 4.7. Let Γ = (G, w) be an EWG and Γ' = (G', w') a bipartite EWG associated with Γ. An
edge e of G is an invariant edge of Γ if and only if L[f(e)] = U[f(e)], where f(e) is the image of e in
G'.

Pag. 76

Proof. By formula (4.6).

Lemma 4.8. Let Γ = (G, w) be an EWG and Γ' = (G', w') a bipartite EWG associated with Γ. An
edge e of G belongs to the kernel of Γ if and only if its image in G' is contained in the kernel of Γ'.

Proof. If e is a self-loop of G then the statement immediately follows from formula (4.6) and
Lemma 4.7. We now prove the statement in the case that e is not a self-loop and f(e) = {e', e"}.

(if) If both e' and e" belongs to the kernel of Γ' then x'(e') = x'(e") = 0 for every solution x' of
equation system (4.4). Therefore, L[x'(e')+x'(e")] = U[x'(e')+x'(e")] = 0 and the statement follows
from formula (4.6).

(only if) If e belongs to the kernel of Γ then, by formula (4.6), one has

 x'(e')+x'(e") = 0

for every nonnegative solution x' of equation system (4.4). By the nonnegativity of x', x'(e') = x'(e")
= 0, which proves that both e' and e" belong to the kernel of Γ'.

Corollary 4.2. Let Γ = (G, w) be an EWG and Γ' = (G', w') a bipartite EWG associated with Γ'. An
edge of G belongs to the kernel of Γ if and only if an element of its image in G' belongs to the
kernel of Γ'.

Proof. By Lemma 4.8 and formula (4.5).

Example 4.2 (continued). The zero set of w' is Z' = {(1, 2), (1, 3), (1 , 2), (1 , 3)}. The mixed graph
G'(Z') is strongly connected (see Figure 4.10).

1
V'

2V'

1

2 3

3 2

1

Figure 4.10

So, the kernel of Γ' is empty. By Corollary 4.2, the kernel of Γ is empty.

Theorem 4.6. The kernel of an EWG can be found in time linear in the size of G.

Proof. Let Γ = (G, w) be an EWG and Γ' = (G', w') a bipartite EWG associated with Γ. If G is
bipartite, then the statement was proven by Gusfield [27]. Otherwise, since G' is bipartite, the kernel
K' of Γ' can be found in time linear in the size of G' and, hence, of G. So, it is sufficient to prove
that both constructing G' and determining K from K' take a linear time. In order to construct G', we
perform a depth-first-search traversal of G, which allows us to find both a maximal bipartite partial
graph B of G and the nontree edges that create odd cycles when added to B. When an edge e' of G'
is created, we get e' to point to the edge e of G for which e' ∈ f(e). Finally, by Corollary 4.2, the set
K can be obtained as follows. Initially, each edge e of G is unmarked. For each element e' of K', if
the edge e of G that e' points to is unmarked, then e is marked and added to K.

Pag. 77

4.6. Security Of Statistical Data
In the security analysis of statistical data [8, 27, 29, 30, 33, 34, 35, 36, 45, 46, 49], EWGs and, more
in general, weighted hypergraphs can be used to control the amount of information that is implicitly
released when statistical data are made public, in order to avoid disclosure of confidential data. We
now illustrate this application by discussing a typical case. Suppose that we are given a data set {bi:
i ∈ I}, where bi is the value of a confidential variable b of nonnegative real type (e.g., salary) for
individual i in the population I. The sum of values of b over a subset I' of I is called sensitive if I'
contains exactly one individual. Now, given a statistical summary σ = {b(v): v ∈ V}, where b(v) is
the sum of b over a subset I(v) of I containing at least two people, for each v in V, the problem that
naturally arises consists in checking that no sensitive sum is implicitly released. We now present a
graph-theoretic approach to this problem. Let Iσ = ∪v∈V I(v), we call the set of individuals covered
by σ. The basic partition of Iσ is the coarsest partition of Iσ such that each I(v) can be obtained as
the union of one or more classes of the partition. A class J of the basic partition of Iσ will be
indexed by the set e = {v ∈ V: J ⊆ I(v)}. If E is the index set of the classes of the basic partition of
Iσ, the pair G = (V, E) defines a hypergraph where hyperedge e is incident to vertex v if and only if
v belongs to e. Consider the weighted hypergraph Γ = (G, w) where, for each hyperedge e of G, w(e)
is given by the sum of the values of the variable b over the class J(e) of the basic partition of Iσ
indexed by e; that is,

 w(e) = ∑i∈J(e) bi .

Finally, a hyperedge e of G is marked if |J(e)| = 1. Then, no sensitive sum is implicitly released
given σ if and only if no invariant hyperedge of Γ is marked. If this is the case, the statistical
summary σ is said to be safe. Since the invariant edges of an EWG can be found in linear time, one
has that, if G is a graph, then one can decide whether σ is or is not safe in linear time too.

Example 4.3. Consider five individuals with salaries b1 = 2.0, b2 = 2.5, b3 = 3.8, b4 = 3.7 and b5 =
3.0. Suppose that the two sums b1 + b2 + b3 and b3 + b4 + b5 are made public. Let σ1 = {b1 + b2 +
b3, b3 + b4 + b5}. The set of individuals covered by σ1 is {1, …, 5} and its basic partition consists of
the three classes {1, 2}, {3} and {4, 5}. Thus, the weighted hypergraph Γ1 associated with σ1 is the
EWG shown in Figure 4.11, where the edge (1, 2) is marked.

4.5

3.8

6.7

1 2
∗

Figure 4.11

Since the set of invariant edges of Γ1 turns out to be empty, σ1 is safe. Next, suppose that the sum b1
+ b2 + b4 + b5 is also made public. Let σ2 = {b1 + b2 + b3, b3 + b4 + b5, b1 + b2 + b4 + b5}. Again,
the set of individuals covered by σ2 is {1, …, 5} and its basic partition consists of the three classes
{1, 2}, {3} and {4, 5}. The weighted hypergraph Γ2 associated with σ2 is the EWG shown in Figure
12, where the edge (1, 2) is marked.

Pag. 78

4.5

3.8

6.7

1 2

3

∗

Figure 4.12

Since each edge is an invariant edge of Γ2, σ2 is not safe (and the salary b3 is unprotected).

Let σ = {b(v): v ∈ V} be a statistical summary of the data set {bi: i ∈ I} and let Γ = (G, w) be the
associated weighted hypergraph. It is worth noting that, if v is a “leaf” of G, that is, if v belongs to
exactly one hyperedge e of G, then the class of the basic partition of Iσ indexed by E coincides with
I(v) so that w(e) = b(v); furthermore, the hyperedge e is definitely an invariant hyperedge of Γ and,
since |I(v)| > 1, it is not marked. As we are interested in checking the existence of marked invariant
hyperedges of Γ (if any), we can reduce Γ by deleting all leaves of G and their incident hyperedges.
Let Γ' = (G', w') be the resulting weighted hypergraph. Of course, σ is safe if and only if no
invariant hyperedge of Γ' is sensitive. We now show that, if σ is a two-dimensional table with
suppressions, then Γ' is always a graph so that one can decide whether σ is or is not safe in linear
time. Let σ be obtained from a complete two-dimensional table T by suppressing all sensitive cells
(“primary suppressions”) as well as additional (internal or marginal) cells to exclude the possibility
of arriving at the contents of sensitive cells by indirect methods (“complementary suppressions”).
Denote by

 T(r, c) the value of internal cell (r, c), 1 ≤ r ≤ m and 1 ≤ c ≤ n,

 T(r, +) the r.th row total, 1 ≤ r ≤ m, and

 T(+, c) the c.th column total, 1 ≤ c ≤ n.

Assume that each T(r, c) is the sum of the values of a confidential variable of nonnegative real type
over the set I(r, c) of individuals. So, a cell (r, c) of T is sensitive if |I(r, c)| = 1. We first detail the
structure of the weighted hypergraph Γ = (G, w) associated with σ and, then, show that the
reduction of Γ results in an EWG. Let U, R and C be the set of unsuppressed internal cells, the set of
marginal cells corresponding to unsuppressed row totals and the set of marginal cells corresponding
to unsuppressed column totals, respectively. Then the vertex set of G is

 V = U ∪ R ∪ C.

Let S = {(r, c) ∈ U: r ∉ R and c ∉ C}. Moreover, for each r ∈ R, let Cr = {c ∉ C: (r, c) ∉ U};
analogously, for each c ∈ C, let Rc = {r ∉ R: (r, c) ∉ U}. Then, the set of individuals covered by σ
is Iσ = ∪(r,c)∉S I(r, c) and the basic partition of Iσ contains:

one class I(r, c) for each (r, c) in U and for each (r, c) not in U with r ∈ R and c ∈ C,
one class ∪c∈Cr I(r, c) for each r ∈ R with Cr ≠ Ø, and
one class ∪r∈Rc I(r, c) for each c ∈ C with Rc ≠ Ø.

Pag. 79

Recall that the hyperedges of G are the indices of these classes. The hyperedge e indexing a class
such as I(r, c) is

 e = {(r, c), (r, +), (+, c)} if (r, c) ∈ U, r ∈ R, c ∈ C

 e = {(r, c), (r, +)} if (r, c) ∈ U, r ∈ R, c ∉ C

 e = {(r, c), (+, c)} if (r, c) ∈ U, r ∉ R, c ∈ C

 e = {(r, c)} if (r, c) ∈ U, r ∉ R, c ∉ C

 e = {(r, +), (+, c)} if (r, c) ∉ U, r ∈ R, c ∈ C

and w(e) is always set to T(r, c). For the hyperedge e indexing a class such as ∪c∈Cr I(r, c) one has
e = {(r, +)} and

 w(e) = ∑c∈Cr T(r, c),

and for the hyperedge e indexing a class such as ∪r∈Rc I(r, c) one has e = {(+, c)} and

 w(e) = ∑r∈Rc T(r, c).

At this point, it should be clear that the leaves of G are all and the only vertices of the type (r, c), of
the type (r, +) with r ∈ R and Cr = {1, …, n} and of the type (+, c) with c ∈ C and Rc = {1, …, m}.
Let L be the set of leaves of G, and let R' = R–L and C' = C–L. After deleting all the leaves of the
hypergraph G, we remain with the hypergraph graph G' = (V', E') whose hyperedges are incident to
at most two vertices. More precisely, one has that V' = R' ∪ C' and E' consists of the edges

 {(r, +), (+, c)} if (r, c) ∉ U, r ∈ R, c ∈ C

 {(r, +)} with r ∈ R'

 {(+, c)} with c ∈ C'

To sum up, the reduction of the weighted hypergraph associated with σ is an EWG and, therefore,
the safety of σ can be tested in linear time.

Example 4.4. Consider Table 4.1 whose entries are assumed to be nonnegative reals.

Pag. 80

j=1

T(1,+) = 30

16

20

20

17

15

13

j=2 j=3 j=4

i=1

i=2

i=3

i=4

T(2,+) = 25

T(+,1) = 35 T(+,2) = 41 T(+,3) = 19

 0 0 10

 2 0 3

 5 0

 5 14

T(+,4) = 45

T(3,+) = 35

T(4,+) = 50

Table 4.1

Suppose that the following cells of Table 4.1

 (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (4, 4)

are all sensitive. Table 4.2 is obtained from Table 4.1 by suppressing all the six sensitive cells and
the additional cells (3, 3), (3, +), (4, +) and (+, 4).

j=1

T(1,+) = 30

16

20

20

17

15

13

j=2 j=3 j=4

i=1

i=2

i=3

i=4

T(2,+) = 25

T(+,1) = 35 T(+,2) = 41 T(+,3) = 19

 0

14

 0

Table 4.2

The reduced weighted hypergraph Γ' = (G', w') associated with Table 4.2 is the EWG shown in
Figure 4.13. The invariant edges of Γ' are the edge joining the vertices (2, +) and (+, 3), and the
self-loop at vertex (+, 3). One of these two edges is marked and, therefore, Table 4.2 is not safe.

3

10 2

0
0 5

(1,+) (2,+)

(+,1) (+,2) (+,3)

∗ ∗ ∗ ∗ ∗

Pag. 81

Figure 4.13

4.7 Protecting privacy for data of additive type
In this section we will solve the problem of finding the invariant edges of a graph when the values
of the weights of the edges are taken from a commutative group.
Let A be an (additive) commutative group with zero 0, and let G be a graph (with no isolated
vertices) where loops are allowed. Without loss of generality, we assume that G is connected. A
vertex labeling (an edge labeling, respectively) of G is a mapping from V(G) (E(G), respectively) to
A. Given a vertex labeling q of G, an edge labeling x of G is compatible with q if x is a solution of
the equation system

 ∑e∈E(v) x(e) = q(v) (v ∈ V)

where E(v) denotes the set of edges of G incident to v. A vertex labeling of G is admissible if there
is an edge labeling compatible with it. For example, the null vertex labeling (that is, the vertex
labeling being zero everywhere) is admissible. Given an admissible vertex labeling q of G, we call
the vertex-weighted graph (G, q) a map. An edge e of G is an A-invariant edge of the map (G, q) if
x(e) = x'(e) for every two edge labelings x and x' compatible with q. Let X(q) be the set of all edge
labelings compatible with q. If 0 is the null vertex labeling, then it is easily seen that X(q) is a
translation of X(0), that is, X(q) = x + X(0), where x is any edge labeling of G compatible with q.
Therefore, the set of A-invariant edges of the map (G, q) is the set of edges e such that y(e) = 0 for
all y in X(0) and, hence, it is the same for every map (G, q). Accordingly, the reference to q can be
omitted and such edges will be referred to as the A-invariant edges of G. The problem is to find the
set of all A-invariant edges of G and to compute the value of each of them given a map (G, q).

4.7.1 Find a compatible edge labeling
If a is an element of A, by 2a we denote the sum a+a. An element b of A is even if there is an
element a of A such that b = 2a. If b is even, by half(b) we denote the set {a∈A: 2a = b}.
Accordingly, half(0) = {a∈A: 2a = 0} = {a∈A: a = –a}. For example, if A is the set {0, 1, …, p–1}
with the integer addition mod p then, if p is even, say p = 2k, then half(0) = {0, k}; otherwise,
half(0) = {0}. The following result is borrowed from the theory of magic graphs [21] where only
loopless graphs are considered.

Proposition 4.3 Let G be a connected, loopless graph and let q be a vertex labeling of G.

(i) If G is bipartite, then q is admissible if and only if ∑v∈U q(v) = ∑v∈W q(v), where {U, W} is the
bipartition of V(G); otherwise, q is admissible if and only if the sum ∑v∈V(G) q(v) is even.

(ii) If q is admissible, then an edge labeling compatible with q can be found in linear time using the
following algorithm, where by a leaf of a graph we mean a vertex with exactly one incident edge
that is not a loop.

