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Introduction

Sample Size Determination (SSD) – that is the choice of the optimal number of

observations to be enrolled in a study in order to guarantee good quality inference –

is one of the crucial aspects of experimental design. In this thesis we essentially refer

to the context of clinical trials, both for the terminology and for the applications,

although the proposed methodology can be applied to a more general experimental

setting. More specifically, we focus on Phase II clinical trials that are aimed at

evaluating new biomedical procedures in terms of efficacy and/or safety. Another

interesting setting is the one of Phase III studies in which two alternative treatments

are to be compared. Clinical trials constitute a broadly accepted standard framework

to develop and regulate progresses in biomedical sciences and they also provide an

ideal context for the implementation of innovative statistical techniques. From the

SSD point of view, the main objective of a clinical trial is to recruit the minimum

number of patients that guarantees to obtain conclusive inferential results with high

probability. At the same time, in planning a trial one needs both to satisfy budget

constraints and to care about ethical implications, related to patients’ health (see

Julious (2004)).

According to the classical perspective, the optimal sample size is calculated using

formulae based on the power of a test or on the width of a confidence interval (see

Armitage et al. (2002)). In general, frequentist procedures rely on the computation

of probabilities of certain events with respect to the sampling distribution. Given

that the latter depends on the unknown parameter, it is then necessary to prefix

a guess value for the parameter of the assumed statistical model. This value, also

called design value, has a heavy impact on the SSD criteria that finally turn out to

be only locally optimal.

This is one of the motivations that encourages us to consider a Bayesian approach,

that allows us to model initial uncertainty on the design parameters through a prior

probability distribution. For instance, De Santis & Perone Pacifico (2004) highlight

that assigning a probability distribution to the unknown design quantity allows one

to compare alternative scenarios and to avoid local optimality. Furthermore, while
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in the frequentist approach one ignores pre-experimental information on the phe-

nomenon of interest – for instance derived from historical studies or from subjective

opinions of experts – Bayesian methods provide a rigorous framework to formalize

and incorporate this information in inferential analysis. In the specific case of SSD,

this potentially yields a reduction of the required number of observations to reach

the prefixed objectives.

Hence, in this work we introduce suitable SSD criteria, based on specific sum-

maries of the predictive distribution of a chosen posterior quantity of interest. We

follow here the so-called two–priors approach. It establishes that it is possible to

specify two distinct prior distributions: on the one hand the design prior models

initial uncertainty on the parameter, on the other the analysis prior allows one to

take into account pre-experimental information in the preposterior analysis. This

topic is discussed in Chapter 1; for further details see for example Tsutakawa (1972),

Etzioni & Kadane (1993), Wang & Gelfand (2002), De Santis (2006).

In Chapter 2 we highlight that, given particular choices of the posterior quantity

of interest and of the predictive summary, power-based methods for SSD can be

thought as a special case of the predictive Bayesian approach. This interpretation is

particularly appealing in that it involves the most widely used methods in standard

applications. Moreover, it allows a generalization of the notion of power function. To

this end, first of all we show how the classical power – that in the following we name

Conditional Frequentist Power function – does not take into account: (a) uncertainty

on the design value used for the unknown parameter to compute the power; (b) pre-

experimental information on the unknown parameter, provided, for instance, by

previous clinical studies or by subjective opinions of experts. Conversely, by taking

into account (a) or (b) or both, several extensions of the power function are proposed:

Predictive Frequentist Power function, Conditional and Predictive Bayesian Power

functions. We review these methods, their relationships with the standard approach

and implications on sample size determination and we discuss an application with

regard to the normal model (see Gubbiotti & De Santis (2008)). Finally, this leads

us to notice that Predictive Bayesian Power can be interpreted as a generalized

power function, including the others as special cases.

In the second part of the thesis, the general framework of Chapter 1 is extended

in several directions. The first step considered in Chapter 3 is the introduction of a

robust version of SSD criteria. Elicitation of a prior distribution is often criticized

because of the impact that a specific prior has on preposterior analysis and on

selected sample sizes. In other words, an additional amount of uncertainty should

be accounted for in prior elicitation. For this reason, by replacing the single prior
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with a class of prior distributions, we derive a robust version of the SSD criteria.

This approach actually results in larger values of the sample size, as we show in the

applications with respect to the normal model and the binomial model (see Brutti

et al. (2008b)).

As a second extension, in Chapter 4, we assume that prior information derives

from several sources, for instance from distinct historical studies or from different

experts opinions (see Brutti et al. (2008a)). Hence, we suggest to elicit a prior

distribution to formalize the information relative to each of these sources and to

combine these distributions through a mixture with conveniently chosen weights.

This straightforward method allows us to deal with multiple sources of uncertainty:

the same framework of Chapter 2 can be then used to establish predictive SSD

criteria. Furthermore, we extend the use of a mixture of informative priors to the

case of Sample Size Re-estimation (SSRe): assuming that during an ongoing trial,

at a given time point, the first part of collected data is already available, we propose

to adjust the optimal sample size chosen at the beginning of the trial, based on

the interim information. This is very natural in the Bayesian context, since the

information can be easily updated thanks to Bayes theorem.

In this thesis we mostly refer to superiority trials. In Chapter 5, however, we

explicitly refer to equivalence trials, aimed at demonstrating no clinically significant

difference between two treatments, i.e. that the competing therapies are clinically

equivalent. Hence, we adapt the Bayesian SSD criteria to an equivalence study and

we consider a robust version of these criteria for classes of restricted conjugate priors.

Results for the normal model are provided and illustrated by examples.





Chapter 1

A predictive approach to Bayesian

Sample Size Determination

1.1 Introduction and motivations

In this thesis we introduce a predictive Bayesian methodology for sample size deter-

mination in the context of clinical trials. In general, the main purpose of a clinical

trial is to observe, as efficiently as possible, the minimum number of individuals

allowing inferential analysis to be conclusive. However, it is clear thar the choice

of the sample size is also connected to budget costraints and, above all, ethical im-

plications. In fact, as discussed in Julious (2004), if the sample size is too large

the trial could have met its objective before reaching its actual end, that is before

recruiting the preplanned number of patients, so that some individuals may have

unnecessarily entered the trial. On the contrary, if the trial is too small, there will

be little chance of meeting the study objectives, and patients may be put through

the potential trauma of a trial for no tangible benefit.

First of all, we briefly remind the reader the current classification of the main

clinical trials categories, according to the FDA (see Clinicaltrials.gov (2008)):

• In Phase I trials, researchers test an experimental drug or treatment in a

small group of people for the first time to evaluate its safety, determine a safe

dosage range, and identify side effects.

• In Phase II trials, the purpose is to check if the treatment is effective and

to further evaluate its safety.

• In Phase III trials, the treatment is given to a large groups of people to

confirm its effectiveness, monitor side effects, compare it to commonly used
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treatments, and collect information that will allow the experimental drug to

be used safely.

• In Phase IV trials, post marketing studies delineate additional information

including the drug’s risks, benefits, and optimal use.

In most of the applications illustrated in this work we specifically refer to Phase II

and Phase III trials. Moreover we mainly deal with superiority trials, although the

presented methods can be adapted to experimental designs with different objectives;

for instance in Chapter 5 we focus on equivalence trials.

According to a classical perspective, the optimal sample size is usually deter-

mined either from power calculations or from formulae based on confidence interval

widths (see, for example, Armitage et al. (2002)). Both cases involve the use of the

sampling distribution that depends on the unknown parameter of interest. Hence,

standard frequentist procedures require initial guesses of the parameters, which im-

plies that the resulting criteria are only locally optimal. In other words, the selected

sample size can be quite sensitive to these guessed values. This drawback of standard

SSD methods is discussed in details and illustrated by examples in Section 1.1.1. In

order to avoid local optimality, it is possible to resort to a Bayesian approach, that

specifically deals with this problem by modeling prior uncertainty on the parameter

values through a prior probability distribution. As Berger (1985) said indeed, design

problems are “naturally Bayesian”: before the experiment is performed, the absence

of data forces to address planning issues by using prior information. Bayesian meth-

ods provide a rigorous framework that allows one to incorporate either historical

information derived from previous studies or subjective opinions of expert clinicians

by specifying a prior distribution.

As discussed in De Santis & Perone Pacifico (2004), pre-experimental informa-

tion can contribute not only to reduce the overall size of an experiment but also

to efficiently allocate the experimental units, with more individuals assigned to the

innovative treatment, for which it is assumed that less information is available. The

Authors point out that, when the comparison of two unknown parameters repre-

senting the mean effectiveness of two treatments is of concern, using a probability

distribution in order to formalize prior information on these quantities has two im-

mediate advantages. The first is practical: assigning a prior distribution to the

unknown quantities allows different plausible scenarios to be taken into considera-

tion. Technically speaking, this allows local optimality to be avoided. Moreover, in

comparing two treatments effects, the Bayesian approach allows for the use of flex-

ible allocation rules, that reflect the actual knowledge on the phenomenon before

performing the experiment. The second main advantage of the Bayesian approach is
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that it addresses additional unknown quantities that are not of direct scientific inter-

est (i.e. nuisance parameters), such as the parameters that measure the variability

of the data.

1.1.1 Motivating examples

Let us recall here two examples proposed in De Santis & Perone Pacifico (2004) in

order to motivate the main ideas pointed out in the above section.

Example I Let us suppose that the purpose of the study is evaluating the rela-

tive effectiveness of an innovative therapy, with respect to the standard one. This

problem can be formalized, for instance, as interval estimation of the difference in

means of independent normal random variables with equal unknown variances, σ2.

Hence, given a confidence level 1 − α, the interval based on two independent sam-

ples of sizes n1 and n2 has width 2tn−2;1−α/2S
√
n−1

1 + n−1
2 , where S is the pooled

standard deviation, n = n1 +n2 and tn−2;1−α/2 is the 1−α/2 quantile of the Student

distribution with n − 2 degrees of freedom. Note that the above quantity depends

on the random variable S. To determine n1 and n2, the standard procedure is to

require the expected width of the random interval to be less than a chosen threshold,

l (see for example Beal (1989)). However, since the expected value of S depends on

the unknown value of σ, a guess value of this nuisance parameter must be chosen to

select values for n1 and n2.

Example II Let us consider the experimental situation of a clinical trial for com-

paring the probabilities of success (or failure) of two competing treatments. These

are the unknown parameters of two independent binomial distributions, denoted

by θ1 and θ2. For instance, let us assume we want to estimate the unknown log

odds ratio using the standard 1 − α confidence interval based on two independent

samples whose sizes are indicated by n1 and n2. The most commonly used frequen-

tist approach is to choose the minimal sample size that guarantees the confidence

interval width is not greater than l (see O’Neill (1984)). Since the width depends

on the unknown parameters (θ1, θ2), the criterion requires preliminary guesses, say

(θD1, θD2). In De Santis & Perone Pacifico (2004) it is shown that the expression

for the optimal sample size and the optimal proportion of cases directly depend on

(θD1, θD2), as follows. Denoting with z1−α/2 the 1 − α/2 percentile of the standard

normal distribution, the resulting total sample size, n = n1 + n2, is

n =
4z1−α/2

l2

(
1

n2

n
θD2(1− θD2)

+
1

(1− n2

n
)θD1(1− θD1)

)
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where the optimal proportion of cases

n2

n
=

(
1 +

√
θD2(1− θD2)

θD1(1− θD1)

)−1

is obtained by minimizing the asymptotic variance of the maximum likelihood es-

timator. Hence, if the observed proportions match the initial estimates (θD1, θD2),

then the width of the confidence interval would be equal to l. Otherwise, inaccurate

preliminary estimates could lead to excessively wide confidence intervals, which is

the typical local optimality problem of standard SSD procedures.

In summary, the above examples are helpful in showing that the standard proce-

dures for determining the sample size are only locally optimal, even in the simplest

settings.

The outline of the present chapter is as follows. After a brief review of the main

contributions in literature, we introduce the general framework of the predictive

Bayesian approach to SSD. In Section 1.2.2 we highlight the possibility of eliciting

two distinct priors, the one is used in the design phase and the other one for final

inference. This is called two–priors approach. Finally in Section 1.4 and in Section

1.5 we specifically refer to the normal and the binomial model providing applications

of the proposed criteria.

1.1.2 Review

The subject of this thesis is related to the general context of Bayesian experimen-

tal designs, illustrated in an exhaustive review by Chaloner & Verdinelli (1995).

Another point of reference in the literature is the handbook by Spiegelhalter et al.

(2004) that is a milestone for the use of Bayesian methods in clinical trials and

health-care evaluation. This reference also gains special importance thanks to the

official interest recently expressed by the FDA (i.e. Food and Drug Administration)

towards the Bayesian approach. In fact, in the Guidance for the Use of Bayesian

Statistics in Medical Device Clinical Trials 2006, FDA (2006), the FDA makes ex-

plicit, once and for all, the possibility of adopting in practice a Bayesian approach.

This document provides the guidelines for a correct use of Bayesian techniques in

clinical trials, by describing the fundamental aspects of the Bayesian paradigm,

highlighting its potentialities and setting specific rules for practical applications.

The SSD problem has been addressed in Bayesian literature from several per-

spectives. First of all, the decision-theoretic approach is probably the most rigorous

one and, in a sense, the most complete one, in that it allows to formally incorporate,
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in a loss function, advantages and disadvantages concerning the choice of a partic-

ular sample size – see, among others, Berger (1985), Piccinato (1996), Bernardo

(1997), Lindley (1997), Raiffa & Schlaifer (2000). This approach, however, presents

the intrinsic concern of the specification of a loss function, which is not immediate

especially when the opinion of non-statistician experts should be formalized. A fur-

ther layer of complexity is due to the involvement of different interested parties, for

instance patients, physicians, pharmaceutical companies, regulatory committee, etc.

As argued in Joseph et al. (1997), in general these parties have completely different

points of view that translate in different loss functions. This makes it intriguing but

difficult to adopt a decision-theoretic approach.

From a different perspective, several SSD criteria have been proposed by Spiegel-

halter & Freedman (1986), Lee & Zelen (2000) for testing problems and by Pham-

Gia & Turkkan (1992), Adcock (1997) for estimation problems. In particular, the

work of Joseph and colleagues (Joseph et al. (1995, 1997), Joseph & Belisle (1997),

M’Lan et al. (2006)) focuses on sample size calculations with regard to the esti-

mation of posterior credible intervals (more specifically highest posterior density

intervals) adopting a Bayesian approach that makes full use of the available prior

information. In summary, the Authors define several SSD criteria in terms of the

average coverage probability or the average length of intervals of posterior credi-

ble sets over all possible data sets, weighted by the predictive distribution. These

criteria have been first proposed in Joseph et al. (1995) with applications to SSD

for binomial proportions. Then in Joseph et al. (1997) the Authors address the

case of the difference between two binomial proportions with particular attention

to the mixed Bayesian/likelihood methods that uses the prior distribution to derive

the predictive distribution of the data, founding the final inference on the likelihood

only. Adopting Spiegelhalter et al. (2004)’s terminology, in Section 2.2 we name

this approach hybrid classical-Bayesian and we illustrate it in the context of SSD

methods based on the power function: its strength is the possibility to connect the

Bayesian account for prior uncertainty in the planning step with a classical final

inference. The Authors underline that in some situations this may be quite appro-

priate, as there may be substantial prior information that cannot be included in the

final report for regulatory limitations. Furthermore in Joseph & Belisle (1997) SSD

for normal means and difference between normal means is considered and finally a

more recent work by M’Lan et al. (2006) deals with case control studies, extending

the methodology first presented in De Santis et al. (2004). Among the most recent

contributions we also cite Clarke & Yuan (2006), Sahu & Smith (2006) and some

papers related to the issue of robustness with respect to prior specification, which

we address in Chapter 3: among others, DasGupta & Mukhopadhyay (1994), De
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Santis (2006), Brutti & De Santis (2008), Brutti et al. (2008b).

In this work we refer quite often to the simulation-based approach proposed by

Wang & Gelfand (2002): in the Authors’ words this approach “sacrifices explicit

SSD formulas and is computationally intensive but is feasible for at least a portion

of the wide range of hierarchical models which dominate the current Bayesian land-

scape”. We actually resort to this framework whenever it is not possible to obtain

analytic expressions for the quantities involved in the SSD calculations. Moreover,

in principle, the simulation–based approach allows one to extend the methodology

proposed in this thesis to more complex models.

1.2 Predictive Bayesian SSD

1.2.1 Preliminaries

Let us suppose we want to carry out a clinical trial to estimate a parameter of

interest θ. Without loss of generality let us assume that the experiment is defined

successful if it yields evidence that θ is larger than a given threshold δ. Note that

in a Phase III trial θ represents a measure of comparison between two treatments

and this setting reduces to the framework of a superiority trial. Furthermore let us

assume that pre-experimental information on θ is available. For instance we may

want to take into account the information provided by the results of a previous

study or the opinion of some expert clinicians about the experimental treatment.

As already mentioned in Section 1.1, according to a Bayesian perspective initial

information can be formalized by specifying a prior probability distribution πA for

θ.

Let us consider the random sample Yn = (Y1, ..., Yn), where Yi ∼ f(·; θ) is the

random variable associated to the effectiveness of the experimental treatment. Let

us assume for the moment a prefixed number n of patients to be recruited. Once the

trial has been performed, the observed sample yn = (y1, ..., yn), which is a realization

of Yn, is available. We denote the corresponding likelihood by f(yn; θ). Then,

according to the Bayesian paradigm, inference is based on the posterior distribution

that follows from Bayes theorem:

πA(θ|yn) =
πA(θ)f(yn; θ)

mA(yn)
(1.1)

where the denominator is the marginal distribution mA(yn) =
∫

Θ
πA(θ)f(yn; θ)dθ

and Θ denotes the parameter space. Let us assume that we are interested in the
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posterior quantity of interest, defined as:

ρπA(θ|yn) =

∫
Θ

g(θ)πA(θ|yn)dθ. (1.2)

Now, according to the choice of the function g(·) we get different summaries of the

posterior distribution; in particular we focus on the following two alternatives:

a. if g(·) is the identity function, i.e. g(θ) = θ, we obtain the posterior expected

value ρπA(θ|yn) = EπA(θ|yn),

b. if g(·) is the indicator function of a given setH, i.e. g(θ) = IH =

{
1 θ ∈ H
0 otherwise

,

we obtain the posterior probability ρπA(θ|yn) = PπA(θ ∈ H|yn).

Since by definition an experiment is successful if it provides evidence of a large value

of θ, it is reasonable to choose a set of this kind: H = {θ : θ > δ}, where δ is a

minimally clinical relevant threshold. Although the introduction of the function g(·)
apparently involves a slight complication, in the following it turns out to be helpful in

providing a unifying framework, that allows one to consider suitable transformations

of the parameter (see Section 1.5.1 and Section 1.5.2). Moreover, this formulation

is used in Chapter 3 to define robust SSD criteria (see in particular Section 3.2.4).

Table 1.1 summarizes different choices of g(·) and the resulting posterior quantities

of interest, that are considered in the present Chapter.

We finally need to remark that several SSD criteria, proposed for instance in

Joseph et al. (1995) and Joseph et al. (1997), are based on posterior credible inter-

vals, that actually do not appear in Table 1.1. In Chapter 5, following the approach

proposed by Brutti & De Santis (2008), we adopt the credible interval as posterior

quantity when dealing with equivalence trials. By the moment, we focus on the two

options a. and b. only, as specified above.

Let us go back now to the main focus of this work. As we said in Section 1.1,

planning the optimal sample size is a pre-experimental problem: hence, to determine

the optimal sample size n∗, before the experiment we have to deal with the random

sample Yn = (Y1, ..., Yn). In particular the posterior quantity of interest ρπA(θ|Yn) is

a function of the random data and, consequently, it is random as well. Thus, in order

to take into account the randomness of the data using their marginal distribution,

we need to introduce SSD criteria based on predictive summaries of ρπA(θ|Yn).

Adopting a conditional approach as in the frequentist context, it is possible to prefix

a design value θD, that is a guess value for the parameter representing the objective

of the experiment or, in other words, the target effect to be detected. In this case the
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parameter θ function of the parameter g(θ) ρπA(θ|yn)

θ ∈ A ⊆ R g(θ) = θ EπA(θ|yn)
θ ∈ A ⊆ R g(θ) = IH(θ) PπA(θ ∈ H|yn)

θ ∈ [0, 1] g(θ) = log(θ/(1− θ)) = ψ EπA(ψ|yn)
θ ∈ [0, 1] g(θ) = IH(ψ) PπA(ψ ∈ H|yn)

θ = (θ1, θ1) ∈ [0, 1]× [0, 1] g(θ) = log
(
θ1(1−θ2)
(1−θ1)θ2

)
= ϕ EπA(ϕ|yn)

θ = (θ1, θ1) ∈ [0, 1]× [0, 1] g(θ) = IH(ϕ) PπA(ϕ ∈ H|yn)

Table 1.1: Posterior quantities of interest according to the choice of g(θ)

predictive summaries are computed with respect to the sampling density fn(·; θD).

However, it is possible to model uncertainty on θD by specifying a prior probability

distribution πD for θ, that is also called design prior. As discussed in next section,

in principle it can be distinct from the analysis prior πA. The prior distribution πD

is used to average the likelihood, yielding the marginal predictive distribution

mD(yn) =

∫
θ

f(yn; θ)πD(θ)dθ. (1.3)

Notice that the sampling distribution of the data fn(·; θD) arises as a special case

of mD(·) when a point-mass design prior on the single value θD is chosen. In this

sense mD(·) generalizes fn(·; θD).

1.2.2 Two-priors approach

As pointed out in the previous section, when adopting a Bayesian approach we

need to specify a prior distribution for computing both the posterior distribution

and the predictive distribution. In general most of the Bayesian SSD criteria use

the same prior distribution (see, among others, Lindley (1997), Raiffa & Schlaifer

(2000)). However, several authors have argued that two priors should be used, due

to the conceptual distinction between the two different roles the prior distribution

is employed in: on the one hand the design prior models uncertainty on unknown
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parameter and it is used to obtain the predictive distribution (as in (1.3)); on the

other hand the analysis prior models pre-experimental information and it is used

to obtain the posterior distribution. In principle these two priors do not necessarily

have to coincide. We therefore refer to this approach as two-priors approach.

