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Chapter 1. Introduction 

In the last years the telecommunication field is one of which had continuous technological 

advancements: in particular both new services and new products are continuously introduced 

to the users. This trend brings to several major problems: first of all, new technologies require 

new network infrastructures which have to be connected to existing ones; subsequently, 

interoperability of different technologies becomes a problem. Furthermore, often new 

technologies are introduced following independent standardization ways, augmenting 

incompatibilities (not only new technologies with old ones, but also among new technologies 

themselves): one of the last examples is the case of Wi-Fi and HiperLAN. 

These problems affect both users and network service providers; in particular, for these last 

ones to invest in a new technology implies a wise strategy planning for the short, medium and 

long term, mainly because new infrastructures, software and solutions valid for a certain 

technology usually cannot be reused for a different one. 

In order to overcome most of these problems, currently new technologies follow a long 

standardization period made in conjunction with tests: a lot of standardization fora (e.g.: 

3GPP[1][2][3][4], ETSI[5][6][7], ITU-T [8], TISPAN [9]) are currently involved in the 

standardization of the last and the next network technologies. Most of the network solutions 

are emerging in adherence with the “Converged Network” concept which could be defined as 

the possibility to unify the classical telephone network, mobile networks and the internet in a 

single infrastructure, which offers Quality of Service (QoS) and high reliability. This new 

kind of network is also known as Next Generation Network (NGN [10]). NGN model is based 

on the decoupling of services and networks allowing them to evolve independently in a 

seamless fashion. It takes into account the formal separation of the network architecture into 
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different planes to offer a platform for creating and managing different services. The majority 

of the European research projects ([11] [12], [13], [14], [15], [16]) focus on the definition of a 

converged architectural model that is transport-independent and service-independent. This 

goal is achieved decomposing the network functionalities in three main planes: Service 

Control Plane (SCP), Network Resource Control Plane (NRCP) and Transport Plane (TP). 

SCP is composed of a set of functional entities offering services under the control of a service 

provider which share a set of policies and common technologies. NRCP is constituted by a set 

of functional entities in charge of managing QoS policies received from SCP and forcing QoS 

mechanisms to Transport Plane. TP is composed of a set of transport resources sharing a 

common set of policies, QoS mechanisms and transport technologies under the control of a 

transport network operator. 

Among other problems, one of the most challenging ones, from a control-theory point of 

view, is the problem of the resource management: new networks, even if having more 

bandwidth capabilities, lower bit error rates and so on, in any case have finite resources and 

an optimal use of them is advantageous both for the network operators and for the users. 

Network resource management comprises a lot of functionalities, e.g. Routing, Connection 

Admission Control (CAC), Traffic control each of which having challenging problems to face 

with. In the ambit of this thesis, the problem of Connection Admission Control was selected 

to propose a possible solution. 

In the next chapter, a brief introduction to diverse approaches to the CAC problem solution is 

presented. The CAC functionalities are provided by the NRCP to the upper layer of the NGN 

architecture. The target audience of this solution are NGN providers interested to maximize 

their profit in resource-limited networks (i.e. wireless networks) guaranteeing Quality of 

Service by means of a new contractual probabilistic QoS assurance constraints. 
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In the context of my work some objectives have driven the design of the CAC solution. It 

must be decoupled from the other Resource Management procedures and must be technology 

independent, allowing network operators to update their transport technologies without 

modifying the resource control functions. The CAC should guarantee to the network operator 

the maximum income, preserving the QoS constrains. It means that on one hand the network 

resources should be exploited in order to optimally use the available resources and on the 

other hand the contractual QoS should be assured to all the already accepted end-users 

connections. The CAC must adapt to different network scenarios, thus two of its objectives 

are the robustness and the independence from the specific statistical behaviour of the traffic: 

the CAC algorithm should detect and react to the changes of the environmental conditions. 

The thesis is organized as follows: 

• chapter two about state of the art regarding Resource Management and, in particular to 

the CAC problem and solutions, and to Semi Markov Decision Processes; 

• chapter three containing an overview about Reinforcement Learning; 

• chapter four introducing adopted RL algorithms; 

• chapter five depicting RL algorithm implementation and simulation tools; 

• chapter six containing simulation results and explanation; 

• a chapter with conclusions; 

• an annex containing some information regarding the OMEGA project. 
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Chapter 2. State of the Art in Resource 

Management in Next Generation Networks 

2.1. Introduction to the Connection Admission Control 

(CAC) problem 

The CAC problem occurs whenever a new flow asks to be accepted requiring Quality of 

Service (QoS) parameter to be guaranteed. The easiest way to introduce the problem of CAC 

is a simple example. Imagine to have a certain link (wireless or wired is indifferent), which, in 

a real scenario (i.e., not an ideal one), even considering all other problems connected to a link 

(e.g. packet loss, delay, jitter) minor in a first instance, will have, in any case, a finite 

bandwidth. Each new connection wanting to pass through that link will require a certain 

amount of bandwidth: it is clear, after a certain number of new call arrivals, the available 

bandwidth will end and further new calls could not be accepted. The easiest solution, which is 

also the most intuitive one, is to accept new calls until there is enough available bandwidth, 

then start to reject new calls until new bandwidth is made available after an ongoing call ends. 

This solution, called the Peak-based solution (or also called Greedy Algorithm), incredibly, is 

the most used one in actual networks. If every new call requires the same amount of 

bandwidth and produces, to the network provider, the same income, the Peak-based solution 

is the optimal one: this was the scenario of the dawn of telecommunications. Today, instead, 

usually they exist different types of users trying to get access to a network link, each of which 

having different QoS requirements and guaranteeing to the network operator a different 
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income. This brings to a much more complicated scenario where the Peak-based solution is 

no more the optimal one, as demonstrated by the following example. 

In order to introduce a common understanding, the literature defines Class of Service (CoS) a 

certain type of service requiring certain QoS values and providing to the network operator a 

certain revenue. In this extremely simplified example, we define two different classes of 

service, characterized by the required bandwidth and the network operator’s revenue. 

CoS1: 

 Requested Bandwidth = 100 Kbps 

 Network’s operator revenue = 2 € 

CoS2: 

 Requested Bandwidth = 300 Kbps 

 Network’s operator revenue = 7 € 

Suppose the total available bandwidth is 2Mb and that there are currently 4 active connections 

of CoS1 and one active connection of CoS2, so that the total occupied bandwidth is 

4 100 1 300 700⋅ + ⋅ = Kbps. Suppose next four calls follows this order: CoS1, CoS2, Cos1, 

CoS1. The behaviour of the Greedy algorithm will be the following: accept the first call of 

CoS1 (occupied bandwidth = 800Kbps, so that free bandwidth = 200Kbps), reject the call of 

CoS2 (not enough remaining bandwidth), accept the second and the third calls of CoS1. 

Summarizing, the total revenue of the network operator is 3 2 6⋅ = €. A better algorithm will 

have left space for the call of CoS2: in fact, rejecting the first call of CoS1, it had be possible 

to accept the call of CoS2, which had been resulted in a combined revenue of 7€. A possible 

critic is that an algorithm could not know a priori the list of forthcoming calls: so that it could 

seem impossible for an algorithm to produce better results of the Greedy one. A lot of works 

demonstrated this is not true: summarizing their results, even if it is not possible to know a 
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priori next calls, in usual scenarios the distribution of new calls is not completely unknown, 

rather new calls usual have well known distribution. Knowing these distributions it is possible 

to forecast the progress of new calls and so decide based on these forecast, “betting” if it will 

be convenient, or not, to accept each new call. The idea is simple: if a better call (in the sense 

of a call of a “better” CoS) is expected than the one just arrived, if accepting the current one 

will prevent the possibility to accept the better one, it will be better to reject it. Obviously next 

call could arrive much later than expected one or could be not of the desired CoS, so that 

having rejected results to be not the best solution, in this case: we have to highlight that such a 

kind of algorithm’s behaviour “bets” on the future. Being so that an algorithm based on 

“bets”, it could be, in the short term, it could work worst than the Greedy one, but, if the 

knowledge of new calls distribution is sufficiently right, on the long run it definitely will work 

better than the Greedy one. 

2.2. Approaches to the solution of the CAC problem 

The above mentioned example was extremely simple and passed over a lot of possible issues, 

details and so on: its only aim was to introduce the problem in the most comprehensible way 

as possible. More precision is necessary to introduce the different approaches to the solution 

of the problem of CAC. The most common way to differentiate different approaches to the 

CAC problem is to distinguish these based on the information an algorithm can have access to 

in order to function. 

If it is available a measurement system, which is able to provide diverse measurements on the 

network link (e.g.: bit error rate, actually occupied and available bandwidth, jitter, delay, ...) it 

is possible to use these measures to adopt so called “measurement based” CAC algorithms. 

If such a measurement system is not available, but it is well known the topology of the 
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network (the graph of the underlying network is known to the algorithm), it is possible to use 

this knowledge to adopt so called “topology based” CAC algorithms. 

Finally, if neither measurements are available nor it is known the topology of the network it is 

anyhow possible to perform CAC using the so called “model based” algorithm. In this last 

group of algorithms, the network is treated as a black box: just few information are known 

(e.g., total nominal available bandwidth, CoS of the incoming call and QoS parameters and 

rewards of each CoS), so that these algorithms well adapt to challenging scenarios were it is 

not possible to have sufficiently precise measures or network topology varies during the time 

(e.g. wireless networks). Furthermore, not requiring complex measurement systems, such 

algorithm are less expensive to be adopted by network operators than the first ones. 

The class of model based CAC algorithms is quite large, comprehending a lot of diverse 

approaches: it is important to highlight that the Greedy CAC algorithm is part of the model 

based ones. The approach proposed in this thesis formulated the CAC problem as a Semi-

Markov Decision Process and used an on-line Reinforcement Learning algorithm to learn the 

model of the environment from experience, in order to be able to perform the CAC. Next 

paragraph briefly introduces Markov Decision Processes, while to the Reinforcement 

Learning is dedicated the next Chapter. 

2.3. Introduction to Markov Property and Markov 

Decision Processes 

In order to introduce Markov processes we previously need some definitions. In a typical 

telecommunication scenario we can distinguish several actors: 

• some callers and receivers, which are the end points of a communications; 

• an environment, which is the entity where it is possible to transmit the signal (from 
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callers to receivers and vice versa), and which has a state, indicating the main 

properties the environment has which are useful to perform the CAC decisions; 

• an agent, which is the entity that performs the decisions (actions) to determine where 

to accept or not a certain call; its decisions are based on the information contained in 

the state and furthermore, each action brings the environment to a new state. 

Being a little bit more precise, at each time t the environment is in a certain state s: because 

the environment passes for a number of states during the time, in order to avoid confusion, we 

define it ts , which means the state at time t. When it happens a new event (either a new call 

or a call closure), which we call te  (i.e. the event when the state is ts ), the agent should 

decide whether to accept or not the new call, so that it takes a decision and performs an action 

a. In particular, if the environment is in the state ts  we call the action ta , which means the 

action took at state ts . So, starting from state ts  and taking the action ta  the environment 

arrives to the new state 1ts + , which in general is different from ts  (but it could also happen 

they are equal). 

Focusing on the state, it could contain a number of information, but not all of them are useful 

the agent to perform the CAC algorithm. A common assumption is to assume that the state is 

given by some pre-processing system that is nominally part of the environment: the main 

concern in this thesis is not with designing or detecting the state signal, but with deciding 

what action to take as a function of whatever state signal is available. Entering in more 

details, the state signal should not be expected to inform the agent of everything about the 

environment, or even everything that would be useful to it in making decisions. If the agent is 

playing blackjack, we should not expect it to know what the next card in the deck is. If the 

agent is answering the phone, we should not expect it to know in advance who the caller is. In 

all of these cases there is hidden state information in the environment, and that information 
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would be useful if the agent knew it, but the agent cannot know it because it has not the 

possibility to measure that information. An important property the state should have is to have 

memory of the past: in particular it could be very useful to have a state signal that summarizes 

past information compactly, yet in such a way that all relevant information is retained. This 

normally requires more than the immediate measurements, but never more than the complete 

history of all past sensations. A state signal that succeeds in retaining all relevant information 

is said to be Markov, or to have the Markov property [17] (a formal definition follows below). 

For example, a checkers position - the current configuration of all the pieces on the board - 

would serve as a Markov state because it summarizes everything important about the 

complete sequence of positions that led to it. Much of the information about the sequence is 

lost, but all that really matters for the future of the game are retained. Similarly, the current 

position and velocity of a cannonball is all that matters for its future flight. It doesn’t matter 

how that position and velocity came about. This is sometimes also referred to as an 

“independence of path” property because all that matters is in the current state signal; its 

meaning is independent of the “path”, or history, of signals that have led up to it. Consider 

now a sequence of states 0, 1( ,..., )ts s s  and a sequence of actions 0, 1 1( ,..., )ta a a−  having brought 

the state from the state 0s  at time 0t  to the state ts  at time t . Now consider the probability the 

next state, 1ts + , to be equal to a certain state 's ; this usually depends from the list of previous 

states and actions and the current action ta  i.e.: 

1 1 0, 0 1, 1 1, 1 ,Pr{ '} Pr{ ' | , ,..., , }t t t t t ts s s s s a s a s a s a+ + − −= = =
 

(1) 

If the state signal has the Markov property, on the other hand, then the agent decision at ts  

depends only on the state and action representations at time t , in which case the previously 

defined probability can be defined by specifying only  
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1 1 ,Pr{ '} Pr{ ' | }t t t ts s s s s a+ += = =
 

(2) 

In other words, a state signal has the Markov property, and is a Markov state, if and only if (2) 

is equal to (1) for all 's , and histories 0, 0 1, 1 ,( , ,..., )t ts a s a s a . In this case, the environment and 

task as a whole are also said to have the Markov property. 

A Markov Decision Process [18] is a discrete time stochastic control process characterized by 

a set of states; in each state there are several actions from which the decision maker must 

choose. For a state s and an action a , a state transition function ( )Pa s  determines the 

transition probabilities to the next state. The decision maker earns a reward for each state 

transition. 

The Markov property is important in the approach used in this thesis, the reinforcement 

learning based CAC, because decisions and values are assumed to be a function only of the 

current state. In order for these to be effective and informative, the state representation must 

be informative. 

2.4. The Peak-based CAC algorithm 

The easiest CAC algorithm is the one called peak-based or greedy. The idea beyond the 

algorithm is very simple: accept new calls whenever there is enough space to do this, else 

reject. This algorithm seems not to be a very good one, but, instead, it has a lot of good 

properties having made it the most diffuse algorithm to solve the CAC problem. 

2.4.1. Optimal solution on the short term 

First of all, it is possible to demonstrate it is the optimum solution to the CAC algorithm while 

the time window where it acts reduces to zero (which means, in practice, that peak-based is 

the optimal solution on the short term). Suppose to have an environment in a certain state 
0s  
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at a certain time 0t  (as above mentioned the CAC problem has the Markov property), to have 

a set 1 2( , , ..., )nt t t  of time instants at which happens the set of events 0 1 1( , , ..., )ne e e−  each being 

or a new call or a call closure; suppose also the instant 1t  when 0e  happens is infinitely close 

to 0t , and that 0e  is a new call. Departing from 0s  each CAC algorithm will have, in general, 

a different behaviour, so that each algorithm will take a set of different actions 

0, 1, 1,( , ,..., )k k n ka a a −  where ,i ka  is the i-th action took by the k-th algorithm: determine which is 

the best one is not easy. If the time window goes to zero, the only time instant entering in the 

time window will be just 1t . Here CAC algorithms could have different behaviours: if there is 

not enough space, departing from 0s  to accept the new calls, all of them, including the peak-

based, will not accept the new call, so that the peak-based is the optimum algorithm. If there 

is enough space, some algorithms will not accept the call, some others (among which the 

peak-based) will accept. Obviously in that time window the choice guaranteeing the 

maximum reward is to accept the call, so that also in this case (which completes the 

possibilities) the peak-based algorithm acted as optimal. 

