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Introduction

In this thesis we propose solution methods for Generalized Nash Equilibrium
Problems (GNEPs) and Hemivariational Inequalities (HVIs) where the fea-
sible set is given by the intersection of a closed convex set with the solution
set of a lower-level monotone Variational Inequality (VI).

The Generalized Nash Equilibrium Problem was first formally introduced in
1952 by Debreu in [21], where the term social equilibrium was coined. The
GNEP has soon become a central model in game theory that has been used
actively in many fields in the past fifty years. The GNEP models conflicts
among players, each behaving selfishly to optimize one’s own well-being sub-
ject to resource limitations and other constraints that may depend on the
rivals’ actions (“coupling” constraints). Therefore, the GNEP is a natural
extension of the well known standard Nash Equilibrium Problem (NEP), if
the players share some common resources (a communication link, an electri-
cal transmission line, a transportation link etc.) or limitations (for example
a common limit on the total pollution in a certain area), i.e. if they interact
also at the level of the feasible sets.

It is worth mentioning that, in general, GNEPs usually have a manifold of
solutions (that sometimes could be disconnected) which is one of the many
peculiarities that make these problems so difficult to analyze and to solve.
Indeed, until very recently, there were no provably convergent algorithms for
the solution of GNEPs: here we mention KKT methods (see e.g. [23]), the
Nikaido-Isoda reformulation of the GNEP (see e.g. [25]) and other reformu-
lation approaches (see e.g. [31, 33]). In this work we consider one of the most
promising approaches for which we are able to prove convergence results:
penalty methods.

Penalty methods have originally been developed and studied for the solu-
tion of constrained (standard) optimization problems. The simple idea, which
is the core of these approaches, is that one can recover a solution of the orig-
inal constrained problem by solving (exactly or sequentially with a varying
penalty parameter) a suitable equivalent “simpler” problem. In particular,
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2 Introduction

the use of penalty algorithms seems to be a promising method to cope with
the complicated “coupling” constraints of a GNEP. In Chapter 2 we con-
sider a “partial” exact penalty method which allows us to reduce the original
GNEP to a nonsmooth standard NEP. Suitable constraints qualifications are
investigated (to obtain the convergence of our scheme) and some relevant gen-
eral theoretical results are established: among others a complete equivalence
between the original GNEP and the penalized NEP. Furthermore, in order
to tackle the nonsmooth penalized problem for fixed values of the penalty
parameters, we opt for smoothing techniques. Finally, based on the previ-
ous results, classes of GNEPs for which this penalty approach is guaranteed
to converge to a solution of the original game are identified: NEPs, jointly
convex GNEPs and general GNEPs with separable coupling constraints and
for which a “technical” condition holds on the the structure of the players’
objective functions. Thus, for the first time, classes of GNEPs for which the
presented scheme is provably convergent could be established.

HemiVariational Inequalities (HVI)s are a powerful modeling tool that en-
compasses both (convex) optimization and variational inequalities as par-
ticular instances. In their full generality, HVIs have been mainly considered
in infinite-dimensional settings, (see e.g. [69, 72, 77]); nevertheless, finite-
dimensional HVIs have recently attracted attention in the mathematical pro-
gramming literature, (see e.g. [1, 57, 68]). In Chapter 3, in particular, we
consider the Variational Inequality-Constrained HemiVariational Inequality
(VI-C HVI) with side constraints, thus an HVI for which the feasible set is
implicitly defined as the intersection of a closed convex set with the solution
set of a lower-level monotone VI. We remark that VI-C HVIs include also,
as special case, the problem of selecting a particular equilibrium solution to
optimize an auxiliary (“upper”) objective function. Under suitable assump-
tions, this problem may arise, for example, when one tries to select a solution
of a standard NEP that optimizes certain criteria.

In Chapter 3 we propose centralized and distributed schemes for the nu-
merical solution of such HVIs. Firstly, in order to deal with the presence of
further side constraints other than the solution set of the lower-level VI, we
establish an exact penalization result which allows us to state, for suitable
values of the penalty parameter, the equivalence between the original HVI
(with side constraints) and a HVI without additional side constraints. Sec-
ondly we present a centralized solution method for solving the VI-C HVI and
establish its convergence. Thirdly we present a distributed algorithm for solv-
ing a “partitioned” VI-C HVI. The algorithms consist of a main loop wherein
a sequence of one-level and strongly monotone HVIs is solved that involves
the penalization of the non-VI constraint and a combination of proximal
and Tikhonov regularization to handle the lower-level VI constraints. Subse-
quently, the methods developed are used to successfully solve a new power
control problem in ad-hoc networks. Finally the analysis is equipped with a
series of numerical tests and results which show the outstanding behavior of
the proposed approach.
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To the best of our knowledge, these contributions are new and considerably
expand existing results. The proposed distributed algorithm, in which we are
interested as motivated by applications in non-cooperative game problems,
see [34, Chapter 12], is novel even for a hierarchical optimization problem.
Furthermore, the power control problem analyzed in the sequel is new and
our results expand the applicability and flexibility of game-theoretic models
in ad-hoc networks and also bring considerable gains over existing techniques.

The material presented in this work has led to the following publications:

G. Scutari, F. Facchinei, J-S Pang, and L. Lampariello, Equilibrium Selec-
tion in Power Control Games on the Interference Channel, to appear in the
Proceedings of the IEEE 2012 International Conference on Computer Com-
munications, Orlando, Florida USA, march 2012

F. Facchinei, J-S Pang, G. Scutari, and L. Lampariello, VI-constrained Hemi-
variational Inequalities: Distributed Algorithms and Power Control in Ad-
Hoc Networks, accepted (minor revision) in Mathematical Programming, 2011

F. Facchinei, L. Lampariello, and S. Sagratella, Recent advancements in the
numerical solution of generalized Nash equilibrium problems, submitted to
Quaderni di Matematica - Volume in ricordo di Marco DApuzzo, 2011

F. Facchinei and L. Lampariello, Partial penalization for the solution of gen-
eralized Nash equilibrium problems, Journal of Global Optimization 50, 1,
39-57, 2011





Chapter 1

Mathematical background

In this chapter we recall some relevant results that form the theoretical basis
of the following developments.

In Section 1.1 we recall the definitions of concepts and mathematical tools
that play a role in this work. Section 1.2 and Section 1.3 contain, respectively,
some basic results about the penalty approaches for optimization problems
and a brief survey on Variational Inequalities.

Most of the material of this chapter is taken from the fundamental books
[8, 16, 32].

1.1 Preliminary definitions

From now on, let be K a subset of Rn.

Definition 1. Function F : K → Rn is globally Lipschitz continuous if, for
some non negative scalar L, one has

‖F (x)− F (y)‖ ≤ L ‖x− y‖, (1.1)

for all x and y in K.
Moreover, if F satisfy the Lipschitz condition (1.1) within a neighborhood of
x, then we shall say that F is locally Lipschitz at x.

We recall also that a function F : K → Rn is non expansive if

‖F (x)− F (y)‖ ≤ ‖x− y‖, ∀x, y ∈ K,

while F is a contraction if there exists a constant η ∈ (0, 1) such that

‖F (x)− F (y)‖ ≤ η‖x− y‖, ∀x, y ∈ K.

5



6 1 Mathematical background

Monotonicity properties

Now we introduce several monotonicity properties of vector functions.

Definition 2. A mapping F : K ⊆ Rn → Rn is said to be

(a) pseudo monotone on K if for all vectors x and y in K,

(x− y)TF (y) ≥ 0⇒ (x− y)TF (x) ≥ 0;

(b) monotone on K if

(F (x)− F (y))T (x− y) ≥ 0, ∀x, y ∈ K;

(c) strictly monotone on K if

(F (x)− F (y))T (x− y) > 0, ∀x, y ∈ K andx 6= y;

(d) strongly monotone on K if there exists a constant c > 0 such that

(F (x)− F (y))T (x− y) ≥ c‖x− y‖2, ∀x, y ∈ K.

In the following table we report some elementary relations.

strongly ⇒ strictly ⇒ monotone ⇒ ps. monotone
monotone monotone

Table 1.1: Monotonicity properties

If F is a continuously differentiable function defined on an open convex set,
there is a connection between the above monotonicity properties and the
positive semidefiniteness of the Jacobian of F.

Proposition 1. Let F : D ⊆ Rn → Rn be continuously differentiable on the
open convex set D. The following statements are valid.

(a) F is monotone on D if and only if JF (x) is positive semidefinite for all
x ∈ D;

(b) F is strictly monotone on D if JF (x) is positive definite for all x ∈ D;
(c) F is strongly monotone on D if and only if JF (x) is uniformly positive

definite for all x ∈ D; i.e., there exists a constant c′ > 0 such that

yTJF (x)y ≥ c′‖y‖2, ∀y ∈ Rn

for all x ∈ D.
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The monotone functions’ characterization given by Proposition 1 is motivated
by the corresponding properties of the gradients of convex functions. Indeed,
the following result holds.

Proposition 2. Let θ : D ⊆ Rn → R continuously differentiable on the open
convex set D. The following statements are valid.

(a) ∇θ is monotone on D if and only if θ is convex on D.
(b) ∇θ is strictly monotone on D if and only if θ is strictly convex on D.
(c) ∇θ is strongly monotone on D if and only if θ is strongly convex on D

We can say that the class of monotone vector functions plays a similarly
important role in the variational inequalities problem as the class of convex
functions in optimization.

Another important definition is the following.

Definition 3. A mapping F : K ⊆ Rn → Rn is said to be

(a) pseudo monotone plus on K if it is pseudo monotone on K and for all
vectors x and y in K,

[(x− y)TF (y) ≥ 0 and (x− y)TF (x) ≥ 0] ⇒ F (x) = F (y);

(b) monotone plus (or paramonotone) on K if it is monotone on K and for
all vectors x and y in K

(F (x)− F (y))T (x− y) = 0 ⇒ F (x) = F (y);

(c) co-coercive on K if there exists a constant c > 0 such that

(F (x)− F (y))T (x− y) ≥ c‖F (x)− F (y)‖2, ∀x, y ∈ K.

The following diagram summarizes the relations between those classes of
functions. In particular, we recall that a differentiable function F with sym-
metric Jacobian JF is symmetric. In addition it is worth mentioning that
every Lipschitz continuous, strongly monotone function is co-coercive.

Lipschitz, symmetric symmetric
monotone monotone

⇓ ⇓
co-coercive ⇒ monotone plus

⇓
ps. monotone plus

Table 1.2: Relations between classes of monotone functions



8 1 Mathematical background

Point-to-set maps

A point-to-set map, also called a multifunction or a set-valued map, is a map
Φ from Rn into the power set of Rn, i.e., for every x ∈ Rn, Φ(x) is a (possibly
empty) subset of Φ. The domain of Φ, denoted domΦ, the range of Φ, denoted
ranΦ, and the graph of Φ, denoted gphΦ, are, respectively, the sets:

domΦ := {x ∈ Rn : Φ(x) 6= ∅}

ranΦ :=
⋃
x∈domΦ Φ(x)

gphΦ := {(x, y) ∈ R2n : y ∈ Φ(x)}

The following definition contains several classical concepts relevant to a set-
valued map.

Definition 4. A set-valued map Φ : Rn → Rn is said to be

(a) closed at x̄, if
{xk} → x̄

yk ∈ Φ(xk) ∀k

{yk} → ȳ

⇒ ȳ ∈ Φ(x̄);

(b) locally bounded at x̄ if there exists an open neighborhood N of x̄ such
that the set: ⋃

x∈N∩domΦ

Φ(x)

is bounded;
(c) lower semicontinuous at x̄ if for every open set U such that Φ(x̄)∩U 6= ∅,

there exists an open neighborhood N of x̄ such that, for each x ∈ N ,
Φ(x) ∩ U 6= ∅;

(d) upper semicontinuous at x̄ if for every open set V containing Φ(x̄), there
exists an open neighborhood N of x̄ such that, for each x ∈ N , V contains
Φ(x);

(e) continuous at x̄ if Φ is both lower and upper semicontinuous at x̄;
(f) closed on a set S if Φ is closed at every point in S;
(g) (lower, upper semi)continuous on a set S if Φ is (respectively, lower, upper

semi)continuous at every point in S.

Some useful properties are consequences of these definitions. We mention here
the fact that if Φ is closed at x̄, then Φ(x̄) is a closed set; moreover, if Φ(x̄) is
a closed set and Φ is upper semicontinuous at x̄, then Φ is closed at x̄. Other
interesting results can be found in [32].
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Geometric concepts: tangent and normal cones

The concept of tangent cone is central in the forthcoming sections. The tan-
gent cone of K at x ∈ K, denoted TK(x), consists of all vectors u ∈ Rn,
called tangent vectors to K at x, for which there exist a sequence of vectors
{yν} ⊂ K and a sequence of positive scalars {τν} such that

lim
ν→∞

yν = x, lim
ν→∞

τν = 0 and lim
ν→∞

yν − x
τν

= u.

We can define the normal cone to K at x by polarity with TK(x):

NK(x) := {v : vTu ≤ 0, ∀u ∈ TK(x)},

We recall that the dual cone of a cone N is defined as:

N∗ := {d ∈ Rn : vTd ≥ 0 ∀v ∈ N}.

and thus TK(x)∗ = −NK(x). Furthermore, it is not hard to see that, if K is
convex, then NK(x) = {v : vT (y − x) ≤ 0, ∀y ∈ K}.

Some basic aspects of non smooth analysis

Finally we would like to recall some elementary and basic aspects of non
smooth analysis. Let us consider, for sake of simplicity, a function f : Rn → R.
Let f be locally Lipschitz near x. We can define the generalized directional
derivative of f which, when evaluated at x in the direction v, is given by

f◦(x, v) := lim sup
y→x, λ→0

f(y + λv)− f(y)

λ
.

The generalized gradient of f at x is the following non empty set:

∂f(x) := {ζ ∈ Rn : f◦(x, v) ≥ vT ζ, ∀v ∈ Rn}. (1.2)

It is possible to show that ∂f(x) is a nonempty convex compact subset of
Rn.

We remark that if f is smooth, then ∂f(x) reduces to the singleton
{∇f(x)}. When f is convex, then ∂f(x) coincides with the subdifferential
of convex analysis, i.e. the set of vectors ζ ∈ Rn such that:

f(x+ y)− f(x) ≥ ζTy, ∀y ∈ Rn.

Another characterization of the generalized gradient can be obtained thanks
to Rademacher’s Theorem which asserts that a locally Lipschitz function
is differentiable almost everywhere. Thus let Ωf be the set of points in a
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neighborhood of x at which f fails to be differentiable and let S be any other
set of measure zero. Then

∂f(x) = co { lim
k→∞

∇f(xk) : xk → x, xk /∈ S, xk /∈ Ωf}.

Hence, ∂f(x) is the convex hull of all point of the form lim∇f(xk), where
{xk} is any sequence which converges to x while avoiding S ∪Ωf .

For a comprehensive analysis of the properties of the generalized gradient,
we refer to [16]. Here we would like to recall the following result which is a
corollary of the subsequent Proposition 5.

Proposition 3. If f is locally Lipschitz near x and attains a minimum over
X at x, then 0 ∈ ∂f(x) +NX(x).

If we consider a vector-valued function F : Rn → Rm, the analysis becomes
only slightly different from the one reported here.

1.2 Some aspects of penalty methods for optimization
problems

Penalty methods are one of the most important and well studied classes
of algorithms for the solution of constrained optimization problems (see
[19, 37, 82, 83, 106]). The simple idea, which is the core of these meth-
ods, is that one can solve the original constrained problem by considering a
(sequence of) suitable equivalent unconstrained problem(s). In order to de-
fine the equivalent penalized problem(s), in some sense, we “promote” the
constraints to the objective function level by introducing a term which can
measure and then penalize the feasibility violation with respect to those con-
straints.

Let us consider the optimization problem:

minimizex f(x) subject to x ∈ X, (1.3)

where the feasible set X ∈ Rn is a closed subset of Rn and f : Rn → R is at
least continuous.
If we can define a continuous penalty term ψ : Rn → R+ such that:

ψ(x)

{
= 0 if x ∈ X
> 0 if x /∈ X (1.4)

we introduce the following penalty function:

P (x, c) := f(x) + cψ(x), (1.5)
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where c > 0 is the penalty parameter. We note that function ψ could be
nondifferentiable and that term ψ(x) is a measure of the violation of the
constraints defined by the set X.
With the penalization methods we aim at solving the original problem (1.3)
by solving the following “simpler” unconstrained problem:

minimizex f(x) + cψ(x), (1.6)

thus trying to “force” feasibility (at the objective function level) thanks to
the presence of term cψ(x). We refer to problem (1.6) as the Penalized Op-
timization Problem with parameter c, POPc.

The “weight” of feasibility violation c ∈ Rn plays a central role in this kind
of approaches. Indeed, based on it, two main classes of penalization methods
could be distinguished.

− Sequential penalty approach: in this case, in order to obtain a solution of
(1.3), an infinite sequence of “simpler” problems POPck , each obtained
by considering different values ck of the penalty parameter c and letting
ck →∞, is solved.

− Exact penalty approach: in this case problem (1.3) is recast and solved
as a unique “simpler” problem POPc with c such that c ≥ c̄ for a suitable
c̄.

In a Sequential approach, we have to cope with the iterative solution of
problem (1.6) with c = ck and ck → ∞. Function P (x, ck) is an external
penalty function: indeed, for fixed values of the penalty parameter c = ck,
the solution xk = argminP (x, ck) of problem (1.6) in general is not feasible
(i.e. it does not lie in X).

It can be shown that, under mild assumptions, the sequence (after a suit-
able renumeration, if the case) of solutions xk of problem (1.6), with c = ck
for ck →∞ monotone sequence, converges to a solution of (1.3).

Proposition 4. Suppose that f and ψ are continuous functions; assume that
problem (1.3) has an optimal solution and, for every fixed ck > 0, there exists
xk ∈ Rn such that P (xk, ck) = minx P (x, ck). Let {xk} be the sequence of such
points and let {ck} be such that ck+1 > ck and limk ck = +∞. If, for every
k, xk ∈ D compact subset of Rn, then any limit point of the sequence {xk}
is a solution of the original problem (1.3).

It turns out that the main issues of this method are the choice of a suit-
able function ψ (differentiable or nondifferentiable) and the solution of the
sequence of unconstrained problems POPck .

In an Exact approach, suitable differentiable (see [38] or [82]) or non dif-
ferentiable (see for example [106]) penalty terms can be employed. The aim
of these methods is to solve the original constrained problem by requiring
only one unconstrained minimization. It can be proved that, under suitable
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assumptions, there exists c̄ ∈ R+ such that, if c > c̄, local (global) minima
of penalized problem (1.6) coincide with those of problem (1.3). Many dif-
ferent approaches, based on the choice for a suitable penalty term, can be
considered. We refer, for a complete study of these methods, to [8].

We remark here that one of the critical points of the exact approaches is
the knowledge of the threshold value c̄. A possible approach is to choose an
initial value c0 and increase it as necessary if the algorithm indicates that the
current value is inadequate (see [8]).

The distance function

Consider, now, the non differentiable but globally Lipschitz distance function
distX(x) : X → R defined by

distX(x) := inf
y∈X

‖x− y‖.

If X is a closed set then, x ∈ X ⇔ distX(x) = 0. Furthermore, if X is
convex, then distX(•) is convex. We recall also that the following property
holds:

NX(x) = cl{
⋃
λ≥0

λ∂distX(x)}

where cl denotes weak closure, and

v ∈ TX(x) ⇔ vT ζ ≤ 0, for every ζ ∈ ∂distX(x).

Distance function is “naturally” connected to the exact penalization. Indeed
the following result can be proved (see [16]).

Proposition 5. Let f be Lipschitz with constant L on a set S. Let x belong
to a set X ⊂ S and suppose that f attains a minimum over X at x. Then
for any c ≥ L, the function P (y, c) := f(y) + cdistX(y) attains a minimum
over S at x. If c > L and X is closed, then any other point minimizing P
over S must also lie in X.

1.3 Variational Inequalities

The finite-dimensional variational inequality (VI) provides a broad unifying
setting for the study of optimization and equilibrium problems and serves
as the main computational framework for the practical solution of a host of
continuum problems in the mathematical sciences. Needless to say, VI is a
powerful modeling tool for diverse equilibrium phenomena (problems from
engineering, economics and finance).
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1.3.1 Generalities

Given a subset K of Rn and a mapping F : K → Rn, the variational inequal-
ity VI(K,F ) is to find a vector x ∈ K such that

(y − x)TF (x) ≥ 0, ∀y ∈ K. (1.7)

The set of solutions to this problem is denoted SOL(K,F ).
In the following sections set K is assumed to be closed and function F con-
tinuous. As consequence of these assumptions, SOL(K,F ) is a closed set.

From a geometric point of view, x̄ ∈ K is a solution of VI(K,F ) if and
only if F (x̄) forms a non-obtuse angle with every vector of the form y−x for
every y ∈ K. Hence, x̄ ∈ K solves the VI(K,F ) if and only if

−F (x̄) ∈ NK(x̄)⇔ 0 ∈ F (x̄) +NK(x̄).

By the defining inequality (1.7) it is easy to see that x̄ is a solution to VI(K,F )
if and only if x̄ is a solution of the optimization problem:

minimizex y
TF (x̄) subject to y ∈ X. (1.8)

We remark that VIs include many special relevant cases. The problem of
solving systems of nonlinear equations corresponds to the case where K is
equal to Rn. More generally, if x̄ is a solution of the VI(K,F ) and x̄ ∈ intK,
then F (x) = 0.

If K is a cone, i.e. x ∈ K ⇒ τx ∈ K, ∀τ ≥ 0, the VI is equivalent to a
complementarity problem (see [32]).

Moreover, consider the problem:

minimize f(x) subject to x ∈ X, (1.9)

where f is continuously differentiable. By the minimum principle, if the set
K is convex, any solution x̄ of (1.9) is such that:

(y − x̄)T∇f(x̄) ≥ 0, ∀y ∈ K, (1.10)

which is nothing else but the VI(K,∇f). In order to understand that VI set-
ting is richer than that of a constrained (with a convex feasible set) “simple”
optimization problem, we recall that a continuously differentiable function F
is a gradient map and, thus, F = ∇f for some suitable function f , if and
only if its Jacobian JF (x) is symmetric.

We have observed that VIs includes as a special case the problem of solving
systems of equations. It turns out that VIs can be equivalently reformulated
in terms of system equations and optimization problems. For the purpose of
this work we report here only the equivalent nonsmooth equation formulation
of the VI with the natural map FnatK .
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Proposition 6. If K is closed convex and F : K → Rn is arbitrary then

[x̄ ∈ SOL(K,F )] ⇔ [FnatK (x̄) = 0], (1.11)

where FnatK (v) := v − ProjK(v − F (v)) and ProjK is the Euclidean projector
onto the closed convex set K.

We recall that, if K is a closed convex set, there exists a unique vector x̃ ∈ K
that is closest to x in the Euclidean norm. This vector is the projection of s
onto K, ProjK(x) which is the unique solution of the following problem:

minimize
1

2
‖y − x‖2 subject to y ∈ K, (1.12)

When K is a polyhedron, the above optimization problem is a strictly convex
quadratic programming. When K is not polyhedral, computing the projection
onto K could be in general a non trivial task (a fact that will play a role when
numerical experiments will be considered).

For sake of clarity, we recall some properties of the Euclidean projector
onto K, Projk.

Theorem 1. Let K ⊆ Rn be nonempty, closed and convex. Then

(a) For each x ∈ Rn, ProjK(x) exists and is unique.
(b) For each x ∈ Rn, ProjK(x) is the unique vector x̃ ∈ K satisfying the

following inequality:

(y − x̃)T (x̃− x) ≥ 0, ∀y ∈ K.

(c) For any two vectors u and v in Rn,

(ProjK(u)− ProjK(v))T (u− v) ≥ ‖ProjK(u)− ProjK(v)‖2

thus ProjK is a co-coercive function.
(d) Function ProjK(x) is nonexpansive; that is for any two vectors u and v

in Rn,
‖ProjK(u)− ProjK(v)‖ ≤ ‖u− v‖

thus ProjK is a globally Lipschitz continuous function.

Instead of the Euclidean norm, we may use a vector norm induced by a
symmetric positive definite matrix to define the projection operator. This
results in a skewed projector, which leads to a generalization of the natural
map of a VI (for the details see [32]).

1.3.2 Existence results

One of the main existence results for VIs is based on the following proposition.
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Proposition 7. Let K ⊆ Rn be closed convex and F : K → Rn be continu-
ous. Consider the following statements:

(a) There exixts xref ∈ K such that the set:

L< := {x ∈ K : F (x)T (x− xref) < 0}

is bounded.
(b) There exists a bounded open set Ω and xref ∈ K ∩Ω such that

F (x)T (x− xref) ≥ 0, ∀x ∈ K ∩ bdΩ.

(c) The VI(K,F ) has a solution.

It holds that (a) ⇒ (b) ⇒ (c). Moreover, if the set

L≤ := {x ∈ K : F (x)T (x− xref) ≤ 0}

is bounded, then SOL(K,F ) is nonempty and compact.

We remark that, in the proof of this proposition, the reformulation (1.11)
plays a central role. A consequence of the previous proposition is that, if K
is compact and convex and F is continuous, then SOL(K,F ) is nonempty
and compact. Moreover, if we drop the compactness assumption on set K,
we can demonstrate the following theorem.

Theorem 2. Let K ⊆ Rn be closed convex and F : K → Rn be continuous.

(a) If F is strictly monotone on K, the VI(K,F ) has at most one solution.
(b) If F is strongly monotone on K, the VI(K,F ) has a unique solution.

Furthermore, it can be proved (see [32]) that, if F is pseudo monotone on
K closed and convex then SOL(K,F ) is convex, while for pseudo monotone
plus VI(K,F ), F (SOL(K,F )) is a singleton.

1.3.3 Solution algorithms

There are many approaches for the solution of VIs. In this brief survey we
mention the KKT-based algorithms which “simply” try to find a KKT triple
of the VI(K,F ) and algorithms based on the definition of suitable merit func-
tions for the VI. The former methods are very attractive because they are
simple and convergence results can be established by exploiting the partic-
ular structure of the KKT system. The main drawback of these schemes is
probably the fact that KKT algorithms could not fully exploit the properties
that a problem may have (for example monotonicity). The latter methods are
attractive theoretically but we recall that the evaluation of the merit function
is, in general, a non trivial task by itself. For a most complete review of such
methods we refer to [32].



16 1 Mathematical background

In the following part of this section we recall some methods that take
advantage of the presence of some kind of monotonicity in the VI problem,
namely projection methods, Tikhonov and proximal point methods.

Projection methods require the ability to efficiently calculate the projection
onto the closed convex set K; this feature certainly limits the applicability
of these methods. Another peculiarity of these algorithms is that they do
not require the use of the derivatives of F and do not involve any complex
computation besides the projection on K: needless to say the use of no deriva-
tive information prevents these methods from being fast. Thus, for sets K
such that the projection can be easily carried out, projection methods can
be applied to the solution of very large problems because of their simplicity.

Projection methods are based on the Banach fixed-point theorem (see
Theorem 2.1.21 in [32]). We know, indeed, by (1.11) that, if K is a closed
convex subset of Rn, x̄ is a solution of VI(K,F ) if and only if

x̄ = ProjK(x̄− τF (x̄)), (1.13)

for positive scalar τ . Hence, fixed points of the mapping

x → ProjK(x− τF (x))

are solutions of the VI(K,F ) and vice versa. If the latter map is a contraction,
a fixed-point contraction algorithm can be used to calculate a solution of the
VI. Below we rephrase the fixed-point contraction algorithm in this context
and we get the Basic Projection Algorithm (BPA).

Algorithm 1: BPA

(S.0) : x0 ∈ K, Set k := 0.

(S.1) : If xk = ProjK(xk − τF (xk)): STOP

(S.2) : Set xk+1 := ProjK(xk − τF (xk)), k ← k + 1; go to (S.1).

The following result holds.

Theorem 3. Let F : K → Rn, where K be closed convex subset of Rn.
Suppose that L and µ are such that for any x and y in K,

(F (x)− F (y))T (x− y) ≥ µ‖x− y‖2 (1.14)

and
‖F (x)− F (y)‖ ≤ L‖x− y‖. (1.15)

If 1
τ > L2

2µ , ProjK(x − τF (x)) is a contraction from K to K; therefore ev-

ery sequence {xk} produced by BPA converges to the unique solution of the
VI(K,F ).

The results here reported can be generalized if we consider another norm ‖•‖D
(see [32]). Hence, if F is strongly monotone and Lipschitz continuous and the
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constants L and µ are available and τ chosen as described, the sequence {xk}
such that:

xk+1 := ProjK(xk − τF (xk))

converges to the unique solution of the VI(K,F ). Two are the main disadvan-
tages of this basic approach. Firstly function F must be strongly monotone,
secondly the knowledge of L and µ is required while these constants are
in general unknown a priori. For these reasons three other projection-type
algorithms were developed: the Projection Algorithm with Variable Steps
(PAVS), the Extragradient method (EgA) and the Hyperplane Projection
method (HPA).

In a variable-step projection scheme (PAVS), the step size τ is allowed to
vary from one iteration to the next; however we remark that the resulting
algorithm does not perform a line-search routine in order to calculate the
variable-step size τk.

It can be proved that if F is co-coercive with constant c, then {τk} can be
chosen so that xk converges to a solution of the VI. We remind that every
strongly monotone, Lipschitz continuous function is co-coercive but not vice
versa; then the convergence properties of this projection algorithm involve a
broader class of VIs.

Theorem 4. Let K be a closed convex subset of Rn and F : K → Rn be
co-coercive on K with constant c. Suppose that SOL(K,F ) 6= ∅. If

0 < inf
k
τk ≤ sup

k
τk < 2c,

PAVS generates a sequence {xk} converging to a solution of the VI(K,F ).

Here it suffices to say that the demonstration of the previous theorem relies
on the co-coercivity of the natural map Fnat

K,τ of the VI(K,F ): indeed it can

be proved that Fnat
K,τ is co-coercive on K with constant 1− τ/4c if τ ∈ (0, 4c).

The Extragradient method (EgA) consists in a projection algorithm that
executes two projections per iteration. Although this undoubtedly requires
twice the amount of computations, the benefit is significant because the re-
sulting algorithm is applicable to the class of pseudo monotone VIs. However,
the function F is still required to be Lipschitz continuos and an estimate of
its Lipschitz constant is needed. The EgA takes its name from the extra eval-
uation of F (and the extra projection) that is called for in each iteration.
The name originates from the case of a symmetric VI. In this case, the VI
represents the optimality condition of a differentiable optimization problem
(see (1.10)), the extra evaluation of F corresponds to an extra evaluation of
the gradient of the objective function, thus extragradient. At each iteration,
this method calculates yk := ProjK(xk − τF (xk)) and a second projection
xk+1 := ProjK(xk−τF (yk)). It turns out that, if K is a closed convex set and
F a mapping from K into Rn that is pseudo monotone on K with respect to
SOL(K,F ) and Lipschitz continuous on K with constant L and if τ < 1/L,
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then the sequence xk generated by the EgA converges to a solution of the
VI(K,F ).

The extragradient method still requires the knowledge of the Lipschitz
constant L of F , which is usually not known. Then, we introduce an enhanced
extragradient-like method, the HPA, that neither requires F to be Lipschitz
continuous nor calls for the knowledge of potentially unknown constants.
Let K be a closed convex set and F be a continuous mapping from K into
Rn that is pseudo monotone on K with respect to SOL(K,F ). Let τ > 0
be a fixed scalar. The algorithm can be described geometrically as follows.
Let xk ∈ K be given. First compute the point ProjK(xk − τF (xk)). Next
search the line segment joining xk and ProjK(xk − τF (xk)), by a simple
Armijo-type line search routine, for a point zk such that the hyperplane
Hk = {x ∈ Rn : F (zk)T (x − zk) = 0} strictly separates xk from SOL(K,F ).
We then project xk onto Hk and the resulting point onto K, obtaining xk+1.
It can be shown that xk+1 is closer to SOL(K,F ) than xk. The resulting
method requires three projections per iteration, two onto K and one onto
Hk. The latter projection is easily performed and is given by an explicit
formula and thus, also from a computational point of view, is less heavy. It
can be shown that, if F is a continuous mapping that is pseudo monotone on
K with respect to SOL(K,F ), the sequence produced by HPA converges to
a solution of the VI(K,F ).

