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1 Overview 

 

Information relevant for our social life are immediately processed by our brain. When 

we walk in the street we easily and quite automatically adjust our path to avoid colliding 

other people. Several social activities like working in a group, playing a sport, talking 

with people and many others, all require the ability to carefully read others movements. 

Thus, kinematics and postural information of others‟ body are a fundamental medium 

for good survival in our social environment. 

Along the reading of this manuscript a series of extensive and novel studies will 

describe the role of sensorimotor cortices and their differential contribution in specific 

action observation tasks. By means of transcranial magnetic stimulation (TMS) we 

tested in healthy subjects both low and high cognitive level processes that may require 

areas of the action observation network. 

 

Study1 investigated the modulation of the motor cortex during the observation of 

actions‟ pictures. When we observe a picture of a sport player we can immediately infer 

a huge amount of information mainly conveyed by the only body posture of the actor. 

We can feel the strength he is applying to his legs, we can foresee the direction where 

he was going to, we can infer his goals and intentions and further, his possible next 

moves. This is possible since the perception of a moving object or creature is distorted 

forward along its actual or implied motion path and this ability of the human brain is 

fundamental to enable the anticipation of forthcoming actions‟ positions. 

The observation of static snapshots that imply body actions activates the human motor 

system but whether extrapolation of dynamic information and motor activation are 

higher for upcoming than past action phases is still unknown. In Study1 we 

demonstrated that by using single-pulse TMS the observation of start and middle phases 

of grasp and flick actions engendered a significantly higher motor facilitation than 

observing their final postures.  

 

While in the first study healthy participants were required to passively observe static 

pictures, in Study2 we described the involvement of primary somatosensory cortex in a 

weight judgment task. Everyone “felt” the strength and fatigue a weightlifter is 
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experiencing when lifting more than 100kg, but how can we understand the weight of a 

lifted object by simply observing the kinematic behaviour of a human lifter? 

A network of areas in the parietal and premotor cortices are active both during action 

execution and observation, this suggests that we might understand the actions of other 

people by simulating what we would do in the same circumstances. Although 

neurophysiological and imaging studies show an involvement of somatosensory cortices 

(SI) during action observation and execution, it is not clear whether SI plays an essential 

role in understanding the observed action. To test if SI is required for action 

understanding we used off-line transcranial magnetic continuous theta-burst stimulation 

(cTBS) just before a weight judgment task. Participants observed an actor lifting a box 

and judged the box weight. We delivered sham- and active- cTBS over the hand region 

of SI and over the motor cortex (M1) and the superior parietal lobule (SPL). Importantly 

we observed that Active-cTBS over SI, but not over M1 or SPL, impaired the task 

performance relative to sham conditions.  

 

The third and final set of experiments (Study3) tested whether areas linked to the action 

observation network are crucial also for higher level of cognitive processing. Whether 

the first two studies described the recruitment of primary motor and sensory cortices 

respectively in the observation of static pictures (Study 1) and in the extrapolation of 

sensory information from action observation (Study 2) in this last study we provided 

evidence that human ability to successfully read others‟ intentions, in particular 

deceptive intentions, requires the integrity of the anterior node of the action observation 

system. This study is intrinsically relevant since the ability to infer deceptive intents 

from nonverbal behavior is critical for social interactions. By combining single-pulse 

and repetitive transcranial magnetic stimulation (TMS) in healthy humans, we provided 

both correlational and causative evidence that action simulation is actively involved in 

the ability to recognize deceptive body movements. We recorded motor-evoked 

potentials during a faked-action discrimination (FAD) task: participants watched videos 

of actors lifting a cube and judged whether the actors were trying to deceive  them 

concerning the real weight of the cube. Seeing faked actions facilitated the observers‟ 

motor system more than truthful actions in a body-part specific manner, suggesting that 

motor resonance was sensitive to deceptive movements. Furthermore, we found that 
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TMS virtual lesion to the anterior node of the action observation network, namely the 

left inferior frontal cortex  (IFC), reduced perceptual sensitivity in the FAD task. In 

contrast, no change in FAD-task performance was found after virtual lesions to the left  

temporo-parietal junction (TPJ, control site). Moreover, virtual lesion to the IFC failed 

to affect performance in a difficulty-matched spatial-control task that did not require 

processing of spatio- temporal (acceleration) and configurational (limb displacement) 

features of seen actions which are  critical to detecting deceptive intent in the actions of 

others. These findings indicate that the human  IFC is critical for recognizing deceptive 

body movements and suggest that FAD relies on the  simulation of subtle changes in 

action kinematics within the motor system. 
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2 Study1: Simulating the Future of Actions in the Human 

Corticospinal System 

 

2.1 Introduction 

The full sequence of motion is rarely visible during interactions with a dynamic world. 

Yet, the human visual system is inherently equipped with the ability to complete 

missing information (Pessoa et al. 1998; Komatsu 2006). Even when there is no 

obstacle to our view, the intrinsic delay of our perceptual processing and our motor 

responses requires an anticipatory representation of the motion sequence in order to 

interact optimally with moving objects or creatures (Schutz-Bosbach and Prinz 2007; 

Perrett et al. 2009). This top-down modulation of visual perception may use previous 

experiences and knowledge on motion to predict and anticipate the forthcoming position 

of moving entities and thus create a representation of events occurring in the near future 

(Ingvar 1985). Behavioral studies in humans, for example, have shown that memory for 

the final position or configuration of a moving object is distorted forward along its path 

of motion, an effect known as representational momentum (Freyd 1983). In a typical 

representational momentum experiment, a series of snapshots eliciting the perception of 

apparent motion is presented. Observers show a tendency to mislocalize the final 

position of the moving entity further along the anticipated trajectory. This effect has 

been demonstrated with a variety of stimuli including dot patterns (Finke and Freyd 

1985), common objects (Finke and Shyi 1988), dynamic facial expressions (Yoshikawa 

and Sato 2008), and human figures (Verfaillie and Daems 2002). It is worth noting that 

the effect is found even when the actual motion is not present but only implied by static 

images of moving entities (Freyd 1983). The anticipatory representation of motion 

demonstrates the ability of our brain to bridge discontinuities in visual inputs by using 

internal models of the physical rules that govern object motion in the environment, for 

example, gravity (Hubbard 2005; Zago and Lacquaniti 2005; Motes et al. 2008). 

Importantly, the perception of movements performed by conspecifics may also rely on 

the motor representations used during planning and execution of actions (Verfaillie and 

Daems 2002; Flach et al. 2004; Ramnani and Miall 2004). Neuroimaging studies in 

humans (Kourtzi and Kanwisher 2000; Senior et al. 2000) demonstrate that viewing 
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photographs of humans, animals, objects, and natural scenes with implied motion 

activates the same medial temporal/medial superior temporal area (MT/MST complex) 

that is also involved in processing real motion (Zeki et al. 1991; Dupont et al. 1994; 

Tootell et al. 1995). Furthermore, studies in humans (Krekelberg et al. 2005; Lorteije et 

al. 2007) and monkeys (Krekelberg et al. 2003) suggest that the same populations of 

cells in extrastriate visual areas code for both implied and real motion. Representational 

momentum effects, however, seem to involve a larger network of higher-order 

prefrontal and parietal areas (Amorim et al. 2000; Rao et al. 2004) that may interact 

with the MT/MST complex during extrapolation of motion information from static 

images. Moreover, still images implying biological motion activate the lateral 

occipitotemporal junction (Peigneux et al. 2000), the parietal cortex (Hermsdo rfer et al. 

2001), and the superior temporal sulcus (Peuskens et al. 2005). In a similar vein, 

neurons in the monkey‟s superior temporal cortex respond to the presentation of both 

moving body parts and static images of body postures implying preceding action 

(Jellema and Perrett 2003a, 2003b; Puce and Perrett 2003; Barraclough et al. 2006; 

Perrett et al. 2009). By using single-pulse transcranial magnetic stimulation (TMS), we 

have previously shown that passive viewing of static images implying body actions 

triggers activation of the human motor system (Urgesi, Moro, et al. 2006). This suggests 

that the frontal node of the frontoparietal mirror neuron system that matches action 

observation and execution (di Pellegrino et al. 1992; Rizzolatti and Craighero 2004) 

may play a major role in the extrapolation of dynamic information from static images 

that imply body actions. Previous TMS studies have shown that mirror motor 

facilitation is specific to the muscle involved in the observed action (Fadiga et al. 1995; 

Romani et al. 2005; Urgesi, Candidi, et al. 2006), is comparable for intransitive body 

movements and goal-directed actions (Fadiga et al. 1995, 2005; Cattaneo et al. 2009) 

and can be modulated by the temporal dynamics of the observed actions, simulating the 

time course of activations during movement execution (Baldissera et al. 2001; 

Gangitano et al. 2001, 2004; Borroni et al. 2005; Montagna et al. 2005). These findings 

suggest that mirror facilitations represent action kinematics, more than the goal or the 

intention beyond an action. Repetitive TMS over the ventral premotor cortex ceased the 

increase of motor excitability during action observation, suggesting that computation 

carried out in the frontal node of the mirror neuron system are critical for mirror motor 
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facilitation to occur (Avenanti et al. 2007). These results are well in keeping with a 

hierarchical model of human action understanding in which the frontal and parietal 

nodes of the human mirror neuron system have different roles in encoding the action 

kinematics and the action goals or intentions, respectively (Grafton and Hamilton 2007). 

Notably, mirror motor facilitation of the first dorsal interosseous (FDI) muscle was 

present during observation of static snapshots representing the middle postures of a 

mimicked grasping action, where the hand had maximal grasp aperture (Urgesi, Moro, 

et al. 2006). In contrast, it was absent not only during observation of a resting, relaxed 

hand but also during observation of the end posture of the same action, where the hand 

had maximal finger closure. What remains unknown is whether mirror motor facilitation 

is selectively linked to the extraction of dynamic information about the upcoming or 

past action phases. In particular, no study has thus far addressed the issue of whether the 

motor facilitation found during observation of implied action stimuli derives from mere 

reading out of muscle contraction and joint configuration or from the anticipatory 

simulation of the temporal deployment of the action depicted in a given snapshot. Here, 

we addressed this issue by exploring any differential modulation of motor potentials 

evoked by single-pulse TMS while participants observed static snapshots representing 

the start, middle, or end postures of 2 different right-hand actions: grasping a ball 

(grasp) or flicking a ball with the index finger (flick; Fig. 1). We chose these 2 actions 

because finger configuration in the start phase of grasp actions was comparable with the 

end posture of flick actions, whereas the end posture of grasp actions was comparable 

with finger configuration in the start phase of flick actions. Thus, experimental stimuli 

may allow one to distinguish the corticospinal encoding of the finger aperture and the 

temporal phase of the observed action. We tested whether motor resonance is linked to 

the creation of an internal representation of finger configuration independently of the 

temporal phase of the observed action. Were this the case, maximal FDI facilitation 

should be obtained during observation of grasp-start postures and flick-end postures, 

where the index finger was maximally extended (Gangitano et al. 2001). In contrast, 

were motor resonance influenced by the anticipatory simulation of the deployment of 

actions in the future, corticospinal facilitation should be found during observation of 

start and middle postures of both grasp and flick actions, where the actions were still 

ongoing, but not during observation of end postures, where the actions were complete. 
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Because the index finger was maximally extended in the grasp-start postures and 

maximally flexed in the flick-start postures, maximal motor facilitation during 

observation of both grasp and flick start phases cannot be ascribed to mere reading out 

of finger kinematics. This result would, thus, support the view that mirror corticospinal 

facilitation is specific for the observation of postures representing ongoing, but 

incomplete actions, and largely independent of mere reading out of finger configuration. 

 

2.2 Materials and Methods 

Participants 

Eighteen healthy individuals (7 women) aged 19--37 (mean 22.1 years) were recruited 

at the University of Udine for the action observation TMS experiment. Furthermore, 6 

additional individuals (3 women) aged 24-33 (mean 27.7 years), who did not participate 

in the TMS experiment, were recruited at the University of Bologna for the action 

execution experiment. All participants were right handed according to a standard 

handedness inventory (Briggs and Nebes 1975). They had normal or corrected-to-

normal visual acuity in both eyes and were naı ve as to the purposes of the experiment. 

Information about the experimental hypothesis was provided only after the experimental 

tests had been completed. Participants gave their written informed consent and received 

credits for their participation in the study. The procedures were approved by the Ethics 

Committee of the IRCCS Eugenio Medea and were in accordance with the ethical 

standards of the 1964 Declaration of Helsinki. None of the participants hadneurological, 

psychiatric, or other medical problems or any contraindication to TMS (Wassermann 

1998). No discomfort or adverse effects during TMS were reported or noticed. 

 

Stimuli 

Stimuli were color pictures taken with a digital camera during the execution of right-

hand precision grasp and flick actions by 4 male (aged 22--28 years) and 4 female (aged 

23--29 years) models. Presenting 8 different hand stimuli allowed minimizing 

habituation and loss of attention. For each model, we selected 3 snapshots at the initial 

(start), intermediate (middle), and final (end) phases of the 2 action sequences (Fig. 1). 

Pictures were modified by means of the Adobe Photoshop software (Adobe Systems 

Incorporated, San Jose, CA). Pictures depicting the 6 different hand postures of the 
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same model were matched for color, luminance, and viewing perspective. A total of 48 

stimuli were created They were presented on a neutral background and subtended a 

15.963 11.97region viewed from a distance of 100 cm.  

 

 

Figure 1. Examples of the experimental stimuli and factorial design. Participants viewed color pictures 

depicting the initial (start), intermediate (middle), and final (end) phases of 2 actions, namely, grasping a 

ball (grasp) and flicking a ball (flick). The crucial experimental manipulation was the finger configuration 

in the different phases of the 2 actions. Indeed, finger configuration in the start phase of grasp actions was 

comparable with the end posture of flick actions, whereas the end posture of grasp actions was similar to 

the finger configuration in the start phase of flick actions. 

 

Electromyography (EMG) Recording and TMS 

 Motor-evoked potentials (MEPs) were recorded simultaneously from the FDI and 

abductor digiti minimi (ADM) muscles of the right hand. It is worth noting here that the 

FDI muscle is strongly involved in the execution of both grasp and flick actions; by 

contrast, the ADM muscle does not play a major role in the execution of either action. 

EMG recordings were performed through surface Ag/AgCl cup electrodes (1-cm 

diameter) placed in a belly-tendon montage. Responses were amplified, band-pass 

filtered (20 Hz to 2 kHz), and digitized by means of a Viking IV EMG equipment 

(Nicolet Biomedical, Madison, WI). The sampling rate of the EMG signal was 20 kHz. 

A prestimulus recording of 80 ms was used to check for the presence of EMG activity 

before the TMS pulse. To make sure there was no unwanted background EMG activity 

before the magnetic pulse, the signal from both muscles was additionally displayed in 

separate channels set at high sensitivity (50 lV). Moreover, during the preliminary 

session EMG signals were sent to loudspeakers to provide participants with an auditory 

feedback of their muscle relaxation. Focal TMS was performed by means of a 70-mm 
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figure-of-8 stimulation coil (standard Magstim plastic-covered coil), connected to 

aMagstimRapid (TheMagstimCompany,Carmarthenshire, Wales), producing a 

maximum output of 2 T at the coil surface (pulse duration, 250 ls; rise time, 60 ls). The 

coilwas placed tangentially on the scalp,with the handle pointing backward and laterally 

45 away from the midline, approximately perpendicular to the line of the central sulcus. 

This orientation induced a posterior--anterior current in the brain,which tends to activate 

corticospinal neurons indirectly via excitatory synaptic inputs (Di Lazzaro et al. 

1998).We chose the above coil orientation based on the finding that the lowest motor 

threshold is achieved when the induced electric current in the brain is flowing 

approximately perpendicular to the central sulcus (Brasil-Neto et al. 1992; Mills et al. 

1992). During the recording session, the coil was positioned over the left motor cortex 

in correspondence with the optimal scalp position (OSP), defined as the position from 

which MEPs with maximal amplitude were recorded. The OSP was detected by moving 

the intersection of the coil in 1-cm steps around the motor hand area of the left motor 

cortex and by delivering TMS pulses at constant intensity. Participants wore a tightly 

fitting bathing cap on which the scalp position for stimulation was marked. The coil was 

held by hand, and its position with respect to the mark was checked continuously to 

easily compensate for small movements of the participants‟ head during data collection. 

The resting motor threshold (rMT), defined as the lowest stimulus intensity able to 

evoke 5 of 10 MEPs with an amplitude of at least 50 lV, was determined by holding the 

stimulation coil over the OSP for the FDI muscle. Because we aimed to evaluate the 

differential modulation of MEPs recorded from the FDI muscle during observation of 

the different phases of actions, OSP and rMT were determined for the FDI. Thus, 

stimulation conditions were optimal to obtain facilitation of FDI MEPs in the less 

activating conditions, too. It is worth noting, however, that modulation of FDI, but not 

of ADM MEPs, was also obtained in previous studies (Urgesi, Candidi, et al. 2006; 

Urgesi, Moro, et al. 2006) where OSP and rMT were determined by using the ADM. 

Stimulation intensity during the recording sessions was 120% of the rMT and ranged 

from 48% to 86% (mean = 62.7%) of the maximum stimulator output. Using this 

procedure, a clear and stable signal was obtained from both the targeted muscles in all 

participants. The distance between the OSPs for the targeted muscles (FDI and ADM) 

turned out to be within the spatial resolution of the employed coil (ca. 1 cm; Krings et 
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al. 1998). The MEP peak-to-peak amplitude (in mV) was collected and stored on a 

computer for offline analysis. 

