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1. INTRODUCTION 

 

 
1.1.  NK cells 

 

 
1.1.1. The NK cells in the immune system 

 

The immune response rises from the activation of two broad systems that 

provide innate and adaptive immunity and work together to efficiently fight the wide 

range of pathogens. While adaptive immune cells provide long-lasting specific 

immunity, the first line of defence against pathogens is the innate immune system. The 

innate immune system precedes adaptive immunity from a phylogenetic standpoint and 

is present in both plants and animals (Janeway & Medzhitov 2002). At first sight 

innate immunity might appear primitive, but recently the innate immune system and its 

cellular components have been recognized to be more complex and sophisticated than 

previously thought (Cooper 2009). 

In particular, in the last years the idea of the Innate Lymphoid Cell (ILC) family 

is coming out. This is a family of hematopoietic effectors that have protective roles in 

innate immune response to infectious microorganisms, in lymphoid tissue formation, in 

tissue remodeling after damage and in the homeostasis of tissue stromal cells. Among 

the different components, Natural Killer (NK) cells are the prototypes of the ILC family 

(Spits 2011). 

 

Since their identification in 1975 (Herberman 1975, Kiessling 1975), NK cells 

have been classified as lymphocytes on the basis of their morphology, expression of 

many lymphoid markers, and origin from a common lymphoid progenitor cell in the 

bone marrow (BM). NK cells, still today, constitute the third major lymphocyte subset 

and represent approximately 10-15% of circulating lymphocytes in the peripheral blood 

(PB). In vivo, NK cells have a limited life span and hence must be continuosly 

replenished to maintain homeostasis (Yokoyama 2004). 

NK cells were initially described as cytolytic effector lymphocytes, which, as their 

name suggests, can directly, induce the death of tumor cells and virus-infected cells in 
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the absence of specific immunization. Subsequently, NK cells have been recognized as 

major producers of proinflammatory and immunosuppressive cytokines, and growth 

factors, such as interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin (IL)-

10, GM-CSF (granulocyte macrophage colony-stimulating factor), G-CSF (granulocyte 

colony-stimulating factor), and IL-3, in many physiological and pathological conditions. 

NK cells can also secrete many chemokines, including CCL2 (MCP-1), CCL3 (MIP1-

α), CCL4 (MIP1-β), CCL5 (RANTES), XCL1 (lymphotactin), and CXCL8 (IL-8), the 

secretion of which is crucial for their colocalization with other hematopoietic cells in 

areas of inflammation (Fauriat 2010, Vivier 2011). Moreover, in tissue such as uterus 

and pancreas, NK cells have roles unrelated to protection against pathogens and instead 

promote vascular remodeling (Ashkar 2000) or tissue-specific pathologies (Gur 2010). 

NK cell development primarily occurs within the BM microenvironment 

(Yokoyama 2004, Colucci 2003). Selective BM ablation studies in mice provided the 

first evidence supporting an important role of the BM in NK cell maturation (Haller 

1977, Hackett 1986). These studies demonstrated that NK cells mature within the BM, 

and that functional maturation of NK cells requires an intact BM microenvironment. 

Therefore, although these early data indicated that the BM is important for mouse NK 

cell development, they neither proved or disproved whether terminal steps in NK cell 

maturation occur specifically within this tissue. It is now clear that, although NK cell 

precursors are primarily found in the BM, NK cells can also develop in peripheral 

organs, including the thymus (Vosshenrich 2006), and possibly in human lymph nodes 

(Freud 2005). There is also evidence that murine NK cells continue to mature after 

leaving the BM, as splenic NK cell populations consist of cells displaying varying 

degrees of maturation (Hayakawa 2006; Huntington 2007, Chiossone 2009). 

Human NK cell maturation and differentiation is characterized by CD56 

acquisition (Yokoyama 2004, Colucci 2003). Two major populations of peripheral 

blood CD3-CD56+ NK cells can be distinguished based on the cell surface density of 

CD56: CD56bright NK cells that have an enhanced capacity of cytokine production and 

low or absent CD16 expression, and CD56dim NK cells that are characterized by a 

higher cytotoxic potential and are CD16+ (Jacobs 2001, Cooper 2001, Nagler 1989). 

Only a minority (5-15%) of peripheral blood NK cells is CD56bright while they are 

predominant among the NK cells resident in the lymph nodes (Fehniger 2003). 

Although the expression of CD56 (in combination with the absence of other lineage-

specific markers such as CD3) identifies cells of the NK cell lineage, additional antigens 
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are needed to distinguish functionally mature NK cells from immature intermediates in 

vivo. Freud et al. recently used the combination of CD34, CD117, and CD94 antigens to 

discriminate four functionally distinct stages of human CD56bright NK cell development 

within the secondary lymphoid tissue: stage 1, CD34+CD117-CD94- (pro-NK); stage 2, 

CD34+CD117+CD94- (pre-NK); stage 3, CD34-CD117+CD94- (iNK); and stage 4, 

CD34-CD117+/-CD94+ (Freud 2006). Unlike stage 1 pro-NK and stage 2 pre-NK, stage 

3 iNK cells seem to be definitively committed to the NK cell lineage but they do not 

present the hallmark features of mature NK cells: the ability to produce IFN-γ and to 

induce killing of target cells (Freud 2006). 

IL-2, IL-15, and, to a lesser extent, IL-7, which all signal through the γc (Ma 2006), can 

support the generation of CD3-CD56bright NK cells in the absence of additional 

cytokines or stroma in vitro (Miller 1994, Mrozek 1996, Mingari 1997, Barao 2003). 

In vivo, IL-15 seems to be the most central and critical cytokine supporting NK cell 

development because mice and/or humans lacking IL-15 or components of its receptor 

show deficiencies more severe compared to those observed in the absence of IL-2 or IL-

7 signaling (Kennedy 2000, Kundig 1993, von Freeden-Jeffry 1995). 

The activation of NK cell effector functions is coordinated by a hierarchy in 

terms of strength of the activating stimuli: adhesion between NK cell and target cell 

needs a low threshold, induction of chemokine production requires stronger activating 

stimuli, whereas degranulation and production of cytokines display the most stringent 

requirements for induction (Bryceson 2005, Fauriat 2010). 

NK cells kill infected or transformed cells via both a perforin-dependent and a 

death receptor-dependent pathway. The death receptor pathway leads to killing of 

repeatedly stimulated T and B cells by ligation of Fas (CD95), TNFRs (tumor necrosis 

factor receptors) or TRAILRs (TNF-related apoptosis inducing ligand receptors) with 

their cognate ligands (FASL, TNF and TRAIL, respectively) (Siegel 2000). The 

perforin-dependent pathway involves the secretion of cytotoxic granules that contain 

perforin and granzymes towards the target cell. 

NK cells use several types of integrins, namely LFA-1 (αLβ2, CD11a/CD18) 

and VLA-4 (α4β1, CD49d/CD29), to mediate the initial contact and adhesion between 

NK cell and target cell (Watzl 2010). LFA-1 activation, in particular, has a key role in 

promoting granule polarization. NK cells actively crawl over surfaces with activating 

ligands and an immunological synapse rises between NK cell and target cell. Granules 

polarize towards the interaction site in an LFA-1-dependent manner, through actin 
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cytoskeleton remodeling, and microtubule-dependent transport (Bryceson 2005, 

Barber 2004, Mentlik 2010). Lytic granules are hybrid organelles that are specialized 

for the secretion of the cytotoxic effector molecules (Burkhardt 1990). Perforin and the 

serine protease granzymes are the main effectors of the cytotoxic activity. Perforin is a 

pore-forming protein required for delivery of all granzymes (GzmA, GzmB, GzmH, 

GzmK and GzmM in humans) to the target cells (Voskoboinik 2006). How perforin 

achieves this is currently a matter of debate. GzmB, the most abundant and best studied 

members of the human granzyme family, is an efficient inducer of caspase-dependent 

apoptosis through direct processing and activation of caspase-3 and caspase-7. The 

other member of this family are less represented but it was demonstrated that they 

efficiently induce apoptosis in a caspase-independent manner through generation of 

single stranded DNA nicks, production of reactive oxygen species (ROS) and loss of 

mitochondrial potential (Heutinck 2010). Lysosomal membrane glycoprotein-1 

(LAMP-1 or CD107a) molecules are delivered to NK cell surface during the 

degranulation making it a useful degranulation marker detected by immunostaining 

(Alter 2004). Recently, it was reported that LAMP-1 cell surface expression has a key 

role in protecting degranulating-NK cells from perforin and granzyme attack (Watzl 

SIICA 2011). 

 

 

 

1.1.2. ‘Leading actors’ of NK cell activation  

 

NK cells, unlike T and B cells, do not express receptors that require somatic 

gene rearrangements to generate receptor diversity and specificity. NK cell functions are 

controlled by a wide array of germline-encoded inhibitory and activating receptors, 

many of which are expressed in a stochastic and variegated pattern. 

The understanding of NK cell activation mechanisms began in 1986 when Kärre 

et al. observed that NK cells attack cells exhibiting ‘missing self’, i.e. lacking Major 

Histocompatibility Complex (MHC) class I molecules. The ‘missing self’ hypothesis 

supposed that an NK cell has inhibitory receptors that, by binding to MHC class I 

molecules (expressed on all healthy cells), prevent NK cell activation in normal healthy 

condition (Kärre 1986), while trigger NK cell cytotoxicity towards cell lacking MHC-I, 

a situation that can occur when cells are perturbed by viral infection or neoplastic 
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transformation. Some years later, Yokoyama provided the first molecular evidence for 

the missing self hypothesis by identifying an inhibitory Ly49 receptor on mouse NK 

cells that specifically recognizes MHC class I and suppresses NK cell function 

(Karlhofer 1992). Afterwards, several groups identified and cloned the genes encoding 

human inhibitory NK cell receptors recognizing different HLA class I family members 

(Colonna 1995, D’Andrea 1995, Gumperz 1995, Wagtmann 1995). All the inhibitory 

receptors in humans and mouse contain one or more intracellular immunoreceptor 

tyrosine-based inhibitory motifs (ITIM; I/VxYxxL/V) (Orr 2010).  

The human killer cell immunoglobulin (Ig)-like receptors (KIR; also known as 

CD158) compose a family of transmembrane glycoproteins expressed on NK cells and 

on a subset of T cells and are encoded by 14 polymorphic genes. Human KIR contain 

either two (KIR2D) or three (KIR3D) Ig-like domains in the extracellular domain, and 

are called KIR2DL or KIR3DL when they possess a long ITIM-containing cytoplasmic 

domain. By contrast, KIR2DS and KIR3DS have short cytoplasmic domains lacking 

ITIM, but possess charged residues in their transmembrane region to allow the 

association with DAP12 that contains immunoreceptor tyrosine-based activation motifs 

(ITAM; Yxx(L/I/V)x6–8Yxx(L/I/V)) and triggers activating signaling through the 

recruitment of Syk/ZAP-70 tyrosine kinases (Campbell 2011). The only exception to 

this short/long-tailed rule is KIR2DL4, which is the unique activating KIR with a long 

cytoplasmic domain. KIR2D receptors typically recognize human leukocyte antigen-C 

(HLA-C) alleles, whereas KIR3D receptors recognize HLA-B, or some HLA-A alleles 

(Campbell 2011); also non-MHC-I molecules may serve as KIR ligands (Sivori 2010). 

KIR acquisition is cumulative and stable, occurs as a late event during NK cell 

maturation (Freud 2006) and has a key role in NK cell education processes (Kim 2005, 

Gasser 2006).  

In addition to KIR family, human NK cells express other ITIM-containing 

receptors. Human CD94-NKG2A binds to the non classical MHC molecule HLA-E. 

LILR (also known as ILT, LIR, and CD85) is the third family of ITIM-containing 

receptors on human NK cells that bind to MHC class I, and display permissive binding 

to several different MHC class I molecules. Morevover, NK cells express several other 

inhibitory receptors non MHC-specific: NKR-P1 (CD161) binds to human LLT, Siglec-

3,7,9 (CD328) to sialic acid, LAIR-1 (CD305) to collagen, KLRG1 to cadherins, 

CEACAM-1 (also known as BGP and CD66a) to itself, PILRα to CD99, and finally 

CD300a (also known as IRp60) which has no known ligand at present (Long 2008). 
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Figure 1. NK cell recognition of altered cells (adapted from Ljunggren et al. 2007). 
NK cell activation is the result of a balance between inhibitory signals from MHC class I 
molecules and activating signals from induced self molecules. When the activating signals 
overcome the inhibitory signals, the NK cell carries out its cytotoxicity against the abnormal target 
cell. 

 

 

 

Today is largely accepted that NK cell activation is the result of a balance 

between inhibitory signals and activating signals. NK cell activation, in fact, does not 

occur in the absence of MHC class I molecules but requires the engagment of NK cell 

activating receptors i.e. by stress-induced self molecules expressed on abnormal cells.  

The most important NK cell activating receptors are the Natural Cytotoxicity 

Receptors (NCR), NKG2D, DNAM-1, 2B4, NTB-A, CRACC and CD16. Many of the 

activating receptors lack intracellular signaling motifs but are non-covalently associated 

via a charged residue in the receptor transmembrane domain with the ITAM-containing 

adapters DAP12, FcεRIγ, or CD3ζ, which recruit and activate the Syk or ZAP70 

tyrosine kinases, or in some cases the DAP10 adapter which induces 

phosphatidylinositol 3-kinase (PI3K) signaling. 

The NCRs NKp30, NKp44, and NKp46 were among the first identified 

activating receptors in NK cells but they can also be found on subsets of T cells. 

(Pessino 1998, Cantoni 1999, Pende 1999). NCR are Ig-like type I transmembrane 

glycoproteins that are expressed as monomers. NKp46 and NKp30 associate with 

disulfide linked homodimers or heterodimers of the TCRζ and/or the FcRγ chains, 

whereas NKp44 associates with the disulfide-linked homodimer DAP12. Several viral 

ligands for the NCR have been identified (Arnon 2006) but the cellular ligands for 
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Figure 2. The numerous 
receptors expressed by NK cells 
(from Vivier et al. 2011). 
Here, are reported all the surface 
receptors that an NK cell can 
express. They can be grouped in 
activating (green), inhibitory (red), 
of adhesion (blue), for cytokine 
(black), and  chemotactic (purple) 
receptors. 
Together with activating receptors, 
adaptor molecules responsible of 
the signaling are reported. The list 
comprises both human (h) and 
mouse (m) receptors; receptors 
without any indication are 
conserved in both species. 

these receptors remain poorly defined. B7-H6 was recently identified as a ligand of 

NKp30 (Brandt 2009). 

2B4, NTB-A, and CRACC are monomeric Ig-like type I transmembrane 

glycoproteins members of the SLAM-related receptors, expressed by NK cells and also 

by many other cells of the immune system. Under certain circumstances 2B4 and NTB-

A can also inhibit NK cell functions (Veillette 2006). It seems that, in mouse, the 

amount of 2B4 expression, the strength of cross-linking, and the expression level of 

SAP adapter molecule determine if 2B4 is activating or inhibitory (Chlewicki 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The CD56dim NK cells are able to detect antibody-coated cells through the 

FcγRIIIA (CD16) cell surface receptor and trigger antibody-dependent cellular 

cytotoxicity (ADCC). CD16 associates with disulfide-linked homodimers or 

heterodimers of the TCRζ and/or the FcεRγ chains (Lanier 1991), which in turn 

activate the classical ITAM pathway (Ting 1995). Engagement of CD16 on NK cells is 

sufficient to induce NK cell degranulation (Bryceson 2005). Other NK cell receptors 

have been termed ‘coactivation receptors’, as engagement of each receptor alone is 

insufficient to induce activation in freshly isolated peripheral blood NK cells, whereas 
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engagement of specific pairwise combinations of receptors can induce synergistic 

intracellular Ca2+ mobilization and degranulation or cytokine production. The most 

synergistic combinations are activating receptors with different types of motifs 

(Bryceson 2006). 

In conclusion, potent NK cell effector functions activation requires dynamic 

integration of signals derived from multiple receptors. 

 

 

 

1.1.3. NKG2D and its ligands 

 

Among all the receptors designed to recognize self-molecules on cells under 

conditions of stress (‘induced-self ’ or ‘stressed-self ’ recognition), NKG2D (Natural 

Killer group 2, member D) is one of the most important and powerful activating 

immunoreceptor. Initially described as an NK cell receptor, it is now known to be 

expressed by a number of immune effector cells such as CD8+ T cells and γδ+ T cells 

(Raulet 2003). 

NKG2D was first identified in a screen for genes that are expressed 

preferentially by human NK cells (Houchins 1990, Houchins 1991). NKG2A, NKG2C 

and NKG2E complementary DNAs were isolated in the same screen and, although 

originally given a common name, subsequent analysis showed that NKG2D should be 

considered as a distinct receptor: NKG2A, NKG2C and NKG2E proteins are all highly 

related in sequence, while NKG2D differs markedly (Houchins 1991).  

 

The receptor NKG2D belongs to the family of C-type lectin-like receptors, 

therefore NKG2D has been called klrk1/KLRK1 (killer cell lectin-like receptor 

subfamily K, member 1) but, as the gene encoding this receptor resides in the NKG2 

(natural killer group 2) complex, the gene product was also named nkg2d/NKG2D. The 

NKG2 complex is located on chromosome 12 in humans (Glienke 1998). 

NKG2D is a type II transmembrane-anchored C-type lectin like receptor 

expressed as a disulfide-linked homodimer on the cell surface (Garrity 2005). NKG2D 

has no signaling motif within its short intracellular domain (Houchins 1991) and, 

similar to many others activating receptors, associates with signal-transducing proteins 

via charged residues in its transmembrane domain. In humans, each NKG2D 
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homodimer associates with two homodimers of DAP10 (DNAX-activating protein of 

10kDa), hence forming a hexameric structure (Wu 1999, Garrity 2005) (Fig. 3). The 

short cytoplasmic tail of DAP10 contains a tyrosine-based signaling motif (YINM), 

which can be phosphorylated by Src-family kinases and bind either to the p85 subunit of 

PI3K or to the adapter molecule Grb2 (growth factor receptor-bound protein 2) (Chang 

1999, Wu 1999). Binding of both molecules is essential for NKG2D mediated Ca2+ flux 

and cytotoxicity (Upshaw 2006). 

 

The most remarkable trait of the NKG2D receptor system is the diversity of 

ligands that can bind to this single invariant receptor. Activating receptors that 

recognize self-proteins are very specific and usually have no more than one or two 

different binding partners; for example 2B4 only binds to CD48. NKG2D is a notable 

exception to this rule; it shows promiscuous interactions with a wide range of self-

proteins. 

