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ABSTRACT 

 

The growing interest in studying badland dynamics reflects the need to increase 

knowledge of geomorphologic processes and dynamics in subhumid badland areas, 

particularly because of their importance in generating extremes of water and sediment 

production. Field studies of soil erosion are expensive, time-consuming and data needs to be 

collected over many years. Though providing detailed understanding of the erosion 

processes, field studies have limitations because of the complexity of interactions and the 

difficulty of generalising from the results. 

Cost-efficient methods of estimating erosion over whole catchments are required as 

ways of predicting erosion after disturbance or following various erosion management 

strategies. Thus, the indirect estimation and the prevision of erosion rates is still one of the 

main research topics of the scientific community in the field of geomorphology and is far 

from solved. 

 

This Ph.D. research project is aimed at defining an integrated methodology of 

denudation intensity estimation and prevision, for areas greatly affected by badlands, and it 

is based on both quantitative geomorphic analysis and multivariate statistical investigations, 

in order to deepen the relationships between the main denudation effects and the potential 

causal factors favoring geomorphologic instability in badlands areas. The research have 

allowed to propose a statically based method for water erosion hazard assessment, 

conceived as a spatially distributed prevision of calanchi badlands, and associated erosion 

rate, occurrence. Direct measures of erosion intensity in badlands were used to validate the 

water erosion estimates and previsions. 

As the research project is focused mainly on methodological objectives, well-known 

study areas of Tyrrhenian side of central Italy, included within the Tevere and Ombrone 

River Basins, have been selected, in order to compare the results gradually achieved with the 

earlier available data. 
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Erosion rate estimations were performed refining some empirical equations (“Tu 

Denudation index”), that estimate the suspended sediment yield (SSY) as a function of 

morphometric parameters related to drainage network and relief (Ciccacci et al., 1981, 

1986). Tu denudation index was confirmed to be a good estimator of the suspended 

sediment yield (SSY) for catchments characterized by the prevalence of sedimentary and 

weakly coherent outcropping lithologies. The improvement of the regression relations 

contributed to better estimate sedimentary output for catchment widely affected by 

badland areas. In these basins, in fact, SSY is strongly correlated to the areal ratio affected by 

badlands to the total catchment area. Thus, using the not-projected drainage density 

parameter (D3d), instead of the traditional drainage density parameter (D), even if not 

improving the SSY estimation for large basins, was considered to better reflect the 

conditions predisposing erosions than D for smaller catchments, where large calanchi 

badlands and related high slope gradients are present. The dominant role of drainage 

density in estimating erosion rate for badland areas was confirmed by the attempt of zoning 

the estimated erosion rates using the Tu Grid Analysis. This attempt proved to be very 

efficient in estimating the erosion rate due to runoff within badland areas, as confirmed by 

the comparison between the estimated and the measured erosion rates. This result seems 

to increase the prospective of using Tu grid analysis when prolonged denudation monitoring 

is not possible. Moreover, even where punctual erosion rates are measured by pin 

monitoring, the estimated erosion rate map represents a validated continuous 

representation of water erosion rate for larger areas. 

Geomorphological susceptibility evaluation was performed applying a multivariate 

statistical method based on conditional analysis (Bayesian interpretation of probability) 

integrated by a proposal of a new method for most influential causal factors selection. The 

procedure provided satisfactory results for the unbiased prediction of landslide and water 

erosion susceptibility for the Upper Orcia Valley. The method is conceptually simple but, at 

the same time, effective in evaluating the conditional probability of hazardous events given a 

certain combination of causal factors: the proposed factor selection procedure has proved to 

be a useful tool for the unbiased detection of the factors really discriminant for instability 

landforms in the study area, and can be very helpful when analyzing new areas. Moreover 

the use of vector datasets allow to create vector easy-to-read susceptibility maps, in which 
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the fragmentation generally characterizing raster outputs is avoided. These characteristics 

make this susceptibility method easy to be understood and each resulting map easy to be 

read, thus suitable for policy makers in planning land management strategies. 

The association of the estimated erosion rate for calanchi badland areas to the 

surveyed landforms allowed to use the susceptibility method to evaluate the water erosion 

hazard, since the temporal information about the erosion processes was related to the 

spatial data. This procedure is proposed when direct erosion rate measures are not 

available. 

 

Different techniques of direct monitoring of erosion rates and processes have been 

performed, with the aim of identifying the main geomorphic processes acting in the study 

areas and quantifying their intensity. In particular, direct measurements (erosion pin 

monitoring, geomorphologic survey, DGPS survey and digital photogrammetric analysis) 

were used to validate the results obtained after indirect erosion rate estimations and 

susceptibility and hazard assessment models application. Even though, interesting remarks 

have been concluded on the applicability of various methods of erosion monitoring. 

The size of the study area, the time available, and the quality of the data required are 

perhaps the most critical issues to be considered when looking for the most appropriate 

technique. As well-known, the traditional erosion pin method generally allows to carry out 

very accurate punctual measures, whose error is measurable in few millimeters. So, it can be 

used to quantify very detailed temporal variations (monthly or after-event ground level 

changes). On the other hand, DGPS survey can be proper when a single hillslope of less than 

few hectares is being monitored, as the time and effort required would be acceptable. For 

larger areas or wider time interval, high resolution photogrammetric analysis could be more 

appropriate. However, all these methods are affected by many error sources, that limit their 

use to very specific time and spatial ranges. 

 

Finally, some new contributions to the knowledge of the physical factors influencing 

the initiation and the development of different water erosion landforms in the studied 

badland areas have been achieved. 
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Comparison of pluviometric data and measured ground level variations for Bargiano 

site (Tevere River Basin) has highlighted that clay removal by water erosion is generally due 

to intense rainfall event preceded by quite long dry periods, while accumulation (due to gully 

banks collapsing) is favoured by intense rainfall after a certain number of rainy days 

(frequent in spring). Moreover, in inter-rill position, where almost the lonely water erosion 

acts, intense events are significantly more effective than long events. 

Considering the distribution of calanchi and biancane landforms of Upper Orcia Valley 

(Ombrone River Basin) among the different classes of the main topographic and 

physiographic factors, it is a matter of fact that calanchi badlands develop on steeper slopes 

and where higher values of amplitude of relief occur, due to the morphoevolutionary 

processes. Moreover, observations on present embryonic biancane of Lucciolabella site 

confirm the leading role played by reticular systems of joints in the dissection of original, 

gently-dipping surfaces. Actually, a resolute difference on dispersivity level of the biancana 

parent material samples of La Piaggia subcatchment was not found with respect to calanchi 

badlands samples of the same subcatchment. 

On the other hand, a significant influence of clay properties was observed on the 

different erosion rates measured during decadal monitoring investigations by means of 

erosion pins in the study areas. Calanchi badlands show lower erosion rates due to surface 

runoff. The major facility of biancane clays to be entrained at very low stream powers is 

reflected in their major dispersivity, while, in badlands, the morphoevolution and sediment 

removal is predominantly caused by widespread mudsliding from the rill and gully heads, as 

also confirmed by the mean positive variations of ground level recorded at some calanchi 

monitoring stations. This observation can be also related to the higher sand content in 

calanchi badlands, which may favour the infiltration processes to the detriment of runoff. 

Finally, as already observed by several authors, the agricultural exploitation of these 

lands lead to a decrease of exchangeable cations concentration (and, thus, clay dispersivity), 

even if the permanent inhibition of chemical dispersion due to increase of soil stability 

hypothesized by Phillips (1998) cannot be completely agreed. Decadal monitoring and 

observation in the study areas and in other sites of central Italy have outlined that badlands 

initiation is even enhanced by agricultural manipulation: grazing and farming are among the 
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most important triggers for accelerated water erosion, and tillage erosion has been 

recognized as an increasing factor of water erosion. 

 

The performed investigations have allowed to carry out some new remarks about both 

the applied and proposed methodologies and the studied areas and related processes. In 

particular, results from this research have contributed to improve some methods useful to 

deepen the knowledge of processes and denudation intensity acting in badland areas of 

Mediterranean drainage basins. 

 

 

KEYWORDS: erosion modelling, denudation monitoring, geomorphological hazard, badlands, 

Central Italy 
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RIASSUNTO 

 

Tecniche integrate di modellazione della denudazione dei versanti e 

monitoraggio dell’erosione accelerata in siti chiave dell’Italia centrale 

 

La presente tesi di dottorato è finalizzata alla proposta di un modello integrato di stima 

e previsione degli effetti dei processi di erosione su versanti e in bacini idrografici 

caratterizzati da vaste aree soggette a rapida denudazione. Tale obiettivo è stato perseguito 

organizzando la ricerca nelle seguenti fasi: a) l’applicazione di diversi metodi di valutazione 

dell’intensità dell’erosione a diversa scala spazio-temporale, b) il miglioramento di alcuni 

aspetti delle procedure utilizzate, c) la messa a punto di un metodo di  valutazione della 

pericolosità geomorfologica, supportato da una procedura obiettiva di selezione dei fattori 

predisponenti i dissesti considerati. 

 

La quantificazione delle ingenti quantità di materiale asportato dai processi erosivi 

risulta fondamentale ai fini della corretta gestione del territorio e della valutazione del 

rischio geomorfologico. La ricerca presentata si inserisce, quindi, in un più ampio contesto 

scientifico pregresso ed attuale comprendente studi sull’erosione dei versanti, in cui la stima 

indiretta dell’erosione rimane un tema di indagine aperto, a causa delle rilevanti risorse 

richieste dalle misure dirette, in termini di costi e di tempo, che, inoltre, generano risultati di 

difficile generalizzazione. 

 

Le aree di studio sono state scelte all’interno di due importanti bacini idrografici 

dell’Italia centrale (Tevere e Ombrone), caratterizzati dalla presenza di ampie zone soggette 

ad erosione accelerata (definite in letteratura “hot-spots erosivi”). Queste zone sono 

contraddistinte da affioramenti di importanti depositi marini plio-pleistocenici altamente 

erodibili, e sollevati durante il Quaternario a seguito dell’attività vulcanica degli apparati di 

Radicofani e del Monte Amiata. Le risultanti elevate pendenze che caratterizzano questi 

affioramenti, insieme al forte contrasto stagionale umido-secco tipico dell’ambiente 
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mediterraneo, costituiscono quindi i fattori ideali per il manifestarsi di processi di 

denudazione accelerata, causando la diffusa presenza forme di erosione, come calanchi, 

biancane, rill, gully e pipes, e diverse tipologie di frana, tipiche delle aree a badlands. 

L’attività di ricerca, avendo finalità di carattere prevalentemente metodologico, ha 

previsto l’applicazione, in parallelo, di diversi tipi di indagine: da una parte sono stati portati 

avanti alcuni tentativi di quantificare gli effetti dei processi erosivi in aree a badlands 

mediante rilevamenti di campagna (a diversa scala di dettaglio) e altre analisi sperimentali 

(in particolare volte ad analizzare i principali potenziali fattori predisponenti il dissesto in 

queste aree). Dall’altra sono stati applicati e messi a  punto dei modelli finalizzati a stimare 

indirettamente i tassi di erosione (sia a livello di bacino idrografico che a livello di aree 

unitarie), sulla base di parametri geomorfici quantitativi, e a fare previsioni spaziali (analisi di 

suscettibilità) sui processi di denudazione dei versanti, pervenendo a proporre un modello 

integrato per la valutazione della pericolosità geomorfologica. 

  

In particolare, la stima dei tassi di erosione per l’Alta Val d’Orcia (Toscana meridionale) 

è stata ottenuta applicando  e affinando alcune relazioni che permettono di stimare il 

trasporto torbido fluviale (indice di erosione Tu) alla scala di bacino idrografico, come 

funzione di alcuni parametri geomorfici quantitativi, dipendenti dalle principali 

caratteristiche morfologiche, morfodinamiche, strutturali e climatiche del territorio (Ciccacci 

et al., 1981, 1986).  Lo studio condotto ha confermato l’ottima capacità dell’indice 

considerato di stimare il trasporto torbido fluviale, per bacini idrografici caratterizzati dalla 

prevalenza di affioramenti di litotipi sedimentari scarsamente coerenti. Inoltre, 

l’introduzione nel modello di nuove variabili indipendenti, quali, ad esempio, la “densità di 

drenaggio non proiettata” (D3d), ha dato risultati incoraggianti per una migliore stima 

dell’erosione per bacini caratterizzati dalla diffusa presenza di aree a badlands, per le quali il 

trasporto torbido fluviale è altamente correlato con la porzione del bacino idrografico affetta 

da forme di erosione accelerata dovute al dilavamento. Per questi piccoli bacini, a causa 

delle elevate pendenze, il reale sviluppo della rete idrografica è, infatti, sottostimato dal 

tradizionale parametro densità di drenaggio (D), il cui valore si ricava da misure 

planimetriche e non tiene conto perciò delle variazioni altimetriche. Il ruolo dominante della 

densità di drenaggio nella stima dell’erosione è stato confermato, infine,  nel tentativo di 
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effettuare una zonazione dei tassi di abbassamento della superficie topografica stimati, per 

aree unitarie, mediante l’indice Tu. La tecnica proposta, denominata “Tu grid analysis”, ha 

dato risultati confrontabili con quelli ottenuti a seguito del monitoraggio sul campo 

dell’erosione, configurandosi come un’efficace metodo di stima dei tassi di denudazione, 

quando misure dirette e prolungate nel tempo non sono possibili. Inoltre, anche quando 

sono disponibili dati misurati puntuali di variazioni altimetriche del terreno, la carta dei tassi 

stimati ottenuta mediante la Tu grid analysis propone una rappresentazione continua e 

validata delle intensità della denudazione per aree più ampie. 

 

Per valutare la suscettibilità geomorfologica delle aree esaminate è stato applicato un 

metodo statistico, l’analisi condizionale, che si basa sul confronto della distribuzione delle 

aree attualmente sottoposte a dissesto (aree in frana, aree a calanchi, aree inondate) con 

quella dei valori dei possibili fattori predisponenti. L’indice di suscettibilità è calcolato 

considerando i concetti della probabilità condizionata (interpretazione bayesiana della 

probabilità). L’analisi condizionale è un metodo largamente usato in letteratura per valutare 

la suscettibilità per frana; nella ricerca descritta è stato integrato da una procedura di 

selezione dei fattori predisponenti che permette di scegliere in maniera più oggettiva i 

fattori discriminanti le aree con o senza dissesto. Tale procedura si basa sulla 

sovrapposizione di ciascuna delle carte tematiche dei fattori predisponenti con la carta dei 

dissesti rilevati, allo scopo di valutare la distribuzione di questi ultimi nelle diverse classi dei 

fattori. Essa è valutata attraverso alcuni parametri (la curva di Lorenz e l’indice di Gini), che 

permettono di evidenziare se la distribuzione dei dissesti è più o meno concentrata in poche 

classi del fattore studiato. I fattori sono scelti per la valutazione della suscettibilità se il 

valore dell’indice di Gini indica una distribuzione non omogenea degli effetti dei processi di 

instabilità geomorfologica nelle classi dei fattori. Sono scartati, infine, alcuni fattori quando 

la distribuzione dei loro valori è altamente correlata con la distribuzione delle classi di un 

altro fattore selezionato. Il metodo proposto ha dato risultati soddisfacenti nell’analisi di 

suscettibilità per frana e per erosione accelerata dovuta al dilavamento dell’Alta Val d’Orcia, 

risultati validati mediante un metodo statisticamente basato, noto in letteratura. L’uso di 

dati vettoriali ha permesso, inoltre, di ottenere carte di previsione facilmente interpretabili, 
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prospettando un possibile utilizzo della metodologia proposta nelle politiche di gestione del 

territorio. 

 

L’integrazione del metodo di valutazione della suscettibilità geomorfologica con la Tu 

grid analysis ha, infine, permesso di mettere a punto una procedura di analisi della 

pericolosità per erosione accelerata dovuta al dilavamento, in cui la previsione spaziale è 

effettuata mediante l’analisi di suscettibilità, mentre la previsione dell’intensità dell’erosione 

è affidata all’applicazione dell’indice di erosione Tu. 

 

Parallelamente ai metodi di stima indiretta e previsione dell’erosione, sono state 

applicate diverse tecniche di monitoraggio degli effetti dei processi di erosione, con lo 

scopo di identificare i principali agenti morfogenetici responsabili del modellamento delle 

aree di studio, e quantificarne l’intensità.  In particolare, le misure dirette e indirette 

dell’erosione (rilevamento geomorfologico, analisi foto-interpretativa, monitoraggio della 

superficie topografica mediante caposaldi, rilevamento sui versanti mediante GPS 

differenziale e analisi fotogrammetrica digitale) sono state effettuate principalmente per 

validare i risultati ottenuti a seguito delle stime indirette dell’erosione e delle analisi di 

suscettibilità e pericolosità geomorfologica. Oltre a ciò, tali indagini hanno contribuito alla 

comprensione dell’applicabilità delle diverse tecniche di quantificazione dell’erosione alle 

diverse scale spaziali e temporali, permettendo di fare alcune osservazioni sul grado di 

incertezza connesso con l’applicazione di ciascuna tecnica. L’estensione dell’area in studio, la 

disponibilità di tempo e di altre risorse e la risoluzione dei dati necessaria per l’analisi, sono 

stati certamente gli aspetti più critici da considerare nella scelta del metodo più appropriato. 

Misure di grande precisione e dettaglio nel tempo e nello spazio (con errore dell’ordine del 

millimetro) sono state fornite dal monitoraggio mediante caposaldi, ottenendo dati puntuali 

generalizzabili alle aree adiacenti in simili condizioni topografiche e di uso del suolo. Per aree 

di studio e intervalli temporali più ampi, quindi, sono stati applicati il rilievo mediante D-GPS 

(a scala di versante) e l’analisi fotogrammetrica (a scala di piccolo bacino idrografico), 

tenendo presente però l’incremento dell’ordine di grandezza dell’errore connesso con i 

risultati ottenuti. 
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Infine, ulteriori  considerazioni sono scaturite dall’analisi dei fattori predisponenti 

l’erosione accelerata nelle aree a badlands.  

Il regime pluviometrico ha un’influenza preponderante nell’evoluzione delle aree a 

badlands, come osservato a seguito del confronto effettuato tra i risultati del monitoraggio e 

l’andamento delle precipitazioni in un’area del bacino del F. Tevere (località Bargiano): 

l’erosione dovuta al dilavamento prevale quando eventi piovosi seguono periodi secchi, 

mentre eventi gravitativi (che generalmente provocano il collasso delle sponde dei gully più 

incisi) prevalgono a seguito di piogge su substrato già saturo (piogge primaverili).  Inoltre, in 

posizione di inter-rill, in cui prevale l’azione delle acque dilavanti, eventi pluviometrici brevi e 

intensi sono i più efficaci. 

Le caratteristiche fisico-chimiche del substrato non bastano a spiegare le differenze 

morfologiche delle aree a badlands riscontrate nelle aree esaminate (presenza di calanchi o 

biancane o forme intermedie), ma risultano piuttosto essere in relazione causale con i diversi 

tassi di erosione misurati. Le aree a calanchi mostrano tassi di erosione dovuti all’azione 

delle acque dilavanti meno accentuati rispetto alle aree a biancane, dove invece la maggiore 

dispersività del substrato argilloso comporta la maggiore facilità ad essere asportato che lo 

caratterizza, anche a basse energie delle acque correnti superficiali, come risultato dalle 

analisi geochimiche della frazione pelitica dei campioni prelevati in alcune aree a biancane in 

alta Val d’Orcia. D’altro canto, nelle aree a calanchi prevale l’asportazione di materiale 

dovuta a movimenti gravitativi, in particolare colamenti, confermata dalle frequenti 

variazioni positive della superficie topografica nei morfotipi monitorati; tale comportamento 

può esser messo in relazione con il maggiore contenuto in sabbia del substrato dei calanchi, 

che può favorire l’infiltrazione delle acque meteoriche rispetto allo scorrimento superficiale, 

provocando il veloce arretramento delle testate dei calanchi. 

I fattori topografici e geologici (pendenza, energia del rilievo, densità e direzione delle 

fratture, etc.) sembrano invece essere le principali cause che guidano l’evoluzione del rilievo 

verso forme di erosione a calanchi o a biancane: è stato più volte riconosciuto in letteratura 

che i calanchi tendono a svilupparsi laddove i versanti sono più acclivi e prevalgono elevati 

valori di energia del rilievo, come conseguenza di processi morfoevolutivi; lo studio di aree 

caratterizzate dalla presenza di biancane in stadio giovanile (Riserva Naturale Lucciolabella, 



INTEGRATED TECHNIQUES FOR SLOPE EROSION MODELLING AND 

BADLAND MONITORING IN KEY SITES OF CENTRAL ITALY                                                            RIASSUNTO 

 20 

Alta Val d’Orcia) ha invece confermato il ruolo dominante della presenza di un sistema 

reticolare di fratture su superfici debolmente acclivi per la formazione delle biancane. 

Infine, lo sfruttamento agricolo del territorio è risultato un fattore di accelerazione 

della denudazione, a causa del rimaneggiamento del terreno provocato dall’aratura. 

L’eventuale abbandono delle attività agricole, inoltre, può comportare un’intensificazione 

dei processi erosivi, poiché interventi di manutenzione del territorio adeguati sono 

raramente effettuati. 

 

In conclusione, le indagini svolte, oltre a approfondire la conoscenza dei processi 

morfogenetici e dei fattori predisponenti l’erosione agenti nelle aree a badlands del settore 

dell’Italia centrale studiato, hanno permesso di contribuire al miglioramento di alcuni metodi 

di misura, stima e previsione dell’erosione del suolo e dei dissesti geomorfologici. Tali 

metodi risultano  utili ad approfondire la complessa dinamica dei processi di denudazione 

dei versanti e la loro intensità e sono particolarmente adatti per bacini idrografici di 

ambiente mediterraneo caratterizzati dalla larga diffusione di aree in erosione accelerata. In 

particolare, il modello integrato proposto per la valutazione della pericolosità 

geomorfologica, essendo finalizzato a realizzare una zonazione delle aree a diversa 

probabilità del manifestarsi nel tempo e nello spazio degli eventi di dissesto di una certa 

intensità con tecniche statistiche semplici, e insieme efficaci, si rivela molto utile ai fini della 

corretta gestione e pianificazione del territorio. 

 

PAROLE CHIAVE: modellazione dell’erosione, monitoraggio, pericolosità geomorfologica, 

badlands, Italia centrale. 
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INTRODUCTION 

 

Clayey terrains outcropping in many parts of Italy are frequently affected by 

accelerated erosion processes, producing landforms known as calanchi and biancane and 

generally considered as ‘‘badlands’’ by non-Italian authors. The term badland was originally 

proposed in the “Encyclopaedia of Geomorphology” to describe “an extremely dissected 

landscape difficult to cross on horse-back and agriculturally useless” (Fairbridge, 1968), and 

this classical definition was particularly referred to the typical landscape of South Dakota in 

the United States. Calanchi badlands are composed of an extremely dissected, rapidly 

developing landscape, characterized by rill and gully landforms and a very dense dendritic 

drainage network (Alexander, 1980). Biancane badlands appear as clay domes dissected by 

rills up to about 20 m high (Torri et al., 1994; Torri and Bryan, 1997; Calzolari and Ungaro, 

1998). The term “biancana” (from “bianco” Italian for “white”) probably comes from the 

presence of thenardite (Na2SO4) crystals on their surface, due to precipitation from capillary 

waters. The badlands formation and dynamics are mainly the result of the action of the 

particularly aggressive climatic factors (such as the strong climatic constrasts of the 

Mediterranean rainfall regime) on weak substrata (clay, silt and sand of the Plio–Pleistocene 

marine cycles) (Moretti and Rodolfi, 2000). The morphogenetic activity is not only limited to 

channel erosion, but it is also due to piping and repeated superficial slides (Bryan and Yair, 

1982), so that it should be better to consider the calanco as the result of a ‘‘combined 

erosion’’ process (Zachar, 1982). Also, areas where the natural equilibrium has been 

disrupted by wrongly applied land use techniques can be transformed into badlands with 

‘‘…processes and resulting landforms resembling those in naturally-developed badlands’’ 

(Torri et al., 2000). The term currently refers to areas of unconsolidated sediment or poorly 

consolidated bedrock with little or no vegetation, which are useless for agriculture because 

of their intensely dissected landscape (Gallart et al., 2002). 

Badlands are frequently considered to be landscapes that are characteristics of dryland 

areas. Semi-arid badlands are frequent throughout the Mediterranean, the better-known 

examples being located in various parts of Spain and southern Italy (Alexander, 1982; López- 

Bermudez and Romero-Díaz, 1989; Calvo- Cases and Harvey, 1996; Solé-Benet et al., 1997; 
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Piccarreta et al., 2006; Desir and Marín, 2007). Nevertheless, they also occurred in wetter 

areas, as in central Italy, where high topographic gradients, bedrock weakness and high-

intensity rainstorms coexist, as underlined in different studies (Alexander, 1980; Farabolini 

et al., 1992; Moretti and Rodolfi, 2000; Lupia Palmieri et al., 2001; Del Monte et al., 2002; 

Ciccacci et al., 2003, 2008, 2009; Del Monte, 2003; Buccolini et al., 2007; Della Seta et al., 

2007; 2009) that led to define the calanchi and biancane badlands as erosion “hot spots” 

(Della Seta et al., 2007; 2009). 

Badlands geomorphology has been studying for the last 30 years, and there exists a 

considerable literature on the subject. The growing interest in studying badland dynamics 

reflects the need to increase knowledge of geomorphologic processes and dynamics in 

subhumid badland areas, particularly because of their importance in generating extremes of 

water and sediment production (Gallart et al., 2002; García-Ruiz and López Bermúdez, 2009). 

In this context, soil erosion measurement, estimation and prevision still represent a 

challenge for scientists (Lupia Palmieri, 1983). As summarized by Nadal Romero and Regüés 

(2010), the literature reviewed could be classified into three groups according to the main 

purpose of the research: (1) soil erosion and hydrological processes; (2) regolith dynamics 

and morphological processes; and (3) vegetation dynamics in subhumid badlands. The first 

group, focusing on the study of soil erosion and hydrological processes, is the best 

represented, through the measurement, interpretation and modelling of hydrological and 

erosion processes and sediment production (at hillslope or small-basin scale). The second 

group addresses the study of morphological and regolith dynamics and properties, normally 

in small plots; and the third is focused on vegetation dynamics and seed dynamics (normally 

from slope to small-basin scale). 

Field studies of soil erosion are expensive, time-consuming and data needs to be 

collected over many years. Though providing detailed understanding of the erosion 

processes, field studies have limitations because of the complexity of interactions and the 

difficulty of generalising from the results. Field measurements made under natural rainfall 

conditions are scarce because of the high cost of equipment, the hard fieldwork involved, 

and the prolonged study periods required to obtain representative data. Experimental 

catchments (few tens to hundreds of hectares) have been considered, in general, as the 

most practicable approach to study runoff generation, soil erosion and sediment transport 
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(Walling, 1991). The catchments are usually chosen to be homogeneous and lithologically 

and hydrologically representative of the study area. The catchments allow to study the 

hydrological response during individual rainstorms and over long periods of time, the areas 

of active erosion, the connectivity between sediment sources and channels, and the role of 

different processes such as weathering and regolith dynamics (Nadal- Romero et al., 2007; 

2008a; 2008b). 

Cost-efficient methods of estimating erosion over whole catchments are required as 

ways of predicting erosion after disturbance or following various erosion management 

strategies. Thus, the indirect estimation and the prevision of erosion rates is still one of the 

main research topics of the scientific community in the field of geomorphology and is far 

from solved. 

 

This Ph.D. research project is aimed at defining an integrated methodology of 

denudation intensity estimation and prevision, for areas greatly affected by badlands, and it 

is based on both quantitative geomorphic analysis and multivariate statistical investigations, 

in order to deepen the relationships between the main denudation effects and the potential 

causal factors favoring geomorphologic instability in badlands areas. 

Erosion rate estimations were performed refining some empirical equations (“Tu 

Denudation index”), that estimate the suspended sediment yield (Tu) as a function of 

morphometric parameters related to drainage network and relief (Ciccacci et al., 1981, 

1986), as an exponential increase of Tu with the areal ratio of badlands to the whole 

catchment was proved to exist (Della Seta et al., 2009). In this research, Tu denudation index 

improvement was performed by means of some best fits and a spatially distributed 

application. Geomorphological susceptibility evaluation was performed applying a 

multivariate statistical method based on conditional analysis (Bayesian interpretation of 

probability) integrated by a proposal of a new method for most influential causal factors 

selection. The integration of denudation intensity estimation (Tu denudation index) and the 

spatial prevision of areas prone to the development of instability landforms allowed the 

proposal of a method finalized at the evaluation of the water erosion hazard (a spatially 

distributed prevision of calanchi badlands, and associated erosion rate, occurrence). 
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In this frame, different techniques of direct monitoring of erosion rates and processes 

have been preformed, with the aim of identifying the main geomorphic processes acting in 

the study areas and quantifying their intensity. In particular, direct measurements were used 

to validate the results obtained after indirect erosion rate estimations and susceptibility and 

hazard assessment models application. 

As this research project is focused mainly on methodological objectives, well-known 

study areas have been selected, in order to compare the results gradually achieved with the 

earlier available data. In fact, I have applied different erosion evaluation methods in some 

areas of the Tyrrhenian sector of central Italy in, particularly within the Tevere and Ombrone 

river basins (Fig. 0.1), where long lasting geomorphologic investigations had been performed 

during other research projects conducted over the last three decades within the Earth 

Sciences Department of Università degli Studi di Roma “La Sapienza” (Ciccacci et al., 1981, 

1986, 2003, 2008, 2009; Del Monte et al., 2002; Del Monte, 2003; Della Seta et al., 2007; 

2009). 

 

This work has been organized as a series of independent studies, reported in single 

chapters, each of them showing its own material and methods, results and discussion 

sections. In each study, an introduction upon the most widely diffused analogue 

methodological approaches available in literature is given. Some of the presented 

investigations has already been published or submitted for publication in international 

journals and presented during International scientific Conferences. The chapters have been, 

in turn, grouped into two principal parts: the former (Part I) presents the results of field 

monitoring at different spatial scales and laboratory analysis, the latter (Part II) the results of 

denudation modelling studies. In this frame, investigations from the Part I, together with 

previous studies, represent an essential scientific knowledge of geomorphological processes 

acting in the studied badlands areas, and, thus, a basis to propose and validate the indirect 

methods described in Part II. 

 

Chapter 1 presents the main geological, climatic and geomorphological characteristics 

of the study areas, which have been selected in Upper Orcia Valley (southern Tuscany, 
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within the Ombrone River Basin) and in an abandoned cropland in Bargiano site (located in 

Umbria, within the Tevere River Basin), and which represent small sub-catchments or 

hillslopes widely affected by badlands developed on uplifted Plio-Pleistocene marine clays. 

Geomorphological features of Upper Orcia Valley were gathered from field survey and aerial 

photos interpretation, conducted over different spatial scales, and was useful in identifying 

the major acting morphogenetic agents. 

Thus, in Part I, the results of direct erosion monitoring with pins (§ 2) are presented, 

and, in § 3 they are compared with rainfall trend and a reconstruction of the geomorphic 

evolution following cropland abandonment (by means of D-GPS survey and geostatistical 

analysis) for a sample hillslope of Tevere River Basin (Bargiano site), in order to highlight the 

effects of rainfall variations and land use changes on denudation rapidity (Vergari et al., 

submitted a). From single landform and hillslope scale, the investigations are moved to a 

small (about 4 km
2
) subcatchement scale (§ 4), where the performance of digital 

photogrammetric analysis in evaluating large time span erosion rates was analysed during a 

research collaboration with Università del Molise (Aucelli et al., 2010). 

In § 5 an attempt to identify the most important factors conditioning the different 

erosion landforms, and related erosion rates, was performed, taking into account the 

possible cause/effect role of grain size, mineralogical and geochemical composition of 

badland parent material of some Upper Orcia valley sediment samples (Vergari et al., 

submitted b). 

Erosion modeling is dealt with in Part II, where erosion intensity is estimated refining 

Tu denudation index equations (§ 6), and attempting a zonation of estimated erosion rates, 

by means of a grid analysis. The estimates are here validated considering the results of direct 

monitoring. Susceptibility analysis is performed through the analysis of geostatistical spatial 

relationships between the physical determining factors and the effects of the denudation 

processes (the erosion landforms). To this aim, conditional analysis is applied to evaluate 

landslide susceptibility of Upper Orcia Valley in § 7, preceded by a new procedure for 

selecting the most influential causal factors (Vergari et al., 2011). Finally, § 8 presents a 

proposal for water erosion hazard assessment methodology, applicable in areas widely 

affected by badlands, in which erosion rates of badland areas is estimated through Tu 
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denudation index, while spatial probability of calanchi badland occurrence is computed by 

means of the susceptibility assessment method described in § 7. 

 

 

Fig. 0.1 – Location of the study area and monitoring and sampling sites. 



INTEGRATED TECHNIQUES FOR SLOPE EROSION MODELLING AND 

BADLAND MONITORING IN KEY SITES OF CENTRAL ITALY                                                               Chapter 1  

 27

 

1 STUDY AREAS AND GEOMORPHOLOGICAL SURVEY 

 

The erosion evaluation methods have been applied in some key areas affected by 

badlands located in central Italy, in particular within the drainage basins of Tevere River and 

Ombrone River basins, where a series of geomorphological studies have been conducted 

over the past two decades, aimed at the quantitative direct and indirect evaluation of 

denudation processes (Ciccacci et al.,1981,1983, 1986, 1992, 2003, 2008, 2009; Marini, 

1995; Del Monte et al., 2002; Del Monte, 2003; Del Della Seta et al., 2007, 2009). 

 

The choice of well-known study areas was driven by the necessity of refining the used 

methodologies through the comparison between the obtained results with the available 

data, in order to focus the aims of the research project on methodological integrations 

and/or innovation, beside a deepening of the geomorphological processes occurring in the 

study areas. 

 

In particular, many indirect denudation evaluation methods have been applied in the 

Upper Orcia Valley (Southern Tuscany), where a relevant dataset of erosion measures was 

available (Del Monte et al., 2002; Del Monte, 2003; Ciccacci et al., 2003, 2008; Della Seta et 

al., 2007, 2009). Even so, direct monitoring was carried on in these areas during the three-

years research project, at different spatial and temporal scale, as erosion monitoring, 

different scale geomorphological survey, remote sensing and DGPS survey, with the aim of 

deepening the comprehension of the entity and velocity of the denudational processes. 

During the last years, the field monitoring program, that started about 20 years ago 

(Marini, 1995; Ciccacci et al., 2003, 2008; Del Monte, 2003; Della seta et al., 2007, 2009) and 

that was concentrated on the study of natural badlands, has been integrated with the study 

of a semi-natural site, the Bargiano sample area, located within the Tevere River Basin. In 

this area, the quantification of the effects of cropland abandonment and rainfall variations 

on gully development and denudation rates was attempted for a sample hillslope that 

underwent cropland abandonment (§3). 
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1.1 Geological setting 

 

The study areas present similar geological features and are located within the 

Neogene Radicofani and Chiani-Paglia-Tevere graben. These are tectonic depressions, 

bordered by listric faults, origined during the Miocene extensional tectonic phase 

(Ambrosetti et al., 1979; Liotta, 1996; Mancini et al., 2003-2004), and filled with thick 

marine, lacustrine and continental deposits  (Martini et al., 2001). The geological evolution 

of the study area is responsible for widespread outcrops of lithological units very prone to 

denudation (Fig. 1.1). 

 

 

Fig. 1.1: Geological sketch of the study area. 1) (a) Quaternary silica undersaturated to intermediate 

volcanic rocks; (b) Quaternary (and subordinate Pliocene) acid volcanic rocks; 2) Quaternary 

undifferentiated continental deposits; 3) Plio-Pleistocene terrigenous marine deposits and Messinian 

evaporites; 4) sedimentary and metamorphic units of Ligurian and sub-Ligurian nappes (Trias to 

Lower Cretaceous); 5) sedimentary and metamorphic units of Tuscan nappe (Paleozoic to Miocene); 

6) Umbria–Marche sedimentary sequence (Trias to Tortonian); 7) Normal fault; 8) Undetermined 

fault; 9) Axis of anticline; 10) Axis of syncline; 11) Monitoring sites; 12) Major river basin divides. 
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The emplacement of the Apennine orogenic wedge (Oligocene to Tortonian) led to the 

formation of major morphostructures oriented mainly NW-SE and made up of sedimentary 

sequences (Umbria-Marche sequence, Tuscan Nappe, Ligurian and Subligurian Nappe) 

overthrust towards the NE. The later collapsing phase started in the Late Miocene, and 

extensional tectonics, affecting the Tyrrhenian margin of the Italian peninsula, activated 

several NW-SE-striking normal faults that define a system of horsts and grabens (Baldi et al., 

1994; Carmignani et al., 1994) cut by SW-NE transfer faults (Liotta, 1991) (Fig. 1.2). A marine 

transgression led to the deposition of a Plio-Pleistocene sequence of clay, sands and 

conglomerates within the major depressions: Radicofani Graben, Val di Chiana Graben and 

Tevere Graben (Barberi et al., 1994) (Fig. 1.3). Inland, the extensional basins are filled with 

lacustrine to fluvio-lacustrine continental deposits. During the Quaternary, the Plio-

Pleistocene marine deposits were uplifted to several hundreds of meters above the present 

sea level (Liotta, 1996). This strong uplift was related to pluton emplacement and 

widespread volcanic activity along the Tyrrhenian side (Acocella and Rossetti, 2002), 

evidenced by the alignment of many volcanic complexes. Quaternary uplift has been 

particularly strong along the southern margin of the Radicofani Graben, where locally marine 

deposits crop out at 900 m a.s.l. (from the Mt. Amiata-Radicofani neck on the western side 

to Mt. Cetona on the eastern slope of the study area). 
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Fig. 1.2: Distribution of pliocene sedimentary basins. Symbols: 1) emerged areas, 2) marine 

sedimentation, 3) lacustrine sedimentation (Lazzarotto, 1993). 

