
UNIVERSITÀ DEGLI STUDI DI ROMA “LA SAPIENZA”

DOTTORATO DI RICERCA IN INFORMATICA

XV CICLO – 2005– XV-05-2

Reliable Secure Multicast Data Transmission and
Applications

Flavio Lombardi

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/74322929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITÀ DEGLI STUDI DI ROMA “LA SAPIENZA”

DOTTORATO DI RICERCA IN INFORMATICA

XV CICLO - 2005– XV-05-2

Flavio Lombardi

Reliable Secure Multicast Data Transmission and
Applications

Thesis Committee

Prof. Giancarlo Bongiovanni (Advisor)
Prof. Luigi Vincenzo Mancini
Ing. Mauro Draoli

Reviewers

Prof. Domenico Laforenza
Prof. Peter Kunszt

AUTHOR’S ADDRESS:

Flavio Lombardi
Dipartimento di Informatica
Università degli Studi di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy
E-MAIL: lombardi@di.uniroma1.it
WWW:

Abstract

Multicast transmission is a useful technology for one to many and many to many
communication scenarios. It allows to interchange data among members of a group
in a bandwidth-efficient way.

During its experimental phase IP multicast has proven to be a technology more
scalable than unicast, but nevertheless limited, concerning reliability, security and
scalability aspects in the real world. Solutions proposed in literature are not com-
plete and have not had a wide acceptance by the research and the engineering com-
munities. The reason why is that many complex real-world applications that would
benefit from multicast transmission require a standard, widely adoptable, mature and
efficient protocol set that does not exist yet.

This thesis collects research investigations about the main topics in multicast
transmission: performance, security and applications. In our aim to study, improve
and validate reliable multicast protocol solutions, we have created a software frame-
work allowing for multicast protocol implementation, monitoring and performance
measurement. Such a Java open source framework contains building blocks that can
be extended and combined in order to implement the desired protocol features and
collect experimental data.

Java has been adopted as a reference platform by our research group. It guaran-
tees portability, particularly interesting today thanks to the mass-market availability
of mobile and set-top devices supporting it. This allows us to investigate the po-
tentiality of such a widely adopted technology in the design and implementation of
largely scalable multicast protocols.

The first module of our framework is JMFTP, an implementation of a scalable
reliable multicast bulk data transfer protocol. We analyze the throughput and robust-
ness of JMFTP and individuate trade-offs among protocol parameters. JMFTP proves
extremely robust with respect to data loss and delay, rendering it particularly suitable
for satellite networks.

A further module of our framework is the implementation of a secure key ex-
change protocol named MTLS, providing secure group membership management and
session key data encryption.

We integrate cryptography and key exchange with JMFTP thus obtaining a secure
reliable multicast transport protocol that can transfer bulk data from one sender to

i

ii

multiple receivers throughout the Internet. Performance tests allow us to evaluate the
impact of security on performance.

We then adopt the above framework to support data replica synchronization in a
Grid computing infrastructure. Test results show that such a Grid application may
benefit from the adoption of the proposed replication model while further research is
being done on the subject.

Acknowledgements

Writing a Ph.D. Thesis is a large task that can be done only thanks to many
people, who give their support both in scientific and personal matters.

I am glad to take this opportunity to mention, in the following list (probably in-
complete because of the Ack-explosion-limiting algorithm I adopted in this scenario),
all those people I owe a lot.

First of all, I would like to thank Dr. Carlo Gaibisso and Ing. Mauro Draoli.
Together with them, I wrote my first research papers during the year 2000, they rec-
ognized in me some skill in doing research and greatly encouraged me when I was in
trouble. Dr. Gaibisso gave me the chance to collaborate to the NetLab effort at Iasi
since 1999.

I enjoyed a lot working with Prof. Giorgio Gambosi. I also owe a lot to Luca
Becchetti and Aldo Stentella Liberati, who helped me writing my first papers.

A person deserves a sincere acknowledgement: Prof. Giancarlo Bongiovanni. As
my thesis advisor, Giancarlo introduced me to the issues of computer networks and
gave me the motivation to start a Ph.D. program. He followed my scientific work
during the whole time of my Ph.D.

A special thank and a kiss goes to Sonia Simonetti.
Special thanks and kisses also go to my father Antonio, my mother Paola, my

grandmother Giovanna, my brother Fabio, my two wonderful nephews Arianna and
Federico and their mother Stefania.

I am grateful to Marco Bianchi@NetlabIasi and Roberto Puccinelli@Cnr, work-
ing with them is always a pleasure, even late at night.

Last, but not least, I would like to mention those who shared the Ph.D. years
with me, among others Sonia ”Sophinia” Campa@Unipi, Edgardo Ambrosi@Unifi,
Francesco ”Nagiosman” Ruffino@Iasi, Roberto Di Pietro, Antonio Durante, Fabio,
Claudio, Giorgio @Dsi, All LipariSchool People and many many more...

iii

iv

Contents

1 INTRODUCTION 5
1.1 Goals of the Thesis . 5
1.2 Thesis Organization . 6

I Reliable Multicast 7

2 IP MULTICAST 9
2.1 Multicast Routing . 11

2.1.1 Aggregated Multicast Routing 12
2.1.2 QoS Routing . 13
2.1.3 Last Hop Problem . 14

2.2 Reliable Multicast Issues . 14

3 STATE OF THE ART 17
3.1 A Taxonomy . 17

3.1.1 Sender-Receiver Initiated Protocols 17
3.1.2 Tree-based Protocols . 19
3.1.3 Ring-based Protocols . 21

3.2 Multiple Rate . 21
3.3 Multiple Channel . 23
3.4 Application-Level Multicast . 25
3.5 Forward Error Correction . 26
3.6 A Survey of Reliable Multicast Protocols 26

3.6.1 SRM . 26
3.6.2 LRMP . 26
3.6.3 TRAM . 27
3.6.4 NORM . 27
3.6.5 ARM . 28
3.6.6 DyRAM . 29
3.6.7 MFTP . 29

v

vi CONTENTS

4 MAIN CONTRIBUTION 31
4.1 JMFTP . 31

4.1.1 Architecture and Software Implementation 31
4.1.2 Java Issues . 33
4.1.3 Evaluation . 34

4.2 Work in Progress . 41
4.2.1 NJMTP . 41
4.2.2 Active Smart Multicast Routing 41

4.3 Conclusion . 42

II Secure Multicast 43

5 INTRODUCTION 45
5.1 Multicast Security Issues . 45

5.1.1 Group Key Management 47

6 STATE OF THE ART 49
6.1 Logical Key Hierarchies . 49

6.1.1 Periodic Batch Rekeying 49
6.1.2 Wka-Bkr . 50

6.2 The IETF Multicast Group Security Architecture 51
6.3 Source Authentication . 51

7 MAIN CONTRIBUTION 53
7.1 MTLS . 53

7.1.1 Implementation . 55
7.1.2 Details . 56

7.2 JMFTP-MTLS Experimental Measurements 56
7.2.1 Evaluation . 57

7.3 Concluding Remarks . 62

III Reliable Multicast Applications 65

8 REPLICA MANAGEMENT AND GRID 67
8.1 Introduction . 67
8.2 Replication Strategies . 67
8.3 The Grid . 69
8.4 The Replica Management in the Data Grid 73
8.5 Globus . 73

8.5.1 GridFTP . 74
8.6 Replica Management Systems . 75

CONTENTS vii

8.7 Grid and Web Services . 76

9 MAIN CONTRIBUTION 79
9.1 Introduction . 79
9.2 Gedec . 80

9.2.1 Our Model . 80
9.2.2 Details . 82
9.2.3 The Propagation Strategy 83
9.2.4 Log Sender Election Algorithm 84
9.2.5 Reference Scenario . 85

9.3 Prototype Implementation . 85
9.4 Gedec Evaluation . 86

9.4.1 Testing Activity . 86
9.4.2 Conclusion . 88

9.5 Web Service UDDI Issues . 89
9.5.1 Main Functional Aspects of Enhanced UDDI 92
9.5.2 Enhanced UDDI Monitoring Agent 93
9.5.3 Enhanced UDDI Registry 94
9.5.4 Web Service Instance registration issues 97
9.5.5 Prototyping Activity . 98
9.5.6 Enhanced UDDI Monitoring Agent 98
9.5.7 Enhanced UDDI Registry 98

9.6 Jet-Lag . 100

10 CONCLUSION AND FURTHER WORK 103
10.1 Contribution and Future Work . 104
10.2 Published Papers . 105
10.3 Software Implementations . 105

A ACRONYMS 107

viii CONTENTS

List of Figures

3.1 Example tree-based protocol . 20
3.2 Example efficient multirate transmission schedule 23
3.3 Unnecessary transmissions . 24
3.4 Application-Level Multicast . 25

4.1 JMFTP software architecture. 33
4.2 JMFTP:The emission strategy . 36
4.3 JMFTP:nominal vs monitored emission throughput 37
4.4 JMFTP:HTT dependence on the emission throughput 38
4.5 JMFTP:relation between emission throughput and percentages of lost

DTUs . 39
4.6 JMFTP:HTT dependence on the DTU loss rate 39
4.7 JMFTP:percentage variation of the HTT with respect to the one-to-

one case . 40

5.1 Example secure group join . 47
5.2 Example secure group leave . 48

6.1 Example logical key tree . 50

7.1 MTLS:state transition . 54
7.2 Joint JMFTP-MTLS software architecture 55
7.3 Nominal vs. Monitored throughput 58
7.4 HTT dependence on the emission throughput 58
7.5 Relation between emission throughput and DTU loss 59
7.6 Total Rekeying Time for variable number of heterogeneous clients . 59
7.7 Keys per second with respect to the number of clients 61

8.1 Approaches to consistency . 68
8.2 Components in a layered Grid architecture 70
8.3 A Grid reference model . 71
8.4 Elements in a DataGrid . 72
8.5 Reptor logical layout . 76

1

2 LIST OF FIGURES

8.6 The Globus Toolkit 4 architecture 77

9.1 Classification of replication models 80
9.2 Gedec software architecture . 86
9.3 Updates propagation time . 88
9.4 Network utilization . 89
9.5 Web Service architecture . 91
9.6 A model for a real scenario . 93
9.7 Main components of the framework 94
9.8 The Enhanced UDDI Monitoring Agent software architecture 95
9.9 The Enhanced UDDI Registry software architecture 95
9.10 The UDDI Extender software architecture 97
9.11 Jet-Lag architecture . 100
9.12 Jet-Lag performance . 101

List of Tables

2.1 Multicast routing protocol taxonomy 13

3.1 Reliable multicast protocol taxonomy 21

7.1 Rekeying times . 60

3

4 LIST OF TABLES

Chapter 1

Introduction

Multicast transmission is a useful technology for one to many and many to many
communication scenarios. It can be used, for instance, for videoconferencing or for
disseminating data at remote sites. The efficient data distribution to a set of target
hosts geographically distributed is a well-known problem for telecommunication and
computer networks.

During its experimental phase IP multicast has proven to be a technology more
scalable than unicast, but nevertheless limited, concerning reliability, security and
scalability aspects in the real world.

Solutions proposed in literature are not complete and have not had a wide accep-
tance by the research and the engineering communities. The reason why is that many
complex real applications that would benefit from multicast transmission technology
require a standard, widely adoptable, mature and efficient protocol set that does not
exist yet.

1.1 Goals of the Thesis

In an aim to study, improve and validate reliable multicast protocol solutions, we
collect in this thesis research investigations about some of the main topics in multicast
transmission: performance, security and applications.

With the objective of describing the state of the art in these three areas, we start
by examining present research achievements, briefly reported in this document.

In order to investigate the potentiality of such a widely adopted technology as
Java in the design and implementation of a scalable multicast transport protocol, we
have implemented a Java software framework allowing for modular multicast proto-
col implementation, monitoring and performance measurement.

An important goal of this thesis is the evaluation of the impact of security on
the performance of a multicast data transmission. In order to do so, a secure key
exchange protocol named MTLS has been created and performance tests have been

5

6 CHAPTER 1. INTRODUCTION

run on a variety of scenarios.
With the aim of studying the usefulness of multicast in other research areas, we

apply our framework to a data replica management problem that can potentially ben-
efit from our results.

In order to obtain experimental results for real-world applications, we adopt the
above-mentioned framework to allow resources in a Grid computing infrastructure to
efficiently update distributed copies of data.

1.2 Thesis Organization

This thesis is divided in three main sections:

1. Reliable Multicast;

2. Secure Multicast;

3. Reliable Multicast Applications.

This organization reflects three main areas of research I focused on during the
years of my Ph.D. In the first section the main problems of reliable multicast are pre-
sented, along with a significative subset of solutions proposed up to date and the main
contribution we have given. In the second section a glimpse of the complex scenarios
of secure multicast is given, together with a view of the most interesting proposals
to date. Our experience with multicast security is described. Last but not least in
the third section a specific problem is analyzed such as the replica consistency man-
agement. A brief survey of present approaches and our contribution in the context
of data Grids (focused on the European DataGrid) are presented. Finally a section
is devoted to a problem we address (UDDI and Web Service instance selection) to
which we think the multicast model can be applied with promising results.

More in detail the document is organized as follows: next chapter describes mul-
ticast routing and reliable multicast issues; chapter 3 contains a survey of the state of
the art solutions for reliable multicast; chapter 4 explains the main contribution we
have given in this area; chapter 5 introduces security issues; chapter 6 reviews the
state of the art of secure multicast solutions; chapter 7 describes the main contribu-
tion we have given to the multicast security area; in chapter 8 the replica manage-
ment problem is analyzed; chapter 9 illustrates the solutions we propose regarding
the replica management problem in the Grid and Web Services and UDDI issues;
finally, chapter 10 contains conclusion and further work.

Part I

Reliable Multicast

7

Chapter 2

IP Multicast

Multicast IP transmission enables the distribution of data packets to a group of
receivers in an efficient way. It is described in RFC 1112[Dee89].

IP multicast main features are:

• It is based on UDP: datagrams are sent to a shared class D IP address to which
all group members(or hosts) are listening (are joined).

• Group membership is open: hosts may attach to the group by joining or detach
from the group by leaving.

• Group membership is dynamic: hosts can join and leave a multicast group at
any time.

• Router support: IP routers forward datagrams to each of their downstream
links that takes to hosts belonging to the multicast group. The IGMP protocol
[CDF02] provides a mechanism for hosts to communicate with routers in order
to join and leave multicast groups.

Main IP Multicast issues are:

• Congestion Control: the lack of congestion control mechanisms in multicast
transport can cause inefficiencies regarding network bandwidth utilization. This
is really dangerous since a single multicast group can affect large portions of a
network. Other traffic, such as well-behaved TCP flows, may be penalized by
poorly behaved multicast.

• Address Allocation: IP Multicast identifies a range of addresses (224.0.0.0 to
239.255.255.255) used to identify a multicast group. Collisions are possible
where two multicast groups are established independently with the same mul-
ticast address assigned to both, possibly causing data intended for one group to
be received by members of another group.

9

10 CHAPTER 2. IP MULTICAST

• TTL Scoping: containing transmission of multicast traffic to a subset of a net-
work is often useful. The Time To Live (TTL) field in the header of IP packets
limits the number of routers a packet can traverse. Some reliable multicast
transport protocols adjust the TTL field of repair packets to limit their scope.
However, using TTL to contain retransmission of packets does not always con-
fine the data to the intended receivers.

• Scalability of Router Tables: as multicast is increasingly deployed, more router
table space is consumed. When a large number of concurrent multicast groups
are active, the exhaustion of table memory space or processing power in back-
bone routers is possible, and this is a scalability limitation.

A list of requirements varying for heterogeneous multicast applications are:

• Reliability: most applications require full reliability, whereas some (such as
streaming video) can trade-off a certain amount of data loss in order to achieve
high throughput and timely delivery.

• Real-time Performance: some applications require that data be delivered within
a certain period of time. Others simply require that it be eventually delivered.

• Support for multiple senders: protocols allowing more than one sender at the
same time can be more complex than those allowing only one.

• Late Joins: receivers that join the group after some data has been sent are
known as late joins. If all receivers are required to have a single start time,
protocol design is much simpler since late joins are not allowed. If receivers
may start at any time and must receive copies of all data sent (late join with
full data recovery), all data must be preserved. If receivers may start at any
time but do not receive copies of all data sent earlier (late join with limited
data recovery), transmitted data can be disposed of more easily.

• Ordering: most applications require data to be delivered in order, others do not.

• Consistency: some applications require that all data be delivered to all receivers
at exactly the same time. Others have no such requirement.

A rough classification of multicast applications can be as follows:

• Bulk data applications: concerned with transferring files. Some examples are
distribution of software updates and corporate data. Such applications typically
require one sender per channel, no late joins, no real-time requirement, file
level consistency, ordering, and full reliability.

2.1. MULTICAST ROUTING 11

• Live data applications: concerned with distributing an ongoing flow of small
pieces of data. Some examples are stock price distribution and news feeds.
Such applications typically require one sender per channel, no start time, var-
ied real-time requirements, varying levels of consistency, varying levels of or-
dering and reliability.

• Resilient streams applications: concerned with distributing a stream of real-
time multimedia data that can handle some losses. Some examples are real-
time video and/or audio transmissions. Such applications typically require one
sender per channel, various start times, moderate real-time requirements, no
consistency requirements, no ordering requirements, and loose reliability re-
quirements.

• Collaborative applications: concerned with sharing data within a group. An
example can be a shared whiteboard. Such applications typically require many
senders per channel, late join with full data recovery, moderate real-time re-
quirements, various consistency requirements, various ordering requirements,
and full reliability.

2.1 Multicast Routing

IP multicast packets are sent to a group of hosts represented by a multicast ad-
dress independent from physical host addresses. IP multicast sources do not usu-
ally know the recipients of the multicast packets. The network layer is responsi-
ble for appropriately forwarding data packets to the hosts belonging to the group.
Most common multicast routing protocols are: Distance Vector Multicast Routing
Protocol(DVMRP)[Pus98], Sparse-mode PIM (PIM-SM) [Est03], Dense-mode PIM
(PIM-DM)[ANS03], Multicast Open Shortest Path First (MOSPF) [Moy94], Core-
based Tree (CBT)[Bal97] and Distributed Core Multicast (DCM)[BB99].

Two different approaches to the multicast delivery issue exist:

• source-based trees (shortest path): rooted at the source and branches form a
spanning tree to the receivers;

• shared (core-based) trees: rooted at a single common node(Rendezvous Point)
placed at a chosen point in the network.

Source-based protocols are designed to find the shortest path through the routing
infrastructure between each sender and each of its receivers.

Shared tree protocols attempt to determine a common path which is shared by all
senders on a multicast group. Each approach requires some amount of time in order
to build the initial routes (tree) between the sender and receivers, and optimize for
best path depending on the approach.

12 CHAPTER 2. IP MULTICAST

DVMRP has shown scalability problems in environments containing more than
8000 subnets, but this limitation can be overcome by a more scalable multicast rout-
ing protocol as BGMP [SRT+98].

The primary advantage of source-based trees is that of setting up the optimal path
between the source and the receivers. On the other hand maintaining path information
for each source is a costly price to pay and does not scale well because of memory re-
quirements. Shared trees main advantage is that of requiring less state ”maintenance”
information in each router, but the placement of the Rendezvous Point (RP) is critical
in order to keep efficiency high.

Since multicast group membership can be very volatile, distribution trees have
to be dynamically updated. In fact in case all active receivers on a router branch
exit from a particular group, that router must stop forwarding packets through that
link, i.e. a part of the tree is cut apart from the rest (pruning). On the other hand a
new request for group membership may come from a link where packets were not
forwarded before. In this case one or more new branches are added to the multicast
delivery tree.

In fact, we can make another distinction between intra-domain and inter-domain
multicast protocols. While PIM-SM is the most widely accepted multicast intra-
domain routing protocol, inter-domain multicast routing presents some issues.

DVMRP is the oldest dense-mode protocol and is designed to work within an
autonomous system so it does not scale to large Internet-wide applications. Although
DVMRP is an old broadcast and prune protocol it is a very efficient distributed pro-
tocol for multicast packet delivery. DVMRP can tunnel multicast packets via unicast
packets, which makes it possible to route multicast packets over unicast networks.
The multicast prototype network MBONE [Kre95] has made a lot of use of this fea-
ture.

MOSPF is a dense mode routing protocol that uses link-state information to cal-
culate its routes through network.

DCM is a core-based multicast routing protocol for many groups with few re-
ceivers. DCM utilizes multiple cores per group to avoid the problem of selecting the
optimal position of the single core. DCM is intended for use within a large single
Internet domain network with a very large number of multicast groups with a small
number of receivers, for example, when multicast addresses are allocated to mobile
hosts. For such cases, existing dense or sparse mode multicast routing algorithms do
not scale well with the number of multicast groups. A brief taxonomy of the most
important multicast routing protocols is shown in table 2.1, while deeper information
is to be found in Almeroth’s works on multicast distribution trees [CA03]

2.1.1 Aggregated Multicast Routing

IP multicast makes use of a tree delivery structure on which data packets are
duplicated only at fork nodes and are forwarded only once over each link, allowing

2.1. MULTICAST ROUTING 13

Routing Protocol Shortest Path Shared Tree Inter-domain Intra-domain
DVMRP X X
PIM-SM X X X X
PIM-DM X X
MBGP X X
MOSPF X X

CBT X X
DCM X X

QoSMIC X X X
BGMP X X X X

Table 2.1: Multicast routing protocol taxonomy

IP multicast to scale and support very large multicast groups. However, a tree delivery
structure requires all tree nodes to maintain per-group forwarding information, which
increases linearly with the number of groups. Growing number of forwarding state
entries means more memory requirement and slower forwarding process since every
packet forwarding action involves an address look-up. Multicast scales well within
a single multicast group but suffers from scalability problems when the number of
simultaneous active multicast groups is very large (the scalability of router tables
issue).