NKG2D ligands are distantly related homologs of MHC class I proteins and new 

members of this family continue to be discovered. The first evidence for a protein that 

binds to NKG2D came from a study by Bauer et al. (Bauer 1999) showing that a 

soluble form of MHC class-I-chain-related protein A (MICA) - a non-classical class I 

molecule first described as cell stress induced proteins expressed in gastrointestinal 

epithelium (Groh 1996) - binds to various lymphocyte subsets. A monoclonal antibody 

blocking the interaction was prepared, and the antibody was subsequently shown to bind 

to NKG2D (Bauer 1999). Further analysis showed that MICB - a close relative of 

MICA - also binds to NKG2D (Groh 1996, Steinle 2001). Subsequently, two human 

cell surface glycoproteins that bound to the human cytomegalovirus (HCMV) UL16 

glycoprotein were described and named UL16-binding protein 1 and 2 (ULBP1 and 

ULBP2) (Cosman 2001). UL16 was studied because it was a candidate virus protein 

that was involved in evasion of the immune response. Similar to MICA and MICB, 

ULBP1 and ULBP2 also bound to the NKG2D receptor and stimulated human NK 

cells. Other researchers named the same molecules human RAET1 proteins, in 

recognition of their relatedness to the mouse Raet1 proteins (Radosavljevic 2002, 

Steinle 2001, Onda 2001). Based on sequence homology with ULBP1 and ULBP2, 

four additional human ULBP family members were described: ULBP3, ULBP4 (or 

RAET1E), ULBP5 (or RAET1G), and ULBP6 (or RAET1L) (Radosavljevic 2002, 

Bacon 2004, Chalupny 2003, Eagle 2009).  
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Figure 3. The human NKG2D receptor and its 
ligands. 
Human NKG2D is a homodimeric type II-
transmembrane protein with a short cytoplasmic tail 
and, hence, associated with the signaling molecule 
DAP10 forming a hexameric structure. 
Among the human NKG2D ligands, MIC molecules 
are characterized by three Ig-like domains, while 
ULBP proteins are characterized by two Ig-like 
domains. MICA, MICB, ULBP4, and ULBP5 are 
transmembrane proteins, while ULBP1, 2, 3, and 6 
are GPI-linked protein, feature that makes them 
more strongly associated with lipid rafts. The 
various ligands have different affinity for NKG2D 
binding. 

Mouse Raet1 proteins include three subfamilies of proteins: the Rae1α-ε 

molecules, the histocompatibility 60 (H60) protein, and the Mult-1 protein. Human 

ligands show around 25–30% amino acid identity to murine ligands (Raulet 2003). 

 

 

 
 

 

The MIC gene family members are localized within the HLA gene complex and 

are expressed in most mammalian species except mice. In contrast, both mice and 

humans express the RAET1 gene family. The ULBP/RAET1 gene family is not part of 

the MHC but maps on the long arm of human chromosome 6 (Radosavljevic 2002). 

Human RAET1 proteins share only 25% or less of their amino acids with MIC proteins. 

Analyzing the alignment of MIC and ULBP/RAET promoter regions, Eagle et al. 

showed that MICA and MICB were the most similar members of the cluster, sharing 

85% identity. RAET1E was the most divergent, sharing <8% identity with the other 

genes. Other members of the ULBP/RAET gene family shared between 23 and 67% 

identity (Eagle 2006). 

NKG2D ligands are polymorphic, in particular for MICA and MICB genes have 

been described 70 and 31 alleles, respectively. There is also evidence for human RAET1 

genes and promoter sequence variants (Romphruk 2009). Interestingly, allelic variants 

of these ligands have been shown to bind with variable affinity to NKG2D 

(Champsaur 2010); moreover, polymorphisms within promoter sequences have been 

associated also with several human diseases (Eagle 2006). 

NKG2D ligands are distant relatives of MHC class I proteins, but unlike class I 
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proteins, they do not associate with β2-microglobulin or bind to antigenic peptides. All 

have Ig-like α1 and α2 domains, the region that binds to NKG2D, and MICA/B have an 

additional α3 domain (Bahram 1994, Groh 1996). NKG2D ligands differ in the way 

they are anchored to the cell surface: ULBP1-3, 6 are GPI linked to the cell membrane, 

whereas MICA/B, ULBP4, and ULBP5 have transmembrane and cytoplasmic tail 

domains (Fig. 3). This has effects on the way that ligands interact with the plasma 

membrane suggesting that GPI-linked proteins are more strongly associated with lipid 

rafts (Eleme 2004).  

Notably, most of the receptor aminoacidic residues that dominate binding to the 

different ligands are the same, and several of the contact residues on the ligands are 

conserved (McFarland 2003a). Moreover, crystal structures of NKG2D receptor in the 

soluble form and bound to ligands suggest that NKG2D binds to its ligands through 

‘rigid adaptation’ recognition, allowing binding to a wide variety of ligands. Therefore, 

despite the marked differences in their aminoacid sequences, the different ligands 

interact with NKG2D similarly, and the receptor does not seem to undergo marked 

conformational changes to accommodate different ligands (McFarland 2003a, 

McFarland 2003b). 

 

The number of known ligands for NKG2D continues to grow, raising the 

question of why is there such diversity and why so many are needed. One explanation 

may be that an evolutionary pressure applied by certain viruses to inhibit NKG2D 

ligand expression in virus-infected cells is the driving force for ligand diversification 

(Bahram 2005). Another explanation is that engagement of NKG2D by different 

NKG2D ligands, their tissue-specific expression and their differential induction may 

fine-tune the extent of activation and allow the system to answering to a greater range of 

cellular distress. NKG2D ligands, infact, are not all functionally equivalent, but rather 

can have unique, tissue-specific roles, suggesting that there might be additional driving 

forces for this diversity. Although there is no evidence that the different ligands induce 

qualitatively distinct biological effects in responding cells, this remains a clear 

possibility. The various ligands could differ quantitatively in their effects based on the 

marked differences in their affinity for NKG2D: it has been shown that the sequence 

variation in the α1α2 domains of NKG2D ligands in mice translates into significantly 

different binding affinities for NKG2D and that some ligand interactions with NKG2D 

are also temperature dependent (O’Callaghan 2001).  



 14 

There is evidence that some NKG2D ligands have evolved specific adaptations 

that allow them to signal to the immune system in highly specialized tissues. The 

cytoplasmic tail of MICA contains a signal sequence that allows this ligand to be 

targeted to the basolateral surface of human intestinal epithelium, where immune cells 

can interact with epithelial cells. This polarization allows epithelial cells that become 

stressed, for example by the presence of pathogenic bacteria in the gut, to upregulate 

MICA at the specific location required to alert the immune system. However not all 

MICA variants have this capacity (Suemizu 2002). Other NKG2D ligands may have 

specialized functions at other immune interfaces, for example ULBP4 has been reported 

to be expressed in the skin (Chalupny 2003). 

Of note, NKG2D ligands not always function to generate cytotoxic immune 

responses: MICA has also been shown to be expressed in the trophoblast during normal 

pregnancy (Mincheva-Nilsson 2006). 

 

Contrary to its ligands, the NKG2D receptor is highly conserved. The human 

and mouse NKG2D receptors are 70% identical. Strikingly, NKG2D from a given 

species can bind NKG2D ligands from other species; for example, mouse NKG2D can 

bind to human ULBP1 and ULBP2 (Eagle 2007). 

NKG2D signal is strong enough to overcome, in some cases, the inhibitory 

signaling by MHC-specific receptors. In contrast to the results obtained with T cells 

where NKG2D function as a co-stimulator receptor (Groh 2001), crosslinking of 

NKG2D on human NK cells with recombinant ligands was sufficient to trigger cytokine 

release from NK cells (Kubin 2001, André 2004). However, exposure of purified NK 

cells to NKG2D ligand-expressing targets in vitro results only in low levels of target 

cell killing (Bryceson 2006), indicating that for optimal triggering of NKG2D-mediated 

effector functions, additional signals are required. In fact, in vitro culture of NK cells in 

the presence of IL-15 or high doses of IL-2 significantly increases NKG2D-mediated 

killing of tumor targets. Moreover, Horng et al. demonstrated that the IL-15 receptor  

pathway couples to NKG2D signaling in NK cells. Triggering of the IL-15 receptor 

resulted in phosphorylation of DAP10 by janus kinase 3, which facilitated downstream 

signaling and NKG2D-mediated effector (Horng 2007). 
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1.1.4. NKG2D ligand expression 

 

The various NKG2D ligands have distinct patterns of expression, suggesting that 

they cannot be considered functionally redundant. Although much remains to discover 

about ligand expression and regulation, a common theme is that their surface protein 

expression by normal cells in adults is generally absent or present at low levels in 

certain tissue, but in pathological conditions is often upregulated. In humans, MICA and 

MICB are expressed only by intestinal epithelial cells, likely as a consequence of 

stimulation by the neighbouring bacterial flora (Groh 2006). Despite that, total tissue 

scans of MICA and MICB of healthy individuals revealed that with the exception of the 

central nervous system both genes are widely transcribed (Schrambach 2007). Rae1-

encoding mRNA, especially the Rae1β and Rae1γ isoforms, is expressed diffusely 

throughout early embryos, and in particular in the brain but, upon 18 days of gestation, 

expression of the transcripts is down-regulated and remains so in all of the normal adult 

tissues that were examined (Zou 1996, Nomura 1996). Similarly, in humans, NKG2D 

ligands are expressed at low levels on CD34+ hematopoietic stem cells and expression 

of the ULBP proteins is enhanced upon differentiation into myeloid progenitors 

(Nausch 2008). Various normal cells significantly expressed at the mRNA level some 

of the ULBP molecules in humans, and Mult1 in mice but cell surface expression by 

normal cells is low or has not been documented. In humans, ULBP transcripts are 

detectable in different healthy tissues, including kidney, prostate, uterus, tonsil and 

lymph nodes (Cosman 2001). In addition, ULBP4 is specifically transcribed in the skin 

(Chalupny 2003).  

These findings suggest that transcription of the genes encoding the human and 

mouse NKG2D ligands have been detected in numerous normal healthy tissues in the 

adult and in the normal mouse embryo. However, post-transcriptional and post-

translational mechanisms exist to prevent translation and expression of these ligands in 

the healthy individual, presumably to avoid autoimmunity.  

 

Although NKG2D ligands are rarely expressed on the cell surface of adult 

healthy cells, their expression is associated with malignant transformation because they 

are markedly upregulated and expressed at functional levels on the cell surface of 

numerous tumor cell lines and primary tumors. Cell transformation by certain 

oncogenes including K-ras, c-myc, Akt, E1A or Ras V12, or their combinations, does 



 16 

not directly force the expression of NKG2D ligands. These data suggest that additional 

events are required for NKG2D ligand expression (Gasser 2005). 

Prior studies have established that expression of NKG2D ligands on tumors 

renders them susceptible to killing by NK cells in vitro (Bauer 1999, Cerwenka 2000, 

Diefenbach 2000) and results in the in vivo rejection of transplantable tumors 

expressing these ligands (Cerwenka 2001, Diefenbach 2001). Moreover, NKG2D 

ligands have been reported on a wide variety of human and mouse tumors. In general, 

the proportions of ligand-positive tumors, the levels of ligand expression and the types 

of ligands expressed are heterogeneous among different tumor types and among 

individual samples of the same tumor. 

MICA and MICB are expressed on a subset of human hepatocellular carcinoma 

tissues and are involved in hepatoma cell sensitivity to NK cells (Jinushi 2003a). 

Tumor cells extracted from patients with different types of leukemia, including acute 

myeloid leukemia (AML), acute lymphatic leukemia (ALL), chronic myeloid leukemia 

(CML), and chronic lymphatic leukemia (CLL), express heterogeneous levels of 

NKG2D ligands being MIC the most expressed (Salih 2003). MIC proteins are 

expressed by a broad range of tumors and were detected also in various carcinomas 

(breast, lung, colon, kidney, ovary and prostate), gliomas, neuroblastomas and 

melanomas (Groh 1999, Pende 2002, Vetter 2002, Friese 2003, Watson 2006, 

Castriconi 2007). 

In addition, using the human NK cell line NKL as effector cells, Salih et al. 

(Salih 2003) showed that expression of NKG2D ligands on patient-derived AML and 

CML cells rendered them susceptible to NK cell mediated lysis in an NKG2D-

dependent manner. In colorectal cancer patients, high levels of MICA were associated 

with a good prognosis (Watson 2006). Human melanoma cells express high amounts of 

NKG2D ligands (Vetter 2002), and NKG2D ligand expression was lost during the 

progression of uveal melanoma (Vetter 2004). 

It is possible that tumor cells often express insufficient levels of NKG2D ligands 

to stimulate tumor cell rejection, either because expression of the ligands is not 

sufficiently upregulated early in the development of the tumor, or because tumor cells 

with lower levels of ligand expression are selected by the immune system in vivo as the 

tumor evolves. In fact, tumors induced in NKG2D-deficient mice expressed higher 

amounts of NKG2D ligands, strongly supporting the hypothesis that immunoselection 

by NKG2D favors the loss of NKG2D ligand expression by primary tumors (Guerra 
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2008). 

Ligand expressing tumors might also evolve mechanisms to evade NKG2D-

mediated immunity, as indicated by the evidence that human tumors that express MICA 

often produce a soluble version of MICA that reaches high levels in the serum and 

causes a systemic desensitization of NKG2D in T cells (and possibly other immune 

system cells) (Groh 2002, Salih 2003, Jinushi 2008). However, the existence of tumors 

that evade NKG2D does not detract from the possibility that many other tumors are 

successfully eliminated by NKG2D mediated immune activation, because such evasion 

mechanisms are unlikely to be universally effective. 

 

The expression of NKG2D ligands is also upregulated by cells that are infected 

with pathogens. Infection with cytomegalovirus (CMV) leads to the upregulation of 

expression of NKG2D ligand transcripts, including MICA, MICB, and ULBPs in 

humans, and Rae1 in mice (Groh 2001, Welte 2003). To the contrary, both HCMV and 

MCMV encode proteins that interfere with ligand expression at the cell surface: 

HMCV-encoded UL16 protein retains MICB, ULBP1 and ULBP2 in an internal 

compartment (Welte 2003, Lodoen 2003, Krmpotic 2002, Dunn 2003). Human 

immunodeficiency virus (HIV) infection of primary CD4+ T cell blasts induced the 

expression of ULBP1, ULBP2, and ULBP3 (Ward 2007). On the other hand, there are 

evidences that the HIV protein Nef can downregulate NKG2D ligands upon infection 

(Cerboni 2007a). MICA expression was also upregulated as a result of Mycobacterium 

tuberculosis infection (Das 2001) and of the binding of Escherichia coli adhesin AfaE to 

cellular CD55 (Tieng 2002). By contrary, herpes simplex virus (HSV) infection does 

not seem to upregulate NKG2D ligand expression suggesting that their upregulation 

requires specific triggers by some pathogens and is not simply associated with viral 

infection, genome integration, and replication. 

 

NKG2D ligands are also upregulated on rapidly proliferating normal cells. 

Zwirner et al. first reported that phytohemagglutinin (PHA) induced the expression of 

MICA protein in CD4+ and CD8+ T cells (Zwirner 1997). TCR/CD3 engagement and 

costimulation via CD28 induced a sustained increased expression of MICA on activated 

CD4+ and CD8+ T cells (Molinero 2002). In addition, Cerboni et al. described the 

induction of MICA and ULBP1-3 on a fraction of dividing CD4+ and CD8+ T cells 

activated with the superantigen Staphylococcus aureus enterotoxin B (Cerboni 2007b). 
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1.1.5. Who or what does manage NKG2D ligand expression? 

 

The induction of NKG2D ligands on transformed, infected, or proliferating cells 

suggests that cells have sensing mechanisms that recognize changes associated with a 

‘stress’ and activate pathways that upregulate cell surface expression of NKG2D 

ligands. Therefore, NKG2D ligands act as molecular flags that say to the immune 

system that something is wrong. The mechanisms that coordinate the expression of 

NKG2D ligands are only partially understood but it was widely accepted that, 

depending on the cell type and stress stimulus, NKG2D ligand expression is regulated at 

transcriptional and post-transcriptional levels. 

Transformation per se does not induce ligand expression because cell 

transformation by overexpression of oncogenes is insufficient to induce expression of 

NKG2D ligands (Gasser 2005). 

 

In NKG2D ligand promoters there are some binding sites that share a common 

function and a similar relative position within the promoters; they are probably 

evolutionarily conserved because of their function. The heat shock elements are some of 

them because putative heat shock transcription factor (HSF1) binding sites were 

identified in four of the NKG2D ligand promoters (MICA, ULBP1, ULBP2 and ULBP6) 

suggesting that some of the MIC and ULBP molecules are involved in shock responses 

(Groh 1996, Eagle 2006, Venkataraman 2007). Other transcription factor binding 

sites identified in the region of homology of ULBP1-3, 5 and 6 genes were the binding 

site for the myeloid zinc finger 1 (MZF1) protein, a factor known to be induced by 

retinoic acid and proposed to have a role in the hematopoietic development (Hromas 

1991, Hamerman 2004). The basonuclin (BNC) sites found in all ULBP/RAET gene 

promoters are also interesting. BNC is a transcription factor found mainly in cells of the 

basal layer of stratified squamous epithelia, and expression of some NKG2D ligands has 

been observed in normal epithelial cell layers, with overexpression seen in epithelial 

tumors (Groh 1998). Moreover, interferon regulatory factor (IRF) sites were identified 

in most ULBP/RAET promoters. Most of these were IRF7 sites, as shown in ULBP3, 4 

and 6 promoters. NF-kB has been proposed to be important in MICA expression and 

there is an NF-kB binding site in intron 1 of the gene (Molinero 2004). An NF-kB 

binding site, similar to that identified in MICA, was located in an aligned stretch of 

ULBP1-3 and 5. Finally, the transcription factor AP-1, which is involved in 
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tumorigenesis and cellular stress response, was found to regulate Raet1 through the 

JunB subunit (Nausch 2006). 

Despite the presence of the same binding site in several NKG2D ligand 

promoters, the promoter regions of ULBP2, 3, and 4 are polymorphic. Eagle et al. 

suggested that polymorphisms in the promoter regions of NKG2D ligand genes have the 

potential to modulate gene expression by altering the binding of transcription factors 

(Eagle 2006). 

The DNA Damage Response (DDR) has been shown to be highly involved in 

NKG2D ligand regulation. DDR, also called as genotoxic stress response, is a stress 

pathway involved in the maintenance of the genome integrity and activated in normal 

cells subjected to DNA damage with the aim of arresting the cell cycle, promoting DNA 

repair functions, and, in highly damaged cells, inducing apoptosis (Sancar 2004). 