Algorithm 4.2

 (1) Find a spanning tree T of G.

(2) If G is not bipartite, find an edge e* = (u*, v*) whose addition to T creates an odd cycle,
and set T := T + e*.

(3) For each edge e ∈ E(G)–E(T), set x(e) := 0.

Pag. 82

(4) Until T contains no leaves, repeat:

Find a leaf u of T. Let e be the edge incident to u and let w be the other end-point of
e. Set x(e) := q(u), q(w) := q(w)–q(u), and delete u and e from T.

(5) If E(T) = Ø (that is, if G is bipartite), then Exit. Otherwise, let {U, W} be the bipartition
of the vertex set of the tree T–e* with U containing the end-points u* and v* of e*. Set b :=
∑v∈U q(v) – ∑v∈W q(v). Choose an element a∈half(b) and set x(e*) := a, q(u*) := q(u*)–a
and q(v*) := q(v*)–a. Delete e* from T.

 (6) Until T is a one-point graph repeat:

Find a leaf u of T. Let e be the edge incident to u and let w be the other end-point of
e. Set x(e) := q(u), q(w) := q(w)–q(u), and delete u and e from T.

Example. In fig 4.14 the algorithm 4.2 is applied to the map of step 1.

1

2

3

4

5 1

2

3

4

5
e*

Step 1 Step 2

1

2

3

24 18

29

4

0

5

7

12

Step 3

1

2

3

24 11

17

4

0

5
7

12

Step 4 Step 5 Step 6

1

2

3

15 2

17

4

0

5
7

12

U

W

9
1

2

3

15 2

4

0

5
7

12

9

24 18

29

7

12

24 18

29

7

12

Figure 4.14

Consider now a connected graph G where loops are allowed and let q be any vertex labeling of G.
An edge labeling compatible with q can be always found using the algorithm (henceforth referred to
as Algorithm 4.3) obtained from Algorithm 4.2 by replacing step (2) by the step

 (2') Find a loop e*, and set T := T + e*.

and steps (5) and (6) by the single step

 (5') If v* is the end-point of e*, set x(e*) := q(v*).

Example. In fig 4.15 the algorithm 4.3 is applied to the map of step 1.

Pag. 83

e*

Step 1 Step 2' Step 3

Step 4
Step 5'

1

2

3

4

1

2

3

4

1

2

3

24 18

29

4

12

0

0

1

2

3
18

23
4

0

0

6

1

2

3
18

23
4 -11

0

0

6

-11

24 18

29 12

24 18

29 12

Figure 4.15

Proposition 4.4 Every vertex labeling q of a graph containing loops is admissible and an edge
labeling compatible with q can be found in linear time.

4.7.2 Characterization of invariant edges

Let G be a connected graph and let Y = X(0). An edge labeling in Y will be called a circulation in G
over A (an A-circulation, for short); moreover, if y is an A-circulation in G, the edge set {e ∈ E(G):
y(e) ≠ 0} is called the support of y. Bearing in mind that an edge e of G is A-invariant if and only if
y(e) = 0 for all y in Y, we have that an edge of G is A-invariant if and only if it does not belong to
the support of any A-circulation. Let us distinguish the following three cases: G is bipartite, G is not
bipartite and is loopless, G contains loops.

Case 1. G is bipartite. If G is a tree then Y = {0} (see Algorithm 4.2) so that each edge of G is A-
invariant. Assume that G is not a tree. For every cycle C, no edge in C is A-invariant since,
arbitrarily chosen a nonzero element a of A, one can construct an A-circulation (see Figure 4.16)
whose support is C.

a

a

–a –a

Figure 4.16 An A-circulation associated with an even cycle

Therefore, the A-invariant edges of G are all bridges. On the other hand, if e is a bridge of G and G'
is either component of G–e, then

 y(e) = [∑v∈U ∑e∈E(v) y(e)] – [∑v∈W ∑e∈E(v) y(e)] = 0

where {U, W} is the bipartition of V(G') and e is incident to U. To sum up, the A-invariant edges of
G are all and the only bridges of G.

Case 2. G is not bipartite and is loopless. Let T be a spanning tree of G with the addition of an edge
e* (see Algorithm 4.2) creating an odd cycle, say C. Given an arbitrary element a of half(0), with C

Pag. 84

we can associate an A-circulation (see Figure 4.17), whose support is empty or C depending on
whether a = 0 or a ≠ 0, respectively.

a

a

a

Figure 4.17 An A-circulation associated with an odd cycle

Let ca be such an A-circulation associated with C. If G = T, then Y = {ca: a ∈ half(0)} (see
Algorithm 4.2) so that, if half(0) = {0} then each edge of G is A-invariant; otherwise (that is, if
half(0) ≠ {0}), an edge is A-invariant if and only if it is a bridge. Let now assume that G ≠ T and let
E(G)–E(T) = {e1, …, ek}. The addition of ei to T creates a closed even walk Ci which is either an
even cycle or an L-odd set [15], that is, a pair of edge-disjoint odd cycles joined by a (possibly one-
point) path. Given an arbitrary element a of A, with Ci we can associate an A-circulation as follows.
If Ci is an even cycle, then the A-circulation is of the form shown in Fig. 4.16; if Ci is an L-odd set,
then the A-circulation is of the form shown in Fig. 4.18.

–a

–a

–a
a 2a a

–a

Figure 4.18 An A-circulation associated with an L-odd set

Let ci,ai
 be such an A-circulation associated with Ci for some element ai of A. As proven in [21]

every A-circulation y in G can be written as

 y = ca + ∑i=1,…,k ci,ai

for some element a of half(0) and some elements a1, …, ak of A. Let us distinguish two subcases
depending on whether half(0) = {0} or half(0) ≠ {0}.

Case 2(i): half(0) = {0}. Then, an edge e is A-invariant if and only if e does not belong to any even
cycle and to any L-odd set, that is, if and only if either e is a bridge and G–e has a bipartite
component or e belongs to all odd cycles of G. Note that in both cases, e is characterized by the
property that G–e has one more bipartite component than G.

Case 2(ii): half(0) ≠ {0}. Then, the A-invariant edges are all bridges since they belong to no cycles.
Furthermore, if half(0) ≠ A then an edge e is A-invariant if and only if e is a bridge and G–e has a
bipartite component; otherwise (that is, if half(0) = A) then 2a = 0 for all a so that an edge is A-
invariant if and only if it is a bridge.

Case 3. G contains loops. Let T be a spanning tree of G with the addition of a loop e* (see
Algorithm 4.3). If G = T then Y = {0} so that each edge of G is A-invariant. Otherwise, let E(G)–
E(T) = {e1, …, ek}. The addition of ei to T again creates a closed even walk Ci which is either an

Pag. 85

even cycle or an L-odd set having e* as one of its cycles. Given an arbitrary element a of A, with Ci
we can associate an A-circulation as follows. If Ci is an even cycle, then the A-circulation is of the
form shown in Fig. 4.16; if Ci is an L-odd set, then the A-circulation is of either form shown in Fig.
4.19.

2a a a

–a

–a
a

–2a

a

Figure 4.19 An A-circulation associated with an L-odd set containing a loop

Let ci,ai
 be such an A-circulation associated with Ci for some element ai of A. It can be proven that

every A-circulation y in G can be written as

 y = ∑i=1,…,k ci,ai

for some elements a1, …, ak of A. Let us distinguish two subcases depending on whether half(0) =
{0} or half(0) ≠ {0}.

Case 3(i): half(0) = {0}. Then, an edge e is A-invariant if and only if e does not belong to any even
cycle and to any L-odd set, that is, if and only if e either is a bridge and G–e has a bipartite
component or e belongs to all odd cycles of G.

Case 3(ii): half(0) ≠ {0}. If half(0) ≠ A then an edge e is A-invariant if and only if either e is a
bridge and G–e has a bipartite component or e is a loop and G–e is loopless; otherwise (that is, if
half(0) = A), an edge e is A-invariant if and only if either e is a bridge and G–e has a loopless
component or e is a loop and G–e is loopless.

To sum up, we have the following.

Proposition 4.5 Let G be a connected graph and A a commutative group. If half(0) = {0}, then an
edge e of G is A-invariant if and only if either e is a bridge and G–e has a bipartite component or e
belongs to all odd cycles of G. If {0} ⊂ half(0) ⊂ A, then an edge e of G is A-invariant if and only if
either e is a bridge and G–e has a bipartite component or e is a loop and G–e is loopless. If half(0) =
A, then an edge e of G is A-invariant if and only if either e is a bridge and G–e has a loopless
component or e is a loop and G–e is loopless.

A consequence of Proposition 4.5 is that the set of A-invariant edges of a graph can be found in
time linear since:

— the set of bridges whose removal creates one more bipartite component and the set of
bridges whose removal creates one more loopless component can be found in linear time as
shown in section 4.4;

— the presence of a loop whose removal creates a loopless graph can be checked in linear time;

— the set of edges belonging to all odd cycles can be found in linear time as shown in section
4.4;

Pag. 86

Once the set of A-invariant edges of a graph G has been found, in order to determine their values for
a map (G, q) one can use Algorithm 4.2 or Algorithm 4.3, depending on whether G is or is not
loopless.

Pag. 87

Chapter 5

Computing Feasible Ranges

5.1 Introduction
Recall the two problems at the beginning of Chapter 4 were:

(P1) given the equation system of an arbitrary information model (e.g., the posterior model), find
the set of its null variables;

(P2) given the equation system of an information model in normal form (e.g., the prior model),
 find the feasibility range for a given sum of variables.

We saw in the previous Chapter that there exist a linear time algorithm to solve problem (P1) when
the coefficient matrix H of system (1.1) is the incidence matrix of a graph. Problem (P2) has been
solved for a single variable by Gusfield [27] if G is bipartite, using a maximum-flow algorithm. We
shall show that, more in general, in a graphical information model the problem of finding the
feasibility range for an arbitrary sum of variables can be solved using a strongly polynomial
algorithm.
Using the same terminology of Chapter 4 we deal with a graph G = (V, E) without isolated vertices
(where self-loops may exist). Let s = (s(e))e∈E be a vector of nonnegative reals. The pair (G, s) is
referred to as an edge-weighted graph (an EWG, for short). Let A be the incidence matrix of G and
let b = (b(v))v∈V be the vector of nonnegative reals such that, for each vertex v of G, b(v) equals the
sum of the weights of the edges incident to v.
In this Chapter we address the problem of computing the tightest bounds on the sum of weights of
an arbitrary set of edges under the assumption that the edge weights are nonnegative real numbers.
In other word we want to solve the following two linear programming problems max ∑e∈J x(e) and
min ∑e∈J x(e) subject on the constraint

 A x = b
 x ≥ 0 (5.1)
 x ∈ R |E|

where J is an arbitrary non empty subset of edges of E. Here we shall show that for a nonbipartite
graph the tightest bounds on the weight of an edge, that is in the case that |J|=1, can be found with
two or four maximum-flow computations depending on whether the edge is or is not a loop.
Finally we consider the problem of finding the feasible tightest bounds on the sum of the weights of
a set of edges, that is when |J|>1, effectively solving (P2) in the general case.

5.2 The bipartite case
In this section, we review the maximum-flow technique proposed by Gusfield [27] to compute the
tightest bounds on the weight of a given edge of a EWG (G, s) where G = (V, E) is a bipartite,
connected graph. Let {V1, V2} be the vertex bipartition of G. First, a flow network [2] is built up as
follows. Let b(v) = ∑a∈E(v) s(a) for each v in V, where E(v) is the set of edges incident to v. Let M
be a finite number larger than max {b(v): v ∈ V1}. First, each edge (u, v) of G is directed both from
V1 to V2 and from V2 to V1. Then, the capacity of each edge u → v is set to M if u ∈ V1, and to s(u,
v) otherwise. We denote the resulting flow network by N(G, s; V1, M).

Example 5.1. Consider the EGW (G, s) shown in Figure 5.1.

Pag. 88

1 2 3

4 5 6

1/4 1/4

3/4 1/2 3/4

1/4 1/4
Fig. 5.1. A bipartite graph

Let V1 = {2, 4, 6} and V2 = {1, 3, 5}, and let M = 2. Figure 5.2 shows the network (G, s; V1, M).

1 2 3

4 5 6

2 2

2

2

2

2

2

1/4 1/4

3/4

1/4 1/4

3/4

1/2

Fig. 5.2. The network associated with the EWG of Figure 5.1

Let fu,v be a maximum flow in N(G, s; V1, M) from vertex u to vertex v, and let Fu,v be the value of
fu,v, that is,

 Fu,v = ∑w fu,v(u → w) – ∑w fu,v (w → u) = ∑ w fu,v(w → v) – ∑ w fu,v(v → w)

Note that if u ∈ V1 then

 Fu,v = M + ∑w∈V2–{v} fu,v(u → w) – ∑ w∈V2–{v} fu,v(w → u) .

The following three propositions were proven by Gusfield [27]. Recall that X is the set of solutions
of the system of constraints (5.1) where R+ is the set of nonnegative reals.

Proposition 5.1. Given a EWG (G, s) where G is a bipartite connected graph with bipartition {V1,
V2}, let a be an edge of G with end-points u ∈ V1 and v ∈ V2. Then

 min
X

 x(a) = max {0, s(a) + M – Fu,v} and max
X

 x(a) = Fv,u

where Fu,v and Fv,u are the values of maximum flows in N(G, s; V1, M) from u to v and from v to u,
respectively.

If x ∈ X has x(a) = min
X

 x(a) (x(a) = max
X

 x(a), respectively), we call the map (G, x) an a-minimal

(a-maximal, respectively) variant of the EGW (G, s).

Proposition 5.2. Given a EGW (G, s) where G is a bipartite connected graph with bipartition {V1,
V2}, let a be an edge of G with end-points u ∈ V1 and v ∈ V2.

Pag. 89

(i) Given a maximum flow fu,v in N(G, s; V1, M) from u to v, an a-minimal variant (G, x) of (G, s)
can be constructed as follows. For each edge a' of G with end-points u' ∈ V1 and v' ∈ V2 take

 x(a') =

max{0,s(a) + M − Fu,v} if ′ a = a
s(′ a) + τ [fu,v (′ u → ′ v) − fu,v(′ v → ′ u)] else

where τ = min 1,
s(a)

Fu,v − M

.

(ii) Given a maximum flow fv,u in N(G, V1, V2; s, M) from v to u, an a-maximal variant (G, x) of (G,
s) can be constructed as follows. For each edge a' of G with end-points u' ∈ V1 and v' ∈ V2 take

 x(a') =

Fv,u if ′ a = a
s(′ a) + fv,u(′ u → ′ v) − fv,u(′ v → ′ u) else

Example 5.1 (continued). Figure 5.3(a) shows a maximum flow f2,5 from the vertex 2 to the vertex 5
and Figure 5.3(b) shows a maximum flow f5,2 from the vertex 5 to the vertex 2. So, F2,5 = 7/2 and
F5,2 = 1.

