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Preface

Fascinating: this is the word that best expresses my PhD scholarship.

Fascinating for the research activity, fascinating for the friendships arisen from
scientific collaborations, fascinating for the chance to work with different people
and in foreign countries, fascinating for the impact that all of this had and still has
on me. Express feelings, satisfaction, hope and even the frustrations that the
research activity involves is not simple, and transfer them to a thesis is certainly
arduous; however, | hope to convey the mix of passion, dedication, perseverance
and romance, which have accompanied me through this experience.

During my PhD scholarship | worked mainly on computational chemistry, but also
on wet chemistry, like organic synthesis and enzymatic inhibition assays. This has
made me aware of the various aspects that characterize the different medicinal
chemistry applications, and how these are linked together, allowing not only to
immerse myself in the specific laboratory practice, but also to gain an overview of
the manifold scientific research process.

I couldn 't have asked for anything better.



Introduction

The present doctoral thesis is the result of the work carried out during the three
years of my PhD scholarship at the Rome Center for Molecular Design laboratory
(RCMD, Department of Chemistry and Drug Technologies, Sapienza University of
Rome), under the supervision of Prof. Rino Ragno. The research activity was
focused mainly on the design, optimization and application of computational
strategies to derive quantitative structure-activity relationships (QSAR, 3-D
QSAR, and COMBINE) on different molecular classes of current interest, such as:
opioid receptor antagonists (OPAs), Hepatitis C Virus NS5B-Polymerase
Inhibitors (NS5B-NNIs), Hystone Deacetylase Inhibitors (HDACIs), Anti-
tubercular agents, vascular endothelial growth factor receptor-2 (VEGFR-2)
inhibitors, HSP90 inhibitors, HIV-1 reverse transcriptase inhibitors (NNRTIs),
Bovine Serum Amine Oxidase (BSAO) substrates, etc... Moreover two research
periods abroad were performed: the first framed in a LLP Erasmus program
collaboration, was conducted for six months at the Laboratoire d'Ingénierie et
Moléculaire Pharmacologique Biochimie (LIMBP) of the Université de Lorraine
Metz (France), directed by Prof. Gilbert Kirsch, and characterized by the
application of organic synthesis to obtain new thienopyrimidinone derivatives as
potential inhibitors of vascular endothelial growth factor receptor-2 (VEGFR-2);
the second took place, for three months, at the Department of Biochemistry and
Molecular Biophysics in Washington University School of Medicine in Saint Louis
(MO, USA), under the supervision of Prof. Garland R. Marshall, investigating the
activity profile of new Histone Deacetylases (HDACS) inhibitors by the application
of the Mobility Shift Assay Technology.

Main purpose of this doctoral thesis is to highlight the activities carried out in the

different research projects, the applied methodologies and the obtained results. The
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text starts describing those studies whose results were published in scientific
journals (chapters I-VI): the author decided to omit some procedural details,
completely reported in the published papers, that would make the text too long,
tedious and redundant; therefore readers who want to delve these aspects can also
refer to Chapter XII in which is possible to read the original papers; on the contrary
for studies that have not yet been published, as those characterizing the Chapters
VIl and VIII, discussion is adequately detailed. Chapters IX and X report the
scientific activities carried out in France and in USA respectively; Chapter XI
summarizes all the scientific activities accomplished during the entire PhD course,

whereas Chapter X1I, as mentioned, contains the published articles.

vi



Chapter I

3-D QSAutogrid/R: An alternative procedure to build 3-D QSAR models.
Methodologies and applications

Flavio Ballante and Rino Ragno

Journal of Chemical Information and Modeling 2012 52 (6), 1674-1685
Preamble

This chapter refers to a work that | care particularly, a constantly evolving project
which began few years ago: the 3-D QSAutogrid/R procedure.! The 3-D
QSAutogrid/R is a tool, designed and developed to be freely used from academics,
capable to perform optimized three dimensional quantitative structure-activity
relationship (3-D QSAR) studies by the means of the PLS algorithm®. Respect to
the classic 3-D QSAR approaches (like COMFA® and GRID*/GOLPE?®) allows to:

e minimize human-machine interactions, costs, and calculation time
e select the most appropriate pretreatment parameters (CAPP* procedure)

e conduct MPGRS' (Multi Probe Guided Region Selection) analyses

The 3-D QSAutogrid/R procedure is, actually, the default 3-D QSAR methodology
used at the Rome Center for Molecular Design laboratory (RCMD, Department of
Chemistry and Drug Technologies Sapienza University of Rome), and the core
engine to prepare thousands of 3-D QSAR models, based on either ligand based
(LB) or structure based (SB) alignment methodologies, forming the very first 3-D

QSAR server (www.3d-gsar.com), which allows to model the desired ligand and to

retrieve the predicted biological affinity for the chosen model. Several studies,®™

characterizing my PhD scholarship, were accomplished using this procedure

confirming its usefulness in drug discovery.


http://www.3d-qsar.com/

The Procedure

The 3-D QSAutogrid/R methodology® is based on the integration of the molecular
interaction fields (MIFs) as calculated by the AutoGrid program (Autodock
Suite’) and the R statistical environment,"> a freely available language for
statistical computing and graphics. The AutoGrid software (based on the AMBER
united-atom Force Field) is used to generate either training and test sets’ MIFs: in
particular 8 different probes (Table 1) were chosen in agreement with the most

common residue atomic composition, and currently implemented.

Table 1. List of the AutoGrid probes employed for MIF calculation.
Probe Type Description

A Aromatic Carbon
C Aliphatic (sp®) Carbon
OA Hydrogen-bond-accepting oxygen
HD Hydrogen bonded to heteroatom
NA Hydrogen-bond-accepting amine nitrogen
N Amide nitrogen
e Electrostatic
d Desolvation

Several R-based packages (Table 2, Figure 1) were developed to carry out
complete 3-D QSAR studies to obtain a comprehensive statistical and graphical
report (see Computational methods section) for each different used probe and
principal component (PC). The procedure needs only the pre-aligned training and

test sets molecules.

What makes the 3-D QSAutogrid/R procedure innovative is the capability to
determine, through a combinatorial calculation (CAPP procedure)," the most
appropriate pretreatment values to get optimized 3-D QSAR models; but especially

the possibility to derive multiprobe 3-D QSAR models (MPGRS procedure)*
2



highlighting the most informative regions around the ligands, using all the probes
together, and reducing the chance of missing important correlations when using
single probe 3-D QSARs.

The whole procedure was validated on three data sets, covering both ligand-based
(LB) and structure-based (SB) alignment methodologies, previously reported using
CoMFA® and GRID/GOLPE,* respectively.

Table 2. List of the R compiled packages.

R package Description
D2M Data to Model
CAPP Combinatorial Analysis of Pretreatment Parameters
MDP Model Data Pretreatment
CVv Cross Validation
VS Variable Selection
GRS Guided Region Selection
MPGRS Multi Probe Guided Region Selection
ESP External Set Prediction

YS Y-scrambling
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Figure 1. 3-D QSAutogrid/R process workflow. Acronyms inside the blue meshed
square refer to the packages (steps) that effectively build or optimize the statistical
PLS 3-DQSAR models; others are related to packages that perform analysis on
these created models (see below for the description of each package). D2M: “Data
to Model”; CAPP: “Combinatorial Analysis of Pretreatment Parameters”; MDP:
“Model Data Pretreatment”; CV: “Cross-Validation”; VS: “Variable Selection”;
(MP)GRS: “(Multi Probe) Guided Region Selection”; ESP: “External Set
Prediction”; YS: Y-scrambling.

Computational Methods

As reported,! each R-package is able to perform a specific 3-D QSAR analysis

process releasing all the statistical and graphical results (Figure 2):

1) D2M package (“Data to Model”): allows to import the training set biological
data and MIF information (even MIFs generated with different tools, i.e.
GRID or CoMFA) to build a raw PLS 3-D QSAR model for each used probe
and user-defined principal component (PC).
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Figure 2. Overview of the information released by the 3-D QSAutogrid/R

procedure.



2) CV package (“Cross Validation”): allows to perform different kind of
internal validation methods like LOO (leave one-out), LSO (leave-some-
out), KF (k-fold), and MC (Monte Carlo) to:

e assess the chance correlation;™

e select the optimal model dimensionality (number of PCs);

e measure the internal predictive ability by means of statistical
coefficients such as cross-validated correlation coefficient (g°) and
standard deviation error of prediction (SDEP);

3) CAPP package (“Combinatorial Analysis of Pretreatment Parameters”):
represents a new 3-D QSAR feature, since it systematically seek the more
efficient data pretreatment values (energy cutoff, zeroing of very low data
points, and minimum standard deviation cutoff) through a combinatorial
analysis: for each combination the pre-treated model is generated and then
its g° evaluated using LOOCV, LSOCV or KFCV. The optimal pretreatment
combination is then selected according to the maximum g° and the
percentage decrement of SPRESS values between subsequent PCs.*®

4) MDP package (“Model Data Pretreatment”): to pretreat the molecular
descriptors (MIFs), in an arbitrary way or as found by the CAPP procedure.
A further data filter, that performs the 1N kind of 2-level variable
elimination (variables which take only 2 values in all of the data file, one of
which appears only in one object) can be selected.

5) VS package (“Variable Selection”) allows to reduce redundant data
improving the predictability of the statistical model. Different variable-
selection algorithms are implemented as: genetic algorithm'’ (GA),
simulated annealing™® (SA) and fractional factorial design®® (FFD).

6) GRS package (“q>-Guided Region Selection): this package, inspired on the
previously reported g>-guided region selection (g°-GRS)® and smart-region

6



definition®® ** (SRD),*> # allows to extract, for each probe and PC, only
those sub-areas endowed with a g° value greater than a specified threshold.

7) MPGRS package (“Multi Probe Guided Region Selection”). the MPGRS
approach is a new powerful tool capable to conduct advanced 3-D QSAR
analyses. Indeed, this procedure is able to sum all the most defining
chemical information, obtained by all the mono-probe models, deriving
final quantitative pharmacophoric models.

8) YS package (Y-Scrambling): this package allows to detect if the 3-D QSAR
model is characterized by chance correlation™ by means of scrambling
procedure®

9) ESP package (External Set Prediction): this tool is of fundamental
importance, in fact: 1) allows to test the predictive capability of the 3-D
QSAR models against an external test set of molecules with known
biological responses; 2) predicts the activity of untested or not yet

synthetized compounds.

Results and discussion

The procedure was validated® on three data sets, covering both ligand-based and

structure-based alignment methodologies:
« adata set of aligned opioid-receptor antagonists (LB data set)"
« two data sets of Hepatitis C Virus NS5B-Polymerase Inhibitors (SB data sets)™

LB data set (opioid-receptor antagonists):

A data set composed of 74 pre-aligned compounds with associated 6, u, k opioid-

binding affinities, previously described in a CoMFA application,® was used to

build 24 3-D QSAR models with the new procedure, maintaining the original®®

training set and test set composition. All the 3-D QSARs were built, pretreated
7



through the CAPP procedure, and optimized by means of the genetic algorithm
(GA, package VS). All the models were cross-validated through Leave-One-Out
(LOO), Leave-Two-Out (LTO), k-Fold (KF) and Monte Carlo (MC)
methodologies and submitted to the YS package to test the presence of chance
correlation. To directly compare the two methodologies, double probe models
(DP), similarly to those generated by CoMFA, were built. Statistical results
(Tables 3 and 4), were similar to those originally obtained (compare Tables 3 and 4
with table 5), confirming the robustness of the methodology. Moreover, the
obtained contour maps were in agreement with those obtained from CoMFA. As
for example, activity contribution plots obtained from the 6 DP models are shown

(compare Figures 3 and 4 with Figures 5 and 6).



Table 3. Opioid-receptor antagonists: Autogrid/R PLS models statistical results
(CAPP and GA processes were applied).
model OR P PC r quoo qZKSFCV rZYS qzys

1 d A 2 0.81 0.73 0.70 027 | -0.37
2 d C 2 0.82 0.74 0.71 0.32 | -0.35
3 d HD 2 0.83 0.75 0.72 0.33 | -0.34
4 d NA 2 0.83 0.75 0.73 0.31 | -0.34
5 o N 2 0.83 0.76 0.72 029 | -0.32
6 d OA 2 0.83 0.74 0.71 0.32 | -0.37
7 d e 3 0.69 0.58 0.56 022 | -0.19
8 d d 3 0.70 0.59 0.55 0.24 | -0.30
9 u A 3 0.91 0.82 0.76 0.57 | -0.50
10 u C 3 0.90 0.81 0.78 0.59 | -0.50
11 u HD 3 0.90 0.81 0.75 0.47 | -0.49
12 u NA 3 0.91 0.81 0.78 0.59 | -0.50
13 u N 3 0.91 0.83 0.78 0.52 | -0.61
14 u OA 3 0.91 0.83 0.77 051 | -0.61
15 u e’ 1 0.31 0.21 0.20 0.06 | -0.10
16 v d 3 0.72 0.60 0.52 0.27 | -0.39
17 K A 2 0.78 0.58 0.49 042 | -0.37
18 K C 3 0.81 0.62 0.55 0.54 | -0.53
19 K HD 3 0.82 0.72 0.65 0.34 | -0.41
20 K NA 3 0.80 0.62 0.54 0.55 | -0.47
21 K N 3 0.80 0.61 0.52 0.54 | -0.48
22 K OA 3 0.82 0.65 0.59 0.54 | -0.44
23 K e’ 2 0.35 0.20 0.18 0.13 | -0.18
24 K d 3 0.58 0.38 0.34 029 | -0.36

OR: Opioid-receptor data, P:Autogrid Probe, PC: optimal number of principal
components/latent variables, r?: conventional square-correlation coefficient; g’ oo:
cross-validation correlation coefficient using the leave-one-out method; q2K5FCV:
cross-validation correlation coefficient using the k-fold cross-validation with 5
random groups and 100 iterations; rys: average square correlation coefficient
obtained after Y-scrambling process using 100 iterations; g’ys: average cross-
validation correlation coefficient using the leave-one-out method obtained after Y-
scrambling process using 100 iterations *The e models 15 and 23 reported were
only pretreated due to too few variables after GA selection.



Table 4. Opioid-receptor antagonists: Autogrid double-probe (DP) PLS models
statistical results (only the CAPP process was applied).

model OR P PC I’Z qZLOO qZKSFCV I’ZYS qZYS
28 o Autogrid DP 3 0.83 0.70 0.67 0.41 -0.50
29 u  Autogrid DP 4 0.85 0.65 0.63 0.52 -0.53
30 Kk  Autogrid DP 3 0.84 0.67 0.63 0.50 -0.53

OR: Opioid-receptor data; P: Autogrid double probe (DP, C and e probes), PC:
optimal number of principal components/latent variables, r%: conventional square-
correlation coefficient; qu001 cross-validation correlation coefficient using the
leave-one-out method; q2K5FCV: cross-validation correlation coefficient using the k-
fold cross-validation with 5 random groups and 100 iterations; r’ys: average square
correlation coefficient obtained after Y-scrambling process using 100 iterations;
Q°vs. average cross-validation correlation coefficient using the leave-one-out
method obtained after Y-scrambling process using 100 iterations

Table 5. Opioid-receptor antagonists: original COMFA models statistical results.

model OR P PC r’ q’Loo 0 Ksecy
25 d CoMFA 4 0.91 0.69 -
26 u CoMFA 4 0.92 0.67 -
27 K CoMFA 6 0.96 0.60 -

OR: Opioid-receptor data; P: standard CoMFA Probe Csp3+, PC: optimal number
of principal components/latent variables, r% conventional square-correlation
coefficient; qZLoo: cross-validation correlation coefficient using the leave-one-
out method; q2K5FCV: cross-validation correlation coefficient using the k-fold
cross-validation with 5 random groups and 100 iterations.

By means of the ESP package,’ all the 3-D QSAutogrid/R models were externally

validated, as in the original COMFA application," confirming the robustness of the
methodology even in predicting the external test sets (compare Table 6 with Table
7).
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Figure 3. CoMFA-like steric-contour map derived from the C probe for the d-
opioid receptors. A: compounds 18 (sky blue), 20 (white), 22 (green), 50 (purple)
and 67 (red). B: compounds 30 (brown) and 68 (pink). Contour levels: 85%
(positive green, negative yellow). Hydrogen atoms are omitted for the sake of
clarity. In A and B are reported similar contour maps for the new procedure and
CoMFA.

Figure 4. COMFA-like electrostatic contour map derived from e probe for the 6-
opioid receptors. Compounds: Naltrexone in magenta, NT1 in yellow, 24 in green.
Contour levels: 85% (positive blue, negative red). Hydrogen atoms are omitted for
clarity.

11



Figure 5. CoOMFA steric contour map for the & opioid receptors. A: compound 18
in sky blue, 20 in white, 22 in green, 50 in purple and 67 in red. B: compound 30 in
brown, 68 in pink. Green (favored): 80%, yellow (disfavored) 20%. Hydrogen
atoms are omitted for the sake of clarity.

Figure 6. CoMFA electrostatic contour map for the 6 opioid receptors. Naltrexone
in magenta, NTI yellow, 24 green, Blue favored 80%, red (disfavored) 20%.

Hydrogen atoms are omitted for the sake of clarity.

12



Table 6. 5 Test Set predictions indicated by SDEP values.

OR Model P PC SDEPtg; SDEP+s;
1 A 2 0.66 0.80
2 C 2 0.64 0.77
3 HD 2 0.62 0.74
4 NA 2 0.64 0.82
5 N 2 0.64 0.76
6 OA 2 0.65 0.75
7 e 3 0.81 1.20
8 d 3 0.90 1.12

OR Model: Opioid-receptor model of Table 6; P: Autogrid probe, PC:
optimal number of principal components/latent variables; SDEPrg;: standard
deviation error of prediction for the original test set; SDEPg,: standard
deviation error of prediction for the external test set.

pK, pK;
compd exptl pred res compd exptl pred res
6 710 763 -0.53 42 629 694 -055
11 833 833 0.00 47 911 8.24 0.87
13 728 T7.18 0.10 48 8.75 8.11 0.64
19 774 828 -0.54 52 690 7.00 -0.10
27 746 783 -0.39 64 780 794 -0.14

37 766 741 025 70 562 609 -0.47
30 805 864 -059

pKi pKi
compd exptl pred res compd exptl pred red
6 7.1 798 -0.88 42 6.29 7.23 -0.94
11 833 833 0.00 47 911 8.09 1.02
13 728 723 005 48 875 825 0.5
19 7.74 847 -0.73 52 6.90 6.7/ 0.13
27 715 743 -028 64 7.80 8.28 -0.48
37 766 831 -065 70 5.62 6.37 -0.75

39 8.05 8.81 -0.76 |
B

Table 7. Opioid receptor antagonists: Experimental and Predicted pKi values of
the & Test Set compounds; A: CoMFA values from the reference,'® experimental
activity for compd 27 was mistyped, the right one is equal to 7.15; B: AutoGrid/R
o CAPP pretreated double probe (DP) model values.
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SB data set (Hepatitis C Virus NS5B-Polymerase Inhibitors):

In this application two structure based datasets composed of HCV NS5B non-
nucleoside inhibitors (thumb and palm NNI), previously investigated'* through the
GRID/GOLPE methodology,” were submitted to the 3-DQSAutogrid/R protocol.
As for the LB study, the models were built, and optimized via the CAPP
procedure. Since no variable selection was originally applied,"* no further
optimization processes were performed on the models. As for the LB case study,
the 3-DQSAutogrid/R procedure proved to derive models comparable to those
originally reported'® concerning either the statistical (Table 8) and graphical
results. In this case was decided to show the similarities between the PLS-
coefficients plots obtained from the two methodologies (Figure 7).

Figure 7. PLS-coefficients contour maps using the thumb-training set; only the
highest active (6 in cyan) and one of the lowest active (11 in orange) compounds
are shown. A: AutoGrid/R PLS coefficients contour maps derived from A probe
analysis (Contour levels: 60%, positive red, negative blue). B: GRID/GOLPE PLS
coefficients contour maps derived from C1= GRID probe analysis (contour levels:
0.0008 red, -0.0008 blue).
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Table 8. PLS Analysis Results for the Thumb- and the Palm-Structure Based
Autogrid/R and original GRID/GOLPE C1= 3-D QSAR Models.

Dataset P PC v quoo qZKSFCV Pys qZYS
Thumb A 2 0.90 0.67 0.64 0.70 -0.63
Thumb C 2 0.90 0.68 0.65 0.70 -0.60
Thumb HD 2 0.92 0.75 0.73 0.68 -0.69
Thumb NA 3 0.95 0.75 0.73 0.79 -0.66
Thumb N 3 0.95 0.76 0.73 0.78 -0.67
Thumb OA 3 0.95 0.77 0.73 0.77 -0.54
Thumb e 3 0.98 0.58 0.52 0.92 -0.55
Thumb d 1 0.58 0.36 0.36 0.27 -0.38
Thumb GRID/GOLPE/C1= 3 0.99 - 0.69 - -
Palm A 3 0.96 0.73 0.62 0.68 -1.62
Palm C 3 0.96 0.73 0.62 0.69 -1.59
Palm HD 1 0.90 0.75 0.71 044 -0.76
Palm NA 2 0.97 0.62 0.52 0.84 -0.76
Palm N 2 0.97 0.62 0.55 0.85 -0.87
Palm OA 1 0.86 0.67 0.64 0.32 -0.66
Palm e 3 0.96 0.85 0.82 0.73 -1.01
Palm d 3 0.93 0.62 0.39 0.73 -1.80
Palm GRID/GOLPE/C1= 3 0.99 0.55 -

P:Autogrid Probe or GRID Cl= probe; PC: optlmal number of prlnC|paI
components/latent variables, r*: conventional square-correlation coefficient; g’ oo:
cross-validation correlation coefficient using the leave-one-out method; quSFCV:
cross-validation correlation coefficient using the k-fold cross-validation with 5
random groups and 100 iterations; rs: average square correlation coefficient
obtained after Y-scrambling process using 100 iterations; g’ys: average cross-
validation correlation coefficient using the leave-one-out method obtained after Y-
scrambling process using 100 iterations.

As for the original application,** all the 3-DQSAR models were then externally
tested, showing statistical values comparable with those obtained™* applying the
GRID/GOLPE approach (Table 9).

15



Table 9. Thumb- and Palm-External Test Set prediction obtained from Structure
Based AutoGrid/R and original GRID/GOLPE C1= 3-D QSAR Models.

Dataset P PC SDEP
Thumb A 2 0.69
Thumb C 2 0.69
Thumb HD 2 0.76
Thumb NA 3 0.66
Thumb N 3 0.66
Thumb OA 3 0.67
Thumb e 3 0.63
Thumb d 1 0.67
Thumb GRID/GOLPE/C1= 3 0.59
Palm A 3 1.14
Palm C 3 1.11
Palm HD 1 1.29
Palm NA 2 1.04
Palm N 2 1.04
Palm OA 1 1.03
Palm e 3 1.18
Palm d 3 1.18
Palm GRID/GOLPE/C1= 3 1.08

P:Autogrid Probe or GRID Cl=probe; PC: optimal number of principal
components/latent variables; SDEP,,: standard deviation error of prediction for the
external test set.

16



Multi-Probe Guided Region-Variable Selection

The Multi Probe Guided Region Selection methodology (MPGRS), represents a
new powerful technique able to condense all the most informative interactions
(from the mono probe models) in a single 3-D QSAR PLS model, leading to more
comprehensive interpretations and allowing to derive useful three-dimensional
pharmacophoric quantitative models (as explained in Chapters VI and VII). As
reported,’ each probe information is color coded according to Table 10. To test the
procedure, the MPGRS was applied to both the case studies (LB and SB). All the
multiprobe models (MP) were characterized by similar statistical coefficients as
those obtained from the mono probe models (to avoid redundancy only the results
from the SB case study are reported, Table 11) but enhancing the interpretation of
the models (as in other studies like those characterizing Chapters VI and VI1).

Table 10. List of the AutoGrid probes employed for MIF calculation and MPGRS
Subregion color coding.

Probe Description MPGRS Colour
A Aromatic Carbon Gray
C Aliphatic (sp®) Carbon Dark Gray
HD Hydrogen bonded to heteroatom Green
NA Hydrogen-bond-accepting amine nitrogen Cyan
N Amide nitrogen Blue
OA Hydrogen-bond-accepting oxygen Red
e Electrostatic Orange
d Desolvation Yellow

It was very interesting to overlap the information obtained from multiprobe models
built for the SB case study, with the SB alignments, in order to compare the
proposed pseudo receptor with experimental information. As for example, Figure 8
shows the pharmacophoric model (key interactions) derived from the multiprobe
palm model. An high agreement between the selected regions and the HCV NS5B-
palm binding pocket surface was observed," demonstrating the usefulness of this
application. More specific analyses can be developed using either these
informative interactions with the associated PLS-coefficients (as applied during the
studies characterizing Chapters VI and VII).
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Table 11. Statistical Results Obtained from MPGRS Analysis for the Thumb- and
the Palm-HCV Training Sets.

MPGRS 3-D QSAR

Dataset PCrL.sL r’ 0°KksFcv Fys 0°vs SDEPxt
Thumb 2:2 0.95 0.90 0.50 -0.67 0.74
Palm 1:2 0.99 0.91 0.61 -0.93 1.06

PCrL.s.: optimal number of principal first level (FL) and second level (SL)
components/latent variables for the MPGRS model; r% conventional square-
correlation coefficient; g 0o: cross-validation correlation coefficient using the
leave-one-out method; qZKSFCV: cross-validation correlation coefficient using the k-
fold cross-validation with 5 random groups and 100 iterations; r’ys: average square
correlation coefficient obtained after Y-scrambling process using 100 iterations;
q°vs: average cross-validation correlation coefficient using the leave-one-out

method obtained after Y-scrambling process using 100 iterations.

ASN 411

CYS 36(7

PHE 193

Figure 8. MPGRS 3-D QSAR palm model key points. The points are color coded:
in blue N (amidic nitrogen) probe key points, in cyan those from NA (hydrogen
acceptor nitrogen) probe, in green and orange those from HD (hydrogen donator)
and e (electrostatic) probes respectively.
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Chapter II

Comprehensive model of wild-type and mutant HIV-1 reverse transciptases

Flavio Ballante, Ira Musmuca, Garland R. Marshall, Rino Ragno

Journal of Computer-Aided Molecular Design. 2012 Aug;26(8):907-19.

Preamble

This study is characterized by the application of the COMBINEr procedure,’
developed by us, to obtain a comprehensive 3-D QSAR model of 7 different HIV-1
reverse transcriptase enzymes (RT, wild-type and drug-resistant mutants)
complexed with niverapine (NVP) and efavirenz (EFV), able to define those
mutations responsible for the different activity profiles. The model predictive
ability was assessed using an external test set of novel chiral 2-(alkyl/aryl)amino-
6-benzylpyrimidin-4(3H)-ones (DABOs).? The COMBINEr model was able to
correctly predict either the experimental activities and the right eudismic ratio of
the test set derivatives, rationalizing the experimentally observed inhibitory

activity and confirming to be a useful tool in drug discovery.
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Figure 1. Computational procedure.
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Introduction

The COMBINETr procedure,” * an enhanced version of the original COMBINE
methodology,*® is a structure based (SB) 3-D QSAR application that uses ligand-
receptor complexes to quantify, by molecular mechanics, their interaction
energies.” The novelty of COMBINEr is to use the AutoGrid program
(AutoDockTools)® to calculate ligand-residues interaction energies for each ligand-

enzyme complex and derive, through the PLS® *°

multivariate analysis, descriptive
and predictive models through the R environment.™ Since its capability to direct
compute the ligand/enzyme per residue interaction it represents a powerful tool to
highlight the most important ligand-receptor interactions explaining the effect of
single points mutation, on the ligands’ inhibitory activity, as in the case of the
HIV-1 reverse transcriptase (RT) mutant enzymes that characterize the application

characterizing this chapter.

Applied Methodology

The choice of the training set was based considering both the availability of
homogeneous inhibition data” for Nevirapine (NVP) and Efavirenz (EFV) (Figure
Al), and co-crystal structures. This approach, led to the selection of 7 different
HIV-RT wild-type and mutant enzymes complexed with the two inhibitors
(Appendix A Table Al). Therefore, a total of 14 complexes composed the training
set: since co-crystal structures were available for only five complexes, the other
nine were modeled using as template structural information available from other
complexes present in the PDB.® As reported,® a superimposition/minimization
protocol was then applied to get these complexes ready for the COMBINEr!
investigation. By means of Autogrid4,® three kinds of ligand/residue interactions:
the electrostatic (ELE), the steric (STE) and the desolvation (DRY) were derived
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for each complex to compose seven different fields combinations: the monoprobe
fields (DRY, ELE and STE) and the multiprobe fields (DRY+STE, ELE+STE,
DRY+ELE, and DRY+ELE+STE), and derive, finally, seven different COMBINEr
PLS™ models (CM1-CM?7, Table 1). As shown in Table 1, all these models were
characterized by good statistical coefficients, but only two, CM1 and CM4
(showing the best statistical-values profiles), were selected for further
investigations. PLS coefficients, weighted PLS coefficients (PLS coefficients x
standard deviation values) and activity contribution plots (PLS coefficients x
interaction energies), were of fundamental importance to detect which residues are
relevant for differences in activity and quantify their relative importance. By
analyzing these plots, has appeared how a similar profile was characterizing the
DRY field in both CM1 and CM4 models,’ therefore the attention was focused on
the latter (DRY+STE fields) in order to consider more data. Analyses of PLS
coefficients allowed to identify the residues mainly involved in the model
definition® (Figure 2) while weighted PLS coefficients (Figure 3) were useful to
derive the global importance of each interaction. Results of these investigations
suggested that interactions with residues Leul00(lle100), Lys101 and Tyr188
(Leul88) are desirable, while should be avoided with residues Trp229 and Leu224
(Figures 2 and 3).
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Table 1. Statistical coefficients of the COMBINE models. CM: COMBINE Model
Number; r: conventional squared correlation coefficient; SDEC: standard error of
calculation; g°: cross-validation coefficient; LOO: leave one out; SDEP: standard
error of prediction; LSO5 and LSO2: leave some out using 5 and 2 groups

respectively.

CM Model rz SDEC q2|_oo SDEPLOO q2|_so5 SDEPL505 q2|_502 SDEPLSOZ
1 DRY 091 031 0.82 0.43 0.79 0.46 0.63 0.58
2 ELE 0.80 0.45 0.51 0.71 0.49 0.72 0.37 0.79
3 STE 0.81 0.44 0.69 0.57 0.65 0.60 0.52 0.68
4 DRY_STE 0.88 0.35 0.78 0.48 0.75 0.50 0.61 0.61
5 ELE_STE 0.82 043 0.58 0.66 0.53 0.69 0.44 0.75
6 DRY_ELE 089 034 0.66 0.59 0.63 0.62 0.48 0.70
7 DRY_ELESTE (0.86 0.38 0.66 0.59 0.62 0.62 0.50 0.70
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Figure 2. PLS coefficients obtained from the CM4 model. Only bars with values
higher than 0.001 and lower than -0.001 are shown.
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Figure 3. PLS coefficients x SD obtained from the CM4 model. Only bars with
values higher than 0.001 and lower than -0.001 are shown.

The CM4 model was finally applied to an external test set composed of four
DABO derivatives® (Appendix A Figure A2) with the purpose to rationalize the
role of the mutations on their activity profile. To build the non-experimental
complexes, with those isoforms used to test these compounds,’ a reported*? cross-
docking protocol was applied by means of the AutoDockVina.”® This docking
program was chosen after a docking assessment investigation in which either
AutodockVina™ and AutoDock® were tested for their reliability.® Binding mode
analyses suggested similar poses for R-conformations of MC-1501 and MC2082,
in agreement with previous studies,***® while for (S) derivatives, results confirmed
the role of the methyl group at the C6-benzylic position to prevent similar
interactions.® The COMBINEr" model was able to predict with an acceptable
average absolute error of prediction the test set experimental activities (Table 2),

tracing the right eudismic ratio for the two R/S pairs. As extensively reported in the
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paper,® straightforward was the possibility to investigate the activity contributions

(Figure 4) of each inhibitor/residue couple, allowing to:

a) confirm that the residues mutations were responsible for the different
activity profiles of EFV and NVP
b) derive a final three-dimensional scheme of contributions for each
inhibitor/residue pair (Figure 5)
c) identify what interactions determine the different activity profiles:
> interaction with Lys101 was identified, from both DRY and STE
fields analysis, to be the mainly responsible for the higher activity of
(R)-MC2082 respect (R)-MC1501;
» DRY and STE interactions with Trp229 and Lys101 respectively,
contribute for the higher activity of (R)-MC1501 versus (S)- MC1501
» Lys101 and Trp229 DRY interactions, and mostly Lys101 STE
interaction, determine the higher activity of (R)-MC2082 respect (S)-
MC2082;
> residue 188 is capable to maintain interactions with ligands in its
wild-type (Tyr188) and in the Leul88 mutation, and to compensate

for loss of activities due to other single-point mutations.
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Table 2. Experimental and COMBINE model CM4 predicted activities of MC

compounds.
MC1501 MC2082

Exp Pred Exp Pred Exp Pred Exp Pred
WT 870  7.46 6.93 7.20 6.81 7.21 452 577
V106A 852 9.9 6.45  5.78 952 943 6.62  7.51
K103N 7.02 7.17 6.01 7.52 852 911 719  7.52
L100I 7.02  6.69 440 7.11 810 7.49 6.74  6.03
Y188L 6.71 751 440 511 8.10 7.09 440 595
Y181l 6.35  6.05 440  6.12 6.12  6.25 6.29 548
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APPENDIX A

Table Al. Anti-RT activities (uM) of NVP and EFV used to build the COMBINEr

model.

RT NVP

WT 0.4

L2100l 9.0

K103N 7.0

V106A 10.0

V179D 2.0

Y181l 36.0

Y188L 18.0

EFV
0.03
0.12
0.16
0.04
0.10
0.15
0.38

Nevirapine (NVP)

O,

owh

N N

Efavirenz (EFV)

Figure Al. Nevirapine and Efavirenz.
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Figure A2. Racemic DABO derivatives used as external test set.
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Chapter III

2-(Alkyl/Aryl)amino-6-benzylpyrimidin-4(3 H)-ones as inhibitors of wild-type
and mutant HIV-1: Enantioselectivity studies
Dante Rotili, Alberta Samuele, Domenico Tarantino, Rino Ragno, Ira Musmuca,

Flavio Ballante, Giorgia Botta, Ludovica Morera, Marco Pierini, Roberto Cirilli,

Maxim B. Nawrozkij, Emmanuel Gonzalez, Bonaventura Clotet, Marino Artico,

Jose A. Esté, Giovanni Maga, and Antonello Mai

Journal of Medicinal Chemistry 2012 55 (7), 3558-3562

Preamble

This study is strictly related with that characterizing Chapter Il. In fact the
COMBINEr CM4 model, previously developed, was used to predict the biological
activity of two potent anti-HIV-1 derivatives: MC1501 and MC2082, which are the
object of the present study, to quantify the influence of single-point HIV-RT
mutations on their activity. As discussed in the previous Chapter, the COMBINEr
methodology confirmed to be a useful tool to explain the role of single point

mutations and predict the different activity profiles.
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Introduction

F,-N,N-DABO (MC1501)' and DABO-DAPY (MC2082)* are two pyrimidine-
based non-nucleoside reverse trascriptase (RT) inhibitors (NNRTI) endowed with
high anti-HIV-1 activity and characterized by a stereogenic center at the C-6
benzylic position (Figure 1). In this study, these two highly potent anti-HIV-1
agents where systematically investigated for their enantioselective anti-HIV-1
activity. The availability of such homogeneous biological results together with the
protein X-ray informations allowed to quantify the influence of single point HIV-

1-RT mutations by means of the previously developed COMBINEr CM4 model.?

(R/S) MC1501 (R/S) MC2082
(N,N-DABO) (DAPY-DABO Hybrid)

NH,

]

CHj
HN

Hzc\ NN CHy

CHj

CN

Figure 1. Racemic N,N-DABO and DAPY-DABO Hybrid.

Results and Discussion

The single enantiomers and the corresponding racemic mixtures of MC1501 and
MC2082 were tested to evaluate their anti-HIV activity against WT HIV-1 and
clinically relevant HIV-1 mutant strains (K103N, L100, Y181l, V106A and
Y188L); nevirapine (NVP), efavirenz (EFV) and dapivirine (TMC210) were
tested as reference drugs. Biological results highlighted that, all the R forms were

the more active, followed by the racemic mixtures and lastly by the S forms.
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Moreover (R)-MC2082 resulted to be generally (except for Y181C) more active
than (R)-MC1501. Biological results allowed to define, for the tested compounds,
the different activity profiles against the different HIV-1 isoforms. Due to the
availability of protein structures, both MC1501 and MC2082 binding
conformations were derived applying a reported® cross-docking protocol and
externally evaluated by the COMBINEr CM4 model (see Chapter Il for further
specifications), in order to better understand the role of the different enzyme
mutations. As reported in Chapter Il, the COMBINEr CM4 model was able to
predict the higher activity of (R) enantiomers respect the respective (S) form as
well as the higher potency of MC2082 respect MC1501, in agreement with the
experimental results. Moreover was possible to highlight the role of Lys101,
Trp229 and Tyr188 as described in Chapter 1.
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Chapter IV

Histone deacetylase inhibitors: Structure-based modeling and isoform-
selectivity prediction

Laura Silvestri, Flavio Ballante, Antonello Mai, Garland R. Marshall, and Rino
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Preamble

In the last decade, considerable interest has developed towards those phenomena,
called epigenetics,’ capable of influencing gene expression, without changing the
structure of DNA. Actually, epigenetics plays a role of primary importance in
scientific research, due to the fact that different diseases are related with its
dysregulation, which may be potentially rebalanced or prevented by the targeted
use of chemical agents % ® The zinc-dependent mammalian histone deacetylases
(HDACs) are a family of proteins comprising 11 enzymes (isoforms), which are
fundamental for tissue’s development and homeostasis. Considering the link
between misregulated HDAC activity, carcinogenesis and other human diseases,
the design of selective HDAC inhibitors for therapeutic treatment is mandatory, to
develop less toxic drugs clarifying the biological role of these enzymes. This study
was characterized by the application of the COMBINEr* ° procedure on a series of
class I/l HDACs complexes. During the investigation both ligand based (LB) and
structure based (SB) alignment were used, considering all the eleven human zinc-
based enzyme isoforms, to define the most influent chemical interactions for
activity and isoform selectivity, allowing to rationalize the design of novel

compounds endowed with both high potency and selectivity. Moreover, the
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COMBINEr models represent a useful tool to predict the bioactive profile of a
given molecule towards the 11 HDAC isoforms, helping in the selection and

development of new selective inhibitors. Due to the complexity, the

comprehensiveness and the amount of used data characterizing this work, it is

impossible to summarize all the aspects and results in a way different from that

published by us. Therefore, the reader may refer to the next paragraph

(Introduction on HDACS) and then directly to the scientific publication (Chapter
X11).

Introduction on HDACs

A fundamental epigenetic mechanism is represented by chromatin remodeling,
which appears to be controlled by the acetylation state of histone proteins (Figure
1).2

NH-

) ’ HAT
el

/El HDAC

Figure 1. Histone proteins acetylation/deacetylation state is guaranteed by the
activity of HATs and HDACSs enzymes.
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Two families of enzymes: histone deacetylase (HDAC) and histone acetyl
transferase (HAT) are responsible to maintain the homeostatic acetylation state of
histone proteins. In particular, histone deacetylases (HDACSs) are a class of zinc
metalloproteases that catalyze the deacetylation of acetylated histones by removing
the acetyl moiety from the e-amino groups of lysine residues in the N-terminal
extensions of nucleosomal histones, causing transcriptional repression; on the
contrary histone acetyl transferases (HATS) catalyze the acetylation of histone tails
determining transcriptional activation. Over the last years, it has been found that
overexpression of histone deacetylases (HDACs) plays an important role in
carcinogenesis and other diseases (i.e. development of HIV latency and Malaria)”
° Thus, HDAC inhibitors have emerged as new therapeutic agents for multiple
human diseases. To date, there are 18 known isoforms, distinguished in 4 classes
according to homology with yeast deacetylases, cellular localization and enzymatic
activity."* The eleven human zinc-dependent isoforms (Figure 2 shows the
catalytic mechanism) of class | (HDAC-1, -2, -3, and -8), Il (which includes class
lla: HDAC-4, -5, -7, and -9, and class Ilb: HDAC-6 and -10) and IV (HDAC- 11)
are mainly considered since their involvement in different diseases like: cancer,
viral and parasitic infections, neurodegenerative diseases and inflammation.
Therefore, is of considerable interest to obtain and optimize selective inhibitors to:
1) further clarify the biological effect of the different isoforms, 2) achieve a
targeted therapeutic effect, 3) reduce adverse reactions characterizing non-selective
therapies. Currently, HDAC inhibitors ( HDACI ) are divided according to their
chemical structure, as follows: short chain fatty acids, hydroxamic acids,
benzamides, ketones and cyclic peptides. Currently all the HDACI share a
common pharmacophore, characterized by three fundamental structural elements:
1) a zinc binding group, 2) a capping group and 3) a linker domain group. This

pharmacophore can be represented using as reference the structure of trichostatin
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A'? (TSA, Figure 3), among the first identified HDACIs. The first HDAC
inhibitors approved by FDA are: Merck’s Zolinza, vorinostat (SAHA) and
Celgene’s Istodax romidepsin (Figure 4), currently used for the treatment of
cutaneous T-cell lymphoma. However, other derivatives are in clinical trials for the

ability to block cell proliferation, promote differentiation and induce apoptosis.*®
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Figure 2. HDAC zinc-dependent catalytic mechanism. Highlighted in yellow and
green are the acetylated substrate and the products.
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Figure 3. Common HDACI pharmacophore, TSA is depicted.

To date, unfortunately, most of the derived HDACIs are not capable to inhibit
specifically the different HDAC isoforms. Therefore, a main challenge is to design
new selective compounds with the aim to elucidate the functions of each isoform

and apply new efficient and less toxic therapeutic treatments.
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Figure 4. Structure of SAHA and Romidepsin.

The purpose of this study, was to build and validate a 3-D QSAR Stucture-Based
(SB) model, using the COMBINEr* > method (an enhanced version of the original
comparative binding energy analysis, COMBINE)'***" over the 11 HDAC isoforms
able to detect the most discriminant chemical interactions among the different
enzyme isoforms, and predict the activity/selectivity of new derivatives (see the
relative article in Chapter XII).
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Design, synthesis and biological evaluation of new classes of thieno[3,2-
d]pyrimidinone and thieno[1,2,3]triazine as inhibitor of vascular endothelial
growth factor receptor-2 (VEGFR-2)
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Sartini, Concettina La Motta, Federico Da Settimo, Binbin Chen, Gilbert Kirsch,
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Preamble

The following study, is a clear example of how the integration of different chemical
approaches could lead to the achievement of a new lead compound. By the
application of Structure Based (SB) Three-Dimensional Quantitative Structure
Activity relationships (3-D QSAR), molecular modeling, organic chemistry and
biological investigations, it was possible to detect new VEGFR-2 (KDR) and
human umbilical vein endothelial cell (HUVEC) proliferation inhibitors. My
contribution to this study focused on the computational-chemistry investigation,
mainly characterized by molecular docking simulations and 3-D QSAR analyses.
Among the discovered compounds, 2f showed the highest inhibitory activity (at uM
concentration) representing a new lead compound and therefore a starting point to
obtain more active derivatives after chemical modifications. This perspective
characterized my first research activity abroad in France (Chapter 1X): where /'ve
practiced organic synthesis to obtain new thieno [2,3-d] pyrimidinones derivatives
as promising VEGFR-2 inhibitors.
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Introduction

Angiogenesis is the process of new blood vessels growth, creating new capillaries
from existing vasculature. Angiogenic dys-regulation may be involved in various
diseases development and progression including inflammation,* tumor growth? and
metastasis.®> Among the different protagonists involved in this process, of particular
Importance are:

1) the vascular endothelial growth factors (VEGFs):* ° VEGF-A (commonly
named VEGF), VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-F and the
Placental Growth Factor (PIGF);

2) the VEGF tyrosine kinase receptors:® VEGFR-1 (FIt-1), VEGFR-2 (KDR)
and VEGFR-3 (Flt-4).

So far, many molecules have been approved by FDA and many others are currently
in clinical trials as anticancer agents, capable to block VEGF (like bevacizumab:’ a
humanized monoclonal antibody) or inhibit VEGFRs (like sorafenib (BAY 43-
9006)® and sunitinib (SU11248),° Figure 1). Considering that the VEGFR-2
receptor (kinase insert domain receptor, KDR) seems to play a key role in tumour

10, 11

angiogenesis, the VEGF/VEGFR-2 pathway provides several opportunities by
which small molecules can be used as inhibitors of endothelial proliferation and
migration and thus as anticancer agents. **** Considering the impact of tumor
angiogenesis and the resistance mechanism to anti-angiogenic compounds, the
development of new VEGFR-2 inhibitors is mandatory. This study is characterized
by the discovery of new thienopyrimidines, as new class of VEGFR-2 inhibitors,
through the application of a multidisciplinary approach (Figure 2) composed of by:

1) 3-D QSAR studies

2) Molecular modeling applications

3) Organic chemistry

4) Biological investigations
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Figure 1. Inhibition pathways of angiogenesis.

Computational studies were developed by means of a reported molecular docking
protocol™ and previously developed Structure-Based (SB) 3-D QSAR models.*®
Molecular Docking allowed to predict the binding poses of compounds for which
co-crystal structures were not available with the target protein. Previously
developed 3-D QSAR models,'® characterized by a training set composed of co-
crystallized compounds in the ATP-binding site of KDR, were used as a tool 1) to
represent three-dimensionally what kind of interactions should be increased,
introduced or minimized; 2) to predict the activity of yet untested molecules. Thus,
the combination of these two applications composed a useful computational
protocol to develop new VEGFR-2 inhibitors."’
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At the beginning of the study thirty-five compounds (4-38),"" characterized by
thienopyrimidine, thiazolotriazine and selenolotriazine scaffolds, were chosen
according to their structural similarities in comparison to the most common anti-
angiogenic compounds and then biologically assayed to determine their inhibitor
potency against VEGFR-2. This set was submitted to a previously reported®
molecular docking procedure and binding mode analyses were conducted
highlighting that:
1) all the compounds’ binding poses showed the characterizing scaffolds
overlapped with the central benzimidazole moiety of the reference structure
(PDB 2qub);
2) as a consequence of the previous statement, they bind preferentially in the
first part of the binding site
3) concerning thienopyrimidines, an increased steric hindrance seems to
increase the ligand/VEGFR-2 interactions as for those derivatives
characterized by the presence of a third fused cycle
4) regarding thiazolotriazines, steric hindrance has a detrimental effect
5) selenolotriazines showed binding modes similar to those of the
thienopyrimidines
For the four most active compounds (14, 30, 33, 55, Appendix A Table Al) we

decided to perform a deeper binding mode analysis (Figure 3) revealing that:

1) all the predicted poses established strong interactions with a specific region
characterized by Val27, Ala45, Lys47, Val93, Val95, Leul64 and Phel76
residues,

2) the presence of a morpholino substituent, as in the case of compound 35
(the least active compounds of this selected series) determines an

overturning of the selenotriazine group.
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The thirty-five compounds where then used as an external test set for the
previously developed SB 3-D QSAR protocol.® Although over-predictive, 3-D
QSAR models proved their predictiveness, since compounds 4-38 were
experimentally recognized with a certain rate of inhibition activity.'” Moreover,
useful information were obtained, by superimposing the 3-D QSAR plots with the
most active compound (30, Figure 4) suggesting that increasing the steric
hindrance (i.e. by introducing further sterical groups into the ATP binding site),
should enhance the inhibitory potency. Following the above indications new
thienopyrimidines/thienotriazines (1-3, Appendix A Table A2) were designed and
subjected to both molecular docking and 3-D QSAR simulations. 3-D QSARs
predicted the new compounds’ activity in a range comprised between 0.01 and 0.1
UM (Table 1). Since the 3-D QSAR models were over-predictive, taking into
account the observed prediction errors for compounds 4-38, it was expected that
the new derivatives were characterized, at least, by a submicromolar activity.
Among these compound 2f was predicted, as the most active, to be in a low
nanomolar range and particular attention was given to its binding mode (Figures 5
and 6): which showed its ability to establish a greater network of steric
interactions, especially at the entrance of the active site. Compounds 1-3 were then
synthetized and biologically assayed, to detect their inhibitory activity against
VEGFR-2, at 200uM fixed doses. Interestingly, as predicted by the 3-D QSARs, 2f
resulted to be the most active compound (99.2% of inhibition) showing an 1Cs
value equal to 2.25+£0.1 uM. Moreover, the 2f-tartaric acid salt, was biological
tested on endothelial cell tube formation induced by VEGF, resulting *' to be more
than Sunitinib. Binding mode analysis, suggested that more active compounds
could be obtained by introducing further substituents on piperidine positions 3 and
4 (Figure 7), in order to enhance the interactions with the ATP binding pocket.

Design of new compounds, as new potential VEGFR-2 inhibitors, was then
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performed obtaining a series of new molecules to be synthetized. Three of them
were synthetized by myself at the Laboratoire d'Ingénierie et Moléculaire
Pharmacologique Biochimie (LIMBP) of the Université de Lorraine Metz
(France), directed by Prof. Gilbert Kirsch during my first research period abroad
(see Chapter IX).
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Figure 3. Details of the binding for compounds 14 (A), 30 (B), 33 (C) and 35 (D).
To the right are shown the ligand/VEGFR-2 interactions profile as obtained with
the ligplot program.
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Table 1.Experimental and Predicted plCs, for compounds 1-3.

%o inhibition Predicted plCs, by Probe
# @ 200 uM® 1Cs0 M A C HD e
la 38.843.5 7.01 7.01 7.02 7.56
1b n.t.b 6.90 6.90 6.80 7.30
1c 1.7+0.1 6.88 6.88 7.03 7.14
2a 5.7+0.4 6.69 6.70 6.99 7.66
2b n.a. 6.85 6.85 7.08 7.17
2C 3.9+0.2 6.50 6.50 6.70 8.23
2d 2.1+0.1 6.65 6.66 6.62 8.03
2e n.a. 6.68 6.68 7.02 7.60
2f 99.2+3.9 2.25+0.1 8.12 8.13 8.28 7.15
29 52.6+£3.7 7.96 796 7.87 7.87
2h n.a. 7.34 7.34 7.31 8.65
2i 19.0+0.7 7.16 7.16 7.13 8.72
2j n.a. 6.57 6.57 6.72 7.17
3a 35.2+2.8 6.90 6.91 7.16 7.43
3b 40.9+2.8 6.11 6.10 6.22 7.54
3C 52.0£3.6 6.74 6.73 6.74 7.66
3d 73.4+6.5 6.30 6.30 6.46 7.51

*Values are means+SEM of two determinations carried out in triplicate. °Not tested.
‘Not active. No inhibition was observed up to 200 pM of the test compound.

53



Figure 4. Docked conformation of 14 (red), 30 (orange), 33 (purple) and 35
(yellow) (A) into VEGFR-2 (PDB ID 2qu5, blue ribbon). As reference the co-
crystallized ligand is also displayed in black. The surface of ATP and co-
crystallized inhibitor binding site is also shown in light gray. Merged in the steric
(B) and electrostatic (C) 3-D QSAR maps.

Figure 5. Docked conformation of 2f (magenta) (A) into VEGFR-2 (PDB ID
2qub, blue ribbon). The ATP binding site is also shown in light gray. Merged in

the steric (B) and electrostatic (C) 3-D QSAR maps.
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Figure 6. Details of the binding for compounds 2f, overlapped to 14 (A), 30 (B),
33 (C) and 35 (D).
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Figure 7. Binding mode analyses suggest to introduce further substituent on the
2f piperidine ring. 2f is shown in magenta. The grey background represent the
ATP binding site.
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APPENDIX A

Table Al. Predicted plCsy for compounds 14, 30, 33 and 35.

3-D QSAR Probes

# Molecular Structure Exp. A c HD e
Cl
f:-»L -5
14 N’ 1 p ¢ 434 598 599 631 7.27
NQN’ N
N )
N= ™ /N
30 N |..52 A 539 600 601 635 7.27
Cl
Ao
33 NQI ~gp N TF 478 600 600 635 728
Cl
N-:.N'm '\\ fr—,
Mo |Se \u‘_’}_CHB
35 T 458 711 712 748 719

~0

Table A2. Designed Compounds.

1a-c
R;=H,
a X=CH,R=0~_)-OMe Ri=H
. . Ry =H,
b X =CH, R = N-methylpiperazinyl Ry=H

R1=H,
R1=Bn
R1=Bn
R1=Bn
R1=Bn
R1=Bn

c X=N, R= O@OMe

e N (o B O N o R e I © 2 )

R, R
N=x N N N=(
/A J s
Bn/N R /N / s (0] Bn/N ©
R1

2aj 3a-d
Ry R3 = piperidinyl a R =n-hexyl
Rz R3 = morpholinyl b R =4-methoxyphenyl
R, R3 = N-methylpiperazinyl ¢ R = 3,4,5-trimethoxyphenyl
R, R3 = N-benzylpiperazinyl d R = 4-chloropheny!

Rz R3 = pyrrolidinyl

. Ro R = piperidinyl

» Ra Rz = morpholinyl

» Ra Rz = N-methylpiperazinyl
, Ro R3 = N-benzylpiperazinyl
» Ry Rg = pyrrolidinyl
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Chapter VI

Pharmacophore assessment through 3-D QSAR: Evaluation of the predictive
ability on new derivatives by the application on a series of antitubercular
agents

Laura Friggeri, Flavio Ballante, Rino Ragno, Ira Musmuca, Daniela De Vita,

Fabrizio Manetti, Mariangela Biava, Luigi Scipione, Roberto Di Santo, Roberta
Costi, Marta Feroci, and Silvano Tortorella
Journal of Chemical Information and Modeling 2013 53 (6), 1463-1474

Preamble

In this study, a series of 71 published anti-tubercular agents," was used as a
training set to build, through the 3-D QSAutogrid/R procedure, 8 monoprobe 3-D
QSAR PLS models, and a final multiprobe (MP) 3-D QSAR PLS model, able to
guantitatively correlate the pharmacophoric features required for antitubercular
(anti-TB) activity with molecular structures. All the 3-D QSARs were assessed by
comparing their results with a previously published qualitative pharmacophoric
model for anti-TB activity, with particular attention for the MP derivation. The
obtained 3-D QSAR models were also tested for their predictive ability on a series
of new synthetized R-4-amino-3-isoxazolidinone derivatives, confirming to be a

promising tool for subsequent virtual screening (VS) applications.
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Introduction

Tuberculosis (TB) is a serious, as yet unsolved, public-health problem.* There are
several reasons that make difficult its eradication, such as long-term drug
treatment, poor patient compliance and the development of drug resistant strains
like: multidrug-resistant tuberculosis (MDR-TB), extensively drug-resistant
tuberculosis (XDR-TB) and totally-drug resistant tuberculosis (TDR-TB).> °
Therefore, the development of new anti-TB compounds is mandatory in a period in
which the spread of HIV has determined, inevitably, a worldwide increase in TB.
The study characterizing this chapter, allowed, without any available
crystallographic data, to derive, through the 3-D QSAutogrid/R procedure’ several
3-D QSAR monoprobe models, and a first three-dimensional pharmacophoric
model (by the means of the MPGRS package)’ able to quantitatively inspect the
areas and features fundamental for anti-TB activity. All the 3-D QSARs were

1,89 and tested for their

compared to a previously qualitative pharmacophore mode
predictive capabilities against an external test set composed of 13 newly
synthetized R-4-amino-3-isoxazolidinone derivatives™ endowed with micromolar

activity against M. tuberculosis (Figure 1 shows the whole procedure).

Methodology

Starting from a data set composed by 90 thiomorpholines and methylpiperazinyl
compounds based on the Pyrrole ring as a scaffold,’® for which activity data was
originally determined as MIC (ug/mL) and used to derive a previously reported

qualitative pharmacophore model ® °

a final training set of 71 compounds
(Appendix A Table Al), was selected by application of the inner relationship
analysis. It was decided to apply the inner relationship investigation in order to

improve the robustness and the predictive capability of the 3-D QSAR models: this
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method, generally, allows to discard, from the training set, those molecules
recognized as potentially detrimental for the PLS application. Since no
crystallographic data was available for these compounds, the same alignment
protocol, used to derive the previously developed qualitative pharmacophore
model for anti-TB,% ° was adopted.” By the application of the 3-D QSAutogrid/R
procedure,” 8 monoprobe 3-D QSAR PLS models (Table 1) were built, and
optimized through the CAPP procedure,’ then, by means of MPGRS package,’ a
final multiprobe (MP) 3-D QSAR PLS model (Table 2) was derived. Cross-
validations (LOO and K5FCV) and Y-scrambling (YS) investigation, confirmed
both their internal predictive capability and the absence of chance correlation
(Tables 1 and 2). Either the best monoprobe (A, HD, and NA, Figure 2) and
multiprobe models were then selected at the optimal principal component (PC) for

further analyses.

Table 1. 3-D QSAutogrid/R PLS models statistical results (CAPP process was

applied).
model P PC r’ quoo quchv ys quS \'
1 A 3 0.92 0.86 0.85 0.36 -0.33 3758
2 C 3 0.92 0.86 0.85 0.37 -0.33 4492
3 HD 3 091 0.85 0.84 039 -0.31 1217
4 NA 3 091 0.86 085 031 -0.33 531
5 N 3 091 0.85 0.85 032 -0.30 477
6 OA 3 091 0.85 0.85 036 -0.33 658
7 e 4 0.88 0.78 0.76 040 -0.48 468
8 d 4 091 0.85 0.84 035 -0.44 4412

P: Autogrid Probe, PC: optimal number of principal components/latent
variables, r’ conventional square-correlation coefficient; g% oo: Cross-
validation correlation coefficient using the leave-one-out method; q2K5FCV:
cross-validation correlation coefficient using the k-fold cross-validation with 5
random groups and 100 iterations; r’ys: average square-correlation coefficient
obtained after Y-scrambling process using 100 iterations; g?ys: average cross-
validation correlation coefficient using the leave-one-out method obtained

after Y-scrambling process using 100 iterations; V: number of active variables.
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Table 2. MPGRS. Multi Probe model statistical results.