Recent studies have shown that DDR is often constitutively activated in human cancer 

cells and in cells infected by certain viruses suggesting that tumorigenesis and infection 

can damage DNA or stress the genome (Bartkova 2005, Gorgoulis 2005, Norman 

2011). 

Gasser et al. provided evidence that this pathway actively regulates NKG2D 

ligand transcription (Gasser 2005). Both mouse and human cells upregulated NKG2D 

ligands following treatment with DNA-damaging agents. This effect was dependent on 

ATM/ATR function, as inhibitors of ATR and ATM kinases prevented ligand 

upregulation in a dose-dependent manner. These findings provide a link between the 

constitutive activity of the DNA damage response in tumors and the frequent 

upregulation of NKG2D ligands in transformed cell supporting the idea that constitutive 

ligand expression is maintained by persistent genotoxic stress in tumor cell lines and 

suggesting that either ATM or ATR may be predominantly responsible of NKG2D 

ligand expression maintenance. The exact molecular events linking the ATM/ATR-

dependent recognition of DNA damage and the transcription of NKG2D ligands remain 

elusive. DNA damage in tumor cells could be the responsible of the induction of 

NKG2D ligands and increases the sensitivity of the damaged cells to NK cell- or T cell-

mediated lysis, possibly imposing an immune-mediated barrier to tumorigenesis 

(Gasser 2005, Hoglund 2006). 

It is not yet well established if DDR is also involved in NKG2D ligands 

expression induced by pathogen infection. Recently it was demonstrated that the HIV 

viral protein R (Vpr), through the interaction with a uracil glycosylase and the 
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subsequent inhibition of the host antiviral factor APOBEC3G, activates the DDR-

dependent NKG2D ligand expression (Norman 2011) suggesting that the DDR could 

be a common mechanisms by which cells answer to and protect from a wide range of 

danger. 

About the role of p53, one of the main effector molecule of the DDR, the debate 

is still open and there are controversial evidences. Gasser et al. ruled out p53 from the 

mechanisms at the basis of genotoxic drug induced-NKG2D ligand up-regulation 

because it occurred also in p53-/- knock-out fibroblasts (Gasser 2005). By contrast, 

recently new evidences demonstrating p53 involvement have been provided (Textor 

2011, Li 2011). Textor et al. showed that the induction of wild-type (wt) p53, but not 

mutant (mut)p53, in a p53-null non small cell lung cancer cell line, resulted in ULBP1 

and -2 upregulation and dependent NK cell activation. Furthermore, they demonstrated 

that ULBP1 and -2 are direct p53 target genes and that the treatment of certain cancer 

cells with RITA, a small molecular compound that reactivates wtp53, resulted in the 

upregulation of ULBP2 expression (Textor 2011). At the same time, Li et al. showed 

that RITA induces a p53-dependent upregulation of ULBP2 in human colon carcinoma 

and human breast cancer cell lines and that this induction is not DDR-dependent 

because is not affected by caffeine pretreatment or ATM depletion. Moreover, they 

demonstrated that ULBP2 is a direct target gene of p53 and that p53 can bind to the first 

intron of ULBP2 gene (Li 2011). 

It was demonstrated that Toll-like receptor (TLR) signaling can result in 

NKG2D ligand transcription. Treatment of peritoneal macrophages with TLR agonists 

in vitro and injection of LPS in vivo resulted in Rae1 upregulation on peritoneal 

macrophages (Hamerman 2004). TLR signaling on DCs also results in NKG2D ligand 

expression (Draghi 2007, Ebihara 2007). 

The cytokines are able to influence NKG2D ligand expression. In particular, 

interferons have pleiotropic effects on NKG2D ligand expression. In humans, IFN-α 

induces to the expression of MICA on DCs (Jinushi 2003). By contrast, Bui et al. 

showed that IFN-α and IFN-γ treatment led to the selective downregulation of H60 on 

certain mouse sarcoma cells at the transcript level (Bui 2006). In accordance with this 

study, treatment of human melanoma cells with IFN-γ resulted in decreased MICA 

mRNA levels (Schwinn 2009). Moreover, transforming growth factor-β (TGF-β) also 

decreases the transcription of MICA, ULBP2, and ULPB4 on human malignant gliomas 

(Friese 2004, Eisele 2006). Therefore, cytokines and interferons can differentially 
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affect NKG2D ligand expression in different cell types and environments. 

 

Various mechanisms are also responsible for the post-transcriptional regulation 

of NKG2D ligands: inhibition of mRNA translation by cellular or viral microRNAs 

(miRNAs), ubiquitin-dependent proteasomal degradation, and shedding from cell 

surface. 

 Different groups identified several endogenous cellular miRNAs that bound to 

the 3’-UTR of MICA and MICB and repressed their translation (Stern-Ginossar 2008, 

Yadav 2009). In accordance with these findings, silencing of Dicer, a key protein in the 

miRNA processing pathway, leads to the upregulation of MICA and MICB (Tang 

2008). Interestingly, HCMV was found to encode a viral miRNA, hcmv-miR-UL112, 

that competed with endogenous miRNA for binding to MICA and MICB 3’-UTR, thus 

repressing the translation of these ligands (Stern-Ginossar 2007).  

 In particular, Stern-Ginossar et al. identified a group of endogenous cellular 

microRNAs that suppress MICA and MICB expression by binding to MICA and MICB 

3’ UTR sites that overlap those bound by hcmv-miR-UL112. They showed that these 

cellular microRNAs are ubiquitously expressed in various human tissues to avoid 

autoimmunity but, when MICA and MICB mRNA expression was induced after short-

term stress, the threshold determined by miRNAs was overcome and MICA and MICB 

protein expression was upregulated at the cell surface. Of note, a large portion of the 

identified cellular microRNAs is overexpressed in various tumors determining the 

increment of this threshold level, the subsequent inhibition of NKG2D ligand 

upregulation and the immune evasion (Stern-Ginossar 2008). 

Recently, Nice et al. showed that MULT1 protein undergoes ubiquitination 

dependent on the lysines in its cytoplasmic tail, resulting in its rapid degradation. 

Moreover they demonstrated that this ubiquitination was reduced in response to heat 

shock or ultraviolet irradiation, allowing cell surface expression of MULT1, but was not 

affected by genotoxic stress, suggesting that different stimuli regulate NKG2D ligands 

differently (Nice 2009). Post-transcriptional regulation of MICA was also recently 

documented by a study showing that virus-encoded proteins can ubiquitinate and down-

regulate MICA from the cell surface (Thomas 2008). Whether other ligands with long 

cytoplasmic tails are similarly regulated has not yet been investigated. The presence of 

multiple lysines in the cytoplasmic tail of H60a, H60b, MICB, and ULBP5 suggests that 

this translational control mechanism might be used by other NKG2D ligands. 
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In addition to membrane-bound NKG2D ligands, secreted forms of the ligands 

have been described in humans. In 2002, two independent groups reported secretion of 

MICA proteins from tumor cells and the presence of high amounts of soluble MICA 

(sMICA) in cancer patient sera (Groh 2002, Salih 2002). The presence of sMICA was 

subsequently described in patients suffering from a variety of cancers, including 

leukemia (Salih 2003), pancreatic carcinomas (Marten 2006), hepatocellular cancer 

(Jinushi 2005), colon carcinoma (Doubrovina 2003), and multiple myeloma (Jinushi 

2008). Since sMICA and sMICB are found in substantial amounts in the sera of patients 

affected by different cancers, these proteins were suggested as diagnostic markers for 

cancer progression (Nausch 2008). Furthermore, soluble forms of ULBP2 and ULBP4 

have been detected (Waldhauer 2006, Cao 2007). 

 

 

 
Figure 4. Transcriptional and post-transcriptional regulation of NKG2D ligands (adapted 
from Cerwenka 2009).  
Always more possibilities join the wide group of mechanisms by which NKG2D ligand expression 
is regulated. Here are reported the known molecular mechanisms underlying NKG2D ligand 
expression at the moment. 

 

 

  

 Two distinct mechanisms of generating soluble NKG2D ligands have been 

described. The first mechanism involves the cleavage of ligands from the cell surface by 
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proteases. Prior studies reported that a broad-range metalloprotease inhibitor reduced 

the levels of sMICA detected in tumor cell supernatants and increased the levels of 

surface MICA on these tumors (Salih 2002). Subsequently, metalloproteases were also 

found to be responsible for the shedding of both sMICB and sULBP2 (Salih 2006, 

Waldhauer 2006). Recently, two groups have reported the involvement of members of 

the ‘a disintegrin and metalloproteinase’ (ADAM) family in the shedding of NKG2D 

ligands (Waldhauer 2008, Boutet 2009). In addition, a recent report demonstrated that 

cell surface endoplasmic reticulum protein 5 (ERp5) is required for MICA shedding 

(Kaiser 2007). A second mechanism to generate soluble NKG2D ligands is by 

alternative RNA splicing. Two groups have demonstrated the existence of alternative 

RNA splicing of the ULBP family of human ligands (Bacon 2004, Cao 2007).  

Of note, shedding of NKG2D ligands has multiple consequences on NKG2D-

mediated responses: reduction of ligand density on the tumor cell surface, 

downmodulation of the receptor on effector cells and blocking of the NKG2D-binding 

site for surface expressed NKG2D ligands.  

 

In summary, the mechanisms that govern NKG2D ligand expression are 

numerous and very different from each other and it is also possible that multiple 

mechanisms cooperate in this function. In some cells or circumstances, these levels of 

regulation may serve as serial checkpoints, in response to distinct stimuli, to ensure that 

ligands are induced only in diseased cells and not in normal cells. Some ligands could 

show a specialization in the type of stress that regulates them, providing broad innate 

immune ‘coverage’ for numerous stresses associated with various diseases. 

Although in the last year many new evidence emerged about NKG2D ligand 

regulation, much remains to be understood. 

 

 

 

1.1.6. DNAM-1 and its ligands 

 

The activating receptor DNAM-1 (DNAX accessory molecule-1) (also called 

CD226) was firstly described by Burns and colleagues as a T lineage-specific activation 

antigen (TLiSA) involved in the differentiation of cytotoxic lymphocytes (Burns 1985). 

Subsequently, Scott et al. described it as a molecule involved in the adhesion of platelet 
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to endothelium and re-named it PTA1 for platelet and T cell activation antigen 1 (Scott 

1989). Some years later, Shibuya characterized an adhesion molecule responsible for 

CTL and NK cell cytotoxicity and proposed the name DNAM-1 (Shibuya 1996). 

This receptor is encoded by a gene mapped to human chromosome 18 and in 

peripheral blood is expressed on the majority of TCRαβ+ T cells, TCRγδ+ T cells, NK 

cells, monocytes, and on a subset of B cells (Shibuya 1996). DNAM-1 is a type I-

transmembrane glycoprotein belong to the Ig-superfamily of receptors, containing two 

Ig-like domains in its extracellular portion (Shibuya 1996). The cytoplasmic domain of 

DNAM-1 contains a PDZ-binding motif characterized by a conserved sequence (X-

Ser/Thr-X-Val), that binds the afadin PDZ motif (an actin-interacting cytoskeletal 

linker), or members of the membrane-associated guanylate kinase homolog (MAGUK) 

family and a binding motif for protein of the band 4.1 family (Fig. 5). The band 4.1 

family proteins and MAGUK family proteins are necessary for DNAM-1 association 

with the integrin LFA-1 (CD11a/CD18) (Ralston 2004). There is a functional 

relationship between DNAM-1 and LFA-1; LFA-1 association, in fact, is key for 

DNAM-1 downstream pathway, as suggested by the observation that NK cells and T 

cells from leukocyte adhesion deficiency (LAD) patients, who lack LFA-1 expression, 

have functional defects in DNAM-1 signaling (Shibuya 1999). The cytoplasmic tail of 

DNAM-1 contains three tyrosine residues that can be phosphorylated by the Src-family 

kinases Fyn upon receptor engagement, and recruits actin-binding proteins (Shibuya 

1996, Shibuya 1999) strongly triggering NK cell cytotoxicity. LFA-1 is responsible for 

Fyn activation and subsequent Fyn-dependent phosphorylation of DNAM-1 (Shibuya 

1999). Moreover, DNAM-1 intracellular domain contains two phosphorylation sites for 

PKC and it was demonstrated that PKC plays an important role for DNAM-1 adhesion 

to its ligands and DNAM-1-mediated signaling (Shibuya 1998). 

 

Bottino and colleagues, not many years ago, identified the human ligands for 

DNAM-1 among the members of nectin/nectin-like family: the poliovirus receptor 

(PVR or CD155 or Necl-5) and the Nectin-2 (Nec-2 or CD112 or PRR2 from poliovirus 

receptor related) (Bottino 2003). DNAM-1 ligands are very closely related molecules 

encoded by genes located in chromosome 19.  

Nectins and nectin-like molecules are a group of Ig superfamily proteins 

involved in Ca2+-independent cell-cell adhesion and in the formation of adherens 

junctions between neighboring epithelial cells (Fuchs 2006). Both PVR and Nec-2 are 



 25 

 
 
 
 

 
Figure 5. Human DNAM-1 and its ligands. 
DNAM-1 and its ligands are transmembrane proteins 
belonging to the Ig superfamily. In particular, the receptor 
DNAM-1 presents two Ig-like domains and is characterized 
by the association with the integrin LFA-1, necessary for 
signal transduction. 
PVR and Nec-2 have very similar structures, with three Ig-
like domains. Despite their similarity, they bind to DNAM-1 
with different affinity. 

expressed on epithelial and endothelial cells and are overexpressed by several tumors, 

suggesting that these proteins may provide an advantage for growth, spreading or 

metastasis of tumor cells (Fuchs 2006, Bottino 2003, Tahara-Hanaoka 2004). 

DNAM-1, hence, while in monocytes and other immune cells plays a role in 

transendothelial migration facilitating adherence to endothelial cells and migration 

between cell junctions (Reymond 2004), in NK cells can act as a tumor surveillance 

receptor (Fuchs 2006). 

 

 

 
 

 

PVR is firstly described as the receptor for poliovirus, because of the 

observation that the anti-PVR antibodies were able to block viral entry into cells 

(Mendelsohn 1989, Nobis 1985). PVR, like other nectin members, is a transmembrane 

protein and presents three Ig-like domains in the extracellular portion but, unlike other 

members of its family, lacks the binding motif for afadin in the intracellular tail (Fig. 5). 

PVR can also bind the extracellular matrix protein vitronectin, suggesting a role in cell-

matrix interaction and cell migration (Lange 2001). PVR contains also an ITIM motif 

in the cytoplasmic tail that triggers inhibitory signals, and thus promoting cell 

detachment from the extracellular matrix and migration of tumor cells (Sloan 2004, 

Oda 2004). PVR can also bind to CD96 receptor (also named Tactile for T cell 

activation increased late expression) expressed on NK cells, although with less affinity 

compare to DNAM-1. However, it appears to be involved mostly in cell-cell adhesion 

rather than in promoting NK cell cytotoxicity (Fuchs 2004).  
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In addition to the most common transmembrane form of PVR, this ligand could 

be also expressed as a soluble form. PVR mRNA, in fact, can be spliced into four 

different isoforms: α and δ variants encode membrane-bound isoforms, while β and γ 

isoforms encode soluble proteins constituted by only the extracellular portion (Koike 

1990, Baury 2003). 

Nec-2 is a transmembrane protein characterized by an extracellular portion with 

three Ig-like domains and a cytoplasmic tail that can bind to afadin (Fig. 4). Like many 

other proteins of its family, Nec-2 serves as a viral-entry receptor for alpha-herpesvirus 

(Fuchs 2006). 

The murine DNAM-1 (mDNAM-1) binds to murine Nec-2 and the PVR mouse 

homolog Tage4 (Tahara-Hanaoka 2005). 

 

 

 

1.1.7. Expression and regulation of DNAM-1 ligands 

 

Unlike most of the ligands for other NK cell activating molecules, DNAM-1 

ligands are expressed on normal cells. PVR is expressed at low levels by cell of 

epithelial origin and at significant levels on peripheral blood monocytes, where is 

physical associated with the hyaluronan receptor CD44 (Freistadt 1997), likely 

enhancing cell migration through both receptors. Nec-2 is ubiquitously expressed in 

cells of several origins, mostly in epithelial cells, neurons and fibroblasts (Fuchs 2006). 

Upon engagement by its specific ligands, DNAM-1 cooperates with other 

activating NK cell receptors in triggering NK cell cytotoxicity. Although several normal 

cells express PVR or Nec-2, the inhibitory signals triggered by normal levels of MHC 

class I overcome the DNAM-1 activating signal. By contrary, in most tumor cells 

DNAM-1 ligands are upregulated and, at the same time, MHC class I expression is 

reduced increasing the possibility of recognition as alterated cells by NK cells (Bottino 

2003). 

PVR and Nec-2 are expressed by several tumor cell lines of epithelial or 

neuronal origin such as carcinomas, melanomas, and neuroblastomas (Masson 2001, 

Bottino 2003). Castriconi et al. showed that freshly isolated primary neuroblastoma 

cells express PVR and that the PVR expression level correlates with their susceptibility 

to NK cell lysis suggesting that recognition of PVR by DNAM-1 strongly contributes to 
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the NK cell killing of neuroblastoma cells (Castriconi 2004). Moreover, high 

expression of PVR and Nec-2 was, also, detected on myeloid leukemia cells and it was 

demonstrated to be necessary in triggering an efficient in vitro NK cell lysis of AML 

cells (Pende 2005). Nec-2 was found highly expressed on human gastric and colon 

cancer and in the same paper it was demonstrated that ectopic expression of DNAM-1 

ligands in tumor cells triggered a strong and rapid in vivo anti-tumor immune response 

and, consequently, tumor rejection (Tahara-Hanaoka 2006). Moreover, Sloan et al. 

demonstrated that PVR is highly expressed in primary glioblastoma cells and that PVR 

expression confers to these cells the ability to migrate and invade other tissues, thus, 

contributing to tumorigenesis (Sloan 2004). 

Anti-tumor activity of DNAM-1 is confirmed also by data obtained with 

DNAM-1 deficient mice in which tumor surveillance is significantly impaired and in 

which DNAM-1 ligand expressing fibrosarcoma and papilloma cells developed 

significantly more as compared to WT mice (in response to chemical carcinogens) 

(Gilfillan 2008, Iguchi-Manaka 2008).  

