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Chapter |

Introduzione

Le reti di nuova generazione, attualmente in fastudlio e di standardizzazione
presso i piu importanti forum pubblici e privati mibali come ETSI [46], ITU-T [47],
WIMAX Forum [48], BroadBand Forum [49] e Home Gataw Initiative [50],
introducono dei concetti di fondamentale interegse I'ingegneria dei sistemi e del
controllo, considerando che le reti impiegate digsan sempre piu complesse, a causa
di tecnologie eterogenee che necessariamente dentaroperare, ma che allo stesso
tempo devono poter essere gestite in modo effieidPér questo motivo i modelli di
rete moderni propongono un approccio in cui il nmoraklle telecomunicazioni é
suddiviso in tre piani principali: dlata plane che gestisce i flussi dati e le applicazioni
degli utenti, il control plane che include le funzionalitd preposte ad eseguine
controllo in real-time della rete, erhanagement planehe comprende le funzionalita

dedicate alla configurazione a lungo termine aultf management della rete.

Gli obiettivi della presente tesi sono stati mdlitgp

» definire un modello di architettura per reti dondst in grado di rendere
possibile I'interoperabilita di diverse tecnologiasmissive;

= definire il modello di riferimento per un sistemacontrollo dell'instradamento
dei flussi applicativi nelle reti domestiche muknologia, in grado di gestire
diversi requisiti di Qualita di Servizio (QoS) e fiequenti indisponibilita dei
percorsi;

= definire un algoritmo di controllo basato sul mddeli riferimento proposto;

= validare il sistema di controllo proposto in un guiato scenario simulativo.

Il primo obiettivo & stato raggiunto attraverso dafinizione di un modello
architetturale di riferimento per reti domestichaltintecnologia [12]. A tale scopo, |l
lavoro e consistito nella raccolta e I'analisi degjuisiti, la definizione delle specifiche,
il design dettagliato dei moduli funzionali e dellgerfacce. Tale architettura apre

innumerevoli possibilita di applicazione delle ieodel controllo e dell’ottimizzazione
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alla gestione e il controllo delle reti domestidisampo ancora poco esplorato per la
mancanza di un adeguata architettura di rete carabagproposta) quali il controllo di
ammissione e il controllo dell'instradamento des8i accettati.

Il lavoro si e quindi focalizzato sulla progettazéodi un sistema di controllo per
gestire I'instradamento dei flussi nella rete, ttmeonto dei requisiti di QoS dei flussi
stessi. A tal fine e stato utilizzato un approduésato sulla teoria délarkov Decision
Process(MDP). Il sistema & stato quindi modellato come oatena di Markov, per la
quale sono stati definiti gli stati e le transizitna i diversi stati. Tale approccio e stato
scelto in quanto gia applicato con successo pasntrollo dell'instradamento di flussi
informativi, anche se fino ad oggi era stato agpticin reticore, mentre non era mai
stato considerato per essere applicato in reti doome. Inoltre, i particolari requisiti
del contesto considerato hanno reso necessarieatiatedifiche ai modelli proposti in
letteratura, portando quindi alla definizione di mmovo modello di rete: in pratica, €
stato necessario definire nuovi stati e nuove txéors. L'approccio usato si e rivelato
una buona soluzione nelllambiente domestico diiegplone, soggetto a numerosi e
ripetuti link fault Il controllore e stato infatti progettato conHiettivo di minimizzare
il numero di re-instradameni dei flussi dovuti @lprovvisa indisponibilita di un
percorso usato da flussi gia attivi.

Una volta terminata la fase di modellazione defesis e di progettazione del
controllore, sono emersi problemi di scalabilitilalsoluzione proposta, che la rendono
inapplicabile in contesti reali con requisiti diatdime. Nonostante cio, tale lavoro
costituisce un prezioso modello teorico di riferitie che pud essere usato per
sviluppare algoritmi implementabili.

A dimostrazione di cio e stato quindi definito ugaitmo basato sulla teoria del
Reinforcement Learningn particolare e stato definito un algoritmo @ilearning in
grado di apprendere la scelta ottimale a seconittastato del sistema.

Per verificare le performance dell'algoritmo profosono state effettuate
numerose simulazioni utilizzando il software di slazioni MATLAB. | risultati delle
simulazioni hanno permesso di verificare come dalgno di Q-learning proposto
consente di ottenere risultati prossimi a queliembili applicando I'algoritmo ottimo
basato su MDP.

Attualmente, I'algoritmo proposto € in fase di implentazione al fine di essere
integrato nel prototipo in fase di sviluppo presstaboratori di ricerca di France

Telecom, nell’ambito del progetto OMEGA, finanziatalla Commissione Europea.
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Nel dettaglio, il presente lavoro si articola icapitoli.

Il presenteCapitolo 1 fornisce un’introduzione al fine di offrire unasione
completa di tutto il lavoro svolto.

Il Capitolo 2presenta una panoramica sulle reti domesticHaeatli descrivere
il contesto del presente lavoro. In particolareene descritta I'evoluzione delle reti
domestiche dalla loro nascita a oggi, attraversiplaposizione dei modelli di rete che
si sono succeduti nel corso degli anni e fruttolaebro di ricerca a livello mondiale e
presso gli enti di standardizzazione. Alla fine dapitolo viene inoltre presentato il
modello di rete domestica del futuro, in cui diwergcnologie trasmissive verranno
utilizzate contestualmente per offrire maggiori acita e quindi servizi a valore
aggiunto agli utenti. In particolare il modello pemtato e stato il frutto della fase
iniziale del presente lavoro e definisce un innmgaimodello di rete che da una grande
rilevanza al piano di controllo della rete stesQaesto perché le potenzialita delle
nuove reti domestiche potranno essere utilizzatemianiera efficiente solo se
opportunamente controllate in maniera automaticareal-time da appositi protocolli e
algoritmi di controllo. Tra questi, viene definilgoroblema dell'instradamento di flussi
in rete (routing), con i suoi obiettivi e le sueratteristiche nell'innovativo scenario
proposto.

Il Capitolo 3e il Capitolo 4forniscono le basi teoriche per I'algoritmo oggett
del presente lavoro. In particolare, I'obiettivd @apitolo 3 € quello di presentare gli
strumenti teorici, messi a disposizione nellambittel controllo stocastico,
relativamente alle catene di Markov e ai processigionali di Markov. Tali strumenti
sono stati utilizzati come approccio fondamentade lp definizione del problema di
routing. Nel Capitolo 4 viene invece fornita unfoduzione al Reinfocement Learning
(RL) e vengono presentati alcuni metodi di solugion

Il Capitolo 5€ il capitolo principale della tesi, in quanto tiene la descrizione
dell'algoritmo proposto. In particolare il capitodbsuddiviso in due parti. Nella prima
parte viene descritto I'approccio utilizzato perdabhare il problema di routing in reti
domestiche di prossima generazione attraversoasepso decisionale di Markov. Tale
lavoro costituisce un risultato di grande riliewoguanto determina una base teorica per
lo sviluppo di altri algoritmi che potranno essepeogettati utilizzando diverse
metodologie. In aggiunta, tale frame work potraeessutilizzato come punto di
riferimento per la valutazione delle prestazioni diwersi algoritmi sviluppati. Nella

seconda parte del capitolo viene invece propostparticolare algoritmo di routing,
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progettato facendo uso delle metodologie di Reggfiorent Learning e costruito sulla
base del riferimento teorico descritto nella pripaate del capitlo.

Nel Capitolo 6 sono presentati alcuni risultati numerici ottenatiraverso la
realizzazione di una serie di simulazioni eseguiten il software MATLAB.
Inizialmente viene descritto lo scenario simulatikappresentante una rete domestica di
nuova generazione e realizzata attraverso l'iniegne@ di 4 tecnologie trasmissive
diverse. In seguito vengono presentati i risultdtenuti attraverso la simulazione del
processo decisionale di Markov, utilizzando treitmble diverse. | risultati ottenuti
mostrano le potenzialita dell’algoritmo propostéaesua capacita di supportare flussi
con diverse caratteristiche e requisiti e quingiagenenti a diverse Classi di Servizio.
Infine vengono presentati i risulati ottenuti atBeso la simulazione dell’algoritmo
basato su Reinforcement Learning. | risulati mo&iraome le prestazioni di questo
algoritmo si avvicinano all’'ottimo ottenibile coprocesso decisionale di Markov.

