
 

 
Facoltà di Ingegneria 

 
 
 
 
 
 
 
 

Fault-tolerant routing in Next 
Generation Home Networks 

 
 
 
 
 
 
 
 
 
 
 
 
Relatore                             Dottorando: 

Chiar.mo Prof. Francesco Delli Priscoli                 Ing. Marco Castrucci 

 
 
Coordinatore: 

Chiar.mo Prof. Carlo Bruni 

 
 
 
 

Dottorato di ricerca in Ingegneria dei Sistemi XXII Ciclo  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/74322243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 

2 



 
 
 

3 

Index 

Index ................................................................................................................................. 3 
List of Figure .................................................................................................................... 5 
List of Tables .................................................................................................................... 6 
List of Acronyms .............................................................................................................. 7 
Chapter I ........................................................................................................................... 9 
Introduzione ...................................................................................................................... 9 
Chapter II ........................................................................................................................ 13 
Overview of home networking ....................................................................................... 13 

II.1. Introduction..................................................................................................... 13 
II.2. Home network evolution ................................................................................ 13 

II.2.1 ITU-T model ........................................................................................... 14 
II.2.2 DSL-Forum model .................................................................................. 14 
II.2.3 Triple play model.................................................................................... 15 

II.3. Next Generation Home Networks...................................................................17 
II.3.1 Routing in NGHNs ................................................................................. 24 

Chapter III....................................................................................................................... 26 
MDP control framework................................................................................................. 26 

III.1. Introduction................................................................................................. 26 
III.2. Stochastic process ....................................................................................... 26 
III.3. Markov chains............................................................................................. 27 

III.3.1 Classification of states of a Markov chain.............................................. 29 
III.3.2 Long run properties of Markov chains ................................................... 30 
III.3.3 Continuous time Markov chains ............................................................. 32 

III.4. Markov Decision Processes ........................................................................ 35 
III.4.1 Linear programming and optimal policies.............................................. 36 

III.4.1.1. A linear programming formulation................................................. 37 
III.4.2 Policy improvement algorithm ............................................................... 39 

III.4.2.1. The Policy Improvement Algorithm............................................... 41 
III.4.3 Discounted cost criterion ........................................................................ 43 

III.4.3.1. A Policy Improvement Algorithm .................................................. 43 
III.4.3.2. Linear Programming Formulation .................................................. 45 
III.4.3.3. Finite-Period Markov Decision Processes and the Method of 
Successive Approximations................................................................................ 46 

Chapter IV....................................................................................................................... 48 
Reinforcement Learning ................................................................................................. 48 

IV.1. Introduction................................................................................................. 48 
IV.2. An introduction to Reinforcement Learning............................................... 48 

IV.2.1 Elements of RL ....................................................................................... 50 
IV.2.2 Evaluative feedback................................................................................ 51 
IV.2.3 Incremental Implementation ................................................................... 54 
IV.2.4 Tracking a Nonstationary problem ......................................................... 55 

IV.3. The Reinforcement Learning problem........................................................ 56 
IV.3.1 Returns .................................................................................................... 57 

IV.3.1.1. Unified notation for episodic and continuing tasks ........................ 58 
IV.4. Modelling the environment as a Markov chain .......................................... 59 

IV.4.1 Optimal value functions and approssimations ........................................ 61 



 
 
 

4 

IV.5. RL solutions methods ................................................................................. 65 
IV.5.1 Dynamic Programming........................................................................... 65 
IV.5.2 Monte Carlo methods.............................................................................. 67 
IV.5.3 Temporal-Difference Learning ............................................................... 68 
IV.5.4 TD prediction.......................................................................................... 69 

IV.5.4.1. Sarsa: on-policy TD control............................................................ 70 
IV.5.4.2. Q-Learning: off-policy TD control ................................................. 71 
IV.5.4.3. R-Learning for undiscounted continuing tasks............................... 72 

Chapter V........................................................................................................................ 74 
Fault-tolerant routing in Next Generation Home Networks ........................................... 74 

V.1. Introduction..................................................................................................... 74 
V.2. State of the art routing algorithms .................................................................. 74 
V.3. MDP fault-tolerant routing in NGHNs ........................................................... 75 

V.3.1 Finite-Horizon MDP definition .............................................................. 76 
V.3.2 MDP fault-tolerant routing ..................................................................... 77 

V.3.2.1. Link model ...................................................................................... 79 
V.3.2.2. Fault-tolerant MDP routing ............................................................ 79 
V.3.2.3. MDP algorithm outcomes............................................................... 85 

V.4. Q-Learning formulation of the routing algorithm........................................... 88 
Chapter VI....................................................................................................................... 91 
Results............................................................................................................................. 91 

VI.1. Introduction................................................................................................. 91 
VI.2. Scenario description.................................................................................... 91 
VI.3. MDP simulation results .............................................................................. 97 
VI.4. Q-Learning simulation results .................................................................. 101 

Chapter VII ................................................................................................................... 107 
Conclusions................................................................................................................... 107 
References..................................................................................................................... 109 

  



 
 
 

5 

List of Figure 

Figure 1 - The ITU-T 995.1 architecture for home networking ..................................... 14 
Figure 2 - The DSL Forum TR-094 architecture for home networking ......................... 15 
Figure 3 - The hybrid bridged/routed triple play architecture ........................................ 16 
Figure 4 - The full-routed triple play architecture.......................................................... 16 
Figure 5 - Inter-MAC reference architecture.................................................................. 18 
Figure 6 - Inter-MAC functional architecture................................................................. 19 
Figure 7 - Hybridization of technologies inside the home network ............................... 21 
Figure 8 - NGHN Architecture Reference Model ..........................................................23 
Figure 9 - A typical NGHN architecture configuration.................................................. 23 
Figure 10 - The agent-environment interaction in RL.................................................... 56 
Figure 11 - State and state-action pairs sequence ........................................................... 70 
Figure 12 - Example home network ............................................................................... 92 
Figure 13 - Scheme of the exaple network ..................................................................... 93 

Figure 14 - MDP example: state space { }abs
i

i
SS sx ∪=

=
U
6

1

 and transitions among subsets 

i
Sx , i = 1,…,6 .......................................................................................................... 94 

Figure 15 - MDP example: transitions from state s6....................................................... 94 
Figure 16 - Simulation 1 results...................................................................................... 99 
Figure 17 - Simulation 2 results.................................................................................... 101 
Figure 18 - Simulation 1 results (routing table changes)..............................................104 
Figure 19 - Simulation 1 results (re-routing table changes) ......................................... 104 
Figure 20 - Simulation 2 results (routing table changes)..............................................105 
Figure 21 - Simulation 2 results (re-routing table changes) ......................................... 106 
 



 
 
 

6 

List of Tables 

Table 1 - Definitions of flow, path and link sets ............................................................ 77 
Table 2 - Link characteristics.......................................................................................... 93 
Table 3 - Flow characteristics......................................................................................... 95 
Table 4 - Paths ................................................................................................................ 95 
Table 5 - Feasible states with active flows 2 and 3........................................................ 96 
Table 6 – First simulation set: algorithm parameters ..................................................... 98 
Table 7 - Simulation 1: total routing table/path/link changes.........................................99 
Table 8 - Simulation 1: per-flow path changes............................................................... 99 
Table 9 - Simulation 2: total expected routing table/path changes and probability of 

changing the initial routing table .......................................................................... 100 
Table 10 - Simulation 2: expected per-flow path changes............................................ 101 
Table 11 – Second simulation set: algorithm parameters ............................................. 102 
Table 12 - Simulation 1: total routing and re-routing table changes ............................ 103 
Table 13 - Simulation 2: total routing and re-routing table changes ............................ 105 
 



 
 
 

7 

List of Acronyms 

ARM  Architecture Reference Model 

ATM  Asynchronous Transfer Mode 

B-NT  Broadband Network Termination 

CPE  Consumer Premise Equipment 

DHCP  Dynamic Host Configuration Protocol 

DP  Dynamic Programming 

DSL  Digital Subsriber Line 

ETSI  European Telecommunication Standardization Institute 

EUT  End User Terminal 

FPD  Functional Processing Device 

FT  Fault-Tolerant 

GPI  Generalized Policy Iteration 

HDTV  High Definition Television 

HGI   Home Gateway Initiative 

HO  Hand-Over 

HWO  Hybrid Wireless Optic 

IGMP   Internet Group Management Protocol 

I-MAC  Inter-MAC 

IP  Internet Protocol 

ITU   International Telecommunication Union 

LAN   Local Area Network 

MAC   Medium Access Control 

MC  Markovian Chain 

MDP  Markov Decision Process 

NAT   Network Address Tranlsation 

NGHN Next Generation Home Network 

NT  Network Termination 

OMEGA hOME Gigabit Access 

PLC  Power Line Communication 

PPP  Point-to-Point Protocol 

P2P  Peer To Peer 



 
 
 

8 

QoE  Quality of Experience 

QoS  Quality of Service 

RL  Reinforcement Learning 

TA   Terminal Adapter 

TD  Temporal-Difference learning 

TR  Techical Report 

VoD  Video on Demand 

VoIP  Voice over IP 

UBB  Ultra-BroadBand 

UT  User Terminal 

UWB  Ultra Wide Band 

WAN   Wide Area Network 

WiFi   Wireless Fidelity 

WLAN  Wireless Local Area Network 

WPAN Wireless Personal Area Network 

 



 
 
 

9 

Chapter I  

Introduzione 

Le reti di nuova generazione, attualmente in fase di studio e di standardizzazione 

presso i più importanti forum pubblici e privati mondiali come ETSI [46], ITU-T [47], 

WiMAX Forum [48], BroadBand Forum [49] e Home Gateway Initiative [50], 

introducono dei concetti di fondamentale interesse per l’ingegneria dei sistemi e del 

controllo, considerando che le reti impiegate diventano sempre più complesse, a causa 

di tecnologie eterogenee che necessariamente devono interoperare, ma che allo stesso 

tempo devono poter essere gestite in modo efficiente. Per questo motivo i modelli di 

rete moderni propongono un approccio in cui il mondo delle telecomunicazioni è 

suddiviso in tre piani principali: il data plane, che gestisce i flussi dati e le applicazioni 

degli utenti, il control plane, che include le funzionalità preposte ad eseguire un 

controllo in real-time della rete, e il management plane, che comprende le funzionalità 

dedicate alla configurazione a lungo termine e il fault management della rete. 

 

Gli obiettivi della presente tesi sono stati molteplici: 

� definire un modello di architettura per reti domestiche in grado di rendere 

possibile l’interoperabilità di diverse tecnologie trasmissive; 

� definire il modello di riferimento per un sistema di controllo dell’instradamento 

dei flussi applicativi nelle reti domestiche multi-tecnologia, in grado di gestire 

diversi requisiti di Qualità di Servizio (QoS) e le frequenti indisponibilità dei 

percorsi; 

� definire un algoritmo di controllo basato sul modello di riferimento proposto;  

� validare il sistema di controllo proposto in un adeguato scenario simulativo. 

 

Il primo obiettivo è stato raggiunto attraverso la definizione di un modello 

architetturale di riferimento per reti domestiche multi-tecnologia [12]. A tale scopo, il 

lavoro è consistito nella raccolta e l’analisi dei requisiti, la definizione delle specifiche, 

il design dettagliato dei moduli funzionali e delle interfacce. Tale architettura apre 

innumerevoli possibilità di applicazione delle teorie del controllo e dell’ottimizzazione 
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alla gestione e il controllo delle reti domestiche (campo ancora poco esplorato per la 

mancanza di un adeguata architettura di rete come quella proposta) quali il controllo di 

ammissione e il controllo dell’instradamento dei flussi accettati. 

Il lavoro si è quindi focalizzato sulla progettazione di un sistema di controllo per 

gestire l’instradamento dei flussi nella rete, tenedo conto dei requisiti di QoS dei flussi 

stessi. A tal fine è stato utilizzato un approccio basato sulla teoria del Markov Decision 

Process (MDP). Il sistema è stato quindi modellato come una catena di Markov, per la 

quale sono stati definiti gli stati e le transizioni tra i diversi stati. Tale approccio è stato 

scelto in quanto già applicato con successo per il controllo dell’instradamento di flussi 

informativi, anche se fino ad oggi era stato applicato in reti core, mentre non era mai 

stato considerato per essere applicato in reti domestiche. Inoltre, i particolari requisiti 

del contesto considerato hanno reso necessarie notevoli modifiche ai modelli proposti in 

letteratura, portando quindi alla definizione di un nuovo modello di rete: in pratica, è 

stato necessario definire nuovi stati e nuove transizioni. L’approccio usato si è rivelato 

una buona soluzione nell’ambiente domestico di applicazione, soggetto a numerosi e 

ripetuti link fault. Il controllore è stato infatti progettato con l’obiettivo di minimizzare 

il numero di re-instradameni dei flussi dovuti all’improvvisa indisponibilità di un 

percorso usato da flussi già attivi.  

Una volta terminata la fase di modellazione del sistema e di progettazione del 

controllore, sono emersi problemi di scalabilità della soluzione proposta, che la rendono 

inapplicabile in contesti reali con requisiti di real-time. Nonostante ciò, tale lavoro 

costituisce un prezioso modello teorico di riferimento che può essere usato per 

sviluppare algoritmi implementabili. 

A dimostrazione di ciò è stato quindi definito un algoritmo basato sulla teoria del 

Reinforcement Learning. In particolare è stato definito un algoritmo di Q-learning in 

grado di apprendere la scelta ottimale a seconda dello stato del sistema. 

Per verificare le performance dell’algoritmo proposto sono state effettuate 

numerose simulazioni utilizzando il software di simulazioni MATLAB. I risultati delle 

simulazioni hanno permesso di verificare come l’algoritmo di Q-learning proposto 

consente di ottenere risultati prossimi a quelli ottenibili applicando l’algoritmo ottimo 

basato su MDP. 

Attualmente, l’algoritmo proposto è in fase di implementazione al fine di essere 

integrato nel prototipo in fase di sviluppo presso i laboratori di ricerca di France 

Telecom, nell’ambito del progetto OMEGA, finanziato dalla Commissione Europea. 
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Nel dettaglio, il presente lavoro si articola in 7 capitoli. 

Il presente Capitolo 1 fornisce un’introduzione al fine di offrire una visione 

completa di tutto il lavoro svolto. 

Il Capitolo 2 presenta una panoramica sulle reti domestiche, al fine di descrivere 

il contesto del presente lavoro. In particolare, viene descritta l’evoluzione delle reti 

domestiche dalla loro nascita a oggi, attraverso la riproposizione dei modelli di rete che 

si sono succeduti nel corso degli anni e frutto del lavoro di ricerca a livello mondiale e 

presso gli enti di standardizzazione. Alla fine del capitolo viene inoltre presentato il 

modello di rete domestica del futuro, in cui diverse tecnologie trasmissive verranno 

utilizzate contestualmente per offrire maggiori capacità e quindi servizi a valore 

aggiunto agli utenti. In particolare il modello presentato è stato il frutto della fase 

iniziale del presente lavoro e definisce un innovativo modello di rete che dà una grande 

rilevanza al piano di controllo della rete stessa. Questo perché le potenzialità delle 

nuove reti domestiche potranno essere utilizzate in maniera efficiente solo se 

opportunamente controllate in maniera automatica e in real-time da appositi protocolli e 

algoritmi di controllo. Tra questi, viene definito il problema dell’instradamento di flussi 

in rete (routing), con i suoi obiettivi e le sue caratteristiche nell’innovativo scenario 

proposto. 

Il Capitolo 3 e il Capitolo 4 forniscono le basi teoriche per l’algoritmo oggetto 

del presente lavoro. In particolare, l’obiettivo del Capitolo 3 è quello di presentare gli 

strumenti teorici, messi a disposizione nell’ambito del controllo stocastico, 

relativamente alle catene di Markov e ai processi decisionali di Markov. Tali strumenti 

sono stati utilizzati come approccio fondamentale per la definizione del problema di 

routing. Nel Capitolo 4 viene invece fornita un’introduzione al Reinfocement Learning 

(RL) e vengono presentati alcuni metodi di soluzione. 

Il Capitolo 5 è il capitolo principale della tesi, in quanto contiene la descrizione 

dell’algoritmo proposto. In particolare il capitolo è suddiviso in due parti. Nella prima 

parte viene descritto l’approccio utilizzato per modellare il problema di routing in reti 

domestiche di prossima generazione attraverso un processo decisionale di Markov. Tale 

lavoro costituisce un risultato di grande rilievo in quanto determina una base teorica per 

lo sviluppo di altri algoritmi che potranno essere progettati utilizzando diverse 

metodologie. In aggiunta, tale frame work potrà essere utilizzato come punto di 

riferimento per la valutazione delle prestazioni dei diversi algoritmi sviluppati. Nella 

seconda parte del capitolo viene invece proposto un particolare algoritmo di routing, 
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progettato facendo uso delle metodologie di Reinforcement Learning e costruito sulla 

base del riferimento teorico descritto nella prima parte del capitlo.  

Nel Capitolo 6 sono presentati alcuni risultati numerici ottenuti attraverso la 

realizzazione di una serie di simulazioni eseguite con il software MATLAB. 

Inizialmente viene descritto lo scenario simulativo, rappresentante una rete domestica di 

nuova generazione e realizzata attraverso l’integrazione di 4 tecnologie trasmissive 

diverse. In seguito vengono presentati i risultati ottenuti attraverso la simulazione del 

processo decisionale di Markov, utilizzando tre politiche diverse. I risultati ottenuti 

mostrano le potenzialità dell’algoritmo proposto e la sua capacità di supportare flussi 

con diverse caratteristiche e requisiti e quindi appartenenti a diverse Classi di Servizio. 

Infine vengono presentati i risulati ottenuti attraverso la simulazione dell’algoritmo 

basato su Reinforcement Learning. I risulati mostrano come le prestazioni di questo 

algoritmo si avvicinano all’ottimo ottenibile co il processo decisionale di Markov.   

Infine, nel Capitolo 7, vengono riportate le conclusioni del lavoro e viene fornita 

un’indicazione dei prossimi sviluppi di questo algoritmo, sia dal punto di vista teorico 

che implementativo. 
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Chapter II  

Overview of home networking 

II.1. Introduction 
 

Home networking is defined by the CEA-HNIT’s Board of Directors as follows: 

“A home network interconnects electronic products and systems, enabling access and 

control of this products and systems, and any available content such as music, video or 

data” [1]. Products need to be connected to each other; access to content (e.g., 

entertainment, information, services) must be provided; and the user must have control 

of the products and the distribution of content. Content may come from within the home, 

from a media centre hard disk, a personal video recorder, and so on; or remotely from 

somewhere outside the home (e.g., form a Wide Area Network that provide connection 

to Internet). One point that must be emphasized is the ease of use. The consumer should 

not even know a home network is being established in its home. Consumers buy 

applications, not home networks [2]. 

The significant interest in home networking today stems from the availability of 

low-cost communication technologies and from the need for network operators and 

service providers to overcome bandwidth limitations occourring today in home 

networks, that limit the diffusion and the provisioning of added-value services to users. 

In this chapter is presented the evolution of home networks, starting from simple 

old implementation to the vision and the idea behind the next generation of home 

networks that nowadays are being object of worldwide research. The chapter ends with 

the presentation of the open research topics related to next generation home networks, 

highlitghing how the present work intends to provide a solution to one of the most 

important open issue.  

II.2. Home network evolution 
 

This section describes the evolution of the trends in architecture of home 

networking during the ten last years through standardization as well as practical 

implementations. Three different home networks model are presented: the ITU-T model, 
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the DSL-Forum model and the triple play model. In addition to those presented here, 

there are also other standardization bodies and industrial forum (e.g. Home Gateway 

Initiative (HGI)) at European and international level that are working to define 

guidelines and standards for home networks.  

II.2.1 ITU-T model 
 

The first elaboration of models of home networking date back to the nineties, 

with the ITU-T efforts to standardize recommendations for digital subscriber lines. ITU-

T 995.1 [3], for instance, introduces in 2001 the following entities: 

� the NT1, terminating the access digital section of the broadband connection, 

� the NT2, terminating the transport protocol for user traffic. It may implement 

switching/routing functions, 

� the Terminal Adapter (TA), adapting the transport protocol to the specific 

requirements of a user terminal, 

� the User Terminal, providing an interface for the user. 

These entities are interconnected by interfaces (R, S, T, U) defined by the 

following representation:  

 

R 
 T 

Access 
link 

NT1 NT2 User 
Terminal 

U 

Terminal 
Adapter 

S 

 
Figure 1 - The ITU-T 995.1 architecture for home networking 

II.2.2 DSL-Forum model 
 

In 2004, the DSL Forum defined in TR-094 [6] requirements and capabilities 

that a home network should provide to take advantage of the full capabilities of the 

multi services broadband access. TR-094 introduces in particular the following entities: 
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� the B-NT (Broadband Network Termination), 

� the Routing Gateway, 

� the Premises Distribution (client infrastructure), 

� the FPD (Functional Processing Device), which is a component of  the home 

network that processes voice, video or data for its intended application, 

� the EUT (End User Terminal). 

