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Introduction

The present Thesis focuses on the thermodynamic and dynamic behaviour

of anisotropically interacting colloids by means of theoretical and numerical

techniques.

Colloidal suspensions, i.e. micro– and nano–sized particles dispersed in

a continuous phase, are a topic of great interest in several fields, including

material science, soft matter and biophysics [1, 2]. Common in everyday life

in the form of soap, milk, cream, etc., colloids have been used for decades as

models for atomic and molecular systems, since both classes of systems share

many features like critical phenomena, crystallisation and glass transition.

Experimental investigation of colloidal systems is made easier by the large

size of colloids, which makes it possible to employ visible light as an exper-

imental probe to investigate these systems. Moreover, since the mass of the

particles controls the timescales of the dynamics, relaxation times of colloidal

suspensions, ranging from seconds to years, orders of magnitude larger than

their atomic counterparts, are more easily experimentally accessible. For exam-

ple, a colloidal particle with diameter 1 µm in water and at ambient temperature

diffuses a distance equal to its diameter in ≈ 0.38 s [3]. By exploiting this in-

trinsic slowness, with respect to molecular liquids, present day experimental

techniques make it possible to follow in time trajectories of ensembles of parti-

cles with tools like confocal microscopy, thus effectively allowing to reconstruct

the whole phase space trajectory of the system. In addition, it is also possible to

manipulate single and multiple objects using techniques like optical tweezers,

magnetic tweezers and atomic force microscopy [4, 5]. With single-molecule

force spectroscopy one can arrange particles in ordered structures or measure

properties like stiffness or mechanical responses (as in pulling experiments on

RNA and DNA strands of particles and aggregates [6, 7]).

A remarkable difference between the molecular and the colloidal world is

that in the former the interactions between the basic constituents are fixed by
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Introduction

Figure 1: (Reproduced from Ref. [14]). Phase diagram for an aqueous lysozyme
solution. The gas-liquid-like phase separation is metastable with respect to
crystallisation.

nature, while in the latter the effective potential between two particles can be

controlled by accurately designing and synthesizing the building blocks [8] or

tuned by changing the properties of the solvent. This can be exploited, for ex-

ample, to realize the simplest case of a stable colloidal dispersion: a hard-sphere

system. Hard-spheres are particles that do not overlap and are non-interacting

for separations larger than their diameters. Such a system, driven only by

entropy, has been shown to exhibit crystallisation [9] and, if polydispersity

is sufficiently high, a glass transition [10]. The addition of polymers in solu-

tion with a radius of gyration rg much smaller than the colloids size leads to

an effective attractive isotropic interaction between colloidal particles, whose

range is controlled by rg [11, 12]. This purely entropic attraction, the so-called

depletion interaction, arises from an increasing of the free volume accessible to

the polymers when two colloids are separated by a distance r . rg. One can

tune both the attraction range (changing the size of the polymer) and strength

(changing the concentration of the polymer), with the latter playing the role of

the inverse of the temperature. As it is known from classic results, the presence

of an attractive term in the interaction potential leads to the appearance, at low

temperatures, of a region of the phase diagram where a low-density, gas-like

phase coexists with a high-density, liquid-like phase [13].

Differently from molecular systems, the coexisting region is shifted at lower

temperatures and it is metastable with respect to the crystallisation of the su-

percritical fluid phase. Globular proteins often exhibit this behaviour. For
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Introduction

Figure 2: (Reproduced from Ref. [15]). Phase diagrams of systems with an isotropic

attraction of the type u(i, j) = −ε r−(3+σ)
ij . The smaller σ the longer the range of

the attraction. Left: σ = 0.1: the gas–liquid and fluid–solid coexistence regions
are well separated. Right: σ = 5, the gas–liquid coexisting becomes metastable
(dashed curve) with respect to crystallisation.

example, the low-concentration phase diagram of lysozyme is shown in Fig. 1.

Fig. 2 shows that varying the range of the potential shifts the gas-liquid phase

coexisting region with respect to crystallisation.

This behaviour, which does not occur in simple liquids, is due to the short-

range nature of the attraction, whose range does not exceed, and often is consid-

erably smaller than, the particle size [15, 16]. Another important consequence

of such short-range character of the interaction is the Noro–Frenkel law of cor-

responding states: gas–liquid coexisting curves of systems interacting through

pair potentials with different functional forms can be rescaled on top of each

other if the second virial coefficient B∗2 and the reduced density ρ∗ are used in

place of T and ρ [17, 18].

Not only the thermodynamics, but also the dynamics of colloidal suspen-

sions can exhibit fascinating and unexpected phenomena which have no cor-

respondence in atomic and molecular systems. Dynamical arrest and glass

transitions in molecular systems have direct counterparts in the colloidal world,

but the latter displays a richer phenomenology due the larger variety of possible

interactions. For example, it has been experimentally, numerically and theoreti-

cally shown that adding a very short attraction to a hard-sphere system can lead

to the appearance of a glass at low temperature and intermediate-high densities

which is driven by attraction rather than by repulsion [19–21]. Depending on

the interactions, the two qualitatively different glasses can be separated by both

a glass-glass transition and a pocket of liquid states. These equilibrium states

can be accessed by preparing the sample at the right volume fraction and either
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Introduction

Figure 3: (Reproduced from Ref. [23]). Experimental particles realised from bidis-
perse colloids in water droplets.

by heating the attractive glass or by cooling the repulsive glass, providing an

example of reentrant melting. Since glass transition locii can be tuned by chang-

ing the details of the interaction, this phenomenon can be exploited by material

scientists to design and produce new technologically relevant materials whose

mechanical properties, e.g. stiffness, can be varied by order of magnitudes by

slightly changing the external parameters [20, 22].

In the last decade many new sophisticated techniques for particle synthesis

have been developed and refined. These recent advances allow for the creation

of an incredible variety of non-spherically, i.e. anisotropically, interacting build-

ing blocks. The anisotropy can arise from shape, surface patterning, form of

the interactions or a combination thereof. Examples are colloidal cubes [24, 25],

Janus particles [26, 27], triblock Janus particles [28], patchy particles [23, 29, 30],

magnetic spheres [31] and many others. Fig. 3 shows an experimental reali-

sation of patchy colloids. In order to classify and rationalise the anisotropy

space, it has been recently suggested that the anisotropy of particles can be

projected on different anisotropy “dimensions” [8], with some examples pro-

vided in Fig. 4. For instance, a hard ellipsoid with attractive spots on its surface

can be described in terms of aspect ratio, number, and width and range of the

spots. As a result, different kind of such ellipsoids could be considered as points

of a three-dimensional anisotropy space whose axes represent the anisotropy

dimensions A, B and D of Fig. 4.

The recent blossoming of experimental, theoretical and numerical studies

and research on the role of the anisotropy has highlighted the richness of phe-

nomena that these systems exhibit. Relevant examples for the present Thesis

are valence-limited building blocks, i.e colloids with a maximum number of

bound neighbours, and non-spherical particles with an aspect ratio, i.e. the

ratio of the width of a particle to its height, significantly different from 1.
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Figure 4: (Reproduced from Ref. [8]). Several examples of anisotropy “dimensions“.
The attribute corresponding to the given anisotropy axis is varied left to right.

The simplest example of valence-limited colloids is given by the so-called

patchy particles: colloids decorated with attractive spots (patches) on the sur-

face [29, 30, 32]. If the width and the range of the patches are chosen in such a

way that each patch can form no more than one bond, then the total number of

bound first neighbours per particle M can not exceed the number of patches.

For particles interacting through short-ranged isotropic potentials, M ≈ 12. It

has been shown that changing the valence M has dramatic effects, both qualita-

tive and quantitative, on the dynamic and thermodynamic properties of such

systems. At high densities patchy colloids can self-assemble into a large variety

of crystal structures, depending on valence, geometry and external parame-

ters [33–36]. We will mostly focus on low-density systems. Since percolation is

a prerequisite for the liquid state, in the limit M→ 2, when no branching is pos-

sible, the gas–liquid transition disappears and, at low temperatures, the system

undergoes an equilibrium polymerization process [37]. Gradually lowering the

valence from the isotropic case to the M→ 2 limit makes the gas–liquid phase

coexisting region shrink towards lower temperatures and densities [38, 39].

This opens up a region of the phase diagram where liquid-like states can be

explored in equilibrium by lowering the temperature, without encountering
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phase separation. Such states, called “empty liquids”, are self-assembled, low-

density percolating networks whose bond lifetime, and hence the most relevant

microscopic timescale, can be controlled by varying the temperature [3, 40].

Upon lowering T the system undergoes a dynamical arrest in a continuous way,

providing a route for the generation of ideal, i.e. thermoreversible, gels [41, 42].

The second class of systems pertinent to the present work comprises aniso-

tropically shaped particles that, depending on the aspect ratio and the values

of the external parameters, can exhibit liquid crystal phases which may display

orientational long-range order [43]. Nematic, in which there is no translational

order, smectic, in which particles are ordered in layers and thus exhibit trans-

lational order in one dimension, and columnar phases, in which particles self-

assemble into cylindrical aggregates which can in turn become nematic or form

two-dimensional lattices, do not exist in isotropic systems, since the anisotropy

in shape is a prerequisite for the breaking of the orientational symmetry. Liquid

crystals, discovered at the end of the 19th century [44], have been thoroughly

investigated for decades [45–48], leading to technological breakthroughs like

LCD displays. Recently it has been suggested that liquid crystal phases occur-

ring in dense solutions of short DNA double strands could have played a role

in the prebiotic chemical generation of complementary H-bonded molecular

assemblies [49].

The main goal of the present Thesis is to study the structural, thermody-

namic and, to a lesser extent, dynamic properties of systems interacting through

anisotropic potentials at low densities and temperatures. In particular, we fo-

cus on the low-density phase behaviour of valence-limited systems. We use

a variegated approach, comprising state-of-the-art Monte Carlo and Molecu-

lar Dynamics techniques, to analyse and shed some light on the effect of the

anisotropy on the phase diagram and on the dynamics of such systems.

As the effect of the valence on the phase diagram plays a major role in

the models investigated throughout this Thesis, each Chapter is devoted to

the study of the dynamics and thermodynamics of systems having a fixed or

effective maximum valence M.

In the last years a lot of effort has been devoted to the study of end-to-end

stacking interactions between different strands of nucleic acids, which play

an important role in both physical and biological applications of DNA and

RNA [50, 51]. In Chapter 1, building on the experimental work of Bellini et al.,

we make use of a theoretical framework recently developed [52] to tackle the

problem of the isotropic–nematic phase coexistence in solutions of short DNA
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duplexes (DNADs). We compare the parameter-free theoretical predictions

with results from large scale numerical simulations on GPUs of a coarse-grained

realistic model and find a good quantitative agreement at low concentrations.

We then predict the phase boundaries for different DNAD lengths and compare

the results with experimental findings [53].

In Chapter 2 we investigate the structural and thermodynamic properties

of systems having M = 2, that is systems that undergo an extensive forma-

tion of linear structures as temperature is lowered. We focus on bi-functional

patchy particles whose interaction details are chosen to qualitatively mimic

the behaviour of the low-density, low-temperature dipolar hard sphere (DHS)

model by analysing the outcomes of the simulations carried out in Chapter 3.

In particular, we are interested in the interplay between chains and rings in

equilibrium polymerization processes in a region of the phase diagram where

the formation of the latter is favoured. The very good quantitative agreement

found by comparing numerical results with theoretical, parameter-free predic-

tions calls for an extension of the theory with the inclusion of branching, in

order to understand how the presence of rings affects the phase separation [54].

Chapter 3 is devoted to the investigation of the phase behaviour of dipolar

fluids, i.e. systems interacting mainly through dipole-dipole potentials. For

spheres, the lowest-energy configuration is the nose-to-tail contact geometry,

and hence the ground state is an infinite chain or ring like in regular M = 2

systems. For finite temperatures, on the other hand, thermal fluctuations allow

for the appearance of defects like dangling ends and chain branching which,

in the language of this Thesis, makes for a temperature-dependent valence.

This general mechanism, under some specific conditions, can lead to a very

peculiar phase separation, driven by a balance between these topological defects

rather than by the energy/entropy competition usually responsible for regular

gas–liquid phase transitions [55]. This topological phase transition has been

recently observed in a model system of patchy particles [56, 57] but it is unclear

whether such mechanism still holds in dipolar fluids in general and in the DHS

model in particular. We focus on the DHS model, whose phase behaviour at

low densities and temperatures has been studied for decades [58–60] but still

remains largely unknown. In particular, we look for the gas–liquid critical point

by means of state-of-the-art Monte Carlo simulations in a region where it has

long been thought to be. We find no evidence of a phase transition and we

speculate that this is due to an abundance of rings, providing a remarkable

example of phase separation suppressed by self-assembly [61, 62].

— 7 —
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In Chapter 4 we study the dynamics of tetravalent patchy particles in the

optimal network density region. For this fixed value of density the system is

able to form a fully connected random network, i.e. an ideal gel [63,64]. Indeed,

as the temperature is lowered, a percolating network forms and the dynamics

slows down. Although the observed dynamical arrest is different from the

glass case, where excluded volume interactions are dominant, the decay of the

self– and collective correlation functions of the resulting fluid bears similarities

with that observed in glassy systems. Remarkably, comparing the characteristic

decay times of density-density correlation functions with the average bond life,

we find that only at very low T the decay of the density fluctuations requires

the breakage of bonds [65].

In Chapter 5 we introduce DNA as a building block that can be used to

rationally design novel, self-assembling materials with tunable properties. In

this Chapter, we study the phase behaviour of four-armed DNA constructs at

low densities. We use the coarse-grained, realistic DNA model employed in

Chapter 1 and state-of-the-art simulation techniques, as presented in Chapter 6,

to investigate systems composed of thousands of nucleotides undergoing a

two-step self-assembling process and we quantitatively compare the outcome

with experimental results obtained for a very similar system.

In Chapter 6 we introduce Graphics Processing Units (GPUs) as valuable

tools for present day numerical investigations. We outline both the architecture

of NVIDIA GPUs and NVIDIA CUDA, the software layer built on top of the

hardware required to program these devices. We then present the techniques

employed to write an efficient, general Molecular Dynamics code and com-

pare its performances with a regular CPU code. The observed performance

boost allows us to tackle the analysis of the dynamics and thermodynamics

of very large systems without having to resort to massive CPU clusters (see

Chapters 1, 4 and 5).

— 8 —



Chapter 1

Valence two: self-assembly of

short DNA duplexes

1.1 Introduction

In this Chapter and in the following one we will focus on systems with valence

two. Upon lowering the temperature, polymerisation takes place and the basic

constituents self-assemble into linear aggregates such as chains or rings.

Self-assembly is the spontaneous formation through free energy minimiza-

tion of reversible aggregates of basic building blocks. The size of the aggregating

units, e.g. simple molecules, macromolecules or colloidal particles, can vary

from a few angströms to microns, thus making self-assembly ubiquitous in na-

ture and of interest in several fields, including material science, soft matter and

biophysics [1, 2, 23, 66, 67]. Through self-assembly it is possible to design new

materials whose physical properties are controlled by tuning the interactions of

the individual building blocks [68–71].

A relevant self-assembly process is the formation of filamentous aggregates

(i.e. linear chains) induced by the anisotropy of attractive interactions. Ex-

amples are provided by micellar systems [72–74], formation of fibers and fib-

rils [75–78], solutions of long duplex B-form DNA composed of 102 to 106 base

pairs [79–82], filamentous viruses [83–87], chromonic liquid crystals [88] as

well as inorganic nanoparticles [89].

If linear aggregates possess sufficient rigidity, the system may exhibit liquid

crystal (LC) phases (e.g. nematic or columnar) above a critical concentration.

In the present study we focus on the self-assembly of short (i.e. 6 to 20 base

— 9 —



Chapter 1 Section 1.1

pairs) DNA duplexes (DNADs) [49,90,91] in which coaxial stacking interactions

between the blunt ends of the DNADs favor their aggregation into weakly

bonded chains. Such a reversible physical polymerization is enough to promote

the mutual alignment of these chains and the formation of macroscopically

orientationally ordered nematic LC phases. At present, stacking is understood

in terms of hydrophobic forces acting between the flat hydrocarbon surfaces

provided by the paired nucleobases at the duplex terminals, although the debate

on the physical origin of such interaction is still active and lively [51,92]. In this

respect, the self-assembly of DNA duplexes provides a suitable way to access

and quantify hydrophobic coaxial stacking interactions.

In order to extract quantitative informations from DNA-DNA coaxial stack-

ing experiments, reliable computational models and theoretical frameworks are

needed. Recent theoretical approaches have focused on the isotropic-nematic

(I-N) transition in self-assembling systems [93, 94], building on previous work

on rigid and semi-flexible polymers [95–103]. In a recent publication [52], the

reversible physical polymerization and collective ordering of DNA duplexes

was investigated by modelling them as super-quadrics with quasi-cylindrical

shape [104] with two reactive sites [105, 106] on their bases. The theoretical

framework presented therein, built on Wertheim [107–109] and Onsager [45]

theories, was shown to be able to properly account for the association process.

Here, we employ that theoretical framework to study the physical properties

of a realistic coarse-grained model of DNA recently proposed by Ouldridge

et al. [110], where nucleotides are modelled as rigid bodies interacting with

site-site potentials. Following Ref. [52], we compute the inputs required by

the theory, i.e. the stacking free energy and the DNAD excluded volume, for

the Ouldridge et al. model [110]. Subsequently we predict the polymerization

extent in the isotropic phase as well as the isotropic-nematic phase boundaries.

To validate the theoretical predictions, we perform large-scale molecular

dynamics (MD) simulations in the NVT ensemble of a bulk system comprising

9600 nucleotides, a study made possible by the computational power of modern

Graphical Processing Units (GPUs). The parameter-free theoretical predictions

provide an accurate description of the simulation results in the isotropic phase,

supporting the theoretical approach and its application in the comparison with

experimental results.

The Chapter is organized as follows. Section 1.2 provides details of the

coarse-grained model of DNADs and of the MD computer simulations, Sec-

tion 1.3 presents a summary of the theory, developed by Dr. C. De Michele.

— 10 —



Section 1.2 Chapter 1

Section 1.4 describes the protocols implemented to evaluate the input param-

eters required by the theory via MC integrations for two DNADs. We also

discuss some geometrical properties of the bonded dimer configurations. We

then compare the theoretical predictions with simulation and experimental re-

sults. Finally, in Section 1.5 we discuss estimates for the stacking free energy

and present our conclusions.

1.2 Methods

1.2.1 Model

We implement a coarse-grained model for DNA recently developed by Ouldridge

et al. [110, 111]. For a complete description we refer the reader to Refs. [110]

and [112].

The model represents DNA as a string of nucleotides, where each nucleotide

(sugar, phosphate and base group) is a rigid body with interaction sites for

backbone, stacking and hydrogen-bonding interactions. The potential energy

of the system is

V0 = ∑
〈ij〉

(
Vb.b. + Vstack + V

′
exc

)
+

+ ∑
i,j/∈〈ij〉

(VHB + Vcr.st. + Vexc + Vcx.st.) , (1.1)

where the first sum is taken over all nucleotides that are nearest neighbours

on the same strand and the second sum comprises all remaining pairs. The

interactions between nucleotides are schematically shown in the Fig. 1.1, and

the explicit forms can be found in Refs. [110] and [112]. The hydrogen bonding

(VHB), cross stacking (Vcr.st.), coaxial stacking (Vcx.st.) and stacking interactions

(Vstack) explicitly depend on the relative orientations of the nucleotides as well

as on the distance between interaction sites. The backbone potential Vb.b. is an

isotropic spring that imposes a finite maximum distance between neighbours,

mimicking the covalent bonds along the strand. The coaxial stacking term,

not shown in the Fig. 1.1, is designed to capture stacking interactions between

non-neighbouring bases, usually on different strands. All interaction sites also

have isotropic excluded volume interactions Vexc or V
′
exc.

The coaxial-stacking interaction, particularly relevant for the present topic,

acts between any two non-bonded nucleotides and is responsible for the duplex-
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Figure 1.1: Top: interactions between nucleotides in the coarse-grained DNA model
for two strands in a duplex. All nucleotides also interact with a repulsive
excluded volume interactions. The coaxial stacking interaction is not shown.
Bottom: (a) Schematic representation of the coarse graining of the model for a
single nucleotide. (b) Model interaction sites. For the sake of clarity, stacking
and hydrogen-bonding sites are highlighted on one nucleotide and the base
repulsion site on the other. For visualization reasons, in the following strands
will be shown as ribbons and bases as extended plates as depicted in (c). (d) A
12 base-pairs DNAD in the minimum energy configuration. (e) An equilibrium
configuration of the same object at T = 300 K. The nucleotides at the bottom are
not bonded, the so-called fraying effect. (f) A chain of length Nb = 48 extracted
from a simulation at c = 241 mg/ml and T = 270K.
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duplex bonding. It has been parametrized [112] to reproduce experimental data

which quantify the stacking interactions by observing the difference in the

relative mobility of a double strand where one of the two strands has been

nicked with respect to intact DNA [113, 114] and by analysing the melting

temperatures of short duplexes adjacent to hairpins [115].

The coarse-grained DNA model was derived in a “top-down” fashion, i.e.

by choosing a physically motivated functional form, and then focusing on

correctly reproducing the free energy differences between different states of the

system, as opposed to a “bottom-up” approach that starts from a more detailed

representation of DNA and typically focuses on accurate representation of local

structural details. The interactions were originally fitted to reproduce melting

temperatures of ‘average’ oligonucleotides, obtained by averaging over the

parameters of SantaLucia’s model [116]. A new, sequence-dependent version

has been recently developed [117]. In addition, the model is fitted to reproduce

the structural and mechanical properties of double- and single-stranded DNA

such as the persistence length and the twist-modulus. The model allows for

base pairing only between Watson-Crick complementary bases, but otherwise

does not distinguish between bases in terms of interaction strengths.

The model was fitted to reproduce DNA behaviour at a salt concentration

([Na+] = 0.5 M) where the electrostatic properties are strongly screened, and it

may be reasonable to incorporate them into a short-ranged excluded volume.

Such high salt concentrations are typically used in DNA nanotechnology ap-

plications, hence motivating this approach. It should be noted that the model

neglects several features of the DNA structure and interactions due to the high

level of coarse-graining. Specifically, the double helix in the model is symmetri-

cal rather than the grooves between the backbone sites along the helix having

different sizes, and all four nucleotides have the same structure.

To cope with the complexity of the model and the large number of nu-

cleotides involved in bulk simulations, we employ the GPU code presented

in Chapter 6. As shown in Fig. 6.5, harvesting the power of modern Graphi-

cal Processing Units (GPUs) results in a 30-fold speed-up. The CPU version

of the code, as well as the Python library written to simplify generation of

initial configurations and post-processing analysis, have been released as free

software [117, 118].
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1.2.2 Bulk simulations

To compare numerical results with theory, we perform Brownian dynamics

simulations of 400 dsDNA molecules made up by 24 nucleotides each, i.e. 400

cylinder-like objects with an aspect ratio of≈ 2 (see Fig. 1.1 (d)). The integration

time step has been chosen to be 0.003 in simulation units which corresponds,

if rescaled with the units of length, mass and energy used in the model, to

approximately 1× 10−14 seconds.

We study systems at three different temperatures, namely T = 270 K, 285 K

and 300 K, and for different concentrations, ranging from 2 mg/ml to 241 mg/ml.

The T = 270 K state point, despite being far from the experimentally accessed

T, is here investigated to test the theory in a region of the phase diagram where

the degree of association is significant. To quantify the aggregation process

we define two DNADs as bonded if their pair interaction energy is negative.

Depending on temperature and concentration, we use 106 − 107 MD steps for

equilibration and 108 − 109 MD steps for data generation on NVIDIA Tesla

C2050 GPUs, equivalent to 1− 10 µs.

1.3 Theory

We build on the theoretical framework previously developed to account for

the linear aggregation and collective ordering of quasi-cylindrical particles [52].

Here, we provide a discussion of how such a theory can be used to describe

the reversible chaining and ordering of oligomeric DNADs at the level of detail

adopted by the present model. According to Ref. [52], the free energy of a

system of equilibrium polymers can be written as

βF
V

=
∞

∑
l=1

ν(l) {ln [vdν(l)]− 1}+

+
η(φ)

2

∞

∑
l=1
l′=1

ν(l)ν(l′)vexcl(l, l′)

− β∆Fb

∞

∑
l=1

(l − 1)ν(l) +
∞

∑
l=1

ν(l)σo(l) (1.2)

where V is the volume of the system, vd is the volume of a monomer, φ ≡ vdρ

(ρ = N/V is the number density of monomers) is the packing fraction, ν(l) is

the number density of chains of length l, normalized such that ∑∞
l=1 l ν(l) = ρ,

∆Fb, as discussed in Section 1.4.2, is a parameter which depends on the free
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Figure 1.2: Snapshots taken from simulations at T = 300 K. At low concentrations
(c = 2 mg/ml, top) chain formation is negligible and the average chain length
is approximately 1. As the concentration is increased (c = 80 mg/ml, bottom),
DNADs start to self-assemble into chains and the average chain length increases.