 

Procedure 

Each participant was tested in a single experimental session lasting approximately 90 

min. They sat in a comfortable armchair in a dimly lit room in front of a 15-in. monitor 

(resolution 1024 3 768 pixels; refresh frequency 60 Hz). They were instructed to keep 

their right hand on a pillow and to fully relax their muscles with the help of the auditory 

feedback coming from the loudspeakers. When muscular contractions were detected, 

stimulus presentation was suspended, and participants were invited to keep again full 

muscular relaxation. Before starting the recording session, participants were presented 

with examples of the stimuli and were informed that they were to be presented with 

static images depicting the start, middle, and end postures of precision grasp and flick 

actions performed by different male and female models. Subjects were also instructed to 

pay attention to the stimuli presented on the screen and were informed that, when 

requested at a given point during the experiment, they were to report the gender of the 

hand presented in the trial. The request was performed during 25% of trials according to 

a random selection procedure with the constraint of an equal distribution among the 

different conditions. The experimenter asked the participants to report the gender of the 

observed model at the end of the selected trials. However, no overt response was 

required at any time during stimuli presentation and MEP collection. The 6 types of 

pictures were randomly presented in 4 blocks of 24 trials. In each block, 4 stimuli per 

condition were presented with a random presentation of male and female models. A 

short rest was allowed before proceeding to a different block. Sixteen trials were 

presented for each of the 6 observation conditions (2 presentations for each of the 8 

model hands), for a total of 96 trials. We also recorded 2 series of 8 MEPs while 

participants observed a white-colored fixation cross presented on a black background. 

One series was recorded at the beginning and the other at the end of the experimental 

session. Comparisons of MEP amplitudes in the 2 series allowed us to check for any 

corticospinal excitability change related to TMS per se. Stimulus presentation timing, 

EMG recording, and TMS triggering, as well as randomization of stimuli in a block, 

were controlled using E-prime V1.2 software (Psychology Software Tools Inc., 
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Pittsburgh, PA) running on a PC. Stimuli remained on the screen for 1500 ms. On each 

trial, the magnetic pulse was randomly delivered between 500 and 16.7 ms before the 

offset of the stimulus to avoid any priming effects that could affect MEP size. A 9-s 

blank screen was presented before the next trial. Therefore, the interpulse interval 

ranged from 10 to 10.5 s. The choice of the interpulse interval was based on research by 

Chen et al. (1997) who showed that even 1 h of repetitive TMS at 0.1 Hz did not induce 

any change in corticospinal excitability. Thus, the procedure allowed us to rule out any 

experimental effect due to TMS per se. To ensure that all participants correctly 

discriminated between precision grasp and flick snapshots, an action discrimination task 

was administered at the end of the TMS session. The different start, middle, and end 

postures of the 2 actions were randomly presented on the computer monitor and 

participants had to indicate whether each image depicted a precision grasp or a flick 

action by pressing the left and the right button of the computer mouse, respectively. In 

keeping with the TMS session, stimulus duration was 1500 ms. Response accuracy was 

recorded and stored for automatic analysis. In a further post-TMS session, the 

experimental stimuli were presented in random order for 1500 ms on the computer 

monitor. For each picture, participants were asked to judge the perceived intensity of the 

implied motion by marking with the mouse cursor a vertical, 10-cm visual analog scale 

(VAS), where 0 cm was „„no effect‟‟ and 10 cm was „„maximal effect imaginable.‟‟ 

Two blocks were presented in a counterbalanced order in which participants were 

required to judge the intensity of the perception of the implied action of the hand or of 

the implied motion of the ball suggested by each of the 48 experimental stimuli. 

 

Action Execution Experiment 

To establish whether the corticospinal response to the observation of the different visual 

stimuli reflected mere read out of the level of muscle contraction rather than 

anticipatory coding of the observed actions, we recorded the EMG signals from the FDI 

and ADM muscles during actual execution of grasping and flicking actions. The 

participants of the action execution experiment stood in front of a table where an object 

with a similar size as that of the ball depicted in the experimental stimuli (2.5-cm 

diameter) was placed and fixed on a support. The object was connected to the computer 

and had a built-in button that was pressed during grasping and flicking movements, thus 
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signaling the end phase of the movements. Movement execution was guided by a 

sequence of 2 different tones (3 and 2 kHz, respectively) that were generated by a 

computer (sinus waves: 150-ms duration, intertone interval: 1 s) and signaled the 

starting phase (go signal) and the end of the actions (corresponding to the end phase of 

the visual stimuli). Therefore, the grasping and flicking movements were performed 

with a 0.5-Hz frequency (following the 1-Hz pace of the metronome). Before 

proceeding to the EMG recording session, the participants of the action execution 

experiment were presented with the different experimental visual stimuli and were 

asked to repeatedly mimic the target action (grasp or flick) with their right hand. After a 

variable and self-paced number of repetitions of the target-mimed action, participants 

actually performed the target action by grasping or flicking the object with their right 

hand (and thus clicking the mouse button). This event generated a trigger signal that 

ceased the metronome for 2 s and was used to analyze the EMG activity. A block of 15 

trials was recorded for each action (grasp, flick). The order of the blocks was 

counterbalanced across subjects. The EMG signals were recorded from the right FDI 

and the ADM muscle by means of a Biopac MP-150 (Biopac Corp., Goletta, CA) EMG 

equipment, band-pass filtered (20 Hz to 2 kHz, sampled at 20 kHz), digitized, and stored 

on a computer for offline analysis. Mean EMG responses were time locked to the finger-

-object contact (button press) and computed by averaging the root square rectified EMG 

signal across trials using 200-ms epochs over an interval of 1.2 s. The first 3 epochs 

covered the reaching component of the movements. Epochs 4 and 5 covered the 

grasping or flicking components and roughly corresponded to the start and middle 

phases of the visual stimuli. The last epoch included the 200-ms interval after button 

press and corresponded to the end phase of the visual stimuli. 

 

Data Handling 

Task compliance during action observation was good, as assessed by immediate verbal 

report of the gender of the presented hand. For each observation condition, we 

calculated the individual mean peak-to-peak amplitudes of MEPs recorded from the FDI 

and ADM muscles, the percentage of correct responses in the action discrimination task, 

and the mean VAS judgments of the perceived intensity of the implied hand action and 

of the implied object motion. Inspection of recognition performances in the action 
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discrimination task revealed that 1 male and 1 female participant were below the chance 

level for pictures depicting the end posture of flick actions (0% and 38%, respectively). 

Because these 2 participants seemed to have systematically categorized stimuli 

depicting the flick-end postures as grasp action, their data were not included in the 

analysis. Thus, final analyses were based on data from 16 participants. Visual inspection 

of the EMG recordings confirmed full muscular relaxation in all participants during 

MEP recording. Trials with background EMG activity preceding the TMS pulse or with 

an MEP amplitude deviating more than 2 standard deviation (SD) from the mean for 

each observation condition were discarded (4.2% of the total). 

No more than 3 MEPs for each observation condition were discarded and mean values 

were obtained from at least 13 MEPs per condition for each participant. A paired-

sample t test (2-tailed) was used to compare the amplitude of MEPs recorded from the 

FDI and ADM muscles in the 2 series of fixation-cross trials presented at the beginning 

and at the end of the experimental session. The individual mean amplitude of MEPs 

recorded in the 2 fixation-cross series served as baseline. For each muscle, individual 

mean raw amplitudes of MEPs recorded during the 6 observation conditions were 

expressed as percentage of baseline values. Individual normalizedMEP amplitudeswere 

entered into a 23233 repeated-measure analysis of variance (ANOVA) with muscle 

(FDI, ADM), type of action (grasp, flick), and action phase (start, middle, and end) as 

within-subjects variables. The individual percentages of correct responses in the action 

discrimination task, the mean VAS judgments of the perceived intensity of the implied 

hand action and of the implied object motion were entered into separate 2 3 3 repeated-

measures ANOVAs, with type of action and action phase as within-subjects variables. 

Furthermore, for each observation condition, we computed the Pearson correlation 

coefficients between the normalized FDI MEP amplitudes and 1) the VAS judgments of 

the perceived intensity of the implied hand action; 2) the VAS judgments of the 

perceived intensity of the implied object motion. Only the FDI MEP amplitudes were 

entered into the correlation analysis because ADM MEPs were not significantly 

modulated by any observation condition. The EMG signals recorded during action 

execution were analyzed by means of a 2 3 2 3 6 ANOVA with muscle (FDI, ADM), 

type of action (grasp, flick), and time (6 epochs) as within-subjects variables. All post 
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hoc pairwise comparisons were carried out using the Newman--Keuls test. A 

significance threshold of P < 0.05 was set for all statistical tests. 

 

2.3 Results 

MEP Amplitude  

Table 1 shows the mean raw MEP amplitudes recorded from the FDI and ADM muscles 

during the 2 baseline blocks and the 6 observation conditions. Mean raw MEP 

amplitudes during the 2 baseline blocks run at the beginning and at the end of the 

experimental session were not significantly different for either the FDI (t15 = 0.729, P = 

0.478) or the ADM muscle (t15 = –0.06, P = 0.954). This indicates that TMS per se did 

not induce any changes in corticospinal excitability in our experimental session. To test 

whether mirror motor facilitation is higher during extrapolation of dynamic information 

about the upcoming action phases than the past ones, we compared normalized MEP 

amplitudes during observation of static snapshots depicting the start, middle, and end 

postures of grasp and flick actions (Fig. 2). The 3-way ANOVA yielded a significant 

main effect of muscle (F1,15 = 7.9, P = 0.013), with FDI normalized MEPs (mean ± 

standard error of the mean [SEM]: 103.92% ± 9.35%) being higher than ADM 

normalized MEPs (87.88% ± 7%). Thus, motor facilitation during observation of grasp 

and flick actions was higher for the FDI muscle, which is involved in the actual 

execution of the same movements.  

 

Table 1. Mean (±SEM) peak-to-peak amplitudes (in mV) of MEPs recorded from the FDI and ADM 

muscles during the 2 fixation-cross, baseline conditions run at the beginning (B1) and at the end (B2) of 

the experimental session, and during the 6 observation conditions. 

 

The main effects of type of action (F1,15 < 1) and action phase (F2,30 = 2.19, P = 

0.129) were non significant. Crucially, however, we found a significant interaction 

between muscle and action phase (F2,30 = 5.03, P = 0.013). Pairwise post hoc tests 

showed that MEPs recorded from the FDI (Fig. 2a) were more facilitated during 

observation of start (108.64% ± 9.62%) and middle postures (109.26% ± 11.28%) than 
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during observation of end postures (93.85% ± 8.76%; P < 0.001 for both comparisons). 

Instead, comparable FDI MEPs were obtained during observation of start and middle 

postures (P = 0.864). Furthermore, no modulation during observation of the 3 phases of 

grasp and flick actions was obtained for MEPs recorded from the ADM (Fig. 2b; P > 0.7 

for all comparisons), a muscle not involved in the actual execution of either actions. 

Although FDI MEPs were higher than ADM MEPs during observation of start (P < 

0.001) and middle postures (P < 0.001), no between-muscle difference was obtained 

during observation of end postures (P = 0.23). The 2-way interactions between muscle 

and type of action (F1,15 < 1) and between type of action and action phase (F1,15 < 1) 

were nonsignificant.  

 

Figure 2. Muscular facilitation during observation of the different implied action phases. Amplitudes of 

MEPs recorded from the FDI (a) and ADM (b) muscles during the 6 observation conditions are expressed 

as value percentages of the MEPs recorded during the baseline (viewing a fixation cross). MEPs 
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facilitation was higher during the observation of the start and middle phases of the 2 actions with respect 

to their final postures. Error bars indicate SEM. *P\0.05. 

 

Importantly, the nonsignificant effect of the 3-way interaction between muscle, type of 

action, and action phase (F2,30 < 1) showed that the greater motor facilitation during 

observation of start and middle postures versus end postures was independent of the 

finger configuration in the different phases of the 2 actions. Indeed, planned 

comparisons showed that FDI MEPs were lower during observation of grasp end 

postures than during observation of grasp start (F1,15 = 12.47, P = 0.003) and middle 

postures (F1,15 = 5.71, P = 0.03). In a similar vein, FDI MEPs were lower during 

observation of flick end postures than during observation of flick start (F1,15 = 4.81, P 

= 0.044) and middle postures (F1,15 =5.04, P = 0.04). 

 

Action Discrimination 

Action discrimination performance was above 90% for all observation conditions, 

suggesting that participants were able discriminate whether the static snapshot stimuli 

were taken from grasp or flick action sequences. The ANOVA on percent correct 

responses revealed a significant main effect of type of action (F1,15 = 6.95, P = 0.019), 

because responses for grasp snapshots (98.85% ± 0.46%) were more accurate than 

responses for flick action snapshots (94% ± 1.76%). Non-significant effects of action 

phase (F2,30 = 1.39, P = 0.265) and of the interaction between type of action and action 

phase (F2,30 = 2.6, P = 0.091) were found. Indeed, recognition performance was 

comparable between the 3 phases of grasp (start: 98.44% ± 1.22%; middle: 98.88% ± 

0.6%; end: 99.25% ± 0.51%) and flick actions (start: 97.75% ± 0.75%; middle: 92.25% 

± 3.03%; end: 92.38% ± 2.79%). This suggests that the difference between the motor 

facilitation during observation of start and middle postures and that obtained during 

observation of end postures cannot be ascribed to different abilities in recognizing the 

actions represented in the different pictures.  

 

VAS Ratings Concerning Implied Motion of Each Stimulus  

To test the relationship between motor facilitation and the perceived intensities of 

implied hand action and implied object motion, we compared VAS ratings on pictures 

representing the start, middle, and end postures of grasp and flick actions. The ANOVA 
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on implied hand action VAS ratings (Fig. 3a)showed significant main effects of type of 

action (F1,15 = 4.86, P = 0.04), action phase (F2,30 = 9.89, P < 0.001), and their 

interaction (F2,30 = 7.47, P = 0.002). Post hoc tests showed that the subjective 

perception of implied hand action was higher for start than for middle (P = 0.021) and 

end (P < 0.001) grasp postures. Middle grasp postures suggested higher implied hand 

action perception than the corresponding end postures (P = 0.018). 

 

 

Figure 3. Subjective judgments of perceived intensity of the different implied hand actions and implied 

object motion. Mean VAS ratings on pictures representing the start, middle, and end postures of grasp and 

flick actions. (a) VAS ratings of the perceived intensity of the implied hand action were maximal for start 

and middle grasp postures, whereas no difference was observed between the 3 phases of flick actions. (b) 

VAS ratings on the perceived intensity of the implied object motion were higher for flick than for grasp 

action phases and were maximal for flick end postures, which exerted minimal facilitation on cortico-

spinal excitability. Error bars indicate SEM. *P\0.05. 

 

Thus, perception of implied hand action was maximal for the initial phases of grasp 

actions, which showed ongoing but incomplete movements. In contrast, no difference 

was observed between the perceived intensity of implied hand action suggested by the 

start, middle, and end postures of flick actions (P > 0.76 for all comparisons). 

Importantly, ratings of implied hand action perception for flick end postures were higher 

than ratings for grasp end postures (P < 0.001) and were not significantly different than 

ratings for grasp start postures (P = 0.38). Because grasp start postures activated the 
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motor system to a greater extent than flick end postures, modulation of motor 

facilitation cannot be ascribed to different intensities of implied hand action perception 

for start, middle, and end postures. The ANOVA on VAS ratings of implied object 

motion (Fig. 3b) yielded significant effects of type of action (F1,15 = 55.78, P < 0.001), 

action phase (F2,30 = 27.23, P < 0.001), and their interaction (F2,30 = 41.86, P < 

0.001). Post hoc tests showed that the subjective perception of implied object motion 

was higher for start, middle, and end flick postures than for start, middle, and end grasp 

postures (P < 0.015 for all comparisons). The ratings of implied object motion for the 

start, middle, and end postures of grasp actions did not differ from one another (P > 0.15 

for all comparisons). In contrast, ratings of implied object motion perception were 

higher for the end postures than for the start (P < 0.001) and middle postures (P < 0.001) 

of flick actions. Thus, maximal perception of implied motion of the object was 

suggested by the end posture of flick actions. Because observing the end postures of 

flick actions did not activate the FDI motor representations, modulation of motor 

facilitation during observation of the different phases of grasp and flick actions cannot 

be ascribed to the perception of implied object motion. The absence of association 

between motor facilitation and implied motion perception was further corroborated by 

the analysis of the correlation between motor facilitation and implied motion perception 

ratings for each stimulus. Indeed, non significant correlations were found between the 

individual mean normalized FDI MEP amplitudes and the VAS ratings of implied hand 

action (all –0.35 < rs < 0.42, all Ps > 0.11) and implied object motion perception (all –

0.39 < rs < 0.36, all Ps > 0.1). 

 

Muscle Activation during Action Execution 

The analysis of the mean root square EMG signal recorded during action execution (Fig. 

4) revealed a significant main effect of muscle (F5,25 = 28.81, P = 0.003), accounted for 

by the higher EMG signal recorded in the FDI (0.123 ± 0.009 mV) with respect to the 

ADM muscle (0.080 ± 0.004 mV), a main effect of time (F5,25 = 50.66, P < 0.001) 

and,most importantly, a significant muscle 3 time interaction (F5,25 = 60.33, P < 

0.001). The effect of the interaction was accounted for by the stronger increase over 

time of the EMG activity recorded from the FDI muscle in comparison to that recorded 

from the ADM muscle. The FDI EMG activity remained constant between the epochs 1 
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and 2 (P = 0.827) and between the epochs 2 and 3 (P = 0.211). Importantly, a significant 

increase was found between epoch 3 and epoch 4 (200--400 ms before the finger 

contacted the ball; P = 0.002). Maximum increase was found at epoch 5 (0--200 ms 

before the finger--object contact), corresponding to the flexion phase of grasping and to 

the extending phase of flicking, and epoch 6 (0--200 ms after the contact), 

corresponding to the end phase of the experimental visual stimuli. Crucially, the EMG 

signal during epochs 5 and 6 was comparable (P = 0.86) and was higher than that during 

all the previous epochs (all Ps < 0.001). A smaller but significant increase during epochs 

5 and 6 was detected also in the ADM muscle (all Ps < 0.001), reflecting the postural 

adjustments of the hand during grasping or flicking with the index finger.  