 

These entities are interconnected by interfaces (R, TCN, TPDN, U) defined by the 

following representation: 

 

R TPDN 

Access 
link 

 TCN 

B-NT EUT 
 

U 

Premises 
Distribution 

Routing 
Gateway 

FPD 

 

Figure 2 - The DSL Forum TR-094 architecture for home networking 

The R interface is the type of interface that the FPD should support in order to 

provide connectivity to the EUT. The TCN interface defines the interface between the 

Routing Gateway and the various premises distribution technologies. The TPDN interface 

is physically discernable when the B-NT and Routing Gateway are implemented in 

separate devices: it is practically limited to a point to point layer 1+2 connection. The U 

interface is represented here in making abstraction of a possible splitter. Some entities 

of these representations can be merged into one single equipment, for instance the EUT 

and the FPD, or the Routing Gateway and the B-NT. 

II.2.3 Triple play model 
 

The triple play model [7] was adopted by the operators around 2004 in order to 

launch commercial offers based on three service components: the Internet, the 

conversational (VoIP, videophony) and the TV services. These offers were often based 
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on a residential gateway with physical ports each dedicated to a specific service, which 

allows to simplify the implementation. The following figure gives an example (hybrid 

between the bridged model and the routed model) of such a gateway: 

VC Internet, VoIP

VC Videophony

Routing/NAT

LAN
Ethernet

WAN
ATM

DHCP PPP

Bridge

CPE

VC Digital TV, VoD

Analog PhoneAnalog Phone

 
Figure 3 - The hybrid bridged/routed triple play architecture 

Such an option leads naturally to an organization of the home network where a 

given technology is dedicated to a given service. In a longer term prospect, that 

architecture will likely evolve to a more flexible configuration, based on a full-routed 

solution, which would avoid the separation between the services and the constraint to 

connect each device to a given port, as showed on the following figure: 

VC Internet, VoIP

VC Visio

VC Digital TV, VoD

Routing/NAT

LAN
Ethernet

WAN
ATM

DHCP PPP

IGMP SNOOPING

CPEAnalog PhoneAnalog Phone

 

Figure 4 - The full-routed triple play architecture 
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II.3. Next Generation Home Networks 
 

During last years, communication technology has evolved in terms of services 

diversification. Requests of different advanced services lead to a mass-market of a 

variety of devices and networks supporting heterogeneous and broadband technologies. 

Several solutions have been deployed to provide broadband and heterogeneous 

connectivity to users, especially in the access networks. But the diffusion of new 

bandwidth demanding services (like HDTV) will be possible only when technology 

limitations will be eliminated from the real network bottleneck: the users home area 

network. 

Several technologies are nowadays adopted in home networks. Despite this 

diversity, it is possible to group all these technologies in two main categories, 

depending on the communication medium to be used: wired communications and 

wireless communications. Inside this two big clusters further distinctions take place. 

Among wired communications, Ethernet (IEEE 802.3) is for sure the most common 

technology used to interconnect different devices in a home environment. But in the last 

years the attention and the research is focusing on Power Line Communications (PLC), 

an emerging technology which uses power supply to convey the information through 

the network. As such as concerns wireless communication, technologies like Wi-Fi 

(802.11a/b/g) have already been exploited and new standards such as Wi-Max (802.16) 

or UltraWideBand (802.15.3) are actually contending the attention of the people. An 

emerging technology within wireless communications is the Free Space Optics 

technology, which introduce the concept of wireless infrared and visible light 

communications, alternative to the wireless radio frequency medium. As a consequence 

of this large diversification, many different networks have emerged inside the domestic 

ambient, causing de facto the impossibility to make interact devices connected to the 

network with different technologies.  

A lot of research works has been done on convergence, and most of them 

propose to enhance terminals and network components with technology independent 

middleware frameworks. This is a good solution but not in a home gigabit access 

network. A middleware solution is not suitable for terminal capabilities, it requires in 

the most of cases to be installed, configured and maintained by the terminal user and 

can process only low data rate services. Services like HDTV, Broadband Internet access, 
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on-line 3D gaming are extremely expensive in terms of resources. Therefore, these 

services requires a disruptive approach for the management of the resources in a so 

called Next Generation Home Network (NGHN), where convergence should be 

achieved maintaining simplicity, scalability and backward compatibility. 

In Europe, the FP7 OMEGA project ([9]) is defining and prototyping a new 

architecture for home networks able to achive the above mentioned objectives. In 

particolar, OMEGA is proposing an innovative protocol stack for home networks where 

a new layer is introduced between the MAC layer and the IP layer: the so called Inter-

MAC layer ([10]). It receives and processes the information from the upper layers (IP) 

in order to match the services requests with the availability offered by the various 

underlying technology dependent MACs. The Inter-MAC (see Figure 5) is technology 

independent and controls multiple technology networks by means of proper adapters. It 

also provides services as well as connectivity to all the devices in the house. Thanks to 

the introduction of the Inter-MAC layer, it is possible to obtain convergence inside the 

home among several heterogeneous Telecommunication technologies, thus paving the 

way to the possibility to achieve home network capacities od the order of Gigabit per 

second. 

 

Figure 5 - Inter-MAC reference architecture 

In Figure 6 a functional architecture is presented, where it is possible to 

distinguish the interfaces by which the Inter-MAC communicates with Network 



 
 
 

19 

protocol layer, the technology-dependent MAC layers, and with the signalling and 

management plane; three main Inter-MAC functionalities are wrapped by a Monitoring 

& Event Manager. It handles the decision to enforce taking in input the information 

coming from the Signalling and Management Plane. 

 

Figure 6 - Inter-MAC functional architecture 

Each one of the functional components previously mentioned are described in 

detail:  

� QoS Control: it manages the resource allocation of specific flows guaranteeing 

some QoS parameters: Bandwidth, Delay, Delay Variation, Loss Ratio and Error 

Ratio. Different classes of service can be handles by the Inter-MAC and the QoS 

Control then performs a complete scan over all MACs to estimate which of them 

can handle the specific flow belonging to that class of service. 

� Path Selection: select all the possible paths to connect two or more nodes 

among various networks. It considers multi-hop solutions and take care of load 

balancing tecniques. Load balancing is needed whenever the QoS parameters 

could not be assured using only one available path. Path selection is a 

functionality strongly interconnected with QoS control. Existing solutions for 

multi-hop routing are tailored for homogenous networks and thus not suited for 

the heterogeneous home gigabit architecture. Implementing multi-hop 

connection in the home heterogeneous environment is novel, will be undertaken 

by this functional component, and is the objective of this work. In general, path 

selection can consider factors including class-of-service identification, policy-
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based routing table derivation, dynamic bandwidth allocation, protection, 

reservation, priority routing, and priority queuing. 

� Technology Handover: in order to provide access to different communications 

systems an efficient vertical handover mechanism is required. A technique that 

uses the common semantic to describe the available channels and chooses 

between them will be developed. The technology handover switches between 

two different technologies and is recalled whenever a network congestion, link 

failure or device mobility occur. 

� Monitoring & Event Manager : it represents the link-up point for the 

functionalities described above. Its task is to trigger decisions, based on 

Signalling & Management Plane information. Since every Inter-MAC 

functionality is related to each other, if Monitoring & Event Manager detects 

that a particular link of the Home Network cannot support the service class 

imposed by QoS Control, then it will trigger Path Selection module in order to 

choose a better link. So, information produced from monitoring and event 

manager will be used by Inter-MAC to cast its main functionalities: Qos 

Control, Technology Handover and Path Selection.  

 

The Next Generation Home Network Architecture Reference Model (ARM) has 

been then designed to fulfil the following conditions: 

� it should be elaborated in the continuation of models already elaborated in 

standardization and currently used in the domain of home networking 

architecture; 

� it should provide a good comprehension of the bounds of the network; 

� it should clarify the internal and external interfaces of the network; 

� it should highlight the structure of the NGHN into elementary network 

functionalities and capabilities. 

 

In the prospect of the Gigabit data rate in Next Generation Home Networks, it 

appears interesting to distribute the functions of connectivity inside the home with the 

help of interconnection points spread in the home, and achieving the hybridization of 

several different wired and wireless access technologies through the introduction of the 

Inter-MAC layer described above. This scenario is illustrated in the following picture: 
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Figure 7 - Hybridization of technologies inside the home network 

This illustration highlights the interconnection of a wide range of terminals with 

a mesh network ensuring the coverage of the whole home area. These terminals can be 

classified in families or clusters, not completely disjoint: 

� data communication terminals (computers, PDA, notebook, …); 

� gaming cluster; 

� voice/video communication terminals (analog/digital phones, videophones, 

mobile phones, …) ; 

� entertainment consumer electronics audio/video terminals (STB, TV, MP3 

player, HiFi equipment, …); 

� domestic equipment (fridge, sensor networks, …). 

 

In addition, the NGHN may also coexist with extensive legacy networks based 

on technologies with which it should ensure compatibility. 

A Next Generation Home Network can be considered as a set of devices 

implementing the following capabilities ([11]): Gateway capability; Extender capability; 

End Device capability and Serve Legacy Device capability. They implement one or 

several specific functionalities in addition to the common set of mandatory NGHN 

device functionalities (including the Inter-MAC functionalities), also described in [11]. 

I summarize here the approach leading to the structure of these network capabilities: 

� a gateway can be considered a capability implementing a WAN connectivity in 

addition to the common set of mandatory NGHN device functionalities; 
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� an end device can be considered as a capability implementing the functionality 

of user terminal device, where traffic can leave or enter the network, in addition 

to the common set of mandatory NGHN device functionalities; 

� any NGHN device, implementing the basic set of mandatory NGHN 

functionalities, can be considered as an extender capability enabler, which is 

used to extend the Gigabit/s home network coverage or to interconnect different 

devices that cannot communicate directly. 

It has also been stated that the NGHN should provide interfaces in order to 

interconnect to legacy devices or other networks. This is achieved by the serve legacy 

device capability, which provides a minimum set of functionalities to make the legacy 

device interoperate with the NGHN with the same experience as when it was used 

before. All things considered, the architecture reference model can be built around these 

four kinds of NGHN capabilities: the gateway, the end device, the extender, and the 

serve legacy device. Each of the related devices may have one or several interfaces 

(based on a 'no new wires' broadband technology) in order to connect to its neighbours. 

All these interfaces have in common the fact to be compliant with the Inter-MAC 

framework described in [10].  

All of them can be named by the same term: the so called Ω-interface, which is 

therefore a multi-technology interface. Moreover the NGHN presents two natural 

external interfaces, the first one between the legacy device and the home network device 

achieving its interconnection (R interface), and the second one between the access 

network and the NGHN gateway (U interface). 

The set of devices constituting the NGHN is organized in the form of a mesh 

architecture bringing in the advantages of multi-path capabilities for traffic 

reconfiguration. Their association can be represented under the global name of "NGHN 

Device", maintaining apart the Gateway in order to highlight the interface with the 

Access Network. 

This leads to the following Next Generation Home Network Architecture 

Reference Model ([12]): 
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Figure 8 - NGHN Architecture Reference Model 

 
In a real network several end devices, extenders and legacy device adapters can 

be interconnected in a ramified and extensive way. The multi-homing scenario, where 

more than one interface to external networks exists, is also possible. The following 

figure shows a possible implementation of the NGHN architecture with real devices: 

 

Figure 9 - A typical NGHN architecture configuration 

Figure 9 illustrates the mesh structure of a NGHN and the generic feature of the 

Ω interface. It also illustrates the fact that the interfacing of legacy devices can be 

achieved by different kinds of devices. 

A lot of research open issue are still open in order to make the NGHN 

architecture model presented above ready to be deployed and commercialized. Among 

them I mention the problems related to the remote management of the network by the 

operator, the management and the control of multimedia service provisioning, the 

security, the efficiency in energy consumption and the management and control of the 

Quality of Service (QoS). Thus, new solutions for connection admission control, routing 

and path selection, load balancing, congestion control, scheduling and so on have to be 
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studied in order to exploit in the most effective and efficient way the capabilities and the 

capacity offered by NGHNs. 

This work intends to propose a new solution to the routing problem in NGHNs. 

The peculiaritites of the routing problem in NGHNs is presented in the next section, 

while the proposed solution is descrive in Chapter 5. 

II.3.1 Routing in NGHNs 
 

As described in the previous section, to support a variety of high capacity 

demanding applications (data, audio, video), next generation home networks will be 

realized through the integration of heterogeneous wired (e.g., Ethernet, Power Line 

Communication (PLC), Optical Fiber (OPT)) and wireless (e.g., Wi-Fi, Ultra Wide 

Band, Hybrid Wireless Optic)  telecommunication technologies. 

Since we are dealing with hybrid (i.e., meshed wireless and wired) networks, we 

have to consider frequent topology changes due to the scarce robustness of some 

technologies, which cause the link availability to be time-varying. In fact, due to their 

nature, wireless and PLC technologies are characterized by high probability of link 

faults (i.e., links becoming unavailable): for example, PLC systems suffer from 

interference due to the use of electrical power by home appliance ([13]); Wi-Fi 

communication systems suffer from interference due to other communication systems 

using the same frequency spectrum ([14]). 

The objective of these high-capacity home networks is to provide new 

multimedia services (such as High-Definition TV (HDTV) on-demand or high-quality 

Video-conference) characterized by high-bitrate, long flow duration and tight Quality of 

Service (QoS) constraints (e.g., in terms of delay and delay variation – or jitter). To 

guarantee the required QoS to these flows, they are subject to an admission control 

procedure, in charge of deciding if the flow can be supported by the network based on 

current traffic and network conditions, and to a routing protocol, which decides the path 

to be used for the transmission1. In a home network, the number of high-quality flows is 

likely to be small (at maximum, 5-10 simultaneous flows). Therefore, given the scarce 

robustness of wireless and PLC technologies, the link availability dynamics due to link 

                                                 
1 Standard home services, such as web browsing, emails, P2P, are low-bitrate services and/or ‘elastic’ 
services (i.e., they adapt their transmission bitrate to the available capacity), and do not have strict QoS 
requirements. Thus they are less impaired by link faults, and are regarded as background traffic with 
lower priority with respect to the high-quality flows. 
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faults become even faster than the high-quality traffic dynamics (i.e., birth and 

termination of high-quality flows). 

In this scenario, the routing algorithm has to be fault-tolerant, in the sense that it 

should be able to rapidly re-route active flows as soon as a link become unavailable in 

the path: in fact, as a link becomes unavailable, all the flows crossing that link have to 

be re-routed on other paths. This re-routing event should be avoided as far as possible, 

because 

i) during the re-routing process, some packets are likely to be lost (affecting the 

QoS of the flow) 

ii) the re-routing process involves additional control communications, which 

reduce the capacity available to data communications.  

If the network supports classes of service to offer QoS guarantees, decisions 

upon the re-routing of flows should be based also on their classes of service. For 

instance, re-routing a flow is likely to cause jitters in the flow transmission (i.e., a 

variation in the transmission delay of flow packets): such jitters are insignificant in case 

of data flows, whereas in case of video flows they affect the quality experienced by 

users.  

Existing routing algorithms are classified either as proactive (e.g., [16]-[18]) or 

as reactive (e.g., [19], [20]). The former algorithms continuously update path 

information, which is then available at algorithm decision time; the drawback is that 

these algorithms require the knowledge of the topology of the whole network. Reactive 

algorithms performs a route discovery procedure on demand, i.e., only at routing 

decision time: on the one hand, they generate less control information since they must 

not continuously update topology information; on the other hand, they delay the actual 

data transmission until the path is discovered. 

Clearly, the proactive approach is preferred in the considered home network 

scenario due to the fast re-routing requirements and to its limited topology width which 

makes the updating process fast. 

To conclude, the aim of the proactive algorithm developed in this work is then 

twofold: on one side it has to minimize re-routing occurrences; on the other side it has 

to be be able of provide a fast re-routing since we are dealing with scenarios 

characterized by highly variable topology. 
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Chapter III  

MDP control framework 

III.1. Introduction 
 
The fault-tolerant routing algorithm is based on the Markov Decision Process 

(MDP) control framework, which is presented in this chapter. MDP is a stochastic 

control framework where decisions need to take into account uncertainty about many 

future events. This chapter begins with the presentation of probability models for 

processes that evolve over time in a probabilistic manner. Such processes are called 

stochastic processes. After briefly introducing general stochastic processes, the 

reminder of the chapter focuses on a special kind called Markov chain. Markov chains 

have the special property that probabilities involving how the process will evolve in the 

future depend only on the present state of the process, and so are independent of events 

in the past. After that, Markov Decision Processes are presented as they allow to control 

the behavior of a system modeled as a markov chain. In fact, rather than passively 

accepting the design of the Markov chain, MDP allows to make a decision on how the 

system should evolve by controlling the transition from a state to the following one. The 

objective of MDP is to choose the optimal action for each state that minimize the cost 

associated for the system in being in each state, considering both immediate and 

subsequent costs.  

III.2. Stochastic process 
 

A stochastic process is defined to be an indexed collection of random variables 

{ }tX , where the index t runs through a given set T. Often T is taken to be the set of non-

negative integers, and tX represents a measurable characteristic of interest at time t. 

Stochastic processes are of interest for describing the behaviour of a system operating 

over some period of time. The current status of the system can fall into anyone of the M 

+ 1 mutually exclusive categories called states. For notational convenience, in this 

chapter these states are labelled 0,1,…,M. The random variable tX  represents the state 
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of the system at time t, so its only possible values are 0,1,…,M. The system is observed 

at particular points of time, labelled t=0,1,…. Thus, the stochastic process 

{ } { },...,, 210 XXXX t = provides a mathematical representation of how the status of the 

physical system evolves over time. This kind of processes is referred to as being a 

discrete time stochastic process with finite state space. 

III.3. Markov chains 
 

Assumptions regarding the joint distribution of ,..., 10 XX are necessary to obtain 

analytical results. One assumption that leads to analytical tractability is that the 

stochastic process is a Markov chain, which has the following key property: “a 

stochastic process tX  is said to have the Markovian property if: 

{ } { }iXjXPiXkXkXkXjXP tttttt ======== +−−+ |,,...,,| 11111001 , for t = 0,1,… 

and every sequence i, j, k0, k1,…, kt-1. 

In words, this Markovian property says that the conditional probability of any 

future “event”, given any past “event” and the present state iX t = , is independent of 

any past event and depends only upon the present state. 

A stochastic process { }tX  (t = 0,1,2,…) is a Markov chain if it has the 

Markovian property. 

The conditional probabilities { }iXjXP tt ==+ |1  for a Markov chain are called 

(one-step) transition probabilities. If, for each i and j, 

{ } { }iXjXPiXjXP tt =====+ 011 || , for all t = 0,1,2,… then the (one-step) 

transition probabilities are said to be stationary. Thus, having stationary transition 

probabilities implies that the transition probabilities do not change over time. The 

existence of stationary (one-step) transition probabilities also implies that, for each i, j, 

and n (n =0,1,2,…), { } { }iXjXPiXjXP ntnt =====+ 0||  for all t = 0,1,…. These 

conditional probabilities are called n-step transitional probabilities. 

To simplify notation with stationary transition probabilities, let: 

{ }iXjXPp ttij === + |1 , 

{ }iXjXPp tnt
n

ij === + |)( . 
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Thus, the n-step transition probabilitiy )(n
ijp  is just the conditional probability 

that the system will be in state j after exact n steps (unit of time), given it starts in state i 

at any time t. 

Because the )(n
ijp  are conditional probabilities, they must be non negative, and 

since the process must make a transition into some state, they must satisfy the 

properties: 

0)( ≥n
ijp ,           for all i and j; n = 0,1,2,…, 

1
0

)( =∑
=

M

j

n
ijp ,  for all i; n = 0,1,2,… 

A convenient way to show all the n-step transition probabilities is the n-step 

transition matrix: 
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=Ρ    for n =0,1,2,… 

Note that the transition probability in a particular row and column is for the 

transition from the row state to the column state. When n =1, we drop the superscript n 

and simply refer to this as the transition matrix. 

The Markov chains considered in this work have the following properties: 

1. a finite number of states. 

2. stationary transition probabilities. 

The following Chapman-Kolmogorov equations provide a method for 

computing the n-step transtion probabilities: 

)(

0

)()( mn
kj

M

k

m
ik

n
ij ppp −

=
∑=    

for all i = 0,1,…,M;  j =0,1,…,M; and any m =1,2,…, n-1; n = m+1, m+2,… 

These equations point out that in going from state i to state j in n steps, the 

process will be in some state k after exactly m (less than n) states. This expression 

enable the n-step transition probabilities to be obtained from the one-step transition 
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probabilities recursively. Thus, the n-step transition probability matrix Pn can be 

obtained by computing the nth power of the one-step transition matrox P: P(n) = Pn. 

III.3.1 Classification of states of a Markov chain 
 

It is evident that the transition probabilities associated with the states play an 

important role in the study of Markov chains. To further describe the properties of 

Markov chains, it is necessary to present some concepts and definitions concerning 

these states. 

State j is said to be accessible from state i if 0)( >n
ijp  for some 0≥n . Thus, state 

j being accessible from state i means that it is possible for the system to enter state j 

eventually when it starts from state i. In general, a sufficient condition for all states to 

be accessible is that there exists a value of n for which 0)( >n
ijp  for all i and j. 

If state j is accessible from state i and state i is accessible from state j, then states 

i and j are said to communicate. In general: 

1. any state communicates with itself (because 1)0( =iip ); 

2. if state i communicates with state j, then state j communicates with state 

i; 

3. if state i communicates with state j and state j communicates with state k, 

then state i communicates with state k. 