For a more detailed analysis of these approaches and other refinements,
we refer to [32].

With the Tikhonov (see [97, 98]) regularization we aim at solving the VI by
considering a sequence of problems that are better behaved. The regulariza-
tion of the VI(K,F ) in terms of the family of perturbed strongly monotone
VIs (K,Fε), where Fε := F + εI and ε is a positive parameter, was defined
for monotone VIs because a monotone problem generally lacks the kind of
strong stability properties that are present in a strongly monotone problem.

For each ε > 0, let x(ε) be the unique solution of the strongly monotone
VI(K,Fε); the family of solutions

{x(ε) : ε > 0} (1.16)

is called the Tikhonov trajectory of the VI(K,F ). We remark that unlike the
VI(K,Fε), the original VI(K,F ) may have multiple or no solutions. Thus,
if we consider the limit limε→0 x(ε), it does not always exist. The following
result paves the way for the practical use of the Tikhonov approach.

Theorem 5. Let K ∈ Rn be closed convex and F be continuous and mono-
tone on K. Let (1.16) be the Tikhonov trajectory. The following three state-
ments are equivalent:

(a) limε→0 x(ε) exists;
(b) lim supε→0 x(ε) <∞;
(c) SOL(K,F ) 6= ∅.
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It is worth mentioning that Theorem 5 can be generalized by considering the
family:

{VI(K,F + εG) : ε > 0}

where G : Rn → Rn is a strongly monotone (on K) mapping. Furthermore,
the previous result can be generalized by weakening the monotonicity of F
(see [32]).

The Tikhonov regularization leads to an iterative algorithm for approxi-
mating a solution of a VI, provided that such a solution exists: the method
involves the solution of a sequence of sub-VIs. The rationale is quite simple:
once we have fixed a decreasing sequence {εk} of positive numbers converging
to zero, for each k we in turn use an appropriate algorithm to compute x(εk+1)
solution (possibly inexact) of the strongly monotone sub-VI(K,F + εkI).

The Tikhonov regularization algorithm may have a computational draw-
back: when εk goes to zero, the perturbed problems approach the original
problem and thus it may become more and more difficult to solve them.
In order to overcome this difficulty, in Proximal point methods, a sequence
of subproblems is still (approximately) solved, but at step k the perturbing
function is ck (x − xk−1), for some ck > 0, instead of εkx. Intuitively, if the
sequence {xk} converges, the term ck (xk − xk−1) approaches zero provided
that ck remains bounded; thus ck does not need to go to zero. As result,
the core step of such methods is the (approximate) solution of the strongly
monotone VI(K,F k), where F k(x) := ck(x − xk) + F (x). For a complete
and elegant theoretical analysis of Proximal point algorithms we refer to the
fundamental [32].

Needless to say, there exist many other methods for the solution of VIs.
Here we briefly reviewed those that form the basis of the developments in the
next chapters.





Chapter 2

Partial penalization for the solution of
GNEPs

2.1 Preliminaries

Non-cooperative game theory is a branch of game theory for the resolution
of conflicts among players (or economic agents), each behaving selfishly to
optimize one’s own well-being subject to resource limitations and other con-
straints that may depend on the rivals’ actions. The Generalized Nash Equi-
librium Problem (GNEP) is a central model in game theory that has been
used actively in many fields in the past fifty years. But it is only since the
mid-nineties that research on this topic gained momentum, especially in the
operations research (OR) community. The GNEP lies at the intersection of
many different disciplines (e.g. economics, engineering, mathematics, com-
puter science, OR), and sometimes researchers in different fields worked in-
dependently and unaware of existing results. This explains why this problem
has a number of different names in the literature including pseudo-game,
social equilibrium problem, equilibrium programming, coupled constraint equi-
librium problem, and abstract economy. We will use the term generalized Nash
equilibrium problem that seems the one favorite by OR researchers in recent
years.

Formally, the GNEP consists of N players, each player ν controlling the
variables xν ∈ Rnν . We denote by x the vector formed by all these decision
variables

x :=

 x1
...
xN

 ,

which has dimension n :=
∑N
ν=1 nν , and by x−ν the vector formed by all the

players’ decision variables except those of player ν. For sake of clarity, we
sometimes write (xν ,x−ν) instead of x.

Each player’s strategy belongs to a set Fν(x−ν) ⊆ Rnν that depends on
the rival players’ strategies. The aim of player ν, given the other players’
strategies x−ν , is to choose a strategy xν that solves the minimization prob-

21
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lem
minimizexν θν(xν ,x−ν) subject to xν ∈ Fν(x−ν). (2.1)

The GNEP is the problem of finding a vector x̄ such that each player’s
strategy x̄ν solves the player’s problem (given x̄−ν):

θν(x̄ν , x̄−ν) ≤ θν(yν , x̄−ν), ∀yν ∈ Fν(x̄−ν).

Such a point x̄ is called a (generalized) Nash equilibrium or, more simply,
a solution of the GNEP. For any x−ν , the solution set of problem (2.1) is
denoted by Sν(x−ν). Then, we see that a point x̄ is a solution if and only if

x̄ν ∈ Sν(x̄−ν) for all ν = 1, . . . , N.

If we denote by S(x) the set S(x) := ΠN
ν=1Sν(x−ν), we see that we can say

that x̄ is a solution if and only if x̄ ∈ S(x̄), i.e. if and only if x̄ is a fixed point
of the point-to-set mapping S.

If the feasible sets are actually fixed, i.e. if Fν(x−ν) = Fν for some given
sets Fν , the problem reduces to a standard Nash Equilibrium Problem (NEP)
which is, to a certain extent, a much simpler problem. An intermediate case
between NEPs and GNEPs is the so called jointly convex GNEP, where for
all ν

Fν(x−ν) := {xν ∈ Rnν : (xν ,x−ν) ∈ F},

with F ⊆ Rn a nonempty closed convex set.
We assume that the feasible sets of the players are defined by

Fν(x−ν) = Kν ∩ Xν(x−ν), where Xν(x−ν) := {xν : gν(xν ,x−ν) ≤ 0},

thus distinguishing, as usual, between the “private” constraints represented
by Kν and those constraints gν that depend on both the player’s variables and
its rivals’ ones. In general, private constraints can be such that Kν = Rnν : this
means, with a different point of view, that sometimes we include the private
constraints among the gνs (the coupling ones). In the setting described so
far, the players’ problems become

minxν θν(xν ,x−ν)

gν(xν ,x−ν) ≤ 0

xν ∈ Kν .

(2.2)

The Debreu paper [21] gives the first existence theorem for the solutions
of GNEPs. This existence result is based on fixed-point arguments, by ex-
ploiting the fact that a point x̄ is an equilibrium if x̄ ∈ S(x̄), where
S(x) := ΠN

ν=1Sν(x−ν). There also exist some other approaches, an inter-
esting one being that in [43], where a continuation approach is used. The
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main existence result is probably the one established in [5]. The following
theorem is a slightly simplified version (see [52]).

Theorem 6. Let a GNEP be given with at least C0 θν functions and suppose
that

(a) There exist N nonempty, convex and compact sets Dν ∈ Rnν such that
for every x ∈ Rn with xν ∈ Dν for every ν, Xν(x−ν) is nonempty, closed
and convex, Xν(x−ν) ⊆ Dν , and Xν , as a point-to-set map, is both
upper and lower semicontinuous.

(b) For every player ν, the function θν(•,x−ν) is quasi-convex on Xν(x−ν).

Then a generalized Nash equilibrium exists.

Remark 1. When the sets Xν are defined by inequality constraints, the lower
and upper semicontinuity requirements translate into reasonably mild condi-
tions on the functions gν . See for example [88].

It is worth pointing out that the relaxation of the assumptions in the previous
theorem has been an important topic of research. Relaxations of the continu-
ity assumptions, compactness assumptions and quasi-convexity assumption
have all been considered in the literature. The relaxation of the continuity
assumption is probably the most interesting and well studied one. Indeed it
can be seen that, if the objective functions θν are assumed to be pseudo-
continuous instead of continuous, then the previous result still holds.

In the sequel, also in view of Theorem 6, we shall make the following blanket
assumptions, valid for all ν = 1, . . . , N :

(A1) θν : Rn → R is continuously differentiable and, as a function of xν

alone, convex ∀x−ν ∈ K−ν :=
∏N
ν 6=ν′=1Kν′ ;

(A2) gν : Rn → Rmν and, for i = 1, . . . ,mν , gνi is continuously differentiable
and, as a function of xν only, convex ∀x−ν ∈ K−ν ;

(A3) Kν is a closed convex and nonempty set.

These assumptions are rather standard, even if many efforts have been made
in order to relax them. We do not deal with the issue of relaxing these as-
sumptions here, and simply note that at this stage of the development of
solution algorithms, they seem more or less essential in order to propose
efficient numerical methods.

It is useful to illustrate the above definitions with a simple example.

Example 1. Consider a game with two players, i.e. N = 2, with n1 = 1 and
n2 = 1, so that each player controls one variable (for simplicity we therefore
set x1

1 = x1 and x2
1 = x2). Assume that the players’ problems are

minx1
1
2 (x1 − 1)2

s.t. −x1 + x2 ≤ 1,

minx2 −x2

s.t. −x1 + x2 ≤ 1.
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Fig. 2.1: In bold the solution set S(x) of Example 1.

The optimal solution sets are given by

S1(x2) =

 1, if x2 ≤ 2,

x2 − 1, if x2 ≥ 2,
and S2(x1) = x1 + 1

Then it is easy to check that the solutions of this problem are given by
(α, α+1) for every α ≥ 1. Note that the problem has infinitely many solutions
and it is an instance of a jointly convex GNEP. �

We may distinguish three main classes of GNEPs based on the “nature” of
the players’ feasible sets:

− General GNEPs
− Jointly convex GNEPs: where the feasible set of each player ν is defined

by (xν ,x−ν) ∈ F, with F ⊆ Rn a nonempty closed convex set shared
by all players. It is not difficult to see that it is equivalent to say that
g1 = · · · = gN = g and g is a convex function in x

− NEPs: where g1, . . . , gN vanish and the only constraints left are the pri-
vate ones, i.e. xν ∈ Kν

The relations between these three classes are very simple and are illustrated
in Figure 2.2.
As it is easy to understand, the more general the problem is the more difficult
the solution of the problem itself becomes. In the following we make some
general considerations on the solution of these three classes of problems.

NEPs are the simplest GNEPs to solve. Indeed it can be shown, see e.g. [32],
that under (A1)-(A3) the NEP can be equivalently reformulated and solved
as the variational inequality problem VI(K, f):

find x̄ ∈ K :=

N∏
ν=1

Kν such that f(x̄)T (y − x̄) ≥ 0, ∀y ∈ K. (2.3)
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Fig. 2.2: The three classes of GNEP.

where f(x) = (∇xνθν(x))Nν=1. This problem, under some monotonicity as-
sumptions on f , can be efficiently solved by a host of methods (see Chapter
1). However, it is worth mentioning that other globally convergent methods
are available for the solution of a NEP that works well under similar con-
ditions [31]. We refer the interested reader to [31, 32, 34] and to the vast
literature therein.

Unfortunately, when one considers jointly convex or general GNEPs, the
picture immediately becomes more complex. Jointly convex problems as well
as general GNEPs can be reformulated as the quasi -variational inequality
problem QVI(F(x), f):

find x̄ ∈ F(x̄) :=

N∏
ν=1

Fν(x̄−ν) such that f(x̄)T (y − x̄) ≥ 0, ∀y ∈ F(x̄).

Note that the difference with VI (2.3) is that in the QVI case the feasible set
depends on x. However, the algorithms for QVIs (see, e.g., Chan and Pang
[15], Fukushima [39] and Pang and Fukushima [79]) are far less advanced
than those for VIs and, in spite of some interesting and promising recent
adavncements (see [62]), no efficient numerical methods based on the QVI
reformulation have been developed yet.

Nevertheless in the jointly convex case, some VI techniques can still be em-
ployed. Indeed, it can be proved that an equilibrium can be computed by
solving the “simple” variational inequality VI(F, f(x)), where F = {x ∈ K :
g(x) ≤ 0}, see [28, 46].

Theorem 7. Let a jointly convex GNEP be given and suppose that (A1)-
(A3) hold. Then every solution of the VI(F, f(x)) is also a solution of the
GNEP.

The particular equilibria that one obtains by solving VI(F, f(x)) are called
variational equilibria (also known in the literature as normalized equilibria).
We remark that the previous result does not say that any solution of a jointly
convex GNEP is also a solution of the VI(F, f(x)).

We illustrate the previous considerations by the following simple examples.
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Example 2. Consider a game with two players, i.e. N = 2, with n1 = 1 and
n2 = 1, so that each player controls one variable (for simplicity we therefore
set x1

1 = x1 and x2
1 = x2). Assume that the players’ problems are

minx1 x1

s.t. (x1)2 + (x2)2 ≤ 1,

minx2 x2

s.t. (x1)2 + (x2)2 ≤ 1.

The optimal solution sets are given by

Sν(x−ν) =

 −
√

1− (x−ν)2, if −1 ≤ x−ν ≤ 1,

∅, if x−ν > 1 or x−ν < −1
, ν = 1, 2.

Then it is easy to check that the solutions of this problem are given by
(x1)2 + (x2)2 = 1 with −1 ≤ xν ≤ 0, ν = 1, 2. Note that the prob-
lem has infinitely many solutions, see Figure 2.3. Taking into account that

Fig. 2.3: The solution set S(x) of Example 2.

(∇x1θ1, ∇x2θ2) = (1, 1), the variational equilibria are obtained by solving
the following variational inequality:

(1 1)

(
y1 − x1

y2 − x2

)
≥ 0, ∀ (y1, y2) : (y1)2 + (y2)2 ≤ 1,

with (x1, x2) : (x1)2 + (x2)2 ≤ 1,

whose only solution is (− 1√
2
,− 1√

2
), see Figure 2.4.

It is important to underline that F(x) neither includes nor is included in
F in general, see Figure 2.5. Furthermore, in the passage from the GNEP to
the VI it is clear that most solutions are lost. �
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Fig. 2.4: The only variational equilibrium Fig. 2.5: In Example 2, x = (1/2, 1/2)

and F(x̄) = [−
√

3/2,
√

3/2] ×
[−
√

3/2,
√

3/2] (dashed set) nei-

ther includes nor is included in F

(gray set)

Example 3. Consider another game with two players, i.e. N = 2, with n1 = 1
and n2 = 1, so that each player controls one variable (for simplicity we
therefore set x1

1 = x1 and x2
1 = x2). Assume that the players’ problems are

minx1
1
2 (x1 − 1)2

s.t. (x1)2 − x2 ≤ 0,

minx2
1
2 (x2)2 + 8

9x
2

s.t. (x1)2 − x2 ≤ 0.

The optimal solution sets are given by

S1(x2) =


√
x2, if 0 ≤ x2 ≤ 1,

1, if x2 ≥ 1,

∅, if x2 < 0.

and S2(x1) = (x1)2

Then it is easy to check that the solutions of this problem are given by
(x1)2 − x2 = 0 with 0 ≤ x1 ≤ 1. Note that the problem has infinitely
many solutions, see Figure 2.6. Taking into account that (∇x1θ1, ∇x2θ2) =
(x1−1, x2+ 8

9 ), the variational equilibria are obtained by solving the following
variational inequality:

(x1 − 1 x2 +
8

9
)

(
y1 − x1

y2 − x2

)
≥ 0, ∀ (y1, y2) : (y1)2 − y2 ≤ 0,

with (x1, x2) : (x1)2 − x2 ≤ 0

whose only solution is ( 1
3 ,

1
9 ), see Figure 2.6.

The considerations made so far allow us to say that the computation of
a solution of a simple NEP and of a variational equilibrium of a jointly
convex GNEP is a reasonable task for which well established techniques can
be used. Vice versa the calculation of non-variational equilibria of jointly
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Fig. 2.6: In bold the set S(x) of Example 3; in red the variational equilibrium.

convex GNEPs and of solutions of general GNEPs is far less advanced and
the subject of current research. Indeed, we remark that jointly convex and
general GNEPs usually have a manifold of solutions (that sometimes could
be disconnected) which is one of the many peculiarities that make these
problems so difficult to analyze and solve.

We mention briefly that the computation of a solution of a general GNEP
is just one of the main issues on which recent research has focused. Here we
only cite some of the other topics of interest.

− Calculation of a good sampling of the solution set (see e.g. [24, 36, 71])
− Development of distributed algorithm (see e.g. [34, 80, 81])
− Characterization of the solutions to which an algorithm converges (see

e.g. [40])
− Development of Newton-type methods (see e.g. [29])

Until very recently there were no provably convergent algorithms for the so-
lution of general GNEPs: here we mention KKT methods (see e.g. [23]), the
Nikaido-Isoda reformulation of the GNEP (see e.g. [25]) and other reformula-
tion approaches (see e.g. [31, 33]). Below we consider one of the most promis-
ing approach for which we are able to prove convergence results: penalty
methods.

This chapter is organized as follows. In the next section we present a brief
historical introduction to the GNEPs. In Section 2.3 we discuss existing re-
sults in the literature and the main contributions of this work. In Section 2.4
we show how to (partially) penalize the coupling constraints and reduce the
original problem to a “simpler” constrained NEP and, in Section 2.5, we an-
alyze the relations between the original GNEP and the transformed problem.
In Section 2.6 we propose a way to algorithmically update the penalty pa-
rameters to the “right” values while Section 2.7 deals with the solution of the
non differentiable penalized NEP (for fixed values of the penalty parameters):
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in this latter section finally we are able to state conditions for our algorithm
to converge.

2.2 Brief historical background

The Nash equilibrium problem (NEP), where Fν(x−ν) = Fν for all ν =
1, . . . , N , was formally introduced by Nash in his 1950/1 papers [73, 74].
Nash 1950 paper [73] in the Proceedings of the National Academy of Sci-
ences contains the main results of his 28 pages long PhD thesis and was
submitted just fourteen months after he started his graduate studies! Ob-
viously, as usually happens, ideas related to what we currently call game
theory can be found in the work of much older researchers. Cournot [20], in
the first half of the XIX century, proposed, in the context of an oligopolistic
economy, a model that can now be interpreted as a two-players game and
whose solution is a Nash equilibrium. But it was only at the beginning of the
XX century that major developments occured, with the work of von Neu-
mann [101] and von Neumann and Morgenstern, who published in 1944 the
book Theory of Games and Economic Behavior [102] that essentially deals
with zero-sum, two players-games, and that established game theory as an
important field of study. The notion of Nash equilibrium introduced in [73]
expanded enormously the scope of game theory, that had previously been
essentially limited to zero-sum, two-players games, and proved to be the fun-
damental springboard for all successive developments. Nash papers [73, 74]
are a landmark in the scientific history of the twentieth century and the no-
tion of Nash equilibrium has extensively proved to be powerful, flexible, and
rich of consequences.

In spite of all its importance, the need of an extension of the NEP, where
the players interact also at the level of the feasible sets, soon emerged as
necessary. The GNEP was first formally introduced in 1952 by Debreu in
[21], where the term social equilibrium was coined. This paper was actually
intended to be just a mathematical preparation for the famous 1954 Arrow
and Debreu paper [5] about economic equilibria. In this latter paper, Arrow
and Debreu termed the GNEP “an abstract economy” and explicitly note
that “. . . In a game, the pay-off to each player depends upon the strategies
chosen by all, but the domain from which strategies are to be chosen is given
to each player independently of the strategies chosen by other players. An
abstract economy, then, may be characterized as a generalization of a game
in which the choice of an action by one agent affects both the pay-off and
the domain of actions of other agents”, see [5, p. 273]. It is safe to say that
[5] and the subsequent book [22] provided the rigorous foundation for the
contemporary development of mathematical economics.

The mathematical-economic origin of the GNEP explains why the GNEP
has long been (let us say up to the beginning of the nineties) the almost
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exclusive domain of economists and game-theory experts. In truth, it must
also be noted that in this community some reserves have been advanced on
GNEPs, on the grounds that a GNEP is not a game. For example, Ichiishi
states, in his influential 1983 book [52, p. 60], “It should be emphasized,
however, that an abstract economy is not a game, . . . since player j must
know the others’ strategies in order to know his own feasible strategy set . . .,
but the others cannot determine their feasible strategies without knowing j’s
strategy. Thus an abstract economy is a pseudo-game and it is useful only
as a mathematical tool to establish existence theorems in various applied
contexts.”

The point here is that one cannot imagine a game where the players make
their choices simultaneously and then, for some reason, it happens that the
constraints are satisfied. But indeed, this point of view appears to be rather
limited, and severely undervalues

(a) the descriptive and explanatory power of the GNEP model;
(b) its normative value, i.e., the possibility to use GNEPs to design rules and

protocols, set taxes and so forth, in order to achieve certain goals, a point
of view that has been central to recent applications of GNEPs outside
the economic field;

(c) the fact that in any case different paradigms for games can and have been
adopted, where it is possible to imagine that, although in a noncooper-
ative setting, there are mechanisms that make the satisfactions of the
constraints possible.

Following the founding paper [5], researchers dedicated most of their energies
to the study of the existence of equilibria under weaker and weaker assump-
tions and to the analysis of some structural properties of the solutions (for
example uniqueness or local uniqueness). However, and with few exceptions,
it was not until the beginning of the 1990s that applications of the GNEP
outside the economic field started to be considered along with algorithms
for calculation of equilibria. In this respect, possibly one of the early con-
tributions was given by Robinson in 1993 in [86, 87]. In these twin papers,
Robinson considers the problem of measuring effectiveness in optimization-
based combat models, and gives several formulations that are nothing else
but, in our terminlogy, GNEPs. For some of these GNEPs, Robinson provides
both existence results and computational procedures.

More or less at the same time, Scotti, see [90] and references therein,
introduced GNEPs in the study and solution of complex structural design
problems as an evolution of the more standard use of nonlinear program-
ming techniques promoted by Schmit in the 1960s (see [89] for a review) and
motivated by some early suggestions in the previous decade, see [85, 100].

After these pioneering contributions, in the last decade the GNEP became
a relatively common paradigm, used to model problems from many different
fields. In fact GNEPs arise quite naturally from standard NEPs if the players
share some common resource (a communication link, an electrical transmis-
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sion line, a transportation link etc.) or limitations (for example a common
limit on the total pollution in a certain area). More in general the ongoing
process of liberalization of many markets (electricity, gas, telecommunica-
tions, transportation and others) naturally leads to GNEPs. But GNEPs
have also been employed to model more technical problems that do not fit
any of the categories listed above, and it just seems likely that now that
the model is winning more and more popularity, many other applications
will be uncovered in the near future. It is impossible to list here all rele-
vant references for these applications; we limit ourselves to a few that, in our
view, are either particularly interesting or good entry points to the literature
[2, 3, 4, 5, 6, 7, 12, 17, 26, 27, 41, 42, 46, 47, 49, 50, 51, 56, 59, 60, 61, 76, 80,
81, 84, 94, 95, 96, 103, 107]. In very recent years GNEPs seem to have gained
an especially important place in two fields: Computer Science and Telecom-
munications. The book Algorithmic Game Theory [75] and the special issue of
the IEEE Magazine in Signal Processing [58] constitute fundamental and rich
sources for these exciting developments. We finally mention that the recent
reference [34] presents a rather comprehensive and sophisticated treatment of
the GNEP based on a variational inequality approach that allows to establish
some interesting new results.

2.3 Penalty methods for GNEPs: the state of the art

One of the main difficulties of the GNEP (2.2) stems from the variability
of the feasible sets Fν(x−ν). Thus a suitable penalization of the (difficult)
coupling constraints seems to be a quite intuitive and natural approach: the
main idea is to reduce the original GNEP to a conceptually simpler NEP. In
this way, as we will see, difficulties arising form the variability of sets Fν(x−ν)
are traded with the difficulty of a more “complex” objective function.

The aim is then to solve the GNEP by solving a NEP for which each
player’s minimization problem is given by

minimizexν θν(xν ,x−ν) + ρνψ
ν(xν ,x−ν)

xν ∈ Kν ,
(2.4)

where ρν is a positive penalty parameter and ψν is the penalty term: it
must be noted that one can employ both differentiable and nondifferentiable
penalty terms (see Chapter 1). Functions ψν must be properly chosen so
that no helpful property of the original objective function is lost: typical
examples are ‖max{0, gν(xν ,x−ν)}‖ and ‖max{0, gν(xν ,x−ν)}‖2 where in
function max{0, gν(xν ,x−ν)} the maximum is taken componentwise. To the
solution of this latter problem, we can then apply methods based mainly on
the optimization or variational inequalities techniques. In particular, the VI
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formulation provides a strong theoretical and numerical framework for the
solution of the classical NEP.

Two different approaches could be distinguished: in a complete penaliza-
tion scheme no private constraints are left in (2.4) and an unconstrained
NEP is obtained. In a partial penalization scheme only the difficult coupling
constraints are penalized and, if this is the case, useful properties (like the
compactness, for example) of the private constraints’ set can be kept in (2.4).

Furthermore, in the literature, both sequential and exact penalty ap-
proaches have been considered. The biggest challenge of the penalty method
is the non-trivial solution of the penalized conceptually simpler subproblems:
indeed problem (2.4) could be very difficult to solve in practice (for example
because of the non differentiability of the penalized objective functions) both
in a sequential and in an exact approach.

It should be remarked that the generalization of the penalization tech-
nique for constrained optimization to the case of GNEPs is not straightfor-
ward. Weaker theoretical results can be expected due to the variable nature
of Fν(x−ν): in a GNEP framework, each player deals with a different opti-
mization problem in correspondence of each rivals’ choice and some of these
problems may have no solutions or even no feasible points.

In [79] Fukushima and Pang made the first attempt to solve GNEPs by
means of a suitable sequential partial penalty method. Based on the equiv-
alent reformulation of a GNEP as a QVI, they proposed a sequential aug-
mented Lagrangian-type approach in which an infinite sequence of differ-
entiable penalized problems is solved. A numerical experiment is presented
in which the penalized subproblems are converted as linear complementar-
ity problem and solved by the MATLAB code PATHLCP.m. However it should
be noted that no conditions are established for the solvability of the Nash
subproblems.

In [40] another exact penalty method is analyzed by Fukushima. In this
approach, at each iteration, a nondifferentiable penalized NEP has to be
solved exactly.

Under some assumptions, based on suitable Lagrange multipliers, an incre-
mental penalty algorithm is proposed. Despite the convergence of the scheme,
no theoretical results for the solution of the difficult nondifferentiable sub-
problems (the penalized NEP) are given. In the same work, for jointly convex
GNEPs, in order to identify in the whole set of equilibria (possibly infinitely
many) those which are of significance in some sense, a new solution class,
called restricted equilibria, is introduced. The class of restricted equilibria
contains as special case the variational equilibrium and can be characterized
by certain properties enjoyed by the palyers’ Lagrange multipliers associated
with the shared constraints. Furthermore, an heuristic method able to find
such equilibria is designed and numerically tested.

Finally, in the same line of research of [79], inspired by [33], an exact
penalty method has been put forward recently by Facchinei and Kanzow [30].
Although the method proposed by Facchinei and Kanzow showed a good
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numerical behavior for a host of GNEPs of different nature, [30] left open
the question of determining classes of problems that can be provably solved
by the penalization approach: in particular the critical question is whether
we are able to solve the penalized unconstrained NEP. In order to fill this
gap and overcome some theoretical difficulties of that method (the existence
of a solution of the penalized NEP subproblems and the boundedness of
the sequence generated by the algorithm could not be guaranteed), in the
following sections we propose a partial exact penalization scheme. Hence, the
main contribution of this work is that, for the first time, classes of GNEPs
are exhibited for which the penalty approach is guaranteed to converge to a
solution: in addition to classical cases (NEP), the algorithm, in particular,
is proved to be able to find any solution, also the non-variational ones, of
a jointly convex game. Furthermore, under some other technical conditions
this method can provably find solutions of general GNEPs in presence of
“separable” constraints.

2.4 The partial penalization approach

Penalty approaches to the solution of GNEPs are based on the usual penal-
ization idea: recover a solution of the original game by finding a solution of a
“simpler” penalized problem. We then propose to penalize only the difficult
coupling constraints by keeping the private ones (with their possibly useful
properties) and thus reducing the original problem (2.1) to the following pure
NEP:

minimizexν θν(xν ,x−ν) + ρν ‖gν+(xν ,x−ν)‖γ
xν ∈ Kν ,

(2.5)

where for a vector x we denote by ‖x‖γ the γ-norm for some fixed γ ∈ (1,∞),
the ρν are positive penalty parameters and g+(x) := max{0, g(x)} with the
maximum taken componentwise.
By setting

Pν(x, ρν) := θν(xν ,x−ν) + ρν ‖gν+(xν ,x−ν)‖γ ,

problem (2.5) can be rewritten as a (standard) Nash equilibrium problem,
where each player’s problem is given by

minxν Pν(x, ρν)

xν ∈ Kν .
(2.6)

We refer to problem (2.5) or, equivalently, (2.6) as the Penalized Nash Equi-
librium Problem with parameters ρν , PNEPρ, where with ρ we denote the
vector of parameters ρ := (ρ1, · · · , ρN )T . Our basic idea, that will be sub-
stantiated in the next sections, is that we can solve the original GNEP by
finding a solution of the PNEPρ for suitable values of the penalty parameters
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ρν . Since the PNEPρ is a NEP, we also hope that we are actually able to
solve the PNEPρ. However we point out from the outset that the PNEPρ
has nondifferentiable objective functions, a fact that, we will see, causes some
troubles. In a sense we traded the difficulty of the variable coupling sets with
the difficulty given by a nondifferentiable objective function.

Lastly we introduce the notation used throughout the following sections.
Jg(x) is the Jacobian of g at x, while ∇g(x) denotes the transposed Jacobian
of that mapping. Jxνg(x) (∇xνg(x)) is the partial (transposed) Jacobian with
the partial derivatives taken only with respect to the components belonging
to the subvector xν of x. K :=

∏
ν Kν is the Cartesian product of the Kν

sets. With TKν (x̄ν) and NKν (x̄ν), we denote respectively the tangent and
the normal cone to Kν in x̄ν . Finally we denote by Mm,n (Mn) the space of
m× n (n× n) real matrices.

2.5 The original problem and the penalized problem

As we have seen in the previous section, we aim at solving the GNEP by
finding a solution of the PNEPρ. Therefore, our first task is to investigate
the relations between the solutions of problem (2.2) and those of (2.5). To this
end, we introduce a (non standard) constraint qualification. Let us denote by
∂>xν‖gν+(xν ,x−ν)‖γ the set

∂>xν‖gν+(xν ,x−ν)‖γ :=
{
ξν ∈ Rnν

∣∣ ∃{yk}with yk ∈ K

and ‖gν+((yk)ν , (yk)−ν)‖γ > 0 :

{yk} → x and∇xν‖gν+((yk)ν , (yk)−ν)‖γ → ξν
}
.

Roughly speaking, for every player ν, ∂>xν‖gν+(xν ,x−ν)‖γ is the set of sub-
gradients of ‖gν+(x)‖γ arising from unfeasible points for that player. This set
should capture the geometry of ‖gν+(x)‖γ at unfeasible points (see [16]) and
can also be seen as a generalization of a similar definition used in [54] to
study metric regularity. Note that, since in the definition we assume that
‖gν+(yk)‖γ > 0, ‖gν+(yk)‖γ is continuously differentiable at yk, so that the
definition above is well posed.

Definition 5. We say that the GNEP (2.2) satisfies the constraint qualifica-
tion CQγ at a point x̄ ∈ K if, for every player ν = 1, . . . , N ,

ξν ∈ ∂>xν‖gν+(x̄ν , x̄−ν)‖γ ⇒ (−ξν) /∈ NKν (x̄ν). (2.7)

If x̄ is such that gν(x̄ν , x̄−ν) < 0 for every player, then CQγ holds because
∂>xν‖gν+(x̄)‖γ = ∅ for all ν. We illustrate the definition with a simple example.
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Example 4. We consider a game with two players, where the first player con-
trols the variable x1 ∈ R and the second x2 ∈ R:

minx1 (x1)2 − 2x1x2 minx2

1

2
(x2)2 + (x1 − 1)x2

0 ≤ x1 ≤ 1 0 ≤ x2 ≤ 1

x1 + x2 − 3

2
≤ 0

(2.8)

In this case K1 = [0, 1] and K2 = [0, 1]. For the second player, condition
(2.7) holds trivially. For the first player, in view of the observation right after
Definition 5, it suffices to show that (2.7) holds for each point (x̃1, x̃2) such
that x̃1 ∈ K1, x̃2 ∈ K2 and x̃1+x̃2 ≥ 3

2 . Note that these conditions imply that
x̃1 ∈ [ 1

2 , 1]. For such points we have ∂>x1‖g+(x̃1, x̃2)‖γ = {1}. Furthermore,
we also haveNK1(x̃1) = 0 for every x̃1 ∈ [ 1

2 , 1) whileNK1
(1) = R+. Therefore,

it is immediate to see that −1 6∈ NK1(x̃1) so that (2.7) holds at every point
of K. 2

Furthermore, if CQγ holds we can prove the following theorem.