Infine, nelCapitolo 7, vengono riportate le conclusioni del lavoro eneidornita
un’indicazione dei prossimi sviluppi di questo algoo, sia dal punto di vista teorico

che implementativo.
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Chapter Il

Overview of home networking

[1.1. Introduction

Home networking is defined by the CEA-HNIT’s BoafDirectors as follows:
“A home network interconnects electronic products systems, enabling access and
control of this products and systems, and any abél content such as music, video or
data’ [1]. Products need to be connected to each othecess to content (e.g.,
entertainment, information, services) must be mledj and the user must have control
of the products and the distribution of contentnt@at may come from within the home,
from a media centre hard disk, a personal videordss, and so on; or remotely from
somewhere outside the home (e.g., form a Wide Aetavork that provide connection
to Internet). One point that must be emphasizédesase of use. The consumer should
not even know a home network is being establisheedtsi home. Consumers buy
applications, not home networks [2].

The significant interest in home networking todégnss from the availability of
low-cost communication technologies and from thednér network operators and
service providers to overcome bandwidth limitatioascourring today in home
networks, that limit the diffusion and the provisilng of added-value services to users.

In this chapter is presented the evolution of homsvorks, starting from simple
old implementation to the vision and the idea bdhine next generation of home
networks that nowadays are being object of worléwigsearch. The chapter ends with
the presentation of the open research topics telat@ext generation home networks,
highlitghing how the present work intends to pravid solution to one of the most

important open issue.
[1.2. Home network evolution

This section describes the evolution of the tremdsarchitecture of home
networking during the ten last years through statidation as well as practical

implementations. Three different home networks rhade presented: the ITU-T model,
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the DSL-Forum model and the triple play model. didition to those presented here,
there are also other standardization bodies andstridl forum (e.g. Home Gateway
Initiative (HGI)) at European and international éévthat are working to define

guidelines and standards for home networks.

11.2.1 ITU-T model

The first elaboration of models of home networkatege back to the nineties,
with the ITU-T efforts to standardize recommendadidor digital subscriber lines. ITU-
T 995.1 [3], for instance, introduces in 2001 tbkofving entities:

= the NT1, terminating the access digital sectiothefbroadband connection,

» the NT2, terminating the transport protocol for rusaffic. It may implement
switching/routing functions,

= the Terminal Adapter (TA), adapting the transporbtpcol to the specific
requirements of a user terminal,

» the User Terminal, providing an interface for tisemu
These entities are interconnected by interfaces§RT, U) defined by the

following representation:

Access
link

Usel Terminal NT2 NT1
Terminal Ad apter

Figure 1 - The ITU-T 995.1 architecture for home neworking

[1.2.2 DSL-Forum model

In 2004, the DSL Forum defined in TR-094 [6] reguients and capabilities
that a home network should provide to take advantfgthe full capabilities of the

multi services broadband access. TR-094 introdircparticular the following entities:
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» the B-NT (Broadband Network Termination),

= the Routing Gateway,

= the Premises Distribution (client infrastructure),

» the FPD (Functional Processing Device), which isomponent of the home
network that processes voice, video or data fantended application,

» the EUT (End User Terminal).

These entities are interconnected by interfacesT¢R,Trpon, U) defined by the

following representation:

Access
link

EUT FPD Premises Routing B-NT
Distribution Gateway

R Ten Teon

Figure 2 - The DSL Forum TR-094 architecture for hane networking

The R interface is the type of interface that tiRbFshould support in order to
provide connectivity to the EUT. Thecy interface defines the interface between the
Routing Gateway and the various premises distabutchnologies. Thephy interface
is physically discernable when the B-NT and Routagteway are implemented in
separate devices: it is practically limited to anpdoo point layer 1+2 connection. The U
interface is represented here in making abstracifam possible splitter. Some entities
of these representations can be merged into ogéeeseguipment, for instance the EUT
and the FPD, or the Routing Gateway and the B-NT.

11.2.3 Triple play model

The triple play model [7] was adopted by the opmsatround 2004 in order to
launch commercial offers based on three service pooents: the Internet, the
conversational (VolP, videophony) and the TV sesicThese offers were often based

15



on a residential gateway with physical ports eagttichted to a specific service, which
allows to simplify the implementation. The followgrfigure gives an example (hybrid
between the bridged model and the routed modedjcii a gateway:

pnalog Phone CPE
my <

Routing/NAT
X ((é) VC Internet, VolP

VC Videophony

P VC Digital TV, VoD

LAN WAN
Ethernet ATM

Figure 3 - The hybrid bridged/routed triple play architecture

Such an option leads naturally to an organizatiothe home network where a
given technology is dedicated to a given service.al longer term prospect, that
architecture will likely evolve to a more flexibonfiguration, based on a full-routed
solution, which would avoid the separation betw#®n services and the constraint to

connect each device to a given port, as showetefotiowing figure:

CPE

Routing/NAT VC Internet, VolP

VC Visio

VC Digital TV, VoD

DHCP | PPP
IGMP SNOOPING

LAN WAN
Ethernet ATM

Figure 4 - The full-routed triple play architecture
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11.3. Next Generation Home Networks

During last years, communication technology hadwexbin terms of services
diversification. Requests of different advancedvises lead to a mass-market of a
variety of devices and networks supporting hetemegas and broadband technologies.
Several solutions have been deployed to provideadivand and heterogeneous
connectivity to users, especially in the accessvoids. But the diffusion of new
bandwidth demanding services (like HDTV) will bespile only when technology
limitations will be eliminated from the real netwobottleneck: the users home area
network.

Several technologies are nowadays adopted in hoghworks. Despite this
diversity, it is possible to group all these tedbges in two main categories,
depending on the communication medium to be usacedwcommunications and
wireless communications. Inside this two big clustiirther distinctions take place.
Among wired communications, Ethernet (IEEE 802L)ar sure the most common
technology used to interconnect different devicea home environment. But in the last
years the attention and the research is focusingawer Line Communications (PLC),
an emerging technology which uses power supplyotovey the information through
the network. As such as concerns wireless commiimigatechnologies like Wi-Fi
(802.11a/b/g) have already been exploited and nemdards such as Wi-Max (802.16)
or UltraWideBand (802.15.3) are actually contending attention of the people. An
emerging technology within wireless communicatioiss the Free Space Optics
technology, which introduce the concept of wirelaafrared and visible light
communications, alternative to the wireless radégfiency medium. As a consequence
of this large diversification, many different netiks have emerged inside the domestic
ambient, causing de facto the impossibility to makeract devices connected to the
network with different technologies.

A lot of research works has been done on convegjeand most of them
propose to enhance terminals and network componeititstechnology independent
middleware frameworks. This is a good solution bot in a home gigabit access
network. A middleware solution is not suitable ferminal capabilities, it requires in
the most of cases to be installed, configured aatht@ined by the terminal user and

can process only low data rate services. ServikedHDTV, Broadband Internet access,
17



on-line 3D gaming are extremely expensive in tewhsesources. Therefore, these
services requires a disruptive approach for theagament of the resources in a so
called Next Generation Home Network (NGHN), wherenwergence should be
achieved maintaining simplicity, scalability ancckaard compatibility.

In Europe, the FP7 OMEGA project ([9]) is definiagd prototyping a new
architecture for home networks able to achive theva mentioned objectives. In
particolar, OMEGA is proposing an innovative pratbstack for home networks where
a new layer is introduced between the MAC layer @redIP layer: the so called Inter-
MAC layer ([10]). It receives and processes thermiation from the upper layers (IP)
in order to match the services requests with thalahility offered by the various
underlying technology dependent MACs. The Inter-M@&€e Figure 5) is technology
independent and controls multiple technology nekadry means of proper adapters. It
also provides services as well as connectivityllttha devices in the house. Thanks to
the introduction of the Inter-MAC layer, it is pdse to obtain convergence inside the
home among several heterogeneous Telecommunidattmologies, thus paving the
way to the possibility to achieve home network cépes od the order of Gigabit per

second.
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Figure 5 - Inter-MAC reference architecture

In Figure 6 a functional architecture is presentethere it is possible to

distinguish the interfaces by which the Inter-MA®@nununicates with Network
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protocol layer, the technology-dependent MAC layensd with the signalling and

management plane; three main Inter-MAC functiorediare wrapped by a Monitoring

& Event Manager. It handles the decision to enfdadeng in input the information

coming from the Signalling and Management Plane.

