
     Università degli Studi di Roma “La Sapienza” 

 
        Dottorato di Ricerca in Biochimica 
            XVIII Ciclo (A.A. 2002-2005) 

 
 

 
STRUCTURE-FUNCTION ANALYSIS OF 

PATHOGENICALLY IMPORTANT PROTEINS FROM 

SCHISTOSOME PARASITES 

 
Paola Baiocco 

 

 

 

 

 

 

 

 

 
Docente guida                Coordinatore 

    Prof. Demetrius Tsernoglou   Prof. Paolo Sarti 

 

 

Dicembre 2005 



ACKNOWLEDGEMENTS 

 

I am grateful to Prof. Maurizio Brunori for giving me the opportunity to learn 

biochemistry and to progress as a researcher.  

Special thanks to Prof. Demetrius Tsenorglou, who helped me in the 

crystallographic techniques and to Prof. Andrea Bellelli who supervised me 

during my Ph.D. 

I am sincerely grateful to Dr. Adriana E. Miele who introduced me to 

molecular biology and to crystallography and has always supported me. 

A very special thank to my laboratory colleagues: Dr. Francesco Angelucci 

and Dr. Louise J. Gourlay for helpful scientific (and not) discussions. 

I want to thank all the crystallography group: Adele Di Matteo, Andrea Ilari, 

Beatrice Vallone, Daniele Bonivento, Fabiana Renzi, Giorgio Giardina, 

Linda Savino and Luca Federici for sharing the hard work at the 

synchrotrons. 

Thanks to Prof. Anna Tramontano, Prof. Paolo Sarti, Alessandro Arcovito, 

Alessandro Borgia, Fabio Centola, Gianna Panetta, Nicoletta Calosci, Stefano 

Gianni and Serena Rinaldo for helping me in any occasion. 

Experimental work was carried out in collaboration with the group of Prof. 

D. Cioli and Dr. P. Liberti, at the Institute of Cell Biology of the CNR 

(Monterotondo, Rome) and with Prof. F. Trottein’s group, at the Institute 

Pasteur of Lille (France). This project was gratefully funded by the Electron 

Synchrotron Elettra, Trieste. 

 



CONTENTS 
 
INTRODUCTION         4 
1.1 Schistosomiasis        5 
1.2 Infection and Pathogenesis       9 
1.2.1 Epidemiological considerations      9 
1.2.2 Life cycle and infection behaviour      10 
1.2.3 Pathology of Schistosome Infections      16 
1.3 Control of Infection        19 
1.4 Present research directions       25 
THESIS PLAN         27 
2.1 GST as a vaccine candidate against Schistosomiasis    28 
2.2 Other target proteins:        31 
2.2.1 Fatty acid binding protein       31 
2.2.2 Cyclophilin: a binding protein of an antischistomal drug   32 
GLUTATHIONE S-TRANSFERASE      33 
3.1 Target metabolic pathway: detoxification     34 
3.2 Introduction to Glutathione S-transferases     35 
3.3 GST antigenic properties in schistosomiasis     37 
3.4 The 28kDa Glutathione S-transferase from S. haematobium   40 
3.5 Materials and Methods       41 
3.5.1 Cloning, Expression and Purification of Wild Type and Mutant Sh28GSTs 41 
3.5.2 Crystallisation         43 
3.5.3 Data Collection and Processing      44 
3.5.4 Molecular Replacement, Model Building, and Refinement   45 
3.5.5 Quality of the Structural Data       45 
3.5.6 Steady State Determinations       48 
3.5.7 Fluorescence Measurements       49 
3.5.8 Stopped-Flow Rapid Mixing Experiments     49 
3.5.9 Experimental Determination of the pKa of Tyr10    50 
3.6 Results          50 
3.6.1 Cloning, Expression and Purification of Wild type and mutant Sh28GSTs 50 
3.6.2 Structural Analysis of wtGST in complex with GSH and GTX  51 
3.6.3 Structural Analysis of R21L and R21Q     53 
3.6.4 Structural Analysis of GSH-bound R21L     56 
3.6.5 Structural Comparisons of wild type and the arginine mutants  57 
3.6.6 Interactions at the Dimer Interface      59 
3.6.7 Ligand Binding Experiments       62 
3.6.8 Determination of Catalytic Activity      63 
3.6.9 Stopped-Flow Rapid Mixing Experiments     63  
3.6.10 Measure of the pKa of Tyr10 in wt and mutants    64 
3.6.11 Discussion         65 
CYCLOPHILIN-LIKE PROTEINS      72 
4.1 Cyclosporin A in Schistosomiasis      73 
4.2 New target for a schistosomiasis vaccine     74 



4.3 Material and Methods        76 
4.3.1 Cloning of S. mansoni cyclophilin      76 
4.3.2 Cyclophilin from Haemonchus contortus     76 
4.3.3 Protein Expression and Purification      77 
4.3.4 Biochemical characterisation of HcCyp     78 
4.3.5 Enzymatic assay and inhibition studies     79 
4.3.6 Crystallisation tests        81 
4.4       Results and Discussion       82 
4.4.1 Cloning, expression and purification of SmCyp and HcCyp   82 
4.4.2 Biochemical characterization       83 
4.4.3 Prolyl isomerase assay       83 
4.4.4 Inhibition assay        85 
CONCLUSIONS        89 
REFERENCES         93 
ATTACHMENTS        102 
 



 

 

CHAPTER 1 

 

 

 

 

 

 

 

INTRODUCTION 



Chapter 1 2 

1.1 Schistosomiasis 

In 1851 Theodor Bilharz, a young German pathologist, discovered the 

organisms responsible for a disease called Schistosomiasis, and later to be 

known also as Bilharziasis from his name (Halawany, 1952). 

Schistosomiasis, recognized since the time of Egyptians, is a parasitic disease 

that leads to chronic illness. At present, it is distributed in 75 countries of 

Africa, southeast Asia, and northwest South America. Approximately 200 

million people are infected with schistosomes, resulting in 1000000 deaths 

each year. The disease is indicated either by the presence of blood in the 

urine or, in the case of intestinal schistosomiasis, by initially atypical 

symptoms which can lead to serious complications involving liver and spleen 

damage (Jordan, 1972). 

The main forms of human schistosomiasis are caused by three species of the 

flatworm, or blood flukes, known as schistosomes (WHO, 1993-1996-2002): 

Schistosoma mansoni, Schistosoma haematobium and Schistosoma 

japonicum.  

 

 

 

 

 

 

 

 
Figure 1.1 Geograp
 

hical distribution of S. mansoni.  
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S. mansoni causes intestinal schistosomiasis and is prevalent in 52 countries 

and territories of Africa, Caribbean, the Eastern Mediterranean and South 

America (Fig. 1.1).S. japonicum causes intestinal schistosomiasis and is 

present in 7 African countries and in the Pacific region  

S. haematobium causes urinary schistosomiasis and affects 54 countries in 

Africa and in the Eastern Mediterranean (Fig. 1.2). 

 

 

 

 

 

 

 

 

 

Figure 1.2. A geographical distribution of S. mansoni and S. haematobium 

The transmission of the parasite is strictly linked to water supply and 

people become infected because they do not have access to safe water, and 

maintain transmission because of the absence of proper excreta disposal 

systems. Infection is acquired during the course of routine domestic, 

agricultural or occupational duties. 

Transmission occurs when schistosome eggs from human excreta hatch into 

miracidia upon contact with water. The miracidia swim around until they 

infect into the appropriate species of water snail of the genus Biomphalaria, 

which is the intermediate host of the schistosomes. The stages in the snail 

include two generations of sporocysts and the production of cercariae. The 
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growth in the snail leads to exponential multiplication of the parasite. From a 

single miracidium a few thousand cercaria, each one capable of infecting 

men, are produced. The cercariae erupt from the snail into the surrounding 

water. They can penetrate an individual's skin within a few seconds, 

continuing their biological cycle (Fig. 1.3). Adult worms in humans reside in 

the mesenteric veins in various locations, which at times seem to be specific 

for each species. For instance, S. japonicum is more frequently found in the 

mesenteric veins draining the small intestine (A), and S. mansoni occurs 

more often in the superior mesenteric veins draining the large intestine (B). 

However, both species can occupy either location, and they are capable of 

moving between sites, so it is not possible to state unequivocally that one 

species only occurs in one location. S. haematobium most often occurs in the 

venous plexus of bladder (C), but it can also be found in the rectal venules. 

The females deposit eggs in the small veins of the portal and periversical 

systems. The eggs are moved progressively toward the lumen of the intestine 

(S. mansoni and S. japonicum) and of the bladder and ureters (S. 

haematobium), and are eliminated with faeces or urine, respectively (1). 
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Figure 1.3. The life cycle of schistosome worms. Eggs are eliminated with faeces or 
urine (1). Under optimal conditions the eggs hatch and release miracidia (2), which 
swim and penetrate specific snails (3). In the snail the miracidia transform into 
sporocysts (4) and the infective cercariae (5) are released in the water. The 
cercariae swim and penetrate the skin of the human host (6), and shed their forked 
tail, becoming schistosomulae (7). The schistosomulae migrate through several 
tissues to their residence in the veins (8, 9). Within 30 to 45 days, the parasite is 
transformed into a worm long 1-2 mm, which is either male or female. The female 
lays from 200 to 2000 eggs per day over an average of 5 years, or more, according 
to the species. Adult worms (10) in humans reside in the mesenteric veins in various 
locations, which at times seem to be specific for each species.  
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1.2 Infection and Pathogenesis 

1.2.1 Epidemiological considerations 

Schistosomiasis is endemic in 74 tropical developing countries. Some 

600 million people are at risk of becoming infected and it is estimated that 

200 million people are already infected. Extreme poverty, unawareness of the 

risks, inadequacy or total lack of public health facilities, especially with 

reference to water supply and disposal, together with the unsanitary 

conditions in which millions of people lead their daily lives are all factors 

contributing to the risk of infection. In many areas, a high proportion of 

children between the ages of 10 and 14 are infected, causing growth delay 

(Fig. 1.4). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 25 year-old man with advanced schistosomiasis 
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Urinary schistosomiasis affects 66 million children throughout 54 countries. 

In some villages around Lake Volta in Ghana, over 90% of the children are 

infected by the disease. As with other tropical diseases, population 

movements and refugees in unstable regions contribute to the transmission of 

the disease. The increase in "off-track" tourism has led to increasingly serious 

infections with previously unknown effects, including paralysis of the legs. 

The large fresh water reservoirs associated with dams such as Akosombo 

Dam in Ghana, the Kainji Dam in Nigeria and the Kariba Dam in Zimbabwe 

as well as smaller reservoirs in the Sahel and irrigation systems throughout 

Africa are major transmission foci and thus the most endemic areas for 

schistosomiasis. Although the majority of people in endemic areas have only 

light infections or no symptoms, the impact of schistosomiasis on economic 

conditions and on the general health situation should not be underestimated. 

In the north-east of Brazil, Egypt and Sudan, the work capacity of rural 

workers has been estimated to be seriously undermined. The disease also 

substantially affects children's growth and school performance. Moreover the 

close association of schistosomiasis with natural and artificial water 

reservoirs frustrates the efforts aimed at developing agriculture. 

1.2.2 Life cycle and infection behaviour 

The eggs pass through the walls of mesenteries, and through the 

intestinal walls into the gut lumen. How they achieve this is still not well 

understood, however, it is likely to be a result of a number of interacting 

factors. Physical factors such as the mechanical action of the egg spine, 

helped by the host blood pressure and by peristaltic action of the gut, help the 

egg moving into and passing through the tissues. Biochemical factors, such 
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as proteolytic enzymes released by the eggs, may help their way through the 

host tissue. The host inflammatory response also seems to be essential for 

successful migration of the egg to the lumen of the intestine. This response is 

caused by the lodged eggs, leading to granuloma formation. Experimental 

infections in mice given anti-inflammatory agents results in reduced 

granuloma formation with the eggs becoming trapped in the intestinal tissue. 

Not all the eggs pass out via the intestine. Many of them are swept back to 

the liver where they are trapped and form liver granuloma. The schistosome 

eggs travel in the host tissues for an average of 6 days, between the time they 

are laid and the moment they leave the host, by which time they are fully 

embryonated and ready to hatch. Three main factors affect the hatching of 

schistosome eggs: temperature (25-30°C), light and osmotic pressure. On 

entering a hypotonic environment, such that of fresh water, the increase in the 

osmotic pressure and the activation of the enzyme leucine amino peptidase, 

inhibited by NaCl, result in rupture of the egg’s shell. Each egg, which is 

mechanically ruptured along its long axis, releases a highly motile (2 

mm/sec) ciliated miracidium. It is noteworthy that the sex of the adult worm 

which will eventually be produced from the miracidium is already 

determined at this stage. Therefore, if a snail is infected with a single 

miracidium all the resulting cercariae will produce, in the definitive host, 

adults worms which are either all male or all female. The miracidium seeks 

and penetrates a snail as intermediate host. It can remain infective for 8 - 12 

hr. To increase the chance of the miracidia locating the host, they have a 

negatively geotactic and positively phototactic behavioural response which 

tends to place them in the general environment of the snail host, 

Biomphalaria glabrata. Chemical substances released by the snail, including 
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mucus, long chain fatty acids and even amino acids, attract the miracidia. 

When miracidia are in contact with a snail, a period of exploratory behaviour 

occurs before the penetration. Seventy percent of the miracidia appear to 

penetrate through the foot of the snail, other penetration sites include the 

tentacles and the edge of the mantle. Penetration is a combination of 

mechanical motion of the apical papillae and histolytic secretions released 

from the penetration glands. The cilia are not lost until the penetration is 

complete. The location of the sporocyst, the next developing stage within the 

snail, is dependent on the schistosome species: S. mansoni and S. 

haematobium remain at the site of penetration, usually the foot, whereas S. 

japonicum prefers organs such as viscera and heart. The sporocyst enters into 

mitosis and produces about 35-600 daughter sporocysts after about 3 weeks. 

The daughter sporocysts migrate to the digestive glands of the snails and 

produce the next infective stage, the cercaria. The average cercarial output 

from an infected snail has been estimated to be about 1500/day, for a total 

about 18 days. Approximately 4 weeks pass from the penetration of the snail 

until the release of the cercariae which are released every 24 hours only 

during daylight. It has been determined that the pattern of cercarial shedding 

is dependent on the focus of the infection and the behaviour of the host 

population. For example, one study in Guadeloupe island, where there were 

both a human and an animal foci of infection, showed three different 

shedding in different regions. In the urban area, where the human population 

was the focus of infection, cercariae were shed early in the morning. In a 

remote country area, where the focus of the infection cycled through wild 

hosts, shedding occurred in late afternoon. However, in a rural community 

where humans and rodents acted as hosts, shedding was found to be 
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intermediate between the previous two. Schistosomes’ cercariae are 

characterised by long tails, bifurcated at the end (the furcal rami), and a 

tegument all around the body, made by a trilaminate plasma membrane, and 

with a glycocalyx on the outer surface. The cercariae of S. mansoni are 

released 25 to 30 days after the snail has been infected and are sexually 

differentiated. They are a non-feeding stage of the lifecycle, and their energy 

requirements are met by stored glycogen in both the tail and the body. As 

they are non-feeding, their energy stores will become depleted, resulting in a 

reduced infectivity since they become incapable of swimming towards their 

host, due usually to depletion of the tail reserves as these are used first. 

Cercariae can remain infective in vivo, under optimal conditions, for about 5-

8 hours after shedding, although in vivo this is probably much less, due to 

factors such as variation in water temperature. Similarly to the miracidium, 

the cercariae exhibit a number of behavioural features that enable them to 

locate their definitive host, such as the bursts of upwards swimming to reach 

the surface of the water, followed by periods of passive sinking and also 

sensitivity to other stimuli, such as shadows on the water, turbulence and 

chemicals secreted by the hosts skin. Once the cercaria has reached its host, it 

attaches to and penetrates the human skin, using secretions from glands in the 

head region, and when inside it digests its tail to become a schistosomulum 

larva. This latter starts migrating through the body and developing at the 

same time, until it reaches maturity as an adult worm in the liver.  

Penetration into the host skin has distinct phases: attachment, creeping over 

the skin surface (both triggered by chemical and thermal stimuli) and 

penetration into the epidermis (triggered by chemical stimuli, such as 

aliphatic hydrocarbons and free fatty acids, produced by esterases on skin 
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triglycerides). The penetration is a combined mechanical and secretory 

process whose initial phase may take as little as a few minutes. As 

penetration proceeds there are structural and physiological changes occurring 

during the transformation from a free-living infective stage to a parasitic 

larval schistosomulum. 

This metamorphosis takes place in less than one hour and involves: (i) 

changes in the outer membrane: the cercarial tegument surrounded by a 

trilaminate plasma membrane with a thick glycocalyx, is lost together with 

the tail at the time of penetration; (ii) the emptying of the various penetration 

glands; (iii) release of vesicles from the tegumental cell bodies beneath the 

muscular tissue, into the tegumental cytoplasm to form a multi-laminate 

tegumental surface in replacement of the trilaminate membrane; (iv) release 

of contents from oesophageal glands into the lumen starting the feeding. This 

process requires two physiological triggers: elevated temperatures and iso-

osmotic conditions. The glycocalyx is thought to control the surface 

permeability in fresh water and its loss coincides with sensitivity to osmosis. 

Both physical and biochemical changes take place during the metamorphosis. 

Over the first 24 h, there is a switch in the larval energy production from an 

aerobic glycogen based metabolism to a predominantly anaerobic one, 

accompanied by an increase in lactate production. At the same time, there is a 

remarkable turnover of surface molecules on the schistosomula surface, 

marked by the appearance of molecules with low immuno-reactivity. By 24-

48 hours the schistosomula has become completely refractory to antibody 

mediated immune cell cytotoxicity. In addition to providing molecules on the 

surface which mask antigenic epitopes, the schistosomula surface has also the 

ability to coat itself with host molecules. Host erythrocyte surface glycolipids 
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are adsorbed onto the schistosomula surface helping to mask sensitive 

parasite epitopes from the host defense systems. The parasites enter the initial 

epidermal layer of the skin very rapidly (less than 30 min) and, once reached 

the dermis, they rest for about 40h, making this compartment a temporary 

barrier to further penetration. Then they require 10 more hours to locate a 

venule and a further 8h to penetrate the venule wall. Once in the blood 

capillaries the schistosomula are carried to the lungs, where they become 

lodged and double in size over the next few days. This so called “lung phase” 

lasts for 3-8 days. Following this period the larvae make their way to the 

liver, but the exact pathway is unknown. Upon reaching the liver, the 

schistosomula mature to young adults pairing 28-35 days post-infection. 

When the worms are mature the paired adults migrate out of the liver to the 

mesenteries where the female begins to lay the eggs (Fig. 1.5). 

 

 

 

 

 

 

 

Figure 1.5. Schistosoma pairs in the mesenteries 

The male and female worms remain in close association, the slender female 

lying in a ventral groove on the male surface called the gynecophoral canal. 

Within such an intimate association, the female receives products, such as 

glucose, across the membrane of the male. The importance of the association 

is highlighted by the fact that if the female fails to mate it does not mature 
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properly and remains stunted. It has been estimated that in human infections 

adult worms can rvive

 

 su  in the host for 20-30 years. 

igure 1.6: Scanning electron micrograph of a pair of Schistosoma mansoni 

inocula

 exit the host 

1.2.3 Pathology of Schistosome Infections 

chistosome infection arises 

primar

 

 

 

 

 

 

F
parasites.  

In the mouse model system only about 20% of the initial cercarial 

tion makes it to the adult stage. Although there has been much 

controversy over the site of attrition of the larval worms, it now seems clear 

that the greatest loss of larvae occurs during the migration through the lungs, 

with relatively small losses during migration through the skin. 

Although many of the eggs pass through the gut mucosa and

with fecal material, as many as 50% of the eggs can be swept by the blood 

stream back to the liver, where they become lodged in the liver parenchyma. 

These lodged eggs trigger the host inflammatory response leading to 

granuloma formation and liver fibrosis, that is the chief cause of pathology. 

The pathology associated with a s

ily from the schistosome eggs wherever they are present, in the 

intestine or, in the case of eggs swept back by the blood, in the liver and 

occasionally in other tissues including brain and lungs. In case of a single sex 
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infection there’s no egg production, therefore this infection cause only little 

pathology. 

The clinical signs of the disease pass through two different phases: the 

acute a

se of infection is the more important aspect of S. 

manson

out a 16 day period after the 

deposit

nd the chronic. The acute stage of the infection is often asymptomatic, 

but when symptoms do occur they include fever, nausea, headache, an 

irritating cough and, in extreme cases diarrhoea accompanied with blood, 

mucus and necrotic material. This phase is known as Katayama fever, is 

normally found in young children or young adults with no previous exposure 

to the disease, and is particularly prevalent in individuals with S. japonicum 

infections. The acute reaction is a response to the sudden high level of 

antigen exposure and is usually associated with the onset of eggs deposition. 

Frequently, heavy infections can lead to fibrotic chronic schistosomiasis or to 

the death of the patient. 

The chronic pha

i pathology. The most common symptoms are diarrhoea and fever but 

the infection can also depress children’s growth rate and lead to enlargement 

of the liver and spleen. Fibrosis of the liver can result in portal hypertension, 

ascites formation, and oesophageal varices leading to fatal hematemesis. In S. 

haematobium, the most frequently affected organ is the urinary bladder, 

where calcification of eggs trapped in the tissues often occurs. The disease is 

characterised by blood in the urine (haematuria), hence the infection is often 

referred to as 'Urinary Schistosomiasis'. Cancer of the bladder is an important 

complication of infection with S. haematobium. 

The granuloma formation occurs over ab

ion, predominantly in the periportal area. Each egg becomes 

surrounded by a dense infiltrate composed mainly by a number of different 
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type of immune cells, including both T and B lymphocytes, macrophages, 

giant cells, epitheloid cells, mast cells, plasma cells, fibroblasts and 

eosinophils (Fig. 1.7). 

 

 

 

 

 

 

 

 

Figure 1.7 S. mansoni eggs in the liver of an experimentally infected mouse. Two of 
the several eggs in this section are labeled, and the granulomas (*) that have formed 
around the eggs are typical of the damage that occurs in the livers of infected hosts. 
 

hese cells all play a significant role in the formation of the granuloma as T

they interact with each other in a highly complex fashion, involving both 

cell-cell interactions and indirect interaction through a wide variety of 

cytokine chemical messengers. It is important to note that these cellular 

responses are dynamic processes, and different cellular responses are 

important at different stages of granuloma formation. Because of their size, 

eggs cannot pass through the capillary beds as the blood flows through the 

liver. The size of granuloma and cell composition vary depending on the 

schistosome species, the host species and the intensity and duration of the 

infection, and even tissue location. In any case, the main factor is how much 

immunoresponsive is the host to the schistosome egg antigen (SEA). 

Although some of the tissue responses are due to the physical  presence of the 
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eggs and to their damage, most of the outcome is due to the host response to 

the SEA released through submicroscopic egg’s shell pores. 

In normal hosts, reactivity to SEA peaks early, producing large florid lesions 

ulation of the granulomas requires multiple 

effecto

1.3 Control of Infection 

lo ase has changed significantly in the past 50 

but as the infection becomes more chronic, i.e. by 8-10 weeks post infection, 

granulomas tend to become relatively smaller due to a modulation of the host 

hypersensitivity response. Activated T-helper cells are instrumental in the 

induction of IL2, which is the principal cytokine required for the formation of 

normal granulomas. Down regulation of the production of this cytokine is 

initiated by a subset of suppressor-inducer T-cells, but modulation is 

immunologically complex. 

Finally, immunoreg

r systems working together to achieve a deceptively simple host 

adjustment to the persistent generation of parasite antigens. This modulation 

can be regarded as beneficial to the long term maintenance of the adult 

parasite and its life cycle; but it is obviously a delicate balance: in fact both 

cases of no immunodepression and complete immunosuppression result in 

high host mortality. 

The g bal distribution of the dise

years, with control successes achieved in Japan and in other restricted areas 

in Asia, the Americas, North Africa and the Middle East. However, despite 

this progress, the disease remains endemic in many developing countries. 

Control of Schistosomiasis aims to prevent new infections, usually by 

interruption of the parasites life cycle. This may be achieved by a number of 

methods including: 1) action to eliminate the intermediate host; 2) 
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elimination of the parasite from the definitive host; 3) prevention of infection 

of the definitive host; 4) prevention of infection of the intermediate host; 5) 

the eventual use of a vaccine. Unfortunately, it is doubtful whether an 

effective vaccine will be ready in the next future for use within national 

control programmes, the main reason for pessimism being that 

schistosomiasis does not confer immunity and multiple infestations are 

common. 