Theorem 8. Suppose CQγ holds at every point of K, then there exists a ρ̄
such that, for every ρ with ρν ≥ ρ̄ for all ν, every solution of the PNEPρ
(2.5) is a solution of the GNEP (2.2).

Proof. Note first that it is enough to show that for all penalty parameters
sufficiently large, every solution of the PNEPρ is feasible for the original
GNEP. Assume then by contradiction that ρkν → ∞ for every ν and there
exists a sequence {xk} of solutions of the PNEPρk that are unfeasible for the
GNEP (note that, since the sets Kν are convex and compact and the objective
functions Pν(x, ρν) are continuous and convex with respect to the players’
variables, the PNEPρk always has a solution). There exists a ν for which
we can assume, without loss of generality, that ‖gν+((xk)ν , (xk)−ν)‖γ > 0 for
all k. Furthermore, subsequencing if necessary, by the compactness of K, we
may assume that the entire sequence xk converges to x̄ ∈ K. The function
‖gν+(xν ,xν)‖γ is continuously differentiable at xk, so that (see Chapter 1)

−
[
∇xνθν((xk)ν , (xk)−ν)

ρkν
+∇xν‖gν+((xk)ν , (xk)−ν)‖γ

]
∈ NKν ((xk)ν).

(2.9)
Taking the limit of (2.9) and taking into account the outer semicontinuity
of the mapping NKν (xν) (see [88], Proposition 6.6), the boundedness of the
(partial sub)gradient of ‖gν+(xν ,xν)‖γ (see Chapter 1) on bounded sets and
its closedness, we then get

−ξ̄ν ∈ NKν (x̄ν),
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for some ξ̄ν ∈ ∂>xν‖gν+(x̄ν , x̄−ν)‖γ . This obviously contradicts the definition
of CQγ and concludes the proof. ut

The following example clarifies Theorem 8.

Example 4 (continued) Consider again Example 4. One can see that the
solution set S1(x2) of the first player’s problem (for a given x2) is

S1(x2) =

{
x2 if x2 ∈ [0, 3

4 ]
3
2 − x

2 if x2 ∈ [ 3
4 , 1]

(2.10)

while S2(x1) = 1 − x1 is the solution set of the second player’s problem
(for a given x1). Since a solution is by definition a point (x1, x2) such that
x1 ∈ S1(x2) and x2 ∈ S2(x1), it is easy to see that the game has a unique
solution (x̄1, x̄2) = ( 1

2 ,
1
2 ). Consider now the penalized version of the game

(see (2.5)):

min1
x (x1)2 − 2x1x2 + 3(x1 + x2 − 3

2
)+ min2

x

1

2
(x2)2 + (x1 − 1)x2

0 ≤ x1 ≤ 1 0 ≤ x2 ≤ 1
(2.11)

where we took ρ = 3 (note that since there is only one constraint being
penalized, the value of γ is immaterial). We now show by contradiction that
all the solutions of Nash game (2.11) are feasible for the original problem.
Note that the Nash game (2.11) has a solution since its feasible set is compact.
Assume then that we have a solution (x̃1, x̃2) of (2.11) for which x̃1 + x̃2 > 3

2 .
Since x̃2 ∈ [0, 1], this implies that x̃1 ∈ ( 1

2 , 1]. Since x̃1 + x̃2 − 3
2 > 0, the

objective function of the first player in (x̃1, x̃2) is given by (x̃1)2 − 2x̃1x̃2 +
3(x̃1 + x̃2 − 3

2 ) so that the gradient of the first player’s objective function is
2x̃1−2x̃2+3 and, in view of x̃1 ∈ ( 1

2 , 1] and x̃2 ∈ [0, 1], we have 2x̃1−2x̃2+3 >
0. By the minimum principle this implies that x̃1 = 0 which is a contradiction
to x̃1 ∈ ( 1

2 , 1] so that all the solutions of (2.11) are also solutions of (2.8).
Observe also that it is easy to see that the same result holds for any ρ > 3.
2

Theorem 8 obviously shows that indeed we can hope to obtain a solution of
the original GNEP by solving the PNEPρ. However, before analyzing this
issue more in detail, we deepen our analysis of the relations between the
GNEP (2.2) and the PNEPρ (2.5) and we study some consequences of the
CQγ .

Theorem 9. Suppose the CQγ holds at every point of K. Then:

(a) The feasible regions of all players are non empty for every x ∈ K, i.e. for
each x ∈ K, Fν(x−ν) = Kν∩Xν(x−ν) 6= ∅ for every player ν = 1, . . . , N ;

(b) The GNEP (2.2) has a solution.

Proof. Suppose, by contradiction, that x̄ ∈ K is such that there exists a
player ν ∈ {1, . . . , N} with Kν ∩Xν(x̄−ν) = ∅. Therefore, ‖gν+(xν , x̄−ν)‖γ >
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0, ∀xν ∈ Kν and function ‖gν+(xν , x̄−ν)‖γ is continuously differentiable with
respect to xν . We consider the feasibility problem

minxν ‖gν+(xν , x̄−ν)‖γ
xν ∈ Kν .

(2.12)

This is a convex optimization problem with a continuously differentiable ob-
jective function and a compact feasible set. Therefore, it admits a global
solution x̃ν ∈ Kν and

−∇xν‖gν+(x̃ν , x̄−ν)‖γ ∈ NKν (x̃ν).

Since in this case we have ∂>xν‖gν+(x̃ν , x̄−ν)‖γ = {∇xν‖gν+(x̃ν , x̄−ν)‖γ}, we
get a contradiction to the CQγ and therefore, ∀x ∈ K, Kν ∩ Xν(x−ν) 6= ∅
for every player.

To prove part (b) it is enough to observe that for any ρ > 0 the PNEPρ
has a solution in K. By Theorem 8, if all the penalty parameters are large
enough, this solution will also be a solution of the GNEP (2.2). ut

Remark 2. We recall that Therem 6 rests on some non emptiness and continu-
ity assumptions of the point-to-set mappings Fν(•). These assumptions are,
however, usually difficult to check in practice. Therefore, Theorem 9 might
be useful in applications and can be seen as a practical tool for establishing
the existence of a solution of GNEP (2.2).

We end this section with some considerations on constraint qualifications for
games. Firstly we relate the CQγ to a more classical constraint qualification:
the Extended Mangasarian-Fromovitz Constraint Qualification (EMFCQ).

Definition 6. We say that the GNEP (2.2) satisfies the EMFCQ at a point
x̄ ∈ K if, for every player ν = 1, . . . , N , there exists a vector dν ∈ TKν (x̄ν)
such that

∇xνgνi (x̄ν , x̄−ν)Tdν < 0 ∀i ∈ Iν+(x̄), (2.13)

where Iν+(x̄) :=
{
i ∈ {1, . . . ,mν}

∣∣ gνi (x̄ν , x̄−ν) ≥ 0
}

is the index set of all
active and violated constraints at x̄.

By standard reasonings, it is easily seen that Condition (2.13) is equivalently
satisfied if, for every player ν, there is no nonzero vector vν ∈ Rmν+ , with
vνi = 0 if gνi (x̄ν , x̄−ν) < 0, such that:

−[vν1∇xνgν1 (x̄) + . . .+ vνmν (x̄)∇xνgνmν (x̄)] ∈ NKν (x̄ν). (2.14)

Remark 3. We show for completeness the equivalence of (2.13) and (2.14).
Assume that (2.13) holds and suppose, by contradiction, that there is ν ∈
{1, . . . , N} and a nonzero vector vν ∈ Rmν+ , with vνi = 0 if gνi (x̄ν , x̄−ν) < 0,
such that
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0 ≤ (dν)T
mν∑
i=1

vνi ∇xνgνi (x̄)

= (dν)T
∑

i∈Iν+(x̄)

vνi ∇xνgνi (x̄) < 0,
(2.15)

which is a contradiction.
For the converse, by (2.14), for every player and for every nonzero vector

vν ∈ Rmν+ , such that vνi = 0 if gνi (x̄ν , x̄−ν) < 0, there exists d̄ν ∈ TKν (x̄ν)
such that  ∑

i∈Iν+(x̄)

vνi ∇xνgνi (x̄)

T d̄ν < 0. (2.16)

Relation (2.16) must hold for every such vector vν and this fact in turn implies
the EMFCQ.

We observe that it is classical to show that if the EMFCQ holds at a solution
of the game, then the KKT conditions are satisfied for each player at this
point.

The EMFCQ for optimization problems has been used often in analyzing
solution algorithms. Our definition of the EMFCQ for games is the natu-
ral extension of the constraint qualification from optimization problems to
games.

We note that, in Example 4, the EMFCQ holds at every point of K. This
fact does not occur by chance: the following theorem proves that there is a
relationship between the EMFCQ and CQγ .

Proposition 8. If the EMFCQ holds at x̄ ∈ K, then the CQγ holds at x̄.
The vice versa does not hold in general.

Proof. Suppose that EMFCQ holds at x̄, but, for some ν, there is a ξν ∈
∂>xν‖gν+(x̄ν , x̄−ν)‖γ such that −ξν ∈ NKν (x̄ν). By definition there is a se-
quence {yk} → x̄ with yk ∈ K and ‖gν+((yk)ν , (yk)−ν)‖γ > 0 such that

{∇xν‖gν+((yk)ν , (yk)−ν)‖γ} → ξν .

We have

∇xν‖gν+((yk)ν , (yk)−ν)‖γ = ∇xνgν((yk)ν , (yk)−ν)(λk)ν ,

where (λk)ν :=
gν+((yk)ν ,(yk)−ν)γ−1

‖gν+((yk)ν ,(yk)−ν)‖γ−1
γ

.

It is not difficult to see that there are constants 0 < α1 ≤ α2 such that
α1 ≤ ‖(λk)ν‖γ ≤ α2 for all k. Hence, we may assume that there is a limiting
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nonzero vector λ̄ν ∈ Rmν+ and, by definition of (λk)ν , λ̄νi = 0 for gνi (x̄ν , x̄−ν) <
0. Therefore,

∇xν‖gν+((yk)ν , (yk)−ν)‖γ → ∇xνgν(x̄ν , x̄−ν)λ̄ν = ξν , (2.17)

with λ̄ν ∈ Rmν+ , λ̄ν 6= 0 and λ̄νj g
ν
j (x̄) = 0. Recalling that −ξν ∈ NKν (x̄ν), we

see that (2.17) contradicts (2.14).
To show the second assertion, it is enough to give an example. Indeed,

consider a game with one player whose feasible set in R is defined by x3 ≤ 0,
x ≤ 0 and K = [−1, 1]. EMFCQ does not hold in x̄ = 0 since the gradient
of x3 at the origin is zero. On the other hand, straightforward calculations
show that ∂>‖g+(0)‖2 = {1} so that the CQγ holds at the origin. ut

If we assume that EMFCQ holds instead of the CQγ , we can improve on
Theorem 8 and get a complete equivalence between the GNEP (2.2) and the
PNEPρ (2.5).

Theorem 10. Suppose that EMFCQ holds at every point of K; then there
exists a ρ̄ such that, for every ρ with ρν ≥ ρ̄ for all ν, the solutions of the
PNEPρ (2.5) coincide with the solution of the GNEP (2.2).

Proof. Because of Theorem 8 and Proposition 8 it is enough to show that
every solution of the GNEP (2.2) is a solution of the PNEPρ (2.5), if the
penalty parameters are large enough. To this end we first prove a simple
Lemma.

Lemma 1. Consider the minimization problem

min f(z)

v(z) ≤ 0

z ∈ Z
(2.18)

where f : Rn → R and v : Rn → Rm are continuously differentiable and
convex and Z ⊆ Rn is a closed, convex set. Suppose that the feasible set of
(2.18) is nonempty. Let z̄ be a solution of (2.18) and assume that the set M
of multipliers is non empty. Let λ be any multiplier in M and denote by ‖•‖∗γ
the dual γ−norm. Then, for every σ > ‖λ‖∗γ , the solutions sets of (2.18) and

min f(z) + σ‖v+(z)‖γ
z ∈ Z.

(2.19)

coincide.

Proof. First of all, recall that the set of multipliers of the convex problem
(2.18) does not depend on the optimal solution we are considering (see e.g.
the remark on page 354 in [10]). Therefore, if z̃ is a solution of (2.18) we have
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(z − z̃)T [∇f(z̃) + λ1∇v1(z̃) + . . .+ λm∇vm(z̃)] ≥ 0, ∀z ∈ Z.

Hence, z̃ also minimizes the Lagrangian L(z, λ) := f(z) +
∑m
j=1 λjgj(z) over

the set Z so that

f(z) + λTv(z) ≥ f(z̃) + λTv(z̃), ∀z ∈ Z. (2.20)

Recalling that σ > ‖λ‖∗γ

f(z) + σ‖v+(z)‖γ ≥ f(z) + ‖λ‖∗γ‖v+(z)‖γ
≥ f(z) + λTv+(z)

≥ f(z) + λTv(z)

≥ f(z̃) + λTv(z̃)

= f(z̃) + σ‖v+(z̃)‖γ

where we have used, in sequence, σ > ‖λ‖∗γ , the Cauchy-Schwarz inequality,
λ ≥ 0, (2.20), λTv(z̃) = 0 and v+(z̃) = 0. Therefore, z̃ is a minimum point of
the penalty function on Z.
For the converse, suppose that z̃ ∈ Z is a minimum point of the penalty
function Q(z, σ) = f(z)+σ‖v+(z)‖γ : it is sufficient to verify that z̃ is feasible
to (2.18). If this were not the case,

f(z̃) + σ‖v+(z̃)‖γ > f(z̃) + ‖λ‖∗γ‖v+(z̃)‖γ
≥ f(z̃) + λTv+(z̃)

≥ f(z̄) + λTv(z̄)

= f(z̄)

= f(z̄) + σ‖v+(z̄)‖γ ,

a contradiction to the fact that z̃ is a global minimum of the penalty function;
hence z̃ must be feasible. ut

Back to the proof of Theorem 10. Taking into account that, by the
EMFCQ, multipliers exist at any solution of the GNEP, this lemma easily
implies that, if the set of all multipliers at any solution of the GNEP is
bounded above by a common constant r, then, for ρν > r for every ν, every
solution of the GNEP is a solution of PNEPρ (note that the reverse does
not derive from the lemma because in certain points the feasible sets of some
players could be empty). Assume then by contradiction that we can find a
sequence {xk} of solutions of the GNEP and a sequence of corresponding
multipliers {(µk)ν} such that at least for one ν we have ‖(µk)ν‖ → ∞. We
also assume, without loss of generality, that xk → x̄ ∈ K. Then we can write,
by the EMFCQ, the KKT conditions (see [88]) for player ν:
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−[∇xνθν((xk)ν , (xk)−ν) +

mν∑
j=1

(µkj )ν∇xνgνj ((xk)ν , (xk)−ν)] ∈ NKν ((xk)ν)

0 ≤ (µk)ν⊥gν((xk)ν , (xk)−ν) ≤ 0.

(2.21)

Dividing the inclusion on the first line in (2.21) and the first inequality on
the second line by ‖(µk)ν‖ and taking the limit, thanks to the outer semi-
continuity of the mapping NKν (xν) (see [88]), we have

−∇xνgν(x̄)µ̄ν ∈ NKν (x̄ν)

0 ≤ µ̄ν⊥gν(x̄) ≤ 0, µ̄ν 6= 0.
(2.22)

Since µ̄ν 6= 0 we have a contradiction to the EMFCQ (see (2.14)). ut

2.6 How to update the penalty parameters

Based on Theorem 8, we can state that, if we knew the value of the parameter
ρ̄ in Theorem 8, our only task would be that of studying an algorithm for
the solution of the PNEPρ (2.5), which has the peculiarity of having non
differentiable objective functions. Unfortunately, in general, the value of ρ̄ is
not known in advance and so we see that our task is twofold: on the one hand
we have to (iteratively) find the “right” values for the penalty parameters
and, on the other hand, we must also be able to solve the non differentiable
penalized Nash game. We will discuss these two main issues separately: in this
section we present a way to algorithmically update the penalty parameters
to an appropriate value, while the next section is devoted to the study of
an algorithm for the solution of the PNEPρ. For the time being, in this
section we assume that we have an algorithm for the solution of the penalized
Nash PNEPρ (2.5) for given fixed values of the penalty parameters ρν . More
precisely, we suppose an iterative algorithm A is available that, given a point
xk, generates a new point xk+1 := A[xk] such that xk ∈ K for all k. We
suppose that A enjoys the following property.

Property 1. For every x0 ∈ K, the sequence {xk} obtained by setting xk+1 =
A[xk] is such that xk ∈ K for all k and every limit point is a solution of (2.5).

The meaning of the property is plain: Algorithm A solves the PNEPρ when
the ρν are fixed. As we already said, a suitable algorithm A will be described
in the next section. Having this algorithm A at hand, the scheme we propose
for the updating of the penalty parameters is described in Fig. 2.7.
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Starting point

Stopping criterion

Test to decide whether to increase ρν

One step of the solution al-

gorithm xk+1 = A[xk]
Set k ← k + 1

Fig. 2.7: The algorithmic scheme

At each iteration two steps are performed: first we test whether we should
update the penalty parameters and then we perform a single step of algorithm
A. The hope is that eventually the outcome of the test on the updating of
the penalty parameters is always not to update, so that the scheme reduces
to the application of algorithm A to the PNEPρ with fixed values of penalty
parameters. What we must then be sure of, is that the value of the penalty
parameters is the “right” one. In order to achieve this and also to understand
the rationale behind the updating test, we note that if, for any value of the
penalty parameters, we find a solution of PNEPρ (2.5) that is feasible for the
original problem (2.2), then this solution solves problem (2.2) itself. Indeed,
if x̄ is a Nash equilibrium of PNEPρ (2.5), this means that x̄ν ∈ Kν is the
optimal solution of (2.5). But on the set Xν(x̄−ν), we have θν(xν , x̄−ν) =
Pν(xν , x̄−ν); therefore x̄ is also a solution of the GNEP. So the updating rule
for the penalty parameters should aim at avoiding convergence of algorithm
A to solutions that are unfeasible for the original GNEP by increasing the
penalty parameters if this “dangerous” situation seems to be occurring.
To this end, let us consider a solution x̄ of (2.5) infeasible for the GNEP. This
means that there exists a player ν ∈ {1, · · · , N} such that ‖gν+(x̄ν , x̄−ν)‖γ >
0. By the closedness and the convexity of the feasible set Kν and by the con-
tinuous differentiability of Pν(xν , x−ν) in x̄, we have, in view of the minimum
principle (see also Proposition 6 for the equivalent VI formulation)

x̄ν = ProjKν [x̄ν −∇xνPν(x̄, ρν)]. (2.23)

where ProjKν (•) is the Euclidean projector on the closed convex set Kν . Our
updating rule tries to detect when condition (2.23) is nearly satisfied (see
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test (2.24) below), and in such case, tries to force feasibility by increasing the
penalty parameters.

Algorithm 2: Penalty Updating Scheme for GNEPs

(S.0) : x0 ∈ K, ρ0
ν > 0 and cν ∈ (0, 1) for all νs. Set k := 0.

(S.1) : If xk is a solution of the GNEP (2.2): STOP

(S.2) : Let Ik := {ν | (xk)ν 6∈ Xν((xk)−ν)}. For every ν ∈ Ik, if

‖(xk)ν − ProjKν [(xk)ν −∇xνPν(xk, ρkν)]‖ ≤ cν
ρkν
, (2.24)

then double the penalty parameters ρkν .

(S.3) : Compute xk+1 = A[xk], set k ← k + 1, and go to (S.1).

Based on Theorem 8, we know that the CQγ is sufficient to guarantee the
existence of suitable values of the penalty parameters that allow to recover
a solution of the GNEP from a solution of the PNEPρ. We would therefore
expect that CQγ should be all we need to have Algorithm 2 work properly.
Luckily, this is the case as shown by the following theorem.

Theorem 11. Let a GNEP be given satisfying the CQγ at every point in
K. Let {xk} be the sequence generated by Algorithm 2. The following two
assertions hold:

(a) The penalty parameters are updated a finite number of times only;
(b) Every limit point x̄ of the sequence {xk} is a solution of the GNEP.

Proof. (a) Suppose by contradiction that there is ν such that ρkν → ∞.
Subsequencing if necessary, we may assume that ρkν is updated at every it-
eration and Kν 3 (xk)ν → x̄ν . Furthermore, recalling that Pν(xk, ρkν) is
continuously differentiable at xk and taking into account test (2.24), we
also have ProjKν [(xk)ν −∇xνPν(xk, ρkν)] → x̄ν . Then we define (yk)ν :=
ProjKν [(xk)ν −∇xνPν(xk, ρkν)]: therefore (yk)ν → x̄ν . By the projection
characterization property we have

[wν − (yk)ν ]T [(yk)ν − (xk)ν +∇xνθ(xk) + ρkν∇xν‖gν+((xk)ν , (xk)−ν)‖γ ] ≥ 0
(2.25)

for all wν ∈ Kν . Dividing both sides of (2.25) by ρkν and considering the
boundedness of the (partial sub)gradient of ‖gν+(xν ,xν)‖γ on bounded sets
and its closedness, we get

(wν − x̄ν)T ξν ≥ 0

for all wν ∈ Kν with ξν ∈ ∂>xν‖gν+(x̄ν , x̄−ν)‖γ . So we have (−ξν) ∈ NKν (x̄ν),
a contradiction to (2.7). Hence, all penalty parameters are updated a finite
number of times only.
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(b) We have shown that, thanks to CQγ , the penalty parameters are updated
a finite number of times only. Now we prove that (a) implies (b). In order
to show that a limit point x̄ is a Nash equilibrium of the original GNEP, it
is enough to show that x̄ is feasible. Suppose then, by contradiction, that x̄
is not feasible so that there is a ν such that ‖gν+(x̄)‖γ > 0. Suppose also,
without loss of generality, that the penalty parameters are not updated for
any k and, as usual, xk → x̄. Since ‖gν+(xk)‖γ > 0, Pν is continuously
differentiable in a neighborhood of x̄. By the convexity and compactness ofKν

and by simple continuity arguments, this shows that the test (2.24) must be
satisfied eventually for all ν such that ‖gν+(xk)‖γ > 0 and for all k sufficiently
large. Hence, the corresponding penalty parameters ρkν are updated. This
contradiction shows that x̄ is feasible. ut

If the CQγ is not satisfied everywhere, it could happen that the penalty
parameters are updated an infinite number of times. In this case, we could still
prove, along the same lines used in [30], that the limit points of the sequence
{xk} are still meaningful to the GNEP. However, this analysis is somewhat
involved and, in the end, of little practical interest, since, if some penalty
parameters go to infinite, the algorithm is anyway becoming numerically
unstable. We therefore omit this kind of analysis here and refer the interested
reader to [30] for details.

2.7 Algorithm A

Theorem 11 says that the updating scheme will increase the penalty param-
eter only a finite number of times, so that eventually Algorithm 2 reduces,
as we had hoped, to the application of Algorithm A to the PNEPρ for a
fixed value of the penalty parameters. The overall convergence properties of
Algorithm 2 therefore are based on those of Algorithm A and in particular
on Property 1. In this section we show that, under reasonable assumptions,
we can develop an algorithm A that enjoys Property 1. We stress once more
that, based on the results of the previous section, we are only interested in
algorithms for the solution of PNEPρ for fixed values of the penalty param-
eters. Therefore, in this section the penalty parameters are assumed to be
fixed throughout.

Problem (2.6) is a standard Nash equilibrium problem whose solution
is problematic because of the nondifferentiability of the objective functions
Pν(x, ρν). We propose to deal with this difficulty by using smoothing tech-
niques. We recall that the objective function of player ν in (2.6) is given
by:
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Pν(x, ρν) = Pν(xν ,x−ν , ρν)

= θν(xν ,x−ν) + ρν‖gν+(xν ,x−ν)‖γ

= θν(xν ,x−ν) + ρν

mν∑
j=1

max
{

0, gνj (xν ,x−ν)
}γ1/γ

.

We can approximate these functions by the smooth mappings:

P̃ν(x, ρν , ε) := P̃ν(xν ,x−ν , ρν , ε)

:= θν(xν ,x−ν) + ρν

mν∑
j=1

max
{

0, gνj (xν ,x−ν)
}γ

+ ε

1/γ

+
ε

2
‖xν‖2,

where ε > 0 is a given parameter which makes the root mapping smooth. So
far, γ was taken arbitrarily from the open interval (1,∞). From now on we
assume that

− γ > 2 holds;
− θν and gν are twice continuously differentiable on K.

The two assumptions above, make the max-term twice continuously differen-
tiable so that P̃ν itself is twice continuously differentiable. We are therefore
naturally led to define a smooth “approximation” of the PNEPρ (2.6), namely

the PNEPρ(ε) where the problem of player ν is minimizing the function P̃ν
on the set Kν :

minxν P̃ν(x, ρν , ε)

xν ∈ Kν .

We remark that the presence of the regularization term (ε/2)‖xν‖2 guarantees
that P̃ν(x, ρν , ε) is uniformly convex as a function of xν .

We observe that the PNEPρ(ε) is a game where each player’s problem is a
continuously differentiable, constrained (the feasible sets Kν are compact for
all ν), convex optimization problem. It is well know, see Section 2.1 and, for
example, [32], that the game PNEPρ(ε) can equivalently be cast and solved
as a variational inequality VI(K, Fε(x)), with

Fε(x) :=

 ∇x1 P̃1(x1,x−1, ρ1, ε)
...

∇xN P̃N (xN ,x−N , ρN , ε)

 . (2.26)

We remark that thanks to the assumptions made, Fε(x) is continuously dif-
ferentiable. The simple idea, common to all smoothing methods, is now to
solve PNEPρ by solving, inaccurately, but with increasing accuracy, a se-
quence of VI(K, Fεi(x)) for values of the smoothing parameter going to zero
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(we use the parameter i to denote iterations here in order have no confusion
with the iteration counter k in the previous section). We can then rely on the
rich literature about solution methods for VIs.

In the next section we then show that indeed, a sequence of inaccurate
solutions of VI(K, Fεi(x)) converges to a solution of the PNEPρ. The analysis
here is similar to that carried out in [30]. The following section, instead, is
the core of this work and presents novel and interesting results showing that
under suitable condition we are actually able to find a(n inaccurate) solution
of VI(K, Fεi(x)). Putting together the results of this and the previous section
we will finally show that Algorithm 2 is implementable and guaranteed to find
a solution of the GNEP under conditions that cover both known and novel
classes of problems.

2.8 Convergence of the smoothing procedure

In order to analyze the behavior of solutions of VI(K, Fεi(x)) when εi goes
to zero, we recall a technical result from [35].

Lemma 2. Let f : Rs × Rt → R be given and assume that f is locally Lip-
schitz continuous around a point (ū, v̄) ∈ Rs × Rt and such that f(•, v) is
convex for every v in a neighborhood of v̄. Let {(ui, vi)} be a sequence of
points converging to (ū, v̄) and let {ξi}, with ξi ∈ ∂uf(ui, vi), be a sequence
of (Clarke’s) partial generalized gradients. Then, every limit point ξ̄ of this
sequence (and there is at least one such limit point) belongs to ∂uf(ū, v̄).

We are now ready to show convergence of the smoothing procedure. We
recall that the left-hand side of (2.27) below is a measure of how accurate we
have solved the VI(K, Fεi(x)), see [32]. If ηi = 0 we have an exact solution,
otherwise an inaccurate one, the inaccuracy increasing when ηi increases.

Proposition 9. Let {εi} and {ηi} be two sequences of positive numbers con-
verging to 0 and, for every i, let x(εi) ∈ K be a point such that

‖x(εi)− ProjK[x(εi)− Fεi(x(εi))] ‖ ≤ ηi. (2.27)

Then every limit point of the sequence x(εi) is a solution of the PNEPρ (2.6).

Proof. We assume without loss of generality that x(εi) → x̄ ∈ K. In order
to show that x̄ is a solution of the PNEPρ, it is sufficient to show that, for
all ν, there is a ξ̄ν ∈ ∂xνPν(x̄, ρν) such that

−ξ̄ν ∈ NKν (x̄ν). (2.28)

To this end, and for a fixed ν, define the function
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˜̃Pν(x, δ) := θν(xν ,x−ν)+ρν

mν∑
j=1

max
{

0, gνj (xν ,x−ν)
}γ

+ |δ|γ
1/γ

+
δγ

2
‖xν‖2

(remember that ρν is a fixed quantity in the present setting), and note that
˜̃Pν is everywhere locally Lipschitz as a function of (x̄, δ) (note that, for this
observation to be correct, we had to replace ε by |δ|γ in the definition of
˜̃Pν). Note furthermore that Pν(x, ρν) = P̃ν(x, ρν , 0) = ˜̃Pν(x, 0) and that

∂xν P̃ν(x, ρν , εi) = ∂xν
˜̃P (x, (εi)

1/γ).

Let us define y(εi) := ProjK(x(εi) − Fδγi (x(εi))). By the projection charac-
terization property (see Theorem 1) we have

(z− y(εi))
T (y(εi)− x(εi) + Fδγi (x(εi))) ≥ 0, ∀i, ∀z ∈ K.

This latter property implies the following relation for every player ν:

(zν − yν(εi))
T ((yν(εi)− xν(εi) +∇xν ˜̃Pν(x(εi), δ

γ
i )) ≥ 0, ∀i, ∀zν ∈ Kν .

(2.29)

We now set

δi := (εi)
1/γ , ui := xν(εi), vi := (x−ν(εi), δi),

(ξν)i := ∇xν ˜̃Pν((xν)i, (x−ν)i, δi).

Therefore, taking the limit of an appropriate subsequence of both sides of
(2.29), considering that, for (2.27), y(εi)→ x̄ and taking (2.26) into account,
Lemma 2 implies

−ξ̄ν ∈ NKν (x̄ν), ∀ν

where we have assumed, without loss of generality, that (ξν)i → ξ̄ν . ut

We see from the previous proposition that we can solve the PNEPρ by finding
a sequence of inaccurate solutions of VI(K, Fεi(x)) for values of εi and ηi
going to zero. All we are then left with, to complete the analysis, is to study
under what conditions we are able to calculate such approximate solutions.
This is the topic of the next subsection.

2.9 VI(K, Fεi(x))

As we have seen in the previous sections, problem PNEPρ can be equivalently
recast as the variational inequality VI(K, Fε(x)). Then our task is now to
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solve, for fixed ε, VI(K, Fε(x)) (since throughout this subsection εi is fixed,
we drop the subscritp i). We recall that K =

∏
ν Kν and note that we can

write

Fε(x) :=

 ∇x1 P̃1(x1,x−1, ρ1, ε)
...

∇xN P̃N (xN ,x−N , ρN , ε)

 = F (x) + V (x,ρ, ε) + εx, (2.30)

with

F (x) :=

 ∇x1θ1(x)
...

∇xN θN (x)

 , V (x,ρ, ε) :=

 V 1(x, ρ1, ε)...
V N (x, ρN , ε)

 ,

V ν(x) :=
ρν

‖(gν+(x), ε
1
γ )‖γ−1

γ

∇xνgν(x)[gν+(x)]γ−1

and where [gν+(x)]γ−1 means that we apply the exponent γ − 1 to each com-
ponent of the vector gν+(x).

Since K is a compact convex set and Fε is continuous, VI(K, Fε(x)) has a
solution.

There exist in literature many, well known and efficient methods for the solu-
tion of variational inequalities but the conditions for convergence are some-
what restrictive (see Subsection 1.3.3): one of the weakest conditions under
which global convergence to a solution of the VI(K, Fε(x)) can be guaranteed
is the monotonicity of Fε(x) on K. Suffices to say here, that monotonicity
of Fε(x) is enough to design convergent algorithms for the solution of the
VI(K, Fε(x)) (see [32]): the monotonicity of the defining function is a stan-
dard and well accepted assumption in the VI theory and it is satisfied in many
practical applications. With regard to the specific structure of the defining
function, it can be seen that the monotonicity assumption implies some con-
nections among the P̃νs that cannot be expected to hold in general. If, indeed,
the defining function Fε is continuously differentiable, then it is well known
that Fε is monotone if and only if its Jacobian is positive semidefinite: this
fact let us understand that some assumptions on the structure of Fε and
relations between P̃νs must hold.