MPGRS 3-D QSAR

PCrL.sL r’ qZLOO CIszch SDEP. 00 SDEPksecv r2Ys qus
1:3 0.88 0.80 0.80 0.32 0.32 0.31 -0.31

PCrL.s.: optimal number of principal first level (FL) and second level (SL)
components for the MPGRS model; r’: conventional square-correlation coefficient;
qu001 cross-validation correlation coefficient using the leave-one-out method,;
q2K5ch1 cross-validation correlation coefficient using the k-fold cross-validation
with 5 random groups and 100 iterations.

Single Probe 3-D QSAR models

Analyses of PLS-coefficients plots allowed to define, in complete agreement with

® the needed chemical

the original qualitative pharmacophoric model,®
characteristics for anti-TB activity of pyrrole compounds. As for example, PLS-
coefficients plots (Figures 3A, 3B, 3C) defined four areas: over N1, C2, C3, and
C5 substituents of the pyrrole ring, similarly to those obtained® from the original
model (Figure 3D) which defined 4 pharmacophoric features: a hydrogen bond
acceptor feature (HBA), two aromatic ring features (RA1l, RA2), and an
hydrophobic feature (HY). All the selected monoprobe models suggested the
positive effect (red colored positive PLS coefficients, Figure 3) of bulky groups as
substituent at N1, C2 and C5, respectively overlapping the HY, RAl and RA2
features; on the contrary at the C3 position (HBA feature) steric groups are less
tolerated (blue colored, negative PLS coefficients, Figure 3A and 3C) whereas
attractive interactions could increase the biological activity (blue colored, negative
PLS coefficients, Figure 3B). Since activity contribution plots have the capability
to show the recalculated 3-D activity profile for each molecule, it was possible to
highlight, more specifically, how the quantitative models predicted the effects of
each training set molecule three dimensionally.
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Figure 2. Fitting (r) and Cross-Validation (q> K-5-Fold) plots. A: from the A
probe model at PC3; B:from HD probe model at PC3; C:from the NA probe model
at PC3; D: from the multi probe(MP) model at PC; ..

Analysis of these maps confirmed, generally, the information addressed by the
PLS-coefficients plots and allowed to highlight some dependencies between the
anti-tubercular activity and the chemical structures. In particular, considering the
HBA feature, the HD model plot (Figure 4) clearly showed how the sulfur atom in
a thiomorpholine group (characterizing the most active compound 60, Figure 4A)
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increases the biological activity (satisfying the HBA feature), contrary to a
situation in which, as for the case of methylpiperazinyl derivatives, repulsive
Interactions are mainly present in the same area (i.e. the least active molecule 21,
Figure 4B). Moreover, different useful informations were obtained from the
simultaneous analysis of PLS-loadings and score plots’ clusters, considering the A
probe model at the first three principal components (Figure 5), allowing to
understand how different molecular conformations and substituents’ orientations
could affect the biological response. Starting from the first principal component
(PC1) was possible to determine that the region between RA2 and HBA features
should be preferably occupied than those between RAL and HBA; PC2 and PC3
highlighted, respectively, how substituents at C3 capable to fill the areas between
RA2 and HBA and over HBA features determine a detrimental effect on the

biological activity.
Multi-Probe Guided Region-Variable Selection

The MPGRS package’ allowed to derive the first quantitative pharmacophoric
model able to correlate the structural features of pyrrole derivatives with their
biological data. The optimal MP 3-D QSAR model (Table 2) was characterized by
standard coefficients similar to those of the monoprobe models (Table 1), but the
interpretation was greatly enhanced since all the different monoprobe suggestions
were condensed together. By analyzing the different plots, similar conclusion to
those obtained from the different mono-probe models were obtained, moreover
new information was found. As reported extensively,’® by means of PLS-
coefficients, PLS-loadings plots and score results (Figures 6 and 7) was possible to
increase the resolution of the HBA region revealing, in addition to the electrostatic
feature, that a limited steric repulsion is tolerated (Figures 6A and 6B, Appendix A
Table A3). Moreover, figure 6B shows how the thiomorpholinometil moiety of

compound 60 (the most active compound) satisfies both of these features, leading
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to higher anti-tubercular activity, contrary to compound 21 (the least active

compound).
External test set Prediction analysis

All the 3-D QSARs were externally validated using a set composed of 13 newly
synthesized R-4-amino-3-isoxazolidinone derivatives (Table A2), previously tested
against the M. tuberculosis (Appendix A Table A4). All the 3-D QSARs were able
to predict these compounds with low SDEP values, confirming the robustness and

predictability of the models.

Table 3. Test Set predictions.

PC SDEPgxT

0.88

0.88

0.81

0.82

0.83

0.84

0.90

151

SDEP values considering the optimal PCs; P: AutoGrid Probe; PC:
optimal number of principal components/latent variables; SDEPgxr:
standard deviation error of prediction (or root mean squared error of
prediction, RMSEP) for the external test set.

@) Z I
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Table 4. MPGRS. Multi Probe model Test Set predictions.

P PCrisL SDEPext

AutoGrid MP 1:3 0.89

SDEP values considering the optimal first level and second level PCs. P: AutoGrid
Multi-Probe; PCrg .5 : optimal first level and second level PC; SDEPgx+: standard
deviation error of prediction (or root mean squared error of prediction, RMSEP)
for the external test set.
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Perspectives

The obtained quantitative models were then integrated, together with QSAR
applications, in an optimized Virtual Screening (VS) protocol, initially validated
using the CHEMBL database and finally applied to NCI Diversity Set. A total of
120 molecules have been identified as potential anti-tuberculosis agents for which

it will be determined the anti-mycobacterial activity
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RA1

RA1 RA1

C D

Figure 3. The most active (60 in blue) and the least active (21 in magenta)
compounds are shown. A: PLS-coefficients contour maps derived from A probe
analysis (contour levels: 80%; positive: red, negative: blue); B: PLS-coefficients
contour maps derived from HD probe analysis (contour levels: 85%; positive: red,
negative: blue); C: PLS-coefficients contour maps derived from NA probe analysis
(contour levels: 75%; positive: red, negative: blue). D: pharmacophoric features
derived from the original pharmacophoric model:®> HY (hydrophobic feature), RA
(aromatic feature), HBA (hydrogen bond acceptor feature).
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B

Figure 4. Probe HD. A: PLS-coefficients (mesh: 85%, positive: red, negative:
blue) with activity contribution (solid: 90%, positive: green, negative: yellow) for
compound 60 (blue); B: PLS-coefficients (mesh: 85%, positive: red, negative:
blue) with activity contribution (solid: 90%, positive: green, negative: yellow) for
compound 21(magenta).Activity contributions in pictures on the left side are
shown in color gradient: for both green and yellow polygons, the darker areas (the
most important) are characterized by the highest numerical coefficients, the lighter
areas (the less important) are characterized by the lowest numerical coefficients.
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PC3

Figure 5. Probe A. PLS-loadings contour maps from the A probe analysis at PC1,
PC2 and PC3 (contour levels: 60%; positive: orange, negative: cyan). The ten most
important molecules for each cluster are plotted and color coded according to the
cluster membership (molecules in the negative field cluster: dark grey, molecules
in the positive field cluster: light grey). A:side view; B: top view.
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Figure 6. MPGRS. A: key points: the points are color coded according to that
reported in Table A3; B: key points with PLS-coefficients contour maps (contour
levels: positive 85%, red; negative 95%, blue); C:top view, key points with PLS-
coefficients solid contour maps (contour levels: positive 85%, red; negative 95%,
blue). The most active (60 in blue) and the least active (21 in magenta) compounds
are shown. D: pharmacophoric features derived from the original pharmacophoric
model:* HY (hydrophobic feature); RA (aromatic feature), HBA (hydrogen bond
acceptor feature).
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Figure 7. MPGRS. PLS-loadings contour maps at PCi.; (contour levels: 75%;
positive: orange, negative: cyan) with PLS-coefficients (mesh levels: positive 85%,
red; negative 95%, blue) and key points (see Table S5 for color coding). The ten most
important molecules for each cluster are plotted and color coded (compounds in the
positive loading field in light gray; compounds in the negative loading field in dark
grey). A:side view; B: frontal view; B1: frontal view of only positive clustered
molecules; B2: frontal view of only negative clustered molecules. HY (hydrophobic
feature), RA (aromatic feature), HBA (hydrogen bond acceptor feature).
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APPENDIX Al

Table Al. Structure and antimycobacterial activity against M. tuberculosis 103471
of the pyrrole derivatives used as training set for the generation of the 3-D QSAR

models.
R
R3 N R,
;
compd® R" R: R, Rs pMIC®

1 B 2-F-Ph CH; 2-F-Ph 4.68
2 A 2-Cl-Ph CH; 2-F-Ph 5

3 B 2-ClI-Ph CH; 2-F-Ph 4.09
4 A 2-F-Ph CH; 2-ClI-Ph 5

5 B 2-F-Ph CH; 2-ClI-Ph 4.4
6 A 2-ClI-Ph CH; 2-ClI-Ph 5.02
7 B 2-ClI-Ph CH; 2-ClI-Ph 4.41
8 A 2-F-Ph CH; a-naphthyl 411
9 B 2-F-Ph CH; o-naphthyl 411
10 A 2-Cl-Ph CH; a-naphthyl 4.13
11 B 2-Cl-Ph CH; a-naphthyl 4.13
12 A o-naphthyl CH; 2-Cl-Ph 4.13
13 B 4-F-Ph CH; Ph 4.36
14 B Ph CHs 4-F-Ph 4.36
15 A 4-Cl-Ph CHs 4-F-Ph 5.30
16 B 4-F-Ph CHs 4-F-Ph 4.47
17 A 4-F-Ph CH; 4-F-Ph 5.58
18 B 4-F-Ph CH; 4-Cl-Ph 5.30
19 A 4-F-Ph CH; 4-Cl-Ph 5.60
20 A 2-F-Ph CHs, Ph 4.66
21 B 2-F-Ph CH; Ph 4.06
22 A Ph CHs, 2-F-Ph 4.96
23 B Ph CHs 2-F-Ph 4.36
24 A 2-ClI-Ph CHs Ph 4.38
25 B 2-ClI-Ph CHs Ph 4.07
26 B Ph CHs 2-ClI-Ph 4.07
27 A a-naphthyl CH; Ph 4.1
28 B o-naphthyl CH; Ph 4.09
29 A Ph CH; a-naphthyl 4.10
30 B Ph CH, a-naphthyl 4.09
31 B Ph CHs Ph 4.33
32 A 4-F-Ph CHs 2-ClI-Ph 5.00
33 B 4-F-Ph CHs 2-ClI-Ph 4.70
34 B 4-F-Ph CH; 2-F-Ph 4.08
35 A 4-F-Ph CH; 4-CH3-Ph 5.98
36 B 4-F-Ph CH; 3-CHs-Ph 4.37
37 A 4-F-Ph CH; 2-CH,-Ph 4.98
38 B 4-F-Ph CH; 2-CH,-Ph 4.07
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39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
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4-F-Ph
4-F-Ph
2-Cl-Ph
2-ClI-Ph
2-F-Ph
4-CH3-Ph
3-CH3-Ph
3-CH3-Ph
2-CH3-Ph
2-CH3-Ph
2,4-Cl,-Ph
2,4-Cl,-Ph
2,4-F,-Ph
2,4-F,-Ph
4-F-Ph
4-F-Ph
4-C,Hs-Ph
4-C3H;-Ph
4-CI-Ph
4-CI-Ph
4-CI-Ph
4-CI-Ph
4-CHs-Ph
4-C,Hs-Ph
4-C3H;-Ph
4-i-propyl-Ph
4-Cl-Ph
4-F-Ph
Ph
Ph
4-F-Ph
2-F-Ph
2-F-Ph

CH3
CHs
CHjs
CHs
CHs
CHs
CH;
CH;
CH;
CH;
CH;
CH;
CHs
CHs
CHs
CHs
CHs
CH;
CH;
CH;
CH;
CH;
CH;
CH;
CH;
CH;
CzHs
CzHs
CzHs
CoHs
CoHs
CoHs
CoHs

2,4-Cl,-Ph
2,4-F,-Ph
4-F-Ph
4-F-Ph
4-F-Ph
4-F-Ph
4-F-Ph
4-F-Ph
4-F-Ph
4-F-Ph
4-F-Ph
4-F-Ph
4-F-Ph
4-F-Ph
4-C,Hs-Ph
4-i-propyl-Ph
4-F-Ph
4-F-Ph
4-CHs-Ph
4-C,Hs-Ph
4-C3H,-Ph
4-i-propyl-Ph
4-CI-Ph
4-CI-Ph
4-CI-Ph
4-CI-Ph
4-CI-Ph
4-CHs-Ph
Ph
4-F-Ph
Ph
4-F-Ph
2-F-Ph

5.34
5.00
5.30
5.00
4.68
5.58
4.98
4.40
4.68
4.10
5.64
5.03
5.30
4.40
5.60
6.21
5.30
5.61
5.90
6.22
6.23
6.53
5.90
5.91
6.23
6.23
5.33
6.20
5.26
5.58
5.28
5.30
5.00

“Compound enumeration was assigned on the basis of the original increasing
numbering from the oldest to the most recent reference. Table Slshows the

connections between the new and original enumerations.
A = thiomorpholin-4-yl and B = 4-methylpiperazin-1-yl

"pMIC = -Log [MIC(uM) x 10°]
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Table A2. R-4-amino-3-isoxazolidinone derivatives: monocarbamates (la-e),
dicarbamates (2a-f) and amides (3h,i).

0 0 o oo
R1/O\H/N\[[< R YN\E« O—R,
—R HY N—<
o H 2 0 /
J 0 0
Monocarbamates la-e Dicarbamates 2a-f

R, #
la

Ry
H,CO H,CO OCHj,

1d

2e

L

2f

H O
F5C 8 7 B¢ Nr‘( Cl
3
qu o) N
o] o of
3h

Amides 3h, 3i

Table A3. List of the AutoGrid probes employed for MIF calculation and MPGRS
subregion color coding.

Probe Description MPGRS Colour
A Aromatic Carbon Gray
C Aliphatic (sp*) Carbon Dark Gray
HD Hydrogen bonded to heteroatom Green
NA Hydrogen-bond-accepting amine nitrogen Cyan
N Amide nitrogen Blue
OA Hydrogen-bond-accepting oxygen Red
e Electrostatic Orange

d Desolvation Yellow
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Table A4. MIC data for D-4-amino-3-isoxazolidinone derivatives

compd MIC(pg/mL)? pMICP
la 32 3.84
1b 32 3.87
1c 32 3.90
1d 3.1 4.89
le 32 3.97
2a 32 4.03
2b 32 4.06
2C 32 4.10
2d 3.1 5.09
2e 32 4.11
2f 32 4.02
3h 64 3.78
3 32 4.13

®M. tuberculosis H37Rv (ATCC 27294) was used; MIC values represent the
minimal concentrations of compounds completely inhibiting visible growth of
mycobacteria.

"oMIC = -Log [MIC(uM) x 10°]
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Chapter VII

Hsp90 Inhibitors (1). Definition of 3-D QSAutogrid/R Models as a Tool for

Virtual Screening

Flavio Ballante, Antonia Caroli, Richard B. Wickersham 111 And Rino Ragno

Journal of Chemical Information and Modeling, (2013, submitted)

Preamble

Acknowledged to play a key role in the growth and survival of cancer cells, the
multi-chaperone heat shock protein (Hsp) 90 represents a promising target in
cancer therapy. This chapter describes a complete computational procedure, for
building several structure based (SB) 3-D QSAR models used to derive a final
multi-probe (MP) 3-D QSAR pharmacophoric model, able to recognize the most
significant chemical features for HSP90 inhibition. All the 3-D QSARs, either
mono- and multi-probe, built by means of the 3-DQSAutogrid/R protocol (Chapter
I1), were externally validated for robustness and predictiveness, and recognized
suitable to be used as a predictive tool in a subsequent virtual screening (VS)

protocol whose application and results are reported in Chapter VIII.
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Introduction

Molecular chaperones are cellular machinery that assist the protein folding under
physiological (playing a key role in protein maturation and stabilization) and stress
conditions (preventing the formation of a misfolded or aggregated structure).’
Among chaperones, the 90 kDa heat shock protein (Hsp90) gained much attention
in recent years being one of the most extensively studied.” ® Structurally, Hsp90 is
a dimeric protein composed of three functional domains: 1) a highly conserved N-
terminal ATP-binding domain, 2) a middle domain endowed with high affinity for
client proteins and 3) a highly conserved C-terminal domain involved in the
homodimerization of the protein.*

Hsp90 is present in cells in two isoforms, o (inducible, major form) and 3
(constitutive, minor form) found predominantly in the cytosol, and two paralogues,
ER-resident Grp94 and mitochondrial tumor necrosis factor receptor-associated
protein 1 (Trapl). Under basal, non-stressed conditions Hsp90 comprises
approximately 1% of the cellular protein population whereas its expression
increases significantly after exogenous injury:” indeed, during some cellular stress
conditions, such as heat, low pH, nutrient unavailability, hypoxia and malignancy,
Hsp90 is overexpressed, promoting the maintenance of structural and functional
integrity of client proteins involved in cell survival, proliferation and apoptosis. As
reported,® pharmacological inhibition of Hsp90 destabilizes proteins, leading to
their degradation through the proteasome; moreover, many oncogenic proteins (i.e.
p53 mutants, Rafl, Akt, Bcr-Abl, Her2, EGFR) which are essential for tumor
growth are chaperoned by the Hsp90’ confirming its involvement in the tumor
progression. Since the inhibition of Hsp90 ATPase activity leads to the degradation
of client proteins, resulting in cell growth inhibition and apoptosis, Hsp90 emerged
as a promising target for cancer therapy.® Natural products such as geldanamycin®

and radicicol®® were among the first Hsp90 inhibitors discovered (Figure 1),
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followed by derivatives with better pharmacological properties (17-AAG" and 17-
DMAG,* Figure 1). Considering that blocking the ATPase activity is an effective
approach, de novo drug design was accomplished and small molecules able to bind
the N-terminal Hsp90 binding site were identified. Purine-scaffold inhibitors,*
dihydroxyphenylpyrazoles, '* isoxazole derivatives (NVPAUY922), * and
carbazol-4-one benzamide derivatives (SNX-5422)' were promising candidates for

cancer therapy and advanced to clinical studies (Figure 1).

RADICICOL
-OMe GELDANAMYCIN
-NHCH,CH;NMe; 17-DMAG
-NHCH,CH=CH;, 17-AAG

CONH,

OH Oy

HNj \
NVP-AUY922 SNX-5422

Figure 1. Hsp90 inhibitors: the ansamycin compound geldanamycin and its
derivatives radicicol, isoxazole (NVP-AUY922) and carbazol-4-one benzamide
(SNX-5422); all of these are in clinical trials.
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Despite the huge amount of available data (until now 310 X-ray structures are
reported in Protein Data Bank,'” 199 of which were from Homo Sapiens), only a
limited number of 3-D QSAR applications were reported.* 2%

In the present work, the 3-D QSAutogrid/R procedure®® (Chapter I1) was applied to
a dataset composed of 24 Hsp90/inhibitor co-crystals (Appendix A Table Al) to
define three-dimensional quantitative structure-activity relationship (3-D QSAR)
models. These were used to derive pharmacophoric quantitative models (as
described in the anti-TB application Chapter VI1)** by the application of Multi
Probe Guided Region Selection (MPGRS package),®® to correlate structural Hsp90
inhibitors features with their biological data. All 3-D QSAR models were
externally validated for robustness and predictiveness as a tool in the subsequent

virtual screening (VS) protocol (Chapter VIII). Figure 2 shows the overall

procedure.
Protein Data Bank (PDB)
Ligand-Protein Complexes |
Minimization
and
Ligand extraction
Experimental Data Set
D OSAR Dot e Sy - B
' 3-D QSAR Definition and validation S TRAINING-SET - . LBandSB Alignment Assessment
Co (15 cpds) T
3.D QS Au tOgI'i d/R: i i Ligands Complexes |
! ' ! TEST-SET ‘
' 1 1
: A, C, HD, NA, OA, e, d, MP : . (10 cpds)
7777777777777777777777777777 1 \777777777777777777777777777777777777777777‘
Fmmm e
- VS protocol

,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2. Computational procedure.
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Computational methods

At the beginning of this study, all the co-crystallized ligand-protein complexes,
available from the Protein Data Bank (PDB),*" were retrieved. From these, 24 were
selected (Appendix A Table Al) as molecular dataset and submitted to a
minimization process. Then, the ligands were extracted from the complexes and
split into a training set and a test set composed of 15 and 9 compounds,
respectively. By means of 3-D QSAutogrid/R procedure,”® a total of nine 3-D
QSAR models were built: 8 monoprobe and a final multiprobe (MP). All the
training set inhibitors were used in a ligand (LB) and structure-base (SB) protocols
to validate the alignment procedure that was applied on new candidates (with
unknown binding mode) during the subsequent virtual screening (VS) application,
in which the 3-D QSARs were used as an external scoring function to predict their

activity, as reported in Chapter VIII.

82



Data Set Selection

Initially, 39 co-crystallized ligand-protein complexes were available from the
PDB,* for which in vitro activity was determined mostly through two conventional
biological assays: the measure of the ATPase activity (ATPase assay) and the
measure of competitive inhibition using a fluorescent probe (Fluorescence
Polarization). From these, 24 were tested with the same approach (ATPase assay,
ICso values), resulting eligible to be used in a 3-D QSAR application. The data set
compounds (Appendix A Table A1) are structurally related to purine,*® pyrazole,*”

%8 2-aminopyrimidine,’ triazine’ and N-aryl-benzimidazolone® scaffolds.

N-terminal Hsp90 Binding Site-Inhibitor Complex Structure Preparation

The 24 selected complexes were submitted to a previously reported molecular
modeling protocol,* then the minimized conformations of ligands, as extracted
from the minimized complexes, were split in training and test sets (see Training
Set and Test Set selection paragraph) to build and validate the structure-based

statistical models (3-D QSAR), respectively.

Training Set and Test set selection

The data set was partitioned to maintain a similar range of activities between the
training and test sets: in particular, the former was composed of 15 compounds
(Appendix A, Table A2) with affinity values spanning about 3 orders of
magnitude, from plCs, values of 3.70 to 6.26, and the latter was comprised of 9
compounds (Appendix A, Table A3) with affinity values ranging from 3.70 to
6.28.
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Results and Discussion

By means of the 3-D QSAutogrid/R procedure,’® eight mono-probe 3-D QSAR

PLS models were generated and optimized via the CAPP* procedure (Table 1).

Table 1. CAPP settings adopted for the 3-D QSAR models.

Min Value Parameter Max Value Step
0 PCO 10 1
0 Zeroing 0.1 0.01
0 MSDCO 1 0.025

PCO: Positive Cut Off, Zeroing: zeroing of very low data points ,MSDCO: Minimum SD Cut Off.

Then, by the application of the MPGRS procedure,*® a final multi probe (MP)
model was derived to define the pharmacophoric features required for Hsp90
inhibitor activity and quantitatively correlate them with molecular structures (See
below in the Multi-Probe Guided Region-Variable Selection paragraph). The
obtained statistical results confirmed the predictive capabilities and robustness of

the mono-probe models (Table 2).

Table 2. Autogrid/R PLS models statistical results (CAPP process Was applled)

model P PC r’ q LOO q K5FCV ys q YS
1 A 2 0.93 0.61 0.59 0.69 -0.46
2 C 2 0.93 0.61 0.58 0.69 -0.50
3 HD 2 0.85 0.55 0.54 0.44 -0.52
4 NA 2 0.93 0.61 0.59 0.71 -0.42
5 N 2 0.93 0.62 0.58 0.68 -0.52
6 OA 2 0.93 0.61 0.59 0.69 -0.47
7 e 2 0.93 0.63 0.60 0.73 -0.50
8 d 1 0.72 0.61 0.60 0.12 -0.22

P:Autogrid Probe, PC: optimal number of principal components/latent variables, r: conventional
square-correlation coefficient; g°_oo: cross-validation correlation coefficient using the leave-one-
out method; g’ksrcv: cross-validation correlation coefficient using the k-fold cross-validation
with 5 random groups and 100 iterations; r’ys: average square correlation coefficient obtained
after Y-scrambling process using 100 iterations; g°vs: average cross-validation correlation
coefficient using the leave-one-out method obtained after Y-scrambling process using 100
iterations.
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Three of them, obtained with A, N and OA probes (Figure 3), were selected, for

further investigations.
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Figure 3. Fitting (r, cyan points) and Cross-Validation (q° K-5-Fold, orange
points) plots. A: from the A probe model at PC2; B:from N probe model at PC2;
C:from the OA probe model at PC2.

Score and PLS-loadings plots were useful to detect the putative most important
residues for each cluster of molecules detected by the score plots. Since similar

results were obtained from all the three analyzed monoprobe models, only those
85



obtained from the aromatic (A) are reported. Starting from PC1 (Figure 4A) a clear
discrimination between low (pICsy < 5) and high active compounds (plCsy> 5) was
observed: indeed molecules characterized by the lowest activities such as all the
purine based inhibitors® (1UY8, 1UYC, 1UYD, 1UYE, 1UYG, 1UYH, 1UYK, red
bars in Figures 4A) and 3B25 (light green bar) are clustered in the negative field,
whereas most of the more active compounds like: pyrazole® # and N-Aryl-
benzimidazolone® derivatives (2BTO, 2CCS, 2CCU, 30WB, 30WD, olive drab
and blue bars respectively) are grouped in the positive PC1 score field. 2-
aminopyrimidine and triazine derivatives’ (3B26 and 3B28, light green and dark
green bars respectively) were characterized by low absolute PC1 score values.
Considering the association between scores and PLS-loadings, was possible by
superimposing the latters (LB extracted data) with the residues active site (SB info)
to detect the putative most interacting residues for each cluster (Figures 5 and 6) on
the basis of the first principal component (PC1) information. As shown in Figure
5A two “posing” areas were revealed as the main discriminating aspect between
these two molecular series. By PLS-loadings analysis (Figure 6A) a series
composed of GLY97, ILE96, ASP54, ALA55, LEU48, LYS58 and VAL186 was
recognized to interact mainly with the positive clustered molecules (2BTO, 2CCS,
2CCU, 30WB, 30WD), whereas a second series composed of LEU107, TYR139
and PHE138 was recognized to interact mainly with the negatives (1UY8, 1UYC,
1UYD, 1UYE, 1UYG, 1UYH, 1UYK and 3B25). This fact suggested the
importance in establishing interactions with the first series residues (LB/SB
convergence point 1, Table 3). From PC2 (Figure 4B, 5B), this kind of analysis,
suggested that a steric group overlapping the corresponding benzyl para-methoxy
group of 1UYD (Figure 6B) is detrimental for the activity, indeed from the
superimposed crystals, the presence of a conformationally conserved TYR139

side-chain in this area suggests a consequent steric limitation for bulkier ligands
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(LB/SB convergence point 2, Table 3). Analyses of PLS-coefficients (ligand-based
information) overlapped to the binding pockets (structure-based information)
allowed a quali/quantitative definition of the different ligand/receptor interactions,
extending the evidences provided by the PLS-loadings/PLS-scores interpretation.
A good agreement was observed between the quantitative derivation (PLS-
coefficients) and the experimental information (binding pocket residues, Figure 7):
I.e. considering the aromatic atom probe A at PC2, the biggest positive coefficients
area was mainly located in the sub-pocket delimited by LYS58, ILE96 and,
GLY97 residues (Figure 7), suggesting that bioactivity improvement could be
obtained by filling this hydrophobic area (LB/SB convergence point 3, Table 3) in
agreement with previous reports.?

Negative PLS-coefficients were mainly placed in a space surrounded by LEU107,
TYR139 and PHE138, confirming, as anticipated above (see PLS-loadings
interpretation), a steric hindrance limitation exerted by TYR139 and PHE138 side
chains (LB/SB convergence point 4, Table 3, Figure 7). As a consequence
molecules such as the ligand in 1UYD, which overlaps this area, are less active.

A further smaller negative PLS-coefficients area runs among ALA55, SER52 and
ASP93 (small blue area in Figure 7) and, considering also both results from OA
PLS-coefficients (also negative), these suggest the presence of both steric and
electrostatic features in this zone. In fact, these features represent a further LB/SB
convergence point (LB/SB convergence point 5, Table 3) by the presence of
electrostatic interactions with the three above listed residues (i.e H bonds), in

agreement with previous reports. *
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Figure 4. Aromatic atom (A) probe scores plots. Compounds are color-coded
according to their scaffold: purine based inhibitors (entries: 1,2,3,4,5,6,7): red bars,
2-aminopyrimidine inhibitors (entries: 17, 18): light green bars, pyrazole inhibitors
(entries: 13, 14, 16, 21): olive drab bars, N-Aryl-benzimidazolone inhibitors (entry:
22): blue bars, triazine inhibitors (entry: 20): dark green.
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Figure 5. Probe A. A: PLS-loadings contour maps from the A probe analysis at
PC1 (contour levels: solid 30%, mesh 60%; positive: orange, negative: cyan). All
the molecules for each cluster are plotted and color coded according to the cluster
membership (molecules in the negative field cluster: black, molecules in the
positive field cluster: light grey, molecules in the center field cluster: dark grey).
Al: front view; A2: top view. B: PLS-loadings contour maps from the A probe
analysis at PC2 ( contour levels: solid 30%, mesh 60%; positive: orange, negative:
cyan ). All the molecules for each cluster are plotted and color coded according to
the cluster membership (molecules in the negative field cluster: black, molecules in
the positive field cluster: light grey, molecules in the center field cluster: dark
grey). B1: front view; B2: top view. Double level percentage is shown to with the
purpose to point out together the most influencing loadings.
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Figure 6. Probe A. A: PLS-loadings contour maps from the A probe analysis at
PC1 (contour levels: mesh 30%; positive: orange, negative: cyan). In magenta
30WD (positive cluster), in green 1UYD (negative cluster), in orange 3B28
(neutral cluster); B: PLS-loadings contour maps from the A probe analysis at PC2
(contour levels: mesh 50%; positive: orange, negative: cyan).In orange 3B28
(positive cluster), in green 1UYD (negative cluster), in purple 30WB (neutral
cluster).
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Table 3. LB/SB convergence points.

Reference Reference

N. Probe PC Information LB/SB convergence
A N. OA/ PLS Scores Interactions with GLY97, ILE96,
1 ’I\/’IP 1/1:1 PLS Loadings ASP54, ALA55, LEU48, LYS58,
X-ray VAL 186 are desirable
5 A, N, OA/ 2/1:2 PilésLiggirﬁZs Steric hindrance limitation near
MP ' TYR139, TRP162
X-ray
PLS The  hydrophobic  sub-pockets
3 A, N, OA/ 2/1: Coefficients composed of LYS58, ILE96 and
MP ' X-ray GLY97, and VAL186 and LEUA4S,
respectively, should be fulfilled
PLS L. .
- Steric hindrance limitation exerted
4 ANOA 2 Coizf'r‘;';;”ts by TYR139 and PHE138
A N. OA/ PLS Electrostatic  interactions  with
5 ’ N’IP 2/1:2 Coefficients ALAS55, SER52, ASP93, THR184
X-ray and ASN51 should be preferable
Electrostatic interactions with the
PLS para-hydroxylic group of TYR139
_ - could be advantageous; weak
6 MP 1:2 Coefficients : . : X
X-ray attractive interactions with the

indole nitrogen of TRP162 could be
established
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LEU107 LYSeb

Figure 7. PLS-coefficients contour maps considering 2 PCs. Only the highest
active (30OWD in magenta) and the lowest active (LUYD in green) compounds are
shown. AutoGrid/R PLS coefficients contour maps derived from A probe analysis
(Contour levels: 65%, positive red, negative blue.

Application of Multi-Probe Guided Region-Variable Selection

A multi-probe (MP) 3-D QSAR model was derived by the application of the Multi
Probe Guided Region Selection (MPGRS package).® As reported, the MP 3-D
QSAR model is obtained at the optimal second level PC of the selected first level
PC subregions; in this case PCFL:SL=PC1:2, and its associated statistical
coefficients were slightly improved with respect to those of the mono-probe
models (Table 4, Figure 8).
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Table 4. Statistical Results Obtained from MPGRS Analysis

MPGRS 3-D QSAR

PCrL.sL r’ CIZLoo C{2K5ch SDEP. 00 SDEPksrcv r2Ys qus
1:2 094 0.69 0.68 0.43 0.44 0.67 -0.50

PCrL.s.: optimal number of principal first level (FL) and second level (SL)
components for the MPGRS model; r%: conventional square-correlation coefficient;
qZLoo: cross-validation correlation coefficient using the leave-one-out method,;
q2K5FCV: cross-validation correlation coefficient using the k-fold cross-validation
with 5 random groups and 100 iterations
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Figure 8. MPGRS. Fitting (r’, cyan points) and Cross-Validation (q° K-5-Fold,
orange points) plot: from the multi probe(MP) model at PC.,.

Analyses of multi probes scores and loadings led to similar conclusions as the
mono-probe models (LB/SB convergence points 1 and 2, Table 3), however, a
higher level interpretation allowed identifying both the areas of major interest and

the more profitable associated features (Figure 8).
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Figure 8. MPGRS. A: key points with PLS-coefficients contour maps (contour levels
75%: positive: red; negative: blue). 30WD in magenta and 1UYD in green. The
points are color coded according to that reported in the methodology reference.

Of particular interest are areas simultaneously characterized by negative MP PLS
coefficients associated to atom probes able to derive negative fields such as OA,
NA and HD. In particular, two distinct areas of negative MP PLS coefficients
derived from OA probe are among THR184, ASP93, SER52 and ASN51 (Figure
9A) and TRP162, TYR139 and LEU107 (Figure 9B), suggesting that the
establishment of attractive interactions (i.e. H-bond) should be advantageous in the
proximity of the first residues’ series as for the para-hydroxylic group of TYR139
(LB/SB convergence points 5 and 6, Table 3). Furthermore, between TYR139 and
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TRP162, a negative PLS-coefficient area (Figure 9B), characterized by NA and C
probes, was observed, which suggests, besides the steric limitation, that some weak
attractive interaction with the indole nitrogen of TRP162 could be established
(LB/SB convergence points 2 and 6, Table 3). Finally, two positive coefficient
polyhedra, characterized both by steric/hydrophobic and electrostatic probes (A, C,
OA, N and NA), were recognized in the proximity of LYS58 and ILE96, and
VAL186 and LEU48 (Figures 9C and 9D, respectively) confirming the importance

of placing steric groups in these areas (LB/SB convergence point 3, Table 3).
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Figure 9. MPGRS. A-D: PLS-coefficients contour maps (contour levels 75%:
positive: red; negative: blue), each area is highlighted mantaining its own color.

As a further assessment the multi probe information was compared with a
previously reported pharmacophoric model,22, 43 showing a high degree of

agreement
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External Test Set Prediction Analysis.

The external test set composed of 9 Hsp90 inhibitors (Appendix A Table A3) was
applied to each of the eight 3-D QSAutogrid/R mono probe models to assess their
predictive capability. In general, low errors of prediction were observed for all

models (Table 5), and the correct activity trend was reproduced (Figurel0).

Table 5. Test Set predictions: SDEP values considering the optimal PCs; P:
AutoGrid Probe; PC: optimal number of principal components/latent variables;
SDEPext: standard deviation error of prediction (or root mean squared error of
prediction, RMSEP) for the external test set.

P PC SDEPgxt
A 2 0.79

C 2 0.79
HD 2 0.78
NA 2 0.80

N 2 0.79
OA 2 0.81

e 2 0.79

d 1 0.86

As for the monoprobe models, the MP is endowed with good predictive
capabilities (Table 6), reproducing with a good approximation the test set activity

trend.

Table 6. MPGRS. Multi Probe model Test Set predictions.

P PCrisL SDEPext

AutoGrid MP 1:2 0.81

SDEP values considering the optimal first level and second level PCs. P: AutoGrid
Multi-Probe; PCrg .5 : optimal first level and second level PC; SDEPgx+: standard
deviation error of prediction (or root mean squared error of prediction, RMSEP)
for the external test set.
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Figure 10. Experimental vs Predicted Test Set plots. A: from the A probe model at
PC2; B: from the N probe model at PC2; C: from the OA probe model at PC2.
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APPENDIX A

Table Al. Hsp90 inhibitors data set: (15 compounds used as training set, see also
Table A2; and 9 compounds as test set, see also Table A3) shown are the purine
(A) and pyrazole (B) scaffold derivatives for which ATPase activity values are

known.
\ M
)N\)i \ R3
= M

A) Purine®® scaffold derivatives

RE ks
entry E(%Be R1 R2 R3 R4 R5 R6 ATPLE;‘(’uM)

12 1UY8 H n-butyl H OMe H H 75
2 1uyc H n-butyl OMe H H OMe 41
3 1UYD H n-butyl Cl OMe OMe  OMe >200
42 1UYE H  1-pentynyl Cl OMe OMe OMe >200
52 1UYG F H OMe H H OMe 53.5
6° 1UYH F n-butyl OMe H H OMe 14.3
72 1UYK F n-butyl H OCH20 bridge H 17.1
g° 1UY6 H n-butyl H OMe OMe OMe >200
9° 1UY7 H n-butyl H H OMe H >200
10° 1UY9 H n-butyl H OCH20 bridge H 15.3
11° 1UYF

12° 1UYI F 1-pentynyl OMe H H OMe 4.1
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B) Pyrazole

entry

13

142
15°

16

14, 22

PDB
code

2BTO

2CCS
2CCT

2CCU

R1

Et

Cl
Cl

Cl

scaffold derivatives

R1

OH

R3

N—MNH

R2

oo

1-piperazine

1-piperazine

o, /0
S

4€\©VO

~

R3

Me

H
CONHEt

1Cx0
ATPase(uM)

5.7

8.2
6.3

1.3

C) 2-aminopyrimidine,” triazine, pyrazole and N-aryl-benzimidazolone®

entry

178

18%

19°

20°

PDB
code

3B25

3B26

3B27

3B28

I —

=
I

)

Y

Y
A~
HoN N

|

s

c NKN

‘ /)\
O v,
o O

I1Cso
ATPase(uM)

9.6

6.9

0.75
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21°

22°

23°

24°

30WB

30WD

30W6

4EGK

0.88

0.55

85

0.2

“Compounds used as training set
"Compounds used as test set
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Table A2. Training Set.

entry PDB I1Cs pICso°
Code ATPase(uM)
1 1UY8 75 412
2 1UYC 41 4.39
3 1UYD 200 3.70
4 1UYE 200 3.70
5 1UYG 53.5 4.27
6 1UYH 14.3 4.84
7 1UYK 17.1 4.77
13 2BTO 5.7 5.24
14 2CCS 8.2 5.09
16 2CCU 1.3 5.89
17 3B25 9.6 5.02
18 3B26 6.9 5.16
20 3B28 3 5.52
21 30WB 0.88 6.06
22 30WD 0.55 6.26

®pICs = -Log [ICs0ATPase(uM) x 10°]

Table A3. Test Set

PDB 1Cs

a

entry Code ATPase(uM) PICso
8 1UY6 200 3.70
9 1UY7 200 3.70
10 1UY9 15.3 4.82
11 1UYF 30 4.52
12 1UYI 41 5.39
15 2CCT 6.3 5.20
19 3B27 0.75 6.12
23 30W6 85 4.07
24 4AEGK 0.2 6.28

°pICso = -Log [ICsoATPase(iM) x 107]
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Chapter VIII

Hsp90 Inhibitors (I1). Combining ligand-based and structure-based

approaches for Virtual Screening application
Antonia Caroli, Flavio Ballante, Richard B. Wickersham 111, Federico Corelli And

Rino Ragno

Journal of Chemical Information and Modeling, (2013, submitted)

Preamble

The present Chapter summarizes efforts for the discovery of hit compounds with
molecular scaffolds previously untested as Hsp90 inhibitors. To select potential
new Hsp90 inhibitors, three-dimensional quantitative structure-activity
relationships (3-D QSAR), ligand-based (LB) and structure-based (SB) alignments
methods, and a LB-SB virtual screening (LB-SB-VS) protocol were applied. Then,
the NCI Diversity Set was virtually screened employing the LB-SB-VS strategy,
and 80 molecules were selected for enzyme-based biological assays. Among the

tested molecules, four derivatives showed 1Csq values ranging between 18-63 pM.
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Introduction

Computer-aided Virtual (in silico) Screening (VS) represent a powerful technique
in identifying new bioactive compounds from large chemical databases. Currently,
different VS strategies can be employed on the basis of the source data: when 3-D
structures are unavailable, ligand based (LB) methods, such as QSAR, 3-D QSAR
and pharmacophore-based procedures are commonly used; otherwise when 3-D
information is available, structure based (SB) protocols, like ligand-protein
docking procedures, are mainly applied. Anyway, it should be considered that
molecular docking has a significant limitation represented by the interdependence
between sampling and scoring as generally implemented. Indeed, this
interdependence limits the rate of success for the identification of near-native poses
in virtual screening. To enhance the VS performance, another strategy is to use
either SB and LB methods, as for the VS application characterizing the study
herein presented, in which a combination of Autodock (SB) and Surflex-Sim (LB)
scoring functions were used jointly with the predictive ability of previously built 3-
D QSAR models (Chapter VII).

Methodology overview

As reported in Chapter VII, several three-dimensional quantitative-structure
activity relationship (3-D QSAR) models were built and externally validated using
a data set composed of 24 Hsp90 inhibitors, 15 of which were used as training set
and the other 9 as test set. These models were implemented, as a predictive tool, in
a virtual screening procedure (Figure 1) used to predict the inhibitory ability of
1785 compounds (NCI Diversity Set) suggesting which of these should be chosen
to be biologically assayed. Considering the unavailability of 3-D informations, two

different alignment procedures, a LB methodology using Surflex-sim' and a SB
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methodology using AutoDock4,? previously validated, were adopted to predict
their binding poses (see Alignment rules paragraph), in order to be subsequently
tested by the 3-D QSAR models. Therefore two different sets of predicted binding
conformations were used as external test sets for the 3-D QSAR models, yielding
two sets of predicted plCs, values. By means of a consensus scoring procedure in
which either the predicted pICs, values and the predicted free binding energy from
the Autodock4 docking were used, 80 molecules were then selected for enzyme-
based biological assays. Among the tested molecules, four derivatives showed ICx

values in the micromolar range.

Alignment Rules:

To obtain the pose of molecules with unknown binding modes (NCI Diversity Set),
either ligand based (LB) and structure based (SB) alignment procedures were
applied, using Surflex-sim and AutoDock4 respectively, applying a protocol

completely described in a previous work.?

Virtual Screening (VS).

By the application of the alignment protocol on the NCI Diversity Set, two
different binding poses, derived from Surflex-Sim and AutoDock4, were obtained
for each compound, therefore two different sets were composed and predicted by
the selected 3-D QSAR models: A, N, OA and MP (as specified in Chapter VII). A
rank by rank strategy® was then applied, considering the predicted plCs, values
together with the corresponding predicted free binding energy released by
AutoDock4 to select the 80 top ranked compounds which were selected for
biological investigations. From these, four molecules (NCI23128, NCI123128,
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NCI1117285 and NCI170578) showed ICs, values between 18 and 63 uM (Table 1),

confirming the consistence of the applied strategy towards untested molecules.

Protein Data Bank (PDB)

Experimental Data Set :

3D QSAR Definition and validation | TRAINING-SET | | | 13 and SB Alignment Assessment

1 D (15 cpds) i - |

3 3-D QSAutogrid/R d 3 TEST-SET | : prOtOCO

‘ [P ‘

A, C,HD, NA, OA, e, d, MP L (10 cpds) o SB protocol
| Virtual Screening | ool I '''''''''''''''''''''''''''''''''
! NCI Diversity Set
! | A, N, OA, MP !
i models i LB Protocol: SB Protocol:

$urﬂcx/3-DQSAR Autodock/3-DQSAR

——— G

NATAVS
EEREAES

1 Y
LB Average pIC, LB Average pIC
| ! |
' Rank by Rank

Consensus Scoring

Binding Energy

50

Final Score

Figure 1. Computational procedure.
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Table 1. Molecular structure and biological activity of the most active compounds

selected by the VS protocol.

I1Cso
ID
[uM]
| o
N
H NCI123128 18
N
(T
O
=~
HO OH NC1610930 32
N N
OH
(o]
NH, OH
N NCI1117285 49
N‘ \ \N OH
)\ Z
H,N N NH,
0
g
NCI1170578 63

Q Noz
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Binding mode analysis of new HSP90 inhibitors.

Among the most active screened compounds, attention was focused on
NCI1610930, NCI1170578 and NCI1117285 endowed with interesting scaffolds for
new Hsp90 inhibitors. Investigating the activity contribution plots obtained from
the selected compounds, it was possible to highlight how the quantitative models
(A, N, OA) predicted the interactions of these test set molecules helping to define
the crucial interaction during the binding mode analysis. As shown in Figure 2,
starting from the most active compound to the least active (NCI1610930 -
NCI117285 - NCI170578), a positive predicted activity contribution area (green
surface, Figure 2), in the proximity of LYS58, ILE96, and GLY97, decreases in
magnitude jointly with the biological response; while considering NC1170578 and
NCI117285 (the least active compounds) another positive predicted activity
contribution area appeared near LEU48, VAL186, THR 184, ASP93, SER 52, and
LEU48. These results were a further confirmation of the importance of these two
residues’ series, as previously predicted by the 3-D QSAR models (Chapter VII).
Moreover, NC1610930 and NCI1170578 are respectively a dibenzofurandione and
a dibenzothiophene derivatives, that could be ascribed to the tricyclic series of
Hsp90 inhibitors, recently identified® as a new interesting scaffold for Hsp90

inhibitors, confirming the predictive capability of the applied VS protocol.
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NCIn° Probe A Probe N Probe OA

610930

117285

170578

Lyss8 LEU107 Lyss8

1UY8

Figure 2. Predicted activity contribution plots (solid: 75%, positive: green, negative:
yellow), overlapped with PLS coefficients plots (mesh: 65%, positive: red, negative:
blue) obtained from the used 3-D QSAR models at the selected PC,° for the most active
screened compounds in their BC system (protein and pose): NCI1610930 in 1UYC,

NCI1117285 and NCI170578 in 1UYS8.
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Introduction

My first research abroad was conducted for six months (beginning: September
2012, end: March 2013) at the Laboratoire d'Ingénierie et Moléculaire
Pharmacologique Biochimie (LIMBP) of the Université de Lorraine Metz
(France), directed by Prof. Gilbert Kirsch, and characterized by the application of
organic synthesis to obtain new thienopyrimidinone derivatives as potential
inhibitors of vascular endothelial growth factor receptor-2 (VEGFR-2). These new
compounds were designed as a consequence of the informations obtained from the
analyses characterizing the Chapter V. In particular, among the several applied
synthesis, here will be reported those concerning the 3 compounds (7a, 7b, 7¢c)
which were finally obtained and biologically tested for their inhibitory activity
against EGFR and VEGFR-2.
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Synthesis of compounds 7a, 7b, 7c as new potential VEGFR-2 inhibitors

Ethyl(4-nitrophenoxy)acetate (1)

0
- Br\)]\ . OEt
O,N OFt DMF
O,N

Reflux 2h 2 1

A solution of 4-nitrophenol (150 mmol) in DMF (300 ml) was firstly obtained,
then potassium carbonate (225 mmol) and etilbromoacetate (165 mmol) were
added and the mixture was stirred at reflux (80°C) for 2h. Then, the reaction
mixture was cooled, poured over ice-water, filtered at a reduced pressure using a

Buchner flask and dried in vacuo.

Ethyl(4-nitrophenoxy)

Molecular Weight 225.198 o
Pale yellow

Aspect y O\)koa
solid

Yield 95%

'H NMR (250MHz, DMSO): 8, 8.18 (d, 2H), 7.17 (d, 2H), 4.98 (s,2H, CH,), 4.17
(0, 2H, CH,), 1.20 (t, 3H, CH3)
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(4-Nitrophenoxy) acetic acid (2)

0 0
o \)l\ NaOH 1M o \)l\
Ot — OH
D/ EtOH abs /©/
O,N O,N
2

A solution of Ethyl(4-nitrophenoxy)acetate (136 mmol) in absolute ethanol (255
ml) was firstly composed, then sodium hydroxide 1M (255 mmol) was added and
the mixture was stirred at reflux (85°C) for 2h. Subsequently, the reaction mixture
was stirred at room temperature for 1h, poured over ice-water and acidificated with
HCI 2N to adjust the pH value to 6. Finally the mixture was filtered at a reduced
pressure using a Buchner flask and the solid phase was washed with water and

dried on vacuum at 60°C.

(4-Nitrophenoxy) acetic acid

Molecular Weight 197 O

(@]
Aspect Yellow solid /©/ \)kOH
Yield 93% O,N

2

'H NMR (250MHz, DMSO): 8, 13.23 (s, 1H), 8.20 (d, 2H), 7.13 (d, 2H), 4.87 (s,
2H)
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2-Aminothiophene-3-carboxamide (3)

/E j/ N )]\/CN — Y4 / NH,
HO S H2N MeOH S
NH»

3

Two different procedures, characterized by different heating methods, were applied
for the synthesis of 2-Aminothiophene-3-carboxamide. The first was conducted

heating under reflux, the second was microwave assisted.

Procedure 1): A stirred mixture of 2-cianoacetamide (200 mmol), 1,4-dithiane-
2,5-diol(100 mmol) in Methanol(80 ml) and Triethylamine (10 ml)
was heated at reflux (65 °C) for 3h. After cooling to room
temperature, the mixture was concentrated under reduced pressure,

poured over ice-water, filtered and dried in vacuo.

Procedure 2): A mixture of 2-cianoacetamide (200mmol), 1,4-dithiane-2,5-diol
(100 mmol) in Methanol(80 ml) and Triethylamine (5 ml) was
heated under microwave irradiation (50 °C, 100W x 10 min). After
cooling to room temperature, the mixture was concentrated under

reduced pressure, poured over ice-water, filtered and dried in vacuo.
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2-Aminothiophene-3-carboxamide

Molecular Weight 142
Aspect Brown solid

Reflux: 74%

Microwave:79%

Yield

O]

S

NH>

NH,

'H NMR (250MHz, DMSO): 8 7.19 (s, 3H), 7.02 (d, 1H), 6.72 (bs, 1H), 6.2 (d,

1H)
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2-{[(4-Nitrophenoxy)acetyl]amino}-3-thiophenecarboxamide (4)

0 T TN\
O\)I\ 1) SOCIZ, CHC13(stab amylene) O\)]\ S
/O/ " i /©/ N
0] H
@)
O-N O,N H,oN
2 , / I NH, 2 2
2
) s 4
NH,
3

Reaction mixture 1 :

A solution of 2 (100 mmol) and amylene stabilized chloroform ( added until
solubilization of the acid) was firstly obtained. Then thionyl chloride 99.5+% (73
ml) was added and the mixture was stirred at reflux (60°C) for 2h. Subsequently,
the reaction mixture was concentrated under reduced pressure, to obtain (4-

nitrophenoxy)acetyl chloride (97 mmol), a red colored solid.
Reaction mixture 2:

Another solution of 3 (90 mmol) and amylene stabilized chloroform (added until
solubilization of the acid) was obtained. Then Triethylamine (31 ml) was added,
then mixture was stirred and cooled to 10 °C. At this point (4-nitrophenoxy)acetyl
chloride was resolubilized in amylene stabilized chloroform and slowly added to
the reaction mixture 2 at 10 °C. Following the addition, the mixture was stirred at
room temperature for 1h, then poured in ice/water and filtered to obtain the final

compound 4.

120



(4-nitrophenoxy)acetyl chloride

Molecular Weight 215.591 O

(@]
Aspect Red solid /O/ Qj\u
Yield 97% O,N

2

2-{[(4-Nitrophenoxy)acetyllamino}-3-thiophenecarboxamide

Molecular Weight 321.309 O ST\
i O\)J\ N

Aspect Goldenrod solid /O/ N

Yield 76% 0N HNT O

'H NMR (250MHz, DMSO): 8, 13.00(s, 1H), 8.28(d, 2H), 7.96(s, 1H), 7.61(s,1H)
7.45(d, 1H), 7.27(d, 2H), 7.04(d, 1H), 5.06(s, 2H)
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2-{[(4-aminophenyl)acetyl]amino}-3-thiophenecarboxamide (5)

(0] S (0] S
\)I\ \ Fe? \)I\ \
) - )
o IPA, AcOH, NH,CI, H,0 o
O5N HoN

2 HyN 2 HoN

4 5

A 500 ml, three-necked flask, equipped with a mechanical stirrer, thermometer,
and a reflux condenser, connected to an argon line was charged with 4 (67 mmol),
ammonium chloride (1.79 g), isopropanol (134 ml), water (27 ml), and acetic acid
(2.2 ml). The mixture was stirred and warmed to 60°C. At this point the heat was
turned off and iron powder (22.44 g) was added in small portions (temperature
held steady at 60-65°C during the addition). Following the addition the mixture
was refluxed for 30 min and stirred at room temperature overnight. The hot
reaction mixture was diluted with 223 ml of warm ethyl acetate and filtered
through a pad of Super Cel. The solids were washed with 2 x 110 ml of warm ethyl
acetate. The filtrate and the washes were then extracted with 2 x 110 ml of water,

dried over magnesium sulfate and concentrated.

2-{[(4-aminophenyl)acetyllaminol-3-thiophenecarboxamide

Molecular Weight 291.326 o ST\

- O\)J\ ~
Aspect dark grey solid /©/ N
Yield 51% HoN HNT O

'H NMR (250MHz, DMSO): &, 12.88(s, 1H), 7.91(s, 1H), 7.53(s, 1H), 7.43(d,
2H), 7.01(d, 1H), 6.83-6.79(m, 2H), 6.55-6.51(m, 2H), 4.71(bs, 2H), 4.66(s, 2H),

122



2-(4-aminophenoxymethyl)-3H-thieno[2,3-d]pyrimidin-4-one (6)
(0]

(0] S \
NaOH 4N
O\)J\N N - > NH
o aa » s o USs
HoN HoN N NH,

2 S

5 6

A stirred mixture of 5 (34 mmol), sodium hydroxide 4N (113.5 ml),
Dimethylformamide (113.5 ml) was heated at reflux (100 °C) for 3h, then cooled at
room temperature and diluited with water (680 ml). At this point the reaction
mixture was acidificated with HCI 2N to adjust the pH value to 6 and then filtered
to obtain 4.86 g (17 mmol) of filtrate. The filtrate was then extracted with ethyl
acetate and the organic phase was washed with a saturated sodium chloride
solution, dried with magnesium sulfate and finally filtered to obtain 0.3g (1 mmol)
of 6.

2-(4-aminophenoxymethyl)-3H-thieno[2,3-d]pyrimidin-4-one

Molecular Weight 273.310 0

Aspect olive drab solid Vo
LF
Yield 53% N e

S

'H NMR (400MHz, DMSO): 8 12.65(bs, 1H), 7.61-7.58(m, 1H), 7.40-7.39(m,
1H), 6.78-6.74(m, 2H), 6.53-6.49(m, 2H), 4.87(s,2H), 4.71(bs, 2H)
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3-[4-({4-0x0-3H-thieno[2,3-d]pyrimidin-2-yl}methoxy)phenyl]-1-phenylurea (7a)

NH,» ;
/©/ Ox O NH
H o) Csn Y
O Nw) + CHC13 (stab. amylene) NH
| > o
H
8; N Yy
\ J

Reaction mixture 1:

2 mmol of 6 were dissolved in amylene stabilized chloroform (8 ml) to compose
the first reaction mixture.

Reaction mixture 2:

2.4 mmol of phenylisocyanate were dissolved in amylene stabilized chloroform
(4ml) to form the second reaction mixture

Reaction mixture 2 was added drop-wise to reaction mixture 1, the resulting
mixture was stirred at room temperature overnight. Since the TLC showed an
uncompleted reaction, more phenylisocianate (1.2 mmol) was added and the
mixture was stirred for 12 h, filtered and then purified by crystallization with
dioxanne obtaining 0.40 g of 7a.
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3-[4-({4-0x0-3H-thieno[2,3-d]pyrimidin-2-yItmethoxy)phenyl]-1-
phenylurea

Molecular Weight 392.431

Aspect Light grey solid 0

H
Yield 50% ° N7)
J

'H NMR (400MHz, DMSO): 8y 12.71(s, 1H), 8.61(s, 1H), 8.52(s, 1H), 7.6(d, 1H),
7.45-7.36(m, 5H), 7.27(t,2H), 6.99-6.95(m, 3H), 4.99(s, 2H)

MS (ESI, [M+Na]") theoretic: 415.0840

m/z for C20H16N4NaO3S _
obtained: 415.0834
3% of H,0 C H N S
Microanalysis:
y theoretic: 58,76 439 13,70 7,84

obtained: 5894 354 1329 7,01
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1-(4-fluorophenyl)-3-[4-({4-o0x0-3H-thieno[2,3-d] pyrimidin-2-yl}methoxy)phenyl]
urea (7b)

NH,
N
3
o) N 0

YNH

H
© N + CHC13 (stab. amylene)
] g @NH
N o]
H
{ A o _K

D
6 S 7b

The same procedure as 7a was applied, but in this case was not necessary to add
more 4-fluoro-phenylisocyanate. After filtration, the solid was purified by
crystallization in MeoH obtaining 0.33g of 7b.
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1-(4-fluorophenyl)-3-[4-({4-o0x0-3H-thieno[2,3-d]pyrimidin-2-yl}

methoxy)phenylJurea

Molecular Weight
Aspect

Yield

410.422

Light grey solid
0

YNH

L
40% o N ))O
I

N
\
s

'H NMR (400MHz, DMSO): 5, 12.66(s, 1H), 8.64(s, 1H), 8.51(s, 1H), 7.6(d, 2H),
7.46-7.36(m, 4H), 7.1-6.97(m, 4H), 4.99(s, 2H)

MS (ESI, [M+Na]")
m/z for
C20H15FN4Na03S

theoretic: 433.0746

obtained: 433.0737

Microanalysis:

3% of H,0 C H N S
theoretic: 56,77 390 13,23 8,00
obtained: 56,97 359 13,39 7,62
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1-[4-chloro-3-(trifluoromethyl)phenyl]-3-[4-({4-ox0-3H-thieno[ 2,3-d] pyrimidin-2-
yl}methoxy)phenyl]urea (7c)

Cl o) H
X
\ N
\ S

The same procedure as 7a was applied, but quantities were different:
Reaction mixture 1:

0.5 mmol of 6 were dissolved in amylene stabilized chloroform (2 ml) to compose
the first reaction mixture

Reaction mixture 2:

0.6 mmol of 4-Chloro-3-tryfluoromethyl-phenylisocyanate were dissolved in
amylene stabilized chloroform (1ml) to form the second reaction mixture

Reaction mixture 2 was added drop-wise to reaction mixture 1, the resulting
mixture was stirred at room temperature overnight. Since the TLC showed an
uncompleted reaction, was added trietylamine (0.245ml), but there wasn’t any
improvement. The mixture was then concentrated under reduced pressure,
dissolved with diethylether, filtrate and the obtain solid was washed with methanol
to obtain 0.13g of 7c.
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1-[4-chloro-3-(trifluoromethyl)phenyl]-3-[4-({4-ox0-3H-thieno[2,3-
d]pyrimidin-2-yl}methoxy)phenyljurea

Molecular Weight 494.874 Cl
Aspect Light grey solid

o
Yield 52% o

CF3

'H NMR (400MHz, DMSO): 8, 12.57(bs, 1H), 9.07(s, 1H), 8.65(s, 1H), 8.09(s,
1H), 7.64-7.58(m, 3H), 7.41-7.38(m, 3H), 7.01-6.99(m, 2H), 5.00(s, 2H)

F NMR (376 MHz, DMSO): &¢ -61.44(s, 3F)

MS (ESI, [M+Na]") theoretic: 517.0325
m/z for
C21H14CIF3N4NaO3S obtained: 517.0323
C H N S
Microanalysis: _
theoretic: 5097 285 1132 6.48

obtained: 51.08 2.77 1156 6.41
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Biological evaluation for compounds 7a, 7b, 7c

Compounds 7a, 7b and 7c were investigated for their inhibitor activity against
either EGFR and VEGFR-2, at the Institut de Chimie Pharmaceutique Albert
Lespagnol, Université Lille 2, by the “Groupe de Recherche Interdisciplinaire
Innovation et Optimisation Thérapeutique EA4481” under the supervision of Pr.