— 15 —



Chapter 1 Section 1.3

energy associated to a single bond and vexcl(l, l′) is the excluded volume of two

chains of length l and l′. η(φ) is the Parsons-Lee factor [119]

η(φ) =
1
4

4− 3φ

(1− φ)2 (1.3)

and σo(l) [103] accounts for the orientational entropy that a chain of length l

loses in the nematic phase (including possible contributions due to its flexibility).

The explicit form for σo(l) can be found in Ref. [52].

The free energy functional presented in Eq. (1.2) explicitly accounts for the

polydispersity inherent in the equilibrium polymerization process using a dis-

crete chain length distribution and for the entropic and energetic contributions

of each single bond through the parameter ∆Fb.

1.3.1 Isotropic phase

In the isotropic phase, σ0 = 0 and the excluded volume can be written as

vexcl(l, l′, X0) = 2BI X2
0 l l′ + 2vdkI

l + l′

2
(1.4)

where the parameters BI and kI can be estimated via MC integrals of a sys-

tem composed by only two monomers (see Section 1.4.2) and X0 is the aspect

ratio of the monomers. We assume that the chain length distribution ν(l) is

exponential [52] with an average chain length M

ν(l) = ρM−(l+1)(M− 1)l−1 (1.5)

where

M =
∑∞

l=1 l ν(l)
∑∞

l=1 ν(l)
. (1.6)

With this choice for ν(l) the free energy in Eq. (1.2) becomes:

βFI
V

= −ρβ∆Fb(1−M−1) +

+ η(φ)

[
BI X2

0 +
vdkI
M

]
ρ2 +

+
ρ

M

[
ln
(vdρ

M

)
− 1
]
+

+ ρ
M− 1

M
ln(M− 1)− ρ ln M. (1.7)

Minimization of the free energy in Eq. (1.7) with respect to M provides the
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following expression for the average chain length M:

M =
1
2

(
1 +

√
1 + 4φekI φη(φ)+β∆Fb

)
. (1.8)

1.3.2 Nematic phase

In the nematic phase the monomer orientational distribution function f (θ)

depends explicitly on the angle θ between the particle and the nematic axis, i.e.

the direction of average orientation of the DNAD, since the system is supposed

to have azimuthal symmetry around such axis. We assume the form proposed

by Onsager [45], i.e.:

fα(θ) =
α

4π sinh α
cosh(α cos θ) (1.9)

where α controls the width of the angular distribution. Its equilibrium value

is obtained by minimizing the free energy with respect to α. As discussed in

Section 1.4.2, we assume the following form for the excluded volume in the

nematic phase:

vexcl(l, l′, X0, α) = 2BN(α)X2
0 l l′ + 2vdkHC

N (α)
l + l′

2
(1.10)

where the term 2vdkHC
N (α) is the end-midsection contribution to the excluded

volume of two hard cylinders (see Section 1.4.3) and

BN(α) =
π

4
D3
(

η1 +
η2

α1/2 +
η3

α

)
(1.11)

where D is the diameter of the monomer and ηk with k = 1, 2, 3 are three

parameters that we chose in order to reproduce the excluded volume calculated

from MC calculations as discussed in Section 1.4.2.

Inserting Eqs. (1.10) and (1.5) into Eq. (1.2), and assuming once more an

exponential distribution for ν(l), one obtains after some algebra:
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βFN
V

= σ̂o − ρβ∆Fb(1−M−1) +

+ η(φ)

[
BN(α)X2

0 +
vdkHC

N (α)

M

]
ρ2 +

+
ρ

M

(
ln
[vdρ

M

]
− 1
)
− ρ ln M +

+ ρ ln(M− 1)
M− 1

M
(1.12)

where σ̂o ≡ ∑l σo(l)ν(l). The explicit calculation of the parameters BN and kHC
N

is explained in Sections 1.4.2 and 1.4.3.

Assuming that the orientational entropy σ̂o can be approximated with the

expression valid for long chains [103], minimization with respect to M results

in

M =
1
2

(
1 +

√
1 + αφekN(α)φη(φ)+β∆Fb

)
. (1.13)

while using the approximated expression for short chains [103], one obtains

M =
1
2

(
1 +

√
1 + 4αφekN(α)φη(φ)+β∆Fb−1

)
. (1.14)

The equilibrium value of α is thus determined by further minimizing the

nematic free energy in Eq. (1.12), which has become only a function of α. The

parameter α is related to the degree of orientational ordering in the nematic

phase as expressed by the nematic order parameter S as follows:

S(α) =
∫
(3 cos2 θ − 1) fα(θ)π sin θ dθ ≈ 1− 3/α. (1.15)

Further refinements of the theory may be obtained by including a more

accurate description of the orientational distribution fα(θ) in the proximity

of the I-N phase transition, along the lines of Eqs. (40)-(42) of Ref. [52]. For

the sake of simplicity we have just presented the basic theoretical treatment.

However, in the theoretical calculations in Section 1.4 we will make use of the

refined and more accurate free energy functional proposed in Ref. [52]. This

upgraded version makes use of the fact that, in the nematic phases, the angular

distribution of the monomers as computed in simulations of super-quadrics is

isotropic and not Onsager-like, i.e. Eq. (1.9) becomes l-dependent. Although this

change does not modify the qualitative behaviour of the calculated quantities,

it improves the agreement with the numerical results.
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1.3.3 Phase coexistence

The phase boundaries, at which the aggregates of DNAD are sufficiently long

to induce macroscopic orientational ordering, are characterized by coexisting

isotropic and nematic phases in which the volume fraction of DNADs are,

respectively, φN = vdρN and φI = vdρI . The number densities ρI and ρN can

be calculated by minimizing Eq. (1.7) with respect to MI and by minimizing

Eq. (1.12) with respect to MN and α. In addition, the two phases must be at

equal pressure, i.e. PI = PN , and chemical potential, i.e. µI = µN . These

conditions yield the following set of equations:

∂

∂MI
FI(ρI , MI) = 0

∂

∂MN
FN(ρN , MN , α) = 0

∂

∂α
FN(ρN , MN , α) = 0

PI(ρI , MI) = PN(ρN , MN , α)

µI(ρI , MI) = µN(ρN , MN , α) (1.16)

1.4 Results

1.4.1 Properties of the model

To characterize structural and geometrical properties of monomers and aggre-

gates, we analyze conformations of duplexes extracted from large-scale GPU

simulations (see Fig. 1.2 for some snapshots).

In the following, the volume vd occupied by a single DNAD of length X0D

and double helix diameter D (D ' 2 nm) will be considered as the volume

of a cylinder with the same length and diameter, i.e. vd = πX0D3/4. When

comparing numerical and experimental results with theoretical predictions

we use the number of base pairs Nb in place of X0 (X0 ' 0.172Nb) and the

concentration c instead of the packing fraction φ, which can be related to the

former via:

φ =
0.172D3π

8mN
c (1.17)

where mN = 330 Da is the average mass of a nucleotide. Hence, in the following

cI and cN will be used in place of φI and φN .

First we calculate the dimensions (height L and width D) of the DNADs for
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different c and T. We observe no concentration dependence on both quantities,

while the variation in T is negligible (of the order of 0.1% between DNADs

of samples at 270 K and 300 K). The effect of this small change does not affect

substantially the value of the aspect ratio, which we consider constant (X0 =

2.06) throughout this work.

The geometrical properties of end-to-end bonded duplexes are not well-

known since there are no experimental ways to probe such structures. In a

very recent work, the interaction between duplex terminal base–pairs has been

analyzed by means of large-scale full-atom simulations by Maffeo et al. [120].

They found that blunt-ended duplexes (i.e. duplexes without dangling ends)

have preferential binding conformations with different values of the azimuthal

angle γ, defined as the angle between the projections onto the plane orthogonal

to the axis of the double helix of the vectors connecting the O5’ and O3’ terminal

base pairs. They report two preferential values for γ, namely γ = −20◦ and

γ = 180◦.

In the present model the continuity of the helix under end-to-end interac-

tions is intrinsic in the model and the azimuthal angle probability distribution

is peaked around a single value γ0 ≈ 40◦ (see Fig. 1.3(a)). This is very close

to the theoretical value γ ≈ 36◦ given by the pitch of the B-DNA double helix.

The qualitative difference between conformations of bonded DNADs found in

this work and in Ref. [120] should be addressed in future studies, in order to

describe the coaxial end-to-end interaction in a more proper way.

In addition, we calculate the average distance r between the centres of mass

of the terminal base pairs. Fig. 1.3(b) shows P(r), the probability distribution

of r. P(r) is peaked at 0.39 nm, whereas Maffeo et al. [120] found an average

distance of r ≈ 0.5 nm. This difference can be understood in terms of the effect

of the salt concentration which, being five times higher than the one used in

Ref. [120], increases the electrostatic screening, thus effectively lowering the

repulsion between DNA strands. The sharp minimum which occurs at r ≈ 0.39

for every temperature seems to be a feature of the system and hence its origin

could be traced back to the shape of the interaction term acting between the

two ending base-pairs. However, we can not rule out the possibility that it may

be due to numerical noise.

The effect of the temperature is small, as lowering T leads only to more

peaked distributions for both P(γ) and P(r) (and a very small shift towards

smaller angles for γ) but does not change the overall behaviour.
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Figure 1.3: Probability distributions for (a) the azimuthal angle γ and (b) the end-
to-end distance r.

1.4.2 Stacking free energy and excluded volume

In this section we discuss the procedure employed to evaluate the input quanti-

ties required by the theory, namely ∆Fb and vexcl(l, l′). To this aim we perform

a Monte Carlo integration over the degrees of freedom of two duplexes. ∆Fb is

defined as [52]

β∆Fb = ln
[

2
∆(T)

vd

]
(1.18)

where [37]

∆(T) =
1
4

〈∫
Vb

[e−βV(r12,Ω1,Ω2) − 1] dr12

〉
. (1.19)

Here r12 is the vector joining the centres of mass of particles 1 and 2, Ωi is the

orientation of particle i and 〈. . .〉 represents an average taken over all possible
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orientations. Vb is the bonding volume, defined here as the set of points where

the interaction energy V(r12, Ω1, Ω2) between duplex 1 and duplex 2 is less

than kBT. To numerically evaluate ∆(T) we perform a MC integration using

the following scheme:

1. Produce an ensemble of 500 equilibrium configurations of a single duplex

at temperature T.

2. Set the counter Ntries = 0 and the energy factor F = 0.

3. Choose randomly two configurations i and j from the generated ensemble.

4. Insert a randomly oriented duplex i in a random position in a cubic box

of volume V = 1000 nm3. Insert a second duplex j in a random position

and with a random orientation. Compute the interaction energy V(i, j)

between the two duplexes i and j and, if V(i, j) < kBT, update the energy

factor, F = F +
(

e−βV(i,j) − 1
)

. Increment Ntries.

5. Repeat from step 3, until ∆(T) ∼= 1
4

V
Ntries

F converges within a few per cent

precision.

The employed procedure to compute vexcl(l, l′) is fairly similar except that it

is performed for duplexes with a various number of bases (i.e. with different X0)

and the quantity F counts how many trials originate a pair configuration with

V(i, j) > kBT (i.e. in step 4, F = F + 1). In the nematic case, the orientations of

the duplexes are extracted randomly from the Onsager distribution given by

Eq. (1.9). With such procedure,

vexcl(l = 1, l′ = 1, X0) =
V

Ntries
F (1.20)

We calculate vexcl for 8 values of α, ranging from 5 to 45 (see Section 1.4.3).

Since the X0 and l dependences of Eqs. (1.4) and (1.10) are the same and the

X0 dependence of the numerically calculated vexcl on the shape of DNADs is

negligible, the evaluation of the excluded volume as a function of X0 provides

the same information as the evaluation of vexcl as a function of l.

We have checked that the dependence of ∆(T) and vexcl(l, l′) on the energy

threshold employed in step 4 is negligible.

Fig. 1.4 shows ∆(T) for all investigated T in a ln ∆ vs 1/T plot. A linear

dependence properly describes the data at the three T. An alternative way to

evaluate ∆(T) is provided by the limit ρ → 0 of Eq. (1.8). Indeed in the low
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density limit M and ∆(T) are related via the following relation:

∆(T) =
M(1−M)

2ρ
. (1.21)

Therefore it is also possible to estimate ∆(T) by extrapolating the low density

data for M at T = 270 K, 285 K and 300 K. The results, also shown in Fig. 1.4,

are in line with the ones obtained through MC calculations. The Arrhenius

behavior of ∆(T) suggests that bonding entropy and stacking energy are in first

approximation T independent. The coaxial stacking free energy GST is related

to ∆(T) as follows

GST = −kBT ln[2ρ∆(T)]. (1.22)

Substituting the fit expression provided in Fig. 1.4 for ∆(T) results in a stacking

free energy G0
ST = −0.086 kcal/mol at a standard concentration 1 M of DNADs

and T = 293 K comprising a bonding entropy of−30.6 cal/mol K and a bonding

energy of −9.06 kcal/mol.

3.3 3.4 3.5 3.6 3.7

1/T [ x 10
-3

 K
-1

 ]

-2.5

-2

-1.5

-1

-0.5

ln
[ 

∆
/D

3
 ]

fit: -17.6769+4559/T
Eq. 20
two-body MC

Figure 1.4: ∆(T) calculated with the procedures described in Section 1.4.2 for all
investigated T.

Following Ref. [52], the excluded volume is assumed to be the following
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second order polynomial in l and l′:

vexcl [l, l′; f (θ)] = 2
∫

f (θ) f (θ′)D3 [Ψ1(γ, X0)+

+
l + l′

2
Ψ2(γ, X0)X0 + Ψ3(γ, X0)X2

0 l l′
]

dΩ dΩ′ (1.23)

where the functions Ψα, α = 1, 2, 3, describe the angular dependence of the

excluded volume. The orientational probability f (θ) is normalized such that

∫
f (θ)dΩ = 1. (1.24)

The three contributions to the excluded volume in Eq. (1.23) come from end-

end, end-midsection and midsection-midsection steric interactions [52] between

two chains.

In the isotropic phase the orientational distribution does not have any angu-

lar dependence, i.e. f (θ) = 1/4π, and Eq. (1.23) reduces to the form

vexcl(l, l′, X0) = BI X2
0 l l′ + kIvd

l + l′

2
+ AI . (1.25)

The parameters BI , kI and AI appearing in Eq. (1.25) can be calculated via

MC integration procedures as discussed previously and in Ref. [52]. We expect

that these parameters do not depend on X0 because each DNAD comprises

Nb stacked base pairs which are all identical with respect to excluded volume

interactions (i.e. they all have the same shape). In particular, the calculated

excluded volume of two DNADs is reported in Fig. 1.5 for 5 different aspect

ratios, together with the resulting values for the above parameters.

Using the Onsager angular distribution fα(θ) in Eq. (1.9), the excluded

volume in the nematic phase depends also on the parameter α, i.e. the general

form in Eq. (1.23) reduces to

vexcl(l, l′, X0, α) = BN(α)X2
0 l l′ + kN(α)vd

l + l′

2
+ AN(α). (1.26)

Assuming that AN(α) = 0, kN(α) = kHC
N (α) and BN(α) is given by Eq. (1.11),

the three parameters ηk with k = 1, 2, 3 have to be estimated. For l = l′ = 1 and

several values of α (α = 5 . . . 45 in steps of 5) and X0 we calculated numerically

the nematic excluded volume for two DNADs. The results are shown in Fig. 1.6,
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Figure 1.5: Excluded volume in the isotropic phase together with analytic approx-
imations. From the linear fit one has BI = 0.959D3 and kI = 3.084, while we
assume AI = 0

where we plot vexcl/vd vs X0 for various α. The dashed lines shown in Fig. 1.6

are obtained through a two-dimensional fit to numerical data for vexcl(1, 1, X0, α)

using Eq. (1.10) as fitting function.

1.4.3 Excluded volume of hard cylinders

For two rigid chains of length l and l′ which are composed of hard cylinders

(HCs) of diameter D and length X0D, vexcl(l, l′) can be described by

vHC
excl [l, l′; f (θ)] =

∫
f (θ) f (θ′)D3

[ π

2
sin γ +

π

2
X0

(1 + | cos γ|+ 4
π

E(sin γ)) +

+
l + l′

2
+ 2X2

0 sin γ l l′
]

dΩ dΩ′ (1.27)

where cos γ = u · u′, u and u′ are the orientations of two HCs and E(sin γ) is

the complete elliptical integral

E(sin γ) =
1
4

∫ 2π

0
(1− sin2 γ sin2 ψ)1/2dψ. (1.28)

The integrals in Eq. (1.27) can be calculated exactly in the isotropic phase,
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Figure 1.6: Excluded volume as a function of aspect ratio X0 in the nematic phase
together with analytic approximations for several α. The dashed lines are ob-
tained plotting the function reported in Eq. (1.10) and setting η1 = 0.386419,
η2 = 1.91328 and η3 = −0.836354.

while in the nematic phase the calculation can be done analytically only for

suitable choices of the angular distribution f (θ). Here we assume that the

angular distribution is given by the Onsager function in Eq. (1.9).

Using the Onsager orientational function the following approximate expres-

sions for the coefficients kN(α), BN(α) and AN(α) can be derived [103]

B̃N(α) = D3(π/4)ρa(α)

k̃N(α) = πD3 X0

vd

(
1− 1

α

)
ÃN(α) = D3 (π/4)2 ρa(α) (1.29)

where

ρa = 4(πα)−1/2
(

1− 15
16 α

+
105

512 α2 +
315

8192 α3

)
. (1.30)

We evaluate numerically the excluded volume in Eq. (1.27) for many values

of α and, building on the expressions in Eqs. (1.29), we perform a fit to this data
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using the following functions:

BHC
N (α) ' D3(π/4)

(
ρa(α) +

c4

α9/2 +
c5

α11/2

)
(1.31)

kHC
N (α) = 4

(
1− 1

α

)
+

∞

∑
i=2

bi

αi '
4
π

4

∑
i=0

di

αi (1.32)

AHC
N (α) ' D3(π/4)2

(
ρa(α) +

c4

α9/2 +
c5

α11/2

)
(1.33)

The coefficient values resulting from the fitting procedure are c4 = 1.2563,

c5 = −0.95535, d0 = 3.0846, d1 = −4.0872, d2 = 9.0137, d3 = −9.009 and

d4 = 3.3461.

1.4.4 Isotropic phase: comparing simulation results with theo-

retical predictions

Fig. 1.7 shows the concentration c dependence of M calculated from the MD

simulation of the Nb = 12 system. The average chain length increases pro-

gressively on increasing c. The figure also shows the theoretical predictions

calculated by minimizing the isotropic free energy in Eq. (1.7) with respect to

M using the previously discussed estimates for ∆Fb and vexcl . The theoretical

results properly describe the MD simulation data up to concentrations around

200 mg/ml, which corresponds to a volume fraction φ ≈ 0.20. In Ref. [52] simi-

lar observations have been made and the discrepancy at moderate and high φ

has been attributed to the inaccuracy of the Parsons decoupling approximation.

The M values calculated using the excluded volume of two hard cylinders (HC)

are also reported, to quantify the relevance of the actual shape of the DNA

duplex. Indeed the HC predictions appreciably deviate from numerical data

beyond 100 mg/ml.

1.4.5 Phase coexistence: theoretical predictions

A numerical evaluation of the phase coexistence between the isotropic and

the nematic phases for the coarse-grained model adopted in this study is still

impossible to obtain given the current computational power. We thus limit

ourselves to the evaluation of the I-N phase coexistence via the theoretical

approach discussed in Section 1.3. Fig. 1.8 shows the theoretical phase diagram

in the c-Nb plane for T = 270 K and 300 K. As expected, both cI and cN decrease

on increasing Nb, since the increase of the number of bases results in a larger

aspect ratio which, as showed by Onsager, controls the difference between the
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Figure 1.7: Average chain length M in the isotropic phase at low concentration.
Symbols are numerical results and dashed lines are theoretical predictions.
Dotted lines are theoretical predictions using the excluded volume of HCs vHC

excl
(see Section 1.4.3).

excluded-volume terms in the isotropic and nematic free energies. However, as

it will be discusses in Section 1.4.7, mapping a self-assembling system onto a

mono-disperse system by using the average chain length as an effective aspect

ratio can yield qualitatively incorrect results. On decreasing T, theory predicts

a 10% decrease of cI and a similar decrease of cN , resulting in an overall shift

of the I-N coexistence region toward lower c values. This trend is related to the

increase of the average chain length M with increasing β∆Fb (see Fig. 1.4).

Fig. 1.8 also shows the phase boundaries calculated using the excluded

volume of two hard cylinders. Assimilating DNADs to hard cylinders results

in a 10–15% widening of the isotropic-nematic coexistence region.

1.4.6 Comparison between theory and experiments

The theoretical predictions concerning the isotropic-nematic coexisting con-

centrations can be compared to the experimental results reported in Refs. [49]

and [91] for blunt-ended DNADs.

Fig. 1.9 compares the experimentally determined nematic concentrations

cN at coexistence with the values calculated from the present model for T =

293 K. Despite all the simplifying assumptions and despite the experimental

uncertainty, the results provide a reasonable description of the Nb dependence
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Figure 1.8: I-N phase diagram in the c vs Nb plane for T = 270 K (top) and 300 K
(bottom). Dotted lines are theoretical phase boundaries calculated using the
excluded volume of HCs vHC

excl (see Section 1.4.3).

of cN . The experimental data refer to different base sequences and different salt

concentrations. According to the authors, cN is affected by an error of about

±50 mg/ml. In particular, for the case Nb = 12 the critical concentrations cN for

distinct sequences show that blunt-end duplexes of equal length but different

sequences can display significantly different transition concentrations. Hence,

for each duplex length, we consider the lowest transition concentration among

the ones experimentally determined, since this corresponds to the sequence

closest to the symmetric monomer in the model. Indeed the dependence of cN

on the DNADs sequence is expected to be larger for the shortest sequences, i.e.
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Nb < 12, for which DNAD bending could be significant [91]. Unfortunately,

quantitative experimental data on this bending effect are still lacking. In general

it is possible that cN for Nb < 12 (for which a large number of sequences have

been studied, see Fig. 1.9), would be corrected to lower values if a larger number

of sequences were explored. For more details on this phenomenon, we refer the

reader to the discussions in Refs. [52, 91, 121].

The overestimation of the phase boundaries for Nb ≥ 12 with respect to

experimental results suggests that the DNA model of Ouldridge et al. [110]

overestimates the coaxial stacking free energy. Such discrepancy can perhaps be

attributed to the restricted number of microstates allowing for bonding states in

the DNA model [110,112], as discussed in Section 1.4. Indeed, allowing DNADs

to form end-to-end bonds with more than one preferred azimuthal angle would

increase the entropy of bonding, thus effectively lowering GST . Allowing for

both left- and right-handed binding conformations, a possibility supported by

the results of Maffeo et al. [120], would double ∆(T) in Eq. (1.22) and hence

add an entropic contribution equal to −kBT ln(2) to GST , which would result

in a value G0
ST − 0.403 kcal/mol = −0.49 kcal/mol for T = 293K. Fig. 1.9 also

shows the theoretical predictions for such upgraded GST value.

In Fig. 1.9 theoretical calculations of the I-N transition lines are shown for

GST = −0.4 kcal/mol and GST = −2.4 kcal/mol at T = 293 K as the upper and

lower boundaries of the grey band respectively. To calculate these critical lines

we retain the excluded volume calculated in Section 1.4.2 and, given the value

of GST , we evaluate ∆Fb according to Eqs. (1.18) and (1.22) for T = 293 K and ρ

corresponding to the standard 1 M concentration.

The selected points with Nb ≥ 12 fall within the grey band shown in Fig. 1.9,

enabling us to provide an indirect estimate of GST between −0.4 kcal/mol and

−2.4 kcal/mol. For the points with N < 12, where duplex bending might play

a role, it would be valuable to have more experimental points corresponding to

more straight sequences in order to validate the theoretical predictions.

It is worth observing that for all DNAD lengths Nb, the electrostatic inter-

actions are properly screened. For Nb = 20 a concentration 1.2 M of NaCl has

been added to the solution resulting in a Debye screening length k−1
D ≈ 0.23 nm.