Nevertheless, for the purpose of this work it could be said that our task
reduces to the study of conditions guaranteeing the monotonicity of Fε(x).
In turn, since Fε(x) is C1 under the assumptions we made, it will be enough,
to check monotonicity, to verify the positive semidefiniteness of the Jacobian
of Fε(x) (see Proposition 1).

To this end let us introduce some additional notations. First of all we
denote by g the vector of all constraints: g = (gν)Nν=1. In the sequel we will
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also often need to partition n× n (or m× n) matrices quite naturally as

T =


T11 T12 · · · T1N

...
...

. . .
...

TN1 TN2 · · · TNN


where block Tνµ ∈ Mnν ,nµ (or ∈ Mmν ,nµ). For example, [JV (x,ρ, ε)]νµ =
JxµV

ν(x,ρ, ε) ∈ Mnν ,nµ , while [Jg(x)]νµ = Jxµg
ν(x) ∈ Mmν ,nµ . It is now

useful to define the following matrices:

diagJg(x) :=


Jx1g1(x) 0m1n2

· · · 0m1nN

0m2n1 Jx2g2(x) · · · 0m2nN

...
...

0mNn1 0mNn2 · · · JxN gN (x)

 ,

offJg(x) :=


0m1n1

Jx2g1(x) · · · JxN g1(x)

Jx1g2(x) 0m2n2
· · · JxN g2(x)

...
...

Jx1gN (x) Jx2gN (x) · · · 0mNnN


and

M̄(x,ρ) =

ρ1M11(x) · · · 0

0
. . . 0

0 · · · ρNMNN (x)

 ,

where the diagonal blocks Mνν(x) ∈Mmν are given by

Mνν(x) :=
[diag{gν+(x)}]γ−2

‖(gν+(x), ε1/γ)‖γ−1
γ

−
[gν+(x)]γ−1([gν+(x)]γ−1)T

‖(gν+(x), ε1/γ)‖2γ−1
γ

.

Proposition 10. In the setting above, and for fixed positive ε and ρν , the
Jacobian JV (x) is equal to the following expression:
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ρ1

∑m1
i=1(g1

i )γ−1
+ (x)[∇2

x1 (g1
i )(x)]T

‖(g1
+(x),ε1/γ)‖γ−1

γ
· · · ρ1

∑m1
i=1(g1

i )γ−1
+ (x)[∇xN (∇x1 (g1

i )(x))]T

‖(g1
+(x),ε1/γ)‖γ−1

γ

... · · ·
...

ρN

∑mN
i=1 (gNi )γ−1

+ (x)[∇x1 (∇xN (gNi )(x))]T

‖(gN+ (x),ε1/γ)‖γ−1
γ

· · · ρN

∑mN
i=1 (gNi )γ−1

+ (x)[∇2
xN

(gNi )(x)]T

‖(gN+ (x),ε1/γ)‖γ−1
γ


+ (γ − 1)(diagJg(x))TM̄(x,ρ)Jg(x).

(2.31)

Proof. The calculation of the Jacobian of V is straightforward, even if com-
plicated. It is convenient to calculate the [JV (x)]νµ block separately. Direct
calculation gives

[JV (x)]νµ =
ρν

‖(gν+(x), ε1/γ)‖γ−1
γ

mν∑
j=1

{
(gνj )γ−1

+ (x)[∇2
xνxµg

ν
j (x)]T

+ (γ − 1)(gνj )γ−2
+ ∇xνgνj (x)[∇xµgνj (x)]T

}

+
ρν(1− γ)

‖(gν+(x), ε1/γ)‖2γ−1
γ

[
∇xνgν(x)(gν+)γ−1(x)

]
[∇xµ(gν)(x)(gν+)γ−1(x)]T

=
ρν

‖(gν+(x), ε1/γ)‖γ−1
γ

mν∑
j=1

(gνj )γ−1
+ (x)[∇2

xνxµg
ν
i (x)]T

+ ρν(γ − 1)∇xνgν(x)Mνν(x)[∇xµgν(x)]T ,

(2.32)

from which the thesis easily follows. ut

With the result in mind, the following Proposition 12 allows us to individuate
classes of problems for which the Jacobian of Fε(x) is positive definite under
suitable assumptions. In order to prove Theorem 12, we need some other
definitions and a preliminary result.

First we show that the Mνν(x) block is positive semidefinite.

Lemma 3. The Mνν(x) block is positive semidefinite for every x ∈ Rn and
for every ν = 1, . . . , N .

Proof. For sake of simplicity, let us consider the generic symmetric matrix

M(x) =

{
[diag{g+(x)}]γ−2

‖(g+(x), ε1/γ)‖γ−1
γ

− [g+(x)]γ−1([g+(x)]γ−1)T

‖(g+(x), ε1/γ)‖2γ−1
γ

}
and M(x) ∈Mm.
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It suffices to show the semidefinite positiveness of M̃(x), where

M̃(x) = ‖(g+(x), ε1/γ)‖γγ [diag{g+(x)}]γ−2 − [g+(x)]γ−1([g+(x)]γ−1)T

and M(x) = 1

‖(g+(x),ε1/γ)‖2γ−1
γ

M̃(x).

Since ε1/γ > 0 we have, for z ∈ Rm,

zTM̃z ≥ (g1
γ
+ + · · ·+ gm

γ
+)
(
z1 · · · zm

)

g1
γ−2
+ 0 · · · 0

0 g2
γ−2
+ · · · 0

...
...

. . .
...

0 0 · · · gmγ−2
+


 z1

...
zm



−
(
z1 · · · zm

) g1
γ−1
+
...

gm
γ−1
+

( g1
γ−1
+ · · · gmγ−1

+

) z1

...
zm

 .

The first term in the right-hand side above, i.e. (g1
γ
+ + · · ·+ gm

γ
+)(g1

γ−2
+ z2

1 +

· · · + gm
γ−2
+ z2

m), is constituted by m2 addenda, the second, i.e. (g1
γ−1
+ z1 +

· · ·+ gm
γ−1
+ zm)2, by m(m+1)

2 addenda.
Therefore, we can write:

(g1
γ
+ + · · ·+ gm

γ
+)(g1

γ−2
+ z2

1 + · · ·+ gm
γ−2
+ z2

m)− (g1
γ−1
+ z1 + · · ·+ gm

γ−1
+ zm)2

= (g1
γ
+ + · · ·+ gm

γ
+)g1

γ−2
+ z2

1 + · · ·+ (g1
γ
+ + · · ·+ gm

γ
+)gm

γ−2
+ z2

m

− g1
2γ−2
+ z2

1 − g2
γ−2
+ z2

2 − · · · − gm
γ−2
+ z2

m − 2g1
γ−1
+ g2

γ−1
+ z1z2 − · · ·

− 2g1
γ−1
+ gm

γ−1
+ z1zm − · · · − 2gm−1

γ−1
+ gm

γ−1
+ zm−1zm.

(2.33)

We note that the m addenda gi
2γ−2
+ z2

i , i = 1, . . . ,m of the first term (see
the second line of (2.33)) are equal to those of the second term in the third
line of the expression (2.33). So we can erase them. The remaining part of
(2.33) is constituted by the sum of the trinomials gk

γ−2
+ gl

γ
+z

2
k+gk

γ
+gl

γ−2
+ z2

l −
2gk

γ−1
+ gl

γ−1
+ zkzl = gk

γ−2
+ gl

γ−2
+ (gl+zk − gk+zl)

2 ≥ 0, k 6= l; k, l = 1, . . . ,m.

We conclude that zTM̃(x)z ≥ 0 for all x ∈ Rn and z ∈ Rm. ut

Now we are able to individuate classes of GNEPs for which our penalty
approach is guaranteed to converge to a solution of the original problem.

First we can prove that, in NEP and jointly convex cases, JFε(x) is positive
definite and our algorithm is provably convergent to a solution of the original
problem.
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Theorem 12. In the setting of this section and assuming F (x) to be mono-
tone, if the original GNEP (2.2) reduces to either a NEP or to a jointly
convex GNEP, then Fε(x) is strongly monotone.

Proof. We recall that

Fε(x) = F (x) + V (x,ρ, ε) + εx.

Therefore, by the monotonicity of F (x), it is sufficient to show the semidefi-
nite positiveness of JV (x). We distinguish two cases.

(a) In the NEP case, [JV (x)]νµ = 0 for ν 6= µ. Thanks to the positive
semidefiniteness of Mνν(x) for every ν = 1, . . . , N and by the convexity of
gν(x) as a function of xν only, (2.32) implies the thesis.

(b) In our settings, jointly convex case arises when g1(x) = . . . = gN (x) =
g(x) and g is convex with respect to the whole vector x. Therefore, M11(x) =
. . . = MNN (x) = M(x). For sake of simplicity and without loss of generality,
for this proof we assume ρ = ρ1 = ρ2 = · · · = ρN ; then, by (2.32), it is not
hard to see that

JV (x,ρ, ε) =
ρ

‖(g+(x), ε1/γ)‖γ−1
γ

m∑
j=1

(gj)
γ−1
+ (x)∇2gj(x)

+ ρ(γ − 1)[Jg(x)]TM(x)Jg(x),

which in turn is positive semidefinite. ut

The above proposition shows that the two major subclasses of the GNEP (2.1)
for which solution algorithms are well known, see [30], can also be handled by
penalty methods, since they give rise to monotone VI(K, Fε(x)). We conclude
by showing that penalty methods are actually able to tackle also some new
classes of problems for which no previous convergent algorithms are known.

Let us suppose that constraints in (2.2) have the following form:

gν(x) = hν(xν) + lν(x−ν) ∀ν, (2.34)

where hν : Rnν → Rmν is a convex function, lν : Rn−nν → Rmν and both are
twice continuously differentiable.
Linear constraints, i.e. gν(x) = Aν1x1 + · · ·+AνNxN ∀ν, with Aνi ∈Mmν ,ni ,
are a particular kind of this class of constraints.

Theorem 13. In the setting of this section, for a GNEP with constraints
defined in (2.34), if there exists a constant α > 0 such that

dTJF (x)d ≥

{
0 ∀d ∈ {ker(diagJg(x)) ∪ ker(offJg(x))}
α‖d‖2 otherwise

(2.35)
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for all x ∈ K, with

α ≥ (γ − 1)‖diagJg(x)‖‖M̄(x,ρ)‖‖offJg(x)‖, (2.36)

then Fε(x) is strongly monotone.

Proof. It is enough to prove that JFε(x) is uniformly positive definite.
Observe that first matrix in expression (2.31) has null off-diagonal blocks.

By the convexity of hν(xν) this term is therefore positive semidefinite. For
the second term in (2.31), we have

(diagJg(x))TM̄(x,ρ)Jg(x) = (diagJg(x))TM̄(x,ρ)[diagJg(x)+offJg(x)].

Tacking all these facts into account, we distinguish three cases.

(a) If d ∈ ker(diagJg(x)) then dTJFε(x)d ≥ dTJF (x)d+ ε‖d‖2 ≥ ε‖d‖2.

(b) If d ∈ ker(offJg(x)) then
dTJFε(x)d ≥ dTJF (x)d+ dT (diagJg(x))TM̄(x,ρ)diagJg(x)d+ ε‖d‖2

≥ ε‖d‖2.

(c) Otherwise we have, by (2.35) and (2.36),

dT [JF (x) + (γ − 1)(diagJg(x))TM̄(x,ρ)Jg(x)]d ≥ α‖d‖2

− (γ − 1)‖diagJg(x)‖‖M̄(x,ρ)‖‖offJg(x)‖‖d‖2

for suitable matrix norms, which in turn is non negative and the rest of the
proof is straightforward. ut

Note that, supposing that F is monotone, the assumption of the previous
theorem are automatically satisfied if the game reduces to a pure NEP (or
equivalently if, for all players, lν(x−ν) in (2.34) is a constant). What Theorem
13 tells us then, is that if the coupling in the constraints is “compensated
by sufficient curvature of F in the right subspaces”, then we may still be
able to solve the resulting GNEP. Although these conditions are strong, they
are quite natural, and are, as far as we are aware of, the first breakthrough
towards the solution of a significant class of non jointly convex GNEPs.

Note that there is a conceptual difference between the requirements made
in Theorem 12 and those in Theorem 13 in that the latter theorem requires a
condition that depends on the penalty parameters ρν , while the former theo-
rem has no such dependence. Conceptually, this means that while under the
conditions given in Theorem 12 we can ensure that the overall penalty scheme
of Algorithm 2 will converge to a solution, we can draw the same conclusions
under the condition of Theorem 13 only provided that (2.36) holds for every
penalty parameters generated by the algorithm. On the positive side, we can
add that, under the CQγ , we know in advance the algorithm will generate
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penalty parameters that have a common upper bound. This means that con-
dition (2.36) must only be verified for this upper bound. Although the upper
bound is not known in general, and so condition (2.36) is not checkable a
priori, the theoretical value of Theorem 13 is not to be underestimated.



Chapter 3

Solution algorithms for VI-constrained
hemivariational inequalities

3.1 Preliminaries

In a standard constrained optimization problem: min
x∈S

φ(x), with S being a

closed convex subset Rn and φ a continuous function defined on S1, it is
often assumed that the feasible set S is explicitly defined by a system of
finitely many equalities and inequalities. In a hierarchical optimization prob-
lem, the set S could be implicitly defined as the solution set of a (lower-level)
optimization problem, or more generally, a variational inequality:

minimize
x

φ(x)

subject to x ∈ argmin{ f(z) | z ∈ K }
(3.1)

where f : K → R is the lower-level objective function and K ⊆ Rn is the
feasible set of the lower-level optimization problem. This kind of problem
is usually referred to as a bilevel program and its practical solution can-
not be achieved by standard optimization methods, which invariably require
an explicit representation of the feasible set in terms of differentiable equa-
tions and inequalities. We consider a generalization of (3.1), which we call
Variational Inequality-Constrained HemiVariational Inequality (VI-C HVI).
We preliminarily recall that the Hemivariational Inequality problem HVI
(X,Φ, h), where X is a closed convex subset of Rn, Φ is a continuous func-
tions from X into Rn, and h : X → R is a convex function that is not
necessarily differentiable, is the problem of finding a vector x ∈ X such that

Φ(x)T ( y − x ) + h(y)− h(x) ≥ 0, ∀ y ∈ X.

1 Here and in all the paper, when we say that a function is continuous or continuously
differentiable on a closed set, we intend that the function is (defined and) continuous or
continuously differentiable on an open set containing the closed set

55



56 3 Solution algorithms for VI-constrained hemivariational inequalities

Hemivariational inequalities (also known as variational inequalities of the
second kind) are a powerful modeling tool that encompasses both (convex)
optimization, when Φ := 0, and VIs, when h := 0, as particular instances. In
their full generality, HVIs have been mainly considered in infinite-dimensional
settings, see e.g. [69, 72, 77]; nevertheless, finite-dimensional HVIs have re-
cently attracted attention in the mathematical programming literature; see
e.g. [1, 57, 68].

Fig. 3.1: HVI problem: we remark that, in case of continuously differentiable objective
functions, the convex optimization set is actually a subset of the VI problem set.

If the set X is implicitly defined as the solution set SOL(K,F ) of a lower-
level Variational Inequality VI (K,F ), with K ⊆ Rn closed and convex and
F : K → Rn continuous, the HVI (SOL(K,F ), Φ, h) becomes the VI-C HVI
defined by the tuple (K,F, Φ, h), which is the problem of finding a vector
x ∈ SOL(K,F ) such that

Φ(x)T ( y − x ) + h(y)− h(x) ≥ 0, ∀ y ∈ SOL(K,F ),

where

SOL(K,F ) ,
{
z ∈ K | F (z)T ( y − z ) ≥ 0, ∀ y ∈ K

}
.

Denoting the same problem, the notations: HVI (SOL(K,F ), Φ, h) and VI-C
HVI (K,F, Φ, h), will be used interchangeably. A particularly interesting case
that often arises in applications is the VI-Constrained Variational Inequal-
ity, which is the problem HVI (SOL(K,F ), Φ, 0), i.e. VI-C HVI (K,F, Φ, 0),
which we also write as VI-C VI (K,F, Φ). As far as we know, the HVI where
the feasible set is defined implicitly as the solution set of a monotone VI is a
novel problem.

Our interest in studying the VI-C HVI is several-fold. First, with F being
the gradient of the scalar-valued function f , it is well known that SOL(K,F )
is the set of stationary solutions of the lower-level optimization problem in the
constraint of (3.1); thus, assuming φ to be convex, the VI-C HVI (K,∇f, 0, φ)
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is intimately related to the bilevel program (3.1); in fact, the two problems
are equivalent if the lower-level objective function f is convex.

Fig. 3.2: VI-C HVI problem.

Second, with F being a monotone map and Φ , ∇ψ being the gradi-
ent of the (possibly nonconvex) scalar-valued function ψ, the VI-C HVI
(K,F,∇ψ, 0) is the first-order variational formulation for the optimization
problem with VI constraints:

minimize
x∈ SOL(K,F )

ψ(x), (3.2)

which in turn is a special case of a mathematical program with equilibrium
constraints (MPEC) [66] wherein there is no (upper-level) “design variable”.
Furthermore, since the VI is known [32] to provide a broad mathematical
framework for a host of economic equilibrium and game-theoretic problems,
(3.2) is a natural formulation for the problem of selecting a particular equi-
librium solution to optimize an auxiliary objective function ψ.

By using a penalization approach and taking h , ρ distΩ(•) to be a (suf-
ficiently large) positive multiple ρ of the distance function (in the Euclidean
norm) to the closed convex set Ω ⊆ Rn, the VI-C HVI (K,F,∇ψ, h) will
allow us to treat, for example, an extended version of (3.2) wherein the vari-
able x, in addition to being a solution of the VI (K,F ), is required to belong
to the side feasible set Ω, i.e., the problem

minimize
x∈Ω ∩ SOL(K,F )

ψ(x). (3.3)

It should be noted that

minimum
x∈Ω ∩ SOL(K,F )

ψ(x) ≥ minimum
x∈ SOL(K ∩Ω,F )

ψ(x).

Since equality does not necessarily hold, the two problems (3.2) and (3.3) are
in general not the same.
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The main contributions of the next sections can be summarized as follows:
• we establish an exact penalization result that reduces a HVI with VI con-
straints and side constraints to a VI-C HVI (without side constraints);
• we present a centralized solution method for solving the VI-C HVI and
establish its convergence;
• we present a distributed algorithm for solving a “partitioned” VI-C HVI,
i.e., the case where the pair (K,h) has a certain partitioned structure;
• we present an iterative descent framework for computing a stationary point
of a VI constrained minimization problem, whose objective function is not
necessarily convex;
• we apply the developed framework to solve a new power control problem
in ad-hoc networks.

To the best of our knowledge, these contributions are new and expand con-
siderably existing results. The proposed distributed algorithm, in which we
are interested as motivated by applications in non-cooperative game prob-
lems, see [34, Chapter 12], is novel even for a hierarchical optimization prob-
lem. Furthermore, the power control problem analyzed in the sequel is new
and our results expand considerably the applicability and flexibility of game-
theoretic models in ad-hoc networks and also bring considerable gains over
existing techniques.

This chapter is organized as follows. In the next section we discuss ex-
isting results in the literature. In Section 3.3 we show how to penalize side
constraints and reduce an HVI problem with side constraints to one with-
out side constraints. In Section 3.4 we propose the centralized algorithm,
considering both the exact and approximate versions, while in Section 3.5 we
present the results of the numerical experiments conducted on the centralized
version of the algorithm. Section 3.6 describes a broad decomposition scheme
for a partitioned HVI that enables the development of distributed versions
of the algorithm described in Section 3.4. Section 3.8 deals specifically with
VI-constrained minimization problems and shows how it is possible to use the
results developed in the previous sections for computing stationary solutions
to nonconvex VI constrained minimization problems. Finally, Section 3.9 in-
troduces a new power control problem in ad-hoc networks which gives the
original motivation for our interest in VI-C HVIs. The experimental results
reported amply demonstrate the significance of the algorithms developed in
this work.

3.2 Background Results

For the monotonicity definition we refer to Section 1.1. Here we need an
extension of the definition of monotonicity (plus) to point-to-set mappings.
Specifically, a set-valued map G : X → Rn is monotone on X if for all x
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and y in X and ζ ∈ G(x) and ξ ∈ G(y) it holds that (ξ − ζ)T (y − x) ≥ 0.
If in addition (ξ − ζ)T (y − x) = 0 implies ζ ∈ G(y) and ξ ∈ G(x), then G is
termed monotone plus. It is well-known that the subdifferential of a convex
function is a monotone plus set-valued map [55]. Subsequently, in Lemma 4,
we present a new class of monotone plus functions that seemingly is fairly
natural and yet we have not seen this result in the literature. Along with the
survey given below, this lemma justifies the blanket assumption (D) that we
impose on the VI-C HVI (K,F, Φ, h):

(A) K is a closed and convex set in Rn,
(B) F : K → Rn is a continuous monotone map,
(C) SOL(K,F ) 6= ∅.
(D) Φ : K → Rn is continuous and monotone plus, and
(E) h : K → Rn → R is convex and continuous.

Under assumptions (A–C), SOL(K,F ) is a nonempty closed convex set. To
motivate our analysis, it is useful to view HVIs and, in particular, the VI-C
HVI (K,F, Φ, h) as a particular case of the Generalized Variational Inequality
(GVI) [15]. Defined by the pair (X,T ), where X is a closed convex set in Rn
and T is a set-valued map defined on X with images T (x) being closed sets in
Rn, is to find a vector x ∈ X and a vector y ∈ T (x) such that (x ′−x)T y ≥ 0
for all x ′ ∈ X. It is not difficult to see that the HVI (X,Φ, h) is equivalent
to the GVI (X,T ), where T , Φ + ∂h, i.e., the problem of finding a vector
x ∈ X and a subgradient ζ ∈ ∂h(x) such that

(Φ(x) + ζ )
T

( y − x ) ≥ 0, ∀ y ∈ X, (3.4)

a fact that we will freely use in subsequent developments. Likewise, the VI-C
HVI (K,F, Φ, h) is equivalent to the GVI (SOL(K,F ), T ).

Even if the map T is monotone and the set SOL(K,F ) is closed and con-
vex, the GVI (SOL(K,F ), T ), and thus the VI-C HVI (K,F, Φ, h) is not
guaranteed to have a solution. For this to be true, there are two classical
sufficient conditions: either T is strongly monotone, or SOL(K,F ) is com-
pact. In this work, we assume neither. Instead, we rely on the well-known
Tikhonov process (see Subsection 1.3.3) to regularize the map T . For a his-
torical account of the application of the Tikhonov process to VIs, we refer
the reader to the Notes and Comments in [32, Section 12.9]; in particular, it
was noted there that Browder [13] (and more recently, Tseng [99]) showed
that given a single-valued, monotone VI (S, T ) one can compute a solution
of the VI (SOL(S, T ), G), where G is a strongly monotone operator, by solv-
ing a sequence of “regularized” problems of the form VI (S, T + εkG), where
{εk} is a sequence of positive scalars converging to zero. Each regularized
VI (S, T + εkG) has a unique solution x(εk) and as εk goes to zero, {x(εk)}
converge to the unique solution of VI (SOL(S, T ), G).

One key feature of the above regularization method is that it requires G to
be strongly monotone. In order to weaken this assumption, it has been pro-
posed to combine Tikhonov’s regularization with the proximal-point method
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as we have seen in Subsection 1.3.3. One line of research in this direction has
been carried out in the context of the hierarchical optimization problem (3.1).
For this problem, the regularization step at iteration k amounts to solving
the following strongly convex optimization problem:

minimize
x∈K

f(x) + εkφ(x) +
α

2
‖x− x(εk−1)‖2,

where α > 0 is a positive parameter and x(εk−1) is the (unique) optimal
solution of the above optimization problem at the previous iteration k − 1.
Thanks to the presence of the strongly convex term α‖x − x(εk−1)‖2, it is
not necessary to require that φ be strongly convex. Studies related to this
approach have been carried out mainly in the the French mathematical school.
Note that actually, in many of these studies, the main focus was not on the
solution of hierarchical problems. Rather, the authors were investigating the
possibility of obtaining strong convergence to the least norm solution of an
infinite dimensional monotone problem by using a combination of Tikhonov
and proximal regularization, so as to couple in a single method the good sides
of the two approaches. The more advanced results in analyzing this approach
in relation to hierarchical problems are probably those obtained by Cabot
[14], whose proof techniques have influenced our approach in Section 3.4.
Essentially the idea is to show that if εk goes to zero “slowly”, then x(εk)
converges to a solution of (3.1). Extension of this approach to more general
problems have been attempted recently, see [53, 70]. However, in order to
establish convergence results, in these latter papers, assumptions are made
on the behavior of the algorithm, rather than on the defining functions of the
problem.

Among the assumptions (A)–(E), the monotone plus property of Φ requires
an explanation. This property can be traced to the existing literature where
many authors have considered solving VIs of the type (Fix(U), I−V ), where
Fix(U) denotes the set of fixed points of a nonexpansive map U and V is
another nonexpansive map. It turns out that the map I − V is monotone
plus if V is nonexpansive.

Lemma 4. If V : Rn → Rn is nonexpansive, then I − V is monotone plus.

Proof. For any two vectors u and v, we have

(u− v )T [u− v − (V (u)− V (v) ) ] ≥ 0.

Moreover, if equality holds, then we have

(u− v )T (u− v ) = (u− v )T (V (u)− V (v) ),

which implies

0 ≤ ‖V (u)− V (v)− (u− v ) ‖2 = ‖V (u)− V (v)‖2 − ‖u− v ‖2 ≤ 0.
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Thus equality holds throughout and we deduce u− V (u) = v − V (v), which
is the plus property of the map I − V . ut

The line of research on the VI (Fix(U), I − V ) was initiated by [104] and we
cite the interesting papers [63, 67] for recent results and bibliographic refer-
ences. While we (see 6) can always write the solution set of the VI (K,F )
as the set of fixed points of the natural map: F nat

K (x) , ProjK(x − τF (x)),
where ProjK denotes the (Euclidean) projection on K and τ is a positive
constant, if F is simply monotone one can not guarantee that U , F nat

K be
nonexpansive. For example, it suffices to consider the univariate VI (R, ex)
whose natural map F nat

K = x−τex cannot be nonexpansive. In general, prob-
ably the weakest condition that guarantees F nat

K (x) to be nonexpansive (for τ
sufficiently small) is that F be co-coercive; see [32, Lemma 12.1.7]. Similarly,
while any map of the type I −V , with V nonexpansive, is monotone plus, as
shown by Lemma 4, clearly not all monotone plus maps can be put into this
form. For example take G(x) = ex which is strictly monotone; if we write
x − V (x) = ex we have V (x) = x − ex which is not nonexpansive. There-
fore, when applied to VI-C VIs, the setting originally introduced by Yamada
imposes rather strong limitations. Nevertheless, the algorithms obtained by
considering this fixed-point structure are rather interesting and simple to
implement. It is worth pointing out that, if U and V are nonexpansive, by
taking K = Rn and F = I −U , then the VI (Fix(U), I − V ) becomes the VI
(SOL(K,F ), I−V ) with F and I−V monotone. The upshot of this review is
that even for the VI-C VI, let alone the HVI, our setting extends the ones in
the existing literature. By considering the HVI, we are able to deal with the
VI-C VI with additional side constraints on the lower-level VI, a feature that
is not included in any of the cited papers on this topic. Indeed, in the next
section, we will prove to be able to cope with side constraints via a penalty
technique.

In addition to the main algorithm, another contribution of this work is
the introduction of a distributed solution method for solving the VI-C HVI
with partitioned structure. This is a novelty by itself as there is so far no
such algorithms even for structured hierarchical optimization problems. Our
main convergence result for such a distributed algorithm generalizes those
in [34] for non-cooperative Nash games. Besides being applicable to the HVI
and not only to games, the main departure of the convergence result derived
in the present work from the ones in [34] is that twice differentiability is not
required.

Historically, distributed algorithms for solving VIs can be traced back to
the original work in [78] for partitioned problems; see also [11]. Our interest
in algorithms of the distributed type for solving the VI-C HVI is very much
motivated by the recent surge of interests in the signal processing area on
game-theoretic problems wherein centralized algorithms are not realistic for
practical implementation; see the series of papers [53, 64, 80, 81, 93, 92, 105],
dealing with game-theoretic formulations of power control problems in ad-



62 3 Solution algorithms for VI-constrained hemivariational inequalities

hoc, CDMA, or Cognitive Radio networks. Several distributed algorithms
along with their convergence properties have been proposed in these papers.
However, all these solution methods have a common drawback, which strongly
limits their applicability in practical scenarios: they are guaranteed to con-
verge only if the considered power control Nash games have a unique solu-
tion, which is not the case in many applications. In the presence of multiple
solutions, the distributed computation of even a single Nash equilibrium be-
comes a complex and unsolved task. We overcome this limitation and propose
a novel distributed algorithm that solves the game-theoretic multi-channel
power control problem addressed in [64, 93, 92, 105] even when there are
multiple solutions; our main contribution is twofold: i) our algorithm con-
verges under milder sufficient conditions that do not imply the uniqueness
of the solution of the game; and ii) in the presence of multiple solutions, we
can control the quality of the reached solution by guaranteeing the conver-
gence to the “best” NE, according to some prescribed criterion, while keeping
the distributed implementation of the algorithm. The latter feature makes
our algorithm very appealing for designing practical telecommunication sys-
tems, while algorithms with unpredictable performance (like [64, 93, 92, 105],
when multiple solutions are present) are not acceptable since a control on the
achievable performance is required. A bi-level optimization approach based
on solving a variational inequality problem over the fixed point set of a non-
expansive mapping has been proposed in [53] to solve a scalar power control
problem in CDMA data networks; such a problem falls in the class of so-called
scalar games, modeling narrower and simpler scenarios than those considered
in this work (e.g., in [53], each users is assumed to have a scalar variable to
optimize rather than a vector as in this work). Hence, theoretical results in
[53] cannot be applied to design multi-channel networks, as considered in this
work.

3.3 Penalization of HVIs with Side Constraints

This section shows that, provided some weak assumptions are satisfied, the
hemivariational inequality HVI (SOL(K,F ) ∩ Ω,Φ, h) with VI (K,F ) and
side constraints Ω is equivalent to the penalized HVI without side constraints:
VI-C HVI (SOL(K,F ), Φ, h + ρ distΩ(•)) for all suitably large values of the
penalty parameter ρ > 0. This result is of independent interest and extends
classical results in optimization. Our specific motivation for studying the pe-
nalization of side constraints lies in the development in the following section,
where we show that Algorithm 3 successfully solves problems of the form
HVI (SOL(K,F ), Φ, h). However, the employed proof technique cannot di-
rectly be extended to handle the presence of the side constraint set Ω. The
main result in this section, Theorem 14, allows us to apply Algorithm 3 to



3.3 Penalization of HVIs with Side Constraints 63

the penalized problem HVI (SOL(K,F ), Φ, h+ρ distΩ(•)) as a way of solving
the HVI (SOL(K,F ) ∩Ω,Φ, h).

Since in this section the particular structure of the set SOL(K,F ) will
play no role, we derive the desired penalty results in a slightly more general
framework than is necessary for our purposes. Specifically, we consider the
HVI (X∩Ω,Φ, h), where X and Ω are closed convex sets and Φ and h satisfy
the blanket assumptions (D) and (E). We need three preliminary lemmas
that are reminiscent of similar results in optimization. The first lemma says
that, in the setting above, the values of Φ over the solution set of the HVI are
a constant. This extends the notable fact valid for pseudomonotone VIs (see
Subsection 1.3.2). The noteworthy point here is that, while the sum of the
two monotone plus mappings Φ and ∂h is surely monotone, the plus property
does not necessarily hold for the sum. So the following lemma does not readily
follow from known results such as the cited corollary.