2.4.2. Optimal solution in case of only one class of service 

In case the system to be controlled has just one class of service, it is easy to demonstrate that 

the peak-based algorithm is the optimum one. Suppose to have an environment in a certain 

state 
0s  at a certain time 0t  (as above mentioned the CAC problem has the Markov property), 

to have a set 1 2( , , ..., )nt t t  of time instants at which happens the set of events 0 1 1( , , ..., )ne e e−  

each being or a new call or a call closure; suppose also all ie  behave to the same class of 

service. In this case, it is quite obvious to reject a certain call to wait for the next one hoping it 

will be of a more convenient CoS is useless. In any case, one could object that different calls 
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could have different length so that conducing to different incomes. In the case the bandwidth 

is all occupied but a certain part just enough to accept a new call, it could seem to be 

convenient to wait in order to accept the longest new call. Suppose to have an algorithm able 

to determine the distribution of the calls (either the distribution of call arrivals and also of 

their duration) or that this distribution is known a-priori. Even with this knowledge (which the 

peak-based algorithm does not use) an algorithm could not state that, if the last call was a 

“short” (“long”) one with respect to the known distribution, the next one will be a “long” 

(“short”) one, due to the fact that, at least in a real environment, new calls arrivals and their 

duration is statistically independent from the previous ones. It is the same situation as playing 

roulette: even if last n extracts were all “rouge”, it is not more probable the next one will be 

“noir”. So that, the best solution in such a scenario is to accept new calls whenever there is 

enough space, which is exactly the behaviour of the peak-based algorithm. 

2.4.3. Optimal solution in case of low traffic 

The peak-based algorithm could be demonstrated to be the optimal solution to the CAC 

problem in case of “low traffic”. The concept of “low traffic” could be defined as follows: 

req av
t tB B<  t∀  where req

tB  is the requested bandwidth of the new call event te and av
tB  is the 

available bandwidth at time t : summarizing, there should always be enough bandwidth to 

accept the new call. This situation is not as unusual as one could suppose: currently 

telecommunication networks (in particular cellular ones) are over-provisioned, which means 

exactly that in most of cases there is enough bandwidth to accept a new call. Unfortunately 

this situation leads to a lot of waste: a better bandwidth usage could lead to very good results 

even without over-provisioning (and, in general, not all the scenarios could be resolved with 

over-provisioning). So, in a “low traffic” scenario it is counterproductive to reject a call, so 
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that the optimal solution is to always accept new calls, which is exactly what the peak-based 

algorithm does. Even in the scenarios where the low traffic situation could not be assured t∀  

but just for some time intervals [ , ]s et t  (where st  is the time at which the interval starts and et  

is the time at which the interval ends - obviously we are interested to the cases where s et t> ), 

in such intervals the peak-based algorithm is the optimal one. 



 

 23

Chapter 3. Reinforcement Learning: an 

overview 

3.1. Introduction 

In order to introduce the Reinforcement Learning concepts and algorithm, it is useful to 

perform a brief introduction of the existing CAC algorithms, with particular attention to the 

model-based ones. Apart the Peak-based, there are a lot of solution to the CAC problem in the 

literature, e.g. [19], [20], [21], [22], [23]. Most of these approaches need a number of 

calculations to be performed or suffer of the so-called “curse of dimensionality” (e.g., the 

Dynamic Programming approaches): when the state space becomes huge and the number of 

possible classes of services increase, the number of information to be stored in order to 

perform the algorithm becomes so big that it is not possible to store it or, at least, manage it in 

a “reasonable” time (a user is not willing to wait minutes to have the response his call is 

accepted or not!). 

A class of algorithms which well adapts to this particular problem is the class containing 

algorithms based on a neural-network like approach. Neural networks (NN [24]) are particular 

entities which are able to learn how to respond to certain inputs, i.e. to learn what outputs to 

produce having something in input. In order to make NN able to learn, there are two main 

approaches, a supervised and an unsupervised one. In the first approach, it is possible to 

create a training set, which has a number of different inputs and the respective correct outputs. 

This training set is put in input to the NN with its respective outputs and, thanks some 

backtracking algorithms, the NN learn how to behave in response to those inputs. Then the 
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NN is used on the real input and outputs are the result of the behaviour learned by the NN. 

Main problems with NN are: 

• necessity to have a sufficiently varied training set, in order to “teach” to the NN how 

to behave in response to the more possible diverse inputs as possible (supervising); 

• training sets not sufficiently varied could lead the NN to do not learn the expected 

functioning so that outputs will be wrong; 

• training sets too wide will lead the NN to work perfectly on it but to not have a 

sufficient generalization 

All these problems could be overcame using an unsupervised approach. In non supervised 

approaches there is not the necessity to have a training set: the idea is to reward the 

unsupervised agent when it takes the right decision, to penalize him when it takes wrong 

decisions. In this way, an agent could easily learn to try to get rewards and avoid 

penalizations. The real problem with these algorithms is to correctly determine positive and 

negative rewards: in case of an error in the reward functions, the algorithm will learn a wrong 

behaviour. 

They exist a number of approaches of unsupervised learning [25]: among them, the one I 

determined to be the most promising to solve the CAC problem is the Reinforcement 

Learning [26] approach. 

3.2. The Reinforcement Learning Problem 

The objective of this chapter is to describe the reinforcement learning problem in a broad 

sense. The reinforcement learning problem is meant to be a straightforward framing of the 

problem of learning from interaction to achieve a goal. The learner and decision-maker are 

called the agent. The thing it interacts with, comprising everything outside the agent, is called 
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the environment. These interact continually, the agent selecting actions and the environment 

responding to those actions and presenting new situations to the agent. The environment also 

gives rise to rewards, special numerical values that the agent tries to maximize over time. A 

complete specification of an environment defines a task, one instance of the reinforcement 

learning problem. 

More specifically, the agent and environment interact at each of a sequence of discrete time 

steps, . At each time step , the agent receives some representation of the 

environment’s state, , where  is the set of possible states, and on that basis selects an 

action, , where  is the set of actions available in state . One time step later, 

in part as a consequence of its action, the agent receives a numerical reward, , and 

finds itself in a new state, . Next picture diagrams the agent-environment interaction. 

 

Figure 1 Agent-environment interaction in reinforcement learning 

At each time step, the agent implements a mapping from states to probabilities of selecting 

each possible action. This mapping is called the agent’s policy and is denoted , where 

 is the probability that  if . Reinforcement learning methods specify how 

the agent changes its policy as a result of its experience. The agent’s goal, roughly speaking, 

is to maximize the total amount of reward it receives over the long run. 
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This framework is abstract and flexible and can be applied to many different problems in 

many different ways. For example, the time steps need not refer to fixed intervals of real time; 

they can refer to arbitrary successive stages of decision-making and acting. Similarly, the 

states can take a wide variety of forms: they can be completely determined by low-level 

sensations, such as direct sensor readings, or they can be more high-level and abstract, such as 

symbolic descriptions of objects in a room. The general rule I followed is that anything cannot 

be changed arbitrarily by the agent is considered to be outside of it and thus part of its 

environment; furthermore I consider the reward computation to be external to the agent 

because it defines the task facing the agent and thus must be beyond its ability to change 

arbitrarily. 

The reinforcement learning framework is a considerable abstraction of the problem of goal-

directed learning from interaction. It proposes that whatever the details of the sensory, 

memory, and control apparatus, and whatever objective one is trying to achieve, any problem 

of learning goal-directed behaviour can be reduced to three signals passing back and forth 

between an agent and its environment: one signal to represent the choices made by the agent 

(the actions), one signal to represent the basis on which the choices are made (the states), and 

one signal to define the agent’s goal (the rewards). This framework may not be sufficient to 

represent all decision-learning problems usefully, but it has proved to be widely useful and 

applicable. 

3.3. Goals and Rewards 

In reinforcement learning, the purpose or goal of the agent is formalized in terms of a special 

reward signal passing from the environment to the agent. At each time step, the reward is a 

simple number, . Informally, the agent’s goal is to maximize the total amount of 
Impossibile v isualizzare l'immagine.
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reward it receives. This means maximizing not immediate reward, but cumulative reward in 

the long run. The use of a reward signal to formalize the idea of a goal is one of the most 

distinctive features of reinforcement learning. Although this way of formulating goals might 

at first appear limiting, in practice it has proved to be flexible and widely applicable. The best 

way to see this is to consider examples of how it has been, or could be, used. For example, to 

make a robot learn to walk, researchers have provided reward on each time step proportional 

to the robot’s forward motion. In making a robot learn how to escape from a maze, the reward 

is often zero until it escapes, when it becomes . Another common approach in maze 

learning is to give a reward of for every time step that passes prior to escape; this 

encourages the agent to escape as quickly as possible. You can see what is happening in all of 

these examples. The agent always learns to maximize its reward. If we want it to do 

something for us, we must provide rewards to it in such a way that in maximizing them the 

agent will also achieve our goals. It is thus critical that the rewards we set up truly indicate 

what we want accomplished. In particular, the reward signal is not the place to impart to the 

agent prior knowledge about how to achieve what we want it to do. For example, a chess-

playing agent should be rewarded only for actually winning, not for achieving sub-goals such 

taking its opponent’s pieces or gaining control of the centre of the board. If achieving these 

sorts of sub-goals were rewarded, then the agent might find a way to achieve them without 

achieving the real goal. For example, it might find a way to take the opponent’s pieces even at 

the cost of losing the game. The reward signal is your way of communicating to the robot 

what you want it to achieve, not how you want it achieved. 
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3.4. Returns 

A more precise definition of what is meant with “maximize the total amount of reward 

received” is needed. If the sequence of rewards received after time step  is denoted 

, then what precise aspect of this sequence has to be maximize? In general, 

we seek to maximize the expected return, where the return, , is defined as some specific 

function of the reward sequence. In the simplest case the return is the sum of the rewards: 

 (3) 

where  is a final time step. This approach makes sense in applications in which there is a 

natural notion of final time step, that is, when the agent-environment interaction breaks 

naturally into subsequences, which we call episodes, such as plays of a game, trips through a 

maze, or any sort of repeated interactions. Each episode ends in a special state called the 

terminal state, followed by a reset to a standard starting state or to a sample from a standard 

distribution of starting states. Tasks with episodes of this kind are called episodic tasks. In 

episodic tasks it is sometimes needed to distinguish the set of all non-terminal states, denoted 

, from the set of all states plus the terminal state, denoted . 

On the other hand, in many cases the agent-environment interaction does not break naturally 

into identifiable episodes, but goes on continually without limit. For example, this would be 

the natural way to formulate a continual process-control task, or an application to a robot with 

a long life span: these ones are called continuing tasks. The return formulation (3) is 

problematic for continuing tasks because the final time step would be , and the return, 

which is what we are trying to maximize, could itself easily be infinite. (For example, suppose 

the agent receives a reward of  at each time step.) Thus, usually it is used a definition of 

return that is slightly more complex conceptually but much simpler mathematically. The 

additional concept that is needed is discounting. According to this approach, the agent tries to 
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select actions so that the sum of the discounted rewards it receives over the future is 

maximized. In particular, it chooses  to maximize the expected discounted return: 

2
1 2 3

0 1

... k
t t t t

k t k

R r r r rγ γ γ
∞

+ + +
= + +

= + + + =∑  (4) 

where is a parameter, , called the discount rate. The discount rate determines the 

present value of future rewards: a reward received  time steps in the future is worth only 

 times what it would be worth if it were received immediately. If , the infinite sum 

has a finite value as long as the reward sequence  is bounded. If , the agent is 

“myopic” in being concerned only with maximizing immediate rewards: its objective in this 

case is to learn how to choose  so as to maximize only . If each of the agent’s actions 

happened to influence only the immediate reward, not future rewards as well, then a myopic 

agent could maximize (4) by separately maximizing each immediate reward. But in general, 

acting to maximize immediate reward can reduce access to future rewards so that the return 

may actually be reduced. As  approaches 1, the objective takes future rewards into account 

more strongly: the agent becomes more farsighted. 

3.5. Unified Notation for Episodic and Continuing Tasks  

It is opportune to have a single notation that covers both episodic and continuing tasks. 

Having defined the return as a sum over a finite number of terms in one case (3) and as a sum 

over an infinite number of terms in the other (4), it is possible to unify them by considering 

episode termination to be the entering of a special absorbing state that transitions only to itself 

and that generates only rewards of zero. For example, consider the following state transition 

diagram 
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Here the solid square represents the special absorbing state corresponding to the end of an 

episode. Starting from , we get the reward sequence . Summing 

these, we get the same return whether we sum over the first  rewards (here ) or over 

the full infinite sequence. This remains true even if we introduce discounting. Thus, we can 

define the return, in general, according to (4). 

3.6. Value Functions 

Almost all reinforcement learning algorithms are based on estimating value functions, i.e. 

functions of states (or of state-action pairs) that estimate how good it is for the agent to be in a 

given state (or how good it is to perform a given action in a given state). The notion of “how 

good” is defined in terms of future rewards that can be expected, or, to be precise, in terms of 

expected return. Of course the rewards the agent can expect to receive in the future depend on 

what actions it will take. Accordingly, value functions are defined with respect to particular 

policies. Recall that a policy, , is a mapping from each state, , and action, , 

to the probability  of taking action  when in state . Informally, the value of a state 

under a policy , denoted , is the expected return when starting in  and following 

thereafter. For MDPs, it is possible to define  formally as: 
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(5) 

where  denotes the expected value given that the agent follows policy , and  is any 

time step. Note that the value of the terminal state, if any, is always zero. The function  is 

called the state-value function for policy . Similarly, it is possible to define the value of 

taking action  in state  under a policy , denoted , as the expected return starting 

from , taking the action , and thereafter following policy : 

 
(6) 

 is called the action-value function for policy . 

The value functions  and  can be estimated from experience. For example, if an agent 

follows policy  and maintains an average, for each state encountered, of the actual returns 

that have followed that state, then the average will converge to the state’s value, , as the 

number of times that state is encountered approaches infinity. If separate averages are kept for 

each action taken in a state, then these averages will similarly converge to the action values, 

. Estimation methods of this kind are called Monte Carlo methods because they 

involve averaging over many random samples of actual returns. Of course, if there are very 

many states, then it may not be practical to keep separate averages for each state individually. 

Instead, the agent would have to maintain  and  as parameterized functions and adjust 

the parameters to better match the observed returns. This can also produce accurate estimates, 

although much depends on the nature of the parameterized function approximator. 

A fundamental property of value functions used throughout reinforcement learning and 

dynamic programming is that they satisfy particular recursive relationships. For any policy  
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the basis of the update or backup operations that are at the heart of reinforcement learning 

methods. These operations transfer value information back to a state (or a state-action pair) 

from its successor states (or state-action pairs). 

 
Figure 2 Backup diagrams for (a)  and (b)  

3.7. Optimal Value Functions 

Solving a reinforcement learning task means, roughly, finding a policy that achieves a lot of 

reward over the long run. For finite MDPs, it is possible precisely define an optimal policy in 

the following way. Value functions define a partial ordering over policies. A policy  is 

defined to be better than or equal to a policy  if its expected return is greater than or equal 

to that of  for all states. In other words,  if and only if  for all 

. There is always at least one policy that is better than or equal to all other policies. This is an 

optimal policy. Although there may be more than one, it is better to denote all the optimal 

policies by . They share the same state-value function, called the optimal state-value 

function, denoted , and defined as  

 (8) 

for all . 

Optimal policies also share the same optimal action-value function, denoted , and defined 

as 
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 (9) 

for all  and . For the state-action pair , this function gives the expected 

return for taking action  in state  and thereafter following an optimal policy. Thus, it is 

possible to write  in terms of  as follows:  

 (10) 

Because  is the value function for a policy, it must satisfy the self-consistency condition 

given by the Bellman equation for state values (7). Because it is the optimal value function, 

however, ’s consistency condition can be written in a special form without reference to any 

specific policy. This is the Bellman equation for , or the Bellman optimality equation. 

Intuitively, the Bellman optimality equation expresses the fact that the value of a state under 

an optimal policy must equal the expected return for the best action from that state: 

    

 

 

   

 

 

   

 

 

   

 

 

   

 

(11) 

   

 

(12) 

The last two equations are two forms of the Bellman optimality equation for . The Bellman 

optimality equation for  is 



 

 35

 

The backup diagrams in Figure 3 show graphically the spans of future states and actions 

considered in the Bellman optimality equations for  and . These are the same as the 

backup diagrams for  and  except that arcs have been added at the agent’s choice points 

to represent that the maximum over that choice is taken rather than the expected value given 

some policy. Figure 3 a graphically represents the Bellman optimality equation (12). 