For all other lengths (i.e. Nb ≤ 18) we note that at the lowest DNA concentra-

tion of 440 mg/ml corresponding to Nb = 14, k−1
D ≈ 0.40 nm. Therefore the

experimental k−1
D is always smaller than the excluded volume diameter for the

backbone-backbone interaction of our coarse-grained model [110] (≈ 0.6 nm),

thus enabling us to neglect electrostatic interactions.
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On the other hand, if electrostatic interactions are not properly screened the

effective aspect ratio for such DNAD sequences would be smaller than the ones

used in our theoretical treatment and this would result in a underestimate of

cN . To account for this behavior one should at least have a reasonable estimate

of the effective size of DNADs when electrostatic interactions are not fully

screened. Moreover, the role of electrostatics can be subtle and not completely

accounted for by simply introducing an effective size of DNADs. A possible

route to include electrostatics in our treatment can be found in Ref. [82] and it

will be addressed in future studies.
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Figure 1.9: Critical nematic concentrations cN as a function of the number of
base pairs per duplex Nb for the present model, calculated theoretically at
T = 293 K using the computed stacking free energy G0

ST (short dashed lines),
GST = −0.49 kcal/mol (long dashed lines), and for experiments [49] (circles
and squares). Squares are cN for different sequences at the same Nb = 12. The
grey band has been built considering for GST an upper bound of −0.4 kcal/mol
and a lower bound of −2.4 kcal/mol.

1.4.7 Comparison with Onsager theory

The experimental average aggregation numbers are estimated in Refs. [49,75] by

mapping the self-assembled system onto an “equivalent” mono-disperse system

of hard rods with an aspect ratio equal to MX0. In Ref. [52] it has been shown

that the theoretically estimated isotropic-nematic coexistence lines for the case

of polymerizing superquadric particles in the MX0 − φ plane, parametrized by

the stacking energy, are significantly different from the corresponding Onsager
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original predictions (as re-evaluated in Ref. [95]). In light of the relevance for

interpreting the experimental data, we show in Fig. 1.10 the same curves for the

DNA model investigated here. In this model, a clear re-entrant behavior of the

transition lines in the c−MX0 plane is observed. The re-entrant behavior occurs

for values of the stacking free energy accessed at temperatures between 270 K

and 330 K and it arises as a result of the competition between steric (entropic)

and temperature (energetic) contributions to the free energy in driving the self-

assembly process which leads the system to the isotropic-nematic transition.

We believe that the re-entrancy of the transition lines in the c−MX0 plane is a

peculiar mark of the system polydispersity, which results from the reversible

self-assembly of chains.

1.5 Conclusions

In this article we have studied an equilibrium bulk solution of blunt ended

DNA duplexes undergoing reversible self-assembly into chains, promoted by

stacking interactions. The simulation study, carried out at different concen-

trations and temperatures, provides a clear characterization of the c and T

dependence of the average polymerization length M and an indirect estimate

of the stacking free energy. We have provided a theoretical description of the

self-assembly process based on a theoretical framework recently developed in

Ref. [52]. The inputs required by the theory (the DNAD excluded volumes and

the stacking free energy) have been numerically calculated for the present DNA

model, allowing for a parameter free comparison between molecular dynamic

results and theoretical predictions. Such comparison has been limited to the

isotropic phase, due to the difficulties in simulating the dense nematic phase

under equilibrium conditions. The description of the isotropic phase is satis-

factory: quantitative agreement between theory and simulations is achieved

for concentrations up to c ≈ 200 mg/ml. The stacking free energy value that

properly accounts for the polymerization process observed in the molecular

dynamics simulations is G0
ST = −0.086 kcal/mol at a standard concentration 1

M of DNADs and T = 293 K comprising a bonding entropy of −30.6 cal/mol K

and a bonding energy of −9.06 kcal/mol.

Theoretical predictions for the I-N transition have been compared with ex-

perimental results for several DNA lengths, ranging from 8 to 20 bases. For

Nb ≥ 12, the model predicts values for cN which are higher than experimental

ones. This suggests that the DNA model employed overestimates GST . In view
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Figure 1.10: Isotropic-nematic coexistence lines in the average aspect ratio MX0
and concentration c plane for two values of Nb, namely Nb = 12 (top) and
Nb = 20 (bottom). Solid lines indicate theoretical predictions, dashed lines
indicate Onsager original predictions, as re-evaluated in Ref. [95] for φI and φN
and here reported in terms of the concentrations cI and cN expressed in mg/ml.
Symbols along the isotropic and nematic phase boundaries at coexistence are
joined by dotted lines, to indicate the change in concentration and average chain
length at the transition.

of the recent results of Maffeo et al. [120], we speculate that the bonding entropy

is underestimated, in agreement with the observation that the probability distri-

bution of the azimuthal angle between two bonded DNADs, which is designed

to be single-peaked, is too restraining. In this respect, the present study calls for

an improvement of the coarse-grained potential [110] in regard to the coaxial

stacking interaction.
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The value of GST can also be used as a fitting parameter in the theory for

matching cN with the experimental results, retaining the excluded volume esti-

mates calculated for the coarse-grained DNA model. Such procedure shows that

values of the stacking free energy between −0.4 kcal/mol and −2.4 kcal/mol

are compatible with the experimental location of the I-N transition line. In the

work of Maffeo et al., the authors report a more negative value of GST , namely

GM
ST = −6.3 kcal/mol, a value which was confirmed by the same authors by

performing an investigation of the aggregation kinetic in a very lengthy all-

atom simulation of DNAD with Nb = 10. If such GST value is selected as input

in our theoretical approach (maintaining the same excluded volume term), then

one finds cM
N ≈ 250 mg/ml, a value significantly smaller than the experimental

result (cN = 650± 50 mg/ml). This casts some doubts on the effectiveness of

the employed all-atom force-field to properly model coaxial stacking.

Finally, our work draws attention to the errors affecting the estimate of the

average chain length M via a straightforward comparison of the nematic coex-

isting concentrations with analytic predictions based on the original Onsager

theory for mono-disperse thin rods [49, 75]. We have found that such approxi-

mation significantly underestimates M at the I-N transition concentration cN .

In addition, the theoretical approach predicts a re-entrant behavior of the tran-

sition lines in the c-MX0 plane, a distinct feature of the polydisperse nature of

the equilibrium chains.

— 34 —



Chapter 2

Mimicking low-density

dipolar fluids: ring-forming

bivalent patchy particles

2.1 Introduction

The equilibrium self-assembly of particles into chains and rings has been the

subject of thorough investigations in the past [122–128]. In the limit of non-

interacting aggregates (i.e. low densities) and weakly T-dependent persistence

length, a well defined temperature exists below which a ring of a characteristic

size becomes equally probable as the chain of the same size. For lower T,

rings start to populate the system and, under appropriate conditions, may

become the most abundant aggregates. The basic elements controlling the

competition between rings and chains are well understood [129]. Compared

to linear polymers, rings are energetically stabilized by the presence of an

additional bond but pay a significant entropic cost, which can be split into two

contributions, one proportional to the entropy loss associated to the necessity to

constrain the end-to-end distance to distances of the order of the bonding length,

the other proportional to the ring size arising from the number of ways a ring

can open to form a chain. Despite the formal understanding, no quantitative

parameter-free investigation of the ring-chain equilibrium for a well defined

interaction potential has been reported so far. Two reasons suggest an effort in

this direction:
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• the Wertheim perturbation theory [130,131] has been shown to be a predic-

tive and quantitative theory for describing chaining of large persistence

polymers, when rings do not compete [132, 133]. While attempts to gener-

alize to the case in which rings are relevant have been presented [128,134–

136], no quantitative comparison has been reported.

• The recent discovery that in the dipolar hard sphere (DHS) model a non

negligible fraction of rings appears at low T, in the region in which a

gas-liquid critical point was expected to occur [61, 62] (see Chapter 3).

Analogous findings have been documented in both experiments and sim-

ulations of colloids in which the dipolar interaction is dominant [137–141].

Wertheim theory, when applied to patchy colloidal particles with asymmet-

ric interactions [56, 57, 142, 143], provides a valuable model for interpreting the

competition between chaining and branching, which is deemed to be essential

in the physics of DHSs. It is thus important to extend it, under strict control, to

the case in which rings are possible.

In this Chapter we present a two-patch model with controlled persistence

length and introduce an extension of Wertheim theory to cope with the pres-

ence of rings. For one specific value of the opening bond angle (a parameter

of the interaction potential) we then solve the Wertheim theory augmented

with rings and compare theoretical predictions with simulation results in a

large density region, from ρσ3 = 5× 10−6 up to ρσ3 = 0.02, illuminating the

presence of an optimal density for ring formation. The quality of the resulting

parameter-free description provides a stringent test of Wertheim theory as a

model of the thermodynamics of the self-assembly of equilibrium chains and

rings. The augmented Wertheim theory, which is introduced in Section 2.3, has

been developed by prof. J. M. Tavares.

2.2 Methods

We focus on a system of hard-sphere (HS) particles (of diameter σ, the unit of

length) with two oppositely located patches. The patch-patch interaction is

modelled via a Kern-Frenkel (KF) potential [144], i.e. a square-well interaction

of range ∆ and depth u0, multiplied by an angular function which accounts

for the orientational contribution, such that particles bind only when distinct

patches face each other. In the standard KF model the single-bond per patch

condition depends on the patch angular width θmax and ∆. The maximum
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opening angle θmax must satisfy the condition sin(θmax) ≤ [2(1 + ∆/σ)]−1. In

the limit of a cohesive contact potential (∆→ 0), the maximum opening angle

is 30◦, a value for which the probability of ring formation is minute. To be

able to extend the range of values of θmax beyond 30◦ and to decouple the

choice of the angle from the choice of the range we take inspiration from the

Nmax model [38, 145], imposing numerically in the Monte Carlo (MC) code a

constraint on the maximum number of bonds each patch can be involved in.

In this way, only one particle can occupy the bonding volume, contributing

u0 to the potential energy. A double-stranded DNA with palindromic sticky

overhangs at its extremities would be a possible experimental realization of

such a particle. A careful choice of the strand sequences would make it possible

to fulfil the single bond per patch condition and to control both the extension

and the flexibility (i.e. the bonding volume) of the sticky ends.

Temperature is measured in units of the potential depth (i.e. kB/u0 = 1,

where kB is Boltzmann constant). The choice of a simple square-well interaction

model to describe the association process between different particles is particu-

larly convenient from a theoretical point of view. It allows for a clear definition

of bonding and a clear separation of the bonding free energy in its energetic and

entropic contributions, being unambiguously related to the depth of the well

and to the bonding volume, respectively. In addition, the persistence length of

the polymer is T-independent, due to the flatness of the attractive potential.

MC simulations in the NVT ensemble, with N = 5000 have been performed

for five different densities ρ = 0.000005, 0.00007, 0.0005, 0.007, 0.02 and five

different temperatures T = 0.05, 0.06, 0.07, 0.08, 0.09. The KF model parame-

ters were set to ∆ = 0.3 and cos θmax = 0.7077, corresponding to a bonding

volume vb = 4
3 π[(σ + ∆)3 − σ3](1 − cos θmax)2. During equilibration, espe-

cially at very low ρ and T, we have implemented the Aggregation Volume Bias

move proposed in Ref. [146], specialized to patchy particles. These moves are

very effective at low densities, since they allow for a fast equilibration of the

bonded-non bonded chemical equilibrium. Such a move is described in depth

in Chapter 3.

2.3 Wertheim theory

The first-order Wertheim thermodynamic perturbation theory (W-TPT) [13, 130,

131] provides an expression for the free energy of associating liquids. The

Helmholtz free energy is written as a sum of the HS reference free energy FHS
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plus a bond contribution Fbond, which derives by a summation over certain

classes of relevant graphs in the Mayer expansion [13]. In the sum, closed

loops graphs are neglected. The fundamental assumption of W-TPT is that the

conditions of steric incompatibilities are satisfied: (i) no site can be engaged

in more than one bond; (ii) no pair of particles can be double bonded. These

steric incompatibilities are satisfied in the present model thanks to the location

of the two sites and the chosen numerical algorithm which prevents multiple

bonding.

The inclusion of the contribution of rings to the free energy is done like

in [128, 134, 135]: the bonding free energy per particle of an homogeneous

system is expressed as,

βFbond/N = ln X0 + 1− 2XA +
X2

A
X0
− fc − fr, (2.1)

where X0 is the fraction of particles that have no patches bonded (“free” monomers),

XA is the fraction of unbonded patches, and fc and fr are, respectively, the con-

tribution of chains and of rings to the free energy. Under the assumptions of

W-TPT, fc is,

fc = 2ρ∆AAX2
A, (2.2)

where ρ is the number density, and

∆AA =
∫

gHS(~r) [exp(βu0)− 1] d~r = vb [exp(βu0)− 1] . (2.3)

In the previous expression, the pair correlation function of the reference fluid

has been approximated by gHS = 1, since only very low densities will be stud-

ied. The ring contribution is generalized to include the possibility of formation

of rings of every size, and thus,

fr =
G0

ρ
(2.4)

with,

Gi = ∑
n

ni (2ρ∆AAX0)
n Wn. (2.5)

This expression corresponds to the summation of closed loop graphs, and is

calculated assuming that, consistently with the usual W-TPT, the bonds of a ring

are independent. Wn is proportional to the number of configurations of a single

ring with n bonds. In previous works [128,134,135], Wn has been approximated
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using the exact expression for freely jointed chains [147]. Here we will use an

expression based on simulation results (see sections IV and V-A). It is also worth

noticing that Gi is the ith moment of the ring size distribution. The formation of

a ring of size n requires n particles with the two bonding sites available to form

bonds: the density of such particles is ρX0. Each of these particles can bond in

two different orientations (thus the factor 2 in Eq. (2.5)) and the probability to

form a bond, once the available sites of the two particles are chosen, is ∆AA.

The bonding free energy presented in Eq. (2.1) is then a function of X0 and

XA and, at equilibrium, must be stationary with respect to variations of these

densities. Minimizing Eq. (2.1) with respect to XA and X0, gives, respectively,

− 1 +
XA
X0
− 2ρ∆AAXA = 0, (2.6)

and,

1−
X2

A
X0
− G1

ρ
= 0. (2.7)

These are the laws of mass action that establish the number of bonds and the

number of rings in equilibrium, for a given set of thermodynamic variables

(ρ, T). By replacing Eq. (2.6) in Eq. (2.1), one obtains for the equilibrium bonding

free energy per unit volume,

βFbond/V = ρ ln X0 + ρ− ρXA − G0. (2.8)

Notice that when there are no rings (i.e. Gi = 0 in the previous equations),

one recovers the usual expressions obtained when only chain aggregates are

considered (see e.g. [57, 142]).

Thermodynamic calculations are straightforward, once an approximation

for Wn is adopted. For fixed (ρ, T) the fractions X0 and XA are calculated using

Eqs. (2.6) and (2.7) and the bonding free energy follows from Eq. (2.8).

2.4 Equivalence with an ideal gas of chains and rings

description

The free energy per unit volume of an ideal mixture of chains and rings can be

written as

βFid.cl./V = ∑
n

ρc
n(ln ρc

n − 1− ln q̃c
n) + ∑

n
ρr

n(ln ρr
n − 1− ln q̃r

n) (2.9)
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where ρc
n is the density of chains of size n, ρr

n is the density of rings of size n, and

q̃c
n and q̃r

n are the partition functions of a ring and of a chain of size n, divided

by the volume V. The chemical equilibrium between chains and rings gives,

∂βF/V
∂ρc

n
=

∂βF/V
∂ρr

n
= nβµ (2.10)

where µ is the chemical potential. Consistent with the ideal-gas hypothesis, the

number density of monomers (i.e. particles with no bonds) ρc
1 is related to µ by

eβµ = ρc
1. Eqs (2.9) and (2.10) give origin to the following expressions,

ρc
n

q̃c
n
=

ρr
n

q̃r
n
= exp(nβµ) = (ρc

1)
n, (2.11)

from which the relation between the chain and rings size distribution and

partition functions follows,

ρr
n = ρc

n
q̃r

n
q̃c

n
. (2.12)

This shows that in the ideal-gas (of cluster) limit the ring size distribution is

not an independent variable, but it is proportional to the chain size distribution

times the ratio between the ring and chain partition functions.

The chain partition function can be written as

q̃c
n = exp [−(n− 1)βFb] (2.13)

in terms of the free energy of a bond, Fb. This expression corresponds to

assuming that each of the n− 1 bonds lowers the free energy by Fb. The ring

partition function depends on the geometry of the model for short rings, while

it reaches a well established asymptotic value for large n values, dictated by the

self-similar nature of the growth process. More specifically, in the dilute limit,

q̃r
n ∝

vb

nR3
ee(n)

exp (−nβFb) (2.14)

where vb is the bonding volume and Ree(n) is the mean end-to-end distance

of a chain of size n. Compared to linear polymers, rings are thus stabilized

by the presence of n bonds (one more than a chain). On the other hand, the

number of configurations allowing for ring formation are proportional to the

ratio vb/R3
ee(n). The additional n dependence arises from the number of ways

a ring can open to form a chain [125, 126, 148]. Assuming that chains can be

modelled with a self-avoiding walk process for large n (i.e. Ree(n) ∼ nνSAW ,
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where νSAW = 0.588 is the self-avoiding walk exponent), one can thus write

q̃r
n = α(n)n−(3νSAW+1) exp (−nβFb) (2.15)

where α(n) describes the model dependent short-n behaviour and approaches

a constant value for large n, when the self-similar nature of the ring is reached.

The evaluation of α(n) for the chosen model is discussed in the following (sec-

tion V-A).

Expression (2.9) can be simplified by using Eq. (2.11) to obtain

βFid,cl./V = ρ ln ρc
1 −∑

n
(ρc

n + ρr
n). (2.16)

Once approximations for Fb and α(n) are adopted, ρc
n and ρr

n can be ex-

pressed as a function of ρc
1 via Eq. (2.12) and the latter can be calculated at a

given (ρ, T) imposing the normalization condition,

∑
n

n(ρc
n + ρr

n) = ρ. (2.17)

In order to demonstrate the equivalence between the ideal cluster of chains

and rings description and that obtained using Wertheim theory (with the ideal

gas as the reference system), we note that the quantities X0 and XA can be

expressed in term of rings and chains distributions as

ρXA = ∑
n

ρc
n, (2.18)

and

ρX0 = ρc
1. (2.19)

The bonding free energy βFb can be related to the Mayer function of the bond

via exp(−βFb) = 2∆AA. Finally, the number of ring configurations Wn can be

identified with

Wn = α(n)n−(3νSAW+1). (2.20)

Via this set of equivalences, ρr
n = (ρc

1)
n q̃r

n can be written as (2∆AAρ X0)
nWn and

Eq. (2.16) transforms to

βFid,cl./V = ρ ln(ρX0)− ρXA −∑
n
(2∆AAρ X0)

nWn. (2.21)

By defining the ideal gas free energy Fid ≡ ρ ln(ρ)− ρ and exploiting the defini-
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Figure 2.1: Numerical evaluation of α(n), Eq. (2.23), at four different temperatures
and ρ = 0.007. The line is the fit function Eq. (2.24).

tion of G0 in Eq. (2.5) and of βFbond/V in Eq. (2.8), Eq. (2.21) becomes

βFid,cl./V = β(Fbond + Fid)/V (2.22)

proving that the free energy of an ideal gas of chains and rings can be written

as the sum of the Wertheim bonding free energy and of the reference ideal gas

free energy.

2.5 Results

2.5.1 Estimate of the ring partition function

The evaluation of the free energy of a system of chains and rings requires

the knowledge of the function α(n) introduced in Eq. (2.15). As discussed in

Section 2.4, such function encodes all non-universal model properties and needs

to be evaluated independently. For models (like the present one) in which the

persistent length does not depend on T, the function α(n) does not depend on

T and can thus be estimated at any (low density) state point, by evaluating the

ratio between ρr
n and ρc

n. Indeed, from Eq. (2.12) and Eq. (2.15),

α(n) ≡ ρr
n

ρc
n

n3νSAW+1 exp (−βFb) (2.23)

The choice of the n3νSAW+1 scaling, strictly correct only in the dilute limit [126],

is consistent with the ideal-gas of clusters approximation.

Fig. 2.1 shows α(n) evaluated at four different state points. The asymptotic
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value is reached only for chains longer that 30− 50 particles. The minimum ring

size is five. The numerical α(n) can be represented by the arbitrary fit function

ln(2vbα(n)) = −5.86595
[

1 + 35.4697 · exp
(
− ln n

0.468144

)]
, (2.24)

and such expression has been used to evaluate theoretically all system proper-

ties.

2.5.2 Chain and ring distribution functions

Fig. 2.2 shows the chain and the ring distribution functions for different T values

at ρ = 0.02. The chain distributions are exponential, with a characteristic decay

length that increases on cooling. The ring distributions are non-monotonic and

increase their width and amplitude on cooling, signalling the progressive in-

creasing concentration of rings. The position of the peak in the ring distribution

functions, whose presence is due to the existence of a preferred cluster size

determined by the interplay between energy and entropy, is model dependent

and can be tuned by changing the angular width of the patches.

Fig. 2.3 and 2.4 show the average size of chains Mc and rings Mr, defined

respectively as Mc = ∑ nρc
n/ ∑ ρc

n and Mr = ∑ nρr
n/ ∑ ρr

n, as a function of

inverse T and ρ. Both Mc and Mr increase monotonically upon cooling the

system and increasing density, but the effect of changing ρ and T is much more

dramatic on Mc. Indeed, Mc spans three order of magnitude in the studied

range of parameters, whereas Mr changes of a mere factor of 5 going from

T = 0.09, ρ = 0.000005 to T = 0.06, ρ = 0.02.

The theoretical predictions shown in these figures are calculated using,

Mc =
1− G1/ρ

XA
, (2.25)

and

Mr =
G1

G0
. (2.26)

Given the low densities studied (that make Wertheim theory almost exact) and

the numerical approximation adopted for the partition function of rings, the

very good agreement with the simulation results is expected. In Figures 2.3

and 2.4 the result obtained when rings are neglected is also shown. One can

conclude that the effect of rings in the chain size distribution becomes important

at low ρ and T. For fixed low ρ, the decrease in T increases this influence. On the
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Figure 2.2: Chain (top) and ring (bottom) size distribution functions at ρ = 0.02
and different temperatures T.
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Figure 2.3: Average cluster size of chains (top) and rings (bottom) as a function of
the inverse temperature for different ρ. Symbols are numerical results; solid
lines are the theoretical predictions of Eqs. (2.25) and (2.26); dashed lines are the
theoretical predictions when rings are excluded from Wertheim theory.

other hand, for fixed low T, this effect is important in a range of intermediate ρ;

this range increases for lower T.

2.5.3 The onset temperature

We have seen in Section 2.4 that in the limit of non-interacting clusters, the ratio

between ring and chain distributions is controlled by the ratio of the ring and

chain partition functions. Such ratio has a maximum at a specific ring size and

approaches zero both at smaller sizes, due to the difficulty to form rings of sizes

comparable to the persistence length, and at large sizes, where the entropy cost

of localizing chain-ends controls aggregation. Fig. 2.5 shows the ratio ρr
n

ρc
n

for the

present model, at five different T and ρ = 0.02. All the curves retain the same

shape, peaking at nc
max ≈ 10− 11, but their amplitude strongly depends on T,
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via the factor exp βFb. The T dependence provides a way of defining an onset

temperature for rings (Tonset), for example as the T at which ρr
nmax

ρc
nmax

= 1, as

exp
(
Fb

kBTonset

)
= α(nmax)n

−(3νSAW+1)
max . (2.27)

For the present model, Tonset ≈ 0.075.

2.5.4 Potential energy

Fig. 2.6 shows the potential energy per particle U/N (proportional to the num-

ber of bonds) for different T and ρ. The energy decreases in a small interval of

T, approaching a value−u0, which describes the condition in which all possible

bonds are formed, at the smallest investigated T. The figure also shows the

Wertheim theoretical predictions, both including and excluding the possibility

of ring formation. At large T, rings are negligible and both theories provide the

same predictions, but around and below the onset temperature, the presence

of rings significantly modifies the T-dependence of U, giving rise to a faster

approach to the ground state energy. The extended Wertheim theory captures

extremely well the T and ρ dependence of the energy.
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Figure 2.6: Potential energy (proportional to the number of bonds) per particle as a
function of T for several ρ values. Symbols are MC results. Lines are theoret-
ical predictions for the case in which rings are either excluded or included in
Wertheim theory.

2.5.5 Fraction of particles in rings

To globally assess the behaviour of the system, we evaluate the T and ρ depen-

dence of the fraction of particles in rings, defined as

fpr =
∑n nρr

n
ρ

=
G1

ρ
(2.28)

The results are shown in Fig. 2.7. The quantity fpr shows a non-monotonic

behaviour as a function of ρ, decreasing both for small and large densities.