Lemma 5. Let an HVI (X,Φ, h) be given, where X ⊆ Rn is a closed convex
set, Φ : X → Rn is continuous and monotone plus on X and h : X → R
is convex. Let x and x̄ be two solutions of the HVI, so that (see (3.4)), for
suitable ζ ∈ ∂h(x) and ζ̄ ∈ ∂h(x̄),

(Φ(x) + ζ )T (z − x) ≥ 0 and (Φ(x̄) + ζ̄ )T (w − x̄) ≥ 0, (3.5)

for all z and w in X. Then Φ(x) = Φ(x̄), i.e. Φ is constant on the solution
set; moreover, ζ ∈ ∂h(x̄) and ζ̄ ∈ ∂h(x).

Proof. Summing the two inequalities in (3.5), with z = x̄ and w = x, we get[
(Φ(x) + ζ)− (Φ(x̄) + ζ̄ )

]T
( x̄− x ) ≥ 0.

The monotonicity of Φ + ∂h shows that the inequality above is actually an
equality so that, rearranging terms, we get

[Φ(x)− Φ(x̄) ]T ( x̄− x ) + (ζ − ζ̄)T ( x̄− x ) = 0. (3.6)

Monotonicity of Φ and h then shows that

[Φ(x)− Φ(x̄) ]T (x− x̄) = 0 = (ζ − ζ̄)T (x− x̄ )

and this, in turn, by the plus property of Φ and ∂h, completes the proof. ut

Consider the HVI (X ∩ Ω,Φ, h). By (3.4), a vector x̄ ∈ X ∩ Ω is a solution
of this HVI if and only if there exists ζ̄ ∈ ∂h(x̄) such that

( y − x̄ )T (Φ(x̄) + ζ̄ ) ≥ 0, ∀ y ∈ X ∩ Ω,

or equivalently, −(Φ(x̄) + ζ̄) ∈ NX∩Ω(x̄), where NS(x) denotes the normal
cone of the closed convex set S at x ∈ S. Under the constraint qualification
that
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NX∩Ω(x̄) = NX(x̄) +NΩ(x̄), (3.7)

it follows that a vector x̄ ∈ X∩Ω is a solution of HVI (X∩Ω,Φ, h) if and only
if there exist ζ̄ ∈ ∂h(x̄) and η̄ ∈ NΩ(x̄) such that −(Φ(x̄) + ζ̄ + η̄) ∈ NX(x̄),
or equivalently, that

( y − x̄ )T (Φ(x̄) + ζ̄ + η̄ ) ≥ 0, ∀ y ∈ X. (3.8)

Let E(x̄) be the set of such vectors η̄ associated with the solution x̄; i.e.,
η̄ ∈ E(x̄) if and only if η̄ ∈ NΩ(x̄) and there exists ζ̄ ∈ ∂h(x̄) such that (3.8)
holds. Note that (3.7) provides a sufficient condition for E(x̄) to be nonempty.
Equality (3.7) is a rather weak requirement that is implied by the condition
riX ∩ riΩ 6= ∅, where riS denotes the relative interior of the convex set S.
The latter relative condition, in turn, can be further relaxed if, as it is often
the case in applications, Ω is polyhedral, in which case (3.7) is implied by
Ω ∩ riX 6= ∅.

Assuming that Φ is monotone plus, the next lemma establishes that the
set E(x̄) is independent of the solution x̄.

Lemma 6. Let an HVI (X ∩ Ω,Φ, h) be given, where X and Ω are closed
convex subsets of Rn, Φ : X ∩ Ω → Rn is continuous and monotone plus on
X, and h : X ∩Ω → R is continuous and convex. Let x̂ be a solution of this
HVI such that E(x̂) is nonempty. Then, if x̃ is any other solution of the HVI,
E(x̃) is nonempty and E(x̃) = E(x̂).

Proof. We first show that E(x̃) is nonempty. Suppose by contradiction that
E(x̃) = ∅. We know that

(Φ(x̃) + ζ̃ )T (w − x̃ ) ≥ 0, ∀w ∈ X ∩Ω (3.9)

for some ζ̃ ∈ ∂h(x̃). Let η̂ ∈ E(x̂) be arbitrary, by definition there exists

ζ̂ ∈ ∂h(x̂) such that

( v − x̂ )T (Φ(x̂) + ζ̂ + η̂ ) ≥ 0, ∀v ∈ X. (3.10)

Substituting w = x̂ in the former inequality and v = x̃ in the latter inequality,
and adding, we obtain

( x̃− x̂ )T (Φ(x̂)− Φ(x̃) ) + ( x̃− x̂ )T ( ζ̂ − ζ̃ ) + ( x̃− x̂ )T η̂ ≥ 0.

But the left-hand side is also non-positive by the monotonicity of Φ and ∂h
and the fact that x̃ ∈ Ω, x̂ ∈ Ω, η̂ ∈ NΩ(x̂). Hence, the three addends are
all zero and, in particular, it holds ( x̃− x̂ )T η̂ = 0, which easily implies that
η̂ ∈ NΩ(x̃). Moreover, since the sum of the two inequalities (3.9) and (3.10),
with w = x̂ in the former and v = x̃ in the latter, is equal to zero, we have

( x̃− x̂ )T (Φ(x̂) + ζ̂ + η̂ ) = 0. (3.11)
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Since we assumed E(x̃) = ∅, there exists ỹ ∈ X such that

( ỹ − x̃ )T (Φ(x̂) + ζ̂ + η̂ ) < 0. (3.12)

because Φ(x̃) = Φ(x̂), ζ̂ ∈ ∂h(x̃) by Lemma 5 and we have just established
that η̂ ∈ NΩ(x̃). We get, by (3.10), (3.11) and (3.12),

0 ≤ ( ỹ − x̂ )T (Φ(x̂) + ζ̂ + η̂ ) = ( ỹ − x̃+ x̃− x̂ )T (Φ(x̂) + ζ̂ + η̂ ) < 0

which is impossible so that E(x̃) is nonempty.

Let now η̂ ∈ E(x̂) and η̃ ∈ E(x̃) be arbitrary. There exist ζ̂ ∈ ∂h(x̂) and

ζ̃ ∈ ∂h(x̃) such that for all y ∈ X,

( y− x̂ )T (Φ(x̂) + ζ̂ + η̂ ) ≥ 0, and ( y− x̃ )T (Φ(x̃) + ζ̃ + η̃ ) ≥ 0. (3.13)

Substituting y = x̂ in the former inequality and y = x̃ in the latter inequality,
and adding, we obtain

( x̃− x̂ )T
[

(Φ(x̂)− Φ(x̃) ) + ( ζ̂ − ζ̃ )
]

+ ( x̃− x̂ )T η̂ + ( x̂− x̃ )T η̃ ≥ 0;

but the left-hand side is also non-positive because all its addends are non-
positive by the monotonicity of Φ and ∂h and the fact that x̃ ∈ Ω, x̂ ∈ Ω,
η̂ ∈ NΩ(x̂), and η̃ ∈ NΩ(x̃). Hence, all the addends above are zero and, in
particular, it holds (x̃−x̂)T η̂ = 0 = (x̂−x̃)T η̃, which easily implies η̃ ∈ NΩ(x̂)
and η̂ ∈ NΩ(x̃).

Moreover, since the sum of the two inequalities in (3.13), with y = x̃ in
the former and y = x̂ the latter, is equal to zero, we have

( x̃− x̂ )T (Φ(x̂) + ζ̂ + η̂ ) = 0 = ( x̂− x̃ )T (Φ(x̃) + ζ̃ + η̃ ).

Therefore, recalling that by Lemma 5 Φ(x̃) = Φ(x̂), ζ̃ ∈ ∂h(x̂), and ζ̂ ∈ ∂h(x̃),
we have for any y ∈ X,

( y − x̃ )T (Φ(x̃) + ζ̂ + η̂ )

= ( y − x̂ )T (Φ(x̂) + ζ̂ + η̂ ) + ( x̂− x̃ )T (Φ(x̂) + ζ̂ + η̂ )

= ( y − x̂ )T (Φ(x̂) + ζ̂ + η̂ ) ≥ 0.

Thus η̂ ∈ E(x̃). Similarly, we also have

( y − x̂ )T (Φ(x̂) + ζ̃ + η̃ ) ≥ 0,

which implies η̃ ∈ E(x̂). This is enough to show that E(x̂) = E(x̃). ut

Remark 4. Lemma 6 is reminiscent of the fact that for a convex program with
non-unique optimal solutions, the set of optimal Lagrange multipliers does



66 3 Solution algorithms for VI-constrained hemivariational inequalities

not depend on the optimal solutions; see e.g. the remark on page 354 in [10].
2

The next lemma deals with the minimization problem:

minimize
x∈Ω∩X

f(x), (3.14)

where f : X ∩Ω → R is a continuously differentiable convex function and X
and Ω are closed convex sets in Rn.

The following result is strongly related to Lemma 1. We remark that, in
that case, set Ω is explicitly defined by inequalities while Lemma 7 copes
with an implicitly defined Ω set.

Lemma 7. Let x̂ be an optimal solution of (3.14) for which there exist λ ≥ 0
and ξ ∈ ∂ distΩ(x̂) such that

(∇f(x̂) + λξ )T ( y − x̂ ) ≥ 0, ∀ y ∈ X. (3.15)

Then, for every ρ > λ the optimal solution sets of (3.14) and the penalized
problem

minimize
x∈X

[ f(x) + ρdistΩ(x) ] (3.16)

coincide.

Proof. It follows from the inequality (3.15) that x̂ is a minimizer on X of the
convex function f + λ distΩ(•). Let x̄ be a solution of (3.14) and let ρ > λ.
We have, for any y ∈ X,

f(y) + ρdistΩ(y) ≥ f(y) + λ distΩ(y)

≥ f(x̂) + λ distΩ(x̂)

= f(x̂) = f(x̄) + ρdistΩ(x̄),

thus showing that every solution of (3.14) is also a solution of (3.16).
Conversely, suppose that x̄ is a solution of (3.16). If x̄ belongs to Ω, it

is obvious that x̄ is a also a solution of (3.14). Assume then that x̄ /∈ Ω, or
equivalently, distΩ(x̄) > 0. We can write

f(x̄) + ρdistΩ(x̄) > f(x̄) + λ distΩ(x̄)

≥ f(x̂) + λ distΩ(x̂) = f(x̂) + ρdistΩ(x̂),

where the second inequality follows from the fact that x̂ is a global minimizer
of f + λ distΩ(x̂) on X and the third from distΩ(x̂) = 0. But this chain of
inequalities contradicts the optimality of x̄. Thus x̄ ∈ Ω and so x̄ is also a
solution of (3.14). ut

The following is the main result of this section; it shows that, under mild
assumptions, a VI-C VI with side constraints can be converted to a HVI.



3.3 Penalization of HVIs with Side Constraints 67

Theorem 14. Let x̂ be a solution of the HVI (X ∩ Ω,Φ, h) with E(x̂) 6= ∅,
where Φ is continuous and monotone plus, h is continuous and convex on the
feasible set X ∩Ω, and X and Ω are both closed and convex. Let η ∈ E(x̂) be
arbitrary. Then for every ρ > ‖η‖, the solution set of the HVI (X ∩Ω,Φ, h)
and that of the penalized HVI (X,Φ, h+ ρdistΩ(•)) coincide.

Proof. Let x̄ be any solution of HVI (X ∩ Ω,Φ, h). By Lemma 6, it follows
that η ∈ E(x̄). Let λ , ‖η‖ and

η̄ ,


any element in ∂ distΩ(x̄) if η = 0

η

‖ η ‖
if η 6= 0.

Since ∂ distΩ(x̄) = IB∩NΩ(x̄), where IB is the Euclidean unit ball, it follows
that η̄ ∈ ∂ distΩ(x̄). Moreover, by definition of the elements of the set E(x̄),
ζ̄ ∈ ∂h(x̄) exists such that

x̄ ∈ argmin
y∈X

[
Φ(x̄) + ζ̄ + λ η̄

]T
( y − x̄ )

Lemma 7 tells us that x̄ is also a minimizer of

minimize
y∈X

[ (
Φ(x̄) + ζ̄

)T
(y − x̄ ) + ρ distΩ(y)

]
(3.17)

if ρ > λ. Applying the minimum principle we immediately get that x̄ is a
solution of the penalized HVI (X,Φ, h+ ρdistΩ(•)).

Conversely, suppose that x̄ is a solution of HVI (X,Φ, h + ρdistΩ(•)) for
some ρ > λ. We only need to show that x̄ ∈ Ω. Suppose the contrary, so that
distΩ(x̄) > 0. We note that by the first part of the theorem we know that also
x̂ is a solution of the same HVI, so that by Lemma 5 we have Φ(x̂) = Φ(x̄).
Let now θ be a number in (λ, ρ). Since by the first part of the theorem x̂
is still a solution of HVI (X,Φ, h + θ distΩ(•)) we can write, noting that x̄
belongs to X and recalling that distΩ(x̂) = 0,

Φ(x̂)T (x̄− x̂) + h(x̄)− h(x̂) + θ distΩ(x̄) ≥ 0.

By Φ(x̂) = Φ(x̄) this immediately gives, recalling again that distΩ(x̂) = 0,

Φ(x̄)T (x̂− x̄) + h(x̂)− h(x̄) + ρdistΩ(x̂)

≤ θ distΩ(x̄)

< ρ distΩ(x̄)

≤ Φ(x̄)T (x̄− x̄) + h(x̄)− h(x̄) + ρdistΩ(x̄).

(3.18)

But this contradicts the fact that x̄ solves the HVI (X,Φ, h + ρ distΩ(•))
which, in turn, implies that x̄ minimizes Φ(x̄)T (y−x̄)+h(y)−h(x̄)+ρdistΩ(y)
on X. ut
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Remark 5. In the above developments, the norm used was the Euclidean
norm. Theorem 14 remains valid if the distance function is in terms of any
other norm; it suffices to note that for any norm ‖ • ‖ with ‖ • ‖D as its dual
norm, ∂distΩ(x) = NΩ(x)∩IBD, where IBD is the unit ball in the norm ‖•‖D.
Then it is immediate to check that Theorem 14 still holds for ρ > ‖η‖D.

3.4 The Main Algorithm: Centralized Version

This section presents a centralized iterative algorithm for the solution of
the VI-C HVI (K,F, Φ, h). Before doing so, we should describe alternative
ways to solve this problem by a centralized algorithm that depends on avail-
able representations of the set SOL(K,F ). Foremost is the affine case where
K is a polyhedron and F (x) = q + Mx is an affine mapping with a posi-
tive semidefinite (albeit not necessarily symmetric) matrix M . In this case,
provided that a solution of the affine VI (K, q,M) is known, SOL(K, q,M)
has the polyhedral representation given by [32, Expression 2.5.11]. While
the solution of the (A)VI-C HVI (K,F, Φ, h) by a centralized algorithm can
therefore be accomplished by any known approach for a linearly constrained
monotone HVI, it is not immediately clear that any such algorithm, which is
based on the polyhedral representation of the SOL(K, q,M), would admit a
distributed implementation when the problem (K,F, Φ, h) has the requisite
Cartesian structure; see Section 3.6. Another case where SOL(K,F ) has an
explicit representation that could be exploited by a centralized algorithm is
when F (SOL(K,F )) is a singleton (such as when F is pseudomonotone plus
on K). However, the representation [32, Proposition 2.3.12] of SOL(K,F ) in
this case is not so easy to take advantage of, unless more details are available
on the pair (K,F ). Lastly, even though SOL(K,F ) is a closed convex set for
a convex-monotone pair (K,F ), its representation in general, cf. [32, Expres-
sion 2.3.2], is in terms of a semi-infinite system of linear inequalities that is
not helpful for practical calculations. While the algorithm that we describe
below does not depend on any special representation of the pair (K,F ), it
requires solving sub-HVIs each defined on the set K and by the mapping
F + εk(Φ+ ∂h) + α(• − xk) for positive scalars εk and α.

Specifically, given the current iteration xk ∈ K, the core step of the algo-
rithm consists of calculating an approximate solution of the

HVI (K,F k, εkh), where F k , F + εk Φ+ α ( • − xk ). (3.19)

We denote by x̄k+1 the exact solution of this HVI, which is equivalent to the
GVI (K,F k + εk∂h); i.e., x̄k+1 ∈ K is such that for some ζ̄k+1 ∈ ∂h(x̄k+1)
and all y ∈ K,
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F (x̄k+1) + εk (Φ(x̄k+1) + ζ̄k+1 ) + α ( x̄k+1 − xk )

]T
( y − x̄k+1 ) ≥ 0.

(3.20)
Since F k + εk∂h is a strongly monotone set-valued mapping because of (B),
(D), and (E), the HVI (3.19) has one and only one solution, so that x̄k+1 is
well defined.

Algorithm 3: Inexact Prox-Tikhonov Algorithm

(S.0) : Let {ek} be a sequence of nonnegative scalars, and {εk}
a sequence of positive scalars, both tending to zero. Let α > 0 be
arbitrary. Choose x0 ∈ K and set k = 0.

(S.1) : If xk is a solution of VI-C HVI (K,F, Φ, h), STOP.

(S.2) : Find xk+1 ∈ K such that ‖xk+1 − x̄k+1‖ ≤ ek, where x̄k+1 ∈
K is an exact solution of (3.19).

(S.3) : Set k ← k + 1 and return to (S.1).

Note that if ek = 0 we solve (3.19) exactly at iteration k, while if ek > 0 we
permit inaccurate solution of the same problem. To establish the convergence
of the algorithm, we assume, in addition to the blanket setting (A–E), the
following condition:

(F) the solution set of the VI-C HVI (K,F, Φ, h), denoted SOL(K,F, Φ, h), is
non-empty and bounded; moreover, the set L defined below is bounded:

L , {x ∈ K | ∃ y ∈ SOL(K,F, Φ, h)

such that Φ(x)T (y − x) + h(y)− h(x) > 0
}
.

Since SOL(K,F, Φ, h) is the solution set of the monotone GVI(SOL(K,F ), Φ+
∂h), it follows that SOL(K,F, Φ, h) is a non-empty, compact, convex set. The
boundedness requirement of the two sets, SOL(K,F, Φ, h) and L is automat-
ically satisfied if K is bounded. The boundedness of the set L is reminiscent
of a sufficient condition for the existence of a solution to the HVI; see [32,
Exercise 2.9.11]. The following example shows that neither K nor SOL(K,F )
need to be bounded under all the assumptions made herein.

Example 5. Take K = [−1,+∞), F (x) , 0, Φ(x) = max(0, x) and h , 0. It is
clear that F and Φ are both monotone plus. Obviously, since F is identically
zero, SOL(K,F ) coincides with K, which is unbounded. It is easy to check
that SOL(K,F ;Φ, h) = [−1, 0] and L = ∅. 2

We also need to impose two technical conditions on the sequences of scalars
{ek} and {εk}. Note that these are not assumptions on the problem, but
merely conditions we enforce in the algorithmic scheme.

C1

∞∑
k=0

εk =∞;
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C2 {ek/εk} → 0.

Condition C1 states that εk cannot go to zero too fast. The reason for this
requirement is rather intuitive, for if εk becomes “too small, too soon”, then
the term α(•−xk) dominates the term εkΦ and the sequence {xk} “collapses”
to the sequence generated by the proximal-point algorithm; the role of Φ then
becomes negligible so that we cannot guarantee that we find anything more
than a point in SOL(K,F ). By the same token, Condition C2 says that the
inexact solution we employ in place of the exact solution of the GVI (3.19)
should not deviate too far from the exact solution and that the smaller εk
is the more precise xk+1 should be to x̄k+1, so much so as to guarantee
{ek/εk} → 0; if this were not so, once again the influence of Φ would be lost
in the solution process.

In order to prove convergence of Algorithm 3 we need a preliminary lemma.

Lemma 8. Let X ⊆ Rn be a closed convex set, Φ : X → Rn a monotone
plus and continuous function, and h : X → R a convex function. If a solution
y to the HVI (X,Φ, h) and a point x ∈ X exist such that

Φ(x)T ( y − x ) + h(y)− h(x) ≥ 0, (3.21)

then x is also a solution to the HVI (X,Φ, h).

Proof. Since y is a solution we can write

Φ(y)T ( z − y ) + h(z)− h(y) ≥ 0 ∀ z ∈ X.

In particular, by taking z = x we get

Φ(y)T (x− y ) + h(x)− h(y) ≥ 0. (3.22)

Summing (3.21) and (3.22) we have

(Φ(x)− Φ(y) )T (y − x) ≥ 0,

which implies, by monotonicity,

(Φ(x)− Φ(y) )T (x− y ) = 0.

By the plus property, we obtain

Φ(x) = Φ(y).

Therefore, we can write, for any z ∈ X,

Φ(x)T ( z − x ) + h(z)− h(x)

= Φ(y)T ( z − y ) + Φ(x)T ( y − x ) + h(z)− h(y) + h(y)− h(x) ≥ 0,

thus showing that x is a solution of the HVI (X,Φ, h). ut
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Remark 6. If h := 0, it is easy to see that Lemma 8 holds if we only require
Φ to be pseudo monotone plus on X instead of monotone plus.

0 < εk ↓ 0, α > 0; x0 ∈ K, k = 0

xk ∈
SOL(K,F, Φ, h)

xk+1 := (inexact) solu-

tion of HVI(K,Fk, εkh)

STOP

k ← k + 1

NO

YES

Fig. 3.3: Algorithm 3 scheme

The next theorem is the main result of this section. In this theorem we use
a global Lispchitz continuity assumption that, however, is only required if
inexactness is allowed in the solution of the sub-HVI in (3.19). This Lips-
chitz condition is certainly satisfied if, for example, K is bounded and F ,
Φ are locally Lipschitz. We recall that since h is required to be convex and
continuous, it is automatically locally Lipschitz.

Theorem 15. Assume that (A–F), and C1 and C2 hold. Assume further
that either ek = 0 eventually, or K is bounded and F , Φ and h are Lipschitz
on K. Then Algorithm 3 is well defined and produces a bounded sequence
{xk} such that each of its limit points is a solution of VI-C HVI (K,F, Φ, h).

Proof. Write ShΦ , SOL(K,F, Φ, h), which is assumed to be bounded. To
prove the theorem it is enough to show that the sequence {δk} converges to
zero, where

δk , 1
2 distShΦ(xk) = 1

2 ‖xk − ProjShΦ(xk)‖2.

By (3.20), we get, for y ∈ K,

[F (x̄k+1) + α ( x̄k+1 − xk ) ]
T

( y − x̄k+1 )

≥ εk
[

(h(x̄k+1)− h(y) ) + Φ(x̄k+1)T ( x̄k+1 − y )
]
.

(3.23)
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We have for every y ∈ K

α (xk − xk+1 )T ( y − xk+1 )

≤ α
[

(xk − x̄k+1 )T (y − x̄k+1) + ( x̄k+1 − xk+1 )T ( y − xk+1 )+

(xk − x̄k+1 )T ( x̄k+1 − xk+1 )
]

≤ α ( x̄k+1 − xk+1 )T ( y − xk+1 ) + F (x̄k+1)T ( y − x̄k+1 )+

α (xk − x̄k+1 )T ( x̄k+1 − xk+1 )+

εk
[
h(y)− h(x̄k+1) + Φ(x̄k+1)T ( y − x̄k+1 )

]
≤ ηk + F (xk+1)T ( y − xk+1 )+

εk
[

(h(y)− h(xk+1) ) + Φ(xk+1)T ( y − xk+1 )
]
,

(3.24)
where ηk is equal to zero if ek = 0, and is a positive scalar satisfying ηk ≤Mek
for some constant M > 0 if ek > 0. More precisely, if we denote by D the
diameter of K, by L a (common) Lipschitz constant for F , Φ, and h on K,
by U a (common) upper bound for ‖F (x)‖ and ‖Φ(x)‖ on K, and by ε̄ a
constant such that εk ≤ ε̄ for all k, we can take

M = 2αD + ε̄(L+ U +D) + U + LD.

We can write

δk+1 − δk = 1
2 ‖xk+1 − ProjShΦ(xk+1) ‖2 − 1

2 ‖xk − ProjShΦ(xk) ‖2

≤ 1
2 ‖xk+1 − ProjShΦ(xk)‖2 − 1

2 ‖xk − ProjShΦ(xk) ‖2

= − 1
2‖xk+1 − xk‖2 + (xk − xk+1)T (ProjShΦ(xk)− xk+1)

≤ − 1
2 ‖xk+1 − xk‖2 +

1

α
F (xk+1)T (ProjShΦ(xk)− xk+1)+

εk
α

[
(h(ProjShΦ(xk))− h(xk+1)) + Φ(xk+1)T (ProjShΦ(xk)− xk+1)

]
+
ηk
α

≤ − 1
2 ‖xk+1 − xk‖2+

εk
α

[(h(ProjShΦ(xk))− h(xk+1)) + Φ(xk+1)T (ProjShΦ(xk)− xk+1)]︸ ︷︷ ︸
Vk+1

+
ηk
α

(3.25)
The first inequality is obvious by the definition of projection; the second is
obtained from (3.24) evaluated at y = ProjShΦ(xk) ∈ K. The third inequality

can be obtained by observing that since ProjShΦ(xk) ∈ ShΦ ⊆ SOL(K,F ), we

have F (ProjShΦ(xk))T (xk+1 − ProjShΦ(xk)) ≥ 0, which yields in turn, by the

monotonicity of F , F (xk+1)T (ProjShΦ(xk)−xk+1) ≤ 0. We now consider three
cases.
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Case 1: Eventually, εkVk+1 + ηk ≤ 0.

In this case the nonnegative sequence {δk} is (eventually) non-increasing and
therefore convergent. Since ShΦ is bounded, this implies that also {xk} is
bounded. Furthermore, {δk+1 − δk} converges to zero. From (3.25), we have

δk+1 − δk ≤ − 1
2 ‖xk+1 − xk‖2,

which shows that
lim
k→∞

‖xk+1 − xk‖ = 0. (3.26)

Summing over i from k0 to k − 1 we get from (3.25)

δk − δk0 ≤
1

α

k−1∑
i=k0

εiVi+1 +
1

α

k−1∑
i=k0

ηi. (3.27)

Since εk−1Vk ≤ εk−1Vk + ηk−1 ≤ 0, all Vk are non positive. We show that
lim sup
k→∞

Vk = 0. Suppose by contradiction this is not the case, so that a positive

constant V̄ exists such that Vk ≤ −V̄ < 0 for all k. This implies that the
right-hand side in (3.27) goes to −∞. In fact, tacking into account C2, we
can write ηi ≤ Mei ≤ ciMεi, for some sequence {ci} of positive constants
converging to zero. Assuming, without loss of generality, that all ci are such
that ciM ≤ V̄ /2 we can write, by (3.27),

δk − δk0
≤ 1

α

k−1∑
i=k0

εiVi+1 +
1

α

k−1∑
i=k0

ηi ≤ −
V̄

2α

k−1∑
i=k0

εi

Since {δk} converges, we get a contradiction and have thus proved that
lim sup
k→∞

Vk = 0. Therefore, a subsequence J exists such that

lim
k∈J
k→∞

Vk = 0. (3.28)

Since {xk} is bounded, we may assume, without loss of generality, that

lim
k∈J
k→∞

xk = x̃.

Note that since K is closed, x̃ ∈ K. We show that actually x̃ ∈ SOL(K,F ).
If this is not so, there exists a point y ∈ K such that F (x̃)T (y − x̃) < 0. By
(3.24) we can write

[F (xk) + α (xk − xk−1 ) ]
T

( y − xk )+

εk−1

[
h(y)− h(xk) + Φ(xk)T ( y − xk )

]
≥ −ηk−1.

(3.29)
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By continuity, the definition of y, the boundedness of {xk} and (3.26), we
have, without loss of generality (after a suitable renumeration),

lim
k∈J
k→∞

F (xk)T (y − xk) < 0, lim
k∈J
k→∞

α(xk − xk−1)T (y − xk) = 0,

and
lim
k∈J
k→∞

εk−1

[
h(y)− h(xk) + Φ(xk)T ( y − xk )

]
= 0,

Then we get a contradiction to (3.29) since {ηk} ↓ 0. Therefore, x̃ ∈
SOL(K,F ). Thanks to (3.26) we have lim

k∈J,k→∞
xk−1 = x̃. Therefore, by (3.28)

and continuity, we get h(ProjShΦ(x̃))− h(x̃) + Φ(x̃)T (ProjShΦ(x̃)− x̃) = 0. By

Lemma 8, it follows that x̃ ∈ ShΦ. Therefore, we get

lim
k∈J
k→∞

δk = 0.

But since the whole sequence {δk} is convergent, this implies that the entire
sequence {δk} ↓ 0, thus concluding the analysis of Case 1.

Case 2: The two index sets J and J̄ are both infinite, where

J , { k | εk−1 Vk + ηk−1 > 0 }

and

J̄ ,
{
k ∈ J | − 1

2 ‖xk − xk−1 ‖2 +
εk−1

α
Vk +

ηk−1

α
> 0

}
.

By (3.25), if k ∈ J̄ it might happen that δk > δk−1, while if k 6∈ J̄ then
necessarily δk ≤ δk−1. Therefore, since J̄ is infinite, to prove that {δk} goes
to zero it is enough to show that the subsequence {δk}J̄ converges to zero.
To this end, first observe that for every k ∈ J̄ it holds that

εk−1Vk + ηk−1 >
α

2
‖xk − xk−1‖2. (3.30)

The sequence {xk}J̄ is bounded. In fact, if ηk = 0 eventually (exact solution
of the subproblems), then xk belongs to L which is bounded by assumption.
Otherwise, we have distK(xk+1) ≤ ‖xk+1 − x̄k+1‖ ≤ ek, from which the
boundedness of {xk} follows from that of K. By continuity, also {Vk}J̄ is
bounded. Hence, (3.30) yields

lim
k∈J̄
k→∞

‖xk − xk−1‖ = 0. (3.31)

Since {xk}J̄ is bounded, it has limit points. Let J̃ ⊆ J̄ be a subsequence such
that
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lim
k∈J̃
k→∞

= x̃.

Reasoning exactly as in Case 1, (the only difference is that instead of (3.26)
we use (3.31)), we may deduce that x̃ ∈ SOL(K,F ). By continuity, recalling
that J̃ ⊆ J̄ ⊆ J and Condition (C2), which implies {ηk/εk} → 0, we get
h(ProjShΦ(x̃))−h(x̃)+Φ(x̃)T (ProjShΦ(x̃)−x̃) ≥ 0. Thus x̃ ∈ ShΦ; hence lim

k∈J̃
k→∞

δk =

0. Since this reasoning can be repeated for every convergent subsequence of
{xk}J̄ , we may conclude that lim

k∈J̄
k→∞

δk = 0, thus concluding the analysis of

this case.

Case 3: The index set J is infinite while J̄ is finite.

In this case, the sequence {δk} is non-increasing eventually. Therefore, {δk}
converges, implying that {xk} is bounded, {δk+1− δk} converges to zero and
therefore, by (3.25), also (3.26) holds. At this point, we can proceed exactly
as in Case 1 and Case 2 to prove that {δk} converges to zero, thus concluding
the proof of the theorem. ut

Remark 7. It should be clear that all the results in Theorem 15 still hold
if we change α at each iteration, provided that these αs are bounded away
from zero and bounded from above. Furthermore, it is interesting to observe
that if we are dealing with VI-C VIs, i.e. if h := 0, it can be checked, by
going through the proof and taking into account Remark 6, that Theorem 15
still holds with the monotonicity plus assumption on Φ replaced by a weaker
pseudo monotonicity plus assumption.

Some observations are in order. The first is that Algorithm 3 would not
be implementable if we were not able to solve the subproblems at Step 2.
Since these subproblems are instances of strongly monotone generalized VIs,
a host of methods is available for their solution; the fact that we only have
to deal with strongly monotone subproblems is one of the advantages of our
approach. Another issue worth mentioning is that if we are implementing
the inexact version of Algorithm 3, i.e., if ek > 0, we need to translate the
theoretical criterion ‖xk+1−x̄k+1‖ ≤ ek at Step 2 into something computable,
since the exact solution x̄k+1 of the sub-HVI (3.19) is not known. Here,
again, the strong monotonicity of the subproblems at Step 2 comes into help.
Consider for example and for simplicity the case of a VI-C VI (h := 0). In this
case a rather complete theory of “error bounds” is available, see [32, Chapter
6], and can be used. For example, by [32, Proposition 6.3.1] it follows that at
each iteration we have, for some constant C > 0

‖xk+1 − x̄k+1 ‖ ≤
C + 1

α
‖xk+1 − PK(xk+1 − F k(xk+1)) ‖,

with the right-hand norm being a practically computable quantity. Therefore,
in a practical implementation of Algorithm 3 we could simply stop when
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‖xk+1 − PK(xk+1 − F k(xk+1))‖ ≤ ek without using any of the theoretical
properties in Theorem 15. Other possibilities are available and a choice should
be made taking into account the particular problem at hand.