 

 

Figure 4. Time course of muscular activation during action execution. Mean root square EMG signals 

recorded from the FDI (a) and ADM (b) muscles during execution of grasp and flick actions. Results were 



20 

 

pooled across 6 epochs, each lasting 200 ms. The first 3 epochs covered the reaching component, whereas 

epochs 4 and 5 covered the grasping or flicking components of the movements, corresponding to the start 

and middle phases of the visual stimuli. The last epoch corresponded to the end phase of the visual 

stimuli. Error bars indicate SEM. *P\0.05. 

 

The EMG signal during the epochs 5 and 6 was higher in the FDI than in all the epochs 

of the ADM muscle (all Ps < 0.001). No other significant main effect or interaction was 

found in the ANOVA (all Fs < 2.14, all Ps > 0.09), suggesting a similar time course of 

muscle activation during execution of grasp and flick actions. 

 

2.4 Discussion 

Somatotopic Mirror Motor Mapping of Implied Body Actions 

Single-pulse TMS studies demonstrate that the mirror motor facilitation contingent on 

observation of dynamic displays of body actions (Strafella and Paus 2000; Gangitano et 

al. 2001; Borroni et al. 2005; Fadiga et al. 2005; Montagna et al. 2005; Romani et al. 

2005; Urgesi Candidi, et al. 2006) specifically involves the muscles that would be 

recruited during the actual execution of the actions. In keeping with the only other TMS 

study (Urgesi, Moro, et al. 2006) on this issue, the present results show that, even in the 

absence of explicit dynamic information, cortical--spinal muscle representations are 

facilitated by the observation of static snapshots evoking the perception of implied 

actions. Moreover, we demonstrate that MEP modulation during observation of static 

photographs of pincer grasp and flick actions follows the same mapping rule of actual 

movements. Indeed, the MEP facilitation was selective for the FDI muscle, which is 

activated during actual execution of the observed actions. By contrast, no motor 

facilitation was observed for ADM, which has only a little role in the execution of the 

observed actions, mostly limited to postural adjustments of the hand. The motor 

facilitation during observation of implied body actions suggests that the human motor 

system is involved in the extrapolation of action information from static images of body 

postures. That mapping of implied actions is related also to motor regions is in keeping 

with a recent event related potential study that shows a specific cortical signature of 

observing implied action snapshots. This signature consists in a long-lasting positivity 

that was higher for the more dynamic stimuli, and its source was also in premotor and 

motor cortices and not only in cortical regions concerned with visual motion (e.g., 
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V5/MT, EBA, or STS; Proverbio et al. 2009). Although single-pulse TMS cannot 

establish the specific cortical correlates of motor activations during action observation, 

mirror muscular facilitation seems to be linked to the activation of the frontal node of 

the mirror network that matches observed and performed actions (di Pellegrino et al. 

1992; Rizzolatti and Craighero 2004). Neuroimaging studies demonstrate that the motor 

and premotor areas are activated by viewing dynamic full (Rizzolatti et al. 1996; Decety 

et al. 1997; Grafton et al. 1997; Iacoboni et al. 1999; Buccino et al. 2001; Costantini et 

al. 2005; Gazzola and Keysers 2009; Kilner et al. 2009) and point-light displays (Saygin 

et al. 2004) of body actions. Crucially, repetitive TMS of ventral premotor cortex 

disrupted motor facilitation during observation of biomechanically possible actions, but 

not impossible actions (Avenanti et al. 2007), thus hinting at the primary role of the 

ventral premotor cortex in mediating activation of the motor system during observation 

of actions that belong to the observer‟s motor repertoire. The ventral premotor cortex 

may be also involved in the perception of static images implying actions. A recent 

functional magnetic resonance imaging study in monkeys (Nelissen et al. 2005) has 

detected multiple representations of observed actions in the ventral premotor cortex, 

with patches activated only by full action displays and other patches activated also by 

mimicked actions or by static presentation of manipulable objects. In a similar vein, 

activation of human motor and premotor cortex was higher during observation of static 

pictures of goal-directed actions (Johnson-Frey et al. 2003), suggesting that mere 

observation of the action goal is enough to trigger mirror motor activation. However, by 

showing motor activation during observation of static snapshots of mimicked actions, 

we have demonstrated that the motor mapping of implied body actions is independent of 

the presentation of the target object (Urgesi, Moro, et al. 2006). 

Furthermore, repetitive TMS of ventral premotor cortex impaired the visual 

discrimination of static images implying biomechanically possible body actions (Urgesi, 

Calvo-Merino, et al. 2007; Urgesi, Candidi, et al. 2007), but not impossible body 

actions (Candidi et al. 2008). Thus, the frontal node of the mirror motor system seems to 

play a crucial role in the discrimination of action information extrapolated from static 

body postures. 

The involvement of motor representations in the perception of static body postures that 

imply action is also in keeping with the behavioral studies that have investigated the 
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interferential effects exerted by the passive viewing of incongruent as compared with 

congruent actions on movement executions. 

Indeed, the correct execution of an observer‟s actual movement can be influenced not 

only by viewing congruent or incongruent dynamic action sequences (Brass et al. 2000, 

2001; Sturmer et al. 2000; Kilner et al. 2003), but also by single static frames 

suggesting congruent or incongruent actions (Craighero et al. 1996, 1999, 2002; Brass 

et al. 2000; Vogt et al. 2003). Thus, viewing a static image depicting moving bodies or 

body parts automatically activates action-related neural representations. 

 

The Time Course of Motor Mirroring during Observation of Implied Actions  

Studies indicate that the time course of motor activation triggered by action observation 

seems to parallel the dynamics of movement execution (Baldissera et al. 2001; 

Gangitano et al. 2001, 2004; Borroni et al. 2005; Montagna et al. 2005). In a previous 

single-pulse TMS study, the facilitation of the cortical representation of the FDI muscle 

during observation of reaching to grasp actions was maximal during presentation of the 

snapshots with maximal finger aperture, thus in the initial stages of the hand closing 

phase (Gangitano et al. 2001). 

In a similar vein, a clear temporal modulation of amplitude of MEPs recorded from 2 

hand muscles (flexor digitorum superficialis and FDI) was also found during 

observation of videos showing a hand reaching, grasping, and holding a sphere 

(Montagna et al. 2005). It is relevant that FDI facilitation was found not only during 

observation of the finger closing phase but also during observation of the hand closure 

and active object holding phase, that is, when the action was still ongoing (Montagna et 

al. 2005). By presenting in isolation static snapshots representing different phases of 

precision grasp movements (Urgesi, Moro, et al. 2006), we have previously found that 

facilitation of the FDI muscle responses was present during observation of the middle 

postures of a mimicked grasping action, when the hand had maximal grasp aperture. In 

contrast, FDI facilitation was absent not only during observation of a resting, relaxed 

hand but also during observation of a maximal finger closure hand, which suggests the 

movement has been completed. The temporal modulation of corticospinal excitability 

during actual and implied action observation is reminiscent of the firing properties of 

mirror neurons in the monkey‟s ventral premotor cortex, some of which discharge 
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maximally during observation of the last phases of grasping (Umilta et al. 2001), others 

stop firing when the target object has been achieved, whereas others continue to 

discharge also during the active holding phase (Gallese et al. 1996). Previous studies, 

however, could not establish whether the temporal modulation of motor facilitation 

reflects the reading of finger configuration and muscular contractions in the different 

postures or the anticipatory simulation of future phases of the observed action. 

 

Simulation of Implied Actions and Predictive Coding of Ongoing Actions  

A main point of novelty of the present study is the maximal mirror motor facilitation 

during observation of start and middle postures of both hand grasp and flick actions. No 

facilitation was found during observation of end postures, which suggested that the 

movement was completed. Importantly, there was a great visual similarity between 

grasp start postures and end flick postures as well as between grasp end postures and 

flick start postures. Thus, the differential facilitation cannot be ascribed to the reading 

out of the finger kinematics at different hand apertures. It rather suggests that mirror 

motor mapping of implied actions is maximal for ongoing, but incomplete actions. 

This effect may provide a specific neural basis for the forward bias in the recognition 

memory of moving conspecifics found in representational momentum experiments 

(Verfaillie and Daems 2002). Our results support and expand the notion that the 

functional role of motor activation during action perception is based on predictive 

coding. This process allows an onlooker to understand early the goal of actions and 

ultimately to read early the intentions of an actor (Blakemore and Frith 2005; Cattaneo 

et al. 2007; Kilner et al. 2007) as well as to anticipate the future phases of upcoming 

actions of others (Wilson and Knoblich 2005; Prinz 2006; Schubotz 2007; Schutz-

Bosbach and Prinz 2007). In particular, Wilson and Knoblich (2005) have proposed that 

the motor representations activated during action observation may provide an internal 

model of the ongoing action by generating top-down expectations and predictions on its 

deployment in time. This model has 2 implications: 1) the observer‟s motor system 

generates predictive representations of others‟ actions by projecting the course of 

ongoing movements into the future; 2) predictions about others‟ actions are fed back 

into the visual system and exert top-down influence on action perception, thus allowing 

to complete missing information. 
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Our results provide compelling evidence for the involvement of mirroring processes in 

the anticipatory simulation of observed actions. It is worth noting that motor mirror 

neurons are activated also when the final part of an object grasp action cannot be seen 

but only inferred (Umilta et al. 2001). Therefore, motor mirroring may allow one to 

anticipate the course of ongoing actions and represent hidden information. In a similar 

vein, the facilitation of the human motor cortex during observation of grasping actions 

was suppressed by the artificial introduction of delayed aperture or sudden closure of 

fingers (Gangitano et al. 2004), suggesting that mirror mapping is affected by the 

predictability of the sequence of observed movements. Furthermore, motor activation in 

response to symbolic cues signaling an upcoming movement has been found in both 

adults (Kilner et al. 2004; Ramnani and Miall 2004) and children (Southgate et al. 

2009). All in all, this evidence hints at the important role of the mirror system in 

predicting and anticipating the actions of other individuals. The higher motor facilitation 

during extrapolation of dynamic information about ongoing, but incomplete actions 

would suggest that motor mirroring may be inherently linked to predicting and 

anticipating the future behaviors of other individuals. The ability to provide predictive 

models of the perception of ongoing actions may rely on the previous motor knowledge 

of the observer. Several neuroimaging studies have shown that the activation of the 

mirror neuron system areas is modulated by the observer‟s motor experience (Calvo-

Merino et al. 2005, 2006; Cross et al. 2006, 2009; Reithler et al. 2007; Orgs et al. 2008). 

On the other hand, the importance of motor expertise for action perception abilities has 

been demonstrated by behavioral investigations of elite athletes, who present superior 

abilities not only in the execution of complex actions but also in the prediction and 

anticipation of the behavior of other players (Farrow and Abernethy 2003; Abernethy 

and Zawi 2007; Abernethy et al. 2008; Weissensteiner et al. 2008). Crucially, the 

superior predictive abilities of elite basketball players with respect to naive and expert 

observers (e.g., coaches or sport journalists) were associated to differential motor 

activation during observation of the early phases of erroneous versus correct shots 

(Aglioti et al. 2008). Therefore, motor experience may endow the motor system with the 

ability to predict and anticipate the actions of others ahead of their realization. 
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The most novel result of the present study is that mirror motor facilitation is maximal 

during observation of implied action snapshot stimuli depicting ongoing but incomplete 

actions. In keeping with self- and other-action predictive coding models (Ramnani and 

Miall 2004), our study suggests that the frontal node of the observation--execution 

matching system is preferentially activated by the anticipatory simulation of the 

deployment of an action in the future. This would indicate that an important function of 

action mirroring processes is to derive from the observers‟ motor knowledge specific 

predictions concerning the future implementation of others‟ behaviors. 
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3 Study2 : Primary somatosensory cortex necessary for the perception 

of other people's action: a continuous theta-burst TMS experiment.  

 

3.1  Introduction  

When we observe somebody lifting a box we can readily judge if the load is heavy or 

light. Motor simulation, i.e. the recruitment of motor regions in perceiving the actions of 

others, has been suggested as a possible basis for such understanding (Rizzolatti and 

Sinigaglia, 2010). Transcranial magnetic stimulation (TMS) and lesion studies focusing 

on the motor system provide evidence that people become less accurate at perceiving 

certain aspects of the actions of others following a perturbation of inferior frontal cortex 

(IFC) and inferior parietal lobule (IPL) (Urgesi et al., 2007; Pazzaglia et al., 2008; 

Kalénine et al., 2010; Avenanti and Urgesi, 2011). In particular, Pobric and Hamilton 

(2006) found that TMS interference with IFC reduces participants' ability to judge the 

weight of a box when seen lifted.  

On the other hand, mounting evidence suggests that the somatosensory cortices may 

also represent a key node of the action simulation network (Keysers et al., 2010) whose 

activity is strongly increased, for example, when seeing hands grasping objects (Pierno 

et al., 2009; Gazzola and Keysers, 2009; Caspers et al., 2010) or extreme joint 

stretching (Costantini et al., 2005; Avenanti et al., 2007). This suggests that 

somatosensory cortices may simulate somatosensory consequences of observed actions. 

In keeping, somatosensory regions are active when viewing others‟ tactile or painful 

bodily states (Keysers et al., 2004; Bufalari et al., 2007; Lamm et al., 2010) and 

recently, Bolognini et al. (2011) have shown that primary somatosensory cortex (SI) 

TMS-perturbation makes people less accurate at judging whether a hand was touched or 

not.  

When judging the weight of a box that we observe being lifted, we need not infer the 

presence or absence of touch, but must judge the motor effort exerted and/or the 

intensity of the proprioceptive and tactile feedback experienced by that person. Whether 

SI plays a critical role in this latter process remains poorly understood and is the focus 

of the present study. We used the paradigm developed by Pobric and Hamilton (2006) 

in four new experiments. Participants had to estimate the weight of a box, by observing 
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it being lifted. The task was performed in two counterbalanced sessions carried out after 

active or sham continuous theta-burst (cTBS; Huang et al., 2005) over a target area. In 

the first three experiments we targeted SI to test its critical role in action understanding, 

and two neighboring regions, the motor and the superior parietal cortex, to test for 

spatial specificity. In the fourth experiment, we applied cTBS over SI before 

participants judged the weight of a bouncing ball, to test for SI specificity to action 

understanding. Our results extend those of Bolognini et al. (2011) by showing that SI 

does more than social detection of touch; and extend those of Pobric and Hamilton 

(2006) by showing that beyond IFC, S1 has a role in inferring proprioceptive qualities 

from action kinematics.  This supports a functional interplay between motor and 

somatosensory regions/representations in action perception (Keysers et al., 2010).  

 

3.2 Materials and Methods  

Participants  

A total of 71 students from the University of Bologna took part in one of four TMS 

experiments (see Table 1 for the details) or in a psychophysical pilot study. All 

participants received course credit for their participation and provided written informed 

consent. All of them were right-handed with normal or corrected to normal vision. None 

of them had neurological, psychiatric, or other medical problems, or had any 

contraindication to TMS (Rossi et al., 2009). The  protocol was approved by the local 

ethics committee at University of Bologna and was carried out in accordance with the 

ethical standards of the 1964 Declaration of Helsinki. No discomfort or adverse effects 

during TMS were reported or noticed.  
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Table 1. Task, stimulation site, and sample characteristics in the four TMS experiments. 

 

Experimental design, tasks and procedure   

All four experiments were composed of three parts: preparatory, active-cTBS, and 

sham-cTBS sessions.  During the preparatory session the optimal scalp position and the 

resting motor threshold were evaluated by means of motor-evoked potentials (MEPs) 

recording (see Transcranial magnetic stimulation paragraph for more details). Once the 

target site was individuated, it was marked on the scalp and Talairach coordinates were 

estimated using the neuro-navigation system. The participant was then familiarized with 

the experimental task by performing a practice block of 60 trials. At the end of the 

practice, the participant rested for 10 minutes in front of the computer before continuing 

with the other two sessions.  During the active-cTBS session the experimenter 

administered 40s of off-line continuous theta-burst stimulation over the target site, by 

placing the intersection of the coil tangentially to the scalp with the handle pointing 

backward and laterally at a 45˚ angle away from the midline. Two blocks of 30 trials 

(~5 min duration each) were performed at five and twelve minutes after the stimulation 

(Figure 1A). Between blocks and trials, participants were asked to rest. Active-cTBS is 

known to suppress the excitability and disrupt functions related to the target area for 

about 30-60 minutes (Huang et al., 2005; Franca et al., 2006; Bertini et al., 2010). Since 

the task was completed within 20 minutes after active-cTBS administration, 
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performance should reflect the inhibitory influence of active-cTBS over the stimulated 

site. The sham-cTBS session was exactly the same as the active-cTBS session except 

that the coil was positioned, over the target site, perpendicular to the scalp.   

The order of the active- and sham-cTBS sessions was counterbalanced across 

participants. Additionally, active- and sham-cTBS sessions were separated by 90 

minutes to ensure that any inhibitory effects were carried over from one session to the 

other. During these 90 minutes participants were asked to remain relaxed and seated on 

a comfortable chair. Participants were randomly assigned to the different experiments. 

