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1 - Abstract 

 

Metalloproteases are a class of proteins very important for bacterial physiology, they are 

involved in many different aspects of microbial life and in the recent years they are target 

of many relevant studies. 

Through a genomic approach, we identified three hypothetical metalloprotease in Non-

typeable Haemophilus influenzae (NTHi): NT013, NT017 and NT022. These proteins 

belong to LytM family, which is composed by factors mainly involved in cell division and 

in pathogenesis. 

The analysis of knockout mutant strains phenotypes confirms the role of protein NT013 

and NT022 in cell splitting process; in particular we observed defective phenotypes in 

terms of cell morphology, formation of chains and bacterial aggregates. Moreover, we 

demonstrated a direct activity of protein NT013 in peptidoglycan cleavage, meanwhile 

NT022 seems to have a regulatory function.  

Furthermore, the alteration in the cell division in the KO strains resulted in an increase in 

the release of Outer Membrane Vesicles (OMVs), probably due to a decrease in 

membrane stability.   

NT017 does not seem to be involved in cell division process, but has a possible role in 

host colonization, since NT017 deletion reduces the capacity of NTHi to adhere to 

epithelial cells, to form biofilm and shows a susceptibility to human serum mediated 

killing.  

The results obtained so far clearly highlight the importance of LytM factors in NTHi 

physiology and pathogenesis.  
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2 - Introduction 

 

2.1 - Metalloproteases are essential enzymes for bacterial physiology 

Proteolytic enzymes play many physiological roles and are essential factors for 

homeostatic control in both eukaryotes and prokaryotes. Bacterial metalloproteases are 

mainly involved in the hydrolysis of large polypeptide substrates into smaller molecules 

for the recruitment of peptide nutrients for the microorganism [1], the enzymes produced 

by pathogenic microorganisms, especially by opportunistic pathogens, occasionally act 

as toxic factors to the host. 

 

Figure 1: classes of zinc metalloproteases  

Families of zinc metalloproteases based on the sequence around the zinc-binding residues. Italicized red 

letters represent identified zinc ligands; underlined red letters represent putative zinc ligands; and X stands 

for any amino acid. Residues in the first line correspond to the first and second ligands; residues in second 

line to the third ligand; and residues in the third line to the putative fifth ligand [3]. 

 

Many of the toxic proteases are metalloproteases having a zinc (II) ion in the catalytic 

site. Zinc is an integral component of many proteins which are involved in virtually all 

aspects of metabolism of the different species of all phyla. X-ray crystallographic 
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analyses of several zinc containing proteins have defined the features of the catalytic 

and structural zinc-binding sites [2]. In all zinc enzymes whose crystal structures are 

known, a catalytic zinc atom is coordinated to three amino acid residues of the protein 

and an active water molecule, whereas structural zinc atoms are coordinated to four Cys 

residues [2]. A combination of His, Glu, Asp, or Cys residues creates a tridentate active 

zinc site, and an activated water molecule fills and completes the coordination sphere. 

Zinc-containing metalloproteases are widely distributed from prokaryotes to eukaryotes 

and are classified into four groups: zincins, inverzincins, carboxypeptidases and DD-

carboxypeptidases [3].  

Secreted bacterial metalloproteases have been identified in both gram-positive and 

gram-negative pathogens, but they are certainly not unique to pathogenic species. Many 

bacterial proteases from pathogenic organisms that have been studied in detail have 

either been demonstrated or suggested to play important roles in virulence: they are 

used by the bacteria as direct defense mechanisms, cleaving proteins involved in the 

host immune defense, as is the case of ZapA from Proteus mirabilis [4]. Or they can 

have other functions as maturation factors for other virulence factors, such as the 

secreted metalloprotease PlcB from Listeria monocytogenes which is responsible for the 

activation of two phospholipases important in the pathological process [5]. 

For instance, a metalloprotease produced by Vibrio vulnificus, which is an opportunistic 

human pathogen causing serious septicemia accompanied by edematous skin lesions, 

has been documented to enhance the vascular permeability by stimulating the 

generation of inflammatory mediators, histamine and bradykinin [6]. Pseudomonas 

aeruginosa, another opportunistic human pathogen, also produces two metalloproteases, 

these can digest a wide variety of host proteins, such as structural components of the 

cornea or basement membrane, and plasma proteins involved in coagulation or 

complement action [7]. In addition, some microbial proteases may play indirect roles in 
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pathogenicity. A metalloprotease from Vibrio cholerae serovar O1, which is responsible 

for epidemic cholera characterized by a voluminous amount of rice water stool, is known 

to accelerate the bacterial attachment to intestinal epithelial cells through digestion of the 

small intestinal mucosa [8].  

Proteins like metalloproteases are so important for bacterial physiology and they could 

be a target as potential vaccine antigens. Development of protective immunity against 

bacterial metalloproteases was observed and it could have practical implications in the 

design of future vaccines or therapies [9-10-11]. 

 

2.2 - Bacterial cell division in gram negative bacteria 

The study of bacterial cell division, especially for gram negative, was focused on 

organisms as Escherichia coli and Caulobacter crescentus.  

Escherichia coli and other Gram-negative bacteria divide by coordinately constricting all 

three of their envelope layers, the inner and outer membranes along with the 

peptidoglycan (PG) layer sandwiched between them [12-13]. Envelope constriction is 

driven by a ring-shaped, multiprotein complex called the septal ring or divisome [12]. The 

assembly of this machine is initiated by polymerization of the tubulin-like FtsZ protein into 

a ring-like structure, the Z-ring, just underneath the cytoplasmic membrane at the 

prospective site of fission [14]. 

Several Z-ring associated proteins (FtsA, ZipA, ZapA, ZapB, and ZapC) play important 

roles in Z-ring formation and are thought to decorate and stabilize the structure as it 

forms [15, 16, 17, 18, 19, 20].  

Placement of the division site at its correct location in Escherichia coli requires a division 

inhibitor (MinC), that is responsible for preventing septation at unwanted sites near the 

cell poles, and a topological specificity protein (MinE), that forms a ring at midcell and 
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protects the midcell site from the division inhibitor [21]. However, the mechanism 

responsible for identifying the position of the midcell site or the polar sites used for spore 

septum formation is still unclear. 

 

Figure 2: In Escherichia coli, assembly of the 

FtsZ ring is restricted to the mid-cell by nucleoid 

occlusion and the MinE-driven pole-to-pole 

oscillation of the cell-division inhibitor MinCD [4].

Regulation of the division process and its coordination with other cell cycle events, such 

as chromosome replication, are poorly understood. However, a protein has been 

identified in Caulobacter (CtrA) that regulates both the initiation of chromosome 

regulation and the transcription of ftsZ, and that may play an important role in the 

coordination process. 

Once assembled, the Z-ring is thought to serve as a scaffold for the recruitment of a 

large set of essential and auxiliary division proteins to the division site, together forming 

the trans-envelope septal ring machine. Studies in which the subcellular localization of 
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one essential divisome component is observed in the absence of another have revealed 

a mostly linear dependency pathway for divisome assembly that starts with FtsZ and 

ends with FtsN (FtsZ [FtsA, ZipA], FtsK [FtsQLB], FtsW, FtsI, FtsN) [22, 23, 24, 25, 26, 

27, 28, 29, 30, 31]. The dependency pathway does not appear to reflect the temporal 

order of divisome assembly. Rather, analysis of septal ring assembly during the cell 

cycle suggests that maturation takes place in just two steps, with stable Z-rings forming 

and persisting for about 20% of the cell cycle before most of the remaining divisome 

components (from FtsQ to FtsN) are simultaneously recruited (32). This second 

“maturation” step is then closely followed by the initiation of cell constriction (32). 

The contraction of the septal ring is associated with the highly localized production of 

new PG that is thought to be initially shared by the developing daughter cells [33, 34, 35, 

36]. The periplasmic PG amidases, AmiA, AmiB, and AmiC, are required to split this 

shared septal PG to shape the new poles and allow constriction of the outer membrane 

to closely follow that of the inner membrane [13, 37, 38, 39]. Amidases are PG 

hydrolases that break peptide cross-links in the PG meshwork by cleaving bonds that link 

stem peptides to the N-acetylmuramic acid component of the glycan strands. Mutants 

lacking amidase activity complete inner membrane constriction and fusion but fail to split 

septal PG. Consequently, they form long chains of cells connected by shared layers of 

PG and a partially constricted outer membrane layer [38, 39].  

 

2.3 - LytM metalloproteases are involved in cell division process  

Metallopeptidases can often be recognised by the presence of a short conserved 

signature sequence containing histidine and glutamate residues. The most common 

motif is HExxH (“zincins”), but other motifs such as HxxEH (“inverzincins”), HxxE 

(“carboxypeptidase family”) and HxH (e.g. lysostaphin-like) have also been described [3]. 
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HxH metalloproteases of the lysostaphin-type (LytM) of peptidases occur in 

bacteriophages, in Gram-positive and in Gram-negative bacteria. Metalloproteases 

containing the catalytic LytM domain belong to the M23 peptidase family [43], this 

domain was identified for the first time in a secreted autolysin from Staphilococcus 

aureus [44]. 

Lysostaphin-like peptidases from bacteriophages and Gram-positive bacteria cleave 

polyglycine crossbridges in the peptidoglycan of Gram-positive bacterial cells. Their role 

in Gram-negative bacteria is less clear: some peptidases, like b-lytic protease from 

Achromobacter lyticus, target cell walls of Gram-positive bacteria, possibly providing a 

competitive advantage to the producer organism, others seem to have additional roles, 

like LasA from Pseudomonas aeruginosa that is believed to participate in host elastin 

degradation [45].  