 

Figure 3 Backup diagrams for (a)  and (b)  

For finite MDPs, the Bellman optimality equation (12) has a unique solution independent of 

the policy. The Bellman optimality equation is actually a system of equations, one for each 

state, so if there are  states, then there are  equations in  unknowns. If the dynamics of 

the environment are known (  and ), then in principle one can solve this system of 

equations for  using any one of a variety of methods for solving systems of nonlinear 

equations. One can solve a related set of equations for . 

Once one has , it is relatively easy to determine an optimal policy. For each state , there 

will be one or more actions at which the maximum is obtained in the Bellman optimality 

equation. Any policy that assigns nonzero probability only to these actions is an optimal 

policy: this could be called one-step search. Having the optimal value function, , then the 
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actions that appear best after a one-step search will be optimal actions. Another way of saying 

this is that any policy that is greedy with respect to the optimal evaluation function  is an 

optimal policy. The beauty of  is that if one uses it to evaluate the short-term consequences 

of actions (specifically, the one-step consequences) then a greedy policy is actually optimal in 

the long-term sense in which we are interested because already takes into account the 

reward consequences of all possible future behaviour. By means of , the optimal expected 

long-term return is turned into a quantity that is locally and immediately available for each 

state. Hence, a one-step-ahead search yields the long-term optimal actions. 

Having  makes choosing optimal actions still easier. With , the agent does not even have 

to do a one-step-ahead search: for any state , it can simply find any action that maximizes 

. The action-value function effectively caches the results of all one-step-ahead 

searches. It provides the optimal expected long-term return as a value that is locally and 

immediately available for each state-action pair. Hence, at the cost of representing a function 

of state-action pairs, instead of just of states, the optimal action-value function allows optimal 

actions to be selected without having to know anything about possible successor states and 

their values, that is, without having to know anything about the environment’s dynamics. 

Explicitly solving the Bellman optimality equation provides one route to finding an optimal 

policy, and thus to solving the reinforcement learning problem. However, this solution is 

rarely directly useful. It is akin to an exhaustive search, looking ahead at all possibilities, 

computing their probabilities of occurrence and their desirability in terms of expected 

rewards. This solution relies on at least three assumptions that are rarely true in practice: 

1. to accurately know the dynamics of the environment; 

2. to have enough computational resources to complete the computation of the solution; 

3. the Markov property. 
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For most tasks it is generally not possible to implement this solution exactly because various 

combinations of these assumptions are violated: in reinforcement learning one typically has to 

settle for approximate solutions. 

3.8. Optimality and Approximation 

Even if it is possible to have a complete and accurate model of the environment’s dynamics, it 

is usually not possible to simply compute an optimal policy by solving the Bellman optimality 

equation. For example, board games such as chess are a tiny fraction of human experience, 

yet large, custom-designed computers still cannot compute the optimal moves. A critical 

aspect of the problem facing the agent is always the computational power available to it, in 

particular, the amount of computation it can perform in a single time step. 

The memory available is also an important constraint. A large amount of memory is often 

required to build up approximations of value functions, policies, and models. In tasks with 

small, finite state sets, it is possible to form these approximations using arrays or tables with 

one entry for each state (or state-action pair). This is called the tabular case, and the 

corresponding methods are called tabular methods. In many cases of practical interest, 

however, there are far more states than could possibly be entries in a table. In these cases the 

functions must be approximated, using some sort of more compact parameterized function 

representation. 

Approximating is not always a great problem, in fact there may be many states that the agent 

faces with such a low probability that selecting suboptimal actions for them has little impact 

on the amount of reward the agent receives. The on-line nature of reinforcement learning 

makes it possible to approximate optimal policies in ways that put more effort into learning to 

make good decisions for frequently encountered states, at the expense of less effort for 



 

 38

infrequently encountered states. This is one key property that distinguishes reinforcement 

learning from other approaches to approximately solving MDPs. 
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Chapter 4. Introduction to Q(λ): the chosen RL 

algorithm 

4.1. Introduction 

In order to introduce the chosen RL algorithm, Q(λ), it is necessary to introduce two different 

concepts, in particular the Q-Learning and the Eligibility-Trace ones, of which Q(λ) is a 

fusion. 

4.2. Introduction to Q-Learning 

In order to introduce Q-Learning algorithm, it is important to briefly define the two concepts 

of on-policy and off-policy learning. On-policy methods attempt to evaluate or improve the 

policy that is used to make decisions, i.e. that they estimate the value of a policy while using 

it for control. In off-policy methods these two functions are separated. The policy used to 

generate behaviour, called the behaviour policy, may in fact be unrelated to the policy that is 

evaluated and improved, called the estimation policy. An advantage of this separation is that 

the estimation policy may be deterministic (e.g., greedy), while the behaviour policy can 

continue to sample all possible actions. 

One of the most important breakthroughs in reinforcement learning was the development of 

an off-policy TD control algorithm known as Q-learning (Watkins, 1989). Its simplest form, 

one-step Q-learning, is defined by  
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(13) 

In this case, the learned action-value function, , directly approximates , the optimal 

action-value function, independent of the policy being followed. This dramatically simplifies 

the analysis of the algorithm and enabled early convergence proofs. The policy still has an 

effect in that it determines which state-action pairs are visited and updated. However, all that 

is required for correct convergence is that all pairs continue to be updated: this is a minimal 

requirement in the sense that any method guaranteed to find optimal behaviour in the general 

case must require it. Under this assumption (and some other regarding stochastic 

approximation conditions on the sequence of step-size parameters)  has been shown to 

converge with probability 1 to . The Q-learning algorithm is shown in procedural form in 

Figure 4. 

 
Figure 4 Q-learning: an off-policy TD control algorithm 

It could be useful to determine the backup diagram for Q-learning The rule (13) updates a 

state-action pair, so the top node, the root of the backup, must be a small, filled action node. 

The backup is also from action nodes, maximizing over all those actions possible in the next 

state. Thus the bottom nodes of the backup diagram should be all these action nodes. Finally, 

remembering that taking the maximum of these “next action” nodes is indicated with an arc 

across them, the resulting diagram is depicted in Figure 5. 
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Figure 5 Backup diagram for Q-learning 

4.3. Introduction to Q-Learning 

Eligibility traces are one of the basic mechanisms of reinforcement learning. There are two 

ways to view eligibility traces. The more theoretical view is that they are a bridge from TD to 

Monte Carlo methods (remember that TD methods are BLABLABLA and Monte Carlo 

Methods are BLABLABLA). When TD methods are augmented with eligibility traces, they 

produce a family of methods spanning a spectrum that has Monte Carlo methods at one end 

and one-step TD methods at the other. In between are intermediate methods that are often 

better than either extreme method. In this sense eligibility traces unify TD and Monte Carlo 

methods in a valuable and revealing way. The other way to view eligibility traces is more 

mechanistic. From this perspective, an eligibility trace is a temporary record of the occurrence 

of an event, such as the visiting of a state or the taking of an action. The trace marks the 

memory parameters associated with the event as eligible for undergoing learning changes. 

When a TD error occurs, only the eligible states or actions are assigned credit or blame for the 

error. Thus, eligibility traces help bridge the gap between events and training information. 

Like TD methods themselves, eligibility traces are a basic mechanism for temporal credit 

assignment. 

The more theoretical view of eligibility traces is called the forward view, and the more 

mechanistic view is called the backward view. The forward view is most useful for 

understanding what is computed by methods using eligibility traces, whereas the backward 

view is more appropriate for developing intuition about the algorithms themselves. 
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4.4. n-Step TD Prediction 

Consider estimating  from sample episodes generated using . Monte Carlo methods 

perform a backup for each state based on the entire sequence of observed rewards from that 

state until the end of the episode. The backup of simple TD methods, on the other hand, is 

based on just the one next reward, using the value of the state one step later as a proxy for the 

remaining rewards. One kind of intermediate method, then, would perform a backup based on 

an intermediate number of rewards: more than one, but less than all of them until termination. 

For example, a two-step backup would be based on the first two rewards and the estimated 

value of the state two steps later. Figure 6 diagrams the spectrum of -step backups for , 

with one-step, simple TD backups on the left and up-until-termination Monte Carlo backups 

on the right. 

 
Figure 6 Spectrum ranging from the one-step backup of simple TD methods to the up-until-termination 
backups of Monte Carlo methods. In between are the n-step backups, based on n steps of real rewards and 
the estimated value of the n-th next state, all appropriately discounted 
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The methods that use -step backups are still TD methods because they still change an earlier 

estimate based on how it differs from a later estimate. Now the later estimate is not one step 

later, but  steps later. Methods in which the temporal difference extends over  steps are 

called -step TD methods. More formally, consider the backup applied to state  as a result 

of the state-reward sequence,  (omitting the actions for 

simplicity). It is known that in Monte Carlo backups the estimate  of  is updated 

in the direction of the complete return: 

 

where T is the last time step of the episode. Let us call this quantity the target of the backup. 

Whereas in Monte Carlo backups the target is the expected return, in one-step backups the 

target is the first reward plus the discounted estimated value of the next state: 

 

This makes sense because  takes the place of the remaining terms 

. The point now is that this idea makes just as much sense 

after two steps as it does after one. The two-step target is  

 

where now  takes the place of the terms . In 

general, the -step target is  
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 (14) 

This quantity is sometimes called the “corrected -step truncated return” because it is a return 

truncated after  steps and then approximately corrected for the truncation by adding the 

estimated value of the -th next state. That terminology is descriptive but a bit long: usually it 

is also called as the -step return at time . 

Of course, if the episode ends in less than  steps, then the truncation in an -step return 

occurs at the episode’s end, resulting in the conventional complete return. In other words, if 

, then . 

An -step backup is defined to be a backup toward the -step return. In the tabular, state-

value case, the increment to  (the estimated value of  at time ), due to an -step 

backup of , is defined by  

 

where  is a positive step-size parameter, as usual. Of course, the increments to the 

estimated values of the other states are , for all . Here the -step backup is 

defined in terms of an increment, rather than as a direct update rule, in order to distinguish 

two different ways of making the updates. In on-line updating, the updates are done during 

the episode, as soon as the increment is computed. In this case we have 

 for all . In off-line updating, on the other hand, the 

increments are accumulated “on the side” and are not used to change value estimates until the 

end of the episode. In this case,  is constant within an episode, for all . If its value in 

this episode is , then its new value in the next episode will be . 
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The expected value of all -step returns is guaranteed to improve in a certain way over the 

current value function as an approximation to the true value function. For any , the expected 

value of the -step return using  is guaranteed to be a better estimate of  than  is, in a 

worst-state sense. That is, the worst error under the new estimate is guaranteed to be less than 

or equal to  times the worst error under : 

 
(15) 

This is called the error reduction property of -step returns. Because of the error reduction 

property, one can show formally that on-line and off-line TD prediction methods using -step 

backups converge to the correct predictions under appropriate technical conditions. The -

step TD methods thus form a family of valid methods, with one-step TD methods and Monte 

Carlo methods as extreme members. 

Nevertheless, -step TD methods are rarely used because they are inconvenient to implement. 

Computing -step returns requires waiting steps to observe the resultant rewards and states. 

For large , this can become problematic, particularly in control applications. 

4.5. The Forward View of TD(λ) 

Backups can be done not just toward any -step return, but toward any average of -step 

returns. For example, a backup can be done toward a return that is half of a two-step return 

and half of a four-step return: . Any set of returns can be averaged in 

this way, even an infinite set, as long as the weights on the component returns are positive and 

sum to 1. The overall return possesses an error reduction property similar to that of individual 

-step returns (15) and thus can be used to construct backups with guaranteed convergence 

properties. Averaging produces a substantial new range of algorithms. 
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The TD( ) algorithm can be understood as one particular way of averaging -step backups. 

This average contains all the -step backups, each weighted proportional to , where 

 (Figure 7) A normalization factor of  ensures that the weights sum to 1. The 

resulting backup is toward a return, called the -return, defined by  

 

Figure 8 illustrates this weighting sequence. The one-step return is given the largest weight, 

; the two-step return is given the next largest weight, ; the three-step return is 

given the weight ; and so on. The weight fades by  with each additional step. 

After a terminal state has been reached, all subsequent -step returns are equal to . If we 

want, we can separate these terms from the main sum, yielding 

 

(16) 

This equation makes it clearer what happens when . In this case the main sum goes to 

zero, and the remaining term reduces to the conventional return, . Thus, for , backing 

up according to the -return is the same as the Monte Carlo algorithm. On the other hand, if 

, then the -return reduces to , the one-step return. Thus, for , backing up 

according to the -return is the same as the one-step TD method, TD(0).  

 
Figure 8 Weighting given in the λλλλ-return to each of the n-step returns 
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The algorithm that performs backups using the -return is defined the -return algorithm. 

On each step, , it computes an increment, , to the value of the state occurring on that 

step: 

 
(17) 

(The increments for other states are of course , for all .) As with the -step 

TD methods, the updating can be either on-line or off-line.  

This approach is called the theoretical, or forward, view of a learning algorithm. For each 

state visited, the algorithm looks forward in time to all the future rewards and decide how best 

to combine them. It is possible to imagine a person riding the stream of states, looking 

forward from each state to determine its update, as depicted in Figure 9. After looking 

forward from and updating one state, the person moves on to the next and never have to work 

with the preceding state again. Future states, on the other hand, are viewed and processed 

repeatedly, once from each vantage point preceding them. 

 

 
Figure 9 Forward or theoretical view. The algorithm decides how to update each state by looking forward 
to future rewards and states 

The -return algorithm is the basis for the forward view of eligibility traces as used in the 

TD( ) method. In fact, in the off-line case, the -return algorithm is the TD( ) algorithm. 

The -return and TD( ) methods use the  parameter to shift from one-step TD methods 

to Monte Carlo methods. The specific way this shift is done is interesting, but not obviously 

better or worse than the way it is done with simple -step methods by varying . Ultimately, 
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the most compelling motivation for the  way of mixing -step backups is that there is a 

simple algorithm -TD( ) -for achieving it. This is a mechanism issue rather than a theoretical 

one. 

4.6. The Backward View of TD(λ) 

The previous section presented the forward or theoretical view of the tabular TD( ) 

algorithm as a way of mixing backups that parametrically shifts from a TD method to a Monte 

Carlo method. This section instead defines TD( ) mechanistically, and in the next section it 

is shown that this mechanism correctly implements the forward view. The mechanistic, or 

backward, view of TD( ) is useful because it is simple conceptually and computationally. In 

particular, the forward view itself is not directly implementable because it is non-causal, using 

at each step knowledge of what will happen many steps later. The backward view provides a 

causal, incremental mechanism for approximating the forward view and, in the off-line case, 

for achieving it exactly.  

In the backward view of TD( ), there is an additional memory variable associated with each 

state, its eligibility trace. The eligibility trace for state  at time is denoted . On 

each step, the eligibility traces for all states decay by , and the eligibility trace for the one 

state visited on the step is incremented by : 

 
(18) 

for all non-terminal states , where  is the discount rate and  is the parameter introduced in 

the previous section. Henceforth we refer to  as the trace-decay parameter. This kind of 

eligibility trace is called an accumulating trace because it accumulates each time the state is 

visited, then fades away gradually when the state is not visited, as illustrated below: 
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At any time, the traces record which states have recently been visited, where “recently” is 

defined in terms of . The traces are said to indicate the degree to which each state is 

eligible for undergoing learning changes should a reinforcing event occur. The reinforcing 

events we are concerned with are the moment-by-moment one-step TD errors. For example, 

the TD error for state-value prediction is  

 (19) 

In the backward view of TD( ), the global TD error signal triggers proportional updates to 

all recently visited states, as signalled by their nonzero traces:  

 (20) 

As always, these increments could be done on each step to form an on-line algorithm, or 

saved until the end of the episode to produce an off-line algorithm. In either case, equations 

((18)-(20)) provide the mechanistic definition of the TD( ) algorithm. A complete algorithm 

for on-line TD( ) is given in Figure 10. 

 
Figure 10 On-line tabular TD(λλλλ) 
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The backward view of TD( ) is oriented backward in time. At each moment we look at the 

current TD error and assign it backward to each prior state according to the state’s eligibility 

trace at that time. It is possible to imagine a person riding along the stream of states, 

computing TD errors, and shouting them back to the previously visited states, as suggested by 

Figure 11. Where the TD error and traces come together, we get the update given by (20). 

 
Figure 11 Backward or mechanistic view. Each update depends on the current TD error combined with 
traces of past events 

To better understand the backward view, consider what happens at various values of . If 

, then by (18) all traces are zero at  except for the trace corresponding to . In terms of 

Figure 11, TD(0) is the case in which only the one state preceding the current one is changed 

by the TD error. For larger values of , but still , more of the preceding states are 

changed, but each more temporally distant state is changed less because its eligibility trace is 

smaller, as suggested in the figure: it is possible to say that the earlier states are given less 

credit for the TD error. 

