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Introduction

The Generalized Method of Moments (GMM) has been first formalized by Hansen

in 1982 (1) and has been applied in many contexts as, for instance, economics

and finance.

The GMM is an extension of the well known Method of Moments, where the

estimation of a set of parameters is conducted by equating parameter dependent

theoretical moments of the statistical model with their sample counterparts. The

parameter’s estimates are then obtained as the solution of the resulting system

of equations. When either the number of equations exceeds the number of pa-

rameters to be estimated, and generalized moments are considered instead of

canonicals moments (that is, the expectation of a generic function of the ran-

dom variable, rather than the integer powers of the random variable itself), the

method is currently referred to as the Generalized Method of Moments. Un-

der these conditions the system is overdetermined and generally has no solution.

The estimation is then conducted by minimizing a suitable weighted quadratic

form. The weighting affects the performance of the estimation; when the optimal

weights minimizing the estimation variance are employed, the method is referred

to as the best GMM estimation. The optimal weights depend on the true value

of the parameter. The estimated values are then obtained either by a direct so-

lution of the minimization problem, or via an iterative approach. However, if

the statistical model is nonlinear, in either case numerical algorithms have to be

envisaged to solve the problem. An useful review of the GMM is found in (2; 3).

Unlike other estimation techniques, as Maximum Likelihood Estimation (MLE),

GMM does not require the complete knowledge of the statistical description of

the data. In fact, only specific moments derived by the underlying stochastic

model are needed to perform the estimation. Besides, also in particular cases in
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which the probability density function (pdf) of the data is known, MLE can be

computationally unaffordable while GMM provides, under mild assumptions, a

consistent estimation at a reduced complexity.

Generally, no assumptions on the efficiency of GMM estimation can be made;

however, the GMM estimation coincides with MLE when the data are such that

the central limit theorem applies for the selected sufficient statistic.

In the signal processing community the optimally weighted GMM estimation is

currently referred to as Nonlinear Weighted Least Squares (NWLS) estimation,

and it has been applied in many contexts involving, for instance, high order

statistical analysis. In (4), the unweighted estimation – that is the counterpart

of the unweighted GMM– is introduced, with the weight matrix replaced by the

identity matrix; the asymptotically optimal formulation of this method has been

introduced in (5), (6) and in (7) where the NWLS with the optimal weights

matrix is employed in the case of ARMA parameter estimation with missing

observations. In (8) NWLS is employed to address the problem of estimating the

frequency of a complex harmonic in the presence of additive and multiplicative

noise. An useful review of NWLS can be found in (9).

In this work we address the problem of location parameter estimation via a

GMM approach, that is the problem of estimating a parameter that determines

the location or shift of the distribution of the measurements. This problem is

encountered in many applications, ranging from time-delay estimation (10) to di-

rectional statistics analysis. Examples of problems involving directional statistics

can be found in several scientific disciplines as for instance in:

• Earth Science, for instance in the estimation of the direction of earthquake’s

waves or in the estimation of relative rotations of tectonic plates

• Meteorology, for instance concerning the estimation of wind or thunder-

storms directions.

• Medicine, for instance about the study of the incidence of particular disease

at various times of the year, or in vector cardiograms, where information

about the electrical activity in a heart during a heartbeat is described in

terms of a near-planar orbit in three-dimensional space.
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• Image Analysis, for instance in machine vision related problems.

A complete review of these scenarios can be found in (11).

The main contribution of this work is to show that, when the estimandum acts

as a shift on a suitable statistic of the underlying model, the GMM optimization

problem can be modified so that the estimation is realized by means of a coarse-

to-fine estimation approach using a fast, DFT based, computationally efficient

procedure.

We will mathematically formalize the shift property of a parameter, by setting

a condition to be satisfied by the pdf of the observations, and we will show that

suitable transformations of the observed random variables can recast a non-shift

problem in one exhibiting the desired property.

Besides, we show that the shift nature of the parameter can be usefully ex-

ploited to devise MLE, also when no Gaussianity assumption on the statistic can

be made. In fact we show that, when the chosen statistic can be regarded as a

multinomial distributed random variable, direct maximization of the likelihood

function can be conducted by exactly the same estimation rule of the unweighted

GMM. With respect to the best GMM estimation, a logarithmic nonlinearity

is employed instead of the optimal weight matrix, thus yielding a significantly

reduced computational complexity. Again a computationally efficient solution is

provided via a coarse-to-fine DFT based approach.

We finally remark that, given the bind between the GMM approach and the

NWLS outlined before, the solution here introduced is then feasible in all of the

contexts where the NLWS estimation is employed, providing a computationally

efficient solution, once a statistic affected by the parameter as a cyclic-shift is

found.

Here, we analyze a GMM based gain-control-free blind carrier acquisition

for QAM constellations. The carrier acquisition problem is common to many

bandpass digital communication systems. In fact, even when the communica-

tion channel is ideal, i.e., it solely attenuates and delays the transmitted signal,

the random carrier phase rotation and frequency drift between local oscillators

generates an unknown phase/frequency offset that must be recovered resorting
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to trained or blind methods, depending on the application requirements. Al-

though many standard communication systems adopt trained transmission, great

bandwidth savings are achieved when the estimation is performed using blind

estimators. The phase/frequency offset estimation is a well known topic in com-

munication theory. However, existing carrier acquisition techniques require a

preliminary gain adjustment stage. On the other hand, although assuming per-

fect gain knowledge it is possible to approach CRB in high SNR, as shown by

some results presented in (12), the accuracy of gain estimation does affect both

the estimation performance and the computational complexity of the estimation

process. Hence there’s still interest in developing gain control free estimators

preserving the slope of Cramer-Rao bound. Moreover let us remark that in a car-

rier acquisition stage, the gain factor is typically unknown, and hence, decision

directed estimation as well as gain dependent state of the art techniques result

unfeasible.

Here we propose a GMM based gain-control-free estimation procedure for

blind carrier acquisition for QAM constellations. The estimators are first devel-

oped from an analysis of the form of the constellations diagrams in presence of

phase and frequency offset. By resorting to an image-processing driven approach,

we formalized a class of estimators accounting for these regularities. More specif-

ically, employing typical image processing tools, as for instance the tomographic

projection, we devised a statistic of the observations to perform the estimation

with. This class of estimators is then correctly recast in the GMM framework,

providing an example of the location parameter estimation procedure introduced

in this thesis. Theoretical performance analysis, assessed by numerical simula-

tions, shows a significant performance improvement with respect to state-of-the

art estimators.

This thesis is organized as follows: in Chapter 1 the Generalized Method of

Moments (GMM) is briefly introduced, while in Chapter 2 the GMM estimation

procedure for shift parameter is detailed. In Chapters 3-4 an image processing

driven GMM-based blind phase and frequency offset acquisition for QAM con-

stellations is introduced. Finally in Chapter 5 we report the form of the Cramér

Rao Bound for phase and frequency offset gain control free estimation. Chapter

6 concludes this thesis.
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Chapter 1

Generalized Method of Moments

(GMM) Estimation

1.1 Introduction

In this chapter we will briefly outline the theory of Generalized Method of Mo-

ments (GMM) estimation. Unlike other estimation techniques, as Maximum Like-

lihood Estimation (MLE), GMM does not require the complete knowledge of the

statistical description of the observations. In fact, only specific moments derived

by the underlying stochastic model are needed to perform the estimation. Be-

sides, even if the probability density function (pdf) of the data is known, MLE can

be computationally unaffordable while GMM provides, under mild assumptions,

a consistent estimation at a reduced complexity.

1.2 Method of Moments Estimation

Let us consider an m-dimensional parameter α = {α1, · · ·αm} that characterizes

the distribution a related random variable x, and let px|α(x|α) denote the pdf of

the r.v x. The k-th moment of the r.v. x, provided it exists, is defined as follows:

µ(k)
x

def
= E

{
xk
}

=

∫ ∞

−∞
xkpx|α(x|α) dx (1.1)
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1.3 Generalized Method of Moments Estimation

Note that the moments in (1.1) depend on the value of the parameter α. Let us

explicitly define the relation between the k-th moment µ
(k)
x and the parameter α

via the function fk (α1, . . . , αm), that is µ
(k)
x = fk (α1, . . . , αm).

The moments in (1.1) can be estimated, after a number of realizations of x

are observed. Let us then consider a finite number N of independent realizations

of x {x0, . . . , xN−1}; the sample estimates of µ
(k)
x are obtained by averaging over

the observed sample as:

µ̂(k)
x

def
=

1

N

N−1∑

n=0

xkn (1.2)

Then the Method of Moments (MoM) estimation consists of equating the first

m sample averaged values µ̂
(k)
x and the first m theoretical moments in (1.1).





µ
(1)
x = f1 (α1, . . . , αm) = µ̂

(1)
x

...
...

...

µ
(m)
x = fm (α1, . . . , αm) = µ̂

(m)
x

(1.3)

The sample moments in (1.2), are well known to be unbiased estimates of

µ
(k)
x , provided these latter exist; moreover, by the Law of Large Numbers we

have that p.lim µ̂
(k)
x = µ

(k)
x . It can be proved that (13), if the inverse of the

fk (α1, . . . , αm)’s, that is

αk = gk
(
µ(1)
x , · · · , µ(m)

x

)
k = 1, · · ·m

are continuous in {µ(1)
x , · · · , µ(m)

x }, then the solution of (1.3) is a consistent es-

timator of α. The MoM hence provides, under mild conditions, a consistent

estimate, also in particular cases when the pdf of the data is not known, or com-

putationally untractable, provided that some theoretical moments are known a

priori. In the following Section we will extend these concepts in the sense of the

Generalized Method of Moments

1.3 Generalized Method of Moments Estima-

tion

Let us consider an m-dimensional parameter α to be estimated after the obser-

vation of a finite number N of realizations of a related n-dimensional random

2



1.3 Generalized Method of Moments Estimation

variable x, gathered in the vector x = [x0, . . . , xN−1]
T. Let px|α(x|α) denote

the pdf of the observation vector x, and f̂ a K-dimensional statistic such that

E
{
f̂
}

= f (α). From the zero-mean generalized moments

e (α) = f̂ − f (α)

we obtain an estimate α̂ by solving the so-called moment conditions:

e (α̂) = 0 (1.4)

The MoM is obtained by this formulation when K = m and by setting

e (α)
def
=
[(
µ̂(k)
x − µ(k)

x

)]K−1

k=0
(1.5)

With respect to the MoM, the Generalized Method of Moments allows to

employ any statistic, and not only the canonical moments in (1.1); generally

speaking, the k-th element of the vector e (α), namely ek (α), is the error between

the expectation of any function of x and its sample average:

ek (α) = Av {yk(x)} − E {yk(x)} (1.6)

wherease in the canonical MoM we would have

ek (α) = Av
{
xk
}
− E

{
xk
}

where we compactly denoted with the operator Av {·} the sample average opera-

tion, i.e. Av {x} = 1/N
∑N−1

n=0 xn. Moreover, always with respect to the MoM, it

is possible for the relations to exceed the number of paramters to be estimated.

WhenK > m the system is overdetermined and, generally, (1.4) has no unique

solution. In such a case, referred to as Generalized Method of Moments (GMM),

an estimation of α is obtained by minimizing the following elliptic norm of e (α):

α̂
(W)
G = arg min

α
e (α)T W e (α) (1.7)

being W a symmetric positive definite weight matrix.

It is worth pointing out that the GMM estimate α̂
(W)
G depends on the matrix

W; it can be proved (2) that, under mild regularity conditions, the GMM estimate

3



1.3 Generalized Method of Moments Estimation

α̂G is Consistent, that is p.limN→∞α̂G = α, and Asymptotically Normal (CAN)

for all positive definite weight matrices W.

Let us in fact assume that the GMM estimate α̂
(W)
G is close enough to the

true value α0 so that we can aproximate e (α) using a first order Taylor expansion

around the true value α0.

e (α) ' e (α0) + GK (α− α0)

where we denoted by GK the [K x m] gradient matrix of first derivatives GK =

∂e (α)/∂αT. Relying on this approximation, we can re-write the cost function in

(1.7) as:

e (α)T W e (α) ' (e (α0) + GK (α− α0))
T W (e (α0) + GK (α− α0))

= e (α0)
T We (α0) + e (α0)

T WGK (α− α0)

+ (α − α0)
T
GT

KWe (α0) + (α − α0)
T
GT

KWGK (α − α0)

To get the minimizer of the cost function, we have to evaluate and equate to zero

its first derivative:

∂

∂α

[
e (α)T W e (α)

]
' e (α0)

T WGK + GT

KWe (α0) + 2GT

KWGK (α − α0)

By simple algebra calculation we have:

α̂
(W)
G = α0 + (GT

KWGK)
−1

GT

KW e (α0) (1.8)

Stemming from the definition of (1.6), we have that p.lim e (α0) = 0, form which

we can conclude that:

p.lim α̂
(W)
G = α0

which proves the consistecy of the estimator α̂
(W)
G . Moreover, assuming that the

observations are such that the Central Limit Theorem applies, that is, asymptot-

ically

e (α) ∼ N (0,Σe)

we have that α̂
(W)
G is asymptotically Gaussian with mean α0, i.e. is unbiased, and

variance Var α̂
(W)
G , with:

Var α̂
(W)
G = (GT

KWGK)−1 GT

KWΣeWGK (GT

KWGK)−1 (1.9)
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1.3 Generalized Method of Moments Estimation

A summary of the asymptotic properties of the GMM estimator is found in (2).

When no weighting is comprised, i.e. the matrix W is the identity matrix

(W = I), the estimator (1.7) is known as the unweighted GMM estimator.

The weight matrix W can be selected so as to minimize the estimator’s vari-

ance and the resulting optimal matrix W(o) is proved to exhibit the following

form (2):

W(o) = W0 (α0) =
1

N

[
E
{
e (α0) e (α0)

T
}]−1

(1.10)

The optimal minimum variance GMM estimate is obtained by minimizing the

objective function as in (1.7) with W = W(o), and it is also known as the best

GMM estimate.

When the optimal weight matrix is employed, the asymptotic variance in (1.9)

simplifies to:

Var α̂
(W(o))
G =

(
GT

KΣ−1
e GK

)−1
(1.11)

If e (α) is nonlinear, generally no closed form solution is available, and numer-

ical algorithms have to be employed. Besides, it is worth noting that the optimal

matrix depends itself on the true value α0. The problem in (1.7) is solved either

directly for α, or via a coarse-to fine approach. In this latter case a suboptimal

estimate α̂
(I)
G is first found by setting W=I.

α̂
(I)
G = arg min

α
e (α)T e (α)

According to (1.10), this intermediate estimate is then used to evaluate the opti-

mal weight matrix W(o) so to obtain the optimal estimate:

α̂
(W(o))
G = arg min

α
e (α)

T
W0

(
α̂

(I)
G

)
e (α)

Both the procedures require the numerical solution of minimization problems.

In the following Chapter we will show that when the estimandum acts as a

shift on a suitable statistic of the underlying model, the GMM estimation can be

realized by a coarse-to-fine computationally efficient procedure.
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Chapter 2

GMM Estimation of Location

Parameters

2.1 Introduction

In this Chapter, we will show how suitable design of the generalized moment

e (α) allows to derive a computationally efficient, DFT based, GMM estimation

procedure in the noticeable case of α being a location parameter. We will briefly

review the concept of location parameter of a pdf family; in particular, we will

consider α being a location parameter either directly acting on the observed

random variable x or after a suitable transformation Z(x). Then, we will show

how a proper selection of f (α) both directly and through its unbiased estimate

f̂ , allows to develop a computationally efficient, DFT based, GMM estimation

procedure.

Moreover we analyze the relation between GMM and Maximum Likelihood

Estimation, investigating the case of Normally distributed statistic, for which

the best GMM estimation is indeed a ML estimation, and the case of Multino-

mially distributed statistic, for which the ML estimate is obtained by the same

estimation rule of the unweighted GMM estimator.
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2.2 Location Parameters

2.2 Location Parameters

To introduce the definition of location parameter, let us consider the aforemen-

tioned n-dimensional random variable x depending on an unknown parameter

(estimandum) α.1 Let us also consider a transformation Z : Kn → Rl and the

corresponding transformed random variable z = Z (x). Then, α is said to be a

location parameter for the pdf family pz|α
(
z(1), . . . , z(l−1), z(l)|α

)
when this latter

depends on α only through the difference z(l) − α:2

pz|α
(
z(1), . . . , z(l−1), z(l)|α

)
= pz|α

(
z(1), . . . , z(l−1), z(l) − α|0

)
(2.1)

As an example concerning the transformation Z(x), a noticeable case undoubtedly

regards the scale parameter estimation problem, occuring when

px|α
(
x(1), . . . , x(l−1), x(l)|α

)

= px|α

(
x(1), . . . , x(l−1),

x(l)

α

∣∣∣∣ 1
)

The transformation Z(x) realizing the exponential warping of the l-th axis, i.e.

Z(x) =




z(i) = x(i) for i = 0, . . . , l − 1

z(l) = log x(l)

turns the scale parameter in a location one and it is very simple matter to verify

that (2.1) now holds having care to substitute α with logα.

After these settings, let us consider the following nonlinear moment:

f (ξ − α) =
1

∆

ξ+∆/2∫

ξ−∆/2

dz(l)

·
[∫ +∞

−∞
· · ·
∫ +∞

−∞
h
(
z(1), . . . , z(l−1)

)
· pz|α (z|α) dz(1) · · · dz(l−1)

]
(2.2)

1From now on we assume for the sake of simplicity, and without loss of generality, that α is
a one-dimensional parameter, i.e. m=1; extension of the analysis to the multidimensional case
is straightforward.

2If (2.1) holds for Z(x) = x then α is a location parameter for the pdf family
px|α

(
x(1), . . . , x(n−1), x(n)|α

)
.
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2.3 GMM Estimation of Location Parameters

being h
(
z(1), . . . , z(l−1)

)
an (l − 1)-dimensional function that can be specified

according to different design criteria. As a consequence of (2.1), the nonlinear

moment f (ξ − α) depends only on ξ −α, i.e. since α is a location parameter for

the pdf family pz|α
(
z(1), . . . , z(l−1), z(l)|α

)
, it plays the role of a shift parameter

on the nonlinear moment f (ξ − α).

To gain more insight on the nonlinear moment f (ξ − α) defined in (2.2), we

observe that, when h
(
z(1), . . . , z(l−1)

)
= 1, it reduces to the normalized area of

the marginal pdf pz(l)|α
(
z(l)|α

)
over an interval of width ∆ centered in ξ:

f (ξ − α) =
1

∆

ξ+∆/2∫

ξ−∆/2

dz(l) ·
[∫ +∞

−∞
· · ·
∫ +∞

−∞
pz|α (z|α) dz(1) · · · dz(l−1)

]

On the other hand, when h
(
z(1), . . . , z(l−1)

)
is not constant, a weighting of the

variables (z(1), . . . , z(l−1)) is performed in carrying out the (l − 1)-dimensional

integral saturation in (2.2).

The sample estimation of f (ξ − α) on a set of K points ξk, k = 0, . . . ,K −
1 can be conducted by means of a weighted histogram where each occurrence

of the variable z(l) is attributed a weight h
(
z(1), . . . , z(l−1)

)
depending on the

co-occurrences of the variables z(1), · · · z(l−1). Specifically, when a sample of N

statistically independent realizations zn, for n = 1, . . . , N is available, we form

the following weighted histogram trough the following accumulation on intervals

large ∆k:

f̂k =
1

N ∆k

N∑

n=1

h
(
z(1)
n , . . . , z(l−1)

n

)
rect

(
z

(l)
n − ξk
∆k

)
(2.3)

The evaluation of the variances-covariances of the sample estimates f̂k defined in

(2.3) are reported in App. A.

2.3 GMM Estimation of Location Parameters

Let us assume f (ξ) band-limited so that the rate 1/∆ assures Nyquist sampling;1

the uniform sampling of f (ξ − α) in K equispaced points ξk = (2k + 1)∆/2, for

1We will assume band-limitation to be verified in all the subsequent analytical developments.

8



2.3 GMM Estimation of Location Parameters

k = 0, . . . ,K − 1, is gathered in the vector f (α):

f (α) =
[
f (ξk − α)

]K−1

k=0

Taking ∆k = ∆ in (2.3), the corresponding unbiased estimates f̂k are gathered in

the vector f̂ :

f̂ =
[
f̂k
]K−1

k=0

and the following generalized moment is formed:

e (α) = f̂ − f (α) (2.4)

Stemming from the definition of f̂ and f (α), the generalized moment defined

in (2.4) satisfies the moment conditions expressed in (1.4). Hence, considering

the elliptic norm:

Q(α;W) =
[
f̂ − f (α)

]T

W
[
f̂ − f (α)

]

the GMM estimate of α is obtained as follows:

α̂
(W)
G = arg min

a
Q (a;W) (2.5)

We observe that the nonlinear moments f (α) and f (0) are obtained by sampling

f (ξ − α) and f (ξ), which are equal unless the shift α, and hence the elements

of f (α) can be obtained from the elements f (0) by suitable interpolation. Using

this property, in the following we show how GMM location parameter estimation

can be obtained by a computationally efficient approach based on the DFT.

2.3.1 Unweighted GMM Estimation

Let us first consider the unweighted GMM cost function obtained for W=I:

Q(α; I) = (f̂ − f (α))T(f̂ − f (α))

= f̂T · f̂ + f (α)T · f (α) − 2 f̂T · f (α)
(2.6)

9



2.3 GMM Estimation of Location Parameters

In order to exploit the cyclic convolution property of the DFT for the evaluation

of the cost function (2.6), we observe that, since f (ξ − α) is band-limited, the

moment f (ξ − α) is obtained by interpolation of f (ξ) as:

f (ξ − α) =
∞∑

n=−∞

f (ξn)
sin(K(ξ − α− ξn)/2)

K(ξ − α− ξn)/2
(2.7)

and the sequence of samples f (ξk − α) is obtained by low-pass filtering the se-

quence f (ξk). Besides, to implement the filtering using the DFT, without loss

of generality we may assume that the nonlinear moment f (ξ) is periodic mod-

ulo 2π,1 so as to have ∆ = 2π/K. With this position, the sequence of samples

f (ξk − α) is obtained from the sequence f (ξk) as a cyclic convolution between

the sequences of samples2:

f (ξk − α) =
K−1∑

n=0

f (ξn)
sin(K(ξk − ξn − α)/2)

K sin((ξk − ξn − α)/2)
(2.8)

Using a compact matrix form, we have:

f (α) = S(α) · f (0) (2.9)

the matrix S(ξ) being the periodic sinc interpolation matrix, with entries:

||S(α)||k,n =
sin(Kω/2)

K sin(ω/2)

∣∣∣∣
ω=(k−n)∆−α

Notice that the matrix S(α) is orthogonal, i.e. S(α)TS(α) = I, and hence the

squared `2 norm of the vector f (α) does not depend on α:

f (α)T · f (α) = f (0)T · S(α)TS(α) · f (0) = f (0)T · f (0)

1This is always possible when f (ξ) is different from zero on a finite interval, while it has
to be considered in an approximate fashion when a sufficiently accurate version is obtained by
windowing on the ξ axis.

2In fact we have
+∞∑

k=−∞

sin(K(ξ − k2π)/2)
K(ξ − k2π)/2

=
sin(Kξ/2)
K sin(ξ/2)

.
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2.3 GMM Estimation of Location Parameters

so that the minimal value of Q(α; I) is found by maximizing the scalar product

f̂T· f (α) w.r.t. α:

α̂
(I)
G = arg min

a
Q (a; I) = arg max

a
f̂T· f (a) (2.10)

Using (2.9), the estimation rule is finally expressed as follows:

α̂
(I)
G = arg max

a
f̂T· S(a) · f (0) (2.11)

Given the shift nature of the parameter, a fast, computationally efficient, DFT

based procedure can be employed to obtain α̂
(I)
G . Let us discretize the range [0, 2π)

of the cyclic parameter in K intervals of width 2π/K. Then, since ∆ = 2π/K, it

results:

S(2πk/K) =

{
I k = 0
Dk k = 1, · · ·K − 1

being D=(DT)−1 the following orthogonal unit cyclic shift matrix:

D
def
=




0 · · · · · · 0 1

1 0
. . .

