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Preface 

Fascinating: this is the word that best expresses my PhD scholarship. 

Fascinating for the research activity, fascinating for the friendships arisen from 

scientific collaborations, fascinating for the chance to work with different people 

and in foreign countries, fascinating for the impact that all of this had and still has 

on me. Express feelings, satisfaction, hope and even the frustrations that the 

research activity involves is not simple, and transfer them to a thesis is certainly 

arduous; however, I hope to convey the mix of passion, dedication, perseverance 

and romance, which have accompanied me through this experience. 

During my PhD scholarship I worked mainly on computational chemistry, but also 

on wet chemistry, like organic synthesis and enzymatic inhibition assays. This has 

made me aware of the various aspects that characterize the different medicinal 

chemistry applications, and how these are linked together, allowing not only to 

immerse myself in the specific laboratory practice, but also to gain an overview of 

the manifold scientific research process.  

I couldn’t have asked for anything better. 
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Introduction 

The present doctoral thesis is the result of the work carried out during the three 

years of my PhD scholarship at the Rome Center for Molecular Design laboratory 

(RCMD, Department of Chemistry and Drug Technologies, Sapienza University of 

Rome), under the supervision of Prof. Rino Ragno. The research activity was 

focused mainly on the design, optimization and application of computational 

strategies to derive quantitative structure-activity relationships (QSAR, 3-D 

QSAR, and COMBINE) on different molecular classes of current interest, such as: 

opioid receptor antagonists (OPAs), Hepatitis C Virus NS5B-Polymerase 

Inhibitors (NS5B-NNIs), Hystone Deacetylase Inhibitors (HDACIs), Anti-

tubercular agents, vascular endothelial growth factor receptor-2 (VEGFR-2) 

inhibitors, HSP90 inhibitors, HIV-1 reverse transcriptase inhibitors (NNRTIs), 

Bovine Serum Amine Oxidase (BSAO) substrates, etc... Moreover two research 

periods abroad were performed: the first framed in a LLP Erasmus program 

collaboration, was conducted for six months at the Laboratoire d'Ingénierie et 

Moléculaire Pharmacologique Biochimie (LIMBP) of the Université de Lorraine 

Metz (France), directed by Prof. Gilbert Kirsch, and characterized by the 

application of organic synthesis to obtain new thienopyrimidinone derivatives as 

potential inhibitors of vascular endothelial growth factor receptor-2 (VEGFR-2); 

the second took place, for three months, at the Department of Biochemistry and 

Molecular Biophysics in Washington University School of Medicine in Saint Louis 

(MO, USA), under the supervision of Prof. Garland R. Marshall, investigating the 

activity profile of new Histone Deacetylases (HDACs) inhibitors by the application 

of the Mobility Shift Assay Technology.  

Main purpose of this doctoral thesis is to highlight the activities carried out in the 

different research projects, the applied methodologies and the obtained results. The 
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text starts describing those studies whose results were published in scientific 

journals (chapters I-VI): the author decided to omit some procedural details, 

completely reported in the published papers, that would make the text too long, 

tedious and redundant; therefore readers who want to delve these aspects can also 

refer to Chapter XII in which is possible to read the original papers; on the contrary 

for studies that have not yet been published, as those characterizing the Chapters 

VII and VIII, discussion is adequately detailed. Chapters IX and X report the 

scientific activities carried out in France and in USA respectively; Chapter XI 

summarizes all the scientific activities accomplished during the entire PhD course, 

whereas Chapter XII, as mentioned, contains the published articles.  
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Chapter I 

3-D QSAutogrid/R: An alternative procedure to build 3-D QSAR models. 

Methodologies and applications 

Flavio Ballante and Rino Ragno 

Journal of Chemical Information and Modeling 2012 52 (6), 1674-1685 

Preamble 

This chapter refers to a work that I care particularly, a constantly evolving project 

which began few years ago: the 3-D QSAutogrid/R procedure.
1
 The 3-D 

QSAutogrid/R is a tool, designed and developed to be freely used from academics, 

capable to perform optimized three dimensional quantitative structure-activity 

relationship (3-D QSAR) studies by the means of the PLS algorithm
2
. Respect to 

the classic 3-D QSAR approaches (like CoMFA
3
 and GRID

4
/GOLPE

5
) allows to: 

 minimize human-machine interactions, costs, and calculation time 

 select the most appropriate pretreatment parameters (CAPP
1
 procedure) 

 conduct MPGRS
1
 (Multi Probe Guided Region Selection) analyses 

 

The 3-D QSAutogrid/R procedure is, actually, the default 3-D QSAR methodology 

used at the Rome Center for Molecular Design laboratory (RCMD, Department of 

Chemistry and Drug Technologies Sapienza University of Rome), and the core 

engine to prepare thousands of 3-D QSAR models, based on either ligand based 

(LB) or structure based (SB) alignment methodologies, forming the very first 3-D 

QSAR server (www.3d-qsar.com), which allows to model the desired ligand and to 

retrieve the predicted biological affinity for the chosen model. Several studies,
6-10

 

characterizing my PhD scholarship, were accomplished using this procedure 

confirming its usefulness in drug discovery.   

http://www.3d-qsar.com/
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The Procedure 

The 3-D QSAutogrid/R methodology
1
 is based on the integration of the molecular 

interaction fields (MIFs) as calculated by the AutoGrid program (Autodock 

Suite
11

) and the R statistical environment,
12

 a freely available language for 

statistical computing and graphics. The AutoGrid software (based on the AMBER 

united-atom Force Field) is used to generate either training and test sets’ MIFs: in 

particular 8 different probes (Table 1) were chosen in agreement with the most 

common residue atomic composition, and currently implemented.  

 

Table 1. List of the AutoGrid probes employed for MIF calculation. 

Probe Type Description 

A Aromatic Carbon 

C Aliphatic (sp
3
) Carbon 

OA Hydrogen-bond-accepting oxygen 

HD Hydrogen bonded to heteroatom 

NA Hydrogen-bond-accepting amine nitrogen 

N Amide nitrogen 

e Electrostatic 

d Desolvation 

 

Several R-based packages (Table 2, Figure 1) were developed to carry out 

complete 3-D QSAR studies to obtain a comprehensive statistical and graphical 

report (see Computational methods section) for each different used probe and 

principal component (PC). The procedure needs only the pre-aligned training and 

test sets molecules. 

What makes the 3-D QSAutogrid/R procedure innovative is the capability to 

determine, through a combinatorial calculation (CAPP procedure),
1
 the most 

appropriate pretreatment values to get optimized 3-D QSAR models; but especially 

the possibility to derive multiprobe 3-D QSAR models (MPGRS procedure)
1
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highlighting the most informative regions around the ligands, using all the probes 

together, and reducing the chance of missing important correlations when using 

single probe 3-D QSARs. 

The whole procedure was validated on three data sets, covering both ligand-based 

(LB) and structure-based (SB) alignment methodologies, previously reported using 

CoMFA
13

 and GRID/GOLPE,
14

 respectively. 

 

Table 2. List of the R compiled packages. 

R package Description 

D2M Data to Model 

CAPP Combinatorial Analysis of Pretreatment Parameters 

MDP Model Data Pretreatment 

CV Cross Validation 

VS Variable Selection 

GRS Guided Region Selection 

MPGRS Multi Probe Guided Region Selection 

ESP External Set Prediction 

YS Y-scrambling 
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Figure 1. 3-D QSAutogrid/R process workflow. Acronyms inside the blue meshed 

square refer to the packages (steps) that effectively build or optimize the statistical 

PLS 3-DQSAR models; others are related to packages that perform analysis on 

these created models (see below for the description of each package). D2M: “Data 

to Model”; CAPP: “Combinatorial Analysis of Pretreatment Parameters”; MDP: 

“Model Data Pretreatment”; CV: “Cross-Validation”; VS: “Variable Selection”; 

(MP)GRS: “(Multi Probe) Guided Region Selection”; ESP: “External Set 

Prediction”; YS: Y-scrambling. 

 

Computational Methods 

As reported,
1
 each R-package is able to perform a specific 3-D QSAR analysis 

process releasing all the statistical and graphical results (Figure 2):  

1) D2M package (“Data to Model”): allows to import the training set biological 

data and MIF information (even MIFs generated with different tools, i.e. 

GRID or CoMFA) to build a raw PLS 3-D QSAR model for each used probe 

and user-defined principal component (PC).  
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Figure 2. Overview of the information released by the 3-D QSAutogrid/R 

procedure. 
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2) CV package (“Cross Validation”): allows to perform different kind of 

internal validation methods like LOO (leave one-out), LSO (leave-some-

out), KF (k-fold), and MC (Monte Carlo) to: 

 assess the chance correlation;
15

 

 select the optimal model dimensionality (number of PCs); 

 measure the internal predictive ability by means of statistical 

coefficients such as cross-validated correlation coefficient (q
2
) and 

standard deviation error of prediction (SDEP); 

3) CAPP package (“Combinatorial Analysis of Pretreatment Parameters”): 

represents a new 3-D QSAR feature, since it systematically seek the more 

efficient data pretreatment values (energy cutoff, zeroing of very low data 

points, and minimum standard deviation cutoff) through a combinatorial 

analysis: for each combination the pre-treated model is generated and then 

its q
2
 evaluated using LOOCV, LSOCV or KFCV. The optimal pretreatment 

combination is then selected according to the maximum q
2
 and the 

percentage decrement of sPRESS values between subsequent PCs.
16

 

4) MDP package (“Model Data Pretreatment”): to pretreat the molecular 

descriptors (MIFs), in an arbitrary way or as found by the CAPP procedure. 

A further data filter, that performs the 1N kind of 2-level variable 

elimination (variables which take only 2 values in all of the data file, one of 

which appears only in one object) can be selected.  

5) VS package (“Variable Selection”) allows to reduce redundant data 

improving the predictability of the statistical model. Different variable-

selection algorithms are implemented as: genetic algorithm
17

 (GA), 

simulated annealing
18

 (SA) and fractional factorial design
19

 (FFD). 

6) GRS package (“q
2
-Guided Region Selection): this package, inspired on the 

previously reported q
2
-guided region selection (q

2
-GRS)

20
 and smart-region 



7 

 

definition
20, 21

 (SRD),
20, 21

 allows to extract, for each probe and PC, only 

those sub-areas endowed with a q
2
 value greater than a specified threshold. 

7) MPGRS package (“Multi Probe Guided Region Selection”): the MPGRS 

approach is a new powerful tool capable to conduct advanced 3-D QSAR 

analyses. Indeed, this procedure is able to sum all the most defining 

chemical information, obtained by all the mono-probe models, deriving  

final quantitative pharmacophoric models. 

8) YS package (Y-Scrambling): this package allows to detect if the 3-D QSAR 

model is characterized by chance correlation
15

 by means of scrambling 

procedure22 

9) ESP package (External Set Prediction): this tool is of fundamental 

importance, in fact: 1) allows to test the predictive capability of the 3-D 

QSAR models against an external test set of molecules with known 

biological responses; 2) predicts the activity of untested or not yet 

synthetized compounds. 

 

Results and discussion 

The procedure was validated
1
 on three data sets, covering both ligand-based and 

structure-based alignment methodologies: 

• a data set of aligned opioid-receptor antagonists (LB data set)
13

 

• two data sets of Hepatitis C Virus NS5B-Polymerase Inhibitors (SB data sets)
14

  

LB data set (opioid-receptor antagonists): 

A data set composed of 74 pre-aligned compounds with associated δ, µ, κ opioid-

binding affinities, previously described in a CoMFA application,
13

 was used to 

build 24 3-D QSAR models with the new procedure, maintaining the original
13

 

training set and test set composition. All the 3-D QSARs were built, pretreated 
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through the CAPP procedure, and optimized by means of the genetic algorithm 

(GA, package VS). All the models were cross-validated through Leave-One-Out 

(LOO), Leave-Two-Out (LTO), k-Fold (KF) and Monte Carlo (MC) 

methodologies and submitted to the YS package to test the presence of chance 

correlation. To directly compare the two methodologies, double probe models 

(DP), similarly to those generated by CoMFA, were built. Statistical results 

(Tables 3 and 4), were similar to those originally obtained (compare Tables 3 and 4 

with table 5), confirming the robustness of the methodology. Moreover, the 

obtained contour maps were in agreement with those obtained from CoMFA. As 

for example, activity contribution plots obtained from the δ DP models are shown 

(compare Figures 3 and 4 with Figures 5 and 6). 
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Table 3. Opioid-receptor antagonists: Autogrid/R PLS models statistical results 

(CAPP and GA processes were applied). 

model OR P PC r
2
 q

2
LOO q

2
K5FCV r

2
YS q

2
YS 

1 δ A 2 0.81 0.73 0.70 0.27 -0.37 

2 δ C 2 0.82 0.74 0.71 0.32 -0.35 

3 δ HD 2 0.83 0.75 0.72 0.33 -0.34 

4 δ NA 2 0.83 0.75 0.73 0.31 -0.34 

5 δ N 2 0.83 0.76 0.72 0.29 -0.32 

6 δ OA 2 0.83 0.74 0.71 0.32 -0.37 

7 δ e 3 0.69 0.58 0.56 0.22 -0.19 

8 δ d 3 0.70 0.59 0.55 0.24 -0.30 

9 μ A 3 0.91 0.82 0.76 0.57 -0.50 

10 μ C 3 0.90 0.81 0.78 0.59 -0.50 

11 μ HD 3 0.90 0.81 0.75 0.47 -0.49 

12 μ NA 3 0.91 0.81 0.78 0.59 -0.50 

13 μ N 3 0.91 0.83 0.78 0.52 -0.61 

14 μ OA 3 0.91 0.83 0.77 0.51 -0.61 

15 μ e
a
 1 0.31 0.21 0.20 0.06 -0.10 

16 μ d 3 0.72 0.60 0.52 0.27 -0.39 

17 κ A 2 0.78 0.58 0.49 0.42 -0.37 

18 κ C 3 0.81 0.62 0.55 0.54 -0.53 

19 κ HD 3 0.82 0.72 0.65 0.34 -0.41 

20 κ NA 3 0.80 0.62 0.54 0.55 -0.47 

21 κ N 3 0.80 0.61 0.52 0.54 -0.48 

22 κ OA 3 0.82 0.65 0.59 0.54 -0.44 

23 κ e
a
 2 0.35 0.20 0.18 0.13 -0.18 

24 κ d 3 0.58 0.38 0.34 0.29 -0.36 

OR: Opioid-receptor data, P:Autogrid Probe, PC: optimal number of principal 

components/latent variables, r
2
: conventional square-correlation coefficient; q

2
LOO: 

cross-validation correlation coefficient using the leave-one-out method; q
2

K5FCV: 

cross-validation correlation coefficient using the k-fold cross-validation with 5 

random groups and 100 iterations; r
2

YS: average square correlation coefficient 

obtained after Y-scrambling process using 100 iterations; q
2

YS: average cross-

validation correlation coefficient using the leave-one-out method obtained after Y-

scrambling process using 100 iterations 
a
The e models 15 and 23 reported were 

only pretreated due to too few variables after GA selection. 
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Table 4. Opioid-receptor antagonists: Autogrid double-probe (DP) PLS models 

statistical results (only the CAPP process was applied). 

model OR P PC r
2
 q

2
LOO q

2
K5FCV r

2
YS q

2
YS 

28 δ Autogrid DP 3 0.83 0.70 0.67 0.41 -0.50 

29 μ Autogrid DP 4 0.85 0.65 0.63 0.52 -0.53 

30 κ Autogrid DP 3 0.84 0.67 0.63 0.50 -0.53 

OR: Opioid-receptor data; P: Autogrid double probe (DP, C and e probes), PC: 

optimal number of principal components/latent variables, r
2
: conventional square-

correlation coefficient; q
2

LOO: cross-validation correlation coefficient using the 

leave-one-out method; q
2

K5FCV: cross-validation correlation coefficient using the k-

fold cross-validation with 5 random groups and 100 iterations; r
2

YS: average square 

correlation coefficient obtained after Y-scrambling process using 100 iterations; 

q
2

YS: average cross-validation correlation coefficient using the leave-one-out 

method obtained after Y-scrambling process using 100 iterations 
 

 

Table 5. Opioid-receptor antagonists: original CoMFA models statistical results. 

model OR P PC r
2
 q

2
LOO q

2
K5FCV 

25 δ CoMFA 4 0.91 0.69 - 

26 μ CoMFA 4 0.92 0.67 - 

27 κ CoMFA 6 0.96 0.60 - 

OR: Opioid-receptor data; P: standard CoMFA Probe Csp3
+
, PC: optimal number 

of principal components/latent variables, r
2
: conventional square-correlation 

coefficient; q
2

LOO: cross-validation correlation coefficient using the leave-one-

out method; q
2

K5FCV: cross-validation correlation coefficient using the k-fold 

cross-validation with 5 random groups and 100 iterations. 
 

By means of the ESP package,
1
 all the 3-D QSAutogrid/R models were externally 

validated, as in the original CoMFA application,
13

 confirming the robustness of the 

methodology even in predicting the external test sets (compare Table 6 with Table 

7). 
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A B 
Figure 3. CoMFA-like steric-contour map derived from the C probe for the δ-

opioid receptors. A: compounds 18 (sky blue), 20 (white), 22 (green), 50 (purple) 

and 67 (red). B: compounds 30 (brown) and 68 (pink). Contour levels: 85% 

(positive green, negative yellow). Hydrogen atoms are omitted for the sake of 

clarity. In A and B are reported similar contour maps for the new procedure and 

CoMFA. 
 

 

 

Figure 4. CoMFA-like electrostatic contour map derived from e probe for the δ-

opioid receptors. Compounds: Naltrexone in magenta, NTI in yellow, 24 in green. 

Contour levels: 85% (positive blue, negative red). Hydrogen atoms are omitted for 

clarity. 
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A B 

Figure 5. CoMFA steric contour map for the δ opioid receptors. A: compound 18 

in sky blue, 20 in white, 22 in green, 50 in purple and 67 in red. B: compound 30 in 

brown, 68 in pink. Green (favored): 80%, yellow (disfavored) 20%. Hydrogen 

atoms are omitted for the sake of clarity. 

