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Introduction

The aim of this dissertation is the study of efficient algorithms based on lattice procedures
for dealing with two relevant issues arising in the recent literature on option pricing: the
pricing of complex barrier-type options and the pricing of options when the equity model
takes into account a stochastic interest rate. This research is developed with a twofold
perspective: first, we propose a good solution from a numerical point of view through the
introduction of efficient lattice procedures and secondly, we study the theoretical aspects
related to the tackled problems. Tree-based algorithms for option pricing are studied since
the seminal work of Cox, Ross and Rubinstein ([28], 1979) and turn out to be very simple
and fast to be implemented by a backward induction. An important characteristic which
makes these procedures very appealing is that they easily include American-style features
once the European case is treated and well set up. This makes lattice techniques widely
used in the practice because although many progresses have been done in the development
of exact formulas or other numerical procedures (Monte Carlo, finite differences, etc.) for
European option prices, the American counterparts, that involve a control problem, are not
so well-provided.
The mathematical background underlying the approximation of diffusion processes with tree
methods is briefly developed in Chapter 1. Roughly speaking, we can recall such methods
as follows. Let X denote a diffusion process, that is the solution to the following stochastic
differential equation (SDE):

dXt = b(Xt)dt+ σ(Xt)dBt, X0 = x0. (0.0.1)

For the sake of simplicity, we assume to be in the 1-dimensional case, so the drift coefficient
b and the diffusion coefficient σ denote suitable functions and B stands for a standard
Brownian motion in R. A tree-method consists in approximating the evolution of X over a
time interval [0, T ] by means of a suitable Markov chain: one fixes 0 = t0 < t1 < · · · < tn = T
with tk = kh = kT/n, k = 1, . . . , n, and construct a Markov chain (Xh

k )k=0,...,n such that,
as h → 0, for every k then Xh

k is “close to” Xtk . More precisely, by setting X̄h as the
continuous-time process given by the linear interpolation in time of the Markov chain Xh,
that is

X̄h
t =

(k + 1)h− t
h

Xh
k +

t− kh
h

Xh
(k+1)h, kh ≤ t < (k + 1)h, (0.0.2)

then the Markov chains Xh are set in order that (X̄h)h converges in law on the space of
the continuous paths over [0, T ] to the diffusion process X solution to (0.0.1). But what
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about the Markov chain? It is built possibly in a “simple way”, that is as a Markov process
(in discrete time and space) running on a computationally simple lattice. We deal here
with a binomial lattice: at each time-step k, the Markov process may do only two jumps,
an up-jump or a down-jump, and the jump-probabilities are set in order to achieve the
convergence, see Section 1.1.3. This means that the approximating process evolves on a very
simple structure, see Figure 1.

Figure 1: Binomial tree with 3 time steps.

We consider here the Black and Scholes model, which is either classical and still widely
used in finance. This means that the underlying asset price process (St)t∈[0,T ] evolves as the
diffusion process (0.0.1) in which b and σ are chosen linear and non-affine that is

dSt = rStdt+ σStdBt, S0 = s0 > 0, (0.0.3)

where r is the interest rate and σ is the volatility parameter. For more details one can refer
to Black and Scholes ([13], 1973) and Merton ([64], 1973). Notice that (0.0.3) says that we
are writing the dynamics under the risk-neutral measure. We recall that (0.0.3) means that
(St)t∈[0,T ] evolves as a geometric Brownian motion and, roughly speaking, in a small time
interval ∆t, the percentage variation ∆St

St
is approximately a Gaussian r.v. with mean r∆t

and variance σ2∆t.
Option prices with the underlying stock price process following the SDE (0.0.3) can be
computed by using the simple tree method due to Cox, Ross and Rubinstein ([28], 1979),
CRR in what follows. We briefly recall the procedure in [28]. We define h = T/n and then
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we build a binomial tree with n time-steps of length h. We label (0, 0) the starting node
that corresponds to the value S0 = s0. At time step ih, the discrete process may be located
at one of the nodes (i, j) corresponding to the values

Si,j = s0e
(2j−i)σ

√
h, i = 0, 1, ..., n, j = 0, 1, ..., i. (0.0.4)

Hence, starting from Si,j at time ih, the process may jump at time (i + 1)h to the value
Si+1,j+1 or to the value Si+1,j with probability p and 1− p respectively, where p is defined as

p =
erh − d
u− d

, (0.0.5)

where u = eσ
√
h = d−1. We remark again that the advantage of this procedure is that both

European and American prices can be easily calculated.
However financial derivatives have been becoming more and more sophisticated and this
means that the standard implementation of the CRR binomial tree brings to further errors
in the approximation of the Black and Scholes prices. This is the reason why it becomes
important to set up “efficient tree schemes”, that are tree methods which allow one to reduce
the approximation errors.
In what follows, we briefly present the innovative contribution given in this thesis with
respect to the existing literature on some complex option pricing topics, without leaving out
the reasons for which they are intensively used in practice. More precisely, we deal with the
following arguments:

1. double and multi-step double barrier options;

2. barrier options on discontinuous payoff functions.

Then, we build and study a more complex efficient tree for:

3. options in a model where the interest rate is no more constant and deterministic
and follows the Cox, Ingersoll and Ross process ([27], 1985), CIR hereafter.

We now describe in details the content of this dissertation by means of three paragraphs
that correspond to the three main chapters of this thesis.

1. Double and multi-step double barrier options

Barrier options are path-dependent options that become activated or nullified if the under-
lying asset price reaches certain levels. Double barrier options are characterized by two price
levels that are located above (higher barrier) and below (lower barrier) the initial stock price.
If we denote with f a generic payoff function, then the payoff of a double barrier knock-out
option with payoff f is given by:

f(ST )1Sinf>L,Ssup<H , Sinf = inf
t∈[0,T ]

St and Ssup = sup
t∈[0,T ]

St, (0.0.6)
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where L and H denote the lower barrier and the higher barrier respectively. In particular
we consider call and put options, i.e. f(x) = max(θ(x −K), 0) with θ = 1 for call options
and θ = −1 for put options, K standing for the strike price.
Nowadays barrier options are frequently traded because they have some features that make
them more attractive than standard or vanilla options. In fact they are less expensive than
vanilla contracts because they can be knocked-out or knocked-in. Moreover, they are much
more flexible than standard contracts because they allow to set knock-out or knock-in levels
depending on the expectations and the needs of the customers. For example they are widely
used in the foreign exchange markets. In fact barrier options are embedded in financial
products used to allow for hedging strategies in order to protect the holder from a potential
appreciation and/or depreciation of the foreign currency with respect to the domestic one.
They are also standard ingredients of a variety of structured products of range-type and it
is also possible to find a barrier-type structure for example in loans and forward contracts
(for details see Wystup ([86], 2006)).
A closed-form formula for pricing European double barrier call and put options when the
underlying process follows the SDE (0.0.3) exists when the two barriers are exponential
functions of the time (see Kunitomo and Ikeda ([56], 1992)). In the special case in which
the barriers are constant, the price can be derived by using techniques involving the Laplace
transform of the option price (see Geman and Yor ([40], 1996)). This issue has also been
approached by authors such as Kolkiewicz ([55], 1997), Sidenius ([73], 1998) and Pelsser
([67], 2000). Quasi-analytical expressions for American options are presented in Gao and
Subrahmanyam ([36], 2000), but we remark that here just a single barrier is considered.
Since in all the previous cases it is not possible to price American-style double barrier call
and put options, numerical methods have been examined in the literature. It is known that
a naive application of the standard CRR binomial tree may lead to a very slow convergence
if the barrier is not chosen at a sufficiently small distance with respect to a layer of nodes of
the tree (see Boyle and Lau ([16], 1994)). Then a possible solution is to set the algorithm
such that the barrier lies exactly on the lattice, as in Ritchken ([72], 1995), Cheuk and
Vorst ([22], 1996), Figlewski and Gao ([34], 1999), Gaudenzi and Lepellere ([37], 2006) and
Gaudenzi and Zanette ([39], 2009). However, all the previous lattice methods are only able
to deal with a single barrier. The first attempt that considers the possibility of efficiently
pricing double barrier options with a tree method is due to Dai and Lyuu ([29], 2010). They
are able to construct a binomial mesh by choosing the time step such that both the lower
barrier and the upper barrier are exactly on two nodes of the tree at maturity (see Section
2.4 for details). However their method is not able to deal with the “near barrier problem”,
that consists in a failure of the computational procedure (unless one drastically increases
the number of time steps of the algorithm) when the initial asset price is close to one of the
barriers.
Then we introduce a new algorithm, called the Binomial Interpolated Lattice (BIL hereafter),
that is based on the Dai-Lyuu idea of defining the time step ∆t such that the barriers are
exactly matched at maturity T with two layer of nodes in the lattice. As explained in Section
2.5, the time step ∆t is obliged to take some specific values in order to match both the lower
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barrier L and the higher barrier H and this implies that T
∆t

/∈ N. In order to arrive close to
time 0, we add two further steps of length ∆t and so we get a fictitious time t0 < 0 and a
time t1 > 0, see Figure 2.

Figure 2: Binomial interpolated lattice mesh.

Since we do not know a priori if the initial price s0 is a point of the lattice (and in general it is
not), the approximating option price at (0, s0) is provided by suitable interpolations in time
and in space involving the prices which are computed by the standard backward induction
at times t0 and t2. We also notice that the prices at t0 < 0 have not a financial meaning,
but from the mathematical point of view we are supposing to extend by continuity the price
function for negative times and this allows us to set up the computational procedure.
The proposed algorithm turns out to be efficient: it gives accurate results for every value
of the initial asset price. In particular, numerical experiments show that it provides precise
double barrier option prices when compared to the Kunitomo and Ikeda closed-form formula
([56], 1992) and also to the finite difference method of Zvan, Forsyth and Vetzal ([87], 2000).
We also remark that the values of the delta, vega and gamma computed by using a finite
difference approximation on the prices given by the lattice turn out to be comparable with
the ones obtained with the finite differences approximation in [87].
Our method can also be applied to the case in which the interest rate and the volatility (this
is indeed the more interesting case) are piecewise constant functions of time.
From a theoretical point of view we provide the speed of convergence of the algorithm by
using PDE techniques as in Gobet ([42], 2001). For every n ∈ N, where n denotes the
number of time steps of the tree, we define the approximation error as follows:

ErrBIL(n) = priceBIL(n)− priceBS, (0.0.7)

where priceBIL(n) denotes the option price value computed by using our algorithm and
priceBS is the Black and Scholes formula that gives the continuous option price. Then we
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get that

ErrBIL(n) = o

(
1

nα

)
, ∀α ∈ (0, 1),

that essentially means that the algorithm is of order 1
n
.

Moreover our lattice procedure represents an efficient way to solve the “near barrier” problem
occurring in Dai-Lyuu ([29], 2010) and the algorithm is robust because it is not affected by
the choice of the input parameters as it follows from our numerical results (Section 2.8).
However, in their standard form, double barrier options are not so flexible because the
contractual barriers are assumed to be constant during all the option lifetime. For this
reason, 2-step and more generally multi-step double barrier options, i.e. options in which the
barriers evolve in time as piecewise constant functions, have been introduced (see Guillaume
([43], 2010)).
To be precise, a regular m-step double barrier option is an option in which the lifetime
[0, T ] is divided into m intervals [Ti, Ti+1], for i = 0, 1, ...,m− 1, and at each time interval a
constant lower barrier Li and a constant higher barrier Hi are contractually associated. For
example a regular m-step double knock-out option with payoff function f , has this payoff at
maturity provided that the underlying asset price stays in (Li, Hi) in every interval [Ti, Ti+1],
otherwise it expires worthless or provides a contractual rebate. We recall here that the rebate
is the amount paid to the holder if the option expires worthless.
These options turn out to be innovative products because they allow to adjust the barrier
levels according to the investor’s level of risk-aversion and so they combine together cost
saving and protection. For example, if it is known or expected at the contract inception
time that some events that can affect the risk of knocking-out will occur during the option
lifetime, then investors may want to widen the level barriers as a form of protection accepting
a moderate increase in the hedging cost. Instead, if the investors anticipate the volatility
of the underlying asset price to decrease during a certain period and then need for a lower
protection, they can decide to narrow the barriers in order to reduce the hedging costs.
Those possibilities are not allowed in the standard double barrier case. In fact, if one has
no choice and is constrained to hold a double barrier option with wide barriers, one may be
over-protected during some periods and the hedging costs might be relatively high to the
needs. Specularly, if one holds a double barrier option with too narrow barriers one might
be under-protected and the risk exposure will be too high. As remarked before, the levels
of the barriers are contractually specified and this could represent a limit of these products.
However, as far as we know, no one in the literature has ever treated the problem of pricing
options with random barriers and it is not an issue we consider in this thesis.
Multi-step double barrier options are also introduced in order to manage the danger of
“sudden death”, that happens when the option is knocked-out at the first passage time on a
knocked-out level. For a detailed discussion from a financial point of view and an analysis of
the advantages of multi-step double barrier options one can refer to Guillaume ([43], 2010).
The valuation of these contracts is thus an important and practical question. If in the
European case a closed-form formula for call and put options exists when the number of
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steps in which the option lifetime interval is divided is equal to two (i.e. for 2-step double
barrier options, see Guillaume ([43], 2010) for details), no analytical formulas exist in the
more general case (multi-step double barrier options). Moreover, we stress again that barrier
options typically include American features and there are no formulas in this case even for
2-step double barrier options.
We develop here an extension of the BIL lattice procedure to this more general case. In
Section 2.7 we see that it is easy to implement the procedure when the barriers evolve as a
piecewise constant function of time. In fact we just need to set the “right” binomial mesh
for the time intervals [Ti, Ti+1] by choosing for every i = 0, 1, ...,m the time step such that
the barriers Li and Hi match exactly two layer of nodes of the tree as for the simpler case of
two constant barrier levels. Then we need to connect the meshes built for the different time
intervals and this is done by using again suitable interpolations.
The procedure proposed can also be used to price contracts in which knock-out or knock-in
barrier provisions are removed in some time intervals. In particular we will consider early-
ending multi-step double knock-out call options, i.e. multi-step double knock-out call option
in which there is no “out” condition in the last time interval.
In Section 2.8 numerical results obtained with the BIL algorithm are given and compared
with the closed-form formulas provided in Guillaume ([43], 2010) in the case of 2-step double
knock-out put options. The American option prices calculated with our method have no
benchmark value for the comparison. We also propose two numerical experiments for pricing
16-step double knock out put options. In the European case we use as a benchmark value
the price given by the Monte Carlo method in Baldi, Caramellino and Iovino ([9], 1999) with
10 millions simulations and 1000 Euler time discretization steps. As for the 2-step case no
benchmark is available for the American case.

2. Barrier options on discontinuous payoff functions

The study of the rate of convergence for the BIL algorithm requires the knowledge of the
behavior of the classical CRR binomial approximation scheme for barrier-type options (see
Proposition 2.6.1). To be precise, if n ∈ N denotes the number of time steps of the tree, we
need to know the asymptotic expansion of the CRR binomial approximation error that is
defined as

ErrCRR(n) = priceCRR(n)− priceBS, (0.0.8)

where priceCRR(n) denotes the price calculated by using the CRR tree scheme.
For standard (i.e.without barriers) call options it is known that the main term in (0.0.8) is of
order 1

n
(see for example Diener and Diener ([31], 2004) and Chang and Palmer ([20], 2007)).

For standard digital options the expression in (0.0.8) has a contribution of order 1√
n

related

to the position of the discontinuity point of the payoff function (K for digital options) and
for this result one can refer to Walsh and Walsh ([82], 2004) and Chang and Palmer ([20],
2007).
But what about options with barriers? The first theoretical result is due to Gobet ([42], 2001)
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that gives an upper bound of the binomial approximation error (0.0.8) for a general class
of continuous payoff functions with double barriers by using PDE techniques, see Section
1.2.2. He finds that the quantity in (0.0.8) is the sum of two terms of order 1√

n
related to the

distance in the tree structure between the contractual barriers and the effective ones plus a
term Rn such that there exist a constant C > 0 s.t. |Rn| ≤ C logn

n
.

A very recent result for call options with a single barrier is the one given in Lin and Palmer
([62], 2013). Here the authors give an explicit asymptotic expansion of (0.0.8). They use
a different approach that consists in writing the CRR binomial price in terms of binomial
coefficients as in Reimer and Sandmann ([70], 1995) and then approximating it through the
normal distribution. In agreement with the upper bound given in Gobet ([42], 2001), they
find a contribution of order 1√

n
related to the position of the contractual barrier with respect

to the nodes of the tree.
The results known from the literature concerning the analysis of the quantity in (0.0.8) when
dealing with barrier options always require the continuity on the payoff function (Gobet ([42],
2001), Lin and Palmer ([62], 2013)). On the other hand when the payoff is assumed to be
discontinuous the analysis of the rate of convergence of the binomial algorithm is given only
for vanilla options (Walsh and Walsh ([82], 2002), Chang and Palmer ([20], 2007)). This
is the reason why we decided to give our contribution in order to study theoretically and
numerically barrier options on discontinuous payoff functions. In particular we deal with
the simplest case of digital call options (the case of digital put options being similar), that
can be used to generalize the treatment to the case of generic discontinuous payoff functions
with a finite number of discontinuity points.
A digital call option is an option where the payoff is equal to a fixed amount (in what follows
we suppose this amount is equal to 1) if the underlying asset at maturity is greater than a
predetermined level (the strike price K) or nothing otherwise. Practitioners that trade these
products essentially predict the direction of the market without concerning in the specific
the magnitude of the movements of the underlying asset price. One of the benefits with
respect to standard products is that the investment and the returns are fixed, so the risk
involved and the potential losses are known a priori.
Digital options can also include barrier levels. This more complex option can be used as a
financial tool embedded in sophisticated products, such as accrual range notes. These notes
are financial securities that are linked for example to a foreign exchange rate and then they
pay a fixed interest accrual if the exchange rate remains within a specified range and nothing
otherwise (see Wystup ([86], 2006) and also Hui ([48], 1996)).
We treat the option pricing problem related to these options by using lattice techniques. In
order to do this we first need to find an asymptotic expansion of the binomial approximation
error (0.0.8) and then we set up an algorithm such that it behaves “well”, in the sense that
the worst contribution in (0.0.8) (which is of order 1√

n
) is nullified. In particular we treat

the study of the error (0.0.8) in the following two cases: digital options with a single barrier
and digital options with double barriers. In the first case we get a complete theoretical
result that allow us to construct an efficient algorithm, in the second one we obtain a partial
theoretical result and we are able to make some numerical experiments on which we can
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make some conjectures. We now describe our contribution in more details.
First of all we find an explicit asymptotic expansion of the binomial approximation error for
digital call options with a single barrier, see Section 3.1. It turns out that the contribution
of order 1√

n
in (0.0.8) is due both to the position of the barrier and also to the position of

the strike price with respect to the nodes of the tree. For this theoretical result we follow the
techniques in Chang and Palmer ([20], 2007) and Lin and Palmer ([62], 2013). We stress here
that the objective in [20] and [62] is to speed up the convergence of the CRR algorithm by
explicitly calculating the terms of order 1√

n
and then subtracting them to (0.0.8) in order to

get an algorithm of order 1
n
. Instead, we want to set directly a numerical procedure such that

the contribution of order 1√
n

is nullified. This can be done by adjusting the BIL algorithm
to this specific case. In fact if the binomial mesh is constructed such that the lower barrier
lies exactly on a node of the tree at maturity and the strike is located halfway between two
nodes at maturity then, according to the theoretical result we obtained, we get an algorithm
of order 1

n
. This is enhanced with the numerical experiments in Section 3.3.1.

The treatment of double barrier digital options is not straightforward. In fact no manageable
binomial closed-form formulas exist in general for double barrier options and then we cannot
proceed as for the single barrier case. But by using a PDE approach as described in Gobet
([42], 2001) we are able to get an upper bound of the binomial approximation error for
double barrier options with a general discontinuous payoff function, but we stress here that
our contribution is still partial at the moment. In Section 3.3.2 of the numerical results we
propose some experiments on which we can formulate some conjectures.

3. Options on a model with CIR interest rate

In the last part of this thesis we study an efficient lattice method for option pricing when
the underlying price process takes into account a stochastic interest rate. So we consider a
generalization of the model (0.0.3): under the risk neutral probability measure, we assume
that the underlying asset price (S(t))t∈[0,T ] has the following dynamic:

dS(t) = r(t)S(t)dt+ σSS(t)dZS(t), S(0) = s0 > 0, (0.0.9)

where r is the short interest rate process, σS is the constant stock price volatility and ZS is
a standard Brownian motion. The risk-neutralized dynamic for the interest rate is described
by the CIR model, i.e.

dr(t) = κ(θ − r(t))dt+ σr
√
r(t)dZr(t), r(0) = r0 > 0, (0.0.10)

where κ is the constant reversion speed, θ is the long-term reversion target, σr is the constant
interest rate volatility and Zr is a standard Brownian motion. We suppose that the two
Brownian noises ZS and Zr are correlated.
Starting from 1990, the introduction in financial markets of long-term options whose time
to maturity is at least two years at the time of issue, such as LEAPS options (with LEAPS
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standing for “Long-term Equity Anticipation Security”), involves the necessity of considering
equity models with a stochastic interest rate, see for example Bakshi et al. ([7], 2000). We
also observe that taking into account for stochastic interest rates is crucial for the pricing
of forward starting options, i.e. options that start at a specified date in the future with an
expiration date set further in the future. In fact securities with forward starting features
often have long-dated maturities and are therefore much more interest rate sensitive, see
Haastricht and Pelsser ([44], 2009).
Moreover, we also notice that some insurance products such as equity-linked policies with
a minimum guaranteed need financial mathematics techniques in order to compute the fair
premiums. These policies are products in which part of the capital spent for purchasing
the policy is invested in a portfolio of equities whose performance influences the coverage
of the insured. In fact at every premium payment date, the insurer can decide to continue
the contract and then pay the premium again or surrender the contract and receive the
maximum between the value of the fund of equities or a minimum guaranteed. Then these
policies embed a Bermudan option, i.e. an option in which the buyer can exercise at a
discrete set of dates before maturity. Since they are necessarily long-term contracts, it turns
out to be convenient to describe the equity with a bivariate model in which the dynamic of
the interest rate is stochastic, see for example Costabile et al. ([25], 2009) and Martire ([63],
2012).
The issue of pricing options with stochastic interest rate is then needed to be solved. Merton
([64], 1973) provides a closed-form formula for European options with interest rate following
the Ornstein-Uhlenbeck process, but no expressions for the American counterpart are avail-
able. We also observe that a more suitable model that guarantees the positivity of interest
rates is given by the CIR process, then one should consider for the interest rate the dynamic
given in (0.0.10), and in this specific case no closed-form formulas are available both for the
European case and the American one.
Lattice models have been studied in the literature in order to deal with a 2-dimensional
diffusion process with correlated Brownian motions as in (0.0.9)-(0.0.10). Wei ([83], 1996)
and then Hilliard, Schwartz and Tucker ([46], 2004) provided a bivariate tree for dealing
with a stochastic interest rate. Actually, in Wei the dynamic for the short rate is given by
the Vasicek model and the extension of the Wei procedure to the CIR process is described
in Costabile et al. ([25], 2006). However we still call “Wei procedure” the natural extension
to the CIR process.
The idea in [83] and [46] is to extend to the 2-dimensional case a technique introduced by
Nelson and Ramaswamy ([65], 1990) that consists in approximating 1-dimensional diffusion
processes with computationally simple binomial processes. The original contribution of
Nelson and Ramaswamy is the description of an approximating binomial process for a general
class of diffusions such as (0.0.1), even if the coefficients present some singularities (as the
diffusion coefficient of the CIR process). They introduce the so-called “multiple jumps” that
allow the discrete process to have an up jump and a down jump but not necessarily on the
two adjacent nodes of the tree as for the standard CRR model, see Figure 3. These jumps
are specified such that some appropriate matching conditions on the local mean and the
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Figure 3: Standard jumps and multiple jumps.

local variance between the discrete and the continuous process are satisfied.
We now briefly describe the generalization of the Nelson and Ramaswamy technique as
proposed in Wei. The author suggests to construct a bivariate lattice by proceeding with
the following four steps:

• transform both S and r into unit variance processes called S̃ and R respectively;

• define a new process Y as a function of S̃ and R that is orthogonal to R;

• model R and Y as two independent binomial processes following Nelson and Ra-
maswamy and then merge the two structures into a 2-dimensional tree in which each
node branches into four via joint probabilities that are simply obtained by product of
the individual probabilities;

• at each node of the tree convert the variables R and Y back to r and S respectively
and then proceed backwardly to obtain the option prices.

The procedure in Hilliard, Schwartz and Tucker is very similar to the one in Wei: they con-
sider different transformations allowing one to deal with independent processes (see Section
4.3.2). So, what is important is the common idea to work with uncorrelated components that
allow one to define the transition probabilities of the bivariate tree by means of products.
Our algorithm (see Section 4.4) is structurally different from the previous ones in fact:

1. transformations similar to Wei and Hilliard, Scwhartz and Tucker are used but only
to set up the state-space of the discrete approximation of the pair (S, r);

2. the probabilistic structure for the discrete approximation of both S and r as individual
diffusions is defined directly on the original processes (using original drifts) and in this
we recover the “original” idea in Nelson and Ramaswamy;
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3. the transition probabilities of the bivariate lattice take in consideration the covariance
structure (instead, the Wei and Hilliard, Schwartz and Tucker methods are strongly
based on the use of a bivariate diffusion with components driven by uncorrelated
noises).

Numerical results show that our method is robust and moreover it is not dependent on
the choice of the input parameters, and this is a significant difference with respect to the
procedure provided in [83] and [46], see Section 4.6. In fact in order to obtain the convergence
in law of the tree built for the pair (S, r) we do not need to require the Feller condition,
2κθ ≥ σ2

r , or the so-called “convergence condition”, 4κθ ≥ σ2
r (see Remark 4.4.1), but we

only need to assume that κ > 0 and θ > 0, that turn out to be natural requirements in a
financial setting.
From a theoretical point of view we get two original results: the weak convergence of the
tree method and the convergence of the prices given from the algorithm to their continuous
counterparts.
Let us consider first the convergence of the scheme. Using standard techniques we prove in
Section 4.5 the convergence on the Skorokhod space D([0, T ];R2) of the càdlàg functions in
[0, T ] with values in R2 of the tree method to the pair (S, r) solution of the SDE (0.0.9)-
(0.0.10). It means that we set (Shi , r

h
i )i=0,...,n the Markov chain running on the bivariate

lattice and then we set (S
h

t , r
h
t )t∈[0,T ] as the continuous time process defined through the

piecewise constant and càdlàg interpolations in time of the chain, that is:

S
h

t = Shi and rht = rhi , ∀ t ∈ [ih, (i+ 1)h). (0.0.11)

We observe that we could also define (S
h

t , r
h
t )t∈[0,T ] as the continuous time process obtained

by linearly interpolating in time the discrete Markov chain as in (0.0.2), in fact the two
approaches are equivalent (see Theorem 1.1.4). But the choice of working in the space
D([0, T ];R2) turns out to be more convenient in the second theoretical result, i.e. the
convergence of the prices.

Then we get that the family of Markov processes (S
h
, rh)h converges in law on the space

D([0, T ];R2) to the diffusion process (S, r) solution of the SDE (0.0.9)-(0.0.10), see Theorem
4.5.8.
Secondly, in Section 4.5.2 we discuss the convergence of European and American option prices
computed with the lattice algorithm to their corresponding continuous values. The reasoning
is immediate for the European prices when the payoff function is continuous and bounded.
But an extension of a result proved in Amin and Khanna ([3], 1994) allows us to get the
convergence of the American prices (and then also of European prices) in a more general set
of conditions on the payoff function. In particular let f(t, x) : [0, T ] ×D([0, T ]) → [0,+∞)
denote a payoff function. Consider the following assumptions:

• (H1) f is a continuous function (in the product topology) and for every x, y ∈ D([0, T ])
such that xs = ys for each s ∈ [0, t] then f(t, x) = f(t, y);

• (H2) there exists δ > 1 and h∗ > 0 s.t. suph<h∗ E
(

supt≤T |e−
∫ t
0 r̄

h
s dsf(t, S̄h)|δ

)
<∞.
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Then under hypothesis (H1) and (H2) Amin and Khanna prove the convergence of the
American prices evaluated on the tree approximation to the ones in the continuous-time
model. But we can say more. In fact, suppose that f fulfills the following polynomial-
growth condition: there exists C > 0 and γ > 1 such that

sup
t∈T
|f(t, x)| ≤ C(1 + sup

t∈T
|xt|γ). (0.0.12)

Then hypothesis (H1) and (0.0.12) guarantee the convergence of the American prices com-
puted with our algorithm to the corresponding continuous-time values. In fact if (0.0.12)
is true, then hypothesis (H2) is verified because we prove that for every p > 1 there exists
h∗ < 1 such that

sup
h<h∗

E
(

sup
t≤T

e−p
∫ t
0 r̄

h
s ds(S̄ht )p

)
<∞. (0.0.13)

We remark that this is a non trivial extension of the results in Amin and Khanna ([3], 1994),
see Section 4.5.2.
A further study that we don’t treat in this thesis and that represents the objective of a future
research is the analysis of the rate of convergence of the bivariate algorithm. We stress that
in the literature results on this issue are available only for the CRR tree approximation also
when the payoff function is sophisticated (as for barrier options). This study is what we
actually do in Chapter 2 and Chapter 3 by using PDE techniques when the payoff function
is generic and by using the normal approximation of the sum of binomial coefficients in the
more specific case of call and put options. However, when the model is 2-dimensional, as
the one in (0.0.9)-(0.0.10), the treatment is not straightforward and is worth to be done.
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Chapter 1

Mathematical background

In this Chapter we present some theoretical results that we will use in the rest of the thesis.
In Section 1.1 we consider the problem of the convergence of Markov chains to diffusions and
we state a classical theorem that can be used for proving that the continuous time process
built from the Markov chain running on a lattice scheme weakly converges to a specific
diffusion process. We also introduce the Nelson and Ramaswamy technique ([65], 1990)
and a theorem due to Amin and Khanna ([3], 1994) on the convergence of the American
option prices computed on a discretization scheme to their continuous-time values. This
part will help us to prove the convergence results on the new bivariate scheme proposed in
Chapter 4. In Section 1.2 we recall some known results on the rate of convergence of binomial
tree schemes for standard options and for barrier-type options. In particular we present a
theorem due to Gobet ([42], 2001) that we will apply in Chapter 2 for obtaining the rate of
convergence of the new binomial scheme proposed. We also state the explicit binomial error
formulas due to Chang and Palmer ([20], 2007) and Lin and Palmer ([62], 2013) that will
help us in the development of the contribution we give on barrier options with discontinuous
payoff functions in Chapter 3.

1.1 Convergence of Markov chains to diffusions

In this Section we briefly describe the results about the weak convergence of Markov chains
to diffusions, as described in the books of Stroock and Varadhan ([74],1979), Kushner
([57],1977), Kushner and Dupuis ([58],1992), Ethier and Kurtz ([32],1986), Billingsley ([12],
1968) and also in the notes of Pagès ([66],2001). We stress that here we use the notations
adopted in Stroock and Varadhan ([74], 1979).
The basic idea is the following. Since we are concerned with computational techniques, the
idea is to approximate the original stochastic process with a simpler approximating process
that is a Markov chain on a finite state space. We remark that the finiteness of the approx-
imating chain simplify the discussion in the theoretical results and it is indeed the case we
are concerned with in the following chapters, but most of the theoretical results hold the
same also if we remove this requirement. The approximating chain is parametrized by a
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parameter h > 0, such that as the parameter goes to zero certain “local properties” of the
approximating chain are consistent to the ones of the limit process. Under a set of broad
conditions one can prove that the sequence of approximating chains converges in law to the
continuous process as the approximation parameter goes to zero.
First we will present some technical results that allow us to prove the main theorem con-
cerning the weak convergence of Markov chains to diffusions. We also briefly prove the
well-known weak convergence of the CRR binomial scheme. Secondly, we will show the
discrete approximation procedure due to Nelson and Ramaswamy ([65], 1990) and we will
show that the sequence of Markov chains built from the discrete scheme they propose weakly
converges to the original diffusion. Finally, we make some remarks on the convergence of
European and American option prices by using a result due to Amin and Khanna ([3], 1994).

1.1.1 Weak convergence result

Let us start with a brief overview of the notion of weak convergence as presented in Billingsley
([12], 1968), that we will directly express in terms of our specific case of interest.
Let us suppose that (S,S) is a complete and separable metric space equipped with the Borel
σ-algebra. We give the following definition:

Definition 1.1.1. Let us suppose that {Ph}h is a family of probability measures on (S,S).
The family {Ph}h is said to converge weakly to a probability measure P if∫

f(x)Ph(dx)→
∫
f(x)P(dx) (1.1.1)

for all f(·) ∈ Cb(S), where Cb(S) denotes the class of all the bounded and continuous real-
valued functions on S. Then, if Xh and X are random variables and Ph and P are the
measures on (S,S) induced by Xh and X respectively, then the weak convergence of {Ph}h
to P is equivalent to the convergence of {Xh}h to X in distribution (denoted by Xh ⇒ X).

There are a number of ways one can formulate the notion of weak convergence of probability
measures, for more details see the Portmanteau Theorem 2.1 in [12].

Remark 1.1.2. The random variables Xh can be even defined on different probability spaces.
However, one can choose a common probability space for the random variables and define
a sequence {Y h}h with Y h having the same law of Xh for every h, in such a way that
the convergence occurs almost surely. This is the content of the Skorokhod representation
theorem (for details see for example Theorem 2.2.2 in Kushner ([57], 1937)).

Since it is not practical to prove the weak convergence of probability measures by directly
using Definition 1.1.1, the idea is to show that the two following conditions are verified:

• the relative compactness of the family {Ph}h, i.e. {Ph}h admits subsequential weak
limits in the space of probability measures on (S,S);
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• the uniqueness of the subsequential weak limit, i.e. if two different subsequences of
{Ph}h converge toward a weak limit, then the limits must be the same.

In fact, if the family {Ph}h is relatively compact and there exists one subsequential weak
limit P, then {Ph}h weakly converges to P.
We remark that in complete and separable metric spaces the notion of relative compactness
of measures reduces to its tightness (Prohorov’s Theorem 6.1 and 6.2 in [12]), that consists,
roughly speaking, in the fact that the sequence of processes {Xh}h (that induce on (S,S)
the family of probability measures {Ph}h) does not oscillate too widely.
In the sequel we will specify our discussion to the case in which the complete and separable
metric space is C([0, 1];Rd) of the Rd-valued continuous functions on the finite interval [0, 1]
equipped with the metric of the sup-norm ρ that is defined as

ρ(x, y) = sup
t∈[0,1]

‖ x(t)− y(t) ‖, ∀x, y ∈ C([0, 1];Rd).

Remark 1.1.3. Without lack of generality we work in the time interval [0, 1], the case of a
generic interval [a, b] with −∞ ≤ a < b ≤ +∞ being similar. In particular, in Chapter 4 we
will use the results presented in this Section when the time interval is [0, T ], where T is the
maturity date of the option.

Then we consider the problem of proving the weak convergence of a sequence of processes
with trajectories in C([0, 1];Rd) that we define in what follows to a given diffusion process
X. Let us describe the setup we will be working with (see Stroock and Varadhan ([74],
1979)).
Given x0 ∈ Rd, let Πh(x, ·) be a transition function on Rd. We assume that for every h > 0
a discrete (in time and space) Markov chain (Xh

ih)i with associated transition probability Πh

and deterministic starting point x0 ∈ Rd is given. It means that for each h > 0 we have:

• Ph(Xh
0 = x0) = 1;

• Ph
(
Xh

(i+1)h ∈ Γ|Mih

)
= Πh(X

h
ih,Γ), (P− a.s.)∀ i ≥ 0, ∀Γ ∈ BRd ,

where Mih = σ{Xh
kh : 0 ≤ k ≤ i} and BRd is the Borel σ-field of subsets of Rd. So, the

previous two conditions mean that for every h > 0 the process (Xh
ih)i is a time-homogeneous

Markov chain starting from x0 with transition probability Πh(x, ·). We also observe that
homogeneity is not really a necessary hypothesis but in practice we will be concerned with
this specific case. Moreover, from the martingale formulation for discrete time processes (see
[74] pages 165-166), the second condition is equivalent to say that(

f(Xh
ih)−

i−1∑
j=0

Lh(f(Xh
jh)),Mih,Ph

)
is a discrete martingale for each f ∈ C∞0 (Rd), where Lh is the operator defined as follows

Lhf(x) =

∫
(f(y)− f(x))Πh(x, dy) (1.1.2)
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and C∞0 (Rd) is the set of all the C∞-functions f : Rd → R having compact support. We
now define for each h a continuous-time process (Xh

t )t by linearly interpolating in time the
discrete Markov chain (Xh

ih)i, i.e.

Ph
[
Xh
t =

(i+ 1)h− t
h

Xh
ih +

t− ih
h

Xh
(i+1)h, ih ≤ t < (i+ 1)h

]
= 1, ∀ i ≥ 0. (1.1.3)

Then, for every fixed h, (Xh
t )t is a continuous-time process with trajectories in C([0, 1];Rd).

Another possibility is to define the process (Xh
t )t by piecewise càdlàg interpolations in time,

i.e.

Ph
[
Xh
t = Xh

ih, ih ≤ t < (i+ 1)h
]

= 1, ∀ i ≥ 0. (1.1.4)

In this case (Xh
t )t has trajectories in the space D([0, 1];Rd) of the càdlàg functions with

values in Rd. This space turns out to be a complete and separable metric space when it is
equipped with the Skorokhod metric (for details see Billingsley ([12], 1968) Chapter 4).
The two approaches are equivalent, in fact the following Theorem holds:

Theorem 1.1.4. The sequence of processes defined in (1.1.3) with trajectories in the space
C([0, 1];Rd) equipped with the sup-norm metric weakly converges towards a given continuous
process X if and only if the sequence of processes defined in (1.1.4) with trajectories in the
space D([0, 1];Rd) equipped with the Skorokhod metric weakly converges to X.

Remark 1.1.5. The space C([0, 1];Rd) is a subset of D([0, 1];Rd). Since the Skorokhod
topology restricted to the space C([0, 1];Rd) coincides with the uniform topology there, then
the weak convergence of processes with trajectories in C([0, 1];Rd) implies that the processes
weakly converge as processes with trajectories in D([0, 1];Rd). Furthermore, the weak con-
vergence in D([0, 1];Rd) towards a continuous process X implies the weak convergence in
C([0, 1];Rd) of the linear interpolations. So the two approaches are indeed equivalent and to
simplify the treatment we follow Stroock and Varadhan and we work in the space C([0, 1];Rd).
In fact, as explained in Billingsley ([12], 1968), the development of the same arguments in
the space D([0, 1];Rd) involves a characterization of the compact sets in D([0, 1];Rd) and the
study of criteria for the tightness and this requires much more technical results.

We now want to determine conditions under which the sequence of continuous-time processes
{Xh}h with corresponding probability measures {Ph}h converges in distribution to a diffusion
process X that induces on C([0, 1];Rd) the measure P and whose generator is

L =
1

2

d∑
i,j=1

ai,j(x)
∂2

∂xi∂xj
+

d∑
i=1

bi(x)
∂

∂xi
, (1.1.5)

in which b : Rd → Rd and a : Rd → S(d), where S(d) denotes the set of all non-negative
definite real matrices d×d, are measurable functions. Moreover, we recall that if we suppose
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that b and σ are continuous and locally bounded functions (see Chapter 6 in Stroock and
Varadhan ([74], 1979)) then the following stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dBt, X0 = x0 (1.1.6)

has a unique (in law) weak solution. It means that whenever two weak solutions of the SDE
(1.1.6) have the same initial distribution, then they also have the same law.
Given the operator defined in (1.1.5) one can formulate the martingale problem associated
to L as follows:

Definition 1.1.6. A solution to the martingale problem associated to L (or to b and a)
starting from x0 ∈ Rd is a probability measure P on the space C([0, 1];Rd) equipped with the
Borel σ-algebra that satisfies the following two conditions:

• P(X0 = x0) = 1;

• f(Xt)−
∫ t

0
Lf(Xu)du is a P-martingale for all f ∈ C∞0 (Rd) with respect to the natural

filtration {Ft}t.

We recall here that C∞0 (Rd) is the space of all functions f : Rd → R having continuous
derivatives of all orders and compact support.
Similarly to the discrete case, there exists a one-to-one correspondence between weak so-
lutions of the SDE (1.1.6) and the martingale problem formulation (see Corollary 5.3.4 in
Ethier and Kurtz ([32], 1986)).
In particular, we get the uniqueness in distribution of the solutions of the SDE (1.1.6) if
and only if the solution to the martingale problem associated to L is unique, where in the
martingale problem context uniqueness means that all the solutions with identical starting
points have the same law on the path-space.
We now describe the main technical result that allows us to state the weak convergence as
h ↓ 0 of the sequence of Markov chains {Xh}h defined in (1.1.3) to the diffusion process X
solution of the SDE (1.1.6).
We first need to define some quantities related {Xh}h that for every fixed h are:

ahi,j(x) =
1

h

∫
|y−x|≤1

(yi − xi)(yj − xj)Πh(x, dy), ∀ i, j,

bhi (x) =
1

h

∫
|y−x|≤1

(yi − xi)Πh(x, dy), ∀ i,

∆h
ε (x) =

1

h
Πh(x,Rd \B(x, ε)), ∀ ε > 0.