As we have already mentioned in the previous paragraph, adult 

schistosomes reside in the capillary net of the abdominal organs and avoid 

host immune attack by various mechanisms, the most important of which is 

the adsorption of host antigens to the worm surface. The disease is caused by 

a granulomatous reaction against the large share of egg production, most of 

which fails to be excreted from the host. Therefore the main clinical forms of 

the disease are due to the eggs, either arrested in the liver, causing 

hepatomegaly and associated pathology, or occupying the bladder wall 

resulting in urinary obstruction, kidney damage and frequently bladder 

cancer. The severity of morbidity is related to the intensity of infection and 

clinical signs will not appear until a sufficient number of egg-associated 

granulomas have been generated. This process is decelerated by the diverse 

degrees of immunity developed by endemic populations, but, because a 

balance must be struck to reduce the risk of over-stimulating the granuloma 

reaction towards the egg, protection builds up slowly and is only partial. It is 

apparent that the equilibrium between opposing immunological mechanisms 

is a delicate one, and the need for it precludes the classical approach to 

vaccine development. 
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There is as yet no effective vaccine for human use. The identification of 

schistosome antigens is a major priority of the research. To be effective 

against schistosomiasis, the vaccine must have the following features: i) It 

must be cheap, because the countries affected by schistosomiasis include 

some of the poorest in the world; ii) It must be effective in terms of 

protection, because efficient protection of a large percentage of vaccinated 

people is essential to interrupt transmission of the parasite; iii) It must be 

stable, this is linked to i): in fact in order to be used in many of the affected 

countries, it must be able to survive storage as it is transported to isolated 

populations where the disease is endemic; iv) It should ideally be effective 

with a single application, which is of outmost importance to keep the costs of 

the mass vaccination schemes needed to a minimum. 

Most schistosome antigens were initially identified in S. mansoni as this 

species can be adapted to the laboratory with relative ease. Several antigens 

have reached an advanced phase of development. The Special Programme for 

Research and Training in Tropical Diseases of the World Health  

Organization (WHO/TDR) has developed a programme to assist selection of 

promising antigens for further development (Table 1.1). 
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Table 1.1 Major Schistosome antigens selected by WHO. 

With the great majority of published work carried out with S. 

mansoni, it is likely that a vaccine against this species will be developed first. 

The selection of vaccine candidates favoured antigens showing high rates of 

protection, together with additional advantages, such as the role of 

glutathione S-transferase (GST) in schistosome fecundity (Capron et al., 

1992) and the cross-reactivity displayed by the fatty acid binding protein 

antigen against fasciolasis (an economically important disease of cattle; 

Tendler et al., 1996). Other criteria included the ease of large scale 

production, the use of adjuvants accepted for human use, the quality of 

research reported and the number of publications. 
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The antigens listed in Table 1.1 constitute a perplexing array of proteins and 

it is unclear how proteins that are predicted to be cytosolic, such as Sm14 

(Moser et al., 1991), GST (Balloul et al., 1987), triose-phosphate isomerase 

(TPI) (Harn et al., 1992), could be attached to the schistosome surface, since 

none has a conventional transmembrane domain and there is no evidence of a 

lipid anchor. One possibility is that parasites could be damaged during the 

course of an infection and soluble proteins are adsorbed to the surface 

perhaps as part of its strategy to acquire host antigens acting as antigenic 

disguise (Simpson, 1992). If this were the case, however, the antigens would 

be exposed by damaged or dying parasites and would perhaps offer scarce 

protection against live and virulent schistosomes. On the other hand the 

adsorption of soluble proteins derived from the parasite to the surface seems 

to be relevant for stimulation of a strong protective immunity (as is the case 

of the vaccine candidates GST and TPI). Interestingly, there is a striking 

accumulation of actin in the areas of the tegument recovering from damage 

(Matsumoto et al., 1989). Thus, actin or other tegumental proteins are 

possibly capable of interacting with some soluble proteins allowing 

attachment to the tegumental surface. There are currently investigations on 

possible mechanisms of protein adsorption to the tegumental surface and the 

interaction of protein species within the tegumental membrane. 

An alternative to vaccination is chemotherapy that  can reduce 

morbidity and lethality but must be reiterated periodically, mainly because of  

multiple infection. However, morbidity could be possibly suspended 

permanently, even with continued transmission, if chemotherapy were 

followed by vaccination. Effective drugs, belonging to trivalent antimonials 

were first introduced in 1918. In the 1920s copper sulphate was shown to be 
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lethal to the aquatic vectors of S. mansoni and S. haematobium and lime was 

first used to attack the amphibious vectors of S. japonicum as reviewed by 

Taylor (1998); this approach to the control of schistosomiasis is, however, 

hampered by its high impact on the environment. 

Currently, diagnosis followed by appropriate chemotherapy remains the 

milestone of control strategy. At the moment, only three effective and safe 

drugs are available for treating schistosomiasis: oxamniquine, metrifonate 

and praziquantel, all effective against the adult worms (Fig. 1.8).  

N 

N 

O 

O 

N

CH2OH

NO2

H
CH2NHCH

CH3

CH3

*
N 

N 

O 

O 

N

CH2OH

NO2

H
CH2NHCH

CH3

CH3

* O

OH

CCl3CHP(CH3O)2

a) b) c)

N 

N 

O 

O 

N

CH2OH

NO2

H
CH2NHCH

CH3

CH3

*
N 

N 

O 

O 

N

CH2OH

NO2

H
CH2NHCH

CH3

CH3

* O

OH

CCl3CHP(CH3O)2

N 

N 

O 

O 

N

CH2OH

NO2

H
CH2NHCH

CH3

CH3

*
N 

N 

O 

O 

N

CH2OH

NO2

H
CH2NHCH

CH3

CH3

* O

OH

CCl3CHP(CH3O)2

a) b) c)
Figure 1.8 Molecular structures of a) Praziquantel: a chiral centre is indicated; b) 

Oxaminquine; c) Metrifonate. 

Praziquantel is the drug of choice for the treatment of all forms of 

schistosomiasis. It has thus been administered to millions infected individuals 

in endemic countries. The progressive reduction in costs over the past ten 

years has also made the drug more readily available. This scenario, however, 

has recently been tainted by reports of low cure rates in Senegal and the 

isolation of praziquantel-resistant schistosomes in laboratory. In the 

meantime, there is a need for increased vigilance in both monitoring and 

reporting of any emerging praziquantel tolerance/resistance, which would 
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obviously have major implications for control strategies in the future. 

Therefore there is a strong need to promote research and development of 

additional anti-schistosomal drugs. The detailed molecular mechanism of 

action of praziquantel has not yet been elucidated, but a few phenomena 

connected with its effects are well known (Cioli and Pica-Mattoccia, 2003). 

The most obvious and immediate modification observed in schistosomes 

exposed to the drug either in vivo or in vitro, is a spastic paralysis of the 

worm musculature and morphological alterations in the worm tegument. 

These alterations are accompanied by an increased exposure of schistosome 

antigens on the parasite surface (Harnet and Kusel, 1986). Some of the drug 

exposed antigens have been identified and appear to be connected with the 

host immune response that is required for a complete activity of praziquantel 

(Brindley et al., 1989). 

Oxamniquine has an excellent record of efficacy and safety for the 

treatment of infections caused by S. mansoni (Foster 1987), but is not active 

against the other human schistosomes. 

Metrifonate, is active only against S. haematobium; it was rarely 

employed and is no longer available as a brand product, although it can still 

be found as a generic drug. 

Early diagnosis and treatments remain the principal target in the 

control strategy, however, the major disadvantages to the use of drugs to 

control schistosomiasis is the need to repeat drug treatment at relatively short 

intervals. 
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1.4 Present research directions 

Two main areas of research can be identified, one aiming to produce 

effective vaccines and the other to increase the limited number of anti-

schistosomal drugs. As with all infection diseases, a preventive vaccine 

would be the ideal solution, but it may not be easy to implement since natural 

infection leaves very little immunity. For the same reason, chemotherapy can 

be effective but inevitably requires multiple expensive treatments due to the 

high rate of re-infection. Interestingly, one of the effects of chemotherapy 

with praziquantel is to blister the surface skin of the schistosome, thereby 

penetrating the shield that makes it invisible to the host, and rendering it 

vulnerable to specific immune attack and destruction by the host effector 

cells. Combining chemotherapy and vaccine strategies could represent the 

main possibility for controlling schistosomiasis. 

Previous and present research efforts by the WHO aim to control 

schistosomiasis rather than eliminate it, therefore it is a long-term 

commitment that subsequently requires a continuous supply of funds. 

Schistosomiasis research has been hindered by reduced funding input over 

the last 20 years. The World Health Organisation (WHO) has expressed its 

concern on this matter and is keen to promote scientific interest to develop 

new therapeutic strategies. 

The resources necessary for a structural biology project on Schistosomiasis 

will require extensive collaboration between groups performing the genomic, 

proteomic and the structural and functional work.  

In this respect, we started a collaboration with the Institute Pasteur of Lille 

(France) and the Institute of Cell Biology of Monterotondo of the Consiglio 

Nazionale delle Ricerche (Italy). Target proteins of adult worms were 
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selected considering their potentialities for a possible cure. The selection 

criteria for the proteins were: (i) having a role in some of the specific life 

stages of the schistosomes; (ii) being possible drug targets; (iii) having a 

demonstrated antigenicity. 1

 

                                                 
1 For figures see: www.path.cam.ac.uk/~schisto/ and “Topics in International Health – Schistosomiasis 
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2.1 GST as a vaccine candidate against Schistosomiasis 

The World Health Organization (WHO) proposed the Glutathione S-

transferase as one of the most promising antigens for the development of 

anti-schistosomal vaccines and chemotherapies (W.H.O., 1993-1996-2002). 

As helminths contain very low levels of other detoxification enzymes, such 

as catalase, superoxide dismutase and cytochrome P450, GST may prevent 

toxin accumulation in schistosomes and may represent the parasite’s primary 

defence against oxidative damage.  

Despite the extensive study of these enzymes, their catalytic 

mechanism is still incompletely understood and remains controversial. All 

GSTs operate via activation of GSH to GS-; this requires to lower the pKa of 

GSH by at least two or three pH units. In the GSTs belonging to the classes 

alpha, mu, pi and sigma, GSH activation proceeds via the interaction with a 

tyrosine at H-bonding distance from the sulphur of GSH; in the enzymes 

from other classes the catalytic residue is either cysteine or serine (Armstrong 

et al., 1997; Sheehan et al., 2001). 

The first crystal structure of the 28kDa GST from S. haematobium 

(Sh28GST) has been resolved in our laboratory (Johnson et al., 2003). Based 

on structural considerations, we have recently presented a novel mechanism 

for GSH activation (Angelucci et al., 2005 and attachment 2), that may 

possibly be extended to other GST classes and may be relevant to the search 

of new anti-schistosomal therapies. Sh28GST belongs to the sigma class and 

the catalytic Tyr10 adopts two alternative positions with respect to its 

orientation in the G-site: an activating conformer (Tyrin10), where the 

phenoxyl group of Tyr10 projects towards the G-site forming a hydrogen 

bond with the thiolate of GSH; and a previously undescribed non-activating 
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conformer (Tyrout10), where the phenoxyl ring is positioned out of the G-site 

and is stabilised by a π-cation interaction with the guanidinium group of 

Arg21. 

 

 

 

 

 

 

 

 

Figure 2.1 Electron density map showing the double conformation of Tyr10 in 
Sh28GST and the distances between guanidinium group of Arg21 and Asp33 and 
Glu18. The π-cation interaction between Arg21 and Tyrout10 is calculated with 
respect to the centre of the phenolic ring. 
 

Electrostatic interactions between electropositive groups and the 

electron-rich π-clouds of aromatic rings are common in proteins and have 

been assigned both structural and functional roles. The functional role of such 

an interaction has recently been elucidated for Sh28GST (Angelucci et al., 

2005) where Tyr10 is proposed to switch alternatively towards the bound 

GSH and towards the solvent where the ionization of the catalytic tyrosine is 

favoured, due to the pKa decrease caused by the π-cation interaction. The role 

of Tyr10 is fundamental for the catalysis, as demonstrated by the functional 

studies carried out on the inactive Y10F mutant, which presents the Pheout10 

conformer stabilised by the π-cation interaction. The role of Arg21, a strictly 

conserved residue in the GST enzymes containing a catalytic tyrosine, is 
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therefore suggested to be linked to interaction with Tyr10. Stenberg et al., 

(1991) carried out basic kinetic studies suggesting the importance of 

arginines in GSH and inhibitor binding. To date, Arg21 mutants have yet to 

be crystallised. Therefore, in order to prove the influence of Arg21 in 

catalysis and to investigate about its suggested structural role, we have 

mutated arginine 21 in leucine and in glutamine. 

Moreover, GSTs are related to various human pathologies and the 

structure-function studies of their interactions with ligands have a strong 

pharmaceutical relevance (Armstrong et al., 1997), as demonstrated by the 

fact that new GST inhibitors are presently being searched for by several 

pharmaceutical companies. 

The structural and functional characterisation of arginine mutants of 

Sh28GST and of the complex with one inhibitor, S-hexyl glutathione (GTX), 

were the aim of this thesis. All proteins were heterologously expressed in E. 

coli cells. Proteins were purified to homogeneity and suitable crystallisation 

growth conditions were determined. The structural characterisations were 

achieved through X-ray crystallography, while functional studies employed 

static and time resolved spectroscopy. High resolution diffraction data were 

collected and the resulting electron density maps were used together with 

molecular modelling techniques to build and refine the final protein 

structures. The structural data obtained imply new chemical properties of this 

enzyme which may help to provide a better insight into the overall enzymatic 

mechanism and may help to select new portions of the polypeptide chain as 

possible targets for drug design. 
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2.2 Other target proteins: 

As an effective drug without serious side-effects, praziquantel (PZQ) 

is the single major treatment for schistosomiasis and several other trematode 

and cestode infections (Andrews et al., 1983), although its target and 

mechanism of activity are not known (Shekhar, 1991). Recent reports of 

schistosome strains resistant to PZQ and other anti-helminths indicate that 

new therapies must be identified to fight this debilitating disease (McTigue et 

al., 1995). 

2.2.1 Fatty acid binding protein 

The World Health Organization selected Sm14, a fatty acid binding 

protein (FABP), as one out of six anti-schistosome vaccine candidates (Table 

1.1). The physiological role of FABPs includes protection of cell membranes 

and enzymes from the effect of high concentrations of free fatty acids (FAs) 

and of their acyl-CoA derivatives, storage of FAs, lipid trafficking, and 

regulation of cell growth and differentiation. These proteins have been 

intensively studied because schistosomes lack the metabolic pathways 

required for the biosynthesis of sterols and lipids, and completely depend on 

the host for these substances. Uptake and transport of fatty acids and other 

lipids in S. mansoni depend on the fatty acid binding protein (Sm14). Sm14 is 

present in all the stages of the life cycle and is localized in the external cell 

layer, i.e., near the interface of the parasite/host contact. 

During my Ph.D., I have been involved in the project regarding the 

functional and structural study of Sm14FABP, which is not discussed in this 

thesis (see attachment 1). 
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2.2.2 Cyclophilin: a binding protein of an antischistomal drug 

A new protein physiologically relevant in the development of 

schistosomes, recently proposed as a possible vaccine candidate antigen (Al-

Sherbiny et al., 2003), was identified by our collaborators of the Institute of 

Cellular Biology (CNR, Monterotondo, Roma): a cyclophilin-like protein 

from Haemonchus contortus, a parasite affecting wild ruminants. 

Cyclophilins are interesting proteins, implicated in many biological 

processes, including binding to Cyclosporin A (CsA) and have an enzymatic 

activity as prolyl isomerases. The immunosuppressive drug CsA, is widely 

used in the prevention of graft rejection and in the treatment of immune 

disorders. It has also antiparasitic effects as reported for schistosome, 

plasmodia, cestodes and toxoplasma. Treatment with CsA resulted in a 

drastic reduction in the number of schistosomes, especially in immature 

worms (Klinquert et al., 1995). The presence of some cyclophilin in 

schistosomes has been widely reported (Argaet et al., 1992, Klinkert et al., 

1995, Klinkert et al., 1996, Kiang et al., 1996) but no structure is available, 

despite of the fact of a structure could reveal some new information on the 

role of this proteins in that disease. Therefore, during this research project, I 

have been involved in cloning the cyclophilin-like protein from the adult 

worm cDNA of S. mansoni (SmCyp), and in the expression, purification and 

functional characterisation of the rotamase activity of a cyclophilin-like 

protein from H. contortus (HcCyp). 
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3.1 Target metabolic pathway: detoxification 

Living organisms are continuously exposed to non-nutritional foreign 

chemical substances. Such xenobiotics may interact deleteriously with the 

organism, causing toxic and sometimes carcinogenic effects (Sheehan et al., 

2001). However, cells possess an impressive array of enzymes capable of 

bio-transforming a wide range of compounds, altering their chemical 

structures and creating novel functional groups that may either reduce their 

toxicity or facilitate their excretion. The enzymatic detoxification of 

xenobiotics is a complicated metabolic pathway which includes several 

enzymes involved in the conversion of lipophilic, non polar xenobiotics into 

more water-soluble metabolites, which are readily eliminated from the cell. 

In 1947 R.T. Williams defined the field of detoxification and proposed that 

these non-reactive compounds could be bio-transformed in two phases: 

functionalization, which uses oxygen to form a reactive site, and conjugation, 

which results in addition of a water-soluble group to the reactive site. These 

two steps, functionalization and conjugation, are termed Phase I and Phase II, 

respectively. Phase I of the detoxification system, mainly carried out by the 

cytochrome P450 supergene family of enzymes, is generally the first 

enzymatic defence system against foreign compounds. Phase II conjugation 

reactions generally follow Phase I activation, resulting in the transformation 

of the xenobiotic into a water-soluble derivative, excreted in urine or bile. 

There are several types of conjugation reactions including glucuronidation, 

sulfation, and glutathione and amino acid conjugation. Therefore, 

detoxification is not a single reaction, but rather a process that involves 

multiple reactions and multiple components. 
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Figure 3.1 The consequence of detoxification is the bio-transformation of lipophilic 
compounds into water-soluble compounds, readily excreted in the urine. 
 
A crucial detoxification enzyme is Glutathione S-transferase (GST) which 

catalyses the nucleophilic addition of GSH to endogenous and xenobiotic 

electrophilic toxins, that are subsequently eliminated by several transport 

mechanisms existing in the cell, specific for glutathione conjugates, including 

an ATP-dependent GS-X pump. The pharmacological inhibition of enzymes 

involved in detoxification reactions may induce cell damage either directly or 

indirectly, via the action of unmodified xenobiotic compounds 

3.2 Introduction to Glutathione S-transferases 

GSTs have been subdivided into an ever-increasing number of classes 

based on a variety of criteria, including amino acid/nucleotide sequence 

identity, immunological and kinetic properties, and tertiary/quaternary 

structures. Human GSTs are divided into three distinct super families: the 

membrane bound microsomal, cytosolic and mitochondrial family members. 

(Townsend et al., 2003). GST are of interest to pharmacologists and 

toxicologists because they provide targets for anti-asthmatic and anti-tumor 

drug therapies. GSTs catalyse the conjugation of γ-
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glutaminylcysteinylglycine (GSH), to a wide variety of endogenous and 

exogenous electrophilic compounds, such as chemical carcinogens, 

environmental pollutants and antitumor agents, being implicated in a variety 

of resistance phenomena involving cancer chemotherapy agents, insecticides 

and microbial antibiotics. These transferases inactivate endogenous α,β-

unsaturated aldehydes, quinones, epoxides, and hydroperoxides formed as 

secondary metabolites during oxidative stress. These enzymes are also 

involved in the biosynthesis of leukotrienes, prostaglandins, testosterone and 

progesterone (Hayes et al., 2004).  

The GSTs catalyze the general reaction shown in Scheme 3.1: 

Scheme 3. 1 

GSH + R-X → GSR + HX 

 

A general assay to determine enzymatic activity of GST, RX is 1-chloro-2,4-

dinitrobenzene (CDNB). 
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A great contribution to the comprehension of GST catalytic mechanisms has 

been given from structural analysis which helped to understand how the 

enzyme recognizes and activates glutathione for nucleophilic attack and how, 
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or even if, the enzyme specifically recognizes electrophilic substrates (R-X). 

Representative crystal structures are available for most classes and, despite 

limited overall sequence identity, these follow generally similar folds, with 

structural differences concentrated especially around the active site and the 

inter-subunit interfaces. Each subunit is composed of two domains: an N-

terminal domain (domain I) that adopts a thioredoxin-like fold and an all α-

helical C-terminal domain (domain II). There are at least two ligand-binding 

sites per subunit: the glutathione-binding site (G-site), which is very specific 

for GSH and the hydrophobic substrate-binding site (H-site), which can bind 

a large variety of different electrophiles. The G-site is constructed mainly 

from residues of the N-terminal domain, whereas the H-site has major 

contributions from the C-terminal domain. Whilst the functional properties of 

the amino acid residues making up the G-site of a GST are generally 

conserved among different classes, the residues forming the hydrophobic 

substrate-binding pocket vary considerably among different GSTs. Since the 

structure of the H-site governs the substrate specificity of a particular GST, 

diversity in the H-site gives the GST family the ability to catalyze reactions 

toward a large number of structurally diverse substrates. GST from 

mammalian sources have been well characterized, but studies of GSTs from 

non-mammalian sources have revealed the existence of several new classes 

and thus greatly extended our knowledge of the structural and functional 

diversity of these proteins (Sheehan et al., 2001). 

3.3 GST antigenic properties in schistosomiasis 

In 1987, Balloul et al., suggested the 28 kDa glutathione-S-transferase 

from Schistosoma mansoni (Sm28GST) as a potential vaccine candidate, 
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demonstrating that antibodies against Sm28GST antigen have moderate 

effect on the reduction of worm burden, its very strong influence on the 

female worm fecundity and egg viability. Sm28GST actively participates in 

the elimination of toxic products through its GST activity and in parasite 

fertility probably through its PGD2 synthase (PGDS) activity. Therefore, 

inhibition of the enzymatic (GST and PGDS) activities of Sm28GST by 

neutralizing antibodies generated after immunization with the protein might 

be detrimental for the parasite and could explain why this antigen is presently 

considered as an important vaccine candidate against schistosomiasis. 

Another particularly interesting regulatory phenomenon caused by S. 

mansoni infection is the retention of activated Langerhans cells (LCs), a 

subpopulation of epithelial dendritic cells (DCs), in the epidermis for at least 

48h post-infection (Herve et al., 2003). 

It is noticeable that a significant anti-fecundity effect has also been observed 

in the case of 28kDa GST from S. japonicum (Taylor et al., 1998). These 

observations suggest that schistosome 28 kDa GSTs could be considered as 

efficient candidates to reduce morbidity. Pre-clinical studies have therefore 

been initiated with the 28 kDa GST from S. haematobium.  

Schistosome GSTs were first identified as potential targets of 

protective immunity by two separate approaches. The identification of a 28 

kDa fraction of soluble S. mansoni adult worm antigens, that elicits a 

protective antibody response and confers a high degree of protection to both 

rats and mice (Balloul et al., 1985), was followed by cloning of the cDNA 

encoding the major antigenic component of the fraction (Balloul et al.,1987a) 

which was identified as a GST (Taylor et al., 1988). The recombinant protein 

elicits protective immunity in rats, hamsters (Balloul et al., 1987a), baboons 
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(Balloul et al., 1987b) and mice (Boulanger et al., 1991). The level of 

protection conferred against infection varies from an average of 50-70% in 

rats to 40-50% in mice and 40% in baboons. The relevance of the choice of 

schistosome GST as vaccine candidate has been strengthened by vaccination 

experiments performed in Sudan against cattle schistosomiasis due to S. bovis 

(Bushara et al., 1993).  

General discussions of immune protection against schistosome infection have 

concerned a reduction in the numbers of parasites recovered from immunized 

animals compared to non-immunized controls. The experiments in baboons 

using recombinant Sm28GST highlighted a different protective effect of 

immunization, which until recently had not been demonstrated with any other 

antigen. This effect was a reduction in female worm fertility reflected in a 

reduced excretion of eggs by immunized animals. Moreover, a reduction in 

tissue egg loads was reported in mice immunized with Sm28GST and 

challenged with S. mansoni (Boulanger et al., 1991) and in cattle immunized 

with native Sb28GST and infected with S. bovis (Bushara et al., 1993). This 

particular protective effect could be related to the inhibition of the GST 

enzymatic activity by antibodies (Xu et al,. 1991), a vital activity for the 

survival of the parasite in the definitive host, and probably to the PGDS 

activity as well (Angeli et al., 2001) that may modulate the host immune 

response to infection by inhibiting the migration of epidermal Langerhans 

cells to the draining lymph nodes. Thus, these findings open new and 

accessible concepts in vaccine research against schistosomiasis, dedicated to 

the reduction of the parasite fecundity, more in terms of anti-pathological 

vaccines than in terms of eradication of the parasitic disease in the definitive 

host. Indeed, a vaccine, aimed at preventing the development of the chronic 
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forms of the disease, has become a major goal for applied research, 

reinforced by the recent emergence of schistosome strains naturally resistant 

to chemotherapy (Fallon et al., 1996). Indeed more experimental work is 

required to elucidate how host’s antibodies reach an intracellular target such 

us Sh28GST. 