 
Figure 6. CoMFA electrostatic contour map for the δ opioid receptors. Naltrexone 

in magenta, NTI yellow, 24 green, Blue favored 80%, red (disfavored) 20%. 

Hydrogen atoms are omitted for the sake of clarity. 
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Table 6. δ Test Set predictions indicated by SDEP values. 

OR Model P PC SDEPTS1 SDEPTS2 

1 A 2 0.66 0.80 

2 C 2 0.64 0.77 

3 HD 2 0.62 0.74 

4 NA 2 0.64 0.82 

5 N 2 0.64 0.76 

6 OA 2 0.65 0.75 

7 e 3 0.81 1.20 

8 d 3 0.90 1.12 

OR Model: Opioid-receptor model of Table 6; P: Autogrid probe, PC: 

optimal number of principal components/latent variables; SDEPTS1: standard 

deviation error of prediction for the original test set; SDEPTS2: standard 

deviation error of prediction for the external test set. 
 

 
A 

 

 pKi  pKi 

compd exptl pred res compd exptl pred red 

6 7.1 7.98 -0.88 42 6.29 7.23 -0.94 

11 8.33 8.33 0.00 47 9.11 8.09 1.02 

13 7.28 7.23 0.05 48 8.75 8.25 0.5 

19 7.74 8.47 -0.73 52 6.90 6.77 0.13 

27 7.15 7.43 -0.28 64 7.80 8.28 -0.48 

37 7.66 8.31 -0.65 70 5.62 6.37 -0.75 

39 8.05 8.81 -0.76   
B 

 

 

Table 7. Opioid receptor antagonists: Experimental and Predicted pKi values of 

the δ Test Set compounds; A: CoMFA values from the reference,
13

 experimental 

activity for compd 27 was mistyped, the right one is equal to 7.15; B: AutoGrid/R 

δ CAPP pretreated double probe (DP) model values.  
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SB data set (Hepatitis C Virus NS5B-Polymerase Inhibitors): 

In this application two structure based datasets composed of HCV NS5B non-

nucleoside inhibitors (thumb and palm NNI), previously investigated
14

 through the 

GRID/GOLPE methodology,
5
 were submitted to the 3-DQSAutogrid/R protocol.

1
 

As for the LB study, the models were built, and optimized via the CAPP 

procedure. Since no variable selection was originally applied,
14

 no further 

optimization processes were performed on the models. As for the LB case study, 

the 3-DQSAutogrid/R procedure proved to derive models comparable to those 

originally reported
14

 concerning either the statistical (Table 8) and graphical 

results. In this case was decided to show the similarities between the PLS-

coefficients plots obtained from the two methodologies (Figure 7). 

 

 

 

  

A B 
Figure 7. PLS-coefficients contour maps using the thumb-training set; only the 

highest active (6 in cyan) and one of the lowest active (11 in orange) compounds 

are shown. A: AutoGrid/R PLS coefficients contour maps derived from A probe 

analysis (Contour levels: 60%, positive red, negative blue). B: GRID/GOLPE PLS 

coefficients contour maps derived from C1= GRID probe analysis (contour levels: 

0.0008 red, -0.0008 blue).  
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Table 8. PLS Analysis Results for the Thumb- and the Palm-Structure Based 

Autogrid/R and original GRID/GOLPE C1= 3-D QSAR Models. 

Dataset P PC r
2
 q

2
LOO q

2
K5FCV r

2
YS q

2
YS 

Thumb A 2 0.90 0.67 0.64 0.70 -0.63 

Thumb C 2 0.90 0.68 0.65 0.70 -0.60 

Thumb HD 2 0.92 0.75 0.73 0.68 -0.69 

Thumb NA 3 0.95 0.75 0.73 0.79 -0.66 

Thumb N 3 0.95 0.76 0.73 0.78 -0.67 

Thumb OA 3 0.95 0.77 0.73 0.77 -0.54 

Thumb e 3 0.98 0.58 0.52 0.92 -0.55 

Thumb d 1 0.58 0.36 0.36 0.27 -0.38 

Thumb GRID/GOLPE/C1= 3 0.99 - 0.69 - - 

Palm A 3 0.96 0.73 0.62 0.68 -1.62 

Palm C 3 0.96 0.73 0.62 0.69 -1.59 

Palm HD 1 0.90 0.75 0.71 0.44 -0.76 

Palm NA 2 0.97 0.62 0.52 0.84 -0.76 

Palm N 2 0.97 0.62 0.55 0.85 -0.87 

Palm OA 1 0.86 0.67 0.64 0.32 -0.66 

Palm e 3 0.96 0.85 0.82 0.73 -1.01 

Palm d 3 0.93 0.62 0.39 0.73 -1.80 

Palm GRID/GOLPE/C1= 3 0.99 - 0.55 - - 

P:Autogrid Probe or GRID C1= probe; PC: optimal number of principal 

components/latent variables, r
2
: conventional square-correlation coefficient; q

2
LOO: 

cross-validation correlation coefficient using the leave-one-out method; q
2

K5FCV: 

cross-validation correlation coefficient using the k-fold cross-validation with 5 

random groups and 100 iterations; r
2

YS: average square correlation coefficient 

obtained after Y-scrambling process using 100 iterations; q
2

YS: average cross-

validation correlation coefficient using the leave-one-out method obtained after Y-

scrambling process using 100 iterations. 

 

 

As for the original application,
14

 all the 3-DQSAR models were then externally 

tested, showing statistical values comparable with those obtained
14

 applying the 

GRID/GOLPE approach (Table 9). 
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Table 9. Thumb- and Palm-External Test Set prediction obtained from Structure 

Based AutoGrid/R and original GRID/GOLPE C1= 3-D QSAR Models. 

Dataset P PC SDEPext 

Thumb A 2 0.69 

Thumb C 2 0.69 

Thumb HD 2 0.76 

Thumb NA 3 0.66 

Thumb N 3 0.66 

Thumb OA 3 0.67 

Thumb e 3 0.63 

Thumb d 1 0.67 

Thumb GRID/GOLPE/C1= 3 0.59 

Palm A 3 1.14 

Palm C 3 1.11 

Palm HD 1 1.29 

Palm NA 2 1.04 

Palm N 2 1.04 

Palm OA 1 1.03 

Palm e 3 1.18 

Palm d 3 1.18 

Palm GRID/GOLPE/C1= 3 1.08 

P:Autogrid Probe or GRID C1=probe; PC: optimal number of principal 

components/latent variables; SDEPext: standard deviation error of prediction for the 

external test set. 
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Multi-Probe Guided Region-Variable Selection 

The Multi Probe Guided Region Selection methodology (MPGRS), represents a 

new powerful technique able to condense all the most informative interactions 

(from the mono probe models) in a single 3-D QSAR PLS model, leading to more 

comprehensive interpretations and allowing to derive useful three-dimensional 

pharmacophoric quantitative models (as explained in Chapters VI and VII). As 

reported,
1
 each probe information is color coded according to Table 10. To test the 

procedure, the MPGRS was applied to both the case studies  (LB and SB). All the 

multiprobe models (MP) were characterized by similar statistical coefficients as 

those obtained from the mono probe models (to avoid redundancy only the results 

from the SB case study are reported, Table 11) but enhancing the interpretation of 

the models (as in other studies like those characterizing Chapters VI and VII). 

 

Table 10. List of the AutoGrid probes employed for MIF calculation and MPGRS 

Subregion color coding. 

Probe Description MPGRS Colour 

A Aromatic Carbon Gray 

C Aliphatic (sp
3
) Carbon Dark Gray 

HD Hydrogen bonded to heteroatom Green 

NA Hydrogen-bond-accepting amine nitrogen Cyan 

N Amide nitrogen Blue 

OA Hydrogen-bond-accepting oxygen Red 

e Electrostatic Orange 

d Desolvation Yellow 

 

 

It was very interesting to overlap the information obtained from multiprobe models 

built for the SB case study, with the SB alignments, in order to compare the 

proposed pseudo receptor with experimental information. As for example, Figure 8 

shows the pharmacophoric model (key interactions) derived from the multiprobe 

palm model. An high agreement between the selected regions and the HCV NS5B-

palm binding pocket surface was observed,
1
 demonstrating the usefulness of this 

application. More specific analyses can be developed using either these 

informative interactions with the associated PLS-coefficients (as applied during the 

studies characterizing Chapters VI and VII). 
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Table 11. Statistical Results Obtained from MPGRS Analysis for the Thumb- and 

the Palm-HCV Training Sets. 

MPGRS 3-D QSAR 

Dataset PCFL:SL r
2
 q

2
K5FCV r

2
YS q

2
YS SDEPext 

Thumb 2:2 0.95 0.90 0.50 -0.67 0.74 

Palm 1:2 0.99 0.91 0.61 -0.93 1.06 

PCFL:SL: optimal number of principal first level (FL) and second level (SL) 

components/latent variables for the MPGRS model; r
2
: conventional square-

correlation coefficient; q
2

LOO: cross-validation correlation coefficient using the 

leave-one-out method; q
2

K5FCV: cross-validation correlation coefficient using the k-

fold cross-validation with 5 random groups and 100 iterations; r
2

YS: average square 

correlation coefficient obtained after Y-scrambling process using 100 iterations; 

q
2

YS: average cross-validation correlation coefficient using the leave-one-out 

method obtained after Y-scrambling process using 100 iterations. 

 

 

 
Figure 8. MPGRS 3-D QSAR palm model key points. The points are color coded: 

in blue N (amidic nitrogen) probe key points, in cyan those from NA (hydrogen 

acceptor nitrogen) probe, in green and orange those from HD (hydrogen donator) 

and e (electrostatic) probes respectively. 
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Chapter II 

Comprehensive model of wild-type and mutant HIV-1 reverse transciptases 

Flavio Ballante, Ira Musmuca, Garland R. Marshall, Rino Ragno 

Journal of Computer-Aided Molecular Design. 2012 Aug;26(8):907-19. 

 

Preamble 

This study is characterized by the application of the COMBINEr procedure,
1
 

developed by us, to obtain a comprehensive 3-D QSAR model of 7 different HIV-1 

reverse transcriptase enzymes (RT, wild-type and drug-resistant mutants) 

complexed with niverapine (NVP) and efavirenz (EFV), able to define those 

mutations responsible for the different activity profiles. The model predictive 

ability was assessed using an external test set of novel chiral 2-(alkyl/aryl)amino-

6-benzylpyrimidin-4(3H)-ones (DABOs).
2
 The COMBINEr model was able to 

correctly predict either the experimental activities and the right eudismic ratio of 

the test set derivatives, rationalizing the experimentally observed inhibitory 

activity and confirming to be a useful tool in drug discovery. 
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Figure 1. Computational procedure. 
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Introduction 

The COMBINEr procedure,
1, 3

 an enhanced version of the original COMBINE 

methodology,
4-6

 is a structure based (SB) 3-D QSAR application that uses ligand-

receptor complexes to quantify, by molecular mechanics, their interaction 

energies.
7
 The novelty of COMBINEr is to use the AutoGrid program 

(AutoDockTools)
8
 to calculate ligand-residues interaction energies for each ligand-

enzyme complex and derive, through the PLS
9, 10

 multivariate analysis, descriptive 

and predictive models through the R environment.
11

 Since its capability to direct 

compute the ligand/enzyme per residue interaction it represents a powerful tool to 

highlight the most important ligand-receptor interactions explaining the effect of 

single points mutation, on the ligands’ inhibitory activity, as in the case of the 

HIV-1 reverse transcriptase (RT) mutant enzymes that characterize the application 

characterizing this chapter. 

 

Applied Methodology 

The choice of the training set was based considering both the availability of 

homogeneous inhibition data
2
 for Nevirapine (NVP) and Efavirenz (EFV) (Figure 

A1), and co-crystal structures. This approach, led to the selection of 7 different 

HIV-RT wild-type and mutant enzymes complexed with the two inhibitors 

(Appendix A Table A1). Therefore, a total of 14 complexes composed the training 

set: since co-crystal structures were available for only five complexes, the other 

nine were modeled using as template structural information available from other 

complexes present in the PDB.
3
 As reported,

3
 a superimposition/minimization 

protocol was then applied to get these complexes ready for the COMBINEr
1
 

investigation. By means of Autogrid4,
8
 three kinds of ligand/residue interactions: 

the electrostatic (ELE), the steric (STE) and the desolvation (DRY) were derived 
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for each complex to compose seven different fields combinations: the monoprobe 

fields (DRY, ELE and STE) and the multiprobe fields (DRY+STE, ELE+STE, 

DRY+ELE, and DRY+ELE+STE), and derive, finally, seven different COMBINEr 

PLS
10

 models (CM1-CM7, Table 1). As shown in Table 1, all these models were 

characterized by good statistical coefficients, but only two, CM1 and CM4 

(showing the best statistical-values profiles), were selected for further 

investigations. PLS coefficients, weighted PLS coefficients (PLS coefficients x 

standard deviation values) and activity contribution plots (PLS coefficients x 

interaction energies), were of fundamental importance to detect which residues are 

relevant for differences in activity and quantify their relative importance. By 

analyzing these plots, has appeared how a similar profile was characterizing the 

DRY field in both CM1 and CM4 models,
3
 therefore the attention was focused on 

the latter (DRY+STE fields) in order to consider more data. Analyses of PLS 

coefficients allowed to identify the residues mainly involved in the model 

definition
3
 (Figure 2) while weighted PLS coefficients (Figure 3) were useful to 

derive the global importance of each interaction. Results of these investigations 

suggested that interactions with residues Leu100(Ile100), Lys101 and Tyr188 

(Leu188) are desirable, while should be avoided with residues Trp229 and Leu224 

(Figures 2 and 3). 
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Table 1. Statistical coefficients of the COMBINE models. CM: COMBINE Model 

Number; r
2
: conventional squared correlation coefficient; SDEC: standard error of 

calculation; q
2
: cross-validation coefficient; LOO: leave one out; SDEP: standard 

error of prediction; LSO5 and LSO2: leave some out using 5 and 2 groups 

respectively. 

CM Model r
2
 SDEC q

2
LOO SDEPLOO q

2
LSO5 SDEPLSO5 q

2
LSO2 SDEPLSO2 

1 DRY 0.91 0.31 0.82 0.43 0.79 0.46 0.63 0.58 

2 ELE 0.80 0.45 0.51 0.71 0.49 0.72 0.37 0.79 

3 STE 0.81 0.44 0.69 0.57 0.65 0.60 0.52 0.68 

4 DRY_STE 0.88 0.35 0.78 0.48 0.75 0.50 0.61 0.61 

5 ELE_STE 0.82 0.43 0.58 0.66 0.53 0.69 0.44 0.75 

6 DRY_ELE 0.89 0.34 0.66 0.59 0.63 0.62 0.48 0.70 

7 DRY_ELE_STE 0.86 0.38 0.66 0.59 0.62 0.62 0.50 0.70 

 

 

 
Figure 2. PLS coefficients obtained from the CM4 model. Only bars with values 

higher than 0.001 and lower than -0.001 are shown. 
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Figure 3. PLS coefficients x SD obtained from the CM4 model. Only bars with 

values higher than 0.001 and lower than -0.001 are shown. 

 

The CM4 model was finally applied to an external test set composed of four 

DABO derivatives
2
 (Appendix A Figure A2) with the purpose to rationalize the 

role of the mutations on their activity profile. To build the non-experimental 

complexes, with those isoforms used to test these compounds,
2
 a reported

12
 cross-

docking protocol was applied by means of the AutoDockVina.
13

 This docking 

program was chosen after a docking assessment investigation in which either 

AutodockVina
13

 and AutoDock
8
 were tested for their reliability.

3
 Binding mode 

analyses suggested similar poses for R-conformations of MC-1501 and MC2082, 

in agreement with previous studies,
14-16

 while for (S) derivatives, results confirmed 

the role of the methyl group at the C6-benzylic position to prevent similar 

interactions.
16

 The COMBINEr
1
 model was able to predict with an acceptable 

average absolute error of prediction the test set experimental activities (Table 2), 

tracing the right eudismic ratio for the two R/S pairs. As extensively reported in the 
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paper,
3
 straightforward was the possibility to investigate the activity contributions 

(Figure 4) of each inhibitor/residue couple, allowing to: 

a) confirm that the residues mutations were responsible for the different 

activity profiles of EFV and NVP  

b)  derive a final three-dimensional scheme of contributions for each 

inhibitor/residue pair (Figure 5) 

c) identify what interactions determine the different activity profiles: 

 interaction with Lys101 was identified, from both DRY and STE 

fields analysis, to be the mainly responsible for the higher activity of 

(R)-MC2082 respect (R)-MC1501; 

 DRY and STE interactions with Trp229 and Lys101 respectively, 

contribute for the higher activity of (R)-MC1501 versus (S)- MC1501 

 Lys101 and Trp229 DRY interactions, and mostly Lys101 STE 

interaction, determine the higher activity of (R)-MC2082 respect (S)-

MC2082; 

 residue 188 is capable to maintain interactions with ligands in its 

wild-type (Tyr188) and in the Leu188 mutation, and to compensate 

for loss of activities due to other single-point mutations. 

 

 



28 

 

 
Figure 4. Activity contribution histograms obtained from the CM4 model. Only 

bars with values higher than 0.001 and lower than -0.001 are shown. 
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 EFV NVP 

A 

(+90 °) 

  

B 

Frontal 

View 

 
 

C 

(-90 °) 

 
 

 
  

Figure 5. Efavirenz (EFV) and Nevirapine (NVP) with the surrounding 

residues surfaces as in the experimental complexes. The surfaces are colored 

by activity contribution. Three view of the complexes which are rotated 

along the X axes by ±90 ° are shown. 
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Table 2. Experimental and COMBINE model CM4 predicted activities of MC 

compounds.  