In experiments 1-3, participants watched 4.4s video-clips showing a hand lifting a small 

box and placing it on a shelf after receiving stimulation over the left SI, left M1 and left 

SPL respectively (see also Figure 1A). After each video,  participants had to estimate 

the weight of the lifted box by answering the question "How heavy is the box?" by 

means of a 5 points scale, with 1 corresponding to the lightest and 5 to the heaviest 

weight estimation (Figure 1A). Five different movies, representing 5 different box 

weights were shown to the participants in a randomized order. Each movie was 

presented 12 times, 6 for each block (total number of movies per block = 30). In 

experiment 4, stimulation was delivered over the left SI and the movies of the box were 

replaced with video of a ball falling from the top of the screen to then bounce at the 

bottom until stop (no hand throwing the ball was visible; Figure 1A). 
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Figure 1. (A) Experimental design. (B) Average stimulation sites for experiments 1 to 4 (MNI 

coordinates).   

 

The task consisted in judging the weight of the ball ("How heavy was the ball?"). As for 

the box there were 5 different movies representing 5 different ball weights. The number 

of trials was the same number of trials as in experiments 1-3.   

In both tasks, each video was preceded by a 1 s fixation cross, and participants 

answered by pressing one of 5 keys with the left hand (ipsilateral to the stimulation site) 

to indicate a number from one to five. They were instructed to answer as quickly and 

accurately as possible. Participants wore headphones providing white noise thereby 

eliminating auditory information during task performance.  
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Visual stimuli and pilot study  

All the video stimuli come from previous experiments (Pobric and Hamilton 2006; 

Hamilton et al., 2007). Briefly, the five different videos of the hand lifting a box 

(experiment 1-3) were generated by down sampling a single high-speed clip of a lifting 

hand to create the perception of 5 different box weights, ranging from approximately 

50g to 850g. Since they all derive from the same video, they are very well controlled for 

visual differences not relevant for the task. The videos of the bouncing balls 

(experiment 4) were generated using Matlab (www.mathworks.com/) as in previous 

research (Pobric and Hamilton, 2006). Again a perception of 5 different weights was 

created by modifying two parameters which affect the elasticity of the ball and thus 

creates the perception of observing balls of different weights. All video clips were 

presented using custom-made software written in Matlab (www.mathworks.com/) at a 

resolution of 512x480 pixels and 30 frames per s on a 17 inch monitor.  

A pilot study conducted on 12 participants (8 females, mean age 22.8 y ± 2.0) not 

participating to the TMS experiments was performed to check that accuracy in judging 

the weight of the ball was comparable to that of the box.  

Two participants presented very low performance (R2< 0.2; same procedure used in the 

TMS experiments, see data analysis) in both tests and were discarded. A t-test in the 

remaining sample confirmed that the performance was indeed comparable in the box 

(mean R2 ± s.e.m. = 0.46 ± 0.04) and ball (0.47 ± 0.04) weight estimation tasks (t9 < 1, 

p = 0.93)   

 

Transcranial magnetic stimulation protocol  

The cTBS protocol lasted 40 s and consisted of bursts of 3 TMS pulses delivered at 50 

Hz, with each train burst repeated every 200 ms (5 Hz) for a total of 600 pulses (Huang 

et al., 2005). Stimulation was administered with a 70 mm figure-eight stimulation coil 

connected to a Magstim Rapid2 (The Magstim Company, Carmarthenshire, Wales, 

UK).   

Previous studies have suggested that motor experience before or after the administration 

of cTBS may alter its effect on cortical excitability (Iezzi et al., 2008; Todd et al., 2009; 

Iezzi et al., 2011); thus, in all the experiments, before active-cTBS participants rested 

for at least 10 minutes. After active-cTBS, they rested for 5 minutes before running the  
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task to allow the active-cTBS effect to reach its maximum level (Huang et al., 2005). To 

be consistent, the same rest periods were included in the sham-cTBS sessions.  

Pulse intensity was set at 80% of the resting motor threshold (rMT) and was comparable 

in the four experiments (F3,52 = 0.10, P = 0.96; Table 1). In those participants with 

rMT > 64% of maximum stimulator output (2 participants in experiment 1 and 4, and 3 

participants in experiment 2 and 3) the intensity was set at the maximum allowed by the 

stimulator (51%; on average this intensity corresponded to 76% ± 3 of rMT; Bertini et 

al., 2010). The rMT evaluation was performed by recording motor-evoked potentials 

(MEPs) induced by single-pulse TMS of the left motor cortex. MEPs were recorded 

from the right first dorsal interosseus (FDI) by means of a Biopac MP-150 

electromyograph (Biopac Corp, Goletta, CA.). EMG signals were band-pass filtered (20 

Hz-1.0 kHz, sampled at 5 kHz), digitized and displayed on a computer screen. Pairs of 

silver/silver chloride surface electrodes were placed over the muscle belly (active 

electrode) and over the associated joint of the FDI muscle (reference electrode). A 

ground electrode was placed on the ventral surface of the right wrist. The optimum 

scalp position (OSP) was chosen so as to produce maximum amplitude MEPs in the 

FDI muscle. The rMT was defined as the lowest level of stimulation able to induce 

MEPs of at least 50 µV with 50% probability (Rossini et al., 1994).  

  

Target sites and neuro-navigation  

Target sites on the scalp were identified based on functional-anatomical methods and 

then the Talairach coordinates corresponding to the projection of the target sites on the 

brain surface were estimated by means of a neuronavigator system (SofTaxic 

Navigator). Figure 1B illustrates the stimulation sites on a brain model. In experiment 1 

and 4 scalp locations corresponding to the left SI was targeted by moving the coil 2.5 

cm back with respect to the OSP (corresponding to the M1 hand area). TMS studies that 

successfully targeted the somatosensory hand area positioned the coil 1-4 cm posterior 

to the motor hotspot (Avenanti et al., 2007; Harris et al., 2002; Balslev et al., 2004; 

Merabet et al., 2004; Fiorio and Haggard, 2005). We therefore assumed that positioning 

the coil 2.5 cm from the previously marked optimal scalp position (OSP) for activation 

of the right FDI muscle would reduce the activity of SI with minimum effects on M1. 

To test this assumption directly, we checked that TMS pulses at 105% rMT with the 
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coil in the above position did not elicit any detectable MEPs. Neurophysiological 

studies indicate that cTBS over SI reduces the amplitude of somatosensory evoked 

potentials, confirming the inhibitory disrupting effect of cTBS-SI on the somatosensory 

system (Ishikawa et al., 2007; Poreisz et al., 2008). Notably, TMS may modulate 

activity in remote interconnected regions however it can also reveal local functional 

properties of the underlying target brain region (O‟Shea et al. 2007; Avenanti et al., 

2012) and this holds true for TBS protocols (Stefan et al., 2008). For example, 

stimulation of SI induced changes not only in SI but also in nearby regions such as the 

motor cortex (M1) (Ishikawa et al., 2007; Mochizuki et al., 2007), however the TBS 

over SI but not over M1 modulated tactile perception (Ragert et al., 2008) and TBS over 

M1 but not over SI altered motor performance (Schabrun et al., 2008).   

To test directly anatomical specificity, in experiments 2 and 3, we applied cTBS over 

two sites adjacent to SI: the primary motor cortex (M1) and the superior parietal lobule 

(SPL). In experiment 2, left M1 was stimulated by placing the coil over the OSP, 

corresponding to the scalp projection of motor cortex hand area (Rossini et al., 1994). In 

experiment 3,  left SPL was stimulated by moving the coil 5 cm back with respect to the 

OSP (Balslev et al., 2004). Thus stimulation of M1 and SPL occurred 2.5 cm forward 

and backward to SI, respectively.  

Brain surface Talairach coordinates corresponding to the stimulated sites in SI 

(experiments 1 and 4), M1 (experiment 2) or SPL (experiment 3) were identified on 

each participant‟s scalp with the SofTaxic Navigator system (Electro Medical Systems, 

Bologna, Italy) as in previous research (Avenanti et al., 2007; Bertini et al., 2010; 

Serino et al., 2011). Skull landmarks (nasion, inion, and two preauricular points) and 

about 100 points providing a uniform representation of the scalp were digitized by 

means of a Polaris Vicra digitizer (Northern Digital Inc, Ontario, Canada). Coordinates 

in Talairach space were automatically estimated by the SofTaxic Navigator from an 

MRI-constructed stereotaxic template and later transformed to the MNI space for better 

visualisation. For illustrative purpose, spherical rois of diameter 4 mm around the mean 

target point from each TMS experiment were created using Marsbar (Brett et al., 2002) 

running in MATLAB 7.5 (Mathworks Inc., Sherborn, MA, USA) and then overlaid on 

the MNI brain template from MRIcron 

(http://www.cabiatl.com/mricro/mricron/index.html; Table 1 and Figure 1B).   
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Data analysis   

Data were processed off-line. Performance for each participant in each session (active-

cTBS, sham-cTBS) was summarized by the R² of the linear regression between the 

correct responses and the participant‟s judgments, which gives a single measure 

incorporating both accuracy and variability. Moreover, mean response times (RTs) for 

each session were computed. Responses with RT that deviated by more than two 

standard deviations from the individual mean RT in the particular session were excluded 

from the analysis (less than 5% of total). In the pilot study, two participants with 

inaccurate performance (R²<0.2) were removed from data analysis. The same procedure 

was applied in the TMS experiments. In experiment 1, 3 and 4 we tested a total of 15 

participants, however in each of these experiments one participant was excluded due to 

inaccurate performance (R²<0.2; these participants are not listed in Table 1). R² and 

mean RT of the remaining participants (N = 14 in each experiment) were submitted to 

mixed-model ANOVAs with Experiment (experiments 1-4) as between participant 

factor and Session (active-cTBS, sham-cTBS) as within participants factor. An 

additional one-way repeated measure ANOVA was carried out on performance 

contrasts computed as the R² difference between sham-cTBS and active-cTBS session. 

Post-hoc analysis was carried out using Duncan test to correct for multiple comparisons.  

  

3.3 Results  

The Experiment x Session ANOVAs on raw R2revealed a significant interaction (F3,52 

= 3.50, p = 0.02) but no main effect of Experiment (F3,52 = 0.09, p = 0.97) or Session 

(F1,52 < 0.15, p = 0.70; Figure 2A). Post-hoc analysis showed that in experiment 1 (box 

weight judgment, SI stimulation) R2 value was lower in the active-cTBS than in the 

sham-cTBS session (p = 0.02), indicating a reduction in participant's performance to 

estimate the weight of the box seen lifted only after suppression of SI. No difference 

between sessions was found in experiments 2-4 (all p > 0.2).   
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Figure 2. (A) Mean R2scores for the active-cTBS and sham-cTBS sessions in experiments 1 (SI box 

weight task), 2 (M1 box weight task), 3 (SPL box weight task) and 4(SI ball weight task). (B) Difference 

in R2 scores between the active-cTBS and sham-cTBS sessions in experiments 1 (SI box weight task), 2 

(M1 box weight task), 3 (SPL box weight task) and 4(SI ball weight task). 

 

The analysis of R2 difference (active-cTBS minus sham-cTBS; Figure 2B) computed in 

each experiment showed a lower index (worse performance after active-cTBS) in 

experiment 1 (box weight estimation, cTBS over left SI), than in experiment 3 (box 

weight estimation, cTBS over left SPL; p = 0.02) and experiment 4 (ball weight 

estimation, cTBS over left SI; p = 0.006). Moreover, the difference R2index in 

experiment 1 was marginally lower than in experiment 2 (box weight estimation, cTBS 

over left M1; p = 0.06). A comparison of the mean RTs between the sham- and active-

cTBS in Experiment 1 revealed that responses after active-cTBS stimulation were on 

average 68 ms slower (Table 2), ruling out that lower accuracy in the box weight 

estimation after SI disruption was due to a speed-accuracy trade off. The Experiment x 

Session ANOVAs on mean RTs, however, did not show any main effect of Experiment 

(F3,52 = 0.05, p = 0.65) or Session (F1,52  = 0.78, p = 0.38; Table 2), nor their 

interaction (F3,52 = 0.63, p = 0.60; see Table 2). Thus, active-cTBS over SI selectively 

impaired accuracy in the weight estimation of observed lifted box, but did not affect 

speed of response.  
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Table 2. Mean RTs (±SE) in ms from the four TMS experiments 

 

3.4 Discussion  

Our results show that, compared to sham stimulation, cTBS perturbation of SI 

selectively worsened participant's accuracy at estimating the weight of a box when seen 

lifted. In contrast, participants‟ performance remained comparable to sham stimulation 

when (i) participants judged the weight of a bouncing ball, and (ii) the stimulation was 

applied over the adjacent M1 and (iii) SPL. This suggests that SI is necessary for 

optimal weight estimation when a human agent is involved, and supports the idea that 

SI may enrich action understanding by providing vicarious representations of the 

proprioceptive consequences of the observed actions (Keysers et al., 2010).   

So far only IFC and IPL have been shown to be necessary for action perception. TMS-

disruption of IFC worsens participants' performance at judging the weight of a box 

when seen lifted (Pobric and Hamilton, 2006); and impairs visual discrimination of 

static images of actions with different kinematics (Urgesi et al., 2007) and correct 

recognition of deceptive movements (Tidoni et al. unpublished observations). Evidence 

for the role of the IFC in perceptual judgments of seen actions also comes from the 

TMS-adaptation (Cattaneo et al., 2010; Cattaneo et al., 2011) and TMS-priming 

(Cattaneo, 2010) paradigms developed by Cattaneo and colleagues. Additionally, 

patients with IFC lesion showed reduced performance in re-ordering pictures of human 

actions compared to physical events (Fazio et al., 2009), and were impaired in gesture 

comprehension (Pazzaglia et al., 2008; Saygin et al., 2004) and recognition of biological 

motion (Saygin, 2007). With regard to the IPL, lesions of this region impair recognition 

of transitive gesture (Kalénine et al., 2010; Buxbaum et al., 2005; Weiss et al., 2008) 
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and of biological motion (Battelli et al., 2003). Finally, Tranel et al. (2003) showed that  

patients with lesions in both IFC and IPL were impaired in tasks involving action 

recognition from pictures. Although TBS may modulate activity in remote 

interconnected regions, this procotol reveals local functional properties of the stimulated 

areas (Stefan et al., 2008). If the effect of cTBS over SI were not the results of a 

perturbation of neurons in SI but, instead, of a spread of the effect of cTBS onto nearby 

premotor or parietal regions, known to be involved in action perception, one would 

expect that moving the coil forward or backwards would increase rather than decrease 

the detrimental effect on perception. This was not the case, supporting our claim that the 

effect was mediated by SI and that S1 itself contributes to action perception. However, 

we do not rule out that other regions, interconnected to SI (other than M1 or SPL), may 

have partially contributed to the observed effects.  Many imaging and 

neurophysiological studies show that an entire network composed of ventral and dorsal 

premotor, anterior and posterior parietal cortices are activated in both action observation 

and execution (Pierno et al., 2009; Caspers et al., 2010; Avikainen et al., 2002; Rossi et 

al., 2002; Hasson et al., 2004; Caetano et al., 2007; Gazzola et al., 2007b; Gazzola et al., 

2007a; Raos et al., 2007; Kilner et al., 2009; Turella et al., 2011; Arnstein et al., 2011).  

Of all these areas, the posterior sector of SI (BA2) that we stimulated in the current 

study is the region showing vicarious representation most consistently across 

participants (Gazzola and Keysers, 2009).  Given the importance of both IFC (Pobric & 

Hamilton, 2006) and S1 (this paper) to action observation, as well as the exchange of 

information between these regions during action observation (Kokal and Keysers, 2010; 

Schippers and Keysers, 2011), it is relevant to consider what aspect of perception each 

region conveys. TMS studies show that seeing biomechanically possible and extremely 

overstretching movements facilitates the corticospinal representation of the muscles 

involved in the observed movements (Romani et al., 2005). Notably, rTMS over IFC 

disrupted motor facilitation during the observation of possible actions, while rTMS over 

SI disrupted the facilitation during observation of overstretching movements (Avenanti 

et al., 2007). The IFC could therefore provide vicarious motor representations derived 

from the kinematics that would enable the observer to produce a similar action, if the 

movement is biomechanically possible. SI, on the other side, could contribute to 

vicarious somatosensory (tactile and/or proprioceptive) action components, that emerge 
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for instance during observation of overstretching finger movements. The contribution of 

SI in mapping somatosensory consequences of observed actions is supported by the 

findings that SI activity is increased when seeing other people grasping or manipulating 

objects (Keysers et al., 2010) or when seeing extreme joint stretching movements 

(Costantini et al., 2005).  Evidence that somatosensory cortices are recruited both when 

sensing the body and during perception of others being touched or painfully stimulated 

(Valeriani et al., 2008; Keysers et al., 2010; Lamm et al., 2010), and that rTMS over SI 

impairs the ability to detect touch in others (Bolognini et al., 2011) further supports this 

interpretation.   

While manipulation of biomechanical plausibility may dissociate somatosensory and 

motor components of action simulation, typically these two components are tightly 

interlinked. This is particularly evident when observing somebody else lifting objects. 