As a result of these properties of communication, the states may be partitioned 

into one or more separate class such that those states that communicate with each other 

are in the same class. If there is only one class, i.e., all the states communicate, the 

Markov chain is said to be irreducible. 

It is often useful to talk about whether a process entering a state will ever return 

to this state. A state is said to be a transient state if, upon entering this state, the process 

may never return to this state again. Therefore, state i is transient if and only if there 

exists a state j ( j ≠ i) that is accessible from state i but not vice versa, that is, state i is 

not accessibile from state j. Thus, if state i is transient and the process visits this state, 

there is a positive probability (perhaps even a probability of 1) that the process will later 

move to state j and so will never return to state i. Consequently, a transient state will be 

visited only a finite number of times. 

When starting in state i, another possibility is that the process definitely will 

return to this state. A state is said to be a recurrent state if, upon entering this state, the 
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process definitely will return to this state again. Therefore, a state is recurrent if and 

only if it is not transient. Since a recurrent state definitely will be revisited after each 

visit, it will be visited infinitely often if the process continues forever. 

If the process enters a certain state and then stays in this state at the next step, 

this is considered a return to this state. Hence, the following kind of state is a special 

type of recurrent state. A state is said to be an absorbing state if, upon entering this state, 

the process never will leave this state again. Therefore, state i is an absorbing state if 

and only if pii =1. 

Recurrence is a class property. That is, all states in a class are either recurrent or 

transient. Furthermore, in a finite-state Markov chain, not all states can be transient. 

Therefore, all states in an irreducible finite-state Markov chain are recurrent. 

Another useful property of Markov chains is periodicities. The periodo f state i 

is defined to be the integer (t > 1) such that 0)( =n
iip  for all the values of n other than t, 

2t, 3t,…and t is the largest integer with this property. Just as recurrence is a class 

property, it can be shown that periodicity is a class property. That is, if state i in a class 

has period t, the all states in that class have period t. 

In a finite-state Markov chain, recurrent states that are aperiodic are called 

ergodic states. A Markov chain is said to be ergodic if all its states are ergodic states. 

III.3.2 Long run properties of Markov chains 
 

For any irreducible ergodic Markov chain, )(lim n
ij

n
p

∞→
exists and is independent of i. 

Furthermore, 

0lim )( >=
∞→ j

n
ij

n
p π , 

where the jπ uniquely satisfy the following steady-state equations. 
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The jπ  are called steady-state probabilities of the Markov chain. The term 

steady-state probability means that the probability of finding the process in a certain 

state, say j, after a large number of transitions tends to the value _j, independent of the 

probability distribution of the initial state. It is important to note that the steady-state 

probability does not imply that the process settles down into one state. On the contrary, 

the process continues to make transitions from state to state, and at any step n the 

transition probability from state i to state j is still pij. 

There are other important results concerning steady-state probabilities. In 

particular, if i and j are recurrent states belonging to different classes, then 0)( =n
ijp  for 

all n. This result follows from the definition of a class. 

Similarly, if j is a transient state, then 0lim )( =
∞→

n
ij

n
p  for all i. Thus, the probability 

of finding the process in a transient state after a large number of transitions tends to zero. 

If the requirement that the states be aperiodic is relaxed, then the limit )(lim n
ij

n
p

∞→
 

may not exist. However, the following limit always exists for an irreducible (finite-

state) Markov chain: 

j
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k
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n
π=




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


∑

=∞→
1

)(1
lim  

When the jπ  satisfy the steady-state equations. 

This result is important in computing the long-run average cost per unit time 

associated with a Markov chain. Suppose that a cost (or other penalty function) C(Xt) is 

incurred when the process is in state Xt at time t, for t = 0, 1, 2,…. Note that C(Xt) is a 

random variable that takes on any one of the values C(0), C(1),…, C(M) and that the 

function C(• ) is independent of t. The expected average cost incurred over the first n 

periods is given by 
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By using the result that  
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it can be shown that the (long-run) expected average cost per unit time is given by 
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 In addition, jπ  can be interpreted as the (long-run) actual fraction of times the 

system is in state j. 

III.3.3 Continuous time Markov chains 
 

Until now it was assumed that the time parameter t was discrete (that is, t = 

0,1,2,…). Such an assumption is suitable for many problems, but there are certain cases 

where a continuous time parameter (call it t’ ) is required, because the evolution of the 

process is being observed continuously over time. The definition of a Markov chain 

given before also extends to such continuous processes. 

As before, I label the possible states of the system as 0, 1, . . . , M. Starting at 

time 0 and letting the time parameter t’ run continuously for 0≥t , I let the random 

variable X(t’) be the state of the system at time t’. Thus, X(t’) will take on one of its 

possible (M + 1) values over some interval, 1'0 tt <≤ , then will jump to another value 

over the next interval, 21 ' ttt <≤ , etc., where these transit points (t1, t2, . . .) are random 

points in time (not necessarily integer). 

Now consider the three points in time (1) t’ = r (where 0≥r ), (2) t’ = s (where s 

>  r), and (3) t’ = s + t (where t > 0), interpreted as follows: 

t’ = r  is a past time, 

t’ = s  is the current time, 

t’ = s + t is t time units into the future. 

Therefore, the state of the system now has been observed at times t’ = s and t’ = 

r. Label these states as X(s) = i and X(r) = x(r). Given this information, it now would be 

natural to seek the probability distribution of the state of the system at time t’ = s + t: 

{ })()(,)(|)( rxrXisXjtsXP ===+                 for j = 0,1,…, M. 
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Deriving this conditional probability often is very difficult. However, this task is 

considerably simplified if the stochastic process involved possesses the following key 

property: a continuous time stochastic process { }0');'( ≥ttX  has the Markovian property 

if { } { }isXjstXPrxrXisXjtsXP ==+====+ )(|)()()(,)(|)( , for all i, j = 0,1,…, 

M and for all 0≥r , s > r, and t > 0. 

Note that { }isXjstXP ==+ )(|)(  is a transition probability, just like the 

transition probabilities for discrete time Markov chains considered above, where the 

only difference is that t now need not be an integer. If the transition probabilities are 

independent of s, so that { } { }iXjtXPisXjtsXP =====+ )0(|)()(|)(  for all s > 0, 

they are called stationary transition probabilities. To simplify notation, I shall denote 

these stationary transition probabilities by 

{ }iXjtXPtpij === )0(|)()( , 

where )(tpij  is referred to as the continuous time transition probability function. It is 

assumed that  





≠
=

=
→ jiif

jiif
tpij

t 0

1
)(lim

0
. 

Now we are ready to define the continuous time Markov chains: a continuous time 

stochastic process { }0');'( ≥ttX  is a continuous time Markov chain if it has the 

Markovian property. 

In the analysis of continuous time Markov chains, one key set of random 

variables is the following: aach time the process enters state i, the amount of time it 

spends in that state before moving to a different state is a random variable Ti, where i = 

0, 1, . . . , M. Suppose that the process enters state i at time t’ = s. Then, for any fixed 

amount of time t > 0, note that tTi >  if and only if X(t’) = i for all t’ over the interval 

tsts +≤≤ ' . Therefore, the Markovian property (with stationary transition 

probabilities) implies that 

{ } { }tTPsTstTP iii >=>+> | . 
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This is a rather unusual property for a probability distribution to possess. It says 

that the probability distribution of the remaining time until the process transits out of a 

given state always is the same, regardless of how much time the process has already 

spent in that state. In effect, the random variable is memoryless; the process forgets its 

history. There is only one (continuous) probability distribution that possesses this 

property - the exponential distribution. The exponential distribution has a single 

parameter, call it q, where the mean is 1/q and the cumulative distribution function is 

{ } qt
i etTP −−=≤ 1 ,  for 0≥t . 

This result leads to an equivalent way of describing a continuous time Markov 

chain: 

1. the random variable Ti ha san exponential distribution with a mean of 1/ 

qi  

2. when leaving state i, the process moves to a state j with probability pij , 

where pij satisfy the conditions 

pij = 0  for all i,  

∑
=

=
M

oj
ijp 1 for all i 

3. the next state visited after state i is independent of the time spent in state 

i. 

Just as the transition probabilities for a discrete time Markov chain satisfy the 

Chapman-Kolmogorov equations, the continuous time transition probability function 

also  satisfies these equations. Therefore, for any states i and j and nonnegative numbers 

t and s ( ts ≤≤0 ), 

∑
=

−=
M

k
kjikij stpsptp

1

)()()( . 

A pair of states i and j are said to communicate if there are times t1 and t2 such 

that pij(t1) > 0 and pji(t2) > 0. All states that communicate are said to form a class. If all 

states form a single class, i.e., if the Markov chain is irreducible (hereafter assumed), 

then pij(t) > 0, for all t > 0 and all states i and j. 

Furthermore, jij
t

tp π=
∞→

)(lim  always exists and is independent of the initial state 

of the Markov chain, for j _ 0, 1, . . . , M. These limiting probabilities are commonly 
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referred to as the steady-state probabilities (or stationary probabilities) of the Markov 

chain. The jπ  satisfy the equations 

∑
=

=
M

i
ijij tp

0

)(ππ  for j = 0,1,…, M and every 0≥t . 

III.4. Markov Decision Processes 
 

Many important systems can be modelled as either a discrete time or continuous 

time Markov chain. It is often useful to describe the behaviour of such a system in order 

to evaluate its performances. However, it may be even more useful to design the 

operation of the system so as to optimize its performance. Therefore, rather than 

passively accepting the design of the Markov chain and the corresponding fixed 

transition matrix, it is possible to be proactive. In fact, for each possible state of the 

Markovian chain, it is possible to make a decision about which one of the several 

alternative actions should be taken in that state. The action chosen affects the transition 

probabilities as well as both the immediate costs and subsequent costs from operating 

the system. The objective is to choose the optimal actions for the respective states when 

considering both immediate and subsequent costs. The decision process for doing this is 

referred to as Markov decision process. 

The model for the Markov decision process considered in this work can be 

summarized as follows: 

1. The state i of a discrete time Markov chain is observed after each 

transition (i = 0,1,…, M). 

2. After each observation, a decision (action) k is chosen from a set of K 

possible decisions (k = 1,2,…, K). (Note that some of the K decisions 

may not be relevant for some of the states). 

3. If decision di = k is made in state i, an immediate cost is incurred that has 

an expected value Cik. 

4. The decision di = k in state i determines what the transition probabilities 

will be for the next transition from state i. Denote these transition 

probabilities by pij(k), for j =0,1,…, M. 

5. A specification of the decisions for the respective states (d0, d1,…, dM) 

prescribes a policy for the Markov decision process. 
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6. The objective is to find an optimal policy according to some cost 

criterion which considers both immediate costs and subsequent costs that 

result from the future evolution of the process. One common criteria is to 

minimize the (long-run) expected average cost per unit time. 

 

This general model qualifies to be a Markov decision process because it possesses the 

Markovian property that characterizes any Markov process. In particular, given the 

current state and decision, any probabilistic statement about the future of the process is 

completely unaffected by providing any information about the history of the process. 

This property holds here since (1) we are dealing with a Markov chain, (2) the new 

transition probabilities depend on only the current state and decision, and (3) the 

immediate expected cost also depends on only the current state and decision. 

There exists several procedures to find the optimal policy. One of them is to use 

the exhaustive enumeration, but this one is appropriate only for tiny stationary and 

deterministic problems, where there are only few relevant policies. In many applications 

where there are many policies to be evaluated, this approach is not feasible. For such 

cases, algorithms that can efficiently find an optimal policy are needed. Some of them 

are described in the next sections. 

III.4.1 Linear programming and optimal policies 
 

Any stationary and deterministic policy R can be viewed as a rule that the 

prescribes decision di(R) whenever the system is in state i, for each i = 0,1,…,M. Thus, 

R is characterized by the values 

{ })(),...,(),( 10 RdRdRd M . 

Equivalently, R can be characterized by assigning values Dik = 0 or 1 in the 

matrix 

 Decision k 

State    



















MKMM

K

K

DDD

DDD

DDD

...

............

...

...

11

11211

00201

 

Where each Dik (i = 0,1,…,M and k = 1,2,…,K) is defined as 
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



=
istateinmadebetoisk

otherwise

decisionif
Dik 0

1
 

Therefore, each row in the matrix must contain a single 1 with the rest of the elements 

0s. 

Introducing Dik provides motivation for a linear programming formulation. It is 

hoped that the expected cost of a policy can be expressed as a linear function of Dik or a 

related variable, subject to linear constraints. Unfortunately, the Dik values are integers 

(0 or 1), and continuous variables are required for a linear programming formulation. 

This requirement can be handled by expanding the interpretation of a policy. The 

previous definition calls for making the same decision every time the system is in state i. 

The new interpretation of a policy will call for determining a probability distribution for 

the decision to be made when the system is in state i. With this new interpretation, the 

Dik now need to be redefined as 

{ }istatekdecisionPDik === | . 

In other words, given that the system is in state i, variable Dik is the probability of 

choosing decision k as the decision to be made. Therefore, (Di1, Di2, . . . , Dik) is the 

probability distribution for the decision to be made in state i. This kind of policy using 

probability distributions is called a randomized policy, whereas the policy calling for 

Dik = 0 or 1 is a deterministic policy. Randomized polizie can again be characterized by 

the matrix 

            Decision k 

 State    



















MKMM

K

K

DDD

DDD

DDD

...

............

...

...

11

11211

00201

 

where each row sum sto 1, and now 10 ≤≤ ikD .  

III.4.1.1. A linear programming formulation 
 

The convenient decision variables (denoted here by iky ) for a linear 

programming model are defined as follows. For each Mi ,...,1,0= and Kk ,...,2,1= , let 
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iky be the steady-state unconditional probability that the system is in state i  and  

decision k  is made; i.e., 

{Pyik = state = i  and decision }k= . 

 
Each iky  is closely related to the corresponding ikD since, from the rules of 

conditional probability, iky = iki Dπ , where iπ  is the steady-state probability that the 

Markov chain is in state i . Furthermore, 

∑
=

=
K

k
iki y

1

π , 

so that 

∑
=

== K

k
ik

ik

i

ik
ik

y

yy
D

1

π
 

There exist several constraints on iky : 

 

1. 1
1

=∑
=

M

i
iπ  so that  1

0 1

=∑∑
= =

M

i

K

k
iky . 

 

2. From results on steady-state probabilities ∑
=

=
M

i
ijij p

0

ππ  so that 

( )∑ ∑∑
= = =

=
K

k

M

i

K

k
ijikjk kpyy

1 0 1

,        for Mj ,...,1,0= . 

3.  0≥iky ,      for Mi ,...,1,0=     and    Kk ,...,2,1= . 

The long-run expected average cost per unit time is given by 

( ) ∑∑∑∑
= == =

==
M

i

K

k
ikik

M

i

K

k
ikiki yCDCCE

0 10 1

π . 

Hence, the linear programming model is to choose the iky  so as to 

Minimize ∑∑
= =

=
M

i

K

k
ikik yCZ

0 1

, 
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subject to the constraints: 

 (1)      1
0 1

=∑∑
= =

M

i

K

k
iky . 

 

(2)       ( ) 0
0 11

=−∑∑∑
= ==

M

i

K

k
ijik

K

k
jk kpyy ,       for Mj ,...,1,0= . 

 
(3)       ,0≥iky          for ;,...,1,0 Mi =   .,...,2,1 Kk =  

 
Thus, this model has 2+M  functional constraints and ( )1+MK  decision 

variables. Assuming that the model is not too huge, it can be solved by the 

simplex method. Once the iky  values are obtained, each ikD  is found from 

.

1
∑

=

=
K

k
ik

ik
ik

y

y
D  

The optimal solution obtained by the simplex method has some interesting 

properties. It will contain 1+M  basic variables .0≥iky  It can be shown that 0>iky  

for at least one ,,...,2,1 Kk =  for each .,...,1,0 Mi =  Therefore, it follows that 0>iky  

for only one k for each .,...,1,0 Mi =  Consequently, each 0=ikD  or 1. 

The key conclusion is that the optimal policy found by the simplex method is 

deterministic rather than randomized. Thus, allowing policies to be randomized does not 

help at all in improving the final policy. However, it serves an extremely useful role in 

this formulation by converting integer variables (the ikD ) to continuous variables so 

that linear programming (LP) can be used.(The analogy in integer programming is to 

use the LP relaxation so that the simplex method can be applied and then to have the 

integer solutions property hold so that the optimal solution for the LP relaxation turns 

out to be integer anyway.) 

Linear programming can be thus used to solve vastly large problems, and 

software packages for the simplex method are very widely available. 

III.4.2 Policy improvement algorithm 
 

After the presentation of the exhaustive enumeration and the linear programming 

techniques, hereafter I present a third popular method to derive an optimal policy for 
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Markov decision processes called policy improvement algorithm. The key advantage of 

this method is that it tends to be very efficient, because it usually reaches an optimal 

policy in a relatively small number of iterations. 

As a joint result of the current state i of the system and the decision kRdi =)(  

when operating under policy R, two things occur. An (expected) cost ikC  is incurred 

that depends upon only the observed state of the system and the decision made. The 

system moves to state j at the next observed time period, with transition probability 

given by )(kpij . If, in fact, state j influences the cost that has been incurred, then ikC  is 

calculated as follows. Denote by )(kqij  the (expected) cost incurred when the system is 

in state I and decision k is made and then it evolves to state j at the next observed time 

period. Then 

∑
=

=
M

j
ijijik kpkqC

0

).()(  

It is possible to show that, for any given policy R, there exist values 

g(R), ),(0 Rv ),(1 Rv …, )(RvM  that satisfy 

),()()()(
0

RvkpCRvRg j

M

j
ijiki ∑

=

+=+         for .,...,2,1,0 Mi =  

Denote by )(Rvn
i  the total expected cost of a system starting in state I 

(beginning the first observed time period) and evolving for n time periods. Then )(Rvn
i  

has two components: ,ikC  the cost incurred during the first observed time period, and 

∑
=

−
M

j

n
jij Rvkp

0

1 ),()(  the total expected cost of the system evolving over the remaining 

1−n  time periods. This gives the recursive equation 

∑
=

−+=
M

j

n
jijik

n
i RvkpCRv

0

1 ),()()(           for ,,...,2,1,0 Mi =  

where iki CRv =)(1  for all i. 
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It will be useful to explore the behaviour of )(Rvn
i as n grows large. Recall that 

the (long-run) expected average cost per unit time following any policy R can be 

expressed as  

∑
=

=
M

i
ikiCRg

0

,)( π   

which is independent of the starting state i. Hence, )(Rvn
i behaves approximately as n 

g(R) for large n. In fact, if we neglect small fluctuations, )(Rvn
i can be expressed as the 

sum of two components: ),()()( RvRngRv i
n
i +≈  where the first component is 

independent of the initial state and the second is dependent upon the initial state. Thus, 

)(Rvi  can be interpreted as the effect on the total expected cost due to starting in state i. 

Consequently, ),()()()( RvRvRvRv ji
n
j

n
i −≈−  so that )()( RvRv ji −  is a measure of the 

effect of starting in state i rather than state j. Letting n grow large, it is then possible to 

substitute )()()( RvRngRv i
n
i +=  and ( ) )()(1)(1 RvRgnRv j

n
j +−=−  into the recursive 

equation. This leads to the system of equations given in the opening paragraph of this 

subsection.  

Note that this system has M+1 equations with M+2 unknowns, so that one of 

these variables may be chosen arbitrarily. By convention, )(RvM will be chosen equal to 

zero. Therefore, by solving the system of linear equations, I can obtain ),(Rg  the (long-

run) expected average cost per unit time when policy R is followed. In principle, all 

policies can be enumerated and that policy which minimizes )(Rg  can be found. 

However, even for a moderate number of states and decisions, this technique is 

cumbersome. Fortunately, there exists an algorithm that can be used to evaluate policies 

and find the optimal one without complete enumeration, as described next. 

III.4.2.1. The Policy Improvement Algorithm 
 

The algorithm begins by choosing an arbitrary policy .1R  It then solves the 

system of equations to find the values of )(),...,(),(),( 1101 RvRvRvRg M −  [with 

0)( =RvM ]. This step is called value determination. A better policy, denoted by ,2R is 

then constructed. This step is called policy improvement. These two steps constitute an 
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iteration of the algorithm. Using the new policy 2R , we perform another iteration. These 

iterations continue until two successive iterations lead to identical policies, which 

signifies that the optimal policy has been obtained. The details are outlined below: 

Initialization: Choose an arbitrary initial trial policy .1R  Set 1=n  

Iteration n: 

Step  1 - Value determination:  For policy  ,nR use ),(kpij  ,ikC  and 0)( =nM Rv  to solve 

the system of M + 1 equations 

∑
=

−+=
M

j
ninjijikn RvRvkpCRg

0

),()()()(            for ,,...,1,0 Mi =  

for all M + 1 unknown values of ).(),...,(),(),( 110 nMnnn RvRvRvRg −  

 Step 2 - Policy improvement:  Using the current values of  )( ni Rv computed for policy  

,nR find the alternative policy 1+nR  such that, for each state kRdi ni =+ )(, 1  is the decision that 

minimizes  

∑
=

−+
M

j
ninjijik RvRvkpC

0

)()()(
 

i.e., for each state i, 

kk
Minimize

,...,2,1=
       








−+∑

=

M

j
ninjijik RvRvkpC

0

)()()( , 

and then set )( 1+ni Rd  equal to the minimizing value of k. This procedure defines a new policy 1+nR . 

