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1. AMINOACIDS AND PROTEINS

1.1 Introduction

The biological consequences of the genetic information encoded by nucleic acids depends
almost completely on proteins. Proteins play a variety of crucial roles in biological systems and
affect many properties characterizing a living organism: the rates of chemical reactions in
organisms are dependent upon enzyme proteins, the structures of cells and tissues rely upon
structural proteins, the integrity of the genome is maintained by both DNA repair proteins and
histones.

In spite of their diverse biological functions, proteins are a relatively homogeneous class
of molecules. They are linear polymers constituted by various combinations of the same 20
aminoacids, and they differ only in the sequence in which the amino acids are assembled into
polymeric chains.

Protein functional diversity is partly due to the chemical diversity of the aminoacids, but
primarily is due to the fact that the building blocks (aminoacids) linked in different sequences
form different three-dimensional structures: the 3-D structure is in turn responsible for the
functional role of proteins. The basic aim of this thesis is to try and demonstrate the emerging of
brand new properties, not directly derivable from physico-chemical features of aminoacids, due
to the juxtaposition of different residues into linear chains.

1.2 Protein primary structure

The 20 aminoacids are linked each other to form protein sequences by the peptide bond
(see below).

     R1       R2

                  |        |
H2N         CH         CO2H   +   H2N         CH         CO2H   

     R1       O    R2

                  |        ||                 |
H2N  —   CH —   C — NH — CH —  CO2H   +   H2O

      |    ↑        |
   peptide bond

Generally, between 50 and 3000 such aminoacids are linked in this way to form a
polypeptide chain. The polypeptide backbone is a repetition of the basic unit common to all
aminoacids. When the side chain is included, this unit is described as an aminoacid residue. Some
properties of the aminoacid residues are listed in table 1.1.
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Residue Abbreviations Hydrophobicity
(MJ scale)

Charge Frequency in
proteins (%)

Alanine Ala (A) 5.33 0 8.3

Arginine Arg (R) 4.18 +1 5.7

Asparagine Asn (N) 3.71 0 4.4

Aspartic acid Asp (D) 3.59 -1 5.3

Cysteine Cys (C) 7.93 0 1.7

Glutamine Gln (Q) 3.87 0 4

Glutamic acid Glu (E) 3.65 -1 6.2

Glycine Gly (G) 4.48 0 7.2

Histidine His (H) 5.1 +1 2.2

Isoleucine Ile (I) 8.83 0 5.2

Leucine Leu (L) 8.47 0 9

Lysine Lys (K) 2.95 +1 5.7

Methionine Met (M) 8.95 0 2.4

Phenylalanine Phe (F) 9.03 0 3.9

Proline Pro (P) 3.87 0 5.1

Serine Ser (S) 4.09 0 6.9

Threonine Thr (T) 4.49 0 5.8

Tryptophan Trp (W) 7.66 0 1.3

Tyrosine Tyr (Y) 5.89 0 3.2

Valine Val (V) 7.63 0 6.6

Table 1.1 Properties of individual aminoacid residues.

Sequences of aminoacid residues in proteins are usually written with either the three-letter
or the one-letter abbreviations, starting with the N-terminal residue. The aminoacid sequence,
appropriately called the primary structure, identifies a protein unambiguously.

1.3 Non covalent interactions

Protein primary structures are covalent structures. Knowledge of this structure is usually
adequate for characterizing the chemistry of small molecules, but not for proteins. The large size
of polypeptide chains enables them to fold back on themselves so that many simultaneous
interactions take place among different parts of the molecule.

A complex, three dimensional structure results, which provides the unique environments
and orientations of the functional groups that give proteins their special properties. The biological
activities of proteins are also mediated by their interactions with the environment: water, salts,
membranes, other proteins, nucleic acids and the numerous other molecules in living systems. All
of these interactions arise from a limited set of fundamental non covalent forces (electrostatic
forces, hydrogen-bond, Van der Waals interactions, etc.).

1.4 Hydrophobic interaction

Water is a very poor solvent for non polar molecules compared with most organic liquids.
Non polar molecules cannot participate in the hydrogen bonding that appears to be so important
in liquid water. This relative absence of interactions between non polar molecules and water
causes interactions among the non polar groups themselves to be much more favorable than
would be the case in other solvents.
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This preference of non polar atoms for non aqueous environments has come to be known
as the "hydrophobic interaction" and it is a major factor in the stability of proteins. Hence the
hydrophobic interaction results in a tendency of non polar atoms to interact with each other rather
than with water. This tendency stems from the decrease of entropy caused by the structuring of
water coming from the exposition of hydrophobic residues to the aqueous environment.

The hydrophobicity of the individual aminoacid side chains have been measured
experimentally by a variety of methods. Usually, the numeric value of hydrophobicity is
expressed in terms of partition coefficients between non polar solvent (octanol, ethanol, etc.) and
water. Another important class of hydrophobicity indexes are the so called ‘statistical potentials’,
in which the relative hydrophobicity of residues is derived by their mutual propensities to occupy
spatially close positions in actual 3D protein structures.
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2. THE FOLDING PROBLEM

2.1  The basic problem

In order to become biologically active, the vast majority of protein sequences must fold to
a unique stable structure. The question of how individual protein sequences efficiently and
reliably achieve their native state following synthesis on the ribosome is one of the most
intriguing problems in structural biology. In a cell, folding takes place within a complex
environment containing high concentrations of a wide variety of molecules and ions.

It is well established that many factors are associated with the cellular folding process,
including molecular chaperones and folding catalysts. The various factors are involved in a wide
range of control and localization processes, but do not provide conformational information for the
polypeptide chains with which they interact.

The evidence gathered over many years supports the fundamental principle, formulated
initially by Anfinsen and others, that the code for folding resides within the aminoacid sequence1.
The fundamental question is, therefore, how the sequence codes for the fold.

From a chemical viewpoint, proteins are linear heteropolymers that, unlike most synthetic
polymers, are formed of basically non periodic sequences of 20 different monomers. While
artificial polymers are generally very large extended molecules forming a matrix, the majority of
proteins fold as self-contained structures determined by the sequence of monomers 2. Thus, we
can consider the particular linear arrangement of amino acids as a sort of “recipe” for making a
water-soluble polymer with a well-defined three dimensional structure 3.

Well defined 3-D structure should not be intended as “fixed architecture”. Many proteins
appear as partially or even totally disordered when analyzed with spectroscopic methods 4.
However, this apparent disorder corresponds to an efficient organization as for protein
physiological function. The task of being water soluble while maintaining the structural
specificity necessary for a physiologically motivated activity is not easy, and only a relative
minority of linear amino acid arrangements can actually accomplish this.

Thus, the most basic problem is "what particular linear arrangement of aminoacids makes
a real protein ?”. An operational definition of this question can be given in the following terms:
“Do the analysis of linear arrangements of aminoacids corresponding to real proteins show some
peculiarities not present in random sequences ?”. In order to approach the above problem in a
quantitative manner protein sequences were considered as numerical series whose elements are
the subsequent residues coded by different physico-chemical properties.

2.2   Protein aggregation and misfolding

As a matter of fact, proteins interacting with other proteins of the same or different kind
are not endowed with qualitatively different features. Hence, in principle, the interaction between
different portions of the same molecule (protein folding) and the interaction between several
molecules (protein aggregation) represent two faces of the same coin.

Because of the central role played by protein folding in cell biology, an aberrant folding,
or ‘misfolding’ will give rise to malfunctioning of biological processes. The number of diseases
known to be associated with misfolding is large and increasing all the time. Such diseases are
often familial, as impairment of the ability of a protein to fold can result from even single
mutations in the chain.
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 Particular attention has, however, been focused on those diseases in which misfolding
results in aggregation, particularly when these aggregates occur in the highly organized form
known as amyloid fibrils 5. This class of conditions includes Alzheimer’s disease and
Creutzfeldt-Jakob disease, as well as a range of other neurological or systemic diseases.
Although the different diseases have many different features, their molecular origins may have
much in common. The aggregation of incompletely folded, misfolded or even partially degraded
proteins is a complex process that progresses through a series of small oligomers to more
organized structures such as protofilaments before well defined fibrils are formed.