3.5 Numerical experiments

In this section we present the results of the numerical experiments conducted
on the centralized (thus employing a centralized scheme for the solution of
the inner problem (3.19)) version of Algorithm 3.

3.5.1 Examined problems

We tested the centralized Proximal point-Tikhonov Algorithm 3 on the VI-C
VI(K,F, Φ) problem.

We recall that K must be a closed and convex set, F a continuous mono-
tone map, SOL(K,F ) a non empty set and Φ a continuous and monotone
plus function. In the examples that we have considered, the K set is a com-
pact polyhedron. We remark that the compactness of K guarantees that
SOL(K,F ) is not empty. Furthermore, in some cases, the choice of a com-
pact polyhedral K set allows the explicit calculation of the set SOL(K,F ),
by simple theoretical considerations (see Appendix B for more details); the
knowledge of the set SOL(K,F ) may be useful in checking the accuracy that
is achieved by the algorithm. In every problem, function F is monotone but
not strictly monotone. This choice is crucial in order to get a set SOL(K,F )
which possibly is not a singleton; indeed, if this were not the case, prob-
lem VI-C VI(K,F, Φ) obviously would be less interesting. Furthermore, F
is not required to be symmetric. Finally, function Φ, not necessarily sym-
metric, is chosen to be strongly monotone on K: we recall that a Lipschitz
continuous, strongly monotone function is monotone plus. Moreover, all the
function that we have considered are continuously differentiable. We remark
that, by considering both defining functions with a symmetric Jacobian and
defining functions without a symmetric Jacobian, the problems examined are
instances of hierarchical optimization problems, equilibrium selection prob-
lems and general VI-C VIs.

Two main classes of problems are proposed. Problems for which SOL(K,F )
certainly is not a singleton and is known in advance: in this case it is possible
to evaluate the “correctness” of the solution found by our method. And prob-
lems for which SOL(K,F ) is not easily computable a priori. Each problem
is an instance of HVI(K,F, Φ): thus, each problem is “individuated” by the
choice for a particular feasible set, a particular lower and a particular upper
function. We have identified each feasible set, each lower function F and each
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upper function Φ with an alphanumeric tag. Then, the test problem name is
a suitable combination of three tags: for example, problem K1F11Φ1 is the
VI-C VI(K1, F11, Φ1).

The complete collection of feasible sets and functions that we have consid-
ered, the resulting test problems and further details can be found in Appendix
B.

3.5.2 The implemented algorithm

We implemented the centralized version of Algorithm 3 in MATLAB (Release
2009 b). Firstly, we have analyzed the algorithm performances by considering
different choices for the fundamental parameters. Initially, we have tested the
exact version of the scheme: we recall that, in this case, the strongly monotone
inner problem

VI(K,F k), where F k := F + εkΦ+ α(• − xk) (3.32)

is solved exactly at each “outer” iteration k. We evaluated the number of
outer and inner iterations performed by the algorithm and (if possible) the
accuracy of the solution found by our method, by varying the values of α
and ε0. Our goal is twofold: to study the behavior of the scheme for different
values of α and ε0 and to identify a reasonable choice for the values of these
two parameters.

Once α and ε0 are “properly” set, the exact version is further examined
and the inexact version is tested by considering different updating rules for
the parameter ek and for fixed values of α and ε0.

Choice of the initial point

The starting point x0 is obtained by solving the feasibility problem

min
x∈K

0Tn,1x

by means of the MATLAB function linprog, thanks to the fact that K is a
polyhedral set.

Parameters εk and α

We recall that the scalar εk must be properly set in order to guarantee that
conditions C1 and C2 hold: εk could be, for example, chosen so that εk =
ε0/(k + 1). However, in some experiments, due to the good behavior of the
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0 < εk ↓ 0, α > 0; x0 ∈ K, k = 0

xk ∈
SOL(K,F, Φ, 0)

xk+1 := (inexact) so-

lution of VI(K,Fk)

STOP

k ← k + 1

NO

YES

Fig. 3.4: The centralized algorithmic scheme tested

algorithm, we noticed that convergence is obtained also for faster updating
rules which not necessarily are such that condition C1 still holds (for example,
one can consider εk = ε0/k!). It stands to reason that also the choice of ε0 (see
the discussion about the stopping criterion) plays a role: indeed, we would
like to prevent the term εkΦ in function F k to vanish too rapidly. In the
same line of reasoning of above, the “right” setting of the scalar α is not an
easy task: on the one hand, we do not have to let the regularization term
α(•−xk) prevail against term εkΦ. On the other hand, a sufficiently strongly
monotone function F k is desirable and the parameter α is fundamental for
the convergence of the overall scheme. We would also like to recall that the
convergence still holds if α is changed at each iteration provided that these
αs remain bounded away from zero and bounded from above.

We notice that, if we consider different values for ε0 and α, we get different
behaviors of the algorithm: we aim at proving the robustness of the scheme
with respect to the variations of these parameters and at properly setting
their values. In order to achieve these goals, in the practical implementation,
firstly, we have fixed different values for ε0; then, for each choice for ε0,
we have tested the exact version of the algorithm with different values of
parameter α. After some preliminary tests (the results are not reported here),
we have chosen the values ε1

0 = 0.4, ε2
0 = 0.8, ε3

0 = 1.6, ε4
0 = 3.2 and ε5

0 = 6.4:
we remark that εj+1

0 = 4εj0, for j = 1, . . . , 4. In a like manner, for each fixed

εj0, we have considered five different values for α, namely α1 = 0.1, α2 = 0.3,
α3 = 0.9, α4 = 2.7 and α5 = 8.1, thus following the rule αj+1 = 3αj , for
j = 1, . . . , 4 and with α1 = 0.1. Then, by keeping track of the results obtained
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and considering the most sound choices for ε0 and α, we have tested once
more the exact version on further problems and, finally, the inexact version.

A stopping criterion

We remark that the choice of a stopping criterion for problems with an implic-
itly defined feasible set is difficult: in such cases, the definition of suitable and
efficiently implementable optimality conditions (whose violation is a measure
of the “correctness” of the calculated solution) is problematic. Indeed, we
can not easily use the KKT conditions; furthermore, in order to resort to the
minimum principle, we have to cope with the calculation of a projection onto
an implicitly defined feasible set: this operation is, in general, not easier than
the solution of the overall original problem. For these reasons, we propose an
heuristic approach for which two different stopping criteria are considered for
step (S.1) of Algorithm 3: the algorithm stops whenever both criteria are
satisfied.

Firstly, the difference between two successive iterations ‖xk − xk−1‖ must
be, in Euclidean norm, smaller than 10−5 ·

√
n, where n is the number of

variables of the examined problem. Secondly, the value of εk is required to be
smaller than 0.01. The rationale of this latter stopping criterion is that we
want our algorithm to iterate a “sufficient” number of times in order to get
a value of the scalar εk as close as possible to zero; indeed, the convergence
of the method is guaranteed for values of εk that go to zero. Lastly we have
fixed a maximum number of outer iterations for the whole scheme equal to
3000: if this amount of iterations is reached, we declare a failure.

We emphasize that, actually, the combined action of εk (which goes to
0) and α is desired in order to push the convergence of the whole scheme;
nevertheless, we have to make sure that the algorithm is converging to the
right point. Indeed, we point out that, if εk ≈ εk−1, problem (H)VI(K,F k) is
very similar to (H)VI(K,F k−1) and xk should be “not too different” from the
previous xk−1: the algorithm, eventually, does not make any further progress,
even though it is not converging to a solution of the original problem. Then, in
order to get our scheme working properly, whenever ‖xk−xk−1‖ < 10−5 ·

√
n,

we check further if the difference between two successive outer iterations is
small “enough” only because the difference |εk − εk−1| becomes negligible
and α is large. If this is the case, the outer iterations may be close to each
other not necessarily because the whole scheme is converging to a solution.
In order to try to avoid this situation, in the practical implementation (see
Figure 3.5), when, for the first time, we get ‖xk − xk−1‖ < 10−5 ·

√
n, we

set, for the next iteration, εk+1 = ε0; thus, we reset the updating process of
εk by starting, at the same time, with a (hopefully) “more promising” point
xk. It is obvious that, if ‖xk+1 − xk‖ is still “small”, the solution previously
calculated was probably the “right” one. Hence, this approach, on the one
hand, allows us to check, in a more reliable way, if our method has found the
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solution of the original problem; on the other hand, it let the algorithm “move
on” if the scheme gets stuck in a point which is not the solution sought.

The inner algorithm

It is worth mentioning that any convergent algorithm can be employed for
the solution of the strongly monotone problem (3.32) at each step of the outer
scheme: for every single choice of a solution method at step S.2, we get a
“different” overall algorithm. Although we believe that an appropriate choice
of such method is crucial to the numerical success of the whole scheme, it is
outside the scope of this study to analyze and compare different algorithms
for the solution of the strongly monotone problem (3.32). In this section, we
therefore consider a single choice for the inner method, a choice that we think
is effective in practice, and then proceed to numerical testings in order to have
a feel for the efficiency of our approach. We recall that the inner algorithm
must be able to solve, at each outer iteration, thus for fixed values of the pa-
rameter εk, the strongly monotone (H)VI(K,F k). In order to solve the latter
problem at step S.2 of Algorithm 3, we have chosen the Basic Projection
Algorithm (BPA) (see Algorithm 1 and the discussion therein). The choice
of a projection method is quite natural in order to fully take advantage of
the strong monotonicity property of the defining function F k. Furthermore,
the projection algorithms do not require the use of the derivatives of F k and
do not involve any complex computation besides the projection on K: thus,
for sets K such that the projection can be easily carried out (for example,
the polyhedral K sets that we have chosen for our experiments), projection
methods can be applied to the solution of large problems because of their
simplicity. On the negative side, the use of no derivative information could
prevent these methods from being fast.

We remark that the choice of an inner solution method influences the per-
formances of the whole scheme. Amongst other (namely BPA, PAVS, EgA
and HPA) projection methods, we decided for the basic one, due to its “sim-
plicity”; this choice allows us to better control the “impact” of the inner
algorithm’s behavior on the overall algorithm in order to “purify” as much
as possible our analysis from the influence of the particular choice for the in-
ner scheme. Furthermore, the BPA seems to be an effective option thanks to
the minor computational cost of the implemented method. Indeed, we recall
that, while BPA requires only one projection per iteration, PAVS, although
it needs a single projection per iteration, has to cope with the right tun-
ing of the variable step size τk, EgA executes at least two projections per
iteration and HPA three (and a line search). We recall that, within a ba-
sic projection approach, in order to obtain the convergence of the method,
the defining function must be strongly monotone and the knowledge of the
strong monotonicity constant and Lipschitz modulus is required in principle.
Nevertheless, we note that function F k is strongly monotone by construction,
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with constant α known a priori, and continuous; moreover, if the feasible set
K is compact, F k is Lipschitz continuous. Hence, once again, BPA seems to
match well with the properties of problem (3.32). Then, in order to design a
convergent scheme and, thus, a suitable projection step size τ , the only task
will be the knowledge of the Lipschitz modulus of F k. In the implemented
scheme, a preliminary “worst” estimate of the Lipschitz continuity constant
of F k is evaluated by considering the following problem

max
K

(‖JF (x)‖+ ε0‖JΦ(x)‖+ α) = L̂ε0,α.

Then the step size τ , in view of Theorem 3, is properly chosen by considering
the value of the following expression:

cε0,α =
2α

L̂2
ε0,α

.

Then again, we remark that, when we study the behavior of the whole scheme
by varying ε0 and α, the following estimate of the Lipschitz continuity con-
stant of F k is instead considered

ˆ̂
Lα = max

K
(‖JF (x)‖+ ε0 max‖JΦ(x)‖+ α),

where ε0 max is the greatest parameter ε0 considered. In this case, the step
size τ is set by considering the value of the following scalar:

cα̃ =
2α̃

ˆ̂
L2
α̃

,

where α̃ is the value of parameter α, between those considered, for which
cα is minimum. In order to keep as small as possible the influence of the
inner algorithm on the whole scheme, the value of τ (which certainly plays
an important role) is kept constant for every test performed by varying α
and ε0.

In order to establish a stopping criterion for the inner algorithm, for every
outer iteration k, first ProjK(xi − τF k(xi)) is calculated by means of the
MATLAB function quadprog, thus solving the quadratic problem:

min
y∈K

1

2
‖y − [xi − τF k(xi)]‖2.

In view of the equivalent reformulation of VI(K,F k) (see (1.11)) with the

natural map Fknat
K , if the difference between the solution of this quadratic

problem and xi is smaller than ek ·
√
n (we remark here that, if ek = 10−5, the

inner VI is considered to be solved exactly) then the execution of the inner
BPA stops and xk+1 = xi. Otherwise, the next inner iteration is calculated:
xi+1 = ProjK(xi − τF k(xi)).
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The maximum number of inner iterations allowed at the kth step is equal
to 1000.

0 < εk ↓ 0, α > 0; x1 :=

x0 ∈ K, ε1 := ε0, k = 1

‖xk − xk−1‖ <
10−5, k 6= 1

xk+1 := (inexact) solution

of VI(K,Fk) calculated

by means of BPA

εk = ε0

k ← k + 1
‖xk − xk−1‖ <
10−5, εk < 0.01

STOP

xk+1 := (inexact) solution

of VI(K,Fk) calculated
by means of BPA

k ← k + 1

NO

YES

NO

YES

Fig. 3.5: The centralized algorithmic scheme implemented

3.5.3 Numerical results and comments

Choice of ε0 and α

We ran many preliminary experiments in order to set properly the values of
parameters ε0 and α. For the sake of brevity only few results are reported
in Appendix C (see page 128 and the following pages): in fact, the behavior
of the scheme is more or less the same for all the experiments performed.
We evaluated the number of outer and inner iterations and the exactness of
the solution found by our method by considering different values of α and
ε0. Initially, we have considered the exact version of the scheme: thus, the
strongly monotone inner problem has been solved exactly at each “outer”
iteration k (as we have seen in the previous section).

First of all, we underline the expected reduction of the correctness of the
solution found by our method and reached by considering larger values for
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α: we recall that if we let the regularization term α(• − xk) prevail against
term εkΦ, the solution calculated, in some sense, may lack significance with
respect to the original problem. Thus, in the same line of reasoning, a “not
too small” value of ε0 is desirable. For these reasons, the different values that
we have considered for ε0 and α (see Section 3.5.2) seem to be proper.

The results obtained, for fixed values of ε0, although they depend on the
particular functions involved and on the initial point x0 calculated, showed,
in general, the growth of the number of outer iterations by increasing α in
the interval considered. Indeed, this is quite a natural consequence of the
fact that, by increasing α, we do not let the actual outer iteration xk move
far away from the previous one xk−1. A similar reasoning holds true if the
difference between two consecutive values of εk, i.e. |εk − εk−1| becomes too
small too soon. We remark here that, in order to get a more complete picture
of the behavior of the algorithm, whenever the inner algorithm eventually
stops updating xk, even though εk is not smaller than epsilon tol, we stop
counting the outer iterations: in fact, at that point, the algorithm does not
make any further progress.

A clear trend analysis of the total number of inner iterations is a more
challenging task. Let bk be the number of inner iterations performed by the
BPA at the kth outer iteration. The total number of inner iterations will be

# inn.it :=
∑
k

bk.

The number of inner iterations is more deeply related to the features of the
chosen inner algorithm and to the particular problem considered. Further-
more, the total amount of the inner iterations obviously depends also on the
number of outer iterations. We can say, with some cautions, that if α is “suf-
ficiently” larger than ε0, we get less inner iterations per single outer iteration.
If, indeed, the regularization term dominates the term εkΦ, the solution of
the actual inner strongly monotone VI(K,F k) should be not too “distant”
from the previous outer iteration which is also the actual starting point for
the solution algorithm for VI(K,F k).

To sum up, we can say that, although the parameter α is crucial for the
convergence of the whole scheme, as it “freezes” the progresses of the algo-
rithm, one has to pay attention to the right setting of its value with respect
to ε0: in order to make the algorithm work well, we should let the presence
of α become “significant” at the “right time”. In other words, an “artificial”
convergence (that is, mostly forced by the improper action of εk and α) is
not desirable.

Finally, by following these guidelines and considering the results that we
have obtained, we have chosen ε0 equal to 6.4 and α equal to 0.3.
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Numerical results obtained for the centralized exact version

Once we have set suitable values for ε0 and for α (respectively 6.4 and 0.3),
we have tested the exact version of the algorithm on further test problems of
various dimensions; the results are reported in Table 3.1. Note that, with the
exception of K1FrΦ5, for this set of test problems we know the exact solution:
thus, we could easily compare this exact solution to the computed ones. The
last column of Table 3.1 confirms the good quality of the solution calculated
by our method.

Problem n # out.it. # inn.it. error

K1F7Φ7 500 8 162 2e-5

K1F11Φ4 200 69 389 6e-16

K1F13Φ7 1000 15 542 7e-5

K1F13Φ6 100 226 18955 7e-17

K1FrΦ5 200 1 1 n.a.

K2F21Φ6 100 353 4702 1e-6

K5F51Φ1 500 13 2468 6e-6

K5F52Φr 100 13 2455 7e-5

K5F7Φr 100 2 20 9e-11

K6F61Φ3 100 6 87 7e-7

Table 3.1: Centralized exact version with fixed values of ε0 = 6.4 and α = 0.3: numerical
results in terms of number of inner and outer iterations and solution accuracy

Some observations are in order.

(i) The centralized version of the Proximal point-Tikhonov Algorithm 3
proved in general simple, reliable, accurate and rapid. Indeed, the scheme
proposed was able to solve all the test problems examined and reach high
accuracy in a small amount of outer iterations.

(ii) For the most part of the tests that we have conducted, the whole scheme
converged to the solution after few outer iterations. Few other itera-
tions are needed for some refinements but, in most cases, any signifi-
cant updating of the current iterate xk ceases long before εk becomes
smaller than epsilon tol. Furthermore, we noticed that after the up-
dating process of εk is reset (whenever, we recall, for the first time, we
get ‖xk − xk−1‖ < 10−5 ·

√
n, see the discussion about the stopping cri-

terion) the convergence is, in general, reached rapidly. This is another
confirmation of the good behavior of the algorithm.

Numerical results obtained for the centralized inexact version

The next step of our analysis has been the evaluation, always with fixed values
for ε0 and α (respectively 6.4 and 0.3), of the behavior of the inexact version
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by considering different updating rules for the parameter ek. We recall that
ek express the degree of accuracy with which we solve the inner problem

VI(K,F k), where F k := F + εkΦ+ α(• − xk).

We remind that the inner algorithm stops whenever ‖xk+1 − PK(xk+1 −
F k(xk+1))‖ ≤ ek; we let ek vary at each outer iteration following different
updating rules such that Condition C2 is satisfied. We have considered (see
Figure 3.6) five different rates for ek to go to 0. In the practical implementa-
tion, in fact, the error tolerated for the solution of the inner VI is set equal
to

eik = 10−5 +
ε0

ai + f ik
, i = 1, . . . , 5 (3.33)

where f ik for i that goes from 1 to 5 is equal to k6, exp(k), 10k3, 100k2

and 10k2, respectively, and the the term ai ensures that ei0 is equal to 10−2

for every i. The constant 10−5 in expression (3.33) does not permit ek to
become smaller than 10−5: indeed, we recall that, if ek = 10−5, VI (3.32)
is considered to be solved exactly. In Appendix C (see page 138 and the

Fig. 3.6: Different updating rules for ek: e1k ∝ 1/k6 (magenta -◦- line), e2k ∝ 1/exp(k)

(red -�- line), e3k ∝ 1/10k3 (ciano -�- line), e4k ∝ 1/100k2 (blue -∗- line) and
e5k ∝ 1/10k2 (green -�- line)

following pages) we show the results of the simulations in terms of number
of outer and inner iterations and solutions error. The interpretation of these
data is not straightforward. Indeed, by letting ek be different from 0 for each
k, the consecutive iterations solution accuracy achieved by the algorithm is
not easily controllable. Furthermore, like before, the results of the tests show
some reliances on the particular problem considered. Once again, in general,
one can say that the behavior of the scheme is strictly linked to the moment
in which the action of α becomes significant (as it “freezes” the progresses of
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the algorithm) with respect to the precision reached by the algorithm at that
time. Hence, the results here obtained confirm, one more time, the central role
played by the parameter α. Moreover, although more numerical tests must
be conducted, we can say that, unlike many cases of optimization algorithms,
the inexact version of our scheme does not seem to undoubtedly improve on
the performances of the exact counterpart. This fact probably depends on
the not easily predictable behavior of the solution accuracy when we let ek
vary at each outer iteration.

3.6 Distributed Solution of the Hemivariational
Inequality

This section discusses a distributed algorithm for solving a HVI on Carte-
sian product of sets. Our development extends the scope and considerably
improves on the treatment in [34, Chapter 12] for non-cooperative games.
The results in this section also provide further motivation for the choice of
a combined Tikhonov and proximal methods for the solution of the HVI
(K,Φ, h).

First, before we continue with our analysis, we briefly recall some relevant
results about block decomposition methods. One of the main motivations of
such approaches is that, if we fix some variables, one or more subproblems
of special structure in the remaining variables could be obtained (see [11, 44]
and the references therein). Furthermore, most of these algorithms are well
suited for parallel and distributed computing, thus leading to an increased
computing power. The best known among these approaches are probably the
Jacobi and the Gauss-Seidel methods: the minimization versions of these al-
gorithms are based on successive global minimizations with respect to each
block component. The simple and successful idea is to fix all the block compo-
nents of x to some value, except for the νth block component, and to minimize
iteratively the objective function with respect to xν . In the Jacobi method,
the minimizations with respect to the different block components xν are car-
ried out simultaneously; in the Gauss-Seidel algorithm, the minimizations are
carried out successively for each component.

Let us consider the following problem:

minimize
x

f(x)

subject to x ∈ X
(3.34)

and suppose that X is a Cartesian product of sets Xν where each Xν is
a closed convex set. Accordingly, we represent vector x ∈ Rn in the form
x = (x1, . . . , xN ) where each xν is an element of Rnν .

The nonlinear Jacobi iteration is defined by:
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xνk+1 = argmin
xν∈Xν

f(x1
k, . . . , x

ν−1
k , xν , xν+1

k , . . . , xNk ). (3.35)

The nonlinear Gauss-Seidel iteration is defined by:

xνk+1 = argmin
xν∈Xν

f(x1
k+1, . . . , x

ν−1
k+1, x

ν , xν+1
k , . . . , xNk ). (3.36)

The following classical result holds (for more recent results see also [45]).

Proposition 11. Let f : Rn → R be continuously differentiable, let γ be
a positive scalar and suppose that the mapping R : X → Rn, defined by
R(x) = x − γ∇f(x) is a contraction with respect to block-maximum norm
‖x‖ = ‖(x1, . . . , xN )‖ = maxν ‖xν‖ν/wν , where each ‖ • ‖ν is the Euclidean
norm on Rnν and each wν is a positive scalar. Then, there exists a unique
vector x∗ which minimizes f over X. Furthermore, the nonlinear Jacobi and
Gauss-Seidel algorithms are well defined and the sequence {xk} generated by
either of these algorithms converges to x∗.

The nonlinear Jacobi algorithm can be parallelized by assigning a separate
processor to each block component xν .

With the previous results in mind, consider now the HVI (K,G, h) defined

by the product set K ,
N∏
ν=1

Kν with

N∑
ν=1

nν = n, where each Kν is a closed

convex subset of Rnν , by the continuous function G : K → Rn, and the

separable function h : K → Rn such that h(x) =

N∑
ν=1

hν(xν), where x =

(xν)Nν=1 with each xν ∈ Kν and hν is a convex continuous function defined on
Kν . This setting is applicable to the side-constrained VI-C VI (SOL(K,F )∩
Ω,Φ) via its penalized formulation, provided that Ω has the same Cartesian

structure as K, i.e., Ω ,
N∏
ν=1

Ων . By Remark 5, the latter VI, which is

defined on the intersection SOL(K,F )∩Ω, is equivalent to the HVI (K,Φ, ρh)
which is defined on the set K for all ρ > 0 sufficiently large, where h(x) ,
N∑
ν=1

distKν (xν).

With the pair (K,h) having the above partitioned structure, we partitionG

accordingly; i.e., G(x) = (Gν(x))
N
ν=1 with Gν(x) ∈ Rnν for all ν = 1, . . . , N .

In what follows if x = (xν)Nν=1, we denote by x−ν the sub-vector of x with
the ν-th block omitted: x−ν , (xµ)Nµ=1, µ 6=ν , and by K−ν the corresponding

set: K−ν ,
∏
µ6=ν

Kµ with Kν removed.

We now present a synchronous Jacobi scheme. The analysis can be ex-
tended to synchronous Gauss-Seidel schemes and to asynchronous versions
of both the Jacobi and Gauss-Seidel methods.
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Algorithm 4: Distributed Algorithm for HVIs

(S.0) : Choose x0 ∈ K and set k = 0.

(S.1) : If xk is a solution of HVI (K,G, h) stop.

(S.2) : For ν = 1, . . . , N set

xνk+1 , solution of HVI (Kν , Gν(•, x−νk ), hν(•) ) (3.37)

(S.3) : Set xk+1 = (xνk+1)Nν=1, k ← k + 1 and go to (S.1).

The defining equation (3.37) implicitly assumes that the HVI in (3.37) has
one and only one solution. As we will see, this is true under the assumptions
we make below. Our aim is to determine when the sequence {xk} produced
by Algorithm 4 is well defined and converges to a solution of HVI (K,G, h).
This is done by showing that, under appropriate assumptions, Algorithm 4
is nothing else but a fixed-point iteration for a certain contractive mapping,
whose unique fixed point is the desired solution of HVI (K,G, h). The key
assumption we need is stated next; it requires a certain N ×N matrix to be
of the P kind. We recall that a (not necessarily symmetric) square matrix is
P if all its principal minors are positive. If H : X ⊆ Rn → Rm is Lipschitz
continuous, we denote by β(X,H) its Lipschitz constant defined by

β(X,H) , sup
z,z′∈X,z 6=z′

‖H(z)−H(z′)‖
‖z − z′‖

.

If furthermore X is convex and H : X → Rn is strongly monotone, we define
the modulus of strong monotonicity by

γ(X,H) , inf
z,z′∈X,z 6=z′

(H(z)−H(z′))T (z − z′)
‖z − z′‖2

.

The two quantities β(X,H) and γ(X,H) have simple expressions if, for ex-
ample, H is continuously differentiable with Jacobian matrix at z denoted by
JH(z). The following proposition is elementary and does not need a proof.
For a real square matrix M , we let λSm(M) denotes the minimum eigenvalue
of the symmetric part of M .

Proposition 12. If H : X → Rm is continuously differentiable on an open
set containing the convex set X ⊆ Rn and ‖JH(z)‖ is bounded on X, then
β(X,H) = sup

z∈X
‖JH(z)‖ is finite. Furthermore, if m = n and H is strongly

monotone on X, then γ(X,H) = inf
z∈X

λSm(JH(z)) is finite and positive. 2

The following is the key assumption necessary to prove convergence of Algo-
rithm 4 for solving the HVI (K,G, h).

Assumption P Each function Gν(•, z−ν) is strongly monotone on Kν with
a uniformly positive strong monotonicity modulus for all z−ν ∈ K−ν ; i.e.,
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γν , inf
z−ν∈K−ν

γ(Kν , Gν(•, z−ν)) > 0, ∀ ν = 1, . . . , N.

For each zν ∈ Kν , the function Gν(zν , •) is Lipschitz continuous on K−ν with
a Lipschitz modulus that is independent of zν ∈ Kν : thus positive constants
βνµ exist for all µ 6= ν such that for all zν ∈ Kν and all u−ν and v−ν in K−ν ,

‖Gν(zν , u−ν)−Gν(zν , v−ν) ‖ ≤
∑
µ6=ν

βνµ ‖uµ − vµ ‖.

Most importantly, the N ×N matrix Υ defined below is P

Υ ,


γ1 −β12 · · · −β1N

−β21 γ2 · · · −β2N

...
. . .

...

−βN1 −βN2 · · · γN

 .

[The matrix Υ has the “Z-property”, i.e., its off-diagonal entries are all non-
positive.] 2

Remark 8. The constant βνµ is given by

sup
zν∈Kν

sup
uµ,vµ∈Kµ
uµ 6=vµ

sup

 Gν(zν , y, uµ)−Gν(zν , y, vµ)

‖uµ − vµ ‖
| y ∈

∏
ν ′ 6=ν,µ

Kν ′


= sup

zν∈Kν
sup

β(Kµ, Gν(zν , y, •)) | y ∈
∏

ν ′ 6=ν,µ

Kν ′

 .

By Proposition 12 the condition of the finiteness of the β’s and γ’s translates,
in the case of a continuously differentiable G, into simple requirements on JG.
However, the meaning of the β’s and γ’s is independent of the differentiability
of G. Note also that if all the β’s were 0, HVI (K,G, h) would decompose in
N uncoupled HVIs. In an informal sense, then, the terms βνµ can be seen
as a measure of the coupling of the problem. In this vein, the finiteness of
the β’s can be read as a requirement that if we want to solve HVI (K,G, h)
in a distributed way, the “interactions” between the sub-HVIs in which we
decompose the original HVI should be limited. But this alone would not be
sufficient for Algorithm 4 to work properly, and we also need the matrix Υ
to be of the P-kind. In this latter requirement a role is played also by the
quantities γν . These quantities essentially measure the degree of “uniform
strong monotonicity” of the HVIs in which we decompose the problem. If the
γν are positive, this means that all the HVI (Kν , Gν(•, x−ν), hν) in which we
decompose the original HVI (K,G, h) (see also Step 2 of Algorithm 4) are
uniformly strongly monotone with a common strong monotonicity constant.
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From this point of view, requiring the matrix Υ to be P means, in a very loose
sense, that the HVIs (Kν , Gν(•, x−ν), hν) are “strongly monotone enough to
dominate the interactions from the other blocks”. We note that if Υ is P ,
it must hold that all the γν are positive. In turn this implies that for any
z ∈ K and any ν, the HVI (Kν , Gν(•, z−ν), hν) is strongly monotone and
therefore has one and only one solution, which we denote by xν(z); we then let

x(z) , (xν(z))
N
ν=1. This is a self-map from the set K into itself; Algorithm 4

is easily seen to be the fixed-point iteration: xk+1 = x(xk).
We are now ready to state the main result of this section. Besides treating

the HVI, this result extends the treatment in [34, Section 12.6] for a Nash
game in that G is not required to be twice continuously differentiable here.

Theorem 16. Let the HVI (K,G, h) be given with the Cartesian product
structure set forth at the beginning of this section. Suppose that Assumption
P holds. Algorithm 4 generates a well-defined sequence {xk} that converges
to the unique solution of HVI (K,G, h).

Proof. It suffices to show that x(z) is a contraction on K. Let z̄ and z̃ be two
points in K; for a generic ν we can write,

Gν(xν(z̄), z̄−ν)T ( yν − xν(z̄) ) + hν(yν)− hν(xν(z̄)) ≥ 0, ∀ yν ∈ Kν

Gν(xν(z̃), z̃−ν)T ( yν − xν(z̃) ) + hν(yν)− hν(xν(z̃)) ≥ 0, ∀ yν ∈ Kν .

By taking yν = xν(z̃) in the former inequality and yν = xν(z̄) in the latter
and summing, we deduce[

Gν(xν(z̄), z̄−ν)−Gν(xν(z̃), z̃−ν)
]T

(xν(z̃)− xν(z̄) ) ≥ 0. (3.38)

Adding and subtracting Gν(xν(z̄), z̃−ν) in the square parenthesis and using
the uniform monotonicity hypothesis in Assumption P, we get

γν ‖xν(z̄)−xν(z̃) ‖2 ≤
[
Gν(xν(z̄), z̄−ν)−Gν(xν(z̄), z̃−ν)

]T
(xν(z̃)−xν(z̄) )

from which we deduce

‖xν(z̄)− xν(z̃) ‖ ≤ 1

γν
‖Gν(xν(z̄), z̄−ν)−Gν(xν(z̄), z̃−ν) ‖.