Optimality test: The current policy 1+nR  is optimal if this policy is identical to policy .nR  If it 

is, stop. Otherwise, reset 1+= nn  and perform another iteration. 

 

Two key properties of this algorithm are 

1.  ),()( 1 nn RgRg ≤+          for ,...2,1=n  

2.  The algorithm terminates with an optimal policy in a finite number of 

iterations. 
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III.4.3 Discounted cost criterion 
 

Up to now, policies were measured on the basis of their (long-run) expected 

average cost per unit time. Now I turn to an alternative measure of performance, namely, 

the expected total discounted cost. 

This measure uses a discount factor α, where 0 < α < 1. The discount factor α 

can be interpreted as equal to 1/(1+ i ), where i is the current interest rate per period. 

Thus, α is the present value of one unit of cost one period in the future. Similarly, αm is 

the present value of one unit of cost m periods in the future. 

This discounted cost criterion becomes preferable to the average cost criterion 

when the time periods for the Markov chain are sufficiently long that the time value of 

money should be taken into account in adding costs in future periods to the cost in the 

current period. Another advantage is that the discounted cost can readily be adapted to 

dealing with a finite-period Markov decision process where the Markov chain will 

terminate after a certain number of periods. 

Both the policy improvement technique and the linear programming approach 

still can be applied here with relatively minor adjustments from the average cost case, as 

I describe next. Then I will present another technique, called the method of successive 

approximations, for quickly approximating an optimal policy. 

III.4.3.1. A Policy Improvement Algorithm 
 

To derive the expression needed for the value determination and policy 

improvement steps of the algorithm, I now adopt the viewpoint of probabilistic dynamic 

programming. In particular, for each state i (i = 0,1,…,M) of a Markov decision process 

operating under policy R, let ( )RV n
i  be the expected total discounted cost when the 

process starts in state i (beginning the first observed time period) and evolves for n time 

periods. Then ( )RV n
i  has two components: ikC , the cost incurred during the first 

observed time period, and ( ) ( )∑
=

−
M

j

n
jij RVkp

0

1α , the expected total discounted cost of the 

process evolving over the remaining 1−n  time periods. For each Mi ,...,1,0= , this 

yields the recursive equation 
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( ) ( ) ( )∑
=

−+=
M

j

n
jijik

n
i RVkpCRV

0

1α , 

As n approaches infinity, this recursive equation converges to 

( ) ( ) ( )∑
=

+=
M

j
jijiki RVkpCRV

0

α ,      for Mi ,...,1,0= , 

where ( )RVi  can now be interpreted as the expected total discounted cost when the 

process starts in state I and continues indefinitely. There are 1+M  equations and 

1+M  unknowns, so the simultaneous solution of this system of equations yields the 

( )RVi . 

This system of equations provides the expressions needed for a policy 

improvement algorithm. After summarizing this algorithm in general terms, we shall 

use it to check whether this particular policy still is optimal under the discounted cost 

criterion. 

 
Summary of the Policy Improvement Algorithm (Discounted Cost Criterion): 
 

Initialization: Choose an arbitrary initial trial policy 1R . Set n=1. 

Iteration n: 

 Step 1: Value determination: For policy nR , use ( )kpij  and ikC  to solve the system of 

1+M  equations 

( ) ( ) ( )∑
=

+=
M

j
njijikni RVkpCRV

0

,α                                 for   i = 0, 1,…,M, 

for all M+1 unknown values of ( ) ( ) ( ).,...,, 10 nMnn RVRVRV   

Step 2: Policy improvement: Using the current values of the ( ),ni RV find the alternative policy 

1+nR  such that, for each state i, ( ) kRd ni =+1  is the decision that minimizes 

( ) ( )∑
=

+
M

j
njijik RVkpC

0

α
 

i.e., for each state i, 
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Kk
Minimize

,...,2,1=
   ( ) ( )








+ ∑

=

M

j
njijik RVkpC

0

α , 

and then set ( )1+ni Rd  equal to the minimizing value of k. This procedure defines a new policy .1+nR  

Optimality test: The current policy 1+nR  is optimal if this policy is identical to policy .nR  If it 

is, stop. Otherwise, reset n = n + 1 and perform another iteration. 

 

Three key properties of this algorithm are as follows: 

 

1. ( ) ( ),1 nini RVRV ≤+                 for i = 0, 1, …,M and n = 1, 2,…. 

2. The algorithm terminates with an optimal policy in a finite number of 

iterations. 

3. The algorithm is valid without the assumption (used for the average cost case) 

that the Markov chain associated with every transition matrix is irreducible. 

III.4.3.2. Linear Programming Formulation 
 

The linear programming formulation for the discounted cost case is similar to 

that for the average cost case. However, we no longer need the first constraint given 

before; but the other functional constraints do need to include the discount factor α . 

The other difference is that the model now contains constants jβ  for j = 0, 1, …, 

M. 

These constants must satisfy the conditions 

∑
=

=
M

j
j

0

1β ,                 0>jβ       for j = 0, 1, …, M, 

but otherwise they can be chosen arbitrarily without affecting the optimal policy 

obtained from the model. 

The resulting model is to choose the values of the continuous  decision variables 

iky  so as to 

Minimize ∑∑
= =

=
M

i

K

k
ikik yCZ

0 1

, 
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subject to the constraints 

(1)   ( )∑∑∑
= ==

=−
M

i

K

k
jijik

K

k
jk kpyy

0 11

βα ,                                 for  j = 0, 1, …, M,     

(2)   0≥iky ,                        for   i = 0, 1, …, M;   k = 1, 2, …, K.    

Once the simplex method is used to obtain an optimal solution for this model, 

the corresponding optimal policy then is defined by 

PDik = {decision = k and state = i} =  

∑
=

K

k
ik

ik

y

y

1

. 

The iky  now can be interpreted as the discounted expected time of being in state 

i and making decision k, when the probability distribution of the initial state  (when 

observations begin) is { } jjXP β==0  for j= 0, 1, …, M. In other words, if Pzn
ik = {at 

time n, state = i and decision = k}, then 

⋅⋅⋅++++= 332210
ikikikikik zzzzy ααα . 

With the interpretation of the jβ  as initial state probabilities (with each 

probability greater than zero), Z can be interpreted as the corresponding expected total 

discounted cost. Thus, the choice of jβ  affects the optimal value of Z (but not the 

resulting optimal policy). 

It again can be shown that the optimal policy obtained from solving the linear 

programming model is deterministic; that is, 0=ikD  or 1. Furthermore, this technique 

is valid without the assumption (used for the average cost case) that the Markov chain 

associated with every transition matrix is irreducible. 

III.4.3.3. Finite-Period Markov Decision Processes and the Method of 
Successive Approximations 

 

I now turn our attention to an approach, called the method of successive 

approximations, for quickly finding at least an approximation to an optimal policy. 

We have assumed that the Markov decision process will be operating 

indefinitely, and we have sought an optimal policy for such a process. The basic idea of 

the method of successive approximations is to instead find an optimal policy for the 
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decisions to make in the first period when the process has only n time periods to go 

before termination, starting with n = 1, then n = 2, then n = 3, and so on. As n grows 

large, the corresponding optimal policies will converge to an optimal policy for the 

infinite-period problem of interest. Thus, the   policies obtained for n = 1, 2, 3, … 

provide successive approximations that lead to the desired optimal policy. 

The reason that this approach is attractive is that we already have a quick 

method of finding an optimal policy when the process has only n periods to go, namely, 

probabilistic dynamic programming. 

In particular, for i = 0, 1, …, M, let n
iV  be the expected total discounted cost of 

following an optimal policy, given that process starts in state i and has only n periods to 

go.  

By the principle of optimality for dynamic programming, the niV  are obtained 

from the recursive relationship 

( )








+= ∑
=

−
M

j

n
jijik

k

n
i VkpCV

0

1min α ,                      for  i = 0, 1, …, M. 

The minimizing value of k provides the optimal decision to make in the first 

period when the process starts in state i. 

To get started, with n = 1, all the 00 =iV  so that 

{ }ik
K

i CV min1 = ,                for  i = 0, 1, …, M. 

Although the method of successive approximations may not lead to an optimal 

policy for the infinite-period problem after only a few iterations, it has one distinct 

advantage over the policy improvement and linear programming techniques. It never 

requires solving a system of simultaneous equations, so each iteration can be performed 

simply and quickly. 

Furthermore, if the Markov decision process actually does have just n periods to 

go, n iterations of this method definitely will lead to an optimal policy. (For an n-period 

problem, it is permissible to set 1=α , that is, no discounting, in which case the 

objective is to minimize the expected total cost over n periods.) 

 



 
 
 

48 

Chapter IV  

Reinforcement Learning 

IV.1. Introduction 
 

Due to well known scalability problems with MDP control framework, a MDP 

algorithms is not suitable to be implemented in real time systems, as the one considered 

in this work. In fact, the path selection engine in the NGHN QoS controller is in charge 

of deciding the path for a new flow as soon as it receives a new flow request. In addition, 

due to the frequent link faults in the considered home networks, also re-routing has to 

be calculated in real time to avoid loss of packet during the handover from the old path 

to the new path.  

Reinforcement learning (RL) is a control framework that can be easily built on a 

MDP control framework of a system and produces interesting results that can be 

obtained with low computation complexity. For this reason, the RL approach is 

presented here as it is used in this work to derive, form the general MDP control 

framework, a RL new algorithm that can be implemented in real time NGHN controllers 

and provides, at the same time, results that are very close to the ones that are obtained 

with the optimal MDP controller. 

IV.2. An introduction to Reinforcement Learning 
 

Reinforcement learning [15] is learning what to do so as to maximize a 

numerical reward signal. The learner is not told which actions to take, as in most forms 

of machine learning, but instead must discover which actions yield the most reward by 

trying them. In the most interesting and challenging cases, actions may affect not only 

the immediate reward but also the next situation and, through that, all subsequent 

rewards. These two characteristics (namely trial-and-error search and delayed reward) 

are the two most important distinguishing features of reinforcement learning.  

Reinforcement learning is defined not by characterizing learning methods, but 

by characterizing a learning problem. Any method that is well suited to solving that 
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problem, we consider to be a reinforcement learning method. A full specification of the 

reinforcement learning problem in terms of optimal control of Markov decision 

processes is presented later, but the basic idea is simply to capture the most important 

aspects of the real problem facing a learning agent interacting with its environment to 

achieve a goal. Clearly, such an agent must be able to sense the state of the environment 

to some extent and must be able to take actions that affect the state. The agent also must 

have a goal or goals relating to the state of the environment. The formulation is intended 

to include just these three aspects (sensation, action, and goal) in their simplest possible 

forms without trivializing any of them. 

One of the challenges that arise in reinforcement learning and not in other kinds 

of learning is the trade-off between exploration and exploitation. To obtain a lot of 

reward, a reinforcement learning agent must prefer actions that it has tried in the past 

and found to be effective in producing reward. But to discover such actions, it has to try 

actions that it has not selected before. The agent has to exploit what it already knows in 

order to obtain reward, but it also has to explore in order to make better action 

selections in the future. The dilemma is that neither exploration nor exploitation can be 

pursued exclusively without failing at the task. The agent must try a variety of actions 

and progressively favor those that appear to be best. On a stochastic task, each action 

must be tried many times to gain a reliable estimate its expected reward. The 

exploration-exploitation dilemma has been intensively studied by mathematicians for 

many decades. 

Another key feature of reinforcement learning is that it explicitly considers the 

whole problem of a goal-directed agent interacting with an uncertain environment. All 

reinforcement learning agents have explicit goals, can sense aspects of their 

environments, and can choose actions to influence their environments. Moreover, it is 

usually assumed from the beginning that the agent has to operate despite significant 

uncertainty about the environment it faces. When reinforcement learning involves 

planning, it has to address the interplay between planning and real-time action selection, 

as well as the question of how environmental models are acquired and improved. When 

reinforcement learning involves supervised learning, it does so for specific reasons that 

determine which capabilities are critical and which are not. For learning research to 

make progress, important subproblems have to be isolated and studied, but they should 

be subproblems that play clear roles in complete, interactive, goal-seeking agents, even 

if all the details of the complete agent cannot yet be filled in. 
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IV.2.1 Elements of RL 
 

Beyond the agent and the environment, one can identify four main subelements 

of a reinforcement learning system: a policy, a reward function, a value function, and, 

optionally, a model of the environment.  

A policy defines the learning agent's way of behaving at a given time. Roughly 

speaking, a policy is a mapping from perceived states of the environment to actions to 

be taken when in those states. It corresponds to what in psychology would call a set of 

stimulus-response rules or associations. In some cases the policy may be a simple 

function or lookup table, whereas in others it may involve extensive computation such 

as a search process. The policy is the core of a reinforcement learning agent in the sense 

that it alone is sufficient to determine behavior. In general, policies may be stochastic.  

A reward function defines the goal in a reinforcement learning problem. 

Roughly speaking, it maps each perceived state (or state-action pair) of the environment 

to a single number, a reward, indicating the intrinsic desirability of that state. A 

reinforcement learning agent's sole objective is to maximize the total reward it receives 

in the long run. The reward function defines what are the good and bad events for the 

agent. In a biological system, it would not be inappropriate to identify rewards with 

pleasure and pain. They are the immediate and defining features of the problem faced 

by the agent. As such, the reward function must necessarily be unalterable by the agent. 

It may, however, serve as a basis for altering the policy. For example, if an action 

selected by the policy is followed by low reward, then the policy may be changed to 

select some other action in that situation in the future. In general, reward functions may 

be stochastic.  

Whereas a reward function indicates what is good in an immediate sense, a value 

function specifies what is good in the long run. Roughly speaking, the value of a state is 

the total amount of reward an agent can expect to accumulate over the future, starting 

from that state. Whereas rewards determine the immediate, intrinsic desirability of 

environmental states, values indicate the long-term desirability of states after taking into 

account the states that are likely to follow, and the rewards available in those states. For 

example, a state might always yield a low immediate reward but still have a high value 

because it is regularly followed by other states that yield high rewards. Or the reverse 

could be true. To make a human analogy, rewards are like pleasure (if high) and pain (if 

low), whereas values correspond to a more refined and farsighted judgment of how 
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pleased or displeased we are that our environment is in a particular state. Expressed this 

way, it is clear that value functions formalize a basic and familiar idea.  

Rewards are in a sense primary, whereas values, as predictions of rewards, are 

secondary. Without rewards there could be no values, and the only purpose of 

estimating values is to achieve more reward. Nevertheless, it is values with which we 

are most concerned when making and evaluating decisions. Action choices are made 

based on value judgments. We seek actions that bring about states of highest value, not 

highest reward, because these actions obtain the greatest amount of reward for us over 

the long run. In decision-making and planning, the derived quantity called value is the 

one with which we are most concerned. Unfortunately, it is much harder to determine 

values than it is to determine rewards. Rewards are basically given directly by the 

environment, but values must be estimated and reestimated from the sequences of 

observations an agent makes over its entire lifetime. In fact, the most important 

component of almost all reinforcement learning algorithms is a method for efficiently 

estimating values. The central role of value estimation is arguably the most important 

thing we have learned about reinforcement learning over the last few decades.  

The fourth and final element of some reinforcement learning systems is a model 

of the environment. This is something that mimics the behavior of the environment. For 

example, given a state and action, the model might predict the resultant next state and 

next reward. Models are used for planning, by which we mean any way of deciding on a 

course of action by considering possible future situations before they are actually 

experienced. The incorporation of models and planning into reinforcement learning 

systems is a relatively new development. Early reinforcement learning systems were 

explicitly trial-and-error learners; what they did was viewed as almost the opposite of 

planning. Nevertheless, it gradually became clear that reinforcement learning methods 

are closely related to dynamic programming methods, which do use models, and that 

they in turn are closely related to state-space planning methods. Modern reinforcement 

learning spans the spectrum from low-level, trial-and-error learning to high-level, 

deliberative planning. 

IV.2.2 Evaluative feedback 
 

The most important feature distinguishing reinforcement learning from other 

types of learning is that it uses training information that evaluates the actions taken 

rather than instructs by giving correct actions. This is what creates the need for active 
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exploration, for an explicit trial-and-error search for good behavior. Purely evaluative 

feedback indicates how good the action taken is, but not whether it is the best or the 

worst action possible. Evaluative feedback is the basis of methods for function 

optimization, including evolutionary methods. Purely instructive feedback, on the other 

hand, indicates the correct action to take, independently of the action actually taken. 

Thus, evaluative feedback depends entirely on the action taken, whereas instructive 

feedback is independent of the action taken. 

Let’s consider the following learning problem. You are faced repeatedly with a 

choice among n different options, or actions. After each choice you receive a numerical 

reward chosen from a stationary probability distribution that depends on the action you 

selected. Your objective is to maximize the expected total reward over some time period. 

Each action selection is called a play.  

This is the original form of the n-armed bandit problem. In this n-armed bandit 

problem, each action has an expected or mean reward given that that action is selected; 

let’s call this the value of that action. If you knew the value of each action, then it would 

be trivial to solve the n-armed bandit problem: you would always select the action with 

highest value. It is assumed here that you do not know the action values with certainty, 

although you may have estimates.  

If you maintain estimates of the action values, then at any time there is at least 

one action whose estimated value is greatest. This is called a greedy action. If you select 

a greedy action, you are exploiting your current knowledge of the values of the actions. 

If instead you select one of the nongreedy actions, then you are exploring because this 

enables you to improve your estimate of the nongreedy action's value. Exploitation is 

the right thing to do to maximize the expected reward on the one play, but exploration 

may produce the greater total reward in the long run. For example, suppose the greedy 

action's value is known with certainty, while several other actions are estimated to be 

nearly as good but with substantial uncertainty. The uncertainty is such that at least one 

of these other actions probably is actually better than the greedy action, but you don't 

know which one. If you have many plays yet to make, then it may be better to explore 

the nongreedy actions and discover which of them are better than the greedy action. 

Reward is lower in the short run, during exploration, but higher in the long run because 

after you have discovered the better actions, you can exploit them. Because it is not 

possible both to explore and to exploit with any single action selection, one often refers 

to the "conflict" between exploration and exploitation.  
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In any specific case, whether it is better to explore or exploit depends in a 

complex way on the precise values of the estimates, uncertainties, and the number of 

remaining plays. There are many sophisticated methods for balancing exploration and 

exploitation for particular mathematical formulations of the n-armed bandit and related 

problems. However, most of these methods make strong assumptions about stationarity 

and prior knowledge that are either violated or impossible to verify in applications and 

in the full reinforcement learning problem that we consider in subsequent chapters. The 

guarantees of optimality or bounded loss for these methods are of little comfort when 

the assumptions of their theory do not apply.  

Let’sdenote the true (actual) value of action a as ( )aQ* , and the estimated value 

at the t th play as ( )aQt . Recall that the true value of an action is the mean reward 

received when that action is selected. One natural way to estimate this is by averaging 

the rewards actually received when the action was selected. In other words, if at the tth 

play action a has been chosen ka times prior to t, yielding rewards 
akrrr +++ ...21 , then 

its value is estimated to be 

( )
a

k

t k

rrr
aQ a

+++
=

...21
.  (4.1) 

If ka = 0,  then it is possible to define ( )aQt  instead as some default value, such 

as ( ) 00 =aQ . As ∞→ak , by the law of large numbers ( )aQt  converges to ( )aQ* . This 

is called the sample-average method for estimating action values because each estimate 

is a simple average of the sample of relevant rewards. Of course this is just one way to 

estimate action values, and not necessarily the best one. Nevertheless, for now let’s stay 

with this simple estimation method and turn to the question of how the estimates might 

be used to select actions.  

The simplest action selection rule is to select the action (or one of the actions) 

with highest estimated action value, that is, to select on play t one of the greedy actions, 

a*, for which ( ) ( )aQaQ tat max* = . This method always exploits current knowledge to 

maximize immediate reward; it spends no time at all sampling apparently inferior 

actions to see if they might really be better. A simple alternative is to behave greedily 

most of the time, but every once in a while, say with small probability ε , instead select 

an action at random, uniformly, independently of the action-value estimates. The 
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methods using this near-greedy action selection rule are called ε -greedy methods. An 

advantage of these methods is that, in the limit as the number of plays increases, every 

action will be sampled an infinite number of times, guaranteeing that ∞→ak  for all a, 

and thus ensuring that all the ( )aQt  converge to ( )aQ* . This of course implies that the 

probability of selecting the optimal action converges to greater than 1-ε , that is, to near 

certainty. These are just asymptotic guarantees, however, and say little about the 

practical effectiveness of the methods. 

The advantage of ε -greedy over greedy methids depends on the task. In general 

we can say that Reinforcement Learning requires a balance between exploration and 

exploitation. 

 

IV.2.3 Incremental Implementation 
 

The action-value methods discussed so far all estimate action values as sample 

averages of observed rewards. The obvious implementation is to maintain, for each 

action , a record of all the rewards that have followed the selection of that action. Then, 

when the estimate of the value of action a is needed at time t, it can be computed 

according to (4.1). A problem with this straightforward implementation is that its 

memory and computational requirements grow over time without bound. That is, each 

additional reward following a selection of action a requires more memory to store it and 

results in more computation being required to determine ( )aQt .  