As clearly stated by Chiti et al. 6 , the possibility of forming aggregates is intrinsic to any
protein. Consequently, it may be difficult to delineate a clear cut border separating aggregating
and non aggregating proteins. Any modification of environmental conditions (PH, temperature,
ionic strenght, etc.) could in principle drive any protein structure to shift from an isolated
globular existence in solution to the formation of multimeric aggregates.

This possibility is implicit in the character of the hydrophobic interaction. The main
driving force shaping protein tertiary structures is the need to be soluble in the water. For this
task to be accomplished, the protein must fold in such a way as to hide hydrophobic residues,
while exposing polar residues 7 . On the contrary, the exposition to the solvent of corresponding
hydrophobic residues in several molecules will favour protein-protein interaction, since it is
energetically favourable than their exposition to the water.

Hence protein-protein interaction can be considered as another aspect of the same
phenomenon. In general, the search for aggregation cores is not basically different from the
search for folding cores, and aggregation can be simply considered an alternative folding. The
choice between correct (autonomous) and incorrect (multimeric) folding is a matter of relative
preponderance (in energetic terms for given boundary conditions) of the two possible ways. In
particular, the relative probability is driven by the balance of hydrophobic charge and steric
effects of sequence/environment interaction 5 . This implies the possibility of recognizing the
relative propensity for aggregation by means of an efficient physico-chemical representation of
proteins.

A second crucial element for protein aggregation is the charge. A net charge different to
zero exposed on the surface of different molecules can result in two conflicting effects according
to the reciprocal sign of the charge. Charge having opposite sign cause a reciprocal attraction
between protein molecules (pro-aggregation effect), while charges with the same sign cause a
reciprocal repulsion between molecules (anti-aggregation effect).
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3. AIM OF THE THESIS

The idea of this thesis originates in a recent work 8 in which the possibility to obtain an
unambiguous and self-consistent measure of complexity for any time (or spatial) series has been
demonstrated. This assertion makes it possible to virtually compare each type of numerical series
in terms of complexity and it opens the way to a wider application of dynamic systems concepts
in empirical sciences.

The above considerations point out the possibility to apply dynamic analysis techniques to
protein primary structures (spatial series), in the aim to give a contribution to the clarification of
the sequence/structure/function puzzle (see chapter 4). In recent times some studies about this
topic have been carried out 9, 10 . In these papers the use of an opportune coding of primary
structures (based on the hydrophobicity profiles of aminoacid side chains), associated to the
calculation of dynamic (order-dependent) descriptors,  provided brand-new information
compared to the classical analysis of sequence homology. This result points to an alternative
method to sequence alignment for studying sequence/function relationships.

Recently it has been proposed that some key features of protein hydrophobicity patterns
analyzed by non linear signal processing techniques might determine necessary conditions for
aggregation 11. In this frame the charge acts through modulation of the repulsive/attractive
electrostatic forces between nearby molecules. This observation may form the basis for the
construction of a "charge/hydrophobicity" model of protein aggregation 12 (see the conclusions).

On the other hand, since the crucial role of hydrophobicity in protein folding is well
known, the aim of the thesis is to check if the 'extra information' provided by the hydrophobicity
can result in some general syntactic rule in the aminoacid distribution along protein sequences
(see chapter 5), i.e. a decreasing of complexity of hydrophobicity profiles compared to those of
other aminoacid codings (polarity, bulkiness, etc..). The possibility of comparing the complexity
values of different aminoacid 'translations' arises from the existence of an unambiguous
complexity scale for different numerical series 8.

A second basic aim of this thesis is to check a possible relation between complexity
descriptors calculated on the numerical transformations of primary structures and
structural/functional features of proteins (see chapter 6). The usefulness of such an analysis is due
to the fact that sometimes proteins with a low sequence homology (< 20%) can adopt similar
folds. These similarities are not detectable by means of the classical methods based on sequence
alignment. On the other hand, the analysis of RQA descriptors, being not dependent on sequence
homology, could allow for the detection of unexpected “neighbours” of query structures, so
enlarging and refining the performance of function assignment methods.

The importance of acquiring new effective analytical tools in this field is based on the
firm belief  that the ability in predicting the 3-D structure exclusively starting from the aminoacid
sequence will largerly improve the full exploitation of the huge information coming from the
human genome sequence.
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4. MATHEMATICAL METHODS

4.1 Signal analysis perspective

When coded as monodimensional numerical arrays of some physico-chemical property
(hydrophobicity, volume, polarity, etc.) of their aminoacid residues, protein sequences can be
considered as numerical discrete series equivalent to time series, with the aminoacid order
playing the role of subsequent time intervals. Thus, on a purely formal point of view, any
technique commonly used for signal and time series analysis could be successfully applied to
protein primary structures. From a practical viewpoint, the fact that protein sequences are very
short and basically non stationary signals drastically limits the range of signal analysis techniques
usable in this context.

The ideal method for approaching signal analysis of protein sequences should be
nonlinear, independent of any stationary assumptions, and able to deal with very short series 13.
Methods satisfying these constraints are those approaching the analyzed series from a purely
correlative point of view, with no a priori distributional and/or physical assumption. The only aim
of these methods is to look for autocorrelation patterns along the series, i.e., for the recurrences of
particular short motifs along the chain (like in recurrence quantification analysis, RQA) or for
periodicities of no predefined functional form spanning all the studied sequences (like in singular
value decomposition, SVD). At the basis of all these methods is the transformation of the original
series into its “embedding matrix” with the method of delays 14.

4.2 Embedding procedure

The embedding procedure consists of building an n-column matrix (in the example below
n = 4) out of the original linear array by shifting the series by a fixed lag. For example, given the
series 15, 12, 27, 39, 31, 65, 22, 12, 42, 11, 33..., the corresponding 4-dimensional embedding
space at lag = 1 (the discrete character of amino acid sequences dictates this choice) is :

15 12 27 39
12 27 39 31
27 39 31 65
39 31 65 22
31 65 22 12
65 22 12 42
22 12 42 11
12 42 11 33
42 11 33
11 33
33

The rows of the embedding matrix (EM) correspond to subsequent windows of length 4
(embedding dimension) along the sequence. Notice that the last (n-1) values are eliminated from
the analysis as an obvious consequence of shifting the series for the embedding. The choice of the
embedding dimension corresponds to the choice of the scale at which the autocorrelation
structure of the series is estimated.



Mathematical Methods

8

All the signal analysis techniques used in research on proteins give a global picture of the
series in terms of degree of complexity (relative order/ disorder of hydrophobicity distribution
along the series), presence of singularities (regions within the sequence strongly different in
terms of hydrophobicity pattern), and specific periodicities. In general, they quantitatively
describe the shape of the hydrophobicity profiles by appropriate numerical indicators. In the
present work this approach has been extended by the analysis of the distributions of various
different physico-chemical properties of aminoacid residues along protein sequences (see
Strategy of Analysis).

4.3 Algorithms used for the analysis

4.3.1  Recurrence Quantification Analysis (RQA)

Recurrence quantification analysis is a relatively new nonlinear technique, originally
developed by Eckmann et al.15 as a purely graphical method and then made quantitative by
Webber and Zbilut 16 . It was successfully applied to different fields ranging from physiology 17

to molecular dynamics 18 and the study of chemical reactions 19. Only in relatively recent times
RQA was investigated by our group for its ability to deal with protein sequences 9, 10.

The application of RQA is based on the calculation of the Euclidean distance between all
the pairs of rows of the embedding matrix. If the distance between two generic rows (i.e.
windows of predefined length along the sequence) falls below the radius, we obtain a recurrence. 