 

 

 

Fig. 1.3: Paleogeography of Tyrrhenian side of central Italy during Early (a) and Mid Pliocene (b). 

Symbols: 1) emerged areas, 2) submerged areas 3) coastline, 4) present coastline and lake limits 

(after Ambrosetti et al., 1979). 

 

 

 

a b 
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1.1.1 Upper Orcia valley outcropping lithologies 

 

Upper Orcia Valley is located within the Radicofani Graben. This depression represents 

the southern prolongation of the Siena sedimentary basin (Fig. 1.3) and is separated from it 

by the Pienza - S. Quirico d’Orcia ridge. To the East and to the West it is bounded 

respectively by the Mt. Cetona – Mt. Rufeno and Amiata – Castell’Azzara ridges, while to the 

South it is linked to the Tevere Graben. 

The main sedimentation phase occurred during Pliocene, superimposing the 

precedent allochthonous tectonic units, and forming the following stratigraphic sequence 

(from the top to the bottom): 

• Continental deposits (Holocene) 

• Quaternary volcanic rocks 

• Pliocene marine deposits 

• Units of Ligurian nappe (Cretaceous-Paleocene) 

• Units of Tuscan nappe (Triassic-Jurassic) 

• Metamorphic complex (Paleozoinc-Triassic) 

 

METAMORPHIC COMPLEX 

It includes Paleozoic and Triassic lithotypes, recognized by means of drillings 

performed on the eastern side of Mt. Amiata. Starting from the top, slightly metamorphosed 

sandstone and conglomerate, phyllite and limestone (called “A” Formation) were found, 

within which a “B” formation formed by phyllite and slightly metamorphosed sandstones 

with Devonian dolomitic limestone levels was recongnized (Bertini et al., 1991). At the base 

of “A” Formation, the “C” Formation was found, prevalently characterized by limestone and 

dolomitic limestone. 

 

TUSCAN NAPPE 

Calcareous and dolomitic rocks, outcropping on Mt. Cetona in very thick deposits (Fig. 

1.4). The older formations are characterized by stratified Rhaetic limestone with marly beds, 

dolomite and dolomitic limestone (Calcari a Rhaetavicula contorta); overlain by Liassic 

massive grey limestone, cherty limestone and red ammonitic limestone (Lias), Posidonia 
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marl (Dogger), and chert (Malm). The youngest formation of the 

Tuscan Series outcropping in the area is the so-called “Scaglia 

Toscana”, characterized by Cretaceous-Oligocenic varicoloured 

marls and manganese-shales. 

 

Fig. 1.4: Stratigraphic sequence of Tuscan series on Mt. Cetona. 

Cretaceous-Oligocene: O) “Formazione del Macigno”, ce) Tuscan nappe 

formation; Siliceous and calcarous formation: g5) Radiolarite and 

limestone with Aptici, g4) Marl with Posidonomya, g3) Cherty limestone, g2) 

Red ammonitic limestone, g1) Massive limestone, t3p) Liassic massive grey 

limestone, t3R) Rhaetic limestone with marly beds, t3a) Burano anhydrite 

formation and cavernous limestone (Lazzarotto, 1993). 

 

 

 

LIGURIAN NAPPE 

Two allochthonous formations overlay the Tuscan serie’s lithologies. The first one is a 

thick sequence of claystone, marly claystone, marl and white-greyish cherty limestones 

thinly-bedded, known as Palombini Formation. Ophiolites commonly occur in this Lower 

Cretaceous sequences. 

The Pietraforte formation, late Cretaceous-Paleocene in age, overlies the Palombini 

Formation and has a less clay-rich composition. The sequence is formed alternatively of 

calcarenite, calcilutite, and carbonatic sandstone with silty and clayey interbeds. 

 

NEOGENIC SEDIMENTARY DEPOSITS 

A marine transgression led to the deposition of a Plio-Pleistocene sequence of clay, 

sands and conglomerates within the Radicofani Graben, while, inland, the extensional basins 

were filled with lacustrine to fluvio-lacustrine continental deposits. This group is prevalently 

made of marine claystone deposited during the Pliocene marine ingression and that cover 

most of the sample area and represents the initial marine filling of the Graben. The claystone 

and sandy claystone (early Pliocene) are several hundred meters thick, and it is easy to find 

interbeds of graded sands and poorly cemented conglomeratic lenses. More recent Pliocene 

marine deposits are made of bioclastic limestone with Amphistegina.  
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The claystone outcrops in the  central part of the graben, whereas the coarser 

deposits more commonly outcrop along the eastern and the western boundaries of the 

watershed. 

 

QUATERNARY VOLCANIC DEPOSITS 

These deposits are related to the Quaternary volcanic activity of the Radicofani volcano, 

situated in the southern-most sector of the Orcia River basin. The age of the volcanic activity 

is dated to 1,3 ± 0,003 Ma (D’Orazio et a., 1991; Liotta, 1996) by 
40

Ar/
39

Ar method. Today, 

the only preserved part of the Radicofani volcano is a neck made of trachybasalts and 

olivine-latite, with olivine-trachytic scorias (Pappalardo et al., 2001), surrounded by a 

volcanic debris deposit, up to 2 km
2 

wide, that testify the original volcano dimension. 

The western sector of the watershed, nearby Piancastagnaio and Abbadia S. Salvatore 

towns, is characterized by the outcopping of the Mt. Amiata rhyodacite, origined after the 

effusive activity of this volcano. 

 

QUATERNARY CONTINENTAL DEPOSITS 

These deposits are made of volcanic debris, travertine (linked to the S. Casciano dei 

Bagni thermal springs) and alluvial deposits. Pliocene deposits are ascribable to early huge 

landslides occurred on dip slopes. 

In the Orcia River and its tributaries, the alluvial deposits are very widespread. In fact, 

streams show an important bed and suspended load; the solid load on the river-bed of 

streams draining the upper basin is made of cobbles generated by the dismantling of flysch 

and Pliocene sands and conglomerate, frequently rounded by older erosional cycles. 

 

 

1.1.2 Bargiano site outcropping lithologies 

 

Bargiano site is included in the Chiani-Tevere graben. The Fabro Formation is the 

prevalent outcrop and is characterized by a thick clayey deposit, whose bottom is not still 

known. Higher marine claystone, about 350 m thick, are tilted to ENE and has sandstone 

with Flabellipecten at the top.  
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Alluvial deposits are very widespread along river valleys due to the high river sediment 

yield, while effusive rock and pyroclastic deposits are present in the southern sector of the 

area, products of Pliocene activity of Mt. Vulsini. 

 

 

1.2 Climatic setting 

 

Two main climatic features characterize the study area: the sea distance and the 

altitude. 

Barazzuoli et al. (1993) described climatic setting of southern Tuscany considering 4 

sites representative of 4 different altimetry categories: coastal plain, inland hilly zones and 

mountain zone. Fig. 1.5 shows the Siena climograph, representative of a hilly zone. Monthly 

mean values of the De Martonne (1926) index of aridity (Ia) allows to characterize a site 

defining slow transitions between arid, semiarid, and humid environments or periods: 

Ia = 12p/(t+10), where p is mean monthly precipitation in millimeters and t is mean monthly 

temperature in degree. 

According to Barazzuoli et al. (1993), Siena climograph (Fig. 1.5) shows that the winter 

half-year is cold and humid, while the summer half-

year results in the warm and arid zone. 

 

 

 

Fig. 1.5: Siena climograph (after Barazzuoli et al., 1993). 

1) warm and humid period; 2) warm and arid period; 3) 

cold and arid period; 4) cold and humid period. 
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1.2.1  Monitoring sites 

 

Climate data from the 1951-1996 records at several significant stations within the 

eastern Ombrone River Basin are summarized in Table 1.1. The mean annual rainfall (696 

mm) is below the national average (970 mm/a), although its values during the considered 

time span are discontinuous. Rainfall is heavier in the colder half of the year than in the 

summer, with a maximum in November and a minimum in July. The most consecutive rainy 

days are recorded in autumn. The mean annual temperature is around 14°C, and the thermal 

regime indicates an annual range of about 18°C, with a maximum in July. 

As for Bargiano site, mean annual rainfall (1328 mm a-1over 84.5 rainy days) is instead 

above the national average and seasonal distribution shows the maximum concentration in 

autumn (418 mm over 18.5 rainy days) with a secondary peak in the spring season (Western 

Tevere Basin in Tab. 1.1). The minimum rainfall is recorded in July and the mean annual 

temperature is 14.3 °C, with autumn season slightly warmer than spring (mean seasonal 

temperature is respectively 20°C and 17°C).  

A detailed description of pluviometric data recorded at Orvieto station is described in 

§3 for Bargiano, where the role of rainfall variations on erosion rates is analyzed. 

 

 Eastern Ombrone Basin 

(1951-1996) 

Wester Tevere Basin 

(1920-1996) 

Mean annual rainfall (mm) 696 875 

Minimum annual rainfall (mm) 510 446 

Maximum annual rainfall (mm) 960 1493 

Absolute minimum monthly 

rainfall (mm) 

31 (July) 29 (July) 

Absolute maximum monthly 

rainfall (mm) 

93 (November) 122 (November) 

Mean annual temperature (°C) 14.4 12.5 

Minimum monthly temperature 

(°C) 

5.5 (January) 4.6 (January) 

Maximum monthly 

temperature (°C) 

23.3 (July) 22.2 (August) 

 

Tab. 1.1 – Climatic data of the study areas (after Della Seta et al., 2009). 
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Considering the Upper Orcia valley, mean annual rainfall depth, recorded at La Foce 

pluviometric station (550 m a.s.l.) for 1951-1999 period, amount to 738 mm, with non-

significant diminishing trend (Fig. 1.7). As shown in graph of Fig. 1.6, November is the most 

rainy month, with 103,7 mm, followed by October, September and December. The most 

rainy season is thus confirmed to be autumn, while spring and winter present a similar trend 

and summer shows a mean seasonal rainfall depth of 132 mm (Tab 1.2). 
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Fig. 1.6 – Mean monthly rainfall depth recorded at La Foce pluviometric station. 

 

 

 

Tab. 1.2 –  mean seasonal rainfall depth, La Foce pluviometric station (1951-1999 time-span). 

 

 Winter Spring Summer Autumn 

mm  191,3 191,9 132,1 263,2 
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Fig. 1.7 – Annual hyetograph for La Foce pluviometric station. 

 

Analysis of temperatures was performed considering Montepulciano station data (607 

km a.s.l.). 

For the 1980-1998 period, mean temperature is 14,3 °C, while mean maximum and 

minimum temperature values amount respectively to 10,1 and 18,6 °C. An increasing trend 

is recorded for the considered period, which is stronger for the maximum temperatures 

(about 0,17°C/a, Fig. 1.8). 
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Fig. 1.8 – Annual minimum, mean and maximum temperature values recorded at Montepulciano 

thermometric station. 

 

 

Considering the mean monthly and seasonal temperature values (Fig. 1.9),  the warmer 

months result July and August (with maximum values of 30°C), while the colder months are 

January and February (minimum values of about 2,5°C), pointing out a strong mean annual 

temperature range. 

Autumn is on average warmer than spring. 
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Fig. 1.9 – Mean monthly (a) and seasonal (b) temperatures, considerino mean, maximum and 

minimum values recorded at the Montepulciano thermometric station. 

 

In Fig. 1.10 the Bagnouls-Gaussen diagram is shown. The aridity period corresponds to 

July and August, as well-known for Mediterranean climate. This is confirmed in Barazzuoli et 

al. (1993), where the authors identfied the Orcia valley climate as a prolongation of the sub-

arid climate defined for the coastal strip according to the Thornthwaite Moisture index 
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(1948). Even though, Orcia basin arid period is less intense and briefer than the aridity 

period that generally occurs in the Mediterranean coastal zones. 
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Fig. 1.10 – Bagnouls-Gaussen diagram (pluviometric data from La Foce station and thermometric 

data from Montepulciano station). 

 

Finally, it has to be underlined that many sectors of the Upper Orcia valley pertain to 

mountainous zones, as Mt. Cetona, that riches an elevation of more than 1000 m. For this 

station Barazzuoli et al. (1993), using a temperature/altitude linear regression, computed a 

mean annual temperature value of 10°C, oscillating between the January mean value of 4°C 

and the July mean value of 22-23°C. For the same site, mean rainfall depth amounts to 1000-

1100 mm/a. 
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1.3 Geomorphological setting 

 

The following geomorphological description of the study area is performed 

considering the results of the field surveys carried out during previous studies in Upper Orcia 

Valley. Even though, during the Ph.D investigations, the mapping of the most intense 

geomorphological processes effects, due to gravity, runoff and human impact, was 

performed, by means of field survey and aerial photo interpretation, as well as also updating 

precedent data, at different spatial scales (Fig. 1.11): 

1) for Orcia River basin, (outlet at Monte Amiata gauging station, about 580 km
2
), the 

distribution of main hazardous processes effects was mapped at a scale of 1: 80.000 

(Annex 1); 

2) for Upper Orcia Valley (about 120 km
2
, 1:10.000 scale), the map of the effects of the 

main hazardous processes was updated through field survey, starting from the 

results achieved during previous studies (results are reported and described in §7 and 

§8); 

3) for a test area (about 30 km
2
), corresponding to Miglia subcatchment and Formone-

Orcia confluence area, a very detailed geomorphological survey (at a scale of 1:5.000) 

was carried out, that allowed to produce a geomorphological map at a scale of 

1:12.000 (Annex 2). 

This procedure was carried out in order to better define the processes that act at 

erosion “hot spots” badland areas and are likely to influence the values of catchment-scale 

denudation rates (§2). Moreover instability landforms mapped at 1:10.000 scale were used 

as target features to perform the geomorphological susceptibility and hazard assessment 

described in § 7 and 8. 
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Fig. 1.11 – Location of different cartographic products in Orcia River Basin. 

 

The variety of outcropping lithologies and the tectonic control of Tyrrhenian side of 

central Italy led to the development of structural landforms. The major landforms are 

represented by morphostructural ridges bounded by NW-SE-trending fault scarps, dipping 

towards the graben depressions. Minor morphotectonic elements (E.g., straight channels, 

saddles, straight ridges) are aligned along (and controlled by) the other structural patterns. 

However, the study area is characterized by hilly landscapes, with elevations rarely higher 

than 1000 m a.s.l., due to the widespread outcrops of soft sediments. Near fault scarps 

and/or where stronger rocks crop out, the landscape is more rugged and the valleys are 

deeper. 

Fluvial erosion, together with slope denudation, contributes significantly to the 

morphogenesis. Numerous slopes are rapidly evolving, and the rivers show high suspended 

sediment load. Water erosion is pervasive, due to extensive clayey outcrops as well as to the 

current climatic conditions and the rapid uplift. Sheet erosion is responsible for the exposure 

of roots and for colluvium deposition at the slope feet. As the slope increases slightly, rill and 
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gully erosion prevails, contributing the most to badlands development and soil degradation. 

Ephemeral gullies (Foster, 1986) are often recognizable in croplands, and they grow rapidly 

as a consequence of concentrated rainfall. Water erosion on natural slopes leads to typical 

sharp- and rounded-edged badlands, locally called calanchi and biancane, respectively (Della 

Seta et al., 2009, and references therein). 

Channelled waters are particularly effective in carving deep valleys and drainage 

network geometry, together with the shape of catchments, are strongly influenced by the 

geological structure, such as the NNW-SSE striking graben, which influence the path of the 

main rivers. Some fracturing patterns influence both the direction of the main valleys and 

the development of denudation processes. At present, clayey slopes are affected by strong 

morphogenesis, even leading to suspended sediment yield values among the highest 

recorded in Italy. Runoff is responsible for widespread "calanchi" and "biancane" badlands, 

and gravity causes frequent shallow and deep mass movements, even on gently dipping 

slopes. Sheet erosion is responsible for exposure of roots and colluvium deposition at the 

slope foot. As the slope increases slightly, rill and gully erosion prevail, contributing the most 

to badlands development and soil degradation. A detailed treatise of the different 

morphoevolution and denudation trends of these landforms will be given in the next 

subsection, as they are the main objects of this study. 

Human impact has significantly affected the landscape of the study areas for a long 

time. Vegetation cover is sparse, even because of widespread deforestation of the hills 

reserved to valuable crops and grazing. Wood of tall trees is confined to the hills top or to 

the steepest slopes, and often it is the result of the conifer reforestation carried out since 

the '60 to slow down soil erosion. Most of the area is made up of sowable or uncultivated 

ground. 

 

 

1.3.1 Monitoring sites 

 

During the last years, the field monitoring program, that started about 20 years ago 

(Ciccacci et al., 2003, 2008; Del Monte, 2003; Della seta et al., 2007, 2009) and that was 

concentrated on the study of natural badlands (Fig. 1.12), has been integrated with the 
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study of a semi-natural site, the Bargiano sample area (Fig. 1.13), located within the Tevere 

River basin. 

 

 

Natural badlands areas 

The erosion hot spot study areas are characterized by a wide variety of landforms. A 

smooth hilly landscape marks the northern portion of the area (Southern Tuscany), where 

typical “biancane” landforms are frequent, although often reworked because of crop 

growing (Fig. 1.12a). They are small clay domes up to about 10 m high, mostly uncovered by 

vegetation on the southern usually steeper slopes, where rill erosion is particularly strong. 

The “biancane” are typically located near the foot slope as well as at the hill summit and 

their distribution is always associated to gently dipping slopes (Torri and Bryan, 1997; Della 

Seta et al., 2009). Towards the South, the presence of horst structures and/or the previously 

mentioned volcanic structures led to the raising of the Pliocene marine deposits at several 

hundred meters above sea level. Here the landscape is much rougher and the typical 

landforms on clayey slopes are represented by “calanchi” badlands (Fig. 1.12b). Here the 

slopes are generally steeper, often dampening the human activities; thus the 

morphosculptures are less reworked than those in the “biancane” zone. The clay bedrock 

plays a key role in “calanchi” development, along with bedding and caprocks. In particular, 

“calanchi” are more frequent on scarp slopes and their growth is supported by sandy, gravel, 

conglomeratic or volcanic caprocks at the summit. When caprocks are completely eroded, 

the slopes rapidly decrease in steepness and their parallel retreat ceases, according to the 

evolutionary model proposed by Scheidegger (1961, 1964). 

Deep piping is widespread at several calanchi sites, especially in northern Latium 

where calanchi are more extensive (Fig. 1.12c). According to several authors (Faulkner et al., 

2003; Romero-Díaz et al., 2007; Borselli et al., 2006), this process is favoured by land use 

changes (I.e. cropland abandonment) and by steep hydraulic gradients. In particular, the 

hydraulic gradient increase at the intersections between sub-horizontal bedding and vertical 

fractures. Deep pipes probably contribute significantly to denudation and evolve rapidly due 

to collapsing. Ephemeral gullies develop on cultivated or grazing lands, where they cause a 

very important path for sediment entrainment (Fig. 1.12d). 
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On denudational slopes several earth micropyramids are present (with vegetation 

cover, stones or fossil macrofauna at their summit), while other small landforms are due to 

piping processes. At the foot slopes, the parallel retreat led to the development of landforms 

similar to small pediments, as already suggested by some authors (Schumm, 1962; 

Guasparri, 1978, 1993; Torri et al., 1994). 

Moreover, gravitational movements on slopes supply a considerable amount of 

material to be transported by the major rivers. Apart from some rock falls, slumps and slides 

occur on steep slopes. However, the influence of gravity is also evident on gentler slopes, 

where mudflows, soil creep and solifluction are widespread. Due to these prevailing 

morphogenetic processes, gently undulating slopes characterize the landscape. 

Large areas of Upper Orcia Valley have been modified for human activities. Many 

biancane badland and calanchi badland were smoothed for agricultural purposes. 

Deforestation, grazing and farming are among the most important triggers for accelerated 

water erosion, tillage erosion and gravitational movements on slopes. Moreover, the effects 

of farming may become stronger if there are land-use changes related to cropland 

abandonment. 
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Fig. 1.12 – Some of the most widespread landforms due to accelerated water erosion in the long 

lasting monitoring areas: a) “biancane” badlands; b) “calanchi”; c) Deep piping at a calanchi badland 

site and shallow piping at the interface between the weathered pop-corn crust and the undisturbed 

clay; d) deep gully in a grazing land. 
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Bargiano site 

The sample area of Bargiano is located within the Tevere River Basin (next to the town 

of Orvieto, Umbria) and consists of a gently dipping slope with an extent of about 4300 m
2
. 

Up to the ’60s it was part of a calanchi badland slope, successively levelled for agricultural 

purposes (cereal crop). In 1980 the cropland was abandoned, with the consequence of a 

very rapid development of a close net of meandering rills and gullies, with a parallel 

geometry that follows the maximum slope direction. The site appears as a miniature 

catchment (Fig. 1.13a) where it is possible to study the dynamics of surface processes, such 

as splash erosion, runoff, rill and gully evolution (Fig. 1.13b), and frequent mass movements. 

More details on the denudational processes affecting the area will be given in § 3, where 

measured erosion rates are compared with rainfall trend and a reconstruction of the 

geomorphic evolution following cropland abandonment 

 

a)  b) 

Fig. 1.13 – a) Bargiano sample hillslope; b) a detail of the most incised gully. 
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PART I 

 

FIELD MONITORING AND  

PHOTOGRAMMETRIC AND PARENT MATERIAL ANALYSES 

 

In the most recent works, the development of indirect models for erosion prediction 

(Jetten & Favis-Mortlock, 2006) was accompanied by the advance in monitoring techniques 

(Evans, 1995) and by laboratory experiments (Bryan and Poesen, 1989). In fact, model 

validation was traditionally performed through direct monitoring performed on parcels or 

experimental catchments (Richter and Negendank, 1977; Del Monte et al., 2002; Poesen et 

al., 2003; Della Seta et al., 2007, 2009). 

The increasing performance of geoinformatic provides high quality data at different 

scales when new monitoring techniques are applied such as hyperspectral remote sensing, 

LiDAR survey, digital photogrammetric analysis, measures of land surface elevation using 

high resolution GPS and electronic theodolites. Moreover advances on these techniques 

contribute to increase performance of soil erosion estimation models and can help their 

validation. Digital Terrain Models (DTM) can be constructed to evaluate elevation variations 

with different detail and error, depending on the method of data collecting used (Zukowskyj 

& Teeuw, 2000): for example they can be produced through interpolation of contour data 

and Differential Global Positioning System (DGPS) point data, and from Digital 

Photogrammetry techniques, but their applicability for erosion rates estimation has not yet 

completely deepen and analyzed. 

 

In this part, the applicability of different erosion monitoring techniques is investigated 

by means of the simultaneous application of several methods in the study areas: besides the 

continuation of long-lasting erosion monitoring of erosion hotspots of Ombrone River and 

Tevere River basins (§ 2), an attempt of integration of the use of erosion pins and D-GPS 

survey has been performed for a sample hillslope located within the Tevere River Basin 
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(Bargiano site) (§ 3). For this area, where several erosion data were available, the role of 

rainfall variation on erosion rates has been deepened. 

Moreover the results of monitoring with pins have been used to validate an attempt of 

volumetric estimation of erosion rates performed by some researchers of Molise University. 

This collaboration was finalized to test the applicability of digital photogrammetric analysis 

on erosion rates estimation for fairly large time-spans (§ 4).  

Finally, textural and geochemical analyses of the parental material have been 

undertaken to further elucidate their properties on both bare and vegetated surfaces and to 

discuss them with respect to the development of different badlands processes. Clay 

dispersivity at different depths in the sample sites was analysed, as a well-known controlling 

factor of accelerated erosion, providing some interesting clue for understanding badlands 

processes (§ 5). 
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2 EROSION MONITORING WITH PINS IN UPPER ORCIA VALLEY 

 

The areas that resulted from field survey to be affected by strong denudation have 

been monitored, to detect local modifications of the topographic surface with time. In fact, 

denudation “hot spots” (I.e. badlands) are likely to influence denudation rates at the 

catchment scale (Della Seta et al., 2009). Thus, understanding and monitoring the processes 

involved in their development is of crucial importance, especially in regard to distinguishing 

between on- and off-site effects of water erosion. The goal was achieved by setting up a 

series of monitoring stations, some of which have been working continuously since 1993 

(Marini, 1995; Del Monte et al., 2002; Del Monte, 2003), while others have been active for 

shorter periods between 1993 and 2011. In particular, both the number of stations and the 

frequency of a field monitoring program, started about twenty years ago, was increased. The 

results of the 3-years erosion monitoring are presented here, together with a summary and 

comparison of the results already achieved during previous studies. 

 

 

2.1 Material and methods 

 

Field monitoring at the hillslope scale was performed using more than a hundred of 

monitoring stations in central Italy, where iron pins were placed in significant and poorly 

accessible zones, in order to avoid tampering. Metallic stakes with section of 1 cm
2
 and 

length of at least 80 cm (Fig. 2.1a) were located at different depths and where piping is 

absent, in order to cross the weathered horizon in which mud cracks occur, and provided a 

series of local data indicating the changes occurring on the topographic surface (Marini, 

1995). Many microforms, such as earth micro-pyramids, were noticed during field survey, 

caused by cobbles, wood fragments or gastropods’ shells on top of clay rapidly shaped by 

surface running waters. Thus, earth micro-pyramids have been induced by placing coins on 

the ground surface, providing further data (Fig. 2.1b). 
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 a)  b) 

Fig. 2.1 – a) Biancana equipped with erosion pins. b) 2-cm high micro-pyramid induces by a shell. 

 

In Upper Orcia Valley, uphill, downdale and lateral changes in the ground level (Δy) 

were measured at rill, inter-rill and on-pediment positions, both at biancane (hill-summit 

and foot-slope) and calanchi (with caprocks) sites. Moreover, slope retreat (Δx) was 

measured at pediment pins as well as on caprocks, using horizontal pins. In this study area, 

erosion pin stations are localized in different sites (Fig. 2.2): 

1. about 60 pins, some of them working since 2004, are located in the 

valley floor of Formone River (a tributary of Upper Orcia River), where a 

residual biancane badlands area survives surrounded by a large 

remodelled ploughed field; 

2. about ten erosion pins have been placed in the Lucciolabella Natural 

Reserve, where the residuals of the original biancane landscape of 

Upper Orcia valley is protected (Miglia subcathment); 

3. about15 pins are located along the Formone-Upper Orcia divide, within 

calanchi and biancane badland areas. 
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Fig. 2.2 – Location of the erosion monitoring stations in Upper Orcia Valley. 

 

 

2.2 Results 

 

In the Formone valley floor biancane area, pins I0 and I1 are located in two biancana 

sides, while pin I7 is placed on a biancana pediment, measuring the biancana slope retreat 

together with the topographic surface modifications. 

Pin I0 was originally inserted near a mud-crack, that was gradually enlarged by erosion, 

and maybe as an effect of the pin itself. The station experienced a continuous alternation of 

clay accumulation within the crack and erosion, till the pin was damaged for the crack 

enlargement. During the 2009 summer it was moved some centimetres away on the same 
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biancana side (Station I0 – new in Fig. 2.3). Untill the last measure (June 2011), in the new 

location a regular negative trend was recorded, whose intensity reaches 4 cm in 20 months, 

that corresponds to 2.4 cm/a. Until only running waters were acting, also pin I1 experienced 

a regular lowering of surface level, measured in a 2.6 cm/a. During 2010 spring, an important 

mudflow has occurred on the monitored biancana, causing at the pin position a temporal 

cay deposit, as shown in graph of this pin in Fig. 2.3. As for the pediment pin, increases of 

slope retreat (up to 20 cm from 2004 to 2005), accompanied by a gradual accumulation on 

the micro-pediment surface, was observed spring 2009. In fact, a first mudflow in spring 

2009, and then a second stronger event in spring 2010 occurred on the biancana slope (Fig. 

2.4), causing a strong advancing of biancana slope. 

Finally, a biancana slope equipped with 46 erosion pins (Fig. 2.5) was monitored, 

showing a regular negative ground level change, with an average of 2.4 cm/a and a 

maximum erosion rate of 4.8 cm/a (up to 12 cm in 30 months for pin 44). The most frequent 

positive oscillations have been recorded during the spring months of 2010 and 2011 (Fig. 2.6 

and 2.7). 
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Fig. 2.3 – Erosion pins in a residual biancane area of Formone River valley floor. 
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Fig. 2.4 – Slope retreat and mudflow events at I7 station. 

 

 

Fig. 2.5 – Biancana equipped with 46 erosion pins at Formone valley floor. 
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Fig. 2.6 – Uphill topographic level modifications measured by means of 46 pins located on a single 

biancana in Formone valley floor. 
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Fig. 2.7 – Downdale topographic level modifications measured by means of 46 pins located on a 

single biancana in Formone valley floor. 
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In Lucciolabella Natural reserve (Fig. 2.2), erosion pins have been located in a biancane 

badland area in the Lucciolabella hillslope summit (Fig. 2.8a). In this area, L1 is placed in a 

biancana side, L2 on a biancana pediment, while L3 and other 3 (La, Lb, Lc) stakes are located 

in an area characterized by the presence of embryonic biancane (Fig. 2.8b). A regular strong 

lowering of topographic surface was observed in this site, where the maximum erosion rate 

was measured in the surface evolving to biancane badlands (Fig. 2.8b): up to 4.5 cm/a (Fig. 

2.9 and 2.10). Also the biancana pediment of station L2 experienced accumulation of 

mudflows occurrence in the biancana slope, while the biancana slope retreat was regular 

during all the monitoring period, reaching a rate of 4 cm/a. 

 

 a) 

 b) 

Fig. 2.8 – a) Lucciolabella biancane badland hillslope. b) Portion of Lucciolabella hillslope 

characetrized by the presence of embryonic biancane. 
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Fig. 2.9 – Erosion pins in a residual biancane area of Lucciolabella hillslope. 
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Fig. 2.10 – Ground level changes measured at La, Lb and Lc station in Lucciolabella biancane hillslope. 

 

 

Stations of calanchi badland area (F and F0), located along the Formone-Orcia divide, 

experienced a very rapid denudation, even if lower erosion rates with respect to biancane or 

embryonic biancane sites. Unlike other calanchi stations in central Italy (Della Seta et al., 

2009), in Upper Orcia valley these stations were not affected by temporal accumulations due 

to earth sliding, since they are place in the calanchi with a summit sandy caprock. As 

underlined by Della Seta et al. (2009) for central Italy calanchi stations, calanchi slopes 

capped by resistant rocks generally experience higher denudation rates on the whole. In 

fact, the presence of caprocks probably favours runoff processes in spite of landsliding. 

Station F is running since 1994 and is useful to quantify the most significant erosion 

rate due to runoff. The regular negative trend shown in Fig. 2.11 for the 1994-2011 time 

interval corresponds to a net erosion rate of 1,7 cm/a. For F0 station, an erosion rate of 0,8 

cm/a can be computed. 

As for the biancana site of the Formone Orcia divide (F-L station in Fig. 2.11), up to 

2010 a surface lowering rate of 4 cm/a was recorded, but during 2010 a slide accumulation 

partially buried the pin. 
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Fig. 2.11 - Ground level changes measured at F, F0 and F-L stations on the calanchi badland hillslope 

summit along the Orcia-Formone divide. 
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2.3 Discussion 

 

Biancane stations experienced the stronger surface lowering rate due to water erosion 

with respect to calanchi sites, attaining an average rate of 2.4 – 2.6 cm/a. Moreover, 

biancane in a more juvenile development phase, which correspond to the embryonic 

biancane surface of Lucciolabella Natural Reserve, show the maximum erosion rate, which 

reach more than 4cm/a. For this surface, a previous and abandoned agricultural exploitation 

is hypothesized, that could have raisen the surface proneness to water erosion, as a result of 

ploughing activity. This hypothesis is strengthen by the wide presence of piping in the area, 

that has been proved to be enhanced by cropland abandonment. 

The monitoring results confirm the tendancy of biancane pediment of being affected 

by a slowly accumulation on the topographic surface, being the result of a rapid biancane 

slope retreat (up to 4 cm/a). 

Calanchi badlands record a lower erosion rate, between about 1 and 2 cm/a, in Upper 

Orcia stations, where a more resistant caprock prevents from frequent earth sliding. 

Earth slides are proved to be more frequent in spring season, as a result of the spring 

rainfall over water saturated clayey deposits. 

 

Comparing the results obtained for Upper Orcia Valley with those achieved in other 

calanchi badland sites of Tyrrhenian side of central Italy (Della Seta et al., 2007, 2009; 

Vergari et al, submitted a), summarized in Fig. 2.9, it has to be underlined that calanchi 

monitoring sites of Upper Orcia Valley do no correspond to a representative sample of 

calanchi badlands. These landforms, in fact, are generally affected by frequent rainfall-

triggered landslides (Ciccacci et al., 2003, 2008). For other stations, measurements gave 

positive or negative net ground changes as a function of pin position with respect to the 

landslide detachment and accumulation zones. This strong influence was observed in 

particular on calanchi without caprock (Della Seta et al., 2009). 
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Fig. 2.12 - Summary of the mean erosion rates recorded at all calanchi and biancane sites during 

long-lasting geomorphological studies in Tyrrhenian side of central Italy (updated from Della Seta et 

al., 2009). Both vertical (Δy) and horizontal (Δx) variations of ground level were recorded at different 

sites and positions on slopes. 
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3 DIRECT MONITORING ON BARGIANO SAMPLE HILLSLOPE BY MEANS OF 

D-GPS SURVEY: THE ROLE OF CROPLAND ABANDONMENT AND 

RAINFALL VARIATIONS 

 

This work (Vergari et al., submitted a) is focused on the quantification of the effects of 

cropland abandonment and rainfall variations on gully development and denudation rates 

for a sample hillslope of Central Italy that underwent cropland abandonment, located within 

the Tevere River Basin. This goal was pursued by the integration of different erosion 

monitoring and estimation techniques. The application of DGPS surveys let estimating the 

erosion rate since cultivation was interrupted (30 years ago): in fact a volumetric estimation 

of the removed material was attempted by performing a geostatistical interpolation of the 

present and the 1980’s surfaces. One of the aim of the current study is, in fact, contributing 

to the comprehension of the applicability of DGPS surveys to compute erosion rates for fairly 

large time-spans. Traditional erosion monitoring technique with pins was applied during the 

two years, in order to validate DGPS survey results and comprehend the dynamics of 

geomorphic processes affecting the considered denudation hot spot. The measured data 

have been then compared with rainfall variations recorded at the nearest pluviometric 

station during the pin monitoring period and during the 30 years time-span considered for 

the volumetric estimation. 

The further comparison of the obtained results with the monitoring data recorded for 

other monitoring stations of Central Italy, that has never undergone agricultural exploitation 

during historical times, was performed to deepen the effect of land use changes on erosion 

rates for these sites. 
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3.1 Bargiano site 

 

The key monitoring area of Bargiano is located within the Tevere River Basin (next to 

the town of Orvieto, Umbria) and consists of a gently dipping slope with an extent of about 

4300 m
2
 (Fig. 3.1).  

 

Fig. 3.1 – Location of Bargiano site in a geological sketch of the study area. 1) (a) Quaternary silica 

undersaturated to intermediate volcanic rocks; (b) Quaternary (and subordinate Pliocene) acid 

volcanic rocks; 2) Quaternary undifferentiated continental deposits; 3) Plio-Pleistocene terrigenous 

marine deposits and Messinian evaporites; 4) sedimentary and metamorphic units of Ligurian and 

sub-Ligurian nappes (Trias to Lower Cretaceous); 5) sedimentary and metamorphic units of Tuscan 

nappe (Paleozoic to Miocene); 6) Umbria–Marche sedimentary sequence (Trias to Tortonian); 7) 

Normal fault; 8) Undetermined fault; 9) Axis of anticline; 10) Axis of syncline; 11) Bargiano hillslope; 

12) Major river basin divides. 

 

Up to the ’60s it was part of a calanchi badland slope, successively levelled for 

agricultural purposes (cereal crop). In 1980 the cropland was abandoned, as testified by 

locals, with the consequence of a very rapid development of a close net of meandering rills 

and gullies, with a parallel geometry that follows the maximum slope direction. The site 
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appears as a miniature catchment (Fig. 3.2a) where it is possible to study the dynamics of 

surface processes, such as splash erosion, runoff, rill and gully evolution (Fig. 3.2b). 