If , then the credit given to earlier states falls only by  per step. This turns out to be 

just the right thing to do to achieve Monte Carlo behaviour. For example, remember that the 

TD error, , includes an undiscounted term of . In passing this back  steps it needs to be 

discounted, like any reward in a return, by , which is just what the falling eligibility trace 

achieves. If  and , then the eligibility traces do not decay at all with time. In this 
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case the method behaves like a Monte Carlo method for an undiscounted, episodic task. If 

, the algorithm is also known as TD(1). TD(1) is a way of implementing Monte Carlo 

algorithms. 

Concluding, it is possible to demonstrate that off-line TD( ), as defined mechanistically 

above, achieves the same weight updates as the off-line -return algorithm: in this sense it is 

possible align the forward (theoretical) and backward (mechanistic) views of TD( ) [27]. 

4.7. Q(λ) 

Two different methods have been proposed that combine eligibility traces and Q-learning; 

sometimes these are referred as Watkins’s Q( ) and Peng’s Q( ), after the researchers who 

first proposed them. 

Recall that Q-learning is an off-policy method, meaning that the policy learned about need not 

be the same as the one used to select actions. In particular, Q-learning learns about the greedy 

policy while it typically follows a policy involving exploratory actions -occasional selections 

of actions that are suboptimal according to . Because of this, special care is required when 

introducing eligibility traces. 

Suppose to back up the state-action pair  at time . Suppose that on the next two time 

steps the agent selects the greedy action, but on the third, at time , the agent selects an 

exploratory, non-greedy action. In learning about the value of the greedy policy at  it is 

possible to use subsequent experience only as long as the greedy policy is being followed. 

Thus, it is possible to use the one-step and two-step returns, but not, in this case, the three-

step return. The -step returns for all  no longer have any necessary relationship to the 

greedy policy. 
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Thus, unlike TD( ), Watkins’s Q( ) does not look ahead all the way to the end of the 

episode in its backup. It only looks ahead as far as the next exploratory action. Aside from 

this difference, however, Watkins’s Q( ) is much like TD( ). Its look ahead stops at 

episode’s end, whereas Q( )’s look ahead stops at the first exploratory action, or at episode’s 

end if there are no exploratory actions before that. Actually, to be more precise, one-step Q-

learning and Watkins’s Q( ) both look one action past the first exploration, using their 

knowledge of the action values. For example, suppose the first action, , is exploratory. 

Watkins’s Q( ) would still do the one-step update of  toward 

. In general, if  is the first exploratory action, then the longest 

backup is toward 

 

where we assume off-line updating. The backup diagram in Figure 12 illustrates the forward 

view of Watkins’s Q( ), showing all the component backups. 

 
Figure 12 Backup diagram for Watkins’s Q(λλλλ). The series of component backups ends either with the end 
of the episode or with the first non-greedy action, whichever comes first 
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The mechanistic or backward view of Watkins’s Q( ) is also very simple. Eligibility traces 

are just set to zero whenever an exploratory (non-greedy) action is taken. The trace update is 

best thought of as occurring in two steps. First, the traces for all state-action pairs are either 

decayed by  or, if an exploratory action was taken, set to . Second, the trace 

corresponding to the current state and action is incremented by . The overall result is 

 

where, as before,  is an identity indicator function, equal to 1 if  and  otherwise. 

The rest of the algorithm is defined by 

 

Where 

 

Next picture shows the complete algorithm in pseudocode: 

Figure 13 Tabular version of Watkins’s Q( ) algorithm 
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Unfortunately, cutting off traces every time an exploratory action is taken loses much of the 

advantage of using eligibility traces. If exploratory actions are frequent, as they often are early 

in learning, then only rarely will backups of more than one or two steps be done, and learning 

may be little faster than one-step Q-learning. Peng’s Q( ) is an alternate version of Q( ) 

meant to remedy this. 

 
Figure 14 Backup diagram for Peng’s Q(λλλλ) 

Conceptually, Peng’s Q( ) uses the mixture of backups shown in Figure 14. Unlike Q-

learning, there is no distinction between exploratory and greedy actions. Each component 

backup is over many steps of actual experiences, and all but the last are capped by a final 

maximization over actions. The component backups, then, are neither on-policy nor off-

policy. The earlier transitions of each are on-policy, whereas the last (fictitious) transition 

uses the greedy policy. As a consequence, for a fixed non-greedy policy,  converges to 

neither  nor  under Peng’s Q( ), but to some hybrid of the two. However, if the policy 

is gradually made more greedy, then the method may still converge to , even if this has not 
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yet been proved. Nevertheless, the method performs well empirically. Most studies have 

shown it performing significantly better than Watkins’s Q( ). 
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Chapter 5. Objectives and adopted approaches 

5.1. Objectives 

In the contest of this work, the most important target is to assure that the algorithms based on 

Reinforcement Learning perform better at least of the most common CAC algorithm, the peak 

based’s one. That is, the RL based CAC algorithms (in the future CAC-RL) should guarantee 

to the network operator the maximum income, preserving the clients’ quality of service. It 

means that on one hand the network resources should be exploited in order to optimally use 

the available resources and on the other hand the contractual quality of service should be 

assured to all the already accepted end-users connections. 

In addition to that, the RL algorithm must be decoupled from other Resource Management 

procedures and must be technology independent, allowing network operators to update their 

transport technologies without modifying the resource control functions. This is especially 

true for the wireless networks market where new standards impose high investment in new 

infrastructures. The CAC-RL must adapt to different network scenarios, thus another 

objective is the robustness and independence from the specific statistical behaviour of the 

traffic; CAC-RL should detect and react to the changes of the environmental conditions. 

Among the objectives depicted above, I’ve decided to subdivide part of them in order to 

introduce more complexity in RL algorithms in a step-by-step way: 

• first of all an RL algorithm was developed able to control only bandwidth usage, while 

maximizing the income in the long run; 

• then, when a good algorithm was found, another constrain was introduced, i.e. the 

control of the blocking probabilities; 
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• finally the final constrain was introduced, i.e. the control of the dropping probability. 

5.2. First RL approach 

In order to utilize the RL algorithm to solve the CAC problem, it is needed to identify the 

fundamental elements for the implementation of the admission control algorithm i.e. the 

system states, actions and rewards. 

5.2.1. Definition of state, actions and reward 

At any given step t, the system is in a particular configuration ts  which we identify with the 

number of active connection of each traffic class, i.e. 1 2( , ,..., )t Ns n n n= , where ni is the 

number of active connections of class i. At random times an event e can occur (we assume 

only one event can occur at any step), where e is either a new call arrival or a call termination. 

This assumption is not restrictive: in a time-continuous scenario the probability two events 

occur exactly at the same time is zero. The agent has to find an optimal policy which 

maximizes the cumulative measure of the rewards received over time choosing between two 

possible actions for each request: accepting (a = 1) and rejecting (a = 0) the arriving 

connection request of class i; connection terminations are not decision points so that no 

decision needs to be taken. 

The crucial point in the definition of an environment behaviour is the analytical form of the 

reward for the acceptance or rejection of a connection request in a state s. It should take into 

account all the objectives established previously. A good guideline to achieve the goal is to 

build the reward function as a superposition of additive contributes, each of which regarding a 

different objective: in this way future refinements of the model such as the introduction of 

new objectives will be easily made. I have chosen the following general reward functions for 
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the acceptance ( ( , , , )Air B λ µ ρ
r rr

) and rejection ( ( , , , )Rir B λ µ ρ
r rr

) couple of a generic class of 

service: 

( , , , ) ( ) ( , , )

( , , , ) (0) ( , , , )

Bw
Ai i

Ri Ai

r B f B

r B f r B

λ µ ρ λ µ ρ
λ µ ρ λ µ ρ

= − ∆

= −

r rr rr r

r rr rr r  (21) 

Where: 

• ( )f ⋅  is the bandwidth contribute; 

• ( )Bw
i∆ ⋅  is the inversion contribute (connected to the bandwidth only) for the i-th class 

of service; 

• B  is the used bandwidth in the state s – note thatB  is variable during the time; for 

notation simplicity we will omit to explicitly depict time dependences; 

• 1( ,..., )Nλ λ λ=
r

 is the new call frequency vector, being iλ  the frequency of new call 

for an i-th class of service connection; 

• 1( ,..., )Nµ µ µ=r  is the holding time vector, being iµ  the average duration of an i-th 

class of service connection; 

• 1( ,..., )Nρ ρ ρ=r  is the price vector, being iρ  the price for band and time unit of an i-th 

class of service connection. In particular i
i

i

r

B
ρ =  where r i is the reward per time unit 

and Bi is the nominal bandwidth (occupied by a connection) of the i-th class of service. 

The definition of reward for the call rejection comes from the choice to satisfy the following 

constraint, and so to assure a good control of the algorithm behaviour: 

( )0),,,(),,,( fBrBr RiAi =+ ρµλρµλ rrrrrr

. 

The first term of the first equation in (21), the bandwidth term, should assure that the agent 

learns to accept a connection only if at least a portion of the bandwidth is available, and to 
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reject it if the bandwidth of the link is filled. I have chosen for ( )f B  the following sigmoid 

function, 

0( )

1
( )

1 LB B B
f B

e −=
+

, 

where: 

• B is the actual bandwidth; 

• LB is the nominal bandwidth of the link; 

• 0B is a free parameter to be chosen conveniently for an optimal tuning. 

The behaviour of the couple of reward functions for a generic class of service is shown in 

Figure 15 (where we temporarily considered ( ) 0Bw
i∆ ⋅ = ). As it is possible to see, changing the 

value of the tuning parameter B0 the graph results in curves more “crushed” but the 0.5 value 

is always reached for / 1B B
L

= . We call this point the “inversion point”, i.e. the point where 

r r
Ai Ri

= : before there is a greater reward accepting calls, after rejecting them. This choice is 

intuitive: supposing requested bandwidth for a certain call is its maximum occupied 

bandwidth and that there is no bandwidth occupied for signalling (or, as preferred, consider 

this bandwidth not available to be assigned to call requests), the best solution to augment 

operator incoming is to accept new calls as long as there is bandwidth, then the operator is 

forced to reject in order to continue to guarantee QoS constrains. 
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Figure 15 Acceptance and rejection reward functions for B0=1 and B0=10 

The second term in (21), the inversion term, comes from the network operator need to 

maximize its profit over the long run. More in detail I have introduced it to assure significant 

improvement in the management of connection requests in congestion conditions. 

The value of ( ) 0Bw
i∆ ⋅ =  should be as higher as the class of services i is considered not 

convenient by the network operator, as smaller as considered convenient. Figure 15 shows the 

couples of reward functions for four classes of service, in which four decreasingly values of 

∆  has been considered. 

The main effect of ∆  is the left shift of the inversion point. The more ∆  increases the more 

the shift increases. The rationale is the following: without ∆ , the policy is exactly the greedy 

one, i.e., accept if there is bandwidth. In this way all calls are considered equivalently 

convenient; vice versa, usually certain classes of service are more convenient than others and 

so it could be intuitive to try to leave some bandwidth free for them: this is exactly what ∆  
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permits. The best classes have ∆  near zero, which implies accept them whenever remains 

bandwidth (i.e. unless occupied bandwidth is around 100%); the worst classes have high ∆ , 

which implies to accept them whenever the /B B
L

 ratio is sufficiently low (i.e., accept till a 

certain percentage, considerably less than 100%, of the bandwidth is occupied). In this way 

the agent could follow a policy which accepts only the most convenience class of service 

requests in situation next to the bandwidth saturation.  

First of all I have considered the problem of bandwidth control only, so that I set the inversion 

contribute as follows: 

( )Bw
i c g

i
∆ = ⋅ ⋅  (22) 

where c is a free parameter that it is possible to use to obtain an optimal tuning of the 

algorithm (0 0.5c≤ ≤ ), and ( )g
i

⋅  is the so called “inversion function” ( 0 ( ) 1g
i

≤ ⋅ ≤ ). It takes 

into account the convenience in accepting the other class of service requests respect to a i th 

one; an analytical expression assuring our scopes is the following: 

( , , )

1

N

k k k
k ig

i N

k k k
k

λ ρ µ
λ µ ρ

λ ρ µ

⋅ ⋅∑
≠=

⋅ ⋅∑
=

r rr
 (23) 
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Figure 16 Reward functions for a) 0.4∆ = , b) 0.2∆ = , c) 0.1∆ = , d) 0∆ =  respectively 

The rationale is the following: a certain class k of service is more convenient: 

• if its price (for bandwidth and time units, k
ρ ) is higher 

• if its frequency ( k
λ ) is higher 

• its duration ( k
µ ) is higher. 

While the first point is intuitive, the second and the third could be not. Regarding the second, 

suppose to have two different classes of services, i and j, which have all parameters equals but 

i j
λ λ> . This implies the probability to have a new call of class i is greater than having one of 

class j: so that, it will be counter-productive to leave space for calls of class j rejecting calls of 

class i, because j th ones are more rare. In the worst case (i.e. 0
j

λ � ) leaving space for calls of 

class j will be useless, because calls of class j are so rare that probably these will not arrive at 
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all in the near future. Regarding the third, supposing again to have two classes of services, i 

and j, which have all parameters equals but 
i j

µ µ> : in this case it will be convenient to 

accept calls of class i because these will go on further than j th ones, guaranteeing so higher 

revenues. One could counter that accepting i th calls will occupy bandwidth, but, with respect 

to leave space for class j, it is convenient because a call of class j will occupy the same 

bandwidth (per euro) and usually to last less than calls of class i, so that guaranteeing less 

reward. 

5.2.2. Control of blocking an drop probabilities 

The previously depicted algorithm is able to maximize the network operator income while 

guaranteeing the bandwidth constrain, i.e. while not accepting new connections if there is no 

sufficient bandwidth for them. In a real telecommunication scenario, the bandwidth constrain 

is not the only one. As already stated, in model based algorithms, in particular in these which 

does not use any measurement system, it is not possible to take care of constrains like bit-

error-rate (BER), delays, jitter and similar issues (which require measurements), but it is still 

possible to try to maintain sufficiently low two other important parameters, namely the 

blocking probability and the dropping probability. These last two indicates, roughly speaking, 

the probability of a connection to be blocked or to be dropped by the system. 

It is possible to use several definition of the last two probabilities: I’ve chosen the following 

ones, which better adapt to the scenario: 

_ _

_ _
b i

i
i

blocked call amount
P

total call amount
=

 

_ _

_ _
d i

i
i

dropped call amount
P

total call amount
=  

(24) 
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where b means blocked, d dropped and i indicates the i-th class of service. Note that defined 

in this way, these should be better named blocking ratio and dropping ratio instead of 

probabilities, but in the literature the preferred naming is “probability”. Furthermore, it 

becomes crucial to decide if these ratio should be calculated in the (theoretically infinite) 

window of time during which the algorithm works or if these ones are to be defined in a fixed 

time window of length T. The last one is the most commonly adopted, in particular because it 

is usually the more stringent: so that, we will use 
( )b

iP t
 and 

( )d
iP t

 defined as in (24) but 

where we consider only calls (arrived, blocked and dropped) in the “sliding” time window (t, 

t-T]. 

In order to introduce blocking probability and dropping probability control, we need to 

slightly modify the (21), as depicted below: 

( , , , ) ( ) ( , , ) ( ( ), ) ( ( ), )

( , , , ) (0) ( , , , )

Bw Pb b bMax Pd d dMax
Ai i i i i i i i

Ri Ai

r B f B P t P P t P

r B f r B

λ µ ρ λ µ ρ
λ µ ρ λ µ ρ

= − ∆ − ∆ − ∆

= −

r rr rr r

r rr rr r  

Where: 

• ( ( ), )Pb b bMax
i i iP t P∆  is the inversion contribute (connected to the blocking probability 

only) for the i-th class of service; 

• ( ( ), )Pd d dMax
i i iP t P∆  is the inversion contribute (connected to the dropping probability 

only) for the i-th class of service. 