To improve multicast state scalability, Cui and Kim proposed aggregated mul-
ticast [CKM+03], a scheme to reduce multicast state size where multiple multicast
groups are forced to share one distribution tree (aggregated tree). This way, the num-
ber of trees in the network may be significantly reduced. Consequently, forwarding
state is also reduced: core routers only need to keep state per aggregated tree. The
trade-off is that this approach may waste extra bandwidth to deliver multicast data
to non-group-member nodes. Cui’s simulations show that aggregated multicast can
achieve state and tree management overhead reduction at a reasonable bandwidth
consumption expense.

2.1.2 QoS Routing

Zappala proposed [Zap04] that applications specify a QoS request to the network
as some combination of delay, bandwidth, and loss characteristics. The QoS routing
protocol then computes a path that has available resources and installs this path for
the application. Computing a QoS-capable path in a scalable manner can be very
difficult since network conditions may change rapidly. In general, this model works
well when the shortest paths are provisioned so that they handle most of the load in
the network.

14 CHAPTER 2. IP MULTICAST

2.1.3 Last Hop Problem

Current IP multicast protocols have been designed assuming universal multicast
deployment. This prevents end-systems that are more than one hop away from a
multicast-enabled router to participate in multicast. Moreover hubs and switches
often exclude some host from the rest of multicast-enabled network because they
support outdated versions of multicast protocols. Furthermore, transport layer port
numbers are not considered part of the identification of a multicast group. Firewalls
and NATs exploit these properties to open a channel for the data stream automati-
cally when seeing the first packets of a unicast flow. Since multicast is signaled as a
separate protocol and without transport level port numbers, the Firewall/NAT should
be able to understand the messages of the multicast management protocol in order to
achieve the same level of automation and transparency.

A solution is given by Hjalmtysson who describes Self-Configuring Lightweight
Internet Multicast (SLIM)[HBH03], This single source multicast protocol does not
require any multicast specific infrastructure beyond its Topology Management Proto-
col (TMP), that is run in the control plane of multicast capable routers and employs
dynamic tunneling where needed. In SLIM a multicast channel is uniquely identified
by the pair S,C where S is the IP address of the sender and C is the source specific
channel identifier. Receivers interested in the multicast group must know both S and
C, and send control messages addressed to S using normal unicast thus avoiding the
need for multicast routing. Other solutions are given in section 3.4

2.2 Reliable Multicast Issues

Plain IP Multicast is unreliable: if any data is lost during transmission, there is
no mechanism for repairing this loss. For real-time multimedia, this just causes a
momentary glitch. For some other data (like a zip archive file), it renders the data
useless. Reliable multicast allows to repair lost or damaged multicast data. When a
receiver misses one or more data packets, it can ask for the retransmission of these
packets. The problem of reliability in IP multicast has been given many answers but
still a final widely-acceptable universal solution has not been found. This is mainly
due to the different requirements of the various application making use of multicast.

The challenges of supporting reliable multicast include:

• Performing repairs for lost packets to receivers;

• Avoiding ACK/NACK implosion;

• Controlling Congestion;

• Guaranteeing fairness in the use of network bandwidth;

• Ensuring scalability to large receiver groups;

2.2. RELIABLE MULTICAST ISSUES 15

• Guaranteeing robustness to high loss rates;

• Guaranteeing robustness to high transmission latency(e.g satellite links);

• Ensuring Flexibility, managing heterogeneous sets of receivers (as regards loss
rate, bandwidth, latency, etc.);

• Maximizing throughput;

• Handling different types of applications requirements.

16 CHAPTER 2. IP MULTICAST

Chapter 3

State of the Art

3.1 A Taxonomy

In this chapter the main approaches known to date for reliable multicasting are
described. Each multicast protocol class can be viewed as using two windows: a
congestion window (cw) that advances based on feedback from receivers regarding
the pacing of transmissions and detection of errors, and a memory allocation window
(mw) that advances based on feedback from receivers as to whether the sender can
erase data from memory [LGLA98]. A short classification of the most interesting
reliable multicast protocols is given in table 3.1 (where the meaning of column names
will be made clear in the following). Due to space limitations we will explicitly
describe a only a subset of those protocols.

3.1.1 Sender-Receiver Initiated Protocols

A first categorization of reliable multicast approaches is between sender-initiated
and receiver-initiated protocols. These are the two main classes for end-to-end reli-
able multicasting proposed to date. Even though some protocols do not exactly fall
in one category, we can describe the two approaches as follows.

In the sender-initiated approach, the sender maintains the state of all the re-
ceivers to whom it has to send information and from whom it has to receive acknowl-
edgments (ACKs). Each sender’s transmission is multicast to all receivers; for each
packet that each receiver obtains correctly, it sends a unicast ACK to the sender. The
sender-initiated reliable multicast protocol requires the source to receive ACKs from
all the receivers before releasing memory for the data associated with the ACKs. This
scheme suffers from the ACK implosion problem.

In contrast, in the receiver-initiated approach, each receiver informs the sender of
the information that is in error or missing; the sender multicasts all packets, including
retransmissions, and a receiver sends a negative acknowledgement (NACK) when it
detects an error or a lost packet.

17

18 CHAPTER 3. STATE OF THE ART

The combination of ACKs and NACKs has been used in the past for reliable
unicast and multicast protocols (e.g. NETBLT [CL87])

The sender-initiated Negative Acknowledgments with Periodic Polling (NAPP)
protocol [LLGLA96] is a broadcast protocol that groups large partitions of the data
that are periodically ACKed, while lost packets within the partition are NACKed.
NAPP advances the cw by NACKs and periodically advances the mw by ACKs. Since
NACKs can cause a NACK implosion at the source, NAPP uses a NACK avoidance
scheme.

The main limitation of sender-initiated protocols is the need for the source to
process all of the ACKs and to know the receiver set. The two known methods that
address this limitation are:

1. using NACKs instead of ACKs;

2. delegating retransmission responsibility to members of the receiver set orga-
nized into a tree or ring.

Receiver-initiated protocols place the responsibility for ensuring reliable packet
delivery at each receiver. The receivers send NACKs back to the source when a
retransmission is needed. A receiver-initiated protocol has no explicit mechanism
for the source to release data from memory (i.e. advance the mw), even though its
retransmission mechanisms are scalable (i.e. advancing the cw). Since receivers
communicate NACKs back to the source, receiver-initiated protocols may experience
a NACK implosion problem if many receivers detect transmission errors. To remedy
this problem, some receiver-initiated protocols adopt NACK avoidance schemes.

The receiver-initiated with NACK avoidance (RINA) protocols have been shown
to have better performance than the basic receiver-initiated protocol. In RINA, the
sender multicasts all packets and state information, giving priority to retransmissions.
Whenever a receiver detects a packet loss, it waits for a random time period and then
multicasts a NACK to the sender and all other receivers.

When a receiver hears a NACK for a packet that it has not received and for which
it has started a timer to send a NACK, the receiver behaves as if it had sent the
NACK(NACK avoidance/suppression). The expiration of a timer without the recep-
tion of the corresponding packet is the signal used to detect a lost packet. With this
scheme, hopefully only one NACK is sent back to the source for a lost transmission
for an entire receiver set. Nodes farther away from the source might not even need to
request a retransmission.

In the receiver-initiated approach NACKs from receivers are used to advance the
cw, which is controlled by the receivers, and the sequence number in each multicast
session message is used to ”poll” the receiver set, i.e. to ensure that each receiver is
aware of missing packets. RINA protocols have some limitations:

• a RINA protocol requires the application to provide data for retransmissions.
However, this approach does not always work for multimedia applications.

3.1. A TAXONOMY 19

• NACKs and retransmissions must be multicast to the entire group in order to
allow NACK suppression. The basic NACK avoidance algorithm requires that
timers be set based on the size of the set of receivers. As the number of nodes
increases, each node must do increasing amount of work.

Pingali [PTK94] and Levine [LGLA98] showed that receiver-initiated protocols
are more scalable than sender-initiated protocols, because the maximum throughput
of sender-initiated protocols is dependent on the number of receivers, while the max-
imum throughput of receiver-initiated protocols becomes independent of the number
of receivers as the probability of packet loss becomes negligible.

However, the ideal receiver-initiated protocols cannot prevent deadlocks when
they operate with finite memory, i.e. when the applications using the protocol ser-
vices cannot retransmit any data themselves. Receiver-initiated protocols can have
inherent scaling limitations due to the need to set up timers for NACK avoidance, the
need to multicast NACKs to all hosts in a session, and the need to store all messages
sent in a session.

3.1.2 Tree-based Protocols

Tree-based protocols split the set of receivers into groups, distributing retrans-
mission responsibility over an acknowledgement tree (ACK tree) structure built from
the set of groups, with the source as the root of the tree.

The ACK tree includes the receivers and the source organized into local groups,
with each such group having a group leader in charge of retransmissions within the
local group. Each group leader other than the source communicates with another
local group closer to the source to request retransmissions of packets that are not
received correctly. Group leaders may be children of another local group, or may just
be in contact with another local group [LP96]. Each local group may have more than
one group leader to handle multiple sources. Group leaders could also be chosen
dynamically. The leaves represent hosts that are only children. It is interesting to
note that an ACK tree consisting of the source as the only leader and leaf nodes
corresponds to the sender-initiated scheme.

Acknowledgments from children in a group, including the source’s own group,
are sent only to the group leader. The children of a group send their acknowledge-
ments to the group leader as soon as they receive correct packets, advancing the cw.
We refer to such acknowledgements as local ACKs or local NACKs, i.e., retransmis-
sions are triggered by local ACKs and local NACKs unicast to group leaders by their
children.

Tree-based protocols can also delegate to sub-trees leaders the decision of when
to delete packets from memory (i.e. advance the mw), which is conditional upon
receipt of aggregate ACKs from the children of the group. Aggregate ACKs start
from the leaves of the ACK tree, and propagate towards the source, one local group at

20 CHAPTER 3. STATE OF THE ART

Figure 3.1: Example tree-based protocol

a time. A group leader cannot send an aggregate ACK until all its children have sent
an aggregate ACK. Using aggregate ACKs is necessary to ensure that the protocol
operates correctly even if group leaders fail, or if the ACK tree is partitioned for long
periods

The use of local ACKs for requesting retransmissions is important for throughput.
If the source scheduled retransmissions based on aggregate ACKs, it would have to
be paced based on the slowest path in the ACK tree. Instead, retransmissions are
scheduled independently in each local group.

Tree-based protocols eliminate the ACK-implosion problem, free the source from
having to know the receiver set, and operate only on messages exchanged in local
groups (between a group leader and its children in the ACK tree). Furthermore,
if aggregate ACKs are used, a tree-based protocol can work correctly with finite
memory even in the presence of receiver failures and network partitions [LGLA98].

One of the first tree-based protocol is the Reliable Multicast Transport Protocol
(RMTP)(see fig 3.1) [LP96]. While a generic protocol sends a local ACK for ev-
ery packet sent by the source, RMTP sends local ACKs only periodically, so as to
conserve bandwidth and to reduce processing at each group leader, increasing the
effective throughput.

A tree-NAPP protocol is defined as a tree-based protocol that uses NACK avoid-
ance and periodic polling in the local groups. NACKs alone are not sufficient to
guarantee reliability with finite memory, so receivers send a periodic positive local
ACK to their parents to advance the mw. An example tree-NAPP protocol is TMTP
[YGS95].

3.2. MULTIPLE RATE 21

Protocol Send-in Rec-in ACK NACK Suppr Aggr Tree-b Ring-b
SRM X X X

LRMP X X X
RMTP X X X X
MFTP X X X X X
TRAM X X X
TMTP X X X X X X
NORM X X X X
NAPP X X X X
RMP X X X X X X
ARM X X X X X

DyRAM X X X X X

Table 3.1: Reliable multicast protocol taxonomy

3.1.3 Ring-based Protocols

Ring-based reliable multicast protocols have only one token site responsible for
acking packets back to the source. The source times out and retransmits packets if
it does not receive an ACK from the token site within a timeout period, otherwise it
advances its cw. The ACK also timestamps packets, so that all receiver nodes have a
global ordering of the packets for delivery to the application layer. In fact the protocol
does not allow receivers to deliver packets to the upper layer until the token site has
multicast its ACK, and this may increase latency.

Receivers send NACKs to the token site for selective repeat of lost packets that
were originally multicast from the source. The ACK sent back to the source also
serves as a token passing mechanism. If no transmissions from the source are avail-
able to piggyback the token, a separate unicast message is sent.

The token is not passed to the next member of the ring of receivers until the
new site has correctly received all packets that the former site has received. Once
the token is passed, a site may remove packets from memory. The final deletion of
packets from the collective memory of the receiver set is decided by the token site,
and is conditional on passing the token. The source deletes packets (i.e. advances its
mw) only when an ACK/token is received [LGLA98].

3.2 Multiple Rate

The paths from the server to the clients are usually heterogeneous in bandwidth
availability. Multiple-Channel Multicast (MCM)[DAZ99] is used to handle this het-
erogeneity.

According to this approach data is multicast over multiple channels, each ad-

22 CHAPTER 3. STATE OF THE ART

dressed as a separate multicast group . Each receiver subscribes to a set of channels
(i.e. joins the corresponding multicast groups) commensurate with its own rate ca-
pabilities (layered multicast). Of particular interest in the design of MCM schemes
is the scheduling of data transmission across the multiple channels to accommodate
asynchronous requests from clients. MCM schemes select the number of channels,
the rate per channel and decide a schedule for transmission of the data over the chan-
nels. The basic form of MCM involves sending the entire file over separate multicast
channels at different rates. A receiver joins the channel that has the highest rate that
does not exceed the receiver’s rate capability. This Destination-Set Splitting approach
has the disadvantage that a lot of redundant data is sent over each channel. Further-
more, since each receiver listens to only one group, the number of receivers per group
may be limited.

Bhattacharyya et al. [BKTN98] propose scheduling the data across multiple
multicast groups with receivers joining multiple groups to get the entire file. If the
scheduling across the groups is done well, this is more efficient than Destination-Set
Splitting. In this Static Striping approach, the groups and rates are scheduled a priori
after all receivers register their rates with the sender. Using registered rates, optimal
data rates and schedules for a set of channels can be derived. This approach suffers
from the problem of requiring the collection of the receiver rates at the sender, which
limits scalability with respect to the maximum number of simultaneous receivers. In
addition, receiver startup must be synchronized since transmission is tailored for all
receivers to start together.

Consider a file that is made up of four fixed-size pieces: A, B, C and D. The
sender has enough outgoing bandwidth to transmit four packets per time unit, and
there are three receivers, R1, R2, and R3 capable of receiving one, two and seven
packets per time unit, respectively. The sender will use multiple-channel multicasting
to accommodate the disparity in receiver rates, ensure that each receiver gets all the
packets in a reasonable amount of time, and support receivers that join the session at
arbitrary times.

One option for multiple channel multicasting is for the sender to use three chan-
nels (corresponding to separately addressed multicast groups G0, G1 and G2) op-
erating at rates of one, one, and two packets per time unit, respectively. Fig. 3.2
[BKTN98] shows one possible method for scheduling the packets over the three
channels. The advantage of this particular schedule is that receivers can join dif-
ferent multicast groups according to their reception rate capability. Each receiver
gets all four packets of the file in a reasonable amount of time, given the receiver rate
constraints.

As we have seen above, the design of a multiple-channel multicast schedule must
specify four components:

1. number of channels;

2. rate per channel;

3.3. MULTIPLE CHANNEL 23

Figure 3.2: Example efficient multirate transmission schedule

3. schedule for packet transmissions on each channel;

4. policy for receivers to join channels.

The multiple-channel multicasting approach can handle a large number of hetero-
geneous receivers because each receiver joins channels based on its own rate, without
requiring the sender to worry about flow control information.

3.3 Multiple Channel

Kasera’s proposal [KHTK00] involves the use of multiple multicast groups for
reducing receiver processing costs in a multicast session. In his proposal a single
multicast group is used for the original transmission of packets.

Only retransmissions of packets are done to separate multicast groups, which
receivers dynamically join or leave. Kasera shows that protocols using an infinite
number of multicast groups incur much less processing overhead at receivers com-
pared to protocols that use only a single multicast group. This is due to the fact
that receivers do not receive retransmissions of packets they have already received
correctly. The minimum number of multicast groups required to keep the cost of
processing unwanted packets to a sufficiently low value can be calculated.

24 CHAPTER 3. STATE OF THE ART

Figure 3.3: Unnecessary transmissions

For an application consisting of a single sender transmitting reliably to many
receivers only a small number of multicast groups are required for a wide range of
system parameters. Furthermore a local filtering scheme for minimizing join/leave
signaling when multiple multicast groups are used is shown.

To illustrate the problem in using a single multicast group, consider a reliable
multicast scenario with a single multicast group. Since all packet transmissions and
retransmissions are done using the single multicast group, each receiver receives all
the retransmissions of a packet even after correctly receiving the packet. This can im-
pose unnecessary receiver processing overhead especially as the number of receivers
increase (see fig. 3.3 [KHTK00]).

If a number of retransmission groups are used, the receiver will join only the
channel(s) of interest (it knows where the retransmission will happen based on the
offset of the missing packet), and leaves them after having received the retransmis-
sion.

A concern with using multiple multicast groups is the processing of ”joins” and
”leaves”, as receivers dynamically add and delete themselves from these groups. In
order to avoid shifting the load from the receivers to the underlying network and at the
same time maintaining the reduced processing benefits, Kasera proposes a receiver
filtering mechanism that can result in the same amount of network traffic as in the
case of a single multicast group, but does not require joins and leaves to be processed
inside the network once the multicast session begins.

3.4. APPLICATION-LEVEL MULTICAST 25

Figure 3.4: Application-Level Multicast.

Local filtering can be done by the receiving host or by the network infrastruc-
ture. In the first case receiver processing cost is reduced but bandwidth usage is the
same with respect to classic recovery schemes. Router cooperation can help reduce
bandwidth usage.

3.4 Application-Level Multicast

A large number of multicast protocols assume universal connectivity between
end hosts, as we have seen in 2.1.3. However, in reality, this assumption is not valid
because of the widespread use of NATs and firewalls. It is important to consider
connectivity restrictions because NATs and firewalls are heavily deployed, affecting
the proper functionality and the performance of multicast protocols [LCG04].

Motivated by the desire to spark the growth of multicast use, and frustrated by the
lack of widely available network layer multicast, some researchers have concluded
that multicast should first be realized as application layer overlays (ALM or AGCS)
[CDKR02].

Figure 3.4 [ES04] shows an example physical topology and its overlay multicast
layout.

Application-level multicast sends data using unicast, so flow and congestion con-
trol as well as reliable delivery of traditional unicast services can be taken advantage
of. On the other hand bandwidth saving is less than using actual multicast technology.

An interesting research work has been done by Parnes [PSS98] which examines
a lightweight application level multicast tunneling using mtunnel. Su-Wei aims to
lower application delay of application-layer multicast [SWW03] whereas Mathy re-
views the security issues of this kind of multicast [MBRES04].

26 CHAPTER 3. STATE OF THE ART

3.5 Forward Error Correction

Forward Error Correction is a technique adding redundant information in the
transmitted data flow, allowing a receiver to recover the original information even
under partial loss. FEC in multicast connections can have a big effect, since the
global loss will increase with the number of receivers. The drawback to FEC is the
complexity of encoding and decoding.

The effect of FEC on the multicast tree is strongly dependent on shared links.
Nearly all the research on the performance of reliable multicast communication as-
sumes multicast trees with links where the loss over any link affects only a single
receiver, referred to as independent loss. The assumption that the paths to different
receivers have no shared links is typically not true for trees constructed by multicast
routing algorithms as CBT or PIM.

Main results by [CGI+99] are: When FEC is applied to all links of the multicast
tree, for small groups the FEC gain increases as the number of receivers increases
and the number of shared links decreases. For big groups the FEC gain is larger than
for small groups and is independent of the number of receivers.

When FEC is applied either on the links of the LAN part or either on the links
of the WAN part of the multicast tree, it can be observed that for small groups the
highest FEC gain is achieved when applied on the part where the links have a high
loss probability. For big groups this is only true for a low number of receivers that
can be found in one LAN. For a large number of receivers in one LAN, FEC should
be applied on the LAN links. Canetti also shows that the assumption of independent
loss among receivers is a worst case assumption.

3.6 A Survey of Reliable Multicast Protocols

3.6.1 SRM

Scalable Reliable Multicast [FJL+97] provides a good solution for NACK implo-
sion, distributes loss recovery to all members in the group, and is robust with respect
to changes in group membership or topology. However, its timer-based implosion
control mechanism increases recovery latency, and it has problems with duplicate re-
quests and repairs. Additionally, local recovery is still an open issue for SRM. SRM
relies on topology information to set its timer values, and hierarchical approaches
require receivers to locate their designated representatives.

3.6.2 LRMP

The Light-weight Reliable Multicast Protocol [Lia98] offers reliable and source
ordered data delivery service for group communications. It adopts a random expand-
ing probe scheme for local error recovery so that no prior configuration and no router

3.6. A SURVEY OF RELIABLE MULTICAST PROTOCOLS 27

support are required. Subgroups are formed implicitly and have no group leaders.
Packet loss is reported upon a random timeout incrementally until it is repaired. This
simple scheme is used for duplicate NACK and repair suppression.

3.6.3 TRAM

The Tree-based Reliable Multicast protocol [CHKW98] is designed to support
bulk one-to-many data transfer. It uses dynamic trees to implement local error re-
covery and to scale to a large number of receivers. It also includes rate-based flow
control and congestion control based on feedback from receivers. TRAM uses a
selective acknowledgement mechanism for reliability and a hierarchical tree-based
repair mechanism for scalability.