As you might suspect, this is not really necessary. It is easy to devise 

incremental update formulas for computing averages with small, constant computation 

required to process each new reward. For some action, let Qk denote the average of its 

first k rewards (not to be confused with ( )aQk , the average for action a at the kth play). 

Given this average and a (k+1)st reward, rk+1, then the average of all k+1 rewards can be 

computed by: 

[ ]kkkk Qr
k

QQ −
+

+= ++ 11 1

1
 (4.2) 



 
 
 

55 

which holds even for k = 0, obtaining Q1 = r1 for arbitrary Q0. This implementation 

requires memory only for Qk and k, and only a small computation for each new reward. 

The general form for the update rule  is: 

[ ]eOldEstimatetTStepSizeeOldEstimateNewEstimat −+← arg                         (4.3) 

The expression [ ]eOldEstimatetT −arg  is an error in the estimate. It is reduced 

by taking a step toward the "Target." The target is presumed to indicate a desirable 

direction in which to move, though it may be noisy. In the case above, for example, the 

target is the (k+1)st reward.  

Note that the step-size parameter (StepSize) used in the incremental method 

described above changes from time step to time step. In processing the kth reward for 

action a, that method uses a step-size parameter of 
k

1
. In this work I denote the step-

size parameter by the symbol α or, more generally, by )(akα . For example, the above 

incremental implementation of the sample-average method is described by the equation 

a
k k

a
1

)( =α . Accordingly, I sometimes use the informal shorthand 
k

a
1

)( =α  to refer to 

this case, leaving the action dependence implicit. 

IV.2.4 Tracking a Nonstationary problem 
 

The averaging methods discussed so far are appropriate in a stationary 

environment, but not if the bandit is changing over time. But we may often encounter 

reinforcement learning problems that are effectively nonstationary. In such cases it 

makes sense to weight recent rewards more heavily than long-past ones. One of the 

most popular ways of doing this is to use a constant step-size parameter. For example, 

the incremental update rule (4.3) for updating an average Qk of the kpast rewards is 

modified to be: 

[ ]kkkk QrQQ −+= ++ 11 α   (4.4) 

Where the step-size parameter, α, 10 ≤< α , is costant. This results in Qk being a 

weighted average of past reward and the initial estimate Q0. 
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IV.3. The Reinforcement Learning problem 
 

The reinforcement learning problem is meant to be a straightforward framing of 

the problem of learning from interaction to achieve a goal. The learner and decision-

maker is called the agent. The thing it interacts with, comprising everything outside the 

agent, is called the environment. These interact continually, the agent selecting actions 

and the environment responding to those actions and presenting new situations to the 

agent. The environment also gives rise to rewards, special numerical values that the 

agent tries to maximize over time. A complete specification of an environment defines a 

task, one instance of the reinforcement learning problem.  

More specifically, the agent and environment interact at each of a sequence of 

discrete time steps, t = 0,1,2,3,… . At each time step t, the agent receives some 

representation of the environment's state, SSt ∈ , where S  is the set of possible states, 

and on that basis selects an action, )( tt sAa ∈ , where )( tsA is the set of actions 

available in state st. One time step later, in part as a consequence of its action, the agent 

receives a numerical reward, Rrt ∈+1 , and finds itself in a new state, st+1. Figure 10 

diagrams the agent-environment interaction. 

 

 

Figure 10 - The agent-environment interaction in RL 

At each time step, the agent implements a mapping from states to probabilities 

of selecting each possible action. This mapping is called the agent's policy and is 

denoted tπ , where ),( astπ is the probability that aat = if sst = . Reinforcement 

learning methods specify how the agent changes its policy as a result of its experience. 

The agent's goal, roughly speaking, is to maximize the total amount of reward it 
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receives over the long run. This means maximizing not immediate reward, but 

cumulative reward in the long run. 

IV.3.1 Returns 
 

So far we have been imprecise regarding the objective of learning. We have said 

that the agent's goal is to maximize the reward it receives in the long run. How might 

this be formally defined? If the sequence of rewards received after time step t is denoted 

,...,, 321 +++ ttt rrr , then what precise aspect of this sequence do we wish to maximize? In 

general, we seek to maximize the expected return, where the return, Rt, is defined as 

some specific function of the reward sequence. In the simplest case the return is the sum 

of the rewards: 

Ttttt rrrrR ++++= +++ ...321   (4.5) 

where T is a final time step. This approach makes sense in applications in which there is 

a natural notion of final time step, that is, when the agent-environment interaction 

breaks naturally into subsequences, which I call episodes, such as plays of a game, trips 

through a maze, or any sort of repeated interactions. Each episode ends in a special state 

called the terminal state, followed by a reset to a standard starting state or to a sample 

from a standard distribution of starting states. Tasks with episodes of this kind are called 

episodic tasks. In episodic tasks we sometimes need to distinguish the set of all 

nonterminal states, denoted S, from the set of all states plus the terminal state, denoted 

S+.  

On the other hand, in many cases the agent-environment interaction does not 

break naturally into identifiable episodes, but goes on continually without limit. For 

example, this would be the natural way to formulate a continual process-control task, or 

an application to a robot with a long life span. I call these continuing tasks. The return 

formulation (4.5) is problematic for continuing tasks because the final time step would 

be ∞=T , and the return, which is what we are trying to maximize, could itself easily 

be infinite. (For example, suppose the agent receives a reward of +1 at each time step.) 

Thus, in this work I usually use a definition of return that is slightly more complex 

conceptually but much simpler mathematically.  

The additional concept that I need to introduce is that of discounting. According 

to this approach, the agent tries to select actions so that the sum of the discounted 
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rewards it receives over the future is maximized. In particular, it chooses ta to maximize 

the expected discounted return: 

∑
∞

=
+++++ =+++=

0
13

2
21 ...

k
kt

k
tttt rrrrR γγγ    (4.6) 

where γ  is a parameter, 10 ≤≤ γ , called the discount rate.  

The discount rate determines the present value of future rewards: a reward 

received k time steps in the future is worth only 1−kγ  times what it would be worth if it 

were received immediately. If 1<γ , the infinite sum has a finite value as long as the 

reward sequence { }kr  is bounded. If 0=γ , the agent is "myopic" in being concerned 

only with maximizing immediate rewards: its objective in this case is to learn how to 

choose at so as to maximize only r t+1. If each of the agent's actions happened to 

influence only the immediate reward, not future rewards as well, then a myopic agent 

could maximize (4.6) by separately maximizing each immediate reward. But in general, 

acting to maximize immediate reward can reduce access to future rewards so that the 

return may actually be reduced. As γ  approaches 1, the objective takes future rewards 

into account more strongly: the agent becomes more farsighted. 

 

IV.3.1.1. Unified notation for episodic and continuing tasks 
 

As described previously, there are two kinds of reinforcement learning tasks, one 

in which the agent-environment interaction naturally breaks down into a sequence of 

separate episodes (episodic tasks), and one in which it does not (continuing tasks). The 

former case is mathematically easier because each action affects only the finite number 

of rewards subsequently received during the episode. It is therefore useful to establish 

one notation that enables us to talk precisely about both cases simultaneously.  

To be precise about episodic tasks requires some additional notation. Rather than 

one long sequence of time steps, we need to consider a series of episodes, each of which 

consists of a finite sequence of time steps. We number the time steps of each episode 

starting anew from zero. Therefore, we have to refer not just to st, the state 

representation at time t, but to st,i, the state representation at time t of episode i (and 

similarly for at,i, r t,i, πt,i, Ti, etc.). However, it turns out that, when we discuss episodic 

tasks we will almost never have to distinguish between different episodes. We will 
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almost always be considering a particular single episode, or stating something that is 

true for all episodes. Accordingly, in practice we will almost always abuse notation 

slightly by dropping the explicit reference to episode number. That is, I will write st to 

refer to st,i, and so on.  

We need one other convention to obtain a single notation that covers both 

episodic and continuing tasks. We have defined the return as a sum over a finite number 

of terms in one case (4.5) and as a sum over an infinite number of terms in the other 

(4.6). These can be unified by considering episode termination to be the entering of a 

special absorbing state that transitions only to itself and that generates only rewards of 

zero. 

IV.4. Modelling the environment as a Markov chain 
 

In the reinforcement learning framework, the agent makes its decisions as a 

function of a signal from the environment called the environment's state. By "the state" 

we mean whatever information is available to the agent. We assume that the state is 

given by some preprocessing system that is nominally part of the environment. The 

state signal should not be expected to inform the agent of everything about the 

environment, or even everything that would be useful to it in making decisions.  

What we would like, ideally, is a state signal that summarizes past sensations 

compactly, yet in such a way that all relevant information is retained. This normally 

requires more than the immediate sensations, but never more than the complete history 

of all past sensations. A state signal that succeeds in retaining all relevant information is 

said to be Markov, or to have the Markov property. 

If an environment has the Markov property, then its one-step dynamics allow to 

predict the next state and expected next reward given the current state and action. One 

can show that, by iteration, one can predict all future states and expected rewards from 

knowledge only of the current state as well as would be possible given the complete 

history up to the current time. It also follows that Markov states provide the best 

possible basis for choosing actions. That is, the best policy for choosing actions as a 

function of a Markov state is just as good as the best policy for choosing actions as a 

function of complete histories. 

A reinforcement learning task that satisfies the Markov property is called a 

Markov decision process, or MDP. If the state and action spaces are finite, then it is 
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called a finite Markov decision process (finite MDP). Finite MDPs are particularly 

important to the theory of reinforcement learning. 

A particular finite MDP is defined by its state and action sets and by the one-step 

dynamics of the environment. Given any state and action, s and a, the probability of 

each possible next state, s’, is 

{ }aassssP ttt
a

ss ==== + ,|'Pr 1'  (4.7) 

These quantities are called transition probabilities. Similarly, given any current 

state and action, s and a, together with any next state, s’, the expected value of the next 

reward is 

{ }',,| 11' ssaassrER tttt
a
ss ==== ++   (4.8) 

These quantities, a
ssP '  and a

ssR ' , completely specify the most important aspects of 

the dynamics of a finite MDP (only information about the distribution of rewards 

around the expected value is lost). 

Almost all reinforcement learning algorithms are based on estimating value 

functions--functions of states (or of state-action pairs) that estimate how good it is for 

the agent to be in a given state (or how good it is to perform a given action in a given 

state). The notion of "how good" here is defined in terms of future rewards that can be 

expected, or, to be precise, in terms of expected return. Of course the rewards the agent 

can expect to receive in the future depend on what actions it will take. Accordingly, 

value functions are defined with respect to particular policies.  

Recall that a policy, π, is a mapping from each state, Ss∈ , and action, )(sAa∈ , 

to the probability ),( asπ of taking action a when in state s. Informally, the value of a 

state s under a policy π, denoted )(sV π , is the expected return when starting in s and 

following π thereafter. For MDPs, we can define )(sV π  formally as 

{ }
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where { }πE denotes the expected value given that the agent follows policy π, and t is 

any time step. Note that the value of the terminal state, if any, is always zero. We call 

the function πV the state-value function for policy π.  

Similarly, we define the value of taking action a in state s under a policy π, 

denoted ),( asQπ , as the expected return starting from s, taking the action a, and 

thereafter following policy π: 

{ }
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 ====== ∑
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We call πQ the action-value function for policy π.  

The value functions πV and πQ can be estimated from experience. 

A fundamental property of value functions used throughout reinforcement 

learning and dynamic programming is that they satisfy particular recursive relationships. 

For any policy π and any state s, the following consistency condition holds between the 

value of s and the value of its possible successor states: 

[ ]∑∑ +=
'

'' )'(),()(
s

a
ss

a
ss

a

sVRPassV ππ γπ                               (4.11) 

where it is implicit that the actions, a, are taken from the set A(s), and the next states, s’, 

are taken from the set S, or from S+ in the case of an episodic problem. Equation (4.11) 

is the Bellman equation for πV . It expresses a relationship between the value of a state 

and the values of its successor states. The value function πV  is the unique solution to its 

Bellman equation. 

IV.4.1 Optimal value functions and approssimations 
 

Solving a reinforcement learning task means, roughly, finding a policy that 

achieves a lot of reward over the long run. For finite MDPs, we can precisely define an 

optimal policy in the following way. Value functions define a partial ordering over 

policies. A policy π is defined to be better than or equal to a policy π’ if its expected 

return is greater than or equal to that of π’ for all states. In other words, π > π’ if and 

only if )()( ' sVsV ππ ≥  for all Ss∈ . There is always at least one policy that is better 

than or equal to all other policies. This is an optimal policy. Although there may be 
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more than one, we denote all the optimal policies by π*. They share the same state-

value function, called the optimal state-value function, denoted V*, and defined as 

)(max)(* sVsV π

π
=               (4.12) 

for all Ss∈ . 

Optimal policies also share the same optimal action-value function, denoted Q*, 

and defined as 

),(max),(* asQasQ π

π
=   (4.13)  

for all Ss∈  and )(sAa∈ . For the state-action pair (s,a), this function gives the 

expected return for taking action a in state s and thereafter following an optimal policy. 

Thus, we can write Q* in terms of V* as follows 

{ }aasssVrEasQ tttt ==+= ++ ,|)(*),(* 11 γ                           (4.14) 

Because V* is the value function for a policy, it must satisfy the self-consistency 

condition given by the Bellman equation for state values (4.11). Because it is the 

optimal value function, however, V* 's consistency condition can be written in a special 

form without reference to any specific policy. This is the Bellman equation for V*, or 

the Bellman optimality equation. Intuitively, the Bellman optimality equation expresses 

the fact that the value of a state under an optimal policy must equal the expected return 

for the best action from that state:  

{ }aasssVrEsV tttt
a

==+= ++ ,|)(*max)(* 11 γ                    (4.15) 

and 
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The last two equations are two forms of the Bellman optimality equation for V*. 

The Bellman optimality equation for Q* is: 
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For finite MDPs, the Bellman optimality equation (4.16) has a unique solution 

independent of the policy. The Bellman optimality equation is actually a system of 

equations, one for each state, so if there are N states, then there are N  equations in N  

unknowns. If the dynamics of the environment are known ( a
ssR '  and a

ssP ' ), then in 

principle one can solve this system of equations for V* using any one of a variety of 

methods for solving systems of nonlinear equations. One can solve a related set of 

equations for Q*.  

Once one has V*, it is relatively easy to determine an optimal policy. For each 

state s, there will be one or more actions at which the maximum is obtained in the 

Bellman optimality equation. Any policy that assigns nonzero probability only to these 

actions is an optimal policy. You can think of this as a one-step search. If you have the 

optimal value function, V*, then the actions that appear best after a one-step search will 

be optimal actions. Another way of saying this is that any policy that is greedy with 

respect to the optimal evaluation function V* is an optimal policy. The term greedy is 

used in computer science to describe any search or decision procedure that selects 

alternatives based only on local or immediate considerations, without considering the 

possibility that such a selection may prevent future access to even better alternatives. 

Consequently, it describes policies that select actions based only on their short-term 

consequences. The beauty of V* is that if one uses it to evaluate the short-term 

consequences of actions--specifically, the one-step consequences--then a greedy policy 

is actually optimal in the long-term sense in which we are interested because V* already 

takes into account the reward consequences of all possible future behavior. By means of 

V*, the optimal expected long-term return is turned into a quantity that is locally and 

immediately available for each state. Hence, a one-step-ahead search yields the long-

term optimal actions.  

Having Q* makes choosing optimal actions still easier. With Q*, the agent does 

not even have to do a one-step-ahead search: for any state s, it can simply find any 

action that maximizes ),(* asQ . The action-value function effectively caches the results 

of all one-step-ahead searches. It provides the optimal expected long-term return as a 

value that is locally and immediately available for each state-action pair. Hence, at the 

cost of representing a function of state-action pairs, instead of just of states, the optimal 
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action-value function allows optimal actions to be selected without having to know 

anything about possible successor states and their values, that is, without having to 

know anything about the environment's dynamics. 

Explicitly solving the Bellman optimality equation provides one route to finding 

an optimal policy, and thus to solving the reinforcement learning problem. However, 

this solution is rarely directly useful. It is akin to an exhaustive search, looking ahead at 

all possibilities, computing their probabilities of occurrence and their desirabilities in 

terms of expected rewards. This solution relies on at least three assumptions that are 

rarely true in practice: (1) we accurately know the dynamics of the environment; (2) we 

have enough computational resources to complete the computation of the solution; and 

(3) the Markov property. For the kinds of tasks in which we are interested, one is 

generally not able to implement this solution exactly because various combinations of 

these assumptions are violated. 

We have defined optimal value functions and optimal policies. Clearly, an agent 

that learns an optimal policy has done very well, but in practice this rarely happens. For 

the kinds of tasks in which we are interested, optimal policies can be generated only 

with extreme computational cost. As we discussed above, even if we have a complete 

and accurate model of the environment's dynamics, it is usually not possible to simply 

compute an optimal policy by solving the Bellman optimality equation. 

A critical aspect of the problem facing the agent is always the computational 

power available to it, in particular, the amount of computation it can perform in a single 

time step.  

The memory available is also an important constraint. A large amount of 

memory is often required to build up approximations of value functions, policies, and 

models. 

Our framing of the reinforcement learning problem forces us to settle for 

approximations. The on-line nature of reinforcement learning makes it possible to 

approximate optimal policies in ways that put more effort into learning to make good 

decisions for frequently encountered states, at the expense of less effort for infrequently 

encountered states. This is one key property that distinguishes reinforcement learning 

from other approaches to approximately solving MDPs. 
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IV.5. RL solutions methods 
 

There exist three fundamental classes of methods for solving the reinforcement 

learning problem: 

� Dynamic programming; 

� Monte Carlo methods; 

� Temporal-Difference learning. 

Each class of methods has its strengths and weaknesses. Dynamic programming 

methods are well developed mathematically, but require a complete and accurate model 

of the environment. Monte Carlo methods don't require a model and are conceptually 

simple, but are not suited for step-by-step incremental computation. Finally, temporal-

difference methods require no model and are fully incremental, but are more complex to 

analyze. The methods also differ in several ways with respect to their efficiency and 

speed of convergence. 

In the following sections I introduce all these methods, but I will focus in 

particular on Temporal-Difference learning, which is the one used for the fault-tolerant 

routing algorithm object of the present work. 

IV.5.1 Dynamic Programming 
 

The term dynamic programming (DP) refers to a collection of algorithms that 

can be used to compute optimal policies given a perfect model of the environment as a 

Markov decision process. Classical DP algorithms are of limited utility in reinforcement 

learning both because of their assumption of a perfect model and because of their great 

computational expense, but they are still important theoretically. DP provides an 

essential foundation for the understanding of the other two methods presented in this 

chapter. In fact, all of these methods can be viewed as attempts to achieve much the 

same effect as DP, only with less computation and without assuming a perfect model of 

the environment. 

The key idea of DP, and of reinforcement learning generally, is the use of value 

functions to organize and structure the search for good policies. 

The basic ideas and algorithms of dynamic programming as they relate to 

solving finite MDPs are:  
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� Policy evaluation: refers to the (typically) iterative computation of the value 

functions for a given policy. 

� Policy improvement: refers to the computation of an improved policy given the 

value function for that policy. 

� Putting these two computations together, we obtain policy iteration and value 

iteration, the two most popular DP methods. Either of these can be used to 

reliably compute optimal policies and value functions for finite MDPs given 

complete knowledge of the MDP 

� Insight into DP methods and, in fact, into almost all reinforcement learning 

methods, can be gained by viewing them as generalized policy iteration (GPI). 

GPI is the general idea of two interacting processes revolving around an 

approximate policy and an approximate value function. One process takes the 

policy as given and performs some form of policy evaluation, changing the 

value function to be more like the true value function for the policy. The other 

process takes the value function as given and performs some form of policy 

improvement, changing the policy to make it better, assuming that the value 

function is its value function. Although each process changes the basis for the 

other, overall they work together to find a joint solution: a policy and value 

function that are unchanged by either process and, consequently, are optimal 

 

DP may not be practical for very large problems, but compared with other 

methods for solving MDPs, DP methods are actually quite efficient. If we ignore a few 

technical details, then the (worst case) time DP methods take to find an optimal policy 

is polynomial in the number of states and actions. Linear programming methods can 

also be used to solve MDPs, and in some cases their worst-case convergence guarantees 

are better than those of DP methods. But linear programming methods become 

impractical at a much smaller number of states than do DP methods (by a factor of 

about 100). For the largest problems, only DP methods are feasible. DP is sometimes 

thought to be of limited applicability because of the curse of dimensionality, the fact 

that the number of states often grows exponentially with the number of state variables. 

Large state sets do create difficulties, but these are inherent difficulties of the problem, 

not of DP as a solution method. In fact, DP is comparatively better suited to handling 

large state spaces than competing methods such as direct search and linear programming.  
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IV.5.2 Monte Carlo methods 
 

Here I consider the first learning methods for estimating value functions and 

discovering optimal policies. Unlike the previous section, here we do not assume 

complete knowledge of the environment. Monte Carlo methods require only experience-

sample sequences of states, actions, and rewards from on-line or simulated interaction 

with an environment. Learning from on-line experience is striking because it requires no 

prior knowledge of the environment's dynamics, yet can still attain optimal behavior. 