3.4 The 28kDa Glutathione S-transferase from S. 

haematobium 

The information on S. haematobium infection in human populations 

obtained from epidemiological studies, and the results acquired from the 

research on experimental models of urinary schistosomiasis, give the 

opportunity to hypothesize the effect of mass vaccination in man using 

Sh28GST. Moreover, the S. haematobium protein was to be the most cross-

protective among the 28GSTs; in that way, Phase I clinical trials of Sh28GST 

in conventional vaccine formulation took place in Europe in December 1997. 

Phase II has been already designed in three endemic countries for the 

following years. These trials will represent a major milestone in the 

achievement of the future vaccine against schistosomiasis. 

Schistosomal 28 kDa GSTs belong to the sigma class of GSTs based 

on sequence comparison. These GSTs were shown to have high transferase 

activity with model compound (CDNB), fatty acid hydroperoxide-GSH 

peroxidase activity (Taylor et al., 1988) and eicosanoid synthesis (Hervé et 

al., 2003). Thus, Sh28GST is a multifunctional enzyme which plays key role 

in the host-parasite interactions. 
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3.5 Materials and Methods 

3.5.1 Cloning, Expression and Purification of Wild Type and Mutant 

Sh28GSTs  

The wt gene was amplified by PCR using KOD HotStart DNA polymerase 

(Novagen) using Sh28GST held in the pCR 3.1 vector (a kind gift from Prof. 

F. Trottein, Lille, France) as the template for the reaction, and sub-cloned 

into the bacterial expression vector pET23b (Novagen). The primers used in 

the reaction were as follows: forward 5’-ATA TCC ATG GCT GGT GAT 

CAT ATC AAG G-3’; and reverse, 5’-GGC TAGC CTA GAA GGG AGT 

TGC AGC CC-3’. NcoI and NheI recognition sites (indicated in boldface) 

were incorporated into the forward and reverse primers, respectively, to 

facilitate directional cloning. Successful amplification was confirmed by 

agarose gel electrophoresis. 

Site-directed mutagenesis of wt/pET-23d to generate the two Arg21 mutants 

(R21L and R21Q) was carried out using the QuickChange Site-directed 

Mutagenesis kit (Stratagene) according to the manufacturer’s instructions. 

The primers for the R21L mutant were: forward 5’-CGC GGA CGA GCT 

GAA TCG ATC CTG ATG ACA CTT GTG GC-3’; and reverse 5’ –GCG 

CCT GCT CGA CTT AGC TAG GAC TAC TGT GAA CAC CG-3’. The 

primers for R21Q were as above but with the substituted codon CAG in 5’ 

forward primer and GTC in 5’ reverse primer. PCR amplification was carried 

out at annealing temperatures of 55°C (R21L) and 45°C (R21Q). The fidelity 

of the amplification reactions was confirmed by DNA sequencing at the 

BioMolecular Research Sequencing Service (University of Padova, Italy).  
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Escherichia coli BL21 (DE3) pLysS bacterial cells (Novagen) were 

transformed with the wild type and mutant plasmids and grown at 37°C in 

500 ml Luria broth supplemented with 50 µg/ml ampicillin until an A600 of 

0.5 was reached. Protein expression was induced upon addition of 0.2mM 

isopropyl-β-D-thiogalactopyranoside (Sigma-Aldrich), incubating for a 

further 5h. Bacterial cells were harvested by centrifugation at 11000g for 15 

min. The bacterial pellet (wt and R21L) was resuspended in 30 ml phosphate-

buffered saline (PBS), pH 7.4 containing 10 mM β-mercaptoethanol (β-ME). 

Cell lysis was achieved by sonication in bursts of 4s at 9s intervals for 5 min. 

The sonicated extract was centrifuged at 13800g for 20 min to recover the 

supernatant. All proteins were filtered across a membrane with a pore size of 

0.20 µm and were subsequently purified through a 5ml GSTrap™ HP column 

(Amersham Biosciences), pre-equilibrated with PBS pH 7.4, according to the 

manufacturer’s instructions. GSH-bound wt and R21L proteins were eluted 

with 50 mM Tris-HCl, pH 7.3, 0.1 M NaCl containing 10mM GSH. Peak 

fractions containing pure protein (determined by SDS-PAGE analysis) were 

pooled and extensively dialyzed vs. PBS, pH 7.4, containing 10 mM β-ME, 

prior to concentration by ultrafiltration using Amicon Ultra-15 centrifugal 

filter units (Millipore) (membrane cut off 10000 Da). 

The R21Q bacterial pellet was resuspended in 20mM Tris, pH 8.3 and 

sonicated as previously described. The cell extract was centrifuged as above 

and purified by a Sepharose 15Q ion-exchange column (Amersham 

Biosciences), pre-equilibrated with 20 mM Tris, pH 8.3. Bound protein was 

eluted over a salt gradient (0-0.5M NaCl) with the same buffer and 

subsequently dialysed and concentrated as above. The R21Q was also 

purified by a GSH-trap column, as described for R21L. 
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The wild type in complex with S-hexyl glutathione (GTX), was prepared 

using the purification procedure described above but eluting with 20 mM 

GTX instead of GSH and was concentrated to 10 mg/ml. To obtain GSH-free 

proteins, Sh28GST and R21L were eluted with 20 mM glycine in PBS pH 

10. 

Protein concentrations were routinely determined spectroscopically, 

measuring the A280 using a HP 845X UV-visible spectrophotometer 

(Hewlett-Packard) using an extinction co-efficient of 0.96 mg/ml for all 

proteins. Proteins purification were carried out by FLPC using an Akta Prime 

purification system. 

3.5.2 Crystallisation 

Crystallisation of wild type and mutant GSTs were generated by the hanging 

drop vapour diffusion method at 21°C. 

Tiny crystals of R21L grew within three days in a drop containing a 1:1 ratio 

of protein (15mg/ml) to well solution (2.3 M ammonium sulphate, PBS pH 

7.4), 5 mM β-ME and 10% PEG 200). They were used in microseeding trials 

to increase the crystal size according to standard hanging drop protocols. The 

hanging drop consisted of a two parts R21L (15mg/ml), one part crystal seeds 

(diluted 1/1000 with well solution) and one part well solution (1.8 M 

ammonium sulphate, 100 mM PBS pH 7.4, 5 mM β-ME and 10% PEG 200). 

R21Q (10mg/ml) crystals were obtained in similar conditions as for R21L; 

the well solution contained 2.5 M ammonium sulphate, 0.2 M MES pH 6.0 

and 5 mM β-ME. Many small crystals grew after few days. The quality of 

R21Q crystals was improved by microseeding techniques using 0.5 µl of 
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protein, 0.5 µl of seeds (diluted with well solution 1/10) and 1 µl of well 

solution. 

Crystals of GTX-bound wt were obtained by co-crystallisation using a 

protein solution of Sh28GST 10mg/ml in PBS, pH 7.4, 5 mM β-ME, 10 mM 

GTX and a well solution of 20% PEG 3350, 0.2 M MES pH 6.0 and 5 mM β-

ME. Very large crystals grew after a few days. 

Crystals of GSH-bound wt were grown at pH 6.0 at a 1:1 ratio of protein 

(15mg/ml contained in PBS pH 7.4, 5 mM β-ME and 10 mM GSH to well 

solution of 0.2 M imidazole/malate buffer pH 6.0 containing 10% PEG 4000. 

Crystals of GSH-bound R21L were grown using a 1:1 ratio of protein 

(10mg/ml) in PBS containing 5mM β-ME and 10mM GSH to a well solution 

of 0.1M sodium acetate pH 5.5 containing 25% PEG 5000 MME. 

Crystals of all proteins were cryo-cooled by stepwise soaking in the well 

solution containing increasing concentrations of glycerol until a final glycerol 

concentration of 18% was achieved. 

3.5.3 Data Collection and Processing 

Diffraction data for all crystals were collected at ~100 K at resolutions 

ranging from 2.0-2.5 Å at the Elettra Synchrotron facility (Trieste, Italy), at 

the European Synchrotron Radiation Facility (ESRF; Grenoble, France) and 

at Deutsches Elektronen Synchrotron (DESY; Hamburg, Germany). Space 

groups were determined by autoindexing and processed using DENZO and 

SCALEPACK in HKLsuite (Otwinowski et al., 1997). The statistics of 

crystallographic data collection for R21L, R21Q and Sh28GST in complex 

with GSH (pH 6.0) and GTX are given in Table 1. 
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3.5.4 Molecular Replacement, Model Building, and Refinement 

The 3-D structure of mutant and wild type proteins were determined by 

molecular replacement methods. The structure of Sh28GST was used as a 

model (PDB entry 1OE7), resulted in a clear rotation and translation solution 

using the program AMoRe (Navaza, 1994) from the CCP4suite. Further 

refinement was carried out using alternate steps of least-squares refinement 

using REFMAC5 (Murshudov et al., 1996) and fit to generated electron 

density maps using Xtalview/Xfit (McRee, 1999). Water, PEG and β-

mercaptoethanol molecules were added according to peaks observed in the 

electron-density maps. The free R-factor, based on 5% of the data, was used 

throughout to guide the refinement procedure. All data were refined to give 

satisfactory final R factors as reported in Table 1.  

Interestingly, the autoindexing of R21Q data set produced a list containing 

two likely choices for the space group: C2221 with a monomer in the unit 

cell, and P21 with a dimer in the unit cell. The same problem was found in the 

case of wild type (Johnson et al., 2003). The final refinement using C2221 

has good statistic parameters, but it was impossible to generate a proper 

dimer in the unit cell using the symmetry operators. Therefore, this data set 

was indexed and processed again as P21 space group, with two molecules in 

the asymmetric unit. The statistic parameters are satisfactory as showed in 

Table 1. 

3.5.5 Quality of the Structural Data 

The electron density for the final models of R21L and wt in complex with 

GTX and GSH are well-defined for residues 4–211 in both chains A and B. 

The electron density for the models of R21Q and GSH-bound R21L, instead, 
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are not well-defined in the C-terminal region and lack residues 207-211 in the 

monomeric chain A. All the structures display good geometry and no 

residues in the disallowed region of the Ramachandran plot (Table 1).  
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Table 1. Summary of crystallographic data. Rfree was calculated from 5% of reflections taken from the raw data. 
 

 R21L     R21L+GSH R21Q Sh28GST+GTX Sh28GST+GSH
Data collection statistics 

Space Group I23 P2221 P21 P32 P3221

Unit Cell Dimensions (a, b, c 
in Å) 

148.7 
148.7 
148.7 

53.1 53.1 141.8 53.5 77.4 
53.5 52.8 52.3 141.4 53.3 53.3 142.3 

No. of unique reflections 
 

24373 15440 29520 18295 8261 
I/σ 10.2     

     

19.9 14.9 11.3 10.2
Completeness (%) 99.8 99.3 98.2 99.0 99.1 

Average Redundancy 
 

22.0 5.6 4.6 3.5 8.3 
Rmerge 0.063 0.055 0.053 0.122 0.070

Refinement Statistics 
Resolution (Å) 20-2.3 20-2.0 20-2.0 20-2.2 20-2.5 

R     
     

     

     

0.206 0.189 0.219 0.178 0.194
Rfree 0.270 0.239 0.292 0.243 0.252

Rms deviations in bond 
length 0.013 0.009 0.012 0.011 0.013

Rms deviations in bond 
angles 1.875 1.208 1.3 1.432 1.483

Ramachandran Plot 
Residues in allowed regions 

(%) 99.5     100 99.3 99.7 99.6

No. Molecules/Asymmetric 
unit 2     1 2 2 1
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3.5.6 Steady State Determinations  

The catalytic activities of wild type and mutant GSTs were determined 

spectroscopically using a HP845x UV-visible spectrophotometer (Hewlett-

Packard) under steady state conditions, using the chromogenic substrate 1-

chloro-2,4-dinitrobenzene (CDNB; Sigma-Aldrich). Experiments were 

carried out measuring the absorbance increase at 340nm at 20°C over 120s. 

The assay was initiated upon addition of the enzyme to a 1 ml quartz cuvette 

containing GSH and CDNB in 0.1 M potassium phosphate pH 7.0. 

Experiments were carried out, both at constant GSH (2mM) and CDNB 

concentrations (2mM). Wild type and R21L protein concentrations used were 

0.1 µM and 2.4 µM, respectively. Data were fitted using the Origin 7 Server 

Software. 

The ability of GTX to inhibit the enzymatic activity of Sh28GST and R21L 

was also measured using the above steady state conditions at constant CDNB 

concentration (2mM), over a range of GSH concentrations (0.5mM, 1mM, 

2mM and 4mM), for three diverse GTX concentrations (150µM, 250µM and 

500µM). Assays were initiated upon addition of the wt (0.1µM) or R21L 

(2.4µM).  

The influence of pH on catalytic activity was investigated for Sh28GST and 

R21L, repeating the above steady-state experiments over a pH range of 6.0 to 

9.0. The appropriate pH conditions were prepared by mixing 50mM sodium 

phosphate with 50mM sodium borate. Reactions were carried out as above at 

GSH concentrations ranging from 200µM to 4mM. Observed reaction 

velocities were corrected for spontaneous reaction rates prior to addition of 
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the enzyme, when necessary. The pH dependence of kinetic parameters was 

analyzed using MATLAB 5.3. 

3.5.7 Fluorescence Measurements 

The binding of GSH to wt and R21L was followed measuring intrinsic 

fluorescence quenching of the enzyme at 20°C, upon ligand addition, using a 

Spex Fluoromax spectrofluorimeter (excitation wavelength was 280 nm, 

emission range 300÷400 nm). 1 µM of protein was added to a 2 ml cuvette 

containing 0.1M potassium phosphate pH 7.0. Similar experiments were 

carried out for GTX using protein concentrations of 1µM and 0.5µM for wt 

and R21L, respectively. All experimental data were analysed using 

MATLAB 5.3. 

3.5.8 Stopped-Flow Rapid Mixing Experiments 

Rapid mixing experiments were carried out at 20°C using an Applied 

PhotoPhysics stopped-flow syringe drive. The dead time of the instrument is 

approximately 2ms. The binding of GSH to wt and R21L was measured, 

following the decrease in tryptophan fluorescence (excitation wavelength 

280nm, 32 nm filter). Asymmetric volumes of protein and GSH, were mixed 

to give a final protein concentration of 5µM (wt) and 10µM (R21L) and a 

range of GSH concentrations (15-50µM). Wild type experiments were carried 

out in 0.1M potassium phosphate buffer pH 7.0 whereas R21L experiments 

were carried out in 0.1M potassium phosphate buffer pH 8.0. Reactions were 

recorded over 0.2s. Averages of multiple traces collected for each GSH 

concentration were fitted to a single exponential and used to determine the 

koff of GSH for the protein.  
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The ability of wt and R21L to deprotonate GSH was also assessed by rapid 

mixing experiments, under the above conditions, following the absorbance 

increase at 240nm at diverse GSH concentrations (15-50µM for wt and 125-

500µM for R21L). 

3.5.9 Experimental Determination of the pKa of Tyr10 

The ionization of Tyr10 was measured spectrophotometrically using a 

HP845x UV-visible spectrophotometer (Hewlett-Packard) as a function of 

pH, measuring the tyrosinate concentration from the intrinsic absorbance at 

293nm (∆ε of 2400 M-1 cm-1). Mixtures of 50mM sodium borate and 50mM 

sodium phosphate were prepared to cover a pH range from 6 to 10. 

Difference spectra at each pH were recorded, subtracting the spectra 

generated for the protein at pH 6.0. The concentrations of R21L and R21Q 

ranged from 15 to 35 µM. 

3.6 Results 

3.6.1 Cloning, Expression and Purification of Wild type and mutant 

Sh28GSTs 

The cloning and expression of soluble wtGST, R21L and R21Q was carried 

out in bacterial cells according to materials and methods. Successful 

expression was confirmed by SDS-PAGE under reducing conditions. A band 

was observed at 24 kDa, corresponding to the predicted Mr value of the GST 

monomer. Purification of wt, R21L and R21Q was routinely carried out 

yielding 20-30 mg/500 ml culture of pure protein, as judged by SDS-PAGE 

analysis. 
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3.6.2 Structural Analysis of wtGST in complex with GSH and GTX 

Structures of wtGST containing only Tyrin10 were obtained, both with GSH 

and the competitive inhibitor GTX at pH 6.0. Only GTX-bound wt will be 

further discussed as all structural features are similar for the GSH-bound 

enzyme. 

In the inhibitor complex the hydrophobic site, which binds the electrophilic 

substrates, lies adjacent to the G-site and at the interface between the N- and 

C-terminal domains. GTX inhibits GSTs by inserting it’s hexyl chain in the 

H-site, preventing the conjugation of GSH to its electrophilic substrate. In 

GTX-bound wt, the H-site is characterised by non-specific hydrophobic 

interactions. The typical polar interaction between the sulphur of GTX and 

the hydroxyl group of Tyr10 (3.1 Å) was present as well as the other 

characteristic interactions between the GSH backbone and the region of the 

polypeptide chain that forms the G-site (Fig. 3.2). 

 

 

 

 

 

 

 

 

 

Figure 3.2. Electron density map (2Fo-Fc at 1σ) of the GTX-bound wtGST showing 
the polar interaction between the hydroxyl group of the Tyrin10 and the sulphur 
atom of GTX. 
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The presence of the inhibitor stabilises the overall structure as confirmed by 

the well-defined electron density map. In the G-site there is a cluster of 

aromatic residues namely Tyr10, Phe11, Phe38 and Phe211. The C-terminal 

region was observed to interact with the N-terminal region specifically at the 

G-site, and hydrogen bonds were identified between Arg206-Glu18, Thr209-

Arg14 and Tyr202-Glu18. These findings are in agreement with the data 

presented in the literature (Ibarra et al., 2003 and Ibarra et al., 2001). 

A peculiarity in the GTX-bound wt structure was evident, regarding the 

position of Arg35, which is interestingly located in the cavity where the 

Tyrout10 is found, forming a hydrogen bond with Asp33 and Asn12 (Fig. 

3.3a). Arg35 is in close proximity to the G-site and it adopts a different 

position according to Tyr10 orientation.  

 b a 
 

 

 

 

 

 

 

 
Figure 3.3 Comparison between Arg35 positions in the Arg21 pocket in (a) GTX-
bound GST (Tyrin10) and (b) R21L (Tyrout10). Tyr10, Asn12, Arg21 and Asp33 are 
represented as blue sticks. Arg35 is represented as green sticks. Both figures were 
generated using MSViewer.  
 

In order to extend the possible role of Arg35 to other GST classes, the high 

conservation of Arg35 was established, searching the entire SwissProt 

database, using the query motif: [Y] 7X [E,Q,H] 2X [R] 10-11X [E,D] 1-2X 
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[R,K]. This motif was found in 65 out of 95 alpha, mu, pi and sigma class 

GSTs, containing a tyrosine in the catalytic site. This motif was not found in 

the 83 other GSTs containing a catalytic serine or cysteine residue. Structural 

analysis of all existing crystallographic data for sigma class GSTs (only 

Tyrin10) also highlighted the conservation of the interaction between Arg35 

and Asp33 which, from our structure, was found to be responsible for the 

closure of the Tyrout10 pocket.  

Furthermore, the GTX- and GSH-bound states of wt have structured C-

terminal regions that interact with the N-terminal region. Principal contacts 

are made between the residues presented in Table 3.2 

Contact pairs Distance 

Phe211(O) Arg14(CB) 3.17 Å 

Phe211(O) Gly15(N) 2.77 Å 

Tyr202(OH) Glu18(CD) 3.30 Å 

Thr209(O) Arg14(NH2) 3.15 Å 

Table 3.2. Contacts between C- and N-termini in GTX- and GSH-bound wt at pH6.0 

3.6.3 Structural Analysis of R21L and R21Q 

There is no significant difference between the tertiary structures of R21L, 

R21Q and wt, not unexpected given that the incorporated mutation is a single 

amino acid substitution. Each protein is a symmetric homodimer. The N-

terminal regions of each monomer (residues 1-88) have the same GST 

thioredoxin-like fold constituted by four-stranded β-sheets flanked by three 

α-helices. The C-terminal region (residues 89-211) is composed of 6 α-

helices and differs in mutant and wild type proteins only with respect to the 

degree of structural constraint and location as further described. The N-
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terminus forms the G-site which contains the catalytic tyrosine and binds 

GSH. The principal structural differences between mutant and wild type 

structures occur in the flexible N-terminal loop (residues 12-35) located in 

close proximity to the active site. Moreover in chain B of R21L there is 

another portion of the N-terminal domain (residues 59-65) which seems to be 

very flexible since it is characterized by poor electron density. The N-

terminus forms the G-site which contains the catalytic tyrosine residue and 

binds GSH.  

Structurally, the R21Q mutant is similar to R21L as revealed by 

superimposition giving a RMSD value of 0.87 Å. The high value of RMSD is 

due to the absence of the last five amino acidic residues (206-211) of R21Q 

which do not appear in the electron density maps, therefore it is not possible 

to understand where the C-terminal chain is positioned with respect to the G-

site.  

 

 

 

 

 

 

 

 

 

Figure 3.4: Electron density map of R21Q (2Fo-Fc at 1σ) showing Gln21 at 
hydrogen bond distance from Asp33. 
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In the structure of GSH-bound wt at pH 7.4 (Johnson et al., 2003), Tyr10 

adopts a double conformation, alternating both ‘in’ and ‘out’ of the G-site. A 

double conformation of the residue in 10 position, is also present in the 

tyrosine to phenylalanine mutant structure (protein kindly provided by M. 

Hervè, J. Fontaine and F. Trottein from Pasteur Institute, Lille, France). The 

interaction between the aromatic ring of Phe10 and Arg21 is clearly evident 

in the 2.0Å structure solved in our laboratories and not reported in this thesis. 

The Pheout10 conformer is populated despite exposure of the non polar amino 

acid to solvent. It was expected that mutating Arg21 would stabilize the 

Tyrin10 conformation, however Tyrout10 was exclusively observed in both 

arginine mutants, confirming that the role of the π–cation interaction is not 

structural (Fig.3.4, 3.5). Mutating Arg21 to Gln results in the loss of the 

interaction between Glu18(OE2) and Gly13(O), however the hydrogen bond 

between Asp33(OD1) and Gln21(OE1) is maintained (2.88 Å) (Fig.3.3). 

Mutating Arg21 to Leu disrupts three important polar interactions that are 

formed between Arg21(NH1) and Asp33(OD1), Glu18(OE2) and Gly13(O) 

at distances of 3.12 Å, 2.79 Å and 2.84 Å, respectively (Fig. 3.5).  
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Figure 3.5 . The electron density map (2Fo-Fc at 1σ) of R21L showing the 
exclusively populated Tyrout10 conformer at hydrogen bond distance with Asp33. 
Leu21 is at a distance of 4Å from Tyr10. 
 
A comparison of the contacts between Tyrout10 and other active site residues 

for the GSH-bound wt reported by Johnson et al., (2003) and R21L was 

carried out as described in material and methods. In Sh28GST, there are no 

interactions between Tyrout10 and other residues at a distance shorter than 3 

Å except for Arg21. For R21L however, the hydroxyl group of Tyr10 forms a 

hydrogen bond (2.63Å) with Asp33(OD2). In wt these residues are too 

distant from one another (4.2Å) to make proper contact. It was unclear 

whether this interaction accounted for the Tyrout10 conformer position rather 

than the loss of the π-cation interaction with the guanidinium group of Arg21. 

Analysis of the structure of R21Q shows that Tyrout10 does not interact with 

Asp33(OD2), therefore we conclude that this interaction is not responsible 

for this conformer position.  

3.6.4 Structural Analysis of GSH-bound R21L 

Overall, GSH-bound R21L appears to be less ordered than ligand-bound wt. 