The hierarchical tree overcomes implosion-related problems, enables localized
multicast repairs and funnels feedback to the sender. The receivers and the data
source of a multicast session in TRAM interact to dynamically form repair groups,
linked together to form a tree with the sender at the root.

Every repair group has a receiver that acts as a group head; the rest act as group
members. Every repair group head in the system is a member of some other repair
group. All members receive data multicast by the sender. The group members report
lost and successfully received messages to the group head using a selective acknowl-
edgement mechanism similar to TCP’s own. The repair heads cache every message
sent by the sender and provide repair service for messages that are reported as lost by
the members.

The acknowledgement-reporting mechanism is window-based. The flow control
is done via an adaptive rate-based algorithm. The sender senses and adjusts to the
rate at which the receivers can accept the data. Receivers that cannot keep up with
the minimum data rate can be dropped from the repair tree.

Acknowledgements sent by receivers contain a bitmap indicating received and
missing packets, which are later repaired by the repair head;

Limitations:

• Realistic TTL Values: tree formation in TRAM relies on TTLs. Current multi-
cast routing protocols may not provide accurate TTL values for this purpose.

• Heterogeneous Receiver Population: a slow receiver may end up without repair
service if it cannot keep up with the minimum speed specified by the sender.

A Java implementation of TRAM can be found in JRMS [RKH98].

3.6.4 NORM

The NACK Oriented Reliable Multicast protocol [AB04] is designed by IETF to
provide end-to-end reliable transport of bulk data objects or streams over generic IP
multicast routing and forwarding services.

28 CHAPTER 3. STATE OF THE ART

NORM uses a selective NACK mechanism for transport reliability and offers
additional protocol mechanisms to conduct reliable multicast sessions with limited
”a priori” coordination among senders and receivers.

NORM’s congestion control scheme allows to share available network bandwidth
with other transport protocols such as TCP.

NORM is capable of operating with both reciprocal multicast routing among
senders and receivers and with asymmetric connectivity (possibly a unicast return
path) from the senders to receivers. NORM uses FEC repair and other IETF reliable
multicast transport building blocks in its design.

3.6.5 ARM

Active Reliable Multicast [LGT98] is an active protocol in that routers in the
multicast tree play an active role in loss recovery.

ARM uses a receiver-based, NACK-based scheme. Receivers detect losses pri-
marily by sequence gaps in the data packets. A receiver sends a NACK towards the
sender as soon as it detects a loss.

In the upstream direction, routers suppress duplicate NACKs from multiple re-
ceivers to control the implosion problem. By suppressing duplicate NACKs, ARM
also lessens the traffic that propagates back through the network. In the downstream
direction, routers limit the delivery of repair packets to receivers experiencing loss,
thereby reducing network bandwidth consumption. ARM-compatible routers cache
multicast data on a ”best-effort” basis.

Multiple NACKs from different receivers are cached and aggregated at active
routers along the multicast tree. The sender responds to the first NACK by multicas-
ting a repair to the group. It then ignores subsequent NACKs for this packet for a
fixed amount of time

ARM caches multicast data packets at routers in the multicast tree for possible
retransmission. Any router along a NACK path can retransmit the requested packet
if it has that packet in its cache.

Active routers scope retransmission of repair packets to the portions of the multi-
cast group experiencing loss. They do this by looking up the corresponding subscrip-
tion bitmap, which was created and left in the router’s soft-state cache by previous
NACKs.

In comparison with SRM, ARM has a much lower recovery latency and provides
a specific solution (router-based scoped retransmission) to local recovery.

ARM is in theory more flexible and robust than the hierarchical approaches, be-
cause any router with cached multicast data can perform retransmissions, and end
hosts do not have to maintain nor have any knowledge of group topology. On the
other hand, the main advantages are obtained when most of the routers are ARM-
capable, but this also implies a heavier computational and storage load at routers.

3.6. A SURVEY OF RELIABLE MULTICAST PROTOCOLS 29

3.6.6 DyRAM

DyRAM is a reliable multicast protocol whose recovery strategy is tree-based
with cooperation from DyRAM-capable multicast routers and works on a per-packet
basis [MP02]. DyRAM receivers are responsible for loss detection and signaling, but
are also capable of retransmitting the repair packets (local recovery). As for ARM,
routers play an explicit role: they suppress duplicate NACKs and subcast repair pack-
ets only through interfaces leading to hosts that have experienced that packet loss.
One main difference from ARM is that DyRAM routers can elect, for each single
packet loss, an interface wherefrom local recovery will be attempted. Furthermore
DyRAM does not by default cache transmitted data at routers. The per-packet recov-
ery strategy of DyRAM produces interesting results with respect to the load at the
source and the bandwidth consumption, but has disadvantages in terms of security
and load at DyRAM routers.

3.6.7 MFTP

MFTP [Ma98] is a receiver-initiated multicast transport protocol optimized for
bulk data transfers.

MFTP uses a rate-based, NACK-based scheme and the sender is almost con-
stantly sending data and very seldom has to wait for acknowledgements from the
receivers. This makes MFTP especially suited for transmissions over links with long
delays, for example satellite links.

The protocol behavior can be summarized in the following way: the data sender,
MFTP server in what follows, manages the multicast groups, initiates the file transfer
and controls the transfer operation. The data receiver, MFTP client in the sequel,
joins the multicast group, receives the data sent by the MFTP server and provides
reception status to the server when requested. The protocol consists of two parts:
an administrative protocol which deals with groups and session management; a data
transfer protocol which deals with the simultaneous, reliable transmission of a file
from an MFTP server to multiple MFTP clients.

Three different use cases are supported by MFTP: Closed Group - the MFTP
server knows in advance the set of clients allowed to participate to a session; Open
Limited Group - any MFTP client interested in participating in the data transfer has
to register with the MFTP server, which may in turn limit the number of participants;
Open Unlimited Group - any MFTP client is allowed to participate in the data transfer.
In the latter case MFTP clients are not required to register with the MFTP server.

File Transfer is accomplished through three different phases:

1. File Announcement: the MFTP clients are informed that a file is about to be
transmitted and on the transmission characteristics;

2. File Delivery: the file is transmitted by the MFTP server to the MFTP clients
in the multicast group;

30 CHAPTER 3. STATE OF THE ART

3. File Completion: both the clients and the server are informed that file transfer
has been completed.

We will describe now the file delivery phase in more detail. The file is initially
segmented by the MFTP server into blocks containing a fixed number of equally
sized Data Transfer Units (DTUs).

Each datagram sent by the server contains a single DTU and indicates its position
in the file (i.e.the DTU and block number are part of the MFTP packet header). In
this way each transmitted DTU can be univoquely identified.

The file is transmitted in steps. In the first step the whole file is transmitted. In
subsequent steps the server only retransmits the DTUs which were reported as miss-
ing by some MFTP client. Only missing DTUs are retransmitted. Retransmissions
are repeated until the file has been successfully delivered to all MFTP clients.

MFTP clients are queried by the MFTP server for their receive status at the end
of each block transmission. A client keeps track of the received and missing DTUs
by updating a data structure composed of an array of m bitmaps, where m is the
number of blocks the file is segmented into. A client that has not received some
DTU sends a response message containing a bitmap (where each bit represents the
reception status of a DTU within a block). Such response (NACK) message contains
the block number in its header, whereas the payload is the above-mentioned bitmap.
In this way the reception status of an entire block of DTUs (1000s of datagrams) can
be transmitted using just a single datagram (NACK compact format).

Main features that enhance MFTP scalability are: NACK suppression, aggrega-
tion and compact format.

Chapter 4

Main Contribution

4.1 JMFTP

This section reports on our research work and on the main results of investigat-
ing the potentiality of Java in the design and implementation of reliable multicast
protocols. Mathematical analysis by itself does not suffice for evaluating complex
multicast behavior. Network simulation is a promising approach but care must be
taken in the design of network models that reflect real network behavior. Actual ex-
perimentation of protocol implementations can be useful for gathering valuable data
for evaluation purposes.

In this section we focus on the design, implementation and performance evalu-
ation of JMFTP, a Java implementation of MFTP. JMFTP is the acronym for Java
Multicast File Transfer Protocol. It pursues the following goals:

• simplicity and effectiveness;

• no performance change over high delay networks;

• flexibility, making it possible to invoke optional features, such as response ag-
gregation and/or suppression, to increase scalability.

• feasibility, providing a framework for building multicast applications;

• scalability to thousand of receivers over one hop (e.g.satellite) networks with
no intermediate relaying entities;

• portability for multi-platform support;

4.1.1 Architecture and Software Implementation

JMFTP consists of the following three functional entities: JMFTP server, JMFTP
client, JMFTP relay. The main purpose of the latter is to limit the amount of control

31

32 CHAPTER 4. MAIN CONTRIBUTION

packets the server receives from the clients, in order to prevent possible flooding
phenomena, thus increasing scalability.

The JMFTP architecture has distinct modules:
Sending modules:

• Product Sender - fetches data from a data to send pool structure, encapsulates
data into JMFTP data packets and multicasts the packets. It is also in charge of
sending JMFTP response request packets;

• Response Sender - fetches responses from a response to send pool structure,
encapsulates responses into JMFTP response packets and multicasts the pack-
ets;

• Response Aggregator Sender - fetches responses from a response to send pool
structure, aggregates responses into JMFTP response packets, and multicasts
the packets.

Receiving modules:

• Product Receiver - waits for JMFTP data or response request packets and pro-
cesses the packets according to their type: the content of a data packet is saved;
a response request packet initiates a new response sending phase;

• Response Listener - waits for JMFTP response packets and updates the re-
sponse to send pool;

• Response Receiver - waits for JMFTP response packets and adds to the data
to send pool the DTUs that, according to the processed response, must be re-
transmitted.

Figure 4.1 shows the JMFTP software architecture.
Each module is implemented as a Java Thread. All threads meet the Java Thread

Design Guidelines, to avoid deadlocks [Sof].
JMFTP implements the following enhanced features:

• on demand disk space reservation at the client side;

• traffic shaping of the flows generated at the server side, in order to avoid con-
gesting the network;

• source code instrumentation, to allow performance measurements and collec-
tion.

4.1. JMFTP 33

Figure 4.1: JMFTP software architecture.

4.1.2 Java Issues

One major obstacle to the global diffusion of (killer) multicast applications is
that software must be separately coded, compiled and deployed to run on different
platforms. Java can be the solution to this problem: programs written in Java can
be run wherever the Java platform is present. Moreover, Java is mobile, i.e. Java
applications can be on demand downloaded and executed as applets. Dealing with
high performance requirements in Java is a challenging issue, due to the fact that
Java is a partially interpreted, pure object oriented language. Main challenges in
implementing a protocol in Java are:

• Java is a partially interpreted language, thus introducing potential inefficiency.
This problem could have a dramatic impact on both the reliability of packet
delivery (packets can be lost due to software and hardware bottlenecks) and
the efficiency in the use of network resources;

• Java is a well-defined object oriented language, so that the designer is continu-
ously faced with a delicate and inevitable tradeoff between good structure and
good performance;

• a Java implementation, for its nature, is poorly integrated into the host operat-
ing system.

34 CHAPTER 4. MAIN CONTRIBUTION

4.1.3 Evaluation

In this section we provide an overview of the testing scenarios in which JMFTP
is evaluated and of the results that are achieved.

We are mainly interested in testing the following major aspects of JMFTP be-
havior: i)the correctness with respect to MFTP functional specifications; ii)the ro-
bustness with respect to different network configurations and load conditions; iii)the
efficiency achievable over high performance networks.

We also test the tolerance of the implementation with respect to delays in packet
delivery (e.g. this may be the case in a satellite link [Bos99]) and loss.

Test environment. JMFTP has been tested on a geographical multicast network
interconnecting four LANs that include a dozen of heterogeneous servers and work-
stations. The machines involved in the experimentation varied from small worksta-
tions to server machines equipped by 64 bits, 400 MHz processors and 512 MBs
RAM, running Solaris, Digital Unix, Linux and Windows NT.

Performance Metrics. At the moment, the following performance indexes are
considered as significant with respect to our goals:

• Host Transfer Time(HTT): the time elapsed, for a client, between the reception
of the first and of the last DTUs;

• Total Transfer Time(TTT): the time elapsed, for the server, between the trans-
mission of the first DTU and the reception of the message attesting that the last
client involved in the transmission successfully received the whole file;

• Average percentage of useless DTUs: a DTU is useless if it is received by a
client which has already received it. Useless DTUs cause bandwidth waste and
degrade system performance.

• Number of lost DTUs: the number of DTUs that were not received by the client,
included retransmitted DTUs.

• Number of NACKs: the number of NACKs sent by a client. When compared
to the number of lost DTUs, this metric tests the effectiveness of aggregated
NACKs.

Test plan and considered scenarios. Starting from one server and one client
connected on the same LAN, we construct more complicated scenarios with dozens
of clients connected to different LANs. The behavior of JMFTP is evaluated in the
following target network scenarios:

• low-bandwidth congested networks with high packet loss rate;

• high-speed networks;

• satellite networks.

4.1. JMFTP 35

The robustness of JMFTP is evaluated over congested low bandwidth networks
by varying the following parameters:

• Loss rate: packet loss rate is artificially introduced and varied by discarding
packets at each client, ranges from 5% to 50%, in steps of 5%;

• Data rate: maximum transmission rate in bits per second. The following values
are considered: 57,600 bps, representing a typical modem connection via an
analog link; 115,200 bps, modeling an ISDN telephone line; 512, 1,024, 2,048
and 4,096 Kbps, which are typical values for enterprise networks;

The performance of JMFTP over high speed networks is metered in the following
conditions:

• Loss rate: packet loss rate is not artificially induced;

• Data rate: maximum transmission rate, in bits per second, ranges from 100
Kbps to 10Mb/s over 100Mb/s physical networks;

The robustness of JMFTP over satellite networks is metered in the following
conditions:

• Loss rate: packet loss rate is not artificially induced;

• Data rate: the maximum transmission rate is about 2 Mb/s;

• Delay: a fixed transmission delay of 500 ms is artificially induced in the net-
work.

The first problem we deal with is generating a possibly isochronous flow of pack-
ets corresponding to a given nominal throughput. This can be crucial since excessive
burstiness may lead to undesired congestion of network resources and to overwhelm-
ing of clients.

Unfortunately, isochronism is not easily achievable for many reasons, among
which the most significant are: i) the Java Virtual Machine is inaccurate in the tempo-
ral management of concurrent threads, in particular in suspending their execution; ii)
the time spent in accessing secondary storage is not constant and depends on factors
that cannot be kept under control; iii) the interaction between the emission thread
and other threads, like, for example, the one processing incoming NACKs; iv) the
interaction between the emission thread and the operating system. In other words,
synchronicity cannot be obtained by simply suspending the thread that emits packets
for a constant time after each emission.

Thus, we are induced to adopt the emission strategy described by the Java-like
code of figure 4.2: if K Mb/sec is the required throughput, the value of the T param-
eter is computed as (dim ∗ 8)/(K ∗ 1000000) seconds, where dim is the number of

36 CHAPTER 4. MAIN CONTRIBUTION

starting time = system time;
packet number = 0;

while (true)
{
emission time = starting time + (packet number*T);
sleeping time = emission time - system time;

if (sleeping time > 0)
sleep(sleeping time);

send(packet);
packet number = packet number+1;
};

Figure 4.2: JMFTP:The emission strategy

bytes in a packet. The strategy tries to match the nominal throughput as closely as
possible by adapting the time elapsing between two consecutive packet emissions.

The effectiveness of the strategy in realizing different throughputs is tested on
three different Hw/Sw platforms: a workstation Sun Ultra 5 (333 MHz)/Solaris 2.8; a
personal computer Hewlett Packard (Xeon 500 MHz)/Linux 2.2; a personal computer
Hewlett Packard (Xeon 500 MHz)/Microsoft Windows NT 4.0.

With respect to the above issue we consider a simple testing scenario in which
a J-MFTP server is connected to a J-MFTP client through a 100Base T Ethernet
segment. A third personal computer connected to the LAN segment runs a network
monitoring tool.

In this and subsequent tests a 10MB file is transmitted through MFTP packets of
size 1.500 bytes.

We measure the average throughput obtained on the different platforms consid-
ered for different values of T , and compare the obtained values with the correspond-
ing nominal throughputs. The results of our tests are resumed in figure 4.3: measure-
ments show that both the Sun Ultra 5/Solaris and HP/Linux behave very well up to
about 10 Mb/sec. For this emission rate, the actual throughput is 0.4 Mb/sec away
from the nominal one, i.e. 9.6 Mb/sec. The HP/Windows also behaves quite well,
but it is surely less accurate in achieving the required nominal rate. Furthermore,
even skipping the invocation of the sleep() method, i.e. letting the system transmit at
the highest rate, it is not possible to achieve an average throughput higher than 11.8
Mb/sec.

A second measurement campaign is performed in the same ideal environment de-
scribed above (one-to-one transmission on a 100 Mb/sec LAN). This has the goal of
fixing some reference values on the behavior of different Hw/Sw configurations for

4.1. JMFTP 37

Figure 4.3: JMFTP:nominal vs monitored emission throughput

the J-MFTP client, such as the maximum throughput corresponding to the absence
of DTU loss and the throughput value that corresponds to the best achievable sys-
tem performance. These tests also make it possible to evaluate the robustness of the
architecture in presence of high throughputs and/or loss rates.

Three Hw/Sw architectures are considered for the J-MFTP client: a workstation
Sun Ultra 5 (333 MHz)/Solaris 2.8; a personal computer Compaq (Pentium III 500
MHz)/Linux 2.2; a personal computer Hyundai (Celeron 600 MHz)/Microsoft Win-
dows 2000. Tests are performed for each considered platform and for different values
of the throughput. For each test we collect the average values of: i) the host transfer
time (HTT); ii) the total transfer time (TTT); iii) the percentage of lost DTUs. To this
regard it is worth noticing that, in the considered scenario, with a high probability,
DTUs can only be lost by the J-MFTP client because of its inability to sustain the
transmission throughput.

Figure 4.4 shows the HTT dependence on the emission throughput. In particular,
it is possible to notice that the best performance is not obtained at the highest achiev-
able transmission rate: for both the HP/Linux and the Hyundai/Windows platforms
the minimum HTT is reached when the emission throughput is roughly 3.0 Mb/sec.
An emission throughput of 4.0 Mb/sec makes the HTT for the Sun Ultra/Solaris ar-
chitecture as low as possible. For higher throughputs the percentage of lost DTUs
considerably increases the number of passes that are necessary to deliver the product,
thus also increasing the HTT.

It is interesting to notice that as long as DTU loss is moderate (up to 5%), HTT is

38 CHAPTER 4. MAIN CONTRIBUTION

Figure 4.4: JMFTP:HTT dependence on the emission throughput

very close to its ideal value, given by the ratio between file size and nominal through-
put. Moreover for all considered platforms, HTT remains close to its ideal value for
throughputs up to about 4.0 Mb/sec. This shows that the overhead introduced by
retransmissions remains low in this range.

Figure 4.6 shows how the HTT is influenced by the percentage of lost DTUs.
This picture shows that the best performance is not obtained in the absence of loss.
This is due to the trade-off existing between throughput and loss rate (see comments
above). For this reason, it is convenient to increase the throughput, as long as loss
rate is moderate.

Figure 4.5 shows the relation existing between emission throughput and DTU
loss rate. As to this point, it is worth noticing that the system is robust, in the sense
that the product is always correctly delivered, even in the presence of high loss rates,
up to 95%.

A third series of tests is performed in the same reference scenario in order to
evaluate the impact of the loss of DTUs on the HTT. The emission throughput of the
J-MFTP server is set, for each considered platform, to the maximum throughput that
does not introduce loss of DTUs (see comments above), while several DTU loss rates
are artificially introduced at the server itself. In this way we can simulate the loss of
DTUs due to queue congestion at routers in a geographical network.

We finally move to a more complex scenario in which the already considered
platforms are all connected by the same 100 Mb/sec Fast Ethernet LAN, together
with two more J-MFTP clients: a laptop Acer (Celeron 466 MHz)/Linux 2.4 and a

4.1. JMFTP 39

Figure 4.5: JMFTP:relation between emission throughput and percentages of
lost DTUs

Figure 4.6: JMFTP:HTT dependence on the DTU loss rate

40 CHAPTER 4. MAIN CONTRIBUTION

Figure 4.7: JMFTP:percentage variation of the HTT with respect to the one-to-
one case

laptop Compaq (Pentium II 266 MHz)/Windows 2000.
This scenario is useful to evaluate the impact of the concurrent presence of more

clients on the performance of each single client. This influence is mainly due to the
fact that each client is interrupted by the reception of the responses (NACK) multicast
by all other clients. With regard to this, the user-level performances of each client (i.e.
the HTT experienced by a client) are compared to those observed for the same client
in the one-to-one case.

Figure 4.7 shows the HTT variation for the three clients considered in this section
and for different throughput values. As a general remark, the picture shows that
the interaction between clients is considerable. For each considered platform and
for every throughput value, the figure shows the percent variation with respect to
the value measured in the one-to-one case. Results show that the worsening never
exceeds a factor about 1.2, i.e. the HTT of a client when 5 clients receive the product
over the same LAN is lower than 2.2 times the value when the client receives the
product in a one-to-one configuration. Furthermore:

1. JMFTP has a robust behavior on low-bandwidth network as data rate increases.
For example, in the case of a single client of medium/low power (a SUN UL-
TRA 5 with a 167 MHz processor and 64 MB RAM)and a server connected
by the same LAN, the total transfer time decreases as data rate increases up to
4,000 Kb/s. This shows that the client can handle packets efficiently up to a

4.2. WORK IN PROGRESS 41

rate of 4Mb/s.