In turn, the uniform Lipschitzian hypothesis in Assumption P permits us to
write

‖Gν(xν(z̄), z̄−ν)−Gν(xν(z̄), z̃−ν)‖ ≤
∑
µ6=ν

βνµ‖z̄µ − z̃µ‖

The last two inequalities immediately give

‖xν(z̄)− xν(z̃)‖ ≤ 1

γν

∑
µ6=ν

βνµ‖z̄µ − z̃µ‖
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Since this relation is valid for all ν, we readily get ‖x
1(z̄)− x1(z̃) ‖

...
‖xN (z̄)− xN (z̃) ‖

 ≤ Γ

 ‖ z̄
1 − z̃1 ‖

...
‖ z̄N − z̃N ‖

 , (3.39)

where

Γ ,



0
β12

γ1
· · · β1N−1

γ1

β1N

γ1

β21

γ2
0 · · · β2N−1

γ2

β2N

γ2

...
...

βN1

γN

βN2

γN
· · · βNN−1

γN
0


.

Taking into account Assumption P, [18, Lemma 5.13.14] implies that Γ has
spectral radius less than 1 (see [34, Proposition 12.7] for details) thus con-
cluding the proof. ut

The significance of the previous result is that it fits very well with the results
in Section 3.4. In fact, note that the parameter α can be chosen large enough
so that the HVI

(
K,F k, εkh

)
in Step 2 of Algorithm 3, where F k , F +

εkΦ+α(•−xk), can be solved by the distributed algorithm described in this
section, provided that the pair (K,h) has the required Cartesian structure.
The upshot is that we can finally obtain a desired distributed algorithm for
the solution of HVIs and, on the basis of the results in Section 3.3, also of
VI-C HVIs with side constraints.

Corollary 1. Consider the HVI (K,F + εkΦ+ α(• − xk), εkh) (arising from
Step 2 of Algorithm 3) and suppose that F and Φ are Lipschitz continuous
on K with moduli LF and LΦ respectively, and that all γν are non negative.
Let ε̄ be such that εk ≤ ε̄ for all k and let α be a positive constant such that

α > ᾱ ,

 max
1≤ν≤N

∑
µ6=ν

(βνµ + ε̄LΦ )

− min
1≤ν≤N

γν , (3.40)

where βνµ and γν are the constants defined in Assumption P, with G = F .
Then all subproblems appearing at Step 2 of Algorithm 3 can be solved by
the distributed Algorithm 4.

Proof. According to Theorem 16 we only need to show that the matrix Υ asso-
ciated with a generic HVI (K,F + εkΦ+ α(• − xk), εkh) has the P-property.
Invoking [18, Lemma 5.13.14] this is equivalent to the following matrix
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0

β12 + ε̄LΦ
γ1 + α

. . .
β1N + ε̄LΦ
γ1 + α

...
...

βN1 + ε̄LΦ
γN + α

. . .
βN(N−1) + ε̄LΦ

γN + α
0


having spectral radius less than 1. It can now be checked that (3.40) guaran-
tees this latter condition by Gershgorin circle theorem. ut

Note that this Corollary clarifies very well the role of α, at least from the
point of view of the distributed implementation of the algorithm: it ensures
that enough strong monotonicity is present; and in fact the larger the γν , the
smaller α can be.

0 < εk ↓ 0, α > ᾱ;
x0 ∈ K, k = 0

xk ∈
SOL(K,F, Φ, h) STOP

YES

x0k = xk, i = 0

xik ∈
SOL(K,Fk, εkh)

(xi+1
k )ν := solution of

HVI(Kν , Fkν (•, (xik)−ν), εkhν(•)),
ν = 1, . . . , N

xk+1 = xik

xi+1
k = ((xi+1

k )ν)Nν=1,
i← i+ 1

k ← k + 1

NO

NO

YES

Fig. 3.7: The distributed version of the algorithm; in particular, the inner Jacobi scheme

is given in detail (red boxes).
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3.7 Numerical experiments: centralized vs distributed
algorithm

In this section we present a comparison in terms of numerical performances
between the centralized and the distributed versions of Algorithm 3. We recall
that, in order to solve the inner problem (3.19), within a centralized approach
a centralized scheme is employed, within a distributed approach one resorts
to a distributed scheme.

3.7.1 Examined problems

We tested both versions of the scheme on the VI-C VI(K,F, Φ) problem by
considering as lower feasible set K the set K2 which is the n-dimensional
box (see Appendix B). Indeed, the K2 set has a Cartesian product structure

such that, once n is fixed, we can consider every possible (with
∑N
ν=1 nν = n

and
∏N
ν=1Kν) decomposition for the distributed algorithm to be evaluated.

Hence, this choice allows us to study the behavior of the distributed version of
the scheme (in comparison with that of the centralized one) for fixed n and by
varying N and the nνs, thus referring to different decomposition “strategies”.

We recall that, besides the assumptions of Theorem 15 (the considerations
and the assumptions made in Section 3.5.1 still hold in the following analy-
sis), in order to get problem (3.32), i.e. VI(K,F k := F + εkΦ + α(• − xk)),
solved exactly by the inner distributed algorithm at each outer iteration k
(see Corollary 1), functions F and Φ must be Lipschitz continuous on K and
function Fν(•, z−ν) must be at least monotone on Kν and Lipschitz contin-
uous on K−ν with a Lipschitz modulus that is independent of zν ∈ Kν : thus
positive constants βνµ exist for all µ 6= ν such that for all zν ∈ Kν and all
u−ν and v−ν in K−ν ,

‖Fν(zν , u−ν)− Fν(zν , v−ν) ‖ ≤
∑
µ6=ν

βνµ ‖uµ − vµ ‖.

We notice, firstly, that, by considering as lower function F the monotone func-
tions F31, F21, F61 and Fr (see Appendix B), in view of Proposition 12, the
previous condition on βνµ is fulfilled. Secondly, thanks to the monotonicity
of F , functions Fν(•, z−ν) are monotone on Kν .

3.7.2 The implemented algorithm

We have examined and compared the number of outer and inner iterations
performed by the two versions of the algorithm and the time spent in order
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to calculate a solution. We recall that, while the outer scheme is the same,
the two algorithms differ in the way they solve the strongly monotone inner
problem (3.32), i.e.,

VI(K,F k), where F k := F + εkΦ+ α(• − xk).

On the one hand, the centralized version of the scheme is characterized by the
presence of a centralized algorithm (we have chosen for our analysis the BPA)
for the solution of (3.32); on the other hand, the distributed version resort to
a decomposition method (here we have considered the Jacobi algorithm) in
order to compute a solution of the same problem (3.32), thus allowing parallel
and distributed computing. For all the considerations about the outer scheme,
one can refer to Section 3.5. Here we remark that, while in the centralized
case the scheme converges for every α > 0, when Algorithm 4 is employed,
one has to choose α such that condition (3.40) holds; besides, the minimum
value of α that guarantees the convergence of the distributed scheme depend
on the function F and Φ involved, on the particular decomposition strategy
adopted and on ε̄ := ε0 (which certainly is larger than εk for all k). In the
experiments that we have conducted we have chosen ε0 = 3.2 and, for every
k, the inner problem (3.32) is solved exactly, i.e. ek = 10−5.

For every test problem (thus for every choice of functions F and Φ), we
have considered six different decomposition strategies (hence different choices
for the number of decomposed problems N and for their dimensions nνs)
Q = 1, . . . , 6. For every Q, we get a different value of the lower bound
ᾱ := ᾱQ. We have evaluated the behavior of the decomposed version for
every decomposition considered, and we have chosen for each test on a par-
ticular decomposition Q a value of the parameter α, namely αQ, equal to the
corresponding lower bound ᾱQ. The centralized version is examined with the
same values of α. Moreover, we have also studied, for every decomposition
strategy adopted, the decomposed algorithm with a “risky” (thus not guar-
anteeing in principle the convergence of the whole scheme) value of αQ equal
to αR such that αR < ᾱQ, relying on the fact that ᾱQ is a “conservative”
lower bound.

As inner scheme we have used the synchronous Jacobi Algorithm 4. For
each ν = 1, . . . , N , the ν-th decomposed problem

VI(Kν , F
k
ν ), where F kν := Fν + εkΦν + α(• − (xk)ν),

is solved exactly by means of the BPA. Again, in these simulations, the value
of the step size τ , once is suitably set (see Section 3.5), is kept constant for
every test performed by considering different values of the parameter α and
it is the same for both the centralized and the decomposed versions.

The maximum number of inner Jacobi iterations allowed at the kth step
and the maximum number of BPA iterations allowed at the ith Jacobi step
are both set equal to 1000.
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We remark that all the choices that we have made are in view of the fact
that, for N = 1 and n1 = n, we want the two versions of the scheme to
behave the same.

3.7.3 Numerical results and comments

We recall that, whenever the inner algorithm eventually stops updating xk,
even though εk is not smaller than epsilon tol, we stop counting the outer
iterations.

Let (bik)ν be the number of iterations performed at the kth outer iteration
and at the ith Jacobi fixed-point iteration by the very inner BPA in order
to solve the νth decomposed problem VI(Kν , F

k
ν (•, (xik)−ν)). In view of the

parallel and distributed computing allowed by the algorithm of Figure 3.7,
the total amount of inner iterations of the decomposed scheme is set equal to

# inn.it :=
∑
k

∑
i

max
ν

(bik)ν .

Hence, for each fixed k and i, we consider only the number of BPA iterations
(bik)ν̂ := maxν (bik)ν necessary to solve the “bottle-neck” ν̂th decomposed
problem.

In a similar manner, the total amount of the time spent in order to get to
a solution is given by the following expression:

time :=
∑
k

∑
i

max
ν

(tik)ν ,

where (tik)ν is the time spent at the kth outer iteration and at the ith Ja-
cobi iteration by the very inner BPA in order to solve the νth decomposed
problem. For the centralized scheme, instead, time is simply equal to

∑
k tk,

where tk is the time spent at the kth outer iteration by the inner BPA.
In Appendix C (see page 141 and the following pages) we show the results

of the simulations in terms of number of outer and inner iterations and of
time spent by the two versions of the algorithm. In Table 3.2 we report a
sample (for Q = 5) of the results that we have obtained when both schemes
are tested with the same values of α.

Once again, the central role played by the parameter α is evident. No
matter if the scheme is centralized or distributed, what really counts is the
value of α that is considered.

(i) We notice that, for a fixed decomposition Q, in view of the parallel imple-
mentation of the distributed algorithm, the worst estimate of the overall
execution time spent to solve the νth problem (assigning a separate pro-
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Q = 5 Centralized Decomposed

Problem # out.it. # inn.it. time(s) # out.it. # inn.it. time(s)

K2F13Φ6 1962 6575 72.55 1953 6893 68.79

K2F21Φ2 1001 4987 19.37 1001 5003 12.52

K2F61Φr 382 1626 83 382 1961 10.68

K2FrΦ2 61 780 40.06 61 937 5.11

K2FrΦ7 25 813 53.18 25 1095 14.08

Table 3.2: Centralized vs decomposed versions: numerical results in terms of number of

inner and outer iterations and execution time for Q = 5

cessor to each block component xν) is shorter than the time spent by the
centralized version in order to get to a solution.

(ii) It is worth noting that with the same values of αQ for the centralized and
the decomposed algorithms, the number of outer iterations performed by
the whole scheme in both versions is, as expected, the same, except for
very little variations due to numerical reasons.

(iii) We recall that the number of inner iterations is more deeply related to
the features of the chosen inner algorithm and to the particular problem
considered and it obviously depends also on the number of outer iter-
ations. With regard to the distributed version, we recall also that the
number of inner iterations # inn.it, which is a worst case count, clearly
depends also on the number of the Jacobi (intermediate) algorithm iter-
ations. With these considerations in mind, we note that, with the same
values of αQ for the centralized and the decomposed algorithms, the total
amount of inner iterations performed in the two cases is slightly different;
in particular, it is greater for the distributed version.

(iv) In general, the centralized version could benefit from an “unconstrained”
positive parameter α, while the decomposed version, in principle, has to
cope with condition (3.40). We have tested the distributed scheme also
with “risky” (thus not guaranteeing, in principle, convergence) values for
parameter αQ equal to αR. It turns out that, if, for the Qth decomposi-
tion, αR << ᾱQ, some problems concerning the behavior of the algorithm
may occur. Once again, the comparison, for a fixed decomposition Q, of
the performances of the distributed scheme evaluated with different val-
ues for αQ (i.e. αQ = ᾱQ and αQ = αR) point out the significance of this
parameter. Here we stress that all the considerations made in Section
3.5.3 about the “right” value of α remain valid in this analysis.

To sum up, we emphasize the good behavior of the distributed scheme (com-
pared to that of the centralized version): it proved reliable and fast. Further-
more, the opportunity of a distributed and parallel implementation of the
algorithm does not entail a deterioration of the performances of the overall
scheme provided that the decomposition strategy adopted does not lead to
an unsuitable (in the light of the considerations made in Section 3.5.3) value
for the parameter αQ.
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Fig. 3.8: The distributed algorithmic scheme implemented
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3.8 VI-C Minimization Problems

A particularly important case of the general HVI is the hierarchical mini-
mization problem (3.2), whose stationarity condition is precisely the VI-C
VI (K,F,∇ψ). The developments in the previous sections can certainly be
applied to this VI when ψ is a convex function. In this case, a simple level-set
condition can be given to ensure the boundedness of the set L in assumption
(F). Indeed, we have

L =

{
x ∈ K | ∃ y ∈ argmin

z ∈ SOL(K,F )

ψ(z) such that ∇ψ(x)T ( y − x ) > 0

}

⊆
{
x ∈ K | ψ(x) < minimum

y ∈ SOL(K,F )
ψ(y)

}
.

Thus, if ψ has bounded level sets on K, then L is bounded.
It turns out that the convex case can be used as the basis for designing

iterative feasible descent methods [9] for computing a stationary point of (3.2)
when ψ is not convex; such a point is by definition a solution to the VI-C
VI (K,F,∇ψ). This class of algorithms requires the calculation of a search
direction that involves the solution of a VI constrained optimization problem
with a linear, or convex quadratic objective function. Algorithm 3 can be
used as a “black-box” for computing such a direction. A line-search is then
performed. In what follows, we present a scaled projected gradient method
as an illustration of the overall iterative procedure for solving the VI-C VI
(K,F,∇ψ) with a nonconvex ψ.

Algorithm 5: A descent method for non-convex ψ

(S.0) : Choose x0 ∈ K, β ∈ (0, 1), δ ∈ (0, 1) and set k = 0.

(S.1) : If xk ∈ SOL(SOL(K,F ),∇ψ), stop.

(S.2) : Use Algorithm 3 to calculate a solution yk of the following
problem:

minimize
y∈SOL(K,F )

∇ψ(xk)T y + 1
2 y

TQky, (3.41)

where Qk is a symmetric positive semidefinite matrix. Set dk , yk −
xk. (S.3) : Compute the smallest nonnegative integer i such that

ψ(xk + βidk) ≤ ψ(xk) + δβi∇ψ(xk)T dk (3.42)

and set xk+1 , xk + βidk.

(S.4) : Set k ← k + 1 and return to (S.1).

Convergence of Algorithm 5 follows easily from standard results, once one
can show that it is well defined.



3.9 An Application to a Rate Maximization Game 99

Theorem 17. Consider the VI-C VI (K,F,∇ψ), with ψ continuously differ-
entiable on K. Suppose that the assumptions (A), (B), and (C) hold and the
matrices Qk are uniformly positive definite, i.e. m‖d‖2 ≤ dTQkd ≤ M‖d‖2
for some positive m and M and for all d ∈ Rn. Then Algorithm 5 is well de-
fined and every limit point of the sequence {xk} it generates is a stationary
point of the minimization problem (3.2).

Proof. We only need to show that we are able to solve subproblem (3.41);
convergence then follows by well-established results on the conditional gra-
dient method, see for example [9]. Subproblem (3.41) is just the VI-C HVI
(K,F, 0, hk), where hk(y) , ∇ψ(xk)T y + 1

2 y
TQky; so it is enough to check

that (A–F) hold for this subproblem. Conditions (A–C) hold by assumption.
Condition (D) obviously holds and (E) is satisfied because Qk is positive
definite. Finally (F) holds because of the discussion at the beginning of this
section, by noting the level sets of hk are clearly bounded. ut

3.9 An Application to a Rate Maximization Game

In this section, we illustrate the application of the theoretical framework
previously developed to a resource allocation problem in wireless networks,
namely the power control problem over parallel Gaussian Interference Chan-
nels (IC). This problem in fact provided the motivation of our work and, in
particular, the need of devising distributed solution methods of monotone
VI-constraints (Hemi)VIs. We begin with a very informal description of the
problem and then give a more detailed technical account.

System Model. The IC model is of great interest in the Signal Processing and
Communications community; it is in fact sufficiently general to encompass
many multiuser communication systems of practical interest, such as peer-
to-peer networks, digital subscriber lines (DSL), wireless frequency-selective
ad-hoc networks, and Orthogonal Frequency-Division Multiplexing (OFDM)/
Time Division Multiple Access (TDMA) single/multicell cellular systems.

In the IC, there are Q transmitter-receiver pairs; each transmitter wants
to communicate with its corresponding receiver over a set of N indepen-
dent noisy channels; these channels may represent either time or frequency
physical channels (here, for the sake of terminology and without loss of gen-
erality, we consider transmissions over ICs in the frequency domain, termed
as frequency-selective ICs). We associate with each of the Q users a nonnega-
tive vector variable p ν , (p νn )Nn=1 ≥ 0, representing the power allocated over
the N channels by the transmission-receiver pair ν. As such, these variables
satisfy some bound constraints 0 ≤ pνn ≤ p ν,max

n , ν = 1, . . . , Q, n = 1, . . . , N,
where p ν,max

n are given upper bounds; technically, they represent the so-called
“mask constraints”, imposed by the regulator to limit the amount of power
radiated by user ν over licensed bands. Furthermore, each transmitter has a
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power budget limit denoted by P ν , so that the power vector p ν is constrained
to
∑N
n=1 p

ν
n ≤ P ν . The set of power constraints of each user ν is thus defined

as

P ν ,

{
p ν ∈ RN+ :

N∑
n=1

p νn ≤ P ν , 0 ≤ p ν ≤ p ν,max , (p ν,max
n )Nn=1

}
.

(3.43)
The IC is used to model practical multiuser systems that do not have any
infrastructure, meaning that there is neither a centralized authority schedul-
ing the transmissions in the network nor coordination among the users. It
follows that the communications of the Q pairs may occur simultaneously;
this implies that, in addition to the desired signal, each user receives also the
signal transmitted by the other Q − 1 pairs, which is an undesired signal,
termed as Multi-User Interference (MUI). Stated in mathematical terms, the
quality of the transmission of each pair ν over the channel n is measured by
the Signal-to-Noise-plus-Interference ratio (SINR):

SINR ν
n (p νn , p

−ν
n ) =

|Hνν(n)|2 p νn
σ νn

2 +
∑
µ6=ν |Hνµ(n)|2pµn

, (3.44)

where |Hνν(n)| > 0 is the channel gain of pair ν over the frequency
band n, and |Hνµ(n)| ≥ 0 is the (cross-)channel gain between the trans-
mitter µ and the receiver ν; σ νn

2 is the power spectral density (PSD)
of the noise at receiver ν over the band n; and the set of all the users
power allocations over the channel n, except the ν-th one is denoted with
p−νn ,

(
p 1
n , . . . , p

ν−1
n , p ν+1

n , . . . , pQn
)
. The useful power signal of pair ν over

the channel n is thus |Hνν(n)|2 p νn, whereas
∑
µ6=ν |Hνµ(n)|2pµn is the PSD

of MUI measured by the receiver ν over the channel n. The overall per-
formance of each transmission ν is measured in terms of the maximum
achievable information rate r ν(p ν , p−ν) over the set of the N parallel chan-
nels, which depends on the power allocation of all the users (p ν , p−ν), with
p−ν ,

(
p 1, . . . , p ν−1, p ν+1, . . . , pQ

)
. Under basic information theoretical as-

sumptions (see, e.g., [93, 105]) and given the users’ power allocation profile
p 1, . . . , pQ, r ν(p ν , p−ν) is

r ν(p ν , p−ν) =

N∑
n=1

log
(
1 + SINR ν

n (p νn , p
−ν
n )

)
. (3.45)

Problem Formulation. The system design consists of finding the optimal
power allocation of the users in order to maximize the information rates of
the links, according to some performance metrics. A natural objective func-
tion would be the sum-rate of the users

∑Q
ν=1 r

ν(p). However, the resulting
optimization problem has been showed to be NP hard [65]. Several attempts
have been pursued in the literature to deal with the nonconvexity of such a
problem; however all the proposed schemes are centralized and computation-
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ally expensive, which makes them non-implementable in a network with no
infrastructure. Thus, it seems natural to concentrate on decentralized power
control solutions, where the users are able to self-enforce the negotiated agree-
ments on the usage of the available spectrum without the intervention of a
centralized authority. This motivates the formulation of the system design as
a Nash Equilibrium Problem (NEP): the aim of each player (link) ν, given
the strategy profile p−ν of the others, is to choose a feasible power allocation
p ν that maximizes the rate r ν(p ν , p−ν), i.e.,

maximize
p ν

r ν(p ν , p−ν)

subject to p ν ∈ P ν ,
(3.46)

for all ν = 1, . . . , Q, where P ν and r ν(p ν , p−ν) are defined in (3.43) and

(3.45), respectively. We will denote the above NEP as G =< P, (ri)
Q
i=1 >,

with P ,
∏
ν P ν . In this setting, the design aim becomes the computation

of a Nash Equilibrium (NE), i.e., the calculation of power allocation p ? such
that pν,? is optimal for (3.46), given p−ν,?.

Note that, for any fixed p−ν ≥ 0, the single-user optimization problem
in (3.46) admits a unique solution p ν, ?, given by the well-known waterfilling
expression [93, 105]:

p ν, ?n = wf νn
(
p−νn

)
,

(
λ ν −

σ νn
2 +

∑
µ6=ν |Hνµ(n)|2pµn
|Hνν(n)|2

)
+

, (3.47)

with n = 1, . . . , N , where [x]+ , max(0, x), p−νn , (p 1
n , . . . , p

ν−1
n , p ν+1

n , . . . ,
pQn ) and the waterlevel λν is chosen to satisfy the transmit power constraint∑N
n=1 p

?ν
n = P ν ; λ ν can be computed very efficiently in at most N ex-

tremely simple steps. Interestingly, the best-response (3.47) can be computed
locally and distributively by the players, since each user only needs to mea-
sure the overall interference-plus-noise PSD σ νn

2 +
∑
µ 6=ν |Hνµ(n)|2pµn and

“waterfill” over it. The Nash equilibria p? of the NEP are thus the fixed-
points of the waterfilling mapping wf(p) , (wf ν (p−ν))Qν=1, with wf ν (p−ν) ,
(wf νn (p−νn ))Nn=1.

Related Work. Since the seminal paper of Yu et al. [105] in 2002 (and the
conference version in 2001), the NEP G has been studied in a number of
works during the past nine years for the case of SISO frequency-selective
channels or, equivalently, a set of parallel non-interfering scalar channels
[64, 80, 81, 93, 92, 105]. Several sufficient conditions have been derived that
guarantee the uniqueness of the Nash Equilibrium (NE) and the convergence
of alternative distributed waterfilling based algorithms; the state-of-the-art
algorithm is the asynchronous iterative waterfilling algorithm (IWFA) [92].
In this algorithm, all the users update their power allocation according to the
best-response waterfilling solution (3.47) in a totally asynchronous way (in
the sense of [92]), meaning that some users may update their power allocation
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more frequently than others and they may even use an outdated measurement
of the MUI caused from the others. These features make the asynchronous
IWFA appealing for many practical scenarios, either wired or wireless, since
it strongly relaxes the constraints on the synchronization of the users updates
with respect to those imposed, for example, by the simultaneous or sequential
updating schemes.

The main properties of the NEP G are summarized in Theorem 18 be-
low, where the set P is defined as P in (3.43) but with the power budget
inequalities

∑
n p

ν
n ≤ P ν , replaced by

∑
n p

ν
n = P ν for all ν = 1, . . . , Q, and

the vector function F (p) , (F ν(p))Qν=1 and the matrices M , (Mνµ)Qν, µ=1 ∈
RNQ×NQ and ∆ ∈ RQ×Q are defined as

F ν(p) = σ̂ν +

Q∑
µ=1

Mνµ p
µ, (3.48)

with

σ̂ν ,

(
σ νn

2

|Hνν(n)|2

)N
n=1

and Mνµ , diag

{(
|Hνµ(n)|2

|Hνν(n)|2

)N
n=1

}
.

and

[∆]νµ ,


1, if ν = µ;

−maxn
|Hνµ(n)|2

|Hνν(n)|2
, otherwise.

(3.49)

Theorem 18. Given the NEP G =< P, (ri)
Q
i=1 >, then the following hold.

(a) The NEP is equivalent to the affine VI(P, F ) [64], which has a nonempty
and bounded solution set;

(b) If M is positive definite (semidefinite), then the VI(P, F ) is strongly
monotone (monotone); therefore, if M is positive definite, G has a unique
NE;

(c) If ∆ is a P-matrix, then the asynchronous IWFA based on the waterfilling
best-response (3.47) converges to the unique Nash equilibrium of G [92].

Theorem 18, which represents the state-of-the-art results on G, provides a sat-
isfactory characterization of G (namely, conditions for the existence/ unique-
ness of the solution and global convergence of distributed algorithms) when
M is positive definite. Interestingly, such a condition has also a physical in-
terpretation: it quantifies the maximum level of MUI that can be tolerated
in the system for the asynchronous IWFA to converge to the (unique) NE
of the game. However, the positive definiteness of M may be too restrictive
in practice; there are indeed networks having multiple Nash equilibria and
thus for which M cannot be positive definite; roughly speaking, this hap-
pens, for example, when the users are located quite close to each other. In
such cases, the asynchronous IWFA is not longer guaranteed to converge, and
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the calculation of even a single NE becomes a complex task. If M is positive
semidefinite, the VI(P, F ) is monotone, implying that one could apply dou-
ble loop schemes based on Tikhonov [32, Algorithm 12.2.9] or proximal [32,
Algorithm 12.3.8] regularization to the VI(P, F ) and still compute a Nash
equilibrium of G. The main drawback of these algorithms is that they may
converge to any of the solutions of G, meaning that there is no a priori guar-
antee or control about the quality of the solution they reach and thus the
achievable performance of the network. This unpredictable behaviour makes
the aforementioned algorithms not applicable to design real systems.

We would like instead to develop distributed solution schemes for the
monotone NEP G that converge to the “best” NE, according to some pre-
scribed criterion, while keeping the same desired feature of the asynchronous
IWFA (e.g., distributed implementation, low signalling/coordination among
the users, etc...). Up to date, no method has been proposed to select one
specific NE, in case of multiple solutions. The framework here developed pro-
vides a satisfactory answer to this issue. The first step is to choose a merit
function that quantifies the quality of a NE. Different heuristics can be used;
as an example, here we focus on the following merit function: given the vector
w , (wν)Qν=1 ≥ 0, let

φ(p) ,
Q∑
ν=1

wν
∑
µ6=ν

N∑
n=1

|Hνµ(n)|2pµn. (3.50)

This choice is motivated by the intuition that among all the Nash equilibria of
G, a good candidate is the one that minimizes the overall interference among
the users, resulting in a “higher” value of the sum-rate function

∑Q
ν=1 r

ν(p).
The NE selection problem based on the merit function φ can be then formu-
lated as a hierarchical optimization problem with VI constraints:

minimize
p∈ SOL(P, F )

φ(p), (3.51)

which is an instance of the more general VI-C HVI. We can then use the
machinery developed in the previous sections to successfully study prob-
lem (3.51) and devise distributed iterative algorithms. In particular, (3.51)
can be solved using Algorithm 3, where the VI-C HVI reduces to VI-C
HVI(P, F,∇φ, 0) and the sub-HVI at iteration k given p(k) ∈ P corresponds
to the VI

VI
(
P, F + εk∇φ+ α

(
• − p(k)

))
. (3.52)

The convergence of Algorithm 3 applied to (3.51) is guaranteed under the
conditions of Theorem 15; note that assumptions (A, C, D, E) in the theorem
are readily satisfied by (3.51), and assumption (B) is equivalent to the positive
semidefiniteness of matrix M .

The last thing left to discuss is how to compute in a distributed way a(n
approximate) solution of the sub-VIs in (3.52). We can readily use Algorithm
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4; it follows from Theorem 16 indeed that Algorithm 4 globally converges to
the unique solution of the VI in (3.52) if the matrix

∆α , ∆+ α I

with ∆ defined in (3.49), is a P-matrix, which is guaranteed for any α suf-
ficiently large (see Corollary 1). Interestingly, such an algorithm can be im-
plemented in a distributed way, without requiring any signalling among the
users; indeed, given εk and p(k), at each iteration, every user ν solves the
quadratic optimization problem: given p−ν ≥ 0,

minimize
p ν∈P ν

1

2

∥∥∥p ν +
(
σ̂ν +

∑Q
µ6=νMνµ p

µ
)∥∥∥2

+ εk γ
νT pν

+
α

2

∥∥p ν − p(k),ν
∥∥2
,

(3.53)

where γ ν , (
∑
µ6=ν w

µ |Hµν(n)|2)Nn=1. The solution of (3.53), has a similar
waterfilling-like expression as (3.47) and thus can be efficiently and locally

computed, given the MUI σ̂ν +
∑Q
µ6=νMνµ p

µ measured at each receiver ν,

p(k), ν , and εk. The asynchronous implementation of Algorithm 4 is also pos-
sible, whose convergence is guaranteed under the same P property of matrix
∆α.

Remark 9. Overall, in Algorithm 3 applied to (3.51), there are two levels
of updates: 1) the computation of the users’ optimal power allocations [the
(approximate) solution of the sub-VI (3.52)], given p(k), ν ∈ P and εk; and 2)
the updates of p(k), ν and εk, after checking that the termination condition in
Step 2 is satisfied. The former can be performed locally and distributively by
the users as previously discussed. The check of the termination condition in
the latter can be certainly accomplished but it is a rather technical issue and
we refer to [91] for practical implementations of this check, under different
level of signalling and supervision. It turns out that Algorithm 3 has the same
desired properties as the asynchronous IWFA [92]: it is fairly distributed and
requires a limited signalling/coordination among the users, which makes it
appealing for a practical implementation in telecommunication networks. 2

Numerical Results. We compare now the performance of our new algorithm
with those of the IWFA, which is the state-of-the-art algorithm proposed in
the literature [64, 93, 92, 91] for solving the rate maximization game G.

In Figure 3.9, we plot the sum-rate of the users
∑Q
ν=1 r

ν(p) versus the
iteration index, achieved by the following algorithms: i) The simultaneous
IWFA [93] based on the waterfilling map wf(p) (dashed-dot line curve); ii)
Algorithm 3 applied to (3.51) (solid line curve), with w = 1; and iii) Al-
gorithm 3 applied to (3.51), where φ(p) in (3.50) is replaced by −φ(p) and
w = 1. The solution of each sub-VI (3.52) in the inner loop of Algorithm 3 is
computed using Algorithm 4. The choice of the merit function −φ(p) leads
to the selection of the NE solution that maximizes the overall MUI in the
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system, which provides a benchmark of the sum-rate variability and an esti-
mate of the worst-case performance over the set of the Nash equilibria of the
game G. We count one iteration of Algorithm 3 as one iteration of the inner
Jacobi scheme (Algorithm 4), which corresponds to a physical transmission
of the users.

We examined the behaviour of the above algorithms under the following
setup. We considered an ad-hoc network where there are Q = 25 active users;
the (cross-)channels among the links are simulated as FIR filter of order L =
10, where each tap is a zero mean complex Gaussian random variable with
variance equal to 1/L; the channel transfer functions are the FFT of the
corresponding impulse responses over N = 128 points (carriers). We focused
on two scenarios, namely low/medium interference and high interference sce-
nario. Low/medium interference means that the channel realizations are such
that the matrix M is positive definite, whereas in the high interference case
M is positive semidefinite. The thermal noise variance σνn

2 is set to one for
all n and ν, and the transmit power budget P ν is chosen so that the Signal-
to-Noise-Ratio (SNR) of each user SNRν , 10 log10

(
P ν/σνn

2
)

= 5dB for all
ν and n. All the algorithms are initialized by the same starting point, chosen
randomly in the set P, and are terminated when the Euclidean norm of the
error in two consecutive iterations becomes smaller than 10−6. In the inner
loop of Algorithm 3, we chose the center p(0) of the regularization randomly
in P, α = 3.5, and εk = ε0/(1 + k), where ε0 = 0.5 and k is the iteration
index of the outer loop; the termination criterion of the inner loop is the
same as the outer loop. The above choice of the free parameters is the result
of some preliminary tests; furthermore we have to remark that these choices
are tailored to this specific problem and do not take account of the general
considerations made in the previous sections. It is important to underline
however that the proposed algorithm has been observed to be robust against
the variation of the aforementioned parameters. Finally, note that, in case of
multiple solutions, the IWFA is not guaranteed to converge [93]. In fact, in
our experiments, we sometimes observed oscillating behaviours of the IWFA.
In such cases, following a common approach in signal processing, we just ter-
minated the algorithm after 250 iterations and used as power allocation for
the transmission of the users the value obtained in the last iteration.