In E.coli three LytM proteins (EnvC, NlpD and YebA) were characterized and they are 

involved in the cell division process [13].  

Strains lacking the divisome-associated LytM factors, EnvC and NlpD show defects in 

cell splitting [13]. It was reported that these LytM proteins are potent and specific 

activators of PG hydrolysis by the amidases [46]. In a purified system, EnvC was found 

to specifically activate AmiA and AmiB, while NlpD was found to specifically activate 

AmiC [13]. The LytM factors are therefore key regulators controlling the activation of PG 

hydrolysis at the cytokinetic ring. 

To activate the amidases, EnvC and NlpD most likely stabilize the open conformation of 

their cognate amidases, thus biasing the equilibrium to favour the active state. An 

attractive mechanism by which the open form of the amidase might be stabilized is 

shown in Fig.3, it acts through the direct binding of the autoinhibitory helix by the LytM 

activator, it [47]. 
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YebA maintains an active role in peptidoglycan cleavage [48] but appear to play minor, 

yet observable, roles in cell separation is likely to participate in other aspects of PG 

biogenesis and only have weak cell separation activity [13]. 

 

 

Figure 3: Conformational control of amidase 

activity during the cell cycle 

Shown is a schematic diagram illustrating the 

activation status of cell separation amidases 

through the cell cycle. (A) At early stages in the 

cell cycle prior to the formation of the Z-ring, 

periplasmic amidases (red pac-men) are likely to 

be largely inhibited by their regulatory helices 

(red circles). (B) FtsEX and EnvC are early 

recruits to the Z-ring, arriving well before the 

initiation of constriction. It is not known if the 

FtsEX EnvC system is capable of amidase 

activation immediately following its recruitment, 

or if it requires further septal ring maturation. 

Even if it is active at this stage, it is unlikely to 

stimulate a high level of amidase activity 

because the amidase are not concentrated at 

mid-cell before the onset of cell constriction. (C) 

Once constriction is initiated NlpD, AmiB, and 

AmiC are recruited to the septal ring and both 

amidase activation systems are presumably 

activated to stimulate amidase activity. Our 

results indicate that amidase activation proceeds 

via the release of the regulatory helix from their 

active site. For simplicity, the three different 

amidases are not individually identified in the 

figure [47] 

Consistent with this idea, both EnvC and NlpD are specifically recruited to the division 

site, whereas YebA shows a more dispersed peripheral localization pattern.
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2.4 - LytM Metalloproteases in pathogenesis 

LytM factors are also found in other bacteria, they are involved in cell division, but also in 

pathogenesis, in particular HdpA from H. pylori has a role in the regulation of morphology 

and in the colonization process [49], the inactivation of the HdpA gene led to a stocky 

and branched phenotype, affecting H pylori colonization capacity despite a normal 

motility phenotype in vitro. In contrast, the overexpression of the HdpA gene induced the 

transformation of H. pylori from rod to dividing cocci shaped bacteria. Altogether, the 

morphological abnormalities of the mutant were likely to be directly involved in its 

colonization 

defect. These could impact on several important features of H. pylori required for efficient 

colonization of the gastric mucosa: motility in a viscous environment, poor adhesion to 

target cells, or reduced growth. Individually or collectively, these altered phenotypes can 

contribute significantly to explain the reduced fitness of the HdpA mutant in vivo. 

NG1686 from N. gonorrhoeae has roles in resistance to hydrogen peroxide and PMN-

mediated killing [50]. The deletion of Δng1686 affects probably the overall permeability of 

the cell wall. If this were the case, the ng1686 strain should be more susceptible to killing 

by a variety of chemicals. However it was only observed increased susceptibility to killing 

by H2O2 and the inorganic peroxide cumene hydroperoxide and not to other oxidants or 

antibiotics, suggesting that small defects in PG structure in the ng1686 mutant result in 

discernable phenotypes only for peroxide and PMN-mediated killing. 

NlpD is essential for the development of bubonic and pneumonic plague in Y. pestis, a 

chromosomal deletion of the nlpD gene sequence resulted in a drastic reduction in 

virulence to an LD50 of at least 107 cfu for subcutaneous and airway routes of infection. 

Interestingly, the highly attenuated phenotype of the nlpD mutant and its inability to 

colonize host organs did not seem to prevent the development of immunity against 

plague following s.c. infection. Rather, this strain seemed to effectively stimulate a long-
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term adaptive immune response as demonstrated by the generation of high antibody 

titers [11]. 

Although LytM metalloproteases are well characterized in E. coli and in other bacteria, 

not much information is available in Haemophilus influenzae. 

 

2.5 – Non-typeable Haemophilus influenzae (NTHi) and pathogenesis  

Haemophilus influenzae is a gram negative bacterium that colonizes human 

nasopharynx. H. influenzae strains that lack capsular polysaccharides are referred to as 

non-typeable (NTHi). 

Although it is most commonly associated with asymptomatic colonization, it could be also 

pathogenic causing serious infections [51].  

The questions must surely arise how and why this organism changes from a relatively 

harmless commensal into an agent of infection. Survival of the bacterial species depends 

on the ability of the NTHi to parasitize the mucous membranes of the human host [52]. 

Infection and disease represent an imbalance of colonization.  

From this perspective, NTHi should coexist in a balanced relationship with its human 

host. Of course, the spread of different subtypes to allow exchange of genetic 

information and subsequent evolution of adaptive diversity for NTHi is essential, and it 

may be due to this requirement that the balanced state is disturbed. 

The success of this organism as a colonizer and pathogen is due to its lack of reliance 

on any single mechanism of attachment and its ability to respond rapidly to host defense 

mechanisms by antigenic variation of proteins and enzymes.  

As an opportunistic pathogen, NTHI colonization depends on a variety of host and 

bacterial factors, most of them already characterized, however, the complete scenario of 

NTHi pathogenesis is still not clear. Adhesion to and invasion of epithelial cells, 
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macrophages and other components and cells from the human nasopharynx by NTHi 

have been studied in details and represented in figure 6: NTHI adheres to respiratory 

mucus and to an unidentified non-ciliated cell type(s) of the multiple cell types of the 

respiratory epithelium [53], then it is able to persist in the nasopharynx mucosa evading 

the host defense and forming biofilm until it is internalized in the cells.  

 

 

 

Figure 6: Model of NTHI colonization and invasion of epithelial cells.  

NTHI adheres to mucus and non-ciliated epithelial cells. NTHI aggregates mature into a biofilm composed 

of bacterial and host components. NTHI has been observed within, between, and beneath epithelial cells in 

vitro and ex vivo. It is clear that NTHI are internalized by macropinocytosis and are trafficked to vesicles 

that are positive for endolysosomal markers. It is unclear what role(s) are played by other host 

internalization and trafficking pathways (noted by question marks), or how these pathways affect NTHI 

viability. Further examination of these pathways in relation to NTHI is needed to fully characterize the 

journey and fate of intraepithelial NTHI. [42]. 
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The complexity of bacterial-host interactions at mucosal surfaces is an area of intensive 

research and new insights into bacterial-host cell cross-talk and bilateral consequences 

have been gained [54, 55].  

NTHi has the capacity to express adhesins and invasins. The long-range pili:fimbriae 

adhesion system has been characterized [56,57]; aside from the structural HifA, 

candidates for tip proteins exist, e.g. HifE. Surprisingly, however many NTHi otitis and 

nasopharynx isolates appear to lack the pilus gene cluster [58]. The existence of 

alternative long-range adhesion mechanisms is unclear. NTHi strains were found to 

express proteins of the family of high molecular weight adhesins such as Hmw1, Hmw2 

and Hia [58]. 

All NTHi strains also appear to express an adhesin: invasin Hap associated with the 

capacity to enter eukaryotic cells [58]. It has also been demonstrated that regions of the 

integral OMP P5 are clearly associated with NTHi adhesive properties [59,60]. The 

association between P5 and fimbrial structures merit further clarification [59]. Invasion 

can also be observed by in vitro NTHi-cell culture interactions [61]. Such invasive states 

could imply the need for T-cell mediated protection mechanisms. As well as adhesion 

and invasion, resistance to complement, C-reactive protein and other innate immune 

mechanisms will play a role at the epithelial and subepithelial level, NTHi LPS most likely 

being a key bacterial factor in such processes.  

NTHI encodes specific defense mechanisms: ProteinD enhanced damage to cilia in a 

nasopharyngeal tissue culture model [62], the Sap transporter and lipooligosaccharide 

(LOS) phosphorylcholine (PCho) appear to protect NTHI against human antimicrobial 

peptides β-defensin and cathelicidin LL-37, respectively, which are important respiratory 

defense molecules [63,64]. NTHI LOS glycosyltransferase Lic2B activity and the ability to 

bind host complement inhibitors C4 binding protein, factorH, and vitronectin promote 

NTHI evasion of complement-mediated killing [65,66,67,68,69]. The exact mechanism of 
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how H. influenzae evades the host complement attack is unclear. In a previous study is 

shown that NTHi binds C4BP and that this interaction significantly contributes to bacterial 

serum resistance [70]. NTHi binds surface-associated vitronectin and it has been 

suggested that adhesins are involved in the binding [71]. In addition, both NTHi and 

encapsulated H. influenzae bind the alternative pathway inhibitor factor H, which is able 

to inhibit lysis of H. influenzae [66]. NTHI also encodes IgA1 proteases to inactivate IgA1, 

likely facilitating colonization, although this is difficult to confirm in animal models since 

IgA1 is a human-exclusive antibody. However, human lactoferrin cleaves IgA1 proteases 

and the homologous NTHI adhesin, Hap, suggesting that the healthy host might 

neutralize at least some of these potential colonization factors [73,74]. 