It is clear that ah(·) and bh(·) are the local second moment and the local drift of the chain
respectively and that ∆h

ε (·) represents a measure of the probability per unit of time of a
jump of size ε or greater than ε.
The main convergence result is the following (Theorem 11.2.3 in Stroock and Varadhan ([74],
1979)):
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Theorem 1.1.7. Let us assume that for all R > 0 and for all ε > 0 the following conditions
are true:

lim
h→0

sup
|x|≤R

‖ ah(x)− a(x) ‖= 0, (1.1.7)

lim
h→0

sup
|x|≤R

|bh(x)− b(x)| = 0, (1.1.8)

lim
h→0

sup
|x|≤R

∆h
ε (x) = 0, (1.1.9)

where a : Rd → S(d) and b : Rd → Rd are continuous functions. In addition, let us assume
that the coefficients a and b have the property that for each starting point x0 ∈ Rd the
martingale problem for a and b has exactly one solution P. Then {Ph}h weakly converges to
P on C([0, 1];Rd) as h → 0 uniformly on compact subsets of Rd, i.e. {Xh}h converges in
distribution to X.

Remark 1.1.8. We observe that conditions (1.1.7) and (1.1.8) require the convergence as
h→ 0 of the local second moment and the local drift of the chain to the respective continuous
counterparts. Moreover, condition (1.1.9) assumes that the probability ∆h

ε (·) goes to zero
and this is related to the fact that diffusion processes have sample paths that are continuous
w.p. 1. We also remark that (1.1.7), (1.1.8), (1.1.9) are equivalent to the condition that for
each f ∈ C∞0 (Rd)

1

h
Lhf → Lf (1.1.10)

uniformly on compact subsets of Rd (for details see Lemma 11.2.1 in ([74], 1979)).

As explained at the beginning of this Section, in order to prove the weak convergence one
needs to show that the family of probability measures {Ph}h is relatively compact and that
there exists one subsequential weak limit P. The relative compactness is directly implied by
conditions (1.1.7), (1.1.8), (1.1.9) because they are used to show that the sequence {Xh}h is
tight (for details see Theorem 1.4.11 in [74]). Then, since the convergence condition (1.1.10)
on the generators holds, it is immediate to deduce that the only possible weak subsequential
limit of {Ph}h solves the martingale problem associated to a and b and then it is indeed the
measure P induced on C([0, 1];Rd) by the diffusion process X. But since the martingale
problem as a unique solution, then the desired conclusion follows.

1.1.2 Weak convergence of the CRR binomial tree

We now show that the conditions of Theorem 1.1.7 are satisfied by the classical binomial
discretization scheme due to Cox, Ross and Rubinstein ([28], 1979), CRR hereafter. Let us
suppose to fix the maturity time T > 0. The CRR model is used to approximate the stock
price process (Xt)t∈[0,T ] in the Black and Scholes model, so under the risk-neutral measure
P∗ the process X is the solution of the following SDE

dXt = rXtdt+ σXtdBt, X0 = x0 (1.1.11)
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where r is the risk free rate and σ the volatility parameter. We know that (Xt)t∈[0,T ] can be
explicitly expressed as follows

Xt = x0e
(r− 1

2
σ2)t+σBt , ∀ t ∈ [0, T ],

then we can introduce the process (X t)t∈[0,T ] of the log-return defined as

X t = logXt, ∀ t ∈ [0, T ],

and so

X t = X0 + µt+ σBt, with X0 = log x0 and µ = r − 1

2
σ2.

Then the process (X t)t∈[0,T ] follows the SDE

dX t = µdt+ σdBt. (1.1.12)

We set h = T/n, with n ∈ N, that is the constant time step of the binomial tree. Let us

now denote with (X
h

ih)i=0,...,n the discrete in time and in space process corresponding to the
CRR binomial tree that is defined as

X
h

ih = X0 +
i∑

j=1

ξjσ
√
h, (1.1.13)

where (ξi)i=0,...,n are i.i.d. Bernouilli random variables such that{
P(ξi = 1) = ph = 1

2
+ µ

2σ

√
h,

P(ξi = −1) = 1− ph = 1
2
− µ

2σ

√
h.

Remark 1.1.9. We observe that the risk-neutral probability ph in the original work of Cox,
Ross and Rubinstein ([28], 1979) is defined as

ph =
erh − e−σ

√
h

eσ
√
h − e−σ

√
h
. (1.1.14)

If we make a Taylor expansion at the first order of the expression in (1.1.14), we get

ph =
1

2
+

µ

2σ

√
h+ o(

√
h) (1.1.15)

and this is indeed the probability we use in practice.

First of all we observe that the coefficients µ and σ in (1.1.12) are constant, so they are
continuous and there exist a unique solution to the martingale problem associated to µ and
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a = σ2. Let us now compute the local drift, that we call µh, and the local second moment,
that we denote with σ2

h, associated to the process (1.1.13). We get:

µh =
1

h
[phσ
√
h+ (1− ph)(−σ

√
h)] = µ+

o(h)

h
;

σ2
h =

1

h
[ph(σ

√
h)2 + (1− ph)(−σ

√
h)2] = σ2 +

o(h)

h
.

Then it is easy to see that conditions (1.1.7) and (1.1.8) of Theorem 1.1.7, that concern the
uniform convergence on the compact subsets of R of the local drift µh and the local second
moment σ2

h of the discrete process to µ and σ2, are verified. Moreover, since the space step
of the discrete scheme is σ

√
h, then condition (1.1.9) of Theorem 1.1.7 is true as well. Then

the following result holds:

Theorem 1.1.10. The process X
h

defined in (1.1.13) weakly converges to the diffusion
process solution of (1.1.12).

1.1.3 Nelson and Ramaswamy technique for diffusion approxima-
tions

We now describe the technique in Nelson and Ramaswamy ([65], 1990) used to construct a
computationally simple binomial process that weakly converges to a generic 1-dimensional
diffusion. As pointed out by the authors, the term “binomial process” is indeed an abuse of
terminology because it does not refer to a discrete process that follows a binomial distribution
(as in Cox, Ross and Rubinstein ([28], 1979)), but more generally it is used for a two-
state discrete model that we briefly call binomial tree. We remark that a tree is defined
“computationally simple” if the number of nodes in the structure grows at most linearly
in the number of time intervals (i.e. the lattice structure is path independent). This is a
crucial feature of the approximating process because a computationally complex tree, such
as a lattice in which the number of nodes increases not linearly, is useless for purposes such
as option pricing.
Let us suppose to consider in the time interval [0, T ] the stochastic differential equation
(1.1.6) that is

dXt = b(Xt)dt+ σ(Xt)dBt, X0 = x0.

First of all the interval [0, T ] is divided into n subintervals of length h = T/n. For a fixed
h, (Xh

i,j)i,j for i = 0, 1, ..., n, j = 0, 1, ..., i is the binomial tree approximating the process X
defined with the following steps.
The first one is to turn the original SDE (1.1.6) into a new SDE with constant instantaneous
volatility, that without lack of generality can be chosen equal to one. To this end, Nelson
and Ramaswamy introduce a transformation g(x) ∈ C2(R+) defined on the support of x as
follows

g(x) =

∫ x 1

σ(z)
dz. (1.1.16)
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Then they define a new process Y by

Yt = g(Xt), ∀ t ∈ [0, T ]. (1.1.17)

By Ito’s formula we get

dYt =

(
∂g(Xt)

∂x
b(Xt) +

1

2
σ2(Xt)

∂g(Xt)

∂x

)
dt+ dBt,

= bY (Xt)dt+ dBt,

and Y0 = g(x0) =: y0.
The idea is to construct a binomial tree (Y h

i,j)i,j for i = 0, 1, ..., n, j = 0, 1, ..., i that ap-
proximates the process Y and then to convert it back through the inverse transformation of
(1.1.16) in order to get the binomial tree for X.
They now split the discussion in two cases: the first occurs when there are no singularities
in σ(x), the second when there is a singularity at x = 0 such that σ(0) = 0 and b(0) ≥ 0.

Case 1: no singularities in σ(x)

In this case they construct a computationally simple binomial approximation for Y as follows:

• Y h
0,0 = y0;

• Y h
i,j = y0 + (2j − i)

√
h,∀ j = 0, ..., i;

• starting from Y h
i,j at time ih, the process Y h may jump at time (i + 1)h to the two

following values

Y h
i+1,j+1 = Y h

i,j +
√
h,

Y h
i+1,j = Y h

i,j −
√
h.

By using the inverse of (1.1.16) they now define a computationally simple tree (Xh
i,j)i,j for

the original process X as follows:

• Xh
0,0 = g−1(Y h

0,0) = x0;

• Xh
i,j = g−1(Y h

i,j),∀ j = 0, ..., i;

• starting from Xh
i,j at time ih, the process Xh may jump at time (i + 1)h to the two

following values

Xh
i+1,j+1 = g−1(Y h

i,j +
√
h),

Xh
i+1,j = g−1(Y h

i,j −
√
h).
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The final step is to define the transition probabilities with which an up or a down jump
occurs at each node of the tree. Such probabilities are chosen such that the local drift of the
discrete process for X is exactly equal to the drift of the limiting diffusion (1.1.6), i.e.:

phi,j =
b(g−1(Y h

i,j))h+ g−1(Y h
i,j)− g−1(Y h

i,j −
√
h)

g−1(Y h
i,j +

√
h)− g−1(Y h

i,j −
√
h)

. (1.1.18)

Since the quantity in (1.1.18) may not be a legitimate probability (it may not belong to
[0, 1]), they censor it as follows:

ph,∗i,j = 0 ∨ phi,j ∧ 1. (1.1.19)

Then the binomial scheme for the process X is given by:

Xh
i,j =⇒

{
Xh
i+1,j+1, ph,∗i,j ,

Xh
i+1,j, 1− ph,∗i,j .

In order to prove the convergence of the discrete scheme (Xh
i,j)i,j to the diffusion X, they

define a sequence of càdlàg Markov chains {Xh
i }i=0,1,...,n as in (1.1.4), i.e.:

• Xh
0 = x0;

• at time ih the state-space for Xh
i is given by

X h
i = {Xh

i,j, j = 0, 1, ..., i};

• from time ih to time (i+ 1)h the transition law on R is given by

Ph(Xh
i,j; dx) = ph,∗i,j δ{Xh

i+1,j+1}(dx) + (1− ph,∗i,j )δ{Xh
i+1,j}(dx),

where δ{a} denotes here the Dirac mass in a ∈ R.

As explained in Section 1.1, in order to guarantee the convergence in distribution of {Xh}h to
X, one needs to prove conditions (1.1.7), (1.1.8) and (1.1.9) of Theorem 1.1.7. We suppose
here that b and σ are suitable functions that guarantee the uniqueness of the martingale
problem associated to b and a = σ2.
Let us define A∗ = {(i, j) : Xh

i,j ≤ A∗}. Moreover let us call the local moment of order l at
time ih as

Mi,j(l) = E((Xh
i+1 −Xh

i )l|Xh
i = Xh

i,j)), l = 1, 2, 4,

where to simplify the notations we write E instead of EPh .
First of all we need to prove the convergence of the local drift, i.e.:

lim
h→0

sup
(i,j)∈A∗

1

h
|Mi,j(1)− b(Xh

i,j)h| = 0. (1.1.20)
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But we have that

Mi,j(1) = ph,∗i,j (g−1(Y h
i,j +

√
h)− g−1(Y h

i,j))

+ (1− ph,∗i,j )(g−1(Y h
i,j −

√
h)− g−1(Y h

i,j)),

and by using (1.1.18) we get that Mi,j(1) = b(Xh
i,j)h, then (1.1.20) easily follows.

Then we need to prove the convergence of the local diffusion coefficient,i.e.:

lim
h→0

sup
(i,j)∈A∗

1

h
|Mi,j(2)− σ2(Xh

i,j)h| = 0. (1.1.21)

We have that

Mi,j(2) = ph,∗i,j (g−1(Y h
i,j +

√
h)− g−1(Y h

i,j))
2

+ (1− ph,∗i,j )(g−1(Y h
i,j −

√
h)− g−1(Y h

i,j))
2,

and by using a Taylor expansion at the first order we get that

g−1(Y h
i,j ±

√
h) = g−1(Y h

i,j)± σ(Xh
i,j)
√
h+O(h), (1.1.22)

so that
Mi,j(2) = σ2(Xh

i,j)h+O(h)

and then (1.1.21) easily follows.
Finally we need to prove the fast convergence to 0 of the fourth local moment, i.e.

lim
h→0

sup
(i,j)∈A∗

1

h
Mi,j(4) = 0, (1.1.23)

that implies condition (1.1.9) of Theorem 1.1.7. Since from the Taylor expansion (1.1.22) we
essentially have that (g−1(Y h

i,j −
√
h)± g−1(Y h

i,j))
4 behaves as h2, then (1.1.23) easily follows.

Case 2: σ(0) = 0 and b(0) ≥ 0.

In this case Nelson and Ramaswamy define the lower limit for Y by

lim
x→0

g(x) = yL.

Moreover they slightly modify the inverse transformation of (1.1.16) as follows:

g−1(y) =

{
x : g(x) = y, if y > yL,
0, otherwise.

(1.1.24)

Then they allow in a restricted region near the lower bound, that we call [yL, yB], that
the transformed process Y jumps by a quantity greater than

√
h. So they construct a

computationally simple binomial approximation for Y as follows:
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• Y h
0,0 = y0;

• Y h
i,j = y0 + (2j − i)

√
h,∀ j = 0, ..., i;

• starting from Y h
i,j at time ih, the process Y h may jump at time (i + 1)h to the two

following values
Y h
i+1,ju , Y h

i+1,jd
,

with

jd =


the greatest index j∗ ∈ [0, j] :
g−1(Y h

i,j)− g−1(Y h
i+1,j∗) ≤ b(g−1(Y h

i,j))h;
0, otherwise.

and

ju =


the smallest index j∗ ∈ [j + 1, i+ 1] :
g−1(Y h

i+1,j∗)− g−1(Y h
i,j) ≥ b(g−1(Y h

i,j))h;
i+ 1, otherwise.

Then the process Y h may jump for a quantity greater than
√
h and it is not constrained

to necessarily reach the two adjacent nodes as in the classical CRR tree, so jd and ju are
called “multiple jumps”. We remark that in order to get computational simplicity, one
needs to define multiple jumps just in a restricted region near the lower bound, otherwise
the number of nodes might increase too fast. So, if Y h

i,j > yB it is assumed that the binomial
discretization for the process Y behaves as in Case 1.
By using (1.1.24) they get a computationally simple tree (Xh

i,j)i,j for the original process X:

• Xh
0,0 = g−1(Y h

0,0) = x0;

• Xh
i,j = g−1(Y h

i,j),∀ j = 0, ..., i;

• starting from Xh
i,j at time ih, the process Xh may jump at time (i + 1)h to the two

following values

Xh
i+1,ju = g−1(Y h

i+1,ju), Xh
i+1,jd

= g−1(Y h
i+1,jd

).

The transition probabilities are now defined as

phi,j =
b(g−1(Y h

i,j))h+ g−1(Y h
i,j)− g−1(Y h

i+1,jd
)

g−1(Y h
i+1,ju

)− g−1(Y h
i+1,jd

)
. (1.1.25)

We remark that the quantities in (1.1.25) belong to [0, 1] as a consequence of how jd and ju
are defined. Then the binomial scheme for the process X is given by:

Xh
i,j =⇒

{
Xh
i+1,ju , phi,j,

Xh
i+1,jd

, 1− phi,j.
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In this case the weak convergence of the càdlàg Markov chain running on the lattice (Xh
i,j)i,j

(built as in Case 1) towards the limit diffusion X is not straightforward. Once the martingale
problem associated to b and a = σ2 has a unique solution, one possibility is to prove directly
conditions (1.1.7), (1.1.8) and (1.1.9) of Theorem 1.1.7. Otherwise one can prove some
additional properties on the diffusion coefficients b and σ, as explained in Theorem 3 in
Nelson and Ramaswamy ([65], 1990).

Remark 1.1.11. The advantage of the procedure proposed by Nelson and Ramaswamy is
that it is constructive and, moreover, it can be applied to a generic diffusion process without
restrictions on the parameters and also without requiring homogeneous coefficients (for the
general case see [65]).

Remark 1.1.12. In Chapter 4 we will use the Nelson and Ramaswamy technique as in case
2 for the construction of a computationally simple binomial process for the CIR process, i.e.
a process that follows the SDE

dXt = κ(θ −Xt)dt+ σ
√
XtdBt, X0 = x0.

We will prove directly that conditions (1.1.7), (1.1.8) and (1.1.9) of Theorem 1.1.7 are
verified (see Theorem 4.5.8). Moreover, we will be able to explicitly write the region in which
multiple jumps may happen (see Lemma 4.5.1). We remark that an analogous procedure can
be used for the discretization of the CEV (Constant Elasticity of Variance) process, i.e. a
process that follows the SDE

dXt = κ(θ −Xt)dt+Xγ
t dBt, X0 = x0,

with γ ∈ [1
2
, 1]. By using techniques similar to the ones used in Chapter 4, it could be possible

to prove also in this case the convergence conditions (1.1.7), (1.1.8) and (1.1.9) of Theorem
1.1.7.

1.1.4 Convergence of the American prices

Since the seminal work of Cox, Ross and Rubinstein ([28], 1979), discrete-time models have
become really popular in option valuation because they represent a useful computational
tool that can approximate the continuous-time diffusion model when no simple closed-form
solutions are available. From a practical point of view, it is important to obtain that the
sequence of American option prices computed with respect to the discrete-time model con-
verges to the corresponding continuous-time American option value determined from the
continuous-time diffusion process.
Let us assume to work in the setup described in Section 1.1 with the time interval [0, 1]
replaced by the interval [0, T ], where T denotes the maturity time of the option.
The stock price process X follows the SDE (1.1.6) and we assume that for every h > 0, a
discrete (in time and in space) Markov chain Xh approximating X is given. Then we denote

with {Xh}h the sequence of the piece-wise càdlàg interpolations in time of Xh as defined in
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(1.1.4). Here the interest rate is a function r(t, x) : [0, T ] ×D([0, T ];Rd) → [0,+∞), where
D([0, T ];Rd) denotes the space of Rd-valued càdlàg functions on [0, T ], so r is not assumed
to be deterministic.
Let f(t, x) : [0, T ]×D([0, T ];Rd)→ [0,+∞) denote a payoff function, so that the American
prices in the continuous-time model and in the discrete model are given by

sup
τ∈G0,T

E(e−
∫ τ
0 r(s,X)dsf(τ,X)) and sup

σ∈Gh0,T

E(e−
∫ σ
0 r(s,X

h
)dsf(σ,X

h
))

respectively, where G0,T and Gh0,T denote the stopping times in [0, T ] with respect to the

filtrations Ft = σ(Xs : s ≤ t) and Fht = σ(X
h

s : s ≤ t) respectively. We remark that to
simplify the notation we indicate with E the mean w.r.t. the probability measure P and also
the mean w.r.t. Ph.
We now consider the two following assumptions on the payoff function f :

Assumption 1.1.13. f is a continuous function (in the product topology) and for every
x, y ∈ D([0, T ];Rd) such that xs = ys for each s ∈ [0, t] then f(t, x) = f(t, y).

Assumption 1.1.14. There exists δ > 1 and h∗ > 0 s.t.

sup
h<h∗

E(sup
t≤T
|e−

∫ t
0 r(s,X

h
s )dsf(t,X

h
)|δ <∞).

Then, under Assumptions 1.1.13 and 1.1.14, Amin and Khanna ([3], 1994) prove that The-
orem 1.1.7 allows to get the convergence of the American prices in the discrete-time model
to the corresponding price in the continuous-time model.
Let us call {ρh}h the sequence of stopping times related to the discrete problems and ρ the
solution of the continuous-time stopping time problem. The proof of the convergence result
in [3] consists in several steps that can be resumed as follows:

• under the hypothesis of Theorem 1.1.7 the sequence {Xh}h is tight in D([0, T ];Rd).
Then the sequence {Xh, ρh}h, with ρh ∈ [0, T ] for every h, is tight in D([0, T ];Rd) ×
[0, T ], i.e. it admits subsequential weak limits. Let us call (X̃, ρ̃) the limit of one
convergent subsequence. Obviously, X̃ is equal in law to X, so we call (X, ρ̃) the limit
of the convergent subsequence. We remark here that we need that ρ̃ is a “legitimate”
stopping time with respect to X, i.e. we need that it is indeed a stopping time with
respect to the filtration generated by X, but we need to prove it;

• let us fix this convergent subsequence {Xh, ρh}h (we continue to use the upscript
h for this subsequence). For every ε > 0, it is possible to construct a sequence
{Xhk,εk , Bhk,εk}k such that the stopping times ρhk are adapted to the filtration gener-
ated by Bhk,εk and such that Xhk,εk ⇒ X, with X solution of (1.1.6), and Bhk,εk ⇒ B̃,
with B̃ a d-Brownian motion;
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• let us now consider the sequence {Xhk,εk , Bhk,εk}k. It is possible to prove that every
limit of a convergent subsequence of {Xhk,εk , Bhk,εk}k is indeed a solution of (1.1.6), so
that {Xhk,εk , Bhk,εk}k jointly converges to {X, B̃}. Moreover, from Lemma 3.5 in [3],
we get that the subsequence {Xhk,εk , Bhk,εk , ρhk}k converges a.s. to {X, B̃, ρ̃};

• finally, by using the previous results, it is possible to construct a probability space
on which one can define a Brownian motion B, a strong Markov process X that is a
solution of (1.1.6) with B in place of B and a random variable ρ such that {X, ρ} has
the same distribution of {X, ρ̃} and ρ is a stopping time with respect to a filtration
under which X is a strong Markov process.

Then, thanks to these results one can state the convergence of the discrete American prices
to the continuous limit when the payoff function f satisfies Assumptions 1.1.13 and 1.1.14.
But as remarked in [3], other options can be considered, for example when f is continuous
and fulfills the following polynomial-growth condition: there exists C > 0 and γ > 1 such
that

sup
t∈T
|f(t, x)| ≤ C(1 + sup

t∈T
|xt|γ). (1.1.26)

Provided that one proves that for every p > 1 there exists h∗ < 1 such that

sup
h<h∗

E(sup
t≤T

e−p
∫ t
0 r(s,X

h
s )ds(X

h

t )
p) <∞, (1.1.27)

then (1.1.26) and (1.1.27) imply Assumption 1.1.14, and if Assumption 1.1.13 and Theorem
1.1.7 hold as well then the convergence of the discrete American prices will follow.
We remark here that Amin and Khanna specify that the interest rate is assumed to be a
function of X, with X solution of the SDE (1.1.6). However one can repeat the reasoning and
then obtain the same results in the case in which the interest rate r is a diffusion independent
of X and this is the case we will be concerned with in Chapter 4. In fact we will be working
with the problem of pricing European and American style options when the stock price
process X follows the Black and Scholes model with stochastic interest rate driven by the
Cox, Ingersoll and Ross model. We propose a new bivariate tree for the pair (X, r) and

we prove that the continuous process {Xh
, rh} built from the Markov chain running on the

bivariate lattice weakly converges to (X, r). We will show in details that Assumption 1.1.14
is still verified for our new binomial bivariate lattice. We remark here that this result is a
non trivial extension of the one in Amin and Khanna, who prove that for the standard CRR
tree Assumption 1.1.14 holds. Then we will state the convergence result for the American
prices computed with our procedure.

Remark 1.1.15. The previous discussion can be used to show the convergence of European-
style option prices. In fact the European case is simpler than the American one because there
are no stopping times. Then Theorem 1.1.7 and Assumptions 1.1.13 and 1.1.14 guarantee
the convergence of the prices.
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Remark 1.1.16. In the simple case in which the discrete approximation is given by the
CRR binomial tree we are able to treat a more sophisticated issue: the rate of convergence
of the scheme. For details see the following Section. Then this allow us to treat the rate of
convergence of the new binomial scheme for pricing barrier options that we will introduce in
Chapter 2.

1.2 The rate of convergence of European options in the

CRR tree

In the previous Section we have seen that by applying some results of convergence of Markov
chains to diffusions we get that the Markov chain built from the CRR binomial tree weakly
converges toward the solution of the SDE (1.1.6). Moreover, as the discretization parameter
h ↓ 0 (or, equivalently, as the number of time steps n ↑ ∞), the price of European and
American options computed with the tree model is close to the price obtained with the
continuous-time model. But here we remark that there exist some other important issues on
the convergence such as the ones expressed by the following questions:

• it is possible to say something about the rate of convergence of the tree scheme?

• the nature of the convergence is monotonic or oscillatory? and so the obtained results
overstimate or understimate the limit?

• is the convergence of the scheme related on the position of the nodes of the tree with
respect to the discontinuity points of the payoff function (as the exercise price for
digital options) or to the values of the barriers (in the case it is a barrier option)?

In what follows we will consider the answers to the previous questions in two separate cases:
the first is the case of standard or vanilla options and the second is the case of barrier-type
options.

1.2.1 Rate of convergence for vanilla options

Starting from 1990, a large number of authors take into consideration the problem of de-
riving an asymptotic expansion of the error committed when a discrete procedure is used
to approximate European option prices in the classical Black and Scholes model. So in the
risk-neutral world the underlying asset price is assumed to be the solution over [0, T ] of the
SDE (1.1.11), i.e.

dXt = rXtdt+ σXtdBt, X0 = x0.

The idea is to give an explicit expression or at least the asymptotic behavior of the following
quantity

Err(n) = vn(0, x0)− v(0, x0) = E(f(Xn
T ))− E(f(XT )), (1.2.1)
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where vn(0, x0) is the approximated European option price at time 0 and starting asset price
x0, v(0, x0) is the corresponding continuous-time value, f is the payoff function and T is the
maturity of the option.
Talay and Tubaro ([75], 1990) prove the convergence of order 1

n
for any smooth function f

when the continuous process X is discretized with an Euler scheme (for other details see also
Kloeden and Platen ([54], 1992)). This result is then generalized by Bally and Talay ([10],
[11], 1996) for measurable payoffs f , but only in the case in which the Euler scheme uses the
increments of a Brownian motion. Then, Lamberton ([59], 1999) also obtains an estimate
of order 1

n
when f is Lipschitz continuous with bounded second derivative but under some

further assumptions on the discrete model that are not satisfied by the CRR scheme.
For what concerns the convergence rate of the CRR binomial scheme, a convergence of
order 1√

n
for a general class of options is first derived in the work of Heston and Zhou ([45],

2000). They propose an adjustment approach based on smoothing the payoff function at its
singular points so that it can be achieved a rate of convergence of order 1

n
. However, they

don’t provide an exact formula for the coefficients in the error expansion.
In what follows we recall the main results in the literature on the rate of convergence of the
CRR binomial tree for pricing vanilla options.
For a fixed number n ∈ N of time steps, the CRR discretization scheme (Xn

i,j)i,j for every
i = 0, 1, ..., n, j = 0, 1, ..., i that approximates the solution X of the SDE (1.1.11) is obtained
as follows:

• Xn
0,0 = x0;

• Xn
i,j = x0e

(2j−i)σ
√
h, with h = T

n
;

• starting from Xn
i,j at time ih, the process Xn may jump at time (i+ 1)h to the values

Xn
i+1,j+1 = Xn

i,ju, with probability p,
Xn
i+1,j = Xn

i,jd, with probability 1− p,

where

u = eσ
√
h, d = u−1, p =

erh − e−σ
√
h

eσ
√
h − e−σ

√
h
.

We remember the notion of the rate of convergence of a binomial scheme in the following
definition:

Definition 1.2.1. In the n-period binomial model, if the approximation error Err(n) defined
in (1.2.1) satisfies

Err(n) =
γ

nm
+ o

(
1

nm

)
as n ↑ ∞, where γ is a non zero constant, we say that the convergence of the scheme is of
order 1

nm
.
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The first study on the rate of convergence of binomial tree schemes (including the CRR
procedure) for pricing European call options is due to Leisen and Reimer ([61], 1996). They
find an upper bound of the approximation error Err(n) in the CRR model, in fact they prove
that there exists a constant C = C(x0, K, r, σ, T ) > 0:

Err(n) ≤ C

n
, ∀n.

The result in [61] holds for a generic binomial tree, so it can be used to derive the rate of
convergence of other binomial schemes such as the one in Jarrow and Rudd ([51], 1983) or
the one in Tian ([77], 1993).

A more detailed study on the exact rate of convergence of the CRR tree is described in
Walsh and Walsh ([82], 2002) and Walsh ([81], 2003). Since in typical financial problems the
data is not smooth, they treat a more general class of payoff functions denoted with K and
defined as follows:

Definition 1.2.2. Let K be the class of real-valued functions f on R which satisfy:

(i) f , f ′, f ′′ have at most finitely many discontinuities;

(ii) at each x, f(x) = 1
2
(f(x+) + f(x−));

(iii) f , f ′, f ′′ are polinomially bounded: i.e. there exist K > 0 and p > 0 such that
|f(x)|+ |f ′(x)|+ |f ′′(x)| ≤ K(1 + |x|p) for all x.

We present here Theorem 4.3 in [81]. We recall that this result is obtained by using a
procedure called Skorokhod embedding that consists in embedding the Markov chain (the
binomial scheme) in the diffusion process X. By this way it is possible to closely compare
the two and accurately evaluate the error. We now assert the theorem:

Theorem 1.2.3. Suppose that f ∈ K. Let x1, x2, ..., xk be the discontinuities points of f
and f ′, and let x0 be the initial stock price. For any real x, let x̃ = xe−rT . Let n be an even
integer. Let the time-step be h = T

n
and the space-step be δ = σ

√
h. Then the error in the

binomial tree scheme for the discounted stock price process is

Err(n) =

=
e−rT

n

[(
5

12
+
σ2T

6
+
σ4T 2

192

)
E{f(XT )}

− 1

6σ2T
E{(log(X̃T/x0))2f(XT )}

− 1

12σ4T
E{(log(X̃T/x0))4f(XT )}
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+
2

3
σ2TE{X2

Tf
′′
(XT )}

+ σ2T
∑
i

(
xi∆f

′
(xi)−

1

2
∆f(xi)

)
(

1

3
+ 2θ(x̃i/x0)(1− θ(x̃i/x0))

)
p̂(log(x̃i/x0))

− 1

3

∑
i:log(x̃i/x0)∈Nhe

log(x̃i/x0)∆f(xi)p̂(log(x̃i/x0))

+
1

6

∑
i:log(x̃i/x0)∈Nho

log(x̃i/x0)∆f(xi)p̂(log(x̃i/x0))

]

+ e−rT
σ
√
T√
n

∑
i:log(x̃i/x0)/∈δZ

(2θ(x̃i/x0)− 1)∆f(xi)p̂(log(x̃i/x0))

+O

(
1

n3/2

)
,

where δZ is the set of all the multiples of δ, Nh
e is the subset of δZ of all even multiples of δ

and Nh
o is the subset of δZ of all odd multiples of δ. We also have that

∆f(x) = f(x+)− f(x−),

∆f
′
(x) = f

′
(x+)− f ′(x−),

θ(x) = frac

(
log x

2δ

)
,

where frac(x) is the fractional part of x, i.e. frac(x) = x−bxc, with bxc denoting the largest
integer not greater than x. Finally, p̂(x) is the density of log(X̃T/x0):

p̂(x) =
1√

2πσ2T
e−

(x+1
2σ

2T )2

2σ2T .

The expectations are taken with respect to the martingale measure.

The previous theorem essentially says that if the payoff function f is continuous, then the rate
of convergence of the binomial tree scheme is 1

n
because ∆f(xi) = 0 for every discontinuity

point xi of f and so the coefficient that multiplies 1√
n

vanishes. Instead, if the payoff is

discontinuous (as for digital options) then Err(n) is 1√
n
. But we can say more. In fact, a

possibility to eliminate the contribution of order 1√
n

is nullifying the term (2θ(x̃i/x0) − 1)

that multiplies 1√
n
. This happens when the discounted discontinuity points of f lie in the

log-scale exactly halfway between two adjacent nodes of the tree at maturity T .
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Subsequently, Diener and Diener ([31], 2004) compute the first term of the asymptotic ex-
pansion of the price of a European call option computed with the CRR model by using some
properties of the Laplace integrals. We now state their result (Theorem 4.1 in [31]):

Theorem 1.2.4. In the n-period CRR binomial model, the binomial approximation error
for a European call option with strike K and maturity T is equal to

Err(n) =
C(n)

n
+O

(
1

n
√
n

)
,

where

C(n) = −x0e
− d

2
11
2

√
2

π
{σ
√
Tκ(κ− 1) +D1},

d11 =
1

σ
√
T

(log
x0

K
+ (r +

σ2

2
)T ),

D1 =
1

96σ
√
T

(
4

(
log

x0

K

)2

−8rT log
x0

K
+ 3T (4σ2 − 12rT 2 − σ4T )

)
,

κ = frac

(
log(K/x0)− n log d

log u− log d

)
,

u = eσ
√
T/n =

1

d
.

Then Chang and Palmer ([20], 2007) provide a slight generalization of the results of Walsh
and Diener and Diener. In fact, they study the rate of convergence for the n-period binomial
model in which the parameters u and d are more generic than the ones used in the CRR
tree. This allows them to develop a new binomial model, called the center binomial model,
that is of order 1

n
both for call and digital options. The main theorem in [20] is the following

one:

Theorem 1.2.5. In the n-period binomial model, with

u = eσ
√
h+λσ2h, d = e−σ

√
h+λσ2h, p =

erh − e−σ
√
h

eσ
√
h − e−σ

√
h
, (1.2.2)

where λ is an arbitrary bounded function of n, x0 is the initial stock price, K is the strike
price and T is the maturity, the binomial approximation error Errcall-dig(n) for pricing a

European digital call option is

Errcall-dig(n) =
e−rT e−

d212
2

√
2π

[
∆K
n√
n
− d12(∆K

n )2

2n
+
Bn

n

]
+O

(
1

n3/2

)
; (1.2.3)
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the binomial approximation error Errcall(n) for pricing a European call option is

Errcall(n) =
x0e
− d

2
11
2

24σ
√

2πT

An − 12σ2T ((∆K
n )2 − 1)

n
+O

(
1

n3/2

)
, (1.2.4)

where

∆K
n = 1− 2frac

(
log(x0/K)− n log d

log(u/d)

)
,

d11 =
log(x0/K) + (r + 1

2
σ2)T

σ
√
T

, d12 = d11 − σ
√
T ,

Bn =
d3

11 + d11d
2
12 + 2d12 − 4d11

24
+

(2− d12d22 − d2
12)
√
T

6σ
(r − λσ2)

+
Td11

2σ2
(r − λσ2)2,

An = −σ2T (6 + d2
11 + d2

12) + 4T (d2
11 − d2

12)(r − λσ2)− 12T 2(r − λσ2)2.

Remark 1.2.6. We observe that λ = 0 corresponds to the classical CRR model, so Theorems
1.2.3, 1.2.4 and 1.2.5 agree with the fact that the error in the binomial approximation for a
European call option is 1

n
and for a European digital call option is 1√

n
.

We notice that the quantity ∆K
n in Theorem 1.2.5 measures the position of the strike K

on the log scale in relation to two adjacent terminal stock prices. If we call (Xi,j)i,j, for
i = 0, ..., n, j = 0, ..., i the values of the stock price at the nodes of the n-step binomial tree
as described at the beginning of this Section, we have that there exists an integer jK such
that

Xn,jK−1 = x0u
jK−1dn−jK+1 < K ≤ Xn,jK = x0u

jKdn−jK

and so the “effective” strike price in the binomial model is Xn,jK . It is also possible to write
in the log-scale the strike K as a geometric average of Xn,jK−1 and Xn,jK :

logK = α logXn,jK + (1− α) logXn,jK−1, where α =
1 + ∆K

n

2
.

We remark that −1 ≤ ∆K
n ≤ 1 and, in particular, we have that

• ∆K
n = 0⇒ logK = 1

2
logXn,jK + 1

2
logXn,jK−1;

• ∆K
n = −1⇒ logK = logXn,jK−1;

• ∆K
n = 1⇒ logK = logXn,jK .
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Chang and Palmer deduce from the explicit expression of the binomial approximation error
in (1.2.3) that if the parameter λ is chosen such that the strike price is situated exactly
halfway between two stock prices at maturity, then the convergence both for European call
and European digital call options is 1

n
. In particular (see Corollary 2 in [20]), they take

λ =
log K

x0
− (2j0 − 1− n)σ

√
h

nσ2h
(1.2.5)

where j0 = [γ̃] = min{m ∈ N : m ≥ γ̃} and γ̃ =
log K

x0
+nσ
√
h

2σ
√
h

. This choice of λ gives the
so-called center binomial model.
Theorems 1.2.3, 1.2.4 and 1.2.5 completely describe the problem of the study of the rate
of convergence for vanilla European options. We observe that the proofs of Theorems 1.2.3
and 1.2.4 are very technical because they involve the Skorokhod embedding representation
and the asymptotics of Laplace integrals respectively. The proof of Theorem 1.2.5 seems
easier because it is principally based on an extension of a theorem of Uspensky ([80], 1937)
on the approximation of the binomial distribution by the normal one. We remark here that
the starting point in the proof of Theorem 1.2.5 is the existence of a closed-form formula
expressed in terms of sums of binomial coefficients for the prices of European call options and
European digital call options computed with the n-period binomial tree (for these formulas
see for example Pliska ([68], 1997)).

1.2.2 Rate of convergence for barrier options

The study of the rate of convergence of the CRR binomial scheme for the computation of
barrier option prices is much more complicated. However, it is an important and interesting
issue, since it helps us to explain the reason why the binomial price converges very erratically
to the true price with zigzag patterns (for numerical experiments see Boyle and Lau ([16],
1994)).
An interesting work, that is the only one able to deal with both single barrier options and
double barrier options with generic continuous payoff functions is due to Gobet ([42], 2001).
He essentially writes the error Err(n) defined in (1.2.1) by using the parabolic differential
equation solved by the barrier option price and then he decomposes it into the sum of local
errors. Let us briefly describe the setup he works with. We start by considering the case
of a single barrier option with higher barrier H, where here H denotes the barrier in the
log-space. Let us suppose to work in the Black and Scholes model, so the stock price process
(Xt)t∈[0,T ] is the solution of the SDE (1.1.11). Then, the log-price (X t)t∈[0,T ] satisfies the
equation:

X t = X0 + µt+ σBt, with X0 = log x0 and µ = (r − σ2/2).

Let us set O = (−∞, H) ⊂ R with H > X0. We define the stopping time τ as follows

τ = inf{t : X t /∈ O}.
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The payoff of an out-type barrier option is 1T<τf(XT ), where f is a generic function on
which we will make later some assumptions. Then, up to consider the discount factor, the
function price u(t, x), for every (t, x) ∈ [0, T ]× R, is equal to

u(t, x) = Ex[1T−t<τf(XT−t)] =

∫
O
qT−t(x, y)f(y)dy, (1.2.6)

where qT−t(x, y) is the transition density at time T − t of the killed process X as it leaves
O and f is a measurable function such that f , f

′
and f

′′
have at most an exponential

growth. This transition density can be written as the difference of two functions, q1
T−t(x, y)

and q2
T−t(x, y), that are the density functions of two normal random variables: N (x+µ(T −

t), σ2(T − t)) and N (−x+2H+µ(T − t), σ2(T − t)) respectively. To be precise we have that:

qT−t(x, y) = q1
T−t(x, y)− e

2µ(H−x)
σ2 q2

T−t(x, y),

q1
T−t(x, y) =

1√
2πσ2(T − t)

exp

(
−(y − x− µ(T − t))2

2σ2(T − t)

)
,

q2
T−t(x, y) =

1√
2πσ2(T − t)

exp

(
−(y + x− 2H − µ(T − t))2

2σ2(T − t)

)
.

We recall that u(t, x) satisfies the parabolic PDE of second order with Cauchy and Dirichlet
conditions, i.e.  ∂tu+ Lu = 0, (t, x) ∈ [0, T )×O

u(t, x) = 0, (t, x) ∈ [0, T )×Oc
u(T, x) = f(x), x ∈ O

(1.2.7)

where L is the infinitesimal generator associated to the Brownian motion with constant drift
and constant volatility, i.e. Lu(x) = µu′(x) + 1

2
σ2u′′(x). Then we set

τn = inf{ti : X
n

ti
/∈ O}

and
Hn = inf{X0 + iσ

√
h ≥ H : i ∈ {0, ..., n}}, (1.2.8)

i.e. Hn is the first lattice point in the log-scale equal or greater than H.
Let us now consider the following assumptions on the payoff function f :

Assumption 1.2.7. We assume that the payoff function f satisfies:

f ∈ C0
b ((−∞, H],R) ∩ C2

b ((−∞, K],R) ∩ C2
b ([K,H],R) s.t. f(H) = 0,

for some real K ∈ (infk∈O k, supk∈O k).