The non-monotonic behaviour of fpr is a consequence of the non-monotonic

n dependence of the ratio ρr
n

ρc
n

, which is strongly peaked around nmax. Along

a constant T path, the concentration of rings is expected to have a maximum

when the average size of the aggregates is of the order of nmax (see Fig. 2.4(b)).

Hence, fpr decreases when ρ is so small that only very small clusters are present

as well as when ρ is so large that the average chain length is much longer than

nmax. Indeed, on increasing ρ, the number of bonds in the system increases (see

Fig. 2.6), favouring the formation of chains longer than nmax.

Fig. 2.7 shows also the theoretical evaluation of fpr based on the Wertheim

theory, with no fitting parameters. As for the potential energy, the theory very

accurately captures the ρ and T dependence of fpr.
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Figure 2.7: Fraction of particles in rings fpr evaluated from MC simulations (sym-
bols), and with Wertheim theory (lines).

2.6 Conclusions

Recent studies [133] have shown that an accurate modelling of chaining in

patchy particle systems in dilute conditions can be achieved via the Wertheim

thermodynamic perturbation theory, without resorting to any fitting parameter.

In this Chapter we have extended this approach to the case in which chaining

competes with the formation of ring structures, once more comparing numerical

results with predictions based on the Wertheim thermodynamic perturbation

theory, augmented to include the description of close loops of bonded parti-

cles [128, 134, 135]. While the Wertheim theory provides an expression for the

chain partition function, valid in the limit of persistent chains, the ring partition

functions is one additional input to the theory. We have resorted to a numerical

evaluation of such a quantity, consistent with the expected limits — based on

the statistic of self-avoiding walks — for large ring sized. The resulting model-

dependent expression properly describes all ring sizes at low ρ, incorporating

the non-universal properties of the KF-model.

We find that the augmented Wertheim theory properly captures the ρ and T

dependence of the aggregation phenomenon. It is able to predict with extreme

accuracy the non-monotonic behaviour of the fraction of particles in rings on

increasing ρ at low T. Indeed, the system evolves from a collection of very short

chains at extremely small densities, to a state in which almost of particles are

in rings, and back to a state in which long polymers dominate again for large

densities. The region where rings dominate is confined at low T (where the

presence of an additional bond energetically stabilizes rings as compared to a
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chain of corresponding size) and at low densities (where the average cluster size

is limited). The ρ and T dependence of the number of bonds (i.e., the energy) or

of the average cluster size of chains and rings is also predicted with very high

accuracy.

The ability of Wertheim theory to also model the delicate equilibrium be-

tween chains and rings, together with the previously explored ability of the

Wertheim theory to model the thermodynamics of chaining and branching,

suggests that it will be possible to combine the two approaches and derive an

accurate theory for systems in which rings, chains and branched structures

coexist. It is particularly important to find out under which conditions the

branching-induced gas-liquid critical point survives in the presence of ring

formation. It has indeed been shown [39] that low-valence patchy particles

are characterized by a branching driven critical point at rather low densities,

i.e. in the same region where rings can be dominant. The scenario in which

rings, chains and branched structures coexist and compete has been recently

observed in low T simulations of dipolar hard sphere fluids, in both two [149]

and three [62] dimensions, one of the canonical models for self-assembly. It has

been suggested that the observed increase in ring structures could possibly pro-

vide an example of phase separation suppressed by self-assembly [61]. Theories

developed to describe the gas-liquid phase separation in these systems mainly

focus on the delicate balance between chaining and branching [55–57]. Since the

presence of rings alters this balance, a new theoretical framework which also

takes into account rings is needed. The remarkably good agreement between

numerical results and theoretical predictions based on the augmented Werheim

reported in this Chapter strongly suggests to tackle the low-T DHS behaviour

by further extending the theory to incorporate branching. Such a study is under

way.
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Between bivalent and

trivalent systems: dipolar

fluids

3.1 Introduction

The dipolar hard sphere (DHS) model is of paramount importance in the physics

of disordered systems [59, 60, 150–153]. In the framework of limited-valence

colloids which is the topic of this Thesis, DHSs can be regarded as having a

temperature-dependent valence, which, as will be discussed in the following,

tends to 2 as temperature and density are decreased.

The DHS model consists of a point dipole embedded in the center of a

hard sphere, and it is the simplest model which incorporates anisotropic long-

range interactions. Notwithstanding its simplicity, the DHS model is still the

subject of thorough investigations, aimed in particular at understanding its low-

temperature and low-density behaviour. From a theoretical point of view, the

main difficulty arises from the fact that at low-T and low-ρ the phase behaviour

of the model is determined by the competition between condensation and

self-assembly. The condensation of dipolar particles, similar to the usual gas-

liquid phase transition, was first predicted by de Gennes and Pincus [58] after

observing that the spherically averaged interaction between dipoles is attrac-

tive. On the other hand, dipolar particles self-assemble in linear and branched

structures with the dipoles aligned in the (energetically favourable) nose-to-tail
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geometry [60, 154–157]. Indeed the first computer simulation studies, although

plagued by equilibration issues, provided evidence of this extended nose-to-tail

chaining and found contradictory evidence of a phase transition [59, 152, 158].

The anisotropic aggregation of particles which results from the self-assembly

process was long thought to be the mechanism responsible for the suppression

of isotropic condensation and the absence of a phase transition between dis-

ordered states. This belief was completely reverted by theoretical studies [55]

which showed that self-assembly alone is capable of sustaining a phase tran-

sition. The transition is hierarchical and involves a subtle balance between

chain ends, which provide an effective repulsion, and Y-shaped chain junctions,

which provide an effective attraction. The resulting competition leads to two

coexisting phases with different topology: a “gas” of chains and a network-like

“liquid” rich in junctions. The possibility of such a phase transition, which de-

pends crucially on the number density of topological defects and their scaling

with density results in a peculiar re-entrant phase diagram, in which the density

ρ of the liquid phase approaches the vanishing ρ of the gas phase on cooling.

The essential properties of the topological phase transition can be studied both

by mean-field theories [55] and thermodynamic perturbation theories [56, 57],

showing that criticality arises only if the ratio between the energy cost of junc-

tion formation over the energy cost of chain-end formation is within a specific

range of values. Whether such energy ratio in the DHS potential is consistent

with the possibility of observing a topological phase transition is still unknown.

A recent thermodynamic perturbation theory [159], in which chain association is

explicitly accounted for, suggests instead the existence of a standard gas-liquid

coexistence.

The low-T and low-ρ properties of the zero-field DHS model in three di-

mensions (3D) are hard to grasp not only from a theoretical point of view, but

also pose significant challenges to both experimental and computational studies.

From an experimental point of view one is faced with the difficulty of generating

single crystal magnetic cores of suitable size and without any residual isotropic

attraction (which would artificially promote the condensation of the dipoles).

From the computational point of view the major challenges come from the ex-

pensive long range electrostatic calculations and from the long relaxation times

of the structures (chains and networks) into which the dipoles self-assemble.

Most of the simulation studies have thus been plagued by equilibration issues

or severe finite size effects. These difficulties have inspired a lot of works to

study model systems which are easier to solve numerically and that converge
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asymptotically to the DHS as a function of some parameter [151,160–162]. Based

on extrapolation of DHS plus an attractive isotropic Yukawa component [151],

binary mixtures of apolar and dipolar hard-spheres [161] or charged dumb-

bells [160, 162] the location of the putative gas-liquid critical point has been

restricted to the window ρ . 0.1 and T < 0.16.

Another line of research concentrated on the mapping between patchy par-

ticle models and DHS [143]. A first attempt, which focused on the study of

temperature-dependent valence models [56, 57], successfully located the topo-

logical phase transition and found a very good agreement with theoretical

predictions. Another example, patchy particles which self-assemble in rings

and chains which then compete at low densities and temperatures, is provided

in Chapter 2.

In this Chapter, we use highly efficient simulation techniques and extended

computational resources to address the question of whether a gas-liquid phase

transition exists in DHS. These techniques allow us to access in equilibrium

the temperature region where theories and previous numerical attempts had

predicted a gas-liquid coexistence [151, 159–162]. We definitively prove that no

sign of critical behaviour is observed. The analysis of the low-T data reveals that

the reason for the absence of the topological phase transition in the investigated

phase diagram region is not related to a high energy cost of junction formation,

as in one of the expected theoretical scenarios, but to the breakdown of the

mean-field approximations at low-T and low-ρ. These results open up a new

scenario for DHS, where new theoretical modelling is needed in order to explain

its phase behaviour.

As a first step in this endeavour, in the second part of the Chapter we care-

fully study the structural properties of the DHS fluid at low-T and low-ρ in

order to generate information that can be used to provide appropriate parame-

ters which can help mapping DHS into patchy particles models [143] that can

be analytically solved within the Wertheim formalism [130, 131]. In Chapter 2

we make a step forward in this direction. We provide detailed structural in-

formation as well as a study of the aggregate topologies to provide accurate

data for refined theoretical modelling. In particular, we focus on chains and

rings, which are the most common structures found in low-T, low-ρ DHS flu-

ids [140, 149]. The interplay between these structures has been the center of

numerous studies. Small-angle neutron scattering [138, 163, 164] and TEM [165]

experiments have shown that the structure factor at small wavelengths displays

a power-law behaviour due to the aggregation of particles in finite-size and
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Figure 3.1: (a) Nose-to-tail contact configuration corresponding to an absolute
minimum in the interaction energy of u = −2 (in natural units). The arrows
represent the point dipole embedded in the hard spheres. (b) Anti-parallel
contact configuration corresponding to a relative minimum of u = −1. (c) A
single DHS with northern (blue) and southern (red) virtual bonding regions
highlighted.

long-lived clusters. Many numerical and theoretical approaches were devoted

to interpreting the structural signatures of low-T ferrofluids [136,166–170]. Sim-

ulations in quasi two dimensions suggested that at very low T and ρ the system

is mainly composed of isolated rings. Indeed, it has been theoretically shown

that the ground state in quasi-2D systems is a single ideal ring for sizes larger

than 4 [171]. As density is increased the average size of rings increases until

they break into open chains [139] due to entropic effects. As density is further

increased the chains start branching until they form a percolated network [149].

We find that the DHS model at low T exhibits remarkable and unusual

behaviours like a very low density percolation locus and a stabilization of rings

over chains, resulting in a depletion in the number of chain ends. We speculate

that this excess number of rings is a possible mechanism for suppressing the

gas-liquid phase separation.

In Section 3.2 we present the model and the state-of-the-art numerical tech-

niques employed to tackle this long-standing open problem. Section 3.3 shows

results on phase behaviour and structural properties of the DHS fluid at low

densities and temperatures. In Section 3.4 we summarise our findings and

outline possible extensions.
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3.2 Methods

3.2.1 Model and computational details

The pair interaction potential between two dipolar hard spheres i and j is

u(i, j) = uHS(rij) +
µi · µj − 3(µi · r̂ij)(µj · r̂ij)

r3
ij

(3.1)

where rij is the vector connecting the centres of particles i and j, rij =
∣∣rij
∣∣,

uHS(rij) is the hard sphere potential and µi is the dipole moment of particle

i. In the following, the Boltzmann constant kB = 1, β = 1/T, lengths are

measured in units of the particles diameter σ and energy in units of µ2/σ3. In

these units, the most energetically favourable configuration is the nose-to-tail

contact geometry, with a energy contribution of u = −2 (Fig. 3.1(a)). This

absolute minimum is responsible for the characteristic chain-like structures

which become prominent at low T. A relative minimum arises from the side-

by-side anti-parallel geometry, corresponding to a pair interaction energy of

u = −1 (Fig. 3.1(b)).

The long range nature of the dipolar interaction and the clustering process

hinder the possibility of carrying out equilibrium simulations in the low T (T .

0.2), low ρ region via conventional methods. Indeed, when thermal fluctuations

become of the order of one tenth of the head-tail energy, a significant chaining

process starts to take place. In order to explore the low-T and low-ρ region

in equilibrium we implement special Monte Carlo state-of-the-art moves and

techniques specifically aimed at the DHS system.

Long range dipolar interactions are taken into account using Ewald sums

with conducting boundary conditions [172]. In order to improve performance

we use a mesh-based cubic spline interpolation for cosines and sines calcula-

tions, resulting in a ∼ 30% speed-up. Such approximation yields a precision in

the energy evaluation of 10−6.

Aggregation-volume bias algorithm for dipolar particles

One of the biggest difficulties in the simulation of self-assembly processes is

the fact that the structures which are formed are located in a very small region

of the phase space, and are thus difficult to sample. Moreover, once these

structures are formed, the breaking of bonds becomes a rare event, which

prevents sampling of independent configurations. An efficient way to overcome
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these difficulties is to facilitate the formation and breakage of bonds via biased

Monte Carlo moves [172]. In this work we adapt the aggregation-volume-bias

(AVB) algorithm [146] which, given the definition of the region around each

particle where bonds are stronger, accelerates both bond formation and bond

breakage by moving particles inside and outside of these regions.

For DHS the most favourable bonding configurations correspond to the

head-tail geometry, as shown in Fig. 3.1(a), and we thus define two virtual

bonding regions (BR) on the poles of each particle. A bonding move con-

sists in selecting the bonding region of a particle (say for example the north

pole), and then moving the complementary pole (south pole) of another par-

ticle inside this region. The reverse move consists instead in moving a par-

ticle out of the bonding region to a random location in the sample. Follow-

ing the Kern-Frenkel idea [144], the bonding regions are shaped as truncated

cones (Fig. 3.1(c)) of angular width θ = 0.873 rad (cos(θ) = 0.64) and range

δ = 0.4σ. Two particles i and j are considered virtually bonded if their rela-

tive distance is smaller than σ + δ and if µi · µj > cos θ, corresponding to a

volume VAVB = 4
3 π
[
(σ + δ)3 − σ3] 1−cos θ

2 = 1.3 σ3. We define Ni as the num-

ber of particles which are in the BR of i. More precisely, two AVB moves are

introduced [146]:

1. With probability pAVB we choose a random particle i and then we choose,

randomly, another particle j which is in the BR of i. We move particle j

out of the BR of particle i, inserting it with a random orientation. If no

particles are found in the BR of i, the move is a priori rejected. We accept

the move with probability

pin→out =
1− pAVB

pAVB

Ni(4πV −VAVB)

(N − Ni)VAVB

e−β∆U .

2. With probability 1− pAVB we choose a random particle i and a random

particle j which is not inside the BR of i. We move particle j inside the BR

of particle i with a proper orientation to guarantee virtual bonding. We

accept the move with probability

pout→in =
pAVB

1− pAVB

(N − Ni − 1)VAVB

(Ni + 1)(4πV −VAVB)
e−β∆U .

The value of pAVB can be used to tune the relative acceptance probabilities for

these two moves. A value of pAVB = 0.5 was adopted throughout this work. We
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have thoroughly tested the AVB algorithm for models of associating particles

where chaining and branching are dominant [56, 57]. We found that the AVB

moves allow for equilibration down to temperatures kBT/ub ' 0.060, where ub

is the typical bonding energy. This maps into T ≈ 0.12 for the DHS case, where

ub ≈ 2. Note that the implemented AVB algorithm only acts on the process

of forming and breaking chain structures. The process of breaking/forming

branching points is equilibrated by standard Monte Carlo roto-translational

moves, i.e. moves in which a random displacement and/or rotation is applied

to each particle. Indeed, branched configurations are characterized by ub values

smaller than the nose-to-tail ones and, in the context of associating particles

models [56, 57], the AVB algorithm does not result in any significant speedup

when encoded also for branching interactions. We fix a 1:1 frequency ratio

between roto-translations and biased moves. In the following, we define a MC

step as N attempts to perform a rotation/translation or an AVB move (where

N is the number of particles in the system). A measure of the efficiency of the

AVB method will be provided in Fig. 3.2, where the bond-bond autocorrelation

function is reported.

Biased insertion/deletion moves

Since in the low-T, low-ρ DHS fluid most particles are part of a long-living

polymer network, the energy required to extract one particle is very high and

regular grand-canonical MC (GCMC) moves have a very low acceptance ratio.

In order to overcome this limitation, we adopt the technique introduced by

Caillol [150] (and adapted for grand canonical MC by Ganzenmüller et al. [151])

to speed-up equilibration and sampling. The value of the local electric field

E ≡ E(r) is computed, where r is either the trial inserting position for insertions

or the position of the particle to be removed for deletions. Since µ · E = µE cos θ

is the interaction energy with the field, the Boltzmann distribution of the dipole

orientation is given by

f (cos θ) =
βµE exp(βµE cos θ)

2 sinh(βµE)
. (3.2)

For insertions, a biased random angle between the dipole and the field can

be readily obtained from Eq. (3.2) from a generated random number R ∈ [0, 1]

via

cos θ =
1

βµE
log [2R sinh(βµE) + exp(−βµE)] . (3.3)

— 57 —



Chapter 3 Section 3.2

The acceptance probabilities for such orientationally biased insertions (N →
N + 1) and deletions (N → N − 1) become, respectively,

pN→N+1 = min
[

1,
0.5

f (cos θ)

zV exp(−β∆U)

N + 1

]
(3.4)

pN→N−1 = min
[

1,
f (cos θ)

0.5
N exp(−β∆U)

zV

]
(3.5)

where z is the activity at which the simulation is performed. The factor 0.5

accounts for the value that the function f (cos θ) takes in the ideal-gas case [151].

In GCMC simulations, the frequency of insertions/deletions, AVB moves

and regular rotations/translations is, respectively, 1:50:50.

Successive Umbrella sampling

Finally, to uniformly sample the particle density of states (despite the large

free energy difference between low and high density phases at fixed activity),

and to effectively parallelise our simulations, we perform successive umbrella

sampling (SUS) simulations [173]. With this method, the region to be explored

is partitioned in overlapping windows of ∆N particles. Each window is then

sampled with GCMC simulations with appropriate boundary conditions [174],

providing a speed-up proportional to the number of windows explored in

parallel (200 in our case). The SUS method allows us to obtain the distribution

of density fluctuations P(ρ) at fixed activity z = eβµ (where µ is the chemical

potential). We then evaluate P(ρ) at different z and nearby T by means of

histogram reweighting techniques [175].

3.2.2 Bond definition and cluster classification

To quantify the connectivity properties of the system a definition of a bond

between a pair of particles is required. Given the continuous nature of the

dipole-dipole interaction, bonding can not be unambiguously defined. In the

past, criteria based on cut-off distances [149, 151] or pair interaction energy

thresholds [59, 151, 166, 168, 176–178] have been proposed. Since sharp energy

thresholds may lead to an underestimation of the branching, which is a key

factor in topological phase transitions, and since the position rb of the first

minimum of the g(r) is not very sensible to T or ρ (see Section 3.3.5), we combine

the two approaches and define in the following particles i and j as bonded
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MC steps #MC for four different densities and T = 0.125 (full lines), T = 0.155
(dashed-dotted lines) and T = 0.170 (dashed lines).

if rij < rb = 1.3 and u(i, j) < 0. This criterion is somewhat similar to the

”entropic” criterion proposed by Holm et al. [168], with the difference being that

the criterion employed here takes into account also the role of the branching

due to anti-parallel geometry, which is not considered by the latter. Since this

type of branching occurs only at intermediate (ρ & 0.05) densities, the two

criteria are equivalent in the low-ρ limit.

To provide evidence that the length of our simulations is sufficiently long to

probe equilibrium states, we evaluate the bond-bond autocorrelation function

Cb(#MC ). This quantity is defined as the probability that a bond existing at the

beginning also exists after #MC steps, quantifying how fast the network topology

rearranges. Fig. 3.2 shows Cb(#MC ) for three temperatures: T = 0.125, 0.155

and 0.170. It is interesting to observe that, at very low T, the system loses

memory of its initial state faster at higher ρ. This is consistent with the fact

that, at such T, the lowest energy geometry is the one in which a particle is

in the core of an isolated infinitely long chain. We also note that the shape

of the correlation function can be properly modelled via a weakly stretched

exponential (stretching parameter ≈ 0.9), reflecting the different local bonding

geometries.

Employing the previous bonding criterion, we classify all clusters according

to their bonding topology in three groups:

• chains: clusters containing two ends (i.e. particles with just one bonded
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Figure 3.3: Typical snapshots of equilibrium configurations of DHS at T =
0.125, 0.140, 0.155 and ρ = 0.007, 0.028, 0.056, 0.140. The different cluster topolo-
gies are depicted with different colors: chains (blue), rings (red) and branched
structures (green).

neighbour) connected by particles with only two bonded neighbours;

• rings: clusters containing only particles with two bonded neighbours;

• branched structures: clusters containing at least one particle with more

than two bonded neighbours.

3.3 Results

To provide a pictorial representation of the studied systems, Fig. 3.3 shows

snapshots of equilibrium configurations of DHS systems at three different tem-

peratures and for the whole range of studied densities. Two trends are already

clearly distinguishable. First, as ρ increases, both chains (in blue in the picture)

and rings (in red) progressively merge together to form branched structures

(in green). Secondly, a decrease in T is accompanied with an increase in the

number of rings, at the expenses of the chain structures.

In the following we study in detail the thermodynamic and structural prop-

erties at all these state points.
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3.3.1 Distribution of density fluctuations

We have investigated three different T, namely T = 0.125, 0.140 and 0.150, all

below the lowest estimate T = 0.153 at which the critical point is predicted to

be located [151, 159, 161, 162, 179]. We investigate a system of up to N = 1000

particles in a box size of L0 = 19.26 via windows, overlapping by one particle,

of width ∆N = 6. This corresponds to the density region ρ ∈ [0, 0.14].

Fig. 3.4 shows the main result of this Chapter, P(ρ) for several values of

z and T. On decreasing temperature, the noise level increases, signalling the

difficulty of properly sampling configuration space, despite the length of the

simulation (extending to ten months of computation for each of the 200 Xeon

5550 CPU cores). For all T, the shape of P(ρ) excludes the presence of a gas-

liquid coexistence down to T = 0.125. Two minor peaks are also found, both

located at very low densities. A peak at N ∼ 10− 15 (corresponding to ρ ∼
0.0015− 0.002) is observed at all T. One further peak around N ≈ 20− 25

appears at T = 0.14 and becomes prominent at the lowest T, as shown in the

inset of Fig. 3.4(c). To identify the nature of these two peaks we perform a

finite size study of the low density region at T = 0.140. We run simulations

at different box sizes L, chosen in such a way that L3 = k · L3
0 with k integer.

In absence of finite size effects, if a box of volume V is split in k small parts of

volume V0, then the probability of having N particles in the larger box depends

on the probabilities of finding 0, 1, . . . , N particles in the smaller box, and thus

an expression that directly connects the distribution of density fluctuations at

a given volume V = L3 P(N; V) to the original P(N; V0 = L3
0) can be derived.

For example, if k = 2 and N = 2, then P(2; V) = 2P(2; V0)P(0; V0) + 2P(1; V0)
2.

The generalised expression reads

P(N, kV0) = ∑
i1

∑
i2

... ∑
ik

δ(N − i1 − i2 − ....− ik)P(i1, V0)P(i2, V0)...P(ik, V0).

(3.6)

Fig. 3.5 shows that the second peak is present only for the smallest box, and

hence it is definitely a finite size effect. The inset, showing the difference occur-

ring for N & 25 in the rescaled distributions of density fluctuations, confirms

this hypothesis. The first peak at N ∼ 10− 15, on the other hand, is a feature of

the system and not a finite size effect since it is always present and its location

does not scale with the box size. The presence of constant N peaks is typically

associated with self-assembly processes of aggregates with a preferential size,
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which does not depend on the system volume [180, 181]. The second peak

reflects the presence of linear chains which percolate via boundary conditions.

Compared to chains of the same size, they are energetically stabilized by the

presence of one additional bond.

As the DHS system does not exhibit any sign of gas-liquid criticality in

the window 0.125 < T < 0.150 and 0 < ρ < 0.14, i.e. even well below the

region where such critical point was predicted to be located, we are interested

in the mechanism responsible such a suppression of the phase separation. We

speculate that the absence of gas-liquid criticality is related to the fact that the

low ρ non percolating fluid, being very rich in rings, is in a state in which all

particles are close to their ground state energy and which has a larger trans-

lational entropy compared to the percolating phase. In order to back up this

claim, in the next sections we perform large-scale NVT simulations of DHS

systems composed of N = 5000 particles at six different densities (ρσ3 = 0.007,

0.028, 0.056, 0.084, 0.114, 0.140) and four different temperatures (T = 0.125,

0.140, 0.155, 0.170).

We note that the box sizes employed in the simulations (whose values range

from 33 to 90, depending on the density) are about one-order of magnitude

larger than the average chain persistence length (see Section 3.3.6). In addition,

we check that chains never percolate. Moreover, when a percolated network is
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present, the mesh size of its structure is always significantly smaller than the

box length.