 

The mechanisms regulating DNAM-1 ligand expression are almost completely 

unknown. The only evidences about the transcriptional machinery involved in PVR 

expression are by Solecki et al. that analyzed PVR transcription with a particular 

attention to the embryogenesis and to the nervous system development. The authors 

proposed that nuclear respiratory factor-1 (Nrf-1) is involved in regulating PVR 

expression at specific stages of central nervous system development (Solecki 2000). 

Later, they also analyzed the relation between PVR and Sonic hedgehog (Shh), co-

localized during embryonic development, and demonstrated that PVR gene is a 

transcriptional target of the Shh signaling cascade and PVR promoter contains a GLI 

binding site. Moreover, they suggest a role for Shh activation in inducing PVR 

expression on medulloblastoma and glioblastoma cells (Solecki 2002). 

The possibility of producing soluble ligands is another important mechanism 

regulating PVR expression. Soluble PVR was found in human serum, likely produced 

mostly by the liver, but its function remains unknown (Baury 2003). Soluble PVR 

binds to DNAM-1 with the same affinity of transmembrane PVR, but does not induce 

receptor crosslinking and signal transduction. Soluble PVR, similar to soluble NKG2D 

ligands, could be produced by alternative splicing (Baury 2003) or by proteolytic 

cleavage by members of ADAM family, but currently the knowledge about this and 
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other mechanisms of DNAM-1 ligand regulation is still very poor and many other 

studies need to be performed. 

 

 

 

1.2.  Chemo-immunotherapy 
 

Conventional chemotherapeutic drugs act mostly by disrupting regulatory 

pathways essential for tumor growth and survival but their activity is too often limited 

by mechanism of drug resistance and toxic side effects directed to normal host tissue. 

Moreover, conventional chemotherapy does not take care of effects that could induce in 

tumor microenvironment established by the host-tumor interaction. At present, it is 

largely accepted that the host-tumor interaction is the major determinant of clinical 

course and treatment outcomes of cancer. Among the host elements that respond to 

cellular transformation, stromal fibroblasts, endothelial cells, tumor-associated 

macrophages, NK cells, and tumor-specific lymphocytes are critical for tumor growth 

and progression. It is now emerging the idea that several common used 

chemotherapeutic drugs are able to modulate these cells favoring their anti-tumor 

effects (Emens 2010, Zitvogel 2008). 

Standard and high dose chemotherapy regimens are often immunosuppressive 

and induce lymphopenia, but the effects of their immunomodulatory potential could be 

changed by using different doses and schedule. For an instance, a single low dose of 

cyclophosphamide 1-3 days before antigen exposure promotes humoral and cellular 

immunity, while cyclophosphamide given at the same time or subsequently to antigen 

exposure induces immune tolerance (Emens 2010, Zitvogel 2008). 

Current data suggest that chemo-immunotherapy regimens have great potential 

for optimizing the clinical outcomes of cancer patients and in last years the scientific 

community is making headway in this direction. 

 

 

 

1.2.1. NK cell-based strategies against tumors 
 

The better knowledge of NK cell and NK cell mechanisms of activation permits 
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to design and improve chemo-immunotherapeutic protocols finalized to ‘wake up’ NK 

cell cytotoxicity against tumor cells. 

All along NK cells are described for their ability to kill tumor cells in the 

absence of previous stimulation, but their manipulation to create NK cell-based 

therapies was very difficult until the mechanisms of their activation remained unknown 

(Ljunggren 2007). In the early 1980s, Grimm et al. showed the possibility, by 

stimulation of the PBMC with IL-2, of generating lymphokine-activated killer (LAK) 

cells able to lyse human fresh tumor cells (Grimm 1982), phenomenon mediated 

mostly by NK cells. Unfortunately, ten years later, all the studies published about 

clinical trials using LAK therapy in cancer showed a clinical response rate of about 15-

20%, a rate not superior to IL-2 monotherapy or IL-2 combined with IFN-α. The 

clinical results did not improve either using a large number of LAK cells nor using 

highly purified activated NK cells (Rosenberg 1985, Law 1995, Lotze 1986).  

NK cell-based adoptive transfer therapies are widely studied but several issues 

need to be still addressed before the development of a successful protocol. The choice 

of a specific NK cell subset to be infused or of the ex vivo NK cell activation protocol 

and the KIR genotypes. The activating receptor haplotypes of the donor may also affect 

the outcome (Terme 2008). 

Antibodies targeting tumor antigen in combination with adjuvants is a useful 

strategy, mostly against tumors in which susceptibility to NK cell lysis is reduced (ALL, 

CLL, lymphoma), to activate antibody-dependent cell-mediated cytotoxicity (ADCC) or 

complement-dependent cytotoxicity (Carter 2006). Dimeric or trimeric bispecific 

antibodies that recognize both tumor antigen and an activating NK cell receptor could 

also be used to trigger a stronger response (Shahied 2004). 

Vaccines based on dendritic cell preparations (Chaput 2004), on molecules 

activating NK cell response (for example heat shock proteins or TLRs) (Sivori 2004), or 

on therapeutic compounds that indirectly enhance NK cell response (such as 

thalidomide in multiple myeloma therapy) (Davies 2001) could also be prepared to 

boost NK cell activity in patients. 

Several mediators (for example TGF-β, soluble NKG2D and DNAM-1 ligands, 

HLA-G molecules, regulatory T cells) negatively affect NK cell functions; it could be 

important to neutralize them. In addition, at the same time, the development of protocols 

aimed at prompting NK cell trafficking towards tumor or secondary lymphoid organs 

could be an efficient strategy. 
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Moreover, for any NK cell-based strategy it could be also very important to 

analyze NK cell effects on adaptive immune responses. 

 

Many tumors express NK cell activating ligands, but why are they not rejected 

by NK cells in vivo? NK cells might not be in sufficient amount in the transformed 

tissue, or not efficiently recruited to the primary tumor site to have a significant effect 

or, often, tumors develop several strategies that allow them to escape from NK cell 

recognition and killing. NK cell activating receptors can be modulated or desensitized 

after interaction with ligand-expressing tumors or with soluble ligands released by 

tumor cells (Groh 2002, Baury 2003). Loss of adhesion molecules on NK cell or on 

tumor cell might be an important mechanism of tumor escape because the conjugate 

formation between NK cell and tumor cell is a crucial step for NK cell activation (Maki 

1998). Moreover, some tumors secrete immunosuppressive cytokines, such as TGF-β 

and IL-10, or produce apoptotic mediators on their own, such FASL and NO. 

Once the tumor is established, its growth rate might exceed the ability of NK 

cells to respond, and tumor cells might become resistant to NK cell effector 

mechanisms. So, the immunomodulatory capacity of the chemo-immunotherapy could 

be a necessary strategy for overcoming the mechanisms of tumor escape from immune 

cell system and reawaking the natural immune system ability of fighting tumors. 

 

 

 

1.2.2. Chemotherapy-induced senescence 

 

Cellular senescence is an in vivo mechanism for arresting the proliferation of 

potential cancer cells. Senescent cells are viable cells that irreversibly stop to synthesize 

DNA and that present characteristic morphological features (flattening, granularity, and 

vacuole-rich cytoplasm), biochemical changes (senescence associated-β-galactosidase 

activity, senescence and DNA damage marker expression), and chromatin remodelling 

(Schmitt 2007). 

There are several evidences demonstrating the wide presence of senescent cells 

in premalignant lesions while the scarce presence in developed tumors (Braig 2005, 

Chen 2005, Collado 2005). The senescence program, in fact, depends critically on the 

p53 and Rb/p16INK4a tumor suppressor pathways and is involved in oncogene 
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repression. Defects in tumor suppressor pathways compromise cellular ability to 

undergo senescence, and greatly increase susceptibility to cancer (Collado 2006, 

Rodier 2011). 

Interestingly, some tumor cells retain the ability to senesce and could do so in 

response to chemotherapy. Anticancer drugs, in fact, can trigger an acutely inducible 

form of cellular senescence, morphologically and biochemically related to classical 

replicative senescence, termed premature senescence.  

 

 

 
Figure 6. Chemotherapy-induced senescence (from Schmitt 2007). 
Chemotherapeutic treatments could reawake the anti-tumor mechanism of cellular senescence that 
was overcome by malignant transformation. 

 

 

 

A better knowledge of drug-induced senescence comes from genetic analysis of 

oncogene-induce senescence, because it is likely that both mechanisms act trough 

genotoxicity. DDR has been shown to play a critical role in chemotherapy-induced 

senescence (Schmitt 2007). Among the several chemotherapeutic drugs, the 

topoisomerase I inhibitor camptothecin (Hayward 2003), the topoisomerase II inhibitor 

doxorubicin (Elmore 2002), the DNA-crosslinker cisplatin (Chang 1999), γ-irradiation 

(Mirzayans 2005), and the anti-metabolite cytarabine (Rosenbeck 2011) are promising 

DNA damaging agents for inducing senescence. Schwarze et al. showed that lower 

doses of chemotherapeutic agents are more efficient in inducing the senescent 

phenotype in cancer cells whereas higher concentrations were associated with apoptosis 

(Schwarze 2005). Interestingly, te-Poele and colleagues, analyzing sections from breast 

tumors of patients treated with doxorubicin, 5-fluorouracil, and cyclophosphamide, 

observed senescence associated-β-galactosidase staining in tumor cells but not in 
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normal tissue, suggesting that chemotherapy-induced senescence is a specific response 

of tumor cells (te Poele 2002). Oxidative stress is also a mediator of cellular 

senescence. Several entrinsic or intrinsic stimulus producing a rise in intracellular ROS 

levels trigger senescence entry. Oxidants may directly activate redox-sensitive pathways 

linked to senescence or, alternatively, may induce a spectrum of damage to cellular 

components, such as the DNA damage, that directly leads to senescence (Lu 2008). 

In addition to the effect of tumor cell proliferation arrest, the senescence 

response triggers an inflammatory status that stimulates the immune cells to eliminating 

the senescent cells. Krizhanovsky and colleagues found that, in response to a liver 

damage to produce liver fibrosis in mouse, hepatic stellate cells entered in a senescence 

program. Moreover, the accumulation of senescent cells triggered an enhanced immune 

surveillance and NK cells preferentially killed senescent stellate cells facilitating the 

resolution of fibrosis (Krizhanovsky 2008). Recently, with a model of murine 

hapatocellular carcinoma, it was demonstrated that oncogene-induced senescence 

occurs in pre-malignant hepatocytes making them subjected to an immune-mediated 

clearance mediated by CD4+ T cell and monocytes/macrophages. It was, also, shown 

that an impaired immune surveillance of pre-malignant senescent hepatocytes results in 

the development of the full-blown tumor (Kang 2011). 

 

Of note, it is now emerging the concept that cellular senescence, in addition to 

suppress tumorigenesis, is also involved in tumor promotion, tissue repair, and aging 

(Rodier 2011). So, when developing protocols of chemotherapy-induced senescence, it 

could be very important to consider each aspect of this phenomenon. 

 

 

 

1.3.  Multiple Myeloma 
 

Multiple Myeloma (MM) is a malignant plasma cell (PC) disorder that usually 

evolves from an asymptomatic premalignant stage characterized by the proliferation of 

clonal PCs and designated as ‘monoclonal gammopathy of undetermined significance’ 

(MGUS). MM is a very common neoplasia among the adults; infact, more than 3% of 

the population over 50 years old is affected by MGUS, and 1% per year progresses to 

MM or related malignancies. Although MM is a very long studied malignancy (the first 
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documented case was in 1844; Fig. 7), is still incurable and, with the conventional 

treatments, the prognosis is 3-4 years, which may be extended to 5-7 years with newer 

treatments (Kyle 2008, Palumbo 2011). 

 

 

 
Figure 7. The first reported patient with multiple myeloma (from Kyle et al. 2008). 

 

 

 

At the end of 1800, PCs were well described as cells with blocked chromatin, 

eccentric position of the nucleus, a perinuclear pale area, and a spherical or irregular 

cytoplasm. Later, with the introduction of bone marrow aspiration, the recognition of 

MM, and also the amount of reported cases, increased (Kyle 2008). 

Malignant PCs accumulate in bone marrow, causing bone lesion and subsequent 

bone fracture and pain (Fig. 7), and interfering with normal hematopoiesis. The 

breakdown of bones also leads to release of calcium into the blood, resulting in 

hypercalcemia and its associated symptoms. The presence, in blood and urine, of a 

monoclonal immunoglobulin called ‘Bence Jones protein’ is a typical feature of MM 

patients. This protein is responsible, together with the hypercalcemia, of the onset of 

kidney injuries. In theory, malignant PCs can produce all classes of immunoglobulin, 

but IgG are most common, followed by IgA and IgM. IgD and IgE myeloma are very 

rare. PCs infiltration into the bone marrow and renal dysfunction often cause severe 

anemia in these patients (Palumbo 2011).  
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The pathogenesis of bone disease involves an increase in RANKL (receptor 

activator of NF-κB ligand) accompanied by a reduction in the level of its decoy receptor 

osteoprotegerin and by the action of macrophage inflammatory protein 1α (MIP1α), 

resulting in sustained osteoclast activation (Rajkumar 2011).  

In the cellular bone marrow compartment, MM cells interact with hematopoietic 

and non-hematopoietic cells. Bone marrow stromal cells send signals (directly through 

cell-cell contact or indirectly through secretion of soluble factors), which affect 

malignant PC growth, survival, migration, and drug resistance. Moreover, integrin-

mediated adhesion of MM cells to bone marrow cells induces upregulation of cell cycle 

regulatory proteins, antiapoptotic proteins, and telomerase activity in PCs, and NF-κB-

dependent transcription and secretion of IL-6 in bone marrow cells. IL-6 secreted by 

bone marrow cells enhances the production and secretion of VEGF by myeloma PCs, 

and viceversa (Palumbo 2011).  

Malignant PCs are terminally differentiated cells but the tumor is maintained by 

a very small subset of MM stem cells, which reside in either the osteoblastic or the 

endothelial niche, and can self-renew and differentiate (Peacock 2007). 

 

Patient survival depends on many different parameters such as age, performance 

status, renal function, and disease stage. Two methods are used to classified MM 

patients, the Durie-Salmon Stage (Durie 1975) and the International Staging System 

(Greipp 2005), but both have several limitations because this malignancy is 

characterized by a broad molecular heterogeneity, both among patients and in each 

patient over time. Although is considered to be a single disease, it consists of at least six 

non-overlapping cytogenetic subtypes, evident early in the course of the disease, based 

on cytogenetic abnormality observed in PCs. So, to define the outcome for each 

individual patient, it is fundamental also to consider the individual cytogenetic 

abnormalities (Rajkumar 2011). 

All MM patiens, also many years before the diagnosis of full-blown myeloma, 

have the prolonged premalignant asymptomatic phase MGUS or a more advanced 

indeterminate stage termed smoldering MM (Kyle 2007). MGUS is characterized by 

abnormal immunoglobulins detectable in patient peripheral blood and/or urine, as well 

as clonal PCs present in the bone marrow. Smoldering MM is characterized by a much 

higher risk of progression to MM: the first 5 years after smoldering MM diagnosis, the 

risk of progression to MM is 10% per years but decrease significantly over time. All 
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MGUS and smoldering MM patients are clinically followed without treatment until 

progression to save them from the toxicity of chemotherapeutic drugs (Rajkumar 

2011). However, in the last years, many efforts have been made to better understanding 

the molecular mechanisms and the probability of progression of these premalignant PC 

disorders with the aim to identify those patients who may benefit from early treatments 

(Korde 2011, Landgren 2011). 

Actually, the most common strategies in MM therapy are protocols based on the 

combination of 2-3 chemotherapeutic drugs such as bortezomib, dexamethasone, 

thalidomide, vincristine, doxorubicin, melphalan, and prednisone. Only few patients are 

candidates for allogeneic transplantation because of age, availability of a HLA-matched 

sibling donor, and adequate organ function (Rajkumar 2011). In the last years, the 

overall survival of MM patients is increased, but however almost all patients relapse. 

So, it is still necessary to find new powerful strategies to contrast this tumor. 

 

 

 

1.3.1. NK cell activity against multiple myeloma 

 

The anti-tumor action of NK cells is widely accepted and, of note, bone marrow 

is one of the anatomic districts where the highest number and activity of NK cells are 

present. Moreover, in the last years, several new evidences are emerged about the role 

of NK cells against MM tumor cells suggesting the possibility of developing new 

chemo-immunotherapeutic approaches to fight this malignancy.  

Carbone and colleagues demonstrated that bone marrow-derived PCs from MM 

patients were more susceptible to NK cell lysis as compared to myeloma cells from 

pleural effusion, a very late stage of the malignancy. Susceptibility to NK cell lysis of 

bone marrow-derived MM cells was dependent to low MHC class I molecule expression 

and to the presence of the NK cell activating ligand MICA on the surface of these cells. 

They suggested that pleural effusion-derived MM cells were the result of a selection 

process based on NK cell activity. In MM the initial tumor population is controlled by 

NK cells but, during tumor progression, a clonal variant with defective MICA 

transcription could emerge and escape from NKG2D-mediate immunosurveillance 

(Carbone 2005). Recently, Jinushi et al. provided futher explanations to the immune-

escape phenomen. He showed that alterations in MICA expression are also associated 
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with the progression from MGUS to MM demonstrating that MM patients have a lower 

level of MICA expression on PCs compare to MGUS patients because they express 

large amount of the disulfide isomerase Erp5, responsible of MICA shedding, and hence 

of sMICA in serum. In contrast, MGUS patients produce high-titer of anti-MICA 

antibodies that antagonize the immune suppressive activity of sMICA (Jinushi 2008). 

Another group found that the DNAM-1 ligands PVR and Nec-2 are often expressed by 

bone marrow-derived MM cells and that these malignant PCs can be killed by NK cells 

in a DNAM-1-dependent manner (El-Sherbiny 2007). Moreover, Davies et al. showed 

that the anti-myeloma effect of thalidomide and its immunomodulatory derivatives 

mights be due, at least in part, to a modulation of NK cell number and activity (Davies 

2001). All together, these findings strongly support the idea that NK cells efficiently, 

but not always, kill MM cells and try to counter the onset of this tumor. 
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2. AIM 
 

 

It is, now, widely accepted the key role of NK cells as effector cells against 

tumors. Among the several receptors by which NK cells recognize transformed cells, 

NKG2D and DNAM-1 have a relevant role. Expression of NKG2D or DNAM-1 ligands 

by tumor cells results in immune destruction in vivo. Moreover, tumor surveillance is 

strongly impaired in NKG2D or DNAM-1 deficient mice. Tumor cells naturally express 

NKG2D or DNAM-1 ligands but, often, they do not trigger a sufficient NK cell 

response to eliminate the tumor or they evolve mechanisms to evade from the immune 

system. In this context, it could be a useful strategy developing protocols aimed at 

increasing the density of NKG2D and DNAM-1 ligands on tumor cells to efficiently 

activate antitumor NK cell response. 