 MC1501 MC2082 

R S R S 

Exp Pred Exp Pred Exp Pred Exp Pred 

WT 8.70 7.46 6.93 7.20 6.81 7.21 4.52 5.77 

V106A 8.52 9.19 6.45 5.78 9.52 9.43 6.62 7.51 

K103N 7.02 7.17 6.01 7.52 8.52 9.11 7.19 7.52 

L100I 7.02 6.69 4.40 7.11 8.10 7.49 6.74 6.03 

Y188L 6.71 7.51 4.40 5.11 8.10 7.09 4.40 5.95 

Y181I 6.35 6.05 4.40 6.12 6.12 6.25 6.29 5.48 
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APPENDIX A 

Table A1. Anti-RT activities (µM) of NVP and EFV used to build the COMBINEr 

model. 

RT NVP EFV 

WT 0.4 0.03 

L100I 9.0 0.12 

K103N 7.0 0.16 

V106A 10.0 0.04 

V179D 2.0 0.10 

Y181I 36.0 0.15 

Y188L 18.0 0.38 

 

 

Nevirapine (NVP) Efavirenz (EFV) 

  
Figure A1. Nevirapine and Efavirenz.  

 

 

(R/S) MC1501 

(N,N-DABO) 

(R/S) MC2082 

(DAPY-DABO Hybrid) 

 
 

Figure A2. Racemic DABO derivatives used as external test set.   
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Chapter III 

2-(Alkyl/Aryl)amino-6-benzylpyrimidin-4(3 H)-ones as inhibitors of wild-type 

and mutant HIV-1: Enantioselectivity studies 

Dante Rotili, Alberta Samuele, Domenico Tarantino, Rino Ragno, Ira Musmuca, 

Flavio Ballante, Giorgia Botta, Ludovica Morera, Marco Pierini, Roberto Cirilli, 

Maxim B. Nawrozkij, Emmanuel Gonzalez, Bonaventura Clotet, Marino Artico, 

José A. Esté, Giovanni Maga, and Antonello Mai 

Journal of Medicinal Chemistry 2012 55 (7), 3558-3562 

 

Preamble 

This study is strictly related with that characterizing Chapter II. In fact the 

COMBINEr CM4 model, previously developed, was used to predict the biological 

activity of two potent anti-HIV-1 derivatives: MC1501 and MC2082, which are the 

object of the present study, to quantify the influence of single-point HIV-RT 

mutations on their activity. As discussed in the previous Chapter, the COMBINEr 

methodology confirmed to be a useful tool to explain the role of single point 

mutations and predict the different activity profiles. 
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Introduction 

F2-N,N-DABO (MC1501)
1
 and DABO-DAPY (MC2082)

2
 are two pyrimidine-

based non-nucleoside reverse trascriptase (RT) inhibitors (NNRTI) endowed with 

high anti-HIV-1 activity and characterized by a stereogenic center at the C-6 

benzylic position (Figure 1). In this study, these two highly potent anti-HIV-1 

agents where systematically investigated for their enantioselective anti-HIV-1 

activity. The availability of such homogeneous biological results together with the 

protein X-ray informations allowed to quantify the influence of single point HIV-

1-RT mutations by means of the previously developed COMBINEr CM4 model.
3
 

 

(R/S) MC1501 

(N,N-DABO) 

(R/S) MC2082 

(DAPY-DABO Hybrid) 

 
 

Figure 1. Racemic N,N-DABO and DAPY-DABO Hybrid.  

 

Results and Discussion 

The single enantiomers and the corresponding racemic mixtures of MC1501 and 

MC2082 were tested to evaluate their anti-HIV activity against WT HIV-1 and 

clinically relevant HIV-1 mutant strains (K103N, L100, Y181I, V106A and 

Y188L); nevirapine (NVP), efavirenz  (EFV) and dapivirine (TMC210) were 

tested as reference drugs. Biological results highlighted that, all the R forms were 

the more active, followed by the racemic mixtures and lastly by the S forms. 
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Moreover (R)-MC2082 resulted to be generally (except for Y181C) more active 

than (R)-MC1501. Biological results allowed to define, for the tested compounds, 

the different activity profiles against the different HIV-1 isoforms. Due to the 

availability of protein structures, both MC1501 and MC2082 binding 

conformations were derived applying a reported
4
 cross-docking protocol and 

externally evaluated by the COMBINEr CM4 model (see Chapter II for further 

specifications), in order to better understand the role of the different enzyme 

mutations. As reported in Chapter II, the COMBINEr CM4 model was able to 

predict the higher activity of (R) enantiomers respect the respective (S) form as 

well as the higher potency of MC2082 respect MC1501, in agreement with the 

experimental results. Moreover was possible to highlight the role of Lys101, 

Trp229 and Tyr188 as described in Chapter II.  
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Histone deacetylase inhibitors: Structure-based modeling and isoform-

selectivity prediction 

Laura Silvestri, Flavio Ballante, Antonello Mai, Garland R. Marshall, and Rino 

Ragno 

Journal of Chemical Information and Modeling 2012 52 (8), 2215-2235 

 

Preamble 

In the last decade, considerable interest has developed towards those phenomena, 

called epigenetics,
1
 capable of influencing gene expression, without changing the 

structure of DNA. Actually, epigenetics plays a role of primary importance in 

scientific research, due to the fact that different diseases are related with its 

dysregulation, which may be potentially rebalanced or prevented by the targeted 

use of chemical agents 
2, 3

 The zinc-dependent mammalian histone deacetylases 

(HDACs) are a family of proteins comprising 11 enzymes (isoforms), which are 

fundamental for tissue’s development and homeostasis. Considering the link 

between misregulated HDAC activity, carcinogenesis and other human diseases, 

the design of selective HDAC inhibitors for therapeutic treatment is mandatory, to 

develop less toxic drugs clarifying the biological role of these enzymes. This study 

was characterized by the application of the COMBINEr
4, 5

 procedure on a series of 

class I/II HDACs complexes. During the investigation both ligand based (LB) and 

structure based (SB) alignment were used, considering all the eleven human zinc-

based enzyme isoforms, to define the most influent chemical interactions for 

activity and isoform selectivity, allowing to rationalize the design of novel 

compounds endowed with both high potency and selectivity. Moreover, the 
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COMBINEr models represent a useful tool to predict the bioactive profile of a 

given molecule towards the 11 HDAC isoforms, helping in the selection and 

development of new selective inhibitors. Due to the complexity, the 

comprehensiveness and the amount of used data characterizing this work, it is 

impossible to summarize all the aspects and results in a way different from that 

published by us. Therefore, the reader may refer to the next paragraph 

(Introduction on HDACs) and then directly to the scientific publication (Chapter 

XII).  

 

Introduction on HDACs 

A fundamental epigenetic mechanism is represented by chromatin remodeling, 

which appears to be controlled by the acetylation state of histone proteins (Figure 

1).
6
  

 

Figure 1. Histone proteins acetylation/deacetylation state is guaranteed by the 

activity of HATs and HDACs enzymes. 
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Two families of enzymes: histone deacetylase (HDAC) and histone acetyl 

transferase (HAT) are responsible to maintain the homeostatic acetylation state of 

histone proteins. In particular, histone deacetylases (HDACs) are a class of zinc 

metalloproteases that catalyze the deacetylation of acetylated histones by removing 

the acetyl moiety from the ɛ-amino groups of lysine residues in the N-terminal 

extensions of nucleosomal histones, causing transcriptional repression; on the 

contrary histone acetyl transferases (HATs) catalyze the acetylation of histone tails 

determining transcriptional activation. Over the last years, it has been found that 

overexpression of histone deacetylases (HDACs) plays an important role in 

carcinogenesis and other diseases (i.e. development of HIV latency and Malaria)
7-

10
. Thus, HDAC inhibitors have emerged as new therapeutic agents for multiple 

human diseases. To date, there are 18 known isoforms, distinguished in 4 classes 

according to homology with yeast deacetylases, cellular localization and enzymatic 

activity.
11

 The eleven human zinc-dependent isoforms (Figure 2 shows the 

catalytic mechanism) of class I (HDAC-1, -2, -3, and -8), II (which includes class 

IIa: HDAC-4, -5, -7, and -9, and class IIb: HDAC-6 and -10) and IV (HDAC- 11) 

are mainly considered since their involvement in different diseases like: cancer, 

viral and parasitic infections, neurodegenerative diseases and inflammation. 

Therefore, is of considerable interest to obtain and optimize selective inhibitors to: 

1) further clarify the biological effect of the different isoforms, 2) achieve a 

targeted therapeutic effect, 3) reduce adverse reactions characterizing non-selective 

therapies. Currently, HDAC inhibitors ( HDACI ) are divided according to their 

chemical structure, as follows: short chain fatty acids, hydroxamic acids, 

benzamides, ketones and cyclic peptides. Currently all the HDACI share a 

common pharmacophore, characterized by three fundamental structural elements: 

1) a zinc binding group, 2) a capping group and 3) a linker domain group. This 

pharmacophore can be represented using as reference the structure of trichostatin 
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A
12

 (TSA, Figure 3), among the first identified HDACIs. The first HDAC 

inhibitors approved by FDA are: Merck’s Zolinza, vorinostat (SAHA) and 

Celgene’s Istodax romidepsin (Figure 4), currently used for the treatment of 

cutaneous T-cell lymphoma. However, other derivatives are in clinical trials for the 

ability to block cell proliferation, promote differentiation and induce apoptosis.
13

  

 

 

Figure 2. HDAC zinc-dependent catalytic mechanism. Highlighted in yellow and 

green are the acetylated substrate and the products.  
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Figure 3. Common HDACi pharmacophore, TSA is depicted. 

To date, unfortunately, most of the derived HDACIs are not capable to inhibit 

specifically the different HDAC isoforms. Therefore, a main challenge is to design 

new selective compounds with the aim to elucidate the functions of each isoform 

and apply new efficient and less toxic therapeutic treatments. 

  

SAHA Romidepsin 

Figure 4. Structure of SAHA and Romidepsin. 

 

The purpose of this study, was to build and validate a 3-D QSAR Stucture-Based 

(SB) model, using the COMBINEr
4, 5

 method (an enhanced version of the original 

comparative binding energy analysis, COMBINE)
14-17

 over the 11 HDAC isoforms 

able to detect the most discriminant chemical interactions among the different 

enzyme isoforms, and predict the activity/selectivity of new derivatives (see the 

relative article in Chapter XII).  
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Preamble 

The following study, is a clear example of how the integration of different chemical 

approaches could lead to the achievement of a new lead compound. By the 

application of Structure Based (SB) Three-Dimensional Quantitative Structure 

Activity relationships (3-D QSAR), molecular modeling, organic chemistry and 

biological investigations, it was possible to detect new VEGFR-2 (KDR) and 

human umbilical vein endothelial cell (HUVEC) proliferation inhibitors. My 

contribution to this study focused on the computational-chemistry investigation, 

mainly characterized by molecular docking simulations and 3-D QSAR analyses. 

Among the discovered compounds, 2f showed the highest inhibitory activity (at µM 

concentration) representing a new lead compound and therefore a starting point to 

obtain more active derivatives after chemical modifications. This perspective 

characterized my first research activity abroad in France (Chapter IX): where I’ve 

practiced organic synthesis to obtain new thieno [2,3-d] pyrimidinones derivatives 

as promising VEGFR-2 inhibitors.  
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Introduction 

Angiogenesis is the process of new blood vessels growth, creating new capillaries 

from existing vasculature. Angiogenic dys-regulation may be involved in various 

diseases development and progression including inflammation,
1
 tumor growth

2
 and 

metastasis.
3
 Among the different protagonists involved in this process, of particular 

importance are: 

1) the vascular endothelial growth factors (VEGFs):
4, 5

 VEGF-A (commonly 

named VEGF), VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-F and the 

Placental Growth Factor (PIGF); 

2) the VEGF tyrosine kinase receptors:
6
 VEGFR-1 (Flt-1), VEGFR-2 (KDR) 

and VEGFR-3 (Flt-4). 

So far, many molecules have been approved by FDA and many others are currently 

in clinical trials as anticancer agents, capable to block VEGF (like bevacizumab:
7
 a 

humanized monoclonal antibody) or inhibit VEGFRs (like sorafenib (BAY 43-

9006)
8
 and sunitinib (SU11248),

9
 Figure 1). Considering that the VEGFR-2 

receptor (kinase insert domain receptor, KDR) seems to play a key role in tumour 

angiogenesis,
10, 11

 the VEGF/VEGFR-2 pathway provides several opportunities by 

which small molecules can be used as inhibitors of endothelial proliferation and 

migration and thus as anticancer agents. 
12-14

 Considering the impact of tumor 

angiogenesis and the resistance mechanism to anti-angiogenic compounds, the 

development of new VEGFR-2 inhibitors is mandatory. This study is characterized 

by the discovery of new thienopyrimidines, as new class of VEGFR-2 inhibitors, 

through the application of a multidisciplinary approach (Figure 2) composed of by: 

1) 3-D QSAR studies 

2) Molecular modeling applications 

3) Organic chemistry 

4) Biological investigations 
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Computational studies were developed by means of a reported molecular docking 

protocol
15

 and previously developed Structure-Based (SB) 3-D QSAR models.
16

 

Molecular Docking allowed to predict the binding poses of compounds for which 

co-crystal structures were not available with the target protein. Previously 

developed 3-D QSAR models,
16

 characterized by a training set composed of co-

crystallized compounds in the ATP-binding site of KDR, were used as a tool 1) to 

represent three-dimensionally what kind of interactions should be increased, 

introduced or minimized; 2) to predict the activity of yet untested molecules. Thus, 

the combination of these two applications composed a useful computational 

protocol to develop new VEGFR-2 inhibitors.
17

 

  

 

Figure 1. Inhibition pathways of angiogenesis. 
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Figure 2. Overview of the multidisciplinary approach. 
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At the beginning of the study thirty-five compounds (4-38),
17

 characterized by 

thienopyrimidine, thiazolotriazine and selenolotriazine scaffolds, were chosen 

according to their structural similarities in comparison to the most common anti-

angiogenic compounds and then biologically assayed to determine their inhibitor 

potency against VEGFR-2. This set was submitted to a previously reported
15

 

molecular docking procedure and binding mode analyses were conducted 

highlighting that:  

1) all the compounds’ binding poses showed the characterizing scaffolds 

overlapped with the central benzimidazole moiety of the reference structure 

(PDB 2qu5); 

2) as a consequence of the previous statement, they bind preferentially in the 

first part of the binding site 

3) concerning thienopyrimidines, an increased steric hindrance seems to 

increase the ligand/VEGFR-2 interactions as for those derivatives 

characterized by the presence of a third fused cycle 

4) regarding thiazolotriazines, steric hindrance has a detrimental effect 

5) selenolotriazines showed binding modes similar to those of the 

thienopyrimidines 

For the four most active compounds (14, 30, 33, 55, Appendix A Table A1) we 

decided to perform a deeper binding mode analysis (Figure 3) revealing that: 

1) all the predicted poses established strong interactions with a specific region 

characterized by Val27, Ala45, Lys47, Val93, Val95, Leu164 and Phe176 

residues,  

2) the presence of a morpholino substituent, as in the case of compound 35 

(the least active compounds of this selected series) determines an 

overturning of the selenotriazine group.  
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The thirty-five compounds where then used as an external test set for the 

previously developed SB 3-D QSAR protocol.
16

 Although over-predictive, 3-D 

QSAR models proved their predictiveness, since compounds 4-38 were 

experimentally recognized with a certain rate of inhibition activity.
17

 Moreover, 

useful information were obtained, by superimposing the 3-D QSAR plots with the 

most active compound (30, Figure 4) suggesting that increasing the steric 

hindrance (i.e. by introducing further sterical groups into the ATP binding site), 

should enhance the inhibitory potency. Following the above indications new 

thienopyrimidines/thienotriazines (1-3, Appendix A Table A2) were designed and 

subjected to both molecular docking and 3-D QSAR simulations. 3-D QSARs 

predicted the new compounds’ activity in a range comprised between 0.01 and 0.1 

µM (Table 1). Since the 3-D QSAR models were over-predictive, taking into 

account the observed prediction errors for compounds 4-38, it was expected that 

the new derivatives were characterized, at least, by a submicromolar activity. 

Among these compound 2f was predicted, as the most active, to be in a low 

nanomolar range and particular attention was given to its binding mode (Figures 5 

and 6): which showed its ability to establish a greater network of steric 

interactions, especially at the entrance of the active site. Compounds 1-3 were then 

synthetized and biologically assayed, to detect their inhibitory activity against 

VEGFR-2, at 200uM fixed doses. Interestingly, as predicted by the 3-D QSARs, 2f 

resulted to be the most active compound (99.2% of inhibition) showing an IC50 

value equal to 2.25±0.1 µM. Moreover, the 2f-tartaric acid salt, was biological 

tested on endothelial cell tube formation induced by VEGF, resulting 
17

 to be more 

than Sunitinib. Binding mode analysis, suggested that more active compounds 

could be obtained by introducing further substituents on piperidine positions 3 and 

4 (Figure 7), in order to enhance the interactions with the ATP binding pocket. 

Design of new compounds, as new potential VEGFR-2 inhibitors, was then 
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performed obtaining a series of new molecules to be synthetized. Three of them 

were synthetized by myself at the Laboratoire d'Ingénierie et Moléculaire 

Pharmacologique Biochimie (LIMBP) of the Université de Lorraine Metz 

(France), directed by Prof. Gilbert Kirsch during my first research period abroad 

(see Chapter IX). 
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A 

  

B 

  

C 

  

D 

  
Figure 3.  Details of the binding for compounds 14 (A), 30 (B), 33 (C) and 35 (D). 

To the right are shown the ligand/VEGFR-2 interactions profile as obtained with 

the ligplot program. 
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Table 1.Experimental and Predicted pIC50 for compounds 1-3. 