Adherent aggregates of bacteria may mature into biofilm, an important and intensely 

studied form of NTHI persistence in vitro and in vivo [75-76-77-78-79-80]. NTHi biofilms 

can exist in at least two clinically relevant phenotypes: (1) a ‘classical’ biofilm, wherein 

bacteria are attached to a surface such as the mucosa of the middle ear, in adenoid 

tissue, or tympanic tube implants; (2) large biofilm aggregates consisting of host material, 

especially neutrophils, proteins, and lipooligosaccharide that are not attached to the 

mucosa or host surfaces per se [81]. Many reports are aimed to establish a link between 

NTHi biofilm formation and its ability to cause disease, such as otitis media (OM). NTHi 

presenting at inflammatory sites, such as the middle ears of children with OM, is usually 

terminal for the bacteria as they are normally cleared from the site by host defense 

mechanisms and therefore are not transmitted to another host. In this regard, the ability 

of NTHi to form biofilms would not be expected to evolve or be retained within the 

bacterial population. Therefore, NTHi biofilm formation should have other advantages 

besides the ability to cause disease. Possibly, biofilm formation is already needed for 

colonization. Much less is known about the potential for NTHI persistence by invasion of 

host tissue. 
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NTHi strains have not traditionally been thought of as invasive. More recent work, 

however, has demonstrated that the bacterium may enter the host cell, presumably to 

evade the local immune response. This response has been demonstrated with several 

Haemophilus species. Capsule-deficient H. influenzae strains invade endothelial cells 

and remain within membrane-bound vacuoles over an extended period with no apparent 

effect on the host cell [82]. Wild-type NTHi strains have been found, in vitro, to adhere to, 

invade, and persist in Chang epithelial cells [83]. The relationship between the bacterium 

and he mammalian cell appeared to be a dynamic interaction, since both adherence and 

invasion of the NTHi increased over time. Intracellular entry was also accompanied by 

penetration of the mucosal surface at points of necrosis and cell junction. Following on 

from this, Van Schilfgaarde et al. [84] coined the phrase “paracytosis” when describing 

NTHi adherence to and subsequent passage through lung epithelial cell lines. In these 

experiments, highly adherent strains demonstrated greater paracytosis. The passage 

time was independent of inoculum size, fimbriae, or capsule but, was dependent on the 

rate of bacterial multiplication, with rapidly growing strains taking 10 to 18 h and slower 

growing strains taking 30 h to pass between the apical and basolateral chambers. 

Chloramphenicol addition prevented paracytosis, indicating that de novo protein 

synthesis was required for the process to occur. Paracytosis is both an in vitro and in 

vivo phenomenon. Adenoids removed from children with persistent otitis media or 

adenoidal hypertrophy were shown to have up to 105 viable intracellular H. influenzae 

cells in the reticular crypt epithelium and macrophage-like cells in the subepithelial layer 

of tissue [85]. The mechanism for uptake into the cell is unknown; however, under 

strategies outlined by Falkow [86] and Isberg and Tran Van Nhieu [87], it may be 

associated with the Hap protein or indeed the gag-dependent binding of the high-

molecular-weight proteins on the bacterial surface [88,89]. Other proteins that contribute 

to invasion are ChoP, ProteinD, and ProteinE [89; 90; 91; 92].  
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Studies on the significance of NTHI–host cell interactions, and indeed all NTHI studies, 

are complicated by the aclonal nature of this bacterium. Enormous strain-to-strain 

heterogeneity exists in the possession, expression, and composition of many NTHI outer 

membrane molecules.  

Aside from the genetic population diversity NTHi has been found to demonstrate 

extensive sequence and antigenic variation amongst gene products interacting with the 

human immune system such as outer membrane proteins and secreted virulence factors 

[93]. 

Amongst well studied examples of antigens demonstrating antigenic variation by way of 

mutations and:or phase variation are the outer membrane proteins P1, P2, P5, TbpB; pili 

or fimbriae; lipopolysaccharide; IgA-protease [94-100]. 

Antigenic drift, i.e. intrastrain variability has been demonstrated to occur with respect to 

surface regions of P2 [95]. OMP characteristics are described in van Alphen et al. [101]. 

As well as phase variation, LPS can be further modified by substitutions with 

phosphorylcholine and sialic acid which impact on serum sensitivity [99,102]. The crucial 

requirement for protoporphyrin IX has been met by NTHi by way of the potential 

expression of various hemoglobin, haptoglobin, hemopexin surface bound receptors and 

excreted products [103,104]. A redundancy of hemoglobin-haptoglobin-binding NTHi 

proteins exists allowing possible adaptation in the face of immunity [103].  

Added complexity comes from variable expression and availability of certain host cell 

receptors and matrix proteins. NTHI cells for example express, on their outer surfaces, a 

number of LOS core oligosaccharide epitopes, and the expression of these epitopes is 

subject to frequent, reversible phase variation. Four chromosomal loci, lic-1 to lic-

3 and lgtC, which contain long stretches of 4-bp tandem repeats within their 5′ coding 

regions, have been reported to generate phase-variable LOS structures 

[105,106,107]. lic-1 functions to add phosphorylcholine (PCho) to the LOS molecule 
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[108], lic-2 and lgtC are necessary for the expression of Galα1-4Gal [109], and the effect 

of variation in lic-3 is unknown. Phase variation may represent a mechanism whereby 

NTHI evades the host immune response or concurrently modulates its surface in order to 

colonize different anatomical sites, each with a unique complement of host cell receptors 

[110-111]. Elucidating the role of LOS phase variation is important both for 

understanding OM pathogenesis and for designing a candidate vaccine [93].  

Analysing the different aspects of NTHi pathogenesis there is one key factor that is 

important for all the steps: phosphorylcoline (PCho). The addition of PCho to bacterial 

surfaces is a recurring theme among bacteria that inhabit mucosal surfaces. 

Contributions of PCho to the persistence of NTHi in vivo include increased adherence to 

and invasion of airway epithelial cells [91], influence on biofilm formation [77,112], 

resistance to host defense [111], and diminished potency of LOS as an inflammatory 

agonist [113]. The contribute of this factors will be evaluated also in this thesis and its 

importance for NTHi virulence will be underlined. 

 

2.6 - Eradication of NTHi infections  

Respiratory tract infections associated with nontypeable Haemophilus influenzae (NTHi) 

are a major cause of morbidity and mortality in both developed and nonindustrialized 

nations. NTHI strains are the leading cause of bacterial otitis media infections (both 

acute and recurrent) in young children and are also responsible for chronic obstructive 

pulmonary disease (COPD) exacerbations in current and former smokers [51].  

These pathologies are multifactorial diseases caused by other nasopharyngeal 

commensal too. For example the predominant bacterial agent causing Acute otitis Media 

(AOM) are Streptococcus pneumoniae, nontypeable Haemophilus influenzae (NTHi) and 

Moraxella catarrhalis.  
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Figure 4: Main pathologies associated to NTHi infections (http://doctorrennie.wordpress.com/tag/otitis-

media/ and http://nursingcrib.com/case-study/chronic-obstructive-pulmonary-disorder-copd-case-study ) 

 

Following introduction of anti-pnumococcal vaccine some studies have demonstrated a 

shift in the proportions of causative pathogens of acute otitis media (AOM), there was an 

increase in the proportion of AOM episodes due to NTHi. Other studies have seen similar 

changes in the proportions of bacteria isolated from the middle ear and the nasopharynx 

of children with AOM, with NTHi becoming a more frequently isolated pathogen and 

replacement with non-conjugate vaccine S.pneumoniae serotypes [114-115]. 

http://doctorrennie.wordpress.com/tag/otitis-media/
http://doctorrennie.wordpress.com/tag/otitis-media/
http://nursingcrib.com/case-study/chronic-obstructive-pulmonary-disorder-copd-case-study
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Figure 5: Percentage of S. pneumoniae and NTHi causing recurrent AOM in Rochester, NY 1995–2008 

[114] 

 

Strategies to prevent host tissue damage due to infection by NTHi must take into account 

the differences between prevention of acute respiratory infection and prevention of 

chronic respiratory infection. The occurrence of an acute exacerbation, indicates a 

breakdown in the innate immune response, while chronic infection indicates that the 

immune response mounted 

to infection is either acting inappropriately or being countered by NTHi. Therefore, while 

prevention of acute infections may focus on prevention of attachment, invasion, and 

multiplication of the bacteria, dealing with an established chronic infection requires a 

strategy of modulating the immune response for successful treatment. 

Development of the ideal vaccine to prevent infection from this member of the normal 

microbiota is a great challenge. Vaccine strategies can be targeted toward prevention of 
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primary infection or immunomodulation of the host response that has resulted in either 

repeated acute exacerbations or chronic infection. However, the final goal is complicated 

by the fact that NTHi uses several strategies to evade immune response as: huge 

genomic variability, IgA protease production, paracytosis and antigenic variation [83-84-

85-116-117-118]. Moreover AOM and COPD are multifactorial pathologies, often caused 

by polimicrobial infections.  
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3 - Aim of the study 

 

The aim of this work is to elucidate the role of the new identified LytM proteins in NTHi, 

analysing their contribution both in cell division and in pathogenesis. 
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4 - Experimental procedures 

 

4.1 - Computer analysis  

LytM proteins were analyzed using several online applications. Putative signal peptides 

were identified using SignalP (http://www.cbs.dtu.dk/services/SignalP/), Pfam 

(http://pfam.sanger.ac.uk/) was used to detect the presence of domains of known 

function and SMART software (http://smart.embl-heidelberg.de/) helped us to reconstruct 

architectural structure of each protein. Homologues of NTHi LytM factors were found 

using BLASTP (http://blast.ncbi.nlm.nih.gov/). Identity percentages between different 

proteins were obtained comparing amino acid sequences with ClustalW2 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/) and BLASTP. 