The possibility of using different priors for design and estimation was first ac-

knowledged in Tsutakawa (1972). The Author justified the apparent inconsistency

of this innovative idea providing technical reasons: in his words, “using a design

prior with variance much larger than believed reasonable is likely to lead to a waste-

ful experiment”, while it is pretty common to consider non-informative priors for

final inference. After this ‘pioneer’ paper, this concept has been refined by Etzioni &

Kadane (1993). The motivating idea of this article is that the party performing the

experiment and the party evaluating the experimental data do not necessarily have

to be the same. Sometimes, even if they have common goals, their priors may be

different. This is the sense of the title of the paper, Optimal experimental design for

another’s analysis. And this also responds to the point emphasized in Spiegelhalter

& Freedman (1988): reviewers and consumers, rather than experimenters, ultimately

determine whether new treatments are adopted in clinical practice; therefore infer-

ence should convince those evaluating medical trials, despite the prior opinion of

those performing the trial.

In the most recent literature the use of two priors has been considered in a paper

by Wang & Gelfand (2002): the Authors provide an exhaustive formulation of this

approach, that has constituted the paradigm for a set of following works, among

others Sahu & Smith (2006), De Santis (2006, 2007), Brutti & De Santis (2008),

Sambucini (2008), Brutti et al. (2008b). Wang and Gelfand point out that it is

convenient to choose a relatively non–informative analysis prior – that they call

‘fitting’, since it is used to fit the model once the data are obtained – because in

general it is preferable to let the data drive inference. On the other hand, the design

prior – ‘sampling’ prior in their terminology – represents the scenario we expect

to observe and in this sense it must be chosen to be informative. Moreover in this

way one can play with different scenarios and compare the results: this is what the

Authors mean by the expression ‘what if ’ spirit.

In conclusion, we find convincing the idea of the two priors and consequently in

this thesis we adopt this approach. This also guarantees a substantive advantage

in terms of flexibility and interpretability. Finally, as we argued in the previous

section, the two–priors approach also constitutes a general framework including as

special cases both the hybrid classical-Bayesian (described in Spiegelhalter et al.

(2004)) and the classical approach. This concept is further discussed in Chapter 2,
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with regard to the proposed interpretation of the Predictive Bayesian Power function

(defined in Section 2.2.3) as a generalized form of power.

1.2.3 Criteria

In this Section we recall and generalize the predictive Bayesian SSD criteria proposed

in Brutti et al. (2008b). Given that the objective of the trial is to observe a large

value of ρπA(θ|yn) (as we assumed in Section 1.2.1), we want to set suitable predictive

criteria in order to control the posterior distribution through the random quantity

ρπA(θ|Yn). As mentioned in Section 1.2.1, these criteria are based on summaries

of the predictive distribution of (1.3). According to the choice of the summary, we

define for instance:

1. Predictive expectation criterion. Let

en = EmD [ρπA(θ|Yn)] (1.4)

be the expected value of ρπA(θ|Yn) with respect to mD. Given a suitable

threshold ηe, the chosen sample size is then

n∗e = min {n ∈ N : en > ηe} . (1.5)

This approach is called effect-size criterion by Wang & Gelfand (2002).

2. Predictive probability criterion. Consider the predictive probability of

obtaining a successful experiment:

pn = PmD [An] =

∫
An

mD(yn)dyn, (1.6)

where PmD is the predictive probability measure associated to mD and An the

subset of the sample space that contains all the samples yielding a successful

experiment at level γ:

An = {yn : ρπA(θ|Yn) > γ} .

Then the chosen sample size is the smallest number of observations such that

pn is larger than a chosen threshold, ηp:

n∗p = min {n ∈ N : pn > ηp} , ηp ∈ (0, 1). (1.7)

As we will show in Section 2.2.3 for ρπA(θ|Yn) = P (θ > δ|Yn) (case b. of

Section 1.2.1), pn coincides with the Bayesian power defined in Spiegelhalter

et al. (2004).
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A technical remark: Criterion 1 guarantees an average control on the predictive

distribution of ρπA(θ|Yn), but in general a large predictive expected value does not

necessarily avoid small values of the posterior quantity of interest. On the contrary,

as argued in De Santis (2006), using Criterion 2 the sampling variability is accounted

for, since one directly controls the probability of observing small values of ρπA(θ|Yn).

In Section 1.4 and 1.5 we consider examples of both methods for the normal and

the binomial model respectively.

As already noticed in Section 1.2.2, the two–priors approach can be interpreted as

a general framework incorporating other approaches as special cases. In particular it

reduces to the hybrid classical-Bayesian method when we choose a non–informative

analysis prior and a proper design prior, while if the design prior is a point-mass

prior centered on a design value θD we obtain the classical approach. This point will

be further discussed in Chapter 2 (see in particular Table 2.3). Furthermore, it is

interesting to point out that generally, at least in standard models, a non–informative

analysis prior leads to a proper posterior. Conversely, a non–informative improper

design prior cannot be employed since the corresponding marginal distribution of

the data, mD, is undetermined. See, for instance, De Santis (2007) for discussion on

this point.

1.3 Choice of the thresholds ηe and ηp

Given the definition of the SSD criteria in the above section, it is straightforward to

notice that the existence and the actual values of the optimal sample sizes n∗e and

n∗p crucially depend on the interplay between the thresholds ηe and ηp, as well as on

the choice of δ and of the design prior parameters. Since δ is defined as a minimally

clinical relevant threshold, we assume that it is suggested for example by an expert

and in this sense it is problem specific. Hence, given the scenario represented by the

design parameter – and bearing in mind that several alternative scenarios can be

compared – what we need is a criterion for setting the thresholds ηe and ηp involved

in (1.5) and (1.7).

A reasonable option, suggested in Brutti et al. (2008b), relies on the following

procedure. First of all we notice that, under the assumptions of Section 1.2.1, the

predictive summaries en and pn defined in (1.4) and (1.6) are increasing functions of

n and they converge to the limiting quantities respectively denoted by e∞ and p∞,

as the sample size n diverges. Without loss of generality, let us restrict ourselves to

case b in which the posterior quantity of interest is the probability PπA(θ > δ|yn).

Hence, it is quite intuitive that e∞ and p∞ equal 1 only when the design prior
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is a point-mass centered on a design value θD larger than δ; this implies that in

general they are smaller than 1 for any finite nD. Hence, if ηe and ηp are chosen

as prefixed thresholds representing the trial objective, the optimal sample size can

be chosen using (1.5) or (1.7) respectively; nevertheless it may happen that the

optimization problem is not well posed, whenever ηe > e∞ or ηp > p∞. Since the

actual ranges of the predictive quantities (e1, e∞) and (p1, p∞) heavily depend on

the design parameters and on δ, in order to overcome this problem the following

alternatives are available:

• it is possible to question the prefixed design scenario and change the design

parameters;

• if there is evidence that the trial cannot meet its objectives, we can decide

not to start it at all (this is more clear, for instance, in a re-estimation set-up,

where we can decide to stop for futility);

• otherwise, a different scale can be considered, adopting the maximum achiev-

able value as a point of reference and picking ηe (respectively ηp) as a pre-

specified percentage β ∈ (0, 1] of e∞ (respectively p∞), in order to ensure the

existence of the corresponding optimal sample sizes.

In summary, we only need to derive e∞ and p∞. For the sake of brevity, we now

focus on pn only, but as we show later, en and pn are asymptotically equivalent.

First of all in order to formalize the problem better, let us define the following

quantity:

ζn = ζn(x) = PπA(θ > δ|x)

where we set x = yn to simplify the notation. Then, from (1.6), we have

lim
n→∞

pn = lim
n→∞

PmD {ζn > γ} = lim
n→∞

EmD

{
I(γ,1](ζn)

}
=

= lim
n→∞

∫
R

I(γ,1](ζn(x))mD(x)dx =

∫
R

lim
n→∞

[
I(γ,1](ζn(x))mD(x)

]
dx(1.8)

where the last equality comes from an application of the dominated convergence

theorem. Now, since for any regular πA the posterior distribution is asymptotically

concentrated on x, we obtain

lim
n→∞

ζn = I(δ,∞)(x) (1.9)

and consequently

lim
n→∞

I(γ,1](ζn(x)) = I(γ,1]

(
I(δ,∞)(x)

)
= I(δ,∞)(x).
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Thus, whenever mD(·)→ πD(·), the inner limit in equation (1.8) is equal to

lim
n→∞

[
I(γ,1](ζn(x))mD(x)

]
= I(δ,∞)(x)πD(x), (1.10)

which does not depend on γ. Furthermore, combining the definition of en in equation

(1.4) with the result in equation (1.9), we see that lim
n→∞

en = lim
n→∞

pn.

In Section 3.5 we extend the just described procedure to the robust criteria

introduced in Chapter 3. Similarly in Section 4.2.4 the asymptotic behaviour of the

expected posterior probability is discussed, in case the analysis prior is a mixture of

prior distributions derived from several sources.

1.4 Results for normal model

Let us assume that the data relevant to θ are summarized by a statistic Yn with –

at least approximately – normal distribution of parameters (θ, σ2/n). In Phase II

clinical trials, for instance, θ may denote a treatment effect, n the number of indi-

viduals assigned to the treatment, Yn the sampling mean of experimental outcomes

normally distributed with expectation θ and variance σ2 and yn its observed value.

However, the same basic model provides an approximation that can be used, for in-

stance, for binary data – with θ denoting the log odds ratio – and for survival data

– with θ denoting the log hazard ratio – (see Spiegelhalter et al. (2004), Sections

2.4.1 and 2.4.2). For computational simplicity we adopt conjugate priors. Thus we

assume that πA is a normal density of mean θA and variance σ2/nA, where nA is

the prior sample size. From standard Bayesian conjugate analysis it follows that the

resulting posterior distribution is again a normal density with mean

EπA(θ|yn) =
nAθA + nyn
nA + n

(1.11)

and variance

VπA(θ|yn) =
σ2

nA + n
. (1.12)

According to the two options listed in Section 1.2.1 we have as posterior quantities

of interest:

a. the posterior expectation ρπA(θ|yn) = nAθA+nyn
nA+n

,

b. the posterior probability ρπA(θ|yn) = 1−Φ

(
δ−EA(θ|yn)√
VA(θ|yn)

)
, where Φ denotes the

cumulative distribution function of a standard normal.
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Furthermore we assume that the design prior is πD(θ) = N(θ|θD, σ2/nD). According

to (1.3), the marginal predictive distribution induced by πD is a normal density of

mean θD and variance σ2(1/n + 1/nD). Hence, given the above results and using

(1.4) and (1.6), it is straightforward to derive en and pn, respectively for the two

choices of ρπA(θ|yn):

1. a.

EmD

[
nAθA + nyn
nA + n

]
=
nAθA + nθD
nA + n

,

for the linearity of the expected value;

b.

EmD

[
1− Φ

(
δ − EA(θ|yn)√

VA(θ|yn)

)]
,

where the expected value cannot be derived analytically, but can be easily

computed by simulation;

2. a.

PmD
[
nAθA + nyn
nA + n

> γ

]
= 1− Φ

 γ(nA+n)−nAθA
n

− θD

σ
√
n−1 + n−1

D

 ,

b.

PmD

[
1− Φ

(
δ − EA(θ|yn)√

VA(θ|yn)

)
> γ

]
=

= 1− Φ

n−1
{

(nA + n)(δ − σ(nA + n)−1/2z1−γ)− θAnA
}
− θD

σ
√
n−1 + n−1

D

 ,

where z1−γ denotes the quantile of a standard normal at level 1− γ.

The corresponding four SSD predictive criteria immediately result, according to

(1.5) and (1.7). In practice, the optimal sample size is determined by computing

one of the above quantities for increasing values of n and by picking the minimum

sample size that guarantees to reach a prefixed threshold. This procedure can be

effectively represented by a plot of the chosen predictive summary with respect to

n, as we illustrate in the application of the following Section.

Example 1: Bayesian SSD for the normal model (CANCER) First of all

let us introduce an example proposed in Spiegelhalter et al. (2004) (see Examples

2.6 and 6.2 for details). A randomized controlled trial is designed for testing the

effects difference of two competing cancer treatments, in terms of mortality. Hence,
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the log hazard ratio of death is chosen as a measure to compare the events occurring

in two randomized arms and a normal approximation is used. The trial was design

to have a 80% power to detect a log hazard ratio θD = 0.56, equivalent to a raise of

5-year survival from 20 to 40 per cent in favour of the new treatment. The Authors

considered a design prior centered on the guessed value θD and with 0.05 probability

that θ is less than zero, indicating that the old treatment is better than the new

one. This results in a design prior sample size nD = 34.5 and, overall, in a design

density that represents optimism towards the new treatment. The prior is then

employed to average the classical power curve and to obtain a hybrid classical Bayes

power to be compared with the standard procedure, which is equivalent to using a

non–informative analysis prior for θ. We here extend Spiegelhalter et al. (2004)’s
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Figure 1.1: πA(θ) = N(θ|θA = 0, σ2/nA = 4/9) (solid line); πD(θ) = N(θ|θD = 0.56, σ2/nD =
4/34.5) (dashed line)

example first of all by adopting the two–priors approach described in Section 1.2.2.

We introduce an analysis prior πA that is a normal density centered on θA = 0,

expressing equivalence between old and new treatments, and variance such that the

probability that θ is greater than θD is equal to a chosen value α. This choice yields

a prior sample size nA equal to (2z1−α/θD)2. Note that, the smaller the values of α

and of |θD|, the more sceptical the analysis prior results. Of course an equivalent

way to define a sceptical base prior is to fix θD and then set θA to a value close

to 0 and smaller than θD. For instance if the guessed value is θD = 0.56, we can

choose α = 0.2, so that, on the one hand we assign low chance to the values of

the parameter greater than θD, and on the other we still allow for a relatively high
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Figure 1.2: SSD criteria using the priors of Figure 1.1, with δ = 0.1, γ = 0.6.

uncertainty, corresponding to a low value of the prior sample size, namely nA = 9.

The analysis prior is therefore less informative than the design prior, as shown in

Figure 1.1. In addition, we assume a minimally clinical significant difference δ = 0.1,

corresponding to a raise in the survival rate from 20 to 23.3 per cent. This example is

developed in next chapter with specific reference to the power-based SSD methods.

A further extension is then proposed in Chapter 3, where we apply the robust SSD

criteria in the same setting. In Figure 1.2 we represent the four alternative predictive

quantities with respect to the sample size n. The horizontal continuous line indicates

the maximum reachable value for each considered predictive summary, given δ and

the design parameters. As proposed in Section 1.3, the thresholds ηe and ηp are

chosen at a prefixed percentage of e∞ and p∞; in this case we set β = 80% (see

Table 1.2). Finally ηe and ηp are represented by the horizontal dashed lines and the

optimal sample sizes are circled in correspondence of these thresholds (and bolded

in Table 1.4) .
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θD e∞ (ηe) p∞ (ηp)

1.a 1.b 2.a 2.b
0.30 0.30 (0.24) 0.72 (0.58) 0.19 (0.15) 0.72 (0.58)
0.56 0.56 (0.45) 0.91 (0.73) 0.45 (0.36) 0.91 (0.73)
0.80 0.80 (0.64) 0.98 (0.78) 0.72 (0.58) 0.98 (0.78)

Table 1.2: e∞, p∞ and in brackets the corresponding thresholds ηe and ηp for each design prior
mean, given δ = 0.1 and γ = 0.6,

θA

θD = 0.3 −0.2
−0.1

0
0.1
0.2

θD = 0.56 −0.2
−0.1

0
0.1
0.2
0.3
0.4

θD = 0.8 −0.2
−0.1

0
0.1
0.2
0.3
0.4

1.a

nA

5 9 15 30

38 67 111 221
30 52 86 171
22 38 61 121
15 23 36 71
4 8 12 21

31 53 88 174
27 45 74 148
22 38 61 121
18 30 48 94
15 22 35 67
9 15 22 41
1 4 8 14

28 49 80 158
25 43 70 140
22 38 61 121
20 32 52 102
17 27 43 83
14 21 33 65
11 16 24 46

1.b

nA

5 9 15 30

30 35 53 87
26 28 42 65
20 21 31 44
14 14 18 20
4 3 1 1

29 35 44 65
26 31 38 53
24 27 31 41
22 23 25 29
19 19 18 17
17 15 11 3
14 9 1 1

26 31 39 65
24 28 35 56
22 25 30 44
20 22 25 29
18 18 18 5
15 13 9 1
12 8 1 1

Table 1.3: Optimal sample sizes according to the Predictive Expectation Criterion, for sev-

eral choices of the design and analysis prior parameters, given δ = 0.1 and nD = 34.5 and the

corresponding thresholds ηe given in Table 1.2
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θA

θD = 0.3 −0.2
−0.1

0
0.1
0.2

θD = 0.56 −0.2
−0.1

0
0.1
0.2
0.3
0.4

θD = 0.8 −0.2
−0.1

0
0.1
0.2
0.3
0.4

2.a

nA

5 9 15 30

14 42 126 356
4 30 99 298
1 21 74 240
1 15 51 182
1 10 35 126

31 68 127 277
26 57 109 239
21 47 90 202
17 37 72 164
13 27 54 127
9 18 37 90
1 12 21 54

44 66 101 190
41 59 90 167
38 53 79 145
34 47 68 123
31 41 57 101
26 36 47 79
21 29 38 57

2.b

nA

5 9 15 30

51 60 81 125
46 51 68 98
41 42 54 71
36 32 40 45
30 22 23 1

31 38 47 70
28 33 40 56
26 29 33 42
23 24 26 28
20 19 18 12
17 14 1 20
14 1 17 61

27 32 44 70
25 29 39 61
23 26 33 49
20 21 25 27
16 16 9 1
12 6 1 1
6 6 1 1

Table 1.4: Optimal sample sizes according to the Predictive Probability Criterion, for several

choices of the design and analysis prior parameters, given δ = 0.1, γ = 0.6 and nD = 34.5 and the

corresponding thresholds ηp given in Table 1.2

In Table 1.4 we report the optimal sample sizes obtained for several combinations

of the design prior mean and of the analysis prior parameters. It is evident that for

each fixed value of θD, given a certain prior sample size nA, the more sceptical the

analysis prior, the larger the number of units required. At the same time, when we

choose a more optimistic design value, the corresponding predictive distribution of

the data is enthusiastic as well and a (uniformly) smaller number of observations is

sufficient to achieve the study objective. Note that for each block of the table we

have a different threshold ηe or ηp, depending (through e∞ and p∞) on the design

parameters and (eventually) on δ (see Table 1.2).
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1.5 Results for the binomial model

In the present section we assume that the parameter of interest θ is the probability

of success of a given treatment. As in Section 1.2.1, the experiment is assumed to

be successful if it provides evidence that θ is sufficiently large. Hence, we are in the

setting of a Phase II trial and, more precisely, of an efficacy study. Alternatively

we could consider for instance the probability of failure of a treatment in a safety

study: in this case the trial would be aimed at bringing evidence of a sufficiently

small value of θ.

Let us consider a random sample Yn = (Y1, ..., Yn), where Yi is a binary random

variable associated to the success of the experimental treatment for the i-th patient,

i.e. Yi ∼ Bernoulli(θ). Of course the definition of success is problem specific. Once

the experiment is performed the statistic we are interested in is the total number

of successes sn =
∑n

i=1 yi. We denote the likelihood by f(sn; θ). Note that the

corresponding random variable Sn, given the unknown parameter θ, is a binomial

random variable with parameters (n, θ). In the following section we distinguish

the standard case in which we directly focus on the probability of success θ, from

the slightly different case in which a suitable transformation on the log odds scale

is considered. Finally in Section 1.5.2, we cope with case control studies and the

log odds ratio is employed as a measure of comparison between two competing

treatments.

1.5.1 One sample

Let us start considering the standard setting in which we observe one sample of pa-

tients and we focus on the probability of success θ as a parameter of interest. As in

Section 1.4, for the sake of simplicity we adopt the conjugate prior for the binomial

model. Hence, we have that πA(θ) = Beta(θ|α, β) where Beta(·|α, β) denotes a beta

density of parameters (α, β). This choice is motivated by (i) analytical tractability,

(ii) shape flexibility of the beta distribution. that allows the experimenter to rep-

resent and formalize very different prior beliefs in a relatively straightforward way

(see Spiegelhalter et al. (2004) for discussion and examples). From standard results

of conjugate analysis (see, for instance, Bernardo & Smith (1994)) the posterior

density of θ is still a beta density with updated parameters, namely

πA(θ|sn) = Beta(θ|α + sn, β + n− sn). (1.13)

Based on the posterior distribution defined above, we can explicitly derive the fol-

lowing posterior quantities, according to the definitions of Section 1.2.1:
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a. the posterior expectation ρπA(θ|yn) = α+sn
α+β+n

,

b. the posterior probability ρπA(θ|yn) = 1 − FB(α+sn,β+n−sn)(δ), where FB(α,β)

denotes the cumulative distribution function of a beta density of parameters

(α, β).

At this point we choose as design prior a beta density of parameters (αD, βD), to

be specified according to the goal of the trial. Consequently, it is well known that

the resulting marginal mD is a betabinomial distribution of parameters (αD, βD, n).

Again, the marginal distribution is used for computing the predictive summaries.

We adopt here the same scheme as in Section 1.4 and list the following four options

according to the choice of the posterior quantity and of the predictive summary:

1. a.

EmD

[
αA + sn

αA + βA + n

]
=
αA + n αD

αD+βD

αA + βA + n
,

where we used the linear property of the expected value and the expres-

sion of the mean of a betabinomial distribution;

b.

EmD

[
1− FB(α+sn,β+n−sn)(δ)

]
=

n∑
k=0

[
1− FB(α+k,β+n−k)(δ)

]
pmD(k),

where pmD(k) =

(
n

k

)
B(αD+k,βD+n−k)

B(αD,βD)
is the betabinomial probability

of k successes out of n patients and B(α, β) denotes the beta function;

2. a.

PmD
[

αA + sn
αA + βA + n

> γ

]
=

n∑
k=dγ(αA+βA+n)−αAe

pmD(k),

b.