# 
% inhibition 

@ 200 M
a
 

 Predicted pIC50 by Probe 

IC50 M A C HD e 

1a 38.8±3.5  7.01 7.01 7.02 7.56 

1b n.t.b  6.90 6.90 6.80 7.30 

1c 1.7±0.1  6.88 6.88 7.03 7.14 

2a 5.7±0.4  6.69 6.70 6.99 7.66 

2b n.a.c  6.85 6.85 7.08 7.17 

2c 3.9±0.2  6.50 6.50 6.70 8.23 

2d 2.1±0.1  6.65 6.66 6.62 8.03 

2e n.a.c  6.68 6.68 7.02 7.60 

2f 99.2±3.9 2.25±0.1 8.12 8.13 8.28 7.15 

2g 52.6±3.7  7.96 7.96 7.87 7.87 

2h n.a.c  7.34 7.34 7.31 8.65 

2i 19.0±0.7  7.16 7.16 7.13 8.72 

2j n.a.c  6.57 6.57 6.72 7.17 

3a 35.2±2.8  6.90 6.91 7.16 7.43 

3b 40.9±2.8  6.11 6.10 6.22 7.54 

3c 52.0±3.6  6.74 6.73 6.74 7.66 

3d 73.4±6.5  6.30 6.30 6.46 7.51 
a
Values are means±SEM of two determinations carried out in triplicate. 

b
Not tested. 

c
Not active. No inhibition was observed up to 200 μM of the test compound. 
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A 

 
 

B C 

Figure 4. Docked conformation of 14 (red), 30 (orange), 33 (purple) and 35 

(yellow) (A) into VEGFR-2 (PDB ID 2qu5, blue ribbon). As reference the co-

crystallized ligand is also displayed in black. The surface of ATP and co-

crystallized inhibitor binding site is also shown in light gray. Merged in the steric 

(B) and electrostatic (C) 3-D QSAR maps. 

 

 
 

A 

 
 

B C 

Figure 5. Docked conformation of 2f (magenta) (A) into VEGFR-2 (PDB ID 

2qu5, blue ribbon). The ATP binding site is also shown in light gray. Merged in 

the steric (B) and electrostatic (C) 3-D QSAR maps. 
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A B 

  
C D 

Figure 6. Details of the binding for compounds 2f, overlapped to 14 (A), 30 (B), 

33 (C) and 35 (D). 
 

 

 

 
Figure 7. Binding mode analyses suggest to introduce further substituent on the   

2f  piperidine ring. 2f is shown in magenta. The grey background represent the 

ATP binding site. 
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APPENDIX A 

Table A1. Predicted pIC50 for compounds 14, 30, 33 and 35. 

# Molecular Structure Exp. 
3-D QSAR Probes 

A C HD e 

14 

 

4.34 5.98 5.99 6.31 7.27 

30 

 

5.39 6.00 6.01 6.35 7.27 

33 

 

4.78 6.00 6.00 6.35 7.28 

35 

 

4.58 7.11 7.12 7.48 7.19 

 

 

Table A2. Designed Compounds. 
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Preamble 

In this study, a series of 71 published anti-tubercular agents,
1-3

 was used as a 

training set to build, through the 3-D QSAutogrid/R procedure, 8 monoprobe 3-D 

QSAR PLS models, and a final multiprobe (MP) 3-D QSAR PLS model, able to 

quantitatively correlate the pharmacophoric features required for antitubercular 

(anti-TB) activity with molecular structures. All the 3-D QSARs were assessed by 

comparing their results with a previously published qualitative pharmacophoric 

model for anti-TB activity, with particular attention for the MP derivation. The 

obtained 3-D QSAR models were also tested for their predictive ability on a series 

of new synthetized R-4-amino-3-isoxazolidinone derivatives, confirming to be a 

promising tool for subsequent virtual screening (VS) applications. 
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Figure 1. Computational procedure. 
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Introduction 

Tuberculosis (TB) is a serious, as yet unsolved, public-health problem.
4
 There are 

several reasons that make difficult its eradication, such as long-term drug 

treatment, poor patient compliance and the development of drug resistant strains 

like: multidrug-resistant tuberculosis (MDR-TB), extensively drug-resistant 

tuberculosis (XDR-TB) and totally-drug resistant tuberculosis (TDR-TB).
5, 6

 

Therefore, the development of new anti-TB compounds is mandatory in a period in 

which the spread of HIV has determined, inevitably, a worldwide increase in TB. 

The study characterizing this chapter, allowed, without any available 

crystallographic data, to derive, through the 3-D QSAutogrid/R procedure
7
 several 

3-D QSAR monoprobe models, and a first three-dimensional pharmacophoric 

model (by the means of the MPGRS package)
7
 able to quantitatively inspect the 

areas and features fundamental for anti-TB activity. All the 3-D QSARs were 

compared to a previously qualitative pharmacophore model,
8, 9

 and tested for their 

predictive capabilities against an external test set composed of 13 newly 

synthetized R-4-amino-3-isoxazolidinone derivatives
10

 endowed with micromolar 

activity against M. tuberculosis (Figure 1 shows the whole procedure).  

 

Methodology 

Starting from a data set composed by 90 thiomorpholines and methylpiperazinyl 

compounds based on the Pyrrole ring as a scaffold,
1-3

 for which activity data was 

originally determined as MIC (µg/mL) and used to derive a previously reported 

qualitative pharmacophore model,
8, 9

 a final training set of 71 compounds 

(Appendix A Table A1), was selected by application of the inner relationship 

analysis. It was decided to apply the inner relationship investigation in order to 

improve the robustness and the predictive capability of the 3-D QSAR models: this 
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method, generally, allows to discard, from the training set, those molecules 

recognized as potentially detrimental for the PLS application. Since no 

crystallographic data was available for these compounds, the same alignment 

protocol, used to derive the previously developed qualitative pharmacophore 

model for anti-TB,
8, 9

 was adopted.
10

 By the application of the 3-D QSAutogrid/R 

procedure,
7
 8 monoprobe 3-D QSAR PLS models (Table 1) were built, and 

optimized through the CAPP procedure,
7
 then, by means of MPGRS package,

7
 a 

final multiprobe (MP) 3-D QSAR PLS model (Table 2) was derived. Cross-

validations (LOO and K5FCV) and Y-scrambling (YS) investigation, confirmed 

both their internal predictive capability and the absence of chance correlation 

(Tables 1 and 2). Either the best monoprobe (A, HD, and NA, Figure 2) and 

multiprobe models were then selected at the optimal principal component (PC)
7
 for 

further analyses. 

 

Table 1. 3-D QSAutogrid/R PLS models statistical results (CAPP process was 

applied). 

model P PC r
2
 q

2
LOO q

2
K5FCV r

2
YS q

2
YS V 

1 A 3 0.92 0.86 0.85 0.36 -0.33 3758 

2 C 3 0.92 0.86 0.85 0.37 -0.33 4492 

3 HD 3 0.91 0.85 0.84 0.39 -0.31 1217 

4 NA 3 0.91 0.86 0.85 0.31 -0.33 531 

5 N 3 0.91 0.85 0.85 0.32 -0.30 477 

6 OA 3 0.91 0.85 0.85 0.36 -0.33 658 

7 e 4 0.88 0.78 0.76 0.40 -0.48 468 

8 d 4 0.91 0.85 0.84 0.35 -0.44 4412 

P: Autogrid Probe, PC: optimal number of principal components/latent 

variables, r
2
: conventional square-correlation coefficient; q

2
LOO: cross-

validation correlation coefficient using the leave-one-out method; q
2

K5FCV: 

cross-validation correlation coefficient using the k-fold cross-validation with 5 

random groups and 100 iterations; r
2

YS: average square-correlation coefficient 

obtained after Y-scrambling process using 100 iterations; q
2

YS: average cross-

validation correlation coefficient using the leave-one-out method obtained 

after Y-scrambling process using 100 iterations; V: number of active variables. 
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Table 2. MPGRS. Multi Probe model statistical results. 

  MPGRS 3-D QSAR   

PCFL:SL 

1:3 
r

2
 q

2
LOO q

2
K5FCV SDEPLOO SDEPK5FCV r

2
YS q

2
YS 

0.88 0.80 0.80 0.32 0.32 0.31 -0.31 

PCFL:SL: optimal number of principal first level (FL) and second level (SL) 

components for the MPGRS model; r
2
: conventional square-correlation coefficient; 

q
2

LOO: cross-validation correlation coefficient using the leave-one-out method; 

q
2

K5FCV: cross-validation correlation coefficient using the k-fold cross-validation 

with 5 random groups and 100 iterations. 

 

Single Probe 3-D QSAR models 

Analyses of PLS-coefficients plots allowed to define, in complete agreement with 

the original qualitative pharmacophoric model,
8, 9

 the needed chemical 

characteristics for anti-TB activity of pyrrole compounds. As for example, PLS-

coefficients plots (Figures 3A, 3B, 3C) defined four areas: over N1, C2, C3, and 

C5 substituents of the pyrrole ring, similarly to those obtained
9
 from the original 

model (Figure 3D) which defined 4 pharmacophoric features: a hydrogen bond 

acceptor feature (HBA), two aromatic ring features (RA1, RA2), and an 

hydrophobic feature (HY). All the selected monoprobe models suggested the 

positive effect (red colored positive PLS coefficients, Figure 3) of bulky groups as 

substituent at N1, C2 and C5, respectively overlapping the HY, RA1 and RA2 

features; on the contrary at the C3 position (HBA feature) steric groups are less 

tolerated (blue colored, negative PLS coefficients, Figure 3A and 3C) whereas 

attractive interactions could increase the biological activity (blue colored, negative 

PLS coefficients, Figure 3B). Since activity contribution plots have the capability 

to show the recalculated 3-D activity profile for each molecule, it was possible to 

highlight, more specifically, how the quantitative models predicted the effects of 

each training set molecule three dimensionally.  
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Analysis of these maps confirmed, generally, the information addressed by the 

PLS-coefficients plots and allowed to highlight some dependencies between the 

anti-tubercular activity and the chemical structures. In particular, considering the 

HBA feature, the HD model plot (Figure 4) clearly showed how the sulfur atom in 

a thiomorpholine group (characterizing the most active compound 60, Figure 4A) 

 
A 

 
B 

 
C 

 
D 

Figure 2. Fitting (r
2
) and Cross-Validation (q

2
 K-5-Fold) plots. A: from the A 

probe model at PC3; B:from HD probe model at PC3; C:from the NA probe model 

at PC3; D: from the multi probe(MP) model at PC1:3. 
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increases the biological activity (satisfying the HBA feature), contrary to a 

situation in which, as for the case of methylpiperazinyl derivatives, repulsive 

interactions are mainly present in the same area (i.e. the least active molecule 21, 

Figure 4B). Moreover, different useful informations were obtained from the 

simultaneous analysis of PLS-loadings and score plots’ clusters, considering the A 

probe model at the first three principal components (Figure 5), allowing to 

understand how different molecular conformations and substituents’ orientations 

could affect the biological response. Starting from the first principal component 

(PC1) was possible to determine that the region between RA2 and HBA features 

should be preferably occupied than those between RA1 and HBA; PC2 and PC3 

highlighted, respectively, how substituents at C3 capable to fill the areas between 

RA2 and HBA and over HBA features determine a detrimental effect on the 

biological activity.  

Multi-Probe Guided Region-Variable Selection 

The MPGRS package
7
 allowed to derive the first quantitative pharmacophoric 

model able to correlate the structural features of pyrrole derivatives with their 

biological data. The optimal MP 3-D QSAR model (Table 2) was characterized by 

standard coefficients similar to those of the monoprobe models (Table 1), but the 

interpretation was greatly enhanced since all the different monoprobe suggestions 

were condensed together. By analyzing the different plots, similar conclusion to 

those obtained from the different mono-probe models were obtained, moreover 

new information was found. As reported extensively,
10

 by means of PLS-

coefficients, PLS-loadings plots and score results (Figures 6 and 7) was possible to 

increase the resolution of the HBA region revealing, in addition to the electrostatic 

feature, that a limited steric repulsion is tolerated (Figures 6A and 6B, Appendix A 

Table A3). Moreover, figure 6B shows how the thiomorpholinometil moiety of 

compound 60 (the most active compound) satisfies both of these features, leading 
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to higher anti-tubercular activity, contrary to compound 21 (the least active 

compound). 

External test set Prediction analysis 

All the 3-D QSARs were externally validated using a set composed of 13 newly 

synthesized R-4-amino-3-isoxazolidinone derivatives (Table A2), previously tested 

against the M. tuberculosis (Appendix A Table A4). All the 3-D QSARs were able 

to predict these compounds with low SDEP values, confirming the robustness and 

predictability of the models. 

 

Table 3. Test Set predictions. 

P PC SDEPEXT 

A 3 0.88 

C 3 0.88 

HD 3 0.81 

NA 3 0.82 

N 3 0.83 

OA 3 0.84 

e 4 0.90 

d 4 1.51 

SDEP values considering the optimal PCs; P: AutoGrid Probe; PC: 

optimal number of principal components/latent variables; SDEPEXT: 

standard deviation error of prediction (or root mean squared error of 

prediction, RMSEP) for the external test set. 

 

Table 4. MPGRS. Multi Probe model Test Set predictions. 

P PCFL:SL SDEPEXT 

AutoGrid MP 1:3 0.89 

SDEP values considering the optimal first level and second level PCs. P: AutoGrid 

Multi-Probe; PCFL:SL: optimal first level and second level PC; SDEPEXT: standard 

deviation error of prediction (or root mean squared error of prediction, RMSEP) 

for the external test set. 
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Perspectives 

The obtained quantitative models were then integrated, together with QSAR 

applications, in an optimized Virtual Screening (VS) protocol, initially validated 

using the CHEMBL database and finally applied to NCI Diversity Set. A total of 

120 molecules have been identified as potential anti-tuberculosis agents for which 

it will be determined the anti-mycobacterial activity 
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A 

 

B 

 

C 

 

D 

Figure 3. The most active (60 in blue) and the least active (21 in magenta) 

compounds are shown. A: PLS-coefficients contour maps derived from A probe 

analysis (contour levels: 80%; positive: red, negative: blue); B: PLS-coefficients 

contour maps derived from HD probe analysis (contour levels: 85%; positive: red, 

negative: blue); C: PLS-coefficients contour maps derived from NA probe analysis 

(contour levels: 75%; positive: red, negative: blue). D: pharmacophoric features 

derived from the original pharmacophoric model:
9
 HY (hydrophobic feature), RA 

(aromatic feature), HBA (hydrogen bond acceptor feature). 
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                                                    A 

 
B 

Figure 4. Probe HD. A: PLS-coefficients (mesh: 85%, positive: red, negative: 

blue) with activity contribution (solid: 90%, positive: green, negative: yellow) for 

compound 60 (blue); B: PLS-coefficients (mesh: 85%, positive: red, negative: 

blue) with activity contribution (solid: 90%, positive: green, negative: yellow) for 

compound 21(magenta).Activity contributions in pictures on the left side are 

shown in color gradient: for both green and yellow polygons, the darker areas (the 

most important) are characterized by the highest numerical coefficients, the lighter 

areas (the less important) are characterized by the lowest numerical coefficients. 
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 PC1 PC2 PC3 

A 

   

B 

 

  

Figure 5. Probe A. PLS-loadings contour maps from the A probe analysis at PC1, 

PC2 and PC3 (contour levels: 60%; positive: orange, negative: cyan). The ten most 

important molecules for each cluster are plotted and color coded according to the 

cluster membership (molecules in the negative field cluster: dark grey, molecules 

in the positive field cluster: light grey). A:side view; B: top view. 
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A 

 

B 

 

C 

 

 

D 

Figure 6. MPGRS. A: key points: the points are color coded according to that 

reported in Table A3; B: key points with PLS-coefficients contour maps (contour 

levels: positive 85%, red; negative 95%, blue); C:top view, key points with PLS-

coefficients solid contour maps (contour levels: positive 85%, red; negative 95%, 

blue). The most active (60 in blue) and the least active (21 in magenta) compounds 

are shown. D: pharmacophoric features derived from the original pharmacophoric 

model:
9
 HY (hydrophobic feature); RA (aromatic feature), HBA (hydrogen bond 

acceptor feature). 
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A 

 

B 

 

B1 

 

B2 

Figure 7. MPGRS. PLS-loadings contour maps at PC1:3 (contour levels: 75%; 

positive: orange, negative: cyan) with PLS-coefficients (mesh levels: positive 85%, 

red; negative 95%, blue) and key points (see Table S5 for color coding). The ten most 

important molecules for each cluster are plotted and color coded (compounds in the 

positive loading field in light gray; compounds in the negative loading field in dark 

grey). A:side view; B: frontal view; B1: frontal view of only positive clustered 

molecules; B2: frontal view of only negative clustered molecules. HY (hydrophobic 

feature), RA (aromatic feature), HBA (hydrogen bond acceptor feature). 
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APPENDIX A1 

Table A1. Structure and antimycobacterial activity against M. tuberculosis 103471 

of the pyrrole derivatives used as training set for the generation of the 3-D QSAR 

models. 