Assumption 1.2.8. We assume that the payoff function f satisfies:

f ∈ C2
b ((−∞, H],R) s.t. f(H) 6= 0.
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Remark 1.2.9. If we are able to find the expression of the CRR binomial approximation
error under Assumption 1.2.7 and also under Assumption 1.2.8, then we can treat the more
general case in which the payoff function f is not vanishing at the barrier H and with f

′

having a discontinuity in K (as for the cases of call and put options). In fact, we can write
f as follows

f = f1 + f2 =: (f − f(H)) + f(H),

where f1 = f − f(H) satisfies Assumption 1.2.7 and f2 = f(H) satisfies Assumption 1.2.8.

Remark 1.2.10. The result due to Gobet ([42], 2001), that is the only one able to deal
with the double barrier case, can only treat continuous payoff functions. The case of a
discontinuous payoff, as the one of digital options, will be treated in Section 3.2 in which we
use the same PDE technique as in [42] in order to obtain an upper bound for the binomial
approximation error for double barrier digital options.

The binomial approximation error, that we still call Err(n), is now defined as follows:

Err(n) = E[1T<τnf(X
n

T )]− E[1T<τf(XT )].

The main result in [42] is Theorem 3.1, that is

Theorem 1.2.11. Let f be the payoff function of a barrier option with higher barrier H and
initial value x0. Suppose that either Assumption 1.2.7 or 1.2.8 holds. Then

Err(n) = Ex0 [∂xu(τ,H−)1τ<T ](H −Hn) +Rn, (1.2.9)

where the remainder term Rn is such that there exists a constant C > 0 : |Rn| ≤ C logn
n

. As
a consequence, one has that for every α ∈ (0, 1)

Err(n) = Ex0 [∂xu(τ,H−)1τ<T ](H −Hn) + o

(
1

n

)1−α

,

that essentially means that

Err(n) = Ex0 [∂xu(τ,H−)1τ<T ](H −Hn) +O

(
1

n

)
,

because α can be chosen arbitrarily close to zero.

We observe that the term H −Hn is O( 1√
n
) and it comes from the position of the nodes of

the tree with respect to the contractual barrier. Moreover, the ratio H−Hn
σ
√
h
∈ [0, 1) and this

oscillation factor explains the “zig-zag convergence” in the prices of barrier options observed
in Boyle and Lau ([16], 1994). Moreover, since the derivative ∂xu(t,H−) is negative, it
is possible to deduce that the binomial approximation overstimate the true price of the
barrier option because the term (H − Hn)Ex0 [∂xu(τ,H−)1τ<T ] is positive. An important
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contribution in Gobet ([42], 2001) is that it is possible to numerically improve the standard
CRR binomial procedure by computing explicitly the main error term Ex0 [∂xu(τ,H−)1τ<T ].
In fact, once computed, one can obtain a corrected binomial price, that we call CBP (n),
from the standard binomial price BP (n) defined as follows:

CBP (n) = BP (n) + (Hn −H)Ex0 [∂xu(τ,H−)1τ<T ].

From Theorem 1.2.11 we deduce that the error Err(n) for the corrected binomial price
CBP (n) is equal to Rn, with Rn such that there exist a constant C > 0: |Rn| ≤ C logn

n
. In

Proposition 4.1 in [42], Gobet provides a formula for a generic payoff f that enables us to
calculate the term Ex0 [∂xu(τ,H−)1τ<T ] and then he also provides the explicit expression for
the case of put options (for details see Remark 4.3 in [42]).
The discussion above and the results are similar for the lower barrier case in which O =
(L,+∞), with L denoting the lower barrier in the log-space, and the double barrier case in
which O = (L,H):

Theorem 1.2.12. Let f be the payoff function of a barrier option with lower barrier L
and initial value x0. Suppose that either Assumption 1.2.7 or 1.2.8 holds. Moreover, let
Ln = sup{X0 − iσ

√
h ≤ L : i ∈ {0, ..., n}} be the first lattice point less or equal to L. Then

Err(n) = Ex0 [∂xu(τ, L+)1τ<T ](L− Ln) +Rn, (1.2.10)

where the remainder term Rn is such that there exists a constant C > 0: |Rn| ≤ C logn
n

.

Theorem 1.2.13. Let f be the payoff function of a barrier option with higher barrier H,
lower barrier L and initial value x0. Suppose that either Assumption 1.2.7 or 1.2.8 holds.
Let Hn be defined as in (1.2.8) and Ln as in Theorem 1.2.12. Then

Err(n) = Ex0 [∂xu(τ,H−)1τ≤T1τH<τL ](H −Hn)

+ Ex0 [∂xu(τ, L+)1τ≤T1τL<τH ](L− Ln) +Rn, (1.2.11)

where τH is the first hitting time of (H,+∞), τL is the first hitting time of (−∞, L), τ =
τL ∧ τH and the remainder Rn is such that there exists a constant C > 0: |Rn| ≤ C logn

n
.

Remark 1.2.14. It is possible to deduce from the proof of the above results, that the rate
of convergence for vanilla options is essentially O( 1

n
) and this agrees with Theorem 1.2.3,

Theorem 1.2.4 and Theorem 1.2.5. In fact one can repeat the proof of Gobet’s results for
the standard case. We recall here that the idea consists in decomposing the error Err(n) into
two parts: one deals with the contribution due to the lattice points near the barriers and the
other is due to the lattice points “far away” from the barriers. Since the error component of
order 1√

n
comes from the first type contribution, then in the case of vanilla options this term

vanishes and we essentially obtain an error term that satisfies the following equality:

Err(n) = Rn, with |Rn| ≤ C
log n

n
.
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In the case of a call option with a single barrier, Lin and Palmer ([62], 2013) obtain an
explicit formulas for the coefficients of 1√

n
and 1

n
in the asymptotic expansion of the error

Err(n) by using similar techniques employed in Chang and Palmer ([20], 2007). They get
that the coefficient that multiplies 1√

n
is related to the position of the real barrier with

respect to the nodes of the tree and this indeed agrees with Theorem 1.2.11. Let us now
briefly describe the setup they work with. For example let us take into consideration the
asymptotic expansion for the price of a down-and-out call option with strike K, lower barrier
L and maturity T . As in Theorem 1.2.5, they define the quantity ∆K

n as

∆K
n = 1− 2frac

(
log(x0/K)− n log d

log(u/d)

)
,

where u = eσ
√
h = d−1. So the quantity ∆K

n measures the position of K on the log-scale
in relation to the two adjacent terminal stock prices. Corresponding to the lower barrier
L, they introduce a “similar” quantity ∆L

n . The definition of ∆L
n depends on whether the

effective barrier (i.e. the barrier on the tree structure, that is generally different from the
contractual barrier) is a terminal stock price or not. We remember that we call (Xi,j)i,j,
for i = 0, ..., n, j = 0, ..., i the values of the stock price at the nodes of the n-step binomial
tree. So the value of the discretized stock price process at a generic node (i, j) is given by
Xi,j = x0u

jdn−j. When the effective barrier, that we denote with L̃, is a terminal stock
price, then there exist an integer jL such that

L̃ = Xn,jL = x0u
jLdn−jL ≤ L < L̃u = Xn−1,jL = x0u

jLdn−1−jL ,

where

jL =
1

2
b2lLc, with lL =

log( L
x0

)

2σ
√
T

+
n

2
,

in which bxc denotes the integer part of x, for all x ∈ R, i.e. bxc is the largest integer less or
equal to x. Instead, when the effective barrier is a stock price from the penultimate period,
then we have

L̃ = Xn−1,jL = x0u
jLdn−1−jL ≤ L < L̃u = Xn,jL+1 = x0u

jL+1dn−(jL+1),

where

jL =
1

2
b2lHc −

1

2
.

By resuming, the effective barrier can be written as L̃ = x0u
jLdn−jL and j̃L and jL satisfy

the following relation

jL = j̃L −
1

2
(1− εn),

where

εn =

{
0, if the effective barrier is not a terminal stock price
1, if the effective barrier is a terminal stock price.
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Finally they set

∆L
n = frac(2lH),

so that it is possible to write

logL = (1−∆L
n) log L̃+ ∆L

n log(L̃u).

Then, the quantity ∆L
n measures the position of the barrier L on the log-scale with respect

to the two adjacent stock prices, one of which is a terminal stock price and the other a price
from the penultimate period. We now state the main theorem (Theorem 1.2 in [60]) for
down-and-out call options:

Theorem 1.2.15. In the n-period CRR binomial model, the binomial error Err(n) for Eu-
ropean down-and-out options with lower barrier L is equal to:
if L < K or L = K and L = K is not a terminal stock price

Err(n) = A1∆L
n

1√
n

+ [B1 −D1(∆K
n )2 − E1(∆L

n)2]
1

n
+O

(
1

n3/2

)
,

and if L > K or L = K and L = K is a terminal stock price it is

Err(n) = A2∆L
n

1√
n

+ [B3 − Cε2n − E2(∆L
n)2]

1

n
+O

(
1

n3/2

)
.

The constants are defined as follows:

d11 =
log x0

K
+ (r + 1

2
σ2)T

σ
√
T

, d12 = d11 − σ
√
T ,

d21 =
log L2

x0K
+ (r + 1

2
σ2)T

σ
√
T

, d22 = d21 − σ
√
T ,

d31 =
log x0

L
+ (r + 1

2
σ2)T

σ
√
T

, d32 = d31 − σ
√
T ,

d41 =
log L

x0
+ (r + 1

2
σ2)T

σ
√
T

, d42 = d41 − σ
√
T ,
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α =
r − 1

2
σ2

2σ
, α̂ = α +

σ

2
,

β =
σ4 − 4σ2r + 12r2

48σ
, β̂ = −β − σr

6
,

ĝi = 2T (α̂2di1 + β̂
√
T ) +

(
2α̂
√
T

3
− di1

12

)
(1− d2

i1), i = 1, 2, 3, 4

gi = 2T (α̂2di2 + β̂
√
T ) +

(
2α̂
√
T

3
− di2

12

)
(1− d2

i2), i = 1, 2, 3, 4

G1 =
x0√
2π
e−

d211
2 (ĝ1 − g1), G2 =

x0√
2π

(
x0

L

)−1− d
2
21
2

e−
d221
2 (ĝ2 − g2),

G3 =
x0√
2π
e−

d231
2 (ĝ3 −

K

L
g3), G4 =

x0√
2π
e−

d231
2 (ĝ4 −

K

L
g4),

A1 = 4
√
Th1(d21, d22), A2 = 4

√
Th1(d41, d42) +

2x0√
2π
e−

d231
2

(
1− K

L

)
,

A3 = 4
√
T (h1(−d41,−d42)− h1(−d21,−d22))− 2x0√

2π
e−

d231
2

(
1− K

L

)
,

hi(x, y) =

(
x0

L

)− 2r
σ2
(
D

(
r + σ2

2

2σ

)i

Φ(x)− x0Ke
−rT

L

(
r − σ2

2

2σ

)i

Φ(y)

)
,

for i = 0, 1, 2,

B1 = G1 −G2 + Ih0(d21, d22), B2 = B1 −G1,

B3 = G3 −G4 + Ih0(d41, d42), B4 = B3 −G1,

B5 = G2 +G3 −G4 + Ih0(−d21,−d22)− Ih0(−d41,−d42), B6 = B5 −G1,

I =

(
4β + 16

3
α3

σ

)
log

(
x0

L

)
T,

C1 =
2x0√

2π

(
x0

L

)−1− 2r
σ2

e−
d221
2 σ
√
T , C2 =

x0√
2π
e−

d231
2

(
d31 −

K

L
d32

)
,

C3 =
x0√
2π
e−

d231
2

(
d41 −

K

L
d42

)
, C =

1

2
(C2 − C3),

D1 =
x0

2
√

2π
e−

d211
2 σ
√
T − C1

4
, D2 =

C1

4
, D3 = D1 +D2,

E1 = 8Th2(d21, d22) + C1, E2 = 8Th2(d41, d42) +
1

2
(3C2 + C3),

E3 = 8T (h2(−d21,−d22)− h2(−d41,−d42))− C1 +
1

2
(3C2 + C3).
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Finally, Φ(x) is the standard normal distribution function.

As for the proof of Theorem 1.2.5, the basic idea used to prove the statements in Theorem
1.2.15 is to write the binomial price of the down-and-out call option with a down barrier L by
using the binomial closed-form formula provided in Reimer and Sandmann ([70], 1996) and
then a normal approximation of the sum of binomial coefficients following a generalization
of a result of Uspensky ([80], 1937) provided in Lin and Palmer ([62], 2013). Similarly, it
is possible to show analogous results for the down-and-in call, and the up-and-in and the
up-and-out call options.
We remark that Theorem 1.2.15 shows that the convergence of the binomial prices for single
barrier call options is oscillatory and the oscillation is due to the quantity ∆L

n that is a
measure of how much the contractual barrier L is far from the effective barrier on the
lattice. We also observe that no contribution of order 1√

n
is due to the position of the strike

K. In Chapter 3 we will prove that it is possible to derive a similar asymptotic expansion
for the price of a digital call option with a single barrier by using arguments similar to the
ones used to prove Theorem 1.2.15.
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Chapter 2

Double and multi-step double barrier
options in the Black and Scholes
model

A double barrier option is a path dependent option because the payoff function depends
on whether the stock’s price path ever touches two price levels called “barriers” that are
located above (higher barrier) and below (lower barrier) the current stock price. We call
step double barrier option or multi-barrier double touch/no touch or simply tunnel a kind of
option whose barriers evolve in time as piecewise constant functions.
The principal features of those contracts are the flexibility (in fact investors may set knock-
out or knock-in levels they want) and the fact that it is possible to manage the risk of “sudden
death” of the option by adjusting the barriers according to the investors risk-aversion.
Both barrier options and step double barrier options are traded in financial markets and
in particular are embedded in a variety of structured products, in particular in range-type
contracts. For instance, standard range notes are structured products that pay an above-
market interest rate for each day that the underlying spot rate stays within a specified range
and pay no interest for that day if the underlying asset process goes outside the range.
It is also possible to find this kind of structure in loans, in which the client pays the best
interest rate below market if there are no knock-out conditions before maturity. There are
also range forward contracts that allow the holders to buy/sell quantities of certain assets
on a specific date at a preferential rate that is more favorable than the instant forward rate
if some knock-out or knock-in conditions are satisfied. Then, there are some options called
“wedding cakes” that pay coupons by considering the underlying reference rate movements.
Typically, the option pays a lower coupon if the reference rate moves within the wider range
and it pays nothing if it touches the barrier levels. The payoff representation is similar to a
wedding cake, hence the name of this kind of options. In reality, as suggested in Guillaume
([43], 2010), there are a lot of other financial products that embed double barrier and step
double barrier options and for a detailed description one can refers to the book of Wystup
([86], 2006).
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Here comes the necessity to price this kind of products. We assume in what follows that
the underlying process follows a geometric Brownian motion, so we work in the Black and
Scholes model.
Kunitomo and Ikeda ([56], 1992) derive a closed-form formula for European double-barrier
options. In particular, they give the explicit formula, expressed as an infinite series, that
a geometric Brownian motion reaches the maturity date without hitting either the lower
and the upper barrier. The main assumption in [56] is that the barriers are exponential
functions of time (this hypothesis includes the case they are constant), so the contract is
in some ways constrained by the mathematical assumption on the boundaries that on the
other hand allows exact calculations. Geman and Yor ([40], 1994) derive the expression
of the Laplace transform of the double-barrier option price with respect to the maturity
date. Subsequently Sidenius ([73], 1998) generalizes these pricing formulas by considering
the possibility of including rebates (where the rebate is the amount paid to the holder of the
option if the option expires worthless) and by allowing the option to have a more complicated
form (for example he considers the case in which the barriers have to be crossed several times
in a certain order).
For what concerns the pricing of step double barrier options, the analytical formulas are
due to Guillaume ([43], 2010) who obtains an exact expression in terms of infinite series
for 2-step double barrier options, i.e. options whose lifetime is divided into two intervals
to which different barrier levels are associated. The formulas in [43] are highly complicated
and require the implementation of numerical algorithms for the approximation of the infinite
sums. Instead, no closed-form formulas are proposed for multi-step double barrier options
and in this case the author suggests the use of a Monte Carlo scheme enhanced with control
variate.
Both for double barrier options and for step double barrier options, the numerical implemen-
tation of the related analytical expressions requires the approximation of the infinite sums
by means of algorithms that could lead large pricing errors. Moreover these closed-form
formulas are available only for European-type options and not for the American case. Then
an alternative way to proceed is to use numerical lattice procedures that are able to deal
with the American case and also with nonstandard payoff functions.
As observed in Boyle and Lau ([16], 1994), a naive application of the classical CRR model for
barrier options may lead large pricing errors caused by the distance between the contractual
barriers and the nodes of the tree structure. For this reason a possible solution is to feed the
algorithm with the “right” value of the barrier as in Boyle and Lau ([16], 1994), Ritchken
([72], 1995), Cheuck and Vorst ([22], 1996), Figlewsky and Gao ([34], 1999), Gaudenzi and
Lepellere ([37], 2006) and Gaudenzi and Zanette ([39], 2009). However those methods are
able to deal only with a single barrier.
The first attempt for treating numerically in an efficient and accurate way the double barrier
pricing issue is due to Dai and Lyuu ([29], 2010), who construct the so-called bino-trinomial
tree in which the time step algorithm is chosen such that both the lower barrier L and the
higher barrier H coincide with two layers of nodes in the binomial mesh. However numerical
results show that this method is not able to deal with the “near barrier” problem, occurring
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when the initial asset price is very close to one of the barriers. It means that the algorithm
needs a drastically increase of the number of time steps n ∈ N in order to provide an accurate
price and this could lead to require a very large value for n.
In Appolloni, Gaudenzi and Zanette ([5], 2013) we introduce the Binomial Interpolated
Lattice in which the binomial mesh is constructed as in Dai and Lyuu ([29], 2010), i.e. the
time step is chosen such that L and H match two layers of nodes in the tree, but in the
pricing algorithm we introduce suitable interpolations in time and in space to solve the “near
barrier” problem. The algorithm turns to be an efficient procedure for pricing double and
multi-step double barrier options. Moreover, we provide a proof of the rate of convergence
of the binomial approximation by using the PDE techniques described in Gobet ([42], 2001).
Similarly, we provide the rate of convergence for the Dai and Lyuu algorithm and we show
that, as for the Binomial Interpolated Lattice, it is equal to o( 1

n1−α ) for all α ∈ (0, 1), that
essentially means that it is O( 1

n
).

We also provide some numerical results. First we propose numerical experiments in order
to compare our algorithm to the one proposed in Dai and Lyuu ([29], 2010) for pricing
knock-out double barrier call options and we observe that the Binomial Interpolated Lattice
performs better than the bino-trinomial procedure. Then we also compare our procedure
with the PDE finite difference method implemented following Zvan, Forsyth and Vetzal ([87],
2000) both for pricing and hedging purposes. The result is that the Binomial Interpolated
Lattice provides double barrier option prices and Greeks (delta, gamma, vega) with similar
accuracy than the PDE method in analogue CPU times. Finally we study the performance
of the Binomial Interpolated Lattice algorithm for the pricing of multi-step double barrier
options.
The Chapter is organized as follows. In Section 2.1 we present the model and we define the
multi-step double barrier options that we will price in Section 2.8 of the numerical results. In
Section 2.2 we recall the European closed-form formulas for European double barrier knock-
out put options (due to Kunitomo and Ikeda ([56], 1992)) and for European 2-step double
knock-and-out put options (due to Guillaume ([43], 2010)). In Section 2.3 we describe the
principal lattice techniques used to price single barrier options and in Section 2.4 we present
the Dai and Lyuu algorithm that is the only one able to deal with the double barrier case.
In Section 2.5 we show our new lattice technique, the Binomial Interpolated Lattice, that is
described in Appolloni, Gaudenzi and Zanette ([5], 2013). Then, in Section 2.6 we discuss
the rate of convergence of our scheme and that of the Dai and Lyuu one. In Section 2.7
we extend our algorithm to the case of the multi-step double barrier options and the early-
ending multi-step double barrier options. Finally, Section 2.8 is devoted to the numerical
results on the pricing of double barrier options (and comparisons with the Dai and Lyuu
model and the finite difference approach of Zvan, Forsyth and Vetzal), 2-step double barrier
options (and comparisons with the Guillaume closed-form formulas in the European case)
and multi-step double barrier options (and comparisons with a Monte Carlo benchmark in
the European case). No benchmark is available for 2-step and multi-step double barrier
options in the American case.
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2.1 The model

We consider a market model in the time interval [0, T ] where the evolution of the risky asset
(S(t))t∈[0,T ] is governed by the Black-Scholes stochastic differential equation

dS(t)

S(t)
= rdt+ σdB(t), S(0) = s0 > 0, (2.1.1)

where (B(t))t∈[0,T ] is a standard Brownian motion under the risk neutral probability measure.
The non-negative constant r is the risk-free interest rate and σ is the constant volatility
parameter. As remarked in the introduction of this Chapter, a barrier option is a contract
whose payoff depends on whether the underlying stock price path ever touches certain price
levels called barriers. Once either of these barriers is breached, the status of the option is
immediately determined: either the option comes into existence if the barrier is a knock-
and-in type or it ceases to exist if the barrier is a knock-and-out type. In what follows we
will consider the price of double barrier knock-and-out call and put options, so we recall that
the payoff is given by{

max(θST − θK, 0), if Sinf > L and Ssup < H
0, otherwise

(2.1.2)

where

• K is the strike price;

• Sinf = inft∈[0,T ] St and Ssup = supt∈[0,T ] St;

• L and H stand for the lower and the higher barrier respectively;

• θ = 1 for call options and θ = −1 for put options.

Let us introduce the regular step double barrier options as explained in Guillaume ([43],
2010). Let {T0, T1, ..., Tn−1, Tn} be a partition of the option lifetime [0, T ] with

0 = T0 < T1 < ... < Tn = T.

A regular n-step double barrier option is an option in which the barriers are constant in
every interval [Ti, Ti+1], i = 0, ..., n − 1. Hence, at each interval [Ti, Ti+1] a constant lower
barrier Li and a constant higher barrier Hi are associated. A regular n-step double knock-out
option with payoff function f , has this payoff at maturity provided that the underlying asset
price stays in (Li, Hi) in every interval [Ti, Ti+1], otherwise it expires worthless or provides a
contractual rebate. For example, a regular n-step double knock out put/call option has the
following payoff:{

max(θST − θK, 0), if Siinf > Li and Sisup < Hi ∀ i = 0, 1, ..., n− 1
0, otherwise

(2.1.3)
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where for every i = 0, 1, ..., n− 1 we define

Siinf = inf
t∈[Ti,Ti+1]

St and Sisup = sup
t∈[Ti,Ti+1]

St,

and, as before, θ = 1 for call options and θ = −1 for put options.
An early ending n-step double knock-out option with maturity T has the same payoff of a
standard call or put option on the condition that the underlying asset price stays in (Li, Hi)
in every interval [Ti, Ti+1], i = 0, .., n − 2 (hence there are no ”out” conditions on the last
time interval).
We remark that it is also possible to include in all these contracts the possibility to remove
the knock-out barrier provision (partial-time step double barrier options) and also take into
account knock-in features instead of knock-out ones. We stress that, as usual, in the Euro-
pean case the knock-in option prices are obtained by taking the difference between the prices
of the corresponding vanilla option and the knock-out option.

2.2 The closed-form formulas

We now present the exact formula for the price of a knock-out double barrier call as described
in Kunitomo and Ikeda ([56], 1992). We recall that they work in the more general case in
which the barriers are functions of the time and have an exponential form, i.e.

H(t) = Heδ1t, L(t) = Leδ2t, (2.2.1)

with L(t) < H(t), for every t ∈ [0, T ] and with δ1 and δ2 denoting the curvature of the
higher and the lower barrier respectively. By choosing δ1 = 0 = δ2 we obtain the price
when the barriers are constant. The price at time t ∈ [0, T ], that we denote with v(t), of
a European double barrier knock-out call option with barriers as in (2.2.1) and stock price
process (S(t))t∈[0,T ] following the SDE (2.1.1) is given by:

v(t) = s0

+∞∑
n=−∞

[(
Hn

Ln

)c∗1n
(
L

s0

)c2n

(Φ(d+
1n)− Φ(d+

2n))

−

(
Ln+1

Hns0

)c∗3n

(Φ(d+
3n)− Φ(d+

4n))

]

−Ke−rτ
+∞∑

n=−∞

[(
Hn

Ln

)c∗1n−2(
L

s0

)c2n

(Φ(d−1n)− Φ(d−2n))

−

(
Ln+1

Hns0

)c∗3n−2

(Φ(d−3n)− Φ(d−4n))

]
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where F = Heδ1T , τ = T − t and

c∗1n = 2
r − δ2 − n(δ1 − δ2)

σ2
+ 1, c2n = 2n

δ1 − δ2

σ2
, c∗3n = 2

r − δ2 + n(δ1 − δ2)

σ2
+ 1,

d±1n =
log s0H2n

KL2n + (r ± σ2

2
)τ

σ
√
τ

, d±2n =
log s0H2n

FL2n + (r ± σ2

2
)τ

σ
√
τ

,

d±3n =
log L2n+2

Ks0H2n + (r ± σ2

2
)τ

σ
√
τ

, d±4 =
log L2n+2

Fs0H2n + (r ± σ2

2
)τ

σ
√
τ

and where Φ(·) is the standard normal distribution function.
We now present the closed-form formula for the pricing at time t = 0 of a European 2-step
double knock-out put option with constant barrier levels as described in Proposition 1 in
Guillaume ([43], 2010). We recall here that [Li, Hi] (i = 1, 2) is the i-th step of the double
barrier, where Li is the lower bound and Hi is the higher bound. To be precise, in the first
time interval [0, T1] we consider the barriers L1 and H1, and in the time interval [T1, T2] the
barriers L2 and H2. The price at time 0, that we denote with vTSD(0) (with TSD standing
for 2-steps double), is given by

vTSD(0) = e−rT2KφTSD(µ = r − σ2/2)− s0φTSD(µ = r + σ2/2),

where the function φTSD(µ) is defined as follows:

φTSD(µ) =
∞∑

n1=−∞

∞∑
n2=−∞

(
Hn1

1 Hn2
2

Ln1
1 L

n2
2

) 2µ

σ2
[
φ2(I1(H1 ∧H2), I2(K);

√
T1/T2)

− Φ2(I1(L1 ∨ L2), I2(K);
√
T1/T2)− Φ2(I1(H1 ∧H2), I2(L2);

√
T1/T2)

+ Φ2(I1(L1 ∨ L2), I2(L2);
√
T1/T2)

]

−
∞∑

n1=−∞

∞∑
n2=−∞

(
Ln1

1 L
n2+1
2

s0H
n1
1 Hn2

2

) 2µ

σ2
[
φ2(I3(H1 ∧H2), I4(K);−

√
T1/T2)

− Φ2(I3(L1 ∨ L2), I4(K);−
√
T1/T2)− Φ2(I3(H1 ∧H2), I4(L2);−

√
T1/T2)

+ Φ2(I3(L1 ∨ L2), I4(L2);−
√
T1/T2)

]
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−
∞∑

n1=−∞

∞∑
n2=−∞

(
Ln1+1

1 Hn2
2

s0H
n1
1 Ln2

2

) 2µ

σ2
[
φ2(I5(H1 ∧H2), I6(K);

√
T1/T2)

− Φ2(I5(L1 ∨ L2), I6(K);
√
T1/T2)− Φ2(I5(H1 ∧H2), I6(L2);

√
T1/T2)

+ Φ2(I5(L1 ∨ L2), I6(L2);
√
T1/T2)

]

+
∞∑

n1=−∞

∞∑
n2=−∞

(
Ln2+1

2 Hn1
1

Ln1+1
1 Ln2

2

) 2µ

σ2
[
φ2(I7(H1 ∧H2), I8(K);−

√
T1/T2)

− Φ2(I7(L1 ∨ L2), I8(K);−
√
T1/T2)− Φ2(I7(H1 ∧H2), I8(L2);−

√
T1/T2)

+ Φ2(I7(L1 ∨ L2), I8(L2);−
√
T1/T2)

]
,

where Φ2(·, ·; θ12) is the joint cumulative distribution function of two standard normal random
variables Y1 and Y2 with θ12 as correlation coefficient and where the remaining functions are
defined as follows:

I1(x) =

log

(
xL

2n1
1

s0H
2n1
1

)
−µT1

σ
√
T1

, I2(x) =

log

(
xL

2n2
2 L

2n1
1

s0H
2n2
2 H

2n1
1

)
−µT2

σ
√
T2

,

I3(x) =

log

(
xL

2n1
1

s0H
2n1
1

)
+µT1

σ
√
T1

, I4(x) =

log

(
xs0H

2n2
2 H

2n1
1

L
2n2+2
2 L

2n1
1

)
−µT2

σ
√
T2

,

I5(x) =

log

(
xs

2n1
0 H

2n1
1

L
2n1+2
1

)
−µT1

σ
√
T1

, I6(x) =

log

(
xs0L

2n2
2 H

2n1
1

L
2n1+2
1 H

2n2
2

)
−µT2

σ
√
T2

,

I7(x) =

log

(
xs0H

2n1
1

L
2n1+2
1

)
+µT1

σ
√
T1

, I8(x) =

log

(
xL

2n1+2
1 H

2n2
2

s0L
2n2+2
2 H

2n1
1

)
−µT2

σ
√
T2

.

The implementation of the previous formula, as explained in Guillaume ([43], 2010), can be
done by using the Genz algorithm ([41], 2004) that computes the standard normal cumulative
distribution functions with a precision for all practical purposes that is gained with the
truncation of the infinite sums to n1, n2 = −8, ..., 8.
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2.3 Lattice procedures for barrier options

In this Section we present the principal works that deal with the problem of pricing barrier
options by using lattice techniques. The first tentative is described in Boyle and Lau ([16],
1994), in which the authors observe that a naive use of the CRR model for the pricing of single
barrier options may cause significant convergence problems, in the sense that the method is
very slow and has a persistent bias. Since a standard call option can be decomposed into a
down-and-out call option and a down-and-in call option, they first analyze in both cases the
convergence of the binomial prices to the Black and Scholes ones. In particular, they observe
that the binomial values of the down-and-in call options always lie below the continuous-
time limit and the binomial values of the down-and-out call option always lie above the
continuous-time limit. Moreover, the convergence is very erratic and the oscillations of the
binomial prices for the down-and-out call option are exactly a mirror image of the oscillations
of the binomial prices for the down-and-in call option. This is essentially the reason why the
estimates for a standard call are much more stable: the two sources of oscillations cancel each
other. But the main reason why the binomial prices for barrier options are so oscillating is
that the true barrier in general lies between two nodes of the tree and this induces inaccuracy
in the calculations. One possibility in order to overcome this problem is to choose the number
of time steps n such that the contractual barrier is as close as possible to a layer of nodes.
Let us suppose for example that the lower barrier L lies between m down jumps and (m+ 1)
down jumps of the asset price, i.e.

s0d
m > L > s0d

m+1, with d = eσ
√
h,

in which h = T/n denotes as usual the time step of the binomial tree. Then if we select n
such that it is the largest integer smaller then

F (m) =
m2σ2T

(log(s0/L))2

we get that the barrier is as close as possible to a layer of nodes of the tree and the method
is more accurate.
Subsequently, Ritchken ([72], 1995) offers another approach for pricing single barrier options.
Under a trinomial framework he constructs a tree such that the barrier exactly coincides with
a layer of nodes of the tree. In particular he introduces a “stretch” parameter into the lattice
which changes the time step in order to place the nodes on the barrier.
In the meantime, Derman et al. ([30], 1995) try to perform the estimates provided by the
binomial method by a linear interpolation considering the two nodes above and the two
below the barriers. Similar ideas have been developed in more specific contexts in Broadie
and Detemple ([19], 1996), Cheuck and Vorst ([23], 1996, 1997), Tian ([79], 1999), Widdicks
et al. ([84], 2002) and Chung and Shih ([24], 2007).
Figleski and Gao ([34], 1999) call the source of error caused by the barrier the “nonlinearity
error”. As a solution to this problem they suggest to construct a trinomial lattice for single
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barrier options in which the resolution of the tree varies in different parts of the structure.
It means that they use a coarse grid for most of the tree structure and then they refine the
mesh near certain critical points (the points near the barrier) where greater accuracy really
matters. They call this new method the Adaptive Mesh Model (AMM) and they remark that
the computational effort suffers only for a small increase but in the meantime the accuracy
is improved.
Then Gaudenzi and Lepellere ([37], 2006) try to refine the interpolation procedure first
introduced in the pricing of barrier options by Reimer and Sandmann ([70], 1995). The idea
is to estimate the binomial price of a single barrier option by evaluating the price at different
“computational” barriers and then by interpolating these prices on the contractual barrier.
They also provide a technique in order to obtain all the interpolating data by a unique tree,
so that the computational time of the new algorithm is similar to the one of the usual CRR
tree.
Gaudenzi and Zanette ([39], 2009) provide an algorithm for the pricing of barrier options with
discrete dividends by a binomial tree. In particular, they propose a procedure that combines
the interpolation technique with the singular points approach introduced in Gaudenzi et al.
([38], 2007). The “singular points” are a set of points that are computed backwardly on the
tree and that allow to construct a convex piecewise function so that one has a continuous
representation of the option price function at every node of the tree. In this way they get
at every node of the tree a lower bound and an upper bound of the true binomial price
and so this technique permits the treatment of discrete dividends. In [39], the singular
points procedure is then combined with the idea in Gaudenzi and Lepellere ([37], 2006) of
constructing a tree in which all the singular points are generated by the barrier itself, and so
the authors get an algorithm for the pricing of a single barrier option with discrete dividends.
All the previous methods deal with the single barrier case. The first lattice approach that
is able to treat the pricing of double barrier options is due to Dai and Lyuu ([29], 2010) and
it is described in details in the following Section.

2.4 The Dai and Lyuu procedure

In this Section we consider the description of the Dai and Lyuu procedure presented in ([29],
2010). Let m be the number of time steps of the CRR binomial tree and let ∆τ = T

m
be the

corresponding time-step. The standard CRR discrete binomial process is given by

S(i+1)∆τ = Si∆τYi+1, 0 ≤ i ≤ m− 1,

where the random variables Y1, . . . , Ym are independent and identically distributed with
values in {d, u}. Let us denote by p = P(Ym = u). The CRR tree corresponds to the choice

u = 1
d

= eσ
√

∆τ and

p =
er∆τ − e−σ

√
∆τ

eσ
√

∆τ − e−σ
√

∆τ
,
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as described in (1.1.14). Let us now consider the problem of pricing a double barrier option
with barriers L and H in which the underlying process follows the dynamics described in
(2.1.1). In order to treat this problem, Dai-Lyuu in [29] introduce the following “bino-
trinomial” method. After a logarithmic change of the barriers (l = logL and h = logH)
they first construct in the log-space a binomial CRR random walk with space step σ

√
∆T ,

where the new time step ∆T is defined as follows. Considering the CRR choice of time step
∆τ = T

m
, the new time step is defined as

∆T =
(h− l

2kσ

)2

(2.4.1)

where

k =

⌈
h− l

2σ
√

∆τ

⌉
, (2.4.2)

with dxe denoting the smallest integer not less than x, for every x ∈ R. By this way, two
layers of nodes in the tree coincide with the lower barrier L and the higher barrier H and
the new number of steps is m′ = b T

∆T
c. Now, it is possible to build a binomial structure of

m′ time steps with binomial coefficient

u =
1

d
= eσ

√
∆T (2.4.3)

and probability

p =
er∆T − e−σ

√
∆T

eσ
√

∆T − e−σ
√

∆T
. (2.4.4)

The remaining amount of time to make the whole tree span T years, that we denote with
∆T ′, is defined as

∆T ′ = T −

(⌊
T

∆T

⌋
−1

)
∆T

and corresponds to the length of the first time step of the bino-trinomial tree. Finally, Dai-
Lyuu construct a 1-step trinomial tree, using a moment matching procedure, starting from
s0 and reaching three nodes of the previous binomial CRR tree at time ∆T ′. Specifically, at
time ∆T ′ they select the central node, that we call Yl, such that it is the closest lattice point
to the mean of the logarithmic stock price process Yt = logSt. After choosing this point they
consider two further points, one below and one above Yl: Yl−1 and Yl+1, respectively. Then,
in order to connect these three points to the starting one, they match the mean and the
variance at ∆T ′ of the continuous process Yt with the mean and the variance of the discrete
process. We recall that the mean and the variance of Yt at ∆T ′ are equal to

µ∆T ′ = log s0 + (r − σ2/2)∆T ′,

Var∆T ′ = σ2∆T ′,
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respectively. So, the branching probabilities (that we call pl−1, pl, pl+1) can be derived by
solving the following three equations

pl−1Yl−1 + plYl + pl+1Yl+1 = µ∆T ′ ,

pl−1(Yl−1 − µ∆T ′)
2 + pl(Yl − µ∆T ′)

2 + pl+1(Yl+1 − µ∆T ′)
2 = Var∆T ′ ,

pl−1 + pl + pl+1 = 1.

Then, the merge of the binomial tree of m′ steps and the 1-step trinomial tree provides the
complete mesh structure of n := m

′
+ 1 time steps. The pricing of European and American

continuous double barrier options can be done by using the backward dynamic programming
procedure on the above described bino-trinomial mesh structure. To be precise, let us denote
by vn(ti, Si,j) the option prices at time ti depending on the underlying asset process Si,j. The
option prices at maturity are

vn(tn, Sn,0) = vn(tn, Sn,k) = 0 and vn(tn, Sn,j) = max(θSn,j − θK, 0), ∀j = 1..., k − 1,

with θ = 1 for call options and θ = −1 for put options. At time steps i = n − 1, ..., 0 the
option prices are backwardly computed by means of the formulas:

1. if n− i is odd:

vn(ti, Si,j) = e−r∆T [pvn(ti+1, Si+1,j+1) + (1− p)vn(ti+1, Si+1,j)],

j = 0, ..., k − 1,

2. if n− i is even:

vn(ti, Si,j) = e−r∆T [pvn(ti+1, Si+1,j) + (1− p)vn(ti+1, Si+1,j−1)],

j = 1, ..., k − 1.

The values at the barriers vn(ti, L), vn(ti, H), are set equal to 0 at every step i with n − i
even, in order to take into account the “out” feature of the barrier option. The numerical
results presented in Section 2.8 show that this bino-trinomial structure is not able to treat
the “near barrier” problem. In order to overcome this, we introduce a simpler binomial
structure called the ”Binomial Interpolated Lattice” approach, that we describe in the next
Section.

2.5 The binomial interpolated lattice

In the following, we will use the same binomial parameters ∆T , u, d and p of Dai-Lyuu ([29],
2010), computed as described in (2.4.1), (2.4.3) and (2.4.4) in the previous Section. But we
modify the number of time steps: in fact we consider a new number of time steps n := m′+2,
with m′ = b T

∆T
c, in order to perform suitable interpolations in time and in space.



56Double and multi-step double barrier options in the Black and Scholes model

First of all, we construct a binomial mesh structure where all the binomial nodes are gen-
erated by the barriers. Therefore we build a tree which nodes at maturity are indeed all of
type

Sn,j = Lu2j, j = 0, ..., k,

so that Sn,k = Lu2k = H (where, as in the previous Section, k = d h−l
2σ
√

∆τ
e, with ∆τ = T

m
).

The underlying asset at a generic node (i, j), ∀ i = 0, ..., n− 1, is

Si,j =

{
Lu2j, j = 0, ..., k if n− i is even

Lu2j+1, j = 0, ..., k − 1 if n− i is odd

We now proceed to the description of the pricing algorithm in the case of double barrier
knock-and-out options. We shall denote as usual by vn(ti, Si,j) the option prices at time ti
depending on the underlying asset Si,j and computed by a backward induction as described
in the previous Section. The basic difference with what done in Dai and Lyuu ([29], 2010)
consists in what follows.
At time steps i = 0 and i = 2 we choose four nodes (two less and two greater than s0).
In order to approximate the price of the double barrier option we first interpolate in time
the chosen points so that we obtain four “precise” prices of the option at time 0. Then we
proceed with a Lagrange four points interpolation in space, i.e. we interpolate the four prices
at s0. The price obtained after these interpolations in time and in space is the approximated
option price at time 0 and initial underlying asset s0. The procedure is illustrated in Figure
2.1.