In particular 

( )
( ( ), )

b
Pb b bMax i
i i i bMax

i

P t
P t P d

P
∆ = − ; 

( )
( ( ), )

d
Pd d dMax i
i i i dMax

i

P t
P t P e

P
∆ = − . 
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In both formulas the minus is due to the fact that ( )Air ⋅  should augment as much the 
( )x

i
xMax

i

P t

P
 

ratio augment; in other words, if the system reaches the limit of blocking and dropping 

probabilities, it tries to compensate augmenting the number of accepted calls of that class of 

service (or, equivalently, to avoid to reject or to drop calls of that class of service); finally, d 

and e are two tuning parameters. 

Furthermore, while introducing dropping probability control, it is obvious there should be the 

possibility to drop calls, so that there should be a policy to determine which ongoing 

connections should be dropped. The proposed algorithm will drop only one call at a time 

selecting the ongoing call which has the minimum expected income, selecting it using the 

following rule: 

min (( max ( )) )mean k
i i k i iT T ρ−  (25) 

In particular, tanks to the previous one, it is selected the k-th ongoing call of the i-th class of 

service which expected income is the lowest, among all the ongoing calls. The rationale of 

(25) is the following: max ( )mean k
i k iT T−  indicates the difference between the mean duration 

time of the calls of i-th class of service and the actual duration of the ongoing longest (thanks 

to the max) call of that class. Shorter calls are expected to last more than longer ones, so that 

the first ones will guarantee more incomes (having other parameters all equal); iρ  is the usual 

price for band and time unit of the i-th class of service connection. 

5.3. Second RL approach 

The second RL approach uses an extremely simple assumption: RL is able to learn from 

experience, stating that an opportune reward function is provided to the algorithm. In this 

second approach the reward function chosen is extremely simple: 
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where 

• i imht r⋅  is the mean duration (at time t, at which the calculation of 
iAr  is done) of the 

calls of class of service i; 

• ir  is the reward for time unit of the class of service i; 

• K is a constant (K>0): the more higher is K, the more the agent is penalized when 

accepting a call if there is not sufficient bandwidth for it. 

Summarizing, apart the case of no sufficient bandwidth, the agent gets the same absolute 

value for both actions, but positive in case of acceptance, negative otherwise. 

This simple couple of reward functions demonstrated to be really good to solve the CAC 

problem (as depicted in the results chapter) and their rationale is extremely simple to explain. 

Remember that the Q(λ) algorithm chooses the best action to be performed starting from the 

Q(s,a) and following an epsilon-greedy policy, i.e., selecting the action corresponding to the 

maximum Q(s,a), apart a certain percentage epsilon of the times, in which it explores, 

selecting the action to be followed randomly. 

Suppose to have just two classes of services, CoS1 and CoS2, occupying respectively the 

bandwidth B1 and B2; suppose also the respective rewards are r1 and r2. Note that, for every 

state s, there are four possible actions to be chosen: A1, A2, R1, and R2, which are respectively 

accept a call of class 1 and 2, and reject a call of class 1 and 2. 

Consider initially to be in a certain state s in which neither a call of CoS1 nor of CoS2 can be 

accepted, because the remained bandwidth Br is less than B1 and B2 (Br < B1 and Br < B2); 
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consider also this state was never visited before. In this case, the value of the Q function is 

depicted in the following table: 

Q function Q(s,A1) Q(s,A2) Q(s,R1) Q(s,R2) 

Value 0 0 0 0 

Table 1 Initial values of Q(s,a)As it is possible to see, all Q(s,a) are equals to zero; in this case, 

the algorithm will select randomly one of these actions. Suppose the incoming call is of CoS1, 

then it will select or A1 or R1. Consider the selected action is R1, the agent gets the reward “-

K”; it could be useful to remember here the updating rule: 

  

where 

  

and consider γ, α and et all equals to 1 just for facilitate calculations (obviously their values 

should be opportunely set, as previously highlighted, otherwise the algorithm will not 

converge; putting them to 1 in this example is just to give an idea about how the process 

goes), so that they become: 

1( , ) ( , )t t tQ s a Q s a δ+ = +  

1 ' 1 1max ( , ') ( , )t t a t t tr Q s a Q s aδ + + += + −  

Considering 1t ts s+ = , ' 1 1max ( , ') 0a t tQ s a+ + = , and 1( , ) 0t tQ s R = , the table will update as 

follows: 

Q function Q(s,A1) Q(s,A2) Q(s,R1) Q(s,R2) 

Value 0 0 
1 1mht r− ⋅  0 

Table 2 Values of Q(s,a) after rejection of a call of CoS1 
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Suppose now another call of CoS1 arrives, now the best action to be performed is A1, so that 

the table will update as follows: 

Q function Q(s,A1) Q(s,A2) Q(s,R1) Q(s,R2) 

Value -K 0 
1 1mht r− ⋅  0 

Table 3 Values of Q(s,a) after acceptance of a call of CoS1 

If one guarantees 

| | | |i iK mht r> ⋅  i∀  (27) 

then the action R1 is more convenient than A1, so that the algorithm learns that, in this state, it 

is better to reject calls of CoS1 than accept them. Similar behaviours there are for the CoS2; 

note also the algorithm arrives to the same results also if it decides to accept the first call. The 

“final” value of Q(s,a) is depicted in the following table: 

Q function Q(s,A1) Q(s,A2) Q(s,R1) Q(s,R2) 

Value -K -K 
1 1mht r− ⋅  2 2mht r− ⋅  

Table 4 “Final” values of Q(s,a) 

In the reality, if one continues with the updating rule, there will be some influences between 

the two classes of services, which enormously complicates calculations: in any case, if (27) is 

valid, then the algorithm will always converge to the fact that it is better to reject any 

incoming call in the state s instead accepting them, so that we have depicted how the 

algorithm is able to respect the bandwidth limit constrain. 

A similar argumentation is possible to be done regarding the maximization of network 

provider incoming. In the previous algorithm, the sigmoid function guaranteed there should 

be an inversion point starting from which it is more convenient to reject calls instead of 

accepting them. Opportunely tuning some parameters, one could guarantee that, when mostly 

of the bandwidth is used, only calls of more convenient classes of services are accepted, while 
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the calls of other classes are rejected to leave some space free for the first ones. It is possible 

to show the Q(λ) algorithm, with the rewards as in (formula), reaches the same results. 

With the same assumptions of the previous example, but supposing in the state s there is 

remaining bandwidth just to accept or a call of CoS1 or a call of CoS2, we will start, as usual, 

with an “empty” table of Q(s,a) (Table 1); suppose also calls of CoS2 are more convenient of 

the ones of CoS1 (this is true if 2 2 1 1mht r mht r⋅ > ⋅ ); finally remember that 0i imht r⋅ >  i∀ . 

Suppose, as usual, a call of CoS1 arrives, suppose the algorithm accepts it and suppose that 

the state 1ts +  where the system goes to has a 1( , )tQ s a+  as in Table 1 (just for sake of 

simplicity: the algorithm will converge to similar results also for 1( , )tQ s a+  much more 

complex of the ones in Table 4, just guaranteeing (27); in any case all states were never 

visited have a Q(s,a) equals to the one in Table 0, so that, in this example, it is correct to 

consider 1ts +  as a state never visited) . So that, because 1max ( , )a tQ s a+  the resulting Q(s,a) 

table is 

Q function Q(s,A1) Q(s,A2) Q(s,R1) Q(s,R2) 

Value 
1 1mht r⋅  0 0 0 

Table 5 Values of Q(s,a) after acceptance of a call of CoS1 

If now, in 1ts + , a call of CoS2 arrives, the agent is forced to reject it, so that the network 

owner has earned, in total, 1 1mht r⋅ . Suppose, while being in 1ts + , a call of CoS1 ends, the 

system returns to the “initial” state s. Now, the same happens with a call of CoS2: a new 

arrival and a termination, in order to return to the state s. The final table will be: 

Q function Q(s,A1) Q(s,A2) Q(s,R1) Q(s,R2) 

Value 
1 1mht r⋅  2 2mht r⋅   0 

Table 6 Values of Q(s,a) after acceptance of a call of CoS2 
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Suppose now the agent has sufficiently explored the state 1ts +  in order to have for it the 

complete Table 4: at this stage the Q(s,a) is arrived to a crucial point, in which it is already 

able to determine that it is better to reject calls of CoS1 instead of accept them, in order to 

leave some space for calls of CoS2. 

In fact, suppose now it arrives a call of CoS1. We have two different values of tδ ; the fist 

value corresponds to a=A1, and: 

1 1 1tR mht r+ = ⋅ ; 

1 1 1( , )tQ s A mht r= ⋅ ; 

1 1 1max ( , )a tQ s a mht r+ = − ⋅ ; 

for a total 1
1 1

A
t mht rδ = − ⋅ . 

The second value corresponds to a=R1, and 

1 1 1tR mht r+ = − ⋅ ; 

1( , ) 0tQ s R = ; 

1 2 2max ( , )a tQ s a mht r+ = ⋅ ; 

for a total 1
1 1 2 2 2 2 1 10R

t mht r mht r mht r mht rδ = − ⋅ + ⋅ − = ⋅ − ⋅ . 

With these values of deltas, it is easy to see that Q(s,A1) goes to zero, while Q(s,R1) goes to 

2 2 1 1mht r mht r⋅ − ⋅  (which is higher than 0 for hypothesis), so that the “final” table of Q(s,a) 

is: 

Q function Q(s,A1) Q(s,A2) Q(s,R1) Q(s,R2) 

Value 0 
2 2 1 1mht r mht r⋅ − ⋅  2 2 1 1mht r mht r⋅ − ⋅  X 

Table 7 Final values of Q(s,a) 

where 1 10 X mht r> > − ⋅  could be calculated only fixing and considering all parameters, but, 

in any case, Q(s,R2) < Q(s,A2). 
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Summarizing, the algorithm learnt that in this case accepting calls of CoS2 is the best action, 

while, with respect to CoS1, the best action is to reject new calls. 
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Chapter 6. Implementation 

6.1. Introduction 

In this chapter implementation of previously depicted approaches will be presented, indicating 

used tools and API, in terms of functioning and capabilities. 

6.2. Implementation details 

In order to validate and test the presented algorithms, I used a library of classes for 

implementing reinforcement learning in Java called Piqle [28]. The core component of this 

library is the standard Java interface for programming RL problems. This Java interface is an 

adaptation of the C++ standard of Sutton and Santamaria’s RL interface [29]. 

The Java language has been chosen for several reasons: it is powerful enough for simulation 

needs and it is relatively platform independent. It also allowed me to interface the platform 

with existing strong machine learning implementations. 

Like the C++ version, the Java platform is comprised of three core classes, which correspond 

to the three basic entities of the RL problem. They are the Agent, the Environment, and the 

Simulation. This code includes interfaces and classes for implementing the communication 

between agents and environments. The library contains also Action and State interfaces and 

classes for programming TD learning algorithm. Specifically, I had to add some classes to 

Piqle package in order to adapt them to the CAC problem. 

As simulation tool I used OMNET++ ([30], [31], [32], [33]) simulator. The simulations have 

been done to show the efficiency of the algorithm. OMNeT++ is a open-source, component-

based, modular and open-architecture simulation environment with strong GUI support and an 
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embeddable simulation kernel. Its primary application area is the simulation of 

communication networks and because of its flexible architecture, it has been successfully 

used in other areas like the simulation of IT systems, queuing networks, hardware 

architectures and business processes. I have developed a complete framework to simulate and 

analyze CAC algorithms based on reinforcement learning approach. 

In the following are depicted in details the three fundamental parts of the framework: Piqle, 

OMNeT++ and CAC. 

6.2.1. PIQLE 

The PIQLE simulation tool was primarily designed for implementing and testing the 

algorithms and problems described in Sutton’s and Barto’s Reinforcement Learning, An 

Introduction. Reinforcement learning algorithms are relatively generic, as based on a quite 

abstract notion of state, action, reward. I tried to respect the generality and transcript it in 

Java, a language very well suited for this. Defining and designing separately the notions of 

agent, algorithms, environment, and how those objects communicate with each other made it 

possible to obtain a very general platform for reinforcement learning experiments, easy to 

understand, easy to use, and also easy to extend, by mean of adding new algorithms, new 

problems, new agents. 

Piqle is organized around three main entities: 

• Environments representing the universe of the problem, i.e. the physics (or the rules 

for a game) and the different methods to describe states and actions. 

• Algorithms which are software elements able to choose the next action to be 

performed. Within the framework, algorithms are called Selectors. Interesting 

algorithms are those which are able to learn. 

• Agents are the “interface” between Environments and Algorithms. 
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On top of those three main features, the referees are scheduling the succession of phases, as 

illustrating here after: 

• The Environment tells the Agent in which state it is at this time, and provides the list 

of possible actions (Figure 17). 

• The Agent communicates this information to its Algorithm (Figure 18). 

• The Algorithm chooses the action to perform, and gives its answer back to the Agent 

(Figure 19). 

• The Agent tells the Environment what action it wants to perform (Figure 19). 

• The Environment computes the new state, the reward, and the new list of possible 

actions, and sends those information to the Agent (Figure 19). 

• The Agent transmits everything to the Algorithm, which can now learn from 

experience, as it received a reward for its former choice, choose the next action to 

perform, and the cycle begins again (Figure 20). 

Agents are just interfaces between Environments and Algorithms: they just receive and 

transmit information; they do not need to know exactly in which universe they are moving. 

Algorithms are just asked to choose an action into a given list of actions, and receive a reward 

for their last choice. The thing they have to remember (or learn) is, roughly speaking, what 

was (or what will be) the next reward if they choose a certain action. This reasoning scheme 

can be made independent of the Environment, as the Algorithm mainly has to store (and 

retrieve) its past experience as triples (state, action, reward). Finally, environments can be 

described as generic and abstract entities. 

Hence the only place where one will have to really describe the problem one wants to solve is 

the instantiation of the generic classes of the environment package. 
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Figure 17 The Agent learns its State 

 

 
Figure 18 Algorithm knows its current State 

 

 
Figure 19 The Algorithm chooses the Action 
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Figure 20 The Environment computes reward and New State 

 

 
Figure 21 The Algorithm can learn 

Those remarks directly lead to the Java organization of Piqle: 

1. Three main packages independent from the problem to solve: agents, referees, 

algorithms. 

2. One generic environment package for the common behaviour of any depictable 

environment. 

3. For each problem, a new package to instantiate the environment package. 

Now it is possible to enter a little bit more in details regarding each entity, starting with 

Agents. 



 

 78

Agents have two closely related roles: 

• Allowing the environment and the algorithm to communicate with each other. 

• Communicate itself with the referee, in order to schedule each episode. 

 
Figure 22 The Agent’s hierarchy 

Here following the blocks of the above picture are explained. 

• As the agent provides an interface between an algorithm and an environment, it must 

contain two fields for those two entities. The first two methods: getAlgorithm and 

getEnvironment allow access to each of those fields. 

• The next two methods, enableLearning and freezeLearning, are controlling the 

learning behaviour of the agent: one can ask the agent to stop learning at a certain 

stage, and see whether this agent behaves cleverly enough. 

• Method getLastReward asks the algorithm (in cascade, through the current state) for 

the reward corresponding to the last action of the agent. This is used by referees to 

compute the total reward for an episode. 
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• Method act is the core of the agent behaviour: here the agent will ask its algorithm for 

the best action to perform, and return the chosen action to the referee (which will then 

communicate this choice to the environment). 

• Both methods saveAgent allow saving an agent state into a file. Each non abstract 

agent classes (LoneAgent and TwoPlayerAgent) also implement readAgent methods. 

As those methods are static, they cannot appear into the definition of an interface. 

• In case there are some settings to be done at the beginning of an episode (resetting 

reward, resetting the algorithm, …) the interface provides the method newEpisode. 

Directly above the IAgent interface, the abstract class AbstractAgent defines the code of quite 

all the methods defined in the interface. Static methods readAgent can still not be written 

here, as we need to know whether we are speaking of a LoneAgent or of a TwoPlayerAgent. 

The basic class for one player game agent is LoneAgent. It is simply an AbstractAgent with 

the only constraint of having an IEnvironmentSingle associated environment. It thus 

manipulates states of class AbstractState. Note that now, it is possible to write the code for the 

readAgent methods. 

Two classes are derived from the LoneAgent class: both are related to the multi-agent 

extension of Piqle. Roughly speaking, a multi-agent system is a gathering of limited (in terms 

of perception and of behaviour) agents: the ElementaryAgents. Those agents are grouped into 

a Swarm, which is also an IAgent. This Swarm communicates with the environment in both 

directions, as any IAgent does: 

• The Swarm receives the description of the current environment’s state. 