One of the pathways mostly involved in the induction of NKG2D ligands is the 

DNA damage response; there are, instead, little information on the mechanisms 

controlling the induction of DNAM-1 ligands. Of note, several agents commonly used 

in classical chemotherapy carry out their effects causing DNA damage.  

All together, these findings encourage to research the right way of using the 

chemotherapeutic drugs for enhancing the NK cell response against MM cells and to 

understand how they might exert their activity. 

This research was aimed at investigating new chemo-immunotherapeutic 

approaches based on the exposure of MM cells to not toxic doses of chemotherapeutic 

drugs to up-regulate NKG2D and DNAM-1 ligands, in order to render them more 

susceptible to the NK cell lysis. We tested several chemotherapeutic agents in order to 

detect a drug that, used at low doses, could induce NK cell activating ligand up-

regulation on MM cell lines and malignant PCs from bone marrow aspirates of MM 

patients and could increased NK cell degranulation towards ligand expressing cells. 

In addition, we dissected the molecular events underlying chemotherapy-induced 

ligand expression. In particular, we analyzed the role played by the several components 

of the DNA damage pathway. Moreover, given the role of the DNA damage response in 

controlling cellular proliferation and senescence, we investigated the presence of 

senescent cells among the MM cells upon the treatment with low doses of 

chemotherapeutic drugs. Finally, in accordance with the evidences on the induction of 

oxidative stress by several chemotherapeutic agents, we evaluated the redox status in 
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drug-treated MM cells and the involvement of oxidative stress production in drug-

induced NKG2D and DNAM-1 ligand expression. 

With these findings, we provided new informations on the regulation of the 

expression of NKG2D and DNAM-1 ligands and we suggested new approaches to 

stimulate their expression on MM cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 39 

3. MATERIALS AND METHODS 
 

 

3.1.   Cell lines and clinical samples 
 

The human MM cell lines ARK, LP-1, OPM-2, RPMI-8226, SKO-007(J3), and 

U266 were kindly provided by Prof P. Trivedi (‘Sapienza’ University of Rome). The 

cell lines were maintained at 37°C and 5% CO2 in RPMI 1640 (Life Technologies, 

Gaithersburg, MD) supplemented with 15% Fetal Calf Serum (FCS). All cell lines were 

mycoplasma-free (EZ-PCR Mycoplasma Test Kit; Biological Industries, Haemek, 

Israel). 

Peripheral blood and bone marrow samples from untreated patients with MM 

were managed at the Institute of Hematology (‘Sapienza’ University of Rome). 

Informed consent was obtained from all patients, and approval was obtained from the 

Ethics Committee of the ‘Sapienza’ University of Rome. Patients were classified 

according to Durie-Salmon and International Staging System (Table 1). The bone 

marrow aspirates were lysed to obtain Bone Marrow Mononuclear Cells (BMMCs) 

using a buffer composed of 1.5M NH4Cl, 100mM NaHCO3, and 10mM 

ethylenediaminetetraacetic acid (EDTA).  

 

Patient no. Sex/Age Clinical Stage Monoclonal Ig %PC in BM 

1 F/78 III/onset micro-κ 40 
2 F/76 smoldering IgG-λ 20 
3 M/65 smoldering IgG-κ 10 
4 F/74 smoldering IgG-κ 18 
5 F/71 smoldering IgG-κ 16 
6 M/79 II/onset IgA-κ 19 
7 F/80 I/onset IgA-κ 20 
8 M/75 I/onset IgG-κ 24 
9 M/72 I/onset IgG-κ 21 

10 F/58 I/onset IgG-κ 8 
11 M/82 III/onset IgG-κ 31 
12 F/64 I/smoldering IgG-λ 33 
13 F/61 III/onset micro-κ 64 
14 M/66 I/smoldering IgA-κ 33 
15 F/77 III/relapse IgG-κ 79 
16 M/68 III/onset IgG-κ 50 
17 F/73 I/onset IgE-λ 37 
18 F/43 III/onset IgG-κ 30 

Table 1. Patient characteristics. 
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In some experiments, and anti-CD138 magnetic beads (Miltenyi Biotec, Auburn, 

CA) were used to separate malignant myeloma PCs from BMMCs. More than 95% of 

the purified cells were CD138+. Bone marrow-derived mononuclear cells or separated 

CD138+ PCs were maintained at 37°C and 5% CO2 in complete medium supplemented 

with 20ng/mL human recombinant IL-3 and 2ng/mL human recombinant IL-6 (Pepro-

Tech, Rocky Hill, NJ). 

 

 

 

3.2.   Antibodies and reagents 
 

The following unconjugated monoclonal antibodies (mAbs) were used for 

immunostaining: anti-MICA (MAB159227), anti-MICB (MAB236511), anti-ULBP1 

(MAB170818), anti-ULBP2 (MAB165903), anti-ULBP3 (MAB166510), and anti-

NKG2D (149810) from R&D Systems (Minneapolis, MN); anti-Nec-2 (R2.525) from 

BD Pharmingen (San Diego, CA); anti-DNAM-1 (DX11) from Serotec (Oxford, United 

Kingdom); anti-PVR (46.31 or SKII.4) kindly provided by Prof M. Colonna 

(Washington University, St Louis, MO); MHC class I (W6/32) from ATCC (Manassas, 

VA); anti-ATMSer1981, anti-p85 (10H11.E12) were purchased from Millipore 

(Billerica, MA); anti-p53Ser15 and phospho-Chk1/2 Ab Sampler Kit were purchased 

from Cell Signaling Technology (Danvers, MA); anti-p53 (DO-1) was purchased from 

Santa Cruz Biotechnology (Santa Cruz, CA); anti-β-actin (AC-15) and anti-mouse IgG1 

(MOPC-21) were purchased from Sigma-Aldrich (St. Louis, MO). Fluorescein 

isothiocyanate (FITC)-conjugated Goat affinity purified F(ab’)2 fragment to Mouse IgG 

(GAM) was purchased from MP Biomedicals (Solon, OH), allophycocyanin (APC)-

conjugated GAM and R-phycoerythrin (PE)-conjugated GAM were purchased from 

Jackson ImmunoResearch Laboratories (West Grove, PA). Anti-γH2AX FITC 

(JBW301) was purchased from Millipore. APC-conjugated anti-CD38 (HIT2), anti-

CD138/FITC (MI15), anti-CD56/FITC (NCAM16), anti-CD16/PE (332779), anti-

CD107a/FITC (H4A3), and anti-CD138/PerCP-Cy5.5 (MI15) were purchased from 

Becton Dickinson. Anti-CD3/APC (HIT3a), anti-CD56/PE (HCD56), anti-mouse 

IgG1/FITC, IgG1/PE, or IgG1/APC (MOPC-21) were purchased from BioLegend (San 

Diego, CA). 
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Propidium Iodide (PI), Bafilomycin A1, the ATM/ATR pharmacologic inhibitor 

Caffeine and KU-55933 and the ROS scavenger N-Acetyl-L-cysteine (NAC) were 

purchased from Sigma-Aldrich. 5-dodecanoylaminofluorescein di-β-D-

galactopyranoside (C12FDG) was from Invitrogen (Frederick, MD). The Chk1/2 

pharmacologic inhibitors SB218078 and UCN-01 were purchased from Calbiochem, 

EMD Chemicals (Darmstadt, Germany). The p53 pharmacologic inhibitor 

Pifithrinα (PFTα) was purchased from Biomol, Enzo Life Sciences (Farmingdale, NY). 

 

 

 

3.3.   Drug treatment 
 

MM cell lines were cultured for a maximum of 72h in U-bottom 96-well tissue 

culture plates at 37°C and 5% CO2 at different cellular densities in the absence or 

presence of different drug concentrations. The following therapeutic drugs were tested: 

cisplatin, doxorubicin, melphalan, etoposide, and bortezomib. On the day of the assay, 

10µL MTT (5mg/mL) (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide; 

Sigma-Aldrich) was added to each well, and cells were incubated for 3h at 37°C and 5% 

CO2. After blocking the reaction and making the crystals soluble with isopropanol/HCl 

0.04N, samples were moved into a flat-bottom 96-well tissue culture plate, and the 

absorbance was read with an enzyme-linked immunosorbent assay (ELISA) reader at 

570 nm. Dose-response curves were calculated and an IC50 value (concentration of 

drug resulting in 50% inhibition of cell growth) was obtained. IC50 values or 

concentrations 10 times lower were used to treat the different cell lines, as follows: 

doxorubicin: ARK (0.06µM), LP-1 (0.06µM), OPM-2 (0.08µM), RPMI-8226 

(0.05µM), SKO-007(J3) (0.05µM), U266 (0.1µM); etoposide: ARK (0.4µM), LP-1 

(3.5µM), OPM-2 (0.7µM), RPMI-8226 (0.1µM), SKO-007(J3) (0.3µM); melphalan: 

ARK (7µM), LP-1 (21.5µM), OPM-2 (1.6µM), RPMI-8226 (1.5µM), SKO-007(J3) 

(22µM), U266 (15µM); bortezomib: ARK (1.4nM), LP-1 (0.95nM), OPM-2 (0.75nM), 

RPMI-8226 (1nM), SKO-007 (J3) (4.9nM); cisplatin: ARK (14µM), LP-1 (1µM), 

OPM-2 (9.4µM), RPMI-8226 (7µM), SKO-007(J3) (9.4µM). Patient-derived PCs were 

incubated with melphalan (20µM), doxorubicin (0.05µΜ), or bortezomib (5nM) for 48h 

at 37°C and 5% CO2. Cell lines and patient-derived PCs were cultured in tissue culture 

plates at a density of 3x105 and 5x105, respectively. 
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In some experiments, cells were pre-treated for 1h with the ROS scavenger NAC 

(10mM for cell lines and 2 mM for patient-derived PCs) or the following pharmacologic 

inhibitors: caffeine (1mM), KU-55933 (10µM), SB218078 (1µM), UCN-01 (20nM), 

and PFTα (30µM). A dose-response curve was performed with these pharmacological 

inhibitors to identify the doses that did not affect cell viability. 
 

 

 

3.4.   Immunofluorescence and flow cytometry 
 

The expression of the DNA damage marker γH2AX on SKO-007(J3) cell line 

was evaluated upon drug treatment through the staining with FITC-conjugated anti-

γH2AX Ab and FACS analysis. After washing, cells were fixed and permeabilized with 

70% ethanol, and incubated with anti-γH2AX mAb. NKG2D and DNAM-1 ligand 

surface expression on MM cells and patient-derived PCs was analyzed by 

immunofluorescence staining using anti-MICA, anti-MICB, anti-ULBP1/2/3, anti-PVR 

or anti-Nec2 unconjugated mAbs, followed by secondary GAM-FITC or GAM-APC for 

cell line or GAM-PE mAb for patient PCs. In some experiments, cells were stained with 

PI (1µg/µL) to assess cell viability. The analysis of ligand expression on patient-derived 

PCs, when treated without performing magnetic separation, was performed by gating on 

the CD38+CD138+ PC population. Samples were analyzed using a FACS Calibur (BD 

Biosciences, San Jose, CA). 

Samples from experiments performed with MM cell lines were analyzed using a 

FACS Calibur and samples from experiments with patient PCs with a FACS Canto II 

(BD Biosciences, San Jose, CA). Flow cytometric analysis was performed using the 

FlowJo software version 8.8.7 (TreeStar, Ashland, OR). 

NKG2D and DNAM-1 ligand expression was also evaluated at different cell 

cycle phases. SKO-007(J3) cell cycle distribution was analyzed by PI staining after 72h 

drug treatment. Cells were incubated, firstly, with anti-MICA, anti-MICB or anti-PVR 

unconjugated mAbs and, then, with FITC-conjugated GAM secondary Ab. Cells were 

washed in PBS with 0.1% sodium azide and fixed for 2h at 4°C in cold 70% ethanol. 

Thereafter, cells were incubated for 30 min at room temperature with 50µg/mL PI in 

PBS containing 40µg/mL RNAse (Sigma-Aldrich) and immediately analyzed using a 
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FACS Calibur. Flow cytometric analysis was performed using the FlowJo software 

version 8.7.7. 

 

 

 

3.5.   Degranulation assay 
 

NK cell-mediated cytotoxicity was evaluated using the lysosomal marker 

CD107a as previously described (Bryceson 2005). As source of effector cells, we used 

peripheral blood mononuclear cells (PBMCs) isolated from healthy donors by 

Lymphoprep (Nycomed, Oslo, Norway) gradient centrifugation and then cocultured for 

10 days with irradiated (30 Gy) Epstein-Barr virus (EBV)-transformed B-cell line RPMI 

8866 at 37°C in a humidified 5% CO2 atmosphere, as previously described (Mainiero 

2000). On day 10, the cell population was routinely more than 90% CD56+CD16+CD3-, 

as assessed by immunofluorescence and flow cytometry analysis. NK cells were 

activated overnight with 200U/mL human recombinant IL-2 (R&D Systems). When 

patient-derived PCs were used as targets, autologous PBMCs were cultured for 2 days 

in complete medium supplemented with 100U/mL IL-2. Drug-treated MM cell lines or 

patient-derived PCs were incubated with activated NK cells at different effector-target 

(E/T) ratios, from 10:1 to 1:1, in a U-bottom 96-well tissue culture plate in complete 

medium at 37°C and 5% CO2 for 2h. Thereafter, cells were washed with PBS and 

incubated with anti-CD107a/FITC (or cIgG/FITC) for 45 min at 4°C. Cells were then 

stained with anti-CD3/APC, anti-CD56/PE (or anti-CD16/PE), and anti-CD138/PerCP-

Cy5.5 to gate the CD3-CD56+CD16+CD138- NK population. In some experiments, cells 

were pretreated for 20 min at room temperature with anti-NKG2D or anti-DNAM-1 

neutralizing mAbs and with anti-CD56 or anti-MHC I as control Abs. Analyses were 

performed using a FACS Calibur. 

 

 

 

3.6.   Analysis and isolation of senescent cells 
 

We performed the Senescence Associated β-Galactosidase assay (SA-βGal) by 

both microscope and flow cytometer. Forty-eight hour melphalan- or doxorubicin-
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treated MM cells were cultured for further 24h without drug before performing the 

classic microscope assay. Cells were then fixed for 5 min at room temperature in 3.6% 

formaldehyde and incubated overnight at 37°C without CO2 with fresh SA-βGal stain 

solution: 1mg/mL 5-bromo-4-chloro-3-indolyl β-D-galactoside (X-Gal), 150mM NaCl, 

2mM MgCl2, 40mM citric acid, 5mM sodium phosphate (pH 6.0), 5mM potassium 

ferrocyanide, and 5mM potassium ferricyanide. Senescent cells were identified as blue-

stained cells by standard light microscopy. Cells were acquired and analyzed by an 

Olympus BX51 microscope (Hamburg, Germany) and IAS 2000 software (Biosystem, 

Rome, Italy) using original magnification 200X/0.50. 

We performed the assay using the fluorogenic substrate C12FDG to measure β-

galactosidase activity by flow cytometry (Kurz 2000). This compound is a membrane-

permeable, nonfluorescent substrate of β-galactosidase, which after hydrolysis of the 

galactosyl residues emits green fluorescence and remains confined within the cell. High 

levels of acid lysosomal β-galactosidase present in MM cells of all replicative ages 

would mask the detection of senescence-dependent activity in live cells. Therefore, 

drug-treated cells were incubated 1h at 37°C and 5% CO2 with 100nM bafilomycin A1 

in culture medium to induce lysosomal alkalinization at pH 6 and, then, for 1h with 

33µM C12FDG. The specific activity of the enzyme at pH 6 is low in proliferating cells, 

whereas senescent cells show highly positive staining. Subsequently, surface staining 

for MICA, MICB, and PVR was performed as previously described and samples were 

immediately analyzed using a FACS Calibur. The C12-fluorescein signal was measured 

on the FL-1 detector, and β-galactosidase activity was estimated using the median 

fluorescence intensity (MFI) of the population.  

In some experiments 72h doxorubicin-treated SKO-007(J3) cells were incubated 

with C12FDG as previously described, and βGallow from βGalhigh MM cells were 

isolated by a FACS Aria cell sorter (BD Biosciences) through FL-1 fluorescence 

emission.  

 

 

 

3.7.   RT-PCR 
 

One microgram of total RNA was isolated using TRIzol reagent (Invitrogen) and 

used for cDNA first-strand synthesis in a 25µL reaction volume; 1µL of the resulting 
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cDNA was used in a 25µL PCR reaction in the presence of FastStart Taq DNA 

polymerase (Roche). Forward and reverse primers for polymerase chain reaction (PCR) 

amplification were, respectively: 5’-TGCTTCTGGCTGGCATCTTCC-3’ and 5’-

TAGTTCCTGCAGGCAGTC-TGC-3’ for MICA;  

5’-TCTCGCTGAGGGACATCTGGA-3’ and 5’-CAGGTCTGGTAGGTTCCATTC-3’ 

for MICB; 5’-GAGGTGACGCATGTGTCACAG-3’, 5’-

TCTTGCCGTCCACCTGGCTTG-3’ for PVR; 5’-ACCTGACTGACTACCTCATG-3’ 

and 5’-GCAGTGATCTCCTTCTGCAT-3’ for β-actin. 

PCR conditions were as follows: 94°C for 50 seconds, 58°C for 50 seconds, and 

72°C for 50 seconds for 28-32 cycles. 

 

 

 

3.8.   Real Time PCR 
 

MICA, MICB and PVR mRNA expression was analyzed by Real Time PCR. 
Total RNA from MM cell lines or from patient malignant PCs was extracted using 

Trizol (Invitrogen) after 24h of drug treatment. Total RNA (1µg) was used for cDNA 

first-strand synthesis using oligo-dT (Promega, Madison, WI) in a 25µL reaction 

volume.  

Real-time polymerase chain reaction (PCR) was performed using the ABI Prism 

7900 Sequence Detection system (Applied Biosystems, Foster City, CA). To analyze 

ligand mRNA expression, the cDNA was amplified in triplicate with the following 

primers: Hs00792952_m1 for MICA, Hs00792952_m1 for MICB, Hs00197846_m1 for 

PVR, and 4326315E for β-actin all conjugated with fluorochrome FAM, excepted for 

the β-actin conjugated with fluorochrome VIC (Applied Biosystems, Foster City, CA).  