Recently, Alaerts et al. (2010) found that when participants observe an actor lifting 

objects of different weights, motor-evoked potentials are facilitated mainly by two 

factors: the kinematics of the movement and the degree of contraction of the hand. This 

facilitation could be the results of the integration in M1 of the observed kinematic 

information from IFC with proprioceptive/tactile information about hand-contraction 

from SI. The contribution of IFC, SI  and other sensorimotor regions to perceiving the 

weight of objects seen to be lifted was suggested by previous studies showing that: i) 

lifting a box influences participant‟s perceptual judgments of the weight of a box lifted 

by others (Hamilton et al., 2004); and, ii) the strength of this perceptual bias correlated 

with neural activity in a network of cortical regions including IFC, SI, M1 and SPL 

(Hamilton et al., 2006). However, these methods could not establish whether activity in 

SI was necessary for action perception. While previous evidence showed that IFC is 

necessary for correct performance in the box weight estimation task (Pobric and 

Hamilton, 2006), the present study provides further causative evidence that also SI, but 

not M1 or SPL, is critical for the social perception of weight. The lack of significant 

effect with M1 stimulation is not surprising. Although neural activity in this region may 

be modulated by action observation (Gazzola and Keysers, 2009; Nishitani and Hari, 

2000; Fadiga et al., 2005; Scültz-Bosbach et al., 2009), it is likely that such activity 

plays no functional role for action perception.  The activity may be a simple 

consequence of the strong reciprocal cortico-cortical connections, for example with IFC 
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and/or SI (Geyer et al., 2000; Rizzolatti and Luppino, 2001). Similarly, previous TMS 

studies reported that M1 stimulation did not influence mirror-like motor facilitation 

(Avenanti et al., 2007) or perceptual judgments of seen actions (Cattaneo et al., 2011).  

The absence of effects after rTMS over SPL may be less expected. The SPL is a high-

order multisensory region integrating visual and somatosensory information about limb 

position (Lloyd et al., 2002). Similarly to SI stimulation, direct stimulation of SPL (area 

7) in awake neurosurgery patients produces sensations on the body but not motor output 

(Desmurget et al., 2009). Moreover, rTMS over this region may impair performance in 

proprioceptive tasks, although to a slightly less extent than rTMS over SI (Balslev et al., 

2004). Although SPL is not classically considered as part of the mirror neuron system, 

studies show activation in SPL both during action execution and observation (Raos et 

al., 2007; Keysers and Gazzola, 2009). However, this region is less consistently 

activated relative to other sectors of the parietal cortex, such as the anterior intraparietal 

cortex or IPL (Van Overwalle and Baetens, 2009). It may be thus possible that SPL (and 

in particular area 7, the target of our study), plays a minor role in action perception, 

relative to nearby parietal regions, including SI and IPL that appears more critical for 

action perception. In conclusion, mounting evidence supports the claim that 

somatosensory cortices are activated not only during action execution, but also during 

perception of others‟ actions. Whether activation of SI is necessary to judge the actions 

of others remained unclear until now. Indirect evidence came from sensory neuropathy 

patients that lack a sense of touch on their own body. These patients showed impaired 

performance in a task requiring inference of another‟s expectation of a weight when 

seeing him lifting a box (Bosbach et al., 2005). Our findings, that cTBS over SI 

negatively influences the capacity to judge the weight of a box by observing the action 

(lifting) of other people, now provides direct evidence that SI is necessary for the 

optimal perception of at least certain aspects of other people's hand actions. Together 

with evidence that SI is also necessary for recognizing the facial expressions of others 

(Adolphs et al., 2000; Pitcher et al., 2008; Banissy et al., 2010), this suggests that SI 

seems to play a more important role in action perception than previously thought.  
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4 Study3 : Action simulation plays a critical role in deceptive action 

recognition  

 

4.1 Introduction  

Understanding others‟ intentions is a key feature of social daily life. Interpersonal 

interactions may require one to accurately judge from non-verbal behavior if a person is 

honest or deceitful, and careful assessment of others‟ bodily movements may be critical 

to detecting deceptive intentions (Runeson and Frykholm, 1983; Ekman and O‟Sullivan, 

1991; Vrij, 2004). However, the functional and neural mechanisms underlying the 

recognition of deceptive body movements (faked-actions, FAs) are poorly understood. 

FA recognition requires the reading of subtle action cues that violate observers‟ 

predictions about the kinematics of the observed action (Bond et al., 1992; Frank and 

Ekman, 1997; Sebanz and Shiffrar, 2009), and thus it may involve comparisons with 

stored internal models of the observed action (Wolpert et al., 2003). Transcranial 

magnetic stimulation (TMS) offers the unique possibility to non-invasively stimulate 

the motor cortex and assess its activity by recording motor-evoked potentials (MEPs). 

Studies have shown that watching others‟ actions increases the amplitude of MEPs 

recorded from those muscle that would be involved in the observed actions (Fadiga et 

al., 2005), suggesting that seeing actions triggers action resonance in the motor system. 

Notably, the motor system shows an anticipatory bias in the  simulation of future phases 

of observed actions (Borroni et al., 2005; Urgesi et al., 2010), and it is modulated by 

watching erroneous actions (Aglioti et al., 2008). Thus, when seeing FAs, the detection 

of kinematic cues violating the predicted action may specifically modulate motor 

resonance processes. The inferior frontal cortex (IFC, including inferior frontal gyrus 

and ventral premotor cortex) represents a key region within the neural network 

mediating action simulation, i.e. the action observation network (AON; Avenanti and 

Urgesi, 2011). This region modulates action resonance processes (Avenanti et al., 2007, 

2012b), is recruited when processing kinematic (Saygin et al., 2004; Majdandzic et al., 

2009) and goal (Gazzola et al., 2007; Cattaneo et al., 2010) components of seen actions, 

and is sensitive to action intentionality (Iacoboni et al., 2005; de Lange et al., 2008). 

Notably, the only previous study exploring neural correlates of deceptive intentions 
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recognition has shown that neural activity in IFC discriminates between FAs and 

truthful actions (TAs) (Grèzes et al., 2004); however, this IFC activation fell outside the 

classical AON. Moreover, a similar modulation was found in the temporo-parietal 

junction (TPJ), a region often associated with mental state attribution (Saxe and Powell, 

2006; Frith and Frith, 2006). Critically, imaging cannot establish a direct causal link 

between brain and function, and to date no studies have tested whether the IFC (or TPJ) 

is necessary for recognition of FAs. Here, we provide correlational and causative 

evidence that action simulation is actively involved in such recognition. We recorded 

MEPs to single-pulse TMS to directly investigate whether observation of FAs 

modulates action resonance processes when  performing a Faked-Action-Discrimination 

(FAD) task. Then, we tested the critical role of the AON sector of IFC (and of TPJ, as a 

control) in  recognizing FAs and TAs, by using online repetitive TMS (rTMS) during 

performance of a FAD-task and a control task.  

 

4.2 Materials and Methods  

Participants. A total of 138 healthy subjects took part in the study. Sixty subjects (28 

women, age range 19-27) participated in one of three TMS experiments, 10 subjects (6 

woman, age range 24-39) participated in an action execution experiment, and 68 

subjects (39 women, age range 20-35) were tested in one of four pilot studies. All the 

subjects were right-handed according to a standard handedness inventory (Briggs and 

Nebes, 1975), had normal or corrected-to-normal visual acuity in both eyes, and were 

naïve as to the purposes of  the experiment. None of the participants had neurological, 

psychiatric, or other medical problems or any contraindication to TMS (Rossi et al., 

2009). Participants provided written informed consent, and the procedures were 

approved by the ethics committee at the Department of Psychology and were in 

accordance with the ethical standards of the 1964 Declaration of Helsinki. No 

discomfort or adverse effects during TMS were reported or noticed.  

 General aims and study design. Studies of deception detection traditionally have 

focused on verbal communication. Nevertheless, people also commonly deceive others 

through nonverbal cues. Previous research has shown that intentions can be inferred 

from the ways in which people move their bodies (Ekman and O‟Sullivan, 1991; Vrij, 

2004; Bond et al., 1992; Frank and Ekman, 1997; Becchio et al., 2012).  In the present 
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study, we investigated the functional and neural mechanisms underlying recognition of 

deceptive body movements (FAs), i.e. movements in which the body is consciously 

used as an instrument for deception. We used a well established procedure in which an 

actor is asked to provide deceptive (FAs) or truthful (TAs) information regarding the 

action he/she is performing using his/her body movements only (Runeson and 

Frykholm, 1983; Grèzes et al., 2004). In particular, we asked actors to grasp, lift and 

place a cube that could be light or heavy and, in some cases (FAs), we instructed the 

actors to lift the cube as if it had a weight different from the actual weight. Thus, FAs 

were actions in which the actors pretended to lift a light cube as if it were a heavier one 

or to lift a heavy cube as if it were a lighter one. Conversely, TAs were actions in which 

the weight appearance that could be estimated by seeing the actor‟s movements 

reflected the cube‟s actual weight. In three main TMS experiments, participants were 

tested in a FAD-task, in which they saw actors lifting and placing a cube and had to 

judge whether the actor was providing deceptive (FAs) or truthful (TAs) information 

concerning the weight of the lifted cube. It should be  noted that this task was not 

designed to explore deception recognition in general but to investigate the mechanisms 

underlying recognition of deceptive body movements, in particular deceptive hand 

movements.  

In experiment 1, we used a correlational TMS  approach and recorded MEPs to explore 

motor system activity during FAD-task performance. In experiment 2 and 3 we used a 

causative approach and investigated the effect of TMS-induced virtual lesions over IFC 

or TPJ on performance in the FAD-task and in a difficulty-matched control task  that 

did not require participants to assess the presence of deceptive intents. Our findings 

suggest that action simulation activity in the motor system is sensitive to seen deceptive 

movements and is critical to visually discriminating between FAs and TAs.  

  

Experiment 1: single-pulse TMS and EMG during action observation and 

execution.   

Twenty five subjects were tested in the first experiment. Fifteen subjects (6 women, 

mean age 21.5 y, range 19-25 y) took part in a single-pulse TMS session aimed at 

exploring motor system modulation during active recognition of FAs and TAs video-

clips. To allow investigation of motor resonance with a high degree of muscle 
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specificity, in the present experiments we focused on FAs/TAs performed with the 

dominant hand, in contrast to the fMRI study of Grèzes and colleagues (2004) in which 

a FAD-task showing full body actions was used. In that study, discrimination of 

FAs/TAs modulated IFC and TPJ activity in the right hemisphere, in keeping with the 

notion that full body actions recruit right-lateralized action observation neural networks 

(Van Overwalle and Baetens, 2009). In contrast, evidence indicates that action 

simulation activity detected with single-pulse TMS is largely contralateral with respect 

to the observed effectors (Aziz-Zadeh et al., 2002; see also Shmuelof and Zohary, 2005; 

Gazzola and Keysers, 2009; Cabinio et al., 2010;  for convergent imaging evidence). 

Thus, since our stimuli depicted a right hand, in experiment 1 we stimulated the left 

motor cortex and recorded MEPs from the right hand. Two muscles were considered: i) 

the first dorsal interosseous (FDI) which is directly involved in controlling the strength 

of the grip during lifting and placing and was found to be modulated by the object‟s 

weight during observation of lifting (Alaerts et al., 2010a; Senot et al., 2011); and, as 

control muscle, ii) the flexor carpi radialis (FCR), which was found not  to be 

modulated by the object‟s weight during lifting observation and execution (Alaerts et 

al., 2010a, 2010b). To compare action observation with execution, the EMG activity 

from the right FDI and FCR muscles of 10 additional subjects (6 women, mean age 27.6 

y, range 24-39 y) was recorded during the execution of the same actions depicted in the 

video-clips. Transcranial magnetic stimulation and electromyography recording during 

action observation. MEPs were recorded simultaneously from the right FDI and FCR by 

means of a Biopac MP-150 (BIOPAC, USA). EMG signals were band-pass filtered (30-

500 Hz), digitized (sampling rate at 5 kHz) and stored on a computer for off-line 

analysis. Pairs of Ag-AgCl surface electrodes were placed in a belly-tendon montage on 

each muscle, with two further ground electrodes on the wrist and on the elbow. A 

figure-of-8 coil (70 mm diameter) connected to a Magstim Rapid2 stimulator (Magstim, 

Whitland, Dyfed, UK) was placed over the left motor cortex. The intersection of the coil 

was placed tangentially to the scalp with the handle pointing backward and laterally at a 

45˚ angle away from the midline. This orientation induced a posterior-anterior current in 

the brain, which tends to activate corticospinal neurons indirectly via excitatory synaptic 

inputs (Di Lazzaro et al., 1998). The orientation was chosen based on the finding that 

the lowest motor threshold is achieved when the induced electric current in the brain is 
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flowing approximately perpendicular to the central sulcus (Brasil-Neto et al., 1992; 

Mills et al., 1992). Participants wore a tightly fitting bathing cap on which the coil was 

moved over the left hemisphere to determine the FDI optimal scalp position (OSP). The 

OSP was then marked on the cap to ensure correct coil placement throughout the 

experiment. Stimulation intensity during the recording sessions was 120% of the resting 

motor threshold (rMT), defined as the lowest stimulus intensity able to evoke 5 out of 

10 MEPs with an amplitude of at least 50μV (Rossini et al., 1994) in the higher 

threshold muscle, namely, the FCR. This way a stable signal could be recorded from 

both muscles. Participants‟ rMT ranged from 41% to 74% (mean ± s.e.m.: 58% ± 2.16) 

of the maximum stimulator output.  

 

Stimuli and Task 

A non-professional male actor was videotaped while reaching, grasping, lifting and 

placing a cube on a shelf with his right hand (see Figure 1). Two cubes with identical 

visual appearance (size: 5x5x5 cm) but different weight (50g, 650g) were used. During 

the first part of the recording session, the experimenter correctly informed the actor 

about the cube‟s weight (TA). In a second part of the recording, the experimenter 

correctly informed the actor about the cube‟s weight and instructed him to lift the cube 

as if it had a different weight (FA); that is, in some trials the actor pretended to lift the 

light (50g) cube as if it weighed 650g (apparently heavy weight), and in other trials he 

pretended to lift the heavier (650g) cube as if it weighed 50g (apparently light weight). 

Four types of videos were created following a 2 (weight appearance: light, heavy) x 2 

(action type: TA, FA) design: apparently light TA, apparently heavy TA, apparently 

light FA, apparently light FA. For TAs, weight appearance reflected the  cube‟s actual 

weight, while for FAs weight appearance provided deceptive information about the real 

weight. The clips were black and white videos of 5000 ms duration (30 fps) subtending 

17.3 x 13.2 degrees of visual angle. We used B&W  videos to prevent local changes in 

skin tone due to hand contraction from conveying information about the real weight of 

the cubes. Videos were carefully checked for the absence of local hand information. 

Moreover, kinematics analyses (see below) were carried out to ensure that movies 

contained subtle movement cues that could be used to detect actor‟s intent to deceive.   
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Figure 1. Timeline for the Faked-action-discrimination (FAD) task in experiment 1 (A), experiments 2 

and 3 (B), and for the Spatial-control (SC) task in experiments 2 and 3 (C). IFC and TPJ stimulation sites 

(white circles) (D) reconstructed on a standard template using MRIcro (v1.40; http://www.mricro.com). 

 

Two different versions of each visual stimulus  type were used in the single-pulse TMS 

session, based on the result of a pilot psychophysical experiment performed on 25 

subjects (19 females, mean age 25.88 y, range 20-33 y) not participating in the TMS 

study. This psychophysical experiment was aimed at selecting TA and FA clips that 

were recognized with ~75% accuracy among an initial sample of 60 clips. Thus a total 

of 8 different clips were presented in experiment 1. To maximize the probability that, 

during action observation, perceivers would access stored internal models of the 

observed actions, in a preliminary phase of experiment 1, participants were asked to lift 

the same two cubes used in the video-clips (about 20 times each, random presentation). 

Then they performed the FAD-task (Figure 1A): subjects were informed that they had to 

observe an actor lifting a cube, and that in some cases the actor lifted the cube as if it 

were heavier or lighter than its actual weight. Participants‟ task was to decide (forced 

choice) whether or not the actor was trying to deceive them concerning the cube‟s real 

weight. The experiment began with a practice block of 24 trials (3 presentation x 8 

videos; accuracy ± s.e.m., 75% ± 2) during which responses were collected by keypress. 

During MEP recording, participants provided verbal responses (“Yes/No”) only at the 

end of each video, while the experimental question was on the screen (“Did the actor try 

to deceive you?”). The very same procedure was used in the pilot psychophysical study 

except that all the responses were collected by keypress.  
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Procedure   

Action observation. The experiment was programmed using custom software 

(developed in C#) to control the video-clip sequence and trigger TMS. Participants were 

tested in seven TMS blocks. The first and the last block (15 trials each) served as 

baseline: subjects kept their eyes closed with the instruction to imagine watching a 

sunset at the beach (Fourkas et al., 2008; Borgomaneri et al., 2012). In the remaining 

experimental blocks (32 trials each), participants were presented with the FAD-task. 

Each trial started with a gray screen (1000 ms duration) followed by the clip (5000 ms); 

during the clip a TMS pulse was delivered and MEPs from the FDI and FCR were 

recorded. For each trial, a TMS pulse was randomly delivered in the second half of the 

clip (covering the lifting and placing phase). The overall experimental design included a 

combination of 2 Muscle (FDI, FCR), 2 Action type (TA, FA) and 2 Apparent weight 

(light, heavy). Each video-clip was repeated 20 times, resulting in a total of 160 trials 

(equally) distributed across  the 5 blocks (40 MEPs per condition and muscle). Video-

clips were presented in a random order. In order to avoid changes in excitability due to 

verbal response (Tokimura et al., 1996; Meister et al., 2003), participants were invited 

to answer only at the end of each clip, a few seconds after the TMS pulse. After 

response, the screen appeared black for 4-6 sec. This way the inter-pulse interval was 

>10 sec, thereby avoiding changes in motor excitability due to TMS per se (Chen et al., 

1997). This was directly confirmed by the lack of changes in MEP amplitude between 

the first (mean amplitude ± s.e.m.: FDI: 1.42mV ± 0.24; FCR: 0.42mV ± 0.09) and the 

last baseline block (FDI: 1.77mV ± 0.25, t13 = -1.53, p = 0.15; FCR: 0.55 mV ± 0.12, 

t13 = -1.57, p = 0.14). Action execution. To compare action observation with execution, 

ten additional subjects (not participating in the single-pulse TMS experiment) were 

asked to reach, grasp, lift and place a cube on a shelf with their right hand while EMG 

activity from the right FDI and FCR was recorded by means of the electromyograph. 

