SAPIENZA

UNIVERSITA DI ROMA

Dottorato di Ricerca in Ingegneria dei Sistemi
XXI Ciclo

Tesi di Dottorato

Reinforcement Learning Algorithms for
Technology Independent Resource Management in
Next Generation Networks:
Connection Admission Control Procedures

Relatore Candidato
Prof. Francesco Delli Priscoli Ing. Silvano Mignanti

Coordinatore del Dottorato
Prof. Carlo Bruni

ANNO ACCADEMICO2007-2008

Ai ragazzi del Labreti,
ricordate sempre:

siete nel mio cuore!

10 [PP 5
10 L=y o) i T [=SSP 7
INAEX OF TADIES ... ettt bbbt bbb e e e e e e e e e e e e aaeeees 9
(@ F=T o1 (= g I 1111 o o (3o (o) o [10
Chapter 2. State of the Art in Resource Management in Nexte@aion Networks 13
2.1. Introduction to the Connection Admission ControA©) problem....................... 13
2.2. Approaches to the solution of the CAC problem...........cccoeiiiiiiiiies 15
2.3. Introduction to Markov Property and Markov DecCisirocessescccccc.uuu.. 16
2.4. The Peak-based CAC algorithm............oiiiiiiiei e 19
2.4.1. Optimal solution on the shortterm...........ccoeevveviiiiiiiiiie e 19
2.4.2. Optimal solution in case of only one class of SEVi...........cccoeevvvviiiiiinnnnnn. 20
2.4.3. Optimal solution in case of low traffiC......coeeeeeveveeeeiiiiiiiiiiiiiin e, 21
Chapter 3. Reinforcement Learning: an OVEIVIEWccccceeeareeeeeeeeeeeeeeeeeiieinnnnnnnnnnns 23
X 5 A [o1 oo [¥ox 1 o] o HU PP PPPPPPPP 23
3.2. The Reinforcement Learning Problem ... 24
3.3, G0als and REWAITS.........oooiiiiiiiiiiee ettt e e e e e 26
4. REIUIMNS <. et e ettt e e e e ettt e e e e e et e b e e e e e e e enna e e 28
3.5. Unified Notation for Episodic and Continuing Tasks...........cccvvvvvviiiiiciiiinnneenn. 29
3.6, VaAlUE FUNCHONS...coiiiiiiitttte e ettt e e e e e e e e e ee e e e e e e eeeees 30
3.7. Optimal Value FUNCLIONSuuuuiiiie st eeettiissss s e e e e e eeeeeeeeeeaesesssnnnnnnesees 33
3.8. Optimality and APProXimationcoeeiiiccceeieeiiieiiiiiiir e e eeeeeees 37
Chapter 4. Introduction to QX): the chosen RL algorithmccccoooieeeeeeiiiiiicennn. 39
St N 1 11 £ To [§ o 1o o [P P PP TPPPPPP 39
4.2. Introduction t0 Q-LEAIMINGcccviiiiiiiiiemmmmeeiiietiiiaaaaa e e e e e e e e eeeeeeeeeeeeenrnnnnnserees 39
4.3. Introduction t0 Q-LEAIMINGcevvurvurrimmmemeereeeiiiiasaae e e e e eeeeeeeeeeeesenerenrnnnnn—eree 41
4.4, N-Step TD PrediCtioN..........ooooiiiiiiiieeeeeee it eennaeeeeennaes 42
4.5. The Forward VIEW OFf TDX)ccooiiieiee i e e e e e e e e 45
4.6. The Backward VIeW Of TDX)uuuuummiiiiiiiiiiieeeeeeeeeee e 49
R © 1, PO TR RPN 52
Chapter 5. Objectives and adopted approaches eeeeeeeeriiiiiiineeeeeeeseesseeeenns D7
ST B @ o] 1= o 1A= PP PRPUPPPPPRRR 57
N 1653 S = =T o] o] 0 Y- T o [58
5.2.1. Definition of state, actions and reward......ccccc......ooeuvuviiiiiiiinnieeeeeeeeeeeeee, 58
5.2.2. Control of blocking an drop probabilitiesuuiiiiiiiinie, 64
5.3. Second RL @pProachcoo oo 66
(O P o) (=T o G T 1 0] o] (=T 0 1= 1 2= 14 0] o 73
G0 I [o1 (o o [¥ o [o RO PPPPPPPPPRPP 73
6.2. Implementation detailSccoooiiiiii e 73
B.2. 1. PIQLE ... i ittt —————————— 74
B.2.2. OMNETHH ..ttt a e e e e e e e e e e eeeree e 87
Chapter 7. RESUILS ... e s 93
4% R [o1 oo [¥ox 1 o] o H PP RPPPPPPPP 93

7.2. Comparison between first RL approach (with bandiwlohit control) and peak

(oF=EY=To Ir= 110 o] 11 oo [P PPPT 94
4% T [011 (0T ¥ o1 1 (o] o PP PP UPPPR PP 94
7.2.2. Scenario: VOIP, video call and FTP data ServiCes............ccceeevvveveveennnnns 100

7.3. Comparison between first RL approach (with bandwilghit and blocking

probability control) and peak based algorithMu. ..o, 103

7.4. Comparison between first RL approach (with bandkwvlohit and blocking and

drop probability control) and peak based algorithm............ccccoooeiiiiiii e, 105

7.5. Comparison between second RL approach and pead Blag®ithm 110
A T8 S 1o o = 14 o 20 PSRRI 110
T7.5.2. SCENATIO 2..oiiieieeeee ettt e e e e e e e e e 112
7.5.3. SCENAIIO 3 ... ettt a e e e e e e aeaaea e e e 114
7.5.4. SCENAIIOS SUMMIAIY ...ciiieeeeeeeiieeeeeeiitteeaaeeeeeeeeeeeeeeeeansssnn e e e aeeeaeeaaeeaaees 115

7.6. Comparison between two RL approaches.......iiiiiiiiiiiiiiiiiiiiiieeeeeeeeeend 611

(O] o[1157 o] o T PP PPPPPUPPPP PP 119
RINGIAZIAMENTE ...ttt e e ettt ettt s e s e e e e e e eaaaaaeeeaaaeaaeeeeeeeeennnnnnns 121
RETEIEINCES ...ttt ettt ettt e e e e e e e e e e e e e s e s s smnt ittt et e e e e e e e e e e e e e e annaaanas 123
ANNEX A. The WEIRD PrOJECTuuuiiiiiiiiaie oottt a e e e naaes 126
AL INTFOAUCTION oottt et e e e e e e e e e e e e nnnnnr e e e e e e e eeeas 126
A2, The general CONIEXTuuuuiiiiiee oottt a e e e e eee e e e e e 126
N T © o =03 1Y/ 127
A4, MaIN INNOVALIONS ...ttt ettt a s e e e e e e e e e e e eeeeeeeesebrnnnnnseeennnnns 130
A.5. Role of University 0Of ROMEooooviiiiiieeeeeeiiiess e 132
Annex B. List Of pUDIICAIONScooi i 134
= 700 A Ao o1 o (=T o SR 134
o JZ S TU | o] 0111 (= [136

Index of figures

Figure 1 Agent-environment interaction in reinfarent learningcccoeeeeiiiiiviiiiinen. 25

Figure 2 Backup diagrams for (@] and(B) .eooceeeeeiiiiieceeeee e 33
Figure 3 Backup diagrams for (@] and®) ..ooceeeeeveeeiieieceeeeee e 35
Figure 4 Q-learning: an off-policy TD control al@moovviiiiiiiiiieieeeeceeeeenne 40
Figure 5 Backup diagram for Q-1€arning ... 41

Figure 6 Spectrum ranging from the one-step backigimple TD methods to the up-until-
termination backups of Monte Carlo methods. In leetware the-step backups, based on
steps of real rewards and the estimated valueeaf-th next state, all appropriately

(0 15T o0 18] | (=T o B O UPUPPPTUPRUPPR 42
Figure 7 Backup diagram for TBY. If [|, then the overall backup reduces to itstfirs
component, the one-step TD backup, whereas’if | n, tifwe overall backup reduces to its

last component, the Monte Carlo DaCKUP ..., 46
Figure 8 Weighting given in thereturn to each of the-step returnsccccceeeeeeeeee. 1.4
Figure 9 Forward or theoretical view. The algoritdetides how to update each state by
looking forward to future rewards and States............coovvvriviiiiiiiiiiiii e 48
Figure 10 On-line tabular TRccooo e 50
Figure 11 Backward or mechanistic view. Each updafeends on the current TD error
combined with traces Of PASt EVENLS........cceeeeeueiiiiiiiiie e 51
Figure 12 Backup diagram for Watkins’sX)(The series of component backups ends either
with the end of the episode or with the first naregly action, whichever comes first.......... 53
Figure 13 Tabular version of Watkins’s Q() algionk...............ccoovveerireriiiiiiiiieiiiiieeeemenen 54
Figure 14 Backup diagram for Peng’SAQ(........cevereermrrummiiiieieeeeeeeeeeeeeeeeeeeseenannnne e e 55
Figure 15 Acceptance and rejection reward functfon8,=1 and B=10...............c.ovvvrnnnes 61
Figure 16 Reward functions for &)=0.4, b) A=0.2, ¢) A=0.1, d) A=0 respectively......... 63
Figure 17 The Agent [arns itS Stateccceeveee e ii i err e 76
Figure 18 Algorithm KNnows itS CUIrent Stateeuuvuvviiiiiiiniee e 76
Figure 19 The Algorithm cho0SES the ACHON ..eeeeeeeiieeii i 76
Figure 20 The Environment computes reward and NERES...............coovviiiiiiiiiinnninnnn {7
Figure 21 The Algorithm Can [€arNoeeeeeiie e 77
Figure 22 The Agent’s NIErarCNyo 78
Figure 23 Java hierarchy of Algorithms...........oooviiriiiiiiici e 84
Figure 24 OMNeT++ Module HIEIarChy ...t 88
Figure 25 OMNET++ SCreeNSNOL........ccoiii it e e e e e e e 91
Figure 26 XML SCENArio @XAMPIE.......uuuiuiieeemeiiiiiiiiiiaea e e e e e e e e e e e e e eeeeeeebeeennnsseeennnn s 95
Figure 27 Graphical USer INtEIfACE ..o eeeeeeeeiiiiiieiiiiiiises s e e e ereaaaa e e e e e e e aaaeeeees 96
Figure 28 Simulation PArameEtersuuuecieeee e r e e e e e e e e e e eees 96
Figure 29 OMNeT++ Simulator OULPULcccee e e e e e e eeeeeene e 97
Figure 30 BatCh SIMUIALION ...t e e e e e e eeeeeananes 97
Figure 31 Management page for OMNeT++ simulator.............oooevvviiiiiiiiiiiieee e, 98
FIQUre 32 GINED WINAOWuiiiiiiiiiiee ettt e e e e e e e e e e e e e eeess e nnnneesssesannnn s 99
FIQUrE 33 TKENV WINAOWcvviriieiii s e eeeeeeeeaaeeeeeeasetaansns s s e e e s e e anaaansaaaaasaesesssssnnnes 99
Figure 34 Perceptual Gain in three different nekwoads. 1 referred to Medium Load, 2
referred to Medium-High Load and 3 referred to Higadcccoeieiiiiiiiiiieiiienee 102
Figure 35 Blocking frequency in medium-high loaérsario without control 103

Figure 36 Blocking frequency in medium-high loaérsario with limitation 104

Figure 37 Gain in medium-high load scenario withifationccceeiiiiiiiiinneneeen. 104
Figure 38 Blocking frequency in semi-high load S5@m..............cccoevvvviiiiiiiiiee e, 106
Figure 39 Blocking frequency in semi-high load stemwith drop..........coevvvviiiiiinnnnnn. 106
Figure 40 Gain in semi-high load scenario with drop...........cooevvviiiiiiiinie e 107
Figure 41 Dropping frequency in semi-load scenario.............cooevvviiiiviiiiiiineeeeceeeeenn. 108
Figure 42Gain in medium-high load scenario with@gn...............cccceeeiiiiiiiiieeieiiieeenes 109
Figure 43 Gain in medium-high load scenario withaley and drop probability control.... 109
Figure 44 Simulation gains for medium load scenario.............cccceeeeeveveiiieeeiviiiiiennnnnns 111
Figure 45 Mean gain comparison in medium load SOBNA............ccevveeireeeeeieeieeeiiiiinnn, 112
Figure 46 Simulation gains for medium-high loadrsaeccccceeeiiieeiieeeeeeeeccee 113
Figure 47 Mean gain comparison in medium-high lseghario............ccccccvvvviiiiinnnnnn. 113
Figure 48 Simulation gains for high load scenariQ.............cccceeeeeeiiiiiiiieeiies 114
Figure 49 Mean gain comparison in high load scenari................ccoooveviiiiiiiiiiiiiicceee. 115
FIGUIE 50 GaiN SUMIMAIY ...uuuuuiiieee e e e e e oo e e et eeeeeeaaesassnaaaseeaaeaaaaeessaanaeseeeeesssessssnnnnns 116
Figure 51 Comparison of results of Peak-based dndlgorithms in three different
bandwidth 10ad SCENATIOSuuuiiiiiii e e e e e s eees 117

Index of tables

Table 1 Initial values Of Q(S,8)ceeetmmmmm e e eeeeeeeeeeeiititirre e e e e e e e e e e e e e eeeeaeeeeeeeeeeeeeeenannns 68
Table 2 Values of Q(s,a) after rejection of a CAICOS............cooviiviiviiiiiicccie e, 68
Table 3 Values of Q(s,a) after acceptance of aofdlloSccooeviiiiiiiiiiicii 69
Table 4 “Final” values Of Q(S,@).......cciiiieeeeererrrnniiiaieee e e e e e e e e e e e eeeeetra e e e e e eeaaees 69
Table 5 Values of Q(s,a) after acceptance of aofdlloSccooeviiiiiiiiiiiiiiiiiiciee e 70
Table 6 Values of Q(s,a) after acceptance of aof&lloSccovvvvvvvviiviiiiiiiiii e, 70
Table 7 Final values Of Q(S,8) . ..iiiiiiiiiieeeeemiieee et e e 71
Table 8 Traffic parameters of medium load scenario..............coeeeeeeeivieeeeeiiiiiiiens 101
Table 9 Traffic parameters of medium-high load SCEN...............coooiiiiiiiiiiiiiiee 101
Table 10 Traffic parameters of high load scenario.............cccceeeeeiiiiiiiieceiiceeeeee e, 102
Table 11 Traffic parameters of semi-high load sgena................cccooeeeviiiiiiiiiiiiceneenns 106
Table 12 Traffic parameters of medium load scenario............cccceeeeevieeeeeeeeeeeeeiieeeeee, 110
Table 13 Traffic parameters of medium-high loath8Cm® ... 112
Table 14 Traffic parameters of high load scenario.............ccccceeeeiiiiiiiiieiieeeeee e 114
Table 15 Traffic parameters of medium-high loath8Cm® ... 116

Chapter 1lntroduction

In the last years the telecommunication field i @h which had continuous technological
advancements: in particular both new services awd products are continuously introduced
to the users. This trend brings to several majoblems: first of all, new technologies require
new network infrastructures which have to be cotetedo existing ones; subsequently,
interoperability of different technologies becomasproblem. Furthermore, often new
technologies are introduced following independetdandardization ways, augmenting
incompatibilities (not only new technologies witlld @nes, but also among new technologies
themselves): one of the last examples is the dadé-6i and HiperLAN.

These problems affect both users and network sepioviders; in particular, for these last
ones to invest in a new technology implies a wisgtegy planning for the short, medium and
long term, mainly because new infrastructures,waof® and solutions valid for a certain
technology usually cannot be reused for a diffeosmt

In order to overcome most of these problems, ctlgremew technologies follow a long
standardization period made in conjunction withtses lot of standardization fora (e.g.:
3GPP[1][2][3][4], ETSI[5][6][7], ITU-T [8], TISPAN [9]) are currently involved in the
standardization of the last and the next netwocknelogies. Most of the network solutions
are emerging in adherence with the “Converged Netixaoncept which could be defined as
the possibility to unify the classical telephonéweek, mobile networks and the internet in a
single infrastructure, which offers Quality of Sers (QoS) and high reliability. This new
kind of network is also known as Next Generatiotvidek (NGN [10]). NGN model is based
on the decoupling of services and networks allowingm to evolve independently in a

seamless fashion. It takes into account the foseaphration of the network architecture into

10

different planes to offer a platform for creatingdananaging different services. The majority
of the European research projects ([11] [12], [1B3], [15], [16]) focus on the definition of a
converged architectural model that is transporepshdent and service-independent. This
goal is achieved decomposing the network functiteal in three main planes: Service
Control Plane (SCP), Network Resource Control PIi@RCP) and Transport Plane (TP).
SCP is composed of a set of functional entitiesroffy services under the control of a service
provider which share a set of policies and comnechriologies. NRCP is constituted by a set
of functional entities in charge of managing Qo8aqoes received from SCP and forcing QoS
mechanisms to Transport Plane. TP is composed sgt af transport resources sharing a
common set of policies, QoS mechanisms and trahspcninologies under the control of a
transport network operator.

Among other problems, one of the most challengingsp from a control-theory point of
view, is the problem of the resource managementt networks, even if having more
bandwidth capabilities, lower bit error rates andos, in any case have finite resources and
an optimal use of them is advantageous both forn#tevork operators and for the users.
Network resource management comprises a lot oftifumalities, e.g. Routing, Connection
Admission Control (CAC), Traffic control each of iwh having challenging problems to face
with. In the ambit of this thesis, the problem adn@ection Admission Control was selected
to propose a possible solution.

In the next chapter, a brief introduction to dieeepproaches to the CAC problem solution is
presented. The CAC functionalities are providedh®eyNRCP to the upper layer of the NGN
architecture. The target audience of this soluice NGN providers interested to maximize
their profit in resource-limited networks (i.e. efess networks) guaranteeing Quality of

Service by means of a new contractual probabili@& assurance constraints.

11

In the context of my work some objectives have etnithe design of the CAC solution. It
must be decoupled from the other Resource Managgmecedures and must be technology
independent, allowing network operators to upddteirttransport technologies without
modifying the resource control functions. The CA©@ugd guarantee to the network operator
the maximum income, preserving the QoS constrdimseans that on one hand the network
resources should be exploited in order to optimalg the available resources and on the
other hand the contractual QoS should be assuredll tthe already accepted end-users
connections. The CAC must adapt to different nektwamenarios, thus two of its objectives
are the robustness and the independence from #uoifispstatistical behaviour of the traffic:
the CAC algorithm should detect and react to trengles of the environmental conditions.
The thesis is organized as follows:

» chapter two about state of the art regarding ResoMianagement and, in particular to

the CAC problem and solutions, and to Semi MarkeeiBion Processes;

e chapter three containing an overview about Reiiment Learning;

» chapter four introducing adopted RL algorithms;

» chapter five depicting RL algorithm implementatemd simulation tools;

» chapter six containing simulation results and axafi@n;

* a chapter with conclusions;

* an annex containing some information regardingQMEGA project.

12

Chapter 25State of the Art in Resource

Management in Next Generation Networks

2.1. Introduction to the Connection Admission Control

(CAC) problem

The CAC problem occurs whenever a new flow askbeoaccepted requiring Quality of
Service (QoS) parameter to be guaranteed. Thestagy to introduce the problem of CAC
is a simple example. Imagine to have a certain(\wikeless or wired is indifferent), which, in

a real scenario (i.e., not an ideal one), evenidenag all other problems connected to a link
(e.g. packet loss, delay, jitter) minor in a firestance, will have, in any case, a finite
bandwidth. Each new connection wanting to passutiirothat link will require a certain
amount of bandwidth: it is clear, after a certaumter of new call arrivals, the available
bandwidth will end and further new calls could betaccepted. The easiest solution, which is
also the most intuitive one, is to accept new aafisl there is enough available bandwidth,
then start to reject new calls until new bandwidtmade available after an ongoing call ends.
This solution, called the Peak-based solution [gw aalled Greedy Algorithm), incredibly, is
the most used one in actual networks. If every rmaN requires the same amount of
bandwidth and produces, to the network providex,game income, the Peak-based solution
Is the optimal one: this was the scenario of therdaf telecommunications. Today, instead,
usually they exist different types of users trytngyet access to a network link, each of which

having different QoS requirements and guarante¢éinghe network operator a different

13

income. This brings to a much more complicated agenvhere the Peak-based solution is
no more the optimal one, as demonstrated by theWwlg example.
In order to introduce a common understanding, iteeature defines Class of Service (CoS) a
certain type of service requiring certain QoS valaad providing to the network operator a
certain revenue. In this extremely simplified exénpve define two different classes of
service, characterized by the required bandwidththa network operator’s revenue.
CoS:

Requested Bandwidth = 100 Kbps

Network’s operator revenue = 2 €
CoS

Requested Bandwidth = 300 Kbps

Network’s operator revenue = 7 €
Suppose the total available bandwidth is 2Mb aadl tthere are currently 4 active connections
of CoS and one active connection of GpSo that the total occupied bandwidth is
4100+ 1130G= 70Kbps. Suppose next four calls follows this ordenSC CoS, Cos,
CoS. The behaviour of the Greedy algorithm will be tb#owing: accept the first call of
CoS (occupied bandwidth = 800Kbps, so that free badtdw+ 200Kbps), reject the call of
CoS (not enough remaining bandwidth), accept the skcamd the third calls of CqS
Summarizing, the total revenue of the network opers 3[2= 6€. A better algorithm will
have left space for the call of Co® fact, rejecting the first call of CeSit had be possible
to accept the call of CoSwhich had been resulted in a combined revenu&Eof possible
critic is that an algorithm could not know a pridne list of forthcoming calls: so that it could
seem impossible for an algorithm to produce be#sults of the Greedy one. A lot of works

demonstrated this is not true: summarizing thesults, even if it is not possible to know a

14

priori next calls, in usual scenarios the distridmitof new calls is not completely unknown,
rather new calls usual have well known distributiknowing these distributions it is possible
to forecast the progress of new calls and so ddzaded on these forecast, “betting” if it will
be convenient, or not, to accept each new call.idba is simple: if a better call (in the sense
of a call of a “better” CoS) is expected than tine qust arrived, if accepting the current one
will prevent the possibility to accept the betteepit will be better to reject it. Obviously next
call could arrive much later than expected oneauld be not of the desired CoS, so that
having rejected results to be not the best solutiothis case: we have to highlight that such a
kind of algorithm’s behaviour “bets” on the futurBeing so that an algorithm based on
“bets”, it could be, in the short term, it could skoworst than the Greedy one, but, if the
knowledge of new calls distribution is sufficientight, on the long run it definitely will work

better than the Greedy one.