3.3.2 Cluster size distributions

To clarify the origin of the self-assembly peak we investigate in detail the struc-

ture of the fluid at low T, analysing NVT configurations. The number of parti-

cles employed (N = 5000) and the large box sizes, beside improving the quality

of the data, suppress any finite size effects associated with percolating chains.

Based on the bonding criterion adopted, we partition particles into chains, rings

or branched clusters [59, 149, 151, 177], according to their topology. We find that

clusters with s . 40 are mostly rings or chains, i.e. only a few junctions are

present in small clusters. Beyond a certain ρ, the system is always percolating,

that is, more than 50% of its equilibrium configurations contains a spanning (in-

finite) cluster. The percolation ρ becomes as small as ρ ≈ 0.01 when T = 0.125,

as shown in Section 3.3.6. The ρ dependence of the cluster size distribution

n(s) is shown in Fig. 3.6(a). A peak at N ≈ 10− 15, i.e. at the same location as

the one observed in P(ρ), is present at all T, confirming that such a peak arises

from the preferential self-assembly of the particles in particular clusters. Sepa-

rating n(s) in its ring (nr(s), Fig. 3.6(b)), chain (nc(s), Fig. 3.6(c)), and branched

components, allows us to identify the rings as the structures responsible for

the peak. Indeed, nr(s) is non-monotonic, shows a tail which becomes progres-

sively extended on cooling and is peaked at N ≈ 10− 15. nc(s) is monotonic

and decays exponentially only for large s, suggesting that the free energy cost

of adding a particle to a chain becomes independent of the chain length only

for s & 20. The slope of the exponential tail decreases on cooling, signalling the

progressive increase of the average chain length [59, 177].

At the lowest T rings of size 10 . s . 100 become more probable than

chains of the same size and the total number of particles in rings Nr (inset of

Fig. 3.6(b)) becomes larger than the number of particles in chains Nc (inset of

Fig. 3.6(c)). Such an increase in Nr on lowering T and ρ offers a possible hint on

why the critical phenomenon is not observed. Indeed, rings are characterized

by a small net total dipole moment, resulting in a small effective ring-ring

interaction. The low density DHS thus progressively turn into a fluid of weakly

interacting aggregates, providing an example of phase separation suppressed

by self-assembly [182, 183].
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Figure 3.6: (a) Number of clusters n(s) of size s at T = 0.140 and different ρ
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3.3.3 Chain-ends and Y-shaped junctions

To test the topological phase transition hypothesis we examine the ρ dependence

of the concentration of chain ends ρe (particles with just one bonded neighbour)

and of junctions ρj (particles with three bonded neighbours). In the mean-

field TS theory both ρe and ρj follow a power law in ρ with exponents 1/2

and 3/2, respectively. These exponents play a major role, controlling the ρ

dependence of the system free energy and thus dictating the origin of the phase

separation. Fig. 3.7 shows ρe and ρj for all the studied state points. We first

note that only for ρ > 0.007, do ρe and ρj follow a power-law, but with a T-

dependent exponent. Moreover, the exponents appear to approach the values

assumed in the TS theory only at the highest T studied. This strongly suggests

that the competition between topological defects is not a viable mechanism for

sustaining a critical point in DHS.

3.3.4 Potential energy

Next we compute the configurational potential energy per particle U. Fig. 3.8

shows U as a function of ρ for all studied T. The energy shows a very weak

ρ dependence, especially on lowering T, a clear signature of the onset of a

— 66 —



Section 3.3 Chapter 3

0 0,02 0,04 0,06 0,08 0,1 0,12 0,14
ρ

-2

-1,9

-1,8

-1,7

-1,6

-1,5

-1,4

-1,3

-1,2

-1,1
U

(ρ
)

T = 0.125
T = 0.140
T = 0.155
T = 0.170

0,12 0,13 0,14 0,15 0,16 0,17

T

-2

-1,9

-1,8

-1,7

-1,6

U
p

Figure 3.8: Potential energy per particle U(ρ) as a function of ρ for different T.
Points are NVT results, solid lines are µVT results. Dashed lines are guide for
the eye. Inset: height of the plateau Up for T = 0.125, 0.140 and 0.155.

self-assembly process [155, 184]. Indeed, self-assembly is characterized by the

formation in the fluid phase of well defined structures (clusters), in which

particles have a characteristic energy. When increasing density results only in

an increase in the number of such structures, then the energy does not depend

significantly on density.

To provide hints on the origin of the energy saturation with ρ, we examine

the energy of clusters of different size. As we will discuss in more details in

the following, at the lowest ρ most of the particles are in chains and rings. On

increasing ρ, the number of particles in chains and rings drops in favour of

extended branched structures, which percolate beyond a critical ρ. Here we

focus primarily on chains and rings. The intra-cluster energy of chains and

rings in the context of the DHS model has been previously addressed [149]. An

expression for the ground state energy per particle ec(s) in a chain of size s has

been proposed, based on the assumption that chaining produces a rescaling by

a factor α (to take into account beyond-nearest neighbours interactions), of the

dimer head-to-tail ground state energy−2µ2/σ3. According to this assumption,

each bond contributes an energy α(2µ2/σ3). Since there are s− 1 bonds in a

chain, ec(s, T = 0) = α(2µ2/σ3) s−1
s . This ground state expression has been

generalised at finite T [149] by retaining the s dependence as:

ec(s) = −ec
0 +

ec
1
s

. (3.7)

Here ec
0 is the bond energy for infinite long chains and ec

1 accounts for finite size
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effects.

A similar approach can be applied to rings. Since the angle between the

dipole moments of two nearest-neighbouring particles in a ring of size s is 2π/s

, the ring energy at T = 0 can be written as α(2µ2/σ3)
[
3 + cos

( 2π
s
)]

/4, whose

finite T generalisation reads [149]

er(s) = −er
0 +

er
1

s2 . (3.8)

All the coefficients, namely ec
0, er

0, ec
1, and ec

1, are expected to depend only on

T.

Fig. 3.9 shows er(s) and ec(s) as a function of the cluster size for a system

at T = 0.125 and ρ = 0.007 and the corresponding fit according to Eq. (3.7)

and (3.8). The fit properly represents the s dependence of the particle energy.

The asymptotic value ec
0 representing the average bond energy in large chains,

is reached only when s & 100. The asymptotic value er
0, referring to rings, is

instead reached when s & 50, as expected on the basis of the s−2 dependence

in er(s). ec
0 and er

0 are almost ρ independent and the fit provides the same

value e0 within statistical error. The T dependence of e0 is presented in the

inset of Fig. 3.9. e0 decreases with T, possibly due to the reduced vibrational

contribution to the potential energy. To confirm the vibrational nature of the T

dependence of e0 we evaluate the inherent structures (IS) [185,186], by minimiz-

ing the energy of a set of equilibrium configurations at ρ = 0.007 and T = 0.125.

The functional form describing the s dependence of the chains and rings re-

mains identical. The average bond energy in the IS configuration is −2.33,

to be compared to the value of the energy per particle in the close-packed anti-

ferromagnetic configuration, equal to−2.56 [58]. The inset also shows that the T

dependence of e0, including the T = 0 inherent structure value, can be modelled

assuming a weak anharmonicity as e0(T) = −2.34 + 2.5kBT + 3.84(kBT)2.

The best-fit values of the remaining fitting parameters (ec
1 and er

1) are shown

in Fig. 3.10. Such values are very similar to the ones found in 2D DHS [149].

3.3.5 g(r) and S(q)

To quantify the structural changes of the DHS fluid at different T and ρ, we

compute the radial distribution function g(r). The g(r) provides information

on the relative distance between particles in the system. Fig. 3.11(a) shows

the T effect on g(r) at densities ρ = 0.007 and ρ = 0.140 (inset). The g(r) is

well structured even at the highest investigated T. Upon lowering T, minima
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deepens and the height and sharpness of the peaks increases. At large r, g(r)

approaches one from above, reflecting the presence of spatial inhomogeneities,

intrinsic to the cluster structure of the system. Similarly, the radial position

of the third and of the following peaks increases. The first two phenomena

highlight the increasing bond localization which takes place in this T region.

The shift of the secondary peaks towards values of r which are multiple of

σ suggests that chains become straighter on cooling, or, in other words, the

persistence length of the chains increases. It is interesting to observe that the

first peak becomes more and more resolved on cooling, and that the amplitude

of the first minimum approaches zero. Under these conditions, the bonding

criterion based on the relative distance becomes precise.

At higher ρ (inset of Fig. 3.11(a)), the system always contains a percolating

structure (see Section 3.3.6) and the g(r) becomes more similar to the one ob-

served in simple fluids. Now at large r, g(r) oscillates with periodicity σ around

one. The shape of the peaks is still asymmetric, reflecting the preferential one-

dimensional growth of the equilibrium aggregates.

In order to clarify the effect of ρ on the structure, we study the number of

neighbours n(r) within a sphere of radius r centred on an arbitrary particle,

defined as

n(r) = 4πρ
∫ r

0
r2g(r′)dr′. (3.9)

The result is shown in the inset of Fig. 3.11(b) for T = 0.125. For low and

intermediate ρ, a plateau develops for 1 < r < 2 in which n(r) ' 2, a clear

evidence that, locally, particles are coordinated with only two neighbours, i.e.

that the system associates mostly in chains and rings. At high ρ, the number of

neighbours in the first shell increases, signalling the presence of branching and

the formation of more complex structures.

The large value of the low q limit of the structure factor S(q), calculated as

S(q) = 1
N

〈
∑N

i=1 ∑N
j=0 eiq·(ri−rj)

〉
and presented in Fig. 3.12, provides another

signal of the strong association occurring in the system. Indeed, in a system

of independent (ideal gas) clusters, S(q) reflects the properly averaged cluster

form factor and it approaches the second moment of the mean cluster size when

q → 0. The most visible T effect can be found in the shape of the first peak,

which becomes more and more asymmetric upon lowering T, an effect due to

the presence of longer and longer chains [3, 176]. At larger ρ (see Fig. 3.12(b)),

interference between different clusters (which are now connected in a percolat-

ing network), significantly lowers the small-q value of S(q). Interestingly, no
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Figure 3.11: (a) g(r) for all the studied temperatures at ρ = 0.007 (main panel)
and ρ = 0.140 (inset). (b) g(r) at fixed T = 0.125 for different densities. Inset:
average number of neighbours n(r) for the same state points.
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ρ = 0.140 (dashed lines). The ρ = 0.007 data has been shifted upwards by
adding 1. Dashed lines are power-law curves with exponents −1 (orange) and
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significant T dependence is observed, suggesting that the system has reached

its final structure and only minor changes take place. Such a property is charac-

teristic of equilibrium gels [3, 145]. The only effect of decreasing T is visible in

the small increase in the height and asymmetry of the first peak.

S(q) shows a clear change of “scaling” behaviours in different q-windows..

The low-q behaviour of the structure factor can often be related to the fractal

dimension D of the aggregates via S(q) ∝ (qσ)−D. As Fig. 3.12 shows, the

region where a power-law behaviour is clearly and unambiguously observed is

less than one decade. Under these conditions, it is extremely hard and possibly

misleading to extract exponents. A slope of the order of one, consistent with

a strong signature from chains, is consistent with the scaling at small q in the

region 0.3 . q . 1 [170].

3.3.6 Connectivity properties and degree of polymerization

We now explore the global connectivity properties of the DHS model. In

particular, we evaluate the percolation locus, separating percolating and non-

percolating state points. Percolation (via physical interactions) is a pre-requisite

for the onset of a second-order critical phenomenon [187]. Indeed, both in

spherically interacting potentials [188], as well as in limited-valence patchy

interactions [189], on cooling the percolation line is always encountered before

the gas-liquid instability line. We define a state point as percolating if more
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Figure 3.13: Percolating (black circles) and non percolating (red squares) state
points. The percolation line passes near the T = 0.125, ρ = 0.007 state point,
which has almost half of the configurations (∼ 49%) containing a spanning clus-
ter. The blue symbols are the state points where the degree of polymerization
Φ ≈ 0.99.

than half of its configurations contains a spanning cluster, i.e. a cluster which is

connected to itself via periodic boundary conditions. The results of this analysis

are summarized in Fig. 3.13. The percolation threshold extends to very low ρ

(as low as ρ ≈ 0.01 for the lowest studied T in equilibrium). This result once

more suggests that the system is composed of rather long chains connected via

branching points.

Another interesting observable in the study of the self-assembly process is

the so-called degree of polymerization Φ, commonly defined in self-assembly

studies as the fraction of particles associated into clusters [133, 190] (1−Φ is

conversely the fraction of particles in monomers). In the T-ρ window explored

in the present study, the degree of polymerization is always very close to one

(we find that Φ > 0.95 for every studied state point but T = 0.170, ρ = 0.007).

To provide a reference for further study we report in Fig 3.13 the locus Φ = 0.99.

3.3.7 Chains and rings at low densities

In this section we investigate the properties of chains and rings at low ρ (ρ =

0.007). We aim at providing accurate quantitative data on the structure of these

clusters in the limit in which excluded volume cluster-cluster interactions are

limited and the system can be in first approximation considered as a mixture of

poly-disperse non-interacting clusters.
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The fraction of particles involved in chains, rings and other branched struc-

tures at ρ = 0.007 and ρ = 0.028 is shown in Fig. 3.14. As shown by the figure,

upon lowering T at fixed ρ, the fraction of particles in chains diminishes and

the majority of the particles belongs to large branched structures. On further

cooling, these particles would give rise to a percolating structure, despite the

small average ρ. The decrease in the number of particles in chains on cool-

ing has thus a double origin. On one hand, rings becomes more stable than

chains (at comparable size) and indeed the number of particles in rings in-

creases on cooling, and on the other hand, chains become longer and hence

have a larger probability to branch. Despite this effect, even at the lowest T,

a significant fraction of particles is still in chains and rings. This allows us

to carry out an analysis of the properties of such structures, similar to what

has been done in the past in the investigation of equilibrium polymerization

in which ring formation is allowed [125, 126]. It is interesting to observe that

the condition nr(Tx) = nc(Tx) implicitly defines a cross-over temperature Tx,

below which rings start to play a significant role. In the studied ρ-window we

find 0.125 . Tx . 0.14, a value within the range of temperatures previously

estimated in quasi two-dimensional simulations [171]. In the model studied

in Chapter 2 we have defined in a similar way an onset temperature at which

rings of a size are more abundant than chains of the same size, finding the

value Tonset ≈ 0.75. Rescaled by the minimum energy configuration of DHSs

particles, this value would correspond to a DHS temperature ≈ 0.15. Fig. 3.14

shows also the fraction of rings as a function of temperature for a wide range

of densities. As expected, there is a qualitative resemblance with Fig. 2.7: the

curves are non-monotonic and the peaks grow upon lowering T and move to

lower and lower densities.

We start by calculating the radius of gyration Rg(s) of rings and chains of

size s (Fig. 3.15). In the scaling limit, i.e. for large s,

Rg(s) = b · sν, (3.10)

where the pre-factor b is model (and, in principle, T) dependent, while the

exponent ν = 0.5 for a random walk and ν = 0.588 in the case of a self-avoiding

random walk (SAW) [191]. Rg(s) appears to be rather insensitive to T. Indeed,

both the chain and the ring radii of gyration do not display any significant

change upon lowering T. In the limit of large s, i.e. s > 20, for both chains and

rings a power-law dependence (Eq. 3.10) sets in, but with an exponent ν ≈ 0.7
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Figure 3.14: Fraction of particles in chains (circles), rings (squares) and branched
structures (diamonds) for all the studied temperatures and (a) ρ = 0.007 and
(b) ρ = 0.028. (c) Fraction of particles in rings for all the investigated T plotted
against density.
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significantly larger than the one expected for a SAW chain. While we can not

exclude the possibility that we are observing an intermediate cross-over region,

the difference with the SAW exponent is significantly large to question if dipolar

chains and rings belong to a different universality class. Indeed, in a previous

study on the Stockmayer fluid [190] (i.e. in which the hard-sphere potential

is replaced by a Lennard-Jones one) a similar value of ν was observed. The

average end-to-end distance of chains, Ree(s), is also shown in Fig. 3.15. Like

Rg(s), Ree(s) is rather T independent and scales, within numerical uncertainty,

with the same exponent ν ≈ 0.7.

To further characterize the chain geometry, we evaluate the angular correla-

tion 〈cos(θ)〉(n), where cos(θ) = µ̂i · µ̂j, i and j are two particles belonging to

the same chain, n is the ”chemical” distance between them (i.e. the number of

bonds separating the two particles) and angular brackets indicate an average

taken over all pairs of particles (in the same chain) which are separated by n.

We compare its behavior with the expected functional form

〈cos(θ)〉(n) = exp
(
− n

lp

)
(3.11)

where lp is the chain persistence length. Fig. 3.16(a) shows both 〈cos θ〉(n) and

the best fits to Eq. (3.11). Table 3.1 reports lp for all studied T. Unlike b in

Eq. 3.10, lowering T from T = 0.170 to T = 0.125 results in a ∼ 100% increasing
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T l̄ lp e0

0.125 64.2 4.6 -1.98
0.140 37.9 4.44 -1.92
0.155 15.2 2.87 -1.86
0.170 7.25 2.35 -1.79

Table 3.1: Average chain length l̄, persistence length lp and asymptotic mean in-
ternal energy per particle in chains and rings e0 at ρ = 0.007 for all the studied
temperatures.

of lp.

To conclude, we analyse the mean squared magnetic moment of chains of

size n, 〈mn〉. Mendelev and Ivanov have provided a parameter-free expression

for 〈mn〉 in the dilute limit [192]

〈mn〉 =
√

n + 2
K

(1− K)2 (n− 1 + Kn − nK) (3.12)

where K = coth(β/2)− 2/β. Fig. 3.16(b) shows simulations results and predic-

tions from Eq. 3.12 for 〈mn〉 for two different T and ρ = 0.007. The theoretical

predictions are in rather good agreement with numerical results.

Next we focus on the chain distribution nc(s), the number of chains of size s.

Fig. 3.17(a) shows the first moment of the distribution, the average chain length

l̄ for all studied state points. Interestingly, at high T, l̄ shows a non-monotonic

dependence as a function of ρ. This is in stark contrast to what expected from

an equilibrium polymerization process, in which only chaining is present. In

mean field, l̄ is predicted to scale as l̄ ∼ ρ1/2 [193]. The presence of a maximum

stems from the equilibrium transformation of chains into branched structures.

Indeed, within a mean-field description, the density of chains (ρc) increases

with the density of chain ends (ρe) and decreases proportionally to the density

of junctions (ρj), thus ρc = k1ρe − k2ρj, where k1 and k2 are proportionality

factors and l̄ ∼ ρ−1
c . The corresponding scaling of ends and junctions is [55]:

ρe ∼ ρ1/2e−εe/T , and ρj ∼ ρ3/2e−εj/T , where εe and εj is the energy cost of

ends and junction respectively. By taking the derivative of the expression of

the density of chains with respect to ρ, a minimum in ρc appears, resulting in

a maximum for l̄ at ρ∗ ∼ e−(εe−εj)/T . Note that εe − εj is the energy released

when a chain end bonds to form a junction, suggesting indeed that the density

maximum is related to the assembly of the chains in branched networks.

Fig. 3.17(b) shows the same l̄ values but as a function of the reduced number

density of particles in chains ρc. In this representation, the internal equilibrium
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Figure 3.16: (a) Average angular correlation 〈cos θ〉(n) between particles as a func-
tion of the chemical distance n along the chain (symbols). Lines are exponential
fits to Eq. (3.11) restricted to small n. (b) Eq. (3.12) (dashed lines) and simulation
results (symbols) for the mean squared magnetic moment 〈mn〉 as a function of
the chain length n for two different T.
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Figure 3.17: (a) Log-log plot of the average chain length l̄ as a function of ρ for all
the studied temperatures. (b) Same data but plotted as a function of the rescaled
density Nc/V, where Nc is the number of particles in chains.

within the chain sub-system is considered and l̄ returns to be a growing function

of ρc, even if only in a finite interval. In this window, the ρc dependence of

l̄ is consistent with a power law behavior, but with a T-dependent exponent,

between 0.6 and 0.75. As recalled before, in linear polymerization mean-field

approaches predict in the low-T, low-ρ region an exponent 0.5 [133, 193, 194].

More accurate approaches predict, for dilute systems, 0.46± 0.01 [193].

The ring cluster size distribution nr(s) is shown in Fig. 3.18(a). The number

of rings grows significantly on cooling, favoured by the additional energetic sta-

bility of rings as compared to chains of equal length provided by the additional

bond. It has been suggested, on the basis of a Flory-Huggins-type mean-field
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approximation [126] that nr(s) can be represented as

nr(s) = c exp
(
− s

l̄

)
s−h (3.13)

where c is a normalization constant and h is a characteristic, T independent

exponent. As shown in Fig. 3.18(a), imposing the known l̄ value, it is possible

to properly model nr(s) (for s & 15) following Eq. (3.13).

By definition, the ratio between nc(s) and nr(s) is equal to the ratio of the

respective partition functions. Three elements concur in controlling such ratio:

1. the different free energy contribution which arises from the different num-

ber of bonds in chains and rings of equal size. Assuming that at low T

the dominant contribution is energetic, we expect that the ratio will de-

pend on e−β∆E(s), where ∆E(s) ≡ s(er(s)− ec(s)) is the energy difference

between a ring and a chain of equal size s;

2. the number of distinct modes which convert a ring to a chain, equal to the

total number of bonds in the ring, s;

3. the different entropy of a chain compared to a ring, which can be approxi-

mated by the volume explored by the chain ends, R3
ee(s).

Fig. 3.18(b) shows the ratio,

r(s) ≡ nr(s)
nc(s)

sR3
ee(s)e

−β∆E(s) (3.14)

for all the studied T. Apart from deviation at very small and very large s values,

associated to the significant numerical noise at these extreme conditions, all the

curves collapse on a single master curve for small and intermediate s. Even

if the large s behaviour is plagued by numerical uncertainties arising from

the small number of aggregates with such a large size, it appears plausible

that r(s) has a weak (or even no) dependence on s for large s, in agreement

with previous results derived for equilibrium polymerization [126]. We also

note that Eq. (3.14) is consistent with Eq. (3.13), since it predicts that the ring

distribution function is the product of the chain distribution function (and

hence of an exponential function decaying with l̄) times a power law in s, which

account for the asymptotic behavior of the end-to-end cube distance, the linear

s dependence as well as any residual s dependence in the bond energy, which

have not yet reached its asymptotic value (see Fig. 3.9).
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Figure 3.18: (a) Number of rings nr(s) of size s ≥ 10 at ρ = 0.007 for every studied
temperature (symbols). Lines are best fits to Eq. (3.13) limited to the region
s > 12, with l̄ taken from Table 3.1. Imposing h to be equal for all T results in a
value of h ' 2, leaving only the amplitude c as a free, T dependent parameter.
(b) r(s) (see Eq. (3.14) for definition) for all studied T at ρ = 0.007. ∆E(s)
is computed via the calculated er(s) and ec(s) values for s < 10 and via the
associated fit functions (see Section 3.3.4) otherwise.
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3.4 Conclusions

In conclusion, in this Chapter we report an in-depth characterization of the

thermodynamic and structural properties of DHS for 0.125 ≤ T ≤ 0.17 and

0.007 ≤ ρ ≤ 0.14, a window of T and ρ which, despite its relevance, was

never explored before in simulation studies. To investigate such a region we

have introduced specialized Monte Carlo biased moves and ad hoc simulation

techniques, allowing us to effectively sample low-T and low-ρ configurations

in equilibrium.

Our results show that the DHS fluid does not undergo any phase separation

which was long thought to be hidden in this region. We also provide several

hints on why it is so.

Indeed, the theoretical approaches developed to predict the low T DHS

behaviour focused on the competition between bonding and chaining as the

basic elements which control the thermodynamics of the system [55]. A new

element brought in by the present study is the presence, in addition to chains

and branched structures, of ring-shaped clusters. We have found that, at low T

and ρ, rings become more probable than chains, since the additional energy gain

of forming the additional bond which converts a chain into a ring compensates

for the entropic loss associated to exploration of the volume available to the

chain ends.

The dominance of rings over chains could affect the gas-liquid phase sep-

aration. Rings in fact have a net magnetic moment approximately null and

are weakly interacting objects. More importantly, they deprive the fluid phase

of chain ends, which were predicted to sustain the topological phase separa-

tion [55]. In general, an energy-driven phase-transition relies on the energy

gain of the fluid to form aggregates to overcome the entropy penalty of con-

densation. With rings being the majority cluster at low-ρ, there is virtually no

energy gain in the transformation of the gas of rings into a branched liquid-like

network. This can be seen also by considering the surface tension of the ag-

gregates, which, at low-T (where entropy plays a minor role), is proportional

to the energy difference between particles on the surface of the aggregate and

particles inside the aggregate. The loss of chain ends due to ring formation,

lowers the surface tension of the fluid phase to value close to zero, potentially

suppressing the driving force to condensation.