Interface with Network Protocol layer

=03

Monitoring ca 2

QoS Path Technology | g = = E‘”
Contral Selection Handover | Event uS®
Manager pa =

m =

Interfaces with Technology dependent MAC layers

detail:

Figure 6 - Inter-MAC functional architecture

Each one of the functional components previousiytinaed are described in

QoS Control: it manages the resource allocation of specibw$f guaranteeing
some QoS parameters: Bandwidth, Delay, Delay Manat.oss Ratio and Error
Ratio. Different classes of service can be hanoNethe Inter-MAC and the QoS
Control then performs a complete scan over all MA&€Csstimate which of them
can handle the specific flow belonging to that slasservice.

Path Selection select all the possible paths to connect two @remodes
among various networks. It considers multi-hop sohs and take care of load
balancing tecniques. Load balancing is needed wieenthe QoS parameters
could not be assured using only one available pR@th selection is a
functionality strongly interconnected with QoS awoht Existing solutions for
multi-hop routing are tailored for homogenous neksocand thus not suited for
the heterogeneous home gigabit architecture. Imghéimg multi-hop
connection in the home heterogeneous environmaravsl, will be undertaken
by this functional component, and is the object¥e¢his work. In general, path

selection can consider factors including classevfise identification, policy-
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based routing table derivation, dynamic bandwidtlocation, protection,
reservation, priority routing, and priority queuing

» Technology Handover in order to provide access to different commutnices
systems an efficient vertical handover mechanismedggliired. A technique that
uses the common semantic to describe the availetdenels and chooses
between them will be developed. The technology beed switches between
two different technologies and is recalled wheneveretwork congestion, link
failure or device mobility occur.

= Monitoring & Event Manager: it represents the link-up point for the
functionalities described above. Its task is tagger decisions, based on
Signalling & Management Plane information. Sinceergv Inter-MAC
functionality is related to each other, if Monitogi & Event Manager detects
that a particular link of the Home Network cannappgort the service class
imposed by QoS Control, then it will trigger Patélegtion module in order to
choose a better link. So, information produced fraronitoring and event
manager will be used by Inter-MAC to cast its mdaimctionalities: Qos

Control, Technology Handover and Path Selection.

The Next Generation Home Network Architecture Rafiee Model (ARM) has
been then designed to fulfil the following conditso

»= jt should be elaborated in the continuation of nmM®ddready elaborated in
standardization and currently used in the domain hofne networking
architecture;

» jt should provide a good comprehension of the bewidhe network;

» it should clarify the internal and external intexa of the network;

= it should highlight the structure of the NGHN inwlementary network

functionalities and capabillities.

In the prospect of the Gigabit data rate in Nexh&ation Home Networks, it
appears interesting to distribute the functiongainectivity inside the home with the
help of interconnection points spread in the hoam& achieving the hybridization of
several different wired and wireless access tedgie$ through the introduction of the

Inter-MAC layer described above. This scenaridlissirated in the following picture:
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Figure 7 - Hybridization of technologies inside thénome network

This illustration highlights the interconnectionafwide range of terminals with
a mesh network ensuring the coverage of the whaeeharea. These terminals can be
classified in families or clusters, not completéigjoint:
» data communication terminals (computers, PDA, nm&b...);
= gaming cluster;
= voice/video communication terminals (analog/digitahones, videophones,
mobile phones, ...);
» entertainment consumer electronics audio/video itein (STB, TV, MP3
player, HiFi equipment, ...);
= domestic equipment (fridge, sensor networks, ...).

In addition, the NGHN may also coexist with extersiegacy networks based
on technologies with which it should ensure cormniplatty.

A Next Generation Home Network can be consideredaaset of devices
implementing the following capabilities ([11]): @atay capability; Extender capability;
End Device capability and Serve Legacy Device céipabThey implement one or
several specific functionalities in addition to themmon set of mandatory NGHN
device functionalities (including the Inter-MAC fctionalities), also described in [11].
| summarize here the approach leading to the strectf these network capabilities:

= a gateway can be considered a capability implemgratiWAN connectivity in

addition to the common set of mandatory NGHN deficetionalities;
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= an end device can be considered as a capabilitlemgmting the functionality
of user terminal device, where traffic can leaveeoter the network, in addition
to the common set of mandatory NGHN device fundtibies;

= any NGHN device, implementing the basic set of nadoy NGHN
functionalities, can be considered as an extendpalility enabler, which is
used to extend the Gigabit/s home network coveoade interconnect different
devices that cannot communicate directly.

It has also been stated that the NGHN should peowuderfaces in order to
interconnect to legacy devices or other networkss Ts achieved by the serve legacy
device capability, which provides a minimum seffwofctionalities to make the legacy
device interoperate with the NGHN with the sameegigmce as when it was used
before. All things considered, the architecturemefce model can be built around these
four kinds of NGHN capabilities: the gateway, thedalevice, the extender, and the
serve legacy device. Each of the related deviceg ma@e one or several interfaces
(based on a 'no new wires' broadband technologgjdar to connect to its neighbours.
All these interfaces have in common the fact tocbenpliant with the Inter-MAC
framework described in [10].

All of them can be named by the same term: thealedQ-interface, which is
therefore a multi-technology interface. Moreovee tNGHN presents two natural
external interfaces, the first one between thedggievice and the home network device
achieving its interconnectio(R interface), and the second one between the @cces
network and the NGHN gateway (U interface).

The set of devices constituting the NGHN is orgadim the form of a mesh
architecture bringing in the advantages of multhpacapabilities for traffic
reconfiguration. Their association can be represktaonder the global name of "NGHN
Device", maintaining apart the Gateway in orderhighlight the interface with the
Access Network.

This leads to the following Next Generation Hometwdk Architecture
Reference Model ([12]):
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Figure 8 - NGHN Architecture Reference Model

In a real network several end devices, extendaldegacy device adapters can
be interconnected in a ramified and extensive Wi multi-homing scenario, where
more than one interface to external networks existsalso possible. The following

figure shows a possible implementation of the NGihitecture with real devices:
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Not compatible with Adapter Q \

NGHN technologies End Device

Figure 9 - A typical NGHN architecture configuration

Figure 9 illustrates the mesh structure of a NGHilN the generic feature of the
Q interface. It also illustrates the fact that tierfacing of legacy devices can be
achieved by different kinds of devices.

A lot of research open issue are still open in oprtte make the NGHN
architecture model presented above ready to beogegland commercialized. Among
them | mention the problems related to the remaa@agement of the network by the
operator, the management and the control of mullianeservice provisioning, the
security, the efficiency in energy consumption #mel management and control of the
Quality of Service (QoS). Thus, new solutions fonigection admission control, routing
and path selection, load balancing, congestionrehrgcheduling and so on have to be
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studied in order to exploit in the most effectivel &fficient way the capabilities and the
capacity offered by NGHNSs.

This work intends to propose a new solution torthging problem in NGHNSs.
The peculiaritites of the routing problem in NGHMspresented in the next section,

while the proposed solution is descrive in Chapter

[1.3.1 Routing in NGHNSs

As described in the previous section, to supposagety of high capacity
demanding applications (data, audio, video), neetiegation home networks will be
realized through the integration of heterogeneougdwn(e.g., Ethernet, Power Line
Communication (PLC), Optical Fiber (OPT)) and wasd (e.g., Wi-Fi, Ultra Wide
Band, Hybrid Wireless Optic) telecommunicationhtealogies.

Since we are dealing with hybrid (i.e., meshed g® and wired) networks, we
have to consider frequent topology changes duehéostarce robustness of some
technologies, which cause the link availabilitybt® time-varying. In fact, due to their
nature, wireless and PLC technologies are charaeteiby high probability of link
faults (i.e., links becoming unavailable): for exdey PLC systems suffer from
interference due to the use of electrical powerHoyne appliance ([13]); Wi-Fi
communication systems suffer from interference ttuether communication systems
using the same frequency spectrum ([14]).

The objective of these high-capacity home netwoirksto provide new
multimedia services (such as High-Definition TV (H®) on-demand or high-quality
Video-conference) characterized by high-bitratagliow duration and tight Quality of
Service (QoS) constraints (e.g., in terms of delag delay variation — or jitter). To
guarantee the required QoS to these flows, theysabgect to an admission control
procedure, in charge of deciding if the flow cansbgported by the network based on
current traffic and network conditions, and to atiag protocol, which decides the path
to be used for the transmisstom a home network, the number of high-qualityrfois
likely to be small (at maximum, 5-10 simultaneolssvk). Therefore, given the scarce

robustness of wireless and PLC technologies, thedvailability dynamics due to link

! Standard home services, such as web browsing,|erRdP, are low-bitrate services and/or ‘elastic’
services (i.e., they adapt their transmission tgitta the available capacity), and do not havets@oS
requirements. Thus they are less impaired by lmMt§, and are regarded as background traffic with
lower priority with respect to the high-quality fis.
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faults become even faster than the high-qualityficradynamics (i.e., birth and
termination of high-quality flows).