1 2 3

4 5 6

1/4

1/4

1/4

1/4

1/4

1/2

1/4

source

sink

1 2 3

4 5 6

23/4

3/4

3/43/4

3/4

3/4
sink

source

 (a) (b)

Fig. 5.3.

By Proposition 5.1, the tightest lower and upper bounds on the weight of the edge (2, 5) are 0 and
1, respectively. Using Proposition 5.2, we obtain a (2, 5)-minimal variant and a (2, 5)-maximal
variant of the EWG of Figure 5.1, which are shown in Figures 5.4(a) and 5.4(b) respectively.

1 2 3

4 5 6

1/2 1/2

1/2 1/2

1/2 1/2

1 2 3

4 5 6

0 0

0 0

1 1 10

 (a) (b)

Fig. 5.4. Minimal and maximal variants

Proposition 5.3. Given a EGW (G, s) where G is a complete bipartite graph with bipartition {V1,
V2}, let b(v) = ∑a∈E(v) s(a), v ∈ V, and let N = ∑v∈V1 b(v). For each edge a of G with end-points

u and v, one has

Pag. 90

 }–)()(,0{max)(min Nvbubax
X

+=)}(),({min)(max vbubax
X

= .

5.3 Bounds on the weight of an edge
In this section we show that the tightest bounds on the weight of an edge of a nonbipartite EWG can
be computed with two or four maximum-flow computations depending whether the edge is a loop
or a link. In Section 4.5 we have seen that given an EWG (G, s) we can derive an EWG (G′, s′)
called the bipartite EWG associated to (G, s) such that G′=(V′, E′) is bipartite. Let A′ be the node
edge incidence matrix of G′. Consider the following system of linear constraint

 A′ y = b′
y ≥ 0 (5.2)

 y ∈ R |E′|

where b′(v)= ∑a∈E(v) s′(a) for each v in V′ and let Y be the set of solution of (5.2). By formula (4.6),
the tightest bounds on the weight of a loop of (G, s) coincide with the tightest bounds on the weight
of the corresponding edge of (G′, s′) and, hence, by Proposition 5.1 they can be determined with
two maximum-flow computations.

1

2

3

1/2

1/4 1/4

3/4

1 2 3
1/4 1/4

3/4 1/2 3/4

1/4 1/4
3 1 2

 (a) (b)

Fig. 5.6. (a) A nonbipartite EWG (G, s); (b) an bipartite transform of (G, s)

Example 5.3. Consider the nonbipartite EWG (G, s) of Figure 5.6(a). We want to compute the
tightest bounds on the weight of the loop (2, 2). The bipartite transform of G of Figure 5.6(b) looks
like the graph of Figure 5.1. Therefore, the tightest bounds on the weight of the loop (2, 2) of the
map of Figure 5.6(a) coincide with the tightest bounds on the weight of the arc (2, 5) of the map of
Figure 5.1, which were 0 and 1 .

Consider now the case of a link a of (G, s) where {e', e"} is its image in G′. By formula (4.6), we
have to compute

 min
Y

 [y(e') + y(e")] and max
Y

 [y(e') + y(e")].

subject to system (5.2). We shall show that they can be obtained as follows: The minimum
(maximum, respectively) of the function y(e') + y(e") over Y equals the tightest lower (upper,
respectively) bound on the weight of the arc e' of G' plus the tightest lower (upper, respectively)
bound on the weight of the arc e" of the EWG that is obtained from a e'-minimal (e'-maximal,
respectively) variant of (G′, s′) by deleting e'.

We now prove the correctness for max
Y

 [y(e') + y(e")]. The proof of the correctness for min
Y

 [y(e') +

y(e")] is similar. In the next Lemma we use the terminology of Section 4.2.

Pag. 91

Lemma 5.1. Let (G′, s′) be a bipartite EWG and let e' and e" be two edges of G′. There exists a
nonnegative real-valued solution y of equation system (5.2) that maximises both y(e') and y(e') +
y(e").
Proof. Let (G′, yo) be a e'-maximal variant of (G′, s′). Moreover, let Y1 be the set of nonnegative
real-valued solutions of equation system (5.2) that maximise y(e') + y(e"), and let y1 be in Y1 and
such that y1(e') ≥ y(e') for every y∈Y1. Of course, one has y1(e') ≤ yo(e'). We shall prove that y1(e') =
yo(e'). Consider the circulation (see Section 4.2), z = yo – y1, and let (S+, S–) be the signed support
of z. Suppose, by contradiction, that y1(e') < yo(e'). Then e' belongs to S+. By Proposition 4.1, e' lies
in a cycle C which is the support of a minimal circulation having signed support (C+, C–), where C+
= C∩S+ and C– = C∩S–. Such a minimal circulation can be explicitly constructed as follows. Let

 ε = min {|c(e)|: e ∈ C–}

and let ζ be the circulation with

 ζ(e) =

∈−
∈+

−

+

else0
Ce
Ce

ε
ε

Let y2 = y1 + ζ. Of course, y2 is a solution of equation system (5.2). Indeed, y2 is nonnegative
everywhere because, for each edge e of G′, if e is not in C–, then

 y2(e) = y1(e) + ζ(e) ≥ y1(e) ≥ 0;

otherwise,

 y2(e) = y1(e) – ε ≥ y1(e) + z(e) = yo(e) ≥ 0 .

We now show that from the foregoing a contradiction always follows. Consider the following three
cases that can occur for e":
Case 1. e" is in C+. Then y2(e") = y1(e") + ε which leads to the following

 y2(e') + y2(e") = y1(e') + y1(e") + 2ε > y1(e') + y1(e")

which contradicts the membership of y1 in Y1.
Case 2. e" is in C–. Then y2(e") = y1(e") – ε and, hence, one has

 y2(e') + y2(e") = y1(e') + ε + y1(e") – ε = y1(e') + y1(e")

so that y2 belongs to Y1. But, since e' is in C+, one has

 y2(e') = y1(e') + ζ(e') = y1(e') + ε > y1(b')

which contradicts the choice of y1.
Case 3. e" ∉ C+∪C–. Then y2(e") = y1(e") which leads to the following

Pag. 92

 y2(e') + y2(e") = y1(e') + ε + y1(e") > y1(e') + y1(e")

which contradicts the membership of y1 in Y1.

The following is an immediate consequence of Lemma 5.1.

Lemma 5.2. The maximum of the function y(e') + y(e") over the set Y of nonnegative real-valued
solutions of equation system (5.2) equals the tightest upper bound on the weight of the edge e' of
(G′, s′) plus the tightest upper bound on the weight of the edge e" of the EWG obtained from a e'-
maximal variant of (G′, s′) by deleting e'.

Combining Lemma 5.2 with Proposition 5.1, we obtain the following algorithm which, given a
bipartite transform (G′, s′) of (G, s) and a link a of G where {e', e"} is the image of a in G′,
computes the tightest upper bound on the weight of a link a of a nonbipartite EWG (G, s). The
input data are:

 (G′, s′) a bipartite transform associated with (G, s)
 {W1, W2} the bipartition of G′
 N(G′, s′; W1, M) a network associated with (G′, s′)
 e' = (w1', w2') with w1' ∈ W1 and w2' ∈ W2 , e" = (w1", w2") with w1" ∈ W1

and w2" ∈ W2.

Algorithm MAX

(1) Find a maximum flow f in N(G′, s′; W1, M) from w2' to w1', and let F be the value of f.

(2) Given f and using Proposition 5.2(ii), construct a e'-maximal variant (H, y) of (G′, s′).

(3) Let (H, t) be the EWG obtained from (G′, s′) by deleting e'. Find a maximum flow f ' in
N(H, t; W1, M) from w2" to w1", and let F' be the value of f '.

(4) Set the tightest upper bound on the weight of a to
F + ′ F

2
.

Analogously, the following algorithm correctly computes the tightest lower bound on the weight of
a.

Algorithm MIN

(1) Find a maximum flow f in N(G′, s′; W1, M) from w1' to w2' .

(2) Given f and using Proposition 2(i), construct a e'-minimal variant (H, y) of (G′, s′).

(3) Let (H, s) be the EWG obtained from (G′, s′) by deleting e'. Find a maximum flow f ' in
N(H, t; W1, M) from w1" to w2", and let F' be the value of f '.

(4) Set the tightest lower bound on the weight of a to

2
})(,0{ max + })(,0{ max FMetFMes ′−+′′−+′′

.

Pag. 93

To sum up we have the following

Theorem 5.1. The tightest bounds of an edge of a nonbipartite EWG can be found with two or four
maximum-flow computations depending on whether the edge is a loop or a link.

Example 5.3 (continued). We now apply the procedure above to compute the tightest lower and
upper bounds on the weight of the link (1, 3) of the nonbipartite EWG of Figure 5.6(a). Recall that
this edge corresponds to the two edges (3 , 1) and (1 , 3) of the associated bipartite transform
shown in Figure 5.6(b), and that the vertices 1 and 3 are on the side W1 and the vertices 1 and 3 are
on the side W2.
We first apply Algorithm MIN. Figure 5.7(a) shows a maximum flow in the network associated
with the bipartite EWG shown in Figure 5.6(b) from the vertex 3 to the vertex 1, and Figure 5.7(b)
shows the corresponding (3 , 1)-minimal variant of the EWG of Fig. 5.6(b).

1 2 3

2

3/4

1/43/4

1/4

1/4

1/2

3 1 2

source

sink

1
1

2 3
0

0 1

01
3 1 2

0

 (a) (b)

Fig. 5.7

So, the tightest lower bound on the weight of the edge (3 , 1) is max {0,
3
4
+2–

11
4

} = 0. Figure

5.8(a) shows the network associated with the bipartite EWG of Figure 5.7(b) with the edge (3 , 1)
deleted, and Figure 5.8(b) shows a maximum flow in this network from the vertex 3 to the vertex 1 .

1
1

2 3
0

0

1

01

2 2

2

2

2

2
3 1 2

1 2 3

3 1 2

2

source

sink

 (a) (b)

Fig. 5.8

So, the tightest lower bound on the weight of the edge (1 , 3) is max {0, 1+2–2} = 1, and the

tightest lower bound on the weight of its corresponding edge (1, 3) is (0+1)/2 =
1
2

.

We now apply Algorithm MAX. Figure 5.9(a) shows a maximum flow in the network associated
with the bipartite EWG shown in Figure 5.6(b) from the vertex 1 to the vertex 3 , and Figure 5.9(b)
shows the corresponding (3 , 1)-maximal variant of the map of Fig. 5.6(b).

Pag. 94

1 2 3

3/4

1/4

1/41/4

1/4

1/4

1/2

3 1 2

source

sink

1
0

2 3
0

1 1

00
3 1 2

1

 (a) (b)

Fig. 5.9

So, the tightest upper bound on the weight of the edge (3 , 1) is equal to 1. Figure 5.10(a) shows the
network associated with the bipartite EWG of Figure 5.9(b) with the edge (3 , 1) deleted, and Figure
5.10(b) shows a maximum flow in this network from the vertex 3 to the vertex 1 .

1
0

2 3
0

1

1

00

2 2

2

2

2

2
3 1 2

1 2 3

3 1 2

1

source

sink
 (a) (b)

Fig. 5.10

So, the tightest upper bound on the weight of the edge (1 , 3) is 1, and the tightest upper bound on
the weight of the edge (1, 3) is equal to (1+1)/2 = 1.

5.4 A special Case
In this section, we consider the special case of a complete graph with the addition of one loop for
each vertex. We now prove that the tightest bounds on the weight of an edge can be computed with
a number of arithmetic operations and comparisons proportional to the number of vertices.
Let (G, s) be a EWG where G = (V, E) is a complete graph with the addition of one loop for each
vertex. Let b(v) = ∑a∈E(v) s(a) for each v in V. The constraint system (5.1) always admits the
solution x (see Figure 5.11) with

 x(u, v) =

 =

else0
 if)(vuvb

Pag. 95

1

2

3

b(1)

b(3)

b(2)

0

0

0

Fig. 5.11

Moreover, given a link (u*, v*) of G with b(u*) ≤ b(v*), then the constraint system (5.1) always
admits the solution x (see Figure 5.14) with

 x(u, v) =

 =

else0
),(),(if*)(vuvuub

for each link (u, v), and

 x(u, u) =

=−
=

else)(
* if*)(*)(
* if0

ub
vuubvb
uu

for each loop (u, u).

1

2

3

q(1)

q(3)

q(2)–q(1)

0

0

0

Fig. 5.12

It follows that the tightest upper bound on the weight of loop (u, u) is equal to b(u), and the tightest
lower and upper bounds on the weight of link (u, v) are 0 and min {b(u), b(v)}, respectively. What
remains is a formula for the tightest lower bound on the weight of loop (u, u). We now prove that it
is given by max {0, 2b(u) – N}, where N = ∑v∈V b(v). Let (H, t) be a bipartite EWG associated with
(G, s) so that the loop (u, u) corresponds to the edge (u, u) of H. For each vertex w of H, let r(w) =
q(v) if v is the vertex of G corresponding to w. By Proposition 5.3, the tightest lower bound on the
weight of (u, u) is

 max {0, r(u) + r(u) – ∑w∈W1 r(w)} .

Pag. 96

But r(u) = r(u) = b(u) and ∑w∈W1 r(w) = ∑v∈V b(v) = N so that the statement follows from part (i)
of Lemma 5.1. To sum up, we have the following result.

Theorem 5.2. Let (G, s) be an EWG where G is a complete graph with the addition of one loop for
each vertex. Let b(v) = ∑a∈E(v) s(a) for each v in V, and let N = ∑v∈V b(v). Then,

(i) the tightest lower and upper bounds on the weight of loop (u, u) are respectively max {0,
2b(u) – N} and b(u) ;

(ii) the tightest lower and upper bounds on the weight of link (u, v) are respectively 0 and min
{b(u), b(v)}.