 

4.2 - Bacterial strains and growth conditions 

NTHi Strain 176 was used for this study. It was part of a Finnish otitis media cohort 

study, as isolate obtained from the middle ear. NTHi was cultivated on chocolate agar 

polivitex (BioMerieux) incubated at 37°C with 5% CO2. Brain-heart infusion (BHI) broth 

(Difco Laboratories) supplemented with 10 g/mL each of haemin (Fluka Biochemika) 

and nicotinamide adenine dinucleotide (NAD, Sigma) was used as fluid growth medium. 

Escherichia coli strains DH5, HK100 and BL21 (DE3) (Invitrogen) were used for cloning 

and expression of LytM proteins. They were cultured at 37°C in Luria Bertani (LB) 

medium and, when required, supplemented with 100 g/mL ampicillin. 
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4.3 - Cell cultures  

Tissue culture cells used in this study are Chang epithelial cells (Wong-Kilbourne 

derivative, clone 1-5c-4, human conjunctiva, ATCC® CCL-20.2™) and HEK293 (human 

kidney, ATCC® CRL1573™). Chang cells were maintained in Dulbecco’s Modified 

Eagle’s Medium (D-MEM; Gibco) supplemented with 25 mM Hepes, 15 mM L-glutamine, 

antibiotics and 10% (vol/vol) heat-inactivated fetal calf serum (FCS, Invitrogen 

Corporation). They were grown at 37°C with 5 % CO2.  

HEK293 cells stably expressing TLR2 or TLR4/MD2/CD14 and the NF-κB–luciferase 

reporter cassette, were cultured in DMEM containing 4.5 g/ml glucose, supplemented 

with 10% heat inactivated FBS, 100 U/ml pelicillin, 100 µg/ml streptomycin, 2 mM 

glutamine, 5 µg/ml puromycin 250 µg/ml hygromycin (and plus 10 µg/ml Blasticidin for 

HEK293-TLR4 cells).  

 

4.4 - Cloning of genes coding for LytM proteins  

LytM genes were cloned into the pET15b+ vector (Novagen) by the polymerase 

incomplete primer extension (PIPE) method (119). In brief, sequences coding for each 

protein were amplified by PCR from the HI176 genomic DNA, removing the signal 

peptide (primers are listed in Table S1 in the supplemental material). PCRs generated 

mixtures of incomplete extension products; by primer design, short overlapping 

sequences were introduced at the ends of these incomplete extension mixtures, which 

allowed complementary strands to anneal and produce hybrid vector-insert 

combinations. Escherichia coli HK100 cells (120) were then transformed with vector-

insert hybrids. Single ampicillin-resistant colonies were selected and checked for the 

presence of the recombinant plasmid by PCR. Plasmids from positive clones were 

isolated and subcloned into competent E. coli BL21(DE3) cells.  
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4.5 - Expression and purification of recombinant proteins  

For protein purification, one single colony of E. coli BL21(DE3) strain expressing 

NTHI0532, NTHI0915 and NTHI0830 were inoculated in LB + ampicillin and grown 

overnight at 37°C, diluted in fresh LB medium and grown at 30°C to an OD of 0.6-0.8. 

The protein over-expression was induced by the addition of 1 mM isopropyl-1-thio--D-

galactopyranoside (IPTG; Sigma) for 4 hours. Recombinant 6 x His-fusion proteins was 

purified by affinity chromatography on Ni2+-conjugated chelating fast-flow Sepharose 4B 

resin (Pharmacia). The purity was checked by SDS-PAGE electrophoresis staining with 

Coomassie blue. Protein concentration was determined using the bicinchoninic acid 

(BCA) assay (Thermo Scientific). 

 

4.6 - Construction of the Knockout mutants  

Deleted mutants of NTHI0532, NTHI0915 and NTHI0830 were constructed by allelic 

replacement of each whole gene with an erythromycin resistance cassette. Upstream 

and downstream regions of the three genes were amplified by PCR using the primers 

listed in table 1 and cloned in Stratagene pSC-A TOPO vector.  

Table1: Oligos for Knockouts generation  

NT013 

NT013 5'FOR TTGCACGCGCCAATAATACC 

NT013 5'REV TGCATGCATTTACGTGTTGCACTGGCATC 

NT013 3'FOR TGCATGCATTGTTCGTGTTCGTGAAGCAG 

NT013 3'REV AACGCGATTGCGTAATGCAG 

NT017 

NT017 5'FOR TGCTGGTGCAATTTGATCTTC 

NT017 5'REV TGCATGCATTGATTAACGCCAAAACGCAAC 

NT017 3'FOR TGCATGCATATTAGCCGTAAAGGAACGCC 

NT017 3'REV TGGCGATCTAATGAACGCAC 

NT022 

NT022 5'FOR AAACATTGTGCAACAATGGGG 

NT022 5'REV TGCATGCATACAAGACTCAAAGGGAGTAAG 

NT022 3'FOR TGCATGCATGGATCCAGTACGTTACCTAC 

NT022 3'REV GTTTCTTTGTCCGCAGGTTC 
 

Erythromycin resistance cassette was purified from pIM13 plasmid. The constructs 

containing upstream regions, resistance cassette and downstream regions were 
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assembled. Plasmids obtained were linearized and used to transform 176 NTHi strain 

using MIV protocol [40]. Knockout strains obtained were confirmed by PCR, western blot 

and locus sequencing.  

 

4.7 - Preparation of polyclonal antisera 

Groups of four CD1 mice were immunized to produce polyclonal antisera; 10 g of 

purified protein was used for each mouse. The recombinant protein was given 

intraperitoneally in the presence of aluminum. A second (day 21) and a third (day 35) 

booster doses were administered. Blood sample was taken on day 49. 

The treatments were performed in accordance with internal animal ethical committee and 

institutional guidelines.  

 

4.8 - Cell fractionation and western blot analysis 

Haemophilus strains were grown in BHI until mid-log phase at 37°C with 5 % CO2. 

Whole cell lysates and periplasmic fractions were purified using PeriPreps Periplasting 

kit from Epicentre. Outer membrane proteins (OMPs) were recovered on the basis of 

Sarkosyl-insolubility following the rapid procedure as described by Carlone et al. [129].  

To prepare culture supernatants, bacteria were harvested at 13000 g for 10 min at 4°C. 1 

ml of culture supernatant was filtered through a 0.22 mm filter and precipitated with vol of 

50% TCA for 1 h at 4∞C. 

After centrifugation at 13000 g for 30 min, the achieved pellet was washed once with 

70% ethanol and resuspended in 1X sample loading buffer. 

Proteins of each cell fraction were separated by SDS-PAGE electrophoresis using 

NuPAGE Gel System, according to the manufacturer’s instructions (Invitrogen), and 
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revealed by Coomassie-blue staining or transferred onto nitrocellulose membranes for 

Western blot analysis. 

Western blots were performed according to standard procedures. The different LytM 

proteins were identified with a polyclonal mouse antiserum raised against recombinant 

NTHI0532, NTHI0915 and NTHI0830 (diluted 1:1000) and an anti-mouse antiserum 

conjugated to horseradish peroxidase (DAKO), as secondary antibody. Bands were 

visualized with Super Signal Chemiluminescent Substrate (Pierce) and with Opti 4CN 

Substrate Kit (Bio-Rad) following the manufacturer’s instructions. 

 

4.9 - Confocal Microscopy 

The presence of LytM proteins on NTHi surface was checked using confocal imaging. 

Knockout mutants were used as negative controls. Bacteria were grown until exponential 

phase, and fixed in 4% paraformaldehyde (Sigma). After multiple washings, bacteria 

were spread on polylisine-coated slides and blocked with PBS + 3% bovine serum 

albumin (BSA) (Sigma) for 30 min at room temperature. Samples were washed and 

incubated with specific antisera (1:1000) for 15 min at room temperature. LytM antisera 

were preadsorbed with intact KO bacteria to minimize cross-reactivity. Bacteria were 

washed several time with PBS and incubated with Alexa Fluor 488 goat anti-mouse IgG 

(1:400) (Molecular Probes). Labelled samples were mounted with ProLong®Gold 

antifade reagent with DAPI (Molecular Probes) and analysed with ZeissLSM710 confocal 

microscope. 

 

4.10 - Scanning and transmission electron microscopy  

Electron microscopy was performed on 176wt and ko strains to observe defects in 

bacterial morphology. Bacteria were grown until exponential phase, washed with PBS 
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and fixed overnight in cacodylate sucrose buffer containing 2.5% glutaraldehyde and 

2.5% paraformaldehyde. Samples were then postfixed in 1% OsO4 and 0.15% 

ruthenium red in cacodylate buffer, blocked with 1% uranyl acetate and dehydrated with 

serial dilution of acetone. 

For SEM, samples were then dried by the critical point method using CO2 in a Balzers 

Union CPD 020, sputter-coated with gold in a Balzers MED 010 unit, and observed with 

a JEOL JSM 5200 electron microscope. For TEM, samples were fixed and dehydrated 

as described above then embedded in Epon-based resin. Thin sections were cut with a 

Reichert Ultracut ultramicrotome by use of a diamond knife, collected on collodion 

copper grids, stained with uranyl acetate and lead citrate, and observed with a JEOL 

1200 EX II electron microscope. 

 

4.11 - Peptidoglycan extraction and analysis 

Peptidoglycan was purified from NTHi WT and mutants following the method of Uhehara 

[13]. 1 l of exponential phase culture was centrifuged and final pellet was resuspended in 

20 ml of PBS. Resuspended pellet was boiled with 80 ml of 5% SDS for 30 minutes and 

let overnight at room temperature. Samples were ultracentrifuged for 1 h at 25000 rpm at 

room temperature and then washed with water several times to remove SDS. 