Gravitational movements occur together with water erosion, especially on the steep slopes 

of the most incised gullies (Fig. 3.2c), determining continuous modifications of the dynamic 

equilibrium between erosion and deposition. Piping seems to have acted as dominating 

process since the cropland abandonment. In particular, most of the observed channels show 

evidence of being collapsed pipes (Fig. 3.2d). As already observed by Faulkner (2007) for 

other badlands areas, in Bargiano site the material collapsed from gully slopes or piping 

roofs temporarily protects the sideslopes and gully banks from water erosion, slackening the 

basal undercutting (Fig. 3.2e). During these short periods of stability, vegetation can colonise 

the in-channel surface. 

 

 

Fig. 3.2 –  a) Bargiano hillslope; b) tunneling and gullies originated from collapsing of tunnel roofs; c) 

failure of most incised gully banks; d) overview of Bargiano’s rills and gullies; e) meandering rill, in 

which lateral erosion of channel is shown. 
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3.2 Material and methods 

 

At Bargiano site, two methods for direct monitoring of denudation at the hillslope scale 

have been simultaneously applied : 

 

a) erosion pins, as already done for the long-lasting field monitoring sites: 

in Bargiano sample area, 24 iron pins were placed at different depths, in order to cross the 

weathered horizon, most of them recording uphill, downdale (Δy) and lateral (Δx) ground 

level changes since January 2008 (Fig. 3.3). They were placed along two rills and along the 

major gully the rills are flowing into. Each monitoring point consists of two pins, one placed 

in inter-rill position (pin type: A), the other one within the channel (pin type: B). 

 

b) DGPS survey, to sample the remnants of the 1980 cropland surface and the present 

(eroded) surface, in order to perform volumetric estimation of the eroded material. 

DGPS survey was performed using a Leica GPS 1200 instrument. We sampled 241 

points from the remnants of the original 1980 cropland surface, nowadays still vegetated, 

and 3549 points from the bare eroded surface using the right sampling density for recording 

the roughness of surfaces (Fig. 3.3). The navigated points were post-processed using the 

data from GNSS reference station network of Umbria Region and Perugia University 

(http://labtopo.ing.unipg.it/) in order to ensure a higher vertical accuracy. Through 

geostatistical interpolation (Ordinary Kriging) performed in GIS environment we obtained 

the reconstruction of both the original and eroded surfaces. The 1980 surface was 

reconstructed hypothesizing that it should be a remodelled regular gently slope as others 

currently levelled for agricultural purposes in the surroundings of the study area. We chose 

the Ordinary Kriging method, since it is an exact interpolator. Moreover it takes into account 

both autocorrelation of the considered variable (elevation in this case) and spatial 

relationships between measured values around unknown point, when assigning weights to 

measured points (Cressie, 1990 and references therein). 
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Fig. 3.3 – Location of the channels monitored with erosion pins and DGPS sampled points, that was 

performed  on the remnant of the original cropland surface (1980) and on the eroded surface. 

 

Once the DTMs of the original and eroded surfaces have been obtained, we performed 

the raster difference. Each pixel in the new output raster records the height difference 

between the original and eroded surfaces. As the pixel dimension is known (0.3x0.3 m), we 

derived the volume of eroded material in the considered 30 years time-span. 

 

The measured data have been then compared with rainfall variations recorded at the 

Orvieto pluviometric station during the monitoring period and during the 30 years time-span 

considered for the volumetric estimation. 

In particular, pluviometric data from 1979 to 2002 relative to the pluviometric station 

of Orvieto (315 m a.s.l.) were obtained from the National Hydrographic Service. More recent 

data on pluviometric trends (up to 2009) for the same pluviometric station have been 

collected thanks to the Umbria Regional Hydrographic Service. 

Several authors (Mannaerts and Gabriels, 2000, Boardman et al., 2003, Piccarreta et 

al., 2006) consider an amount of daily rainfall >10 mm to be an approximate threshold for 
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runoff initiation in semiarid environments. Della Seta et al. (2007) observed, for several 

badlands in central Italy, that strong denudation is triggered by rainfall events distributed 

over a number of consecutive days, though not greatly intense. Particularly, their amount 

should overcome the threshold of 60 mm per 5 consecutive days to induce centimetric 

modifications of the topographic surface. 

Based on field surveys and long-lasting geomorphological investigations, the authors 

have concluded that water erosion initiation occurs when daily rainfall exceeds 10 mm. 

In order to understand the role of extreme rainfall events in affecting the 

geomorphological dynamics of the area, the following parameters have been considered for 

each pin-monitoring time interval: 

• Rainy days  

• Rainfall depth (mm) 

• Rainfall depth (mm) of the worst day  

• Rainy days with rainfall depth > 10 mm 

• Maximum N. of consecutive dry days  

• Maximum N. of consecutive wet days  

• N. of dry days prior to events with rainfall depth > 10 mm 

• N. of wet days prior to events with rainfall depth > 10 mm 

• N. of rainy events longer than 3 days  

• Rainfall depth (mm) of the longest rainy event  

Annual, seasonal and rainfall data for the 1979-2009 time-span were considered in 

order to investigate their possible influence on measured and estimated erosion rates. 

 

 

3.3. Results 

 

a. Ground level changes and rainfall variations during the monitoring period (2008-

2009). 

During the period of erosion pin monitoring (21 months), a progressive removal of 

clayey material from the slope by surface running waters was recorded at Bargiano site. In 

particular, some differences in erosion rates were recorded in rill and interrill position. A 
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systematic ground surface lowering at the inter-rill erosion pins (type A) was observed, as 

indicated in Fig. 3.4. This is in agreement with the erosion/accumulation dynamics, giving 

rise to progressive removal of material where almost the lonely surface running water is 

acting (inter-rill). During the 2009 spring season, positive changes indicated temporary 

clayey accumulation just locally, even on the inter-rill surface, as indicated in Fig. 3.4. Erosion 

pins placed within rills and gullies (type B) typically show positive and negative changes of 

ground level, as a consequence of the combination of strong incision and accumulation, the 

latter mainly ascribed to the collapsing of gully banks or piping tunnels. Small falls or 

overturning of the channel sidewall frequently occurred within the deepest channels, mainly 

in conjunction with spring rainfall. 

 

 

Fig. 3.4 – Examples of rill and inter-rill pins and corresponding denudation graphs covering the 

monitoring time-span. 
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Table 3.1 summarizes the mean annual denudation rates of ground level changes for 

each of the two considered rills and for the gully they flow into. Upper slope area (RILL 1 and 

RILL 2) clearly underwent the maximum net erosion of 4.26 cm/a (inter-rill) and net erosion 

was recorded even within rills. On the other hand, within the channel of the monitored gully, 

located down slope, the maximum net accumulation of 5.06 cm/a∆ was recorded, while the 

inter-rill areas underwent net erosion, even if slightly lower than in the upper slope inter-rill 

area. Thus, total mean denudation rates for the area indicate net accumulation within rills of 

2.13 cm/a and net erosion on inter-rills of 3.66 cm/a, with a resulting general net erosion 

rate of 0.52 cm/a. 

 

MEAN ANNUAL DENUDATION RATE (cm) 
 

rill/gully inter-rill total 

RILL 1 

3 rill pins 

3 inter-rill pins 

-1.57 -3.87 -2.72 

RILL 2 

3 rill pins 

3 inter-rill pins 

-1.02 -4.26 -2.64 

GULLY 

6 rill pins 

6 inter-rill pins 

+5.06 -3.18 +1.63 

TOTAL +2.13 -3.66 -0.52 
 

Tab. 3.1 – Mean annual denudation rates obtained from erosion pin record over the first 21 months 

of monitoring. Negative and positive rates indicate respectively net erosion and net accumulation 

 

Comparing these results with the rainfall trend recorded during the monitoring period, 

the most critical period was winter 2008, when up to 90 mm in a day and 20 consecutive 

rainy days were recorded. 2009 spring rainfall over water saturated clayey deposits 

increased the runoff power and caused the accumulation recorded, as shown in Fig. 3.5a. 

Table 3.2 summarizes the values of the considered pluviometric parameters and graphs in 

Fig. 3.5b show the most significant correlation between the measured ground level 

variations (absolute values) and some of the considered pluviometric parameters for the 

monitoring time intervals. As the regression coefficients point out, ground level changes 

recorded in TYPE A pins (inter-rill position) show a fairly strong positive correlation with the 

rainfall depth for the same period, while for type B pins (rill position) the correlation is not so 

strong, even if it increases when considering the number of rainy days (Fig. 3.5b) instead of 
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the rainfall depth. This fact can be explained considering that the considerable ground level 

changes within rills, due to gravitational movements, do not always occur immediately after 

an intense rainfall event. As a matter of fact, the further comparison of pluviometric data 

(Tab. 3.2) and measured ground level variations highlights that clay removal by water 

erosion is generally due to intense rainfall event preceded by quite long dry periods, while 

accumulation (due to gully banks collapsing) is favoured by intense rainfall after a certain 

number of rainy days. Moreover, graphs in Fig. 3.5b indicate that in inter-rill position, where 

almost the lonely water erosion acts, intense events are significantly more effective than 

long events. 
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1 
29/01/08 - 

15/03/2008 
47 13 84,8 3 21 4 39,3 0 0 1,67 2 2 39,3 23,8 

2 
16/03/08 - 

11/04/2008 
27 12 70,6 2 10 7 42,6 3 6 0,5 1 2 42,6 19,4 

3 
12/04/2008 

- 

31/05/2008 

50 24 117,2 2 5 7 58,3 0 0 3,5 4 3 58,3 40,4 

4 
01/06/2008 

- 

12/07/2008 

42 15 71,4 1 12 8 46,2 0 0 6 6 2 46,2 23,4 

5 
13/07/2008 

- 

04/10/2008 

85 14 98,6 5 32 5 59,4 2,6 9 1 3 1 59,4 31,2 

6 
5/10/2008 - 

23/11/2008 
50 22 148 8 12 7 75 0,25 1 2 5 3 75 26,8 

7 
24/11/2008 

- 

18/01/2009 

56 37 419 11 4 9 126 0,36 2 1,81 7 5 144 95,8 

8 
19/01/2009 

- 

28/02/2009 

41 19 95,2 3 7 8 42,6 1,33 4 3,33 6 3 42,6 16,2 

9 
29/02/2008 

- 

14/04/2009 

45 15 81,4 5 7 6 49 1,6 7 1,6 4 1 49 15,2 

10 
15/04/2008 

- 

29/05/2009 

45 15 70,8 2 11 5 20 0,5 1 0,5 1 2 20 27 

11 
20/05/2009 

- 

20/10/2009 

144 27 356,8 10 28 4 58 0,3 2 0,8 2 5 136,6 69,6 

 

Tab. 3.2 – Pluviometric parameters considered for each monitoring time interval. 
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Fig. 3.5 – a) rainy days and rainfall depth recorded at Orvieto pluviometric station for the monitoring 

time intervals and measured ground level changes (GLC); b) most significant graphs of statistical 

correlation between the measured ground level variations and some of the considered pluviometric 

parameters for the monitoring time intervals. 
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b. Volumetric estimations and pluviometric trend for the 30 years time-span (1980- 

2009) 

 

Fig 3.6 shows the raster outputs of DGPS sampled points interpolations. The 

reconstructed 1980 cropland is, as expected, a smoothed, gently shelving surface (Fig. 3.6a). 

The present day eroded surface is, on the contrary, well represented with its close net of 

quite parallel rills flowing into deep gullies located down slope (Fig. 3.6b). The raster 

difference between the DTMs of the original and eroded surfaces shows up to 2.7 meters of 

surface lowering in 30 years (Fig. 3.6c). The strongest variations appear to have affected the 

central part of the Bargiano hillslope , leading to the deep incision of the major gully. 

The calculated volume of removed material over the 30 years time-span is 3971.39 m
3
. 

Considering the bulk density of clay (about 2 t/m
3
) the removed materials amount to 

7942,78 t over 30 years. Thus the mean annual denudation rate is about 810.16 t/ha/a. 

Taking into account the extent of the experimental hillslope, we calculated an erosion rate of 

about 121.5 cm over 30 years, that corresponds to a mean surface lowering rate of 4,05 

cm/a. 

 

 

Fig. 3.6 – Original (a) and eroded (b) surfaces of Bargiano site experimental hillslope, from the 

geostatistical interpolation of DGPS sampled points. Raster difference between these surfaces 

produced a new raster representing height differences (c). 

 

The analysis of rainfall data over the 30 year considered time-span (Fig. 3.7a) shows a 

mean annual rainfall depth of about 160 mm, lower than the mean value relative to the 
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1921-2009 period, but the annual rainfall trend over the last 30 years points out a moderate 

increase. Seasonal trends indicate a progressive increase of variability, particularly for 

autumn rainfall depth (Fig. 3.7b). The total annual rainfall depth for 2008 and 2009 

(monitoring years) appears higher than the mean value for the 1979-2009 period, so it can’t 

explain the lower erosion rate recorded during the monitoring period. Moreover, the 

analysis of extreme events for the entire 1981-2009 period doesn’t show a decrease of the 

number or intensity of events several days long (Fig. 3.7c). 



PART I - FIELD MONITORING, PHOTOGRAMMETRIC AND PARENT MATERIAL ANALYSES          Chapter 3 

 

 78 

 

Fig. 3.7 - Rainfall data about annual (a), seasonal (b) and extreme events (c) over the 1979-2009 

time-span for the Orvieto pluviometric station (315 m a.s.l.). 
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3. 4 Discussion 

 

Mean annual erosion rate obtained through volumetric estimation from DGPS survey 

(81015.91 t/km
2
/a) is a very high value that reflects the strongly accelerated erosion on the 

Bargiano experimental hillslope. The corresponding mean surface lowering rate of 4.05 cm/a 

is not comparable to the total mean value obtained by erosion pin records (0.52 cm/a). 

Nevertheless this discepancy may be discussed as follows: 

 

a) erosion pins were places, up to now, just on a limited portion of the hillslope, thus the 

obtained mean denudation rates could be not representative of the whole site, while DGPS 

survey was performed on the entire site surface. 

 

b) The gully monitored with pins is located close to the major scarp delimiting the boundary 

between the original and the eroded surface. This scarp is particularly steep and high, thus 

experiencing frequent landsliding that on the whole contribute to strong net accumulation 

(positive variations) within the channel. This fact influences, obviously, the total mean 

denudation rate, with respect to the ones obtained separately for rill and inter-rill areas. 

Moreover, the inter-rill area (where net erosion systematically occurs) is, on the whole, 

more extended than the rill area, even if in the averages we obtained they have the same 

weight since we placed the same number of rill and inter-rill pins. 

 

c) The initial strong cutting rate of 1980 might have progressively decreased, probably as a 

consequence of increasing partial accumulation down slope of materials removed from 

uphill. In fact, a decrease of powerful rainfall events was not recorded. Moreover the 

reaching of the bedrock below the weathered layer might have braked erosion intensity, 

that initially was fastened by the presence of ploughed soil, that favoured the development 

of pipes. 

 

d) Last but not least, the erosion pin monitoring was performed, up to now, over a 

considerably short time-span. Thus the observations at pins, even if providing detailed 
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information about the acting processes, cannot be significant for the 30 years period over 

which the volumetric estimation of eroded material was performed. 

 

Nevertheless, if we consider only the inter-rill pin data, it must be outlined that the net 

erosion rates recorded over the 2008/2009 monitoring period (3.66 cm/a) are not so far 

from the mean erosion rates over the last 30 years (4.05 cm/a). 

Mean annual erosion rate obtained through volumetric estimation for Bargiano site is 

consistent with the range of values estimated for many catchments of central Italy, 

especially those widely affected by denudation hot spots (I.e. badlands; Ciccacci et al., 1992, 

2003, 2008; Del Monte et al., 2002; Della Seta et al., 2007, 2009). These erosion rate 

estimations have been performed using the denudational index (Tu) method (Ciccacci et al., 

1981, 1986), that consists of a series of empirical equations that allow the estimation of 

suspended sediment load (Tu, t/km
2
/a) based on statistical correlations among quantitative 

geomorphic parameters and measured suspended sediment load data. The estimated mean 

annual suspended sediment load for Ritorto River basin, which is the Tevere River tributary 

the Bargiano gullies flow into, is 5708 t/km
2
/a (Della Seta et al., 2009), that, as expected, is a 

very low value compared to the calculated value of the removed material at the Bargiano 

site (810.16 t/ha/a): this can be explained considering that the sample hillslope represents a 

denudation hot spot, where we obviously expect higher denudation rates due to the 

abandonment of agricultural exploitation and badlands development. Certainly, the 

cropland abandonment in Bargiano site has caused an increase of erosion rate with respect 

to the trend assumed for the croplands around: the considered bare eroded surface 

presently lies up to 2,7 meters below the vegetated soil around. 

In addition, monitoring data from other monitoring sites in central Italy, characterized 

by similar physiographic conditions and accelerated erosion, showed lower or comparable 

erosion rates even on steeper slopes: Figure 2.9 shows comparable erosion trends for 

several steeper “biancane” and “calanchi” badland hillslopes in central Italy, that has never 

been subjected to agricultural exploitation during the last centuries (or historical times). In 

fact, direct measurements over periods longer than a decade indicate that mean annual 

values of denudation range between 1 and 2.5 cm/a for slopes affected by sharp-edged 

and/or rounded edged badlands. Higher denudation rates (3–4 cm/a) were obtained only for 
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shorter observation periods; still higher rates were recorded on bedrock for short periods at 

the gully bottom or in coincidence with mass movements before bench marks were turned 

up or damaged (Della Seta et al., 2007, 2009). 

 

For Bargiano site an evolutionary scenery can be summarized as follows. When during 

the ‘60s the badland slope was leveled for agricultural exploitation, this might have imply an 

over-reworking of clay material, reducing the bedrock bulk density and changing infiltration 

properties. Thus, when the cropland was abandoned (1980), piping (or tunneling, as 

subsurface erosion is defined by Bryan & Harvey, 1985, when it develops in non-

homogeneous material) might have been enhanced, exploiting the increased erodibility of 

the soil. Going on tunnel enlargement, the loss of material might have caused the collapse of 

tunnel roofs, giving rise to very incised gullies. At the present time, some gullies present 

roofs in limited stretch, evidencing their origin from tunnel collapsing. The present erosion 

rate seems to be lower, due to different causes. Lateral erosion of channel slopes is 

widespread, implying considerable collapse of material that rises gully bottom and 

temporally protect channel sideslopes. The material accumulation downslope have 

decreased the local slope, carrying to the gully longitudinal profile towards temporal 

equilibrium. Last, but not least, locally the unweathered clayey bedrock has been uncovered, 

resulting in a more resistant lithology than the ploughed abandoned soil. Piping seems now 

to affect homogeneous clay, giving rise to deep pipes that naturally characterize badlands 

areas. 

 

A brief final discussion should concern the error and the applicability associated with 

the considered erosion monitoring methods. The size of the study area, the time available, 

and the quality of the data required are perhaps the most critical issues to be consedered 

when looking for the most appropriate technique. As well-known, the traditional erosion pin 

method  generally allows to carry out very accurate punctual measures, whose error is 

measurable in few millimeters. So, it can be used to quantify very detailed temporal 

variations (monthly or after-event ground level changes), but certainly the obtained erosion 

rates cannot be representative of large areas. On the other hand, DGPS survey can be proper 

when a single hillslope of less than few hectares is being monitored, as the time and effort 
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required would be acceptable. For larger areas or wider time interval, high resolution 

photogrammetric analysis could be more appropriate. GPS accuracy is affected by many 

sources of inaccuracy (Kaplan and Hegarty, 2006), caused by the satellite position geometry 

(that provokes the so-called DOP or diluition of precision), the multipath effect (caused by 

the reflection of the satellite signals on close obstacles), the atmospheric effect (the 

reduction of signal speed during the troposphere and ionosphere crossing) and clock 

inaccuracy. The application of DGPS aid by-passing many of the sources of error and, in rural 

areas of moderate to low relief, satellite obscuration is minimized. Measures perfomed at 

Bargiano area by means of DGPS survey were affected by a mean elevation error of 2,2 cm 

considering the points sampled along the presently eroded bare surface and 1,7 cm along 

the remnants of the 1980 surface. This order of magnitude can be assumed as an acceptable 

error for the purpose of the DGPS survey, since metric variations of ground level were 

recorded for 30-years time-interval. 

To conclude, in the present study the geostatistical interpolation of the 1980 and the 

present surfaces was another bias susceptible procedure. Cross-validation is a statistical 

analysis that allows to quantify the error associated with the performed interpolation, since 

it removes each measured point in turn, predicts a value for that location based on the rest 

of the data and compares the measured and predicted values (as shown in the graphs of Fig. 

3.8 relative to the two interpolated surfaces). For both the surfaces the mean prediction 

error (difference between predicted and measured values) reported by the validation is 

around 2 mm. 

 



PART I - FIELD MONITORING, PHOTOGRAMMETRIC AND PARENT MATERIAL ANALYSES          Chapter 3 

 

 83

 

 

Fig. 3.8 - Cross validation relative to the geostatistical interpolation of the 1980 surface (a) and of the 

2009 eroded surface (b). 
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4. COMPARISON BETWEEN FIELD EROSION MONITORING DATA AND 

PHOTOGRAMMETRIC ANALYSIS: THE CASE OF LANDOLA 

SUBCATCHMENT 

 

This work is aimed at quantifying at different spatio-temporal spans the erosion rates 

for a small experimental area located within the Upper Orcia Valley. To evaluate the spatio-

temporal development of denudational processes, particularly badland erosion and related 

rates, direct measurements at erosion “hot spots” and a digital photogrammetric analysis 

(Biasini and Salvatore, 1993, 1995; Betts and DeRose, 1999; Chiaverini et al. 1999; Martinez-

Casasnovas et al., 2003; Ciccacci et al., 2008; Salvini, 2008) at hillslope and catchment scale 

have been performed in the Landola subcatchment test area (Tuscany). The dual purpose of 

the analysis was the assessment of the morphodynamics of erosion hotspots of the Upper 

Orcia Valley in the last 30 years and the cross-checking of the obtained results, in order to 

test the applicability of the two methods. This chapter summarizes the preliminary results of 

the research conducted during a collaboration with some researchers of the Department of 

Sciences and Technologies for the Environment and Territory of Molise University (Aucelli et 

al., 2010), in the frame of PRIN Project 2007, funded by the Ministry of Instruction, 

University and Research (MIUR), “Messa a punto di un modello integrato per la valutazione 

preventiva dell’erosione idrica del suolo in ambiente mediterraneo” (National coordinator G. 

Rodolfi, Research Unit coordinator E. Lupia Palmieri). Even if the digital photogrammetric 

analysis was largely performed by researchers of Molise University, its results can be very 

interesting for the purposes of this thesis, in particular in this section (Part I), where the 

applicability of different techniques for erosion rate quantification is investigated. Within the 

research cooperation, my contribution was focused mainly on the choice of the study area, 

the data collection, the D-GPS survey, besides erosion direct measurements on field. 
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4.1 Landola test area 

 

For process-based assessment of erosion dynamics we focused on a sample sub-

catchment, the Landola catchment, which is representative of the geomorphic processes 

typically acting in the Upper Orcia Valley (Fig. 4.1). This is a catchment of about 4.4 km
2
 

where the majority of slopes are rapidly evolving for denudation processes and rivers show 

high suspended sediment loads. In fact, water erosion is pervasive and leads to typical 

rounded-edged biancane and sharp-edged calanchi badlands. Gravitational processes 

contribute as well to slope denudation with landslides (even on gentler slopes), soil creep 

and solifluction. Badlands correspond to denudation “hot spots” within catchments and field 

monitoring at these sites suggests that rill, inter-rill and gully erosion contribute the most to 

the overall denudation at the catchment scale, through extreme episodic events at the 

hillslope scale, triggered by rainfall events several days long (Della Seta et al. 2007, 2009). 

 

 

Fig. 4.1 – Location of Landola test area within the Upper Orcia Basin. 
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4.2 Material and methods 

 

A digital photogrammetric analysis of landforms has been performed on four series of 

black and white aerial photographs dating to 1976 (the “EIRA” flight, nominal scale of 

1:13.000), 1994 (the “Tuscany Region” flight, at a nominal scale of 1:30.000) and 2003 (the 

“Siena” flight, at a nominal scale of 1:7.500), respectively. The aerial photos have been 

scanned with a resolution of 1200 dpi (472 dots per centimeter) and saved in TIFF format. 

The digital photogrammetric restitutions have been made by using a Z-Map digital 

photogrammetric workstation, considering the 1976, 1994 and 2003 photos. In order to 

obtain the best image orientation, a differential global position system (DGPS) survey was 

carried out using a Leica GPS 1200 instrument, and about 70 ground control points (GCP) 

were located within and around the test area (Fig. 4.2), based on three reference points of 

the IGM95 geodetic network (Point n. 129610 “Monte Calcinaio”, Point n. 129606 “San Piero 

in Campo” and Point n. 129609 “Bagni San Filippo”). The mean measured post-processing 

error was included in the 1 – 1,5 cm order of magnitude. Location of the GCPs was previously 

planned considering their contemporary evidence on the photos of the considered three 

years. Root Mean Square Errors of aerial triangulation phase were around 1-2 m. 

 

Fig. 4.2 – Ground control points (GCP) distribution within and around the Landola test area (after 

Aucelli et al., 2010). 

 

Digital Elevation Models (DEMs) have been derived from each set of photos on a 

stereopair-by-stereopair basis and then mosaicked to produce a DEM for each photo with a 

cell size of 2m (Fig. 4.3). An Area Based Image Matching algorithm was used to derive the 

DEMs. 
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The quantitative evaluation of the sediment loss rate was computed by overlaying the 

obtained DEMs. This operation produced a new grid with the altitude difference for each cell 

of the grid. Negative values in the difference grid represent erosion areas, while positive 

values are filling or accumulation areas (Martınez-Casasnovas, 2003). In addition, photo 

interpretation, carried out for each set of aerial photos, allowed to map the denudation 

processes and the main topographic changes from 1976 to 2003. Data analysis was 

performed within a Geographic Information System. 

Direct measurement of erosion rates have been achieved from results from previous 

studies (Ciccacci et al., 2003, 2008, 2009; Della Seta et al., 2007, 2009), as well as from the 

updating of the monitoring database for the Upper Orcia Valley (see §2). 

 

Fig. 4.3 – Used aerial photographs (a) and obtained DEMs (b) during the photogrammetric analysis. 
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4.3 Results 

 

Photo interpretation showed that the dominant denudational processes within the test 

area consist of gully erosion, different typologies of landslides and calanchi badlands, 

affected by frequent mudflows (as exemplified in Fig. 4.4). 

The digital photogrammetric and multi-temporal analysis allowed to reconstruct the 

morpho-topographical changes which have occurred during the considered period (1976-

2003) within the study area which is often affected by important denudation processes due 

to gravity and the action of surface running water. The slopes affected by calanchi, as 

expected, show the most severe morphological changes. In particular, a maximum 

headwater retreat reaching up to 10-15 cm/a is recorded (Fig. 4.5). 

Photo interpretation and transversal profiles (Fig. 4.6), extracted from DEMs referring 

to 1976 and 2003, respectively, show frequent landslides in areas affected by badlands, due 

to the retreat of the head with an accumulation of sediment at the slope foot. 

 

 

Fig. 4.4 – Main denudation processes in Upper Orcia Valley (from 1994 aerial photo interpretation). 
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Fig. 4.5 – Calanchi slope retreat during the 1976-2003 time span. 

 

 

 

 

 

Fig. 4.6 – Transversal  profiles of a single calanco badland. 
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The “Difference Maps” obtained by comparing the three DEMs, show the areas 

affected by erosion or accumulation, respectively (Fig. 4.7a). This kind of analysis, while 

requiring further investigation, already enables us to make some significant preliminary 

considerations: 

i. the areas mainly affected by erosion are placed within the upper portions of hill-

slopes, close to the top of calanchi slopes, and along the highest part of the 

slopes' main ridges; 

ii. erosion rates were higher during the period 1976-1994 (in average 2.61 cm/a) 

than during the period 1994-2003 (1.1 cm/a), most likely because significant 

changes of the drainage systems and important interventions along slopes 

allowed to mitigate erosion processes (Fig. 4.7b). The mean erosion rate obtained 

by digital photogrammetric analysis for the longer period 1976-1994 is rather 

consistent with that recorded at a calanchi monitoring station within the sample 

catchment for the 1994-1995 (mean erosion rate of 3.6 cm/a, Marini, 1995). 

The comparison  of the DEMs allowed to assess the topographic changes between 

periods 1976-1994 and 1994-2003 (Fig. 4.7c), respectively. For the whole test area an 

average erosion rate of 1.2 cm/a was calculated for the period 1976-2003, with a computed 

sediment loss of about 230 t/ha/a. Higher rates result for the 1976-1994 period, for which 

calanchi badlands areas show an average denudation rate of 6.6 cm/a. Computed erosion 

rates for calanchi sites are in agreement with those obtained by Ciccacci et al. (2008, 2009) 

and Della Seta et al.(2009), monitored by using photogrammetric analysis and erosion pins, 

as well as with those resulted during this Ph.D monitoring activity (Fig. 2.9), for the sample 

catchments in Tuscany region. 
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Fig. 4.7 – a) Height Difference maps, obtained after the comparison of 1976, 1994 and 2003 DEMs; b) 

Soil loss distribution over the 1976-1994 and 1994-2003 time spans; c) average soil loss rates for the 

two time spans. 

 

 

4.4 Discussion 

 

The application of digital photogrammetric methodologies has revealed to represent a 

powerful and low cost tool to evaluate the rate and spatial-temporal development of 

denudation processes, as confirmed by the comparison with point monitoring in the field. 

These methods can be very useful for sustainable land management, planning of erosion 

control measures and calibration of regional prediction models in Italy, as well as in other 

Mediterranean environments. The proposed method can be considered very useful to better 

locate denudation landforms and associated processes and to assess related erosion rates. 
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Moreover, multitemporal photogrammetric analysis allows to reconstruct historical 

landscape changes and  morphological evolution when direct measurements are not 

possible or not available, as resulted for the period preceding the field monitoring phase in 

the Landola test area. 

Photogrammetric analysis methodology is nevertheless affected by many error 

sources, starting from the limitations caused by the aerial image resolution and quality, 

together with those caused by the data interpolation in DEM constructing phase. Moreover, 

the obtained DEMs should be cleaned by the vegetation cover differences in height between 

the considered time span, in order to compute a more accurate erosion rate. 

The reliability of the achieved results is still under investigation at Department of 

Sciences and Technologies for the Environment and Territory of Molise University, with 

particular reference to the evaluation of estimation errors of altitude differences, and, thus, 

of the computed erosion rates. Even though, this first comparison of the computed erosion 

rates with those measured during erosion decadal monitoring shows an overall convergence 

of the results. Finally, the applicability of 1954 photographs (“GAI” flight, taken at nominal 

scale 1:33.000, missing of calibration certificate) for denudation rates computation is being 

tested, considering the encouraging results achieved in previous studies (Salvini, 2008). 

Deeper knowledge of the strong modification of the Crete Senesi landscape, occurred with 

the advent of intense farming techniques (Guasparri, 1993), and the resulting effects on the 

territory morphodynamics during the last 60 years could emerge, with particular attention to 

the protection and conservation of residuals of the biancane and calanchi badland areas. 
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5 PARENT MATERIAL GRAIN SIZE AND GEOCHEMICAL COMPOSITION AS 

POTENTIAL EROSION FACTORS 

 

Extensive literature on badlands has pointed out how, together with geological and 

climatic factors as well as human impact, more local conditions, such as parent material 

properties, play a relevant role in explaining the measured erosion intensities, as well as the 

development of different slope landforms in these sites. 

Different authors have investigated pedological, mineralogical, grain size and 

geochemical properties of clay-rich terrains outcropping in badland sites of Italy, Southern 

Spain and Morocco (Vittorini, 1977; Alexander, 1982; Imeson et al., 1982; Pinna and 

Vittorini, 1989; Torri et al., 1994; Torri and Bryan, 1997; Phillips, 1998; Faulkner et al., 2000, 

2003; 2004; Robinson and Phillips, 2001; Battaglia et al., 2002, 2011; Piccarreta et al., 2006; 

Romero-Dìaz et al., 2007), identifying them as crucial factors for badland evolution. 

Summarizing, the main scopes of these investigations were to emphasize the role of 

sediment size and clay mineralogy and geochemistry in: 1) explaining the trigger and 

development of different types of badland landforms (such as calanchi badlands, biancane 

badlands, intermediate landforms and piping); 2) understanding the effects of human 

activities (in particular agriculture) on parent material properties; 3) finding diagnostic “site 

signatures”. 

The clay capacity of cation exchange is responsible for soil behaviour during erosion by 

water: in particular, the presence of more than a few percentage of monovalent cations 

(particularly sodium) relative to divalent and trivalent cations in pore water will tend to 

make the sediment dispersive in water (Rolfe et al., 1960; Mitchell, 1976). In fact, sediment 

containing deflocculated clay can be entrained at very low stream powers (Sherard et al., 

1976; Torri et al., 1994). Swelling behaviour of smectite seals the surface, favouring the rill 

erosion. Moreover, Imeson et al. (1982) indicated that, together with smectite 

(montmorillonite), illite and other clay minerals will also swell in sodium rich environment. In 

this conditions, the sediment size distribution, and in particular the clay percentage, become 
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very important (Robinson and Phillips, 2001). On the other hand, when crack, macropores or 

fractures are available, dispersion can encourage the process of subsurface erosion.  

Considering possible differences in material characteristics that discriminate landform 

types, biancane badland sediment show a higher clay fraction than calanchi badland, where 

sand content is significantly greater (Alexander, 1982; Pinna & Vittorini, 1989; Battaglia et 

al., 2002). Both calanchi and biancane can develop in intermediate grain size, such as silty 

clays and clayey silts, as well as intermediate landforms, as “calanchi mammellonari” or 

“bialanchi” described by Castelvecchi and Vittorini (1970), Vittorini (1977), Alexander (1980) 

and Piccarreta et al. (2006). On the contrary, mineralogical differences between calanchi and 

biancane are not completely joined within literature: whereas Battaglia et al. (2002) did not 

find particular trend in clay mineralogy of Tuscany samples to be correlated with the 

different landforms, Alexander (1980) and Vittorini (1977) suggested a higher smectite 

content in biancane clays than in calanchi parent material. The more dispersive character of 

biancane clays is finally pointed out in different studies, as pore water composition of 

biancane generally shows higher sodium concentrations relative to divalent cations than in 

calanchi pore waters (Vittorini, 1977; Alexander, 1982; Battaglia et al., 2002), even if 

Piccarreta et al. (2006) did not find this differentiation for the southern Italy sites. Sherard et 

al. (1976) underlined that clay dispersivity is responsible for the development of subsurface 

large pipes and tunnels, as in materials with a high percentage of swelling clays the presence 

of crack and fissures on the surface can sometimes appear to offset the reduction in 

infiltration rates, as a consequence of the spontaneous dispersion of the colloids that cover 

the fissures walls, when rainfall penetrates them (Faulkner, 1990). The linkage of piping 

formation and biancane landform to high clay dispersivity led Alexander to an interesting 

hypothesis on biancana landforms initiation (1982): he supposed that biancane origin could 

be due to the enlargement of pipes and the following terrain collapse, leaving biancana 

cones as residuals. Even if biancana origin has afterwards been related also to other factors, 

such as tectonic lineations (Torri and Bryan, 1997; Della Seta et al., 2009), the widespread 

micropiping on biancane areas is undeniable. 

Higher sodium content, as well as coarser sediment, are generally found in upper 

surface sediment, with clay content and related dispersivity level increasing downward. 

Since both Ca
2+

 and H
+
 can exchange with Na

+
 during infiltration, stabilisation can occur 
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either by buffering by Ca
++

, mobilising the Na
+
 to relocate down profile, or as a consequence 

of the organic acids released by a vegetation cover. However, these two exchanges will have 

conflicting effects on pH (one raising pH, the other lowering it.). Faulkner et al., (2000) 

observed for some Almeria badland sites (SE Spain), that the higher pH values indicate the 

success of Ca
++

 in exchange with Na
+
, especially in the upper horizons of soil, suggesting a 

greater potential for chemical stabilization of one of the investigated sites. On the other 

hand the presence of microalgal crust and other vegetation that produced organic acids in 

surface material could lead to lower pH value for the same sodium adsorption ratio (SAR) in 

another site. However, this stabilisation model may be complicated by the possible 

relocation of clay minerals down-profile in time. Lopez-Bermudez and Romero-Díaz (1989) 

found for Almerıa soils generally, that when smectite is present, its abundance increases 

with depth, replacing illite. Once dispersed, reactive double-layer clays are relocated, then 

swelling and clogging the lower layers of the soil profile. In clay-rich materials, this causes a 

decrease in permeability with depth (Sherard and Decker, 1976; Shainberg, 1992), 

predisposing the site for hydraulic conductivity (HC) reduction, and affecting subsequent 

infiltration, overland flow, surface wash and rilling. From the evolutionary point of view, 

piping processes should prevail in a young badland site, until the HC decreases and 

consequently piping becomes micropiping within the shallow sub-crust layer (Torri et al., 

1994; Romero-Diaz et al., 2007). During this progressive stabilization, the surface material 

changes from dispersive to potentially dispersive and loses its proneness to piping. 