Learning from simulated experience is also powerful. Although a model is required, the 

model need only generate sample transitions, not the complete probability distributions 

of all possible transitions that is required by dynamic programming (DP) methods. In 

surprisingly many cases it is easy to generate experience sampled according to the 

desired probability distributions, but infeasible to obtain the distributions in explicit 

form.  

Monte Carlo methods are ways of solving the reinforcement learning problem 

based on averaging sample returns. To ensure that well-defined returns are available, we 

define Monte Carlo methods only for episodic tasks. That is, we assume experience is 

divided into episodes, and that all episodes eventually terminate no matter what actions 

are selected. It is only upon the completion of an episode that value estimates and 

policies are changed. Monte Carlo methods are thus incremental in an episode-by-

episode sense, but not in a step-by-step sense.  

As for DP algorithms, Monte Carlo method is used to compute policy evaluation, 

policy improvement and generalized policy iteration. Each of these ideas taken from DP 

is extended to the Monte Carlo case in which only sample experience is available.  

In addition, we can distinghuish among on-policy methods, which attempt to 

evaluate or improve the policy that is used to make decisions, and off.policy methods, in 

which the policy used to generate behavior, called the behavior policy, may in fact be 

unrelated to the policy that is evaluated and improved, called the estimation policy. An 

advantage of this separation is that the estimation policy may be deterministic (e.g., 

greedy), while the behavior policy can continue to sample all possible actions. 

To conclude, we can say that Monte Carlo methods learn value functions and 

optimal policies from experience in the form of sample episodes. This gives them at 

least three kinds of advantages over DP methods. First, they can be used to learn 

optimal behavior directly from interaction with the environment, with no model of the 



 
 
 

68 

environment's dynamics. Second, they can be used with simulation or sample models. 

For surprisingly many applications it is easy to simulate sample episodes even though it 

is difficult to construct the kind of explicit model of transition probabilities required by 

DP methods. Third, it is easy and efficient to focus Monte Carlo methods on a small 

subset of the states. A region of special interest can be accurately evaluated without 

going to the expense of accurately evaluating the rest of the state set. 

IV.5.3 Temporal-Difference Learning 
 

TD learning is a combination of Monte Carlo ideas and dynamic programming 

(DP) ideas. Like Monte Carlo methods, TD methods can learn directly from raw 

experience without a model of the environment's dynamics. Like DP, TD methods 

update estimates based in part on other learned estimates, without waiting for a final 

outcome (they bootstrap). 

TD methods have an advantage over DP methods in that they do not require a 

model of the environment, of its reward and next-state probability distributions.  

The next most obvious advantage of TD methods over Monte Carlo methods is 

that they are naturally implemented in an on-line, fully incremental fashion. With 

Monte Carlo methods one must wait until the end of an episode, because only then is 

the return known, whereas with TD methods one need wait only one time step. 

Surprisingly often this turns out to be a critical consideration. Some applications have 

very long episodes, so that delaying all learning until an episode's end is too slow. Other 

applications are continuing tasks, like the one considered in this work, and have no 

episodes at all. Finally, as we noted in the previous section, some Monte Carlo methods 

must ignore or discount episodes on which experimental actions are taken, which can 

greatly slow learning. TD methods are much less susceptible to these problems because 

they learn from each transition regardless of what subsequent actions are taken.  

But are TD methods sound? Certainly it is convenient to learn one guess from 

the next, without waiting for an actual outcome, but can we still guarantee convergence 

to the correct answer? Happily, the answer is yes. For any fixed policy π, the TD 

algorithm described above has been proved to converge to πV , in the mean for a 

constant step-size parameter if it is sufficiently small, and with probability 1 if the step-

size parameter decreases according to the usual stochastic approximation conditions. If 

both TD and Monte Carlo methods converge asymptotically to the correct predictions, 
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then a natural next question is "Which gets there first?" At the current time this is an 

open question in the sense that no one has been able to prove mathematically that one 

method converges faster than the other. In practice, however, TD methods have usually 

been found to converge faster than constant-α MC methods on stochastic tasks. 

The methods presented in the following sub-sections are today the most widely 

used reinforcement learning methods. This is probably due to their great simplicity: they 

can be applied on-line, with a minimal amount of computation, to experience generated 

from interaction with an environment; they can be expressed nearly completely by 

single equations that can be implemented with small computer programs. 

IV.5.4 TD prediction 
 

Given some experience following a policy π, both methods update their estimate 

V of πV . If a nonterminal state st is visited at time t, then both methods update their 

estimate V(st) based on what happens after that visit. Roughly speaking, Monte Carlo 

methods wait until the return following the visit is known, then use that return as a 

target for V(st). A simple every-visit Monte Carlo method suitable for nonstationary 

environments is 

[ ])()()( tttt sVRsVsV −+← α   (4.18) 

where Rt is the actual return following time t and α is a constant step-size parameter. 

Let us call this method constant-α MC. Whereas Monte Carlo methods must 

wait until the end of the episode to determine the increment to V(st) (only then is Rt 

known), TD methods need wait only until the next time step. At time t+1 they 

immediately form a target and make a useful update using the observed reward r t+1 and 

the estimate V(st+1). The simplest TD method, known as TD(0), is 

[ ])()()()( 11 ttttt sVsVrsVsV −++← ++ γα   (4.19) 

Because the TD method bases its update in part on an existing estimate, we say 

that it is a bootstrapping method, like DP. We know 

{ }ssREsV tt == |)( π
π  (4.20) 
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and 

{ }sssVrEsV ttt =+= ++ |)()( 11
π

π
π γ   (4.21) 

Roughly speaking, Monte Carlo methods use an estimate of (4.20) as a target, 

whereas DP methods use an estimate of (4.21) as a target. The Monte Carlo target is an 

estimate because the expected value in (4.20) is not known; a sample return is used in 

place of the real expected return. The DP target is an estimate not because of the 

expected values, which are assumed to be completely provided by a model of the 

environment, but because )( 1+tsV π  is not known and the current estimate, )( 1+tt sV , is 

used instead. The TD target is an estimate for both reasons: it samples the expected 

values in (4.21) and it uses the current estimate tV  instead of the true πV . Thus, TD 

methods combine the sampling of Monte Carlo with the bootstrapping of DP. As we 

shall see, with care and imagination this can take us a long way toward obtaining the 

advantages of both Monte Carlo and DP methods. 

IV.5.4.1. Sarsa: on-policy TD control 
 

The first step is to learn an action-value function rather than a state-value 

function. In particular, for an on-policy method we must estimate ),( asQπ  for the 

current behavior policy π and for all states s and actions a. This can be done using 

essentially the same TD method described above for learning πV . Recall that an 

episode consists of an alternating sequence of states and state-action pairs:  

 

 

 

Figure 11 - State and state-action pairs sequence 

Now we consider transitions from state-action pair to state-action pair, and learn 

the value of state-action pairs. Formally these cases are identical: they are both Markov 

chains with a reward process. The theorems assuring the convergence of state values 

under TD(0) also apply to the corresponding algorithm for action values: 

[ ]),(),(),(),( 111 ttttttttt asQasQrasQasQ −++← +++ γα              (4.22) 
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This update is done after every transition from a nonterminal state st. If  st+1 is 

terminal, then ),( 11 ++ tt asQ  is defined as zero. This rule uses every element of the 

quintuple of events, ),,,,( 111 +++ ttttt asras , that make up a transition from one state-action 

pair to the next. This quintuple gives rise to the name Sarsa for the algorithm.  

It is straightforward to design an on-policy control algorithm based on the Sarsa 

prediction method. As in all on-policy methods, we continually estimate πQ  for the 

behavior policy π, and at the same time change π toward greediness with respect to πQ . 

IV.5.4.2. Q-Learning: off-policy TD control 
 

One of the most important breakthroughs in reinforcement learning was the 

development of an off-policy TD control algorithm known as Q-learning. Its simplest 

form, one-step Q-learning, is defined by  

[ ]),(),(max),(),( 11 ttt
a

ttttt asQasQrasQasQ −++← ++ γα           (4.23) 

where α is the learning rate, γ is the discount factor and 1+tr  is the cost associated to 1+ts . 

 In particular, the learning rate α determines to what extent the newly acquired 

information will override the old information. A factor of 0 will make the agent not 

learn anything, while a factor of 1 would make the agent consider only the most recent 

information. The discount factor γ determines the importance of future rewards. A 

factor of 0 will make the agent "opportunistic" by only considering current rewards, 

while a factor approaching 1 will make it strive for a long-term high reward. If the 

discount factor meets or exceeds 1, the Q values will diverge. 

In this case, the learned action-value function, Q, directly approximates Q*, the 

optimal action-value function, independent of the policy being followed. This 

dramatically simplifies the analysis of the algorithm and enabled early convergence 

proofs. The policy still has an effect in that it determines which state-action pairs are 

visited and updated. However, all that is required for correct convergence is that all 

pairs continue to be updated. Under this assumption and a variant of the usual stochastic 

approximation conditions on the sequence of step-size parameters, Qt has been shown to 

converge with probability 1 to Q*. The Q-learning algorithm shown in procedural form 

is: 
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Initialize Q(s,a) arbitrarily 

Repeat (for each episode): 

 Initialize s 

 Repeat (for each step of episode): 

 Chose a from s using policy derived from Q (e.g., ε-greedy) 

 Take action a, observe r, s’ 

 [ ]),()','(max),(),(
'

asQasQrasQasQ
a

−++← γα  

 'ss ←  

until s is terminal 

 

IV.5.4.3. R-Learning for undiscounted continuing tasks 
 

R-learning is an off-policy control method for the advanced version of the 

reinforcement learning problem in which one neither discounts nor divides experience 

into distinct episodes with finite returns. In this case one seeks to obtain the maximum 

reward per time step. The value functions for a policy, π, are defined relative to the 

average expected reward per time step under the policy, πρ :  
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n 1

1
lim π

πρ   (4.24) 

assuming the process is ergodic (nonzero probability of reaching any state from any 

other under any policy) and thus that πρ  does not depend on the starting state. From 

any state, in the long run the average reward is the same, but there is a transient. From 

some states better-than-average rewards are received for a while, and from others 

worse-than-average rewards are received. It is this transient that defines the value of a 

state: 
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and the value of a state-action pair is similarly the transient difference in reward when 

starting in that state and taking that action: 
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We call these relative values because they are relative to the average reward 

under the current policy.  

There are subtle distinctions that need to be drawn between different kinds of 

optimality in the undiscounted continuing case. Nevertheless, for most practical 

purposes it may be adequate simply to order policies according to their average reward 

per time step, in other words, according to their πρ . For now let us consider all policies 

that attain the maximal value of πρ  to be optimal.  

Other than its use of relative values, R-learning is a standard TD control method 

based on off-policy GPI, much like Q-learning. It maintains two policies, a behavior 

policy and an estimation policy, plus an action-value function and an estimated average 

reward. The behavior policy is used to generate experience; it might be the ε-greedy 

policy with respect to the action-value function. The estimation policy is the one 

involved in GPI. It is typically the greedy policy with respect to the action-value 

function. If π is the estimation policy, then the action-value function, Q, is an 

approximation of πQ and the average reward, ρ , is an approximation of πρ . There has 

been little experience with this method and it should be considered experimental. 
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Chapter V  

Fault-tolerant routing in Next 
Generation Home Networks 

V.1. Introduction 
 

This chapter deals with the fault-tolerant routing problem in Next Generation 

Home Networks. At the beginning, some state of the art algorithms are presented, 

together with an explaination of the limitations of their application in the new scenario 

considered in this work. 

After that,  the fault-tolerant routing algorithm, object of this work, is described. 

First of all, the MDP formulation of the problem is described, with the definition of the 

state space, the action space, the transition matrix and the cost function. Then, the main 

scalability problem related to the implementation of the optimal MDP controller are 

described in order to explain the need to derive a new algorithm based on 

Reinforcement Learning. This explaination opens the way to the presentation of the Q-

Learning fault-tolerant algorithm. 

V.2. State of the art routing algorithms 
 

Existing routing algorithms are classified either as proactive (e.g., [16]-[18]), as 

reactive (e.g., [19], [20]) or as hybrid (e.g., [21], [22]). The proactive algorithms 

continuously update path information, which is then available at algorithm decision 

time; the drawback is that these algorithms require the knowledge of the topology of the 

whole network. Reactive algorithms performs a route discovery procedure on demand, 

i.e., only at routing decision time: on the one hand, they generate less control 

information since they must not continuously update topology information; on the other 

hand, they delay the actual data transmission until the path is discovered. Hybrid 

protocols use a combination of these two ideas. 

Clearly, the proactive approach is preferred in the considered home network 

scenario due to the fast re-routing requirements and to its limited topology width which 
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makes the updating process fast. Proactive routing problems have been successfully 

modeled as Markov Decision Processes (MDP), with the objective of maximizing the 

number of active flows supported by the network (e.g., [23]-[28]). MDPs are stochastic 

control processes, and provide a mathematical framework for optimization problems 

involving both random events and decision makers ([29]). However, in the MDP 

formulations introduced so far, the topology of the network is considered as static, and 

the dynamics of the MDP is driven by traffic events (e.g., acceptance of new flows, 

flow terminations, flow variations); the routing problem is then to decide the optimal 

paths of the active flows. As topology events such as link faults occur, the MDP must 

be re-defined and the optimal policy must be re-computed. This approach is then not 

suitable to provide fast re-routing. 

Fault-tolerant routing algorithms have been proposed in the mobile ad-hoc 

networks scenario. In [30]-[34], robustness is achieved by redundancy: the source node 

sends the same packets along all the different paths available between the source and the 

destination; these multipath routing mechanisms are not suitable for the scenario 

considered in this work, since sending multiple copies of high-bitrate flows over 

different paths would rapidly flood the network. Also in [35], a multipath routing 

algorithm is proposed, which is capable of significantly reducing the packet overhead 

by dynamically identifying unavailable paths via end-to-end path performance 

measurements. In [36], a stochastic learning-based weak estimation procedure is used to 

minimize the overhead while guaranteeing a certain level of packet delivery. By the way, 

since also both [35] and [36] use duplicate packets to achieve robustness to faults, they 

are not efficient in case of high-bitrate flows. 

V.3. MDP fault-tolerant routing in NGHNs 
 

The aim of the proactive algorithm developed in this work is twofold: 

1. Minimization of re-routing occurrences; 

2. Fast re-routing in scenarios characterized by highly variable topology. 

To achieve these objectives (recalling that, in the considered home network 

scenario, topology dynamics are faster than traffic dynamics), the proposed MDP 

algorithm considers the traffic as static, and MDP dynamics are driven by topology 

events. In this case, the optimal re-routing policy is computed by taking into 

consideration the probabilities that the paths can become unavailable in the future, and 
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explicitly specifies the new path in case of link faults. Even if this approach is capable 

of guaranteeing fast re-routing decisions, as traffic events occur the MDP must be re-

defined and the optimal policy must be re-computed. Note that the solution of the new 

MDP (i.e., the MDP defined after a traffic event) allows also the determination of the 

optimal initial routing after the traffic event. 

V.3.1 Finite-Horizon MDP definition 
 

Under the markovian2 and stationarity assumptions, a MDP is defined by a finite 

state space S, a finite set of available control actions A(s) associated to each state s ∈ S, 

a cost c(s,s',u) which is incurred by the system when it is in state s, action u is chosen, 

and the system transitions to state s', and the transition probability t(s,s',u) that, in the 

next stage, the system will be in state s' when action u in state s is chosen. The transition 

probabilities t(s,s',u)  constitute the transition matrix T. 

In finite-horizon MDPs, the system is observed for n stages. A policy is a 

function π(s;t) which at stage t maps every state s ∈ S to a unique control action 

u ∈ A(s). When the system operates under a policy π(s;t), the system incurs in the 

following expected total (undiscounted) cost: 
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where the subscript π specifies that the controller operates under policy π and 

c[s(t), u(t), s(t+1)] is the cost incurred at stage t when the system is in state s(t). The 

MDP problem is to determine the optimal policy π* minimizing (5.1). 

A standard algorithm for finite-horizon MDPs is the successive approximation 

algorithm ([42]), which returns i) the optimal policy π∗(s;t) to be applied at stage t, 

t = 1,…,n, s ∈ S; ii) the optimal value function V∗(s), which represents the expected cost 

of applying the optimal policy π∗(s;t) for stages t = 1,…,n, starting from state s ∈ S. 

 

 

 

                                                 
2 A stochastic process has the Markov property if the conditional probability distribution of the next state 
of the process depends only upon the present state and is conditionally independent of past states 
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V.3.2 MDP fault-tolerant routing 
 

In this section, the fault-tolerant routing problem is formulated as a finite-

horizon MDP. For the sake of comprehension, Table 1 summarizes part of the notation 

which will be used in this section. 

 

Element Set Cardinality 

Routing table r  Ρ is the set of all possible routing tables card(Ρ) = R 

Path status x Ξ is the set of all possible path status vectors card(Ξ) = X 

State s S is the state space card(S) < PR 

 Sx is the set of states with path status x    card(Sx) < card(S) 

Flow f Φ is the set of flows card(Φ) = F 

Link l Λ is the set of links card(Λ) = L 

 Λp is the set of the links of path p card(Λp) < L 

 Λ(x,x') is the set of the links which cause the 

transitions between x and x' as they change link 

state 

card(Λ(x,x')) < L 

Path p Π is the set of paths card(Π) = P 

 Πl is the set of the paths which include link l card(Πl) < P 

 Πf is the set of the paths which are 

available to flow f 

card(Πf) < P 

 Πr is the set of the paths in use by 

routing table r 

card(Πr) < P 

Table 1 - Definitions of flow, path and link sets 

Let us consider a network supporting K classes of services and characterized by 

a set of links Λ, with cardinality L. Each link l is characterized by its capacity bl, 

expressed in [Mbps]. Let us define a generic flow f as a triple (source, destination, class 

of service). Let the set of flows be Φ  and let F be the total number of flows. Each flow f 

is characterized by a bitrate bf, expressed in [Mbps]. 

Different paths are available to route each flow f ∈ Φ (i.e., different paths exist 

from source to destination of flow f); let Π be the set of paths, with cardinality P, and let 

Πf ⊆ Π be the set of paths available to route flow f. Moreover, each path p ∈ Π is 
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constituted by a set of links Λp ⊆ Λ. Clearly, the generic link l can be included in more 

than one path: let Πl ⊆ Π be the set of paths including link l, l = 1,…,L. 

The network routing table r  is a vector with F elements r f, f = 1,…,F; r f is equal 

to the path p assigned to flow f. The set of routing tables is then: 

{ }Ffprrrr ffF ,...,2,1 ,),...,,( 21 =Π∈===Ρ r                           (5.2) 

Let R be the number of possible routing tables, and let Πr ⊆ Π be the set of paths 

used by routing table r  (i.e., the set of paths p such that r f = p for at least one f). 

In my purposes, as specified in before, network traffic is considered static 

between two traffic events, in the sense that the number and the characteristics of the 

flows remains the same in the period between two traffic events: in other words, the 

MDP is defined between two traffic events. Traffic events are: new flow acceptance, 

flow termination and flow variation. In this work (as in the OMEGA project) I assume 

that an admission controller is in charge of admitting high-demanding flows in the 

network. Thus, the new flow acceptance event corresponds to the establishment of a 

new flow in the network; the flow termination event corresponds to the end of 

transmission of an on-going flow; the flow variation event corresponds to the variation 

of the bitrate of an already accepted flow (after re-negotiation of flow parameters with 

the admission controller). 

The MDP must be re-initialized at every traffic event. The mean interval 

between two traffic events is considered as the duration of the finite-horizon MDP. 

The control action is relevant whenever a path currently used by a flow becomes 

unavailable due to a link fault. The controller must then decide where to re-route the 

flows, i.e., which paths to select among the available ones. It is also possible that one or 

more flows cannot be routed anymore in the new link conditions: in this case, the 

admission controller must decide upon the dropping of one or more flows. From the 

routing point of view, the decision to drop a flow is equivalent to the flow termination 

traffic event, which entails the definition of a new MDP. 

In the following, it is introduced the link model, the overall framework and 

finally how the proposed algorithm is used to take routing decisions. 
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V.3.2.1. Link model 
 

In this work, I consider the possibility of incurring in link faults. The dynamics 

of each link l ∈ Λ is modeled by a two-state Markov chain: in the unavailable state, the 

link cannot be used to transmit data, i.e., its capacity is 0; in the available state, the link 

can be used to transmit data, i.e., its capacity is bl
3. I assume that both the transition 

frequency between the available state and the unavailable state and the transition 

frequency between the unavailable state and the available state are distributed according 

to Poisson processes with mean frequencies µl  and  λl, respectively, expressed in     

[min-1]. A given path p is available only if all the links of the set Λp are available. Then, 

if a link l becomes unavailable, all the paths p ∈ Πl becomes unavailable. From standard 

Markov chain theory ([37]), the probability that link l is in the available and in the 

unavailable states is computed as  λl / (λl + µl) and µl / (λl + µl), respectively. 

Link state changes trigger topology events, which drive the MDP dynamics. 

Link statistics are easily available in home networks (for example, in OMEGA link 

statistics are collected by any device in charge of controlling the network). 