Patrick Depreux.

Inhibition activities were derived against EGFR (purified from A431 cell
membranes) and VEGFR-2 (recombinant human protein) by quantifying the
enzymatic tyrosine kinase activity, from the incorporation of radiolabeled ATP
([Y32P]JATP] on a peptide substrate containing tyrosine residues [Poly(Glu, Tyr)
4:1] (Figure 1). Due to the possibility that other endogenous proteins may be
phosphorylated, a further test was performed without PolyGluTyr and the result
was subtracted from the value obtained in the presence of the screened compound.
The reactions took place in a “Multiscreen® Durapore®” (Millipore ™) 96-well
plate. The wells were pre-wetted with 100uL of water, and the receptors (20 ng of
EGFR and 10ng of VEGFR-2) were pre-incubated in the presence or absence of
the test compound (1-dose mode: 10 uM), previously dissolved in DMSO, for 5
minutes at 37 °C. The final DMSO concentration was 0.1%. Two different
solutions (Table 1) were prepared for each enzyme and added (50 pL) to start the
reactions. After 1 hour (at 28 °C) the reactions were stopped by adding 20 uL of
trichloroacetic acid (TCA) 100% which caused precipitation lasting 30 minutes
followed by the radioactivity count procedure. As mentioned above tests were
accomplished with and without the substrate, in order to eliminate the contribution
of endogenous proteins to the radioactivity. For each compound, inhibitory activity
(%) against EGFR and VEGFR were determined (Table 2).
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Table 1. Used reagents

HEPES 50 mM pH 7,5, BSA 0,1 mg.mL-1, MnCI2 5 mM,
EGFR Na3VO4 100 uM, DTT 0,5 mM, poly(Glu4/Tyr) 250 ug.mL-1,
ATP 5 uM, [y32P] ATP 0,5 pCi

Tris 50 mM pH 7,5, BSA 25 pg.mL-1, MnCI2 1,5 mM, MgCI2 10
VEGFR-2 mM, Na3VO4 100 uM, DTT 2,5 mM, poly(Glu4/Tyr) 250 pg.mL-
1, ATP 5 uM, [y32P] ATP 0,5 uCi, B-glycérophosphate 5 mM.

@ 4 Growth Factor
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0000000000000000000
I i | ! n "

Cell
Membrane

00090000000 000000004¢ POOCOLOOOOL00OO0ROOODOORD

+
PolvGluTvr

PolyGluTyr P

Membrane Receptor

000000000000 0000000 000000000000 0000000006000

C eﬂ | [ | ]

Membrane 54 A AAAOAOCAAOO0

Q
/i \
v "PIATP
+

Inhibitor 4 \ PolyGluTyr 7
PolyGluTyr

2000000000000000000000000

Figure 1. Assay of protein kinases using radiolabeled ATP.
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Table 2. Structures and either EGFR, VEGFR-2 inhibitory activity of thieno[2,3-
d]pyrimidinones 7a-7c.

% Inhibition @ 10 uM

R

# R R;
EGFR VEGFR-2
7a H H n.a.? 9%
7b F H n.a.? 5%
7c Cl CF; n.a.? 13%

# Not active. No inhibition was observed up to 10 uM of the tested compound.
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Chapter X
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Supervisor Prof. Garland R. Marshall
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Introduction

My second research activity abroad, was conducted for three months (beginning:
August 2013, end: October 2013) at the Marshall Lab., directed by Prof. Garland
R. Marshall, in the Department of Biochemistry and Molecular Biophysics of
Washington University School of Medicine in St. Louis (MO, USA) to investigate
the activity profile of new Histone Deacetylases (HDACSs) inhibitors.
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HDACIs activity investigation

In vitro determinations were conducted applying the Electrophoretic mobility shift
assay (EMSA)* by using the LabChip® EZReaderl1? instrument (Figure 1, Caliper-

Perkin Elmer®).

Figure 1. The LabChip® EZReaderl].

Fundamentally, three main objectives were accomplished:
a) Training on the EZReaderll instrument
b) Define the Enzymatic assays protocol for HDACs
c) Start the inhibitor titrations HDAC3 and HDACS6 isoforms
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LabChip® EZReaderll:

The LabChip® EZReaderll combines the basic principles of capillary
electrophoresis in a microfluidic environment to analyze enzymatic assays with or
without the addition of a termination or quenching reagent. The core of the

instrument is the so-called “Chip” (Figure 2), which is characterized by:
e 6 Upstream and 2 Downstream Electrode Wells (Figure 2A);
e 12 Sippers (Figure 2B);
e a detection window (Figure 2C)

e a network of miniaturized channels (like those characterizing the detection
window, Figure 2C) through which fluids and chemicals are moved to

perform experiments;

C

Figure 2. The LabChip® EZReaderll Chip.
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As shown in Figure 3, the whole analysis process can be summarized in the

following steps:

1) using vacuum pressure, reactions are sipped, from the sample wells through

fused silica sippers located in the bottom of the chip;

2) both electrokinetics and pressure, are exerted on the chip to generate fluid
motion through the microchannels. By applying an electric-potential difference
across the separation channel, fluorescently labeled substrates and products are

separated by electrophoresis and detected by LED-induced fluorescence;

3) both the substrate and the formed product are detected and measured for each
product peak heights

sample. The amount of product is determined as —
product + substrate peaks heights

Upstream Downstream
Electrode Well Electrode Well 3

Sample

Well Results

+ Detection
P P
S
—>

384 Well Plate

Figure 3. Overview of the Mobility Shift Assay performed by the LabChip®
EZReaderll.

137



Materials and Methods

Screened Compounds:

Several enzymatic assays were performed to investigate the HDAC 3 and 6
inhibitor activities (ICg, values), of a new molecular set (Table 1) characterized by

chemo-physical properties ascribable to anti-HDAC activity, as follows :

v" new largazole derivatives, synthetized in the Marshall lab.,

v new compounds synthetized in the laboratory supervised by Prof. Antonello
Mai, (Department Of Chemistry and Drug Technologies, Faculty of
Pharmacy and Medicine — Sapienza Universita di Roma).

Moreover, three stock compounds: SAHA, Tubastatin A and Entinostat, from

Sellekchem® tubes, were used as standard compounds.

Table 1. List of screened compounds.

Stock Stock
Solution mM Solution mM
# Cpd in 100% # Cpd in 100%
DMSO DMSO
1 MC1716 10 16 MC2776 10
2 MC1723 10 17 MC2780 10
3 MC1739 10 18 MC2984 10
4 MC1742 10 19 MC3004 20
5 MC1746 10 20 MC3031 10
6 MC1862 10 21 MC3050 10
7 MC2122 20 22 MC3079 10
8 MC2126 10 23 SD-L-148 20
9 MC2129 10 24 SD-L-256 10
10 MC2195 20 25 SDM141 20
11 MC2427 10 26 SDM146 20
12 MC2625 10 27 ENTINOSTAT? 50
13 MC2664 10 28 SAHA? 100
14 MC2726 10 29 TUBASTATIN A? 100
15 MC2727 10

*Stock compounds: from Selleckchem® Tubes
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The synthetized compounds (originally as powder) were solubilized in 100%

DMSO to get the final micromolar concentrations (mM, Table 1), moreover

different solutions, required for the

enzymatic assays, were prepared:

1 Separation Buffer
2 Reaction Buffer
3.  Dye Marker
4 Substrate Mix
5. Enzyme Mix
Overall, the “relationship” between the instrument and the necessary components
can be represented like the chart in Figure 4:
Separation Substrate Enzyme Reaction
Dye Marker Buffer Mix Mix Buffer
] I
- EZReaderIl Chip - 384 Well Plate
Assay Conditions 3 EMSA
Set-Up : I
Response

Figure 4. The hardware and chemical protagonists characterizing the assays.
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Separation Buffer:

The separation buffer is the solution that runs through the machine and the chip. It
Is used mainly to preserve the separation conditions and prevent peptide sticking in
the microfluidic chip; since it is stable at room temperature for seven days, a fresh
sterilized solution (at least 200 mL, Figure 5) was primed into the EZReaderll

every week.

Figure 5. Recirculation system for the separation buffer.

Differently, the chip required much more attention, needing to be “prepared”
(firstly washed with milliQ water and separation buffer, then re-charged with the

latter) every week or after 40 hours of run time.
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A B C

Figure 6. Chip preparation: every week or after 40 hours of run time it needs to be
completely washed with milliQ water (A) and separation buffer (B), then dried,
charged with new separation buffer and finally installed in the EZReaderll
instrument (C).

The separation buffer (10mM EDTA) was obtained following the company
guidelines, by merging a pre-separation buffer (ImM EDTA) with a solution of
EDTA 0.5M (pH 8), whose compositions are described in Table 2:

Table 2. Separation Buffer. The solution was finally sterilized using a 0.2 pum pore
filter membrane.

Final solution Intermediate Composition

solution
e 100mM HEPES, pH 7.3
e 0.015% Brij-35
Pre-separation e 1mMEDTA
Separation buffer * 0.I%CR-3
Buffer (10mM * S%DMSO
EDTA) —
o milliQ water
e EDTA (powder)
EDTA 0.5M e pH adjusted to 8.0 using NaOH

(pellets)
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Reaction Buffer (RxnB):

The reaction buffer (RxnB) represents the solution to be added into the plate wells
together with the reagents. It was prepared following the company guidelines
(Table 3).

Table 3. Reaction buffer. The solution was finally sterilized using a 0.2 um pore
filter membrane.

Intermediate

Final solution : Composition
solution
e 25mM Tris-HCI pH 8.0
e 137mM NaCl
Reaction Buffer Base buffer e 2.7mM KCI
0.01 % WiV e 1 mM MgCI2
BSA® —
o milliQ water
BSA? 1% w/v e BSA®powder

4BSA: Bovine Serum Albumine

Dye Marker:

The Dye marker is the 1X peptide solution used to create the plate row markers
during the assay: specifically the H219 peptide (Table 4) was used to accomplish

this role.

Substrate Mix:

The substrate mix is the solution containing the peptide to be deacetilated. For the
assays, H218 and H219 peptides (Table 4) were used in the case of HDAC3 and
HDACG6 respectively. As reported above, H219 was utilized also as the dye

marker.
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Table 4. The used substrates: H218 and H219 peptides.

H218

H219

5-FITC-AHA-TSPQPKK(Ac)-CONH,
e Derived from p53
e 1.5mM in 100% DMSO

5-FITC-AHA-LGKGGAK(Ac) -CONH,
e Derived FROM Histone 4
e 1.5mM 100% DMSO

Enzyme Mix:

This is the solution containing the enzyme (HDAC) and the RxnB.

Assay plate:

For all the assays, Corning® 384 assay plates (Figure 7) were utilized.

Figure 7. Used assay plates.

Specifics

Corning® (#3673)

e 384 assay plate

e Non-binding surface

e Round bottom

e White polystirene

e Working volume:
5-40 pL
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Enzyme assays workflow:

The applied workflow involved, firstly, the enzyme titration step, followed by the

enzyme inhibitor titration.

Enzyme titration:
Enzyme titration (Figure 8) is necessary to:

v’ determine the enzyme concentration, for a 30% substrate conversion, to be
used during the inhibitory titration;

v' establish the assay parameters as: Pressure, Downstream Voltage, Upstream
Voltage, Buffer Sip, Sample/Marker Sip Time, Final Delay, Peak Order,
Cycles
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Enzyme “stock”
tube

RxnB Diluitions

2X enzyme
mixes

Plate

2X Peptide Mix

EZReaderll
Enzyme
Titration

e Determine enzyme concentration
for a 30% conversion

e Establish/Optimize assay
parameters

Figure 8. Enzyme titration workflow.

Enzyme titration was performed in 6-dose mode with 3-fold serial dilution, using
2-replicates; since HDAC 3 and HDAC 6 are characterized by different activities,
different ranges were used (Figure 9). Initially, different 2X enzyme mix solutions
were obtained by diluting the stock enzyme solution with RxnB and placed in plate
wells, then an equal volume of 2X peptide mix was added to each well to reach the

final (1X) desired concentration and start the reaction (deacetylation).
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HDAC3 20ng/ul  6.67ng/uL 22ng/pL 0.74ng/uL 0.25ng/uL  0.082 ng/pL
HDAC 6 30 ng/pL 10 ng/ul 3.33ng/ul 1.1l ng/ul  0.37ng/uL  0.12 ng/uL
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Figure 9. Enzyme titration was conducted in 6-dose mode with 3-fold serial
dilution, starting from 20 ng/uL and 30 ng/uL for HDAC 3 and HDAC 6
respectively.

Then, the plate was placed in the LabChip® EZReaderll instrument, previously
“charged” with the dye marker, to start a 45 cycles detection (= 1 hour), following
the reaction in a real-time mode (example in Figure 10) and finally obtain
conversion rates (example in Figure 11). The whole procedure was optimized in
order to use for each well a total volume equal to 20 pL (10 pL of 2X enzyme mix
+ 10 pL of 2X peptide mix).
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Figure 10. Enzyme titration outputs. The reaction is monitored, as it progresses, by
sequentially “sipping” samples onto the chip at various time intervals (cycles):
removal of acetyl groups from peptide substrates produces distinct mobility-shifts.
Three different peak types are detectable for each cycle: the marker peaks (red
contoured), the product peaks (green contoured) and the substrate peaks (yellow
contoured). Since the chip is characterized by 12 sippers, 12 different wells (6 for
each row) were monitored at the same time: each color represents data from a
different reaction well.
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Figure 11. Enzyme titration results expressed as substrate conversion rates. As for
example are shown the results obtained from one HDACS3 titration (Enzyme from
Sigma-Aldrich™, Product N.SRP0104, Lot N.5000320524, specific activity >3000
pmol/min/ug). In this specific case the characterizing enzyme concentration of well
n. 3 (2.2 ng/uL, compare with Figure 9) was used for the inhibitor titration, since it
was the closest to determine a conversion rate equal to 30%.

Once determined the enzymatic concentration capable to convert (deacetylate) a
substrate quantity close to 30%, it was possible to proceed for the inhibitor

titration.
Inhibitor titration:

A total of 32 titrations for HDAC 3 and 24 titrations for HDAC 6 were performed,
following the screening scheme specified in Table 5. Compounds were tested in
10-dose ICsy mode with 3-fold serial dilution starting from 30 uM. For each
replicate, well plates n. 11 (23) and 12 (24) were used as 0% inhibition and 100%
inhibition controls, respectively (Figure 12). Each well was charged with a total of
15uL of reactions following the sequence shown in Figure 13. After 1 hour of
incubation reactions were stopped by adding, to each well, 15 pL of termination
buffer (reaction buffer + EDTA 10 mM), then the plate was introduced in the
instrument to start the titration and derive conversion and inhibition rates (as for

example Figures 14 and 15 show both the outputs for the 3" HDAC 3 screening).
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product peak heights

Conversion rates were calculated considering the .
product + substrate peaks heights

ratio, whereas inhibition rates were obtained considering the % of controls

(averaging the results across sippers).

Table 5. Screening scheme.
CPD ID Plate Row

MC2984
SDM 141
SDM 146
SD-L-256
SD-L-148 (Largazole)
SAHA?® (Vorinostat)
TUBASTATIN A?
ENTINOSTAT?
MC2727
MC2726
MC2625
MC2664
MC2780
MC2776
MC3079
SAHA (Vorinostat)®
MC3031
MC3004
MC3050
MC1742
MC1862
MC2126
MC2129
SAHA (Vorinostat)®
MC1716
MC1723
MC1746
MC1739
MC2122
MC2427
MC2195
SAHA (Vorinostat)®

Selleckchem Tubes

Screening

N, Used Enzyme
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Figure 12. Plate scheme applied during the inhibitor titration.

Inhibition rates allowed to derive, for each screened compound, the characteristic
inhibitory dose-response curve (Figure 16 and 19), the characteristic 1Csy value

(Table 6 and 7) and the relative inhibitory potency (Figures 17,18,20,21).
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1) 3X Peptide MIX SuL

2)  3X Inhibitor MIX 10% DMSO 5 puL

3) 3X Enzyme MIX SuL
TITRATION WELL
1)  3XPeptide MIX  5puL 1) 3X Peptide MIX 5pL
2)  DMSO 10% 5uL 2) DMSO10% 5SuL
3) 3X Enzyme MIX 5uL 3) RxnB 5uL
0% INHIBITION WELL 100% INHIBITION WELL

Figure 13. Protocol adopted to fill the wells.
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Figure 15. HDAC 3" screening: Conversion rates (A) and inhibition rates (B)
outputs. Rows and columns refers to those of the plate (compare with Figure 12
and Table 5).
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Figure 16. HDAC 3 inhibitory dose-response curves.
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Table 6. HDAC 3: assays: inhibitory activities expressed as I1Csg

and plCs
HDAC 3
1Cso PICs

Cpd COMPANY GRM COMPANY GRM
SAHA 1st SCREEN 2.00E-08 2.18E-09 7.70 8.66
SAHA 2nd SCREEN 2.00E-08 6.24E-10 7.70 9.20
SAHA 3rd SCREEN 2.00E-08 2.92E-09 7.70 8.54
SAHA 4th SCREEN 2.00E-08 6.17E-10 7.70 9.21
TUBASTATIN A 3.00E-05 8.20E-07 452 6.09
ENTINOSTAT 1.70E-06 7.73E-07 577 6.11
MC1716 2.34E-08 7.63
MC1723 7.29E-08 7.14
MC1739 3.72E-08 7.43
MC1742 2.36E-08 7.63
MC1746 3.81E-08 7.42
MC1862 4, 58E-08 7.34
MC2122 6.81E-08 1.17
MC2126 1.52E-07 6.82
MC2129 1.15E-07 6.94
MC2195 1.20E-07 6.92
MC2427 1.57E-06 5.80
MC2625 1.94E-07 6.71
MC2664 7.25E-07 6.14
MC2726 2.75E-07 6.56
MC2727 2.73E-07 6.56
MC2776 1.32E-05 4.88
MC2780 1.01E-06 5.99
MC2984 4.32E-07 6.36
MC3004 1.63E-06 5.79
MC3031 6.31E-08 7.20
MC3050 7.25E-06 5.14
MC3079 1.14E-05 4.94
SD-L-148 1.44E-06 5.84
SD-L-256 4.23E-07 6.37
SDM 141 NAc NAc
SDM 146 NAcC NACc

NAc: No inhibition/activity not converged in a ICsq curve;

NAv: Not Available
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Figure 17. HDAC 3: standard compounds’ inhibitory profile, pICsq values are
reported on molar base.
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Figure 19. HDAC 6 inhibitory dose-response curves.
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Table 7. HDAC 6 assays: inhibitory activities expressed as ICsoy and

pI1Csy,
HDAC 6
1Cso pICs
Cpd COMPANY GRM COMPANY GRM
SAHA 1st SCREEN NAv 1.02E-09 NAv 8.99
SAHA 2nd SCREEN NAv 1.92E-09 NAv 8.72
SAHA 3rd SCREEN NAv 1.31E-09 NAv 8.88
TUBASTATIN A NAv 1.43E-08 NAv 7.85
ENTINOSTAT NAv NACc NAv NAc
MC1742 4.30E-08 7.37
MC1862 2.21E-08 7.66
MC2126 5.38E-07 6.27
MC2129 2.73E-07 6.56
MC2625 1.70E-07 6.77
MC2664 NACc NAC
MC2726 1.24E-07 6.91
MC2727 1.32E-07 6.88
MC2776 1.11E-05 4.96
MC2780 3.03E-07 6.52
MC2984 NACc NAC
MC3004 2.20E-07 6.66
MC3031 4.68E-07 6.33
MC3050 NAC NAC
MC3079 NACc NACc
SD-L-148 6.68E-06 5.18
SD-L-256 8.01E-07 6.10
SDM 141° NACc NACc
SDM 146° NAcC NAC

NAc: No inhibition/activity not converged in a 1Cs, curve;

NAvV: Not Available
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ABSTRACT: The single enantiomers of two pyrimidine-based HIV-1 non-nucleoside reverse transcriptase inhibitors, 1
(MC1501) and 2 (MC2082), were tested in both cellular and enzyme assays. In general, the R forms were more potent than
their S counterparts and racemates and (R)-2 was more efficient than (R)-1 and the reference compounds, with some exceptions.
Interestingly, (R)-2 displayed a faster binding to K103N RT with respect to WT RT, while (R)-1 showed the opposite behavior.

H INTRODUCTION Chart 1. Pyrimidine-Based NNRTIs That Are the Object of
Since 1992, our research team has discovered excellent dihydro- the Present Study

alkyloxy-benzyl-oxopyrimidine (DABO) classes of non-nucleo- e

side reverse transcriptase (RT) inhibitors (NNRTIs) such as j\,\:m i: I . :H,
F,-S-DABOs,! F,-NH-DABOs,®> and F,-N,N-DABOs.> Such n_‘c\N“JLN' e, T,
compounds had inhibitory potencies in the (sub)nanomolar r%r

range against wild-type (WT) HIV-1 without significant oy on

cytotoxicity at higher concentrations, and with potencies in (R ctson (OAY ARG iyt

the submicromolar range against clinically relevant mutant
strains, The F,-N,N-DABQ derivative 1 (MC1501),” charac-
terized by a N-methyl-N-propyl side chain at the C-2
pyrimidine ring position and by a double pyrimidine C-5/C-6
benzylic position methyl substitution, with its subnanomolar
inhibitory potency against WT HIV-1 and the Y181C mutant
strain, can be considered one of the most promising DABO
compounds reported so far (Chart 1)

Diarylpyrimidine (DAPY) derivatives are one of the most
successful classes of pyrimidine-based NNRTIs, as demon-
strated by the recent approval of etravirine and rilpivirine for
clinical use.** SAR studies on the DAPY class had also shown
how the para-cyanoaniline substitution at the C-2 pyrimidine
ring position is crucial for a strong inhibitory activity. Recently,
combining the 2,6-difluorobenzyl or 1-(2,6-difluorophenyl)- h =g > - : ) >
ethyl group at the C-6 position characteristic of DABOs with investigation on their potential enantioselective anti-HIV-1
the para-cyanoaniline group at the C-2 of the pyrimidine ring activity. Here we .describef through a multidisciplin_ary
typical of DAPYs, and inserting at the C-4 pyrimidine ring approach, the enantioseparation, the absolute configuration
position groups found in either DABOs (—OH) or DAPYs assignment, and the enzymatic and cellular evaluation of the
(—Cl, —H, —NH,), a new series of highly potent anti-HIV-1
agents called DAPY-DABO hybrids has been developed.® Received:  October 11, 2011
Among those, the derivative 2 (MC2082) (Chart 1) was the Published: March 19, 2012

(S (R (5)2 (R)-2

most potent due to its (sub)nanomolar activity against WT and
clinically relevant mutant HIV-1 strains, such as K103N and
Y188L.°

Both the pyrimidine-based NNRTIs 1 and 2 contain a
stereogenic center at the C-6 benzylic position and, therefore,
exist as racemic mixtures. Because of the high potency of these
two lead compounds, we decided to perform a systematic

V ACS Publications @ 2012 American Chemical Saciety 3558 dx.doi.org/10.1021/jm201308v | & Med. Chem. 2012, 55, 3558-3562
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HIV-1 inhibitory activity of the single enantiomers in
comparison with the corresponding racemic mixtures of both
compounds. The application of a comparative binding energy
(ComBinE) model built to quantitate the influence of single
point HIV-RT mutations to modeled bound conformations of
both 1 and 2 was in good agreement with the experimental
findings and gave insights on the absolute configuration
assignment of both 1 and 2 separated enantiomers.

Chemistry. The racemic mixture of 2 was prepared as
previously described.® The racemic mixture of 1 was prepared
starting from the f-oxoester 3" and using, differently from
previously reported,’ a route characterized by only two steps
and by a final nucleophilic displacement under mild conditions
and with high yield. After condensation of the f-oxoester 3 with
nitroguanidine, the resulting 6-[1-(2,6-difluorophenyl)-ethyl]-
S-methyl-2-nitroamino-3H-pyrimidin-4-one 4 was heated in a
sealed tube of a Parr high pressure reactor in the presence of an
excess of N-methyl-N-propylamine to give directly the racemic
1 (Scheme 1).

Scheme 1“
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“(i) EtONa, nitroguanidine, dry EtOH, reflux; (i) N-methyl-N-
propylamine, 120 °C, Parr high pressure reactor.

Bl RESULTS AND DISCUSSION

The direct resolution of 1 and 2 was achieved by HPLC on the
coated-type Chiralpak AD chiral stationary phase (CSP) using
pure ethanol in mixture with a small percentage (0.1%) of
diethylamine (DEA) as eluent (see Supporting Information).
Efforts to obtain the absolute configuration of 1 and 2 by X-ray
crystallography were not successful, therefore stereochemical
information on the four chiral compounds were obtained by
analyzing their chiroptical properties. The (S) configuration
was assigned to the dextrorotatory enantiomers of 1 and 2 ((S)-

(+)-1 and (S)-(+)-2, first-eluted enantiomers on the Chiralpak
AD CSP) and the (R) configuration assigned to the
levorotatory counterparts ((R)-(—)-1 and (R)-(—)-2, second-
eluted enantiomers).

The racemic compounds 1 and 2 and their enantiomers were
tested in MT-4 cells to evaluate their cytotoxicity and their
capability to inhibit by 50% the HIV-induced cytopathic effect
(HIV-1 strain: NL4—3). The compounds were also tested
against a panel of clinically relevant HIV-1 mutant strains
(K103N, Y181C, and Y188L). Nevirapine (NVP), efavirenz
(EFV), and dapivirine (TMC120) were also tested as reference
drugs (Table 1).

The enantiomer (R)-1 was much more potent (ranging from
about 2800- to 11000-fold) than the other enantiomer (S)-1 in
inhibiting WT HIV-1 and the three tested mutant strains. (R)-1
was slightly better, both in terms of activity and of selectivity,
than the corresponding racemic mixture. The enantiomer (R)-2
inhibited WT and mutant HIV-1 strains from 900- to 10000-
fold more efficiently than the other enantiomer and was slightly
more potent than the racemic mixture. With the only exception
of the mutant Y181C, (R)-2 was always more efficient than
(R)-1 and TMC120 in the inhibition of both WT and mutant
(K103N and Y188L) HIV-1 strains (Table 1). Moreover, (R)-2
was 10-fold less toxic than TMCI120, yielding an highly
improved selectivity index (SI(z), = 300000; SIpyc;a0 = S000).

We evaluated the RNA-dependent DNA polymerase activity
of WT' RT and those enzymes carrying the most common
NNRTI-resistance mutations (K103N, L100I, Y181I, V106A,
Y188L) in the presence of increasing concentrations of the 1
and 2 enantiomers (Table 2). In the inhibition assays, the
enantiomers (R)-1 and (R)-2 showed higher potency than their
corresponding § isomers toward RT WT and mutants.
Moreover, (R)-2 showed the lowest ID, values with respect
to the majority of the mutants evaluated, such as K103N,
V1064, and Y188L, whereas its efficacy appeared slightly lesser
than that observed for (R)-1 in the case of L100I and Y1811, As
illustrated in Table 2, in all cases both racemic compounds
presented intermediate levels of potency compared to the
corresponding pairs of enantiomers.

Steady-state kinetic assays were performed for the two most
potent isomers, (R)-1 and (R)-2, to assess the inhibition
mechanism against RT WT and RT carrying K103N mutation.
The enzyme activity was measured in the presence of fixed

Table 1. Cytotoxicity and Anti-HIV-1 Activity against WT (NL4-3) and Clinically Relevant HIV-1 Mutant Strains of Racemic

Compounds 1 and 2 and their Enantiomers”

ECs,” nM (fold resistance)®

compd NL4-3 K103N Y181C

1 1.9 + 02 16.5 + 0.5 (9) 17+1(9)
(8)-1 15000 + 50 >78000 >78000
(R)-1 1.3+01 11+ 07 (8) 13+ 1 (10)
2 0.6 + 0.1 35 £ 3 (60) 40 £ 2 (70)
(8)-2 1000 + 10 4500 + 10 (4) >38000
(R)-2 0.1 + 0.02 0.8 + 0.01 (8) 31 + 2 (300)
TMC120 0.6 + 0.07 12 £02(2) 1.2 +02 (2)
NVP 130 + 1 6100 + 20 (47) >7500
EFV 73 £ 0.5 340 + 4 (47) 10 + 1 (1.4)

Y188L CCy” nM selectivity index”
49 + 4 (26) >78000 >41000
>78000 >78000 >52
28 + 2 (22) 75000 % 50 58000
27 + 3 (40) 40000 = 70 70000
6500 (6) 38000 + 50 40
7.1 + 0.5 (70) 31000 + S0 300000
330 + 10 (500) 3000 + 30 5000
>7500 7500 + 20 S8
1600 + 5 (220) 3200 + 8 440

“Values are means + SD determined from at least three experiments. "Effective concentration 50, concentration needed to inhibit 50% HIV-induced
cytopathic effect, evaluated with the MTT method in MT-4 cells. “Fold resistance: ratio of ECs, value against drug-resistant strain and EC;; of the
WT NL4-3 strain. “Cytotoxic concentration 50, concentration to induce 50% death of noninfected cells, evaluated with the MTT method in MT-4

cells. “Selectivity index, CCqgo/ECy,.
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Table 2. Comparison of Inhibition Potencies, Expressed as 1D, (nM), between the Racemic Compounds 1 and 2 and their
Enantiomers, Tested against RT Wild-Type (WT) and K103N, L1001, Y1811, V1064, Y188L RT Mutants”

IDy,” nM (fold resistance)®

compd WT K103N L1001
1 30+3 174 + 4 (6) 177 + 9 (6)
(S)-1 975 £ 5 >20000 350 + 8 (0.4)
(R)-1 2+ 02 96 + 9 (48) 96 + 1 (50)
2 14 42 22 + 3 (L.6) 280 + 3 (20)
(S)-2 180 + 8 240 + 9 (1.3) >15000
(R)-2 841 8+ 1 (1) 150 + 9 (20)
TMCI120 7+1 100 + 10 (14) 90 + 1 (13)
NVP 400 + 10 7000 + 100 (20) ND
EFV 30+3 3000 + 50 (100) ND

Y1811 V106A Y188L
1260 + 8 (40) 19 + 1 (0.6) 1430 + 20 (50)
>20000 120 + 8 (0.1) >20000
450 + 9 (200) 3+ 02(L8) 195 + 5 (100)
1700 + 10 (120) ND4 150 + 6 (11)
>20000 64 + 4 (0.3) 500 + 8 (3)
750 + 8 (90) 03 + 0.02 (0.04) 3 +02(04)
>1000 ND 380 + 3 (50)
35000 + 100 (87) ND ND
80 +3(3) ND ND

“Values are means + SD determined from at least three experiments. blnhibitnry dose 50, compound dose required to inhibit the HIV-1 rRT activity
by 50%. “Fold resistance: ratio of IDg;mut/ID;WT values. 4ND: not determined.

concentrations of the compounds and variable concentrations
of one of the two substrates (either nucleic acid or nucleotide),
while the other was maintained at saturating doses. The kinetic
parameters V_ . and K, were derived by fitting the
experimental data to the appropriate rate equations (Table S1
in Supporting Information). For both compounds, either
varying the nucleic acid (NA) or the nucleotide (dNTP)
concentrations, the V,,, values of RT WT or K103N decreased
as the inhibitor concentrations increased while the K values
did not change. Thus, the mechanism of action of (R)-1 and
(R)-2 against RT WT and K103N was fully noncompetitive.
The (R)-2 showed K; values lower than those of (R)-1. Binding
experiments were subsequently carried out, with RT WT and
K103N to evaluate the association (k,,) and the dissociation
rate (k) values for each inhibitor with respect to the different
catalytic forms of the enzyme (free, binary complex, temary
complex) along the reaction pathway (Table S2 in Supporting
Information). The k,, rate values were used to calculate the
relative association index (RAI = k., WT /k,, mut). RAI values
were >1 for (R)-1 toward the RT binary and ternary complexes,
while they scored <1 for (R)-2 (toward the free RT and binary
complex). This indicated a different interaction mechanism of
the two compounds with RT: (R)-1 experienced a slower
binding to the mutated form with respect to RT WT, while
(R)-2, surprisingly, associated faster to the mutant RT (Figure
1A). Such unexpected behavior could be related to the presence
of the cyano group into the (R)-2 structure and its ability to
disrupt the K103—Y188 hydrogen bond in the apo form of the
mutated enzyme.” kg values were used to derive the relative
dissociation index (RDI = k 4z mut/k WT). RDI values were,
for both inhibitors, >1 toward the free enzyme and <1 in the
case of the binary and ternary complexes, indicating that the
binding of the compounds to the K103N RT was more stable
than with WT RT once the enzymes were bound to the
substrates (Figure 1B).

Biosensor-based analysis of binding of different NNRTTs to
HIV-1 RT either WT or carrying drug-resistance mutants®”
supported the notion that the inherent flexibility of HIV-1 RT
might explain the existence of high-affinity and low-affinity
forms of RT with respect to NNRTTI binding. Moreover, those
studies revealed that the resistance induced by some mutations
(such as K103N) was due to effects on both the association
(k,,) and dissociation (k) rates of NNRTIs in an inhibitor-
specific manner. In particular, the K103N mutation was found
to stabilize the low-affinity conformation of the enzyme,
thereby increasing both the k,, and kg rates of some NNRTIs.
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Figure 1. (A) Relative association index (RAI) derived from the
association rates (kon) of the inhibitors (R)fl and (R),‘L to RT K103N
and RT WT, expressed as ratio k,, WT/k,, mut. (B) Relative
dissociation index {RDI) derived from the dissociation rates (k) of
the inhibitors from RT K103N and RT WT, expressed as ratio kg
mut/k,gz WT. free, free enzyme; bin, binary complex; ter, ternary
complex. Error bars indicate the standard deviations (£SD).

Binding of substrates to RT is known to stabilize specific
conformations of the enzyme, thus narrowing its range of
inherent flexibility. According to the studies mentioned above,
this implies that a given mutation will exert its effects on a
ditferent set of possible enzyme conformations, depending on
whether the enzyme is unliganded, bound to nucleic acid, or in
the ternary complex conformation. Our data suggest that such
substrate-induced conformational changes are capable of
influencing the ability of a certain mutation to affect the
different kinetic steps of NNRTI interaction.

A structure-base study by means of ComBinE'*-like protocol
was undertaken (see Supporting Information) to further
support the experimental evidence on the absolute config-
uration of the most- and the least-active 2 enantiomers and to
provide a quantitative assessment of the mutation influence on
the activity potency. The statistically most robust ComBinE
model CM4, (previously developed without consideration of
these compounds, Ballante, F, et al. . Comput.-Aided Mol. Des.,
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submitted for publication) was used to verify the mutation role
on the activity profile of (R)- and (S)-1 and of (R)- and (S)-2.

1t could be argued that the use of static unrefined complexes
cannot account for the dynamic aspect of ligand binding,
nevertheless the CM4 models is able to highlight some aspects
that would be otherwise ignored to interpret the experimental
data. Application of the CM4 model to the inhibitors
successfully reproduced the experimental eudismic ratio of
(R) and (S) enantiomers as well as the increase of potency of 2
compared to 1. In particular, among the residues around the
RT NNBP a main role can be quantitatively attributed to
Lys101 that was not considered in the RT mutated list. Other
important residues for the binding strength were the highly
conserved Trp229 and Tyr188 residues. The latter (Tyr188 in
the WT isoform) serves as a steric anchor point to fulfill the
concomitant lack of interactions that occurs in other mutation
points such as in the case of V106A (Figure 2).

Figure 2. Comparison between (R)-2 (green carbon atoms) docked
into WT {yellow) and V106A mutated {gray} RT. The only residue
that appreciably moves is Tyr188. The mutated Alal06 is displayed in
magenta.

B CONCLUSION

Among the most potent pyrimidine derivatives described by us
as anti-HIV-1 agents, the N,N-DABO 1 and the DABO—-DAPY
hybrid 2, both carrying a stereogenic center at the C6-benzylic
position and previously prepared and tested as racemates, were
resolved and characterized for their enantioselective activities in
HIV-1-infected cells as well as by enzyme assays. In both
cellular and enzyme assays, the R enantiomers of the two
compounds were significantly more potent than the S
counterparts, the racemates having an intermediate behavior
compared to the corresponding single enantiomers. (R)-2 was
typically more efficient than (R)-1 as well as than the reference
compounds TMC120, NVP, and EFV in inhibiting the
cytopathic effect of HIV-1 strains in MT-4 cells with the
exception of the Y181C mutant, against which TMC120 and
EFV showed the highest effects. However, (R)-2 was one
magnitude order less toxic than TMCI120 and EFV, thus
reaching a very high selectivity index In enzyme assays, (R)-2
displayed the highest inhibitory activities against RT WT,
K103N, V106A, and Y188L, while against L100I and Y1811
(joined in this case to EFV) (R)-1 was more efficient. The
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effect of K103N RT mutation on the (R)-1 and (R)-2 activities
was further characterized. A ComBinE model based on 14
complexes between RT and EFV and NVP without any
knowledge of the herein reported compounds, reproduced with
acceptable errors of prediction quantitatively the differences
between different pyrimidinone derivatives and their enan-
tiomers and was used to gain insight into the role of RT
mutations on the inhibitors’ biological activities.

B EXPERIMENTAL SECTION

Chemistry. Melting points were determined on a Buchi 530
melting point apparatus and are uncorrected. "H NMR spectra were
recorded at 400 MHz on a Bruker AC 400 spectrometer; chemical
shifts are reported in & units relative to the internal reference
tetramethylsilane (Me,Si). All of the compounds were routinely
checked by TLC and 'H NMR. TLC was performed on aluminum
backed silica gel plates (Merck DC, Alufolien Kieselgel 60 F254) with
spots visualized by UV ]igbt. All of the solvents were reagent grnde
and, when necessary, were purified and dried by standard methods.
Concentration of solutions after reactions and extractions involved the
use of a rotary evaporator operating at a reduced pressure of ca. 20
Torr. Organic solutions were dried over anhydrous sodium sulfate.
Elemental analysis has been used to determine purity of the described
compounds, that is >95%. Analytical results are within +0.40% of the
theoretical values, All chemicals were purchased from Aldrich Chimica,
Milan (Italy), or from Lancaster Synthesis GmbH, Milan (Italy), and
were of the hig]]est purity.

Preparation of 6-[1-(2,6-Difluorophenyl)-ethyl]-5-methyl-2-
nitroamino-3H-pyrimidin-4-one (4). See Supporting Information.

Preparation of 6-[1-(2,6-Difluorophenyl)-ethyl]-5-methyl-2-
(methyl-n-propyl-amino)-3H-pyrimidin-4-one (1). A mixture of
6-[1-(2,6-difluorophenyl)-ethyl}-5-methyl-2-nitroamino-3H-pyrimi-
din-4-one 4 (100 mg, 0.322 mmol) and N-methyl-N-propylamine
(707.2 mg, 9.66 mmol, 0.99 mL) was heated in a sealed tube of a Parr
apparatus at 120 °C for 5 h. After cooling, the crude residue was
dissolved in ethyl acetate (15 mL) and water (15 mL). The aqueous
phase was extracted with ethyl acetate (3 X 15 mL). The organic
extracts were washed with brine {1 X 20 mL), dried, evaporated under
reduced pressure, and purified by column chromatography (silica gel,
ethyl acetate/chloroform 1:2) to give the desired product 1 as a white
powder (75.1 mg, 72.6%); mp 128—130 °C (dichloromethane/diethyl
ether). '"H NMR (CDCl;)  10.70 (s, 1H, NH), 7.13 (m, 1H, H
benzene ring), 6.81 {m, 2H, H benzene ring), 4.54 (q, 1H, CHCH,),
3.50 (m, 1H, NCHHCH,CHj,), 3.37 (m, 1H, NCHHCH,CH,), 3.06
(s, 3H, NCH,), 1.93 (s, 3H, CH,;), 1.64 (d, 3H, CHCH,), 1.54 (m,
2H, NCH,CH,CH,), 0.88 (s, 3H, NCH,CH,CH,). Anal. C, H, N, E:
% Caled C, 63.54; H, 6.59; N, 13.08; F, 11.82, Percent found C, 63.22;
H, 6.48; N, 13.25; F, 12.01.

Enantioseparation and Chiroptical Characterization. See
Supporting Information.

Molecular Modeling: ComBinE and Docking Calculations.
See Supporting Information.

Biology: Anti-HIV Activity in Lymphoid Cells. Biological
activity of the compounds was tested in the lymphoid MT-4 cell
line {received from the NIH AIDS Reagent Program) against the WT
HIV-1 NL4—3 strain and three different HIV-1 strains, as described
before.''? For a brief description, see Supporting Information.

Anti-HIV Reverse Transcriptase Assays. RNA-dependent DNA
polymerase activity was assayed as described'? in the presence of 0.5
pg of poly(rA)/oligo{dT),,, (0.3 gM 3-OH ends), 10 M [*H]-
dTTP (1 Ci/mmol), and 2—4 nM RT in the presence of §% final
concentration of DMSO. For a brief description, see Supporting
Information.

B ASSOCIATED CONTENT

© Supporting Information
Details on enantioseparation and absolute configuration
assignment, biochemistry and molecular modeling studies,
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and experimental section. This material is available free of
charge via the Internet at http://pubs.acs.org.
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B ABBREVIATIONS USED

CCyp, compound concentration toxic for 50% of cells; CSP,
chiral stationary phase; DABQs, dihydro-alkoxy-benzyl-oxopyr-
imidines; DAPYs, diarylpyrimidines; DEA, diethylamine; ECqg,
effective concentration able to protect 50% of cells from the
HIV-1 induced cytopathogenicity; EFV, efavirenz; F,-N,N-
DABOs, 3-alkyl-2-{N,N-disubstituted )amino-6-(2,6-difluoro-
phenylalkyl) pyrimidin-4(3H)ones; HIV, human immunodefi-
ciency virus; MTT, 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenylte-
trazolium bromide; NH-DABOQs, dihydro-alkylamino-benzyl-
oxopyrimidines; NNBS, non-nucleoside binding site; NNRTTs,
non-nucleoside reverse transcriptase inhibitors; NVP, nevir-
apine; RT, reverse transcriptase; SAR, structure—activity
relationship; S-DABOs, dihydro-alkylthio-benzyl-oxopyrimi-
dines; W, wild-type
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ABSTRACT: Since it first appeared in 1988 3-D QSAR has proved its potential in the o
field of drug design and activity prediction. Although thousands of citations now exist in
3-D QSAR, its development was rather slow with the majority of new 3-D QSAR
applications just extensions of CoMFA. An alternative way to build 3-D QSAR models,
based on an evolution of software, has been named 3-D QSAutogrid/R and has been
developed to use only software freely available to academics. 3-D QSAutogrid/R covers
all the main features of CoMFA and GRID/GOLPE with implementation by
multiprobe /multiregion variable selection (MPGRS) that improves the simplification of
interpretation of the 3-D QSAR map. The methodology is based on the integration of
the molecular interaction fields as calculated by AutoGrid and the R statistical
environment that can be easily coupled with many free graphical molecular interfaces
such as UCSF-Chimera, AutoDock Tools, JMol, and others. The description of each R
package is reported in detail, and, to assess its validity, 3-D QSAutogrid/R has been
applied to three molecular data sets of which either CoMFA or GRID/GOLPE models were reported in order to compare the
results. 3-D QSAutogrid/R has been used as the core engine to prepare more that 240 3-D QSAR models forming the very first
3-D QSAR server (www.3d-gsar.com) with its code freely available through R-Cran distribution.

H INTRODUCTION Alignment

The main requirements of molecular analyses today are as l
follows: speed, automation, optimization, and economy. Three-
Dimensional Quantitative Structure—Activity Relationships (3-
D QSARs) approaches are widely used and represent a viable
medicinal chemistry tool whose application domain range from l Statistical
rationalizing a structure—activity relationship quantitatively and R
retrospectively to prioritizing the synthesis of molecules for AnaIYSIS
synthesis and testing; its development considering the actual
technology and ingsight sought becomes impgrtant. Till o / \ / \

Biological 2-D/3-D Plots

recently, the well-known CoMFA® technique and the

m— Numerical

MIF Information Results

GRID*/GOLPE*® approaches were the 3-D QSAR tools Aetivty

most widely used in the last two decades; although successful, Figure 1. Overview of a classical 3-D QSAR.

both these methods utilize proprietary software and require

significant user interaction. The classical flowchart of a 3-D interactions, and random and systematic errors. As conceived,

QSAR can be summarized as reported in Figure 1, and it lists the procedure needs only the prealigned training and test sets

the following; molecules. The protocol allows the iterative generation of
1) Selection and alignment of Training and Test Sets hundreds/thousands 3-D QSAR models and selection of the
2) Calculation of Molecular Interaction Fields (MIFs) best on the basis of conventional squared correlation (r%),

3) Importing of Bioactivities and linking to the MIFs

4) Statistical evaluation

$) Interpretation of results by means of 2-D and 3-D plots

Excellent reviews®” of 3-D QSAR methods have been
recently published; for any further details, the reader is referred

predictive cross-validation squared correlation (gq’), and
standard deviation error of prediction (SDEP or root mean
squared error of prediction, RMSEP) statistical coefficients.
After this project was started, another open-source method,
namely OPEN3DQSAR, was reported by Tosco and Balle."

to them.
Herein is described an alternative approach based on the use
of open-source software to perform 3-D QSAR studies fully Received: March 7, 2012
optimized to minimize costs, calculation time, user/computer Published: May 29, 2012
W ACS Publications @ 2012 American Chemical Society 1674 dx.doi.org/10.1021/ci300123x% | L Chem. Inf. Model. 2012, 52, 1674—1685
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B OVERVIEW OF THE NEW PROCEDURE

The new procedure is characterized by a set of new R®-based
packages that make it possible to carry out, automatically and in
parallel, 3-D QSAR studies {like CoMFA and GRID/GOLPE).
Different from the previously mentioned methods, the united
atom force field (FF) implemented in the AutoGrid program
(AutoDock Suite”) was used to generate the Molecular
Interaction Fields (MIFs). Upon statistic treatment of the
merged biological activity and MIFs by means of the R
environment and molecular graphic softwares {UCSF Chi-
mera,*" Python Molecular Viewer'! (PMV), Autodock Tools'*
(ADT}) useful 2-D (actual vs recalculated {fitting), actual vs
predicted (cross validation), principal component analysis
(PCA scores, loadings and scores/loadings), partial least-
squares {PLS t-u and weights), and 3-D plots (actual fields,
PLS-Coefficients, Activity contribution, CoMFA-Like (PLS-
Coeff*StDev}, and various related PLS parameters) are
generated to graphically inspect, analyze, and interpret the 3-
D QSAR models. Each R based package was conceived to
perform specific steps ensuring high specificity, versatility, and,
compared to other methods, deep optimization of the models.

Worthy of note is the included ability to determine, through
a combinatorial calculation, the most appropriate pretreatment
values to get preoptimized 3-D QSAR models; therefore,
particular effort was given to data pretreatment and variable
selection. To this aim, heavy use of the cross-validation {CV}
techniques such as leave-one-out {LOQ), leave-some-out
(LSO), k-fold (KF), and Monte Carlo (MC) based CVs were
applied either in standalone or in conjunction with a genetic
algorithm {GA) as implemented in the genalg R package!
Guided Region Selection (GRS) using just one probe, or a
compilation of different probes (Multi Probe Guided Region
Selection (MPGRS)), is a further available variable-selection
method as previously reported.”**¢

The whole approach is described in detail below with its
applications, either on Iigand—based17 or structure-based'®
prealigned, to molecular data sets previously reported using
CoMFA and GRID/GOLPE, respectively.

At the time all the models were completed, comparison with
OPEN3DQSAR software’ was not possible due to patent
restrictions that prevented CoMFA’s free release in Italy.

H COMPUTATIONAL METHODS

All calculations used a 6 blades (8 Intel-Xeon E5520 2.27 GHz
CPU and 24 GB DDR3 RAM each) cluster {48 CPU total}
running Debian GNU/Linux $5.03 64 bit operating system. The
entire sequence was automated; to obtain 3-D QSAR models,
the user needed only to input the prealigned data set and the
values of the corresponding experimental parameters {ie,
biological activity).

Alignment Rules. The described methodology does not
include an alignment engine; therefore, all the molecules
contained in the data sets were used prealigned. Alignment
procedures using several molecular superimposition programs
are currently under investigation at the Rome Center for
Molecular Design (RCMD, www.rcmd.it}.

MIF Calculation. MIFs were generated using AutoGrid
Software (based on the AMBER united-atom Force Field),
although almost any probe can be used, in the current
implementation 8 different probes (Table 1) were used in
agreement with the most common residue atomic composition.
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Table 1. List of the AutoGrid Probes Employed for MIF
Calculation

probe type description
A aromatic carbon
C aliphatic (sp®) carbon
OA hydrogen-bond-accepting oxygen
HD hydrogen bonded to heteroatom
NA hydrogen-bond-accepting amine nitrogen
N amide nitrogen
e electrostatic
d desolvation

The sulfur probe (SA} was eliminated due to its close similarity
to the OA (hydrogen-bond accepting oxygen) probe.
The calculated AutoGrid MIFs were imported in the R
environment by means of the D2M R package {see below).
Statistical Analysis. The actual construction of statistical
models was performed by a series of dedicated R packages as

listed in Table 2 and arranged in Figure 2.

Table 2. List of the R Compiled Packages

R package description

D2M data to model

CAPP combinatorial analysis of pretreatment parameters
MDP model data pretreatment

v cross validation

Vs variable selection

GRS guided region selection

MPGRS multi probe guided region selection

ESP external set prediction

Ys Y-scrambling

For a given Training Set, 3-D QSAR PLS™ models were
generated according to the MIF calculations described above.
Different MIFs calculated with other softwares® could easily be
imported as well.

‘While running the 3-D QSAR procedure, each package
{named using the acronym build on the particular stage
petformed) was designed to achieve a statistical objective while
saving the statistical information, workspace, and logs.

Package "D2M’ (Data to Model). Two main steps are
achieved by D2M: (1) merging of MIF(s) data with biological
activities; (2) building as many raw 3-D QSAR models as the
number of user-defined principal components (PC}, saving the
reloadable workspace and spreadsheet files containing the
conventional correlation coefficients (i*}, the standard
deviation errors of recalculation {SDEC), and the PLS
recalculations for each PC.

Package "CV" (Cross-Validation). While the application of
PLS, or other statistical techniques, to the training set are
necessary to obtain a set of 3-D QSAR models, internal
validation by CV is essential to assess chance correlation,”
select the optimal model dimensionality (number of PCs), and
measure the internal predictive ability by means of statistical
coefficients such as cross-validated correlation coefficient {(4°)
and standard deviation error of prediction {SDEP).

Different validation methods were included: LOO {leave-
one-out), LSO (leave-some-out), KF {k-fold), and MC {Monte
Carlo). For any implemented CV, several PLS calculations are
performed as outlined in Table 3. All partial and final statistical

dx.dol.org/10.1021/ci300123x 1.4, Chem, Inf. Model 2012, 52, 1674-1685
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Figure 2. 3-D QSAutogrid/R process workflow. Acronyms inside the blue meshed square refer to the packages (steps) that effectively build or
optimize the statistical PLS 3-DQSAR models; others are related to packages that perform analysis on these created models (see below for the
description of each package). D2M: “Data to Model”; CAPP: “Combinatorial Analysis of Pretreatment Parameters”; MDP: “Model Data
Pretreatment”; CV: “Cross-Validation”; VS: “Variable Selection”; (MP)GRS: “(Multi Probe) Guided Region Selection”; ESP: “External Set

Prediction”; YS: Y-scrambling,

coefficients to exhaustively analyze the cross-validation process
for each method are stored and can be inspected.

Table 3. Cross-Validation (CV) Methods Implemented in
the “CV” Package, with the Relative Number of PLS
Calculations”

CV
method LOO LTO KF MC
(9% N N! K * iterations iterations

combinations 2N = 2)!

“LOO: Leave One OQut; LTO: Leave Two Out, KF: k-Fold, MC:
Monte Carlo; N: no. of molecules in the Training Set, K: no. of k
subsamples (folds).

Package “CAPP” (Combinatorial Analysis of Pretreatment
Parameters). Raw data usually need to be pretreated to
minimize redundancy,” even though pretreatment parameters’
values are generally arbitrarily assigned without any systematic
approach, thus ignoring a possible refinement based on the
specific statistical model under development. To face this issue,
a methodology was developed to systematically seek the more
efficient data pretreatment values (energy cutoff, zeroing of
very low data points, and minimum standard deviation cutoff).
The CAPP package, through combinatorial analysis for each
combination of parameters’ values, builds the relative 3-D
QSAR PLS model readily evaluated for each PC by different
cross-validations (choice between LOO, LSO or KF). The
optimal pretreatment combination is then selected according to
the maximum q° while considering the percentage decrement
value 2(;1‘ sPRESS for each PC (Figure 3) as suggested by
Gillet.

Package “MDP” (Model Data Pretreatment). By the means
of MDP, the user filters the data set values (MIFs) either
setting the pretreatment parameters in an arbitrary way or as
supplied from the CAPP procedure. A further parameter not

included in the CAPP package is recognition of 1N kind of 2-
level variable elimination (variables which take only 2 values in
all of the data file, one of which appears only in one object). In
the data pretreatment, the user can freely set which
pretreatment to switch on or off. Although the logical sequence
should be Field Cut-Off = Zeroing — SD Cut-Off = 1N kind
of 2-level variable elimination, no restriction is set to the chosen
data pretreatment sequence. At each chosen pretreatment stage,
the PLS is applied while saving the r*, SDEC, and all the
recalculated vs experimental responses for each extracted PC.

Package "VS" (Variable Selection). In order to improve the
predictability of the statistical model, different variable-selection
procedures like D-optimal de:;ignz3 (DOD), Fractional
Factorial Design® (FFD), simulated annealing™ (SA), and
Genetic Algm'ithrn26 (GA) are currently used in QSARs>™%
and 3-D QSARs.™ In the VS package only the GA was actually
implemented, while DOD, FFD, and SA are currently under
development.

In the VS package, the GA-selection variable was
implemented by the means of the R-binary genetic algorithm
(genalg R package)' in combination with an ad hoc fitness
evaluation R script in which SDEP/RMSEP was used as the
discriminator.

Package “GRS" (Q2-Guided Region Selection). Along with
the above variable selection procedures, other approaches to
improve both the robustness and goodness of the models, such
as q’-guided region selection (?J-GRS) and smart-region
definition (SRD), were developed.'**" The ¢>-GRS procedure
was implemented in this approach and, for each separate probe
field, was performed by the following steps: (1) the box is
divided into a user-defined number of subregions leading to
many PLS submodels; (2) each generated submodel is
automatically validated through one the above-described
cross-validation methods (LOO, LSO, MC, or KE); (3) for
each PC, only those regions displaying a q" value higher than a
user-defined threshold value are selected, and a new 3-D QSAR

1676 dx.dol.org/10.1021/¢i300123x | J. Chem. Inf. Model. 2012, 52, 16741685
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Figure 3. The CAPP Process. Through a combinatorial analysis according to predetermined setting values (as listed in Table 4), a certain number of
combinations is investigated; after evaluation for each PC, the best pretreatment setting, the optimal overall-pretreatment combination is selected
considering both the maximum g’ and the percentage decrement sPRESS values.”

model is built and cross-validated; (4) the final model is chosen
at the optimal number of PC.**

The g°-GRS method implemented differs from the previousty
reported™” as step 3 uses a bidimensional approach to select the
more informative regions, so that for each dimension (PC) a
different number of boxes may be retained to define the best
model.

The maximum number of regions is only limited by the
available amount of computer memory. Work is in progress to
reduce this limitation.