 
compd

a
 R

b 
R1 R2 R3 pMIC

c 

1 B 2-F-Ph CH3 2-F-Ph 4.68 

2 A 2-Cl-Ph CH3 2-F-Ph 5 

3 B 2-Cl-Ph CH3 2-F-Ph 4.09 

4 A 2-F-Ph CH3 2-Cl-Ph 5 

5 B 2-F-Ph CH3 2-Cl-Ph 4.4 

6 A 2-Cl-Ph CH3 2-Cl-Ph 5.02 

7 B 2-Cl-Ph CH3 2-Cl-Ph 4.41 

8 A 2-F-Ph CH3 -naphthyl 4.11 

9 B 2-F-Ph CH3 -naphthyl 4.11 

10 A 2-Cl-Ph CH3 -naphthyl 4.13 

11 B 2-Cl-Ph CH3 -naphthyl 4.13 

12 A -naphthyl CH3 2-Cl-Ph 4.13 

13 B 4-F-Ph CH3 Ph 4.36 

14 B Ph CH3 4-F-Ph 4.36 

15 A 4-Cl-Ph CH3 4-F-Ph 5.30 

16 B 4-F-Ph CH3 4-F-Ph 4.47 

17 A 4-F-Ph CH3 4-F-Ph 5.58 

18 B 4-F-Ph CH3 4-Cl-Ph 5.30 

19 A 4-F-Ph CH3 4-Cl-Ph 5.60 

20 A 2-F-Ph CH3 Ph 4.66 

21 B 2-F-Ph CH3 Ph 4.06 

22 A Ph CH3 2-F-Ph 4.96 

23 B Ph CH3 2-F-Ph 4.36 

24 A 2-Cl-Ph CH3 Ph 4.38 

25 B 2-Cl-Ph CH3 Ph 4.07 

26 B Ph CH3 2-Cl-Ph 4.07 

27 A -naphthyl CH3 Ph 4.1 

28 B -naphthyl CH3 Ph 4.09 

29 A Ph CH3 -naphthyl 4.10 

30 B Ph CH3 -naphthyl 4.09 

31 B Ph CH3 Ph 4.33 

32 A 4-F-Ph CH3 2-Cl-Ph 5.00 

33 B 4-F-Ph CH3 2-Cl-Ph 4.70 

34 B 4-F-Ph CH3 2-F-Ph 4.08 

35 A 4-F-Ph CH3 4-CH3-Ph 5.98 

36 B 4-F-Ph CH3 3-CH3-Ph 4.37 

37 A 4-F-Ph CH3 2-CH3-Ph 4.98 

38 B 4-F-Ph CH3 2-CH3-Ph 4.07 
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39 A 4-F-Ph CH3 2,4-Cl2-Ph 5.34 

40 B 4-F-Ph CH3 2,4-F2-Ph 5.00 

41 A 2-Cl-Ph CH3 4-F-Ph 5.30 

42 B 2-Cl-Ph CH3 4-F-Ph 5.00 

43 B 2-F-Ph CH3 4-F-Ph 4.68 

44 A 4-CH3-Ph CH3 4-F-Ph 5.58 

45 A 3-CH3-Ph CH3 4-F-Ph 4.98 

46 B 3-CH3-Ph CH3 4-F-Ph 4.40 

47 A 2-CH3-Ph CH3 4-F-Ph 4.68 

48 B 2-CH3-Ph CH3 4-F-Ph 4.10 

49 A 2,4-Cl2-Ph CH3 4-F-Ph 5.64 

50 B 2,4-Cl2-Ph CH3 4-F-Ph 5.03 

51 A 2,4-F2-Ph CH3 4-F-Ph 5.30 

52 B 2,4-F2-Ph CH3 4-F-Ph 4.40 

53 A 4-F-Ph CH3 4-C2H5-Ph 5.60 

54 A 4-F-Ph CH3 4-i-propyl-Ph 6.21 

55 A 4-C2H5-Ph CH3 4-F-Ph 5.30 

56 A 4-C3H7-Ph CH3 4-F-Ph 5.61 

57 A 4-Cl-Ph CH3 4-CH3-Ph 5.90 

58 A 4-Cl-Ph CH3 4-C2H5-Ph 6.22 

59 A 4-Cl-Ph CH3 4-C3H7-Ph 6.23 

60 A 4-Cl-Ph CH3 4-i-propyl-Ph 6.53 

61 A 4-CH3-Ph CH3 4-Cl-Ph 5.90 

62 A 4-C2H5-Ph CH3 4-Cl-Ph 5.91 

63 A 4-C3H7-Ph CH3 4-Cl-Ph 6.23 

64 A 4-i-propyl-Ph CH3 4-Cl-Ph 6.23 

65 B 4-Cl-Ph C2H5 4-Cl-Ph 5.33 

66 A 4-F-Ph C2H5 4-CH3-Ph 6.20 

67 A Ph C2H5 Ph 5.26 

68 A Ph C2H5 4-F-Ph 5.58 

69 A 4-F-Ph C2H5 Ph 5.28 

70 A 2-F-Ph C2H5 4-F-Ph 5.30 

71 A 2-F-Ph C2H5 2-F-Ph 5.00 
c.
Compound enumeration was assigned on the basis of the original increasing 

numbering from the oldest to the most recent reference. Table S1shows the 

connections between the new and original enumerations. 
a
A = thiomorpholin-4-yl and B = 4-methylpiperazin-1-yl 

b
pMIC = -Log [MIC(µM) x 10

-6
] 
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Table A2. R-4-amino-3-isoxazolidinone derivatives: monocarbamates (1a-e), 

dicarbamates (2a-f) and amides (3h,i). 

 
Monocarbamates 1a-e 

 
Dicarbamates 2a-f 

# R1 R2 # R1 R2 

1a 
 

H 2a 
  

1b 

 

H 2b 

  

1c 

 

H 2c 

  

1d 

 

H 2d 

  
1e 

 

H 
2e 

  

2f 

  

 
 

3h 3i 

Amides 3h, 3i 

 

Table A3. List of the AutoGrid probes employed for MIF calculation and MPGRS 

subregion color coding. 

Probe Description MPGRS Colour 

A Aromatic Carbon Gray 

C Aliphatic (sp
3
) Carbon Dark Gray 

HD Hydrogen bonded to heteroatom Green 

NA Hydrogen-bond-accepting amine nitrogen Cyan 

N Amide nitrogen Blue 

OA Hydrogen-bond-accepting oxygen Red 

e Electrostatic Orange 

d Desolvation Yellow 
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Table A4. MIC data for D-4-amino-3-isoxazolidinone derivatives 

compd MIC(μg/mL)
a 

pMIC
b 

1a 32 3.84 

1b 32 3.87 

1c 32 3.90 

1d 3.1 4.89 

1e 32 3.97 

2a 32 4.03 

2b 32 4.06 

2c 32 4.10 

2d 3.1 5.09 

2e 32 4.11 

2f 32 4.02 

3h 64 3.78 

3i 32 4.13 
a
M. tuberculosis H37Rv (ATCC 27294) was used; MIC values represent the 

minimal concentrations of compounds completely inhibiting visible growth of 

mycobacteria. 
b
pMIC = -Log [MIC(µM) x 10

-6
] 
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Chapter VII 

Hsp90 Inhibitors (I). Definition of 3-D QSAutogrid/R Models as a Tool for 

Virtual Screening 

Flavio Ballante, Antonia Caroli, Richard B. Wickersham III And Rino Ragno  

Journal of Chemical Information and Modeling, (2013, submitted) 

 

Preamble 

Acknowledged to play a key role in the growth and survival of cancer cells, the 

multi-chaperone heat shock protein (Hsp) 90 represents a promising target in 

cancer therapy. This chapter describes a complete computational procedure, for 

building several structure based (SB) 3-D QSAR models used to derive a final 

multi-probe (MP) 3-D QSAR pharmacophoric model, able to recognize the most 

significant chemical features for HSP90 inhibition. All the 3-D QSARs, either 

mono- and multi-probe, built by means of the 3-DQSAutogrid/R protocol (Chapter 

II), were externally validated for robustness and predictiveness, and recognized 

suitable to be used as a predictive tool in a subsequent virtual screening (VS) 

protocol whose application and results are reported in Chapter VIII. 
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Introduction 

Molecular chaperones are cellular machinery that assist the protein folding under 

physiological (playing a key role in protein maturation and stabilization) and stress 

conditions (preventing the formation of a misfolded or aggregated structure).
1
 

Among chaperones, the 90 kDa heat shock protein (Hsp90) gained much attention 

in recent years being one of the most extensively studied.
2, 3

 Structurally, Hsp90 is 

a dimeric protein composed of three functional domains: 1) a highly conserved N-

terminal ATP-binding domain, 2) a middle domain endowed with high affinity for 

client proteins and 3) a highly conserved C-terminal domain involved in the 

homodimerization of the protein.
4
  

Hsp90 is present in cells in two isoforms, α (inducible, major form) and β 

(constitutive, minor form) found predominantly in the cytosol, and two paralogues, 

ER-resident Grp94 and mitochondrial tumor necrosis factor receptor-associated 

protein 1 (Trap1). Under basal, non-stressed conditions Hsp90 comprises 

approximately 1% of the cellular protein population whereas its expression 

increases significantly after exogenous injury:
5
 indeed, during some cellular stress 

conditions, such as heat, low pH, nutrient unavailability, hypoxia and malignancy, 

Hsp90 is overexpressed, promoting the maintenance of structural and functional 

integrity of client proteins involved in cell survival, proliferation and apoptosis. As 

reported,6 pharmacological inhibition of Hsp90 destabilizes proteins, leading to 

their degradation through the proteasome; moreover, many oncogenic proteins (i.e. 

p53 mutants, Raf1, Akt, Bcr-Abl, Her2, EGFR) which are essential for tumor 

growth are chaperoned by the Hsp907 confirming its involvement in the tumor 

progression. Since the inhibition of Hsp90 ATPase activity leads to the degradation 

of client proteins, resulting in cell growth inhibition and apoptosis, Hsp90 emerged 

as a promising target for cancer therapy.8 Natural products such as geldanamycin9 

and radicicol10 were among the first Hsp90 inhibitors discovered (Figure 1), 
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followed by derivatives with better pharmacological properties (17-AAG11 and 17-

DMAG,12
 Figure 1). Considering that blocking the ATPase activity is an effective 

approach, de novo drug design was accomplished and small molecules able to bind 

the N-terminal Hsp90 binding site were identified. Purine-scaffold inhibitors,13 

dihydroxyphenylpyrazoles, 14 isoxazole derivatives (NVPAUY922), 15
 and 

carbazol-4-one benzamide derivatives (SNX-5422)16
 were promising candidates for 

cancer therapy and advanced to clinical studies (Figure 1).  

 

 

R Cpd 
-OMe GELDANAMYCIN 

-NHCH2CH2NMe2 17-DMAG 

-NHCH2CH=CH2 17-AAG 
 

 

RADICICOL 

  

 

NVP-AUY922 

 

SNX-5422 

Figure 1. Hsp90 inhibitors: the ansamycin compound geldanamycin and its 

derivatives radicicol, isoxazole (NVP-AUY922) and carbazol-4-one benzamide 

(SNX-5422); all of these are in clinical trials. 
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Despite the huge amount of available data (until now 310 X-ray structures are 

reported in Protein Data Bank,17 199 of which were from Homo Sapiens), only a 

limited number of 3-D QSAR applications were reported.4, 20-27  

In the present work, the 3-D QSAutogrid/R procedure18 (Chapter II) was applied to 

a dataset composed of 24 Hsp90/inhibitor co-crystals (Appendix A Table A1) to 

define three-dimensional quantitative structure-activity relationship (3-D QSAR) 

models. These were used to derive pharmacophoric quantitative models (as 

described in the anti-TB application Chapter VI)19 by the application of Multi 

Probe Guided Region Selection (MPGRS package),18 to correlate structural Hsp90 

inhibitors features with their biological data. All 3-D QSAR models were 

externally validated for robustness and predictiveness as a tool in the subsequent 

virtual screening (VS) protocol (Chapter VIII). Figure 2 shows the overall 

procedure. 

 

Figure 2. Computational procedure. 
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Computational methods 

At the beginning of this study, all the co-crystallized ligand-protein complexes, 

available from the Protein Data Bank (PDB),17 were retrieved. From these, 24 were 

selected (Appendix A Table A1) as molecular dataset and submitted to a 

minimization process. Then, the ligands were extracted from the complexes and 

split into a training set and a test set composed of 15 and 9 compounds, 

respectively. By means of 3-D QSAutogrid/R procedure,18 a total of nine 3-D 

QSAR models were built: 8 monoprobe and a final multiprobe (MP). All the 

training set inhibitors were used in a ligand (LB) and structure-base (SB) protocols 

to validate the alignment procedure that was applied on new candidates (with 

unknown binding mode) during the subsequent virtual screening (VS) application, 

in which the 3-D QSARs were used as an external scoring function to predict their 

activity, as reported in Chapter VIII. 
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Data Set Selection 

Initially, 39 co-crystallized ligand-protein complexes were available from the 

PDB,17 for which in vitro activity was determined mostly through two conventional 

biological assays: the measure of the ATPase activity (ATPase assay) and the 

measure of competitive inhibition using a fluorescent probe (Fluorescence 

Polarization). From these, 24 were tested with the same approach (ATPase assay, 

IC50 values), resulting eligible to be used in a 3-D QSAR application. The data set 

compounds (Appendix A Table A1) are structurally related to purine,13 pyrazole,17, 

38 2-aminopyrimidine,7 triazine7 and N-aryl-benzimidazolone20 scaffolds. 

 

N-terminal Hsp90 Binding Site-Inhibitor Complex Structure Preparation 

The 24 selected complexes were submitted to a previously reported molecular 

modeling protocol,21 then the minimized conformations of ligands, as extracted 

from the minimized complexes, were split in training and test sets (see Training 

Set and Test Set selection paragraph) to build and validate the structure-based 

statistical models (3-D QSAR), respectively. 

 

Training Set and Test set selection 

The data set was partitioned to maintain a similar range of activities between the 

training and test sets: in particular, the former was composed of 15 compounds 

(Appendix A, Table A2) with affinity values spanning about 3 orders of 

magnitude, from pIC50 values of 3.70 to 6.26, and the latter was comprised of 9 

compounds (Appendix A, Table A3) with affinity values ranging from 3.70 to 

6.28.  
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Results and Discussion 

By means of the 3-D QSAutogrid/R procedure,18 eight mono-probe 3-D QSAR 

PLS models were generated and optimized via the CAPP18 procedure (Table 1). 

 

Then, by the application of the MPGRS procedure,18 a final multi probe (MP) 

model was derived to define the pharmacophoric features required for Hsp90 

inhibitor activity and quantitatively correlate them with molecular structures (See 

below in the Multi-Probe Guided Region-Variable Selection paragraph). The 

obtained statistical results confirmed the predictive capabilities and robustness of 

the mono-probe models (Table 2).  

 

Table 2. Autogrid/R PLS models statistical results (CAPP process was applied). 

model  P PC r
2
 q

2
LOO q

2
K5FCV r

2
YS q

2
YS 

1  A 2 0.93 0.61 0.59 0.69 -0.46 

2  C 2 0.93 0.61 0.58 0.69 -0.50 

3  HD 2 0.85 0.55 0.54 0.44 -0.52 

4  NA 2 0.93 0.61 0.59 0.71 -0.42 

5  N 2 0.93 0.62 0.58 0.68 -0.52 

6  OA 2 0.93 0.61 0.59 0.69 -0.47 

7  e 2 0.93 0.63 0.60 0.73 -0.50 

8  d 1 0.72 0.61 0.60 0.12 -0.22 
P:Autogrid Probe, PC: optimal number of principal components/latent variables, r

2
: conventional 

square-correlation coefficient; q
2

LOO: cross-validation correlation coefficient using the leave-one-

out method; q
2

K5FCV: cross-validation correlation coefficient using the k-fold cross-validation 

with 5 random groups and 100 iterations; r
2

YS: average square correlation coefficient obtained 

after Y-scrambling process using 100 iterations; q
2

YS: average cross-validation correlation 

coefficient using the leave-one-out method obtained after Y-scrambling process using 100 

iterations. 

Table 1. CAPP settings adopted for the 3-D QSAR models. 

Min Value Parameter Max Value Step 

0 PCO 10 1 

0 Zeroing 0.1 0.01 

0 MSDCO 1 0.025 
PCO: Positive Cut Off, Zeroing: zeroing of very low data points ,MSDCO: Minimum SD Cut Off. 
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Three of them, obtained with A, N and OA probes (Figure 3), were selected, for 

further investigations. 

 

Score and PLS-loadings plots were useful to detect the putative most important 

residues for each cluster of molecules detected by the score plots. Since similar 

results were obtained from all the three analyzed monoprobe models, only those 

 
A 

 
B 

 
C 

Figure 3. Fitting (r
2
, cyan points) and Cross-Validation (q

2
 K-5-Fold, orange 

points) plots. A: from the A probe model at PC2; B:from N probe model at PC2; 

C:from the OA probe model at PC2. 
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obtained from the aromatic (A) are reported. Starting from PC1 (Figure 4A) a clear 

discrimination between low (pIC50 ≤ 5) and high active compounds (pIC50> 5) was 

observed: indeed molecules characterized by the lowest activities such as all the 

purine based inhibitors13 (1UY8, 1UYC, 1UYD, 1UYE, 1UYG, 1UYH, 1UYK, red 

bars in Figures 4A) and 3B257 (light green bar) are clustered in the negative field, 

whereas most of the more active compounds like: pyrazole
14, 22

 and N-Aryl-

benzimidazolone
20

 derivatives (2BT0, 2CCS, 2CCU, 3OWB, 3OWD, olive drab 

and blue bars respectively) are grouped in the positive PC1 score field. 2-

aminopyrimidine and triazine derivatives7 (3B26 and 3B28, light green and dark 

green bars respectively) were characterized by low absolute PC1 score values. 

Considering the association between scores and PLS-loadings, was possible by 

superimposing the latters (LB extracted data) with the residues active site (SB info) 

to detect the putative most interacting residues for each cluster (Figures 5 and 6) on 

the basis of the first principal component (PC1) information. As shown in Figure 

5A two “posing” areas were revealed as the main discriminating aspect between 

these two molecular series. By PLS-loadings analysis (Figure 6A) a series 

composed of GLY97, ILE96, ASP54, ALA55, LEU48, LYS58 and VAL186 was 

recognized to interact mainly with the positive clustered molecules (2BT0, 2CCS, 

2CCU, 3OWB, 3OWD), whereas a second series composed of LEU107, TYR139 

and PHE138 was recognized to interact mainly with the negatives (1UY8, 1UYC, 

1UYD, 1UYE, 1UYG, 1UYH, 1UYK and 3B25). This fact suggested the 

importance in establishing interactions with the first series residues (LB/SB 

convergence point 1, Table 3). From PC2 (Figure 4B, 5B), this kind of analysis, 

suggested that a steric group overlapping the corresponding benzyl para-methoxy 

group of 1UYD (Figure 6B) is detrimental for the activity, indeed from the 

superimposed crystals, the presence of a conformationally conserved TYR139 

side-chain in this area suggests a consequent steric limitation for bulkier ligands 
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(LB/SB convergence point 2, Table 3). Analyses of PLS-coefficients (ligand-based 

information) overlapped to the binding pockets (structure-based information) 

allowed a quali/quantitative definition of the different ligand/receptor interactions, 

extending the evidences provided by the PLS-loadings/PLS-scores interpretation. 