5.5 Computing feasible range of a sum for an arbitrary set of variables
Suppose that, given a subset J of edges of G, that is a subset of {1,…,m} one wants to compute the
tightest lower bound or the tightest upper bound on the sum of variables ∑j∈J xj over the set of
solutions of system (5.1). They can be obtained by solving the linear-programming problem

 minimize ∑j=1,…,m cj xj (5.3)

 subject to system (5.1)

where each cj is set to the j-th component of the characteristic vector of J (for the tightest lower
bound) or to its opposite (for the tightest upper bound). Now, if the graph G is bipartite, then
problem (5.3) can be naturally viewed as a bipartite transportation problem [3] and can be
efficiently solved using the network simplex method, which is a strongly polynomial algorithm [3].
If G is not bipartite, consider a bipartite transform G' of G. Let y be a solution of system (5.2). Since
for any edge j of G we have that (see Section 4.5)

 xj = [∑j'∈f(j) yj'] / |f(j)|.

where f(j) is the image of j in G' (see Section 4.5) then we can translate problem (5.3) into the
following bipartite transportation problem. Then we have

 ∑j=1,…,m cj xj = ∑j=1,…,m cj [∑j'∈f(j) yj']/|f(j)|

Therefore we can rewrite problem (5.3) as

 minimize ∑j=1,…,m cj [∑j'∈f(j) yj']/|f(j)| (5.4)

 subject to system (5.2)

It is easily seen that, if x is a nonnegative solutions of problem (5.3) and y is the nonnegative
solution of problem (5.4) associated with x, then

 ∑j=1,…,m cj xj = ∑j=1,…,m cj [∑j'∈f(j) yj'] / |f(j)|

and vice versa. So, every optimal solution of problem (5.3) corresponds to an optimal solution of
problem (5.4) and vice versa, and the minima of problems (5.3) and (5.4) do coincide.

Before closing this section, it is worth considering the special case that the components of the
vector b in system (5.1) are all nonnegative integers. If G is bipartite then, by the integrality
theorem and by the total unimodularity [2, 13, 55] of the incidence matrix of G, problem (5.3) has
an integral optimal solution. If G is not bipartite then, since problem (5.4) has an integral optimal

Pag. 97

solution, problem (5.3) has an optimal solution whose components are either integers or half-
integers.

Pag. 98

Chapter 6

A linear time algorithm to solve the NAS problem in a graph

6.1. Introduction

Let H be a hyper-graph with edge set E(H) and node set V(H). Let M be the node-edge incidence
matrix of H. Let A be a subset of E(H) and let a be the characteristic vector of A , that is

 1 if e ∈A

0 if e ∉A

Recall that a subset A of edges of E(H) is said to be algebraic if its characteristic vector can be
expressed as a linear combination of rows of M, that is if there exist real coefficients (cv)v∈V(H) such
that

 a = ∑v∈V(H) cv mv (6.1)

where mv is the row of M corresponding to node v. In this chapter we address the problem to decide
if a set of edges F of H contains a proper non-empty algebraic subset. This problem was proved to
be NP-Complete in Chapter 2.

We will show that the NAS problem can be solved in linear time when H is a graph. This result
allow us to find a maximal algebraic set contained in F in at most quadratic time in the size of the
graph.

6.2. Algebraic set

Let G=(V(G), E(G)) be a graph without parallel edges where loops may exist. An edge (u,v) is a link
if it is not a loop. If U and W are two non empty subsets of V(G) with [U, W] we denote all the
edges of E(G) with one end point in U and the other in W.

A graph G is said to be bipartite if it contains no odd cycle. If G is bipartite and V(G) is not a
singleton, then there exists a bipartition (U, V) of V(G) such that [U, U]=[V, V]=∅. We call U and V
sides of G.

A star of a node v of G, denoted by star(v), is the set of the edges incident to v. If W is a set of
nodes then the union of the stars of the nodes of W is called a starset, denoted by S(W);
furthermore, if W is a stable set (i.e., the set of nodes in W are pairwise non-adjacent), then S(W) is
called an open starset.

Now we introduce two fundamental class of algebraic sets (see also [33, 34, 35, 39]). An open-
flower set is an open starset or the proper difference of two open starsets S(W1) and S(W2) where
S(W2)⊆S(W1) (see Fig 6.1). An open-flower set is algebraic. In fact its characteristic vector can be
written as

∑v∈W1 mv − ∑v∈W2 mv

If G is loopless, a closed-flower set is the proper difference of two starsets S(W1) and S(W2) where

a(e)=

Pag. 99

 S(W1)∪S(W2) = E(G) and

S(W2) is a open starset or is empty

Note that if both S(W1) and S(W2) are open starsets, S(W2)≠∅ and S(W1)∪S(W2)=E(G) then
[W1,W1]=[W2,W2]=∅, G is bipartite and the proper difference of S(W1) and S(W2) is empty.
Therefore we consider closed-flower set only if G is loopless and not bipartite. Note that if A is a
closed-flower set then G−A is a bipartite graph.

Also note that a closed-flower set is algebraic since its characteristic vector can be written as
1/2(∑v∈W1 mv − ∑v∈W2 mv) (see Fig. 6.1).

W1

W2

W1

W2

W1

W2
Figure 6.1. Open-flower sets.

Without loss of generality, henceforth G is assumed to be connected, since it is easily proved that
the intersection of an algebraic set with a connected component of G is an algebraic set too.

Given a real valued vector c=(cv)v∈V(G), the signed support [6] of c is the couple (P, N) where P={v :
v ∈V(G), cv >0} and N= { v : v∈V(G), cv < 0} and the support of c is the set P∪N.

W1

W2
Figure 2. Closed-flower set.

Let A be an algebraic set and let c be a solution of (6.1). Let (P, N) be the signed support of c. Since
each equation of (6.1) is in the form

a((u, v))= cv + cu
 a((u, u))= cu

then its easily seen that

[N, V(G)−P] = ∅

Pag. 100

and

[P, V(G)−N] ⊆ A ⊆ [P, V(G)]

Moreover if (v1,…,vk) is a simple path in G, then

 cvi+1= a((vi, vi+1))−cvi i=1,…,k-1

so that

 cvk=(−1)k-1cv1+ π (6.2)

where π is an integer ([44]). Therefore since G is connected given two nodes u and v of G, either
both cu and cv are integers or neither is an integer. In fact we can state the following

Lemma 6.1 Let G be a connected graph and A be a nonempty algebraic set. Let (P, N) be the signed
support of a solution of (6.1). If P∪N≠V(G) and [P, P] is not empty then [P, P] is a set of loops. If
P∪N=V(G) and [P, P] is not empty then either contains all loops of G or it contains only links.
Proof Let c be a solution of (6.1). By formula (6.2) is easy to see that if P∪N≠V(G) or G contains
loops then every component of c is integer and if [P, P] contains a link (u, v) then no component of
c is an integer since cu+cv=1 and cu, cv >0. It follows that if P∪N≠V(G) and [P, P] is not empty it
must contains only loops. Moreover if [P, P] is not empty then either G is loopless or [P, P]
contains all loops of G. ♦

Theorem 6.1 Every nonempty algebraic set of a connected graph G, contains either an open-flower
or a closed-flower set.
Proof By definition, both open-flower and closed-flower sets are algebraic sets. If G is bipartite
then it is known ([34, 39]) that a nonempty edge subset of E(G) is algebraic if and only if it is a
disjoint union of open-flower sets. Assume that G is non-bipartite. Let (P, N) be the signed support
of a solution of (6.1). We can distinguish two cases depending on whether or not P∪N=V(G).

Case 1: P∪N=V(G). First note that [P, P] cannot be empty, for otherwise G is bipartite. By Lemma
6.1, [P, P] either is a set of loops or is a set of links. In the first case [P, P] is an open-flower set and
in the second case is a closed-flower set.

Case 2: P∪N≠V(G). First note that at least [P, V(G)−P∪N] is not empty otherwise G would be
disconnected. By Lemma 6.1, if [P, P] is not empty then is a set of loops. Therefore the subset [P,
V(G)−N] of A is an open-flower set. ♦

Example 6.1 Referring to Fig 6.3: (a) the bold edges form an open-flower set and (b) a closed-
flower set. For both (a) and (b) the signed support of the solution of (1) are shown. A solution of
(6.1) is: for (a) cv = +1 if v∈P, cv =−1 if v∈N. For (b) , cv =+1/2 if v∈P, cv =−1/2 if v∈N. The set Z
is given by V(G)−P∪N.

Pag. 101

(a) (b)

P Z

N Z

P

N

Figure 6.3. Example of (a) open-flower set and (b) closed flower set.

6.3. The kernel of an edge set

In this section we introduce a particular subset of a given edge set F we call the kernel of F, which
has the property of containing all the algebraic subsets of F. Consider the following linear system

 M x = b (6.3)

where b=(bv)v∈V(G) is obtained as follows

bv= |star(v)−F| v∈V(G)

A solution of system (6.3) is given by the vector x* with

 0 if e∈F
 x*(e)=
 1 otherwise

The general solution of system (6.3) is given by

 x = x* + y

where y is a solution of the homogeneous system

 M y = 0 (6.4)

The set of solutions y of (6.4) is called the null space of M. According to the terminology
introduced in Chapter 4 [51] if X is the (non-empty) set of nonnegative solutions of (6.3), the set

 K = {e : x(e)=0 , ∀x∈X}

will be referred to as the kernel of F. Clearly since F={e : x*(e)=0}, then K is definitely a subset of
F.

Theorem 6.2 Let F a nonempty edge set of a graph. An algebraic set A is a subset of F if and only
if it is a subset of K.

Proof (if) Trivially if A is a subset of K then A is a subset of F since K⊆F.

Pag. 102

(only if) First we show that if A is an algebraic subset of F then ∑e∈A x(e) takes on the same value
for every nonnegative solution x of (6.3). In fact let a be the characteristic vector of A. By definition
a is a vector of the row space of M. Therefore a is orthogonal to the null space of M. Now if x1 and
x2 are any two nonnegative solution of (3), then x1−x2 is a solution of (6.4). Therefore, ∑e∈E(G) a(e)
[x1(e) −x2(e)]=0 and then ∑e∈A x1(e)= ∑e∈A x2(e).

Since x* is a non-negative solution of (6.3) then ∑e∈A x(e) = ∑e∈A x*(e)=0 because A⊆F. By the non
negativity of x we have that x(e)=0, ∀e∈A, and for any non negative solution x of (6.3). It follows
that A⊆K. ♦

Consider the set of edges F−K. By the kernel definition, for every edge e of F−K, there exists a
nonnegative solution x# of (6.3) such that x#(e)>0. It follows that there exists a solution y=x#−x* of
system (6.4) such that y(e)>0. More generally we have the following

Lemma 6.2 If K is the kernel of F then there exists a nonnegative solution x′ of (6.3) such that
x′(e)=0 if and only if e is in K.
Proof If F−K is empty we have done since we take x′=x*. Let F−K={e1,…,ep}≠∅ . By definition of
kernel, there exists a solution yi of (6.4) such that yi(ei)>0 and x* + yi ≥ 0, i=1,…,p. Let y = ∑i=1,…,p
yi and let

0 < ϕ < min{ x*(e) / | y(e) | : y(e)<0 and e∈E(G)−F}

We have that

x′= x* + ϕ y ≥ 0

and
 x′(e)>0 if and only if e∉K

in fact, by definition, for all the edges e∈K we have yi(e)=0 and then y(e)=0. It follows that x′(e)=0.
Consider now the edges of F−K. First we see that y(e)≥0. In fact if e∈F−K then

0 ≤ x*(e) + yi(e) = yi(e) for i=1,…,p

then
 y(e) = ∑i=1,…,p yi(e) ≥ 0

Moreover since yi(ei)>0 we have that y(ei)>0 for all ei∈F−K. In this case x′(ei)>0. Finally consider
all the edges of E(G) −F. If e∈ E(G) −F and y(e)≥0, then clearly, x′(e)>0, otherwise if y(e)<0 since

 x*(e) / | y(e) | > ϕ

we have that x*(e) − ϕ |y(e)| >0 , that is x*(e) + ϕ y(e)>0. ♦

Now we state a useful property of the edges of the kernel of F that can be obtained from Theorem
4.1 (see also [27, 41]).

Lemma 6.3 If C is an even cycle of G then either C∩K=∅ or |C∩K|>1 and at least two edges of
C∩K are at odd distance each other in C.
Proof Suppose for contradiction that there exists an even cycle C={e0,…,ep} such that either
|C∩K|=1 or |C∩K|>1 and all the edges of C∩K are at even distance each other. Suppose without

Pag. 103

loss of generality, that e0∈K. By Lemma 6.2, there exist a nonnegative solution x′ of (6.3) such that
x′(e)=0 if and only if e∈K. Now let 0< ε < min{ x′(e) : x′(e)>0} and let y=(y(e))e∈E(G) be defined as
follows

 0 if e∉C
 y(e)= +ε if e has an even position in C
 −ε if e has an odd position in C

Clearly y is a solution of system (6.4). But then we have that x′+y is a nonnegative solution of (6.3)
and x′(e)+y(e)=+ε>0 for all edges of C∩K, contradicting the fact that they are in the kernel of F.
 ♦

Finally we state another useful property of the kernel which can be also obtained as a corollary of
Lemma 2.5.

Lemma 6.4 Let K be the kernel of F. Then there always exist a real valued solution c to the
following system of linear constraints

 >0 if e∈K

 ∑v∈V(G) cu mv(e) = (6.5)

 =0 if e∉K

The proof of this Lemma will be given in the Section 6.5, where we will give an algorithm that
always compute a solution of (6.5).

Let (P, N) be the signed support of a solution of (6.5). Since each equations of (6.5) is in the form
cu+cv≥0 or cv≥0, we have that [N, V(G)−P]=∅ and that [P, V(G)−N]⊆ K ⊆ [P, V(G)]. Also if
Z=V(G)−(P∪N) then K∩[Z, Z]= ∅

Example 6.2 In the graph of Fig.6.2(a) the edges of a subset F of E(G) are shown in bold.
Fig.6.2(b) shows the edges of the kernel K along with a solution of (6.5).

(a)

(b)

+2 +2

-2 -2

+1 +1

-1 -1

0 0

0 0
Figure 6.4

Pag. 104

6.4. Finding a nonempty algebraic subset of the kernel

By Theorem 6.2 all the algebraic subset of a set F are contained in the kernel of F. Here we will
show how to find a closed-flower or a open-flower set contained in K.

Lemma 6.5 If G is a non-bipartite and loopless graph then F contains a closed-flower set A if and
only if G−K is bipartite.

Proof (if) Suppose A is a closed-flower subset of F. By Theorem 6.2, A is a subset of K. By
definition of closed-flower set, G−A is bipartite and, then, G−K must be bipartite too.

(only if) Let G−K be non-bipartite and loopless. Let (P, N) be the signed support of a solution of
system (6.5). Let Z=V(G)−(P∪N). If Z is empty clearly [P, P] is a closed-flower set. Otherwise
since G−K is bipartite, then the subgraph induced by Z is bipartite too because K∩[Z, Z]=∅. Now if
P′ and N′ are two sides of the subgraph induced by Z, then let A=[P∪P′, P∪P′]. Since [N,
V(G)−P]=∅, we have that G−A is bipartite too. Note that A cannot be empty for otherwise G would
be bipartite. Clearly A is a closed-flower set. ♦

Example 6.3 (cont.) Fig. 6.5(a) highlights the signed support of a solution of (6.5). Fig. 6.5(b)
[P∪P′, P∪P′] is the set of bold edges. Note that G−K is a bipartite graph.