Figure 2.1: Binomial interpolated lattice method. Double knock-out barrier option. The price
at s0 is obtained by a Lagrange four points interpolation in space of the prices at the empty
circles, such prices are obtained by a linear interpolation in time of the prices at the nodes
denoted by squares.
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Remark 2.5.1. The reason why we select the points at times t0 and t2 is due to how the
binomial mesh is constructed. In fact, at these times the choice of the four points around s0

provides nodes of the same type at t0 and t2 (n and n − 2 have the same parity) and this
makes the procedure “uniform”.

We remark that there are some cases in which we need to modify the choice of the interpo-
lation points and this happens when s0 is close to one of the barriers. Let us suppose that
s0 is near the lower barrier L. We now have two possible cases: there are no points between
s0 and the barrier L and there is only one point between s0 and the barrier L. In the first
case we select at times t0 and t2 the two points above s0 and the point on the barrier. So we
perform three interpolations in time using the chosen points and we obtain three different
prices at time 0. Then we consider the polynomial passing through these three points and
we evaluate it at s0 (see Figure 2.3, cases a) and b)). We remark that in case a) the mesh
constructed provides at times t0 and t2 a node on the barrier L, while in case b) there is
not a node on the barrier by construction but we can always consider it in the interpolation
procedure because here we know that the price is equal to 0. In the second case we choose
four points at t0 and t2: the two above s0, the point below s0 and the point on the barrier. So
we linearly interpolate four times and then we evaluate at s0 the polynomial passing through
the four points obtained at 0. See Figure 2.2, cases c) and d). We observe again that in the
case in which there is not a node on the barrier by construction we can always consider it
in the interpolation procedure.

Figure 2.2: Binomial interpolated lattice method. Double barrier knock-out options in the
“near barrier case”. In cases a) and b) the interpolation in space involves three nodes: at
times t0 and t2 we select the two nodes above s0 and the node on the barrier. We observe
that case a) occurs when n − 2 is even and case b) when n − 2 is odd. In cases c) and d),
instead, we select four nodes at times t0 and t2. Case c) occurs when n− 2 is odd and case
d) when n− i is even.

In the American case the procedure is similar with suitable differences for the values of the
prices on the barriers. In particular we set vn(ti, L) = max(θL − θK, 0) and vn(ti, H) =
max(θH − θK, 0) for each time step i = 0, ..., n with n− i even. In the backward procedure,
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as usual, we need to compare the early exercise with the continuation value at each node of
the tree.
The procedure previously described provides an efficient evaluation of double barrier options
both in European and American case. We will show this in the Section 2.8 concerning the
numerical results.

Remark 2.5.2. Besides pricing, another interesting problem concerning the theory and prac-
tice of options is the hedging issue. Here we can calculate the values of Delta, Gamma and
Vega by using a finite difference approximation. In particular we can use a unique tree in
order to compute Delta and Gamma , i.e.:

Delta =
vn(0, s0(1 + δ))− vn(0, s0(1− δ))

2s0δ
,

Gamma =
vn(0, s0(1 + δ))− 2vn(0, s0) + vn(0, s0(1− δ))

s2
0δ

2
,

where δ is the relative increment. The prices vn(0, s0 + δ) and vn(0, s0 − δ) are computed
with the interpolation procedure previously described. In the case of the Vega computation
we need to implement two different trees: one with volatility parameter σ and the other with
volatility parameter σ(1 + δ). Then the computation of Vega is given by:

Vega =
vnσ(1+δ)(0, s0)− vn(0, s0)

σδ
.

2.6 Rate of convergence in the European case

In this Section we study the rate of convergence of the Binomial Interpolated Lattice ap-
proach. Gobet ([42], 2001) gives an asymptotic expansion of the standard CRR binomial
tree error and proves that the main contribution term depends on the distance between
the effective barrier and the tree overshoot of the barrier itself (see Theorem 3.3 in [42]
and Section 1.2). In the following we use this result and some properties of the Lagrange
polynomials providing the final interpolations to show that the approximation error of the
Binomial Interpolated Lattice scheme is o(∆T 1−α), for every α ∈ (0, 1).
We recall that vn(ti, Si,j) is the approximated price on the lattice at time ti and asset price
Si,j. Moreover, we call v(ti, Si,j) the corresponding price in the continuous-time model at
time ti and asset price on the lattice Si,j and v(t, s) the continuous price at time t and
underlying asset price s with (t, s) ∈ [0, T ]× R+. The starting point s0 is fixed.
According to what developed in Section 2.5, at time step i = 2 , i.e. at time T − (n− 2)∆T ,
we choose four nodes (two less and two greater than s0) and similarly we do at time step
i = 0, i.e. at time T − n∆T . As observed at Remark 2.5.1, the mesh constructed provides
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the same four nodes at times t0 and t2 and we set them as follows

Sj−2 < Sj−1 ≤ s0 < Sj < Sj+1,

where Sk := S0,k = S2,k, for all k ∈ {j−2, j−1, j, j+1}. At the chosen points the algorithm
gives the prices

vn(ti, Sj−2), vn(ti, Sj−1), vn(ti, Sj), v
n(ti, Sj+1), i = 0, 2,

respectively. Now, as k = j − 2, j − 1, j, j + 1, we write down the expressions of the approx-
imated option prices vn(0, Sk) obtained by linearly interpolating in time the points

(t0, v
n(t0, Sk)), (t2, v

n(t2, Sk)), k = j − 2, j − 1, j, j + 1.

This means that we set

vn(0, Sk) = qk(0), k = j − 2, j − 1, j, j + 1,

where qk(t) are the linear interpolating polynomials given by

qk(t) = a0(t)vn(t0, Sk) + a2(t)vn(t2, Sk),

with

a0(t) =
t− t2
t0 − t2

and a2(t) =
t− t0
t2 − t0.

Then, in order to define the precise price at time 0 we interpolate in space through a Lagrange
polynomial the points

(0, vn(0, Sj−2)), (0, vn(0, Sj−1)), (0, vn(0, Sj)), (0, v
n(0, Sj+1)).

This means that we set
vn(0, s0) = q(s0),

where q(x) is the Lagrange polynomial given by

q(x) = bj−2(x)vn(0, Sj−2) + bj−1(x)vn(0, Sj−1)

+ bj(x)vn(0, Sj) + bj+1(x)vn(0, Sj+1),

with (for details see [85])

bj−2(x) =
(x− Sj−1)(x− Sj)(x− Sj+1)

(Sj−2 − Sj−1)(Sj−2 − Sj)(Sj−2 − Sj+1)
,

bj−1(x) =
(x− Sj−2)(x− Sj)(x− Sj+1)

(Sj−1 − Sj−2)(Sj−1 − Sj)(Sj−1 − Sj+1)
,

bj(x) =
(x− Sj−2)(x− Sj−1)(x− Sj+1)

(Sj − Sj−2)(Sj − Sj−1)(Sj − Sj+1)
,

bj+1(x) =
(x− Sj−2)(x− Sj−1)(x− Sj)

(Sj+1 − Sj−2)(Sj+1 − Sj−1)(Sj+1 − Sj)
.
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So, by resuming, we set the approximated price at time 0 as

vn(0, s0) =

j+1∑
k=j−2

∑
i∈{0,2}

ai(0)bk(s0)vn(ti, Sk).

Proposition 2.6.1. The Binomial Interpolated Lattice error

ErrBIL(n) = |vn(0, s0)− v(0, s0)|

resulting from the algorithm behaves as follows:

ErrBIL(n) = o(∆T 1−α),

for every α ∈ (0, 1).

Proof. Since ∑
k∈{j−2,j−1,j,j+1}

bk(s0) = 1,
∑
i∈{0,2}

ai(0) = 1,

we can write

ErrBIL(n) =

∣∣∣∣∣∑
k

∑
i

ai(0)bk(s0)(vn(ti, Sk)− v(0, s0))

∣∣∣∣∣
≤

∣∣∣∣∣∑
k

∑
i

ai(0)bk(s0)(vn(ti, Sk)− v(ti, Sk))

∣∣∣∣∣
+

∣∣∣∣∣∑
k

∑
i

ai(0)bk(s0)(v(ti, Sk)− v(0, s0))

∣∣∣∣∣.
Let us consider first the generic term in the second sums above: by applying Taylor’s formula
around the point (0, s0) we can write

v(ti, Sk)− v(0, s0) = ∂tv(0, s0)ti + ∂xv(0, s0)(Sk − s0) +
1

2
R(i, k),

where

R(i, k) = ∂2
x,xv(0, s0 + θi,k(Sk − s0))(Sk − s0)2 + ∂t,tv(θi,kti, s0)t2i

+ 2∂2
t,xv(θi,kti, s0 + θi,k(Sk − s0))(Sk − s0)ti,

and θi,k, θi,k are suitable points in [0, 1]. By using the global estimates in Lemma 3.1 Gobet
([42], 2001), we conclude that all the partial derivatives of v(t, s) are bounded around (0, s0).
So, we can immediately conclude that∣∣∣∣∣∑

k

∑
i

ai(0)bk(s0)R(i, k)

∣∣∣∣∣≤ O(∆T ).
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Moreover we have∑
k

∑
i

ai(0)bk(s0)(∂tv(0, s0)ti + ∂xv(0, s0)(Sk − s0))

= ∂tv(0, s0)
∑
i

ai(0)ti + ∂xv(0, s0)
∑
k

bk(s0)(Sk − s0) = 0

because, by construction, q1(t) =
∑

i ai(t)ti is the linear polynomial which interpolates the
points (ti, ti), i = 0, 2, so that q1(t) = t and then q1(0) = 0.
Similarly, the polynomial q2(x) =

∑
k bk(x)(Sk − s0) is the Lagrange polynomial which

interpolates the points (Sk, Sk − s0), k ∈ {j − 2, j − 1, j, j + 1}, so that q2(x) = x− s0 and
again q2(s0) = 0. Therefore, we get

ErrBIL(n) ≤

∣∣∣∣∣∑
k

∑
i

ai(0)bk(s0)(vn(ti, Sk)− v(ti, Sk))

∣∣∣∣∣+O(∆T ).

In order to deal with the generic term in the above sums we define Yk := logSk, for all
k ∈ {j − 2, j − 1, j, j + 1}, un(ti, Yk) := vn(ti, e

Yk) and u(ti, Yk) := v(ti, e
Yk). We now apply

Theorem 3.3 in Gobet ([42], 2001). We stress that the probability p of an up jump in (2.4.4)
differs from the probability defined in Gobet for an O(

√
∆T ), but it is easy to see that

the result in [42] still remains valid in our case. Moreover, we remark that the asymptotic
expansion of the standard binomial tree error, that we call Err(n), given in [42] (see also
Theorem 1.2.11) is

Err(n) = C1(H −Hn) + C2(L− Ln) + o(
√

∆T ),

where Hn is the first node of the tree over H, Ln is the first node of the tree lower than L
and C1 and C2 are two positive constants. Actually, straightforward computations give that
the error above can be written as follows

Err(n) = C1(H −Hn) + C2(L− Ln) +Rn, (2.6.1)

where R∆T is such that there exists a constant C > 0: |Rn| ≤ C∆T log(1/∆T ). As a
consequence, one has for every α ∈ (0, 1) that

Err(n) = C1(H −Hn) + C2(L− Ln) + o(∆T 1−α).

Now, the Binomial Interpolated Lattice is constructed so that two layers of nodes coincide
with the lower barrier L and the higher barrier H, therefore the main contribution term in
the error expansion (2.6.1), that is of order O(

√
∆T ), vanishes. So, we get

vn(ti, Sk)− v(ti, Sk) = un(ti, Yk)− u(ti, Yk) = o(∆T 1−α) for every i, k.

The statement now follows.
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Remark 2.6.2. Gobet convergence result is the only one that deals with the double barrier
case and, moreover, it is applicable to a generic continuous payoff function. Lin and Palmer
([62], 2013) have recently given explicit formulas for the coefficients of the asymptotic expan-
sion of the CRR binomial price, but they treat European call options with a single barrier.
In that case they obtain that the rate of convergence is O(∆T ) if the barrier lies exactly on a
node of the tree. For double barrier options it may be possible to derive similar expressions
for the coefficients, but it is not straightforward because no manageable closed-form formulas
of the approximated price exist in terms of binomial coefficients. In fact, in the error ex-
pansion provided in [42], since α can be taken arbitrarily close to zero, one essentially can
assert that

Err(n) = C1(H −Hn) + C2(L− Ln) +O(∆T ),

where C1 and C2 are two positive constants.

Remark 2.6.3. The use of the interpolation technique is strategic in order to get that the
rate of convergence of the Binomial Interpolated Lattice is o(∆T 1−α), for α ∈ (0, 1). In fact,
we do not know a priori if the initial point s0 is a point of the lattice and in general it is not:
our procedure allows us to numerically compute the option price for every observed starting
condition s0 ∈ (L,H). So if we want to directly approximate v(0, s0) with vn(t1, s̃), where
(t1, s̃) is a point of the lattice “close” to (0, s0), then one could have |s0 − s̃| = O(

√
∆T ).

Therefore, in this case one could have

v(0, s0)− vn(t1, s̃) ' O(t1) +O(|s0 − s̃|) = O(
√

∆T ).

Thus, it is only thanks to the interpolation rule that the error contribution of order O(
√

∆T )
always vanishes.

Remark 2.6.4. Let us consider the rate of convergence of the bino-trinomial tree. As de-
scribed in Section 2.4, Dai and Lyuu build the grid in the log-space until time t2 and then
they construct a 1-step trinomial tree in the remaining amount of time ∆T ′ using a moment
matching procedure. Specifically they select at time t2 three nodes that are the closest to
the mean of the logarithmic process at time ∆T ′ and they define the three branching prob-
abilities such that the first two moments of the logarithmic stock price process are matched
(see also Dai-Lyuu ([29], 2010) for details). As in the proof of Proposition 2.6.1, we call
Yi,k = logSi,k and un(ti, Yk) = vn(ti, e

Sk) for all i, k. Moreover we define y0 := log s0 and we
call u(t, y) = v(t, ey) for all (t, y) ∈ [0, T ]× R. If we now call the chosen points at time t2

Y2,l−1, Y2,l and Y2,l+1,

then the Dai and Lyuu algorithm gives the prices

un(t2, Y2,l−1), un(t2, Y2,l), u
n(t2, Y2,l+1)

and the option price of the bino-trinomial tree at time 0 is obtained by one more application
of the backward induction that uses the trinomial approach, i.e.

unDL(0, y0) = e−r∆T
′

1∑
k=−1

pku
n(t2, Y2,l+k).
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We can now proceed in the analysis of the convergence rate using arguments similar to the
ones in Proposition 2.6.1. In fact, we can write

ErrDL(n) = |unDL(0, y0)− u(0, y0)|

≤ O(∆T ′) +

∣∣∣∣∣
1∑

k=−1

pk(u
n(t2, Y2,l+k)− u(t2, Y2,l+k))

∣∣∣∣∣
+

∣∣∣∣∣
1∑

k=−1

pk(u(t2, Y2,l+k)− u(0, y0))

∣∣∣∣∣
≤ O(∆T log(1/∆T )) +

∣∣∣∣∣
1∑

k=−1

pk(u(t2, Y2,l+k)− u(0, y0))

∣∣∣∣∣,
where the estimate on the right hand side follows by applying Gobet’s result. Again by using
Taylor’s expansion, one gets for every α ∈ (0, 1)

ErrDL(n) = o(∆T 1−α) +

∣∣∣∣∣∂xu(0, y0)
1∑

k=−1

pk(Y2,l+k − y0)

∣∣∣∣∣.
Now, the sum in the above r.h.s. is of order O(∆T ′). In fact we recall that the mean of the
logarithmic process Yt = logSt at time ∆T ′ is y0 + (r − σ2/2)∆T ′ and that the probabilities
pk are calculated such that it coincides with the mean of the discrete approximating process,
so we can state that

∑1
k=−1 pk(Y2,l+k − y0) = O(∆T ′). Therefore, we obtain

ErrDL(n) = o(∆T 1−α), ∀α ∈ (0, 1).

Then the rate of convergence of the bino-trinomial tree is an o(∆T 1−α) as the for the Binomial
Interpolated Lattice method.

Remark 2.6.5. There are some cases in which the procedure of the bino-trinomial tree can
bring to numerical problems. In fact, if we fix the number n of time steps, it may happen that
for some values of the starting point s0 one or two of the three nodes required at time ∆T ′ to
build the 1-step trinomial tree fall out of the grid. We briefly recall that in the bino-trinomial
tree procedure the central node (we call it Y2,l from Remark 2.6.4) is selected such that it is
the closest to the mean of the process (i.e. log s0 +(r−σ2/2)∆T ′), while the nodes Y2,l+1 and
Y2,l−1 are the two nodes adjacent to Y2,l (above and below Y2,l respectively). In the following
we suppose that r − σ2/2 ≥ 0. Let us consider first the case in which the initial point log s0

is near the higher barrier logH. We need to consider two different cases:
i) the mean of the process is above the barrier logH:

log s0 + (r − σ2/2)∆T ′ ≥ logH;

ii) the mean of the process is below the barrier logH:

log s0 + (r − σ2/2)∆T ′ < logH.
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The case i) is verified when

He−(r−σ2/2)∆T ′ ≤ s0 < H, (2.6.2)

so for this range of values for s0 the node Y2,l lies on the barrier (i.e. Y2,l = logH) and then
the node Y2,l+1 falls out of the grid. Also in case ii) it may happen the same phenomenon.
It is easy to see that if

He−(r−σ2/2)∆T ′−σ
√

∆T ≤ s0 < H, (2.6.3)

then again Y2,l = logH. From (2.6.2) and (2.6.3) we deduce that for the values of s0 such
that

He−(r−σ
2

2
)∆T ′−σ

√
∆T ≤ s0 < H, (2.6.4)

the bino-trinomial tree may degenerate in the above sense. As for the lower barrier, a similar
discussion gives that if

L < s0 ≤ Le−(r−σ2/2)∆T ′+σ
√

∆T , (2.6.5)

then Y2,l = logL. We observe that we can write the above inequality because the exponent on
the right side is greater than 0 for a sufficiently large value of n. And whenever r − σ2/2 <
0, one can proceed similarly and obtain the same intervals. It is clear that for n large
enough any s0 ∈ (L,H) does not satisfy both (2.6.4) and (2.6.5). Nevertheless, for fixed
values of n (2.6.4) and/or (2.6.5) may hold, so that in practice the bino-trinomial approach
converges slowly than our procedure. So we conclude that asymptotically the two methods
behave the same, but when s0 is a “near barrier” point the Binomial Interpolated Lattice has
the advantage of converging faster than the bino-trinomial method.

Remark 2.6.6. The proof of the rate of convergence in the case in which we take into account
only three points in the space interpolation (“near to the barrier” case) can be treated similarly
to the previous one (“far from the barrier” case), so we omit it. Moreover, we observe that
in this specific case we always find the three points used in the interpolations as explained in
Section 2.5 (see Figure 2.2).

2.7 The binomial interpolated lattice for step double

barrier options

In this Section we use the Binomial Interpolated Lattice algorithm introduced in Section 2.5
for pricing multi-step double barrier options. The procedure can also be applied to early-
ending and partial-time step double barrier options in a straightforward way.
Let us consider for example a 2-step double knock-out option. We first consider the time
period [T1, T2] and we apply the Binomial Interpolated Lattice procedure described in the
previous Section. It means that we compute the binomial parameters m′2 = bT2−T1

∆T2
c, n2 =

m′2 + 2, ∆T2, u2, d2, p2, k2 in order to hit exactly the barriers L2 and H2. This leads to a
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binomial mesh {S2
i,j}i,j defined ∀ i = 0, ..., n2 as follows:

S2
i,j =

{
L2u

2j
2 , j = 0, ..., k2 if n2 − i is even

L2u
2j+1
2 , j = 0, ..., k2 − 1 if n2 − i is odd

We can then proceed using the backward procedure for i = n2, ..., 0 as described in the
previous Section, so that we get the option price at every node (i, j), for i = 0, ..., n2, j =
0, ..., i. By proceeding with suitable interpolations in time and in space we can obtain at
every node S2

0,j at time T1 the corresponding option price vn2(T1, S
2
0,j).

We now go on similarly in time interval [T0, T1]. We compute the new binomial parameters
m′1 = bT1−T0

∆T1
c, n1 = m′1 + 2, ∆T1, u1, d1, p1, k1 in order to hit exactly the barriers L1

and H1. This leads to a new binomial mesh structure {S1
i,j}i,j. In order to obtain the

option prices on the new nodes with underlying asset S1
n1,j

, j = 0, ..., k1, we interpolate
at every S1

n1,j
, j = 0, ..., k1 by a Lagrange interpolation using 4 suitable points in the set

{(S2
0,j, v

n2(T1, S
2
0,j))}, with j = 0, ..., k2 if n2 is even and with j = 0, ..., k2 − 1 if n2 is odd.

In order to perform such interpolations we set vn2(T1, S
2
0,j) = 0, for j such that S2

0,j ≤ L2 or
S2

0,j ≥ H2. Moreover, the values vn1(T1, S
1
n1,j

) are set equal to zero if either S1
n1,j
≤ L1 or

S1
n1,j
≥ H1.

Finally, we proceed backward for i = n1, ..., 0 and we compute the price at s0 by linear inter-
polations in time and a Lagrange interpolation in space as described before. We represent
the mesh described above in Figure 2.3.

In the early ending 2-step double knock-out option we just need to add the treatment of the
period [T2, T3] where there are no ”out” conditions. We start by considering the number
of time steps m3 and the corresponding ∆τ3. Then we compute k3 and ∆T3 in order to

hit exactly the barriers L2, H2, i.e. k3 = d h2−l2
2σ
√

∆τ3
e and ∆T3 =

(
h2−l2
2k3σ

)2

. The parameters

m′3, n3, u3, d3, p3 are computed as usual. Now, starting from the nodes evaluated at time T2

we can consider a tree structure {S3
i,j}i,j in the time interval [T2, T3] of n3 time steps. At

maturity T3 we obtain the underlying assets Sn3,j = L2u
j
3, j = −n3, ..., 2k3 + n3. Then we

apply the backward CRR binomial procedure starting with the maturity condition at time
T3. The prices at the nodes Sn2,j = L2u

j
2, j = 0, ..., k2 at time T2 are obtained with the usual

interpolations in time and space. The procedure is then the same as in the standard 2-step
double barrier options (see Figure 2.4).
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Figure 2.3: Binomial interpolated lattice method. 2-step double knock-out options. The prices
at time T1 are obtained by a Lagrange space interpolation of the prices at the nodes denoted
by empty circles, such prices are obtained by a linear interpolation in time of the prices at
the adjacent nodes denoted by squares. Similarly we obtain the prices at time T0.

Figure 2.4: Binomial interpolated lattice method. Early ending knock-out options. The prices
at time T2 are obtained by a Lagrange space interpolation of the prices at the nodes denoted
by empty circles, such prices are obtained by a linear interpolation in time of the prices at
the adjacent nodes denoted by squares. Similarly we obtain the prices at time T0 and T1.
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In the n-step double barrier options case we just apply the procedure described above for
2-step double barrier options recursively.
The treatment of partial-time step double barrier options is straightforward, in fact one can
easily remove the knock-out barrier provision in some time intervals. Moreover, we remark
that it is possible to take into account knock-in features instead of knock-out ones.

Remark 2.7.1. The above technique can also be applied to the case in which the volatility
and the interest rate are piecewise constant functions of time. In the sequel we will treat only
the case of piecewise constant volatility because when the interest rate is piecewise constant
the treatment is straightforward. Let us consider first the case in which the volatility varies
at every time interval [Ti, Ti+1] in which the barriers change, i.e. σ = σi in [Ti, Ti+1], for
i = 0, ..., n− 1. Then for each interval [Ti, Ti+1] we need to construct the mesh matching the
barriers by using the volatility parameter σi and suitable interpolations in time and in space
as explained before. In the general case in which the volatility varies during the “volatility
time intervals” [T̃j, T̃j+1], for j = 0, ..., nσ− 1 (i.e. the volatility varies at some instants that
are different from the ones at which the barriers change), we need to construct a new mesh,
not only at the generic barrier time Ti but also at the volatility time T̃i. So, in this general
case we construct n+ nσ different mesh structures.

2.8 Numerical results

We provide some numerical results of the algorithms presented in the Sections 2.5 and 2.7
in the case of double barrier options, 2-step double barrier options and multi-step double
barrier options. All the computations presented in the tables have been performed in double
precision on a PC with a processor Intel Core i5 at 1.7 Ghz.

2.8.1 Double barrier options: comparisons with the Day-Lyuu
method

We first consider the comparisons with the Day-Lyuu (DL) method using the numerical
experiments proposed in Day-Lyuu ([29], 2010) for pricing knock-out double-barrier call op-
tions. We also add further comparisons with different parameters. The volatility of the stock
price is σ = 0.25, the interest rate is r = 0.1, the time to maturity is T = 1, the strike price
is K = 100 and the two barriers are L = 90 and H = 140. We consider three possible values
for the initial stock price: s0 = 95, 90.05, 139.95.
We observe that in the tables below the number of time steps is m and it refers to the orig-
inal CRR model, as defined in Section 2.4. So for each m the Dai-Lyuu and the Binomial
Interpolated Lattice (BIL) compute a new number of time steps n := m′ + 1 in DL and
n := m′ + 2 in BIL) that are of the same order as m.
We use as benchmark value the price computed with the closed formula provided by Kunit-
omo and Ikeda ([56], 1992) that is recalled in Section 2.2. We observe that in the cases in
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which s0 is a point near to the barrier, the Binomial Interpolated Lattice performs better
than the bino-trinomial procedure. The results are given in Table 2.1.

s0 = 95
m DL KI BIL

100 1.423589 1.422126
200 1.440976 1.440586
400 1.449705 1.458435 1.450008
800 1.453358 1.453441
1600 1.456403 1.456350
3200 1.457183 1.457179

s0 = 90.05
DL KI BIL

0.313771 0.016004
0.279768 0.016235
0.226927 0.016268 0.016267
0.149755 0.016263
0.084767 0.016254
0.059701 0.016259

s0 = 139.95
m DL KI BIL

100 0.196833 0.006562
200 0.176563 0.006688
400 0.144278 0.006656 0.006673
800 0.093742 0.006661
1600 0.051903 0.006650
3200 0.035926 0.006653

Table 2.1: Knock-out double barrier call option prices with T = 1, r = 0.1, σ = 0.25,
K = 100, L = 90, H = 140 and s0 varying.

In Table 2.2 we give the price of a knock-out double barrier call option in other “near to
the barrier” cases. Here σ = 0.25, r = 0.1, T = 1 and K = 100. We now vary s0, L and H
so that we can consider both the case in which s0 is close to L and the case in which s0 is
close to H. In the first table we choose s0 = 95, L = 94.9 and H = 140, so we have that the
starting point s0 is near to the lower barrier L. Instead, in the second one s0 is near to the
higher barrier H and we choose s0 = 139.9, L = 95 ad H = 140.

s0 = 95, L = 94.9, H = 140
m DL KI BIL

100 0.274716 0.024774
200 0.227618 0.025281
400 0.109875 0.025305 0.025182
800 0.128411 0.025305
1600 0.062742 0.025274
3200 0.053451 0.025286

s0 = 139.9, L = 95, H = 140
DL KI BIL

0.211312 0.011449
0.085969 0.011148
0.083269 0.011238 0.011188
0.087552 0.011253
0.060058 0.011243
0.048296 0.011239

Table 2.2: Knock-out double barrier call option prices with T = 1, r = 0.1, σ = 0.25,
K = 100. The values of s0, L and H vary.

We remark that in the “near barrier” cases presented in Table 2.1 and Table 2.2 for each
value of m the starting point s0 belongs to the critical intervals (2.6.4) and (2.6.5) defined in
Section 2.6. So, thanks to the sufficient condition given in Remark 2.6.5, we explain why the
Binomial Interpolated Lattice method performs better than the bino-trinomial tree. In fact if

s0 belongs to the interval (L,Le−(r−σ2/2)∆T ′+σ
√

∆T ] or to the interval [He−(r−σ
2

2
)∆T ′−σ

√
∆T , H)

the Dai and Lyuu procedure may degenerate. As pointed out in Remark 2.6.5, it is clear
that if we choose m such that

s0 > Le−(r−σ2/2)∆T ′+σ
√

∆T , (2.8.1)
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(in the case in which s0 is near to the lower barrier L), or if we choose m such that

s0 < He−(r−σ2/2)∆T ′−σ
√

∆T , (2.8.2)

(when s0 is near to the higher barrier H), then the bino-trinomial tree may not degenerate.
But the values of m we need to consider in order to satisfy these conditions are very large.
In fact in the case of Table 2.1 with s0 = 90.05, we have to choose m ≥ 201840. Instead, in
the case in which s0 = 139.95 we need to choose m ≥ 489104 in order to satisfy condition
(2.8.2). Similarly, in Table 2.2, we need to choose m ≥ 55987 if s0 = 95 and m ≥ 122107 if
s0 = 139.9 to satisfy conditions (2.8.1) and (2.8.2) respectively.
In Table 2.3 we show two more examples of pricing a knock-out double barrier call option
with σ = 0.25, r = 0.1, T = 1, K = 100, L = 90 and H = 140 in the “near to the barrier”
case. We vary the starting point and we choose s0 = 92 and s0 = 138. The numerical results
show that the BIL method converges faster than the bino-trinomial tree also in the case in
which s0 is chosen not so much close to the barriers. We also observe that when s0 = 92 we
need m ≥ 104 to satisfy (2.8.1) and when s0 = 138 we have to choose m ≥ 289 to verify
condition (2.8.2). Moreover, also if m is such that (2.8.1) or (2.8.2) is satisfied, the Binomial
Interpolated Lattice converges faster than the bino-trinomial tree.

s0 = 92
m DL KI BIL

100 0.753689 0.611674
200 0.675166 0.620375
400 0.667178 0.626377 0.623008
800 0.624209 0.624220
1600 0.625457 0.625476
3200 0.625861 0.625833

s0 = 138
DL KI BIL

0.365983 0.265373
0.338188 0.270340
0.316626 0.271825 0.270702
0.281821 0.270875
0.271367 0.271286
0.271534 0.271548

Table 2.3: Knock-out double barrier call option prices with T = 1, r = 0.1, σ = 0.25,
K = 100, L = 90, H = 140 and s0 varying.

2.8.2 Double barrier options: comparisons with a finite difference
method

In order to test the efficiency of the Binomial Interpolated Lattice (BIL) approach, both for
pricing and hedging purposes, we compare it with the PDE finite difference method (FD)
implemented following Zvan, Forsyth and Vetzal ([87], 2000). In particolar we use a fully
implicit scheme with uniformly spaced grid. We denote by ms the number of space steps
and as before m the number of time steps. We use the same parameters used in the previous
Section changing the number of time steps. We consider four different test cases: A, B, C, D
as resumed in Table 2.4. Each case is associated to a different standard number of steps of
the corresponding tree. The number of steps, in the four different cases, are chosen in such
a way that the considered algorithms (BIL and FD) have similar times of computation. In
Table 2.5, Table 2.6, Table 2.7 we provide the numerical pricing and hedging (delta, gamma,
vega) results. The numerical experiments show that the BIL method is reliable and accurate
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both for the computation of the option prices and the Greeks. Compared with the standard
finite difference scheme the present methodology delivers double barrier option prices and
Greeks with similar accuracy in analogue CPU times.

A B C D
m/ms CPU time m/ms CPU time m/ms CPU time m/ms CPU time

BIL 500 0.0034 1500 0.0104 3500 0.0324 12000 0.1352
FD 200/50 0.0033 400/100 0.0108 800/200 0.0352 1600/400 0.1321

Table 2.4: Different cases : Time/Space Steps and CPU times

s0 = 95
Case FD KI BIL

A 1.466963 1.451349
0.255061 0.252350
-0.016582 -0.016331
-21.207882 -21.183731

B 1.462677 1.458435 1.456207
0.254362 0.253605 0.253204
-0.016559 -0.016527 -0.016471
-21.254516 -21.295842 -21.269938

C 1.460531 1.457437
0.253992 0.253438
-0.016545 -0.016512
-21.275779 -21.280831

D 1.459458 1.458075
0.253802 0.253544
-0.016538 -0.016521
-21.285916 -21.291278

s0 = 90.05
FD KI BIL

0.016074 0.016266
0.327332 0.324974
-0.012978 -0.013982
-0.240449 -0.247137

0.016181 0.016268 0.016270
0.326101 0.325082 0.325072
-0.012305 -0.011651 -0.013065
-0.244398 -0.247919 -0.247805

0.016233 0.016261
0.325562 0.324922
-0.011949 -0.012265
-0.246337 -0.247777

0.016258 0.016265
0.325314 0.325010
-0.011766 -0.011962
-0.247297 -0.247871

s0 = 139.95
Case FD KI BIL

A 0.006787 0.006668
-0.134492 -0.133415
0.002774 0.002059
-0.073870 -0.072093

B 0.006720 0.006656 0.006660
-0.133826 -0.133216 -0.133257
0.002912 0.003028 0.002510
-0.073067 -0.072327 -0.072300

C 0.006687 0.006654
-0.133513 -0.133142
0.002978 0.002816
-0.072663 -0.072247

D 0.006670 0.006656
-0.133362 -0.133184
0.003010 0.002921
-0.072460 -0.072307

Table 2.5: Knock-out double barrier call option prices, delta, gamma and vega with T = 1,
r = 0.1, σ = 0.25, K = 100, L = 90, H = 140 and s0 varying.
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s0 = 95, L = 94.9, H = 140
Case FD KI BIL

A 0.025237 0.025213
0.255861 0.251614
-0.009910 -0.010320
-0.466251 -0.473302

B 0.025295 0.025305 0.025271
0.254125 0.252623 0.252228
-0.009245 -0.008694 -0.009636
-0.471336 -0.475184 -0.474126

C 0.025322 0.025305
0.253347 0.252571
-0.008900 -0.009638
-0.473829 -0.474661

D 0.025335 0.025304
0.252982 0.252581
-0.008725 -0.009160
-0.475062 -0.475082

s0 = 139.9, L = 95, H = 140
FD KI BIL

0.011480 0.011267
-0.114002 -0.112749
0.002304 0.001506
-0.162609 -0.160230

0.011352 0.011238 0.011222
-0.113219 -0.112503 -0.112332
0.002439 0.002535 0.002181
-0.161217 -0.160094 -0.159848

0.011288 0.011239
-0.112853 -0.112496
0.002503 0.002180
-0.160517 -0.160008

0.011255 0.011237
-0.112676 -0.112487
0.002535 0.002362
-0.160145 -0.160086

Table 2.6: Knock-out double barrier call option prices, delta, gamma and vega with T = 1,
r = 0.1, σ = 0.25, K = 100. The values of s0, L and H vary.

s0 = 92
Case FD KI BIL

A 0.629982 0.623382
0.301449 0.297709
-0.014131 -0.013982
-9.339698 -9.330881

B 0.628163 0.626377 0.625416
0.300709 0.299884 0.299436
-0.014107 -0.014074 -0.014015
-9.360235 -9.378668 -9.367329

C 0.627254 0.625943
0.300305 0.299669
-0.014092 -0.014054
-9.369625 -9.372070

D 0.626801 0.626215
0.300095 0.299804
-0.014085 -0.014068
-9.374109 -9.376531

s0 = 138
FD KI BIL

0.274247 0.270743
-0.139743 -0.137431
0.002456 0.002059
-3.009659 -2.975722
0.273028 0.271825 0.271323
-0.139163 -0.138561 -0.138313
0.002448 0.002439 0.002424
-3.005481 -3.001289 -2.994041
0.272420 0.271599
-0.138864 -0.138447
0.002444 0.002432
-3.003413 -2.997151
0.272116 0.271744
-0.138712 -0.138519
0.002442 0.002437
-3.002383 -3.000212

Table 2.7: Knock-out double barrier call option prices, delta, gamma and vega with T = 1,
r = 0.1, σ = 0.25, K = 100, L = 90, H = 140 and s0 varying.

2.8.3 2-step double barrier options

Let us now consider the numerical experiments proposed in Guillame ([43], 2010) for pric-
ing 2-step double barrier knock-out put options. In the European case we compare our
method (BIL-EU) with the benchmark value given by the closed formula (GUI) provided
in Guillaume ([43], 2010). No benchmark is available in the American case (BIL-AM). The
volatility of the stock price is σ = 0.3, the interest rate is r = 0.03, the current stock price
is s0 = 100 and the strike price varies: K = 90, 100, 110. In Table 2.8 we report the values
of 2-step double knock-out put options with double barrier with parameters: T1 = 0.25,
T2 = T = 0.5, L1 = 70, H1 = 130, L2 = 75 and H2 = 125.
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K = 90
m BIL-EU GUI BIL-AM

100 0.806457 3.549508
200 0.819128 3.541653
400 0.815156 0.821806 3.545095
800 0.820657 3.555169
1600 0.821165 3.555965
3200 0.821348 3.556271

K = 100
BIL-EU GUI BIL-AM
3.152257 7.694393
3.186487 7.694650
3.187184 3.194080 7.703400
3.191445 7.712047
3.192845 7.713536
3.192542 7.713324

K = 110
BIL-EU GUI BIL-AM
7.089792 13.516271
7.196594 13.574689
7.186754 7.186905 13.576866
7.182939 13.580487
7.184522 13.581967
7.184678 13.582068

Table 2.8: 2-step double knock-out put option prices with s0 = 100, r = 0.03, σ = 0.3,
T1 = 0.25, T2 = T = 0.5, L1 = 70, H1 = 130, L2 = 75, H2 = 125 and K varying.

In Table 2.9 we consider an early-ending 2-step double knock-out call with K = 120, s0 =
100, r = 0.03 and double barrier parameters T1 = 0.125, T2 = 0.25, T3 = T = 0.5, L1 = 75,
H1 = 125, L2 = 70, H2 = 130. The volatility varies: σ = 0.15, 0.3.

σ = 0.15
m BIL-EU GUI BIL-AM

100 0.263380 9.962265
200 0.265933 9.962439
400 0.271830 0.2755 9.962422
800 0.273739 9.962533
1600 0.275081 9.962435
3200 0.275201 9.962400

σ = 0.3
BIL-EU GUI BIL-AM
1.575926 9.728607
1.613757 9.741826
1.605417 1.6165 9.745550
1.608395 9.750609
1.612841 9.755035
1.615489 9.758268

Table 2.9: Early-ending 2-step double knock-out call option prices with s0 = 100, r = 0.03,
K = 120, T1 = 0.125, T2 = 0.25, T3 = T = 0.5, L1 = 75, H1 = 125, L2 = 70, H2 = 130 and
σ varying.

The numerical results show that the method is accurate also in the 2-step double knock-out
option case.

2.8.4 Multi step double barrier options

In Table 2.9, we propose the results obtained with our method for a 16-steps knock out
double barrier put option. The volatility of the stock price is σ = 0.3, the interest rate
is r = 0.03, the current stock price is s0 = 100, the strike price is K = 110, the time to
maturity is T = 2 and the barrier parameters are: Ti = i ·0.125, Li = 70− i, Hi = 130+ i, for
all i = 0, ..., 15. In the European case we use as benchmark value the Monte Carlo method
provided in Baldi, Caramellino and Iovino ([9], 1999) with 10 millions simulations and 1000
Euler time discretization steps (with the 99% confidence interval in parenthesis). We observe
that the computation times are very fast. For example, for m = 12800 and m = 25600 they
are respectively 0.028221 and 0.072933 seconds.
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m BIL-EU MC BIL-AM

100 6.585345 17.570376
200 6.399257 17.598079
400 6.288664 6.197331 17.623151
800 6.243341 [6.187387-6.207276] 17.627720
1600 6.233008 17.629993
3200 6.208183 17.633762
6400 6.203391 17.634432
12800 6.194374 17.635186
25600 6.191878 17.635486

Table 2.10: 16-step double knock-out put option prices with σ = 0.3, r = 0.03, s0 = 100,
K = 110, T = 2. The barrier parameters are Ti = i · 0.125, Li = 70 − i, Hi = 130 + i, i =
0, ..., 15.