A good agreement was observed between the quantitative derivation (PLS-

coefficients) and the experimental information (binding pocket residues, Figure 7): 

i.e. considering the aromatic atom probe A at PC2, the biggest positive coefficients 

area was mainly located in the sub-pocket delimited by LYS58, ILE96 and, 

GLY97 residues (Figure 7), suggesting that bioactivity improvement could be 

obtained by filling this hydrophobic area (LB/SB convergence point 3, Table 3) in 

agreement with previous reports.
23, 24

 

Negative PLS-coefficients were mainly placed in a space surrounded by LEU107, 

TYR139 and PHE138, confirming, as anticipated above (see PLS-loadings 

interpretation), a steric hindrance limitation exerted by TYR139 and PHE138 side 

chains (LB/SB convergence point 4, Table 3, Figure 7). As a consequence 

molecules such as the ligand in 1UYD, which overlaps this area, are less active. 

A further smaller negative PLS-coefficients area runs among ALA55, SER52 and 

ASP93 (small blue area in Figure 7) and, considering also both results from OA 

PLS-coefficients (also negative), these suggest the presence of both steric and 

electrostatic features in this zone. In fact, these features represent a further LB/SB 

convergence point (LB/SB convergence point 5, Table 3) by the presence of 

electrostatic interactions with the three above listed residues (i.e H bonds), in 

agreement with previous reports. 25 
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A 

 

B 

Figure 4. Aromatic atom (A) probe scores plots. Compounds are color-coded 

according to their scaffold: purine based inhibitors (entries: 1,2,3,4,5,6,7): red bars, 

2-aminopyrimidine inhibitors (entries: 17, 18): light green bars, pyrazole inhibitors 

(entries: 13, 14, 16, 21): olive drab bars, N-Aryl-benzimidazolone inhibitors (entry: 

22): blue bars, triazine inhibitors (entry: 20): dark green.  
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A1 

 
A2 

 
B1 

 
B2 

Figure 5. Probe A. A: PLS-loadings contour maps from the A probe analysis at 

PC1 (contour levels: solid 30%, mesh 60%; positive: orange, negative: cyan). All 

the molecules for each cluster are plotted and color coded according to the cluster 

membership (molecules in the negative field cluster: black, molecules in the 

positive field cluster: light grey, molecules in the center field cluster: dark grey). 

A1: front view; A2: top view. B: PLS-loadings contour maps from the A probe 

analysis at PC2 ( contour levels: solid 30%, mesh 60%; positive: orange, negative: 

cyan ). All the molecules for each cluster are plotted and color coded according to 

the cluster membership (molecules in the negative field cluster: black, molecules in 

the positive field cluster: light grey, molecules in the center field cluster: dark 

grey). B1: front view; B2: top view. Double level percentage is shown to with the 

purpose to point out together the most influencing loadings. 
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A 

 
B 

Figure 6. Probe A. A: PLS-loadings contour maps from the A probe analysis at 

PC1 (contour levels: mesh 30%; positive: orange, negative: cyan). In magenta 

3OWD (positive cluster), in green 1UYD (negative cluster), in orange 3B28 

(neutral cluster); B: PLS-loadings contour maps from the A probe analysis at PC2 

(contour levels: mesh 50%; positive: orange, negative: cyan).In orange 3B28 

(positive cluster), in green 1UYD (negative cluster), in purple 3OWB (neutral 

cluster). 
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Table 3. LB/SB convergence points. 

N. 
Reference 

Probe 

Reference 

PC 
Information LB/SB convergence 

1 
A, N, OA/ 

MP 
1/1:1 

PLS Scores 

PLS Loadings 

X-ray 

Interactions with GLY97, ILE96, 

ASP54, ALA55, LEU48, LYS58, 

VAL 186 are desirable 

2 
A, N, OA/ 

MP 
2/1:2 

PLS Scores 

PLS Loadings 

X-ray 

Steric hindrance limitation near 

TYR139, TRP162 

3 
A, N, OA/ 

MP 
2/1:2 

PLS 

Coefficients 

X-ray 

The hydrophobic sub-pockets 

composed of LYS58, ILE96 and 

GLY97, and VAL186 and LEU48, 

respectively, should be fulfilled 

4 A, N, OA 2 

PLS 

Coefficients 

X-ray 

Steric hindrance limitation exerted 

by TYR139 and PHE138 

5 
A, N, OA/ 

MP 
2/1:2 

PLS 

Coefficients 

X-ray 

Electrostatic interactions with 

ALA55, SER52, ASP93, THR184 

and ASN51 should be preferable 

6 MP 1:2 

PLS 

Coefficients 

X-ray 

Electrostatic interactions with the 

para-hydroxylic group of TYR139 

could be advantageous; weak 

attractive interactions with  the 

indole nitrogen of TRP162 could be 

established 
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Figure 7. PLS-coefficients contour maps considering 2 PCs. Only the highest 

active (3OWD in magenta) and the lowest active (1UYD in green) compounds are 

shown. AutoGrid/R PLS coefficients contour maps derived from A probe analysis 

(Contour levels: 65%, positive red, negative blue. 

 

Application of Multi-Probe Guided Region-Variable Selection 

A multi-probe (MP) 3-D QSAR model was derived by the application of the Multi 

Probe Guided Region Selection (MPGRS package).
18

 As reported, the MP 3-D 

QSAR model is obtained at the optimal second level PC of the selected first level 

PC subregions; in this case PCFL:SL=PC1:2, and its associated statistical 

coefficients were slightly improved with respect to those of the mono-probe 

models (Table 4, Figure 8). 
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Table 4. Statistical Results Obtained from MPGRS Analysis 

  MPGRS 3-D QSAR   

PCFL:SL 

1:2 
r

2
 q

2
LOO q

2
K5FCV SDEPLOO SDEPK5FCV r

2
YS q

2
YS 

0.94 0.69 0.68 0.43 0.44 0.67 -0.50 

PCFL:SL: optimal number of principal first level (FL) and second level (SL) 

components for the MPGRS model; r
2
: conventional square-correlation coefficient; 

q
2

LOO: cross-validation correlation coefficient using the leave-one-out method; 

q
2

K5FCV: cross-validation correlation coefficient using the k-fold cross-validation 

with 5 random groups and 100 iterations 

 

 

 

Analyses of multi probes scores and loadings led to similar conclusions as the 

mono-probe models (LB/SB convergence points 1 and 2, Table 3), however, a 

higher level interpretation allowed identifying both the areas of major interest and 

the more profitable associated features (Figure 8).  

 

 

 

Figure 8. MPGRS. Fitting (r
2
, cyan points) and Cross-Validation (q

2
 K-5-Fold, 

orange points) plot: from the multi probe(MP) model at PC1:2. 
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A 

Figure 8. MPGRS. A: key points with PLS-coefficients contour maps (contour levels 

75%: positive: red; negative: blue). 3OWD in magenta and 1UYD in green. The 

points are color coded according to that reported in the methodology reference. 

 

 

Of particular interest are areas simultaneously characterized by negative MP PLS 

coefficients associated to atom probes able to derive negative fields such as OA, 

NA and HD. In particular, two distinct areas of negative MP PLS coefficients 

derived from OA probe are among THR184, ASP93, SER52 and ASN51 (Figure 

9A) and TRP162, TYR139 and LEU107 (Figure 9B), suggesting that the 

establishment of attractive interactions (i.e. H-bond) should be advantageous in the 

proximity of the first residues’ series as for the para-hydroxylic group of TYR139 

(LB/SB convergence points 5 and 6, Table 3). Furthermore, between TYR139 and 
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TRP162, a negative PLS-coefficient area (Figure 9B), characterized by NA and C 

probes, was observed, which suggests, besides the steric limitation, that some weak 

attractive interaction with the indole nitrogen of TRP162 could be established 

(LB/SB convergence points 2 and 6, Table 3). Finally, two positive coefficient 

polyhedra, characterized both by steric/hydrophobic and electrostatic probes (A, C, 

OA, N and NA), were recognized in the proximity of LYS58 and ILE96, and 

VAL186 and LEU48 (Figures 9C and 9D, respectively) confirming the importance 

of placing steric groups in these areas (LB/SB convergence point 3, Table 3). 
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A 

 

B 

 

C 

 

D 

Figure 9. MPGRS. A-D: PLS-coefficients contour maps (contour levels 75%: 

positive: red; negative: blue), each area is highlighted mantaining its own color. 

 

 

As a further assessment the multi probe information was compared with a 

previously reported pharmacophoric model,22, 43 showing a high degree of 

agreement 

  



97 

 

External Test Set Prediction Analysis. 

The external test set composed of 9 Hsp90 inhibitors (Appendix A Table A3) was 

applied to each of the eight 3-D QSAutogrid/R mono probe models to assess their 

predictive capability. In general, low errors of prediction were observed for all 

models (Table 5), and the correct activity trend was reproduced (Figure10).  

 

Table 5. Test Set predictions: SDEP values considering the optimal PCs; P: 

AutoGrid Probe; PC: optimal number of principal components/latent variables; 

SDEPEXT: standard deviation error of prediction (or root mean squared error of 

prediction, RMSEP) for the external test set. 
P PC SDEPEXT 

A 2 0.79 

C 2 0.79 

HD 2 0.78 

NA 2 0.80 

N 2 0.79 

OA 2 0.81 

e 2 0.79 

d 1 0.86 

 

 

As for the monoprobe models, the MP is endowed with good predictive 

capabilities (Table 6), reproducing with a good approximation the test set activity 

trend. 

 

 

Table 6. MPGRS. Multi Probe model Test Set predictions. 

P PCFL:SL SDEPEXT 

AutoGrid MP 1:2 0.81 

SDEP values considering the optimal first level and second level PCs. P: AutoGrid 

Multi-Probe; PCFL:SL: optimal first level and second level PC; SDEPEXT: standard 

deviation error of prediction (or root mean squared error of prediction, RMSEP) 

for the external test set. 
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A 

 
B 

 
C 

Figure 10. Experimental vs Predicted Test Set plots. A: from the A probe model at 

PC2; B: from the N probe model at PC2; C: from the OA probe model at PC2. 
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APPENDIX A 

Table A1. Hsp90 inhibitors data set: (15 compounds used as training set, see also 

Table A2; and 9 compounds as test set, see also Table A3) shown are the purine 

(A) and pyrazole (B) scaffold derivatives for which ATPase activity values are 

known. 

A) Purine
13

 scaffold derivatives 

 

entry 
PDB 

code 
R1 R2 R3 R4 R5 R6 

IC50 

ATPase(µM) 

1
a 1UY8 H n-butyl H OMe H H 75 

2
a 1UYC H n-butyl OMe H H OMe 41 

3
a 1UYD H n-butyl Cl OMe OMe OMe >200 

4
a 1UYE H 1-pentynyl Cl OMe OMe OMe >200 

5
a 1UYG F H OMe H H OMe 53.5 

6
a 1UYH F n-butyl OMe H H OMe 14.3 

7
a 1UYK F n-butyl H OCH2O bridge H 17.1 

8
b 1UY6 H n-butyl H OMe OMe OMe >200 

9
b 1UY7 H n-butyl H H OMe H >200 

10
b 1UY9 H n-butyl H OCH2O bridge H 15.3 

11
b 1UYF        

12
b 1UYI F 1-pentynyl OMe H H OMe 4.1 
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B) Pyrazole
14, 22

 scaffold derivatives  

 

entry 
PDB 

code 
R1 R2 R3 

IC50 

ATPase(µM) 

13
a 2BT0 Et 

 

Me 5.7 

14
a 2CCS Cl 1-piperazine H 8.2 

15
b 2CCT Cl 1-piperazine CONHEt 6.3 

16
a 2CCU Cl 

 

H 1.3 

 

C) 2-aminopyrimidine,
7
 triazine, pyrazole and N-aryl-benzimidazolone

20
 

entry 
PDB 

code 
 

IC50 
ATPase(µM) 

17
a 3B25 

 

9.6 

18
a 3B26 

 

6.9 

19
b 3B27 

 

0.75 

20
a 3B28 

 

3 
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21
a 3OWB 

 

0.88 

22
a 3OWD 

 

0.55 

23
b 3OW6 

 

85 

24
b
 4EGK 

 

0.2 

a
Compounds used as training set 

b
Compounds used as test set
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Table A2. Training Set.  

entry PDB 

Code 

IC50 

ATPase(μM)
 

pIC50
a 

1 1UY8 75 4.12 

2 1UYC 41 4.39 

3 1UYD 200 3.70 

4 1UYE 200 3.70 

5 1UYG 53.5 4.27 

6 1UYH 14.3 4.84 

7 1UYK 17.1 4.77 

13 2BT0 5.7 5.24 

14 2CCS 8.2 5.09 

16 2CCU 1.3 5.89 

17 3B25 9.6 5.02 

18 3B26 6.9 5.16 

20 3B28 3 5.52 

21 3OWB 0.88 6.06 

22 3OWD 0.55 6.26 
a
pIC50 = -Log [IC50ATPase(µM) x 10

-6
] 

 

Table A3. Test Set  

entry 
PDB 

Code 

IC50 

ATPase(μM)
 pIC50

a 

8 1UY6 200 3.70 

9 1UY7 200 3.70 

10 1UY9 15.3 4.82 

11 1UYF 30 4.52 

12 1UYI 41 5.39 

15 2CCT 6.3 5.20 

19 3B27 0.75 6.12 

23 3OW6 85 4.07 

24 4EGK 0.2 6.28 
b
pIC50 = -Log [IC50ATPase(µM) x 10

-6
] 
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Chapter VIII 

Hsp90 Inhibitors (II). Combining ligand-based and structure-based 

approaches for Virtual Screening application 

Antonia Caroli, Flavio Ballante, Richard B. Wickersham III, Federico Corelli And 

Rino Ragno 

Journal of Chemical Information and Modeling, (2013, submitted) 

 

Preamble 

The present Chapter summarizes efforts for the discovery of hit compounds with 

molecular scaffolds previously untested as Hsp90 inhibitors. To select potential 

new Hsp90 inhibitors, three-dimensional quantitative structure-activity 

relationships (3-D QSAR), ligand-based (LB) and structure-based (SB) alignments 

methods, and a LB-SB virtual screening (LB-SB-VS) protocol were applied. Then, 

the NCI Diversity Set was virtually screened employing the LB-SB-VS strategy, 

and 80 molecules were selected for enzyme-based biological assays. Among the 

tested molecules, four derivatives showed IC50 values ranging between 18-63 µM. 
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Introduction 

Computer-aided Virtual (in silico) Screening (VS) represent a powerful technique 

in identifying new bioactive compounds from large chemical databases. Currently, 

different VS strategies can be employed on the basis of the source data: when 3-D 

structures are unavailable, ligand based (LB) methods, such as QSAR, 3-D QSAR 

and pharmacophore-based procedures are commonly used; otherwise when 3-D 

information is available, structure based (SB) protocols, like ligand-protein 

docking procedures, are mainly applied. Anyway, it should be considered that 

molecular docking has a significant limitation represented by the interdependence 

between sampling and scoring as generally implemented. Indeed, this 

interdependence limits the rate of success for the identification of near-native poses 

in virtual screening. To enhance the VS performance, another strategy is to use 

either SB and LB methods, as for the VS application characterizing the study 

herein presented, in which a combination of Autodock (SB) and Surflex-Sim (LB) 

scoring functions were used jointly with the predictive ability of previously built 3-

D QSAR models (Chapter VII). 

 

Methodology overview 

As reported in Chapter VII, several three-dimensional quantitative-structure 

activity relationship (3-D QSAR) models were built and externally validated using 

a data set composed of 24 Hsp90 inhibitors, 15 of which were used as training set 

and the other 9 as test set. These models were implemented, as a predictive tool, in 

a virtual screening procedure (Figure 1) used to predict the inhibitory ability of 

1785 compounds (NCI Diversity Set) suggesting which of these should be chosen 

to be biologically assayed. Considering the unavailability of 3-D informations, two 

different alignment procedures, a LB methodology using Surflex-sim
1
 and a SB 
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methodology using AutoDock4,
2
 previously validated, were adopted to predict 

their binding poses (see Alignment rules paragraph), in order to be subsequently 

tested by the 3-D QSAR models. Therefore two different sets of predicted binding 

conformations were used as external test sets for the 3-D QSAR models, yielding 

two sets of predicted pIC50 values. By means of a consensus scoring procedure in 

which either the predicted pIC50 values and the predicted free binding energy from 

the Autodock4 docking were used, 80 molecules were then selected for enzyme-

based biological assays. Among the tested molecules, four derivatives showed IC50 

values in the micromolar range. 

 

Alignment Rules: 

To obtain the pose of molecules with unknown binding modes (NCI Diversity Set), 

either ligand based (LB) and structure based (SB) alignment procedures were 

applied, using Surflex-sim and AutoDock4 respectively, applying a protocol 

completely described in a previous work.3 

 

Virtual Screening (VS). 

By the application of the alignment protocol on the NCI Diversity Set, two 

different binding poses, derived from Surflex-Sim and AutoDock4, were obtained 

for each compound, therefore two different sets were composed and predicted by 

the selected 3-D QSAR models: A, N, OA and MP (as specified in Chapter VII). A 

rank by rank strategy
4
 was then applied, considering the predicted pIC50 values 

together with the corresponding predicted free binding energy released by 

AutoDock4 to select the 80 top ranked compounds which were selected for 

biological investigations. From these, four molecules (NCI23128, NCI23128, 
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NCI117285 and NCI170578) showed IC50 values between 18 and 63 µM (Table 1), 

confirming the consistence of the applied strategy towards untested molecules. 

 

 

 

Figure 1. Computational procedure. 
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Table 1. Molecular structure and biological activity of the most active compounds 

selected by the VS protocol. 

 ID 
IC50 

[µM] 

 

NCI23128 18 

 

NCI610930 32 

 

NCI117285 49 

 

NCI170578 63 
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Binding mode analysis of new HSP90 inhibitors.  