The concept of recurrence is straightforward: for any ordered series (time or spatial), a
recurrence is a point which repeats itself. In this respect, the statistical literature points out that
recurrences are the most basic of relations 20 shaping a given system, since they are strictly local
and independent of any mathematical assumption regarding the system itself. Furthermore, it is
worth stressing that calculation of recurrences requires no transformation of the data and can be
used for both linear and nonlinear systems 17 . The concept of a recurrence can be expressed as
follows: given a reference point, X0, and a ball of radius r, a point X is said to recur (with

reference to X0) if : { X : || X  -  X0  ||  ≤  r  }.
In the case of a time series, i.e., of a system occupying in different times different

positions along a trajectory in a suitable state space, the recurrences correspond to the time points
where the system passes nearby to already visited states. In the case of protein sequences, time
corresponds to the amino acid order and the recurrences are patches, with a length equal to the
embedding dimension, sharing their profile with other patches along the chain. The number and
relative positions of recurrences are expressed by recurrence plots (RP), that are symmetrical N ×
N arrays in which a point is placed at (i, j) whenever a point Xi on the trajectory is close to
another point Xj. The closeness between Xi and Xj is expressed by calculating the Euclidian
distance between these two normed vectors, i.e., by subtracting one from the other obtaining the

expression || Xi  -  Xj  ||  ≤  r ,  where r is a fixed radius.
If the distance falls within this radius, the two vectors are considered to be recurrent, and

graphically this can be indicated by a dot  (Figure 4.1).
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Figure 4.1  Recurrence plot of human P53 protein. The recurrence plot of human P53 protein is reported together
with the corresponding hydrophobicity plot (bottom). The presence of an extremely deterministic ordering of amino
acids between residues 61 and 98 is clearly evident in the figure in terms of its consequences on the recurrence plot.
This highly deterministic portion is “resembled” by other segments along the sequence. This observation is not clear
by the simple inspection of the hydrophobicity plot but is made evident by the recurrence plot: the “resemblances”
correspond to linear (or alternatively horizontal given the symmetrical character of recurrence plot) banding of the
plot. The RQA numerical descriptors corresponding to the plot have been reported together with the chosen
measurement settings (see text for further details). 

Thus, recurrence plots correspond to the distance matrix between the different epochs
(rows of the embedding matrix) filtered, by the action of the radius, to a binary 0/1 matrix having
a 1 (dot) for distances falling below the radius and a 0 for distances greater than radius. Distance
matrixes are demonstrated 21 to convey all the relevant information for the global reconstruction
of a given system. An important feature of such matrixes is the existence of short line segments
parallel to the main diagonal, which correspond to sequences (i, j), (i + 1, j + 1), ..., (i + k, j + k)
such that the fragment X(j), X(j + 1), X(j + k) is close to X(i), X(i + 1), ..., X(i + k). The absence of
such patterns suggests randomness 15.  For protein sequences these deterministic lines correspond
to contiguous patches of similar hydrophobic/ hydrophilic patterns. The “line” is a measurement
parameter which state the minimum number of adjacent recurrent points required to define a
deterministic line.

Because graphical representations may be difficult to evaluate,  several strategies to
quantify features of such plots have been developed 16, 22. Hence, the quantification of recurrences

RQA measurement parameters: embedding = 4, radius = 3, line = 3
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leads to the generation of the following variables:
- Recurrence (REC) : percentage of recurrence points in an RP.
- Determinism (DET) : percentage of recurrence points which form diagonal lines.
- Laminarity (LAM) : percent of recurrence points which form vertical lines.
- Maximum line (MAXL) : length of the longest diagonal line.
- Trapping time (TT) : average length of vertical lines.
- Entropy (ENT) : Shannon entropy of the distribution of the diagonal line lengths.
- Trend (TREND) : Paling of the RP towards its edges.

These recurrence variables quantify the deterministic structure and complexity of the plot
(Figure 4.2).

The application of n statistical indexes to the recurrence plots gives rise to an  n -
dimensional representation of the studied series. This n - dimensional representation gives a
summary of the autocorrelation structure of the series and has been demonstrated 20 to correlate
with the visual impression a set of unbiased observers derive from the inspection of an ensemble
of recurrence plots.

4.3.2 Principal Component Analysis (PCA)

In contrast to RQA, singular value decomposition (SVD) is a well-established method
frequently used in physical as well as in social and biological sciences 23.  SVD roughly
corresponds to PCA (principal component analysis): the term SVD is preferred to the term PCA
in physical applications and, in general, when dealing with dynamical phenomena. As in PCA,
the aim of SVD is to project an originally multidimensional phenomenon onto a reduced set of
new orthogonal axes, representing the basic modes explaining the analyzed data set. 

When applied to a time (or spatial) series that is originally monodimensional, SVD
necessitates that the original series is represented on a multidimensional space by the agency of
the embedding procedure. This “expansion” of the original mono-dimensional series on a
multidimensional support made by the time-lagged copies of the original series allows for the
autocorrelation structures of the series to be appreciated 14.  The EM can be thought of as a

Figure 4.2.  Example of an RP with typical
features forming the basis for its quantification.
(1) A line segment composed of 8 recurrent points;
(2) a 4-point line segment; (3) several recurrent
points that are not part of a line segment; (4) the
identity line (i.e., where Dij = 0); (5) this feature
points to a line perpendicular to the identity line
which indicates the paling of the RP towards its
edges (i.e. the TREND descriptor); (6) several
perpendicular lines along which recurrences may
fall. The position of these line segments away from
the identity line provide the basis for the index used
to calculate TREND.
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multivariate matrix having subsequent patches of amino acids of length equal to the embedding
dimension as statistical units (rows) and the whole sequence lagged by subsequent delays as
variables (columns).

The original data can be projected into a new set of coordinates US (principal component
scores or eigenfunctions) such that no original information is lost. The new coordinates are  linear
combinations of the original variables: they are orthogonal by construction (i.e., statistically
independent), each representing an independent aspect of the data set. The number of principal
component is equal to the number of original variables, but PCA has an optimal property which
has made this method one of the most widespread modeling techniques in diverse science fields:
the projection of the original data on the new component space spanned by a smaller number of
dimensions (A < N, where N is the embedding dimension) is optimal in a least-squares sense.

As a matter of fact principal components have the foundamental property of explaining
the system variability in an hierarchical way. This implies that we can save the meaningful
(signal-like) part of the information retained by the first principal components and discard the
noise in the error term. In other words, the most correlated portion of information (in terms of
coordinated variation of any pattern along the chain) is retained by the first components, while all
the singularities are discarded in the minor components.  Therefore, by the use of a threshold as
for the cumulative percentage of explained variance, the Principal Component Analysis allows
for the reduction of a complex system of correlations in a less-dimensional one.
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5. STRUCTURE-RELATED SINGULARITIES ALONG PROTEIN SEQUENCES

5.1  Premise

Real protein sequences show only weak departures from random strings 24. A “random
string” should be intended, in the information theoretic sense 25, as a series whose autocorrelation
structure remains substantially invariant after random shuffling of the positions of its constituent
elements. This fact means that the “code” linking a sequence to a particular structure is not
emerging from simple periodicity in the aminoacid occurrence.

Nevertheless, such quasi-random strings are the basic recipes producing refined three
dimensional structures, which sustain sophisticated dynamics along with specific physiological
roles. Thus, the observed quasi-randomness may be a specious image for underlying  meaning.
It is interesting to note that a similar situation occurs in the case of human languages where it is
almost impossible to generate meaningful texts using just periodic repetitions of symbols 26 .
There is, however, a fundamental difference between linguistic rules and the rules governing
sequence/structure/activity of proteins: in human languages the linkage between the strings of
characters (words) and their semantic meaning is completely arbitrary and needs an external
intelligent and active receiver to be decoded. Aminoacid sequences, on the other hand, are
translated into biologically meaningful messages in the form of proteins by the physico-chemical
environment (e.g., ionic strength, relative hydrophobicity, temperature, pressure ).

 A focus on the numerical series of physico-chemical properties of aminoacid residues has
provided interesting results in the study of specific protein behavior 11 . At the same time, the
quasi-random qualification of symbolically coded protein sequences  evokes the possibility of
solving the sequence/structure/activity puzzle by discovering subtle, albeit crucial regularities in
the juxtaposition of symbols.

On the basis of these considerations in the present study the following assumption has
been adopted: given the ‘perfect code’ allowing the sequence-structure problem to be solved is
still elusive, different physico-chemical codings of aminoacid residues have been considered as
masking codes with respect to the ‘folding message’ conveyed by the primary structure. In this
way the analysis of protein sequences can highlight both ‘code dependent’ (imposed by the
masking code) and ‘code independent’ (linked to the real message) regularities in the
juxtaposition of residues.

The approach, inspired to the QSAR models, is based on the selection of two elements:
1. A set of aminoacid physico-chemical descriptors;
2. A statistical technique (Recurrence Quantification Analysis, RQA 16) adequate to infer

biological activity features from the analysis of physico-chemical properties 9, 10.