Finally, we test a case with different volatilities in every observation period (see Remark
2.7.1). In particular, we consider the following volatilities:

σi = 0.2 + 0.02 · i, i = 0, ..., 15.

m BIL-EU MC BIL-AM
100 4.632436 18.890209
200 4.565130 18.924618
400 4.474004 4.423045 18.943538
800 4.466596 [4.414167-4.431922] 18.949408
1600 4.446335 18.944733
3200 4.430396 18.944736
6400 4.426262 18.944366
12800 4.420738 18.944321
25600 4.418433 18.944005

Table 2.11: 16-step double knock-out put option prices with r = 0.03, s0 = 100, K = 110,
T = 2. The barrier parameters are Ti = i · 0.125, Li = 70 − i, Hi = 130 + i, σi =
0.2 + 0.02 · i, i = 0, ..., 15.
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Chapter 3

Digital barrier options in the Black
and Scholes model

In this Chapter we consider the problem of pricing digital barrier options when the stock
price process (St)t∈[0,T ] follows the Black and Scholes model, see (2.1.1).
In Section 3.1 we find an explicit asymptotic expansion of the binomial approximation error
Err(n) (see Definition (1.2.1)) for a digital call option with lower barrier L. We observe
that the case of a higher barrier H is similar, so we omit it. This is an original result
principally based on the techniques used in Chang and Palmer ([20], 2007) (who find an
explicit expression of the error Err(n) for vanilla digital call options, that is without barriers,
for details see Theorem 1.2.5) and in Lin and Palmer ([62], 2013) (who find an expression
for Err(n) for call options with a single barrier, for details see Theorem 1.2.15).
The idea is to find a closed-form formula in terms of binomial coefficients of the price of a
digital call option with barrier L and then use the approximation of the binomial distribution
by the normal one in order to find explicit coefficients in the asymptotic expansion. The
expression of Err(n) suggests us how to set the barrier L and the strike K in the binomial
algorithm such that the rate of convergence is 1

n
. In particular, here we adapt the Binomial

Interpolated Lattice presented in Section 2.5 so that L and K are placed in the binomial
mesh in a “right” way. In fact if the barrier L lies on a layer of nodes of the tree and the
strike K is located halfway between two nodes at maturity T (i.e. it is a node from the
penultimate node before maturity), then we get a procedure of order 1

n
. The numerical

results are presented in Section 3.3.1.
We stress that since there are no manageable closed-form formulas for the binomial price of
digital call options with double barriers, we are not able to replicate the discussion when
there is both a lower barrier L and a higher barrier H. The only work that is able to treat
the study of the rate of convergence of double barrier options is due to Gobet ([42], 2001).
Gobet uses a completely different approach, based on PDE techniques, that allows one to
treat the double barrier case for a generic class of continuous payoff functions (for details
see Section 1.2.2). We notice that he finds that the contribution of type O( 1√

n
) in Err(n)

explicitly depends on the distance between the first lattice point above the higher barrier
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H and H itself and also on the distance between the lower barrier L and the first lattice
point below L. This result suggests that if we construct a binomial algorithm such that the
contractual barriers are exactly two nodes of the tree then the rate of convergence of the
algorithm is improved.
Then, in Section 3.2 we study the rate of convergence for digital options with double barriers
by using PDE techniques and we find an upper bound for the binomial approximation error
Err(n). Our initial goal was to find an expression in which apart from a contribution of order

1√
n

due to the position of the barriers, as in the case of continuous payoff functions studied in

Gobet ([42], 2001), there was also an additional term of type O( 1√
n
) that explicitly depends

on the position of the strike. Currently we are not able to get the desired result because we
obtain that the error is bounded from above by two terms that are related on the position of
the barriers plus a term R̃n, with |R̃n| ≤ C 1√

n
, for a constant C > 0. But a careful analysis

of the proof suggests that the dependence on the position of K is “hidden” in R̃n. We stress
that the advantage of this result is that it can be easily extended to a more general payoff
function with a finite number of discontinuity points, but without lack of generality we will
treat in details only the case of digital payoffs. Finally, in Section 3.3.2 we present some
numerical results in order to efficiently price double barrier digital options.

3.1 Digital call options with single barrier

3.1.1 Black and Scholes prices

In this Section we recall the continuous prices at time t = 0 of European single barrier digital
call options when the underlying process follows the SDE (2.1.1), i.e.

dSt
St

= rdt+ σdBt, S0 = s0 > 0.

As usual we will use the following notations: s0 is the stock price at time t = 0, K is the
strike price, r is the continuously compounded interest rate, σ is the volatility, T is the time
to maturity and L is the lower barrier.
We stress here that we will consider the case of down options, the case of up options being
similar.
We first recall the prices of standard call options with barrier L that are due to Merton
([64], 1973), who first derived the analytical formula for the down-and-out call option, and
Reiner and Rubinstein ([71], 1991), that provided the formulas in details for single barriers
call and put options of the all the types, i.e. down-and-out, down-and-in, up-and-in and
up-and-out. Then, we derive the respective European continuous prices for the digital case.
These formulas are also resumed in the work of Cheng ([21], 2003).

Remark 3.1.1. The price of a digital option is essentially the derivative with respect to the
strike K of the price of the respective call option. If we denote with Ccall(K) the price of a
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single barrier call option as a function of K, i.e.

Ccall(K) = E((ST −K)+1Sinf>L), with Sinf = inf
t∈[0,T ]

St,

we get that the price as a function of K of the respective digital call option, that we call
Cdigital−call(K), can be deduced by the following relations:

d

dK
Ccall(K) = E

(
d

dK
(ST −K)+1Sinf>L

)
= E(−1ST≥K1Sinf>L) = −Cdigital-call(K).

We stress that we need the Black and Scholes prices of digital call options with lower barrier
L of the two following types:

1. a down-and-in call option with L < K;

2. a down-and-out call option with L > K.

We remark that we consider these two cases because the corresponding binomial formulas
for the prices are manageable and permits a simple treatment. Then we will see that by
using the binomial formulas for the vanilla digital call option, it is possible to find the
asymptotic expansion of the error also for a down-and-out digital call option with L < K
and a down-and-in digital call option with L > K.

Prices of down-and-in call and digital call options with L < K

The Black and Scholes price of a down-and-in call option with barrier L < K, that we denote
with CBS

di (s0, K, T, L), is given by:

CBS
di (s0, K, T, L) = s0

(
s0

L

)−1− 2r
σ2

Φ(d21)−Ke−rT
(
s0

L

)1− 2r
σ2

Φ(d22), (3.1.1)

with

d21 =
log L2

s0K
+ (r + 1

2
σ2)T

σ
√
T

, d22 =
log L2

s0K
+ (r − 1

2
σ2)T

σ
√
T

.

Then, the price of a digital down-and-in call option with barrier L < K, that we call
CBS
di,digital(s0, K, T, L), is given by

CBS
di,digital(s0, K, T, L) = e−rT

(
s0

L

)1− 2r
σ2

Φ(d22). (3.1.2)
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Remark 3.1.2. In order to obtain the expression (3.1.2) we use Remark 3.1.1, so we have
that

d

dK
Pcall(K) = s0

(
s0

L

)−1− 2r
σ2 1√

2π
e−

d221
2

(
− 1

σ
√
TK

)
+

− e−rT
(
s0

L

)1− 2r
σ2
[

Φ(d22) +K
1√
2π
e−

d222
2

(
− 1

σ
√
TK

)]

= −e−rT
(
s0

H

)1− 2r
σ2

Φ(d22) + remainder

with

remainder = s0

(
s0

L

)−1− 2r
σ2 1√

2π
e−

d221
2

(
− 1

σ
√
TK

)
+

− e−rTK

(
s0

L

)1− 2r
σ2 1√

2π

(
− 1

σ
√
TK

)
.

But
remainder = 0.

In fact we have that

remainder =
1√
2π

(
− 1

σ
√
TK

)(
s0

L

)− 2r
σ2
[
s0
L

s0

e−
d221
2 − e−rT s0

L
Ke−

d222
2

]

=
1√
2π

(
− 1

σ
√
TK

)(
s0

L

)− 2r
σ2
[
L2e−

d221
2 − e−rT s0Ke

− d
2
22
2

L

]
= 0,

where the last equality comes from the fact that

L2e−
d221
2 − e−rT s0Ke

− d
2
22
2 = 0.

So indeed the Black and Scholes price of a digital down-and-in call option is given in (3.1.2).

Prices of down-and-out call and digital call options with L > K

The price of a down-and-out call option with barrier L > K, that we call CBS
do (s0, K, T, L),

is

CBS
do (s0, K, T, L) = s0Φ(d31)−Ke−rTΦ(d32)

−

[
s0

(
s0

L

)−1− 2r
σ2

Φ(d41)−Ke−rT
(
s0

L

)1− 2r
σ2

Φ(d42)

]
,
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with

d31 =
log s0

L
+ (r + 1

2
σ2)T

σ
√
T

, d32 = d31 − σ
√
T ,

d41 =
log L

s0
+ (r + 1

2
σ2)T

σ
√
T

, d42 = d41 − σ
√
T .

Then, the price of a down-and-out digital call option with barrier L > K, that we call
Cdo−digital(s0, K, T, L) is:

CBS
do−digital(s0, K, T, L) = e−rT

[
Φ(d32)−

(
s0

L

)1− 2r
σ2

Φ(d42)

]
. (3.1.3)

Remark 3.1.3. We get the Black and Scholes price (3.1.3) by using again Remark 3.1.1.

3.1.2 Binomial prices

We now present the binomial formulas for a down-and-in digital call with L < K and a
down-and-out digital call with L > K. We will principally follow the results in Reimer and
Sandmann ([70], 1995) and Lin and Palmer ([60], 2013).

Notations

Let us first introduce two quantities as defined in Lin and Palmer ([60], 2013), that we call
∆K
n and ∆L

n , that will have a crucial role in what follows. We recall that, as usual, in the
n-period CRR binomial model it is assumed that the stock price at any time arises by a
factor u = eσ

√
h or falls by a factor d = u−1 at the next period, where h = T/n. We also

recall that the probability of an up jump is equal to p = erh−d
u−d and that the down jump

occurs with probability 1− p.
The quantity ∆K

n is set as

∆K
n = 1− 2frac

(
log(s0/K)

2σ
√
h
− n

2

)
, (3.1.4)

where for every real number x, the fractional part of x is defined as frac(x) = x− bxc, with
bxc indicating the largest integer preceding x.
We observe that ∆K

n is a measure of the position of K in the log-scale in relation to two
adjacent terminal stock prices (for details see Section 1.2.2). The nodes (Si,j)i,j of the
binomial approximation scheme are given by

Si,j = s0u
jdi−j, ∀ i = 0, ..., n, j = 0, ..., i,
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and in particular the n+ 1 nodes at maturity T are equal to

Sn,j = s0u
jdn−j, ∀ j = 0, ..., n.

So if we define jK the integer such that

Sn,jK−1 = s0u
jK−1dn−jK+1 < K ≤ Sn,jK = s0u

jKdn−jK ,

then it is possible to write (for details see Lin and Palmer ([62], 2013))

logK = α logSn,jK + (1− α) logSn,jK−1, with α =
1 + ∆K

n

2
.

We observe that −1 ≤ ∆K
n ≤ 1, then in the log-scale: if ∆K

n = −1 the strike K is the node
Sn,jk−1 at maturity, if ∆K

n = 0 then K lies halfway between the two nodes Sn,jk−1 and Sn,jk
at maturity (i.e. it is a node from the first period before maturity), and if ∆K

n = 1 then K
is the node Sn,jk at maturity.
We now describe a similar quantity corresponding to the lower barrier L that we call ∆L

n .
First, we call L̃ the effective barrier on the tree structure, that is generally different from
the contractual barrier L. Then we need to consider two possible cases:

1. L̃ is a terminal stock price;

2. L̃ is a stock price from the penultimate period, i.e. the first period before maturity.

Let us call jL the number of up jumps required to reach the effective barrier L̃. Moreover,
let us define the real number

lL =
log L

s0

2σ
√
h

+
n

2
.

So, when L̃ is a terminal stock price, i.e.

L̃ = Sn,jL = s0u
jLdn−jL ≤ L < s0u

jLdn−1−jL = Sn−1,jL = L̃u, (3.1.5)

we have that

jL =
1

2
b2lLc;

instead, when the effective barrier L̃ is a stock price from a penultimate period, i.e.

L̃ = Sn−1,jL = s0u
jLdn−1−jL ≤ L < s0u

jL+1dn−1−jL = Sn,jL+1 = L̃u, (3.1.6)

it happens that

jL =
1

2
b2lLc −

1

2
.

Now, if we define

j̃L =
1

2
b2lLc
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then

jL = j̃L −
1

2
(1− εn),

where

εn =

{
0, if the effective barrier is not a terminal stock price,
1, if the effective barrier is a terminal stock price,

and, moreover, the effective barrier L̃ can be written as

L̃ = s0u
j̃Ldn−j̃L .

So, we define
∆L
n = frac(2lL)

and then in the log-space we have

logL = (1−∆L
n) log L̃+ ∆L

n log(L̃u). (3.1.7)

Then ∆L
n ∈ [0, 1] measures in the log-scale the position of L in relation to two adjacent stock

prices, one of which is a node at maturity and the other is a node of the first time before
maturity. In the special cases in which ∆L

n = 0 and ∆L
n = 1 we get that the effective barrier

L̃ lies exactly on a node of the tree (see (3.1.5) and (3.1.6) to understand if the node is a
node at maturity or a node of a period before maturity).

Price of down-and-in digital call options with L < K

We now introduce some notations as in Reimer and Sandmann ([70], 1995).
We first recall that the effective barrier is

L̃ = Sn,j̃L = s0u
j̃Ldn−j̃L

and that the effective strike price is

Sn,jK = s0u
jkdn−jK ,

where jK is the first integer such that K ≤ Sn,jK , j̃L = 1
2
b2lLc and, as usual, u = eσ

√
h = d−1,

with h = T
n

.
We denote with (Snjh)j=0,1,...,n the discrete approximation of the process S. Let us suppose

to fix j, with j ∈ {0, ..., n}. We define πd(n, j, j̃L) as the price at time 0 of a security which
pays on unit at time T if the asset price at the time step n is equal to Sn,j = s0u

jdn−j and
if there exists a pair (i, l) with i ∈ {0, ..., n} and l ∈ {0, ...i}, such that Si,l = s0u

ldi−l ≤ L̃,
and otherwise nothing, i.e.

πd(n, j, j̃L) = e−rTE[1SnT=Sn,j · 1∃ i≤n,∃ l≤i:Si,l=s0uldi−l≤L̃]

= e−rTP(SnT = Sn,j;∃ i ≤ n,∃ l ≤ i : Si,l ≤ L̃).

(3.1.8)
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In order to calculate (3.1.8), we first need to count the number of paths Zd(n, j, j̃L) in the
binomial tree which reach the terminal stock price Sn,j after touching or passing through
the effective barrier L̃. The reflection principle (see Feller ([33]), 1968)) yields the number
Zd(n, j, j̃L) that for every j = 0, ..., n is equal to

Zd(n, j, j̃L) =


(
n
j

)
, if j ≤ j̃L,(
n

2j̃L−j

)
, if j̃L < j ≤ 2j̃L,

0, if j > 2j̃L.

(3.1.9)

We briefly recall the proof of (3.1.9).

In the case in which j ≤ j̃L, then Sn,j = s0u
jdn−j ≤ L̃ = s0u

j̃Ldn−j̃L , so all the paths from
s0 to Sn,j must contact L̃, so that Zd(n, j, j̃L) =

(
n
j

)
.

When j̃L < j ≤ 2j̃L, then Sn,j = s0u
jdn−j > L̃ = s0u

j̃Ldn−j̃L . For the reflection principle the
number of paths from s0 to Sn,j that touch L̃ are equal to the number of paths from s0 to

s0u
j̃L−(j−j̃L)dn−j̃L−(n−j−n+j̃L) = s0u

2j̃L−jdn−(2j̃L−j), so that Zd(n, j, j̃L) =
(

n
2j̃L−j

)
.

Finally let us consider the case j > 2j̃L. First to get from s0 to the barrier L̃ = s0u
j̃Ldn−j̃L =

s0d
n−2j̃L we need n − 2j̃L down steps, secondly from L̃ = s0u

j̃Ldn−j̃L = s0u
2j̃L−n to Sn,j =

s0u
jdn−j = s0u

2j−n we need 2j − n − (2j̃L − n) = 2(j − j̃L) up steps. So the total number
of steps required is at least n − 2j̃L + 2(j − j̃L) = n + 2(j − 2j̃L) > n, thus no path hits L̃
before reaching Sn,j and so Zd(n, j, j̃L) = 0.
Then, by using (3.1.9) we get that

πd(n, j, j̃L) =


e−rT

(
n
j

)
pj(1− p)n−j, if j ≤ j̃L,

e−rT
(

n
2j̃L−j

)
pj(1− p)n−j, if j̃L < j ≤ 2j̃L,

0, if j > 2j̃L.

(3.1.10)

We can now prove the following result:

Proposition 3.1.4. The binomial price Cdi−digital(s0, K, T, L, n) of a down-and-in digital
call option with barrier L < K < s0 is equal to

Cdi−digital(s0, K, T, L, n) = e−rT
2j̃L∑
i=jK

(
n

2j̃L − i

)
pi(1− p)n−i. (3.1.11)

Proof. Let us denote with G(Sn,j) the payoff of a digital call option at node Sn,j, i.e.

G(Sn,j) =

{
1, if Sn,j ≥ K,
0, if Sn,j < K.

(3.1.12)
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So the price at time 0 of a down-and-in digital call option is equal to

Cdi−digital(s0, K, T, L, n) = e−rTE[G(SnT ) · 1∃ i≤n,∃ l≤i:Si,l=s0uldi−l≤L̃]

= e−rT
n∑
j=0

E[G(SnT )1SnT=Sn,j1∃ i≤n,∃ l≤i:Si,l=s0uldi−l≤L̃] =
n∑

j=jK

πd(n, j, j̃L)

= e−rT
n∑

j=jK

[(
n

j

)
pj(1− p)n−j1j≤j̃L +

(
n

2j̃L − j

)
pj(1− p)n−j1j̃L<j≤2j̃L

]

= e−rT
2j̃L∑

j=jK+1

(
n

2j̃L − j

)
pj(1− p)n−j, (3.1.13)

where the last equality comes from the fact that here we suppose L < K (i.e. j̃L < jK) and
as a consequence one has that the contribution due to the first sum vanishes. So the proof
is complete.

Price of a down-and-out digital call option with L > K

We derive the price of a down-and-out digital call option with L > K, that we call
Cdo−digital(s0, K, T, L, n), as the difference between the binomial price of the vanilla digital
call option and the binomial price of the down-and-in digital call option with L > K.
Let us start from the binomial price of the vanilla digital call option, that we denote with
Cdigital(s0, K, T, n). Let us call with π(n, j) the price at time 0 of a security which pays one
unit at time T if the asset price is equal to Sn,j = s0u

jdn−j and otherwise nothing, i.e.

π(n, j) = e−rTE[1SnT=Sn,j ] = e−rT
(
n

j

)
pj(1− p)n−j.

We denote as before with G(Sn,j) the payoff of a digital call option at node Sn,j, see (3.1.12).
So the price at time 0 of a vanilla digital call option is equal to

Cdigital(s0, K, T, n) = e−rTE[G(SnT )] = e−rT
n∑
j=0

E[G(SnT )1SnT=Sn,j ]

=
n∑

j=jK

π(n, j) = e−rT

[
n∑

j=jK

(
n

j

)
pj(1− p)n−j

]
.

(3.1.14)

Let us now consider the price of a down-and-in digital call option with L > K. From the
proof of Proposition 3.1.4 we know that the binomial price of a down-and-in digital call
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option with L > K (i.e. j̃L > jK) can be written as

Cdi−digital(s0, K, T, L, n)

= e−rT

[
j̃L∑

j=jK

(
n

j

)
pj(1− p)n−j +

2j̃L∑
j=j̃L+1

(
n

2j̃L − j

)
pj(1− p)n−j

]
.

(3.1.15)

We can now state the following result:

Proposition 3.1.5. The binomial price Cdo−digital(s0, K, T, L, n) of a down-and-out digital
call option with barrier L > K is equal to

Cdo−digital(s0, K, T, L, n) = e−rT

[
n∑

i=j̃L+1

(
n

i

)
pi(1− p)n−i

−
2j̃L∑

i=j̃L+1

(
n

2j̃L − i

)
pi(1− p)n−i

]
.

Proof. The price Cdo−digital(s0, K, T, L, n) of a down-and-in digital call option with L > K
is then obtained by subtracting the price Cdigital(s0, K, T, L) given in (3.1.14) to the price
Cdi−digital(s0, K, T, L, n) given in (3.1.15).

3.1.3 Binomial error for digital call options with a single barrier

We now give the explicit coefficients of 1√
n

and 1
n

in the asymptotic expansion of the binomial
error for the price of digital call options with barrier L. The idea is to use the closed-form
formulas of the binomial prices given in Proposition 3.1.4 and Proposition 3.1.5 and then
approximate them by using Lemma 4.1 in Lin and Palmer ([60], 2013) that is:

Lemma 3.1.6. Let pn be given by

pn =
1

2
+

α√
n

+
β

n3/2
+O

(
1

n5/2

)
,

for some coefficients α and β and let jn be

jn =
1− bn

2
+ γ
√
n+

n

2
,

where bn is bounded. Then

n∑
k=jn

(
n

k

)
pkn(1− pn)n−k = Φ(d) +

e−
d
2

2

√
2π

(
bn√
n

+
g − db2

n/2

n

)
+O

(
1

n3/2

)
,
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where

d = 2(α− γ) and g = 2(β + α2d) + (2α/3− d/12)(1− d2
).

The above Lemma is a generalization due to Lin and Palmer ([62], 2013) of a result of
Uspensky ([80], 1937) on the approximation of the binomial distribution by the normal one.
The principal idea is to rewrite the binomial formulas in a form such that Lemma 3.1.6 can
be applied.

Down-and-in and down-and-out digital call options with L < K

Theorem 3.1.7. In the n-period CRR binomial model, the binomial error Err(n) for the
prices of European digital call options with barrier L < K is:

• for a down-and-in digital call option:

Err(n) = e−rT

[
(Ã1∆K

n + Ã2∆L
n)

1√
n

+ (B̃1 + B̃2(∆K
n )2 + B̃3∆K

n ∆L
n + B̃4(∆L

n)2)
1

n

]
+O

(
1

n3/2

)
;

• for a down-and-out digital call option:

Err(n) = e−rT

[
(C̃1∆K

n + C̃2∆L
n)

1√
n

+ (D̃1 + D̃2(∆K
n )2 + D̃3∆K

n ∆L
n + D̃4(∆L

n)2)
1

n

]
+O

(
1

n3/2

)
,
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with

Ã1 =

(
s0

L

)1− 2r
σ2 e−

d222
2

√
2π

,

Ã2 = −2Ã1 − 4α
√
TΦ(d22)

(
s0

L

)1− 2r
σ2

,

B̃1 =

(
s0

L

)1− 2r
σ2
[
g2
e−

d222
2

√
2π
− IΦ(d22)

]
,

B̃2 =

(
s0

L

)1− 2r
σ2
(
−d22

2

)
e−

d222
2

√
2π

,

B̃3 =

(
s0

L

)1− 2r
σ2 e−

d222
2

√
2π

[2d22 − 4α
√
T ],

B̃4 =

(
s0

L

)1− 2r
σ2
[
e−

d222
2

√
2π

(−2d22 + 8α
√
T ) + 8α2TΦ(d22)

]
,

c1 =
e−

d212
2

√
2π

, c2 = −d12

2

e−
d212
2

√
2π

,

c̃ =
d3

11 + d11d
2
12 + 2d12 − 4d11

24
+

(2− d11d12 − d2
11)
√
T

6σ
r +

Td11

2σ2
r2,

c3 = c̃
e−

d212
2

√
2π

,

C̃1 = c1 − Ã1, C̃2 = −Ã2,

D̃1 = c2 − B̃1, D̃2 = c3 − B̃2,

D̃3 = −B̃3, D̃4 = −B̃4.

The list of the other constants can be found in the statement of Theorem 1.2.15.

Proof. Let us consider first the asymptotic expansion for the binomial price of the down-
and-in digital call option given in Proposition 3.1.4, that is

Cdi−digital(s0, K, T, L, n) = e−rT
2j̃L∑
i=jK

(
n

2j̃L − i

)
pi(1− p)n−i. (3.1.16)
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From equation (5.1) in Lin and Palmer ([62],2013) we can write (3.1.16) as follows

Cdi−digital(s0, K, T, L, n) = e−rT

(
1− p
p

)n−2j̃L2j̃L−jK∑
i=0

(
n

i

)
pn−i(1− p)i. (3.1.17)

From equation (5.7) in [60] we know that(
1− p
p

)n−2j̃L

= a1 + a2
1√
n

+ a3
1

n
+O

(
1

n3/2

)
, (3.1.18)

with

a1 =

(
s0

L

)1− 2r
σ2

, a2 = −4α
√
T∆L

n

(
s0

L

)1− 2r
σ2

,

a3 = (−I + 8α2T (∆L
n)2)

(
s0

L

)1− 2r
σ2

;

moreover, from equation (5.3) in [62] we have that

2j̃L−jK∑
i=0

(
n

i

)
pn−i(1− p)i = b1 + b2

1√
n

+ b3
1

n
+O

(
1

n3/2

)
, (3.1.19)

with

b1 = Φ(d22), b2 =
e−

d222
2

√
2π

(∆K
n − 2∆L

n),

b3 =
e−

d222
2

√
2π

(
g2 −

d22

2
(−∆K

n + 2∆L
n)2

)
.

We stress that the asymptotic expansion (3.1.19) is obtained by applying Lemma 3.1.6 to

n∑
i=2j̃L−jK+1

(
n

i

)
pn−i(1− p)i,

where 2j̃L − jK + 1 = 1
2
(1 + ∆K

n − 2∆L
n) + (−α̂

√
T + d21/2)

√
n+ n

2
.

In order to obtain an asymptotic expansion for (3.1.16) we combine together (3.1.18) and
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(3.1.19), i.e.

Cdi−digital(s0, K, T, L, n)

= e−rT

[
a1b1 + (a1b2 + a2b1)

1√
n

+ (a1b3 + a2b2 + a3b1)
1

n

]
+O

(
1

n3/2

)

= CBS
di−digital(s0, K, T, L) + e−rT

[
(Ã1∆K

n + Ã2∆L
n)

1√
n

+ (B̃1 + B̃2(∆K
n )2 + B̃3∆K

n ∆L
n + B̃4(∆L

n)2)
1

n

]
+O

(
1

n3/2

)
,

with

Ã1 =

(
s0

L

)1− 2r
σ2 e−

d222
2

√
2π

,

Ã2 = −2Ã1 − 4α
√
TΦ(d22)

(
s0

L

)1− 2r
σ2

,

B̃1 =

(
s0

L

)1− 2r
σ2
[
g2
e−

d222
2

√
2π
− IΦ(d22)

]
,

B̃2 =

(
s0

L

)1− 2r
σ2
(
−d22

2

)
e−

d222
2

√
2π

,

B̃3 =

(
s0

L

)1− 2r
σ2 e−

d222
2

√
2π

[2d22 − 4α
√
T ],

B̃4 =

(
s0

L

)1− 2r
σ2
[
e−

d222
2

√
2π

(−2d22 + 8α
√
T ) + 8α2TΦ(d22)

]
.

Let us now consider the asymptotic expansion for the down-and-out digital call option. We
observe that it can be derived from the asymptotic expansion for the down-and-in option
and that for the corresponding vanilla option. From Chang and Palmer ([20], 2007), we
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know that the asymptotic expansion for the vanilla option is the following:

Cdigital(s0, K, T, L, n) = CBS
digital(s0, K, T, L) + e−rT

[
c1∆K

n

1√
n

+ (c2 + c3(∆K
n )2)

1

n

]
+O

(
1

n3/2

)
,

with

c1 =
e−

d212
2

√
2π

, c2 = −d12

2

e−
d212
2

√
2π

,

c̃ =
d3

11 + d11d
2
12 + 2d12 − 4d11

24
+

(2− d11d12 − d2
11)
√
T

6σ
r +

Td11

2σ2
r2,

c3 = c̃
e−

d212
2

√
2π

.

So, the difference between the asymptotic expansion for the vanilla option and the one for
the down-and-in option, gives us the expansion for the down-and-out type option, i.e.:

Cdo−digital(s0, K, T, L, n) = CBS
do−digital(s0, K, T, L)

+ e−rT

[
(C̃1∆K

n + C̃2∆L
n)

1√
n

+ (D̃1 + D̃2(∆K
n )2 + D̃3∆K

n ∆L
n + D̃4(∆L

n)2)
1

n

]

+O

(
1

n3/2

)
,

with

C̃1 = c1 − Ã1, C̃2 = −Ã2,

D̃1 = c2 − B̃1, D̃2 = c3 − B̃2,

D̃3 = −B̃3, D̃4 = −B̃4

and the proof is complete.

Remark 3.1.8. Theorem 3.1.7 shows that the contribution of the type 1√
n

in the asymptotic
expansion is due to the position of both the barrier and the strike price with respect to the
nodes of the tree. In order to obtain an algorithm of order 1

n
, we need to set ∆K

n = 0 and
∆L
n = 0. It means that in the log-scale the strike K must be positioned halfway between

two nodes at maturity (i.e. it is a node of the penultimate period before maturity) and the
barrier L must lie on a layer of nodes of the tree. So, we can adapt the algorithm described
in Chapter 2 for the pricing of double barrier options to this specific case, as explained in
Section 3.3.1 of the numerical results, and then get a rate of convergence of order 1

n
.
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Down-and-in and down-and-out digital call options with L > K

Theorem 3.1.9. In the n-period CRR binomial model, the binomial error Err(n) for the
prices of European digital call options with barrier L > K is:

• for a down-and-out digital call option:

Err(n) = e−rT

[
(Ẽ1 + Ẽ2∆L

n)
1√
n

+ (F̃1 + F̃2∆L
n + F̃3(∆L

n)2 1

n

]
+O

(
1

n3/2

)
;

• for a down-and-in digital call option:

Err(n) = e−rT

[
(G̃1 + G̃2∆K

n + G̃3∆L
n)

1√
n

+ (H̃1 + H̃2(∆K
n )2 + H̃3∆L

n + H̃4(∆L
n)2)

1

n

]
+O

(
1

n3/2

)
,

with

Ẽ1 = −εn
e−

d232
2

√
2π

+

(
s0

L

)1− 2r
σ2 e−

d242
2

√
2π

,

Ẽ2 =
e−

d232
2

√
2π

+

(
s0

L

)1− 2r
σ2
(
e−

d242
2

√
2π

+ 4α
√

Φ(d42)

)
,

F̃1 =
e−

d232
2

√
2π

(
g3 −

d32

2
ε2n

)
+

(
s0

L

)1− 2r
σ2 e−

d242
2

√
2π

(
d42

2
ε2n − g4

)

+ Φ(d42)I

(
s0

L

)1− 2r
σ2

,
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F̃2 =
e−

d232
2

√
2π

d32εn +

(
s0

L

)1− 2r
σ2
(
e−

d242
2

√
2π

εnd42 − 4εnα
√
T

)
,

F̃3 = −d32

2

e−
d232
2

√
2π

+

(
s0

L

)1− 2r
σ2 e−

d242
2

√
2π

(
d42

2
− 4α

√
T

)

−

(
s0

L

)1− 2r
σ2

Φ(d42)8α2T,

G̃1 = −Ẽ1, G̃2 = c1, G̃3 = −Ẽ2,

H̃1 = c2 − F̃1, H̃2 = c3, H̃3 = −F̃2, H̃4 = −F̃3.

The other constants can be found in the statement of Theorem 1.2.15.

Proof. By proceeding similarly to the proof of Theorem 3.1.7, we need here to find an asymp-
totic expansion of the binomial price for a down-and-out digital call found in Proposition
3.1.5. In order to do this we apply (5.7), (5.11) and (5.15) in Lin and Palmer ([62], 2013). The
down-and-in case is then obtained by considering the difference of the asymptotic expansion
for the vanilla digital call and the down-and-out digital call. The proof is straightforward,
so we omit it.

Remark 3.1.10. As noticed in Lin and Palmer ([60], 2013), the term ∆K
n does not appear

in the error expansion for the down-and-out option, and the intuitive reason is that in this
case L > K and since the option stays alive if the stock price is above L, and therefore above
K, the position of K has no influence. The situation is different in the down-and-in case in
which the position of the strike K appears in the coefficient of 1√

n
. In fact in this case the

option is activated if the stock price process is below L, then since L > K the position of the
strike K has influence in the error expansion.

Remark 3.1.11. From the statements in Theorem 3.1.9 we observe that in the error ex-
pansion Err(n) for down-and-in and down-and-out digital call options with L > K it is not
possible to vanish the contribution of order 1√

n
by setting ∆L

n = 0 and ∆K
n = 0. In fact

there is another constant term of order 1√
n

that can’t be nullified. A possibility in order to

get an algorithm of order 1
n

is to set L and K such that ∆L
n = 0 = ∆K

n and then explicitly
calculate the constant coefficient that multiplies 1√

n
in order to subtract it to the binomial

approximated price.

Theorem 3.1.7 and Theorem 3.1.9 suggest us how to set the barrier L and the strike K in the
binomial tree scheme. This theoretical result is enhanced by numerical examples presented
in Section 3.3.1. As observed at the beginning of the Chapter, we are not able to extend
these results for double barrier options since no manageable binomial closed-form formulas
exist. The idea in order to treat this case is to use a different approach that we describe in
the following Section.
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3.2 Double barrier options on discontinuous payoffs

In this Section we study an upper bound for the binomial approximation error in the case
of double barrier options on a discontinuous payoff by using the PDE techniques in Gobet
([42], 2001). We stress here that we consider the setup described in Section 1.2.2 that we
briefly recall. We suppose as usual that the stock price process (St)t∈[0,T ] follows the SDE
(2.1.1), hence the log-price process that we call (St)t∈[0,T ] satisfies the equation:

St = S0 + µt+ σB(t), with S0 = log s0 and µ = r − 1

2
σ2.

In what follows we consider a European knock-out option with a single lower barrier L on a
generic discontinuous payoff function. We remark that in this Section L denotes the barrier
in the log-space. So we define O = (L,+∞) ⊂ R and the stopping time

τL = inf{t > 0 : St /∈ O}. (3.2.1)

Then the payoff is equal to

1T<τLf(ST )

with f having only one discontinuity point and such that f , f
′

and f
′′

have at most an
exponential growth. In particular, in what follows, we consider the case in which the strike
K is the only discontinuity point, i.e. f is the payoff of a digital option. We also remark
that in this Section K denotes the strike in the log-space and that we assume in what follows
that L < K.

Remark 3.2.1. Gobet ([42], 2001) considers a general class of continuous payoff functions
(for details see Section 1.2.2). A generalization of his result should consider all the discon-
tinuous payoffs with at most a finite number of discontinuity points and such that f , f

′
and

f
′′

have at most an exponential growth. But there is no lack of generality if we assume that
f has only one discontinuity point equal to K, since the discussion can be easily extended to
the more general case.

We consider a binomial approximation (S
n

ti
)i=0,...,n, where ti = ih and h = T/n, as described

in equation (1.1.13). Moreover, we set

τnL = inf{ti : S
n

ti
/∈ O} (3.2.2)

and

Ln = sup{S0 + iσ
√
h ≤ L : i ∈ {0, ..., n}}, (3.2.3)

i.e. Ln is the first lattice point below the barrier L. Moreover, we recall that

u(t, x) = E[1T−t<τLf(ST−t)] =

∫
O
qT−t(x, y)f(y)dy, (3.2.4)
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where qT−t(x, y) is the transition density at time T − t of the killed process S as it leaves O,
defined as follows:

qT−t(x, y) = q1
T−t(x, y)− e

2µ(L−x)
σ2 q2

T−t(x, y),

where

q1
T−t(x, y) =

1√
2πσ2(T − t)

exp

(
−(y − x− µ(T − t))2

2σ2(T − t)

)
,

q2
T−t(x, y) =

1√
2πσ2(T − t)

exp

(
−(y + x− 2L− µ(T − t))2

2σ2(T − t)

)
.

We also remember that u(t, x) satisfies the following parabolic PDE of the second order with
Cauchy and Dirichlet conditions, i.e. ∂tu+ Lu = 0, (t, x) ∈ [0, T )×O

u(t, x) = 0, (t, x) ∈ [0, T )×Oc
u(T, x) = f(x), x ∈ O

where L is the infinitesimal generator: Lu(x) = µu′(x) + 1
2
σ2u′′(x). Our purpose is to find

an upper bound for the binomial approximation error that is

Err(n) = E(1T<τnLf(S
n

T ))− E(1T<τLf(ST )).

By using a telescoping sum and rearranging the indicator functions we can write

Err(n) =
n−1∑
i=0

E[1ti+1<τnL
u(ti+1, S

n

ti+1
)− 1ti<τnL

u(ti, S
n

ti
)]

=
n−1∑
i=0

E[1ti<τnL (u(ti+1, S
n

ti+1
)− u(ti, S

n

ti
))]

=
n−1∑
i=0

Ai +
n−1∑
i=0

Bi,

where

Ai = E[1ti<τnL1Snti=Ln+σ
√
h(u(ti+1, S

n

ti+1
)− u(ti, S

n

ti
))], (3.2.5)

Bi = E[1ti<τnL1Snti>Ln+σ
√
h(u(ti+1, S

n

ti+1
)− u(ti, S

n

ti
))]. (3.2.6)

Then, the idea is to decompose the analysis of the error Err(n) by considering the two sums
above:

∑n−1
i=0 Ai refers to the lattice points near the lower barrier L and

∑n−1
i=0 Bi deals with

all the lattice points “far” from the barrier L.
Let us consider the two following hypothesis on the payoff function f :
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Assumption 3.2.2. The payoff function f satisfies:

f ∈ C2
b ([L,K],R) ∩ C2

b ([K,+∞),R) and f(L) = 0.

Assumption 3.2.3. The payoff function f satisfies:

f ∈ C2
b ([L,+∞),R) s.t. f(L) 6= 0.

As observed in Remark 1.2.9, if we prove the result for f that satisfies Assumption 3.2.2
and also for f that satisfies Assumption 3.2.3, then this is sufficient for the treatment of the
general case in which f has a discontinuity in K and is not vanishing in L, as for the digital
case. Gobet ([42], 2013) proves the statement with f under Assumption 3.2.3 and this result
is given in Theorem 1.2.12. We recall here that he proves under Assumption 3.2.3 that

Err(n) = (L− Ln)E[∂xu(τL, L
+)1τL≤T ] +Rn,

where Rn is such that there exists a constant C > 0: |Rn| ≤ C logn
n

and where the term
E[∂xu(τL, L

+)1τL≤T ] is a finite value. In particular, looking at the proof of Theorem 3.1 in
Gobet ([42], 2001), we notice that the contribution in Err(n) of order 1√

n
(that is the main

term in the error expansion above) derives from the terms Ai defined in (3.2.5), that are
related to the lattice points near the barrier L. Instead, the terms Bi defined in (3.2.6)
have a negligible contribution that is resumed by the term Rn. Our purpose is to find an
estimate for the error when f satisfies Assumption 3.2.2, so that we also have an estimate of
the error when f is the payoff of a digital option. In order to prove our result we need some
preliminary lemmas on the boundary and global estimates of the function u solution of the
PDE.

3.2.1 Preliminary results

The following two lemmas extend Lemma 3.1 in Gobet ([42], 2001) to the case in which
Assumption 3.2.2 holds. The proofs are postponed in Appendix A.

Lemma 3.2.4. Let f be a function such that

f ∈ C2
b ([L,K],R) ∩ C2

b ([K,+∞),R) and f(L) = 0.

Then there exist two positive constants C and c such that the following boundary estimates
hold:

sup
(t,x)∈[0,T )×(L,K+L

2
]

|∂tu(t, x)|+ |∂xu(t, x)|+ |∂2
x,xu(t, x)| ≤ C,

sup
(t,x)∈[0,T )×(L,K+L

2
]

|∂2
t,xu(t, x)| ≤ C√

T − t
,

with u defined in (3.2.4).
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Lemma 3.2.5. Let f be a function such that

f ∈ C2
b ([L,K],R) ∩ C2

b ([K,+∞),R) and f(L) = 0.

Then there exist two positive constants C and c such that the following global estimates hold:

|∂2
x,tu(t, x)|+ |∂3

x,x,xu(t, x)| ≤ C√
T − t

(
1 +

1

(T − t)
e−c

(x−K)2

T−t

)
,

|∂2
t,tu(t, x)|+ |∂3

x,x,tu(t, x)|+ |∂4
x,x,x,xu(t, x)|

≤ C

(T − t)

(
1 +

1

(T − t)
e−c

(x−K)2

T−t

)
,

with u defined in (3.2.4).

Remark 3.2.6. In Lemma 3.1 Gobet ([42], 2001) finds boundary and global estimates when
the payoff function f is such that

f ∈ C0([L,+∞),R) ∩ C2
b ([L,K],R) ∩ C2

b ([K,+∞),R) and f(L) = 0.

We notice that the boundary estimates he obtains under the continuity assumption of f are
exactly the same as the estimates in Lemma 3.2.4. Instead, the global estimates he gets are
the following:

|∂2
x,tu(t, x)|+ |∂3

x,x,xu(t, x)| ≤ C√
T − t

(
1 +

1√
T − t

e−c
(x−K)2

T−t

)
,

|∂2
t,tu(t, x)|+ |∂3

x,x,tu(t, x)|+ |∂4
x,x,x,xu(t, x)|

≤ C

(T − t)

(
1 +

1√
T − t

e−c
(x−K)2

T−t

)
.

We observe that since the global estimates are related on the strike K, they are better than
the ones we get in Lemma 3.2.5.