PmD
[
1− FB(α+sn,β+n−sn)(δ) > γ

]
=

∑
{k: 1−FB(α+k,β+n−k)(δ)>γ}

pmD(k),

Notice that in this case, due to the discrete nature of the marginal betabinomial

distribution, predictive summaries reduce to summations over the number of suc-

cesses, in such a way that opportune conditions are satisfied. This enables one to

compute the above quantities exactly, without resorting to simulation. Again, it is

straightforward to define the SSD criteria based on the above predictive summaries

using (1.5) and (1.7). An application of these criteria is illustrated in the following

paragraph.
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Example 2: Bayesian SSD for the binomial model (DRUG) Let us consider

for example an efficacy trial aimed at assessing the true response rate of a drug,

illustrated in Spiegelhalter et al. (2004). Let us suppose that previous experience

with similar compounds has suggested that response rates between 0.2 and 0.6 could

be feasible, with an expectation around 0.4. The Authors suggest to specify a

beta prior, where the parameters α and β are derived given the mean m = 0.4

and the standard deviation s = 0.1. In this way they elicit the analysis prior

πA(θ) = Beta(θ|αA = 9.2, βA = 13.8). Moreover, we consider different scenarios for

the design prior. First of all, in order to have more informative prior distributions,

we set the standard deviation equal to 0.05, and we consider, for instance, design

prior means respectively equal to 0.6, 0.7, 0.8 and 0.9. Note that the higher the

design mean the more enthusiastic the prior is with respect to the goal of the trial.

The analysis prior and the different choices for the design prior are represented in

Figure 1.3.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

θθ
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analysis prior
design prior

Figure 1.3: Analysis prior πA(θ) = Beta(θ|αA = 9.2, βA = 13.8) and different scenarios for the
design priors πD: we choose the beta parameters (57, 38), (58.1, 24.9), (50.4, 12.6), (31.5, 3.5) to
get the corresponding prior means 0.6, 0.7, 0.8, 0.9 and a standard deviation equal to 0.05

In this framework, we want to determine the optimal sample size for an efficacy trial

on the same drug. For example, if we consider the predictive expectation criterion

and we focus on the posterior expectation of θ, we get the results of Figure 1.4 that

highlights how the behaviour of en changes according to the design prior. The choice

of the threshold ηe is adapted to the maximum achievable value of en, as suggested in

Section 1.3. In other words, the larger the design mean the higher e∞, but the higher

the threshold ηe as well. For instance when considering the most enthusiastic design

mean (θD = 0.9) we are also imposing a more demanding threshold (ηe = 0.72) for

the selection of the optimal sample size, which results in this case n∗e = 42.
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Figure 1.4: Optimal sample sizes for the different design priors of Figure 1.3, when the predic-
tive expectation of the posterior expectation is considered with respect to n. The thresholds ηe,
represented by the horizontal dashed lines, are respectively 0.48, 0.56, 0.64, 0.72 and the resulting
optimal sample sizes 17, 26, 34, 42.

In Figure 1.5 option 2.b is represented, for δ = 0.5 and γ = 0.8. The plot

shows the typical “sawtooth” behaviour of the predictive summary pn with respect

to n, due to the discrete nature of the betabinomial marginal distribution. In this

case, given ηp, the optimal sample size n∗p could be chosen as the minimum n that

guarantees to have pn > ηp. However, as shown in the picture, this choice could

result in the paradox of selecting a sample size that satisfies a criterion that is

not satisfied anymore for some greater sample size values. Hence, as suggested for

instance in Sambucini (2008), we adopt a more conservative criterion that requires

to select the smallest sample size n∗p such that condition (1.7) is satisfied ∀n > n∗p.
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Figure 1.5: Optimal sample sizes for the different design priors of Figure 1.3, when the predictive
probability of the posterior probability is considered with respect to n, with δ = 0.5 and γ = 0.8.
The thresholds ηp are respectively 0.75, 0.80, 0.80, 0.80 and the resulting optimal sample sizes 142,
46, 25, 16.

Log odds scale

In some circumstances, one may prefer to consider a different scale for the parameter

of interest. For example, it is quite common to transform the probability of success

θ on the log odds scale. Hence, we define ψ = g(θ) = log(θ/(1 − θ)) as parameter

of interest (see also Table 1.1). Note that this transformation allows one to work

on the real axis, since ψ ∈ R; in particular it is also possible to adopt a normal

approximation for ψ, as derived in Spiegelhalter et al. (2004). In this case the

procedure described in Section 1.4 applies. Nevertheless here we are interested in

the framework just introduced in Section 1.5 with a binomial model and beta priors
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for θ. Given the posterior for θ in (1.13), it is quite straightforward to derive the

posterior density of the log odds (see for example Wasserman (2004)):

f(ψ|yn) =
Γ(n+ αA + βA)

Γ(sn + αA)Γ(n− sn + βA)

(
eψ

1 + eψ

)sn+αA−1(
1

1 + eψ

)n−sn+βA+1

eψ.

(1.14)

From this exact distribution we should compute the posterior quantities of inter-

est as defined in Section 1.2.1, although it is not possible to obtain closed-form

expressions. A practical alternative, also suggested in Wasserman (2004), is the

approximation of (1.14) by simulation. It is sufficient to proceed according to the

following steps: (i) draw a sample from the posterior distribution of θ, (ii) apply

the log odds transformation to each sampled value and finally (iii) get Monte Carlo

estimates of the expectation and of the desired tail probabilities. This procedure has

been implemented to compute (1.4) and (1.6): an example follows in next paragraph.

Example 2 (continued): Bayesian SSD for the binomial model (DRUG)

Let us suppose now that we are in the same setting described in Example 2 (page

25), but we focus on the log odds as parameter of interest. First of all we specify

the analysis and the design prior for θ, for instance πA(θ) = Beta(θ|9.2, 13.8) and

πD(θ) = Beta(θ|31.5, 3.5). In the left panel of Figure 1.6 we plot for example the

predictive expectation of the posterior expectation of the log odds with respect to

n: for a given threshold ηe = 1 we obtain n∗e = 44. Given a minimally clinical

relevant threshold on the log odds scale, say δ = 1, we consider then the posterior

probability that ψ is larger than 1. Note that this is equivalent to consider the

posterior probability that θ is larger than a threshold δ′ = exp(δ)/(1 + exp(δ)). The

predictive probability that this quantity exceeds a given value γ (equals to 0.8, in

the example) is represented in the right panel of Figure 1.6 for increasing values

of the sample size. For a prefixed threshold ηp = 0.8, the optimal sample size is

n∗p = 95.

1.5.2 Two samples

In this Section we deal with Bayesian SSD for case control studies. First of all we

need to briefly describe the general framework of a Phase III trial, whose purpose is

the comparison of two competing treatments in terms of efficacy.
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Figure 1.6: For the log odds as parameter of interest: (left panel) en with respect to n: for
ηe = 1, n∗e = 44. (right panel) pn with respect to n, with δ = 1 and γ = 0.8: for ηp = 0.8, n∗p = 95.

Case control studies

A case control study is typically a controlled trial in which patients are randomly

allocated in two treatment arms. The control arm (in the following indicated by 1)

is treated with the standard drug, while the case arm (denoted by 2) receives the

new therapy. Hence, we have respectively n1 and n2 patients, with n1 + n2 = n, the

total number of patients to be chosen. Notice therefore that besides determining

the optimal sample size a second problem is in order: in fact it is necessary to assign

the units in two groups according to a reasonable criterion. One possibility, first

proposed in De Santis et al. (2004), is illustrated at the end of this Section.

Let us consider θ = (θ1, θ2), with θi indicating the probability of an event occur-

ring in group i, for i = 1, 2. Without loss of generality we consider the probability

of a negative event, that is a failure such as death or disease recurrence, instead of

the probability of success. Then, we choose the log odds ratio (logOR) as a measure

of comparison between the two treatments effect (see again Table 1.1 for the choice

of the transformation g(·)). By definition, the logOR is

ϕ = log

(
θ1

1−θ1
θ2

1−θ2

)
= log

(
θ1

1− θ1

)
− log

(
θ2

1− θ2

)
. (1.15)

Note that θ1 > θ2 implies ϕ > 0, indicating that the probability of a failure under the

standard treatment is larger than the one under the new experimental treatment,

in other words, the new treatment is better than the standard one. This is then
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the typical setting of a superiority trial. In general, using the logOR is a standard

way of reporting changes in the chances of events due to an intervention, on a scale

between −∞ and ∞. Note that, as discussed in Spiegelhalter et al. (2004), this

is helpful to derive a normal approximation. For an application of this result with

regard to the SSD problem, see Brutti et al. (2008b) and Example 1 in Section 1.4.

Let us report the collected data in the following 2 × 2 contingency table, where si

is total number of events occurring in arm i = 1, 2:

Treatment

Standard Experimental Total

Success s1 s2 sn

Failure n1 − s1 n2 − s2 n− sn
Total n1 n2 n

Table 1.5: Events in a case control study.

We denote the corresponding random variable by Si. Given the unknown parameter

θi, Si is a binomial random variable with parameters (ni, θi). Furthermore, assuming

independence of the two samples, the joint sampling distribution of (S1, S2) is the

product of two binomial distributions.

Bayesian SSD criteria for case control studies

Let us go over the necessary steps to derive the SSD predictive criteria. For the sake

of simplicity, we adopt again conjugate beta priors both for θ1 and θ2, as pointed

out in Section 1.5. Moreover, we assume prior independence, i.e.

πA(θ1, θ2) = Beta(θ1|α1, β1) ·Beta(θ2|α2, β2),

that results in posterior independence, i.e.

πA(θ1, θ2|s1, s2) = Beta(θ1|α1 + s1, β1 + n1 − s1) ·Beta(θ2|α2 + s2, β2 + n2 − s2).

The posterior density of the logOR given the data has been derived in Nurminen &

Mutanen (1987) and Marshall (1988):

πA(ϕ|S1 = s1, S2 = s2) =
exp(a2 ϕ)

B(a1, b1)B(a2, b2)

1∫
0

xa1+a2−1(1− x)b1+b2−1

[1 + (exp(ϕ)− 1)x]a2+b2
dx (1.16)

where ai = αi+si and bi = βi+ni−si are the posterior parameters of θi, for i = 1, 2.

However, whenever it is necessary to compute posterior quantities of interest, it is

also possible to resort to Monte Carlo simulation (see again Wasserman (2004)).
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Based on the posterior distribution given in (1.16), we define, as usual, the posterior

quantities of interest such as, for instance

a. the posterior expected value: ρπA(θ|yn) = ρπA(ϕ|s1, s2) = EπA(ϕ|s1, s2),

b. the posterior probability of a given subset H: ρπA(θ|yn) = ρπA(ϕ|s1, s2) =

PπA(ϕ ∈ H|s1, s2).

Recalling definition (1.15), we know that ϕ > 0 favors the innovative therapy. Hence,

it is reasonable to set H = {ϕ : ϕ > δ}, where δ is a minimally clinical relevant

threshold on the logOR scale.

Again, a trial is defined successful if the value of the posterior quantity ρπA(ϕ|s1, s2)

results larger than a reference value. However, before the experiment is performed,

ρπA(ϕ|S1, S2) is a random quantity. Hence, we consider the predictive expectation

or the predictive probability of ρπA(ϕ|S1, S2), as discussed in Section 1.2.3. Thus,

choosing as design priors for θ1 and θ2 independent conjugate beta priors of pa-

rameters respectively (αD1, βD1) and (αD2, βD2), the following marginal distribution

results

mD(s1, s2) = mD1(s1) ·mD2(s2), (1.17)

where mDi(si) is a betabinomial distribution of parameters (αDi, βDi, ni), for i =

1, 2. It is then straightforward to define the usual predictive summaries using

ρπA(ϕ|S1, S2) in Equations (1.4) and (1.6). Then the SSD criteria are well defined,

once the thresholds ηe and ηp are conveniently fixed (see again Section 1.3). Before

illustrating an application, in the following paragraph we cope with the problem of

units allocation in two randomized arms.

Allocation of observations

As anticipated at the beginning of this Section, patients allocation is naturally con-

nected to SSD: besides selecting the optimal total number of patients we also need

to decide in which proportion they should be randomly assigned either to the new

treatment or to the standard one. This twofold decision obviously influences the SSD

criteria definition. Technically speaking, from (1.17) it is evident that the marginal

distribution – and consequently the SSD predictive criteria – depends on n1 and

n2. Hence, in principle, for each candidate sample size n we should consider each

couple (n1, n2) summing to n and select the one optimizing the predictive criterion.

This procedure is computationally intensive and results to be impractical. As an

alternative we adopt the solution, proposed in De Santis et al. (2004), of choosing

(n1, n2) first, in such a way that the expectation of the posterior variance of the
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unknown parameters is equal. This rule typically yields a larger number of cases

(i.e. n2 > n1), which is consistent since pre-experimental information about the

control group is usually more accurate, being supported by the results of previous

trials. Hence, the first step in the SSD procedure is allocation of units in two arms

for each fixed n. After that, one can finally determine the minimum sample size

satisfying the desired predictive criterion.

Example 3: Bayesian SSD for the log odds ratio (GREAT) We present

here an example of the proposed methodology, with reference to an application

described in Pocock and Spiegelhalter (1992) and discussed further in Spiegelhalter

et al. (2004). Let us consider the randomized controlled trial named GREAT on a

new thrombolytic therapy after myocardial infarction. The purpose of the study is

to compare two competing treatments: a new drug (anistreplase) against a placebo.

The outcome is thirty-day mortality rate under each treatment. We consider here

the logOR scale and, according to the notation introduced in Section 1.5.2, we have

that ϕ > 0 (that is, equivalently, OR> 1) supports the new treatment. The observed

data are reported in Table 1.6; in Spiegelhalter et al. (2004) the analysis is carried

out according to a Bayesian approach and it is based on the normal approximation of

the log odds ratio. Anyways, since we are interested in the pre-experimental aspects

of the problem, we imagine here to plan a new experiment and we use the data to

elicit the prior distributions. Let us suppose we want to show a treatment difference

similar to the one provided by the results actually observed in the GREAT trial:

then, based on these data, we can specify the design priors.

Following Spiegelhalter et al. (2004), it is well known that the parameters a and b of

a beta prior can be given a straightforward interpretation: a represents the number

of events occurred in an hypothetical previous trial of size a + b. Consequently, b

can be thought as the number of elements who did not experience any event. In the

light of this meaning of the parameters, we “translate” the data in Table 1.6 into

control new

treatment treatment tot

death 23 13 36

no death 125 150 275

tot 163 148 311

Table 1.6: Results of GREAT study
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the design prior parameters. Thus we have respectively for θ1 and θ2:

πD(θ1) = Beta(23, 125) and πD(θ2) = Beta(13, 150). (1.18)

Furthermore we assume that the analysis priors for θ1 and θ2 both represent a certain

degree of scepticism towards the treatment (prior mean equal to 0.167) and coincide,

indicating no treatment difference:

πA(θ1) = πA(θ2) = Beta(2, 10). (1.19)

This choice of the parameters for the Beta prior yields a standard deviation equal

to 0.1. This guarantees that the analysis priors are less informative than the design

ones, which is coherent with their intrinsic meaning (see Wang & Gelfand (2002)

and Section 1.2.2). In Figure (1.7) we represent the analysis and design priors for θ1

and θ2 in the left panel and the corresponding analysis and design prior distribution

of the log odds ratio ϕ in the left one, where the exact distribution is compared with

the Monte Carlo simulated one and with the normal approximation.
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Figure 1.7: Analysis priors (continuous line) and design priors (dotted line) for θ1 and θ2 (left
panel) and for ϕ (right panel).

If for instance we focus on the posterior probability that ϕ > δ and we consider

the predictive expectation as n increases, we obtain the situation represented in

Figure 1.8 which can be given an analogous interpretation to the one of the plots

of the previous sections: the resulting optimal sample size is n∗e = 130, for δ = 0

and ηe = 0.8 (left panel); choosing a larger value of δ, such as 0.5, the expected

probability is appreciably lower, n∗e = 197 for ηe = 0.6.
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Figure 1.8: SSD using criterion 1.b, with δ = 0 (left panel) and δ = 0.5 (right panel).

1.6 Extensions and further developments

In the present chapter we have introduced the general framework of a predictive

Bayesian approach to SSD, providing practical examples for the normal model and

for the binomial model. As already noticed, a special case of the proposed method-

ology (corresponding to the choice of the posterior probability as a quantity of inter-

est and of the predictive probability criterion) actually coincides with the Bayesian

power, defined in Spiegelhalter et al. (2004). Hence, in the next chapter we focus

on this case describing in details the power-based methods for SSD, that are the

most commonly used in the applications. In order to highlight the main drawbacks

of the classical power, we illustrate an example that motivates the introduction of

a methodology based on what we name Predictive Bayesian Power. When adopting

the two-priors approach this is a generalized power function that simultaneously

allows one to exploit pre-experimental information and to take into account the

uncertainty on the design value.

Moreover in the second part of the thesis we extend the proposed methodology

in two main directions.

• First of all, in Chapter 3, we introduce a robust version of the SSD predictive

criteria, in order to address the issue of sensitivity to the elicitation of a single

prior distribution, which is one of the most common criticism toward the

Bayesian perspective. In particular, the impact of a single prior specification

on the optimal sample sizes can be evaluated by considering suitable classes

of distributions, such as the ε-contamination classes.
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• Secondly, the predictive approach is generalized to a setting in which several

sources of pre-experimental information are available. A very straightforward

way to take into account the initial information derived from each source is

to combine the corresponding prior distributions using a mixture with conve-

niently chosen weights (see Chapter 4).

Finally, as already mentioned, in Chapter 5 we specifically adapt the proposed SSD

criteria to the setting of an equivalence study, in which the purpose is showing that

the difference between two competing treatments is negligible.





Chapter 2

Power-based Sample Size

Determination

2.1 Introduction and motivations

In describing the general framework of a Bayesian predictive approach for SSD,

in Section 1.2.3 we have already noticed that if we choose as a posterior quantity

of interest the probability PπA(θ > δ|yn) and if we adopt the predictive probability

criterion with coincident πA and πD, then the predictive quantity pn actually reduces

to the Bayesian Power defined in Spiegelhalter et al. (2004). This is a particularly

relevant case in the context of clinical trials in which the power-based methods for

SSD are widely used. Hence, we suggest that this formulation of the power function

can be further extended thanks to the two–priors approach (see Gubbiotti & De

Santis (2008)), that leads us to define what we name Bayesian Predictive Power.

As discussed in the previous chapter, we show how this allows one both to model

initial uncertainty on the parameter through the design prior and to exploit pre-

experimental information using the analysis prior.

In order to introduce this concept, we start here from a different point of view.

First of all we recall the standard power function. Then, drawing on a motivating

example, we show how the need of accounting for initial uncertainty leads us to

introduce a predictive version of the frequentist power. On the other hand, in

order to incorporate prior information into the power formulation, we resort to a

Bayesian approach, defining the Bayesian Predictive Power and showing that it

can be thought as a “generalized” power function including the others as special

cases. Finally, we provide a unifying interpretation for SSD methods based on the

power function, highlighting the differences between the classical and the Bayesian
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perspective, both from a technical and a conceptual point of view.

2.2 Classical and Bayesian power functions

Let us suppose that the objective of the study is inference on a parameter of interest

θ. For the sake of simplicity in this chapter we focus on the normal model, namely we

assume that Yn ∼ N(θ, σ
2

n
), where n is the sample size to be determined. As pointed

out in Section 1.4 this framework can be adopted not only with normal data but

also when a normal approximation applies, for instance when the estimation of the

log odds ratio or of the log hazard ratio is of concern. Several examples illustrated

in this thesis derive from Spiegelhalter et al. (2004), where a normal approximation

is often considered for the parameters of interest.

2.2.1 Conditional Frequentist Power

Let us consider as a parameter of interest θ the unknown effects difference between

two alternative treatments, assuming that a positive value of θ favours the new treat-

ment, while a negative value supports the standard one. Hence, the null hypothesis

we want to verify is H0 : θ < 0 against the alternative H1 : θ ≥ 0. Then the power

function is defined as the probability of rejecting H0, conditional to the parameter

value θ. We name this function Conditional Frequentist Power and we use the no-

tation βCF (θ), where the superscript C and the subscript F respectively stand for

conditional and frequentist. In particular, under the normality assumption, we have

that

βCF (θ) = P

(
Yn > −

1√
n
zασ

)
Φ

(
θ
√
n

σ
+ zα

)
(2.1)

where Φ is the cumulative distribution function of the standard normal random

variable and zα is the quantile of a standard normal at level α. Notice that βCF (θ)

is a function of the parameter θ.

The traditional frequentist SSD criterion suggests to choose the minimum number

n that guarantees a given power of the hypothesis test on the mean θ. Hence our

objective is to reach a prefixed power η, at a prespecified significance level (for

instance α = 0.05). In (2.1) we need to fix a design value θD that can be interpreted

as the target value of the parameter we aim to detect. In other words we are assuming

that the sampling distribution of future data Yn is f(yn; θD) = N(yn|θD, σ2/n).

Therefore, for a given variance and for a fixed significance level α, the frequentist

power conditional to θD is an increasing function of n and the optimal sample size
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is defined as the minimum number of units that guarantees a given power, i.e.

nCF = {minn : βCF (θD) > η}, (2.2)

where the threshold η can be set conventionally for instance at 80%.

This method is widely used in the applications, although it presents two relevant

drawbacks, as pointed out in Section 1.1. First of all, as we said before, the optimal

sample size noticeably depends on a prefixed design value for the alternative hypoth-

esis. This yields local optimality of the selected sample sizes. Secondly, adopting

a frequentist approach, we do not exploit pre-experimental information. Hence the

double solution proposed in Section 1.2 is needed. The use of initial information

contributes not only to reduce the overall sample size but also allows for more flex-

ibility, reflecting the actual knowledge on the phenomenon before performing the

experiment.
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Figure 2.1: A. Conditional frequentist power βCF (θD) with respect to n, where the design value
is θD = 0.56. The optimal sample size is n = nCF = 100, corresponding to the required 80% power.
B. Conditional frequentist power curve βCF (θ) with respect to the parameter θ, for a fixed sample
size n = 100. C. Enthusiastic prior for θ: π(θ) is a normal density of mean θD = 0.56 and variance
σ2/n0 = 4/34.5

Example 1 (continued): SSD based on the power function (CANCER)

Let us consider again the setting described in Example 1 (page 18) already intro-

duced in Section 1.4 (see of Spiegelhalter et al. (2004)). In panel A of Figure 2.1

for θD = 0.56 we obtain the corresponding optimal sample size nCF = 100. In panel

B, however, we highlight the dependence of the frequentist power on θ: for n = 100



2.2 Classical and Bayesian power functions 40

and θD = 0.56 the power is 80% as designed, but it is evident that increasing the

design value the power gets higher. In Figure 2.2 we show how the choice of θD

affects the optimal sample size: the actual values are reported in the table beneath.