Peptidoglycan were resuspended in 1 ml of PBS and incubated with 200 μg/ml Amilase 

(Sigma, A6380) overnight at 37°C. Samples were pelleted by ultra-centrifugation using 

TLA 100.3, 80000 rpm, 15 min, washed with water three times and resuspended in 1 ml 

water. 

Dried peptidoglycan samples purified from selected strains (Hi176wt, 176ΔNT013 and 

176ΔNT 22) of non typeable Haemophilus influenzae were suspended in 0.7 ml of 90% 

H2O + 10% D2O. Enzymatic digestions of the peptidoglycan samples were performed to 

solubilize it adding 125 μg of dried mutanolysin (Sigma Aldrich) to the suspended 
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samples followed by an overnight incubation at 37°C. 1H NMR spectra of the digested 

peptidoglycans were recorded on a Bruker AVANCE III 400 MHz, equipped with a 

precision temperature controller, using a 5 mm broadband probe (Bruker). For data 

acquisition and processing, the TopSpin 2.1 software (Bruker) was used. 1H NMR 

spectra were collected at 4°C ± 0.1°C, with 4k data points over a 10ppm spectral width, 

using the a diffusion filter pulse sequence. The transmitter was set at the water 

frequency which was used as the reference signal (4.79 ppm). 

Dye release assay was performed staining purified peptidoglycan with remazol brilliant 

blue (Sigma, R8001) [47] and then incubating it with 4 μM of purified LytM proteins or 

mutanolysin (positive control) for different incubation times at 37°C. 

 

4.12 - Preparation of outer membrane vesicles  

Native Outer membrane vesicles (OMVs) were isolated from WT and mutant strains, 

growing the bacteria until exponential phase in 200 ml BHI cultures. Bacteria were then 

centrifuged and supernatant were filtered and let at 4°C overnight adding proteases 

inhibitor and EDTA. Supernatant were ultracentrifuged for 3 hours at maximum 200000 X 

g and final pellet containing OMVs was resuspended in PBS. 

 

4.13 - Mass spectrometry 

SDS-PAGE Coomassie stained bands were excised and destained in 50 mM NH4HCO3 

50% acetonitrile. After a drying step, bands were in-gel digested with 12.5 ng/ml Trypsin 

in 5 mM NH4HCO3 overnight at 37°C. The reaction was stopped by the addition of 0.1% 

final concentration Trifluoroacetic acid (TFA) and the samples were subjected to MALDI-

TOF Mass Spectrometry analysis. 1 µl of digestion solution was spotted on a PAC target 

(Prespotted AnchorChip 96, set for Proteomics, Bruker Daltonics) and air-dried at room 
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temperature. Spots were washed with 0.6 µl a solution of 70% (vol/vol) ethanol, 0.1% 

(vol/vol) TFA. Peptide mass spectra were externally calibrated using the standards pre-

spotted on the target. Peptide molecular masses determination was performed using a 

MALDI-TOF/TOF mass spectrometer UltraFlex (Bruker Daltonics, Bremen, GmbH). Ions 

generated by laser desorption at 337 nm (N2 laser) were recorded at an acceleration 

voltage of 25 kV in the reflector mode. In general, approximately 200 single spectra were 

accumulated for improving the signal/noise ration and analyzed by FlexAnalysis (version 

2.4, Bruker Daltonics) Peptide mass fingerprints were performed using MASCOT 

searches against Haemophilus influenzae 86-028NP database using the following 

parameters: (i) 1 as number of allowed missed cleavages, (ii) methionine oxidation as 

variable modification, (iii) 75 ppm as peptide tolerance. Only significant hits were 

considered, as defined by the MASCOT scoring and probability system. 

 

4.14 - Reactogenicity assays 

For luciferase assay HEK293-TLR2 and HEK293-TLR4 cells were seeded into 

microclear 96-well bottom plates in 90 µl of complete medium in absence of selection 

antibiotics. After overnight incubation, cells were stimulated in duplicates with different 

concentration of OMVs (10 µl/well) starting from 1 mg/ml diluted 1:2 in PBS, for 6 h. Then 

the medium were discarded and cells were lysed with 20 µl of Passive Lysis Buffer 

(Promega) for 20 min at room temperature. Luciferase levels were measured by addition 

of 100 µl/well Luciferase Assay Substrate (Promega) using LMax II384 microplate reader 

(Molecular Devices). Raw light units (RLU) from each sample were divided by the RLU of 

the control sample (PBS) and expressed as Fold Induction (FI). 

PBMCs (Pheripheral Blood Mononuclear Cells) were isolated from buffy coats of healthy 

donors using Ficoll (Amersham Biosciences) density gradient centrifugation. Cells were 

seeded into microclear 96-well bottom plates in 180 µl of RPMI (GIBCO) supplemented 
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with 10% of heat-inactivated FBS, 100 U/ml pelicillin, 100 µg/ml streptomycin, 2 mM 

glutamine. Cells were stimulated with different concentration of OMVs (20µl/well) starting 

from 1 mg/ml diluted 1:2 in PBS, for overnight. Mesoscale Assay Human-

Proinflammatory 7-spot (MSD Technology) is used for detection of inflammatory 

cytokines following manufacturer’s instructions. 

 

4.15 - Infection of epithelial cells: adhesion assays with NTHi strains 

Chang conjunctiva epithelial cell suspensions obtained from confluent monolayers were 

seeded at 1,5 x 105 cells per well in 12 well tissue culture plates (NUNC) and incubated 

for 24 hours in an antibiotics–free medium.  

Overnight culture of bacteria were washed once and resuspended in DMEM + 1 % FCSi 

to a concentration of 3 x 107 bacteria ml-1 at a multiplicity of infection (MOI) of 

approximately 1:100, aliquots of 1 mL of each strain were added to monolayer cultures of 

Chang cells and incubated for 3 hours at 37°C in 5 % CO2. 

Non-adherent bacteria were removed by washing three times with DMEM + 1 % FCSi 

and twice with PBS. The remaining bacteria were released by addition of 1% Saponin 

(Sigma) and incubation at 37°C for 15 min: serial dilutions of the associated bacteria 

suspension were plated onto agar chocolate plates. Adhesion capability was quantified 

by counting CFU.  

 

4.16 - Biomass assay on plastic 

Bacteria from overnight culture were diluted 1:100 and incubated statically in BHI on 

plastic multiwell plates at 37°C. After 24 hours, wells were gently washed once with 

sterile 1 ml PBS and then allowed to dry for 10 minutes. The biofilm was stained with 1 

ml of filter-sterilized 0.2% crystal violet and incubated for 30 minutes at room 
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temperature (RT). Crystal violet was removed from the wells, followed by two washes 

with 1 ml PBS. The dye was extracted by adding 1 ml 96% ethanol to each well and 

incubation for 30 minutes at RT. The absorbance was measured by Tecan plate reader 

at 540 nm. 

 

4.17 - Serum resistance assay 

Bacteria were grown until early exponential phase and then diluted in DPBS and splitted 

in a multiwell plate to have 104 bacteria/ml. Normal human serum from healthy 

individuals were added to each sample at 2% concentration. Heat inactivated serum was 

also added as negative control. 10 μl of each well were spotted at different time points on 

agar chocolate plates to evaluate bacterial survival. 

 

4.18 – Facs analysis 

PCho: Briefly, Wild type and 176ΔNT017 bacteria were grown until midlog phase (∼1 × 

108/ml bacteria), suspended in PBS plus 1% (wt/vol) BSA, and incubated with antibody 

against pCho (1:200) for 1 h at room temperature (RT). Primary antibody binding was 

detected using an anti-mouse (whole molecule) FITC-conjugated antibody (Sigma) at a 

1:500 dilution. The bacterial cells were fixed with 0.5% formaldehyde in PBS buffer and 

after 1 h at RT incubation, were analyzed by flow cytometry. Assay controls included 

secondary antibody alone as a negative control. 

Factor H: Wild type and 176ΔNT017 bacteria were were grown until midlog phase (∼1 × 

108/ml bacteria), suspended in PBS plus 1% (wt/vol) BSA, and incubated with Human 

Factor H (10 μg/ml) for 30’ at room temperature. fH binding was detected with a goat 

polyclonal antiserum to fH (Calbiochem) diluted 1:200 and incubated for 30 min at RT 
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followed by an additional 30 min incubation with a donkey anti-goat IgG–FITC conjugate 

(Jackson Immunoresearch) diluted 1:100 in PBS–1% BSA buffer. 
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5 – Results 

 

5.1 - NTHi genome contains LytM genes showing significant homology 

to bacterial metalloproteases 

The emerging evidence that LytM metalloproteases play an important role in both 

bacteria physiology and pathogenesis lead us to investigate by in silico genomic analysis 

whether genes containing LytM signatures could be also identified in Non-Typeable 

Haemophilus influenzae (NTHi). By this analysis, we discovered three interesting genes, 

named NT013, NT017 and NT022, which codify for three proteins belonging to the M23 

family of metalloproteases and that are well conserved among a panel of public available 

H. influenzae genomes (Fig. 7).  

 

 

 

Fig. 7: Metalloprotease in NTHi 

Conservation level of 13 hypothetical metalloprotease identified in NTHi among a panel of strains. Grey 

boxes indicate a percentage of amino acid identity over 80%. LytM factors are highlighted in orange. 