We recall here Lemma 3.1 in Gobet ([42], 2001) that we will use in the following Section:

Lemma 3.2.7. For c > 0, one has

E

[
exp

(
−c(Sti − α)2

ε

)]
≤ C

(
1√
i

+

√
ε

ε+ ti

)
,

for a positive constant C = C(c, µ, σ, T ), uniform in ε, ti = ih, n, S0 and α.
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3.2.2 Upper bound for the error

We state here our result:

Theorem 3.2.8. Let f satisfy Assumption 3.2.2. The error Err(n) in the binomial lattice
approximation satisfies:

Err(n) = (L− Ln)E[∂xu(τL, L
+)1τL<T ] + R̃n,

with R̃n such that there exists a constant C > 0 : |R̃n| ≤ C√
n

, Ln defined in (3.2.3) and τL
defined in (3.2.1).

Proof. We stress here that for the analysis of the contribution given by the terms Ai we can
exactly repeat the arguments used in the proof of Theorem 3.1 in Gobet ([42], 2001), since
the boundary estimates found in Lemma 3.2.4 are the same as the boundary estimates given
in Lemma 3.1 in Gobet ([42], 2001) under the hypothesis of continuity of the payoff.
The main difference is given by the study of the terms Bi: in fact under Assumption 3.2.2
we get worst global estimates than the ones in [42] (see Remark 3.2.6). In fact the global
estimates “reflect” the behavior around the discontinuity point that explicitly appears in
the exponential term, so it is reasonable that the estimates obtained for a payoff with a
discontinuity point are worst than the global estimates under the assumption of continuity
of the payoff function.

Contribution of the terms Ai

We have that
Ai = E[1ti<τnL1Snti=Ln+σ

√
h(u(ti+1, S

n

ti+1
)− u(ti, S

n

ti
))],

so if we define Âi = E[Ai|S
n

ti
], then

Ai = E[1ti<τnL1Snti=Ln+σ
√
hÂi].

Let us now consider Âi. We recall here that ph is the Taylor expansion at the first order
as defined in (1.1.15). By using the law of S

n

ti+1
given S

n

ti
and the fact that u(ti+1, Ln) =

u(ti+1, L), then a Taylor expansion around the point (ti+1, L) gives

Âi = phu(ti+1, Ln + 2σ
√
h) + (1− ph)u(ti+1, Ln)− u(ti, Ln + σ

√
h)

= (1− ph)[u(ti+1, L)− u(ti, Ln + σ
√
h)]

+ ph[u(ti+1, Ln + 2σ
√
h)− u(ti, Ln + σ

√
h)]

= (1− ph)[∂xu(ti+1, L
+)(L− σ

√
h− Ln) +O(h)]

+ ph[∂xu(ti+1, L
+)(σ
√
h) +O(h)],
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where we remark that the remainder terms of the Taylor expansion are O(h) uniformly in
i because of the boundary estimates given in Lemma 3.2.4. Then, by using that 2ph − 1 =
C ·O(h) we obtain

Âi = (1− ph)∂xu(ti+1, L
+)(L− Ln) +O(h),

so that

Ai = [∂xu(ti+1, L
+)(L− Ln) +O(h)]P(ti+1 = τnL),

because

(1− ph)P[ti < τnL ;S
n

ti+1
= Ln + σ

√
h] = P(ti+1 = τnL).

Then we obtain that

n−1∑
i=0

Ai = (L− Ln)E[∂xu(τnL , L
+)1τnL≤T ] +O(h),

but E[∂xu(τnL , L
+)1τnL≤T ] tends to E[∂xu(τL, L

+)1τL≤T ] as n ↑ ∞, and so we get that

n−1∑
i=0

Ai = (L− Ln)E[∂xu(τL, L
+)1τL≤T ] +O(h). (3.2.7)

Contribution of the terms Bi

We have that

Bi = E[1ti<τnL1Snti>Ln+σ
√
h(u(ti+1, S

n

ti+1
)− u(ti, S

n

ti
))],

so if we define B̂i = E[Bi|S
n

ti
], then

Bi = E[1ti<τnL1Snti>Ln+σ
√
hB̂i].
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As for the previous case of the terms Âi, we can make a Taylor expansion of the terms B̂i

and obtain:

B̂i =h2

(
µ∂2

t,xu(ti, S
n

ti
) + µ

σ2

6
∂3
x,x,xu(ti, S

n

ti
)

)
+

+ phσ
2h2

∫
[0,1]2

ds1ds2s1∂
3
t,x,xu(ti, S

n

ti
+ s1s2σ

√
h)+

+ (1− ph)σ2h2

∫
[0,1]2

ds1ds2s1∂
3
t,x,xu(ti, S

n

ti
− s1s2σ

√
h)+

+ phh
2

∫
[0,1]2

ds1ds2s1∂
2
t,tu(ti + s1s2h, S

n

ti
+ σ
√
h)+

+ (1− ph)h2

∫
[0,1]2

ds1ds2s1∂
2
t,tu(ti + s1s2h, S

n

ti
− σ
√
h)+

+ phσ
4h2

∫
[0,1]2

ds1ds2ds3ds4s
3
1s

2
2s3∂

4
x,x,x,xu(ti, S

n

ti
+ s1s2s3s4σ

√
h)+

+ (1− ph)σ4h2

∫
[0,1]2

ds1ds2ds3ds4s
3
1s

2
2s3∂

4
x,x,x,xu(ti, S

n

ti
− s1s2s3s4σ

√
h),

(for details see also (3.19) and (3.20) in Gobet ([42], 2001)). By using the global estimates
in Lemma 3.2.5 and the expression of B̂i, we get that

∑n−1
i=0 Bi can be transformed in few

sums that are bounded by the following two expressions:

S1(n) =
1

n2

n−1∑
i=0

C

T − ti
; (3.2.8)

S2(n) =
1

n2

n−1∑
i=0

C

(T − ti)2
E

[
exp

(
−c

(S
n

ti
− kn)2

T − ti

)]
, (3.2.9)

with |K − kn| ≤ σ
√
h. Let us consider first the sum (3.2.8). We have that

S1(n) =
1

n2

n−1∑
i=0

C

T − ti
=

1

n2

n−1∑
i=0

C
1
n
(n− i)

=
1

n

n−1∑
i=0

C

n− i
= O

(
log n

n

)
.

Let us now consider the sum (3.2.9). By considering that the exponential function is bounded
when ti is far enough from maturity T and by using Lemma 3.2.7 we get

S2(n) ≤ 1

n2

bn
2
c−1∑
i=0

C

(T − ti)2
+

1

n2

n−1∑
i=bn

2
c

C

(T − ti)2

(
1√
i

+

√
T − ti
T

)
.
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We now study the three terms above separately:

1

n2

bn
2
c−1∑
i=0

C

(T − ti)2
=

1

n2

bn
2
c−1∑
i=0

C

(n− i)2
= O

(
1

n

)
;

1

n2

n−1∑
i=bn

2
c

C

(T − ti)2

1√
i

=
n−1∑
i=bn

2
c

C

(n− i)2
√
i

= O

(
1√
n

)
;

1

n2

n−1∑
i=bn

2
c

C

(T − ti)2

√
T − ti
T

=
1√
n

n−1∑
i=bn

2
c

C

(n− i)3/2
= O

(
1√
n

)
.

So we get that
n−1∑
i=0

Bi ≤ R̃n,

with R̃n such that there exists a constant C > 0 : |R̃n| ≤ C√
n
. The statement now follows.

Remark 3.2.9. The error term (3.2.7) due to the
∑n

i=0Ai shows that a part of the contri-
bution of type 1√

n
in the binomial error is due to the position of the barrier with respect to

the nodes of the tree. In fact, since E[∂xu(τL, L
+)1τL≤T ] is finite, the leading term in (3.2.7)

is L− Ln that is proportional to 1√
n

because

L− Ln = σ
√
h

(
1− frac

(
log s0 − L
σ
√
h

))
.

Remark 3.2.10. Our goal was originally to find in the asymptotic expansion of the binomial
approximation error a term in the coefficient of 1√

n
explicitly dependent on the position of the

strike K. In fact, this result is suggested in the more specific case of digital call options from
Theorem 3.1.7 and Theorem 3.1.9. However, we find that the contribution O( 1√

n
) depends on

two factors: on the position of the barrier L (and this comes from the analysis of the terms
Ai) and also on the nodes of the tree “far from the barrier” (this comes from the analysis of
the terms Bi). We stress that the contribution of the terms Bi is essentially a consequence of
the global estimates of Lemma 3.2.5 that in the case of a payoff function with a discontinuity
point in K are worst than the ones obtained for continuous payoffs. We also remark that
the exponential function in the global estimates reflects the behavior around the discontinuity
point K and this allows us to say that there exist a contribution of 1√

n
in the binomial error

due to K, also if we are not able to write an explicit dependence.

Now that the result is proved both for f satisfying Assumption 3.2.2 (Theorem 3.2.8) and
for f satisfying Assumption 3.2.3 (see Appendix B in Gobet ([42], 2001)), we can say that
the result in Theorem 3.2.8 can also be applied to functions f ∈ C2

b with at most one
discontinuity point in K and not vanishing at L.
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The advantage of this procedure is that Theorem 3.2.8 can be easily extended to the case of
double barrier options. In fact, by proceeding similarly it is possible to prove the following
theorem:

Theorem 3.2.11. Let L denote the lower barrier and H the higher barrier. We assume
that the payoff function f is such that f ∈ C2

b ([L,K],R) ∩ C2
b ([K,H],R) and such that

f(L) = 0 = f(H). The error Err(n) in the binomial lattice approximation satisfies:

Err(n) = (L− Ln)E[∂xu(τL, L
+)1τ≤T1τL<τH ]

+ (H −Hn)E[∂xu(τH , H
−)1τ≤T1τH<τL ] + R̃n,

with R̃n such that there exists a constant C > 0 : |R̃n| ≤ C√
n

, Ln defined in (3.2.3), τL

defined in (3.2.1), τ = τH ∧ τL, τH = inf{t > 0 : St ≤ H} and Hn = inf{S0 + iσ
√
h ≥ H :

i ∈ {0, ..., n}}.
Proof. The proof is similar to the one of Theorem 3.2.8, so we omit it.

We observe that Gobet proves that for f ∈ C2
b ([L,H],R) and such that f(L) 6= 0 6= f(H)

the binomial approximation error can be written as follows

Err(n) = (L− Ln)E[∂xu(τL, L
+)1τ≤T1τL<τH ]

+ (H −Hn)E[∂xu(τH , H
−)1τ≤T1τH<τL ] +Rn,

(3.2.10)

with Rn such that there exists a constant C > 0 : |Rn| ≤ C logn
n

(see Appendix B in ([42],
2001)). Then, if we combine the result in Theorem 3.2.11 with the result in (3.2.10) we can
state that:

Theorem 3.2.12. Let L denote the lower barrier and H the higher barrier. We assume
that the payoff function f is such that

f ∈ C2
b ([L,K],R) ∩ C2

b ([K,H],R).

The error Err(n) in the binomial lattice approximation satisfies:

Err(n) = (L− Ln)E[∂xu(τL, L
+)1τ≤T1τL<τH ]

+ (H −Hn)E[∂xu(τH , H
−)1τ≤T1τH<τL ] + R̃n,

with R̃n such that there exists a constant C > 0 : |R̃n| ≤ C√
n

, Ln defined in (3.2.3), τL

defined in (3.2.1), τ = τH ∧ τL, τH = inf{t > 0 : St ≤ H} and Hn = inf{S0 + iσ
√
h ≥ H :

i ∈ {0, ..., n}}.
Proof. The proof is a direct consequence of Remark 1.2.9.

Remark 3.2.13. We stress again that another advantage of the PDE technique is that
Theorem 3.2.11, and then also Theorem 3.2.12, can be extended to the more general case in
which the payoff function has more than one discontinuity point.
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3.3 Numerical results

3.3.1 Single barrier digital options

Theorem 3.1.7 and Theorem 3.1.9 on the asymptotic expansion of the binomial approxima-
tion error, suggest that an algorithm of order 1

n
can be obtained if the lower barrier L lies

exactly on a node of the tree and if the strike K is positioned halfway between two nodes at
maturity.
In Chapter 2, we introduced a new binomial algorithm, called the Binomial Interpolated
Lattice (for details see Section 2.5), that is able to treat efficiently the pricing of options
with double barrier L and H. The idea is to construct a binomial mesh such that both L
and H are set on a layer of nodes of the tree.
Then, here we can adapt the Binomial Interpolated Lattice algorithm such that the lower
barrier L is a node of the tree (in particular we set it as a node at maturity) and the strike
K is a node of the first period before maturity. In fact we just need to modify the choice
of k defined in (2.4.2) and the time step ∆T defined in (2.4.1) such that the previous two
conditions are satisfied. As in the Binomial Interpolated Lattice algorithm the number of
time steps of the binomial procedure is set as n = b T

∆T
c + 2. Then we provide the price

at time 0 by a backward induction and by proceeding through interpolations in time and
in space involving some specified prices at times t0 = 0 and t2 = 2∆T (see Section 2.5 for
details). Let us denote with m the number of time steps of the CRR binomial approximation
and with ∆τ = T/m. If we denote with k̃ = logK and with l = logL, then we define k as
follows

k =

⌈
k̃ − l

2σ
√

∆τ

⌉
+

1

2
,

so that the new time step ∆T is

∆T =

(
k̃ − l
2σk

)2

.

We can then construct a binomial mesh such that L and K are set as suggested by Theorems
3.1.7 and 3.1.9. In the sequel we will call this procedure adapted to the pricing of single
barrier digital options “adjusted BIL” algorithm, where BIL stands for Binomial Interpolated
Lattice.
We stress here that we will consider the out-type barrier options as in Chapter 2, the case
of the in-type barrier options being similar.

Remark 3.3.1. Since we are considering out-type barrier options, in the BIL algorithm
we just need to construct a binomial mesh between the barriers L and H because at the
barriers the price of the option is set equal to 0. In the adjusted BIL algorithm it is not
enough to construct a mesh between L and K, so we need to extend it above K, but this is
straightforward.
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We present here some numerical results in order to compare the prices for single barrier
digital options obtained with the standard CRR algorithm and those obtained with the
adjusted BIL algorithm.

Down-and-out digital call option with L < K

We consider the problem of pricing a down-and-out digital call option with lower barrier
L = 60, strike K = 100 and initial stock value equal to s0 = 150. The other parameters are:
r = 0.1, σ = 0.25 and T = 1. In Figure 3.1 we plot the prices obtained by using the CRR
binomial approximation and the true price that is calculated by using the Black and Scholes
formula, i.e.

CBS
do−digital = e−rT

[
Φ(d12)− Φ(d22)

(
s0

L

)1− 2r
σ2
]
. (3.3.1)

We observe that the binomial price oscillates widely around the true price and this is due
both on the position of L and the position of K with respect to the nodes of the tree.

Figure 3.1: CRR binomial approximation. Knock-out digital call option with L = 60, K =
100, s0 = 150, r = 0.1, σ = 0.25 and T = 1.

In Figure 3.2 we plot the prices obtained by using the adjusted BIL algorithm in order to
match solely the lower barrier L, so that we can observe a behavior of order 1√

n
due to
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the position of the strike K. We stress that we construct the binomial mesh as described
in Remark 3.3.1, but with the trick of actually matching the barrier L and another level
different from K. We also remark that in the x-axis we report the number m of time steps
corresponding to the CRR binomial approximation. In fact we recall that in the adjusted
BIL algorithm we define a new number of time steps n different from m but having the same
order of magnitude. We notice that the period of the oscillations is greater than the one in
the CRR binomial approximations, but there are still high peaks around the true price due
to position of K.

Figure 3.2: Matching of the lower barrier L. Knock-out digital call option with L = 60, K =
100, s0 = 150, r = 0.1, σ = 0.25 and T = 1.

In Figure 3.3 we plot the prices obtained by applying the adjusted Binomial Interpolated
Lattice as explained at the beginning of this Section. In this figure there are no oscillations
and the convergence is O(1/n): the oscillations due L and K disappear and the convergence
is monotone.
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Figure 3.3: Adjusted binomial interpolated lattice. Knock-out digital call option with L = 60,
K = 100, s0 = 150, r = 0.1, σ = 0.25 and T = 1.

In Figure 3.4 we plot together the prices obtained with the CRR binomial approximation
in Figure 3.1, the adjusted BIL algorithm in order to match solely the lower barrier L as in
Figure 3.2 and the adjusted BIL algorithm for the matching of L and K as in Figure 3.3.
We also plot the true price obtained by using (3.3.1). The improvement obtained by setting
L and K as suggested in Theorem 3.1.7 is evident.
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Figure 3.4: Knock-out digital call option with L = 60, K = 100, s0 = 150, r = 0.1, σ = 0.25
and T = 1.

In Table 3.1 we report the prices of the down-and-out digital call option with lower barrier
L obtained with the CRR algorithm and the adjusted BIL algorithm. In the first column
we write the number m of time steps of the CRR binomial approximation. The true price is
calculated by using (3.3.1).

L < K < s0
m CRR True adjusted BIL

100 0.883147 0.878791
200 0.879006 0.878732
400 0.880340 0.878667 0.878700
800 0.876786 0.878684
1600 0.878863 0.878676
3200 0.877873 0.878671

Table 3.1: Knock-out digital call option prices with L = 60, K = 100, s0 = 150, r = 0.1,
σ = 0.25 and T = 1.

Down-and-out digital call option with L > K

We consider the price of a down-and-out digital call option with strike K = 60, lower barrier
L = 100 and initial stock price s0 = 150. The other parameters are: r = 0.1, σ = 0.25
and T = 1. In Figure 3.5 we plot the CRR binomial prices and in Figure 3.4 the adjusted
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Binomial Interpolated Lattice prices. We remark that in this case the oscillations of the
CRR prices are fewer than the case L < K and this is due to the fact that the position of
K has no influence in the error expansion since the option stays alive when the stock price
is above L and therefore above K. So, the term O( 1√

n
) is only due on the position of L, as

remarked in Theorem 3.1.9. In Figure 3.6 we plot the prices obtained with the adjusted BIL
algorithm and we observe that here the convergence is monotone since we construct the tree
such that the lower barrier L lies exactly on a layer of nodes. The true price is obtained by
using the Black and Scholes formula (3.1.3).

Figure 3.5: CRR binomial approximation. Knock-out digital call option with K = 60, L =
100, s0 = 150, r = 0.1, σ = 0.25 and T = 1.
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Figure 3.6: Adjusted binomial interpolated lattice. Knock-out digital call option with K = 60,
L = 100, s0 = 150, r = 0.1, σ = 0.25 and T = 1.

In Table 3.2 we report the prices of the down-and-out digital call option with lower barrier
L > K obtained with the CRR algorithm and the adjusted BIL algorithm. As usual, m
denotes the number of time steps of the CRR binomial approximation. The true price is
calculated by using (3.1.3).

K < L < s0
m CRR True adjusted BIL

100 0.855913 0.844983
200 0.846415 0.845304
400 0.849497 0.845484
800 0.846188 0.845659 0.845571
1600 0.846107 0.845615
3200 0.846252 0.845637

Table 3.2: Knock-out digital call option prices with K = 60, L = 100, s0 = 150, r = 0.1,
σ = 0.25 and T = 1.

3.3.2 Double barrier digital options

We now present some numerical results on the pricing of double barrier digital call options.
From Theorem 3.2.12 we know that the binomial approximation is of order 1√

n
and this is

due both on the position of the barriers (the lower barrier L and the higher barrier H) and
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the position of the strike K. We consider for example a double barrier digital call option
with lower barrier L = 60, K = 100, s0 = 150 and H = 180. The other parameters are:
r = 0.1, σ = 0.25 and T = 1. In Figure 3.7 we plot the prices obtained by using the CRR
binomial approximation and the true price obtained with the Ikeda and Kunitomo formula
([56], 1992) that gives for the previous parameters a price equal to 0.372300. We observe
that the binomial price oscillates with high frequency around the true price and then the
convergence is O( 1√

n
).

Figure 3.7: CRR binomial approximation. Knock-out double barrier digital call option with
K = 100, L = 60, H = 180, s0 = 150, r = 0.1, σ = 0.25 and T = 1.

We now apply the Binomial Interpolated Lattice (BIL) described in Section 2.5 to price a
double barrier digital call option with the same parameters as in Figure 3.7. Then we are
able to match exactly the barriers L and H, so the only contribution of O( 1√

n
) is due to

the position of the strike K. In Figure 3.8 we plot the prices obtained with the Binomial
Interpolated Lattice and the true price calculated with the Ikeda and Kunitomo formula.
The result we obtain is interesting: in fact part of the oscillatory behavior disappears (the
one due to the barriers L and H), but the convergence is still of the type O( 1√

n
). We can

explain this effect by looking at the statement of Theorem 3.2.12: the binomial error Err(n)
is bounded from the above by a quantity R̃n that is indeed a O( 1√

n
) and that is related to

the position of the strike K. However it seems that the oscillations due to K are not so large.



3.3 Numerical results 109

In fact the contribution of order 1√
n

due to the position of the strike has a lower magnitude
than the one caused by the position of the barriers with respect to the nodes of the tree.

Figure 3.8: Binomial interpolated lattice. Knock-out double barrier digital call option with
K = 100, L = 60, H = 180, s0 = 150, r = 0.1, σ = 0.25 and T = 1.

In Figure 3.9 we plot the prices obtained with the adjusted Binomial Interpolated Lattice
as described in Section 3.3.1 and the true price calculated with the Ikeda and Kunitomo
formula. We observe that here the contributions of order O( 1√

n
) due to the position of

the lower barrier L and the strike K vanish, but in the error approximation there is still a
component of order O( 1√

n
) due to the position of the higher barrier H.
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Figure 3.9: Adjusted binomial interpolated lattice. Knock-out double barrier digital call option
with K = 100, L = 60, H = 180, s0 = 150, r = 0.1, σ = 0.25 and T = 1.

From Theorem 3.2.11 we know that the contribution of order O( 1√
n
) related to the position

of the higher barrier H is given by

(H −Hn)E[(∂xu(τH , H
−)1τ≤T1τH<τL ].

Once computed the expectation above, following the idea in Section 4 in Gobet ([42], 2001),
we can easily improve the adjusted Binomial Interpolated Lattice (which gives the price
aBIL(n)) to obtain a corrected adjusted Binomial Interpolated Lattice price (caBIL(n)) by
the following way:

caBIL(n) = aBIL(n) + (Hn −H)E[(∂xu(τH , H
−)1τ≤T1τH<τL ].

From Proposition 4.1 in [42] we can directly compute the expectation we need, in particular
we get that

E[(∂xu(τH , H
−)1τ≤T1τH<τL ]

≈ CC1σ
√
T [−σ

√
T (e−

B2
2
2 − e−

B2
1
2 ) + µT

√
2π(Φ(B2)− Φ(B1))],

(3.3.2)
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with

C =
2

σ3T
√

2πT
e−

µ2T

2σ2 , µ = r − 1

2
σ2, C1 = e−

1
2σ2T

[4µT (log s0−logH)]−µ2T 2

,

B1 =
logK − 2 logH + log s0 − µT

σ
√
T

, B2 =
− logH + log s0 − µT

σ
√
T

.

As usual, Φ(x) = 1√
2π

∫ x
−∞ e

−u
2

2 du.

Remark 3.3.2. From Proposition 4.1 in [42] we know that the expectation above is indeed
a finite sum of terms of type (3.3.2). In practice, to keep only the first term of the sum, that
is the one in (3.3.2), leads to a good accuracy as we will see from the numerical results. We
also remark that the correction term in (3.3.2) is specific for the case of digital call options.
In fact the expectation above depends on the payoff function, so actually the procedure based
on the correction term is not really practical.

Figure 3.10: Adjusted binomial interpolated lattice and correction for the higher barrier.
Knock-out double barrier digital call option with K = 100, L = 60, H = 180, s0 = 150,
r = 0.1, σ = 0.25 and T = 1.

In Figure 3.10 we plot the prices obtained with the corrected adjusted Binomial Interpolated
Lattice, that is the adjusted Binomial Interpolated Lattice implemented with the correction
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term for the higher barrier H given in (3.3.2). The true price is given by the Ikeda and
Kunitomo formula.
In Figure 3.11 we plot together the prices obtained with the CRR binomial approximation
(in which the barriers L and H and the strike K do not coincide with a node of the tree), the
BIL procedure (in which we set the barriers L and H such that they are on a layer of nodes
of the tree), the adjusted BIL algorithm (in which the lower barrier L is a node of the tree
and the strike K is a node of the penultimate period), the corrected adjusted BIL algorithm
(in which L is a node of the tree, K is a node from the penultimate period and where we also
add the correction term that is proportional to (3.3.2)) and the Ikeda and Kunitomo price.
We observe that the BIL algorithm and the corrected adjusted BIL algorithm perform better
than the other procedures. In fact the first one cancels the contribution of order O( 1√

n
) due

to the position of the barriers L and H, and in the second one all the contributions of order
O( 1√

n
) (due to L,H and K) vanish. We still remark that the correction term calculated by

using (3.3.2) is indeed an approximation: from Proposition 4.1 in [42] we get that actually
it is equal to a sum of (2M + 1)2 term with M > 0. However in practice to keep only one
term (M = 0) is enough to get good results.

Figure 3.11: Comparisons. Knock-out double barrier digital call option with K = 100,
L = 60, H = 180, s0 = 150, r = 0.1, σ = 0.25 and T = 1.

In Table 3.3 we report the prices of the double barrier digital call option obtained with the
CRR algorithm, the BIL algorithm and the corrected adjusted BIL algorithm (caBIL). We
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observe that as m (and then the true number of time steps n of the BIL algorithm) increases
the prices computed with the BIL algorithm and the caBIL algorithm are much more closer
to the true price calculated with the Ikeda and Kunitomo formula than the ones obtained
with the CRR tree. This is due to the fact that first of all with the BIL algorithm the
contribution of order 1√

n
due to the barriers vanishes. Our conjecture is that the only term

of order 1√
n

is due to the distance |K̃ −K| between the contractual strike K and the node

K̃ of the tree at a period before maturity that is the closest to K, and as n increases this
distance becomes smaller and smaller. We also obtain a good approximation by using the
caBIL algorithm: in this case we eliminate the contribution of order 1√

n
due to L and K and

by using the correction term we are also able to remove part of the error due to the position
of H.

L < K < H
m CRR BIL caBIL KI

100 0.411097 0.366569 0.374740
200 0.398082 0.374004 0.373933
400 0.384829 0.371442 0.373827
800 0.377426 0.371153 0.373804 0.372300
1600 0.383279 0.373327 0.370515
3200 0.378424 0.371445 0.373219

Table 3.3: Knock-out double barrier digital call options prices with K = 100, L = 60,
H = 180, s0 = 150, r = 0.1, σ = 0.25 and T = 1.
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Chapter 4

Option pricing with CIR interest rate

The scenarios that have been prevailing on financial markets in the last decades suggest that
equity models need to take into account for stochastic interest rates to capture the reality.
For example, let us think to long-lived contracts such as equity-linked life insurance policies
with an asset value guaranteed introduced by Brennan and Schwartz ([18], 1976). This kind
of product is not really an insurance policy at all, but it is indeed an investment program
in which the insurance company invests part of the premium in bonds that guarantee a
minimum benefit to the policyholder and another part in an investment portfolio whose
value at expiration is uncertain. Then, it is actually a financial product whose pricing issue
involves the necessity to allow for stochastic interest rates because of its long life time.
Moreover, starting from 1990, practitioners introduced a kind of options whose time-to-
maturity is at least 2 or 3 years at the time of issue. Those options are known as LEAPS,
an acronym for Long-term Equity AnticiPation Security, and actually they are available
on approximately 2500 equities and 20 indexes. Although a closed-form formula due to
Merton ([64], 1973) exists for a European option with stochastic interest rate that follows
an Ornestein-Uhlenbeck process, its American counterpart is unknown. Here comes the
necessity of deriving an alternative way for the valuation of American-style options with
stochastic interest rate by using numerical methods. Then the starting continuous model is
a two-dimensional diffusion in which the equity value is a geometric Brownian motion with
drift driven by a square root process (see Section 4.2).

Although Boyle ([14], 1988) and then Boyle et al.([15], 1989) propose lattice models for the
pricing of options with two state variables, those methods are specific for the case in which
the two variables have a bivariate lognormal distribution.
The first two attempts to solve the problem in which one of the two state variables is a
mean-reverting process, such as the CIR process, are due to Kishimoto ([53], 1989) and Hull
and White ([50], 1990). In few words, Kishimoto combine the Ho-Lee term structure model
([47], 1986) with the CRR binomial tree ([28], 1979), while Hull and White propose a finite
difference approach (for details see Section 4.1). In both cases the numerical procedure is
complex and for this reason first Wei ([83], 1996) and then Hilliard, Schwartz and Tucker
([46], 2004) develop simpler lattice procedures based on a slight modification of the Nelson
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and Ramaswamy idea ([65], 1990) that consists in approximating one dimensional diffusions
with simple binomial processes (for details see Section 4.3.1 and Section 4.3.2). Nevertheless,
numerical experiments show that the methods proposed by Wei and Hilliard, Scwhartz and
Tucker are not stable and robust from a practical point of view whenever the parameter
volatility of the interest rate increases.
We describe here the procedure introduced in Appolloni, Caramellino and Zanette ([4],
2013), that is a new lattice approach which permits very efficient and precise numerical
results without any restriction on the parameters. Moreover, we provide a theoretical proof
of the convergence of the method by using standard techniques of convergence of Markov
chains to diffusions. In particular we discuss both the convergence in law of the new bivariate
tree model to the original two-dimensional diffusion and the convergence of the American
prices obtained from the algorithm to the true ones. We remark that in [4] we first construct
two separate binomial lattices, one for the underlying asset price and the other for the
stochastic interest rate process, by recovering the original idea in Nelson and Ramaswamy
([65], 1990). Then we introduce a probabilistic structure on the bivariate lattice. Since the
two original processes are driven by two Brownian noises that are supposed to be correlated,
we define the transition probability by using the correlation structure in the two-dimensional
model. But other techniques could be used for the discretization of the original diffusion.
For example, in Martire ([63], 2012) the author proposes a similar probabilistic structure for
the two-dimensional approximating process but the tree for the stochastic interest rate is
different, being based on an idea suggested in Costabile and Massabò ([26], 2010). Roughly
speaking, they construct a lattice for r by using the standard approximation of the Brownian
motion with the binomial random walk but, since the lattice structure does not recombine,
they provide a method in order to get a recombining binomial simple lattice.

The Chapter is organized as follows. In Section 4.1 we provide a brief review of the existing
literature on the pricing of American-style options with two state variables and the first
attempts of approximating a stochastic interest rate by means of a tree structure. In Section
4.2 we describe the bivariate continuous model for the joint evolution of the equity and the
interest rate processes. Sections 4.3.1 and 4.3.2 are devoted to a detailed description of the
Wei and Hilliard, Schwartz and Tucker algorithms respectively. Then, Section 4.4 refers to
the description of the new lattice algorithm proposed and Section 4.5 is dedicated to the
main convergence theoretical results with some preliminary lemmas. We first provide the
weak convergence of the Markov chain associated to the new bivariate algorithm (subsection
4.5.1). Then we prove the convergence of European and American put option prices obtained
with the lattice proposed to their continuous counterparts (subsection 4.5.2). Finally, Section
4.6 refers to the numerical comparisons for European and American option pricing problems
between our method and the procedures of Wei and Hilliard, Schwartz and Tucker.
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4.1 Pricing American options on two state variables or

with stochastic interest rate

In this Section we briefly recall the main papers that deal with the pricing of American-style
options with two or more state variables.
The first two attempts are due to Boyle (1988, [14]) and Boyle at al. (1989, [15]). Boyle
in [14] develops a procedure for the valuation of options when the two underlying state
variables S1 and S2 have a bivariate lognormal distribution. The basic idea is first to modify
the CRR lattice binomial approach in the case of a single state variable by using a trinomial
scheme and then generalize the procedure when two underlying assets are involved. So, in
the case of a single state variable, the approximating discrete process is a three-jump process
involving up, horizontal and down movements, instead of the classical two-jump process (that
just involves up and down movements) and the usual matching conditions on the first two
moments are used to define the transition probabilities. Instead, in the case of two state
variables whose joint density is a bivariate lognormal distribution, the author finds that a
five-point discrete process is the most suitable in order to obtain an efficient algorithm. It
means that given the pair (S1, S2) that represents the current value, the process may jump
to one of the following values

(S1u1, S2u2), (S1u1, S2d2), (S1d1, S2u2), (S1d1, S2d2), (S1, S2),

where u1 and u2 are the multiplicative factors related to an up jump of the assets S1 and
S2 respectively. These five points correspond in the three-dimensional space to a lattice
structure resembling an inverted pyramid. As for the one-dimensional case, the transition
probabilities are the solution of a linear system obtained by equating the mean and the
variance of the discrete distribution to the mean and the variance of the continuous coun-
terpart. But it is not guaranteed that the system produces positive probabilities, for this
reason Boyle defines u1 and u2 as follows

u1 = eλσ1
√
h and u2 = eλσ2

√
h,

where σ1 and σ2 are the constant volatility parameters of S1 and S2 respectively, and λ is
a constant greater than 1. This is indeed a structural difference with the classical CRR
approach that instead requires the jump sizes be of the type eσ

√
h. By using different values

for λ, a range of values for u1 and u2 is obtained, and there is an interval within this range that
produces acceptable values for all the probabilities. The author proposes different numerical
examples by comparing the results obtained with the lattice procedure with closed-form
expressions for the price of some European-style options.
Subsequently Boyle et al. ([15], 1989) extend the Boyle lattice procedure for the valuation of
contingent claims involving several underlying assets using a generalized lattice framework.
They follow the CRR approach for the definition of the jump sizes and then they choose the
probabilities in order to match the second-order Taylor expansion of the characteristic func-
tions of the discrete and the continuous-time processes. They are able to obtain closed-form
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solutions for such probabilities but here no conditions are given to ensure their positivity,
so they need to check it at each application. They also present some numerical experiments
involving the values of European options with three underlying assets.

However, both the procedures of Boyle and Boyle et al. require that the interest rate is
constant, precluding it from being one of the state variables. The first two works that allow
the interest rate to be stochastic are due to Kishimoto (1989, [53]) and Hull and White
(1990, [50]).

Kishimoto essentially combines the classical CRR binomial lattice with the Ho and Lee term
structure model (1986, [47]) in order to work with the two sources of uncertainty, the equity
value and the interest rate. Ho and Lee in [47] study the problem of pricing interest rate
contingent claims by modeling the term structure movements and by relating the movements
to the assets’ prices. In particular, they describe the term structure in terms of a binomial
lattice and then they explain how the price of a discount bond is derived. The main idea in
Kishimoto ([53], 1989) is to extend Ho and Lee procedure for the pricing of assets whose risk
is not solely determined by interest rate movements, but instead is influenced also by another
risky asset component. The author proposes to resolve the two uncertainties one by one: he
divides each time step into two subperiods in which the two uncertainties resolve separately.
So, during the first subperiod, the interest rate uncertainty resolves and at the end of the
first subperiod the discount function takes one of two possible shapes: if an upstate of the
term structure is attained, then the discount function shifts up; if a downstate of the term
structure is attained, then the discount function shifts down. During the second subperiod,
the discount function is supposed to remain unchanged and the asset price movements are
modeled. In this case, the movements are decomposed in two more components. The first
captures the co-movements of the asset price with the discount function during the first
subperiod, so it is called the interest-dependent component. The second one, instead, called
the asset-specific component, is a residual noise and follows a binomial process. The problem
with this kind of approach is that the programming code can be extremely complex .
After few years, Hull and White ([50], 1990) propose a finite-difference approach to value
any derivative security dependent on a single or more state variables. In particular, they
deal with the explicit finite difference method that relates the value of the derivative security
at a generic time t to three alternative values at time t + ∆t giving conditions such that
the convergence of the approximating value to the correct solution is ensured. Brennan and
Schwartz ([18], 1978) showed that this method is equivalent to a trinomial lattice approach.
Generally speaking, the explicit difference method consists in considering the PDE satisfied
by the price function and approximating it with a finite difference equation by using suitable
approximations of the partial derivatives involved. When there are two state variables with
correlation ρ, the first step is to transform them in order to get constant instantaneous
standard deviations. Then, the variables are transformed again to eliminate the correlation so
that it is possible to model the uncorrelated variables by using a two-dimensional lattice with
nine branches emanating from each node. The joint transition probabilities are then obtained
by the product of the individual probabilities that are solutions of two finite difference



4.2 The bivariate continuous model 119

equations. We remark that this procedure can be applied also when one of the variables
is a mean-reverting process, such as for example the CIR process. In this specific case the
method is modified in order to ensure the convergence to the exact solution of the PDE. To
be precise, instead of insisting the movement from a node (i, j) for some i, j to one of the
nodes (i + 1, j − 1), (i + 1, j) and (i + 1, j + 1) in time ∆t, the method allows a movement
from (i, j) to one of the nodes (i + 1, k − 1), (i + 1, k) and (i + 1, k + 1), where k is not
necessary equal to j. The authors provide some numerical results, but the implementation of
the procedure is expensive from a computational point of view because the approach requires
a large number of nodes.
Hull ([49], 1992, pages 601-603) outlines also a two-state binomial model, i.e. a three-
dimensional lattice in which each node branches into four, that handles two correlated ge-
ometric Brownian motions. As before, the procedure consists in removing the correlation
and combining the two uncorrelated variables by using two separate binomial trees. The
two trees can then be combined together into a single bivariate tree in which the transition
probabilities are defined by means of products. This method is less expensive than the one
in [50], but here the disadvantage is again that it can be applied only for modeling two
geometric Brownian motions.

4.2 The bivariate continuous model

We are concerned in a geometric Brownian motion describing the evolution of the equity
value with drift driven by a square root process. So, we consider, under the risk-neutral
probability measure, the following dynamics for the equity value

dS(t)

S(t)
= r(t)dt+ σSdZS(t), S(0) = s0 > 0, (4.2.1)

where r is the short interest rate process, σS is the constant stock price volatility and ZS is
a standard Brownian motion. The risk-neutralized process for the short rate is described as
in the Cox, Ingersoll and Ross (CIR) model (see [27] for more details), that is

dr(t) = κ(θ − r(t))dt+ σr
√
r(t)dZr(t), r(0) = r0 > 0, (4.2.2)

where θ is the long term reversion target, κ is a constant representing the reversion speed,
σr > 0 is the constant interest rate volatility and Zr is a standard Brownian motion. The
Brownian noises ZS and Zr are supposed to be correlated and we let ρ denote the correlation:

d < ZS, Zr > (t) = ρdt.

In what follows, we call the model described in equation (4.2.1)-(4.2.2) the BS-CIR model.
We remark that the interest rate behavior implied by the structure defined in (4.2.2) has the
following properties:

1. negative interest rates are precluded;
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2. if the interest rate reaches zero, it can subsequently become positive.

We now recall the well-known Feller condition: if r0 > 0 and if 2κθ ≥ σ2
r then a.s. the

process r never hits 0.
The main trouble with all the models briefly presented in the previous Section is that when
they can be applied to a two-dimensional diffusion such as (4.2.1)-(4.2.2), they are all com-
putationally expensive. Instead, the manageable procedures are built for two-state models
that don’t allow for a stochastic interest rate.
The first attempt to derive a closed-form formula for the price of European put and call
options under stochastic interest rate is due to Merton (1973, [64]) that uses the same
technique as Black and Scholes (1973, [13]) of valuing the price of a derivative security by
creating a replicating portfolio. In particular Merton (1973, [64]), Rabinovitch (1989, [69])
and Amin and Jarrow (1992, [2]) derive accurate approximating formulas (quasi-closed form)
under a Gaussian interest rate but these results can also be adapted to the case in which the
interest rate process follows the dynamic in (4.2.2) (for that generalization see Kim (2002,
[52])).
On the other hand, the pricing of American-style options whose underlying satisfies (4.2.1)-
(4.2.2) is much more complicated because it involves an optimal stopping time problem.
Several approaches have been suggested in the literature and they can be classified into
three main types: finite-difference methods, lattice methods and various analytical methods.
Among these, lattice techniques are very simple to implement and have the advantage of
permitting early exercise in order to treat the American case by using the same tree struc-
ture built for the pricing of European-style options and this is the reason why they are so
appealing.
The next Section is devoted to the description of the first two algorithms that are able to
combine numerical simplicity with the treatment of the dynamics (4.2.1)-(4.2.2): the Wei
procedure and the Hilliard, Schwartz and Tucker procedure.