Among the most active screened compounds, attention was focused on 

NCI610930, NCI170578 and NCI117285 endowed with interesting scaffolds for 

new Hsp90 inhibitors. Investigating the activity contribution plots obtained from 

the selected compounds, it was possible to highlight how the quantitative models 

(A, N, OA) predicted the interactions of these test set molecules helping to define 

the crucial interaction during the binding mode analysis. As shown in Figure 2, 

starting from the most active compound to the least active (NCI610930  

NCI117285  NCI170578), a positive predicted activity contribution area (green 

surface, Figure 2), in the proximity of LYS58, ILE96, and GLY97, decreases in 

magnitude jointly with the biological response; while considering NCI170578 and 

NCI117285 (the least active compounds) another positive predicted activity 

contribution area appeared near LEU48, VAL186, THR 184, ASP93, SER 52, and 

LEU48. These results were a further confirmation of the importance of these two 

residues’ series, as previously predicted by the 3-D QSAR models (Chapter VII). 

Moreover, NCI610930 and NCI170578 are respectively a dibenzofurandione and 

a dibenzothiophene derivatives, that could be ascribed to the tricyclic series of 

Hsp90 inhibitors, recently identified
5
 as a new interesting scaffold for Hsp90 

inhibitors, confirming the predictive capability of the applied VS protocol. 
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NCIn° Probe A Probe N Probe OA 

610930 

   

1UYC 

117285 

   

1UY8 

170578 

   

1UY8 

Figure 2. Predicted activity contribution plots (solid: 75%, positive: green, negative: 

yellow), overlapped with PLS coefficients plots (mesh: 65%, positive: red, negative: 

blue) obtained from the used 3-D QSAR models at the selected PC,
6
 for the most active 

screened compounds in their BC system (protein and pose): NCI610930 in 1UYC, 

NCI117285 and NCI170578 in 1UY8. 
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Introduction 

My first research abroad was conducted for six months (beginning: September 

2012, end: March 2013) at the Laboratoire d'Ingénierie et Moléculaire 

Pharmacologique Biochimie (LIMBP) of the Université de Lorraine Metz 

(France), directed by Prof. Gilbert Kirsch, and characterized by the application of 

organic synthesis to obtain new thienopyrimidinone derivatives as potential 

inhibitors of vascular endothelial growth factor receptor-2 (VEGFR-2). These new 

compounds were designed as a consequence of the informations obtained from the 

analyses characterizing the Chapter V. In particular, among the several applied 

synthesis, here will be reported those concerning the 3 compounds (7a, 7b, 7c) 

which were finally obtained and biologically tested for their inhibitory activity 

against EGFR and VEGFR-2. 
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Synthesis of compounds 7a, 7b, 7c as new potential VEGFR-2 inhibitors 

 

Ethyl(4-nitrophenoxy)acetate (1) 

 

 

A solution of 4-nitrophenol (150 mmol) in DMF (300 ml) was firstly obtained, 

then potassium carbonate (225 mmol) and etilbromoacetate (165 mmol) were 

added and the mixture was stirred at reflux (80°C) for 2h. Then, the reaction 

mixture was cooled, poured over ice-water, filtered at a reduced pressure using a 

Buchner flask and dried in vacuo. 

 

 

Ethyl(4-nitrophenoxy) 

Molecular Weight 225.198 

 

Aspect 
Pale yellow 

solid 

Yield 95% 

1
H NMR (250MHz, DMSO): δH 8.18 (d, 2H), 7.17 (d, 2H), 4.98 (s,2H, CH2), 4.17 

(q, 2H, CH2), 1.20 (t, 3H, CH3) 
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(4-Nitrophenoxy) acetic acid (2) 

 

 

A solution of Ethyl(4-nitrophenoxy)acetate (136 mmol) in absolute ethanol (255 

ml) was firstly composed, then sodium hydroxide 1M (255 mmol) was added and 

the mixture was stirred at reflux (85°C) for 2h. Subsequently, the reaction mixture 

was stirred at room temperature for 1h, poured over ice-water and acidificated with 

HCl 2N to adjust the pH value to 6. Finally the mixture was filtered at a reduced 

pressure using a Buchner flask and the solid phase was washed with water and 

dried on vacuum at 60°C. 

 

 

(4-Nitrophenoxy) acetic acid 

Molecular Weight 197 

 

Aspect Yellow solid 

Yield 93% 

1
H NMR (250MHz, DMSO): δH 13.23 (s, 1H), 8.20 (d, 2H), 7.13 (d, 2H), 4.87 (s, 

2H) 
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2-Aminothiophene-3-carboxamide (3) 

 

 

Two different procedures, characterized by different heating methods, were applied 

for the synthesis of 2-Aminothiophene-3-carboxamide. The first was conducted 

heating under reflux, the second was microwave assisted. 

 

Procedure 1): A stirred mixture of 2-cianoacetamide (200 mmol), 1,4-dithiane-

2,5-diol(100 mmol) in Methanol(80 ml) and Triethylamine (10 ml) 

was heated at reflux (65 °C) for 3h. After cooling to room 

temperature, the mixture was concentrated under reduced pressure, 

poured over ice-water, filtered and dried in vacuo. 

 

Procedure 2): A mixture of 2-cianoacetamide (200mmol), 1,4-dithiane-2,5-diol 

(100 mmol) in Methanol(80 ml) and Triethylamine (5 ml) was 

heated under microwave irradiation (50 °C, 100W x 10 min). After 

cooling to room temperature, the mixture was concentrated under 

reduced pressure, poured over ice-water, filtered and dried in vacuo. 
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2-Aminothiophene-3-carboxamide 

Molecular Weight 142 

 

Aspect Brown solid 

Yield 
Reflux: 74% 

Microwave:79% 

1
H NMR (250MHz, DMSO): δH 7.19 (s, 3H), 7.02 (d, 1H), 6.72 (bs, 1H), 6.2 (d, 

1H) 
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2-{[(4-Nitrophenoxy)acetyl]amino}-3-thiophenecarboxamide (4) 

 

 

 

Reaction mixture 1 : 

A solution of 2 (100 mmol) and amylene stabilized chloroform ( added until 

solubilization of the acid) was firstly obtained. Then thionyl chloride 99.5+% (73 

ml) was added and the mixture was stirred at reflux (60°C) for 2h. Subsequently, 

the reaction mixture was concentrated under reduced pressure, to obtain (4-

nitrophenoxy)acetyl chloride (97 mmol), a red colored solid. 

Reaction mixture 2: 

Another solution of 3 (90 mmol) and amylene stabilized chloroform (added until 

solubilization of the acid) was obtained. Then Triethylamine (31 ml) was added, 

then mixture was stirred and cooled to 10 °C. At this point (4-nitrophenoxy)acetyl 

chloride was resolubilized in amylene stabilized chloroform and slowly added to 

the reaction mixture 2 at 10 °C. Following the addition, the mixture was stirred at 

room temperature for 1h, then poured in ice/water and filtered to obtain the final 

compound 4. 
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(4-nitrophenoxy)acetyl chloride 

Molecular Weight 215.591 

 

Aspect Red solid 

Yield 97% 

 

 

 

2-{[(4-Nitrophenoxy)acetyl]amino}-3-thiophenecarboxamide 

Molecular Weight 321.309 

 

Aspect Goldenrod solid 

Yield 76% 

1
H NMR (250MHz, DMSO): δH 13.00(s, 1H), 8.28(d, 2H), 7.96(s, 1H), 7.61(s,1H) 

7.45(d, 1H), 7.27(d, 2H), 7.04(d, 1H), 5.06(s, 2H) 
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2-{[(4-aminophenyl)acetyl]amino}-3-thiophenecarboxamide (5) 

 

 

A 500 ml, three-necked flask, equipped with a mechanical stirrer, thermometer, 

and a reflux condenser, connected to an argon line was charged with 4 (67 mmol), 

ammonium chloride (1.79 g), isopropanol (134 ml), water (27 ml), and acetic acid 

(2.2 ml). The mixture was stirred and warmed to 60°C. At this point the heat was 

turned off and iron powder (22.44 g) was added in small portions (temperature 

held steady at 60-65°C during the addition). Following the addition the mixture 

was refluxed for 30 min and stirred at room temperature overnight. The hot 

reaction mixture was diluted with 223 ml of warm ethyl acetate and filtered 

through a pad of Super Cel. The solids were washed with 2 x 110 ml of warm ethyl 

acetate. The filtrate and the washes were then extracted with 2 x 110 ml of water, 

dried over magnesium sulfate and concentrated. 

2-{[(4-aminophenyl)acetyl]amino}-3-thiophenecarboxamide  

Molecular Weight 291.326 

 

Aspect dark grey solid 

Yield 51% 

1
H NMR (250MHz, DMSO): δH 12.88(s, 1H), 7.91(s, 1H), 7.53(s, 1H), 7.43(d, 

2H), 7.01(d, 1H), 6.83-6.79(m, 2H), 6.55-6.51(m, 2H), 4.71(bs, 2H), 4.66(s, 2H),  
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2-(4-aminophenoxymethyl)-3H-thieno[2,3-d]pyrimidin-4-one (6) 

 

 

A stirred mixture of 5 (34 mmol), sodium hydroxide 4N (113.5 ml), 

Dimethylformamide (113.5 ml) was heated at reflux (100 °C) for 3h, then cooled at 

room temperature and diluited with water (680 ml). At this point the reaction 

mixture was acidificated with HCl 2N to adjust the pH value to 6 and then filtered 

to obtain 4.86 g (17 mmol) of filtrate. The filtrate was then extracted with ethyl 

acetate and the organic phase was washed with a saturated sodium chloride 

solution, dried with magnesium sulfate and finally filtered to obtain 0.3g (1 mmol) 

of 6. 

 

 

2-(4-aminophenoxymethyl)-3H-thieno[2,3-d]pyrimidin-4-one  

Molecular Weight 273.310 

 

Aspect olive drab solid 

Yield 53% 

1
H NMR (400MHz, DMSO): δH 12.65(bs, 1H), 7.61-7.58(m, 1H), 7.40-7.39(m, 

1H), 6.78-6.74(m, 2H), 6.53-6.49(m, 2H), 4.87(s,2H), 4.71(bs, 2H) 
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3-[4-({4-oxo-3H-thieno[2,3-d]pyrimidin-2-yl}methoxy)phenyl]-1-phenylurea (7a) 

 

 

 

Reaction mixture 1: 

2 mmol of 6 were dissolved in amylene stabilized chloroform (8 ml) to compose 

the first reaction mixture. 

Reaction mixture 2: 

2.4 mmol of phenylisocyanate were dissolved in amylene stabilized chloroform 

(4ml) to form the second reaction mixture 

Reaction mixture 2 was added drop-wise to reaction mixture 1, the resulting 

mixture was stirred at room temperature overnight. Since the TLC showed an 

uncompleted reaction, more phenylisocianate (1.2 mmol) was added and the 

mixture was stirred for 12 h, filtered and then purified by crystallization with 

dioxanne obtaining 0.40 g of 7a. 
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3-[4-({4-oxo-3H-thieno[2,3-d]pyrimidin-2-yl}methoxy)phenyl]-1-

phenylurea 

Molecular Weight 392.431 

 

Aspect Light grey solid 

Yield 50% 

1
H NMR (400MHz, DMSO): δH 12.71(s, 1H), 8.61(s, 1H), 8.52(s, 1H), 7.6(d, 1H), 

7.45-7.36(m, 5H), 7.27(t,2H), 6.99-6.95(m, 3H), 4.99(s, 2H) 

 

MS (ESI, [M+Na]
+
) 

m/z for C20H16N4NaO3S 

theoretic: 415.0840 

obtained: 415.0834 

Microanalysis:  

 

3% of H2O C H N S 

theoretic: 58,76 4,39 13,70 7,84 

obtained: 58,94 3,54 13,29 7,01 
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1-(4-fluorophenyl)-3-[4-({4-oxo-3H-thieno[2,3-d]pyrimidin-2-yl}methoxy)phenyl] 

urea (7b) 

 

 

The same procedure as 7a was applied, but in this case was not necessary to add 

more 4-fluoro-phenylisocyanate. After filtration, the solid was purified by 

crystallization in MeoH obtaining 0.33g of 7b. 
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1-(4-fluorophenyl)-3-[4-({4-oxo-3H-thieno[2,3-d]pyrimidin-2-yl} 

methoxy)phenyl]urea 

Molecular Weight 410.422 

 

Aspect Light grey solid 

Yield 40% 

1
H NMR (400MHz, DMSO): δH 12.66(s, 1H), 8.64(s, 1H), 8.51(s, 1H), 7.6(d, 2H), 

7.46-7.36(m, 4H), 7.1-6.97(m, 4H), 4.99(s, 2H) 

MS (ESI, [M+Na]
+
) 

m/z for 

C20H15FN4NaO3S 

theoretic: 433.0746 

obtained: 433.0737 

Microanalysis:  

 

3% of H2O C H N S 

theoretic: 56,77 3,90 13,23 8,00 

obtained: 56,97 3,59 13,39 7,62 
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1-[4-chloro-3-(trifluoromethyl)phenyl]-3-[4-({4-oxo-3H-thieno[2,3-d]pyrimidin-2-

yl}methoxy)phenyl]urea (7c) 

 

The same procedure as 7a was applied, but quantities were different: 

Reaction mixture 1: 

0.5 mmol of 6 were dissolved in amylene stabilized chloroform (2 ml) to compose 

the first reaction mixture 

 

Reaction mixture 2: 

0.6 mmol of 4-Chloro-3-tryfluoromethyl-phenylisocyanate were dissolved in 

amylene stabilized chloroform (1ml) to form the second reaction mixture 

Reaction mixture 2 was added drop-wise to reaction mixture 1, the resulting 

mixture was stirred at room temperature overnight. Since the TLC showed an 

uncompleted reaction, was added trietylamine (0.245ml), but there wasn’t any 

improvement. The mixture was then concentrated under reduced pressure, 

dissolved with diethylether, filtrate and the obtain solid was washed with methanol 

to obtain 0.13g of 7c. 
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1-[4-chloro-3-(trifluoromethyl)phenyl]-3-[4-({4-oxo-3H-thieno[2,3-

d]pyrimidin-2-yl}methoxy)phenyl]urea 

Molecular Weight 494.874 

 

Aspect Light grey solid 

Yield 52% 

1
H NMR (400MHz, DMSO): δH 12.57(bs, 1H), 9.07(s, 1H), 8.65(s, 1H), 8.09(s, 

1H), 7.64-7.58(m, 3H), 7.41-7.38(m, 3H), 7.01-6.99(m, 2H), 5.00(s, 2H) 

19
F NMR (376 MHz, DMSO): δF -61.44(s, 3F) 

MS (ESI, [M+Na]
+
) 

m/z for 

C21H14ClF3N4NaO3S 

theoretic: 517.0325 

obtained: 517.0323 

Microanalysis:  

 

 C H N S 

theoretic: 50.97 2.85 11.32 6.48 

obtained: 51.08 2.77 11.56 6.41 
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Biological evaluation for compounds 7a, 7b, 7c 

 

Compounds 7a, 7b and 7c were investigated for their inhibitor activity against 

either EGFR and VEGFR-2, at the Institut de Chimie Pharmaceutique Albert 

Lespagnol, Université Lille 2, by the “Groupe de Recherche Interdisciplinaire 

Innovation et Optimisation Thérapeutique EA4481” under the supervision of Pr. 

Patrick Depreux. 

Inhibition activities were derived against EGFR (purified from A431 cell 

membranes) and VEGFR-2 (recombinant human protein) by quantifying the 

enzymatic tyrosine kinase activity, from the incorporation of radiolabeled ATP 

([γ32P]ATP] on a peptide substrate containing tyrosine residues [Poly(Glu, Tyr) 

4:1] (Figure 1). Due to the possibility that other endogenous proteins may be 

phosphorylated, a further test was performed without PolyGluTyr and the result 

was subtracted from the value obtained in the presence of the screened compound. 

The reactions took place in a “Multiscreen® Durapore®” (Millipore
TM

) 96-well 

plate. The wells were pre-wetted with 100µL of water, and the receptors (20 ng of 

EGFR and 10ng of VEGFR-2) were pre-incubated in the presence or absence of 

the test compound (1-dose mode: 10 µM), previously dissolved in DMSO, for 5 

minutes at 37 °C. The final DMSO concentration was 0.1%. Two different 

solutions (Table 1) were prepared for each enzyme and added (50 µL) to start the 

reactions. After 1 hour (at 28 °C) the reactions were stopped by adding 20 µL of 

trichloroacetic acid (TCA) 100% which caused precipitation lasting 30 minutes 

followed by the radioactivity count procedure. As mentioned above tests were 

accomplished with and without the substrate, in order to eliminate the contribution 

of endogenous proteins to the radioactivity. For each compound, inhibitory activity 

(%) against EGFR and VEGFR were determined (Table 2). 
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Table 1. Used reagents 

EGFR 

HEPES 50 mM pH 7,5, BSA 0,1 mg.mL-1, MnCl2 5 mM, 

Na3VO4 100 μM, DTT 0,5 mM, poly(Glu4/Tyr) 250 μg.mL-1, 

ATP 5 μM, [γ32P] ATP 0,5 μCi 

VEGFR-2 

Tris 50 mM pH 7,5, BSA 25 μg.mL-1, MnCl2 1,5 mM, MgCl2 10 

mM, Na3VO4 100 μM, DTT 2,5 mM, poly(Glu4/Tyr) 250 μg.mL-

1, ATP 5 μM, [γ32P] ATP 0,5 μCi, β-glycérophosphate 5 mM. 

 

 

 

Figure 1. Assay of protein kinases using radiolabeled ATP. 
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Table 2. Structures and either EGFR, VEGFR-2 inhibitory activity of thieno[2,3-

d]pyrimidinones 7a-7c. 

 

# R R1 
% Inhibition @ 10 µM 

EGFR VEGFR-2 

7a H H n.a.
a 

9% 

7b F H n.a.
a
 5% 

7c Cl CF3 n.a.
a
 13% 

a
 Not active. No inhibition was observed up to 10 µM of the tested compound. 

 

 

 



133 

 

Chapter X 

Research Period Abroad II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supervisor Prof. Garland R. Marshall  



134 

 

Introduction 

My second research activity abroad, was conducted for three months (beginning: 

August 2013, end: October 2013) at the Marshall Lab., directed by Prof. Garland 

R. Marshall, in the Department of Biochemistry and Molecular Biophysics of 

Washington University School of Medicine in St. Louis (MO, USA) to investigate 

the activity profile of new Histone Deacetylases (HDACs) inhibitors. 
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HDACIs activity investigation 

 

In vitro determinations were conducted applying the Electrophoretic mobility shift 

assay (EMSA)
1
 by using the LabChip

®
 EZReaderII

2
 instrument (Figure 1, Caliper-

Perkin Elmer
®
). 