2.2. Approaches to the solution of the CAC problem

The above mentioned example was extremely simplepassed over a lot of possible issues,
details and so on: its only aim was to introduae hoblem in the most comprehensible way
as possible. More precision is necessary to inttredbe different approaches to the solution
of the problem of CAC. The most common way to défdiate different approaches to the

CAC problem is to distinguish these based on tfanmation an algorithm can have access to
in order to function.

If it is available a measurement system, whichbie &0 provide diverse measurements on the
network link (e.g.: bit error rate, actually ocoeghiand available bandwidth, jitter, delay, ...) it

is possible to use these measures to adopt sd ¢allasurement based” CAC algorithms.

If such a measurement system is not available,itbigt well known the topology of the

15

network (the graph of the underlying network is kmnao the algorithm), it is possible to use
this knowledge to adopt so called “topology baseACT algorithms.

Finally, if neither measurements are availableihizrknown the topology of the network it is
anyhow possible to perform CAC using the so calleddel based” algorithm. In this last
group of algorithms, the network is treated asachlbox: just few information are known
(e.g., total nominal available bandwidth, CoS a# thcoming call and QoS parameters and
rewards of each Co0S), so that these algorithms adelpt to challenging scenarios were it is
not possible to have sufficiently precise measoreasetwork topology varies during the time
(e.g. wireless networks). Furthermore, not reqgircomplex measurement systems, such
algorithm are less expensive to be adopted by n&tagerators than the first ones.

The class of model based CAC algorithms is quitgdacomprehending a lot of diverse
approaches: it is important to highlight that thee€aly CAC algorithm is part of the model
based ones. The approach proposed in this thesiulimed the CAC problem as a Semi-
Markov Decision Process and used an on-line Rasafoent Learning algorithm to learn the
model of the environment from experience, in oriebe able to perform the CAC. Next
paragraph briefly introduces Markov Decision Preess while to the Reinforcement

Learning is dedicated the next Chapter.

2.3. Introduction to Markov Property and Markov

Decision Processes

In order to introduce Markov processes we previoused some definitions. In a typical
telecommunication scenario we can distinguish s#\aators:
e some callers and receivers, which are the end$oird communications;

e anenvironmentwhich is the entity where it is possible to tmaitsthe signal (from

16

callers to receivers and vice versa), and which aatate indicating the main
properties the environment has which are usefpetéorm the CAC decisions;

* anagent which is the entity that performs the decisioastibng to determine where
to accept or not a certain call; its decisionstased on the information contained in
the state and furthermore, each action bringstkee@ment to a new state.

Being a little bit more precise, at each titnie environment is in a certain statdbecause
the environment passes for a number of statesglthientime, in order to avoid confusion, we

define it s, which means the state at timé/Vhen it happens a new event (either a new call
or a call closure), which we cal (i.e. the event when the state 49), the agent should

decide whether to accept or not the new call, abithiakes a decision and performs an action

a. In particular, if the environment is in the stajewe call the actiors,, which means the
action took at state,. So, starting from statg, and taking the actior, the environment

arrives to the new statg,, , which in general is different frorg (but it could also happen

1
they are equal).

Focusing on the state, it could contain a numbenfofmation, but not all of them are useful
theagentto perform the CAC algorithm. A common assumpi®to assume that the state is
given by some pre-processing system that is noiyipart of the environment: the main
concern in this thesis is not with designing oredehg the state signal, but with deciding
what action to take as a function of whatever sta¢mal is available. Entering in more
details, the state signal should not be expectadftom the agent of everything about the
environment, or even everything that would be udgefit in making decisions. If the agent is
playing blackjack, we should not expect it to knawvat the next card in the deck is. If the
agent is answering the phone, we should not experknow in advance who the caller is. In

all of these cases there is hidden state informdticche environment, and that information

17

would be useful if the agent knew it, but the agesminot know it because it has not the
possibility to measure that information. An impaoitaroperty the state should have is to have
memory of the past: in particular it could be vasgful to have a state signal that summarizes
past information compactly, yet in such a way #latrelevant information is retained. This
normally requires more than the immediate measum&snbut never more than the complete
history of all past sensations. A state signal shiiceeds in retaining all relevant information
is said to be Markov, or to have the Markov propgt] (a formal definition follows below).
For example, a checkers position - the currentigardtion of all the pieces on the board -
would serve as a Markov state because it summaexesything important about the
complete sequence of positions that led to it. Motthe information about the sequence is
lost, but all that really matters for the futuretbé game are retained. Similarly, the current
position and velocity of a cannonball is all thaatters for its future flight. It doesn’t matter
how that position and velocity came about. Thiss@netimes also referred to as an
“independence of path” property because all thattareis in the current state signal; its

meaning is independent of the “path”, or historlysignals that have led up to it. Consider

now a sequence of stat¢g §,..., $) and a sequence of actio(& a,,...,3_,) having brought
the state from the statg at timet, to the states at timet. Now consider the probability the

next state,s

t+1 7

to be equal to a certain stade this usually depends from the list of previous
states and actions and the current actione.:

Pis,=s}=P{s$,=4 § @ sA. .S & 5K (1)

If the state signal has the Markov property, ondtteer hand, then the agent decisiorsat

depends only on the state and action represengasiptimet, in which case the previously

defined probability can be defined by specifyindgyon

18

Pr{%ﬂ = S'} :Pr{ $+1 = 3 ts th (2)
In other words, a state signal has the Markov ptgpand is a Markov state, if and only if (2)

is equal to (1) for alls', and historieqs, &), § a,..., 8 @). In this case, the environment and

task as a whole are also said to have the Markopepty.

A Markov Decision Process [18] is a discrete tirtaeBastic control process characterized by
a set of states; in each state there are sevdrahsdrom which the decision maker must
choose. For a stats and an actiona, a state transition functiofPa(s determines the
transition probabilities to the next state. Theisiea maker earns a reward for each state
transition.

The Markov property is important in the approactedusn this thesis, the reinforcement
learning based CAC, because decisions and valeeasaumed to be a function only of the
current state. In order for these to be effectivé mformative, the state representation must

be informative.

2.4. The Peak-based CAC algorithm

The easiest CAC algorithm is the one called peaetheor greedy. The idea beyond the
algorithm is very simple: accept new calls whenewere is enough space to do this, else
reject. This algorithm seems not to be a very good, but, instead, it has a lot of good

properties having made it the most diffuse algarito solve the CAC problem.

2.4.1.0ptimal solution on the short term

First of all, it is possible to demonstrate ithe toptimum solution to the CAC algorithm while
the time window where it acts reduces to zero (Whieeans, in practice, that peak-based is

the optimal solution on the short term). Supposkaee an environment in a certain stgte

19

at a certain time,, (as above mentioned the CAC problem has the Mapkoperty), to have
a set(t,t,,....t,) of time instants at which happens the set of evgyte,...,e_,) each being
or a new call or a call closure; suppose alsoriseantt, whene, happens is infinitely close
to t,, and thate, is a new call. Departing frory, each CAC algorithm will have, in general,
a different behaviour, so that each algorithm willke a set of different actions
(By s Byr--- 8,) Wherea , is thei-th action took by thé&-th algorithm: determine which is

the best one is not easy. If the time window goezeto, the only time instant entering in the

time window will be justt,. Here CAC algorithms could have different behaxsoif there is
not enough space, departing fragnto accept the new calls, all of them, including peak-

based, will not accept the new call, so that thekg®ased is the optimum algorithm. If there
is enough space, some algorithms will not acceptcl, some others (among which the
peak-based) will accept. Obviously in that time aaw the choice guaranteeing the
maximum reward is to accept the call, so that aisdhis case (which completes the

possibilities) the peak-based algorithm acted disnah.

2.4.2.0Optimal solution in case of only one class of sepe

In case the system to be controlled has just camsaf service, it is easy to demonstrate that
the peak-based algorithm is the optimum one. Suppm$ave an environment in a certain

stateg at a certain time, (as above mentioned the CAC problem has the Mapkoperty),
to have a sett, t,,....t,) of time instants at which happens the set of evéste,...,e_,)
each being or a new call or a call closure; sup@tse all e behave to the same class of

service. In this case, it is quite obvious to regecertain call to wait for the next one hoping it

will be of a more convenient CoS is useless. In @mse, one could object that different calls

20

could have different length so that conducing ftedent incomes. In the case the bandwidth
is all occupied but a certain part just enough ¢oept a new call, it could seem to be
convenient to wait in order to accept the longest gall. Suppose to have an algorithm able
to determine the distribution of the calls (eitllee distribution of call arrivals and also of
their duration) or that this distribution is knowpriori. Even with this knowledge (which the
peak-based algorithm does not use) an algorithnidcoot state that, if the last call was a
“short” (“long”) one with respect to the known dibsution, the next one will be a “long”
(“short”) one, due to the fact that, at least ireal environment, new calls arrivals and their
duration is statistically independent from the jjweg ones. It is the same situation as playing
roulette: even if last n extracts were all “rouge’is not more probable the next one will be
“noir”. So that, the best solution in such a scena to accept new calls whenever there is

enough space, which is exactly the behaviour opteak-based algorithm.

2.4.3.0ptimal solution in case of low traffic

The peak-based algorithm could be demonstratedetthe optimal solution to the CAC

problem in case of “low traffic”. The concept ob% traffic” could be defined as follows:
B* < B Ot where B* is the requested bandwidth of the new call eweand B is the

available bandwidth at time: summarizing, there should always be enough bafttinip
accept the new call. This situation is not as ualsas one could suppose: currently
telecommunication networks (in particular cellutares) are over-provisioned, which means
exactly that in most of cases there is enough bafidwo accept a new call. Unfortunately
this situation leads to a lot of waste: a betterdvadth usage could lead to very good results
even without over-provisioning (and, in generalt alb the scenarios could be resolved with

over-provisioning). So, in a “low traffic’ scenaribis counterproductive to reject a call, so

21

that the optimal solution is to always accept nais¢cwhich is exactly what the peak-based
algorithm does. Even in the scenarios where thettaffic situation could not be assuréd

but just for some time intervals,,t,] (wheret, is the time at which the interval starts apd
is the time at which the interval ends - obviously are interested to the cases wheret,),

in such intervals the peak-based algorithm is fhter@l one.

22

Chapter 3Reinforcement Learning: an

overview

3.1. Introduction

In order to introduce the Reinforcement Learningaepts and algorithm, it is useful to
perform a brief introduction of the existing CAQatithms, with particular attention to the
model-based ones. Apart the Peak-based, therelarefasolution to the CAC problem in the
literature, e.g. [19], [20], [21], [22], [23]. Mosdf these approaches need a number of
calculations to be performed or suffer of the sikeda“‘curse of dimensionality” (e.g., the
Dynamic Programming approaches): when the stateespacomes huge and the number of
possible classes of services increase, the numberfarmation to be stored in order to
perform the algorithm becomes so big that it ispassible to store it or, at least, manage it in
a “reasonable” time (a user is not willing to waitnutes to have the response his call is
accepted or not!).

A class of algorithms which well adapts to thistjgatar problem is the class containing
algorithms based on a neural-network like approbielural networks (NN [24]) are particular
entities which are able fearn how to respond to certain inputs, i.e. to learmtvutputs to
produce having something in input. In order to make able to learn, there are two main
approaches, a supervised and an unsupervised rorike Ifirst approach, it is possible to
create a training set, which has a number of @iffemputs and the respective correct outputs.
This training set is put in input to the NN witls itespective outputs and, thanks some

backtracking algorithms, the NN learn how to behawveesponse to those inputs. Then the

23

NN is used on the real input and outputs are tbaltref the behaviour learned by the NN.
Main problems with NN are:
* necessity to have a sufficiently varied training} §& order to “teach” to the NN how
to behave in response to the more possible divepsgs as possible (supervising);
» training sets not sufficiently varied could leac tNN to do not learn the expected
functioning so that outputs will be wrong;
e training sets too wide will lead the NN to work famtly on it but to not have a
sufficient generalization
All these problems could be overcame using an wrsiged approach. In non supervised
approaches there is not the necessity to haveimingaset. the idea is to reward the
unsupervised agent when it takes the right decigimrpenalize him when it takes wrong
decisions. In this way, an agent could easily letwntry to get rewards and avoid
penalizations. The real problem with these algorghs to correctly determine positive and
negative rewards: in case of an error in the reviandtions, the algorithm will learn a wrong
behaviour.
They exist a number of approaches of unsupervisathing [25]: among them, the one |
determined to be the most promising to solve theCCgroblem is the Reinforcement

Learning [26] approach.

3.2. The Reinforcement Learning Problem

The objective of this chapter is to describe thefoecement learning problem in a broad
sense. The reinforcement learning problem is meame a straightforward framing of the
problem of learning from interaction to achieveaalg The learner and decision-maker are

called the agent. The thing it interacts with, coisipg everything outside the agent, is called

24

the environment. These interact continually, thenagelecting actions and the environment
responding to those actions and presenting newatgins to the agent. The environment also
gives rise to rewards, special numerical values tti agent tries to maximize over time. A
complete specification of an environment definegsisk, one instance of the reinforcement
learning problem.

More specifically, the agent and environment intet each of a sequence of discrete time

steps,| | . At each time stép , the agent receives sepresentation of the

environment’s state, | , whefé s the set of posstites, and on that basis selects an

action, |, wher is the set of actions availablst@te= . One time step later,

in part as a consequence of its action, the ageeives a numerical reward, , and

finds itself in a new staté; "] . Next picture diagsatime agent-environment interaction.

Figure 1 Agent-environment interaction in reinforcament learning
At each time step, the agent implements a mapping Gtates to probabilities of selecting

each possible action. This mapping is called thentg policy and is denotedd , where

| listhe probability thai—— 7 == . Reinforcement leargimethods specify how

the agent changes its policy as a result of iteegpce. The agent’s goal, roughly speaking,

Is to maximize the total amount of reward it reesiwover the long run.

25

This framework is abstract and flexible and canabpelied to many different problems in
many different ways. For example, the time stegsimet refer to fixed intervals of real time;
they can refer to arbitrary successive stages oisid®-making and acting. Similarly, the
states can take a wide variety of forms: they cancbmpletely determined by low-level
sensations, such as direct sensor readings, octrelpe more high-level and abstract, such as
symbolic descriptions of objects in a room. Theagahrule | followed is that anything cannot
be changed arbitrarily by the agent is consideredbed outside of it and thus part of its
environment; furthermore | consider the reward comapon to be external to the agent
because it defines the task facing the agent amsl thust be beyond its ability to change
arbitrarily.

The reinforcement learning framework is a considlerabstraction of the problem of goal-
directed learning from interaction. It proposestthdnatever the details of the sensory,
memory, and control apparatus, and whatever okgdine is trying to achieve, any problem
of learning goal-directed behaviour can be reducethree signals passing back and forth
between an agent and its environment: one signapesent the choices made by the agent
(the actions), one signal to represent the basisloch the choices are made (the states), and
one signal to define the agent’s goal (the rewartis)s framework may not be sufficient to
represent all decision-learning problems useflily, it has proved to be widely useful and

applicable.

3.3. Goals and Rewards

In reinforcement learning, the purpose or goahef agent is formalized in terms of a special
reward signal passing from the environment to tpena At each time step, the reward is a

simple number,___ | . Informally, the agent's goal isn@ximize the total amount of

26

reward it receives. This means maximizing not imi@edreward, but cumulative reward in
the long run. The use of a reward signal to forpeathe idea of a goal is one of the most
distinctive features of reinforcement learning.hdligh this way of formulating goals might
at first appear limiting, in practice it has provedoe flexible and widely applicable. The best
way to see this is to consider examples of hovad Ibeen, or could be, used. For example, to
make a robot learn to walk, researchers have pedvidward on each time step proportional
to the robot’s forward motion. In making a robaine how to escape from a maze, the reward
is often zero until it escapes, when it becomes notAer common approach in maze
learning is to give a reward for every time stigat passes prior to escape; this
encourages the agent to escape as quickly as [gs6ilu can see what is happening in all of
these examples. The agent always learns to maxiitszeeward. If we want it to do
something for us, we must provide rewards to isuch a way that in maximizing them the
agent will also achieve our goals. It is thus catithat the rewards we set up truly indicate
what we want accomplished. In particular, the reasgnal is not the place to impart to the
agent prior knowledge about how to achieve whatwaet it to do. For example, a chess-
playing agent should be rewarded only for actuailyning, not for achieving sub-goals such
taking its opponent’s pieces or gaining controtlad centre of the board. If achieving these
sorts of sub-goals were rewarded, then the agegittnind a way to achieve them without
achieving the real goal. For example, it might fanday to take the opponent’s pieces even at
the cost of losing the game. The reward signaloisr yay of communicating to the robot

what you want it to achieve, not how you want tiaged.

27

3.4. Returns

A more precise definition of what is meant with “xmaize the total amount of reward

received” is needed. If the sequence of rewardeived after time step] is denoted

— , then what precise aspect of this sequence haes noaximize? In general,

we seek to maximize the expected return, whergdhen,|—|, is defined as some specific
function of the reward sequence. In the simplesé ¢he return is the sum of the rewards:

[| (3)

where = is a final time step. This approach makesesén applications in which there is a

natural notion of final time step, that is, where tagent-environment interaction breaks
naturally into subsequences, which we call episosiésh as plays of a game, trips through a
maze, or any sort of repeated interactions. Eacsode ends in a special state called the
terminal state, followed by a reset to a stand#adisg state or to a sample from a standard
distribution of starting states. Tasks with episodé this kind are called episodic tasks. In
episodic tasks it is sometimes needed to distihgine set of all non-terminal states, denoted
[, from the set of all states plus the terminalestdenoted=] .

On the other hand, in many cases the agent-envenhimteraction does not break naturally
into identifiable episodes, but goes on continualithout limit. For example, this would be
the natural way to formulate a continual processiob task, or an application to a robot with
a long life span: these ones are called continuasks. The return formulation (3) is
problematic for continuing tasks because the fima¢ step would bé——] | and the return,
which is what we are trying to maximize, could litsasily be infinite. (For example, suppose
the agent receives a reward[of at each time stdu$, usually it is used a definition of
return that is slightly more complex conceptualiyt Imuch simpler mathematically. The

additional concept that is needed is discountirgeofding to this approach, the agent tries to

28

select actions so that the sum of the discountechmds it receives over the future is

maximized. In particular, it chooses to maximize éxpected discounted return:

R = G+ Mo+ Vgt = 2 YT (4)
k=0 t+k+1
where[d is a paramet , called the discount rate. discount rate determines the

present value of future rewards: a reward receivditne steps in the future is worth only
times what it would be worth if it were receivedmediately. If_____ |, the infinite sum

has a finite value as long as the reward sequ is bounded. If____| | the agent is

“myopic” in being concerned only with maximizing mediate rewards: its objective in this
case is to learn how to chooseé so as to maximnie(o—]. If each of the agent’s actions
happened to influence only the immediate reward futoire rewards as well, then a myopic
agent could maximize (4) by separately maximiziagheimmediate reward. But in general,
acting to maximize immediate reward can reduce sscte future rewards so that the return
may actually be reduced. A$s approaches 1, thectigetakes future rewards into account

more strongly: the agent becomes more farsighted.