2. As packet loss rate increases from 0% to 50%, we observe an increase in the
total transfer time of roughly an order of magnitude, but the file is always
successfully delivered to destination;

3. JMFTP cannot generate isochronous shaped flows with a data rate higher than
4 Mb/s.

Results obtained in the satellite scenario are quite similar to those achieved in
presence of negligible delays, thus showing the tolerance of JMFTP with respect to
latency.

4.2 Work in Progress

4.2.1 NJMTP

This project extends our reliable multicast software framework with a module
written to support and experiment with the following:

• Relay discovery, i.e. the discovery of the tree structure for aggregation and
suppression of NACKs;

• Multiple rate;

• Multiple channel;

• Performance tuning for real-time, seeking trade-offs between scalability and
timeliness;

• Native thread performance issues (Native Posix Thread Library).

4.2.2 Active Smart Multicast Routing

Starting from previous research on anycast and existing Active Multicast pro-
posals [LGT98] [MP02], we are investigating the active router support for multicast
scalability issues. The main goals of this research are:

• Scalability enhancements;

• Performance analysis.

42 CHAPTER 4. MAIN CONTRIBUTION

4.3 Conclusion

In this part of the thesis we have surveyed known classes of reliable multicast pro-
tocols. Sender-initiated protocols are not scalable because the source must account
for every listening receiver. Receiver-initiated protocols are far more scalable if they
avoid overloading the source with retransmission requests. On the other hand, these
protocols require infinite buffers in order to prevent deadlocks. As a consequence this
protocol class can only be used efficiently with application-layer support.

Some solutions to the ACK/NACK-implosion problem are tree-based protocols
and ring-based protocols. The first organize the receivers in a tree and send ACKs
along the tree; the latter send ACKs to the sender along a ring of receivers.

Tree-based protocols delegate responsibility for retransmission to receivers and
employ techniques applicable to either sender-initiated or receiver-initiated protocols
within local groups of the tree.

In this context we focused our attention on the performance and scalability of a
specific protocol, in order to seek trade-offs among throughput, loss rate and group
size. With this aim we investigated the feasibility of a Java implementation of a
reliable multicast file transfer protocol (MFTP). We presented a software architecture
and proposed experimental settings to test its performance and robustness on different
platforms, with respect to a variable number of clients in a real-world environment.

The following conclusions can be drawn with the results presented in this section.
The J-MFTP implementation is robust with respect to high packet loss rate condi-
tions. The protocol successfully delivers the file also in presence of a very unreliable
channel (even in the presence of packet loss rate up to 95%).

For what regards performance, results show that the bottleneck of the system is at
the client side. We also notice that the best performance is obtained when the sender
data rate produces a moderate but not negligible loss rate at the client side. This value
is highly dependent on the client characteristics.

Along this investigation we have analyzed specific scenarios and gathered exper-
imental data that allows us to contribute to the research community with our results
and also by offering a reference high-performance reliable multicast protocol imple-
mentation. Results we collected lead us to new research directions that we describe in
the second part of this document, such as the impact of security on reliable multicast
performance.

Part II

Secure Multicast

43

Chapter 5

Introduction

Group communication services such as chat, videoconferencing and online gam-
ing are becoming increasingly popular. Pay-TV and video on-demand are at present
a part of the networked world. The need for security in these environments is very
important especially for the service provider and in some applications for the end
user, too.

Security properties are not equally essential in every kind of group application
but their need is dependent on the type of trust relationship between communicat-
ing parties. For example a pay-TV service provider wants to be sure that program
transmissions are viewed by the paying customers only. The various secure multicast
scenarios and concerns are quite diverse and even contradictory.

We can distinguish different types of secrecy:

• Ephemeral secrecy i.e. preventing non group-members from easy access to
transmitted data.

• Long-term secrecy i.e. protecting the confidentiality of data for a long period
of time.

Usually for multicast data guaranteeing the first type of secrecy is required whereas
the second is rarely needed.

In this chapter we will briefly describe secure multicast issues, together with a
view of the most interesting proposals to date.

5.1 Multicast Security Issues

Multicast can provide an efficient delivery service to large groups of users, but
multicast security has to be taken into account when authorized access to information
and control over the set of participants to a multicast session is required. Cryptogra-
phy can be used to satisfy the requirements of a secured application, such as:

45

46 CHAPTER 5. INTRODUCTION

• Confidentiality;

• Integrity;

• Authentication;

• Availability.

Message confidentiality can be assured e.g. by using symmetric key encryption
for data. On the other hand employing a single key shared by the receivers and the
sender cannot prevent the forgery of the packets by a group member.

Data integrity can be guaranteed as follows: the sender computes a digest of the
message, encrypts the computed digest and includes the encrypted value in the mes-
sage that is to be sent. Receivers compute the digest of the message and compare the
computed digest against the decrypted digest extracted from the received message.
Senders use their private key to generate a signature of the data, and receivers use the
corresponding public key to verify the signature. Alternatively, shared secret keys
may be used, either a separate one for each sender, or one key used by all senders.

Sender authentication can be guaranteed by using digest signature with pub-
lic/private key pair as above.

Service availability (i.e. the capacity to detect and resist to Denial of Service
(DoS) attacks) is relevant in a multicast setting, since attacks are easier to mount and
are much more harmful. Here protection should include multicast routers as well as
end-hosts.

The authentication, integrity and confidentiality mechanisms are very similar to
those for unicast connections. and can be obtained by MAC (Message Authentication
Code) or the digital signature, the message digest with hash function and data encryp-
tion, respectively. These solutions are designed to work in unicast environment but
generally for secure multicast more scalable solutions are required.

Multicast security concerns are considerably more complex than those regarding
point-to-point communication. They can be summarized as:

• Access control;

• Dynamic group membership;

• Trust in routers.

Main parameters that influence secure multicast group management are:

• Group size;

• Member computing power;

• Membership dynamicity.

5.1. MULTICAST SECURITY ISSUES 47

Figure 5.1: Example secure group join

Performance is really important for secure multicast applications. The main per-
formance issues regard:

• Latency overhead per sending and receiving packets containing keys;

• Bandwidth overhead in data transmission due to encryption/decryption;

• Group management activity such as group initialization and group membership
change.

As regards multicast routing, it clearly presents many vulnerabilities, since: i)
multicast addresses are publicly known; ii) joining or leaving a multicast group does
not require special permissions; iii) an intruder can send data to the group without
being a member.

In the following chapter we will briefly describe some of the most interesting pro-
posals for key management, whereas for a single specific solution regarding multicast
routing we refer to [SGLA99].

5.1.1 Group Key Management

A common solution for multicast message confidentiality is by the adoption of
a session key(group key), i.e. a symmetric(shared) key that must be simultaneously
owned by the sender and all the receivers of the multicast stream. If the service has to
be paid for, the group key should be changed on every membership revocation. Every
time a member leaves the group a new group key has to be generated and distributed
to every group member. The new group key has to be encrypted with member’s
personal key encryption key (KEK).

If a receiver joins a multicast group (See fig.5.1 [CK00] where TTP=Trusted
Third Party), the group key is changed to prevent the new receiver from decrypting
the data that was transmitted before. This property is called backward secrecy.

48 CHAPTER 5. INTRODUCTION

Figure 5.2: Example secure group leave

If a receiver leaves a multicast group (See fig.5.2 [CK00]), the group key should
be changed also. Otherwise, the leaving receiver can continue to decrypt data us-
ing the previous group key. This property is called forward secrecy. Guaranteeing
backward secrecy is easier, in that the sender can send a new session key to group
members via the encrypted multicast channel to the present group.

The above-mentioned operations involve two tasks: key encoding and key dis-
tribution. The key encoding phase of group rekeying involves generating a set of
encrypted keys that have to be transmitted to the members of the group. The key dis-
tribution (rekey transport) phase is concerned with packing these encrypted keys into
packets and delivering the packets to the members of the group. For scalable group
rekeying, both the key encoding and key distribution operations need to be scalable.

The most straightforward way to distribute keys is by using a centralized group
key controller (GC), which takes care of group key management. In this case the dis-
tribution cost is linear to the group size and the controller has to store n+1 keys. This
simple key management unfortunately does not scale well and has the disadvantage
of having a single point of failure.

In fact for large groups with frequent membership changes, the costs of rekeying
the group can be quite high. Furthermore reliability is not guaranteed because the
failure of the centralized controller is fatal to the whole system.

Chapter 6

State of the art

6.1 Logical Key Hierarchies

The use of logical key trees (hierarchies) for improving the scalability of group
rekeying was proposed by Wallner [WHA99] and Wong [WGL00]. The basis for the
LKH approach to scalable group rekeying is a logical key tree which is maintained
by the key server (see fig. 6.1 [SZJ02]). The root of the key tree is the group key
used for encryption/decryption of data and it is shared by all users. The leaf nodes
of the key tree are keys shared only between the individual users and the key server,
whereas the middle level keys are auxiliary KEKs used to facilitate the distribution
of the root key.

In this scheme, each user owns all the keys on the path from its individual leaf
node to the root of the key tree. As a result, when a user leaves the group, in or-
der to maintain forward data confidentiality, all those keys have to be changed and
redistributed.

There is a soft real-time requirement for key delivery. To address this issue, i.e.
to reduce the latency of key delivery, group rekey transport protocols can make use
of proactive redundancy.

Furthermore, the rekey payload has a sparseness property, i.e. while the packets
containing the new keys are multicast to the entire group, each receiver only needs the
subset of packets that contains the keys of interest to it. Thus, if a receiver-initiated
protocol is used for reliable multicast, a receiver need only provide negative feedback
for packets that contain keys of interest to it.

6.1.1 Periodic Batch Rekeying

Periodic batched group rekeying has been shown to reduce both the processing
and the communication overhead at the key server, and to improve the scalability and
performance of key management protocols based on logical key trees. Processing

49

50 CHAPTER 6. STATE OF THE ART

Figure 6.1: Example logical key tree

periodic group rekeying has the advantage of reducing the number of group rekey
events in a given period of time at the expense of increasing the join and leave latency.

The reliable key delivery problem is particularly challenging when group rekey-
ing is done periodically. In this situation, the number of keys that need to be changed
can be large enough that a very large number of packets need to be multicast reliably
to the whole group.

6.1.2 Wka-Bkr

Setia presented WKA-BKR [SZJ02], a scalable rekey transport protocol for group
key management schemes that are based on logical key hierarchies. Its reliable key
delivery protocol is based upon proactive redundancy and batched key retransmis-
sion. It uses proactive redundancy for achieving reliability and ensuring timely de-
livery of keys.

Setia’s protocol uses a Weighted Key Assignment (WKA) algorithm that exploits
the properties of a logical key hierarchy while assigning keys to packets that are
multicast to the group. The keys at higher levels of the logical key tree are more
valuable than other keys since they are needed by a larger fraction of the group’s
members, so by setting the degree of replication of each key based upon its position
in the logical key tree, more valuable keys have a larger degree of replication.

WKA-BKR does not use FEC but batched key retransmission (BKR), i.e. instead
of resending a lost rekey packet to the group, the protocol determines the keys that are
needed by the receivers who responded with NACKs to the initial multicast, packs

6.2. THE IETF MULTICAST GROUP SECURITY ARCHITECTURE 51

these keys into new packets and multicasts them to the group. Interesting consider-
ations for minimizing key lengths without losing security properties can be found in
[PMM03].

6.2 The IETF Multicast Group Security Architecture

Hardjono and Weis [HW04] defined a Reference Framework for the elements of
a secure multicast architecture. This framework defines the treatment of data sent to
a group, the management of keying material used to protect the data, and the policies
governing a group. Hardjono also defines the concept of Group Security Associations
(GSA). In particular GSAKMP[HMCG04] is defined for group key generation and
dissemination.

GSAKMP separates group security management functions and responsibilities
into three major roles: 1) Group Owner, 2) Group Controller Key Server, and 3)
Group Member.

The Group Owner is responsible for creating the security policy rules for a group
and expressing these in the Policy Token.

The Group Controller Key Server (GC/KS) is responsible for creating and main-
taining the keys and enforcing the group policy by granting access to potential Group
Members (GM) in accordance with the Policy Token.

To enforce a group’s policy the Group Members need to know who potentially
will be in the group and need to verify that the key disseminator is authorized to act
as such.

GSAKMP provides mechanisms for cryptographic group creation and manage-
ment that may be used in conjunction with other protocols to allow various applica-
tions to create functional groups according to their application-specific requirements.

6.3 Source Authentication

The session key approach is inadequate for source authentication. Public key
signature is the most natural mechanism for multicast authentication but has the dis-
advantage of being computationally expensive.

Canetti [CP99] presents solutions to the source authentication problem based on
shared key mechanisms, where each member has a different set of keys. Main saving
is in the signature generation time reduction.

In his solution each MAC is computed with a different key. Each recipient holds
a subset of the keys and verifies the MAC according to the keys it holds. Appropriate
choice of subsets ensures that with high probability no coalition of up to w colluding
bad members (where w is a parameter) know all the keys held by a good member,
thus authenticity is maintained.

52 CHAPTER 6. STATE OF THE ART

A considerable gain in the computational overhead of the authentication scheme
is achieved by noticing that the work needed for computing some known MAC func-
tions on the same input and different keys is far less than the times the work to com-
pute a single MAC. This is so since the message can first be hashed to a short string
using key-less collision-resistant hashing. Using similar parameters to those of the
basic scheme, one can guarantee that each good member has many keys that are
known only to itself and to the sender. In order to break the scheme an adversary has
to forge all the MACs computed with these keys. Thus it is enough that the sender
attaches to the message only a single bit out of each generated MAC. Consequently,
the total length of the tag attached to the message can be reduced to a few bits.

Naor [CGI+99] proposes a scheme enabling a single source to transmit to a dy-
namically changing subset of legitimate receivers from a larger group of users, such
that coalitions of at most k users cannot decrypt the transmissions unless one of them
is a legitimate receiver. The overhead of a rekeying message in this scheme does not
depend on the number of users that are removed from the group. The communication
overhead of the scheme is O(k log2 k log(1/p)), where p is an upper bound on the
probability that a coalition of at most k users can decrypt a transmission to which it
is not entitled. The scheme also requires each user to store O(log k log(1/p)) keys.

The main drawback of this scheme is that the security is only guaranteed against
coalitions of up to k users, and the parameter k substantially affects the overhead of
the scheme.

Chapter 7

Main Contribution

7.1 MTLS

In this section we describe a secured version of MFTP we propose, pursuing the
following goals:

1. simplicity and effectiveness;

2. reduced performance loss over the non-secured version;

3. scalability;

Solutions proposed for unicast transmission, such as TLS [DR04], are not fea-
sible for multicast, for both scalability and group dynamic management issues. We
propose Multicast Transport Layer Security (MTLS) in [DGLS02a] to address the
generic multicast security requirements. According to this proposal, session keys
(NetKeys) are distributed by making use of an additional key, the key encryption key
(KEK).

We develop a Java implementation of MTLS and run a series of tests to eval-
uate its impact on the performance of JMFTPv2, an improved (as regards packet
send/receive performance) version of JMFTPv1 [BDGL01]. Whenever the version
will be of no relevance, both JMFTPv1 and JMFTPv2 will be referred to simply as
JMFTP in the following. More in detail, we evaluate: the influence of the encryp-
tion/decryption process on the maximum average throughput of JMFTPv2; the delay
introduced by the key distribution process, how it scales with respect to the number
of clients and its influence on the average throughput of JMFTPv2.

The MTLS protocol adopts an n-root leaf pairwise keys architecture [WHA99]
to deliver the encryption keys, both the KEK and the NetKeys. This architecture
has been chosen for the implementation of a first prototype. MTLS adopts the RSA
algorithm for encrypting the KEKs, whereas the KEKs themselves and the NetKeys
follow the DES specification.

53

54 CHAPTER 7. MAIN CONTRIBUTION

Figure 7.1: MTLS state transition diagram

The evolution of a single server-single client system adopting the MTLS protocol
to safely distribute KEKs and NetKeys is described in figure 7.1. For the sake of sim-
plicity the diagram does not take into account transitions due to time-out expirations.
In other words we assume no message is lost by the network, nevertheless a message
can be corrupted during its transmission: either by transmission errors, or by attempts
of violating the security of the system.

The server can be in three different states. It can be waiting: for a request of
the KEK (state ”Server Waiting for a Request” in the diagram); for a reply upon the
transmission of the KEK (state ”Server Waiting For a Reply To Msg 2”); for a reply
upon the transmission of the NetKey (state ”Server Waiting For A Reply To Msg 6”).

The client can be in three different states, waiting: for the KEK (state ”Client
Waiting For the KEK”); for a NetKey not previously transmitted (state ”Client Wait-
ing For a New NetKey”); for the retransmission of a Netkey, whenever it has already
been received but resulted to be corrupted (state ”Client Waiting For a NetKey Re-
transmission”). Under the assumption that no message is lost by the network, state
transitions are determined by the reception or the transmission of a message.

Exchanged messages are: Msg 1: ”Hello Msg”. The message by which a request
for the KEK is submitted; Msg 2: ”ACK to Msg 1 and KEK”. The message, reports
on the reception of a not corrupted request for the KEK and delivers the KEK to the
client; Msg 3: ”Nack to Msg 1”. The message reports on the reception of a corrupted
KEK request; Msg 4: ”ACK To Msg 2”. The message reports on the reception

7.1. MTLS 55

Figure 7.2: Joint JMFTP-MTLS software architecture

of a not corrupted KEK; Msg 5: ”Nack To Msg 2”. The message reports on the
reception of a corrupted KEK; Msg 6: ”NetKey”. The message delivers to the client
a NetKey; Msg 7: ”ACK To Msg 6”. The message reports on the reception of a not
corrupted NetKey; Msg 8: ”Nack To Msg 6”. The message reports on the reception
of a corrupted NetKey.

7.1.1 Implementation

The main components of the MTLS architecture are: a cipher library for data
encryption; a decipher library for data decryption; the MTLS server and the MTLS
client, the two components that can be integrated with any multicast application.

All the components of MTLS are implemented in Java, and are compliant to the
Java Beans standard. The MTLS server and client are easily integrable with any Java
multicast application, and fit as building blocks in the JMFTP framework.

The MTLS server has two main modules, the Key Server and the Authentication
Server, and has a well-defined interface towards the application. The MTLS client has
a similar interface towards the client application. An exchange message protocol has
been defined in order to safely distribute NetKeys. The client authentication task is
accomplished by the Authentication Server using security certificates. Furthermore
the Authentication Server keeps track of client authorizations. The MTLS API is
composed of the Group Manager Interface, the Monitoring Interface and the Control
Interface. The Group Manager Interface provides services to add or remove users
from the users list. The Monitoring Interface provides services to asynchronously
notify the multicast application about relevant events concerning the distribution of
NetKeys to authorized clients. The Control Interface provides services to notify the
Key Server about a new session and to claim redistribution of the Netkey.

56 CHAPTER 7. MAIN CONTRIBUTION

7.1.2 Details

MTLS provides both authentication and authorization in a multicast environment.
Figure 7.2 shows a simplified view of the framework comprising JMFTP and MTLS
and describes the points of integration between the two: JMFTPv2 server includes
the proper sequence of MTLS method invocations; JMFTPv2 server interfaces with
the encryption classes provided by MTLS; JMFTPv2 client includes the client side
of the key distribution module provided by MTLS; JMFTPv2 client interfaces with
the decryption classes provided by MTLS.

The dynamic behavior of the integrated JMFTP/MTLS system is described by
the following sequence of actions:

1. the JMFTPv2 server shares the list of authorized users with the MTLS server,
so that MTLS can authenticate the JMFTPv2 clients;

2. the JMFTPv2 server starts the announcement phase;

3. when a JMFTPv2 client joins the session, it requests the decryption NetKey to
the MTLS Key Server via the MTLS client;

4. the MTLS Authentication Server authenticates the client and starts distributing
the NetKey;

5. when the Netkey is successfully delivered to a client, the MTLS notifies the
JMFTPv2 server;

6. when a proper number of clients, according to the policy implemented by the
JMFTPv2 server, have joined the session and received the NetKey, file distri-
bution starts;

7. during file distribution, the JMFTPv2 server can invoke the distribution of a
new Netkey, either to periodically change the key or because an attack to the
security system has been detected or is possible (e.g. when the group compo-
sition changes). It is worth noticing that we assume all the entities involved in
the integrated system possess valid certificates.

7.2 JMFTP-MTLS Experimental Measurements

In this section we report on the performance of JMFTP and MTLS, with the goal
of evaluating the impact of security on the overall performance of JMFTP [DGLS02b].

We are interested in measuring the following:

• the Host Transfer Time (HTT) in absence of rekeying (we expect that the en-
cryption/decryption process has a measurable impact on this indicator);

7.2. JMFTP-MTLS EXPERIMENTAL MEASUREMENTS 57

• the Host Transfer Time (HTT) using scheduled rekeying;

• the experienced DTU loss rate;

• the rekeying time;

During a data distribution the NetKey should be changed at regular intervals to
improve security. This process could have an influence on the HTT. During the distri-
bution of the file, the NetKey could be suddenly changed since a security risk has been
detected. The file transmission must then be suspended, the NetKey redistributed and
the file transmission resumed. This may increase the HTT.

With the aim of evaluating these performance indicators, we first measure the
achievements of JMFTP in generating possibly isochronous flow of packets corre-
sponding to a nominal throughput. In our tests we adopt the same emission strategy
presented in [BDGL01].