4.3 Existing lattice methods in the BS-CIR model

4.3.1 The Wei procedure

In this Section we describe the procedure proposed in Wei ([83], 1996), that consists in gen-
eralizing the Nelson and Ramaswamy technique in order to price American-style options on
a model with a CIR stochastic interest rate. Actually, in Wei the dynamic for the short rate
is given by the Vasicek model and the extension of the Wei procedure to the CIR process is
described in Costabile et al.([25], 2006). However, in what follows, we still call “Wei proce-
dure” the natural extension to the CIR process.
As explained in Section 1.1.3, Nelson and Ramaswamy show that one dimensional diffusion
processes can be approximated with a computationally simple binomial process by trans-
forming the original process into a diffusion with unit variance. Starting from this idea, Wei
suggests to build a bivariate lattice following four simple steps:
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• transform both S and r into unit variance processes that we call S̃ and R respectively;

• define a new process Y as a function of S̃ and R that is orthogonal to R;

• model R and Y as two independent binomial processes following the Nelson and Ra-
maswamy technique and then merge the two structures into a bivariate tree in which
each node branches into four via joint probabilities;

• at each node of the tree convert the variables R and Y back to r and S respectively
and then proceed backwardly to obtain the option prices.

We now explain in details how the procedure works. The first step is to transform the
processes S and r into unit variance processes and this is done by introducing two transfor-
mations as in (1.1.16) that are

S̃ = (logS)/σS and R = 2
√
r/σr

respectively. The dynamics of S̃ and R may be easily derived by applying Ito’s Lemma.
Hence,

dS̃(t) = µS̃(R(t))dt+ dZS(t), S̃(0) = (log s0)/σS,

dR(t) = µR(R(t))dt+ dZr(t), R(0) = 2
√
r0/σr,

where

µS̃(R) =
σ2
rR

2/4− σ2
S/2

σS
and µR(R) =

κ(4θ −R2σ2
r)− σ2

r

2Rσ2
r

. (4.3.1)

The second step is to define a new process Y , function of both S̃ and R, that is orthogonal
to the unit variance process R, so one needs to consider the transformation

Y =
S̃ − ρR√

1− ρ2
. (4.3.2)

Then the dynamic of the diffusion process Y is

dY (t) = µY (R(t))dt+ dZY (t), Y (0) = Y0 =
1√

1− ρ2

(
log s0

σS
−

2ρ
√
r0

σr

)
,

where

µY (R) =
µS̃(R)− ρµR(R)√

1− ρ2

and ZY is the standard Brownian motion given by

ZY =
ZS − ρZr√

1− ρ2
.
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We remark that ZY is orthogonal to Zr so that Y and R have null covariance. The third
step is the crucial one. In fact, we first need to construct the discrete approximations of
the processes R and Y by using two independent binomial trees. Then, we merge the two
structures into a bivariate lattice with each node branching into four via joint transition
probabilities that are simply obtained by the product of the individual probabilities. So,
we define h = T/n and then we build the two binomial structures with n steps of length
h. We label (0, 0) the starting node where the R-process has value R(0). After i time steps
(i = 0, . . . , n), R may be located at one of the nodes (i, k) (k = 0, . . . , i) corresponding to
the values

Ri,k = R0 + (2k − i)
√
h. (4.3.3)

Analogously, for the discrete process approximating Y , we label (0, 0) the starting node
where the Y -process has value Y (0). After i time steps (i = 0, ..., n), Y may be located at
one of the nodes (i, j) (j = 0, . . . , i) corresponding to the values

Yi,j = Y0 + (2j − i)
√
h. (4.3.4)

Then the transition probabilities have to be specified for both processes to ensure the match-
ing of the local drift and the local variance between the discrete approximations and the
respective continuous counterparts. To this end, one has to take into account that in some
regions of the tree it may happen that multiple jumps are needed to satisfy properly the
matching conditions. Hence, starting from Ri,k at time ih, the process R may jump at time
(i+ 1)h to the value Ri+1,kd or Ri+1,ku , with kd and ku defined as

kd =


0 if Ri,k + (µR)i,kh < Ri+1,0

i if Ri,k + (µR)i,kh > Ri+1,i+1

the largest index k∗ ∈ [0, i] s.t.

Ri,k + (µR)i,kh ≥ Ri+1,k∗
otherwise

and
ku = kd + 1,

in which (µR)i,k = µR(Ri,k). It is clear that in the case Ri,k = 0 the drift µR cannot be
evaluated. So, in practice one chooses the number n of the monitoring instants in such a
way that the lattice for R never hits 0. We briefly recall here the construction of the discrete
approximation for R as described in Remark 1 in [25]: setting

k0 = int
( R0√

h

)
and γ = min

(
|R0 − k0

√
h|, |R0 − (k0 + 1)

√
h|
)

(that is, γ is the the minimum, in absolute value, of the lattice points for R), the number of
steps n giving h = T/n is chosen such that γ is not too small (γ ≥ 10−6). Hereafter, int(x)
denotes the integer part of x ∈ R, that is, for x ≥ 0 then int(x) is the largest integer not
exceeding x and for x < 0 we set int(x) = −int(−x). One easily gets that

kd = k + int
((µR)i,k

√
h+ 1

2

)
.
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Now, the probability that the R-process, located at the node Ri,k, reaches Ri+1,ku , is well
defined by setting

pi,k = 0 ∨ (µR)i,kh+Ri,k −Ri+1,kd

Ri+1,ku −Ri+1,kd

∧ 1.

Obviously, the probability to reach Ri+1,kd is 1− pi,k. Concerning the Y -process, one has to
take into account also the behavior of R because µY = µY (R) . So, let us assume that the
pair is located at (Ri,k, Yi,j) at the time-step i. Then, for the jumps in the Y -direction, one
sets

jd =


0 if Yi,j + (µY )i,kh < Yi+1,0

i if Yi,j + (µY )i,kh > Yi+1,i+1

the largest index j∗ ∈ [0, i] s.t.

Yi,j + (µY )i,kh ≥ Yi+1,j∗
otherwise

and ju = jd + 1, in which (µY )i,k = µY (Ri,k). Again, one has

jd = j + int
((µY )i,k

√
h+ 1

2

)
.

Furthermore, the transition probability that the Y -process jumps to Yi+1,ju is defined by
setting

p̂i,j,k = 0 ∨ (µY )i,kh+ Yi,j − Yi+1,jd

Yi+1,ju − Yi+1,jd

∧ 1

and 1− p̂i,j,k is the probability of the down-jump. We are now ready to describe the discrete
approximation scheme for the joint evolution of the processes R and Y by considering a
bivariate tree obtained by merging the two univariate binomial trees. At each time step i
(i = 0, . . . , n), the tree has (i + 1)2 nodes that we label (i, j, k) corresponding to the values
Ri,k and Yi,j (k, j = 0, . . . , i). Starting from the node (i, j, k), in consideration of possible
multiple jumps and taking into account the tree structure, the process may reach one of the
following four nodes:

(i+ 1, ju, ku), with probability qi,ju,ku ,

(i+ 1, ju, kd), with probability qi,ju,kd ,

(i+ 1, jd, ku), with probability qi,jd,ku ,

(i+ 1, jd, kd), with probability qi,jd,kd ,

where ju, jd, ku, kd are related to multiple jumps on the tree in the Y and R direction re-
spectively, and qi,ju,ku , qi,ju,kd , qi,jd,ku , qi,jd,kd are the associated transition probabilities. Such
probabilities can be computed, due to the orthogonality of the noises driving the two pro-
cesses, as follows

qi,ju,ku = p̂i,j,kpi,k, qi,jd,ku = (1− p̂i,j,k)pi,k, (4.3.5)

qi,ju,kd = p̂i,j,k(1− pi,k), qi,jd,kd = (1− p̂i,j,k)(1− pi,k).
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The last step is to work backwards along the lattice and compute the American option value.
Since the lattice is built for the transformed processes R and Y , we need to convert them
back into r and S at each node using the inverse transformations of (1.1.16) that in this
specific case are

r =

{
R2σ2

r

4
if R > 0

0 otherwise

S = exp[σS(
√

1− ρ2Y + ρR)],

respectively. Therefore, each node (i, j, k) of the bivariate tree for (r, S) corresponds to the
values

ri,k =

{
R2
i,kσ

2
r

4
if Ri,k > 0,

0 otherwise,
(4.3.6)

and

Si,j,k = exp[σS(
√

1− ρ2Yi,j + ρRi,k)]. (4.3.7)

The resulting successor values are easily identified with

(ri+1,ku , Si+1,ju,ku), (ri+1,kd , Si+1,ju,kd), (ri+1,ku , Si+1,ju,ku), (ri+1,kd , Si+1,jd,kd)

and the transition probabilities are kept those defined in (4.3.5). Finally, if for example
we consider an American put option with maturity T and strike K, its price at time 0 is
computed by the following backward dynamic programming equations:

vn,j,k = (K − Sn,j,k)+

vi,j,k = max

(
(K − Si,j,k)+, e

−ri,kh
[
qi,ju,kuvi+1,ju,ku + qi,ju,kdvi+1,ju,kd+

+qi,jd,kuvi+1,jd,ku + qi,jd,kdvi+1,jd,kd

])
,

(4.3.8)

where vi,j,k, i = 0, ..., n and j, k = 0, ..., i, provides the American option price at every node
(i, j, k) of the tree structure.

4.3.2 The Hilliard,Schwartz and Tucker procedure

We briefly describe here the procedure in Hilliard, Schwartz and Tucker ([46], 2004) that
represents another way to extend the Nelson and Ramaswamy technique for the valuation
of American-style options with two underlying state variables. The pricing idea is similar
to the one in Wei ([83], 1996) except that for the transformations used to convert the two
stochastic processes to give constant volatilities and for the transformations employed to
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ensure that the once-transformed processes are orthogonal.
In fact the first step is to introduce the following two transformations

S̃ = (logS)/σS and R = 2
√
r

that convert S into the unit variance process S̃ and r into the constant variance process R.
In fact, from Ito’s lemma we get

dS̃(t) = µS̃(R(t))dt+ dZS(t), S̃(0) = (log s0)/σS,

dR(t) = µR(R(t))dt+ σrdZr(t), R(0) = 2
√
r0,

where

µS̃(R) =
R2/4− σ2

S/2

σS
and µR(R) =

κ(4θ −R2)2− 2σ2
r

4R
.

Then, the second step consists in transforming the once-transformed processes S̃ and R into
two new processes X1 and X2 by defining

X1 = σrS̃ +R and X2 = σrS̃ −R.

It is easy to verify that X1 and X2 have zero covariance. Now, similarly to Wei, the idea is
modeling X1 and X2 as two separate binomial processes in which multiple jumps may occur
to ensure the matching of the mean and to legitimate probabilities. Then the two binomial
trees are combined together into a bivariate tree via four joint probabilities simply obtained
by products. The final step is to transform at each node X1 and X2 back to S and r using
the following transformations

S = exp

(
σS
X1 +X2

2σr

)
and r =

(X1 −X2)2

8
.

The usual backward procedure is then applied in order to compute the American option
price of the derivative security.

4.4 The new bivariate algorithm

In this Section we introduce the new lattice procedure presented in Appolloni, Caramellino
and Zanette ([4], 2013) for the description of the approximating evolution of the pair (S, r).
We recall that the drift coefficients appearing in (4.2.1) and (4.2.2) are given respectively by

µS(S, r) = rS and µr(r) = κ(θ − r).

Consider first the interest rate process r. Following a remark of Tian (see ([78], 1994) at
page 100, or also ([76], 1992)), the right implementation of the Nelson and Ramaswamy
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algorithm presented in Section 1.1.3 for the CIR process consists in setting the probabilistic
structure directly on r, and not through R (for more details see Remark 4.4.1). Thus, we
first construct a tree for R as in Wei by means of (4.3.3) and we transform it into the
computationally simple lattice for r with the map in (4.3.6), i.e. at time step i = 0, ..., n, for
k = 0, ..., i, we set

ri,k =

{
R2
i,kσ

2
r

4
if Ri,k > 0

0 otherwise,

Ri,k being defined in (4.3.3). Secondly, the transition probabilities are specified directly on
r: the matching of the local drift between the discrete and the continuous model is set by
using the original interest rate CIR process r. According to Nelson and Ramaswamy ([65],
1990), at the node (i, k), we set (µr)i,k = µr(ri,k) and we define

kd(i, k) = max{k∗ : 0 ≤ k∗ ≤ k and ri,k + (µr)i,kh ≥ ri+1,k∗},
ku(i, k) = min{k∗ : k + 1 ≤ k∗ ≤ i+ 1 and ri,k + (µr)i,kh ≤ ri+1,k∗}

with the understanding kd(i, k) = 0 if {k∗ : 0 ≤ k∗ ≤ k and ri,k+(µr)i,kh ≥ ri+1,k∗} = ∅ and
ku(i, k) = i+ 1 if {k∗ : k + 1 ≤ k∗ ≤ i+ 1 and ri,k + (µr)i,kh ≤ ri+1,k∗} = ∅. The transition
probabilities are now defined as follows: starting from (i, k), the probability that the process
jumps to (i+ 1, ku(i, k)) is set as

pi,k = 0 ∨
(µr)i,kh+ ri,k − ri+1,kd(i,k)

ri+1,ku(i,k) − ri+1,kd(i,k)

∧ 1. (4.4.1)

And of course, the jump to (i+ 1, kd(i, k)) happens with probability 1− pi,k.
Concerning the lattice for S, we proceed as follows. We first consider a computationally
simple tree-structure (Ui,j)i,j defined as

Ui,j = U0 + (2j − i)
√
h, U0 =

1

σS
log s0, i = 0, . . . , n, j = 0, . . . , i. (4.4.2)

Then, we apply the (new) transformation

S = eσSU (4.4.3)

and we get a tree (Si,j)i,j for S: Si,j = eσSUi,j . By combining the two lattices, we obtain a
bivariate tree

(Si,j, ri,k), i = 0, . . . , n, j, k = 0, . . . , i.

It is worth to say that the transformation (4.4.3) does not seem to be natural in order to
describe the evolution of the pair. Nevertheless, this is not important. In fact, at this stage,
we only need to set up the state-space of the Markov chain that we want to approximate
the continuous-time process (S, r), and in fact as h → 0 one really gets that the discrete
state-space converges to R2

+. What is important now is to define the transition probabilities
in order to link the tree with the diffusion pair (S, r).
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We first set the probabilistic behavior of the jumps for S at the time-step i + 1 given the
position (Si,j, ri,k) by matching w.r.t. the drift µS of S. So, we set (µS)i,j,k = µS(Si,j, ri,k)
and we define

jd(i, j, k) = max{j∗ : 0 ≤ j∗ ≤ j and Si,j + (µS)i,j,kh ≥ Si+1,j∗}
ju(i, j, k) = min{j∗ : j + 1 ≤ j∗ ≤ i+ 1 and Si,j + (µS)i,j,kh ≤ Si+1,j∗}

with the usual understanding jd(i, j, k) = 0 if {j∗ : 0 ≤ j∗ ≤ j and Si,j + (µS)i,j,kh ≥
Si+1,j∗} = ∅ and ju(i, j, k) = i+1 if {j∗ : j+1 ≤ j∗ ≤ i+1 and Si,j+(µS)i,j,kh ≤ Si+1,j∗} = ∅.
Now, starting from (i, j, k), the probability of an up-jump of the tree for S is set as

p̂i,j,k = 0 ∨
(µS)i,j,kh+ Si,j − Si+1,jd(i,j,k)

Si+1,ju(i,j,k) − Si+1,jd(i,j,k)

∧ 1. (4.4.4)

The down-jump obviously may happen with probability 1− p̂i,j,k.
We must finally set the covariance structure for the joint evolution of the processes S and r
on the bivariate tree. Starting from the node (i, j, k), by considering possible multiple jumps
and by taking into account the tree structure, the process may reach one of the four nodes:
(i + 1, ju, ku) with probability qi,ju,ku , (i + 1, ju, kd) with probability qi,ju,kd , (i + 1, jd, ku)
with probability qi,jd,ku , (i + 1, jd, kd) with probability qi,jd,kd . The transition probabilities
qi,ju,ku , qi,ju,kd , qi,jd,ku , qi,jd,kd are computed by matching (at the first order in h) the conditional
mean and the conditional covariance between the continuous and the discrete processes of
S and r. The matching conditions lead to solving the following system:

qi,ju,ku + qi,ju,kd = p̂i,j,k
qi,ju,ku + qi,jd,ku = pi,k
qi,ju,ku + qi,jd,ku + qi,ju,kd + qi,jd,kd = 1
mi,ju,kuqi,ju,ku +mi,ju,kdqi,ju,kd +mi,jd,kuqi,jd,ku +mi,jd,kdqi,jd,kd = ρσr

√
ri,kσSSi,jh

(4.4.5)
where p̂i,j,k and pi,k are given in (4.4.1) and (4.4.4) respectively and

mi,ju,ku = (Si+1,ju − Si,j)(ri+1,ku − ri,k), mi,ju,kd = (Si+1,ju − Si,j)(ri+1,kd − ri,k),
mi,jd,ku = (Si+1,jd − Si,j)(ri+1,ku − ri,k), mi,jd,kd = (Si+1,jd − Si,j)(ri+1,kd − ri,k).

(4.4.6)

Now, the backward induction procedure (4.3.8) can be applied, by using the probabilities
that solve the system (4.4.5). This completely concludes the description of the approximating
process for the pair (S, r).

Remark 4.4.1. Our procedure uses directly both the evolution of the process r and the
correlation between S and r: those are the structural differences with what done in Wei
([83], 1996) and Hilliard, Schwartz and Tucker ([46], 2004). Therefore, we first remark
that the transformed process R is exploited only to construct the state-space of the Markov
chain approximating r and not to build up the transition probabilities. Indeed, their methods
are strongly based on the use of a bivariate diffusion process whose components are driven
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by uncorrelated noises (R and Y for Wei, X1 and X2 for Hilliard, Schwartz and Tucker),
leading to the definition of the transition probabilities by means of a product. And this can be
done only by handling the process R. Moreover, the use of the process r for the definition of
the probabilities makes the main substantial difference between our method and the previous
ones. In fact, we use the drift coefficient

µr(r) = κ(θ − r)

in the definition of the probabilities pi,k, instead both Wei and Hilliard, Schwartz and Tucker
employ the drift

µR(R) =
1

2σ2
r

(
4κθ − σ2

r

R
− κσ2

rR

)
.

The presence of R in the denominator is the source of numerical troubles when R ↓ 0
(see Section 4.6 for more details). In fact, as discussed in Tian ([76], 1992) and Tian
([78], 1994), the convergence in law for the tree built for the process R holds under the
“convergence condition” 4κθ ≥ σ2

r , that represents a limit for the parameters values. In fact
when 4κθ ≥ σ2

r , looking at the expression of µR(R), we get that R has an infinite positive
drift when R ↓ 0 and this make the boundary zero inaccessible. Instead when 4κθ < σ2

r ,
then R has an infinite negative drift coefficient when R ↓ 0 that “pushes” the process under
0. In this case it happens that R = 0 is an absorbing barrier for the process R and this is
inconsistent with the fact that r = 0 is a reflecting barrier of the process r. As a result, the
convergence in the Wei procedure and the Hilliard, Schwartz and Tucker one is not always
guaranteed. On the contrary, we prove that our lattice procedure converges for every values
of the parameters, because we directly work on the process r. As we will see in Section
4.5, in order to obtain the weak convergence we do not need to require the Feller condition
(2κθ ≥ σ2

r) or the so-called “convergence condition” (4κθ ≥ σ2
r), but we only suppose that

κ > 0 and θ > 0, that are natural requirements in a financial setting.

4.5 The convergence

4.5.1 Weak convergence of the associated approximating Markov
chain

In this Section we use standard techniques to prove the theoretical convergence on the set
D([0, T ];R2) of the tree method to the pair (S, r) solution of the SDE (4.2.1)-(4.2.2). We
recall here that D([0, T ];R2) is the set of all the càdlàg functions on [0, T ] with values in R2.
The preliminary results to the main convergence theorem concern the analysis of

1. the up and down jumps of the tree for the process r;

2. the up and down jumps of the tree for the process S;

3. the probability transition matrix of the bivariate tree for the pair (S, r).
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Up and down jumps for the spot rate

Let us start from the first theoretical result concerning the jumps of the tree built for the
stochastic rate. To this end, we briefly recall the lattice structure for r: for a fixed node
(i, k), i = 0, 1, . . . , n, k = 0, 1, . . . , i+ 1, one has

ri,k =
R2
i,kσ

2
r

4
1Ri,k>0 and Ri,k = R0 + (2k − i)

√
h, (4.5.1)

withR0 = 2
σr

√
r0. We also remember that kd(i, k) = maxKd(i, k) and ku(i, k) = minKu(i, k),

where

Kd(i, k) = {k∗ ∈ {0, ..., i− 1} : 0 ≤ k∗ ≤ k and ri,k + (µr)i,kh ≥ ri+1,k∗},
Ku(i, k) = {k∗ ∈ {1, ..., i} : k + 1 ≤ k∗ ≤ i+ 1 and ri,k + (µr)i,kh ≤ ri+1,k∗}

with the understanding kd(i, k) = 0 if Kd(i, k) = ∅ and ku(i, k) = i + 1 if Ku(i, k) = ∅. The
probability that the process jumps to (i+ 1, ku(i, k)) is set as

pi,k = 0 ∨
(µr)i,kh+ ri,k − ri+1,kd(i,k)

ri+1,ku(i,k) − ri+1,kd(i,k)

∧ 1

and of course, the jump to (i + 1, kd(i, k)) happens with probability 1 − pi,k. The behavior
of the up and down jumps is given in the following

Lemma 4.5.1. Let θ∗ < θ and θ∗ > θ be such that

0 < θ∗ <
(θ ∧ r0)

2
and θ∗ > 2(θ ∨ r0).

Then there exists a positive constant h1 = h1(θ∗, θ
∗, κ, θ, σr) < 1 such that for every h < h1

the following statements hold.

(i) If 0 ≤ ri,k < θ∗
√
h then kd(i, k) = k and ku(i, k) ∈ {k + 1, . . . , i+ 1}. Moreover, there

exists a positive constant C∗ > 0 such that

|ri+1,kd(i,k) − ri,k| < C∗h
3/4 and |ri+1,ku(i,k) − ri,k| < C∗h

3/4. (4.5.2)

(ii) If θ∗
√
h ≤ ri,k ≤ θ∗/

√
h then kd(i, k) = k and ku(i, k) = k + 1. Moreover, one has

ri+1,kd(i,k)−ri,k = −σr
√
ri,kh+

σ2
r

4
h and ri+1,ku(i,k)−ri,k = σr

√
ri,kh+

σ2
r

4
h . (4.5.3)

Proof. We start by considering h1 ∈ (0, 1) and in what follows, we will “calibrate” the value
of h1.

(i) Let us first notice that since ri,k < θ one has (µr)i,k > 0 and then for every k∗ ≤ k one
has ri+1,k∗ ≤ ri,k ≤ ri,k + (µr)i,kh, which gives kd(i, k) = k. Let us prove (4.5.2) for kd(i, k).
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If ri,k = 0 then ri+1,k = 0 as well, and (4.5.2) trivially holds. If instead 0 < ri,k < θ∗
√
h,

then one can have both ri+1,k = 0 and ri+1,k > 0. In the first case, it must be

0 ≥ Ri+1,k = Ri,k −
√
h,

so that one actually has 0 < Ri,k ≤
√
h and then ri,k ≤ σ2

rh/4. Therefore, |ri+1,kd − ri,k| =

ri,k ≤ σ2
rh/4, and (4.5.2) holds. Consider now the second case, that is 0 < ri,k < θ∗

√
h and

ri+1,k > 0. Then it must be

ri+1,k =
σ2
r

4
R2
i+1,k =

σ2
r

4
(Ri,k −

√
h)2 = ri,k − σr

√
ri,kh+

σ2
r

4
h

so that

|ri+1,kd(i,k) − ri,k| =
∣∣∣− σr√ri,kh+

σ2
r

4
h
∣∣∣ ≤ σr

√
ri,kh+

σ2
r

4
h <

(
σr
√
θ∗ +

σ2
r

4

)
h3/4

and (4.5.2) again holds.
Let us now discuss the up-jump. We notice that

ri+1,i+1 − ri,k − (µr)i,kh ≥ r0 − θ∗
√
h− κθh ≥ r0 − θ∗ − κθh.

So, by taking h1 < (r0 − θ∗)/(κθ) we get Ku(i, k) 6= ∅, and we can proceed by looking for
the smallest integer k∗ ≥ k + 1 such that k∗ ≤ i+ 1 and the following statements hold:

ri+1,k∗ ≥ ri,k + (µr)i,kh and ri+1,k∗−1 < ri,k + (µr)i,kh. (4.5.4)

Notice that in particular the first condition gives ri+1,k∗ > 0. Assume first the case ri+1,k∗−1 =
0, that is Ri+1,k∗ > 0 and Ri+1,k∗−1 ≤ 0. Then,

0 < Ri+1,k∗ = Ri+1,k∗−1 + 2
√
h ≤ 2

√
h,

so that ri+1,k∗ ≤ σ2
rh. Since ri+1,k∗ ≥ ri,k, one gets |ri+1,k∗ − ri,k| ≤ ri+1,k∗ ≤ σ2

rh, and this
proves (4.5.2). So, it remains to study the case ri+1,k∗−1 > 0. Here, we have

ri+1,k∗ =
σ2
r

4
R2
i+1,k∗ =

σ2
r

4

(
Ri+1,k∗−1 + 2

√
h
)2

= ri+1,k∗−1 + 2σr
√
ri+1,k∗−1h+ σ2

rh.

Now, by using (4.5.4) we get

0 ≤ ri+1,k∗ − ri,k = ri+1,k∗−1 − ri,k + 2σr
√
ri+1,k∗−1h+ σ2

rh

< (µr)i,kh+ 2σr

√
(ri,k + (µr)i,kh)h+ σ2

rh

and by recalling that ri,k ≤ θ∗
√
h, we get (4.5.2) also in this last case.
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(ii) Here, we split our reasonings in two different cases: (ii.a) θ∗
√
h ≤ ri,k ≤ θ and (ii.b)

θ ≤ ri,k ≤ θ∗/
√
h.

Assume (ii.a). As for the down-jump, here we have (µr)i,k > 0. Since for every k∗ ≤ k one
has ri+1,k∗ ≤ ri,k, we can immediately conclude that kd(i, k) = k. Concerning the up-jump,

we first notice that for k∗ ≥ k + 1 one has Ri+1,k∗ = Ri,k + (2(k∗ − k) − 1)
√
h > 0, so that

using the square relation with R we can write

ri+1,k∗ − ri,k = (2(k∗ − k)− 1)σr
√
ri,kh+

(2(k∗ − k)− 1)2

4
σ2
rh.

Therefore, we must look for the smallest integer k∗ ≥ k + 1 such that the above r.h.s. is
larger or equal to (µr)i,kh, and this reduces to require that

2(k∗ − k)− 1 ≥ 2

√
ri,k + (µr)i,kh−

√
ri,k

σr
√
h

.

So, we prove that we can choose h1 such that for every h < h1 the above inequality holds
for k∗ = k + 1, that is

1 ≥ 2

√
ri,k + (µr)i,kh−

√
ri,k

σr
√
h

.

In fact, by recalling that 0 ≤ (µr)i,k = κ(θ − ri,k) ≤ κθ and ri,k ≥ θ∗
√
h, we can write

2

√
ri,k + (µr)i,kh−

√
ri,k

σr
√
h

=
2(µr)i,k

√
h

σr(
√
ri,k + (µr)i,kh+

√
ri,k)

≤ κθ
√
h

σr
√
ri,k
≤ κθ

σr
√
θ∗
h1/4

and the statement actually holds for h < h1 < (σr
√
θ∗

κθ
)4.

(ii.b) This case can be treated similarly to the previous one, so we omit the proof.

Remark 4.5.2. Lemma 4.5.1 essentially states that when the approximating process for r
is located in a restricted region near the lower bound zero, then it is “pushed up” away from
the lower bound and therefore it is not absorbed by zero. Instead, when the discrete process is
far enough from the lower bound, it behaves as the classical CRR tree that moves up or down
by a quantity equal to

√
h. This indeed agrees with the Nelson and Ramaswamy method,

that allows for “multiple jumps” only in restricted region where singularities may lead to
numerical problems. In fact they explain that allowing multiple jumps everywhere in the tree
may affect computational simplicity by increasing the number of nodes at a rapid rate and
in fact we overcome this problem by forcing the jumps to remain inside the tree structure.



132 Option pricing with CIR interest rate

Remark 4.5.3. As a consequence of the proof of Lemma 4.5.1, for h < h1 we get that
ri+1,ku(i,k)− ri+1,kd(i,k) > 0, (µr)i,kh+ ri,k − ri+1,kd(i,k) ≥ 0 and ri+1,ku(i,k)− ri,k − (µr)i,kh ≥ 0.
Therefore, we can actually drop the 0∨ and ∧1 appearing in (4.4.1) and for h < h1 we can
directly write

pi,k =
(µr)i,kh+ ri,k − ri+1,kd(i,k)

ri+1,ku(i,k) − ri+1,kd(i,k)

. (4.5.5)

We also notice that whenever ri,k = 0 one has ri+1,kd(i,k) = 0 as well and we have seen that

(µr)ikh ≤ ri+1,ku = ri+1,ku−1 + 2σr
√
ri+1,ku−1h+ σ2

rh. So, since ri+1,ku−1 < ri,k + (µr)i,kh, we
get

κθh ≤ ri+1,ku ≤ (
√
κθ + σr)

2h

and by substituting in (4.4.1) we obtain

pi,k =
κθh

ri+1,ku(i,k)

∈
[ 1

(1 + σr/
√
κθ)2

, 1
]
. (4.5.6)

So, we state a lower bound for the up-jump probability, which is close to 1 when the volatility
parameter σr is is close to 0.

Up and down jumps for the stock price

Now the second step is the analysis of the jumps for the discrete process approximating the
stock price S. It turns out that the behavior of the up and down jumps for the process S is
much easier to study. We recall that for a fixed node (i, j), i = 0, 1, . . . , n, j = 0, 1, . . . , i+ 1,
the lattice structure on S is given by

Si,j = eσSUi,j and Ui,j = U0 + (2j − i)
√
h, (4.5.7)

with U0 = 1
σS

log s0. Here, the up and down jumps depend also on the position of the process
r: for a fixed k = 1, . . . , i+1, jd(i, j, k) = max Jd(i, j, k) and ju(i, j, k) = min Jd(i, j, k), where

Jd(i, j, k) = {j∗ ∈ {0, ..., i− 1} : 0 ≤ j∗ ≤ j and Si,j + (µS)i,j,kh ≥ Si+1,j∗},
Ju(i, j, k) = {j∗ ∈ {1, ..., i} : j + 1 ≤ j∗ ≤ i+ 1 and Si,j + (µS)i,j,kh ≤ Si+1,j∗}

again with the understanding jd(i, j, k) = 0 if Jd(i, j, k) = ∅ and ju(i, j, k) = i + 1 if
Ju(i, j, k) = ∅. The probability that the process jumps to (i+ 1, ju(i, j, k)) is set as

p̂i,j,k = 0 ∨
(µS)i,j,kh+ Si,j − Si+1,jd(i,j,k)

Si+1,ju(i,j,k) − Si+1,jd(i,j,k)

∧ 1 (4.5.8)

and of course, the jump to (i+ 1, jd(i, j, k)) happens with probability 1− p̂i,j,k.
The behavior of the up and down jumps is given in the following
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Lemma 4.5.4. Let r∗ > 0 be fixed. Then there exists h2 = h2(s0, r∗, σS) < 1 such that for
every h < h2 and (i, k) such that ri,k ∈ [0, r∗] one has

jd(i, j, k) = j and ju(i, j, k) = j + 1.

As a consequence, for h < h2 and for every (i, k) such that ri,k ∈ [0, r∗] one has

Si+1,ju(i,j,k) − Si,j = Si,j(e
σS
√
h − 1) and Si+1,jd(i,j,k) − Si,j = Si,j(e

−σS
√
h − 1). (4.5.9)

Proof. First of all, notice that for j∗ ≤ j one has Ui+1,j∗ ≤ Ui,j, so that Si+1,j∗ − Si,j ≤ 0 ≤
(µS)i,j,kh. This gives jd(i, j, k) = j, for every i, j, k and h, so that

Si+1,jd(i,j,k) − Si,j = Si+1,j − Si,j = Si,j(e
−σS
√
h − 1).

Concerning the up-jump, it is sufficient to prove that for every h sufficiently small one has

Si+1,j+1 − Si,j ≥ (µS)i,j,kh,

that is equivalent to

Si,j(e
σS
√
h − 1− ri,kh) ≥ 0.

Since ex − 1 ≥ x for x > 0, for ri,k ≤ r∗ we can write

Si,j(e
σS
√
h − 1− ri,kh) ≥ Si,j(σS

√
h− r∗h) = Si,j

√
h(σS − r∗

√
h),

and the last term is positive for h < h2 < (σS
r∗

)2. Finally,

Si+1,ju(i,j,k) − Si,j = Si+1,j+1 − Si,j = Si,j(e
σS
√
h − 1)

and this completes the proof.

Remark 4.5.5. We notice that Lemma 4.5.4 says that the discrete process S does not need
“multiple jumps” in order to preserve the matching conditions on the local mean and the
local variance, but it is a tree whose jump sizes are everywhere equal to

√
h.

Remark 4.5.6. We can state a remark similar to Remark 4.5.3: in Lemma 4.5.4 we actually
proved that for h < h2 we have Si+1,ju(i,j,k)−Si+1,jd(i,j,k) > 0, (µS)i,j,kh+Si,j−Si+1,jd(i,j,k) ≥ 0
and Si+1,ju(i,j,k)−(µS)i,j,kh−Si,k ≥ 0. Therefore, as h < h2, the up-jump probability in (4.4.4)
can be rewritten as

p̂i,j,k =
(µS)i,j,kh+ Si,j − Si+1,jd(i,j,k)

Si+1,ju(i,j,k) − Si+1,jd(i,j,k)

. (4.5.10)
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The bivariate transition matrix

We are now ready to set up and discuss the transition matrix of the bivariate Markov chain.
We recall that, starting from the node (i, j, k), we have used the following notations: qi,ju,ku ,
qi,ju,kd , qi,jd,ku and qi,jd,kd stand for the probability to reach (i + 1, ju, ku), (i + 1, ju, kd),
(i+ 1, jd, ku) and (i+ 1, jd, kd) respectively.

Proposition 4.5.7. Let r∗ > 0 and S∗ > 0 be fixed and set A∗ = {(i, j, k) : ri,k ≤ r∗, Si,j ≤
S∗}. Let θ∗ be as in Lemma 4.5.1 and (i, j, k) ∈ A∗. We set:

i) if (i, j, k) ∈ A∗ and ri,k ≤ θ∗
√
h then

qi,ju,ku = p̂i,ju,kupi,ku , qi,ju,kd = p̂i,ju,ku(1− pi,ku),
qi,jd,ku = (1− p̂i,ju,ku)pi,ku , qi,jd,kd = (1− p̂i,ju,ku)(1− pi,ku);

ii) if (i, j, k) ∈ A∗ and ri,k ≥ θ∗
√
h then qi,ju,ku, qi,ju,kd, qi,jd,ku and qi,jd,kd are set as the

solutions of the linear system 4.4.5.

Then there exists h3 < 1 and a positive constant C such that for every h < h3 and (i, j, k) ∈
A∗ the above probabilities are actually well defined.

Proof. We fix the node (Si,j, ri,k), with (i, j, k) ∈ A∗.
i) If ri,k = 0, the defined transition probabilities solve system (4.4.5). And if ri,k is small
enough then the transition probabilities are supposed to be close to the ones in 0. So, what
is said in i) is that for ri,k positive but small, we just consider the behavior in 0.

ii) We assume here that ri,k ≥ θ∗
√
h. If M denote the 4 × 4 matrix underlying the linear

system (4.4.5), then straightforward computations give

detM = −(Si+1,ju(i,j,k) − Si+1,jd(i,j,k))(ri+1,ku(i,k) − ri+1,kd(i,k))

which is non null because, by construction, both factors are positive. So, a unique solution
x ∈ R4 really exists for every h. One has only to check that this actually gives a probability
distribution, and this reduces to check that all entries of x are non negative. We set the
solution as follows:

x1 = p̂i,ju,kupi,ku(1 + gi,j,k(ρ)), x2 = p̂i,ju,ku(1− pi,ku)(1− gi,j,k(ρ)),
x3 = (1− p̂i,ju,ku)pi,ku(1− gi,j,k(ρ)), x4 = (1− p̂i,ju,ku)(1− pi,ku)(1 + gi,j,k(ρ))

(just to be clear, we have implicity given to the four transition nodes the following ordering:
(i + 1, ju, ku), (i + 1, ju, kd), (i + 1, jd, ku), (i + 1, jd, kd)). It is clear that x solves the first
three equations. As for the fourth one, we take h < h1 ∧ h2, h1 and h2 given in Lemma
4.5.1 and Lemma 4.5.4 respectively, so that we can use both (4.5.5) and (4.5.10). And easy
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computations give

gi,j,k(ρ) =
ρσrσS

√
ri,k Si,jh− (µr)i,k(µS)i,j,kh

2

(∆uSi,j,kp̂i,j,k −∆dSi,j,k(1− p̂i,j,k))(∆uri,kpi,k −∆dri,k(1− pi,k))

=
σrσS

√
ri,k Si,jh

(∆uSi,j,kp̂i,j,k −∆dSi,j,k(1− p̂i,j,k))(∆uri,kpi,k −∆dri,k(1− pi,k))
×

×
(
ρ− (µr)i,k(µS)i,j,kh

2

σrσS
√
ri,k Si,jh

)
,

in which we have set ∆uSi,j,k = Si+1,ju(i,j,k) − Si,j, ∆dSi,j,k = Si+1,jd(i,j,k) − Si,j, ∆uri,k =
ri+1,ku(i,k)− ri,k and ∆dri,k = ri+1,kd(i,k)− ri,k. So, we only need to show that for small values
of h one gets

sup
(i,j,k)∈A∗ and ri,k≥θ∗

√
h

|g(ρ)| < 1.

We write

gi,j,k(ρ) =
1

αi,j,k

(
ρ− (µr)i,k(µS)i,j,kh

2

σrσS
√
ri,k Si,jh

)
.

with

αi,j,k =
(∆uSi,j,kp̂i,j,k −∆dSi,j,k(1− p̂i,j,k))(∆uri,kpi,k −∆dri,k(1− pi,k))

σrσS
√
ri,k Si,jh

We use (4.5.3), (4.5.9) and we write, for h small,

∆uSi,j,k = Si,je
σS
√
h(1− e−σS

√
h) ≥ Si,j(1− e−σS

√
h) = −∆dSi,j,k,

∆uri,k = σr
√
ri,kh+

σ2
r

4
h ≥ σr

√
ri,kh−

σ2
r

4
h = −∆dri,k,

so that

αi,j,k ≥
Si,j(1− e−σS

√
h)(σr

√
ri,kh− σ2

r

4
h)

σrσS
√
ri,kSi,jh

=
(1− e−σS

√
h)(σr

√
ri,kh− σ2

r

4
h)

σrσS
√
ri,kh

.

By recalling that 1− e−σS
√
h ≥ σS

√
h− σ2

S

2
heσS , we get

αi,j,k ≥

(
1− σSe

σS

2

√
h

)(
1− σr

4

√
h

ri,k

)
≥

(
1− σSe

σS

2
h

1
2

)(
1− σr

4
√
θ∗
h

1
4

)

in which we have used that ri,k ≥ θ∗
√
h. Setting c∗ = σr

4
√
θ∗
∧ σSe

σS

2
, we get

αi,j,k ≥ (1− c∗h
1
4 )2.
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Therefore, we obtain

|gi,j,k(ρ)| ≤ 1

(1− c∗h
1
4 )2

∣∣∣∣∣ρ− (µr)i,k(µS)i,j,kh
2

σrσS
√
ri,kSi,jh

∣∣∣∣∣
≤ 1

(1− c∗h
1
4 )2

(
|ρ|+ (µr)i,k(µS)i,j,kh

2

σrσS
√
ri,kSi,jh

)

≤ 1

(1− c∗h
1
4 )2

(
|ρ|+ κ(θ + r∗)

σr
√
θ∗

h
1
4 +

r∗
σS
h

1
2

)

and since |ρ| < 1, the last r.h.s. can be set less than 1 for h small enough.

The Markov chain and the weak convergence

We can now state the main result. In order to do this, we set (Shi , r
h
i )i=0,1,...,n the Markov

chain running on the bivariate lattice structure:

• Sh0 = s0 and rh0 = r0;

• at time ih, the state-space for the pair (Shi , r
h
i ) is given by {(Si,j, ri,k) : j, k =

0, 1, . . . , i};

• from time ih to time (i+ 1)h the transition law on R2 is given by

Πh(ri,k, Si,j; dx) =qi,ju,kuδ{(Si+1,ju ,ri+1,ku )}(dx) + qi,ju,kdδ{(Si+1,ju ,ri+1,kd
)}(dx)+

+ qi,jd,kuδ{(Si+1,jd
,ri+1,ku )}(dx) + qi,jd,kdδ{(Si+1,jd

,ri+1,kd
)}(dx),

where δ{a} denotes here the Dirac mass in a ∈ R2 and the above probabilities are given
in Proposition 4.5.7.