3.5. Unified Notation for Episodic and Continuing Tasks

It is opportune to have a single notation that c®veoth episodic and continuing tasks.
Having defined the return as a sum over a finiteloer of terms in one case (3) and as a sum
over an infinite number of terms in the other (#)s possible to unify them by considering
episode termination to be the entering of a spetiabrbing state that transitions only to itself
and that generates only rewards of zero. For ex@ngpihsider the following state transition

diagram

29

Here the solid square represents the special ahgostate corresponding to the end of an

episode. Starting froniz , we get the reward sequence . Summing

these, we get the same return whether we sum bedirst(=] rewards (here_—_|) or over
the full infinite sequence. This remains true eifewe introduce discounting. Thus, we can

define the return, in general, according to (4).

3.6. Value Functions

Almost all reinforcement learning algorithms aresdxh on estimating value functions, i.e.
functions of states (or of state-action pairs) #stmate how good it is for the agent to be in a
given state (or how good it is to perform a givetian in a given state). The notion of “how
good” is defined in terms of future rewards that ba expected, or, to be precise, in terms of
expected return. Of course the rewards the agengxjaect to receive in the future depend on
what actions it will take. Accordingly, value furmts are defined with respect to particular
policies. Recall that a policy; , is a mapping freach state,” | , and action, |
to the probabilit of taking action when in statdnformally, the value of a state
under a policy= , denoted | , is the expected returenastarting imm - and followings

thereafter. For MDPs, it is possible to define | nfally as:

30

(5)

where| | denotes the expected value given that thaetdgllows policy= , andl is any

time step. Note that the value of the terminalestditany, is always zero. The function] is
called the state-value function for poliey . Sima it is possible to define the value of
taking actionz in state under a policy denoted | as the expected return starting

from m, taking the actiom , and thereafter followjngjicy w=:

(6)

is called the action-value function for policy

The value functions=] and | can be estimated froneespce. For example, if an agent
follows policy = and maintains an average, for esigie encountered, of the actual returns
that have followed that state, then the averagecativerge to the state’s value, | ,asthe
number of times that state is encountered appraaalfiaity. If separate averages are kept for
each action taken in a state, then these averafjesmilarly converge to the action values,
|| Estimation methods of this kind are called Mofltarlo methods because they
involve averaging over many random samples of &ctiarns. Of course, if there are very
many states, then it may not be practical to kegaste averages for each state individually.
Instead, the agent would have to maintain paaameterized functions and adjust
the parameters to better match the observed reflinis can also produce accurate estimates,
although much depends on the nature of the para@ede€unction approximator.

A fundamental property of value functions used tiglmout reinforcement learning and

dynamic programming is that they satisfy particuksursive relationships. For any poliecy

31

and any state -, the following consistency condition holds between the value of 1 and the

value of its possible successor states:

| = E{Ri|si=s}

= (7

where it is implicit that the actions, =, are taken from the set \;, and the next states, @, are
taken from the set %, or from = | in the case of an episodic problem. Equation (7) is the
values of its successor states. Think of looking ahead from one state to its possible successor
states, as suggested by Figure 2. Each open circle represents a state and each solid circle
represents a state-action pair. Starting from state 1, the root node at the top, the agent could
take any of some set of actions (three are shown in Figure 2). From each of these, the
environment could respond with one of several next states, =, along with a reward, =. The
Bellman equation (7) averages over all the possibilities, weighting each by its probability of
occurring. It states that the value of the start state must equal the (discounted) value of the
expected next state, plus the reward expected along the way.

The value function = | is the unique solution to its Bellman equation. Diagrams like those

shown in Figure 2 are called backup diagrams because they diagram relationships that form

32

the basis of the update or backup operations tteatitathe heart of reinforcement learning
methods. These operations transfer value informatexck to a state (or a state-action pair)

from its successor states (or state-action pairs).

(a) . (b) T

(

'

S
Figure 2 Backun diagrams for (a), V" and (b) Q"

3.7. Optimal Value Functions

Solving a reinforcement learning task means, roydimding a policy that achieves a lot of
reward over the long run. For finite MDPs, it isspinle precisely define an optimal policy in
the following way. Value functions define a part@idering over policies. A policyr is
defined to be better than or equal to a pox"y itsilexpected return is greater than or equal
to that of=* for all states. In other worem = @ ifammy if V7(5) = V™ (siforall s € &

. There is always at least one policy that is Ibettan or equal to all other policies. This is an
optimal policy. Although there may be more than,ohés better to denote all the optimal
policies by 7" . They share the same state-value ifumctalled theoptimal state-value

function denotecdl™™ , and defined as
V¥ s) =max V7 (s) (8)
forall s £ §.

Optimal policies also share the saomimal action-value functigrdenoted?” , and defined

as

33

Q"(s.a) = max Q" (s, a) ©)

forall s € & and @ € AlS) For the state-action pair |5 @) this function gives the expected
return for taking action « in state s and thereafter following an optimal policy. Thus, it is

possible to write /" in terms of 1" as follows:

Q" (s,a) = E{riy + 4V (s5041) | Si=5, 04, =a} (10)
Because 1" is the value function for a policy, it must satisfy the self-consistency condition
given by the Bellman equation for state values (7). Because it is the optimal value function,
however, |"*’s consistency condition can be written in a special form without reference to any
specific policy. This is the Bellman equation for 1'%, or the Bellman optimality equation.
Intuitively, the Bellman optimality equation expresses the fact that the value of a state under

an optimal policy must equal the expected return for the best action from that state:

V*(s) — max Q" (s.a)

ac Als)
S =38, Uy :(_1}

o0
) k
— max]:-{E VT pt ket 1 s,:s.a,:a}
o

k=0

(1

= max E,.,v{ R;

T ; L
= Iax bn-“{"j.;_[-+ Yy E TV Tik+2 | SE= S, Uy :(I}
L
=0
= | (1)
. max E P [R + V" (S'J]- (12)
ac Als) . '

A
5

The last two equations are two forms of the Bellman optimality equation for | *. The Bellman

optimality equation for (/" is

34

Q" (s,a) = E{/',+1 + vy max Q" (s¢41,a")

a'

S§ = 8.y = a}

B Z Pes {R” + v max Q* (s, ,-,'}]

!
(4

M
=

The backup diagrams in Figure 3 show graphically spans of future states and actions
considered in the Bellman optimality equations "> and 2" . These are the same as the
backup diagrams fcl'™ arl”™ except that arcs have deged at the agent’s choice points
to represent that the maximum over that choicaksr rather than the expected value given

some policy. Figure 3 a graphically representB@éman optimality equation (12).

(a) 3 (b) S,a
max
a

r max

S

Figure 3 Backup diagrams for (a)}"* and (b)(-;)’
For finite MDPs, the Bellman optimality equatior2{lhas a unique solution independent of

the policy. The Bellman optimality equation is adty a system of equations, one for each
state, so if there ar\' states, then thereNwre atiegs in.\' unknowns. If the dynamics of
the environment are knowrR:.c arPic), then in prireiphe can solve this system of
equations forl™™ using any one of a variety of methém solving systems of nonlinear

equations. One can solve a related set of equédior?.

Once one hal™ | it is relatively easy to determmepatimal policy. For each state , there
will be one or more actions at which the maximunolgained in the Bellman optimality

equation. Any policy that assigns nonzero probgbilinly to these actions is an optimal

policy: this could be called one-step search. Havhe optimal value functiorl’™ , then the

35

actions that appear best after a one-step search will be optimal actions. Another way of saying
this is that any policy that is greedy with respect to the optimal evaluation function V™" is an
optimal policy. The beauty of 1" is that if one uses it to evaluate the short-term consequences
of actions (specifically, the one-step consequences) then a greedy policy is actually optimal in
the long-term sense in which we are interested because | “already takes into account the
reward consequences of all possible future behaviour. By means of =, the optimal expected
long-term return is turned into a quantity that is locally and immediately available for each
state. Hence, a one-step-ahead search yields the long-term optimal actions.

Having |

to do a one-step-ahead search: for any state -, it can simply find any action that maximizes
. The action-value function effectively caches the results of all one-step-ahead
searches. It provides the optimal expected long-term return as a value that is locally and
immediately available for each state-action pair. Hence, at the cost of representing a function
of state-action pairs, instead of just of states, the optimal action-value function allows optimal
actions to be selected without having to know anything about possible successor states and
their values, that is, without having to know anything about the environment’s dynamics.
Explicitly solving the Bellman optimality equation provides one route to finding an optimal
policy, and thus to solving the reinforcement learning problem. However, this solution is
rarely directly useful. It is akin to an exhaustive search, looking ahead at all possibilities,
computing their probabilities of occurrence and their desirability in terms of expected

rewards. This solution relies on at least three assumptions that are rarely true in practice:
1. to accurately know the dynamics of the environment;
2. to have enough computational resources to complete the computation of the solution;

3. the Markov property.

36

For most tasks it is generally not possible to enpént this solution exactly because various
combinations of these assumptions are violatetkeinforcement learning one typically has to

settle for approximate solutions.

3.8. Optimality and Approximation

Even if it is possible to have a complete and aateumodel of the environment’s dynamics, it
is usually not possible to simply compute an optipadicy by solving the Bellman optimality
equation. For example, board games such as chess tary fraction of human experience,
yet large, custom-designed computers still canmobpute the optimal moves. A critical
aspect of the problem facing the agent is alwagscttimputational power available to it, in
particular, the amount of computation it can perfan a single time step.

The memory available is also an important constrainlarge amount of memory is often
required to build up approximations of value fuans, policies, and models. In tasks with
small, finite state sets, it is possible to forregh approximations using arrays or tables with
one entry for each state (or state-action pair)is Tik called the tabular case, and the
corresponding methods are called tabular methadsmany cases of practical interest,
however, there are far more states than could lplgdsé entries in a table. In these cases the
functions must be approximated, using some sorhofe compact parameterized function
representation.

Approximating is not always a great problem, intflaere may be many states that the agent
faces with such a low probability that selectinppautimal actions for them has little impact
on the amount of reward the agent receives. Thénennature of reinforcement learning
makes it possible to approximate optimal policiesvays that put more effort into learning to

make good decisions for frequently encounteredestaat the expense of less effort for

37

infrequently encountered states. This is one keypgmty that distinguishes reinforcement

learning from other approaches to approximatelyisgIMDPs.

38

Chapter 4Introduction to QX): the chosen RL

algorithm

4.1. Introduction

In order to introduce the chosen RL algorithmAXQ(t is necessary to introduce two different
concepts, in particular the Q-Learning and the iklity-Trace ones, of which Q(is a

fusion.

4.2. Introduction to Q-Learning

In order to introduce Q-Learning algorithm, it important to briefly define the two concepts
of on-policy and off-policy learning. On-policy methods attempt to evaluatengurove the
policy that is used to make decisions, i.e. thaytbstimate the value of a policy while using
it for control. In off-policy methods these two fttrons are separated. The policy used to
generate behaviour, called the behaviour policyy mdact be unrelated to the policy that is
evaluated and improved, called the estimation gpoka advantage of this separation is that
the estimation policy may be deterministic (e.geegly), while the behaviour policy can
continue to sample all possible actions.

One of the most important breakthroughs in reirdorent learning was the development of
an off-policy TD control algorithm known as Q-learg (Watkins, 1989). Its simplest form,

one-step Q-learning, is defined by

39

(13)

In this case, the learned action-value function, directly approximates=| , the optimal
action-value function, independent of the policyngefollowed. This dramatically simplifies
the analysis of the algorithm and enabled earlyweayence proofs. The policy still has an
effect in that it determines which state-actionrpaire visited and updated. However, all that
is required for correct convergence is that alfgabntinue to be updated: this is a minimal
requirement in the sense that any method guarambefad optimal behaviour in the general
case must require it. Under this assumption (anthesmther regarding stochastic
approximation conditions on the sequence of step-parameters)=| has been shown to
converge with probability 1 to~] . The Q-learningaithm is shown in procedural form in

Figure 4.

Figure 4 Q-learning: an off-policy TD control algorithm
It could be useful to determine the backup diagfamQ-learning The rule (13) updates a
state-action pair, so the top node, the root oftidekup, must be a small, filled action node.
The backup is also from action nodes, maximizingrall those actions possible in the next
state. Thus the bottom nodes of the backup diagfaould be all these action nodes. Finally,
remembering that taking the maximum of these “reetion” nodes is indicated with an arc

across them, the resulting diagram is depictedgare 5.

40

Figure 5 Backup diagram for Q-learning

4.3. Introduction to Q-Learning

Eligibility traces are one of the basic mechanisrhseinforcement learning. There are two
ways to view eligibility traces. The more theoratiview is that they are a bridge from TD to
Monte Carlo methods (remember that TD methods drABRABLA and Monte Carlo
Methods are BLABLABLA). When TD methods are augneehtvith eligibility traces, they
produce a family of methods spanning a spectrurmiaa Monte Carlo methods at one end
and one-step TD methods at the other. In betweerindermediate methods that are often
better than either extreme method. In this sengéiity traces unify TD and Monte Carlo
methods in a valuable and revealing way. The otvey to view eligibility traces is more
mechanistic. From this perspective, an eligibiligce is a temporary record of the occurrence
of an event, such as the visiting of a state ortéthkéng of an action. The trace marks the
memory parameters associated with the event amlelifpr undergoing learning changes.
When a TD error occurs, only the eligible stateaaiions are assigned credit or blame for the
error. Thus, eligibility traces help bridge the dgagtween events and training information.
Like TD methods themselves, eligibility traces ardoasic mechanism for temporal credit
assignment.

The more theoretical view of eligibility traces dslled the forward view, and the more
mechanistic view is called the backward view. Tlewhard view is most useful for
understanding what is computed by methods usirgibdity traces, whereas the backward

view is more appropriate for developing intuitidmoat the algorithms themselves.

41

4.4. n-Step TD Prediction

Consider estimating " from sample episodes generated using . Monte Carlo methods
perform a backup for each state based on the entire sequence of observed rewards from that
state until the end of the episode. The backup of simple TD methods, on the other hand, is
based on just the one next reward, using the value of the state one step later as a proxy for the
remaining rewards. One kind of intermediate method, then, would perform a backup based on
an intermediate number of rewards: more than one, but less than all of them until termination.
For example, a two-step backup would be based on the first two rewards and the estimated
value of the state two steps later. Figure 6 diagrams the spectrum of r=-step backups for = |,
with one-step, simple TD backups on the left and up-until-termination Monte Carlo backups

on the right.

Figure 6 Spectrum ranging from the one-step backup of simple TD methods to the up-until-termination
backups of Monte Carlo methods. In between are the n-step backups, based on n steps of real rewards and
the estimated value of the n-th next state, all appropriately discounted

42

The methods that use r:-step backups are still TD methods because they still change an earlier
estimate based on how it differs from a later estimate. Now the later estimate is not one step

n n
later, but steps later. Methods in which the temporal difference extends over steps are

n “E]
called -step TD methods. More formally, consider the backup applied to state as a result

StaTia1 Sl T2+ 0 s ry, Sy
of the state-reward sequence, (omitting the actions for
Vitsy) Vs,
simplicity). It is known that in Monte Carlo backups the estimate of is updated

in the direction of the complete return:

where T is the last time step of the episode. Let us call this quantity the target of the backup.
Whereas in Monte Carlo backups the target is the expected return, in one-step backups the

target is the first reward plus the discounted estimated value of the next state:
(1) Y, \
1))(— T +A‘{‘fl'$j_._l.].

This makes sense because 7VilSi-1) takes the place of the remaining terms

Mes2 + 7 e+ + 7777, The point now is that this idea makes just as much sense

after two steps as it does after one. The two-step target is

(2) Ay 7 ¢ \
H: = Typ1 + Vg2 + 7 Vi(S142),
3

where now 7" VilSi-2) takes the place of the terms 7 7ers + ¥V Teia + o+ e I

general, the n-step target is

43

Ri" = 1o +area 97+ 40" T + 9" Vilse4n)- (14)

This quantity is sometimes called the “corrected r-step truncated return” bebecause it is a return
truncated after 7 steps and then approximately corrected for the truncatation by adding the
estimated value of the r2-th next state. That terminology is descriptive but a a bit long: usually it

is also called as the r-step return at time f.

Of course, if the episode ends in less than 1 steps, then the truncation i1 in an. -step return
occurs at the episode’s end, resulting in the conventional complete return.n. In other words, if
I —t < n,then Him = I‘)'rl' V- R,

An n-step backup is defined to be a backup toward the rn-step return. Inin the tabular, state-

value case, the increment to ¥+(5:) (the estimated value of V" [5¢) at time f), due to an -step

backup of st, is defined by
AVi(s) = a {1{}"1‘ — Vi(s,)].

where @ is a positive step-size parameter, as usual. Of course, the ! increments to the
estimated values of the other states are SVi(s) = 0 for a1l # ¢, Here thien -step backup is
defined in terms of an increment, rather than a&ect update rule, in order to distinguish
two different ways of making the updates. In orelupdating, the updates are done during
the episode, as soon as the increment is computed.this case we have
Viails) = Vils) + AV for all s € S. In off-line updating, on the other hanthe
increments are accumulated “on the side” and areisexd to change value estimates until the
end of the episode. In this cadi(s) is constantinvein episode, for al¥ . If its value in

this episode i (5] | then its new value in the neigagte will be' (5] + >, AVils)

44

The expected value of all r-step returns is guaranteed to improve in a certain way over the

current value function as an approximation to the true value function. For any | = the expected

value of the rn-step return using = is guaranteed to be a better estimate of = | than

=lis,in a

worst-state sense. That is, the worst error under the new estimate is guaranteed to be less than

or equal to | | times the worst error under ' :

(15)

This is called the error reduction property of rn-step returns. Because of the error reduction
property, one can show formally that on-line and off-line TD prediction methods using r-step
backups converge to the correct predictions under appropriate technical conditions. The -
step TD methods thus form a family of valid methods, with one-step TD methods and Monte
Carlo methods as extreme members.

Nevertheless, r2-step TD methods are rarely used because they are inconvenient to implement.
Computing n2-step returns requires waiting r=steps to observe the resultant rewards and states.

For large =, this can become problematic, particularly in control applications.

4.5. The Forward View of TD(/A)

Backups can be done not just toward any r:-step return, but toward any average of r-step

returns. For example, a backup can be done toward a return that is half of a two-step return

and half of a four-step return: . Any set of returns can be averaged in
this way, even an infinite set, as long as the weights on the component returns are positive and
sum to 1. The overall return possesses an error reduction property similar to that of individual
n-step returns (15) and thus can be used to construct backups with guaranteed convergence

properties. Averaging produces a substantial new range of algorithms.

45

A backup that averages simpler component backups in this way is called a complex backup.
The backup diagram for a complex backup consists of the backup diagrams for each of the
component backups with a horizontal line above them and the weighting fractions below. For
example, the complex backup mentioned above, mixing half of a two-step backup and half of

a four-step backup, has the diagram:

Figure 7 Backup diagram for TD()L). If A = (), then the overall backup reduces to its first component, the
one-step TD backup, whereas if A 1, then the overall backup reduces to its last component, the Monte
Carlo backup

46

The TD(A) algorithm can be understood as one particular way of aweraging: -step backups.
This average contains all the n-step backups, each weighted propoortional tc\" ™" , where

0 < A < 1 (Figure 7) A normalization factor of 1 — A ensures that tha weights sum to 1. The

resulting backup is toward a return, called the A -return, defined by
o
R} =(1-X)Y A'R".
n=1

Figure 8 illustrates this weighting sequence. The one-step return is g given the largest weight,

1 — \; the two-step return is given the next largest weight, |1 — AIA the three-step return is

given the weight [! — A ‘:"‘\:; and so on. The weight fades by A with each additional step.
After a terminal state has been reached, all subsequent r-step returnrns are equal/®s . If we

want, we can separate these terms from the main sum, yielding
T—t—1
R = (1-X) Z NTIRM 4 AR, (16)

n=1

This equation makes it clearer what happens when A = 1. In this casse the main sum goes to

zero, and the remaining term reduces to the conventional return, R:. 1Thus, fol = 1 backing

up according to the A-return is the same as the Monte Carlo algorithhm. On the other hand, if

(1
A = 0, then the A-return reduces to /%t . the one-step return. Thuss, forA = (0, backing up

according to thi A -return is the same as the oneTdlemethod, TD(0).

weight given to
the 3-step return total area = 1

decay by A
Weight 1—h

weight given to
actual, final return

1 T
Time ——
Figure 8 Weighting given in theA-return to each of then-step returns

47

The algorithm that performs backups using Ae rrets defined the A -return algorithm.

On each steft, , it computes an increm3Vils:) | twahee of the state occurring on that
step:

AVi(s,) = a {1{;‘ —Vi(sy)]. (17)
(The increments for other states are of codVils) =0 ralfes # St.) As with then -step

TD methods, the updating can be either on-linefilirge.

This approach is called the theoretical, or forwanéw of a learning algorithm. For each
state visited, the algorithm looks forward in titoeall the future rewards and decide how best
to combine them. It is possible to imagine a persadmg the stream of states, looking
forward from each state to determine its updatedeysicted in Figure 9. After looking
forward from and updating one state, the personamaw to the next and never have to work
with the preceding state again. Future stateshenother hand, are viewed and processed

repeatedly, once from each vantage point precadsmg.