5.2 Material and methods

A data set composed of 1141 protein sequences extracted from the Swiss-Prot repository
by Menne et al. 27 was analyzed. The extraction was made in the aim of discriminating, on a pure
sequence basis, the secreted and non-secreted eukariotic proteins. In this work the negative (non
secreted) subset was selected, in order to avoid any selection bias due to a (mostly hydrophobic)
N-terminal signal peptide in the secreted proteins. The data set is available at:
ftp://ftp.ebi.ac.uk/pub/contrib/swissprot/testsets/signal.

Each protein sequence was transformed into 7 numerical profiles by means of the

ftp://ftp.ebi.ac.uk/pub/contrib/swissprot/testsets/signal
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following physico-chemical properties of aminoacid residues (Figure 5.1):

1. Chothia hydrophobicity scale 28;
2. Kyte and Doolittle hydrophobicity scale 29;
3. Miyazawa-Jernigan hydrophobicity scale 30;
4. molecular weight;
5. polarity 31;
6. molar refractivity 32;
7. bulkiness 33.

As an extra coding, the standard one-letter symbolic code was also used.
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The resulting numerical translations of protein sequences were submitted to RQA. In this
hase, two RQA variables were considered: % Recurrence (REC) and % Determinism (DET).
he setting parameters for the application of RQA were:

  radius equal to 20% of the mean Euclidean distance between all the patches of length equal to
he embedding dimension; for the symbolic series the radius was obviously imposed equal to
ero, due to the impossibility of measuring recurrent relations other than identity.
  embedding dimension (ED) equal to 4; in the case of the symbolic series the ED was set to 3, in
rder to obtain a reasonable percentage of recurrences.

The setting of these parameters was motivated by previous works aimed at defining the
nformation content of protein primary structures 34, and was further substantiated by a scaling
rocedure.

MJ hydrophobicity

KD hydrophobicity

Ch hydrophobicity

Molecular weight

Polarity

Molar refractivity

Bulkiness

AVRKLRRDGGK…

INPUT CODINGS NUMERICAL OUTPUT

Figure 5.1 Overview of the data analysis strategy used in this work



Structure related Singularities along Protein Sequences

14

5.3 Analytical details

5.3.1 Correlation analysis

The analysis was based upon correlating the different translations of  protein sequences as
well as the physico-chemical properties used for these translations. A metric to estimate the a
priori similarities between different properties was defined. Since proteins are consituted by 20
different units (aminoacids), the Pearson correlation coefficients between pairs of codes
computed on the space of the 20  natural aminoacids (Table 5.1) unambiguously measure the
relative similarities between codes. A Pearson coefficient close to 1 (in absolute value) implies
the almost complete equivalence of the two codes in terms of  conveyed information.
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a)

Aminoacid     Chothia hyd       KD hyd           MJ hyd             MW         Polarity      M. Refr     Bulkiness
Ala 0.38  1.8         5.33        89          8.1   4.34        11.5
Glu 0.18 -3.5         3.65      147        12.3 17.56       13.57
Met  0.4  1.9         8.95      149          5.7 21.64       16.25
Tyr 0.15 -1.3         5.89      181          6.2 31.53       18.03
Arg 0.01 -4.5         4.18      174        10.5 26.66       14.28
Gly 0.36 -0.4         4.48        75             9       0           3.4
Phe  0.5  2.8         9.03      165          5.2  29.4         19.8
Val 0.54  4.2         7.63      117          5.9  13.92        21.57
Asn 0.12 -3.5         3.71      132        11.6  12        12.82
His 0.17 -3.2           5.1      155        10.4  21.81        13.69
Pro 0.18 -1.6         3.87      115             8  10.93        17.43
Asp  0.15 -3.5         3.59      133         13   13.28        11.68
Ile  0.6  4.5         8.83      131          5.2  18.78        21.4
Ser  0.22 -0.8         4.09      105          9.2      6.35          9.47
Cys  0.5  2.5         7.93      121          5.5  35.77        13.46
Leu  0.45  3.8         8.47      131          4.9  19.06        21.4
Thr  0.23 -0.7         4.49      119          8.6  11.01        15.77
Gln  0.07 -3.5         3.87      146        10.5  17.26       14.45
Lys  0.03 -3.9         2.95      146        11.3  21.29       15.71
Trp  0.27 -0.9         7.66      204          5.4  42.53       21.67

b)
    Code pairs       r

Chothia hyd / KD hyd
Chothia hyd / MJ hyd
Chothia hyd / MW
Chothia hyd / Polarity
Chothia hyd / M. Refractivity
Chothia hyd / Bulkiness
KD hyd / MJ hyd
KD hyd / MW
KD hyd / Polarity
KD hyd / M. Refractivity
KD hyd / Bulkiness
MJ hyd / MW
MJ hyd / Polarity
MJ hyd / M. Refractivity
MJ hyd / Bulkiness
MW / Polarity
MW / M. Refractivity
MW / Bulkiness
Polarity / M. Refractivity
Polarity / Bulkiness
M. Refractivity / Bulkiness

 0.964
 0.852
-0.294
-0.789
 0.064
 0.356
 0.868
-0.266
-0.87
 0.075
 0.458
 0.191
-0.905
 0.481
 0.621
-0.089
 0.838
 0.546
-0.414
-0.606
 0.579

Table 5.1   a) Numerical values of the physico-chemical properties of aminoacids. b) Pearson correlation
coefficients between properties calculated on the space of 20 natural aminoacids.
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The above procedure was repeated on the space of the 1141 protein sequences. After the
application of RQA on the various numerical translations of each protein, two RQA descriptors
were analyzed: % of recurrences (REC) and % of determinism (DET). The mean value of each
numerical series was also considered. For both RQA descriptors and Mean a matrix constituted
by 1141 rows (protein sequences) and 8 columns (7 physico-chemical properties of aminoacids
plus the standard one-letter symbolic coding) was obtained. The Pearson correlation coefficients
between pairs of columns of these matrixes were computed (Table 5.2).

  Code pairs         r (Mean)        r  (REC)         r  (DET)

Chothia hyd / KD hyd 0.70      0.70 0.46 
Chothia hyd / MJ hyd 0.67 0.64 0.44
Chothia hyd / MW 0.12 0.79 0.41
Chothia hyd / Polarity 0.63 0.52 0.50
Chothia hyd / M. Refractivity 0.09 0.76 0.43
Chothia hyd / Bulkiness 0.37 0.55 0.36
KD hyd / MJ hyd 0.90 0.66 0.45
KD hyd / MW 0.23 0.63 0.41
KD hyd / Polarity 0.92 0.50 0.63
KD hyd / M. Refractivity 0.04 0.71 0.37
KD hyd / Bulkiness 0.53 0.68 0.50
MJ hyd / MW 0.17 0.65 0.34
MJ hyd / Polarity 0.92 0.40 0.44
MJ hyd / M. Refractivity 0.40 0.58 0.33
MJ hyd / Bulkiness 0.69 0.53 0.34
MW / Polarity 0.03 0.51 0.43
MW / M. Refractivity 0.82 0.86 0.43
MW / Bulkiness 0.56 0.59 0.42
Polarity / M. Refractivity 0.26 0.57 0.42
Polarity / Bulkiness 0.60 0.62 0.51
M. Refractivity / Bulkiness 0.53 0.70 0.37

Table 5.2   Pearson correlation coefficients between pairs of physico-chemical properties calculated on
the RQA-based representations of proteins.

The correlation coefficients between properties calculated on the RQA-based
representations of proteins (Table 5.2) can be compared with those calculated on the space of 20
natural aminoacids (table 5.1, panel b). If the RQA-based relations resemble the similarities
between the respective codes, the analysis would simply return the structure of the translation
rules (code-dependent features), with no information on the possible existence of general
syntactic rules along the sequences. 

It is worth noting that the correlations coefficients calculated on the space of 20
aminoacids simply reflect the nature of the physico-chemical codes, with the hydrophobicity and
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polarity scales closely related to each other and independent from the other codes (table 5.1, b).
These purely physico-chemical relations are almost exactly maintained when the average value of
each coding is considered (Mean), while for REC and DET descriptors a new information seems
to emerge. In fact, the Pearson correlation coefficients between the r column reported in table 5.1
(b) and each column reported in table 5.2 were computed.