In this scenario, the routing algorithm has to &dtftolerant, in the sense that it
should be able to rapidly re-route active flowssaen as a link become unavailable in
the path: in fact, as a link becomes unavailablleha flows crossing that link have to
be re-routed on other paths. This re-routing egbould be avoided as far as possible,
because

i) during the re-routing process, some packetdilety to be lost (affecting the
QoS of the flow)

i) the re-routing process involves additional e¢ohtcommunications, which
reduce the capacity available to data communicstion

If the network supports classes of service to off@S guarantees, decisions
upon the re-routing of flows should be based alsotleir classes of service. For
instance, re-routing a flow is likely to causeeitt in the flow transmission (i.e., a
variation in the transmission delay of flow packessich jitters are insignificant in case
of data flows, whereas in case of video flows tldgct the quality experienced by
users.

Existing routing algorithms are classified either@oactive (e.g., [16]-[18]) or
as reactive (e.g., [19], [20]). The former algamth continuously update path
information, which is then available at algorithraction time; the drawback is that
these algorithms require the knowledge of the togplof the whole network. Reactive
algorithms performs a route discovery proceduredemand, i.e., only at routing
decision time: on the one hand, they generatedessol information since they must
not continuously update topology information; oe tther hand, they delay the actual
data transmission until the path is discovered.

Clearly, the proactive approach is preferred in ¢besidered home network
scenario due to the fast re-routing requiremendstants limited topology width which
makes the updating process fast.

To conclude, the aim of the proactive algorithmeadeped in this work is then
twofold: on one side it has to minimize re-routimgcurrences; on the other side it has
to be be able of provide a fast re-routing since ave dealing with scenarios

characterized by highly variable topology.
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Chapter Il
MDP control framework

[11.1. Introduction

The fault-tolerant routing algorithm is based oe tlarkov Decision Process
(MDP) control framework, which is presented in tloisapter. MDP is a stochastic
control framework where decisions need to take adoount uncertainty about many
future events. This chapter begins with the predemt of probability models for
processes that evolve over time in a probabilistanner. Such processes are called
stochastic processes. After briefly introducing eyah stochastic processes, the
reminder of the chapter focuses on a special kalgéa Markov chain. Markov chains
have the special property that probabilities iniraivhow the process will evolve in the
future depend only on the present state of thegeand so are independent of events
in the past. After that, Markov Decision Procesm@spresented as they allow to control
the behavior of a system modeled as a markov chaifact, rather than passively
accepting the design of the Markov chain, MDP aidev make a decision on how the
system should evolve by controlling the transiticom a state to the following one. The
objective of MDP is to choose the optimal action édach state that minimize the cost
associated for the system in being in each staiesidering both immediate and

subsequent costs.
l11.2. Stochastic process

A stochastic procesis defined to be an indexed collection of randamables
{X.}, where the indexruns through a given s&t OftenT is taken to be the set of non-
negative integers, an¥, represents a measurable characteristic of intetesitme t.

Stochastic processes are of interest for descrithagbehaviour of a system operating
over some period of time. The current status ofsygtem can fall into anyone of the
+ 1 mutually exclusive categories callsthtes For notational convenience, in this

chapter these states are labelled 0,1..The random variable, represents the state
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of the system at timg so its only possible values are 0,1M..The system is observed
at particular points of time, labelled=0,1,.... Thus, the stochastic process
{x.}={X,,X,,X,...} provides a mathematical representation of how taris of the
physical system evolves over time. This kind ofgesses is referred to as being a
discrete timestochastic process wifinite state space

[11.3. Markov chains

Assumptions regarding the joint distribution Xf,, X, .are necessary to obtain
analytical results. One assumption that leads talyinal tractability is that the
stochastic process is a Markov chain, which has fdtlewing key property: “a
stochastic procesX, is said to have the Markovian property if:

P{X.y =1 Xy =koo X, =Ko Xy =k, X, =i} =P{X,,, = j | X, =i}, fort =0,1,...
and every sequencg, ko, ki, ..., Ki.1.

In words, this Markovian property says that the dibonal probability of any
future “event”, given any past “event” and the prasstateX, =i, is independenof
any past event and depends only upon the prestat st

A stochastic proces$X,} (t = 0,1,2,...) is a Markov chain if it has the
Markovian property

The conditional probabilitie®{X,,, = j| X, =i} for a Markov chain are called
(one-step) transition probabilities. If, for each i and |,
P{X.,=jlX =i}=P{X,=j|X, =i}, for all t = 0,1,2,... then the (one-step)
transition probabilities are said to Istationary Thus, having stationary transition
probabilities implies that the transition probéaies do not change over time. The
existence of stationary (one-step) transition pbdliges also implies that, for eacdhj,
andn (n =0,1,2,...),P{X,,, = j| X, =i}=P{X, = j| X, =i} for all't = 0,1,.... These
conditional probabilities are calledstep transitional probabilities.

To simplify notation with stationary transition fabilities, let:
p, =P{Xu = 1%, =i},
pu(n) = P{Xt+n =j|X :i}.

27



Thus, then-step transition probabilitiyp”(”) is just the conditional probability

that the system will be in statafter exach steps (unit of time), given it starts in state
at any timet.

Because thep"(”) are conditional probabilities, they must be nogatizve, and

since the process must make a transition into setage, they must satisfy the

properties:

p" 20, for ali andj; n=0,1,2,...,
M

> p =1, foralli;n=0,1,2,...

j=0

A convenient way to show all the-step transition probabilities is thestep

transition matrix

(n) (n) (n)
Poo Poi -~ Pom
(n) (n) (n)
pM = Pio P’ - DPim forn=0,1,2,...
(n) (n) (n)
Puo Pmi -+ Pwum

Note that the transition probability in a partiautl@w and column is for the
transition from the row state to the column stilten n =1, we drop the superscript n
and simply refer to this as the transition matrix.

The Markov chains considered in this work havefttiewing properties:

1. afinite number of states.
2. stationary transition probabilities.
The following Chapman-Kolmogorov equationprovide a method for

computing the n-step transtion probabilities:

M

(N — (m) |y (n-m)

P; _zpik Py;
k=0

foralli=0,1,...M; j =0,1,...M; and anyn=1,2,...,n-1; n=m+1, m+2,...
These equations point out that in going from state statej in n steps, the
process will be in some stakeafter exactlym (less thann) states. This expression

enable then-step transition probabilities to be obtained frdme one-step transition
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probabilities recursively. Thus, the-step transition probability matriP" can be

obtained by computing theth power of the one-step transition matRP™ = P,

[11.3.1 Classification of states of a Markov chain

It is evident that the transition probabilities @gated with the states play an
important role in the study of Markov chains. Tatlier describe the properties of
Markov chains, it is necessary to present some emacand definitions concerning

these states.

Statej is said to be accessibfi®m state if p{” >0 for somen > 0. Thus, state

j being accessible from stataneans that it is possible for the system to entee g
eventually when it starts from stateln general, a sufficient condition fail states to

be accessible is that there exists a valugfof which piE”) >0 for alli and;.

If statej is accessible from stateand state is accessible from stajethen states

i andj are said to communicate. In general:
1. any state communicates with itself (becayg® = ); 1

2. if statei communicates with stajethen stat¢ communicates with state
i;

3. if statei communicates with stajeand stat¢ communicates with state
then staté communicates with state

As a result of these properties of communicatibe, states may be partitioned
into one or more separate class such that thoses gteat communicate with each other
are in the same class. If there is only one class, all the states communicate, the
Markov chain is said to be irreducible.

It is often useful to talk about whether a proocesstering a state will ever return
to this state. A state is said to be a transséatie if, upon entering this state, the process
may never returrio this state again. Therefore, staie transient if and only if there
exists a statg (j#i) that is accessible from statéut not vice versa, that is, states
not accessibile from stajeThus, if state is transient and the process visits this state,
there is a positive probability (perhaps even dability of 1) that the process will later
move to stat¢ and so will never return to stateConsequently, a transient state will be
visited only a finite number of times.

When starting in state another possibility is that the processfinitely will

return to this state. A state is said to be a recustate if, upon entering this state, the
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processdefinitely will returnto this state again. Therefore, a state is rectifesind
only if it is not transient. Since a recurrent stdefinitely will be revisited after each
visit, it will be visited infinitely often if the ppcess continues forever.