Figure 9 Forward or theoretical view. The algorithmdecides how to update each state by looking forwdr
to future rewards and states

The A -return algorithm is the basis for the forwarew of eligibility traces as used in the
TD(A) method. In fact, in the off-line case, tA: tur@ algorithm is the TL A) algorithm.

The A -return and TLA) methods use A2 parametshifo from one-step TD methods
to Monte Carlo methods. The specific way this sisiftione is interesting, but not obviously

better or worse than the way it is done with sinymstep methods by varying . Ultimately,

48

the most compelling motivation for tt A way of mmigin-step backups is that there is a

simple algorithm -TC A) -for achieving it. This isn@echanism issue rather than a theoretical

one.

4.6. The Backward View of TIA)

The previous section presented the forward or timal view of the tabular TIA)

algorithm as a way of mixing backups that pararoeli shifts from a TD method to a Monte

Carlo method. This section instead defines AD()hmatstically, and in the next section it

is shown that this mechanism correctly implemehts forward view. The mechanistic, or

backward, view of TL A) is useful because it is dengponceptually and computationally. In
particular, the forward view itself is not directimplementable because it is nhon-causal, using
at each step knowledge of what will happen mangsstater. The backward view provides a
causal, incremental mechanism for approximatingfdineard view and, in the off-line case,
for achieving it exactly.

In the backward view of TLA), there is an additiomemory variable associated with each
state, its eligibility trace. The eligibility trader states at time is denote’s! s} € R™ on
each step, the eligibility traces for all statesajeby 7 , and the eligibility trace for the one

state visited on the step is incremented by :

|" \ '-; /\ € -1 ‘: S '| lf S I Sy . 18
f S| = P .
¢\, A;/\(“o_]‘:"\"l_{’_ l li S =5, ()

for all non-terminal states , whev2 s the dis¢oate and\ is the parameter introduced in

the previous section. Henceforth we refer Ao a&stthce-decay parameter. This kind of
eligibility trace is called an accumulating tracechuse it accumulates each time the state is

visited, then fades away gradually when the statet visited, as illustrated below:

49

accumulating eligibility trace

[]]] | | | times of visits to a state
At any time, the traces record which states hacentty been visited, where “recently” is
defined in terms of'A . The traces are said to indithe degree to which each state is
eligible for undergoing learning changes shoulciaforcing event occur. The reinforcing
events we are concerned with are the moment-by-mboree-step TD errors. For example,

the TD error for state-value prediction is

0 = Teg1 + YVi(Si41) — Vilse). (19)

In the backward view of TIA), the global TD erragrsal triggers proportional updates to
all recently visited states, as signalled by theimzero traces:

AVi(s) = ad;e(s). for all s € §. (20)
As always, these increments could be done on emghts form an on-line algorithm, or
saved until the end of the episode to produce &finaf algorithm. In either case, equations

((18)-(20)) provide the mechanistic definition bEtTD(A) algorithm. A complete algorithm

for on-line TD A) is given in Figure 10.

Initialize V' (s) arbitrarily and e(s) = 0. for all s € §
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
a — action given by 7 for s
Take action a, observe reward, r, and next state. s’
0 —r+~4V(s')—=V(s)
els) «—e(s)+1

For all s:
Vi(s) «— V(s) 4+ ade(s)
e(s) — g DY (\)

S .ﬁ"

until s is terminal
Figure 10 On-line tabular TD(A)

50

The backward view of TLA) is oriented backwardimd. At each moment we look at the
current TD error and assign it backward to eacbrmiate according to the state’s eligibility
trace at that time. It is possible to imagine asperriding along the stream of states,
computing TD errors, and shouting them back toptleeiously visited states, as suggested by

Figure 11. Where the TD error and traces come bheggetve get the update given by (20).

Figure 11 Backward or mechanistic view. Each updatelepends on the current TD error combined with
traces of past events

To better understand the backward view, consideatvappens at various values Af . If
A = 0, then by (18) all traces are zerctat exceptHerttace corresponding 5» . In terms of

Figure 11, TD(0) is the case in which only the stae preceding the current one is changed

by the TD error. For larger values A, but s\ < 1 mpre of the preceding states are
changed, but each more temporally distant statbasged less because its eligibility trace is
smaller, as suggested in the figure: it is possibleay that the earlier states are given less
credit for the TD error.

If A = 1, then the credit given to earlier states faltdy by 7 per step. This turns out to be
just the right thing to do to achieve Monte Car&haviour. For example, remember that the
TD error, 9 , includes an undiscounted tern’+1 .dsgng this baclk steps it needs to be
discounted, like any reward in a return, ~ "'/ , Whiglust what the falling eligibility trace

achieves. If\ =1 an = | | then the eligibility tracesruu decay at all with time. In this

51

case the method behaves like a Monte Carlo metbodrf undiscounted, episodic task. If
A = 1, the algorithm is also known as TD(1). TD(1) isvay of implementing Monte Carlo

algorithms.
Concluding, it is possible to demonstrate thatliot- TD(A), as defined mechanistically
above, achieves the same weight updates as thi@® A -return algorithm: in this sense it is

possible align the forward (theoretical) and baakir@aechanistic) views of TIA) [27].

47. Q)

Two different methods have been proposed that coenbligibility traces and Q-learning;

sometimes these are referred as Watkins A Q() and’® Q A), after the researchers who
first proposed them.

Recall that Q-learning is an off-policy method, mieg that the policy learned about need not
be the same as the one used to select actionartioytar, Q-learning learns about the greedy
policy while it typically follows a policy involvig exploratory actions -occasional selections
of actions that are suboptimal accordind?» . Beeanf this, special care is required when
introducing eligibility traces.

Suppose to back up the state-action ¢ @t at finguppose that on the next two time
steps the agent selects the greedy action, btheothird, at timef + 3 | the agent selects an
exploratory, non-greedy action. In learning abtat value of the greedy policy 5t- @t itis
possible to use subsequent experience only asdsre greedy policy is being followed.
Thus, it is possible to use the one-step and tep-gtturns, but not, in this case, the three-
step return. The: -step returns for 1 = 3 no longarehany necessary relationship to the

greedy policy.

52

Thus, unlike TDA), Watkins's (A) does not look athesll the way to the end of the

episode in its backup. It only looks ahead as fath@ next exploratory action. Aside from
this difference, however, Watkins’'s A() is mucheliRD(A). Its look ahead stops at

episode’s end, whereas A ()'s look ahead stopsedirtt exploratory action, or at episode’s

end if there are no exploratory actions before.tAatually, to be more precise, one-step Q-

learning and Watkins's (A) both look one actiontpié® first exploration, using their

knowledge of the action values. For example, suppbs first action/’++1 , is exploratory.
Watkins's QA) would still do the one-step update cZ¢!s:.a:) toward
req1 +ymax, Qe(se,a) n general, if’«+n is the first exploratory actidhen the longest
backup is toward

n—1

Feen + 7" max Q¢ Siip. a),

a

T4l T YTe42 + 0+ 7
where we assume off-line updating. The backup dragin Figure 12 illustrates the forward

view of Watkins’s QA), showing all the componentkiaps.

Watkins's Q(A)

-— .\’. (l[

OR
(1=2) A

» non-greedy
x action
Figure 12 Backup diagram for Watkins’s QQ). The series of component backups ends either withe end
of the episode or with the first non-greedy actionwhichever comes first

53

The mechanistic or backward view of Watkins’s A)(s jlso very simple. Eligibility traces

are just set to zero whenever an exploratory (meedy) action is taken. The trace update is

best thought o{ as occurring in two steps. Fitst, traces for all state-action pairs are either
\

decayed by or, if an exploratory action was takeet to : . Second, the trace

l
corresponding to the current state and actionciemented by . The overall result is

YA€ q(s.a) if Qi (s, ar) = max, Q;_1(s;.a);
0 otherwise,

(f(‘q' (’) - I\'.\"o : IO(I(_+_ {
where, as beforels» s an identity indicator funectiequal to 1 if* — ¥ and otherwise.
The rest of the algorithm is defined by

Qier(s.a) = Qi(s.a) + adie(s.a),

Where

- , ’ A - o Oy
()! =T+ l'll'('l.\ (2((.Sl+l' a)— (.2![_.5'[.).
a

Next picture shows the complete algorithm in pseode:

Initialize Q(s.a) arbitrarily and e(s.a) = 0, for all s, a
Repeat (for each episode):

Initialize s. a

Repeat (for each step of episode):

Take action a. observe r. s

Choose a' from s’ using policy derived from Q (e.g.. e-greedy)
a* — arg maxy Q(s’.b) (if a' ties for the max, then a* «— a')
§ —r+Q(s',a*) — Q(s.a)
els.a) —els.a)+1
For all s.a:

Q(s,a) — Q(s,a) + ade(s.a)

If a' = a*, then e¢(s.a) «— v Ae(s,a)

else e(s.a) — 0

se—§ra—d

until s is terminal

Figure 13 Tabular version of Watkins’s Q() algorihm

54

Unfortunately, cutting off traces every time an exploratory action is taken loses much of the
advantage of using eligibility traces. If exploratory actions are frequent, as they often are early
in learning, then only rarely will backups of more than one or two steps be done, and learning
may be little faster than one-step Q-learning. Peng’s Q(A) is an alternate version of Q(A)

meant to remedy this.

Peng's Q(A
(1-A) A i
(1=2A) A

Figure 14 Backup diagram for Peng’s Q(A)
Conceptually, Peng’s Q(A) uses the mixture of backups shown in Figure 14. Unlike Q-
learning, there is no distinction between exploratory and greedy actions. Each component
backup is over many steps of actual experiences, and all but the last are capped by a final
maximization over actions. The component backups, then, are neither on-policy nor off-

policy. The earlier transitions of each are on-policy, whereas the last (fictitious) transition

= under Peng’s Q(A), but to some hybrid of the two. However, if the policy

is gradually made more greedy, then the method may still converge to |~ , even if this has not

55

yet been proved. Nevertheless, the method perfamels empirically. Most studies have

shown it performing significantly better than Waikis Q A).

56

Chapter 50bjectives and adopted approaches

5.1. Objectives

In the contest of this work, the most importangédris to assure that the algorithms based on
Reinforcement Learning perform better at leashefrnost common CAC algorithm, the peak
based’s one. That is, the RL based CAC algoritimghé future CAC-RL) should guarantee
to the network operator the maximum income, prasgrthe clients’ quality of service. It
means that on one hand the network resources sheudkploited in order to optimally use
the available resources and on the other hand dh&actual quality of service should be
assured to all the already accepted end-users coome
In addition to that, the RL algorithm must be deued from other Resource Management
procedures and must be technology independentyialjonetwork operators to update their
transport technologies without modifying the reseucontrol functions. This is especially
true for the wireless networks market where newmddeads impose high investment in new
infrastructures. The CAC-RL must adapt to differevdtwork scenarios, thus another
objective is the robustness and independence flmrspecific statistical behaviour of the
traffic; CAC-RL should detect and react to the desof the environmental conditions.
Among the objectives depicted above, I've decidedsubdivide part of them in order to
introduce more complexity in RL algorithms in apstey-step way:

« first of all an RL algorithm was developed abletmtrol only bandwidth usage, while

maximizing the income in the long run;
* then, when a good algorithm was found, another tcanswas introduced, i.e. the

control of the blocking probabilities;

57

« finally the final constrain was introduced, i.ee ttontrol of the dropping probability.

5.2. First RL approach

In order to utilize the RL algorithm to solve thé\C problem, it is needed to identify the
fundamental elements for the implementation of &ldenission control algorithm i.e. the

system states, actions and rewards.

5.2.1.Definition of state, actions and reward

At any given step t, the system is in a particutzamfigurationSf which we identify with the

number of active connection of each traffic class, §=(0 e), wheren; is the
number of active connections of clasdAt random times an eveertcan occur (we assume
only one event can occur at any step), wkedseeither a new call arrival or a call termination
This assumption is not restrictive: in a time-conbus scenario the probability two events
occur exactly at the same time is zero. The agesttb find an optimal policy which
maximizes the cumulative measure of the rewardsived over time choosing between two
possible actions for each request: acceptag=(1) and rejectingda = 0) the arriving
connection request of class connection terminations are not decision poirdstisat no
decision needs to be taken.

The crucial point in the definition of an environmddehaviour is the analytical form of the
reward for the acceptance or rejection of a conmecequest in a state It should take into
account all the objectives established previoualgood guideline to achieve the goal is to
build the reward function as a superposition ofitagl contributes, each of which regarding a
different objective: in this way future refinememtthe model such as the introduction of

new objectives will be easily made. | have chosenfollowing general reward functions for

58

the acceptancer((B,A,2,8)) and rejection ((B,A,[1,5)) couple of a generic class of

service:

r(B.A,2,0)=f (B)-0M(,11,P)
(B A 21,0)=f (0)-1, BA .D)

Where:

(21)

o f (I} is the bandwidth contribute;
« AP(DI is the inversion contribute (connected to the kadth only) for thei-th class

of service;
* B is the used bandwidth in the state note thaB is variable during the time; for

notation simplicity we will omit to explicitly dept time dependences;

e A=(A,...,A,) is the new call frequency vector, beirg the frequency of new call
for ani-th class of service connection;

e [O=(4,...14,) is the holding time vector, being the average duration of arth
class of service connection;

- p=(p,...0y) is the price vector, being the price for band and time unit of ath
class of service connection. In partlculerFE' wherer; is the reward per time unit

andB; is the nominal bandwidth (occupied by a connegtairihe i-th class of service.
The definition of reward for the call rejection cesnfrom the choice to satisfy the following

constraint, and so to assure a good control oaldpaithm behaviour:

Fai (B,/T,[I, P) +ry (B,/T,,U, p)=f (0)

The first term of the first equation in (21), thanbwidth term, should assure that the agent

learns to accept a connection only if at least digoo of the bandwidth is available, and to

59

reject it if the bandwidth of the link is filled.Have chosen foif (B) the following sigmoid

function,

1
(B) = mavs

where:
« Bis the actual bandwidth:

» B is the nominal bandwidth of the link;

» B,is a free parameter to be chosen convenientlyrfaptimal tuning.

The behaviour of the couple of reward functions dogeneric class of service is shown in
Figure 15 (where we temporarily considessd'())=0). As it is possible to see, changing the
value of the tuning parametep Bie graph results in curves more “crushed” but(tevalue

is always reached foB/ BL =1. We call this point theifiversion poinit, i.e. the point where

r i before there is a greater reward accepting calfler rejecting them. This choice is

A TR
intuitive: supposing requested bandwidth for a aartcall is its maximum occupied

bandwidth and that there is no bandwidth occupadsignalling (or, as preferred, consider
this bandwidth not available to be assigned to wjuests), the best solution to augment
operator incoming is to accept new calls as longhage is bandwidth, then the operator is

forced to reject in order to continue to guarar@®S constrains.

60

1 —ic :
N
08F-------- :'..:ll. sei rAi I:BO:1)
: : : A : : rAi (B0=10)
.‘2 : . rRi (BO=1) :
a3 P A A A S I : rRi (B0=10) } -
&3 ' : : : :
&
1] S T I E .P.II.........‘.......
02k T AR
: AN
0 i 1 1 1] 1 _ T 1)
0 0.2 0.4 06 08 1 1.2 1.4 16 1.8 2

B/BL

Figure 15 Acceptance and rejection reward functiongor By=1 and B=10

The second term in (21), the inversion term, cormes the network operator need to
maximize its profit over the long run. More in détehave introduced it to assure significant

improvement in the management of connection reguestongestion conditions.
The value of A™(01=0 should be as higher as the class of serviciss considered not

convenient by the network operator, as smalleoasidered convenient. Figure 15 shows the
couples of reward functions for four classes oViser in which four decreasingly values of
A has been considered.

The main effect ofA is the left shift of the inversion point. The makeincreases the more
the shift increases. The rationale is the followwghout A, the policy is exactly the greedy
one, i.e., accept if there is bandwidth. In thisywal calls are considered equivalently
convenient; vice versa, usually certain classeseofice are more convenient than others and

so it could be intuitive to try to leave some bardttv free for them: this is exactly what

61

permits. The best classes hafenear zero, which implies accept them whenever irgna

bandwidth (i.e. unless occupied bandwidth is aroli@@%); the worst classes have high

which implies to accept them whenever Bé BL ratio is sufficiently low (i.e., accept till a

certain percentage, considerably less than 100%heobandwidth is occupied). In this way
the agent could follow a policy which accepts otllg most convenience class of service
requests in situation next to the bandwidth satumat

First of all | have considered the problem of baitlwcontrol only, so that | set the inversion

contribute as follows:
AP =clg () (22)
where c is a free parameter that it is possible to useltain an optimal tuning of the

algorithm (0<c<0.5), and of (¥ is the so calledifiversion functioh (0< of D<1). It takes

into account the convenience in accepting the othess of service requests respect 8 a

one; an analytical expression assuring our scapéeeifollowing:
N

- k%ﬁ i/]k Ebk wk

N
> Ao W
ok P

9. (1,1,p)

, (23)

62

a b
1 ; 1
E 05! ~ E 05!
o | o |
T 0 T 0
ey 0.5 1 15 0% 0.5 1 15
B/BL B/BL
1.5, [-
™ <+ 0.6
€ o5 &
o | ¥ 04
T 0 T 02
0.5 i : j 0. i ; |
0 0.5 1 1.5 0 0.5 1 1.5
B/BL B/BL

Figure 16 Reward functions for a)A =0.4, b) A=0.2, c) A=0.1, d) A =0 respectively
The rationale is the following: a certain cl&ssf service is more convenient:

» ifits price (for bandwidth and time unitpk) is higher
» ifits frequency @k) is higher
e its duration (uk) Is higher.

While the first point is intuitive, the second athe third could be not. Regarding the second,
suppose to have two different classes of serviaasdj, which have all parameters equals but

Ai > /11. . This implies the probability to have a new cdltlassi is greater than having one of

classj: so that, it will be counter-productive to leaymse for calls of class | rejecting calls of

classi, becausg" ones are more rare. In the worst case ﬂ]e] 0) leaving space for calls of
classj will be useless, because calls of clpase so rare that probably these will not arrive at

63

all in the near future. Regarding the third, suppgsgain to have two classes of serviges,

andj, which have all parameters equals k;u|1t> 'uj . In this case it will be convenient to

accept calls of classbecause these will go on further thjflnones, guaranteeing so higher
revenues. One could counter that accepitthgalls will occupy bandwidth, but, with respect
to leave space for clagsit is convenient because a call of classill occupy the same

bandwidth (per euro) and usually to last less tbalis of clasg, so that guaranteeing less

reward.

5.2.2.Control of blocking an drop probabilities

The previously depicted algorithm is able to mazinthe network operator income while
guaranteeing the bandwidth constrain, i.e. whileaszepting new connections if there is no
sufficient bandwidth for them. In a real telecomneation scenario, the bandwidth constrain
is not the only one. As already stated, in modskbaalgorithms, in particular in these which
does not use any measurement system, it is notbjmse take care of constrains like bit-

error-rate (BER), delays, jitter and similar iss@&kich require measurements), but it is still
possible to try to maintain sufficiently low twohetr important parameters, namely the
blocking probability and the dropping probabililynese last two indicates, roughly speaking,
the probability of a connection to be blocked ob&odropped by the system.

It is possible to use several definition of thet k&g probabilities: I've chosen the following

ones, which better adapt to the scenario:

pb = blocked call_ amoun!
' total _call _amount

(24)
pd = dropped_ call_ amount

i total _call _amount

64

whereb means blocked] dropped and indicates the-th class of service. Note that defined
in this way, these should be better named blocketgp and dropping ratio instead of
probabilities, but in the literature the preferradming is “probability”. Furthermore, it
becomes crucial to decide if these ratio shoulcdcéleulated in the (theoretically infinite)
window of time during which the algorithm worksibthese ones are to be defined in a fixed

time window of lengthrl. The last one is the most commonly adopted, itiquéar because it

is usually the more stringent: so that, we will u@l:a(t) and R*(®) defined as in (24) but
where we consider only calls (arrived, blocked drapped) in the “sliding” time windowt,(
t-T].
In order to introduce blocking probability and dpopg probability control, we need to
slightly modify the (21), as depicted below:
r(B. A, 2,0)= f (B)-LM(A,1,0)- A7 (R®(t), P™>)- 4 ™(P(t), P
(B A, 2,0)= f(0)-1, B A .2,0)
Where:
« AP(P°(t), PP is the inversion contribute (connected to the kilog probability
only) for thei-th class of service;
« AP(PY(1), P™) is the inversion contribute (connected to the dhag probability
only) for thei-th class of service.
In particular

R°()

Fi)bMaX !

AP (RP(t), P™) = ~d

AiPd(Fi)d(t), Fi)dMaX) __ Rd Q)

RdMax '

65

In both formulas the minus is due to the fact tha()! should augment as much thF?xm

P (1)

ratio augment; in other words, if the system reactie limit of blocking and dropping
probabilities, it tries to compensate augmentirgibmber of accepted calls of that class of
service (or, equivalently, to avoid to reject ordimp calls of that class of service); finalt,
ande are two tuning parameters.