V.3.2.2. Fault-tolerant MDP routing 
 

The MDP is defined by the state space S, the action space A, the transition 

probability matrix T and the cost function c. 

 

1. State space S 

The path status x is a vector with P elements xp, p = 1,…,P, such that xp = 1 if 

path p is available (i.e., if all links l ∈ Λp are available), xp = 0 otherwise. The set of 

path status vectors is then: 

{ }{ }Ppxxxx pP ,...,2,1 ,1,0),...,,( 21 =∈==Ξ x .                             (5.3) 

The number X of possible path status vectors is 2P. In the following, considering 

two path status vectors x, x' ∈ Ξ, I will write x > x' if xp > xp ∀ p ∈ Π and xp > xp for at 

least one path p ∈ Π. 

                                                 
3 Note that, for some links, a two-state link model might be insufficient. The proposed framework can be 
extended to include also links modeled by N-state Markov chain by following the rationale in [38]. 
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The system state is given by the path status vector and by the current routing 

table; the generic state s is then the (F+P)-vector s = (r ,x), with r  ∈ Π and x ∈ Ξ. 

Clearly, not all the couples (r ,x) are feasible; specifically, the state s = (r ,x) is feasible 

only if the following two feasibility conditions hold: 

rΠ∈∀= pxp  ,1 ; (5.4) 

∑
Λ∈=Φ∈

Λ∈≤
pf lprf

lf lbb
 and  

  , . (5.5) 

The first feasibility condition (5.4) states that all the paths used by r  must be 

available in x; the second condition (5.5) states that, for each link l ∈ Λ, the link 

capacity bl must be greater than or equal to the load of link l, computed as the sum of 

the bitrates of all the flows routed by r  on paths including link l. 

In addition to the states identified by equations (5.4) and (5.5), I add an 

absorbing state sabs, where the system transitions whenever no other feasible state exist 

(in brief, the absorbing state can be considered as an aggregate of all the states (r ,x) 

which does not meet the two feasibility conditions). 

The state space is then defined as follows: 

( ) ( ) ( ){ ; ,1 ;,...,, ;,...,,, 2121 rxrxrs Π∈∀=Ξ∈=Ρ∈=== pxxxxrrrS pPF  

{ }. ,;
 and  

abs
lprf

lf

pf

lbb s∪






Λ∈∀≤∑
Λ∈=Φ∈

 (5.6) 

Finally, the following sets are defined: 

� Let Λ(x,x') be the set of links which are available when the path status is x and 

whose transition to the unavailable state lead the path status from x to x > x' 

(generally, there are different links which causes the same change of path status). 

The same set of links is clearly involved in the transition from x' to x: in this 

case, the transition occurs when a given link l ∈ Λ(x,x') transitions from the 

unavailable to the available state and all the other links l ' ∈ Λ(x,x')\{ l} are already 

available. Λ(x,x') is defined as follows:  

 { }otherwise '  , if ' )',( pplpp xxpxxl ≠Π∉=Λ∈=Λ xx                 (5.7) 



 
 
 

81 

� Let Sx ⊆ S be the set of states associated to path status x: 

 { }Ξ∈=∈= xxrssx  ),,(SS                   (5.8) 

(note that Sx might be empty for some x ∈ Ξ, and that { }absSS s
x

x ∪=
Ξ∈
U ). 

2. Action Space A 

In the generic state s = (r ,x) ∈ S, if i) link l ∈ Λ(x,x') is unavailable, ii) all the 

other links l ' ∈ Λ(x,x')\{ l} are already available, and iii) l becomes available, one ore 

more paths which are not available in x (i.e., all the paths p ∈ Πl such that xp = 0) 

become available. In this case, since the path status changes from x to x' ∈ Ξ with x' > x, 

all the paths which were feasible in s are still feasible, and the system transitions from 

s = (r ,x) to the new (feasible) state s' = (r ,x') ∈ S without requiring any control action. 

On the other hand, if a link l ∈ Λ(x,x'), available in x, transitions to the 

unavailable state, it renders unavailable one or more available paths (i.e, all the 

available paths p ∈ Πl such that xp = 1). In this case, the path status vector changes from 

x to x' ∈ Ξ. If Πr ∩ Πl = ∅ (i.e., if all the paths p ∈ Πl are not used by the current 

routing table r ), the system transitions from s = (r ,x) to the new state s' = (r ,x') ∈ S 

without requiring any control action. 

Conversely, if Πr ∩ Πl ≠ ∅ (i.e., if one or more paths used by r  become 

unavailable), the controller must change the routing table. If Sx' = ∅ (i.e., if no routing 

table r ' ∈ Ρ exist such that (r ',x') ∈ S), the system transitions to the state sabs, and the 

admission controller is triggered. Otherwise, the controller must decide which routing 

table to choose among the routing tables which are feasible with respect to x'. 

Let us consider the generic state s = (r ,x) ∈ Sx, and let us assume that a transition 

occurs from the available to the unavailable state of a link l ∈ Λ(x,x'). When this event 

occurs, the decision to change the routing table from r  to r ' ∈ Ρ is denoted with u(s,s'), 

where s' = (r ',x'): 

� if s' ∈ Sx' and the controller decides to enforce the routing table r ', then 

u(s,s') = 1; 

� if s' ∈ Sx' but the controller decides to enforce another routing table, u(s,s') = 0; 

� finally, if s' ∉ S, then u(s,s') is not an available decision in s. 

Clearly, the controller must decide to enforce exactly one routing table. 
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In conclusion, the action space when the system is in state s ∈ Sx is then defined 

as follows: 

[ ] { }












∈===∅≠Λ== ∑
∈

∈  otherwise 1,0)',( ),'(' if 1)',( ,1)',( ,)',()(
'

'
'

)',(' ssxrsssssssus
x

x
s

xxs u,uuuA
S

S

 (5.9) 

where u is the vector of possible controller actions when the system is in state s ∈ Sx 

and a link l ∈ Λ(x,x') becomes unavailable. 

 

The controller policy is the function π: S×[1,n] → A defined by setting a feasible 

action vector u ∈ A(s) for each state s ∈ S and for each stage t ∈ [1,n]. The policy space 

Ο is the set of the feasible policies: 

{ }ntAStπ ,...,1 ),( ,),( =∈∈==Ο susus  (5.10) 

3. Transition matrix 

The transition frequencies between states can be inferred from the link transition 

frequencies (between their available and unavailable states) and from the above-defined 

action space. 

 

Let us consider two generic states s =(r ,x) ∈ Sx and s' = (r ,x') ∈ Sx', with the 

same routing table r  and such that x' > x. I recall that when the path status is x, it 

changes to x' if the following conditions hold: 

i) a given link l ∈ Λ(x,x') is in the unavailable state; 

ii) all the other links l ' ∈ Λ(x,x')\{ l} are already available; 

iii) link l transitions to the available state. 

 

Since the path status is x, the probability that all links l ∈ Λ(x,x') are available is 

null (otherwise the path status would be x'): thus, condition ii) implies condition i). 

From the link dynamic model, it follows that the probability of ii) is 

[ ]∏
Λ∈

µ+λλ
ll

lll
\'

'''

)',(

)/( 
xx

, and that the mean frequency of event iii) is λl. As specified above, 
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no action is required in this case, and the system transits from state s to state s' with the 

following total mean frequency: 

.' ,)',(' ,),( , )',( '
\' ''

'

)',( )',(

xxxrsxrsss xx
xx xx

>∈=∈=
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









λ
µ+λ

λ
=φ ∑ ∏

Λ∈ Λ∈
SS

l ll
l

ll

l                 (5.11) 

where in the summation I exploited the hypothesis of Poisson transition frequencies 

between link states. 

Let us consider two generic states s =(r ,x) ∈ Sx and s' =(r ',x') ∈ Sx' such that 

x > x' and Sx' ≠ ∅. I recall that when the path status is x, it changes to x' if a given link 

l ∈ Λ(x,x') transitions to the unavailable state (note that all links l  ∈ Λ(x,x') are always 

available when the path status is x). From the link dynamic model, it follows that the 

mean frequency of this event is µl. In this case, the mean frequency of the transition 

from state s to state s' depends also on the re-routing decision of the controller u(s,s'): 

'. ,' , ,)',()',( '

)',(

xxssssss xx
xx

>∈∈µ=φ ∑
Λ∈

SSu
l

l                     (5.12) 

Finally, let us consider the generic state s = (r ,x) ∈ Sx and a path status x' such 

that Sx' = ∅. In this case, the system transitions from state s to state sabs with the 

following transition frequency: 

' , , ,),( '

)',(

xxsss xx
xx

>∅=∈µ=φ ∑
Λ∈

SS
l

labs .                 (5.13) 

To obtain the transition probabilities tπ(s,s') (where the sub-index π highlights 

that some transition probabilities depend on the adopted policy), I apply a standard 

uniformization procedure ([39]): 

i) compute the so-called uniformization constant, which is an upper-bound of the 

total outgoing frequency of each state: 









φγ ∑
∈∈

)',(max>
'

ss
ss SS

 (5.14) 

ii) divide the transition frequencies by γ: 
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xxssss xx
xx

>∈∈λ
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iii) Add self-transitions to let the sum of the transitions leaving each state be 

equal to 1: 

Stt
S

∈− π

≠
∈

π ∑ sssss

ss
s

  ),',(1=),(

'
'

. (5.18) 

Note that γ is expressed in [min-1] and that, since no transition outgoing from sabs 

exists but the self-transition (5.18), its self-transition probability tπ(sabs, sabs) is 1 (sabs is 

in fact an absorbing state). 

The transition probabilities tπ(s,s') constitute the transition matrix T. 

 

Remark 1 

 

Note that when the system is in a given state in the subset Sx and a topology 

event causes the path status vector to transition from x to x', the transition probability 

t(x,x') between the subsets Sx and Sx' is uncontrolled and, thus, does not depend on the 

routing policy. In fact, from equations (5.15)-( 5.17), the following transition 

probabilities between subsets Sx and Sx' are obtained: 
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where, to compute equation (5.20), I considered that the sum of the decisions u(s,s') 

must be 1 (see definition (5.9)). 

 

In conclusion, if the system is in the generic state s ∈ Sx, the role of the 

controller is then just to decide which state s' among the ones in Sx' to choose when the 

path status vector transitions from x to x', with x > x' and Sx' ≠ ∅. If the topology event 

is such that x' > x or Sx' = ∅, no control decision is required. 

 

4. Cost function c 

The main objective of the fault-tolerant routing policy is to minimize the number 

of path changes, and in case of path changes it is desirable to minimize the link changes 

(i.e., the number of links affected by re-routing changes). Moreover, if the network 

supports classes of service to offer QoS guarantees, the cost of changing paths is also 

weighted by the class of service of the re-routed flows. 

To reflect these objectives, the cost function associated to state s = (r ,x) and next 

state s' = (r ',x') is defined as follows: 

[ ] )',()',()',(
1

)()( rrrrss linklink

K

k

k
path

k
path wwc ∆+∆=∑

=

,                      (5.22) 

where: )',()( rrk
path∆  is the number of re-routed flows of class k when the routing table 

changes from r to r '; ∆link(r ,r ') is the number of links which in r ' support different paths 

with respect to r ; )(k
pathw  is the weight associated to the re-routing of a class k flow; wlink 

is the weight associated to the link changes. I consider that the last part of the cost 

(related to the link changes) is used just to decide among two or more new routing 

tables which have the same path cost; thus, I will set wlink << )(k
pathw , k = 1,…,K4. 

V.3.2.3. MDP algorithm outcomes 
 

As mentioned in before, a standard algorithm to find the optimal solution of a 

finite-horizon MDP problem is the Successive Approximation algorithm, which returns, 

at each stage t, the optimal stage-per-stage policy π*(s,t) and the coupled optimal value 

                                                 
4 The path and link weights could also be setup according to the technologies of the involved networks.  
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function V*(s). The total number of stages n is computed by taking the upper integer 

value of the mean time interval between two traffic events (which is considered as the 

duration of the finite-horizon MDP) times the uniformization constant γ. Note that the 

new traffic event might occur before or after the final stage n: in the former case, the 

MDP is re-initialized before the considered finite-horizon; in the latter case, the 

controller keeps on using the final policy. In both cases, since the actual MDP duration 

is different with respect to the considered finite horizon, the policy π*(s,t) is sub-optimal. 

 

The results of the algorithm are exploited in two ways, as analyzed in the 

following paragraphs: 1) to define the optimal re-routing policy in case of link faults; 2) 

to identify the optimal initial state. 

 

1. Optimal re-routing policy in case of link faults 

At each stage t = 1,…,n, the optimal stage-to-stage policy π*(s,t) conveys the re-

routing actions in case of link faults: let us assume that at stage t the system is in state 

s = (r ,x), and that link l becomes unavailable causing the path status to change from x to 

x', with x > x'; thanks to the action space defined in equations (5.3) and (5.9), in the 

optimal policy there is exactly one state s* = (r *,x') ∈ Sx' such that 1),( ** =ssu , whereas 

the other decisions )',(* ssu  are equal to 0 for each state s' ∈ Sx' such that s' ≠ s*. Thus, 

the controller decision is to change the routing table from r  to r *, entailing the system 

transition from state s to state s*. 

 

2. Optimal initial state identification 

The optimal value function V*(s) is used to decide the optimal initial state 

),( ** xrs initialinitial =  after a traffic event. Given the path status x, there can be either no 

feasible states (i.e., Sx = ∅), or there exist one or more candidate initial states, 

identified by all the routing tables r  such that s = (r ,x) ∈ S. In the former case, which is 

relevant either in case of new incoming flows or in case of flow variation, the new MDP 

starts directly in the absorbing state sabs, which means in practice that the admission 

controller must block/drop one or more flows, and that then the MDP must be re-

initialized. In the latter case, the most appropriate initial state must be chosen. 

To choose the optimal initial state, I simply extend the definition of cost (5.22) 

to compute the cost of each candidate initial state s, hereafter referred to as cinitial(s). As 
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a traffic event occurs, a new MDP {S,A,T,C} is defined, and the controller has to decide 

the initial state, based on the last routing table of the former MDP, rold, and on the 

current path status x. Three traffic events are considered: 

 

a) Flow variation 

In this case, the new routing table r will have the same number of flows with 

respect to the past one rold. Cost definition (5.22) is thus seamlessly applicable to 

compute the cost cinitial(s) of transiting from (rold,x) to the candidate initial states s ∈ Sx: 

cinitial(s) = c[(rold,x), s]. Note that if (rold,x) is still feasible (i.e., (rold,x) ∈ S), no re-

routing is necessary. 

 

b) New flow acceptance 

In this case, the new routing table r  will have one more flow with respect to the 

past one rold. Let F be the number of flows of the new MDP; then, rold has (F – 1) flows. 

Without loss of generality, let us assume that the first (F – 1) flows of the new MDP are 

the same flows of the past routing table; then, I extend rold by adding a null F-th element. 

Cost definition (5.22), is subsequently applicable to compute the cost cinitial(s) of 

transiting from [(r old,0),x] to the candidate initial states s ∈ Sx:                              

cinitial(s) = c[((rold,0),x), s]. 

 

c) Flow termination (or dropping) 

In this case, the new routing table r  will have one less flow with respect to the 

past one rold. Let F be the number of flows of the new MDP; then, rold has (F + 1) flows. 

Without loss of generality, let us assume that the first F flows of the old routing table 

are the same flows of the new routing table; then, I extend r  by adding a null (F+1)-th 

element. Cost definition (5.22), is subsequently applicable to compute the cost cinitial(s) 

of transiting from [rold,x] to the extended candidate initial states sext = [(r ,0),x], such that 

(r ,x) ∈ Sx: cinitial(s) = c[(rold,x), sext]. 

 

To finally choose the optimal initial state, the cost cinitial(s) of choosing the 

candidate initial state s is added to the n-stage cost incurred by the system starting from 

s. The expected cost of starting from a candidate state s ∈ Sx when the current path 

status is x is then the following: 
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Einitial(s) = cinitial(s) + V*(s), s ∈ Sx.   (5.23) 

 

The optimal initial state *initials  is then chosen as the candidate initial state s ∈ Sx 

which has the lowest expected cost (5.23). 

 

From this discussion, it appears clear that the validity of a given policy is limited 

in time by traffic events, i.e., traffic changes. This limitation and the well-known 

scalability problems of the MDP approach ([29]) are lightened since, as above discussed, 

I consider 1) home networks with a limited number of nodes, 2) a limited number of 

high-bitrate flows with long duration, and 3) I consider sporadic and low-bitrate flows 

as uncontrolled background traffic with low-priority. 

In any case, the scalability problem of the proposed MDP approach renders it 

unsuitable in future home networks, which are expected to consists of tens (or even 

hundreds) of nodes. In this respect, the purpose of this MDP formulation is to define the 

fundamental theoretical framework which is necessary to analyze the fault-tolerant 

routing problem in time-varying network topology scenarios: then, the developed 

framework can be used to develop more practical algorithms based, for example, on 

Approximate Dynamic Programming ([39]) and Reinforcement Learning ([15]) 

approaches. 

In the next section, a Reinforcement Learning formulation of the fault-tolerant 

routing described so far is presented. 

 

V.4. Q-Learning formulation of the routing algorithm 
 

A Reinforcement Learning formulation of the fault-tolerant MDP routing 

algorithm presented in the previous section has been realized in order to develop an 

algorithm that has low computational cost and then that can be easily implemented in 

real-time network control systems. 

In particular, in this work the Q-Learning approach has been used to calculate 

both the 1) initial action and 2) the action to be taken in case of link fault. 

 

 

 



 
 
 

89 

1. Initial action identification 

In the Q-Learning approach, the learned action-value function ),( tt asQ  is used 

to determine the optimal action to be taken in each state. 

At the beginning of the process, the ),( tt asQ  matrix is initialized with a value 

that is related to the probability that the paths used by the new flows can be subject to a 

fault. In particular, considering that a path p is composed by a set of links l and that the 

probability of fault for a link l is au (l), the probability that a path is not subject to a fault 

is given by 

( )[ ]∏
∈

−
pl

u la )(1  (5.24) 

Thus, the initial ),( tt asQ  is set in the following way: 

( )[ ]∏
∈

−−=
pl

utt laasQ )(11),(  (5.25) 

 The best initial action 0a  is thus chosen in order to minimize ),( 00 asQ for each 

Aa∈ . 

 

2. Re-routing action in case of link faults 

Let us assume that at stage t the system is in state s = (r ,x), and that link l 

becomes unavailable causing the path status to change from x to x', with x > x'. The 

controller decision is to change the routing table from r  to r t+1, entailing the system 

transition from state s to state st+1. 

Following the Q-learning one-step action value optimization, I derive 

[ ]),(),(min),(),( 11 ttt
a

ttttt asQasQcasQasQ −++← ++ σα                    (5.25) 

where α is the learning rate, σ is the discount factor and 1+tc  is the cost associated to 

1+ts : 
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In particular, the learning rate α determines to what extent the newly acquired 

information will override the old information. A factor of 0 will make the agent not 

learn anything, while a factor of 1 would make the agent consider only the most recent 

information. The discount factor σ determines the importance of future rewards. A 

factor of 0 will make the agent "opportunistic" by only considering current rewards, 

while a factor approaching 1 will make it strive for a long-term high reward. If the 

discount factor meets or exceeds 1, the Q values will diverge. 

Following this rule it is possible to calculate, at each step, the best action to be 

taken in order to minimize the cost of passing from state ts  to state 1+ts . 

A limitation in applying this rule is that, at each stage, the algorithm selects 

always the best possible action on the basis of the acquired knowledge (greedy policy). 

But in this case the exploration is never performed, thus I can say that the algorithm is 

myopic. In order to increment long-term performances of the algorithm, an ε- greedy 

policy is adopted so that, with probability ε, the action selected is chosen in a random 

way. This assures that the algorithm selects also not optimal actions that could instead 

lead to a lower long term costs.  
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Chapter VI  

Results 

VI.1. Introduction 
 

In this chapter I present the results of a set of simulations done to understand the 

behaviour of the proposed algorithm. In order to perform the simulations, MATLAB 

simulation tool was used. 

At first, a detailed description of the home network scenario used for the 

simulations is presented. In particular, I created a heterogeneous home network scenario 

where four different telecommunication technologies are used to compose the network, 

namely Ethernet, Otical fiber, PLC and WiFi. 

The first serie of simulations were done to understand the behaviour of the MDP 

algorithm presented in section V.3. The ‘greedy’ policy, the ‘optimal’ policy and the 

‘optimal QoS’ policy have been thus simulated and compared. 

After that, also the behaviour of the Q_Learning algorithm presented in section 

V.4 has been simulated and its performances were compared with the ones of the 

‘greedy’ and ‘optimal’ MDP algorithm. 

As deeply described in this chapter, simulation results show that the MDP 

algorithm achieve better performances in respect to the Q-Learning algorithm. Anyway 

the results obtained demonstrate that Q-Learning performances are quite close to the 

MDP ones and thus it that it is possible to use a Q-learing algorithm in real-time 

applications as the one presented in this work. 