Of course, a phase transition is still an open possibility for T lower than the

ones we have investigated. In this case the results of our study can be used to

— 82 —



Section 3.4 Chapter 3

guide future theoretical modelling in the search of a mechanism which could

sustain criticality. If the phase transition between a liquid and a gas indeed

exists at lower temperatures than the one we have been able to explore, the gas

phase should be modelled as a phase rich in rings, instead of as phase rich in

chain ends as it has been assumed until now.

As an example of such modelling, the mapping of the DHS properties into a

patchy particle model appears to be a promising route, especially if the model

can be extended to incorporate the chain-ring equilibrium as well as the branch-

ing at higher densities. In principle, it is possible to envision an asymmetric

patchy particle model [143] in which the bond angle is comparable to the one

characteristic of DHS (i.e. which give rises to similar Ree(s) and 〈cos(θ)〉(n) as

the one reported in Fig. 3.15 and 3.16) and in which the relative weight of rings

and chains is controlled by the same ratio as the one discussed in Eq. (3.14).

Such a model, if properly benchmarked against the data reported in this Thesis,

could perhaps shed some light on the phase behaviour of very low T DHS

systems. As a starting point, we have used the results gathered in this Chapter

to tune the interaction parameters of the ring-forming, bivalent patchy particle

model employed in Chapter 2.
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Dynamics of tetravalent

patchy particles in the optimal

network density

4.1 Introduction

The development of new techniques for particle synthesis makes it possible to

produce surface-patterned colloids in bulk quantities [26–28, 30]. Theoretical

and numerical results can help understanding how tuning the properties of

these building blocks affects the resulting material. Indeed, patchy colloidal

particles [8, 195, 196] continue to be the subject of an intense investigation, both

experimentally and theoretically. There is indeed much expectation in the out-

come of recent efforts of creating colloidal particles that interact via anisotropic

potentials. The challenge faced by physicists, chemical engineers and material

scientists is to organize these new geometries into structures for functional ma-

terials and devices via self-assembly, the spontaneous organization of matter

into desired arrangements. The aim is to achieve – via the rational design of

elementary building blocks – pre-defined specific, ordered or disordered, struc-

tures, shifting from the top-down to the bottom-up approach, in which effort is

made in the direction of controlling particle shape and patterning.

Theoretical and numerical studies of the phase behaviour of patchy col-

loidal particles have been very much rewarding. Quite unexpectedly, a very

rich framework for interpreting phenomena like thermoreversible gelation, the
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competition between gelation and glass transition or the competition between

condensation and polymerization [133] has been unravelled. New concepts like

empty liquids [3, 39, 40], equilibrium gels [197, 198], unconventional gas-liquid

phase diagrams [56, 182, 183] have been introduced and have been very fruitful

in promoting further developments [63,199]. One of the unexpected connections

concerns the analogy between gelation in patchy colloids and glass formation

in atomic and molecular network forming systems [63]. Indeed, studying the

role of the valence M it has been disclosed that the packing fraction φ of the

liquid coexisting with the gas decreases on decreasing M [39]. For the case

of hard-sphere colloids with four patches, φ is of the order of 30%. This im-

plies that, for larger values of φ, gas-liquid phase separation is not encountered

on cooling. On progressively decreasing temperature, the average lifetime of

a patch-patch bond increases and particles become arrested by being part of

a long-lived network of bonds. Energetic bonds thus determine the slowing

down of the dynamics and the approach to a non-ergodic state, a dynamic arrest

that we call gelation [3,197,200,201]. Dynamic arrest can thus be expected to be

different from the one characterizing glassy states, where caging is controlled

by excluded volume interactions. Limiting the valence is crucial for observing

gelation, since it makes it possible to access, in equilibrium, the region of in-

termediate densities where packing does not play a major role. For spherically

interacting colloids, the gas-liquid phase separation is much wider and the

coexisting liquid density is found at ρσ3 ≈ 0.6− 0.7. Hence, if crystallization is

pre-empted, a liquid of spherically interacting particles can be brought to low

T to form a glass without phase separating only at very large densities.

In this Chapter we investigate in details the evolution on cooling of the

self and collective dynamics of a model for tetrahedral patchy colloids in the

gel region at a fixed value of the density, in the so-called optimal network

density region. In this window of densities the system is expected to be able

to form an ideal (fully connected) random tetrahedral network [64]. At lower

densities, gas-liquid phase separation takes place, while at larger densities

packing prevents the possibility of geometrically arranging all molecules with

proper angular and distance constraints required to form bonds. Despite the

different nature of the dynamical arrest process, driven by bonding and not by

packing, the decay of the correlation functions for this four coordinated model

resembles the one observed in glasses. In particular, the Arrenhius nature of

the dynamics and the four-fold symmetry enforced by the patchiness of the

surface makes this model qualitatively similar to other strong glass-forming
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liquids such as silica and water [202, 203]. This study is aimed at providing

information on the dynamics of a model tetravalent system in order to help

design and produce experimental realisations of such limited-valence particles

like the DNA tetramers investigated in Chapter 5.

4.2 Methods

We study a simple continuous model for tetrahedral patchy particles by means

of Brownian dynamics simulations. A particle is modelled as a rigid body

defined by the position of its center of mass and by M = 4 vectors indicating

the locations of the four patches [3]. The interaction potential between particles

1 and 2 is

V(1, 2) = VCM + VP (4.1)

where VCM is the potential acting between the centres of mass of the two parti-

cles, and VP is the interaction between patches:

VCM(1, 2) =

(
σ

r12

)m
(4.2)

VP(1, 2) = −
M

∑
i=1

M

∑
j=1

ε exp

[
−1

2

(
rij

12
σα

)n]
. (4.3)

where σ is the particle diameter. The large value m = 200 is chosen to approx-

imate the hard-sphere behaviour, the quantity n = 10 makes the exponential

function resemble a square well, α = 0.12 guaranties that the single bond per

patch condition is satisfied and ε = 1.001 fixes the absolute minimum at unitary

depth. The distance between the centres of particles 1 and 2 is indicated as

r12 while the distance between patches on different particles with the symbol

rij
12. Bond forces thus act on surface spots allowing momenta which can induce

particle rotations.

The parameters entering in Eqs. (4.2) and (4.3) have been chosen in such a

way that the resulting potential has a depth u0 = −1 and it resembles an hard

sphere plus square well potential, allowing greater flexibility in the study of

the dynamics of these systems compared to step-wise potentials. Note that,

while in the Kern-Frenkel potential [144] the interaction range and the angular

width of the bond can be independently controlled, in the present continuous

potential the patch-patch interaction depends only on the patch-patch distance
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and hence the patch-patch interaction range and angular width are coupled.

We perform Brownian dynamics simulations in the NVT ensemble using

10000 particles in a cubic box of size L = 26 with periodic boundary conditions.

In the following, the energy unit is chosen to be the depth u0 of the potential,

the length unit is chosen to be the colloids diameter σ and time is in units of

σ
√

m/u0, where m is the mass of the colloids. The Brownian algorithm used in

the simulations is described in the appendix of Ref. [3]. Here we summarize

its features. A Velocity-Verlet integrator with an integration time δt = 0.001 is

used to integrate the equations of motion. To model Brownian diffusion, we

define a probability p for each particle to undergo a random collision every N

time steps. By tuning p it is possible to obtain the desired free particle diffusion

coefficient D0 using the relation

D0 =
kBTNδt

m

(
1
p
− 1

2

)
(4.4)

In the simulation units the chosen translational bare diffusion coefficient is

DT
0 = 0.01 and the corresponding rotational diffusion coefficient id DR

0 = 0.03

(so that DR
0 /DT

0 = 3, as expected for non-slip particles). These values fix pT

and pR for each temperature.

The average time between two random collisions is given by

∆t =
Nδt

p
=

kBTNδt + 2mD0

2kBT
(4.5)

thus our simulations follow a Newtonian dynamics for t < ∆t and a Brownian

dynamics after that time.

In order to equilibrate at the lowest temperatures we use a version of the

code that runs on GPUs using CUDA [204], as reported in Chapter 6. The

simulations were performed on Tesla C2050 GPUs.

As discussed in Chapter 6, the performances achieved on GPUs depend

heavily on interaction details (such as cut-off distances), number of particles and

density. For the state points investigated in this work (N = 10000, ρσ3 = 0.57)

we obtain a 30x speed-up with respect to a Xeon E5620 (single core).

We have used up to 1010 MD steps for equilibration and from 107 to 2 · 109

MD steps for data generation, depending on the temperature.

In Brownian dynamics simulations particles are subject to a random force

which accounts for the collisions between colloidal particles and the solvent.

Even if the random force has a zero mean, the position of the center of mass
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of the system becomes a random variable, again with zero mean. In standard

simulations the random motion of the center of mass (COM) is negligible and

the particle dynamics is weakly affected by this random process. In the study of

very long simulations, as the ones reported here (which extend to 109 integration

time steps), the motion of the center of mass can be quite substantial and can

produce artifacts in the evaluation of dynamical quantities. For this reason, in

all data presented in this work the trajectories of the single particles have been

corrected to subtract the center of mass motion. Care need to be taken in the

analysis of Brownian dynamics trajectories in glassy states, especially now that

the increased power of GPUs for scientific application is opening the possibility

of investigating glassy states via lengthy simulations.

4.3 Results

4.3.1 Static

To properly frame the investigation of the dynamics, we start by showing in

Fig. 4.1(a) the potential energy per particle as a function of T. The energy has

the typical sigmoidal shape characteristic of bond interactions, reminiscent

of the two-state behaviour of the bonds (broken or formed). On cooling, the

system changes from a collection of isolated clusters to a percolating network

to an essentially fully bonded configuration, with a few isolated monomers,

detaching from the infinite cluster, as indicated by the cluster size distribution,

reported in Fig. 4.1(b). Two particles are considered connected (and hence

belonging to the same cluster) if their pair interaction energy is lower than −0.5.

Below T = 0.15, a large fraction of particles belongs to the infinite cluster and

at the lowest investigated T, more than 99% of the particles are in the infinite

cluster (see inset of Fig. 4.1(b)). Hence, at low T the system can be visualized as

a percolating network which incorporates most of the particles.

Fig. 4.2 shows the static structure factor for the lowest investigated temper-

atures. Beside the main peak at qσ ≈ 8, the structure factor shows a pre-peak

characteristic of tetrahedral networks, where the slowest collective modes are

found. In addition, we note that the T dependence of S(q) tends to saturate at

low T (S(q) at T = 0.10 and T = 0.105 are identical within the noise) suggesting

that the system structure does not significantly evolve any longer with T. This

saturation of S(q) at small T has been interpreted as evidence of an equilibrium

gel state [39, 205].
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Figure 4.1: (a) Potential energy per particle U as a function of temperature (black
circles). Also shown for comparison is the potential energy per particle in a
diamond crystal structure (red squares). (b) Number of clusters n(s) of size s
for different temperatures for a system of 10000 monomers. For T < 0.15 the
system always contains a percolating cluster (disconnected points at s ≈ 104).
Inset: percentage of particles that are in the infinite cluster (P∞) as a function of
T.
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Figure 4.2: Structure factors for the lowest temperatures.
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4.3.2 Bond lifetime

The bond-bond autocorrelation function Cb(t), defined as the probability that

a bond existing at t = 0 exists also at time t, provides a quantification of the

typical microscopic time, setting the scale for the dynamics, separating the

(short) time scale in which the dynamics takes place at fixed bonding pattern

from the (long) time scale where dynamics is intrinsically connected to bond

breaking events. Fig. 4.3(a) shows Cb(t) for all the investigated T, showing

that more than five order of magnitudes in bond lifetime are properly explored.

The decay of the correlation function can be fitted with a stretched exponential

function, e−(t/τb)
βb , and the values of βb are reported in the inset, while the

T dependence of τb is shown in Fig 4.3(b). The decay is clearly stretched,

suggesting that the different local bonding environments have a role in the

process of bond breaking. From the fit, an average bond time can be calculated

as 〈τb〉 = τb
βb

Γ
(

1
βb

)
, where Γ(x) is the Gamma function.

4.3.3 MSD and D

Fig. 4.4(a) shows the mean square displacement (MSD) for all the investigated

T. Above and around percolation, no plateau in the time dependence of the

MSD is observed. Indeed, close to T = 0.15, the lifetime of the bonds is still very

short and no dynamical signatures of the presence of a transient infinite cluster

are observed. Below percolation, an inflection develops which gives rise to a

plateau which increases on further cooling. The height of the inflection point

significantly changes with T, signalling that bonding progressively reduces the

cage volume. At the lowest T, the MSD becomes comparable to the square of the

bonding distance, suggesting that in a (almost) fully bonded locally tetrahedral

structure, bond confinement can be quite effective.

The diffusion coefficient D, evaluated from the long time limit of the mean

square displacement (MSD = 6Dt) is shown in Fig. 4.4(b). D is clearly super-

Arrhenius around the percolation temperature. In this T-interval indeed the

structure of the system changes significantly, since particles first aggregate into

larger and larger clusters and, beyond percolation, join more and more the

spanning cluster. As discussed later on, upon entering well inside percolation

the structure of the system reaches its equilibrium gel state and no further

significant structural changes take place. At these low T, D shows an apparent

Arrhenius behaviour, with an activation energy of about −4.5, a value slightly

larger than the energy required to completely break four bonds. The Arrhenius
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Figure 4.3: (a) Bond-bond autocorrelation function for different temperatures (T =
0.098, 0.10, 0.105, 0.11, 0.115, 0.12, 0.15, 0.25). A stretched exponential fit to Cb(t)
at T = 0.12 is also included (dashed line). Inset: values of the fit parameter βb
(see text) for different temperatures. (b) Values of the fit parameter τb (black
circles) and the average bond time 〈τb〉 (red squares, see text) for different
temperatures.
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Figure 4.4: (a) Mean square displacement for different temperatures. The dashed
line shows the expected time dependence of the diffusive behaviour at long
times for monomers (for which Dt = 0.01). (b) Diffusion coefficient D extracted
from the slope of the MSD at long time for different temperatures (black circles).
The red line is an Arrhenius fit performed over the five lowest temperatures.

dependence classifies the present model in the category of strong glass forming

systems [206], which includes all tetrahedral network fluids. In this respect,

the present results confirm once more that there is a strong connection between

the insurgence of an open local structure held together by strong directional

forces and the observation of an Arrhenius dynamics. It is also interesting to

observe that a similar value has been recently reported in the study of ST2

water at the optimal network density [207]. Values of the activation energy of

the order of four bonds have also been observed in a model of tetrahedral DNA

constructs [67] and in a primitive model for water [64], suggesting that the

mechanism for microscopic dynamics in tetrahedral networks shares common

features.
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4.3.4 Self dynamics

To analyse the tagged particle motion in the wave vector~q space, we evaluate

the self-intermediate scattering functions Fs(q, t), defined as

Fs(q, t) =
1
N

N

∑
i=1

< e−i~q·(~ri(t)−~ri(0)) > (4.6)

where~ri(t) is the position of the center of particle i at time t. The behaviour

of the correlation functions is shown in Fig. 4.5 as a function of T for two

different wave-vector values ((a) and (b) panels) and as a function of q at T =

0.10 ((c) panel). To help comparing the characteristic time-scales, the bond

autocorrelation function is also reported. The long time decay of these functions

can be rather well modelled via stretched exponentials,

Fs(q, t) = f s
q e−(t/τs(q))

βs
q

(4.7)

where f s
q plays the role of the non-ergodicity factor, τs(q) is the characteristic

decay time and βs
q is the stretching exponent. The wave-vector dependence of

f s
q , τs(q) and βs

q is reported in Figures 4.6 and 4.7. The non-ergodicity param-

eter shows the typical gaussian shape, but with an amplitude that is clearly T

dependent, confirming that the cage volume decreases on cooling. A similar

effect is also observed in glasses, but only below the so-called mode-coupling

critical temperature [208], suggesting that somehow network liquids remain

sufficiently fluid to be observed well below the point where dynamics crosses

from power-law to Arrhenius. The stretching exponent is also T dependent and

varies significantly on varying q. At small q, where dynamics has to convert

to diffusive dynamics, βs
q approaches one and τs(q) ∼ q−2. Finally, Fig. 4.7(a)

shows τs(q) and Fig. 4.7(b) shows τs(q) · q2. It also shows the corresponding

lifetime of the bond. Interestingly, the crossing between τb and τs(q) takes

place to larger and larger q values on cooling, suggesting that the dynamics on

smaller and smaller time-scales becomes more and more slaved to the bond

breaking process. Only when time has become longer than the bond-breaking

time particles are able to restructure themselves and relax the density fluctua-

tions. Fig. 4.7(b) also shows that at the lowest investigated T, the approach to

the diffusive limit is not clearly reached within the wave-vector range which

can be explored by our simulation.
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Figure 4.5: (a) Fs(q, t) at different temperatures for qσ = 0.48. (b) Fs(q, t) at different
temperatures for qσ = 4.59 (corresponding to the first peak in the S(q), see
Fig. 4.2). (c) Fs(q, t) at T = 0.10 for different values of the wave vector qσ (0.24,
2.1, 3.9, 5.7, 7.5, 9.3, 11, 13, 15, 17, 18, 20, 22, 24). Also shown is the Cb(t) at the
same temperature (dashed red line).
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Figure 4.6: Fit results for the self (solid lines) and collective (symbols) intermediate
scattering functions for different temperatures as functions of the wave vector.
(a) Non ergodicity factors. (b) Stretched exponents.

— 96 —



Section 4.3 Chapter 4

0 2 4 6 8 10 12
qσ

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

τ
s,

 τ
c

T = 0.10
T = 0.105
T = 0.11
T = 0.115

(a)

0 2 4 6 8 10 12
qσ

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

τ
sq

2
, 
τ

cq
2

T = 0.10
T = 0.105
T = 0.11
T = 0.115

(b)
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4.3.5 Collective dynamics

To analyse the collective particle motion in wave vector ~q space, we evaluate

the coherent intermediate scattering functions Fc(q, t), defined as

Fc(q, t) =
1
N

<
N

∑
i,j=1

e−i~q·(~ri(t)−~rj(0)) > (4.8)

As for the self-case, we show in Fig. 4.8 the q and T dependence of the collective

correlation function. The data are significantly more noisy, reflecting the absence

in the average over the distinct tagged particles. Despite the noise, some trends

are clear and worth discussing. At low temperatures, very long times and small

wave vectors, Fc(q, t) shows an oscillatory behaviour which has been tentatively

attributed to the presence of acoustic sound modes [197]. If we use Eq. (4.7) to

fit these curves, we can note that also the collective non ergodicity parameter

shows a clear T dependence at low T. Similarly to what has been observed for

glasses [209–211], the values of f c
q indeed oscillate around the self ones, in phase

with the position of the peaks of the structure factor S(q), shown in Fig. 4.2.

Interestingly, the decay of the density fluctuations does not always requires

the breaking of bonds. For example, at T = 0.115, τc(q) is always smaller than

τb, suggesting that the decay of the density fluctuations at small q happens at

a fixed network structure. On further cooling, τc(q) and τb get closer, and at

T = 0.10 τc(q) & τb for intermediate and large values of q.

This means that the breathing modes of the network, diffusive in nature, are

of sufficient amplitude to relax the density fluctuations at large wave-length.

Only at very low T the gel becomes so stiff that the decay of the density fluctu-

ations takes place on a time scale comparable or longer than τb. This is more

clearly shown in Fig. 4.9: at T = 0.115 the bond-bond autocorrelation decays

faster than the density fluctuations at qσ = 4.59; at T = 0.105 the two times are

similar while at T = 0.10 the opposite behaviour is observed and the decay of

the density fluctuations requires the breaking of the network to take place.

4.4 Conclusions

In this chapter we have reported a study of the self and collective dynamics

of a simple tetrahedral patchy model for a colloidal particle decorated by four

attractive sites, located on the vertex of a tetrahedron. The shape and range

of the site-site interaction is chosen in such a way that particles can form at
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Figure 4.8: (a) Fc(q, t) at different temperatures for qσ = 0.48. (b) Fc(q, t) at different
temperatures for qσ = 4.59. (c) Fc(q, t) at T = 0.10 for different values of the
wave vector. Also shown is the Cb(t) at the same temperature (dashed magenta
line).
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Figure 4.9: Fc(q, t) for qσ = 4.59 (solid lines) and Cb(t) (dashed lines) at three
different temperatures.

most one bond per site. On cooling, the system progresses from a collection of

isolated clusters to an essentially fully bonded tetrahedral network, in which

most of the particles are engaged in four bonds. We have investigated the model

at a fixed density, in the optimal network density region. Indeed, the presence

of a limited number of strong directional interactions determines a limited

range of densities which are compatible with the possibility of satisfying all

possible interacting sites. This optimal density region is limited at low density

by the presence of a gas-liquid coexistence and at high density by increasing

packing, preventing the possibility of approaching the fully bonded network

state. Along this isochore, the dynamics progressively slows down, first with

a super-Arrhenius T dependence (around percolation), then crossing to an

Arrhenius dependence at low T. The behaviour is similar to the one reported for

silica and water, where also a cross-over from super-Arrhenius to Arrhenius has

been observed in connection to the establishment of an extensively connected

network [202, 203]. In the case of silica this crossover has been interpreted

as a manifestation of the Mode-Coupling temperature [212]. In the present

model, in which bonding is unambiguously defined, it appears that Arrhenius

dynamics sets in when most of the particles belong to the spanning cluster.

Interestingly, the comparison between the time-scales of bond-breaking events

and diffusional processes clearly shows that diffusion over long distances (as

detected by Fs(q, t)) is slaved to the bond lifetime and a truly diffusional process

(such that τsq2 is approximately constant) can be observed at very small wave

vectors only. The characteristic time-scale of the collective dynamics shows

oscillations in phase with the structure factor, similarly to what has been found
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in the case of atomic and molecular glass formers [209–211]. Interestingly, the

decay of the density fluctuations does not always require the breaking of bonds.

Only at very low T the gel has become so stiff that the decay of the density

fluctuations, even on length scales comparable to the particle size, requires the

preliminary breakdown of the bond network. Under these conditions, the self

and collective dynamic become slaved to the time scale set by τb.
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Chapter 5

DNA tetramers

5.1 Introduction

In the previous Chapters of this Thesis we have shown that, by carefully de-

signing the inter-particle interactions, it is possible to produce materials with

novel interesting and technologically relevant properties. Now we show that

the obtained theoretical results can be extended to real systems by employing

DNA as a building block.

Thanks to the highly specificity of the Watson-Crick pairing mechanism,

DNA can be used to design and build new materials, whose basic components

have tunable mutual interactions and predictable geometries. Indeed, recent

developments in DNA synthesis and nanotechnology have made it possible

to exploit DNA as a building block to produce 2D and 3D crystals [213, 214],

complex structures [214, 215], hierarchical self-assembly of tiles [213] and self-

assembly of strands into large structures, i.e. DNA origami [216]. DNA can

also be used to functionalise colloids by grafting single-stranded DNA (ssDNA)

molecules on the surface of the particles [67, 70, 217]. By choosing strands

terminating with complementary sequences, the particles can bind to each

other via DNA hybridisation and self-assemble into disordered or ordered

structures [67,218–221]. Despite the considerable progress made in the synthesis

of these particles, producing particles with a discrete number of ssDNA in large

quantities remains a challenge [222–224].

In order to study an experimentally realisable valence-limited system we

employ DNA sequences which undergo a two-step self-assembling process

by forming tetravalent nano–sized DNA constructs, i.e. DNA tetramers, that,
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Name Sequence
Tetr1 CTACTATGGCGGGTGATAAAAACGGGAAGAGCATGCCCATCCACGATCG

Tetr2 GGATGGGCATGCTCTTCCCGAACTCAACTGCCTGGTGATACGACGATCG

Tetr3 CGTATCACCAGGCAGTTGAGAACATGCGAGGGTCCAATACCGACGATCG

Tetr4 CGGTATTGGACCCTCGCATGAATTTATCACCCGCCATAGTAGACGATCG

Table 5.1: Single-strand sequences designed to self-assemble into tetramers. Spac-
ers are color-coded in grey and sticky ends in black.

upon lowering the temperature, bind together via sticky ends. In order to

clearly separate the temperatures at which the two processes take place we use

20-base-sequences for the arms and palindromic 6-base-sequences for the sticky

ends. These two parts are separated by nucleotides, acting as spacers, in order

to increase flexibility. Table 5.1 contains the four ssDNA sequences. We use

the same sequences employed by the group of prof. Bellini in Milan [225]. The

hierarchical self-assembly process is shown in Fig. 5.1.