!D

n FC

0.2 0.3 0.4 0.5 0.6 0.7 0.8

10
0

30
0

50
0

70
0

θD 0.1 0.2 0.3 0.4 0.5 0.56 0.6 0.7 0.8
nCF 3140 785 349 197 126 100 88 65 50

Figure 2.2: Optimal sample sizes nCF for several values of θD.

In summary, the smaller the effects difference to be detected, the lower the power,

the larger the optimal sample size. This intuitive relationship between design value

and power clearly shows how crucial the choice of θD is, when SSD is of concern.

It is then natural to consider a predictive approach that takes into account uncer-

tainty on the design value, as we illustrate in Section 2.2.2. A second remark: the

frequentist approach completely ignores possibly available prior information, even in

the presence of results from previous studies. For instance, an enthusiastic opinion

about the benefit of the new treatment can be expressed by a normal prior density

π(θ) = N(θ|θD, σ2/n0) centered on a positive value of θ, for example θD = 0.56.

Then, assuming a remote chance of negative values for θ, for instance a 5% prior

probability that θ < 0, we get σ2/n0 = 4/34.5, where n0 is the so called prior sam-

ple size (see Spiegelhalter et al. (2004) for further details). Hence, superimposing

the prior π(θ) on the power curve provides a rough indication on the plausibility of

the values of the parameter with respect to the corresponding power (see panel C

of Figure 2.1). As we said, this procedure just gives an approximate idea; a more

formal method is provided by the Bayesian approach that allows one to incorporate

the prior π(θ) into the power function and, consequently, in the SSD criterion (see

Section 2.2.3).
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2.2.2 Predictive Frequentist Power

As shown in the previous section, the conditional frequentist power is strongly re-

lated to the chosen design value θD, which influences the selection of the sample size.

In other words by increasing (or decreasing) the value of θD, we reach completely

different indications on the optimal sample size for the trial. Instead of considering

a single design value we want to take into account the uncertainty around this value

in the power function. In this sense, according to the Bayesian approach, we model

uncertainty on θ, by specifying a prior probability distribution. Nevertheless sup-

pose for the moment that we do not intend to incorporate prior information in the

final analysis, namely we want the conclusions of the study to be entirely classical.

This is the idea behind the hybrid classical-Bayesian approach described in Spiegel-

halter et al. (2004) and already mentioned in Section 1.1.2. Specifically, we elicit

a prior distribution πD centered on the design value θD. Averaging the conditional

frequentist power defined in (2.1) with respect to this prior, we obtain the Predictive

Frequentist Power, that is

βPF (πD) =

∫
Θ

βCF (θ)πD(θ)dθ, (2.3)

where the superscript P reminds that it is a predictive power function, which corre-

sponds to the unconditional probability of rejecting H0. The notation also highlights

that the predictive power depends on πD. Again, we assume that πD is a normal

density of mean θD and variance denoted by σ2/nD. A technical remark: instead

of using (2.3), βPF (πD) can be directly computed as the probability of rejecting the

null hypothesis (or equivalently, of getting a significant result) with respect to the

marginal distribution of the data. As in Section 1.4, we have

mD(yn) = N

(
yn|θD, σ2

(
1

nD
+

1

n

))
,

that is the average of the sampling distribution f(·; θ) with respect to the prior πD,

according to (1.3). Hence we have

βPF (πD) = Φ

(√
nD

nD + n

(
θD
√
n

σ
+ zα

))
(2.4)

and it is straightforward to define the following predictive SSD criterion:

nPF = {minn : βPF (πD) > η} (2.5)

for a given threshold η.



2.2 Classical and Bayesian power functions 42

Example 1 (continued) : SSD based on the power function (CANCER)

Let us go back to the example presented in the previous Section. Let us specify for

instance the prior πD(θ) = N(θ|θD = 0.56, σ2/nD = 4/34.5 = 0.16). For a sample

size n = nCF = 100, the conditional power βCF (θD) reaches the required level of 80%,

as designed, while the predictive power βPF (πD) declines to 0.66. In this case, in

order to obtain the same power level we should increase the number of observations

up to nPF = 240. In general, we have nPF > nCF .
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Figure 2.3: βCF (θD) (solid line) and βPF (πD) (dashed line) are plotted with respect to n, respec-
tively with design value θD = 0.56 and design prior πD(θ) = N(θ|θD = 0.56, σ2/nD = 4/34.5). The
dashed gray lines represent βPF (πD) for different choices of: A. the design prior mean θD = 0.4,
θD = 0.5, θD = 0.6 and θD = 0.72 (from the bottom to the top); B. the prior sample size nD = 10,
nD = 20, nD = 50 and nD = 70 (from the bottom to the top).

However, from panel A of Figure 2.3 we notice that averaging with respect to the

enthusiastic prior πD slightly raises the power for small values of the sample size,

while as n increases the predictive power gets lower than the conditional one. This

is even more evident when considering the predictive power curves corresponding

to larger prior means, the prior variance being equal. Notice that, in particular, we

need to increase the design prior mean to θD = 0.72, in order to have βPF (πD) = 0.80

in correspondence to n = nCF = 100. On the contrary, if we shift the design prior

mean towards smaller values – expressing less optimistic opinions on the innovative

therapy benefit – we obtain a lower power. In panel B of Figure 2.3 we play on the

prior variance, keeping θD = 0.56. As expected, for small values of nD the prior

variance increases, that is to say we are actually accounting for more uncertainty,
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which reduces the predictive power. Viceversa, if we consider larger nD, the prior

πD gets more informative, raising the predictive power curve. From the comparison

of (2.1) and (2.4) it follows that βCF (θD) is a special case of βPF (πD): in fact, as

nD → ∞ the prior πD tends to concentrate on θD and βPF (πD) tends to βCF (θD).

However, as already discussed, for finite nD we have βPF (πD) > βCF (θD), provided

that βPF (πD) > 0.50. Finally, notice that if we let nD → 0, which implies adopting

a non informative flat design prior, from (2.4) we have βPF (πD) = 0.5, regardless of

the sample size. In other words if we want the predictive SSD criterion in (2.5) to

be conclusive, we need to specify a proper design prior.

2.2.3 Bayesian powers

Let us suppose now that in planning the experiment initial information on the

treatments difference is available, for example, the results of a previous trial or a

pilot study. If we are willing to perform a fully Bayesian analysis, for instance we

elicit the prior distribution πA(θ) = N(θ|θA, σ2/nA), where nA is the prior sample

size. Note that the subscript A here stands for analysis because we mean this prior

to be used in the inferential phase. In the following we consider the general case in

which πA is not necessarily coincident with the πD that appears in (2.3), as discussed

in Section 1.2.2.

Inference is based on the posterior distribution of θ, given the data Yn. As re-

called in Section 1.4, from standard Bayesian analysis it is well known that the

posterior is a normal density of parameters given by (1.11) and (1.12). Now, follow-

ing Spiegelhalter et al. (2004), we say a Bayesian result is significant if we have a

low posterior chance, say α = 0.05, that θ is negative and this happens whenever

the following event occurs:

Yn >
−
√
nA + nzασ − nAθA

n
. (2.6)

At this point, according to the choice of the distribution for future data Yn, we

define:

• Conditional Bayesian Power :

βCB (θD) = Φ

(
θD
√
n

σ
+
θAnA
σ
√
n

+

√
nA + n

n
zα

)
(2.7)

if we compute the probability of (2.6) with respect to the sample distribution

f(·; θD);
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• Predictive Bayesian Power :

βPB(πD) = Φ

 1

σ
√

1
nD

+ 1
n

(√
nA + nzασ + nAθA + nθD

n

) (2.8)

if we compute the probability of (2.6) with respect to the marginal distribution

mD(·).

Note that the expression in (2.8) can be further simplified in case we assume πA =

πD, that is

βPB(πD) = Φ

(
θA
√
nA + n

√
nA

σ
√
n

+

√
nA
n
zα

)
(2.9)

where we simply set θA = θD and nA = nD. This is actually the only case considered

in Spiegelhalter et al. (2004); nevertheless, we want to highlight again that two

distinct priors may be employed, as pointed out in Section 1.2.2. From the definitions

above it is immediate to establish the corresponding SSD criteria, respectively

nCB = {minn : βCP (θD) > η} (2.10)

and

nPB = {minn : βPB(πD) > η} (2.11)

where the threshold η is conventionally equal to 0.80.

In summary, as we show in the example below (see in particular Figure 2.5), we

have that

nCi > nPi for i = F,B. (2.12)

At the same time, adopting an enthusiastic analysis prior, we have that

njF > njB for j = C,P. (2.13)

Example 1 (continued) : SSD based on the power function (CANCER)

Let us assume for instance that the previous study provides an optimistic indication

about the new treatment in terms of log hazard ratio, that can be formalized choos-

ing θA = θD = 0.56 and nA = nD = 34.5. In Figure 2.4 the conditional frequentist

and Bayesian powers are represented with respect to n (top panels) and θ (bottom

panels). Using the enthusiastic prior πA, for n = 100 we notice an increase in the

power up to 0.93. This results in a smaller optimal sample size nCB = 53 with respect

to nCF = 100. In panel A we also compare the impact of different choices for the prior

means on the optimal sample size, being the prior sample size fixed to nA = 34.5.
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Figure 2.4: Conditional frequentist (solid line) and Bayesian (dotted lines) power curves βCB (θD),
with θD = 0.56, are plotted A. with respect to n (with θD = 0.56) and C. with respect to θ (with
n = 100), for several values of the analysis prior means θA = 0.1, θA = 0.3, θA = 0.56, θA = 0.7
(dotted gray lines from right to left), with fixed prior sample size nA = 34.5; B. with respect to n
(with θD = 0.56) and D. with respect to θ (with n = 100), for several values of the analysis prior
sample size nA = 0 (coinciding to βCF (θD)), nA = 20, nA = 34.5, nA = 50 and nA = 70 (dotted
gray lines from right to left), with given prior mean θA = 0.56.
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As expected, the more enthusiastic the prior mean θA the higher the power. On the

contrary, a prior mean expressing scepticism towards the treatments difference (for

instance θA = 0.1) leads to a Bayesian power βCB (θD) uniformly lower than βCF (θD),

the conditional value being equal. In panel B, we proceed in the opposite way: we

fix θA = 0.56 and plot βCB (θD) for several values of the prior sample size nA. Note

that the conditional frequentist power is a special case of βCB (θD) corresponding to

nA = 0, i.e. to a flat non informative prior. Then, considering increasing values of

nA we observe at each step a raise in the Bayesian power curve, since the enthusiastic

prior gets more and more informative. Similar remarks can be drawn from panel C

and panel D, where βCB (θ) is plotted with respect to θ, for fixed n = 100.

Let us focus now on the predictive Bayesian power curve. As discussed in Section

2.2.2, taking into account the uncertainty on the parameter in the design phase we

obtain a lower power, since we are averaging the power function with respect to the

design prior. This is evident in Figure 2.5 where the conditional Bayesian power

(dotted curve) is compared with the predictive one (dashed-dotted curve). The plot

clearly summarizes what we pointed out in (2.12) and (2.13). Furthermore in Figure

2.6 we represent the predictive Bayesian power βPB(πD) with respect to the sample

size n. Playing on the design prior parameters, we reach similar conclusions to the

ones in Section 2.2.2: increasing the uncertainty on the design value (i.e. decreasing

the prior sample size nD), the power curve raises (see panel A). The same happens

if we choose larger and larger design prior means.

2.3 Concluding remarks

Finally it is interesting to remark that βBP (πD) can be actually considered as a

generalized power function including the other power functions as special cases, as

summarized in Table 2.3. Using βBP (πD) we model both the prior information and the

uncertainty on the design value, that can be formalized using – eventually different

– prior distributions. Now, if nD tends to be infinitely large, the design prior tends

to a point-mass, i.e. a distribution that assigns probability 1 to the single point

θD, and we get βBC (θD) conditional to the design value θD. On the other hand if

we keep nD finite and we let nA go to 0, the analysis prior degenerates in a flat

non-informative prior, so that we obtain βFP (πD), the predictive frequentist power.

The conditional frequentist power comes out when we let simultaneously nD → ∞
and nA → 0. This means that both design uncertainty and prior information are

ignored. Figure 2.5 allows us to compare the behaviour of the four power functions

as the sample size n increases.
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Figure 2.5: βFC (θD) (continuous line), βFP (πD) (dashed line), βBC (θD) (dotted line) and βBP (πD)
(dashed-dotted line) are plotted with respect to the sample size n. The conditional value is θD =
0.56; the prior parameters are θD = θA = 0.56, nD = nA = 34.5. The resulting optimal sample
sizes are: nCF = 100, nPF = 240, nCB = 53, nPB = 131
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Figure 2.6: The Bayesian (dotted lines) predictive power curve βPB(πD), is plotted for different
choices of the design prior πD: A. θD = 0.56 and from the bottom to the top nD = 10, nD = 20,
nD = 34.5, nD = 50 and nD = 70; B. nD = 34.5 and from the bottom to the top θD = 0.1,
θD = 0.3, θD = 0.56 and θD = 0.7.



2.3 Concluding remarks 48

modeling uncertainty:
design prior πD

modeling information: nD →∞ nD <∞
analysis prior πA f(·; θD) mπD(·)

non-informative prior: nA → 0 βCF (θD) βPF (πD)

proper prior: nA > 0 βCB (θD) βPB(πD)

Table 2.1: Classification of the power functions according to the use of prior information and
the account for uncertainty on the design value: the predictive Bayesian power function can be
thought as a general power function including the other three as special cases.

In summary, in this chapter we have first presented the most common SSD cri-

terion, based on the frequentist conditional power. Nevertheless we have argued

that this criterion is not flexible enough. In particular, we have underlined that

conditioning with respect to a fixed design value, one takes no notice of uncertainty

on this value. This consideration has led us to introduce a predictive approach that

is able to incorporate uncertainty through a prior distribution, which guarantees a

more careful choice of the optimal sample size. On the other hand it is also conve-

nient to exploit eventual prior information directly in the SSD procedure. In fact it

is possible to resort to a Bayesian approach that incorporates prior information in

the power function. This allows one to take advantage of previous results or opinions

of experts about the experiment and in a sense to “spare” sample units in the actual

trial.



Chapter 3

Robust Sample Size

Determination

3.1 Introduction and motivations

The use of a specific prior distribution for posterior analysis has always been a

critical point of Bayesian statistics. This is due to the high degree of subjectivism

intrinsic to the selection of one particular distribution. An attempt to address this

objection is represented by the robust Bayesian approach that:

(i) replaces a single prior with a class of distributions that gives a more flexible

and realistic representation of pre-experimental knowledge;

(ii) studies how posterior inference changes as the prior varies over the class.

The idea is simple: if the range of posterior quantities of interest is small, the

differences between the various priors in the class are irrelevant and it is possible to

use the starting prior with confidence. On the contrary, if the posterior range is not

small enough, robustness is a concern and refinement of prior knowledge is needed.

General principles and developments of the robust Bayesian approach are dis-

cussed in Berger (1984, 1990), Wasserman (1992). In Berger et al. (2000) the Au-

thors present an overview of the robust Bayesian approach, discussing the different

possible approaches. First of all they highlight that the issue of robustness with

respect to the prior distribution derives from the practical impossibility of eliciting

a unique distribution. Furthermore they extend an analogous approach to the other

elements involved in a Bayesian analysis, such as the likelihood and the loss function.

In their words “the main goal of Bayesian robustness is to quantify and interpret the
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uncertainty induced by partial knowledge of one of the three elements in the analy-

sis”. Applications of robust Bayesian analysis to clinical trials are in Greenhouse &

Wasserman (1995, 1996), Carlin & Sargent (1996), Sargent & Carlin (1996). Noting

that many medical and epidemiological professionals cite their distaste for informa-

tive priors as a prime reason for their ongoing aversion to Bayesian methods, Carlin

& Perez (2000) try to address these concerns by investigating Bayesian robustness

in some practical applications to clinical trials.

In this Chapter, we apply the robust Bayesian philosophy to the SSD problem

illustrated in the previous chapter, as proposed in DasGupta & Mukhopadhyay

(1994), De Santis (2006), Brutti & De Santis (2008) and Brutti et al. (2008b). Our

main goal is the introduction of robust SSD criteria that take into account deviations

from an elicited base analysis prior distribution for the unknown parameter. For this

reason, we replace a single base prior with an entire class of distributions close to

it. Then we assume that an experiment is successful if the posterior quantity of

interest is sufficiently large for any prior belonging to the chosen class. This is

equivalent to check that the lower bound of the posterior quantity with respect

to the class of prior distribution, exceeds a given threshold. Robust sample sizes

are selected by looking at summaries of the predictive distribution of this lower

bound. Typically, robust sample sizes are larger than those derived using a single

prior. In Brutti et al. (2008b) one of the goals is to show the inflate of sample

sizes determined using specific classes of priors in the place of a single base prior.

However, we are also interested in those circumstances (and classes of priors) in

which single-prior sample sizes do not differ substantially from the robust one. In

these cases we say that single-prior sample sizes are actually robust with respect

to the class of priors and that the standard procedure provides adequate sample

sizes. In particular, in order to model uncertainty on the base analysis prior we

consider classes of ε-contaminated priors, studied for instance in Berger & Berliner

(1986) and Sivaganesan & Berger (1989) (see Section 3.2.3). These are mixtures

of the base prior with classes of distributions that possess some specific features.

Therefore we focus on three relevant classes of contaminant priors: (i) the set of

all probability distribution, which is obviously the largest class one can consider,

(ii) the class of unimodal distributions and (iii) the class of symmetric unimodal

distributions. These classes of priors have been very popular in the literature on

Bayesian robustness, both for being analytically tractable and also for giving fairly

realistic representation of prior beliefs and uncertainty.

The present chapter is organized as follows. In Section 3.3 and 3.4 we provide

expressions for the robust SSD criteria respectively for the normal model and for the

binomial model. We also illustrate examples, in order to compare the resulting sam-
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ple sizes to the non robust ones. Finally in Section 1.3 we analyze the asymptotical

behaviour of the predictive summaries involved in the SSD criteria (both robust and

non robust) in order to define a reasonable method for the choice of the external

thresholds involved in the criteria.

3.2 A robust approach to SSD

3.2.1 Preliminaries

Let us go back to the framework described in Section 1.2.1 and let us suppose that,

instead of a single analysis prior we are only able to elicit a class of distributions

ΓA. Specifically, let us assume that we single out a prior π0 that quantifies pre-trial

information on θ, but that we are not completely confident in it. Then in order to

avoid the sensitivity due to the specification of a single prior we suggest to replace

π0 with a suitable class of distributions ΓA “close” to it.

In this way we obtain a robust version of success definition: specifically, we say

the trial is robust-successful if, for any prior in ΓA, the chosen posterior quantity of

interest ρπA(θ|yn) is larger than γ or, equivalently, if infπA∈ΓA ρπA(θ|yn) > γ, for a

prefixed threshold γ.

3.2.2 Criteria

It is then straightforward to derive the robust versions of Criterion 1 and Criterion 2

defined in Section 1.2.3. We simply need to replace ρπA(θ|Yn) with inf
πA∈ΓA

ρπA(θ|Yn)

in (1.4) and (1.6). In details, we have the following robust criteria.

1. Robust predictive expectation criterion. Let

ern = EmD [ inf
πA∈ΓA

ρπA(θ|Yn)] (3.1)

be the expected value of inf
πA∈ΓA

ρπA(θ|Yn) with respect to mD. Given a thresh-

old ηe, the optimal robust sample size is the number of observations satisfying

the following condition:

n∗e,r = min {n ∈ N : ern > ηe} . (3.2)

This is the robust effect-size criterion.
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2. Robust predictive probability criterion. Let us consider the robust pre-

dictive power :

prn = PmD [Rr
n] =

∫
Rrn

mD(yn)dyn, (3.3)

where Rr
n is the subset of the sample space containing all the samples which

yield a robust-successful experiment:

Rr
n =

{
yn : inf

πA∈ΓA
ρπA(θ|Yn) > γ

}
.

The robust optimal sample size is the smallest number of observations such

that prn is larger than a chosen threshold, ηp ∈ (0, 1). In symbols:

n∗p,r = min {n ∈ N : prn > ηp} , ηp ∈ (0, 1). (3.4)

At this point two comments are in order.

(i) As for the choice of the thresholds ηe and ηp, a similar argument to the one of

Section 1.3 holds true also when considering the robust criteria defined above.

In fact, under a given design scenario, the existence of the optimal robust

sample sizes n∗e,r and n∗p,r relies on the choice of ηe and ηp. It is then reasonable

to pick these thresholds as prespecified percentages of the maximally achievable

value of ern and prn in such a way that the optimization problems defined in (3.2)

and (3.4) are actually well-posed. This point is further discussed in Section

3.5 (see also Brutti et al. (2008b)), where we study the asymptotic behaviour

of ern and prn.

(ii) The consequence of replacing πA with ΓA (which we assume to contain πA),

is that, in general, for any given δ, γ, ηe and ηp, the robust sample size is

larger than the single-prior sample size, namely n∗πA < n∗ΓA . Similarly, for

any two classes of priors ΓA and Γ′A such that ΓA ⊂ ΓA′ , optimal sample sizes

determined with the latter class are larger than those obtained with the former,

namely n∗ΓA < n∗ΓA′ . Numerical examples will be discussed in the applications

of Section 3.3 for the normal model and of Section 3.4 for the binomial model.

3.2.3 Robust SSD using ε−contamination classes

In the present section, following Brutti et al. (2008b), we specifically refer to ε-

contamination classes. First of all, a formal definition is needed. An ε-contamination

class is a mixture of a base prior π0 with a suitable class of distribution Q, possessing

particular characteristics. In symbols:

Γε = {πA : πA(θ) = (1− ε)π0(θ) + εq(θ); q ∈ Q},
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where ε ∈ (0, 1) is the degree of contamination and q is a contaminant prior belonging

to the class Q. According to the choice of Q, we have different ε-contamination

classes. Among the many available, we consider in particular the following three

options for the class Q:

• QAll = {all the distributions};

• QU = {unimodal distributions with the same mode θ0 of π0};

• QUS = {unimodal and symmetric distributions with the same mode θ0 of π0}.