The role of vegetation in stabilizing the clayey sediments is thus due to the lowering in 

dispersivity levels in the upper soil horizon. The effect of land reclamation for arable 

cultivation has been investigated by different authors, especially for the Crete Senesi 

landscape of Southern Tuscany badlands sites, where this process is really widespread and 

ascribable to the land reforms of the 1950s and, during the last decade, to the European 

Common Agricultural Policy (CAP). Phillips (1998) pointed out that the reduction in the 

exchangeable sodium percentage (ESP) following reclamation is the critical factor in 

increasing soil stability, even if the organic content remains low. This is probably because of 

the rapid leaching of salts from the profile after the reshaping process that has exposed the 

soil to the erosive weather elements. This rapid decline in the ESP below the 15% threshold 

leads to an increase in soil stability in the period immediately following reclamation. 
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Although this increase is slight, it is enough to inhibit chemical dispersion and, therefore, the 

activity of the badland forming processes. As such, the badlands are no longer actively 

evolving and therefore the inherent landscape of the Crete Senesi is disappearing 

permanently. Marignani et al. (2008) have observed that vegetation facilitates water 

infiltration and leaching of sodium: this stabilizes the topmost centimeters of soil, but at the 

same time allows more water to reach the pipe system. Also Romero-Díaz et al. (2007) 

underlined that in a abandoned lands of SE Spain, very high exchangeable sodium 

percentage (ESP) values were found more easily with depth than surface, this difference 

appearing to explain tunnel initiation at subsurface levels. In the same study they did not 

find a difference in sodium content along the vertical profile in a site hypothesized as never 

been cultivated. This hypothesis was witnessed by the observation that potassium levels 

have remained almost constant with depth. 

Faulkner et al. (2000) have proposed three “site signatures” in order to explain the 

morphological variety found in badland areas, summarizing the described influences that 

textural, geochemical and mineralogical properties of parental material exert on erosion 

processes. These signatures are 1) the relationship between electrical conductivity and 

sodium adsorption ratio (SAR), originally proposed by Rengasamy et al. (1984); 2) the 

relation between particle size and SAR, diagnostic in the development of a non-dispersive 

superficial layer; 3) pH/SAR ratio, to indicate the buffering role of calcium and vegetation in 

stabilization processes. 

 

The aim of this work has been the characterization of the mineralogical, geochemical 

and size composition of parental materials to further elucidate their properties on both bare 

and vegetated surfaces and to discuss them with respect to the development of different 

badlands processes.  

These new data allowed to deepen and better define the variability of mean erosion 

rates measured at different erosion landforms, as well as to discuss the results with respect 

to the initiation and development of different badlands forming processes in the study area. 
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5.1 Collection of samples 

 

Since the objective of the research was to point out possible differences in the parent 

material characteristics for different badlands types, as well as for vegetated and bare soils, 

the sampling phase has been focused on some significant sites of Upper Orcia Valley, 

characterized by different land use categories and different erosion landforms (Fig. 5.1 Tab. 

5.1): 

 

1) a hillslope characterized by embryonic biancane badlands, located within the 

Lucciolabella Natural Reserve site (Fig. 5.2a), where the residuals of the antic 

biancane landscape of Upper Orcia valley is protected (Miglia subcathment); 

2)  a subcathcment partly characterized by badlands erosion, partly exploited for 

agricultural purposes (La Piaggia subcatchment of T. Formone, Fig. 5.2b). 

3) On calanchi badlands sites, characterized by intense denudation rates due to water 

erosion together with landsliding (different sites of Upper Orcia valley, Fig. 5.2c). 

4) on the valley bottom of the Orcia River, in a sunflower field. 

 

 

In order to underline possible differences at different depths for biancane badlands 

and vegetated sites, samples were extracted at increasing depths on the basis of different 

degree of weathering for the groups 1 and 2. Biancane sites are in fact characterized by a 

relevant shallow horizon of weathered soil, where, moreover, thenardite (Na2SO4) crystals 

are often found. On the other hand, agricultural activity can enhance the differences 

between the topsoil and the subsoil properties. In calanchi badlands sites, where the 

weathered layer is very thin or absent due to rapid denudation, and thus the unweathered 

clay results exposed, samples were collected at a unique depth, as shown in Tab.5.1. 
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SAMPLE 
POSITION 

(C. S. UTM WGS84 32T) 

ELEVATION 

(m s.l.m.) 
SITE LANDFORM 

DEPTH 

(cm) 

 LONG LAT     

L1 0-10 

L1-A 0-30 

L1-B 

724795 4768132 559 
Lucciolabella 

Natural Reserve 
Vegetated surface 

30-50 

L2-A 

Embryionic 

biancane - Inter-

rill 

0-10 

L2-F-A 0-10 

L2-F-B 10-30 

L2-F-C 

724799 4768132 556 

Lucciolabella 

Natural Reserve 

 
Embryionic 

biancane -

Oxidized horizon 30-50 

L3-A 0-30 

L3-B 
724801 4768126 554 

Lucciolabella 

Natural Reserve 

Embryionic 

biancane - rill 30-50 

L4-A 

Embryionic 

biancane – 

Vegetated 

biancana summit 

0-10 

L4-B 

724808 4768129 556-557 
Lucciolabella 

Natural Reserve 
Embryionic 

biancane - 

Biancana base 

0-10 

L5-A 0-10 

L5-B 10-40 

L5-C 

724801 4768127 555 
Lucciolabella 

Natural Reserve 

Embryionic 

biancane Inter -rill 
40-55 

L6-A 0-10 

L6-B 10-30 

L6C 

724841 4768128 549 
Lucciolabella 

Natural Reserve 
Vegetated surface 

30-60 

LP1-A 0-10 

LP1-B 
721418 4759354 558 La Piaggia 

Biancana badland 

(middle flank) 10-45 

LP2-A 0-10 

LP2-B 
721389 4759290 556 La Piaggia 

Cultivated fluvial 

terrace 10-45 

PP 723187 4758189 560 Podere Paiccia Calanco badland 10-20 

PR 722235 4760611 538 Poggio Reggiano Calanco badland 10-20 

M1 0723934 4763996 324 
confluence Miglia-Orcia 

sunflowers field 

Vegetated Alluvial 

plain 
0-30 

M7 722552 4759151 575 La Piaggia Calanco badland 0-30 

M9 722534 4759015 555 La Piaggia Calanco badland 0-30 

 

Tab. 5.1 – Samples collected within the Upper Orcia catchment. 
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Fig. 5.1 – Location map of parent material sampling sites. 
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Fig. 5.2 – Sample sites. a) embryonic biancane of Lucciolabella site; b) cropland in La Piaggia 

sucbcatchment; c) Podere Paiccia calanchi badlands, affected by mass movements. 
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5.2 Analytical procedures 

 

For grain size analyses, each sample was handled with hydrogen peroxid to discard the 

organic matter that, if present, may cause deflocculation of the finest grained component 

during the analytical procedure. Samples were successively washed with distilled water to 

remove salts and two granulometric fractions for each sample were separated using a 63 μm 

sieve. The two distinct fractions were successively dried and weighted and the grain size 

distribution was analyzed using a set of ASTM sieves (for the coarser fraction: grain size > 63 

μm) and a laser granulometer (for the finer fraction: grain size < 63 μm). The qualitative 

mineralogical composition of bulk samples and the clay fractions was analysed using an X-ray 

diffractometer. The present clayey and non-clayey minerals were identified on the <4 μm 

fraction, picked by means of fractioned sedimentation in accordance with Stokes' law, using 

a sedimentation cylinder (Bellotti & Valeri, 1975).  

Pore water soluble ions concentration was determined on a saturation extract 

prepared mixing the sediment with distilled water in the 1:10 ratio, then shaken with a 

magnet in a Tehtnica ROTAMIX 560 MMH agitator for 24 hours, to favor the solubilization of 

cations and anions. The saturation extract was filtered with a 45 μm filter and analyzed for 

the major cations (Ca
2+

, Mg
2+

, Na
+
, K

+
, Li

+
, Sr

2+
, NH4

+
) and anions (Cl

-
, SO4

2-
,Br 

-
, F

-
, NO2

-
, NO3

-
, 

PO4
3-

, HCO3
-
) by a Methrom IC 761 Cromatograph. 

For each sample we determined the total dissolved solids concentration (TDS, here 

used also to estimate the electrical conductivity) and the cation exchange capacity (CEC) of 

sediments, which is an indication of both the nature of material and its behavior during 

water erosion (Alexander, 1982). In fact, clay fraction is the principal source of exchangeable 

cations (Kelley, 1964). 

 

CEC = Σ(exchangeable Ca
2+,

 Mg
2+

, K
+
, Na

+
)       (1) 

 

As increasing the percentage of exchangeable sodium among the exchangeable cations 

the sediment will be more dispersive in water (Rolfe at al., 1960; Mitchell, 1976), thus we 

calculated both the sodium percentage (PS) and the sodium adsorption ratio (SAR) using the 

following equations: 
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PS = [Na
+
/(Na

+
+K

+
+Ca

2+
+Mg

2+
)] *100        (2) 

SAR = Na
+
/[( Ca

2+
+Mg

2+
)/2]

1/2
)         (3) 

 

 

 

 

5.3 Results 

 

As shown in Fig. 5.3 and Tab. 5.2, most of the samples fall in mud grain class, where the 

proportions of clay and silt are approximately the same. A considerable sand content is 

observed in samples PR (49%), LP2B (42%), LP2A (28%), PP (21%), M7 (12%), M9 (8%), LP1A 

(6%). These samples were picked in calanchi badlands sites (PP, PR, M7, M9), in cultivated 

lands (LP2A, LP2B and M1) and one in a biancane site (LP1A). All the samples collected in 

Lucciolabella biancane site fall in the mud grain class, with a general increase of the silt 

fraction, with respect to clay, in the samples picked in vegetated areas: L1A, L1B, L6A 

collected in the vegetated surface surrounding the area evolving into biancane landform; 

L4A, taken in the vegetated summit of a small biancana; and L2FB, taken within an oxidized 

joint in the biancana badlands area. As for sample depth, the content in clay seems to 

slightly increase proportionally, even if not strongly. 
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Sample Sand Silt Clay Mz (Ф) σ1 (Ф) D50(mm) 

L1 1,25 65,82 32,93 7,21 1,63 0,007 

L2A 0,02 48,44 51,54 7,89 1,37 0,004 

L2FB 0,43 55,56 44,01 7,67 1,46 0,005 

L4A 0,29 64,3 35,41 7,38 1,53 0,006 

L4B 0,11 55,39 44,5 7,66 1,47 0,005 

L6C 0 50,02 49,98 7,83 1,4 0,004 

LP1A 5,98 46,73 47,29 7,75 1,63 0,004 

M 9 7,78 49,61 42,61 7,54 1,87 0,005 

L1A 0,28 55,02 44,7 7,63 1,52 0,005 

L1B 0,37 56,05 43,58 7,58 1,55 0,005 

L2FA 0 52,31 47,69 7,79 1,39 0,004 

L3A 0 50,78 49,22 7,8 1,42 0,004 

L3B 0,12 51,95 47,93 7,75 1,46 0,004 

L5A 0,06 55,27 44,67 7,67 1,47 0,005 

L5B 0 50,55 49,45 7,8 1,43 0,004 

L5C 0,04 52,28 47,68 7,75 1,45 0,004 

L6A 0,31 52,44 47,25 7,74 1,46 0,004 

L6B 0,03 50,19 49,78 7,83 1,41 0,004 

LP1B 0 50,24 49,76 7,86 1,35 0,004 

LP2A 28,38 44,3 27,32 5,59 3,65 0,012 

LP2B 41,93 35,74 22,33 5,08 3,38 0,023 

M1 33,09 46,48 20,43 5,67 2,44 0,022 

M 7 12,26 54,25 33,49 6,92 2,19 0,007 

PP 21,16 39,6 39,24 6,61 2,65 0,006 

PR 48,76 29,11 22,13 4,84 3,06 0,051 

 

Tab. 5.2 – Grain size composition of samples and main descriptive statistics (expressed in Ф units).  
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Fig. 5.3 – Grain size composition of samples plotted in the Folk (1954) ternary diagram. S = sand;  

cS = clayey sand; mS = muddy sand; zS = silty sand; sC = sandy clay; sM = sandy mud; sZ = sandy silt; C 

= clay; M = mud; Z = silt. 

 

 

Clayey mineralogy appear quite uniform: the main non-clay minerals are quartz, calcite 

and feldspars, while the clayey components are chlorite, kaolinite, poorly crystallized illite 

and mixed layer minerals, the last giving an expandable character to clays. 

Pore water composition and related calculated parameters controlling clay dispersivity 

(TDS, PS, SAR) are shown in Tab. 5.3, together with pH and EC values. These ions represent 

the products of the reaction between some mineral phases and interstitial water. 

The monovalent cations are represented mainly by sodium and potassium, the second 

one in smaller concentrations. Calcium is always dissolved in the liquid extract, while 

magnesium is absent in some surface samples. As for the anions, the sulphate is the most 

abundant and generally increases with the soil depth, while the other secondary dominating 

anions are chloride and nitrate. pH values are between 8.24 and 9.75 and calanchi parent 

materials, as well as vegetated soil sediments, show lower pH values with respect to 

biancane. 

As shown in Table 5.3, samples from the Lucciolabella vegetated sites (L1, L1-A, L1-B, 

L6A, L6B e L6C) show a progressive increase of TDS and SAR with depth. The maximum PS 
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value was measured in the intermediate depth (sample L1-A, at 10-30 cm depth interval). 

This evidence suggests that, according to what observed by Torri (personal communication) 

in the same study area, in this site the soil stabilization at depth < 10 cm was due to the 

presence of vegetation that favors the H
+
 mobility ascribed to roots activity and consequent 

lowering of Na
+
 abundance. 

The samples collected on embryonic biancane show PS values over 80% and SAR values 

quite high, thus suggesting the predominance of dispersive processes. All the samples from 

calanchi sites show salt content considerably lower than the one in biancane parent 

materials. In particular we observed low dispersivity evidenced by low SAR and PS values. 

In order to confirm the above results, we compared the different parameters that 

control clay dispersivity, taking into account, among others, the site signatures proposed by 

Faulkner et al. (2000).The relationship between EC and SAR, plotted versus the Regasamy et 

al. (1984) domains show that the samples collected in vegetated or cultivated sites and on 

calanchi slopes are potentially dispersive, while the ones taken in biancane, or in the 

Lucciolabella slope evolving into biancane landforms, fall in the dispersive domain (Fig. 5.4). 

A slight logaritmic positive correlation between SAR and EC was observed (n=24, R
2
=0.43). 

Sherard et al. (1976) correlated SAR, PS and TDS values with clay dispersivity and this 

correlation was attempted in plot of Fig. 5.5. According to these authors, clays of zone A 

have a high tendency to spontaneous dispersivity, while the clays of zone C are ordinary 

erosion-resistant clays. Sediments of zone C may be dispersive or non dispersive, showing an 

intermediate behaviour. All the clay samples collected in embryonic biancane sites are 

clustered in zone A, showing an important proneness to produce colloidal dispersion when 

saturated with rainwater, while calanchi parent material falling in zone C were interpreted 

as more resistant to erosion. These results are in agreement with those previously obtained 

by Vittorini (1977), Alexander (1982) and Battaglia et al. (2002). 

The relationships between SAR, pH and grain size, proposed by Faulkner et al. (2000) as 

site signature indicators, were explored for the Upper Orcia Valley samples (Fig. 5.6).  

Considering the SAR/pH relation (Fig. 5.6a), a sort of positive relation is observed, 

making likely the hypothesis that SAR values reduction can be linked to cation exchange with 

hydrogen under vegetation cover, in particular for vegetated soil samples, whose upper 
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portion show lower pH and SAR values. This is confirmed by the pH/Ca
2+

 relation that do not 

show a typical trend (Fig. 5.7). Considering the low variability of mean sediment size, the 

SAR/grain size site signature was replaced by SAR/clay % of the samples, as already 

suggested by Piccarreta et al. (2006). A strong relation is not shown, even if SAR values 

increase with the sample clay % (Fig. 5.6b). 
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L1 
vegetated soil 

(top depth) 
0-10 0,24 0,35 1,76 0,29 0,03 0,01 0,00 2,67 5,79 9,23 0,24 8,35 

L1A 
vegetated soil 

(middle depth) 
0-30 2,00 0,52 0,51 0,69 2,17 0,19 0,20 1,10 7,43 53,81 2,58 8,89 

L1B 
vegetated soil 

(base depth) 
30-50 10,08 1,11 9,03 3,02 4,51 0,07 0,01 18,60 46,50 43,39 4,11 8,69 

L2-A 
embryonic 

biancane 
0-10 8,70 0,53 0,10 0,01 6,25 0,36 0,82 2,00 18,80 93,12 37,42 9,38 

L2-F-A 
embryonic 

biancane 
0-10 6,72 0,62 1,01 0,00 1,87 0,04 1,38 4,03 16,72 80,43 9,44 9,05 

L2-F-B 
embryonic 

biancane 
10-30 3,80 0,41 0,14 0,20 2,08 0,41 0,52 1,44 9,11 83,51 9,20 9,03 

L2-F-C 
embryonic 

biancane 
30-50 3,43 0,34 0,16 0,21 2,34 0,52 1,15 0,04 8,29 82,78 7,89 9,32 

L3-A 
embryonic 

biancane 
0-30 13,04 0,78 1,30 3,54 3,12 0,02 11,14 3,00 36,68 69,87 8,38 8,90 

L3-B 
embryonic 

biancane 
30-50 9,74 1,01 3,63 1,15 0,00 0,57 1,49 13,37 31,06 62,72 6,30 9,06 

L4-A 

embryonic 

biancane 

(vegetated 

biancana 

summit) 

0-10 0,20 0,22 1,07 0,01 0,17 0,07 0,39 0,10 3,02 13,60 0,28 8,43 

L4-B 
embryonic 

biancane 
0-10 3,54 0,59 0,41 0,41 2,90 0,15 0,04 1,84 9,92 71,48 5,53 9,75 

L5-A 
embryonic 

biancane 
0-10 8,77 1,07 3,76 2,03 1,99 0,48 1,01 12,12 31,27 56,12 5,16 9,44 

L5-B 
embryonic 

biancane 
10-40 7,50 0,84 0,29 0,35 6,04 0,66 0,57 1,64 17,98 83,53 13,23 9,10 

L5-C 
embryonic 

biancane 
40-55 6,86 0,59 0,10 0,49 4,63 0,51 0,43 2,31 16,09 85,30 12,59 9,20 

L6 -A vegetated soil 0-10 0,18 0,17 1,58 0,00 0,07 0,08 0,15 1,62 3,99 9,24 0,20 8,51 

L6 - B vegetated soil 10-30 0,56 0,19 0,79 1,71 0,13 0,15 0,10 2,75 6,53 17,17 0,50 8,67 

L6 - C vegetated soil 30-60 0,83 0,16 4,37 1,78 0,94 0,08 0,07 5,98 14,28 11,63 0,47 8,50 

LP1-A biancane 0-10 12,39 0,44 1,74 1,84 10,41 1,29 0,94 3,00 32,07 75,49 9,26 8,79 

LP1-B biancane 10-45 7,64 0,22 14,40 2,64 6,23 1,02 1,03 16,51 49,78 30,68 2,62 8,24 

LP2 -A cultivated soil 0-10 1,24 0,17 1,75 5,10 5,07 0,14 0,11 2,91 16,51 15,06 0,67 8,61 

LP2 - B cultivated soil 10-45 0,46 0,18 0,92 0,39 0,34 0,14 0,30 1,11 3,95 23,60 0,57 8,76 

PP calanchi 10-20 3,59 0,70 2,01 11,23 8,31 0,10 0,05 9,02 35,03 20,48 1,39 8,40 

PR calanchi 10-15 1,03 0,52 11,16 3,95 2,21 0,10 0,15 14,15 33,31 6,19 0,37 8,39 

M 1 alluvial plain 0-30 0,11 0,15 1,25 0,04 0,09 0,06 0,95 0,36 3,09 7,04 0,14 8,47 

M 7 calanchi 0-30 0,41 0,18 1,01 0,67 0,35 0,14 0,27 1,48 4,59 18,08 0,45 8,36 

M 9 calanchi 0-30 0,33 0,12 1,15 0,27 0,10 0,14 0,49 1,11 3,72 17,53 0,39 8,57 

 

Tab. 5.3 – Pore water composition of collected samples (in meq/L) and related parameters 

controlling clay dispersivity. 
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Fig. 5.4 – Electrical conductivity values (μS/sec) in relation to SAR values, in the Rengasamy domains 

of dispersivity (Rengasamy et al., 1984). 

 

 

 

 

Fig. 5.5 – Relation between sediment dispersivity and pore water composition (expressed through 

the PS, TDS and SAR parameters), as established by Sherard et al. (1976). 
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Fig. 5.6 – pH/SAR and grain size/SAR site signatures for the Upper Orcia Valley samples. 

 

 

 

Fig. 5.7 – Relationship between pH and Ca
2+

 concentration (meq/L). 
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5.4 Discussion  

 

Results from parent material analyses on the sampled badlands areas in Upper Orcia 

Valley showed some interesting results on the different factors influencing the diverse 

badlands landform types in the study area. Even if none of the samples show SAR values 

higher than the threshold for deflocculation (SAR = 15, Piccarreta et al., 2006), considering 

the dispersive power of the analysed clays, a higher Na
+
 content relative to other cations has 

been observed in the well-developed and embryonic biancana parent materials with respect 

to calanchi samples. This evidence confirms the stronger tendency of biancane clays to 

spontaneous colloidal dispersion with respect to calanchi clays, as already observed by 

Vittorini (1977), Alexander (1982) and Battaglia et al. (2002). Moreover, biancane parent 

materials are characterized by a slightly finer grain size. These results, along with the 

observed prevalence of piping on biancane sites than on calanchi badlands for the Upper 

Orcia catchment area, is in agreement with the hypothesis that clay dispersivity is directly 

linked to subsurface erosion. Nevertheless, the long-lasting investigation of the badlands 

denudation hot spots of Upper Orcia Valley lead us to consider that grain size, chemical and 

mineralogical properties of the parent materials cannot explain alone the initiation and 

development of the different badland landforms. Some more arguments should be 

discussed in order to unravel the cause/effect relationships among factors and geomorphic 

processes. In fact, considering the distribution of calanchi and biancane landforms of the 

study area among the different classes of the main topographic and physiographic factors 

(Fig. 5.8), it is a matter of fact that calanchi badlands develop on steeper slopes and where 

higher values of amplitude of relief occur, due to the morphoevolutionary processes. 

Moreover, observations on present embryonic biancane of Lucciolabella site confirm the 

leading role played by reticular systems of joints in the dissection of original, gently-dipping 

surfaces (Colica and Guasparri, 1990; Torri and Bryan, 1997; Farifteh and Soeters, 2006; Della 

Seta et al., 2009). As for the calanchi evolution, their slopes probably evolve by substantial 

parallel retreat as long as caprock is present (Scheidegger, 1961, 1964), until caprock 

remnants finally disappear. Actually a resolute difference on dispersivity level of the 

biancana samples of La Piaggia subcatchment was not found with respect to calanchi 

badlands samples of the same subcatchment. 



PART I - FIELD MONITORING, PHOTOGRAMMETRIC AND PARENT MATERIAL ANALYSES          Chapter 5 

 

 113

On the other hand, a significant influence of clay properties was observed on the 

different erosion rates measured during decadal monitoring investigations by means of 

erosion pins in the study area. As summarized in Fig. 2.9, calanchi badlands show lower 

erosion rates due to surface runoff. The major facility of biancane clays to be entrained at 

very low stream powers is reflected in their major dispersivity, while, in badlands, the 

morphoevolution and sediment removal is predominantly caused by widespread mudsliding 

from the rill and gully heads, as also observed within the Volterra basin (central Tuscany) by 

Battaglia et al. (2011) and confirmed by the mean positive variations of ground level for 

some calanchi monitoring stations (Fig. 2.9). This observation can be also related to the 

higher sand content in calanchi badlands, which may favour the infiltration processes to the 

detriment of runoff. 

The increase of clay dispersivity downward along the soil profiles seems to be linked to 

the stabilization due to vegetation cover, since a marked difference in dispersivity level 

occurred only in the samples collected in the vegetated or cultivated sites and since the SAR 

values were proved to be positively correlated to the pH values. As already observed by 

several authors, the agricultural exploitation of these lands lead to a decrease of 

exchangeable cations concentration, even if the permanent inhibition of chemical dispersion 

due to increase of soil stability hypothesized by Phillips (1998) cannot be completely agreed. 

The authors overview after decadal monitoring and observation in the study area and in 

other sites of central Italy (Della Seta et al., 2007, 2009) is that badlands initiation is even 

enhanced by agricultural manipulation: grazing and farming are among the most important 

triggers for accelerated water erosion, and tillage erosion has been recognized as an 

increasing factor of water erosion (we have recorded up to 24 g/l turbidity values  in 

cropland gully  water during heavy rainfall events in November 2005). This is in agreement 

with the observations made by Torri et al. (2002), concerning the possibility that human 

reshaping of badlands slopes for agricultural purposes increases the proneness to water 

concentration in soils, thus favouring the development of ephemeral gullies. Similar 

observations were also underlined for other Mediterranean semiarid environments, such as 

many sites in Spain (López-Bermudez and Romero-Díaz, 1989; Calvo-Cases and Harvey, 1996; 

Calzolari et al., 1997; Borselli et al., 2006; Torri et al., 1999; Desir and Marín, 2007; Faulkner 

et al., 2008; Nadal-Romero and Regüés, 2010). Ephemeral gullies (Foster, 1986) are often 
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recognizable in croplands, and grow rapidly as a consequence of concentrated rainfall. 

Moreover, the effects of farming may become stronger if land use changes determine 

cropland abandonment (Faulkner et al.,2003; Romero-Díaz et al., 2007; Lesschen et al., 

2008): when converting cultivated lands in abandoned lands, in presence of semiarid 

conditions, vegetation recovery is limited by water and seed dispersal (Pugnaire et al., 2006), 

especially because re-vegetation with indigenous species is rarely performed. Investigations 

on other sites of central Italy (Vergari et al., submitted) together with several studies in 

different Mediterranean sites (Faulkner et al.,2003; Borselli et al., 2006; Romero-Díaz et al., 

2007; Lesschen et al., 2008), proved that cropland abandonment provokes an intensification 

of erosion rate with respect to the erosion rates measured on non-exploited lands in similar 

topographic conditions. 

 

Summarizing, the following main conclusions have been highlighted: 

a) parent material of biancane samples are characterized by a finer grain size and a 

more dispersive clay fraction than calanchi samples, according to previous literature; 

b) results from this work, together with those from previous studies, confirm that 

topographical and geological features of Upper Orcia Valley denudation-hot spots 

have a more significant influence than physico-chemical properties of parent material 

in explaining the initiation and development of different badland landforms (calanchi 

and biancane); 

c) clay properties have been proved to be directly related to different erosion intensity 

measured at calanchi and biancane sites; 

d) vegetation cover seems to stabilize upper layers of soil profile, even if not 

permanently: agricultural manipulation and cropland abandonment increase the 

proneness to gully formation and related accelerated erosion. 
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Fig. 5.8 – Distribution of Upper Orcia Valley calanchi and biancane badlands areas in the classes of 

the main conditioning factors. 
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PART II 

 

DENUDATION MODELING AND WATER EROSION HAZARD ASSESSMENT 

 

Several methods have been implemented to model soil loss, and can be synthetically 

classified into two categories: empirical and physically-based. The empirical methods 

estimate soil erosion by exploring statistical relationships between a set of influencing 

parameters and erosion effects, which have been optimized from empirical observations in 

sample areas (test basins or plots). These methods have been applied quite extensively, 

despite the fact that they have been implemented in regions characterized by specific 

physical conditions The physically-based methods mathematically describe the proceses of 

detachment, transportation and deposition of the eroded soil. These methods can easily be 

exported to different environments, but they require a large and extremely detailed set of 

parameters, which are often not available on a basin scale. 

Recently developed conceptual models have provided outputs in a spatially distributed 

manner, as a consequence of the widespread use of Geographic Information Systems (GIS). 

In fact, it is possible to approach the study of soil erosion by observing the geostatistical 

relationships between the physical determining factors and the effects of the process: the 

erosion landforms (Conoscenti et al., 2008a). 

This section is focused on the integration of denudation intensity estimation method 

(Tu denudation index) and the spatial prevision of areas prone to the development of 

instability landforms, aimed at  the proposal of a method finalized at the evaluation of the 

water erosion hazard (a spatially distributed prevision of calanchi badlands, and associated 

erosion rate, occurrence).  

Erosion intensity is estimated refining Tu denudation index equations (§ 6), and 

attempting a zonation of estimated erosion rates, by means of a grid analysis. The estimates 

are here validated considering the results of direct monitoring. Susceptibility analysis is 

performed through the analysis of geostatistical spatial relationships between the physical 

determining factors and the effects of the denudation processes (the erosion landforms). To 
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this aim, conditional analysis is applied to evaluate landslide susceptibility of Upper Orcia 

Valley in § 7, preceded by a new procedure for selecting the most influential causal factors 

(Vergari et al., 2011). Finally, § 8 presents a proposal for water erosion hazard assessment 

methodology, applicable in areas widely affected by badlands, in which erosion rates of 

badland areas is estimated through Tu denudation index, while spatial probability of calanchi 

badlands occurrence is computed by means of the susceptibility assessment method 

described in § 7. 
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6 SOIL EROSION ESTIMATION MODEL 

 

Field studies of soil erosion are expensive, time-consuming and data needs to be 

collected over many years. Though providing detailed understanding of the erosion 

processes, field studies have limitations due to the complexity of interactions and the 

difficulty of generalising from the results. Cost-efficient methods of estimating erosion over 

whole catchments are required as ways of predicting erosion after disturbance or following 

various erosion management strategies. Thus, the indirect estimation of erosion rates is still 

one of the main research topics of the scientific community in the field of geomorphology 

and is far from solved. 

 

This study presents the preliminary results of the application of an erosion evaluation 

technique aimed at the proposition of a spatially distributed model for estimation of present 

water erosion rates in badland areas. 

The mean annual erosion rate zonation has been carried out by means of a grid 

analysis of the denudation index (Tu), originally proposed in 1981 by Ciccacci et al. and based 

on the statistical correlations among quantitative geomorphic parameters and suspended 

sediment yield data measured for some Italian catchment basins. The comparison of 

estimated erosion and the erosion landforms, mapped after field survey, has allowed to 

associate an estimated typical erosion rate to each water erosion landform type (calanchi 

badlands and biancane badlands), that was then validated by means of field erosion 

monitoring data. 

 

 

6.1 Modelling approaches to the estimation of soil erosion 

 

The number of available erosion estimation methods differ in their applicability (spatial 

and temporal scales), for how they represent geomorphological processes and the type of 

results that provide. With the increased computing powers of the last 20 to 30 years, there 
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has been a rapid increase in the exploration of catchment erosion and sediment transport 

through the use of computer models. The range of model application is extremely diverse in 

terms of their modelling expertise, the questions they are exploring and the level of detail 

and scales at which these questions need to be addressed. Some models are event based, 

attempting to predict soil erosion after storm events, while others predict average annual 

soil loss. As for the spatial resolution, the models are generally applied to predict soil erosion 

for plot, hillslope or catchment scales. 

Many research work have tried to summarize the available soil erosion estimation 

methods, starting from Gregory and Walling (1973), that classified them from the “Physical” 

ones, where the studied processes were reproduced in laboratory, to the “Digital” ones, 

prevailing from the widespread use of computers, that aided the elaboration of large 

datasets (Tab. 6.1). These “digital” models have been then classified in two macro-

categories: empirical and physically based models (Morgan, 2005), the former founded on 

the statistical relationships between a set of influencing parameters and erosion effects 

monitoring datasets, the latter based on the mathematical equations explaining the physical 

laws involved in the studied processes. Zhang et al. (1996) proposed to identify a third 

category, called “Process models”, to include the methods describing the processes of 

sediment generation, transport and deposition (such as models proposed by Rose, 1993; 

Haan et al., 1994; Foster and Meyer, 1972; Foster, 1982; Rose et al., 1983a,b; Lane et al., 

1995). The same category was called “Conceptual models” in several other reviews (Lane et 

al., 1988; Wheater et al., 1993; Merrit et al., 2003), emphasizing the assumption of 

representing the catchment as a series of internal storages. Recently developed conceptual 

models have provided outputs in a spatially distributed manner, as a consequence of the 

widespread use of Geographic Information Systems (GIS). A fourth category of erosion 

modeling approaches was thus indentified by Li Zhang et al. (1996) as the “spatially 

distributed models”, based on modeling soil erosion data from Digital Elevation Models 

(DEMs). 
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TYPE DESCRIPTION 

Physical Scaled-down hardware models usually built in the laboratory; need to assume 

dynamic similitude between model and real world 

Analogue Use of mechanical or electrical systems analogous to system under investigation, e.g. 

floe of electricity used to simulate flow of water 

Based on use of digital computers to process vast quantities of data 

Physically based Based on mathematical equations to describe the processes 

involved in the model, taking into account the laws of 

conservation of mass and energy 

Stochastic Based on generating synthetic sequences of data from the 

statistical characteristics of existing sample data; useful to 

generate input sequences to physically based and empirical 

models where data are only available for short periods of 

observation 

Based on identifying statistically significant relationships between 

assumed important variables where a reasonable database exists. 

3 types of analysis are recognized: 

Black-box Only main inputs and outputs are studied 

Grey-box Some detail of how the system works is 

known 

Digital 

Empirical 

White-box All details of how the system operates is 

known 
 

Tab. 6.1 – Classification of erosion estimation methods after Gregory and Walling (1973). 

 

Physics-based models are founded on the solution of fundamental physical equations 

describing streamflow and sediment and associated nutrient generation in a catchment. 

Standard equations used in such models are the equations of conservation of mass and 

momentum for flow and the equation of conservation of mass for sediment (e.g. Bennett, 

1974). The major limits of physically based models are the large data requirements, the 

limited knowledge of complex processes and interactions between these processes at 

catchment scale (de Vente et al., 2006). 

Empirical models are based primarily on field observations and try to characterize 

response from these data. The computational and data requirements for such models are 

usually less than for the other types, often being capable of being supported by coarse 

measurements. Many empirical  models are based on the analysis of catchment data using 

stochastic techniques. Such models generally assume stationarity (underlying conditions 

remain unchanged for the duration of the study period): this assumption limits the potential 

for such models to be applied for predicting the effects of catchment changes. Moreover, 
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they are not event-responsive, ignoring the processes of rainfall-runoff in the catchment. De 

Vente et al. (2006) have divided empirical models in a) regression relations (or lumped 

models), that relate sediment yield to basin properties; b) semi-quantitative models, that 

explore process knowledge and identify significant sources of sediment, such as the Factorial 

Scoring Model (FSM, Verstraeten et al., 2003; de Vente et al., 2005) and the Pacific 

Southwest Interagency Committee Model (PSIAC, PSIAC, 1968); c) the distributed models, 

such as the RUSLE (Renard et al., 1997) and SDR (Young et al., 1995; Ferro et al., 1998; Jain 

and Kothyari, 2000; Kinnel, 2000; Van Rompaey et al., 2001, 2005; Brath et al., 2002; Ferro et 

al., 2003;) models. One of the limits of empirical models is that they generally do not 

consider sediment production from gully and bank erosion and from mass movements and 

their use outside the regions for which they were developed is often problematic. 

The Universal Soil Loss Equation (USLE) is the most widely used empirical overland flow 

or sheet-rill erosion equation (Wischmeier and Smith, 1978). The USLE is essentially an 

empirical formulation. All factors are based on observation and dimensionless and express 

each factor's effect on erosion. The equation was developed as a tool to control erosion and 

maintain soil productivity in developing catchment management plans. The equation is given 

by: 

A = RKLSCP 

where: 

A is the soil loss averaged over the slope length; 

R is the combined erosivity of rainfall and runoff; 

K is the soil erodibility; 

L is the slope length; S is the slope angle; 

C is the vegetation cover; 

and P is management practices. 

The limits of this approach are that: a) since it was developed to estimate long-term 

mean annual soil loss, it cannot be used to predict erosion from an individual storm, b) 

merely multiplying together 6 factor values, the interdependence among them is not 

considered, c) it is based on a wide input database, but limited to USA east of Rocky 

Mountains (for limitations of USLE see: Foster 1982; Millington, 1986; Nearing et al., 1994). 