7.2.1 Evaluation

The strategy effectiveness is tested in a simple scenario in which a JMFTP server
is connected to a JMFTP client through a 100Base T Ethernet segment. A third per-
sonal computer connected to the LAN segment runs a network monitoring tool. The
JMFTP server and client are hosted on two Linux platforms: a Hewlett Packard pc,
Xeon 550 MHz, 256 MB RAM and a Compaq PC, Xeon500 MHz, 128 MB RAM, re-
spectively. Three different software target configurations are considered : JMFTPv1,
JMFTPv2 with disabled cryptography, JMFTPv2 with enabled cryptography.

We measure the average throughput in transmitting a 10.0 MB file through MFTP
packets of size 1.500 bytes. The results of our tests are shown in figure 7.3: both
JMFTPv1 and JMFTPv2 perform well up to 6.0 Mb/sec (Mb = Megabits in this pa-
per). For this emission rate, the actual throughput is 0.1 Mb/sec away from the nom-
inal one in the worst case (JMFTPv2 with encryption). Furthermore, if the system
transmits at the highest possible rate, JMFTPv2 with disabled encryption, achieved a
remarkable 25.5 Mb/sec, whereas JMFTPv1 doesn’t exceed 9.6 Mb/sec. Encryption
has a strong influence on the performance of JMFTPv2 server, whose emission rate
in this case does not exceed 6.45 Mb/s.

In the following, we report the results of tests on MTLS by itself and in con-
junction with JMFTPv2. In these tests we consider: the time required to deliver the
NetKey to a single client; the time required to deliver the NetKey to a growing number
of clients; a sketch of a scalability test; an evaluation of the performance degradation
induced by the concurrent delivery of both NetKeys and JMFTP packets.

Figure 7.4 shows the relation existing between the emission throughput and the
average values measured for the HTT. It is worth noticing that, in the considered
scenarios, with a high probability, packets can only be lost by the clients because of

58 CHAPTER 7. MAIN CONTRIBUTION

Figure 7.3: Nominal vs. Monitored throughput

Figure 7.4: HTT dependence on the emission throughput

7.2. JMFTP-MTLS EXPERIMENTAL MEASUREMENTS 59

Figure 7.5: Relation between emission throughput and DTU loss

Figure 7.6: Total Rekeying Time for variable number of heterogeneous clients

60 CHAPTER 7. MAIN CONTRIBUTION

Host First (ms) Subsequent (ms)
Compaq Deskpro 206 90

Toshiba Tecra 440 254
Pentium III 399 258
Sun Ultra 5 496 317

Texas Extensa 2998 965
Acer Travelmate 2100 1890

Table 7.1: Rekeying times

their inability to sustain the transmission throughput. In addition the best system per-
formance is not obtained at the highest achievable transmission rate. The minimum
HTT is reached when the emission throughput is roughly between 3.0 and 6.0 Mb/sec
for all considered target software configurations: 6.0 Mb/sec for JMFTPv2 with en-
cryption disabled; 3.0 Mb/sec for JMFTPv2 with encryption enabled and JMFTPv1.

Figure 7.5 shows the relation existing between emission throughput and DTU
loss rate. It can be observed that: JMFTPv2 client performs better than JMFTPv1
client in that the probability of packet loss induced by the client itself is significantly
lower; encryption/decryption has a strong influence on the client performance when
the throughput exceeds 4.0 Mb/sec.

Table 7.1 shows the rekeying times referred to different hardware/software client
configurations in a one-to-one scenario. We can observe that the time required to
deliver the first NetKey is greater than that required for rekeying. We argue this is
due to the time spent in accessing the disk and loading the necessary Java classes.

Figure 7.6 shows the measured total rekeying time (TRT) as a function of the
number n of (heterogeneous) MTLS clients involved. The TRT is defined as the time
elapsed from the invocation of the rekeying procedure to the reception of the last
NetKey acknowledgment. The experiment was performed as follows. We had a set
of available rekeying client machines, each representative of a performance class (see
table 7.1). The test for n = 1 involved the fastest client. The test for n = 2 involved
the two fastest clients. The test for n = 3 the three fastest clients, and so on.

The parallel rekeying process MTLS performs allows to obtain the performance
shown in the curve labeled as total (parallel) rekeying time in figure 7.6. In the same
figure the sequential rekeying time is shown, given by the sum of the one-to-one
rekeying times of the clients involved in the test, as reported in table 7.1. The lower
bound curve plots the one-to-one rekeying time of the slowest client participating to
the rekeying procedure, which is the obvious performance limit.

The efficiency of the implemented MTLS parallel rekeying strategy is clear, be-
cause the lower bound and total parallel rekeying time curves are almost identical. As
a consequence we can foresee that the behavior of the rekeying operation for larger

7.2. JMFTP-MTLS EXPERIMENTAL MEASUREMENTS 61

Figure 7.7: Keys per second with respect to the number of clients

groups will be limited mostly by the performance of the slowest class of clients.
On the basis of the results we collected, it is possible to conclude that: JMFTPv2

substantially performs better than JMFTPv1, especially for emission throughputs ex-
ceeding 4.0 Mb/sec; the impact of encryption/decryption on the overall system per-
formance (min HTT) is negligible and the system performance when encryption is
disabled is pretty good up to high emission throughputs.

In other words the MTLS server can properly and concurrently serve multiple
requests at the rate it was solicited during this experiment. We have made a prelimi-
nary evaluation of the correctness of the system for sessions with tens of clients, with
satisfactory results.

Another performance indicator for the rekeying system is the number of NetKeys
the server can produce in a second. A relevant fraction of the time required to gener-
ate a single NetKey is spent for its encryption, using a different key for each client.
These tests are performed by installing several MTLS clients on particularly fast
machines in order to stress the server. Figure 7.7 shows the maximum measured
throughput corresponding to a given number of clients in the session.

By examining the results of the tests concerning MTLS we can claim that the first
rekeying operation has an appreciable overhead with respect to the following ones;
due to the use of Java threads in the Key Server implementation the total rekeying
time could moderately scale with respect to the number of clients.

Finally, we can make some considerations on the behavior of the integrated sys-

62 CHAPTER 7. MAIN CONTRIBUTION

tem: the impact of the scheduled rekeying process onto JMFTP performance is neg-
ligible, when concurrently performed with data transmission; however, in the case
of a sudden rekeying, the data transmission process has to wait as long as the new
NetKeys have been distributed to all participants. This could result in a significant
delay on the total and on the host transmission times, impacting performance; The
measured influence of the data transmission over the rekeying time of a target client
can roughly be estimated as equal to 10%.

We can argue that, in our tests, the impact of encryption/decryption on the global
system performance is negligible when the emission rate is moderately high (i.e.
when it does not exceed the value of 4.0 Mb/sec).

Starting from an effective throughput of 4.0 Mb/sec, the decryption process has
an increasing role in slowing down the JMFTP client, and as a consequence in the
packet loss. Encryption starts impacting system performance from an emission rate
of 6.0 Mb/sec, that is the maximum throughput achievable by the server itself.

The time needed to deliver one NetKey to a single client is strongly dependent
on its hardware and software configuration. During our tests, the MTLS server ef-
fectively used the multithreading facilities, but we didn’t succeed in reaching the
performance limit of the server itself. The total rekeying time is negligible in the
case of a scheduled request of rekeying. However, in the case of a sudden rekeying,
a significant and critical delay on the total and host transmission times is possibly
introduced.

The overall performance of the secured system is still not adequate to high per-
formance environments. Rekeying scalability needs improvements. Results show
that the bottlenecks of the systems are at the client side of both software components:
the performance of the MTLS client must be in-depth investigated to speed-up its re-
sponse to the server; the sustainable throughput of the JMFTP client can be improved
further.

7.3 Concluding Remarks

In this part of the thesis we have briefly exposed a survey of secure multicast
issues, problems and solutions. We have presented some mainstream proposals on
how to handle key management in multicast environments. Not all the possible ap-
proaches were presented here but some of the alternatives that represent the current
directions in this area.

The main problem in multicast key management is scalability. The research in
this area has been going on for some years now and there is not yet a clear consensus
on how the keys should be distributed. IETF is also working in this area, and that
will help produce standardized and more widely adoptable solutions.

We have gained experience by extending our reliable multicast framework with
security modules and experimenting with a reliable multicast protocol and key distri-

7.3. CONCLUDING REMARKS 63

bution algorithm.
We have contributed with a reference reliable secure multicast protocol and a

real-world performance analysis. Trade-offs between security and performance have
been found, while our research effort is continuing, further results are being collected
and more scalable solutions to the key distribution problem are being studied.

64 CHAPTER 7. MAIN CONTRIBUTION

Part III

Reliable Multicast Applications

65

Chapter 8

Replica Management and Grid

8.1 Introduction

Very often, users of scientific applications require remote access to very large
datasets. A technique for access latency reduction and efficient network resource
usage can be to replicate frequently accessed datasets at locations near the eventual
users. Such replication has to be performed in a reliable and efficient way in order to
be convenient.

In scientific Grid applications, data volumes generated and collected at different
sites can reach the order of petabytes [Cas02]. Large Grid applications are related
to High Energy Physics, Earth Observation and Bioinformatics [HJS+00]. HEP is a
large collaboration where over 2,000 researchers distributed all over the world ana-
lyze the data generated by a single accelerator. For Earth observation, data are col-
lected at distributed stations and are maintained in geographically distributed sites.
In molecular biology and genetics research a large number of independent databases
need to be integrated in a single logical one. The users of such applications require
a ubiquitous fast read/write access to up-to-date data, independently from the site
where data originated.

In this chapter we will survey issues including:

• Data replication strategies;

• Grid technologies;

• (Data) replica management systems.

8.2 Replication Strategies

Data replication can improve system scalability, fault tolerance and load balanc-
ing, and as a consequence increase access performance and guarantee a better data

67

68 CHAPTER 8. REPLICA MANAGEMENT AND GRID

Figure 8.1: Approaches to consistency

availability. It mainly consists of maintaining a number of copies, referred to as repli-
cas in what follows, of the same data items on different (geographically distributed)
sites [GKL+02]. Replicas must be kept consistent and up-to-date. As a consequence
writes and reads can be more complex and possibly slower.

As shown by figure 8.1, two different approaches are adopted by Replica Manage-
ment Systems in order to deal with inconsistencies among replicas: the eager(pessimistic,
synchronous) and lazy(optimistic, asynchronous) approaches [SL00].

According to the first one, replicas are kept synchronized by updating all of them
as part of a single global atomic transaction, thus a priori excluding inconsistencies.
Unfortunately, the higher the number of replicas, the longer the time spent in the dis-
tributed locking process. This is one of the main reasons why the eager approach
does not scale. Furthermore, it imposes strong resource requirements and heavy lim-
itations on replica availability [BHG87]. Finally, implementing updates as part of a
single global transaction is not suitable for scenarios where sites are often discon-
nected from the network, as in mobile network environments [JPOD96].

According to the lazy approach, updates are asynchronously propagated to all
other sites after the local transaction has been committed. Most crucial issues of
the lazy solution are replica consistency management and performance scaling. Lazy
replication cannot ensure a strict synchronization by definition, thus it is important to
define which level of consistency the system supports.

Two main levels of consistency are possible: eventual and view.

8.3. THE GRID 69

Eventual consistency guarantees that if no new update submission occurs and
sites can freely and reliably communicate for an unbounded interval of time, all repli-
cas will eventually converge to the same content. This minimal requisite is suitable
for most applications.

Whenever more stringent requirements have to be met, view consistency guaran-
tees an active control on the quality of data by regulating read and update submis-
sions. A view is consistent with the actions of an entity if it provides a data version
that is not older than what an entity has seen previously. However, this approach
requires tracking the last version of every file that has been accessed by an entity or
user in the past, hence the view consistency database can become very large.

View consistency includes causal consistency that preserves partial orderings
among read and write requests, and bounded inconsistency that explicitly limits the
degree of replica inconsistency.

Temporal consistency is a particular case of bounded consistency guaranteeing
that replicas will converge to the same content within a prefixed interval of time, by
letting newest object contents propagate to the replicas within a fixed period. Data
temporal consistency constrains how old a data item may be and still be considered
valid [CPW97]. This latter is an effective and less resource-hungry consistency re-
quirement.

Finally, it has also to be mentioned that whereas eager replication delays or aborts
a transaction when committing would violate serialization [JPOD96], lazy replication
has a more difficult task, since some replica updates could have already been commit-
ted when a serialization problem is detected. Thus, in case of conflict, transactions
have to be reconciled by the system.

Three phases are needed for lazy replication in order to reach consistency:

1. Updates propagation;

2. Updates scheduling;

3. Detection and reconciliation of conflicts among updates;

In the next sections we will describe a real-world application scenario for the
replica management problem, analyze it more in depth and propose a general solution
for the above-mentioned first phase.

8.3 The Grid

Available computational resources today do not always meet the demand of in-
creasingly complex scientific applications. Improvements in wide-area networking
make it possible to aggregate distributed resources in various collaborating remote
institutions. The main result of such aggregation today is known as Grids.

70 CHAPTER 8. REPLICA MANAGEMENT AND GRID

Figure 8.2: Components in a layered Grid architecture

On the one hand, computational Grids main purpose is to offer power for compu-
tationally intensive applications that need fast elaboration on (relatively) small data
sets. Data Grids, on the other hand, are created to support applications that operate
on very large data sets (oftentimes in the order of petabytes). In this context, data
replication management is a particularly important issue. In the following, when
talking about Grids, we will mainly refer to data Grids and in particular to the Eu-
ropean DataGrid project[Dat], both a computational and data-intensive Grid that has
been adopted by our research group. It is worth mentioning the Global Grid Forum
[For] contribution to the development of Grid technologies, via the elaboration and
dissemination of ”best practices”, implementation guidelines and standards.

In ”The Anatomy of the Grid” [FKT01], Foster and Kesselman define the Grid
problem as ”coordinated resource sharing and problem solving in dynamic, multi-
institutional, virtual organizations”. They also define the architecture whose layers
are depicted in fig 8.2 [All]. Figure 8.2 shows some components of the Data Grid
reference architecture that are relevant to replica management.

The software infrastructure presented in that paper and in [FKNT02] places a
large emphasis on interoperability as it is fundamental to ensure that virtual organiza-
tion(VO) participants can share resources dynamically and across different platforms,
programming environments and languages. The importance of Foster’s architecture
resides mainly in its being a reference framework where many researchers and insti-
tutions have reliably been working for years. Other contributions to Grid computing
have been proposed, all of them had to refer to Foster’s work.

Figure 8.3 shows a complex Grid reference model.
Figure 8.4 shows the DataGrid architecture we refer to. Each box represent a

Grid element, i.e. a server which provides a particular functionality within the Grid.
We briefly describe the role of each machine:

8.3. THE GRID 71

Figure 8.3: A Grid reference model

72 CHAPTER 8. REPLICA MANAGEMENT AND GRID

UI

RBII

SE

RC

CECE

Submits Job

Query

Reply
Sends

 Job

SE
RM

W
N

W
N

Figure 8.4: Elements in a DataGrid

• The User Interface (UI) is the machine that provides user access to the Data-
Grid services. The user interacts with the Grid via command line or using more
advanced interfaces.

• The Resource Broker (RB) is the server that receives users’ requests from the
UI and queries the Information Index to find suitable resources (ex.: a comput-
ing element which satisfies user’s requirements).

• The Information Index (II) maintains information about the available resources.

• The Replica Manager (RM) is used to coordinate file replication from one
Storage Element to another. This is useful for data redundancy but also to
move data closer to the machines which will perform computation.

• The Replica Catalog (RC), manages the information about file replicas. A
logical file can be associated to one or more physical files which are replicas of
the same data. Thus a logical file name can refer to one or more physical file
names.

• The Computing Element (CE) is the server which receives job requests and
delivers them to the Worker Nodes. The Computing Element provides an in-
terface to local batch queuing systems (e.g. PBS, LSF,...).

8.4. THE REPLICA MANAGEMENT IN THE DATA GRID 73

• The Worker Node (WN) processes input data and produces output for a job.

• The Storage Element (SE) is the system providing storage space. It provides a
uniform interface to different Storage Systems.

8.4 The Replica Management in the Data Grid

In these sections we focus on the problem of data replication in the Data Grid.
Replicas here are defined in terms of files, not objects, but there exist well-defined

mechanisms for mapping objects to files in a way that can be completely transparent
to applications.

The use of replicas is transparent to users; they are created as needed by the Grid
middleware in order to improve overall performance of jobs [BCC+02] [CCSM+03].
However, sites can explicitly ask for the creation of local replicas.

The Replica Manager keeps track of all replica data so that the replica selection
service can select the optimal physical file to use for a given job, or to request the
creation of a new replica.

The main Grid terms for replica management are:
Logical File Name (LFN): a logical file is identified by a globally unique string

that is independent from where a file is physically stored, and from the protocols that
can be used to access it.

Physical File Name (PFN): a physical file name is used to uniquely identify a file
on a given SE.

Transport File Name (TFN): a transport file name is used to identify how a file is
to be accessed. The TFN allows multiple protocols to be used to access a single PFN
(e.g. GridFTP, ftp, http,...).

8.5 Globus

Large scientific applications on the Grid have three main requirements on data
management in common, such as:

• A secure, reliable, wide-area data transfer protocol.

• Services for registering and locating files.

• The management of multiple copies of files.

Grid components satisfying these requirements can be found in Globus. The
Globus project provides middleware services for Grid computing environments.

Main Globus components are:

1. The Grid Security Infrastructure (GSI) provides authentication and authoriza-
tion services using public key certificates and Kerberos authentication.

74 CHAPTER 8. REPLICA MANAGEMENT AND GRID

2. The Resource Allocation Manager(GRAM) architecture provides a way for
specifying application requirements and (GARA) mechanisms for resource
reservation.

3. The Information Management architecture (MDS) provides a scheme for pub-
lishing and retrieving information about resources in the wide area environ-
ment.

4. The Data Management architecture, providing:

• GridFTP, a universal data transfer protocol for grid computing environ-
ments.

• Global Access to secondary storage (GASS)

• A Data Catalog and Replica Management Infrastructure for managing
multiple copies of shared data sets.

In different Grids often heterogeneous application-specific storage systems are
used, such as the Distributed Parallel Storage System (DPSS), the High Performance
Storage System (HPSS) and the Distributed File System (DFS). Unfortunately, most
of them utilize incompatible protocols for accessing data thus effectively partitioning
the datasets available on the Grid.

The GridFTP protocol can be used to overcome these incompatibilities by pro-
viding data movement in Grid environments.

The Globus Replica Management Infrastructure is responsible for managing com-
plete and partial copies of data sets. Services provided by a replica management
system include:

• Creating new copies of a complete or partial data set;

• Registering copies in a Replica Catalog;

• Allowing users and applications to query the catalog to find all existing copies
of a particular file or collection of files;

• Selecting the best replica for access based on storage and network performance.

8.5.1 GridFTP

GridFTP is the Globus data transfer and access protocol that provides secure data
movement in Grid environments [All01]. This protocol extends the standard FTP
protocol and includes the following features:

• GSI and Kerberos support;

8.6. REPLICA MANAGEMENT SYSTEMS 75

• Third-party control of data transfer: GridFTP allows a user or application at
one site to initiate, monitor and control a data transfer operation between two
other sites;

• Parallel data transfer: GridFTP supports parallel data transfer using multiple
TCP streams in parallel to improve aggregate bandwidth over using a single
TCP.

• Striped data transfer: Data may be striped or interleaved across multiple servers,
which use multiple TCP streams to transfer data that is partitioned to provide
bandwidth improvements.

• Partial file transfer: GridFTP provides commands to support transfers of arbi-
trary subsets or regions of a file.

• Automatic negotiation of TCP buffer/window sizes;

• Support for reliable and restartable data transfer.

These improvements over standard ftp are needed in order to cope with the re-
quirements of the large scientific Grid applications, i.e. very large datasets and the
very large bandwidth (in the order of Gigabit/s) often available.

GridFTP is mainly focused on point-to-point file transfer, while it is not optimized
for parallel point-to-multipoint transfer as it is required in replication. A proposal for
improving the performance in such cases in given in [IGT04], where pipelining and
multiple distribution trees decrease distribution time to multiple sites.

8.6 Replica Management Systems

Various Grid Replica Management Systems have been proposed to date. GDMP
[SSMD02] is a file replication tool for Data Grid environments with support for
automatic replication through a publish-subscribe notification system. GDMP uses
GridFTP and GSI security and manages replica catalog entries for file replicas, thus
maintaining a consistent view on locations of replicated files.

The Edg-Replica-Manager is the Globus Replica Management Infrastructure li-
brary, with adaptation to the EU DataGrid environment [Dat].

Reptor [KLSS04] is a replica management service prototype providing a programmer-
friendly intuitive interface, hiding the details of the underlying services in a DataGrid
environment. It is the successor to the Edg-Replica-Manager. Reptor provides replica
management and optimization, whose goal is to select the best replica with respect
to network and storage access latencies. The Reptor optimization service determines
the replica that should be accessed from a given location and can potentially deter-
mine the best location for new replicas. Reptor supports the Web Services paradigm
[Kre01] and can rely also on standard mechanisms (e.g. GridFTP) for file transport.

76 CHAPTER 8. REPLICA MANAGEMENT AND GRID

Figure 8.5: Reptor logical layout

It is worth noticing that even though Reptor offers an optimized replica manage-
ment service through an easy-to-use interface, in reality it is a complex system, com-
posed of a large number of interacting components, as shown in figure 8.5 [KLSS04].

8.7 Grid and Web Services

One of the key objectives for Grids is interoperability i.e. the ability of compo-
nents developed by different vendors using different tools to work together. This is
one of the main reasons why the Web Service approach is so interesting for the Grid
community.