 

 

 

3.9.   SDS-PAGE and Western Blot 
 

Drug-treated SKO-007(J3) and U266 cells were lysed for 20 min at 4°C in ice-

cold lysis buffer containing 0.2% Triton X-100, 0.3% NP40, 50mM Tris HCl pH 7.6, 

1mM EDTA, 150mM NaCl, 10µg/mL leupeptin, 1mM PMSF, 10µg/mL aprotinin, 
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10mM NaF and 1mM Na3VO4 to detect phospho-ATM and p85 or in ice-cold lysis 

buffer containing 1% Triton X-100, 0.5% DOC, 0.1% SDS, 50mM Tris HCl pH 7.5, 

1mM EDTA, 1mM EGTA, 50 mM Na4P2O7, 150mM NaCl, 5 mM MgCl2, 10µg/mL 

leupeptin, 1mM PMSF, 10µg/mL aprotinin, 100mM NaF and 1mM Na3VO4 to detect 

p21, phospho-p53, p53, phospho-Chk1/2, and β-actin. In experiments directed to detect 

ATM phosphorylation, cells were mantained in RPMI 1640 with 2% FCS 24h at 37°C 

before drug treatment. The Bio-Rad Protein Assay (Bio-Rad Laboratories; Hercules, 

CA) was used to measure protein concentration. Eighty µg of total lysates were resolved 

by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 

transferred to polyvinylidene difluoride membranes (Millipore) or nitrocellulose 

membranes (Whatman GmbH; Dassel, Germany). After blocking with BSA, 

membranes were probed with specific purified antibodies. A Horseradish Peroxidase 

(HRP)-conjugated secondary antibody and an enhanced chemiluminescence kit 

(Amersham, GE Healthcare; Buckinghamshire, UK) were used to reveal 

immunoreactivity.  
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4. RESULTS 
 

 

4.1.   The DNAM-1 and NKG2D ligands are up-regulated on human 
MM cell lines by low doses of therapeutic agents 

 

It has been recently shown that the expression of NKG2D ligands on human 

fibroblasts can be up-regulated by chemotherapy agents through the activation of the 

DNA damage response (Gasser 2005). Thus, we wanted to investigate whether low 

doses of different therapeutic agents with well-documented clinical activity in the 

treatment of MM could modulate the expression of the ligands for NKG2D and DNAM-

1 activating receptors on a panel of MM cell lines. To this aim, we evaluated the 

expression of NKG2D (MICA, MICB, ULBP1-3) and DNAM-1 (PVR and Nec-2) 

ligands on ARK, LP-1, OPM-2, RPMI-8226, SKO-007(J3), and U266 MM cell lines 

upon treatment with doxorubicin, etoposide, melphalan, bortezomib, and cisplatin at the 

doses described in ‘Drug treatment’, and not affecting cell viability as assessed by PI 

staining (data not shown). Immunofluorescence and fluorescence-activated cell sorting 

(FACS) analysis revealed that 3 (RPMI-8226, SKO-007(J3) and U266) of 6 MM cell 

lines constitutively expressed PVR, MICA, and MICB; 3 (ARK, LP-1, and OPM-2) 

expressed only PVR; whereas Nec-2, ULBP1, ULBP2, and ULBP3 were undetectable 

on all the MM cell lines (data not shown). Fortyeight hour-treatment with low doses of 

pharmacologic drugs differently modulated NKG2D and DNAM-1 ligands on the MM 

cell lines, with up-regulation of the already expressed ligands. A dose-response curve 

was performed to select the dose that did not affect cell viability and induced ligand up-

regulation (Fig. 8A). Of note, we found that doxorubicin and melphalan were 

particularly effective in enhancing both MICA and PVR expression on RPMI-8226, 

SKO-007(J3) and U266 myeloma cells. Thus, we focused our attention on the SKO-

007(J3) MM cell line since in addition to MICA and PVR, MICB was also up-regulated 

on these cells and not on the cells of the other MM cell lines (Fig. 8B). 

We then tested by Real Time PCR whether PVR, MICA, and MICB surface 

expression on melphalan- or doxorubicin-treated SKO-007(J3) cells was accompanied 

by a corresponding increase in mRNA levels, and we found an augmentation of PVR, 

MICA, and MICB transcripts at 24h after treatment (Fig. 8C). 
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        A 
 

 

  
 

        B                C 

 
Figure 8. Modulation of PVR, MICA, and MICB expression on the SKO-007(J3) cell line 
after doxorubicin or melphalan treatment.  
(A) A dose-response curve was performed to choose the drug dose that combines the better ligand 
up-regulation with the less toxicity. (B) PVR, MICA, and MICB surface expression was analyzed 
by flow cytometry on SKO-007(J3) cells treated with doxorubicin (0.05µM) or melphalan (22µM) 
for 48h. The gray histogram represents the isotype control antibody, whereas dashed lines 
represent the specific ligand. Data are representative of 1 of 4 independent experiments. (C) The 
corresponding increase in mRNA levels has been tested after 24h by Real Time PCR performed as 
described in ‘Real Time PCR’. Data, expressed as arbitrary units, were normalized with β-actin, 
and referred to untreated cells considered as calibrator. Data are presented as the means plus or 
minus SD of triplicates. Significant differences as calculated by paired Student t test are indicated: 
*P < .01; **P < .05. 

 

 

 

 

4.2.   Doxorubicin or melphalan treatment of SKO-007(J3) MM cells 
increase NK cell degranulation in a NKG2D- and DNAM1-
dependent manner 

 

The enhanced expression of NKG2D and DNAM-1 ligands on drug-treated 
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SKO-007(J3) myeloma cells prompted us to test whether they were able to trigger NK-

cell degranulation. The expression of the lysosomal marker CD107a, which correlates 

with NK cell cytotoxicity (Bryceson 2005) was evaluated by immunofluorescence and 

FACS analysis by gating on NK cells upon their interaction with doxorubicin- or 

melphalan-treated, or untreated, SKO-007(J3) cells used as targets. The up-regulation of 

NKG2D and DNAM-1 ligands was verified before the degranulation assay (data not 

shown). As shown in Fig. 9, expression of CD107a on NK cells contacting SKO-

007(J3) target cells indicates that NK cell degranulation is induced and that increases 

after drug treatment. The assay was performed at the E/T ratio of 2.5:1 and similar 

results were obtained using different E/T ratios (data not shown). 

 

 

 

 
Figure 9. Doxorubicin or melphalan treatment of SKO-007(J3) cells increases NK-cell 
degranulation in an NKG2D- and DNAM1-dependent manner.  
NK cells derived from PBMCs of healthy donors, preactivated with 200 U/mL IL-2 for 12h, were 
incubated with SKO-007(J3) cells, untreated or treated as described in the legend of Figure 8, and 
used as target cells in a degranulation assay. The assay was performed at the effector-target (E/T) 
ratio of 2.5:1. After 2h at 37°C, cells were stained with anti-CD56, anti-CD3, and anti-CD107a 
mAbs. Cell surface expression of CD107a was analyzed on CD56+CD3- cells. To evaluate the role 
of NKG2D and DNAM-1, the assay was performed also treating NK cells with blocking anti-
DNAM-1, anti-NKG2D, or anti-CD56 mAb used as control. Results are expressed as the 
percentage of CD107a+ cells obtained by subtracting the percentage of isotype control antibody, 
and are representative of 1 out of 4 independent experiments. Data are presented as the means plus 
or minus SD of triplicates. Antibody blocking on drug-treated cells always showed a statistically 
significant increase in CD107a expression, compared with drug-treated cells with no Ab or control 
Ab (P < .05 or P < .005). A statistically significant difference was also observed between NT 
versus drug-treated samples for no Ab (P < .05). All other combinations were not significant. 

 

 

 

Based on these findings, we evaluated the role of NKG2D and DNAM-1 in MM 
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cell recognition by performing the degranulation assay in the presence of anti-NKG2D 

and/or anti-DNAM-1 blocking mAbs. Treatment of NK cells with NKG2D and DNAM-

1 blocking antibodies decreased CD107a expression, whereas no changes were 

observed upon treatment with a control mAb (Fig. 9). In addition, NKG2D and DNAM-

1 blocking antibodies partially affected basal degranulation, leading to the conclusion 

that constitutive NK-cell degranulation also involves these activating receptors. 

Our results demonstrate that SKO-007(J3) cells treated with low doses of 

chemotherapeutic agents enhance NK-cell degranulation by promoting their recognition 

by NKG2D and DNAM-1 activating receptors. 

 

 

 

4.3.   Therapeutic drug-induced up-regulation of NKG2D and DNAM-1 
ligands on patient-derived malignant PCs contributes to the 
degranulation of autologous NK cells 

 

We next investigated whether our findings could be extended to patient-derived 

myeloma cells obtained from bone marrow samples. We studied 4 patients affected by 

smoldering MM, and 6 patients affected by an active MM according to Durie and 

Salmon’s staging system, prior to treatment (Table 1, Pt. 1-10). We first characterized 

by flow cytometry the cell surface expression of NKG2D and DNAM-1 ligands gating 

on CD38+CD138+ PCs (Fig. 10A), and we found that patient-derived PCs displayed 

different levels of both NKG2D and DNAM-1 ligands independently of the clinical 

stage and/or the percentage of malignant PCs (Fig. 10B). 

In light of the results obtained with MM cell lines in vitro, we assessed whether 

treatment of malignant PCs with melphalan could up-regulate the expression of NKG2D 

and DNAM-1 ligands. In addition, we tested the proteasome inhibitor bortezomib 

commonly used in MM therapy. Depending on the amount of PCs obtained from the 

different patients, samples were treated with one (P1, P3, and P4) or both (P2, P5, and 

P6) drugs (Fig. 11). Consistent with the data obtained with in vitro cell lines, drug-

treated ex vivo PCs expressed higher levels of surface NKG2D and DNAM-1 ligands, 

with considerable variations observed among different patients not related to the stage 

of disease (Fig. 11). PCs from patient P2 were the best responders to drug treatment as 

shown by the marked increase of MICA, MICB, and Nec-2 expression. It is worth 

noting that unlike MM cell lines, the expression of Nec-2 and ULBP1-3 on patient-
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derived PCs was also enhanced by drug treatment. 

 

 

   A          B 

 
Figure 10. Patient characteristics.  
(A) Malignant PCs obtained from BM samples of MM patients were selected by gating on 
CD38+CD138+ cells and an example is shown (P2). (B) NKG2D and DNAM-1 ligand expression 
was evaluated on malignant PCs from BM sample by gating on the CD38+CD138+ population. The 
mean fluorescence intensity (MFI) of each specific ligand subtracted from the MFI of isotype 
control antibody is reported. 

 

 

 

Furthermore, some patients (P7, P8, P9, and P10) were also tested by Real Time 

PCR to investigate whether ligand surface expression on melphalan- or bortezomib-

treated PCs was accompanied by a corresponding increase in mRNA levels at 24h after 

drug treatment (Fig. 12).  

When a sufficient number of PCs (P1, P2, P3, and P5) were isolated, we 

examined autologous NK-cell degranulation, to assess the functional role of ligand up-

regulation. The degranulation assay was performed by analyzing the expression of 

CD107a on autologous CD3-CD16+CD56+CD138- NK cells. The percentage of 

peripheral blood NK cells from the different patients was comparable, as was the 

expression of NKG2D and DNAM-1 activating receptors (data not shown). NK cells 

derived from the MM patients expressed CD107a upon their interaction with the 

autologous malignant PCs and this expression was increased upon melphalan or 

bortezomib treatment. In addition, for 2 patients (P2 and P5) we performed the 

degranulation assay in the presence of anti-NKG2D or anti-DNAM-1 blocking mAbs 

and we found that NK cell degranulation upon their interaction with drug-treated but not 
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with untreated malignant PCs was dependent on both NKG2D and DNAM-1 receptors 

(Fig. 13). 

Thus, the results with patient-derived malignant PCs confirm our findings on 

MM cell lines and strongly indicate that low doses of therapeutic agents increase NK-

cell degranulation by promoting cognate interaction of both NKG2D and DNAM-1 with 

their respective ligands. 

 

 

 

 
 
Figure 11. DNAM-1 and NKG2D ligands are upregulated on patient-derived PCs after 
therapeutic treatment.  
Mononuclear cells were cultured with melphalan (20µM) or bortezomib (5nM) in complete 
medium supplemented with 20ng/mL IL-3 and 2ng/mL IL-6. Upon 48h-treatment, the expression 
of ULBP1 (1), ULBP2 (2), ULBP3 (3), MICA (A), MICB (B), PVR (P), and Nec-2 (N) was 
analyzed by flow cytometry gating on CD38+CD138+ PCs. Three examples of the typical FACS 
analysis performed are represented in the squares. *=P1; **=P2. Data are expressed as fold 
increase between the MFI of specific ligand subtracted for MFI of isotype control of treated cells 
divided by MFI of specific ligand subtracted for MFI of isotype control of untreated cells. 
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Figure 13. Therapeutic drug-induced up-regulation of NKG2D and DNAM-1 ligands on 
patient-derived malignant PCs contributes to the degranulation of autologous NK cells. 
Mononuclear cells derived from the BM of the patients were prepared as described in ‘Cell lines 
and clinical samples’, treated with melphalan (20µM) or bortezomib (5nM) for 48h, then 
compared with untreated cells for their capability to enhance NK cell degranulation. Myeloma 
cells were exposed for 2h to autologous IL-2–activated PBMCs and cell surface expression of 
CD107a on NK cells was analyzed. The assay was performed at the effector-target (E/T) ratio of 
2.5:1. Significant differences, as calculated by paired Student t test, were found comparing NT 
versus melphalan-treated samples (P < .05). Statistical analysis on bortezomib-treated samples was 
not performed since 2 patients (P2 and P5) were studied. To evaluate NKG2D and DNAM-1 
contribution, we performed the degranulation assay by preincubating PBMCs with the anti-
NKG2D, anti-DNAM-1, or anti-MHC I neutralizing mAbs before the assay (P2 and P5). 

 

Figure 12. Modulation of DNAM-
1 and NKG2D ligand expression on 
patient-derived PCs following 
therapheutic treatment at protein 
and mRNA level. 
Malignant PCs from BM samples were 
treated and ligand surface expression 
was analyzed as previously described. 
The percentage of CD38+CD138+ cells 
expressing the indicated ligand before 
and after the drug-treatment is shown. 
The corresponding increase in mRNA 
levels has been tested after 24h by 
Real Time PCR performed as 
described in the Materials and 
Methods. The relative mRNA amount 
for the different ligands was evaluated 
on untreated (white) and melphalan 
(dark grey) (20µM) or bortezomib 
(black) (5nM) treated PCs. The 
mRNA levels have been also assessed 
on PCs (P7 and P10) treated for 24h 
with doxorubicin (light grey) 
(0.05µM). Data expressed as arbitrary 
units were normalized with β-actin, 
and referred to untreated cells 
considered as calibrator. Data are 
presented as the means plus or minus 
standard deviations from triplicates. 
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4.4.   Low doses of doxorubicin and melphalan chemotherapeutic drugs 
trigger the DDR and induce ATM/ATR- and Chk1/2-dependent 
MICA, MICB and PVR expression on myeloma cells 

 

Gasser et al. demonstrated that genotoxic stress-induced NKG2D ligand up-

regulation on human fibroblasts and mouse tumor cell lines was dependent on DDR 

pathway triggering (Gasser 2005). In addition, many of the chemotherapeutic drugs 

used in clinical trials today, including doxorubicin or melphalan, have the capability of 

inducing ATM activation (Kurz 2004, Bozko 2005). Thus, we decided to investigate 

whether treatment with low doses of doxorubicin and melphalan, were able to initiate 

the DDR signaling cascade in order to identify some of the molecular events underlying 

the increased expression of NK cell receptor activating ligands.  

To this aim, we firstly evaluated the ability of low doses of doxorubicin and 

melphalan to trigger ATM kinase activation on SKO-007(J3) cells by Western Blot 

analysis employing a phospho-specific antibody directed against Ser1981 that 

recognizes the activated form of this kinase. Doxorubicin- or melphalan-treatment 

resulted in enhanced ATM phosphorylation that was evident at 5h of drug stimulation 

and still persisted at 24h (Fig. 14A and data not shown). 

The activation of the components of the ATM/ATR-dependent signaling cascade 

such as H2AX, considered a main marker of DNA damage, Chk1/2 cell cycle 

checkpoint kinases, and p53, were also analyzed. ATM-induced histone 

phosphorylation on residue serine 139 (γ-H2AX) in response to low doses of melphalan 

and doxorubicin was examined by immunofluorescence and flow cytometry and was 

observed to reach its maximum at 24h (Fig. 14B and data not shown). Evaluation of 

Chk1 and Chk2 phosphorylation on multiple aminoacidic residues by Western Blot 

analysis revealed a more prominent phosphorylation for Chk1 on Ser296 and Ser345 

residues and for Chk2 on Thr68 and Ser516 residues on drug-treated cells (Fig. 14C). 

We then examined whether drug treatment was also able to induce ATM dependent-p53 

activation. ATM-dependent p53 phosphorylation was evaluated by Western Blot 

analysis using a phospho-specific antibody directed against p53-Ser15, in the presence 

or absence of ATM/ATR inhibitor caffeine. The increase of total p53 expression was 

also established. As shown in Fig. 14D, increased p53 phosphorylation was already 

evident at 3-5h after drug treatment, and was reduced by caffeine further indicating its 

dependence on ATM kinase activation. Similar results were obtained with U266 MM 

cell line (data not shown). 
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Figure 14. Low doses of doxorubicin and melphalan chemotherapeutic drugs activate the 
DNA Damage Response on myeloma cells. 
(A) SKO-007(J3) cells were starved for 24h in culture medium with 2% fetal calf serum, and then 
left untreated or stimulated with doxorubicin (0.05µM) or melphalan (22µM), for the indicated 
times at 37°C. Cell lysates were immunoblotted with anti-phospho-ATM, or with anti-p85, used as 
loading control. Data shown are representative of 1 out of 4 independent experiments. (B) 
Phosphorylation of H2AX upon 24h drug treatment was evaluated on SKO-007(J3) cells by 
immunofluorescence and FACS analysis by staining with anti-γH2AX or anti-cIgG. (C) SKO-
007(J3) cells were treated as previously described for 10h. Lysates were probed with antibodies to 
different phosphorylation sites of Chk1 and Chk2 or β-actin, used as loading control. Numbers 
represent densitometric analysis of Chk1/2 normalized to β-actin relative to the control untreated 
cells. Data shown are representative of 1 out of 2 independent experiments. (D) SKO-007(J3) cell 
line was preincubated 1h with caffeine (1mM), and then treated with doxorubicin or melphalan for 
the indicated times. Lysates were probed with antibodies to phospho-p53-Ser15 or total p53. β-
actin was used as loading control. Numbers represent densitometric analysis of phospho-p53 
normalized to β-actin relative to the control untreated cells. Data shown are representative of 1 out 
of 3 independent experiments.  