. . . 0

0 1 0
. . . 0

...
. . .

. . .
. . .

...
0 · · · 0 1 0




The index kc corresponding to the coarse estimate with resolution 2π/K,

namely α̂
(I)
G =2πkc/K, is obtained from (2.11) rewritten as follows:

kc = arg min
k

Q

(
2πk

K
; I

)
= arg max

k
f̂T· Dk · f (0) (2.12)

Due to the cyclic shift property of the operator D, in the rightmost hand side of

(2.12) we recognize the cyclic cross-correlation between the sequences collected in

the vectors f̂ and f (0); thus, the maximization over k can be conducted by prop-

erly using the DFT of both the sequences since the index kc is nothing else that

the lag that locates the cross-correlation maximum. The overall computational

complexity is thus significantly reduced by choosing the value of K according to

specific FFT algorithms.
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2.3.2 Minimum Variance GMM Estimation

Let us now consider the best GMM estimator, i.e. the GMM estimator that

minimizes Var
{
α̂

(W)
G

}
with respect to the weight matrix W; the best GMM

estimator weight matrix

W(o) = arg min
W

Var
{
α̂

(W)
G

}

is known to be found for W0 (α) =Ω (α)−1 /N , being

Ω (α)
def
= E

{
(f̂ − f (α))(f̂ − f (α))T

}

the covariance matrix of the measurements (2).

Since the evaluation of the inverse measurements covariance matrix Ω (α)
−1

requires the knowledge of the parameter α, a coarse-to-fine approach can be

envisaged for the minimization of Q(α;W0 (α)). Namely, once a coarse GMM

estimate α̂
(c)
G is found,1 the optimal GMM cost function Q(α;W0 (α)) can be

approximated as follows:

Q(α;W0 (α)) ≈ Q(α;W0

(
α̂

(c)
G

)
)

=
[
f̂ − f (α)

]T

W0

(
α̂

(c)
G

)[
f̂ − f (α)

]

so as to obtain a fine estimate as follows:

α̂
(W(o))
G = arg min

a
Q
(
a;W0

(
α̂

(c)
G

))

Since the term f̂T · W0

(
α̂

(c)
G

)
· f̂ does not depend on α, we can also consider the

following estimation rule:

α̂
(W(o))
G = arg max

a
J
(
a;W0

(
α̂

(c)
G

))
(2.13)

with

J
(
a;W0

(
α̂

(c)
G

))
= f̂T · W0

(
α̂

(c)
G

)
· f (a)

− 1

2
· f (a)

T · W0

(
α̂

(c)
G

)
· f (a)

(2.14)

1As previously described, a coarse GMM estimate of α can be found by minimizing (2.6),
i.e. from (2.12) and α̂(c)

G = α̂
(I)
G =2πkc/K .
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2.3 GMM Estimation of Location Parameters

The search for the maximum can be conducted by means of a suitable interpola-

tion after a few values of J
(
a;W0

(
α̂

(c)
G

))
have been evaluated around the coarse

estimate α̂
(c)
G . For instance, following the approach (15), once a rough estimate

α̂
(c)
G Has been obtained, a parabolic approximation for the GMM cost function

J
(
a;W0

(
α̂

(c)
G

))
around its maximum can be employed to calculate a fine esti-

mate α̂
(f)
G , see (4.19) . The estimation form (4.19) is analytically tractable, and

it allows to evaluate the asymptotical performance of the optimal GMM based

estimation. Moreover, the computational cost is not significantly increased, since

only few values of the objective function need to be evaluated, and a fast proce-

dure for computing W0

(
α̂

(c)
G

)
can be devised, as summarized in 2.3.3.

α̂
(f)
G = α̂

(c)
G − ∆

2

·
J
(
α̂

(c)
G + ∆;W0

(
α̂

(c)
G

))
− J

(
α̂

(c)
G − ∆;W0

(
α̂

(c)
G

))

J
(
α̂

(c)
G +∆;W0

(
α̂

(c)
G

))
−2J

(
α̂

(c)
G ;W0

(
α̂

(c)
G

))
+J
(
α̂

(c)
G −∆;W0

(
α̂

(c)
G

))
(2.15)

2.3.3 On the Inversion of the Variance-Covariance Matrix

If the coarse estimation α̂
(c)
G is chosen to be as the unweighted GMM estima-

tion, that is the solution of (2.6), the inversion of the variance-covariance matrix

Ω
(
α̂

(c)
G

)
can be conducted with an extermely reduced computational complexity.

Let us infact suppose to have evaluate a coarse estimation α̂
(c)
G = α̂

(I)
G ; from

(2.12) we have that α̂
(c)
G =2πkc/K.

For α̂
(c)
G =2πkc/K, and since α is a cyclic location parameter, the covariance

matrix factorizes as follows:

Ω
(
α̂

(c)
G

)
= DkcΩ(0)(DT)kc

Stemming from the orthogonality of the matrix D, the inverse covariance matrix

Ω
(
α̂

(c)
G

)−1

is simply evaluated as:

Ω(α̂
(c)
G )−1 = DkcΩ(0)−1(DT)kc

This relation can be exploited to pre-calculate offline and store the inverse matrix

Ω(0)−1, and to obtain online the matrix Ω
(
α̂

(c)
G

)−1

by columns and rows cyclic

shifting.
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2.4 GMM and Maximum Likelihood Estimation

As far as the computational load needed to compute the GMM weighted cost

function in the three points α = α̂
(c)
G and α = α̂

(c)
G ±∆ = α̂

(c)
G ±2π/K is concerned,

note that (2.14) can be written as follows:

[
f̂ − 1

2
f
(
α̂

(c)
G + q · 2π/K

)]T

W0

(
α̂

(c)
G

)
f
(
α̂

(c)
G + q · 2π/K

)

=

[
D−kc f̂ − 1

2
Dqf (0)

]T

Ω(0)−1 Dq f (0)

(2.16)

where q = 0 indicates α = α̂
(c)
G , and q = ±1 respectively indicates α = α̂

(c)
G ±

2π/K. Thus, from (2.16) we see that it is sufficient to pre-calculate and store only

the three vectors Ω(0)−1 Dq f (0), and the three scalars 1
2
f (0)

T
D−q Ω(0)−1 Dq f (0),

while the product D−kc f̂ is realized by a simple cyclic rotation of the elements of

f̂ . Therefore, the total number of arithmetic operations is 3K muls/adds.

2.4 GMM and Maximum Likelihood Estimation

In this Section we discuss the relation between GMM estimation and MLE. Af-

ter having recalled that under the assumption of Guassianity of the employed

statistic the optimally weighted GMM estimator coincides with the Maximum

Likelihood (ML) estimator, we will show that under the assumption of multino-

mially distributed statistic, if the estimandum is a shift parameter the MLE is

still obtained by the same estimation rule as the unweighted GMM estimation.

Let us consider, from now on, that e (α) is a sufficient statistic for the esti-

mation problem under examination.

2.4.1 Normally Distributed Statistic

Let us assume that the data x are such that the central limit theorem applies to

the generalized moments (2.4):

e (α) ∼ N (0,Σe) (2.17)

being Σe the variances/covarainces matrix of e (α).

14



2.4 GMM and Maximum Likelihood Estimation

Within this assumption, the ML estimate of the parameter is given by:

α̂ML = arg min
α

QML (α)

QML (α) = e (α)T Σ−1
e e (α)

(2.18)

It can be easily recognized that the minimization (2.18) is exactly the same of

(1.7) where Σ−1
e is employed as weight matrix in lieu of W. Recalling that the

minimum variance GMM estimation employees the optimal weight matrix

W(o)=
1

N

[
E
{
e (α) e (α)T

}]−1
= Σ−1

e

it stems out that the maximization of the log-likelihood function is obtained

by minimizing exactly the same objective function in (2.14). Thus, within the

assumption of Gaussianity for the statistic at hand, it remains proved that the

best GMM estimator and the ML estimator are the same.

2.4.2 Multinomially Distributed Statistic

Here, we show how the MLE can be conducted at a reduced computational com-

plexity when the underlying distribution is multinomial.

Let us consider the nonlinear moment (2.2) with h
(
z(1), . . . , z(l−1)

)
= 1. and

a complete class of mutually exclusive events Ek = {|z(l) − ξk| < ∆/2} for k =

0, . . . ,K−1. Hence, within a proportionality factor equal to ∆, the nonlinear

moment f (ξk − α) now takes the meaning of probability of the event Ek.

Let νk the number of occurrences of Ek in N statistically independent trials

so that the probability distribution of the K random variables ν0, . . . , νK−1 is

multinomial:

P (ν0, . . . , νK−1) =
N !

K−1∏

k=0

νk!

·
K−1∏

k=0

[∆ · f (ξk − α)]
νk

These statistics actually represent an histogram; therefore, the herein pre-

sented multinomial model of the observations applies to any framework in which

the measurements are collected in the form of histogram. For instance, this ap-

proach is quite common in communications applications, when physical measure-

ments are collected for calibration or characterization purposes (see for instance
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2.4 GMM and Maximum Likelihood Estimation

(16)-(18)), as well as in image processing applications, where the evaluation of the

image histogram allows to compactly characterize at the first order the otherwise

high-dimensional image domain, for restoration, classification, or watermarking

purposes (19), (20).

Stemming from these observations, the log-likelihood of f̂k = νk/N∆ can be

written as:

l(f̂ ; f (α)) = A+N∆
K−1∑

k=0

f̂k ln (f (ξk − α))

A = lnN ! − ln
K−1∏

k=0

(N∆ · f̂k)! +N∆
K−1∑

k=0

f̂k ln∆

(2.19)

MLE is obtainend by maximizing (2.19) with respect to α:

α̂ML = arg max
α

l(f̂ ; f (α)). (2.20)

After having compactly denoted f̃ (α)
def
= ln f (α), and neglecting the term A in

(2.19) and all the other terms in (2.20) that do not explicitly depend on α, we

end up with the following ML estimation rule:

α̂ML = arg max
α

f̂T · f̃ (α) (2.21)

Then, since α is a location parameter for the statistic f (ξk − α), we can rewrite

the inner product in (2.21) as the cross-correlation function between the vector

collecting the values of the statistic and its expected value transformed by a

suitable logarithmic nonlinearity:

α̂ML = arg max
α

C(α)

C(α) =

K−1∑

k=0

f̂k ln f (ξk − α)
(2.22)

Recalling the previous discussion concerning with the computational issues in

the maximization (2.12), we conclude that the structure of the ML maximiza-

tion (2.22) allows to employ a fast FFT based grid search attained at a reduced

computational complexity.

Moreover, it is very interesting to notice that the estimation rule (2.22) is

very close to the unweighted GMM one in (2.10), from which it differs only by
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employment of the nonlinearly transformed f̃ (0) instead of f (0). The difference

with respect to the best GMM estimator is that now weighting is implicitly per-

formed by the logarithmic nonlinearity, resulting in a significant reduction of the

overall computational complexity.

Again α̂ML is obtained in a two-stage, coarse-to-fine, estimation procedure;

the coarse estimate provided by the discrete cross-correlation is definitely limited

by the resolution given by the value of K; a fine estimate is attained by means

of a suitable interpolation of the objective function around its maximum.

Let us finally remark that the cost function defined according to the ML

criterion as in (2.20) is generally non-convex; the pursuit of its global maximum

is then a nontrivial task. However the DFT approach, direct consequence of the

shift nature of the estimandum with respect to the statistic employed, allows an

efficient detection of the global maximum of the likelihood, within a resolution

given by the value of K.

2.5 Performance Analysis

Here we outline the performance analysis of both the GMM based and the reduced

complexity ML estimators introduced in the previous Sections.

The asymptotic estimation variance of the best GMM estimator is proved to

be given by (1; 2):

N · Var
{
α̂

(W(o))
G

}
= ∇αf (α)T · W(o) · ∇αf (α) (2.23)

where the gradient vector ∇αf (α) collects the first derivatives of nonlinear mo-

ment in (2.2) with respect to the parameter.

∇αf (α)
def
=

[
∂f (ξ0 − α)

∂α
, . . . ,

∂f (ξK−1 − α)

∂α

]T

Since the analytical expression of these derivatives may be quite involved, we

conduct the analytical performance evaluation resorting to the parabolic inter-

polation formulas as in (15), where the objective function around its maximum

is approximated with the second order Taylor expansion. Following the guide-

lines of (15; 41), the asymptotic variance of the fine estimate α̂
(f)
G in (2.15)
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can be expressed as a linear combination of the variances and covariances of

J
(
ξ;W0

(
α̂

(c)
G

))
for ξ = α̂

(c)
G +m∆, m = 0,±1.

Let us set:

x
def
= J

(
α̂

(c)
G + ∆;W0

(
α̂

(c)
G

))
, X

def
= E {x} ,

y
def
= J

(
α̂

(c)
G − ∆;W0

(
α̂

(c)
G

))
, Y

def
= E {y} ,

z
def
= J

(
α̂

(c)
G ;W0

(
α̂

(c)
G

))
, Z

def
= E {z}

c = X − Y, d = X − 2Z + Y.

Then, within a first-order approximation of (2.15), the variance of α̂
(f)
G is given

by:

Var {α̂(f)
G } = 2∆2

[(d− c

d2

)2

Var {x} +

(
d + c

d2

)2

Var {y} +

(
2c

d2

)2

Var {z}

−
(
d2 − c2

d4

)
Cov {x, y}+

(
2dc + 2c2

d4

)
Cov {z, y}+

(
2dc− 2c2

d4

)
Cov {x, z}

]

(2.24)

As far as the ML estimator is concerned, the same results apply, where the appro-

priate objective function as in (2.22) is considered instead of J
(
α;W0

(
α̂

(c)
G

))

The mean values X,Y,Z and the variance and covariances of x, y, z of both the

objective functions have been analytically evaluated; the details of the derivation

are reported in Apps. B and C.
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2.6 Final Remarks

The approach here proposed is definitely general and can be applied whenever

a statistic can be found on which the estimandum acts as a location parameter,

providing a CAN estimation at a low computational complexity, also when the

pdf of the data is either unknown or analytically intractable. With respect to the

general GMM framework, the shift nature of the parameter helps

1. to solve the, generally non-convex, unweighted GMM minimization prob-

lem in an extremely computational efficient way, resorting to a DFT-based

approach

2. to perform the inversion of the variance-covariance matrix with a signifi-

cant complexity reduction, via a simple columns and row cyclic shift of the

previously evaluated covariance matrix for α = 0

3. to perform, with a reduced complexity, the direct maximization of the

log-likelihood function, given that the observations are multinomially dis-

tributed.

In the following chapters we will apply these general principles to the case study

of blind phase acquisition for QAM constellations.

The reasons why this case study has been chosen are the followings. First,

although the ML cost function is straightforwardly written in the case of known

gain, there is no exact way to maximize it and approximate methods have been

found only for high or low SNR; then, exhaustive search techniques or suitably

initialized gradient-based search techniques should be implemented, at a very

high computational cost. Besides, in case of unknown gain, proper evaluation

of the ML cost function requires a suitable averaging over all the possible gain

determinations; otherwise, MLE for known gain has to be applied after a gain

control stage, and this worsens the ML estimator performance. Second, although

several suboptimal estimators have been envisaged that differently trade-off ef-

ficiency versus computational complexity, the finding of a gain-control-free high

SNR near efficient estimator is still open, especially on high cardinality constel-

lations.
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Chapter 3

GMM-based Phase Offset

Estimation:

an Image Processing Approach

3.1 Introduction

The phase acquisition problem is common to many band-pass digital communi-

cation systems. In fact, even when the communication channel is ideal, i.e. it

solely attenuates and delays the transmitted signal, the random carrier phase

rotation between local oscillators generates an unknown phase-offset that must

be recovered resorting to trained or blind methods, depending on the application

requirements.

Many blind phase estimation algorithms have been devised by exploiting

Higher Order Statistics of the received signals. In (23), an estimator based on the

evaluation of the average of the fourth-order power of the received signal samples

has been developed by modification of the estimator described in (24). It is worth

noting that the estimator in (23) does not need any gain control. In (25), it is

described an estimator approximating the Maximum-Likelihood (ML) estimator

for low signal-to-noise ratio values; in (26), this estimator has been shown to be

equivalent to the fourth-power estimator of (23). Several improvements to (23)

have been investigated, resorting to eighth-order statistics (27), to data aided es-

timation (28), and to ML estimation for not equiprobable symbols (29). In (30),
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3.1 Introduction

a phase histogram based estimator has been derived according to a high SNR

approximation of the ML criterion. The estimator requires a preliminary hard-

decision stage and, for that, it needs gain control already performed; moreover,

as shown in (12), its accuracy presents a constellation dependent penalty with

respect to Cramér Rao Bound (CRB).

Much research efforts have been spent to strive the estimation accuracy loss

due to the fact that, due to the finite number of measurements, the constellation

points are observed with relative frequencies that differ from their nominal proba-

bilities. This effect definitely limits the estimator performance in high SNR since

it appears even when additive disturbances are not present. Even though this

circumstance does not substantially affect the accuracy of estimators operating in

tracking mode, where decision-directed based estimation techniques are usually

employed, it definitely limits the accuracy of estimators operating in acquisition

mode. In the sequel, we will refer to this effect as assortment-noise .

To reduce the assortment-noise, the received data can be suitably selected

by certain nonlinear transformations (26; 31), but this selection results in severe

accuracy loss for high cardinality constellations. In (21), it is described a general-

ized form of low-SNR ML approximation that is based on a suitable, constellation

dependent, nonlinear pre-processing stage, which also requires knowledge of both

the signal gain and the noise power. The estimator accuracy presents the same

slope as CRB, but, since the ML approximation substantially holds only for small

order constellations, it exhibits a performance loss for increasing constellation car-

dinality. This loss is mainly due to the nonlinear pre-processing of the received

signal samples, which counteracts the above said finite sample effects by filtering

out those samples judged unreliable for the estimation, thus reducing the overall

number of samples used in the estimation.

However, existing carrier acquisition techniques typically require a prelimi-

nary gain adjustment stage. On the other hand, although assuming perfect gain

knowledge it is possible to approach CRB in high SNR, as shown by some results

presented in (12), the accuracy of gain estimation does affect both the estimation

performance and the computational complexity of the estimation process.

Here we present a novel blind phase-offset estimator for general QAM signals.

The estimator stems form the observation that, under the presence of a phase
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3.1 Introduction

offset θ, the constellation diagram of the received samples, results counterclock-

wise shifted of θ with respect to the reference case of zero phase offset. The

information about the phase offset is then encoded in the constellation diagram

of the received samples, and can be evaluated by measuring the shift of each

constellation point with respect to its original position in the diagram. In this

sense, the radial position of the constellation points carries no information about

the phase offset. The dependence on the magnitude of the received samples can

be then suppressed by a suitable saturation of the magnitude variable.

In detail we estimate this shift by measuring the cyclic shift of the pdf of the

phase of the received signal with respect to the reference pdf of the received sam-

ples with zero phase offset.1 The received signal phase pdf is estimated through

a canonical histogram procedure, and estimation of the cyclic phase shift is con-

ducted according to well known optimal matched-filtering and time-delay estima-

tion techniques,2 by calculating the cross-correlation between the phase histogram

measured on the received data and a reference phase pdf analytically evaluated

within the zero phase-offset hypothesis. The location of the maximum of such

cross-correlation is taken as the estimate of the unknown phase-offset. Moreover,

due to the periodicity modulo 2π of the phase, the cross-correlation is a cyclic

one and efficient Fast Fourier Transform (FFT) based techniques can be fruitfully

employed.

The cyclic cross-correlation between the measured phase histogram and a ref-

erence, analytically evaluated, pdf constitutes a concrete novelty with respect

to previous histogram based estimation procedures presented in (30), which, in

addition, require a preliminary gain adjustment and magnitude hard decision

stage. The magnitude hard decision stage directly originates from the high SNR

approximation of the ML criterion, and, quoting from (30), it is needed to se-

lect “only the (constellation) symbols whose amplitude most closely matches the

amplitude of the received data”. In our approach, the reference phase pdf is

1In fact, the counterclockwise shift on the constellation diagrams, translates on the pdf of
the received signal phase as a cyclic shift by θ.

2See (35) for a derivation of optimal discrete matched-filters, and (15) and reference therein
included for a discussion of optimal discrete-time techniques for time-delay estimation, respec-
tively.
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3.1 Introduction

first analytically evaluated within the zero phase-offset hypothesis, and then the

phase histogram calculation is carried out without any preliminary gain adjust-

ment and magnitude hard decision. When evaluated around its maximum, the

cyclic cross-correlation achieves the matching of the received data, accounted for

by the weighed phase histogram, and the constellation symbols, accounted for by

the reference phase pdf.

Actually, we present the estimation procedure in an extended version that con-

siders the tomographic projection of the bidimensional (magnitude/phase) pdf of

suitable nonlinear transformations of the received data. This, in turn, results in a

magnitude weighed phase histogram and in an increased overall estimation accu-

racy, as shown by theoretical analysis and numerical simulations here performed

to assess the estimator performance.

In summary, the novel phase-offset estimator is characterized by a low com-

putational complexity and it does not need the knowledge of both the signal gain

and the noise power, but only of the SNR.1

Since the said tomographic projection of the magnitude/phase pdf will play

a key role during the whole of this work, we will refer to it as the Constellation

Phase Signature (CPS).2 Throughout this Chapter, we will analytically evaluate

the mean, the variances/covariances of the sample CPS. We will also evaluate

the analytical form of the ideal CPS, thus extending a result obtained in (30),

and we will show that the sample CPS is an unbiased and consistent estimator

of the ideal CPS. Moreover, we will also conduct the asymptotical performance

analysis of the related, cross-correlation based, phase-offset estimator.

To assess the estimator performance, we will show a set of numerical simu-

lation results that illustrates the comparison between the accuracies of the CPS

based estimator and of some selected existing blind estimators. In particular,

as the SNR increases, the comparison shows that the slope of the curve of the

CPS based estimator variance and the slope of CRB, calculated in the case of

1We will show that only a very rough estimate SNR estimate is needed.
2In principle, the estimator does require the knowledge of the signal constellation; however,

we remark that the CPS itself exhibits relevant constellation dependent features that can be
exploited for constellation detection (classification). Thus, unless differently stated, we will
assume in the following that the constellation is known, either a priori, or through a preliminary
constellation detection stage.
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3.2 Discrete-Time Signal Model

unknown gain, as detailed in Chapter 5, are the same. Let us also say that accu-

racy comparison has been performed assuming, when needed, perfect knowledge

of the signal gain for competitor estimators, while our estimator is gain control

free.

This estimation technique can be correctly recast in the GMM-based frame-

work, and, moreover, given the cyclic shift nature of the estimandum, it is a

valid case study for the GMM estimation procedure introduced in the pervious

chapter. We will show that the CPS-based estimator can be interpreted as an

application of the unweighted GMM estimation procedure and we will extend

the estimation rule in the sense of the best GMM estimation, i.e. the optimally

weighted estimator that minimizes the estimation variance. Moreover, we carry

out the asymptotical performance analysis for both the unweighted and the best

estimator. We report several simulation results that assess the performance anal-

ysis and show that a significant accuracy improvement is attained by the best

GMM estimator at medium-high Signal-to-Noise Ratio (SNR) values, where the

weighted estimator approaches the CRB. Furthermore, we show that the values

of the CPS, under a particular setting, can be recognized to represent frequencies

of recurrence of the received samples phase, so that the reduced complexity MLE,

as detailed in Section 2.4.2, can be evaluated. Simulation results show that, for

high SNR, the CRB is attained with extremely low complexity.