The very same cubes (size: 5x5x5; weight: 50gr, 650gr) and apparatus of the TMS 

session were used. Four types of actions were performed: apparently light TAs, 

apparently heavy TAs, apparently light FAs, and apparently light FAs. Each condition 

included 12 action execution trials that were performed in two separate blocks of 6 trials 

each. Thus, eight blocks were carried out, one for each movie of the TMS session. In 
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each block, a brief practice phase was initially performed. During the practice phase 

participants were asked: i) to watch one of the movies depicting a FA/TA on a 

light/heavy cube (6 times); ii) to perform the observed action on the same cube (as 

shown in the movie) during online presentation of the clip (6 times). After this practice 

phase, subjects were asked to keep lifting the cube in that way (FA/TA) without any 

movie (12 times) and their EMG signal was recorded. In each trial, subjects placed the 

arm and hand in a resting position with their muscle relaxed. Online EMG signal was 

visually inspected to check muscle relaxation. Subjects performed the action after a go 

signal. A custom-made electrical circuit signaled when the cube was lifted from the 

initial position and placed on the final position. This procedure allowed assessment of 

action execution using the same temporal frame as that used for MEP recording during 

action observation.  

 

Data handling   

Kinematic parameters. Spatio-temporal (arm acceleration, duration), configurational 

(wrist angle, grip aperture) and spatial (arm vertical peak) kinematic parameters of the 

actor‟s right arm were extracted on a frame-by-frame analysis using a custom Matlab 

script (Matlab, Mathworks) and processed off-line. Maximal grip aperture before and 

while grasping the cube was measured as the distance between the tips of the thumb and 

of the index finger (measured in pixels and converted in cm). Arm vertical peak and arm 

acceleration was measured with reference to the position of dorsal aspect of the wrist (in 

cm). For grip aperture and arm vertical peak data, a factorial ANOVA with Action type 

(TA, FA) and Apparent weight (light, heavy) as between movies factors was performed. 

For the other kinematic parameters, we also considered the specific phase of the 

movement and distinguished between lift and place phases. The lifting phase lasted 

from the start of cube displacement to the wrist vertical peak. The placing phase lasted 

from arm vertical peak until the end of object displacement as the object was put on the 

shelf (Alaerts et., 2010b). Arm acceleration was measured with reference to the position 

of the dorsal aspect of the wrist. Movement duration (ms), arm acceleration (cm/sec) 

and wrist angle (degree) were entered into mixed-model ANOVAs with Action type 

(TA, FA), and Apparent weight (light, heavy) as between movies factors, and Phase 

(lift, place) as a within movies factor. In these and in all the following ANOVAs, post-
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hoc analysis was carried out by means of Newman-Keuls test. EMG during action 

execution. EMG data were processed off-line. For each trial, the root mean square of the 

rectified EMG signal was measured from lifting to placing. The root mean square of the 

rectified EMG signal in the 100 ms preceding each go signal was considered as 

baseline. The mean EMG signal for each condition was expressed as a percentage from 

the baseline (EMG ratios) and analyzed using a three-way repeated-measure ANOVA 

with Muscle (FDI, FCR), Action type (TA, FA) and Apparent weight (light, heavy) as 

within subjects factors. To ensure that any change in EMG level during execution was 

not due to changes in preceding muscle tone, a further Muscle x Action type x Apparent 

weight ANOVA was performed on baseline EMG level.  MEPs during action 

observation. One subject was discarded due to technical failure in MEP recording. 

Neurophysiologic data were processed off-line. MEPs associated with erroneous 

responses (21%) were removed from the analysis; moreover, trials with an EMG 

background activity > 10μV in the 100ms interval prior to the TMS pulse were 

separately discarded for FDI (11%) and FCR (8%). This procedure left more than 24 

MEPs per experimental condition, muscle and subject. The peak-to-peak mean MEP 

amplitude (in mV) in each experimental condition and  baseline block was measured. 

To reduce skewness, a logarithmic transformation was applied to mean MEP amplitudes 

[Log(value+1)] and MEP ratios (% of baseline blocks) were computed for each 

experimental condition. MEP ratios were entered into a three-way repeated-measures 

Muscle x Action type x Apparent weight ANOVA. To ensure that any MEP modulation 

was not due to changes in EMG background, a similar Muscle x Action type x Apparent 

weight ANOVA was conducted on the root mean square of the rectified EMG signal 

recorded in the 100 ms preceding the TMS pulse.   

 

Experiment 2 and 3: repetitive TMS during action observation.  

To investigate the neural bases of FA recognition, in experiment 2 we used online rTMS 

and tested the role of IFC (IFC stimulation group: 15 subjects, 7 women, mean age 21.9 

y, range 20-24 y) and TPJ (TPJ stimulation group: 15 subjects, 8 women, mean age 22.0 

y, range 19-25 y) in FAD. An additional IFC group (15 participants; 7 women, mean 

age 21.8 y, range 20-27 y) was tested in experiment 3.  In both the experiments, we 

tested the hypothesis that the anterior node of the AON is critical for FAD. Experiment 
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1 showed that our FAD-task modulated the left motor cortex, confirming the rationale 

for selecting the left hemisphere during processing of right hand actions (Aziz-Zadeh et 

al., 2002; Shmuelof and Zohary, 2005). Studies suggest that during action observation 

the left motor cortex is influenced by activity from the action observation sector of the 

left IFC (Avenanti et al., 2007, 2012b). This region is known to be active during action 

observation and execution (Buccino et al., 2004; Molnar-Szakacs et al., 2005; 

Costantini et al., 2005; Gazzola et al., 2007; Kilner et al., 2009) and interference with 

this area impairs visual discrimination of static pictures depicting different actions/body 

postures (Urgesi et al., 2007a, 2007b; Candidi et al., 2008). In view of this, in 

experiments 2 and 3 we used rTMS to stimulate the action simulation sector of the left 

IFC. To avoid unwanted effects of hemispheric differences, as an active control site, we 

stimulated the TPJ in the same hemisphere. Notably, the left TPJ is a key region of a 

neural network involved in mentalizing (Ciaramidaro et al., 2007). Left TPJ is not only 

recruited when reasoning about the mental states of others (Young et al., 2011; Saxe and 

Powell, 2006). This region is specifically active when reading others‟ intentions during 

lying judgments (Harada et al., 2009) and, critically, it is also necessary for correct 

mentalizing, since lesions in this region impair the ability to make inferences about 

others‟ beliefs and to  read others‟ intentions and desires (Samson et al., 2004; Apperly 

et al., 2004; Chiavarino et al., 2010). Therefore, stimulation of the left TPJ appears to be 

the ideal control condition for stimulation of the left IFC and it allows a direct contrast 

between  critical nodes of the Mentalizing network and AON in the recognition of FAs.  

Stimuli and tasks.  In experiments 2 and 3, participants underwent the same FAD-task 

used in experiment 1: they were presented with TAs and FAs and had to judge whether 

the actor was trying to deceive them about the cube‟s weight (Figure 1B). To augment 

stimulus variability for the behavioral test, we increased the number of recorded clips, 

weights and actors. Six non-professional actors were thus videotaped while reaching, 

grasping, lifting and placing a cube on a shelf. Three visually identical cubes (size: 5 x 5 

x 5 cm) with different weights (50g, 350g or 650g) were used. Using the same 

procedure described for experiment 1, we created new TA and FA clips. Two 

experimenters initially selected 12 actions for  each actor from a pool of about 100 clips. 

The selected actions consisted of 6 TAs and 6 FAs: TA stimuli included two different 

versions of light (50g), medium (350g) and heavy cubes (650g); FA stimuli included 
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two apparently light FAs (350g and 650g cubes moved as if they were 50g), two 

apparently medium FAs (50g and 650g cubes moved as if they were 350g) and two 

apparently heavy FAs (50g and 350g cubes moved as if they were 650g). A preliminary 

analysis performed on the temporal duration of lifting and placing (the main kinematic 

parameter that was found to differentiate visual conditions in experiment 1) suggested 

that for each weight appearance, the two FA recordings were not different in terms of 

variability relative to the two correspondent TA  recordings. However, movement 

duration of FAs was more variable than of TAs: this was because the pool of FAs 

included movements that represented an exaggeration of the correspondent TAs (for 

example apparently heavy FAs were slower than heavy TAs and apparently light FAs 

tended to be faster than light TAs; see also experiment 1). This suggests that recognition 

of FAs and TAs in the FAD-task may rely on the monitoring of spatio-temporal cues in 

the observed actions (see experiment 1 for analyses of additional kinematic parameters 

differentiating the two classes of action). The 72 clips (12 clips x 6 actors) were tested 

in a psychophysical experiment in which a group of 20 participants (10 females, mean 

age 22.2 y, range 20-30 y) performed a FAD-task. Based on their performance, we 

selected a total of 26 clips (13 TAs, 13 FAs) from three actors that were recognized with 

~75% accuracy. In the final sample, for each actor, an equal number of TA and FA clips 

was shown.  For the FAD-task, two types of response were scored as correct, namely, a 

“yes” response to FAs (hits) and a “no” response to TAs (correct rejection). Two types 

of response were scored as incorrect, namely, a “yes” response to TAs (false alarms) 

and a “no” response to FAs (misses). This procedure enabled us to determine task 

sensitivity (d‟) and criterion (c) indices of the task signal detection method (Green and 

Swets, 1966).Kinematic analysis of movies in experiment  1 suggested that recognition 

of deceptive body movements mainly relied on the processing of  spatio-temporal (e.g. 

acceleration, movement duration) and configurational (wrist angle) cues differentiating 

FAs and TAs. To evaluate the specific role of IFC and TPJ in extracting deceptive 

intents from spatio-temporal and configurational action cues, a Spatial control (SC) task 

not requiring such processing was designed. During the SC-task the same set of clips 

used  for FAD-task were presented and subjects had to decide (forced choice) whether a 

white dot presented for 350 ms at the end of each clip was located inside or outside the 

trajectory covered by the hand during the action (Figure 1C). This task required 
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participants to maintain a global visuo-spatial representation of the hand path without 

the necessity to attend to subtle changes in acceleration or posture/configuration which 

are critical to detecting deceptive movements. For the SC-task two types of response 

were scored as correct, namely, a “yes” response to dot-on-trajectory (hits) and a “no” 

response to dot-outside-trajectory (correct rejection). Two types of response were 

assigned as incorrect, namely, “yes” response to dot-outside-trajectory (false alarms), 

“no” response to dot-on-trajectory (misses). Indices of task sensitivity (d‟) and criterion 

(c) were estimated for the SC. A further psychophysical study (16 subjects, 7 female, 

mean age 24.4 y, range 20-32 y) was run to assess performance in the two tasks. 

Subjects were able to discriminate TAs and FAs in the FAD-task (d' = 1.26) and to 

correctly respond to the SC-task (d' = 2.00). Performance in the SC-task appeared non-

significantly higher than in the FAD-task (t15= 3.79; p = 0.07). In experiment 3 the SC-

task was made more difficult by changing the position of the dot only in those trials of 

experiment 2 in which accuracy was 90-100%. This procedure was successful in 

matching the difficulty of the two tasks (see results section).  Neuronavigation.  Coil 

position was identified on each participant‟s scalp with the SofTaxic Navigator system 

(Electro Medical Systems, Bologna, Italy) (Avenanti et al., 2012a; Urgesi et al., 2007a, 

2007b; Bertini et al., 2010; Serino et al., 2011). Skull landmarks (nasion, inion, and two 

preauricular points) and about 100 points providing  a uniform representation of the 

scalp were digitized by means of a Polaris Vicra digitizer (Northern Digital Inc, 

Ontario, Canada). Coordinates in Talairach space were automatically estimated by the 

SofTaxic Navigator from an MRI-constructed stereotaxic template (Figure 1D). The 

IFC scalp location that corresponded best to the  pars opercularis of the left inferior 

frontal gyrus (at the border with the ventral premotor cortex) was identified by means of 

the SofTaxic Navigator system and marked with a pen. On the basis of previous fMRI 

(Buccino et al., 2004;  Molnar-Szakacs et al., 2005; Costantini et al., 2005; Gazzola et 

al., 2007) and TMS studies (Urgesi et al., 2007a, 2007b; Candidi et al., 2008; Avenanti 

et al., 2007, 2012b) we targeted the left IFC at coordinates (mean ± s.e.m.): x = -57 ± 

0.4; y = +13 ± 0.3 ; z = +24 ± 0.3 (experiment 2); and: x = -57 ± 0.2; y = +13 ± 0.2 ; z = 

+24 ± 0.1 (experiment 3). Previous studies have shown that this region is active during 

action execution and observation (Kilner et al., 2009) and may play a role in action 

perception (Cattaneo et al., 2010; Avenanti and Urgesi, 2011). As a control, in 
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experiment 2 we targeted the scalp location that corresponded best to the TPJ at 

coordinates: x = -63 ± 0.2; y = -44 ± 0.4; z = +22 ± 0.2. The coordinates were chosen 

based on the study by Grèzes et al., 2004 but, to avoid unwanted effects of hemispheric 

differences, we selected the site in the left hemisphere. Notably this region is active 

when reading others‟ intentions during lying judgments (Harada et al., 2009) and 

damage to it impairs the understanding of others‟ intentions (Chiavarino et al., 2010). 

Stimulation of IFC and TPJ may cause contraction of facial and temporalis muscle 

fascia, respectively. To rule out that  any differential effect of IFC/TPJ stimulation on 

performance was simply due to any difference in peripheral sensations, we performed a 

TMS pilot study on 7 subjects (3 women, mean age 25.4 y, range 20-35) not 

participating in the main experiments. Each subjects received 2 trains of rTMS over the 

left IFC and over the left TPJ (randomized order) using the same coordinates and 

stimulation parameters as used in experiment 2-3. Subjects were asked to report the 

unpleasantness of the scalp sensation by using a 10-cm visual analogue scale with 0 cm 

indicating “no effect” and 10 cm “maximal effect imaginable”. Ratings were low and 

comparable for the left IFC (2.37 ± 1.7) and left TPJ stimulations (1.83 ± 0.93;  t7 = 

0.77,  p = 0.47). These findings suggest that peripheral sensations do not likely explain 

differential behavioral effect due to IFC/TPJ stimulation.  Procedure.  Experiments 2 

and 3 were carried out using the same apparatus, instruments and software as used in 

experiment 1. Before starting the rTMS session, subjects underwent a practical training 

as described for experiment 1 (cube lifting). Then the OSP and the individual rMT of 

the right FDI were determined (Rossini et al., 1994). After neuronavigation, subjects 

were presented with task instruction and an example of the stimulus presentation 

timeline. Each subject performed the FAD- and SC-task in two separate rTMS sessions 

presented in a counterbalanced order and separated by a 20 minute break. For each task, 

2 blocks of 13 active-rTMS trials and 2 blocks of 13 Sham-rTMS trials were performed 

following an ABBA counterbalanced order. Each trial started with a grey screen (1000 

ms duration) followed by the clip (5000 ms). In both tasks (FAD, SC) a white dot at the 

end of each movie was presented for 350 ms followed by the response screen (FAD-

task: “Did the actor try to deceive you?”; SC-task: “Was the dot on the hand 

trajectory?”) that remained active until response by keypress (“Yes/No”). Then, a black 

screen appeared in the inter-trial interval (lasting 8-12 sec). In both experiments and 
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tasks, participants were asked to respond as quickly and accurately as possible by 

keypress, using the index and middle fingers of the left hand (ipsilateral to the 

stimulation site). On each trial, a time-locked single train of 6 Hz rTMS (12 pulses, 2 

sec) was delivered when the actor‟s hand touched the cube (Figure 1B,C). The rTMS 

train covered the entire lifting and placing phase of all clips. Pulse intensity was set at 

90% of rMT. Values of rMT (mean ± s.e.m.) were comparable across the three groups 

(IFC exp 2:  58% ± 1.5; TPJ exp 2: 56 % ± 2.9; IFC exp 3: 61% ± 2.3; F2,24 = 0.87, p = 

0.42).  

 

Data Handling.   

Behavioral data were processed offline. In experiment 2 and 3 and in the 

psychophysical studies, accuracy converted into a measure of sensitivity (MacMillan, 

Creelman, 1991) was measured for each task (FAD, SC) and rTMS condition (Active, 

Sham). Outliers with performance exceeding the sample mean ± 2 st.dev. were removed 

(1 subject from each group in experiment 2). In experiment 2, a mixed-model ANOVA 

was performed on d‟, c and response time (RT) with rTMS (Active, Sham) and Task 

(FAD, SC) as within-subjects factors, and Stimulation site (IFC,TPJ) as a between-

subject factor. In experiment 3, a repeated measure ANOVA was performed with rTMS 

(Active, Sham) and Task (FAD, SC) as within-subjects factors.     