P

N

Z

Z

(a)

(b)

+2 +2 +1 +1 0 0

-2 -2 -1 -1 0 0

P

N

P′

N′
Figure 6.5. (a) a solution of (6.5). (b) a closed-flower set contained in K

Lemma 6.6 Let G a connected graph and F a subset of E(G). If K is the kernel of F, then K contains
an open-flower set if and only if G−K has a bipartite component B* such that

(i) each edge in K with both endpoints in V(B*) is a loop
(ii) no two edges in K are attached to opposites side of B*

Proof (if) The subset of K formed by the edges that are attached to B* is an open-flower set.

Pag. 105

(only if) Let A be an open-flower set contained in K and (P, N) the signed support of a solution of
(6.1). Let B the subgraph induced by [P, N]. If B contains no edges of K then the statement is
trivially true since we can take B*=B. Then let {B1,…,Bh} be the bipartite connected components of
B−K. Recall that (P, N) is the bipartition of B such that all the edges of A are attached to P. Also let
(Pi, Ni) be the bipartition of Bi such that Pi⊆P and Ni⊆N, i=1,…,h.
Suppose by contradiction that for every component Bi of B−K there always exists at least one edge
of K attached to Pi and at least one edge of K attached to Ni. Take the component B1=Bi1. Since [N,
V(G)−P]=∅ every edge of K attached to N1 has the other end point attached to some other
component B′ of {B1,…,Bh}. If, for contradiction, an edge of K has both endpoints in the same
component Bi clearly it close an even cycle C such that |C∩K|=1, a contradiction of Lemma 6.3.
Let ei1 be one of such edge attached to Bi1 and also attached to B′=Bi2≠Bi1. Repeating this argument
we obtain a sequence Bi1, ei1, Bi2, … , eik-1, Bik of component of B−K and edges eij of K (see Fig
6.6(a)). Let Bik be the first component in the above sequence such that Bik = Bih for some 1≤h<k
(see Fig. 6.6(b)). Let (vij, uij)=eij such that vij∈Nij and uij∈Pij+1. Consider now the sequence Bih, eih,
Bih+1, eih+1 , …, Bik-1, eik-1. Let pij be a simple path trough Bij from uij-1 to vij and let pih be a simple
path trough Bih from uik-1 to vih. Clearly, we have obtained an even cycle C = pih , eih , pih+1 , eih+1 ,
…, eik−1. It is not difficult to see that all the edges of C∩K have an even distance each other in C.
But, then, by Lemma 6.3, all the edge eih, eih+1,…, eik-1 are not in the kernel, a contradiction. ♦

B1 Bih Bik-1Bij

B1 Bi2 BikBij

(a)

(b)

ei1
ei2 eij

Figure 6.6. The connected bipartite components of B-K and

some edges of K connecting those bipartite components.

Example 6.4 (cont.) Clearly the subgraph of G−K induced by {u, w, x, z} satisfy the conditions of
Lemma 6.6 (see Fig. 6.7).

Pag. 106

v

u w

x z

Figure 6.7. {(u, v), (w, v)} is an example of a open-flower set

Tu sum up we have the following algorithm to find a nonempty algebraic subset of F.

FIND_ALGEBRAIC_SUBSET
input : Graph G and a subset F of edges of E(G)
output : An algebraic subset of F if any

begin

find the kernel K of F;
if G is not bipartite and loopless and G-K is bipartite then begin

compute the signed support (P, N) of a solution of (6.5);
let (P′, N′) be a bipartition of the subgraph of G induced by V(G)−P∪N;
output [P∪P′, P∪P′] and EXIT;;

else
for each bipartite component B of G−K do begin

 let A*={e: e∈K and e is attached to B};
if condition (i) and (ii) of Lemma 6.6 are satisfied for A* then output A

end
end

end

Theorem 6.3 Algorithm FIND_ALGEBRAIC_SUBSET correctly finds a nonempty algebraic
subset of a given edge set.
Proof The correctness follows from Lemma 6.5, Lemma 6.6. ♦

6.5. Computational aspects
Gusfield [27] gave an algorithm to find the kernel in the case of bipartite graph. Let (P, N) be a
bipartition of G. Direct all the edges of F from P to N thus obtaining a mixed graph G′. The
algorithm is based on the following proposition

Proposition 6.1[27]. All the edges not in any strongly connected component of G′ are in the kernel
of F.

So the algorithm to find the kernel of F if G is bipartite is:

FIND_KERNEL
input : bipartite connected graph G and a subset F of E(G)
output: the kernel K of F

begin
 Let (P, N) be a bipartition of G;

Pag. 107

Direct all the edges e∈F from P to N. We thus obtain a mixed graph G′;
Compute the strongly connected components of G′;
Output the set of directed edges joining distinct strongly connected components of G′;

end

To demonstrate Lemma 6.4 we give an algorithm that always finds a solution of (6.5). First we see
how to find a solution of (6.5), when the graph is bipartite, next we extend the algorithm to non-
bipartite graphs. We will use the concept of the abstract [23] of a directed graph. If G is a directed
graph its abstract H is the directed graph where the node set is the set of strongly connected
components of G and the edge set E(H)={(u, v) | there exist in G at least one directed edge from
component u to component v}.

COMPUTE_SUPPORT
input : bipartite connected graph G and a subset F of E(G)
output: a solution of (6.5) for the kernel of F

begin
 Let (P, N) be a bipartition of G;

Direct all the edges e∈F from P to N. We thus obtain a mixed graph G′;
Find the strongly connected components of G′ ;
Let H be the abstract of G′;
Let (B1, B2,…, Bh) be a topological sort of H where Bi is a strongly connected component of
G′;
Let (Pi, Ni) be the bipartition of Bi such that Pi ⊆P and Ni ⊆N, i=1,…,h. Then let

h−i if v∈Pi

 cv= i=1,…,h
 −h+i if v∈Ni

Output (cv) v∈V(G);

end

Lemma 6.7 The algorithm COMPUTE_SUPPORT correctly finds a solution of (6.5).
Proof. Let (cv) v∈V(G) be the output of algorithm COMPUTE_ SUPPORT and let k=∑v∈V(G) cv mv. Let
(B1, B2,…, Bh) be a topological sort of H where Bi is a strongly connected component of G′. First
note that if e=(u, v) is in a strongly connected component Bi then cu+cv=0. Therefore k(e)=0 if and
only if e=(u, v) is in a strongly connected component, and this is correct since, by Proposition 6.1, e
is not in the kernel of F.
Now let (u, v) be an edge not in any strongly connected component of G′. Suppose that u∈P and
v∈N. Thus (u, v) is directed from u to v. If Bi is the component containing u and Bj the component
containing v then Bi is before Bj in the topological sort of H that is i<j. Since cu=h−i and cv=−h+j,
then k(e)=cu+cv=h−i−h+j=j−i>0 as supposed to be. ♦

Algorithms FIND_KERNEL and COMPUTE_SUPPORT apply to bipartite graphs. In the case of
non bipartite graphs we can use what is called in Chapter 4 the bipartite transform of G which is a
bipartite graph. Then we can apply the above two algorithms to the bipartite transform to find both
the kernel and a solution of (6.5). Here the details.

Let H = (V(H), E(H)) be the bipartite transform of G and let D be the image of F in H, that is D={
f(e) : e∈F }. By Lemma 4.8, if K′ is the kernel of D then the kernel K of F is the set K={ e :

Pag. 108

f(e)⊆K′}. The following Lemma gives a method to find a solution of (6.5) when G is a non bipartite
graph. Since V(H) = V′∪V″ where V′ and V″ are copies of V(G) (see Section 4.5) we denote with
v′∈V′ and v″ ∈V″ the copies of v in H. With this notation if e=(u, v)∈E(G) is not a loop then the
image of e in H is f(e)={ (u″, v′), (u′, v″)} and if e=(u, u) is a loop then f(e)={ (u′, u″) }.

Lemma 8 Let (gv) v∈V(H) be the coefficients of a solution of (6.5) for the kernel of D. Then

 cv=gv′+gv″ v∈V(G)

are the coefficients of a solution of (6.5) for the kernel of F.
Proof. Let K′ the kernel of D. If (u′, v″)∈K′ then, by formula 4.5, (u″, v′)∈K′, gu′+gv″>0 and
gv′+gu″>0. Therefore (u, v)∈K and

 cu+cv= gu′+ gu″+ gv′+ gv″>0

Also if (u′, v″)∉K′ then, by formula 4.5, (u″, v′)∉K′, gu′+gv″=0 and gv′+gu″=0. Therefore (u, v)∉K
and

 cu+cv= gu′+ gu″+ gv′+ gv″=0

To sum up (cv) v∈V(G) are the coefficients of a solution of (6.5) for the kernel of F. ♦

The strongly connected components and a topological sort of a graph can be found using standard
graph algorithms [16] and all takes time linear in the size of the graph. Therefore we have

Remark 6.1 The time complexity of COMPUTE_SUPPORT and FIND_KERNEL is linear in the
size of the graph G.

Example 6.5 Consider the graph G of Fig. 6.8. Let F be the set f bold edges. We have that K=F.
Fig. 6.9 shows the bipartite transform H of G where the edges weighting zero of D are directed.
There are six strongly connected components of H. They are ordered from left to right. The
coefficients of a solution of (6.5) are c1=+5, c2=−5 , c3=+3 , c4=−3, c5=+1 and c6=−1 as is easily
checked using algorithm COMPUTE_SUPPORT and Lemma 6.8.
.

2 6

3

4

51

Figure 6.8. A graph and, in bold, a subset F of edges

Pag. 109

2 6

3′

4

5′1′ 4′6′ 2′

15 3

+5

-5

+4

-4

+3

-3

+2

-2

+1

-1

0

0

Figure 6.9. The bipartite transform H of the graph of Fig. 6.8. The edges of
H in correspondence of F are directed from the upper part to the lower part.

To find if there exist a bipartite component of G−K that satisfy the condition (i) and (ii) of Lemma
6.6, we can proceed as follows.
Let (B1,…Bh) the bipartite connected components of G−K. Suppose we have for each node v of Bi,
i=1,…,h the following

 cn(v) the number i of the bipartite component Bi containing v
 side(v)∈{1, 2} one of the two sides of the bipartite component Bi containing v

and let

 AT1(Bi)∈{0,1,2} set to 1 if at least one edge of K is attached to side 1 of Bi

 set to 2 if an edge of K has both end point attached to side 1 of Bi
 set to 0 otherwise
 AT2(Bi)∈{0,1,2} set to 1 if at least one edge of K is attached to side 2 of Bi

set to 2 if an edge of K has both end point attached to side 2 of Bi
 set to 0 otherwise

Then for each link e=(u1,u2) of K, if side(u1)=side(u2) and CN(u1)=CN(u2) then we set
ATside(u1)(Bi):=2. Otherwise if uj, j=1,2 is attached to the side k of Bi in then we set ATk(Bi):=1.
Finally for each component Bi we check if AT1(Bi)+AT2(Bi)=1. In this case conditions (i) and (ii) of
Lemma 6.6 are satisfied. Since all those tasks takes time linear to the size of the graph and for
Remark 6.1, we have the following

Theorem 6.4 Algorithm FIND_ALGEBRAIC_SUBSET has time complexity linear in the size of
the graph.

If H is a graph then we can use the algorithm FIND_ALGEBRAIC_SUBSET to find a maximally
contained algebraic subset of F as in the following algorithm :

MAXIMALLY_CONTAINED
input :a graph G and a subset F of edges
output :a maximally contained algebraic subset of F

begin
 M:=∅ ;
 while A:= FIND_ALGEBRAIC_SUBSET (G, F) is not empty do
 begin
 M:=M ∪ A;
 F:=F−A;

Pag. 110

 end
 output M;
end

The time complexity of the algorithm MAXIMALLY_CONTAINED is at most |F| times the time
complexity of FIND_ALGEBRAIC_SUBSET. Therefore MAXIMALLY_CONTAINED takes at
most quadratic time in the size of H.

Pag. 111

Chapter 7

Minimal invariant sets in a vertex-weighted graph

7.1. Introduction
Let G be a graph with vertex set V(G) and an edge set E(G), which contains no isolated vertices
and no parallel edges but loops are allowed. A (vertex) weighting of G is a |V(G)|-dimensional
vector of real numbers. A weighting a is an admissible R-weighting (or an admissible R+-weighting)
if there exists at least one real-valued (a nonnegative real-valued, respectively) solution of the
following system of |V(G)| linear equations

 G x = a (7.1)

where G is the (vertex-edge) incidence matrix of G. If a is an admissible R-weighting (or an
admissible R+-weighting), then real-valued (nonnegative real-valued, respectively) solutions of
system (7.1) are called (edge) R-labellings (R+-labellings, respectively) constrained by a. In the
theory of magic graphs [21, 32], a weighting a is called an “indexing vector” or a “vertex
labelling”, and a labelling constrained by a is also called a labelling “induced” by or “compatible”
with a. It is well-known [21, 32] that an R-weighting a is always admissible unless G is a bipartite
graph and ∑v∈U av ≠ ∑v∈W av where (U, W) is a bipartition of G, and the same holds if a is an R+-
weighting of G [27, 41].

Given an admissible R-weighting (or an admissible R+-weighting) a of G, a subset S of E(G) is an
R-invariant set (an R+-invariant set, respectively) if either S = Ø or ∑e∈S l(e) = ∑e∈S l'(e) for every
two R-labellings (R+-labellings, respectively) l and l' of G constrained by a; if this is the case, the
value of S is taken to be 0 if S = Ø, and to be the sum ∑e∈S l(e) where l is any R-labelling (any R+-
labelling, respectively) constrained by a, otherwise. If the singleton {e} is an R-invariant set (or an
R+-invariant set), we call e an R-invariant edge (an R+-invariant edge, respectively). A nonempty
R-invariant set (or R+-invariant set) is minimal if none of its nonempty proper subsets is an R-
invariant set (an R+-invariant set, respectively). It is easy to see that the family of R-invariant sets as
well as the family of R+-invariant sets are closed under disjoint union and proper difference. So, by
the closure under proper difference and disjoint union, a nonempty edge set is an invariant set if
and only if it is the disjoint union of one or more minimal invariant sets.

In this Chapter we address the problem of finding a characterisation of minimal R-invariant sets (or
R+-invariant sets) for a given admissible R-weighting (or R+-weighting) of a graph. The interest in
(minimal) invariant sets was first motivated by the security issues connected with the publication of
statistical data [18, 27, 33, 34, 35, 36, 40, 42, 43, 45, 46, 49, 50]. Recently, invariant sets have
found applications in sum-query processing [51].