The corresponding ε-contamination classes will be denoted respectively as ΓUS, ΓU

and ΓAll. The class QAll is appealing for its analytical tractability but it contains

many more priors than we would often consider plausible in practice. As we show

in the following sections, this determines very large sample sizes even for small

amounts of contamination. The classes QU and QUS are still analytically feasible

but they considerably restrict the set of possible contaminant distributions compared

to QAll. In Sivaganesan & Berger (1989) the Authors proved some helpful results

for computing the bounds of a posterior quantity ρπA(θ|yn) as the prior varies in

ΓUS, ΓU and ΓAll. Note that, for any yn, ΓUS ⊂ ΓU ⊂ ΓAll implies that

inf
πA∈ΓUS

ρπA(θ|yn) ≥ inf
πA∈ΓU

ρπA(θ|yn) ≥ inf
πA∈ΓAll

ρπA(θ|yn).

Hence, consistently with remark (ii) of Section 3.2.2, we obtain

n∗ΓAll > n∗ΓU > n∗ΓUS , (3.5)

as illustrated in the application of Section 3.3 and 3.4.

Finally, since in general it is not possible to derive closed-form expressions for

ern and prn, we can resort to Monte Carlo approximations. In practice we proceed

according to the following steps:

1. we draw a large number M of samples from the predictive distribution of the

data mD, say ỹn(1), ..., ỹn(M);

2. for each generated value ỹn(j), we compute inf
πA∈Γε

ρπA [θ|ỹn(j)];

3. we compute the required predictive summaries ern and prn, respectively as a

Monte Carlo mean or as the proportion of sampled values exceeding the pre-

fixed threshold γ.

Notice that in step 2 we exploit the results shown by Sivaganesan & Berger (1989)

that we resume in the following section.
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3.2.4 Bounds of the posterior quantity

As mentioned at the end of the previous section, in order to obtain the bounds of the

posterior quantity ρπA(θ|yn), when the analysis prior varies in an ε-contamination

class, it is possible to resort to the results of Sivaganesan & Berger (1989). Here we

recall the main points of the paper that will be helpful in Section 3.3 and in Section

3.4 where we provide explicit expressions of these bounds with regard to the normal

model and the binomial model respectively.

First of all we denote by m0(yn) the marginal density of the data induced by the

base prior π0 and we define the following quantities, to be used below:

a = (1− ε)m0(yn) and a0 = aρπ0(θ|yn), (3.6)

where ρπ0(θ|yn) is a posterior summary derived with respect to the base prior π0.

Recall that we focus on a transformation of the parameter of interest g(θ), that

results in a corresponding quantity of interest, according to (1.2) (see also Table

1.1). Let us derive the bounds of ρπA(θ|yn) for the three classes ΓAll, ΓU and ΓUS.

Arbitrary contaminations

First of all, for arbitrary contaminations we can distinguish the following two cases:

a. the bounds of the posterior expectation can be obtained computing the inferior

and superior extremes of the following expression with respect to θ

KAll =
a0 + εg(θ)fn(yn; θ)

a+ εfn(yn; θ)
(3.7)

b. the bounds of the posterior probability of a set H are respectively:

inf
θ
KAll =

a0

a+ εmax
θ∈Hc

fn(yn; θ)
and sup

θ
KAll =

a0 + εmax
θ∈H

fn(yn; θ)

a+ εmax
θ∈H

fn(yn; θ)
. (3.8)

Unimodal and unimodal symmetric contaminations

As for unimodal or symmetrical unimodal contaminations, in Sivaganesan & Berger

(1989) it is shown that the computations are significantly simplified thanks to the

alternative representation of a unimodal or symmetrical unimodal distribution as a

mixture of uniform distributions. Hence the optimization over ΓU or ΓUS is proved

to be equivalent to the optimization over a restriction of these classes, respectively

Γ1 = {π = (1− ε)π0 + εq : q ∈ U(θ0, θ0 + z) or U(θ0 − z, θ0) for some z > 0} ⊂ ΓU ,

Γ2 = {π = (1− ε)π0 + εq : q ∈ U(θ0 − z, θ0 + z) for some z > 0} ⊂ ΓUS,
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where U(a, b) is a uniform density in the interval (a, b) and θ0 is the mode of the

base prior π0. In this way the problem reduces to an optimization with respect to a

single variable z, that varies in opportune intervals. We have therefore the following

expression for the bounds of ρπA(θ|yn), as πA varies in ΓU and ΓUS:

inf
π∈Γj

a0 + εKg(z)

a+ εKg0(z)
= inf

z

a0 + εKg(z)

a+ εKg0(z)

sup
π∈Γj

a0 + εKg(z)

a+ εKg0(z)
= sup

z

a0 + εKg(z)

a+ εKg0(z)
(3.9)

for j = 1, 2 respectively, where the quantities Kg are defined below for the two

classes QU and QUS and Kg0 corresponds to the case g(θ) = g0(θ) = 1.

Hence, for unimodal contaminations we have:

Kg,U(z) =


1
z

∫ θ0+z

θ0
g(θ)fn(yn; θ)dθ z 6= 0

g(θ0)fn(yn; θ0) z = 0

(3.10)

andKg0,U(z) = mq(sn), wheremq is the marginal distribution computed with respect

to q ∈ U(θ0, θ0 + z) or U(θ0 − z, θ0).

Similarly, for unimodal symmetric contaminations we have:

Kg,US(z) =


1
2z

∫ θ0+z

θ0−z g(θ)fn(yn; θ)dθ z > 0

g(θ0)fn(yn; θ0) z = 0

(3.11)

and Kg0,US(z) = mq(sn), where mq is the marginal distribution computed with

respect to q ∈ U(θ0 − z, θ0 + z).

3.3 Results for the normal model

In the present Section we derive explicit expressions for the bounds of ρπA(θ|yn)

when the normal model is assumed. As for the expression of ρπ0(θ|yn), we refer to

Section 1.4. Note that under the normality assumptions the marginal distribution

computed with respect to the base prior is

m0(yn) = N

(
yn|θ0, σ

2

(
1

n
+

1

n0

))
.

Hence we can determine a and a0 from (3.6).
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Arbitrary contaminations

This is all we need to compute the quantity KAll defined in (3.7), that can be then

numerically optimized with respect to θ. As for case b, without loss of generality we

restrict ourselves to a set of the kind H = {θ : θ > δ}. Then it is straightforward to

derive the following quantities

max
θ∈H

fn(yn; θ) = φ

(√
n(δ − yn)

σ

)
I(−∞,δ)(yn) +

√
n

σ
√

2π
I(δ,+∞)(yn)

and

max
θ∈Hc

fn(yn; θ) =

√
n

σ
√

2π
I(−∞,δ)(yn) + φ

(√
n(δ − yn)

σ

)
I(δ,+∞)(yn).

to be used in computing the exact bounds of (3.8). This accomplishes the case of

arbitrary contaminations.

Unimodal and unimodal symmetric contaminations

When considering unimodal and unimodal symmetric contaminations, in order to

obtain (3.9) it is necessary to compute respectively the integrals in (3.10) and (3.11)

for the different choices of g(·). With regard to the options summarized in Table

1.1, we are interested in considering g as

1. the function identically equal to 1, i.e. g(θ) = g0(θ) = 1;

2. the indicating function of the set H, i.e. g(θ) = IH(θ);

3. the identity function, i.e. g(θ) = θ.

Correspondingly, we derive the results presented below.

1.

Kg0,U(z) =
1

z

[
Φ

(√
n

σ
(θ0 + z − yn)

)
− Φ

(√
n

σ
(θ0 − yn)

)]
,

Kg0,US(z) =
1

2z

[
Φ

(√
n

σ
(θ0 + z − yn)

)
− Φ

(√
n

σ
(θ0 − z − yn)

)]
.

2.

Kg,U(z) =



0 δ > θ0

1
z

[
Φ
(√

n
σ

(θ0 − yn)
)
− Φ

(√
n
σ

(θ0 + z − yn)
)]

θ0 + z < δ ≤ θ0

1
z

[
Φ
(√

n
σ

(θ0 − yn)
)
− Φ

(√
n
σ

(δ − yn)
)]

δ ≤ θ0 + z

,
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for z < 0, while for z > 0 we have

Kg,U(z) =



0 δ > θ0 + z

1
z

[
Φ
(√

n
σ

(θ0 + z − yn)
)
− Φ

(√
n
σ

(δ − yn)
)]

θ0 < δ ≤ θ0 + z

1
z

[
Φ
(√

n
σ

(θ0 + z − yn)
)
− Φ

(√
n
σ

(θ0 − yn)
)]

δ ≤ θ0

,

Kg,US(z) =



0 δ > θ0 + z

1
2z

[
Φ
(√

n
σ

(θ0 + z − yn)
)
− Φ

(√
n
σ

(δ − yn)
)]

θ0 − z < δ ≤ θ0 + z

1
2z

[
Φ
(√

n
σ

(θ0 + z − yn)
)
− Φ

(√
n
σ

(θ0 − z − yn)
)]

δ ≤ θ0 − z

Finally for z = 0, Kg,U(0) = Kg,US(0) = I{θ0>δ}fn(yn; θ0).

3. From standard calculations, using the integral

b∫
a

xφ(x;µ, v)dx = µ

[
Φ

(
b− µ
v

)
− Φ

(
a− µ
v

)]
+

v√
2π

[
e((a−µ)/v)2/2 − e((b−µ)/v)2/2

]
we can derive:

Kg,U(z) =
1

z
yn

[
Φ

(
θ0 + z − yn
σ/
√
n

)
− Φ

(
θ0 − yn
σ/
√
n

)]
+

+
σ√
2nπ

[
e

1
2

“
(θ0−yn)

√
n

σ

”2

− e
1
2

“
(θ0+z−yn)

√
n

σ

”2
]

and

Kg,US(z) =
1

2z
yn

[
Φ

(
θ0 + z − yn
σ/
√
n

)
− Φ

(
θ0 − z − yn
σ/
√
n

)]
+

+
σ√
2nπ

[
e

1
2

“
(θ0−z−yn)

√
n

σ

”2

− e
1
2

“
(θ0+z−yn)

√
n

σ

”2
]
.

Example 1 (continued): Bayesian robust SSD (CANCER) We extend

here Example 1 (page 18), presented in Section 1.4 (see Spiegelhalter et al. (2004))

with the application of the robust criteria. Specifically we use the analysis prior

introduced before as base prior π0, that is a normal density centered on θ0 = 0, with

prior sample size n0 = 9. Then we consider several ε−contamination classes for this

base prior. Moreover the design scenario is the same depicted in Figure 1.1, namely

we have θD = 0.56, nD = 34.5 as design parameters and we set δ = 0.1.



3.3 Results for the normal model 58

The contour plot in Figure 3.1 represents the lower bound of ern for ΓAll as the

sample size n and the contamination parameter ε vary. We notice that, even for low

levels of contamination, the sample size required to reach ηe = 0.8 (n∗e,r = 124, for

ε = 0.1), is substantially larger than the standard optimal sample size (n∗e = 56).

Nevertheless, if we are willing to slightly reduce ηe, for example to values around

0.7, we are able to achieve significantly smaller sample sizes (n∗e,r ∼ 60) even for

a moderate amount of contamination (ε ∼ 0.2). The optimal sample sizes listed

n
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Figure 3.1: Contour plot of ern for ΓAll as the sample size n and the contamination parameter ε
vary, assuming: σ2 = 4, θ0 = 0, n0 = 9, θD = 0.56, nD = 34.5, δ = 0.1.

above are clearly unreasonable in many practical situations. This is a consequence

of the content itself of the contamination class which includes many undesirable

distributions such as point masses that are far way from the base prior π0.

A plausible alternative contamination class is ΓUS. In Table 3.1 we summarize

standard and robust optimal sample sizes computed for both classes ΓAll and ΓUS,

and for different levels of contamination. Focusing on the rows related to ΓUS the

overall impression is that the optimal sample sizes we obtain are extremely stable

with respect to the contamination level when compared to what happens under the

class ΓAll. The same conclusions can be drawn by looking at Figure 3.2. In fact, as

shown in the right panel of this graph, the distance between the two extrema related

to ΓUS is actually negligible even for values of ε approaching 1.



59 Robust Bayesian Sample Size Determination

n

0 50 150 250 350 450

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

!

n

0 50 150 250 350 450

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

!

Figure 3.2: ern (top left) and prn (bottom left) for ΓAll (two solid lines, representing respectively
lower and upper bound) and ΓUS (two dashed lines, representing respectively lower and upper
bound) as functions of the sample size n (first column, with ε = 0.2)assuming: σ2 = 4, θ0 = 0,
n0 = 9, θD = 0.56, nD = 34.5, δ = 0.1 and γ = 0.9. The horizontal reference line is set to
ηe = ηp = 0.73 (β = 0.8). In the right panels, predictive summaries of the range of ρπA

(θ|yn)
(top panel: expectation for n = n∗e = 39; bottom panel: probability for n = n∗p = 56) as the
contamination parameter ε varies in (0, 1), respectively for ΓAll (light gray area) and for ΓUS
(dark gray).

In order to observe a wider distance, we can force the two priors π0 and πD

to express radically opposite beliefs. For example, we might center the analysis

base prior on θ0 = −1.6, expressing a very pessimistic opinion on the experimental

treatment and, conversely, the enthusiastic design prior on θD = 1.6, corresponding

to a hazard ratio equals to 5 in favor of the new treatment. In this extreme situation

depicted in Figure 3.3, the predictive expectation criterion based on ern leads to more

cautious conclusions than the standard criterion en.

Moving to the predictive probability criterion (right side of Table 3.1) we see that
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Expectation Probability

Class ε θ0 = 0 θ0 = 0.29 θ0 = 0 θ0 = 0.29

0.1 70 49 301 (85) 281 (61)

All 0.2 103 86 408 (142) 381 (120)

0.3 150 132 477 (208) 456 (190)

0.1 40 8 152 (49) 137 (6)

US 0.2 42 9 152 (50) 138 (8)

0.3 43 10 155 (51) 139 (13)

Standard 0.0 39 5 152 (48) 137 (3)

Table 3.1: Optimal sample sizes n∗e,r and n∗p,r for ΓAll and ΓUS and 3 different levels of con-
tamination (ε ∈ {0.1, 0.2, 0.3}), assuming: σ2 = 4, n0 = 9, θD = 0.56, nD = 34.5, δ = 0.1,
ηe = ηp = 0.73 (β = 0.8), γ = 0.9 (γ = 0.6 in brackets), and two different base analysis priors π0,
namely a sceptical one (θ0 = 0) and an enthusiastic one (θ0 = 0.29). The line labeled Standard

contains the non–robust optimal sample sizes n∗e and n∗p (associated to ε ≡ 0 ).
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Figure 3.3: ern for ΓUS (two solid lines, representing respectively lower and upper bound) as n
varies, assuming: ε = 0.2, σ2 = 4, θ0 = −1.6, n0 = 9, θD = 1.6, nD = 9, δ = 0.1. The horizontal
reference line is set to ηe = 0.73 (β = 0.8) , whereas the dotted line corresponds to the standard
(non–robust) criterion en.
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Figure 3.4: ern (left) and prn (right) for ΓAll (two solid lines, representing respectively lower
and upper bound) and ΓUS (two dashed lines, representing respectively lower and upper bound),
assuming: ε = 0.2, σ2 = 4, θ0 = θD = 0.56, n0 = nD = 34.5, δ = 0.1, γ = 0.9.

all the results are strongly influenced by the value of the parameter γ. As for ΓUS,

setting γ = 0.6 leads to optimal sample sizes comparable to those selected by the

ern. Increasing the value of γ to 0.9 results in larger values of the optimal sample

size, which is coherent with the more strict requirements of the criterion. Finally

the optimal sample sizes induced by ΓAll are uniformly larger than before because

of the higher sensitivity of this criterion to the presence of extreme distributions in

the contamination class. Furthermore, if we assume a smaller θD, i.e. a smaller true

treatment difference, the required sample sizes are even larger. For example, in case

we set θD = 0.29 corresponding to a hazard ratio of 75%, the predictive probability

criterion yields an optimal sample size of about 430 units with γ = 0.9. Again,

the contamination with unimodal symmetric distribution gives comparable results,

while the ΓAll optimal sample size reaches the unfeasible value of 1267 subjects

already for ε = 0.1.

As mentioned above, once we fix the design mean θD to 0.56, shifting the mean

of the base prior from θ0 = 0 to an intermediate value between 0 and 0.56, for

example to θ0 = 0.29, results in a more optimistic opinion about the experimental

treatment. Consequently the optimal sample sizes associated to θ = 0.29 in Table

3.1 are uniformly smaller than those obtained using the sceptical base prior. It is

quite interesting to notice that in the extreme case in which the analysis and the

design priors are coincident we observe that en, pn and their robust versions tend to

be flat for large enough values of n (see Figure 3.4). This can be explained by the
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impossibility of keeping the same interpretation for the design prior: in this setting,

the reference value θD does not express optimism anymore with respect to the beliefs

represented by the base analysis prior.

3.4 Results for the binomial model

In this Section we refer to the binomial model. In particular, following the same

scheme of Section 1.5, we consider: (i) the one-sample setting both for the probability

of success and the log odds as parameters of interest (Section 3.4.1) (ii) the two–

samples setting where the log odds ratio is chosen as a measure of comparison

between two treatments effects (Section 3.4.2). Notice again that these cases result

from the different specification of the function g(·), as summarized in Table 1.1.

3.4.1 One sample

First of all, let us assume that the base prior distribution for θ is a beta density of

parameters (α0,β0). The corresponding expression of ρπ0(θ|yn) is given in Section

1.5.1. Hence the parameters of the betabinomial marginal distribution computed

with respect to the base prior are (α0, β0, n). In this setting we derive the bounds

of ρπA(θ|yn) for ΓAll, ΓU and ΓUS, according to the results of Section 3.2.4.

Arbitrary contaminations

Using (3.6) and (3.7) we obtain the expression to be numerically optimized with

respect to θ. As for (3.8), notice that over a set H = {θ : θ > δ} (respectively

Hc), the maximum of the binomial likelihood fn(sn; θ), considered as a function of

θ, depends on the location of the threshold δ with respect to θ̂ = sn
n

, that is the

maximum likelihood estimate for each couple of values (sn, n). Hence we have:

max
θ∈H

fn(sn; θ) =

(
n

sn

)
θ̂sn(1− θ̂)n−snI{θ̂>δ}(yn) +

(
n

sn

)
δsn(1− δ)n−snI{θ̂≤δ}(yn)

and, conversely,

max
θ∈Hc

fn(sn; θ) =

(
n

sn

)
θ̂sn(1− θ̂)n−snI{θ̂≤δ}(yn) +

(
n

sn

)
δsn(1− δ)n−snI{θ̂>δ}(yn).
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Unimodal and unimodal symmetric contaminations

When contaminating the base prior with unimodal and unimodal symmetric distri-

butions, we only need to compute (3.10) and (3.11) for the different choices of g(·),
listed in Section 3.3. In details, we have the following results.

1. When g(θ) = g0(θ) = 1, for unimodal contaminations, given that θ0 ∈ (0, 1),

z 6= 0 implies −θ0 ≤ z ≤ 1− θ0. Hence we have

Kg0,U(z) =
1

z

1

n+ 1
{FB(sn+1,n−sn+1)(θ0 + z)− FB(sn+1,n−sn+1)(θ0)}.

On the other hand, for unimodal symmetric contaminations, when z > 0 we have

Kg0,US(z) =
1

2z

1

n+ 1
{FB(sn+1,n−sn+1)(θ0 + z)− FB(sn+1,n−sn+1)(θ0 − z).

Finally for z = 0

Kg0,U(0) = Kg0,US(0) =

(
n

sn

)
θsn0 (1− θ0)n−sn .

2. If we set g(θ) = IH(θ), for unimodal contaminations, we distinguish the case

in which z > 0

Kg,U(z) =



1
z

1
n+1
{FB(sn+1,n−sn+1)(θ0 + z)− FB(sn+1,n−sn+1)(θ0)} δ < θ0

1
z

1
n+1
{FB(sn+1,n−sn+1)(θ0 + z)− FB(sn+1,n−sn+1)(δ)} θ0 < δ < θ0 + z

0 δ > θ0 + z

,

from the case in which z < 0

Kg,U(z) =



1
z

1
n+1
{FB(sn+1,n−sn+1)(θ0)− FB(sn+1,n−sn+1)(θ0 + z)} δ < θ0 + z

1
z

1
n+1
{FB(sn+1,n−sn+1)(θ0)− FB(sn+1,n−sn+1)(δ)} θ0 + z < δ < θ0

0 δ > θ0

.

For unimodal symmetric contaminations with positive z we have

Kg,US(z) =



1
2z

1
n+1
{FB(sn+1,n−sn+1)(θ0 + z)− FB(sn+1,n−sn+1)(θ0 − z)} δ < θ0 − z

1
2z

1
n+1
{FB(sn+1,n−sn+1)(θ0 + z)− FB(sn+1,n−sn+1)(δ)} − z < δ − θ0 < +z

0 δ > θ0 + z
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Finally for z = 0:

Kg,U(0) = Kg,US(0) = I(θ0 > δ)

(
n

sn

)
θsn0 (1− θ0)n−sn

3. When g(θ) = θ, for ΓU we have −θ0 ≤ z ≤ 1− θ0 and

Kg,U(z) =
1

z

sn + 1

(n+ 2)(n+ 1)
{FB(sn+2,n−sn+1)(θ0 + z)− FB(sn+2,n−sn+1)(θ0)}

For ΓUS we have 0 < z ≤ min(θ0, 1− θ0) and

Kg,US(z) =
1

2z

(sn + 1)

(n+ 2)(n+ 1)
{FB(sn+2,n−sn+1)(θ0 + z)− FB(sn+2,n−sn+1)(θ0 − z)}.

Finally for z = 0

Kg,U(z) = Kg,US(z) =

(
n

sn

)
θsn+1

0 (1− θ0)n−sn .

Example 2 (continued): Bayesian robust SSD (DRUG) Let us go back to

Example 2 (page 25) of Section 1.5.1. We consider here the robust criteria in order to

check the sensitivity of the resulting optimal sample sizes to the prior specification.