For the Mean descriptor the correlation coefficient scores 0.95, for DET it scores only
0.46, while for REC it drops to –0.20. This means that, while the linear descriptor of protein
sequences (MEAN) still reflects the original relations between codes scored at the aminoacid
level (r = 0.95), the non linear descriptions (REC and DET) are no more related to the original
physico-chemical meaning of the codes. Through the agency of a non linear tool (RQA), the
features of the protein systems do not simply derive from those of the physico-chemical codes,
but may reflect some new, higher-level property. 

The above result might seem to be a trivial consequence of the fact that two segments are
scored as recurrent because they are made by exactly the same residues:  if this is the case, each
code will invariably give the same result. This, however, is not the case. In fact, Table 5.3 points
to a lower value of mean recurrence for the symbolic coding (0.08), with respect to the numerical
codings. The main question is whether or not protein sequences are made of  repeated patches,
due to  evolutionary events 35 influencing structural and functional features. Such repeats are not
perfect since they are altered by point mutations most often introducing residues similar to the
original ones. This explains why, by representing proteins through physico-chemical profiles and
relaxing the strict identity in favour of  the weaker similarity requirement, the ability to detect
recurrent “words” is enhanced.

3.3.2 Miyazawa-Jernigan hydrophobicity scale

Table 5.3 reports the average  value of recurrence (REC) and determinism (DET) in the
data set for the different codings. It is evident how the recurrence value markedly varies among
codings, from 0.08 (symbolic coding) to 1.78 (MJ scale). This 20-fold difference even
underestimates the real difference since the symbolic coding is analyzed with a shorter segment
length  (Embedding Dimension = 3) as compared to other codings (ED = 4).
a) REC

CODE Mean Std. Dev. min. max.

Ch 0.50 0.33 0.15 4.80
KD 0.77 0.51 0.25 10.24
MJ 1.78 1.05 0.54 24.01
mw 0.40 0.56 0.06 11.75
Po 0.66 0.50 0.16 8.86
mr 0.41 0.33 0.06 6.18

bulk 0.63 0.52 0.21 9.88
Sy 0.08 0.39 0 8.91
1

Table 5.3  Descriptive statistics of  REC (panel 
sequences for different codings. The last rows in both
b)  DET

CODE Mean Std. Dev. min. max.

Ch 16.78 11.33 0 90.14
KD 20.54 10.09 0 90.14
MJ 27.46 9.49 0 84.06
mw 14.26 11.03 0 80.27
Po 19.78 11.56 0 94.89
mr 15.52 11.30 0 87.32

bulk 18.19 10.14 0 89.81
Sy 17.07 21.47 0 100.00
7

a) and DET (panel b) variables of  protein
 panels report the symbolic one-letter code.
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MJ hydrophobicity scores an average recurrence and determinism much higher than the
other physico-chemical scales, highlighting a peculiar position of this index in elucidating
sequence/structure relations. The MJ scale derives from an investigation of the contact
probability between different types of aminoacid residues in a large ensemble of 3-D protein
structures: it was designed as a kind of statistical potential for aminoacid interactions, and only a
posteriorii was it recognized as an hydrophobicity scale 36, 37. Since MJ index has been
specifically tailored to protein structures, this may explain its performance in detecting
aminoacid patterning along polypeptide chains.

In a recent work by Leary et al. 38 , the authors used a supervised learning algorithm to
classify 3876 sequences from 174 structural  families, and defined a  class of rules that assigns
test sequences to structural classes based on the closest match of an aminoacid index profile of a
test sequence  to a profile centroid for each class. A mathematical optimization procedure was
then applied to determine an aminoacid index of maximal structural discriminatory power. Figure
5.2 shows that the MJ scale is strongly correlated with the Leary et al. index (r = 0.93),
confirming by a completely independent approach its general relevance and its peculiar ability to
single out  meaningful features of protein sequences. 

Figure 5.2  Codings of the natural aminoacids by the MJ hydrophobicity
scale and the Structural Discriminatory Index by Leary et al. (2004).
The figure reports the relation between the MJ hydrophobicity scale and an
index having the maximal structural discriminatory power in a set of  3876
protein sequences. This index is termed  Leary1 (Leary et al. 2004) and
corresponds to the linear combination of a set of 494 different indexes
maximizing the discrimination of protein sequences into 174 different
structural classes.
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5.3.3 Percentage of determinism

In the aim to identify which type of rules may be present in the juxtaposition of
aminoacids along protein primary structures, the RQA-based representations of proteins (both
REC and DET matrixes) were submitted to a Principal Component Analysis (PCA). The PCA
produces as  main mode (first Principal Component, PC1) a consensus axis collecting all the
codings. PC1, both for REC and DET, was by far the most important source of information
explaining, respectively, 70% and 50% of the total variability (Table 5.4). It is worth  noting that
the symbolic coding is highly correlated with the first component, as a further indication  of  the
role of code-independent  autocorrelation measure played by PC1 for the RQA descriptors.

Thus, through the application of the PCA, the presence of syntactic rules in the aminoacid
distribution along protein sequences, pointed out by the correlation analysis, is confirmed. The
percentage of variance explained the PC1 represents the relevance of the code-independent
autocorrelation structure of the system. 

Ta
pro
val
ob
cal
bo

ab
ran
(N
no

rep

% 
a) REC

Code PC1 PC2 PC3

Ch 0.86 -0.20 -0.07
KD 0.82 0.04 0.42
MJ 0.77 -0.29 0.37
mw 0.90 -0.23 -0.26
Po 0.69 0.60 -0.20
mr 0.91 -0.03 -0.17

Bulk 0.79 0.39 0.21
Sy 0.92 -0.14 -0.25

% variance 69.9 8.9 6.9
19

ble 5.4  Factor loadings of the aminoacid properties on the first t
teins. Panels a) and b) refer, respectively, to  REC and DET  var
ues) of the original variables with the new one extracted by the PC
tained from matrices having as variables the REC (panel a) and
culated from the different physico-chemical profiles. Sy refers to t
th panels contain the % of total variance explained by each compone

Relative to the aim to separate order dependent 
ove analyses has been repeated on the shuffled texts, 
dom scrambling of aminoacid order in each protein se
ative) and REC (Shuffled) remain largely similar (r = 0
 correlation was detected by DET(Native) and DET (Shu

This result suggests that: 
i) the percentage of recurrences in each prote

the aminoacid composition;
ii) the percentage of determinism only depends

chain and it is not significantly affected by c

Since, in fact, REC is the simple count of how
eated (even if not perfectly) in whatsoever location a
b) DET

Code PC1 PC2 PC3

Ch 0.71 -0.04 0.38
KD 0.77 -0.30 -0.19
MJ 0.64 -0.42 0.42
mw 0.68 0.44 -0.01
Po 0.79 -0.19 -0.15
mr 0.65 0.49 0.26
Vo 0.70 0.001 -0.50
Sy 0.70 0.10 -0.12

variance 50 9.4 8.9
hree Principal Components from RQA filtered
iables and contain the “loadings” (correlation
A algorithm. The Principal Components were
 DET (Panel b) descriptors of each protein
he symbolic, one-letter code. The last rows in
nt. 

from pure compositional effects,  the
looking for possible invariants after a
quence. The results showed that REC
.76), while in the case of determinism
ffled) (r = -0.14). 

in sequence is strongly dependent on

 on  the order of aminoacids along the
ompositional effects.

 many times four-residue epochs are
long the sequence, in a quasi-random
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string this is expected to occur with similar frequency, by chance, both before and after
scrambling. DET, on the other hand, represents the fraction of consecutive recurrent points,
considering the relative position and not the number of recurrent patches.

Since any peculiar syntactic rule of aminoacid patterning  should be shuffling dependent,
the quantification of contiguous and mutually correlated patches of hydrophobicity (DET)
appears as a significant and informative descriptor of monomer distribution in protein chains. 

5.3.4 Scaling procedure

The coding with the highest sensitivity in identifying syntactic rules (MJ hydrophobicity)
was eventually submitted to a scaling procedure in the aim to check for the existence of a
privileged scale at which the effect is maximized.