The Open Grid Services Architecture (OGSA) Framework [All] was proposed in
2002 by Globus and IBM for integrating the Web Service paradigm inside the Grid
architecture and to standardize virtually all the services of a Grid application (e.g.
job and resource management, security). OGSA defined an extended type of Web
Service called Grid Service, i.e. a Web Service with extensions that make it suitable
for a grid-based application.

The Open Grid Services Infrastructure (OGSI) was created with the objective
that it would eventually converge with Web Services standards. Unfortunately, Grid
Services have several drawbacks:

1. OGSI does not work well with current Web Services tools.

8.7. GRID AND WEB SERVICES 77

Figure 8.6: The Globus Toolkit 4 architecture

2. OGSI adopts a lot of OO concepts (statefulness, the factory/instance model,...)
that are useless in OGSA.

that made this convergence infeasible.
The Web Services Resource Framework (WSRF) [All] standard was proposed

to substitute OGSI. WSRF aims to integrate deeply with Web Services standards.
OGSA will be based directly on Web Services instead of being based on OGSI Grid
Services.

The Web Service approach is so promising that the new Globus Tookit 4 [All]
(see fig. 8.6) will be the first available WSRF implementation.

Our research efforts already comprise Web Services, as we shall see in the last
section of this part of the thesis.

78 CHAPTER 8. REPLICA MANAGEMENT AND GRID

Chapter 9

Main Contribution

9.1 Introduction

In this chapter, we describe our proposal for the problem of update propagation in
multi-master replica management systems (see figure 9.1 [SL00]), i.e. systems where
sites are allowed to update the replicas they manage independently from other copies,
provided the changes will be subsequently propagated to all other sites. Our proposal
applies multicast transmission to both LANs and WANs in order to support hetero-
geneous networks in a scalable way. By our approach, updates are lazy-propagated
through reliable multicast, while replica state estimation is accomplished by a variant
of the Timestamp Matrix technique. Each site multicasts its Timestamp Vector to all
other sites so that they can maintain their own Timestamp Matrix.

The Timestamp Matrix makes it possible for a site to decide whether to reliably
multicast the updates it is in possession of, or not, thus exploiting epidemic propaga-
tion of updates [RGK96], extremely useful in case of network partitioning.

When compared to previous approaches, our solution potentially reduces the
amount of transmitted log update information, decreases propagation time and in-
creases system scalability with respect to the number of sites. Our model captures
the requirements of data-intensive replica services in scalable Grid environments that
require systems to exchange update files in order to reach global consistency.

A Java prototype of our Replica Update Propagation System, named Gedec, has
been implemented and functionality tests performed show the effectiveness of our
approach. Gedec is the acronym for Grid-enabled distributed eventual consistency,
which is the historical name of this research project.

79

80 CHAPTER 9. MAIN CONTRIBUTION

Figure 9.1: Classification of replication models

9.2 Gedec

9.2.1 Our Model

Let S1,S2, . . .Sn be n sites, connected by possibly heterogeneous networks (WANs
as well as LANs). Let us simplify notation by saying each Si maintains a replica Ri,
also referred to as object in what follows, of the same data item. Each Ri can be
independently updated (i.e. inserted, modified, deleted), provided the changes are
eventually propagated to all other sites S j, j 6= i [AAS97]. In what follows we will
assume that:

• sites share a common clock (but are not necessarily synchronized);

• sites share a common propagation scheduling time t0, t1, t2, For the sake of
simplicity t0, t1, t2, . . . = 0,1,2, . . .;

• time intervals between two propagation phases, i.e. ti+1− ti, i = 1,2,3, . . . are
long enough to make it possible for each site to receive and process the updates
propagated by all other sites.

Let us now consider an ideal scenario in which transmissions never fail and
all sites are permanently connected to the network. Each site Si maintains a set of
records, referred to as log-file LFi [RGK96] in what follows. Each record contains
the information related to one single update operation, i.e. a description of the update
operation, the time at which it occurred and the site at which it originated. Each time
an update u is submitted at Si, u is added to a log-file LFi. Let tp immediately follow
tp−1 in the common propagation scheduling. In order to achieve global consistency
and up-to-dateness, at time t, each site Si propagates its log-file update LFUi(tp)
(comprising all updates submitted at site Si between tp and tp−1) to all other sites.

9.2. GEDEC 81

Upon the reception by S j of LFUi(tp), its content is processed and R j accordingly up-
dated. The time elapsing between two subsequent log-file update propagation phases
heavily affects the trade-off between consistency and up-to-dateness.

We consider now a more realistic scenario in which log-files updates could be
lost and sites could be temporarily disconnected. Two orders of problems arise with
respect to the ideal condition just considered:

1. sites are not aware of the log-file updates they have not received;

2. log-file updates of the disconnected sites are temporarily unavailable.

Various solutions to these problems have been proposed based on the selective
retransmission of log-files updates. Basic elements of these solutions are:

• a Timestamp, intended as any number that increases monotonically, a logical
clock, wall clock or counter [Lam78], is associated to each log-file LFi.

• each site Si maintains a Timestamp Vector TVi of size n such that TVi[i] is the
time stamp of the last log-file update generated at Si and TVi[j]i 6= j, is the
timestamp of the last log-file update produced at S j and processed by Si.

In order to reach global consistency efficiently, sites have to exchange status as
well as log update information. In some state of the art solutions, each site propagates
its TV, and both its log-file update and a selection of the log-files updates generated
by other sites. The idea here is that of epidemic propagation [RGK96], i.e. that
of making it possible for a site to transmit all the information it is aware of, thus
exploiting the knowledge about data location redundancy for improving the whole
system robustness and shortening the time spent in achieving replica consistency.
Each time Si generates a LFUi(tp), TVi[i] is correspondingly updated.

In order to propagate updates from Si to S j, S j sends its TVj to Si. Upon the recep-
tion of TVj, Si sends S j all LFUk(tp), k = 1,2, . . . ,n such that TVi[k] ≥ tp > TVj[k].
For each received LFUi(tp) TVj is updated if and only if tp−1 = TVj[i], otherwise
LFUi[tp] is stored for later processing.

TVj is updated in the following way:

1. TVj[k] is set to the maximum between TVi[k] and TVj[k] for k = 1,2, . . . ,n,
k 6= i;

2. TVj[i] is set to tp.

Clearly, in order to implement epidemic propagation, LFUi(t)s are not discarded
immediately after they have been processed [WB84]. The main drawback of this pull
approach is that any site can potentially receive the same log-file update more than
once.

82 CHAPTER 9. MAIN CONTRIBUTION

Another solution to the replica management problem is given by letting each site
estimate the progress of other sites in achieving replica consistency and pushing only
those LFUs that are likely to be missing at a remote site.

This estimation can be supported by the adoption of Timestamp Matrices [AAS97].
Each Si maintains a n by n timestamp matrix T Mi such that:

• T Mi[i][i] is the timestamp of the last log-file update generated by Si;

• T Mi[i][j], j 6= i, is set to tp, where tp is the most recent timestamp such that
LFU j(t0), LFU j(t1), . . ., LFU j(tp), all have been received and processed by Si;

• T Mi[j][k], j 6= i, k 6= i is a lower estimate of T M j[j][k].

Sites exchange their timestamp matrices, possibly piggybacking them on packet
reception acknowledgments. Upon the reception of T Mi, S j updates T M j[k][l], k, l =
1,2, . . . ,n, with the maximum between T M j[k][l] and T Mi[k][l]. Let us consider the
generic lth: whenever T M j[j][l] is the maximum among the timestamps in column l,
S j sends LFU j(t), with t = T M j[k][l]+1, . . . ,T M j[j][l], to Sk, for all k 6= j different
from n.

Epidemic propagation is intrinsic to this use of timestamp matrices and is accom-
plished in a way similar to the timestamp vector case, the main difference being that
sender site S j relies on T M j to estimate TVi rather than receiving TVi from Si itself.

Finally, it is worth noting that using timestamp matrices this way does not solve
the problem of duplicate updates.

9.2.2 Details

According to our proposal, updates(LFUs) are lazily propagated through reliable
multicast, while replica state estimation is accomplished by an original variant of the
Timestamp Matrix technique approach [WB84], based on multicast transmission of
both status (TVs) and log update information (LFUs).

Each site multicasts its status information (TV) to all other sites so that they can
maintain their own Timestamp Matrix (TM). The TM makes it possible for any site
to decide whether to reliably multicast to other replicas the updates it is aware of, or
not, thus exploiting epidemic propagation [RGK96].

The approach is characterized by the following:

• Each site maintains a timestamp matrix;

• Status information is multicast to all sites other than the originating one;

• Propagated status information is limited to a single timestamp matrix row(i.e.
a TV): in particular each site Si propagates the ith row of T Mi to all other sites;

• Log update information is epidemically propagated through reliable multicast.

9.2. GEDEC 83

Furthermore, considering the inherently push nature of multicast transmission,
this direction of transfer has been adopted (See Fig.9.1 [SL00]). Multicast transmis-
sion to a large set of receivers can theoretically offer the following advantages:

• Shorter total transfer times (i.e. faster distribution of the same file to all re-
ceivers);

• More efficient usage of network resources;

• Increased scalability with respect to the number of sites;

9.2.3 The Propagation Strategy

As already stated, both status and log update make use of multicast transmission.
It is worth noting that only LFUs are epidemically propagated, i.e. any site is allowed
to propagate LFUs generated at any other site. The reason why is that epidemically
transmitting TVs can cause a delay in updating TMs, which can lead to inaccurate
global system status estimation and possibly useless retransmissions.

As concerns the propagation of log update information our algorithm works as
follows: let Mi, j = max{T Mi[k][j],k = 1,2, . . . ,n} and mi, j = min{T Mi[k][j],k =
1,2, . . . ,n} . If T Mi[i][j] = Mi, j, Si starts a log sender election phase, which will
be described in subsection 9.2.4, possibly propagating those LFUs generated by S j,
Si is aware of, whose timestamp t is such that: mi, j < t ≤ Mi, j, for all j = 1,2, . . . ,n
1.

It is worth noting how in this way it is possible for Si to propagate LFUs to some
other site Sk generated by some now disconnected site S j. As an example Sk could
not have received those LFUs since in turn he was disconnected at the time those
LFUs had been propagated.

Concerning the transmission of status information:

1. Each site Si multicasts its TVi, i.e. the ith row of T Mi, to every S j at the same
time receiving TV s produced by others.

2. Upon the reception of some TVj, Si updates T Mi following the same procedure
described in section 9.2.1.

3. If a site Si does not receive some TVj, Si will have an inaccurate status estima-
tion of site S j and could announce, by starting a log sender election phase, its
willingness to propagate some LFUs.

4. However sites register themselves to multicast sessions on the basis of their
own TV. As a consequence, propagation will take place if and only if some site
will be interested in the propagated LFUs, thus saving bandwidth resources.

1max and min among the set of connected sites

84 CHAPTER 9. MAIN CONTRIBUTION

Our approach offers some advantages also thanks to the adoption of reliable mul-
ticast technology [HAA99]. In fact sites receive TVs transmitted from their respec-
tive owners (status transmission is not epidemic). As a result, there are three imme-
diate consequences:

1. Bandwidth savings with respect to the unicast solution in which sites exchange
the whole matrix (reduced amount of transmitted status information);

2. In absence of status transmission failures, each site will correctly estimate the
reception status of the whole system, whereas in the unicast epidemic approach
each site maintains just a conservative estimate;

3. Even in presence of status transmission failures, the adopted reliable multicast
protocol avoids useless transmission by requiring explicit session registration
for the LFU reception (reduced amount of transmitted log update information).

9.2.4 Log Sender Election Algorithm

In order to limit concurrent multicast retransmissions of the same LFUs by mul-
tiple sites due to the epidemic model, a distributed log sender election algorithm is
adopted. For the sake of simplicity we will assume in our description of the algorithm
that just one LFU at a time will be propagated. More complex cases can be easily
reduced to this one.

During the log sender election phase, sites are all listening to multicast announce-
ments for LFUs propagation. Each time a site Si wants to propagate an LFU l, it will
multicast to all sites Sk k = 1, . . . ,n an announcement message, identifying:

• The site which generated l;

• The timestamp of l;

• The starting time for the transmission (randomly determined by a backoff
timer).

Upon the reception of such an announcement, any site Sk interested in receiving the
LFU l will register in the multicast session. Otherwise if any site S j was planning
to transmit the same LFU l as Si and its time to transmission2 is larger than the one
deducible from the received announcement, S j simply gives up its own propagation
phase. Multicast transmissions of different LFUs are not in competition.

It is worth noticing that, as long as log updates are sent in distinct multicast
sessions, our replica management algorithm completely solves the duplicate updates
problem that affects the unicast solution.

2given by current time + backoff timer

9.3. PROTOTYPE IMPLEMENTATION 85

9.2.5 Reference Scenario

We introduce now the reference Data Grid environment we adopted (see Fig8.4).
The reference Grid application we refer to (e.g. genomic research) produces on

average 1 GB new data per day per site, which can be stored using standard database
technology. Once locally committed, stored data will usually remain unchanged (i.e.
it is mostly read-only). At regular intervals (e.g. daily at 24:00h) each site propagates
its new data to every other site. Such information is sent as a number of update files
per site containing database operation logs. Received log files can be replayed and
stored for later use.

9.3 Prototype Implementation

Gedec is the Java prototype of our replica update propagation system. It relies on
the services offered by JMFTP [DGLS02a] for reliable file transfer.

The prototype software architecture contains the core modules interfacing to the
multicast network layer.

Software modules can be logically divided into two categories: data sending and
data receiving modules. In a multi-master system each site must execute modules of
both categories. Gedec is composed of the following main modules (see fig.9.2):

• Timertask: schedules the TV and log update operations synchronously with all
other sites;

• TV(TM)Handler: manages the read/write access to each Timestamp Vector
(Matrix);

• Sender: manages data update pools and selects data to be sent via the JMFTP-
Server module;

• Listener (Receiver): manages transmission announcements reception and se-
lects which data the JMFTP-Client modules will receive;

• JMFTP-Server: reliably multicasts announces and data to all members of the
multicast tree;

• JMFTP-Client: receives announces and data from any JMFTP-Sender.

Each TV fields is 2 bytes long in order to fit as much of the TV as possible in a
single UDP packet payload. This choice reduces the time range to 216 time intervals,
but in addition each packet carries the base time for all these interval counters in
standard format (i.e. DD:MM:YYYY:HH:MM:SS).

Each module is implemented as an independent Java Thread following the Java
Thread Design Guidelines [Lea01] for deadlock avoidance.

86 CHAPTER 9. MAIN CONTRIBUTION

Figure 9.2: Gedec software architecture

9.4 Gedec Evaluation

9.4.1 Testing Activity

The testing activity we describe includes the performance comparison of two
different lazy multi-master replica update distribution strategies adopting GridFTP
[VSF02] and Gedec. The objective is to show the efficiency of the replica update
propagation strategy we adopted with respect to an actual solution.

We evaluate our multicast-enabled propagation system and compare it with a
smart distribution strategy using actual Grid technology. We label the latter as GridFTP
since it is strictly tied to the performance of such protocol.

Performance is evaluated with respect to a varying number of replica sites. The
Total Distribution Time is measured as the time spent by the overall system to dis-
tribute all LFUs to all sites. The bandwidth consumption for the replica update is
measured as the average data volume sent by each site during the daily update phase.

The testbed consists of n sites connected using full-duplex 100Mb/s links and
Dummynet [Riz97]. We adopted Dummynet to introduce WAN (emulated) links
in our scenario, in order to evaluate the behavior of the propagation strategies on a
mixed network type.

The following general assumptions hold (see reference application scenario (9.2.5)
above):

9.4. GEDEC EVALUATION 87

• average update data creation rate 5.7 Mb/min per site;

• induced average packet loss rate 0.5%;

In other words 5.7Mb/min, i.e. 1GB of Log File Update data per day are created
by each site, that have to be propagated daily to every other site. A Log File Update is
itself a file that is transferred in order for the sites receiving it to update their replicas.

GridFTP performance is estimated by using 8 parallel ftp streams per transfer. In
order to shorten total distribution time, a single LFU file of size 1GB is sent using
a multi-step strategy where (supposing sites are numbered from 1 to n): i) in step 1
every site m transfers data to site (m+1) mod n; ii) in step 2 every site m transfers data
to site (m +2) mod n; iii) in step j every site m transfers data to site (m + j) mod n;
iv) up to step n−1 included.

Such a strategy is adopted instead of performing simultaneous all-to-all ftp trans-
missions because in the latter case 2n data flows would have to be handled (n incom-
ing, n outgoing) by each site, and that would not scale both for network and for site
capacity.

Gedec behavior is as described above (see section 9.2.3) and characterized by the
following:

• TVs multicast at fixed time intervals of 5 minutes;

• 102 LFUs of size 10MB multicast by each site;

• LFU multicast rate 2.0Mb/s (that is 0.25MB/s);

It is clear we are comparing a slow constant rate reliable multicast distribution
strategy with a faster reliable unicast (ftp) approach. According to the vast literature
([VSF02], [VS02],[EKK+02], [VSF02], [KLSS04], [KKL04]) the parallel ftp rate is
expected to be comprised between 0.5 and 10 MB/s, whereas the multicast emission
rate is set to 2.0Mb/s. In fact, in our scenario multiple parallel ftp reaches a 1-3MB/s
rate.

Figure 9.3 shows the average time the replication strategy spends in propagating
LFUs among all replica sites. Our results show that, on the one hand, Gedec is
slower than GridFTP in updating systems when n is small. This is due to the fixed
data emission rate of JMFTP. On the other hand, Gedec performance is comparable
to GridFTP and better as the number of sites n increases.

As regards bandwidth consumption, figure 9.4 shows the difference between
Gedec (multicast) and GridFTP (unicast) in this area. The available network band-
width can be a bottleneck for data transfers. In our scenario this can start impacting
on constant rate multicast performance when n is approximately greater than 50.

Furthermore Gedec, by multicasting status information and by announcing trans-
missions, avoids unnecessary log file update transfers that may happen using a plain
multicast epidemic distribution strategy.

88 CHAPTER 9. MAIN CONTRIBUTION

Figure 9.3: Updates propagation time

Compared to unicast-based approaches, Gedec can reduce the amount of trans-
mitted log update information and decrease total distribution time, thus potentially
increasing system scalability with respect to the number of sites.

A consideration on the improvement of Gedec over GridFTP for file distribution
is that the impact of packet loss is much stronger on ftp performance (due to the TCP
congestion control behavior) than on JMFTP’s. This is so since ftp is known to suffer
[LXC03] from high packet loss rates.

Thus the performance gain of Gedec over GridFTP is stronger as the packet loss
rate increases. Such a feature makes it particularly suitable for high packet loss sce-
narios.

9.4.2 Conclusion

The main result of this section is the elaboration and evaluation of a new system
for update propagation in the context of multi-master replica management systems.

Some of the main peculiarities of Gedec with respect to previous solutions (e.g.
[HAA99], [AAS97]) are:

• Multicast allows for fast direct distribution of status information, represented
by Timestamp Vectors, among sites.

• Site status estimation is more precise than using the unicast epidemic approach,
where each site has a conservative estimate of the global status.

9.5. WEB SERVICE UDDI ISSUES 89

Figure 9.4: Network utilization

• Propagation (Total Distribution) time is reduced in many scenarios thanks to
JMFTP reliable multicast.

• Bandwidth consumption is lower than solutions that adopt unicast.

Furthermore, since each log file update is sent in a distinct multicast session,
sites need to register explicitly in order for the sender to start transmitting. Thus, the
approach described above solves the duplicate update problem that affects epidemic
propagation models.

We can conclude that the adoption of multicast technology in the replica manage-
ment problem is feasible and can reduce the traffic generated by log update transfers
among replicas. The proposed system proves effective in our testbed while further
broader evaluation is planned.

As a final consideration, it would be interesting to study the integration of some
of the experience we gathered with a state of the art complex replica management
system such as Reptor.

9.5 Web Service UDDI Issues

This is a challenging area where multicast technology can play a positive role.
Furthermore, Grid technology has shifted towards the adoption of Web Service tech-

90 CHAPTER 9. MAIN CONTRIBUTION

nology for service integration (see OGSA and GT 4). In this section we describe a
solution for smart selection of web services replicas[BGGL04] we proposed.

This sections define the main logical functionalities and the software architecture
of a framework that overcomes the limits of UDDI in fully exploiting the advantages
offered by dynamic binding. The framework, relying on the services offered by re-
mote monitoring agents, makes it possible for UDDI Registries to associate a value
of convenience to different implementations of the same tModel. This value will lead
Service Requestors in the choice of implementations to be contacted and invoked.

UDDI Registries with this enhanced behavior still expose an interface compliant
to the standard UDDI specification, thus being fully and transparently integrable in
the UDDI infrastructure. The framework fills the gap existing between approaches to
the discovery of Web Services that do not deal with any aspect of their performance
and more complex solutions that guarantee a certain level of quality in providing
services.

The definition of a general Web Service Architecture [Kre01] is based upon the
interaction of three main roles, as shown by figure 9.5:

• Service Providers, responsible for compiling service descriptions, i.e. all the
informations required to interact with a Web Service, publishing them to one
or more Service Registries and dealing with Web Services invocation messages
from Web Service Requestors;

• Service Requestors, responsible for finding service descriptions into Service
Registries and binding to Web Services;

• Service Registries, i.e. searching registries whose main responsibility is to
advertise published Web Service Descriptions to be found by Web Service Re-
questors.

Going into deeper details a service description mainly consists of two separate
parts:

• An abstract interface, that logically describes the Web Service in terms of the
messages that have to be exchanged between a Service Requestor and a Service
Provider;

• An implementation interface, containing all the implementation details needed
to contact and invoke the Web Service, such as one or more points of access,
usually URLs, to different implementations of the abstract interface. These
implementations will be referred to as Web Service Instances in what follows.