 

All the three proteins contain a catalytic LytM domain that is localized at the C-terminus, 

while the presence of a canonical N-terminal signal sequence suggests a hypothetical 

extra-cytoplasmic localization. Moreover NT013 and NT022 have in common a central 

LysM domain that is usually responsible for the binding to the peptidoglycan [130].  
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  C) 

 

 

Fig. 8: In silico analysis of LytM 

proteins.  

(A) Architectural domain structures of 

NTHi LytM proteins. LytM domains 

are indicated in black, LysM domains 

in light grey, trans-membrane regions 

in dark grey, signal sequences in 

dashed boxes and coil coiled regions 

in dotted boxes.  

(B) The table summarizes the 

percentage of identity of NTHi LytM 

factors with homologues in other 

bacteria.  

(C) Alignments of LytM domains from 

NTHi and E. coli are shown. Metal 

binding sites motifs are underlined 

and critical residues are highlighted in 

grey. 

 

NT013, NT017 and NT022 show a significant homology with a number of previously 

characterized LytM-proteins expressed by other Gram-negative bacteria (Fig. 8 panel B). 

In particular, E. coli proteins known to be involved in the cell division process such as 
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YebA, EnvC and NlpD show an amino acid identity of 49% with NT013, 40% with NT017 

and 43% with NT022, respectively. LytM catalytic domains are the most conserved 

regions between NTHi and E. coli proteins, in fact, the homology percentage grows up 

until 79% for this specific domain (alignments are shown in Fig. 8C). We observed that 

the typical M23 metalloproteases metal binding sites (HxxxD and HxH) are present only 

in NT013-YebA, whereas in NT022-NlpD only few critical residues are conserved and in 

NT017-EnvC these motifs are completely absent. 

 
5.2 - LytM proteins are differently distributed on NTHi compartments 

 

The presence of a typical signal peptide in NT013, NT017 and NT022 proteins suggests 

that they could be exported from the cytoplasm to the membrane. In particular NT022 is 

characterized by a signal peptide with a lipo-box motif of the type –Leu-X-X-Cys. 

Bacterial lipoproteins are components of the cell envelope of Gram-negative bacteria and 

are usually localized at the periplasmic space anchored to either the outer or the inner 

membrane [38]. NT022 has a serine residue in position +2 after the fatty-acylated 

cysteine and is therefore predicted to reside in the outer membrane similarly to the E. coli 

NlpD [38-39].  

In order to verify their expression and the subcellular localization, single deletion mutants 

of the genes codifying for the three proteins were generated in Hi176 strain. 

Immunobotting with specific antisera raised against each of the LytM recombinant 

proteins was performed to determine the level of expression in periplasmic, outer 

membrane and supernatant fractions.  

As shown in Fig. 9A, NT013 was detected in the outer membrane protein extracts, 

NT017 in the periplasmic fraction, while NT022 was found in all fractions. As a control, 

none of the antisera recognized specific bands at 53 kDa, 46 kDa and 42.5 kDa 
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corresponding to NT013, NT017 and NT022 in cell preparations from the respective 

knockout mutant strains (Fig. 2A).  

 

 
 

Fig. 9: Expression and subcellular localization of NTHi LytM factors. 

(A) Western blot analysis on different cell compartments extracts were performed using specific antisera 

raised against NT013, NT017 and NT022. 1 - Recombinant protein, 2 - total extract WT, 3 total extract KO, 

4 - outer membrane proteins WT, 5 - outer membrane proteins KO, 6 - periplasmic fraction WT, 7 - 

periplasmic fraction KO, 8 – supernatant, WT 9 – supernatant KO. Red arrows indicate the specific signals. 

As expected, no specific reactivity is observed with the mutant strains; however the antisera cross-react 

with other not specific bands present also in the knockout strains which were not characterized. 

(B) Immunofluorescence microscopy analysis on Hi176 wild type strain and 176ΔNT022 mutant confirming 

the surface localization of protein NT022. Bacteria are red and LytM factors in green. 

(C) Model of LytM proteins localization in NTHi. 

 

Surprisingly, confocal immunofluorescence (IF) microscopy of bacteria stained for NT013 

revealed no specific signal of the protein on the bacterial surface, indicating that NT013 

could be associated to the inner layer of the outer membrane as it was found to be 

present in the outer membrane fraction by western blot analysis (data not shown).  As 

expected, NT017, which was found in the periplasmatic fraction, was negative by 

confocal microscopy analysis (data not shown) and NT022 was confirmed to be exposed 
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on the bacterial surface (Fig. 8B). Of interest, it appears that the antigen is translocated 

on the bacterial surface at specific foci close to the division septum (Fig. 8B). 

 

5.3 - 176ΔNT013 and 176ΔNT022 exhibit aberrant cell morphology and 

severe cell separation defects 

Since EnvC and Nlpd from E. coli are known to have a crucial role in cell separation, we 

investigated whether also NTHi LytM factors could have a similar contribute. Single 

isogenic mutants cultured on solid or liquid medium and compared to the wild type strain 

showed no differences in colony morphology as visualized by light microscopy (data not 

shown).  

 

 

 

Fig. 10: Phenotypic characterization of NTHi Hi176 wild type and LytM mutants. 

Aggregation phenotype in liquid static cultures growth for 16h at 37°C (A) and CFU per milliliter (B) CFU 

counts was performed at two different OD. The 176ΔNT017 strain has a growth rate and a CFU similar to 

the parent strain, while the 176ΔNT013 and 176ΔNT022 mutants showed a reduced growth rate growth 

and a lower CFU. (C) Confocal imaging showing bacterial aggregation of 176ΔNT013 and 176ΔNT022 

strains, bacteria are stained in red and Dapi in blue.  



41 
 

Moreover, to evaluate the effect of the mutations, knockout strains were grown in liquid 

BHI at 37°C. Interestingly, there are no significant differences in the growth rate of WT 

and mutants (data not shown), but a phenotype of aggregation was observed in liquid 

cultures for 176ΔNT013 and 176ΔNT022 (Fig 10A), and was confirmed by confocal 

imaging (Fig. 10C). The number of bacterial colonies was also measured at two different 

OD by plating cultures serial dilution on agar chocolate plates. Colony forming units 

(CFU) per milliliter of 176ΔNT013 and 176ΔNT022 was much lower than the wild type 

Hi176 and of 176ΔNT017, indeed CFU derived from 176ΔNT013 and 176ΔNT022 are 

respectively only about 10% and 1% with respect to the parent strain (Fig. 10B). This 

result could be related to bacterial aggregation observed in 176ΔNT013 and 176ΔNT022.  

 

 

 

Fig. 11: Confocal and electron microscopy on LytM mutants. 

(A) Confocal imaging of Hi176 wt, 176ΔNT013 and 176ΔNT022, bacteria are stained in red (anti total 

bacterium) and blue (DAPI).  

(B) Scanning electron microscopy of 176 wt, 176ΔNT013 and 176ΔNT022. The mutant 176ΔNT017 does 

not show any difference compared to the wild type strain (data not shown). 
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To verify whether the bacterial aggregation phenotype was due to a failure in cell 

separation, we used confocal and scanning electron microscopy which clearly showed 

that 176ΔNT013 and 176ΔNT022 mutants differ from the wild type in dimension and 

morphology (Fig. 11A and 11B).  

In particular, 176ΔNT013 cells appeared roughly four times longer than the wild type 

strain and are bended in the central portion. On the other hand, 176ΔNT022 mutant 

forms longer chains (up to 0.1 mm), while no evident morphological differences were 

observed for 176ΔNT017 (data not shown). The same phenotype was observed when 

LytM mutants were generated in a different strain (Hi162), indicating the ubiquitous 

functional properties of such determinants (data not shown). 

 

 

Fig.12: Septum formation in LytM mutants. 

Transmission electron microscopy on Hi176 wt and LytM mutants. Red arrows indicate impaired septum 

formation in mutants 176ΔNT013 and 176ΔNT022. 
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Transmission electron microscopy analysis confirmed the abnormal filamented cell 

morphology observed in vitro for 176ΔNT013 and 176ΔNT022. Moreover in these 

mutants there is an aberrant septum formation that could be responsible for the defects 

in cell splitting (figure 12).  

The results described in this paragraph indicate that NT013 and NT022 are involved in 

bacterial separation, although they are not essential for NTHi cell growth, at least under 

laboratory conditions. 

 

5.4 - Peptidoglycan cleavage activity of NTHi LytM proteins 

LytM proteins in gram-negative bacteria are very well characterized and they are known 

to be involved in peptidoglycan cleavage during cell division. It is demonstrated that 

homologues of NT013 are directly involved in peptidoglycan cleavage, for example 

NG1686 from N. gonorrhoeae have two different target sites that are indicated by the red 

crosses (fig13 A). Homologues of proteins NT017 and NT022 instead activate the 

amidases that are responsible for peptidoglycan cleavage during cell splitting in E.coli.  

In order to verify if these functions are conserved in NTHi, several experiments were 

performed with purified peptidoglycan. 

First of all, purified peptidoglycans from 176ΔNT013 and 176ΔNT022 knockouts were 

compared to the WT by NMR analysis. The results (Fig 13B) clearly show that there are 

no major differences in the overall structure, in the region of aminic protons in fact the 

spectra are very similar and there are no remarkable shifts as was also reported for 

NT013 homologues [49-50]. 

Further investigation on peptidoglycan degradation was carried out setting up a 

peptidoglycan cleavage assay using recombinant LytM proteins, basically the catalytic 

activity of protein NT013, NT017 and NT022 was tested on purified peptidoglycan 
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stained with remazol brilliant blue. Peptidoglycan cleavage is confirmed by the release of 

blue dye after centrifugation of reaction mixture. Mutanolysin (green crosses) and 

Proteinase K (yellow crosses) were used as positive controls and their target sites are 

indicated in fig 13B.  