Package “MPGRS” (Multi Probe Guided Region Selection).
This package, an extension of the above single-probe ¢’-GRS
variable selection, considers as a further dimension probe
interexchange, resembling what was previously described.” In
particular, the following steps were considered: (1) starting
from a series of monoprobe MIFs, for each subregion, a PLS
model was built and cross-validated for i numbers of PCs
(Figure 4, Step 1); (2) for the considered probe list, the
obtained qz values (herein referred as first level qz, qZF, )
belonging to the same region and PC were sorted. The ¢’y
maximum values indicated the optimal probe for each PC
(called “first level” PC, PCp; ) and region; all values constituted
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the PCy; spreadsheet (Figure 4, Step 2); (3) as indicated in the
PC;, spreadsheet for each PC, the relative final multiprobe MIF
and 3-D QSAR model were generated for g numbers of
“second level” PCs (PCg) with associated q°g; thus, each
multiprobe model was indicated by two indexes recalling both
PCy; and PCy; (PCpy ) to which corresponded a q’p;,q value
(Figure 4, Step 3); (4) the optimal multiprobe 3-D QSAR
model was selected according to the q°g,g; values applying the
percentage decrement value of sPRESS in a bidimensional way.
First were selected models at fixed first-level PCs (PCpy,) (first
dimension), then the PCy index (second dimension) was
directly retrieved from the relative g’ values. (Figure 4, Step
4). As a result, the optimal MPGRS model was characterized by
two determined values of PCs (PCpg) that implicitly
contained the most informative probe for each subregion and
their best combination. Notably, the final model obtained by
merging the selected subregions back into a single multiprobe
MIF represented a very useful tool to derive advanced 3-D
QSAR studies. The same FL:SL notation can also be applied to
the simple GRS procedure described above.

Package "¥S" (Y-Scrambling). Elimination of chance

correlations of generated models was checked via the

dx.doi.org/10.1021/¢i300123x | L. Chem. Inf. Model, 2012, 52, 1674—1685
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Table 4. List of the Pretreatment Parameters (With Relative Editable Values and Number of Combinations) Analyzed by

CAPP®
parameter max value min value
PCO Maxpeq Mingeq
NCO Maxyeo Minyeo
Zeroing Max, Min,
MSDCO Maxyspeo Minyipeo

no. total combinations = PCOc X NCO¢p X Zcg X MSDCOc5

step value no. comb
Stey .
Preo PCO = Maxy-o, — Mingep i1
Step, o
Ste .
Prco NCO, = IMaxyq ol — Minyg gl w1
Stepy g
Steps Max,; — Min,
Zep = || ———2Z]+1
Step,
Stepuspeo

MSDCOs = |:[ Maxyspon — MinMSDCD] + 1]

Step, MSDCO

PCO (Positive Cut Off); Maspco {maximum PCO value); Minpe (minimum PCO value); Steppeg (incremental PCO value); PCOcp {number of
combinations that origins only for the PCO analysis); NCO (Negative Cut Off); Maxyo (maximum NCO value ); Mingeo {minimum NCO value);
Stepyco (incremental NCO value); NCO¢y (number of combinations that erigins only for the NCO analysis); Zeroing: zeroing of very low data
points; Max, (maximum zeroing value); Min, {minimum zeroing value); Step, (incremental zeroing value); Z¢y (number of combinations that
origins only for the zeroing analysis); MSDCO (Minimum SD cut-off); Maxypee (maximum MSDCO value); Minygpeo (minimum MSDCO
value); Stepysnco (incremental MSDCO value); MSDCOgy, (number of combinations that origins only for the MSDCO analysis).

experimental response scrambling approachsz The YS package
allowed a user-defined number of iterations randomly coupled
property/activity values to evaluate the risk of chance
correlation.

Package "ESP” (External Set Prediction). As predictions are
the main purpose for any QSAR-related model, validation
through external test sets is mandatory. Furthermore, ESP was
compiled as an independent program in place of internal
validation {CV} to select the optimal number of PCs and as an
extension for CAPP, GRS, and MPGRS variable selections.
Such an approach allowed model optimization for external
prediction.

In the current version, the ESP applied the same training-set
pretreatment. In the case of (MP)GRS models, the training set
selected/merged regions were retained and applied to the test
set.

Graphical Results. Besides the essential role of PLS, a
successful 3-D QSAR is also due to the number of graphical
insights that can be generated to help interpretation of
numerical results. Without graphical analyses, 3-D QSAR
would be reduced to QSAR with a great number of parameters.
CoMFA success measurable in more than 3340 papers citing it
(SciFinder accessed February 2012} is surely due to the fact
that SYBYL allowed depiction of user-friendly 3-D plots
correlating structure with activity. Regarding the current
method, the gnuplot style implemented in R through the
ggplot IibrarySs allowed creation of 2-D graphics score plots,
loading plots, regression plots, inner-correlation plots, biplots,
and many others in a straightforward way. Through an ad-hoc
“in house” utility, the MIF, PLS coefficient, activity contribution
3-D plots were written in a format to be used by molecular
viewers such as UCSF Chimera,'® Python Molecular Viewer
(PMV),"! Autodock Tools {(ADT),"? and Jmol* to generate
high-quality colored molecular maps. To better interpret the 3-
D QSAR model, more than one map can be overlapped to
generate a complete scenario (see Figures in the application
section).
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B RESULTS AND DISCUSSION

The application of the new 3-D QSAR procedure to a data set
of aligned opioid-receptor antagonists'” (LB data set} and two
data sets of HCV NSSB allosteric inhibitors'® (SB data sets) is
reported.

Ligand-Based Case Studies: Opioid-Receptor Antag-
ohists. To test the new 3-D QSAR procedure, a series of
opioid-receptor antagonists, previously described by Peng et
al™ in a CoMFA application, were used to build several 3-D
QSAR models. The data set was comprised of prealigned 74
compounds, separated into training and test sets with
associated &, y1, K opioid-binding affinities.

The new method was conducted maintaining the molecular
alignrpent used in the original paper."” Applying a spacing grid
of 1 A and considering the binding-affinity sets of data (5, y, k)
with 8-molecular probes, 24 3-D QSAR models were obtained.

During the model definitions the CV was conducted via (1)
Leave-One-Out (LOO), (2) Leave-Two-Out (LTO), (3) k-
Fold (KF), and {4) Monte Carlo {MC) methodologies.

Initially, the raw models (Tables S1, S15, S28) were
optimized through the CAPP package setting the pretreatment
intervals as listed in Table § using the k-fold cross-validation
with §-random groups and 100 iterations and monitoring the ¢
and SDEP values. For the e probe, several trials (data not
shown) led to set a fixed Negative Cut Off (NCO) value, equal
to —0.5.

A total of 12,221 combinations for each 3-D QSAR model
were processed using 5% sPRESS reduction as suggested by
Gillet™ to select the best combination and detive the pretreated
PLS model; this led to an average ¢’gspcy value increment
ranging from 26% to 55% (Tables §7, §21, $34}.

The best pretreated models were then optimized through the
GA-variable selection (VS package), setting the number of
chromosomes, number of generation, percentage of mutation
chance, and % of best individuals that are kept into the next
generation to 50, 100, 0.005, and 20, respectively (Tables S6,
$20, and S33). As reported in Table 6, the statistical quality of
the models is similar to those obtained by the original
CoMFA'" (Table 7), although the 3-D QSAutogrid/R models

dx.dol.org/10.1021/ci300123x 1.4, Chem, Inf. Model 2012, 52, 1674-1685
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Figure 4. The MPGRS Process. For each subregion a PLS model was built and cross-validated (Step 1) in order to obtain, for each “first level” PC
(PCgy), the relative optimal multiprobe list (Step 2) and 3-D QSAR model characterized by an established number of “second level” PCs (PCgy,
Step3). Applying a bidimensional criterion (Step 4), the optimal multiprobe 3-D QSAR model was then selected.

seem slightly more robust being described by a fewer number
of PCs. For direct comparison, a further 3-D QSAR model was
built using only aliphatic carbon-atom and the electrostatic
probes in a single model applying only the CAPP procedure. As
reported in Table 7 and Table 8, the CoMFA and the
Autogrid/R  double-probe models (DP) were statistically
similar. Furthermore, the YS package was applied leading to
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low ryg and negative g’y values thus supporting the lack of
chance correlation in reported models.

Along with numerical output, a series of plots (scores,
loadings, actual field, PLS coefficients, activity contribution and
CoMFA-like) were generated to allow interpretation of the 3-D
QSAutogrid/R models. Analyses of the 3-D QSAR models
were conducted using all the graphical plots. Regarding the -
opioid receptors, the CoMFA-like plots (the default TRIPOS

dx.doi.org/10.1021/¢i300123x | L. Chem. Inf. Model, 2012, 52, 1674—1685
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Table 5. CAPP Settings Adopted for the -, y-, k-Opioid
Receptor Antagonists 3-D QSAR Models®

min value parameter max value step
o] PCO 30 5.0
0 Zeroing 01 001
0 MSDCO N 0.05

“PCO: Positive Cut Off; Zeroing: zeroing of very low data points;
MSDCQ: Minimum SD Cut Off

Table 6. Opioid-Receptor Antagonists: Autogrid/R PLS
Models Statistical Results (CAPP and GA Processes Were
Applied)”

model  OR B BC s Troo  Txsrey s Tvs
1 & A 2 0.81 0.73 0.70 0.27 —0.37
z 8 C 2 0.82 0.74 0.71 032 —0.35
3 & HD 2 0.83 078 072 033 —034
4 & NA 2 0.83 0.78 0.73 031 —0.34
s é N 2 0.83 0.76 0.72 0.29 —0.32
6 8 OA 2 0.83 0.74 0.71 032 —0.37
7 & e 3 0.69 0.58 0.56 022 —0.19
8 & d 3 0.70 0.59 0.55 0.24 —0.30
9 H A 3 0.91 0.82 0.76 0.57 —0.50
10 H C 3 0.0 0.81 0.78 0359 —0.50
11 H HD 3 0.90 0.81 0.75 047 —0.49
12 H NA 3 0.91 0.81 0.78 0.59 —0.50
13 H N 3 091 0.83 0.78 052 —0.61
14 H 0A 3 0.91 0.83 0.77 051 —0.61
15 M e 1 0.31 0.21 0.20 0.06 —0.10
16 M d 3 0.72 0.60 0.52 027 —0.39
17 K A 2 0.78 0.58 049 042 —0.37
18 K C 3 0.81 0.62 0.55 0.54 —0.53
19 X HD 3 0.82 0.72 0.65 0.34 —0.41
20 X NA 3 0.80 0.62 0.54 0355 —0.47
21 K N 3 0.80 0.61 0.52 0.54 —0.48
22 K QA 3 0.82 0.65 0.59 0.54 —0.44
23 X e? 2 0.38 0.20 0.18 0.13 —0.18
24 K d 3 0.58 0.38 0.34 029 —0.36

“The e models 15 and 23 reported were only pretreated due to too
few variable after GA selection. “OR: Opioid-receptor data, P:
Autogrid Probe, PC: optimal number of principal components/latent
variables, #’: conventional square-correlation coefficient; g’y oo cross-
validation correlation coefficient using the leave-one-out method;
§'xspeyt cross-validation correlation coefficient using the k-fold cross-
validation with § random groups and 100 iterations; Pyst average
square correlation coefficient obtained after Y-scrambling process
using 100 iterations; g’yg: average cross-validation correlation
coefficient using the leave-one-out method obtained after Y-scrambling
process using 100 iterations.

Table 7. Opioid-Receptor Antagonists: Original CoMFA
Models Statistical Results®

model OR P PC s TLo0 Trseev
25 8 CoMFA 4 091 0.69 -
26 “ CoMFA 4 052 067 -
27 K CoMFA 6 0.96 0.60 -

“OR: Opioid-receptor data; P: standard CoMFA Probe C;*, PC:
optimal number of principal components/latent variables, v conven-
tional square-correlation coefficient; q’;oo: cross-validation correlation
coefficient using the leave-one-out method; 'gsrey: cross-validation
correlation coefficient using the &-fold cross-validation with 5 random
groups and 100 iterations.
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Table 8. Opioid-Receptor Antagonists: Autogrid Double-
Probe (DP) PLS Models Statistical Results (Only the CAPP
Process Was Applied)”

model OR P PC 7 Ghoo disev v o

28 8 Autogn‘d 3 0.83 0.70 067 041 —0.50
DP

29 #  Autogrid 4 088 0.68 0.63 082 —0353
DP

30 K  Autogrid 3 0.84 0.67 0.63 050 —053
DP

“OR: Opioid-receptor data; P: Autogrid double probe (DP, C, and e
probes); PC: optimal number of principal compenents/latent
variables; % conventional square-correlation coefficient; qZLooi
cross-validation correlation coefficient using the leave-one-out
method; q21<spcvl cross-validation correlation coefficient using the &-
fold cross-validation with § random groups and 100 iterations; r'yg:
average square correlation coefficient obtained after Y-scrambling
process using 100 iterations; qZYS: average cross-validation correlation
coefficient using the leave-one-out method obtained after Y-scrambling
process using 100 iterations.

StdDev*PLS Coeff contour plots) for the C probe that allowed
highlighting the molecular features indicating where sterically
bulky groups were favorable {green) or unfavorable (yellow)
are reported in Figure 5. A CoMFA model of the data was
reproduced with a recent SYBYL version, and the related
contour plots confirmed that the new procedure generated
similar graphical information {compare Figures 5 and S2 with
Figure S4).

Model 2 (Table 6) CoMFA-like maps (Figure 5) were in
good agreement with those reported by Peng'’ and displayed
two green areas indicating that around bulky groups in
positions §', 6, 7' {RS substituents of Core 1 as in ref 17) of
18, 20, 22, and 50 (Figure 5) were well tolerated. On the other
hand, two yellow contours (unfavorable steric interactions)
were present and give some hints to explain the reduced
activities of 30 and 67 that bear bulky groups in R1 {Core 1,
30) and R3 (Core 4, 67) and that of 68 (one of the least active)
which to some extent occupies both regions. The latter region
was not viewable in Figure $4, likely due to differences in force
field and molecular formats.

Slightly less agreement was observed between the electro-
static probe-derived plots (compare Figure 6 and Figure S3
with Figure S5 in the Supporting Information) and its CoMFA
counterparts; differences were mainly located on a supplemen-
tal region that was found on the NTI indole group. Likely,
these differences were surely due to the force-field differences;
AutoGrid uses a united-atom force field, while CoMFA uses the
all-ator TRIPOS force-field.

Similar results were obtained analyzing the models for the y-
and x-opioid receptors; therefore, to avoid redundancy, the
analyses are reported as Supporting Information {pages $13—
$32).

As in the original CoMFA paper,'’ the 3-D QSAutogrid/R
models were externally validated using test sets (TS1) compiled
from the original data sets and external test sets (I$2)
compiled from different literature sources {Table 9). The
predictions were similar to the original CoMFA paper and,
therefore, are not commented on in detail {see pages S51—S52
in the Supporting Information).

Structure-Based Case Studies: Hepatitis C Virus NS5B-
Polymerase Inhibitors. A detailed GRID/GOLPE applica-
tion was reported on HCV NSSB non-nucleoside inhibitors
(NN1)"® binding at two distinct allosteric sites {thumb and

dx.dol.org/10.1021/ci300123x 1.4, Chem, Inf. Model 2012, 52, 1674-1685
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A

Figure 5. CoMFA-like steric-contour map derived from the C probe for the 5-opioid receptors. A: compounds 18 (sky blue), 20 (white), 22 (green),
50 (purple), and 67 (red). B: compounds 30 (brown) and 68 (pink). Contour levels: 85% (positive green, negative yellow). Hydrogen atoms are
omitted for the sake of clarity. In A and B are reported the same contour maps..

Figure 6. COMFA-like electrostatic contour map derived from e probe
for the §-opioid receptors. Compounds: Naltrexone in magenta, NTI
in yellow, 24 in green. Contour levels: 85% (positive blue, negative
red). Hydrogen atoms are omitted for clarity.

palm). Thumb and palm NNIs data sets were chosen, as
training sets to derive 3-D QSAR models using the new
procedure with the purpose of comparing the results with those
obtained by the well-established GRID/GOLPE method."®
Interaction energies between the eight probes and each
molecule were computed using a grid spacing of 1 A; thus a
total of 16 3-D QSAR initial raw models were built. To build
optimized models, CAPP analyses were conducted analyzing
27,775 combinations (Table S47) with the best ones chosen
applying the same criteria for the previous opioid case. The
CAPP procedure for both thumb- and palm-training sets
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Table 9. § Test Set Predictions Indicated by SDEP Values”

OR model P PC SDEPyg,; SDEPys,
1 A 2 0.66 0.80
2 C 2 0.64 0.77
3 HD 2 0.62 0.74
4 NA 2 0.64 0.82
5 N 2 0.64 0.76
6 OA 2 0.65 0.75
7 e 3 0.81 120
8 d 3 0.90 112

“OR model: Opioid-receptor model of Table 6; P: Autogrid probe;
PC: optimal number of principal components/latent variables;
SDEPrg;: standard deviation error of prediction for the original test
set; SDEPy,: standard deviation error of prediction for the external
test set.

(Table 10) led to models comparable to those previously
reported."®

Furthermore, similarly as for the LB case study, the YS
package was applied leading to low r’ys and negative ¢’y values
thus supporting the lack of chance correlation in reported
models.

Activity contribution, PLS coeflicients, and CoMFA-like
maps were generated, and their interpretation was in full
agreement with those reported for the previous GRID/GOLPE
models.

For comparison purposes, the PLS-coeflicients plots
obtained are shown in Figure 7 with the two methodologies,
and their similarity and information content are clearly visible.

Furthermore for each SB model, the reduced test set of 21
(thumb) and 23 (palm) compounds in the original paper'®
were employed to compare the predictive ability of AutoGrid/R
and GRID/GOLPE. As for the statistical values, predictions
were also very similar with no further comments (Table 11).

Application of Multi Probe Guided Region Variable
Selection. Variable selection is an important task in 3-D QSAR
in order to achieve models with an enriched data/noise ratio
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Table 10. PLS Analysis Results for the Thumb- and the
Palm-Structure Based Autogrid/R and Original GRID/
GOLPE C1= 3-D QSAR Models”

data set P PC 7 G0 Trsrev Tvs s
thumb A 2 0.90 0.67 0.64 0.70 -0.63
thumb C 2 0.90 0.68 0.65 070 -0.60
thumb ~ HD 2 0.92 0.75 0.73 0.68 —0.69
thumb  NA 3 095 0.75 0.73 079 —0.66
thumb N 3 095 0.76 0.73 078 —0.67
thumb  OA 3 095 0.77 0.73 077 -0.54
thumb e 3 098 0.58 0.52 092  -0.55
thumb d 1 0.58 0.36 0.36 027 =038
thumb G%ID/GOLPE/ 3 0.99 - 0.69 -

1=

palm A 3096 073 062 068 -162
pm  C 3096 073 062 069 -—159
palm HD 1 0.90 0.75 0.71 044  =0.76
palm NA 2 097 0.62 0.52 084 —0.76
palm N 2 097 0.62 0.55 085 —0.87
palm OA 1 0.86 0.67 0.64 032 —0.66
palm e 3 0.96 0.85 0.82 073 -1.01
palm d 3 093 0.62 0.39 073 —180

3 099 - 0.55 -

palm GRID/GOLPE/
Cl=

“P: Autogrid Probe or GRID Cl= probe; PC: optimal number of
principal components/latent variables; r”: conventional square-
correlation coefficient; ¢’;aq: cross-validation correlation coefficient
using the leave-one-out method; q’cgrcy: cross-validation correlation
coefficient using the k-fold cross-validation with 5 random groups and
100 iterations; r’ys: average square correlation coefficient obtained
after Y-scrambling process using 100 iterations; ¢’ys: average cross-
validation correlation coefficient using the leave-one-out method
obtained after Y-scrambling process using 100 iterations.

and predictability."®*” The default 3-D QSAR approaches use
one or more probes distributed on regularly spatial grids
without the possibility of mixing probe information into one
single grid leading to a multiprobe (MP) grid. This was
achieved by selecting the most informative subregions (guided
region selection, q°-GRS package) for each considered probe so
that the whole grid was reconstituted with pieces from several
MIFs as described above (MPGRS package). This approach

Table 11. Thumb- and Palm-External Test Set Prediction
Obtained from Structure Based AutoGrid/R and Original
GRID/GOLPE Cl= 3-D QSAR Models”

data set P PC SDEP,4
thumb A 2 0.69
thumb C 2 0.69
thumb HD 2 0.76
thumb NA 3 0.66
thumb N 3 0.66
thumb OA 3 0.67
thumb e 3 0.63
thumb d 1 0.67
thumb GRID/GOLPE/C1= 3 0.59
palm A 3 114
palm C 3 111
palm HD 1 129
palm NA 2 104
palm N 2 104
palm 0A 1 103
palm e 3 118
palm d 3 118
palm GRID/GOLPE/C1= 3 1.08

“P: Autogrid Probe or GRID Cl= probe; PC: optimal number of
principal components/latent variables; SDEP,,.: standard deviation
error of prediction for the external test set.

was initially reported by Tropsha (modified ¢> GRS)" and
implemented in the new approach designated multi probe
guided region selection (MPGRS). The MPGRS as conceived,
if correctly applied, should result in a powerful modified 3-D
QSAR technique; therefore, with the aim of optimizing the 3-D
QSAR models, the MPGRS procedure was implemented and
applied to the above case studies to test its validity and
potentiality.

The MPGRS was thus applied to the three case studies
[Table S12, S14, S25, S27, S38, S40, S54, S55, and $56], and as
reported in Table 12, the mixed-probes models maintained a
comparable level of statistical coeficients (compare Table 12
data with those of the above monoprobe 3-D QSARs: Tables
$42 and $45 and Table 11).

Figure 7. PLS-coefficients contour maps using the thumb-training set; only the highest active (6 in cyan) and one of the lowest active (11 in orange)
compounds are shown. A: AutoGrid/R PLS coefficients contour maps derived from A probe analysis (contour levels: 60%, positive red, negative
blue). B: GRID/GOLPE PLS coefficients contour maps derived from Cl= GRID probe analysis (contour levels: 0.0008 red, —0.0008 blue).
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Table 12. Statistical Results Obtained from MPGRS Analysis
for the Thumb- and the Palm-HCV Training Sets”

MPGRS 3-D QSAR

data set  PCp.g 7 Trsecy s s SDEP,,
thumb 2:2 0.95 0.90 0.50 —0.67 0.74
palm 1:2 0.99 091 0.61 -0.93 1.06

“PCpy.q: optimal number of principal first level (FL) and second level
(SL) components/latent variables for the MPGRS model; r*
conventional square-correlation coefficient; g’ oo: cross-validation
correlation coefficient using the leave-one-out method; g gspcy: cross-
validation correlation coefficient using the k-fold cross-validation with
S random groups and 100 iterations; r’yg: average square correlation
coefficient obtained after Y-scrambling process using 100 iterations;
¢’ys: average cross-validation correlation coefficient using the leave-
one-out method obtained after Y-scrambling process using 100
iterations.

All the MPGRS models were analyzed; of particular interest
were the SB-derived alignments that checked for the MPGRS
ability to propose a pseudoreceptor. Therefore, the detailed
analyses is reported for the HCV palm-training set.

Applying q° threshold value of 0.4, 11-MIFs subregions were
selected (Figure 8) to build the multiprobe MIF, and were
color coded according to that reported in Table S$53. In
particular, 5 regions were taken from the N MIF, 4 from the
NA, and the last two from HD and e probes, respectively. High
agreement between the selected regions and the HCV NSSB-
palm binding pocket surface was observed. These 11 subregions

were highly informative to allow a very detailed interpretation
of the final MPGRS 3-D QSAR model (Figure 8).
Furthermore, by analyzing the selected subregions’ PLS
coefficients, a series of pharmacophoric-like points were
extrapolated (Figures 9 and $20). According with the relative

L

ASN 411

Figure 9. MPGRS 3-D QSAR palm model key points. The points are
color coded: in blue N (amidic nitrogen) probe key points, in cyan
those from NA (hydrogen acceptor nitrogen) probe, in green and
orange those from HD (hydrogen donator) and e (electrostatic)
probes, respectively.

Figure 8. Most informative subregions derived from the final MPGRS 3-D QSAR palm model. The regions are color coded: in blue N, in cyan NA,

in green HD, and in orange e.
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probe subregion, similar signs, as in the GRID/GOLPE
approach, could have a different meaning, and correct
interpretation remains problematic.

The five N (amidic nitrogen) probe subregions in Figure §
indicate the localization of hydrophobic interactions, and their
positions in the palm allosteric-binding site were indeed
characterized by the nonpolar residues Phel93, Prol97,
Arg200, Cys366, Leud84, Met414, Tyr415, and Tyrd4s,
forming a hydrophobic pocket {(violet surface in Figure 9) in
agreement with that previously reported}gilw

The 4 NA (hydrogen acceptor nitrogen)-associated key
points overlapped with residues bearing hydrogen-acceptor
groups®® ™ (Arg386, Asnd11, GInd46, Tled47, Gly449, Tyr448,
Ser555, orange surfaces in Figure 9), while the single green HD
(hydrogen donator) region was in Eroximity with the Tyr448
and Gly449 main-chain nitrogens. 240 The last electrostatic
subregion presented difficulties of interpretation, and no
specific role was assigned.

Regarding the internal predictive ability of the MPGRS
models, the multiprobe approach in general was not improved;
nevertheless, the interpretation of the model was greatly
enhanced. MPGRS allowed focusing on the most informative
regions around the ligands and used all the probes together to
reduce the chances of missing important correlations when

using single probe 3-D QSARs.

Bl CONCLUSION

The use of the AutoGrid software coupled with ad-hoc R-based
scripts allows an alternative procedure (3-D QAutogrid/R) to
generate 3-D QSAR analyses, similarly as the well-established
CoMFA and GRID/GOLPE techniques, improving both the
use of chemical data and minimizing time and human-machine
interactions. The procedure was validated with three data sets,
covering both ligand-based and structure-based alignment
methodologies. The main features of the new procedure are
automation and flexibility that permit the iterative generation of
hundreds/thousands of 3-D QSAR models selecting the best
one in a completely independent way and improving the
amount of important information generated from detailed 3-D
QSARs analyses. Furthermore, the possibility to extrapolate/
merge the more informative interactions from different probe
fields into a single multiprobe MIF lead to mote comprehensive
interpretations. Case studies results and comparisons with the
other mentioned methods show how the new procedure should
be a useful tool, based on free software, to conduct advanced 3-
D QSAR analyses. The implementation of the MPGRS,
although not improving the models overall predictive abilities,
greatly enhanced their interpretation. To the best of the
author’s knowledge, this is the very first free MPGRS
implementation. Furthermore, 3-D QSAutogrid/R has been
recently used as core engine to prepare more that 240 3-D
QSAR models used to generate the first 3-D QSAR server™ ™
(www.3d-qsar.com).

All the described R packages are available through the
CRAN-package repository; tutorials with example files are also
available through the www.3d-qsar.com and www.rcmd.it Web
sites.

Bl ASSOCIATED CONTENT

© Supporting Information

Full statistical results for all the data sets with example of GRS,
3-D QSAutogrid/R double-probe, and bidimensional plots.
Graphical comparisons between the new method and the
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original CoMFA analyses for the opioid data sets. MPGRS
statistical values for all the data sets and related plots. This
material is available free of charge via the Internet at http://
pubs.acs.org.
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Abstract An enhanced version of COMBINE that uses
both ligand-based and structure-based alignment of ligands
has been used to build a comprehensive 3-D QSAR model
of wild-type HIV-1 reverse transcriptase and drug-resistant
mutants. The COMBINEr model focused on 7 different RT
enzymes complexed with just two HIV-RT inhibitors,
niverapine (NVP) and efavirenz (EFV), therefore, 14
inhibitor/enzyme complexes comprised the training set. An
external test set of chiral 2-(alkyl/aryl)amino-6-benzyl-
pyrimidin-4(3H)-ones (DABOs) was used to test predict-
ability. The COMBINEr model MC4, although developed
using only two inhibitors, predicted the experimental
activities of the test set with an acceptable average absolute
error of prediction (0.89 pK;). Most notably, the model was
able to correctly predict the right eudismic ratio for two R/
S pairs of DABO derivatives. The enhanced COMBINEr
approach was developed using only software freely avail-
able to academics.
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Introduction

When faced with an abundance of data from diverse
sources of structure-activity studies, for example, SAR
data on multiple drug-resistant mutants of a therapeuti-
cally important enzyme, choosing the best paradigm for
an integrative analysis is difficult. An example common
to most HIV antivirals is an abundance of crystal struc-
tures of diverse inhibitor complexes with both wild-type
and mutant enzymes. The design of the next generation of
inhibitors with enhanced ability to withstand the impact
of known mutations should emerge from a 3-D QSAR
analysis that integrates common features found in the
diverse structure-activity studies within the structural 3-D
framework of the enzyme. HIV-1 reverse tramscriptase
(HIV-RT) continues to be of therapeutic interest in the
ongoing effort to provide AIDS therapeutics that have
improved efficacy against multiple drug-resistant mutants,
and provides a case in point for application of modemn
3-D QSAR techniques.

The paradigm chosen for modeling of HIV-RT and
several drug-resistant mutants was an enhanced 3-D QSAR
version of the original COMBINE approaches of Gago
et al. [1-3]. This Roman reincarnation, referred to in this
manuscript hereafter as COMBINEr to avoid confusion,
used both ligand-based and structure-based alignment of
inhibitors as pioneered by Musmuca et al. [4] in a previous
study of hepatitis C virus NS5B polymerase inhibitors. The
basic premise is that all experimental information is rele-
vant if an appropriate frame of reference can be found, in
this case, the 3-D-structure of the parent enzyme. An
additional goal was the exclusive use of software readily
available to the academic community to allow testing and
validation of this approach by others. In a study by the Mai
group, Rotili et al. [5] generated data for novel HIV-RT
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inhibitors that was used as an external test set for the
current iteration of the COMBINEr model.

Methodology

Molecular modeling, COMBINEr, and docking
calculations

All molecular modeling calculations were performed on a
6-blade (8 Intel-Xeon E5520 2.27 GHz CPU with 24 GB
DDR3 RAM each) cluster (48 CPU total) running the
Debian GNU/Linux 5.03 operating system. The experi-
mental activities of EFV and NVP reported by Rotili
et al. [5] were performed as previously described [6, 7].
To build the non-experimental complexes, a cross-dock-
ing procedure previously described [4] was used with the
AutodockVina program. Docking assessments were
checked for either Autodock 4.2 or AutodockVina 1.1,
root-mean-square-deviation (RMSD) errors are reported in
Table 3.

All complexes were arbitrary superimposed using a
reference template 1vrt, chosen for its superior crystallo-
graphic resolution (R = 2.2 }n\)‘ Superimpositions of the
HIV-RT complexes were made with Chimera [8] using the
command-line implementation of MatchMaker [9]. Prior to
any minimization, all crystallographic waters were dis-
carded by a procedure previously described [10-12].
Hydrogen atoms were added using the tleap module of
AMBER [13]. Protonation states at pH 7.4 were selected,
ie., lysines, arginines, aspartates, and glutamates were
assumed to be in the ionized form and parameters were
calculated by means of the Antechamber module of
AMBER. The complexes were solvated (SOLVATEOCT
command) in a box extending 10 A with water molecules
(TIP3 model) and neutralized with Na™ and C1~ ions. The
solvated complexes were then refined by a single-point
minimization using the Sander module of AMBER. The
minimized complexes were realigned with MatchMaker
using the same reference complex while maintaining the
coordinates (experimental alignments) into ligands (key)
and proteins (lock) and were used to obtain the energy-
deconvolution matrix to develop the COMBINEr models.
Using Autogrid4 [14], three contributing energetic fields
were calculated: the electrostatic (ELE), the steric (STE)
and the desolvation (DRY). As HIV-RT is composed of
1,000 residues, 1,000 COMBINE descriptors were calcu-
lated for each field. Seven combination of the field were
examined (ELE, STE, DRY, ELE + STE, ELE + DRY,
STE + DRY and ELE + STE + DRY). The PLS algo-
rithm as implemented in the R [15] environment, was used
with an in-house script to compute all statistical calcula-
tions and cross-validations (Table 2).
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Results and discussion
COMBINEr model

To build the COMBINEr model, training set selection was
driven by both the availability of co-crystal structures and
homogeneous inhibition data from the Mai lab. From a
literature search, 14 complexes (characterized by 7 differ-
ent HIV-RT wild-type and mutant enzymes) were selected
as a training set using complexes with only two HIV-RT
inhibitors, NVP and EFV, for which inhibition constants
were available as previously tested by our collaborators [4].

As reported in Table 1, the training set was composed of
NVP and EFV in complex with seven different HIV-RT
enzymes {WT, L100I, K103N, V106A, V179D, YIS8I1I,
Y188L). Of the 14 complexes, structural data were
experimentally available from the PDB for only five (WT/
EFV: 1fk9 [16], KI03N/EFV: 1fko [16], WI/NVP: lvrt
[17], LIOO/NVP: 1slu [18], and K103N/NVP: 1fkp [16]).
The other nine complexes (L100/EFV, VI106A/NVP,
VI106A/EFV, V179D/NVP, VIT9D/EFV, YI181I/NVP,
Y181/EFV, Y188L/NVP and Y188L/EFV) were directly
modeled using side-chain structural information retrieved
from other complexes present in the PDB and using the
BUILD module of UCSF Chimera.

Different from the original COMBINE protocol,
COMBINEr used the Autogrid module of the AutoDock 4
suite [14] to compute the energy interactions between the
inhibitors and each amino-acid residue of the enzyme in a
complex. The ligand/residues/energy deconvolution matrix
was directly obtained by the sum of the interaction energies
between all ligand atoms and those composing each amino
acid residue in HIV-RT. The complexes were optimized by
a short energy minimization followed by docking experi-
ments conducted with AutoDockVina [19]. From the
Autogrid application, three kinds of interaction contribu-
tions were calculated: the STE, the ELE and the desolva-
tion {DRY) ones. HIV-1 RT is a heterodimer with a subunit
of 560 residues (p66) and a second subunit (p51) of 440
residues. Therefore, for each contribution, a total of 1,000
interactions were computed, and modeled using the PLS
algorithm implemented in the R [20] environment. Con-
sidering all possible combination of contributions, seven
different COMBINEr models were independently derived
(CM1-CMY7, Table 2). From data reported in Table 2, all
seven COMBINEr models were highly robust and endowed
with good predictive power. Among the seven models,
CM1 and CM4 (Fig. 1) exhibited the best statistical-value
profiles (compare 12, q2 and SDEP values in Table 2).

As discussed by Gago et al. [2, 3] and common to other
3-D QSAR studies [21, 22], COMBINE-like models have
to be analyzed by means of PLS coefficients and activity
contribution (interaction energies multiplied by the PLS
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Table 1 Structures, anti-HIV-RT activities (uM) of nevirapine (NVP) and efavirenz (EFV} used to build the COMBINEr models

H
N (o]
" Y
® °
Cl
N N / N “CF,
A N=
Nevirapine (NVP) Efavirenz (EFV)

RT NVP EFV
WT 04 0.03
11001 9.0 0.12
K103N 70 0.16
V106A 100 0.04
V17D 20 0.10
Y1811 3600 0.15
Y188L 18.0 038
Table 2 Statistical coefficients of the COMBINEr models

M Model 7~ SDEC 4200 SDEP; 0o 7Psos SDEP) 505 Fsos SDEP, ¢y
1 DRY 0.91 0.31 0.82 0.43 0.7% 0.46 0.63 058

2 ELE 0.80 045 0.51 0.71 049 0.72 0.37 0.7%

3 STE 0.81 044 0.6 0.57 0.65 0.60 0.52 0.68

4 DRY_STE 0.88 0.35 0.78 0.48 0.75 0.50 0.61 0.61

5 ELE STE 0.82 043 0.58 0.66 0.53 0.69 0.44 0.75

6 DRY_ELE 0.89 0.34 0.66 0.59 0.63 0.62 0.48 0.70

7 DRY_ELE_STE 0.86 0.38 0.66 0.5% 0.62 0.62 0.50 0.70

CM COMBINEr model number, # conventional squared-correlation coefficient, SDEC standard error of calculation, q2 cross-validation coef-
ficient, LOO leave-one-out, SDEP standard error of prediction, LSO5 and LSOZ2 leave-some-out using 5 and 2 groups respectively

coefficients) plots. While PLS coefficients indicated which
residues contributed most to the COMBINE relationships
(general indication), the activity contributions provided the
real pK; contribution for each inhibitor/residue pair to the
enhancement or decrease of the given inhibitor activity
starting from a constant threshold value (intercept). Further
indications of significance can be inferred from the PLS
coefficients weighted by the standard deviation values
(PLS x SD) to give the overall importance of each amino-
acid residue in the COMBINEr model. In Figs. 2 and 3 are
reported the PLS coefficients, the PLS x SD and activity-
contribution histograms for CM1 and CM4 models,
respectively.

Regarding the desolvation energy (DRY), from Figs. 2A
and 3A, residues LeulOO0 (1le100), Lys101, Lys103
(Asnl03), Vall06 {(Alal06), Vall79 (Aspl79), Tyrl8l
(Ile181), Tyr188 (Leul88), Trp229, Leu234 and Tyr318

are mainly involved in defining either model CMI1 or
model CM4. As suggested by Wesson and Eisenberg [23],
DRY is proportional to the change in the surface area that
is available to water, therefore, the DRY energies are an
estimation of the hydrophobic effect similar to the DRY
probe in the Goodford GRID program [24]. The DRY
interactions have only positive values; therefore, multipli-
cation of the PLS value by the standard deviation of a
certain residue can be interpreted in the same way as the
3-D-QSAR CoMFA [25] plots in which positive PLS
Coeff x SD values are directly correlated with enhanced
activity and negative values correlate with decreased bio-
logical affinities (Fig. 2B). In Fig. 2B, residues Leul00
(Ile100), Lysl01 and Tyrl88 (Leul88) have the highest
PLS Coeff x SD values and, therefore, interaction with
these residues are desirable, while low negative PLS Co-
eff x SD values are associated with residues Trp229 and
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Fig. 1 Fitting and cross-validation plots (LOO, LSO5 and LSO2) recalculate/experimental and predicted/experimental pK; for COMBINEr

models CM1 and CM4

Leu234 meaning that the interaction with these residues
should be minimized. Observing Fig. 3a, in model CM4,
residues Leul00 (Ile100), Lys101 and Tyr188 (Leul88) are
more sensitive to STE interactions, in agreement with the
above. On the other hand, investigation on the energy of
interaction on the STE field revealed that almost only
negative values are present, in agreement with the fact that
the 14 complexes were generated by means of docking
experiments with van der Waals and hydrogen-bonding
optimized. Thus the significance of the PLS Coef*StDev
bars of histogram in Fig. 3B relative to the STE fields have
inverse signification to those of the DRY fields. Although
some redundancy occurs in the Autogrid-field calculations,
the fact that the charge of the atom is incorporated in the
calculation of desolvation interactions and that the STE
fields is the sum of the interactions of the residue atoms,
thus containing also hydrogen-bonding calculations, the
DRY and the STE field together contain most of the ELE
interactions. Similar analyses were also done for the ELE

@ Springer

(CM2), STE (CM3), ELE_STE {CM5), DRY_ELE {CM6)
and the triple field containing COMBINEr model CM7. In
all COMBINEr models containing the ELE field merged
with other fields, its contribution to the description was
almost negligible. As a matter of fact, the CM2 models
(only ELE) had lower statistical coefficients, thus, indi-
cating a lower correlation between the biological activities
and ELE interactions. In the multifield models {CM4-
CM7), therefore, the PLS code correctly recognized this
low correlation and contribution of the ELE field was
essentially eliminated. Since the models were obtained
using single point RT-mutated forms, interesting sources of
data are the activity-contribution plot of Figs. 2C and 3C.
These plots reported the product of each residue field by
the respective PLS coefficients. The sum of all these
products and the intercept values for each complex returns
the fitted values of the COMBINEr models (Fig. 8). Due to
the similar profile of the DRY field in both CM1 and CM4
models, only the DRY_STE double-field model is
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considered for future comments. It could be argued that all
statistics of the DRY model are slightly better or compa-
rable to those of the DRY_STE model. It was decided,
nevertheless, to focus only on the DRY_STE model so to
have a more complete description of the ligand/enzyme
interactions. Analyses of activity-contribution plots con-
firmed that the amino-acids mutations were directly and
indirectly responsible for the different activity profiles of
EFV and NVP. Any description of the detailed interaction
network is far too complicated; after analysis of the CM1
and CM4 models plots reported in Figs.2 and 3, a

EFV

)
N <

Lys103
(Arg103)

Tyr188
A (Leu18s)

(+90°)

Frontal
View

I
Tyr318

(-90°)

schematic view (Fig. 4) on the direct influence to the NVP
and EFV anti-RT activities by their surrounding residues
(and their mutations) is presented.

COMBINETr predictions

The reported COMBINEr model CM4 was used to ratio-
nalize the role of mutation on the activity profile of (R)-
and (5)-MC1501, and of (R)- and (5)-MC2082 reported by
Rotili et al. [5]. The binding modes of the four DABO
derivatives (Fig. 5) were analyzed by the means of the

NVP

Val106
(Ala106)

Tyri88 Raias)
0 "
(l.zu‘ll) ot

Lou234
Val179
. (Asp179)
Tyr181
) (He181)
| Lys101
TRP229'
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X i
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Fig. 4 Efavirenz (left column) and nevirapine (right column) with the surrounding residues surfaces as in the experimental complexes. The
surfaces are colored by activity contribution. Here are three orthogonal views of the complexes (rotated along the X axes by £ 90°)
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Fig. 5 Structwres of racemic HIV-RT inhibitors resolved by Rotili
et al. [5] used to validate CM4

Vina program [19] which proved more reliable, as shown
in Table 3 and Fig. 6, than Autodock [14] in reproducing
the EFV- and NVP-experimental binding modes. In re-
docking Vina was more reliable Autodock in reproducing
the binding mode of both NVP and EFV starting from the
experimental conformation of the ligands [4]. In view of
these results and the fact that Vina was 10-times faster than
Autodock, Vina was selected for docking experiments.
Figure 7 shows the binding modes of the DABO deriva-
tives (structure of test set compounds are available in
Appendix 1 and in the publication by Rotili et al. [5]) with the
‘WT and the mutated HIV-RTs used in this study. Similarly to

Table 3 Docking assessment: root-mean-square deviations (RMSDs}
displayed by the Vina and Autodock docking programs

PDB code Mutation Ligand Vina Autodock
Exp Mod Exp

hic WT EFV 0.33 041 029

1fke K103N EFV 0.35 043 0.59

1fkp K103N NVP 0.53 0.81 341

1slu L1001 NVP 0.26 048 3.52

Tvrt WwT NVP 0.51 0.86 3.53

Fig. 6 Docking assessments:
comparison of redocking by
Vina and Autodock. In cyan are
reported the experimental
conformations in the 1vrt and
1fko complexes; in magenta are
those redocked with Ving and in
brown those obtained with
Autodock. In red is shown HIV-
RT in the 1vrt (nevirapine)
complex and in green HIV-RT
for 1fko (efavirenz)

@ Springer

previous studies [10-12], the R-conformations display an
overall binding profile similar for either MC1501 or MC2082.
Inthe S-configurations, the methyl at the C6-benzylic position
(highlighted in red) prevented similar interactions [12]. The
(R)-MC2082 binding mode is comparable with that of
TMC278 (rilpivirine) [26], a recently reported DAPY deriv-
ative now undergoing clinical trials [27].

Figure 8 displays the (R)-MC2082 binding modes
overlapped with the experimental complexes of etravirine
and TM(C278 in wild-type and mutated HIV-RTs.

Once the binding modes of MC compounds were cal-
culated, the COMBINEr model CM4 was readily applied.
As reported in Table 4, the COMBINEr model, although
developed with only two different HIV-RT inhibitors,
predicted the experimental MC activities with a surpris-
ingly acceptable average absolute-error-of-prediction (0.89
pK;). The CM4 model percentage of prediction error ran-
ged between 61.6 and 0.9 % with an average error of
14.3 % comparable to those experimentally reported by
Rotili et al. [5] (37.5, 1.5 and 16.2 %, respectively).

Most notably, the COMBINEr CM4-model correctly
predicted the right eudismic ratio for the two R/S pairs of
MC derivatives.

Application of the COMBINEr CM4-model to the test
set of Rotili et al. [S] (MC compounds) helped the inter-
pretation of the calculated activity contributions (Fig. 9)
directly highlighting difference between MC1501 and
MC2082 upon binding to HIV-RTs. Figure 9 shows that
the activity contributions associated to the interactions of
the most active MC enantiomers (stereocisomers R) with
residues Lys101 were mainly responsible for the higher
activities of (R)-M(C2082 versus the (R)-MC1501 with an
average increase of activities of about 0.29 and 0.19 of pK;
units for the hydrophobic and STE fields, respectively.

Comparing the activity contributions of R- and S-enan-
tiomers of MC1501, the hydrophobic effect of residue
Lys101 became negligible, while that from Trp229
increased with an average contribution of 0.24 pK; units. In
comparison, the LyslOl-related STE contribution was
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Fig. 7 Vina-proposed binding modes for the MC1501 and MC2082 enantiomers in six different HIV-RT proteins. The molecular structures are
shown with the C6-methyl group highlighted in red at the top of the figure

more than doubled (see Tables 5, 6). In the case of
MC2082 R- and S-enantiomers, the activity contribution of

Lys101 was only reduced by 32 %

0.17), Trp229

increased to 0.16, and the Lysl0l STE contribution

increased more than 5 times (1.05).

Single-point mutations within the COMBINEr CM4
model showed that residue 188 demonstrated a key role in
modulating the interactions of the ligands both in its wild-
type (Tyr188) and in the Leul88 mutation. Interestingly, for
another mutating residue, residue 188 seemed to offset loss
of interactions as a result of the other residue mutation, most

remarkably in the case of the more active compounds (R)-
MC1501 and (R)-MC2082. Comparing the activity-contri-
bution profile of (R)-MC2082 docked into wild-type HIV-
RT and in the V106A-mutated protein, the only values
changed drastically were those associated with Tyr188. A
possible explanation for this might be that incoming missing
interactions for the (R)-MC2082/Vall06 — (R)-MC2082/
Alal06 replacement are filled readily by the augmented (R)-
MC2082/Tyr188 interactions (compare Tyr188 positions in
Fig. 3), but this remains speculative without further
analyses.
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WT K103N

Fig. 8 Binding modes of (R)-MC2082 overlapped with etravirine and
TMC278. On the left side are shown (R)-MC2082 in green, etravirine
(3mec) in brown and TMC278 (2zdl) in light green, all bound to
wild-type HIV-RT. On the right side are shown (R)-MC2082 (green)
binding mode in K103N-mutated RT overlapped with etravirine
(orange) that was co-crystallized with K103N HIV-RT, TMC278
(light blue) in the K103N-Y181C double mutant (3bgr) and in the
L100I-K103 double mutant (purple, 2ze2)

Finally, Tables 5 and 6 clearly demonstrated that most
mutations force the ligands to primarily re-adapt their
interaction network around the two non-mutating Lys101
and Trp229 residues, supplying alternate ways of hydro-
gen-bond and hydrophobic anchor points with which
ligands interact upon complex formation.

Fig. 9 Activity-contribution
histograms calculated for the
test MC compounds. Only bars
with values higher than 0.001
and lower than —0.001 are

shown
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Table 4 Experimental and COMBINEr CM4-model predicted
activities of MC compounds of Rotili et al. [5]

MC1501 MC2082

R N R N

Exp Pred Exp Pred Exp Pred Exp Pred
WT 870 746 693 720 681 721 452 577

VI106A 852 919 645 578 952 043 662 751
K103N 702 717 601 752 852 911 719 752
Lioor 702 669 440 711 810 749 674 6.03
YI88L 671 751 440 511 810 7.09 440 595
YI81I 635 605 440 612 612 625 629 548

Conclusions

The COMBINEr approach integrates multiple sources of
SAR information to build a self-consistent model of the
amino-acid residues in both wild-type and mutant enzymes
responsible for molecular recognition and discrimination.
As with all such underdetermined 3-D QSAR models,
predictability is the only real means of selection one model
over another. This study on HIV-RT used a minimal set of
inhibitor complexes to extract possible models for HIV-RT
variants that rationalize the experimentally observed
inhibitory activity of a novel set of compounds described

MC2082R.V 1
MC2082R.L1001
MC15015.Y188L

MC1501RWT
MC1501R.L1001
MC1501R.K103N
MC1501R.V106A

229.TRP.A.Dry
234.LEU.A.Dry
318.TYR.A.Dry
100.LEU.A.Ste
101.LYS.A.Ste
181.TYR.A.Ste
188.TYR.A.Ste

195



¥ Compul Aided Mol Des (2012} 26:907-912 17
Table 5 COMBINEr CMd4-maodel predicted activity contnibutions of MC1501 with average values higher than 0.01 absolute pK; values
Field Dry Ste

Residue number 100 K101 103 106 181 188 T229 L1234 Y318 100 K10l 181 188
(R-MC1501WT 0.1% 033 0.01 -001 -015 035 -001 -001 0.08 027 137 -0.03 0.76
(R)-MC1501.L1001 020 038 0.01 -001 -015 033 005 001 0.08 028 134 -0.03 0.05
(R)-MCT1501T. KT03N a1z 038 0.01 —0.01 015 0.64 —051 -1z 0.08 0.27 137 —-0.03 077
(R)MCLIS0LVIO6A 020 039 0.01 0.00 0.14 0.65 0.05 0.01 0.08 051 255 0.03 0.78
(R)-MC13501.Y1811 010 038 0.09 -001 -007 065 -051 -0DO1 0.01 026 010 0.00 0.80
(R)I-MC1501.Y188L 019 038 008 —001  -015 033 004 001 0.08 027 137 —0.03 0.75
Average 018 038 0.03  —001 013 049 —020  —00O3 0.07 031 135 —0.02 0.65
sD 0.04 000 0.04 0.00 0.03 0.17 024 0.04 0.03 010 078 0.0l 0.29
Max 020 039 0.09 0.00 -007 065 -001 -001 0.08 051 255 0.00 0.80
Min 010 038 0.01 -001 -0I15 033 -051 -012 0.01 026 010 —0.03 0.05
Range 0.0y ool 0.08 0n.00 007 0.32 047 01l 008 025 2d5 0.02 074
($y MC1501.WT 020 039 0.01 0.00 0.08 035 0.05 0.01 0.08 028 137 0.03 0.76
($)-MC1501.L1001 010 037 001 -001 -015 064 052 -012 0.08 026 010 -0.03 0.77
15-MC1501.K103N 010 038 009 —00% -0.08 065 051 -012 0.08 026 129 0.00 0.80
(SH-MC1501.¥106A 020 073 0.01 000 -0.08 065 —-050 001 008 051 258 0.00 0.78
Sy MC1501.Y1811 019 038 0.01 0.01 0.08 0.65 052 0.01 0.08 027 011 0.00 0.78
(S¥MC1501.Y188L  0.10 003 0.01 -00% -0.08 034 0352 012 0.08 026 007 0.00 0.76
Average 015 038 0.02 -003 -009% 054  —044  —007 0.08 031 092 —0.01 0.78
SD 005 022 0.03 0.05 0.03 0.16 0.19 0.06 000 010 101 0.01 0.01
Max 020 073 0.09 000 -008 065 -005 -001 0.08 051 258 0.00 0.80
Min 0.10 003 001 -00% -015 034 -052 012 0.08 026 007 -0.03 0.76
Range 009 069 0.08 0.09 0.07 031 047 011 0.00 025 250 0.02 0.04
RusS™ 003 000 0.01 003 -005 -005 024 004 -001 000 043 -0.01  -012

* Differences hetween (R}MCT501 and (S)-M1501 activity-contribution averages. In bold are highlighted values cited in the interpretations of

prediction reported in the text

Table 6 COMBINEr CM4-model predicted activity contributions of MC2082 with average valies higher than 0.01 absolute p&; valnes

Field Dry Ste
Residue number 100 K101 103 106 181 188 T229 L1234 Y318 100 K101 181 188
(R)-MC2082 WT 020 073 002  —001  -015 034 003 012 0.0% 028 1.37 —0.03 0.07
(R)-MC2082 11007 020 073 n.ngs —-n.0g —015 035 —0.51 -012  0.08 0238 1.35 —0.03 076
(R-MC2082KI03N 020 073 001 —-001 -0I5 064 051 —-012 008 028 134 —0.03 076
(R-MC2082V106A 020 073 001 -001 -015 064 —005 -012 0.08 051 254 —0.03 078
(R)-MC2082. Y1811 0.10 037 003 -—0.01 -008 09 —-054 012 0.08 026  0.09 —0.03 0.82
(R)-MC2082 Y188 D20 0.73 nor —-001 —0a18 034 004 —012 0.0 051 255 —0.03 0.76
Average 018 0467 0.05 0.02 0.14 0.54 .28 012 0.08 035 154 0.03 0.66
sD 004 014 0.4 0.03 0.03 025 0.26 0.00  0.00 012 0692 0.00 0.29
Max 020 073 008 —-001 -008 0% —003 -—-012 009 051 255 —0.03 0382
Min 010 037 nor - -0y —-01§ 034 —0s4 012 N.0R 026 004 -0.03 0.07
Range 010 035 0.08 0.09 0.07 0.62 0.51 0.00 0.00 025 246 0.00 0.74
(SyMC2082WT 020 039 0.0 -001 -015 065 052 012 008 027 010 —0.03 0.7
1SF-MC2082 L1001 019 037 001 —ope 015 065 —-051 012 008 026 0.07 —0.03 077
(Sy-MC2082. KI03N 020 073 009 001 0I5 065 052 012 008 027 128 -0.03 0.78
Sy MC2082.V106A 019 040 0.08 0.01 0.08 033 0.01 012 0.09 027 128 0.00 0.76
(5y-MC2082.Y1811 010 037 002  —-001 008 067 0355 012 0.8 026 0.08 0.00 0.81
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Table 6 continued

Field Dry Ste

Residue mumber 100 Kiol 103 106 181 188 T220 1234 Y318 100 K101 181 188
(S-MC2082.Y1SSL 020 0.72 009 —001 -015 033 -050 —0.01 008 027 012 —003 007
Average 018  0.50 008 —002 —012 055 —044 —010 008 027 049 —002  0.66
SD 004 018 003 004 004 016 021 004 000 001 0.6l 001 029
Max 020 073 009 —001 —008 067 —001 —001 009 027 128 000 081
Min 010 037 001 —009 —015 033 -055 —012 008 026 007 —003  0.07
Range 009 036 009 009 007 034 054 011 000 001 122 002 074
Rvss® 000 017  —003 000 —001 -001 016 -002 000 008 105 —001 —001

* Differences between (R)-MC2082 and (S)-MC2082 activity-contribution averages. In bold are highlighted the values cited in the interpre-

tations of predictions reported in the text

by Rotili et al. including the relative activity of two dif-
ferent sets of stereoisomers. Obviously, prediction of novel
inhibitors and their activities against HIV-RT is a logical
next step to validate the utility of the COMBINEr
approach. Extension to similar problems, such as predic-
tion of isoform selectivity of the eleven zinc-based histone
deacetylase inhibitors, is underway.
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ABSTRACT: An enhanced version of comparative binding energy (COMBINE) analysis, named COMBINEr, based on both
ligand-based and structure-based alignments has been used to build several 3-D QSAR models for the eleven human zinc-based
histone deacetylases (HDACs). When faced with an abundance of data from diverse structure—activity sources, choosing the best
paradigm for an integrative analysis is difficult. A commeon example from studies on enzyme—inhibitors is the abundance of
crystal structures characterized by diverse ligands complexed with different enzyme isoforms. A novel comprehensive tool for
data mining on such inhomogeneous set of structure—activity data was developed based on the original approach of Ortiz, Gago,
and Wade, and applied to predict HDAC inhibitors’ isoform selectivity. The COMBINEr approach (apart from the AMBER
programs) has been developed to use only software freely available to academics.

1. INTRODUCTION

Histone deacetylases (HDACs) are a family of protein
medifying-enzymes found in bacteria, fungj, plants and animals.
In the human, 18 different isoforms have been identified and
divided into 4 classes according to size, cellular localization,
number of active sites and homology with yeast deacetylases."
This paper focuses on the eleven zinc-based HDACs isoforms of
class Tand II found in humans. Class [, that includes HDAC-1, -2,
-3, and -8, is related to yeast RPD?3, shares nuclear localization
with the exception of HDAC3, and has ubiquitous expression.
Instead, class II shows domains with similarity to yeast Hdal and
can be further divided into class Ila, which includes HDAC-4, -5,
-7, and -9, and class 1Ib (HDAC-6 and -10) that contains two
catalytic sites. HDAC-3 and members of class IT have been shown
to shuttle between the cytoplasm and nucleus and have tissue-
specific expression. HDAC-11 is the only member of class IV,
HDAC dlasses I, I, and IV are zinc-dependent proteases; unlike
those of class 111, called sirtuins, which require NAD+ as cofactor.

HDACs play a key role in epigenetics—controlling gene
expression involved in all aspects of biology—cell proliferation,
chromosome remodeling, and gene transcription.” They regulate
the acetylated state of histone proteins removing the acetyl

~7 ACS Publications  © 2012 American Chemical Society
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moiety from the e-amino group of lysine residues on the N-
terminal extension of the core histones, this leads to changes in
the structure of histones and therefore modifies the accessibility
of transcription enzymes with gene-promoter regions. In
addition, HDACs dynamically modify the activity of diverse
types of nonhistone proteins.z' These include transcription
factors, signal-transduction mediators, microtubules, and a
molecular chaperone. In particular, distinct HDACs class T and
T are overexpressed in several types of cancer. For these reasons,
HDAC inhibitors (HDACISs) have been developed and approved
for the treatment of cutaneous T-cell lymphoma: Merck’s
Zolinza (SAHA) and Celgene’s Istodax (Romidepsin, FK228).*
More recently, HDACIs have emerged as potential therapeutics
for the stimulation of viral expression from infected cells in the
hope of eradication of HIV infection.”

HDAC inhibitors are classified according to their chemical
structure as follows: short-chain fatty acids, hydroxamic acids,
benzamides, ketones, and cyclic peptides with a pendant
functional group. Each HDACI shows variability in its ability

Received: March 26, 2012
Published: July 4, 2012
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to inhibit particular isoforms. Unfortunately, as for SAHA and
TSA, the majority of HDACIs inhibit most HDAC isoforms
nonspecifically. Others, such as MS-275, a benzamide, are more
selective for class 1. Selective HDAC inhibitors, which affect
either a single HDAC isoform or only a few isoforms within a
single class, would be ideal molecular scalpels to help elucidate
the individual functions of each HDAC isoform in the complexity
of epigenetics.

This paper focuses on a predictive tool for the anti-HDAC
activity and selectivity prediction of potential new inhibitors to
enhance isoform specificity. To this aim, structure-based three-
dimensional structure—activity relationship (3-D QSAR) models
were derived by a comparative binding energy (COMBINEr)
analysis on a series of inhibitors for which biological activities
against the 11 human zinc-based HDACs isoforms were
available.