The more recent version of the USLE is called the Revised USLE (RUSLE) (Renard, et al., 
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1991). The RUSLE has modified the techniques in determining R, K, C and P factors and is 

expected to provide more accurate results for soil erosion. Finally, another version of the 

USLE which is widely used to estimate sediment yield is the Modified USLE (MUSLE) 

(Williams and Berndt, 1977). The MUSLE is intended to estimate sediment yield for a single 

event.  

In Tab. 6.2 a number of available and well-known models are summarized, grouped in 

the physically-based and empirical models categories, considering the spatially distributed 

models as a way to provide model outputs. 

 

TYPE MODEL SCALE REFERENCE 

Physically based 

models 

WEPP Hillslope/catchment Nearing et al. (1989); Laflen et 

al. (1991)  

 GUEST Plot Yu et al. (1997); 

Rose et al. (1997) 

 EUROSEM,  Small catchment Morgan et al. (1998) 

 LISEM Small catchment Takken et al. (1999); 
De Roo and Jetten (1999) 

 ANSWERS Small catchment Beasley et al. (1980) 

 TOPOG Hillslope CSIRO Land and Water, TOPOG 

Homepage; Gutteridge Haskins 

and Davey (1991) 

Empirical models USLE Hillslope Wischmeier and Smith (1978) 

 SEDNET Catchment Prosser et al. (2001) 

 TU INDEX Catchment Ciccacci et al. (1981, 1986) 

 FSM Catchment Verstraeten et al. (2003); de 

Vente et al. (2005) 

 SDR Catchment Young et al., 1989; Ferro et al., 

1998, 2003; Jain and Kothyari, 

2000; Kinnel, 2000; Van 

Rompaey et al., 2001, 2005; 

Brath et al., 2002 

 PSIAC Catchment PSIAC, PSIAC, 1968 

 Morgan, Morgan 

and Fienny 

method 

(SEMMED) 

Catchment Morgan et al., 1984; 

Morgan, 2001 

 

Tab. 6.2 – Some available and well-known models to the estimation of erosion of soil erosion. 
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6.1.1 Estimation of catchment-scale sediment yield 

 

In 1981 Goudie stated that “probably one of the most important environmental 

problems associated with soil erosion by water is the high level of suspended sediment in 

river channels”. Sediment deposition within riverbeds or reservoirs causes problems for 

navigation, water supply or energy production. Furthermore, sediment loads disturb aquatic 

environments, especially if many pollutants, e.g. phosphates or heavy metals, are adsorbed 

to sediment particles. Prediction of annual sediment delivery values to river channels is 

therefore a major challenge, as it can give an order of magnitude of the intensity of erosion 

processes acting within catchments, but this is also a problem for the measurement of 

sediment delivery (Verstraeten and Poesen, 2002). 

Several empirical models specifically predict sediment delivery. These models generally 

combine an upstream erosion model with a sediment delivery ratio (SDR; e.g. Prosser et al. 

2001; Van Rompaey et al. 2001). The SDR concept is considered as a classical method linking 

sediment delivery to erosion within the basin, defined as the ratio of sediment delivered at 

the catchment outlet (or area specific sediment yield, SSY, t km
−2

 year
−1

) to gross erosion (t 

km
−2

year
−1

; Maner 1958; Walling 1983). Indeed, only a fraction of eroded soil moves through 

the catchment system and contributes to the sediment yield. The remaining part is 

deposited on hillslopes and/or in river plains and channels. 

 

As summarized by Lupia Palmieri (1983), over the past years, many attempts to identify 

the best relationship between the fluvial sediment yield and some of the main factors 

influencing erosion in the catchment areas have been carried on. Several authors have 

stressed the influence of climatic conditions: Langbein and Schumm (1958), based on data 

from 265 river basins in the U.S.A., have highlighted that there would be a maximum of 

suspended sediment transport for values of average annual rainfall ranging between 250mm 

and 350mm, that is in conditions of semi-arid climates; for lower and higher rainfall values, 

there is a sharp decrease of the turbulent transport, due, respectively, to a not significant 

runoff and to the increased vegetation cover, which protects soil from erosion (biostasis 

conditions). Fournier, in 1960, proposed a "precipitation factor" and an "orographic factor," 

finding a rather significant equation to assess the extent of erosion on a global scale, a scale 
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where climatic differences may be one of the main discriminating elements. But at the single 

catchment level, or when comparing adjacent areas, climatic conditions may be similar, and, 

therefore, not suitable in explaining the differences on a local scale. In this regard, Douglas 

(1968) has highlighted the relationship between suspended sediment yield and the average 

annual rainfall, the average annual runoff, the rainfall coefficient of Fournier and the relief 

ratio of some basins of Queensland (Australia). Cooke and Doornkamp, in 1974, have 

considered, together with the Fournier coefficient, the bifurcation ratio and drainage 

density. These relations are valid locally, of course, losing significance if extended to areas 

with different characteristics. For the Italian river basins, Gazzolo and Bassi (1961) proposed 

to consider also the geological factors, the degree of forest cover and soil conditions, 

dividing the land into "very erodible", "semi-erodible" and "slightly erodible." The evaluation 

of these parameters, however, includes a certain degree of subjectivity. 

Ciccacci et al. (1981, 1986) suggested models for indirectly estimating denudation 

rates, based on statistical correlations among quantitative geomorphic parameters and 

suspended sediment yield data. The “denudation index” (Tu) showed noticeable spatial 

variability of estimated denudation, with the highest Tu values indicating erosion “hot 

spots”, represented by small sub-catchments affected by badlands developed on uplifted 

Plio-Pleistocene marine clays in Italy. Considering reservoir sedimentation data of 44 Italian 

catchments, de Vente et al. (2006) explored the potential of FSM and PSIAC models to 

predict sediment yield, and indicated the most important sediment sources. They concluded 

that models results confirmed the hypothesis that processes other than upland erosion are 

probably responsible for sediment yield in the Italian catchments. A promising future 

development of the models is by the use of detailed spatially distributed data to determine 

the scores, decrease model subjectivity and provide spatially distributed output. 

Verstraeten and Poesen (2001) tried to deepen the relation between measured 

sediment yield and several catchment parameters for a number small cultivated catchments 

(10–10 000 ha) in central Belgium, concluding that even if summarizing the catchment 

properties in single parameters values in regression models is important, the use of spatially 

distributed erosion and sediment delivery models is necessary. 

In the past, in the absence of reliable spatially distributed process-based models for the 

prediction of sediment transport at the drainage basin scale, area-specific sediment yield 
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(SSY) has been often assumed to decrease with increasing drainage basin area (A), (e.g., 

Dendy and Bolton, 1976; Milliman and Meade, 1983; Milliman and Syvitski, 1992; 

Summerfield and Hulton, 1994; Einsele and Hinderer, 1997; Radoane and Radoane, 2005; 

Renwick et al., 2005). This thesis was reinforced by the assumption that increasing the 

catchment area, the sediment deposition possibilities increase, due to the decrease of mean 

slope gradients. Over the last two decades, various studies have revealed cases where a very 

poor relation, a positive relation or a combination of a positive and negative relation 

between A and SSY was found (e.g., Church and Slaymaker, 1989; Gögüs and Yener, 1997; 

Lane et al., 1997; Krishnaswamy et al., 2001; Schiefer et al., 2001; Dedkov, 2004; García Ruiz 

et al., 2004; de Araújo and Knight, 2005; de Vente and Poesen, 2005; Haregeweyn et al., 

2005; Jiongxin and Yunxia, 2005; de Vente et al., 2006; Restrepo et al., 2006; Della Seta et 

al., 2009), since, beside basin area, sediment yield is closely related to other basin 

characteristics such as topography, climate, lithology, land use and vegetation cover. De 

Vente et al. (2007) provided an overview of the different relations between A and SSY 

reported in literature and in observed trend. Summarizing their conclusions, the presence of 

a positive relation between A and SSY was linked to the presence of a welldeveloped 

vegetation cover, limited human disturbance, and a dominance of channel erosion over 

hillslope erosion processes (i.e., sheet, rill and ephemeral gully erosion), where recruitment 

of sediment along a channel and channel degradation is observed, possibly in combination 

with substantial delivery of sediments to the main rivers by massive landsliding. In contrast, 

an inverse relation between A and SSY was found characteristic for intensely cultivated 

basins, with an important contribution of hillslope erosion processes to sediment yield, 

where deposition of sediments during transport and channel aggradation occurs. Various 

authors have emphasized the scale dependency of sediment yield and have provided 

examples of a complex non-linear relation between A and SSY (eg, Lane et al., 1997; 

Osterkamp and Toy, 1997; de Vente and Poesen, 2005; Jiongxin and Yunxia, 2005; Fang et 

al., 2006; Slaymaker, 2006). They stated that at small scales, where splash and sheet erosion 

are the dominant erosion processes, SSY is relatively low. With increasing A more erosion 

processes become active (ie, rill erosion, gully erosion, channel erosion, landslides) leading 

to a rise in SSY with increasing A. This rise in SSY continues until a threshold in A is reached 

beyond which SSY starts to decrease with increasing A due to decreasing slope gradients, 
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resulting in reduced erosion rates and significant sediment storage on foot-slopes, in dry 

channels, floodplains and other sinks. 

Delmas et al. (2009) proposed a method to estimate a sediment yield index at a large 

spatial resolution for European river basins, considering the major processes forcing 

sediment redistribution within drainage areas. Four indicators representing processes 

respectively considered as sources (mass movement and hillslope erosion), sinks (deposits), 

and transfers of sediments (drainage density) were defined using distributed data, and an 

index which adds the two sources and transfers, and subsequently subtracts the sink term 

was proposed. 

 

 

6.1.2 The Denudation index (Tu) 

 

The specificness of the equations proposed by Ciccacci et al. (1981, 1986) lies in 

considering the contribution of quantitative geomorphic analysis as a suitable tool for an 

objective characterization of the river basins, in order to evaluate the intensity of erosive 

processes. The proposed mathematical relationships are indeed the result of a series of 

multiple regressions, statistically significant, which relate the values of some geomorphic 

and climatic parameters for a number of Italian basin with the suspended sediment yield 

measured in gauging stations located at the outlets of the same catchments. Even if the total 

amount of stream load should be known, bed load and dissolved load are rarely measured 

and with different techniques; consequently, indirect evaluation of erosion entity is 

generally based on suspended sediment data.  Denudation index estimates the average 

annual suspended sediment yield (Tu) operated by rivers, which, for basins, in humid 

climates and characterized prevalently by terrigenous substrates, also represents 90% of the 

total sediment entrainment by rivers. In these conditions, stream load can partially and 

approximately express the amount of the erosional processes acting within drainage basins, 

expressing the specific degradation and allowing the comparison among basins different in 

size. 

According to the authors, the indipendent parameters represent a comprehensive and 

concise expression of the main factors controlling erosion processes, and the selected basins 
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are an Italian sample, that, though limited, is sufficiently representative of the physiographic 

conditions found in various regions of the country. The selected Italian river catchments (Fig. 

6.1) are listed in Tab. 6.3, and parameters used in the study are: 

- p
2
 / P (Fournier, 1960), where p is the rainfall depth of the wettest month and P the total 

annual rainfall depth (in mm); 

- P x σ (Ciccacci et al., 1977), where P is the total annual rainfall depth (in mm) and σ the 

standard deviation from the mean monthly rainfall; 

- Θ, the slope gradient of river channels, defined as the ratio between the difference in 

height of the  extreme points of the river segment and the linear length of each river 

segment (average value for each considered catchment); 

- D, drainage density, obtained by drawing all the possible surface drainage ways detectable 

on topographic maps (scale 1:25,000) and aerial photos; 

- Ga, hierarchical anomaly density, and Δa, hierarchical anomaly index (Avena et al., 1967; 

Avena and Lupia Palmieri, 1969), taking into account the frequency of anomalous 

confluences of the various river segments and their distribution in various orders, important 

in indicating instability phenomena. 

For the Italian drainage basins, the only extensively available data about stream load 

refer to the suspended sediment yield measured by the network of gauging stations 

controlled, until about ten years ago, by the Hydrographic Office of the Ministry of Works. 
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Fig. 6.1 – Location map of the 14 drainage basins considered in the Ciccacci et al. study (1981). 
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 Catchment Tu (tonn/km
2
/year) D θ Δa ga p

2
/P p x σ 

F. Trebbia  
(Valsigiara) 

1523 4,9 22 1,59 19,35 81,52 224080 

T. Idice  
(Castenaso) 

2397 5,61 17,1 0,86 30,27 33,01 48984 

T. Senio  
(Castelbolognese) 

857 4,17 21,1 1,32 15,1 39,54 56951,32 

F. Orcia  
(Monte Amiata) 

1430 4,8 11,9 1,34 17,6 35,21 38804,92 

C.le S. Maria  
(P.te Lucera-Torremaggiore) 

170 2,21 5,01 1,14 3 35,25 26048,02 

T. Triolo  
(P.te Lucera-Torremaggiore) 

285 2,6 7,08 0,91 2,8 31,1 27727,34 

T. Casanova  
(P.te Lucera-Motta) 

179 2,7 8,07 0,36 1,4 28,82 26805,61 

T. Salsola  
(Casanova) 

228 2,6 9,7 1,15 4,6 28,25 27998,67 

T. Vulgano  
(P.te Troia-Lucera) 

247 2,44 9,25 0,94 3 26,81 28958,21 

T. Celone  
(S. Vincenzo) 

255 2,8 10,5 0,76 3,1 23,91 27914,13 

F.ra di Venosa  
(P.te S. Angelo) 

225 2,76 6 1,08 2,9 23,82 21675,17 

F. Agri  
(Grumento) 

231 2,42 15,5 1,1 4,3 51,3 73736,71 

F. Agri  
(Tarangelo) 

340 3,06 14,8 1,4 10,8 48,85 75857,91 

F.ra Delia  
(Pozzillo) 

152 2,59 5,64 0,57 2,05 38,48 38235,16 

Tab 6.3 – Values of measured Tu and independant variables for the 14 italian drainage basins 

cosidered in the 1981 study by Ciccacci et al. 

 

Ciccacci et al. (1981) underlined the weak statistical relation between Tu and 

parameters related to climate and relief. They instead highlighted the high values of the 

determination coefficients (R
2
) of regressions showing the relation between Tu and 

parameters related to drainage network, in particular D. Several works, in fact, proved some 

of the considered indirect parameters to be suitable for expressing the characters of the 

drainage network (such as extension and hierarchization degree) that strongly affect 

denudation intensity (Strahler, 1957; Dramis and Gentili, 1977; Ciccacci et al., 1981; 

Tokunaga, 1984, 2000; Ciccacci et al., 1986, 1988; Marini, 1995; Del Monte et al., 2002). 

In particular, R
2
 values are very significant for the following regressions: 

log Tu = 0,35312 D + 1,43225   R
2
 = 0,96221  (with D < 6)  (1) 
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log Tu = 2,93936 logD + 1,13430  R
2
 = 0,94987  (with D > 6)  (2) 

 

The equation (2), even if showing a lower R
2
, was assessed as better for basins 

characterized by very high D values, for which the Tu estimation with equation (1) resulted 

in values overcoming the maximum Tu values for Italian catchments (Passerini, 1934; 

Cotecchia, 1960, 1961, 1963, 1968; Morandini, 1962). 

Moreover, the authors demonstrated that R
2
 increase considering the following 

multiple regressions: 

log Tu = 0,29561 D + 0,0074 ga + 1,56102  R
2
 = 0,96435  (with D < 6) (3) 

log Tu = 1,82818 logD + 0,01796 ga + 1,53034 R
2
 = 0,96490 (with D > 6) (4) 

log Tu = 0,33479 D + 0,15733 Δa + 1,32888  R
2
 = 0,97688  (with D < 6) (5) 

log Tu = 2,79687 logD + 0,13985 Δa + 1,05954 R
2
 = 0,96128  (with D > 6) (6) 

 

In 1986, Ciccacci et al. tried to improve the obtained equations by increasing the 

number of drainage basins representing the Italian sample of physiographic conditions. The 

new regressions confirmed D as the best predictor of Tu, since it synthetically expresses 

many of the factors controlling erosion entity: a) it is strongly depending on climatic 

conditions; b) it is tied to the type and density of vegetation cover; c) it can be partially 

modified in response of human activity; d) it is a function of rock permeability and fracturing 

degree, synthesizing the erodibility level of the sedimentary substrate outcropping in the 

studied areas. 
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6.2 Update of the Tu index method 

 

The attempts of improving the denudation index methodology was driven by the 

following considerations: 

1) parameter D, drainage density, refers to the density of river network and ephemeral 

streams, whose density is linked to the seasonal distribution of rainfall. It has been 

calculated in the previous studies, considering the drainage pathways derived from available 

maps (1:25.000), thus considering a representation of the projected area. This parameter, so 

computed, underestimates the real lengths of the drainage pathways in those areas where 

the steepness is high, and it is assumed that this limit can lead to underestimate the 

intensity of river load in these sites; 

2) as a result of the quantitative geomorphic investigations, the geomorphological 

survey and the erosion monitoring in the study areas of central Italy, also according to 

several studies conducted by different authors in the same areas and other areas greatly 

affected by badlands and instability due to water erosion (e.g. Ciccacci et al., 2003, 2006), it 

is considered extremely important to give greater weight to the influence that runoff, diffuse 

and concentrated, has in the evaluation of erosion intensity. In fact, the calculated drainage 

density at scale 1:25.000 does not reach a level of detail that can account for the small 

channels, that, in badland areas, form a dense network. 

 

To fulfil these limitations, two new independent variable have been added in the 

multivariate statistical analysis: 

1) a new parameter, called 3D- drainage network (D3d) was therefore calculated, 

representing a drainage density that is not projected. In fact, despite the traditional values of 

the D values also reflect the different slope gradients along the waterways, which in turn 

affect the river yield, it was considered interesting to use a parameter that allows to 

evaluate the effective development of surface drainage in a basin by reducing the intrinsic 

error due to the deformation that occurs as a result of the representation of the earth's 

surface on a two-dimensional plane (Marazzotti, 2005-2006). This parameter is obtained by 

knowing the actual linear length of the river courses (Leff) and the basin area (A): 
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D3d = ΣLeff / A, 

where Leff can be easily computed applying the Pythagorean theorem, as indicated below: 

 

 

 

 

 

ΣLeff = cumulative length of real river channels, 

ΣLpla = cumulative lentgh of projected river channels (D parameter in Ciccacci et al. 1981, 1986), 

ΣΔh = mean slope gradient of river channels (θ parameter in Ciccacci et al. 1981, 1986) 

 

Computed D3d values, shown in Tab. 6.4, together to D values,  reflect mean θ values 

along drainge network. 

 

2) in order to give more weight to the portion of the denudation due to runoff, the Ad 

parameter was introduced in the study of indirect assessment of the erosion entity, 

representing the areal ratio affected by badlands (Ab) to the total catchment area (A): 

Ad = Ab / A 

For some of the considered basins, the Ad values were already available in previous work 

(Ciccacci et al., 1995); the missing Ad values have been elaborated by mapping badland 

areas from aerial photo interpretation (Tab. 6.4). 

ΣΔh 

ΣLpla 

ΣLeff 
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Bacino 
Area bacino 

(km
2
) 

D3d 

(km/km
2
) 

Ad 

F. Trebbia  226 5,017179 0,276265 

T. Idice 397 5,69143 0,2489 

T. Senio* 
269 4,261815 0,09 

F. Orcia 580 4,833867 0,45661 

C.le S. Maria* 
59,8 2,212772 0,02 

T. Triolo* 
53,8 2,606508 0,02 

T. Casanova* 
52,3 2,708778 0,01 

T. Salsola* 
43,1 2,612203 0,04 

T. Vulgano* 
94 2,450416 0,04 

T. Celone* 
85,8 2,815393 0,04 

F.ra di Venosa 261 2,764964 0,025318 

F. Agri (Grumento) 278 2,448898 0,043243 

F. Agri (Tarangelo) 507 3,093332 0,06218 

F.ra Delia 138,8 2,594116 0,018214 

 

Tab.6.4 – D3d and Ad values of the 14 drainage basins considered by Ciccacci et al. (1981) to estimate 

denudation index “Tu” (* indicate basins for which Ad values were available in Ciccacci et al., 1995).  

 

In Tab. 6.5 correlation matrix between the considered parameters and Tu values is 

shown. The matrix shows the correlation coefficients, which express the degree of linear 

relationship for each pair of variables, and the P values, which show the value of the test 

which assumes that the correlation coefficient is zero (null hypothesis). The p value for 

rejecting the null hypothesis must be lower than 0.05. P-value is lower than 0.05 for all pairs 

of variables whose correlation coefficient is high (greater than 0.5). 

Comparing the different variables with simple or logarithmic values of Tu, shows that 

the correlation is high for D, LogD, ga, D3d, logD3d, Ad. As already stressed in the 1981 study, 

little significance have shown the relationship between Tu, or its logarithm, and climate 

parameters. 

In the present study, we tried to understand what improvements can make the two 

new parameters to the estimation of the extent of denudation. 
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 Tu log Tu D log D θ Δa ga p
2
/P p x σ D3d log D3d 

log Tu 0,961           

 0           

            

D 0,97 0,981          

 0 0          

            

log D 0,944 0,975 0,995         

 0 0 0         

            

θ 0,642 0,753 0,712 0,729        

 0,013 0,002 0,004 0,003        

            

Δa 0,32 0,492 0,388 0,405 0,581       

 0,265 0,074 0,171 0,151 0,029       

            

ga 0,972 0,963 0,965 0,948 0,739 0,438      

 0 0 0 0 0,003 0,118      

            

p
2
/P 0,34 0,411 0,388 0,393 0,676 0,596 0,399     

 0,234 0,144 0,17 0,165 0,008 0,024 0,157     

            

p x σ 0,429 0,501 0,482 0,49 0,716 0,581 0,46 0,955    

 0,126 0,068 0,081 0,075 0,004 0,029 0,098 0    

            

D3d 0,969 0,982 1 0,996 0,723 0,395 0,966 0,4 0,494   

 0 0 0 0 0,003 0,162 0 0,156 0,073   

            

log D3d 0,942 0,975 0,995 1 0,74 0,412 0,949 0,403 0,5 0,995  

 0 0 0 0 0,002 0,144 0 0,153 0,069 0  

            

Ad 0,821 0,860 0,851 0,844 0,492 0,473 0,783 0,362 0,409 0,846 0,840 

 0,001 0 0 0 0,091 0,093 0,002 0,232 0,175 0 0 
 

Tab. 6.5 – Correlation matrix for Tu and independent variables data. In bold type the maximum Tu 

and log Tu correlation values. 

 

Substituting D with D3d  parameter the following two equations have been found (Fig. 

6.2): 

logTu = 0,3438 D3d + 1,4517   R
2
 = 0,9637     (7) 

log Tu = 2,8906 log D3d + 1,1481  R
2
 = 0,9512     (8) 
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R
2 

coefficients slightly increase with respect to the the analogous relations between Tu and D 

(Eq. 1 and 2). 

Also the Tu / Ad regression show a strong power relation between the two variables 

(Fig. 6.3). 
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Fig. 6.2 – Tu / D3d regressions. 
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Fig. 6.3 – Tu / Ad regression. 

 

Moreover determination coefficients even improve when attempting a quadratic or 

cubic best fit of Tu with D3d (Fig. 6.4): 

log Tu = 1,491 + 0,3211 D3d + 0,00293 (D3d)
2
    R

2
 = 0,964  (9) 

log Tu = 2,974 - 0,910 D3d + 0,3266 (D3d)
2
 - 0,02712 (D3d)

3
  R

2
 = 0,968  (10) 

Tu = 1421 – 994,8 D3d + 204,3 (D3d) 
2
     R

2
 = 0,996  (11) 

The quadratic regression Tu-D3d (eq. 11) shows the best significance, but a too high 

constant value, which corresponds to the Tu value when D = 0. Since when drainage is 

absent also the river yield is absent, we tried to add the data (0,0). The new regression 

analysis gave the following results (Fig. 6.5): 

Tu = 3,02 + 152,8 D - 91,44 D
2
 + 25,10 D

3
    R

2
 = 0,997  (12) 

Tu = 2,51 + 168,4 D3d - 97,30 (D3d)
2
 + 24,95 (D3d)

3
   R

2
 = 0,996  (13) 

Regression significance is very high for both the equations and constant values are now 

very low, better representing the real situation when D = 0. 

Considering a multiple regression that relate Tu with D (or D3d) and Ad, the following 

equations have been obtained: 

log Tu = 1,50 + 0,325 D + 0,276 Ad     R
2
 = 0,965     (14) 
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log Tu = 1,52 + 0,313 D3d + 0,308 Ad     R
2
 = 0,967  (15) 

log Tu = 1,26 + 2,61 log D + 0,388 Ad    R
2 

= 0,955  (16) 

log Tu = 1,28 + 2,55 log D3d + 0,411 Ad    R
2
 = 0,957  (17) 

where including the (0,0) data is not necessary. 

The inclusion of the parameter Ad, in addition to the density of drainage, to explain Tu 

could seem not very significant considering that this new parameter has a rather high 

correlation coefficient (> 0.8) when compared with the D or D3d (see correlation matrix in 

Tab. 6.5). Even though, we considered that this is only true for areas characterized by not 

very high drainage density values. In fact, when the drainage network thickens of very small 

channels due to the runoff, the level of detail to which we compute the density of drainage 

(usually on maps at the scale 1:25.000) turns out to be not high enough to capture the real 

density of drainage network, leading to an underestimation. And in these cases the 

equations known in the literature underestimate the intensity of erosion, especially in river 

basins of small to medium size. 
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Fig. 6.4 – Quadratic and cubic regressions of Tu e D3d (in the graphs indicated as D3). 
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Fig. 6.5 – Relations between Tu and D (above) and between Tu and D3d (bottom, the last indicated as 

D3), considering the (0,0) data. 
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Concluding, the attempt aimed at updating the Ciccacci et al. (1981) equations, has 

brought to the following remarks. 

a) Considering that Tu variability explained by equations 14, 15, 16 e 17, is only slighlty 

lower than that explained by relations proposed in 1981 (equations 3, 4, 5, 6), we can 

consider that Ad is well related to erosion entity. 

b) Even if D3d does not improve the Tu estimation done with D, we consider that this is 

true for the large sized basin sample, in which θ is generally low, resulting in a small 

difference between D and D3d values. For smaller basins, with higher θ, D3d should better 

reflect the conditions predisposing erosions than D. 

c) Equations 12 e 13 (Fig. 6.5) give the best estimation of Tu. 

d) The sample size, however, is considered not sufficient to suggest the introduction of 

improvements to the regressions of 1981. Moreover, as can be seen from the analysis of 

regressions residuals for both the new and the 1981 relationships, the assumptions 

underlying the regressions (the residuals are independent, homoskedastic and normally 

distributed, Di Ciaccio et al., 1996 ) are not always verified, and then we can not take for 

granted the reliability of the estimation models, although the coefficients of significance are 

very high. In Fig 6.6 the exemplifying error analysis of equation 15 is shown, which 

investigates the distribution of differences between estimated and observed Tu values. The 

four graphs are used to study the goodness of the estimation model. Their interpretation 

shows an asymmetry in the distribution of residuals (in the graph "histogram of the 

residuals"), the presence of outliers (in the graph "residuals versus fitted values", the points 

far away from their average value, or zero), variance of residuals is a function of the 

estimated values (in the graph "residuals versus fitted values" it is evident that the residual 

variance decreases with increasing values of estimated values, indicating that the data are 

better estimated for high Tu values). Other equations show instead (from the analysis of the 

chart "Normal probability plots of the residuals") a non-random distribution. It can be 

concluded that although the assumptions made to represent a challenging road in the 

indirect assessment of the erosion entity, it would be desirable to perform a more detailed 

statistical analysis of data, as well as a spatial-temporal availability of more observations. 
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Fig. 6.6 – Residual analysis of regression in equation 15. 

 

 

 

6.3 Spatially distributed erosion rate estimation: Tu grid analysis  

 

Applications of Tu denudation index have produced satisfying results in in estimating 

the erosion entity in areas diffusely affected by badland erosion (Lupia Palmieri et al., 1995, 

2001; Ciccacci et al., 2003; Agnesi et al., 2007; Della et al., 2007, 2009; Di Lisio et al., 2007). 

In fact, in the previous studies, it was underlined that where fluvial deepening prevails, Tu 

values were as much lower as more than one order of magnitude compared to values 

calculated for catchments strongly affected by “calanchi” badlands and by mass movements. 

This is in agreement with the statement that gully erosion is one of the dominant sediment 

sources in the Mediterranean region (Poesen and Hooke, 1997). Moreover, from the 

computed subcatchment Tu values (tonn/km
2
/a), considering the average bulk density of 

clay, the most widespread outcropping lithology, an average erosion rate for the 

subcatchments was computed (cm/a). In order to verify these indirect results, the spatial 

variations of these modeled denudation rates were compared with field measurements: 

extreme values of the mean annual suspended sediment yield (Tu), obtained for the small 

catchments greatly affected by badlands are consistent with results obtained by direct 

monitoring of denudation with erosion pins (Della Seta et al., 2007). 
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Given these encouraging results, an attempt has been made to perform a more 

detailed zonation of the modeled denudation rates, in order to better zoning the negative 

ground level changes of badland sites within the catchment area (cm/a), starting from the 

sediment output data (tonn/km
2
/a). The equations considering the only D parameter were 

used (Eq. 1 and 2), considering its powerful erosion estimation capacity. 

The fist attempt was performed for an Upper Orcia River subcatchment, the Miglia 

subcatchment, 15 km
2
 large, where biancane badlands are greatly widespread. The Miglia 

subcatchment area was divided using a grid of 1 km
2
 cells. For each cell the drainage density 

(D) was calculated from drainage network digitized from 1:10.000 topographic maps (Carta 

Tecnica Regionale, CTR, Regione Toscana), considering that the D values computed from 

1:25.000 topographic maps drainage network underestimate the erosion rate for badland 

areas (Fig. 6.7a).The equation 1 and 2 were applied to compute the Tu value corresponding 

to each cell (Fig. 6.7b): in this step, the Tu value in tonn/km
2
/a estimated to each cell 

corresponds to the estimated sediment output of a fictitious basin having the D equal to that 

calculated for the cell. The Tu value was converted into the average negative ground level 

change of the cell (cm/a), assuming a mean bulk density of outcropping clays equal to 2 

tonn/m
3
. These estimated erosion rates were assigned to the cells’ centroids (Fig. 6.7c), in 

order to get a point cloud to be used to geostatistically interpolate the obtained values, 

carrying out the estimated erosion rate map of Miglia catchment. 

The 1km
2
 grid was then shifted 0,7km to SE (half the cell diagonal length) in order to 

double the number of points to use in the geostatistcal interpolation in ArcGIS environment. 

The selected interpolation method was the spline interpolation method, that estimates 

values using a mathematical function that minimizes overall surface curvature, resulting in a 

smooth surface that passes exactly through the input points. 

In Fig. 6.8, the estimated erosion map of Miglia subcatchment is shown. The highest 

erosion rates are estimated for the east-facing slope, where the Lucciolabella natural reserve 

was established in 1996 to protect the typical biancane badland landscape of Crete Senesi. 

Here, the estimated rates were compared with the rates measured by erosion pins, in order 

to verify the reliability of the results. For the area the measured denudation rates reach 

more than 3 cm / year, underlining the good estimation performed. 
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Fig. 6.7 – Tu Grid analysis procedure. 

 

 

 

Fig. 6.8 – Estimated erosion rate map of Miglia subcatchment. 
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6.3.1 Upper Orcia Valley erosion rate map 

 

Starting from the drainage network of the Upper Orcia Valley (about 120 km
2
, Fig. 

6.9a), digitized from 1:10.000 topographic maps (CTR, Tuscany Region), the present erosion 

rate map (Fig. 6.9b) was carried out, through the Tu grid analysis and using the equations 1 

and 2. The map was then validated by comparing the estimated erosion rates with those 

measured in the last 20 years. The graph in Fig. 2.9 summarize the average ground level 

changes measured in the last two decades using erosion pins located in different erosion 

landforms. The average measured erosion rate, only due to runoff, in badlands areas was 

calculated in 1.5 - 2.5 cm/a, while for biancane areas the rate is even higher, despite here 

average slope gradients are lower (refer to § 2). The overlapping of the estimated erosion 

rate map and the areas affected by calanchi and biancane badlands (Fig. 6.10) shows that 

both landforms fall in areas with very high erosion, with biancane more developed on areas 

with the highest values (up to 3 cm/a). Some areas, for which very high erosion rates have 

been estimated, correspond to nowadays remodelled biancane badlands areas, so that, in 

fig. 6.10, they result not affected by present badland erosion, even if high erosion rates are 

supposed to persist.  

Finally, it must be stressed that the erosion rates estimated using the Tu index does not 

include the contribution of gravitational movements to the total sediment load produced 

from badland areas, that are far more common on calanchi badlands than on biancane and 

involve a considerable removal of material, besides temporary accumulations. 
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a) b) 

Fig. 6.9 – Drainage network (a) and estimated erosion rate map (b) of Upper Orcia Valley. 

 

 

 

 

a) b) 

 

Fig. 6.10 – Calanchi badlands (a) and residual biancane badlands (b) areas overlaid in the estimated 

erosion rate map of Upper Orcia Valley. 
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7 PROPOSAL OF A GEOMORPHOLOGICAL SUSCEPTIBILITY ASSESSMENT 

METHOD 

 

In this section, a statistically based susceptibility evaluation method is described, partly 

inherited from previous studies, partly originally proposed (Vergari et al., 2011). In this 

chapter, the method is applied to evaluate Upper Orcia landslide susceptibility, while, in the 

following section, will be described as a fundamental base to assess water erosion hazard. 

 

 

7.1 Introduction 

 
Since the 1970s, many authors have proposed GIS-supported methods to evaluate 

geomorphological hazard, that is, the probability that a geomorphological event of given 

intensity will occur in a given area and in a given time span (Brabb, 1984; Panizza, 1987). 

Despite geomorphological hazard may be predictable for some processes, such as 

floods (E.g. Della Seta et al., 2005), landslide hazard prediction may be difficult because it is 

often impossible to evaluate the spatial and temporal distribution of past events for large 

areas, due to gaps in the historical record and in the geographic information, especially 

when studying gravitational movements. Thus, several methods developed and 

implemented in this field of research have focused on evaluating geomorphological 

susceptibility, and GIS technology makes easier the application of quantitative techniques in 

hazard assessment and mapping. 

Landslides are the most studied processes when analyzing geomorphological 

susceptibility, as periodically summarized by several authors (Crozier, 1984; Carrara et al., 

1995; Soeters and van Westen, 1996; Guzzetti et al., 1999), but the same methods can be 

generalized also to other geomorphological instability processes. These methods are 

generally based on the more or less clear statement that mass movements are more likely to 

occur in the presence of the same conditions that led to past and present instability (Varnes, 

1984; Carrara et al., 1991, 1995; Marini, 1995). For this reason, most of the landslide 
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susceptibility evaluation methods are generally focused on the study of the factors 

influencing slope instability (causal factors). 

Landslide susceptibility methods can be divided into three classes (Carrara et al., 1992): 

heuristic, deterministic and statistical methods. In heuristic (or index) methods the causal 

factors are weighted subjectively (Hollingsworth and Kovacs, 1981; Bosi et al., 1985; Neeley 

and Rice, 1990; Montgomery et al., 1991; van Westen et al., 1999). Deterministic models are 

based on the physical laws driving landslides (Okimura and Kawatani, 1987; Hammond et al., 

1992; Montgomery and Dietrich, 1994; Terlien et al., 1995; Pack et al., 1999; Iverson, 2000) 

and are generally more suitable for small areas or for slope-specific stability studies. The 

statistical approach, instead, is founded on the multivariate relationships between causal 

factors and past and present landslide occurrence. The multivariate relationships are often 

identified through conditional analysis (Bonham-Carter et al., 1989; Carrara et al., 1995), 

discriminant analysis (Agterberg, 1974; Carrara, 1983; Carrara et al., 1995, 2003; Baeza and 

Corominas, 2001), linear or logistic regression (Atkinson and Massari, 1998; Guzzetti et al., 

1999, and references therein; Gorsevski et al., 2000; Dai and Lee, 2003; Ohlmacher and 

Davis, 2003; Ayalew & Yamagishi, 2005) and artificial neural networks (Aleotti et al., 1996; 

Lee et al., 2001; Wang and Sassa, 2006; Falaschi et al., 2009; Pradhan and Lee, 2010). 

Statistical models have been developed to overcome the uncertainty due to subjective 

evaluation and are generally suitable for susceptibility assessment at catchment scale (as the 

present study case). In the statistical approach, particularly when applying conditional 

analysis, the causal factors are generally selected by the operator (Zêzere et al., 2004; Clerici 

et al., 2006; Conoscenti et al., 2008b). 