In general, a too small embedding dimension leads to false recurrences, while an
overembedding should theoretically not distort the reconstructed phase trajectory. Concerning the
radius, smaller values would lead to a better distinction of small variations. However, the
recurrence point density decreases in the same way and thus the statistics of continuous structures
in the RP soon becomes insufficient. On the other hand, larger values cause a higher recurrence
point density, but a lower sensitivity to small variations 18.

Figure 5.3  reports the embedding dimension scaling of average determinism over the 1141
proteins set for MJ coding at very low radius values (5% and 10% of the mean distance). A
maximum of determinism at an embedding dimension of 4 can be detected. In other words, using
four-letter epochs of the primary structures allows the extraction of maximal information from
the aminoacid patterning. Since a minimal length of 3 consecutive recurrences was used to score
determinism, the maximum of determinism at embedding dimension 4 corresponds to a
characteristic length of deterministic patches of 6. Thus, 4 and 6 appear as crucial numbers for
identifying meaningful words, in the form of "quasi repeats", along protein sequences. 
Figure  5.3  Scaling of Determinism with Embedding Dimension as a function of Radius in 1141
protein sequences. At low values of radius a maximum of determinism at Embedding Dimension
equal to 4 is evident (see the text for further explanations).
20



Looking for Sequence/Function Relationships

21

6. LOOKING FOR SEQUENCE/FUNCTION RELATIONSHIPS

6.1 Protein distribution in a Principal Component space

In the aim to find the consequences of the aminoacid patterning in terms of structural or
functional features, proteins endowed with exceedingly high values for the first determinism
Principal Component (PC1DET) were inspected. Protein distribution along this Component is
quite asymmetric with very small but long tail (PC1DET > 2) made of extremely  deterministic
sequences (Figure 6.1).

Figure 6.1  Protein distribution of the 1141 protein sequences along the first determinism component

Table 6.1 lists the 50 most deterministic sequences in our 1141 protein data set, having
component scores greater than 2, with a maximum of 8.5. The remaining 1091 proteins are
confined in the interval included between -2 and +2. Keeping in mind that Principal Components
are constrained by construction to have a mean equal to zero and a unitary standard deviation,
helps in appreciating this extremely asymmetric distribution.

All the extremely deterministic proteins share the property of being involved in protein-
protein interactions, both for regulatory and structural purposes (e.g., protamines and trascription
factors) as well as of forming polymeric assemblies (cornifin, myosin, keratin).

No enzyme or enzyme subunit is present in Table 6.1, with the only exception represented
by the protein Q34522, i.e. NADH–Ubiquinone oxydoreductase, chain 3 (reported in bold). This
is, however, only an apparent exception, since the Q34522 sequence is included in a much  bigger
functional unit working in the form of a multimeric enzyme. This is a remarkable asymmetry
given enzymes are by far the most represented functional class in the 1141 set. 
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Swiss-Prot Name                     PC1DET
  code

P35324 CORNIFIN ALPHA 8.52
Q62267 CORNIFIN B 7.79
Q63532 CORNIFIN ALPHA 6.95
Q62266 CORNIFIN A 6.19
Q07187 EM-like PROTEIN GEA1 6.05
P06144 LATE HISTON H1 5.27
P35326 SMALL PROLINE-RICH PR.  2A 4.97
P17483 HOMEOBOX PROTEIN HOX-B4 4.49
O35762 HOMEOBOX PROTEIN NKX-6.1 4.32
P37108 SIGNAL RECOGN.  PART. 14 Kda 4.24
P28318 PROTEIN MRP-126 4.19
P15771 NUCLEOLIN 3.99
009116 CORNIFIN BETA 3.96
P02604 MYOSIN LIGHT CHAIN 1 3.89
P42132 SPERM PROTAMINE P1 3.79
P22793 TRICHOHYALIN 3.71
Q34522 NADH-UBIQ. OXYDORED. CHAIN 3 3.61
P17502 PROTAMINE 3.52
P42129 SPERM PROTAMINE P1 3.42
P22238 DESICCATION REL. PROT. 3.37
Q22053 FIBRILLARIN 3.35
P55947 COPPER-METALLOTHIONEIN 3.30
P15870 HISTONE H1-DELTA 3.21
P41139 DNA BINDING PROT. INHIB. ID-4 3.13
Q13329 COMPLEXIN 2 3.08
Q63754 BETA-SYNUCLEIN 3.07
Q01821 GUANINE NUCL. BIND. 3.07
P34618 CEC-1 PROTEIN 3.04
P06146 HISTONE H2B.2, SPERM 3.02
P09442 LATE EMBRYOG.  PROT. D-11 3.01
P02292 HISTONE H2B.3, SPERM 2.99
P12950 DEHYDRIN DHN1 2.97
Q05831 SPERM-SPECIFIC PROTEIN PHI-2B 2.79
P12952 DEHYDRIN DHN2 2.77
P47928 DNA BIND. PROTEIN INHIB. ID-4 2.74
P52168 GATA-BINDING FACTOR-A 2.74
P22974 SPERM SPECIFIC PROTEIN PHI-2B 2.66
P12035 KERATIN TYPE II CYTOSKEL.  3 2.62
Q09821 SPERMATID NUCLEAR TRANS. 2.56
Q15672 TWIST RELATED PROTEIN 2.46
P90648 MYOSIN HEAVY CHAIN KINASE B 2.40
P06145 HISTONE H2B.1, SPERM 2.32
P02836 SEGMENT. POLAR. HOMEOBOX 2.31
O42105 COMPLEXIN 2 2.24
P17480 NUCLEOLAR  TRANSCR. FACT. 1 2.23
P54844 TRANSCR. FACTOR MAF 2.20
P40262 HISTON H1 E 2.20
P25979 NUCLEOLAR TRANSCR. FACTOR 1 2.17
P21952 OCT. BIND.  TRANSCR. FACT. 6 2.07
Q12948 FORK HEAD BOX PROTEIN C1  2.04

Table 6.1  Elements of the “high determinism tail” in the
distribution along the first determinism component (PC1DET) of
the protein data set.
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Recently Dunker and co-workers demonstrated how the most represented class of natively
unfolded structures is composed of polypeptides involved in protein-protein interactions.
Moreover, the increasing evidence that low complexity sequences tend to be natively unfolded 39,

40 suggested a check for the presence of an excess of natively unfolded zones in the deterministic
tail of  the data set.

The ten most deterministic sequences scored a percentage of computationally estimated
disorder (computed by the PONDR predictor 41) of 66.46% against the 27.27% of the ten proteins
located  at the low determinism tail (significance  of  p < 0.001). Calculation of a foldability
coefficient 39 for the highly deterministic  sequences listed in Table 6.1 indicates that more than
75% may be classified as natively unfolded. 

From the above analysis  the role of “deterministic spots” as crucial sites for interaction
seems to gain support. Assuming that protein-protein interactions are driven by essentially the
same type of forces leading to mutual recognition between different portions of the same
molecule in normal folding, we can hypothesize that highly deterministic sections along the
sequence mark the nucleation zones for both folding and protein-protein interactions. 

Concerning the functional implications involving ‘quasi-repeats’ of deterministic
singularities along protein sequences, an analogy  with “rhymes” within otherwise prosodically
unstructured texts can be attempted. Such rhymes make two different texts (or two different
portions of the same text) mutually recognizable and interacting. Their different and possibly
function-related patterning in protein sequences is shown in Figure 6.2, where the recurrence
plots of an enzyme molecule and of a transcription factor are reported. In the case of the
enzymatic molecule the rhymes appear as faint “columns” of recurrent points along the RP
(Figure 6.2, panel a), while in the case of a “strongly interacting” protein (transcription factor,
Figure 6.2, panel  b) the rhymes are clearly defined by block structures in the RPs. 
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Figure 6.2. Recurrence Plots of an enzymatic molecule in comparison with an interacting protein (transcription
factor). The figure reports in panel a) the recurrence plot and hydrophobicity series (MJ) of an enzymatic protein
(Polypeptide N-acetylgalactosaminyl transferase, Swiss-prot code Q07537), and in panel b) the same
information for GATA-binding factor A (Swiss-prot code P52168), i.e. a transcription factor. While the enzyme
has an average value of general determinism (PC1DET = -0.045, MJ Determinism = 25.46), the transcription
factor has an extremely high determinism (PC1DET = 2.74, MJ Determinism = 45.39).
24
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6.2  Protein aggregation: analysis and results

The application of RQA on protein primary structures allows to single out some
periodicity in the aminoacid distribution, correlated with the propensity to protein-protein
interaction. On the basis of the previous results it has been decided to concentrate on the problem
of protein aggregation.