• The Swarm dispatches this information to the ElementaryAgents it is composed of. 
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• Each ElementaryAgent sees this current state through its limited perception: a Filter 

extracts from the original state’s information the only part of it visible for this 

ElementaryAgent. 

• Each ElementaryAgent chooses the action it will perform. 

• The Swarm collects all those individual actions into a ComposedAction, and sends it 

to the environment. 

• The environment uses this ComposedAction to compute its next state, and sends back 

to the Swarm the reward for the current episode’s step. 

• Finally, the Swarm informs all its components of this reward. 

Now it could be introduced the Environment package; inside of it there are three main 

entities: 

1. Environments which are all that is needed to compute new state and reward, indicating 

also when the simulation should stop. 

2. Actions which are able to generate any action for a given problem, tools for 

comparing, copying and coding actions. 

3. States Code which compare, copy and manage states supplying also auxiliary methods 

to access the associated environment. 

All environments must implement the IEnvironment interface. This interface defines the 

expected behavior of any instantiated environment, which means: 

• Given a state of the environment, telling what actions are possible in it. 

• Given a state and an action, compute the next state. This computation can also be non 

deterministic or probabilistic. 

• Computing a reward from the previous state, the current state, the action taken (as 

usual in reinforcement learning). 
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• Indicating whether the simulation (or the game) is over or not (and, in case, who won). 

Now it is possible to introduce Actions. Actions are probably the simplest classes in Piqle. 

The only things one must be able to do while dealing with Actions is to create them, compare 

them for equality, code them for learning or storing algorithms. The basic definition of 

interface IAction is described by following methods: 

• copy which creates a new Action which is the copy of the previous one and is used 

when storing (state, action) pairs. 

• nnCoding, nnCodingSize used for defining a coding of an action as a real-valued 

vector, to be used in algorithms based on neural networks. 

• hashCode, equals considering it is up to the programmer to define when two actions 

are declared equal. Equality is tested in Java HashMaps, using those two methods. 

Moreover ActionList is an auxiliary class to store the list of possible actions from a given 

state. This list is given to the algorithm which makes it choice among the elements (Actions) 

of this list. 

Finally it is possible to introduce States. A state must define accurately a given configuration 

of the environment: one must be able to decide whether two states of the environment are 

equals, or equivalent. The basic definition of interface IState is described below: 

• setEnvironment, getEnvironment which connects the state with the environment it 

belongs to. 

• getActionList, modify, getReward, isFinal which just call the corresponding methods 

in the Environment class. 

• copy which is used to clone a state (mainly when storing the state into a HashMap). 



 

 82

• nnCodingSize, nnCoding which define the format of the state’s representation for use 

in algorithms based on neural networks. 

• hashCode which is equals to the same described above for IAction 

The abstract class AbstractState only defines the code of the first four methods seen above, 

the ones connecting the state with its environment. It also sets the field corresponding to that 

environment. 

It should be remarked that agents, and thus algorithms, may not be able to perceive all the 

details of a state. This is reflected in the fact that states may contain fields which are used by 

the environment to compute a new state, while those fields are used neither for the 

computation of hashCode and equal method, nor for the definition of nnCoding. 

Now it is time to introduce the last entity of the Piqle framework, the Algorithms. An 

algorithm is defined for each IAgent: its primary role is to choose an action to perform, given 

a list of possible actions. 

Good algorithms will choose the best action. Learning algorithms will use their past 

experience to improve their choice, hopefully choosing best actions. 

Thus algorithms in Piqle mainly implements: 

• A method for choosing an action within a list of them. 

• A method for learning, given the starting state, the chosen action, the new state after 

applying the action, and the reward given by the environment for this action’s choice: 

this is the standard paradigm of reinforcement learning. 

Some algorithms may not learn, some others may choose their action at random, depending of 

those two methods’ implementations. Algorithms have several ways to store their past 

experiences, different ways to use this past experiences, and also different ways to use this 
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experience. All that results in a package containing a lot of algorithms, organized in a 

multiple levels hierarchy. 

Main activity of an algorithm is to choose an action This part of its behavior is contained in 

the basic interface IStrategy. Furthermore it learns, which is the main method of interface 

IStrategyLearner. This interface also contains the method newEpisode which performs all the 

necessary initialization at the beginning of an episode. 

The API provide also methods to retrieve and analyze values calculated during learning. 

After this introduction it is possible now to easily describe the top of the algorithms’ 

hierarchy: 

• A basic interface defining the getChoice method: IStrategy 

• Another basic interface defining learn and newEpisode: IStrategyLearner 

• A third interface gathering the two previous ones, and adding method extractDataset: 

ISelector 

All algorithms defined so far in Piqle are implementations of the ISelector interface, some 

directly, others through a cascade of intermediate classes, forming the sub-hierarchy of 

reinforcement learning algorithms. 

A complete view of Piqle algorithms hierarchy is shown in Figure 23. 
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Figure 23 Java hierarchy of Algorithms 

As far as Piqle is concerned, reinforcement learning can be described roughly as follows: 

• The algorithm receives from its master (the agent) a state, and a list of possible 

actions. 

• It estimates the value of each possible action, according to the value it has stored or 

computed. 

• It returns the action that it believes will produce the greater reward (not only on the 

short, but also on the long run). 

• After the action has been taken, and the state of the environment has been updated, the 

algorithm updates its Q(s, a) estimation. 

This leads to the following preliminary remarks:  

1. A class is needed which can store and retrieve values indexed with a pair (state, 

action). 

2. It is needed to know when two states (and two actions) are equals. 

3. It is not needed to estimate values for (state, action) pairs never encountered. 
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We are now ready to detail the reinforcement learning algorithms part of the class hierarchy, 

beginning with the abstract class that gathers the most important part of the structure and 

code. 

AbstractMemorySelector 

This abstract class defines: 

• A Memory. the place where the Q(s, a) will be stored (whatever the meaning of 

“store” is). 

• A method for learning, i.e. the standard method described in paragraph 4.7. 

• A method for choosing the next action to perform, currently three different methods, 

depending on the strategy used to keep a little bit of randomness in the choice. 

• Parameters for tuning the algorithm. 

Each item is now described more precisely.. 

The memory 

In this class, the exact kind of memory used is left abstract, and will be instantiated differently 

in each of its implementations. 

This memory must implement the IRewardStore interface, from the qlearning package, which 

means it is asked to be able to: 

• retrieve a value associated with a (state, action) pair: method put(). 

• store a value associated with a (space, action) value: method get(). 

The learning method 

The algorithm used for learning is exactly the one describe in paragraph 4.7: it will be used 

without modification in both direct son classes, QlearningSelector and NNSelector. 

The choice of next action 
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Roughly speaking, method getchoice() returns the best action, as far as Q(s, a) are concerned. 

But, in reinforcement learning, algorithms must preserve a balance between exploration 

(visiting new states) and exploitation (choosing the more rewarding action). This is done by 

introducing a little bit of randomness in the choice of the next action to perform. Several ways 

for implementing and controlling randomness have been proposed. Piqle defines three 

implementations: 

• Greedy: a random action is chosen with a certain probability, instead of the best 

action. 

• Roulette: turns each action that can be chosen with a probability proportional to its 

Q(s, a) associated value. 

• Boltzmann: selection is as in the roulette turn procedure, each action can be chosen 

with a probability related to its Q(s, a) associated value, but using a different function 

than the linear one. 

The default behavior is the greedy one; hence the getChoice() method is just a branching to 

another choice function, depending of the chosen implementation. 

Parameters 

Some parameters are necessary to control and tune the behavior of reinforcement learning 

algorithms, some others to define precisely the randomness functions. Those values are given 

with their setters and getters. Some of them also need to change over time, and the class 

indicates how and how much they must change between two successive episodes. 

• Alpha: step-size parameter. It should theoretically decrease to ensure convergence. 

Two decrease method are proposed, exponential and geometrical. Only the first 

ensures convergence, but both give good practical results. 

• Gamma: discount rate parameter. 
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• Tau: temperature for the Boltzmann selection implementation of randomness. 

• Epsilon: the probability of choosing an action at random in the-greedy case. Note that 

epsilon is supposed to decrease over time. 

QLearningSelector 

This class is a direct implementation of AbstractMemorySelector class, setting its memory to 

a Java implementation of HashMaps. The keys for this HashMap will be computed from the 

values of states and actions. 

6.2.2. OMNeT++ 

For simulations performed in this thesis, the OMNeT++ simulator was used. 

OMNeT++ is a discrete event simulator based on C++, highly modular, well structured and 

scalable. It provides a basic infrastructure wherein modules exchange messages. The name 

OMNeT++ stands for Objective Modular Network Testbed in C++. It has an open-source 

distribution policy and can be used free of charge by academic research institutions. It runs on 

Windows and Unix platforms, including Linux, and offers a command line interface as well 

as a powerful graphical user interface. The simulator can be used, for instance, to model 

communication and queuing networks, multiprocessors and other distributed hardware 

systems as well as to validate hardware architectures. 

Modelling Concept 

An OMNeT++ model consists of hierarchically nested modules, which communicate by 

passing messages each other. OMNeT++ models are often referred to as networks. The top 

level module is the system module. The system module contains sub-modules, which can also 

contain sub-modules themselves. The depth of module nesting is not limited; this allows the 

user to reflect the logical structure of the actual system in the model structure. 
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Figure 24 OMNeT++ Module Hierarchy 

The model structure is described with OMNeT’s NED language. Modules that contain sub-

modules are termed compound modules, as opposed to simple modules which are at the 

lowest level of the module hierarchy. Simple modules contain the algorithms in the model. 

The user implements the simple modules in C++, using the OMNeT++ simulation class 

library. 

Modules communicate by exchanging messages. In an actual simulation, messages can 

represent frames or packets in a computer network, jobs or customers in a queuing network or 

other types of mobile entities. The local simulation time of a module advances when the 

module receives a message. The message can arrive from another module or from the same 

module (self messages are usually used to implement timers). 

Gates are the input and output interfaces of modules; OMNeT++ supports only simplex (one-

directional) connections, so there are input and output gates. Messages are sent out through 

output gates and arrive through input gates. 

Due to the hierarchical structure of the model, messages typically travel through a series of 

connections, to start and arrive in simple modules. Such series of connections that go from 

simple module to simple module are called routes. Compound modules act as “cardboard 

boxes” in the model, transparently relaying messages between their inside and the outside 

world. 
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Connections can be assigned three parameters, which facilitate the modelling of 

communication networks, but can be useful in other models too: propagation delay, bit error 

rate and data rate, all three being optional. One can specify link parameters individually for 

each connection, or define link types and use them throughout the whole model. 

The simple modules of a model contain algorithms as C++ functions. The full flexibility and 

power of the programming language can be used, supported by the OMNeT++ simulation 

class library. The simulation programmer can choose between event-driven and process-style 

description, and can freely use object-oriented concepts (inheritance, polymorphism etc.) and 

design patterns to extend the functionality of the simulator. 

Basic Parts of an OMNeT++ Model 

An OMNeT++ model physically consists of the following parts: 

• NED language topology description(s) 

• Message definitions 

• Simple modules implementations and other C++ code 

To build an executable simulation program, user firstly need to translate the NED files and the 

message files into C++, using the NED compiler (nedtool) and the message compiler 

(oppmsgc). NED files can also be loaded dynamically, in which case they don’t need to be 

compiled beforehand. After this step, the process is the same as building any C/C++ program 

from source. 

Interesting Features 

The cycle length of a random number generator (RNG) is fundamental, especially when 

RNGs are used for simulation purposes. OMNeT++ releases prior to 3.0 used a linear 

congruent generator (LCG) with a cycle length of 231 − 2. This RNG is still available but is 
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only suitable for small-scale simulation studies. Newer OMNeT++ releases use by default the 

Mersenne Twister RNG (MT) by Matsumoto and Nishimura. MT has a period of 219937 −1, and 

623-dimensional equidistribution property is assured. MT is also very fast: as fast or faster 

than ANSI C’s rand(). In addition, OMNeT++ allows to plug in own RNGs as well. 

In many simulations, only the steady state performance (i.e. the performance after the system 

has reached a stable state) is of interest. The initial part of the simulation is called the transient 

period. After the model has entered steady state, simulation must proceed until enough 

statistical data has been collected to compute results with the required accuracy. 

Detection of the end of the transient period and a certain result accuracy is supported by 

OMNeT++. The transient detection and result accuracy objects will do the specific algorithms 

on the data fed into the result object and tell if the transient period is over or the result 

accuracy has been reached. The transient detection algorithm uses a sliding window approach 

with two windows, and checks the difference of the averages of the two windows to see if the 

transient period is over. The accuracy detection algorithm divides the standard deviation by 

the square of the number of samples and checks if this is within the accuracy range specified 

by the user.  

Comparison with other simulators 

Available Models Non-commercial simulation tools cannot compete with some commercial 

ones (especially OPNET) which have a large selection of ready-made protocol models. 

OMNeT++ is no exception, it clearly lacks models, also compared with non-commercial tools 

such as Ns-2 (but it has to be considered that OMNeT++ is a rather new tool, it was originally 

released in 1999). On the other hand OMNeT++ provides a larger variety of models (that 

allows the user to simulate more than just communication networks) as compared to NS, 

which mainly provides TCP/IP centred models. 
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The modularity of OMNeT++ is a plus. For example NS-2 tends to be monolithic: to add new 

models to it, one needs to download the full source and modify it a bit, copy files to specific 

locations, add constants in other files etc. 

Performance is a particularly interesting issue with OMNeT++ since the GUI 

debugging/tracing support involves some extra overhead in the simulation library. Simulating 

large networks (e.g. MQTT networks with hundreds of clients) results in unacceptable 

performance. But this is also a big problem with other popular simulators such as NS-2. 

 
Figure 25 OMNeT++ screenshot 

JSimpleModule 

In order to permit OMNeT++ to interface with Java classes, (because, as already said, it was 

used a Java library of classes for implementing reinforcement learning) it was used a module 

for communication between Java and OMNeT++ (this module is obviously written in C++ 

Language). This module is referred to as JSimpleModule. 

JSimpleModule is an extension that makes it possible to write OMNeT++ simple modules in 

Java. Java and C++-based simple modules can be freely mixed in simulations. Integration is 

not seamless though, there are limitations as to what OMNeT++ features are available, as well 

special coding rules to obey in the Java code. 

Operation is based on the JSimpleModule class. This is an ordinary C++ simple module, 

which receives the name of a Java class in a module parameter. During initialization, it loads 

the Java Virtual Machine (if not already loaded), instantiates the given Java class, then simply 
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delegates initialize(), handleMessage() and finish() calls to it. The Java class should be a sub-

class of org.omnetpp.simkernel.JSimpleModule, which provides the usual methods: send(), 

scheduleAt(), cancelEvent(), etc. Messages are instances of org.omnetpp.simkernel.cMessage, 

and the org.omnetpp.simkerne package contains Java versions of most simulation kernel 

classes. The org.omnetpp.simkernel.* Java classes are just JNI-based wrappers around the 

corresponding C++ classes: every Java object holds a pointer to a corresponding C++ object, 

and delegates all method calls to it. This has a few consequences about the programming 

model. The wrapper classes have been generated using SWIG [34]. 
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Chapter 7. Results 

7.1. Introduction 

This chapter describes simulation scenarios and illustrates how RL is applied in a real 

situation, showing system’s behavior during simulation runs. These results are obtained using 

simulator tool open source OMNeT++, described in the previous chapter. To valuate 

performance of the proposed Reinforcement Learning Connection Admission Control 

solutions, these were tested in different scenarios, with advanced multimedia services and 

various traffic intensity. Results are presented in the following order: 

• Comparison between first RL approach (taking care only of bandwidth limit control) 

and peak based algorithm; 

• Comparison between first RL approach (taking care of bandwidth limit and blocking 

probability control) and peak based algorithm; 

• Comparison between first RL approach (taking care of bandwidth limit and blocking 

and drop probability control) and peak based algorithm; 

• Comparison between second RL approach and peak based algorithm; 

• Comparison between two RL approaches. 
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7.2. Comparison between first RL approach (with 

bandwidth limit control) and peak based algorithm 

7.2.1. Introduction 

To simplify simulation process it has been developed an appropriate package able to load 

scenario parameters (number of classes in the system and their statistical traffic information) 

and Reinforcement Learning Controller configuration parameters (like α, γ, ε, etc...). 