3.2 Discrete-Time Signal Model

Let us consider a QAM based communication link, and let S[n] be the n-th

transmitted symbol drawn from a power normalized M -ary constellation A =

{S0, .., SM−1}. At the receiver side, after front-end signal processing, a complex

low-pass version of the received signal is available for sampling, and let X[n] be

the samples of the received signal extracted at symbol rate. We will assume the

following analytical model of the signal samples X[n]:

X[n] = Gc e
jθ S[n] +W [n] (3.1)

whereGc is the unknown overall gain, θ is the unknown phase-offset, andW [n] is a

realization of a circularly complex Gaussian stationary noise process, statistically
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3.3 Image Processing Approach to Phase-Offset Estimation

independent of S[n]. The signal-to-noise ratio (SNR) is defined as SNR
def
= G2

c/σ
2
W ,

being σ2
W

def
= E {|W [n]|2} the noise variance.

3.3 Image Processing Approach to Phase-Offset

Estimation

According to (23; 25; 30; 32), we retain a zero frequency-offset assumption, in

order to address here only the estimation of the constant1 phase-offset θ given a

sample of N consecutive observations X[n], n = 0, . . . , N − 1. The estimation

is carried out within an inherent π/2 ambiguity interval due to the quadrant

constellation symmetry. Once the phase has been recovered and compensated,

the sequence of received samples is still rotated by an unknown value kπ/2, k =

0, . . . , 3; this ambiguity can be recovered by training-based procedures or by-

passed if differential phase encoding or other suitable symbol coding is adopted

(see for instance (34)).

Following the guidelines in (21), let us consider the following nonlinear func-

tionof the received signal samples X[n]:

Y [n] = |X[n]|P · ej4·argX [n] (3.2)

Let us remark that measurements whose phases differ by π/2 are indistinguishable

in (3.2).

Nonlinear transformations folding the received samples by assigning the phase

argument 4 · argX[n] are explicitly considered in (21; 26) and implicitly applied

in (30), where the received signal samples are projected in the first quadrant to

take into account the constellation symmetry. In (32), a particular case of (3.2)

is exploited, namely the fourth-order power of the measurements (P = 4).

1When the phase estimator is applied in presence of an unknown frequency offset, this latter
must be estimated and compensated before the phase estimation stage. Thus, a degradation
of the phase estimator performance is expected. In fact, for a large number of observation,
the CRB for unbiased phase-offset estimators is approximately one quarter of the same CRB
calculated in presence of a frequency offset nuisance parameter (12). A CPS based frequency
estimator is presented in the next Chapter.
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3.3 Image Processing Approach to Phase-Offset Estimation

Generally speaking, the nonlinearity (3.2) tends to cluster the measurements

in particular angular windows of the complex plane, in a fashion that depends

on the transmitted constellation. In fact, let us observe that, after the nonlin-

earity (3.2), measurements drawn from a specific constellation exhibit a typical

fingerprint, i.e. a particular clustered distribution of Y [n].

In Fig.3.1 we report the constellation diagrams of the received samples, and

the nonlinearly transformed samples, along with the corresponding constellation

points obtained in the reference case of zero phase offset and SNR → ∞. From

these diagrams it is clear the effect of both the phase offset, which counterclock-

wise shifts the clusters of Y [n] by 4θ and the gain Gc, which spreads the clusters

over the radial direction. The information about the phase offset is directly en-

coded in the phase location of each cluster in Fig.3.1, while the radial location

carries no information about the phase offset. To suppress the influence of the

gain nuisance parameter, we need to saturate the radial dependency on the mag-

nitude of the clusters of which Y [n] is constituted.

This can be obtained by considering a magnitude weighted tomographic pro-

jection of the bidimensional pdf of the magnitude/phase of the received samples.

What we expect after this operation, is a monodimensional function constituted

by a number of pulses whose number and location depend on the clusters in

Fig.3.1 (and hence on the constellation), and whose shape depends on the noise

distribution. In this domain the counterclockwise shift produced on the cluster

by the presence of phase offset translates in a cyclic shift of 4θ with respect to

the zero phase offset reference case.
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3.3 Image Processing Approach to Phase-Offset Estimation

Figure 3.1: Received samples X[n] (left) and nonlinearly transformed samples

Y [n] (right), 16-QAM. The white dots refer to the reference noise free case with

zero phase offset, i.e. θ = 0.

Figure 3.2: Area of accumulation of nonlinear transformed received signal sam-

ples, P = 4,16-QAM and 32-QAM constellation, noisy case.

Let us drop the time index n for the sake of readability. In the noise free

case, the pdf of the random variable Y is expressed by a suite of Dirac pulses.

Let us consider the polar representation Y = rejϕ, so to write, for equiprobable
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3.3 Image Processing Approach to Phase-Offset Estimation

constellation symbols:

p
R,Φ

(r, ϕ; θ) =
1

M

M−1∑

m=0

δ(r −GP |Sm|P ) · δ(ϕ− 4θ − 4 arg Sm) (3.3)

where we have not explicitly taken into account that certain groups of pulses

share the same phase location.1

The marginal pdf of the phase ϕ is obtained by saturating (3.3) with respect

to the magnitude r:

p
Φ
(ϕ; θ)

def
=

∫ +∞

0

p
R,Φ

(r, ϕ; θ) dr =
1

M

M−1∑

m=0

δ(ϕ− 4θ − 4 arg Sm) (3.4)

From (3.4), we see that the phase pdf p
Φ

(ϕ; θ) cyclically shifts of 4θ under a

phase-offset θ:

p
Φ

(ϕ; θ) = p
Φ
(ϕ− 4θ; 0)

In presence of additive noise, the Dirac pulses in (3.4) become wider pulses whose

shape depends on the SNR and the noise pdf,2 but the cyclic shift due to the

phase-offset θ still applies.

Now, let us consider a magnitude weighed version of (3.4), namely:

g(A,θ,P )

Φ
(ϕ)

def
=

∫ +∞

0

r · p
R,Φ

(r, ϕ; θ) dr

=
1

M

M−1∑

m=0

GP
c |Sm|P δ(ϕ− 4θ − 4 arg Sm)

(3.5)

In (3.5) we have performed a tomographic projection of the magnitude weighed

phase pdf r p
R,Φ

(r, ϕ; θ); we will refer to the function g(A,θ,P )

Φ
(ϕ) as the Magnitude

1From this expression we recognize that θ is a location parameter for the pdf family
p
R,Φ

(r, ϕ; θ) according to the condition in (2.1).
2For SNR values high enough so to retain the approximation

Y [n] ' GP ej4θ|S[n]|P
(

1 +
<
{
W [n]e−jP ·argS[n]

}

|S[n]|P

)

· ej4argS[n] exp

(
j4

=
{
W [n]e−j4·argS[n]

}

|S[n]|4

)

the shape of the Dirac pulses becomes equal to the pdf of the imaginary component of the noise
W [n].
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3.4 Histogram Estimation of the Constellation Phase Signature

Weighed Tomographic Projection (MWTP) of the magnitude/phase bidimen-

sional pdf p
R,Φ

(r, ϕ; θ). From (3.5), we recognize that also the MWTP g(A,θ,P )

Φ
(ψk)

cyclically shifts of 4θ under a phase-offset θ, and that, in presence of additive

noise, also the Dirac pulses in (3.5) become wider pulses whose shape depends on

the SNR and the noise pdf; the analytical evaluation of (3.5) is reported in App.

E.

Since g(A,θ,P )

Φ
(ϕ) substantially behaves like an ordinary pdf, its estimation

requires subdividing the phase interval [0, 2π) in K intervals of amplitude 2π/K:

I
(k)
K

def
=

[
k · 2π

K
, (k + 1) · 2π

K

)
, for k = 0, . . . ,K − 1 (3.6)

Now, let us consider the normalized area of g(A,θ,P )

Φ
(ϕ) in the k-th phase interval:

f (A,θ,P ) (ψk)
def
=
K

2π
·
∫ 2π(k+1)/K

2πk/K

g(A,θ,P )

Φ
(ϕ) dϕ (3.7)

where ψk
def
= 2πk/K denotes the reference phase of the k-th phase interval. Note

that in the limit K → ∞ it results:

lim
K→∞

f (A,θ,P ) (ψk) = g(A,θ,P )

Φ
(ψk)

From (3.7), we see that also the function f (A,θ,P ) (ψk) cyclically shifts of 4θ under

a phase-offset θ; since it is constellation dependent, in the sequel we will refer to

it as the Constellation Phase Signature (CPS).

Note that the gain Gc influences the CPS in a multiplicative fashion, so that

the cyclic shift is entirely and solely due to the phase-offset θ. In this sense we

attained the aim of suppressing the misleading due to the presence of the gain

nuisance parameter Gc. Hence, once a sample estimate of the CPS has been

obtained, we can rephrase the phase-offset estimation problem as a gain control

free, cyclic shift estimation problem, which, in turn, can be solved according to

well established, optimal matched-filtering and time-delay estimation techniques.

3.4 Histogram Estimation of the Constellation

Phase Signature

To estimate the CPS, we follow the guidelines of the canonical histogram pro-

cedure, i.e. we consider the accumulation of values |Y [n]| in angular windows

of suitable width. Fig.3.2 illustrates an example of a generic angular window

29



3.4 Histogram Estimation of the Constellation Phase Signature

on which the samples Y [n] are accumulated, in the case of noisy 16-QAM and

32-QAM constellations and P = 4.

Dropping out the time-index n for the sake of readability, let us define the

indicator function d
(k)
K (Y ) to specify that arg Y belongs to the k-th phase interval:

d
(k)
K (Y )

def
=

{
1 arg Y ∈ I

(k)
K

0 otherwise

Then, we consider the following CPS estimator at the angle ψk
def
= 2πk/K, for

k = 0, . . . ,K − 1:

f̂ (A,θ,P ) (ψk) =
K

2π
· 1

N

N−1∑

n=0

|Y [n]| · d (k)
K (Y [n]) (3.8)

where we recall that the dependence on the parameter P is implicit in the defi-

nition of Y [n].

According to (3.8), the sample CPS f̂ (A,θ,P ) (ψk) is calculated as the sample

average of |Y [n]| in the k-th phase interval I
(k)
K , k = 0 . . . K − 1. For P = 0, the

sample CPS is a canonical phase histogram calculated on N realizations of the

random variable Y [n],1 while for P > 0 the magnitude weight |Y [n]| properly

takes into account the tomographic nature of the CPS. As we will show in the

sequel, this weighing results in improved final estimation accuracy.

The sample CPS of a M -QAM received signal affected by a phase-offset θ,

observed in absence of noise and in the ideal condition of relative frequencies

of constellation points exactly equal to their nominal probability, e.g. 1/M for

equiprobable constellation points, reduces to:

f̂ (A,θ,P ) (ψk) =
K

2π
· 1

M

M−1∑

m=0

|GcSm|Pd (k)
K

(
ej4(θ+argSm)

)
(3.9)

1In (30), the phase histogram is directly calculated on the received data X[n], operating
modulo π/2 to take into account the four-quadrant constellation symmetry. Note that this is
equivalent to operate on 4 argX[n]. The introduction of the nonlinear transformed observation
Y [n] in (3.2) (and its pdf) allows for more compact definition of the CPS, and the subsequent
statistical analysis can be conducted in a more readable form.
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3.4 Histogram Estimation of the Constellation Phase Signature

Fig.3.3 illustrates the theoretical MWTP 1 for different QAM constellations

(SNR = 35dB) in the case of zero phase-offset. It is worth noting that each

MWTP shows a number of peaks equal to the number of clusters formed by the

samples Y [n] originated by constellation points differing by π/2.

Fig.3.4, instead, plots the noise-free sample CPS f̂ (A,0,P ) (ψk) for a number of

QAM constellations, in the case of unit gain, zero phase-offset and ideal condition

of absence of unequal occurrences of the signal constellation points (assortment-

noise free). As expected, in ideal condition, the noise-free sample CPS of a given

constellation is constituted by a discrete number of samples, whose locations

correspond to the various phases of the fourth power of the constellation symbols.

Noteworthily, in ideal condition of absence of both assortment-noise and additive

noise, from (3.9) we see that also the sample CPS cyclically shifts by 4θ under a

phase-offset θ. In presence of both assortment and additive noise, the differences

between the noisy sample CPS and the noise-free one, can be appreciated in the

plots on the right of Fig.3.4. In particular, the spreading of the pulses is due

to the additive noise and the pulse shapes resemble the form of the pdf of the

imaginary component of the additive noise. Moreover, due to the assortment-

noise, in the sample CPS we cannot observe the ideal property that pair of pulses

symmetrically located with respect the CPS maximum possess the same “area”.

Other than the magnitude weighing, the main difference with the phase his-

togram procedure described in (30) is that here we directly accumulate the phase

of the received data, while in (30) it is rather accumulated the phase difference

taken with respect to the constellation symbol having the closest magnitude. This

magnitude hard decision does need a preliminary gain control stage, avoided in

our approach. Quoting from (30), the magnitude hard decision is needed to se-

lect “only the (constellation) symbols whose amplitude most closely matches the

amplitude of the received data”, according to a high SNR ML approximation;

then, the phase-offset is estimated as the mode of the so built phase histogram.

Despite the high SNR ML approximation, in (12) it is shown that the estimation

accuracy of such histogram based phase-offset estimator does not approach CRB.

1As we stated in the previous section, forK large, the ideal CPS tends to the MWTP. From
now on we will always assume K to be such that we can consider f (A,θ,P ) (ψk) ' g(A,θ,P )

Φ
(ϕ).
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3.4 Histogram Estimation of the Constellation Phase Signature

Figure 3.3: Theoretical MWTP g(A,0,P )

Φ
(ϕ), for different QAM constellations

(SNR = 35dB).

As we will see in the sequel, here the phase-offset is rather estimated as the

cyclic shift of the CPS, and this is accomplished searching for the maximum of the

cyclic cross-correlation between the sample CPS and a reference MWTP calcu-

lated under the zero phase-offset hypotheses. Thus, at lags around its maximum,

the cyclic cross-correlation carries out, in a joint fashion, the symbol matching

required by the high SNR ML approximation between received data and constel-

lation symbols.

Now, after having introduced the CPS, outlined its properties, and described

its estimation through a canonical histogram procedure, we are ready to de-

vise a novel phase-offset estimator that directly measures the cyclic shift of the

sample CPS, according to optimal matched-filtering and time-delay estimation

techniques.
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3.4 Histogram Estimation of the Constellation Phase Signature

Figure 3.4: Noise free (left) and noisy (right, SNR = 23dB) sample Constellation

Phase Signatures f̂ (A,0,P ) (ψk) vs. the phase intervals index k, for different QAM

constellations, (θ = 0, P = 4,K = 512). For the sake of readability, it is also

reported the axis of the reference phase of the k-th interval, i.e. ψk = 2πk/K.
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3.5 Constellation Phase Signature Based Phase-Offset Estimation

3.5 Constellation Phase Signature Based Phase-

Offset Estimation

As discussed in Sect.3.4, in absence of additive noise and assortment-noise, the

sample CPS is constituted by a number of discrete samples of known location

and amplitude, and the phase-offset θ results in a CPS cyclic shift of 4θ. Hence,

in this ideal transmission environment, an estimate of the phase-offset θ would be

obtained estimating the cyclic displacement between the sample CPS f̂ (A,θ,P ) (ψk),

as defined in (3.8) and the ideal sample CPS calculated for zero phase-offset, as

given in (3.9).

Actually, with reference to (3.1), both the additive noise and the assortment-

noise randomize and smooth the sample CPS. Specifically, while the assortment-

noise modifies the relative amplitudes of the sample CPS pulses leaving their

locations unaltered, the additive noise spreads the locations of the received sam-

ples around the constellation points, thus spreading the CPS pulses. Hence, to

devise an accurate phase estimator we need to substitute the ideal CPS (3.9) with

a suitable template that properly takes into account the additive noise effect.

As shown in App. E, in the limit K → ∞, the sample CPS is an unbiased

estimator of the MWTP g(A,θ,P )

Φ
(ψ):

lim
K→∞

E
{
f̂ (A,θ,P ) (ψk)

}
= g(A,θ,P )

Φ
(ψk) (3.10)

The consistency of the sample CPS is proven in Sect.3.6.1, where its variances -

covariances are analyzed in detail.

We recall that g(A,θ,P )

Φ
(ψ) equals the zero phase-offset g(A,0,P )

Φ
(ψ) shifted by

4θ along the ψ axis:

g(A,θ,P )

Φ
(ψ) = g(A,0,P )

Φ
(ψ − 4θ)

Hence, the phase-offset θ can be estimated by evaluating the cyclic shift between

the sample CPS f̂ (A,θ,P ) (ψk) and its expectation MWTP g(A,0,P )

Φ
(ψ), being this

latter analytically calculable. The detailed analytical evaluation of the zero phase-

offset MWTP g(A,0,P )

Φ
(ψ) is found in App. E. Here, without loss of generality,

we report the final expression for the reference case Gc = 1, in which the noise
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variance σ2
W

assumes the physical meaning of Noise-to-Signal Ratio:1

g(A,0,P )

Φ
(ψ) =

4

M

M−1∑

m=0

1

π σ2
W

exp

(
−γ

2
m sin2(ψ/4 − φm)

σ2
W

)

·
P+1∑

p=0

(
P + 1

p

)
(γm cos(ψ/4 − φm))P+1−p U (p)(ψ, γm, φm, σW)

(3.11)

where Sm = γme
jφm is the polar representation of the m−th constellation point,

and

U (p)(ψ, γm, φm, σW )
def
=

∞∫

−γm cos(ψ/4−φm)

γpexp

(
− γ2

σ2
W

)
dγ (3.12)

We have analytically evaluated the integrals U (p)(ψ, γm, φm, σW ), and results for

p = 0, . . . , 5 are reported in App. E.

Let us point out that, since the sample CPS is an unbiased and consistent

estimator of the MWTP, the right part of Fig.3.4 also depicts the basic behaviours

of these latter.

Now, the estimation of the cyclic phase-offset shift between the sample CPS

f̂ (A,θ,P ) (ψ) and the reference MWTP g(A,0,P )

Φ
(ψ), having analytically evaluated

this latter in (3.11), can be conducted through optimal filtering matched to

MWTP g(A,0,P )

Φ
(ψ), and, precisely, by locating the abscissa of the maximum

of the matched filter output. Following the guidelines of (15), we consider a

coarse/fine two-stage estimation procedure. A coarse phase-offset estimate θ̂c is

first obtained as follows:

Ĉ[k]
def
= f̂ (A,θ,P ) (ψk) ⊗ g(A,0,P )

Φ
(ψk)

k̂0 = arg max
k

{
Ĉ[k]

}

θ̂c =
2π

K
· k̂0

4

(3.13)

where the symbol ⊗ denotes cyclic cross-correlation with respect to the phase

index k.2

1The result in (3.11) for P = 0 is found also in Appendix B of (30).
2Since the additive noise that affects f̂ (A,θ,P ) (ψk) is colored, optimal matched filtering of
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Let us observe that, according to (3.11), the evaluation of the zero phase-

offset MWTP g(A,0,P )

Φ
(ψk) requires the knowledge of the SNR G2/σW . In Sect.3.7,

devoted to the experimental results and performance comparison, we will discuss

the sensitivity of the CPS based estimation accuracy to perturbations of SNR,

and we will show that our phase-offset estimator is sufficiently robust to SNR

mismatch errors, because this mismatch mainly affects the width, but not the

locations, of the pulses of the MWTP.

The cyclic cross-correlation (3.13) can be carried out resorting to classical

FFT based techniques. The sample CPS f̂ (A,θ,P ) (ψk) is evaluated using the

nonlinearly transformed received signal samples, while the FFT of the reference

MWTP g(A,0,P )

Φ
(ψk) can be pre-calculated and stored.

Since the number of phase intervals K measures the CPS sampling rate, in

principle it should be chosen as a function of the expected CPS bandwidth, which

in turn depends on both the constellation and the SNR; on the other hand, K

can be fixed according to the desired estimator computational complexity. In

Sect.4.6 we will see that, for SNR values of practical interest, the choice K=512

constitutes an acceptable trade-off between the overall computational complexity

and the CPS based estimation accuracy.

Let us remark that, once the CPS is sampled on a discrete number of phase

intervalsK, the coarse estimate θ̂c is limited at the resolution 2π/K. As indicated

in (15), the coarse phase estimation can be refined by interpolating the cross-

correlation values around the index k0; the parabolic approximation of the cyclic

cross-correlation function yields the following fine phase-offset estimate:

θ̂f = θ̂c +
1

4

2π

K

1

2

Ĉ[k0 + 1] − Ĉ[k0 − 1]

Ĉ[k0 + 1] + Ĉ[k0 − 1] − 2Ĉ[k0]
(3.14)

3.5.1 Final Remarks

Apart the magnitude weighing, in comparing the CPS based estimation tech-

nique with the histogram based technique presented in (30), the first important

the sample CPS f̂ (A,θ,P ) (ψk) requires a noise whitening prefiltering before the cyclic cross-
correlation (3.13). Anyway, we have not observed any misdetection in all the numerical ex-
periments performed using (3.13); for this reason, we have preferred to present an estimation
procedure with reduced computational complexity.
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3.5 Constellation Phase Signature Based Phase-Offset Estimation

difference to be noted is that we do not make any preliminary gain control and

hard decision, operations that in (30) are performed according to a high SNR ML

approximation to, namely, “select constellation symbols whose amplitude closely

matches the amplitude of received data”. Thus, a (symbol matched) differen-

tial phase histogram is calculated therein, whose mode is taken as the phase-

offset estimate; here the phase histogram is directly constructed on the received

data, and, rather than the mode, its cyclic shift is taken as the phase-offset esti-

mate. The cyclic shift is measured by the abscissa of the maximum of the cyclic

cross-correlation between the sample CPS f̂ (A,θ,P ) (ψk) and the reference MWTP

g(A,0,P )

Φ
(ψk); the optimality of this estimation procedure is well established within

the framework of optimal matched-filtering and time-delay estimation.

Moreover, in our approach, the symbol matching required by the high SNR

ML approximation is implicitly performed at the maximum of the cyclic cross-

correlation. In fact, the maximum of the cyclic cross-correlation occurs when

every peak of the sample CPS, corresponding to a subset of received data, is

aligned with a specific, corresponding MWTP peak. The symbol matching is

achieved because this MWTP peak is formed with those, and only those, constel-

lation symbols carried by the considered received data subset.

Noteworthily, the matching is jointly performed over all the received data, and

computational efficiency is assured by using FFT based cyclic cross-correlation

computation.

Even though the resolution of the matching between symbols and received

data is limited by the number of intervals K selected to construct the sample

CPS, the theoretical performance analysis conducted in Sect.3.6, confirmed by

numerical simulation results shown in Sect.3.7, indicates that the accuracy of our

estimator approaches CRB; as reported in (12), this does not happen for the

histogram based estimator of (30). The accuracy improvement obtained by our

estimator is essentially due to the fact that all the received data corresponding to

the various constellation points are jointly exploited in the cyclic cross-correlation

based phase-offset estimation, and reduced noise sensitivity is observed with re-

spect to the estimation that in (30) considers the location of the mode of the

phase histogram.
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3.6 Performance analysis

Besides, it is worth mentioning that our gain control free technique obtains

significant performance improvement in medium/highSNR also with respect to

the optimal nonlinear least-square estimation technique described in (21), in spite

of the fact that this latter operates with perfect gain knowledge.

3.6 Performance analysis

In this Section, the performance analysis of the CPS based phase-offset esti-

mator is outlined. In Subsect.3.6.1 we first evaluate the variances/covariances

of the sample CPS f̂ (A,θ,P ) (ψk). Then, in Subsect.3.6.2 we evaluate the vari-

ances/covariances of the sample cyclic cross-correlation function Ĉ[k]. Finally, in

Subsect.3.6.3, we complete the analysis by evaluating the bias and the variance

of the fine phase-offset estimator θ̂f as functions of the variances/covariances of

Ĉ[k].

3.6.1 Variance and Covariances of the Sample CPS

Here, we report only the main results concerning mean, variances and covariances

of the sample CPS f̂ (A,θ,P ) (ψk); analytical details are found in App. E and App

F. We will also prove that, in the limit K → ∞, the sample CPS is an unbiased

and consistent estimator of the MWTP.