Protein dataset was analyzed with regard to the hydrophobicity distribution and to the net
charge, in the aim to check some peculiar features linking protein primary structures and
biological features. For such a study only the most efficient hydrophobicity coding (MJ scale)
was considered. The net charge for each sequence was simply calculated by adding the electric
charges (0, +1, -1) of the single residues (see table 1.1). The matrix having as variables the RQA
descriptors calculated on the MJ hydrophobicity profiles, net charge and charge normalized by
length was submitted to a Principal Component Analysis (PCA).

The PCA produces a solution with two significant components. PC1 and PC2 together
explain about the 59% of the variability of the system (see table 6.2). PC1 is highly correlated
with all the RQA dynamic (order dependent) descriptors, with the only exception represented by
the TREND, while PC2 is correlated with Length, TREND, Charge, and especially with the
Charge normalized by Length (r = 0.801).

      PC1      PC2      PC3      PC4      PC5
 
LENGTH 0.397 -0.606 -0.443 -0.069 0.351
MEAN -0.359 -0.423 0.282 0.742 0.057
REC 0.837 0.234 0.257 0.003 0.202
DET 0.851 0.06 0.134 0.112 0.025
MAXL 0.707 -0.409 -0.341 0.119 0.2
ENT 0.801 -0.117 0.056 0.282 -0.001
TREND 0.172 0.648 0.491 0.018 0.357
LAMIN 0.842 0.227 0.053 -0.197 -0.192
TRAPT 0.641 0.039 -0.073 0.162 -0.573
CHARGE -0.17 0.74 -0.441 0.347 -0.072
Ch/Length 0.028 0.801 -0.439 0.145 0.198

% variance 36.65 22.23 10.15 7.9 6.8

Table 6.2  Factor loadings of the Principal Component Analysis applied
on the whole dataset

The following step was the ordering of the dataset by means of PC1 and PC2 values.
Proteins with extremely high values of PC1 essentially coincide with the extremely deterministic
proteins reported in table 6.1 (i.e. proteins involved in protein-protein interaction), given that
DET is the most correlated variable with PC1 (r = 0.851, see table 6.2). The analysis of the higher
extreme of PC2 highlight an exclusive presence of histones and RNA-binding proteins (with only
one exception), both involved in interactions with nucleic acids (see table 6.3). 
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Table 6.3 Proteins with extremely high values of
PC2.  I = histones, R = RNA-binding proteins, A =
other proteins.

The lower extremes of both PC1 and PC2 components don’t highlight any particular
tendency concerning the presence of specific classes of proteins.

Since nucleic acids are negatively charged owing to the presence of phosphate groups,
proteins interacting with them must have a strong positive charge in order to form stable
aggregates with DNA or RNA. Both histones and RNA-binding proteins are quite short and
charged molecules. Consequently, they present highly positive values of Charge/Length, i. e. the
most correlated descriptor with PC2. This fact leads to their clear-cut separation on the PC2 axis.

The association of TREND with PC2 is due to the particular characteristic of this RQA
descriptor, which is strongly dependent from the length of the sequence: short sequences tend to
have higher values of TREND compared to the long ones. The presence in the dataset of histones
and RNA-binding proteins leads to the association of Length (and, indirectly, of TREND) with
PC2.

Code PC2 Class

P42132 17.932 I
P42129 10.802 I
P13275 8.880 I
P19757 6.851 I
P07978 6.795 I
P17502 6.719 I
P40631 5.747 I
P11020 5.528 I
Q05831 5.464 I
P06144 4.972 I
Q09821 4.934 I
P22974 4.712 I
P02259 4.596 I
P10922 4.570 I
P43278 4.370 I
P06894 4.339 I
P26377 4.304 I
P15870 4.269 I
P07305 4.241 I
P02254 4.156 I
P29258 4.121 I
P14798 4.014 R
P79781 3.898 R
P06895 3.839 I
P06146 3.766 I
P40262 3.737 I
P55947 3.714 A
P06145 3.664 I
P02285 3.645 I
P17268 3.605 I
P15796 3.569 I
Q02877 3.548 R
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Plotting PC1 vs. PC2 histones are outliers on the PC2 axis (see figure 6.3). An analogous
behaviour on PC2 axis, even if in minor degree, is shown by the RNA-binding proteins. These
classes press a lot the dataset on PC2 axis, so making difficult to single out other significant
clusters. In order to avoid this problem, PCA was repeated on the dataset lacking in histones and
RNA-binding proteins. The factor loadings of the PCA are reported in Table 6.4. These loadings
are roughly in agreement with those calculated on the whole dataset.

Figure 6.3 

For the above discussed reasons, the removal of histones and RNA-binding proteins,
causes a decreasing in the correlation coefficients of Length and TREND with PC2. Hence in this
case PC2 is essentially driven by the electric charge. The meaning of the two principal
components can be summarized in this way: PC1 represents the regularities in the hydrophobicity
distribution along the sequence, while PC2 principally represents the electric charge.

    PC1       PC2      PC3       PC4         PC5
  
LENGTH 0.469 -0.594 0.371 -0.228 0.219
MEAN -0.458 -0.223 0.303 0.762 0.138
REC 0.832 0.247 -0.187 0.087 0.187
DET 0.831 0.21 -0.049 0.186 0.191
MAXL 0.741 -0.314 0.359 -0.046 0.156
ENT 0.796 0.051 0.105 0.262 0.111
TREND -0.136 0.594 -0.504 0.124 0.304
LAMIN 0.83 0.264 -0.193 -0.101 -0.158
TRAPT 0.604 0.044 0.072 0.244 -0.669
CHARGE -0.219 0.712 0.545 -0.01 -0.105
Ch/Length -0.033 0.65 0.632 -0.16 0.129
  
% variance 37.43 17.85 12.72 7.78 6.97
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6.3 Protein classes 'reference table'

The plot PC1/PC2 of the dataset lacking in histones and RNA-binding proteins was used
as a reference picture on which small samples belonging to particular protein classes were
projected. The objective is to check the possible presence of remarkable clusters of proteins with
common function or fold, in order to build a kind of ‘reference table’ on which the biological
functions derive from purely sequential properties.

Relative to this aim a set of small classes, each one constituted by 10 proteins endowed
with the same Swiss-Prot keyword, were selected. The single classes were inserted, one at a time,
in the reference picture previously described, checking if the 10 proteins grouped together in a
particular zone of the PC1/PC2 plane. The classes which not satisfied the above requirement were
eliminated from the analysis, while for the other classes the mean values of PC1 and PC2 into the
class were calculated. These mean values represented a kind of cartesian coordinates by means of
which each class was projected of the PC1/PC2 plane.

A summarizing table reporting the projections of the classes on the space of the
components of the ‘hydrophobicity patterning’ (PC1) vs. ‘electric charge’ (PC2) was obtained
(see figure 6.4). 

Figure 6.4.  Reference table of protein classes on PC1 / PC2 plane. The coordinates are represented by the mean
values of PC1 and PC2 into each class. The standard errors are also reported.
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The great majority of the examined classes shows positive values on the PC1 axis. On the
contrary enzymes, the most numerous class of the dataset, have a mean value of PC1 slightly
lower than zero. The positive extreme of PC1 is characterized by protein involved in protein-
protein interaction. In this case the aggregation feature correlated to the highly repetitive
hydrophobicity pattern is clearly evident.

As a matter of fact structural proteins are almost completely located on the positive side
of the PC1 axis. At the positive extreme of the axis are located silk fibroin and proteins involved
in the process of keratinization, namely long extracellular polymers more similar to syntetic
polymers than to soluble proteins, as well as protamins, which are characterized by high mean
values for both PC1 and PC2. A peculiar position on the table is occupied by the ‘Filaments’
class, endowed with positive values of PC1 and very negative values of PC2. The ‘Filaments’
class consists of intermediate filaments and neurofilaments, which aggregate forming long
polymers. This feature explains their highly regular distribution of hydrophobicity (positive
values of PC1). 