VI.2. Scenario description  
 

In order to simulate the behaviour of the proposed algorithms and to evaluate the 

performances, I consider the simple (for the sake of document comprehension) but 

meaningful (from the evaluation viewpoint) home network shown in Figure 12, where 

Si and Dj denote the source of flow i and the destination of flow j, respectively, and the 

Home Gateway is the router interconnecting the home network and the Internet; flows 3 
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and 4, which comes from the Internet, are considered as originated by the Home 

Gateway. 

 

D4
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Figure 12 - Example home network 

Considering that Ethernet, Wi-Fi, Power Line Communication (PLC) and 

Optical Fiber (OPT) are networks characterized by a shared medium (briefly, the 

network capacity is shared among all the users), each network is modeled as a single 

link: link 1 models the first-floor OPT network; link 2 models the PLC network; link 3 

models the Wi-Fi network; link 4 models the ground-floor Ethernet network, which is 

connected to the first-floor network by the Home Gateway. Note that each network 

element (i.e., the PCs and the TV in Figure 12) can be source and/or destination of more 

than one flow, and that it is assumed that the same element is capable of using more 

than one technology. Figure 13 shows the scheme of the considered home network, 

where, for the sake of simplicity, D1 and D4 are collapsed in a single network entity. 
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Link 2 (PLC)

Link 4 (ETH)

S1 S2 D1,D4

D2,D3

Link 1 (OPT)

HOME
GATEWAY

Link 3 (WiFi)

S3,S4

 

Figure 13 - Scheme of the exaple network 

Link characteristics are strictly related to the network technologies. Table 2 

shows the link parameters µl, λl and bl, l = 1,…,4, used in the simulations5. For the sake 

of simplicity, all link capacities bl, were set equal to 10 Mbps, but the OPT capacity 

b1 = 100 Mbps. By equation (5.14) and considering the link characteristics, the value 

γ = 0.669 min-1 was chosen. 

 

Link # Technology bl [Mbps] λl [min-1] µl [min-1] 

1 OPT 100 1/10 1e-4 

2 PLC 10 1/60 1/20 

3 WiFi 10 1/30 1/30 

4 ETH 10 1/5 1e-4 

Table 2 - Link characteristics 

Four source-destination couples were considered, as shown in Figure 14 and Figure 15, 

each one modeled as a two-state Markov chain: in the ‘on’ state, the source transmits its 

flow; in the ‘off’ state, the source is silent. For the sake of simplicity, all transmission 

rates bf, f = 1, 2, 3, were set equal to 4.5 Mbps. The transition frequencies from the ‘on’ 

                                                 
5 Note that we considered Ethernet and Optical Fiber links as reliable links: in fact, the frequencies µl of 
links 1 and 4 are so small that, in practice, the algorithm results do not sensibly change if we consider 
them as always available, with the advantage of a state space reduction. 
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to the ‘off’ state and vice-versa, denoted with µf and λf, respectively, were set as in 

Table 3. 
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Figure 15 - MDP example: transitions from state s6 
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Flow # bf [Mbps] λf [min-1] µf [min-1] 

1 4.5 1/45 1/100 

2 4.5 1/60 1/90 

3 4.5 1/75 1/30 

4 4.5 1/90 1/20 

Table 3 - Flow characteristics 

Finally, the paths available to each flow are shown in Table 4. 

 

Flow # Path # Link sequence Link technologies 

1 1 {1,0,0,1} OPT-ETH 

1 2 {0,1,0,0} PLC 

1 3 {1,0,1,0} OPT-WiFi 

2 1 {1,0,0,1} OPT-ETH 

2 4 {0,0,1,0} WiFi 

3 5 {0,0,0,1} ETH 

3 4 {0,0,1,0} WiFi 

4 2 {0,1,0,0} PLC 

4 4 {0,0,1,0} WiFi 

4 5 {0,0,0,1} ETH 

Table 4 - Paths 

To clarify the MDP framework developed in Chapter 5, I construct the MDP 

corresponding to the case in which only flows 3 and 4 are active (F = 2). The feasible 

states are listed in Table 56, where: the routing table vector elements denote the paths of 

flows 3 and 4, respectively; the path status vector elements denote the status of path 1 

(OPT-ETH), of path 4 (WiFi) and of path 5 (ETH), respectively. 

                                                 
6 Clearly, when 3 or 4 flows are active, the state space is considerably larger. 
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Routing table Path status State 

r1 = (4,2) x1 = (1,1,1) s1 = (r1,x1) 

r2 = (4,4) x1 = (1,1,1) s2 = (r2,x1) 

r3 = (4,5) x1 = (1,1,1) s3 = (r3,x1) 

r4 = (5,2) x1 = (1,1,1) s4 = (r4,x1) 

r5 = (5,4) x1 = (1,1,1) s5 = (r5,x1) 

r6 = (5,5) x1 = (1,1,1) s6 = (r6,x1) 

r2 = (4,4) x2 = (0,1,1) s7 = (r2,x2) 

r3 = (4,5) x2 = (0,1,1) s8 = (r3,x2) 

r5 = (5,4) x2 = (0,1,1) s9 = (r5,x2) 

r6 = (5,5) x2 = (0,1,1) s10 = (r6,x2) 

r1 = (4,2) x3 = (1,1,0) s11 = (r1,x3) 

r2 = (4,4) x3 = (1,1,0) s12 = (r2,x3) 

r4 = (5,2) x4 = (1,0,1) s13 = (r4,x4) 

r6 = (5,5) x4 = (1,0,1) s14 = (r6,x4) 

r2 = (4,4) x5 = (0,1,0) s15 = (r2,x5) 

r6 = (5,5) x6 = (0,0,1) s16 = (r6,x6) 

- - sabs 

Table 5 - Feasible states with active flows 2 and 3 

Note that there are 6 path status vectors xi which lead to the non-empty sets 
i

Sx , 

i = 1,…,6. The (uncontrolled) transition probabilities between the subsets Sx, given by 

equations (5.19)-(5.21), are shown in Figure 14. 

To show an example of transition probabilities, Figure 15 represents the 

transition probabilities outgoing from state s6 = (r6,x1). Beside the self-transition, 

defined by equation (5.18), the figure shows that: 

- Two transitions tπ(s6,s10) and tπ(s6,s14) exists from s2 to the subsets 
2xS  and 

4xS , 

respectively. Since the two states s10 = (r6,x2) and s14 = (r6,x4) are such that no 

routing table change is required, these transitions are uncontrolled (see definition 

(5.9)) and are equal to t(x1,x2) and t(x1,x4), respectively. 

- Two controlled transitions tπ(s6,s11) and tπ(s6,s12) from s6 to the subset 
3xS  exists, 

given by equation (5.15), since (i) x1 > x3, and (ii) the state (r6,x3) is not feasible. 
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According to equations (5.16) and (5.20), the two controlled transitions are 

equal to tπ(s6,s11) = u(s6,s11)t(x1,x3) and tπ(s6,s12) = u(s6,s12)t(x1,x3), respectively, 

with u(s6,s11), u(s6,s12) ∈ {0,1} and u(s6,s11) + u(s6,s12) = 1 (see definition (5.9)). 

 

VI.3. MDP simulation results 
 

Numerical simulations were performed with the aim of evaluating the 

effectiveness of the proposed MDP approach. The example home network described in 

previous section was considered. Two simulations were set up. Both simulations share 

the same scenario depicted above. 

Three policies were computed by properly setting the algorithm parameters, 

denoted as ‘greedy’, ‘optimal’ and ‘optimal QoS’. The ‘optimal’ policy is the policy 

aimed at minimizing the cost (5.22) of changing the routing tables, without 

differentiating among the classes of service. The ‘optimal QoS’ policy takes into 

account also prioritization among the different classes of service. For comparison 

purposes, the ‘greedy’ policy is also considered, which, after a topology or traffic event, 

chooses the new routing table as the one which entails the least number of path changes 

and, in sequence, the least number of link changes. 

With the ‘greedy’ and ‘optimal’ policies, the flows are not differentiated by their 

class of service, and the weights )(k
pathw  associated to path changes of class k, k = 1,…,K, 

are equal to 1. With the ‘optimal QoS’ policy, flow 1 has higher priority: accordingly, 

the weight )1(
pathw  was increased and set equal to 2. In all the policies, the weight wlink, 

associated to link changes, was set equal to 0.025. Note that the link weight is much 

smaller then the path weights since it is used only to choose between routing tables 

which involve the same number of path changes. 

From the Markov chain modeling of the sources, the mean time interval between 

traffic events, regarded as the finite-horizon time of the MDP, is computed as 

1
4

1

2
−

=














+
= ∑

f ff

ff
fht

µλ
µλ

= 15.54 min. Thus, the number of stages of the MDP is computed 

as n = γ tfh = 11. To obtain the ‘greedy’ policy it is sufficient to set n = 1. 

Algorithm parameters are shown in Table 6. 
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Policy )1(
pathw  )2(

pathw  )3(
pathw  )4(

pathw  wlink n 

Greedy 1 1 1 1 0.0025 1 

Optimal  1 1 1 1 0.0025 33 

Optimal QoS 2 1 1 1 0.0025 33 

Table 6 – First simulation set: algorithm parameters 

Simulation 1 was aimed at evaluating the overall algorithm performances. 10 

simulation runs were performed. For each run, the link and flow parameters were used 

to generate an event list; the events can be traffic events, i.e., flow births or terminations, 

and topology events, i.e., link state variations. At each traffic event, the MDP algorithm 

is performed and the initial routing table is selected according to the theory presented in 

the previous chapter. At each topology event, the policy computed by the MDP 

algorithm is applied to decide upon state transitions. Each simulation run was executed 

three times: the first time with the ‘greedy’ policy, the second time with the ‘optimal’ 

policy, the third time with the ‘optimal QoS’ policy. 

Simulation results are collected by Table 7 and Table 8 and by Figure 16. Table 

7 shows the mean number (over the 10 simulation runs) of routing table, path and link 

changes due to flow re-routing (i.e., to the decision to change the path of already active 

flows), denoted with Nr, Np and Nl, respectively, whereas Table 8 shows the per-flow 

path changes, denoted with Np(i), i = 1,…,4. Figure 16 shows the ratio between the 

values obtained with the ‘optimal’ and ‘optimal QoS’ policies over the values obtained 

by the ‘greedy’ policy. The tables and the figure clearly show that: 

I. the number of routing table, path and link changes are nearly halved 

thanks to the proposed MDP approach, both with the ‘optimal’ and with 

the ‘optimal QoS’ policies, with a slight advantage of the ‘optimal’ one; 

II.  the ‘optimal QoS’ policy manages to reduce the number of path changes 

experienced by flow 1, which is the flow with the highest priority (i.e., 

with the largest weight), both with respect to the ‘greedy’ and the 

‘optimal’ policies; to achieve this result, the ‘optimal QoS’ policy 

increases the number of path changes experienced by the other flows (in 

particular, in this scenario, by flow 3). 
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Policy Nr Np Nl 

Greedy 13.6 18.0 45.9 

Optimal 7.3 10.0 23.7 

Optimal QoS 7.3 11.1 25.9 

Table 7 - Simulation 1: total routing table/path/link changes 

Policy Np(1) Np(2) Np(3) Np(4) 

Greedy 5.8 5.3 2.0 4.9 

Optimal 4.5 1.0 1.5 3.0 

Optimal QoS 1.1 3.5 3.2 3.3 

Table 8 - Simulation 1: per-flow path changes 
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Figure 16 - Simulation 1 results 

Simulation 2 was aimed at showing how the routing table is chosen in case of an 

acceptance of a new flow in the ‘optimal’ and in the ‘optimal QoS’ cases. To further 

emphasize the ‘optimal QoS’ behavior, the weight of flow 1 )1(
pathw  was increased to 5. In 

the example, initially all links are available, i.e., initial path status x is a P vector of 
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ones; flows 2 and 3 are active and routed on paths 1 (OPT-ETH) and 5 (ETH), 

respectively. The algorithm is triggered by the acceptance of flow 1. 

Table 9 and Table 10 and Figure 17 collect the algorithm results. Table 9and 

Figure 17 a) show i) the expected number of routing table changes Er and the expected 

number of path changes Ep in the finite-horizon time tfh, starting from the initial table7, 

and ii) the probability Pr that the initial table is not changed in the finite-horizon time tfh. 

Table 10 and Figure 17 b) show the expected number of path changes for flow, denoted 

with Ep(i), i = 1,…,4, in the finite-horizon time tfh. 

The resulting initial routing tables are [3 1 5] and [1 1 4] for the ‘optimal’ and 

‘optimal QoS’ policies, respectively. The initial state obtained by ‘optimal’ policy, 

which is aimed at minimizing the total expected path changes, entails that the active 

flows 2 and 3 are not re-routed, and that flow 1 is routed on path 3 (OPT-WiFi); flow 1 

cannot be routed on the more robust path 1 (OPT-ETH) since flows 2 and 3 already use 

the Ethernet link, whose capacity is not enough to support 3 flows. On the contrary, the 

‘optimal QoS’ approach, which is aimed also at prioritizing flow 1, returns an initial 

state which implies to re-route flow 3 from path 5 (ETH) to path 4 (WiFi); in this way, 

flow 1, which is the highest priority flow, can be routed on the robust path 1 (OPT-

ETH). 

As shown by Table 9 and Figure 17 a), in the finite-horizon period tfh, the 

‘optimal’ routing policy achieves slightly lower Er and Pr, and significantly reduces Ep 

with respect to the ‘optimal QoS’ policy. Table 10 and Figure 17 b) shows that the 

‘optimal’ policy addresses topology changes by re-routing flow 1, whereas the ‘optimal 

QoS’ policy re-routes flows 2 and 3: in this way, the ‘optimal QoS’ policy manages to 

minimize the expected number of path changes of the high-priority flow 1. 

 

Policy Er Ep Pr 

Optimal 0.529 0.558 0.419 

Optimal QoS 0.581 2.163 0.450 

Table 9 - Simulation 2: total expected routing table/path changes and probability of changing the 
initial routing table 

                                                 
7 The collected statistics do not count the initial routing table change and the initial path change needed to 
route the new flow 2. 
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Policy Ep(1) Ep(2) Ep(3) Ep(4) 

Optimal 0.513 0.030 0.015 0 

Optimal QoS 0.033 0.581 1.549 0 

Table 10 - Simulation 2: expected per-flow path changes 
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Figure 17 - Simulation 2 results 

VI.4. Q-Learning simulation results 
 

In this case, numerical simulations were performed with the aim of evaluating 

the effectiveness of the proposed Q-Learning approach. Again, the example home 

network described in previous section was considered. One simulation was set up in 

order to compare Q-Learning and MDP solutions performances. 

In particular, the ‘optimal’ and the ‘greedy’ policies using the MDP approach 

has been compared with the “ε-greedy” policy using the Q-Learning approach. The 

‘optimal’ MDP policy is the policy aimed at minimizing the cost (5.22) of changing the 

routing tables, without differentiating among the classes of service. The ‘greedy’ MDP 

policy is also considered, which, after a topology or traffic event, chooses the new 

routing table as the one which entails the least number of path changes and, in sequence, 

the least number of link changes. The “ε-greedy” Q-Learning instead is the policy 
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aimed to minimizing the cost (5.22) of changing the routing tables on the basis of the 

acquired knowledge, but also performing exploration in order to increase and complete 

the knowledge about the system behaviour. 

In this case I do not consider QoS, thus the flows are not differentiated by their 

class of service, and the weights )(k
pathw  associated to path changes of class k, k = 1,…,K, 

are equal to 1. 

Again, from the Markov chain modeling of the sources, the mean time interval 

between traffic events, regarded as the finite-horizon time of the MDP, is computed as 

1
4

1

2
−

=














+
= ∑

f ff

ff
fht

µλ
µλ

= 15.54 min. Thus, the number of stages of the MDP is computed 

as n = γ tfh = 11. To obtain the ‘greedy’ policy it is sufficient to set n = 1 

Algorithm parameters are shown in Table 11. 

 

Policy )1(
pathw  )2(

pathw  )3(
pathw  )4(

pathw  wlink n γ α ε 

Greedy MDP 1 1 1 1 0.0025 1 - - - 

Optimal 

MDP 

1 1 1 1 
0.0025 33 

- - 
- 

ε-Greedy QL 1 1 1 1 0.0025 - 0.95 0.9 0.1 

Table 11 – Second simulation set: algorithm parameters 

Two simulations were perfomed, the first one with 10 hours duration of network 

simulation, the second one with 20 hours duration of network simulation. Both the 

simulations was aimed at evaluating the overall Q-Learning algorithm performances and 

at comparing it bahviour with the MDP approach. For each simulation, the link and 

flow parameters were used to generate an event list; the events can be traffic events, i.e., 

flow births or terminations, and topology events, i.e., link state variations. At each 

traffic event, the MDP algorithm is performed and the initial routing table is selected 

according to the theory presented in the previous chapter. At each topology event, the 

policy computed by the MDP algorithm is applied to decide upon state transitions. Each 

simulation run was executed three times: the first time with the ‘greedy’ MDP policy, 

the second time with the ‘optimal’ MDP policy, the third time with the ‘ε-greedy’ Q-

Learning policy. In addition, every ‘ε-greedy’ Q-Learning policy was simulated four 
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times and the average routing table changes and re-routing table changes was calculated 

in order to avoid that exploration could have a too strong impact on the results. 

Simulation 1 results (10 hours of network simulation) are collected by Table 12, 

by Figure 18 and Figure 19. Table 12 shows the number (the mean number over the 4 

simulation runs for ‘ε-greedy’ Q-Learning policy ) of routing table changes due both to 

routing and to flow re-routing (i.e., to the decision to change the path of already active 

flows), denoted with Nr and Nre, respectively. 

The table and the figures clearly show that: 

I. The performance of the QL algorithm in terms of number of routing table 

changes are better than the ones obtained with a greedy policy and at the 

same time are close to the ones obtained using the optimal MDP 

approach; 

II.  The same consideration ally also when considering the number of re-

routing table changes. 

 

Policy Nr Nre 

Optimal MDP 130 35 

Greedy MDP 135 40 

ε-greedy QL 133.75 38.75 

Table 12 - Simulation 1: total routing and re-routing table changes 
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Figure 18 - Simulation 1 results (routing table changes) 

 

 

Figure 19 - Simulation 1 results (re-routing table changes) 

Simulation 2 results (20 hours of network simulation) are collected by Table 13, 

by Figure 20 and Figure 21. Table 13 shows the number (the mean number over the 4 

simulation runs for ‘ε-greedy’ Q-Learning policy ) of routing table changes due both to 
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routing and to flow re-routing (i.e., to the decision to change the path of already active 

flows), denoted with Nr and Nre, respectively. 

The table and the figures clearly confirm the results obtained with the previous 

simulation. In particular, the proposed QL algorithm permits to achieve performances 

close to the optimal requiring less computational effort. From this consideration it 

appears that the proposed QL algorithm is suitable for real-time implementation as in 

the home network scenario depicted in Chapter 2. 

 

Policy Nr Nre 

Optimal MDP 54 6 

Greedy MDP 66 18 

ε-greedy QL 61.5 13.5 

Table 13 - Simulation 2: total routing and re-routing table changes 

 

Figure 20 - Simulation 2 results (routing table changes) 
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Figure 21 - Simulation 2 results (re-routing table changes) 
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Chapter VII  

Conclusions 

This thesis describes a fault-tolerant routing control algorithm for Next 

Generation Home Networks. The work has been done following two steps: i) definition 

of the MDP theoretical control framework, ii) definition of a Reinforcement Learning 

algorithm based on the control framework developed during the previous phase of the 

work. 

The theoretical relevance of the first part of the work is that it defines an MDP 

framework for the fault-tolerant routing in communication networks characterized by 

time-varying path availabilities and supporting persistent multimedia flows; this is 

typically the case of heterogeneous home networks, where unreliable technologies such 

as Wi-Fi and Power Line Communications are used. 

The innovative approach consists in i) considering the problem of re-routing 

flows between traffic events (e.g., flow acceptance/terminations); ii) defining the MDP 

dynamics depending on topology events (e.g., link faults). The resulting optimal fault-

tolerant routing policy minimizes the re-routing occurrences, allows fast re-routing of 

flows in case of link faults, and also allows selecting the optimal initial state after a 

traffic event. 

Numerical simulations validate the effectiveness of the proposed algorithm on a 

meaningful example of home network. 

Moreover, the considered home network scenario, although representative of 

current home networks, is simpler than the future home network scenario considered in 

OMEGA, where tens or even hundreds of objects (from the TV to the washing machine) 

are inter-connected (the so-called Internet-of-Things (ITU Internet Reports, 2005)). In 

this scenario, the poor scalability of the MDP approach will prevent the use of the 

developed algorithm. Nonetheless, the proposed approach is still relevant since i) it 

provides a theoretical framework for developing more scalable Approximate Dynamic 

Programming and/or Reinforcement Learning algorithms, and ii) it provides an 

evaluation benchmark. 
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In the second part of the work, a Reinforcement Learning algorithm, based on 

the MDP theoretical framework built in the first phase, has been proposed to overcome 

scalability problems of MDP approach. This algorithm is suitable to be implemented in 

real-time environment and allows to achieve results that, has demonstrated by 

simulations, are close to optimal ones. 

On-going work is aimed at a real network implementation of the proposed 

algorithm in the testbed under development within the European project OMEGA. 

In addition, it is under study the possibility to extend the proposed MDP 

framework to include both traffic and topology dynamics. 
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