Here is presented a method for geomorphological susceptibility evaluation, based on 

statistical conditional analysis, often applied to assess landslide susceptibility. Traditional 

conditional analysis is integrated with an unbiased bivariate statistical procedure for 

selecting causal factors. The crucial point of the method is the dual purpose of achieving the 

minimum complexity in the methodological sequence, based on perceptive statistical 

procedures, and the clearest possible vector susceptibility output maps to allow their use 

even for non-expert users and to guide decision makers in land management. It can be 

applied for evaluating geomorphological susceptibility due to different processes, such as 

landslides, floods and water erosion. 
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The susceptibility evaluation method is here described for the landslide application, as 

it descends from the landslide studies only just described. Even though, it has been 

conceived to be applied for both landslide and water erosion susceptibility evaluation, as 

exemplified in the application described in § 8. Even if not yet tested by means of a study 

case application, this method should be also applicable to flood hazard evaluation, 

integrated by the correct related precautions. 

 

 

7.2 Methodological background 

 

The proposed landslide susceptibility assessment procedure (Fig. 7.1) is part of a well-

established group of statistical models. It is based on a method originally proposed in 

previous studies (Marini, 1995; Del Monte et al., 2002; Della Seta et al., 2005) and consisting 

of a multivariate analysis, where the conditional independence among causal factors had 

been assumed. In this procedure, the conditional dependence among factors is assumed and 

the susceptibility analysis is preceded by a new statistical procedure to select the most 

important causal factors for each type of landslide. 

Separate analyses should be performed for different instability landform types as 

suggested also by Soeters and van Westen (1996), Guzzetti et al. (1999), Remondo et al. 

(2003). In fact the most influential factors and their weights may vary considerably for 

different process types as well as, for the same type, in different areas. 

The proposed procedure for factor selection is a bivariate statistical analysis aimed at 

understanding the distribution of the occurred instability events within the different classes 

of possible controlling factors. The selection of the causal factor, in fact, is based on the 

concept that the more the past events are concentrated in few classes of a factor, the more 

this factor will be important in discriminating the areas more or less prone to the future 

occurrence of that hazardous process. 
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In this method, the study area is divided into sub-areas characterized by a unique 

combination of classes of pre-selected causal factors (Marini, 1995; Del Monte et al., 2002). 

These map units conceptually correspond to the Unique Condition Units proposed by 

Carrara et al. (1995) and Chung et al. (1995), but formally differ from them because in this 

methodology they come from vector datasets so that we called them vUCUs (vector Unique 

Condition Units). Moreover, the vUCUs are different for each instability landform type 

susceptibility analysis, as a consequence of the application of the factor selection procedure. 

Vector datasets are  used in order to obtain vector susceptibility outputs, which are 

expected to be less fragmented than the raster ones, and consequently more easy  to be 

interpreted by users. 

The conditional analysis is a multivariate statistical approach based on Bayesian theory, 

which considers the causal factors as conditionally dependent causes for instability events 

(Bonham-Carter et al., 1989; Carrara et al., 1995). This statistical procedure is generally 

applied to calculate the susceptibility index for each map unit, where the simple attribution 

of an a priori landslide probability determination is conditioned, and thus updated, 

considering information on the combination of selected factors that caused past events. 

A well-structured susceptibility evaluation procedure should consider the terrain 

conditions preceding the instability events, since the failure occurrence could cause strong 

topographic modifications of these areas (Chung and Fabbri 1999, 2008; Fernandez et al. 

2003; Ayalew and Yamagishi 2005; Nefeslioglu et al. 2008; Clerici et al., 2010). When 

assessing landslide hazard, for example, our procedure provides for the application of the 

susceptibility analysis using, for landslide inventory, the depletion zones and the outer buffer 

areas from the depletion zones, the latter to be dimensioned as a function of the input data 

resolution. In fact, the outer buffer area from depletion zones preserves pre-landslide 

conditions (Süzen and Doyuran, 2004), and it can be also affected by retrogressive activity of 

the landside process (Cruden and Varnes, 1996): it is, thus, very useful when input data 

about the terrain conditions preceding the instability events are not available.  
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Fig. 7.1 – Landslide susceptibility assessment procedure (Vergari et al, 2011). 
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Considering the importance of verifying the reliability of the spatial prediction model 

(Guzzetti et al., 2006), the validation of the model is the last step of the proposed procedure. 

Several validation methods have been proposed by different authors, with the aim of 

immediately testing the model, overcoming the difficulty of waiting for future instability 

event occurrence and comparing their distribution with the assessed classes of susceptibility. 

In this study, the validation procedure proposed by Chung and Fabbri (2003) was applied, in 

which a temporal subdivision of instability landforms is recommended: a training subset of 

data is exploited to produce a new prediction map (training susceptibility map), while the 

other subset (test subset) simulates the unknown target pattern, as better explained in the 

following paragraphs. 

 

 

7.3 Factor selection procedure 

 

The implementation of geomorphological susceptibility prediction models involves a 

series of tricky problems to be solved when identifying and mapping a suitable set of 

potential causal factors. 

a) Identification and mapping of a suitable set of instability factors, bearing a causal 

relationship with instability landforms, needs an a priori knowledge of the main causes of 

slope instability processes (Guzzetti et al., 1999). 

b) Once some potential causal factors have been correctly identified, a further constraint for 

a successful geomorphological susceptibility evaluation lies in their suitability for the study 

case: in fact, each causal factor can be more or less discriminant in explaining the 

distribution of the same landform type in different study areas. 

c) The identified controlling factors must be then classified in a suitable number of classes to 

best represent the variability of the factor values. In fact, too many classes lead to 

excessively small and diverse vUCUs and, thus, to low statistical significance of the landslide 

distribution in each vUCU, while too few classes can hide the effective variability of data. To 

perform an unbiased classification, the correct method should be chosen depending on the 

data frequency distribution (Jenks and Caspall, 1971). 



PART II - DENUDATION MODELING AND WATER EROSION HAZARD ASSESSMENT                     Chapter 7 

 

 153

d) Once the factor values have been correctly classified, it is necessary to select the correct 

number of factors, because, again, the greater the diversity of vUCUs, the lower the extent 

of the spatial units and, the lower, the significance of the statistical analyses (Clerici et al., 

2006, 2010). However, filtering techniques to cancel out or merge small and insignificant 

areas can introduce bias or errors in the procedure (Guzzetti et al., 1999). When using UCUs, 

the maximum number of causal factors to use in the landslide susceptibility assessment 

should depend on the extent and on the physiographic variability of the study area, as well 

as on the input data resolution. 

Applications of simple statistical methods, such as conditional analysis, are rarely 

preceded by an unbiased causal factor selection procedure (He & Beighley, 2008). Some 

factor selection procedures, such as those proposed by Chung et al. (2002), Remondo et al. 

(2003) Clerici et al. (2010), provide for selecting the most significant factors after having 

computed all the possible susceptility maps from all the possible combinations of the 

potential causal factors and having tested the results by means of a validation method.  

To select the most influencing factors likely responsible for future events in a given 

study area, we propose to use some statistical parameters before the application of the 

conditional analysis (Fig. 7.2), as a conceptually simple and effective method. This method is 

aimed at solving the above points b), c) and d), considering that the point a) is common to all 

the approaches aimed at evaluating geomorphological susceptibility and is strongly 

depending on the operator knowledge of geomorphological processes. 
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Fig. 7.2 - Factor selection procedure: a) Example of Lorenz curve representing the distribution of 

landslide within the different classes of a potential causal factor K; the 1:1 solid line represents the 

homogeneous distribution of landslides with respect to factor classes, while the dotted line 

represents the perfect inequality distribution. b) Factor selection based on Gini coefficient 

value (G) with respect to the mean of the G values of all the considered factors. b1) Factor 

selection if only one factor has G value above the mean. b2) Factor selection if more factors 

than the needed number have G value above the mean. The degree of correlation between 

these factors (c) has to be considered, in order to discard, from the statistically correlated 

ones, those with lowest G values (Vergari et al., 2011). 
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In particular, our factor selection consists of measures of inequality distributions (Gini, 

1914), computation of Lorenz curves (Lorenz, 1905) and use of some indices of correlation 

between variables. Gini’s index of inequality and Lorenz curves were conceived, in the field 

of economics, to measure social inequality and to represent income distribution over a 

population. In this study, we applied them to understand the distribution of occurred 

hazardous events within the different classes of influencing factors. The Lorenz curves were 

constructed after the intersection of each causal factor map with each instability landform 

type map. Each point on the Lorenz curve (Fig. 7.2a) represents the cumulative area affected 

by a given hazardous event type versus the cumulative portion of the study area 

characterized by a certain class of a given potential causal factor. The line of perfect 

inequality (dotted line in Fig. 7.2a) represents the situation in which all the landforms of 

each type are clustered in a single factor class, whereas their homogeneous distribution in all 

the factor classes is represented by the line of perfect equality (the 1:1 solid line in Fig. 7.2a). 

The Gini coefficient (G) is graphically represented by the area between the line of 

perfect equality and the computed Lorenz curve, and it is expressed as the portion of the 

area between the line of perfect equality and the line of perfect inequality (Gini, 1914). This 

area can be approximated with trapezoids, and can be calculated using the following 

formula: 

)Y)(YX(X1G 1nn1n

N

1n

n −−
=

+−−= ∑  

where: 

n = factor class 

N = total number of factor classes 

Xn = cumulative portion of the study area characterized by the factor class k, with X0 = 0, XN = 1 

Yn = cumulative portion of instability landform area falling in the factor class k, with Y0 = 0, YN= 1 

 

For each instability landform type analysis, a factor is selected if the corresponding G 

value is higher than the average of the coefficient values of all of the considered factors, as 

shown in Fig. 7.2b. The mean value is a simple measurement of the central tendency of the 

data and accounts for the specific range of G values for each landform type. In this way, 

independently of the absolute G values, factors with G higher than the mean value will be 
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more discriminant than the others for the same instability process type occurrence in the 

study area. If only one factor has a G value higher than the mean, then the factor with the 

second highest G value must be selected as well (case b1 in Fig. 7.2). If more factors than the 

needed number have a G value above the mean, we propose a method of exclusion based 

on the correlation between these factors, in order to avoid that the vUCUs provide 

redundant information about the hazardous event distribution (Clerici et al., 2010). Thus a 

unique correlation matrix for all the possible pairs of potential factors is computed, using 

Pearson correlation when comparing two numerical variables (such as slope and drainage 

density), the Cramer Index when comparing two nominal variables (such as lithology and 

land use), and the η
2
 index when comparing a numerical variable to a nominal variable (such 

as lithology and amplitude of relief) (Pearson, 1896; Cramer, 1999). So, when too many 

causal factors have G values above the mean, from the pairs with the relatively highest 

correlation value, the factor with lowest G value must be discarded (case b2 in Fig. 7.2). 

The susceptibility evaluation for each instability landform type has to be preceded by a 

careful evaluation of the best factor classification method. 

 

 

7.4 Susceptibility index determination 

 

Once the causal factors are finally selected for each instability type, the conditional 

analysis allows obtaining a number of vUCUs from all of the possible selected factor 

combinations in the study area. The susceptibility index for each vUCU (used to draw up the 

susceptibility maps for each considered instability process type) is successively calculated 

using the Bayesian interpretation of probability. The importance of applying conditional 

probability models has been strongly emphasized in the Earth Sciences literature, especially 

for predicting hazardous events or mapping mineral potential (Bonham-Carter et al., 1989) 

and was then applied by several authors for landslide susceptibility evaluation (Chung and 

Fabbri, 1999; Irigaray et al., 1999; Clerici et al., 2006, 2010; Zêzere et al., 2004; Conoscenti et 

al., 2008b). The Bayes rule allows the probability of future hazardous events to be predicted 

once the area of each vUCU affected by past events is known. The Bayes rule specifies a 
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prior probability, which is then updated in light of new relevant data (called “likelihood” in 

Bayesian theory). In the study case, this means that the simple attribution of an a priori 

determined probability has to be updated considering information on past events. Thus, the 

susceptibility index corresponds to the conditional (or posterior) probability P(f|vUCU), 

which is the probability of the occurrence of a hazardous event type given a certain 

combination of selected causal factors (vUCU). If we consider as an example a vUCU defined 

by the spatial combination of the areas pertaining to two classes of two causal factors kg and 

jh (where k and j represent two causal factors, such as lithology and hillslope aspect, and g 

and h represent single classes of the factors), the susceptibility index is:  

P(f)
)jP(k

f)|jP(k
)jk|P(f

hg

hg

hg ⋅=
I
I

I                                                 (1) 

where: 

P(f) = prior probability of instability landform f = ratio of the study area presently characterized by 

instability landforms); 

)jP(k

1

hgI
 = proportionality factor = 1/ratio of the study area presently characterized by the 

concomitant presence of kg and jh, in which the denominator indicates the prior probability of the 

simultaneous presence of the two classes of the factors k and j (for example clayey outcrops, for 

lithology factor, and north-facing slopes, for aspect factor); 

I f)|jP(k hg  = conditional probability (likelihood or updated value of probability) of the 

simultaneous presence of the two classes of the factors k and j, given the instability landforms f = 

area of intersection between kg, jh and area affected by instability landforms f / total area presently 

characterized by instability landforms; 

and 

I )jk|P(f hg  = posterior probability of instability landforms f, which is proportional to the prior 

probability updated with the likelihood. 
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The susceptibility index (Sindex) for each i-th vUCU and each instability landform type can 

be computed more easily because it corresponds to the ratio between the instability 

landform area affecting vUCUi (AfvUCUi) and the area of vUCUi (AvUCUi):  

vUCUi

vUCUi
index

A

Af
S =                                                                (2) 

 

The Sindex values for each vUCU indicate the probability of the instability process type 

occurrence conditioned by the concomitant presence of the selected causal factor 

categories. Sindex of a vUCU may be expressed by a percentage, thus theoretically ranges 

between 0 and 100%, where 100% is the maximum probability of a hazardous event, given 

by the complete coverage of the vUCU by hazardous events. 

 

 

7.5 Validation procedure 

 
As validation procedure, the method by Chung and Fabbri (2003) is applied in the last 

step of the proposed susceptibility evaluation method. In fact, we considered  the 

importance of testing the reliability of the susceptibility evaluation method and validating 

the different output models. This method provides for a chronological partition of the 

instability landform database into a training subset and a test subset (Fig. 7.1), considering 

the second one as the unknown future target pattern of instability events. The procedure 

must be applied after the susceptibility maps for each instability process type are generated 

using all of the landforms surveyed in the study area. The main steps are 1) dividing the past 

events into two chronological sets, using the air-photo mosaic of a specific year within the 

inventory time span: the ones that occurred before that year will represent the training 

subset, while the ones that occurred after that year will be the test subset; 2) applying the 

susceptibility analysis already applied to the whole landform inventory (procedure to obtain 

the susceptibility maps), only to the training subset (thus obtaining a training susceptibility 

map for each considered instability process); and 3) comparing the distribution of the test 

subset landforms with the training susceptibility map resulting from step 2. 
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The comparison of past and future events is simulated by pretending to evaluate the 

susceptibility at the year of the air-photo mosaic, and considering that the instability events 

of the test subset have not yet developed. As suggested by Chung and Fabbri (2003), when it 

is not possible a temporal partition of the instability landform dataset, a random spatial 

subdivision is an acceptable alternative. By intersecting each training susceptibility map and 

the instability landforms of the test subset, it is possible to construct a prediction-rate curve, 

while the success-rate curve is elaborated by comparing each susceptibility map, obtained 

by considering the whole set of each type of instability landforms, with the distribution of all 

the landforms that have been used to obtain this map. 

Since we used vector layers, we constructed the curves by plotting the cumulative area 

of vUCUs ordered by decreasing Sindex values (x-axis) versus the cumulative area affected by 

instability processes within each vUCU (y-axis). 

As it is generally assumed that future hazardous events will occur in the same 

conditions that provoked the already occurred ones in the same area, the success-rate curve 

measures the model fitness, assuming that the model is correct. On the other hand the 

prediction-rate curve provides a measure of the predictive capability of the model. Ideally, 

the tangent of a prediction-rate curve should be monotonically decreasing, to indicate that 

the most hazardous classes predict most of the “future” events, and the trend regularly 

decreases with the gradual reduction of the susceptibility value. However, as described by 

Chung and Fabbri (2003), empirical prediction-rate curves usually do not satisfy this 

condition. A 1:1 trend of the prediction-rate curve indicates that the prediction map is 

randomly generated. Thus, the further the prediction-rate curve is from a straight line, the 

more the susceptibility estimation is significant. Moreover, the steeper the curve is in its first 

part, the greater the predictive power of the prediction map (Remondo et al., 2003). 
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7.6 Landslide susceptibility evaluation for the Upper Orcia Valley 

 

The landslide susceptibility method was applied in the Upper Orcia Valley, which is the 

easternmost portion of the Ombrone River basin. The area is located in the Tuscan Pre-

Apennines, close to Siena, north of Radicofani, and it covers about 120 km
2
, with an altitude 

ranging from about 350 to 1148 m a.s.l. (Mt. Cetona). The drainage pattern and catchment 

shape are structurally controlled by the regional morphostructure of the Radicofani Graben 

(Baldi et al., 1994; Carmignani et al., 1994), whose major axis is oriented NW-SE. The 

location of the Orcia River basin southern divide, which corresponds to the boundary 

between the Tevere River and Ombrone River basins, is controlled by the Monte Cetona 

horst and the Monte Amiata and Radicofani Quaternary volcanoes. 

 

 

7.6.1 Landslide inventory map 

 

The landslide inventory map (Fig. 7.3, here shown as a sketch map) has been surveyed 

at the scale of 1:10,000 through geomorphological field surveys and the interpretation of 

1988-1989 aerial photographs (“Volo Italia 1988-‘89”, performed by Compagnia Generale 

Ripreseaeree (C.G.R.) S.p.A. at a scale of about 1:70,000), and 1993 aerial photographs of 

Regione Toscana (performed by C.G.R. S.p.A., scale 1:30,000). This multi-temporal analysis 

also allowed the temporal division of the landslide database into two subsets, in order to 

perform the validation procedure. 

The Upper Orcia River valley slopes are widely affected by landslides, solifluction and 

creep. According to the landslide classification of Cruden and Varnes (1996), we considered 

the most frequent typologies of landslides, which are mud flows (MF), earth slumps (ES) and 

complex landslides (CL). Moreover, we used the term shallow mass movements (SM) to 

represent a fourth category, that consists of portions of hillslopes affected by solifluction 

and very small and frequent mud flows, whose extent is not mappable at the study scale 

(1:10,000). These landforms were mapped after field survey, and not clearly definable on 

aerial photos, thus they lack the temporal information. We discarded rock fall landslides and 

earth slides because they are too few and small to be significant for the statistical analysis of 
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susceptibility. It is noteworthy that all the detected and mapped landslides are recent and 

active and thus comparable to the time scales of all of the considered factors. 

 

 

Fig. 7.3 - Landslide inventory maps. For each landslide type, the deposit, the depletion zone and the 

50 m outer buffer area from the depletion zone are shown. Total area and mean extent of each 

landslide type are listed in the table. 

 

All landslide types were mapped and digitized in a GIS environment, as vector datasets. 

For the same type of landslide, we run the susceptibility evaluation model twice, using first 

the depletion zones and then an outer buffer from depletion zones. For the study case, we 

discarded the possibility of using a buffer size proportional to the landslide extent and 

considered as significant a fixed buffer of 50 m. In fact, proportional buffers would have 

caused the smallest ones to be not significant with respect to the resolution of the input 
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data and the largest ones to include too much spatial variability of the causal factor values. 

We removed the portion of the buffer areas passing over the divide line and dissolved the 

buffer polygons when intersecting each other. 

We used both depletion and buffer areas for all the landslide types, except for SM. In 

fact, for SM we considered the whole instable areas because detachment and accumulation 

zones are not detectable at the spatial and temporal scales of the study. Figure 7.3 shows 

the 50 m outer buffer areas from the depletion zones, the accumulation zones and the 

detachment zones for the considered landslide types, as well as the extent of the datasets 

used for susceptibility and validation analyses. 

MF are very frequent in the study area due to the widespread outcrops of clays (Fig. 

7.4a). As observed during the monitored time span, these flows can be reactivated several 

times in one year, especially during the winter half-year, although intensive agricultural 

activity has recently and frequently leveled these landforms (Della Seta et al., 2009; Ciccacci 

et al., 2008). Small but frequent MF have been observed on badlands slopes or where the 

bare clayey bedrock crops out. 

ES are frequent in the eastern part of the study area and sometimes show considerable 

extent (Fig. 7.4b). Although anthropogenic actions have tried to mitigate the effects of 

landslides, these processes are so strong that, just 24 or 48 hours after a rainstorm, 

significant modifications of the topographic surface appear on slopes. ES often evolve to 

earth flows towards the toe, giving rise to CL (Fig. 7.4c). 

SM produce typical lobes and irregular surfaces on hillslopes (Fig. 7.4d), even if 

showing gentle slope, especially those affected by deforestation. The same hillslopes are 

affected by small and frequent mud flows, often leveled by farmers. These landslides are 

difficult to be mapped because surface running waters rapidly reshape the surface. In these 

cases, we mapped the portions of slopes affected, on the whole, by SM. 

We decided to apply the susceptibility evaluation procedure separately for each 

landslide type since in the area the occurrence of different landslide types can produce very 

different effects on hillslopes: MF (Fig. 7.4a) generally cause long and narrow surface 

landslide bodies, ES (Fig. 7.4b) are deeper, involving large volumes of material and SM (Fig. 

7.4d) are not single gravitational landforms but rather instability events affecting entire 
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portions of hillslopes. As for CL, they generally provoke an elongation of the deposits at their 

toe (Fig. 7.4c) and were, thus, considered separately from ES for the susceptibility analysis. 

 

 

Fig. 7.4 - Examples of the mass movements widespread in the study area: a) mud flow; b) earth 

slump; c) complex landslide (earth slump evolving into a mud flow); d) shallow mass movements 

 

 

7.6.2 Potential causal factors 

 

We chose six potential causal factors, as suitable in accounting for the physiographic 

conditions of the study area, and mapped their spatial distributions, as shown in Fig. 7.5. The 

values of each variable have been classified, and, for each landslide type, the fraction of the 

total landslide area within each factor class was evidenced in histograms. For clarity of the 

outputs, we decided to work with vector data, so each raster layer, derived from a DTM with 

a resolution of 25 m, was converted to a vector dataset. The DTM was constructed from 

digitized point elevation and contour lines of the 1994 topographic maps at scale 1:10,000 of 
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Regione Toscana and from it we derived the terrain analysis parameters slope, aspect and 

amplitude of relief. 

 

Slope (S) 

The slope map (Fig. 7.5a) was derived from the 25 m cell-sized DTM, using the analysis 

tools in ArcGIS 3D-Analyst. The output raster was aggregated (nearest-neighbor re-sampling 

technique) to a 50 m cell-sized grid, to avoid the excessive fragmentation of the vUCUs . S 

values were grouped into six classes using the Jenks (natural breaks) method and the raster 

dataset was converted to a vector format. Classes from 1 to 4 are all widespread within the 

study area (16% to 26%), whereas classes 5 and 6 cover, respectively, 6.8% and 1.5 % of the 

area and are concentrated where the most coherent lithologies crop out. 

The distribution of depletion zones in S classes (Fig. 7.5a) seems to be gaussian, with 

some differences in the mode, depending on the landslide type: MF and SM have their mode 

in class 3, ES are more concentrated in class 4, and CL are very frequent in both classes 3 and 

4. The distribution of the outer buffer areas from depletion zones shows a similar 

distribution, but with smaller frequency differences among the S classes. 

 

Aspect (A) 

The aspect map (Fig. 7.5b) was derived using the terrain analysis tool in GIS 

environment. The 50 m cell-size raster output was classified into five groups of A (flat, N, S, 

E, W). The horizontal areas do not have significant extent, while the other classes are all well 

distributed in the study area. ES show a progressive increase in frequency, going clockwise 

from the N class to the W class. The frequency of CL also shows a maximum on west-facing 

slopes, even if they also occurred on northeast-facing slopes. This can be understood 

considering the structural influence related to the right slope of the Upper Orcia Valley. MF 

are preferentially concentrated on the north- and east-facing slopes (generally 

corresponding to dip slopes) and show the lowest frequency on west- and south-facing 

slope, such as SM. These distributions can be explained considering that the development of 

MF needs wetter conditions, even if the relationship between landslides and A is also 

conditioned by other factors. 
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Amplitude of relief (AR) 

The amplitude of relief map (Fig. 7.5c) represents the maximum difference in height 

per unit area and was derived by raster calculations from the DEM in ArcGIS. We decided to 

visualize the results using contour lines and to derive from them a polygonal vector dataset, 

which was classified using the natural breaks method. This parameter provides a measure of 

fluvial erosive action. It was verified that, other conditions being equal, the spatial 

distribution of this parameter can provide information about vertical displacements (e.g. 

local fault activity or regional uplift) (Della Seta et al., 2004). 

As shown in Fig. 7.5c, the highest AR values are clustered along the basin’s 

northeastern divide, where the western flank of the Castelluccio-Mt. Cetona horst is 

bounded by fault scarps. 

Although the lowest classes of this factor are widespread in the area, ES are 

concentrated in class 4. On the other hand, AR factor does not seem particularly significant 

in MF distribution, which is quite homogeneous in classes 2, 3 and 4. The distribution of CL 

indicates an intermediate behavior, while SM are more frequent in classes 3 and 4. 

Concerning the buffer area, ES, MF and CL have a frequency distribution similar to that of 

the depletion zone, but for the AR factor, the differences among the frequencies in the 

factor classes are less relevant. 

 

Drainage density (D) 

The drainage density map (Fig. 7.5d) was derived by calculating the cumulative length 

of stream segments of the drainage network digitized from 1:25,000 topographic maps 

falling within unit areas of 1 km
2
. As for the AR map, we decided to visualize the map using 

contour lines and to derive from them a polygonal vector dataset classified into equal 

intervals of D (2.5 km/km
2
). D is a parameter which indirectly accounts for the erodibility and 

permeability of outcropping rocks, the degree of tectonization, the vegetation cover, the 

slope gradient and the mean annual raifall in the drainage basin. More than 50% of the study 

area is characterized by high or very high D values (between 5 and 12.5 km/km
2
), due to the 

widespread outcrop of clays (73% of the total area). Moreover, the heads of several 
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catchments are affected by badlands, where runoff is absolutely dominant with respect to 

infiltration. 

Most of the ES fall in class 2 of this factor, highlighting that they are preferentially 

concentrated where infiltration is considerable. On the other hand, MF and SM are favored 

by higher values of D (maximum frequency in class 3), while CL do not seem to be much 

influenced by this factor. Considering the buffer area distribution with respect to D values, 

the frequency of MF in the highest D classes appears enhanced. 

 

Land use (LU) 

The land use map (Fig. 7.5e) was drawn up after the interpretation of 2004 digital 

orthophotos (Volo Siena 2004, at a scale of about 1:7,500) and field surveys. We used and 

simplified the Corine Land Cover legend (1st, 2nd and 3rd levels; EEA, 2007), as indicated in 

Tab. 7.1. For the susceptibility analysis, we excluded the wetlands that are are not as useful 

for the susceptibility evaluation due to homogeneously flat slopes. The density of landslides 

within each LU class shows a maximum frequency in the three more frequent classes (arable 

lands, untilled lands and hardwood natural forests). In particular, ES occur especially on 

forest-covered slopes, MF on arable lands, and SM and CL on natural grasslands. 

 

LAND USE UNITS CORINE LAND COVER UNITS 

1. ARTIFICIAL SURFACES 1 (artificial surfaces) 

2. AGRICULTURAL AREAS 

2.1 (arable land) 

2.3 (pastures) 

2.4 (heterogeneous agricultural areas) 

3. PERMANENT CROPS 2.2 (permanent crops) 

4. FOREST AND SEMI-NATURAL AREAS 
3.1.1 (broad-leaved forests) 

3.2.4 (transitional woodland scrub) 

5. REAFFORESTATION AREAS 3.1.2 (coniferous forests) 

6. SHRUBBY AND/OR HERBACEOUS 

VEGETATION AREAS 

3.2.1 (natural grassland) 

3.2.2 (moors and heathlands) 

3.3 (open spaces with little or no vegetation) 

Tab. 7.1 - Classification of Corine Land Cover units in land use classes. 
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Lithology (L) 

The lithological map (Fig. 7.5f) was drawn up by grouping the outcropping rocks 

according to their response to denudation processes, as summarized in Tab. 7.2. The 

geological setting of the area is well known, and the rock units reported in the existing 

geological map have been grouped into eight lithological units. 

Figure 7.5f also shows the frequency of each landslide type in each L class. This 

distribution is obviously influenced by the extent of outcrops in the study area (clayey 

deposits cover about 73% of the Upper Orcia river basin, while volcanic rocks only crop out 

on the Radicofani neck, which is statistically meaningless for the study area). Nevertheless, 

we included this factor in the susceptility assessment procedure, since the selection method 

is conceived precisely in order to quantify the capability of the factors to discriminate the 

spatial distribution of the landslides. Examining the density of the depletion zones in the 

different L classes, it can be stated that MF and SM preferentially develop on clay and sandy 

clay, while ES are homogeneously distributed over continental deposits, conglomerate, clay, 

sandy clay and flysch deposits, but always on steep slopes. CL mostly developed on clay and 

sandy clay and on dolomitic limestone. Similar frequency of buffer areas and depletion zones 

was observed over the classes of this causal factor. 
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LITHOLOGICAL UNITS 
GEOLOGICAL UNITS 

(from Carta Geologica d’Italia, at the scale of 1:100,000) 

Pebbly, sandy and clayey sandy alluvial deposits 

Slope talus QUATERNARY CONTINENTAL 

DEPOSIT 
Eluvium/colluvium – red shales – black shales 

VOLCANIC ROCK Trachybasalt and olivinic andesite 

Polygenic puddingstone and sandstone 
CONGLOMERATE 

Polygenic puddingstone locally containing Cirripeds and Oysters 

Sand and clayey sand 
SAND 

Sand and clayey sand with shells, pudding lenses and peat 

Clay and sandy clay with pudding lenses and scattered pebbles 
CLAY AND SANDY CLAY 

Interbeds of fossiliferous clay and sandy clay 

LIMESTONES Organogenic calcarenites  

Sandstone and siltstone 
FLYSCH 

Clay, silty clay, marly clay with calcareous interbeds 

Thin layered jasper variously colored and often weathered 

White and gray layered limestone with chert nodules  

Limestone and dolomitic limestone – marls and calcareous marls 

intercalated to clay layers 
DOLOMITIC LIMESTONE 

Nodular reddish limestone and marly limestone – dolomitic 

limestone 

Tab. 2 – Classification of Geological Units in Lithological classes. 
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Fig. 7.5 – Thematic maps showing the spatial distribution of potential causal factors for landslides: a) 

Slope (S); b) Aspect (A); c) Amplitude of Relief (AR); d) Drainage density (D); e) Land Use (LU); f) 

Lithology (L). The values of each variable were classified and, for each landslide type, the fraction of 

the total landslide area within each factor class is reported in the histograms (Vergari et al, 2011). 
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7.6.3 Factor selection 

 

For the study case, we noted that a minimum of 2 and a maximum of 4 slope causal 

factors had to be selected for the susceptibility analysis. In fact, since the extent of the study 

area is of about 120 km
2
, we calculated that the intersection of more than 4 factors (each 

one reclassified in no less than 5 categories) resulted in vUCUs with an extent comparable to 

the factor map resolution and thus not statistically significant (Clerici et al., 2010). 

Figure 7.6 shows the Lorenz curves for the considered landslides, while Fig. 7.7 shows 

the histograms of the obtained G values for each landslide type, the matrix of the degree of 

association/correlation between the pairs of factors and the tables indicating the factors 

finally selected for each landslide type. Only a few pairs of factors have relatively higher 

absolute values of correlation: in particular, S and AR (Pearson correlation of 0.48), AR and D 

(Pearson correlation of -0.36), and D and L (η2 index value of 0.29). 

The most influential factor for MF is A (G value of 0.395, Fig. 7.6) using depletion zones, 

because they are greatly clustered on the north and east-facing slopes, as shown in Fig. 7.5b. 

Land use was always discarded, since MF are widespread in arable lands, semi-natural areas 

and shrubby and herbaceous vegetation lands, which are also the three most frequent 

classes of this factor. Moreover, by using the depletion zones, the S, AR, A, and L factors 

were selected, while, when using the MF buffer areas, only factors D and A were finally 

selected, and the other factors related to the topography were discarded. This discrepancy 

was also observed for other landslide types. In order to discuss this apparent contradiction 

(same study area, same type of landslide, different influencing factors), we noted that the 

failure occurrence generally causes strong topographic modifications in correspondence of 

the depletion zones with respect to the general slope morphology. As a consequence, the 

topographic parameters become more distinctive for the depletion zones, and generally less 

effective in estimating the probability of a landslide type event when we consider buffer 

areas. Moreover, in the same example, L was discarded and D was selected, which makes 

sense, considering that the variability of D reflects changes in lithological features. So the 

indirect influence of lithology was included even if L was discarded. 
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Fig. 7.6 – Lorenz curves for each causal factor and each landslide type. Different curves are computed 

for depletion zones (or the whole area affected by shallow mass movements) and for the 50 m outer 

buffer areas (Vergari et al., 2011). 
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Fig. 7.7 - Histograms of the Gini coefficient value distribution for each landslide type obtained after 

the spatial intersection between each causal factor map and each landslide type map. The matrix of 

association/correlation degree between pairs of factors and the tables indicating the factors finally 

selected for each landslide type are shown. 
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In the case of ES, the potential influencing factors generally show higher G values 

(0.414 to 0.637 using depletion zones and 0.343 to 0.544 for the buffer areas). This suggests 

that in the study area, ES generally clustered in specific factor classes because, with respect 

to MF or SM, they are less closely linked to the clayey outcrops. Moreover, they are more 

concentrated where high values of AR occur. When considering ES buffer areas, the S factor 

is discarded while LU becomes very important because the outer buffer areas from the 

depletion zones are clustered within forests (in most cases, on slopes reforested to mitigate 

the effects of denudation). Together with L, also A was always discarded for this landslide 

type. This suggests that ES in this area are poorly linked to this terrain parameter: in fact, 

landslide survey of the area confirm that ES are not strictly associated with north-facing 

slopes (wet soil conditions ), as mud flows do. Instead, they generally occur on coherent 

litologies, or where weaker lithologies have sandy, gravel, conglomeratic or volcanic 

caprocks at the hillslope summit which help in preserving high values of AR.  

For CL susceptibility assessment, S, AR, L and LU were selected as causal factors when 

using depletion zones, while AR, A and L were selected when using buffer areas. The 

recurrent exclusion of D for CL is reasonable, if we consider that this landslide type usually 

occurs in variable conditions of permeability, lithology and rock fracturing. 

The most influential factors for the SM distribution are D, AR and A, similarly to those 

obtained for MF, except for the S factor, which does not strongly influence the presence of 

this type of slope instability in the study area. This is consistent with the abundance of small 

mud flows within the SM type. 

In the Upper Orcia Valley case, we did not need to exclude preselected factor using the 

correlation matrix because no more than 4 factors ever showed G values above the mean 

(case b2 in Fig. 7.2). 

To sum up, using depletion zones for the bivariate analysis generally resulted in higher 

G values than using buffer areas. Moreover, the analysis performed using the buffer areas 

always led to the exclusion of the S factor. These facts can depend on the widespread 

levelling practices for agricultural purposes, which have increased starting from the 

seventies (thus before the occurrence of the majority of the mapped landslides). These 

activities tend to rapidly smooth the natural roughness of the hillslope surface, thus causing 

the S factor to become less variable in space and not so discriminant as a causal factor. 
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Conversely, landslides occurring on these surfaces generally cause S discontinuities in 

correspondence of the depletion zones. Moreover, D parameter can increase just after a 

landslide event, and then progressively decrease with time. On the other hand, L, A and AR 

values should not significantly change after a landslide event (if not very large). 

 

 

7.6.4 Susceptibility assessment 

 

From the intersection of the selected factor maps and the different landslide type 

inventories, seven vUCU maps have been drawn up: four derived from the factors selected 

using depletion zones, and the other three from the factors selected using buffer areas, 

excluding the case of SM. The number and mean extent of the vUCUs are summarized in 

Tab. 7.3. The further overlay of each vUCU map with the corresponding landslide map led to 

the processing of seven susceptibility maps, two for each landslide type (one using depletion 

zones, the other using buffer areas, except for SM). These maps are based on the conditional 

probability of each vUCU to be affected by the occurrence of a landslide type event, as 

shown in Fig. 7.8. 

For each landslide type, the susceptibility index (Sindex) corresponds to the conditional 

probability of future landslide event, given the selected number of factors. Sindex values were 

classified in a suitable number of categories and we decided to use the same color scale for 

the seven susceptibility maps, in order to compare the obtained zonation maps and examine 

the relative distribution of susceptibility index values. 
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Landslide 

type 

Slope instability 

landform 

Combined factors  

(defining vUCUs) 

Number of 

vUCUs 

Mean extent  

of the vUCUs (m
2
) 

depletion zone S, AR, L, LU 568 207356.54 CL 

buffer AR, A, L 125 26232227.19 

depletion zone S, AR, A, L 567 207722.25 MF 

buffer D, A 23 5120805.00 

depletion zone S, D, AR 126 934750.12 ES 

buffer D, AR, LU 112 1051593.89 

SM portion of hillslope 

affected by SM 
D, AR, A 93 1266435.65 

Tab. 3 - Number and mean extent of the vUCUs of each susceptibility zonation described in the text. 