There is significantly less-defined electron density particularly in the active 

site and the C-terminal regions. The electron density corresponding to the last 

four C-terminal amino acids of GSH-bound R21L is absent, implying that 

this region is flexible. Tyr10 is found in a double conformation and, the H-

bond between the hydroxyl group of Tyrout10 and Asp33(OD2) is maintained 

(2.63Å) (Fig. 3.6). Tyrin10 interacts with GSH in the G-site similarly to the 

wild type, however the distance between Tyr10(OH) and GSH(S) is longer 

(3.88 Å) than in wild type and there are additional interactions between the 
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guanidine group of Arg16 and GSH. The active site loop appears to be 

stabilised by polar interactions formed between Asn12-Gly15, Arg14-

Asp172, Arg14-Asp168 and Arg14-His169. Finally, several side chain of the 

site loop (11-18, 33 and 35), display poorly defined electron density, 

confirming that structural changes occur in this region.  

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Electron density map (2Fo-Fc at 1σ) showing Tyr10 double 
conformation. The H-bond between Tyrin10 and the sulphur atom of GSH and the H-
bond between Tyrout10 and Asp33 are shown. 

3.6.5 Structural Comparisons of wild type and the arginine mutants  

In order to understand the conformational changes occurring in the Tyrout 

pocket, attempts were made to block Tyr10 in a single conformation and we 

considered two opposing models for comparison: GTX-bound wt 

(exclusively Tyrin10) and R21L (exclusively Tyrout10). Characterisations and 

comparisons of the Tyrout10 pocket were made using the Cast-P program 

(http://cast.engr.uic.edu/cast/) (Table 3.3). Two positions of the active site are 

particulalry worth mentioning: Asn12 and Arg35. In GTX-bound wt Arg35 



Chapter 3 56 

interacts via hydrogen bonds with Asp33 and Asn12, however in R21L such 

interactions are lost because this cavity is fully occupied by the Tyrout10 

conformer. For GTX-bound GST, the pocket is closed to the solvent (no 

mouth openings) and has a molecular surface area of 41 Å2. For R21L the 

pocket contains one mouth opening and has a larger molecular surface area 

(169 Å2). Therefore, it can be seen that the catalytic mechanism and flipping 

of the tyrosine is coupled to a change in the molecular surface area and 

solvent accessibility of the Tyrout10 pocket. These changes are due to a 

concerted rearrangement of amino acids that form this pocket. Analysis of the 

B-factors for such pocket amino acids indeed indicates that several key 

residues exhibit higher mobility than the rest of the molecule. The B value for 

the side chain of Arg35 in wild type is slightly higher (46Å2) than the B-

factor average for the side chains of the entire protein (41Å2). B-factor value 

for Arg35 in GST+GTX is comparable with the average of the protein, 

Baverage=20Å2 and 21Å2 respectively. 

Comparisons between pocket volumes (Table 3.2) confirm that this pocket is 

bigger in wild type enzyme and is more accessible to solvent. 

Molecule N_mth Area_ms (Å2) Vol_ms (Å3) 

Wt + GSH 1 100 86 

Wt + GTX 0 74 41 

R21L 1 169 153 

R21L + GSH 2 280 255 

R21Q  2 189 281 
 
Table 3.3 The table shows the number of mouth openings for each pocket (N_mth), 
the volume (Vol_ms) enclosed in the molecular surface area (Area_ms) of the 
Tyrout10 cavity of ShGST+GTX, R21L, R21L+GSH and R21Q, as calculated with the 
program Cast-P using a probe radius of 1.0Å (Liang et al., 1998). 
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For R21L and R21Q, pockets were selected by substituting Tyrout with an Ala 
residue with the same Cα and Cβ coordinates. For WtGST+GTX and R21L+GSH 
the pockets were selected according to the presence of the Arg21(NH2) and the C-
alpha and C-beta of the catalytic Tyr. 

3.6.6 Interactions at the Dimer Interface 

R21L and R21Q were confirmed to be dimers by sedimentation equilibrium 

ultracentrifugation (results not shown). To ascertain that no structural 

rearrangements are present at the dimer interface of R21L, the inter-subunit 

contacts within a distance of 3.5Å, were compared to those present in GTX-

bound wt. In R21L, the inter-subunit contacts occur between residues 68–104 

of each monomer. Overall, there seems to be minor reshuffling of 

interactions coming from the loss of several interactions and the gaining of 

others. All contacts are lost between Arg52 (α2-helix of domain I) of 

monomer A with Ile138 and Asp104 in monomer B. The electron density for 

the side chain of Arg52 in both monomers is not well-defined and it is lost in 

the solvent. Furthermore, hydrogen bonds (2.85Å) are lost between 

Lys66A(NZ)-Glu90B(OE1) and between Lys81A(NZ)-Glu89B(OE2) (3.12Å 

in wt). Two interactions are lost between Glu96A(C)-Arg76B(NE) and NH2 

which are now at distances of 3.58Å and 3.53Å, respectively. Newly formed 

interactions include several between Glu70 and Asp104, of which two are 

strong polar interactions (Glu70A(OE1)-Asp104B(OD1) (3.21Å) and 

Glu70A(OE2)-Asp104B(OD2) (2.69Å).  

As in the wt, the involvement of Asp104 in the formation of interfacial 

interactions via a salt interaction with GSH had been suggested in wt 

(Johnson et al., 2003). In GTX-bound wt, however, Asp104 does not 

participate in any interfacial interaction. Despite these interfacial differences, 

there is no significant affect on dimerization, as previously mentioned. 
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Although there are diverse interactions between wt and R21L, it remains to 

be seen if they are structurally important. 

The superimposition of all structures revealed a quaternary rearrangement 

regarding helices 5a and 5b at the dimer interface. 

The superimposition of R21L and GSH-bound R21L structures has been 

carried out maintaining monomer A and B alternatively fixed revealing a 

quaternary movement of helices 5a (residues 118-129) and 5b. Upon ligand 

binding, helix 5a and 5b from each monomer move symmetrically towards 

each other (movement of approx. 14 Å), closing the V-shape formed at the 

dimer interface more evident in the ligand-free structures (Fig. 3.7a). This 

rearrangement involves only helices at the top but not the bottom of the 

structure (Fig. 3.7c). Superimposition of ligand-bound wtGST and Y10F also 

illustrated this movement, confirming that it is not a consequence of the 

Arg21 mutation. Closure of the V-shape upon binding of GSH is also 

coupled to movement of the last five C-terminal residues, from an 

unstructured and delocalized state to a more ordered state, relocating towards 

the N-terminus (Fig. 3.7a). 
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Figure 3.7 Superimposition of only two structures for clarity is reported: R21L 
(purple) and GSH-bound R21L (blue). a) overall quaternary structure; b) side view 
illustrating the movement of helices 5a and 5b; c) bottom view; d) G-site illustrating 
the H-bond between Tyrin10 and GSH (green). Figures are carried with Coot 
program. 
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3.6.7 Ligand Binding Experiments 

The affinity of all proteins for reduced GSH was measured by tracing the 

change in tryptophan fluorescence emission with increasing concentration of 

GSH under equilibrium conditions. Wild type gave a Kd for GSH (22 µM). 

The Kd of R21Q was calculated to be similar (21 µM) to that of the wild type. 

In contrast, the Kd of R21L was significantly higher (285 µM), corresponding 

to a 10-fold lower affinity for GSH than for wild type. Therefore, substitution 

with Leu influences GSH binding to a greater extent than Gln. Similar 

experiments were carried out for Y10F, demonstrating that substitution of 

Tyr10 does not affect GSH-binding, as shown by a Kd value of 21 µM. 
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Figure 3.8. Determination of Kd by fluorimetry for a)R21L and b)R21Q mutants. 

 

The binding affinity for GTX of wt, R21L and R21Q was also measured. The 

Kd values were calculated to be 4.7 µM, 11 µM and 16 µM, respectively, 

indicating that the arginine mutants have binding affinities that are approx. 2-

fold lower that that of the wild type enzyme. On comparison of the GSH- and 

GTX binding affinities (table 3.4), it can be seen that all the proteins bind 
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GTX with higher affinity. The most obvious difference was seen for R21L 

which has a 28-fold higher affinity for GTX than for GSH. 

Protein Kd (GSH) Kd (GTX) 

wt 22µM 4.7µM 

R21L 285µM 11µM 

R21Q 21µM 16µM 

Y10F 21µM n.d. 

Table 3.4. Summary of binding data at equilibrium of wt and mutant Sh28GSTs 

3.6.8 Determination of Catalytic Activity 

Steady state kinetic measurements were carried out to determine the effect of 

the Arg21 mutation on overall catalytic activity. Both arginine mutants had 

lower kcat values in comparison with wt (48 s-1). kcat were: 4 s-1 (R21L) and 

0.4 s-1 (R21Q). 

3.6.9 Stopped-Flow Rapid Mixing Experiments 

Rapid mixing experiments by measuring fluorescence changes upon GSH 

binding were made to ascertain if the velocity of this process is affected by 

the Arg21 mutation. Reactions of wt and R21L were fitted to a single or 

double exponential, depending on the trace (materials and methods). The Kd 

of GSH binding to wt was calculated to be 50 µM. Due to the poor signal for 

R21L, higher GSH concentrations were required (125µM-500µM) in 

comparison with wild type experiments (15-50 µM). The Kd for GSH binding 

to R21L was calculated to be 250 µM and in good agreement with the Kd 

calculated in fluorimetry experiments (285 µM). The binding affinity of 

R21L for GSH is approximately 5-fold weaker than for our values for wt.  
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The ability of wt and R21L to deprotonate GSH was also assessed by 

following the absorbance increase at 240nm at higher GSH. The Kd for the 

wild type enzyme was calculated to be approximately 50 µM indicating that 

we are measuring the same process in both absorbance and fluorescence. 

There was no absorbance signal for R21L corresponding to its inability to 

deprotonate GSH. This finding is not unexpected given the role of Arg21 in 

promoting the deprotonation of Tyrout10 by lowering its pKa. 

3.6.10 Measure of the pKa of Tyr10 in wt and mutants 

Overall, wtGST contains nine tyrosine residues per monomer and to prove 

that one of these residues has a lower-than-usual pKa of 7.2, titrations of wt 

and mutants were carried out to determine the pKa value of Tyr10 and to 

assess the ability of Arg21 to lower the pKa of the catalytic tyrosine. The 

curve of absorbance change at 300nm as a function of pH for wtGST shows 

clearly two titration points at 7.2 and 9.5. In order to assign the first pK to 

Tyr10, the same experiment has been performed on the inactive mutant 

Y10F, which indeed showed only one titration point at high pH (Fig. 3.8). 

Similarly, the low pKa of Tyr10 was not observed for R21L and R21Q, both 

displaying high pKa values of approx. 10 (Fig. 3.8). Similarly, the low pKa of 

Tyr10 was not observed for R21L and R21Q, both displaying high pKa (Fig. 

3.9). 
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Figure 3.9 Spectroscopic acid-base titration of wt (open circles), Y10F (squares), 
R21L (triangles) and R21Q (diamonds) mutants. The difference spectra were 
calculated using the spectrum recorded at pH = 6.0 as a reference. The differential 
absorbance readings at 300 nm are plotted as a function of pH according to the 
least squares fit of the experimental data to one (mutants) or two (wild-type) 
transitions assigned to the ionizable groups with the pKas reported in the text. 

3.7 Discussion 

In the previously reported structure of S. haematobium GST in 

complex with GSH, the catalytic Tyr10 was found in a double conformation 

(Johnson et al., 2003). Only the Tyrin10 conformer is catalytically competent, 

being located at short distance from GSH; however the role of the Tyrout10 

conformer was presumed to be important because the π-cation interaction 

with the conserved Arg21 residue can lower the pKa of Tyr10 to approx. 7.2 

(Angelucci et al., 2005). Structure-function analysis of two arginine mutants 

(R21L and R21Q) and one catalytically inactive mutant (Y10F) reported in 

this paper, revealed important effects of the substitution of Arg21 upon 

ligand binding and catalytic activity. It was initially proposed that 
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substitution of Arg21 and hence removal of the π-cation interaction, would 

stabilise only the Tyrin10 conformer; however both structures of R21L and 

R21Q showed that only the Tyrout10 conformer was populated, implying that 

the π-cation interaction has no effect on the position of Tyr10 in the empty 

G-site. Once this site is filled with GSH, the Tyr10 is again found in two 

conformations, at least as far as R21L is concerned. Although the role of 

Arg21 is clearly not structural, it was demonstrated to be crucial in the GSH 

activation step of catalysis (Stenberg et al., 1991). As suggested in several 

reports, this process is mediated by the lowering of the average pKa of the 

catalytic residue, thus promoting GSH deprotonation (Armstrong et al., 1997; 

Xiao et al., 1996; Dietze et al., 1996). Titration experiments, as carried out 

for Y10F and wtGST (Angelucci et al., 2005), were repeated for our mutants 

proving that Arg21 is essential to lower the pKa of Tyr10 by >3 units.  

The essential role of Arg21 was further supported in steady state experiments 

which illustrated that both arginine mutants were significantly less active 

than the wild type enzyme even if to a different extent. The interaction of 

Tyr10 with Asp33 may possibly account for the residual activity of R21L 

with respect to the almost inactive R21Q, since aspartate and glutamate 

residues have been shown to participate in several catalytic mechanisms as 

proton shuttles (Nyquist et al., 2003; Frank et al., 2004). Therefore, in R21L 

but not in R21Q, Asp33 could act as a proton acceptor and partially 

deprotonate Tyr10. This interpretation is also in agreement with the observed 

increase in catalytic activity of R21L at higher pH.  

It has been previously reported for the human class alpha GST that mutation 

of R20A (equivalent to Arg21) results in a reduced binding affinity for GSH 

and a significant loss of catalytic activity (Stenberg et al., 1991). Our GSH 



Chapter 3 65 

binding experiments showed that R21Q has an affinity similar to that of the 

wild type enzyme, whereas R21L binds GSH with a 10-fold lower affinity. 

Although Arg21 does not directly participate in GSH binding, the differences 

in affinity between the two mutants are likely attributed to the more polar 

character of glutamine which is stabilised by a H-bond with Asp33(OD2), 

absent in R21L. Similarly to R21Q, Y10F binds GSH with an affinity similar 

to the wild type enzyme, in agreement with with the fact that all the point 

mutations leave the extended G-site practically unaffected. 

The binding of the competitive inhibitor GTX to wt and mutants showed 

similar affinities, implying that GSH and GTX interact differently with the 

enzyme. In fact, in the crystal structure of GTX-bound wt, the Tyrin10 

conformer is blocked and the inhibitor occupies both the G-site and the H-site 

with its hexyl group. 

The structures of wtGST crystallized at pH 6.0 with GSH or GTX, show that 

only the Tyrin10 conformation is stabilised, in contrast to the previously 

reported double conformation (Johnson et al., 2003), likely attributed to 

diverse crystallisation conditions used for crystal growth. Inhibitor binding 

experiments illustrated that the binding affinity for the competitive inhibitor 

GTX was higher than for GSH. This is in agreement with GTX-binding 

experiments carried out for other GSTs (Ortiz-Salmerón et al., 2003). Rapid 

mixing experiments were also carried out to calculate the velocity of GSH 

binding, generating a Kd value approximately two-fold lower that that 

calculated by equilibrium fluorimetry, but nevertheless in line with it. 

Thiolate formation was also measured by its absorbance at 240nm, 

demonstrating that GSH-binding and thiolate formation occur 

simultaneously. The velocity of GSH binding, measured for R21L, was found 
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to be 5-fold lower than for the wild type enzyme. In contrast to the wild type 

enzyme, thiolate formation was not observed once more proving the role of 

Arg21 in deprotonation of the bound GSH. 

Comparison of 3D structures with the wild type enzyme shows, as 

expected, that the overall fold is maintained. Differences lie in few important 

features: i) in the absence of ligand Tyr10 is blocked only in one 

conformation; ii) in the presence of ligand (at least GSH) the double 

conformation is restored; iii) Arg35 moves concertedly with Tyr10; iv) these 

movements account for the difference in shape and solvent accessibility of 

the G-site. 

Moreover, by comparing R21L-GSH with R21L, R21Q and wt-GTX we 

found that GSH or GTX binding i) promotes a previously undescribed 

quaternary change the interface between the two GST monomers; ii) 

promotes a series of little structural changes in the active site loop; iii) makes 

the C-terminal region less flexible and moves it towards the N-terminal 

region. In detail, the entry of a cofactor or an inhibitor, causes minor 

rearrangements in the G-site, but closes its aperture to the solvent by 

structuring the C-terminal loop towards the N-terminus; somehow this 

information is transferred to the helices 5a and 5b, which undergo a rigid 

body joint-like movement, ending with the closure of the V-shaped interface, 

and producing a more compact and stable dimer. 

In contrast, in the Tyrout10 conformer, populated in the Arg21 mutants, 

Arg35 moves away from the Tyrout10 pocket to permit entry of the catalytic 

residue, breaking the H-bond with Asp33. In this situation, the active site 

loop is stabilised by interactions with Asn12. We propose that the movement 

of Arg35 contributes to minor rearrangements within conserved residues in 
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the N-terminal domain, thereby regulating the various protein conformations 

adopted upon ligand binding. The C-terminal tail is flexible, unstructured and 

lost in the solvent in both unliganded R21L and R21Q.  

The structure of R21L/GSH is overall more mobile in the active site loop 

and C-terminal regions than the ligand bound wild type structures, reflected 

by less defined density. As already mentioned, Tyr10 is found in a double 

conformation, as several other active site loop residues, indicating that their 

movements are connected to Tyr10 movement. Such alterations in the 

location of the C-terminus with respect to the N-terminal loop region, may 

account for the observed relationship between the ionisation of the catalytic 

tyrosine and C-terminus location, seen for the human alpha class GST (Ibarra 

et al., 2003). 

Analysis of the structure of the catalytically inactive mutant, Y10F, shows 

that the Phe10 occupies a double conformation and the π-cation interaction 

with Arg21 is maintained. Despite the substitution of Tyr10, GSH still binds 

although a greater distance between Arg16 and the sulphur atom of GSH is 

observed. It is known that Arg16 stabilizes the thiolate in alpha class GSTs 

(Bjornestedt et al., 1995); such stabilization would not be required in Y10F 

as the thiolate is not formed. The absence of close contacts between Phe10-

GSH and Arg16-GSH is in agreement with the low residual activity observed 

in the steady-state experiments. 

Dimerization of GSTs, which is highly specific and class-dependent, is 

thought to be important in the stabilisation of each individual monomer and 

for full catalytic activity. The two monomers of the sigma class enzymes 

interact at the interface via electrophilic interactions (Stevens et al., 2000). 

An involvement in dimerization of the active site region, which is highly 
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flexible and undergoes local unfolding, has been suggested (Stevens et al., 

1998). To ensure that no structural rearrangements are present at the dimer 

interface of both R21L and R21Q, the inter-subunit contacts were compared 

with those present in GTX-bound wtGST. All the variants are dimeric in 

spite of some rearrangement of several interactions at the dimer interface in 

R21L. The GST monomers interact via helices 5a and 5b that together to 

form a V-motif that is open in the ligand-free state and closed in the bound 

state. Despite reports referring to helix flexibility in the various GST classes, 

to our knowledge, specific movement of helices 5a and b coupled to GSH 

binding, has never been reported (Fig. 3.7). Superimposition of our 

crystallographic structures enabled clear visualisation of the opening and 

closing of this “V”, mediated by the bending of helices 5a and 5b. The extent 

of closure of the V-motif was found to be correlated to the degree of GSH 

saturation and not influenced by the Arg21 or Tyr10 mutations. In addition to 

closure of the V-motif, there is an overall alteration in dimer packing. Upon 

ligand binding the monomers close around the ligand, resulting in a more 

compact dimer. These rearrangements are concerted with the movement of 

the C-terminal domains that become more structured and relocate next to the 

active site in the N-terminal domain. Comparing the ligand-bound wild type 

structures with the arginine mutants it appears that our results are in 

agreement with findings reporting the involvement of α9-helix of the C-

terminal of GST A1-1 (Nilsson et al., 2002). Together, our findings raise the 

question of whether the quaternary conformational change occurring upon 

GSH binding can significantly account for positive cooperativity 

(Wongsantichon and Ketterman, 2005). 
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To summarize, our structural and functional studies carried out on three 

Sh28GST mutants in comparison with the wild type protein provide a better 

insight into the catalytic mechanism of this sigma class GST. It is clear that 

Arg21 has a fundamental role in proton transfer and GSH activation, but it 

does not determine Tyr10 position in the G-site. Furthermore, the movement 

of Tyr10 in and out of the G-site is accompanied to the concerted movement 

of Arg35 in and out of the Tyrout10 pocket, alterations in the structure and 

localisation of the C-terminus and a never-previously-reported quaternary 

movement at the dimer interface. Given the conservation of Arg21, Asp33, 

Arg35 and Tyr10, we propose that the concerted movement of such residues 

during ligand binding occurring in S. haematobium GST may be common to 

other GSTs of the same class as a general mechanism. 
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4.1 Cyclosporin A in Schistosomiasis 

The curative and preventive effect of Cyclosporin A (CsA) against 

schistosomiasis has been proposed by Thomson and Chappell back in 1988. 

CsA is an immunosuppressive agent of clinical relevance and its anti-

parasitic effect in schistosomiasis has been evaluated in mice infected with S. 

mansoni at different stages (Cioli et al., 1995): i) topical application of CsA 

to the skin site of cercarial penetration, prior to infection, resulted in no 

reduction in worm burden (Munro et al., 1990); ii) infection of mice with 

cercariae which had been exposed to CsA in vitro, resulted in only a slight 

reduction of the worm burden for the highest concentration of CsA tested 

(100 micrograms/ml) (Nillson et al., 1985); iii) administration of CsA at the 

time of infection or during the schistosomulum stage resulted in failure of the 

larvae to develop into adult worms; iv) administration of CsA during the 

establishment of the adult worm stage resulted in a reduction of the worm 

burden, as compared to non-treated mice (Munro et al., 1990), and 

preferentially targeted female worms (Millership et al., 1996); moreover, the 

established worm pairs, seemed to be made sterile since no eggs were laid in 

the liver. 

CsA has two distinct modes of action against S. mansoni infection: as 

an anti-helminthic drug and as immunomodulator. The combined effects of 

drug action and cellular cytotoxicity, presumably, account for the very 

significant levels of worm killing achieved by CsA treatment of the host. 

Some changes in worm morphology have been examined by light and 

electron microscopy for drug-induced and it has been reported a damage by 

massive bolus formation and subsequent herniation of the gut. This event was 

attributed to the abnormal accumulation of crystals. In some drug-treated 
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worms, the caecal epithelium had exploded, thereby releasing luminal 

contents throughout the worm body. In addition, herniations of the gut were 

seen protruding through the tegument causing surface deformation and 

disruption of tegumental and parenchymal tissues. The structural integrity of 

the worm was ultimately compromised allowing access to cytotoxic effector 

cells of the host. 

Finally, CsA is also known to act on T-lymphocytes via the 

combination with the cyclophilin protein, which has been structurally 

identified in a number of parasites (Bell et al., 1996), and the identification of 

the targets of this drug in parasites may lead the development of novel 

chemotherapeutic agents. 

4.2 New target for a schistosomiasis vaccine 

In 1984, the first cyclophilin (CypA) was co-discovered by Fischer 

and co-workers, who developed a protease-coupled assay to demonstrate that 

it catalyses proline-limited protein folding reactions, and by Handschumacher 

and co-workers, who employed affinity chromatography to identify a 

receptor for CsA. In 1989, it became clear that the proteins identified by the 

two groups were identical (Fischer et al., Takahashi et al.,) and it was 

immediately speculated that the function of cyclophilins in 

immunosuppression might be linked to prolyl isomerase activity. Subsequent 

works, however, demonstrate that inhibition of Cyp activity is not the cause 

of parasite death (Khattab et al., 1998). 

The immunosuppressive effect of CsA is believed to be mediated 

through the interaction of CypA/CsA complex with the phosphatase 

calcineurin, inhibiting its calcium- and calmodulin-dependent activities 
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required for the activation of genes encoding interleukin-2 and other 

cytokines (Walsh et al., 1992). 

The peptidyl-prolyl cis-trans isomerase activity (PPIase activity) is 

fundamental in the protein folding process, because it accelerates cis-trans 

amide isomerisation (Fischer & Schmid, 1990). Thermal isomerisation is 

much slower than protein folding and the occurrence of proline amides may 

complicate protein folding when a particular prolyl amide must isomerise 

before a protein can reach its native folded structure. One of the major 

unresolved issues concerning this class of enzymes is their mechanism of 

catalysis. Several mechanisms have been proposed (Kofron et al., 1991): 1) 

catalysis by formation of a covalent tetrahedral carbon of the prolyl imidic 

bond for the transition state of reaction, 2) catalysis by distortion, in which 

PPI binds and stabilises a transition state characterized by partial rotation 

about the C-N amide bond, 3) protonation of the amide nitrogen that lowers 

the barrier for the cis-trans rotation, 4) catalysis by desolvation, based on the 

observation that the rate of the cis-trans isomerisation was significantly 

accelerated in non-polar solvents and 5) a solvent-assisted mechanism that 

assumes two steps in catalysis: desolvation by binding to the hydrophobic 

pocket and stabilisation of the intermediate by a solvent molecule. 