The following comments are in order from Figure 3.9. In the case of mul-
tiple Nash equilibria of the game G (high interference scenario), the sum-rate
performance of the network can vary significantly over the set of the Nash
equilibria; the relative sum-rate gap between the“worst” and “best” Nash
equilibrium is around 90%. Interestingly, our algorithm is shown to signif-
icantly outperform the classical IWFA, which validates our heuristic (3.50)
in choosing the Nash equilibrium. When the NE of the game is unique, as
expected, both the IWFA and our algorithm converge to the same sum-
rate solution. Finally, note that even though our algorithm is in principle a
double-loop scheme, its convergence speed (measured in terms of number of
iterations required to reach the desired error accuracy) is as the same order
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as the simultaneous (single loop) IWFA; this is due to the fact that the best-
response Jacobi scheme used in the inner loop converges quite fast, typically
in three/four iterations.

Figure 3.9 refers to a specific channel scenario (realization); nevertheless,
it has been observed that the qualitative behaviour of the simulated algo-
rithms is almost independent of the specific channel realization (provided
that the matrix M remains positive semidefinite), making the conclusions
drawn from Figure 3.9 very general. This is confirmed also by Figure 3.10,
where we provide the average performance of the algorithms considered in
Figure 3.9. More specifically, in Figure 3.10(a) we plotted the average sum-
rate versus the SNR , 10 log10(P ), with P ν = P and σνn

2 = 1 for all ν and
k, achievable at the NE reached by the simultaneous IWFA and our Algo-
rithm 3; for each value of the SNR, the curves are averaged over 5000 random
channel realizations, chosen so that the matrix M is positive semidefinite. In
Figure 3.10(b) we plotted the outage sum-rate (which is the probability that∑Q
ν=1 r

ν(p) ≥ sr) versus sr, achieved by the aforementioned algorithms, for

a SNR , P = 5dB; as in Figure 3.10(b), the outage probability has been
estimated using 5000 channel realizations, chosen so that the matrix M is
positive semidefinite. The free parameters are chosen as in Figure 3.9. The
outage probability provides a quantitative indication of the dispersion of the
sum-rate values (as a function of the random channels) around the mean
value: the higher the slope of the outage curves, the less the dispersion of the
sum-rate around its mean. We would like to have each sum-rate realization
as close as possible to its mean, so that the average performance as given in
Figure 3.10(a) are meaningful in practice. Note that the discrepancy in the
sum-rate gap between Algorithm 3 and the IWFA as observed in Figure 3.9
and Figure 3.10 is due to the oscillating behaviour of the IWFA experienced
for some channel realizations. The following remarks are in order from Figure
3.10. As expected, the performance of all the examined algorithms are almost
the same in low SNR regime (roughly speaking when SNR ≤ −5dB), since in
that regime the thermal noise dominates the MUI term at the denominator
of the SINR, and thus the pairs behave like decoupled links; for medium/high
SNR’s (i.e., when the MUI is the dominant factor), the proposed algorithm
significantly outperforms the state-of-the-art IWFA, which makes it a good
candidate for the design of infrastructureless networks.



3.9 An Application to a Rate Maximization Game 107

Fig. 3.9: Comparison of distributed algorithms solving the game G: Sum-rate of the users

versus the iteration index, achieved by the simultaneous IWFA (dashed-dot line
curve), Algorithm 3 based on the outer function φ(p) in (3.50) (solid line curve),

and Algorithm 3 based on the outer function −φ(p) (dashed line curve), in the

low/medium interference regime (i.e., M is positive definite) and high interfer-
ence regime (i.e., M is positive semidefinite).
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[subplot (a)]

[subplot (b)]

Fig. 3.10: Average sum-rate versus the SNR [subplot (a)] and outage sum-rate [sub-

plot(b)] at the Nash equilibria of G: simultaneous IWFA (dashed-dot line
curve), Algorithm 3 based on the outer function φ(p) in (3.50) (solid line curve),
and Algorithm 3 based on the outer function −φ(p) (dashed line curve).



Conclusions

In this thesis we have proposed solution methods for Generalized Nash Equi-
librium Problems (GNEPs) and Hemivariational Inequalities (HVIs) where
the feasible set is given by the intersection of a closed convex set with the
solution set of a lower-level monotone Variational Inequality (VI).

The Generalized Nash Equilibrium Problem (GNEP) is a central model in
game theory that has been used to model problems from many different
fields. It turns out that, until very recently, there were no provably convergent
algorithms for the solution of GNEPs. In this work we have considered one
of the most promising approaches for which we are able to prove convergence
results: penalty methods. Penalty algorithms have originally been developed
and studied for the solution of constrained (standard) optimization problems
and their generalization to the case of GNEPs is not straightforward. Weaker
theoretical results can be expected due to the variable nature of the players’
feasible sets.

In order to get rid of the “difficult” coupling constraints, we have consid-
ered a “partial” exact penalty method which allows us to reduce the original
GNEP to a nonsmooth standard NEP. After having established some relevant
general theoretical results, we were finally able, for the first time, to identify
suitable and non trivial classes of GNEPs for which the proposed scheme is
guaranteed to converge to a solution of the original game.

HemiVariational Inequalities (HVI)s are a powerful modeling tool that en-
compasses both (convex) optimization and variational inequalities as spe-
cial cases. In particular, we have considered the Variational Inequality-
Constrained HemiVariational Inequality (VI-C HVI) with side constraints,
thus an HVI for which the feasible set is implicitly defined as the intersection
of a closed convex set with the solution set of a lower-level monotone varia-
tional inequality; this problem is, in turn, a generalization of a hierarchical
optimization problem and includes also, as special case, the problem of se-
lecting a particular equilibrium solution to optimize an auxiliary (“upper”)
objective function. In this work, we presented centralized and distributed al-
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gorithms for the numerical solution of such problems. The algorithms consist
of a main loop wherein a sequence of one-level, strongly monotone HVIs is
solved that involve the penalization of the non-VI constraint and a combi-
nation of proximal and Tikhonov regularization to handle the lower-level VI
constraints. Subsequently, the methods developed are used to successfully
solve a new power control problem in ad-hoc networks. Finally the analy-
sis is equipped with a series of numerical tests and results which show the
outstanding behavior of the proposed approach.

To the best of our knowledge, these contributions are new and considerably
expand existing results. The proposed distributed algorithm, in which we are
interested as motivated by applications in non-cooperative game problems is
novel even for a hierarchical optimization problem. Furthermore, the power
control problem that we have analyzed is new and our results expand the
applicability and flexibility of game-theoretic models in ad-hoc networks and
also bring considerable gains over existing techniques.



Appendix A

Some considerations on constraint
qualifications

In this appendix, we recall definitions and properties of some relevant con-
straint qualifications. Furthermore we briefly investigate their consequences
and the relations to each other.

Let us consider, for sake of simplicity, the jointly convex GNEP where each
player’s problem is the following

minxν θν(xν ,x−ν)

s.t. g(xν ,x−ν) ≤ 0,

x ∈ Kν .

Definition 7. The Slater condition holds if there exists a point x̂ ∈ K such
that g(x̂) < 0.

We recall that, in case of optimization problems with convex and differen-
tiable (inequality) constraints, the Mangasarian-Fromovitz Constrain Qual-
ification (MFCQ) and the Slater’s one are equivalent. In the GNEP case,
instead, the EMFCQ (at feasible points) is stronger than a Slater-type con-
dition. In fact, consider a feasible point x and assume that it satisfies the EM-
FCQ. By setting d := (d1, . . . , dN ), it is clear that we have ∇xg(x)Td < 0 and
in turn, it is classical to show that this implies Slaters condition. On the con-
trary, let us consider a GNEP in which there are two players, each one control-
ling one variable, and assume m = 1 with g1(x) = g2(x) = (x1)2 + (x2)2− 1.
The Slater-type condition holds (considering the origin for example). On the
other hand, at point (1, 0), ∇x2g(x) = 0 and EMFCQ does not hold.

We recall the KKT conditions for the player ν’s optimization problem (2.2)
(see [88]):
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−[∇xνθν(xν ,x−ν) +

mν∑
j=1

vνj∇xνgνj (xν ,x−ν)] ∈ NKν (xν)

0 ≤ vν⊥gν(xν ,x−ν) ≤ 0

(A-1)

where vν ∈ Rmν and xν ∈ Kν . We finally recall two more constraint qualifi-
cations.

Definition 8. We say that the sequentially bounded constraint qualification
(SBCQ) [32] holds at x̄, solution of the GNEP (2.2), if, for every sequence of
vectors {xk} converging to x̄ and such that, for every ν, (xk)ν is a solution of
the player ν’s optimization problem given the other players’ strategies (xk)−ν

for every k, there exists a bounded sequence of multipliers {(vk)ν} such that
{(vk)ν} satisfies the KKT (A-1) conditions corresponding to xk for every k.

The latter condition is implied by the following constraint qualification.

Definition 9. The Generalized Sequentially Bounded Constraint Qualifica-
tion (GSBCQ) (see [79]) holds if , for every player ν = 1, . . . , N and for every
bounded sequence {xk} such that (xk)ν is a solution of the player ν’s opti-
mization problem (2.2) given the other players’ strategies (xk)−ν , there exists
a bounded sequence {(vk)ν} such that {(vk)ν} satisfies the KKT conditions
(A-1) corresponding to xk for every k.

Regarding this definition we would like to mention that in general the solution
set of a GNEP is not closed. For example, let us consider the following two
players game:

minx1 − x1 minx2 (x2 − x1)2

0 ≤ x1 ≤ 1 0 ≤ x2 ≤ 1

x1x2 ≤ (x2)2

(A-2)

with x1, x2 ∈ R. Consider the sequence of solutions zk =
(

1
k ,

1
k

)
→ (0, 0):

(0, 0) is not a game’s solution. This example shows that, in general the
GNEP’s solution set is not closed.

We note that, by the GSBCQ, by the KKT conditions (A-1) with xk → x̄
(subsequencing if necessary), we have the closedness of the solutions’ set
taking into account the outer semicontinuity of the mapping NKν (xν) (see
[88], Proposition 6.6). Furthermore, by usual reasonings, it can be proven
that if the EMFCQ holds then GSBCQ holds too.

Theorem 19. If the EMFCQ holds on K, then GSBCQ holds.

Proof. Suppose by contradiction that there exists a player ν and a bounded
sequence {xk} of solutions of the game for which every sequence of multipli-
ers {(vk)ν} (such that {(vk)ν} satisfies KKT conditions) is unbounded, i.e.,
‖(vk)ν‖ → ∞. For every k, KKT conditions hold:
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−[∇xνθν(xk) +∇xνgν(xk)(vk)ν ] ∈ NKν ((xk)ν)

0 ≤ (vk)ν⊥gν(xk) ≤ 0.
(A-3)

Subsequencing if necessary, we may assume that the entire sequence {xk}
converges to x̄. Then we have,

lim
k

{
−∇x

νθν(xk)

‖(vk)ν‖
− ∇x

νgν(xk)(vk)ν

‖(vk)ν‖

}
= −∇xνgν(x̄)w̄ν ∈ NKν (x̄ν) (A-4)

with 0 ≤ w̄ν⊥gν(x) ≤ 0 and w̄ν 6= 0, a contradiction to (2.14). ut

In view of the considerations made in Chapter 2 and here, we resume the
properties of and the relations between the analyzed constraint qualifications
in the following diagram.

Fig. A.1: Some constraint qualifications’ relations.





Appendix B

Test problems

In this appendix, we present the collection of feasible sets and lower and
upper functions that we have considered in our simulations. Each problem is
an instance of HVI(K,F, Φ): thus each test problem is “individuated” by the
choice for a particular feasible set, a particular lower and a particular upper
function.

We have identified each feasible set, each lower function F and each up-
per function Φ with an alphanumeric tag: for example, the tag K1 refers to
the feasible set K1, the tag F11 to the lower function F11, the tag Φ1 to
the upper function Φ1 and so on. We remark that the lower functions’ tag
could be formed by two digits; in such cases, the first digit refers to the
corresponding feasible set: indeed, we will see in the following sections that
some of the lower functions, when considered in combination with a particu-
lar feasible set, allows the explicit calculation of the solution set SOL(K,F ).
Finally, the test problem name is a suitable combination of the three tags
that we have previously introduced. For example, problem K1F11Φ1 is the
VI-C VI(K1, F11, Φ1).

B.1 Lower feasible set K of VI(K, F)

Each feasible set K = {x ∈ Rn : Ax − b ≤ 0}, with A ∈ Mm,n and b ∈ Rn,
considered is a compact polyhedron.

K1

Problem Dimensions:

− n
− m = n+ 1

Constraints matrix and constant terms vector:
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− A =



1 1 · · · · · · 1
−1 0 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . 0
0 0 · · · 0 −1


b =



1
0
...
...
0


Further Informations:

− This is the n dimensions simplex:

K1 = {x ∈ Rn : x1 + · · ·+ xn ≤ 1, xi ≥ 0, i = 1, . . . , n}.

K2

Problem Dimensions:

− n
− m = 2n

Constraints matrix and constant terms vector:

− A =



1 0 0 0 0
−1 0 0 0 0

0 1 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 −1 0 0

0 0 0
. . . 0

0 0 0
. . . 0

0 0 0 0 1
0 0 0 0 −1


b =



1
0
1
0
1
0
...
...
1
0


Further Informations:

− In this case the feasible set is the “box” K2 = {x ∈ Rn : 0n,1 ≤ x ≤ e},
where 0n,1 ∈ Rn is the zero vector and Rn 3 e = (1 1 . . . 1)T .

K3

Problem Dimensions:

− n
− m = 2n
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Constraints matrix and constant terms vector:

− A =



1 0 0 0 0
−1 0 0 0 0

0 1 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 −1 0 0

0 0 0
. . . 0

0 0 0
. . . 0

0 0 0 0 1
0 0 0 0 −1


b =



u
−l
u
−l
u
−l
...
...
u
−l


Further Informations:

− In this case the feasible set K is the “box” K3 = {x ∈ Rn : le ≤ x ≤ ue},
with Rn 3 e = (1 1 . . . 1)T .

K4

Problem Dimensions:

− n
− m = 2n

Constraints matrix and constant terms vector:

− A =



1 0 0 0 0
−1 0 0 0 0

0 1 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 −1 0 0

0 0 0
. . . 0

0 0 0
. . . 0

0 0 0 0 1
0 0 0 0 −1


b =



u1

−l1
u2

−l2
u3

−l3
...
...
un
−ln


Further Informations:

− In this case the feasible set K is the “box” K4 = {x ∈ Rn : l ≤ x ≤ u},
with Rn 3 l = (l1 . . . ln)T and Rn 3 u = (u1 . . . un)T .

K5

Problem Dimensions:
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− n
− m = n+ 1

Constraints matrix and constant terms vector:

− A =



2 1 · · · · · · 1
−1 0 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . 0
0 0 · · · 0 −1


b =



2
0
...
...
0


Further Informations:

− In this case the feasible set K is the polyhedron:

K5 = {x ∈ Rn : 2x1 + x2 + · · ·+ xn ≤ 2, xi ≥ 0, i = 1, . . . , n}.

K6

Problem Dimensions:

− n
− m = n+ 1

Constraints matrix and constant terms vector:

− A =



a1 a2 · · · · · · an
−1 0 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . 0
0 0 · · · 0 −1


b =



b1
0
...
...
0

, with ai ≥ 0 and b1 ≥ 0.

Further Informations:

− In this case the feasible set K is the polyhedron:

K6 = {x ∈ Rn : a1x1 + a2x2 + · · ·+ anxn ≤ b1, xi ≥ 0, i = 1, . . . , n}.
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B.2 Lower function F of VI(K, F)

Each function F considered is continuous and monotone.

F11

Lower function:

− F11(x) = [1
2 (x1 + . . .+ xn)2 − 1]

1
...
1


Derivatives:

− JF11(x) = (x1 + . . .+ xn)

1 · · · 1
...

. . .
...

1 · · · 1


Further Informations:

− When F11 is considered in combination with the feasible set K1, we have
SOL(K1, F11) = {x ∈ Rn : x1 + . . .+ xn = 1, xi ≥ 0, i = 1, . . . , n} (see
F61 for more details).

F12

Lower function:

− F12(x) =

−8
...
−8


Derivatives:

− JF12(x) = 0n,n

Further Informations:

− When F12 is considered in combination with the feasible set K1, we have
SOL(K1, F12) = {x ∈ Rn : x1 + . . .+ xn = 1, xi ≥ 0, i = 1, . . . , n} (see
F61 for more details).

F13

Lower function:
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− F13(x) =


−x2 − x3 − . . .− xn

x1 − 1
...

x1 − 1


Derivatives:

− JF13(x) =


0 −1 · · · −1
1 0 · · · 0
...

. . .
. . .

...
1 0 0 0


Further Informations:

− When F13 is considered in combination with the feasible set K1, we have
SOL(K1, F13) = {x ∈ Rn : x1 + . . .+ xn = 1, xi ≥ 0, i = 1, . . . , n} (see
F61 for more details).

F21

Lower function:

− F21(x) =


1
2x

2
1 − 1
0
...
0


Derivatives:

− JF21(x) =


x1 0 · · · 0
0 · · · · · · 0
...

. . .
. . .

...
0 · · · · · · 0


Further Informations:

− When F21 is considered in combination with the feasible set K2, we have
SOL(K2, F21) = {x ∈ Rn : x1 = 1, 0 ≤ xj ≤ 1, , j = 1, . . . , n, j 6= 1}
(see F61 for more details).

F51

Lower function:

− F51(x) =


x2 + x3 + . . .+ xn − 2

−x1

...
−x1
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Derivatives:

− JF51(x) =


0 1 · · · 1
−1 0 · · · 0
...

. . .
. . .

...
−1 0 0 0


Further Informations:

− When F51 is considered in combination with the feasible set K5, we have
SOL(K5, F51) = {x ∈ Rn : 2x1 +x2 + . . .+xn = 2, xi ≥ 0, i = 1, . . . , n}
(see F61 for more details).

F52

Lower function:

− F52(x) =


2
3 (2x1 + . . .+ xn)3 − 12
1
3 (2x1 + . . .+ xn)3 − 6

...
1
3 (2x1 + . . .+ xn)3 − 6


Derivatives:

− JF52(x) =


4(2x1 + . . .+ xn)2 · · · 2(2x1 + . . .+ xn)2

2(2x1 + . . .+ xn)2 · · · (2x1 + . . .+ xn)2

...
. . .

...
2(2x1 + . . .+ xn)2 · · · (2x1 + . . .+ xn)2


Further Informations:

− When F52 is considered in combination with the feasible set K5, we have
SOL(K5, F52) = {x ∈ Rn : 2x1 +x2 + . . .+xn = 2, xi ≥ 0, i = 1, . . . , n}
(see F61 for more details).

F61

Lower function:

− F61(x) =


a2x2 + . . .+ anxn − b1

−a2x1

...
−anx1


Derivatives:
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− JF61(x) =


0 a2 · · · an
−a2 0 · · · 0

...
. . .

. . .
...

−an 0 0 0


Further Informations:

− When F61 is considered in combination with the feasible set K6, we have
SOL(K6, F61) = {x ∈ Rn : a1x1 + . . .+anxn = b1, xi ≥ 0, i = 1, . . . , n}.
Indeed for x ∈ Rn such that x ∈ K̃1 = {a1x1 + . . . + anxn = b1, xi ≥
0, i = 1, . . . , n},

F61(x) =


−a1x1

−a2x1

...
−anx1

 .
Therefore, for such points, −F61(x) ∈ NK(x).

F7

Lower function:

− F7(x) =

0
...
0


Derivatives:

− JF7(x) = 0n,n

Further Informations:

− We have SOL(K,F7) = K, for each K.

Fr

Lower function:

− Fr(x) = Px+ c

Derivatives:

− JFr(x) = P

Further Informations:

− Fr is a randomly generated monotone linear function.
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− The procedure for the random generation of monotone linear function has
been proposed in [48]. In this case we have chosen P = B−BT +D with
B ∈ Mn upper triangular and D ∈ Mn positive semidefinite diagonal
matrix. Thus, if B is not the null matrix, P would not be symmetric.
The eigenvalues of the symmetric part of P are the diagonal entries of D.

− The diagonal elements of D (at least one is zero in order to obtain nothing
more than a monotone function) and the components of the vector c are
drawn from the standard uniform distribution on the interval (0, 10],
those of B on the interval (0, 0.1].

B.3 Upper function Φ

Each function Φ considered is continuous and strongly monotone.

Φ1

Upper function:

− Φ1(x) = x

Derivatives:

− JΦ1(x) = In,n

Further Informations:

− This function is the gradient of 0.5x2
1 + . . .+ 0.5x2

n + c.

Φ2

Upper function:

− Φ2(x) = x−

0.1
...

0.1


Derivatives:

− JΦ2(x) = In,n

Further Informations:

− This function is the gradient of 0.5(x1 − 0.1)2 + . . .+ 0.5(xn − 0.1)2 + c.
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Φ3

Upper function:

− Φ3(x) = x−


0
...
0
4


Derivatives:

− JΦ3(x) = In,n

Further Informations:

− This function is the gradient of 0.5x2
1 + . . .+ 0.5x2

n−1 + 0.5(xn − 4)2 + c.

Φ4

Upper function:

− Φ4(x) =
[
0.5 (xi + 0.5) e0.1(xi+0.5)2

]n
i=1

Derivatives:

− JΦ4(x) = diag[0.5 (1 + 0.2[(xi + 0.5)2)]e0.1[(xi+0.5)2]]ni=1

Further Informations:

− The Jacobian of this function is symmetric and uniformly positive definite
over K.

Φ5

Upper function:

− Φ5(x) =
[
0.3 e(0.15xi)

]n
i=1

Derivatives:

− JΦ5(x) = diag[0.05 e(0.15xi)]ni=1

Further Informations:

− The Jacobian of this function is symmetric and uniformly positive definite
over K.
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Φ6

Upper function:

− Φ6(x) =


0.3e0.15x1 + x2 + x3 + . . .+ xn
0.3e0.15x2 − x1 + x3 + . . .+ xn

...
0.3e0.15xn − x1 − x2 − . . .− xn−1


Derivatives:

− JΦ6(x) =


0.05e0.15x1 1 · · · · · · 1
−1 0.05e0.15x2 1 · · · 1
...

. . .
. . .

. . .
...

−1 −1 · · · −1 0.05e0.15xn


Further Informations:

− The symmetric part of the Jacobian of this function is the uniformly
positive definite (on K) matrix diag[0.05e(0.15xi)]ni=1.

Φ7

Upper function:

− Φ7(x) = Φ1(x) +


x2

1(x2 + . . .+ xn)
−1/3x3

1 + x2(x3 + . . .+ xn)
−1/3x3

1 − 1/2x2
2 + x3(x4 + . . .+ xn)

...
−1/3x3

1 − 1/2x2
2 − . . .− 1/2x2

n−1


Derivatives:

− JΦ7(x) = In,n +


2x1(x2 + . . .+ xn) x2

1 · · · · · · x2
1

−x2
1 (x3 + . . .+ xn) x2 · · · x2

...
. . .

. . .
. . .

...
−x2

1 −x2 · · · −xn−1 0


Further Informations:

− The symmetric part of the Jacobian of this function, if x ∈ K implies
x ≥ 0, is the uniformly positive definite (on K) matrix:

1 + 2x1(x2 + . . .+ xn) 0 · · · · · · 0
0 1 + (x3 + . . .+ xn) 0 · · · 0
...

. . .
. . .

. . .
...

0 0 · · · 0 1
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Φr

Upper function:

− Φr(x) = Mx+ b

Derivatives:

− JΦr(x) = M

Further Informations:

− Φr is a randomly generated monotone linear function.
− The procedure for the random generation of monotone linear function has

been proposed in [48]. In this case we have chosen M = ATA+B−BT +D
with A ∈ Mn, B ∈ Mn upper triangular and D ∈ Mn positive definite
diagonal matrix. If B is not the null matrix, JΦr would not be symmetric.

− The elements of A and B are drawn from the standard uniform distribu-
tion on the open interval (−5, 5), those of D on the interval (0, 0.3).



Appendix C

Algorithm performances

C.1 Centralized exact version

For each problem we have implemented the algorithm using the parameter
ek = 10−5 for every k (thus solving the strongly monotone inner problem
exactly at each outer iteration k) and for fixed values of ε0, with ε0 equal to
0.4, 0.8, 1.6, 3.2, 6.4 respectively; for each fixed value of ε0 we have consid-
ered several values for parameter α, namely 0.1, 0.3, 0.9, 2.7, 8.1 which are
provided in logarithmic scale for the x axes. We report here the total amount
of the outer and inner iterations and the accuracy of the solution found by
the algorithm for such values of α and ε0 (see Figures C.1-C.9), by consid-
ering three test problems with 50 variables, namely K1F13Φr, K2F21Φ3 and
K5F52Φ2.

C.2 Centralized inexact version

We report here (see Figures C.10-C.14), respectively, the total number of
outer iterations, the total amount of inner iterations and the error of the
solution found by the algorithm that we have obtained for different choices for
the updating rule for the parameter ek and by considering five test problems
with n = 50 variables, namely K2F7Φr, K5F52Φ2, K5F52Φ4, K5F52Φ5 and
K6F61Φ2. Based on the considerations made in Section 3.5.2, we have set
preliminarily ε0 equal to 6.4 and α equal to 0.3.
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C.3 Centralized version vs distributed version

We have compared the performances of the centralized and the distributed
algorithms in terms of number of outer and inner iterations and of time spent
(provided in seconds) by the two versions of the scheme. Here we report the
results (see Figures C.15-C.19) of our experiments on five test problems with
n = 50 variables, namely K2F13Φ6, K2F21Φ2, K2F61Φr, K2FrΦ2, K2FrΦ7. We
recall that we have chosen ε0 = 3.2 and we have considered the following six
different decomposition approaches Q = 1, . . . , 6:

− Q = 1: N1 = 1 and n1
1 = 50

− Q = 2: N2 = 2 and n2
1 = 25, n2

2 = 25
− Q = 3: N3 = 3 and n3

1 = 20, n3
2 = 15, n3

3 = 15
− Q = 4: N4 = 4 and n4

1 = 15, n4
2 = 15, n4

3 = 10, n4
4 = 10

− Q = 5: N5 = 5 and n5
ν = 10, ν = 1, . . . , 5

− Q = 6: N6 = 10 and n6
ν = 5, ν = 1, . . . , 10

We note that for Q = 1 the problem is not decomposed, thus ᾱ1 = 0; in this
case, we have set α1 equal to 0.3 (based on the considerations made in Section
3.5.2), no decomposition is considered and there are no differences between
the two versions of the scheme tested with the same value for α1. In general,
for each test problem, each decomposition Q leads to a different value of
the lower bound ᾱQ; for each Q, we have tested the distributed version first
with αQ = ᾱQ (with the exception of α1 = 0.3), then with a “risky” value
αQ = αR such that αR < minQ6=1 ᾱQ. Then we have tested the centralized
version by considering the same values of α equal to αQ for every Q.

In each figure, one can find the algorithm performances obtained for dif-
ferent choices of Q = 1, . . . , 6: we report on the x axes the values of the
corresponding values of NQ, i.e. the number of decomposed problems that
we have considered for each Q. For each Q (and thus for each NQ), a triplet of
results is reported: the first bar (in blue) refers to the centralized version with
αQ = ᾱQ (with the exception of α1 = 0.3), the second bar (in grey) refers
to the distributed version with αQ = ᾱQ (with the exception of α1 = 0.3)
and the third one (in red) to the decomposed version with a risky value of
αQ = αR for Q = 1, . . . , 6.
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Fig. C.1: Centralized exact version, problem K1F13Φr, n = 50. Number of outer iterations.
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Fig. C.2: Centralized exact version, problem K1F13Φr, n = 50. Number of inner iterations.
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Fig. C.3: Centralized exact version, problem K1F13Φr, n = 50. Solutions error.
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Fig. C.4: Centralized exact version, problem K2F21Φ3, n = 50. Number of outer iterations.
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Fig. C.5: Centralized exact version, problem K2F21Φ3, n = 50. Number of inner iterations.
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Fig. C.6: Centralized exact version, problem K2F21Φ3, n = 50. Solutions error.
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Fig. C.7: Centralized exact version, problem K5F52Φ2, n = 50. Number of outer iterations.
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Fig. C.8: Centralized exact version, problem K5F52Φ2, n = 50. Number of inner iterations.
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Fig. C.9: Centralized exact version, problem K5F52Φ2, n = 50. Solutions error.
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Fig. C.10: Centralized inexact version, problem K2F7Φr, n = 50.

Fig. C.11: Centralized inexact version, problem K5F52Φ2, n = 50.
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Fig. C.12: Centralized inexact version, problem K5F52Φ4, n = 50.

Fig. C.13: Centralized inexact version, problem K5F52Φ5, n = 50.
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Fig. C.14: Centralized inexact version, problem K6F61Φ2, n = 50.
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Fig. C.15: Problem K2F13Φ6, n = 50: for each Q, the first bar (in blue) refers to the
centralized version with αQ = ᾱQ (with the exception of α1 = 0.3), the

second bar (in grey) refers to the distributed version with αQ = ᾱQ (with

the exception of α1 = 0.3) and the third one (in red) to the decomposed
version with a risky value of αQ = αR for Q = 1, . . . , 6. In this case, α1 = 0.3,

α2 = 6.0183, α3 = 9.7825, α4 = 13.2523, α5 = 16.7221, α6 = 29.2889, αR = 5.
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Fig. C.16: Problem K2F21Φ2, n = 50: for each Q, the first bar (in blue) refers to the
centralized version with αQ = ᾱQ (with the exception of α1 = 0.3), the

second bar (in grey) refers to the distributed version with αQ = ᾱQ (with the

exception of α1 = 0.3) and the third one (in red) to the decomposed version
with a risky value of αQ = αR for Q = 1, . . . , 6. In this case, α1 = 0.3,

α2 = 0.8, α3 = 1.6, α4 = 2.4, α5 = 3.2, α6 = 7.2, αR = 0.3.
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Fig. C.17: Problem K2F61Φr, n = 50: for each Q, the first bar (in blue) refers to the
centralized version with αQ = ᾱQ (with the exception of α1 = 0.3), the

second bar (in grey) refers to the distributed version with αQ = ᾱQ (with

the exception of α1 = 0.3) and the third one (in red) to the decomposed
version with a risky value of αQ = αR for Q = 1, . . . , 6. In this case, α1 = 0.3,

α2 = 4.7438, α3 = 9.4877, α4 = 14.2315, α5 = 18.9753, α6 = 42.6945, αR = 4.
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Fig. C.18: Problem K2FrΦ2, n = 50: for each Q, the first bar (in blue) refers to the

centralized version with αQ = ᾱQ (with the exception of α1 = 0.3), the
second bar (in grey) refers to the distributed version with αQ = ᾱQ (with the

exception of α1 = 0.3) and the third one (in red) to the decomposed version

with a risky value of αQ = αR for Q = 1, . . . , 6. In this case, α1 = 0.3,
α2 = 2.093, α3 = 3.3734, α4 = 4.4545, α5 = 5.3132, α6 = 9.7138, αR = 1.
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Fig. C.19: Problem K2FrΦ7, n = 50: for each Q, the first bar (in blue) refers to the

centralized version with αQ = ᾱQ (with the exception of α1 = 0.3), the
second bar (in grey) refers to the distributed version with αQ = ᾱQ (with the

exception of α1 = 0.3) and the third one (in red) to the decomposed version

with a risky value of αQ = αR for Q = 1, . . . , 6. In this case, α1 = 0.3,
α2 = 2.3113, α3 = 3.8099, α4 = 5.1092, α5 = 6.1863, α6 = 11.6781, αR = 0.3.
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