In fact, bearing (3.8) in mind, the mean of the sample CPS is:

E
{
f̂ (A,θ,P ) (ψk)

}
= E

{
|Y | · d (k)

K (Y )
}

and in App. E we have shown that, in the limit K → ∞:

E
{
f̂ (A,θ,P ) (ψk)

}
= g(A,θ,P )

Φ
(ψk)

The asymptotic variances/covariances of the sample CPS are:

N Var
{
f̂ (A,θ,P ) (ψk)

}
= E

{
|Y |2 ·d (k)

K (Y )
}
−
(
E
{
|Y |·d (k)

K (Y )
})2

N Cov
{
f̂ (A,θ,P ) (ψk) , f̂

(A,θ,P ) (ψl)
}

=
(k 6=l)

−E
{
|Y |·d (k)

K (Y )
}

E
{
|Y |·d (l)

K (Y )
}
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3.6 Performance analysis

and in App. F we have shown that, in the limit K → ∞:

N · Var
{
f̂ (A,θ,P ) (ψk)

}
= g(A,θ,2P )

Φ
(ψk) −

(
g(A,θ,P )

Φ
(ψk)

)2

N · Cov
{
f̂ (A,θ,P ) (ψk) , f̂

(A,θ,P ) (ψl)
}

=
(k 6=l)

−g(A,θ,P )

Φ
(ψk) · g(A,θ,P )

Φ
(ψl)

3.6.2 Variances and Covariances of the Sample Cross-Correlation

In order to evaluate the variances and the covariances of the sample cyclic cross-

correlation function Ĉ[k], here we write the sample CPS f̂ (A,θ,P ) (ψk) as the sum

of its expected value g(A,θ,P )

Φ
(ψk) and a zero mean, estimation error N [k]:

N [k] = f̂ (A,θ,P ) (ψk) − g(A,θ,P )

Φ
(ψk) (3.15)

Hence, we have

Var {N [k]}=Var
{
f̂ (A,θ,P ) (ψk)

}

and

Cov {N [k], N [l]} = Cov
{
f̂ (A,θ,P ) (ψk) , f̂

(A,θ,P ) (ψl)
}

Let us observe that, in computing the cyclic cross-correlation function, the esti-

mation error N [k] that affects the sample CPS is coloured by the reference zero

phase-offset MWTP g(A,0,P )

Φ
(ψk):

Ĉ[k] = f̂ (A,θ,P ) (ψk) ⊗ g(A,0,P )

Φ
(ψk) = C[k] + E[k] (3.16)

where C[k]
def
= g(A,θ,P )

Φ
(ψk) ⊗ g(A,0,P )

Φ
(ψk) and

E[k] = N [k]⊗ g(A,0,P )

Φ
(ψk) (3.17)

Let us decompose the phase-offset as θ = 2πk0/K + θf , being k0 the index of the

maximum of C[k] with |θf | < π/K, and let us introduce the following compact

notation:

N
def
=
[
N [k0] · · ·N [K − 1]N [0] · · ·N [k0 − 1]

]T
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and, for l = 0, . . . ,K − 1:

Gl
def
=
[
g(A,0,P )

Φ
(ψl)· · ·g(A,0,P )

Φ
(ψK−1)

︸ ︷︷ ︸
K−1−l

g(A,0,P )

Φ
(ψ0)· · ·g(A,0,P )

Φ
(ψl−1)

︸ ︷︷ ︸
l

]T

Let us observe that g(A,θ,P )

Φ
(ψk+k0) = g(A,θf ,P )

Φ
(ψk), and that, in the limitK → ∞,

we can set θf = 0. Hence, the asymptotical covariance matrix of the error N takes

the following form:

KN
def
=NE

{
NN

T
}
=diag

[
g(A,0,2P)

Φ
(ψ0) , g

(A,0,2P)

Φ
(ψ1) ,· · ·, g(A,0,2P)

Φ
(ψK−1)

]
−G0G

T

0

Hence, the expectation and the asymptotical second order moments of the error

E[k + k0] are given by:

E {E[k + k0]} = 0 (3.18)

r
EE

[k, l]
def
= N ·E {E[k + k0]E[l+ k0]} = G

T

k · KN · Gl (3.19)

3.6.3 Variance of the Fine Phase-Offset Estimator

In evaluating the accuracy of the estimator (3.14), we observe that two error

components appear. The first component occurs when the coarse estimate θ̂c is

not correct due to k̂0 6= k0. The second error component affects the fine estimate

θ̂f and it is due to the finite sample size and to the misfit of the parabolic ap-

proximation around its maximum, and definitely limits the phase-offset estimator

accuracy. As far as the coarse estimate is concerned, numerical simulations have

confirmed k̂0 = k0 for a large range of SNR values, and thus we discuss only the

bias and the variance of θ̂f . Following the approach indicated in (15), by setting

c = C[k0 + 1] − C[k0 − 1] ; d = C[k0 + 1] − 2C[k0] + C[k0 − 1]

and resorting to the following first-order approximation of (3.14):

θ̂f − θ̂c ≈
π

4L

(
c

d
+
d− c

d2
E[k0 + 1] − d+ c

d2
E[k0 − 1] − 2c

d2
E[k0]

)

we have obtained the following result:

aVar(θ̂f)
def
= N · Var (θ̂f ) =

π2

16K2

[(d− c

d2

)2

r
EE

[1, 1] +

(
d + c

d2

)2

r
EE

[−1,−1] +

(
2c

d2

)2

r
EE

[0, 0]

−
(
d2 − c2

d4

)
r
EE

[1,−1] +

(
2dc + 2c2

d4

)
r
EE

[0,−1] +

(
2dc − 2c2

d4

)
r
EE

[1, 0]
]
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As far as the bias of θ̂f is concerned, we observe that, since the ideal cyclic cross-

correlation C[k] is not exactly parabolic around its maximum value located at

k = k0, a systematic bias due to the parabolic misfit is present (see (15) for a

discussion on the parabolic misfit bias). However, for the range of K of interest

the values C[k0 − 1], C[k0], C[k0 + 1] are sufficiently close so that the bias due

to the parabolic approximation is negligible in evaluating the estimation Mean

Square Error (MSE). For this reason, in the performance comparison reported in

Sect.4.6, the theoretical analysis results will be expressed in terms of the error

standard deviation
√

Var (θ̂f ), while the experimental results will be expressed

in terms of Root Mean Square Error (RMSE).

3.7 Numerical Experiments and Performance Com-

parison

Here, we present numerical results aimed at validating the theoretical perfor-

mance analysis of Sect.3.6, and at comparing the accuracy of the estimator de-

scribed in Sect.3.5 with selected state-of-the-art estimators. Each experiment

consists of 2000 MonteCarlo trials and in each trial the phase-offset has been

drawn from a uniform distribution in [−π, π).

The analytical asymptotical error standard deviation and the experimental

RMSE of the phase estimator versus SNR are shown in Figs. 3.5-3.10, which

illustrate the results for the estimator θ̂c (SIG-COARSE), the estimator θ̂f (SIG-

FINE) (P = 1), along with the results of the theoretical analysis carried out in

Sect.3.6 and with CRB for unknown gain evaluated following the guidelines in

Chapter 5. In detail, Figs. 3.5, 3.7 and 3.9 correspond to square constellations

whereas Figs. 3.6, 3.8 and 3.10 correspond to cross constellations. The graphs

plot the experimental results obtained with sample size N =500 for square con-

stellations and N=2000 for cross constellations.

From Figs.3.5-3.10 we see an excellent agreement between the analytical per-

formance evaluated in Sect.3.6 and the numerical results, either for square or

cross constellations, showing that the large sample approximation underlying the
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3.7 Numerical Experiments and Performance Comparison

asymptotical analysis holds true for such realistic values of N or larger. More-

over, the asymptotical RMSE of the SIG-FINE estimator versus SNR presents

the same slope of the CRB.

For comparison purposes, also results pertaining to other selected estimators

are reported, namely the Nonlinear Least Square (WA03) estimator (21), the

Concentration Ellipse Orientation (CEO) estimator (32), and the fourth-order

(CW99) estimator (23) for square constellations or the eighth-order (CW01) esti-

mator (27) for cross constellations. In particular, the WA03 estimator is obtained

by evaluating the angular coordinate of the sample average of a suitable nonlin-

ear transformation of the received signal samples; it is constellation dependent

and it requires knowledge of both SNR and gain. It must be remarked that per-

fect knowledge of only the SNR has been assumed in the implementation of our

CPS based estimator, while perfect knowledge of both the gain and the SNR has

been assumed in the implementation of the WA03 estimator. The CEO estima-

tor is obtained by evaluating the orientation of the concentration ellipse of the

normal distribution fitting the distribution of the fourth power of the received

signal samples. The CW99 and CW01 estimators are obtained by evaluating the

angular coordinate of the fourth order and of the eighth order sample averages,

respectively. The CEO, CW99 and CW01 are constellation independent and do

not require knowledge of the gain and of the SNR. Performance comparison with

the estimators WA03, CEO, CW99 and CW01 shows that the CPS based esti-

mator outperforms CEO, CW99, CW01 and WA03 estimators, apart the case of

16-QAM where it equals the WA03 estimator. It is worth noting also that WA03

estimator approximates ML estimator for small-order constellations.

For dense constellations, the CPS based estimator presents a significant ac-

curacy improvement over all estimators for medium to high values of SNR; at

high SNR the accuracy improvement is more pronounced since the CPS estima-

tor better counteracts the assortment-noise effects. In medium-high SNR, the

accuracy improvement ranges from a few dB for small-order constellations up

to 10 ÷ 15dB for large order cross constellations. The performance improve-

ment with respect to WA03 estimator is mainly due to the fact that the CPS

based estimator employs all the received samples, while WA03 estimator discards

an increasing number of samples as the constellation cardinality increases. The
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3.7 Numerical Experiments and Performance Comparison

performance improvement with respect to the blind estimators CEO, CW99 and

CW01 is due to the fact that, when the constellation is known, the phase-rotation

of the measurement clusters in the complex plane is better captured by the CPS

cyclic cross-correlation mechanism, which, in turn, performs the symbol matching

indicated by the high SNR ML approximation.

Different values of K have been tested, and we can observe that a reduction

of K to 256 or an increase up to 1024 does not modify the CPS based estimator

accuracy at medium-low SNR, and only a slight accuracy loss is observed for

cross constellations at high SNR. This is exemplified in Tab.3.1 and 3.2, where

the numerical results concerning with the asymptotical RMSE at SNR = 40dB

are reported for square and cross constellation, respectively.

√
N RMSE @ 40dB K = 256 K = 512 K = 1024

16-QAM 0.58 0.56 0.56

64-QAM 0.63 0.61 0.62

256-QAM 0.87 0.84 0.84

Table 3.1: Asymptotical RMSE of θ̂f at SNR=40dB for different values of K

(square constellations, N=500, P =1, 2000 MonteCarlo trials).

√
N RMSE @ 40dB K = 256 K = 512 K = 1024

32-QAM 0.62 0.54 0.54

128-QAM 0.66 0.63 0.59

512-QAM 0.94 0.85 0.81

Table 3.2: Asymptotical RMSE of θ̂f at SNR=40dB for different values of K

(cross constellations, N=2000, P =1, 2000 MonteCarlo trials).

The impact of the magnitude power P on the CPS based estimation accuracy is

shown in Figs.3.11 and 3.12, where the analytical asymptotical RMSE is plotted

for P =1 (dotted line), P =2 (dashed line), and P =3 (continuous line), for square

and cross constellations, respectively; we see that high values of P improve the
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3.7 Numerical Experiments and Performance Comparison

estimator accuracy at low-SNR values, without increasing the overall computa-

tional complexity when a look-up table is employed to evaluate the magnitude

power function.
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3.7 Numerical Experiments and Performance Comparison

Figure 3.5: 16-QAM constellation: RMSE of various phase estimators vs.

SNR; estimator θ̂c (SIG-COARSE) and θ̂f (SIG-FINE), CEO estimator,

Nonlinear Least Square estimator (WA03), fourth-order Cartwright estima-

tor (CW99), theoretical standard deviation, CRB (N = 500,K = 512, P =

1, 2000 MonteCarlo trials).

Figure 3.6: 32-QAM constellation: RMSE of various phase estimators vs.

SNR; estimator θ̂c (SIG-COARSE) and θ̂f (SIG-FINE), CEO estimator,

Nonlinear Least Square estimator (WA03), eight-order Cartwright estimator

(CW01), theoretical standard deviation, CRB (N = 2000,K = 512, P =

1, 2000 MonteCarlo trials).
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Figure 3.7: 64-QAM constellation: RMSE of various phase estimators vs.

SNR; estimator θ̂c (SIG-COARSE) and θ̂f (SIG-FINE), CEO estimator,

Nonlinear Least Square estimator (WA03), fourth-order Cartwright estima-

tor (CW99), theoretical standard deviation, CRB (N = 500,K = 512, P =

1, 2000 MonteCarlo trials).

Figure 3.8: 128-QAM constellation: RMSE of various phase estimators

vs. SNR; estimator θ̂c (SIG-COARSE) and θ̂f (SIG-FINE), CEO estima-

tor, Nonlinear Least Square estimator (WA03), eight-order Cartwright estima-

tor (CW01), theoretical standard deviation, CRB (N = 2000,K = 512, P =

1, 2000 MonteCarlo trials).
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Figure 3.9: 256-QAM constellation: RMSE of various phase estimators

vs. SNR; estimator θ̂c (SIG-COARSE) and θ̂f (SIG-FINE), CEO estima-

tor, Nonlinear Least Square estimator (WA03), fourth-order Cartwright esti-

mator (CW99), theoretical standard deviation, CRB (N = 500,K = 512, P =

1, 2000 MonteCarlo trials).

Figure 3.10: 512-QAM constellation: RMSE of various phase estimators

vs. SNR; estimator θ̂c (SIG-COARSE) and θ̂f (SIG-FINE), CEO estima-

tor, Nonlinear Least Square estimator (WA03), eight-order Cartwright estima-

tor (CW01), theoretical standard deviation, CRB (N = 2000,K = 512, P =

1, 2000 MonteCarlo trials).
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Figure 3.11: Square constellations: analytical RMSE of the phase estimator θ̂f

vs. SNR for P =1 (dotted line), P =2 (dashed line), and P =3 (continuous line)

(K=512, N=500, 2000 MonteCarlo trials).

Figure 3.12: Cross constellations: analytical RMSE of the phase estimator θ̂f vs.

SNR for P = 1 (dotted line), P = 2 (dashed line), and P = 3 (continuous line)

(K=512, N=2000, 2000 MonteCarlo trials).

48



3.7 Numerical Experiments and Performance Comparison

Finally, we analyze the CPS based estimator performance within the hypothesis

that the zero phase-offset reference MWTP g(A,0,P )

Φ
(ψk) has been calculated in

presence of a SNR mismatch. To this purpose, we have evaluated the accuracy of

the estimator θ̂f (SIG-FINE) under SNR mismatches of ±3dB, ±6dB, and ±10dB

and the results are collected in Fig.3.13. The observed estimation robustness

with respect SNR mismatches is explained recalling that the phase-offset estimate

is obtained from the location of the maximum of the cross-correlation between the

sample CPS and the reference MWTP, and that the SNR value is needed only to

fix the width of the pulses of the reference MWTP. Hence, relatively small pulse

width variations, either resulting in wider or narrower pulses, mainly affect the

width of peak around the cross-correlation maximum, while leaving substantially

unaltered its location. This explains also why the sensitivity diminishes with

the SNR. On the other hand, at high SNR the CPS based estimation accuracy

preserves the CRB slope, both for square and cross constellations, even under

SNR mismatch of ±10dB.

Several SNR estimators are available from the technical literature, see (36) and

the references therein contained for instance. The analysis concerning with the

selection of a specific SNR estimator is beyond the scope of this work; nonethe-

less, we have enriched Fig.3.13 providing also numerical results obtained using

an heuristic, rough SNR estimator, better described in App. G, based on the

measurement of the bandwidth of the CPS. As it can be seen, the robustness of

the CPS based estimator under SNR mismatch is well maintained also using this

simple SNR estimator.
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Figure 3.13: RMSE of the phase estimator θ̂f vs. SNR for SNR mismatch equal

to ±3 dB (continuous line), ±6 dB (dotted line), and ±10 dB (dashed line). For

each doublet of SNR mismatch, the RMSE curve reports the worst measured per-

formance. The RMSE curve obtained using the rough SNR estimator described in

App.G is also reported (bulleted line), as well as the RMSE curve obtained with

perfectly known SNR (tiny continuous line).

(K = 512, P = 1, 2000 MonteCarlo trials, N = 500 for square constellations,

N=2000 for cross constellations).
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3.8 GMM based Phase Acquisition for QAM

Constellation

3.8.1 Introduction

In the following Section, we will recast the phase offset estimator herein intro-

duced in the GMM framework for cyclic-shift parameter estimation detailed in

Chapter 2. We will first prove that the estimator herein presented is an un-

weighted GMM estimation and then we will extend it in the sense of the best

GMM estimator. Numerical resuslts show a significant accuracy improvement by

the best GMM estimator at medium-high Signal-to-Noise Ratio (SNR) values,

where the weighted estimator approaches the CRB.

Moreover we will prove that the values of the sample CPS, under a particular

setting, can be recognized to be multinomially distributed, and hence a reduced

complexity ML estimation will be proposed, according to the guidlines depicted

in Subsection 2.4.2.

3.8.2 GMM phase Acquisition

Here we recast the estimator introduced in this Chapter in the framework of the

GMM estimation, extending it in the sense of the best GMM estimator.

To this end let us observe that the CPS as defined in (3.7) can be compactly

rewritten as:

f (A,θ,P ) (ψk) =
K

2π

∫ ψk+2π/K

ψk

dϕ

∫ +∞

0

r p
R,Φ

(r, ϕ|θ) dr

where we can regognize it as an instance of the nonlinear moment defined in (2.2).

In the same way, the sample CPS as defined in (3.8), can be easily recognized to

be a specification of the weighted histogram in (2.3).

We can then correctly define the observation vector collecting the values of

the sample CPS:

f̂ =
[
f̂ (A,θ,P ) (ψ0) , . . . , f̂

(A,θ,P ) (ψK−1)
]T

(3.20)
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and the reference vector collecting the values 1 of the ideal CPS for a generic

phase offset ξ:

f(ξ)=
[
f (A,ξ,P ) (ψ0) , . . . , f

(A,ξ,P ) (ψK−1)
]T

(3.21)

Now, we can use the following generalized moment:

e(ξ)
def
= f̂ − f(ξ) (3.22)

Taking into account the four quadrant phase folding in (3.2), it results:

Ex|θ{e(ξ)} = 0 iff ξ = 4θ (3.23)

Then, following the approach introduced in Chapter 2, the GMM estima-

tion of the phase-offset can be conducted by minimizing the following objective

function:

θ̂
(W)
G =

1

4
arg min

ξ
Q(ξ;W)

Q(ξ;W) = (̂f − f(ξ))TW(̂f − f(ξ))

(3.24)

In the unweighted case, recalling the derivation described in Sect. 2.3 we have:

θ̂
(I)
G =

1

4
arg min

ξ
Q(ξ; I) =

1

4
arg max

ξ
f̂T· S(ξ) · f(0)

=
1

4
arg max

ξ

K−1∑

k=0

f̂ (A,θ,P ) (ψk) · f (A,0,P ) (ψk − ξ)

(3.25)

Hence, θ̂
(I)
G is obtained as the index of maximum of the cyclic cross-correlation

between the sequences collected in the vectors f̂ and f(0). We recognize that

(3.25) is exactly the cost function in (3.13), here re-obtained in the framework of

the GMM estimation procedure. Again we can notice that the maximization of

(3.25) can be conducted even though the sample CPS is estimated apart an am-

plitude scale factor, i.e. without accomplishing a preliminary gain control stage,

and the phase offset estimation has to be properly considered gain-control-free.

1In the followings we will assume K to be large enough to neglect the aliasing (possibly)
present in the ideal CPS sampling, implicitly performed in the evaluation of the vector f (ξ).
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As far as the best GMM estimator is concerned, the optimal weight matrix

turns out to be: W(o) = Ω(θ)−1/N , being Ω(θ)
def
= E{(̂f − f(θ))(̂f − f(θ))T} the

covariance matrix of the measurements, with entries:

||Ω(θ)||i,j
def
= Cov

{
f̂ (A,θ,P ) (ψi) , f̂

(A,θ,P ) (ψj)
}

(3.26)

The variances and covariances of the estimated CPS, whose expressions are in

turn are a specification of the general formulas in App.A, have been evaluated in

Subsection 3.6.2.

The optimal estimation is then given by the solution of the following opti-

mization problem: 1

θ̂
(W)
G =

1

4
arg max

ξ
J
(
ξ;W0

(
θ̂

(I)
G

))

J
(
ξ;W0

(
θ̂

(I)
G

))
= f̂T · W0

(
θ̂

(I)
G

)
· f(ξ)

− 1

2
· f(ξ)T · W0

(
θ̂

(I)
G

)
· f(ξ)

(3.27)

The fine estimation is obtained after parabolic interpolation (15) as in (3.28)

θ̂
(W)
G = θ̂

(I)
G − ∆θ

8

·
J
(
θ̂

(I)
G + ∆θ;W0

(
θ̂

(I)
G

))
− J

(
θ̂

(I)
G − ∆θ;W0

(
θ̂

(I)
G

))

J
(
θ̂

(I)
G +∆θ;W0

(
θ̂

(I)
G

))
−2J

(
θ̂

(I)
G ;W0

(
θ̂

(I)
G

))
+J
(
θ̂

(I)
G −∆θ;W0

(
θ̂

(I)
G

))
(3.28)

where ∆θ = 2π/K. The estimation form (3.28) is analytically tractable, and

it allows to evaluate the asymptotical performance of the optimal GMM based

estimation.

1In principle, (3.27) requires a preliminary gain estimation stage. Nevertheless, the opti-
mization can be conducted after proper performed normalization of the CPS vectors so as to
restore the unitary gain condition,For instance, the CPS vectors can be normalized as:

f̂ =⇒ f̂√
f̂T · f̂

; f (ξ) =⇒ f (ξ)√
f (0)T · f (0)

thus avoiding any preliminary gain control stage. Bearing this in mind, the estimation pro-
cedure (3.27) can be conducted in a gain-control-free fashion.
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3.8 GMM based Phase Acquisition for QAM Constellation

3.8.3 Reduced Complexity ML Phase Acquisition

Now we illustrate how the CPS can be employed to derive an asymptotically effi-

cient phase offset estimation. Let us consider the sample estimate CPS f̂ (A,θ,0) (ψk),

where the weighting parameter P has been set to zero,1 that is:

f̂ (A,θ,0) (ψk) =
K

2π
· 1

N

N−1∑

n=0

d
(k)
K (Y [n]) (3.29)

with

Y [n] = ej4·argX [n] (3.30)

We observe that the sample CPS in (3.29) is, in the end, a phase histogram

evaluated using N measurements of the nonlinearly transformed received samples

Y [n] in (3.30). Hence, let us consider the K mutually exclusive events Ek ={
Y [n] : arg Y [n] ∈ I

(k)
K

}
, k = 1, . . . ,K−1, i.e. that a received sample’s phase,

after the transformation in (3.30), lies in the k-th phase interval defined in (3.6);

the number of occurrences of Ek, k=0, . . . ,K−1 are given by:

νk =
2πN

K
f̂ (A,θ,0) (ψk) , , k=0, . . . ,K−1

The K random variables ν0, . . . , νK−1 are multinomially distributed:

P (ν0, . . . , νK−1) =
N !∏K−1
k=0 νk!

K−1∏

k=0

pνk
k

where pk is the probability of the event Ek, i.e. pk =2πf (A,θ,0) (ψk) /K.

Stemming from these observations and following the same steps depicted in

Sect.2.4.2, the log-likelihood of f̂ can be written as:

l(̂f; f (ξ)) = A+
2πN

K

K−1∑

k=0

f̂k ln (fk(ξ))

A = lnN ! − ln
K−1∏

k=0

(
2πN

K
f̂k

)
! +

2πN

K

K−1∑

k=0

f̂k ln
2π

K

(3.31)

where f̂k(ξ)’s are the entries of the vector f̂ and fk(ξ)’s are the entries of the

vector f(ξ), respectively defined in (3.20) and (3.21).