If the process enters a certain state and thers stathis state at the next step,
this is considered eeturn to this state. Hence, the following kind of stageai special
type of recurrent state. A state is said to bekmoiingstate if, upon entering this state,
the processever will leavethis state again. Therefore, statis an absorbing state if
and only ifp; =1.

Recurrence is a class property. That is, all statesclass are either recurrent or
transient. Furthermore, in a finite-state Marko\aich not all states can be transient.
Therefore, all states in an irreducible finite-stitarkov chain are recurrent.

Another useful property of Markov chainspgeriodicities The periodo f state
is defined to be the integerx 1) such thatp{” = Gor all the values oh other thart,

2t, 3,...andt is the largest integer with this property. Justr@surrence is a class
property, it can be shown that periodicity is asslaroperty. That is, if staten a class
has period, the all states in that class have petiod

In a finite-state Markov chain, recurrent stateatthre aperiodic are called

ergodicstates. A Markov chain is said to éegodicif all its states are ergodic states.

[11.3.2 Long run properties of Markov chains

For any irreducible ergodic Markov chailim p{" exists and is independentiof

n-oo 1)

Furthermore,

lim p{” =, >0,

n- oo 1y

where therz; uniquely satisfy the following steady-state equagio

7T, =Z7Tipu forj=0,1,..., M
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The 77; are called steady-state probabilities of the Markbain. The term

steady-statgorobability means that the probability of findiniget process in a certain
state, say, after a large number of transitions tends to tHaerg], independent of the
probability distribution of the initial state. Is important to note that the steady-state
probability does noimply that the process settles down into one statethe contrary,
the process continues to make transitions fronme siatstate, and at any stepthe
transition probability from stateto state is still p;.

There are other important results concerning ststalg probabilities. In

particular, ifi andj are recurrent states belonging to different clagbes pifn) =0 for

all n. This result follows from the definition of a cfas

Similarly, if j is a transient state, thdim pifn) =0 for alli. Thus, the probability

of finding the process in a transient state aftewrge number of transitions tends to zero.

If the requirement that the states be aperiodielsxed, then the limiim p{"”

n-o I
may not exist. However, the following limit alwagxists for an irreducible (finite-

state) Markov chain:

When therr; satisfy the steady-state equations.

This result is important in computing theng-run average cost per unit time
associated with a Markov chain. Suppose that a(ocosither penalty functiorQ(X;) is
incurred when the process is in stXtat timet, fort = 0, 1, 2,.... Note thaC(X) is a
random variable that takes on any one of the vati(@3, C(1),..., C(M) and that the
function C(+ ) is independent of. The expected average cost incurred over therfirst

periods is given by

2 e

By using the result that
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Iim(iz pig")j =1,

N

it can be shown that the (long-rus¥pected average cost per unit tim@iven by

lim E{%iC(Xt)} = injcu) .

In addition, 7z; can be interpreted as the (long-run) actual foactf times the

system is in state

[11.3.3 Continuous time Markov chains

Until now it was assumed that the time parameéteras discrete (that ig, =
0,1,2,...). Such an assumption is suitable for maoplpms, but there are certain cases
where a continuous time parameter (catl)itis required, because the evolution of the
process is being observed continuously over tintee definition of a Markov chain
given before also extends to such continuous pseses

As before, | label the possible statd#sthe system as 0, 1, . . M, Starting at
time 0 and letting the time parametérun continuously fort > 0 | let the random
variable X(t') be the state of the system at timieThus, X(t') will take on one of its

possible M + 1) values over some intervdl < t'<t,, then will jump to another value
over the next intervak, <t'<t,, etc., where these transit points {2, . . .) are random

points in time fot necessarily integer).
Now consider the three points in time (1F r (wherer > 0), (2)t' = s(wheres

> r), and (3)t' = s+t (wheret > 0), interpreted as follows:

t=r is a past time,
t=s is the current time,
t'=s+t is t time units into the future.

Therefore, the state of the system now has beegrwdss at time$ = sandt’ =
r. Label these states X¢s) =1 andX(r) = x(r). Given this information, it now would be
natural to seek the probability distribution of dtate of the system at tintie= s+ t:

P{X(s+t)=j | X(s) =i, X(r) = x(r)} foj = 0,1,..., M.
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Deriving this conditional probability often is vedjfficult. However, this task is
considerably simplified if the stochastic procesgoived possesses the following key
property: a continuous time stochastic proc{@sa');t'z O} has the Markovian property
it P{X(s+t)=j|X(s)=i,X(r)=x(r)} =P{X(t+s)=j|X(s) =i}, foralli,j =0,1,...,

M and for allr > 0, s>r, andt > 0.

Note that P{X(t+s): ] |X(s):i} IS a transition probabilityjust like the
transition probabilities for discrete time Markotiains considered above, where the
only difference is that now need not be an integer. If the transition pbaliges are
independent o, so thatP{X (s+t) = j | X(s) =i} = P{X(t) = j | X (0) =i} for alls> 0,
they are called stationary transition probabiliti€® simplify notation, | shall denote
these stationary transition probabilities by

p, ) = P{X(t) = j | X (0) =i},

where p; (t ) is referred to as the continuous time transitioobpbility function. It is

assumed that

| 10 Q=]
lim p, (t) = .
% P ) {o it %]

Now we are ready to define the continuous time Markhains: a continuous time
stochastic proces{;X(t');t'z O} is a continuous time Markov chain if it has the
Markovian property

In the analysis of continuous time Markov chainsg kkey set of random
variables is the following: aach time the procestge®s stata, the amount of time it
spends in that state before moving to a differéatess a random variable, wherei =
0, 1, ... M. Suppose that the process enters statdimet’ = s. Then, for any fixed

amount of timet > 0, note thafl, >t if and only if X(t") = i for all t" over the interval

s<t'<ss+t . Therefore, the Markovian property (with statipnatransition

probabilities) implies that

PT, >t+s|T, >} = P{T, >1}.
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This is a rather unusual property for a probabiiistribution to possess. It says
that the probability distribution of themainingtime until the process transits out of a
given state always is the same, regardless of hoehnime the process has already
spent in that state. In effect, the random variablmemoryless; the process forgets its
history. There is only one (continuous) probabildistribution that possesses this
property - theexponential distribution.The exponential distribution has a single

parameter, call ifj, where the mean isdand the cumulative distribution function is

PT, <t}=1-¢7*, fort > 0.

This result leads to an equivalent way of descglancontinuous time Markov
chain:
1. the random variabl&; ha san exponential distribution with a mean of 1/
G
2. when leaving statg the process moves to a stptgith probabilityp; ,
wherep; satisfy the conditions
pj =0 for alli,

M
> p, =1 foralli
j=o

3. the next state visited after statis independent of the time spent in state
i
Just as the transition probabilities for a disctatee Markov chain satisfy the
Chapman-Kolmogorov equations, the continuous tina@sition probability function
also satisfies these equations. Therefore, forséates andj and nonnegative numbers
tands(0<s<t),

p; (t) = Z Pk (S) Py (t—9) .

A pair of states andj are said tacommunicatef there are times; andt, such
thatp;(t1) > 0 andp;i(tz) > 0. All states that communicate are said to farolass.If all
states form a single class, i.e., if the Markovikha irreducible (hereafter assumed),

thenp;(t) > O, for allt > 0 and all stateisand;.

Furthermore,!im p; (t) = 77; always exists and is independent of the initialesta

of the Markov chain, fof _ 0, 1, . . . M. These limiting probabilities are commonly
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referred to as the steady-state probabili{@sstationary probabilitiey of the Markov

chain. Ther; satisfy the equations

M
o=y (t) forj=0,1,.., Mand everyt 2 0
i=0

111.4. Markov Decision Processes

Many important systems can be modelled as eitltksaete time or continuous
time Markov chain. It is often useful to describe behaviour of such a system in order
to evaluate its performances. However, it may benemore useful to design the
operation of the system so as to optimize its perémce. Therefore, rather than
passively accepting the design of the Markov chamu the corresponding fixed
transition matrix, it is possible to be proactive.fact, for each possible state of the
Markovian chain, it is possible to make a decisaout which one of the several
alternative actions should be taken in that stHbte. action chosen affects the transition
probabilities as well as both the immediate cost$ subsequent costs from operating
the system. The objective is to choose the optanabns for the respective states when
considering both immediate and subsequent costsd&bision process for doing this is
referred to adMarkov decision process

The model for the Markov decision process consilerethis work can be
summarized as follows:

1. The statei of a discrete time Markov chain is observed agach
transition { = 0,1,...,M).

2. After each observation, a decision (actitnis chosen from a set &t
possible decisionsk(= 1,2,...,K). (Note that some of thK decisions
may not be relevant for some of the states).