Nevertheless their mechanism of polymerization is not only driven by hydrophobic
interactions, but also by electrostatic interactions. For example neurofilaments remain separate by
means of the exposition of identical negative charges (repulsive) along the chains of adjacent
filaments, in the aim to keep open the width of the channel formed by themselves. In order to
carry out this function they need to have a strong negative net charge, which produces their
highly negative values on PC2 axis.

6.4 Histones

The histone class was analyzed in more detail.  Histones can be divided in 5 subclasses:
H1, H2A, H2B, H3 and H4. In eukariotic cells, histones are the principal protein constituents of
the nucleosome. The nucleosome is the basic subunit of chromatin lacking in non histonic
proteins. The nucleosome is consituted by 3 components: the nucleosome core, the histone h1 (in
higher eukariotes) and linker DNA (see figure 6.5). 

Figure 6.5  Nucleosome structure
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The nucleosome core contains an octamer of 2 each of the core histones (H2A, H2B, H3
and H4) and 146 bp of DNA wrapped 1.75 turns. Core histones dimerize through their histone
fold motifs generating H3/H4 dimers and H2A H2B dimers.

The first order of chromatin compaction consists of 146 bp of DNA wound in two
superhelical turns around a core histone octamer. A single histone H1 polypeptide interacts with
an additional 20 bp of DNA. The linker histone H1 serves to stabilize a higher order chromatin
fiber that is fundamental to the structural organization of chromosomes. The linker histone binds
to each nucleosome, and by self affinity, links these nucleosomes together. Modulation of linker
histone binding is thought to be an additionally important element in the ordering of chromatin
structure accompaning activation and inactivation of gene transcription.

Hence the H1 histone plays a different role compared to the other histone subunits. While
other subunits are especially involved in protein-protein interactions, the H1 subunit is especially
a DNA-binding protein. On the basis of this consideration the histone class of the dataset has
been divided in two subclasses, H1 subunit and other subunits, in order to check a possible
different location on the reference table (see Figure 6.6).

Figure 6.6  Protein table with the histone class divided in 2 subclasses: H1 subunit (reported into the
rectangle) and other subunits (reported into the circle). 
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As expected, H1 histones show highly positive values on the PC2 axis, but don’t show
any periodic hydrophobicity distribution along the sequence (PC1 < 0). The other histone
subunits (H2A, H2B, H3 and H4) show less positive values of PC2 but a slightly more periodic
hydrophobicity distribution. 

6.5 Discussion

The classification by means of the 2 concepts of ‘regularities in the hydrophobicity
distribution’ along protein sequences and electric net charge allows to single out some gross scale
functional features of proteins. This features can be summarized in this way:

1) Proteins involved in the construction of supermolecular complexes (usually
structural proteins) show strong regularities in the hydrophobicity distribution
along the primary structure.

2) Globular proteins (usually enzymes) present a disordered (quasi random)
hydrophobicity distribution along the primary structure.

3) Proteins interacting with charged molecules (DNA, RNA, metals, etc.) have an
high electric net charge. The most relevant examples of this situation are
represented by histones and RNA binding proteins.
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7. GENERAL CONCLUSIONS

The simultaneous use of RQA and of different physico-chemical properties of
amonoacids allows to achieve a general picture of the aminoacid distribution in protein primary
structures. The analysis goes beyond the simple detection of repeats and leeds to the location of
almost a grammar of the aminoacid patterning, based upon strong order-dependent regularities.

In particular  the existence of some general ‘syntactic rules’ shaping the juxtaposition of
aminoacid residues was demonstrated: the above rules are destroyed by the random shuffling of
protein sequences (sequence dependence) but are generally maintained by changing the physico-
chemical coding of residues (code independence). This behavior points to the existence of an
emergent level of protein architecture different from the physical chemistry of the aminoacid
residues. 

The seven properties considered in this thesis constitute a representative sample of all the
aminoacid physico-chemical properties. The high correlation among the considered codings
points to a general superimposition of the RQA based description of protein sequences whatever
the code. This implies that the use of some other property in place of those considered in this
context will essentially provide the same information.

Protein constraints emerging in this work can be summarized by the following statements:
i) Protein sequences (at least the eukariotic ones) are constituted by 'imperfect repetitions'

of modules of 4-6 residues length. These modules have probably changed their
composition due to point mutational events, most often introducing residues similar to
the original ones in terms of physico-chemical properties. Thus the above modules are
very difficult to recognize by means of the pure symbolic coding of aminoacids, while
they appear much more invariant if considered in terms of the relative hydrophobicity
of their constituents residues.

ii) Classifying protein primary structures by means of their relative determinism
(repetition of self-similar modules in specific locations along the sequence) allows the
identification of proteins undergoing a lot of protein-protein interactions. The
supplement of the hydrophobicity based determinism with global net charge improves
the recognition of some protein functional classes.

The link between the general syntactic invariants and the propensity to interact is
consistent with a recent work by the Janet Thornton group 42 in which, analyzing a huge data base
of point mutations for a lot of different protein systems, the authors state that the most critical
portions of the proteins as for the biological consequences of the mutations are the ‘quaternary
interfaces’ i.e. the portions of the sequences where protein systems interact. The crucial value of
interactions is highlighted by the so called ‘misfolding diseases’ provoked by the precipitation of
protein complexes due to the anomalous self-interaction of different protein systems.

Some hints about the structural consequences of the discovered regularities were also
derived. The analysis of extremely deterministic sequences points to statistically singular,
interaction zones crucial for mutual recognition events. It is worth stressing that proteins
undergoing specific interactions with other proteins of the same or different kind are not endowed
with qualitatively different features. This allows for a hypothesis  of  deterministic spots playing
the role of both  folding “initiators” and aggregation hot points, depending on whether the
boundary conditions promote intramolecular or intermolecular interactions.

Such a conjecture is reinforced by the fact that the above demonstrated estimated length
of 6 for the typical “deterministic patch” matches the average 6.12 length calculated in the
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approximately  800 folding “nucleation centres” collected by the Casadio group 43 . Moreover, a
relation between the deterministic peaks and aggregation properties of different proteins ranging
from prion 44 to P53 45 has been also demonstrated. Such a finding included a correspondence
between short deterministic patches of hydrophobicity distribution along the sequence, with 3-D
"unstructured" portions of acylphosphatase (AcP) 11 .

Concerning the question of protein aggregation, it is possible to reach a more
sophisticated level of description compared to the analysis of the simple electric net charge in
addition to the single RQA descriptors calculated on the hydrophobicity profiles. In particular the
two basic elements involved in the aggregation process (i.e hydrophobic and electrostatic
interactions) can be simultaneously considered by combining the net charge with some selected
RQA descriptors, in order to obtain empirical formulae which can be tested about their ability in
predicting the aggregation propensity of protein molecules.

The link between the propensity of a given protein to form partially fold intermediates and
the propensity to aggregate is well known. In a recent paper 12 , an attempt to unify
"charge/hydrophobicity" and "partially folded intermediate" models of protein aggregation has
been presented. In this work an empirical formula derived for the prediction of aggregation
propensity of AcP has been successfully tested in discriminating between two protein sets:
proteins that are able to adopt equilibrium partially folded conformations and proteins which have
been shown to unfold without the formation of any equilibrium intermediate.

The demonstration of the ability of the same empirical formula to model both the
aggregation propensity of a specific system and the existence of partially folded intermediates
represents some noteworthy evidence of the overlapping of the two phenomena: aggregation and
the formation of partially folded intermediates.

It's worth to note that in the context of the data set used for this thesis, any empirical
formula combining charge and hydrophobicity doesn't provide any substantial improvement in
the ability of discriminating between different functional classes, compared to the simple net
charge.

This is due to the fact that the 1141 protein data set has been randomly extracted and for
this reason it is extremely heterogeneous. The calculation of the electric net charge represents a
more coarse-grain level of representation compared to the RQA description. Consequently the
differences between protein sequences in terms of electric charge compress the differences in
terms of RQA descriptors.

From a practical point of view, the demonstration of a non-trivial and non purely
stochastic autocorrelation structure of aminoacid distribution along protein sequences opens the
way to an alternative method to sequence alignment for comparing proteins. The long term
objective is the possibility to classify newly discovered sequences only on the basis of their
primary structure, stemming from the much lower DET of a typical enzyme as compared to an
aggregation-prone chain.
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