1Throughout this subsection we will assume P to be set to zero.
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3.8 GMM based Phase Acquisition for QAM Constellation

Under the hypothesis that the sample CPS represents a sufficient statistic for

the estimation of the phase offset under the observation model in (3.1), the ML

estimate of the phase offset can be attained by maximizing (3.31) with respect

to ξ:

θ̂ML =
1

4
arg max

ξ
l(̂f ; f (ξ)). (3.32)

Considering only the terms depending on θ we can simplify (3.32) as follows:

θ̂ML =
1

4
arg max

ξ
f̂T · f̃(ξ) (3.33)

where f̃(ξ)
def
= ln f(ξ).

Then, remembering that ξ affects the ideal CPS as a location parameter, and

considering that the normalization factor employed in the definitions of f̂ does

not affect the location of the maximum, the solution of the maximization problem

is again obtained as the index of maximum of the cyclic cross-correlation between

the sample estimate of the CPS f̂ and the logarithm of the analytically evaluated

CPS f̃ (ξ):

θ̂ML =
1

4
arg max

ξ
C (ξ)

C(ξ) =
K−1∑

k=0

f̂ (A,θ,0) (ψk) ln f (A,0,0) (ψk − ξ)

(3.34)

It is interesting to notice that (3.34) is very close to the cost function described

in Sect.3.5, this latter not comprising the logarithmic nonlinearity over the ideal

CPS.

We remark that, as happened in (3.25), the estimation can be conducted

even in presence of an amplitude scale factor, the resulting estimator being then

properly considered gain-control-free.

The estimation is performed exactly as described in Sect. 3.8.2, that is eval-

uating the DFT of both the sample and the ideal CPS and then obtaining the

cyclic cross-correlation after an inverse DFT stage. The only difference is that, in

this case, the logarithm of the ideal CPS is considered instead of the CPS itself.

Again a parabolic interpolation is to be envisaged to refine the estimate that,

after the cross-correlation, is definitely limited by the resolution given by 2π/K.
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3.8 GMM based Phase Acquisition for QAM Constellation

3.8.4 On the Computational Complexity of the GMM

Phase Offset Estimator

A rough comparison of the computational complexity of the GMM and ML esti-

mators is reported in Tab.3.3. For the sake of completeness, since the Nonlinear

Least Squares (NLS) estimator described in (21) will be taken into account as a

reference for performance comparison, we have reported also its computational

complexity. We observe that the MLE computational complexity depends on the

product of the constellation cardinality M , of the number of samples N , and

of the parameter K that influences the precision 2π/K of the coarse estimate

2πkc/K; moreover, for a fair comparison we remark that the MLE requires a

preliminary gain estimation stage. Besides the MLE implemented by exhaustive

search, we report also the computational complexity of MLE realized by initial-

izing a gradient search algorithm using a preliminary coarse phase estimate. In

this case, the complexity does not depend on K but on the overall number of

iterations; however, the dependence on the constellation cardinality still makes

MLE unfeasible for non trivial constellations. The GMM unweighted estimator

approximately requires N operations for the evaluation of the statistics f̂ and

K(1 + 2 log2(K)) for evaluating the cross-correlation in the cost function (3.25).

As discussed in ??, the GMM best phase estimator implemented as in (4.19)

requires the same operations as the unweighted GMM plus 3K operations due

to the evaluation of (3.27) in the three points α = α̂
(c)
G and α = α̂

(c)
G ± 2π/K.

Finally, we observe that the NLS estimator requires only N operations plus the

cost of a preliminary gain estimation.

3.8.5 Numerical Experiments and Performance Compar-

ison

In this Section we illustrate the analytical and numerical performance of the

GMM based estimator herein introduced. The experimental conditions are fixed

as in Sect.3.7.1

1For the sake of readibility we briefly recall them: the signal samples are generated according
to (3.1) with a sample size N = 512 for square-constellations (16-64-256 QAM) and N = 2000
for cross-constellations (32-128-512 QAM); each numerical experiment consists of 1000 Monte
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3.8 GMM based Phase Acquisition for QAM Constellation

Estimator Operations

ML–exhaustive search M ×N ×K + gain estimation cost

ML–gradient based M ×N ×Niterations + gain estimation cost

GMM unweighted N +K(1 + 2 log2K)

GMM weighted N +K(4 + 2 log2K)

reduced complexity ML N +K(1 + 2 log2K)

NLS N + gain estimation cost

Table 3.3: Computational complexity of ML, GMM, reduced complexity ML and

NLS phase estimators.

First, in Figs.3.14-3.19, we illustrate the analytical and numerical performance

of the unweighted and the best GMM estimate, so as to point out the margin

improvement that the optimization introduces. The performance at various SNR

are illustrated by plotting the results of the theoretical analysis expressed in terms

of the normalized standard deviation of the estimation error
√
N·StdDev{θ̂(W)

G },
and the results of the numerical Monte Carlo simulations expressed in terms of

the normalized Root Mean Square Error (
√
N · RMSE). 1

Figs.3.14-3.16 refer to square-constellations (16-64-256 QAM) and Figs.3.17-

3.19 refer to cross-constellations (32-128-512 QAM). For reference sake, we have

also reported the Cramér-Rao Bound (CRB) for unknown gain as evaluated in

Chapter 5, and, for fair comparison with state-of-the-art phase estimators, we

have plotted in the same Figs. the theoretical and experimental performances of

(21); the performance of the unweighted estimator can be correctly recognized to

be the same of the CPS estimator as in Sect.3.7.

From these results we observe the appreciable improvement achieved by using

the optimized weighting matrix in the weighted GMM estimator with respect to

the unweighted GMM one, i.e. versus the CPS estimator in Sect.3.5, and w.r.t.

the NLS estimator (21). The optimally weighted GMM normalized standard

deviation approaches the CRB at medium-to-high SNR.

Carlo trials.
1The bias of all the considered estimators is negligible or zero.
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3.8 GMM based Phase Acquisition for QAM Constellation

The impact of the magnitude power on the optimal GMM estimation accu-

racy is shown in Figs.3.20 and 3.21, where the analytical asymptotical RMSE is

plotted for P = 1 (dotted line), P = 2 (dashed line), and P = 3 (continuous

line), for square and cross constellations, respectively; we see that higher values

of P improve estimator’s performance, especially for low and high SNR, where

the estimator approaches the CRB. In the same figures we also reported the theo-

retical performance of the reduced complexity ML (RCML) estimator introduced

in Sect. 3.8.3. We observe that the RCML estimator presents the same perfor-

mance of the optimal GMM estimator with P = 1 with a lower computational

complexity approaching the CRB at medium to high SNR values.

From a technical point of view, it is of interest to evaluate the Symbol Error

Rate (SER) reduction achieved in correspondence of the phase estimation error

variance reduction. At this aim, in Figs. 3.22, 3.23, 3.24 we show the SER ob-

tained after 2000 Montecarlo runs by the GMM unweighted, the GMM weighted

and the NLS estimators for the 128-QAM, 256-QAM and 512-QAM constella-

tions, using N = 512 samples for 128-QAM and 256-QAM and N = 2000 samples

for 512-QAM. It is worth noting that the best GMM estimator tightly approaches

the performance of the Additive White Gaussian Noise (AWGN) channel, outper-

forming the NLS on almost all the SNR range. For the weighted GMM, the SER

curves referring to K = 512, 256, 128 are reported. Although the reduction of K

reduces the precision of the GMM estimate, the SER is only slightly degraded.

Therefore, in the applications the value of K must be selected on the base of

the trade-off between the computational complexity issue and the required SER

performance.
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3.8 GMM based Phase Acquisition for QAM Constellation

Figure 3.14: Normalized root mean square phase estimation error
√
N ·RMSE vs.

SNR for 16-QAM constellation (N = 512,K = 512); unweighted GMM estima-

tor (theoretical, solid line gray, and numerical, circles), optimal GMM estimator

(theoretical, dashed line gray, and numerical, triangles), NLS estimator in (21)

(WA03) (theoretical, dot-dashed line, and numerical, squares). The solid line

black represents the CRB.

Figure 3.15: Normalized root mean square phase estimation error
√
N ·RMSE vs.

SNR for 64-QAM constellation (N = 512,K = 512); unweighted GMM estima-

tor (theoretical, solid line gray, and numerical, circles), optimal GMM estimator

(theoretical, dashed line gray, and numerical, triangles), NLS estimator in (21)

(WA03) (theoretical, dot-dashed line, and numerical, squares). The solid line

black represents the CRB.
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3.8 GMM based Phase Acquisition for QAM Constellation

Figure 3.16: Normalized root mean square phase estimation error
√
N ·RMSE vs.

SNR for 256-QAM constellation (N = 512,K = 512); unweighted GMM estima-

tor (theoretical, solid line gray, and numerical, circles), optimal GMM estimator

(theoretical, dashed line gray, and numerical, triangles), NLS estimator in (21)

(WA03) (theoretical, dot-dashed line, and numerical, squares). The solid line

black represents the CRB.

Figure 3.17: Normalized root mean square phase estimation error
√
N ·RMSE vs.

SNR for 32-QAM constellation (N = 512,K = 2000); unweighted GMM estima-

tor (theoretical, solid line gray, and numerical, circles), optimal GMM estimator

(theoretical, dashed line gray, and numerical, triangles), NLS estimator in (21)

(WA03) (theoretical, dot-dashed line, and numerical, squares). The solid line

black represents the CRB.
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3.8 GMM based Phase Acquisition for QAM Constellation

Figure 3.18: Normalized root mean square phase estimation error
√
N ·RMSE vs.

SNR for 128-QAM constellation (N =512,K=2000); unweighted GMM estima-

tor (theoretical, solid line gray, and numerical, circles), optimal GMM estimator

(theoretical, dashed line gray, and numerical, triangles), NLS estimator in (21)

(WA03) (theoretical, dot-dashed line, and numerical, squares). The solid line

black represents the CRB.

Figure 3.19: Normalized root mean square phase estimation error
√
N ·RMSE vs.

SNR for 512-QAM constellation (N =512,K=2000); unweighted GMM estima-

tor (theoretical, solid line gray, and numerical, circles), optimal GMM estimator

(theoretical, dashed line gray, and numerical, triangles), NLS estimator in (21)

(WA03) (theoretical, dot-dashed line, and numerical, squares). The solid line

black represents the CRB.
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3.8 GMM based Phase Acquisition for QAM Constellation

Figure 3.20: Square constellations: analytical RMSE of the optimally weighted

GMM phase estimator versus SNR for P = 1 (dotted line), P = 2 (dashed line),

P = 3 (continuous line), and of the reduced complexity ML estimator (RCML)

(triangle).

Figure 3.21: Cross constellations: analytical RMSE of the optimally weighted

GMM phase estimator versus SNR for P = 1 (dotted line), P = 2 (dashed line),

P = 3 (continuous line), and of the reduced complexity ML estimator (RCML)

(triangle).
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3.8 GMM based Phase Acquisition for QAM Constellation

Figure 3.22: SER vs. SNR for 128-QAM constellation (N = 512,K =

128, 256, 512).

Figure 3.23: SER vs. SNR for 256-QAM constellation (N = 512,K =

128, 256, 512).
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Figure 3.24: SER vs. SNR for 512-QAM constellation (N = 512,K =

128, 256, 512).
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Chapter 4

GMM-based Frequency Offset

Estimation:

an Image Processing Approach

4.1 Introduction

In many Quadrature Amplitude Modulation transmission systems, Doppler ef-

fects and/or misalignments between local oscillators result in random carrier

phase drifts. Hence, acquisition and tracking of carrier phase and frequency

offset is typically performed at the output of the receiver front-end. The estima-

tion of these parameters is carried out using training sequences, such as in many

communication systems, or in a blind fashion, widely investigated to achieve

bandwidth savings. In (37), a frequency estimator is derived by linearization of

the Maximum-Likelihood (ML) cost function, both for preamble-based and blind

acquisition. In (38), the authors analyze a frequency estimator based on the cir-

cumstance that the unique conjugate cyclic frequency of the received signal is

equal to twice the frequency offset. Non-data aided frequency offset estimation is

performed in (39) employing a suitable linear precoding, while in (40) the blind

estimation exploits the unconjugated cyclostationarity of the fractionally sampled

received signal statistics. In (21), the authors describe a joint carrier phase and

frequency offset estimation method based on a Nonlinear Least-Squares (NLS)

technique that aims at minimizing the asymptotic (large sample) error variance.
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4.1 Introduction

Such a NLS estimator, which is a generalized form of low Signal-to-Noise Ratio

(SNR) ML estimator, requires the knowledge of the constellation and of both

the channel gain and the SNR. In spite of this a priori information, its per-

formance deteriorates for large constellation order and for cross-constellations.

Hence, the problem of blind carrier parameters estimation for QAM transmission

is still worth of investigations.

In this Chapter we extend the CPS-based phase offset estimator in Chapter

3, introducing a gain-control-free frequency offset estimator. Again the estimator

procedure stems from the observation of peculiar structures of the constellation

diagram in presence/absence of frequency offset, and employs image processing

tools to exploit such regularities. Moreover, as for the phase offset introduced in

the previous Chapter, it is possible to prove that the CPS-based estimation can

be recast in the GMM framework.

Wherease the phase offset, produces a shift on the constellation diagram,

because every point is subject to a constant phase rotation, the presence of a

frequency drift induces a different phase shift, depending on the sampling time

instant, for each constellation point, thus spreading all the points of the constella-

tion diagram in the complex plane. Under these conditions, the phase histogram

does not anymore exhibit the peaked shape of the CPS, the constellation points

being no more clustered, but turns out to be a filtered version of the phase distri-

bution corresponding to zero-frequency offset. Yet, if a frequency compensation

is performed over the recevied samples, we expect that, the closer the compensa-

tion value gets to the real frequency offset, the more structured the constellation

diagram will be after the compensation, all of the points being shifted back to

their corresponding clusters. Under a perfect frequency compensation, the drift

is completely removed and the constellation diagram exhibits the typical clusters

of the reference zero frequency offset case; moreover the phase histogram tends

again to the CPS. Hence, since the phase pdf corresponding to zero frequency

offset is known for all the considered constellations, our novel frequency offset es-

timator considers the frequency compensation value that minimizes the distance

between the measured weighed phase histogram and the weighed phase pdf calcu-

lated under the assumption of zero frequency offset. In this sense, we have recast

the frequency offset estimation problem in terms of waveform matching between

the a priori probabilistic description and a suitable a posteriori statistic.
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4.2 Discrete-Time Signal Model

It is worth noting that the objective function is gain independent and thus

the frequency offset estimation procedure is gain-control-free.

We have also derived the analytical asymptotical (large number of samples)

performance in high SNR, and assessed them by numerical simulations, showing

that the herein described estimator outperforms state-of-the-art estimators for

different constellations on a wide range of SNR values.

By the end of the Chapter we prove that the CPS-based frequency offset

estimator can be seen as a GMM-based estimation technique.

4.2 Discrete-Time Signal Model

Let us consider a QAM transmission system, and let S[n] be the n-th transmitted

symbol drawn from a power normalized M -ary constellation A={S0, . . . , SM−1}
with equiprobable symbols. At the receiver side, after front-end signal process-

ing, a complex low-pass version of the received signal is sampled at symbol rate

yielding the samples X[n] for which we assume the following analytical model:

X[n] = GC e
jθ+j2πf0n S[n] +W [n] (4.1)

where GC is the gain, θ and f0 are the phase and the frequency offset, and

W [n] is a realization of a circularly complex Gaussian stationary noise process,

statistically independent of S[n]. The signal-to-noise ratio (SNR) is defined as

SNR
def
= G2

C/σ
2
W , being σ2

W

def
= E {|W [n]|2} the noise power.

In the following, we will address the estimation of the carrier frequency offset

f0 given a sample of N consecutive observations X[n], n = 0, · · · , N − 1, with

|f0| < 1/8,1 and in absence of knowledge about the nuisance parameters GC and

θ.

1Due to the quadrant constellation symmetry, in absence of side information the phase
of the signal samples cannot be recovered unless an ambiguity of π/2. A frequency offset
|f0| > 1/8 corresponds to a phase jump larger than ±π/4 for each received sample, that would
be unrecoverable due to the said ambiguity.
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4.3 Image Processing Approach to Phase-Offset

Estimation

Let us now consider the following nonlinear function of the received signal samples

X[n] after a frequency compensation fc:

Y (fc)[n] = |X[n]| · ej4·arg{X [n]}e−j8πfcn (4.2)

The nonlinearity (4.2) extends the transformation appearing in Section 3.3 and,

for fc = f0, it folds the received samples whose phases differ by π/2. An analogous

mapping is adopted in (37), where the received signal samples are projected in

the first quadrant to take into account the constellation symmetry.

When the frequency compensation fc perfectly removes the frequency offset,

i.e. fc = f0, the nonlinearity (4.2) is exactly the same as in (3.2). In this case,

all the observations in Sect.3.3 hold; we expect then the constellation diagram

to exhibit a peculiar clusterization, depending on the constellation and on the

SNR. Under this assumption, the MWTP of the bidimensional magnitude/phase

pdf (3.5), exhibits a series of pulses, whose location and number depend on the

constellation and whose shape depends on the SNR.

When instead no compensation is comprised, i.e. fc = 0, each constellation

point is shifted with respect to the preceeding because of the presence of the

frequency offset f0. Because of this, the points in the constellation diagram are

spread over the complex plane, and the clusterization observed for perfect com-

pensation vanishes. Consequently, the MWTP is expected to be a near uniform

function, the pulses being spread over the phase axis as a consequence of the

frequency offset.

In the noise free case, the pdf of the random variable Y (fc)[n] is time-variant;

adopting the polar representation Y (fc)[n] = r[n]ejϕ[n], it assumes the following

form involving a suite of Dirac pulses:

p
R,Φ

(r, ϕ; (fc − f0)n) =
1

M

M−1∑

m=0

δ(r −GC|Sm|) · δ(ϕ− 4θ + 8π(fc − f0)n − 4 arg Sm)

(4.3)

where 4θ is the constant phase-shift due to the carrier phase-offset, and 8π(fc −
f0)n is the time-variant phase-shift due to the residual carrier frequency offset

(fc − f0).
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For perfect frequency compensation, i.e. (fc − f0) = 0, the noise-free pdf of

Y (fc)[n] becomes time-invariant and we re-obtain the expression in (3.4):

p
R,Φ

(r, ϕ; 0) =
1

M

M−1∑

m=0

δ(r −GC |Sm|) · δ(ϕ− 4θ − 4 arg Sm) (4.4)

In this case, the phase shift of the pdf of the random variable Y (f0)[n] with

respect to the variable ϕ reduces to the constant 4θ. Comparing (4.3) and (4.4),

we observe that the following relation stands:

p
R,Φ

(r, ϕ; (fc − f0)n) = p
R,Φ

(r, ϕ− 8π(fc − f0)n; 0) (4.5)

In presence of additive noise, the Dirac pulses appearing in (4.3) and (4.4) become

wider pulses whose shape depends on the SNR and the noise pdf;1 however, we

can still observe the cyclic shift due to the residual frequency offset (fc−f0), and

the relation (4.5) still holds.

Fig.4.1 shows the nonlinearly transformed samples Y (fc)[n]|fc=0 observed in

absence of frequency compensation as well as the nonlinearly transformed sam-

ples Y (fc)[n]|fc=f0 observed in case of perfect frequency compensation (16-QAM,

N = 512,SNR = 50dB, f0 = 0.005, θ = 0). For perfect frequency compensation,

i.e. (fc − f0) = 0, the nonlinear transformation (4.2) folds signal samples orig-

inated by constellation points into a particular cluster of compensated samples

Y (fc)[n]|fc=f0 .

Let us now suppose perfect frequency compensation (fc − f0) = 0 already

accomplished, and let us consider the so-called Magnitude Weighed Tomographic

Projection (MWTP) of the magnitude/phase bidimensional pdf p
R,Φ

(r, ϕ; 0), as

in (3.5):

g(A,θ,P )

Φ
(ϕ)

def
=

∫ +∞

0

r · p
R,Φ

(r, ϕ; 0) dr (4.6)

1 At high SNR, the shape of the pulses reduces to the pdf of the imaginary component of
the noise W [n].
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Figure 4.1: Nonlinearly transformed samples Y (fc)[n]|fc=0 (no frequency compen-

sation) and Y (fc)[n]|fc=f0 (perfect frequency compensation), 16-QAM constellation

(N = 512, SNR = 50dB, f0 = 0.005, θ = 0.)

The expression of the zero phase-offset MWTP g(A,0,P )

Φ
(ϕ) is (cfr. App.E):

g(A,0,P )

Φ
(ϕ) =

4

Mπ σ2
W

M−1∑

m=0

exp


−

GC|Sm|2 sin2
(ϕ

4
− arg Sm

)

σ2
W




·
2∑

k=0

(
2

k

)(
GC|Sm| cos

(ϕ
4
− arg Sm

))2−k
∞∫

−GC |Sm | cos(ϕ
4
−argSm)

ρkexp

(
− ρ2

σ2
W

)
dρ

(4.7)

Fig.3.4 illustrates the MWTP for different QAM constellations (SNR = 35dB). It

is worth noting that each MWTP shows a number of peaks equal to the number

of clusters formed by perfectly compensated samples Y (fc)[n]|fc=f0 originated by

constellation points differing by π/2.

Following the same steps of Section 3.3 we evaluate the CPS as:

f (A,θ,P ) (ψ)
def
=
K

2π
·
∫ ψ+2π/K

ψ

g(A,θ,P )

Φ
(ϕ) dϕ (4.8)
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In the limit K → ∞ it results:

lim
K→∞

f (A,θ,P ) (ψ) = g(A,θ,P )

Φ
(ψ) (4.9)

The CPS f (A,θ,P ) (ψ) of a QAM constellation A is formed by a set of pulses

symmetrically located around π + 4θ, whose relative distance and amplitudes

depend on A and whose widths depend on SNR. In the CPS domain, as in

MWTP domain, the phase offset θ is seen as a cyclic shift, i.e. f (A,θ,P ) (ψ) =

f (A,0,P ) (ψ − 4θ).

To illustrate the relationship between the nonlinearly transformed measure-

ments Y (fc)[n] and the CPS, let us consider K equiamplitude intervals

I
(k)
K

def
=[2πk/K, 2π(k + 1)/K)

for k=0, . . . ,K− 1, so as to introduce the following accumulation function:

a(A,(fc−f0),θ) (ψk)
def
=

1

N

N−1∑

n=0

|Y (fc)[n]| · d (k)
K

(
Y (fc)[n]

)
(4.10)

where ψk
def
= 2πk/K denotes the reference phase of the k-th phase interval and

d
(k)
K (Y ) is an indicator function defined as follows:

d
(k)
K (Y )

def
=





1 arg Y ∈ I
(k)
K

0 otherwise

The accumulation function in (4.10) extends the sample CPS defined in (3.8).