2. OVERVIEW

Modified COMBINE Approach {COMBINEr). The com-
parative binding energy (COMBINE) approach is a structure-
based 3-D QSAR method that uses a series of receptor—ligand
complexes to quantify interaction energies by molecular
mechanics.® The fundamental idea of a COMBINE analysis is
that a simple expression for the differences in binding affinity of a
series of related ligand—receptor complexes can be derived by
using multivariate statistics to correlate experimental data on
binding affinities with per residue ligand—receptor interactions,
computed from 3-D structures. The basis of the COMBINE
method is the assumption that the protein—receptor binding free
energy, AG, can be approximated by a weighted sum of n terms,
AU, each describing the change in property u upon binding as
described by the following equation:

AG:iu:;AuI+C

i=1

From this expression, biological activities may be derived by
assuming that these quantities are linear functions of AG. The
expression is derived by analyzing the interaction of a set of
ligands with experimentally known binding affinities for a target
receptor.®

In order to apply this approach to predict the selective
inhibition of HDAC isozymes, a modified protocol, called
COMBINE:,” (Figure 1) used the AutoDock’s AutoGrid engine
to compute the components of the ligand—residues interaction
energies for each ligand/enzyme complex. The PLS (partial least
squares for latent variables) paradigm, as implemented in the R®
environment, was used to derive robust, predictive COMBINEr
models. Although the original COMBINE (gCOMBINE) was
available, it was decided to develop COMBINEr because it allows
direct calculation of ligand/enzyme per residue interaction from
docking results without further complex parametrization as
required in the original COMBINE.

Training Set. Nine experimental 3-D structures of HDAC-2,
-4, -7, and -8 cocrystallized with different ligands were retrieved
from the Protein Data Bank'® (Table 1). The remaining HDAC
isoforms whose experimental structures were not experimentally
available (HDAC-1, -3, -5, -6-1, -6-2, -9, -10, and -11) were built
by homology modeling. In the case of HDAC-6, both the
histone- and tubuline-catalytic domains were built (histones:
HDAC-6-1 and tubulin: HDAC-6-2 ) with the same experimental
inhibitory activities assigned to each complex.

2216

Web Servers:
RCSB - CPHmodels 3.0,

PDBProtein - ModWeb,

Data Bank - SwissModel,
-M4T 3.0

I !

Experimental Homology
Structures Modeling

[ Multiple Alignment (Modeller) |

I

I

‘ Training Set |

Test Sets

I

I

Complexes Energy Molecular Docking
Minimization (AutoDock Vina)
(Amber 10)

Training Set Test Set
94 complexes HDAC- 78 complexes HDAC
inhibitors. inhibitors
i !

Residue Basis

i I

Statistical Analysis

| Calculation of Molecular Interaction Energies on a per ‘

Partial Least Square 4= |
Regression (PLS) Predictability
- Model, Assessment by Three
- Cross Validation, [~ External Test Sets
- Y-Scrambling

COMBINE Models

Model Interpretation

Figure 1, Flowchart of the COMBINEr model generation. The red
contoured boxes identify the model preparation, while the green
contoured boxes refer to the test set. The blue contoured boxes refer to
either training set or test set.

In addition to cocrystallized inhibitors, other compounds
(Table 2) reported simultaneously from the same laboratory by
Blackwell et al.'® were selected. The data set composed by 15
different inhibitors and 12 HDAC isoforms was reduced from the
theoretical number of 180 to 94 due to lacking of complete
isozyme-inhibitory data. Therefore, the final training set
summarized in Table 3 comprised 39 complexes derived with
crystallized structures, built according to structural similarity of
modeled inhibitors with cocrystallized compounds, and 35
complexes derived with homology models. The latter are
generated according to the web-servers used for producing the
homology models (see the Experimental Section).

The training sets complexes were energy minimized with
Amber 10°" and multiply aligned using Modeler™ to establish
structure-based residue equivalence. This alignment provided
the structural basis for computing the molecular-interaction
fields with a correspending per-residue basis for all enzyme
isoforms. Because different isoforms of HDACs show structural
diversity in terms of amino-acid sequences and differed in
numbers of amino acids (multitarget study), all HDAC residues
were renumbered in an arbitrarily way: the same numbering were
assigned to those residues showing spatial superimposition;

dx.doiorg/10.1021/ci300160y | L Chem. Inf. Model. 2012, 52, 2215-2235
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Table 1. PDB Codes, Ligand Names, Chemical Structures, and HDAC Inhibitory Activities of Complexes Downloaded from

Protein Data Bank”

PDB
code

HDAC
Class Number

Ligandstructure

ICs0

IUPAC name M

amax" 2

3F07" | 8

1T64" 8

1767 8

1T69™ I 8

1waz2" 8 / s

2vam"” lla 4

2vas” la 4

3coz" la 7

3c10" la 7

.

;—N O

’ =
HoN'

N-(4-aminobiphenyl-3-
yllbenzamide 09"

(2E)-N-hydroxy-3-{1-methyl-4-
(phenylacetyl)- 1H-pyrrol-2-yijprop-
2-enamide
(APHAB8)

28"

7-(4-(Dimethylamino)phenyl)-N-
hydroxy-4,6-dimethyl-7-oxo-2,4-
heptadienamide
oH (TSA)

117

4-dimethylamino-n-(6-
hydroxycarbamoyethyl)benzamide-
H n-hydroxy-7-(4-dimethyla
minobenzoyl)aminoheptanamide
(MS-344)

0.249"

octanedioic acid

13
hydroxyamidephenylamide (SAHA) 22

N-hydroxy-4-{methyi[(5-pyridin-2-
i ylthiophen-2-
yl)sulfonyllaminojbenzamide
(NHB)

0.175'°

N-hydroxy-5-[(3-phenyl-5,6-
dihydroimidazof1,2- aJpyrazin-
7(8H)-yl)carbonyljthiophene-2-

carboxamide (HA3)

0.978"

2,2, 2-trifluoro-1-{5-[(3-phenyil-5,6-
dihydroimidazo[1,2- alpyrazin-
CFs 7(8h)-yl)carbonyljthiophen-2-
yl} ethane- 1, 1-diol (TFMK)

0.367"7

o octanedioic acid

h h 0.05"
OH hydroxyamidephenylamide(SAHA)

7-(4-(Dimethylamino)phenyl)-N-
hydroxy-4,6-dimethyl-7-oxo-2,4-
N. heptadienamide
OH (TSA)

0.014"

Q

“ICqs were all evaluated in a similar way using a fluorescently labeled acetylated peptide as substrate.

conversely, a “ghost” residue was attributed in the regions which
presented structural diversity (see the Supporting Information
for the multiple sequence alignment of all proteins, Supporting
Info File 6). In this way, a total of 571 amino-acid residues, 12-
fragmented HDAC isoform structures, were obtained. The
calculation of the ligand/residues was conducted similarly as
previously reported.” The calculated molecular descriptors were
imported in R™ to generate structure-based 3-D QSAR models.
The purpose of training-set complex minimization was to
generate not only 94 optimized complexes, but also to have
several conformation for each HDAC useful in the subsequent
preparation of test-set complexes by ligand cross-docking (see
below).

2217

Each derived COMBINEr model was subjected to internal
(cross-validation) and external (test-set) assessments. Cross-
validation was done using both the leave-one-out (LOO) and
random five groups leave-some-out (RSG-LSO) techniques. For
external validation, a series of molecules with known inhibitory
activity against HDAC isozymes was selected as an external test
set for the model’s predictability assessment.

External Test Sets for the COMBINEr Model Validation.
Three different test sets were used for external validation. The
first one (modeled test set, MTS) contained a series of
molecules, docked with AutoDockVina,* that showed inhibitory
activity against several HDAC isoforms (Table 4).

dx.doi.org/10.1021/ci300160y | J. Chem. Inf. Model. 2012, 52, 2215-2235
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Table 2. Training Set—Chemical Structures and HDACs Inhibitory Activities”

Q CLASS I

lla lib v

HDA

Number 1 2 3

1000 1000
valproic acid
(VALP)
OH

PPN

Butyrate
(NABUT)

&
y 4
©/ Moo
o 0.05 0.2 0.01

Oxamflatin
(OXAM)
AN / HN—OH

L, 37 74 042

o,

APHAS

Q
n\
W o 0.1 0.44  0.02
o

SAHA

Chemical Structures and IDs

H 21 46 0.41

0.021 0.005

SCRIPTAID
(SCRIP)

E\/\g)k: .
W ‘Q 13 051 0.07

MS-275

226.08 228.85 -

85.6

22

2.8

22

3.7

2.3

30

2000" - 2000" 1000 1000 -

30 2000" 30 2000"® 1000 292 -

0.03 - 0.03 - 0.09 005

3.1 - 341 - 0.1 4.2

005 0378 005 0316 002 01 0.362%°

1.4 - 1.3 - 0.1 23 -

0.014 0.0165° 0014 0.0381° 0005 0005 0.0152%

0.2 - 0.16 - 0.004 0.17 -

“ICgs (expressed in micromolar) were all evaluated in a similar way using a fluorescent-labeled acetylated peptide as substrate.

The second test set was comprised of a series of cocrystallized
complexes structures (crystal test set, CTS) containing two
HDAC-8 complexes (not available from the PDB during model
development) and four bacterial HDAC homologues (Table §).
The third test set was also modeled, using largazole (a
cyclotetrapeptide-containing HDAC inhibitor, largazole test
set, LTS) whose crystal structure with HDAC-8 was reported,”
but whose inhibitory activity was available only for four HDAC
isoforms (Table 6). For LTS, largazole was docked with HDAC-
1, HDAC-2, HDAC-3, and HDAC-6-1. The bacterial HDACs

2218

complexes with hydroxamic acids were available from the PDB
(Table 5).

3. RESULTS AND DISCUSSION

COMBINEr Models—Overall Analysis. All final models
contained 94-inhibitor/enzyme complexes spanning an activity
range, expressed as pICsp, between 2.7 (NABUT against HDAC-
5) and 84 (SCRIPTAID against HDAC-6). The statistical
results of the final models are summarized in Table 7. Genetic
algorithm (GA) variable-selection was applied, but provided little

dx.doi.org/10.1021/ci300160y | J. Chem. Inf. Model. 2012, 52, 2215-2235
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Table 3. Training Set Composition: Inhibitors’ Names, Corresponding HDAC Used in the Complex, Information on Source of

Protein Structure, and pIC;, Values

no. compound name HDAC isoform protein source PICsy
1 VALP HDACI ModWeb 3.00
2 NABUT HDACI ModWeb 3.50
3 MS-275 HDACI MAT 4.89
4 APHAS HDACI SwissModel 543
s SBHA HDACI CPH 5.68
6 SCRIP HDACI ModWeb 6.77
7 SAHA HDACI MAT 7.00
8 OXAM HDACI ModWeb 7.30
9 TSA HDACI CPH 8.30
10 VALP HDAC2 Crystal 3.00
11 NABUT HDAC2 Crystal 4.54
12 APHAS HDAC2 Crystal 5.13
13 SBHA HDAC2 Crystal 5.34
14 LLX HDAC2 Crystal 6.05
15 SCRIP HDAC2 Crystal 6.19
16 MS-275 HDAC2 Crystal 6.29
17 SAHA HDAC2 Crystal 6.36
18 OXAM HDAC2 Crystal 6.70
19 TSA HDAC2 Crystal 7.68
20 VALP HDAC3 CPH 3.68
21 NABUT HDAC3 SwissModel 4.65
22 APHAS8 HDAC3 CPH 6.38
23 SBHA HDAC3 SwissModel 6.39
4 MS-275 HDAC3 CPH 7.16
28 SCRIP HDAC3 SwissModel 7.582
26 SAHA HDAC3 CPH 7.70
27 OXAM HDAC3 SwissModel 8.00
28 TSA HDAC3 SwissModel 8.30
29 NABUT HDAC4 Crystal 4.52
30 MS-275 HDAC4 Crystal 4.92
31 APHAS HDAC4 Crystal 5.51
32 SBHA HDAC4 Crystal 5.8¢
33 HA3 HDAC4 Crystal 6.01
34 TEMK HDAC4 Crystal 6.44
38 SCRIP HDAC4 Crystal 6.70
36 SAHA HDAC4 Crystal 7.30
37 OXAM HDAC4 Crystal 7.52
38 TSA HDAC4 Crystal 7.85
39 NABUT HDACs ModWeb 2.70
40 VALP HDACS ModWeb 2.70
M1 SAHA HDACS CPH 6.42
42 TSA HDACS CPH 7.80
43 NABUT HDACS—-1 M4T 3.00
44 VALP HDACs—-1 CPH 3.00
45 APHAS HDACS-1 SwissModel 7.00
46 MS-275 HDACE-1 ModWeb 7.00
47 SBHA HDAC6-1 CPH 7.00

no. compound name HDAC isoform protein source pICs,
48 SAHA HDAC6—1 SwissModel 7.70
49 TSA HDAC6—-1 SwissModel 8.30
50 SCRIP HDAC6—1 SwissModel 8.40
51 NABUT HDAC6—-2 CPH 3.00
52 VALP HDAC6-2 ModWeb 3.00
53 APHAS HDAC6-2 CPH 7.00
54 MS-275 HDAC6-2 MAT 7.00
55 SBHA HDAC6-2 ModWeb 7.00
56 OXAM HDAC6—-2 CPH 7.08
57 SAHA HDAC6-2 CPH 7.70
58 TSA HDAC6-2 M4T 8.30
59 SCRIPTAID HDAC6—2 MAT 8.40
60 NABUT HDAC7 Crystal 4.52
61 MS-275 HDAC7 Crystal S22l
62 APHAS HDAC7 Crystal S8
63 SBHA HDAC7 Crystal 5.83
64 SCRIP HDAC7 Crystal 6.80
65 SAHA HDAC7 Crystal 7.30
66 OXAM HDAC7 Crystal 7.52
67 TSA HDAC7 Crystal 7.85
68 VALP HDACS Crystal 3.64
69 NABUT HDACS Crystal 4.07
70 MS-275 HDACS Crystal 4.52
71 SBHA HDACS Crystal S43
72 APHAS HDACS8 Crystal 5.85
73 SCRIP HDACS Crystal 5.64
74 OXAM HDACS Crystal 5.66
75 SAHA HDACS Crystal 5.66
76 TSA HDACS Crystal 5.96
77 MS344 HDACS Crystal 6.60
78 NHB HDACS Crystal 6.76
79 NABUT HDAC9 ModWeb 2.70
80 VALP HDAC? CPH 2.70
81 SAHA HDAC? ModWeb 6.50
82 TSA HDAC9 ModWeb 742
83 VALP HDACIO M4T 3.00
84 NABUT HDACIO CPH 3.54
85 MS-275 HDACIO ModWeb 4.94
86 APHAS HDACIO0 SwissModel 538
87 SBHA HDACIO M4AT 5.64
88 SCRIP HDACIO ModWeb 6.77
89 SAHA HDACI0 ModWeb 7.00
90 OXAM HDACIO CPH 7.30
91 TSA HDACIO0 CPH 8.30
92 SAHA HDACIL ModWeb 6.44
93 TSA HDACII ModWeb 7.82
94 SAHA HDAC6—-1 SwissModel 7.70

improvement in either descriptive or predictive performance;
hence, the non-GA-optimize models were used.
Structure—activity relationships of the various HDAC
inhibitors have previously been described in other studies >
Crystal structures of receptor—ligand complexes have been
analyzed qualitatively or by comparison of bound ]_igand&37
COMBINE- analysis permits quantification of structure —activity
relationships through the electrostatic {Coulombic) and van der
‘Waals interaction energies as well as additional parameters, such
as solvation energy. Distinguished from the original COMBINE
procedure of Orﬁz,ﬁb COMBINEr computes enzyme/ligand
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interactions using the AutoGrid program based on the AMBER
united-atom force field and chosen for its simpler molecular
format (PDBQT). The data in Table 7 refer to the monoprobe
fields (ELE, STE, DRY) and the multiprobes ones: electrostatic-
steric {ELE+STE), electrostatic-desolvation {ELE+DRY), and
electrostatic-steric-desolvation {ELE+STE+DRY). The reported
statistical coefficients allowed estimates of goodness and
robustness of each model. Results indicated the ELE+DRY
model as the best. In fact, the overall generated model showed
the highest conventional squared correlation coefficient {r*) and
lowest standard deviation error of calculation {(SDEC) values:

dx.doiorg/10.1021/ci300160y | 4 Chem. Inf. Model, 2012, 52, 2215-2235
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Table 4. MTS Chemical Structures and Reported HDAC Inhibitory Activities”

Q Class | lla Ib v
3
I Number 1 2 3 8 4 5 7 9 6 10 M
Ol/\%“\m 000323 001570 001050 000384 000582 000558 000611 000824 000593 000841 0.00558
LAQ824%°
2 njg/@ 0.41 - 075 100 - R 100 - -
4
a0425
Cl-994
@f N
v N/\QT"Q 0.15 0.29 1.66 - - - - 059
MGCD0103%
7] i .
o ‘ =J\/\A§ “~oH
; @ ™ 19.3 69.7 1.99 100 58.9 21.0 29.7 13.3 935 231 34.1
c -
u JMC-237
g a
5 2% 64 65 260 93 2000 2000 2000 2000 240 - -
2 MCL-3
2 L
= o
n A 08 06 2 4 140 25 150 430 05 - -
= MCL-4
o
L2 " Jfﬂﬁ
g EN:@/\LH, 1 b 0.58 - 067 - 0.098 - - - 0.089 - -
= .
o MCL08-3i%°
L 0.32 - 023 - 0.076 - - - 036 - -
MCL08-3d*
L o
B 0004 0021 0002 2.58 - - 00002  0.002 -
CMC-25b*
R e
e, 0057 0074 0018 1.72 - - 0011 0083 -
CcMmC-7f°
“IC, expressed in micromolar,
0.80 and 0.73, respectively (Figure 2A), comparable to those (~90%) showed a correlation coefficient between —0.60 and
reported by Wade et al. in a similar application.® To assess the —0.99, rationalizing the similar statistical coefficients among
models’ internal predictive power and robustness, two validation models 4, 5, and 7 (Table 7). Therefore, the DRY field may be
methods were used as follows: cross-validation (CV, internal interpreted here as a probable estimation of steric interactions as
validation) and Y-scrambling. LOO and RSG-LSO methods well.
were chosen for cross-validation, obtaining for both g values of The charts in Figure 2 highlight the results of Table 7 and show
0.76 for the ELE+DRY probe, using only 2 principal components linearity between experimental and recalculated/predicted data,
(Figure 2B). These results suggested good internal predictability expressed as pICg. Two views of experimental versus the R5G-
(CV) of the model. Furthermore, SDEP (standard deviation LSO cross-validation predictions, indicating with different
error-of-prediction) provided an estimation of model internal symbols each inhibitor and each HDAC isoform, are shown in
predictivity by means of cross-validation; values less than 1 are Figure 3. This double representation emphasizes how the
generally considered indexes of good predictions. Upon further COMBINEr model retains the correlation within various
inspection, a high level of inverse correlation between the DRY subgroups, either considering all the training-set inhibitors
and STE fields was found; more than 84 out of 94 complexes versus each HDAC (correlation of anti-HDAC inhibitors
2220 dxdoiora/10.1021/ci300160y | . Chem. Inf. Model. 2012, 52, 2215-2235
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Table 5. CTS: PDB Codes, Ligand Names, Chemical Structures, and HDAC Inhibitory Activities

PDB | Recaptor Ligand structure Ligand name ICs0
code name (M)
[ ¥
a - . (2R)-2-amino-3-(3-chlorophenyl)-1-[4-
3SFF* | HDACS " NQ (2,5- difluorobenzoyl)piperazin-1- 0.2
i yllpropan-1-one (ODI)
o - (2R)-2-amino-3-(2,4-dichlorophenyi)-
3SFH*? | HDACS m 1-(1,3- diydro-2H-isoindol-2- 0.09
i 1 yl)propan-1-one (1DI)
I
/N
33 HyC’ CH;  CHj
1C3R HDLP PP ;;\OH TSA 0.4
] (o]
o
34 O\ " 9,9,9-trifluoro-8-oxo-n-
2GH6 HDAH u)KNvﬁ(c phenyinonanamide(CF3) 1.9
[+]
o
12Z1* | HDAH Q\M\ SAHA 0.95
H . !
35 _OH 3-cyclopentyl-n-hydroxypropanamide
12Z3 HDAH Oﬂ)‘\u (3YP) 0.29
Table 6. LTS: PDB Code, Ligand Name, Chemical Structure, and HDAC Inhibitory Activities
ICs0 (HM)
PDB Ligad structure Ligand  ,hac HDAC HDAC HDAC HDAC
code name
1 2 3 6 8
3
3R1QD Largazolethiol 0.0012  0.0035 0.0034 0.049 -
Table 7. Statistical Results of the COMBINEr Models
scrambled q”‘
# Field PC" ™ SDEC' grsciso’ SDEP wsgaso’ oo’ SDEPLoof |m:i/1nivz Max.
aliss alue
1 ELE 2 0.69 0.91 0.67 0.94 0.68 0.93 85“8 0.07
2 STE 2027 140 014 1.52 0.15 151 nd. nd.
3 DRY 2046 121 034 133 036 132 nd. nd.
4  ELE+STE 2074 084 068 0.93 068 0.93 2 0.0
5 ELE+DRY 2 0.80 0.73 0.76 0.81 0.76 0.81 6 0.08
6 STE+DRY 3 0.54 1.11 033 1.34 0.35 1.33 nd nd
7 ELE+DRY+STE 2 077 078 072 0.87 072 0.87 4 0.04

“Number of principal components used. “Conventional squared correlation coefficient. “Standard deviation error of recalculation. “Cross-validation
coeflicient for the RSG-LSO method. “Standard deviation error of prediction for the RSG-LSO cross-validation, “Cross-validation coefficient for the
LOO method. Standard deviation error of prediction for the LOO cross-validation. hPercentage of positive cross-validation coefficients for the

scrambling method and its maximum values.

potency, Figure 3) or considering the each inhibitor binding into
different HDAC isoforms (correlation of selectivity, Figure 3).
This latter consideration is consistent and supported the fact that
the LOO and RSG-LSO cross-validation ¢’s showed the same
values. Furthermore, to check for methodological self-consis-
tency, reduced COMBINEr models built for several inhibitors
against each HDAC isoform (inhibition potencies) and for each

2221

inhibitor against several HDAC isoforms (selectivity issue)
revealed the existence of relationships with r* ranging from 0.7 to
0.8.

Finally, both robustness and absence-of-chance correlation of
the COMBINEr models listed in Table 7 were checked by
random scrambling (Y-scrambling). Through this approach, a
random reassignment of inhibitory activity to compounds of the

dx.doi.org/10.1021/ci300160y | J. Chem. Inf. Model. 2012, 52, 2215-2235
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Figure 3. RSG-LSO cross-validation predictions depicted by HDAC isoforms (A) and by inhibitor (B).

data set was achieved to generate numerous data sets; for each
scrambled data set, a RSG-LSO cross-validation was run. One-
hundred Y-scrambling runs were examined; their analysis
revealed that only 6% of all Y vectors had a correlation with
the original Y values with maximum scrambled q* of only 0.08 in
the case of ELE+DRY probe. Regarding the other models, in the
case of ELE and ELE+STE+DRY, a chance correlation of 4% and
5% with a q}' maximum value of 0.04 and 0.07 were observed,
respectively. The ELE+STE probe showed a chance correlation
of 2% with a ql maximum value of 0.05. These correlations
appear random and excluded possible correlations between the
original Y vector and the scrambled Y vectors. For the best model
(ELE+DRY) in 100 random scrambled models, the number of
positive ¢* values were only 6 leading to a probability of chance
correlation lower than 1% with a q2 value of 0.1, quite acceptable
results considering the cross-validation coeflicients of 0.76 of the
model. Cross-validation runs using the most stringent leave-half-
out method confirmed the robustness of the models (data not
shown).

2222

ELE and DRY Model Interpretation. Interpretation of
COMBINEr models can identify the residues relevant for
differences in activity and quantify their relative importance. To
this aim, the PLS-coefficients (Figure 4) and activity-
contribution plots (Figure S) are useful. The former provides a
global view and gives information on all of the training set. The
sign and the magnitude of PLS coefficient of an energy term
multiplied by the corresponding energy term (field) shows the
influence of the corresponding residue on ligand binding.&
Interpretation of the PLS coeflicients can lead, however, to
possible misconceptions. A positive PLS coefficient for an
attractive, negative energy term indicates a term that contributes
favorably to binding affinity (resulting in a more negative AG
value). A positive PLS coefficient for a repulsive, positive energy
term indicates a term that is unfavorable for binding affinity
(resulting in a more positive AG value). On the other hand, a
negative PLS coefficient will result in an energy term favoring
binding when the energy term is positive (repulsive) and
disfavuring binding when the energy term is negative
(attractive).38 The PLS-coefhicient plot is shown in Figure 4A.

dx.doiorg/10.1021/0300180y .4 Chem. Inf. Model. 2012, 52, 2215-2235
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Figure 4. PLS Coeff (A), StDev (B), and PLS Coeff X StDev plots for the ELE+DRY COMBINEr model (C). The residue were selected using a PLS-
coefficient threshold value of 0.001. Residue numbers are color-coded according to Table 8. The residue numbers reported correspond to those in

Supporting Information File 6.

By multiplying the PLS coeflicients with the field values, the
activity-contribution plots were obtained for each training-set
compound (see below). As can be seen (Table 8 and Figure 4),
the COMBINEr model can explain isoform selectivity
considering only 34 residues of the enzymes (Table 8) even

2223

though all residues of the eleven HDAC isoforms with a PLS
coeflicient greater than 0.001 were included in the analyses.

To analyze the significance of the fields (ELE and DRY) and
the contribution for each ligand—residue interaction, the residues
were color-coded in Table 8. The residues located in the rim
region are colored red, while the residues forming the central

dx.doiorg/10.1021/0300180y .4 Chem. Inf. Model. 2012, 52, 2215-2235
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Figure 5. Four most important residues (MIRs, see text) from the
COMBINEr model analysis. The labels and regions are color-coded: in
red are the residues in the HDAC's rim region; in blue are those forming
the central tube channel; and in black are those in the proximity of the
catalytic Zn ion. The zinc binding region (black line box), the
connection region (blue line box), and the CAP region (redline box) are
also highlighted to recall the HDAC pharmacophore model depicted at
the bottom. ZBG: Zn-binding group. HS: hydrophobic spacer. CAP:
hydrophobic capping group.

channel are blue, and those in proximity to the catalytic Zn ion
are black (Supporting Information File 2). In Figure 4B are
reported the ligand/residue/interactions standard deviations
(StDev) used to produce the PLS Coeff x StDev plot {Figure
4C) in which the PLS coefficients are weighted so that the global
importance of the interactions can be understood similar to a
standard 3-D QSAR model. > The variables reported in Figure 4
and Table 8 are significant for the model; however, the most
important residues that modulate the inhibitory activities are as
follows: 254 (His for all the HDACs, in the Zn-binding site), 294
(His for all the HDACs, either in the Zn- or tube-binding sites),
and 392 (Asp for all the HDACs, in the Zn-binding site) mainly
for the ELE field while 263 (Tyr for HDAC-6-1 and Phe for all
the others in the tube-binding sites) and 401 (Met for HDAC-8,
Lys for HDAC-6-1 and Leu for all the others, in the rim-binding
site) for the DRY field (Figure S). Residue 254 has also some
negative modulating factor in the DRY field. These five residues
account for 95% of the explained variance (~80%) of the model
indicating that interactions of ligands with these four residues are
of major importance in determining the inhibitor potencies
(coarse tuning, Figure 6). Fine tuning of both potency and
selectivity result from other contributions, and therefore, each
isoform needs to be inspected individually.

Regarding the importance of the overall interactions, the sums
for either the ELE or DRY activity contributions for each
training-set complex are shown in Figure 7. While the DRY field
contribution mostly modulates the activities (bigger red bars on
bulkier compounds), the ELE contribution becomes more
important in modulating the low activities of the smaller
inhibitors (bigger blue bars on short fatty acid inhibitors),
NABUT and VALPROIC ACID (VA), due to missing
interactions with residue 401 and others at the enzymes’ rims
(Figure 8). Indeed, the COMBINEr model correctly indicates
that NABUT and VA miss residue 401’s contributions so activity
contributions from other main residues (254, 294, and 392 of the

2224

ELE field) are highly negative ranging from —0.27 to —1.02 and
from —0.14 to —1.02 for NABUT and VA, respectively.

Field ELE. All residues selected having PLS Coeff higher than
0.001, except for 398, showed positive values, indicating that all
the electrostatic interaction are attractive (Figure 4A). Indeed the
PLS Coeff X StDev plot clearly indicates that all electrostatic
interactions are positively contributing to the model. In
particular, plots in Figure 4 show that the ELE field is definitively
more important in the inner part (black-labeled residues) of the
HDACs catalytic domains than for residues forming the channel
(blue-labeled residues in Figure 4) and those at the entrance rim
(red-labeled residues in Figure 4) where only four and five out of
27 residues displayed PLS coeflicients higher than the chosen
threshold value.

In the outer part of the enzymes, the five selected residues
(Figure 4) do not show appreciable activity contributions
highlighting that these parts are not associated with high
variation in ligand/enzyme electrostatic interactions. Detectable
negative values relate to small compounds (NABUT and VA) for
which the model correctly records the missing contribution.

Regarding the channel-forming residues, 294 (at the edge
between the channel and the bottom of the HDAC-binding sites)
displayed the highest values in all three plots of Figure 4. Indeed,
this residue (a conserved histidine for all HDACs) is primarily
involved in modulating the potency between small inhibitors
(NABUT and VA) and channel-filling inhibitors (i.e., SAHA and
‘TSA). For NABUT and VA, diminished interactions with residue
294 account for 0.8 to 1.0 decrement in activity. To some extent,
the fact that either NABUT or VA are carboxylic acids indicates
that higher negative charge (NABUT and VA were modeled as
carboxylates, thus bearing a discrete negative formal charge) in
proximity to residue 294 is unproductive. Analogous to a
CoMFA analysis, the high PLS Coeff X StDev values for residue
294 represent a blue polyhedron, placed in the same space 0f 294,
indicating that an enhanced negative charge decreases the overall
activity, while a positive-charged group (or aless negative one) is
preferred to maintain the activity (the maximum contribution
associated with 294 is lower than 0.01). Among the other
channel-forming selected residues, 262 (always a Gly), 263
(mostly a Phe), and 264 (always a Cys), the most interesting is
residue 263 involved in modulating the activity decrement for
small compounds, in particular for VA.

Most of the ELE-selected residues (18 out of 27) are in the
deep part of the channels around the catalytic Zn. Of particular
interest are residues, involved in HDAC catalytic process
conserved among the 12 isoforms, as follows: residues 253
(His), 254 (His), 292 (Asp), 392 (Asp), and §71 (Zn). In general
the activity contribution associated with these five residues
modulates the activity decrement for carboxylate-based zinc-
binding groups. As examples, residues 253 (SAHA in HDAC-1)
and 254 {(SAHA in HDAC-3, HDAC4, and HDAC-6-2; and
SBHA in HDAC-4 and HDAC-8) are associated with a positive
activity contribution of about 0.1.

Field DRY. The DRY field gives a rough estimation of steric
interactions. Between ELE and DRY selected residues about 35%
of these are shared (12 out of 34) in significance, nevertheless, for
the DRY field a totally different and more complicated scenario
can be observed on the relative importance of each residue. In
general, the most important modulating interaction relates to
401Leu, replaced by Met in HDAC-8 or by Lys in HDAC-6-1
(Table 8). Upon deeper inspection (not considering the small-
molecule complexes, NABUT, VA, and NHB), only 27 of 94
activities are modulated by residue 401 with activity contribu-

dx.doiorg/10.1021/ci300160y | L Chem. Inf. Model. 2012, 52, 2215-2235

208



Journal of Chemical Information and Modeling

Table 8. List of the Most Important Residues to Interpret the COMBINEr Model”

N. of residuals 53 54 76 204 205 206 250 251 253 254 261
HDAC1 HIS28 PRO29 ARG34 GLU98 . . GLY138 LEU139 HIS140 HIS141 SER148
o— HDAC2 HIE22 PRO23 ARG28 GLU92 - - GLY132 LEU133 HIE134 HIE135 SER142
HDAC3 HIS22 PRO23 ARG28 ASP92 - - GLY132 LEU133 HIS134 HIS135 SER142
HDAC8 . - ARG37 TYR100 - - GLY140 TRP141 HIS142 HIS143 MET161
HDAC4 - - ARG32 - - - PRO151 GLY152 HIE153 HIE154 MET840
i HDACS HIS704 PRO705 ARG710 - - - PRO830 GLY831 HIS832 HIS833 ASP137
HDAC7 HIE27 PRO28 ARG33 - - - PRO153 GLY154 HIE155 HIE156 CYs137
HDAC9 - - ARG660 - - - PRO780 GLY781 HIS782 HIS783 MET163
HDAC6-1 PHE19 PRO20 ARG25 THR84 TYR8S - PRO127 GLY128 HIS129 HIS130 SER150
Classlib  HDAC6-2 HIS19 PRO20 ARG25 - - PHES8S PRO127 GLY128 HIs129 HIS130 MET790
HDAC10 GLU24 ILE25 ARG30 - - - PRO132 GLY133 HIS134 HIS135 ASN142
Class IV HDAC11 HIS35 PRO36 LYS41 PRO102 - - GLY140 PHE141 HIS142 HIS143 GLY150
N. of residuals 262 263 264 291 292 293 294 295 316 321 322
HDAC1 GLY149  PHE150 CYs151 ILE175 ASP176 ILE177 HIS178 HIS179 LYS200 GLU203 TYR204
cinss) HDAC2 GLY143 PHE144 CYs145 ILE169 ASP170 ILE171 HIE172 HIE173 LYS194 TYR198 -
HDAC3 GLY143 PHE144 Cys145 ILE169 ASP170 ILE171 HIS172 HIS173 LYS194 ASN197 TYR198
HDAC8 GLY151 PHE152 CYS153 LEU177 ASP178 LEU179 HIE180 HIS181 LYS202 GLY206 PHE207
HDAC4 GLY162 PHE163 Cys1i64 TRP190 ASP191 VAL192 HIE193 HIE194 ARG215 ASN220 PHE221
HDACS GLY841 PHEB42 CYs843 TRP869 ASP870 ILE871 HIS872 HIS873 ARG894 ASN899 PHES00
Slastlia HDAC7 GLY164 PHE165 CYS166 TRP192 ASP193 VAL194 HIE195 HIE196 ARG217 ASN222 PHE223
HDAC9 GLY791 PHE792 CYS793 LEU819 ASP820 VAL821 HIS822 HIS823 ARG844 ASN849 PHES850
HDAC6-1 | GLY138 TYR129 Cys140 TRP166 ASP167 VAL168 HIS169 HIS170 ARG191 ARG196 PHE197
Classllb HDAC6-2 | GLY138 PHE139 CYs140 TRP167 ASP168 VAL169 HIS170 HIS171 ARG192 THR197 PHE198
HDAC10 GLY143 PHE144 CY5145 TRP171 ASP172 VAL173 HIS174 HIS175 ARG196 ARG201 PHE202
Class IV HDAC11 GLY151 PHE152 CYS$153 LEU180 ASP181 ALA182 HIS183 GLN184  ASN205 ILE208 TYR209
N. of residuals 323 391 392 397 398 399 401 439 440 a1 442
HDAC1 SER263 ASP264 ASP269 ARG270 - LEU271 GLY300 GLY301 GLY302 TYR303
GlAsS I HDAC2 PHE199 ALA257 ASP258 ASP263 ARG264 - LEU265 GLY294 GLY295 GLY296 TYR297
HDAC3 PHE199 ALA258 ASP259 ASP264 ARG265 - LEU266 GLY295 GLY296 GLY297 TYR298
HDAC8 PHE208 ALA266 ASP267 ASP272 PRO273 - MET274 GLY303 GLY304 GLY305 TYR306
HDAC4 PHE222 PHE284 ASP285 HIE290 PRO291 THR292 LEU294 GLU324 GLY325 GLY326 HIE327
p— HDACS PHE901 PHE963 ASP964 HIS969 LEU970 SER971 LEU973 GLU1003  GLY1004  GLY1005 HIS1006
HDAC?7 PHE224 PHE286 ASP287 HIE292 PRO293 ALA294 LEU296 GLU326 GLY327 GLY328 HIE329
HDAC9 PHE851 PHE913 ASP914 HIS919 THR920 PRO921 LEU923 GLU953 GLY954 GLY955 HIS956
HDAC6-1 TRP198 PHE259 ASP260 ASP265 PRO266 - LYS267 GLU297 GLY298 GLY299 TYR300
Classllb  HDACS-2 PHE199 PHE260 ASP261 ASP266 PRO267 - LEU268 GLU298 GLY299 GLY300 TYR301
HDAC10 TRP203 PHE264 ASP265 ASP270 PRO271 GLU272 - GLU302 GLY303 GLY304 TYR305
Class IV HDAC11 THR260 ASP261 ASP266 ARG267 - LEU268 SER301 GLY302 GLY303 TYR304

“The labels are color-coded: in red are the residues in the HDAC’s rim region; in blue are those forming the central tube channel; and in black are
those in the proximity of the catalytic Zn. The residues labels were color-coded according to the reported pharmacophoric model." The residues
were selected using a PLS-coefficient threshold value of 0.001. See Supporting Information File 001 for 3-D graphical disposition of the listed

residues in each HDAC isoform.

tions ranging between 0.7 and 2.13 (Supporting Information File
1 Figure SI-1).

Without considering the contribution of residue 401, it is
evident from the plot in Figure 8B that the other 10 residues play
a major role in modulating the overall biological activities
(Supporting Information File 1 Figure SI-2, Table SI-1). Seven
out of 10 residues (204, 253, 254, 262, 263, 294, and 442) are
related to negative modulating values, while the other three (205,
206, and 323) are positive modulators. Residue 263 (Tyr for
HDAC-6-1 and Phe for the others) located in the wall of the
channel shows the largest range with larger negative values. No

2225

specific pattern is detected for residue 263 in modulating
regarding the different enzyme classes or inhibitor structures
(Supporting Information File 1 Figure SI-3). The small inhibitor
NABUT is not influenced by residue 263, likely due to the fact
that there are no direct contacts. Residue 442 (His for Class Ila
and Tyr for the others) located in the bottom of the binding sites
shows the largest range with larger negative values associated
mainly with class I complexes, with particular reference to
HDAC-8 (Supporting Information File 1 Figure SI-4) thus
suggesting that interaction with this residues might be used to
selectively avoid inhibition of HDAC-8.
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Figure 6. Comparison between the cross-validation predictions for the full model (blue squares) and with only the four most-important residues
(MIRs). The coarse tuning of the relationships by the MIRs is indicated by the red squares in panel A. The differences between the red and blue squares
indicate the importance of fine-tuning determined by relatively minor interactions. In B are reported the MIR predictions classified by inhibitor type. For
comparison purposes, only inhibitors for which isozyme profiles of inhibition data were available are shown.
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Figure 7. ELE and DRY total-activity contributions. The constant (PLS intercept) of the COMBINET equation takes the value of 6.68. The sum of ELE
and DRY contribution is obtained by the algebraic sum of all per-residue contributions.

Residue 254 (His in the zinc-binding region) is second with
the higher StDev value and from Supporting Information File 1
Figure SI-S clearly negatively modulates mainly nonhydroxamate
inhibitors making complexes (LLX, MS-275, and VA)
consistently with that reported for the ELE field. Residue 204
(of various nature present on the rim of 6 out of 12 HDACs) and
294 (His, a channel-forming residue) are also negative-
modulating residues, but the associated low standard deviation
indicates that no selectivity can be attributed to the DRY

2226

interactions (Supporting Information File 1 Figure SI-6 and 7);
residue 204 seems to specifically modulate the inhibitory activity
for HDAC-8 complexes (Supporting Information File 1 Figure
SI-7). Considering the high correlation between DRY and STE,
interactions with residues 263 and 294 are of crucial importance
for optimal fitting of inhibitors in the HDAC channels.

Among the three DRY positive-modulating residues, 323, an
aromatic side-chain-bearing residue missing in HDAC-1 and
HDAC-11, shows the highest maximum-activity contribution
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Figure 8. Per-residue activity-contribution plots for the ELE (A) and DRY (B) fields.

and larger variability; maximum-activity contributions occur with
APHAS and TSA binding to either class I or class II enzymes
(Supporting Information File 1 Figure SI-8). The other highly
positively contributing residue 205 is peculiar for HDAC-6-1
(Tyr85) and thus uniquely modulates inhibition of this enzyme.

Analysis of Interactions Contributing to Isoform
Selectivity. Interaction- and activity-contribution analyses
suggest that useful insight into structural determinants exists
for both HDAC isoforms and their inhibitors to help optimize
isoform-specific inhibitors using the derived COMBINEr model.
Derivation of rules to guide the structural basis for isoform
selectivity required single analysis for each specific isoform
model. For nine of the inhibitors used in the training set (Table
2), at least 9 out of 12 isoform-inhibition profiles were available
(Supporting Information File 1 Table SI-2). In Supporting
Information File 3 are reported the recalculated activity profiles
for each of the nine inhibitors of Table 2 showing the models
sensitivity to HDAC-isoform inhibition by different compounds.
To illustrate the COMBINEr model’s potential use, two
inhibitors were selected seeking potential structure determinants
for isoform selectivity. Among the training set, analysis on the
activity range indicated MS-275 and SCRIPTAID as good
examples. From Supporting Information File 1 Table SI-2, MS-
275 and SCRIPTAID display large variability, and from Table 2,
MS-275 results partially selective for class | HDACs (particularly

2227

for HDAC-3ICyy = 0.07 uM and HDAC-2 IC¢ = 0.5 M), while
SCRIPTAID is partially selective for class II displaying
submicromolar activities against these enzymes.

MS-275. This inhibitor is specifically selective for class 1
HDAC-3 over class Ila HDAC-4 and comparison of data
belonging to the relative complexes shows how the model helps
rationalize the higher activity of MS-275 for HDAC-3 versus
HDAC-4. As shown in Figure 9, it is possible to indicate, either
numerically or graphically, the residues responsible for this
activity difference. Considering electrostatic interactions, it is
evident that, as already above highlighted, there is very low
correlation with activity, and only gray or light blue surfaces can
be observed in Figures 10C and E (see Figure 9 footnotes for
color-coding). On the other hand, the DRY field seems very
sensitive as shown in Figure 9D and F; there is a high color
variation clearly indicating those residues responsible for the
higher activity of MS-275 against HDAC-3 (Phe199 and Arg265
are dark green). Other green-colored residues are also located
around the rim, for example, Leu266. A few residues are colored
yellow, residue 263 (Phel44 in Figure 9D) indicating that MS-
275 anti-HDAC-3 activity could be improved by optimizing the
interactions in the enzyme channel. Going to the MS-275/
HDAC-4 complex, many DRY surfaces have turned from green
to yellow thus highlighting that residue 263 (HDAC4-Phe163)

dx.doiorg/10.1021/ci300160y | £, Chem. inf. Model. 2012, 52, 2215-2235
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Figure 9. Activity contributions (A and B) for MS-275 and their graphical representations (C—F). A, C, and E in the left side, account for the ELE field.
The DRY is depicted on the right (B, D, and F). Residue surfaces are color-coded: for ELE blue-based surfaces indicate a positive contribution (light blue
if the contribution is less than 50% of maximum contribution for a given residue; dark blue indicate areas with higher contributions); red-based surfaces
indicate negative contributions (light red for absolute contribution less than 50% of the corresponding residue; dark red for higher percetage of negative
contribution). For the DRY field, positive contributions are indicated in green (dark green for contribution higher than 50% of the maximum activity
contribution; light green for less contribution); yellow colors are used to indicate negative DRY contributions (dark yellow for absolute contribution
higher than 50% of the maximum activity contribution; light yellow for low negative contributions). Dark gray surfaces indicate zero contribution, while
light gray are residues with PLS coefficients lower than 0.001 (see above in the model interpretation section ). Only residues cited in the text are labeled.

plays a major role in decreasing activity with many residues
showing zero activity contribution.

SCRIPTAID. SCRIPTAID was chosen as a selective class 11
inhibitor. Similarly to MS-275, the electrostatic interactions
differentiated when comparing the activity contributions of
HDAC-6 and HDAC-8 (Figure 10). Indeed, Figure 10A clearly
indicates that the ELE contributions are below 0.02. So

2228

analogously to MS-275, DRY terms help rationalize the
inhibitory activities of SCRIPTAID with HDAC-6 and HDAC-
8. Most differences are located in the rim zone. Specifically,
Lys267 in HDAC-6 is responsible of a strong positive
contribution, while Met261, its counterpart in HDAC-8, displays

a much smaller contribution.
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Figure 10. Activity contributions (A and B) for SCRIPTAID and their graphical representations (C—F). A, C,and E account for the ELE field. The DRY
field is depicted on the right (B, D, and F). Residue surfaces are color-coded: for ELE, blue-based surfaces indicate positive contributions (light blue if the
contribution is less than 50% of maximum contribution for a given residue; dark blue indicate areas with higher contributions); red-based surfaces
indicate negative contributions (light red for absolute contributions less than 50% of the corresponding residue; dark red for higher percetage of negative
contributions). For the DRY field, positive contributions are indicated in green (dark green for contribution higher than 50% of the maximum activity
contribution; light green for less contribution); yellow colors are used to indicate negative DRY contribution (dark yellow for absolute contribution
higher than 50% of the maximum activity absolute contribution; light yellow for low negative contributions). Dark gray surfaces indicate zero
contributions, while light gray are residue with PLS coefficients lower than 0.001 (see above in the model interpretation section). Activity contribution
plots and associated graphicals for all the training set are reported in Supporting Information Files 4 and 5. Only residues cited in the text are labeled.

Docking Assessment. X-ray structures of HDAC-inhibitors
were used to evaluate the ability of a docking program to predict
the correct geometry of protein—ligand complex (redocking).
To this aim, two different docking programs were tested:
AutoDock Ver. 4.2 and AutoDockVina Ver. 1.1. Docking results
were assessed with RMSD (root-mean-square deviation) of the
predicted ligand configuration versus the crystal structure. Table

2229

9 and 10 show RMSD values for best docked (the lowest energy
docked conformation of the first cluster generated), best cluster
(the lowest energy docked conformation of the most populated
cluster), and best fit (the lowest energy conformation of the
cluster showing the lowest RMSD value),40 obtained with the
two programs. In all cases, AutoDockVina was found to be more
accurate displaying a docking accuracy (DA) of 75% for the best
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Table 9. Redocking Results (RMSD) with AutoDock Program

complex name best docked best cluster best fit
LLX.HDAC2 048 048 048
HA3.HDAC4 525 4.76 44
TMFK.HDAC4 346 575 346
SAHA.HDAC? 10.36 10.36 218
TSA.HDAC7 6.06 6.06 14
APHA.HDACS 54 226 226
SAHA.HDACS 5.84 729 4.1
TSA.HDACS 5.1 5.52 145
DA % 12.5 18.75 50

Table 10. Redocking Results (RMSD) with AutoDockVina
Program

complex name best docked best cluster best fit
LLX.HDAC2 0.24 0.24 0.24
HA3.HDAC4 3.87 234 193
TMFK.HDAC4 4.02 19 1.46
SAHA.HDAC7 245 245 1.88
TSA.HDAC7 219 219 121
APHA.HDACS8 143 143 143
SAHA.HDACS8 249 249 172
TSA.HDACS 2.09 122 122
DA % 50 75 100

cluster poses (Tables 9 and 10). AutoDockVina was able to
predict the right binding disposition of all ligands with a RMSD
<3 A. From Tables 9 and 10, the best cluster conformation
displayed the lowest RMSD values. For subsequent dockings,
therefore, only the AutoDockVina program was used considering

the best cluster conformation as the first choice. Considering the
Best Fit pose, AutoDockVina proved to be able to find the correct
binding mode with a DA of 100%. Although the Best Fit poses
are irrelevant for the docking applicability, they further supported
that AutoDockVina is quite good in searching for the right
conformation, but the scoring function is not able to select it. For
docking, the side-chain flexibility features of AutoDock and
AutoDockVina were not used as the results were always worse
than in fixed receptor dockings in preliminary docking studies.

Model Predictivity. Once the docking protocols were
assessed, a cross-docking approach was applied to the MTS,
CTS, and LTS test sets of inhibitors to prepare the HDAC-x
complexes.

Modeled Test Set. Regarding the MTS, all minimized HDAC
structures were used as templates for docking simulations. Thus,
each inhibitor of Table 4 was docked into all receptor binding
sites, for a total of 304 individual docking simulations. For each
isoform, all poses were collected in a bin and the output poses
clustered by means of the AutoDock program. It was found that
AutoDockVina had the ability to reproduce the experimental
binding modes with modest errors (Table 10); in some cases
(not shown), the best cluster conformation was found in a
nonactive pose (i.e., the zinc-binding group rotated away from
the Zn ion). This clearly indicated the limitations of the docking
protocol in selecting the correct poses. In these cases, either the
best-docked pose or an arbitrary-chosen conformation on the
basis of Zn chelation that mimicking the binding mode of closest-
related experimentally bound inhibitor was used. This approach
is consistent with the fact that AutoDock Vina proved to be able
to find the right binding mode (see comments for the Best Fit
pose in the Docking Assessment section ). For MTS, a total of 76
HDAC-inhibitors complexes were compiled, and the ELE+DRY
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Figure 11. Experimental/predicted pICs, for the MTS.
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Table 11. Experimental/Predicted pICs, for the CTS Test Set”

PDB code HDAC molecule name experimental
3SFF? HDACS 1DI 7.05
3SFH™ HDACS oDI 6.70
1223 HDAH kyed 6.54
2GH6E™ HDAH CF3 495
1221 HDAH SAHA 6.02
1C3R* HDLP TSA 640

PC1 PC2 PC3 PC4 PCS
881 7.50 7.34 7.19 7.08
8.90 741 7.21 690 6.96
646 6.69 6.39 648 6.34
6.53 6.14 599 6.02 6.05
672 6.28 601 582 576
6.72 6.26 645 6.58 6.76

“PDB codes are used for indicating the structure of inhibitor from Table 5. The predicted values at different principal components (PCs) are

reported.

COMBINEr model was used to predict inhibitors activities.
Figure 11 and Supporting Information File 1 Table SI-3 show the
pICs predicted for the MTS external test set and statistical
results (SDEP,,, and AAEP). The model showed a good external
predictivity with SDEP of 1.41 for the optimal two principal
components. Figure 11 reveals that JMC-23 and MCL-4 are the
worst predicted compounds. JMC-23 contains an oxime amide as
2 ZBG (Zn binding group) that can be interpreted as a modified
version of the efficient hydroxamate moiety. As reported by Botta
et al,”” this compound is a poor pan-HDAC inhibitor; the
COMBINEr model fails in predict correctly 5 out of 11 activities.
Regarding MCL-4, this is the hydroxamate version of MCL-3,
while the latter is recognized as a very poor inhibitor with the
correct trend, MCI-4 is highly over predicted in HDAC-4,
HDAC-5, HDAC-7, and HDAC-9 complexes. Nevertheless the
average pICsg value for MCL-4 (exp = 5.18, pred = 6.31) was
correctly calculated to be higher than that for MCL-3 (exp = 3.40,
pred = 3.33).

Comparisons of predictions for single HDAC isoforms reveal
that complexes of HDAC-2 and HDAC-3 were the best
predicted with an average absolute error of prediction (AAEP)
of 0.53 and 0.65, respectively. Complexes related with HDAC-7,
HDAC-9, HDAC-10, and HDAC-11 showed the highest AAEP
values. For HDAC-9, HDAC-10, and HDAC-11, the worst
predictions were associated with a lower number of complexes in
the training set. In general, the model was able to reproduce the
activity of class | HDACs better than class II. Regarding HDAC-
10 and HDAC-11, the smaller amount of experimental data in
the training set was the probable cause for the failed activity-trend
predictions (Supporting Information File 1 Figure SI-10, Panels
K and L). Notably the external SDEP value confirmed that the
model at 2 PCs was indeed the most predictive as correctly
indicated by the cross-validation runs (Supporting Information
File 1 Table SI-3). The application of the COMBINE: model to
the MTS proved the ability of the model in predicting the relative
potency and the correct activity trend of a given series of
inhibitors for 10 out of 12 HDAC isoforms (Supporting
Information File 1 Table SI-3 and Figure SI-10) even when the
binding conformations of the test set inhibitors were obtained
from docking. Furthermore the lowest SDEP,,, and AAEP values
obtained from the MTS analysis fully supported the optimal
number of PCs as indicated by cross-validation.

Crystal Test Set, The CTS was compiled using only
experimental bound inhibitors. The usefulness of this test set
was twofold. First, from Table 11, the training-set model-binding
conformations were confirmed to be self-consistent with only 2
PCs (Figure 12), the COMBINEr model predicted the correct
trend and activity potencies with an AAEP values of only 0.71
(not shown). Second, the inclusion of bacterial HDACs (HDAH
and HDLP) indicates that the derived COMBINEr model might
be used to predict activities against nonhuman HDACs,
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Figure 12. Experimental /predicted pICg, for the CTS.

potentially useful in the search for antiparasitic, antifungal, and
antibacterial therapeutics.

Largazole Test Set. Finally the third test set comprised a
cyclotetrapeptide-like inhibitor (larg;im]e).31 In this case the
model was tested for its predictive ability against a class of
inhibitor (peptide-like) totally different from those included in
the training set. To some extent, the COMBINEr model was able
to recognize the relative potency of largazole for HDAC-I,
HDAC-2, and HDAC-6-1; while for HDAC-3, the predicted
plCsy was underestimated, indicating that further modeling of
this class of inhibitor is needed (Table 12 and Figure 13). As a

Table 12. Experimental /Predicted pICg, for the LTS Test Set”
exp PC1 PC2 PC3 PC4 PC3

HDAC-1 8.92 6.98 7.64 8.03 7.88 8.09
HDAC-2 846 6.94 7.72 7.59 7.23 733
HDAC-3 847 6.80 6.73 697 6.80 6.86

HDAC-6-1 7.31 712 6.47 6.26 577 6.35

“The predicted values at different principal components (PC) are
reported.

matter of fact, the docking approach used did not allowed
flexibility of the largazele cyclic headgroup; thus, full ligand
flexible docking and smaller error of prediction should be
expected with enhanced docking and inclusion of more inhibitors
that interact with the headgroup region.

M CONCLUSION

A structure-based 3-D QSAR model using comparative binding-
energy analysis that focused on the selectivity of the 11 human
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Figure 13. LTS predictions at two PCs. The X-axis represents HDACs
complexes with largazole, and the y-axis represents biological activity
values measured as pICg,.

zinc-based histone deacetylase isoforms has been developed
through a modified protocol called COMBINEr. The derived
COMBINEr model shows good statistical coefficients, was
predictive for the compounds in the test sets, and robust to cross-
validation while omitting multiple data. The model was able to
rationalize the different activity profiles of the HDAC inhibitors
studied. This model should provide a useful tool for the a priori
prediction of activity of compounds yet to be synthesized in
order to improve their selectivity profiles. The role of dynamic
acetylation in epigenetics and other signaling pathways® provides
strong motivation for the development of molecular scalpels,
specific inhibitors of histone deacetylases, to dissect the
complexities of epigenetic control of gene expression and other
signaling pathways. The COMBINE:r model should prove useful
in this endeavor.

B EXPERIMENTAL SECTION

All molecular graphics images were produced using UCSF
Chimera package (www.cglucsf.edu/chimera/) from the Re-
source for Biocomputing, Visualization, and Informatics at the
University of California, San Francisco, on a 3 Ghz AMD CPU-
equipped, IBM-compatible workstation using the Debian 5.0
version of the Linux operating system. For all calculations, a
Beowulf cluster of 12 quadcore Xeon CPUs was used.

Complex Preparation. inhibitor Structures. All ligands
were generated with Chemaxon Marvin molecular mechanics
software (http://www.chemaxon.com/) and used without
further optimization. The protonation and tautomer states
were assigned considering a physiological pH and the more
common tautomer according to basic organic chemistry and
structural information reported in the corresponding ligand
referenced papers.

HDAC Homology Models. Those HDAC isoforms whose
experimental structures were not available (HDAC-1,-3,-5,-6-1,
-6-2, -9, -10, and -11), were built by homelogy modeling using
four automated web servers:

s CPHmodels-3.0 Server*' (http://www.cbs.dtu.dk/
services/ CPHmodels/),

® M4T Server ver3.0™ (http://manaslu.aecom.yu.edu/
M4T/), N

o SwissModel* (http://swissmodel.expasy.org/),

2232

e ModWeb Server™ (htI:p://mndbase.cmnpbin.ucsf,edu/
ModWeb20-html/modweb.html).

Using several protein conformations for each HDAC isoform
was done to include some target flexibility in the subsequent
training set, test set cross-docking runs. For each HDAC isoform,
four homology models were generated. All inhibitors were
modeled inte each of the four homology models, and the
resulting complexes energy minimized to supply four complexes
for each inhibiter leading to 220 complexes, The servers were
used with their default parameters and in a total automatic way to
avoid human intervention and to allow maximum reproduci-
bility.

To compile the final training set of 94 complexes (see the
Training Set section above), one homology complex per
inhibitor was chosen using the preliminary COMBINEr models
derived with only crystallized HDAC complexes, (data not
shown). For each inhibitor, the HDAC/inhibitor complex whose
predicted pICsgs had the best fit to the experimental pICgs for
that isoform was selected and utilized in the final training set
(Table 13).

Complex Minimization. Training set complexes were
submitted to a single-point minimization using a protocol
described earlier."” Briefly, the minimization protocol was
applied as follows. (1) ANTECHAMBER with AM1-BCC
charges was used to determine missing ligand parameters; (2) the
tLeap module was used to solvate the complexes with water
molecules in 2 octahedral box extending 10 A and to neutralize
them with Na” and CI™ ions; (3) the structures were minimized
with the Amber 2003 force field by energy minimization with the
SANDER modules: 1000 steps of steepest-descent energy
minimization followed by 4000 steps of conjugate-gradient
energy minimization, with a nonbonded cutoff of 5 A. Trials for
longer nonbonded cutoff values were done without substantial
differences; therefore, 5 A was chosen for faster calculations. The
Zn ion was treated as nonbonded, similarly as in several other
applications where HDACs were reported.