We choose, for instance, the most sceptical design prior (θD = 0.6) and in Figure 3.5

and Figure 3.6 we compare the results obtained using three different ε-contamination

classes for several levels of contamination, respectively for the expectation and the

probability criteria, both for the posterior expectation and the posterior probability.

Note that for each choice of the contamination class, the optimal sample sizes sen-

sibly get larger as the contamination level ε increases. Moreover the relationship

expressed by (3.5) holds true: using the wider class, ΓALL, we obtain larger optimal

sample sizes than adopting the other two classes.

Log odds scale

Let us consider now the case in which the parameter of interest is the log odds

ψ = log
(

θ
1−θ

)
, as in described in the second part of Section 1.5.1. Based on the

elements specified in Section 3.4.1 the results for arbitrary contaminations are easily

derived. Hence we focus here on unimodal and unimodal symmetric contaminations

only.

1. For g(θ) = g0(θ) = 1 we note that result 1. given in the first part of the

present section holds true.
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Figure 3.5: Optimal robust sample sizes for ΓALL, ΓU and ΓUS and for different contamination
levels ε = 0.1, 0.5, 0.9, when we consider the predictive expectation of ρπA

: in the left column we
consider the posterior expectation and in the right one the posterior probability with δ1 = 0.5.
Given the threshold η = 0.48, the resulting optimal sample sizes are reported in Table 3.2.
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Figure 3.6: Optimal robust sample sizes for ΓALL, ΓU and ΓUS and for different contamination
levels ε = 0.1, 0.5, 0.9, when we consider the predictive probability of ρπA

(with δ2 = 0.5): in the
left column we consider the posterior expectation and in the right one the posterior probability
with δ1 = 0.5. Given the threshold η = 0.48, the resulting optimal sample sizes are reported in
Table 3.3.
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ρπA contamination class contamination level

ε = 0 ε = 0.1 ε = 0.5 ε = 0.9

ΓALL 16 19 35 81

EπA ΓU 16 18 31 68

ΓUS 16 18 27 57

ΓALL 21 32 108 229

PπA ΓU 21 26 55 126

ΓUS 21 24 42 100

Table 3.2: Optimal robust sample sizes for ΓALL, ΓU and ΓUS and for different contamination
levels ε = 0.1, 0.5, 0.9, when we consider the predictive expectation of ρπA

, for δ1 = 0.5

ρπA contamination class contamination level

ε = 0 ε = 0.1 ε = 0.5 ε = 0.9

ΓALL 22 27 48 112

EπA ΓU 22 27 41 86

ΓUS 22 27 36 71

ΓALL 23 38 124 245

PπA ΓU 23 28 61 139

ΓUS 23 28 48 111

Table 3.3: Optimal robust sample sizes for ΓALL, ΓU and ΓUS and for different contamination
levels ε = 0.1, 0.5, 0.9, for δ1 = 0.5 and δ2 = 0.5

2. When we set g(θ) = IH
(
log
(

θ
1−θ

))
= IH(ψ), we have to notice that H = {ψ :

ψ > δ′} = {θ : θ > eδ
′

1+eδ′
}. Hence result 2. given in the first part of the present

section applies, once we set δ = eδ
′

1+eδ′
.

3. If g(θ) = log
(

θ
1−θ

)
= ψ, for unimodal contaminations we have

Kg,U(z) =
1

z

(
n

sn

)∫ θ0+z

θ0

log

(
θ

1− θ

)
θsn(1− θ)n−sndθ,

where z 6= 0, and for unimodal symmetric contaminations

Kg,US(z) =
1

2z

(
n

sn

)∫ θ0+z

θ0−z
log

(
θ

1− θ

)
θsn(1− θ)n−sndθ

where z > 0 and the above integrals can be computed by Monte Carlo simulation.

Finally for z = 0

Kg,U(z) = Kg,US(z) = log

(
θ0

1− θ0

)(
n

sn

)
θsn0 (1− θ0)n−sn .
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3.4.2 Two samples

Finally, let us focus on the log odds ratio ϕ defined in (1.16). Notice that θ = (θ1, θ2)

is a vector parameters of two components, but through the transformation g(·) we

have ϕ ∈ R. Hence the results of Sivaganesan & Berger (1989) hold true.

In particular, we need to derive the bounds of a posterior quantity of the kind we

defined in Section 1.5.2: the posterior distribution is given by 1.16, assuming a base

beta prior for each component θi, for i = 1, 2, and prior independence between them.

Arbitrary contaminations

First of all, to compute the expressions (3.7) and (3.8), we need to express the

likelihood as a function of ϕ instead of θ. Thanks to the results of Nurminen &

Mutanen (1987) and Marshall (1988), already mentioned in De Santis et al. (2004)

and in Section 1.5.2, we are able to derive:

fn(yn;φ) ∝ exp((s2 + 1)ϕ)

1∫
0

xs1+s2+1(1− x)n1−s1+n2−s2+1

[1 + (exp(ϕ)− 1)x]n2+2 .

Then (3.7) and (3.8) can be optimized numerically.

Unimodal and unimodal symmetric contaminations

As for unimodal and unimodal symmetric contaminations, we need to compute

integrals of the kind

Kg(z) =

∫ u

l

ϕfn(yn;ϕ)dϕ

where the extremes of the integral u and l depend on the base prior mode ϕ0 and on

the variable z. For brevity we omit the details of all the alternative choices of the

contamination class and of the function g(·). However in the application in order to

compute the integral above we resort to simulation.

Example 3 (continued): Bayesian robust SSD (GREAT)

Let us go back to Example 3 (page 32) introduced in Section 1.5.2. Let us suppose

we consider reasonable to contaminate the base prior specified before using the class

of unimodal symmetric distributions. Hence, we are in the situation represent in

Figure 3.7. Again, notice that the behaviour of en (dotted line) and ern (dashed-

dotted line) are not very different for a small level of contamination (ε = 0.1 in
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left panel). Nevertheless, due to the flatness of the considered curves, the resulting

sample sizes are quite different: for instance, if we set a threshold ηe = 0.8 (note that

this has to be interpreted on the logOR scale), we have n∗e = 132 and n∗e,r = 206.

Comparing the three panels of Figure 3.7, we actually show that increasing the level
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Figure 3.7: en (dotted line) and ern (dashed-dotted line) with respect to n, when the posterior
quantity of interest is the probability that the log odds ratio exceeds a threshold δ = 0, for ε = 0.1
(left panel), ε = 0.5 (center panel) and ε = 0.9 (right panel).

of contamination does not have dramatic impact on ern. On the other hand, using

the class ΓAll we obtain again unrealistic results, that would imply unreasonably

large sample sizes, even for a small value of ε.

3.5 Asymptotic behaviour of ern and prn

In Section 1.3 we suggested a reasonable criterion for the choice of the thresholds ηe

and ηp, based on the study of the asymptotic behaviour of the predictive quantities

en and pn involved in (1.5) and (1.7). A similar argument applies when we consider

the robust criteria defined in Section 3.2.2. Hence the asymptotic behaviour of ern
and prn need to be studied. In practice, in order to obtain the maxima of ern and

prn, as the sample size n diverges, it is sufficient to notice that the results proved in

Section 1.3 uniformly hold over any class of regular priors like Γε. Hence, we have

that lim
n→∞

prn = lim
n→∞

pn = p∞ and lim
n→∞

ern = lim
n→∞

en = e∞.

Finally notice that whenever it is not possible to derive a closed-form expression

for p∞ and e∞, in practice, the limits can be at least numerically approximated.

Then, assuming the maximum achievable value as a reference level, the thresholds

ηe and ηp can be consequently chosen as described in Section 1.3.
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3.6 Concluding remarks

The use of robust techniques in a Bayesian framework allows one to address the

critical dependence of the inferential conclusions on the specification of a prior dis-

tribution. In the present chapter we deal with this problem in the pre-experimental

context, when the size of a trial has to be selected, extending the predictive approach

presented in Chapter 1. The main message is that, in the presence of uncertainty

in prior specification, the sample size should be adequately larger than it is in the

presence of more refined knowledge. The goal is avoiding sample sizes smaller than

necessary, that would imply a low predictive probability of success for the trial. In

order to take into account uncertainty on the base prior, the idea is to replace it with

an entire class of priors and to consider the resulting robust sample sizes. In the

context of normal and binomial models, we have shown examples in which sample

sizes selected using the base prior are very close to robust sample sizes, obtained

using the class of unimodal symmetric distribution. We have also seen that relevant

discrepancies between single-prior and robust sample sizes are obtained only in the

presence of a dramatic difference between design and analysis priors. The robustness

of the standard Bayesian procedure is interesting whenever the class ΓUS is a fairly

reasonable representation of prior beliefs on θ. Basically, we now know that sample

sizes based on a normal base prior are still adequate under contamination, as long

as the contaminated priors respect the constraints of symmetry and unimodality.

We have also shown that, in the same examples and even for modest contamina-

tion levels, using ΓAll implies quite larger samples sizes than those found with the

base prior π0. One can object that the class ΓAll is “too big”, containing unreason-

able prior distributions for the parameter. But we have used this class as a “worst

case”: at chosen ε levels, robust sample sizes selected using ΓAll automatically sat-

isfy SSD criteria for any other contamination class. Of course, one can consider

refinements of this class and then one can decide to select sample sizes appropriate

to the available prior knowledge.

Finally notice that a suitable trade-off is necessary between the level of contam-

ination and the class Q, on the one hand, and the chosen thresholds, on the other.

The idea is simply that, in fixing the goals of an experiment, one should take into

account the degree of uncertainty on the prior, represented by the class Q and by

ε: a large degree of uncertainty on the prior implies in general unrealistic large

sample sizes if the goal of the trial is too ambitious (large values of δ, η and γ). In

general, the sample size problem turns out to be much more problematic than it is

typically perceived in that it requires accurate modelling of both goals of the trials

and available uncertainty and information.



Chapter 4

Sample Size Determination and

Re-estimation in the presence of

multiple sources of information

4.1 Introduction and motivations

In this chapter we adapt the predictive Bayesian approach to determine the size of an

experiment, proposed in Chapter 1, to a more complicated setting in which multiple

sources of prior information on the unknown parameter of interest θ are available (see

Brutti et al. (2008a)). In clinical trials it is common, in fact, that pre-experimental

information actually derives from distinct historical studies or from the opinions of

several expert clinicians. This framework has been recently considered by Gajewski

& Mayo (2006) for Phase II clinical trials with binary endpoints. As a prior for θ,

the Authors proposed a mixture of conjugate prior distributions, each representing

the information derived from every single source, with weights proportional to the

degree of pre-experimental “reliability” of each source. Here we propose an extension

of the analysis in Gajewski & Mayo (2006) in three main directions. Specifically:

• we consider a predictive approach for pre-posterior sample size computations,

following the scheme presented in Chapter 1;

• we adopt the two-priors approach discussed in Section 1.2.2;

• we present results assuming normal endpoints and we illustrate an application

(see Section 4.2.3).
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The presence of multiple sources of prior information motivates an adjustment of the

sample sizes set at the start of the trial after that a portion of experimental outcome

has become available. Hence, in addition to the above three points, in Section 4.3 we

address the problem of Sample Size Re-estimation (SSRe) based on a first portion

of data observed during the ongoing trial. In particular we refer to Wang (2006)

where a predictive Bayesian approach is proposed which is based on the expected

probability of ending up with a successful trial, given the information provided by

the results of the interim analysis. One attractive feature of this methodology in

the context described above is that the interim analysis results allow one to update

the weights of the mixture components.

4.2 Mixtures of informative priors for SSD

4.2.1 Preliminaries

Let Yn be an estimator of θ, the unknown quantity of interest in a clinical trial.

Let us suppose that K sources of prior knowledge are available for inference on

θ, for instance, opinions of K clinicians or data from K historical studies on the

experimental medical intervention. The information from each of these sources is

formalized in terms of a prior distribution on θ, denoted by πA,i(θ) for i = 1, . . . , K.

A standard way to summarize this knowledge is to combine these K priors in a

mixture, that is then adopted as analysis prior. Hence we have

πA(θ) =
K∑
i=1

ω0,iπA,i(θ), (4.1)

where ω0,i > 0 is the prior weight assigned to the i-th component of the mixture,

for i = 1, . . . , K, and
∑K

i=1ω0,i = 1.

It is straightforward to check that the posterior probability distribution of θ is:

πA(θ|yn) =
K∑
i=1

ω1,i(yn)πA,i(θ|yn). (4.2)

Each component πA,i of the mixture in (4.2) is the posterior probability distribution

of θ with respect to the i-th prior according to Bayes theorem

πA,i(θ|yn) =
πA,i(θ)× fn(yn; θ)

mA,i(yn)

where

mA,i(yn) =

∫
Θ

f(yn; θ)πA,i(θ)dθ
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is the i-th marginal distribution of the data. Moreover the weight of the i-th posterior

distribution can be updated as

ω1,i(yn) =
ω0,imA,i(yn)∑K
r=1 ω0,rmA,r(yn)

, i = 1, . . . , K.

Let us recover now a similar setting to the one described in Chapter 1. For the sake

of simplicity we focus on the posterior probability (see point b in Section 1.2). Then

the experiment is defined successful if, for a given γ ∈ (0, 1), we have that:

PπA (θ > δ|yn) > γ.

Now we notice that the mixture form (4.1) of the analysis prior, through (4.2), also

reflects in the posterior probability of interest defined above. In fact we have:

PπA (θ > δ|yn) =
K∑
i=1

ω1,i(yn)PπA,i (θ > δ|yn) ,

where it is clear that PπA,i (θ > δ|yn) is the posterior probability that θ exceeds δ

under the prior πA,i, for i = 1, . . . , K.

4.2.2 Criteria

At this point a similar argument to the one of Section 1.2 applies: before starting the

experiment Yn and, consequently, the posterior quantity of interest PπA(θ > δ|Yn)

are random variables. This motivates the need of computing predictive summaries

of PπA(θ > δ|Yn) accounting for the randomness of the data in order to establish

suitable SSD criteria. First of all we specify a design prior that induces the marginal

distribution of the data, defined in (1.3). Then, based on mD, we compute the

requires predictive summary of PπA(θ > δ|Yn); for the sake of brevity we focus

here on the predictive expectation only. From (4.1), thanks to the linearity of the

expected value, we have that

en = EmD

[
K∑
i=1

ω1,i(Yn)PπA,i (θ > δ|Yn)

]
=

K∑
i=1

EmD

[
ω1,i(Yn)PπA,i (θ > δ|Yn)

]
, (4.3)

that is en is the sum of the predictive expectations of the terms

ω1,i(Yn)PπA,i (θ > δ|Yn) , i = 1, . . . , K.

Then we adopt the Criterion 1 given in (1.5) for the selection of the optimal sample

size. In Section 4.2.3 we provide explicit expressions of (4.3) for the normal model

when a mixture of conjugate normal distributions is assumed as analysis prior.
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4.2.3 Results for the normal model

Assume now that Yn|θ ∼ N
(
θ, σ

2

n

)
and that each component of the prior is

πA,i(θ) = N

(
θ|θA,i,

σ2

nA,i

)
, i = 1, . . . , K.

In Section 1.4 we remind the standard results on conjugate analysis for the normal

model for the posterior mean and variance. For each component we use here the

following notation for the posterior mean and the posterior variance:

EA,i(θ|yn) =
nA,iθA,i + nyn
nA,i + n

and VA,i(θ|yn) =
σ2

nA,i + n
, (4.4)

while we denote by vA,i = σ2(n−1
A,i+n

−1) the variance of the i-th marginal distribution

mA,i, for i = 1, . . . , K.

Hence, we are able to update the prior weights ω0,i, as follows

ω1,i(yn) =
ω0,iφ

(
yn−θA,i√

vA,i

)
∑K

r=1 ω0,rφ
(
yn−θA,r√

vA,r

) .
Furthermore, given that

PA,i(θ > δ|yn) = 1− Φ

(
δ − EA,i(θ|yn)√

VA,i(θ|yn)

)
,

we derive the explicit expression of (4.3) under the normal assumption:

en =
K∑
i=1

EmD

 ω0,iφ
(
Yn−θA,i√

vA,i

)
∑K

r=1 ω0,rφ
(
Yn−θA,r√

vA,r

) [
1− Φ

(
δ − EA,i(θ|Yn)√

VA,i(θ|Yn)

)] . (4.5)

Finally, we also assume normality for the design prior and, consequently, for the

marginal distribution (see Section 1.4). In order to compute the expected value in

(4.5) with respect to mD we resort to Monte Carlo simulation.

Of course the method for the choice of the threshold ηe, discussed in Section 1.3,

holds true. Hence, in order to tune ηe we start by evaluating the suprema of en (an

increasing function of n) for given δ and design prior, e∞. Then, we take ηe as a

prespecified percentage β ∈ (0, 1) of e∞, so as to ensure the existence of the optimal

sample size n∗e. Therefore we need first of all to discuss the asymptotic behaviour

of en. In next section we show that en converges to a quantity e∞ that can be

computed via a Monte Carlo approximation.
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4.2.4 Asymptotic behaviour of en

In order to apply the criterion proposed in Section 1.3 for the choice of threshold ηe,

preliminarily we have to study the asymptotic behaviour of (4.5). First of all notice

that as n→∞ we have that:

• the posterior mean of the i−th component EA,i(θ|Yn) asymptotically behaves

as Yn;

• the posterior variance of the i−th component, VA,i(θ|Yn), tends to 0 (a.s.);

• the variance of the marginal distribution induced by the i−th prior component,

vA,i, converges to σ2/nA,i (prior variance);

• the sequence of random variables Yn, with marginal densities mD, converges

to N
(
θD,

σ2

nD

)
, whose density is here denoted as m∞.

Hence, by the dominated convergence theorem, the limit of (4.5) is

lim
n→∞

en =
K∑
i=1

lim
n→∞

EmD

 ω0,iφ
(
Yn−θA,i√

vA,i

)
∑K

r=1 ω0,rφ
(
Yn−θA,r√

vA,r

) [1− Φ

(
δ − EA,i(θ|Yn)√

VA,i(θ|Yn)

)](4.6)

=
K∑
i=1

∫
R

lim
n→∞

 ω0,iφ
(
yn−θA,i√

vA,i

)
∑K

r=1 ω0,rφ
(
yn−θA,r√

vA,r

) [1− Φ

(
δ − EA,i(θ|yn)√

VA,i(θ|yn)

)]mD(yn)dyn.

Note that, as n→∞, the expression in square brackets converges to 1 or 0 according

to the sign of the argument of Φ(·). Moreover, taking into account the limiting

distribution of Yn, each term of the sum can be written as:

∫
R

 ω0,iφ
(
z−θA,i√
vA,i

)
∑K

r=1 ω0,rφ
(
z−θA,r√
vA,r

) I[δ,∞)(z)

 ·m∞(z)dz,

and, consequently, Equation (4.7) reduces to

K∑
i=1

Em∞

[
ω1,i(Z) · I[δ,∞), (Z)

]
which is computed via Monte Carlo approximation.

Example 4: Predictive SSD using a mixture of priors derived from pre-

vious studies (MAGNESIUM) We revisit an example in Spiegelhalter et al.

(2004) where the results of a meta-analysis are reinterpreted according to a Bayesian
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perspective, in order to show the degree of scepticism necessary to reach an opposite

conclusion with respect to the actually observed one. A series of small randomized

trials was conducted in order to prove a protective effect of intravenous magnesium

sulphate after acute myocardial infarction. These studies culminated in a meta-

analysis which showed a highly significant 55% reduction in odds of death. This

was confirmed in 1992 by a larger study (LIMIT-2 trial) that demonstrated a 24%

reduction in mortality in 2000 patients. All these results suggested an outstanding

conclusion: a cheap, safe and simple treatment reduces mortality in a common con-

dition. For this reason, further investigation was recommended. But the massive

ISIS-4 trial did not actually show evidence of any benefit: the final result on 58000

patients showed a non significant protective effect of magnesium, also consistent

across major subgroups. Here we draw on this framework in order to formalize the

situation in which prior knowledge comes from different historical studies.

i study magnesium control Ni θA,i
σ√
nA,i

nA,i

deaths patients deaths patients

1 Morton 1 40 2 36 76 −0.65 1.06 3.6
2 Rasmussen 9 135 23 135 270 −1.02 0.41 24.3
3 Smith 2 200 7 200 400 −1.12 0.74 7.4
4 Abraham 1 48 1 46 94 −0.04 1.17 2.9
5 Feldstedt 10 150 8 148 298 0.21 0.48 17.6
6 Shechter 1 59 9 56 114 −2.05 0.9 4.9
7 Ceremuzynsky 1 25 3 23 48 1.03 1.02 3.8
8 LIMIT-2 90 1159 118 1157 2316 −0.3 0.15 187

Table 4.1: Observed results (logOR scale) in 8 studies on the protective effect of magnesium,
standard deviation and effective number of events.

We focus on the log odds ratio as parameter of interest θ. In Spiegelhalter et al.