When perfect frequency compensation is accomplished, the accumulation function

a(A,(fc−f0),θ) (ψk) equals the form in (3.8). The expected value of a(A,(fc−f0),θ) (ψk)

is:

E
{
a(A,(fc−f0),θ) (ψk)

}
=

1

N

N−1∑

n=0

E
{∣∣Y (fc)[n]

∣∣ · d (k)
K

(
Y (fc)[n]

)}

=
1

N

N−1∑

n=0

+∞∫

0

2π∫

0

r p
R,Φ

(r, ϕ; (fc − f0)n) d
(k)
K

(
rejϕ

)
drdϕ

=
1

N

N−1∑

n=0

2π(k+1)/K∫

2πk/K

+∞∫

0

r p
R,Φ

(r, ϕ; (fc − f0)n)drn dϕ
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4.3 Image Processing Approach to Phase-Offset Estimation

Recalling that

p
R,Φ

(r, ϕ; (fc − f0)n) = p
R,Φ

(r, ϕ− 8π(fc − f0)n; 0)

we have:

E
{
a(A,(fc−f0),θ) (ψk)

}
=

1

N

N−1∑

n=0

2π(k+1)/K∫

2πk/K

+∞∫

0

r p
R,Φ

(r, ϕ+ 8π(fc − f0)n; 0)dr dϕ

=
1

N

N−1∑

n=0

2π(k+1)/K+8π(fc−f0)n∫

2πk/K+8π(fc−f0)n

+∞∫

0

r p
R,Φ

(r, ϕ; 0)dr dϕ

=
1

N

N−1∑

n=0

f (A,θ,P ) (ψk + 8π(fc − f0)n)

(4.11)

In (4.11) we recognize that, for fc−f0 6=0, the expected value of the accumulation

function a(A,(fc−f0),θ) (ψk) is a superimposition of N suitably shifted versions of

the CPS f (A,θ,P ) (ψ), i.e. E
{
a(A,(fc−f0),θ) (ψk)

}
is a filtered and sampled version

of f (A,θ,P ) (ψ). On the other hand, in the case of perfect frequency compensation,

fc−f0 =0, (4.11) reduces to:

E
{
a(A,0,θ) (ψk)

}
= f (A,θ,P ) (ψk) (4.12)

Hence, when perfect frequency compensation has been achieved, the accumulation

function a(A,0,θ) (ψk) turns out to be an unbiased estimate of the CPS f (A,θ,P ) (ψk).

Fig.4.2 gives a visual interpretation of these mathematical results about the

accumulation function a(A,(fc−f0),θ) (ψk), in the same case already addressed in

Fig.4.1 (16-QAM constellation,N=512, SNR=50dB, f0 =0.005, θ=0). The tem-

poral evolution of the phase ϕ[n]=arg
(
Y (fc)[n]|fc=0

)
is represented in Fig.4.2(a)

where a bidimensional phase-time scatter diagram is build by plotting the locus

of points (ϕ(n), n). In this phase-time domain, a cluster of the nonlinearly trans-

formed samples Y (fc)[n] appearing in Fig.4.1 corresponds to a linear pattern. In

fact, due to the frequency offset f0, the samples Y (fc)[n] are affected by a lin-

early time-varying phase offset and, therefore, they result aligned along parallel

linear patterns; the slope of the lines is proportional to the residual frequency

offset fc−f0. For a perfect frequency offset compensation, the time-varying phase
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offset vanishes and the linear patterns representing the phases of the samples

Y (fc)[n]|fc=f0 appear vertically oriented, as shown in Fig.4.2b.

Figure 4.2: Phase-time scatter plots of the nonlinearly transformed samples

Y (fc)[n] and corresponding sample functions a(A,(fc−f0),θ) (ψk) (16-QAM constel-

lation, N = 512, SNR = 50dB, f0 = 0.005, θ = 0). Subfigures (a) and (c)

respectively show a(A,−f0,θ) (ψk) and Y (fc)[n]|fc=0 (no frequency compensation),

subfigures (b) and (d) respectively show a(A,0,θ) (ψk) and Y (fc)[n]|fc=f0 (perfect fre-

quency compensation).

On the other hand, Figs.4.2c-d show the accumulation function a(A,(fc−f0),θ) (ψk)

evaluated in the cases of Figs.4.2a-b, respectively for fc−f0=f0 and fc−f0 =0.

In the first case, the samples corresponding to a specific cluster are spread

out over different intervals I
(k)
K , and contribute to different samples of the accu-

mulation function a(A,(fc−f0),θ) (ψk), which appears uniform, although noisy, over

the range [0, 2π). Conversely, for perfect frequency compensation fc−f0 =0, each

cluster is represented by a vertical straight line and the accumulation function

a(A,0,θ) (ψk) is a peaked function that, for sufficiently large N , tends to the signal

CPS.
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Figure 4.3: Sample function a(A,(fc−f0),θ) (ψk) evaluated at fc−f0 =0 (a), fc−f0 =

2.8 ·10−6 (b), and fc−f0 =7.0 ·10−6 (c) (32-QAM constellation SNR = 23dB, θ =

0, N = 2000, f0 = 0.05).

The deviation of the expected value of the accumulation function from the signal

CPS is appreciated also for small values of the residual frequency offset fc−f0.

Fig.4.3 plots the accumulation function a(A,(fc−f0),θ) (ψk) for fc−f0 =0, fc−f0 =

2.8 · 10−6, and fc−f0 =7.0 · 10−6 in the case of 32-QAM (N = 2000, f0 =5 · 10−2,

SNR=23dB). Fig.4.3 shows that a small widening is discernible in a(A,fc−f0 ,θ) (ψk)

even in presence of relatively small values of the residual frequency offset fc−f0.
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4.4 The CPS Based Frequency Offset Estimator

4.4 The CPS Based Frequency Offset Estimator

Bearing in mind the properties of the CPS above illustrated, it makes sense

to estimate the frequency offset f0 as the compensation value fc that provides

the best matching between the accumulation function a(A,(fc−f0),θ) (ψk) and the

reference CPS f (A,θ,P ) (ψk). Choosing a quadratic cost function, we may write:

f̂CPS = arg min
fc

K−1∑

k=0

[
a(A,(fc−f0),θ) (ψk) − f (A,θ,P ) (ψk)

]2
(4.13)

In (4.13) the value of fc affects both the energy of the measured accumulation

function a(A,(fc−f0),θ) (ψk)

Ea(fc)
def
=

K−1∑

k=0

a(A,(fc−f0),θ) (ψk)
2

and the cross-energy

C(fc)
def
=

K−1∑

k=0

a(A,(fc−f0),θ) (ψk) f
(A,θ,P ) (ψk) .

Simulation results show that, within a relatively large interval around fc = f0,

Ea(fc) remains approximately constant1. Hence, the optimization in (4.13) is sub-

stantially obtained by maximizing the cross-energy term, which can be efficiently

computed in the Discrete Fourier Transform (DFT) domain. Denoting by capital

letter the DFT of a sequence, e.g. A(A,(fc−f0),θ) (m) = ||DFT{a(A,(fc−f0),θ) (ψk)}||m,

we can write:

C(fc) =
K−1∑

m=0

A(A,(fc−f0),θ) (m) · F (A,θ) (m)

=

K−1∑

m=0

A(A,(fc−f0),θ) (m) ·
∣∣F (A,0) (m)

∣∣ · ej4θm
(4.14)

where the overline denotes complex conjugation. Since around f0 the abscissa of

the barycenter of a(A,(fc−f0),θ) (ψk) well approximates θ, cfr. Section. 3.5, we can

1For instance, in the same cases addressed in Fig.4.3, the fluctuation of Ea(fc) due to the
different compensation values is less than the 1% of the fluctuation of C(fc).
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neglect the odd part of the sequence a(A,(fc−f0),θ) (ψk) around its barycenter, thus

obtaining:

C(fc) '
K−1∑

m=0

∣∣A(A,(fc−f0),θ) (m)
∣∣ ·
∣∣F (A,0) (m)

∣∣ (4.15)

Thus, we can conveniently adopt the following objective function:

G(fc)
def
=

K−1∑

m=0

∣∣A(A,(fc−f0),θ) (m)
∣∣ ·
∣∣∣G(A,0)

Φ
(m)

∣∣∣ (4.16)

where we have also fruitfully used the approximation f (A,0,P ) (ψk)'g(A,0,P )

Φ
(ψk).

In summary, we have rephrased the frequency offset estimation stated in (4.13)

as follows:

f̂CPS = arg max
fc

{G(fc)} (4.17)

It is worthy noting that the estimator f̂CPS does not need any preliminary gain

control stage and/or phase offset compensation, but only a (coarse) SNR estimate

for the CPS evaluation.1

The maximization of the objective function G(fc) can be performed in a two-

step coarse-to-fine fashion, i.e. by first evaluating an intermediate coarse estimate

f̂
(c)
0 , and then by interpolating the function G(fc) around f̂

(c)
0 to obtain the fine

estimate f̂
(f)
0 .

A two step approach is found, for instance, in (21). Therein, a coarse estimate

of the frequency offset is first determined by applying a fast Fourier transform

algorithm on the nonlinearly transformed, suitably zero-padded, measurements;

thereafter, a fine frequency offset estimation is obtained by means of accurate

interpolation in the frequency domain.

Here, the CPS-based coarse estimate f̂
(c)
0 is found by scanning the fc admissible

range [−1/8, 1/8] with step ∆fc:

kmax = arg max
k

{G(k∆fc)}

f̂
(c)
0 = kmax∆fc

(4.18)

The computational complexity needed for scanning the entire admissible range

of fc can be further reduced by a preliminary scan based on a generic fast rough

1For a CPS based coarse SNR estimation see App. G.
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estimator, thus limiting the CPS-based scanning into a small window around f0.

Even though any rough estimator could be used for this aim, for completeness, in

App. I we provide a fast rough frequency estimator that still exploits the structure

of the CPS; this rough estimator has been employed to limit the scanning range

of the CPS-based coarse estimate f̂
(c)
0 in the numerical experiments whose results

are shown in Sect.4.6.

After the coarse estimation stage, we resort to a suitable interpolation tech-

niques to refine the estimate f̂
(c)
0 , limited by the quantum value ∆fc. Following

the approach presented in (15), we adopt a parabolic approximation for the objec-

tive function (4.16) around its maximum, thus obtaining the following expression

for the fine estimate f̂
(f)
0 :

f̂
(f)
0 = f̂

(c)
0 − ∆fc

8

G(f̂
(c)
0 + ∆fc) − G(f̂

(c)
0 − ∆fc)

G(f̂
(c)
0 +∆fc)+G(f̂

(c)
0 −∆fc)−2G(f̂

(c)
0 )

(4.19)

This choice is motivated by the effectiveness of (4.19) in capturing the local

variations of the function G(fc) as well as by its analytical tractability, which

allows to obtain the estimator performance in closed form. The following Section

will be devoted to the asymptotical performance analysis of the frequency offset

estimator (4.19).
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4.5 High SNR Performance Analysis

In this Section we outline the high SNR performance analysis of the CPS based

frequency offset estimator as given in (4.19). The estimation error is structured

in two components: the first component occurs when the coarse estimate f̂
(c)
0 is

not correct, while the second error component is due to both the sample objec-

tive function estimation error and to parabolic approximation misfit around its

maximum.

Numerical simulations show that, for medium to high SNR, the coarse esti-

mate is always correct so that the estimator accuracy at high SNR is limited by

the second error component only. Since the parabolic interpolation misfit can

be reduced by using sufficiently small frequency interval ∆fc, the error on the

fine estimate f̂
(f)
0 is mainly due to the zero-mean sample estimation error of the

objective function G(fc); therefore, the bias of the fine estimate f̂
(f)
0 due to the

parabolic interpolation misfit is negligible and our theoretical analysis addresses

the evaluation of the variance of f̂
(f)
0 .

Following the approach indicated in (15), the variance of f̂
(f)
0 is analytically

evaluated as a function of the mean, variance and covariances of the samples

G(f̂
(c)
0 ), G(f̂

(c)
0 + ∆fc) and G(f̂

(c)
0 − ∆fc).

Let us set

x = G(f̂
(c)
0 + ∆fc), y = G(f̂

(c)
0 − ∆fc), z = G(f̂

(c)
0 )

and

X = E {x} , Y = E {y} , Z = E {z}

Let us also compactly denote

c = X − Y, d = X − 2Z + Y

Then, within a first-order approximation of (4.19), the variance of the estimator

f̂
(f)
0 is given by:

Var {f̂ (f)
0 } =

∆f2

64

[(d − c

d2

)2

Var {x} +

(
d+ c

d2

)2

Var {y}+

(
2c

d2

)2

Var {z}

−
(
d2 − c2

d4

)
Cov {x, y}+

(
2dc + 2c2

d4

)
Cov {z, y}+

(
2dc − 2c2

d4

)
Cov {x, z}

]

(4.20)
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From (4.20) we observe that the asymptotical frequency estimator accuracy is

a function only of the first and second order moments of the sample objective

function G(fc). The evaluation of these moments is reported in App. H.

4.6 Numerical Experiments

Here, we assess the performance of the above described frequency offset estimation

method by discussing numerical results obtained through numerical simulations.

Each experiment consists of 1000 Monte Carlo trials using signal samples gen-

erated according to (4.1) with a sample size N = 512 for square-constellations

(16-64-256 QAM) and N = 2000 for cross-constellations (32-128-512 QAM). Es-

timation is performed in two steps according to the coarse-to-fine approach de-

scribed in Sect.4.3; the coarse frequency estimate is found as a multiple of the

step ∆fc, using also the preliminary fast rough estimator described in App. I.

For the sake of comparison, we have also reported the performances pertaining

to the optimal Non-Linear-Square (NLS) estimator described in (21); to compare

the here described CPS-based estimator with the NLS estimator, the frequency

offset has been set at f0 = 0.05.1

The results pertaining to the numerical experiments have been expressed in

terms of the normalized Root Mean Square Error (
√
N ·RMSE) measured on all

the considered estimators; besides, since the bias of all the considered estimators is

negligible or zero, the results pertaining to the theoretical asymptotic performance

analysis have been rather expressed in terms of the normalized standard deviation

of the estimation error
√
N ·StdDev{f̂ (f)

0 }.
Figs. 4.4-4.9 show the analytical and experimental normalized RMSE versus

the SNR. Both the CPS and the NLS estimators require the knowledge of the

constellation and of the SNR. Simulation results have been obtained assuming

perfect knowledge of this parameters at the receiver side. The NLS estimator

requires also the knowledge of the gain whereas the CPS estimator is gain control

free. The results pertaining to the NLS estimator have been obtained assuming

also perfect gain knowledge. Furthermore, we have also reported the Cramér-Rao

lower bound (CRB), as derived in Chapter 5.

1In (21), it has been also shown that, for f0 =0.05, the NLS estimator performs uniformly
better than the estimator described in (28).
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In Figs.4.4-4.9 we observe a good agreement between the high SNR asymptot-

ical (large N) performance analysis in Sect. 4.5 and the numerical results either

for square and cross-constellation, showing that the large sample approximation

holds true for realistic values of N . At medium SNR the theoretical analysis

slightly diverges from numerical results, still providing an upper bound to the

numerical simulations performance.1 At low SNR, the error of the coarse fre-

quency estimate becomes dominant and the high SNR analysis is not applicable.

From Figs. 4.4-4.9 we see that for medium to high SNR ranges the CPS

based estimator outperforms the NLS estimator and at high SNR it approaches

the CRB. The performance achieved is explained by comparing the ML estima-

tion and the CPS based estimation. At high SNR, after an ideal gain control

stage, ML estimation minimizes the distance between every frequency compen-

sated sample and the corresponding transmitted input symbols; the NLS esti-

mator approximates the ML estimator for small order constellations. The CPS

based estimation can be rather interpreted as the minimization of the difference

between each peak of the accumulation function a(A,(fc−f0),θ) (ψk), rather repre-

sentative of a whole cluster of received signal samples, and the peak of the CPS

representing the subset of the corresponding transmitted symbols.

Since the CPS based estimator f̂
(f)
0 requires the knowledge of SNR for the

evaluation of the reference MWTP g(A,0,P )

Φ
(ψk), we complete the discussion pre-

senting the effect of the SNR mismatch on the CPS based estimator accuracy.

The performance degradation under the hypothesis of ±5 dB and ±10 dB SNR

mismatch is shown in Figs.4.10 and 4.11 for 16-QAM and 32-QAM constella-

tions, respectively. For each doublet of SNR mismatch, the curves report the

worst measured performance. In both Figs.4.10 and 4.11, we can appreciate that

the CPS based estimation accuracy preserves the CRB slope, although the mis-

match slightly affects the estimator accuracy, resulting in a 2dB performance loss

for a ±5dB SNR mismatch up to 4dB for a ±10dB SNR mismatch. The loss is

restrained since the mismatch of the SNR parameter affects only the widths of the

MWTP pulses. For the sake of comparison, we report also the performance of the

optimal NLS estimator in (21) in case of SNR and/or gain mismatch. Tabs.4.1

1This circumstance arises because the variance in (4.20) has been derived without the
constraint G(f̂ (c)

0 ) > G(f̂ (c)
0 ± ∆fc), whereas this constraint is implicitly satisfied in the coarse-

to-fine approach and it bounds the estimate f̂ (f)
0 in the range [f̂ (c)

0 − ∆fc/2, f̂
(c)
0 + ∆fc/2].
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and 4.4 show the normalized RMSE of both the CPS and the NLS estimator for

different values of SNR in presence of ±5dB and ±10dB SNR mismatch. Nu-

merical results show that the CPS based estimator outperforms the optimal NLS

estimator also in presence of SNR mismatch. Results reported in Tabs.4.2-4.6

comprise also a ±0.5dB gain mismatch. We observe that, especially in the case

of cross-constellation, the presence of gain mismatch severely affects the perfor-

mance of the NLS estimator in (21), while it has no effect on the CPS estimator.

For the sake of completeness, we also compared the herein introduced esti-

mator with the gain-control-free sub-optimal fourth-order estimator in (21). Figs

4.12-4.13 show the analytical and experimental normalized RMSE for both the

CPS and the sub-optimal fourth-order estimator in (21) along with the CRB

for 16-QAM and 32-QAM constellations. Numerical results show that the CPS

based estimator uniformly outperforms the fourth-order estimator in (21), es-

pecially in the case of cross-constellations. Moreover, the CPS based estimator

does not show the saturation effect presented by the fourth-order estimator for

SNR → +∞.
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Figure 4.4: Normalized root mean square frequency estimation error
√
N ·RMSE

vs. SNR for 16-QAM constellation (N = 512,K = 512); CPS-based estimator

(theoretical, solid line black, and numerical, circle black) and optimal NLS esti-

mator in (21) (WA03) (theoretical, solid line gray, and numerical, diamond gray).

The dashed line represents the CRB.

Figure 4.5: Normalized root mean square frequency estimation error
√
N ·RMSE

vs. SNR for 32-QAM constellation (N = 2000,K = 512); CPS-based estimator

(theoretical, solid line black, and numerical, circle black) and optimal NLS esti-

mator in (21) (WA03) (theoretical, solid line gray, and numerical, diamond gray).

The dashed line represents the CRB.
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Figure 4.6: Normalized root mean square frequency estimation error
√
N ·RMSE

vs. SNR for 64-QAM constellation (N = 512,K = 512); CPS-based estimator

(theoretical, solid line black, and numerical, circle black) and optimal NLS esti-

mator in (21) (WA03) (theoretical, solid line gray, and numerical, diamond gray).

The dashed line represents the CRB.

Figure 4.7: Normalized root mean square frequency estimation error
√
N ·RMSE

vs. SNR for 128-QAM constellation (N = 2000,K = 512); CPS-based estima-

tor (theoretical, solid line black, and numerical, circle black) and optimal NLS

estimator in (21) (WA03) (theoretical, solid line gray, and numerical, diamond

gray). The dashed line represents the CRB.
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Figure 4.8: Normalized root mean square frequency estimation error
√
N ·RMSE

vs. SNR for 256-QAM constellation (N = 512,K = 512); CPS-based estimator

(theoretical, solid line black, and numerical, circle black) and optimal NLS esti-

mator in (21) (WA03) (theoretical, solid line gray, and numerical, diamond gray).

The dashed line represents the CRB.

Figure 4.9: Normalized root mean square frequency estimation error
√
N ·RMSE

vs. SNR for 512-QAM constellation (N = 2000,K = 512); CPS-based estima-

tor (theoretical, solid line black, and numerical, circle black) and optimal NLS

estimator in (21) (WA03) (theoretical, solid line gray, and numerical, diamond

gray). The dashed line represents the CRB.
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Figure 4.10: Normalized root mean square frequency estimation error
√
N ·RMSE

vs. SNR for SNR mismatch equal to ±5dB (triangle) and ±10dB (circle) for 16

QAM constellation (N = 512, L= 512). For each doublet of SNR mismatch, the

curves report the worst measured performance.

Figure 4.11: Normalized root mean square frequency estimation error
√
N ·RMSE

vs. SNR for SNR mismatch equal to ±5dB (triangle) and ±10dB (circle) for 32

QAM constellation (N =2000, L=512). For each doublet of SNR mismatch, the

curves report the worst measured performance.
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√
N ·RMSE 16QAM

0dB gain mism.
CPS estim. WA03 estim.

SNR =20dB SNR =30dB SNR=40dB SNR =20dB SNR =30dB SNR =40 dB
0dB SNR mismatch 1.14 · 10−4 3.08 · 10−5 1.21 · 10−5 1.25 · 10−4 3.78 · 10−5 1.86 · 10−5

±5dB SNR mismatch 1.59 · 10−4 4.22 · 10−5 1.63 · 10−5 1.89 · 10−4 5.66 · 10−5 1.92 · 10−5

±10dB SNR mismatch 1.88 · 10−4 5.41 · 10−5 1.69 · 10−5 2.78 · 10−4 8.37 · 10−5 2.15 · 10−5

Table 4.1:Normalized RMSE of CPS and WA03 estimators at different values of

SNR, for ±5dB and ±10dB SNR mismatch, under a 0dB gain mismatch. (16-

QAM constellation, N=512,K=512)

√
N ·RMSE 16QAM

0.5dB gain mism.
CPS estim. WA03 estim.

SNR =20dB SNR=30dB SNR =40dB SNR =20dB SNR =30dB SNR=40 dB
0dB SNR mismatch 1.14 · 10−4 3.08 · 10−5 1.21 · 10−5 2.06 · 10−4 6.45 · 10−5 2.20 · 10−5

±5dB SNR mismatch 1.59 · 10−4 4.22 · 10−5 1.63 · 10−5 3.05 · 10−4 7.81 · 10−5 2.30 · 10−5

±10dB SNR mismatch 1.88 · 10−4 5.41 · 10−5 1.69 · 10−5 3.36 · 10−4 9.55 · 10−5 3.11 · 10−5

Table 4.2:Normalized RMSE of CPS and WA03 estimators at different values

of SNR, for ±5dB and ±10dB SNR mismatch, under a 0.5dB gain mismatch.

(16-QAM constellation, N=512,K=512)

√
N ·RMSE 16QAM

-0.5dB gain mism.
CPS estim. WA03 estim.

SNR =20dB SNR=30dB SNR =40dB SNR =20dB SNR =30dB SNR=40 dB
0dB SNR mismatch 1.14 · 10−4 3.08 · 10−5 1.21 · 10−5 1.64 · 10−4 5.17 · 10−5 2.26 · 10−5

±5dB SNR mismatch 1.59 · 10−4 4.22 · 10−5 1.63 · 10−5 2.01 · 10−4 7.76 · 10−5 2.42 · 10−5

±10dB SNR mismatch 1.88 · 10−4 5.41 · 10−5 1.69 · 10−5 5.52 · 10−4 9.22 · 10−5 3.71 · 10−5

Table 4.3:Normalized RMSE of CPS and WA03 estimators at different values

of SNR, for ±5dB and ±10dB SNR mismatch, under a -0.5dB gain mismatch.

(16-QAM constellation, N=512,K=512)
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√
N ·RMSE 32QAM

0dB gain mism.
CPS estim. WA03 estim.

SNR =20dB SNR =30dB SNR=40dB SNR =20dB SNR =30dB SNR =40 dB
0dB SNR mismatch 4.19 · 10−5 1.80 · 10−5 2.79 · 10−6 7.13 · 10−5 1.43 · 10−5 4.46 · 10−6

±5dB SNR mismatch 6.66 · 10−5 1.20 · 10−5 4.03 · 10−6 7.99 · 10−4 7.94 · 10−4 8.00 · 10−4

±10dB SNR mismatch 8.23 · 10−5 1.88 · 10−5 5.00 · 10−6 7.95 · 10−4 8.06 · 10−4 8.04 · 10−4

Table 4.4:Normalized RMSE of CPS and WA03 estimators at different values of

SNR, for ±5dB and ±10dB SNR mismatch, under a 0dB gain mismatch. (32-

QAM constellation, N=2000,K=512)

√
N ·RMSE 32QAM

0.5dB gain mism.
CPS estim. WA03 estim.