As the biological importance of PPIases is gradually revealed, an 

increasing number of inhibitors have been synthesized as potential drugs for 

various diseases. The largest family of cyclophilin inhibitors are related to the 

cyclic peptide cyclosporin A and some non-peptide compounds including 

ethyl-1-piperidine glyoxylate (ETPIPG) (Kallen et al., 1998). Piperidine 

ligands are described as the first example of non-peptide ligand structures for 

the cyclophilin family of proteins. These structures may be of relevance in 
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the field of drug design, as they suggest starting points for the design of 

larger tighter-binding analogues (Kontopidis et al., 2004). 

4.3 Material and Methods 

4.3.1 Cloning of S. mansoni cyclophilin 

The S. mansoni gene was amplified by PCR using PFu DNA 

polymerase (Stratagene) from genomic DNA of S. mansoni (kind gift from 

Dr. Raymond Pierce, Lille, France) as the template for the reaction, and sub-

cloned into the bacterial expression vector pGEX-4T-1 (Novagen). The 

primers used in the reaction were as follows: forward 5’-CGG GAT CCA 

TGC GAA CCA AAA AAC AAA AAC GAA ATC TTC CTC GGG-3’; and 

reverse, 5’-CCG CTC GAG CTA AAT TAA CTC TCC GCA TCG AGA 

AAT AAT AAC GGG-3’. BamHI and XhoI recognition sites were 

incorporated into the forward and reverse primers, respectively, to facilitate 

directional cloning (in bold face). Successful amplification was confirmed by 

agarose gel electrophoresis. PCR amplification was carried out using a PTC-

100™ programable thermocycler at annealing temperature of 55°C. The 

fidelity of the amplification reactions was confirmed by DNA sequencing at 

the Bio Molecular Research Sequencing Service (University of Padova, 

Italy). 

4.3.2 Cyclophilin from Haemonchus contortus 

The plasmid encoding for a cyclophilin from the nematode 

Haemonchus contortus (HcCyp) has been given to us by Prof. Cioli and co-

workers (Institute of Cell Biology, CNR, Monterotondo). It displays a high 

sequence homology with human cyclophilin as reported in Fig. 4.1. It 
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contains a RNA recognition domain (RRM) at the N-terminus of the PPIase 

domain, therefore, a putative role in transcription/translation regulation may 

Figure 4.1: Alignment of HcCyp 

be inferred (Valle et al., 2005). 
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.3.3 Protein Expression and Purification 

he HcCyp gene was cloned into the pDEST-17 expression plasmid as 

reviously described (Valle et al., 2005), incorporating a non-cleavable 

istidine tag at the N-terminus of the recombinant protein.  

cCyp has been expressed in E. coli cells grown at 37°C in Luria broth using 

4 µg/ml of chloramphenicol and 100 µg/ml of ampicillin as antibiotics. 
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13000 rpm for 30 min. The cells were resuspended in 20 mM HEPES pH 7.4, 

00 mM NaCl and 5 mM MgCl2, 10 mM 4-(2-aminoethyl)benzenesulfonyl 

achieved by sonication in bursts of 4s at 9s intervals for 5 min. The sonicated 

in. The extraction of HcCyp, 

0 rpm. The pellet 

2

fluoride (AEBSF) and 2mM β-mercaptoethanol (β-ME). Cell lysis was 

extract was centrifuged at 13000 rpm for 30 m

expressed in inclusion bodies was carried out following a standard protocol. 

The pellet has been homogenized with 1% sodium deoxycholate in 20 mM 

Tris pH 8.0, 0.2 M NaCl and centrifuged for 20 min at 1300

has been washed three times, by 20 minutes centrifugation, with 0.25% 

sodium deoxycholate in 10 mM Tris pH 8.8, 1mM EGTA, 1mM β-ME, then 

once with 20 mM HEPES pH 7.4. Finally, the pellet was resuspended in 6M 

urea, 20 mM HEPES pH 7.4 and 2mM β-ME stirring overnight at 4°C. The 

solution was centrifuged for 40 min at 13000 rpm and protein of high purity 

was obtained from the supernatant. HcCyp was refolded by dialysis vs. 20 

mM sodium phosphate pH 7.4 and 2 mM β-ME and concentrated through 

Amicon-plus concentration tubes using a membrane cut off of 10 kDa. 

4.3.4 Biochemical characterisation of HcCyp 

Protein concentration was routinely determined spectroscopically, measuring 

the A280 using a HP 845X UV-visible spectrophotometer (Hewlett Packard) 

using an extinction coefficient of 0.58 mg/ml. 

The far-circular dichroism spectra has been measured using a Jasco circular 

dichroism spectrophotometer (Hewlett Packard). Experiments were carried 

out at 10°C over a range of 190-300 nm using a 0.1 mg/ml concentration of 

HcCyp in 20 mM sodium phosphate buffer pH 7.4. 
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Light scattering experiment was carried out equilibrating HcCyp (2mg/ml) in 

a 10mM sodium phosphate pH 7.4. HcCyp was previously filtered through 

0.2 µm membrane. myoglobin is used as standard protein. 

HcCyp was applied on a gel filtration column G3000SW

mM sodium posphate pH 7.2 and analysed throu

 equilibrated in 20 

gh HPLC. A calibration 

re monitored recording the 

onditions to alter the 

 conformation. This 

curve was plotted using sample at different molecular weight. The standard 

proteins used were: albumin (67 kDa), ribonuclease A (13.7 kDa) and 

ovalbumin (45 kDa). Chromatograms we

absorbance at 280 nm with a flux of 0.8 ml/min. Each sample has been 

filtered using a 0.20 µm filter unit before the injection. 

Chromatograms in presence of different NaCl and EDTA concentrations 

have been monitored in order to optimise c

polymerisation degree of the protein. Comparison of retention times of the 

same protein under different solution conditions revealed no salt influence in 

the aggregation state. 

4.3.5 Enzymatic assay and inhibition studies 

The PPiase activity is usually determined spectroscopically using a Jasco 

UV-visible spectrophotometer (Hewlett-Packard) by the α-chymotrypsin-

coupled enzymatic assay (Kofron et al., 1991). α-Chymotripsin selectively 

hydrolyses the C-terminal peptide bond in N-Suc-Ala-Ala-Pro-Phe-4-

nitroanilide only when the proline is in the trans

hydrolysis releases the chromogenic product 4-nitroanilide, the accumulation 

of which is monitored by measuring the absorbance at 390 nm as function of 

time (∆ε=13400 M-1·cm-1). 
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Figure 4.2. Trans-cis isomerisation of the peptide bond in prolines.  
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Time courses at over a range of substrate concentration (20µM, 50µM, 

100µM, 300µM, 600µM, 1000µM) were recorded and data were fitted using 

nsolubility in water 

Addition of 8 mM EDTA has been tested during crystallisation trials, in order 

e to the presence of His-tag. 

the Origin 7 Server Software. 

The ability of CsA to inhibit the enzymatic activity of HcCyp was also 

measured in similar steady state conditions previously reported, at constant 

chymotrypsin and cyclophilin concentrations (50µM and 5nM, respectively), 

over a range of 4-nitroanilide concentrations (50µM, 75µM, 100µM, 600µM, 

1000µM), for three different CsA concentrations (10 nM, 20 nM, 60 nM). 

CsA has been prepared in a 0.1 M stock solution in 0.5 mM sodium 

phosphate, pH 7.4 in 40% ethanol because of its i

solution. Assays were carried out as described above but HcCyp has been 

preincubated with CsA, 30 min before each experiment. 

4.3.6 Crystallisation tests 

Crystallisation trials for HcCyp were carried out by the vapour diffusion 

method using both hanging and sitting drop. Screening experiments were 

performed with commercial screen kits from Hampton Research, Wizard and 

Stura. The protein has been dialysed against 20 mM Tris pH 7.5 and 5mM ß-

ME. A very large number of crystallisation trials were carried out at different 

temperatures (4°C and 21°C) and using different protein concentrations. In 

order to avoid bacterial contamination, 0.3% Na3N was added to the protein 

stock solution. 

to avoid possible aggregation du
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Furthermore, diverse concentrations of dimethylsulfoxide (DMSO) has been 

added both in the protein stock and in the reservoir solution, 0.3% and 5% 

respectively, as reported in the literature (Mikol et al., 1993). 

4.4 Results and Discussion 

4.4.1 Cloning, expression and purification of SmCyp and HcCyp 

mids was 

Successful expression of HcCyp in inclusion bodies, carried out in bacterial 

ethods, was confirmed by SDS-PAGE 

under reducing conditions. A very pure band, corresponding to the predicted 

ichel 

affinity

56kDa

The cloning of S. mansoni cyclophilin in pGEX4-T1 plas

carried out but expression tests revealed that this protein is present 

exclusively in inclusion bodies. New attempts for cloning in different 

plasmid are in progress. 

cells according to materials and m

Mr value of the HcCyp, was observed. Further purification through n

 columns was not necessary as judged by SDS-PAGE analysis. Each 

purification yields approx. 60 mg/500 ml culture of pure protein. 

116kDa

 

Figure 4.3: SDS-PAGE of HcCyp after cell lysis. 
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4.4.2 Biochemical 

Successful refolding of the denatured as confirmed by experiments 

carried out using a circular dich hotometer. The far-UV-CD 

spectra confirme β-sheets content. 

Circular dichroism easured in 20 mM Tris pH 7.5 

and 5m r the protein fold was maintained in 

e crystallisation buffer. 

sian curve centered at 31 kDa 

confirming the monodispersive phase of a monomeric protein. 

LC, interpolated with a calibration 

HcCyp was measured according to the coupled 

d all the slope 

 

characterisation 

protein w

roism spectrop

d the prediction of a protein rich in 

 spectra have also been m

M ß-ME, in order to check whethe

th

Light scattering experiments result in a gaus

Gel filtration analysis carried out by HP

curve, gives a higher than expected molecular weight (125 kDa). This result 

may be due to either to the presence of aspecific interactions with the matrix 

of the column, or to aggregation of HcCyp monomers. 

4.4.3 Prolyl isomerase assay 

The PPIase activity of 

enzymatic assay as reported in material and methods. The initial velocity of 

each time course (panel in Fig. 5) were linearly interpolated an

values were plotted against substrate concentrations in order to measure 

Michaelis constant (KM) (Fig. 4.4). 
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M and kcat values are calculated at different Cyp concentrations and reported 

 table 4.1.  

able 4.1: KM and kcat values are reported for different concentration of HcCyp.  

ctivity seems to slightly decrease, increasing cyclophilin 

concentration used in assays; this is likely due to eventual protein 

aggregation in solution (see also above, gel filtration experiments). As a 

HcCyp (nM) kcat(s-1) KM (µM) 

2.5 2.7 81.9 
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measure of cyclophilin efficiency we have compared kcat/KM with those from 

ther cyclophilin cat/KM 2.7-8.8 104 M lted to be less 

fficient than human Cyp and plasmod  falciparum   (kcat/KM 2.2 108 
-1 s-1) (Berriman et a et 1990, Berg et al., 1991). As a 

onsequence of prote xpression in lusion bo e were probably 

nable to prepare com ely active and renatured cyclophilin. 

.4.4 Inhibition assay 

its role in the 

 understood and some example of cyclophilins 

with the retention of their catalytic efficiency without CsA inhibition has 

 

s. HcCyp (k -1s-1) resuo

e ium  Cyp

l., 1998, Liu al., sma M

c in e  inc dies, w

u plet

4

Inhibition studies were carried out according to material and methods and KM 

and kcat at different CsA concentrations have been calculated, as reported in 

Table 4.1. 

Plotting 1/v versus 1/[S] in the Lineweaver-Burk plot (Fig. 4.5a), it is 

quite evident that HcCyp inhibition is unaffected by varying inhibitor 

concentration and that there is a significant inhibition of rotamase activity by 

cyclosporin A, despite the fact that kcat/KM values are similar to those 

obtained in the absence of inhibitor (tables 4.1 and 4.2). 

CsA seems to be a very weak competitive inhibitor, even if 

catalysis is not completely

been reported (Liu & Walsh, 1990). 
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Figure 4.5: Lineweaver-Burk plots for the inhibition analysis a) at different 
c
substrate concentration.
oncentration of CsA b) with ETPIPG. In ascisses are reported 1/[S] where S is 

 

hibition studies have been carried out also in the presence of a non-peptide 

hibitor, ETPIPG (Fig. 4.6 b), and similar calculations have been made 

sulting kcat/ KM value similar to those of CsA (table 4.2). 

CsA (nM) KM (µM) kcat(s-1) 

10 93.3 2 

 

In

in

re

 

20 142.8 2.5 

60 151.6 2.8 

ETPTIPG (nM)   

10 66.8 1.9 
 

Table 4.2: Michaelis constants and kcat values for inhibition assays 
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To summarise, we have studied a potentially pathologically important 

protein involved in the development of schistosomes and analogue parasites: 

a cyclophilin from the nematode H. contortus that contains an RNA 

cognition motif. Cyclophilins are typically, expressed in the soluble 

fraction of bac m  HcCyp was present only in inclusion 

bodies. Refolding of proteins isolated from clusion bodies is critical and 

diversely folded intermediates ccur; however, we successfully refolded 

HcCyp which pe d its ssful biochemical characterisation. Its 

peptidyl-prolyl rase ctivity was measured, revealing that it is 

not as efficient as man cyc Since the inhibition of this enzyme 

enzym

re

terial syste s, however

 in

 may o

rmitte  succe

cis-trans isome  a

 hu lophilin. 

may be interesting from a pharmacological point of view, we carried out 

atic assays in the presence of natural and non–peptide inhibitors. 

Examination of the primary structure of human cyclophilins revealed an 

unusual high content of the aromatic residue phenylalanine, many of which 

have been identified by NMR as participants in the formation of the 

hydrophobic binding site for CsA (Dalgarno et al., 1986). HcCyp was 

slightly inhibited by cyclosporin A as revealed by competition experiments. 

However, it is not completely clear if cyclosporin acts as a weak competitive 

inhibitor or not. The possible explanation for the low catalytic efficiency and 

inhibition of cyclosporin could be assigned to the conditions in which 

refolding was carried out.  

In order to express this protein in the soluble fraction, attempts were made to 

clone cyclophilin from S. mansoni, using diverse plasmids. Expression in 

soluble form, in fact, will hopefully help the crystallisation and the 

achievement of a crystal structure is fundamental to better understand the 
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catalytic mechanism and to provide a good template for the design of novel 

ligands and more efficient inhibitors. 
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In this project, two proteins potentially relevant for the survival and 

the pathogenicity of schistosome parasites were studied: cyclophilin-like 

protein, a peptidyl-prolyl isomerase enzyme involved in the maintenance of 

correct folding and a key enzyme of the detoxification mechanisms, the 

glutathione S-transferase from S. haematobium (Sh28GST). 

In the first case, I have studied a cyclophilin-like protein from H. contortus 

(HcCyp), a parasite of the same family which affects cows. HcCyp was 

expressed as a recombinant His-tagged protein in E. coli. Despite different 

growth conditions, it was exclusively found in the inclusion body fraction, 

however it was successfully solubilised and refolded. Its catalytic rotamase 

activity has been characterised with respect to its peptide substrate and to a 

couple of inhibitors: cyclosporin A, which has been used as 

chemotherapeutic agent in human schistosome infections, and ethyl-1-

piperidine glyoxylate, a non-peptide inhibitor known to act on the human 

homologue of Cyp, which by the way had never been tested on a protein of a 

parasite species before. 

Despite numerous crystallisation trials, we did not manage to obtain any 

promising conditions. Future work will focus on the expression of S. mansoni 

cyclophilin in soluble form to avoid the critical refolding step, which will 

hopefully help subsequent structural studies. Moreover it will include the 

investigation of its RNA binding ability and possibly the assessment of the 

efficiency of new inhibitors. 

As for the detoxification pathway we focused on Sh28GST, which is 

involved both in the bio-transformation of xenobiotics into more soluble and 

readily excretable compounds and in the isomerisation of prostaglandin 
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PGH2 to PGD2. Therefore GST is critical in two diverse pathways, essential 

for defence against the host response. 

In this thesis, the high resolution structures of three Sh28GST mutants 

(R21L, R21Q and Y10F) and the structure of wild type in complex with its 

competitive inhibitor, S-hexylglutathione are presented, together with the 

characterisation of their ligand affinities and transferase activities. 

The crystal structure of GSH-bound wild type GST (Johnson et al., 2003) 

revealed a characteristic double conformation of the catalytic residue, namely 

Tyr10, adopting two alternative positions: an activating conformer (Tyrin10), 

where the phenoxyl group of Tyr10 projects towards the G-site forming a H-

bond with the thiolate of GSH and a novel non-activating conformer 

(Tyrout10) where the phenoxyl ring is positioned out of the G-site and is 

stabilised by a π-cation interaction with the guanidinium group of Arg21. The 

catalytic role of Tyr10 has been confirmed through an enzymatic assay of the 

Y10F mutant, which is completely inactive. Arg21 is a strictly conserved 

residue in GSTs containing a catalytic tyrosine and the functional 

characterisation of Arg21 mutants demonstrates its fundamental role in 

catalysis. R21L and R21Q have very low catalytic activities even though 

their ability to bind glutathione is conserved. The π–cation interaction is 

responsible for lowering the tyrosine pKa from approximately 10 to 7.4 and 

promotes Tyrout10 deprotonation, rendering Tyrin10 available for subsequent 

GSH activation (Angelucci et al., 2005). 

Structural characterisation of both mutants revealed concerted movements of 

residues in close proximity to the G-site. These movements are correlated to 

the Tyr10 position and modify the solvent accessibility of Arg21 pocket. The 

superimposition of the overall structures of our proteins, revealed novel 



Chapter 5 90 

tertiary movements involving helices at the dimer interface and the C-

terminal regions, resulting in a more compact quaternary structure, upon 

ligand binding. These quaternary rearrangements were not previously 

described, although the flexibility of several helices has been extensively 

reported in the literature (Ibarra et al., 2001) and seems to be correlated to 

ligand binding more than due to the mutations. 

In summary, in the near future, it will be possible to start a compound search 

for molecules able to bind the G- and/or the H-site, by indirectly influencing 

the activity of the catalytic residue. The comparison between the parasite 

enzyme and its human counterpart will help to restrict the development of 

putative compounds that bind specifically to Sh28GST, therefore reducing 

the presence of toxic side-effects in the host. 
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ABSTRACT: Schistosoma mansonifatty acid binding protein (Sm14) was crystallized with bound oleic
acid (OLA) and arachidonic acid (ACD), and their structures were solved at 1.85 and 2.4 Å resolution,
respectively. Sm14 is a vaccine target for schistosomiasis, the second most prevalent parasitic disease in
humans. The parasite is unable to synthesize fatty acids depending on the host for these nutrients. Moreover,
arachidonic acid (ACD) is required to synthesize prostaglandins employed by schistosomes to evade the
host’s immune defenses. In the complex, the hydrocarbon tail of bound OLA assumes two conformations,
whereas ACD adopts a unique hairpin-looped structure. ACD establishes more specific interactions with
the protein, among which the most important is aπ-cation bond between Arg78 and the double bond at
C8. Comparison with homologous fatty acid binding proteins suggests that the binding site of Sm14 is
optimized to fit ACD. To test the functional implications of our structural data, the affinity of Sm14 for
1,8-anilinonaphthalenesulfonic acid (ANS) has been measured; moreover the binding constants of six
different fatty acids were determined from their ability to displace ANS. OLA and ACD exhibited the
highest affinities. To determine the rates of fatty acid binding and dissociation we carried out stopped
flow kinetic experiments monitoring displacement by (and of) ANS. The binding rate constant of ligands
is controlled by a slow pH dependent conformational change, which we propose to have physiological
relevance.

Schistosomiasis is the second most prevalent parasitic
disease worldwide and affects more than 200 million people
in developing countries. Schistosomes are parasitic trema-
todes whose complex life cycle involves an intermediate host
(a freshwater snail) and man as the definitive host. Adult
schistosomes live in the mesenteric or perivesical veins of
their definitive host and uptake their nutrients directly from
the host’s blood.

The proteins that participate in the uptake and metabolism
of fatty acids and their derivatives may constitute a possible
target for therapy or vaccination, given the numerous and
important roles played by these compounds. To briefly
review this subject, we remark that the parasite lacks the
metabolic pathways required for the biosynthesis of sterols
and lipids; hence it is completely dependent on the host for
these substances (1). Besides being nutrients and structural

components of the cell membrane, fatty acid derivatives
released by schistosomes play a role in the parasite evasion
from the host immune response (2). Moreover, upon contact
with human skin, cercariae (the larval stage released by the
intermediate host) respond to chemical stimuli, particularly
medium-chain free fatty acids, to start skin invasion (3).
Uptake and transport of fatty acids and other lipids inS.
mansonidepend (probably to a large extent) on the fatty acid
binding protein (Sm14)1 (4). Sm14 is present in all the stages
of the life cycle and is localized in the external cell layer,
i.e., near the interface of the parasite/host contact (5). From
this short summary an important conclusion may be drawn:
interfering with fatty acid uptake or metabolism may
constitute an important therapeutical approach. Accordingly,
the World Health Organization selected Sm14 as one out of
six antischistosome vaccine candidates for testing (6, 7); and
possibly the protein may also be a drug target, since blocking
of fatty acid uptake could have dramatic effects on the life† Funding was received by the University of Rome “La Sapienza”
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cycle of the parasite. This hypothesis is particularly relevant
if one takes into account that there are only two available
drugs against this disease (8).

The FABPs constitute a multigenic family of low molec-
ular mass proteins (14-15 kDa). Analysis of 3D structures
of FABPs revealed basic structural similarities among the
members of this family despite low sequence identities (9).
The actual physiological role of FABPs is still incompletely
clear, and different hypotheses have been proposed, including
protection of cell membranes and enzymes from the effect
of high concentrations of free fatty acids (FAs) and of their
acyl-CoA derivatives, storage of FAs, lipid trafficking, and
regulation of cell growth and differentiation (10, 11).
Ambiguities mainly originate from the observation that these
proteins can bind many different hydrophobic substrates
(FAs, monoglycerols, diacylglycerol phosphates, lipooxy-
genase metabolites of arachidonic acid, acetyl Co-A, retin-
oids, and even heme (12)); also, FABPs are able to reversibly
associate with artificial phospholipid bilayers, releasing or
uptaking ther ligands (11). Thus, a very credible hypothesis
on the functional role of FABPs suggests that these are
involved in the intracellular trafficking of lipids to and from
cell membranes; an important piece of evidence is that the
heart fatty acid uptake is decreased in heart-fatty acid binding
protein gene-ablated mice (13). The important metabolic role
of FABPs and structural similarity of FABPs in evolutionary
related parasites may explain why immunization with Sm14
confers significant levels of cross-protection against infec-
tions with Schistosoma mansoniand Fasciola hepaticain
animal models (6).

Despite the importance of Sm14 as a vaccine and drug
target candidate, there is still little structural and functional
data about this protein. Thus, in this work, the 3D structures
of the complexes of Sm14 with ACD and oleic acid (OLA)
were solved by means of X-ray crystallography at 2.4 and
1.85 Å, respectively. Moreover, we characterized the binding
and release reactions of Sm14 and several important FAs
using 1,8-anilinonaphthalenesulfonic acid (ANS) as a com-
petitor. The ligand with highest affinity, when water solubil-
ity is taken into account (14), is ACD, a compound essential
to schistosomes. ACD is incorporated by the parasite more
readily than other lipids (15) and is the immediate precursor
of eicosanoid hormones, including the prostaglandins, critical
in facilitating the skin penetration process of cercariae (16).
Kinetic experiments were performed to clarify the mechanism
of competition between FAs and ANS; a ternary complex
between the protein and the two ligands was postulated to
account for the complex reaction mechanism. Since affinities
for FAs were shown to be pH dependent, pH jump experi-
ments were performed which proved the presence of a slow
pH dependent conformational change, whose physiological
relevance is also discussed.