The main advantage of this separation is abstract interface reusability: points of
access in several implementation interfaces can share the same abstract interface.

9.5. WEB SERVICE UDDI ISSUES 91

Figure 9.5: Web Service architecture

At present, the publish and find operation can be performed using a range of tech-
nological solution, as DISCO/ADS, WSDL Repository, ebXML, UDDI and others.
Among them the UDDI (Universal Description, Discovery, and Integration) specifi-
cation [UDD03] differs from other proposals by virtue of the substantial commitment
from industry partners to adopt and implement this technology in their core business.
As a demonstration of this commitment, companies such as SAP, IBM and Microsoft,
have launched jointly operated UDDI Registries on the Web [UDD01].

According to the aim of our research work, a relevant UDDI functionality is the
following: an UDDI Registry can be queried for the list of point of access implement-
ing a given abstract interface, tModel in the UDDI terminology. The selection of a
particular point of access is delegated to Service Requestors and can be accomplished
either at development time, static binding, or at execution time, dynamic binding.

In order to fully exploit the advantages offered by dynamic binding, the UDDI
Technical Committee suggests the following invocation pattern [UDD03]: the Web
Service Requestor should cache the list of points of access for the tModel of inter-
est. If all the points of access are unsuccessfully tried, the Web Service Requestor
should query again the UDDI Registry for a fresh list. The limit of this paradigm
is intrinsic to UDDI Registries standard functionalities. In fact they do not provide
any information on the convenience of selecting one access point instead of another.
In this section we report on the research activity conducted by Netlab, the network
and multimedia laboratory of IASI, with the aim of developing a framework, called
Enhanced UDDI in what follows, that overcomes this limit.

The framework fills the gap existing between approaches to the discovery of Web
Services not dealing with any aspect of their performance, such as that implemented
by UDDI, and more complex solutions introduced to guarantee a certain level of
quality in providing services. In fact Enhanced UDDI avoids the main drawbacks of
the former, such as the selection of Web Service Instances that are overwhelmed by

92 CHAPTER 9. MAIN CONTRIBUTION

service requests or that are not available. At the same time it reduces the difficulties
intrinsic to the latter, such as deriving what it takes to provide the QoS which is
offered or that has been agreed upon, or managing a service at different QoS levels
on the same infrastructure.

To overcome the limits of UDDI and to effectively support the invocation pattern
suggested by the UDDI Technical Committee, Enhanced UDDI makes it possible for
UDDI Registries to associate a value of convenience to access points. This value
is computed on the basis of the information collected by remote agents monitoring
some aspects of the performance achieved by Web Service Instances. Points of access
then appear in the list returned from UDDI Registries to Service Requestors sorted
from the most to the least convenient.

Enhanced UDDI registries still expose an interface compliant to the standard
UDDI specification thus being fully and transparently integrable in the UDDI infras-
tructure.

The adoption of this framework is suggested whenever service requestors do not
intend to explicitly deal with QoS aspects or service providers have no convenience
in building up the software and hardware infrastructures needed to manage the same
aspects, but are nevertheless interested in avoiding providing services of bad quality
to their customers.

This section also describes the main design and implementation issues concern-
ing a first Java prototype of the Enhanced UDDI. The prototype has been tested from
a functional correctness point of view by implementing:

• A light agent monitoring availability, time of completion and probability of
success of Web Service Instances;

• An Enhanced UDDI Registry, polling the remote agents and associating to each
Web Service Instance a value of convenience computed as a weighted average
of monitored parameters.

9.5.1 Main Functional Aspects of Enhanced UDDI

The main functional aspects of Enhanced UDDI could be introduced referring
to the following model of a real scenario (see figure 9.6): n Web Service Instances,
all implementing the same tModel, are available on n different Web Servers (Ser-
vice Providers). The n Web Service Instances are all registered to the same UDDI
Registry.

As already stated, UDDI does not provide any information on the convenience
of selecting one access point instead of another. In order to overcome this limit, En-
hanced UDDI relies on the services offered by a remote monitoring agent, referred to
as Enhanced UDDI Monitoring Agent in what follows, that runs on each Web Server.
As shown in figure 9.7, the Enhanced UDDI Registry polls the monitoring agents
in order to receive the information they collected on the instances behaviors and to

9.5. WEB SERVICE UDDI ISSUES 93

Figure 9.6: A model for a real scenario

associate a value of convenience to each access point. The Enhanced UDDI Registry
computes these values to sort access points from the most to the least convenient.
Finally, the ordered list is ready to be returned to Web Service Requestors.

At present, from Web Service Requestors’ point of view, Enhanced UDDI still
exposes the same interface of a regular UDDI registry, but it will be soon extended to
able them to specify the sorting rule to apply. The following two sections describe the
software architecture of the two main components of the framework, the Enhanced
UDDI Monitoring Agent and the Enhanced UDDI Registry.

9.5.2 Enhanced UDDI Monitoring Agent

The task of the Enhanced UDDI Monitoring Agent is to monitor the behavior of
Web Service Instances with respect to a given set of m measurable parameters, such
as service availability, response time, probability of success, etc.

As shown by figure 9.8, the main components of an Enhanced UDDI Monitoring
Agent are the Logs Generator, the Statistics Generator and the Statistics Provider.

The Logs Generator is the integration component between the Web Server and
the Agent. It filters the traffic addressed to and generated from the Web Server and
processes service requests and responses in order to measure the values of measured
parameters. In addition, the Logs Generator interacts, whenever possible, with the
monitoring components provided by the Web Server. The generated information is
locally maintained into the Logs Archive.

At fixed time intervals the Statistics Generator derives, from the Logs Archive,
the average values on such intervals for all parameters. These average values are
then arranged in a vector and stored into the Statistics Archive. Finally, the Statistics

94 CHAPTER 9. MAIN CONTRIBUTION

Figure 9.7: Main components of the framework

Provider makes the vectors available to the Enhanced UDDI Registry.

9.5.3 Enhanced UDDI Registry

The Enhanced UDDI Registry extends the functionalities of currently available
UDDI Registries with respect to all those operations related to the selection of access
points and the publishing of Web Services. At the same time it exposes an interface
compliant to the standard UDDI API, thus being fully and transparently integrable in
a UDDI infrastructure.

Figure 9.9 shows a first level description of the Enhanced UDDI Registry soft-
ware architecture. The UDDI Extender accomplishes two main tasks:

• It is responsible for implementing the extensions provided by the Enhanced
UDDI Registry;

• It is the registry interface towards Service Requestors.

Whenever needed, the UDDI Extender delegates the execution of UDDI opera-
tions to an internal UDDI Registry. The Statistics Archive maintains a temporal slid-
ing window on the content of the corresponding archive inside all Enhanced UDDI
Monitoring Agents. The Archive is updated by polling the Enhanced UDDI Moni-
toring Agents. The UDDI Extender relies on this information to associate values of
convenience to access points. To accomplish its task the Enhanced UDDI Registry

9.5. WEB SERVICE UDDI ISSUES 95

Figure 9.8: The Enhanced UDDI Monitoring Agent software architecture

Figure 9.9: The Enhanced UDDI Registry software architecture

96 CHAPTER 9. MAIN CONTRIBUTION

also maintains a list indicating which of all Web Service Instances are being mon-
itored. In this way it is possible to register with the Enhanced UDDI Registry also
those Web Service Instances which are not being monitored.

As shown in figure 9.10 four main software modules define the internal architec-
ture of the UDDI Extender:

• Request Catcher. It intercepts the UDDI client requests. For non-extended
operations the Request Catcher simply plays the role of a proxy between the
UDDI Client and the UDDI Registry. Otherwise, it delegates to the UDDI
Extension Manager the accomplishment of the operation.

• Agents Manager. Its main task is to retrieve and update the information con-
cerning the behavior of the monitored Web Service Instances. It periodically
polls the Enhanced UDDI Monitoring Agents, downloading all newly collected
vectors and storing them into the Statistics Archive.

• Point of Access Evaluator. Its main task is to associate a value of convenience
to each registered point of access. More in details, given an access point, it
retrieves into the Statistics Archive the collection of all vectors related to that
access point. It then applies to such collection a given evaluation function
f : V n →R, where V is the space of m-dimensional vectors, defined as follows:

f (v1,v2, . . . ,vn) =
n

∑
k=1

wk

(
m

∑
i=1

cixi,k

)

with
n

∑
k=1

wk =
m

∑
i=1

ci = 1,wk,ci,xi,k ≥ 0

where

vk =
(

x1,k x2,k . . . xm,k
)
,k = 1,2, . . . ,n

Larger values of the weights wk are assigned to more recently collected vec-
tors, while larger values of weights ci are assigned to more significant vector
components.

• UDDI Extension Manager. Given a tModel, it queries the UDDI Registry for
the points of access to the Web Service Instances implementing that tModel.
The UDDI Extension Manager delegates to the Point of Access Evaluator the
evaluation of a value of convenience for each of these access points.

9.5. WEB SERVICE UDDI ISSUES 97

Figure 9.10: The UDDI Extender software architecture

9.5.4 Web Service Instance registration issues

Since the Enhanced UDDI Registry exposes an interface compliant to the stan-
dard UDDI specification, the registration modalities are not affected from the UDDI
client point of view.

Also from an internal perspective, the registration phase is accomplished by En-
hanced UDDI Registries similarly to UDDI Registries. The main difference is that,
for each newly registered Web Service Instance, the Enhanced UDDI Registry tries to
contact the Enhanced UDDI Monitoring Agent, if any, for that instance: if the Agent
is found, that instance is added to the list of monitored Web Service Instances.

The last problem to deal with is how to locate the Enhanced UDDI Monitoring
Agent. The proposed solution makes it possible to trivially accomplish this task. In
fact if

htt p : //domainName/localPath/WSIName
is the URL of a monitored Web Services Instance, the agent will have to be avail-

able at:
htt p : //domainName/eUDDIMAgent.
Thus, the URL of the Enhanced UDDI Monitoring Agent can be easily derived

from the URL of any of the Web Services Instances it monitors. As a consequence,
it is not necessary to explicitly notify Enhanced UDDI Registries about the URLs of
the Enhanced UDDI Monitoring Agents they will rely on.

Moreover, this mechanism also supports registrations induced by the UDDI Reg-
istry replication process. In fact, the Enhanced UDDI Registry deals with replicated
registrations by checking whether they refer to monitored Web Service Instances or
not.

98 CHAPTER 9. MAIN CONTRIBUTION

9.5.5 Prototyping Activity

In order to test the feasibility of the proposed solutions, a Java prototype of the
Enhanced UDDI is being developed. In what follows we briefly describe the main
design and implementation issues that characterize the prototype.

9.5.6 Enhanced UDDI Monitoring Agent

At present, a first preliminary version of Enhanced UDDI Monitoring Agent has
been implemented. For every Web Service Instance running on the same Web Server
hosting agent, the last one is able to measure the following QoS parameters:

• Availability - It is the probability the Web Service Instance is up. It is measured
as A = upTime/(upTime+downTime), where upTime and downTime are the
total time the system has been up and down during the measurement period,
respectively.

• Time of Completion - It is an evaluation of the speed in completing a ser-
vice request. It is measured as ToC = (leavingTime− deliveringTime), with
deliveringTime the time at which a SOAP service request is delivered to the
SOAP engine, and leavingTime the time at which the related SOAP service
response leaves the SOAP engine.

• Probability of success - It is defined as (1−ProbabilityO f Failure).
ProbabilityO f Failure is measured as PoF = SoapFaults/SoapResponses, where
SoapFaults is the number of Web Service Instance’s responses containing the
Faults XML element in the SOAP envelope and SoapResponses is the total
number of SOAP responses.

The Enhanced UDDI Monitoring Agent has been implemented as a module inte-
grated with the Apache Axis engine [Foub]. Axis is an implementation of the SOAP
submission to W3C whose extensible filtering functionality (Axis handlers) makes it
possible to easily extract information from SOAP request and response messages.

Finally, the information collected by the Enhanced UDDI Monitoring Agent is
made available to Extended UDDI Registries through a Web Service.

9.5.7 Enhanced UDDI Registry

At present this component is being developed as an extension of jUDDI [Fouc], a
Java implementation of the UDDI specification for Web Services. jUDDI has clearly
defined and extendable classes and has been adopted by the Apache Software Foun-
dation [Foua], thus guaranteeing further open development. For these reasons jUDDI
is particularly well suited for the Enhanced UDDI Registry implementation.

9.5. WEB SERVICE UDDI ISSUES 99

Referring to Figure 9.10, the Request Catcher will intercept UDDI requests and
reroutes to the UDDI Extension Manager UDDI requests such as find binding, find tModel,
get bindingDetail, get serviceDetail, get tModelDetail, delete tModel, save binding,
save service and save tModel.

In order to perform the first functionality tests, evaluation functions like the fol-
lowing will be used:

f (v1,v2,v3,v4) =
(

1/8 1/8 1/4 1/2
)

M

where

M =

A1 1/ToC1 T1
A2 1/ToC2 T2
A3 1/ToC3 T3
A4 1/ToC4 T4

 1/3

1/3
1/3

.
Referring to the general formula presented in paragraph 4, n = 4 denotes that f

considers only the last four retrieved vectors. Among those the most relevant is the
freshest (weight 1/2), while, looking inside each vector, the three QoS parameters are
equally considered (weight 1/3). Finally, it is worth noting that all numerical values
stored into the vectors are normalized as real number with values in [0,1] interval.

The results of a large number of tests will be collected in order to define the most
effective evaluation functions.

The Enhanced UDDI relies on the services offered by remote agents monitoring
some aspects of the performance of Web Service Instances. On the basis of the
collected information, UDDI registries compute and associate a value of convenience
to access points.

At present, the points of access are sorted from the most to the least convenient
and returned to the Service Requestor. UDDI registries with this enhanced behavior
still expose an interface compliant to the standard UDDI specification, thus being
fully and transparently integrable in the UDDI infrastructure.

The Enhanced UDDI is useful whenever service requestors do not intend to ex-
plicitly deal with QoS aspects or service providers have no convenience in building
up the software and hardware infrastructures needed to manage the same aspects, but
are nevertheless interested in avoiding providing services of bad quality to their cus-
tomers. We also described the main design and implementation issues concerning a
first Java prototype of the framework.

Current research and experimentation activities are focused on the:

• Development and testing of Enhanced UDDI Registry component;

• Experimental analysis of the benefits achievable by Enhanced UDDI Registries
from the Service Requestors point of view;

• Definition of a set of effective monitored parameters;

100 CHAPTER 9. MAIN CONTRIBUTION

Figure 9.11: Jet-Lag architecture

• Experimental validation of effective policies and protocols according to which
Enhanced UDDI Registries and Enhanced UDDI Monitoring agents would ex-
change information;

Future research will study the internal Enhanced UDDI behavior with respect to
a complex scenario where the Web Services space is partitioned on several instances
of Enhanced UDDI Registries.

9.6 Jet-Lag

In this section we briefly describe an investigation aimed at gathering experience
and in order to test a real-world EU Data Grid [Dat] application.

Jet-Lag [LP05] is a Grid application performing analysis of log files that con-
form to several different standard formats. These files can be produced by firewalls,
IDSs, mail and web servers. In order to exploit the potential execution parallelism
of the Grid, a software architecture has been designed and developed which splits
log files into smaller fragments which are then analyzed independently, possibly in
parallel, using computing resources available in a Grid computing environment (see
fig. 9.11). Jet-Lag functionality and performance tests have been performed on a
DataGrid testbed. First experimental results show that Grid log analysis with the pro-
posed software architecture is feasible and effective. Performance, as expected for
a first Java prototype implementation, is not yet optimal (see fig. 9.12), but we are
working to solve specific issues and on the generalization of the original approach.

9.6. JET-LAG 101

Figure 9.12: Jet-Lag performance

102 CHAPTER 9. MAIN CONTRIBUTION

Chapter 10

Conclusion and Further Work

Multicast transmission allows bandwidth-efficient data exchange among mem-
bers of a group. IP multicast has proven to be a technology more scalable than uni-
cast, but nevertheless limited, concerning reliability, security and scalability aspects
in the real world. Solutions proposed in literature are not complete and have not had
a wide acceptance by the research and the engineering communities.

In our aim to study, improve and validate reliable multicast protocol solutions,
we have created a Java software framework containing building blocks that has been
extended and combined to implement the desired protocol features and to collect
experimental data.

Java has been adopted as a reference platform by our research group. It guar-
antees extreme portability and is particularly suitable for highly scalable multicast
scenarios. Furthermore, along the Ph.D. years, the choice of Java has proven increas-
ingly consistent with the market evolution. In fact, nowadays we have millions of
Java-capable devices available everywhere (PCs, cell-phones, PDAs, set-top-boxes).

Our framework comprises JMFTP, a module providing high-performance scal-
able reliable multicast data transfer. We analyzed the throughput and robustness of
JMFTP and individuated trade-offs among protocol parameters.

JMFTP proves extremely robust with respect to data loss and delay, rendering it
particularly suitable for satellite networking.

Another module of our framework is the implementation of a secure key ex-
change protocol named MTLS, providing secure group membership management and
session key encryption of data.

We integrated cryptography and key exchange with JMFTP obtaining a secure
reliable multicast transport protocol transferring bulk data from one sender to multi-
ple receivers throughout the Internet. Performance test were performed that allowed
us to evaluate the impact of security on performance.

We then adopted the above framework to support data replica synchronization in a
Grid computing infrastructure. Test results on Gedec, our replica update distribution

103

104 CHAPTER 10. CONCLUSION AND FURTHER WORK

system, have shown that such a Grid application may benefit from the adoption of the
proposed replication model while further research is being done on the subject.

With Gedec, we gathered experimental evidence of how high-performance tasks
such as the scalable replica synchronization can be done using Java. We also showed
that complex real-world tasks such as distributed Grid computing applications benefit
from the adoption of our framework and from a reliable multicast distribution model.

10.1 Contribution and Future Work

In this thesis we collected research investigations on the main topics in multicast
transmission: performance, security and applications. Throughout our work we have
given evidence of the feasibility of a high-performance Java secure reliable multicast
protocol; we have gathered experimental data on real protocol implementations that
can be used as a reference for further work.

The tests we performed lead us to discover and measure trade-offs among se-
curity, performance and reliability. The software framework we created contains
building blocks allowing for multicast protocol implementation, monitoring and per-
formance measurement;

We have also proposed the application of our framework to the Grid replica syn-
chronization problem and have studied the performance issues of such a solution.

Following the current research trends we have investigated Web Services issues
and proposed a solution to the Web Service instance selection problem. Web Ser-
vice technology is even more interesting since it has been adopted as the next Grid
paradigm for its flexibility. The OGSA Framework and the next Globus Toolkit mid-
dleware are taking advantage of the application of the Web Service paradigm to Grid
architectures. We are currently working in the same direction and plan to keep con-
tributing to this research area. Other main research directions we are following in-
clude:

• Investigating the performance of the new multicast protocol features whose
support has been added to our framework, such as multichannel, multirate and
flexible real-time transmission support.

• Experimenting with real Active Reliable Multicast Routing Protocol that has
been implemented via an extension to the Linux packet filtering functionality.

• Enhancing the key redistribution algorithm used for MTLS and analyzing tests
results on wider more complex scenarios.

• Investigating the extension of the Web Service paradigm to other solutions we
proposed.

• Integrating Gedec with existing replica management solutions and perform
tests on a larger scale.

10.2. PUBLISHED PAPERS 105

• Applying multicast to the UDDI replication problem.

• Studying wireless multicast issues.

• Integrating components with the Globus Toolkit version 4.

10.2 Published Papers

• A Java implementation of a reliable multicast file transfer protocol:design and
evaluation. In Proceedings of Internet and Multimedia Systems and Applica-
tions [BDGL01].

• A Java architecture for secure reliable multicast data transfer: performance
evaluation. In Proceedings of Communication Internet and Information Tech-
nology [DGLS02a].

• Performance evaluation of a reliable and secure multicast bulk data transfer ap-
plication in Java. In Proceedings of Computer Measurement Group Workshop
[DGLS02b].

• Smart dynamic selection of web service access points. In Proceedings of Par-
allel and Distributed Computing and Systems [BGGL04]

• A reliable multicast approach to replica management for Grids. In Proceedings
of Parallel and Distributed Computing and Networks [GL05].

• Jet-Lag Java heterogeneous log analysis on the Grid: architecture, implemen-
tation and performance evaluation. In Proceedings of Parallel and Distributed
Computing and Networks [LP05].

10.3 Software Implementations

• JMFTP framework and protocol.

• MTLS component.

• NJMTP protocol.

• GEDEC system.

• Jet-Lag application.

• eUDDI system.