  

  

Figure 1. The LabChip
®
 EZReaderII. 

 

Fundamentally, three main objectives were accomplished: 

a) Training on the EZReaderII instrument 

b) Define the Enzymatic assays protocol for HDACs 

c) Start the inhibitor titrations HDAC3 and HDAC6 isoforms  
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LabChip
®
 EZReaderII: 

The LabChip
®
 EZReaderII combines the basic principles of capillary 

electrophoresis in a microfluidic environment to analyze enzymatic assays with or 

without the addition of a termination or quenching reagent. The core of the 

instrument is the so-called “Chip” (Figure 2), which is characterized by: 

 6 Upstream and 2 Downstream Electrode Wells (Figure 2A); 

 12 Sippers (Figure 2B); 

 a detection window (Figure 2C) 

 a network of miniaturized channels (like those characterizing the detection 

window, Figure 2C) through which fluids and chemicals are moved to 

perform experiments; 

 
A 

 
B 

 
C 

Figure 2. The LabChip
®
 EZReaderII Chip. 
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As shown in Figure 3, the whole analysis process can be summarized in the 

following steps: 

1) using vacuum pressure, reactions are sipped, from the sample wells through 

fused silica sippers located in the bottom of the chip;  

2) both electrokinetics and pressure, are exerted on the chip to generate fluid 

motion through the microchannels. By applying an electric-potential difference 

across the separation channel, fluorescently labeled substrates and products are 

separated by electrophoresis and detected by LED-induced fluorescence; 

3) both the substrate and the formed product are detected and measured for each 

sample. The amount of product is determined as 
                    

                                 
. 

 
Figure 3. Overview of the Mobility Shift Assay performed by the LabChip

®
 

EZReaderII. 
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Materials and Methods 

Screened Compounds: 

Several enzymatic assays were performed to investigate the HDAC 3 and 6 

inhibitor activities (IC50 values), of a new molecular set (Table 1) characterized by 

chemo-physical properties ascribable to anti-HDAC activity, as follows : 

 new largazole derivatives, synthetized in the Marshall lab.,  

 new compounds synthetized in the laboratory supervised by Prof. Antonello 

Mai, (Department Of Chemistry and Drug Technologies, Faculty of 

Pharmacy and Medicine – Sapienza Università di Roma). 

Moreover, three stock compounds: SAHA, Tubastatin A and Entinostat, from 

Sellekchem
®
 tubes, were used as standard compounds. 

 

Table 1. List of screened compounds. 

# Cpd 

Stock 

Solution mM  

in 100% 

DMSO 

 
# Cpd 

Stock 

Solution mM  

in 100% 

DMSO 

1 MC1716 10 
 

16 MC2776 10 

2 MC1723 10 
 

17 MC2780 10 

3 MC1739 10 
 

18 MC2984 10 

4 MC1742 10 
 

19 MC3004 20 

5 MC1746 10 
 

20 MC3031 10 

6 MC1862 10 
 

21 MC3050 10 

7 MC2122 20 
 

22 MC3079 10 

8 MC2126 10 
 

23 SD-L-148 20 

9 MC2129 10 
 

24 SD-L-256 10 

10 MC2195 20 
 

25 SDM141 20 

11 MC2427 10 
 

26 SDM146 20 

12 MC2625 10 
 

27 ENTINOSTAT
a 

50 

13 MC2664 10 
 

28 SAHA
a 

100 

14 MC2726 10 
 

29 TUBASTATIN A
a 

100 

15 MC2727 10 
 

   
a
Stock compounds: from Selleckchem

®
 Tubes 
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The synthetized compounds (originally as powder) were solubilized in 100% 

DMSO to get the final micromolar concentrations (mM, Table 1), moreover 

different solutions, required for the enzymatic assays, were prepared: 

1. Separation Buffer 

2. Reaction Buffer 

3. Dye Marker 

4. Substrate Mix 

5. Enzyme Mix 

Overall, the “relationship” between the instrument and the necessary components 

can be represented like the chart in Figure 4: 

 

 
Figure 4. The hardware and chemical protagonists characterizing the assays. 
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Separation Buffer: 

The separation buffer is the solution that runs through the machine and the chip. It 

is used mainly to preserve the separation conditions and prevent peptide sticking in 

the microfluidic chip; since it is stable at room temperature for seven days, a fresh 

sterilized solution (at least 200 mL, Figure 5) was primed into the EZReaderII 

every week.  

 
Figure 5. Recirculation system for the separation buffer. 

 

Differently, the chip required much more attention, needing to be “prepared” 

(firstly washed with milliQ water and separation buffer, then re-charged with the 

latter) every week or after 40 hours of run time.  
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A 

 
B 

 
C 

Figure 6. Chip preparation: every week or after 40 hours of run time it needs to be 

completely washed with milliQ water (A) and separation buffer (B), then dried, 

charged with new separation buffer and finally installed in the EZReaderII 

instrument (C). 

 

The separation buffer (10mM EDTA) was obtained following the company 

guidelines, by merging a pre-separation buffer (1mM EDTA) with a solution of 

EDTA 0.5M (pH 8), whose compositions are described in Table 2: 

 

Table 2. Separation Buffer. The solution was finally sterilized using a 0.2 µm pore 

filter membrane. 

Final solution 
Intermediate 

solution 
Composition 

Separation 

Buffer (10mM 

EDTA) 

 

Pre-separation 

buffer 

 100mM HEPES, pH 7.3 

 0.015% Brij-35 

 1mM EDTA 

 0.1%CR-3 

 5% DMSO 

 

EDTA 0.5M 

 milliQ water 

 EDTA (powder) 

 pH adjusted to 8.0 using NaOH 

(pellets) 
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Reaction Buffer (RxnB): 

The reaction buffer (RxnB) represents the solution to be added into the plate wells 

together with the reagents. It was prepared following the company guidelines 

(Table 3).  

Table 3. Reaction buffer. The solution was finally sterilized using a 0.2 µm pore 

filter membrane. 

Final solution 
Intermediate 

solution 
Composition 

Reaction Buffer 

0.01 % w/v 

BSA
a
 

Base buffer 

 25mM Tris-HCl pH 8.0 

 137mM NaCl 

 2.7 mM KCl 

 1 mM MgCl2 

 

BSA
a
 1% w/v 

 milliQ water 

 BSA
a
 powder 

 
a
BSA: Bovine Serum Albumine 

 

Dye Marker: 

The Dye marker is the 1X peptide solution used to create the plate row markers 

during the assay: specifically the H219 peptide (Table 4) was used to accomplish 

this role. 

 

Substrate Mix: 

The substrate mix is the solution containing the peptide to be deacetilated. For the 

assays, H218 and H219 peptides (Table 4) were used in the case of HDAC3 and 

HDAC6 respectively. As reported above, H219 was utilized also as the dye 

marker.  
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Table 4. The used substrates: H218 and H219 peptides. 

H218 H219 

5-FITC-AHA-TSPQPKK(Ac)-CONH2 

 Derived from p53 

 1.5 mM in 100% DMSO 

5-FITC-AHA-LGKGGAK(Ac) -CONH2 

 Derived FROM Histone 4 

 1.5 mM 100% DMSO 

 

Enzyme Mix: 

This is the solution containing the enzyme (HDAC) and the RxnB. 

 

Assay plate: 

For all the assays, Corning
®
 384 assay plates (Figure 7) were utilized. 

 

Figure 7. Used assay plates. 

Corning
®
 (#3673) Specifics 

 

 384 assay plate 

 Non-binding surface 

 Round bottom 

 White polystirene 

 Working volume: 

5-40 µL 
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Enzyme assays workflow: 

The applied workflow involved, firstly, the enzyme titration step, followed by the 

enzyme inhibitor titration. 

 

Enzyme titration: 

Enzyme titration (Figure 8) is necessary to: 

 determine the enzyme concentration, for a 30% substrate conversion, to be 

used during the inhibitory titration; 

 establish the assay parameters as: Pressure, Downstream Voltage, Upstream 

Voltage, Buffer Sip, Sample/Marker Sip Time, Final Delay, Peak Order, 

Cycles 
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Figure 8. Enzyme titration workflow. 

 

Enzyme titration was performed in 6-dose mode with 3-fold serial dilution, using 

2-replicates; since HDAC 3 and HDAC 6 are characterized by different activities, 

different ranges were used (Figure 9). Initially, different 2X enzyme mix solutions 

were obtained by diluting the stock enzyme solution with RxnB and placed in plate 

wells, then an equal volume of 2X peptide mix was added to each well to reach the 

final (1X) desired concentration and start the reaction (deacetylation). 
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Figure 9. Enzyme titration was conducted in 6-dose mode with 3-fold serial 

dilution, starting from 20 ng/µL and 30 ng/µL for HDAC 3 and HDAC 6 

respectively. 

 

Then, the plate was placed in the LabChip
® 

EZReaderII instrument, previously 

“charged” with the dye marker, to start a 45 cycles detection (≈ 1 hour), following 

the reaction in a real-time mode (example in Figure 10) and finally obtain 

conversion rates (example in Figure 11). The whole procedure was optimized in 

order to use for each well a total volume equal to 20 µL (10 µL of 2X enzyme mix 

+ 10 µL of 2X peptide mix).  
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Figure 10. Enzyme titration outputs. The reaction is monitored, as it progresses, by 

sequentially “sipping” samples onto the chip at various time intervals (cycles): 

removal of acetyl groups from peptide substrates produces distinct mobility-shifts. 

Three different peak types are detectable for each cycle: the marker peaks (red 

contoured), the product peaks (green contoured) and the substrate peaks (yellow 

contoured). Since the chip is characterized by 12 sippers, 12 different wells (6 for 

each row) were monitored at the same time: each color represents data from a 

different reaction well.  

 

  

Cycle 
45

th
 Cycle 
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Figure 11. Enzyme titration results expressed as substrate conversion rates. As for 

example are shown the results obtained from one HDAC3 titration (Enzyme from 

Sigma-Aldrich™, Product N.SRP0104, Lot N.5000320524, specific activity ≥3000 

pmol/min/µg). In this specific case the characterizing enzyme concentration of well 

n. 3 (2.2 ng/µL, compare with Figure 9) was used for the inhibitor titration, since it 

was the closest to determine a conversion rate equal to 30%. 

 

Once determined the enzymatic concentration capable to convert (deacetylate) a 

substrate quantity close to 30%, it was possible to proceed for the inhibitor 

titration. 

Inhibitor titration: 

A total of 32 titrations for HDAC 3 and 24 titrations for HDAC 6 were performed, 

following the screening scheme specified in Table 5. Compounds were tested in 

10-dose IC50 mode with 3-fold serial dilution starting from 30 µM. For each 

replicate, well plates n. 11 (23) and 12 (24) were used as 0% inhibition and 100% 

inhibition controls, respectively (Figure 12). Each well was charged with a total of 

15µL of reactions following the sequence shown in Figure 13. After 1 hour of 

incubation reactions were stopped by adding, to each well, 15 µL of termination 

buffer (reaction buffer + EDTA 10 mM), then the plate was introduced in the 

instrument to start the titration and derive conversion and inhibition rates (as for 

example Figures 14 and 15 show both the outputs for the 3
rd

 HDAC 3 screening). 
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Conversion rates were calculated considering the 
                    

                                 
 

ratio, whereas inhibition rates were obtained considering the % of controls 

(averaging the results across sippers).  

 

Table 5. Screening scheme.
 
 

CPD ID Plate Row 
Screening 

N. 
Used Enzyme 

MC2984 A A, E 

1 
HDAC3 

HDAC6 

SDM 141 B B, F 

SDM 146 C C, G 

SD-L-256 D D, H 

SD-L-148 (Largazole) E I, M 

SAHA
a
 (Vorinostat) F J, N 

TUBASTATIN A
a
 G K, O 

ENTINOSTAT
a
 H L, P 

MC2727 A A, E 

2 
HDAC3 

HDAC6 

MC2726 B B, F 

MC2625 C C, G 

MC2664 D D, H 

MC2780 E I, M 

MC2776 F J, N 

MC3079 G K, O 

SAHA (Vorinostat)
a 

H L, P 

MC3031 A A, E 

3 
HDAC3 

HDAC6 

MC3004 B B, F 

MC3050 C C, G 

MC1742 D D, H 

MC1862 E I, M 

MC2126 F J, N 

MC2129 G K, O 

SAHA (Vorinostat)
a 

H L, P 

MC1716 A A, E 

4 HDAC3 

MC1723 B B, F 

MC1746 C C, G 

MC1739 D D, H 

MC2122 E I, M 

MC2427 F J, N 

MC2195 G K, O 

SAHA (Vorinostat)
a 

H L, P 
a
Selleckchem Tubes 
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Figure 12. Plate scheme applied during the inhibitor titration.  

 

Inhibition rates allowed to derive, for each screened compound, the characteristic 

inhibitory dose-response curve (Figure 16 and 19), the characteristic IC50 value 

(Table 6 and 7) and the relative inhibitory potency (Figures 17,18,20,21). 
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Figure 13. Protocol adopted to fill the wells. 
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Figure 14. HDAC 3

rd
 screening. Data Tracings (CCD2 signals). 
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A 

 
B 

Figure 15. HDAC 3
rd

 screening: Conversion rates (A) and inhibition rates (B) 

outputs. Rows and columns refers to those of the plate (compare with Figure 12 

and Table 5). 
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Figure 16. HDAC 3 inhibitory dose-response curves.  
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Table 6. HDAC 3: assays: inhibitory activities expressed as IC50 

and pIC50. 

HDAC 3 

 
IC50 pIC50 

Cpd COMPANY GRM COMPANY GRM 

SAHA 1st SCREEN 2.00E-08 2.18E-09 7.70 8.66 

SAHA 2nd SCREEN 2.00E-08 6.24E-10 7.70 9.20 

SAHA 3rd SCREEN 2.00E-08 2.92E-09 7.70 8.54 

SAHA 4th SCREEN 2.00E-08 6.17E-10 7.70 9.21 

TUBASTATIN A 3.00E-05 8.20E-07 4.52 6.09 

ENTINOSTAT 1.70E-06 7.73E-07 5.77 6.11 

MC1716 
 

2.34E-08 
 

7.63 

MC1723 
 

7.29E-08 
 

7.14 

MC1739 
 

3.72E-08 
 

7.43 

MC1742 
 

2.36E-08 
 

7.63 

MC1746 
 

3.81E-08 
 

7.42 

MC1862 
 

4.58E-08 
 

7.34 

MC2122 
 

6.81E-08 
 

7.17 

MC2126 
 

1.52E-07 
 

6.82 

MC2129 
 

1.15E-07 
 

6.94 

MC2195 
 

1.20E-07 
 

6.92 

MC2427 
 

1.57E-06 
 

5.80 

MC2625 
 

1.94E-07 
 

6.71 

MC2664 
 

7.25E-07 
 

6.14 

MC2726 
 

2.75E-07 
 

6.56 

MC2727 
 

2.73E-07 
 

6.56 

MC2776 
 

1.32E-05 
 

4.88 

MC2780 
 

1.01E-06 
 

5.99 

MC2984 
 

4.32E-07 
 

6.36 

MC3004 
 

1.63E-06 
 

5.79 

MC3031 
 

6.31E-08 
 

7.20 

MC3050 
 

7.25E-06 
 

5.14 

MC3079 
 

1.14E-05 
 

4.94 

SD-L-148 
 

1.44E-06 
 

5.84 

SD-L-256 
 

4.23E-07 
 

6.37 

SDM 141 
 

NAc 
 

NAc 

SDM 146 
 

NAc 
 

NAc 

NAc: No inhibition/activity not converged in a IC50 curve;  

NAv: Not Available 
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Figure 17. HDAC 3: standard compounds’ inhibitory profile, pIC50 values are 

reported on molar base. 
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Figure 18. HDAC 3: compounds Inhibitory Profile, pIC50 values are reported on 

molar base. 
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Figure 19. HDAC 6 inhibitory dose-response curves. 
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Table 7. HDAC 6 assays: inhibitory activities expressed as IC50 and 

pIC50. 

HDAC 6 
 

IC50 pIC50  
Cpd COMPANY GRM  COMPANY GRM   

     

     
SAHA 1st SCREEN NAv 1.02E-09 NAv 8.99 

SAHA 2nd SCREEN NAv 1.92E-09 NAv 8.72 

SAHA 3rd SCREEN NAv 1.31E-09 NAv 8.88 

TUBASTATIN A NAv 1.43E-08 NAv 7.85 

ENTINOSTAT NAv NAc NAv NAc 

MC1742 
 

4.30E-08 
 

7.37 

MC1862 
 

2.21E-08 
 

7.66 

MC2126 
 

5.38E-07 
 

6.27 

MC2129 
 

2.73E-07 
 

6.56 

MC2625 
 

1.70E-07 
 

6.77 

MC2664 
 

NAc 
 

NAc 

MC2726 
 

1.24E-07 
 

6.91 

MC2727 
 

1.32E-07 
 

6.88 

MC2776 
 

1.11E-05 
 

4.96 

MC2780 
 

3.03E-07 
 

6.52 

MC2984 
 

NAc 
 

NAc 

MC3004 
 

2.20E-07 
 

6.66 

MC3031 
 

4.68E-07 
 

6.33 

MC3050 
 

NAc 
 

NAc 

MC3079 
 

NAc 
 

NAc 

SD-L-148 
 

6.68E-06 
 

5.18 

SD-L-256 
 

8.01E-07 
 

6.10 

SDM 141
a
 

 
NAc 

 
NAc 

SDM 146
a
 

 
NAc 

 
NAc 

NAc: No inhibition/activity not converged in a IC50 curve; 

NAv: Not Available 
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Figure 20. HDAC 6 Standard compounds’ inhibitory profile, pIC50 values are 

reported on molar base. 
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Figure 21. HDAC 6: Compounds Inhibitory Profile, pIC50 values are reported on 

molar base. 
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