In this Chapter we use the realistic, coarse-grained DNA model developed

by Ouldridge et al. [110,112], presented in Chapter 1, to simulate bulk systems of

DNA tetramers at different concentrations and temperatures. In particular, we

focus on the region of the phase diagram where the DNA constructs undergo a

gas-liquid-like phase separation and we study the structure and the dynamics

as the system approaches the spinodal curve.

5.2 Methods

The coarse-grained DNA model we employ has been already introduced in

Section 1.2.1. Here we recall that the interaction forms and parameters are

chosen to reproduce structural and thermodynamic properties of both single-

and double- (dsDNA) stranded molecules of DNA in B-form. All interactions

between nucleotides are pairwise and, in the last version of the model [110],

continuous and differentiable.

The interactions between nucleotides account for excluded volume, back-

bone connectivity, Watson-Crick hydrogen bonding, stacking, cross-stacking

and coaxial-stacking (see Fig. 1.1). The interaction parameters have been ad-

justed in order to be consistent with experimental data [110, 116, 226]. In ad-

dition, the model assumes conditions of high salt molarity (0.5 M). Lengths

are expressed in units of σ = 8.518 Å and temperatures in degrees Celsius. In

computing the concentration we use an average nucleotide mass of m = 330 Da.

In order to extract bulk properties from simulations, we investigate sys-
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Figure 5.1: The investigated two-step self-assembly process. (a) At very high tem-
peratures (T & 80 C◦) there are no hydrogen bonds between the strands. (b) For
80 C◦ & T & 50 C◦ single strands start to hybridise and tetramers are formed.
(c) Upon further cooling, tetramers are linked together by hybridisation of the
sticky ends. Each different strand color corresponds to a different sequence (see
Table 5.1). All the sticky ends have the same palindromic sequence and hence
they can bond to each other regardless of the strand they are part of.
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Figure 5.2: Snapshots taken from simulations at concentration c = 7.2 mg/ml (left
panels) and c = 20.0 mg/ml (right panels) at different temperatures. Tetramers’
colour depends on the size of the cluster they are part of. At high temperatures
(top panels) there are mostly monomers (depicted in red), and the system is
homogeneous. Upon lowering T, the system starts to form clusters but remains
homogeneous (middle panels). At the lowest T (bottom panels) the system is
inhomogeneous and, at high concentration, there is a percolating cluster that
spans the whole simulation box.
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tems made up of 100 DNA tetramers. Since each tetramer is composed of 196

nucleotides, we need to simulate 19600 particles interacting through a very com-

plicated and numerically-intensive potential. By harvesting the computational

horse-power of modern GPUs, as described in Chapter 6 and shown in Fig. 6.5,

we are able to boost up performances by a factor 40− 50, if compared with CPU

simulations. Equilibration and production simulations have been run up to 109

MD steps for each state point, corresponding to ∼ 10 µs of real time. Taking

into account the speed-up, each investigated system would have taken up a few

years on a CPU single core.

We construct the initial tetramers by putting a high concentration (c ≈
100 mg/ml) of an equal number of constituent strands (see Table 5.1) in the

simulation box. We then simulate the system at T = 60 ◦C, since the melting

temperature (i.e. the temperature at which the duplex yield is 0.5) of twenty-

average-base strands is ≈ 80 ◦C [110]. After the some time we have observed

the formation of a few complete tetramers, which have been extracted to gener-

ate the initial configurations for the bulk simulations.

We simulate systems in a temperature range 39 C◦ ≤ T ≤ 48 C◦ and at

four different concentrations, namely 7.2 mg/ml, 12.2 mg/ml, 16.3 mg/ml and

20.0 mg/ml, which correspond to box sizes of, respectively, L = 114, 95.5, 86.4

and 81.1 nm. Fig. 5.2 shows simulation snapshots at different state points.

In the following analysis, we consider two tetramers as bonded if they share

at least three bonded nucleotides. We note that changing this threshold does

not significantly affect the results since nearly all of the bonded sticky ends are

fully hybridised, i.e. all six available bonds are formed. This is to be expected,

since free-energy profiles of duplex formation below the melting temperature

show that full-hybridised structures are by far the most stable configurations if,

as in the present case, the fraying effect is not relevant [110, 227].

One way of producing very low-density open equilibrium networks, the

so-called empty liquids [39, 199, 205], is to employ particles that fulfil the single-

bond-per-patch condition and do not form multiple bonds [38]. For the system

studied in this Chapter the very nature of DNA hybridisation makes the former

condition satisfied, while the large flexibility of the arms may favour multiple

bonding between neighbours. In order to check if this is the case we computed

the fraction of multiple bonds. The results show that, at the lowest studied

temperature, no more than 5% of the bonds are multiple. Such a value should

not have any qualitative effect on the network topology of the resulting gel.

In the following, if not otherwise stated, we use the centres of mass of
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tetramers to carry out analyses of the configurations.

5.3 Results

5.3.1 Cluster size distribution

To investigate the static structure of the systems, we start by quantifying the

extent of the self-assembling process. In order to do so we compute the cluster

size distribution n(s), i.e. the number of clusters of size s averaged over all the

equilibrium configurations.

Fig. 5.3 shows the cluster size distributions for all the investigated sys-

tems. Despite the noisiness of the curves, due to the low number of simulated

tetramers, there are some trends that are worth discussing. The number of

monomers in the system is monotonically decreasing as the temperature is

lowered, since more and more tetramers bind together. Even at the highest

T, clusters made up of at least 20 tetramers are always present and when the

temperature is decreased the average cluster size, shown in Fig. 5.4(a), begins to

grow and, eventually, at the lowest T a percolating network of tetramers, which

comprises most of the particles, is formed (disconnected points in the figure).

Fig. 5.4(b) shows the bond probability pb, i.e. the probability that an arm of

a tetramer is engaged in a bond. pb, as expected [37], increases monotonically

as the concentration is increased or the temperature is decreased.

We know from theoretical and numerical results that tetravalent patchy

particle systems at the critical point have pb ≈ 0.65 [18]. On the other hand,

since percolation is a prerequisite of second-order phase transitions [187–189],

the percolation locus is encountered for lower values of the bond probability.

For colloids coated with four short DNA strands, for example, pb at percolation

ranges from pb ∼ 0.32 to pb ∼ 0.42, depending on concentration [218].

5.3.2 Structure factor

In order to give an estimate of the location of the phase-separation region

we study how the static structure factor S(q) evolves with concentration and

temperature. The results are shown in Fig. 5.5.

Upon lowering T, the S(q) becomes more structured, with the height of the

peaks and the depth of the minima increasing. The nearest-neighbour peak

of the S(q), related to the inter-tetramer bonding, is always located around

q ≈ 0.5, but its position moves slightly towards larger q as the concentration is
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Figure 5.3: Cluster size distribution for all the investigated systems at fixed con-
centration and different temperatures. From top to bottom: c = 7.2 mg/ml,
12.2 mg/ml, 16.3 mg/ml and 20.0 mg/ml. Lines are guides for the eye.
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increased. This value of q corresponds to a real-space distance of r ≈ 12.7 nm.

For comparison, the value obtained by considering two bonded tetramers in

the minimum of the energy is r ≈ 14.8 nm. This difference is probably due to

the presence of the spacer separating the tetramer double-stranded arm and the

sticky ends and to the non-rigid nature of dsDNA itself. Indeed, the persistence

length of dsDNA is ≈ 150 bp, a value comparable with the number of base

pairs forming two bonded tetramer arms, which is 48. The bending of the arms

is evident in Fig. 5.1

On passing we note that, apart from the low-q limit, which will be discussed

in the next paragraph, the structure of the systems at c = 16.3 mg/ml and

c = 20.0 mg/ml at T = 39 ◦C is identical within numerical noise.

The growth of the low-q limit of the S(q), related to the isothermal compress-

ibility of the system via the relation S(q → 0) ∝ χ−1, signals an heterogeneity

in the structure which could be due to the approaching of the gas-liquid phase

coexistence region as well as to to the open nature of the network of tetramers.

Indeed, the structure factors of equilibrium gels have non-negligible values of

S(q→ 0) which tend to saturate as, since at low T all the bonds are formed, the

topology of the network does not evolve any more [3, 65]. While the increasing

of S(q) for c < 20.0 mg/ml seems to indicate a phase separation, the lower

value, and the lower rate of growth, of the low-q limit of the S(q) of the highest

concentration system may be a signal of the approaching to an equilibrium

network structure [3,205]. It is also worth noting that the c = 12 mg/ml system

has the highest S(q), which may be a signal of the proximity of a critical point.

Visual inspection of the configurations shows the inhomogeneous nature of the

system (see Fig. 5.2).

The low-q limit of the structure factor can be used to give an estimation of

the spinodal temperature Ts. Indeed, near a gas-liquid phase boundary the

compressibility factor χ diverges as a power law with exponent γ = 1.25, and

therefore

S(q→ 0)−1 ∝ (T − Ts)
−γ. (5.1)

We first extrapolate the values S(q→ 0) using the low-q part of the structure

factor by fitting it with a Lorentzian. Then we use the lowest-T values to

extract the temperature at which the compressibility diverges via Eq. (5.1).

Unfortunately, we can only use the 2− 3 lowest wave-vectors for extrapolation,

as only these values correspond to the long length scales required. Fig. 5.6 shows
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Figure 5.6: Extrapolated scattered intensity to the power of γ as a function of T for
all the studied concentrations (points). Linearly extrapolating to 0 (dashed lines)
gives the temperatures at which the spinodal is encountered for each value of c.

the numerical results and the obtained fitting curve for all the investigated

concentrations. The complete phase diagram is presented in Fig. 5.10. All

the extrapolations yield very similar results and hence the phase-coexistence

region extends beyond c = 20 mg/ml. On the other hand, since concentrations

of the liquid phase of limited-valence colloids are nearly independent of the

temperatures [39], the spinodal curve always bends down really fast. Since

the structure factor of the highest-concentration system does not reach very

high values, we speculate that the phase-coexisting limiting concentration is

located at concentrations slight larger than, but comparable with, c = 20 mg/ml.

Simulations of higher concentration systems are under way.

5.3.3 Percolation

Now we compute the percolation probability pp, i.e. the probability that the

system contains a spanning cluster. Fig. 5.7 shows pp against T for different

values of the concentration.

At high temperatures there are no percolating clusters and, as shown in

Fig. 5.3, the system is made up of small clusters which, upon lowering T, start

to grow and eventually form a percolating network which spans the entire

simulation box. This process happens at lower and lower temperatures as

concentration is decreased. At the lowest studied concentration no percolation

occurs. The percolation probability in finite systems has a sigmoidal shape that

gets steeper as the system size is increased, eventually becoming a Heaviside
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Figure 5.7: Probability percolation for all the investigated concentrations as a func-
tion of temperature. The c = 7.2 mg/ml, T = 42◦C value is due to a percolating
chain and therefore it is a finite-size effect.

step function in the thermodynamic limit. Since the computational cost of

a finite-size study is prohibitive, we rely on the results obtained at a single

box size. We estimate the percolation temperature Tperc by making cuts at

pp = 0.5 in Fig. 5.7. Fitting pp with a sigmoidal and then considering again

the temperature at which pp = 0.5 results in very similar values of Tperc. The

results are shown in Fig. 5.10.

Since the percolation line always intersects the spinodal locus at a concentra-

tion smaller than or equal to the critical concentration cc, we can estimate the

location of the latter in the range 10 mg/ml . cc . 15 mg/ml.

5.3.4 Mean-square displacement

Next we investigate the dynamics of the system by evaluating the mobility of

the tetramers. Fig. 5.8 shows the mean-square displacement (MSD) 〈r2(t)〉 for

all the concentrations and T ≤ 45 ◦C. At very short times the system follows an

inertial dynamics and hence the MSD is proportional to t2. After this ballistic

regime, the system enters the diffusive regime, where 〈r2(t)〉 ∝ t. At low

temperatures an intermediate sub-diffusive regime, which is more and more

pronounced as concentration is increased, appears. In the diffusive regime, the

dynamics is controlled by the diffusion coefficient D, given by

D = lim
t→∞

〈r2(t)〉
6t

. (5.2)
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Fig. 5.9 shows D for all the investigated state points but the c = 20 mg/ml,

T = 39 ◦C system whose MSD, as shown in Fig. 5.8, is still sub-diffusive. By

making cuts at fixed values of D we obtain two isodiffusivity locii on the phase

diagram, shown in Fig. 5.10.

5.3.5 Phase diagram

Fig. 5.10 shows all the investigated state points and the obtained results, as

well as the experimental phase diagram recently measured by the group of

Prof. Bellini in Milan [225]. The experiments have been carried out at the very

low salt concentration 0.05 M, which explains the difference in temperature

between the two phase diagrams [228, 229]. The difference in the concentration

range, on the other hand, can not be explained by the ionic strength alone.

Since the coarse-grained model we use has been parametrised to reproduce

the structural properties of DNA, such a large error in the estimation of the

coexisting concentration is not to be expected. A lower salt concentration may,

in principle, lead to a lower percentage of double bonds since the repulsive

interactions between the arms, negatively charged, would be higher and hence

the probability of forming a double bond between tetramers having far apart

arms would decrease. Since only a tiny fraction of the bonds are double, the

net effect of this increased repulsion should not play a significant role in the

concentration of the liquid branch.

The observed concentration difference could be tentatively ascribed to the

incomplete formation of the tetramers in the experimental systems for two

different reasons. First, the number of constituent strands is not exactly the

same, and therefore not every strand can be part of a tetramer. Secondly, it has

been shown that the yield of complex clusters in bulk systems has a very broad

transition as a function of temperature, and therefore the annealing procedure

will always leave some structures unformed [230]. Thus the effective valence of

the system, which depends on the number of single strands, dimers and trimers,

will be always lower than 4, and hence the measured spinodal curve will be

moved at lower temperatures and concentrations with respect to the M = 4

system.
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Figure 5.10: Phase diagram of the system. By extrapolating the scattered intensity
of all the investigated state points we are able to estimate the location of the
spinodal curve (red squares). The blue dotted line is the experimental phase
diagram measured by the group of Prof. Bellini in Milan [225]. Dashed lines are
isodiffusivity curves, while the solid line is the percolation locus.

5.4 Conclusions

In this Chapter we have investigated the phase behaviour and the dynamics

of DNA tetramers, i.e. DNA constructs of valence M = 4. The primary con-

stituents are ssDNA molecules which have been designed to first self-assemble

into tetramers and then, upon lowering the temperature, to reversibly form net-

works of inter-tetramer bonds. This experimental realisation of limited-valence

particles is expected to undergo at low temperatures a phase separation be-

tween a gas-like diluted phase and a low-concentration, percolating, liquid-like

phase. This opens up a region of intermediate concentrations in which the

system can be cooled down without encountering any thermodynamic insta-

bility. By changing the valence, i.e. by employing constructs with a smaller

number of arms, the properties of the resulting thermoreversible gel, an empty

liquid [39, 205], can be opportunely tuned.

The present study, featuring very lengthy, large-scale numerical simulations

on GPUs, is a step forward in the direction of quantitatively predicting the

whole phase diagram of DNA constructs. Indeed, being able to calculate the

thermodynamic and dynamic behaviour of complex systems is of paramount

importance for designing the materials of tomorrow. By using a sophisticated,

realistic model of DNA, simulated on GPUs in order to obtain the required

performance speed-up, we have managed, for the first time, to study a bulk
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system composed of 19600 nucleotides. We have observed the formation of clus-

ters and, eventually, the appearance of a inhomogeneous percolating network

signalling the approaching of the phase separation.

The calculated phase diagram bears some similarities with very recent ex-

perimental results by the group of Prof. Bellini [225]. Unfortunately, the ex-

periments were performed at a very different salt concentration, making it

impossible to quantitatively compare the two phase diagrams. Nevertheless,

some preliminary results shows that carrying out experiments at a salt concen-

tration of 0.5 M increases the spinodal temperature by 10− 15 ◦C, values which

are in line with numerical results. We have also shown that it is possible to

compute also some characteristic locii like percolation lines and isodiffusivity

curves.

In this Chapter we have shown that it is indeed possible to compute the

thermodynamics and dynamic properties of DNA constructs, providing a way

of helping in designing novel materials with tunable properties. The reported

simulations partly suffer from size limits but show a lot of potential for future

applications. Indeed, with the computational power ever increasing, it will be

soon possible to perform studies like the present one in a very automated and

fast way, so that it will be possible to rely on these results to finely adjust the

material properties.
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GPU programming: molecular

dynamics on steroids

6.1 Introduction

For fifty years the performances of computing machines have been increasing

steadily at a very high rate, with the number of transistors per CPU doubling

every 18–24 months (the so-called Moore’s law). As a result, over the last decades

computer simulations have flourished as valuable tools to close the gap between

theory and experiment, as they can be used to both test theoretical results as

well as to interpret and predict experimental outcomes. With the increase of

available computational power, more complex (i.e. larger or more realistic)

systems can be simulated. As a step forward in this direction, a lot of effort

has been recently put into the design and production of programmable Graph-

ics Processing Units (GPUs) which were originally developed as specialised

hardware for 3D rendering in computer games and industrial applications. As

a consequence of this specialisation, the architecture of modern GPUs is in-

trinsically parallel, with hundreds of streaming processors implementing the

single-instruction-multiple-threads (SIMT) paradigm and peak performances

which are one or even two orders of magnitudes higher than those of CPUs.

Thanks to new developed technologies, such as NVIDIA’s CUDA [204], it is now

possible to exploit this huge computational horsepower for general purpose

tasks.

In Section 6.2 we give a brief overview of the architecture of a modern

NVIDIA GPU and then, in Section 6.3, we introduce the algorithms and tech-
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Figure 6.1: (Reproduced from Ref. [231]). Schematic comparison between CPU
(left) and GPU (right) architectures. In GPUs, more transistors are devoted
to number-crunching rather than flow control and data caching. ALUs are
arithmetic logic units, i.e. digital circuits that performs arithmetic and logical
operations. DRAM is the memory of the system.

niques employed to implement a general molecular dynamics code on GPU.

Section 6.4 presents results on the performances of the code under different

conditions (number of particles, density, temperature, simulated model).

6.2 GPU architecture

In this Section we will give a concise overview on the architectural features

of NVIDIA GPUs. For a more complete description we refer the reader to the

official CUDA programming guide [231].

Modern GPUs are specialised for compute-intensive, highly parallel tasks,

such as graphics rendering. Compared to CPUs, whose more general role

implies that a significant part of their transistors is devoted to flow control,

branch prediction and data caching, GPUs are much more data-processing

oriented, as shown in Fig. 6.1.

The most important feature of NVIDIA GPUs is the SIMT model, which

makes these devices particularly well-suited to perform the same operations on

different data. This implies that, in order to obtain the best results (e.g., high

memory throughput or near-to-close GFLOPs peak performances) one has to

fully understand both the hardware architecture and the software abstraction

layer built on top of it.

Designed to provide a computing architecture that makes use of the parallel

compute engine in NVIDIA GPUs to solve parallel, complex computational

problems in a very efficient way, NVIDIA’s CUDA includes a programming
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environment that allows the developing of applications which utilise GPUs by

extending the standard C/C++ syntax.

The software layer used by CUDA to hide the hardware implementation,

so that GPU programs can be run on any suitable device, is based on three

fundamental concepts:

• kernels

• thread hierarchy

• memory hierarchy

In the next paragraphs we will briefly analyse each point.

6.2.1 Kernels

Functions executed on the GPU are called kernels. When called, a kernel is

executed N times in parallel by N different threads, with each thread having a

unique thread ID which unambiguously identifies it within a block of threads.

Kernels are identified by the keyword global . The number of threads, their

hierarchy and the amount of required shared memory are specified at runtime

through a special execution configuration syntax.

6.2.2 Thread hierarchy

Threads executing a kernel are divided into blocks of threads whose dimension

is chosen at runtime. Blocks can be one-dimensional, two-dimensional or three-

dimensional, providing a natural way of mapping elements of, respectively,

vectors, matrices or volumes. All threads within a block reside on the same

multi-processor (MP) and thus have shared access to a part of the memory

resources of that MP, and therefore can communicate with each other using

primitive synchronisation barriers. Blocks are then organized into a one-, two-

or three-dimensional grid of blocks. This further division is practical rather

than logical because, since threads of different blocks have no primitive way

of communicating with each other, using a multidimensional rather than a

unidimensional grid has the only advantage of providing a simpler way to

access multidimensional data structures.
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6.2.3 Memory hierarchy

For both architectural and practical reasons, CUDA memory is organised in

different levels, each with its own advantages and drawbacks. As a general

rule, faster memories have a smaller size. The most important types of memory

are:

1. Global memory is the slowest but also the most abundant memory (few

GBs on most modern devices). It has the lifetime of the application and it

can be accessed by all threads. Performances can be greatly improved by

coalescing memory accesses, i.e. by making threads which have consecu-

tive IDs access contiguous memory regions. Concurrent accesses can be

regulated using atomic functions [231].

2. Constant memory is a read-only memory which resides in global memory.

It is very limited in size (tens of KB) and it has the lifetime of the applica-

tion. It is cached, and therefore is used to store constant parameters used

throughout the simulation like temperature, box size, number of cells, etc.

3. Shared memory is a very fast (two order of magnitudes faster than global

memory) but low-capacity memory visible to all the threads of the block,

and hence has the lifetime of the block. If used correctly it can greatly en-

hance performances. It is commonly used to avoid unnecessary memory

reads by storing values which reside in global memory and are required

by all threads in a block, so that the values are fetched from global memory

only once per block.

4. Local memory is a per-thread memory used to store all the local variables.

If the required memory size is not too high, the compiler places all the

variables in the registers, but if this is not the case then global memory is

used (the so-called register spilling), thus vastly reducing performances. It

is very important to makes kernels use as small amount of memory as it

is possible in order to optimize memory throughput.

6.2.4 Conclusions

All these features, which are simply exposed to the developer as a minimal

set of language extensions, provide fine-grained data parallelism and thread

parallelism, nested within coarse-grained data parallelism and task parallelism.

They guide the programmer to partition the problem into coarse sub-problems

— 122 —



Section 6.3 Chapter 6

that can be solved independently in parallel by blocks of threads, and each

sub-problem into finer pieces that can be solved cooperatively in parallel by all

threads within the block. This decomposition allows for both compatibility and

scalability: since only threads in the same block can cooperate when solving

each sub-problem, each block of threads, which hence does not depend on any

other block, can be scheduled on any of the available multiprocessors within

a GPU, in any order, concurrently or sequentially, so that a compiled CUDA

program can execute on any number of multi-processors. Since this process is

completely transparent to the user, only the runtime system, which handles the

scheduling, needs to know the physical multiprocessor count [231].

6.3 Molecular dynamics on GPU: an implementation

In this Section we describe the implementation of the MD code used in Chap-

ters 1, 4 and 5 to study the thermodynamics and dynamics of patchy particles

and DNA constructs.

Unlike most types of Monte Carlo simulations, MD simulations are naturally

suitable for parallel architectures since they perform the same operations on

each particle. Even though there have been some successful attempts at par-

allelising lattice Monte Carlo simulations [232, 233], the intrinsic serial nature

of off-lattice MC simulations hinders the possibility of high performance gains.

Indeed, in MD simulations the integration steps are straightforwardly parallel

because each thread, which performs the integration in time of a single parti-

cle’s degrees of freedom and momenta, is independent and executes without

the need of communicating with any other thread. The calculation of forces

and torques, on the other hand, requires a careful design in order to minimise

fetches from global memory. In the next paragraphs we will discuss

1. how to implement cells and Verlet lists, so that the computational com-

plexity of an N-body simulation is O(N).

2. How to speed-up memory accesses by sorting particles so that positions

and momenta of neighbouring particles are stored in adjacent memory

regions.

3. What is, performance-wise, the most convenient way of retaining a suffi-

ciently high precision without having to resort to a full double-precision

simulation, since double-precision floating-point operations halve the

memory bandwidth and are a lot less efficient than single-precision ones.
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6.3.1 Cells and Verlet lists

Since, in principle, the force acting on particle i depends on all the other N

particles, the computational complexity of a MD code is O(N2). Nevertheless,

if the interaction potential acting between particles has a cut-off radius rc and

the simulation box is divided into cubic cells of size rcell ≥ rc, only particles

in neighbouring cells will feel the mutual interaction. Since the number of

neighbouring cells does not depend on the total volume, computing the forces

acting on each particle is aO(1) operation, which means that the computational

complexity of computing the interactions between all the particles, and hence

of the whole simulation program, is O(N). Even if the most common way of

dealing with cells is to use the linked-list method, which allows to both save

memory and keep the list of particles in each cell continuously updated [172],

implementing this method on GPUs is not feasible since keeping track of particle

displacements between cells is an intrinsic serial operation. To overcome this

limitation we build the cell lists only when Verlet lists have to be updated.