 

 

  

Collectively, our findings clearly demonstrate that low doses of doxorubicin and 

melphalan are able to trigger the activation of DDR.  

Thus, we focused our attention on the role of drug-induced DDR signaling on 

MICA, MICB and PVR enhanced expression on MM cells and we wondered whether 

up-regulation of MICA, MICB, and PVR was dependent on the activity of ATM and 

ATR, and on their downstream molecules. Thus, we tested whether caffeine, a widely 



 56 

used inhibitor capable of blocking both ATM and ATR catalytic activity (Sarkaria 

1999) or KU-55933, a specific inhibitor of ATM (Hickson 2004) could interfere with 

the induction of MICA, MICB, and PVR expression on doxorubicin or melphalan-

treated SKO-007(J3) cells. Cells were pretreated with doses of caffeine (1mM) or KU-

55933 (10µM) that do not affect cell viability, and then incubated with doxorubicin or 

melphalan for 48h. We found that MICA, MICB, as well as PVR up-regulation was 

completely inhibited by caffeine and partially reduced by KU-55933 treatment (Fig. 

15), whereas both inhibitors did not impair constitutive ligand expression thus 

suggesting that the two sensor of DNA damage response ATM/ATR are involved in the 

regulation of both NKG2D (Gasser 2005) and DNAM-1 ligand expression.  

 

 

 
Figure 15. Up-regulation of DNAM-1 (PVR) and NKG2D (MICA and MICB) ligands by 
doxorubicin or melphalan treatment depends on DNA damage sensors ATM and ATR. 
The SKO-007(J3) cell line was preincubated for 2h with caffeine (1mM) or KU55933 (10µM), 
then treated with doxorubicin (0.05µM) or melphalan (22µM) for a further 48h. The expression of 
PVR, MICA, and MICB was analyzed by flow cytometry. On the y-axis is shown the median 
fluorescence intensity (MFI) values of ligand expression obtained by subtracting the MFI of the 
isotype control antibody. Results are representative of 1 of 4 independent experiments. 

 

 

 

Moreover, SKO-007(J3) cells were treated with SB218078, UCN-01 and 

Pifithrin-α, pharmacological inhibitors of Chk1, Chk1/2 and p53 respectively, before 

doxorubicin and melphalan treatment, and ligand expression was assessed by 
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immunofluorescence and FACS analysis. A role for the Chk1/2 kinases was established 

by the finding that the drug-induced MICA, MICB, and PVR ligand up-regulation was 

almost completely inhibited by both the Chk1/2 inhibitors (Fig. 16). In an attempt to 

explore whether UCN-01-induced inhibition of ligand expression could be also related 

to its ability to block conventional PKC subfamily, we analyzed the effect of Gö 6983, a 

widespread PKC inhibitor, on drug-induced NKG2D and DNAM-1 ligand expression. 

Pretreatment of MM cells with this inhibitor did not significantly affect ligand 

induction, probably excluding a role of PKC kinases (data not shown).  

 

 

 
 
Figure 16. Involvement of Chk1/2 activity in NKG2D (MICA and MICB) and DNAM-1 
(PVR) ligand up-regulation triggered by low doses of doxorubicin or melphalan treatment. 
MICA, MICB and PVR surface expression was analyzed by immunofluorescence and flow 
cytometry on SKO-007(J3) cell preincubated 1h with SB218078 (1µM) or UCN-01 (20nM), 
before 72h treatment with doxorubicin (0.05µM) or melphalan (22µM). Data shown are 
representative of 1 out of 3 independent experiments.  

 

 

By contrast, the p53 inhibitor Pifithrin-α at the experimental conditions that 

blocked drug-increased p21 expression, did not affect ligand up-regulation (Fig.17A). 

To confirm that p53 was not involved in MICA, MICB and PVR induction by 
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doxorubicin and melphalan, p53 expression was silenced in SKO-007(J3) cells using 

RNA interference. MM cells were infected with a retrovirus encoding shRNA specific 

for p53 (shRNA p53) or with a control retrovirus (shRNA GFP). After drug selection, 

we obtained resistant cells where p53 was specifically inhibited, as confirmed by 

Western Blot. As shown, up-regulation of MICA, MICB and PVR expression persists in 

shRNA p53 SKO-007(J3) cells (Fig. 17B).  

 

 

  
Figure 17. Low doses of doxorubicin and melphalan up-regulate NKG2D and DNAM-1 
ligand in a p53 independent manner. 
(A) SKO-007(J3) cells were pre-incubated 1h with Pifithrin-α (30 µM) before 72h treatment with 
doxorubicin (0.05µM) or melphalan (22µM). MICA, MICB and PVR surface expression was 
analyzed by immunofluorescence and flow cytometry. Western blot of total cell lysates 
immunoblotted with anti-p21 Ab, or with anti-βactin, used as loading control is shown on the 
bottom panel. (B) SKO-007(J3) were infected with a retrovirus encoding a shRNA specific for p53 
(shRNA p53) or with a control retrovirus (shRNA GFP). The expression of MICA, MICB and 
PVR was analyzed upon doxorubicin or melphalan treatment by immunofluorescence and flow 
cytometry. Western blot was performed using whole-cell extracts from shRNA p53 or shRNA 
GFP retrovirus-infected SKO-007(J3) cells. The proteins transferred to nitrocellulose membranes 
were immunoblotted with anti-p53 or anti-Hsp70 to verify that similar amounts of protein had 
been loaded in each lane.  

 

 

 

 

4.5.   DNAM-1 and NKG2D ligands are up-regulated on doxorubicin- 
or melphalan-induced senescent MM cells 

 

Senescent cells display an increase of cell size, senescence associated expression 

of β-galactosidase activity, and an altered pattern of gene expression (Roninson 2003, 

Collado 2007) and in response to drug-induced stress they are arrested in the G2M cell-

cycle phase (Chang 1999, Chang 2002). The ATM/ATR signaling pathway has been 

found constitutively active in drug-induced senescent tumor cells, and senescence 
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induced by sublethal concentrations of anticancer drugs can be regarded as a form of 

permanently maintained DDR (Schmitt 2007). In addition, some evidences demonstrate 

the ability of doxorubicin to induce a senescent phenotype on both normal and tumor 

cells (Elmore 2002, Maejima 2008). 

Our goal was to determine whether drug-induced up-regulation of NKG2D and 

DNAM-1 ligands on MM cells was associated with a senescent phenotype. To this end, 

we first analyzed whether SKO-007(J3) cells undergo senescence after exposure to the 

low doses of doxorubicin or melphalan that up-regulate NKG2D and DNAM-1 ligands 

and do not induce apoptosis, by evaluating SA-βGalactosidase activity. β-Galactosidase 

activity visualized by microscopy, through the appearance of a blue color in the cells, 

was already present in the SKO-007(J3) MM cells after 48h of incubation with the 

chemotherapeutic agents (data not shown), but the staining became more intense and 

was present in virtually every cell when they were left for further 24h in the absence of 

the drug (Fig. 18A). 

We then tested cell-cycle progression of doxorubicin- or melphalan-treated MM 

cells, and the NKG2D and DNAM-1 ligand expression on cells at different cell-cycle 

phases. We observed that treatment of SKO-007(J3) with low doses of doxorubicin or 

melphalan induced a G2M cell-cycle arrest that was already present at 24h, increased at 

48h, and was almost complete after 72h of treatment with doxorubicin (Fig. 18B and 

Fig. 21). Similarly, melphalan-treated cells underwent a G2M cell cycle arrest, but with 

a slower kinetics.  

Analysis of cell cycle phase-associated ligand expression revealed that in 

response to drug treatment, MICA was up-regulated in all cell-cycle phases, whereas 

PVR and MICB up-regulation was more prominent on cells arrested in the G2M phase 

(Fig. 18C). As a control, we evaluated CD138 expression at different cell cycle phases 

and this was not affected by drug treatment (data not shown). 

Collectively, these results indicate that the NKG2D and DNAM-1 ligands are 

up-regulated on drug-induced senescent MM cells. 
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Figure 18. DNAM-1 (PVR) and NKG2D (MICA and MICB) ligands are up-regulated on 
doxorubicin- or melphalan-induced senescent MM cells. 
(A) SKO-007(J3) cells were incubated with doxorubicin (0.05µM) or melphalan (22µM) for 48h 
and left for an additional 24h in the absence of the drug. MM cells were then fixed, and incubated 
overnight at 37°C without CO2 with SA-β-Gal staining solution (‘Senescence associated-β-
galactosidase staining’). Senescent cells were identified as blue-stained cells by microscopy. 
Results are representative of 1 of 3 independent experiments. (B) SKO-007(J3) cells were treated 
for 24h and 48h with doxorubicin or melphalan, then fixed and stained with PI to analyze cell 
distribution among the different cell-cycle phases. (C) To correlate PVR, MICA, and MICB up-
regulation with a specific cell-cycle phase, the untreated and treated SKO-007(J3) cells were 
incubated with PI and stained for these ligands. The analysis was performed by flow cytometry. 
The corresponding MFI values of the ligand expression obtained by subtracting the MFI of the 
isotype control antibody are reported in the table. Results are representative of 1 of 5 independent 
experiments. 
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4.6.   Genotoxic agents trigger ROS-dependent DDR activation and up-
regulation of MICA, MICB and PVR expression on myeloma cells 

 

Based on the evidence that low doses of doxorubicin and melphalan increase 

superoxide and peroxide intracellular production (data not shown), and ATM and 

components of the ATM-dependent signaling cascade are regulated by ROS 

(Shackelford 2004, Kurz 2004b, Guo 2010), we wondered whether changes of redox 

state could have a role in drug-induced activating ligand up-regulation. 

Thus, we evaluated ATM-Ser1981, Chk1-Ser345 and Chk2-Thr68 

phosphorylation upon treatment with the anti-oxidant agent NAC. Cells were pretreated 

with NAC (10mM), and then incubated with doxorubicin or melphalan. Exposure of 

SKO-007(J3) cells to free radical scavenger resulted in a complete inhibition of ATM, 

Chk1 and Chk2 enhanced phosphorylation (Fig. 19A-B).  

Thus, we tested whether NAC treatment could also interfere with the induction of 

MICA, MICB and PVR expression on doxorubicin- or melphalan-treated MM cells. 

Cells were pre-treated with NAC, and further incubated with doxorubicin or melphalan 

for a maximum of 72h. We found that ligand up-regulation was completely inhibited at 

both protein and mRNA levels by this antioxidant agent (Fig. 19C-D), that however did 

not impair constitutive ligand expression (Fig. 19D and data not shown).  

Our results demonstrate that changes in the redox state are involved on drug-

induced regulation of both NKG2D and DNAM-1 ligand expression.  

 

 

 

4.7.   Doxorubicin and melphalan-dependent changes on redox state 
control ligand up-regulation on MM senescent cells 

 

Changes in the redox state have been reported to be critical for induction of 

cellular senescence (Balaban 2005) and we have demonstrated that drug-induced up-

regulation of NKG2D and DNAM-1 ligands on MM cells is associated with a 

senescent-dependent G2M cell cycle arrest (Fig. 18). 

Thus, we decided to analyze whether changes in the redox state could interfere 

with the induction of ligands on MM cells displaying a senescent phenotype. We 

observed that NAC pretreatment of myeloma cells caused a complete block of 

doxorubicin and melphalan-dependent G2M cell cycle arrest, being the percent of cells 
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in G2M phase comparable to that of untreated cells (Fig. 20A).  

 

 

 
 
Figure 19. Doxorubicin- and melphalan-induced changes in the redox state trigger DNA 
Damage Response and up-regulation of MICA, MICB, and PVR expression on myeloma 
cells. 
(A) SKO-007(J3) cells were starved for 24h in medium containing 2% fetal calf serum, pre-
incubated 1h with NAC (10mM), and then treated with doxorubicin (0.05µM) or melphalan 
(22µM) for further 5h or 10h. Cell lysates were immunoblotted with anti-phospho-ATM or with 
anti-p85, used as loading control. Data shown are representative of 1 out of 3 independent 
experiments. Numbers represent densitometric analysis of ATM normalized to p85 relative to the 
control untreated cells. (B) SKO-007(J3) cells were pre-incubated 1h with NAC (10mM), and then 
treated as previously described for 12h. Lysates were probed with antibodies anti-phospho-Chk1-
Ser345, anti-phospho-Chk2-Thr68, or anti-β-actin. Numbers represent densitometric analysis of 
Chk1/Chk2 normalized to β-actin relative to the control untreated cells. Data shown are 
representative of 1 out of 2 independent experiments. (C) MICA, MICB and PVR surface 
expression was analyzed by immunofluorescence and flow cytometry on SKO-007(J3) cells 
pretreated 1h with NAC (10mM) and then treated 72h with doxorubicin or melphalan. Data shown 
are representative of 1 out of 4 independent experiments. (D) The corresponding increase in 
mRNA levels has been tested after 24h by Real Time PCR. The level of ligand expression was 
measured using the Threshold Cycle value (Ct). The ∆Ct was obtained by subtracting the Ct value 
of the gene of interest (MICA, MICB or PVR) from the housekeeping gene (β-actin) Ct value. We 
used ∆Ct of NT sample as the calibrator. The fold change was calculated according to the formula 
2-∆∆Ct, where ∆∆Ct was the difference between ∆Ct of the sample and that of the calibrator 
(according to the formula, the value of the calibrator in each run is 1). 

 

  

In addition, as we previously described, in response to drug treatment MICA 
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expression was up-regulated in all cell cycle phases, whereas PVR and MICB up-

regulation was more prominent on senescent cells (Fig. 18C). NAC treatment 

completely abrogated drug-induced ligand expression on all cell populations 

independently of their cell cycle phases (Fig. 20B). 

 

 

 
Figure 20. Doxorubicin and Melphalan-dependent ROS production controls senescent-
associated G2M cell cycle phase arrest on SKO-007(J3) myeloma cells. 
(A) SKO-007(J3) cells were pre-incubated 1h with NAC (10mM), treated with doxorubicin 
(0.05µM) or melphalan (20µM) for further 72h, then fixed and stained with PI to analyze cell 
distribution among the different cell cycle phases. The analysis was performed by flow cytometry. 
Results are representative of 1 out of 3 independent experiments. (B) In order to correlate the 
effect of NAC to the MICA, MICB and PVR up-regulation in the different cell cycle phase, SKO-
007(J3) cells were treated 72h with doxorubicin or melphalan after 1h-NAC pre-treatment, and 
then stained with antibody specific for these ligands before fixing and incubating with PI. Results 
are representative of 1 out of 3 independent experiments.  

 

 

 

The expression of NKG2D and DNAM-1 ligands on senescent cells was also 

evaluated with a recently described method that gives a more quantitative evaluation of 

SA-βGal activity by using the fluorescent lipophilic βgalactosidase substrate C12FDG, 

and flow cytometry (Kurz 2000). First of all, we analyzed by flow cytometry both cell 

cycle analysis and expression of SA-βGal activity, the involvement of DDR and redox 

signaling on the capacity of low doses of doxorubicin and melphalan to induce a 

senescent phenotype by employing different pharmacological inhibitors. Cells were 

pretreated with caffeine (1mM), UCN-01 (20nM), or NAC (10mM) and then incubated 
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with therapeutics drugs for further 72h. The percentage of cells arrested on the G2M cell 

cycle phase paralleled that of cells showing an increased C12FDG staining (βGalhigh). In 

addition, we found that the percentage of senescent cells was reduced by all the 

inhibitors tested, suggesting a role for DDR and redox signaling cascade in the 

establishment of drug-induced senescence (Fig. 21). 

 

 

 
Figure 21. Doxorubicin and Melphalan-induced G2M cell cycle arrested-cells are 
comparable to βGalhigh activity-cells analyzed by flow cytometry. 
SKO-007(J3) cells, upon 72h-treatment of chemoterapeutic drugs, were pretreated 1h with 100nM 
bafilomycin A1 to induce lysosomal alkalinization, followed by 1h incubation with C12FDG 
(33µM). In the panel are shown the flow cytometric detection of SA-βGal activity compared to the 
cell distribution among the different cell cycle phases of SKO-007(J3) cells preincubated 1h with 
caffeine (1mM), NAC (10mM) or UCN-01 (20nM), before 72h treatment with doxorubicin 
(0.05µM) or melphalan (22µM). 
 

 

 

The analysis of NKG2D and DNAM-1 ligand expression on C12FDG-stained 

MM cells revealed that in response to doxorubicin treatment MICA, PVR and MICB 

up-regulation was more prominent on βGalhigh cells (Fig. 22A).  
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Figure 22. Redox signalling and DNA damage response activation control ligand up-
regulation on doxorubicin-induced βGalhigh senescent cells. 
(A) SKO-007(J3) cells, upon 72h-treatment of chemoterapeutic drugs, were pretreated 1h with 100 
nM bafilomycin A1 to induce lysosomal alkalinization, followed by 1h incubation with C12FDG 
(33µM) and the expression of MICA, MICB, and PVR on drug-induced βGalhigh senescent cells 
was analyzed by flow cytometry. On the y-axis is shown ligand expression while on x-axis the SA-
βGal activity. Numbers represent the percentage of βGallow and βGalhigh cells. Results are 
representative of 1 out of 3 independent experiments. (B) Seventytwo hour doxorubicin-treated 
SKO-007(J3) cells were incubated with C12FDG as previously described, and selected by a 
FACSAria cell sorter (BD Biosciences) through FL-1 green fluorescence emission. mRNA levels 
of MICA, MICB, and PVR has been tested by RT-PCR. The housekeeping gene β-actin was used 
as loading control. Results are representative of 1 out of 2 independent experiments. 

 

 

 

Moreover, we sorted MM cells for the levels of SA-βGal activity and performed 

a RT-PCR assay to establish MICA, MICB and PVR mRNA expression in βGallow and 

βGalhigh cell populations. Accordingly with our previous findings, ligand expression was 

more pronounced in βGalhigh cells confirming that also at mRNA levels NKG2D and 

DNAM-1 activating ligands are preferentially increased on senescent cells (Fig. 22B). 

Inhibition of ATM/ATR and Chk1/2 activation by caffeine and UCN-01 treatment, 
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respectively resulted in a decreased percentage of βGalhigh doxorubicin-treated MM 

cells that returned to almost basal levels, associated with reduced MICA, MICB and 

PVR expression. In the presence of NAC, doxorubicin treatment failed to trigger the 

cellular senescence program and the concomitant NK receptor activating ligand 

expression (Fig. 22A). We obtained similar results with melphalan treatment (data not 

shown). 