Furthermore, while introducing dropping probabildyntrol, it is obvious there should be the
possibility to drop calls, so that there should deolicy to determine which ongoing
connections should be dropped. The proposed aigonwill drop only one call at a time
selecting the ongoing call which has the minimurpested income, selecting it using the

following rule:

min, ("= max (T “))a) (25)
In particular, tanks to the previous one, it isstdd the k-th ongoing call of the i-th class of

service which expected income is the lowest, amalhthe ongoing calls. The rationale of
(25) is the following:T™*"-max_ (T *) indicates the difference between the mean duration

time of the calls of i-th class of service and #otual duration of the ongoing longest (thanks

to the max) call of that class. Shorter calls aqgeeted to last more than longer ones, so that
the first ones will guarantee more incomes (hawatiger parameters all equaly is the usual

price for band and time unit of tiveh class of service connection.

5.3. Second RL approach

The second RL approach uses an extremely simplengs®n: RL is able to learn from
experience, stating that an opportune reward fancis provided to the algorithm. In this

second approach the reward function chosen isragtyesimple:

66

_ {+mhti T, in case of acceptance}
Tai = —K,if no sufficient available bandwidth to accept the call

(26)
TRi = —mhti "1

where

« mht L[} is the mean duration (at timeat which the calculation af, is done) of the

calls of class of servide

* 1. is the reward for time unit of the class of segvic

« K is a constantK>0): the more higher i&, the more the agent is penalized when
accepting a call if there is not sufficient bandthiébr it.

Summarizing, apart the case of no sufficient badtwithe agent gets the same absolute
value for both actions, but positive in case ofegtance, negative otherwise.
This simple couple of reward functions demonstratede really good to solve the CAC
problem (as depicted in the results chapter) aed thtionale is extremely simple to explain.
Remember that the ®) algorithm chooses the best action to be perforstading from the
Q(s,a) and following an epsilon-greedy policy,,iselecting the action corresponding to the
maximum Q(s,a), apart a certain percentage epsifothe times, in which it explores,
selecting the action to be followed randomly.
Suppose to have just two classes of services,; @o8 Co$%, occupying respectively the
bandwidth B and B; suppose also the respective rewards aend g. Note that, for every
states, there are four possible actions to be chosenA4 R;, and R, which are respectively
accept a call of class 1 and 2, and reject a €alass 1 and 2.
Consider initially to be in a certain stat@ which neither a call of CaS$or of CoS can be

accepted, because the remained bandwidiis Ess than Band B (B; < B; and B < By);

67

consider also this state was never visited beflor¢his case, the value of the Q function is

depicted in the following table:

Q function Q(s,A) Q(s,A) Q(s,R) Q(s,R)

Value 0 0 0 0

Table 1 Initial values of Q(s,af\s it is possible to see, all Q(s,a) are equalzeto; in this case,

the algorithm will select randomly one of these@att. Suppose the incoming call is of GoS
then it will select or Aor R.. Consider the selected action ig Bie agent gets the reward “-
K”; it could be useful to remember here the updatuig:

Qir(s.a) = Qi(s.a) + adgei(s. a),

where

- - § IR . p, \
0y = Tep1 +ymax Qu(Ses1. @) — Q4. ay).
a

and considel; a ande all equals to 1 just for facilitate calculatiorabyiously their values
should be opportunely set, as previously highlightetherwise the algorithm will not
converge; putting them to 1 in this example is juesigive an idea about how the process

goes), so that they become:
Qu(sd=Q(s 3+4
O =l tmax,.Qy,; §.,.a)-Q (s d)

Considerings,; = 5, max, Q,, (8,,,a)= 0, and Q,(s, R) =0, the table will update as

follows:
Q function Q(s.A) Q(s:A) Q(s\R) Q(s,R)
Value 0 0 -mht [k, 0

Table 2 Values of Q(s,a) after rejection of a catif CoS,

68

Suppose now another call of Go&rives, now the best action to be performedissa that

the table will update as follows:

Q function Q(s,A) Q(s.A) Q(s\R) Q(s,R)

Value -K 0 -mht I, 0

Table 3 Values of Q(s,a) after acceptance of a call Co§

If one guarantees

|K pmht O | i (27)
then the action Ris more convenient thamAso that the algorithm learns that, in this stite,
is better to reject calls of Ce$han accept them. Similar behaviours there aré¢hierCo$;
note also the algorithm arrives to the same resistsif it decides to accept the first call. The

“final” value of Q(s,a) is depicted in the follovgrtable:

Q function Q(s,A) Q(s.A) Q(s\R) Q(s,R)

Value -K K -mht 0¥ —-mht, [T,

Table 4 “Final” values of Q(s,a)

In the reality, if one continues with the updatmude, there will be some influences between
the two classes of services, which enormously cwagls calculations: in any case, if (27) is
valid, then the algorithm will always converge teetfact that it is better to reject any
incoming call in the states instead accepting them, so that we have depictad the
algorithm is able to respect the bandwidth limihswain.

A similar argumentation is possible to be done mdigg the maximization of network
provider incoming. In the previous algorithm, thgnsoid function guaranteed there should
be an inversion point starting from which it is maronvenient to reject calls instead of
accepting them. Opportunely tuning some paramederscould guarantee that, when mostly

of the bandwidth is used, only calls of more coneenclasses of services are accepted, while

69

the calls of other classes are rejected to leaneesgpace free for the first ones. It is possible
to show the QX) algorithm, with the rewards as in (formula), Hees the same results.

With the same assumptions of the previous exaniple,supposing in the stagethere is
remaining bandwidth just to accept or a call of CoSa call of Cog we will start, as usual,
with an “empty” table of Q(s,a) (Table 1); supp@dso calls of CoSare more convenient of

the ones of CoSthis is true ifmht, [T, > mht Or); finally remember thamht Or >0 [i .
Suppose, as usual, a call of GaBrives, suppose the algorithm accepts it and cagphat
the states,, where the system goes to hasQds,,, @ as in Table 1 (just for sake of
simplicity: the algorithm will converge to similaesults also forQ(s,,;, @ much more

complex of the ones in Table 4, just guaranteeRW);(in any case all states were never
visited have a Q(s,a) equals to the one in TablgoQthat, in this example, it is correct to

considers,, as a state never visited) . So that, becausg, Q (s,, ,a) the resulting Q(s,a)

table is
Q function Q(s,A) Q(s.A) Q(s.R) Q(s,R)
Value mht [, 0 0 0

Table 5 Values of Q(s,a) after acceptance of a call Co§

If now, in s,;, a call of Co$ arrives, the agent is forced to reject it, so tihat network
owner has earned, in totaiht [¥. Suppose, while being is,,,, a call of Co% ends, the

system returns to the “initial” state Now, the same happens with a call of €c& new

arrival and a termination, in order to return te #tates. The final table will be:

Q function

Q(s.A)

Q(s.A)

Q(s,R)

Q(s,R)

Value

mht O

mht, [T,

0

Table 6 Values of Q(s,a) after acceptance of a call CoS

Suppose now the agent has sufficiently exploredstaée s,, in order to have for it the

complete Table 4: at this stage the Q(s,a) isedrtw a crucial point, in which it is already
able to determine that it is better to reject caliCoS instead of accept them, in order to
leave some space for calls of GoS

In fact, suppose now it arrives a call of Go®B/e have two different values @} ; the fist
value corresponds t@=A1, and:

R = mht O

Q(s, A) = mhtOy;

max, Q (8., ,a)=— mhtly;

for a total §* = -mht [¥;.

The second value correspondstdr;, and

R = —mht U

Q(s, R)=0;

max, Q(s.,.a)= mhi Uy,

for a total &% = —mht [k + mht O, —0= mhtOg— mhiJ).

With these values of deltas, it is easy to see @{atA) goes to zero, while Q(s;Rgoes to

mht, [, — mht Or (which is higher than O for hypothesis), so tleg tfinal” table of Q(s,a)

is:
Q function Q(s,A) Q(s,A) Q(s,R) Q(s.R)
Value 0 mht, [, — mht Or mht, (, - mhtOr | X

Table 7 Final values of Q(s,a)

where 0> X >-mht [k could be calculated only fixing and consideringpairameters, but,
in any case, Q(sdR< Q(s,4).

71

Summarizing, the algorithm learnt that in this caseepting calls of C@Ss the best action,

while, with respect to CaSthe best action is to reject new calls.

72

Chapter 6Ilmplementation

6.1. Introduction

In this chapter implementation of previously depitapproaches will be presented, indicating

used tools and API, in terms of functioning andatalities.

6.2. Implementation details

In order to validate and test the presented algyost | used a library of classes for
implementing reinforcement learning in Java calgdle [28]. The core component of this
library is the standard Java interface for programgniRL problems. This Java interface is an
adaptation of the C++ standard of Sutton and Saariaia RL interface [29].

The Java language has been chosen for severahseaisis powerful enough for simulation
needs and it is relatively platform independentl#io allowed me to interface the platform
with existing strong machine learning implementasio

Like the C++ version, the Java platform is commtiséthree core classes, which correspond
to the three basic entities of the RL problem. They the Agent, the Environment, and the
Simulation. This code includes interfaces and elsdsr implementing the communication
between agents and environments. The library aositaliso Action and State interfaces and
classes for programming TD learning algorithm. $pedly, | had to add some classes to
Pigle package in order to adapt them to the CA®Ipro.

As simulation tool | used OMNET++ ([30], [31], [32B3]) simulator. The simulations have
been done to show the efficiency of the algoriti@MNeT++ is a open-source, component-

based, modular and open-architecture simulatioir@mwent with strong GUI support and an

73

embeddable simulation kernel. Its primary applmatiarea is the simulation of

communication networks and because of its flexdnlehitecture, it has been successfully
used in other areas like the simulation of IT gyste queuing networks, hardware
architectures and business processes. | have gedetocomplete framework to simulate and
analyze CAC algorithms based on reinforcement legrapproach.

In the following are depicted in details the thfaadamental parts of the framework: Pigle,

OMNeT++ and CAC.

6.2.1.PIQLE

The PIQLE simulation tool was primarily designedr fiomplementing and testing the
algorithms and problems described in Sutton’s amdtd®s Reinforcement Learning, An
Introduction. Reinforcement learning algorithms es&atively generic, as based on a quite
abstract notion of state, action, reward. | triedréspect the generality and transcript it in
Java, a language very well suited for this. Defjnand designing separately the notions of
agent, algorithms, environment, and how those tbjeemmunicate with each other made it
possible to obtain a very general platform for f@icement learning experiments, easy to
understand, easy to use, and also easy to extgnehebn of adding new algorithms, new
problems, new agents.
Pigle is organized around three main entities:
e Environments representing the universe of the prabli.e. the physics (or the rules
for a game) and the different methods to desciidites and actions.
* Algorithms which are software elements able to cleodhe next action to be
performed. Within the framework, algorithms are lexdl Selectors. Interesting
algorithms are those which are able to learn.

* Agents are the “interface” between Environments Algdrithms.

74

On top of those three main features, the referemse&heduling the succession of phases, as
illustrating here after:

» The Environment tells the Agent in which statesiat this time, and provides the list
of possible actions (Figure 17).

« The Agent communicates this information to its Algon (Figure 18).

* The Algorithm chooses the action to perform, anagjiits answer back to the Agent
(Figure 19).

« The Agent tells the Environment what action it vgatat perform (Figure 19).

* The Environment computes the new state, the reward,the new list of possible
actions, and sends those information to the Adeigu¢e 19).

« The Agent transmits everything to the Algorithm, ig¢th can now learn from
experience, as it received a reward for its forctewice, choose the next action to
perform, and the cycle begins again (Figure 20).

Agents are just interfaces between Environments Algdrithms: they just receive and
transmit information; they do not need to know elyam which universe they are moving.
Algorithms are just asked to choose an actionangven list of actions, and receive a reward
for their last choice. The thing they have to rerhem(or learn) is, roughly speaking, what
was (or what will be) the next reward if they che@scertain action. This reasoning scheme
can be made independent of the Environment, asAkperithm mainly has to store (and
retrieve) its past experience as triples (statépmcreward). Finally, environments can be
described as generic and abstract entities.

Hence the only place where one will have to reddigcribe the problem one wants to solve is

the instantiation of the generic classes of therenment package.

75

List of Actions

Current State

Figure 17 The Agent learns its State

Current State

List of Actions

Figure 18 Algorithm knows its current State

Current State

e

List of Actions

"Best" Action

Figure 19 The Algorithm chooses the Action

76

Action

Figure 20 The Environment computes reward and Newt&te

Old State
Action

New State

Reward

Figure 21 The Algorithm can learn

Those remarks directly lead to the Java organizatfd?igle:
1. Three main packages independent from the problensolee: agents, referees,
algorithms.
2. One generic environment package for the common vi&lma of any depictable
environment.
3. For each problem, a new package to instantiateritieonment package.
Now it is possible to enter a little bit more intaiés regarding each entity, starting with

Agents.

77

Agents have two closely related roles:
* Allowing the environment and the algorithm to commuate with each other.

« Communicate itself with the referee, in order tbestule each episode.

[Agent
AbstractAgent
TwoPlayerAgent LoneAgent

Swarm ElementaryAgent
Figure 22 The Agent’s hierarchy

Here following the blocks of the above picture explained.

* As the agent provides an interface between anitigoiand an environment, it must
contain two fields for those two entities. The tfitsyo methodsgetAlgorithmand
getEnvironmenallow access to each of those fields.

« The next two methodsenableLearningand freezelLearning are controlling the
learning behaviour of the agent: one can ask tlemtatp stop learning at a certain
stage, and see whether this agent behaves clareiygh.

* MethodgetLastRewardisks the algorithm (in cascade, through the custate) for
the reward corresponding to the last action ofabent. This is used by referees to

compute the total reward for an episode.

78

» Methodactis the core of the agent behaviour: here the ag#inask its algorithm for
the best action to perform, and return the chosénrato the referee (which will then
communicate this choice to the environment).

* Both methodssaveAgenullow saving an agent state into a file. Each abstract
agent classed ¢neAgentand TwoPlayerAgentalso implementeadAgentmethods.
As those methods are static, they cannot appeathetdefinition of an interface.

* In case there are some settings to be done atefiaring of an episode (resetting
reward, resetting the algorithm, ...) the interfacevles thanethodnewEpisode
Directly above thdAgentinterface, the abstract cla&bstractAgentefines the code of quite

all the methods defined in the interface. StatidhmésreadAgentcan still not be written
here, as we need to know whether we are speakiag@ieAgenbr of a TwoPlayerAgent.
The basic class for one player game agehbiseAgentlt is simply anAbstractAgentwvith
the only constraint of having atEnvironmentSingleassociated environment. It thus
manipulates states of cla&bstractStateNote that now, it is possible to write the codethe
readAgenimethods.

Two classes are derived from th®neAgentclass: both are related to the multi-agent
extension of Pigle. Roughly speaking, a multi-agastem is a gathering of limited (in terms
of perception and of behaviour) agents: BiementaryAgentsThose agents are grouped into
a Swarm which is also amAgent This Swarm communicates with the environmentothb
directions, as anlgentdoes:

* The Swarm receives the description of the curramirenment’s state.

* The Swarm dispatches this information to the EldargAgents it is composed of.

79

Each ElementaryAgent sees this current state thrasgimited perception: a Filter
extracts from the original state’s information tbaly part of it visible for this
ElementaryAgent.

Each ElementaryAgent chooses the action it wilfqren.

The Swarm collects all those individual action®iatComposedAction, and sends it
to the environment.

The environment uses this ComposedAction to comipsiteext state, and sends back
to the Swarm the reward for the current episode’s.s

Finally, the Swarm informs all its components a$treward.

Now it could be introduced the Environment packagesjde of it there are three main

entities:

1.

Environments which are all that is needed to competv state and reward, indicating
also when the simulation should stop.

Actions which are able to generate any action fogieen problem, tools for
comparing, copying and coding actions.

States Code which compare, copy and manage stgipl/ing also auxiliary methods

to access the associated environment.

All environments must implement th&nvironmentinterface. This interface defines the

expected behavior of any instantiated environmehich means:

Given a state of the environment, telling what@diare possible in it.

Given a state and an action, compute the next State computation can also be non
deterministic or probabilistic.

Computing a reward from the previous state, theetrstate, the action taken (as

usual in reinforcement learning).

80

* Indicating whether the simulation (or the gamejvsr or not (and, in case, who won).
Now it is possible to introduce ActionActions are probably the simplest classes in Pigle.
The only things one must be able to do while dgalmth Actions is to create them, compare
them for equality, code them for learning or stgrialgorithms. The basic definition of

interfacelAction is described by following methods:

e copy which creates a new Action which is the copy @& firevious one and is used

when storing (state, action) pairs.

* nnCoding, nnCodingSize used for defining a coding of an action as a vedled

vector, to be used in algorithms based on neutalorks.

* hashCode, equals considering it is up to the programmer to defifeew two actions
are declared equal. Equality is tested in Java Mapi, using those two methods.
Moreover ActionListis an auxiliary class to store the list of possibttions from a given
state. This list is given to the algorithm whichkesa it choice among the elements (Actions)
of this list.
Finally it is possible to introduce States. A statest define accurately a given configuration
of the environment: one must be able to decide wdretwo states of the environment are

equals, or equivalent. The basic definition of ifseelStateis described below:

e setEnvironment, getEnvironment which connects the state with the environment it

belongs to.

e getActionList, modify, getReward, isFinal which just call the corresponding methods

in the Environment class.

» copy which is used to clone a state (mainly when sgptire state into a HashMap).

81

* nnCodingSize, nnCoding which define the format of the state’s represamafior use

in algorithms based on neural networks.

* hashCode which is equals to the same described abovEAittion

The abstract clas&bstractStateonly defines the code of the first four methodensabove,
the ones connecting the state with its environmieaiso sets the field corresponding to that
environment.

It should be remarked that agents, and thus algosit may not be able to perceive all the
details of a state. This is reflected in the faeit tstates may contain fields which are used by
the environment to compute a new state, while thiislels are used neither for the
computation of hashCode and equal method, nohdefinition of nnCoding.

Now it is time to introduce the last entity of tiegle framework, the AlgorithmsAn
algorithm is defined for each I1Agent: its primanje is to choose an action to perform, given
a list of possible actions.

Good algorithms will choose the best action. Leagnalgorithms will use their past
experience to improve their choice, hopefully cheg¥est actions.

Thus algorithms in Pigle mainly implements:

* A method for choosing an action within a list og.

* A method for learning, given the starting statey thhosen action, the new state after
applying the action, and the reward given by thdrenment for this action’s choice:
this is the standard paradigm of reinforcementiieay.

Some algorithms may not learn, some others maysehtieir action at random, depending of
those two methods’ implementations. Algorithms haeveral ways to store their past

experiences, different ways to use this past egpees, and also different ways to use this

82

experience. All that results in a package contgingnlot of algorithms, organized in a
multiple levels hierarchy.

Main activity of an algorithm is to choose an awtibhis part of its behavior is contained in
the basic interface IStrategy. Furthermore it lsamhich is the main method of interface
IStrategyLearner. This interface also containsnigthod newEpisode which performs all the
necessary initialization at the beginning of arsege.

The API provide also methods to retrieve and aralygdues calculated during learning.

After this introduction it is possible now to easilescribe the top of the algorithms’

hierarchy:
* A basic interface defining the getChoice methodrategy
* Another basic interface defining learn and newEpesdStrategylLearner

* A third interface gathering the two previous oresl adding method extractDataset:

ISelector

All algorithms defined so far in Pigle are implernteions of the ISelector interface, some
directly, others through a cascade of intermed@ésses, forming the sub-hierarchy of
reinforcement learning algorithms.

A complete view of Pigle algorithms hierarchy i®®im in Figure 23.

83

IStrategy IStrategyLeamer

getchoice() h leam()

ISelector

————————— extractDataset() }
AbstractMemorySelector
TDFASelector g

QLIntegerSelector -t QLearning NNSelector

RandomSelector -

AbstractQLambda ¢
NNSinglePass
WinnerSelector
HumanSelector g PengSelector WatkinsSelector —l

PengNNSelector WatkinsNNSelector WatkinsNNSelectorSinglePass

Figure 23 Java hierarchy of Algorithms
As far as Pigle is concerned, reinforcement legreen be described roughly as follows:

The algorithm receives from its master (the agengtate, and a list of possible
actions.
» It estimates the value of each possible actionpraliag to the value it has stored or
computed.
» It returns the action that it believes will produte greater reward (not only on the
short, but also on the long run).
» After the action has been taken, and the stateeoéhvironment has been updated, the
algorithm updates its Q(s, a) estimation.
This leads to the following preliminary remarks:
1. A class is needed which can store and retrieveegalndexed with a pair (state,
action).
2. Itis needed to know when two states (and two asjiare equals.