We set now (S̄ht , r̄
h
t )t∈[0,T ] as the continuous-time process defined through the piecewise con-

stant and càdlàg interpolation in time of the chain: for t ∈ [ih, (i+ 1)h),

S̄ht = Shi and r̄ht = rhi .

We now state the convergence in law of the Markov chain (rhi , S
h
i )i=0,1,...,n to the diffusion

process of our interest.

Theorem 4.5.8. As h → 0, the family of Markov processes (S̄h, r̄h)h converges in law on
the space D([0, T ];R2) to the diffusion process (S, r) solution to the equations (4.2.1)-(4.2.2).

Proof. The proof is standard and is based on the convergence results of Nelson and Ra-
maswamy ([65], 1990), Ethier and Kurtz ([32], 1986), Kushner and Dupuis ([58], 1992) or
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Stroock and Varadhan ([74], 1979) described in Section 1.1. To simplify the notations, let
us set

MS
i,j,k(l) = E

(
(Shi+1 − Shi )l | (Shi , rhi ) = (Si,j, ri,k)

)
, l = 1, 2, 4,

Mr
i,j,k(l) = E

(
(rhi+1 − rhi )l | (Shi , rhi ) = (Si,j, ri,k)

)
, l = 1, 2, 4,

MS,r
i,j,k = E

(
(Shi+1 − Shi )(rhi+1 − rhi ) | (Shi , rhi ) = (Si,j, ri,k)

)
.

We stress that here the mean is indicated simply with E also if we should write EPh that is
related to the probability measure Ph of the probability space in which the process (S̄ht , r̄

h
t )

is defined. But we do not care these notations for simplicity. Moreover, it is clear that
MS

i,j,k(l) is the local moment of order l at time ih related to S, as well as Mr
i,k(l) is similar

but related to the component r, andMS,r
i,j,k is the local cross-moment of the two components

at the generic time step i.
So, the proof of the theorem relies in checking that for r∗ > 0 and S∗ > 0 fixed, setting
A∗ = {(i, j, k) : ri,k ≤ r∗, Si,j ≤ S∗}, then the following properties i), ii) and iii) hold:

i) (convergence of the local drift)

lim
h→0

sup
(i,j,k)∈A∗

1

h

∣∣MS
i,j,k(1)− (µS)i,j,kh

∣∣ = 0,

lim
h→0

sup
(i,j,k)∈A∗

1

h

∣∣Mr
i,j,k(1)− (µr)i,kh| = 0;

ii) (convergence of the local diffusion coefficient)

lim
h→0

sup
(i,j,k)∈A∗

1

h

∣∣MS
i,j,k(2)− σ2

SS
2
i,jh
∣∣ = 0,

lim
h→0

sup
(i,j,k)∈A∗

1

h

∣∣Mr
i,j,k(2)− σ2

rri,kh
∣∣ = 0

lim
h→0

sup
(i,j,k)∈A∗

1

h

∣∣MS,r
i,j,k − ρσrσSSi,j

√
ri,kh

∣∣ = 0;

iii) (fast convergence to 0 of the fourth order local moments)

lim
h→0

sup
(i,j,k)∈A∗

1

h
MS

i,j,k(4) = 0,

lim
h→0

sup
(i,j,k)∈A∗

1

h
Mr

i,j,k(4) = 0.

So, we consider h such that h < min(h1, h2, h3), with h1, h2 and h3 given in Lemma 4.5.1,
Lemma 4.5.4 and Proposition 4.5.7 respectively, so that we can use both Remark 4.5.3 and
Remark 4.5.6.
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Proof of i). By using (4.5.5) and (4.5.10), we immediately get that

MS
i,j,k(1) = (µS)i,j,kh and Mr

i,j,k(1) = (µr)i,kh,

and i) holds.

Proof of ii). As for the cross-moment, this is immediate when ri,k ≥ θ∗
√
h: the transition

probabilities solve system (4.4.5), whose last equation is actually MS,r
i,j,k = ρσrσSSi,j

√
ri,kh.

Consider now the case ri,k < θ∗
√
h: here the transition probabilities are of the product-type,

so that MS,r
i,j,k = (µr)i,k(µS)i,j,kh

2. Therefore,

|MS,r
i,j,k − ρσrσSSi,j

√
ri,kh| ≤ (µr)i,k(µS)i,j,kh

2 + ρσrσSSi,j
√
ri,kh

≤ κ(θ + r∗)r∗S∗h
2 + ρσrσSS∗

√
θ∗h

5/4

≤ Ch5/4.

As for the second order moment, again by using (4.5.5) and (4.5.10), it follows that

MS
i,j,k(2) = (Si+1,ju + Si+1,jd − 2Si,j)(µS)i,j,kh+ (Si+1,ju − Si,j)(Si,j − Si+1,jd)

Mr
i,k(2) = (ri+1,ku + ri+1,kd − 2ri,k)(µr)i,kh+ (ri+1,ku − ri,k)(ri,k − ri+1,kd).

So, by using (4.5.9), we get

MS
i,j,k(2) = S2

i,j

(
2ri,k

(
cosh(σS

√
h)− 1

)
h+ e−σS

√
h
(
eσS
√
h − 1

)2
)
.

Therefore, for (i, j, k) ∈ A∗ we get

|MS
i,j,k(2)− σ2

SS
2
i,jh| ≤ 2S2

∗r∗(cosh(σS
√
h)− 1

)
h+ S2

∗

∣∣∣e−σS√h(eσS√h − 1
)2 − σ2

Sh
∣∣∣

and the statement holds. Concerning the second moment on r, we first study the case
ri,k ≤ θ∗

√
h, θ∗ as in Lemma 4.5.1. Then by using (4.5.2) we have

|Mr
i,k(2)− σ2

rri,kh| ≤ 2C∗κθh
3/4+1 + C2

∗h
3/2 ≤ Ch3/2.

Consider now the case θ∗
√
h ≤ ri,k ≤ r∗. Then, for h ≤ (θ∗/r∗)

2 then ri,k ≤ θ∗/
√
h, θ∗ as in

Lemma 4.5.1. So, we use (4.5.3) and we obtain

|Mr
i,k(2)− σ2

rri,kh| ≤ κ(θ + r∗)
σ2
r

4
h2 +

σ4
r

16
h2

and the statements again holds.

Proof of iii). First, straightforward computations give

MS
i,j,k(4) =

(
(µS)i,j,kh+ Si,j − Si+1,jd

)
(Si+1,ju + Si+1,jd − 2Si,j)×

×
(
(Si+1,ju − Si,j)2 + (Si+1,jd − Si,j)2

)
+ (Si+1,jd − Si,j)4

Mr
i,k(4) =

(
(µr)i,kh+ ri,k − ri+1,kd

)
(ri+1,ku + ri+1,kd − 2ri,k)×

×
(
(ri+1,ku − ri,k)2 + (ri+1,kd − ri,k)2

)
+ (ri+1,kd − ri,k)4.
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As for the first quantity, we immediately get

MS
i,j,k(4) ≤4S4

∗(r∗h+ 1− e−σS
√
h)
(

cosh(σS
√
h)− 1

)
2(eσS

√
h − 1)2+

+ S4
∗(e
−σS
√
h − 1)4 ≤ Ch2

Concerning the 4th moment for r, first notice that if ri,k ≤ θ∗
√
h then (4.5.2) givesMr

i,k(4) ≤
C∗h

3. If instead θ∗
√
h ≤ ri,k ≤ r∗ then from (4.5.3) one gets

Mr
i,k(4) ≤

(
κ(θ + r∗)h+ σr

√
r∗h+

σ2
r

4
h
)(
σr
√
r∗h+

σ2
r

4
h
)2

σ2
rh+

+
(
σ2
r

√
r∗h+

σ2
r

4
h
)4

≤ Ch2.

So, the proof is completed.

Remark 4.5.9. We still remark that in order to obtain the weak convergence we only request
that κ > 0 and θ > 0 and we do not need the Feller condition (2κθ ≥ σ2

r) or the “convergence
condition” (4κθ ≥ σ2

r) to hold. This indeed justifies in theory the fact that the proposed
lattice approach permits accurate and efficient option pricing numerical results without any
restriction on the model parameters.

4.5.2 The convergence of the prices

Theorem 4.5.8 of the previous Section can be used in order to discuss the convergence of
European and American prices computed with the lattice algorithm to their corresponding
continuous values. In the European case the reasoning is immediate. In fact, since the bino-
mial process weakly converges to the bivariate diffusion, if the option payoff is a continuous
and bounded function, the convergence result is an immediate consequence of the continu-
ous mapping theorem. In the American case, since the option valuation problem involves a
control, the corresponding result is not so simple. However, thanks to the results proved in
Amin and Khanna ([3], 1994) and Lamberton and Pagès ([60], 1990), it is possible to obtain
under a fairly general set of conditions on the payoff function that also for the American
prices the convergence holds. In particular, we essentially can weaken the boundedness con-
dition on the payoff function by requiring a property of uniform integrability. To be precise,
let f(t, x) : [0, T ] ×D([0, T ]) → [0,+∞) denote a payoff function, so that the price in the
continuous-time model and in the discrete model are given by

supτ∈G0,T E
(
e−

∫ τ
0 rsdsf(τ, S)

)
and supσ∈Gh0,T E

(
e−

∫ σ
0 r̄hs dsf(σ, S̄h)

)
respectively, where G0,T and Gh0,T denote the stopping times in [0, T ] w.r.t. the filtration
Ft = σ((Ss, rs) : s ≤ t) and Fht = σ((S̄hs , r̄

h
s ) : s ≤ t) respectively. As remarked before,

for the sake of simplicity, we use the symbol E to indicate the mean with respect to the
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probability measure P in which the process (S, r) is defined and also the mean with respect
to the probability measure Ph related to the process (S̄h, r̄h). Let us consider the two
following assumptions:

(H1) f is a continuous function (in the product topology) and for every x, y ∈ D([0, T ]) such
that xs = ys for each s ∈ [0, t] then f(t, x) = f(t, y);

(H2) there exists δ > 1 and h∗ > 0 s.t. suph<h∗ E
(

supt≤T |e−
∫ t
0 r̄

h
s dsf(t, S̄h)|δ

)
<∞.

Then, under the hypothesis (H1) and (H2), Theorem 4.5.8 allows one to get the convergence
of the American price in the discrete-time model to the corresponding price in the continuous-
time model. In fact one can repeat the arguments used in Amin and Khanna ([3], 1994)
to treat our context. Then American put options can be numerically evaluated with the
algorithm proposed in Section 4.4. But other options can be considered, for example when f
is continuous and fulfills the following polynomial-growth condition: there exist C > 0 and
γ > 1 such that

sup
t≤T
|f(t, x)| ≤ C

(
1 + sup

t≤T
|xt|γ

)
. (4.5.11)

In fact, if we prove that for every p > 1 there exists h∗ < 1 such that

sup
h<h∗

E
(

sup
t≤T

e−p
∫ t
0 r̄

h
s ds(S̄ht )p

)
<∞, (4.5.12)

then (4.5.11) and (4.5.12) imply the assumption (H2), and if (H1) holds as well then the
convergence of the binomial American price will follow. This is a development of the argu-
ments used in Amin and Khanna ([3], 1994).
We now state the following result:

Proposition 4.5.10. For every p > 1 there exist h∗ < 1, a positive constant Cp,T depending
on p, T and a universal constant c > 0 such that

sup
h<h∗

E
(

sup
t≤T

e−p
∫ t
0 r̄

h
s ds(S̄ht )p

)
≤ Cp,T s

p
0 exp

(
c
p(p− 1)

2
σ2
S T
)
.

Proof. We use here the notation Ei to denote the conditional expectation given the σ-algebra
Fhi = σ

(
(Shk , r

h
k) : k ≤ i

)
, i ≤ n. Moreover, we notice that

sup
t≤T

e−p
∫ t
0 r̄

h
s ds(S̄ht )p = sup

i≤n
e−p

∑i−1
k=0 r

h
kh(Shi )p,

with the understanding
∑−1

k=0(·) = 0, so we work with the quantity in the r.h.s. above.

For i = 0, 1, . . . , n, we set S̃hi = exp(−
∑i−1

k=0 r
h
kh)Shi , so that

S̃hi+1 = S̃hi × e−r
h
i hξhi+1 with ξhi+1 =

Shi+1

Shi
.

We recall that, by construction, the conditional law of Shi+1 given Fhi is the following:
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• on the set {1 + rhi h ≤ eσS
√
h}, Shi+1 can assume the values Shi e

σS
√
h and Shi e

−σS
√
h with

probability

p̂hi =
1 + rhi h− e−σS

√
h

eσS
√
h − e−σS

√
h

and 1− p̂hi =
eσS
√
h − 1− rhi h

eσS
√
h − e−σS

√
h

respectively; we also recall that, on this set, Ei(Shi+1) = Shi (1 + rhi h);

• on the set {1 + rhi h > eσS
√
h}, Shi+1 assumes the (unique) value Shi e

σS
√
h.

As a consequence, we get

e−r
h
i hEi(ξhi+1) = e−r

h
i h(1 + rhi h)1{1+rhi h≤e

σS
√
h} + e−r

h
i heσS

√
h
1{1+rhi h>e

σS
√
h} ≤ 1

and (
ξhi+1 − Ei(ξhi+1)

)
1{1+rhi h>e

σS
√
h} = 0

Therefore, we can write

S̃hi+1 = S̃hi e
−rhi hEi(ξhi+1) + S̃hi e

−rhi h
(
ξhi+1 − Ei(ξhi+1)

)
≤ S̃hi + S̃hi e

−rhi h
(
ξhi+1 − (1 + rhi h)

)
1{1+rhi h≤e

σS
√
h}.

So, by setting

Y h
i+1 = e−r

h
i h
(
ξhi+1 − (1 + rhi h)

)
1{1+rhi h≤e

σS
√
h}

we get

S̃hi+1 ≤ S̃hi + S̃hi Y
h
i+1 = S̃hi (1 + Y h

i+1).

This first gives that 1+Y h
i+1 ≥ 0 for every i and secondly, S̃hi ≤ s0M

h
i for every i = 0, 1, ..., n,

where

Mh
0 = 1 and for i = 1, . . . , n, Mh

i =
i∏

k=1

(1 + Y h
k ).

Since supi≤n(S̃hi )p ≤ sp0 supi≤n(Mh
i )p, we proceed by proving that supi≤n(Mh

i )p is integrable
and by studying an upper estimate for its expectation which is independent of the choice of
h.

We first notice that Ei(Y h
i+1) = 0, so that (Mh

i )i≤n is a martingale. Let us prove that it is
bounded in Lp - this will allow us to apply the Doob inequality.

On the set {1 + rhi h ≤ eσS
√
h}, we can find h1 such that for every h < h1 we have |ξhi+1−1| ≤

2σS
√
h and rhi h ≤ 2σS

√
h. This gives that

|Y h
i+1| ≤ 4σS

√
h
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as h < h1. By using the Taylor expansion of the function x 7→ (1 + x)p for |x| ≤ 4σS
√
h,

there exists a positive (non random) constant c1,p such that

(1 + Y h
i+1)p ≤ 1 + pY h

i+1 +
p(p− 1)

2
(Y h

i+1)2 + c1,ph
√
h,

so that

Ei
(
(1 + Y h

i+1)p
)
≤ 1 +

p(p− 1)

2
Ei
(
(Y h

i+1)2
)

+ c1,ph
√
h.

Now, straightforward computations give

Ei
(
(Y h

i+1)2
)

= e−2rhi h(eσS
√
h − 1− rhi h)(1 + rhi h− e−σS

√
h)1{1+rhi h≤e

σS
√
h}

and for h small enough we have

Ei
(
(Y h

i+1)2
)
≤
(
σ2
Sh− (rhi h)2 + c2h

√
h
)
1{1+rhi h≤e

σS
√
h}

≤ 5σ2
Sh+ c2h

√
h

where c2 denotes a suitable positive constant. So, there exist h∗ > 0 and cp > 0 such that
for every h < h∗

Ei
(
(1 + Y h

i+1)p
)
≤ 1 + 5

p(p− 1)

2
σ2
S h+ cph

√
h.

Now we are done, because

E
(
(Mh

i+1)p
)

= E
(

(Mh
i )pEi

(
(1 + Y h

i+1)p
))
≤ E

(
(Mh

i )p
)(

1 + 5
p(p− 1)

2
σ2
S h+ cph

√
h
)

and by iteration,

E
(
(Mh

i+1)p
)
≤
(

1 + 5
p(p− 1)

2
σ2
S h+ cph

√
h
)i+1

≤ exp
(

5
p(p− 1)

2
σ2
S h(i+ 1) + cph

√
h(i+ 1)

)
.

In particular,

sup
i≤n−1

E
(
(Mh

i+1)p
)
≤ exp

(
5
p(p− 1)

2
σ2
S T + cpT

√
h
)

and this holds for every h < h∗. We can apply the Doob inequality and we get

E
(

sup
i≤n−1

(Mh
i+1)p

)
≤
( p

p− 1

)p
exp

(
1 + 5

p(p− 1)

2
σ2
S T + cpT

√
h
)

≤ Cp,T exp
(

5
p(p− 1)

2
σ2
ST
)

and we stress the the above r.h.s. does not depend on h. The statement now follows.
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4.6 Numerical results

In this Section we compare the performance of our lattice algorithm (called ACZ) with the
procedures of Wei (WEI) and Hilliard, Schwartz and Tucker (HST) for the computation of
European and American options in the BS-CIR model.
In the European and American option contracts we are dealing with, we consider a set
of parameters already used in Hilliard, Schwartz and Tucker [46]: s0 = 100, σS = 0.25,
r0 = 0.06, θ = 0.1, κ = 0.5, ρ = −0.25. In order to study the numerical robustness of
the algorithms, we choose different values for σr: we set σr = 0.08, 0.35, 0.5, 1, 3. Let us
remark that for σr = 0.35, 0.5, 1, 3, the Feller condition 2κθ ≥ σ2

r is not satisfied at all.
The parameters of the option contracts are the following: the strike is K = 100 and the
maturity T is varying, since we set T = 1, 2 years. Finally, the number of time steps n
varies: n = 50, 100, 150, 200, 300.
Tables 4.1 and 4.2 report European put option prices for T = 1 and T = 2 respectively.
The benchmark value is obtained using a Monte Carlo with very large number of Monte
Carlo simulation (10 million iterations) using the accurate Alfonsi ([1], 2010) discretization
scheme for the CIR process with M = 300 discretization time steps (this method provides
a Monte Carlo weak second-order scheme for the CIR process, without any restriction on
its parameters). We also provide the results for American put option prices, as reported in
Table 4.3 and Table 4.4 (no benchmarks are available in this case).
The numerical results show that our method provides very reliable and stable outcomes.
Even if no odd results appear as σS varies, on the contrary both WEI and HST fail when σr
increases. As already observed by Tian ([76], 1992) and Tian ([78], 1994), this follows from
the procedure set up to approximate the CIR process and can be explained by looking at
the behavior of the drift µR (see (4.3.1)) associated to the transformed process R, which is
the one used to define the transition probabilities (see Remark 4.4.1). Indeed, one can write

µR(R) =
1

2σ2
r

(4κθ − σ2
r

R
− κσ2

rR
)
.

We recall that the convergence is achieved when 4κθ − σ2
r ≥ 0. As σr = 0.5, 1, 3, one gets

σ2
r − 4κθ > 0, so that when R ↓ 0 one has µR(R) ↓ −∞ and pi,k → 0. This gives that, in

some sense, the process r tends to be absorbed in 0 (see Remark 4.4.1). As σr = 0.35 the
Feller condition is not satisfied but the convergence condition holds, instead as σr = 0.08
both conditions are true.
We remark that the numerical results show that for σr = 0.08 the three methods are com-
petitive, instead some differences start to arise when σr = 0.35. In fact, for this parameter
value, also if the “convergence condition” holds, the WEI procedure is oscillating, instead
the HST ad the ACZ algorithms are robust. Finally, for σr = 0.50, 1, 3, both WEI and HST
present some troubles, while the ACZ procedure is still accurate and efficient.
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n WEI HST ACZ MC Benchmark

σr =0.08 50 6.599590 6.579999 6.547556
100 6.596199 6.586245 6.569844 (6.580864)
150 6.594964 6.588312 6.577486 6.586622
200 6.594367 6.589255 6.581016 (6.592380)
300 6.593705 6.590247 6.584744

σr =0.35 50 6.525565 6.501327 6.456607
100 8.098863 6.485796 6.480764 (6.487199)
150 6.506420 6.488178 6.488831 6.492901
200 6.518722 6.453131 6.492840 (6.498603)
300 6.506538 6.502675 6.496892

σr =0.50 50 6.522023 6.495957 6.515875
100 6.606752 nan 6.543780 (6.544551)
150 6.708564 6.430882 6.551733 6.550315
200 6.588212 6.308088 6.556571 (6.556078)
300 6.492437 6.280427 6.560239

σr =1.00 50 7.397553 3.640714 7.054686
100 4.786837 nan 7.109525 (7.153304)
150 8.046617 4.094663 7.123767 7.159471
200 4.846171 4.082429 7.127271 (7.165637)
300 7.340537 4.135390 7.126012

σr =3.00 50 9.582836 0.042281 8.491568
100 3.026463 0.074981 8.636541 (8.756826)
150 15.966217 0.085990 8.671644 8.763625
200 9.103675 0.081284 8.648793 (8.770423)
300 1.604996 0.084082 8.681638

Table 4.1: European put options with T = 1, s0 = 100, K = 100, σS = 0.25, r0 = 0.06, θ = 0.1,
κ = 0.5, ρ = −0.25, σr varying.



4.6 Numerical results 145

n WEI HST ACZ MC Benchmark

σr =0.08 50 7.113252 7.075978 7.044844
100 7.109863 7.090808 7.075287 (7.090164)
150 7.108682 7.095834 7.085454 7.096171
200 7.108057 7.098328 7.090541 (7.102178)
300 7.107381 7.100858 7.095698

σr =0.35 50 19.700288 6.894164 7.150781
100 7.392442 7.187941 7.184543 (7.180155)
150 7.190269 7.138343 7.196207 7.186305
200 8.938681 7.089212 7.201783 (7.192455)
300 7.205803 7.103088 7.207558

σr =0.50 50 7.590023 nan 7.532236
100 7.384775 7.151360 7.573197 (7.575268)
150 8.099945 7.157489 7.590692 7.581702
200 7.866820 nan 7.598707 (7.588135)
300 8.627843 7.029057 7.600614

σr =1.00 50 10.511291 nan 9.029287
100 10.377910 1.513991 9.113234 (9.312621)
150 11.204261 1.603589 9.204665 9.319903
200 3.979039 nan 9.192707 (9.327185)
300 12.541620 1.839346 9.206984

σr =3.00 50 0.003130 0.000216 11.801614
100 13.515823 0.000344 11.656249 (12.046144)
150 12.799415 0.000594 11.820232 12.054222
200 1.864718 0.000832 11.873238 (12.062299)
300 24.377573 0.001110 11.919532

Table 4.2: European put options with T = 2, s0 = 100, K = 100, σS = 0.25, r0 = 0.06, θ = 0.1,
κ = 0.5, ρ = −0.25, σr varying.
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n WEI HST ACZ

σr =0.08 50 7.459623 7.422693 7.438208
100 7.456394 7.437777 7.445392
150 7.455096 7.442827 7.447790
200 7.454461 7.445104 7.448865
300 7.453750 7.447485 7.449971

σr =0.35 50 6.025684 7.539697 7.536313
100 5.953750 7.544594 7.545435
150 7.547122 7.547791 7.548400
200 6.179678 7.554119 7.549846
300 7.551032 7.550363 7.551299

σr =0.50 50 7.647938 7.596269 7.650304
100 7.698584 nan 7.662723
150 7.751229 7.586111 7.665955
200 7.684290 7.472087 7.668003
300 7.620723 7.627011 7.669464

σr =1.00 50 8.187062 6.511775 8.084019
100 6.750600 nan 8.106474
150 8.743109 6.506826 8.113036
200 6.822003 6.501217 8.115025
300 8.164598 6.534435 8.116760

σr =3.00 50 9.699021 2.902701 8.953802
100 5.821256 3.165914 9.009359
150 16.069688 3.405395 9.028517
200 9.212406 3.307452 9.025299
300 4.740153 3.049339 9.037878

Table 4.3: American put options with T = 1, s0 = 100, K = 100, σS = 0.25, r0 = 0.06, θ = 0.1,
κ = 0.5, ρ = −0.25, σr varying.
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n WEI HST ACZ

σr =0.08 50 9.161152 9.087704 9.149096
100 9.162292 9.125087 9.155979
150 9.162352 9.137484 9.158033
200 9.162318 9.143667 9.159035
300 9.162238 9.149867 9.160028

σr =0.35 50 4.459093 9.284505 9.499658
100 4.956463 9.479192 9.507529
150 9.494545 9.442510 9.510407
200 4.826695 9.480988 9.511623
300 9.505248 9.494247 9.512845

σr =0.50 50 9.814438 nan 9.821675
100 9.717844 9.555458 9.833291
150 10.113582 9.570541 9.838509
200 9.986565 nan 9.841491
300 10.358344 9.576959 9.842231

σr =1.00 50 11.421349 6.586697 10.790323
100 11.365461 6.934987 10.834057
150 11.826422 6.392858 10.868361
200 7.790298 nan 10.863552
300 13.160854 6.897618 10.871842

σr =3.00 50 2.837551 3.291170 12.488520
100 13.585301 2.903662 12.458445
150 12.865822 2.672643 12.516032
200 6.335779 3.166955 12.539396
300 24.420598 3.405717 12.564801

Table 4.4: American put options with T = 2, s0 = 100, K = 10, σS = 0.25, r0 = 0.06, θ = 0.1,
κ = 0.5, ρ = −0.25, σr varying.
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Appendix A

Proof of Lemma 3.2.4 and Lemma
3.2.5

A.1 Proof of Lemma 3.2.4

First of all we observe that the function u(t, x) satisfies the PDE in (1.2.7), i.e. ∂tu+Lu = 0,
with L = µ∂xu + 1

2
σ2∂xxu. So, in order to find the estimates for |∂tu(t, x)| we need to find

estimates for |∂xu(t, x)| and |∂xxu(t, x)|. Similarly, we obtain an estimate for |∂t,xu(t, x)|
from the estimates of |∂x,xu(t, x)| and |∂x,x,xu(t, x)|. Then we will just consider the problem
of finding a boundary estimate for |∂xu(t, x)|, |∂x,xu(t, x)| and |∂x,x,xu(t, x)|. Moreover, we
recall that the transition function qs(x, y) satisfies for all (s, x, y) ∈ (0, T ] × O × O the
following global estimates∣∣∣∣∣∂α+β+γqs(x, y)

∂xα∂yβ∂sγ

∣∣∣∣∣≤ C

s
α+β+2γ+1

2

exp

(
−c(y − x)2

s

)
, (A.1.1)

(for details see Friedman ([35], 1964)). We recall that here O = [L,+∞).
We are assuming that the payoff function f is such that

f ∈ C2
b ([L,K];R) ∩ C2

b ([K,+∞),R) and f(L) = 0.

• Let us first consider |∂xu(t, x)|. We have that

∂xu(t, x) =

∫ +∞

L

−∂yq1
T−t(x, y)f(y)dy

+
2µ

σ2
e

2µ(L−x)
σ2

∫ +∞

L

q2
T−t(x, y)f(y)dy

− e
2µ(L−x)

σ2

∫ +∞

L

∂yq
2
T−t(x, y)f(y)dy
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= [−q1
T−t(x, y)f(y)]KL + [−q1

T−t(x, y)f(y)]+∞K

+

∫ +∞

L

q1
T−t(x, y)f ′(y)dy +

2µ

σ2
e

2µ(L−x)
σ2

∫ +∞

L

q2
T−t(x, y)f(y)dy

− e
2µ(L−x)

σ2 {[q2
T−t(x, y)f(y)]KL

+ [q2
T−t(x, y)f(y)]+∞K −

∫ +∞

L

q2
T−t(x, y)f ′(y)dy}

= ∆f(K)[q1
T−t(x,K) + e

2µ(L−x)
σ2 q2

T−t(x,K)]

+

∫ +∞

L

q1
T−t(x, y)f ′(y)dy

+
2µ

σ2
e

2µ(L−x)
σ2

∫ +∞

L

q2
T−t(x, y)f(y)dy

+ e
2µ(L−x)

σ2

∫ +∞

L

q2
T−t(x, y)f ′(y)dy,

where ∆f(K) = f(K+)− f(K−). We observe that all the integrals in the last equality
are bounded, so we just need to look at the term

∆f(K)[q1
T−t(x,K) + e

2µ(L−x)
σ2 q2

T−t(x,K)].

For the estimates (A.1.1) with α = β = γ = 0 we get

|q1
T−t(x,K)|, |q2

T−t(x,K)| ≤ C√
T − t

e−c
(x−K)2

T−t ≤ C,

where the last inequality is a consequence of the fact that we are considering the
boundary estimate, i.e. x ∈ (L, K+L

2
], so we can conclude that

sup
(t,x)∈[0,T )×(L,K+L

2
]

|∂xu(t, x)| ≤ C.

• Let us now consider |∂2
x,xu(t, x)|. We have that

∂2
x,xu(t, x) =

∫ +∞

L

∂2
y,yq

1
T−t(x, y)f(y)dy

− e
2µ(L−x)

σ2

((
−2µ

σ2

)2∫ +∞

L

q2
T−t(x, y)f(y)dy

− 4µ

σ2

∫ +∞

L

∂yq
2
T−t(x, y)f(y)dy +

∫ +∞

L

∂2
y,yq

2
T−t(x, y)f(y)dy

)
.
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So the “new” terms we need to consider are∫ +∞

L

∂2
y,yq

1
T−t(x, y)f(y)dy − e

2µ(L−x)
σ2

∫ +∞

L

∂2
y,yq

2
T−t(x, y)f(y)dy.

From a double integration by parts we have that∫ +∞

L

∂2
y,yq

1
T−t(x, y)f(y)dy − e

2µ(L−x)
σ2

∫ +∞

L

∂2
y,yq

2
T−t(x, y)f(y)dy

= [∂yq
1
T−t(x, y)f(y)]KL + [∂yq

1
T−t(x, y)f(y)]+∞K − [q1

T−t(x, y)f ′(y)]KL

− [q1
T−t(x, y)f ′(y)]+∞K +

∫ +∞

L

q1
T−t(x, y)f ′′(y)dy

− e
2µ(L−x)

σ2 {[∂yq2
T−t(x, y)f(y)]KL + [∂yq

2
T−t(x, y)f(y)]+∞K

− [q2
T−t(x, y)f ′(y)]KL − [q2

T−t(x, y)f ′(y)]+∞K

+

∫ +∞

L

q2
T−t(x, y)f ′′(y)dy}

= −∂yq(x,K)∆f(K) + q(x,K)∆f ′(K)− q(x, L)f ′(L+)

+

∫ +∞

L

qT−t(x, y)f ′′(y)dy

= −∂yq(x,K)∆f(K) + q(x,K)∆f ′(K) +

∫ +∞

L

qT−t(x, y)f ′′(y)dy,

where the last equality comes from the fact that q(x, L) = 0. We recall that ∆f ′(K) =
f ′(K+)− f ′(K−).
Now we have that

∫ +∞
L

qT−t(x, y)f ′′(y)dy is bounded and if we consider the two terms
−∂yq(x,K)∆f(K) and q(x,K)∆f ′(K) the one that gives a worst contribution to the
estimate is −∂yq(x,K)∆f(K). So, by using estimates (A.1.1) with α = γ = 0 and
β = 1 we obtain

|∂yq(x,K)∆f(K)| ≤ C

(T − t)
e−c

(K−x)2
T−t ≤ C

because x ∈ (L, K+L
2

].
So we have that

sup
(t,x)∈[0,T )×(L,K+L

2
]

|∂2
x,xu(t, x)| ≤ C

and we can also say that

sup
(t,x)∈[0,T )×(L,K+L

2
]

|∂tu(t, x)|+ |∂xu(t, x)|+ |∂2
x,xu(t, x)| ≤ C.
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• Now let us consider |∂3
x,x,xu(t, x)|. We have that

∂3
x,x,xu(t, x) =

∫ +∞

L

−∂3
y,y,yq

1
T−t(x, y)f(y)dy
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e
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σ2
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2
T−t(x, y)f(y)dy(
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e
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σ2
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2
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+ e
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σ2
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2
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)
.

Here the terms that give a “new” contribution to the estimate are∫ +∞

L

−∂3
y,y,yq
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+ [∂yq
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T−t(x, y)f ′(y)]+∞K −

∫ +∞
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∂yq
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T−t(x, y)f(y)]KL
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T−t(x, y)f ′(y)]KL

− [∂yq
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∂yq
2
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= ∆f(K)(∂2

y,yq
1
T−t(x,K) + e

2µ(L−x)
σ2 ∂2

y,yq
2
T−t(x,K)) + ∆f ′(K)(−∂yq1
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− e
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2µ(L−x)
σ2 ∂yq

2
T−t(x, L))

+

∫ +∞

L

(−∂yq1
T−t(x, y)− e

2µ(L−x)
σ2 ∂yq

2
T−t(x, y))f ′′(y)dy.

Now let us consider each single term we found. Between ∆f(K)(∂2
y,yq

1
T−t(x,K) +

e
2µ(L−x)

σ2 ∂2
y,yq

2
T−t(x,K)) and ∆f ′(K)(−∂yq1

T−t(x,K) − e
2µ(L−x)

σ2 ∂yq
2
T−t(x,K)) the term

that gives a worst contribution is the first one, but from estimates (A.1.1) and the
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fact that x ∈ (L, K+L
2

] we can write

|∆f(K)(∂2
y,yq

1
T−t(x,K) + e

2µ(L−x)
σ2 ∂2

y,yq
2
T−t(x,K))| ≤ C

(T − t)3/2
e−c

(x−K)2

T−t ≤ C.

Then we have that

|f ′(L+)(∂yq
1
T−t(x, L) + e

2µ(L−x)
σ2 ∂yq

2
T−t(x, L))|

= |f ′(L+)
2µ
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1√
2πσ2(T − t)

e
− (L−x−µ(T−t))2

2σ2(T−t) |

≤ C√
T − t

e−c
(x−L)2

T−t ≤ C√
T − t

where the last inequality comes from the fact that x ∈ (L, K+L
2

]. Finally we have that∣∣∣∣∣
∫ +∞

L

(−∂yq1
T−t(x, y)− e

2µ(L−x)
σ2 ∂yq

2
T−t(x, y))f ′′(y)dy

∣∣∣∣∣≤ C√
T − t

by using estimates (A.1.1) and the integral of a gaussian density. Moreover, we also
need to check the following term∣∣∣∣∣

∫ +∞

L
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y,yq

2
T−t(x, y)f(y)dy
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∣∣∣∣∣∆f(K)∂yq

2
T−t(x,K) + ∆f ′(K)q2

T−t(x,K)

− q2
T−t(x, L)f ′(L+) +

∫ +∞

L

q2
T−t(x, y)f ′′(y)dy

∣∣∣∣∣≤ C√
T − t

,

where the last inequality comes from∣∣∣∣∣∆f(K)∂yq
2
T−t(x,K) + ∆f ′(K)q2

T−t(x,K) +

∫ +∞

L

q2
T−t(x, y)f ′′(y)dy

∣∣∣∣∣≤ C

and

|q2
T−t(x, L)f ′(L+)| ≤ C√

T − t
.

So we can conclude that

sup
(t,x)∈[0,T )×(L,K+L

2
]

|∂2
t,xu(t, x)| ≤ C√

T − t

and the proof is complete.
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A.2 Proof of Lemma 3.2.5

As in the proof of Lemma 3.2.4, since u(t, x) solves the PDE equation (1.2.7), we just need
to consider the global estimates of |∂3

x,x,xu(t, x)| and |∂4
x,x,xu(t, x)|. As for Lemma 3.2.4, we

are assuming that the payoff function f is such that

f ∈ C2
b ([L,K];R) ∩ C2

b ([K,+∞),R) and f(L) = 0.

• Let us start with |∂3
x,x,xu(t, x)|. As for the boundary estimates we just need to check∫ +∞

L

−∂3
y,y,yq

1
T−t(x, y)f(y)dy − e

2µ(L−x)
σ2

∫ +∞

L

∂3
y,y,yq

2
T−t(x, y)f(y)dy

= ∆f(K)(∂2
y,yq

1
T−t(x,K) + e

2µ(L−x)
σ2 ∂2

y,yq
2
T−t(x,K)) + ∆f ′(K)(−∂yq1

T−t(x,K)

− e
2µ(L−x)

σ2 ∂yq
2
T−t(x,K)) + f ′(L+)(∂yq

1
T−t(x, L) + e

2µ(L−x)
σ2 ∂yq

2
T−t(x, L))

+

∫ +∞

L

(−∂yq1
T−t(x, y)− e

2µ(L−x)
σ2 ∂yq

2
T−t(x, y))f ′′(y)dy.

Then

|∆f(K)(∂2
y,yq

1
T−t(x,K) + e

2µ(L−x)
σ2 ∂2

y,yq
2
T−t(x,K))

+ ∆f ′(K)(−∂yq1
T−t(x,K)− e

2µ(L−x)
σ2 ∂yq

2
T−t(x,K))| ≤ C

(T − t)3/2
e−c

(x−K)2

T−t

and

|f ′(L+)(∂yq
1
T−t(x, L) + e

2µ(L−x)
σ2 ∂yq

2
T−t(x, L))|

=

∣∣∣∣∣f ′(L+)
2µ

σ2

1√
2πσ2(T − t)

e
− (L−x−µ(T−t))2

2σ2(T−t)

∣∣∣∣∣
≤ C√

T − t
e−c

(x−L)2

T−t ≤ C

and finally ∣∣∣∣∣
∫ +∞

L

(−∂yq1
T−t(x, y)− e

2µ(L−x)
σ2 ∂yq

2
T−t(x, y))f ′′(y)dy

∣∣∣∣∣≤ C√
T − t

so we can conclude saying that

|∂3
x,x,xu(t, x)| ≤ C√

T − t

(
1 +

1

(T − t)
e−c

(x−K)2

T−t

)
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and then

|∂2
x,tu(t, x)|+ |∂3

x,x,xu(t, x)| ≤ C√
T − t

(
1 +

1

(T − t)
e−c

(x−K)2

T−t

)
.

• Let us now consider |∂4
x,x,x,xv(t, x)|. We have that

∂4
x,x,x,xu(t, x) =

∫ +∞

L

∂4
y,y,y,yq

1
T−t(x, y)f(y)dy

−

((
−2µ

σ2

)4

e
2µ(L−x)

σ2

∫ +∞

L

q2
T−t(x, y)f(y)dy

+ 4

(
−2µ

σ2

)
e

2µ(L−x)
σ2

∫ +∞

L

∂3
y,y,yq

2
T−t(x, y)f(y)dy

+ 6

(
−2µ

σ2

)2

e
2µ(L−x)

σ2

∫ +∞

L

∂2
y,yq

2
T−t(x, y)f(y)dy

+ 4

(
−2µ

σ2

)3

e
2µ(L−x)

σ2

∫ +∞

L

∂yq
2
T−t(x, y)f(y)dy

+ e
2µ(L−x)

σ2

∫ +∞

L

∂4
y,y,y,yq

2
T−t(x, y)f(y)dy

)
.

So the “new” terms we need to consider are∫ +∞

L

∂4
y,y,y,yq

1
T−t(x, y)f(y)dy − e

2µ(L−x)
σ2

∫ +∞

L

∂4
y,y,y,yq

2
T−t(x, y)f(y)dy

= −∆f(K)∂3
y,y,yqT−t(x,K) + ∆f ′(K)∂2

y,yqT−t(x,K)− f ′(L+)∂2
y,yqT−t(x, L)

+

∫ +∞

L

∂2
y,yqT−t(x, y)f(y)dy.

From estimates (A.1.1) with α = 0 = γ and β = 3 we get

| −∆f(K)∂3
y,y,yqT−t(x,K) + ∆f ′(K)∂2

y,yqT−t(x,K)| ≤ C

(T − t)2
e−c

(x−K)2

T−t

and from estimates (A.1.1) with α = 0 = γ and β = 2 we have

|f ′(L+)∂2
y,yqT−t(x, L)| ≤ C

(T − t)3/2
e−c

(x−L)2

T−t ≤ C.
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By using estimates (A.1.1) with α = 0 = γ and β = 2 and the integral of a gaussian
density we obtain that ∣∣∣∣∣

∫ +∞

L

∂2
y,yqT−t(x, y)f(y)dy

∣∣∣∣∣≤ C

(T − t)
.

Then we finally get

|∂4
x,x,x,xu(t, x)| ≤ C

T − t

(
1 +

1

T − t
e−c

(x−K)2

T−t

)
.

The proof is then complete because as a consequence we have that

|∂2
t,tu(t, x)|+ |∂3

x,x,tu(t, x)|+ |∂4
x,x,x,xu(t, x)|

≤ C

(T − t)

(
1 +

1

(T − t)
e−c

(x−K)2

T−t

)
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