At the present, the only known result about minimal algebraic sets is a graphical characterisation of
minimal invariant sets in a bipartite weighted graph [36, 39]. In this paper we first give a
polynomial test for recognising invariant sets and, next, state a graphical characterisation of
minimal invariant sets in a nonbipartite weighted graph.

Pag. 112

7.2. Definitions
In this section, we recall some more-or-less standard definitions on graphs, which will be used in
the sequel. A graph G is defined by a nonempty finite set, denoted by V(G) and called the set of its
vertices, and by a (possibly empty) set, denoted by E(G) and called the set of its edges, where each
edge is an unordered couple of vertices which are called its endpoints. A trivial graph is a graph G
with E(G) = Ø. A subgraph of graph G is a graph H with V(H) ⊆ V(G) and E(H) ⊆ E(G). An edge
in E(G)\E(H) having at least one endpoint in V(H) is said to be attached to H, and the vertices of H
that are endpoints of edges attached to H are called the attachments of H. The subgraph of G
induced by a nonempty subset U of V(G), denoted by G(U), is the graph with vertex set U whose
edges are the edges of G whose endpoints belong to U.

An edge with identical endpoints is called a loop, and an edge with distinct endpoints a link. The
star of a vertex v, denoted by star(v), is the set of edges incident with v. An independent set is a
nonempty set vertices whose stars are pairwise disjoint. A starset is the (disjoint) union of the stars
of vertices from an independent set; if U is an independet set, then by starset(U) we denote the
starset over U, that is, starset(U) = ∪v∈U star(v). A complete graph is a loopless graph with an edge
for each pair of distinct vertices.

A walk is a sequence (vo, e1, v1, …, ek, vk) whose terms are alternately vertices and edges, such that
if k > 0 then, for 1 ≤ i ≤ k, the endpoints of ei are vi–1 and vi; the vertices vo and vk are its start and
end vertices, respectively, and k is its length. A cycle is a walk whose start and end vertices are the
same. A walk is a path if no vertex appears on it more than once. A cycle is a circuit if no vertex,
other than the start-end vertex, appears more than once. Accordingly, a loop defines a circuit of
length 1. A graph is connected if any two vertices are joined by a path. A component of a graph is a
maximal connected induced subgraph.

A graph G is bipartite if G contains no odd cycles, that is, if and only if either G is a trivial graph or
there is a bipartition (U, W) of V(G) such that each edge of G has one endpoint in U and the other
endpoint in W. The components of a graph that are bipartite will be referred to as its bipartite
components. A nontrivial bipartite graph with bipartition (U, W) is a complete bipartite graph if
there is an edge for each pair of vertices u and v with u ∈ U and v ∈ W.

For subsets U and W of V(G), by [U, W] we denote the (possibly empty) set of edges of G with one
endpoint in U and the other endpoint in W. According to notation used in [15], if U is a nonempty
subset of V(G) and W is the complement of U, then D(U) is used for [U, W] and B(U) is used for
E(G)\D(U). Accordingly, if G is a nontrivial bipartite graph with bipartition (U, W), then E(G) =
D(U) = D(W) and, if G is an arbitrary graph, then E(G) = B(V(G)). A nonempty edge set S is a cut
set (an “edge cut” in [7]) if S = D(U) for some nonempty proper subset of V(G). A bond [7] is a
minimal cut set. An edge e of G is a bridge if the singleton {e} is a bond of G.

A nonempty edge set S is a bip set if S = B(U) for some nonempty proper subset of V(G). Note that,
since E\B(U) = D(U), the graph G–S is bipartite. If e is an edge of a nonbipartite and connected
graph G such that the singleton {e} is a bip set of G, then e is a handle on G–e [32]; in other words,
an edge of a nonbipartite and connected graph is a handle if and only if G–e is bipartite. Note that
there is at most one handle that is a loop, and there may be one or more handles that are links but, if
this is the case, then G is loopless.

Let U be a nonempty proper subset of V(G) such that D(U) ≠ Ø. The union of the cut set D(U) with
a bip set of G(U) is called a cut-bip set.

We now introduce special versions of cut sets, bip sets and cut-bip sets.

Pag. 113

We say that a cut set D(U) is simple if G(U) is bipartite and either G(U) is a trivial graph or there is
a bipartition (P, N) of G(U) such that the attachments of G(U) are all in P (see Figure 7.1); if this is
the case, we call G(U) and the components of the subgraph of G induced by V(G)\U the root and
the branches of the simple cut set, respectively.

P

N
root

branches

G U()

Figure 7.1. A simple cut set of a nonbipartite graph.

Remark 7.1 If the root of a simple cut set is a trivial graph, then the simple cut set is a starset given
by the disjoint union of the stars of vertices of its root; otherwise (see Figure 7.1), the simple cut set
is the proper difference of two starsets, that is, starset(P) \ starset(N).

We say that a bip set B(U) of G is simple if either G–B(U) is a trivial graph or there is a bipartition
(P, N) of G–B(U) such that the attachments of G–B(U) are all in P, that is, B(U) = [P, P]. A simple
bip set B(U) is a simple loop bip set if B(U) is a set of loops (see Figure 7.2).

B U ()

P

N

Figure 7.2. A simple loop bip set.

Remark 7.2 Let B(U) be a simple loop bip set. If G–B(U) is a trivial graph, then E(G) = B(U) and
the simple bip set is a starset given by the union of the stars of vertices of G; otherwise (see Figure
2), the simple loop bip set is the proper difference of two starsets, that is, starset(P) \ starset(N).

A simple bip set B(U) is a simple link bip set if B(U) is a set of links (see Figure 7.3).

Pag. 114

B U ()

P

N

Figure 7.3. A simple link bip set of a nonbipartite graph.

Let U be a nonempty proper subset of V(G) such that D(U) ≠ Ø, and let B be a bipset of G(U). We
say that the cut-bip set D(U) ∪ B of G is simple if either G(U)–B is a trivial graph or there is a
bipartition (P, N) of G(U)–B such that the attachments of G(U)–B are all in P. A simple cut-bip set
is a simple cut-loop set if B is a set of loops (see Figure 7.4); if this is the case, we call the subgraph
G(U)–B and the components of the subgraph of G induced by V(G)\U the root and the branches of
the simple cut-loop set, respectively.

G UP

N

branches

root

()

B

 Figure 7.4. A simple cut-loop set.

Remark 7.3 If the root of a simple cut-loop set is a trivial graph, then the simple cut-loop set is a
starset given by the disjoint union of the stars of vertices of its root; otherwise (see Figure 7.4), the
simple cut-loop set is the proper difference of two starsets, that is, starset(P) \ starset(N).

7.3. Invariance tests
Let S be a subset of E(G). The binary vector s = [s(e)]e∈E(G) with

 s(e) =

 ∈

else0
 if1 Se

will be referred to as the characteristic vector of S in G. The following two results characterise R-
invariant sets and R+-invariant sets in terms of their characteristic vectors.

Pag. 115

Proposition 7.1 [12] Let a be an admissible R-weighting of a graph G. A subset S of E(G) is an R-
invariant set for a if and only if the characteristic vector of S is a linear combination of rows of the
incidence matrix of G.

Proposition 7.2 [46] Let a be an admissible R+-weighting of a graph G, and let Z be the set of the
R+-invariant edges with value zero. A subset S of E(G) is an R+-invariant set if and only if the
characteristic vector of S\Z in G–Z is a linear combination of rows of the incidence matrix of G–Z.

According to the terminology introduced in [39], a subset of E(G) whose characteristic vector
belongs to the row space of the incidence matrix of G (i.e., the linear space spanned by the rows of
the incidence matrix of G) is called an algebraic (edge) set of G. Thus, Proposition 7.1 states that
an edge set S is an R-invariant set if and only if S is an algebraic set of G, and Proposition 7.2 states
that an edge set S is an R+-invariant set if and only if S\Z is an algebraic set of G–Z.

Propositions 7.1 and 7.2 lead to efficient tests for recognising invariant sets and computing their
values. We first consider R-invariant sets and, then, R+-invariant sets.

(R-invariant sets) Let S be a subset of E(G). By the very definition, one has that S is an algebraic set
of G if and only if the following equation system

=
=+

),(loopeach for),(
),(link each for),(

wwwwsc
vuvuscc

w

vu (7.2)

has a real-valued solution c = [cv]v∈V(G). The following result states that one can recognise an
algebraic set in linear time.

Proposition 7.3 [46] A solution (if any) of system (7.2) can be found in time linear in the size of G.

By Propositions 7.1 and 7.3, one can decide whether or not a subset S of E(G) is an R-invariant set
in time linear in the size of G. Moreover, if S is an R-invariant set then, given a solution c of system
(7.2), using basic linear algebra one can compute the value of S as

 ∑v∈V(G) cv av

and, hence, in time linear in the size of a.

(R+-invariant sets) The set Z of R+-invariant edges with value zero can be found in time linear in
the size of G [41]. So, by Propositions 7.2 and 7.3, the problem of deciding whether or not a subset
S of E(G) is an R+-invariant set has the same complexity as the problem of finding an R+-labelling
of G constrained by a. If G is bipartite, then Gusfield [27] proved that R+-labellings of G
constrained by a correspond to maximum flows of a network which can be obtained from G and a
in linear time, so that finding an R+-labelling of G constrained by a requires cubic time [3]. If G is
not bipartite, two of the authors [41] proved that R+-labellings of G constrained by a correspond to
R+-labellings of the so-called “bipartite transform” of G, which is a bipartite graph that can be
obtained from G in linear time, so that finding an R+-labelling of G constrained by a still requires
cubic time. To sum up, using Propositions 7.2 and 7.3, one can decide whether or not a subset S of
E(G) is an R+-invariant set in cubic time. Moreover, if S is an R+-invariant set then, given a solution
c of system (7.2) for the set S\Z of edges of the graph G–Z, one can compute the value of S as

 ∑v∈V(G–Z) cv av

Pag. 116

and, hence, in time linear in the size of a.

7.4. Algebraic sets
By Propositions 7.1 and 7.2, a characterisation of invariant sets passes through a characterisation of
algebraic sets. Like the family of invariant sets of a weighted graph, also the family of algebraic
sets of a graph is closed under disjoint union and proper difference [9, 10, 52]. Trivial examples of
an algebraic set of a graph G are the empty subset of E(G) and the star of each vertex of G. By the
closure under disjoint union and proper difference, one has that every starset and the proper
difference of two starsets are algebraic sets.

Lemma 7.1 Simple cut sets, simple loop bip sets, simple link bip sets and simple cut-loop sets are
all algebraic sets.
Proof. By Remarks 7.1, 7.2 and 7.3, simple cut sets, simple loop bip sets and simple cut-loop sets
are all algebraic sets. What remains to prove is that every simple link bip set is an algebraic set. Let
S be a simple link bip set of a graph G. Of course G is loopless. If S = E(G), then the characteristic
vector s of S in G can be written as

1
2

 ∑v∈V(G) gv ;

otherwise, s can be written as (see Figure 7.2)

1
2

 ∑v∈P gv –

1
2

 ∑v∈N gv .

So, in both cases, S is an algebraic set of G.

Remark 7.4 If G is a loopless graph, then the family of algebraic sets of G is also closed under
complementation since E(G) is an algebraic set. On the other hand, if G is a connected graph with
loops, then it is easy to see that E(G) is an algebraic set if and only if the set of loops of G is a
simple (loop) bip set of G, so that the family of algebraic sets of G is closed under complementation
if and only if the set of loops of G is a simple (loop) bip set of G.

We now state some general properties of an algebraic set of a graph G. The first property we now
state follows from the following two facts involving the incidence matrix G of G.

Fact 7.1 [15] The rank of G is |V(G)|–p, where p is the number of bipartite components of G.

Let r = [r(e)]e∈E(G) be a vector of the row space of G. The support of r is the edge set ||r|| = {e ∈
E(G): r(e) ≠ 0}, and R is a minimal vector of the row space of G is if r ≠ 0 and the support of no
nonzero vector of the row space of G is a proper subset of ||r||. By Fact 1 one has

Fact 7.2 [15] The supports of minimal vectors of the row space of G are exactly the minimal edge
sets whose removal from G creates one more bipartite component.

Theorem 7.1 The removal of a nonempty algebraic set creates at least one more bipartite
component.
Proof. Let S be a nonempty algebraic set, and s its characteristic vector. Since s is a vector of the
row space of G, S contains the support of a minimal vector of the row space of G. Then, the
statement follows from Fact 7.2.

Pag. 117

Let S be a subset of E(G). Of course, S is an algebraic set of G if and only if, for each component G'
of G, the intersection of S with E(G') is algebraic too. Therefore, without loss of generality,
henceforth we assume that G is connected. Then, the rank of G is equal to either |V(G)|–1 or |V(G)|
depending on whether or not G is bipartite. It follows that, if the constant term of system (7.2) is the
characteristic vector of an algebraic set of G, then the equation system has either ∞1 solutions or
exactly one solution depending on whether or not G is bipartite. Let S be an algebraic set of G with
characteristic vector s, and let c be a solution of system (7.2). Let (P, N) be the signed support of c;
that is,

 P = {v ∈ V(G): cv > 0} N = {v ∈V: cv < 0}.

Since cu + cv ∈ {0, 1} for each link (u, v), and cw ∈ {0, 1} for each loop (w, w), it is easily seen that

Fact 7.3 There is no edge (u, v) of G with u ∈ N and v ∈ V(G)\P.

Fact 7.4 Each edge (u, v) of G with u ∈ P and v ∈ V(G)\N belongs to S.

Moreover, for every two vertices u and v of G, if (v1, …, vk) is a path with start-vertex u and end-
vertex v then, since c is a solution of system (2), one has

 cvi+1 = s(vi, vi+1) – cvi (i = 1, …, k–1)

so that, since s is a binary vector, one has

 cv = α + (–1)k–1 cu (7.3)

where α is an integer. Therefore, the following holds (see also lemma 6.1).

Fact 7.5 For every two vertices u and v of G, either both cu and cv are integers or neither cu nor cv
is an integer.

Lemma 7.2 Let S be an algebraic set of a connected graph G with characteristic vector s. If G is
bipartite, then there exists an integral solution of system (7.2). If G is not bipartite, then the solution
of system (7.2) is integral whenever G contains a loop; but, if G is not bipartite and loopless, then
the solution of system (7.2) is either integral or half-integral.
Proof. Let us distinguish two cases depending on whether or not G is bipartite.

Case 1: G is bipartite. Then, one component, say cu, of a solution c of system (7.2) can be chosen
arbitrarily, so that cu can be taken to be 0 and, then, by (7.3) all the remaining components of c will
be integers.