 

 

Landslide susceptibility maps 

The obtained susceptibility maps (Fig. 7.8) show the spatial probability of future 

landslide events for each landslide type in the study area. Most of the maps indirectly 

contain information on the discarded causal factors, since the performed factor selection 

was efficient in detecting the most discriminant factors. This is the case of the ES 

susceptibility map obtained using depletion zones that shows the maximum susceptibility in 

correspondence of outcrops of coherent lithologies on the eastern ridge of Castelluccio-Mt. 

Cetona ridge, even if factor L was discarded. In fact, the higher Sindex values have been 

caused by a combination of D, AR and S values clearly related to the outcrop of the most 

coherent lithologies. Moreover D, AR and S contained an intrinsic set of additional 

information that allowed estimating high probability values: for example, D is strictly linked 

not only to the permeability of rocks but also to the presence of vegetation cover and to the 

spatial distribution of the mean annual rainfall. As well as for ES, also the MF susceptibility 

map derived from buffer areas, even if having discarded the L factor, fits well the lithological 

outcrop distribution: the highest Sindex values concentrate where clay or clayey sand crop 

out, and particularly the town of Contignano results quite seriously prone to this type of 

landslide, as well as to SM. Moreover, among the clayey slopes, the northeast-facing ones 

are the most susceptible to MF, since they are also dip slopes. 

However, the range of Sindex values is very different for the landslides type maps, since 

the conditional probability values are sensitive to the number and to the extent of the map 
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units: in fact, the density of past landslides decreases with the increase of the vUCU area. In 

the case study, the MF susceptibility maps (Fig. 7.8) are characterized by low Sindex values (< 

10%), which can reflect the low lithological diversity of slopes in the study area with a clear 

prevalence of clay compared with the other lithologies, so that MF are likely to occur on 

most of the slopes. But it must be outlined that the MF area ratio within the vUCUs, and 

consequently the Sindex values, were underestimated since in the study area MF are frequent 

and rapidly levelled by the intense agricultural activity, thus many of them were not mapped 

or, especially the smallest ones (not mappable at the scale 1:10,000), were placed in the SM 

database. Nonetheless, the maps well evidence the areas relatively most susceptible to 

future landslides. 

The CL susceptibility map obtained using depletion zones shows not very high Sindex 

values for most of the area, apart from some small regions with both clayey and quite steep 

slopes, where the probability reaches the 33-45% Sindex class, located close to the western 

divide and in the surroundings of Mt. Calcinaio. Multivariate analysis showed that on these 

slopes, not only reforestation failed to curb slope instability processes, but the re-planted 

trees represented an overload that favored landsliding. In fact, even if replanting trees has 

decreased the mud flows occurrence and runoff intensity, on the other hand they 

represented an overload on the hillslopes that sometimes favored deeper landslides, as ES 

and CL. In the case of this type of landslide, the map derived from buffer areas provides less 

information about the most susceptible areas because the Sindex values are in a very much 

narrower range (between 0 and 11%). 

The SM susceptibility map confirms that A is the most influential factor for this type of 

landslide. In particular, SM occur mostly on the wetter north-facing slopes, then 

preferentially where AR and D show medium to high values. The susceptibility map for this 

type of slope instability process clearly show the wider extent of the higer Sindex values, 

underlining that these shallow mass movements represent a serious threat for the stability 

of the arable and grazing lands in Upper Orcia Valley. 
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Fig. 7.8 – Susceptibility maps of the Upper Orcia Valley obtained through the conditional analysis for 

each landslide type. For each landslide type, the susceptibility index (Sindex) values correspond to the 

conditional probability of the landslide event, given the selected number of causal factors. Sindex 

values are classified in 11 intervals 
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7.6.5. Validation 

 

Since the landslide inventory was created using two different sets of aerial photos 

(years 1988-1989 and 1994), a temporal subdivision of the dataset was made (as indicated in 

the table of Fig. 7.3), with the training subset containing landslides occurred before 1988 and 

the test subset containing landslides occurred after the same year, thus simulating an 

analysis performed in 1988. Validation was not performed for the SM because temporal 

information was not available (they were mapped after field survey). Neither a spatial 

partition was possible for SM, because this type of landslide includes portions of hillslopes 

affected by small and frequent mud flows, the latter periodically leveled by farmers and 

difficult to be mapped. So while the extent of these areas is considerable, their number is 

not high enough for a spatial partition. 

The validation outlined that success-rate curves obtained from the analysis of buffer 

areas generally show lower initial steepness compared with the curves generated using the 

depletion zones (Fig. 7.9). This can be explained considering the more specific terrain 

conditions of the depletion zones, due to the strong modification generally determined by 

landslide occurrence. Moreover, the buffer areas are not always more representative of the 

environmental conditions preceding the landslides. In fact, some gravitational movements 

often occur in areas where other landslides already took place and are thus characterized by 

post-event terrain conditions. This is, for example, the case of new crowns developed 

upwards from older landslide scarps. 

The best success-rate curve for MF was the one generated using the depletion zones 

(Fig. 7.9a). Even if the corresponding prediction-rate curve is not monotonically decreasing, 

its first part is considerably steep, indicating that the most hazardous 6% of the predicted 

area estimates the distribution of 29% of the MF that occurred within the following 20 years 

(after 1988). On the other hand, the prediction-rate curve generated using the buffer areas 

(Fig. 7.9b) indicates that the “future” landslides are well estimated within the classes 0-25% 

and 60-100%, so that the classes included in these intervals are effective prediction classes. 

Both the success-rate curves for ES are very well shaped (their steepness smoothly 

decreases monotonically; Fig. 7.9c,d), while the corresponding prediction-rate curves are not 

so satisfying because the curve generated considering depletion zones shows a 
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discontinuous trend and that generated using buffer areas is not very far from the 1:1 line, 

indicating a certain degree of randomness in the prediction results. This finding can be 

explained by considering that the test subset for this type of landslide is not very large, thus 

producing some randomness in the probability estimation of future events occurring in the 

areas predicted as hazardous using the training subset. In this case, the best model should 

be chosen only based on the best success-rate curve, which suggests to select the map 

prepared using the depletion zones (steeper slope of the success-rate curve in the initial 

part). 

The validation curves for the CL susceptibility evaluation show that the use of the 

depletion zone area is somewhat better than that of the buffer areas because the initial 

steepness of the prediction-rate curve is higher (Fig. 7.9e,f). 
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Fig. 7.9 – Prediction- and success-rate curves for mud flows, earth slumps and complex landslides, 

generated using the procedure proposed by Chung and Fabbri (2003) adapted for vector datasets. 

 

 

7.7 Discussion 

 

Our contribution is focused on an unbiased causal factor selection procedure when 

performing conditional analysis in assessing landslide susceptibility. The obtained results 
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confirm that the unbiased selection of controlling factors is a crucial phase for landslide 

susceptibility evaluation. However, in the performance of the landslide susceptibility method 

here presented, the following tricky problems occurred, some of which may be ascribed to 

our method, others affecting all statistical approaches. 

First of all, both the heuristic and the statistical choice of causal factors require an a 

priori knowledge of the main causes of landsliding, as the potential factors must be not only 

spatially correlated with the distribution of landslides but also in cause/effect relationships 

with them. This can lead, sometimes, to the exclusion of variables spatially well-correlated 

with landslide distribution but representing a landslide effect more than a cause for 

landslides. For the same reason, factors that may vary in response to environmental changes 

or economical needs, such as land cover, should be used only if significant modification have 

not been observed during the time interval considered for  the landslide inventory. 

Once the potential factors have been correctly identified, a further constraint of a 

successful landslide susceptibility evaluation lies on their suitability for each study case: in 

fact, each causal factor can be more or less discriminant in explaining the distribution of the 

same landslide type events in different areas. Our procedure for factor selection provides a 

useful tool to filter the right set of causal factors really causing landslides in each study area. 

To give an example, some factors, such as lithology and slope, are the most frequently 

considered in the international literature on landslide susceptibility evaluation (Crozier 1984; 

Guzzetti et al., 1999; Irigaray et al. 1999; Fernandez et al. 2003; Ayalew and Yamagishi 2005). 

But in our study case, we demonstrated that they are not really effective in explaining the 

distribution of the occurred mud flows. In fact, clayey outcrop is the predominant lithology 

in the area (75%). This implies that MF buffer area distribution is not well explained by the L 

factor. On the other hand, D was selected (Fig, 7.5d and 7.6), since it indirectly accounts as 

well for geological (lithology, fracturing, permeability, etc.) and morphological (slope, shape 

and length of slopes, etc.) conditions characterizing the area (Strahler, 1957), thus it better 

explains the present MF distribution than L. At the same time, S was discarded when 

considering MF buffer areas. This result does not mean that S is out of the most important 

factors generally triggering landslides, but that in the study case MF are uniformly 

distributed on different classes of S (Fig. 7.6) as confirmed by field surveys. 
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To sum up, the applied susceptibility evaluation procedure is useful in filtering, among 

the potential factors, the ones really discriminant in inducing future landslides for a given 

study area, especially when this is poorly known. At the same time, it allows limiting the 

number of factors to be used in conditional analysis, thus avoiding generating too small and 

diverse map units. In fact the smaller are the map units, the less the landslide probability will 

be statistically significant, for the same landslide inventory. Moreover, the factor selection 

method, if combined with the study of correlation between independent variables, does not 

bring to the loss of information, since the discarded factors are often indirectly accounted 

for by other variables, as demonstrated by the exclusion of L in ES susceptibility analysis. 

Some sources of uncertainty were detected in the model performance, but most of 

them are common to all the landslide susceptibility statistical models. First of all, the quality 

of the analysis strongly depends on the quality and resolution of the input data (landslide 

inventory and causal factor maps) and of their representation in GIS environment. Landslide 

identification and mapping is an error prone procedure, due to the scale-dependent 

minimum mappable unit, to the lack of historical data and to the degree of agricultural 

exploitation of slopes. In the study case, for example, the quality of mud flow inventory 

affected the landslide susceptibility assessment: in fact the area affected by mud flows in the 

map units, and consequently the calculated susceptibility index, were surely underestimated 

since in the study area MF are frequently and rapidly levelled for the intense agricultural 

activity. In cases like this, a possible solution for improving the results could be the 

introduction of a wider set of potential causal factors when applying our selection 

procedure, in order to search for factors with higher G values. Moreover, future outcomes 

could entail the use of some statistical procedure to associate an error to prediction results. 

Another tricky step for a successful susceptibility evaluation is the choice of the 

features to be used to represent the occurred landslides in the inventory. The performed 

validation suggested some interesting remarks about the advisability of using either 

depletion zones or outer buffer areas from depletion zones as representative of the 

landslides. More precisely, the results underlined that the choice is delicate since, on one 

hand, buffer zones are more representative of the conditions that preceded the landslide 

occurrence, but, on the other hand, some gravitational movements can reactivate some 

previously occurred ones. From this perspective, the obtained validation curves did not allow 
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performing a unique choice for the study area. To this end, a possible development could 

involve the detection (and separate analysis) of the re-activated landslides. 

 

 

7.8 Conclusion 

 

The landslide susceptibility of the Upper Orcia Valley was evaluated through an 

unbiased factor selection procedure, followed by conditional analysis. The assessment was 

performed for the most frequent landslide types and considering separately the landslides 

depletion zones and the outer buffers from depletion zones. Different causal factors were 

proved to have influence on each landslide type. Conditional analysis allowed the zonation 

of conditional probability of future landslide occurrence (Sindex). A validation procedure was 

finally applied, in which a temporal subdivision of landslide inventory was performed. The 

results confirmed the efficiency of the selection procedure, which allowed using few causal 

factors without losing information on the indirect influence of the discarded ones. Even so, 

the applied susceptibility assessment methodology is affected by some sources of 

uncertainty, in particular those generally associated with all the statistical approaches, for 

which the quality of the result is strongly sensitive to quality of the input data. 

In conclusion, the conditional analysis, preceded by a bivariate statistical analysis for 

causal factor selection, provided satisfactory results for the unbiased prediction of landslide 

susceptibility for the Upper Orcia Valley. The method is conceptually simple but, at the same 

time, effective in evaluating the conditional probability of hazardous events given a certain 

combination of causal factors. Even if the knowledge of the study area in an important 

precondition for successful susceptibility analysis, the proposed factor selection procedure 

proved to be a useful tool for the unbiased detection of the factors really discriminant for 

landslides in the study area, and can be very helpful when analyzing new areas. This 

procedure allowed us to overcome one of the limits of the conditional analysis, which 

consists in the lack of statistical significance of too small vUCUs generated by the 

intersection of a large number of subjectively defined influencing factors. The factor 

selection procedure here proposed differs from others already suggested in the literature, 



PART II - DENUDATION MODELING AND WATER EROSION HAZARD ASSESSMENT                     Chapter 7 

 

 187

which provide for selecting the most significant factors after having computed all of their 

possible combinations and having tested the results. Our factor selection method makes the 

susceptibility analysis less cumbersome and simplifies the entire procedure, since it provides 

for using simple statistical indices. Moreover the use of vector datasets allow to create 

vector easy-to-read susceptibility maps, in which the fragmentation generally characterizing 

raster outputs is avoided. These characteristics make this susceptibility method easy to be 

understood and each resulting map easy to be read, thus suitable for policy makers in 

planning land management strategies. 
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8.  WATER EROSION HAZARD OF UPPER ORCIA VALLEY 

 

In this section, a water erosion hazard evaluation method is proposed, as a result of 

the application and the widening of the monitoring and estimation techniques applied in the 

study areas, described in the previous sections. 

In fact, the multivariate statistical approach, based on conditional analysis, has been 

applied to evaluate water erosion hazard of Upper Orcia Valley: the susceptibility evaluation 

method described in § 7 (Vergari et al., 2011) was combined with the Tu denudation index 

method, validated in § 6 by means of direct monitoring data, in order to assess erosion 

hazard, in terms of both spatial and temporal probability of the occurrence of water erosion 

effects (in particular, the occurrence of calanchi badland erosion). 

Similar attempts to identify areas prone to soil erosion were carried out in previous 

works (Märker et al., 1999; Conoscenti et al., 2008a, Conforti et al., 2011, Agkun and Turk, 

2011), but they were aimed at assessing soil erosion susceptibility, since they evaluated the 

spatial probability of erosion landforms occurring in the future, not considering the related 

erosion intensity. 

 

 

8.1  Material and methods 

 

In this work, the susceptibility evaluation method described in § 7 has been applied to 

the denudation landforms due to runoff, calanchi badland areas, in order to evaluate the 

water erosion spatial proneness of the study area. The so evaluated spatial prediction was 

associated to a temporal prediction, using the Tu grid analysis described in § 6, which 

estimates erosion rates well, as verified by erosion direct measurements in the study area, 

thus, obtaining the hazard assessment. In particular, knowing the drainage density of areas 

presently affected by calanchi badlands (Fig. 8.1), the computed estimated erosion rate was 

associated to areas identified as prone to the occurrence of badland erosion. 
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As potential erosion causal factors, 8 parameters have been considered (Fig. 8.2): 

altimetry, amplitude of relief, aspect, slope curvature, drainage density, lithology, slope 

gradient and stream power index. A DEM with a resolution of 25 m was used to derive the 

topographic factors. The output raster layers were then aggregated in to 50m cell-sized 

grids, in order to avoid the excessive vUCU fragmentation and to reconstruct the average 

slope conditions, as the terrain conditions preceding the instability events should be 

considered for a well-structured susceptibility analysis (see § 7.1). 

 

 

Fig. 8.1 – Calanchi badlands areas overlaid to the drainage network map of Upper Orcia Valley. 

 

Amplitude of relief (Fig. 8.2b), slope aspect (Fig. 8.2d), drainage density (Fig. 8.2e), 

lithology (Fig. 8.2f) and slope (Fig. 8.2g) maps were also used to evaluate Upper Orcia Valley 

landslide susceptibility (see § 7.6 for details). 

Altimetry (Fig. 8.2a) was considered in order to investigate the possible concentration 

of badland areas in particular elevation intervals. 
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Slope curvature was investigated with respect to its effect on badland triggering and 

development (Fig. 8.2c). The term curvature is theoretically defined as the rate of change of 

slope gradient or aspect, usually in a particular direction (Wilson and Gallant 2000). The 

curvature of the surface is computed on a cell-by-cell basis, as fitted through that cell and its 

eight surrounding neighbours. Curvature is the second derivative of the surface or the slope 

of the slope. Positive values of  curvatures define convexity, negative values of curvatures 

characterize concavity of slope curvature. Values of curvatures around zero indicate that the 

surface is flat. 

The stream power index (SPI) (Fig. 8.2h) is a measure of the erosive power of water 

overflow based on the assumption that discharge is proportional to the specific catchment 

area (As) (Moore et al. 1991). The map was carried out by applying the following formula to 

each cell, using Raster Calculator in ArcGIS: 

SPI = ln [AS x tan(S)] 

where As is the specific catchment area in meters and S is the slope gradient in 

degrees. For cells in which the slope is 0%, NoData was substituted with 0 SPI value in the 

output raster. 

The index SPI is one of the main factors controlling slope erosion processes, since 

erosive power of running water directly influences slope toe erosion and river incision 

(Nefeslioglu et al. 2008). It is also indicative of the potential energy available to entrain 

sediment, so that areas with high stream power indices have a great potential for erosion 

(Kakembo et al. 2009) 

 

Each factor thematic map were converted in vector layers and then overlaid to the 

mapped badland areas, in order to investigate the distribution of calanchi areas within the 

different classes of the potential causal factor and identify the factors with no homogeneous 

distribution. To this end, Lorenz curves and Gini coefficient were computed. 

Intersecting the selected causal factors, vUCUs have been identified and delimited, and 

for vUCU the conditional probability of badland erosion occurrence given the selected 

factors was computed using formula described in § 7.4. 
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Fig. 8.2 – Potential causal factors considered in the water erosion hazard evaluation of Upper Orcia 

Valley: a) altimetry, b) amplitude of relief, c) slope curvature, d) aspect, e) drainage density, f) 

lithology, g) slope, h) stream power index. 
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8.2 Results 

 

For the study area, the drainage density value for the only calanchi badland areas is 

very high (16,62 km/km
2
), and corresponds to an average erosion rate higher than 2 cm/a. 

This value agree with magnitude order of erosion rates measured at calanchi badlands sites 

of central Italy (§ 2, Della Seta et al., 2009, Vergari et al., submitted a). 

The estimated calanchi badland denudation intensity represent the present erosion 

rate of surveyed badland areas in the Upper Orcia Valley (Fig. 8.1). For this reason, in the 

water erosion susceptibility evaluation the inventory map was not only a spatial 

representation of badland erosion, but also an estimation of the denudation intensity, thus 

used to evaluate not the water erosion susceptibility, but the water erosion hazard. 

 

The most influential causal factors in determining water erosion effects were selected 

applying the factor selection procedure described in § 7.3. Fig. 8.3 shows the Lorenz curves 

for the considered 8 potential cusal factors, computed after the intersection of the badland 

inventory map with each of factor maps. 
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Fig. 8.3 – Lorenz curves for the considered potential causal factors. The Gini coefficient values are 

shown for each factor. 
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Fig. 8.4 – Histogram of Gini coefficient value distribution of calanchi badland areas in each potential 

causal factor map. 

 

Altimetry, drainage density, amplitude of relief and slope are the selected factors. 

The causal factor most important in discriminating areas affected by badland erosion is 

drainage density, as high values of D identify areas where overland flow is favoured and 

runoff increase. Altimetry is the second most important factor, since most of calanchi areas 

are widespread up to 700 m a.s.l.. This is also the maximum elevation of clayey outcrops in 

the study area, while at higher altimetry values other more resistant lithologies are found 

(Fig. 8.2 a and f). This means that even if lithology was discarded, the information provided 

by the lithology map is still beheld in the model. As for slope and amplitude of relief, 

calanchi badlands are concentrated in medium slope gradient values (15 – 40%) and in 100 – 

200 km/km
2
 amplitude of relief interval. Higher amplitude of relief values characterize, in 

fact, the eastern part of the study area, where calcareous outcrops prevail. 
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By intersecting the selected causal factors, the water erosion hazard map was carried 

out (Fig. 8.5). In the map, the hazard values represent the conditional probability of the 

occurrence of calanchi badland erosion with a water erosion rate higher than 2 cm/a. Hazard 

values were classified in 5 hazard classes of increasing hazard level. Highest hazard values 

are located in the western sector of the study area, where clayey outcrops are characterized 

by the very high slope gradient. Many of these areas are totally presently affected by 

badlands (very high hazard class), but in this sector a wider land is very prone to water 

erosion, and the development of badland is frequently restrained by the agricultural land 

remodelling practices. The performed hazard analysis outlines that in more natural 

conditions, in these areas, badlands could rapidly develop, together with the estimated very 

high water erosion entity. 

 

Fig. 8.5 – Water erosion hazard map of Upper Orcia Valley.
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DISCUSSION AND CONCLUSIONS 

 

This Ph.D. research project have allowed to define an integrated methodology for 

denudation intensity estimation and prevision, in areas greatly affected by badlands. The 

method is based on both quantitative geomorphic analysis and multivariate statistical 

investigations, in order to better define the relationships between the main denudation 

effects and the potential causal factors favoring geomorphological instability in badlands 

areas. A statically based method for water erosion hazard assessment has been proposed 

(Fig. 9.1), conceived as a spatially distributed prevision of calanchi badlands, and associated 

erosion rate, occurrence. Direct measures of erosion intensity in badlands were used to 

validate the results of water erosion estimates and previsions. 

The proposed geomorphological hazard assessment procedure is appropriate to 

perform previsions of different types of instability process, such as landsliding, water erosion 

and flooding. In fact, remaining valid the spatial prevision procedure (susceptibility 

evaluation method described in §7), when evaluating geomorphological hazard due to 

processes different from water erosion, the temporal prediction is feasible statically 

estimating return periods of extreme instability events of a certain intensity, based on a 

temporal dataset of past events. Temporal datasets are generally more easily available for 

floods, while landslide hazard zoning may not be practical, since a sufficiently accurate 

quantitative assessment of landslide frequency is often not possible. In these cases a 

qualitative system of describing landslide hazard classes may be adopted (Fell et al., 2008). 
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Fig. 9.1 – Concept map of the proposed water erosion hazard evaluation method. 

 

A synthetic description of the main results of this thesis, together with a related 

discussion, are here reported. 

Tu denudation index (Ciccacci et al., 1981,1986) was confirmed to be a good estimator 

of the suspended sediment yield (SSY) for catchments characterized by the prevalence of 

sedimentary and weakly coherent outcropping litologies. The improvement of the regression 

relations contributed to better estimate sedimentary output for catchment widely affected 

by badland areas. In these basins, in fact, SSY is strongly correlated to the areal ratio affected 

by badlands to the total catchment area. Thus, using the not-projected drainage density 

parameter (D3d), instead of the traditional D parameter, even if not improving the SSY 

estimation for large basins, was considered to better reflect the conditions predisposing 

erosions than D for smaller catchments, where large calanchi badlands and related high 

slope gradients are present. The dominant role of drainage density in estimating erosion rate 

for badland areas, parameter that contribute to identify calanchi on topographic maps 

together with contour lines crenulation (Farabegoli and Agostini, 2000), was confirmed by 

the attempt of zoning the estimated erosion rates using the Tu Grid Analysis. This attempt 

proved to be very efficient in estimating the erosion rate due to runoff within badland areas, 

as confirmed by the comparison between the estimated and the measured erosion rates. 

This result seems to increase the prospective of using Tu grid analysis when prolonged 
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denudation monitoring is not possible. Moreover, even where punctual erosion rates are 

measured by pin monitoring, the estimated erosion rate map represents a validated 

continuous representation of water erosion rate for larger areas. 

Geomorphological susceptibility, assessed by the use of conditional analysis, and 

preceded by the proposed new procedure for causal factor selection, provided satisfactory 

results for the unbiased prediction of landslide and water erosion susceptibility for the 

Upper Orcia Valley. The method is conceptually simple but, at the same time, effective in 

evaluating the conditional probability of hazardous events given a certain combination of 

causal factors. Even if the knowledge of the study area in an important precondition for 

successful susceptibility analysis, the proposed factor selection procedure has proved to be a 

useful tool for the unbiased detection of the factors really discriminant for instability 

landforms in the study area, and can be very helpful when analyzing new areas. This 

procedure has allowed to overcome one of the limits of the conditional analysis, which 

consists in the lack of statistical significance of too small vUCUs generated by the 

intersection of a large number of subjectively defined influencing factors. The factor 

selection procedure here proposed differs from others already suggested in the literature, 

which provide for selecting the most significant factors after having computed all of their 

possible combinations and having tested the results. Our factor selection method makes the 

susceptibility analysis less cumbersome, since it provides for using simple statistical indices. 

Moreover the use of vector datasets allow to create vector easy-to-read susceptibility maps, 

in which the fragmentation generally characterizing raster outputs is avoided. These 

characteristics make this susceptibility method easy to be understood and each resulting 

map easy to be read, thus suitable for policy makers in planning land management 

strategies. 

The association of the estimated erosion rate for calanchi badland areas to the 

surveyed landforms allowed to use the susceptibility method to evaluate the water erosion 

hazard, since the temporal information about the erosion processes was related to the 

spatial data. This procedure is proposed to be applicable when direct erosion rate measures 

are not available. 
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Direct measurements of erosion intensiy were primarily used to validate the water 

erosion estimates and previsions, being these the main scope of this research. Even though, 

interesting observations have been concluded on the applicability of various methods of 

erosion monitoring (Tab. 9.1). 

The size of the study area, the time available, and the quality of the data required are 

perhaps the most critical issues to be considered when looking for the most appropriate 

technique. As well-known, the traditional erosion pin method generally allows to carry out 

very accurate punctual measures, whose error is measurable in few millimeters. So, it can be 

used to quantify very detailed temporal variations (monthly or after-event ground level 

changes). On the other hand, DGPS survey can be proper when a single hillslope of less than 

few hectares is being monitored, as the time and effort required would be acceptable. For 

larger areas or wider time interval, high resolution photogrammetric analysis could be more 

appropriate. 

However, all these methods are affected by some limitations (Tab. 9.1). Punctual 

erosion pin data certainly cannot be representative of large areas. On the other hand, GPS 

accuracy is affected by many sources of inaccuracy, caused by the satellite position 

geometry, the multipath effect, the atmospheric effect and clock inaccuracy. Measures 

perfomed at Bargiano hillslope by means of DGPS survey were affected by a mean elevation 

error of a less than 3 centimeters. This order of magnitude can be assumed as an acceptable 

error for the purpose of the DGPS survey of Bargiano site, since metric variations of ground 

level were recorded for 30-years time-interval. Aerial image resolution and quality, errors 

caused by the data interpolation in DEM constructing phase instead affect photogrammetric 

analysis. Moreover, the obtained DEMs should be cleaned by the vegetation cover 

differences in height between the considered time span, in order to compute a more 

accurate erosion rate. Thus, rates computed from photogrammetric analysis should be used 

only in very large time interval analysis (at least some decades). 
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METHOD Application scale Measure error Limitations 

Erosion pins 
Punctual measures; 

monthly variations 
mm 

Limited 

representativeness at 

catchment scale 

D-GPS survey 
Hillslope scale; 

annual variations 
cm Time of survey 

Digital 

photogrammetric 

analysis 

Small catchment or hillslope 

scale; 

decadal variations 

dm 

Photogram resolution, 

accuracy of DEM 

interpolation phase, 

vegetation cover 
 

Tab. 9.1 – Applicability and limitations of different methods for erosion rate quantification. 

 

Finally, new data and  conclusions allowed to improve the knowledge of the physical 

factors causing the initiation and the development of different water erosion landforms in 

the studied badland areas. 

Comparison of pluviometric data and measured ground level variations for Bargiano 

site has highlighted that clay removal by water erosion is generally due to intense rainfall 

event preceded by quite long dry periods, while accumulation (due to gully banks collapsing) 

is favoured by intense rainfall after a certain number of rainy days (frequent in spring). 

Moreover, in inter-rill position, where almost the lonely water erosion acts, intense events 

are significantly more effective than long events. 

Considering the distribution of calanchi and biancane landforms of Upper Orcia Valley 

among the different classes of the main topographic and physiographic factors, it is a matter 

of fact that calanchi badlands develop on steeper slopes and where higher values of 

amplitude of relief occur, due to the morphoevolutionary processes. Moreover, observations 

on present embryonic biancane of Lucciolabella site confirm the leading role played by 

reticular systems of joints in the dissection of original, gently-dipping surfaces. Actually, a 

resolute difference on dispersivity level of the biancana samples of La Piaggia subcatchment 

was not found with respect to calanchi badlands samples of the same subcatchment. 

On the other hand, a significant influence of clay properties was observed on the 

different erosion rates measured during decadal monitoring investigations by means of 

erosion pins in the study area. Calanchi badlands show lower erosion rates due to surface 

runoff. The major facility of biancane clays to be entrained at very low stream powers is 

reflected in their major dispersivity, while, in badlands, the morphoevolution and sediment 

removal is predominantly caused by widespread mudsliding from the rill and gully heads, as 
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also confirmed by the mean positive variations of ground level recorded at some calanchi 

monitoring stations. This observation can be also related to the higher sand content in 

calanchi badlands, which may favour the infiltration processes to the detriment of runoff. 

As already observed by several authors, the agricultural exploitation of these lands lead 

to a decrease of exchangeable cations concentration (and, thus, clay dispersivity), even if the 

permanent inhibition of chemical dispersion due to increase of soil stability hypothesized by 

Phillips (1998) cannot be completely agreed. Decadal monitoring and observation in the 

study area and in other sites of central Italy (Della Seta et al., 2007, 2009) and the 

investigations conducted in Bargiano site have outlined that badlands initiation is even 

enhanced by agricultural manipulation: grazing and farming are among the most important 

triggers for accelerated water erosion, and tillage erosion has been recognized as an 

increasing factor of water erosion (Torri et al., 2002). 

 

In conclusion, the performed investigations have allowed to conclude some interesting 

remarks about both the applied and proposed methodologies and the studied areas and 

related processes. In particular, results from this research have contributed to improve some 

methods useful to deepen the knowledge of processes and denudation intensity acting in 

badland areas of Mediterranean drainage basins. 
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ANNEX 3 
 
 

Analista: Francesca Vergari Data di prelievo: 21/05/2009 
Campagna:  Toscana - Val d'Orcia Campione:  L1 
Longitudine: 724795 Latitudine: 4768132 
Sistema: UTM Datum: WGS84 32N 
Quota: 559 (s.l.m)  
 

Phi Micron % Trattenuta % Cumulata 
-1,00 2000,00 0,00 0,00 
-0,50 1414,00 0,00 0,00 
0,00 1000,00 0,00 0,00 
0,50 707,00 0,00 0,00 
1,00 500,00 0,00 0,00 
1,50 354,00 0,00 0,00 
2,00 250,00 0,00 0,00 
2,50 177,00 0,00 0,00 
3,00 125,00 0,00 0,00 
3,50 88,00 0,00 0,00 
4,00 62,00 1,25 1,25 
4,25 53,00 1,36 2,61 
4,50 44,00 1,86 4,47 
4,75 37,00 2,28 6,75 
5,00 31,00 3,15 9,90 
5,25 26,00 3,55 13,45 
5,50 22,00 3,51 16,96 
5,75 19,00 3,34 20,30 
6,00 16,00 4,21 24,51 
6,25 13,00 5,52 30,03 
6,50 11,00 5,85 35,88 
6,75 9,00 4,99 40,87 
7,00 8,00 4,63 45,50 
7,25 7,00 5,28 50,78 
7,50 6,00 5,53 56,31 
7,75 5,00 5,24 61,55 
8,00 4,00 5,52 67,07 
8,25 3,00 5,37 72,44 
8,50 2,76 4,14 76,58 
8,75 2,00 3,75 80,33 
9,00 1,95 4,02 84,35 

11,00 0,49 15,65 100,00 
 

Parametri Statistici Folk e Ward, 1957 Popolazioni Wentworth, 1922 
Media 7,21 Popolazione > 2 mm 00,00 % 

Classamento 1,63 Sabbia 01,25 % 
Asimmetria -0,04 Limo 65,82 % 

Appuntimento 0,84 Argilla 32,93 % 
 

Percentili Phi Micron 
1 3,97 63,80 
5 4,57 42,20 
16 5,44 23,10 
25 6,02 15,40 
50 7,21 6,70 
75 8,40 3,00 
84 8,98 2,00 
95 9,47 1,40 

 
 
 
 
 
 



 

 II  

 

 



 

 III

 
 
Analista: Francesca Vergari Data di prelievo: 21/05/2009 
Campagna:  Toscana - Val d'Orcia Campione:  L1A 
Longitudine: 724795 Latitudine: 4768132 
Sistema: UTM Datum: UTM WGS84 32T 
Quota: 559 (s.l.m)  
 

Phi Micron % Trattenuta % Cumulata 
-1,00 2000,00 0,00 0,00 
-0,50 1414,00 0,00 0,00 
0,00 1000,00 0,00 0,00 
0,50 707,00 0,00 0,00 
1,00 500,00 0,00 0,00 
1,50 354,00 0,00 0,00 
2,00 250,00 0,00 0,00 
2,50 177,00 0,00 0,00 
3,00 125,00 0,00 0,00 
3,50 88,00 0,00 0,00 
4,00 62,00 0,28 0,28 
4,25 53,00 0,68 0,96 
4,50 44,00 1,09 2,05 
4,75 37,00 1,49 3,54 
5,00 31,00 2,16 5,70 
5,25 26,00 2,47 8,17 
5,50 22,00 2,56 10,73 
5,75 19,00 2,65 13,38 
6,00 16,00 3,53 16,91 
6,25 13,00 4,65 21,56 
6,50 11,00 4,86 26,42 
6,75 9,00 4,07 30,49 
7,00 8,00 3,82 34,31 
7,25 7,00 4,60 38,91 
7,50 6,00 5,15 44,06 
7,75 5,00 5,27 49,33 
8,00 4,00 5,97 55,30 
8,25 3,00 6,15 61,45 
8,50 2,76 5,04 66,49 
8,75 2,00 4,83 71,32 
9,00 1,95 5,41 76,73 

11,00 0,49 23,27 100,00 
 

Parametri Statistici Folk e Ward, 1957 Popolazioni Wentworth, 1922 
Media 7,63 Popolazione > 2 mm 00,00 % 

Classamento 1,52 Sabbia 00,28 % 
Asimmetria -0,18 Limo 55,02 % 

Appuntimento 0,77 Argilla 44,70 % 
 

 Percentili Phi Micron 
1 4,26 52,10 
5 4,93 32,80 
16 5,94 16,30 
25 6,43 11,60 
50 7,78 4,60 
75 8,92 2,10 
84 9,18 1,70 
95 9,61 1,30 



 

 IV 

 

 



 

 V 

 
Analista: Francesca Vergari Data di prelievo: 21/05/2009 
Campagna:  Toscana - Val d'Orcia Campione:  L1B 
Longitudine: 724795 Latitudine: 4768132 
Sistema: UTM Datum: UTM WGS84 32T 
Quota: 559 (s.l.m)  
 

Phi Micron % Trattenuta % Cumulata 
-1,00 2000,00 0,00 0,00 
-0,50 1414,00 0,00 0,00 
0,00 1000,00 0,00 0,00 
0,50 707,00 0,00 0,00 
1,00 500,00 0,00 0,00 
1,50 354,00 0,00 0,00 
2,00 250,00 0,00 0,00 
2,50 177,00 0,00 0,00 
3,00 125,00 0,00 0,00 
3,50 88,00 0,00 0,00 
4,00 62,00 0,37 0,37 
4,25 53,00 0,79 1,16 
4,50 44,00 1,23 2,39 
4,75 37,00 1,65 4,04 
5,00 31,00 2,36 6,40 
5,25 26,00 2,72 9,12 
5,50 22,00 2,80 11,92 
5,75 19,00 2,83 14,75 
6,00 16,00 3,68 18,43 
6,25 13,00 4,76 23,19 
6,50 11,00 4,92 28,11 
6,75 9,00 4,07 32,18 
7,00 8,00 3,77 35,95 
7,25 7,00 4,50 40,45 
7,50 6,00 5,03 45,48 
7,75 5,00 5,13 50,61 
8,00 4,00 5,81 56,42 
8,25 3,00 5,98 62,40 
8,50 2,76 4,91 67,31 
8,75 2,00 4,70 72,01 
9,00 1,95 5,27 77,28 

11,00 0,49 22,72 100,00 
 

Parametri Statistici Folk e Ward, 1957 Popolazioni Wentworth, 1922 
Media 7,58 Popolazione > 2 mm 00,00 % 

Classamento 1,55 Sabbia 00,37 % 
Asimmetria -0,17 Limo 56,05 % 

Appuntimento 0,76 Argilla 43,58 % 
 

 

 

Percentili Phi Micron 
1 4,22 53,80 
5 4,86 34,40 
16 5,84 17,50 
25 6,34 12,30 
50 7,72 4,70 
75 8,89 2,10 
84 9,17 1,70 
95 9,60 1,30 