 

4.3 Results    

Experiment 1 Actor’s arm kinematic pattern  

Movement duration. The Action type x Apparent weight x Phase ANOVA on 

movement duration (expressed in ms) revealed a significant main effect of Phase (F1,4 

= 18.42, p = 0.012), with longer duration for the lifting (mean duration ± s.e.m.: 610 ms 

± 50) relative to the placing phase (320 ms ± 30), a significant main effect of Action 

type and of Apparent weight (all F > 18.00, p < 0.01) and, importantly, an interaction 

between the two (F1,4 = 128.00, p < 0.001; Figure 2A). Post-hoc analysis revealed a 

longer mean duration for apparently heavy TAs (490 ms ± 80) than for apparently light 

TAs (420 ms ± 40;  p  =  0.001); the duration of apparently heavy FA (580 ms ± 160) 

was significantly longer than that of apparently heavy TAs (p < 0.001), while the 
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duration of apparently light FAs (380 ms ± 60) was shorter than that of apparently light 

TAs (p  = 0.007). No other significant interactions were found (all F < 2.17, p > 0.22).   

Wrist acceleration. The Action type x Apparent weight x Phase ANOVA on mean 

acceleration (in cm/sec) of the wrist revealed non-significant main effects of Apparent 

weight and of Action type (F < 5.54, p > 0.078), and a significant Action type x 

Apparent weight interaction (F1,4 = 10.94, p = 0.03;  Figure 2B) with greater 

acceleration for apparently light FAs (204.37 cm/sec ± 12.35) relative to the other three 

conditions (all < 142.41 cm/sec ± 14.70; all comparisons p < 0.046). No other 

significant main effects or interactions were found (all F < 1.67, p > 0.26). An 

additional Action type x Apparent weight ANOVA performed on wrist acceleration 

peak (in cm/sec) revealed a marginally significant main effect of Apparent weight (F1,4 

= 6.49, p = 0.06) with greater acceleration peak for apparently light actions (353.83 

cm/sec ± 33.65) relative to apparently heavy actions (296.77 cm/sec ± 18.74; Figure 

2C). No other main effects or interactions were found (all F < 4.83, p > 0.09).   

Grip aperture. The Action type x Apparent weight ANOVA on maximal grip aperture 

during the reaching phase (in cm) showed no significant main effects or interaction (all 

F < 8.57, p > 0.21; mean aperture across videos: 9.04 cm ± 0.31).  Similarly, the Action 

type x Apparent weight ANOVA on grip aperture during the lifting/placing phases (in 

cm) revealed no significant main effects or interactions (all F < 0.34, p > 0.66; mean 

aperture across videos: 6.17 cm ± 0.03).  

Arm vertical peak. The Action type x Apparent weight ANOVA on arm vertical peak 

(in cm) revealed only the main effect of Action type (F1,1 = 13.79, p = 0.02; Figure 2D) 

with higher arm peak height during TAs (27.70 cm ± 0.52) relative to FAs (25.94 cm ± 

0.28). No other significant main effects or interactions were found (all F < 2.87, p > 

0.16).  

Wrist Angle. The Action type x Apparent weight x Phase ANOVA on wrist angle 

degree (in°) revealed only the main effect of Action type (F1,1 = 18.55, p = 0.01; Figure 

2E) with greater wrist angle during FAs (168.46° ± 1.27) relative to TAs (162.01° ± 

3.93). No other significant main effects or interactions were found (all F < 3.77, p > 

0.12).   
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Figure 2. Kinematic parameters of the movements performed by the actor in the FAD movies. Movement 

duration (A); Mean wrist acceleration (B); wrist acceleration peak (C); wrist vertical peak (D); wrist angle 

(E). Asterisks indicate significant comparisons (p < 0.05). The § symbol indicates marginally significant 

comparisons (p = 0.06). Error bars denote s.e.m. 

 

In sum, kinematic data suggest that during FAs  the actor effectively/successfully 

modulated the acceleration peak of his arm in order to deceive the observer. However, 

the total duration of the FAs was exaggerated relative to that of the correspondent TAs 

(Brault et al., 2012): lifting and placing in the apparently heavy FAs (i.e. light cube 

moved as if it was a heavy cube) lasted longer than in the heavy TAs; whereas 

movements were faster in the apparently light FAs than in the light TAs. As a result, 

movement duration in the FAs was more variable than in the TAs and in principle 
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observers could monitor such spatio-temporal information to solve the FAD-task. 

Moreover, mean acceleration of the wrist for apparently light (but actually heavy) cubes 

was greater than for all the other visual conditions both during lifting and placing. In 

addition, the arm vertical peak was lower and the wrist angle was greater during FAs 

relative  to TAs. Thus, the actor‟s intention to deceive affected spatio-temporal (mean 

arm acceleration/duration of lifting and placing) and configurational (max wrist angle) 

but also spatial (arm vertical peak) features of the performed action, and observers could 

rely on these subtle visual cues to accurately detect the intent to deceive. In contrast, the 

findings that grip aperture before or during lifting/placing phases was not different in 

the different conditions and the fact that videos were checked for the absence of changes 

in skin tone due to hand contraction, suggest that local  information about the hand 

could not be used to  

perform the FAD-task.  

 

EMG activity during action execution.  

EMG during execution. Overall, during action execution, the EMG signal increased 

+207% with respect to the baseline levels. The Muscle x Apparent Weight x Action 

Type ANOVA performed on EMG ratios revealed a significant main effect of Action 

Type (F1,9 = 9.35, p = 0.014), a significant Action Type x Apparent Weight interaction 

(F1,9 = 28.49, p < 0.001) and, importantly, a significant three-way interaction (F1,9  = 

9.05,  p = 0.015). To further analyze this interaction, two separate Action type x 

Apparent weight ANOVAs were carried out, one for each muscle.  The ANOVA 

performed on the FDI (Figure 3A) showed no main effect of Apparent Weight (F1,9  = 

0.03, p = 0.86), a significant main effect of Action type (F1,9  = 32.92, p < 0.001) and, 

importantly, a significant two-way interaction (F1,9  = 33.42, p < 0.001). This 

interaction was entirely driven by the effect of the real weight of the cube: indeed, 

higher EMG level was found for the two conditions in which a heavy cube was lifted 

(TA, apparently heavy: 207% ± 14; and FA, apparently light: 236% ± 12) relative to the 

two conditions in which a light cube was lifted (TA, apparently light: 148% ± 5; and 

FA, apparently heavy: 171% ± 17; all comparisons p < 0.043). Both the former (p = 

0.09) and the latter (p = 0.15) two conditions did not differ from one another.  The 

ANOVA performed on the FCR (Figure 3B) revealed a non-significant main effect of 
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Apparent Weight (F1,9  = 1.12, p = 0.32), a marginally significant main effect of Action 

type (F1,9   = 4.43, p =  0.065) and, importantly, a significant two-way interaction (F1,9  

= 19.43, p = 0.002). Higher EMG level was found when heavy objects were lifted as if 

they were light objects (apparently light FA: 271% ± 26) relative to the other three 

conditions (all < 218% ± 21; p < 0.006) which in turn did not differ from one another 

(all p > 0.18).  

Figure 3. Results from experiment 1. Left panels show EMG activity recorded from the FDI (A) and 

the FCR (B) muscles during action execution. Right panels show MEP amplitudes recorded from the FDI 

(C) and the FCR (D) muscles during action observation. Light and dark gray columns indicate lifting 

actions with apparently heavy and light weight cubes respectively. During action execution, activity in the 

FDI muscle (A) was driven by the real weight of the object: greater EMG level was found for heavy 

(apparently heavy TA; apparently light FA) relative to light cubes (apparently light TA; apparently heavy 

FA). Activity in the FCR muscle was enhanced when a heavy weight was moved as if it were a light 

weight (B). During action observation, MEPs recorded from the FDI muscle were greater for apparently  

heavy than light weight and for faked- (FA) relative to truthful-actions (TA) (A). MEPs recorded from the  
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FCR muscle were greater when observing apparently light FAs relative to the other conditions (B). 

Asterisks indicate significant comparison (p < 0.05). Error bars denote s.e.m. 

 

EMG background level.  A further Muscle x Action type x Apparent weight ANOVA 

was performed on background EMG activity in the 100 ms preceding the go signal. The 

ANOVA showed a non-significant main effect of muscle (F1,9  = 3.59,  p = 0.09; FDI: 

0.093mV ± 0.002; FCR: 0.082mV ± 0.006), suggesting that during baseline participants 

slightly preactivated the FDI muscle which is critically involved in grasping. Note that 

this slight contraction during baseline may have underestimated the FDI signal increase 

during lifting and placing execution (represented as a percentage of baseline in Figure 

3A) relative to the FCR muscle.  However, no other main effects or interactions 

approached significance (all F < 2.44, p > 0.15). Thus, the differential pattern of FDI 

and FCR EMG activity during execution of the different types of motor acts cannot be 

ascribed to changes in the muscle tension preceding action execution. In sum, EMG 

recording revealed that the two muscles differentially contributed to the execution of the 

different action conditions. The FDI muscle was modulated by the real weight of the 

cube more than the specific action type, in keeping with the evidence that hand muscles 

are critically involved in modulating grip force during lifting (Alaerts et al., 2010a; 

Senot et al., 2011).  In contrast, the FCR was not modulated by the real weight of the 

cube during TAs, in line with the notion that FCR is less directly involved in 

modulating arm force during „normal‟ (TA) lifting and placing actions (at least when 

using weights <2.1 kg as in Alaerts et  al., 2010a, 2010b). The FCR showed increased 

activity only in the apparently light FAs, reflecting the greater wrist effort and/or 

postural adjustment associated with lifting a heavy cube as if it were a light cube.   

 

Observers’ motor reactivity to actor’s actions.  

MEPs data. Overall, during the FAD-task MEP amplitudes increased +138% with 

respect to the baseline level. The Muscle x Action type x Apparent weight ANOVA 

performed on MEP ratios  revealed a main effect of Action type (F1,13 = 17.96, p < 

0.001), a Muscle x Action type interaction (F1,13 = 9.37,  p < 0.001), and, importantly, 

a significant three-way interaction (F1,13 = 9.03,  p = 0.01). To further analyze this 

interaction, two separate Action type x Apparent weight ANOVAs were carried out, one 

for each muscle.  The ANOVA performed on the FDI muscle (Figure 3C) revealed a 
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main effect of Apparent weight (F1,13 = 6.22, p = 0.03) with greater amplitudes during 

the observation of apparently heavy (139% ± 6) relative to apparently light weights 

(132% ± 6). This finding is in keeping with the evidence that observing heavier objects 

being lifted increases the excitability of the FDI muscle that is directly involved in the 

observed action (Alaerts et al., 2010a; Senot et al., 2011). The ANOVA also showed a 

main effect of Action type (F1,13 = 5.88, p = 0.03) with greater MEPs recorded during 

FAs (137% ± 6) relative to TAs (134% ± 6). No interaction between factors was found 

(F1,13 = 0.07, p = 0.79). The ANOVA performed on FCR (Figure 3D) showed no main 

effect of Apparent weight (F1,13 = 0.13,  p = 0.72) but a main effect of Action type 

(F1,13 = 16.13,  p = 0.001) and, importantly, a significant Action type x Apparent 

weight interaction (F1,13 = 7.01, p = 0.02). MEPs were greater during observation of 

heavy objects being lifted as if they were light objects (apparently light FA: 150% ± 16) 

relative to the other three conditions (all < 141%± 14; p < 0.05) which in turn did not 

differ from one another (p > 0.12).   

 EMG background level.  To check whether the observed changes in corticospinal 

excitability during the FAD-task were due to any change in muscle tension, a Muscle x 

Action type x Apparent weight ANOVA was performed on background EMG  activity 

in the 100 ms preceding the TMS pulse. The ANOVA did not show any significant 

main effects or interactions (Fs < 2.74, ps > 0.12; mean EMG signal: 0.026mV ± 0.001). 

In sum, experiment 1 shows a differential contribution of muscles controlling the hand 

(FDI) and the wrist (FCR) when lifting and placing objects and, importantly, it 

highlights the specific involvement of the cortical representation of the two muscles in 

the simulation of observed FAs/TAs.  During execution, the FDI critically contributed 

to the control of grip force, with a specific modulation as a function of the actual weight 

of the cube. By contrast, the FCR was not modulated by the different weights during 

TAs. However, there was an increase in the FCR activity when a heavy cube was 

moved as if it were a light cube (apparently light FAs), reflecting the greater wrist 

involvement during this effortful action.   It should be noted that during action 

observation there were no apparent local visual cues on the hand signaling the actual 

involvement of the FDI muscle in the different visual conditions. Indeed, kinematic 

analysis shows that grip aperture (which is controlled by hand muscles, including the 

FDI) was similar in all the movies. Moreover, no local information about hand muscles 
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contraction (e.g. changes in skin tones) was present in the different videos. Thus, since 

heavy and light cubes were also visually identical, during observation, any involvement 

of the FDI muscle had to be inferred on the basis of global movement parameters (e.g. 

movement duration). Kinematic analysis suggests that accurate inference of the actual 

FDI  involvement (grip force) required monitoring of the observed actions for their 

entire duration and  integration of both configurational and spatio-temporal cues. On the 

other hand, kinematic and EMG data suggest that the greater acceleration of the wrist 

when a heavy cube was moved as if it were a light cube (apparently light FA) could 

have signaled the greater FCR involvement early. This may suggest that during 

observation FCR MEPs would reflect actual muscle involvement more accurately than 

FDI MEPs.  Indeed, MEP data show greater FCR facilitation when observing 

apparently light FAs, thus closely resembling the modulation of the FCR muscle found 

during action execution.  In contrast, FDI MEPs during action observation did not 

parallel action execution data. We found that watching apparently light and heavy 

objects being lifted differentially modulated the excitability of the observers‟ FDI 

muscle (Alaerts et al., 2010a; Senot et al., 2011), with greater “resonant” facilitations 

for apparently heavy  than for apparently light objects. Thus, during observation, the 

cortical motor representation of the FDI muscle was affected by the apparent grip force 

that could be inferred on the basis of a rough categorization of the observed movement 

as quick (light weight) or slow (heavy weight). Critically, the hand motor representation 

was also sensitive to the type of actions being observed. Greater motor excitability was 

detected in the FDI muscle when watching FAs relative to TAs, indicating that 

recognition of deceptive movements enhanced the FDI resonant facilitation.  These 

findings can be interpreted within the framework of predictive theories of action 

perception (Wilson and Knoblich, 2005; Kilner et al., 2007; Kilner, 2011; Schültz-

Bosbach and Prinz, 2007; Kokal and Keysers, 2010; Schippers and Keysers, 2011; 

Avenanti et al., 2012b) according to which understanding of others‟ actions is mediated 

by the generative and predictive functions of the AON (Kilner et al., 2004; Avenanti et 

al., 2009; Urgesi et al., 2010). According to this perspective, during action observation 

the motor system starts generating a prior expectation about the observed action (e.g. its 

goal/intention and the associated motor commands). Given this prior, the AON 

generates a prediction about the sensory consequences of the action (i.e. its expected 
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kinematics). This prediction is then compared with the actual sensory information and 

prediction errors arising from  that comparisons are returned to the higher level to adjust 

the initial prediction (Kilner, 2011; Press et al., 2011). On the basis of this framework, 

we posit that during the FAD-task, changes in motor excitability reflected a weighted 

combination of priors generated in the motor system and prediction error signals 

returning to the motor system. The pattern of FCR and FDI MEPs can be promptly 

accounted for within this framework. After motor training with the cubes and visual 

exposure to the actor‟s movies in the initial phases of the task, participants may have 

learned that actions starting with larger mean wrist acceleration (apparently light FAs) 

are likely to use the FCR muscle to a greater extent and would result in more observed 

wrist movement. Hence, during the MEP recording phase of the FAD-task, seeing 

actions starting with larger wrist acceleration may have generated the prediction of a 

greater FCR involvement which was reflected in an increased excitability of the FCR 

motor representation. In these conditions, the AON would predict greater observed wrist 

involvement (Kilner, 2011; Press et al., 2011). Because of the close correspondence 

between the predicted (prior) and the observed actions, it is likely that excitability of the 

FCR muscle reflected mainly the prior and little prediction error. This may explain the 

similarity between MEPs during action observation and EMG during action execution.  

For the FDI muscle, the MEPs did not correspond so closely to the EMG data, likely 

because kinematic cues signaling the possible involvement of the index finger were 

more ambiguous in the initial phases of the movement. It is plausible that changes in 

FDI MEPs reflected both aspects of the prior prediction and the prediction error. When 

observing TAs, changes in FDI excitability (greater MEP for heavy than for light TAs) 

mainly reflected the prior (greater index finger involvement for heavy than for light 

cubes) and little prediction error. When seeing FAs, changes in FDI excitability 

reflected the (inaccurate) prior that was likely based on initial kinematic cues. As soon 

as sensory information violating the expected kinematics was available, a (facilitatory) 

prediction error signal arising from that comparison returned to the motor system and 

affected the cortical representation of the FDI, leading to a further increase in FDI 

motor excitability. This error signal may have been used to adjust the prior and 

recognize the deceptive intent in the actor. These findings indicate that:  i) violation of 

predicted actions specifically modulates motor resonance processes with a high degree 
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of muscle specificity; and ii) different sectors of the motor system dynamically map 

kinematic features of observed actions, with differential coding for apparently light and 

heavy weight lifting, and for FAs and TAs.  

 

4.4 Experiment 2  

Results from experiment 1 confirms the notion that watching right hand actions 

increases the excitability of the observer‟s left motor cortex (Fadiga et al., 1995; Aziz-

Zadeh et al., 2002; Schütz-Bosbach et al., 2009; Borgomaneri et al., 2012), an effect 

that is likely mediated by activity in the left IFC (Avenanti et al., 2007, 2012b; Koch et 

al., 2010; Catmur et al., 2010), the human homologue region of the monkey ventral 

premotor cortex where mirror neurons have been discovered (di Pellegrino et al., 1992; 

Gallese et al, 1996). We found that observers‟ corticospinal system was sensitive to the 

apparent weight of observed objects being lifted (that is predicted on the basis of 

internal models of action) (Alaerts et al., 2010a, 2010b; Senot et al., 2011) and 

conveyed information about the possible violation of the predicted action (during FAs). 