3. If decisiond; = k is made in state an immediate cost is incurred that has
an expected valu€i.

4. The decisiord, = k in statei determines what the transition probabilities
will be for the next transition from state Denote these transition
probabilities byp;(K), forj =0,1,...,M.

5. A specification of the decisions for the respecttates do, di,..., dv)

prescribes @olicy for the Markov decision process.
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6. The objective is to find an optimal policy accomglino some cost
criterion which considers both immediate costs sulgsequent costs that
result from the future evolution of the processe@ommon criteria is to

minimize the (long-run) expected average cost pértime.

This general model qualifies to be a Markov decigioocess because it possesses the
Markovian property that characterizes any Markowcpss. In particular, given the
current state and decision, any probabilistic staet# about the future of the process is
completely unaffected by providing any informatiabout the history of the process.
This property holds here since (1) we are dealip & Markov chain, (2) the new
transition probabilities depend on only the curretdte and decision, and (3) the
immediate expected cost also depends on only tiierdstate and decision.

There exists several procedures to find the optpoéty. One of them is to use
the exhaustive enumeration, but this one is ap@tgponly for tiny stationary and
deterministic problems, where there are only felevant policies. In many applications
where there are many policies to be evaluated,appmoach is not feasible. For such
cases, algorithms that can efficiently find an oyt policy are needed. Some of them

are described in the next sections.

[11.4.1 Linear programming and optimal policies

Any stationary and deterministic polidg can be viewed as a rule that the
prescribes decisiod(R) whenever the system is in statéor eachi = 0,1,...M. Thus,
Ris characterized by the values

{dy(R).d,(R).....dy (R)}.

Equivalently,R can be characterized by assigning valDgs= 0 or 1 in the

matrix
Decisionk
Dy, Dy, ... Dy
State D, D, .. Dy

Dy: Dy: -+ Dy
Where eaclby (i = 0,1,...M andk = 1,2,...K) is defined as
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ik

_ |1 if decisionkistobemadan statei
0 otherwise

Therefore, each row in the matrix must containnglei 1 with the rest of the elements
0Os.

IntroducingDix provides motivation for #inear programming formulationit is
hoped that the expected cost of a policy can beesgpd as a linear function@f or a
related variable, subject to linear constraintstddanately, theDi values are integers
(0 or 1), and continuous variables are requiredafdinear programming formulation.
This requirement can be handled by expanding therpretation of a policy. The
previous definition calls for making the same dietievery time the system is in state
The new interpretation of a policy will call for emining a probability distribution for
the decision to be made when the system is in st&tth this new interpretation, the
Dik now need to be redefined as

D, = P{decision=k | state=i} .

In other words, given that the system is in siateariableDj is the probability of
choosing decisiok as the decision to be made. Therefol;,(Di, . . . ,Di) is the
probability distributionfor the decision to be made in statdhis kind of policy using
probability distributions is called randomized policy,whereas the policy calling for

Dik = 0 or 1 is aeterministic policyRandomized polizie can again be characterized by

the matrix
Decisiork
Dy, Dy, ... Dy
D, D;, .. Dy

State
Dy: Dy: -+ Dy
where each rowsumsto1,andnébw D, < . 1

.4.1.1. A linear programming formulation

The convenient decision variables (denoted here ypy) for a linear

programming model are defined as follows. For easl0l,....M andk =12,....K, let
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y, be the steady-state unconditional probability ttred system is in state and
decisionk is made; i.e.,

y, = P{ state =i and decisiom k }.

Eachy, is closely related to the correspondibg since, from the rules of
conditional probabilityy, = 77D, , where 7z is the steady-state probability that the

Markov chain is in state. Furthermore,

K
= Yy
k=1

so that
_ Yk — Y
Dy _#_K—k
' ZYik

M
1. Y 7 =1 so that

i=1 i=0 k=1
M
2. From results on steady-state probabilitrgs= ZITip,j so that
i=0
K M K )
> Vi =2 viep; (K), forj=0L...M .
k=1 i k=

= i=0 1

3. y,20, fori=04...M and k=12...K.

The long-run expected average cost per unit tinggvisn by

E(C)= iimcik Dy = iicikyik .

Hence, the linear programming model is to chooseyth so as to

Minimize Z = iicik Yik »

i=0 k=1
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subject to the constraints:

® Y=t

(2) Zyjk—iiympij(k):O, for j = 0L...M .

(3) Yi 2 0, fori=0L...M ; k=12,... K.

Thus, this model haM +2 functional constraints and (M +1) decision
variables. Assuming that the model is not too hugecan be solved by the

simplex methodOnce they, values are obtained, ea€h, is found from

D, = Yik

=2k
Z Yik
k=1

The optimal solution obtained by the simplex methws some interesting
properties. It will containM +1 basic variablesy, = 0t can be shown thay, > 0
for at least on&k =12,...,.K for eachi =01...,M .Therefore, it follows that, > 0
for only onek for eachi = 01,...,M .Consequently, eacB, = ©Or 1.

The key conclusion is that the optimal policy fouoyl the simplex method is
deterministicrather than randomized. Thus, allowing policiebéaandomized does not
help at all in improving the final policy. Howevet,serves an extremely useful role in
this formulation by converting integer variableBg(D, ) to continuous variables so
that linear programming (LP) can be used.(The ayalo integer programmings to
use thelLP relaxationso that the simplex method can be applied and thdérave the
integer solutions propertiiold so that the optimal solution for the LP rel@oa turns
out to be integer anyway.)

Linear programming can be thus used to solve vdstlge problems, and

software packages for the simplex method are véagly available.

111.4.2 Policy improvement algorithm

After the presentation of the exhaustive enumemadiad the linear programming

techniques, hereafter | present a third populahoteto derive an optimal policy for
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Markov decision processes called policy improvenadgorithm. The key advantage of
this method is that it tends to be very efficidmcause it usually reaches an optimal
policy in a relatively small number of iterations.

As a joint result of the current statef the system and the decision(R) = k
when operating under policl, two things occur. An (expected) cdSt is incurred

that depends upon only the observed state of thersyand the decision made. The
system moves to stajeat the next observed time period, with transitpyobability

given by p; (k). If, in fact, statg influences the cost that has been incurred, @ens
calculated as follows. Denote lay (k the (expected) cost incurred when the system is

in statel and decisiork is made and then it evolves to stptd the next observed time

period. Then

Cy =20, (9, ()

It is possible to show that, for any given poli®; there exist values

g(R),v,(R), v,(R), ..., v,, (R) that satisfy

g(R)+v,(R) =C, +i p; (K)v; (R), fori = 012,...,M .

Denote byv'(R )the total expected cost of a system starting atest
(beginning the first observed time period) and ewg for n time periods. Thewn (R )

has two component€, the cost incurred during the first observed tineeiqu, and

M
z P; (k)v;“l(R), the total expected cost of the system evolvingr diie remaining
i=0

n-1 time periods. This gives thecursive equation
M

V(R =C, + . p; (KV](R), fori = 01,2,....M ,
j=0

wherev'(R) =C, for alli.

40



It will be useful to explore the behaviour gf(R agn grows large. Recall that

the (long-run) expected average cost per unit tiollewing any policy R can be

expressed as

g(R) = Zﬂicik’

which is independent of the starting statélence,v" (R pehaves approximately &s
g(R)for largen. In fact, if we neglect small fluctuationg; (R cgn be expressed as the

sum of two componentsy(R)=ng(R)+Vv,(R )where the first component is
independent of the initial state and the secordkmendent upon the initial state. Thus,
v, (R) can be interpreted as the effect on the total @eplecost due to starting in state
Consequentlyy;'(R) - v (R) = v, (R) —v, (R), so thatv,(R) -v,(R )is a measure of the
effect of starting in staterather than state Letting n grow large, it is then possible to
substitutev (R) = ng(R) +v; (R )and v{*(R) = (n-1)g(R) +v,(R) into the recursive
equation.This leads to the system of equations given inojpening paragraph of this
subsection.

Note that this system hdd+1 equations witiM+2 unknowns, so that one of

these variables may be chosen arbitrarily. By coties, v,, (R) will be chosen equal to
zero. Therefore, by solving the system of linearatipns, | can obtaig(R the (long-

run) expected average cost per unit time when pdlids followed. In principle, all

policies can be enumerated and that policy whichmimizesg(R) can be found.

However, even for a moderate number of states awisidns, this technique is
cumbersome. Fortunately, there exists an algorttitahcan be used to evaluate policies

and find the optimal one without complete enumergtas described next.