 

 VI  

 

 



 

 VII  

 
Analista: Francesca Vergari Data di prelievo: 21/05/2009 
Campagna:  Toscana - Val d'Orcia Campione:  L2A 
Longitudine: 724799 Latitudine: 4768132 
Sistema: UTM Datum: WGS84 32N 
Quota: 556 (s.l.m)  
 
 

Phi Micron % Trattenuta % Cumulata 
-1,00 2000,00 0,00 0,00 
-0,50 1414,00 0,00 0,00 
0,00 1000,00 0,00 0,00 
0,50 707,00 0,00 0,00 
1,00 500,00 0,00 0,00 
1,50 354,00 0,00 0,00 
2,00 250,00 0,00 0,00 
2,50 177,00 0,00 0,00 
3,00 125,00 0,00 0,00 
3,50 88,00 0,00 0,00 
4,00 62,00 0,02 0,02 
4,25 53,00 0,18 0,20 
4,50 44,00 0,45 0,65 
4,75 37,00 0,78 1,43 
5,00 31,00 1,29 2,72 
5,25 26,00 1,55 4,27 
5,50 22,00 1,65 5,92 
5,75 19,00 1,84 7,76 
6,00 16,00 2,72 10,48 
6,25 13,00 3,82 14,30 
6,50 11,00 4,16 18,46 
6,75 9,00 3,66 22,12 
7,00 8,00 3,66 25,78 
7,25 7,00 4,69 30,47 
7,50 6,00 5,50 35,97 
7,75 5,00 5,79 41,76 
8,00 4,00 6,70 48,46 
8,25 3,00 6,98 55,44 
8,50 2,76 5,77 61,21 
8,75 2,00 5,56 66,77 
9,00 1,95 6,24 73,01 

11,00 0,49 26,99 100,00 
 

Parametri Statistici Folk e Ward, 1957 Popolazioni Wentworth, 1922 
Media 7,89 Popolazione > 2 mm 00,00 % 

Classamento 1,37 Sabbia 00,02 % 
Asimmetria -0,21 Limo 48,44 % 

Appuntimento 0,84 Argilla 51,54 % 
 

 

Percentili Phi Micron 
1 4,63 40,30 
5 5,37 24,20 
16 6,36 12,20 
25 6,95 8,10 
50 8,06 3,80 
75 9,04 1,90 
84 9,25 1,60 
95 9,66 1,20 



 

 VIII  

 

 



 

 IX 

 
Analista: Francesca Vergari Data di prelievo: 21/05/2009 
Campagna:  Toscana - Val d'Orcia Campione:  L2FA 
Longitudine: 724799 Latitudine: 4768132 
Sistema: UTM Datum: WGS84 32N 
Quota: 556 (s.l.m)  
 

Phi Micron % Trattenuta % Cumulata 
-1,00 2000,00 0,00 0,00 
-0,50 1414,00 0,00 0,00 
0,00 1000,00 0,00 0,00 
0,50 707,00 0,00 0,00 
1,00 500,00 0,00 0,00 
1,50 354,00 0,00 0,00 
2,00 250,00 0,00 0,00 
2,50 177,00 0,00 0,00 
3,00 125,00 0,00 0,00 
3,50 88,00 0,00 0,00 
4,00 62,00 0,00 0,00 
4,25 53,00 0,07 0,07 
4,50 44,00 0,37 0,44 
4,75 37,00 0,79 1,23 
5,00 31,00 1,40 2,63 
5,25 26,00 1,76 4,39 
5,50 22,00 1,94 6,33 
5,75 19,00 2,18 8,51 
6,00 16,00 3,18 11,69 
6,25 13,00 4,42 16,11 
6,50 11,00 4,81 20,92 
6,75 9,00 4,20 25,12 
7,00 8,00 4,09 29,21 
7,25 7,00 5,02 34,23 
7,50 6,00 5,69 39,92 
7,75 5,00 5,82 45,74 
8,00 4,00 6,57 52,31 
8,25 3,00 6,73 59,04 
8,50 2,76 5,48 64,52 
8,75 2,00 5,20 69,72 
9,00 1,95 5,77 75,49 

11,00 0,49 24,51 100,00 
 

Parametri Statistici Folk e Ward, 1957 Popolazioni Wentworth, 1922 
Media 7,79 Popolazione > 2 mm 00,00 % 

Classamento 1,39 Sabbia 00,00 % 
Asimmetria -0,16 Limo 52,31 % 

Appuntimento 0,79 Argilla 47,69 % 
 

 

 

Percentili Phi Micron 
1 4,70 38,60 
5 5,34 24,70 
16 6,24 13,20 
25 6,74 9,30 
50 7,91 4,20 
75 8,98 2,00 
84 9,20 1,70 
95 9,63 1,30 



 

 X 

 

 



 

 XI  

 
Analista: Francesca Vergari Data di prelievo: 21/05/2009 
Campagna:  Toscana - Val d'Orcia Campione:  L2FB 
Longitudine: 724799 Latitudine: 4768132 
Sistema: UTM Datum: WGS84 32N 
Quota: 556 (s.l.m)  
 

Phi Micron % Trattenuta % Cumulata 
-1,00 2000,00 0,00 0,00 
-0,50 1414,00 0,00 0,00 
0,00 1000,00 0,00 0,00 
0,50 707,00 0,00 0,00 
1,00 500,00 0,00 0,00 
1,50 354,00 0,00 0,00 
2,00 250,00 0,00 0,00 
2,50 177,00 0,00 0,00 
3,00 125,00 0,00 0,00 
3,50 88,00 0,00 0,00 
4,00 62,00 0,43 0,43 
4,25 53,00 0,53 0,96 
4,50 44,00 0,78 1,74 
4,75 37,00 1,21 2,95 
5,00 31,00 1,90 4,85 
5,25 26,00 2,21 7,06 
5,50 22,00 2,24 9,30 
5,75 19,00 2,29 11,59 
6,00 16,00 3,17 14,76 
6,25 13,00 4,38 19,14 
6,50 11,00 4,81 23,95 
6,75 9,00 4,29 28,24 
7,00 8,00 4,24 32,48 
7,25 7,00 5,23 37,71 
7,50 6,00 5,86 43,57 
7,75 5,00 5,89 49,46 
8,00 4,00 6,53 55,99 
8,25 3,00 6,57 62,56 
8,50 2,76 5,26 67,82 
8,75 2,00 4,89 72,71 
9,00 1,95 5,36 78,07 

11,00 0,49 21,93 100,00 
 

Parametri Statistici Folk e Ward, 1957 Popolazioni Wentworth, 1922 
Media 7,67 Popolazione > 2 mm 00,00 % 

Classamento 1,46 Sabbia 00,43 % 
Asimmetria -0,15 Limo 55,56 % 

Appuntimento 0,82 Argilla 44,01 % 
 

 

 

Percentili Phi Micron 
1 4,27 52,00 
5 5,02 30,80 
16 6,08 14,80 
25 6,56 10,60 
50 7,77 4,60 
75 8,85 2,20 
84 9,15 1,80 
95 9,59 1,30 



 

 XII  

 

 



 

 XIII

 
Analista: Francesca Vergari Data di prelievo: 21/05/2009 
Campagna:  Toscana - Val d'Orcia Campione:  L2FC 
Longitudine: 724799 Latitudine: 4768132 
Sistema: UTM Datum: WGS84 32N 
Quota: 556 (s.l.m)  
 

Phi Micron % Trattenuta % Cumulata 
-1,00 2000,00 0,00 0,00 
-0,50 1414,00 0,00 0,00 
0,00 1000,00 0,00 0,00 
0,50 707,00 0,00 0,00 
1,00 500,00 0,00 0,00 
1,50 354,00 0,00 0,00 
2,00 250,00 0,00 0,00 
2,50 177,00 0,00 0,00 
3,00 125,00 0,00 0,00 
3,50 88,00 0,00 0,00 
4,00 62,00 0,08 0,08 
4,25 53,00 0,30 0,38 
4,50 44,00 0,63 1,01 
4,75 37,00 1,01 2,02 
5,00 31,00 1,58 3,60 
5,25 26,00 1,89 5,49 
5,50 22,00 2,03 7,52 
5,75 19,00 2,22 9,74 
6,00 16,00 3,14 12,88 
6,25 13,00 4,29 17,17 
6,50 11,00 4,58 21,75 
6,75 9,00 3,92 25,67 
7,00 8,00 3,79 29,46 
7,25 7,00 4,67 34,13 
7,50 6,00 5,34 39,47 
7,75 5,00 5,55 45,02 
8,00 4,00 6,37 51,39 
8,25 3,00 6,60 57,99 
8,50 2,76 5,44 63,43 
8,75 2,00 5,23 68,66 
9,00 1,95 5,88 74,54 

11,00 0,49 25,46 100,00 
 

Parametri Statistici Folk e Ward, 1957 Popolazioni Wentworth, 1922 
Media 7,78 Popolazione > 2 mm 00,00 % 

Classamento 1,43 Sabbia 00,08 % 
Asimmetria -0,20 Limo 51,31 % 

Appuntimento 0,79 Argilla 48,61 % 
 

 

 

Percentili Phi Micron 
1 4,50 44,30 
5 5,19 27,30 
16 6,19 13,70 
25 6,71 9,60 
50 7,95 4,10 
75 9,01 1,90 
84 9,22 1,70 
95 9,64 1,30 



 

 XIV  

 

 



 

 XV 

 
Analista: Francesca Vergari Data di prelievo: 21/05/2009 
Campagna:  Toscana - Val d'Orcia Campione: L3 
Longitudine: 724801 Latitudine: 4768126 
Sistema: UTM Datum: WGS84 32N 
Quota: 554 (s.l.m)  
 

Phi Micron % Trattenuta % Cumulata 
-1,00 2000,00 0,00 0,00 
-0,50 1414,00 0,00 0,00 
0,00 1000,00 0,00 0,00 
0,50 707,00 0,00 0,00 
1,00 500,00 0,00 0,00 
1,50 354,00 0,00 0,00 
2,00 250,00 0,00 0,00 
2,50 177,00 0,00 0,00 
3,00 125,00 0,00 0,00 
3,50 88,00 0,00 0,00 
4,00 62,00 0,00 0,00 
4,25 53,00 0,18 0,18 
4,50 44,00 0,50 0,68 
4,75 37,00 0,91 1,59 
5,00 31,00 1,53 3,12 
5,25 26,00 1,90 5,02 
5,50 22,00 2,06 7,08 
5,75 19,00 2,24 9,32 
6,00 16,00 3,15 12,47 
6,25 13,00 4,30 16,77 
6,50 11,00 4,60 21,37 
6,75 9,00 3,92 25,29 
7,00 8,00 3,76 29,05 
7,25 7,00 4,62 33,67 
7,50 6,00 5,28 38,95 
7,75 5,00 5,50 44,45 
8,00 4,00 6,33 50,78 
8,25 3,00 6,58 57,36 
8,50 2,76 5,45 62,81 
8,75 2,00 5,27 68,08 
9,00 1,95 5,96 74,04 

11,00 0,49 25,96 100,00 
 

Parametri Statistici Folk e Ward, 1957 Popolazioni Wentworth, 1922 
Media 7,80 Popolazione > 2 mm 00,00 % 

Classamento 1,42 Sabbia 00,00 % 
Asimmetria -0,20 Limo 50,78 % 

Appuntimento 0,79 Argilla 49,22 % 
 

 

 

Percentili Phi Micron 
1 4,61 40,90 
5 5,25 26,30 
16 6,21 13,50 
25 6,73 9,40 
50 7,97 4,00 
75 9,02 1,90 
84 9,23 1,70 
95 9,65 1,20 



 

 XVI  

 

 



 

 XVII  

 
Analista: Francesca Vergari Data di prelievo: 21/05/2009 
Campagna:  Toscana - Val d'Orcia Campione:  L3B 
Longitudine: 724801 Latitudine: 4768126 
Sistema: UTM Datum: WGS84 32N 
Quota: 554 (s.l.m)  
 

Phi Micron % Trattenuta % Cumulata 
-1,00 2000,00 0,00 0,00 
-0,50 1414,00 0,00 0,00 
0,00 1000,00 0,00 0,00 
0,50 707,00 0,00 0,00 
1,00 500,00 0,00 0,00 
1,50 354,00 0,00 0,00 
2,00 250,00 0,00 0,00 
2,50 177,00 0,00 0,00 
3,00 125,00 0,00 0,00 
3,50 88,00 0,00 0,00 
4,00 62,00 0,12 0,12 
4,25 53,00 0,40 0,52 
4,50 44,00 0,76 1,28 
4,75 37,00 1,15 2,43 
5,00 31,00 1,78 4,21 
5,25 26,00 2,11 6,32 
5,50 22,00 2,22 8,54 
5,75 19,00 2,34 10,88 
6,00 16,00 3,23 14,11 
6,25 13,00 4,35 18,46 
6,50 11,00 4,63 23,09 
6,75 9,00 3,93 27,02 
7,00 8,00 3,74 30,76 
7,25 7,00 4,56 35,32 
7,50 6,00 5,19 40,51 
7,75 5,00 5,38 45,89 
8,00 4,00 6,18 52,07 
8,25 3,00 6,43 58,50 
8,50 2,76 5,32 63,82 
8,75 2,00 5,14 68,96 
9,00 1,95 5,77 74,73 

11,00 0,49 25,27 100,00 
 

Parametri Statistici Folk e Ward, 1957 Popolazioni Wentworth, 1922 
Media 7,75 Popolazione > 2 mm 00,00 % 

Classamento 1,46 Sabbia 00,12 % 
Asimmetria -0,20 Limo 51,95 % 

Appuntimento 0,78 Argilla 47,93 % 
 

 

 

Percentili Phi Micron 
1 4,43 46,40 
5 5,10 29,10 
16 6,11 14,40 
25 6,62 10,10 
50 7,92 4,10 
75 9,01 1,90 
84 9,22 1,70 
95 9,64 1,30 



 

 XVIII  

 

 



 

 XIX  

 
Analista: Francesca Vergari Data di prelievo: 21/05/2009 
Campagna:  Toscana - Val d'Orcia Campione:  L4A 
Longitudine: 724808 Latitudine: 4768129 
Sistema: UTM Datum: WGS84 32T 
Quota: 556 (s.l.m)  
 

Phi Micron % Trattenuta % Cumulata 
-1,00 2000,00 0,00 0,00 
-0,50 1414,00 0,00 0,00 
0,00 1000,00 0,00 0,00 
0,50 707,00 0,00 0,00 
1,00 500,00 0,00 0,00 
1,50 354,00 0,00 0,00 
2,00 250,00 0,00 0,00 
2,50 177,00 0,00 0,00 
3,00 125,00 0,00 0,00 
3,50 88,00 0,00 0,00 
4,00 62,00 0,29 0,29 
4,25 53,00 0,76 1,05 
4,50 44,00 1,29 2,34 
4,75 37,00 1,81 4,15 
5,00 31,00 2,64 6,79 
5,25 26,00 3,05 9,84 
5,50 22,00 3,15 12,99 
5,75 19,00 3,18 16,17 
6,00 16,00 4,19 20,36 
6,25 13,00 5,57 25,93 
6,50 11,00 5,93 31,86 
6,75 9,00 5,10 36,96 
7,00 8,00 4,77 41,73 
7,25 7,00 5,52 47,25 
7,50 6,00 5,84 53,09 
7,75 5,00 5,58 58,67 
8,00 4,00 5,92 64,59 
8,25 3,00 5,77 70,36 
8,50 2,76 4,46 74,82 
8,75 2,00 4,04 78,86 
9,00 1,95 4,32 83,18 

11,00 0,49 16,82 100,00 
 

Parametri Statistici Folk e Ward, 1957 Popolazioni Wentworth, 1922 
Media 7,38 Popolazione > 2 mm 00,00 % 

Classamento 1,53 Sabbia 00,29 % 
Asimmetria -0,04 Limo 64,30 % 

Appuntimento 0,83 Argilla 35,41 % 
 

 

 

Percentili Phi Micron 
1 4,24 52,90 
5 4,84 34,90 
16 5,74 18,70 
25 6,21 13,50 
50 7,37 6,10 
75 8,51 2,70 
84 9,02 1,90 
95 9,50 1,40 



 

 XX 

 

 



 

 XXI  

 
Analista: Francesca Vergari Data di prelievo: 21/05/2009 
Campagna:  Toscana - Val d'Orcia Campione:  L4B 
Longitudine: 724808 Latitudine: 4768129 
Sistema: UTM Datum: WGS84 32T 
Quota: 556 (s.l.m)  
 

Phi Micron % Trattenuta % Cumulata 
-1,00 2000,00 0,00 0,00 
-0,50 1414,00 0,00 0,00 
0,00 1000,00 0,00 0,00 
0,50 707,00 0,00 0,00 
1,00 500,00 0,00 0,00 
1,50 354,00 0,00 0,00 
2,00 250,00 0,00 0,00 
2,50 177,00 0,00 0,00 
3,00 125,00 0,00 0,00 
3,50 88,00 0,00 0,00 
4,00 62,00 0,11 0,11 
4,25 53,00 0,39 0,50 
4,50 44,00 0,79 1,29 
4,75 37,00 1,25 2,54 
5,00 31,00 1,92 4,46 
5,25 26,00 2,29 6,75 
5,50 22,00 2,45 9,20 
5,75 19,00 2,61 11,81 
6,00 16,00 3,57 15,38 
6,25 13,00 4,78 20,16 
6,50 11,00 5,05 25,21 
6,75 9,00 4,27 29,48 
7,00 8,00 4,04 33,52 
7,25 7,00 4,86 38,38 
7,50 6,00 5,44 43,82 
7,75 5,00 5,50 49,32 
8,00 4,00 6,18 55,50 
8,25 3,00 6,31 61,81 
8,50 2,76 5,12 66,93 
8,75 2,00 4,86 71,79 
9,00 1,95 5,40 77,19 

11,00 0,49 22,81 100,00 
 

Parametri Statistici Folk e Ward, 1957 Popolazioni Wentworth, 1922 
Media 7,66 Popolazione > 2 mm 00,00 % 

Classamento 1,47 Sabbia 00,11 % 
Asimmetria -0,15 Limo 55,39 % 

Appuntimento 0,77 Argilla 44,50 % 
 

 

 

Percentili Phi Micron 
1 4,43 46,40 
5 5,07 29,80 
16 6,04 15,30 
25 6,49 11,10 
50 7,78 4,60 
75 8,90 2,10 
84 9,17 1,70 
95 9,60 1,30 



 

 XXII  

 

 



 

 XXIII

 
Analista: Francesca Vergari Data di prelievo: 21/05/2009 
Campagna:  Toscana - Val d'Orcia Campione:  L5A 
Longitudine: 724801 Latitudine: 4768127 
Sistema: UTM Datum: WGS84 32N 
Quota: 555 (s.l.m)  
 

Phi Micron % Trattenuta % Cumulata 
-1,00 2000,00 0,00 0,00 
-0,50 1414,00 0,00 0,00 
0,00 1000,00 0,00 0,00 
0,50 707,00 0,00 0,00 
1,00 500,00 0,00 0,00 
1,50 354,00 0,00 0,00 
2,00 250,00 0,00 0,00 
2,50 177,00 0,00 0,00 
3,00 125,00 0,00 0,00 
3,50 88,00 0,00 0,00 
4,00 62,00 0,06 0,06 
4,25 53,00 0,33 0,39 
4,50 44,00 0,74 1,13 
4,75 37,00 1,19 2,32 
5,00 31,00 1,91 4,23 
5,25 26,00 2,33 6,56 
5,50 22,00 2,50 9,06 
5,75 19,00 2,64 11,70 
6,00 16,00 3,58 15,28 
6,25 13,00 4,78 20,06 
6,50 11,00 5,05 25,11 
6,75 9,00 4,28 29,39 
7,00 8,00 4,04 33,43 
7,25 7,00 4,85 38,28 
7,50 6,00 5,41 43,69 
7,75 5,00 5,48 49,17 
8,00 4,00 6,16 55,33 
8,25 3,00 6,29 61,62 
8,50 2,76 5,11 66,73 
8,75 2,00 4,85 71,58 
9,00 1,95 5,42 77,00 

11,00 0,49 23,00 100,00 
 

Parametri Statistici Folk e Ward, 1957 Popolazioni Wentworth, 1922 
Media 7,67 Popolazione > 2 mm 00,00 % 

Classamento 1,47 Sabbia 00,06 % 
Asimmetria -0,15 Limo 55,27 % 

Appuntimento 0,77 Argilla 44,67 % 
 

 

 

Percentili Phi Micron 
1 4,47 45,10 
5 5,09 29,30 
16 6,04 15,20 
25 6,49 11,10 
50 7,78 4,50 
75 8,90 2,10 
84 9,17 1,70 
95 9,61 1,30 



 

 XXIV  

 

 



 

 XXV  

 
Analista: Fantini-Mari Data di prelievo: 26/04/2010 
Campagna:  Toscana - Val d'Orcia Campione:  L5B 
Longitudine: 724801 Latitudine: 4768127 
Sistema: UTM Datum: WGS84 32N 
Quota: 555 (s.l.m)  
 

Phi Micron % Trattenuta % Cumulata 
-1,00 2000,00 0,00 0,00 
-0,50 1414,00 0,00 0,00 
0,00 1000,00 0,00 0,00 
0,50 707,00 0,00 0,00 
1,00 500,00 0,00 0,00 
1,50 354,00 0,00 0,00 
2,00 250,00 0,00 0,00 
2,50 177,00 0,00 0,00 
3,00 125,00 0,00 0,00 
3,50 88,00 0,00 0,00 
4,00 62,00 0,00 0,00 
4,25 53,00 0,15 0,15 
4,50 44,00 0,52 0,67 
4,75 37,00 0,96 1,63 
5,00 31,00 1,59 3,22 
5,25 26,00 1,95 5,17 
5,50 22,00 2,09 7,26 
5,75 19,00 2,26 9,52 
6,00 16,00 3,15 12,67 
6,25 13,00 4,24 16,91 
6,50 11,00 4,50 21,41 
6,75 9,00 3,82 25,23 
7,00 8,00 3,68 28,91 
7,25 7,00 4,56 33,47 
7,50 6,00 5,25 38,72 
7,75 5,00 5,49 44,21 
8,00 4,00 6,34 50,55 
8,25 3,00 6,61 57,16 
8,50 2,76 5,48 62,64 
8,75 2,00 5,30 67,94 
9,00 1,95 5,99 73,93 

11,00 0,49 26,07 100,00 
 

Parametri Statistici Folk e Ward, 1957 Popolazioni Wentworth, 1922 
Media 7,80 Popolazione > 2 mm 00,00 % 

Classamento 1,43 Sabbia 00,00 % 
Asimmetria -0,21 Limo 50,55 % 

Appuntimento 0,79 Argilla 49,45 % 
 

 

 

Percentili Phi Micron 
1 4,61 41,00 
5 5,23 26,60 
16 6,20 13,60 
25 6,74 9,40 
50 7,98 4,00 
75 9,02 1,90 
84 9,23 1,70 
95 9,65 1,20 



 

 XXVI  

 

 



 

 XXVII  

 
Analista: Francesca Vergari Data di prelievo: 21/05/2009 
Campagna:  Toscana - Val d'Orcia Campione:  L5C 
Longitudine: 724801 Latitudine: 4768127 
Sistema: UTM Datum: WGS84 32N 
Quota: 555 (s.l.m)  
 

Phi Micron % Trattenuta % Cumulata 
-1,00 2000,00 0,00 0,00 
-0,50 1414,00 0,00 0,00 
0,00 1000,00 0,00 0,00 
0,50 707,00 0,00 0,00 
1,00 500,00 0,00 0,00 
1,50 354,00 0,00 0,00 
2,00 250,00 0,00 0,00 
2,50 177,00 0,00 0,00 
3,00 125,00 0,00 0,00 
3,50 88,00 0,00 0,00 
4,00 62,00 0,04 0,04 
4,25 53,00 0,28 0,32 
4,50 44,00 0,65 0,97 
4,75 37,00 1,09 2,06 
5,00 31,00 1,74 3,80 
5,25 26,00 2,12 5,92 
5,50 22,00 2,26 8,18 
5,75 19,00 2,42 10,60 
6,00 16,00 3,32 13,92 
6,25 13,00 4,45 18,37 
6,50 11,00 4,70 23,07 
6,75 9,00 3,97 27,04 
7,00 8,00 3,77 30,81 
7,25 7,00 4,61 35,42 
7,50 6,00 5,25 40,67 
7,75 5,00 5,43 46,10 
8,00 4,00 6,22 52,32 
8,25 3,00 6,45 58,77 
8,50 2,76 5,33 64,10 
8,75 2,00 5,13 69,23 
9,00 1,95 5,76 74,99 

11,00 0,49 25,01 100,00 
 

Parametri Statistici Folk e Ward, 1957 Popolazioni Wentworth, 1922 
Media 7,75 Popolazione > 2 mm 00,00 % 

Classamento 1,45 Sabbia 00,04 % 
Asimmetria -0,19 Limo 52,28 % 

Appuntimento 0,77 Argilla 47,68 % 
 

 

 

Percentili Phi Micron 
1 4,51 43,90 
5 5,15 28,10 
16 6,12 14,40 
25 6,62 10,10 
50 7,91 4,20 
75 9,00 2,00 
84 9,21 1,70 
95 9,64 1,30 



 

 XXVIII  

 

 



 

 XXIX  

 
Analista: Francesca Vergari Data di prelievo: 21/05/2009 
Campagna:  Toscana - Val d'Orcia Campione:  L6A 
Longitudine: 724841 Latitudine: 4768128 
Sistema: UTM Datum: WGS84 32N 
Quota: 549 (s.l.m)  
 

Phi Micron % Trattenuta % Cumulata 
-1,00 2000,00 0,00 0,00 
-0,50 1414,00 0,00 0,00 
0,00 1000,00 0,00 0,00 
0,50 707,00 0,00 0,00 
1,00 500,00 0,00 0,00 
1,50 354,00 0,00 0,00 
2,00 250,00 0,00 0,00 
2,50 177,00 0,00 0,00 
3,00 125,00 0,00 0,00 
3,50 88,00 0,00 0,00 
4,00 62,00 0,31 0,31 
4,25 53,00 0,60 0,91 
4,50 44,00 0,86 1,77 
4,75 37,00 1,15 2,92 
5,00 31,00 1,69 4,61 
5,25 26,00 1,98 6,59 
5,50 22,00 2,09 8,68 
5,75 19,00 2,24 10,92 
6,00 16,00 3,13 14,05 
6,25 13,00 4,27 18,32 
6,50 11,00 4,60 22,92 
6,75 9,00 3,98 26,90 
7,00 8,00 3,86 30,76 
7,25 7,00 4,74 35,50 
7,50 6,00 5,39 40,89 
7,75 5,00 5,55 46,44 
8,00 4,00 6,31 52,75 
8,25 3,00 6,52 59,27 
8,50 2,76 5,35 64,62 
8,75 2,00 5,11 69,73 
9,00 1,95 5,71 75,44 

11,00 0,49 24,56 100,00 
 

Parametri Statistici Folk e Ward, 1957 Popolazioni Wentworth, 1922 
Media 7,74 Popolazione > 2 mm 00,00 % 

Classamento 1,46 Sabbia 00,31 % 
Asimmetria -0,19 Limo 52,44 % 

Appuntimento 0,80 Argilla 47,25 % 
 

 

 

Percentili Phi Micron 
1 4,28 51,30 
5 5,06 30,10 
16 6,12 14,40 
25 6,63 10,10 
50 7,89 4,20 
75 8,98 2,00 
84 9,20 1,70 
95 9,63 1,30 



 

 XXX  

 

 



 

 XXXI  

 
Analista: Francesca Vergari Data di prelievo: 21/05/2009 
Campagna:  Toscana - Val d'Orcia Campione:  L6B 
Longitudine: 724841 Latitudine: 4768128 
Sistema: UTM Datum: WGS84 32N 
Quota: 549 m (s.l.m)  
 

Phi Micron % Trattenuta % Cumulata 
-1,00 2000,00 0,00 0,00 
-0,50 1414,00 0,00 0,00 
0,00 1000,00 0,00 0,00 
0,50 707,00 0,00 0,00 
1,00 500,00 0,00 0,00 
1,50 354,00 0,00 0,00 
2,00 250,00 0,00 0,00 
2,50 177,00 0,00 0,00 
3,00 125,00 0,00 0,00 
3,50 88,00 0,00 0,00 
4,00 62,00 0,03 0,03 
4,25 53,00 0,21 0,24 
4,50 44,00 0,50 0,74 
4,75 37,00 0,88 1,62 
5,00 31,00 1,46 3,08 
5,25 26,00 1,78 4,86 
5,50 22,00 1,90 6,76 
5,75 19,00 2,07 8,83 
6,00 16,00 2,98 11,81 
6,25 13,00 4,12 15,93 
6,50 11,00 4,46 20,39 
6,75 9,00 3,88 24,27 
7,00 8,00 3,77 28,04 
7,25 7,00 4,70 32,74 
7,50 6,00 5,40 38,14 
7,75 5,00 5,62 43,76 
8,00 4,00 6,46 50,22 
8,25 3,00 6,73 56,95 
8,50 2,76 5,56 62,51 
8,75 2,00 5,36 67,87 
9,00 1,95 6,01 73,88 

11,00 0,49 26,12 100,00 
 

Parametri Statistici Folk e Ward, 1957 Popolazioni Wentworth, 1922 
Media 7,83 Popolazione > 2 mm 00,00 % 

Classamento 1,41 Sabbia 00,03 % 
Asimmetria -0,20 Limo 50,19 % 

Appuntimento 0,81 Argilla 49,78 % 
 

 

 

Percentili Phi Micron 
1 4,59 41,40 
5 5,27 25,90 
16 6,25 13,10 
25 6,80 9,00 
50 7,99 3,90 
75 9,02 1,90 
84 9,23 1,70 
95 9,65 1,20 



 

 XXXII  

 

 



 

 XXXIII  

 
Analista: Francesca Vergari Data di prelievo: 20/05/2009 
Campagna:  Toscana - Val d’Orcia Campione:  M1 
Longitudine: 0723934 Latitudine: 4763996 
Sistema: UTM Datum: WGS84 32N 
Quota: 324 m (s.l.m.) 
 

 

Phi Micron % Trattenuta % Cumulata 
-1,00 2000,00 0,79 0,79 
-0,50 1414,00 0,26 1,05 
0,00 1000,00 0,29 1,34 
0,50 707,00 0,49 1,83 
1,00 500,00 0,77 2,60 
1,50 354,00 1,04 3,64 
2,00 250,00 1,89 5,53 
2,50 177,00 2,94 8,47 
3,00 125,00 5,65 14,12 
3,50 88,00 9,00 23,12 
4,00 62,00 9,97 33,09 
4,25 53,00 2,57 35,66 
4,50 44,00 2,90 38,56 
4,75 37,00 2,74 41,30 
5,00 31,00 2,99 44,29 
5,25 26,00 2,92 47,21 
5,50 22,00 2,66 49,87 
5,75 19,00 2,40 52,27 
6,00 16,00 2,83 55,10 
6,25 13,00 3,45 58,55 
6,50 11,00 3,46 62,01 
6,75 9,00 2,79 64,80 
7,00 8,00 2,54 67,34 
7,25 7,00 2,91 70,25 
7,50 6,00 3,11 73,36 
7,75 5,00 2,99 76,35 
8,00 4,00 3,22 79,57 
8,25 3,00 3,18 82,75 
8,50 2,76 2,49 85,24 
8,75 2,00 2,29 87,53 
9,00 1,95 2,52 90,05 

11,00 0,49 9,95 100,00 
 

Parametri Statistici Folk e Ward, 1957 Popolazioni Wentworth, 1922 
Media 5,67 Popolazione > 2 mm 00,79 % 

Classamento 2,44 Sabbia 32,30 % 
Asimmetria 0,05 Limo 46,48 % 

Appuntimento 0,75 Argilla 20,43 % 
 

 

Percentili Phi Micron 
1 -0,59 1502,10 
5 1,88 272,50 
16 3,12 115,20 
25 3,60 82,40 
50 5,51 21,90 
75 7,64 5,00 
84 8,37 3,00 
95 9,30 1,60 



 

 XXXIV  

 



 

 XXXV  

 
Analista: Francesca Vergari Data di prelievo: 20/05/2009 
Campagna:  Toscana - Val d’Orcia Campione:  M7 
Longitudine: 0722552 Latitudine: 4759151 
Sistema: UTM Datum: WGS84 32N 
Quota: 575 m (s.l.m)  
 

Phi Micron % Trattenuta % Cumulata 
-1,00 2000,00 2,35 2,35 
-0,50 1414,00 0,33 2,68 
0,00 1000,00 0,23 2,91 
0,50 707,00 0,28 3,19 
1,00 500,00 0,38 3,57 
1,50 354,00 0,42 3,99 
2,00 250,00 0,53 4,52 
2,50 177,00 0,71 5,23 
3,00 125,00 1,61 6,84 
3,50 88,00 1,56 8,40 
4,00 62,00 3,86 12,26 
4,25 53,00 1,39 13,65 
4,50 44,00 1,68 15,33 
4,75 37,00 1,80 17,13 
5,00 31,00 2,21 19,34 
5,25 26,00 2,38 21,72 
5,50 22,00 2,40 24,12 
5,75 19,00 2,49 26,61 
6,00 16,00 3,38 29,99 
6,25 13,00 4,53 34,52 
6,50 11,00 4,81 39,33 
6,75 9,00 4,10 43,43 
7,00 8,00 3,84 47,27 
7,25 7,00 4,49 51,76 
7,50 6,00 4,85 56,61 
7,75 5,00 4,74 61,35 
8,00 4,00 5,16 66,51 
8,25 3,00 5,12 71,63 
8,50 2,76 4,05 75,68 
8,75 2,00 3,74 79,42 
9,00 1,95 4,10 83,52 

11,00 0,49 16,48 100,00 
 

Parametri Statistici Folk e Ward, 1957 Popolazioni Wentworth, 1922 
Media 6,92 Popolazione > 2 mm 02,35 % 

Classamento 2,19 Sabbia 09,91 % 
Asimmetria -0,25 Limo 54,25 % 

Appuntimento 1,02 Argilla 33,49 % 
 

 

 

Percentili Phi Micron 
1 -1,10 2140,70 
5 2,34 196,90 
16 4,60 41,40 
25 5,59 20,80 
50 7,15 7,00 
75 8,46 2,80 
84 9,01 1,90 
95 9,49 1,40 



 

 XXXVI  

 

 



 

 XXXVII  

 
Analista: Francesca Vergari Data di prelievo: 20/05/2009 
Campagna:  Toscana - Val d’Orcia Campione:  M9 
Longitudine: 0722534 Latitudine: 4759015 
Sistema: UTM Datum: WGS84 32N 
Quota: 555 (s.l.m)  
 

Phi Micron % Trattenuta % Cumulata 
-3,00 8000,00 1,23 1,23 
-2,50 5657,00 0,00 1,23 
-2,00 4000,00 0,25 1,48 
-1,50 2828,00 0,12 1,60 
-1,00 2000,00 0,06 1,66 
-0,50 1414,00 0,13 1,79 
0,00 1000,00 0,15 1,94 
0,50 707,00 0,19 2,13 
1,00 500,00 0,30 2,43 
1,50 354,00 0,44 2,87 
2,00 250,00 0,63 3,50 
2,50 177,00 0,91 4,41 
3,00 125,00 1,03 5,44 
3,50 88,00 1,14 6,58 
4,00 62,00 1,20 7,78 
4,25 53,00 0,36 8,14 
4,50 44,00 0,59 8,73 
4,75 37,00 0,83 9,56 
5,00 31,00 1,24 10,80 
5,25 26,00 1,45 12,25 
5,50 22,00 1,60 13,85 
5,75 19,00 1,90 15,75 
6,00 16,00 2,88 18,63 
6,25 13,00 4,14 22,77 
6,50 11,00 4,58 27,35 
6,75 9,00 4,06 31,41 
7,00 8,00 3,98 35,39 
7,25 7,00 4,87 40,26 
7,50 6,00 5,47 45,73 
7,75 5,00 5,51 51,24 
8,00 4,00 6,15 57,39 
8,25 3,00 6,22 63,61 
8,50 2,76 5,01 68,62 
8,75 2,00 4,69 73,31 
9,00 1,95 5,20 78,51 

11,00 0,49 21,49 100,00 
 

Parametri Statistici Folk e Ward, 1957 Popolazioni Wentworth, 1922 
Media 7,54 Popolazione > 2 mm 01,66 % 

Classamento 1,87 Sabbia 06,12 % 
Asimmetria -0,29 Limo 49,61 % 

Appuntimento 1,13 Argilla 42,61 % 
 

 

Percentili Phi Micron 
1 -3,03 8149,60 
5 2,80 143,90 
16 5,77 18,30 
25 6,37 12,10 
50 7,69 4,80 
75 8,83 2,20 
84 9,14 1,80 
95 9,58 1,30 



 

 XXXVIII  

 

 