(2004) the Authors suggest to estimate θ by θ̂ = log
(

(a+ 1
2

)(d+ 1
2

)

(b+ 1
2

)(c+ 1
2

)

)
= yn, where a and

b denote respectively the number of observed events in the control arm and in the

treatment arm, with a + b = n, and c and d are the respective numbers of patients

in the two groups who did not experience any event. The additional terms 1/2

have the effect of lessening the bias of the estimator and preventing problems with

small numbers of events. Furthermore this generally has a negligible effect when the

sample size is reasonably large. Adopting Spiegelhalter et al.’s terminology we want

to determine the effective sample size, that is actually the total number of events

n. Then the corresponding statistic Yn is asymptotically distributed as a normal

density of mean θ̂ and variance σ2/n, where σ is set equal to 2 (see Spiegelhalter

et al. (2004) for further details).
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We proceed eliciting a conjugate normal prior distribution based on each histor-

ical study, assuming the estimated log odds ratios and the corresponding standard

deviations summarized in Table 4.1 as the parameters of the normal prior compo-

nents. The global analysis prior is then given by a mixture of these eight priors,

with conveniently chosen weights. The prior components and the corresponding the

mixture are represented in the left panels of Figure 4.1 and Figure 4.2 choosing re-

spectively equal weights or weights proportional to each study dimension Ni. Note

δ nD e∞ η n∗

equal weights proportional weights

−0.1 4319 1 0.80 498 457
432 0.95 0.76 509 460
43 0.70 0.56 198 169

0 4319 0.97 0.78 1747 2294
432 0.73 0.58 243 661
43 0.58 0.46 42 183

Table 4.2: Optimal sample sizes for equal or proportional weights with respect to different design
priors, choosing ηe = β · e∞, with β = 0.80

that, since the parameter of interest is the logOR of magnesium with respect to

placebo, negative values on this scale support the idea of a benefit of magnesium

administration. Nevertheless in this case we are actually interested in proving that

θ is larger than a threshold δ, meaning that magnesium is not effective. This is

not the standard situation of a superiority trial, but the methodology described in

Section 4.2.1 and in Section 4.2.2 is essentially the same. Alternatively the problem

could be reverted, defining the logOR of placebo with respect to magnesium and

focusing on PπA(θ < δ) as a posterior quantity of interest. At this point we specify

a design prior expressing scepticism towards the treatment. A possible choice can

be based on the results of ISIS-4 trial: this yields a design prior which is a normal

density with mean 0.058 and effective number of events 4319, resulting in a very

small variance (0.00092). In the first row of Figure 4.1 the center and the right

panel represent the predictive expectation en with respect to n, for two different

choices of δ, and the optimal sample size is selected in correspondence of a prespec-

ified threshold η = 0.8. Since the analysis prior strongly supports the hypothesis of

a protective effect of magnesium, we would need a sizeable number of events to be

able to reach an opposite conclusion (about 1747 for δ = 0). Moreover if we choose

δ = −0.1, the goal is less challenging and only 498 events are required.

Alternatively we can choose for instance prior weights proportional to the actual

dimension Ni of each historical study. In this case we obtain the mixture represented
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Figure 4.1: (left panels) Prior components (dashed gray lines), mixed prior with equal weights
(continuous gray line) and design prior (black line), for nD = 4319, nD = 432, nD = 43. Selection
of the optimal sample size for δ = 0 (center panel) and δ = −0.1 (right panels). See Table 4.2

in Figure 4.2 (first row, left panel); then the corresponding optimal sample size is

selected. Notice that the prior component of LIMIT-2 trial is highly predominant

in the mixed analysis prior (N8 = 2316). This yields larger optimal sample sizes

(n∗ = 2294 for δ = 0 and n∗ = 457 for δ = −0.1), since the analysis prior is

more informative and closer to the design prior. Moreover we considered two less

informative design priors with smaller number of events, nD = 432 and nD = 43
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Figure 4.2: (left panels) Prior components (dashed gray lines), mixed prior with weights propor-
tional to the dimension of each historical study (solid gray line) and design prior (black line), for
nD = 4319, nD = 432, nD = 43. Selection of the optimal sample size for δ = 0 (center panel) and
δ = −0.1 (right panels). See Table 4.2

(see respectively the second row and the third row of Figure 4.1 and 4.2). For each

different choice of the design parameters we computed the corresponding e∞. We set

consequently ηe = β · e∞, for instance with β = 0.80, as discussed in Section 1.3 and

4.2.4. The optimal sample sizes are reported in Table 4.2. It is quite evident that

the more informative the design prior, the higher the maximum achievable value of
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en. Notice that, for example, for nD = 43 and δ = 0, e∞ is equal to 0.58, so if we

used a fixed ηe = 0.80, n∗e would be undetermined. This supports again the criterion

suggested in Section 4.2.4 for the choice of ηe.

4.3 Mixtures of informative priors for SSRe

4.3.1 Preliminaries

A predictive approach is now used for SSRe. Let us assume that, at a given time

point, a fraction n(1) of the planned subjects have completed the trial. The objective

is then to select the number n(2) of further sample units required to successfully

complete the experiment, by exploiting the information contributed by the first n(1)

observed events; let us denote by yn(1) the corresponding observed statistic. The

idea is to use as initial distribution, at the interim analysis, the posterior density

of θ given yn(1) , πA(θ|yn(1)). Note that from (4.2) it follows that πA(θ|yn(1)) can

be written as a mixture of K different initial priors, whose weights are ω1,i(yn(1)),

i = 1, ..., K.

In the second part of the trial n(2) events are to be observed, with n(1) +n(2) = n.

The SSRe problem is to determine n(2). Given the observed value of yn(2) after n(2)

events, the posterior distribution can be written as

πA(θ|yn(1) , yn(2)) =
K∑
i=1

ω2,i(yn(2)|yn(1))πA,i(θ|yn(1) , yn(2))

where

πA,i(θ|yn(1) , yn(2)) =
πA,i(θ|yn(1))fn(2)(yn(2) ; θ)

mA,i(yn(2) |yn(1))
(4.7)

and where the weights at the interim analysis are

ω2,i(yn(2) |yn(1)) =
ω1,i(yn(1))mA,i(yn(2)|yn(1))

K∑
r=1

ω1,r(yn(1))mA,r(yn(2) |yn(1))

, i = 1, ..., K.

The posterior predictive distribution of Yn(2) is

mA,i(yn(2)|yn(1)) =

∫
Θ

fn(2)(yn(2) ; θ)πA,i(θ|yn(1))dθ (4.8)

and the posterior quantity of interest is

PπA(θ > δ|yn(1) , yn(2)) =
K∑
i=1

ω2,i(Yn(2) |yn(1))PπA,i(θ > δ|yn(1) , yn(2)). (4.9)
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4.3.2 Criteria

Again, note that the posterior quantity in (4.9) is random before yn(2) is observed.

Hence, we introduce a predictive criterion to select the optimal additional sample

size n(2)∗:

n(2)∗ = min
(
n(2) ∈ N : en(1),n(2) > ηe

)
for ηe ∈ (0, 1)

where

en(1),n(2) = EmD [PπA(θ > δ|yn(1) , Yn(2))] =

=
K∑
i=1

EmD

[
ω2,i(Yn(2) |yn(1))PπA,i(θ > δ|yn(1) , Yn(2))

]
. (4.10)

The expected value in (4.10) is now computed with respect to the predictive dis-

tribution mD, induced by the design prior πD. Note that, at the interim stage, to

obtain the predictive density mD for SSRe we can use either πD(θ) or πD(θ|yn(1)).

In the former case we preserve the initial design goals, expressed by πD(θ). In the

latter we actually adjust design objectives according to the findings of the first part

of the experiment. These two alternatives are discussed in the example of Section

4.3.3.

4.3.3 Results for the normal model

In this Section we compute en(1),n(2) , under the normality assumption both for the

model and for the prior components of the mixture analysis prior,

Hence, we need to state beforehand the following results. First of all, each pos-

terior component of (4.7) is

πi(θ|yn(1) , yn(2)) = N(θ|E(2)
A,i(θ|yn(1) , yn(2)), V

(2)
A,i (θ|yn(1) , yn(2)))

where the posterior mean and variance are respectively

E
(2)
A,i(θ|yn(1) , yn(2)) =

(nA,i + n1)E
(1)
A,i(θ|yn(1)) + n(2)yn(2)

nA,i + n(1) + n(2)

and

V
(2)
A,i (θ|yn(1) , yn(2)) =

σ2

nA,i + n(1) + n(2)

and E
(1)
A,i and V

(1)
A,i are given by (4.4), when the first n(1) observations are consid-

ered. Moreover the marginal distribution in (4.8) is a normal density of parameters

(E
(1)
A,i(θ|yn(1)), v

(2)
A,i), where the variance is given by

v
(2)
A,i = σ2

(
1

nA,i + n(1)
+

1

n(2)

)
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for i = 1, ..., K. Note that the expected value of (4.10) is computed with respect to

the predictive distribution mD, which is a normal distribution as well. As discussed

in Section 4.3.2, mD can be alternatively derived using the design prior πD(θ) or

the posterior distribution πD(θ|yn(1)). In the first case we have again the predictive

distribution of (1.3), while in the second case we have

mD(yn(2)|yn(1)) = N

(
yn(2)|

µDnD + n(1)yn(1)

nD + n(1)
, σ2

(
1

nD + n(1)
+

1

n(2)

))
.

It is now straightforward to show that, according to (4.10), en(1),n(2) is equal to

K∑
i=1

EmD


ω1,i(yn(1))φ

(
Y
n(2)−E

(1)
A,i(θ|yn(1) )q
v
(2)
A,i

)
∑K

r=1 ω1,r(yn(1))φ

(
Y
n(2)−EA,r(θ|yn(1) )q

v
(2)
A,r

) ·
1− Φ

δ − E(2)
A,i(θ|yn(1) , Yn(2))√

V
(2)
A,i (θ|yn(1) , Yn(2))


 .

(4.11)

This expression is essentially similar to (4.5), with updated posterior and predictive

means and variances, given yn(1) . As a consequence, the criterion suggested at the

end of Section 4.2.2 for the choice of the threshold ηe still holds true.

In order to illustrate the proposed methodology for SSRe we consider an appli-

cation in which the normal approximation for the log hazard ratio (log HR) is used

and interim analysis data are available.

Example 5: Predictive SSRe using a mixture of priors expressing oppo-

site beliefs (B-14) In this application we consider the B-14 study (see Dignam

et al. (1998), Spiegelhalter et al. (2004)) in which data from four interim analysis

and final results are available. The trial was planned in order to assess a long-term

protective effect of tamoxifen in preventing the recurrence of breast cancer. A se-

quential randomized controlled study was performed, enrolling disease-free patients

after 5 years of therapy. According to the sequential design, an interim analysis

was scheduled approximatively every 1-1.5 years (using O’Brien-Fleming stopping

boundaries). At the beginning of the trial the planned sample size was 115 events,

to detect a 40% failure reduction (corresponding to a hazard ratio of 0.6) with 85%

power. Assuming a 18% event rate, this yielded a total planned sample size approx-

imately equal to 624 patients; finally the effective number of recruited patients was

1172, because of an accrual rate lower than expected.

In Dignam et al. (1998) a Bayesian interpretation of these results is discussed

under a range of prior assumptions. Using the normal approximation for the log

HR estimator (see Spiegelhalter et al. (2004)), we choose here two normal priors

expressing opposite beliefs, a sceptical prior πA,1(θ) = N(θ|0, 0.31) and an enthusi-

astic prior πA,2(θ) = N(θ| − 0.51, 0.31), where standard deviation is chosen to have
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5% chance that the true difference exceeds a 40% reduction or, respectively, that a

negative effect is observed (σ2 = 4, nA,1 = nA,2 = 41.4). Furthermore, we center

the design prior on the actual design value θD = 0.51 (0.60 on the hazard ratio

scale), with standard deviation equals to 0.19 (σ2 = 4, nD = 115). The data at the

a(1) b(1) n(1) logHR sd

I after first interim 18 28 46 0.435 0.295
II after second interim 24 43 67 0.567 0.244
III after third interim 32 56 88 0.545 0.213
IV after fourth interim 36 66 102 0.588 0.198
V final results 50 85 135 0.519 0.172

Table 4.3: B14: Interim and final results on the log hazard ratio scale: a(1) and b(1) denote
the number of events occurred in the placebo and in the treatment arm respectively and the total
number of events is n(1) = a(1) + b(1)

four interim analyses and the final results of the trial are summarized in Table 4.3.

After each interim analysis we re-estimate the optimal additional sample size n(2)∗,

needed to obtain that the predictive expectation of the probability P (θ < δ|yn(1)) is

sufficiently large. For instance, we set δ = −0.22, corresponding to a 20% reduction

on the HR scale. For each interim analysis n(1) = a(1) +b(1) denotes the total number

of events observed so far, with a(1) and b(1) indicating the number of events in the

placebo and in the treatment arm respectively.

First of all we assign equal weights to the two prior components of the mixture

πA(θ) defined in (4.1). The analysis prior and the design prior are represented in

Figure 4.3. After the first interim analysis, in order to reach a conclusion favouring

tamoxifen, it would be necessary to observe a large number of events (for example,

n(2)∗ = 59, for a threshold ηe = 0.75 corresponding to the 80% of the supremum

of en(1),n(2)). Moreover after each interim analysis the additional number of units

required to conclude in favour of a protective effect of tamoxifen becomes larger

and larger (see Figure 4.4). This is coherent with the fact that the negative results

actually observed at each step, made it more and more difficult to revert the evidence

against tamoxifen, to such an extent that the monitoring committee decided to stop

the trial.

In the right panel of Figure 4.4 the dashed lines represent the SSRe criteria when

the design prior is also updated after each interim: the evidence of the data supports

a conclusion opposite to the one we expected in designing the experiment and this

affects en(1),n(2) . In this case the previous threshold ηe is impractical already after the



4.3 Mixtures of informative priors for SSRe 84

first interim, the optimal additional sample size is undetermined. If ηe is reduced to

0.44, after the first interim, we have n(2)∗ = 590.
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Figure 4.3: Information update at each interim point: the dotted lines represent the prior
components of the mixed analysis prior, the dashed density is the fixed design prior, while the
dashed-dotted curves indicate the progressive update of the design prior. The continuous line
represents the likelihood at each step.
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interim analysis
before I II III IV

weight1 1/2 0.87 0.94 0.95 0.96
weight2 1/2 0.13 0.06 0.05 0.04
n(2)∗ 59 638 742 732 864

weight1 1/3 0.77 0.88 0.90 0.92
weight2 2/3 0.23 0.12 0.10 0.08
n(2)∗ 36 543 671 714 796

weight1 2/3 0.93 0.97 0.97 0.98
weight2 1/3 0.07 0.03 0.03 0.02
n(2)∗ 79 800 739 787 855

weight1 1/10 0.43 0.62 0.66 0.72
weight2 9/10 0.57 0.38 0.34 0.27
n(2)∗ 10 503 592 669 759

weight1 9/10 0.98 0.99 0.99 0.996
weight2 1/10 0.02 0.01 0.01 0.004
n(2)∗ 116 799 823 826 931

Table 4.4: Optimal re-estimated sample sizes for several choices of the initial weights (weight1
refers to the sceptical prior component, weight2 to the enthusiastic one). Given that en1,∞ = 0.94
and choosing β = 0.80, the threshold η is 0.75.

In Table 4.4 we report the optimal re-estimated sample sizes for several choices of

the initial weights, with fixed design prior. The weights of the sceptical component

tend to be increasingly higher, due to the evidence of the data against a protective

effect of tamoxifen. This corresponds to an growing re-estimated number of required

events after each interim analysis.

4.4 Concluding remarks

In summary, in this chapter we have presented a predictive methodology for sample

size selection and adjustment in clinical trials, when a mixture analysis prior is used.

This allows one to take into account different sources of pre-experimental information

and to combine them in a simple way. Sometimes these sources actually correspond

to results derived from previous studies or to opinions of several experts. It is also

possible to consider “conventional” priors that reflect opposite attitudes towards

the trial such as enthusiasm and scepticism. In this way we are able to incorporate

a large amount of information and uncertainty on the unknown treatment effect.

One of the main advantages of this approach is that it typically avoids sample size
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underestimation and low predictive probability of trial success.

One critical aspect of the proposed method is the choice of prior weights in

the mixture. Of course, this is problem specific. However, we have discussed in

the examples some strategies. In the first example (Section 4.2.4), for instance,

we have compared some alternative weights assignments, such as uniform weights

and weights proportional to the dimensions of the historical studies used to elicit

the prior components. In the second example (Section 4.3.3) we have considered

different combinations of weights for an enthusiastic and a sceptical prior and we

have examined their impact on the resulting sample sizes.

The presence of several sources of prior knowledge makes it natural to plan an

interim analysis and a sample size re-estimation step. This approach appears to

us quite useful when available sources of prior knowledge (or experts opinions) are

conflicting and when, initially, the weight of each prior in the mixture is not pre-

dominant over the others. In this case, the first portion of data allows one to adjust

both the starting prior distributions, πA,i and their weights in the mixtures. Note

also that, in principle, multiple sample size adjustments do not have drawbacks in

a Bayesian perspective. In fact, from this point of view, repetition of the SSRe pro-

cedure just implies a sequential use of Bayes theorem. This is shown, for instance,

in the example of Section 4.3.3.

This approach can be potentially applied in different situations. First of all, this

methodology can be applied to other models, such as Bernoulli and survival trials.

(See also Gajewski & Mayo (2006), where beta mixtures are used for non-predictive

SSD). A possible extension is to consider mixtures of non–conjugate analysis priors,

resorting to numerical computational methods, as discussed by Wang & Gelfand

(2002).



Chapter 5

Optimal sample size for

Equivalence Trials

5.1 Introduction and motivations

The first part of this thesis primarly refers to the context of superiority trials. Nev-

ertheless, as we anticipated in Chapter 1, it is quite straightforward to adapt the

proposed methodology to experimental situations with different objectives. For in-

stance, in the present chapter we explicitly consider the case of equivalence trials,

illustrating a dedicated Bayesian (robust and non–robust) approach to SSD.

An equivalence trial is designed to confirm the absence of a meaningful difference

between treatments. As suggested in a recent document by the European Agency for

the Evaluation of Medicinal Products (CPMP/EWP/482/99 (2000)), in this setting

it is more informative to conduct the analysis by means of the calculation and exam-

ination of the confidence interval although there are closely related methods using

significance test procedures (as described, for example, in Julious (2004)). It is then

necessary to choose a margin of clinical equivalence by defining the largest difference

that is clinically acceptable, so that a difference bigger than this would matter in

practice. If the two treatments are to be declared equivalent, then the two-sided

confidence interval – which defines the range of plausible differences between the

two treatments – should entirely lie within the so called range of equivalence. This

situation is schematically represented in Figure 5.1. Equivalence margins may be

chosen either symmetrically or asymmetrically with respect to zero: in the follow-

ing we denote the range of equivalence by I = [θI , θS]. There are in practice some

difficulties associated with its specification, but a detailed discussion on this point

goes beyond the scope of the present work.
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Figure 5.1: Equivalence trials

There is a large statistical literature on trials designed to establish equivalence

between therapies. As stated in Spiegelhalter et al. (2004), from a Bayesian perspec-

tive it is straightforward to define a region of equivalence and calculate the posterior

probability that the treatment difference lies in this range; then for example a thresh-

old of 95% or 90% might be chosen to represent strong belief in equivalence. For

further details, see for example Selwyn et al. (1981), Fluehler et al. (1983), Selwyn

& Hall (1984), Breslow (1990), Grieve (1991) and Baudoin & O’Quigley (1994). A

decision-theoretic formulation is proposed in Lindley (1998) and in general it can

give radically different conclusions.

Bioequivalence is a slightly different problem, that is very important in prac-

tice and very popular in the literature. Two different drugs or formulations of the

same drug are called bioequivalent if they are absorbed into the blood and become

available at the drug action site at about the same rate and concentration (see for

instance Berger & Hsu (1996)). In particular bioequivalence is of practical impor-

tance because the approval of most generic drugs in the USA and in the European

Community requires the establishment of bioequivalence between the brand-name

drug and the proposed generic version. This problem is theoretically interesting

because it has been recognized as one for which the desired inference, instead of

the usual significant difference, is practical equivalence. However in this work we

focus on the generic framework of an equivalence trial, with particular reference to

the aspect of SSD. In Gould (1993) a Bayesian methodology for determining the

sample sizes for event rate equivalence trials is proposed. Trials for demonstrating

the equivalence of active standard and test treatments generally require large sample

sizes that depend on the definition of equivalence and on the overall event rate, when

the outcome is incidence of an event such as mortality. The planning of sample sizes

for such trials requires specification of a value for the overall event rate. This design
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value will often reflect the outcomes of previous trials of the standard treatment, and

it is subject to uncertainty that needs some accommodation, to protect against an

inadequate sample. For this reason the Author suggests to use Bayes and Empirical

Bayes methods to incorporate information from one or more previous trials into the

sample size calculation when equivalence means high confidence that the event rate

ratio is less than some specified value.

The outline of this Chapter is as follows. In Section 5.2.2 we present a Bayesian

predictive approach to sample size determination for equivalence trials. Then we

deal with the problem of robustness to the prior specification (see Section 5.2.3),

allowing the analysis prior to vary in a prespecified class of priors, in this case the

restricted conjugate class. Finally in Section 5.3 we provide results for the normal

model, illustrating some examples.

5.2 Predictive Bayesian approach

5.2.1 Preliminaries

In order to adapt the Bayesian SSD methodology of Chapter 1 to equivalence trials,

first of all we need to provide a definition of success. Let us suppose that the

unknown parameter θ represents a measure of comparison between two alternative

treatments. As anticipated above, we consider the so-called range of equivalence

I = [θI , θS], that is an interval of the parameter space with conveniently chosen

bounds θI and θS, corresponding to a subset of the parameter values that indicate

a negligible difference between two competing treatments. Then the experiment is

considered successful if it provides evidence that θ ∈ I. Hence, we want an interval

estimate of θ to be entirely included into the range of equivalence.

Let us consider a random sample Yn = (Y1, ..., Yn) with density fn(yn|θ) depend-

ing on the parameter θ. We specify the analysis prior πA and, given the observed

data yn, we obtain the corresponding posterior πA(·; xn), as in (1.1). In the same

framework introduced in Chapter 1 and recalling the objective of the trial, we ac-

tually focus on the (1 − α)-posterior credible interval for θ as a posterior quantity

of interest. Hence, assuming for the sake of simplicity a unimodal posterior distri-

bution, we have:

ρπA(θ|yn) = Cα(yn; πA) = [ln(yn; πA), un(yn; πA)] ,

where ln(yn; πA) and un(yn; πA) are respectively the lower and the upper bound of

the posterior credible interval. Note that Cα(yn; πA) can be for instance a HPD
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interval or an equal-tail interval. Finally we can declare equivalence if Cα(yn; πA) ⊂
I, that is if its bounds simultaneously satisfy the following conditions:

ln(yn; πA) > θI and un(yn; πA) < θS. (5.1)

5.2.2 Criteria

It is necessary to remind once again that before the experiment, the posterior quan-

tity of interest, that is in this case the bounds of the posterior credible interval are

random quantities, denoted by ln(Yn) and un(Yn) in order to underline their de-

pendence on the random sample Yn. As discussed in Chapter 1 in order to account

for uncertainty on the design value we use the marginal distribution of the data mD.