3. Itis not needed to estimate values for (statépmcpairs never encountered.

84

We are now ready to detail the reinforcement lewyralgorithms part of the class hierarchy,
beginning with the abstract class that gathersntlest important part of the structure and
code.
AbstractM emorySel ector
This abstract class defines:

* A Memory. the place where the Q(s, a) will be slo(eshatever the meaning of

“store” is).
* A method for learning, i.e. the standard methoctdesd in paragraph 4.7.
* A method for choosing the next action to perforamrently three different methods,
depending on the strategy used to keep a littlefbidndomness in the choice.

» Parameters for tuning the algorithm.
Each item is now described more precisely..
The memory
In this class, the exact kind of memory used isdbttract, and will be instantiated differently
in each of its implementations.
This memory must implement thi@ewardStoranterface, from the glearning package, which
means it is asked to be able to:

» retrieve a value associated with a (state, acpair) methodout().

» store a value associated with a (space, actiongvahethodyet).
The learning method
The algorithm used for learning is exactly the describe in paragraph 4.7: it will be used
without modification in both direct son class@earningSelectoandNNSelector

The choice of next action

85

Roughly speaking, methagktchoicé) returns the best action, as far as Q(s, a) @mearned.
But, in reinforcement learning, algorithms must sgm@e a balance between exploration
(visiting new states) and exploitation (choosing thore rewarding action). This is done by
introducing a little bit of randomness in the cleoaf the next action to perform. Several ways
for implementing and controlling randomness havenb@roposed. Pigle defines three
implementations:

* Greedy: a random action is chosen with a certain prolgbiinstead of the best
action.

* Roulette: turns each action that can be chosen with a pitidyaproportional to its
Q(s, a) associated value.

* Boltzmann: selection is as in the roulette turn proceduegheaction can be chosen
with a probability related to its Q(s, a) assodatalue, but using a different function
than the linear one.

The default behavior is the greedy one; henceg#t€hoic€) method is just a branching to
another choice function, depending of the chosgsidmentation.

Parameters

Some parameters are necessary to control and henbethavior of reinforcement learning
algorithms, some others to define precisely theloamess functions. Those values are given
with their setters and getters. Some of them atedrnto change over time, and the class

indicates how and how much they must change betiveeisuccessive episodes.

» Alpha: step-size parameter. It should theoretically éase to ensure convergence.
Two decrease method are proposed, exponential andcheajrical. Only the first

ensures convergence, but both give good pracesailts.

» Gamma: discount rate parameter.

86

* Tau: temperature for the Boltzmann selection impleragon of randomness.

» Epsilon: the probability of choosing an action at randenthie-greedy case. Note that

epsilon is supposed to decrease over time.

QLearningSelector
This class is a direct implementationAdfstractMemorySelectailass, setting its memory to
a Java implementation of HashMaps. The keys far itashMap will be computed from the

values of states and actions.

6.2.2.0MNeT++

For simulations performed in this thesis, the OMNeBimulator was used.

OMNeT++ is a discrete event simulator based on Qighly modular, well structured and
scalable. It provides a basic infrastructure wherapdules exchange messages. The name
OMNeT++ stands for Objective Modular Network Testha C++. It has an open-source
distribution policy and can be used free of chdrg@academic research institutions. It runs on
Windows and Unix platforms, including Linux, andest a command line interface as well
as a powerful graphical user interface. The sinoulaan be used, for instance, to model
communication and queuing networks, multiprocessamsl other distributed hardware
systems as well as to validate hardware architestur

Modelling Concept

An OMNeT++ model consists of hierarchically nesteddules, which communicate by
passing messages each other. OMNeT++ models ame dterred to as networks. The top
level module is the system module. The system neodoihtains sub-modules, which can also
contain sub-modules themselves. The depth of maukeséng is not limited; this allows the

user to reflect the logical structure of the actyatem in the model structure.

87

System Module Simple Modules

Compound Module . - -~~~ .7

[

J

B Out gats
[in gate

Figure 24 OMNeT++ Module Hierarchy
The model structure is described with OMNeT’s NEDduage. Modules that contain sub-

modules are termed compound modules, as oppossdnfde modules which are at the
lowest level of the module hierarchy. Simple modutentain the algorithms in the model.
The user implements the simple modules in C++, gusie OMNeT++ simulation class
library.

Modules communicate by exchanging messages. Inctimlasimulation, messages can
represent frames or packets in a computer netvyjaok,or customers in a queuing network or
other types of mobile entities. The local simulatiime of a module advances when the
module receives a message. The message can aomeahother module or from the same
module (self messages are usually used to impletimeets).

Gates are the input and output interfaces of mag@dINeT++ supports only simplex (one-
directional) connections, so there are input anghdugates. Messages are sent out through
output gates and arrive through input gates.

Due to the hierarchical structure of the model, sagss typically travel through a series of
connections, to start and arrive in simple moduBsch series of connections that go from
simple module to simple module are called routemm@ound modules act as “cardboard
boxes” in the model, transparently relaying messaggtween their inside and the outside

world.

88

Connections can be assigned three parameters, wkachitate the modelling of
communication networks, but can be useful in othedels too: propagation delay, bit error
rate and data rate, all three being optional. Care specify link parameters individually for
each connection, or define link types and use ttheoughout the whole model.

The simple modules of a model contain algorithm&#s functions. The full flexibility and
power of the programming language can be used,ostgzp by the OMNeT++ simulation
class library. The simulation programmer can chdmeveen event-driven and process-style
description, and can freely use object-orienteccepts (inheritance, polymorphism etc.) and
design patterns to extend the functionality ofgmeulator.

Basic Parts of an OMNeT++ Model

An OMNeT++ model physically consists of the follawiparts:
* NED language topology description(s)
* Message definitions

* Simple modules implementations and other C++ code

To build an executable simulation program, usetlfimeed to translate the NED files and the
message files into C++, using the NED compiler {(oell and the message compiler
(oppmsgc). NED files can also be loaded dynamicallywhich case they don’'t need to be
compiled beforehand. After this step, the procesheé same as building any C/C++ program
from source.

I nteresting Features

The cycle length of a random number generator (RMGundamental, especially when

RNGs are used for simulation purposes. OMNeT++asse prior to 3.0 used a linear

congruent generator (LCG) with a cycle length of 232. This RNG is still available but is

89

only suitable for small-scale simulation studieewdr OMNeT++ releases use by default the
Mersenne Twister RNG (MT) by Matsumoto and NishieaMT has a period of*¥3’ ~* and
623-dimensional equidistribution property is asdufdT is also very fast: as fast or faster
than ANSI C’s rand(). In addition, OMNeT++ allowsplug in own RNGs as well.

In many simulations, only the steady state perforcedi.e. the performance after the system
has reached a stable state) is of interest. Thelipart of the simulation is called the transient
period. After the model has entered steady stabeulation must proceed until enough
statistical data has been collected to computdtsesith the required accuracy.

Detection of the end of the transient period anckdain result accuracy is supported by
OMNeT++. The transient detection and result acquadogects will do the specific algorithms
on the data fed into the result object and telthé transient period is over or the result
accuracy has been reached. The transient detedgorithm uses a sliding window approach
with two windows, and checks the difference of @akerages of the two windows to see if the
transient period is over. The accuracy detectigorghm divides the standard deviation by
the square of the number of samples and checkssiig within the accuracy range specified
by the user.

Comparison with other simulators

Available Models Non-commercial simulation toolsnnat compete with some commercial
ones (especially OPNET) which have a large selectib ready-made protocol models.
OMNeT++ is no exception, it clearly lacks modelspacompared with non-commercial tools
such as Ns-2 (but it has to be considered that OMMas a rather new tool, it was originally
released in 1999). On the other hand OMNeT++ pewid larger variety of models (that
allows the user to simulate more than just comnairdn networks) as compared to NS,

which mainly provides TCP/IP centred models.

90

The modularity of OMNeT++ is a plus. For example-Ri&nds to be monolithic: to add new
models to it, one needs to download the full soame modify it a bit, copy files to specific
locations, add constants in other files etc.

Performance is a particularly interesting issue hwiOMNeT++ since the GUI
debugging/tracing support involves some extra ce@dhin the simulation library. Simulating
large networks (e.g. MQTT networks with hundreds ctiénts) results in unacceptable

performance. But this is also a big problem witheotpopular simulators such as NS-2.

Fre 6t Puuse Trice pupect View Qebons Ll 3 wmE NN -
P RE LD P D A QW N [T N
. ¥

Run 01 el aciencon Fonet o6l o0 M1 THA2NAS W 1) Gaxt B aTaAnn e N

Figure 25 OMNeT++ screenshot
JSimpleModule

In order to permit OMNeT++ to interface with Javasses, (because, as already said, it was
used a Java library of classes for implementingfoecement learning) it was used a module
for communication between Java and OMNeT++ (thiglmh® is obviously written in C++
Language). This module is referred taJ&mpleModule

JSimpleModules an extension that makes it possible to writeN@&W++ simple modules in
Java. Java and C++-based simple modules can dg fn@eed in simulations. Integration is
not seamless though, there are limitations as tat @WMNeT++ features are available, as well
special coding rules to obey in the Java code.

Operation is based on thkSimpleModuleclass. This is an ordinary C++ simple module,
which receives the name of a Java class in a mguhukemeter. During initialization, it loads

the Java Virtual Machine (if not already loaded}jtantiates the given Java class, then simply

91

delegatesnitialize(), handleMessadg and finish() calls to it. The Java class shdugda sub-
class oforg.omnetppsimkernellSimpleModule which provides the usual methodsnd),
scheduleA)d, cancelEver(), etc. Messages are instances@fomnetppsimkernekcMessage
and theorg.omnetppsimkernepackage contains Java versions of most simuldtemel
classes. Th@rg.omnetppsimkernel Java classes are just JNI-based wrappers arthend
corresponding C++ classes: every Java object leolasinter to a corresponding C++ object,
and delegates all method calls to it. This hasva densequences about the programming

model. The wrapper classes have been generategl SMiG [34].

92

Chapter 7Results

7.1. Introduction

This chapter describes simulation scenarios ancstiites how RL is applied in a real
situation, showing system’s behavior during simalatuns. These results are obtained using
simulator tool open source OMNeT++, described ie trevious chapter. To valuate
performance of the proposed Reinforcement Learn@annection Admission Control

solutions, these were tested in different scenamoth advanced multimedia services and

various traffic intensity. Results are presentethafollowing order:

» Comparison between first RL approach (taking cang of bandwidth limit control)

and peak based algorithm;

» Comparison between first RL approach (taking cdreamdwidth limit and blocking
probability control) and peak based algorithm;

» Comparison between first RL approach (taking cdreamdwidth limit and blocking
and drop probability control) and peak based allyorj

» Comparison between second RL approach and pea#l bg®ithm;

» Comparison between two RL approaches.

93

7.2. Comparison between first RL approach (with

bandwidth limit control) and peak based algorithm

7.2.1.Introduction

To simplify simulation process it has been devetbpe appropriate package able to load
scenario parameters (number of classes in thersyatel their statistical traffic information)
and Reinforcement Learning Controller configuratgamameters (like, v, €, etc...).

In particular a GUI (Graphical User Interface) veagated in order to ease to run and define
simulations. When GUI is started, a new window (Begire 27) is loaded. This window is

formed of:

* A ListBox where there are all simulations (old amelw) are listed: clicking on a
simulation its parameters are loaded (Figure 28)ufation information are stored on
(and loaded from) a XML file (an example is depicia Figure 26): to parse XML
file, it is used the open source library “jJdom4fi.the first TabPanel, namely “Tree”,
contents of file are shown, so it is possible tarde on-the-fly simulation parameters,

without having to manually edit XML file or to mdging the code.

* In the second TabPanel “Output™ (Figure 29) OMNeTstmulator output is shown,

comprehending simulation time and log or warningsages.

* In the third TabPanel (Figure 30), user can rurequence of simulation (batch-
simulation), also tuning some parameters; thiseiy wseful to analyze performance

of different scenarios.

* In the last TabPanel (Figure 31) it is possibledafigure some useful parameters for

OMNeT++ simulator management, such as running speéedactivate log of

94

simulation, decide whether to use OMNeT’'s GUI ifaee or CmdEnv environment

(the alternative without any GUI) and auto-loadaiggents’ state.

<?xml version="1.0" encoding="is0-8859-1"?>
<scenario>
<num_Co0S>3</num_CoS>
<capacita>2500</capacita>
<controllore>
<alpha>0.5</alpha>
<alphaDecay>0.999</alphaDecay>
<gamma>0.1</gamma>
<epsilon>0.0</epsilon>
<epsilonDecay>0.998</epsilonDecay>
<Qlambda>0.5</Qlambda>
<cost>0.38</cost>
<dropActive>false</dropActive>
<FB>
<limit>false</limit>
<window>6000000</window>
<alpha>1</alpha>
</FB>
</controllore>
<classi>
<classe id="CoS_1">
<banda>50</banda>
<lambda>0.099</lambda>
<MHT>120</MHT>
<reward>1</reward>
<sogliaPB>0.1</sogliaPB>
<sogliaPD>0.002</sogliaPD>
</classe>
<classe id="CoS_2">
<banda>80</banda>
<lambda>0.089</lambda>
<MHT>100</MHT>
<reward>5</reward>
<sogliaPB>0.05</sogliaPB>
<sogliaPD>0.001</sogliaPD>
</classe>
<classe id="CoS_3">
<banda>110</banda>
<lambda>0.04</lambda>
<MHT>200</MHT>
<reward>7</reward>
<sogliaPB>0.15</sogliaPB>
<sogliaPD>0.01</sogliaPD>
</classe>
</classi>
</scenario>

Figure 26 XML scenario example

This approach was followed in order to totally reddall business logic.

95

(&) Config i B b =) e
.svn [Tree [Output [Batch | Configurazione |
Simulation_1 -
i —pt |Struttura scenario :t::ﬁnodo
Simulation_3 Nome:

Applica

Nome Valore

Simulazione Corrente: | savasim || Awiasim || Awiabatchsim || CancellaTabelia |

Figure 27 Graphical User Interface

Tree | Output | Batch | Configurazione |

~ [capacita ‘
- (=3 controllore
[alpha
[} alphaDecay
[gamma
[} epsilon

uttura scenario = :t::ﬁ nodo
¢ (=] 'scenario : scenario
[} num_cos Z

[} epsilonDecay
[alambda

Nome Valore

[cost
[dropActive
¢ =IFB
[timit
) window
[alpha
¢ =] classi
¢ [classe
[banda
[1ambda
0y MHT
D reward
[} sogliaPB
[} sogliaPD

vl

Simulazione corrente: Simulation_1| NuovaSim || SanaSim || AwiaSim || AwiabatchSim || Cancella Tabella

Figure 28 Simulation parameters

96

Tree | Output | Batch | Configurazione |

OUTPUT
Seed = 1209973567367
OMNeT++/OMNEST Discrete Event Simulation (C) 1992-2005 Andras Varga
Release: omnetpp-3.3, edition: Academic Public License.
See the license for distribution terms and warranty disclaimer
Setting up Cmdenv...

Loading NED file: C:\Users\ivan\workspace\Penality CACRL\ned\SimpleModule.ned
Loading NED file: C:\Users\ivan\workspace\PenalityCACRL\ned\net.ned

Preparing for Run#1...

Setting up network "net_cac"...
Initializing...

Simkernel jar loaded.

Inizializzazione di net_cac.CoS_1
Inizializzazione di net_cac.CoS_2
Inizializzazione di net_cac.CoS_3
Inizializzazione di net_cac.Selettore
Inizializzazione di net_cac.RLController

Inizializzazione di net_cac.PeakRateController

i Running simulation...

Simulazione corrente: Simulation_1| NuovaSim || Savasim || | AwiabatchSim || Cancella Tabella |
) Figure 29 OMNeT++ simulator output
[£) Config = - =

- _

Tree. | Output | Batch | Configurazione |

—————————

\Valori Parametro:

Simulazione corrente: Simulation_1 | NuovaSim || Savasim || || Awiabatcnsim || cancelia Tavella

Figure 30 Batch simulation

97

I [£] config E=SEonT <™)
.svn Tree | Output | Batch | Configurazione
_1
Simulation_2
Simulation_3
Chiamate per simulazione: 5000
["] Abilita Log Carica automaticamente Agente
[] carica automaticamente Statistiche [] Simulatore grafico
Express Mode [] Stima parametri
|
|
|
Usa RNG seed:
Simulazione corrente: Simulation_1 I Nuova Sim I l Salva Sim | | IAwia Sim| | | Awia batch Sim I l Cancella Tabella I

Figure 31 Management page for OMNeT++ simulator
As stated before, OMNeT++ provides an intuitivepiniaal environmental simulator (called

GNED); it contains a textual representation of t@del topology and a graphical interface
(Tkenv) for running simulations which allows to seel edit the modules of the model.
In Figure 3Errore. L'origine riferimento non e stata trovata., selecting the field

“Simulatore Grafico” it is possible to visualize GN as depicted in Figure 32 and Figure 33.

98

omcaoneac N
3| @ @ 4] b @) 2| I

D (net_CAC) net_cac (id=1) (ptr011D7700)

Figure 32 GNED window

! i:alEISZ'

T=14, 594155 (14.53s) IINext net_cac.CoS_3 (id=4)
IIMsgs created: 3 Msgs present: 3
|| Simsec/sec: n/a Ev/simsec: n/a

= . — . ——— =

4 | lInizializzazione di net_cac.CoS_1
g: net_cac [net_CAC) [id—l Inizializzazione di net_cac.CoS_2

B scheduled-events (cM |l|nizializzazione di net_cac.CoS_3
Inizializzazione di net_cac.Selettore
Inizializzazione di net_cac.RLController
Numero di CoS: 3

Banda: 2500.0

Inizializzazione di net_cac.PeakRateController

=
=]

-
Figure 33 Tkenv window

99

7.2.2.Scenario: VOIP, video call and FTP data services

The adopted scenario consists of a link, supportimge different classes, selected to
characterize three typical services that can bendoin a real network having limited
resources:

« VOIP (CoS)

* Video Call (Co9)

 FTP-Data (Co§
Statistics on the traffic of classgenerated by the users are usually given in tefnBH&CA
(Busy Hour Call Attempts), equals to the mean nunddecall attempts done by each user
during the network traffic busiest hour, and MMean Holding Time), which is the average
duration in minutes of a call. Arrival and termiioat rates (expressed in [Mi}) are then
easily computed as follows:

_ BHCA
)

1

MHT,

A u, (t)

(28)

He =

whereu, (t) is the number of users of claspresent in the cell at tinteMoreover each class

occupies a certain fraction of the available bauithwi depending on the kind of service it
belongs to (in terms of Bit Rate). Another paramdteat has to be considered in the
simulation scenario is the total available capaotitlink, which represents the resource to be
shared among the traffic classes’ requirementsosihg the best policy. In the first
simulation, it is assumed that the bandwidth cagd&crF 2,5Mbit/s.

As initial state of link is chosen a state chanazggl by the absence of any active connection:

g = [0 0 0] where each number in the vec@represent the number of ongoing calls for

100

each classes; in other words a generic s_iat[sq n n] hasn; active connections of class

1, n; active connections of class 2, amdactive connections of class 3.

Q(2) parameters

It is useful to remember that as behavior poliay ¢jpsilon greedy one is used (greedy action
selection with probability 1 € and random action selection with probabil}y The chosen
value for epsilon is equal to 0.5 as starting pand then it decreases rapidly, so that agent(s)
can explore all possible actions early, and thehile learned, in order to better evaluate final
performance of RL algorithm, the final value is s®t = 0.1 The Q-table is initialized with
zero values. The step-sizeis not constant, but it decays following a geoncatriaw. Its
starting value i$=0.5. The discount factor is fixed 460.1

Medium, Medium-High and High Load

In order to evaluate algorithm’s results, thrededént traffic condition have been considered:

medium load, medium-high load and high load.

CoS BitRate Als™Y] MHT[s] reward
[Kbit/s] [€/s]

1 | 50 0,096 120 1 |

2 | 80 0,087 100 5 |

3 | 110 0,042 200 7 |

Table 8 Traffic parameters of medium load scenario

CoS BitRate Als™Y] MHT[s] reward
[Kbit/s] [€/s]

1 50 0,69 120 1

2 80 0,46 100 5

3 110 0,11 200 7

Table 9 Traffic parameters of medium-high load sceario

101

CoS BitRate Als™Y MHT[s] reward

[Kbit/s] [€/s]
1 50 1,23 120 1
2 80 1,09 100 5
3 110 0,61 200 7

Table 10 Traffic parameters of high load scenario

In the picture below, the two algorithms are conepathe total incoming obtained using the
peak-based algorithm is set to 1, and, with resfmeitt it is calculated the relative gain of the

RL algorithm:

1,08

1,06

1,04

M RL
1,02
M Peak-Based

0,98

0,96 -
1 2 3

Figure 34 Perceptual Gain in three different netwok loads. 1 referred to Medium Load, 2 referred to
Medium-High Load and 3 referred to High Load

Note that gains of peak-based algorithm are noaydwhe same in all three conditions: the
figure only remarks the relative convenience ohgghe RL algorithm instead of the peak-

based one.