Cell lists are stored in a Nc × nmax matrix, with Nc being the number of cells

and nmax the maximum number of particles in a cell, to be estimated at the

beginning of the simulation. The number of particles in each cell is stored in

an array of size Nc. The implementation is as follows: each thread takes care of

a single particle and updates both the cell matrix and array by computing the

index of the particle’s cell and updating the data structures accordingly. This is

done using atomic functions to avoid race conditions. It is also possible to come

out with a more sophisticated algorithm that makes use of shared memory, but

this is convenient only for intermediate–high densities (ρ ≥ 0.3) [234].

Verlet lists, which are built using cell lists as previously stated, are used to

further lower the number of neighbours per particle. The implementation is

very similar to what is done on CPUs [172], with each thread i building the

neighbouring list of the i-th particle by looping over all the particles that are in

one of the 27 neighbour cells of that particle.

6.3.2 Particle sorting

As stated in Section 6.2.3, memory performances are maximised when reads

and writes are performed in a coalesced way. In a MD code, since the data

structures of spatially neighbouring particles are, in general, stored in non-

contiguous memory regions, i.e. randomly, threads executing the interaction-

computing kernel access memory in a non-coalesced way when fetching the
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data structures relative to a particle’s neighbours. The resulting heavy memory

overhead is reduced if the data is somehow cached, since fetching a value

from the cache is order of magnitudes faster than re-reading it from global

memory. This is straightforward on newer architectures since, starting with

devices of compute capability 2.x, NVIDIA GPUs feature a unified L2 cache (i.e.

a cache shared by all multiprocessors), while older devices require the usage

of textures in order to have a reasonably sized cached memory. To increase the

number of cache hits it is convenient to periodically sort all the particles, and

their data structures, according to a three-dimensional space-filling curve. With

this method, introduced by Anderson et al. [234], each particle is mapped onto

a Hilbert curve and it is given an index relative to its one-dimensional position

on the curve. This index is then used to permute all positions, orientations

and momenta so that neighbouring particles in space have their data structures

stored in nearby memory regions. This 3D to 1D mapping can vastly increase

performances for large systems, as shown in Section 6.4.

6.3.3 Single vs double precision

For the integration of the equations of motions we adopt the velocity-Verlet

algorithm which, being symplectic, conserves the average internal energy Ū if

no thermostat is employed, that is, if the simulation is performed in the NVU

ensemble [235]. The fluctuations of U(t) around Ū are related to the integration

step δt via

σU =
〈
(U(t)− Ū)

2
〉

∝ δt2. (6.1)

If δt is too large or if it is of the same order of magnitude of the precision

of the simulation, Eq. (6.1) is not valid any more and the energy starts to drift

away from its average value. If this is the case then the simulation is numer-

ically unstable and its results are unreliable. As a general rule, the steeper is

the potential, the smaller δt has to be in order to maintain numerical stability.

Of course, a smaller δt leads to longer simulations since more MD steps are

needed to simulate a given time interval. Care must be taken in order to choose

a value of δt which is as large as possible but does not result in any energy drift

on the timescale of the simulation. For regular, double-precision (DP) simula-

tions on CPUs involving common potentials (e.g. Lennard-Jones, generalised

Lennard-Jones, FENE, harmonic, gaussian potentials), δt = O(10−2)÷O(10−4)

in simulation units.
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Figure 6.2: Energy per particle as a function of simulation time (expressed in
MD steps) for a patchy-particle system. Data for double-, single- and mixed-
precision simulations with δt = 10−4 in the NVU ensemble are reported. On
the scale of the plot, the mixed- and double-precision curves fall on top of each
other.

Early NVIDIA GPUs did not support DP floating-point operations, since

rendering applications rarely need such a high precision. Starting with devices

of compute capability 1.x, hardware support for DP floating-point operations

was added. Even if DP efficiency is being increased with every new GPU

generation, employing DP calculations on GPUs still has two main drawbacks:

• The number of DP floating-point computational units is less than its single-

precision (SP) counterpart. This implies that performing DP calculations

is not as efficient as performing SP calculations.

• On most architectures, CUDA being one of them, a DP floating-point

number takes up 64 bit, doubling the amount of memory required by

SP floating-point numbers. Therefore, using DP calculations results in

an increased register usage and in worse overall memory performances

(see Section 6.2.3). Memory-bound applications like MD simulations are

deeply affected by this factor.

Unfortunately, it has been shown that lengthy SP simulations lack reliability

even if simple potentials are employed [236]. In the case of very steep potentials,

such as the one we use to perform simulations of patchy particles [40, 65], even

short simulations are hindered by the single precision. As an example, the

difference in the conservation of the total energy between SP and DP simulations

of a patchy-particle system is shown in Fig. 6.2. Even with a small integration
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Figure 6.3: Total time per MD step against number of particles N for two densities,
ρ = 0.2 and ρ = 0.4 and for CPU (top curves) and GPU (bottom curves) in the
case of a Lennard-Jones potential. Inset: achieved speed-ups on GPUs.

time step the SP simulation is clearly numerically unstable: the energy starts

drifting at the very beginning of the simulation. In the DP case, on the other

hand, the energy fluctuates around its average value with σU ∼ 10−9, but the

simulation, tested on a NVIDIA C2050 device, is 8 times slower than the SP one.

Since full-DP simulations are still up to an order of magnitude slower than

SP simulations, one has to limit the usage of DP calculations to the portion

of the code where a higher precision is critical. Careful analyses show that

the most critical part, with respect to numerical stability, is the integration of

coordinates and momenta, which we implement in double precision. The most

time-consuming part of the simulation code, the evaluation of the forces, is

carried out in single precision. This mixed-precision (MP) method results in

a decrease of performances comprised between 10% and 40%, depending on

model, state point and number of particles. Result-wise, the green curve in

Fig. 6.2 shows that MP simulations are numerically stable when SP simulations

are not. For a thorough discussion on this topic we refer the reader to Ref. [236].

6.4 Performances

In this Section we analyse the performances of the developed MD code for

systems interacting through a simple Lennard-Jones potential and through a

coarse-grained, realistic DNA potential [110].

Fig. 6.3 shows the achieved performances and speed-ups for different num-
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Figure 6.4: Speed-ups achieved employing particle sorting (see Section 6.3.2) for
different numbers of particles at fixed ρ = 0.2.

bers of particles at two fixed densities for Lennard-Jones systems. The time step

used was δt = 10−4 and the Verlet skin for both CPU and GPU was set to 0.3. In

both cases the linear regime for GPU simulations kicks in at approximately 104

particles: for smaller values of N, simulations are memory bound and therefore

simulating systems with less particles is not convenient. As shown in the inset,

speed-ups of two orders of magnitude can be achieved for very large systems,

although precise performances depend on simulation details, in particular on

density, time step and Verlet skin values.

For very large numbers of particles the negative effects of randomly access-

ing memory becomes prominent. Fig. 6.4 shows that sorting particles data, as

described in Section 6.3.2, is very effective and provides a significant boost of

performances for N > 105.

Because of the GPU SIMT architecture, the performances achieved on graph-

ical devices can be hindered by complicated potentials involving many con-

ditional statements, e.g. piecewise functions. Nonetheless, GPUs can still be

successfully employed to simulate these systems. In particular, we implement

the coarse-grained DNA model developed by Ouldridge et al. [110, 112], which

we then employ to study bulk systems in Chapters 1 and 5. In this model,

nucleotides interact through seven non-trivial, short-ranged potentials. In turn,

each of these potentials is made up by piecewise functions, made continuous

by a gaussian smoothing.

Fig. 6.5 shows the performances obtained for a system containing 20-base-

pairs duplexes. In this case, as in Lennard-Jones simulations, the time per MD
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Figure 6.5: Total time per MD step against number of nucleotides N for systems
formed by 20-base-pairs long duplexes at very low concentrations. Result
obtained with CPU (grey circles), DP GPU (orange squares) and MP GPU (cyan
diamonds) simulations.

step starts to behave linearly only for N & 104. In this plot we also compare the

performances of DP versus MP simulations on GPUs: as stated in Section 6.3.3,

DP simulations are up to an order of magnitude slower than MP simulations.

It is worth noting that the Ouldridge et al. model, being highly branched, is

approximately two times more resource-demanding than a simple Lennard-

Jones system on CPU, whereas on GPUs the difference is almost an order of

magnitude.

The observed speed-ups for DNA systems with ∼ 104 range from 20 to 40,

depending on the simulated system. Given the high degree of branching of the

potential, i.e. the number of possible branches in the code due to conditional

statements, GPUs are more affected by the number of neighbours than CPUs

and hence speed-ups and performances heavily depend on the investigated

system.
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One of the main goals of present day material science is to design materials

with tunable properties by following a bottom-up approach, that is, by carefully

adjusting the properties of the building blocks so that they self-assemble into

the required target structures. However, in order to do so we have to be able

to link the microscopic details of the interaction between the constituents to

the macroscopic properties of the bulk system. Indeed, despite the spectacular

advances achieved in this field in the last decade, the lack of a more general

and unified point of view on the building blocks hinders further progresses [8].

As a step forward in this direction, in this Thesis we have investigated the

bulk behaviour of anisotropically interacting colloidal particles by means of

theoretical and numerical calculations, with a particular emphasis on the latter.

In Chapter 1 we study a dense solution of short DNA duplexes exhibiting

an isotropic–nematic phase separation. These cylindrical particles, when the

temperature is lowered or the concentration is increased, self-assemble into

longer and longer chains by forming bonds due to hydrophobic forces. We

combine a parameter-free theoretical approach with very large-scale numerical

simulations of a coarse-grained, realistic DNA model [110, 112], to compute

the location of the phase separation. We first test the theory in the isotropic

phase by comparing its outcomes to numerical results, finding good agree-

ment. Then we use it to predict the location of the IN phase boundaries for

different duplex lengths. The comparison between theoretical and experimental

results [49, 90, 91] is satisfactory. The joint approach we have developed to

quantitatively predicting the IN phase boundary location of DNA duplexes

can be simply extended to study the self-assembly of generic chain-forming

anisotropic particles, and hence it is a valuable tool that can be used by theorists

and experimentalists to both understand and predict the phase behaviour of

nematic and cholesteric systems.

The dipolar hard-sphere (DHS) model is a paradigm for the self-assembly
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of anisotropic particles and a challenge for present day theories of fluids. For

these reasons, significant effort has been put into the direction of computing

its phase diagram. In Chapter 3 we study the behaviour of the DHS model

at low temperatures and low densities through extensive state-of-the-art nu-

merical simulations, shedding light on a region of the phase diagram where

a topological phase transition has long been thought to occur [55]. We show

that the system exhibits remarkable and unusual behaviours, like a very low

density percolation locus and a stabilization of rings over chain structures. This

unexpected abundance of rings comes from a delicate balance between the

lower ring energy and the end-to-end chain entropy, and hints at a possible

mechanism for the suppression of the gas-liquid phase separation. Our results

open the possibility for refined theoretical approaches which, in addition to

the previously encompassed chain and branched geometries, must also include

the significant contribution arising from ring formation. In Chapter 2, building

on these results, we want to establish a clear link between patchy models and

dipolar models, which are very demanding from both the numerical and the

theoretical point of view. On the contrary, patchy models are much easier to be

simulated and treated theoretically but, at the same time, can be designed to

incorporate any kind of anisotropy by carefully choosing the number of patches,

their shape and interaction strength.

By using an approach similar to what we have done in Chapter 1, we study a

simple fluid composed of particles having a hard-core repulsion complemented

by two patchy attractive sites on the particle poles. We choose the patch angular

width to qualitatively reproduce the behaviour of very low-density DHS fluid,

as reported in Chapter 3. Indeed, the chosen geometry favours the formation of

ring structures which, at low temperatures and low densities, compete with the

growth of linear aggregates. The simplicity of the model makes it possible to

compare simulation results and theoretical predictions based on the Wertheim

perturbation theory, specialized to the case in which ring formation is allowed.

Such a comparison offers a unique framework for establishing the quality of

the analytic predictions. We have found that the augmented Wertheim theory

describes remarkably well the simulation results.

In Chapter 3 we also report accurate calculations of the DHS particle. Imple-

menting efficient and tailored Monte Carlo algorithms, we are able to explore,

in equilibrium, the low-temperature region where a phase separation between

a dilute gas of chain ends and a high-density liquid of chain junctions has been

predicted to occur. Our data clearly show that the density of states remains
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always single peaked, definitively excluding the possibility of critical phenom-

ena in the investigated temperature and density region. We speculate that the

abundance of rings is responsible for the suppression of the phase separation.

For this reason, we intend to extend the theory developed in Chapter 2 by

adding support for branching in order to fully understand the phase behaviour

of dipolar-like fluids. Such a work is under way.

The dynamic properties of a material are of fundamental importance for its

technological applications. The properties of thermoreversible gels, being equi-

librium systems, can be tuned by both designing ad-hoc microscopic constituents

and by changing the external parameters, such as temperature or pressure. To

gather further insights in this direction, in Chapter 4 we discuss the results of

intensive Brownian dynamics GPU simulations of a simple model of tetrahedral

patchy particles in the optimal network density region, i.e. where the system

can be cooled down to form a fully bonded disordered network. This choice

allows us to investigate the evolution of the structure and of the dynamics in a

wide range of temperatures without encountering any phase separation or dy-

namic slow-downs due to excessive packing. We find that the observed slowing

down of the dynamics in this model system is driven by the progressive bond

formation and the increasing bond lifetime, which is controlled by temperature

and interaction details. Although dynamical arrest is different from the glass

case, where excluded volume interactions are dominant, the decay of the self-

and collective correlation functions of the resulting fluid bears similarities with

that observed in glassy systems.

In Chapter 5 we investigate a possible experimental realisation of a tetrava-

lent system: tetramers made up of four single-stranded DNA molecules. This

system is somewhat similar to the tetravalent patchy model studied in the pre-

vious Chapter and as such it is expected to exhibit a gas-liquid-like phase sepa-

ration at low concentrations. At the optimal density region, this system should

thus behave like an equilibrium gel, forming a stable, percolating network of

bonds as the temperature is lowered. We use the coarse-grained, realistic DNA

model presented in Chapter 1 to investigate the phase behaviour of this system

with very large-scale numerical GPU simulations, equivalent to several decades

of CPU time. As expected, the tetramers aggregate upon cooling and, if the

concentration is sufficiently high, a percolating network appears. We calculate

the location of the phase boundary, of the percolation line and of isodiffusivity

curves.

Predicting in a quantitative way the equilibrium behaviour of realistic self-
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assembling systems is a challenge to be taken on with sophisticated and up-to-

date scientific tools. In Chapter 6 we introduce the techniques required to write

an efficient Molecular Dynamics GPU code which makes it possible to simulate

very large and complicated systems. Indeed, depending on the investigated

model, performance boosts of 30x – 200x are achieved. The code presented

in this Chapter has been extensively used to compute the results reported in

Chapters 1, 4 and 5.

Our work shows that it is possible to predict the location of thermodynamic

and dynamic locii of very complicated objects by means of numerical simula-

tions. Since the available computational power keeps increasing at a steady

pace, it will be soon possible to repeat the pioneering study presented in this

Thesis on a more automated basis and for even more complicated system. For

example, it will be possible to directly study the isotropic–nematic phase transi-

tion of short DNA duplexes investigated in Chapter 1 or design self-assembling

DNA strands able to reproduce the behaviour of the patchy colloids or dipolar

fluids studied throughout this Thesis.

Being able to carefully design the building blocks and then predict before-

hand the properties of a compound will greatly simplify the process of synthe-

sising tomorrow’s materials.
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[94] X. Lü and J. Kindt. “Monte Carlo simulation of the self-assembly and

phase behavior of semiflexible equilibrium polymers”. J. Chem. Phys., 120,

(2004) pp. 10328–10338.

[95] G. J. Vroege and H. N. W. Lekkerkerker. “Phase transitions in lyotropic

colloidal and polymer liquid crystals”. Rep. Prog. Phys., 55, (1992) pp.

1241–1309.

[96] M. Dijkstra and D. Frenkel. “Simulation study of the isotropic-to-nematic

transitions of semiflexible polymers”. Phys. Rev. E, 51 (6), (1995) pp. 5891–

5898.

[97] A. Khokhlov and A. Semenov. “Liquid-Crystalline ordering in the solu-

tion of long persistent chains”. Physica, 108A, (1981) pp. 546–556.

[98] A. Khokhlov and A. Semenov. “Liquid-crystalline ordering in the solution

of partially flexibly macromolecules”. Physica, 112A, (1982) pp. 605–614.

[99] P. P. F. Wessels and B. M. Mulder. “Isotropic-to-nematic transition in

liquid-crystalline heteropolymers: I. Formalism and main-chain liquid-

crystalline polymers”. J. Phys.: Condens. Matter, 18 (41), (2006) p. 9335.

[100] M. Dennison, M. Dijkstra, and R. van Roij. “Phase Diagram and Effective

Shape of Semiflexible Colloidal Rods and Biopolymers”. Phys. Rev. Lett.,

106 (20), (2011) p. 208302.

[101] Z. Wang, D. Kuckling, and D. Johannsmann. “Temperature-Induced

Swelling and De-swelling of Thin Poly(N-Isopropylacrylamide) Gels in

— 145 —



Bibliography

Water: Combined Acoustic and Optical Measurements”. Soft Mater., 1 (3),

(2003) pp. 353–364.

[102] Z. Y. Chen. “Nematic ordering in semiflexible polymer chains”. Macromo-

lecules, 26 (13), (1993) pp. 3419–3423.

[103] T. Odijk. “Theory of Lyotropic Polymer Liquid Crystals”. Macromolecules,

19, (1986) p. 2313.

[104] C. De Michele. “Simulating Hard Rigid Bodies”. J. Comput. Phys., 229,

(2010) pp. 3276–3294.

[105] F. Sciortino, C. De Michele, S. Corezzi, J. Russo, E. Zaccarelli, and

P. Tartaglia. “A parameter-free description of the kinetics of formation of

loop-less branched structures and gels”. Soft Matter, 5, (2009) pp. 2571–

2575.

[106] S. Corezzi, C. De Michele, E. Zaccarelli, P. Tartaglia, and F. Sciortino. “Con-

necting Irreversible to Reversible Aggregation: Time and Temperature”.

J. Phys. Chem. B, 113 (5), (2009) pp. 1233–1236.

[107] M. Wertheim. “Fluids with Highly Directional Attractive Forces. I. Statis-

tical Thermodynamics”. J. Stat. Phys., 35, (1984) pp. 19–34.

[108] M. Wertheim. “Fluids with Highly Directional Attractive Forces. II. Ther-

modynamic Perturbation Theory and Integral Equations”. J. Stat. Phys.,

35, (1984) pp. 35–47.

[109] M. Wertheim. “Fluids with Highly Directional Attractive Forces. III. Mul-

tiple Attraction Sites”. J. Stat. Phys., 42, (1986) pp. 459–476.

[110] T. E. Ouldridge, A. A. Louis, and J. P. K. Doye. “Structural, mechanical,

and thermodynamic properties of a coarse-grained DNA model”. J. Chem.

Phys., 134 (8), (2011) p. 085101.

[111] T. E. Ouldridge, A. A. Louis, and J. P. K. Doye. “DNA Nanotweezers

Studied with a Coarse-Grained Model of DNA”. Phys. Rev. Lett., 104,

(2010) p. 178101.

[112] T. E. Ouldridge. Coarse-Grained Modelling of DNA and DNA self-assembly.

Ph.D. thesis, University of Oxford (2011).

— 146 —



Bibliography

[113] E. Protozanova, P. Yakovchuk, and M. Frank-Kamenetskii. “Stacked-

unstacked equilibrium at the nick site of DNA.” J. Mol. Biol., 342 (3),

(2004) pp. 775–785.

[114] P. Yakovchuk, E. Protozanova, and M. D. Frank-Kamenetskii. “Base-

stacking and base-pairing contributions into thermal stability of the DNA

double helix”. Nucl. Acids Res., 34 (2), (2006) pp. 564–574.

[115] S. Bommarito, N. Peyret, and J. J. SantaLucia. “Thermodynamic param-

eters for DNA sequences with dangling ends”. Nucl. Acids Res., 28 (9),

(2000) pp. 1929–1934.

[116] J. SantaLucia. “A unified view of polymer, dumbbell, and oligonucleotide

DNA nearest-neighbor thermodynamics”. Proc. Natl. Acad. Sci. USA,

95 (4), (1998) p. 1460.

[117] P. Šulc, F. Romano, T. E. Ouldridge, L. Rovigatti, A. A. Louis, and

J. P. K. Doye. “Introducing sequence-dependent interactions into a coarse-

grained DNA model”. J. Chem. Phys., 137 (13), (2012) p. 135101.

[118] http://dna.physics.ox.ac.uk.

[119] J. Parsons. “Nematic ordering in a system of rods”. Phys. Rev. A, 19, (1979)

pp. 1225–1230.

[120] C. Maffeo, B. Luan, and A. Aksimentiev. “End-to-end attraction of duplex

DNA”. Nucleic Acids Research, 40 (9), (2012) pp. 3812–3821.

[121] E. Frezza, F. Tombolato, and A. Ferrarini. “Right- and left-handed liquid

crystal assemblies of oligonucleotides: phase chirality as a reporter of a

change in non-chiral interactions?” Soft Matter, 7, (2011) pp. 9291–9296.

[122] M. E. Cates and S. J. Candau. “REVIEW ARTICLE: Statics and dynamics

of worm-like surfactant micelles”. J. Phys.: Condens. Matter, 2, (1990) pp.

6869–6892.

[123] A. Milchev and Y. Rouault. “A Monte Carlo Study of Thermodynamic

Relaxation in Living Polymers”. Journal de Physique II, 5, (1995) pp. 343–

347.

[124] A. N. Semenov, I. A. Nyrkova, and M. E. Cates. “Phase equilibria in

solutions of associating telechelic polymers: rings vs reversible network”.

Macromolecules, 28 (23), (1995) pp. 7879–7885.

— 147 —



Bibliography

[125] A. Milchev, J. P. Wittmer, and D. P. Landau. “Dynamical Monte Carlo

study of equilibrium polymers: Effects of high density and ring forma-

tion”. Phys. Rev. E, 61, (2000) pp. 2959–2966.

[126] J. P. Wittmer, P. van der Schoot, A. Milchev, and J. L. Barrat. “Dynamical

Monte Carlo study of equilibrium polymers. II. The role of rings”. J. Chem.

Phys., 113 (16), (2000) pp. 6992–7005.

[127] J. A. Cuesta and R. P. Sear. “Phase transition analogous to Bose-Einstein

condensation in systems of noninteracting surfactant aggregates”. Phys.

Rev. E, 65 (3), (2002) p. 031406.

[128] R. P. Sear and G. Jackson. “Thermodynamic perturbation theory for

association into chains and rings”. Phys. Rev. E, 50, (1994) pp. 386–394.

[129] M. Rubinstein and R. H. Colby. Polymer Physics. Oxford University Press

Inc., New York, 2003.

[130] M. Wertheim. “Fluids with highly directional attractive forces. I. Statistical

thermodynamics”. J. Stat. Phys., 35, (1984) pp. 19, ibid. 35.

[131] M. Wertheim. J. Stat. Phys., 42, (1986) pp. 459, ibid. 477.

[132] M. S. Wertheim. “Thermodynamic perturbation theory of polymeriza-

tion”. J. Chem. Phys., 87, (1987) p. 7323.

[133] F. Sciortino, E. Bianchi, J. F. Douglas, and P. Tartaglia. “Self-assembly

of patchy particles into polymer chains: A parameter-free comparison

between Wertheim theory and Monte Carlo simulation”. J. Chem. Phys.,

126, (2007) p. 4903.

[134] A. Galindo, S. Burton, G. Jackson, D. Visco, and D. A. Kofke. Mol. Phys.,

100, (2002) p. 2241.

[135] A. Avlund, G. Kontogeorgis, and W. Chapman. Mol. Phys., 109, (2011) p.

1759.

[136] S. Kantorovich, J. Cerda, and C. Holm. “Microstructure analysis of

monodisperse ferrofluid monolayers: theory and simulation”. Phys. Chem.

Chem. Phys., 10 (14), (2008) pp. 1883–1895.
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[163] M. Klokkenburg, B. Erné, A. Wiedenmann, A. Petukhov, and A. Philipse.

“Dipolar structures in magnetite ferrofluids studied with small-angle

neutron scattering with and without applied magnetic field”. Phys. Rev.

E, 75 (5), (2007) p. 051408.

[164] A. Wiedenmann, U. Keiderling, M. Meissner, D. Wallacher, R. Gähler, R. P.

May, S. Prévost, M. Klokkenburg, B. H. Erné, and J. Kohlbrecher. “Low-
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