1.4.2.1. The Policy Improvement Algorithm

The algorithm begins by choosing an arbitrary poliR. It then solves the
system of equations to find the values gf{R),v,(R),v,(R),....v,,.,(R [with
v, (R) =0]. This step is calledalue determinationA better policy, denoted bR,, is

then constructed. This step is callgalicy improvementThese two steps constitute an
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iteration of the algorithm. Using the new poli&y, we perform another iteration. These

iterations continue until two successive iteratidead to identical policies, which
signifies that the optimal policy has been obtairidte details are outlined below:

Initialization: Choose an arbitrary initial trial policf?,. Setn =1
Iteration n:

Step 1 - Value determinatiorfor policy R,,use p; (k), C,, andvy, (R,) =0 to solve

the system oM + 1 equations
M

d(R)=C, +>.p; (K, (R) -V (R), fori=0L...M ,
j=0

for all M + 1 unknown values o§(R,),V,(R,),V,(R,),....Vy, .. (R,)-

Step 2 - Policy improvement:Using the current values ofVi(Rn) computed for policy

R,, find the alternative policyR ,; such that, for each staied, (R.,;) =K is the decision that

minimizes

Ci +Z p; (K)v;(R)) -Vi(R,)

i.e., foreachstatei,

M
MkI_QIZmLZE |:Cik + z P; (k)Vj (Rn) -V (Rn):| )
=12,... =
and then set, (R,,;) equal to the minimizing value &f This procedure defines a new poliy,,, .
Optimality test:The current policyR,; is optimal if this policy is identical to polic{R. If it

is, stop. Otherwise, resét = N +1 and perform another iteration.

Two key properties of this algorithm are

1. 9(R..)<9(R)), forn=12,...
2. The algorithm terminates with an optimal poliay @ finite number of

iterations.
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[11.4.3 Discounted cost criterion

Up to now, policies were measured on the basisheir t(long-run) expected
average cost per unit time. Now | turn to an akéue measure of performance, namely,
theexpected total discounted cost

This measure usesdascount factora, where 0 <a < 1. The discount factor
can be interpreted as equal to 1/(1} wherei is the current interest rate per period.
Thus,a is thepresent valuef one unit of cost one period in the future. Saril, o™ is
thepresent valuef one unit of cosi periods in the future.

This discounted cost criteriobecomes preferable to tlawerage cost criterion
when the time periods for the Markov chain areisidfiitly long that thé¢ime value of
moneyshould be taken into account in adding costs inréuperiods to the cost in the
current period. Another advantage is that the disted cost can readily be adapted to
dealing with afinite-period Markov decision process where the Markov chain will
terminate after a certain number of periods.

Both the policy improvement technique and the lingeagramming approach
still can be applied here with relatively minor @stments from the average cost case, as
| describe next. Then | will present another teghei called thenethod of successive

approximationsfor quickly approximating an optimal policy.

.4.3.1. A Policy Improvement Algorithm

To derive the expression needed for the value mhation and policy
improvement steps of the algorithm, | now adoptwviesvpoint ofprobabilistic dynamic
programming.In particular, for each statgi = 0,1,...M) of a Markov decision process

operating under policyR, Iet\/i”(R) be theexpected total discounted cashen the
process starts in stat¢beginning the first observed time period) andles® forn time

periods. TherV,"(R) has two componentsC, , the cost incurred during the first
M

observed time period, amiz P; (k)\/j”‘l(R), the expected total discounted cost of the
j=0

process evolving over the remainimg- tifine periods. For each=01,...,M , this

yields the recursive equation
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V(R)=C, +a3 by (V) (R)

As n approaches infinity, this recursive equation coges to

V,(R)=C, +ai p, (k\V,(R), fori=0L...M,

whereV, (R) can now be interpreted as the expected total diged cost when the

process starts in stateand continues indefinitely. There aM +1 equations and
M +1 unknowns, so the simultaneous solution of thigesysof equations yields the
Vi(R).

This system of equations provides the expressioesded for a policy
improvement algorithm. After summarizing this aligfom in general terms, we shall

use it to check whether this particular policylssloptimal under the discounted cost
criterion.

Summary of the Policy Improvement Algorithm (Disoted Cost Criterion):

Initialization: Choose an arbitrary initial trial polic?, . Setn=1.

Iteration n:
Step 1: Value determinatiorFor policy R, use p; (k) and C, to solve the system of

M +1 equations

V(R)=C, az o, (KW, (R,). foii = 0, 1M,

for all M+1 unknown values oY, (Rn ),Vl(Rn ),...,V,\,I (Rn )
Step 2:Policy improvementtsing the current values of thé (Rn), find the alternative policy

R.., such that, for each stated, (R ,,) = k is the decision that minimizes

Ci +aio P (k)\/j (Rn)

i.e., foreachstate,
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winimze | €, +a3" (4 (R)]

and then sed, (Rn+1) equal to the minimizing value &f This procedure defines a new poli€3,,,.

Optimality test:The current policyR,; is optimal if this policy is identical to polic{R,. If it

is, stop. Otherwise, reset= n + 1 and perform another iteration.

Three key properties of this algorithm are as fefio

1.Vi(Rﬂ+1)SVi(Rn)’ fori=0,1,....Mandn=1, 2,....

2. The algorithm terminates with an optimal polizy a finite number of
iterations.

3. The algorithm is valid without the assumptioegd for the average cost case)

that the Markov chain associated with every tramsitatrix is irreducible.

111.4.3.2. Linear Programming Formulation

The linear programming formulation for the discahicost case is similar to
that for the average cost case. However, we noelonged the first constraint given

before; but the other functional constraints dodneinclude the discount facter .

The other difference is that the model now contaorsstantsg3; forj =0, 1, ...,

These constants must satisfy the conditions

.8 =1, B> 0 forj=0,1, ..M,

but otherwise they can be chosen arbitrarily withatfecting the optimal policy
obtained from the model.
The resulting model is to choose the values ottrinuousdecision variables

Y, SO as to

Minimize Z = %‘,Z‘,Cik Yic »

K
i=0 k=1
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subject to the constraints
K M
1) zyjk_azzyikpij(k):ﬂj , for=0, 1, ....M,
k=1 i=0 k=1
2 vy, =20, fori=0,1,...M; k=1,2,...K
Once the simplex method is used to obtain an optsolation for this model,

the corresponding optimal policy then is defined by

D, = P{decision =k and state ¥} = Ky—'k

Z Yik
k=1

The y, now can be interpreted as tiiscountedexpected time of being in state
i and making decisiol, when the probability distribution of thaitial state (when
observations begin) iB{X, = j} = B, for j= 0, 1, ...,M. In other words, ifz; = P{at

timen, state 5 and decision K}, then
Y, =20 +az, +a’z; +a°z, +[I

With the interpretation of the3; as initial state probabilities (with each

probability greater than zeraj, can be interpreted as the corresponding expeotat t
discounted cost. Thus, the choice Bf affects the optimal value & (but not the
resulting optimal policy).

It again can be shown that the optimal policy otedifrom solving the linear

programming model is deterministic; that 3, = o001. Furthermore, this technique

is valid without the assumption (used for the ageraost case) that the Markov chain

associated with every transition matrix is irredhlei

111.4.3.3. Finite-Period Markov Decision Processes and thenbtbof
Successive Approximations

| now turn our attention to an approach, called thethod of successive
approximationsfor quicklyfinding at least aapproximationto an optimal policy.

We have assumed that the Markov decision procedk bhei operating
indefinitely, and we have sought an optimal pohalysuch a process. The basic idea of

the method of successive approximations is to austind an optimal policy for the
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decisions to make in the first period when the psschas only time periods to go
before termination, starting with= 1, thenn = 2, thenn = 3, and so on. As grows
large, the corresponding optimal policies will cerye to an optimal policy for the
infinite-period problem of interest. Thus, the lipes obtained fom = 1, 2, 3, ...
providesuccessive approximatiotisat lead to the desired optimal policy.

The reason that this approach is attractive is tWmatalready have a quick
method of finding an optimal policy when the pracéss onlyn periods to go, namely,
probabilistic dynamic programming.

In particular, fori = 0, 1, ...,M, letV," be the expected total discounted cost of

following an optimal policy, given that processritan state and has only periods to
go.

By the principle of optimalityfor dynamic programming, thé" are obtained

from the recursive relationship

M
A mkin{Cik +ad p, (k)\/j“‘l}, foii =0, 1, ..., M.
=0

The minimizing value ok provides the optimal decision to make in the first

period when the process starts in siate

To get started, with = 1, all theV,° = Oso that

VA mKin{Cik}, fori= 0, 1, ...,M.