All we need is to adapt the SSD criteria defined in (1.5) and (1.7) to the setting

of an equivalence trial. As shown in (5.1), the success of the experiment relies on

two simultaneous conditions: this reflects in the definition of the following criteria,

based on predictive summaries of both ln(Yn) and un(Yn). In particular we have:

1. Predictive Expectation Criterion. Let

eln = EmD [ln(Yn)] and eun = EmD [un(Yn)] (5.2)

be the expected value of the bounds of Cα(yn; πA), computed with respect to

the marginal mD. The optimal sample size is then selected as the minumum

n such that the expected bounds of the credible interval fall into the range of

equivalence. In symbols:

n∗e = min{n ∈ N : eln > θI and eun < θS} (5.3)

2. Predictive Probability Criterion. Based on the marginal mD we define

the probability that the lower bound is larger than θI , i.e.

pln = PmD [ln(Yn) > θI ] (5.4)

and, similarly, the probability that the upper bound is smaller than θS, i.e.

pun = PmD [un(Yn) < θS] . (5.5)

Then, given a threshold γ ∈ (0, 1), we select the optimal sample size as the

minumum n such that these two probability are reasonably large, namely

n∗p(πA) = min{n ∈ N : pln > γ and pun > γ}. (5.6)
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5.2.3 Robust criteria

According to the idea illustrated and discussed in Chapter 3, we derive the robust

version of the predictive SSD criteria just introduced for equivalence trials. Hence,

in order to define a robust version of the above SSD criteria we only need to replace

πA with a class of prior distributions ΓA. It is the necessary to consider the robust

bounds of the posterior credible interval as the prior πA varies in ΓA:

Ln(Yn) = inf
πA∈ΓA

ln(Yn; πA) and Un(Yn) = sup
πA∈ΓA

un(Yn; πA). (5.7)

Therefore we say we have robust evidence that θ belongs to I if Ln(Yn) > θS and

Un(Yn) < θI , i.e. if, for any prior πA ∈ ΓA, we have Cα(yn; πA) ⊆ I. Then, taking

into account the double condition on both the interval bounds, the following criteria

are immediately given:

1. Robust Predictive Expectation Criterion:

n∗e,r = min{n ∈ N : eLn > θI and eUn < θS} (5.8)

where

eLn = EmD [Ln(Yn)] and eUn = EmD [Un(Yn)] (5.9)

2. Robust Predictive Probability Criterion: Given γ ∈ (0, 1),

n∗p,r = min{n ∈ N : pLn > γ and pUn > γ} (5.10)

where

pLn = PmD [Ln(Yn) > θI ] and pUn = PmD [Un(Yn) < θS] . (5.11)

Of course analogous properties to those remarked in Section 3.2.2 hold true. In

particular, for any two classes of priors ΓA and Γ′A such that ΓA ⊂ ΓA′ , optimal

sample sizes determined with the latter class are larger than those obtained with

the former. This will be illustrated in Example 6, assuming the normal model with

classes of restricted conjugate priors.

5.3 Results for the normal model

Let us assume that Yn is a random sample from a normal density and let us specify

conjugate prior distributions for both the design and the analysis prior. Since the

objective of the trial is equivalence, we need our design prior mean to assign high
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probability to the values belonging to the range of equivalence. For simplicity, in

the following we set θD equal to the central value of the range (for example θD = 0,

if the range is centered on 0). On the other hand the analysis prior parameters are

specified in order to model pre-experimental information on θ. Hence πA can be

centered either on negative or positive values expressing respectively scepticism and

enthusiasm towards one of the competing treatments.

For example, let us suppose that a pharmaceutical company attempts to put a

new drug on the market. Then the regulatory committee plans a clinical trial with

the intent to show that the new drug is actually equivalent to the standard one.

This yields an equivalence study with an optimistic analysis prior mean θA > 0 and

a design prior centered on 0. On the contrary, let us imagine that a pharmaceutical

company wants to show that its new treatment is equivalent to a competing one, in

terms of efficacy. This happens, for instance, when the company, being aware that

there is not evidence enough for proving superiority, goes for equivalence. Then

the new drug has chances to be approved if it guarantees some other advantages,

for example in terms of safety or costs. In this case the design prior mean θD =

0 represents the objective of the company, while the analysis prior expresses the

opinion of an opponent, eventually fictitious. Note that in both situations the two-

priors approach described in Section 1.2.2 allows us to formalize two different points

of view about the treatments difference.

5.3.1 Criteria

Using the same results of Section 1.4, we derive the posterior distribution and the

design marginal. Hence, for a given sample yn, the posterior bounds of the credible

interval are

ln(yn; πA) =
nyn + nAθA
n+ nA

− z1−α/2
σ√

(n+ nA)

un(yn; πA) =
nyn + nAθA
n+ nA

+ z1−α/2
σ√

(n+ nA)
. (5.12)

It is then straighforward to compute the predictive quantities involved in the SSD

criteria. Thus, we have respectively:

1. eln = EmD [ln(Yn)] =
nθD + nAθA
n+ nA

− z1−α/2
σ√

(n+ nA)

eun = EmD [un(Yn)] =
nθD + nAθA
n+ nA

+ z1−α/2
σ√

(n+ nA)
(5.13)
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2. pln = PmD [ln(Yn) > θI ] = PmD

[
nyn + nAθA
n+ nA

− z1−α/2
σ√

(n+ nA)
> θI

]
=

= 1− Φ

(nA + n)θI + z1−α/2σ
√

(n+ nA)− nAθA − nθD

nσ

√(
1
n

+ 1
nD

)


pun = PmD [un(Yn) < θS] = PmD

[
nYn + nAθA
n+ nA

+ z1−α/2
σ√

(n+ nA)
< θS

]
=

= Φ

(nA + n)θS − z1−α/2σ
√

(n+ nA)− nAθA − nθD

nσ

√(
1
n

+ 1
nD

)
 (5.14)

5.3.2 Robust criteria

Let us suppose now that instead of the single analysis prior πA we want to consider

a class of priors. For the sake of simplicity, we focus here on the class of restricted

conjugate priors, that is defined as

ΓRC = {N(θ|θA, σ2/nA);nA ∈
[
nLA, n

U
A

]
⊂ R+}.

Under this assumption, we can exploit the results derived in Brutti & De Santis

(2008) for computing the robust bounds of the credible interval in (5.7). In details,

in Theorem 1 the Authors show that

Ln(yn) =



ln(yn;nLA) yn < θA + ξL

ln(yn;n∗A) θA + ξL < yn < θA + ξU

ln(yn;nUA) yn > θA + ξU

and

Un(yn) =



un(yn;nUA) yn < θA − ξU

un(yn;n∗A) θA − ξU < yn < θA − ξL

un(yn;nLA) yn > θA − ξL

where ξk =
z1−α/2

2n
σ2
(
n+ nkA

)1/2
, for k = L,U and n∗A = 4n2(yn−θA)2

σ2z2
1−α/2

− n.

Furthermore they provide explicit expressions for eLn and pLn , using the marginal
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distribution mD:

eLn = EmD(Ln(yn)) =

= l(θD;nLA)Φ(aL) + l(θD;nUA)(1− Φ(aU)) + θA [Φ(aU)− Φ(aL)] +

+
1√

2πλm

[
ψUe

−a2
U − ψLe−a

2
L

]
−
z2

1−α/2σ
2

4n

θA+ξU∫
θA+ξL

1

yn − θA
mD(yn)dyn

and

pLn = PmD(Ln(yn) > θI) =

=
[
Φ(aL)− Φ(

√
λm(dL − θD))

]
· I(dL,+∞)(θA + ξL) +

+ [Φ(aU)− Φ(aL)] · I(θI ,+∞)(θA) +
[
1− Φ(

√
λm(max{dU , θA + ξu} − θD)

]
where λm =

(
σ2
(
n−1 + n−1

D

))−1
, ak =

√
λm(θA − θD + ξk), ψk = n

n+nkA
and dk =

θI + nkA/n(θI − θA) + z/nσ(n+ nkA)1/2, for k = L,U .

It is then straightforward to derive analogous expressions for eUn and pUn :

eUn = EmD(Un(yn))

= l(θD;nUA)Φ(cU) + l(θD;nLA)(1− Φ(cL)) + θA [Φ(cL)− Φ(cU)] +

+
1√

2πλm

[
ψUe

−c2L − ψLe−c
2
U

]
−

3z2
1−α/2σ

2

4n

θA−ξL∫
θA−ξU

1

yn − θA
mD(yn)dyn

and

pUn = PmD(Un(yn) < θS) =

= [Φ(min{eU , θA − ξU})] + [Φ(cL)− Φ(cU)] · I(−∞,θS)(θA) +

+ [Φ(eL)− Φ(cL)] · I(−∞,eL)(θA − ξL).

where ck =
√
λm(θA − θD − ξk) and ek = θS + nkA/n(θS − θA)− z/nσ(n+ nkA)1/2 for

k = L,U .

Finally, given the above results, it is immediate to apply the robust criteria

defined in (5.8) and (5.10). In the paragraph below we illustrate an application of

the presented methodology.

Example 6: SSD for equivalence trials (CHART) The example considered

in this paragraph is based on the CHART trial, first presented in Parmar et al.

(1994) and further analysed in Parmar et al. (2001) and Spiegelhalter et al. (2004).

In particular we exploit the described experimental setting to elicit the prior distri-

butions and the necessary clinical parameters to plan an hypothetical equivalence
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trial, in order to draw a design scenario as likely as possible. Then we actually need

to revert the point of view of the original trial whose objective was superiority (see

Spiegelhalter et al. (2004)).

First of all, let us explain the general context of the CHART trial. In 1986 a

new radiotherapy technique known as continuous hyperfractionated accelerated ra-

dio therapy (CHART) was introduced. The idea behind it was to give radiotherapy

continuously (no weekend breaks), in many small fractions (three a day) and acceler-

ated (the course completed in 12 days), which clearly implies considerable logistical

problems. Thus, the Medical Research Council wanted to compare CHART with

conventional radiotherapy in lung cancer, to assess whether CHART provides a clin-

ically important difference in survival that compensates for any additional toxicity

and problems of delivering the treatment. The results were presented in terms of

hazard ratio (HR), defined as the ratio of the hazard under CHART to the hazard

under standard treatment. Hence, hazard ratios less than one indicate superiority

of CHART. In Spiegelhalter et al. (2004) a proportional hazards model is used, pro-

viding an approximate normal likelihood for the log HR: the estimated log HR has

a normal density of mean θ and variance σ2/m, where m is the equivalent number

of events in a trial balanced in recruitment and follow-up.

In order to specify the prior distribution and the range of equivalence the opinion

of expert clinicians was considered. At the beginning, the participating clinicians

were enthusiastic about CHART, but there was considerable scepticism expressed

by oncologists who declined to participate in the trial. Eleven opinions were elicited

and Spiegelhalter et al. (2004) suggest to average the corresponding distributions,

obtaining as a summary a normal prior density of mean −0.28 and standard de-

viation of 0.23 (corresponding to an estimated HR of 0.76 with 95% interval from

0.48 to 1.19), which implies nA = 74.3. This prior could also be thought of as a

posterior having observed a log-rank statistic L, such that 4L/nA = −0.28, and so

L = −5.5. The expected E under the null hypothesis is nA/2 = 37.2 and so the

observed O under CHART is 37.2−5.5 = 31.7. Thus the prior can be interpreted as

being approximately equivalent to a balanced imaginary trial in which 74 deaths had

occurred (32 under CHART, 42 under standard). Furthermore a sceptical prior was

derived (see again Spiegelhalter et al. (2004)) with prior mean 0 and precision such

that the prior probability that the true benefit exceeds the alternative hypothesis

is 5%. This corresponds to a prior sample size nA = (1.65σ/θA)2 = 110, given that

θA = log(0.73) = −0.31 and σ = 2. The eleven clinicians were also told to specify

the range of equivalence, namely “a range where they felt the two regimens were

approximately equivalent”. The upper and lower values for the ranges were aver-

aged and the following results were obtained. The participants would be willing to
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use CHART routinely if it conferred at least 13.5% improvement in 2-year survival

(from a baseline of 15%), and unwilling if less than 11% improvement. Thus the

range of equivalence is from 11% to 13.5%, that is on the HR scale from 0.66 to

0.71, or on the log(HR) scale from -0.41 to -0.34. The average range of equivalence

is shown in Figure 5.2, with the clinical and sceptical priors derived previously.
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Figure 5.2: Clinical analysis prior (dashed line) with θA = −0.28 and nA = 74.3, sceptical

analysis prior (dashed-dotted line) with θA = 0 and nA = 110, design prior (continuous line) with

θD = −0.375 and nD = 898 and range of equivalence (dotted area) θI = −0.41 and θS = −0.34

Now, let us suppose we want to prove equivalence instead of superiority. In this

case the above range of equivalence turns out to be too restrictive even if we choose

a highly concentrated design prior on the central value of the range, for instance a

normal density of mean −0.375 and standard deviation 0.067, with nD = 898 (see

Figure 5.2). In fact in Figure 5.3 we represent the predictive expectation of the

posterior credible intervals as n increases and, adopting the SSD criterion defined

in (5.3), we obtain very large values for the optimal sample size both for the clinical

analysis prior (top panel) and for the sceptical analysis prior (bottom panel). Hence,

we can reset the range of equivalence, in the light of the different purpose of the

study. In other words, let us assume the point of view of the CHART opponents:

given the logistic problems connected with CHART, the supporters of the standard

treatment could consider appropriate a wider range, for instance from 5% to 15%,

corresponding to (−0.455;−0.164) on the log HR scale. In this case we manage

to obtain much more reasonable values for the optimal sample sizes, even if we
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Figure 5.3: Predictive expectation of the credible interval with respect to n, assuming the

clinical analysis prior (top panel) and the sceptical analysis prior (bottom panel), given the range

of equivalence [−0.41,−0.34] and the design prior of mean θD = −0.375 and prior sample size

nD = 898. The resulting optimal sample sizes n∗e = 12870 and n∗e = 14697 are circled.

specify a less demanding design prior, centered in the midrange (θD = −0.3095),

and allowing for more uncertainty (nD = 51.9, yielding a standard deviation of

0.278). This design setting is represented in Figure 5.4. Furthermore, in Figure 5.5

the expected range is plotted with respect to the sample size, in correspondence of

the clinical analysis prior (top panel) and of the sceptical analysis prior (bottom

panel): the resulting optimal sample sizes are respectively n∗e = 682 and n∗e = 1037.
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Figure 5.4: Clinical analysis prior (dashed line) with θA = −0.28 and nA = 74.3, sceptical

analysis prior (dashed-dotted line) with θA = 0 and nA = 110, design prior (continuous line) with

θD = −0.3095 and nD = 51.9 and range of equivalence (dotted area) θI = −0.455 and θS = −0.164

Similar considerations apply when we consider the predictive probability criterion

defined in (5.6): the original range of equivalence actually results unpractical, while

considering the range and the design parameters of Figure 5.4 we achieve a plausible

value for the optimal sample size, both for the clinical and for the sceptical analysis

prior (see the blue lines in Figure 5.3.2). For instance, given a threshold γ = 0.5,

we have n∗e = 1041 for the clinical prior and n∗e = 1037 for the sceptical one.

Moreover adopting the robust SSD criteria defined in (5.10) we obtain respectively

n∗e,r = 1061 choosing for instance nLA = 10 and nUA = 120 (top panel of Figure 5.3.2)

and n∗e,r = 1254 for nLA = 10 and nUA = 200 (bottom panel). The gray lines represent

the probabilities that the robust bounds of the credible interval fall into the range

of equivalence, as defined in (5.4) and (5.5).

Finally, in Figure 5.6 and 5.7 the gray vertical segments represent the expected

robust credible intervals with respect to n for several choices of nLA and nUA. For

example, using the clinical prior and a restricted conjugate class around it with

nLA = 30 and nUA = 100 we obtain an optimal robust sample size of 750 observations,

while the non robust optimal sample size is n∗e = 637. Of course, comparing the

three panel for each figure, we notice again that the wider the class the larger the

corresponding optimal sample size.
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Figure 5.5: Predictive expectation of the credible interval with respect to n, assuming the

clinical analysis prior (top panel) and the sceptical analysis prior (bottom panel), given the range

of equivalence [−0.455,−0.164] and the design prior of mean θD = −0.3095 and prior sample size

nD = 51.9. The resulting optimal sample sizes n∗e = 682 and n∗e = 1037 are circled.
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Figure 5.6: Robust and non robust SSD using the predictive expectation criterion, given the

range of equivalence [−0.455,−0.164] and the clinical prior. The optimal non-robust (green circle)

and robust (red star) sample sizes are respecively: n∗e = 637, n∗e, r = 801 for nLA = 10 nUA = 120

(top panel), n∗e, r = 750 for nLA = 30 nUA = 100 (center panel) and n∗e, r = 709 for nLA = 50 nUA = 85

(bottom panel).
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Figure 5.7: Robust and non robust SSD using the predictive expectation criterion, given the

range of equivalence [−0.455,−0.164] and the clinical prior. The optimal non-robust (green circle)

and robust (red star) sample sizes are respecively: n∗e = 947, n∗e, r = 1230 for nLA = 50 nUA = 150

(top panel), n∗e, r = 1122 for nLA = 30 nUA = 100 (center panel) and n∗e, r = 992 for nLA = 90

nUA = 120 (bottom panel).
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Figure 5.8: pln (blue continuous line), pun (blue dashed line), pLn (gray dotted line) and pUn (gray

dashed-dotted line) with respect to n, given the range of equivalence [−0.455,−0.164] and the

design prior of parameters (θD = −0.3095, nD = 51.9), for the clinical prior (top panel) and for

the sceptical prior (bottom panel). The optimal non-robust (green circle) and robust (red star)

sample sizes are respecively n∗e = 1041, n∗e,r = 1061 and n∗e = 1037, n∗e,r = 1254, given a threshold

γ = 0.5.
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5.4 Concluding remarks

In summary, in this chapter we have adapted the predictive methodology for sam-

ple size determination to equivalence trials. Thanks to the predictive approach

described in Chapter 1, we are able to account for prior uncertainty and to model

prior information, by specifying the design prior and the analysis prior. Specifically,

due to the objective of the equivalence trials, we have pointed out that the design

prior in this case should assign high probability to the values of the parameters that

indicate a negligible difference between the two treatments to be compared. As for

the analysis prior, according to the same idea discussed in Chapter 3, we have also

addressed the issue of sensitivity to the prior specification by adopting a robust ap-

proach. Some results have been illustrated with particular reference to the normal

model with the class of restricted conjugate priors, although this methodology can

be potentially extended to different models and classes of priors depending on the

specific context of the application.





Conclusions

In this thesis we have addressed the issue of sample size determination with special

attention to the context of clinical trials. First of all, we have defined the optimal

study dimension as the minimum number of observations that allows one to obtain

conclusive inferential results, bearing in mind ethical considerations and budget con-

straints that are inevitably involved in this choice. Then, we have started noting

that standard frequentist procedures for sample size calculations rely on the sam-

pling distribution, that is a function of the unknown parameter of interest. This

implies that the optimal solution heavily depends on the initial assumption on the

design value for the parameter. Hence, in order to overcome this problem, we have

suggested a predictive approach that enables one to model initial uncertainty on the

parameter through a design prior probability distribution. This additional caution

actually translates in an increased required number of units to be enrolled in the

study. Moreover, we have argued that one can exploit the available pre-experimental

information on the phenomenon of interest by adopting a fully Bayesian approach.

Prior information can be formalized by an analysis prior distribution that in principle

can be distinct from the design one. In this way, making full use of pre-experimental

knowledge, we can eventually recruit a smaller number of patients. These two mo-

tivations – discussed in details in this thesis – have led us to consider a two-priors

predictive approach for Bayesian sample size determination and to introduce SSD

criteria based on suitable predictive summaries of a chosen posterior quantity of

interest. In particular, we have derived explicit results for the normal and the bi-

nomial model and we have discussed several applications drawing on the setting of

benchmark studies. This approach has been further illustrated with reference to

power-based SSD methods, that are commonly used in the applications and that

are shown to be a special case of the above predictive criteria.

In the second part of the thesis we have proposed some extensions of this frame-

work, that constitute the main innovative contributions of this thesis. In particular,

we have introduced a robust version of the SSD methodology by replacing a single

analysis prior with a given class of distributions. We have shown the results us-
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ing classes of ε−contaminations. Furthermore we have considered the introduced

methodology in a setting in which multiple sources of prior information are avail-

able. Hence we have proposed to use as analysis prior a mixture of distributions,

each formalizing the information derived from every single source. Finally, we have

noted that if we want to consider clinical trials with different objectives, such as for

instance showing equivalence of two competing treatments, it is possible to adapt

the predictive SSD criteria to address this specific purpose. This situation is formal-

ized in the last chapter with particular reference to the normal model and a robust

methodology is also provided for the class of restricted conjugate priors.

In future research we would like to address some of the open problems in this

field that certainly warrant further investigation. First of all different models and

classes of prior distributions from those employed in this work could be taken into

consideration. Hence the available information can be represented in the most ap-

propriate way with respect to the context of the application. Of course, whenever it

is not possible to obtain closed-form results, one can always resort to Monte Carlo

approximations.

A similar methodology could also be adapted to clinical trials with multiple

endpoints. In general, we can distinguish primary and secondary endpoints and we

expect that one of the treatments shows a positive effect with respect to all primary

endpoints. Nevertheless it is important to evaluate the impact of an innovative

therapy also in terms of its potential side effects. It is then reasonable to take into

account the twofold purpose of controlling both efficacy and safety, in defining the

criteria for the choice of the number of patients to be recruited in the study.

A very interesting problem is the adjustment of the optimal sample size based on

the data already available at a given interim analysis. This concept has already been

introduced in Chapter 4, but it can also be extended up to consider a sequential

approach: in practice for each enrolled patient (or cohort of patients) we have to take

the decision either to stop the trial or to go on, according to a prefixed criterion. The

sequential procedures have the advantage to guarantee a smaller expected number of

observations with respect to the ones with prefixed sample size, other things being

equal. A different dynamic is the one of two-stage designs: at the end of the first

stage the experimenter has to decide, based on the observed results, whether to stop

or to proceed with the second stage. This structure has to be considered in the

preliminar planning of the sample size, both for the first and the eventual second

stage: the Bayesian predictive approach to this problem proposed in Sambucini

(2008) for binomial variables of interest, could be adapted to other settings, for

instance, assuming a normal model, multiple endpoints or a robust approach.
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