106 CHAPTER 10. CONCLUSION AND FURTHER WORK

Appendix A

Acronyms

ACK : ACKnowledgment
AGCS: Alternate Group Communication Service
ALM : Application Level Multicast
API : Application Program Interface
ARM : Active Reliable Multicast
ARP : Address Resolution Protocol
AS : Autonomous Systems
BGP : Border Gateway Protocol
BGMP: Border Gateway Multicast Protocol
BKR : Batched Key Retransmission
BPM : Blind Pushing Multicast
CBT : Core Based Tree
CE : Computing Element
DCM : Distributed Core Multicast
DCR : Distributed Core Router
DFS : Distributed File System
DISEC: Distributed Security
DPSS: Distributed Parallel Storage System
DTU : Data Transmission Unit
DVMRP: Distance Vector Multicast Routing Protocol
DyRAM: Dynamic Replier Active Reliable Multicast
GARA: Grid Advanced Resource reservation and Allocation
GASS: Grid Access to Secondary Storage
GC : Group Key Controller
GDMP: Grid DataMirroring Package
GC : Group controller
GM : Group Member
GO : Group Owner

107

108 APPENDIX A. ACRONYMS

GRAM: Globus Resource Allocation Manager
GSA : Group Security Association
GSI : Grid Security Infrastructure
GT : Globus Toolkit
HEP : High Energy Physics
HPSS: High Performance Storage System
HTT : Host Transfer Time
IDS : Intrusion Detection System
IETF: Internet Engineering Task Force
JRMS: Java Reliable Multicast Services
KEK : Key Encryption Key
KS : Key Server
LAN : Local Area Network
LFU : Log File Unit
LKH : Logical Tree Hierarchy
LRMP: Lightweight Reliable Multicast Protocol
MAC : Message Authentication Code
Mb : Megabit
MB : Megabyte
MBONE: Multicast BackbONE
MCM : Multiple Channel Multicast
MDS : Meta Directory Service
MFTP: Multicast File Transfer Protocol
MHP : Multimedia Home Platform
MIP : Multicast Internet Protocol
MOSPF: Multicast Open Shortest Path First
MTLS: Multicast Transport Layer Security
NACK: Negative ACKnowledgement
NAK : Negative AcKnowledgement
NAPP: Negative Acknowledge with Periodic Polling
NETBLT: NEtwork BLock Transfer
NORM: Nack Oriented Reliable Multicast
OGSA: Open Grid Services Architecture
OGSI: Open Grid Services Infrastructure
OO : Object Oriented
PBR : Periodic batched group rekeying
PIM : Protocol Independent Multicast
QosMIC: Quality of Service-sensitive Multicast routIng protoCol
RB : Resource Broker
RC : Replica Catalogue
RINA: Receiver Initiated Negative Acknowledge
RM : Replica Manager

109

RMS : Replica Management System
RMP : Reliable Multicast Protocol
RMT : Reliable Multicast Transport
RMTP: Reliable Multicast Transport Protocol
RP : Rendevouz Point
SAKM: Scalable Adaptive Key Management protocol
SE : Storage Element
SLIM: Self-configuring Lightweight Internet Multicast
SRM : Scalable Reliable Multicast
STORM: STructure Oriented Resilient Multicast
TLS : Transport Layer Security
TM : Timestamp MAtrix
TMP : Topology Management Protocol
TMTP: Tree-based Multicast Transport Protocol
TRAM: Tree-based Reliable Multicast Protocol
TRT : Total Re-keying Time
TTP : Trusted Third Party
TTT : Total Transfer Time
TV : Timestamp Vector
UDDI: Universal Description Discovery and Integration
WAN : Wide Area Network
WKA-BKR: Weighed Key Assignment Batch Key Retransmission
WN : Worker Node
WSRF: Web Services Resource Framework

110 APPENDIX A. ACRONYMS

Bibliography

[AAS97] D. Agrawal, A. E. Abbadi, and R. C. Steinke. Epidemic algorithms
in replicated databases (extended abstract). In Proceedings of the six-
teenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, pages 161–172. ACM Press, 1997.

[AB04] B. Adamson and C. Borman. Nack-oriented reliable multicast protocol
(norm) - internet draft http://norm.pf.itd.nrl.navy.mil/draft-ietf-rmt-pi-
norm-09.pdf, 2004.

[All] Globus Alliance. Globus - http://www.globus.org.

[All01] B. Allcock. Gridftp protocol. internet draft - http://www.globus.org
/datagrid/deliverables/C2WPdraft3.pdf, 2001.

[ANS03] A. Adams, J. Nicholas, and W. Siadak. Protocol independent multi-
cast - dense mode (pim-dm): Protocol specification (revised). inter-
net draft - http://netweb.usc.edu/pim/internet-drafts/draft-ietf-pim-dm-
new-v2-04.txt, 2003.

[Bal97] T. Ballardie. Core based trees (cbt version 2) multicast routing. RFC
2189, September 1997.

[BB99] L. Blazevic and J. Le Boudec. Distributed core multicast (dcm): a
multicast routing protocol for many groups with few receivers. ACM
SIGCOMM Computer Communication Review, 29(5):6–21, 1999.

[BCC+02] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar, and al. Simulation
of dynamic grid replication strategies in optorsim. In Proceedings of
the Third International Workshop on Grid Computing, pages 46–57.
Springer-Verlag, 2002.

[BDGL01] L. Becchetti, M. Draoli, C. Gaibisso, and F. Lombardi. A java im-
plementation of a reliable multicast file transfer protocol: Design and
evaluation. In Proceedings of Internet and Multimedia Systems and

111

112 BIBLIOGRAPHY

Applications (IMSA), Honolulu, U.S.A., ISBN: 0-88986-299-0 (340),
pages 163–168. ACTA Press (Calgary), August 2001.

[BGGL04] M. Bianchi, C. Gaibisso, G. Gambosi, and F. Lombardi. Smart dynamic
selection of web service access points. In Proceedings of Parallel
and Distributed Computing and Systems (PDCS), Cambridge, U.S.A.,
ISBN: 0-88986-421-7 (439), pages 755–760. ACTA Press (Calgary),
October 2004.

[BHG87] P.A. Bernstain, V. Hadzilacos, and N. Goodman. Concurrency control
and Recovery in Database Systems. Addyson Wesley, 1987.

[BKTN98] S. Bhattacharyya, J. F. Kurose, D. F. Towsley, and R. Nagarajan. Effi-
cient rate-controlled bulk data transfer using multiple multicast groups.
In IEEE INFOCOM (3), pages 1172–1179, 1998.

[Bos99] R. Bostrom. A Study On the Performance of MFTP Over Satellite. PhD
thesis, Telia Research AB, 1999.

[CA03] Robert C. Chalmers and Kevin C. Almeroth. On the topology of mul-
ticast trees. IEEE/ACM Trans. Netw., 11(1):153–165, 2003.

[Cas02] H. Casanova. Distributed computing research issues in grid computing.
ACM SIGACT News, 33(3):50–70, 2002.

[CCSM+03] D. G. Cameron, R. Carvajal-Schiaffino, A. P. Millar, C. Nicholson, and
al. Evaluating scheduling and replica optimisation strategies in optor-
sim. In Proceedings of the Fourth International Workshop on Grid
Computing, page 52. IEEE Computer Society, 2003.

[CDF02] B. Cain, S. Deering, and B. Fenner. Internet group management proto-
col, version 3. RFC 3376, 2002.

[CDKR02] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. Scribe: a
large-scale and decentralised application-level multicast infrastructure.
IEEE Journal on Selected Areas in Communications (JSAC) Special
issue on Network Support for Multicast Communications, 20(8), 2002.

[CGI+99] R. Canetti, J. Garay, G. Itkis, D.Micciancio, and al. Multicast security:
A taxonomy and some efficient constructions. In Proceedings IEEE
INFOCOM, volume 2, pages 708–716, 1999.

[CHKW98] D.M. Chiu, S. Hurst, M. Kadansky, and J. Wesley. Tram : A tree-based
reliable multicast protocol - technical report tr-98-66, sun microsys-
tems, 1998.

BIBLIOGRAPHY 113

[CK00] S. Cho and C. Kim. A secure multicast architecture with a decentralized
key management. In Proceedings of the International Conference on
Electronic Commerce, Seoul, Korea, Aug 2000.

[CKM+03] J. Cui, J. Kim, D. Maggiorini, K. Boussetta, and al. Aggregated mul-
ticast - a comparative study. In special issue of Cluster Computing:
The Journal of Networks, Software and Applications, Baltzer Science
Publisher, pages 1032–1044, 2003.

[CL87] D. Clark and L. Lambert. Netblt: A bulk data transfer protocol. RFC
998 - http://www.rfc-archive.org, 1987.

[CP99] R. Canetti and B. Pinkas. A taxonomy of multicast security is-
sues. Internet Draft - http://www.securemulticast.org/draft-irtf-smug-
taxonomy-01.txt, 1999.

[CPW97] L. Cingiser, A. Di Pippo, and V. Wolfe. Object-based semantic real-
time concurrency control with bounded imprecision. IEEE Transac-
tions on Knowledge and Data Engineering, 9(1):135–147, 1997.

[Dat] EU DataGrid. The datagrid project - http://www.eu-datagrid.org.

[DAZ99] M.J. Donahoo, M. H. Ammar, and E. W. Zegura. Multiple-channel
multicast scheduling for scalable bulk-data transport. In IEEE INFO-
COM, pages 847–855, 1999.

[Dee89] S. Deering. Host extensions for ip multicasting. RFC 1112, August
1989.

[DGLS02a] M. Draoli, C. Gaibisso, F. Lombardi, and A. Stentella. A java archi-
tecture for secure reliable multicast data transfer: Performance eval-
uation. In Proceedings of Communication Internet and Information
Technology (CIIT), St. Thomas, U.S.A., ISBN: 0-88986-327-X (376),
pages 142–147. ACTA Press (Calgary), November 2002.

[DGLS02b] M. Draoli, C. Gaibisso, F. Lombardi, and A. Stentella. Performance
evaluation of a reliable and secure multicast bulk data transfer applica-
tion in java. In Proceedings of Computer Measurement Group Work-
shop (CMG), Rome, Italy, June 2002.

[DR04] T. Dierks and E. Rescorla. The tls protocol v1.1. RFC2246 -
http://www.ietf.org/internet-drafts/draft-ietf-tls-rfc2246-bis-08.txt,
2004.

[EKK+02] M. Ellert, A. Konstantinov, B. Konyac, O. Smirnovac, and al. Perfor-
mance evaluation of the gridftp within the nordugrid project. E-print
cs.DS/0205023. - http://arxiv.org/pdf/cs.DC/0205023, 2002.

114 BIBLIOGRAPHY

[ES04] A. El-Sayed. Application-Level Multicast Transmission Techniques
Over The Internet. PhD thesis, Institut National Politechnique de
Grenoble, 2004.

[Est03] D. Estrin. Protocol independent multicast - sparse mode
(pim-sm): Protocol specification (revised). internet draft
http://netweb.usc.edu/pim/internet-drafts/draft-ietf-pim-sm-v2-new-
08.txt, 2003.

[FJL+97] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and al. A reliable multi-
cast framework for light-weight sessions and application level framing.
IEEE/ACM Transactions on Networking, 5(6):784–803, 1997.

[FKNT02] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of
the grid: An open grid services architecture for distributed systems
integration - http://www.globus.org/research/papers/ogsa.pdf, 2002.

[FKT01] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid:
Enabling scalable virtual organizations. Lecture Notes in Computer
Science, 2150:1–10, 2001.

[For] Grid Forum. Global grid forum - http://www.gridforum.org.

[Foua] The Apache Software Foundation. http://ws.apache.org.

[Foub] The Apache Software Foundation. Axis. http://ws.apache.org/axis.

[Fouc] The Apache Software Foundation. Juddi. http://ws.apache.org/juddi.

[GKL+02] L. Guy, P. Kunszt, E. Laure, H. Stockinger, and al. Replica manage-
ment in data grids - technical report, global grid forum (ggf5) working
draft - http://citeseer.ist.psu.edu/guy02replica.html, 2002.

[GL05] C. Gaibisso and F. Lombardi. A reliable multicast approach to replica
management for grids. In Proceedings of Parallel and Distributed
Computing and Networks (PDCN), Innsbruck, Austria. ACTA Press
(Calgary), February 2005.

[HAA99] J. Holliday, D. Agrawal, and A. E. Abbadi. The performance of
database replication with group multicast. In Proceedings of IEEE In-
ternational Symposium on Fault Tolerant Computing (FTCS29), pages
158–165, 1999.

[HBH03] G. Hjalmtysson, B. Brynjulfsson, and O. R. Helgason. Overcom-
ing last-hop/first-hop problems in ip multicast. In Proceedings of
Fifth International Workshop on Networked Group Communications
(NGC/ICQT03) - Munich, pages 205–213, September 2003.

BIBLIOGRAPHY 115

[HJS+00] W. Hoschek, F.J. Janez, A. Samar, H. Stockinger, and al. Data manage-
ment in an international data grid project. In Proceedings of the First
IEEE/ACM International Workshop on Grid Computing (GRID2000),
volume 1971, pages 77–90. Springer-Verlag, 2000.

[HMCG04] H. Harney, U. Meth, A. Colegrove, and G. Gross. Group
secure association key management protocol(gsakmp). Internet
Draft - http://www.ietf.org/internet-drafts/draft-ietf-msec-gsakmp-sec-
06.txt, 2004.

[HW04] T. Hardjono and B. Weis. The multicast group security architecture.
RFC 3740 - http://www.faqs.org/rfcs/rfc3740.html, 2004.

[IGT04] R. Izmailov, S. Ganguly, and N. Tu. Fast parallel file replication in data
grid. In Future of Grid Data Environments workshop, Global Grid
Forum (GGF10), 2004.

[JPOD96] J.Gray, P.Helland, O. O’Neil, and D.Shasha. The dangers of replication
and a solution. In Proceedings of ACM SIGMOD, pages 173–182, Nov
1996.

[KHTK00] S. K. Kasera, G. Hjálmtýsson, D. F. Towsley, and J. F. Kurose. Scal-
able reliable multicast using multiple multicast channels. IEEE/ACM
Transactions on Networking, 8(3):294–310, 2000.

[KKL04] G. Kola, T. Kosar, and M. Livny. Profiling grid data transfer protocols
and servers. In Proceedings of Euro-Par 2004, volume 3149, pages
452–459, Pisa, Italy, September 2004. Springer.

[KLSS04] P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger. Advanced
replica management with reptor. Lecture Notes in Computer Science,
3019:848–855, 2004.

[Kre95] J. A. Kreibich. The mbone: the internet’s other backbone. ACM Cross-
roads, 2(1):5–7, 1995.

[Kre01] H. Kreger. Web services conceptual architecture (wsca
1.0). http://www-3.ibm.com/software/solutions/webservices/pdf/
WSCA.pdf, May 2001.

[Lam78] L. Lamport. Secure, efficient data transport and replica management.
IEEE Symposium on Mass Storage Systems, 1978.

[LCG04] L. Lao, J. Cui, and M. Gerla. A scalable overlay multicast architec-
ture for large-scale applications, 2004. UCLA CSD Technical Report
no.040008, http:// www.cs.ucla.edu/NRL/hpi/papers/2004-tr-0.pdf.

116 BIBLIOGRAPHY

[Lea01] D. Lea. Concurrent Programming in Java. 2nd edition. Addison Wes-
ley, May 2001.

[LGLA98] B. N. Levine and J. J. Garcia-Luna-Aceves. A comparison of reliable
multicast protocols. ACM Multimedia Systems, 6(5):334–348, 1998.

[LGT98] Li-Wei H. Lehman, S. J. Garland, and David L. Tennenhouse. Active
reliable multicast. In IEEE INFOCOM (2), pages 581–589, 1998.

[Lia98] T. Liao. Light-weight reliable multicast protocol specification. Internet
Draft - http://webcanal.inria.fr/lrmp/draft-liao-lrmp-00.txt, 1998.

[LLGLA96] B. N. Levine, D. B. Lavo, and J. J. Garcia-Luna-Aceves. The case
for reliable concurrent multicasting using shared ack trees. In ACM
Multimedia Systems, pages 365–376, 1996.

[LP96] J. C. Lin and S. Paul. RMTP: A reliable multicast transport protocol.
In IEEE INFOCOM, pages 1414–1424, March 1996.

[LP05] F. Lombardi and R. Puccinelli. Jet-lag java heterogeneous log analysis
on the grid: architecture, implementation and performance evaluation.
In Proceedings of Parallel and Distributed Computing and Networks
(PDCN), Innsbruck, Austria. ACTA Press (Calgary), February 2005.

[LXC03] X. Liu, H. Xia, and A. Chien. Network emulation tools for modeling
grid behavior. In Proceedings of 3rd IEEE/ACM International Sym-
posium on Cluster Computing and the Grid (CCGrid 2003), Tokyo,
Japan, May 2003.

[Ma98] K. Miller and al. Starburst multicast file transfer protocol (mftp)
specification. http://hegel.ittc.ukans.edu/ topics/internet/internet-drafts
/draft-m/draft-miller-mftp-spec-03.txt, 1998.

[MBRES04] L. Mathy, N. Blundell, V. Roca, and A. El-Sayed. On cheats in
application-level multicast. In IEEE INFOCOM, March 2004.

[Moy94] J. Moy. Multicast extensions to ospf. RFC 1584 -
http://www.faqs.org/rfcs/rfc1584.html, 1994.

[MP02] M. Maimour and D. Pham. Dynamic replier active reliable multicast
(dyram). In Proceedings of the Seventh International Symposium on
Computers and Communications (ISCC’02), page 275, IEEE Com-
puter Society, 2002.

[PMM03] R. Di Pietro, L. V. Mancini, and A. Mei. A time driven methodology for
key dimensioning in multicast communications. In Proceedings 18th

BIBLIOGRAPHY 117

IFIP International Information Security Conference, pages 121–132,
2003.

[PSS98] P. Parnes, K. Synnes, and D. Schefstrom. Lightweight application level
multicast tunneling using mtunnel. Special issue of Journal of Com-
puter Communications, 21(15):1295–1301, April 1998.

[PTK94] S. Pingali, D. Towsley, and J. F. Kurose. A comparison of sender-
initiated and receiver-initiated reliable multicast protocols. In Proceed-
ings of the 1994 ACM SIGMETRICS conference on Measurement and
modeling of computer systems, pages 221–230. ACM Press, 1994.

[Pus98] T. Pusateri. Distance vector multicast routing protocol. draft-ietf-
idmrdvmrp-v3-06, March 1998.

[RGK96] M. Rabinovich, N. H. Gehani, and A. Kononov. Scalable update prop-
agation in epidemic replicated databases. In Proceedings of the 5th
International Conference on Extending Database Technology, pages
207–222. Springer-Verlag, 1996.

[Riz97] L. Rizzo. Dummynet: a simple approach to the evaluation of network
protocols. ACM Computer Communication Review, 27(1):31–41, 1997.

[RKH98] P. Rosenzweig, M. Kadansky, and S. Hanna. The java re-
liable multicast service: A reliable multicast library, 1998.
Sun Microsystems Laboratories - Boston Center for Networking,
http://www.experimentalstuff.com/Technologies/JRMS.

[SGLA99] C. Shields and J. J. Garcia-Luna-Aceves. Khip: a scalable protocol for
secure multicast routing. ACM SIGCOMM Computer Communication
Review, 29(4):53–64, 1999.

[SL00] Y. Saito and H.M. Levy. Optimistic replication for internet data ser-
vices. In Proceedings of the 14th International Conference on Dis-
tributed Computing, pages 297–314. Springer-Verlag, 2000.

[Sof] Sun Java Software. Java 2 platform api specs.
http://java.sun.com/products/ jdk/1.2/docs/guide/misc/ threadPrimi-
tiveDeprecation.html.

[SRT+98] S.Kumar, P. Radoslavov, D. Thaler, C. Alaettinolu, and al. The
masc/bgmp architecture for inter-domain multicast routing. In Pro-
ceedings of the ACM SIGCOMM conference on Applications, technolo-
gies, architectures, and protocols for computer communication, pages
93–104. ACM Press, 1998.

118 BIBLIOGRAPHY

[SSMD02] H. Stockinger, A. Samar, S. Mufzaffar, and F. Donno. Grid data mir-
roring package (gdmp). In EDMS Journal of Scientific Programming -
Special Issue devoted to Grid Computing 10(2), pages 121–133, 2002.

[SWW03] T. Su-Wei and G. Waters. Building low delay application layer multi-
cast trees. In Proceeding of 4th Annual PostGraduate Symposium: The
Convergence of Telecommunications, Networking and Broadcasting,
pages 27–32. EPSRC, Liverpool John Moore University, June 2003.

[SZJ02] S. Setia, S. Zhu, and S. Jajodia. A comparitive performance analysis
of reliable group rekey transport protocols for secure multicast. Perfor-
mance Evaluation, 49(1-4):21–41, 2002.

[UDD01] UDDI.Org. Executive white paper. http://www.uddi.org /whitepa-
pers.html, November 2001.

[UDD03] UDDI.Org. Uddi version 3.0.1 - uddi spec technical committee specifi-
cation. http://uddi.org/pubs/uddi-v3.0.1-20031014.htm, October 2003.

[VS02] S. Vazhkudai and J. M. Schopf. Predicting sporadic grid data transfers.
In Proceedings of the 11th IEEE International Symposium on High Per-
formance Distributed Computing (HPDC’02), page 188. IEEE Com-
puter Society, 2002.

[VSF02] S. Vazhkudai, J. M. Schopf, and I. Foster. Predicting the performance
of wide area data transfers. In Proceedings of the 16th International
Parallel and Distributed Processing Symposium, page 270. IEEE Com-
puter Society, 2002.

[WB84] G. Wuu and A. Bernstein. Efficient solutions to the replicated log and
dictionary problems. In Proceedings of the third annual ACM sym-
posium on Principles of distributed computing, pages 233–242. ACM
Press, 1984.

[WGL00] C. K. Wong, M. Gouda, and S. Lam. Secure group communications
using key graphs. IEEE/ACM Transactions on Networking, 8(1):16–
30, 2000.

[WHA99] D. Wallner, E. Harder, and R. Agee. Key management for multi-
cast:issues and architectures. RFC2627, June 1999.

[YGS95] R. Yavatkar, J. Griffoen, and M. Sudan. A reliable dissemination pro-
tocol for interactive collaborative applications. In Proceedings of the
third ACM international conference on Multimedia, pages 333–344.
ACM Press, 1995.

BIBLIOGRAPHY 119

[Zap04] D. Zappala. Alternate path routing for multicast. IEEE/ACM Transac-
tions on Networking, 12(1):30–43, 2004.