SNR =20dB SNR=30dB SNR =40dB SNR =20dB SNR =30dB SNR=40 dB
0dB SNR mismatch 4.19 · 10−5 1.80 · 10−5 2.79 · 10−6 1.59 · 10−3 1.58 · 10−3 1.55 · 10−3

±5dB SNR mismatch 6.66 · 10−5 1.20 · 10−5 4.03 · 10−6 1.56 1.57 · 10−3 1.59 · 10−3

±10dB SNR mismatch 8.23 · 10−5 1.88 · 10−5 5.00 · 10−6 1.43 1.56 · 10−3 1.59 · 10−3

Table 4.5:Normalized RMSE of CPS and WA03 estimators at different values

of SNR, for ±5dB and ±10dB SNR mismatch, under a 0.5dB gain mismatch.

(32-QAM constellation, N=2000,K=512)

√
N ·RMSE 32QAM

-0.5dB gain mism.
CPS estim. WA03 estim.

SNR =20dB SNR=30dB SNR =40dB SNR =20dB SNR =30dB SNR=40 dB
0dB SNR mismatch 4.19 · 10−5 1.80 · 10−5 2.79 · 10−6 4.67 1.51 1.41
±5dB SNR mismatch 6.66 · 10−5 1.20 · 10−5 4.03 · 10−6 4.47 3.99 1.29
±10dB SNR mismatch 8.23 · 10−5 1.88 · 10−5 5.00 · 10−6 4.48 1.53 1.62

Table 4.6:Normalized RMSE of CPS and WA03 estimators at different values

of SNR, for ±5dB and ±10dB SNR mismatch, under a -0.5dB gain mismatch.

(32-QAM constellation, N=2000,K=512)
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4.6 Numerical Experiments

Figure 4.12: Normalized root mean square frequency estimation error
√
N ·RMSE

vs. SNR for 16-QAM constellation (N=512,K=512); CPS-based estimator (the-

oretical, solid line black, and numerical, circle black) and sub-optimal fourth-order

estimator in (21) (WA03) (theoretical, solid line gray, and numerical, diamond

gray). The dashed line represents the CRB.

Figure 4.13: Normalized root mean square frequency estimation error
√
N ·RMSE

vs. SNR for 32-QAM constellation (N = 2000,K = 512); CPS-based estimator

(theoretical, solid line black, and numerical, circle black) and sub-optimal fourth-

order estimator in (21) (WA03) (theoretical, solid line gray, and numerical, dia-

mond gray). The dashed line represents the CRB.
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4.7 GMM based Frequency Acquisition for QAM Constellation

4.7 GMM based Frequency Acquisition for QAM

Constellation

In this Section we briefly outline how also the CPS-based frequency offset acqui-

sition introduced in Sect. 4.4, can be recst in the framework of the GMM.

Let us in fact consider the estimation rule as in (4.13):

f̂CPS = arg min
fc

K−1∑

k=0

[
a(A,(fc−f0),θ) (ψk) − f (A,θ,P ) (ψk)

]2
(4.21)

By defining the following observations and reference vectors as in (3.20) and (3.21)

a (fc, θ) =
[
a(A,(fc−f0),θ) (ψ0) , . . . , a

(A,(fc−f0),θ) (ψK−1)
]T

f(ξ)=
[
f (A,ξ,P ) (ψ0) , . . . , f

(A,ξ,P ) (ψK−1)
]T

and by considering the following generalized moment:

e (fc)
def
= a (fc, θ) − f(0)

we can re-write the estimator in (4.21) as the solution of the following unweighted

GMM estimation problem:

f̂CPS = arg min
fc

e (fc)
T e (fc) (4.22)

The time varying nature of the shift induced by the frequency offset in (4.3)

makes unfeasible the estimation approach for location parameters introduced in

Chapter 2. More specifically the extension of 4.22 to the optimally weighted case

presents serious computational issues, due to the inversion of the measurements

covariance matrix for every estimation step.

The analysis of a domain so to recast the frequecny offset estimation as a

location parameter is hence left for future study 1.

1An example in this sense may be given by the Radon transformed domain
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Chapter 5

Cramér Rao Lower Bound for

QAM Phase and Frequency

Offset Estimation

5.1 Introduction

In this Chapter we detail the derivation of the Cramér Rao Lower Bound (CRLB)

for the estimation of phase and frequency offset for general QAM constellation,

under the hypothesis that the gain factor is unknown, and hence to be estimated

itself. To evaluate the score functions we follow the approach in (12), and to

perform the expectations for the evaluation of the Fisher information matrix we

resort to a Monte Carlo integration technique (49).

5.2 Cramér Rao Lower Bound for joint Phase

and Gain Estimation

Let us consider the same discrete-time signal model employed in Chpater 3, that

is:

Xn = GC e
jθ Sn +Wn (5.1)

We recall that GC is the unknown overall gain, θ is the unknown phase-offset,

and Wn is a realization of a circularly complex Gaussian stationary noise pro-
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5.2 Cramér Rao Lower Bound for joint Phase and Gain Estimation

cess, statistically independent of Sn. The signal-to-noise ratio (SNR) is defined

as SNR
def
= G2

C/σ
2
W , being σ2

W

def
= E {|Wn|2} the noise variance. The Sn are the

transmitted symbols drawn from a power normalized QAM constellation A. For

instance, in the reference case of the 16 QAM constellation we have that:

A16 =
1√
10

{±1 ± j,±1 ± 3j,±3 ± j,±3 ± 3j}

Th Cramér Rao Lower Bound (CRB) for the variance of an unbiased estimator

θ̂ is well known to be given by (47):

CRB
(
θ̂
)

= −
[
E

{
∂2 lnp (X|θ)

∂θ2

}]−1

where p (X|θ) denotes the conditional pdf of the observed sample X = {Xi}N−1
i=0 .

When considering the case of joint phase and gain estimation, the expression the

CRB for the phase offset θ estimation is found as the element (1, 1) of the inverse

Fisher Information Matrix as defined as follows:

CRB
(
θ̂
)

=
[
F (θ, GC)−1]

(1,1)
(5.2)

being:

F (θ, GC) =




−E
{
∂2 ln p(X|θ, GC)

∂θ2

}
−E

{
∂2 ln p(X|θ, GC)

∂θ ∂GC

}

−E
{
∂2 ln p(X|θ, GC)

∂θ ∂GC

}
−E

{
∂2 ln p(X|θ, GC)

∂G2
C

}


 (5.3)

For a single received sampleX0, the corresponding conditional pdf p (X0|θ, GC)

is given by:

p (X0|θ, GC) =
∑

Si∈A

P (Si)

2πσ2
W

e
−
|X0 −GCSie

jθ|2

2σ2
W

being P (Si) the probability of emission of the constellation symbol Si.
1 Since the

recevied samples are statistycally independent, the joint pdf of the N recevied

samples in X is given by:

p (X|θ, GC) =
N−1∏

n=0





∑

Si∈A

1

2πMσ2
W

e
−

∣∣Xn −GCSie
jθ
∣∣2

2σ2
W





(5.4)

1From now on, without loss of generality we will consider the constellation symbols to be

equiprobable so that, for a generic M-QAM constellation we have that P (Si) =
1
M

.
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5.2 Cramér Rao Lower Bound for joint Phase and Gain Estimation

Expanding (5.4), and following the same approach as in (12), we come up with

the following steps:

p (X|θ, GC) =
N−1∏

n=0





1

2πMσ2
W

e
−
|Xn|2

2σ2
W

∑

Si∈A

e
−
|GCSi|2

2σ2
W e

<
[
XnGCS

∗
i e

−jθ]

σ2
W





=

N−1∏

n=0

{
1

2πMσ2
W

e
−
|Xn|2

2σ2
W

∑

Si∈Q1

e
−
|GCSi|2

2σ2
W ·

∑

r=±1

cosh

[
<
(

1

σ2
W

χ (θ, GC, n, i, r)

)]}

(5.5)

being:

χ (θ, GC, n, i, r)
def
= |GCSi|Xne

−j


θ+r arctan



= (Si)

< (Si)







(5.6)

where the superscript (·)∗ stands for the complex conjugate, <(·) and =(·) for

real and imaginary parts, and Q1 consists of the cosntellation points in the first

quadrant. The derivation of (5.14) can be found in the Appendix of (12).

Stemming from the definition of χ (θ, GC, n, i, r) in (5.6), we have that the

following relations stand:

∂

∂θ
< [χ (θ, GC , n, i, r)] = = [χ (θ, GC , n, i, r)]

∂

∂θ
= [χ (θ, GC, n, i, r)] = −< [χ (θ, GC, n, i, r)]

∂

∂GC

< [χ (θ, GC, n, i, r)] = <
[
χ (θ, GC, n, i, r)

GC

]
= < [χθ (θ, n, i, r)]

∂

∂GC

= [χ (θ, GC, n, i, r)] = =
[
χ (θ, GC, n, i, r)

GC

]
= = [χθ (θ, n, i, r)]

Taking the logarithm and differentiating twice (5.14), we obtain the following

expressions for the second partial derivatives in (5.11):
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5.2 Cramér Rao Lower Bound for joint Phase and Gain Estimation

∂2

∂θ2
ln p (X|θ, GC) =

N−1∑

n=0

{



∑

Si∈Q1

e
−
α2

2

(
1

σ4
W

∑

r=±1

cosh (R)=2 (χ) − 1

σ2
W

∑

r=±1

sinh (R)< (χ)

)

[
D
(
θ, GC, Xn, Qi, σ

2
W

)
]−1

−



∑

Si∈Q1

e
−
α2

2

(
1

σ2
W

∑

r=±1

sinh (R)= (χ)

)


2[
D
(
θ, GC, Xn, Qi, σ

2
W

)
]−2}

(5.7)

∂2

∂θ ∂GC

ln p (X|θ, GC) =

N−1∑

n=0

{[ ∑

Si∈Q1

e
−
α2

2

(
− GC |Si|4

σ4
W

∑

r=±1

sinh (R)< (χ (θ, GC, n, i, r))

+
1

σ4
W

∑

r=±1

cosh (R)< (χθ (θ, n, i, r))= (χ (θ, GC, n, i, r))

+
1

σ2
W

∑

r=±1

sinh (R)= (χθ (θ, n, i, r))

)][
D
(
θ, GC , Xn, Qi, σ

2
W

)
]−1

−



∑

Si∈Q1

e
−
α2

2

σ2
W

∑

r=±1

sinh (R)= (χ (θ, GC, n, i, r))


 ·

[ ∑

Si∈Q1

e
−
α2

2

σ2
W

(
−GC |Si|

∑

r=±1

cosh (R) +
∑

r=±1

sinh (R)< (χθ (θ, n, i, r))

)][
D
(
θ, GC, Xn, Qi, σ

2
W

)
]−2}

(5.8)
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5.2 Cramér Rao Lower Bound for joint Phase and Gain Estimation

and

∂2

∂G2
C

ln p (X|θ, GC) =

N−1∑

n=0

{[ ∑

Si∈Q1

e
−
α2

2

σ2
W

(
|Si|2

(
α2 − 1

) ∑

r=±1

cosh (R) +
1

σ2
W

∑

r=±1

cosh (R)< (χθ (θ, n, i, r))2

−GC |Si|2
(

1 +
1

σ2
W

) ∑

r=±1

sinh (R)< (χθ (θ, n, i, r))

)]
·

[
D
(
θ, GC , Xn, Qi, σ

2
W

)
]−1

−
[ ∑

Si∈Q1

e
−
α2

2

σ2
W

(
−GC |Si|2

∑

r=±1

cosh (R) +
∑

r=±1

sinh (R)< (χθ (θ, n, i, r))

)]2

·

[
D
(
θ, GC , Xn, Qi, σ

2
W

)
]−2}

(5.9)

where we have set, for the sake of readibility:

α =
|GCSi|
σW

R
def
= <

(
1

σ2
W

χ (θ, GC, n, i, r)

)

D
(
θ, GC , Xn, Qi, σ

2
W

)
=
∑

Si∈Q1

e
−
|GCSi|2

2σ2
W

∑

r=±1

cosh

(
<
(

1

σ2
W

χ (θ, GC, n, i, r)

))

The three expressions in (5.7)-(5.9) can be compactly rewritten as follows:

∂2

∂γ ∂δ
ln p (X|θ, GC) =

N−1∑

n=0

Λγ,δ (Xn) for γ, δ ∈ {θ,GC}

where the Λγ,δ (Xn) represents the expressions inside of the curly braces. Stem-

ming from this positions we can write the expectation of, for instance, (5.7) as:

E

{
∂2

∂θ2
ln p (X|θ, GC)

}
=

∫ ∞

−∞
· · ·
∫ ∞

−∞

N−1∑

n=0

Λθ,θ (Xn)
N−1∏

k=0

p (Xk|θ, GC) d |Xk|

(5.10)
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where we denoted d |Xn| = d< (Xn) d= (Xn). Each term Λθ,θ (Xj) in the summa-

tion in (5.10) depends only on the actual sample Xj and not on the remaining

Xn, n 6= j, so that we can write:

E

{
∂2

∂θ2
ln p (X|θ, GC)

}
=

∫ ∞

−∞
Λθ,θ (Xj) p (Xj |θ, GC) d |Xj|

∫ ∞

−∞
· · ·
∫ ∞

−∞

N−1∏

k=0
k 6=j

p (Xk|θ, GC) d |Xk|+

∫ ∞

−∞
· · ·
∫ ∞

−∞

N−1∑

n=0
n6=j

Λθ,θ (Xn)

N−1∏

k=0

p (Xk|θ, GC) d |Xk|

Since we have that

∫ ∞

−∞
· · ·
∫ ∞

−∞

N−1∏

k=0
k 6=j

p (Xk|θ, GC) d |Xk| = 1

we can rewrite the expectation in (5.10) as:

E

{
∂2

∂θ2
ln p (X|θ, GC)

}
=

N−1∑

n=0

∫ ∞

−∞
Λθ,θ (Xn) p (Xn|θ, GC) d |Xn| =

N · E {Λθ,θ (Xn)}

The same result holds also for the other second partial derivatives in (5.8) and

(5.9) so that we can write:

F (θ, GC) = −N ·




E {Λθ,θ (Xn)} E {Λθ,GC
(Xn)}

E {Λθ,GC
(Xn)} E {ΛGC ,GC

(Xn)}


 (5.11)

By defining

Lγ,δ
(
σ2

W

)
= E {Λγ,δ (Xn)} for γ, δ ∈ {θ,GC}

we can write:

CRB
(
θ̂
)

=
LGC ,GC

(σ2
W)

N ·
(
LGC ,GC

(σ2
W) Lθ,θ (σ2

W) − Lθ,GC
(σ2

W)
2) (5.12)
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In order to evaluate the Lγ,δ’s we resort to a MonteCarlo integration pro-

cedure (49). More specifically we produce a large sample of Gaussian noise at

different values of SNR, and average the values of the Λγ,δ (Xn)’s over these sam-

ples. For SNR ≤ 20dB the Λγ,δ (Xn)’s present spikes too narrow to be treated

numerically. Yet, for SNR ≥ 20dB the CRB in (5.12) is well approximated by

the modified CRB as in (48). The results pertaining this analysis are reported in

the performance plots for the phase offset estimator described in Chapter 3 (Figs

3.14-3.19).

5.3 Cramér Rao Lower Bound for joint Frequency

and Gain Estimation

In this Section we derive the CRB for joint frequency and gain estimation. We

apply much of the derivation for the phase CRB described in the previous Section.

The observation model is the same as in 5.1 except for the presence of frequency

offset.

Xn = GC e
j(θ+2πfen) Sn +Wn (5.13)

Following the same steps as in the previous Section we can write the conditional

pdf of the received samples as:

p (X|θ, GC , fe) =

N−1∏

n=0





1

2πMσ2
W

e
−
|Xn|2

2σ2
W

∑

Si∈Q1

e
−
|GCSi|2

2σ2
W ·

∑

r=±1

cosh

[
<
(

1

σ2
W

κ (θ, GC , fe, n, i, r)

)]




(5.14)

where we compactly denoted:

κ (θ, GC , fe, n, i, r)
def
= |GCSi|Xne

−j


θ+2πfen+r arctan



= (Si)

< (Si)







(5.15)

By comapring the expression in (5.15) with the expression in (5.6) we come up

with the following relations:
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Estimation

∂

∂θ
< [κ (θ, GC , fe, n, i, r)] = = [κ (θ, GC, fe, n, i, r)]

∂

∂θ
= [κ (θ, GC, fe, n, i, r)] = −< [κ (θ, GC , fe, n, i, r)]

∂

∂fe
< [κ (θ, GC, fe, n, i, r)] = 2πn = [κ (θ, GC, fe, n, i, r)]

∂

∂fe
= [κ (θ, GC, fe, n, i, r)] = −2πn < [κ (θ, GC, fe, n, i, r)]

∂

∂GC

< [κ (θ, GC , fe, n, i, r)] = <
[
κ (θ, GC, fe, n, i, r)

GC

]
= < [κθ,fe (θ, fe, n, i, r)]

∂

∂GC

= [κ (θ, GC , fe, n, i, r)] = =
[
κ (θ, GC, fe, n, i, r)

GC

]
= = [κθ,fe (θ, fe, n, i, r)]

Stemming from these relations we can write:

∂2

∂θ2
lnp (X|θ, GC, fe) =

N−1∑

n=0

Λθ,θ (Xn) (5.16)

∂2

∂G2
C

ln p (X|θ, GC, fe) =
N−1∑

n=0

ΛGC ,GC
(Xn) (5.17)

∂2

∂f2
e

ln p (X|θ, GC, fe) = 4π2

N−1∑

n=0

n2 Λθ,θ (Xn) (5.18)

∂2

∂θ∂fe
ln p (X|θ, GC , fe) = 2π

N−1∑

n=0

n Λθ,θ (Xn) (5.19)

∂2

∂GC∂fe
ln p (X|θ, GC , fe) = 2π

N−1∑

n=0

n ΛGC ,θ (Xn) (5.20)

∂2

∂GC∂θ
ln p (X|θ, GC, fe) =

N−1∑

n=0

ΛGC ,θ (Xn) (5.21)
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Estimation

with the care of cosidering κ (θ, GC, fe, n, i, r), instead of χ (θ, GC, n, i, r) in

the definition of the terms Λγ,δ introduced in the previous Section.

Again the expectations can be taken follwing the guidelines depicted for the

case of phase offset estimation, and resorting to Monte Carlo integration technique

to numerically evaluate the expectations involved in evaluating the terms in the

Fisher Information Matrix.

The results of this analysis are found in Figs. 4.4 - 4.9 reporting the accuracy

of the frequency offset estimator introduced in Chapter. 4.
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Chapter 6

Conclusion

In this thesis a Generalized Method of Moments (GMM) approach for (cyclic)

shift parameter estimation has been introduced. We showed how the shift nature

of the estimandum is suitably exploited to perform the minimization problem

comprised in the general GMM framework via a DFT-based approach. This

approach, by itself suitable only when a location parameter is to be estimated,

can be correctly employed also when a transformation can be found, such to map

the parameter estimation problem into a shift estimation one. An example of this

scenario is, for instance, the gain estimation in the Mellin transformed domain.

Besides, we have discussed the condition under which the GMM provides a ML

estimation, proving that, when the observations are multinomially distributed, a

MLE is obtained by the same estimation rule of the so-called unweighted GMM

with a significantly reduced computational complexity.

As an application we introduced a novel gain control free, not data aided,

phase and frequency offset estimation technique for QAM signaling. The esti-

mators stem from the observation of the peculiar features that the constellation

diagrams of the received samples exhibits in presence of phase and/or frequency

offset. An image processing like analysis of such features helps defining a statistic

so to drive the estimation. More specifically the statistic is based on the sam-

ple measurement of the tomographic projection of the bidimensional pdf of the

received data, which we have called Constellation Phase Signature (CPS).

The phase-offset causes a cyclic shift of the CPS, and, thus, we have rephrased

the phase-offset estimation problem rather as a cyclic shift estimation problem,
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and we applied the GMM framework for shift parameter estimation herein pre-

sented. Moreover the samples of the measured CPS, under a particular setting,

can be proved to be multinomially distributed, thus enabling a reduced complex-

ity ML phase offset estimation.

The frequency-offset is instead proved to cause a filtering over the estimated

CPS, due to the time varying phase drift each received sample is subject to.

A suitable frequency compensation removes the time varying phase drift and re-

stores the original structure of the CPS. Hence, the frequency estimation problem

has been reformulated in terms of maximization of the cross-correlation between

the sample CPS and the analytically known CPS for zero frequency offset.

We have carried out a theoretical analysis concerning with asymptotical per-

formance, which has been assessed by numerical simulations. We compared the

CPS based estimators with selected existing blind estimators and with the Cramér

Rao Lower Bound (CRB), which we explicitely evaluated for the reference case

of unknown gain factor. We have shown that the variance of the CPS based

estimator versus SNR has the same slope of CRB, and, in the case of optimally

weighted GMM and for the reduced complexity ML estimators, it approaches the

CRB for a wide range of SNR. Moreover, the CPS based estimators outperform

selected existing blind estimators for medium to high values of SNR and for dense

constellations.
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Chapter 7

Appendices

A Variances-Covariances of the Weighted His-

togram

Let us here rewrite the sample estimates defined in (2.3), in the case of K equis-

paced points ξk = (2k + 1)π/K, for k = 0, . . . ,K − 1:

f̂k =
K

2πN

N∑

n=1

h
(
z(1)
n , . . . , z(l−1)

n

)
rect

(
z

(l)
n − ξk
2π/K

)
(A.1)

where the observations z
(1)
n , . . . , z

(l)
n are drawn in a statistically independent fash-

ion for n = 1, N .

For the sake of compactness, let us indicate the l − 1 random variables

z(1) · · · z(l−1) as a single, (l − 1)-dimensional, random variable ζ. Then, as far

as the first order moment of f̂k is concerned, we have:

E
{
f̂k
}

=
K

2π

∫ ξk+π/K

ξk−π/K
pz(l)|α

(
z(l)|α

)
dz(l)

+∞∫

−∞

· · ·
+∞∫

−∞

h (ζ) pζ|z(l),α

(
ζ|z(l), α

)
dζ

(A.2)

where dζ stands for dz(1) · · · dz(l−1). The (l − 1)-dimensional inner integral in

(A.2) is the expectaton of the function h (ζ) conditioned to z(l). Then, let us
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shortly denote conditional moments of h (ζ) as:

µ
(k)

h|z(l)
def
=

+∞∫

−∞

· · ·
+∞∫

−∞

hk(ζ) pζ|z(l),α

(
ζ|z(l), α

)
dζ

in order to rewrite (A.2) as follows:

E
{
f̂k
}

=
K

2π

∫ ξk+π/K

ξk−π/K
µ

(1)

h|z(l) pz(l)|α
(
z(l)|α

)
dz(l)

=
K

2π
E
{
µ

(1)

h|z(l)

∣∣∣Ek
}

(A.3)

where Ek =
{
|z(l) − ξk| < 2π/K

}
form a complete class of mutually exclusive

events.

In the case h (·) = 1, we are faced with the classical (unweighted) marginal

histogram wrt the random variable z(l), and (A.3) rediscovers the well know

property of unbiasness of histograms: 2πE
{
f̂k

}
/K = Prob {Ek}. For a general

nonlinearity h (·), recalling the definition (2.2), we have:

K

2π
E
{
µ

(i)

h|z(l)

∣∣∣Ek
}

= f (ξk − α)

Hence, (A.3) expresses the unbiasness of weighted histograms:

E
{
f̂k
}

= f (ξk − α) (A.4)
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As far as the variances-covariances are concerned, we have:

Cov
{
f̂k, f̂q

}
=

K2

4π2N2

N∑

n=1

Cov

{
h (ζn) rect

(
z

(l)
n − ξk
2π/K

)
, h (ζn) rect

(
z

(l)
n − ξq
2π/K

)}

+
K2

4π2N2

N∑

n=1

N∑

m=1
m 6=n

Cov

{
h (ζn) rect

(
z

(l)
n − ξk
2π/K

)
, h (ζm) rect

(
z

(l)
m − ξq
2π/K

)}

︸ ︷︷ ︸
0 (statistically independent random variables)

=
K2

4π2N

[
Var

{
h (ζ) rect

(
z(l) − ξk
2π/K

)}
· δk,q

− E

{
h (ζ) rect

(
z(l) − ξk
2π/K

)}

· E
{
h (ζ) rect

(
z(l) − ξq
2π/K

)}
· (1 − δk,q)

]

=
K2

4π2N

[
E
{
µ

(2)

h|z(l)

∣∣∣Ek
}
δk,q

− E
{
µ

(1)

h|z(l)

∣∣∣Ek
}
· E
{
µ

(1)

h|z(l)

∣∣∣Eq
}]

(A.5)

being δk,q the Kronecker delta, i.e. it is equal to 1 for k = q and 0 elsewhere.