 

 

 

Fig.13:  LytM proteins contribution in peptidoglycan cleavage. 

(A) Architectural structure of gram negative peptidoglycan. Crosses indicates target sites for proteases and 

enzymes: Mutanolysin (green), Proteinase K (yellow) and NG1686 (red). (B) NMR Spectra of WT and 

176ΔNT013 and 176ΔNT022. (C) Peptidoglycan Dye release assay. OD of reactions supernatants are 

measured after O.N. incubation at 37°C. 

 

The assay was performed with different incubation times and concentrations, in fig 13C 

are reported the results after O.N. incubation at 37°C of 4 μM proteins. It’s clearly visible 

an activity of protein NT013 that is comparable to the positive controls. Not significant 

results were obtained for the other proteins.  

As described in the introduction, in E.coli, EnvC and NlpD (respectively NT017 and 

NT022 homologues) are the specific activators of the amidases [46]. In particular, EnvC 

was found to specifically activate AmiA and AmiB, while NlpD was found to specifically 

activate AmiC [46]. Since analyzing the whole NTHi genome we found only one Amidase 

(AmiB), the capacity of NT017 and NT022 to activate AmiB and to cleave peptidoglycan 

was tested in the remazol assay using recombinant proteins. To test this directly, we 
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purified the amidase and assayed its PG hydrolase activity in the presence and absence 

of NT017 and NT022, but no significant activity was observed (result not shown) 

suggesting a possible different mechanism of amidase activation in NTHi. 

 
5.5 - 176ΔNT013 and 176ΔNT022 mutants release outer membrane 

vesicles 

Outer Membrane Vesicle (OMVs) formation was shown to be abundant at the site of cell 

division in species such as Vibrio, Escherichia coli and Brucella melitensis [121,122,123]. 

Hoekstra et al. reported that the peptigoglycan binding lipoproteins play a considerable 

role in E. coli OMVs production [123] (Fig. 14, Model. 1).  

 

 

Fig.14: Proposed model for OMVs formation (Mashburn-

Warren and Whiteley, 2006). 

Model 1: MVs originate from regions of the cell without 

peptidoglycan-associated lipoproteins resulting from the outer 

membrane expanding faster than the underlying peptidoglycan 

layer.  

Model 2: Peptidoglycan fragments generated during normal 

turnover are not efficiently transported back into the bacterial 

cytoplasm. Turgor pressure resulting from a build-up of 

peptidoglycan in the periplasm causes blebbing of the outer 

membrane [124]. 

 

They showed that OMVs formation starts with an outward bulging event towards the 

outer membrane, occuring mostly where there are less peptigoglycan binding 

lipoproteins, which can cause a weak linkage between the peptigoglycan and the outer 

membrane of the bacterium.  

Therefore, mutants impaired in cell separation could exhibit defects in membrane protein 

assembly or stability. In order to investigate whether this paradigm is associated also to 
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NT013 and NT022 proteins, we performed a detailed examination of knockouts bacterial 

surface by transmission electron microscopy (TEM) and we observed the exclusive 

formation of blebs on the surface of both 176ΔNT013 and 176ΔNT022 bacteria (Fig.15). 

 

 

 

Fig. 15: The mutants 176ΔNT013 and 176ΔNT022 release more OMVs than the wild type strain. 

Transmission electron microscopy of Hi176WT, 176ΔNT013 and 176ΔNT022 mutants and of their 

respective OMVs preparations. Red arrows indicate OMVs that are released from bacterial surface. 

 

Membrane blebbing could be due to an overproduction of Outer Membrane Vesicles 

(OMVs), On the basis of this observation, native OMVs were purified from these two 

mutants and from the Hi176 strain to verify the quality and to quantify OMVs release. 

Isolation of OMVs revealed that both mutant strains produce more vesicles with respect 

to the wild type strain. TEM analysis of OMVs preparations confirmed the presence of 

vesicles with an apparent diameter of 20 to 100 nm (Fig. 15) and LytM mutants OMVs 

overproduction was quantified in four fold increase respect than WT (Lowry Method for 

protein quantitation).  
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To compare the protein composition of the OMVs extracted from each strain, samples 

were run on a SDS-page gel and a Coomassie blue staining was performed (Fig.16A). 

Protein patterns were similar between wild type and mutant strains, although a few 

bands showed a different intensity. As expected, mass spectrometry analysis associated 

these bands to a number of known surface determinants, including HMW1 and 2, HtrA, 

P2, P5 and OMP26 (Fig. 16B).  

 

 

 

Fig. 16: Analysis of OMVs. 

Coomassie stained SDS page gel of OMVs prepared from the wild type, 176ΔNT013 and 176ΔNT022 

strains (A). Mass spectrometry identification was performed on selected bands (B). 

 

Immunological studies were performed on OMVs from wild types and mutants to 

determine if the differences observed in OMVs protein patterns could influence TLRs 

activation by LPS or lipoprotein components. HEK293-hTLR2 and HEK293-

hTLR4/CD14-MD2 cells were stimulated with different dilutions of OMVs from the wild 

type and knockout strains, but, no significant differences were detected (Fig.17A-B).  

Moreover the same stimulation was extended to human Peripheral Blood Mononuclear 

Cells (hPBMCs) to measure proinflammatory cytokines production (IL-6 and TNFα are 

shown in figure 17 C and D), but also in this case not significant differences were 
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observed. Further experiments using quantitative mass spectrometry are still ongoing to 

understand the biological significance of outer membrane proteins differences. 

 

 
 

Fig. 17: Reactogenicity assays of OMVs. 

Luciferase assay using HEK293 cells stably expressing NF-κB–luciferase reporter cassette and TLR2 (A) 

or TLR4/MD2/CD14 (B). The stimulation of TLR receptors is assessed by measuring the NF-κB-induced 

luciferase activity after 6 hours incubation with serially diluted OMVs.  

IL-6 and TNFα levels were measured in hPBMCs stimulated (O.N.) with different dilutions of OMVs purified 

from wt and mutant strains (C-D). 

 

5.6 - NT017 plays a role in NTHi adherence to epithelial cells 

Adhesion to the epithelium is one of the most studied and characterized events 

associated to NTHi pathogenesis [53, 54, 55, 58, 59, 60]. In order to investigate whether 

the expression of LytM-containing proteins may affect the interaction of NTHi with host 

cells, we compared the adhesive phenotype of Hi176 strain to LytM knockout strains.  
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Briefly, Chang cells monolayers were infected at MOI 100 with the different strains and 

incubated for 2 h at 37°C. Bacterial adhesion was evaluated using confocal imaging, 

because of the impracticality to perform accurate CFU counting on plate for 176ΔNT013 

and 176ΔNT022 strains due to the aggregative phenotype.  

 

 

 

Fig. 18: Adhesion to epithelial cells of NTHi LytM mutants. 

(A) Immunofluorescence microscopy showing adhesion to Chang epithelial cells of Hi176 wild type strain 

and LytM mutants. Chang monolayer was infected with the different NTHi strains for 2 h. Cells are stained 

in red (actin), blue (DAPI) and green (bacteria). (B) Quantification of the level of adhesion of 176ΔNT017 

with respect to the wild type strain was calculated using cell-associated colony-forming units (CFU) 

counting. Adherence was expressed as percentage of adherent bacteria respect to the starting inoculum. 

Data represent the means and standard deviations of several experiments, each performed in triplicate. 

***P < 0.001. 

 
As shown in Fig. 18A, although 176ΔNT013 and 176ΔNT022 mutants exhibit a 

compromised division phenotype they retain similar adhesive capacity with respect to the 

wild type strain. In contrast, 176ΔNT017 strain showed a severe reduction in bacterial 

binding to cells (Fig. 18A). Quantification of 176ΔNT017 adhesion to Chang cells by CFU 
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counting confirmed a 3 fold decrease in the number of cell-associated bacteria compared 

to the Hi176 wild type strain (Fig. 18B). These results suggest a contribution of NT017 in 

NTHi adhesion to epithelial cells, although whether this is a direct or an indirect effect 

needs to be further evaluated. 

 

5.7 - Biofilm formation on plastic is reduced in 176ΔNT017 and 

abolished in 176ΔNT022 

Ability of NTHi to form biofilm in vitro and in vivo has been already reported [75-76-77-

78-79-80] and associated to the capacity of bacteria to successfully reside in the middle 

year. Stemming from the observation that NT013 and NT022 LytM mutants showed a 

defective division phenotype resulting in a propensity to aggregate, we decided to 

investigate whether their expression may affect the formation of large biomass in vitro.  

 

 

Fig. 19: Biomass formation assay. 

Quantification of formed biomass after 24h of static growth by crystal violet staining for NTHi176 wild type 

strain and LytM mutant strains. Data represent the means and standard deviations of several experiments, 

each performed in triplicate; ***P < 0.001. 
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Bacterial biomass was measured by the crystal violet assay in which wild type and single 

LytM factors knockout mutants were grown on plastic for 24 hours of static incubation. 

The results reported in Fig. 19 indicate that, while 176ΔNT013 did not show any 

difference with respect to wild type strain, for 176ΔNT022 strain no biomass was 

detected. However, 176ΔNT017 that is phenotypically similar to the wild type strain but 

has a reduced capacity to adhere to cells, showed a reduction in biomass formation. 

These results postulate that the capacity of NTHi to form biomass is independent from 

the bacterial aggregative phenotype, corroborating the ability of NT017 to influence 

bacterial binding.  