These findings clearly demonstrate that FAD specifically affects action simulation in 

the motor system. However, they do not establish whether the AON is also necessary 

for performing FAD. To test whether the AON plays an essential role in visual 

recognition of FAs and TAs, a second experiment was carried out using online rTMS 

during the execution of the FAD-task. The AON was targeted in its anterior node, 

namely the left IFC and as an active control site we stimulated a key region within the 

Mentalizing network, namely the left TPJ. This way we contrasted the possible 

involvement of simulative (in IFC) and mentalizing (in TPJ) processing in FAD.  

Notably, experiment 1 suggested that spatio-temporal (e.g. acceleration) and 

configurational (wrist angle) features of seen actions are critical to discriminating FAs 

and TAs and thus recognition of deceptive intents may require monitoring of such 

action cues. To check for unspecific effects of rTMS, we tested participants in a SC-task 

that required monitoring of spatial features of seen actions (hand trajectory), but not to 

read others‟ intentions based on spatio-temporal/configurational cues.  

The Task x rTMS x Stimulation site ANOVA performed on the index of sensitivity (d‟) 

revealed a main effect of Task (F1,26 = 56.76, p < 0.001) accounted for by higher 

accuracy in the SC (mean d‟ ± s.e.m.: 1.73 ± 0.46) than in the FAD-task (0.81 ± 0.21). 
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Importantly, a significant three-way interaction was found (F1,26 = 5.25, p = 0.03). To 

further analyze this interaction two separate rTMS x Stimulation site ANOVAs were 

carried out, one for each task. The ANOVA performed on  d‟  computed  from FAD-

task performance showed a significant two-way interaction (F1,26 = 7.52, p = 0.01; 

Figure 4). Post-hoc analysis indicates that the interaction was accounted for by lower 

sensitivity in the IFC group during active-rTMS (0.51 ± 0.13) in comparison to sham-

rTMS (0.97 ± 0.26; p = 0.03) and active-rTMS in the TPJ group (0.99 ± 0.26; p = 0.04). 

No change in performance was found in the TPJ group (p = 0.45). The rTMS x 

Stimulation site ANOVA performed on  d‟  computed  from SC-task performance 

showed no main effects or interactions (all F < 0.73, p > 0.40).  

 

 

Figure 4. Mean sensitivity (d‟) in the FAD-task (A) and SC-task (B) of experiment 2. Light and dark 

grey columns represent Sham- and Active-rTMS respectively. IFC Active-rTMS brought about a 

reduction in sensitivity relative to Sham-rTMS in the FAD-task (A). No change in sensitivity due to 

rTMS was observed in the SC-task (B). Asterisks indicate significant comparisons (p < 0.05). Error bars 

denote s.e.m. 

 

The Task x rTMS x Stimulation site ANOVA performed on Criterion revealed no main 

effects or interactions (all  F < 2.56,  p > 0.12;  Table 1). The Task x rTMS x 

Stimulation site ANOVA performed on RTs showed only a non-significant main effect 

of Task (F1,26 = 3.04, p = 0.09), with slightly faster responses in the SC-task (mean RT 
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± s.e.m.: 657 ms ± 175) compared to the FAD-task (751 ms ± 201). No other main 

effect or interactions (all  F < 1.38,  p > 0.25) approached statistical significance (Table 

1).  

 

 

In sum, interference with left IFC, but not with left TPJ, impaired performance in the 

FAD-task, suggesting that action simulation processes in IFC may be fundamental for 

visual discrimination of FAs and TAs. Since these two visual conditions shared the 

same apparent goal (lifting/placing), but differed in terms of spatio-temporal (e.g. 

variability of movement duration, mean acceleration peak) and configurational (e.g. 

max wrist angle) features, the suggestion is made that IFC is critically involved in the 

processing of kinematic cues that are necessary for inferring deceit from observed 

actions. No detrimental effects of IFC-rTMS were found in the SC-task requiring simple 

processing of the spatial features of seen actions. However, the SC-task was easier than 

the FAD-task. To rule out that the differential effect of IFC-rTMS in the two tasks was 

simply due to a ceiling effect, we performed a third rTMS experiments in which FAD- 

and SC-tasks were matched for difficulty.   

  

4.5 Experiment 3  

The rTMS x Task ANOVA performed on  d‟ revealed a significant interaction (F1,14 = 

5.49, p = 0.03; Figure 5) accounted for by lower performance in the FAD-task during 

active-rTMS (0.93 ± 0.24) compared to sham-rTMS (1.39 ± 0.36;  p = 0.006) and 

compared to SC-task performance during active-rTMS (1.42 ± 0.36; p = 0.01) and 

sham-rTMS conditions (1.40 ± 0.36; p = 0.02). By contrast, no change in performance 
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due to rTMS was found in the SC-task (p = 0.89) and no main effects of rTMS or Task 

were found (all F < 2.11, p > 0.17).  

-  

Figure 5. Mean sensitivity (d‟) in the FAD-task (A) and the SC-task (B) of experiment 3. Light and 

dark grey columns represent sham- and active-rTMS respectively. Active-rTMS over IFC reduced 

sensitivity in the FAD- but not in the SC-task. Asterisks indicate significant comparisons (p < 0.05). Error 

bars denote s.e.m. 
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The rTMS x Task ANOVAs performed on Criterion (all F < 2.70, p > 0.122) and RTs 

(all F < 1.00, p > 0.33) showed no main effects or interaction (Table 2).   

 

4.6 Discussion  

Perceiving FAs affects motor resonance   

People can easily identify deceptive intents from observed behavior on the basis of 

stored internal models of the observed action (Runeson and Frykholm, 1983). It is held 

that FA recognition relies on the reading of kinematic cues that violate observers‟ 

predictions of the ongoing observed action (Bond et al., 1992; Frank and Ekman, 1997). 

Acquisition of internal action models through motor experience strengthens simulative 

activity in the motor system (Calvo-Merino et al., 2006; Cross et al., 2006; Fourkas et 

al., 2008) and improves the ability to read others‟ action kinematics (Casile and Giese, 

2006; Aglioti et al., 2008). Notably, athletes present a superior ability to recognize FAs 

in their sport domain (Jackson et al., 2006; Sebanz and Shiffrar, 2009). Taken together, 

these studies suggest a link between action simulation and the ability to infer deceptive 

intents from observed kinematics. Results from experiment 1 provide the first neural 

evidence for this link by showing specific modulation of motor resonance during FA 

recognition. During execution, we found that the target FDI muscle critically 

contributed to the motor control of lifting and placing and was modulated as a function 

of the real weight of the cube, suggesting that internal models of lifting/placing may 

encode grip force and thus FDI involvement. During action observation, FDI MEPs 

were larger for apparently heavy than for apparently light cubes. This suggests that the 

motor cortex was modulated by the apparent grip force that could be predicted on the 

basis of a coarse categorization of the  observed movement as quick/slow (suggesting 

light/heavy weights, respectively; Alaerts et al., 2010b). Notably however, MEPs were 

also larger for FAs relative to TAs, indicating that processing of subtle kinematic cues 

violating the predicted actions (and revealing the deceptive intent) was associated with 

an additional facilitation of the FDI representation. Greater facilitation was not simply 

due to a semantic coding of, or arousal responses to, FAs, as evidenced by the different 

modulation detected in the FCR control muscle (see Result section).   

In keeping with predictive theories of action perception (Wilson and Knoblich, 2005; 

Kilner, 2011) we suggest that during FAD, the motor system generates an initial 
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prediction about the action and its expected kinematics. This prior prediction is then 

compared with the incoming sensory input. When a violation of the predicted action is 

detected (FAs), a prediction error signal reaches those motor representations (e.g. FDI) 

whose predicted activity did not match the actual seen kinematics. Processing these 

violations may be functionally akin to the detection of an error in the action plan. In 

keeping with this idea, studies indicate that watching erroneous actions increases 

premotor and motor cortex activity (Manthey et al., 2003; van Schie et al., 2004; 

Koelewijn et al., 2008). Moreover, basketball players watching erroneous basket throws 

show increase of motor facilitation relative to correct throws (Aglioti et al., 2008). Our 

study expands this body of evidence by  suggesting that during FAD, both prior 

predictions and their violations are encoded in the corticospinal system with a high 

degree of topographic specificity. Experiments 2 and 3 highlight the IFC as the possible 

neural locus where these processes occur and establish its critical role in visual 

recognition of FAs.  

 

Virtual lesion to IFC impairs deceptive actions recognition  

In experiment 2, we selected two key regions within the AON and Mentalizing 

networks (left IFC and left TPJ), and applied online-rTMS to test their causative role in 

FAD. We found that IFC-rTMS but not TPJ-rTMS reduced perceptual sensitivity in the 

FAD-task. No change was found in the SC-task, suggesting that reduction in 

performance in the FAD-task was not due to unspecific effect of IFC-rTMS. However, 

the SC-task was easier than the FAD-task. We thus matched task difficulty and 

performed a third experiment in which rTMS was again applied to IFC. Results from 

experiment 3 replicated the selective FAD-task impairment. These findings provide the 

first evidence that  IFC is critical for inferring deceit from observed kinematics. 

Previous research has suggested that activity in IFC is sensitive to action goals (Thioux 

et al., 2008; Gazzola et al., 2007) and intentions (Iacoboni et al., 2005; Liepelt et al., 

2008), but also to action kinematics (Majdandzic et al., 2009; Hesse et al., 2009), 

suggesting that IFC may contain multiple action representations. Importantly, recent  

investigations have started to show that IFC is necessary for action understanding 

(Avenanti and Urgesi, 2011; Moro et al., 2008; Pazzaglia et al., 2008). In a relevant 

study,  Pobric and Hamilton (2006)  demonstrated that IFC is required to estimate the 
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weight of objects from the observation of lifting actions. In that study, IFC-rTMS but 

not occipital-rTMS reduced accuracy in the weight-judgment task, but not in a pure 

„temporal‟ control-task requiring participants to estimate how long the hand was visible 

in the movies. These findings suggested that IFC was necessary for visual processing of 

action kinematics rather than for a simple evaluation of temporal information. However, 

RTs were not collected and the control tasks were clearly easier than the main task. 

Therefore, speed-accuracy trade-off or ceiling effects could not be excluded.  Our study 

provides causative evidence that the IFC is not only sensitive to action kinematics and 

intentionality but is also critical for inferring deceit from observed kinematics. By using 

Signal detection theory analysis we demonstrated that  IFC-rTMS (but not TPJ-rTMS) 

reduces perceptual sensitivity but not response bias, demonstrating a clear reduction in 

the ability to discriminate FAs and TAs. Moreover, IFC-rTMS did not impair 

performance in the  SC-task which required maintenance of a visuo-spatial 

representation of the hand path without the necessity to process spatiotemporal (e.g.  

acceleration) or configurational (e.g. wrist angle) cues that were critical for  FAD. 

Importantly, the detrimental effect of IFC-rTMS in the FAD- but not in the SC-task was 

not due to a ceiling effect. Moreover, the analysis of RTs rules out that detrimental 

effects of rTMS were due to a speed-accuracy trade-off.  These findings highlight the 

specific contribution of the anterior note of the AON to action perception. Left IFC 

appears critical for visual discrimination of actions that differ in complex 

configurational and spatio-temporal features rather  than in simple visuo-spatial (e.g. 

trajectory) or temporal (as suggested by Pobric and Hamilton, 2006) features of seen 

actions.  In sum, experiments 1-3 suggest that the analysis of action dynamics carried 

out in the motor system is critical to detecting deceit in the actions of others.   

 

Simulation vs mentalizing in FA recognition  

It has been suggested that judging deceptive actions involves two phases, namely 

recognition of cues in behavior that violate the observer‟s predictions; and ii) drawing 

inferences about intention on this basis (Bond et al., 1992; Frank and Ekman, 1997). 

The possible involvement of mentalizing in the recognition of deceits is consistent with 

the activation of the left TPJ when processing intentions during lying judgments 

(Harada et al., 2009). This region is active when reflecting on others‟ beliefs and 
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intentions (Saxe and Powell, 2006; Young et al., 2011) and its lesioning impairs the 

understanding of these mental states in others (Samson et al., 2004; Chiavarino et al., 

2010). Nonetheless, our data suggest that TPJ is less involved than IFC in FA 

recognition. This may suggest that (at least in the left hemisphere) inferential and 

mentalizing processes may be epiphenomenal to the detection of deceits from observed 

body movements which critically relies on action simulation implemented in the human 

AON.   
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5 General Discussion 

The presented studies showed the modulation (Study1 and 3) and functional role of 

sensorimotor areas (Study2 and 3) during passive (Study1) and behavioural tasks 

(Study2 and 3) requiring actions observation. Subjects were asked to perform low and 

high level information processing from visual inspection of static and dynamic hands‟ 

posture subtending different sensory features (Study2) or different actor‟s intentions 

(Study3). 

 

In Study1 we explored the possible functional involvement of the human motor system 

in the anticipatory representation of observed actions by recording the cortico-spinal 

facilitation during observation of snapshots depicting specific finger configuration (e.g., 

large or small finger aperture) and snapshots depicting specific temporal phases (e.g., 

start or end of hand actions). In particular, we tested whether mirror motor facilitation 

during implied action stimuli observation was higher when extrapolating dynamic 

information about upcoming than past action phases. We found that observing the start 

and middle postures of grasp and flick actions engendered a significantly higher motor 

facilitation than observing their final postures. In contrast, observing the final postures 

of both grasp and flick actions did not activate the motor system. Importantly, the finger 

configuration in the start posture of grasp actions was comparable with the end posture 

of flick actions, whereas finger configuration of the end posture of grasp actions was 

comparable with that in the start position of flick actions. 

Furthermore, the EMG recording during action execution showed that muscular 

activation increased over time during both grasp and flick actions, reaching its 

maximum during the middle and end phases of the movements. Thus, differential mirror 

motor facilitation during start and end postures cannot be ascribed to 1) mere reading 

out of finger aperture and muscular activation at different postures; nor to 2) any 

differential ability in recognizing the actions represented in the static snapshots because 

action discrimination performance was comparable for the 3 action phases. The 

modulation of motor facilitation was independent of the perceived intensity of hand or 

object implied motion in start, middle, and end postures. Indeed, although ratings of 

implied hand action were maximal for start and middle grasp postures, no difference 

was observed between the 3 phases of flick actions. On the other hand, ratings of the 



71 

 

implied object motion were maximal for flick end postures, which exerted minimal 

facilitation on corticospinal excitability.  

Thus, a main point of novelty of Study1 is that the results provide compelling evidence 

that the frontal component of the observation-execution matching system is 

preferentially activated by the anticipatory simulation of future action phases and thus 

plays an important role in the predictive coding of others‟ motor behaviors. 

 

In Study2 we showed that active-cTBS delivered over SI (Study2) just before the 

participants were asked to evaluate the weight of a box lifted by an actor altered the 

performance compared to the sham condition. This did not happen in the control 

bouncing ball task whose cTBS and sham condition were comparable. These findings 

indicate that SI plays a causal role in extracting somatosensory features (heavy/light) 

from observed action kinematics and expand current view on action observation 

suggesting a fundamental role of primary sensory cortices in others action 

understanding. 

 

Finally, we demonstrated the role of premotor areas and the modulation motor areas 

during the observation and recognition of deceptive actions (Study3). Action simulation 

and non-motor inferential (i.e., mentalistic) processes have often been conceptualized as 

mutually exclusive. However, recent theoretical (Uddin et al., 2007; Keysers and 

Gazzola, 2007) and empirical (Brass et al., 2007; de Lange et al., 2008; Schippers et al., 

2009; Spunt et al., 2011) work suggests that simulation and mentalizing may have 

complementary roles in social cognition. Therefore, a central aim of cognitive 

neuroscience is to clarify the circumstances in which these processes are critical for 

understanding others‟ behavior (Mitchell, 2008, 2009). In Study3, we provided 

correlational and causative evidence that action simulation is called into play when 

detecting deceptive intents in the body movements of others. In Study3-experiment 1, 

we used single-pulse TMS to  test whether motor resonance is modulated during 

discrimination of FAs and TAs (FAD-task). We found that watching an actor lifting and 

placing objects facilitated the observers‟ motor system (Fadiga et al., 2005), with 

greater muscle-specific facilitations for apparently heavier weights (Alaerts et al., 

2010a). Importantly, processing of FAs strongly facilitated the motor system in a 
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muscle-specific manner, suggesting that action simulation is sensitive to deceptive 

movements. To test whether action simulation is also required for FA recognition, in 

Study3-experiment 2 we applied rTMS over the anterior node of the AON (the left IFC) 

during performance of the FAD-task and a control task. As a further control, we applied 

rTMS over a key node of the Mentalizing network, namely the left TPJ. We found that 

IFC-rTMS but not TPJ-rTMS impaired FAD-task (but not control task) performance, 

and in Study3-experiment 3, we replicated this selective detrimental effect. These 

findings strongly demonstrate that action simulation is critical for inferring deceits from 

observed kinematics. 

 

In summary, these extensive studies provided exiting and novel results for the role of a 

sensorimotor network comprising sensory and premotor areas for others action 

understanding and intention reading. Firstly, these data clearly confirm the crucial role 

of the action observation-execution matching system initially described in monkeys by 

di Pellegrino and colleagues (di Pellegrino et al., 1992) for others action understanding, 

secondly these data remark its relevance for current theoretical models of action 

observation and clearly expand its role to social cognition. 
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