In particular a GUI (Graphical User Interface) was created in order to ease to run and define 

simulations. When GUI is started, a new window (see Figure 27) is loaded. This window is 

formed of: 

• A ListBox where there are all simulations (old and new) are listed: clicking on a 

simulation its parameters are loaded (Figure 28). Simulation information are stored on 

(and loaded from) a XML file (an example is depicted in Figure 26): to parse XML 

file, it is used the open source library “jdom4'“. In the first TabPanel, namely “Tree”, 

contents of file are shown, so it is possible to change on-the-fly simulation parameters, 

without having to manually edit XML file or to modifying the code. 

• In the second TabPanel “Output”' (Figure 29) OMNeT++ simulator output is shown, 

comprehending simulation time and log or warning messages. 

• In the third TabPanel (Figure 30), user can run a sequence of simulation (batch-

simulation), also tuning some parameters; this is very useful to analyze performance 

of different scenarios. 

• In the last TabPanel (Figure 31) it is possible to configure some useful parameters for 

OMNeT++ simulator management, such as running speed, to activate log of 
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simulation, decide whether to use OMNeT’s GUI interface or CmdEnv environment 

(the alternative without any GUI) and auto-loading of agents’ state. 

 

Figure 26 XML scenario example 

This approach was followed in order to totally hidden all business logic. 

<?xml version="1.0" encoding="iso-8859-1"?> 
<scenario> 
  <num_CoS>3</num_CoS> 
  <capacità>2500</capacità> 
  <controllore> 
    <alpha>0.5</alpha> 
    <alphaDecay>0.999</alphaDecay> 
    <gamma>0.1</gamma> 
    <epsilon>0.0</epsilon> 
    <epsilonDecay>0.998</epsilonDecay> 
    <Qlambda>0.5</Qlambda> 
    <cost>0.38</cost> 
    <dropActive>false</dropActive> 
    <FB> 
      <limit>false</limit> 
      <window>6000000</window> 
      <alpha>1</alpha> 
    </FB> 
  </controllore> 
  <classi> 
    <classe id="CoS_1"> 
      <banda>50</banda> 
      <lambda>0.099</lambda> 
      <MHT>120</MHT> 
      <reward>1</reward> 
      <sogliaPB>0.1</sogliaPB> 
      <sogliaPD>0.002</sogliaPD> 
    </classe> 
    <classe id="CoS_2"> 
      <banda>80</banda> 
      <lambda>0.089</lambda> 
      <MHT>100</MHT> 
      <reward>5</reward> 
      <sogliaPB>0.05</sogliaPB> 
      <sogliaPD>0.001</sogliaPD> 
    </classe> 
    <classe id="CoS_3"> 
      <banda>110</banda> 
      <lambda>0.04</lambda> 
      <MHT>200</MHT> 
      <reward>7</reward> 
      <sogliaPB>0.15</sogliaPB> 
      <sogliaPD>0.01</sogliaPD> 
    </classe> 
  </classi> 
</scenario>  
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Figure 27 Graphical User Interface 

 
Figure 28 Simulation parameters 
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Figure 29 OMNeT++ simulator output 

 
Figure 30 Batch simulation 
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Figure 31 Management page for OMNeT++ simulator 

As stated before, OMNeT++ provides an intuitive graphical environmental simulator (called 

GNED); it contains a textual representation of the model topology and a graphical interface 

(Tkenv) for running simulations which allows to see and edit the modules of the model. 

In Figure 31Errore. L'origine riferimento non è stata trovata., selecting the field 

“Simulatore Grafico” it is possible to visualize GNED as depicted in Figure 32 and Figure 33. 
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Figure 32 GNED window 

 

 
Figure 33 Tkenv window 



 

 100

7.2.2. Scenario: VOIP, video call and FTP data services 

The adopted scenario consists of a link, supporting three different classes, selected to 

characterize three typical services that can be found in a real network having limited 

resources: 

• VOIP (CoS1) 

• Video Call (CoS2) 

• FTP-Data (CoS3) 

Statistics on the traffic of class k generated by the users are usually given in terms of BHCA 

(Busy Hour Call Attempts), equals to the mean number of call attempts done by each user 

during the network traffic busiest hour, and MHT (Mean Holding Time), which is the average 

duration in minutes of a call. Arrival and termination rates (expressed in [min-1]) are then 

easily computed as follows: 

( )
60

1

k
k k

k
k

BHCA
u t

MHT

λ

µ

 =

 =


 (28) 

where ( )ku t  is the number of users of class k present in the cell at time t. Moreover each class 

occupies a certain fraction of the available bandwidth, depending on the kind of service it 

belongs to (in terms of Bit Rate). Another parameter that has to be considered in the 

simulation scenario is the total available capacity of link, which represents the resource to be 

shared among the traffic classes’ requirements, choosing the best policy. In the first 

simulation, it is assumed that the bandwidth capacity C = 2,5Mbit/s. 

As initial state of link is chosen a state characterized by the absence of any active connection: 

[ ]0 0 0 0s =  where each number in the vector 0s represent the number of ongoing calls for 
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each classes; in other words a generic state [ ]1 2 3s n n n=

 

has n1 active connections of class 

1, n2 active connections of class 2, and n3 active connections of class 3. 

Q(λ) parameters 

It is useful to remember that as behavior policy the epsilon greedy one is used (greedy action 

selection with probability 1 – ε and random action selection with probability ε). The chosen 

value for epsilon is equal to 0.5 as starting point, and then it decreases rapidly, so that agent(s) 

can explore all possible actions early, and then , while learned, in order to better evaluate final 

performance of RL algorithm, the final value is set to ε = 0.1 The Q-table is initialized with 

zero values. The step-size α is not constant, but it decays following a geometrical law. Its 

starting value is α=0.5. The discount factor is fixed to γ=0.1. 

Medium, Medium-High and High Load 

In order to evaluate algorithm’s results, three different traffic condition have been considered: 

medium load, medium-high load and high load. 

 

CoS BitRate 

[Kbit/s] 

λ [� !] MHT[s] reward 

[€/s] 

 

1 50 0,096 120 1  

2 80 0,087 100 5  

3 110 0,042 200 7  

Table 8 Traffic parameters of medium load scenario 

 
 

CoS BitRate 

[Kbit/s] 

λ [� !] MHT[s] reward 

[€/s] 

 

1 50 0,69 120 1  

2 80 0,46 100 5  

3 110 0,11 200 7  

Table 9 Traffic parameters of medium-high load scenario 
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CoS BitRate 

[Kbit/s] 

λ [� !] MHT[s] reward 

[€/s] 

 

1 50 1,23 120 1  

2 80 1,09 100 5  

3 110 0,61 200 7  

Table 10 Traffic parameters of high load scenario 

In the picture below, the two algorithms are compared: the total incoming obtained using the 

peak-based algorithm is set to 1, and, with respect to it, it is calculated the relative gain of the 

RL algorithm: 

 
Figure 34 Perceptual Gain in three different network loads. 1 referred to Medium Load, 2 referred to 

Medium-High Load and 3 referred to High Load 

Note that gains of peak-based algorithm are not always the same in all three conditions: the 

figure only remarks the relative convenience of using the RL algorithm instead of the peak-

based one. 

In the picture it is possible to see that, for medium load (as also for low load) the proposed 

algorithm has about the same behavior of the peak-based algorithm. For medium-high load 

the proposed algorithm’s incoming is about 2% higher with respect to peak-based one and, for 

high load, the proposed algorithm’s incoming is about 8% higher with respect to peak-based 

one. These results could be easily interpreted: for low and medium loads there is about no 

reason to leave space for calls of better classes of services: the best solution is to always 
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accept new calls; when the load is higher, this is no more true, so that RL performs better than 

peak-based algorithms. 

These results are obtained without take into account any control of the blocking or of the drop 

frequencies; so that in the next paragraphs these controls are introduced. 

7.3. Comparison between first RL approach (with 

bandwidth limit and blocking probability control) and 

peak based algorithm 

This paragraph depicts results of proposed RL approach while taking also into account 

blocking probability control, in particular in the medium-high load scenario; note that both the 

RL algorithm and the peak-based one guarantee the link does not arrive at the saturation. 

Figure 35 illustrates the blocking frequency trend of this scenario without introducing control 

of it. 

 
Figure 35 Blocking frequency in medium-high load scenario without control 
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This trend, i.e. blocking probabilities increasing indefinitely, is not acceptable in most of real 

cases; on the other side, it is not possible to block indefinitely the incoming connections in a 

network. Usually an upper limit to blocking probabilities is given; setting this limit to 5% for 

video-calls, to 10% for VOIP and to 15% for FTP-Data, the obtained trend is depicted in 

Figure 36. 

 
Figure 36 Blocking frequency in medium-high load scenario with limitation 

 
Figure 37 Gain in medium-high load scenario with limitation 
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In Errore. L'origine riferimento non è stata trovata.Figure 36 it is possible to see that the 

blocking frequencies are hold under thresholds. Because of introduction of these thresholds, 

the relative gain of RL on peak-based algorithms is decreased, but it is always present, and it 

is about 1%. 

In the high load scenario, where the network arrives to the saturation, the blocking frequency In the high load scenario, where the network arrives to the saturation, the blocking frequency 

can’t be hold under threshold indefinitely, unless we introduce the possibility to drop calls, as 

illustrated in the following paragraph. 

7.4. Comparison between first RL approach (with 

bandwidth limit and blocking and drop probability 

control) and peak based algorithm 

Setting lambdas as in the high traffic scenario, even introducing the possibility to drop 

ongoing calls, having the above mentioned bandwidth capacity, it is not possible to control 

blocking probabilities indefinitely. This is due to the fact one, in a real scenario, could not 

drop ongoing calls without any limit, but should guarantee to respect some higher boundaries: 

in other words, if the traffic is too high for the link capability, it is not possible to control 

blocking probabilities at all and also the introduction of the possibility to drop calls 

(considering a real case where it is not possible to drop calls without any limit) could be not a 

solution. So that a not extreme scenario was considered, having parameters as depicted in the 

table below (we will refer to it as semi-high load scenario): 

CoS BitRate 

[Kbit/s] 

λ [� !] MHT[s] reward 

[€/s] 

 

1 50 1,03 120 1  

2 80 0,89 100 5  

3 110 0,51 200 7  
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Table 11 Traffic parameters of semi-high load scenario 
In this scenario the considered thresholds for the dropping probability are 1% for VOIP, 2% 

for Video-Call, and 5% for FTP-Data: in the following picture trends of blocking probabilities 

are depicted, without (Figure 38) and with (Figure 39) possibility to drop calls: 

 
Figure 38 Blocking frequency in semi-high load scenario 

 
Figure 39 Blocking frequency in semi-high load scenario with drop 

Following picture indicates the comparison of RL gain with respect to peak-based one, using 

either blocking and dropping frequencies control. 
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Figure 40 Gain in semi-high load scenario with drop 

As it is possible to see, while, thanks to the introduction of dropping possibility one could 

expect RL to gain more than RL with respect to the previous scenario, the introduction of a 

limit on it act counter-productively, so that, at the end, in this case RL gain is about 1% higher 

than the one of peak-based, as in the previous scenarios. In any case this is a good result: the 

presented RL algorithm is able to guarantee QoS (in terms of bandwidth, blocking and drop 

probability control) while resulting in higher incomes than peak-based ones. 

The following picture indicates dropping probabilities in the above depicted scenario. Is it 

possible to note that all probabilities are below their threshold: 
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Figure 41 Dropping frequency in semi-load scenario 

A final test could be done: to introduce in the algorithm a penalty function. One could 

suppose that, when the peak-based or the RL algorithms doe not respect the imposed limits on 

the blocking or drop frequencies, the network operator has to pay a “penalty” (in term of 

money). Here the adopted approach is to suppose that, when it arrives a connection request of 

a certain class of service and for it is not possible to respect the limits on the blocking and/or 

drop frequencies, the network operator has to pay a “fee” equal to the value of the economic 

gain that the connection averagely gives him (price/sec * MHT). 

In the next figures the resulting values are depicted, either in medium-high load and semi-

high load scenarios. 

0 0.5 1 1.5 2 2.5

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

time (sec)

D
ro

pp
in

g 
F

re
qu

en
cy VOIP

VIDEO-CALL
FTP-DATA



 

 109

 

Figure 42Gain in medium-high load scenario with penalty 

 

Figure 43 Gain in medium-high load scenario with penalty and drop probability control 

In both scenarios the gain of RL is increased (with respect to previous cases): this is due to the 

fact that the peak-based algorithm accepts calls of the FTP-Data class of service, while RL 

algorithm rejects them, so that peak-based remains more often at saturation level, so that 

increasing the blocking and dropping probabilities over thresholds and so forcing the network 

operator to pay the penalties much more often than RL algorithm. 
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7.5. Comparison between second RL approach and peak 

based algorithm 

This paragraph introduces simulation results of the second RL approach, compared with the 

peak-based algorithm. For these simulations, the same tools and network topology have 

adopted of the ones described above, but with different parameters, as indicated in the 

following scenarios. 

7.5.1. Scenario 1 

CoS BitRate 

[Kbit/s] 

λ [� !] MHT[s] reward 

[€/s] 

 

1 50 0,099 120 1  

2 80 0,089 100 5  

3 110 0,04 200 7  

Table 12 Traffic parameters of medium load scenario 

This scenario is characterized by two classes of service that are similar in terms of arrival rate, 

but the second is more convenient of the first one, so, the agent, in order to have an income 

greater than the one guaranteed by peak-based algorithm, has to learn that, sometimes, it has 

to block calls belonging to CoS1, in order to have free bandwidth for the more convenient 

calls belonging to CoS2. The third CoS is the most convenient but its arrival rate is very small, 

so, the agent has to try to balance preserving free bandwidth for an arriving call belonging to 

this class of service (thus earning more than Peak-Based: in fact in most of cases peak-based 

will not have available bandwidth due to the fact that it has accepted all other calls of other 

CoS that were arriving with a higher frequency) and accepting calls of more frequent CoS. In 

order to analyze network operator’s revenue of these two strategies, two kinds of tests were 

performed. The first test was very detailed: it has involved 10 simulations (each having 5000 

calls), and, for every simulation, it has been compared CAC-RL’s revenue with Peak-Based 
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one (the comparison has been made between the same sequence of calls, obtained using the 

same seed). This kind of test demonstrated that, in every simulation, CAC-RL earned more 

than Peak-Based (a range of about 2000-100000 €). 

Results are depicted in the following picture: 

 
Figure 44 Simulation gains for medium load scenario 

Analyzing these results, several considerations can be made. First of all, it is clear that RL 

earns more than Peak-Based. Then, the fact that the gap between the two incomes is not 

always the same can be explained considering that the agent learns its best policy making, 

sometimes, a random exploration, so that there are times in which this randomness allows to 

obtain a very great income, other times instead, this income is smaller; obviously, at the end, 

RL income is anyhow higher then Peak-Based one, due to the fact the agent is able to 

favourite calls more convenient against those less convenient. 

Starting from these good results, the second analysis is a more general test, in order to 

understand what the mean behaviour of the two algorithms is. The second test has involved 30 

simulations (each of about 5000 calls), and the results of these simulations have been 

averaged and normalized with respect to Peak-Based revenue. The bar-chart demonstrates that 
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the proposed RL solution earns a more (about 1%) than the traditional Peak-Based, how it is 

visible in the following figure: 

 
Figure 45 Mean gain comparison in medium load scenario 

7.5.2. Scenario 2 

This second scenario is similar to the first one: they only change the values of the arrival 

rates, which are grater then the previous ones. In this way it is possible to test this second RL 

algorithm with a network with more traffic. Values for this scenario are illustrated in the 

following table: 

CoS BitRate 

[Kbit/s] 

λ [� !] MHT[s] reward 

[€/s] 

 

1 50 0,7 120 1  

2 80 0,4 100 5  

3 110 0,1 200 7  

Table 13 Traffic parameters of medium-high load scenario 

Also in this case, the first test has involved only 10 simulations, in which both the algorithm 

have been tested using, every time, the same sequence of arriving connections. Results are 

shown in the following figure. 
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Figure 46 Simulation gains for medium-high load scenario 

Subsequently the algorithm has tested in this same scenario, but considering others 30 

simulations. Results of these simulations have been averaged, normalized respect Peak-Based, 

and reported in the following picture: 

 
Figure 47 Mean gain comparison in medium-high load scenario 
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7.5.3. Scenario 3 

This third scenario has higher arrival rates than first two ones; scenario values and simulation 

results are depicted below: 

CoS BitRate 

[Kbit/s] 

λ [� !] MHT[s] reward 

[€/s] 

 

1 50 1,2 120 1  

2 80 1,0 100 5  

3 110 0,6 200 7  

Table 14 Traffic parameters of high load scenario 

Also in this case, the first test compared both strategies with 10 simulations: 

 
Figure 48 Simulation gains for high load scenario 
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Figure 49 Mean gain comparison in high load scenario 

7.5.4. Scenarios summary 

Collecting all these results in a bar-chart, is it clear that, in terms of network’s operator 

revenue, Reinforcement Learning strategy behaves exactly as Peak-Based when connection 

arrival rates are low and link is far from saturation condition; when arrival rates grow up, 

revenue of Reinforcement Learning is higher than Peak-Based due to the fact that RL strategy 

encourages those calls that are more profitable, when available bandwidth on the link starts to 

lack. 
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Figure 50 Gain summary 

Summarizing: 

• In the first scenario, both strategies have approximately the same network’s operator 

revenue (RL algorithm earns just 1% more than peak-based one). 