In the picture it is possible to see that, for mediload (as also for low load) the proposed
algorithm has about the same behavior of the peské algorithm. For medium-high load

the proposed algorithm’s incoming is about 2% highi¢h respect to peak-based one and, for
high load, the proposed algorithm’s incoming is @82 higher with respect to peak-based
one. These results could be easily interpretedidarand medium loads there is about no

reason to leave space for calls of better claséemices: the best solution is to always

102

accept new calls; when the load is higher, thizisnore true, so that RL performs better than
peak-based algorithms.
These results are obtained without take into adcany control of the blocking or of the drop

frequencies; so that in the next paragraphs thasteals are introduced.

7.3. Comparison between first RL approach (with
bandwidth limit and blocking probability control)nd

peak based algorithm

This paragraph depicts results of proposed RL ambrovhile taking also into account
blocking probability control, in particular in tmeedium-high load scenario; note that both the
RL algorithm and the peak-based one guaranteérthedes not arrive at the saturation.
Figure 35 illustrates the blocking frequency trefidhis scenario without introducing control

of it.

0.25 ‘ ‘ : : :
02— -~ [: ,,,,,,,,,,,,,,,			
oy VIDEO-CALL			
=] S e T N S			
g	FTP-DATA		
jog			
L			
o			_
% 01 e R N N			
o			
=			
0.05\4 -~~~ R e			
	l l l		
A~ _H_._MP			
0 | | | | |
0 0.5 1 1.5 2 2.5 3

time (sec) x 10*

Figure 35 Blocking frequency in medium-high load senario without control

103

This trend, i.e. blocking probabilities increasingefinitely, is not acceptable in most of real
cases; on the other side, it is not possible tokbindefinitely the incoming connections in a
network. Usually an upper limit to blocking probiéi®s is given; setting this limit to 5% for

video-calls, to 10% for VOIP and to 15% for FTP-Bathe obtained trend is depicted in

Figure 36.

0.16

0.14

0.12

VIDEO-CALL
FTP-DATA

I R TR B

008 |-~

006 { -~

Blocking Frequency

A

0.02/ f g~

R L S i

n
ol

3

4
x 10
Figure 36 Blocking frequency in medium-high load senario with limitation

time (sec)

1,012

1,01
1,008
1,006
1,004
1,002

M RL

M Peak-Based

0,998
0,996
0,994

Gain RL/Gain Peak-Based

Figure 37 Gain in medium-high load scenario with Initation

104

In Errore. L'origine riferimento non é stata trovata.Figure 36 it is possible to see that the

blocking frequencies are hold under thresholds.aBse of introduction of these thresholds,

the relative gain of RL on peak-based algorithmdeisreased, but it is always present, and it
is about 1%.

In the high load scenario, where the network asriteethe saturation, the blocking frequency
can’'t be hold under threshold indefinitely, unl@ssintroduce the possibility to drop calls, as

illustrated in the following paragraph.

7.4. Comparison between first RL approach (with
bandwidth limit and blocking and drop probability

control) and peak based algorithm

Setting lambdas as in the high traffic scenaricgnewntroducing the possibility to drop
ongoing calls, having the above mentioned bandwidibacity, it is not possible to control
blocking probabilities indefinitely. This is due tbe fact one, in a real scenario, could not
drop ongoing calls without any limit, but shouldagantee to respect some higher boundaries:
in other words, if the traffic is too high for thiek capability, it is not possible to control
blocking probabilities at all and also the introtloie of the possibility to drop calls
(considering a real case where it is not possiblérop calls without any limit) could be not a
solution. So that a not extreme scenario was cersilj having parameters as depicted in the

table below (we will refer to it as semi-high losecenario):

CoS BitRate Als™Y] MHT[s] reward
[Kbit/s] [€/s]

1 | 50 1,03 120 1 |

2 | 80 0,89 100 5 |

3 | 110 0,51 200 7 |

105

Table 11 Traffic parameters of semi-high load scena
In this scenario the considered thresholds fordifepping probability are 1% for VOIP, 2%

for Video-Call, and 5% for FTP-Data: in the follawg picture trends of blocking probabilities

are depicted, without (Figure 38) and with (Fig88 possibility to drop calls:

0.14

' VolP ' :
R 7] T A A Streaming-Video |.J_.._..._.._.. 3o
' — FTP-Data ' '

0.1

0.08 -

0.06 (-H

Blocking Frequency

0.04 H-

0.02

time (sec) % 10°

Figure 38 Blocking frequency in semi-high load sceario

0.14 :
' VolP : :
012 b feeeeees S—— Streaming-Video |.J_.._..._.._.. 3o
' — FTP-Data ' '
> H H
g 01
@
3
o
2
w 0.08f-
o
=
E 4
S 006
o

0.04 H-

0.02

time (sec) x 10}

Figure 39 Blocking frequency in semi-high load scerio with drop
Following picture indicates the comparison of Rlingaith respect to peak-based one, using

either blocking and dropping frequencies control.

106

1,01
1,008
1,006
1,004
1,002

M RL

M Peak-Based

0,998
0,996
0,994

Gain RL/Gain Peak-Based

Figure 40 Gain in semi-high load scenario with drop
As it is possible to see, while, thanks to theadtrction of dropping possibility one could

expect RL to gain more than RL with respect to ghevious scenario, the introduction of a
limit on it act counter-productively, so that, Béetend, in this case RL gain is about 1% higher
than the one of peak-based, as in the previousagosnIn any case this is a good result: the
presented RL algorithm is able to guarantee Qo3efims of bandwidth, blocking and drop
probability control) while resulting in higher ine@s than peak-based ones.

The following picture indicates dropping probaled in the above depicted scenario. Is it

possible to note that all probabilities are belbeitt threshold:

107

0.05

I
|
|
0045 ----------"F--—------- e
:
I

0.04F ——— - oo

0035 N SR

0.03F———————— o VIDEO-CALL |------ -
FTP-DATA i

0.025

0.02

Dropping Frequency

0.015

0.01

0.005

time (sec) 4

Figure 41 Dropping frequency in semi-load scenario
A final test could be done: to introduce in theoaithm a penalty function. One could

suppose that, when the peak-based or the RL digmsitioe not respect the imposed limits on
the blocking or drop frequencies, the network ofmerdas to pay a “penalty” (in term of
money). Here the adopted approach is to supposenthan it arrives a connection request of
a certain class of service and for it is not pdesib respect the limits on the blocking and/or
drop frequencies, the network operator has to pdged equal to the value of the economic
gain that the connection averagely gives him (gs@e* MHT).

In the next figures the resulting values are depliceither in medium-high load and semi-

high load scenarios.

108

1,025
1,02
1,015
1,01
1,005

M RL

M Peak-Based

0,995
0,99
0,985

Gain RL/Gain Peak-Based

Figure 42Gain in medium-high load scenario with pealty

1,025
1,02
1,015
1,01
1,005
1

M RL

M Peak-Based

0,995
0,99
0,985

Gain RL/Gain Peak-Based

Figure 43 Gain in medium-high load scenario with pealty and drop probability control
In both scenarios the gain of RL is increased (nepect to previous cases): this is due to the

fact that the peak-based algorithm accepts calkh@fFTP-Data class of service, while RL
algorithm rejects them, so that peak-based remaimie often at saturation level, so that
increasing the blocking and dropping probabiliteer thresholds and so forcing the network

operator to pay the penalties much more often Riaalgorithm.

109

7.5. Comparison between second RL approach and peak

based algorithm

This paragraph introduces simulation results ofskeond RL approach, compared with the
peak-based algorithm. For these simulations, tmeestools and network topology have
adopted of the ones described above, but with réiite parameters, as indicated in the

following scenarios.

7.5.1.Scenario 1

CoS BitRate Als™Y] MHT][s] reward
[Kbit/s] [€/s]

1 50 0,099 120 1

2 80 0,089 100 5

3 110 0,04 200 7

Table 12 Traffic parameters of medium load scenario

This scenario is characterized by two classesrefcethat are similar in terms of arrival rate,
but the second is more convenient of the first @oethe agent, in order to have an income
greater than the one guaranteed by peak-basedtlhigphas to learn that, sometimes, it has
to block calls belonging to CeSin order to have free bandwidth for the more ement
calls belonging to CaSThe third CoS is the most convenient but itsvatmate is very small,
so, the agent has to try to balance preservingfaeelwidth for an arriving call belonging to
this class of service (thus earning more than MBseded: in fact in most of cases peak-based
will not have available bandwidth due to the fdwttit has accepted all other calls of other
CoS that were arriving with a higher frequency) aondepting calls of more frequent CoS. In
order to analyze network operator’'s revenue ofdhe® strategies, two kinds of tests were
performed. The first test was very detailed: it ma®lved 10 simulations (each having 5000

calls), and, for every simulation, it has been caragd CAC-RL’s revenue with Peak-Based

110

one (the comparison has been made between thessuence of calls, obtained using the
same seed). This kind of test demonstrated thatyany simulation, CAC-RL earned more
than Peak-Based (a range of about 2000-100000 £).

Results are depicted in the following picture:

2300000 -

2280000 -

2260000 -

2240000 -

2220000 -
2200000 - =RL
2180000 - =PB
2160000 -
2140000 -

2120000

N v < v N © A > & D

Q Q Q Q N Q Q N N
;00 ;00 ;00 ’éo ;00 ;00 ;00 ;00 ;00 \00
N N N NG NG NG NS NG N X
L & Q& Q& Q& &
I e R A = S NS

Figure 44 Simulation gains for medium load scenario
Analyzing these results, several considerationsbeamade. First of all, it is clear that RL

earns more than Peak-Based. Then, the fact thatjghebetween the two incomes is not
always the same can be explained considering ligaagent learns its best policy making,
sometimes, a random exploration, so that thergimes in which this randomness allows to
obtain a very great income, other times instead,itftome is smaller; obviously, at the end,
RL income is anyhow higher then Peak-Based one, tduthe fact the agent is able to
favourite calls more convenient against those ¢essenient.

Starting from these good results, the second asalgsa more general test, in order to
understand what the mean behaviour of the two itgos is. The second test has involved 30
simulations (each of about 5000 calls), and theilt®sof these simulations have been

averaged and normalized with respect to Peak-B@sexhue. The bar-chart demonstrates that

111

the proposed RL solution earns a more (about 1%6) the traditional Peak-Based, how it is

visible in the following figure:

1,01 -

1,008 ~

1,006 -

B RL
1,004 -

mPB
1,002 ~

0,998 -

0,996 -

0,994 f
SimMedia

Figure 45 Mean gain comparison in medium load scenia

7.5.2.Scenario 2

This second scenario is similar to the first ofeytonly change the values of the arrival
rates, which are grater then the previous onethisnway it is possible to test this second RL
algorithm with a network with more traffic. Valudsr this scenario are illustrated in the

following table:

CoS BitRate Als™Y MHT[s] reward
[Kbit/s] [€/s]

1 50 0,7 120 1

2 80 0,4 100 5

3 110 0,1 200 7

Table 13 Traffic parameters of medium-high load saeario

Also in this case, the first test has involved oblysimulations, in which both the algorithm
have been tested using, every time, the same segwdmarriving connections. Results are

shown in the following figure.

112

450000 -

400000 -
350000 -
300000 -
250000 -
200000 - HRL
150000 - mPB
100000 -
50000 -

O T T T T T T T T T T

N > ™ 2] © A D O Q
M 00'” NS SR A N >
& F & & & & & 3 3
X D X R & X D X F®

e I = S e e - RS

Figure 46 Simulation gains for medium-high load sagario
Subsequently the algorithm has tested in this saosmario, but considering others 30

simulations. Results of these simulations have lawenaged, normalized respect Peak-Based,

and reported in the following picture:

1,4 -

B RL

0,8 1 mPB

0,4 -

0,2 A

SimMedia

Figure 47 Mean gain comparison in medium-high loadcenario

113

7.5.3.Scenario 3

This third scenario has higher arrival rates thist fwo ones; scenario values and simulation

results are depicted below:

CoS BitRate Als™Y MHT[s] reward
[Kbit/s] [€/s]

1 50 1,2 120 1

2 80 1,0 100 5

3 110 0,6 200 7

Table 14 Traffic parameters of high load scenario

Also in this case, the first test compared botatsgies with 10 simulations:

250000

200000

150000

HRL
100000 -

mPB

50000 -

O T T T T T T T T T T

N v > ™ “ © A 2 9 O

< < < \\ \\ N} N < <
;00 O ;00 ;00 ‘60 QO QO ,{}0 ;00

O
.@&'b) N) 3) S) S .@&’b .@‘& .@&'b) N
I I S

Figure 48 Simulation gains for high load scenario
Then both algorithms were tested on 30 simulatiansl results were averaged and

normalized:

114

1,4

1,2

08
0,6
0,4

0,2

B RL

mPB

SimMedia

7.5.4.Scenarios summary

Figure 49 Mean gain comparison in high load scenaui

Collecting all these results in a bar-chart, iclgar that, in terms of network’s operator

revenue, Reinforcement Learning strategy behavestlgxas Peak-Based when connection

arrival rates are low and link is far from satusaticondition; when arrival rates grow up,

revenue of Reinforcement Learning is higher thaakFgased due to the fact that RL strategy

encourages those calls that are more profitablenvelvailable bandwidth on the link starts to

lack.

115

1,4 -

0,8 - HRL
HPB
0,6 -
0,4 -
0,2 -
0 T T 1
Low load Medium load Medium-high load

Figure 50 Gain summary

Summarizing:

* In the first scenario, both strategies have appnately the same network’s operator
revenue (RL algorithm earns just 1% more than peseded one).
* In the second one, CAC-RL earns about 20% more Reak-Based.

e In the third case, CAC-RL earns about 30% more BPeak-Based.

7.6. Comparison between two RL approaches

In order to ease the process of comparison ofwileeRL approaches, the algorithms where
tested on the same semi-high load scenario (whicthé one where advantages of RL

algorithms are more evident), as indicated in tiWing table:

CoS BitRate Als™Y MHT[s] reward
[Kbit /s] [€/s]

1 53 0,75 124 1

2 87 0,43 97 5

3 111 0,12 213 7

Table 15 Traffic parameters of medium-high load saeario

116

500 simulation, using a list of 500 randomly getexfadifferent seeds, were ran, first using
peak-based algorithm, then the first RL approadkth(wt penalties and probabilities control)
and, finally, the second RL one. Results were ageztaand then normalized with respect to

the peak-based income; the resulting bar chaepscted below:

1,4 ~

1,2 -

0,8 m2nd RL
W 1st RL
0,6 M Peak-based

low medium med-high

Figure 51 Comparison of results of Peak-based andLRalgorithms in three different bandwidth load
scenarios

As it is possible to see, results are aligned wWithse obtained with couple comparisons: the
first RL approach earns about 2% and 8% respegtimeinedium and med-high load, while
the second one about 20% and 30% respectively.eMigher gains of RL approaches with
respect to peak-based one are now clear, mayb@aadticlear the different behavior of the two
RL approaches.

The behavior of the first approach, the one witinsids, is strictly connected to sigmoids
and their parameters; in other words, such signhdichections highly impact on RL learning
rules. Opportunely tuning sigmoid and other paramsetould result in higher incomes in
some scenarios, but lower in others, so that, arfiesing a precise knowledge of the actual

scenario where to use the first RL approach, ilctappen it will not work at its best. The

117

second RL approach, instead, is much simpler, arable to well adapt to all situations, just
thanks to RL properties: so that this second Rlr@gogh is easier of the first one to be applied

with good results.

118

Conclusions

Aim of this PhD. thesis was to ideate and createy ®@AC algorithms, based on the
Reinforcement Learning theory, able to guaranteevar& operators higher revenues with
respect to currently adopted peak-based solutimhde guaranteeing a certain degree of
Quiality of Service, in order to improve users’ exgece.

After a documentation regarding existing CAC saln$, different control and optimization
theories, existing simulation tools and APIs, ldecided to adopt a Reinforcement Learning
approach to solve the CAC problem. This solutiodug the fact RL seemed to be a really
adaptive solution to CAC problem, especially in siesenario I've decided to consider, i.e. the
assumption to not have any measurement systenoarl&dge about network topology.

The tools adopted for simulation where OMNeT++,reef open source, plug-in-based,
network and traffic simulator, the Java languagejts portability, and the Pigle Java API to
reproduce RL algorithms.

The thesis work started with the study of a poss#ibhte representation for the CAC problem
in RL algorithms, then with the individuation of appropriate reward function able to
guarantee RL agent to take right decisions at 'callsivals. Several different state
representation and reward functions were considéngtc after some preliminary tests, two of
them seemed to be more productive.

The first solution mainly adopted the number of @ng calls for each class of service as
state representation and an opportune sigmoidibmas reward function. The so represented
state was opportune to depict current situatiothéoRL agent; the reward function, instead,
was able to guarantee the “inversion” of decisioomf accept to reject new calls when

reaching certain critic conditions. First of alketligmoid function was created to guarantee

119

bandwidth limit respect, then, some additive cdmitions were introduced in order to
guarantee either blocking probability and drop pitmlity control.

This first approach demonstrated to be effectivarting from medium-load scenarios, this
RL approach earned always more than peak-basetiosolon the same scenarios and in
mean; this was true also when introducing probiadslicontrol, which had, as counter-part, a
relative diminution of the total income.

Secondly a different RL approach was investigat&dsimilar representation state was
adopted, while, this time, using a much more sim@Veard function: to reward the agent with
the mean reward of current calls of the incomiragslof service in case of call acceptance, to
penalize it of the same amount in case of rejecfidns simple solution was tested on the
same scenarios of the previous one, and has deratmusto be much more effective than the
first one. This was a little bit surprising, buti@eper analysis indicated that first RL approach
is very sensible to sigmoid function parameterscwhiif not well tuned, could highly
negatively impact RL incomes.

Regarding future deployments of the proposed algos, future studies on both algorithms
will be developed, in particular to reduce sengibilo parameters in the first one, in order to
introduce block and drop probabilities control e second.

Regarding finally their possible usage, both alfpons are being proposed as solution to the
CAC problem within the OMEGA FP7 project, to beeigtated into OMEGA components

requiring CAC functionalities.

120

Ringraziamenti

Potra sembrare assurdo, ma questa e forse la mardfficile da scrivere dell'intera tesi!
Infatti, durante questi quasi tre anni di tesi, tisslme persone, a vario titolo, mi hanno

aiutato, nella sua realizzazione.

Innanzitutto un ringraziamento sentito va al pFdancesco Delli Priscolche mi ha proposto
questa meravigliosa opportunita di applicare la paissione per I'informatica e I'innovazione

a qualcosa di concreto e, auspicabilmente, utitdeeeti del domani. Inoltre devo sempre a
lui la crescita individuale e I'esperienza fattslae questa tesi mi ha permesso di effettuare e,
inoltre, la possibilita di continuare a lavorare| nprogetto OMEGA nell’ambito

dell’Universita.

Poi, ma non stiamo facendo un ordine di importadeavari contributi, sento il dovere, oltre
che il piacere, di ringraziare il dott. Vincenzor&ai e I'ing. Alessandro Di Giorgio, che si
sono dimostrati ottimi compagni di lavoro, attealie varie problematiche che via via si
delineavano e sempre pronti a far valere la lopeesnza al fine di dipanare qualche ostica

matassa.
Un ringraziamento va anche a tutti i “ragazzi” ¢breti (chiamarlo “laboratorio di reti”

sembra quasi volerne parlare in modo distaccata) @articolare i tesisti che, a vario titolo,

hanno contribuito alla realizzazione di questo tavéiorgio, Ivan ed Alessandra.

121

Durante questo periodo di tesi ho avuto modo dng#re amicizia o conoscenza con le
persone dell&breti” (dottori, collaboratori, tesisti) che, essendou@&@mamente numerose, non
posso ricordare qui per esteso: fra i tanti, e menne abbiamo quanti per dimenticanza non
citero, vorrei ringraziare Antonio, Tiziano, Emili@, Gianfranco, llaria, Claudia, Marco,
Andrea, Laura, Marco, Gabriele, Fabio, Erasmo, AadAnna e Giulia, che hanno reso per
me il lavoro molto piu dolce. Ma in tutti questirardi studio ho avuto al mio fianco amici
eccezionali, spalle su cui appoggiarmi nei momeeli bisogno, risa nel momento dello
svago, menti ed intelletti svegli e attenti nel nemo dello studio e mi piace qui ricordarli
tutti singolarmente (nell’ordine in cui mi vengomo mente, non di importanza o altro):
Marco, Simone, Dario, Fabrizio, Diego, Alessia, émib. Mi piacerebbe citarne altri che per
me molto hanno avuto valore, specie in passatooatarrerebbe troppo spazio e non e

dunque il caso.

Vanno inoltre ringraziate tutti i parenti che minsostati vicini @ mi hanno permesso di
portare a termine il mio corso di studi: i miei geri, mia sorella, zii e cugini, e, con caloroso

affetto, i miei nonni, Balilla e Forisena, MichaleRosa.