COMBINEr. Ligand/Residues Interactions. The calculation
of the ligand/residue interactions was conducted similarly as
previously reported.” The AutoGrid module of AutoDock was
used with its default setting to compute the interaction energies
between each amino-acid residue of the enzymes and an
inhibitor. AutoGrid used the united-atom AMBER force field
and returned an energy value combining Lennard-Jones (L)) and
hydrogen-bonding (HB) energies between a target and each
atom type (probe). The electrostatic interactions were calculated
using a distant-dependent Coulombic function, and finally, a
third score for hydrophobic interactions was also estimated. In its
original use, AutoGrid calculated the interaction energies of a
probe atom that was placed on a regularly spaced grid in which a
molecular target (the protein) or a portion of it was buried. In
this way AutoGrid returns what is called the molecular
interaction field (MIF) of a given target, where at each grid
point estimates the interactions value for L] and HB (STE),
electrostatic (ELE) and desolvation (DRY), saved in three
distinct map files. In the COMBINEr approach, the target was
the inhibitor in the complex and the STE, ELE, and DRY
interactions were calculated using a grid box centered, at each
step, on each atom of the protein (the probe). To the grid is given
astep size, so that the whole complex was contained within it, and
thus only one value was returned (the center) for each field. The
interaction energy for each amino acid of the enzyme was simply
obtained by summing all the values for all residue atoms. The
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Table 13. Predicted pICs, for the Modeled Complexes
Inserted in the Final Training Set

HDAC
HDAC-1

HDAC-3

HDAC-5

HDAC-
6-1

HDAC-
62

HDAC-9

HDAC-
10

HDAC-
11

complex name
APHAS/HDACI
MS5-275/HDACL
SAHA/HDACI
SBHA/HDACI
TSA/HDACIL
OXAMFLATIN/HDACI
NABUT/HDACI
VALPROICACID/HDACI
SCRIPTAID/HDACI
APHAS/HDAC3
MS-275/HDAC3
SAHA/HDAC3
SBHA/HDAC3
TSA/HDAC3
OXAMFLATIN/HDAC3
NABUT/HDAC3
VALPROICACID/HDAC3
SCRIPTAID/HDAC3
SAHA/HDACS
TSA/HDACS
NABUT/HDACS
VALPROICACID/HDACS
APHAS/HDAC6—1
MS-275/HDAC6—1
SAHA/HDAC6—1
SBHA/HDAC6—1
TSA/HDAC6—1
OXAMFPFLATIN/HDAC6—1
NABUT/HDAC6—1

VALPROICACID/
HDAC6—1

SCRIPTAID/HDAC6—1
APHAS/HDAC6—-2
MS-275/HDAC6—2
SAHA/HDAC6—-2
SBHA/HDAC6-2
TSA/HDAC6—2
OXAMFLATIN/HDAC6—2
NABUT/HDAC6-2

VALPROICACID/
HDAC6-2

SCRIPTAID/HDAC6—2
SAHA/HDACS
TSA/HDACS
NABUT/HDACS
VALPROICACID.HDACS
APHAS/HDACL0
MS-275/HDACLO
SAHA/HDACIO
SBHA/HDACI0
TSA/HDACILO
OXAMFLATIN/HDACILO
NABUT/HDACI0

VALPROICACID/
HDACIO0

SCRIPTAID/HDACIO
SAHA/HDACII
TSA/HDACIL

homology
server

SwissModel
MAT
MAT
CPH
CPH
ModWeb
ModWeb
ModWeb
ModWeb
CPH
CPH
CPH
SwissModel
SwissModel
SwissModel
SwissModel
CPH
SwissModel
CPH
CPH
ModWeb.2
ModWeb.3
SwissModel
ModWeb.1
SwissModel
CPH
SwissModel
SwissModel
M4T
CPH

SwissModel
CPH

MAT

CPH
ModWeb.1
MAT

CPH

CPH
ModWeb.I

MAT
ModWeb.1
ModWeb.1
ModWeb.L
CPH
SwissModel
ModWeb.1
ModWeb.I
M4T

CPH

CPH

CPH

MAT

ModWeb.2
ModWeb.3
ModWeb.1

PlCsy
exp
$432
4.886

-
5.678
8301
7.301
3496
3
677
6377
7.158
7699
6387
8301
8
4.648
3646
7523
6423
7.796
2.699
2.699
.
4.678
7.699
-
8.301
7.046
3

3

8398

4.678
7.699

8.301
7.046

8.398
63

7419
2.699
2.699
5377
4939

5638
8.301
7.301
3.535

677
6441
7.824

PICs,
pred

6.13
2

6.69
6.61
678
6.92
37

32

62

638

64

6.92
62

6.64
643
4.34
32

6.17
66

697
4.19
343
6.65
532
677
625
7.62
7.68
3.65
3.13

7.63
644
568
644
62
7.02
7.1
4.7
3.84

7.13
67

4.03
4.08
624
567
6.96
66

621
68

4.1

425

623
621
564
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calculations were performed in a box with dimensions of 70 A x
128 A X 74 A. This procedure allowed the decomposition of the
enzymes/inhibitor interactions energies into three main
contributions {fields) as follows: steric, electrostatic, and
hydrophobic. The default parameters for Zn in AutoGrid were
used and no attempts to include intramolecular terms were done.

Statistical Analysis. All statistical calculations were performed
with R, a free software environment for statistical computing and
graphics. For the final training set, seven different combinations
of the fields previously calculated were tried: the single fields
{$TE, ELE, and DRY) and the multifield ELE+STE, ELE+DRY,
STE+DRY, and ELE+STE+DRY.

PLS. All calculations were conducted using the PLS and cross-
validation features of the PLS package described by Mevik.”® An
in-house R script was compiled to import the data and carry out
all calculations.

BUW. Furthermore, in the case of multiple probes, a scaling
procedure, called Block Unscaled Weights {BUW), was applied
as data pretreatment. This procedure enforces the same
importance to each interaction type within the model, normal-
izing the energy distribution of the X-variables as described by
Kastenholz et al.** BUW coefficients are reported in Supporting
Information File 1 Table SI-4.

Molecular Docking. AutoDock Settings. The AutoDock-
Tools package was employed to generate the docking input files
and to analyze the docking results. A grid box size of 7 X 44 X 53
with a spacing of 0.375 A between the grid points was
implemented. A total of 100 runs were generated by using the
genetic algorithm, while the remaining run parameters were
maintained at their default setting. A cluster analysis was carried
out using 2 A as the RMSD tolerance.

AutoDockVina Settings. The same AutoDock grid box was
used for its calculations. The docking simulations were carried
out with an energy range of 10 kcal/mol and exhaustiveness of
100. The output comprised 20 different conformations for every
receptor considered. Although Vina does not include any
clustering of the output poses, the clustering feature of the
AutoDock program was used to inspect the conformation
families using a clustering tolerance set at 2 A.
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Thienc(1,2,3]triazine

Endothelial cell tube formation

angiogenesis of HUVEC at uM level.
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1. Introduction

Angiogenesis, the process of new blood vessels formation,
creating new capillaries from existing vasculature, is a normal pro-
cess for organ development. It occurs especially during embryo-
genesis, in development and homeostasis of adult tissues, in wound
repair and in the menstrual cycle [1,2]. It's an essential and highly
regulated process under physiclogical conditions. When a

* Corresponding author. Tel: +39 6 4991 3937; fax: +39 6 4991 3627.
** Corresponding auther. Tel.: +33 3 8754 7197, fax: +33 3 8731 5801
E-mail addresses: rincragno@uniromalit (R Ragno) stephaniehesse@univ-
lorraine fi (S. Hesse).

0223-5234/$ — see front matter ® 2013 Elsevier Masson SAS. All rights reserved.
http://dx.doi.org/10.1016/j.ejmech.2013.03.022

malfunction in controlling mechanisms of angiogenesis occurs, it
may be involved in the development and progression of various
diseases such as rheumateid arthritis [3], inflammation [4], ocular
neovascularization [5], pseriasis [6], tumor growth [7] and metas-
tasis [8]. More than twenty different factors are involved in this
process, among which the vascular endothelial growth factors
{VEGFs) [9—11]. The VEGF family includes VEGF-A {usually named
VEGF), VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-F and a structurally
related molecule, Placental Growth Factor {PIGF). Three high-affinity
VEGF tyrosine kinase receptors have been identified: VEGFR-1 (Flt-
1), VEGFR-2 (KDR} and VEGFR-3 (Flt-4). VEGF and its receptors
represent one of the best-validated signaling pathways in angio-
genesis [12]. Furthermore, disruption of VEGFR-2 signaling has
resulted in inhibition of angiogenesis and without new blood vessels
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to supply oxygen, nutrients and catabolic products, tumor cells could
net proliferate and thus are likely to remain dermant [13,14].
Therefore, VEGFR-2 has been the principal target of anti-angiogenic
therapies [15—18], although additional studies have underlined the
importance of signaling through VEGFR-1 [19].

In recent years, many melecules have been described on their
ability to inhibit angiogenesis. For example, the recombinant hu-
manized monoclonal antibody bevacizumab {Avastin®, Genentech)
recognizes and blocks VEGF [20], and was the first anti-angiogenic
agent to be approved by Food and Drug Administration (FDA).
Other inhibitory moelecules have been developed targeting the
vascular endothelial growth factor recepters (Figs. 1 and 2). Sor-
afenib (BAY 43-9006 or Nexavar®) is a derivative initially selected as
an inhibitor of Raf kinase by targeting MAPK pathway but this
compeound has also a powerfulinhibitory action on VEGFR-1, VEGFR-
2, and Platelet Derived Growth Factor Receptor-f (PDGFR-B) [21].
Sunitinib (SU 011248 or Sutent®) is an oral multi-targeted receptor
tyrosine kinase (RTK)} which inhibits VEGFR-1, VEGFR-2, PDGFR, KIT,
Flt3 and the receptor encoded by the RET proto-oncogene [22].
Today, targeting tumor angiogenesis has become part of daily care
for many solid tumors. Indeed, survival gains were achieved in the
case of metastatic renal cell carcinoma and hepatocarcinoma for
which medical treatment had little or no effect. However, numerous
side effects have been reported (skin, cardiovascular) [23,24] to
which the clinician had not been confronted with the molecules of
conventional chemotherapy. Furthermore, studies have shown the
emergence of resistance mechanisms te anti-angiogenic products
[25]. Indeed, in some cases, despite initial sensitivity and a dramatic
reduction in volume, treated tumors resumed their growth and
invasiveness. Within this scenario it is obvious the continuous need
todevelop new anti-angiogenic agents that can both reduce the side
effects and block resistance of tumor cells. In this study we disclose
the new thienopyrimidines 1-3 {Fig. 3} as inhibitors of VEGFR-2
designed by a Structure-Based (SB} Three-Dimensional Quantita-
tive Structure—Activity Relationships (3-D QSAR), molecular
medeling and biclogical combined approach.

2. Results and discussion
2.1. Rationale, preliminary screening and design
Quinazoline [2728] and naphtamide [29] derivatives have

attracted great interest as VEGFR-2 inhibitors over the past years.
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Fig. 1. Inhibition pathways of angiogenesis [26].

Furo[2,3-d]pyrimidines [30], pyridinyltriazines [31] and pyr-
imidinylindazoles [32] were also reported as VEGFR inhibiters. All
compounds were comprehensively studied and many of them were
co-crystallized in the ATP-binding site of KDR. Such amount of
structural information was used by us to develop a predictive SB 3-
D QSAR model [33] and herein used as tools to develop new VEGFR-
2 inhibitors.

Recently, some of us were deeply interested in the synthesis of
thienopyrimidine scaffolds and their functionalization via palladium-
catalyzed cross-coupling or nucleophilic aromatic substitution reac-
tion (SnAr) [34,35]). Furthermore, we also developed the methodelogy
to access to selenolo- and thiazelo-triazine scaffolds [36,37]. Thirty-
five compounds, (4—38), out of all the available ones, were selected
as potential VEGFR-2 inhibitors on the basis of their structural simi-
larity to well-known inhibitors from the literature, and thus sub-
mitted to a VEGFR-2 inhibition assay, performed as reperted in the
Experimental section (Tables 1-3) [38]. ICsg values were investi-
gated for compounds showing higher % of inhibiticn (Table 4} by
linear regression analysis of the log—dose response curve, which was
generated using at least five concentrations of the inhibitor causing an
inhibition between 20% and 80%, with three replicates at each
concentration.

At the same time, compeounds 4—38 were also investigated by
our SB 3-D QSAR protocol [33]. As reported in Tables 13, only five
(1719, 22, 23) out of the 35 assayed compounds were found totally
inactive, while four derivatives {14, 30, 33 and 35) inhibited VEGFR-
2 at high percentage (over 73%) and their IC5y were determined
(Table 4). The SB 3-D QSAR protocol application over predicted
compounds 4—38 in the range of 5.82—7.92 pICsy, with an average
value of 6.56 {Supplementary material Table SM-1). Besides, the
over prediction, the fact that 85% of compound displayed indeed
some sort of inhibition activity toward VEGFR-2 (Tables 1-3}
proved the calculated data to be in agreement with the experi-
mental. Furthermore, due to the lack of Se parameters, for both
dockings and 3-D QSAR calculations the Se containing compounds
were modeled as sulfur derivatives. Therefore, some errors of
predictions were expected for Se containing derivatives 22—38.

2-D structures, 3-D QSAR predicted pICsgs and docked confor-
matiocns of compounds 4—38 are reported in Supplementary
material Table SM-1. At a first glance, all the compeounds bind
preferentially in the very first part of the binding site (left sides of
figures in Supplementary material Table SM-1) overlapping the
thienopyrimidine (4—13), thiazolotriazine (14—21} and selenolo-
triazine (22—38) scaffolds mainly with the reference structure (PDB
ID 2qu5} central benzimidazole. Regarding thienopyrimidines 4—
13, the increasing sterical hindrance of the third fused cycle
seems to increase the molecules{VEGFR-2 interactions (compare 4,
6, 8 and 11 binding modes with those of 5, 7 9 and 12 in
Supplementary material Table SM-1) in agreement with the lower
activities of bicycles 4, 6, 8 and 11 than those of the 5, 7, 9 and 12
(Table 1}. In an opposite way, the increase of steric hindrance is
detrimental for the thiazolotriazines 14—21 where the smaller
derivative 14 shows the higher activity. Actually, within this series,
the insertion of different substituents clearly influence both bind-
ing modes and activities of the resulting compounds, although no
particular pattern can be drawn out from them. Concerning the
selenslotriazines 22—38 {modeled as thienctriazines} their binding
modes resemble those of thienopyrimidines 4-13. In a whole, this
first series of compounds {4—38) was considered as a sort of frag-
ment library for which both the experimental and prediction were
used to select the more interesting scaffolds.

A deeper binding mode analysis was then performed on the
most active compounds 14, 30, 33 and 35 and their conformations
as docked by AutoDock revealed that all the four compounds bind
roughly in the same region defined by Val27, Ala45, Lys47, Val93,
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Fig. 2. Examples of anti-angiogenic compounds.

Val95, Leul64 and Phel76 (Fig. 4 and Supplementary material
Figure SM-1). While 14, 30 and 33 shared a common binding
mode with the thiazolotriazinefselenclotriazine groups over-
lapping with the same orientation, on the contrary the least active
compound 35 was predicted to bind with the selenslotriazine
group rotated of about 1807, likely due to the presence of the
morpholino substituent avoiding to maintain the same orientation
{Supplementary material Figure SM-1D). The 3-D QSAR models
predicted these compounds in the range 095-1 pM
{Supplementary material Table SM-2), nevertheless these over-
predictions are in agreement with the known limitation of the
medels in which the training set compounds with activities below
higher than 1 pM were not correctly fitted being over-recalculated
by the models themselves (Supplementary material Figure SM-2).
Overlapping the 3-D QSAR maps to the most active compound 30
indicated that the introduction of further sterical groups into the
ATP binding site would have led to more active compounds.
Accordingly, a new series of thienopyrimidines/thienotriazines, 1—
3 (Fig. 3), were designed and synthesized, in order to better fill the
ATP binding site.

The new designed compounds were promptly modeled and
subjected to both molecular docking simulation and 3-D QSAR
predictions. Most of the new designed molecules were predicted to
be in the 0.01-0.1 uM range (Supplementary material Table SM-3)

and thus, considering the error prediction observed for the above
14, 30, 33 and 35 compounds, we expected these molecules to show
biological activities in the range on low micromolar or at least
submicremelar. Among the analyzed compounds, 2f was predicted
to be in the low nanomolar range. Binding mode exploration of 2f
revealed that indeed the compound occupies the ATP binding site
slightly more than 14, 30, 33 and 35, particularly it seems to block
more efficiently the ATP pocket (Fig. 5). Furthermore, in Figure SM-
3 (Supplementary material} is clearly visible that the thienopyr-
imidine core of 2f binds in a reversed way the same region of 14, 30
and 33 fused-triazine groups and overlaps the 35-tolyl substituent.
In this way, the benzylindole fragment of 2f fills-up the ATP binding
entrance establishing further sterical interactions that could sta-
bilize the 2f/VEGFR-2 complex (Supplementary material
Figure SM-4). In view of this promising scenario, we promptly
designed the synthesis of compounds 13 to test their biological
activities as potential VEGFR-2 inhibitors.

2.2. Chemistry

The synthesis of compounds 1-3 was designed to be achieved
by the key intermediate 5-(indol-3-yl)-3-aminothiophene-2-
carboxylate or derivatives. Therefore we have developed a multi-
step sequence to lead te 5-(indol-3-yl)-3-aminothiophenes 43a—f

1ac

a X=CH,R=0-_)-OMe

b X =CH, R = N-methylpiperazinyl

c X=N, R= O‘Q—OME

o o a0 oD

2a

R4 = H, Ry Ry = piperidinyl

R4 = H, Ry Ry = morpholinyl

R4 = H, Ry R3 = N-methyipiperazinyl
R4 = H, Rz R3 = N-benzylpiperazinyl
R4 = H, Ry R3 = pyrrolidinyl

Rq = Bn, R R; = piperidinyl

R4 = Bn, Rz R3 = morpholinyl

R, = Bn, Ry R3 = N-methylpiperazinyl
Ry =Bn, Ry R3 = N-benzylpiperazinyl
Ry = Bn, Ry R = pyrrolidinyl

Fig. 3. Designed compounds 1-3.

3ad
a R=n-hexyl
b R =4-methoxyphenyl
¢ R =34 5 trimethoxyphenyl
d R =4-chlorophenyl
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Table 1
Structures and VEGFR-2 inhibitory activities of thieno[3,2-d]|pyrimidines 4—13.

R
bas
R /s\N/

# R R1 Rz % Inhibition
@ 200 uM?
4 4-MeO—CgHy H H 254+ 20
5 4-MeO—CgHy (CHgz)y 474+ 18
6 3-Ac—CgHy H H 131+ 06
7 3-Ac—CgH, (CHz) 348+ 29
8 3-Indoly! H H 233+ 16
9 3-Indolyl (CHgz)y 449439
10 4-MeO—CgH, O H H 64.2 + 3.8
11 3-Ac—CgHoO H H 219+ 1.7
12 3-Ac—CgH,0 (CHz)y 569+ 45
13 4-NH—CeHy0 H H 401 + 2.4

* Values are means = SEM of two determinations carried cut in triplicate.

{Scheme 1}. 5-Aryl-3-aminothiophenes are usually synthesized in
our lab starting from acetophenones via B-aryl-f-chloroacroleins,
oximes, B-aryl-f-chloroacrylonitriles, condensation with sodium
sulfide and activated halogen derivatives and finally by a cyclization
step to form the thiophene moiety [39]. However, working on 3-
acetylindoles needed to modify the reaction conditions for nearly
each step of the synthesis. In particular, 3-acetylindoles 39 were
first reacted with Vilsmeier—Haack reagent (formed in situ with
phosphorus oxychloride and N,N-dimethylformamide) to give f-
chloroacroleins. The intermediates iminium salts needed to be
trapped and isolated as perchlorates 40. Iminiums salts 40 were
then converted to the corresponding oxime 41 [40]. Use of classical
conditions for dehydration in (-aryl-f-chloreacrylonitriles (i.e.
Ac,0, PPA, P,0s, PCls) failed, therefore the expected compounds 42
were gbtained in good yields using di-2-pyridinyl thionocarbonate
{DPT) [41]. Thiophenes 43 were obtained by treating 42 with ethyl
bromoacetate, chloroacetonitrile or chloroacetamide in presence of
sodium sulfide followed by cyclization with sodium ethanolate.
3-Amino-2-cyanc-5-indol-3-ylthiophenes 43b and 43e were
converted into thieno[3,2-d]pyrimidin-4-ones 44a and 44b in
respectively 84% and 88% by action of formic acid in the presence of a
catalytic amount of sulfuric acid {Scheme 2} [34]. Then 4-
chlercthiencpyrimidines 45a and 45b were obtained {45% and 98%
yields} using phosphorus oxychloride. Finally, compounds 1a and 1b
were obtained by SyAr with p-methoxyphenolate and N-methyl-
piperazine, respectively. Intermediate 43e allowed formation of
thienotriazine 46 in 88% yield which was then submitted to SyAr
with p-methexyphenclate to give 1c in 80% yield [37] (Scheme 2).

Table 2
Structures and VEGFR-2 inhibitory activities of thiazolotriazines 14—21.
N
= h
4 4
ri
Rz
# Ry Rz % Inhibition
@ 200 pM?
14 S5—Me a 935+ 75
15 NH-Ph a 498 + 2.9
16 NH-Ph 4-Morpholinyl 13.7+£11
17 1-Pyrrolidinyl d na®
18 1-Pyrrolidinyl 1-Pyrrelidinyl nab
19 1-Pyrrolidinyl 4-Morpholinyl nab
20 4-Moerphelinyl a 119+ 07
21 4-Morphelinyl 1-Pyrrelidinyl 16.2 £ 1.1

? Values are means + SEM of two determinations carried out in triplicate.
® Not active. No inhibition was cbserved up to 200 uM of the tested compound.

Table 3
Structures and VEGFR-2 inhibitory activities of selenclotriazines 22—38.
Nzpy
4
/U\\/(”
1Bu 56
R
# Ry Rz % Inhibiticn
@ 200 pM*
22 1-Pyrrolidinyl - nal
23 4-Morpholinyl - nalb
Napy
h
Y\ N
S8
Rq
24 o - 378 +3.2
25 1-Pyrrelidinyl - 17.0 + 1.0
26 4-Morpholinyl - 194+ 15
Nz
1
/% N
Se
Ry R,
27 a H 60.7 £4.8
28 1-Pyrrelidinyl H 208 £14
29 4-Morphelinyl H 247 +£1.9
30 a Cl 946 + 6.6
3 1-Pyrrolidinyl cl 378415
32 4-Morphelinyl Cl 310413
33 d CHs §8.0 £6.1
34 1-Pyrrolidinyl CH3 735 £66
35 4-Morpholinyl CH3 725 £36
36 o OCH;3 365429
37 1-Pyrrelidinyl OCH3 176 £ 1.1
38 4-Morpholinyl OCHj 148 £ 1.2

2 Values are means + SEM of two determinations carried out in triplicate.
P Not active. No inhibition was observed up to 200 uM of the test compound.

3-Amino-2-carboxamido-5-indol-3-ylthiophenes 43c and 43f
were reacted successively with chloroacetyl chleride and a sec-
ondary amine to give compounds 48a—j [42]. Cyclization in thie-
nopyrimidinones 2a—j was realized in basic media in good yields
{Scheme 3). Compounds 2a—j were converted in hydrochlorides.

Compounds 3a—d were achieved in moderate yields {12—36%)
by condensation reactions between 3-amine-2-carbexamide-5-
indol-3-ylthiophene 43f and the proper aldehydes in the pres-
ence of hydrochloric acid (Scheme 4).

2.3. Biological activity of designed compounds 1-3

The VEGFR-2 inhibitory activities of the newly synthesized
compounds 1-3 were evaluated at 200 pM fixed doses (Table 5} and
among the sixteen tested derivatives only four (2b, 2e, 2h and 2j)
were totally inactive. These experimental results are in agreement
with the above reported predictions and interestingly the most
active predicted compound 2f was indeed those with the highest

Table 4
1Csg values of selected compounds, 14, 30, 33, 35. The SB 3-D QSAR predicted pICsq is
alse reported in comparison with the experimental plCsg value.

# Exp. ICsg (pM)? Exp. plCsp Pred. plCsg
14 452 £ 2.7 4.3 59
30 41+02 54 6.0
33 167+ 1.0 48 6.0
35 26215 4.5 7.1

2 ICsq values represent the concentration required to preduce 50% enzyme inhi-
bition. Values £5EM are the average from at least two independent dose—response
curves.
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Fig. 4. Docked conformation of 14 (red), 30 (orange), 33 (purple) and 35 (yellow) (A) into VEGFR-2 (PDB ID 2qu5, blue ribbon). As reference the co-crystallized ligand is also
displayed in black. The surface of ATP and co-crystallized inhibitor binding site is also shown in light gray. Merged in the steric (B) and electrostatic (C) 3-D QSAR maps.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

percentage of inhibition (99.2%). Both the activity prediction and the
fixed dose evaluation were also run on the thiophene intermediates
44b, 45b and 48a—j, but none of those compounds presented higher
activity (prediction or experimental result) than the final thieno-
pyrimidine series (Supplementary material Table SM-4).

ICs0 values of the most active compounds, 2f and 3d, were
determined as 2.25 + 0.1 uM and 15.3 & 1.2 uM, respectively.

To establish further biological activities, endothelial cells were
grown in the presence of these molecules. However DMSO, sol-
vent used to dissolve these molecules, was toxic for endothelial
cells (Fig. 6). We also noted that the morphology of endothelial
cell was affected by DMSO. Their shape was very round when
they were incubated with a percentage of DMSO upper to 0.1%
whereas they are normally elongated or fusiform. Then, to be

C

Fig. 5. Docked conformation of 2f (magenta) (A) into VEGFR-2 (PDB ID 2qu5, blue ribbon). The ATP binding site is also shown in light gray. Merged in the steric (B) and electrostatic
(C) 3-D QSAR maps. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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a R;=H,Ry= COOEt NH,
b Ry=H,Rz=CN d
¢ Ry=H, Ry =CONH, '
d Ry =Bn, R; = COOEt ) s” R

= = RN
e Ry=Bn,R;=CN 1 43af
f Ri=Bn, Rz = CONHZ

Scheme 1. Synthesis of intermediates 43a—f. Reagents and conditions: (a) (i) Vilsmeier reagent: POClz/DMF, 0 °C; 0 °C to RT. (ii) NaClO,, Hz0. (b) NH;0OH.HCL, CH:COONa.3H,0,
EtOH. (c¢) Di-2-pyridyl thionocarbonate, DMAF, CHpCL,. (d) (i) NazS.SH0. (ii) X—CHz—R;, (iii) EtONa DMF, 50 °C.

able to investigate the activity of those molecules, it was required
to work with less than 01% DMSO in culture media supple-
mented with 2% SVE As a matter of fact most of the newly
prepared derivatives were poorly soluble in biological media
containing 0.1% DMSO with precipitate formation upon dilution
at physiological pH. Therefore we focused on derivative 2f by
preparing a series of salts (hydrochloride, methylsulfonate,
phosphate and tartaric acid), among them only 2f tartaric acid
salt (2f- tartaric) showed the needed solubility in biclogical me-
dia to test its activity on our cellular model.

Study of the biological effect of 2f tartaric consists at the first
step to the analysis of its effect on metabolic activity and viability of
endothelial cells and at the second step to the analysis of the
angiogenic activity of these cells.

Metabolic activity of HUVEC decreased with 2f-tartaric con-
centration (—9% at 1.5 uM until —51% at 100 uM) (Fig. 7} in a dose
dependant manner (ECsp was estimated at about 12 pM). In con-
trary, no variation in HUVEC viability was induced by 2f- tartaric
whatever the concentration used (Fig. 7). These results suggest that
this compound had a cytostatic rather than cytotoxic activity on
endothelial cells.

To further investigate the angiogenic activity of 2f-tartaric, we
used our in vitro model of endothelial cell tube formation in which
HUVEC were plated onto matrigel®-coated well and cultured with
or without 2ftartaric in the presence of VEGF during 24 h and
using Sunitinib as anti-VEGFR-2 reference. As we can see in Fig. 8,
VEGF alone {positive control) induced endothelial cell tube for-
maticn of HUVEC as compared with contrel medium without VEGF

Scheme 2. Synthesis of derivatives 1a—c. Reagents and conditions: (a) HCODH, H;S0,, 40 °C. (b) POCI;/DME, 0 °C to r.t. (c) MeDCgH40Na, DMF, r.t. (d) N-Methylpiperazine, DMF, r.t.

(e) NaNOs, HC1 37% 0 °C to tL.
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canTm

2a-j

47a-b

Ry = H, Ry Rz = piperidinyl

Rq = H, Ry Rg = morphalinyl

R4 = H, Ry R = N-methylpiperazinyl
R4 = H, Ry R3 = N-benzylpiperazinyl
R4 = H, Ry Rg = pyrrolidinyl

Ro
N
ol \
N~ i Ry
o
\

0] b / A
CONH, ) 5

RN
48a

f Ry =Bn, R; Rz = piperidinyl

g Ry =Bn, Ry Ry = morpholinyl

h R, =Bn, Ry R; = N-methylpiperazinyl
i Ry = Bn, Ry R3 = N-benzylpiperazinyl
J Rq=Bn, RyR3 = pyrrolidinyl

Scheme 3. Synthesis of derivatives 2a—j. Reagents and conditions: (a) Chloroacetyl chloride, EtzN, THF, 0 °C to r.t. (b) R;RsNH, K5COs, CH:CN, reflux. (¢} NaOH 2N, DMF, reflux.

{negative control). This was correlated with the decrease of area
fraction found after VEGF exposure. Angiogenesis induced by VEGF
was completely inhibited using 1 pM of 2f-tartaric and 3 pM of
Sunitinib (upper part of Fig. 8). 2f-tartaric can inhibit endothelial
cell tube formation induced by VEGF in a dose dependent manner
showing an estimated ECsg value of about 31 nM. Using the same
meodel for Sunitinib the EC50 resulted to be 645 nM. The number of
contiguous cells was increased whereas the number of endothelial
cell tubes was decreased and area fraction was equivalent to that of
control media without VEGF (Fig. 8).

3. Conclusion

In this paper we present a multidisciplinary approach te the
design, synthesis and biological characterization of thienopyr-
imidines as new class of VEGFR-2 inhibitors. The new compounds
1-3 were designed starting from a small fragment library (4—38)
on which biological evaluation and SB 3-D QSAR studies were
conducted in parallel. The modeling approach proved to be an
effective tool to predict the activity of the preliminary series of
compounds. Binding mode analysis of the most active derivatives
{14, 30, 33 and 35} led to the design of a new series of thienopyr-
imidines (1-3) that were prepared by a multi-step synthetic
pathway ad-hoc designed. Among the newly synthesized, com-
pound 2f, showed the highest activity, as predicted by the 3-D
QSAR approach. Further biological assays on endothelial cell tube
formation proved 2f as a new anti-angiogenic lead compound that
showed to be more efficient in inhibiting endothelial cell tube
formation induced by VEGF compared with Sunitinib, in our in vitro
model. Moreover 2f did not cause any cytotoxic side effect to
endothelial cells.

We have tested the specificity of 2f for the inhibition of activated
RTK in HUVEC using Human Phospho-RTK Proteome profiler array
kit {RetD system, United Kingdom) and found that, as Sunitinib, 2f
decreased the phosphorylation of VEGFR-1 and VEGFR-2 (data not
shown). Furthermore we found that 2f decrease also the phos-
phorylation of others RTK activated in HUVEC such as EGFR, Axl,
Dtk, ROR-2, Tie-1 and EphAG, receptors implicated in the devel-
opment of cancer (Supplementary material Figure SM-5).

The binding mode of 2f suggests that a further substituticn on
piperidine positions 3 and 4 would lead to better ATP binding
pocket filling and, eventually, to more active derivatives (Fig. 9). To
this aim a fecused virtual screening on 2f derivatives is currently
ongoing and further synthetic efforts will be based on binding
mode evaluation and 3-D QSAR predictions.

4. Experimental section
4.1. Chemistry

All starting materials and synthesis reagents were obtained
commercially. Column chromategraphy was performed with silica
gel 60 (particle size 70—200 pm). Thin-layer chromatography (TLC)
was performed on Merck pre-coated TLC aluminum sheets with
silica gel 60 F254. Melting points were determined on a Stuart
SMP3 apparatus and are uncorrected. 'H NMR spectra were
measured at 250 MHz, and *C NMR spectra were measured at
62.5 MHz on a Bruker Advance AC 250 spectrometer at 25 °C in
CDCl;, DMSO-ds or acetone-dg, and chemical shifts are given in
ppm (&). The spectral splitting patterns are designated as follows: s,
singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br s, broad
singlet. Representative 'H and 13C NMR spectra for 1a, 2f, 2g and 2i

3a R=n-hexyl

3b R =d4-methoxyphenyl

3¢ R = 3,4,5-frimethoxyphenyl
3d R = 4-chlorophenyl

Scheme 4. Synthesis of derivatives 3a—d. Reagents and conditions: (a) RCHO, MeOH, 6%HCl (wjw ).
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Table 5
Structures and VEGFR-2 inhibitery activities of 5-indolylthiencpyrimidine/triazines
1 and 5-indolylthienc[3,2-d]pyrimidincnes 2—3.

Nax Nes
4 ) ’N W
4y s h N sy
1 R 23

N

Ry
# X R R1 % Inhibition @ 200 pM?*
1a CH o—@—om. Benzyl 388 435
1b CH N-Methylpiperazinyl Benzyl ntP
€ N o—OoMa Benzyl 17 0.1
2a - 1-Piperidinylmethyl H 57+ 04
2 —  1-Morphelinylmethy! H na®
2c — 1-(4-Methylpiperazinyl)methyl H 39+02
2d - 1-(4-Benzylpiperazinyl)methyl H 21+01
2e  —  1-Pyrrolidinylmethyl H nat
A - 1-Piperidinylmethyl Benzyl 99.2 439
2z — 1-Merphelinylmethyl Benzyl 52.6 +3.7
2h — 1-(4-Methylpiperazinyl)methyl Benzyl n.a‘
2 — 1-(4-Benzylpiperazinyl)methyl Benzyl 19.0£0.7
2 - 1-Pyrrolidinylmethyl Benzyl na‘®
3a - Hexyl Benzyl 352428
3 - 4-Methoxyphenyl Benzyl 4094 2.8
3c - 3.4 5-Trimethoxyphenyl Benzyl 52.04+36
3d - 4-Chlorephenyl Benzyl 734465

2 Values are means + SEM of two determinations carried cut in triplicate.
® Not tested.
¢ Not active. No inhibition was observed up to 200 pM of the test compound.

are reported in Supplementary material Figures SM-7-SM-13. IR
spectra were recorded for neat samples on KBr plates on a Perkin
Elmer Spectrum Bx FTIR spectrophotometer or on a Perkin Elmer
FTIR Baragoen 1000PC equipped with a Graseby-Specac gelden gate.
HRMS were collected on a Bruker MICROTOF-Q, ESIfQqTOF spec-
trometer. Elemental analyses (C, H, N, S} were used to confirm the
purity of all tested compounds (>95%) and were performed on a
CHN ThermoScientific Flash 2000 apparatus.

4.1.1. N-Benzyl-3-acetylindole (39b)

To a solution of 3-acetylindole (382 mg, 2.40 mmol) in ethanol
{20 mL} was added potassium hydroxide (168 mg, 3 mmeol} and the
reaction mixture was stirred at room temperature until dissolution.
The solvent was removed under reduced pressure and dry acetone

125
g 100 I l T s I F
= s 64 d
3 [
o 7!: o
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£ i
é‘ 50
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Fig. 6. Effect of DMSO on the viability of endothelial cells. Viability of HUVEC (black
circle) was measured after 24 h of exposure of HUVEC to DMSO (0—6% vjv) in culture
media containing 2% SVF Results are presented as relative values to untreated cells
(n = 3, triplicate). Differences are considered as significant when p < 0.05 using
BonferronifDunn test. *Versus control medium without DMSO.

was added followed by benzyl bromide (0.29 mL, 2.40 mmol). After
5 min, solid was filtered and filtrate was dried under reduced
pressure to afford a white solid (586 mg, 2.35 mmol, 98%); mp
114 °C (Lt [43]: 114—115 °C); 'H NMR (259 MHz, DMSO-dg)
5 (ppm): 2.45 (s, 3H, CHz}, 5.49 (s, 2H, CHy), 7.17—7.20 {m, 2H, 2x
CH}, 7.17—7.33 (m, 5H, 5x CH), 7.49—7.53 (im, 1H, CH), 8.16—8.20 (m,
1H, CH}), 8.53 (s, 1H, CH). *C NMR (62.5 MHz, DMSO-dg) § (ppm):
27.3,49.7, 1110, 116.1, 1216, 122.0, 122.9, 125.9, 127.2, 1276, 128.6,
136.5,137.0, 137.4,192.3.

4.1.2. [3-Chloro-3-(indol-3-(TH)-yl)prop-2-enylidene]
dimethyliminium perchlorate (40a)

To a selution of phosphorus oxychloride (27.96 mL, 300 mmel}
was added dropwise dry DMF (23.20 mL, 300 mmol} at 0 °C. Then,
the solution was stirred until formation of Vilsmeier—Haack re-
agent. After 30 min, 3-acetylindole {15.92 g, 100 mmol) dissolved in
DMF (120 ml)} was added dropwise. An orange solid appeared
instantly. The solution was stirred at room temperature until
dissolution of precipitated and after 2 h a pale orange solid formed
in suspension of DMF. After 1 h, the reaction mixture was poured
with good stirring inte ice-water (800 mlL) containing sedium
perchlorate (24.49 g, 200 mmol). The precipitate was filtered and
washed with Et;0. The solid was purified in CHCls, filtered while
hot to afford an orange solid (>95%, hygroscopic}; mp 251 °C
(Lit. [44]: 246—248 °C); 'H NMR (250 MHz, DMSO-dg) 6 (ppmy}: 3.55
(s, 3H, CHz), 3.65 (s, 3H, CH3), 713 (d, 1H, CH, = 10.5 Hz}, 7.31-740
(m, 2H, 2x CH), 7.56—7.61 {m, 1H, CH}, 8.09—8.14 (m, 1H, CH}, 8.60
(d, 1H, CH, J = 3.4 Hz), 8.79 (d, 1H, CH, j = 10.5 Hz}, 12.87 (br s, 1H,
NH). 3C NMR (62.5 MHz, DMSO-dg) & (ppm): 41.2, 48.4, 107.1, 113.6,
114.2, 121.0, 123.8, 124.2, 125.0, 137.2, 138.1, 153.5, 163.3. HRMS
(ESI): m/z caled for Ci13H14CIN2: 233.0840; found: 233.0835.

4.13. [3-Chloro-3-(1-benzyl-1H-indol-3-yl)prop-2-enylidene|
dimethyliminium perchlorate (40b)

The same procedure as for 40a was used and afforded an orange
solid (>95%, hygroscopic); mp 168 °C; 'H NMR (250 MHz, DMSO-
dg} 6 (ppm}: 3.51 (s, 3H, CH3), 3.67 (s, 3H, CH3), 5.61 {s, 2H, CH,}, 715
(d,1H, CH,] = 10.5 Hz), 7.26—7.40 {m, 8H, 8x CH}, 7.67—7.70 (m, 1H,
CH), 8.13—8.17 (m, 1H, CH), 8.84 (s, 1H, CH)}. '*C NMR (62.5 MHz,
DMSO-dg} & (ppm}: 41.2, 48.5, 50.2, 107.7, 112.6, 113.6, 121.3, 123.6,
1244, 1273, 128.0, 128.7, 136.1, 137.8, 139.5, 152.5, 163.4. HRMS
(ESI): m/z caled for CypHy0CIN,: 323.1310; found: 323.1310.

4.14. 3-Chloro-3-(1H-indol-3-y1)-2-propenal oxime (41a)

To a solution of [3-chloro-3-(indol-3-{1H)-yl}prop-2-enylidene]
dimethylammonium perchlorate 40a (33.32 g, 100 mmol) in
ethanel (150 mL) were added hydroxylamine hydrochloride
(10.42 g, 150 mmol} followed by sodium acetate trihydrate (13.61 g,
100 mmol). The reaction mixture was heated at 60 °C for 6 h and
kept at room temperature overnight. The solution was poured into
ice-water, filtered and washed with cold water. The solid was trit-
urated in CHzCly to give a beige solid (17.87 g, 81 mmol, 81%); mp
99 °C; IR (neat): 3118 (OH), 3354 (NH) cm '; 'H NMR (250 MHz,
DMSO-dg) & (ppm): 6.84 + 733 (d + d, 1H, CH, ] = 9.4 Hz), 7.12—7.23
{m, 2H, 2x CH}, 747 (d, 1H, CH, = 94 Hz}, 761 + 816 (d + d, 1H,
CH, J = 9.4 Hz), 7.75—7.87 (m, 2H, 2x CH}, 11.32 + 11.51 (s + s, 1H,
OH), 11.74 + 11.84 (br s + br s, TH, NH). >C NMR (62.5 MHz, DMSO-
dg} & {(ppm): 20.6, 98.4, 117.2, 124.6, 129.5,129.6, 131.2, 136.7, 141.8,
145.6, 161.6. HRMS {APCI): mjz calcd for CpiHyoCIN,O: 221.0476;
found: 221.0487.

4.1.5. 3-(1-Benzyl-1H-indol-3-yl)-3-chloro-2-propenal oxime (41b)
This compound was synthesized using the same procedure as

for 41a starting with [3-chloro-3-(1-benzyl-1H-indol-3-yl)prop-2-

enylidene]dimethylammonium perchlorate 40b to afford a pale
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Fig. 7. Effect of 2f-tartaric on metabolic activity and viability of endothelial cells.
Metabolic activity (open square) and viability (black circle) were measured after 24 h
of exposure of HUVEC to 2f-tartaric (0—100 pM). Results are presented as relative
values to untreated cells (n = 3, triplicate). Differences are considered as significant
when p < 005 using Bonferroni/Dunn test. *Versus control medium without
2f-tartaric.

yellow solid (20.82 g, 67 mmol, 67%); mp 69 °C; IR (neat): 3168
(OH) cm™*; 'H NMR (250 MHz, DMSO-dg) 6 (ppm): 5.47 + 5.49
(s +s,2H,CHy),6.87 + 7.36 (d +d, 1H, CH, J = 9.4 Hz), 717—-7.31 (m,
7H, 7x CH), 7.52—7.58 (m, 1H, CH), 7.62—8.17 (d + d, 1H, CH,
J = 9.4 Hz), 7.78—7.88 (m, 1H, CH), 8.06 + 8.13 (s + s, 1H, CH),
11.36 + 1155 (s + s, 1H, OH). >C NMR (62.5 MHz, DMSO-dg)
6 (ppm): 49.28, 49.34,108.4,111.4, 111.6, 112.86, 112.88, 115.4, 119.5,
119.8, 121.2, 121.5, 122.7, 122.8, 124.08, 124.14, 127.1, 127.2, 127.5,
1276, 128.60, 128.62, 131.0, 131.4, 132.6, 132.9, 136.9, 137.0, 137.2,
137.3, 143.0, 146.9. HRMS (ESI): m/z calcd for CigH16CIN2O:
311.0946; found: 311.0945.

Fig. 9. Model for the molecules to be designed. In shaded gray is represented the ATP
binding site. The two arrows indicate possible point for substitution on the 2f piper-
idine ring. The new molecules will be designed to fill the blue oval. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.}

4.1.6. 3-Chloro-3-(1H-indol-3-yl)-2-propenenitrile (42a)

To a solution of 3-chloro-3-(1H-indol-3-yl)-2-propenal oxime
(41a) (3.00 g, 13.60 mmol) in CH»Cl; (60 mL) were added di-2-
pyridyl thionocarbonate (3.16 g, 13.60 mmol) followed by 4-N,N-
dimethylaminopyridine (249 mg, 2.04 mmol). The solution was
stirred overnight at room temperature. The reaction mixture was
filtered on Celite and the filtrate was washed once with HCl 3%
(30 mL) and once with NaHCO3 10% (30 mL), dried on MgSO4 and
concentrated under reduce pressure. The residue was purified by
silica gel column chromatography (cyclohexane:AcOEt = 80:20) to
provide an orange solid (2.45 g, 12 mmol, 89%); mp 102 °C; IR (KBr):
2209 (CN) cm ™ '; 'H NMR (250 MHz, DMSO-dg) 6 (ppm): 6.45 (s, 1H,
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Fig. 8. Effect of 2f-tartaric on endothelial cell tube formation. HUVEC were plated onto matrigel”-coated well and cultured in control media with 50 ng VEGF, 2f-tartaric and
Sunitinib as positive control. {A) Area fraction of endothelial cells was measured using NIS Element software and presented as percentage of variation with values obtained for
control medium without VEGF as reference (negative control) (n = 5). Differences are considered as significant when p < 0.05 using PLSD Fisher statistical test. *Versus positive
control medium without 2f-tartaric (control + VEGF). (B) Photomicrographs were taken after fixation and phalloidin-sulfo-rhodamine staining and are representative of 5 ex-
periments. Area fraction was calculated as area of cells in relation to whole field. Scale bar represent 1000 pm.
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CH), 718—7.29 {1, 2H, 2 x CH), 7.48—7.53 (i, 1H, CH}, 792797 {m,
1H, CH}, 8.05 (s, 1H, CH), 12.18 (br s, 1H, NH). *C NMR {62.5 MHz,
DMSO-dg} & (ppm): 89.8,111.6,112.9,117.4,119.8,121.8,123.1,123.2,
132.0,137.4, 145.6. FIRMS [APCI): myz calcd for Cy3HgCINg: 203.0371;
found: 2073.0373.

4.1.7. 3~(1-Benzyl- 1H-indol-3-y1)-3-chloro-2-propenenitrile (42b)

This compound was synthesized using the same procedure as
for 42a starting with 3-(1-benzyl1H-indol-3-yl}-3-chlero-2-
propenal oxime 41b. The residue was purified by silica gel col-
umn chromarography (cyclohexane:AcOEt = 80:20) to afford a
beige solid (3.46 g, 11.83 mmuol, 87%}; mp 124 C; IR (KBr): 2208
(CNyem U U NMR (250 MElz, DMSO-dg) 6 ppm): 5.52 (s, 211, CHy),
6.48 (s, 1H, CH}, 7.20—7.34 (m, 7H, 7x CH}, 7.56—7.60 (m, 1H, CH),
7.95—7.99 (m, 1H, CH), 8.31 (s, 1H, CH}. *C NMR (62.5 MHz, DM50-
de) 4 (ppm): 49.5, 90.4, 111.2, 111.8, 117.3, 120.1, 122.2, 123.3, 123.8,
127.2,127.7,128.7,135.0, 136.8, 137.2, 145.0. HRMS {APCI): mjz calcd
for CigH14CIN: 293.0840; found: 293.0839.

4.1.8. Ethy! 3-amino-5-(1H-indol-3-yl)-2-thiophenecarboxylate
(43a)

A suspension of sodium sulfide nonahydrate (2.40 g, 10 mmol} in
DMF (15 ml) was heated at 40 °C for 30 min. 3-Chloro-propeneni-
trile (2.03 g, 10 mmol} dissolved in DMF ( 15 mL} was added dropwise
and the solution was heated at 50 *C for 2 h. Then, ethyl bromoa-
cetate (1.11 mL, 19 mmol) in DMF (5 mL) was added dropwise and the
reaction mixture was stirred at 50 °C for 2 h. A solution of NaOEt
(681 mg, 10 mmel) in absolute ethanol was added and the solution
was stirred at 50 "C for 2 h{the reaction was monitored by TLC). The
reaction mixture was then cooled to room temperature, diluted with
water (200 mL} and extracted three times with AcOEt {25 mL}. The
organic layer was dried over anhydrous magnesium sulfate and the
solvent was evapcrated under reduce pressure. The residue
was purified by silica gel column chromatography (cyclo
hexane:AcOEL = 50:50 to provide a vellow oil (344 mg, 1.20 mmuol,
12%); "HNMR (250 MHz, CDCly) 4 { ppm’: 1.29 (L, 3H, CH3, ] = 7.18 Hz),
4.24(q, 2H, CH,,j — 7.10 Hz}, 5.09 {brs, 2H, NH;}, 6.64{brs, 1H, CH),
711-7.21 (m, 2H, 2 x CH), 7.28—7.33 (m, 1H, CH), 7.37-7.38 (m, 1H,
CH), 7.87-791 (m, 1H, CH), 8.49 (br s, 1H, NH). *C NMR (62.5 MHz,
CDCl) 6 (ppm): 14.7,60.0, 88.73, 11173, 111.7,114.4,120.0, 121.1,1273.0,
123.3, 124.9, 136.5, 143.8, 154.4, 164.9. HRMS (ESI): m/z calcd for
Cy5H14N2025Na: 305.0668; found: 308.0661

4.1.9. 3-Amino-5-{1H-indol-3-y1)-2-thiophenecarbonitrile (43b)

This compound was synthesized using the same procedure as
for 43a starting with 3-chloro-3-{ 1H-indol-3-yl}-2-propenenitrile
42a and chloroacetonitrile. After cooling, the reaction mixture
was poured into ice-water (200 mL) and the precipitate was filtered
and washed with celd water. The residue was purified by silica gel
column chremartegraphy (cyclohexane: AcOFr — 70030) to provide a
beige solid {383 mg, 1.6 mmol, 16%); mp 138 *C; IR (neat): 2184
[CN), 3372, 3389 (NHz) em '; 'H NMR (250 MHz, DMSO-ds)
4 (ppmy): 642 (brs, 2H, NHy}, 6.83 (s, 1H, CH}, 7.13-7.22 (m, 2H, 2%
CH).7.44-748 (m, 1H, CH}, Z76—7.80 (m, 1H, CH}, 7.85—7.86 (1, 1H,
CHJ), 11.66 (br s, TH, NH). *C NMR {62.5 MHz, DMSO-dg) 6 (ppm):
71.4,108.6, 112.4,113.2, 116.4, 118.8,120.5,122.2,124.1,125.3, 136.G,
143.7, 157.8. HIRMS (LS1): mfz caled for CyzllgN3SNa: 262.0409;
found: 262.041G.

4.1.10. 3-Amino-5-( 1H-indo!-3-yl)-2- thiophenecarboxamide (43c)
This compound was synthesized using the same procedure as
for 43a starting with 3-chloro-3-{1H-indel-3-yl}-2-propenenitrile
42a and chloreacetamide diluted in DMF (5 mL). After ceoling,
the reaction mixture was poured into ice-waler {200 mL) and the
precipitate was filtered and washed with cold water. The sclid was

triturated in Etp0 and filtered (o afford a brown solid (1.78 g,
6.9 mmol, 69%); mp 196 =C; IR (KBr}: 1632, 2203, 3177 (CONHa),
3305, 3441 (NH3) cm L.'H NMR (250 MHz, DMSO-dg) & (ppm): 6.46
{brs, 2H, NHy), 6.57 {br s, 2H, Ny}, 6.82 (s, 1H, 11}, 710—7.21 (m,
2H, 2% CH), 743747 {m, TH, CH), 7.75 (m, TH, CH), 7.84—787 (m,
1H, CH), 11.53 (sl, 1H, NH). '*C NMR {562.5 MHz, DMSO-dg) 4 (ppm):
§7.5,109.4, 112.2, 114.5,119.0, 120.1, 121.9, 124.2, 124.4,136.6, 139.2,
153.8, 166.4. HRMS {ESI}:: mjz calcd for Cy3HpN3OS: 258.0696;
found: 258.0676.

41.71. Ethyl 3-amino-5-(1-benzyl-1H-indoi-3-y1)-2-
thiophenecarboxylate (43d)

This compound was synthesized using the same procedure as
for 43a starting with 3-(1-benzyl-1H-indol-3-yl}-3-chloro-2-
propenenitrile 42b. The residue was purified by silica gel column
chremategraphy (cyclohexane:AcQEt = 70:20) to afford a pale
yellow solid (2.26 g, 6 mmel, 60%); mp 139 =C; IR (KBr)}: 164G (CO),
3352, 3458 (NH») cm ': 'H NMR {250 MHz, DMSO-ds) 3 (ppm.}:
1.26 {t, 3H, CH3, ] — 7.05 Hz}, 4.19 {q, 2H, CHy, | — 7.05 Hz), 5.46 {s,
2H. CH;),. 6.534 (br s, 2H, NH3), 6.88 {s, 1H, CH}, 217724 (m, 2H, 2 x
CH). 7.28-734(m, 5H., 5x CH}, 7.53—7.57 (m, 1H, CH}, 7.83-7.8G (m,
1H, CI1}, 8.09 (s, 111, CH). BC NMR (62.5 Milz, DMSO-dg} 4 (ppm):
14.5, 49.3, 591, 93.8, 108.9, 1711, 113.8, 1194, 120.8, 122.3, 124.9,
127.2, 127.5, 1284, 128.6, 136.3, 137.5, 142.6, 155.6, 163.6. HRMS
(ESI): mfz caled for ConHazgN2O25Na: 399.1138; found: 399.1137.

4.1.12. 3-Amino-5-f1-benzyl- 1H-indol-3-v1)-2-
thiophenecarbonitrile (43e)

This compound was synthesized using the same precedure as
for 43a starting with 3-{1-benzyl-1H-indol-3-yl}-3-chloro-2-
propenenitrile 42b and chlorcacetenitrile. After coeling, the reac-
rion mixture was poured into ice-water (200 ml) and the
precipitate was filtered and washed with cold water. The solid was
triturated in petroleum ether and filtered to afford a pale yellow
solid (3.20 g,9.7 mmol, 87%); mp 160 °C; IR (KBr): 2186 (CN}, 3380,
3479 (NH3) cm *; "H NMR (250 MHz, DMSO-dg) 6 (ppin}: 5.46 (s,
2H, CH,), 6.47 (br s, 2ZH, NH,), 6.84 (s, 1H, CH}, 7.16—7.22 [, 2H, 2x
CH), 7.24—7.34{m, 5H, 5x CH), 7.53—7.57 (m, 1H, CH), 7.78—7.82 (m,
1H, CH}, 8.08 (s, TH, CH). C NMR (62.5 MHz, DMSO-dg) & (ppm}:
48973, 71.5, 10873, 1102, 1173.5, 116.73, 1190, 12008, 122.5, 124.7, 127.2,
127.5, 128.6, 136.3, 137.4, 143.0, 157.8, 157.9. HRMS (ESI): mjz calcd
for CypHsNzSNa: 252.0879; found: 352.0879,

4.113. 3-Amino-5-(1-benzyl- 1H-indol-3-y1)-2-
thivphenecarboxemide (43f)

This compound was synthesized using the same procedure as
for 43a starting with 3-{1-Benzyl-1H-indol-3-yl}-3-chloro-2-
propenenitrile 42b and chloroacetamide diluted in DMF {5 mlL).
After cooling, the reaction mixture was poured into ice-water
(200 ml) and the precipitate was filtered and washed with cold
water. The residue was purified by silica gel column chromatog-
raphy (cyclehexane:AcOEt = 50:50) to provide a pale brown sclid
(247 g, 7.1 mmol, 70%}; mp 178 °C; IR (KBr): 1655, 2361, 3137
(CONHy). 3314, 3455 (NH,) am . "H NMR (250 MHz, DMSO-dg)
& (ppm}: 346 {5 2H, CHy}, 6.47 (brs, 2H, NHy}, 6.76 (br s, 2H, NHp),
6.82 (s, 1H, CH), 7.16—7.20 {m, 2H, 2x CH}, 7Z.22-7.33 (m, 5H, 5x
CH}, 7.52—7.56 (m, 111, Ctl), 7.85—7.88 {m, 111, CI1}, 795 (s, 111, CII).
BC NMR (62.5 Milz, DMSO-elg) 4 {ppm): 49.2, 976, 109.2, 111.0,
114.8, 119.4, 120.5, 122.2, 125.0, 127.2, 127.5, 127.6, 128.6, 136.3,
137.6, 138.5, 153.9, 166.3. HRMS (ESI): myjz caled for C3pHzN30SNa:
370.0985; found: 370.0983.

4.1.14 6-(1H-Indol-3-ylthieno[3,2-d[pyrimidin-4/3H)-one (44a)
In round-botiom flask was introduced [ormic acid (10 mL} and
the solution was put at 0 °C. 3-Amino-5-(1H-indol-3-yl}-2-
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thiophenecarbonitrile 43b {239 mg, 1 mmol) was added slowly
followed by 30 drops of concentrated sulfuric acid. After 30 min, the
ice bath was removed and the reaction was heated at 40 °C for 24 h.
The reacricn mixture was then cooled to room temperature and
poured into ice-warer (50 mL). The precipitate was filtered, washed
twice with water and once with E;O to afford a brown solid
(225 mg, 0.84 mmol, 84%} mp 162 °C; IR {neat). 1637 (C=0}, 3215
(NH) cm . '"H NMR (250 MHz, DMS0-dg) 3 (ppm}: 719-723 (m,
2H, 2x CH}, 747-7.51 {m, 1H, CH), 7.59 {s, 1H, CH}, 795-7.99 (mn,
1H, CH), 8.08—8.09 (m, 1H, CH}, 813 (s, 1H, CH}, 11.79(br s, 1H, NH},
12.37 (br s, 1H, NH). >C NMR (62.5 MHz, DMS0-dg} § { ppm): 1143,
117.6,122.9,124.1,124.3,126.0,127.5,129.4,131.3,142.0, 151.7, 152 .0,
162.0, 163.9. HRMS (ISI): miz calcd for CiallgN3OSNa: 290.0359;
found: 290.0369.