 

5.8 - 176ΔNT017 is not able to survive in presence of Normal Human 

Serum  

Defects in adhesion and biofilm formation suggest an indirect contribution of protein 

NT017 in NTHi virulence. 176ΔNT017 seems to have defect in colonization, but other 

steps of pathogenesis could be impaired too. We tested the ability to escape from host 

defense comparing the survival of WT and mutant in presence of human sera. 

Complement mediated bactericidal activity could be evaluated using Normal Human 

Serum (NHS). Human sera from healthy patients in fact contain antibodies against NTHi 

(it is usually a commensal) and are able to mediate its killing. 

Susceptibility of WT and 176ΔNT017 to human sera was tested in a serum resistance 

assay and the results are shown in figure 20. 176ΔNT017 is clearly more susceptible to 

complement mediated killing than WT and this result highlights the contribution of protein 

NT017 in NTHi pathogenesis.  

The mechanism by which there is an increase in the sensitivity of 176ΔNT017 is still 

under investigation, but it could be related to the way of activation of complement 
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pathway. 

 

 
 

Fig. 20: Serum resistance assay. 

Bacteria are incubated with 2% of NHS from healthy patients and number of CFU was evaluated at 

different time points plating aliquots of the mixture on agar chocolate plates. Heat inactivated serum was 

used as negative control. 

 

It was already reported that expression of PCho increases the sensitivity of H. influenzae 

isolates to NHS, since human serum contains C-reactive protein, which binds to PCho, 

activating complement classical pathway and bacterial killing  [19 ]. 

We tested by FACS analysis Hi176 WT and 176ΔNT017 to verify the presence of PCho 

on bacterial surface and in contrast of what we expected, we found that 176ΔNT017 

does not express phosphorylcoline (Fig. 21A). 

This result indicates that there is another way of complement-mediated killing activation 

in 176ΔNT017 which probably involves factor H (fH) binding.  

Factor H is a member of the regulators of the complement activation family and is a 

complement control protein. Its principal function is to regulate the alternative pathway of 

the complement system, ensuring that the complement system is directed towards 
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pathogens or other dangerous material and does not damage host tissue. A common 

strategy used by some pathogens is the binding of host complement inhibitors such as 

fH to promote survival in the host.  

 

 

Fig.21: Complement mediated killing activation. 

FACS analysis on Hi176WT and 176ΔNT017 to verify the presence of PCho on bacterial surface (A).  

Bacteria (WT and KO) were previously incubated with purified FH and analysed by FACS to evaluate 

factor H binding capability. Untreated bacteria were used as negative control. Results are presented as the 

fold increase of the Factor H bound bacteria mean fluorescence intensity relative to untreated control 

samples (B). 

 

We tested factor H binding capability of WT and ko strains and the results are shown in 

Fig. 21 B. As we can observe, in 176ΔNT017 there is a decrease in the capability of the 

bacteria to bind fH, which could be one of the explanation of its increased susceptibility 

to human sera. 

In conclusion, the lack of protein NT017 could influence significantly bacterial surface 

structures and the knockout mutant 176ΔNT017 could have modifications that impair its 
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ability to evade the host defense. Future studies will be addressed on characterization of 

outer membrane proteins and LPS of 176ΔNT017, to elucidate what are the components 

that influence the decrease of viability in presence of NHS. 
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6 – Discussion 

 

The importance of LytM factors for bacterial physiology was already reported and their 

role in cell division was investigated in detail in E. coli [13,46,47]. In this study LytM 

proteins from Non typeable H.influenzae were identified and characterized for the first 

time and many new remarkable findings were carried out.  

Deletions of single LytM genes in NTHi generate interesting phenotypes, mainly affecting 

cell morphology. In particular 176ΔNT013 and 176ΔNT022 show bacterial aggregation in 

liquid culture and aberrant cell splitting, confirming the role of these proteins in cell 

division machinery. The contribute of protein NT022 is very clear, in fact the respective 

knockout is able to duplicate but not to divide; NT013 knockout instead has a milder 

phenotype, the bacteria are able to split but their dimension and morphology are 

compromised. NT013 is probably still involved in the process, but its function could be 

more related to peptidoglycan biogenesis and rearrangement, as hypothesized for E.coli 

homologous YebA [13]. Protein NT017 seems to be not involved in NTHi cell division and 

this is a very surprising finding due to the essential role of the E.coli homologous EnvC in 

amidase activation.  

Futher analysis of NTHi peptidoglycan was performed to evaluate the role of LytM factors 

in peptidoglycan remodeling during cell division. Comparison by NMR between purified 

peptidoglycans from WT and knockouts shows no major differences in amino acidic 

chains structure. This result correlates with previous studies on LytM mutants in other 

bacteria, in fact, similarity in peptidoglycan overall structure of WT and respective 

knockouts is probably due to spatial regulation of LytM proteins activation during cell 

cycle or to a redundancy of their functions [49-50]. 
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Peptidoglycan cleavage assay confirms metalloprotease catalytic activity for protein 

NT013, it is able to cleave directly NTHi peptidoglycan, meanwhile no direct activity was 

assessed for NT017 and NT022. EnvC and NlpD (respectively NT017 and NT022 

homologues) as reported before, are the regulators of amidases E.coli (AmiA, AmiB and 

AmiC). Since in H.influenzae genome is present only one Amidase (annotated as AmiB) 

and only 176ΔNT022 has defects in cell division, we hypothesize an interaction between 

NT022 and AmiB (as observed in E.coli) and a loss of the activity of protein NT017 

during evolution. 

We found that the mutant 176ΔNT013 and 176ΔNT022 release more outer membrane 

vesicles with respect to the wild type strain. It is reasonable to think that this 

phenomenon is associated to the impaired cell division caused by the aberrant septum 

formation and defects in peptidoglycan rearrangement observed in these mutant strains. 

The correlation between LytM proteins and OMVs major release has not been 

highlighted before and our results suggest an involvement of LytM factors in bacterial 

membrane stability. OMVs purified from LytM knockouts are similar to the WT ones in 

terms of protein composition and reactogenicity. Only small differences came out in the 

amount of some proteins, this is probably due to the lack of each deleted LytM factor and 

it suggests a contribution of LytM proteins in other mechanisms out of cell splitting. 

The localization of LytM proteins in the peripheral side of the bacterial cell and the 

indications that suggest the involvement of these factors in other functions in NTHi, 

prompted us to investigate on a possible role in pathogenesis. While NT013 seems to 

have no role in any of the aspects of pathogenesis that we have investigated, NT017 and 

NT022 are found to be related to some interesting phenotypes.  

First of all, strain 176ΔNT017 resulted to be affected both in in vitro adhesion to ephitelial 

cells and in serum resistance. Since NT017 is localized in the periplasm, these data 

suggest an indirect role of protein NT017 in NTHi pathogenesis. It is possible that the 
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lack of NT017 could affect the presence, the localization or the folding of specific NTHi 

surface determinants. Data on OMVs analysis indicate that there are several differences 

in proteins amount in the surface of NT017 mutant, moreover preliminary data shows 

that 176ΔNT017 lacks of phosphorylcholine decoration (Fig. 21A), a component of LOS 

that is important for NTHi pathogenesis and that is fundamental for several process like: 

colonization [91], persistence [108, 109, 125, 126], resistance to antibiotics [63], evasion 

of the immune response and for the utilization of host receptors [127, 128].  

The ability of H. influenzae to vary PCho expression, correlate with its ability both to 

persist on the mucosal surface (PCho+ phenotype) and to cause invasive infection by 

evading innate immunity mediated by CRP (PCho− phenotype). PCho- phenotype in 

176ΔNT017 correlates with its attenuated adhesive capacity (Fig18-19), but it is in 

contrast with the increased susceptibility of the mutant to complement mediated killing 

(Fig.20).  

Increased serum sensitivity in 176ΔNT017 could be probably related to the presence of 

defective surface structures that impair evasion from host defense, facilitating other ways 

of complement activation (e.g. alternative pathway activation mediated by factor H). 

Results shown in Fig. 21B demonstrated that factor H binding is compromised in the 

mutant and this finding could explain the lack of serum resistance in this strain.  

The defective surface of 176ΔNT017 mutant suggest us a possible activity of this protein 

in the LOS biogenesis or in promoting the correct folding and the exposure of outer 

membrane proteins. 

For what concern NT022 instead, it has a strong contribute in biofilm formation; this 

protein is surface exposed and released in the supernatant and it is necessary for the 

bacterial community establishment. 176ΔNT022 in fact is not able to form biofilm on 

plastic, probably not for the lack of NT022 activity, but for the aberrant morphology of 

knockout mutant itself. Antisera raised against NT022 will be used to evaluate if the block 
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of NT022 activity could result in a decrease of the formation or in the eradication of 

adherent biomass. 

NT022 surface localization and its fundamental role for biofilm establishment highlight 

the importance of this protein in NTHi pathogenesis, NT022 is required for bacterial 

physiology and the block of its activity could be one of the strategies to eradicate NTHi 

infections. Moreover NT022 has a strong conservation among different strains and this is 

one of the key elements to consider this protein as a potential candidate for the 

development of a vaccine against NTHi. Further investigations on protective efficacy of 

this antigen and on strain coverage are needed to evaluate if NT022 could be the right 

target for a protein based vaccine against NTHi. 

In conclusion, in this study we highlighted the physiological importance of LytM proteins 

in NTHi, confirming their role in cell division and in bacterial membrane stability (OMVs 

major release). Moreover, their contribution in pathogenesis is also underlined, NT017 in 

fact is fundamental for in vitro colonization and evasion from host defense.  
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