Case 2: G is not bipartite. Then, there is exactly one solution of system (7.2), say c. Now, if G
contains a loop, say (w, w), then cw is equal to either 1 or 0 depending on whether the loop is or is
not in S, so that by Fact 7.5 all the remaining components of c will be integers. If G is loopless and

v is the start-end vertex of an odd circuit, then by (7.3) one has cv =

α
2

 so that cv is either an integer

or a half-integer (that is, a fraction having an odd integer as a numerator and 2 as a denominator); in
the former case, by Fact 7.5 each component of c is an integer, and in the latter case each
component of c is a half-integer.

Pag. 118

Lemma 7.3 Let S be an algebraic set of a connected graph G with characteristic vector s. Let c be a
solution of system (2), and (P, N) the signed support of c. If [P, P] ≠ Ø, then either

(i) [P, P] is a set of loops, or

(ii) [P, P] is a set of links, G is loopless and V(G) = P∪N.

Proof see Lemma 6.1.

With the notation above, consider the set S' of edges with one endpoint in P and the orther endpoint
in V(G)\N, that is, S' = [P, V(G)\N]. By Fact 7.4, S' is a subset of S. Moreover, if G is bipartite, then
S' may be empty; but, if G is not bipartite, then S' cannot be empty for, otherwise, E(G) = [P, N]
and, hence, G would be bipartite.

Lemma 7.4 Let G be a nonbipartite and connected graph, and S a nonempty algebraic set. Let S' =
[P, V(G)\N] and H = G(P∪N) – [P, P]. Then

(i) if V(G) = P∪N, then S' is a simple loop bip set or a simple link bip set of G;

(ii) if V(G) ≠ P∪N, then S' is either a simple cut set or a simple cut-loop set (both with root H)
depending on whether or not [P, P] is an empty set, and

(iii) S' is a nonempty algebraic subset of S.

Proof By Fact 7.3, [N, N] = Ø so that H is bipartite with bipartition (P, N). Again, by Fact 7.3, [N,
Z] = Ø so that the attachments of H are all in P. Then, statements (i) and (ii) follow from parts (i)
and (ii) of Lemma 7.3. Finally, as noted above, S' is a nonempty subset of S so that statement (iii)
follows from statements (i) and (ii) and from Lemma 7.1.

7.5. Minimal algebraic sets
A nonempty algebraic set of a graph G is minimal if none of its nonempty proper subsets is an
algebraic set of G, and an edge e is algebraic if {e} is an algebraic set. Note that, by the closure
under disjoint union and proper difference, one has then that every nonempty algebraic set of a
graph is a disjoint union of minimal algebraic sets. From Propositions 7.1 and 7.2 it follows that

Corollary 7.1 Let a be an admissible R-weighting of a graph G. A nonempty subset S of E(G) is a
minimal R-invariant set if and only if S is a minimal algebraic set of G.

Corollary 7.2 Let a be an admissible R-weighting of a graph G. A nonempty subset S of E(G) is a
minimal R+-invariant set if and only if either S = {e} for some edge e in Z or S\Z is a minimal
algebraic set of G–Z.

By Corollaries 7.1 and 7.2, a characterisation of minimal invariant sets passes through a
characterisation of minimal algebraic sets. The following is a graphical characterisation of minimal
algebraic sets of a bipartite graph.

Theorem 7.2 [36, 40] The minimal algebraic sets of a bipartite graph are exactly its simple bonds.
The minimal algebraic sets of a complete bipartite graph are exactly the stars of its vertices.

Corollary 7.3 The family of algebraic sets of a bipartite graph is the smallest family containing
stars, and is closed under disjoint union and proper difference. The family of algebraic sets of a
complete bipartite graph is formed by the empty set and by starsets.

Pag. 119

Proof. Let G be a bipartite graph. Since a simple bond can be obtained as a proper difference of two
distinct starsets (see Remark 7.1) and every nonempty algebraic set is the disjoint union of minimal
algebraic sets, the first statementent follows from Theorem 7.2. If G is a complete bipartite graph
then, by Theorem 7.2, the disjoint union of minimal algebraic sets is always a starset, and the
proper difference of two starsets is either the empty set or a starset.

By Theorem 7.2, one also has that an edge of a bipartite graph is algebraic if and only if it is a
bridge. At the present, the only known result about minimal algebraic sets of a nonbipartite and
connected graph is the following characterisation of algebraic edges.

Theorem 7.3 [41] An edge of a nonbipartite and connected graph is algebraic if and only if it is a
handle or a simple bridge.

We shall state a characterisation (see Theorem 7.5 below) of minimal algebraic sets of a
nonbipartite and connected graph, which subsumes Theorem 7.3.

Theorem 7.4 Let G be a nonbipartite and connected graph, and S a minimal algebraic set of G with
characteristic vector s. Let (P, N) be the signed support of the solution of system (7.2), and H =
G(P∪N) – [P, P]. Then, one has that

(a) if V(G) = P∪N, then S is a simple loop bip set or a simple link bip set of G and, for each
component B of H, there is an edge in S having both endpoints in B;

(b) if V(G) ≠ P∪N, then S is either a simple cut set or a simple cut-loop set (both with root H)
depending on whether or not [P, P] is an empty set, and

 (b1) H is connected,

 (b2) for each bipartite branch C of S, the set of edges attached to C
 is not a simple cut set, and

 (b3) if S is a simple cut set, then there is at least one nonbipartite branch of S.

Proof. First of all, observe that, by part (iii) of Lemma 7.4 and by the minimality of S, one has that
S = [P, V(G)\N].

(a) By part (i) of Lemma 7.4, if V(G) = P∪N, then S is either a simple loop bip set or a simple link
bip set of G. If S is a simple loop bip set, then H = G–S and, since G is connected, H is connected
too so that it is trivially true that there is an edge in S having both endpoints in each component of
H. Consider now the case that S is a simple link bip set. Suppose, by contradiction, that there is a
component B of H such that no edge in S has both endpoints in B (see Figure 7.5).

B

P

N

Figure 7.5

Pag. 120

Since G is not bipartite and, by Lemma 7.3, is loopless, the set S' = D[V(B)] is a nonempty proper
subset of S. Moreover, S' is a simple cut set and, by Lemma 7.1, S' is an algebraic set, which
contradicts the minimality of S.

(b) By part (ii) of Lemma 7.4, if V(G) ≠ P∪N, then S is either a simple cut set or a simple cut-loop
set of G (both with root H) depending on whether or not [P, P] =Ø.

(b1) Suppose, by contradiction, that H is not connected and let B be a component of H (see Figure
7.6).

B

P

N

B

P

N

Figure 7.6

Then, the set S' = D[V(B)] is a nonempty proper subset of S and is either a simple cut set or a simple
cut-loop set. By Lemma 7.1, S' is an algebraic set, which contradicts the minimality of S.

(b2) Suppose, by contradiction, that there is a bipartite branch C of S such that the set S' of edges
attached to C is a simple cut set (see Figure 7.7).

Pag. 121

C

N
H

P

C

N
H

P

Figure 7.7

By Lemma 7.1, S' is an algebraic set. Since G is not bipartite, either C is the unique branch of S and
S is a cut-loop set, or C is not the unique branch of S; in both cases, S' is a nonempty proper subset
of S, which contradicts the minimality of S.

(b3) Suppose, by contradiction, that S is a simple cut set and that the subgraph K of G induced by
V(G) \ (P∪N) is bipartite with bipartition (U, W). By (b2), the set of edges attached to no
component of K is a simple cut set (see Figure 7.8).

W

U

N
H

P

K

Figure 7.8

Pag. 122

So, neither [P, U] nor [P, W] is an empty set. Then, the set S' = [P, U] is a nonempty proper subset
of S and is a simple link bip set of G; so, by Lemma 7.1, S' is an algebraic set, which contradicts the
minimality of S.

We shall show that the converse of Theorem 7.4 also holds. We begin by proving the statement for
a simple loop bip set or a simple link bip set.

Lemma 7.5 Let G be a nonbipartite and connected graph, and let S be either a simple loop bip set
or a simple link bip set. Then, S is a minimal algebraic set of G if, for each component B of G–S,
there is an edge in S having both endpoints in B.
Proof. By Lemma 7.1, S is an algebraic set. Let us distinguish two cases depending on whether S is
a simple loop bip set or a simple link bip set. In the former case, S is the loop set of G so that, if S'
is a nonempty proper subset of S, then G–S' is connected and nonbipartite and, by Theorem 7.1, S'
is not an algebraic set. Let S be a simple link bip set and let S' be a minimal algebraic set contained
in S. By Theorem 7.4, S' may be either a simple link bip set or a simple cut set. We first prove that
(i) S' cannot be a simple cut set and, next, (ii) S' = S.

(i). Suppose by contradiction that S' is a simple cut set with root H'. Then, H' is an induced
subgraph of G and, by part (b1) of Theorem 7.4, H' is connected. Since S' is a subset of S, there
exists a component B of G–S that is a subgraph of H'. By hypothesis, there is an edge e in S whose
endpoints are both in B, which excludes that B is a one-point graph. Since H' is an induced
subgraph of G, e is an edge of H' so that H' is not bipartite, which contradicts the fact that H' is the
root of a simple cut set.

(ii). Let S' be a simple link bip set. Since G–S' is bipartite, each edge in S having both endpoints in
the same component of G–S must belong to S' (for, otherwise, G–S' would not be bipartite). We
now prove that also each edge in S whose endpoints are in distinct components of G–S must belong
to S', which completes the proof that S' = S. Suppose, by contradiction, that there is an edge (u, v) in
S\S' such that u and v are in two distinct components of G–S, say B1 and B2, respectively. By
hypothesis, there is an edge (u1, v1) in S having both endpoints in B1 and there is an edge (u2, v2) in
S having both endpoints in B2 (see Figure 7.9).

B

P

N

v

1

u1

B2

uv1 u2 v2

Figure 7.9

Since (u, v) does not belongs to S' and since S' is a subset of S, there is a component B' of G–S'
containing both B1 and B2. Since (u1, v1) and (u2, v2) are both in S' (see above), the vertices u1 and
u2 are attachments of B' which are joined by an odd path in B' (see Figure 7.10),

Pag. 123

B'

v

u

B1 B2

u1 v1

u2 v2

Figure 7.10

which contradicts the fact that S' is a simple (link) bip set of G.

The next lemma states a sufficient condition for a simple cut set or a simple cut-loop set to be a
minimal algebraic set.

Lemma 7.6 Let G be a nonbipartite and connected graph, and let S be either a simple cut set or a
simple cut-loop set. Then, S is a minimal algebraic set of G if

(i) the root of S is connected, and

(ii) for each bipartite branch C of S, the set of edges attached to C is not a simple cut set, and

(iii) if S is a simple cut set, then there is at least one nonbipartite branch of S.

Proof. By Lemma 7.1, S is an algebraic set. Let S' be a minimal algebraic set that is contained in S.
We shall show that S' = S. Let us distinguish two cases depending on whether S is a simple cut set
or a simple cut-loop set.

Case 1: Let S be a simple cut set with root H. By Theorem 7.4, S' may be either a simple link bip set
or a simple cut set. But, S' cannot be a simple link bip set because, by (iii), G–S is not bipartite and,
since S' is a subset of S, G–S' is not bipartite. Therefore, S' is a simple cut set. Let H' be the root of
S'. In order to prove that S' = S, it is sufficient to show that H' = H. First of all, note that H' is a
connected by part (b1) of Theorem 7.4 and H is connected by (i). Since S' is a subset of S, H'
contains at least one component of G–S. Since H' is bipartite, H' can contain only bipartite
components of G–S. Suppose, by contradiction, that H' contains a bipartite branch C of S. Since the
set of edges attached to C is not a simple cut set (see Figure 7.11), at least one edge attached to C is
not in S'.

C
N

H

P

U

W

Figure 7.11

But, then, H' should also contain H and, since the root of a simple cut set is an induced subgraph, H'
should also contain all the edges attached to C (see Figure 7.12), which would make H' a
nonbipartite graph. Therefore, H' = H and, hence, S' = S.

Pag. 124

N
H'

P

U

W

Figure 7.12

Case 2: Let S be a simple cut-loop set with root H. By Theorem 7.4, S' may be either a simple (loop
or link) bip set, or a simple cut set, or a simple cut-loop set. First, S' cannot be a simple loop bip set
for, otherwise, S' would be the set of loops of G but, even if each branch of S were bipartite, G–S'
would not be bipartite by (ii). Second, since G contains loops, S' cannot be a simple link bip set by
part (ii) of Lemma 7.3. Third, S' cannot be a simple cut set because, using the same argument as in
Case 1, the root of S' would contain H but, then, would also contain the loops attached to H and,
hence, would not be bipartite. Therefore, S' must be a simple cut-loop set. Let H' be the root of S'.
Using the same argument as in Case 1, one can prove that H' contains no branches of S so that H is
the unique component of G–S contained in H'. Moreover, since H' is bipartite, each loop in S must
be in S' for, otherwise, H' would not be bipartite. Therefore, S' = S.

Finally, we are in a position to state the following characterization of minimal algebraic sets of a
nonbipartite graph.

Theorem 7.5 Let G be a nonbipartite and connected graph. A nonempty edge set S is a minimal
algebraic set of G if and only if either

(a) S is a simple loop bip set or a simple link bip set such that, for each connected component B
of G–S, there is an edge in S having both endpoints in B; or

 (b) S is a simple cut set or a simple cut-loop set such that

 (b1) the root of S is connected,

 (b2) for each bipartite branch C of S, the set of edges attached to C is not a
 simple cut set, and

 (b3) if S is a simple cut set, then there is at least one nonbipartite branch of S.

Proof. (only if) By Theorem 7.4. (if) By Lemmas 7.5 and 7.6.

Corollary 7.4 The family of algebraic sets of a nonbipartite and loopless, connected graph is the
smallest family containing stars and the whole edge set, and is closed under disjoint union and
proper difference. The family of algebraic sets of a graph with loops is the smallest family
containing stars, and is closed under disjoint union and proper difference.
Proof. If G is a loopless graph then, by Remark 7.4, E(G) is an algebraic set. Moreover, every
simple cut set can be obtained as a proper difference of two starsets, and every simple link bip set
that is properly contained in E(G) can be obtained as E(G) minus a starset. If G a graph with loops,
then every minimal algebraic set is either a simple cut set, or a simple loop bip set or a simple cut-
loop set and, hence, is either a starset or the proper difference of two starsets.

As a consequence of the first part of Corollary 7.4, one has

Pag. 125

Corollary 7.5 The family of algebraic sets of a complete graph G contains exactly 2 (|V(G)| + 1)
sets; namely, Ø, E(G) and, for each vertex v of G, the two sets star(v) and E(G)\star(v).