4.115. 6-{I-Benzyl-1H-indol-3-yl)thicnof3,2-d [pyrimidin-4(3H)-
one (44h)

This compound was synthesizad using the same procedure as for
44a starting with 3-amino-5-( 1-benzyl-1H-indol-3-y1}-2-thicphene
carbonitrile 43e to provide a beige solid {315 mg, 0.88 mumol, 88%);
mp 286 °C; IR (KBr): 1659 (C=0), 2789 (NH} cm ' 'H NMR
{250 Mz, DMSO-dg) 6 (ppm): 5.50 {s, 211, Cl1y), #18—7.36(m, 711, 7x
CH), 754—7.59 {m, TH, CH), 761 (s, TH, CH}, 797—8.04 (m, TH, CH),
8.14 (s, 1H, CH), 8.30 (s, 1H, CH), 1241 {(br s, 1H, NH). 3¢ NMR
{62.5 MHz, DMSO-dg} 6 (pprmL): 49.4, 108.8, 111.2, 118.1, 119.0, 118.5,
121.1,122.5,124.8, 127.1, 1276, 128.6, 129.3, 136.5, 137.4, 145.7, 146.8,
156.8, 158.6. HRMS (APCI): mjz calked for C3:HgN;0S: 358.1009;
found: 358.1005.

4.116. 4-Chloro-6-(1H-indol-3-yl )thienof3,2-d [pyrimidine (45a)

Te a solution of dry DMF {5 mL) was added dropwise phos-
phaorus oxychlaride (0.47 mL, 5 mmel) ar 0 °C. After few minutes of
stirring, 6-( | H-Indol-3-yl)thienc|3,2-d]pyrimidin-4{3H}-one 44a
{267 mg, 1| mmol} dissolved in DMF (5 mL) was added dropwise at
0 =C. The reaction mixture was heated at 50 °C overnight. After
cooling, the solution was poured into ice-water (100 mL) and the
precipitate was filtered and washed several times with cold water.
The crude product was purified by silica gel column chrematog-
raphy (cyclohexane:AcOEt = 60:40; to provide a yellow selid
(129 mg, 0.45 mmol, 45%); mp 274 °C. TH NMR (250 Mliz, DMS0-
de} & (ppm): 7.47—7.54 (m, 2H, Zx CH), 8.11-8.18 (m, 2H, 2x CH),
8.29 8.35(m, IH, CH}, 8,61 (s, lH, CH), 9.01 (s, IH, CH), 9.52 (s, IH,
NH). '*C NMR (62.5 MHz, DMS0-ds) 4 (ppm): 120.1, 120.8, 121.2,
121.6,122.3,125.0,125.6,127.2,136.7,142.4,147.1, 156.5, 156.8, 157.8.
HRMS (ESI’: infz calcd for Ci4HgCIN=S: 286.9200; (ound: 286.0194.

4.1.17. 6-(1-Benzyl-1H-indoi-3-yi)-4-chlorothieno|3,2-df
pyrimidine (45b)

This compound was synthesized using the same procedure as
for 45a starting with 6-{ 1-henzyl-1H-indnl-2-ylithiena[3.2-d| pyr-
imidin-4({3H)-one 44b. The crude product was triturated in petro-
leam ether and filtered to afford yellow solid {368 mg, 0.98 mmol,
98%): mp 163 *C.'"H NMR (250 MHz, DMS0-dg) & (ppmL): 5.62 (s, 2H,
CHy}, Z27-7.39 {m, 7H, 7x CH}, 267—7.73 (i, 1H, CH), 8.06—8.12
{rm, 1H, CH), 8.96 (s, 1H, CH), 9.10 (s, 1H, CH), 10.41 (s, 1H, CH). '*C
NMR (62.5 MHz, DMSO-dg} 6 (ppm): 49.6, 106.8, 1116, 119.3, 121.8,
1231, 125.57, 125.64, 127.3, 127.7, 128.7, 134.1, 1364, 137.0, 148.0,
193.6, 156.5, 1575, 162.2. HRMS (1:51): mjz caled for Cail5CINaS:
376.0670; found: 376.0679.

4.1.18. &-(1-Benzyl- 1H-indol-3-vi)-4-(4-methoxyphenoxy thieno
{3.2-d]pyrimidine {1a)

Preparation of 4-mmethoxyphenolate. In round bottom flask was
placed sodium hydroxide {200 mg, 5 mmel) inwater {1 mL). Then, p-
methoxyphenol {621 mg, 5 mmecl’ was added to the solution. After

dissolution, Lhe reaction mixture was dried under reduce pressure
to give quantitative white salid. Preparation of the title compound. Te
a solution of 6-( 1-benzyl-1H-indol-3-yl)-4-chlorothieno| 3,2-d|py-
rimidine 45b (376 mg, 1 mmoel} in dry DMF {5 mL) was added 4-
methoxyphenolate (292 mg, 2 mmal} freshly prepared. The reac-
tion mixture was stirred at room temperature evernight. The solu-
tion was peuared inte ice-water (100 mL} and the precipitate was
filtered and washed with water. The crude product was purified by
silica gel column chromatography {cydohexane: AcQEL = 80.20} o
provide yellow solid (375 mg, 0.81 mmol, 81%); mp 174°C. '"H NMR
{250 MHz, DMS50-dg) 4 {ppm}: 3.79 (s, 3H, CH5), 5.52 {s, 2H, CHy},
701(d, 211, 2x ClI, /= 9.1 Hz}, 7.23-7.35{m, SH1, 9= Cll), 7.55—-7.62
{m, 114, CH), 7.873 (s, 1H, CH}, 8.06—48.10 {m, 111, CI1}, 841 (s, 11, Cl1},
8.62 (s, 1H, CH). C NMR (62.5 MHz, DM50-dg} 6 (ppm): 49.5, 55.4,
108.5, 1114, 113.8,114.6, 116.4, 119.6, 121.4,122.7, 122.5, 124.9,127.2,
127.6,128.6,130.2, 136.6, 137.3, 145.2, 147.5,154.4, 157.0, 163.0, 164.0.
HEMS (APCI): mfz caled for CosH2oN30,5: 464.1427: found:
464.1432.

4.119. 6-(1-Benzyl-1H-indol-3-yi)-4-'4-miethyl- I -piperazinyl)
thienof3,2-d [pyrimidine (1b)

A solutien of 6-(1-benzyl-1/i-indel-3-yl}-4-chlorothieno| 3,2-id)
pyrimidine 45b (38 mg, 0.1 mmol} in few drops of N-methyl-
piperazine was stirred at room temperature overnight. Then, water
{ 10 mL) was added to the solution. The agueous layer was extracted
twice with AcOEt (10 mL}. The organic layer was washed once with
hydrochloric acid 1 N (10 mL} and onee with brine (10 mL), dried
over MgS0, and concentrated under reduce pressure to provide
vellow sclid (15 mg, 0.034 mmol, 34%); mp 110 "C. 'H NMR
{250 MHz, acetone-dg) &{ppm}: 2.29(s, 3H, CHz), 2.52—2.5G {m, 4H,
2% (), 402—-411{m, 411, 2 < CHy}, 5.68(s, 211, CH;), 7.24-7.38 (m,
7H, 7x CH), 7.58—"763 (m, TH, CH), 8.15=8.21 {m, TH, CH), 8.56 (s,
1H, CH}, 8.94 (s, 1H, CH), 10.62 (s, 1H, CH). *C NMR {62.5 MHz,
aretone-de} 6 (ppm}: 46.2, 46.8, 51.1, 55.6, 108.9, 112.0, 112.2, 121.4,
1226, 123.5, 125.2, 127.4, 128.2, 128.7, 1296, 135.9, 1378, 138.0,
1524, 155.5, 158.1, 186.4. HRMS (ESI}: mfz caled for CogHagNsS:
440.1903; found: 4401911

4.1.20. G-(1-Benzyl-1H-indol-3-yl )-4-chlorathienof3,2-d{1,2,3f
triazine (46)

To a solutien of 3-amino-5-(1-benzyl-1H-indol-3-yl)-2-
thiephenecarbonitrile 43e (659 mg, 2 mmel} in concentrated hy-
drechleric acid {6 mL} was added dropwise sedium nitrite {192 mg,
2.80 mmpol} dissolved in water (5 mL). After addition, the reaction
mixture was stirred al room temperature overnight. The solution
was poured into ice-water {150 mL} and the precipitate was filtered
and washed with water. The residue was purified by silica gel col-
umn chromatography (cyclohexane:AcOEt = 90:10) to afford yel-
low selid {663 mg, 1.76 mmel, 88%); mp 173 °C. 1 NMR (250 Mllz,
CIYCI3) & (ppm}: 5.4% (8, 2H, CHa), 7.20—7.24 (m, 2H, 2x CH), 773 -
745 (m, 6H, 6 CH), 771 (s, 1H, CH}, 7.93 (s, LH, CH), 8.07 8.11(m,
1H, CH). C NMR {62.5 MHz, CDClz) 4 (ppm}: 50.8, 109.2, 1110,
115.1,119.9,122.5,123.9,125.4, 127.1,1274, 128.4,129.0, 129.2,129.5,
135.6, 137.4, 138.3, 150.9. HRMS (APCI): mjz caled for CpgHygCINgS:
377.0622; found: 377.0634.

4.1.21. 6-(1-Benzyl-1H-indol-3-y!)-4-(d-methoxybenzyl)thieno
[3.2-d]{ 12 3firiazine (1c)

{This compound was synthesized using the same procedure as for
1a starting with 6-(1-benzyl 1H-indol-2-yI>-4-chlerothieno[3,2-d]
|1.2,3]triazine 46 and 4-methexyphenelate. The residue was purified
by silica gel column chromatography (gycohexane: AcQEL = 80:20}
to afford yellow solid (372 mg, 0.80 mmol, 80%); mp 165 >C."H NMR
{250 MHz, DMSO-dg) 6{ppm): 3.81 (s, 3H, CH5}, 5.54{s, 2H.CH;}, 7.07
{d,2H, 2x CH,j=9.0Hz}, 7.26—7.38(1m, 9H, 9= CH}, 7.61-7.64 (m. 1H,
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CH), 8.08—8.12 (ir1, 1H, CH), 8.7 (s, 1H, CH}, 8.52 (s, 1H, CH). *C NMR
(62.5 MHz, DMSO-dg) & (ppm): 49.6, 55.5, 107.8, 111.5, 114.4, 1146,
114.8,119.6, 121.7,122.9, 123.0, 124.7, 127.2, 127.7, 128.7, 131.2,136.7,
137, 1448, 1453, 157.4, 159.8, 160.1. HRMS (APC1): m/fz calcd for
CyHoy Na045: 465.1380; found: 4651372,

4.1.22. 3-[{Chioroacery! Jaminof-5-( 1H-indol-3-yi)-2-
thiophenecarboxamide (47a)

To a solution of 3-amino-5-(1H-indol-3-yl}-2-thiophenecarbe-
xamide 43¢ {772 mg, 3 mmel} and EtN (300 uL, 3.6 mmol} in dry
THF was added dropwise chloroacetyl chloride (286 ul, 3.6 mmel)
diluted in THF (2 mL} at O °C. The ice-bath was removed and the
reacrion mixture was stirred at room temperature 2 h. Then, the
solution was poured into ice-water [ 30 mL) and the precipitate was
filtered and washed once with cold water and once with petroleum
ether to afford ayellow solid (411 mg, .23 mmoel, 41%); mp 246 °C; IR
{neat): 1652 (C=0), 2369, 2931, 3278 {NH | NH3) cm ' 'H NMR
(250 MHz, DMSO-dg} & (ppm): 447 (8, 2H, CH}, 7.16—7.24{m, 2H, 2«
CH}, 7.41-7.46 (m, 1H, CH}, 7.60 (br s, 2H, NH}, 7.86—7.93 (i, 1H,
CH), 7.93 (s, 1H, CH), 8.19 (s, 1H, CH), 11.69{br s, LH, NH}), 12.04 {br s,
1H, NH). 1*C NMR (62.5 MHz, DMSO-dg) & (ppm}: 43.1, 108.8, 109.4,
112.4,115.0, 118.74,120.4,122.2,124.2, 125.1,136.6, 144.8, 142.1, 164.0,
164.4. HRMS (ESI): mjzcaled for CuHyppCIN5 O 5Na: 356.0231; found
356.0236.

4.1.23. 5-(1-Benzyl-1H-indol-3-yi)-3-[{chloroacetyl)amino/-2-
thiophenecarboxamide (47h)

This compound was synthesized using the same procedure as
for 47a starting with 3-amino-5-(1-benzyl-1H-indol-3-yl)-2-
thicphenecarboxamide 43f tc afford a yellow solid {1.07 g,
2.52 mmol, 84%); mp 183 *C; IR (neat): 1652 (C—0), 2360, 3094
{NH + NHz) cm 1 'H NMR (250 MHz, DMSO-dg) 4 (ppm): 447 (s,
2H, CHz), 5.49 (s, 2H, CHz), 7.20—7.31 {m, 7H, 7= CH}, 7.56-7.59 {m,
1H, CH}, 7.60(br s, 2H, NHz}, 787 7.91 (m, 1H, CH), 8.19 {5, 1H, CH),
8.21 (s, 1H, CH), 12.04 (br 5, 1H, NH}. *C NMR (62.5 MHz, DMSO-dg)
& (ppm): 43.1, 49.3, 108.5, 109.6, 111.3, 115.1, 119.0, 120.8, 122.5,
124.8,127.2,127.5,128.4,128.6, 136.4,137.5, 140 1, 142.1,164.0,165 4.
HRMS (ESI}: mfz calcd for CyH gCIN;O,8Na: 446.0700; found:
446.0713.

4.1.24. 5-(1H-Indol-3-yi)-3-[( T-piperidinylacety!)amino}-2-
thiophenccarboxamide (48a)

A solution of 3-[{chloroacetyl}amino]-5-{ 1H-indol-3-y1}-2-
thicphenecarboxamide 47a (80 mg, 0.24 mmel}, piperidine
(24 pL, 0.24 mmol} and dry polassiuin carbonate (33 mg,
0.24 mmoal) in dry CHACN (3 L} was heated at reflux 1 h. After
cooling, the reaction mixture was poured into ice-water (30 mL}
and the precipitate was filtered and washed once with cold water
and once with petroleum ether to give a pale red solid (91 mg,
0.2498 mmol, 99%) mp 247 °C; IR (near): 1667 {C=0), 2359, 2930,
3166 [NH + NH} cm ' '"H NMR (250 MHz, DMSO-ds) § (ppm):
1.35-1.45 (m, 2H, CHz), 1.58— 168 {m, 4H, 2+ CHa}, 2.42—-2.45 {m,
4H, 2x CH}, 3.08 {5, 2H, CH>), 7.17-7.21 (m, 2H. 2 x CH}, 746749
{m, 3H, NH; + CH), 7.87—7.89 (i, ZH, 2x CH), 8.29 (s, 1H. CH), 11.66
{br s, 1H, NH}, 12.17 {br s, 1H, NH}. "*C NMR (62.5 MHz, DMSO-dg}
&{ppm}): 23.4, 25.3, 54.3,62.3,108.7,109.0, 112.4, 115.3, 118.7,120.3,
122.1,1243,124.7,136.6,140.1, 142.5,165.2, 168.6. I IRMS (ESI): infz
caled for CopliasNyldss: 387315736 found: 38731529,

4.1.25. 5-(1H-hdol-3-yl)-3-[(4-morpholinylacetyl Jamine j-2-
thiophenecarboxamide {48h)

This compound was synthesized using the same procedure as
for 48a starting with 3-[{chloroacetyl)amine]-5-{1H-indol-3-yl}-2-
thicphenecarboxamide 47a and morpholine o afford a beige solid
(91 mg, 0.238 mmol, 99%}; mp 261 °C; IR (neat): 1643 {C=0), 2808,

3150, 3277 (NH — NH3) cm ' 'H NMR (250 MHz, DMSO-dg)
&ippm): 2.49-2.51 (1, 4H, 2x CHy), 3.15 (s, 2H, CH), 3.65—-3.73(m,
4H, 2x CHpj, 717-7.21 (m, 2H, 2x CH), 746-749 (m, 3H,
NE + CH), 7.85—7.88 (m, 21, 2x CIT}, 8.28 {s, 111, CH}, 11.66 [br s,
TH, NH), 1221 (br 5 1H, NH). 3C NMR (62,5 MHz, DMSO-dg)
4 (ppm}: 53.3, 61.6, 66.1,108.8, 105.0, 112.4,115.3, 118.7, 120.3, 122.1,
1242, 124.8, 136.6, 140.2, 142.4, 165.3, 168.0. HRMS (ESI): mjz calcd
for Cy9Hp1N40=S: 385.1329; found: 385.1337.

4.1.26. 5-(1H-Indol-3-yl)-3-{[{4-methyi-1-piperaziny! Jacetyl]
amine}-2-thiophenecarhoxamide (48c)

This compound was synthesized using the same procedure as
for 48a starting with 3-[{chloroacetyl)amina]-5-(1 H-indal-3-y1}-2-
thiophenecarboxamide 47a and N-methylpiperazine to afford a
pale red solid (92 mg, 0.235 mmol, 98%}: mp 258 »C; IR (neat}: 1658
{C=0), 2808, 3159, 3258 (NH — NHz) em . 'H NMR (250 MHz,
DMS0-dg) & (ppm): 218 (s, 3H, CHs}, 2.44-247 (m, 8H, 4x CHa),
312 (s, 2H, CHy}, 7.14-720 (m, 2H, 2x CH}, 743-7.50 (m, 3H,
NH; + CH), 7Z.83—-7.88 (in, 2H, 2x CH}, 8.27 (s, 1H, CH), 11.64 (br s,
1H, NH), 12.05 {br s, 1H, NH). *C NMR (62.5 MHz, DMSO-dg)
& (ppm} 453.6,52.8, 54.3, 61.4,108.8,108.9,112.4, 115.4, 118.7, 120.3,
1221,124.2,124.7, 136.6, 1401, 142.4, 165.2, 1651 LIRMS {L51}: mjz
calcd for CyHyyNL0y5: 398.1645; found: 398.1645.

4.1.27. 3-{{(4-Benzy!- 1 -piperazimyl)acetyljemino}-5-( IH-tndol-3-
wi)-2-rhiophenecarboxamide (48d)

This compound was synthesized using Lhe same procedure as for
48a starting with 3-[{chloroacetyl)amino]-5-1H-indol-3-yl}-2-
thiophenecarboxamide 47a and N-benzylpiperazine to provide a
pale brown saolid (113 mg, 0.238 mmcl, 99%}; mp 268 °C; IR (neat}:
1644 (C—0), 2360, 2812, 3275 (NI + NI1z)cm LUINMR {250 Mliz,
DMSO-dig) 4 {(ppm): 2.49—2.51 (m, 8H, 4x CHy), 3.15 (s, 2H, CHy ), 3.47
(s, 2H, CH3}, 7.17—7.32 {m, 7H, 7x CH), 746—7.49 (m, 3H, NHz + CH),
7.86 7.89(m,2H,2x CH),8.29(s, lH, CH), 11.65 (br s, 1H, NH), 12.08
{br s, 1H, NH). *C NMR (62.5 MHz, DMSO-dz}  (ppm}: 52.5, 52.0,
61.5, 62.0, 108.8, 105.0, 112.4, 115.4, 118.7, 120.3, 122.1,124.2, 124.7,
126.9,128.1,128.7,136.6,138.5,140.1, 142 4,165.2,168.1. HRMS {ESI):
mjz caled for CgHpgNsO,S: 474.1958; found: 4741981,

4.1.28. 5-(11-tndol-3-y1)-3-[(1-pyrrolidinylacetyl Jamino-2-
thiophenecarboxamide (48e)

This compound was synthesized using the same procedure as
for 48a starting with 3-[{chloroacetyl)amine|-5-( 1 H-indel-3-yl}-2-
thicphenecarboxamide 47a and pyrrclidine to provide a yellow
solid (87 my, 0.235 munol, 98%; mp 237 °C: IR {neal): 1672 (C=0),
2853, 2957, 3219 {NH + NHy) cm . 'H NMR (250 MHz, DMSG-dg)
& (ppn)y: 1.74—1.83 (m. 4H. 2x CHy}, 2.61—2.69 (m, 4H, 2x CHa),
3.32 (s, 2H, CHs), 7.16-7.23 (m, 2H, 2x CH), 7.45-750 {m, 3H,
NH; + CH), 7.85-7.90 (m, 21, 2x CII), 8.26 {s, 111, CHI), 11.66 [br s,
1H, NH), 12.03 (br 5, TH, NH}. C NMR (62,5 MHz, DMSO-ds)
Si{ppm}: 23.5,53.7, 58.7,108.2,108.8,109.0,112.4, 115.4,118.7, 120.3,
122.2,124.3, 124.8, 136.6, 140.2, 142.5, 165.3. HRMS (ESI): mjz calcd
for Cy9Hz; N40,S5: 369.1380; found: 369.1380.

4.1.29. 5-(1-Benzyl-1H-indel-3-yl)-3-(1-piperidinylacefyl jamino -
2-thiophenecarboxamide (48f)

This compound was synthesized using the same procedure as for
48a swarting  with  5-1-henzyl-11-indel-3-y)-3-[{(chloreacetyl)
aminc]-2-thiophenecarboxamide 47b and piperidine t afford a beige
solid (104 mg, 0.221 mmol, 92%); mp 112 *C; IR {neat): 1644 (C=0),
2933,3176 (NH | NHy) cm L 'H NMR (250 MHz, CDCl3) 4 (ppm):
1.35-1.47 (1, 2H, CHy}, 1.61-1.72 {m, 4H, 2x CH,), 243-2.52 (1, 4H,
2x CHy), 3.08 (s, 2H, CH»}, 5.28 (s, Z2H, CHy}, 5.39 (sl. 2H, NH-}, 7.07—
729{m, 8H, 8x CH), 747 (s, IH CH), 794-8.02 (m, 1H, CH}, §.36 (s,
1H, CH),11.93 (brs, 1H, NH). *C NMR (52.5 MHz, CDClz) 4 (ppm): 23.9,
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26.0, 504, 55.1, 63.0, 107.9,110.2, 110.3, 117.3,120.2,121.1, 122.9,125.7,
127.0,127.3,128.0,129.0,136.4, 137.0, 140.6, 143.9, 165.5, 169.8. HRMS
{ESI): myjz calcd for Co7HagN40558: 473.2006; found: 473.2006.

4.1.30. 5-(1-Benzyi-1H-indal-3-yI)-3-[{4-morpholinylacetyl)
aminoj-2-thiophenccarboxamide (48g)

This compeund was synthesized using the same procedure as for
48a starting with 5-(1-benzyl-1H-indel-3-yl}-3-[{chloroacetyl}
amino]-2-thiophenecarboxamide 47b and morpholine (o afllond a
beige solid (105 mg, 0.221 mumiol, 92%; mp 116 =C; IR {neat): 1645
{C=0), 2816, 3188 (NH — NH;) cm ' *H NMR (250 MHz, CDCl;)
d{ppm): 2.62—2.65 {m, 411, 2« CHy}, 3.21{s, 211, Cl1y), 3.85-3.88 (m,
A, 2% Cly), 5.33 (8, 2H, (), 5.57 (51, 211, NHy), 715—7.35(m, 8l 1, 8%
CH}, 7.52 (s, IH,CH), 8.01-8.06 (m, 1H, CH}, 8.41 (s, 1H, CH), 12.04 {br
s, 1H, NH). '>C NMR (62.5 MHz, CDCls) 5 (ppm}: 50.4, 53.8, 62.5, 67.0,
108.0, 11041, 110.4, 117.1, 120.2, 121.1, 123.0, 125.6, 127.0, 127.3, 128.0,
129.0, 136.4, 137.0, 140.8, 143.7, 165.6, 168.7. HRMS (ESI): m/z caled
for CrgHa6N403SNa: 497.1618; found: 497.1610.

4.1.31. 5-{1-Benzyl-1H-indol-3-¥1)-3-{[{4-methy!-1-piperaziny!)
acetyljamino}-2-thiophene-carboxamide (487t)

‘This compound was synthesized using the same procedure as for
48a starting with  5-(1-henzyl-1H-indol-3-yl)-3-|{chloroacetyl}
amino]-2-thiophenecarboxamide 47b and N-methylpiperazine to
afford a beige solid (99 mg, 0.204 mmoel, 835%); mp 128 °C; IR (neat):
1644 (C—0), 2799, 3192 (NH + NH,) cm . 'H NMR {250 MHz,
DMSO-tg) & (ppm): 2.36 (s, 3H, CHy), 2.59—-2.72 (1, 8H, 4x CH,),
3.22 (s, 2H, CHy), 5.34 {5, 2H, CH;}, 5.47 {s], 2H, NH;}, 715-7.36 (m,
8H, 8x CH}, 7.53 (s, 1H, CH), 8.02—8.06 (m, 1H, CH), 8.41 {5, 1H, CH),
1192 {br s, 1H, NH). '*C NMR {62.5 MHz, DMS0-dg) 5 {ppm}: 459,
50.4, 53.4, 54.5, 621, 108.0, 110.1, 110.3, 117.3, 120.2, 121.1, 1229,
1256, 127.0,127.73,128.0,129.0, 136.4,137.0, 140.7,143.8, 165.4,168.0).
HRMS (ESI): m/z calcd for Ca7HzgNs025: 488.2115; found: 488.2119.

4.1.32. 5-(1-Benzvi-1H-indol-3-yI)-3-{I{4-benzyl- I-piperaziny!)
acetyljaminto}-2-thiophenecarboxarnicde (481)

This compound was synthesized using the same procedure as
for 48a starting with 5-( 1-benzyl- 1H-indel-3-yl)-3-[{chloroacetyl}
aming]-2-thiephenecarboxamide 47b and N-benzylpiperazine to
afford a heige sohd (134 mg, 0.2738 mmol, 99%); mp 204 °C; IR
{neat): 1658 (C—0), 2816, 3182 (NHy} cm L 'H NMR (250 MHz,
DMS0-dg) & (ppm): 2,60 2.71 {m, 8H, 4x CH3}, 3.21 (s, 2H, CHy),
3.539(s. 2H, CHy), 5.34 (s, 2H, CHy), 5.51 (sl 2H, NH3}, 7.15-7.37 (m,
13H, 13x CH}, 7.53 (s, 1H, CH}, 8.02—8.06 (m, 1H, CH}, 8.41 (s, 1H,
CH), 11.94 (br 5, TH, NH}. '*C NMR (62.5 MHz, DMSO-dg* 4 (ppm):
50.4, 53.1, 53.5, 62.2, 62.8, 108.0, 110.1, 110.3, 117.3, 120.2, 1211,
122.9, 125.6, 126.98, 126.99, 1271, 127.3, 128.0, 128.2, 129.0, 125.2,
136.4, 137.0, 140.7, 143.8, 165.5, 169.1. HRMS (ESI}: mjz calcd for
C33H134N50,5: 564.2428; found: 564.2453.

4.1.33. 5-(1-Benzyi-tH-indol-3-yI)-3-[{ T-pyrrolidinviacetyl)
aminof-2-thiophenecarboxamide (48§)

This compound was synthesized using the same procedure as
for 48a starting with 5-11-benzyl- 1H-indoel-3-yl}-3-[{chloroacetyl}
amine]-2-thicphenecarboxamide 47b and pyrrolidine te afford a
beige solid {108 mg, 0.235 mumol, 98%); mp 180 "C; IR {neat}: 1662
(C—0), 2787, 3149 (NI + NIiy) em L. U1 NMR (250 MIlz, DMSO-
de)} 6 {(ppm}: 1LB1-189 (m, 411, 2x CHy), 2.63—2.70 (s, 4Hl, 2x Cliy),
3.35 (5, 2H, CH,), 5.28 (5, 2H, CHy}, 5.39 (s1, 2H, NH), 7.08—7.30 (m,
8H, 8x CH), 7.46 (s, 1H, CH}, 7.95 8.00 (m, 1H, CH}, 8.25 (s, 1H,
CH), 11.86 (br s, 1H, NH). >C NMR (62.5 MHz, DMSD-ds} 6 (ppm}:
24.2, 504, 54.5, 59.6, 107.8, 1101, 1103, 117.3, 120.2, 121.1, 1229,
123.6, 127.0, 127.3, 128.0, 129.0, 136.4, 137.0, 140.7, 144.0, 1635.6,
169.7. HRMS (ESI): mjz caled for CogHz7N40,5: 459.1849; found:
459.1867.

4134 6-(1H-Indol-3-y1)-2-( 1-piperidinvimethy! Jthienof3,2-df
pyrimidin-d(3H)-one (2a)

To a seolution of 5-{1A-Indol-3-yl}-3-|{ 1-piperidinylacetyl}
amino]-2-thiophenecarboxamide 48a (36.0 mg, 0.1 mmol; in DMF
{2.5 mL) was added NaOH 2 N (2.5 mL)} and heated at reflux for
30 min. After cooling, the reaction mixture was poured into ice-
water under good stirring. The precipitate was filteted, washed
once with water and onca with petroleum ether to provide a beige
solid (35.7 mg, 0.098 mmol, 98%); mp 350 °C {dec.}; IR (nealk
1660 (C=0), 2937 (NH} cm . 'H NMR (250 MHz, DMSO-dg)
& {ppm;: 1.31-1.33 {m, 2H, CH;}, 1.44—1.46 {m, 4H, 2 < CH;), 2.38—
246 (m, 411, 2x CHy}, 3.37 (s, 211, CHy}, 712717 (m, 211, 2x CH},
FA44=747 (m, 11, CHY, 7.52 (s, TH, CI1), Z.80-7973 (m, 1H, CH), 8.01
{s, 1H, CH), 8.44 (br s, 1H, NH), 12.03 {br s, 1H, NH). *C NMR
{62.5 MHz, DM50-dg) & (ppm}. 23.6, 2534, 53.8, 61.0, 103.0, 112.4,
117.2, 117.6, 119.0, 120.7, 122.2, 124.1, 1259, 136.8, 146.5, 156.3,
157.6, 158.4. HRMS (ESI}: m/z calcd for CpoHziN4OS: 365.1431;
found: 365.1431.

4.1.35. 6-(1H-Indol-3-yl)-2-(4-morpholinylmethyl)thieno[3,2-d]
pyrimidin-4(3H)-one (2h)

This compeund was synthesized using the same procedure as
for (2a; starting with 5-(1H-Indol-3-y1)-3-[(4-morphalinylaceryl}
aminol-2-thiophenecarboxamide 48b to afford a beige solid
(35.9 mg, 0.098 mmol, 98%); mp 262 °C; IR [neat): 1652 (C=0),
28325 (NH} cm ' 'H NMR (250 MHz, DMSO-dg) 4 (ppm.): 2.47—2.51
{n, 2H, CH,), 3.31-3.36 (m, 2H, CH;}, 3.46 {s, 2H, CH,}, 3.57-3.61
{m, 4H, 2x CHp) 718-7.22 (m, 2H, 2x CH}, 748—7.51 (m, 1H,
CH}, 7.57 {5, 1H, CH}, 7.95—7.98 {m, 1H, CH}, 8.0G (s, 1H, CH), 8.49 {br
s, 1H, NH), 11.90 {br s, 1H, NH). "*C NMR (62.5 MHz, DMSD-dg}
&{ppm): 53.0,60.5, 66.1,109.0,112.4, 1174, 117.6,119.0, 120.7,122.2,
1241, 126.0, 136.7, 146.5, 1553.7, 1575, 158.3. HRMS (ESI): infz caled
for CigH 1sN40O25Na: 389.1043; found: 389.1045.

4136, 6-(1H-Indol-3-yl)-2-[(4-inethyl- I-piperazinvi ymethyl]
ihieno[3,2-dpyrimidin-4(3H)-one (2c)

This compeund was synthesized using the same procedure as
for 2a starting with 5-{1H-Indol-3-y1}-3-{[(4-methyl-1-pipera-
zinyl)acetyllJamino}-2-thicphenecarboxamide 48c to aftord a
beige sohd (36.8 mg, 0.097 mmal, 97%); mp 350 °C (dec.); IR
(neat): 1651 {C—0), 2125 (NH) cm . 'H NMR {250 MHz, DMSO-
ds; & (ppm}: 2.45 {m, 3H, CHz}, 2.66 271 {m, 4H, 2x CH3}, 275
2.81 (m, 4H, 2x CHy), 3.52 (s, 2H, CHy), 7.15-7.24 (m, ZH, 2x CH),
748-7.52 (m, 1H, CH), 7.57 (s, 1H, CH}, 794—7.97 (m, 1H, NH}, 8.06
{s, 1TH, NH), 818 {s, 1H, CH), 12.04 (br s, 1H, NH). *C NMR
{62.5 MHz, DMSO0-dg) 4 {ppm}: 43.1, 50.1, 52.9, 59.4, 109.0, 112.5,
117.4, 117.6, 118.8, 120.7, 122.3, 124.1, 126.90, 136.7, 146.6, 155.6,
1574, 158.2. HRMS (ESI}: m{z calcd for CyoHppMsQS: 280.1540;
tound: 380.1545.

4.1.37. 2-J{4-Benzyl-1-piperazinyl Jimethyl[-6-( 1H-indol-3-yi)thicno
{3.2-djpyrimidin-4(3H)-one (2d)

This compound was synthesized using the same procedure as
for 2a starting with 3-{[{4-benzyl- 1-piperazinyljacelyllammine}-5-
{1H-indol-3-y1)-2-thiophenecarboxamide 48d to afford a beige
solid {44.2 mg, 0.097 mrmoal, 97%); mp 350 "C{dec.}; IR {neat}: 1659
(C—0), 2815 {NH) cm % 'H NMR {250 Mtlz, DMSO-dg} & {ppm}:
2.34-2.42 {m, 4], 2x Cll), 2.46-2.53 {m, 411, 2 x Cllp}, 5.44 (s, 21,
CH,), 3.46 (s, 2H, CHy), 7.14-7.33 (m, 7H, 7x CH), 747—7.52 (m, 1H,
CH),7.56(s, 1H, CH}, 7.92 7.98 (m, LH, CH), 8.04(s, 1H. CH}, 8.47 (br
s, TH, NH), 12.12 (br s, 1H, NH). *C NMR (62.5 MHz, DMSOD-ds)
& (ppm): 524, 52.6, 60.2, 62.0, 109.0, 1124, 117.3,117.6, 119.0, 120.7,
122.2,1241,125.9,126.8,128.1,128.8,136.8,138.1, 146.4,156.1, 157.7,
158.4. HRMS {ESI}: mfz calcd for CagH6Ns0S: 456.1852; found:
456.1856.
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4.1.38. 6-(1H-Indol-3-y1)-2-(1-pyrrolidinvbmethvthienof3,2-df
pyrimidin-4(3H)-one (2e)

This compound was synthesized using the same procedure as
for 2a starting with 53-(1/{-indol-3-y1}-3-|(1-pyrrolidinylacetyl)
amina]-2-thiophenecarhoxamide 48e to afford a heige solid
(34.3 mg, 0.098 mmol, 98%); mp 350 °C (dec.}; IR (neat). 1660 (C—
0), 2817 (NHYcm . '"H NMR (250 MHz, DMSO-dg) # (ppm): 1.64
1.70 {m, 4H, 2x CHy}, 2.47-2.55 (m, 4H, 2x CH,}, 3.53 (s, 2H,
CH,} 7.00—7.21 {m, 2H, 32x CH}, 7.43—-747 (m, 1H, CH}, 7.52 (s, 1H,
CH}, 7.89-7.95({m, 1H, CH}, 8.01 (s, 1H, CH), 8.44 {br s,1H, NH},12.01
{br s, 1H, NH). *C NMR {62.5 MHz, DMSO-dg) & (ppm}: 23.5, 53.7,
57.8, 109.0, 112.4, 117.2, 117.6, 119.0, 120.7, 122.2, 124.2, 125.9, 136.7,
146.5, 156.7, 157.6, 158.5. HRMS (ES1): mjz caled for CiglligNaOSNa:
373.1084; found: 373.1101.

4.1.39. 6-(1-Benzyl-1H-indol-3-yi)-2-( I-piperidiny!methy!)thicno
[3.2-dfpyrimidin-4(3H)-one (2f)

This compound was synthesized using the same procadure as for
2a starting with 5+ 1-benzyl-1H-inclol-3-y1)-3-|( 1-piperidinylacetyl}
amino|-2-thiocphenecarboxamide 48f to afford a beige solid
(45.0 mg, 0.099 mmol, 95%}; mp 114°C; [R{neat;: 1667 {C=0),2930
(NI em L TEENMR (250 Miz, CDCl) 6 {ppm): 1.38—1.48 (m, 211,
CH,),1.52—1.64 {m, 4H, 2x CHy), 2.44—2.52 (m, 4H, 2x CHy), 3.48 (s,
2H, CH3), 532 (s, 2H, CHy), 7.08 715 (m, 2H, 2=< CH), 718 730{m,
6H, 6x CH}, 7.37 (s, 1H, CH), 748 (s, LH, CH), 7.93—8.02 (i, LH, CH),
10.02 (br s, LH, NH). '*C NMR (62.5 MHz, CDCl5) & (ppm): 23.6, 25.8,
50.53, 54.8, 60.8, 1104, 110.5, 118.4, 118.8, 120.0, 121.4, 123.1, 125.7,
126.9,127.6,128.0,129.0,136.3, 1371, 147.3,157.4,159.0, 169.0. HRMS
[ESI): infz calcd for Cp7HL7N408: 455.1900; found: 455.1912.

4.1.490. 6-(1-Benzyl-1}-indol-3-yi)-2-(4-morpholinyiimethyl )thieno
[3,2-djpyrimidin-4(3H)-one (2g)

This compound was synthesized using the same procedure as
for 2a starting with 35-(1-benzyl-1H-indol-3-yl}-3-[{4-morpho-
linylacetyllamino]-2-thiophenecarhoxamide 48g to afford a beige
solid (44.7 mg, 0.098 mmol, 98%}); mp 236 °C; IR (neal}: 1661 (C—
0),2848 (NH) cm . 'H NMR (250 MHz, CDCl) & {ppm): 2.61-2.65
[, 4H, 2 x CHj), 2.61 (s, 2H, CHy), 3.77—3.81 {(m, 4H, 2x CHy}, 5.35
Is, 2H, CHy), 716—7.23 {m, 2H, 2x CH}, 7.28—7.37 {m, 6H, 6x CH),
7.44 (s, 111, CH), 756 (s, TH, CIT), B.O1-8.06 {m, TH, CH), 10.07 (br s,
1H, NH). >C NMR (62.5 MHz, CDClz} & (ppm): 50.5, 53.6, 60.7, 66.8,
110.3, 110.5,118.4, 118.7,120.0, 1215, 123.1, 125.6, 126.5, 127.6, 128.1,
129.0, 136.3, 137.1, 147.6, 155.0, 1574, 158.9. HRMS (ESI}: mjz calcd
for CogHasN40,5: 457.1693; found: 457.1676.

41.41. 6-(1-Benzyl-1H-indol-3-yI)-2-[(4-methyl-1-piperazinyl)
methylfthieno|3,2-d{pyrimidin-4(3H)-one (2h)

This compound was synthesized using the same procedure as for
2a starting with 5-(1-benzyl-1/{-indol-3-y1}-3-[|(4-methyl-1-pipera
zinyljacetyl]amino}-2-thiophenecarboxamide 48h to afford a heige
solid (46.5 mg, 0.089 mmel, 99%); mp 132 °C; IR {neat): 1660 (C=0),
2796 (NH)cm ', "H NMR (250 MHz, CDCls) é{ ppm): 2.33 (s, 3H, CH3),
248-2.58 (m, 4H, Zx CHy), 2.63—2.71 (m, 4H, 2x CHy), 3.61 (s, 2H,
CH3), 5.38 (s, 2H, CHy), 715-7.21 (m, 2H, 2~ CH), 7.24-7.38 (i, 6H,
Gx CH), 744 (s, 1H, CH}, 7.55 (s, TH, CH), 8.00—8.09 {m, 1H. CH}, 10.01
(s, 1H, NH}. ’C NMR {62.5 MHz, CDCly} 6 (ppm): 45.9, 50.5, 53.5, 54.9,
60.2,1104, 110.5, 118.4, 118.7. 1200, 121.4,123.1, 125.7, 126.9, 127.6,
1281, 1280, 136,73, 1371, 1474, 155.4, 1574, 159.0. HRMS (ES): mfz
caled for CoyHagN,OS: 470.2009; found: 470.2008.

4.1.42. 6-(1-Benzyl-i1H-indol-3-vi)-2-[(4-benzy!-1-piperazinvl)
methyljthienof3.2-d{pyrimidin-4(3H)-one (2i)

This compound was synthesized using the same procedure as
for 2a starting wilth 5-(1-benzyl-1H-indol-3-y1}-3-{[{4-benzyl-1-
piperazinyl lacetyl]amino}-2-thiophenecarboxamide 48i to afford

a beige solid (53.5 mg, 0.098 mmol, 98%); mp 350 “C (dec.); IR
(neat): 1667 (C=0), 2814 (NH: cm . 'H NMR (250 MHz, CDCls)
& (ppm): 2.51—2.59 (m, 4H, 2x CHy), 2.62—2.69 (m, 4H, 2x CHy),
156 (s, 21, ClIy), 3.61 (s, 211, Clly), 5.39 (s, 211, Clhy), 7.15—7.22 (m,
2H, 2% CH), 724738 (m, 1TH, 11x (H), 7.43 (s, 1H, CH}, 7.55 (s, TH,
CH), 8.03 8.07 {m, IH, CH), 10.04 {5, |H, NH). *C NMR (62.5 MHz,
CDCl3) & (ppm): 50.5,52.9, 53.4,60.2, 62.9,110.4, 110.5,118.4, 118.7,
1200, 1214, 123.1, 1257, 126.9, 1272, 127.6, 1281, 128.3, 129.0,
129.2,136.3, 137.1, 137.9, 147.4, 155.5, 157.4, 159.0. HRMS (ESI}: mjz
caled for C33H52N508: 546.2322; found: 546.2331.

4.1.43. ©6-(1-Benzyl-1ii-indol-3-y])-2-(1-pyrrolidinyimerhy! )thieno
[3,2-d}pyrimidin-4(3i1)-one (Zj)

This compound was synthesized using the same procedure as
for 2a starting with 5-(1-benzyl-1H-indol-3-y1)-3-[{ 1-pyrrolid-
inylacetyl)amino]-2-thiophenecarboxamide 48j to afford a beige
solid {43.6 mg, 0.099 mmel, 99%}; mp 212 C; IR (neat): 1661 (C—
0), 2809 (NH) cm . 'H NMR (250 MHz, CDCl:) 4 {ppm): 1.85-1.90
(m, 4H, Z2x CHy), 2.66—-2.73 (m, 4H, 2 x CHy), 3.75 (s, 2H, CHy}, 5.38
(s, 2H, CHy), 7.15-7.21 {m. 2H, 2x CH}, 7.26—7.36 {m, 6H, 6x CH),
744 (s, 1H, CH), 7.55 {s. 1H, CH), 8.00-8.07 {m. 1H, CH), 8.43 (br s,
1H, NH). PC NMR {62.5 Mz, (DU} 6 {ppm): 24.0, 50.5, 54.3, 57.4,
110.4,110.5,118.4, 118.6, 120.0, 121.4,123.1,125.7,126.9, 1276, 128.0,
129.0, 136.3, 137.1, 147.3, 156.3, 157.5, 159.1. HRMS (ESI}. mjz calcd
for CagHa5N405: 441.1744; found: 441.1734.

4.1.44. 6-(1-Benzyvl-1H-indol-3-yi)-2-hexylthieno {3, 2-d jpyrimidin-
4-of (3a)

To a sclution of 3-aminc-5-{1-benzyl-1H-indol-3-yl1)-2-
thiophenecarboxamide 43f (347 mg, 1 mmol) in MeOH contain-
ing 6% of concentrated 1ICl, was added heptaldehyde (209 uL,
1.5 mmal}. The reaction mixrure was heated at reflux for 24 h. After
cooling, the precipitate formed was filtered and washed once with
cold MeOH to afford a yellow solid (93 mg, 0.21 mmol, 21%); mp
263 °C; IR (KBr): 2424 (OH) cm ' 'H NMR {250 MHz, DMSO-dg)
5 (ppm}: 0.83-0.87 {m, 3H, CH3}, 1.25—1.32 {1, 6H, 3x CHy}, L.71—
1.74 {m, 2H, CHy), 2.67-2.73 (t, 2H, CH,, j — 7.43 Hz), 5.50 (s, 2H,
CHy), 721-7.29 (m, 7H, 7x CH}, 7.57-760 {m, 2H, 2x CH), 7.95—
7.98 {m, 1H, CH), 8.35 (s, 1H, CH). Proton of hydroxyl group ex-
change with deuterium of NMR sclvent. 3¢ NMR (62.5 Miiz,
DMSO-dg) 6 (ppm;: 13.9, 21.9, 27.0, 28.1, 30.8, 33.2, 48.5, 494, 108.6,
111.3,116.0, 116.6, 118.4, 121.3, 122.6, 124.7, 127.2, 127.6, 128,56, 129.7,
136.5, 137.33, 1467, 157.0, 160.3. HRMS (ESI): mfz calcd for
Co7HagN=05: 442.1948; found: 442.1963.

4.1.45. 6-(1-Benzyl-1H-indol-3-yl)-2-(4-methoxyphenyl)thieno
13.2-d}pyrimidin-4-o! (3b)

This compound was synthesized using the same precedure as
for 3a starting with 3-amine-5-{1-benzyl-1H-indol-3-yl}-2-
thiophenecarboxamide 43F and p-anisaldehyde to give a yellow
solid (144 mg, 0.31 mmol, 31%}; mp 278 “C; IR (KBr): 2518
[OH} em . "HNMR (250 MHz, DMS0-ds) 4 {ppm ): 3.85 (s, 3H, CHz),
5.51 {s, 2H, CH,), 7.09(d. 2H,2x CH, /] = 8.93 He, 7.22-7.33 (m. 7H,
7x CH), 7.56—7.60 (;m, 1H, CH}, 7.65 (s, 1H, CH}, 8.00—8.04 (m, 1H,
CH). 8.15(d. 2% CH,j— 8.93 Hz}, 8.32 (s, 1H, CH}. Proton of hydroxyl
group exchange with deuterium of NMR solvent. *C NMR
(62.5 MHz, DMSO-dg) & (ppm): 49.4, 55.5, 108.8, 111.3, 114.0, 116.6,
117.7,119.5, 1212, 122.6,124.1,124.8, 127.2,127.6,128.6,129.4,129.6,
136.5,1374, 146.2,154.3, 157.86, 157.93, 161.8. HRMS (ESI: mfz calcd
for CagHa3N50,5: 464.1427; found: 464.1425.

4.146. 6-(1-Benzyl-1H-indol-3-y!)-2-(3 4. 5-tiimethoxyphenyl)
thienof 3 2-djpyrimidin-4-ol { 3c)

This compound was synthesized using Lhe same procedure as
for 3a starting with 3-amino-3-{1-benzyl-1H-indol-3-yl}-2-
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thiophenecarboxamide 43f and 3.4,5-trimethoxybenzaldehyde to
provide a yellow solid (188 mg, 0.36 mmel, 36%); mp 289 °C; IR
(KBr): 2939 (OH) cm . 'H NMR (250 MHz, DMSO-dg) & {ppm): 3.74
(s,3H, CHz), 3.89 (s, 6H, 2x CHs), 5.51 (s, 2H, CH,), 7.22—7.33 (m, 7H,
7x CH), 7.54 (s, 2H, 2x CH), 7.57—7.61 (m, 1H, CH), 7.69 (s, 1H, CH),
8.01-8.06 (m, 1H, CH), 8.32 (s, 1H, CH). Proton of hydroxyl group
exchange with deuterium of NMR solvent. '*C NMR (62.5 MHz,
DMSO-dg) § (ppm): 49.4, 56.1, 60.1, 105.1, 108.9, 111.3, 117.0, 118.3,
119.6,121.2,122.7,124.8,127.2,127.5,127.6,128.6,136.5,137.4, 140 1,
146.1, 152.8, 153.9, 158.0, 158.6. HRMS (ESI}: mfz calcd for
C30H26N304S: 524.1639; found: 524.1636.

4.147. 6-(1-Benzyl-1H-indol-3-y1)-2-(4-chiorophenyl)thieno{3,2-
dfpyrimidin-4(3H)-one (3d)

This compound was synthesized using the same procedure as
for 3a starting with 3-amino-5-(1-benzyl-1H-indol-3-yl}-2-
thiophenecarboxamide 43f and p-chlorobenzaldehyde to afford a
brown solid (56 mg, 0.12 mmol, 12%); mp 314 °C; IR (KBr}: 1658
(C=0) cm . 'H NMR (250 MHz, DMSO-dg) 6 {ppm): 5.51 (s, 2H,
CHy), 7.22—7.33 (m, 7H, 7x CH), 7.55—7.67 {m, 5H, 5x CH), 8.00—
8.06 (m, 1H, CH}, 8.16 (d, 1H, CH, J = 8.65 Hz), 8.32 (s, 1H, CH),
12.72 {(br s, 1H, NH). HRMS (APCI): m/z calcd for Co7H19CIN;0S:
468.0932; found: 468.0939.

4.2. Molecular modeling, docking and 3-D QSAR predictions

All computational details will be detailed elsewhere [33]. Briefly
all the molecules listed in Tables 1-3, 5 were modeled using the
chemaxon msketch module (http:fjwww.chemaxon.com} and
directly used for the docking studies. AutoDock version 4.2 [45] was
used and cross-docking experiments were carried out similarly as
described by Musmuca [46]. The 3-D QSAR model was carried out
using a in house procedure [47]. Nineteen VEGFR-2 co-crystallized
complexes were retrieved from the PDB (www.rcsb.org), cleaned
from any solvents and ions residues. The tyrosine phosphate non
standard residue was kept in the structures. The complexes were
subjected to a previous reported procedure for geometry optimi-
zation [46]. The minimized complex was aligned using Chimera
1.5.2 [48] and the ligands were then extracted cbtaining the SB
alignment. The AutoGrid medule of the AutoDock suite was used to
calculate the molecular interaction fields (MIFs} on the aligned
melecules. The ligand MIFs and the corresponding activities were
submitted to an R [49] script which performed PLS and cross-
validations to assess the 3-D QSAR model.

SB alignment assessment was performed though extensive re-
docking and cross-docking experiments on the cleaned and mini-
mized co-crystals. The modeled compeunds 1-38 and the in-
termediates 44b, 45b and 48a—j were then cross-docked. The built
3-D QSAR model was applied to lowest energy docked poses and
the corresponding pICsg were predicted. The binding modes of the
1-38, 44b, 45b and 48a—j were analyzed by the mean of the
Chimera software and the interaction profiles were obtained with
the Ligplot software [59].

4.3. Biology. Materials and methods

Human recombinant protein tyrosine kinase VEGFR-2 and
Omnia™ Tyr Peptide Kit 7 were from Invitrogen. Vandetanib,
exploited as the reference standard, was from Sequoia research
product Ltd.

4.3.1. Tyrosine kinase assays

Assays were performed in 96-well microtiter plates using the
Omnia Tyr Peptide 7 Kit, according to the manufacturer’s protocol
and following a previously reported procedure, standardized for

EGFR [51]. Briefly, the kinase activity was determined fluorimetri-
cally by monitoring the increase in fluorescence resulting from
phosphorylation of the peptide substrate, carrying the fluorophore
8-hydroxy-5-(N,N-dimethylsulfonamids)-2-methylquincline, cata-
Iyzed by VEGFR-2 in the presence of ATP.

Assayswere carried out at 30 °C in a reaction mixture containing
5 pL of Tyrosine Kinase Reaction Buffer, 5 pL of Tyresine Kinase
Substrate, 5 pL of 1 mM ATP, 5 uL of 1 mM DTT, 25 pL of ultrapure
water and 5 pL of 3 mU/juL VEGFR-2, in a total volume of 50 pL. All
the above reagents, except VEGFR-2, were incubated at 30 °C for
5 min. VEGFR-2 was then added to start the reaction, which was
menitored with the fluorescence meter Victor3™ Perkin Elmer at
360 nm (excitation filter} and 485 nm (emission filter). Kinase ac-
tivity was calculated from a linear least-squares fit of the data for
fluorescence intensity versus time.

4.3.2. Enzymatic inhibition

The inhibitory activity of titled compounds against VEGFR-2 was
assayed by adding 5 pL of the inhibitor solution to the reaction
mixture described above. All the products were dissolved in 100%
DMSO and diluted to the appropriate concentrations with Tyrosine
Kinase Reaction Buffer, provided by the kit. Final concentraticn of
DMSO in assay solutions never exceed 1%, and proved to have no
effects on protein activity. The inhibitory effect of the new de-
rivatives was routinely estimated at a concentration of 200 pM.
Results are expressed as means = SEM of percentage inhibition
values, obtained through twe determinations carried out in tripli-
cate (Tables 13, 5}. Those compeounds found to be active were then
tested at additional concentrations between 200 pM and 20 nM. For
a proper comparison Vandetanib was employed as the reference
standard. The determination of the 1Csg values was performed by
linear regression analysis of the log—dose respense curve, which
was generated using at least five concentrations of the inhibitor
causing an inhibition between 20% and 80%, with three replicates at
each concentration. Results are expressed as means + SEM {Table 4
compounds 2f and 3d). GraphPad 5.0 software was used for the
statistical analysis.

4.3.3. Endothelial cell culture

Umbilical cords were cut after delivery in compliance with
relevant laws in respect with consent of women. Rapidly, human
umbilical vein endothelial cells (HUVEC) were collected from um-
bilical cords as previously described by Jaffe et al., 1973 [51]. HUVEC
were cultured and used until passage 5 in “HUVEC/complete me-
dium” consisting in 50% M199 {GibcoBRL, France} and 50% RPMI
1640 {v{v} (Sigma, France) supplemented with 20% heat inactivated
human AB serum (EFS, Nancy, France}, 2 mM r-glutamine {Gib-
coBRL}), 100 U/mL penicillin {GibcoBRL, France), 100 pg/mL strep-
tomycin { GibcoBRL, France}, 2.5 pg/mL amphothericin B (GibcoBRL,
France}, and 20 mM HEPES (Sigma, France).

4.3.4. Effect of 2f tartaric on metabolic activity and viability of
endothelial cells

As  previously described [52], HUVEC were plated at
20,000 cellsjcm? in 24 well plates in complete medium. After 24 h,
the medium was changed and cells were cultured with 2f- tartaric
{0—100 pM} in RPMI 1640 medium supplemented with 2% heat
inactivated fetal calf serum (SVF) during 24 h.

Metabolic activity (MTT assay): cells were incubated with
04 mgfmL of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazo-
lium bromide (MTT) {Sigma, France} at 37 °C during 3 h. Formazan
crystals were dissolved by dimethylsulfexide (Fisher Scientific,
France} and absorbance was measured at 570/630 nm (EL8OO
Universal microplate reader, Bio-Tek instrument, USA). Results are
presented as percent of variation with values obtained for control
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medium without 2f-tartaric as reference {Means + SD, n = 3 in
triplicate).

Viability {(Hoechst assay): cells were lysed by freezing at —80 °C.
Cell lysates were incubated with 2 pg of Hoechst 33258 (Sigma,
France) during 1 h under agitation and the fluorescence intensity
was measured {Aexcitation: 360 nm/lemission: 460 nm, Berthold
Twinkle LB970 system). Results are presented as percent of varia-
tion with values obtained for control medium without 2f-tartaric
as reference (Means =+ SD, n = 3 in triplicate).

Effect of DMSO on the viability of endothelial cells was evalu-
ated after dilution in RPMI 1640 medium supplemented with 2%
SVE.

4.3.5. Endothelial cell tube formation

As previously described [52], HUVEC were plated (90,000 cells/
cm?) onto 24-well plate pre-coated with Matrigel® (BD Biosciences,
France). After 1 h, media were removed and replaced by 2f-tartaric
(0—3 pM)} in RPMI 1649 medium supplemented with 2% heat
inactivated fetal calf serum and 50 ng VEGF during 24 h before
HUVEC being fixed with 4% paraformaldehyde (Sigma, France).
Photomicrographs (Nikon AZ100, Digital Sight DS-Qi1Mc camera,
Niken, France} were taken after phalleidin-sulforhodamine stain-
ing (Fluoprobes®, Interchim, France). Area fraction of endothelial
cells was calculated with NIS Element Software (Nikon, France} and
represented as the area fraction of cells in relation to whole field. It
was expressed as a percentage of variation with values obtained for
control medium without VEGF and without 2f- tartaric as reference
(negative control} {Means + SEM, n = 5). For comparison purpose,
Sunitinib (LC Laboratories, USA} was used as reference drug using
the same protocol
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ABSTRACT: Pharmacophoric mapping is a useful procedure to frame, especially when
crystallographic receptor structures are unavailable as in ligand-based studies, the hypo-
thetical site of interaction. In this study, 71 pyrrole derivatives active against M. fuberculosis
were used to derive through a recent new 3-D QSAR protocol, 3-D QSAutogrid/R,
several predictive 3-D QSAR models on compounds aligned by a previously reported phar-
macophoric application. A final multiprobe (MP) 3-D QSAR model was then obtained
configuring itself as a tool to derive pharmacophoric quantitative models. To stress the
applicability of the described models, an external test set of unrelated and newly
synthesized series of R-4-amino-3-isoxazolidinone derivatives found to be active at
micromelar level against M. tuberculosis was used, and the predicted bioactivities were in
good agreement with the experimental values. The 3-D QSAutogrid/R procedure proved
to be able to correlate by a single multi-informative scenario the different activity
molecular profiles thus confirming its usefulness in the rational drug design approach.

1. INTRODUCTION to INH, RIF, and three of second line class of anti-TB drugs).
Recently a more dangerous form of bacilli, named totally drug-
resistant (TDR) showing in vitro resistance to all first- and
second-line drugs tested have been isolated. "

To reduce this increasing problem, antitubercular drugs are
used with specific therapeutic protocols under direct observa-

Tuberculosis (TB), an infectious disease mainly caused by
Mycobacterium tuberculosis (MTB), remains a major public
health problem and causes ill-health among millions of people
each year. TB ranks as the second leading cause of death from
an infectious disease worldwide, after the human immunode-
ficiency virus (HIV-1). The 2012WHO Global tuberculosis
report estimates there are almost 9 million new cases and 1.4
million TB deaths." Moreover, two billion people are estimated
to be latently infected with MTB, and 10% of them reactivate to
active TB with major risk relative to immigrants from endemic 89 -
areas, people with HIV-1 infection, and individuals with underly- agents,” here we reporltothe assessment of a prew.ously reported
ing diseases (silicosis, diabetes mellitus, malignant conditions) 2 Pha.rmacophore n‘_mdf’] t.hrough 3D Q_S{‘\utogrld/ R, 3'1 f ecent

Currently, the standard treatment comprises: first line drugs, introduced quantitative ligand-based design protocol.” The
such as isoniazid (INH), pyrazinamide (PZA), ethambutol developed 3-D QSAR models were tested for their predictive
(EMB), and rifampin (RIF); and second line drugs, such as ability on a series of new independently synthetized R-4-amino-

tion therapy short course (DOTS) conditions.”