Overall, our findings suggest that ROS-dependent activation of DDR is involved in 

the regulation of both NKG2D and DNAM-1 ligand expression on MM senescent cells. 

 

 

 

4.8.   Chk1/2 activation and ROS generation are involved in DNAM-1 
and NKG2D ligand up-regulation on MM patient-derived PCs 

 

Analysis of patient-derived myeloma cells obtained from bone marrow samples 

gave us the possibility to extend our observations on primary malignant plasma cells as 

well as to study the regulation of NKG2D ligands belonging to the ULBP family and the 

DNAM-1 ligand Nec-2, that are not present on the surface of MM cell lines and are up-

regulated on patient-derived cells. We analyzed 8 patients affected by multiple myeloma 

at different stages according to Durie & Salmon’s staging system (Table 1, Pt. 11-18). 
CD138+ malignant PCs were purified from bone marrow aspirates and treated with 

doxorubicin or melphalan. As previously shown, up-regulation of surface NKG2D and 

DNAM-1 ligands on drug-treated ex vivo PCs was variable among different patients 

(Fig. 11) and for sake of simplicity we decided to only report the effect of inhibitors on 

the expression of the NKG2D and DNAM-1 ligands undergoing up-regulation (Fig. 23). 

In order to analyze the role of Chk1/2 in drug-mediated up-regulation of NK 

activating receptor ligand in patient-derived malignant PCs (Pt. 11-13), CD138+ cells 

were preincubated with UCN-01 (10nM) before doxorubicin and melphalan treatment. 

We confirmed, such as with MM cell lines, that Chk1/2 has an important role also in ex 

vivo ligand up-regulation on malignant PCs induced by low doses of chemotherapeutic 

drugs (Fig. 23A). 

We also investigated the role of p53, that has been recently shown to be involved 

in ULBP1/2 up-regulation in cancer cell line carrying inducible wtp53 or mutp53 

(Textor 2011). We could still observe no changes in the up-regulation of NKG2D and 

DNAM-1 ligands on ex vivo CD138+ PCs incubated with Pifithrin-α before melphalan 
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treatment suggesting that also the ULBPs are up-regulated upon drug treatment in a p53 

independent manner (Fig. 23C). 

 

 

A 

  
B 

 
 

C 

 
 
Figure 23. Low doses of therapeutic agents upregulate DNAM-1 and NKG2D ligands on 
patient-derived PCs in a Chk1/2 and ROS-dependent manner. 
Purified CD138+ cells were pre-incubated 1h with UCN-01 (10nM) (A), NAC (2mM) (B), or 
Pifithrin-α (30µM) (C), and then cultured with doxorubicin (0.05µM) or melphalan (20µM) for 
further 48h in complete medium supplemented with 20ng/ml of IL-3 and 2ng/ml of IL-6. Upon 
treatment, the expression of MICA, MICB, ULBP1, ULBP2, ULBP3, PVR and Nec-2 was 
analyzed by immunofluorescence and flow cytometry on the indicated patients. On the y-axis is 
shown the MFI values obtained by subtracting the MFI of the isotype control antibody. Pt=patient.  

 

 

 

We then tested the role of redox signaling, by preincubating purified CD138+ 

PCs with NAC before drug treatment. Depending on the amount of PCs obtained from 
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the different patients, samples were treated with melphalan (Pt. 14-16) or doxorubicin 

(Pt. 17, 11-12) drugs. Consistent with the data obtained with MM cell lines, NAC 

pretreatment of drug-treated ex vivo malignant cells was able to completely block 

NKG2D and DNAM-1 ligand surface up-regulation (Fig. 23B). In addition, our findings 

indicate that NAC does not have a strong effect on ligand basal level (data not shown). 

The observation obtained on isolated CD138+ PCs indicates that ligand up-regulation is 

triggered by ROS generated by PCs and not by other BM-derived cells.  

 All together these data further support the findings obtained on MM cell lines 

and strongly indicate that redox signaling dependent DDR activation is responsible of 

the drug-triggered NKG2D and DNAM-1 ligand up-regulation on patient derived 

malignant PCs. 
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5. DISCUSSION 
 

 

In the present study aimed at identifying new NK cell-based chemo-

immunotherapeutic approaches against MM, we investigated NKG2D and DNAM-1 

ligand expression induced by genotoxic agents on cancer cells, as well as the 

mechanisms underlying their regulation. We demonstrated that commonly used 

chemotherapeutic drugs, when used at low doses, induce the up-regulation of NKG2D 

and DNAM-1 ligand expression on MM cells, and, consequently, enhance NK cell 

degranulation toward drug-treated tumor cells. Moreover, ligand up-regulation on drug-

treated MM cells occurs in conjuction with the establishment of a chemotherapy-

induced senescent phenotype. These effects depend on the activation of a ROS-

dependent DNA damage response, and, in particular, drug-induced NKG2D and 

DNAM-1 ligand up-regulation occurs in a ATM/ATR and Chk1/2-dependent but p53-

independent manner. 

We showed that doxorubicin or melphalan, when used at doses that do not affect 

cell viability, induce the up-regulation of MICA, MICB and PVR expression on MM 

cell lines both as extracellular protein and mRNA levels. This observation was also 

confirmed on primary malignant PCs treated with melphalan, bortezomib or 

doxorubicin. Thanks to the possibility of performing experiments with patient-derived 

myeloma PCs, we observed drug-induced up-regulation of ULBP and Nec-2 molecules 

and, unlike MM cell lines, the up-regulation occurred also for ligands not costitutivelly 

expressed.  

Interestingly, we demonstrated that the presence of doxorubicin or melphalan-

treated MM cells leads to enhanced NK cell degranulation, being the NKG2D and 

DNAM-1 receptors the major triggering molecules. Moreover, we could rule out the 

involvement of NK cell inhibitory receptors because we did not observe HLA class I 

down-regulation on treated MM cells (data not shown).  

Our results confirm that NK cells have a major role in MM tumor suppression. 

The efficacy of several therapeutic agents that prolong survival of MM patients has 

been widely attributed to their ability of enhancing NK cell numbers and cytotoxic 

functions (Davies 2001, Tai 2005). Previous evidence demonstrated that bone marrow 

myeloma cells have higher levels of MICA expression as compared to pleural effusion-

derived myeloma cells (Carbone 2005). In addition PCs from MM patients have higher 
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MICA expression as compared to healthy donor plasma cells but lower level as 

compared to plasma cells from MGUS patients, suggesting an association between 

MICA, its shedding from cell surface, and the progression of multiple myeloma 

(Jinushi 2008). Moreover, a role for DNAM-1 and its ligands has been demonstrated in 

NK cell-mediated killing of myeloma cells (El-Sherbiny 2007). Most of these reports 

addressed the role of NK cells against MM disease focusing mainly on MGUS or active 

MM; in our study, malignant PCs were also from patients with smoldering MM, an 

intermediate stage that can often progress to fully developed malignancy. Of note, for a 

long time, PVR and Nec-2 were mainly considered only adhesion molecules, and there 

are few evidences still now demonstrating their role in NK cell activation. Our results 

strongly support the notion of the NK cell activating ability of DNAM-1 ligands. 

Our studies provide new evidences on the molecular mechanisms regulating 

NKG2D and DNAM-1 ligand expression. In the last years, a major role for the DDR in 

NKG2D ligand expression has been demonstrated while the mechanisms underlying 

DNAM-1 ligand regulation remain still obscure. The DDR pathway is initiated by ATR 

and ATM kinases: in particular, ATM is primarly responsible for detecting double-

strand DNA breaks, whereas ATR is mainly responsible for the detection of stalled 

DNA replication. The major ATR substrate is the Chk1 kinase while Chk2 is for ATM, 

even though it is now widely demonstrated that Chk1 and Chk2 pathways are not 

parallel branches of the DDR but show a high degree of cross-talk and connection 

(Sancar 2004). Gasser et al. demonstrated that NKG2D ligand expression was induced 

after exposure to DNA replication inhibitors or agents that induce chromatin remodeling 

through the activation of the ATM/ATR/Chk1/Chk2 pathway (Gasser 2005). Moreover, 

our group demonstrated a role for ATM/ATR in the regulation of MICA and PVR 

expression on antigen-activated T lymphocytes (Cerboni 2007b, Ardolino 2011). 

Our findings report for the first time the involvement of ATM/ATR and Chk1/2 

in the drug-induced increased expression of not only NKG2D ligands, but also of 

DNAM-1 ligands. In particular, we demonstrated that no toxic doses of doxorubicin or 

melphalan on MM cell lines are sufficient to lead ATM autophosphorylation at 

Ser1981, activation of Chk1 and Chk2 cell cycle kinases, phosphorylation of p53 at 

Ser15, and up-regulation of the DNA damage marker γH2AX. Chk1 phosphorylation 

upon doxorubicin or melphalan treatment occurs mostly on Ser345 residue, usually 

phosphorylated by ATR in response to UV, IR, and hydroxyurea (Liu 2000). Of note, 

drug-induced phosphorylation of Chk2 occurs mostly on Thr68, an ATM- and ATR-
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dependent phosphorylation site, while Ser33/35 residues that are phosphorylated only in 

the presence of high amounts of DNA damage in an ATM-dependent but ATR-

independent manner (Buscemi 2004, Buscemi 2006) are not modified, confirming that 

our chemotherapeutic treatments trigger a mild DDR not leading to apoptosis. Our 

findings are in line with previous observation demonstrating that in response to 

radiation, Chk2 undergoes phosphorylation only on Thr68 in cells arrested to G2M 

phase while cells in G1 and S phases display Chk2 also phosphorylated on Ser33/35 

(Buscemi 2006).  

A key role for ATM/ATR and Chk1/2 in drug-induced NKG2D and DNAM-1 

ligand up-regulation was indicated by the findings that ligand up-regulation was 

complety abrogated in the presence of specific pharmacologic inhibitors. By contrast, 

we tend to rule out the involvement of the drug-induced activation of p53 in ligand up-

regulation, because its inhibitor, Pifithrin-α, did not impair NKG2D and DNAM-1 

ligand up-regulation on drug-treated MM cells. Moreover, the up-regulation of MICA, 

MICB and PVR expression still persisted in p53-silenced SKO-007(J3) cells. This data 

was also confirmed on patient’s malignant PCs demonstrating that also ULBP 

molecules are regulated in a p53-independent manner upon treatment with melphalan. 

These results are in accordance with previous observation by Gasser et al. (Gasser 

2005) that demonstrating increased NKG2D ligand expression in p53-/- ovarian 

epithelial cells in response to ionizing radiation and inhibitors of DNA replication. On 

the other hand, they are in disagreement with recent data indicating the involvement of 

p53 in ULBP1/2 up-regulation on carcinoma and sarcoma cell lines (Textor 2011, Li 

2011). This may be partially explained by the fact that we used a different tumor model 

and by the recent observations suggesting that NKG2D ligand expression is regulated 

by p53-dependent and p53-independent pathways in response to different stimuli. 

Hence, our findings strongly suggest that DDR is a common strategy involved in drug-

induced regulation of the ligands for NK cell activating receptors. 

We also demonstrated that our chemotherapeutic treatment, not only induces the 

up-regulation of NK cell activating ligands, but also activates a premature senescence 

program on MM cells. Our observations are in line with previous data demonstrating 

that sublethal doses of genotoxic agents trigger a weak persistent activation of the DDR 

pathway that lead to premature senescence and not to apoptosis (Schmitt 2007). In 

accordance with the evidences that drug-induced senescent cells preferentially arrest in 

the G2M cell cycle phase (Chang 1999, Bozko 2005), our findings describe for the first 
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time a correlation between the senescence phenotype and the NK cell activating ligand 

expression, showing that drug-induced NKG2D (MICA, MICB) and DNAM-1 (PVR) 

ligands are preferentially expressed on the G2M-arrested MM cells, with PVR and 

MICB expression almost completely confined to senescent cells. We strengthened these 

data also analyzing MICA, MICB and PVR mRNA levels on isolated β-Galhigh 

senescent cells. We suggested a model in which the senescence tumor cells alert the 

immune system that in turn recognizes and eliminates them through NK cell mediated 

killing. This hypothesis is supported by findings indicating that p53-mediated activation 

of a senescent program in murine liver carcinoma cells triggers macrophage- and NK 

cell-mediated immune responses leading to enhanced tumor clearance (Xue 2007). In 

addition, NK cells where found to facilitate the resolution of liver fibrosis by 

eliminating senescent-activated stellate cells (Krizhanovsky 2008). Our hypothesis is 

also supported by evidences demonstrating that NKG2D preferentially recognizes pre-

malignant lesions or early stage tumors (Guerra 2008, Unni 2008) that are associated 

with an oncogene-induced senescent phenotype (Collado 2007, Schimitt 2007). 

Overall, there are several evidences suggesting that NK cells represent an 

immunosurveillance mechanism against stress-induced premature senescent cells 

triggered by drugs or oncogenic signals. 

It is widely demonstrated that the persistence of unrepaired double-strand DNA 

breaks and the chronic mild activation of the DNA damage response pathway are 

common features of several forms of senescence, but the precise nature of these DNA 

breaks remains unclear. Several evidences suggest a role of elevated ROS levels in the 

accumulation of DNA damage (Kurz EU 2004b, Shackelford 2001) and in the 

induction of a senescent phenotype (Balaban 2005). In addition, it has been also 

demonstrated a positive feedback through which senescent cells produce high amount of 

ROS to sustain the senescent phenotype and ensure a stable cell cycle arrest (Takahashi 

2006). Despite the difficulty of analyzing the intracellular presence and the biological 

role of the reactive oxygen species and other reactive species, it is largely accepted that 

ROS are not only able to damage biomolecules but can also act as intracellular second 

messangers. Hence, the ROS-induced DDR activation and ROS-induced senescence 

may reflect the cellular damage and/or the physiologic signaling response (Irani 1997, 

Rai 2009). Of note, it is widely demonstrated that the mechanisms of action of 

doxorubicin, melphalan and of several DNA damaging chemotherapeutic drugs depends 

on oxidative stress production (Jung 2001, Donepudi 2001, Mukhopadhyay 2009). 
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Moreover, there are some evidences suggesting a regulation of NKG2D and DNAM-1 

ligand expression by oxidative stress. Borchers et al. demonstrated that hydrogen 

peroxide induces MIC and ULBP molecule expression on airway epithelial cells 

(Borchers 2006. In addition, ROS-regulated transcription factors NF-kB and AP-1 are 

involved in the regulation of MICA gene expression (Cerboni 2007b, Molinero 2004), 

and a putative site for the oxidative stress-induced transcription factor Nrf1 has been 

identified in the promoter region of PVR (Solecki 2000). 

We showed that low dose-treatments of doxorubicin or melphalan in MM cells 

do not trigger a massive production of reactive species, instead lead to a mild 

perturbation of the cellular oxidative status, not easily detectable by specific probes 

(data not shown) but preventable by using the wide ROS scavenger NAC. We 

demonstrated that redox perturbation is the major event triggering the activation of the 

DDR pathway upon drug treatment because NAC abolished ATM and Chk1/2 

phosphorylation in MM cells. Moreover, we showed that ROS-induced DDR is 

responsible of NKG2D and DNAM-1 ligand up-regulation on MM cell lines and 

patient’s malignant PCs both as extracellular protein and mRNA levels. This result 

confirms previous data demonstrating that NKG2D ligand expression is affected by 

cellular oxidative status while it is one of the first evidences describing a role for ROS 

in the regulation of DNAM-1 ligand expression. Our group has also demonstrated that 

ROS produced by monocytes induce PVR up-regulation on activated T cells (Ardolino 

2011). Given the low levels of ROS production induced in drug-treated MM cells, it is 

conceivable to hypothesize that DDR is not activated directly by reactive species but 

rather by oxidized cellular macromolecules. Moreover, we suggest that redox-dependent 

DDR activation upon chemotherapeutic treatment is critical for MM cell entry in 

premature senescence as it is shown by the impaired G2M cell cycle arrest and SA-βGal 

positivity in the presence of DDR inhibitors or NAC. 

Our results support recent evidences suggesting that ROS, usually considered 

oncogenic and pro-ageing, have also a good face because they can be used to kill cancer 

cells (Wang 2008). In this regard a recent paper demonstrated that dexamethasone-

induced oxidative stress sensitizes MM cells to radiotherapy while spare normal 

hematopoietic progenitor cells (Bera 2010). It has been also demonstrated that chronic 

treatments with sub-apoptotic doses of chemotherapeutic drugs, such as resveratrol, 

induce senescence in tumor cells through ROS increase (Heiss 2007), and numerous 

evidence clearly demonstrated that the expression of NK cell activating ligands is 
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regulated by redox signaling (Borchers 2006, Cerboni 2007b, Molinero 2004, Solecki 

2000), but the correlation between these events has been observed so far. 

Overall, we demonstrated that low dose-treatments of genotoxic agents on MM 

cells trigger an alteration of the cellular physiologic redox status and the subsequent 

activation of the DDR. The redox-activated DDR leads MM cells to enter in premature 

senescence and to up-regulate NKG2D and DNAM-1 ligands on cell surface leading to 

an increment of NK cell degranulation. This is in line with a large body of previous 

experimental and clinical evidences demonstrating that exposure to low doses of 

chemotherapeutic drugs is able to increase immune responses, including NK cell 

activity, whereas high doses of the same agents are immunosuppressive (Ehrke 2003). 

In this regard, in older patients affected by MM, administration of intermediate doses of 

melphalan increases response rate and improves remission duration and survival. We 

can envisage that its action might also be attributable to induction of innate immune 

responses (Palumbo 2006). Induction of cellular senescence by chemotherapeutic 

agents has also emerged as a primary mechanism of tumor regression through its anti-

proliferative power. Our findings indicate that in addition to this action, the success of 

senescence-based anticancer therapies may also be related to their ability to trigger anti-

tumor immune responses both rendering senescent tumor cells more visible to NK cell 

action, and inducing the production by senescent tumor cells of a specific secretory 

phenotype that might activate and attract the immune cells (Rodier 2011).  

Future efforts will focus in defining the possible cellular targets of ROS action, 

in characterizing the transcriptional factor(s) responsible of NKG2D and DNAM-1 

ligand synthesis, and in analyzing the specific cytokines and chemokines secreted by 

senescent tumor cells. Moreover, it is now largely accepted that expression of NKG2D 

ligands on tumor cells is regulated at different levels, including epigenetic, 

transcriptional, and post-transcriptional mechanisms, and there is not reason to dismiss 

that it can also occurs for DNAM-1 ligands. Thus, a better knowledge of the 

mechanisms of regulation could help us in achieving the highest expression of NK cell 

activating ligands by treatment with a combination of compounds targeting the different 

levels of regulation. 
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