The evaluation of the conditional moments E
{
µ

(k)

h|z(l)

∣∣∣Ek
}

, for k = 1, 2, is

carried out on the basis of the probabilistic description of the specific problem

at hand. For instance, in the reference case of phse acquisition, in App.E and

F analytical expressions of the first and second order conditional moments are

respectively reported.
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B GMM Estimator Statistical Analysis

For simplicity, here and in the following we will drop out the dependence on α in

the optimal weight matrix by using the notation W0
def
= W(o).

As far as the first order moment is concerned, since E{f̂}= f(α) we have:

E {J (α;W0)} =

[
f(α) − 1

2
· f(α)

]T

· W0 · f(α)

The variances-covariances are evaluated as follows:

N · Cov {J (α1;W0) , J (α2;W0)}

= N · f(α1)
T · W0 · Cov

{
f̂ , f̂T

}
· W0 · f(α2)

= N · f(α1)
T · W0 · Ω(θ) ·W0 · f(α2)

= f(α1)
T · W0 · f(α2)

(B.1)

For the expression of Cov
{
f̂ , f̂T

}
, refer to App.A.

C Reduced Complexity ML Estimator Statisti-

cal Analysis

Since E{f̂}= f(α) we have:

E {C(α)} = f(α)T · f̃(α)

The variances-covariances are evaluated as follows:

N · Cov {C(α1),C(α2)}

= N · f̃ (α1)
T · Cov

{
f̂ , f̂T

}
· f̃ (α2)

(C.1)

For the expression of Cov
{
f̂ , f̂T

}
, refer to App.A.
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D On The Optimal Weight Matrix W0

The computation of the optimal weight matrix W0 = Ω(α)−1 /N requires the

inversion of the covariance matrix of the measurements Ω (α)
def
= E{(̂f − f(α))(̂f −

f(α))T}, which, according to (A.5), can be expressed as follows:

N · Ω(α) = Λ(α) − f(α) · f(α)T

where

Λ(α) = diag
{
g2
1, . . . , g

2
K

}

having defined g2
k

def
= K

2π
E
{
µ

(1)

h|z(l)

∣∣∣Ek
}

. Using the Woodbury’s identity (22), we

obtain:

W0 = Λ(α)−1 +
Λ(α)−1 · f(α) · f(α)T · Λ(α)−1

1 − f(α)T · Λ(α)−1 · f(α)
(D.1)

Hence, the elements of the matrix W0 take the following form:

||W0||k,q =
δk,q
g2
k

+

(
1 −

K∑

m=1

f̂2
m

g2
m

)−1

f̂k
g2
k

f̂q
g2
q

It is worth noting that the computations needed to evaluate (B.1) and (C.1) are

significantly reduced when the optimal weight matrix W0 is expressed in the form

(D.1).
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E Expectation of the Sample CPS and Ana-

lytical Evaluation of the Zero Phase-Offset

MWTP

We start by evaluating the expectation of the sample CPS. At this aim, let us

rewrite the signal model in (3.1) as X[n] = GC (ejθ S[n] +W ′[n]), being W ′[n] =

W [n]/GC a realization of a circularly complex Gaussian stationary noise process

with variance σ2
W/G

2
C = 1/SNR. At an assigned SNR value, the actual value of

GC influences the nonlinear function Y [n] defined in (3.2), as well as the CPS

introduced in (3.8), only by a constant factor GP
C
, which in turn does not affect

the phase-offset estimate defined in (3.13). Hence, without loss of generality, in

the following we will proceed assuming GC = 1; let us remark that, within this

assumption, the noise variance σ2
W assumes the physical meaning of Noise-to-

Signal Ratio.

For k = 0, . . . ,K − 1, dropping out the time index n for simplicity, we have:

lim
K→∞

E
{
f̂ (A,θ,P ) (ψk)

}
= lim

K→∞
E

{
K

2π
· |Y |d (k)

K (Y )

}

= lim
K→∞

∫
K

2π
· |Y |d (k)

K (Y ) pY (Y ) dY (E.1)

= lim
K→∞

∫

argY ∈Ik

K

2π
· |Y | pY (Y ) dY

We recall that the discrete argument k ∈ [0,K − 1] indexes the angular window

I
(k)
K , defined in (3.6) and here repeated for the sake of readability:

I
(k)
K

def
=

[
k · 2π

K
, (k + 1) · 2π

K

)
, for k = 0, . . . ,K − 1 (E.2)

In the limit K → ∞, the interval I
(k)
K becomes infinitesimal, 2π/K → dψ, and

the continuous phase argument 2πk/K → ψ spans the range [0, 2π) in a periodic,

modulo 2π, fashion.

In polar coordinates Y = rejϕ, the last integral in (E.1) is written as follows:

lim
K→∞

E
{
f̂ (A,θ,P ) (ψk)

}

= lim
K→∞

∫ +∞

0

∫ 2π(k+1)/K

2πk/K

K

2π
r p

R,Φ
(r, ϕ; θ) drdϕ
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In the limitK → ∞, the integral with respect to ϕ tends to a line integral defined

on the straight line where the phase ϕ equals ψ, i.e.:

lim
K→∞

E
{
f̂ (A,θ,P ) (ψk)

}
=

+∞∫

0

2π∫

0

r δ(ϕ− ψ) p
R,Φ

(r, ϕ; θ) drdϕ

=

∫ +∞

0

r p
R,Φ

(r, ψ; θ) dr

= g(A,θ,P )

Φ
(ψk)

and this shows that the sample CPS f̂ (A,θ,P ) (ψk) is an unbiased estimator of the

MWTP g(A,θ,P )

Φ
(ψk).

In order to proceed toward the evaluation of the zero phase-offset MWTP

g(A,0,P )

Φ
(ψk), let us recall that Y = |X|P ej4·argX . Setting X = γ ejφ, we can

rewrite the previous integral as follows:

g(A,0,P )

Φ
(ψk) = 4

∫ ∞

0

γPp
Γ,Φ

(γ, ψk/4; 0) dγ

Using the polar representation Sm = γm e
jφm. for the generic constellation sym-

bol, for an equiprobable M -constellation the pdf of the received signal X = γ ejφ

is:

p
Γ,Φ

(γ, φ; 0) =
M−1∑

m=0

γ

M πσ2
W

exp

(
−(γ cosφ− γm cosφm)2

σ2
W

)

· exp

(
−(γ sin φ− γm sinφm)2

σ2
W

)
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After some calculation we obtain:

g(A,0,P )

Φ
(ψk) =

4

M

M−1∑

m=0

1

π σ2
W

exp

(
−γ

2
m sin2(ψk/4 − φm)

σ2
W

)

·
∞∫

−γm cos(ψk/4−φm)

[γ + γm cos(ψk/4 − φm)]P+1 exp

(
− γ2

σ2
W

)
dγ

=
4

M

M−1∑

m=0

1

π σ2
W

exp

(
−γ

2
m sin2(ψk/4 − φm)

σ2
W

)

·
P+1∑

p=0

(
P + 1

p

)
(γm cos(ψk/4 − φm))P+1−p

·
∞∫

−γm cos(ψk/4−φm)

γpexp

(
− γ2

σ2
W

)
dγ

=
4

M

M−1∑

m=0

1

π σ2
W

exp

(
−γ

2
m sin2(ψk/4 − φm)

σ2
W

)

·
P+1∑

p=0

(
P + 1

p

)
(γm cos(ψk/4 − φm))P+1−p

· U (p)(ψk, γm, φm, σW )

where we have set

U (p)(ψk, γm, φm, σW)
def
=

∞∫

−γm cos(ψk/4−φm)

γpexp

(
− γ2

σ2
W

)
dγ (E.3)
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We have analytically evaluated the integrals in (E.3), and the functions

U (k)(ψk, γm, φm, σW ) take the following form:

U (0) =

√
π

2
σW Erfc

(
γm cos(ψk/4−φm)

σW

)

U (1) =
1

2
σ2

W exp

(
−(γm cos(ψk/4−φm))2

σ2
W

)

U (2) =
1

4
σ2

W

[
exp

(
−(γm cos(ψk/4−φm))2

σ2
W

)
2γm cos(ψk/4−φm)

+
√
πσW −

√
πσW Erf

(
γm cos(ψk/4−φm)

σW

)]

U (3) =
1

2
σ2

W exp

(
−(γm cos(ψk/4−φm))2

σ2
W

)

·
(
(γm cos(ψk/4−φm))2 + σ2

W

)

U (4) =
1

8
σ2

W

[
exp

(
−(γm cos(ψk/4−φm))2

σ2
W

)

· (4(γm cos(ψk/4−φm))3 + 6γm cos(ψk/4−φm)σ2
W

)

+ 3
√
πσ3

W − 3
√
πσ3

W Erf

(
γm cos(ψk/4−φm)

σW

)]

U (5) =
1

2
σ2

W exp

(
−(γm cos(ψk/4−φm))2

σ2
W

)

·
[
(γm cos(ψk/4−φm))42σ2

W
(γm cos(ψk/4−φm))2 + 2σ4

W

]

The expression of the theoretical CPS can be clearly recognized as an example of

the first order conditional moment of weighted histogram as generally introduced

and defined in App.A.
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F Analytical Evaluation of the Variances/Covariances

of the Sample CPS

As far as the expected value of the sample CPS f̂ (A,θ,P ) (ψk) is concerned, we

have:

E
{
f̂ (A,θ,P ) (ψk)

}
= E

{
|Y | · d (k)

K (Y )
}

For the variances we have:

Var
{
f̂ (A,θ,P ) (ψk)

}
def
= E

{(
f̂ (A,θ,P ) (ψk)

)2
}
−
(
E
{
f̂ (A,θ,P ) (ψk)

})2

= E

{
1

N2

N−1∑

n=0

N−1∑

m=0

|Y [n]|·d (k)
K (Y [n]) |Y [m]|·d (k)

K (Y [m])

}
−
(
E
{
|Y |·d (k)

K (Y )
})2

=
1

N2

[
N · E

{
|Y |2·d (k)

K (Y )
}

+ (N2 −N)
(
E
{
|Y |·d (k)

K (Y )
})2

]
−
(
E
{
|Y | · d (k)

K (Y )
})2

=
1

N

[
E
{
|Y |2 · d (k)

K (Y )
}
−
(
E
{
|Y | · d (k)

K (Y )
})2

]

For the covariances we have:

Cov
{
f̂ (A,θ,P ) (ψk) , f̂

(A,θ,P ) (ψl)
}

def
=

E
{
f̂ (A,θ,P ) (ψk) f̂

(A,θ,P ) (ψl)
}
− E

{
f̂ (A,θ,P ) (ψk)

}
E
{
f̂ (A,θ,P ) (ψl)

}

= E

{
1

N2

N−1∑

n=0

N−1∑

m=0

|Y [n]|·d (k)
K (Y [n]) |Y [m]|·d (l)

K (Y [m])

}

− E
{
|Y | · d (k)

K (Y )
}

E
{
|Y | · d (l)

K (Y )
}

=
1

N2

(
N · E

{
|Y |2 · d (k)

K (Y ) · d (l)
K (Y )

}
+(N2 −N) · E

{
|Y | · d (k)

K (Y )
}

E
{
|Y | · d (l)

K (Y )
})

− E
{
|Y | · d (k)

K (Y )
}

E
{
|Y | · d (l)

K (Y )
}

=
1

N

(
E
{
|Y |2 · d (k)

K (Y )
}
δkl − E

{
|Y | · d (k)

K (Y )
}

E
{
|Y | · d (l)

K (Y )
})

where δkl is the Kronecker delta, i.e. δkl = 1 for k = l and δkl = 0 for k 6= l.
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In the limit K → ∞ we obtain

E
{
f̂ (A,θ,P ) (ψk)

}
= g(A,θ,P )

Φ
(ψk)

N ·Var
{
f̂ (A,θ,P ) (ψk)

}
= g(A,θ,2P )

Φ
(ψk) −

(
g(A,θ,P )

Φ
(ψk)

)2

N ·Cov
{
f̂ (A,θ,P ) (ψk) , f̂

(A,θ,P ) (ψl)
}

= g(A,θ,2P)

Φ
(ψk) δkl − g(A,θ,P )

Φ
(ψk) · g(A,θ,P )

Φ
(ψl)

These results particularize the expression of the conditional moments in App.A
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G A rough SNR estimator

The bandwidth of CPS is related to the SNR. In fact, since the width of the

pulses of the CPS increases as the SNR decreases, the bandwidth is expected to

decrease too. We have measured the bandwidth B of the expected CPS for a

discrete set of SNR values. Specifically, fixed the constellation A, for each SNR

value we have calculated:

B(SNR) =

√√√√√√√√

kA∑
k=−kA

k2 ·M [k]

kA∑
k=−kA

M [k]

(G.1)

being M [k] is the magnitude of the DFT of the expected CPS at that SNR.

The index kA, limiting the calculation to low frequencies, controls the possible

noise amplification occurring in the summation of (G.1), and it can be chosen

accordingly to the particular constellation. We have set kA = 8 for all the here

considered constellations . For each constellation, the values B(SNR) have been

collected in a table; in the estimation, the table is then looked up to obtain the

SNR value once B(SNR) is instead calculated using (G.1) with M [k] being the

magnitude of the DFT of the sample CPS. It is worth noting that no significant

computational load is added to the overall estimation process since the DFT of

the sample CPS has been previously calculated to implement in the frequency

domain the cyclic cross-correlation in (3.13).

We remark that for constellations richer than 256-QAM the bandwidth mea-

surement in (G.1) is very unstable for low SNR values; thus, to obtain the numer-

ical results of Fig.3.13 pertaining to 512-QAM, we have replaced (G.1) with the

modified B(SNR) = M [0]/

√
kA∑

k=−kA
M2[k] when it results

kA∑
k=−kA

M [k] � 2M [0],

which happens for SNR < 30dB.
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H Statistical Analysis of the Frequency-Offset

Objective Function

In this Appendix we report the evaluation of the first and second order moments

of the objective function G(fc), as given in (4.16), in terms of the MWTP of the

QAM signals.

In order to evaluate the variance and covariance of G(fc), let us rewrite (4.16)

as follows:

G(fc) =
K−1∑

m=0

∣∣A(A,(fc−f0),θ) (m)
∣∣ ·
∣∣∣G(A,0)

Φ
(m)

∣∣∣

'
K−1∑

m=0

a(A,(fc−f0),0) (ψk) · g(A,0,P )

Φ
(ψk)

(H.1)

where, without loss of generality, we have set θ=0.

Introducing the zero mean random process

εk(fc − f0)
def
= a(A,(fc−f0),0) (ψk) − E

{
a(A,(fc−f0),0) (ψk)

}

where the expectation E
{
a(A,(fc−f0),0) (ψk)

}
is given in (4.11), we can rewrite the

objective function in (H.1) as follows:

G(fc) =

K−1∑

k=0

(
E
{
a(A,(fc−f0),0) (ψk)

}
+ εk(fc − f0)

)
· g(A,0,P )

Φ
(ψk)

The first and second order moments of G(·) are then evaluated as follows:

E {G(fc)} =
1

K

K−1∑

k=0

E
{
a(A,(fc−f0),0) (ψk)

}
· g(A,0,P )

Φ
(ψk)

E
{
G2(fc)

}
=

1

K2

K−1∑

k1

K−1∑

k2

{
E
{
a(A,(fc−f0),0) (ψk1)

}

· g(A,0,P )

Φ
(ψk1) E

{
a(A,(fc−f0),0) (ψk2)

}
g(A,0,P )

Φ
(ψk2)

+ g(A,0,P )

Φ
(ψk1) g

(A,0,P )

Φ
(ψk2)m

(2)
fc

[k1, k2]

}
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E {G(fc1)G(fc2)} =
1

K2

K−1∑

k1

K−1∑

k2

{
E
{
a(A,(fc1−f0),0) (ψk1)

}

· g(A,0,P )

Φ
(ψk1) E

{
a(A,(fc2−f0),0) (ψk2)

}
g(A,0,P )

Φ
(ψk2)

+ g(A,0,P )

Φ
(ψk1) g

(A,0,P )

Φ
(ψk2)m

(1,1)
fc1 ,fc2

[k1, k2]

}

where we have compactly denoted

m
(2)
fc

[k]
def
= E

{
(εk(fc − f0))

2}

m
(1,1)
fc

[k1, k2]
def
= E {εk1(fc − f0) · εk2(fc − f0)}

m
(1,1)
fc1 ,fc2

[k1, k2]
def
= E {εk1(fc1 − f0) · εk2(fc2 − f0)}

H–1 Moments of the Error Process

In order to complete the statistical analysis, we carry out the detailed analytical

evaluation of the moments of the error process εk(fc − f0).

The second order moment of the accumulation function E
{
a(A,(fc−f0),0) (ψk)

2
}

is evaluated as follows:

E
{
a(A,(fc−f0),0) (ψk)

2} = E

{
1

N2

N−1∑

n=0

N−1∑

m=0

|Y (fc)
n | d (k)

K

(
Y (fc)
n

)
|Y (fc)
m | d (k)

K

(
Y (fc)
m

)
}

=
1

N2

N−1∑

n=0

E
{∣∣Y (fc)

n

∣∣2 d (k)
K

(
Y (fc)
n

)}
+

1

N2

N−1∑

n=0

N−1∑

m=0︸ ︷︷ ︸
m 6=n

E
{∣∣Y (fc)

n

∣∣ d (k)
K

(
Y (fc)
n

)∣∣Y (fc)
m

∣∣ d (k)
K

(
Y (fc)
m

)}

=
1

N2

N−1∑

n=0

(
E
{
|Y (fc)
n |2 d (k)

K

(
Y (fc)
n

)}
+

1

N2

N−1∑

n=0

N−1∑

m=0︸ ︷︷ ︸
m 6=n

(
f (A,0,P )

(
ψk + φ(fc)

n

)
f (A,0,P )

(
ψk + φ(fc)

m

) )

=
(
f (A,0,P ) (ψk)

)2
+

1

N2

N−1∑

n=0

[
f (A,0,2)

(
ψk + φ(fc)

n

)
− f (A,0,P )

(
ψk + φ(fc)

n

)2 ]

(H.2)

where we have adopted the following compact notations:

f (A,0,2)
(
ψk + φ(fc)

n

) def
= E

{
|Y (fc)
n |2 d (k)

K

(
Y (fc)
n

)}
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and

φ(fc)
n

def
= 8π(fc − f0)n

Using (H.2), it follows that:

m
(2)
fc

[k]
def
= E

{
εk(fc − f0)

2
}

=
1

N2

N−1∑

n=0

[
f (A,0,2)

(
ψk + φ(fc)

n

)
− f (A,0,P )

(
ψk + φ(fc)

n

)2 ]

As far as the second order moment E
{
a(A,(fc1−f0),0) (ψk1) · a(A,(fc2−f0),0) (ψk2)

}

is concerned, using the triangular pulse defined as follows:

tri2π
K

(·) =





1 − |(·)| for |(·)| ≤ 2π/K

0 for |(·)| ≥ 2π/K.

we have

E
{
a(A,(fc1−f0),0) (ψk1) · a(A,(fc2−f0),0) (ψk2)

}

=
1

N2
· E
{∣∣∣Y (fc1)

n

∣∣∣
∣∣∣Y (fc2)
n

∣∣∣ d (k1)
K

(
Y

(fc1)
n

)
d

(k2)
K

(
Y

(fc2)
n

)}

+
1

N2

N−1∑

n=0

N−1∑

m=0︸ ︷︷ ︸
m 6=n

[
E
{∣∣∣Y (fc1)

n

∣∣∣ d (k1)
K

(
Y

(fc1)
n

)}
E
{∣∣∣Y (fc2)

m

∣∣∣ d (k2)
K

(
Y

(fc2)
m

)}]

= f (A,0,P ) (ψk1) f
(A,0,P ) (ψk2)

+
1

N2

N−1∑

n=0

[
f (A,0,2)

(
ψk1 + φ

(fc1)
n

)
tri2π

K

(
ψk1 − ψk2 + φ

(fc1)
n − φ

(fc2)
n

)

− f (A,0,P )
(
ψk1 + φ

(fc1)
n

)
f (A,0,P )

(
ψk2 + φ

(fc2)
n

)]

(H.3)

where the last equality exploits the relation:

E
{∣∣∣Y (fc1)

n

∣∣∣
∣∣∣Y (fc2)
n

∣∣∣ d (k1)
K

(
Y

(fc1)
n

)
d

(k2)
K

(
Y

(fc2)
n

)}

= E

{∣∣∣Y (fc1)
n

∣∣∣
2

d
(k1)
K

(
Y

(fc1)
n

)}
· tri 2π

K

(
ψk1 − ψk2 + φ

(fc1)
n − φ

(fc2)
n

)

From (H.2) and (H.3) we have:

m
(2)
fc

[k1, k2] =
1

N2

N−1∑

n=0

[
f (A,0,2)

(
ψk1 + φ(fc)

n

)
δk1k2 − f (A,0,P )

(
ψk1 + φ(fc)

n

)
f (A,0,P )

(
ψk2 + φ(fc)

n

) ]
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where δk1k2 is the Kronecker delta, i.e. δk1k2 = 1 if k1 = k2, otherwise δk1k2 = 0.

Furthermore:

m
(1,1)
fc1 ,fc2

[k1, k2] =
1

N2

N−1∑

n=0

[
f (A,0,2)

(
ψk1 + φ

(fc1)
n

)
tri2π

K

(
ψk1 − ψk2 + φ

(fc1)
n − φ

(fc2)
n

)

− f (A,0,P )
(
ψk1 + φ

(fc1)
n

)
f (A,0,P )

(
ψk2 + φ

(fc2)
n

)]
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I A fast rough frequency offset estimator

The expected value of the accumulation function (4.10) when frequency compen-

sation has not been applied, i.e. fc=0, takes the following form:

E
{
a(A,(fc−f0),0) (ψk)

}
∣∣∣∣∣
fc=0

=
1

N

N−1∑

n=0

f (A,θ,P ) (ψk − 8πf0n) (I.1)

From (I.1) we see that the accumulation function is a temporal average of N

versions of the CPS, each one shifted by 8πf0 with respect to the preceding.

Without loss of generality we can set θ=0; by taking the DFT of both members

we can write:

E
{
A(A,−f0,0) (m)

}
= F (A,0) (m) · 1

N

N−1∑

n=0

exp(j8πf0mn)

Hence, after having approximated F (A,0) (m)'G(A,0)

Φ
(m), we can recast the fre-

quency offset estimation as a nonlinear fitting problem between the function

U(mf0)
def
=

1

N

N−1∑

n=0

exp(j8πf0mn)

=
1

N
e−j8πf0m(N−1)/2 sin(8πf0mN/2)

sin(8πf0m/2)

(I.2)

and the observations given by

Um =
A(A,−f0,0) (m)

G(A,0)

Φ
(m)

The rough estimate is thus obtained from the following minimization problem:

f̂
(c)
0 = arg min

f0

L−1∑

m=0

(
U(mf0) − Um

)2

The nonlinear fitting can be applied on a limited number of points L, and here

we have considered L=8. Numerical results have shown that the rough estimate

f̂
(c)
0 always remains within the interval [f0 ± 10∆fc], so that only a few number,

typically 20, of frequency compensations are needed in the fine estimation stage.
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