A comparison of the functional data and the two structures
obtained by X-ray crystallography explains the structural
basis of ligand selectivity. Indeed, ACD establishes a series
of tight specific interactions, among which the most impor-
tant one is a strong directionalπ-cation interaction between
the guanidinium group of Arg 78 and the C8-C9 double
bond. The shape and volume of the binding cavity is
practically unchanged in the two complexes, but seems best
adapted to bind ACD. Finally, the 3D structures of Sm14

also allowed us to structurally highlight two previously
described antigenic determinants of the protein.

EXPERIMENTAL PROCEDURES

Cloning of Full-Length Sm14. S. mansoniadult worms
were freshly obtained by perfusion of mice, infected at least
7 weeks before, using HEPES-buffered RPMI-1640 medium
and containing 100 units/mL of heparin. Parasites, suspended
in a minimal amount of medium, were frozen in liquid
nitrogen and ground to a fine powder. Total RNA was
extracted in Trizol reagent (Invitrogen) of which 5µg was
treated with SuperScript II reverse transcriptase (Invitrogen)
to synthesize cDNA, following the protocol recommended
by the manufacturer. To obtain the Sm14 full length coding
region, a PCR reaction was carried out on the cDNA template
using the forward primer 5′-GTTGAAACATATGTCT-
AGTTTCTTGGGA-3′ and the reverse primer 5′-TTGCTC-
GAGTTAGGATAGTCGTTTATAATT-3′. The PCR reac-
tion was carried out using 1µL of template, 50 pmol of each
primer, and 2.5 units of Pfu DNA polymerase (Stratagene).
The PCR product obtained was subcloned into pPCRscript
Amp SK(+) (Stratagene), after which the plasmid was
sequenced with an ABI PRISM 310 genetic analyzer using
the BigDye Terminator Cycle Sequencing Kit (ABI). The
same PCR product was then cloned into the Gateway His-
taggedEscherichia coliexpression vector, pDEST17 (In-
vitrogen), following the protocol recommended by the
manufacturer. Expression of recombinant protein was carried
out in E. coli BL21(DE3)pLysS cells.

Purification of Sm14.Wet cells of a 3 L bacterial growth
were resuspended in 40 mL of buffer A (0.5 M NaCl, 50
mM Tris/HCl pH 8.0, 2 mM â-mercaptoethanol, 1 mM
EDTA, 2% Triton X-100, and 1 mM protease inhibitor
phenylmethylsulfonyl fluoride) (Sigma-Aldrich, all reagents
were of analytical grade). Cell lysis was achieved after 5
min sonication at 4°C. The protein was found to be
expressed in inclusion bodies; hence, after centrifugation at
10000×g and removal of the supernatant, the remaining
pellets containing inclusion bodies were cyclically treated
three times with the protocol described. Water washing of
the residual pellet was employed to remove the excess
detergent. The pellets were then dissolved in 50 mL of buffer
B consisting of 6 M urea, 20 mM Tris/HCl pH 7.8, 500 mM
NaCl, 5 mM imidazole, and 20 mMâ-mercaptoethanol and
gently stirred overnight at 4°C. The resulting solution was
filtered with a 0.45µm syringe filter and loaded onto a Ni2+

column (chelating sepharose, Amersham Biosciences). The
bound protein was washed with 5-7 column volumes of
buffer B without â-mercaptoethanol. A rapid change of
solution with buffer C (20 mM Na-phosphate pH 7.8, 500
mM NaCl) resulted in a properly folded His-tagged Sm14,
which was eluted at about 250 mM imidazole by a linear
gradient obtained by mixing buffer C with the same
containing 500 mM imidazole. SDS-PAGE (17) showed
the presence of the pure His-tagged Sm14 characterized by
a molecular mass of 18.5 kDa. Then, 50 mg of pure His-
tagged Sm14 was dialyzed against 100 mM Tris/HCl pH
8.0, 250 mM NaCl, at 4°C, concentrated to 3.5-5 mg/mL
followed by addition of 0.1% octyl-â-glucopyranoside. The
protein solution was then diluted 1:1 with buffer D (2 M
urea, 400 mM NaCl, 100 mM Tris/HCl pH 8.0, 10 mM
CaCl2, 2 mM â-mercaptoethanol), and 10 units/mL of
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thrombin from bovine plasma (Sigma-Aldrich) was added.
The resulting solution was stirred overnight at room tem-
perature, then dialyzed against 0.1 M MES pH 5.5, and
loaded onto a cation-exchange column (Source S-15, Am-
ersham Biosciences). The cleaved Sm14 was eluted with a
NaCl gradient at about 100 mM salt and verified by SDS-
PAGE.

Crystallization of the Complex with FAs.Prior to crystal-
lization the protein was equilibrated in 10 mM MES pH 5.5,
50 mM NaCl, 1 mMâ-mercaptoethanol. The complexes with
the two FAs were formed by adding a 2-fold molar excess
of each ligand to Sm14. FAs were added in ethanol to a 1
mg/mL solution of Sm14, so that the ethanol concentration
did not exceed 1% v/v. The mixture was gently stirred
overnight at room temperature, after which the excess of
ligands was removed by washing the sample in 3 kDa cutoff
ultrafiltration devices (Amicon) and the protein was subse-
quently concentrated to 10 mg/mL. Crystallization was
achieved using the hanging drop vapor diffusion method,
employing drops consisting of 1µL of a well solution of
0.1 M MES pH 6.0, 0.2 M Na acetate, 29-31% PEG 8K
(w/v), 5 mM â-mercaptoethanol, and 1µL of the protein
sample. Rodlike crystals of dimensions 0.4× 0.2× 0.2 mm
grew within a few days at 21°C. Crystals were cryoprotected
by using a solution containing 10% glycerol (v/v), 30% PEG
8K, 0.1 M MES, 0.2 M Na acetate, 5 mMâ-mercaptoethanol,
pH 6.0 and flash-frozen in liquid nitrogen.

Data Collection and Processing. Data for the two struc-
tures were collected at Elettra (Trieste, Italy) at 100 K and
then processed using the HKL suite (18). Both Sm14-OLA
and Sm14-ACD complexes crystallized in the sameP21212
space group with the unit cell dimensions given in Table 1.
The datasets from 20.0 Å to 1.85 Å for Sm14-OLA and
from 20.0 Å to 2.4 Å for Sm14-ACD are complete, well
measured, and uniformly distributed in reciprocal space.
Solvent volume was calculated, with the method of Matthews
(19), to be around 45% of total crystal volume, and in both

cases there was only one complex molecule per asymmetric
unit.

Structure Solution and Refinement of Sm14-OLA Com-
plex. The structure was solved by molecular replacement
techniques with the program AMoRe (20) of the CCP4 suite
(21), using the structure of the M-FABP complex (PDB code
2HMB; ref 22) as search model after removal of FA and
water molecules. Data between 15 Å and 3.5 Å were used
and gave a clear solution with a correlation coefficient of
0.42. Model building and electron density map inspection
were performed with the program XtalView (23). For model
building both 2|Fo| - |Fc| and |Fo| - |Fc| electron density
maps were calculated and contoured at 1σ and 3σ levels,
respectively. Most of the loops and the twoR-helices were
rebuilt. Subsequent rounds of rebuilding and refinement using
Refmac (24), for 13179 reflections between 20.0 Å and 1.85
Å, resulted in a complete model of Sm14-OLA complex,
with an R value of 0.198 and anRfree value of 0.246 (see
Table 1). OLA, Met 20, and the side chains of His 14, Glu
110, Asp 124, and Lys 132 were refined with two alternative
conformations. Two additional amino acids (Gly and Ser)
resulting from the thrombin cleavage of the polyHis tag were
found at the N-terminus.

Structure Solution and Refinement of Sm14-ACD Com-
plex. Since this complex was isomorphic to Sm14-OLA,
the difference Fourier method was used to solve the structure,
using Sm14-OLA, without OLA and waters as a model.
The refinement of Sm14-ACD proceeded in a fashion
similar to that described above. The difference density located
in the binding cavity was modeled as C20:4 fatty acid. Final
refinement led to anR factor of 0.213 and anRfree value of
0.283 for 5746 reflections between 20.0 Å and 2.4 Å. The
final structure contained 135 amino acid residues, 77 water
molecules, and 1 molecule of ACD (see Table 1) and
displayed only the side chains of Met 20 and His 14 in double
conformations.

Structural Analysis. The models were monitored for
geometrical quality by using PROCHECK (25). TheB factors
for several structural elements were calculated using the
subroutine BAVERAGE of the CCP4 program (21). The
contacts between FAs, residues, and waters were considered
up to 4.6 Å and measured with the program CONTACT (21).
The rms deviations between structures were calculated with
the program LSQKAB (21). Volume and surface of the
protein cavity were calculated with Cast-P (26). Sm14-OLA
and Sm14-ACD structures have been deposited in the PDB
with entry codes 1VYF and 1VYG, respectively.

Spectrofluorimetry and Fluorescence-Based FA Binding.
The affinity of Sm14 for FAs was determined by taking
advantage of the enhancement of the fluorescence quantum
yield of ANS (Sigma-Aldrich) upon binding to Sm14 (27).
The experiments were carried out using a Spex Fluoromax
spectrofluorimeter at 20°C in 2 mL of 0.1 M MES pH 5.5.
Sample solutions of Sm14 were prepared by diluting a stock
to concentrations of 0.1µM for Kd determinations and to 5
µM for stoichiometric experiments. The stock solution (7
mM) of the fluorescent probe was prepared in ethanol.
Aliquots of appropiately diluted solutions of ANS in 0.1 M
MES were added to the protein and mixed in a cuvette with
a magnetic stirrer for 2 min before spectra were collected.
ANS and protein concentrations were verified spectropho-
tometrically (ε280 ) 12750 M-1 cm-1 for Sm14,ε280 ) 4990

Table 1: Summary of Data Collection and Refinement

Sm14-OLA Sm14-ACD

space group P21212 P21212
no. of unique reflns 13179 5746
I/σ(I) 22.3 (4.8)a 19.6 (8.8)b

completeness (%) 99.3 (92.7)a 95.5 (86.9)b

redundancy 4.5 5.5
unit cell dimens

a (Å) 43.26 42.29
b (Å) 92.39 91.01
c (Å) 36.22 35.33

Rmerge 0.046 (0.38)a 0.067(0.17)b

Ramachandran plot
most preferred 116 110
allowed 7 13
generously allowed 0 0
disallowed 0 0
R 0.19 0.21
Rfree 0.24 0.28
rms deviations

bond lengths (Å) 0.02 0.015
bond angles (deg) 1.6 1.4

final model composition
no. of protein atoms 1071 1057
no. of water molecules 209 76
no. of ligand molecule 1 (OLA) 1 (ACD)

a Last shell (1.88-1.85 Å). b Last shell (2.49-2.40 Å).
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M-1 cm-1 for ANS in water). The excitation wavelength was
380 nm, and emission spectra were collected over the range
of 400-500 nm; emission peaked at 480 nm, and readings
between 470 and 490 nm were used for quantitative analyses.
A 1:1 stoichiometry was achieved and theKd determined to
be 0.5 µM, without significant dilution of the Sm14,
assuming simple equilibrium binding between aqueous ANS
and Sm14.

Competition experiments with FA were performed as
described for the ANS binding measurements, starting with
a protein solution containing 4.5µM ANS as competitor.
OLA, ACD, palmitic (PA), myristic (MA), linoleic (LA),
and decanoic acid (DA) were purchased from Sigma. All
the FAs were dissolved in ethanol to a final concentration
of 10 mM, then diluted in the experimental buffer prior to
use, and used within a few hours. The concentrations of PA,
LA, OLA, and ACD at the end of the titration were much
below their CMC determined at physiological pH (28);
presumably this applies also to DA and MA, whose CMCs
have not been reported. Addition of FA aliquots resulted in
quenching of the emission peak of the bound ANS. Titration
curves were fitted to a simple replacement equation; the
relative errors of the resultingKd values (Table 2) lie within
0.2%.

Kinetic Measurements, pH Jump and Double Mixing
Experiments. Stopped-flow experiments were carried out
using an Applied Photophysics MV18 (Leatherhead, U.K.)
apparatus equipped for fluorescence signal detection. The
excitation wavelength was 380 nm, and emission was
collected using a filter with cutoffe 455 nm. Solutions of
Sm14 (0.4µM) in 0.1 M MES pH 5.5 were mixed with
buffered solutions of ANS at concentrations ranging between
3 and 10µM at 20 °C. The time courses were fitted to a
double exponential.

The competition measurements were performed in two
ways: Sm14 0.4µM was first incubated with ANS 50µM
and mixed with different amounts of OLA (1.25-5 µM);
alternatively the protein was incubated with OLA (1.5µM)
and mixed with different solutions of ANS (100 to 400µM).
These experiments were carried out under suboptimal condi-
tions, given that the transmittance of the samples ranged from
56% to 10%. As a consequence the amplitude of the recorded
signal cannot be trusted, whereas the rate constants are
reliable.

In pH jump experiments, a weakly buffered Sm14 solution
(0.4µM) containing ANS at a concentration ranging from 2
to 3.3µM at one pH (10 mM Mes pH 5.5 or 10 mM Hepes
pH 7.4) is mixed with an equal volume of a concentrated
buffer solution at the reciprocal pH (0.1 M Hepes pH 7.4 or

0.1 M Mes pH 5.5). The final pH of the solutions after the
pH jump was assessed by mixing equal quantities of the
buffers.

Double mixing experiments were carried out in order to
test the time course of the pH dependent conformational
change. Sm14 (0.4µM) dissolved in 10 mM HEPES pH
7.4 was mixed with 0.1 M Mes pH 5.5, and the solution
was “aged” for different times (ranging from 15 ms to 150
s). After the preset delay, the resulting solution was mixed
with an equal volume of a buffer containing 0.1 M Mes pH
5.5 and 4µM ANS.

RESULTS

OVerall Structure of Sm14-FA Complexes.The complexes
of Sm14 with ACD and OLA were crystallized under the
experimental conditions described in the Experimental
Procedures section. We also attempted to crystallize the FA-
free Sm14 without success. The 3D structures of Sm14-
ACD and Sm14-OLA were solved at 2.4 and 1.85 Å,
respectively, by X-ray crystallography with the two models
achieving finalR factors of 21.3% and 19.8%, respectively.
As assessed by the program PROCHECK (25), the stereo-
chemical parameters of the two structures lie within the mean
reference values (see Table 1 for a summary of crystal-
lographic data). The protein main chain atoms and all the
protein atoms of the two complexes of Sm14 are super-
imposable, with an rmsd of 0.32 Å and 0.75 Å, respectively.
At the N-terminus both structures have two partially disor-
dered amino acids, belonging to the linker region after the
His tag (see Experimental Procedures). Numbering of the
amino acids starts from the first native residue (Met 1), and
the two non-native residues are called Gly-1 and Ser 0.

Similarly to the heart group of FABPs (H-FABPs), Sm14
folds as a twisted V-shapedâ-barrel, formed by 10 antipar-
allel â-strands named from A to J (following the annotation
of Sacchettini et al. (29)), closed on one side by interactions
between the side chains and capped on the other side by a
helix(I)-turn-helix(II) motif (Figure 1, panels A, C).

The two complexes have one single molecule of either
ACD or OLA, bound in a large internal cavity. The volume
of the cavity (calculated after removal of FA and waters from
the models) is∼300Å3 (see Table 2), comparable to the
cavity volumes of other FABPs belonging to the same family
(7).

The gateway for entry of the substrate in the internal cavity
is formed by the helix(I)-turn-helix(II) motif (residues 16-
35) and by two hairpin loops between strands C-D and E-F
(residues 56-58 and 74-78, respectively) (Figure 1). In both
complexes, the gateway is closed and leaves no room for
exit of the bound FAs; we hypothesize that diffusion of FAs
into and out of the cavity requires opening of this doorway.
In both structures Phe 57 on the C-D loop, previously
proposed to be a key residue in the binding process (30),
closes the entry of the lid, it is oriented toward the interior
of the cavity, and its ring is at 3.5 Å to 4.5Å distance from
the aliphatic chain of both OLA and ACD, respectively. In
Sm14-OLA complex, Phe 57 has a higherB factor (41.1Å2)
as compared to the overallB factor of the protein (36.1 Å2),
index of certain mobility, whereas in Sm14-ACD, Phe 57
has aB factor (53.6Å2) similar to that of the whole protein.

On the rim of the portal region, Lys 22 at the end of helix-
(I) and Lys 58 on the C-D loop have the same relative

Table 2: Equilibrium Constants for the Dissociation of Six Fatty
Acids from Sm14 and Geometrical Parameters of Sm14-OLA and
Sm14-ACD

surfaces (Å2)fatty acid CMCa

(nM)
Kd

(nM) cavity fatty acid
cavity vol

(Å3)

decanoic acid (C10:0) 6100
myristic acid (C14:0) 88
palmitic acid (C16:0) 4000 33
oleic acid (C18:1) 6000 9 467.9 521.2 318.9
linoleic acid (C18:2) 13000 24
arachidonic acid (C20:4) 20000 10 441.1 608.2 300.1

a Critical micellar concentration (28).
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position and orientation as their homologues in H-FABP (Lys
22, Lys 59), where they were shown to interact electrostati-
cally with phospholipid headgroups and supposed to drag
the carboxylate of FA toward the internal cavity (31). On
the back of theR-helix lid, the hydrophobic side chains of
Trp 27 and Ile 32 are exposed to the solvent. This unusual
orientation allows Trp 27 to insert among the phospholipid
tails, thereby helping membrane binding, as shown by
Kennedy et al. (32) for Schistosoma japonicumFABP. In
both our structures Trp 27 and Ile 32 have the same relative
orientation, consistent with the hypothesis that they interact
with the cell membrane.

Structural Features Related to Antigenicity.Vaccination
trials in Swiss mice showed that two peptides derived from
Sm14 are capable of inducing a level of protection compa-
rable to that induced by the full length protein (6, 33). The
two peptides, namely Pep1 (from residue 85 to 94) and Pep2
(from residue 118 to 125), are topologically far from each
other in Sm14 crystal structure (Figure 1). Pep1, seen at the
bottom of the model in Figure 1, encompasses F and G
â-strands including the loop between them; Pep2 is also
located in a loop, more precisely aâ-turn between strands I

and J, close toRI-helix. Most of the side chains of these
peptides are exposed to the solvent except Leu 92 and Gln
94 of Pep1 and Val 118, Val 120, and Ala 125 of Pep2, all
of which point to the interior of the protein. Our structure
reveals that both peptides areâ-hairpins, i.e., they possess a
stable secondary structure motif possibly retained even when
the peptides are cleaved from the protein; and their sequence
is sufficiently different from the homologous human isoforms
to be recognized as “nonself” (at most 33% and 28%
sequence identity, respectively).

The residue at position 20 of Sm14 is relevant to
antigenicity. In our protein this residue is Met, but a natural
allelic variant containing Thr has been described (Sm14-
T20). Ramos and co-workers (34) studied the effect of
mutations of Met 20 to Ala and Thr with respect to
antigenicity, and observed a different protective response
againstS. mansonicercariae in mice. Sm14-M20 displayed
greater antigenicity than wild-type Sm14-T20 and artificial
mutant Sm14-A20. Met 20 (Figure 1) is at the beginning of
RI-helix, but it is far from the two antigenic epitopes; thus
its effect can only be indirect. In both our structures, Met
20 presents a double conformation, with 50% occupancy;
in one conformation the sulfur atom lies in proximity with
the C9-C10 double bond in Sm14-OLA (3.8Å) and of the
C11-C12 double bond in Sm14-ACD (3.7 Å), whereas in
the other it is found between the two helices (hence out of
the FA binding site). The latter conformer may play a critical
role in stabilizing the closed conformation of the pocket lid
when a FA is bound. It is possible, but it is not obvious
from our structures, that the reason of the higher antigenicity
of Sm14-M20 over Sm14-T20 lies in its greater thermo-
dynamic stability (35).

Structure of Bound Fatty Acids.The greatest energy
contribution for FAs binding to FABPs is expected to be
due to the extraction of the hydrophobic molecule from the
aqueous solvent; specific interactions between the bound FA
and amino acid side chains may be responsible for ligand
selectivity. These were examined looking at the level of the
internal surface of the cavity by comparing the structures of
the OLA and ACD complexes. The cavity is lined by polar
and hydrophobic amino acids, whose side chains are mostly
oriented toward the interior of the protein.

Bound OLA is completely surrounded by protein atoms
and by structural waters (Figure 1, panel B). The carboxylate
is at H-bond distance with Arg 127 N(ε), with Tyr 129 OH
and with two structural water molecules, W12 and W78.
Although the relative orientation of the carboxylate is well
maintained in most of the FABPs, the geometry of H-bonds
in the binding site is often different.

Bound OLA is found in two conformations, which differ
in the orientation of the last five carbon atoms (Figure 2,
panel A). Conformer 1 is found to be in the same U-shaped
conformation previously observed for other FABPs (30, 36)
and occupies the same portion of the cavity. Conformer 2
displays a chain bending similar to that found for ACD in
the Sm14-ACD complex (see below), with the last part of
the aliphatic chain out of the plane defined by the rest of
the molecule. The difference maps clearly show electron
density for both conformations of OLA from the C14 to C18
atom of the aliphatic chain. The two conformers are
compatible with only slight differences in the positions of
the first thirteen carbon atoms (Figure 2, panel A). The

FIGURE 1: 3D structures of Sm14-OLA and Sm14-ACD com-
plexes. (A) Overall structure of Sm14-OLA with secondary
structure elements highlighted. Bound OLA (in blue ball-and-stick)
is shown in its double conformation. Secondary structure elements
and the corresponding residues: Gly 6-His 14â-strand A, Phe 16-
Leu 23R-helix I, Ala 28-Thr 35R-helix II, Thr 39-Asp 45 strand
B, Lys 48-Ser 55 strand C, Lys 58-Cys 62 strand D, Phe 70-Lys
73 strand E, Asn 79-Lys 86 strand F, Lys 91-Asp 98 strand G,
Asn 101-Asp 110 strand H, Thr 113-Val 120 strand I, Ile 126-Arg
131 strand J. Residues belonging to the antigenic peptides are
colored in light gray, and Met 20 is shown in magnolia ball-and-
stick. (B) Zoom of the binding cavity with the network of H-bonds
fixing the carboxyl headgroup of OLA highlighted. (C) Overall
structure of the Sm14-ACD complex. Strands and helices are
labeled as in A. ACD is shown in purple ball-and-stick. (D) Same
as panel B, for Sm14-ACD complex.
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relative occupancy of the two conformers is 50%, and their
averageB factors (43 Å2) are above the averageB factor of
the side chains of the surrounding cavity (33 Å2). Moreover,
in conformer 1, OLA is disordered at its terminus, as
indicated by the interruption of the electron density map
between C15 and C16.

The hairpin conformation of bound OLA is induced by
the cis double bond between C9 and C10, and by gauche
bonds between C5 and C6, C13 and C14, and stabilized by
a large number of van der Waals interactions with the protein
side chains and with 7 ordered water molecules in conformer
1 and 6 in conformer 2. In both conformers the C9-C10
double bond interacts with the conserved Phe 16 and Met

20 (only in one of the two conformations of Met20) and
with Val 25, Ser 75, Asp 76, Arg 78.

Of the 21 residues that contact OLA in conformer 1, 10
are hydrophobic and 11 are polar. In detail: 8 residues belong
to 4 of the 10â-strands (Gln 96 on Gâ-strand; Thr 103, Ile
105, Arg 107 on H; Thr 116, Val 118 on I; and Arg 127,
Tyr 129 on J), 3 of these amino acids (Arg 107, Arg 127,
and Tyr 129) constitute the binding site of FA carboxylate,
2 residues (Val 36, Pro 38) come from the loop that connects
helix(II) with B â-sheet, 4 lie on the mobile loops that form
the rim of theâ-barrel (Phe 57 in C-D loop; Ser 75, Asp
76, and Arg 78 in E-F loop), and the remaining 7 belong
to the helix(I)-turn-helix(II) motif (Phe 16, Met 20, Leu
23, Val 25, Thr 29, Ile 32, Gly 33).

ACD, like OLA, is entirely buried within the cavity, but
it has a single conformer with a 100% occupancy. The
electron density map is complete without interruption.
Interestingly ACD is characterized by an averageB factor
(37 Å2) lower than that of the surrounding polypeptide chain
(48 Å2). The carboxylic moiety makes the same types of
contacts as OLA (Figure 1, panel D) and assumes a
conformation similar to OLA conformer 2, making the same
contacts, plus some additional ones. The contacts between
ACD and the side chains of Thr 53, Ser 55, Lys 58, and
Leu 60, characteristic of OLA conformer 2, are maintained
although closer in space. Moreover, the long chain of ACD
and the presence of four cis double bonds make its structure
rigid, force its convex shape, and consequently increase the
contact surface between the protein and the lipid, as
compared to OLA (Figure 2, panel A). Several specific sets
of contacts with side chains and water molecules stabilize
the four double bonds (i.e., Phe 16, Met 20, Leu 23, Val 25,
Thr 29, Gly 33, Phe 57, Ser 75, Asp 76, Arg 78, Gln 96,
Thr 103, Ile 105, W26, W39).