Pag. 126

Conclusions

The Performance Problem
Existing approaches to answering statistical queries using aggregate views adopt as rewriting
language the very query language. We have presented an analytic approach which proves to be
more powerful. Two query-execution plans have been given for sum-queries: one, plan D, is
independent of the domain of the response variable; the other, plan E, is sensitive to the domain of
the response variable. We have shown that plan D always succeeds in recognising answerable sum-
queries in polynomial time, and that plan E succeeds in doing so only if the domain of the response
variable is the set of reals, or the set integers or the set nonnegative reals (the case of the set
nonnegative integers requires solving a coNP-hard problem). Moreover, both in plan D and in plan
E the problem of finding a maximally contained sum-query proves to be NP-hard, so that more-or-
less trivial solutions should be adopted when a sum-query turns out to be unanswerable.
Future research at least includes the following two directions:

• special classes of (maps of) view bases for which the two above-mentioned intractable
problems above can be solved in polynomial time

• the extension of the analytic approach to semi-additive statistical queries such as max and
min [9, 10, 37].

The Security Problem
In order to protect the confidentiality of individual data, the query system of a statistical database
should be sure that no confidential piece of information runs the risk of being disclosed in an exact
or approximate way from responses to sum-queries. To achieve this, the query system should audit
sum-queries and issue non-informative answers to sum-queries that directly or indirectly would lead
to the disclosure of confidential data. We proposed an answering procedure, which makes a
parsimonious use of standard linear-programming methods.

Possible directions of future research are:

• auditing sum-queries with a response variable that is of a general additive type (e.g., an
Abelian group [9, 10, 43]), or of a specific type (e.g., a nonnegative integer type or a binary
type [37]);

• auditing max- or min-queries, by relaxing some restrictive assumptions such as the
individual values of the response variable are all distinct [11] and there is a single tuple
falling in every sensitive category [11, 37].

Finally, note that auditing count-queries requires solving the same integer linear-programming
problems as auditing sum-queries with a response variable of a nonnegative integer type.

Problems solved when the information model is graphical
We solved the problem of finding the set of invariant edges of an EWG under the assumption that
edge weights are nonnegative reals. It is an open problem the case that edge weights are
nonnegative integers. However, if the underlying graph of the EWG is bipartite, then Gusfield’s
algorithm still holds owing to the total unimodularity of the incidence matrix.
A natural generalization of the problem dealt with in Chapter 4 is the search of invariant edges of an
edge-weighted hypergraph. It should be noted that mutatis mutandis Theorem 4.3 (see Section 4.3)
applies to edge-weighted hypergraphs too. So, in order to find the invariant edges of an edge-

Pag. 127

weighted hypergraph (G, w), we have to devise a procedure for computing its kernel, say K, and the
co-loops of the matroid M(G–K). It should be clear that, in order to find to co-loops of M(G–K), we
need a formula for the rank of the incidence matrix of G. At the present, such a formula is known
only for special classes of hypergraphs, e.g., for the class of connected uniform hypergraphs [5].
Also we solved the problem of finding feasible ranges of the sums of the weights for an arbitrary set
of edges on an edge weighted graph.

We solved the NAS problem in linear time and also solved the problem of finding a maximal
algebraic set in quadratic time. However we left open the question of whether the problem of
finding a maximum algebraic set of a given edge set can be solved in polynomial time or not.
Finally, we stated the graphical characterisation of minimal algebraic sets. This characterisation
suggests viewing a minimal algebraic set S as being a “chemical bounding” among the components
of G–S that is “easy to loose”. Future research is required to find an analogous characterisation for
the case that weights are nonnegative integers, or to consider invariant sets of a weighted
hypergraph.

Pag. 128

References

1 Adam, N.R., Wortmann, J.C.: Security control methods for statistical databases: a
comparative study. ACM Computing Surveys 21 (1989) 515-556.

2 Aho, A.V., Hopcroft J.E. and J.F. Ullman: Data Structures and Algorithms, Addison-Wesley
Pub. Co., Reading 1987.

3 Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice Hall, Englewood Cliffs,
1993.

4 Billingsley, P.: Probability and measure. Wiley, 1995.

5 Björner A. and J. Karlander: The mod p rank of incidence matrices for connected uniform
hypergraphs, European J. Combinatorics, 14 (1993), 151-155.

6 Bjorner A., M. Las Vergnas, B. Sturmfels, N. White, and G. Ziegler: Oriented Matroids,
Cambridge University Press, Cambridge, MA,1993.

7 Bondy, J.A., Murty, U.S.R Graph theory with applications. Nort Holland, New York, 1976.

8 Brankovic L., P. Horak and M. Miller, An optimization problem in statistical databases, SIAM
J. Discrete Mathematics, 13 (2000), 346-353.

9 Chang Chen, M., McNamee, L., Melkanoff, M.: On the data model and access method of
summary data management. IEEE Trans. on Knowledge and Data Engineering 1 (1989) 519-529.

10 Chang Chen, M., McNamee, L.: A model of summary data and its applications in statistical
databases, Proc. IV Int. Working Conf. on “Statistical & Scientific Database Management”, (M.
Rafanelli, J.C. Klensin and P. Svensson, eds.), Lecture Notes in Computer Sciences 339, 354-372
(Springer-Verlag, 1989).

11 Chin, F.: Security problems on inference control for SUM, MAX, and MIN queries. J. ACM
33 (1986) 451-464.

12 Chin, F.Y., Ozsoyoglu, G.: Auditing and inference control in statistical databases. IEEE
Trans. on Software Engineering 8 (1982) 574-582.

13 Chvátal, V.: Linear Programming. Freeman, New York, 1983.

14 Cohen, S., Nutt, W., Serebrenik, A.: Rewriting aggregate queries using views, Proc. XVIII
ACM Symp. on “Principles of Database Systems”, 155-166, 1999.

15 Conforti M. and Rao M.R., Some new matroids on graphs: Cut sets and the max cut problem,
Mathematics of Operations Research, 12 (1987), 193-204.

16 Cormen T. H., Leiserson C. E., Rivest R. L., Introduction to Algorithms, McGraw-Hill, 1990.

17 Cox, L.H.: Suppression methodology and statistical disclosure control. J. American Statistical
Association 75 (1980) 377-385.

Pag. 129

18 Cox, L.H., Zayatz, L.V.: An agenda for research on statistical disclosure limitation. J. Official
Statistics 11 (1995) 205-220.

19 Dantzig G.B., Linear Programming and Extensions, Princeton University Press, Princeton,
1963.

20 Dobra, A., Fienberg, S.E.: Bounds for cell entries in contingency tables given the marginal
totals and decomposable graphs, Proceedings of the National Academy of Sciences of the United
States of America 97 (2000) 11885-11892.

21 Doob, M.: Generalization of magic graphs J. Combinatorial Theory B 17 (1974) 205-17.

22 Duncan, G.T., Fienberg, S.E., Krishnan, R., Padman, R., Roehrig, S.F.: Disclosure limitation
methods and information loss for tabular data, in Confidentiality, Disclosure and Data Access
(Doyle, P., Lane, J., Theeuwes, J., Zayatz, L., eds.), Elsevier (2001), 135-166.

23 Even S., Graph Algorithms, Computer Science Press, 1979.

24 Faloutsos, C., Jagadish, H.V., Sidiropoulos, N.D.: Recovering information from summary
data, Proc. of the XXIII Int. Conf. on “Very Large Data Bases” 1997, 36-45.

25 Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-
completeness. W. H. Freeman, San Francisco, 1979.

26 Grumbach, S., Tininini, L.: On the content of materialized aggregate views. J. of Computer
and System Sciences 66 (2003), 133-168 (A preliminary version appeared in Proc. XIX ACM
Symp. on “Principles of Database Systems”, 2000.)

27 Gusfield, D., A Graph Theoretic Approach to Statistical Data Security, SIAM J. on
Computing. 17(3): 552-571 (1988)

28 Halevy, A.Y.; Answering queries using views: a survey. The VLDB Journal 10 (2001), 270-
294.

29 Horak P., Brankovic L. and M. Miller, A combinatorial problem in database security, Discrete
Applied Mathematics, 91 (1999), 119-126.

30 Hsu T.-S., and Kao M. Y., Security problems for statistical databases with general cell
suppression, in Proc. of the IX Int. Conf. on “Scientific & Statistical Database Management” (IEEE
Comp. Society, Los Alamitos, CA), Olympia, 1997, 155-164.

31 Hurtado, C.A., Mendelzon, A.O.: Reasoning about summarizability in heterogeneous
multidimensional schemas, Proc. Int. conf. on “Database Theory” 2001, (Van de Bussche, J.,
Vianu, V., eds.) LNCS 1973, 375-389, 2001.

32 Jeurissen, R.H.: Magic graphs, a characterization. Europ. J. Combinatorics (1988) 9, 363-368.

33 Kao, M. Y. and D. Gusfield, Efficient detection and protection of information in cross-
tabulated tables I: Linear invariant test, SIAM J. Discrete Mathematics, 6 (1993), 460-476.

34 Kao, M. Y., Data security equals graph connectivity, SIAM J. Discrete Mathematics, 9 (1996),
87-100.

Pag. 130

35 Kao M. Y., Efficient detection and protection of information in cross-tabulated tables II:
minimal linear invariants, J. Combinatorial Optimization, 1 (1997), 187-202.

36 Kao M. Y., Total protection of analytic-invariant information in cross-tabulated tables, SIAM
J. Computing, 26 (1997), 231-242.

37 Kleinberg, J.M., Papadimitriou, C.H., Raghavan, P.: Auditing Boolean attributes. J. of
Computer and System Sciences 66 (2003), 244-253 (A preliminary version appeared in Proc. XIX
ACM Symp. on “Principles of Database Systems”, 2000)

38 Maier, D.: The Theory of Relational Databases. Computer Science Press, Rockville, 1983.

39 Malvestuto, F.M., A universal-scheme approach to statistical databases containing
homogeneous summary tables, ACM Transactions on Database Systems, 18 (1993), 678-708.

40 Malvestuto, F.M., Mezzini, M.: On the hardness of protecting sensitive information in a
statistical database. Proc. World Multiconference on “Systemics, Cybernetics and Informatics”,
vol. XIV (2001) 504-509.

41 Malvestuto, F.M., M.Mezzini, A Linear time algorithm for finding the invariant edges of
edge-weighted graph, SIAM J. on Computing 31(5): 1438-1455 (2002)

42 Malvestuto, F.M., Mezzini, M.: Auditing sum-queries. Proc. International Conference on
“Database Theory” (2003) 504-509, Lecture Notes in Computer Sciences.

43 Malvestuto, F.M., Mezzini, M.: Privacy preserving and data mining in an on-line statistical
database of additive type. Proc. International Conference on “Privacy in Statistical Databases”
(2004), Barcelona.

44 Malvestuto, F.M., Moscarini, M.: Query evaluability in statistical databases. IEEE
Transactions on Knowledge and Data Engineering 2 (1990) 425-430.

45 Malvestuto, F.M., M. Moscarini, Suppressing marginal totals from a two-dimensional table to
protect sensitive information, Statistics and Computing, 7 (1997), 101-114.

46 Malvestuto, F.M., M. Moscarini, An Audit Expert for large statistical databases, in Proc. of
the First Conf. on “Statistical Data Protection”, Lisbon, 1998 (edited by EUROSTAT, 1999), 29-
43.

47 Malvestuto, F.M., Moscarini, M.: Computational issues connected with the protection of
sensitive statistics by auditing sum-queries, Proc. X Int. Conf. on “Scientific & Statistical
Database Management”, (M. Rafanelli, M. Jarke, eds.), IEEE Computer Science (1998), 134-144.

48 Malvestuto, F.M., Moscarini, M.: Privacy in multidimensional databases, in Multidimensional
Databases (Rafanelli, M., editor), Idea Group Pub. (2003), Hershey, USA, 310-360.

49 Malvestuto, F.M., M. Moscarini and M. Rafanelli, Suppressing marginal cells to protect
sensitive information in a two-dimensional statistical table, in Proc. of the X ACM Symp. on
“Principles of Database Systems”, Denver, 1991, 252-258.

Pag. 131

50 Malvestuto F. M., Mezzini M., M.Moscarini, Auditing Sum-Queries To Make A Statistical
Database Secure, accepted for publication to transaction of ACM on Information and System
Security (2004)

51 Malvestuto, F.M., Mezzini M., M.Moscarini, Answering Statistical Sum-Queries Using
Materialised Sum-View: An Analytic Approach, Submitted to Transaction of ACM on Database
Systems (2004)

52 Malvestuto, F.M., Zuffada, C.: The classification problem with semantically heterogenous
data, Proc. IV Int. Working Conf. on “Statistical & Scientific Database Management”, (M.
Rafanelli, J.C. Klensin and P. Svensson, eds.), Lecture Notes in Computer Sciences 339, 157- 176
(Springer-Verlag, 1989).

53 Ng, W.K., Ravishankar, C.V.: Information synthesis in statistical databases, Proc. IV Int.
Conf. on “Informaton & Knowledge Management”, 355-361, 1995.

54 Reingold E.M., J. Nievergelt and N. Deo, Combinatorial Algorithms: Theory and Practice,
Prentice-Hall, Englewood Cliffs, 1977.

55 Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York, 1986.

56 Srivastava, D., Dar, S., Jagadish, H.V., and Levy, A.: Anwering queries with aggregation
using views, Proc. XXII Conf. on “Very Large Data Bases”, 318-329, 1996.

57 Van Nuffelen C., On the incidence matrix of a graph, IEEE Trans. Circuits and Systems, 23
(1976), 572.

58 Wang, L., Wijekera, D., Jajodia, S.: Cardinality-based inference control in datacubes. J. of
Computer Security 12 (2004) 655-692.

59 Wang, L., Wijekera, D., Jajodia, S.: Cardinality-based inference control in sum-only data
cubes. Proc. European Symposium on “Computer Security” (ESORICS 2002). Lecture Notes in
Computer Science, Vol. 2502. Springer-Verlag, New York (2002), 55-71.

60 Welsh, D.J.A. Matroids: Fundamental Concepts, Chapter 9 of Handbook of Combinatorics
(R.L. Graham, M. Groötschel and L. Lovász, eds.) vol. 1, North-Holland, Amsterdam, 1995.

61 Willenborg, L., de Waal, T.: Statistical Disclosure Control in Practice. Lecture Notes in
Statistics, Vol. 111. Springer-Verlag, New York (1996).

62 Willenborg, L., de Waal, T.: Elements of Statistical Disclosure. Lecture Notes in Statistics
155 (2000). Springer-Verlag, New York.

63 Zhang, N., Zhao, W., Chen, J.: Cardinality-based inference control in OLAP systems: an
information theoretic approach. Proc. ACM Int. Workshop on “Data Warehousing and OLAP”
(DOLAP 2004), 59-64.