Infine, ma, nel mio cuore, necessariamente e caoi@hte per prima, voglio ringraziare
Romina: oltre ad essere diventata mia moglie, @olay ora sta per darmi la piu grande gioia
che un uomo possa sperare... una figlia! Flavia:ramoente il miglior risultato che io abbia

mai ottenuto!

122

References

[1] 3GPP TR 21.905: “Vocabulary for 3GPP Specifications

[2] 3GPP TS 23.002: “Network architecture”

[3] 3GPP TS 23.207: “End-to-end Quality of Service (Ro&cept and architecture”

[4] 3GPP TS 29.207: “Policy control over Go interface”

[5] ETSI TS 282 001: “NGN Functional Architecture”

[6] ETSI TS 282 004: “TISPAN Network Attachment Subsyst

[7] ETSITS 282 003: “TISPAN Resource and Admission t@drsubsystem”

[8] ITU-T Rec. Y.1541: “Network performance objectivfes IP-based services”, May 2002

[9] TISPAN Doc. Nb. TR 180 001 Ver. 1.1.1 DTR/TISPANOOQ-NGN-R1

[10] B. Doshi, et al., Integrated Network Design Tools (INDT): A suitenefwork design
tools for current and next generation networkinghteologies’, Proceedings of the 2nd
IEEE Symposium on Computers and Communications@37), 1997

[11] [IMAGES Deliverable 2.4: “End to End QoS Architeaur

[12] IMAGES Deliverable 3.1: “Transport Plane AnalysmldDesign”

[13] EuQoS Consortium: Deliverable D1.2.1: EuQoS exploitation cookbook —
Intermediat&, April 30™, 2006

[14] DAIDALOS II: Deliverable 2.3.1 “Architecture and sign: Quality of service”

[15] E. Angori, E. Borcoci, S. Mignanti, C. Nardini, Gandi, N. Ciulli, G. Sergio, P.
Neves“Extending WiMAX technology to support End to EndSQguarantees"WEIRD
Workshop - Coimbra, 22 May 2007

[16] OMEGA project homepage: http://www.ict-omega.eu/

[17] Goldstein, S., Remarks on the Global Markov Prgpe@omm. Math. Phys. 74
(1980), no 3, 223-234

[18] E. Levin, R. Pieraccini, and W. Eckert, "Using MavkDecision Process for Learning
Dialogue Strategies," Proceedings of Internatid@ahference on Acoustics, Speech and
Signal Processing (ICASSP-98),Vol. 1, pp. 201-Zattle, U.S., May 1998

[19] Z.Liu, M. El Zarki, “SIR-Based Call Admission Cootrfor DS-CDMA Cellular
Systems”, IEEE Journal on Selected Areas in Comeoatiions, Vol. 12, No. 4, May 1994.

[20] F.Y. Li, N. Stol “A Priority-oriented Call Admissio Control Paradigm with QoS Re-

123

negotiation for Multimedia Services in UMTS” ProtEEE Vehicular Technology
Conference 2001, pp 2021-2025.

[21] W. Burakowski, M. Diaz, O. Dugeon, A. Pietrabis$éa, Racaru, G. Santoro, H.
Tarasiuk, “On Multi-Domain Connection admission @ohin the EuQoS System”, IST
Summit 2006, submitted.

[22] C. Bruni, F. Delli Priscoli, G. Koch, I. MarchetttAn Optimal Approach to the
Connection Admission Control Problem”, Internatiod@urnal of Control, Elsevier
Science Pub., Vol. 79, No. 10, October 2006, 123501

[23] C. Bruni, F. Delli Priscoli, G. Koch, I. MarchettiConnection Admission Control in
Cellular Networks: a Discrete Time Optimal SolutiopRroceeding of IEEE INFOCOM
Barcellona (Spain), April 2006.

[24] Judd, SNeural Network Design and the Complexity of Leagni@ambridge, MA :
MIT Press, 1990

[25] Michael L. Littman.Markov games as a framework for multi-agent reioéonent
learning In Proceedings of the Eleventh International @ogrice on Machine Learning,
pages 157--163. Morgan Kaufman, 1994

[26] L. P. Kaelbling, M. L. Littman, and A. W. Moor&einforcement learning: a survey
Journal of Artificial Intelligence Research, 4:2285, 1996

[27] R. S. Sutton and A. G. Bart®einforcement Learning: An Introductiomhe MIT
Press Cambridge, Massachusetts, 1988 London, Ehglan

[28] Pigle homepage: http://pigle.sourceforge.net/

[29] Santamaria, J.C., Sutton, R.S., Ram, A. (1998).eErpents with reinforcement
learning in problems with continuous state andoacBpaces, Adaptive Behavior 6(2):
163-218

[30] A. Varga, The omnet++ discrete event simulation system Proc. of the European
Simulation Multiconference (ESM'01), Prague, CzBepublic, June 6--9 2001

[31] A. Varga, "Omnet++," IEEE Network Interactive, vab, no. 4, 2002

[32] Andr Maurits, George van Montfort, and Gerard vaWdeerd. OMNeT++ extensions
and examples. Technical report, Technical Universdaf Budapest, Dept. of
Telecommunications, 1995

[33] Varga, Andrs. Using the OMNeT++ discrete event $aton system indication

[34] D.M. Beazley, SWIG: An Easy to Use Tool for Integrg Scripting Languages with

124

C and C++, 4th Annual Tcl/Tk Workshop, Monterey, (296)

[35] Barto, A. G. (1995b). Reinforcement learning. Irbi;, M. A., editor, Handbook of
Brain Theory and Neurdletworks pages 804-809. The MIT Press, Cambridge, MA.
[36] Bellman, R.E. (1957a). Dynamic Programming. Ptioce University Press,

Princeton, NJ.

[37] Bellman, R. E. (1957b). A Markov decision proceksurnal of Mathematical Mech.,
6:679-684.

[38] Bertsekas, D.P. (1987)Dynamic Programming: Deterministic and Stochastic
Models Prentice-Hall, Englewood Cliffs, NJ.

[39] Cichosz, P. (1995). Truncating temporal differend@s the efficient implementation
of TD(A) for reinforcement learning. Journal of Aidial Intelligence Research, 2:287-
318.

[40] Dayan, P. (1992). The convergence of A)() for gan A. Machine Learning,
8:341-362.

[41] Doya, K. (1996). Temporal difference learing in toaous time and space.
In Touretzky, D. S., Mozer, M. C., and Hasselmo, BV. editors, Advances in Neural
Information Processing Systems: Proceedings ofl#8b Conference, pages 1073-1079,
Cambridge, MA. MIT Press.

[42] Howard, R. (1960). Dynamic Programming and Markowckesses. MIT Press,
Cambridge, MA.

[43] Peng, J. (1993). Efficient Dynamic Programming-Ba&earning for Control. PhD
thesis, Northeastern University, Boston, MA.

[44] Peng, J. and Williams, R. J. (1993). Efficient teag and planning within the Dyna
framework. Adaptive Behavior, 1(4).

[45] Schwartz, A. (1993). A reinforcement learning mektHor maximizing undiscounted
rewards. In Proceedings of the Tenth Internatiddahference on Machinkearning,
pages 298-305. Morgan Kaufmann.

[46] Sutton, R. S. (1988). Learning to predict by thethmd of temporal differences.
Machine Learning, 3:9-44.

[47] Tsitsiklis, J. N. and Van Roy, B. (1997). An anadysf temporal-difference learning

with function approximation. IEEE Transactions oat@matic Control.

125

Annex A. The WEIRDProject

A.l. Introduction

It is common knowledge that over the last decaderethhas been a major boost in
communication networks. In fact, the developmenhigh-performance backbone networks
was immediately followed by the rapid disseminatiafi broadband wired access
technologies, such as leased lines based on fiire-tinks, cable modems using coaxial
systems, and digital subscriber line (xDSL) acasstsvorks. This gave users a whole new
class of services that exploit the increasing nurobavailable network resources. Many new
services are based on multimedia applications, sashvoice over IP (VolP), video

conferencing, video on demand (VoD), massive onfjaening, and peer-to-peer. Unlike
traditional TCP/IP services, multimedia applicaarsually require strict network guarantees

such as reserved bandwidth or bounded delays.

A.2. The general context

The increasing of wireless Metropolitan Area Netigois due to the need to reach more and
more user communities — in case isolated — by oweirty the cost barriers of wired
technologies. This trend paved the way to the dsmainly proprietary solutions, some of
them based on updated and empowered Wi-Fi systethers focused on point-to-point
wireless connections based on RF technologies. Subsoptimal progression stimulated the
relevant standardization bodies to work for therodtiction of new open standards,
facilitating large scale economies and wide maketeptance: in this context the IEEE

802.16 (also known as WirelessMAN) and the ETSIafipAN started to be defined and

126

Worldwide Interoperability for Microwave Access (MAX) consortium was established to
support certifications of the IEEE 802.16-2004 dtad.

In the meanwhile, most of the worldwide researdtiatives started to focus on IP network
architectures able to decouple the Application &whtrol Planes from the underlying
Transport Plane. The main objective of these studiel developments is the seamless end-
to-end integration of the various network technaeg and this is commonly achieved
through special “convergence layers” in the mostaaded network architectures. With
respect to the Transport Plane, these convergeyeesl are able to cope with the different
underlying technologies by means of special teayebependent drivers; towards the
Control Plane, they provide special functionalities QoS/resource management, access
authentication, L3 and L2 mobility, security, efihe control mechanisms enabled by the
entities in the “convergence layers” proved to emeathe network performance, both in
terms of resource utilization/consumption and ofl amsers’ satisfaction, because they
simplify the provisioning of the best network canfration for each incoming service request.
The WEIRD project aims to exploit and enhance th&¥X technology in a convergence
layer heterogeneous network architecture, in ota@ope with future needs of research user
communities and to build a test-beds allowing Eaespresearch network GEANT, GEANT2

and relevant National Research Networks, to behadae from isolated or remote areas.

A.3. Obijectives

The WEIRD project primarily addresses the objecti$d-5-2.5.6 Research networking
Testbeds: it aims at validating actual wirelesstestd-the-art technology, but also at
upgrading and integrating it in order to prepare floee deployment of next generation

Information and Communications networks across geiro

127

Basically, the WEIRD project proposes broadbandneoctivity based on a wireless
technology providing a flexible, cost-effectiveastiards-based means of filling existing gaps
in broadband services not envisioned in a “wiredirld. The project is in support of the
activities carried out in the area of Researchabstiuctures on high-capacity and high-speed
communication networks for all researchers in Earo@EANT), offering a proper
connection technology in charge of adding new NRINSEANT. For instance, a wireless
backhaul is definitely the best solution, in teroi€osts and required deployment time, in the
presence of physical obstacles, compared to thedwime. With the proposed wireless
technology, a NRN that is actually isolated frortwére” point of view, or that belongs to a
developing country, can easily be integrated in@iANT research network. This provides
open test infrastructures to third party reseaclad includes demonstrator environments,
resulting in research synergies and also by fatitity their exploitation.

Research networks community is not the only subfleat the WEIRD project addresses.
There are several different real-world scenariod gnoduction activities that can take
advantage from the proposed technology. First bfesidential broadband customers and
underserved areas: practical limitations prevefiiecand DSL technology from reaching
many potential broadband customers, so that mamgnuand suburban locations may not be
properly served. Deploying a wire has a significawgt that is not successively covered if the
broadband service is offered in an area with a $olvscriber density. A wireless solution
would seem best suited, but unfortunately, the erurgeneration of wireless systems is
relatively expensive for mass deployments becaust#hout a standard, it's difficult to
achieve economy of scale. This cost inefficiencyl We changed by the promotion of

standard-based systems, as supported within theRi¥project. Standards are important for

128

the wireless industry because they enable econamhissale that can bring down the cost of
equipment, ensure interoperability and reduce itnwvests risks for operators.

Furthermore, the WEIRD project aims at integratiegting, validating and demonstrating the
WIMAX wireless access technology in charge of smivithe difficulties in last-mile
implementations. WISPs (Wireless Internet Serviaavigers) have been asking for wireless
technologies that make metropolitan area accessijp@s The three key deployment types
that make up metropolitan area access are backles#tmile and large area coverage
(referred to as hot zones). Wireless last-mile large-area coverage typically uses a properly
modified standard (IEEE 802.11), but the need fapacific standard is evident and the
WEIRD project contributes for its provision: opemarglard radio technologies offer
advantages to WISPs and users; industry-wide stuppdrinnovation are driving broadband
wireless networking technologies. The aim of WEIR® to integrate WIMAX in a
heterogeneous networking environment, by defining interfaces with the convergence
layers. Authentication, Authorization, Accountinghaming, security, QoS and resource
management entities will be the main blocks wheeeWEIRD project will focus on, and the
approach that will be followed to implement new axithms will be based on advanced
mathematical and control theories, setting the gsuor the achievement of a high degree of
network autonomy.

Finally considering scientific environments, the WE project supports a technology that
will be extremely useful in all those scenarios mehleuman presence cannot be continuously
granted or moving is not easy. These scenarioadecall the monitoring activities in remote
or dangerous areas, such as a volcanic sites mogitdire prevention and monitoring
systems, or simply the communication between isdlareas, such as sea platforms. Thus the

WEIRD project promotes interoperability of solutsoacross different scientific and industrial

129

disciplines and this also means the possibilitiaaje scale experimentation in real settings to
promote interoperability across heterogeneous t@olgg domains, with particular attention

to the wireless technologies belonging to the stédibe-art.

A.4. Main innovations

The foreseen deployment of WiIMAX technology in delnegeneous network powered with
the tools and mechanisms of a convergence layécwarilstitute the main field of innovation
of the WEIRD project.

The project will try to impact as little as possibéach mature architectural module, by
focusing in these cases on the interworking aspeetxled to build a coherent modular
system. Consequently, deep interlacing and deperaenvill be highlighted among the
different procedures: QoS at layer 2 and layer &usty with authentication and
authorization, accounting with continuous networasurements, integration and coexistence
of different hierarchical virtual private networkjrservices (e.g. VLAN, VPN, etc.).

The design and development of this interfacingwall as of the convergence layer drivers,
are expected to bring significant improvements apenness, still within the range of
standard specifications. The demonstration in #ribiged and enriching test-bed of the
designed and implemented functionalities spanriegotverall project life-time will provide a
powerful and gradual validation of the WEIRD saobuis. Moreover, the planned
demonstrations will contribute to spread the celtand application of easily managed and
self-controlled networks with evident impact onamge of possible stakeholders that will

benefit of the WEIRD “proof-of-concept”.

130

WEIRD project is expecting to impact and improve tfuality of the technology and boost

the market consensus of WiIMAX technology. The maimovation activities that will be part

of WEIRD project and that will have a potential iagp in this way encompass:

Definition of generalized Network Interface semesitand mechanisms (i.e. for the
interactions between the Control Plane layer arel ¢bnvergence layer), which
enables the automatic SLAs negotiation and seruns®cation at the different
network boundaries, based on the interoperati@xisting signalling mechanisms.
Define an integration framework for seamless endrd security and AAA
procedures, at the Control and Management Plarieeinonsidered network sections.
Simulation studies on the possible enhancementsh¢o standardized WiIMAX
technology for the selected deployment scenaribes@ simulations will be aimed to
evaluate performance not only in terms of througl{pa often present in the state of
the art), but also in terms of fulfilment of thengee requirements claimed by the
applications (e.g. VolP, videoconference and vidgdmeaming, telemedicine, e-
learning, distributed classrooms and tele-enginggri

Integration between fixed and mobile environmenils lve improved by the WEIRD
project. This will be achieved by the integratidregtended signalling functions in the
control plane and by cross-layer optimizations.

Application adaptation in the WEIRD project will prove application awareness.
This will be achieved by the integration of locatimanagement and environment
awareness mechanisms in the applications to beingkd project testes and trials.
WEIRD will implement a test-bed which will demorat full functionalities for

WIMAX, interacting with higher layers.

131

 WEIRD includes emblematic user communities that dilve system requirements
obtaining a WiMAX solution able to extend GEANT4olve their problem.

* Conception, design and validation of RoF photonitdhsystems for massive
deployment of WIMAX networks at low cost. Possityilito extend coverage of
WIMAX networks to difficult propagation environmentsuch as the underground.

WEIRD will improve the technological offer to supp@mergency applications and
remote area coverage. The project will provide Bbaad connection and mobility to
experimenting the fire prevention and volcano namg enabling the use of these

applications in emergency scenarios.

A.5. Role of University of Rome

The University of Rome through the "Dipartimento Idformatica e Sistemistica (DIS)"
(Department of Computer and System Sciences) oF#oellty of Engineering is involved in
the tasks related to the Quality of Service in WBIRroject.

This project will give opportunity to the Univengibf Rome to reinforce the already existing
co-operations and to create new links between thigdwsity of Rome and the manufactures
and operators both in the surrounding area andnrote areas with the goals, on one hand, to
stimulate these companies towards advanced restxgoics and, on the other hand, to create
new employment opportunities especially for thengpeople.

In particular University of Rome expects to colledte with Datamat to create a common
research laboratory for control and management dMAX technology. University of Rome
plans to validate the research that will be madihénarea of QoS and resource management

for WIMAX in a real test-bed at Wind premises

132

In addition, the University of Rome intends to eipthe results of this project for didactic
and teaching purposes. In particular, many mastgre# theses are expected to profit from
the documentation and the background coming froe gloject in question. Moreover,
project results will be exploited to upgrade andatp the programs of several courses and to
hold thematic seminars on these matters, the cowfsthe telecommunication graduate and
postgraduate program will be improved with coulisemanagement and control of WiMAX.
In particular, participation to this project willleav new generation engineers to acquire
know-how on telecommunications and informatics amore specifically on WiMAX, on
Next Generation Networks and on QoS management.

Finally, dissemination will be also assured by esiee publications especially on the major
international reviews and conferences and by thécpaation to the main events organized

by the European Union as well as by other instingi

133

Annex B. List of publications

B.1. Accepted

Silvano Mignanti, Alessandro Di Giorgio, Vincenzar8ci, “A Model Based RL Admission
Control Algorithm for Next Generation Netwotk3he Eighth International Conference on

Networks (ICN 2009), March 1-6, 2009 - Gosier, Galadpe (France)

Silvano Mignanti, llaria Marchetti, Kostas Pentilstsj Fausto Andreotti, Antonio Cimmino,
Giada Landi, Gabriele Tamea, Pedro Miguel Neves,d®Rita Spada, Paulo Simoes, Mario
Castellano WEIRD Testbeds with fixed and mobile WiMAX techgyfor user applications,

telemedicine and monitoring of impervious aredgdentcom 2008
Silvano Mignanti, P. Neves, M. Castellano, V. Augus. Mambretti; G. Martufi, F.
Andreotti “WEIRD — Real Use Cases and Applications for the AMMechnology

CCNC'2008/2nd IEEE BWA Workshop

Silvano Mignanti, Vincenzo Suradilassimiliano Tamburriello, Augusto SilvanCDQL.: a

language for multi-protocol content discovery atebture$ STreaming Day 2007

Vincenzo Suraci, Silvano Mignan#ugusto Silvani, Massimiliano Tamburriello “Context

awareness in Content Discovery architectures” Stieg Day 2007

134

E. Angori, E. Borcoci, S. Mignanti, C. Nardini, Gandi, N. Ciulli, G. Sergio, P. Neves
“Extending WIMAX technology to support End to EmaSQyuarantees"WEIRD Workshop -

Coimbra, 22 May 2007

Silvano Mignanti, Vincenzo Suraci, Anna Aiut@6ntext-aware Semantic Service

Discovery IST Mobile & Wireless Communications Summit 2007

Silvano Mignanti, Vincenzo Suraci, Carmine Di Merirdan Ontology-Based Multi-Protocol

Service Discovery FramewdrkST Mobile & Wireless Communications Summit 2007

Carmine Di Menna, Silvano MignantiEhhancing Multiprotocol Service Discovery
Framework in Pervasive Computing NetwdrkST Mobile & Wireless Communications

Summit 2007

S. Mignanti, V. Suraci, T. InzerilliEnhancing Service Location Protocol with a OWL-lthse

Service Description Model for Service Discoveryarvasive Computing NetworksIST

Mobile & Wireless Communications Summit 2006

Silvano Mignanti, Vincenzo Suracibward Peer-to-Peer Service Sharing in Pervasive

Systems IST Mobile & Wireless Communications Summit 2006

S. Mignanti, V. Suraci, T. InzerilliDesign and Implementation of a Service Discovery

Architecture in Pervasive Systémi$ST Mobile Summit 2005.

135

Co-author of DAIDALOS deliverables: D412 e D352

Co-author of DAIDALOS Il deliverables: D121, D 323351, D421,...

Co-author and responsible of WEIRD deliverables:1DB6.2, D6.3, D6.4, D6.5, D6.6,

D6.7, D6.8

B.2. Submitted

Silvano Mignanti, Vincenzo Suraci, Alessandro Dofgio, “A Model Based RL Admission
Control Algorithm for Next Generation NetwotklEEEE Wireless Communications

Magazine (Notification of acceptance: March 15,200

136