In both ACD and OLA complexes, residue Met 20 adopt
two alternative side chain conformations; in one of those
Met 20 is closer to the double bond of the bound FA (C9-
C10 for OLA and C11-C12 for ACD). The double bonds
at C9-C10 in OLA and at C11-C12 in ACD are found in
the same position (Figure 2, panel A), interacting with the
same amino acids but in closer contact in the ACD adduct.
This is indicative of how different FAs arrange their aliphatic
chain for a better fit into the same protein pocket.

Relative to the overall plan defined by the lipid, the first
two double bonds (C5-C6, C8-C9) of ACD are out of the
plane, whereas the last two lie in it. Examination of the
protein-ligand interactions shows that specific polar contacts
stabilize the first two cis double bonds in that out-of-plane
orientation (Figure 2, panel B; Figure 3, panels A, C). It is
interesting to note the continuous contact surface generated
by the side chains and by the two waters interacting with
the first two double bonds of ACD. This architecture is
maintained in Sm14-OLA structure, but it is not suitable
to allow specific interactions with a C18:1 FA.

The mobility of the E-F loop is a relevant structural
element of FABPs since it controls the access of the FA to
the internal cavity (37). In Sm14 and the FABPs belonging
to the H family, the role of the E-F loop is even more
important since it bears the residues Thr 74, Asp 76, and
Arg 78. Our structures demonstrate that Arg 78 establishes
a strong, directionalπ-cation interaction with C8-C9 double
bond of ACD (Figure 2, panel B; Figure 3, panel A), whereas

FIGURE 2: Structures of Sm14 bound OLA and ACD. (A)
Representation of OLA and ACD bound to Sm14. The partial
superimposition of the C9-C10 double bond of OLA (in dark gray)
and the C11-C12 double bond of ACD (in light gray) demonstrates
a similar configuration of the two FAs in the binding pocket. OLA
displays a double conformation (shown as 1 and 2). In conformer
2 the aliphatic chain adopts a fold similar to the ACD in which the
last carbon atoms of the tail are out of the plane defined by the
rest of the molecule; in conformer 1 the last carbon atom of OLA
points toward the carboxylic moiety, yielding a V-shaped confor-
mation. (B) Network of contacts in the binding site of the Sm14-
ACD complex. The indicated residues interact with the double
bonds of ACD in C5 and C8. The same overall architecture is
conserved in the Sm14-OLA complex.
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Thr 74 and Asp76 are involved in a network of H-bonds
that helps in bending the E-F loop toward the interior of
the protein and hence toward ACD. Moreover, Asp 76
establishes a double H-bond with Arg 78 that stabilizes the
position of the latter in close proximity with the bound FA
(Figure 3, panel C). Consistently, in the complex with OLA,
which lacks the double bond at C8-C9, the interaction
between FA and Arg 78 is looser with theB factors of E-F
loop greater by about 10 Å2 with respect to the mean value
of the whole protein, whereas in the Sm14-ACD structure
they are in the same range as the overall structure.

In conclusion, the binding pocket is relatively rigid and
does not change upon binding different ligands; OLA and
ACD are accommodated in the pocket with respectively
lower or higher shape complementarity, due to their intrinsic
geometrical and stereochemical parameters.

Ligand Binding Properties of Sm14.Previous work by
Moser et al. (4) showed that Sm14 binds14C-labeled palmitic
and linoleic acid at physiological pH, with dissociation
equilibrium constants of∼2 µM. Using the environment-
sensitive fluorescent probe ANS, we carried out a thorough
equilibrium and kinetic investigation of complex formation

between Sm14 and six FAs, differing in length and degree
of saturation,. Binding of ANS to Sm14 is associated with a
substantial increase in fluorescence intensity and a blue shift
of the maximum emission, indicative of transfer from water
to an apolar environment (38). Moreover, the crystallographic
structure of the adduct of ANS with murine adipocyte lipid
binding protein (A-FABP) shows that this probe is located
in the FA’s binding site with the sulfonate moiety placed
between the two arginines involved in the FA’s carboxylate
binding site (see ref39and above). Given the low solubility
of FAs and the high affinity of FABPs for these ligands, a
method based on a competitive fluorescent probe seemed
ideally suited to determine formation of a complex between
Sm14 and various ligands.

The functional properties of Sm14 were initially character-
ized at pH 7.4 and 5.5. The acidic pH was preferred for three
reasons: (i) the equilibrium isotherm of the reaction between
ANS and Sm14 at physiological pH (7.4) is complex and
suggests a stoichiometry greater than 1; on the other hand,
at pH 5.5, Sm14 binds ANS with 1:1 stoichiometry and high
affinity (Kd ) 0.5 µM); (ii) at this pH the protein is stable
for a long time; and (iii) crystals of Sm14 were obtained at

FIGURE 3: Detail of the interactions between Sm14 and ACD. (A) Network of interactions between Sm14 and ACD C8-C9 double bond.
Residues belonging to the E-F loop are highlighted. H-bonds between Asp 76 and Arg 78 keep the terminal NH2 of Arg 78 in orbital
overlap with C8-C9 double bond. (B) Network of interactions between residues belonging to the E-F loop of murine A-FABP (1ADL,
LaLonde et al., 1994) and bound ACD, in the same orientation as in panel A. ACD is bound with a different geometry; hence the conserved
Arg 78 loosely contacts the region between C5-C6 and C8-C9 double bonds. (C) The Sm14-ACD complex has been rotated by 180°
around thex axis with respect to panel A to show the contacts between the pocket and C5-C6 double bond. Interaction distances have been
measured between conserved residues and water molecules and theπ orbital of the double bond. (D) Same as in C for the A-FABP-ACD
complex. In this case only one of the conserved residues contacts ACD via the two water molecules.
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a similar pH (see Experimental Procedures), hence granting
a better comparison between functional and structural data.
For comparison, theKd values reported for ANS binding to
A-FABP and I-FABP ranged from 1 to 50µM, under
different conditions (27, 38).

Addition of FAs to the Sm14-ANS complex quenches
emission at 475 nm, indicating that FAs displace ANS. The
best fit analysis of the titration data is compatible with a
single FA molecule binding. The values ofKd calculated for
6 FAs are reported in Table 2. The results show that
formation of the complex between Sm14 and OLA or ACD
has essentially the same dissociation constant: 9 and 10 nM,
respectively. TheKd values for decanoic, myristic, palmitic,
and linoleic acids are respectively 610-, 9-, 3-, and 2.5-fold
greater than for OLA and ACD. The maximum ANS
quenching found in our experiments occurs at concentrations
much below the FA critical micellar concentrations (CMC)
as determined at pH 7.4 under physiological conditions (28).
This is important since above the CMC the equilibrium
becomes heterogeneous.

The high affinity of FABPs for their ligands is explained
because (i) FAs are poorly soluble in water; hence there is
a favorable free energy change associated with their transfer
to the less polar protein interior; (ii) FAs establish extensive,
though weak, contacts with the residues lining the internal
cavity of FABPs, accounting for enthalpic contributions to
binding; (iii) given their low pKa (≈4.7), FAs are predomi-
nantly in the anionic form, both at pH 5.5 and at pH 7.4,
thus favoring the interactions with the conserved positively
charged guanidinium group of Arg 127 (see the section on
the structure above). However, these same considerations
challenge the data reported in Table 2, because one would
expect that the lower the solubility of a given FA, the higher
the apparent affinity. Indeed, this occurs in several FABPs
that bind FAs with affinities correlated to their solubilities
(14), i.e., in agreement with the expectation that the greater
energy contribution to binding comes from the extraction of
the poorly soluble FA from the aqueous phase. The case of
Sm14 and unsaturated FAs violates this rule, and ACD is
particularly noteworthy since its critical micellar concentra-
tion is relatively high, yet itsKd is the lowest in the group
(together with that of OLA). This result is explained by the
structure of the Sm14-ACD complex, which reveals specific
interactions at the level of the two double bonds C5-C6
and C8-C9, thus implying a specificity for this physiologi-
cally important ligand.

ANS could not be replaced by prostaglandins, up toµM
concentrations, proving that Sm14 does not bind these
derivatives of ACD, even at concentrations higher than those
prevailing under physiological conditions in the human body.

The differences between theKds reported in Table 2 at
pH 5.5 and older data (4) can be rationalized by the
difference in pH. Indeed, when the same ligand titration
experiments were carried out at pH 7.4, we observed an
increase inKd by a factor of 10 or more. This reduction in
affinity as pH increases is observed for both ANS and FAs
and may be of physiological relevance in the release of bound
FAs (see below).

Kinetics of Complex Formation.The kinetic rate constants
for binding and release of ANS and OLA were determined
by fluorescence stopped flow. When dealing with a carrier
protein displaying such a high affinity for its ligands, the

question arises whether release occurs to an extent and at a
rate compatible with physiological requirements. At pH 5.5,
ANS combination with Sm14 is fast, and its second-order
rate constant isg2 × 108 M-1 s-1, thus approaching the
diffusion limit. Given the affinity of ANS (Kd ) 0.5 µM)
and the sensitivity of the instrument, it is impossible to dilute
the ligand enough to obtain a more precise estimate. The
kinetics of dissociation of ANS bound to Sm14 can be
followed by displacement, adding an excess of OLA. The
recorded time courses have half-times of∼1 s and are best
described by two exponentials, irrespective of the concentra-
tion of OLA (data not shown). Although it is obvious that
the observed slow fluorescence decrease is associated with
the release of ANS, it is unclear if the reaction involves a
ternary complex with both ANS and OLA transiently bound
to the protein cavity. Furthermore, the ratio between the
overallkon andkoff does not equal the equilibrium constant,
suggesting a complex reaction mechanism.

Release of bound OLA was achieved by rapidly mixing
the complex with a 70- to 1000-fold excess of ANS (Figure
4). Even at the lowest concentration, ANS is able to displace
over 50% of the bound OLA. The observed rate constants
for the first process vary from 92 s-1 (at the highest ANS:
OLA ratio) to 28 s-1 (at the lowest ratio), leading to an
extrapolated dissociation rate constant for the complex
between Sm14 and OLA of 200 s-1. This value seems
unreasonable because, given the high affinity of the complex
(Kd ) 9 nM), the calculated combination rate constant would
have to be as high as 2× 1010 M-1 s-1. Therefore, we assume
that the reaction mechanism is complex and involves a
ternary complex of Sm14 with both ANS and OLA to the
protein as an unstable intermediate, from which OLA would
then dissociate. Accordingly, the main fluorescence increase
(Figure 4) could be assigned to the second-order combination
between the complex Sm14-OLA and ANS (rate constant
of 3 × 106 M-1 s-1), whereas the subsequent fluorescence
decrease (rate constant of 3 s-1) would be assigned to the
dissociation of OLA from the ternary complex and the
coupled entrance of water in the pocket. This hypothesis is
consistent with data forEchinococcus granulosusFABP
(EgFABP), a carrier with high sequence identity with Sm14,
which at pH 7.4 binds more than one ligand (40). The rate

FIGURE 4: Time course of oleic acid replacement by ANS. Sm14
(0.4 µM) incubated with OLA (1.5µM) in Mes pH 5.5 is rapidly
mixed with ANS buffered solutions at concentrations of 100 ()),
200 (0), and 400µM (O). Experimental points are fitted with a
model including a ternary complex between Sm14-OLA-ANS.
The slow decrease in fluorescence signal (always present but best
seen at the highest ANS concentration) is the dissociation of OLA
from the ternary intermediate.
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of release of the bound FA from Sm14 is independent of
the ionic strength of the medium.

Since the affinity of Sm14 for its ligands depends on pH
and decreases by over an order of magnitude as the pH is
raised from 5.5 to 7.4, it is possible to induce ANS binding
or release by rapidly changing the pH of the solution. Indeed
if the Sm14-ANS complex in diluted buffer at pH 7.4 is
rapidly mixed with concentrated buffer at pH 5.5, binding
occurs; if the opposite pH jump is realized, the dissociation
of ANS can be followed (Figure 5). It is often observed that
pH changes affect the ligand affinity of proteins that function
as carriers of small ligands; e.g., this occurs for hemoglobin
and transferrin. Since this mechanism helps the protein to
upload its ligand even when its concentration is low, and to
download it even when its concentration is relatively high,
therefore it seemed worth of detailed investigation.

Unexpectedly, after a pH jump the change in ligand
affinity occurred at a relatively slow rate. Indeed, when Sm14
equilibrated in diluted Hepes buffer at pH 7.4 was rapidly
mixed with a concentrated buffer at pH 5.5 containing ANS
(Figure 6, panel A, trace 1), the binding time course was
slower than that observed with Sm14 equilibrated at pH 5.5
and mixed with ANS at the same pH (Figure 6, panel A,
trace 2). This shows that the low-pH conformation, corre-
sponding to the fast reacting state, was not yet populated
immediatly after the acidification to pH 5.5. To determine
the rate constant of the pH dependent conformational change
we carried out a double mixing experiment, in which Sm14
equilibrated in diluted buffer at pH 7.4 was mixed with
concentrated buffer at pH 5.5 and then, after a variable delay,
with ANS dissolved in buffer at pH 5.5. All time courses
could be described by two exponentials whose rate constants
are independent of the final pH while the relative amplitude
of the two processes (corresponding to the two kinetic
phases) was the only parameter that varied with pH. The
results of this analysis are shown in Figure 6, panel B; the
rate constant of the conformational change is 0.1 s-1, i.e.,
possibly compatible with physiological requirements.

DISCUSSION

Sm14 is the only vaccine candidate shown to achieve
significant immune protection against schistosomiasis as well
as against the helminth infection of cattle caused byF.
hepatica(6). The protein is present in all the stages of the

life cycle of the parasite which occur in the definitive host,
i.e., schistosomulum, adult worm, and eggs (5). In the adult
worm the basal lamella of the tegument and the gut
epithelium are strongly labeled by immunofluorescent probes
against Sm14. These tissues have a high flow of lipids,
supporting the putative role of Sm14 as an intracellular carrier
of FAs (4). Therefore a detailed investigation of its structure
and function is demanded and is reported in this paper.

Comparison with Other FABPs.FABPs are grouped
according to sequence comparison. Within this classification,
Sm14 belongs to the family group represented by H-FABP
(mammalian heart, muscle, brain, adipose tissue, and myelin
FABPs; parasite Sj- and Eg-FABP (41)). It seems that all
these proteins have higher affinity for polyunsaturated FAs
compared to those belonging to the I-FABP group, whose
affinity correlates with the water solubility of different FAs

FIGURE 5: Time course of ANS release after a pH jump from 5.5
to 7.4: dissociation of ANS, following the pH jump 5.5f7.4,
monitored by a decrease in fluorescence. A solution of 0.4µM
Sm14 containing 2µM ANS in 0.01 M Mes buffer pH 5.5 was
mixed in the stopped flow apparatus with an equal volume of 0.1
M Hepes buffer pH 7.4.

FIGURE 6: Time course of ANS combination after a pH jump from
7.4 to 5.5. (A) Trace 1: Binding of ANS at pH 5.5, monitored by
an increase in fluorescence, is fast. A solution of 0.4µM Sm14 in
0.1 M Mes buffer pH 5.5 was mixed with an equal volume of a
solution of 3.3µM ANS in the same identical buffer. Trace 2: The
binding of ANS at pH 5.5 after an instantaneous pH jump 7.4f5.5
is quite different from trace 1, because the protein is still in the
slowly reacting pH 7.4 conformational state; this was obtained by
mixing a solution of 0.4µM Sm14 in 0.01 M Hepes buffer pH 7.4
with an equal volume of a solution of 3.3µM ANS in 0.1 M Mes
buffer pH 5.5. Other conditions:T ) 20 °C; excitation wavelength
380 nm, emission wavelengthg 455 nm. (B) Fraction of the quickly
reacting form (QRF) of Sm14 as a function of the incubation time
at pH 5.5 after a pH jump 7.4f5.5. A solution of 0.4µM Sm14 in
0.01 M Hepes buffer pH 7.4 was first mixed with an equal volume
of 0.1 M Mes buffer pH 5.5, and then, after variable incubation
time, with a double volume of a solution of 4µM ANS in 0.1 M
Mes buffer pH 5.5. The time courses of fluorescence increase
(indicating complex formation) were fitted to double exponentials
under the assumption that the two kinetic rate constants were
independent of the incubation time, while the relative amplitude
of the fast and slow binding events changed. Each experimental
point represents the fraction of fluorescence increase assigned to
the faster kinetic process. The solid curve drawn through the
experimental points is the best fit for a simple exponential relaxation
to the equilibrium condition, withτ-1 ) 0.1 s-1.
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and, hence, decreases as the level of unsaturation increases
(14).

The equilibrium dissociation constant of H-, B-, M-FABP
is in the range 4-7 nM for OLA and 18-27 nM for ACD
(14). In general our estimates fall within this range, although
the affinity of Sm14 for ACD (Kd ) 10 nM) remains the
highest of the group. Interestingly, Eg-FABP (expressed by
another parasite lacking de novo synthesis of FAs) shows a
similar trend in affinities versus OLA, LA, and ACD (40).
An important difference between Sm14 and the FABPs
belonging to the heart group is that the affinity for FAs is
maximal at acidic pH, whereas in the group of FABPs from
mammals it is greater at physiological pH.

Several structures of FABPs are deposited in the PDB,
most of them bound to FAs. The finding that FABPs
(including Sm14) can be crystallized almost only in the
liganded state implies that binding of FAs stabilizes the
protein. This is now understandable by looking at the
structures of Sm14 complexes with OLA and ACD (Figure
1), given that the flap constituted by the two helices is less
mobile in the complex and seems to contribute to stabilize
a more compact state. Only two structures of FABP
complexes with polyunsaturated FAs are deposited in the
PDB: human B-FABP (36) with docosahexanoic acid (DHA,
22:6) and murine A-FABP with ACD (PDB code: 1ADL
(42)). The dissociation equilibrium constant measured for
ACD binding to the latter protein is reported to be 4.4µM
(by means of calorimetry(42)) and 0.2µM (by the acrylo-
dated intestinal fatty acid binding protein ADIFAB method
(14)). A comparison of the 3D structures of the complexes
of Sm14-ACD and murine A-FABP-ACD (Figure 3,
panels B, D) shows that the former is characterized by more
specific and stronger contacts with the ligand than the latter,
since, in spite of the fact that the relevant amino acid residues
are conserved, their orientation is not. This shows the crucial
role of the precise stereochemistry of residues in the binding
site in determining the free energy of complex formation of
ACD, as detailed below.

Binding Specificity of FAs to Sm14.The overall structure
of Sm14 is a V-shapedâ barrel (Figure 1) closed on the top
by a lid of helices and on the bottom by side chains, similarly
to other FABPs. The homology model of Sm14 without
bound FA, presented by Tendler et al. (6), is in overall
satisfactory agreement with our structures. Our results extend
information on the structure and provide the details necessary
to account for ligand affinity and specificity. Our data on
the affinity of Sm14 for several FAs suggest that the protein
is selectively designed to accommodate unsaturated FAs and,
in particular, ACD. ACD is not synthesized by schistosomes
(as the worm is incapable of FA biosynthesis), but its
derivatives play an essential role in the evasion of the
immunological defenses of the host (16); therefore, the
preference of Sm14 for ACD may confer an evolutionary
advantage to the parasite, and inactivation of Sm14 may have
therapeutic consequences.

ACD is a priori a relatively difficult ligand for a FABP,
since it is more soluble and less concentrated in the host’s
blood than other important FAs. The rigid structure of ACD
demands a precise complementarity with the binding site of
Sm14, and implies a minor change in entropy upon binding;
on the contrary, OLA and saturated FAs are relatively mobile
and binding to the protein cavity diminishes the entropy of

their hydrocarbon tail. Comparison between the ACD and
OLA complexes is instructive, since OLA retains some
mobility inside the pocket and binding is favored by its lower
solubility (Table 2); consistently, the averageB factor of
ACD is lower than that of the protein, whereas that of OLA
is higher.

The crystallographic structure demonstrates a remarkable
complementarity between ACD and the binding cavity of
Sm14, involving (among others) a strong and highly specific
π-cation interaction between the double bond at C8-C9 and
the guanidinium group of Arg 78, in turn kept in a favorable
stereochemistry by Asp 76. In addition, a specific network
of interactions is established between the C5-C6 double
bond of ACD and Gln 96, Thr 103, Ile 105, W26, and W39.
Finally, the double bonds C5-C6, C8-C9, C11-C12, and
C13-C14 are organized around Phe 18 in a optimal manner
for π-stacking interactions. Other interactions, including those
with the carboxylate head of the FA, are less specific and,
although they may contribute to the overall free energy of
binding, probably have a minor role in selecting among
different FAs.

Structure-Function Relationship and Physiological Role.
In view of the high affinity of Sm14 for OLA and ACD, we
have addressed the physiologically significant question of
the mechanism of release of these FAs. Our experiments
demonstrate that the affinity of Sm14 for FAs is higher at
acidic pH than at neutral or basic pH, which is opposite to
the behavior observed in mammalian FABPs; e.g., A-FABP
displays a higher affinity at alkaline pH (43), although its
isoelectric point is similar to that of Sm14, suggesting a
similarity in electrostatic interactions with membranes. Local
pH changes inside the cell occur in proximity with the
membrane due to the buffering power of the anionic
phospolipid headgroups; the microenvironment near the
membrane is thus more acidic than the bulk of the cytoplasm
(44). Since the affinity of Sm14 is higher at lower pH, its
main physiological role may be transfer or facilitated
diffusion of ACD (and other FAs) from the external tegument
membrane (i.e., from the contact interface with the host’s
blood) to the internal one (i.e., to the worm’s body); on the
other hand mammalian A-FABP in the adipocytes (whose
interior is very rich in FAs) would transport FAs in the
opposite direction. This is schematically shown in Figure 7,

FIGURE 7: A schematic representation of the physiological implica-
tions of the pH-affinity dependence of FABPs inS. mansoniand
in mammalian adipocytes. The scheme depicts the hypothetical
principal direction of FA transport inS. mansonitegument (left)
and in mammalian adipocyte (right). The main functional difference
between Sm14 and A-FABP (apart from their ligand specificity)
is the opposite effect of pH (see text) that is suggested to determine
the preferential direction of the FA trafficking in the two cases.
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where we have highlighted a possible scheme of FA transport
in these two cases.

Over and above the pH dependent change in ligand
affinity, we have documented that the kinetics are compatible
with physiology and that the decrease in affinity at alkaline
pH is coupled to a slow (k ∼ 0.1 s-1) conformational change
of the protein. This unexpected effect may be due to a
widening of the protein cavity at pH 7.4, causing a reduction
of affinity, an observation crucial to understand the role of
Sm14. The free FA concentration in human blood is about
7 nM (45), compatible with the high affinity of Sm14 for
ACD at the acidic pH prevailing in proximity with the cell
membrane, whereas in the cytoplasm the release of ACD
would be facilitated by the relatively higher pH. If we
consider that the schistosome needs to uptake FAs from
plasma whereas adipocytes need to discharge them, not only
different affinities among different FABP families but also
different pH dependences of affinity appear to us relevant
to physiology. The reversible association of FABPs with the
internal surface of the cell membrane further strengthens our
hypothesis and suggests that their isoelectric point is physi-
ologically important. H-FABPs are acidic proteins, L-FABPs
are neutral, and M-FABP and murine A-FABP are basic (10).
Sm14 is, however, unique because, although belonging to
the H-FABP family (which is generally acidic), it has a pI
) 7.8, which is similar to that of M-FABP and A-FABP,
promoting the interaction with anionic membranes. More-
over, it has been shown that the uptake of FAs can also occur
in close proximity with specific receptors (11) and it was
recently reported that schistosomes express receptors for
human lipoproteins that display acidic properties (46). These
data support the hypothesis that Sm14 binds FAs from the
host’s blood and diffuses inside the tegumental cells to
enhance their intracellular transport, exploiting the pH
gradient between the microenvironment near the membrane
and the bulk cytosol, as schematically summarized in Figure
7.