The need for new shorter therapeutic regimens and new
classes of drugs active on MDR, XDR, and TDR MTB drives
pharmaceutical research to accelerate in the development process
of new anti-TB dl’ugs.7 Continuing our research on anti-TB

ethionamide (ETH), p-aminosalicylic acid (PAS), capreomycin, 3-isoxazolidinone derivatives la—e, 2a—f, and 3h, (Table 1).

amynoglicosides, p-cycloserine (DCS), and ﬂum‘ncplinc:lmnes.3 These compounds have been designed to evaluate the effects on
The required long-term drug treatment, due to the high antitubercular activity due by the introduction of acyl substituents

persistence of MTB, combined with poor compliance of the on N(2) atom of oxoisoxazolidine ring and on amino group.

patients, highly contributes to developing drug resistant strains,

particularly multidrug-resistant (MDR, resistant at least to INH Received: March 1, 2013

and RIF) and extensively drug-resistant (XDR, resistant at least Published: April 25, 2013

V ACS Publications @ 2013 American Chemical Society 1463 d.doiorg/10.1021/ci400132q 1L Chem. Inf. Model. 2013, 53, 14631474
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Table 1. R-4-Amino-3-isoxazolidinone Derivatives: Monocarbamates (1a—e), Dicarbamates (2a—f), and Amides (3h,i)
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2. RESULTS AND DISCUSSION

2.1. Ligand-Based Design. A first pharmacophore model
for anti-TB activity was previously developed by us'* using a
series of 32 imidazole derivatives with interesting antitubercular
activity, adopting the HipHop” method. The final model was
then optimized,M finally characterized by four pharmacophoric
features as follows—a hydrogen bond acceptor feature (HBA),
two aromatic ring features (RAl, RA2), and a hydrophobic
feature (HY)—and applied recently to different antimycobac-
terial agents.m‘lf' Even if this model is able to describe the
needed structural properties for antitubercular activity and
identify the possible antimycobacterial candidates within large
molecular databases, it does not permit correlation of
quantitative biological activity of the compounds with their
structural features. This limitation is due to the fact that the
model was obtained by application of the qualitative approach
referred to as the common feature hypothesis generation
method. In addition, as for the specific case of the newly
synthesized monocarbamates (la—e), dicarbamates (2a—f),
and amides (3h,i) of R-4-amino-3-isoxazolidinone (Figure 1,
discussion in the External Test Set Prediction Analysis
paragraph), a proper evaluation may be difficult when a partial
overlap of the investigated compounds with the defined
pharmacophore areas is established. In this perspective the
use of a three-dimensional quantitative approach is useful, and
several 3-D QSAR partial least squares (PLS) models,
characterized by a training set (Table 2, Table S1 for numeric

reference) of 71 published antitubercular agents,m‘li_lg were

built through the 3-D QSAutogrid/R“ protocol: 8 monoprobe
(see Supporting Information Table S5 for probes’ definitions)
3-D QSAR PLS models were generated and optimized via the
CAPP"' procedure (Tables 3 and 4) and a final multiprobe
(MPGRS)"" model (Tables 5 and S5) was then derived to
correlate the pharmacophoric features required for antituber-
cular activity with molecular structures. Activity data, originally
determined as MIC (ug/mL) values, were transformed to
pMIC values on molar basis.

Three of the best monoprobe 3-D QSAR models, A, HD,
and NA (Table 4 and Supporting Information Figure S1),
accounting for different interaction patterns, were selected for
further analysis, and the relative 3-D plots were inspected
(Figure 2, Figures $2—S4). A comparison between these plots
and the original pharmacophoric model™* was performed to
check for spatial superposition of plot regions and pharmaco-
phoric features (compare Figure 2A—C with D). Interpretation
of the PLS-coeflicients plots could be helped considering eq 1
where C, is the Cp; 5 coefficient in the nth grid point, X,, is the
actual field in the nth grid point, Y is the biological activity, and
n is the number of grid points.

General equation for QSARs
Y=CX +CX,+.+CX, +e (1)

As addressed by eq 1, Cps coefficients provide both
interpretation of training set data (explaining the relative
influence of each grid point by means of size and sign) and
prediction of test set molecules’ biological activity, Y ; an
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Figure 1. (A) Monocarbamates (la—e). (B) Dicarbamates (2a—f).
(C) Amides (3h,i) of D-4-amino-3-isoxazolidinone placed in the reported
pharmacophoric model:'* HY (hydrophobic feature), RA (aromatic
feature), HBA (hydrogen bond acceptor feature). The four pharmaco-
phoric features are color-coded according the original reference.

interaction characterized by a positive (repulsive) field X, into a
region with positive PLS-coeflicient C, will produce a positive
effect (C, X X, product is positive), denoting a positive
influence on Y (higher pMIC); the opposite is valid if the field
or the PLS-coeflicient have negative X, or C,, respectively. A
positive effect (still considering pMIC activities) could be
produced as well by a negative (attractive) field X, into a region
with negative PLS-coefficient C, (—C, X —X, product is
positive) and the opposite effect if the field or the PLS-
coefficient have positive X, or C,, respectively.

As a result, four areas of the PLS-coefficients plots were
distinguished over the N1, C2, C3, and CS substituents of the
pyrrole ring which overlap the pharmacophoric features HY,
RA1, HBA, and RA2, respectively, thus suggesting a good
agreement between QSAR and pharmacophoric models.
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All monoprobe 3-D QSAR models clearly suggest that the
presence of bulky groups as substituent at N1, C2, CS is
preferred, especially in N1 and CS (HY and RA2 features).
Moreover, the PLS-coefficient plots within thiomorpholines
and methylpiperazinyl derivatives, (i.e, compounds 60 and 21
in Figure 2) and even more both PLS-coefficients and activity
contribution plots (Supporting Information Figures $S2—S4)
show that at the C3 position steric features are required within
certain limits. In particular, concerning the HBA feature, the
HD model clearly shows that attractive interactions involving
the sulfur of the thiomorpholine group of 60 (the most active
compound, Figure S3A) increase the biological activity, while if
these are missing or replaced by repulsive interactions, as for 21
(the least active compound), the biological effect decreases
(Figure S3B). Therefore, a bulky group like thiomorpholino-
methyl, also able to participate in electrostatic interactions, such
as hydrogen bonds, is preferred at the C3 position. As for the
structural features required for activity, the simultaneous
analysis of PLS-loading and score plots were very useful to
carry out the most relevant variables from the models (loading
plots) and interpret the patterns seen in the score plots.
Interesting is the case of the A probe model: starting from the
first principal component (PC1), the presence of two clusters,
differing each other for their conformational properties, is
clearly showed in the score plot (Figure SSA). As shown in
Figure S6 by superimposing the most influencing compounds
(absolute higher score values) for each cluster to the PLS-
loadings, the most important molecular feature in the PCl
space is related to both different spatial orientations and
conformations. Light gray molecules, that are in the positive
field cluster (positive PC1), had a higher activity and fill the
lower part of the region between the RA2 and HBA features
but not between RAl and HBA. On the contrary, molecules
with lower pMICs fill the area between the RAl and HBA.
Therefore a given derivative able to preferably occupy the
region between the RA2 and HBA features should be endowed
of a higher activity than a molecule filling the area between the
RAl and HBA. PC2 and PC3 respectively gave information
about substituents at C3 (Figures SSB, S7, and S8), suggesting
the presence of bulky groups in the upper areas between the
RA2 and HBA and over the HBA features have a detrimental
effect on the biological activity.

Application of Multi-Probe Guided Region-Variable
Selection. By application of the Multi Probe Guided Region
Selection (MPGRS package), as implemented in 3-D
QSAutogrid/R,"" a multiprobe (MP) 3-D QSAR model was
derived, representing, to the best of our knowledge, the first
quantitative pharmacophoric model able to correlate the
structural features of pyrrole derivatives with their biological
data. The optimal MP 3-D QSAR model was characterized by a
PCpq. = 1:3,'" and as previously reported,'’ its associated
statistical coefficients (Table S, Figure S9) were similar to those
of the monoprobe models, but the interpretation was greatly
enhanced. Applying a q° threshold value of 0.4, the most
relevant MIF subregions were selected (Figure 3) to build the
multiprobe MIF and the resulting MP model condensing into
one all the suggestions retrieved by the analysis conducted on
the monoprobe models. In particular, the MP PLS-loadings in
association with the MP score plots identified the same
conformational differences, addressed by the monoprobe
models, as the most discriminating aspect in molecular
clustering, for example: starting from PC,, to PC,, a similar
clustering in the score plots and in meaning for the descriptors
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Table 2. Structure and Antimycobacterial Activity against M. tuberculosis 103471 of the Pyrrole Derivatives Used As a Training

Set for the Generation of the 3-D QSAR Models
R

Ry N R,
L
compd®  R” R, R, Ry pMIC®

1 B 2-F-Ph CH; 2-F-Ph 4.68
2 A 2-Cl-Ph CH, 2-F-Ph 5

3 B 2-Cl-Ph CH;, 2-F-Ph 4.09
4 A 2-F-Ph CH,4 2-Cl-Ph 5

5 B 2-F-Ph CH, 2-Cl-Ph 44
6 A 2-Cl-Ph CH;, 2-Cl-Ph 5.02
7 B 2-Cl-Ph CH,4 2-Cl-Ph 4.41
8 A 2-F-Ph CH, a-naphthyl 411
9 B 2-F-Ph CH, a-naphthyl 4.11
10 A 2CLPh CH, a-naphthyl 413
11 B 2ClPh CH, a-naphthyl 413
12 A a-naphthyl CH,4 2-Cl-Ph 4.13
13 B 4-F-Ph CH, Ph 4.36
14 B Ph CH, 4-F-Ph 4.36
15 A 4-Cl-Ph CH; 4-F-Ph 5.30
16 B 4-F-Ph CH, 4-F-Ph 4.47
17 A 4F-Ph CH;, 4-F-Ph 5.58
18 B 4-F-Ph CH,4 4-Cl-Ph 5.30
19 A 4-F-Ph CH;, 4-Cl-Ph 5.60
20 A 2-F-Ph CH, Ph 4.66
21 B 2-F-Ph CH,4 Ph 4.06
22 A Ph CH, 2-F-Ph 4.96
23 B Ph CH,4 2-F-Ph 4.36
24 A 2-Cl-Ph CH, Ph 4.38
25 B 2-Cl-Ph CH, Ph 4.07
26 B Ph CH,4 2-Cl-Ph 4.07
27 A a-naphthyl CH, Ph 4.1
28 B a-naphthyl CH, Ph 4.09
29 A Ph CH, a-naphthyl 410
30 B Ph CH, a-naphthyl 4.09
31 B Ph CH;4 Ph 433

32 A 4-F-Ph CH, 2-Cl-Ph

C

compd® R R, R, R, pMIC®
33 B 4-F-Ph CH; 2-Cl-Ph 4.70
34 B 4-F-Ph CH; 2-F-Ph 4.08
35 A 4FPh CH, 4.CHyPh 598
36 B 4-F-Ph CH; 3-CHy-Ph 4.37
37 A 4FrPh CH, 2-CH,-Ph 498
38 B 4EPh CH, 2.CH,-Ph 407
39 A 4-F-Ph CH; 2,4-Cl,-Ph 5.34
40 B 4FPh CH, 24F,Ph 5.00
41 A 2-Cl-Ph CH;, 4F-Ph 5.30
42 B 2-Cl-Ph CH, 4-F-Ph 5.00
43 B 2-F-Ph CH; 4-F-Ph 4.68
o A 4-CH,-Ph CH;, 4F-Ph 5.58
45 A 3-CH,TPh CH,  4FPh 498
46 B 3.CHPh CH,  4FPh 440
47 A 2-CH,-Ph CH;, 4F-Ph 4.68
48 B 2-CH,Ph CH, 4-F-Ph 410
49 A 24CLPh CH,  4FPh 5.64
50 B 2,4-Cl,-Ph CH;, 4F-Ph 5.03
51 A 24FPh CH, 4FPh 530
52 B 24EPh CH, 4.F.Ph 440
53 A 4-F-Ph CH;, 4C,Hs-Ph 5.60
54 A 4-F-Ph CH; 4-i-propyl-Ph 6.21
ss A 4CHPh CH, 4.F-Ph 530
56 A 4-CyH,-Ph CH; 4-F-Ph 5.61
57 A 4CLPh CH,  4CH,Ph 590
58 A 4-Cl-Ph CH, 4-C;H:-Ph 6.22
59 A 4CLPh CH, 4-C4H,-Ph 623
60 A 4-Cl-Ph CH; 4-i-propyl-Ph 6.53
61 A 4CH,TPh CH,  4CLPh 590
62 A 4-C,H;-Ph CH; 4-Cl-Ph 591
63 A 4-CyH,-Ph CH;, 4-Cl-Ph 6.23
64 A 4-i-propyl-Ph CH, 4-Cl-Ph 623
65 B 4-Cl-Ph C,Hy 4-Cl-Ph 5.33
66 A 4-F-Ph C,H; 4-CH;-Ph 6.20
67 A Ph C,Hg Ph 526
68 A Ph CH,  4FPh 558
69 A 4-F-Ph C,Hy Ph 528
70 A 2-F-Ph C,Hg 4-F-Ph 5.30
71 A 2EPh CHy,  2E-Ph 5.00

5.00
“A = thiomorpholin-4-yl and B = 4-methylpiperazin-1-yl, bleC = —Log[MIC(uM) x 107, “Compound enumeration was assigned on the basis of
the original increasing numbering from the oldest to the most recent reference. Supporting Information Table S1 shows the connections between

the new and original enumerations.

Table 3. CAPP Settings

min value parameter” max value step
0 PCO 10 1.0
0 Zeroing 0.05 0.005
0 MSDCO 5 1

“PCO: positive cut off. Zeroing: zeroing of very low data points.
MSDCO: minimum standard deviation cut off.

to those in the A monoprobe model was noticed (compare
Supporting Information Figures $10—S12 and Figures $5—57),
confirming the above assumptions (effect of difference in spatial
arrangement and conformation). The MP PLS-coefficient plot
showed that the most important regions were spatially and
chemically overlapping with the pharmacophoric model*
(compare Figure 3B and D). Taking into account the probe
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type with the associated PLS-coeflicient sign, bulky groups
seemed to be required at the N1, C2, and C5 positions
(positive coefficients); furthermore negative PLS-coefficients
were spread in the proximity of these areas and chlorine and
fluorine substituents are associated to activity enhancement,
these additional areas can be related to some electrostatic
molecular environment (Figure 3B and C) in agreement with
the pharmacophoric model.'*" In addition, regarding the C3
position (in the lower part of HBA and slightly extended
toward RA2) the model indicates that a limited steric repulsion
is tolerated and electrostatic endowed groups could be pro-
fitable for the activity. Further information about the HBA feature
was derived overlapping the clustered molecules (Figure S10B)
with both PLS-loadings and PLS-coefficients at PC, ; (Figure
4A and B): the implementation of different probes (such as NA
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Table 4. 3-D QSAutogrid/R PLS Model Statistical Results™?

model P PC e qL002 fi]csrcvz rys” ’iysl v
1 A 3 0.92 0.86 0.85 036 —0.33 3758
2 C 3 0.92 0.86 0.85 0.37 —0.33 4492
3 HD 3 091 0.85 0.84 039 —031 1217
4 NA 3 091 0.86 0.85 031 —033 531
s N 3 091 0.88 088 032 —0.30 477
6 OA 3 0.91 0.83 0.88 036 —0.33 658
7 e 4 0.88 0.78 076 040 —048 468
8 d 4 091 0.85 0.84 038 —0.44 4412

“CAPP process was applied. bp. Autogrid Probe. PC: optimal number
of principal components/latent variables. r’: conventional square-
correlation coefficient. qLOOY': cross-validation correlation coefficient
using the leave-one-out method. ggrey™: cross-validation correlation
coefficient using the k-fold cross-validation with § random groups and
100 iterations. rys”: average square-correlation coefficient obtained
after Y-scrambling process using 100 iterations; gys™ average cross-
validation correlation coefficient using the leave-one-out method
obtained after Y-scrambling process using 100 iterations. V: number of
active variables.

and HD) suggested that the presence of bulky groups in the
upper areas between the RA2 and HBA and over the HBA
feature might have a detrimental effect on the biological
activity; i.e. considering the methylpiperazinyl moiety (charac-
terizing most of the negative clustered molecules, Figure 4B2}
the methyl group fits the HD areas characterized by a negative
PLS-coefficient, while the thiomorpholinomethyl moiety (that
discriminate the positive clustered molecules, Figure 4B1}
satisfies both steric and electrostatic features leading to higher
activities. In this scenario the MP model was able to increase
the resolution of the HBA region revealing an extra partial
steric role.

External Test Set Prediction Analysis. The 8 3-D
QSAutogrid/R monoprobe models were externally validated
using the 13 newly synthesized monocarbamates (la—e),
dicarbamates (2a—f), and amides (3h—i) {Table 1). A fact
must be emphasized: since the training set was composed only
by pyrrole derivatives to directly compare the quantitative
models with the original pharmacophoric assumptions, the
resulting quantitative structure—activity relationships were
based, mostly, on the characteristics of the scaffolds composing
the training set. This may result in a limitation of the models to
predict the activities of other molecular classes: in this case,
specifically, a major difference between the two sets, training set
and test set, was represented by the fact that the former was
characterized by the pyrrole ring, which permits a quadruple
branching able to satisfy simultaneously the different
pharmacophoric areas; on the contrary, the compounds of
the test set were characterized by a double branching. Despite
this fact, and considering also that the test set molecules
showed similar activity values {total pMIC activity range = 1.31
log unit}, acceptable errors of prediction {SDEP coefficients all

below the unit except for the d model) were obtained (Table 6);
but an analysis focused only on the statistical SDEP values or
experimental vs predicted plots (Figure $13) could be misleading,
In fact, analyzing only the statistical results might seem that the
PLS models had good predictive ability toward the isoxazolidinone
derivatives, while consideting only the experimental vs predicted
plots the same condlusion could not be reached. In this case, it was
helpful to analyze both of these pieces of information, together
with the average absolute error of predictions {AAEP, Supporting
Information Table S6), for each molecule from all the 3-D QSAR
monoprobe models and finally their placement in the 3-D space of
PLS-coeflicients. Analyzing, for each test set molecule, the AAEP
from all the eight monoprobe models stood out the good
predictive capacity toward 10 of these, while for 1a, 2c, and 2e, the
AAEDs were 1.05, 1.50, and 1.72, respectively. These compounds
were overpredicted, and this can be sought precsely in the
dependence of the model from the training set congenerousness
and from consequent inevitable alignment limitations. Further-
more la was predicted more active than 1d likely due to the fact
that its isoxazolidinonic carbonyl group was perfectly super-
imposed to the training set most active compound {60)
thiomorpholinic sulfur atom, showing how important was for
the models the presence of a group capable to accept hydrogen
bonds in the HBA space. It should be stressed, however, that such
molecules {1a, 2c, and 2e}, probably, would have been discarded
by adopting the original pharmacophoric model;'* in fact,
compound la misses the RA1 and HY features while RA2 and
HBA are satisfied with the presence of a phenyl in Rl and
carbonyl group of the isoxazolidinone ring, respectively; 2c
satisfies only the RA2 feature, and partially the HBA feature with
the presence of the p-methoxyphenylic oxygen; 2e accomplishes
the HY and partially the RA1 feature; whereas all the 3-D QSAR
models are able to frame their level of activity: for this reason and
for the above considerations, the models show a good predictive
ability although different scaffold endowed molecules were used as
test set. As examples of the 3-D QSAR model application the most
and [east active monocarbamate derivatives {1d and 1la,
respectively) overlapped with the A probe model PLS-coefficients
are depicted in Figure SA, while the most and the least active
dicarbamate molecules {2d and 2f, respectively) are reported in
Figure SB. Despite the above considerations differences in
experimental activities appears to be determined by a better
overlap of the aromatic ring with the p-fluorine on the HY and
RA2 regions. Analogously, the MP model predictions were in
good agreement with those of the monoprobe models (Table 7).
The 3-D QSAR MP plots showing the more and less active
monocarbamates and dicarbamates derivatives (Figure 6)
indicated the lack of a simultaneous coverage of the different
regions addressed by the PLS-coefficients. However, as shown in
Figure 6 was confirmed the importance of hydrophobic
substituents in the HY and RA2 areas, which should determine
the highest activities of 1d and 2d.

Table 5. MPGRS: Multi Probe Model Statistical Results

MPGRS 3-ID QSAR

PCr” e fr00” Gxspey d
L3 0.88 0.80 0.80

SDEP, oo SDEPysrey Ty 9y
032 0.32 031 —0.31

2Qptimal number of principal first level (FL) and second level (SL) components for the MPGRS model; Conventional square-correlation
coefficient. “Cross-validation correlation coefficient using the leave-one-out method. 4Cross-validation correlation coefficient using the &-fold cross-

validation with § random groups and 100 iterations.
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C

Figure 2. Most active (60 in blue) and least active (21 in magenta) compounds. (A) PLS-coefficients contour maps derived from A probe analysis
(contour levels 80%; positive red, negative blue). (B) PLS-coefficients contour maps derived from HD probe analysis (contour levels 85%; positive
red, negative blue). (C) PLS-coefficients contour maps derived from NA probe analysis (contour levels 75%; positive red, negative blue). (D)
Pharmacophoric features derived from the original pharmacophoric model:* HY (hydrophobic feature), RA (aromatic feature), HBA (hydrogen

bond acceptor feature).

2.2. Chemistry. The synthesis of compounds (la—e) and
(2a—f) was carried out modifying a literature procedure described
by Stammer and co-workers, > by treatment of D-4-amino-3-
isoxazolidinone in weakly alkaline media (1 M NaHCO;) with
the corresponding chloroformate to obtain both mono- and
dicarbamate derivatives, as illustrated in Scheme 1.

The derivatives 1a—f were prepared by regioselective acylation
of the 4-amino group using the appropriate chloroformates at
low temperature for short reaction time (0 °C for 3 h); then
pure solids 1la—f were obtained by acidification with 4 M HCL
Dicarbamate derivatives 2a—e were synthetized dissolving the
D-4-amino-3-isoxazolidinone in a basic solution at 0 °C and the
selected chloroformates were dropwise added. 2a—e gradually
precipitate in 12 h from the acqueous solution.

The compound 2f was obtained by treatment of 1f with
n-butylchloroformate in alkaline solution.

N-2-(alkyl)-4-amino-3-oxoisoxazolidinone 4h,i were synthe-
sized by an electrochemical reaction as previously reported.*!
Then crude 4h,i were acylated with 3-trifluoromethyl benzoyl
chloride in chloroform/TEA to give the amide derivatives 3h,i.

In order to verify the racemization of the a carbon of
D-4-amino-3-isoxazolidinone in the reaction conditions, we
have analyzed by chiral HPLC the enantiopurity of (R)-3h and
(S)-3h, obtained with the same synthetic procedure starting
from (R)-4-amino-3-isoxazolidinone and (S)-4-amino-3-isoxa-
zolidinone. Chiralpak Column IC 250 mm X 4.6 mm LD. was
used with n-hexane-2-propanol 75/25 (v/v) as eluent at flow
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rate of 1.0 mL/min at the temperature of 25 °C. In both the
chromatogram of (R)-3h and (S)-3h an enantiomeric excess
>99.0% was observed (Supporting Information Figure S15).

2.3. Biological Activity of Synthesized Compounds.
The compounds were assayed for their antimycobacteria
activity toward M. fuberculosis H37Rv (ATCC 27294). The
minimal concentration inhibiting visible growth of mycobac-
teria was determinated for each compound.

Concerning the data reported in Table 8, only the acyla-
tion of 4-amino group and acylation or alkylation of N-2 of
D-4-amino-3-isoxazolidinone influenced the antitubercular
activity leading to a MIC value of 3.1 pg/mL (as in the case
of 1d and 2d). Most of the tested compounds showed the same
activity of the 4-amino-3-isoxazolidinone (32 pg/mL), while 1d
and 2d were more active (3.1 yg/mL) and only the compound
3h was less active (64 pg/mL).

3. CONCLUSION

In this paper we present the first application of a quantitative
pharmacophoric model able to define and correlate the needed
chemical characteristics with antitubercular activity of a
previously reported class of antimycobacterial agents.s“3_l7
Eight 3-D QSAR monoprobe models and a multi probe (MP)
model were built showing appreciable statistical coeflicients and
allowing an accurate definition of the structure—activity
relationships on the basis of pyrrole derivatives used as training
set. The MP 3-D QSAR model allowed defining the training set

dx.doi.org/10.1021/ci400132q | i. Chem. inf. Model. 2013, 53, 14631474
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Figure 3. MPGRS. (A) Key points. The points are color-coded according to that reported in Supporting Information Table SS. (B) Key points with
PLS-coefficients contour maps (contour levels: positive 85%, red; negative 95%, blue). (C) Top view, key points with PLS-coefficients solid contour
maps (contour levels: positive 85%, red; negative 95%, blue). The most active (60 in blue) and the least active (21 in magenta) compounds are
shown. (D) Pharmacophoric features derived from the original pharmacophoric model:'* HY (hydrophobic feature); RA (aromatic feature), HBA

(hydrogen bond acceptor feature).

molecular features and their three-dimensional positioning, con-
figuring itself as a quantitative pharmacophoric model. Further-
more it was possible to elucidate the effect of conformational
differences on the biological activity. As a further assessment
the multi probe information was compared with the original
pharmacophoric model, previously developed by us,"* showing
an high degree of correspondence.

Independently, a series of 13 isoxazolidinone derivatives 1—3
(Table 1) was synthesized and tested as new antitubercular
compounds. The new compounds showed MIC values in the
micromolar range. In particular among the monocarbamates
and dicarbamates, derivatives 1d and 2d showed the higher
biological activities. Although there are limitations due to
structural differences between the molecules of the training set
and those of derivatives 1—3, the latters were used as an
external test set to evaluate the models” predictive capabilities.
All the 3-D QSAR models showed prediction errors (Tables 6
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and 7), against these structurally unrelated molecules, with an
acceptable degree of approximation.

The application of the models allowed to clarify the role of
halogens and phenyl rings in la—e and 2a—f. Considering all
these outcomes, the MP 3-D QSAR model could represent a
useful tool for the design of new antitubercular drugs.

4. EXPERIMENTAL SECTION

4.1. Molecular Modeling and 3-D QSAR. All calculations
used a 6 blade (8 Intel-Xeon ES520 2.27 GHz CPU and 24 GB
DDR3 RAM each) cluster (48 CPU total) running Debian
GNU/Linux 6.0 64 bit operating system. A series of 71
previously described pyrrole derivatives'®'>'? were used to
build 8 single probe and a multi probe 3-D QSAR models using
the 3-D QSAutogrid/R procedure."" The obtained models were
tested predicting the activities of the monocarbamates (1a—e),
dicarbamates (2a—f), and amides (3h,i) of D-4-amino-3-
isoxazolidinone derivatives.

dx.doi.org/10.1021/ci400132q | J. Chem. inf. Model. 2013, 53, 14631474
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B2

Figure 4. MPGRS. PLS-loadings contour maps at PC,; (contour levels 75%; positive orange, negative cyan) with PLS-coefficients (mesh levels
positive 85%, red; negative 95%, blue) and key points (see Table SS for color coding). The ten most important molecules for each cluster are plotted
and color-coded (compounds in the positive loading field in light gray; compounds in the negative loading field in dark gray): (A) side view; (B)
frontal view; (B1) frontal view of only positive clustered molecules; (B2) frontal view of only negative clustered molecules. HY (hydrophobic
feature), RA (aromatic feature), HBA (hydrogen bond acceptor feature).

Table 6. Test Set Predictions”

P PC SDEPgyy
A 3 0.88
C 3 0.88
HD 3 0.81
NA 3 0.82
N 3 0.83
OA 3 0.84
e 4 0.90
d 4 151

“SDEP values considering the optimal PCs. P: AutoGrid Probe. PC:
optimal number of principal components/latent variables. SDEPgyr:
standard deviation error of prediction (or root mean squared error of
prediction, RMSEP) for the external test set.

Training Set Selection. Startin§ from a training set
composed by 90 pyrrole derivatives, *'>'” a selection based
on inner relationship analysis were conducted to improve the

robustness and prediction capabilities of the 3-D QSAR
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Table 7. MPGRS: Multi Probe Model Test Set Predictions”

P ek SDEPgyr
AutoGrid MP 1:3 0.89
“SDEP values considering the optimal first level and second level PCs.
P: AutoGrid Multi-Probe. PCgy g : optimal first level and second level
PCs. SDEPyy;: standard deviation error of prediction (or root mean
squared error of prediction, RMSEP) for the external test set.

models: this leads to a final training set composed by 71
molecules (Table 2).

Alignment Rules. Training Set: Training set compounds
were first submitted to a conformational search following a
computational protocol previously described.'” Next, each
compound with its conformational models was aligned to the
pharmacophoric model with the flexible fitting method
implemented in Discovery Studio (version 3.0, Accelrys, Inc,,
San Diego, CA), that allows slight modification of each
conformation to better fit the pharmacophore.

dx.doi.org/10.1021/ci400132q | J. Chem. inf. Model. 2013, 53, 14631474
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RA1
B

Figure 5. PLS-coefficients contour maps. (A) AutoGrid/R PLS-
coefficients contour maps derived from the A probe analysis (contour
levels 80%; positive red, negative blue; 1a yellow; 1d green); (B)
AutoGrid/R PLS-coefficients contour maps derived from the A probe
analysis (contour levels 80%; positive red, negative blue; 2d cyan; 2f
orange). HY (hydrophobic feature), RA (aromatic feature), HBA
(hydrogen bond acceptor feature).

Test Set: The new 13 derivatives were aligned using the
Surflex-Sim™* software which has been chosen since it is a
valuable tool in ligand-based drug discovery, free for academics,
and its alignment process is based on morphological
similarities. The query molecules’ poses were optimized to
the compounds used as training set to maximize 3-D similarity.

As shown in Supporting Information Figures $16 and S17
and Tables $9 and S10, similar results were obtained using the
same alignment software (pharmacophoric alignment) adopted
for the training set. The choice of Surflex alignment was not
dictated by the improvement (although negligible respect the
pharmacophoric one) in prediction, but by the fact that, in our
view, this is a further confirmation of the robustness of the
models, always taking into account the above limits. Indeed,
using two different procedures of alignment, results are
comparable and this should show that the predictive capability
of the models is stable and in the specific case scarcely
influenced. Further clarifications on the differences in
prediction (as in the case of 1d and 2d) would be only
speculative since the presence of similar activity values with a
limited total pMIC activity range.

Strategies for different alignments were also tried leading to
not consistent prediction supporting that the best alignment/
prediction is that reported above.

Molecular Interaction Fields Calculation. As reported,''
MIFs were generated using the AutoGrid Software (AutoDock
Suite,”> based on the AMBER united-atom Force Field)
implemented in the 3-D QSAutogrid/R procedure, considering
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RA1

B

Figure 6. MPGRS. (A) PLS-coefficients contour maps at PC, 4
(contour levels: positive 85%, red; negative 95%, blue. la: yellow.
1d: green). (B) PLS-coefficients contour maps at PC,; (contour
levels: positive 85%, red; negative 95%, blue. 2d: cyan. 2f: orange). HY
(hydrophobic feature), RA (aromatic feature), HBA (hydrogen bond
acceptor feature).

Table 8. MIC Data for D-4-Amino-3-isoxazolidinone
Derivatives

compd MIC (pg/mL)* pMIc?
la 32 3.84
1b 32 3.87
Ic 32 3.90
1d 3.1 4.89
le 32 3.97
2a 32 4.03
2b 32 4.06
2¢ 32 4.10
2d 3.1 5.09
2e 32 4.11
2f 32 4.02
3h 64 3.78
3i 32 4.13

“M. tuberculosis H37Rv (ATCC 27294) was used. MIC values represent
the minimal concentrations of compounds completely inhibiting
visible growth of mycobacteria. bpM]C = —Log[MIC (uM) X 107

8 different probes. Interaction energies between the selected
probes and each molecule were computed using a grid spacing
of 1 A (Supporting Information Table S8). The xyz coordinates
(in angstroms) of the grid rectangular box used for the
computation were Xmin/Xmax = —9.828/12.172, Ymin/Ymax =
—9.021/8.979, and Zmin/Zmax = —10.481/9.519.

Statistical Analysis. Through the D2M package,'" eight 3-D
QSAR PLS models were built. During the model definition the
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Scheme 17

l1a-1f:
N-benzyloxycarbonyl-D-4-amino-
3-isoxazolidinone

e

Yoo
R’O\H/N\EQ —R,
N
(o] 0/ go
2f

o
I
HoN,
O a >
Y NH AH
0 J d

g
b A0 N 0—R
R 1
— T \[K,N—é
Q o]
2a-¢

3h,i

“(a) R—O—CO~-Cl, 1 M NaHCOj, 0 °C 3 h, 4 M HCI; (b) R—O—CO~-Cl, NaHCO;, 0 °C, 15 h; (c) 0.1 M TEAHFP in CH;CN, 30 mA cm ™2, D-
4-amino-3-isoxazolidinone 1 eq (15 min), R,—Br; (d) 3-CF;—CH,COCI, TEA, CHCly; (e) 1f, n-Bu—0O—-CO-Cl, I M NaHCO,, 0 °C, 24 h.

assessment of quality and robustness was conducted via two
cross-validation (CV package)'' procedures as follows: (1)
leave-one-out (LOO) and (2) k-fold (KF, 5-random groups
and 100 iterations) methodologies. Initially, the raw models
(Supporting Information Table S2) were optimized through
the Combinatorial Analysis of Pretreatment Parameters (CAPP
package)“ setting the pretreatment intervals as listed in Table
3, using the k-fold cross-validation with S-random groups and
100 iterations and monitoring the g* and SDEP values. A total
of 726 combinations, for each 3-D QSAR model, were
processed using 5% sPRESS reduction'" to select the optimal
pretreatment combination and derive the pretreated PLS
models; this led to an average q2 KSFCV value increment
equal to 14% (Supporting Information Table $4). Furthermore
the scrambling approach, Y-scrambling, (package YS! was
applied to investigate the presence of chance correlations using
100 iterations. Considering the obtained good overall statistical
coefficients together with the absence of chance correlations
(Table 4, Supporting Information Table S3 and Figure S1), no
further variable selection steps were performed. By the
application of the MPGRS package,'' a MP 3-D QSAR PLS
model was then derived by selecting the most informative
subregions for each of the eight considered probe; the same CV
and scrambling procedures as those of the monoprobe models
were performed and the optimal MP 3-D QSAR model was
selected according to the s values."' Similar statistical
coefficients to those of the monoprobe models were obtained
(Table S, Supporting Information Figure 59) and no further
variable selection were performed; finally the most relevant
MIFs subregions were selected applying a ¢* threshold value of 0.4.

4.2. Chemistry. D-4-Amino-3-isoxazolidinone and all
chloroformates were purchased from Sigma-Aldrich (Milano,
Italy). All other reagents and solvents were of higher analytical
grade. N-Benzyloxycarbonyl-D-4-amino-3-isoxazolidinone (1f)
was prepared according to the procedure of Stammer et al®
Melting points were determined on Tottoli apparatus
(Buchi) and are uncorrected. Vibrational spectra were
recorded on a Spectrum One ATR Perkin-Elmer FT-IR
spectrometer. 'H and ""C NMR spectra were acquired on a
Bruker AVANCE-400 spectrometer at 9.4 T, in DMSO-d; or
CDCl, at 27 °C; chemical shift values are given in § (ppm)
relatively to TMS as internal reference, coupling constants
are given in hertz.
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Mass spectra were recorded on a API-TOF Mariner by
Perspective Biosystem (Straford, Texas, USA), and samples
were injected by a Harvard pump using a flow rate of 5—10 yL/min,
infused in the electrospray system, a TSQ quadrupole mass
spectrometer by Thermofinnigan (San Jose, California, USA)
operating in CH,/CI conditions; samples were introduced in
the CI source by a direct insertion probe. Elemental analyses
were obtained by a PE 2400 (Perkin-Elmer) analyzer.

General Procedure for Synthesis of Monocarbamates 1a—
e. Compounds Ia—e were prepared by a modified procedure
described by Stammer et al:*’ briefly, to 0.5 mmol of D-4-
amino-3-isoxazolidinone, dissolved in 1.2 mL of aqueous 1 M
NaHCO;, cooled in an ice bath, 1.0 mmol of the corresponding
chloroformate was added and the solution stirred for 3 h at 0 °C.
Little amounts of precipitate that could be formed were filtered
off, and the solution, kept to 0 °C, was acidified to pH 4 with
4 M aqueous HCL. After 30 min, the white fine precipitate was
collected by centrifugation and washed with cold water. The
collected carbamates la—e were crystallized from water.

Synthesis of (R)-Phenyl-(3-oxoisoxazolidin-4-yl)carbamate
(1a). 1a was obtained as white crystalline solid in 75% yield, mp
148—149 °C. '"H NMR (DMSO-dg): 1152 (1H, bs, D,0
exchange); 8.37 (1H, 5, D,0 exchange); 7.38 (t, 2H, J = 8.56 Hz);
721 (41H, ] = 7.58 Hz); 7.12 (d, 2H, J = 8.56 Hz); 4.65—4.60,
(m, 1H); 4.56 (t, 1H, J = 9.78 Hz); 4.03 (t,1H, ] = 8.32 Hz).
BC NMR (DMSO-dg): 170.5; 154.9; 151.4; 129.9; 125.9;
122.3; 72.2; 53.5. FT-IR (em™): 3339, 1709, 1655. MS/ESI:
(M + H)* 223.0730 (m/z).

Synthesis of (R)-4-Methylphenyl-(3-oxoisoxazolidin-4-yl)-
carbamate (1b). 1b was obtained as a white crystalline solid in
75% yield, mp 195—196 °C. '"H NMR (DMSO-d): 11.54 (bs,
1H, D,0 exchange); 8.30 (s, 1H, DO exchange); 7.16 (d, 2H,
J = 8.56 Hz); 6.99 (d, 2H, ] = 8.56 Hz); 4.66—4.59 (m, 1H);
455 (t, 1H, J = 10.35 Hz); 4.02 (t, 1H, ] = 8.32 Hz); 228 (5,
3H). *C NMR (DMSO-d,): 169.9; 154.4; 148.5; 134.2; 129.6;
121.3; 71.6; 52.8; 20.3. FT-IR (cm™): 3303, 1709, 1654. MS/
ESI: (M + H)* 237.0874 (m/z).

Synthesis of (R)-4-Methoxyphenyl-(3-oxoisoxazolidin-4-
yl)carbamate (1c). 1c was obtained as a white crystalline
solid in 70% yield, mp 155—156 °C. 'H NMR (DMSO-d,):
11.45 (bs, 1H, D,0 exchange); 8.27 (s, 1H, D,0O exchange);
7.02 (d, 2H, ] = 9.06 Hz); 6.91 (d, 2H, ] = 9.06 Hz); 4.64—4.59
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(m, 1H); 4.54 (t, 1H, [ = 9.29 Hz); 4.02 (4, 1H, J = 9.29 Hz);
3.73 (s, 3H). BC NMR {DMSO-d;): 170.0; 156.5; 154.6;
144.2; 122.5; 1142; 716; 554; 52.8. FI-IR (em™): 3314,
1709, 1655. MS/ESL (M + H)* 2530790 (m/z).

Synthesis of (R}-4-Fluorophenyl-(3-oxoisoxazolidin-4-yi}-
carbamate (1d). 1d was obtained as a white crystalline solid in
70% yield, mp 175—-176 °C. '"H NMR (DMSO-dg): 11.54
(bs,1H, D,0 exchange); 8.39 (s,1H, D,O exchange); 7.16 {d,
2H, ] = 8.56 Hz); 6.98 {d,2H, J = 8.56 Hz); 4.68—4.63 {m,1H);
4.55 (t, 1H, ] = 9.56 Hz); 4.03 {t1H, J = 8.80 Hz). NMR
(DMSO-dg): 155.9 (d, J = 237.8 Hz); 154.1; 147.3; 1239 {4,
J =732 Hz); 116.5; 116.0 (d, ] = 22.7 Hz); 72.0; 53.4. FT-IR
(em™): 3320, 1712, 1699. MS/CIL: (M + H)" 241 {m/z).

Synthesis of (R)-4-Bromophenyl-(3-oxoisoxazolidin-4-yi}-
carbamate (Te). le was obtained as a white crystalline solid in
75% yield, mp 180—181 °C. '"H NMR (DMSO-d,): 11.55
(bs,1H, D,O exchange); 842 (s, 1H, D, O exchange); 7.22 {d, 2H,
J =856 Hz); 7.16 {d, 2H, J = 8.56 Hz); 4.69- 4.62 {m, 1H); 4.56
(4 1H, J = 9.88 Hz); 4.04 (¢, LH, J = 8.80 Hz). *C NMR (DMSO-
dg): 170.0; 156.5; 154.6; 144.2; 122.5; 114.2; 71.6; 52.8. FT-IR
(em™): 3330, 1715, 1705. MS/CIL: {M + H)* 302 (m/z).

General Procedure for Synthesis of Dicarbamates 2a—f. A
50 mg (0.5 mmol) portion of D-4-amino-3-isoxazolidinone
were dissolved in 1.2 mL of aqueous 1 M NaHCOj; and cooled
at 0 °C, and 1.0 mmol of the corresponding chloroformate was
added; the solution was stirred for 15 h. The obtained
precipitates were collected by centrifugation, washed three
times with 2 mL of water, and dried under reduced pressure to
give compounds 2a—f subsequently crystallized from benzene.

Synthesis of (R}-Phenyl-3-oxo-4-[(phenoxycarbonyl}-
aminolisoxazolidine-2-carboxylate (2a). 2a was obtained as
a white crystalline solid in 85% yield, mp 159—160. '"H NMR
(DMSO-dy): 8.58 {bs, 1H, D,0 exchange); 747 {t, 2H, ] =
7.83 Hz); 741 (t, 2H, J = 7.58 Hz); 7.33 {t, 1H, ] = 6.48 Hz);
7.24 {d, 2H, J = 7.83 Hz); 7.23 (d, 1H, ] = 6.70 Hz); 7.16 (d,
2H, J = 7.58 Hz}; 5.03- 4.97 (m,1H); 480 (t, 1H, J = 10.15
Hz); 4.31 {t, 1H, ] = 8.68 Hz). *C NMR (DMSO-d,): 166.4;
154.1; 150.6; 149.5; 145.7; 129.8; 129.4; 126.6; 125.4; 121.6;
121.4; 69.8; 53.0. FT-IR {cm™'): 3344, 1789, 1736, 1713;
MS/ESIE: {M + H)* 343.0914 (m/z).

Synthesis of (R)-4-Methylphenyl-4-{[(4-methylphenoxy)-
carbonyllamino}-3-oxoisoxazolidine-2-carboxylate (2b). 2b
was obtained as a white crystalline solid in 75% yield, mp 169—
170 °C. 'H NMR (DMSO-d;): 8.48 {bs,1H, D,0 exchange};
725 {d, 2H, J = 7.83 Hz); 7.19 (d, 2H, J = 7.58 Hz); 7.11 {4,
2H, J = 7.83 Hz); 7.01 (d, 2H, ] = 7.58 Hz); 5.01-4.94
(m,1H); 4.78 (t, 1H, J = 10.55 Hz); 4.29 {t, 1H, ] = 8.69 Hz);
2.31 (s, 3H); 2.29 (5, 3H). *C NMR (DMSO-d): 166.4;
154.3; 148.4; 145.8; 147.3; 135.9; 134.5; 130.1; 129.7; 121.3;
121.1; 69.8; 53.0; 20.4; 20.3. FT-IR {cm™'): 3339, 1788, 1737,
1713. MS/ESI: (M + H)* 371.1085 (m/z).

Synthesis of (R)-4-Methoxyphenyi-4-{[(4-methoxyphenoxy)-
carbonyllaminoj-3-oxoisoxazolidine-2-carboxylate (2¢). 2c was
obtained as a white crystalline solid in 70% yield, mp 144—145 °C.
'H NMR (DMSO-d): 845 (1H, bs, D,O exchange); 7.16 {d, 2H,
J=7.83 Hz}; 7.06 (d, 2H, ] = 7.58 Hz); 698 {d, 2H, ] = 7.83 Hz);
693 (d, 2H, J = 7.58 Hz); 5.02—4.95 {m, 1H); 4.77 {t, 1H, J =
1027 Hz); 428 {t, 1H, J = 923 Hz); 3.76 (s, 3H); 3.75 (3H, s).
BC NMR {DMSO-d,): 166.3; 157.3; 156.6; 156.5; 154.5; 144.0;
142.8; 122.5; 122.3; 1146; 114.3; 698; 554; 55.3; 53.0. FT-IR {(an):
3346, 1790, 1731, 1715. MS/ESL: (M + H}* 403.1017 {m/z).

Synthesis of (R)-4-fluorophenyl-4-{[(4-fluorophenoxy)-
carbonyllamino}-3-oxoisoxazolidine-2-carboxylate (2d). 2d

1473

was obtained as a white crystalline solid in 75% yield, mp 179—
180°. 'H NMR (DMSO-d;): 8.65 (bs, 1H, D,O exchange);
7.50 (d, 2H, J = 8.80 Hz); 7.44 {d, 2H, ] = 8.80 Hz); 7.29 {d,
2H, J = 8.80 Hz); 7.18 (d, 2H, J = 8.80 Hz); 5.03—4.97 {m, 1H,
Hz); 4.79 {t, 1H, J = 10.52 Hz); 4.31 (t, 1H, J = 8.32 Hz). ®C
NMR (DMSO-dy): 166.8; 1600 (d, J = 243.1 Hz); 1595 {d, J =
242.0 Hz); 154.6; 1472 {d, J = 2.7 Hz); 146.2; 146.0 (d, = 2.7
Hz); 123.9; 123.8 (d, J = 8.7 Hz); 1169 (d, ] = 23.6 Hz); 1164
(d, J = 232 Hz); 70.2; 53.5. FT-IR {cm™): 3350, 1740, 1735,
1720. MS/CI: (M + H)* 379 {m/z}.

Synthesis of (R)-4-Chlorophenyl-4-{f(4-chlorophenoxy)-
carbonyllamino}-3-oxoisoxazolidine-2-carboxylate (2e). 2e
was obtained as a white crystalline solid in 75% yield, mp 160—
161 °C. 'H NMR (DMSO-d;): 8.65 (bs, 1H, D,0O exchange);
7.52 (d, 2H, J = 832 Hz); 745 {d, 2H, J = 8.32 Hz); 7.18
(d, 2H, J = 828 Hz); 7.15 (d2H, ] = 828 Hz); 5.01-4.97
(m, LH); 4.80 (t, 1H, J = 9.52 Hz); 4.30 {t, 1H, ] = 8.32 Hz).
BC NMR (DMSO-dg): 167.3; 159.7; 159.6; 155.1; 155.0;
147.7; 147.6; 1244 1243; 117.5; 116.8; 70.7; 53.9. FI- IR
(em™): 3330, 1740, 1730, 1728. MS/CL (M + H)* 412 (m/z).

Synthesis of (R)-butyl-4-{{(benzyloxy)carbonylfamino}-3-
oxoisoxazolidine-2-carboxylate (2f). A 0.5 mmol portion of
N-benzyloxycarbonyl-D-4-amino-3-isoxazolidinone 1f were dis-
solved in 2 mL of 1 M acqueous NaHCO,; at 0 °C and 1.0
mmol of n-butylchloroformate was added. The resulting
suspension was stirred at room temperature for 24 h. The
obtained white crystalline solid was separated by centrifugation,
washed with cold water, dried, and crystallized from benzene.
Mp 170—174 °C; yield 75%. 'H NMR (DMSO-d,): 7.35 (s,
SH); 5.06 (s, 2H); 4.87—4.80 (m, 1H); 462 (51H, J = 8.08
Hz); 4.12 (t, 2H, J = 6.12 Hz); 4.10 {t, 1H, J = 9.4 Hz); 1.61
(m, 2H); 1.35 {(m, 2H,); 0.88 {t, 3H, ] = 7.90 Hz). C NMR
(DMSO-d,): 167.3; 158.0; 148.3; 1434; 129.1; 127.6; 127.4;
66.3; 65.9; 652; 63.9; 31.1; 194 14.4FT- IR (em™): 3330,
1720, 1715, 1696. MS/CIL: (M + H)* 336 {m/z).

Synthesis of Amide Derivatives 3h,i. The cyanomethyl
anion was generated by electrochemical reduction of anhydrous
acetonitrile as previoulsly reported.21 Anhydrous acetonitrile,
containing 0.1 M tetrachtylamoniumesafluoro phosphate
(TEAHFP) was electrolized, in N, atmosphere, at 30 mA
em™? current until 1.0 F/mol was consumed (calculated relative
to D-4-amino-3-isoxazolidinone); thereafter, 1.0 mmol of D-4-
amino-3-isoxazolidinone were added and the solution stirred
for 15 min. A 1.0 mmol portion of alkyl-bromide was added,
and the solution was stirred for 1.5 h at room temperature .
Removal of the solvent under reduced pressure gave a crude
solid that was extracted with three portions of Et,O, and the
combined organic extracts were dried over anhydrous Na,SO,
and evaporated under reduced pressure to give a crude residue
that was used, without further purification, for the synthesis of
amides 3h,i.

The crude residue {4h or 4i) was dissolved in 20 mL of CHCl,
and 1.2 mmol of TEA and 1.2 mmol of 3-(triflucromethyl)-
benzoyl chloride were added. The obtained solution was stirred
at room temperature for 24 h. The solution was washed with
saturated Na,CO;, dried over anhydrous Na,SO,, and removed
under reduced pressure; the obtained residue was purified on
silica gel column chromatography to afford pure 3h and 3i.

N-[2-(n-Octyl)-3-oxoisoxazolidin-4-yl]-3-(triftuoromethyl) -
benzamide {3h) was purified on silica gel column {CH,CL,/
ethyl acetate, 9:1). Mp 95-96 °C; yield 70%. 'H NMR
(DMSO-d): 9.28 (bs,1H, D,0 exchange); 8.22 {m, 1H, J =
1.78 Hz); 8.18 (dd,1H, J= 7.71 Hz, [ = 1.58 Hz); 7.95 (dd, 1H,
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J=7.91Hz, ] = 2.09 Hz); 7.74 {m, 1H); 5.09 {(m,1H, ] = 10.15
Hz); 4.61 {t,1H, ] = 8.56 Hz); 4.11 {t, 1H, J = 8.68 Hz); 3.50
(d, 2H, J = 7.25 Hz); 1.56 {m, 2H); 1.26 {m, 10H); 0.85 (3H, t,
T = 700 Hz). ®C NMR (DMSO-d.): 166.8; 165.4; 134.7;
132.1; 130.3; 130.0 {q, J = 324 Hz); 128.7; 125.8; 1244; 70.2;
52.3; 45.2; 317; 29.0; 289; 26.8; 26.5; 22.5; 144. FI- IR
(em™): 3301, 1671, 1662. MS/CI: (M + H)* 387 (m/z).

N-[2-(2,6-Dichlorobenzyl)-3-oxoisoxazolidin-4-yl]-3-
(trifluoromethyl)benzamide (3i) was purified on silica gel
column {CH,Cl,/ethyl acetate, 9:1). Mp 162—164 °C; yield
75%. "H NMR (DMSO-d,): 7.99 (bs, 1H, D,0 exchange); 7.80
(m, 1H, [ = 1.58 Hz); 7.74 (dd, 1H, ] = 7.35 Hz, J = 1.68 Hz);
7.59 {dd, 1H, [ = 6.77 Hz, | = 1.98 Hz); 7.37 (m, 1H); 7.27
(t, 2H, J = 6.30 Hz);7.24 (d, 2H); 5.15 (s, 2H); 4.97 (m, 1H,
J=9.87 Hz); 4.87 (dd,1H, [ = 833 Hz); 3.98 (t, 1H, ] = 8.68
Hz). BC NMR (DMSO-d;): 166.6; 166.1; 136.9; 133.6; 131.1
(q, ] = 329); 130.7; 129.2; 129.1; 1287; 128.6; 1252; 124.7;
72.8; 52.8; 44.7. FT- IR {cm™'): 3253, 1713, 1635. MS/CI:
(M + H)* 433 (m/z).

4.3. Microbiology. The biological activity of the synthe-
sized compounds has been evaluated as reported elsewhere™

toward M. tuberculosis H37Rv ATCC 27294,
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immunity of male reproductive tract but also regulate sperm fertiliza-
tion process by interacting heparin.

L-Amino acids as chiral auxiliaries to develop reagents
for enantioseparation of DL-selenomethionine

by reversed—phase high-performance liquid
chromatography

Hariom Nagar and Ravi Bhushan

Department of Chemistry, Indian Institute of Technology Roorkee,
Roorkee — 247667, India

Optically pure amino acids L-Ala, 1-Val, 1-Leu and S-methyl-L-Cys-
teine were used to synthesise chiral derivatizing reagents with fluoro
dinitro benzene as the chromophore; these are FDNP-1-Ala, FDNP-1-
Val, FDNP-1-Len and FDNP-SMLC). The reagents were characterised
using UV, IR, CHN, and 'H NMR. Diastereomers of selenomethionine
were synthesized with the nucleophilic substitution of remaining
fluorine atom in these CDRs under microwave irradiation for 55 s at
75 % (of 800 W) and also by stirring for 50 min at 45 °C. The dia-
stereomers were enantioseparated by reversed-phase high-performance
liquid chromatography on a C;g column with detection at 340 nmusing
gradient elution with mobile phases containing ag TFA (0.1 %)-MeCN
and by reversed-phase thin layer chromatography with mobile phases
containing ag TEAP (50 mM)-MeCN in different compositions. The
conditions of derivatization and chromatographic separation were
optimized. The method was validated for accuracy, precision, limit of
detection and limit of guantification.

Computational strategies to design new highly potential
BSAO polyamine substrates

Flavio Ballante*”, Giampiero Tempera®, Enzo Agostinellif,
Rino Ragnai

*Rome Center for Molecular Design, Department of Drug Chemistry
and Technologies, “Sapienza” University of Rome, P.le A. Moro 5,
00185 Rome, Italy;

stituto Pasteur Fondazione Cenci Bolognetti, Department

of Biochemical Sciences “A. Rossi Fanelli”, “Sapienza” University
of Rome and CNR, Biology and Molecular Pathology Institute,
Piazzale Aldo Moro 5, 00185 Rome, Italy

Natural polyamines putrescine, spermidine and spermine are ubiqui-
tous polycationic compounds present in significant amounts in nearly
every prokaryotic and eukaryotic cell type. Spermidine and spermine
primarily exist in agueous solution at pH 7.4 as fully protonated
polycations. Such ubiquitous chemical entities play an important role
in cell growth and proliferation, in the synthesis of proteins and
nucleic acids, in both normal and cancer cells. Preliminary structure
based (SB) studies through the AutoDock suite were performed on 25
among natural polyamines and newly synthesized and biologically
assayed polyamine analogs in order to clarify their binding modes.
Further investigations through a combined approach of docking and
3-D QSAR and COMBINE procedures, named 3-D QSAutogrid/R
and COMBINEr respectively, are in due course to rationalize in a
multi-informative scenario the different activity profiles and derive a
useful pharmacophoric frame able to weight the different ligand-
residues interactions magnitudes. Such approach will be useful for the
development of novel compounds endowed of both higher potency
and selectivity. As future perspective, these molecules will be assayed

alone or in combination with BSAO on several cancer cells, with the
aim to evaluate their cytotoxic effects that could be taken into con-
sideration as new approach in anti-cancer therapy. Details and
methodologies will be reported.

Protective effect of glutamic acid against oxidative
stress in rats

N.O. Salyha

Institute of Animal Biology NAAS, V. Stus street, 38 Lviv,
Ukraine 79034

Metabolic processes occurring in animal and human organisms at the
times of stresses and diseases lead to the use of a large amount of
L-glutamic acid. White male Wistar rats (3 months old), 200-220 g
body weight, were divided in three groups. Each group consisted of
10 animals. Each animal received 20 g of food per day. Animals of all
groups were healthy. The rats were sacrificed under anesthesia
4 weeks after. This study was conducted to determine effects of
supplementing 1-glutamic acid to the standard rodent diet (containing
17 % crude protein) on activities of antioxidant enzymes (catalase,
superoxide dismutase, glutathione peroxidase, glutathione reductase)
and the intensity of lipid peroxidation in tissues of rats. The supple-
mental doses of L-glutamic acid were determined on the basis of crude
protein content in the basal diet. Animals received dietary supple-
mentation with 0 % (control group), 10 and 25 % of r-glutamic acid
(second and third group respectively). The obtained data are treated
statistically. To determine the probable differences between mean
values using Student’s test. Results indicated that dietary supple-
mentation with 25 % of L-glutamic acid increased the concentrations
of reduced glutathione and glutathione peroxidase activity in the liver,
spleen and kidneys, while decreasing the concentrations of lipid
hydroperoxides and TBA-active products in these tissues. Supple-
mentation with 10 and 25 % L-glutamic acid enhanced catalase and
superoxide dismutase activities in erythrocytes. In all the measured
variables, L-glutamic acid supplementation elicited dose-dependent
responses. Collectively, dietary supplementation has beneficial effects
on antioxidative system, thereby reducing lipid peroxidation.

Ageing: a public health concern and an opportunity
for ICAAS

Luc Cynober

Dept of Clinical Chemistry, Cochin and Hotel-Dieu Hospitals,
AP-HP, Paris, and

Dept of Experimental, Metabolic and Clinical Biology, Laboratory
of Biological Nutrition EA 4466,

Faculty of Pharmacy, Paris Descartes University, Paris, France

In France, a third of the population will be aged over 60 in 2050
versus 20 % in 2005. In the USA, the number of people aged =65 is
forecast to double between 2010 and 2050 (from 40 to 88 million).
At least a third of this population is very healthy, and 25 % get
regular physical exercise. Those who are healthy or relatively
healthy want to stay that way, and so are frequently dietary sup-
plement users, although the benefits and risks remain uncertain,
particularly at high intake levels. Among the dietary supplements
available, amino acids (AAs) are of special interest in this sub-
population, as they target functions like muscular and cogni-
tive function that typically decline with age, and some AAs have
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