• In the second one, CAC-RL earns about 20% more than Peak-Based. 

• In the third case, CAC-RL earns about 30% more than Peak-Based. 

7.6. Comparison between two RL approaches 

In order to ease the process of comparison of the two RL approaches, the algorithms where 

tested on the same semi-high load scenario (which is the one where advantages of RL 

algorithms are more evident), as indicated in the following table: 

CoS BitRate 

[Kbit/s] 

λ [� !] MHT[s] reward 

[€/s] 

 

1 53 0,75 124 1  

2 87 0,43 97 5  

3 111 0,12 213 7  

Table 15 Traffic parameters of medium-high load scenario 
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500 simulation, using a list of 500 randomly generated different seeds, were ran, first using 

peak-based algorithm, then the first RL approach (without penalties and probabilities control) 

and, finally, the second RL one. Results were averaged and then normalized with respect to 

the peak-based income; the resulting bar chart is depicted below: 

 
Figure 51 Comparison of results of Peak-based and RL algorithms in three different bandwidth load 

scenarios 

As it is possible to see, results are aligned with those obtained with couple comparisons: the 

first RL approach earns about 2% and 8% respectively in medium and med-high load, while 

the second one about 20% and 30% respectively. While higher gains of RL approaches with 

respect to peak-based one are now clear, maybe it is not clear the different behavior of the two 

RL approaches. 

The behavior of the first approach, the one with sigmoids, is strictly connected to sigmoids 

and their parameters; in other words, such sigmoidal functions highly impact on RL learning 

rules. Opportunely tuning sigmoid and other parameters could result in higher incomes in 

some scenarios, but lower in others, so that, unless having a precise knowledge of the actual 

scenario where to use the first RL approach, it could happen it will not work at its best. The 
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second RL approach, instead, is much simpler, and is able to well adapt to all situations, just 

thanks to RL properties: so that this second RL approach is easier of the first one to be applied 

with good results. 
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Conclusions 

Aim of this PhD. thesis was to ideate and create new CAC algorithms, based on the 

Reinforcement Learning theory, able to guarantee network operators higher revenues with 

respect to currently adopted peak-based solutions, while guaranteeing a certain degree of 

Quality of Service, in order to improve users’ experience. 

After a documentation regarding existing CAC solutions, different control and optimization 

theories, existing simulation tools and APIs, I’ve decided to adopt a Reinforcement Learning 

approach to solve the CAC problem. This solution is due the fact RL seemed to be a really 

adaptive solution to CAC problem, especially in the scenario I’ve decided to consider, i.e. the 

assumption to not have any measurement system or knowledge about network topology. 

The tools adopted for simulation where OMNeT++, a free, open source, plug-in-based, 

network and traffic simulator, the Java language, for its portability, and the Piqle Java API to 

reproduce RL algorithms. 

The thesis work started with the study of a possible state representation for the CAC problem 

in RL algorithms, then with the individuation of an appropriate reward function able to 

guarantee RL agent to take right decisions at calls’ arrivals. Several different state 

representation and reward functions were considered, but, after some preliminary tests, two of 

them seemed to be more productive. 

The first solution mainly adopted the number of ongoing calls for each class of service as 

state representation and an opportune sigmoid function as reward function. The so represented 

state was opportune to depict current situation to the RL agent; the reward function, instead, 

was able to guarantee the “inversion” of decision from accept to reject new calls when 

reaching certain critic conditions. First of all the sigmoid function was created to guarantee 
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bandwidth limit respect, then, some additive contributions were introduced in order to 

guarantee either blocking probability and drop probability control. 

This first approach demonstrated to be effective: starting from medium-load scenarios, this 

RL approach earned always more than peak-based solution on the same scenarios and in 

mean; this was true also when introducing probabilities control, which had, as counter-part, a 

relative diminution of the total income. 

Secondly a different RL approach was investigated. A similar representation state was 

adopted, while, this time, using a much more simple reward function: to reward the agent with 

the mean reward of current calls of the incoming class of service in case of call acceptance, to 

penalize it of the same amount in case of rejection. This simple solution was tested on the 

same scenarios of the previous one, and has demonstrated to be much more effective than the 

first one. This was a little bit surprising, but a deeper analysis indicated that first RL approach 

is very sensible to sigmoid function parameters which, if not well tuned, could highly 

negatively impact RL incomes. 

Regarding future deployments of the proposed algorithms, future studies on both algorithms 

will be developed, in particular to reduce sensibility to parameters in the first one, in order to 

introduce block and drop probabilities control in the second. 

Regarding finally their possible usage, both algorithms are being proposed as solution to the 

CAC problem within the OMEGA FP7 project, to be integrated into OMEGA components 

requiring CAC functionalities. 
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Annex A. The WEIRD Project 

A.1. Introduction 

It is common knowledge that over the last decade there has been a major boost in 

communication networks. In fact, the development of high-performance backbone networks 

was immediately followed by the rapid dissemination of broadband wired access 

technologies, such as leased lines based on fibre-optic links, cable modems using coaxial 

systems, and digital subscriber line (xDSL) access networks. This gave users a whole new 

class of services that exploit the increasing number of available network resources. Many new 

services are based on multimedia applications, such as voice over IP (VoIP), video 

conferencing, video on demand (VoD), massive online gaming, and peer-to-peer. Unlike 

traditional TCP/IP services, multimedia applications usually require strict network guarantees 

such as reserved bandwidth or bounded delays. 

A.2. The general context 

The increasing of wireless Metropolitan Area Networks is due to the need to reach more and 

more user communities – in case isolated – by overcoming the cost barriers of wired 

technologies. This trend paved the way to the use of mainly proprietary solutions, some of 

them based on updated and empowered Wi-Fi systems, others focused on point-to-point 

wireless connections based on RF technologies. This sub-optimal progression stimulated the 

relevant standardization bodies to work for the introduction of new open standards, 

facilitating large scale economies and wide market acceptance: in this context the IEEE 

802.16 (also known as WirelessMAN) and the ETSI HiperMAN started to be defined and 
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Worldwide Interoperability for Microwave Access (WiMAX) consortium was established to 

support certifications of the IEEE 802.16-2004 standard.  

In the meanwhile, most of the worldwide research initiatives started to focus on IP network 

architectures able to decouple the Application and Control Planes from the underlying 

Transport Plane. The main objective of these studies and developments is the seamless end-

to-end integration of the various network technologies, and this is commonly achieved 

through special “convergence layers” in the most advanced network architectures. With 

respect to the Transport Plane, these convergence layers are able to cope with the different 

underlying technologies by means of special technology-dependent drivers; towards the 

Control Plane, they provide special functionalities for QoS/resource management, access 

authentication, L3 and L2 mobility, security, etc. The control mechanisms enabled by the 

entities in the “convergence layers” proved to enhance the network performance, both in 

terms of resource utilization/consumption and of end users’ satisfaction, because they 

simplify the provisioning of the best network configuration for each incoming service request.  

The WEIRD project aims to exploit and enhance the WiMAX technology in a convergence 

layer heterogeneous network architecture, in order to cope with future needs of research user 

communities and to build a test-beds allowing European research network GÈANT, GÈANT2 

and relevant National Research Networks, to be reachable from isolated or remote areas. 

A.3. Objectives 

The WEIRD project primarily addresses the objective IST-5-2.5.6 Research networking 

Testbeds: it aims at validating actual wireless state-of-the-art technology, but also at 

upgrading and integrating it in order to prepare for the deployment of next generation 

Information and Communications networks across Europe. 



 

 128

Basically, the WEIRD project proposes broadband connectivity based on a wireless 

technology providing a flexible, cost-effective, standards-based means of filling existing gaps 

in broadband services not envisioned in a “wired” world. The project is in support of the 

activities carried out in the area of Research Infrastructures on high-capacity and high-speed 

communication networks for all researchers in Europe (GÉANT), offering a proper 

connection technology in charge of adding new NRNs to GÉANT. For instance, a wireless 

backhaul is definitely the best solution, in terms of costs and required deployment time, in the 

presence of physical obstacles, compared to the wired one. With the proposed wireless 

technology, a NRN that is actually isolated from a “wire” point of view, or that belongs to a 

developing country, can easily be integrated in the GÉANT research network. This provides 

open test infrastructures to third party researchers and includes demonstrator environments, 

resulting in research synergies and also by facilitating their exploitation. 

Research networks community is not the only subject that the WEIRD project addresses. 

There are several different real-world scenarios and production activities that can take 

advantage from the proposed technology. First of all residential broadband customers and 

underserved areas: practical limitations prevent cable and DSL technology from reaching 

many potential broadband customers, so that many urban and suburban locations may not be 

properly served. Deploying a wire has a significant cost that is not successively covered if the 

broadband service is offered in an area with a low subscriber density. A wireless solution 

would seem best suited, but unfortunately, the current generation of wireless systems is 

relatively expensive for mass deployments because, without a standard, it’s difficult to 

achieve economy of scale. This cost inefficiency will be changed by the promotion of 

standard-based systems, as supported within the WEIRD project. Standards are important for 
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the wireless industry because they enable economies of scale that can bring down the cost of 

equipment, ensure interoperability and reduce investments risks for operators. 

Furthermore, the WEIRD project aims at integrating, testing, validating and demonstrating the 

WiMAX wireless access technology in charge of solving the difficulties in last-mile 

implementations. WISPs (Wireless Internet Service Providers) have been asking for wireless 

technologies that make metropolitan area access possible. The three key deployment types 

that make up metropolitan area access are backhaul, last-mile and large area coverage 

(referred to as hot zones). Wireless last-mile and large-area coverage typically uses a properly 

modified standard (IEEE 802.11), but the need for a specific standard is evident and the 

WEIRD project contributes for its provision: open standard radio technologies offer 

advantages to WISPs and users; industry-wide support and innovation are driving broadband 

wireless networking technologies. The aim of WEIRD is to integrate WiMAX in a 

heterogeneous networking environment, by defining the interfaces with the convergence 

layers. Authentication, Authorization, Accounting, roaming, security, QoS and resource 

management entities will be the main blocks where the WEIRD project will focus on, and the 

approach that will be followed to implement new algorithms will be based on advanced 

mathematical and control theories, setting the grounds for the achievement of a high degree of 

network autonomy. 

Finally considering scientific environments, the WEIRD project supports a technology that 

will be extremely useful in all those scenarios where human presence cannot be continuously 

granted or moving is not easy. These scenarios include all the monitoring activities in remote 

or dangerous areas, such as a volcanic sites monitoring, fire prevention and monitoring 

systems, or simply the communication between isolated areas, such as sea platforms. Thus the 

WEIRD project promotes interoperability of solutions across different scientific and industrial 
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disciplines and this also means the possibility of large scale experimentation in real settings to 

promote interoperability across heterogeneous technology domains, with particular attention 

to the wireless technologies belonging to the state-of-the-art. 

A.4. Main innovations 

The foreseen deployment of WiMAX technology in a heterogeneous network powered with 

the tools and mechanisms of a convergence layer will constitute the main field of innovation 

of the WEIRD project.  

The project will try to impact as little as possible each mature architectural module, by 

focusing in these cases on the interworking aspects needed to build a coherent modular 

system. Consequently, deep interlacing and dependencies will be highlighted among the 

different procedures: QoS at layer 2 and layer 3, security with authentication and 

authorization, accounting with continuous network measurements, integration and coexistence 

of different hierarchical virtual private networking services (e.g. VLAN, VPN, etc.).  

The design and development of this interfacing, as well as of the convergence layer drivers, 

are expected to bring significant improvements and openness, still within the range of 

standard specifications. The demonstration in a distributed and enriching test-bed of the 

designed and implemented functionalities spanning the overall project life-time will provide a 

powerful and gradual validation of the WEIRD solutions. Moreover, the planned 

demonstrations will contribute to spread the culture and application of easily managed and 

self-controlled networks with evident impact on a range of possible stakeholders that will 

benefit of the WEIRD “proof-of-concept”.  
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WEIRD project is expecting to impact and improve the quality of the technology and boost 

the market consensus of WiMAX technology. The main innovation activities that will be part 

of WEIRD project and that will have a potential impact in this way encompass: 

• Definition of generalized Network Interface semantics and mechanisms (i.e. for the 

interactions between the Control Plane layer and the convergence layer), which 

enables the automatic SLAs negotiation and service invocation at the different 

network boundaries, based on the interoperation of existing signalling mechanisms. 

• Define an integration framework for seamless end-to-end security and AAA 

procedures, at the Control and Management Plane, in the considered network sections. 

• Simulation studies on the possible enhancements to the standardized WiMAX 

technology for the selected deployment scenarios. These simulations will be aimed to 

evaluate performance not only in terms of throughput (as often present in the state of 

the art), but also in terms of fulfilment of the service requirements claimed by the 

applications (e.g. VoIP, videoconference and video streaming, telemedicine, e-

learning, distributed classrooms and tele-engineering). 

• Integration between fixed and mobile environments will be improved by the WEIRD 

project. This will be achieved by the integration of extended signalling functions in the 

control plane and by cross-layer optimizations. 

• Application adaptation in the WEIRD project will improve application awareness. 

This will be achieved by the integration of location management and environment 

awareness mechanisms in the applications to be used in the project testes and trials. 

• WEIRD will implement a test-bed which will demonstrate full functionalities for 

WiMAX, interacting with higher layers. 
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• WEIRD includes emblematic user communities that will drive system requirements 

obtaining a WiMAX solution able to extend GEANT to solve their problem. 

• Conception, design and validation of RoF photonic subsystems for massive 

deployment of WiMAX networks at low cost. Possibility to extend coverage of 

WiMAX networks to difficult propagation environments, such as the underground. 

• WEIRD will improve the technological offer to support emergency applications and 

remote area coverage. The project will provide broadband connection and mobility to 

experimenting the fire prevention and volcano monitoring enabling the use of these 

applications in emergency scenarios. 

A.5. Role of University of Rome 

The University of Rome through the "Dipartimento di Informatica e Sistemistica (DIS)" 

(Department of Computer and System Sciences) of the Faculty of Engineering is involved in 

the tasks related to the Quality of Service in WEIRD Project.  

This project will give opportunity to the University of Rome to reinforce the already existing 

co-operations and to create new links between the University of Rome and the manufactures 

and operators both in the surrounding area and in remote areas with the goals, on one hand, to 

stimulate these companies towards advanced research topics and, on the other hand, to create 

new employment opportunities especially for the young people.  

In particular University of Rome expects to collaborate with Datamat to create a common 

research laboratory for control and management of WiMAX technology. University of Rome 

plans to validate the research that will be made in the area of QoS and resource management 

for WiMAX in a real test-bed at Wind premises 
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In addition, the University of Rome intends to exploit the results of this project for didactic 

and teaching purposes. In particular, many master degree theses are expected to profit from 

the documentation and the background coming from the project in question. Moreover, 

project results will be exploited to upgrade and update the programs of several courses and to 

hold thematic seminars on these matters, the courses of the telecommunication graduate and 

postgraduate program will be improved with courses in management and control of WiMAX. 

In particular, participation to this project will allow new generation engineers to acquire 

know-how on telecommunications and informatics and more specifically on WiMAX, on 

Next Generation Networks and on QoS management. 

Finally, dissemination will be also assured by extensive publications especially on the major 

international reviews and conferences and by the participation to the main events organized 

by the European Union as well as by other institutions. 
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