In conclusion, our findings demonstrate how much the
lipid affinity, specificity, and pH dependence of FABPs may
vary according to subtle differences in the amino acid
sequence and especially the details of the 3D structure to
suit the needs of the tissue or organism in which they are
expressed. Within this range of characteristics, Sm14 is
particularly suited to effect the uptake of FAs by the parasite
from the host.
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Summary

Glutathione S-transferases (GSTs) are involved in de-
toxification of xenobiotic compounds and in the bio-
synthesis of important metabolites. All GSTs activate
glutathione (GSH) to GS−; in many GSTs, this is ac-
complished by a Tyr at H-bonding distance from the
sulfur of GSH. The high-resolution structure of GST
from Schistosoma haematobium revealed that the ca-
talytic Tyr occupies two alternative positions, one ex-
ternal, involving a �-cation interaction with the con-
served Arg21, and the other inside the GSH binding
site. The interaction with Arg21 lowers the pKa of the
catalytic Tyr10, as required for catalysis. Examination
of several other GST structures revealed the pres-
ence of an external pocket that may accommodate the
catalytic Tyr, and suggested that the change in con-
formation and acidic properties of the catalytic Tyr
may be shared by other GSTs. Arginine and two other
residues of the external pocket constitute a conserved
structural motif, clearly identified by sequence com-
parison.

Introduction

Glutathione S-transferases (GSTs) are promiscuous en-
zymes that catalyze several reactions with various sub-
strates. Their essential function is detoxification of xe-
nobiotic compounds that are conjugated to glutathione
and then excreted; other functions, not associated with
detoxification, include repair of macromolecules oxidized
by reactive oxygen species, regeneration of S-thiolated
proteins, and biosynthesis of physiologically important
metabolites (Armstrong, 1997; Sheehan et al., 2001).
GSTs are classified on the basis of their fold, their
thermodynamic and kinetic properties, the nature of the
residues involved in catalysis, and the specific reaction
catalyzed (Sheehan et al., 2001; Wilce and Parker, 1994).
In general, GSTs catalyze the nucleophilic attack of the
activated thiolate of GSH to electrophilic substrates,
and an important step of the catalytic cycle is the acti-
vation of GSH to GS−. However, the precise mechanism
of this reaction is still incompletely understood. In the
GSTs belonging to the classes alpha, mu, pi, and
*Correspondence: andrea.bellelli@uniroma1.it

1Lab address: http://w3.uniroma1.it/bio_chem/homein.html
sigma, glutathione activation proceeds via the interac-
tion with a Tyr at H-bonding distance from the sulfur of
GSH; in the enzymes from other classes, the catalytic
residue is either Cys or Ser (Armstrong, 1997; Sheehan
et al., 2001).

Results and Discussion

The Schistosoma haematobium GST
Johnson et al. (2003) solved, at 1.65 Å resolution, the
3D structure of the GST from Schistosoma haematob-
ium (Sh28GST), a sigma class enzyme active toward
several classical substrates and also involved in the
biosynthesis of prostaglandin D2 (PGD2) from prosta-
glandin H2 (PGH2) (Hervé et al., 2003). PGD2 is of vital
importance to the parasite, being involved in the inhibi-
tion of the host immune response and thereby penetra-
tion into the host’s tissues.

Starting from analysis of this structure, a novel mech-
anism for GSH activation, which may be relevant to the
search for new drugs against schistosomiasis and may
possibly be extended to other GSTs, is presented. The
structure of Sh28GST (Johnson et al., 2003) shows that
the catalytic Tyr occupies two alternative positions, one
pointing toward the catalytic site (Tyrin10) and contact-
ing the sulfur atom of GSH (as canonical for GSTs) and
the other pointing outside (Tyrout10) with the phenolic
oxygen exposed to water (Figure 1). Tyrin10 is stabilized
by contacts (%4.6 Å) with 10 amino acid residues plus
GSH, if present, and Tyrout10 with 11 different residues,
including a remarkable polar interaction with Arg21.
The structure of Sh28GST incubated with an excess of
GSH shows that the population of Tyrin10 is somewhat
increased, but never approaches 100%. Although the
Tyrout conformer has not been described, examination
of other GST structures reveals the existence of a cav-
ity in the position occupied by Tyrout in Sh28GST (Table
1); in the published structures this cavity contains ex-
cess electron density, interpreted as water molecules.
The cavity is delimited by the amino-terminal region of
the polypeptide chain, which forms three β strands and
an α helix containing Arg21; this helix packs against the
last α helix and is relatively close to the carboxyl ter-
minus.

To investigate whether the peculiar Tyrout conformer
seen in Sh28GST is uniquely due to the presence of
tyrosine, we solved the structure of the site-directed
mutant Tyr10-Phe (Y10F-Sh28GST) expressed in Esch-
erichia coli (kindly provided by M. Hervé, J. Fontaine,
and F. Trottein, Lille, France). The interaction between
the aromatic ring of Phe10 and Arg21 is clearly evident
in the 2.0 Å structure of the Y10F mutant, showing that
the conformer Pheout10 is substantially populated de-
spite exposure of the nonpolar Phe to water. The GSH
conjugation and the prostaglandin D2 synthase activi-
ties of this mutant are of course very low to absent
(M. Hervé et al., personal communication), confirming
the crucial role of Tyr10 in catalysis.

http://w3.uniroma1.it/bio_chem/homein.html
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Figure 1. Stereo View of the Electron Density (2Fo − Fc at 1σ; Blue Contours) Showing the Double Conformation of Tyr10 in Sh28GST

Tyrin10 contacts the sulfur atom of GSH by H bonding (3.3 Å). Tyrout10, exposed to water, is stabilized by the π-cation (2.7 Å) interaction with
the conserved Arg21, which is held in the proper stereochemistry by Asp33 and Glu18.
ways T-shaped due to a network of interactions of

Table 1. Volume and Area of the Tyrout10 Cavity in Sh28GST and the Homologous Cavities for Two Other GSTs

Protein (PDB Code) N_mtha Areab Volumec Reference

S. haematobium (1OE7) 1 100.16 86.48 Johnson et al. (2003)
H. sapiens GST P1-1 (16GS) 1 101.00 87.37 Oakley et al. (1998)
H. sapiens GST A1-1 (1GUH) 0 76.69 49.93 Sinning et al. (1993)
O. sloani (2GSQ) 2 110.41 68.34 Ji et al. (1996)
H. sapiens GST M2-2 (1HNA) 0 75.53 49.50 Raghunathan et al. (1994)

Volume and internal surface area of the Tyrout10 cavity of Sh28GST and the homologous water-filled cavities of representative GSTs from
various classes as calculated with the program Cast-p using a probe radius of 1.0 Å (Liang et al., 1998). The pockets are selected considering
the presence of the NH2 of the conserved Arg and the C-α and C-β of the catalytic Tyr.
a N_mth: The number of mouth openings for the pocket.
b Area: The molecular surface area of the cavity in Å2.
c Volume: The volume enclosed in the molecular surface area of the cavity in Å3. The volume of the pocket for Sh28GST (PDB code 1OE7)
was calculated removing the Tyrout10 conformer.

ter must be somewhat lower, although we are unable
A New Functional Role for �-Cation Interaction
in Enzymes
Electrostatic interactions between electropositive groups
and the electron-rich π-clouds of aromatic rings are not
uncommon in proteins and are thought to contribute
significantly to the stability of folded proteins (Gallivan
and Dougherty, 1999). However, only in rare instances
have such interactions been implicated in catalysis; for
example, π-cation interactions were shown to be impor-
tant in substrate and/or transition state recognition at the
active site of some enzymes (Zacharias and Dougherty,
2002). Two different geometries are possible: the more
common stacked arrangement and the T-shaped (or on-
face H-bond) one. Ab initio calculations indicate that,
in the gas phase, interaction of the guanidinium group
with benzene is stronger in the T-shaped geometry
(�G° = −10.6 kcal/mol) with respect to the stacked con-
figuration (�G° = −4 kcal/mol) (Gallivan and Dougherty,
1999). However, in proteins and when the cation is an
amino acid residue containing an sp2-hybridized nitro-
gen atom, the stacked geometry is more frequent than
the perpendicular H-bond geometry by a 25:1 ratio (Ma
and Dougherty, 1997).

In Sh28GST, we observed that the out-conformer is
populated not only in the wild-type but also in the Y10F
site-directed mutant (see above). The geometry is al-
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rg21 (with Asp33 and Glu18) that forces the NH1 to be
erpendicular to the aromatic ring of Tyr10 or Phe10

n the external configuration (Figure 1). In wild-type
h28GST and in Y10F-Sh28GST, the distance between
H1 of Arg21 and the centroid of the aromatic ring is
2.7 Å, consistent with a strong π-cation interaction

etween the NH1 and the π-electron cloud. Interaction
ith the positively charged Arg side chain is expected

o favor ionization of Tyr by 2–3 kcal/mol, thus lowering
ts pKa by at least 2 pH units.

In order to test the role of the double conformation
f the catalytic Tyr in Sh28GST, the wild-type enzyme
nd its site-directed mutant were titrated spectroscopi-
ally in the pH range 6–11, in the absence of GSH (Fig-
re 2). The UV difference spectrum is diagnostic of the

onization of the phenol ring of Tyr residues and has
een compared with that of phenol. The wild-type en-
yme displays a distinct transition around neutrality
pKa = 7.2) whose amplitude is compatible with one Tyr
esidue per GST monomer, and a second one in the
lkaline range (pKa R 9.6). Y10F-Sh28GST displays a
ingle spectroscopic transition (pKa z 9.6). These ex-
eriments imply that the catalytic Tyr of Sh28GST can
e confidently assigned a pKa = 7.2 in the absence of
SH. Because this low pKa should result from the
eighted average of Tyrin and Tyrout, the pKa of the lat-
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Figure 2. Spectroscopic Acid-Base Titration of Sh28GST and Its
Site-Directed Mutant Y10F

Wild-type Sh28GST or Y10F mutant were diluted to a final concen-
tration of 30 �M (per monomer) in a buffer solution containing 50
mM sodium phosphate plus 50 mM boric acid adjusted to the de-
sired pH with NaOH. Absolute absorbance spectra were recorded
on a Hewlett Packard 8453 spectrophotometer (Palo Alto, CA), and
the difference spectra were calculated using the spectrum re-
corded at pH = 6.0 as a reference (see inset for the difference
spectra of wild-type Sh28GST). The differential absorbance read-
ings at 300 nm are plotted as a function of pH for wild-type
Sh28GST (open circles) and the Y10F mutant (closed circles); lines
are drawn according to the least squares fit of the experimental
data to one (Y10F) or two (wild-type) transitions assigned to the
ionizable groups with the pKas reported in the text.
to provide an estimate. Interaction with Arg21 is sug-
gested to be important in promoting the ionization of
Tyrout, but is not the only contact stabilizing this con-
former.

The Mechanism of GSH Activation in Sh28GST and Its
Possible Implications in the GST Superfamily
The active site Tyr of GSTs often has an unusually low
pKa (i.e., <8.5) in the absence of GSH (Ibarra et al.,
2001, 2003; Dietze et al., 1996a) compared to that in
solution (w10). Tentative explanations of this datum in-
clude the on-face H bond with Thr or other Tyr residues
and the π-π interactions with neighboring Phe; however,
these interactions only partially explain the pKa shift
(Xiao et al., 1996; Dietze et al., 1996b; Ibarra et al.,
2001). In our case, the role of the π-cation interaction
is expected to be similar to, but more efficient than,
that of other interactions of the catalytic Tyr, as de-
scribed for other GSTs. Additional evidence on the ion-
ization state of the GST-GSH complex is as follows: (1)
both the ionized and protonated states of the catalytic
Tyr are detected (Dietze et al., 1996a; Ibarra et al.,
2003); (2) the protonation of Tyr is dependent on the
presence of GSH (Ibarra et al., 2001; Bjornestedt et al.,
1995); (3) the pKa of the bound GSH is w6.8 (Graminsky
et al., 1989) (pKa in solution is w9.8); and (4) the cata-
lytic activity (kcat/Km) decreases when the pH is raised
and thus the active form of GSH is unlikely to be depro-
tonated (Bjornestedt et al., 1995; Kolm et al., 1992).

Assuming that the two conformers are in equilibrium,
we propose the hypothetical mechanism depicted in
Figure 3. Dual Pathway for GSH Activation

The species in the center represents the activated GS−-enzyme
complex. GSH can bind to both conformers of Tyr10 (“IN” and
“OUT”), assumed to be in equilibrium. Tyrin10 (in bold) is predomi-
nantly protonated and works as an H bond donor. Tyrout10 (in bold)
is mostly ionized and, when GSH binds, it swings in, working as a
base. The preferential pathway is dictated by the apparent pKa of
the catalytic residue.
Figure 3. This suggests that Tyr10 switches alterna-
tively toward the solvent where the π-cation bond with
Arg21 lowers its pKa and forces proton release, or to-
ward the active site where the tyrosinate may extract
the GSH proton, because of its higher pKa. This mecha-
nism, whereby Tyr10 works as a proton shuttle, chang-
ing its acidic properties through interaction with Arg21,
to our knowledge has not been reported before.

This hypothesis may help to describe the binding
mechanism of GSH in GSTs belonging to the alpha and
pi classes, that is, whether GSH preferentially binds to
the protonated or unprotonated GST (see Equations 2
and 3 of Armstrong, 1997). Indeed, if GSH binds with dif-
ferent rate constants to the Tyrin and Tyrout conformers
of the enzyme, either path may be more prevalent than
one would expect on the basis of the average pKa of
the catalytic residue. Even GSTs with much higher pKa

of the catalytic Tyr and a population of the Tyrout con-
former lower than in Sh28GST might still preferentially
bind GSH through this conformer (Figure 3), in view of the
greater accessibility of the binding site. This would mean
that upon rapid mixing with substrate, only the protons
bound to the fraction of enzyme presenting the proton-
ated Tyrin conformation would be released. The appar-
ent inconsistency with the observation that proton re-
lease is synchronous with GSH binding and thiolate
formation (Caccuri et al., 1999) is solved because those
experiments were carried out at a pH lower than the
pKa of the catalytic Tyr, and thus even the Tyrout confor-
mation could have been partially protonated; moreover,
the enzymes used may have a relatively low population
of Tyrout, in view of the relatively high pKa of their cata-
lytic Tyr.

A different matter is the mechanism of activation of
bound GSH, which depends on the precise position of
the unique proton shared by Tyrin and glutathione, that
is, whether the ES Michaelis complex is more akin to
GS thiolate-tyrosine or to GSH-tyrosinate (Equations 4
and 5 of Armstrong, 1997). On the basis of the isotope
effect in D O, Armstrong and coworkers (Armstrong,
2
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1997; Parsons and Armstrong, 1996) reported that the
GS thiolate-tyrosine-type Michaelis complex is preva-
lent in the rat mu class GST (whose catalytic Tyr has a
pKa of w10), although the enzyme may switch to a
GSH-tyrosinate-type complex if the catalytic Tyr is fluo-
rinated (a modification that lowers the pKa to 7.5); thus,
the physiological mechanism for GSH deprotonation
would be the former. Our data do not impinge directly
on this point, which critically depends on the pKa of the
Tyrin conformer. However, the reactions given in Figure
3 imply that this pKa may be significantly higher than
previously expected, given that the low overall pKa of
the catalytic Tyr is assigned to the weighted average
of the two conformers. Thus, if anything, our scheme
would suggest that GSH preferentially binds to the de-
protonated Tyrout conformer, but the only proton of the
ES complex is completely transferred to the Tyrin, con-
sistent with isotope effects experiments. The main re-
action path would be:

E_Tyrout-O− + GSH / E_Tyrout-O− … HSG /
E_Tyrin-O−—HSG / E_Tyrin-OH—−SG.

The mechanism proposed in Figure 3 qualitatively ac-
counts for the experimental data on alpha and pi class
GSTs, and is consistent with the thermodynamics of the
process, assuming that Tyrin10 has the usual pKa of 9–
10, whereas Tyrout10 has a pKa close to 7. According to
our scheme, the two conformers Tyrin10 and Tyrout10
are both populated at equilibrium, even in the absence
of GSH; at physiological pH Tyrin is protonated,
whereas Tyrout is significantly unprotonated. As far as
our hypothesis can be generalized, the different pKa

values reported for the catalytic Tyr, ranging between
pKa = 10 for Mu1-1 GST from rat (Xiao et al., 1996) and
pKa = 6.7 for A4-4 GST from human (Hubatsch and
Mannervik, 2001), would merely reflect the equilibrium
population of the two conformers that strongly favors
Tyrin in the former case and Tyrout in the latter.

In our hypothesis, GSH may combine with both con-
formers and favor the translocation of the catalytic Tyr
to the active site. If GSH binds to an enzyme presenting
the Tyrin conformation, this residue is likely to be pro-
tonated and the complex will behave like a weak di-
protic acid. In this case Tyr donates an H bond, favoring
the release of the hydrogen ion from GSH. If, on the
other hand, GSH binds to an enzyme presenting the
Tyrout conformer, it promotes the switch of the tyrosin-
ate toward the catalytic site and extraction of the GSH
proton. Because experimental evidence is consistent
with both mechanisms, we conclude that they are both
possible, and either one may appear to prevail depend-
ing on the fraction of Tyr occupying either of the two
alternative positions. Our hypothesis does not contra-
dict any of the relevant findings, and actually reconciles
many of them; in particular: (1) it explains the low ap-
parent pKa of the catalytic Tyr, as well as that of bound
GSH; (2) it allows both protonated and unprotonated
Tyr to be catalytically competent; and (3) it is not incon-
sistent with the decrease of the catalytic activity with
increasing pH because this would stabilize the Tyrout

conformer and would preclude one of the two possible
reaction pathways.
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volutionary Conservation of Arg
nd Its Interaction Network
rompted by the hypothesis that the π-cation bond
etween Tyrout10 and Arg21 is crucial, we further inves-
igated the evolutionary conservation of the latter resi-
ue and its interaction network. Two hundred forty-
hree sequences of GSTs from different organisms are
isted in the SwissProt database (Bairoch et al., 2005);
ecause the sequence and the 3D structure of all GSTs
re conserved, especially in the amino-terminal region
Sheehan et al., 2001), a comparison is justified. Of the
43 sequences, 95 are assigned to the classes alpha,
u, pi, and sigma, having Tyr as the catalytic residue

we call this group set #1); 83 to the classes beta,
appa, omega, phi, tau, theta, and zeta, having either
ys or Ser as the catalytic residue (set #2); and 65 are
ot assigned to any class (set #3). The analysis shows
hat 94% of the GSTs of set #1 (89 out of 95) present a
haracteristic structural motif constituted by the cata-

ytic Tyr at position n followed by Glu, Gln, or His at
+ 8, by Arg at n + 11, and by Asp or Glu at n + 22 or
+ 23, that is, ([Y] 7X [E,Q,H] 2X [R] 10-11X [E,D]). In

he alpha class human GST, the functional relevance of
he interaction between Arg19 and Glu31 (topologically
omologous to Arg21 and Asp33 in Sh28GST) has been
ubstantiated by mutagenesis (Lee et al., 1995), but has
ot been explained. The conservation of Arg at n + 11
nd its interaction network is specific for Tyr-containing
STs, as demonstrated by the fact that only 6% of
STs of set #2 (5 out of 83) present the extended struc-

ural motif ([Y,C,S] 7X [E,Q,H] 2X [R] 10-11X [E,D]).
The residues of the motif are identified by their puta-

ive functional and structural roles: that is, the catalytic
yr, the Arg residue required to establish the π-cation
ond, and the two residues that can interact with the
rg and stabilize its correct orientation. Their evolution-
ry conservation is an independent, though indirect,
onfirmation of their putative role. Because these four
esidues are located on two β strands and an α helix,
heir stereochemical proximity depends on the correct
olding of the amino-terminal region of the protein; the
hort coil regions between these secondary structure
lements might allow insertions or deletions between
he Arg and the Glu or Asp. The structural organization
f these residues is strongly conserved, as evident from
omparison of human alpha class GST A1-1 (Cameron
t al., 1995; Protein Data Bank (PDB) code 1GSD),
igma class GST from squid (Ji et al., 1996; PDB code
GSQ), and human pi class GSTP1-1 (Oakley et al.,
998; PDB codes 16GSA and 16GSB), all reported in
igure 4.
As an unbiased empirical control of the statistical fre-

uency of the ([Y] 7X [E,Q,H] 2X [R] 10-11X [E,D]) motif
dentified in GSTs containing a Tyr in the active site,
e searched the whole SwissProt database which lists
78,171 protein sequences. The motif was found in
750 (2.1%) sequences, a value that does not seem un-
easonably high, in view of the relative frequency of
hese amino acids (Klapper, 1977).

It is interesting to analyze the six Tyr-containing
STs of set #1 that do not contain the ([Y] 7X [E,Q,H]
X [R] 10-11X [E,D]) motif. Four of the exceptions have
substitution at n + 8: the mu class GSTs from rabbit

Oryctolagus cuniculus; SwissProt code P46409) and
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Figure 4. Comparison of the Structure of Re-
presentative GSTs

(A) Superimposition of the C-α traces of
Sh28GST (red), α class GST A1-1 (green),
sigma class GST (blue), and pi class GST
P1-1 (yellow); PDB codes are 1OE7, 1GSD,
2GSQ, and 16GS, respectively. Tyr10 (Tyrin10),
Glu18, Arg21, and Asp33 in Sh28GST are
highlighted in red.
(B) Details of the superimposition shown in
(A). Arg is kept in place by interaction with
two residues of the same polypeptide chain,
ready to stabilize the possible Tyrout con-
former (see text).
Y1 from hamster (Cricetulus longicaudatus; SwissProt
code Q00285) have Leu and Asn at n + 8, respectively,
whereas human GSTP1-1 (SwissProt code P09211) and
GSTP1 from macaque (Macaca mulatta; SwissProt
code Q28114) both have Ala. All other residues of the
motif are conserved. The last two GSTs have a full, but
probably functionally silent, ([Y] 7X [E,Q,H] 2X [R] 10-
11X [E,D]) motif at significant distance from the amino
terminus.

The amino-terminal residues of the sigma class GST2
from Manduca sexta (SwissProt code P46429) could
not be aligned satisfactorily with the other GSTs. Our
best guess is that the catalytic residue is Tyr8 and, if
this enzyme has the external pocket at all, it is orga-
nized around Arg16 (n + 8) and Glu27 (n + 19), respec-
tively; this could be the consequence of a three-residue
deletion between positions 8 and 16, also involving one
of the residues that were expected to interact with
Arg16. The sigma class GST2 from Caenorhabditis ele-
gans (SwissProt code O16115) presents the extended
([Y,C,S] 7X [E,Q,H] 2X [R] 10-11X [E,D]) motif and aligns
nicely with the other sequences, but has a Cys in the
putative catalytic position instead of a Tyr; perhaps it
is misclassified.

The sequence conservation of the amino-terminal re-
gion of Tyr-containing GSTs is more extended than de-
scribed above, and several other residues appear to be
conserved in the region between the amino terminus
and the first 25 residues or more downstream of the
catalytic Tyr; for example, the second residue before
the catalytic Tyr (n − 2) is always large and nonpolar,
and the Glu or Asp at n + 22 or n + 23 is very often
followed by a second Glu or Asp. A search for the motif
([Y] 7X [E,Q,H] 2X [R] 9-12X [E,D][E,D]) in set #1 found
85 GSTs out of 95 and only 875 proteins in the whole
SwissProt database (i.e., 0.5%). However, we do not
have a clear-cut functional explanation for these other
residues in the catalytic mechanism of Figure 3.

Conclusions
As far as we know, there is no other example of a pro-
tein in which a Tyr in a π-cation interaction with an sp2

nitrogen of an amino acid changes its acidic properties
with functional consequences. Only in artificial “recep-
tors” has it been demonstrated that electron-rich phe-
nolate could bind quaternary ammonium ions more
tightly than neutral ones (Ma and Dougherty, 1997).
Sh28GST may be the first example of a new role for
the π-cation interactions, although Nurizzo et al. (2001)
noticed that a similar motif may be of significance in
other proteins.

Although we cannot extend our mechanism to all Tyr-
containing GSTs, we suggest that it may at least be
considered when the three following conditions apply:
(1) the pKa of the catalytic Tyr is lower than the usual
value of Tyr residues by more than 1 pH unit; (2) a water-
filled external pocket is present; and (3) the pocket
hosts Arg n + 11 and its interaction network. Conditions
(2) and (3) can be easily verified by computer modeling
if the 3D structure of the enzyme is available.

The in and out movement of Tyr10 may be relevant
to the search for GST inhibitors. This is intriguing be-
cause the GSTs are detoxifying enzymes characterized
by promiscuous substrate specificity, which makes it
difficult to design class-specific drugs. If the swing off
of the active site Tyr is involved in the detoxifying activ-
ity, as we propose, it may be profitable to orient drug
search toward the pocket in which the Tyr is held by
the interaction with the conserved Arg. On the other
hand, if this mechanism were unique to Sh28GST, it
may be a specific clue to inhibit the schistosomial en-
zyme with possible therapeutic implications.
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