Although the method of successive approximationg nat lead to an optimal
policy for the infinite-period problem after only faw iterations, it has one distinct
advantage over the policy improvement and lineag@mming techniques. It never
requires solving a system of simultaneous equatem®ach iteration can be performed
simply and quickly.

Furthermore, if the Markov decision process acjudtles have just periods to
go, n iterations of this method definitely will lead ta aptimal policy. (For am-period
problem, it is permissible to set= |, that is, no discounting, in which case the

objective is to minimize the expected total costravperiods.)
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Chapter IV

Reinforcement Learning

IVV.1. Introduction

Due to well known scalability problems with MDP ¢t framework, a MDP
algorithms is not suitable to be implemented irl tié@e systems, as the one considered
in this work. In fact, the path selection enginghea NGHN QoS controller is in charge
of deciding the path for a new flow as soon asgtives a new flow request. In addition,
due to the frequent link faults in the consideredhl networks, also re-routing has to
be calculated in real time to avoid loss of packeing the handover from the old path
to the new path.

Reinforcement learning (RL) is a control framewdtikt can be easily built on a
MDP control framework of a system and producesr&stng results that can be
obtained with low computation complexity. For thisason, the RL approach is
presented here as it is used in this work to derigem the general MDP control
framework, a RL new algorithm that can be impleradnh real time NGHN controllers
and provides, at the same time, results that ang alese to the ones that are obtained

with the optimal MDP controller.

IV.2. An introduction to Reinforcement Learning

Reinforcement learning [15] is learning what to do as to maximize a
numerical reward signal. The learner is not toldaltactions to take, as in most forms
of machine learning, but instead must discover Wwhaictions yield the most reward by
trying them. In the most interesting and challeggiases, actions may affect not only
the immediate reward but also the next situatiod, gahrough that, all subsequent
rewards. These two characteristics (namely trighamor search and delayed reward)
are the two most important distinguishing featwkeeinforcement learning.

Reinforcement learning is defined not by charaziteg learning methods, but

by characterizing a learningroblem Any method that is well suited to solving that
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problem, we consider to be a reinforcement learnieghod. A full specification of the
reinforcement learning problem in terms of optin@ntrol of Markov decision
processes is presented later, but the basic idgia@y to capture the most important
aspects of the real problem facing a learragent interacting with itsenvironment to
achieve a goal. Clearly, such an agent must betaldense the state of the environment
to some extent and must be able to take actionsaffext the state. The agent also must
have a goal or goals relating to the state of therenment. The formulation is intended
to include just these three aspects (sensatioionaeind goal) in their simplest possible
forms without trivializing any of them.

One of the challenges that arise in reinforcemeatning and not in other kinds
of learning is the trade-off between exploratiord axploitation. To obtain a lot of
reward, a reinforcement learning agent must praftions that it has tried in the past
and found to be effective in producing reward. Butliscover such actions, it has to try
actions that it has not selected before. The algg@ntoexploitwhat it already knows in
order to obtain reward, but it also has @rplore in order to make better action
selections in the future. The dilemma is that regigxploration nor exploitation can be
pursued exclusively without failing at the task.eTéigent must try a variety of actions
and progressively favor those that appear to be li&sta stochastic task, each action
must be tried many times to gain a reliable esemi$ expected reward. The
exploration-exploitation dilemma has been intengivatudied by mathematicians for
many decades.

Another key feature of reinforcement learning iatth explicitly considers the
whole problem of a goal-directed agent interacting vathuncertain environmenall
reinforcement learning agents have explicit goalan sense aspects of their
environments, and can choose actions to influeheg environments. Moreover, it is
usually assumed from the beginning that the agastth operate despite significant
uncertainty about the environment it faces. Wheimfeecement learning involves
planning, it has to address the interplay betwdanning and real-time action selection,
as well as the question of how environmental modedsacquired and improved. When
reinforcement learning involves supervised learnihgoes so for specific reasons that
determine which capabilities are critical and whane not. For learning research to
make progress, important subproblems have to batésband studied, but they should
be subproblems that play clear roles in completeractive, goal-seeking agents, even

if all the details of the complete agent cannotbeefilled in.
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IV.2.1 Elements of RL

Beyond the agent and the environment, one canifgdéatr main subelements
of a reinforcement learning systempalicy, areward function avalue function and,
optionally, amodelof the environment.

A policy defines the learning agent's way of behaving given time. Roughly
speaking, a policy is a mapping from perceivedestatf the environment to actions to
be taken when in those states. It corresponds #i imhpsychology would call a set of
stimulus-response rules or associations. In sonsescéhe policy may be a simple
function or lookup table, whereas in others it ntayolve extensive computation such
as a search process. The policy is the core dh#oreement learning agent in the sense
that it alone is sufficient to determine behavlargeneral, policies may be stochastic.

A reward function defines the goal in a reinforcement learning pzobl
Roughly speaking, it maps each perceived statstébe-action pair) of the environment
to a single number, aeward, indicating the intrinsic desirability of that sta A
reinforcement learning agent's sole objective imximize the total reward it receives
in the long run. The reward function defines wha the good and bad events for the
agent. In a biological system, it would not be Epriate to identify rewards with
pleasure and pain. They are the immediate andidgffieatures of the problem faced
by the agent. As such, the reward function musesearily be unalterable by the agent.
It may, however, serve as a basis for alteringgblicy. For example, if an action
selected by the policy is followed by low rewarkden the policy may be changed to
select some other action in that situation in titare. In general, reward functions may
be stochastic.

Whereas a reward function indicates what is goahirmmediate senseyalue
functionspecifies what is good in the long run. Roughlgagng, thevalueof a state is
the total amount of reward an agent can expectt¢araulate over the future, starting
from that state. Whereas rewards determine the dvatee intrinsic desirability of
environmental states, values indicate [treg-termdesirability of states after taking into
account the states that are likely to follow, dmel tewards available in those states. For
example, a state might always yield a low immediateard but still have a high value
because it is regularly followed by other statest #field high rewards. Or the reverse
could be true. To make a human analogy, rewardbkareleasure (if high) and pain (if

low), whereas values correspond to a more refimadl farsighted judgment of how
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pleased or displeased we are that our environmseanta particular state. Expressed this
way, it is clear that value functions formalizeasic and familiar idea.

Rewards are in a sense primary, whereas valugsedgctions of rewards, are
secondary. Without rewards there could be no valeesl the only purpose of
estimating values is to achieve more reward. Nbedgss, it is values with which we
are most concerned when making and evaluating idasisAction choices are made
based on value judgments. We seek actions thay Bbout states of highest value, not
highest reward, because these actions obtain #etegut amount of reward for us over
the long run. In decision-making and planning, dleeived quantity called value is the
one with which we are most concerned. Unfortunatiéelis much harder to determine
values than it is to determine rewards. Rewardsbasacally given directly by the
environment, but values must be estimated andimeggtstd from the sequences of
observations an agent makes over its entire lifetiim fact, the most important
component of almost all reinforcement learning athms is a method for efficiently
estimating values. The central role of value ediionais arguably the most important
thing we have learned about reinforcement learowey the last few decades.

The fourth and final element of some reinforcemeatning systems is model
of the environment. This is something that mimtws behavior of the environment. For
example, given a state and action, the model npgidict the resultant next state and
next reward. Models are used fadanning by which we mean any way of deciding on a
course of action by considering possible futureiadions before they are actually
experienced. The incorporation of models and plagnnto reinforcement learning
systems is a relatively new development. Earlyfoeaement learning systems were
explicitly trial-and-error learners; what they dichs viewed as almost tloppositeof
planning. Nevertheless, it gradually became clbat teinforcement learning methods
are closely related to dynamic programming methadsch do use models, and that
they in turn are closely related to state-spacamtey methods. Modern reinforcement
learning spans the spectrum from low-level, triadkeerror learning to high-level,

deliberative planning.

IV.2.2 Evaluative feedback

The most important feature distinguishing reinfoneat learning from other
types of learning is that it uses training inforioatthat evaluatesthe actions taken

rather thannstructsby giving correct actions. This is what creates tieed for active
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exploration, for an explicit trial-and-error searidr good behavior. Purely evaluative
feedback indicates how good the action taken is,nbti whether it is the best or the
worst action possible. Evaluative feedback is tlesid of methods for function
optimization, including evolutionary methods. Pyrilstructive feedback, on the other
hand, indicates the correct action to take, inddpetty of the action actually taken.
Thus, evaluative feedback depends entirely on thmrataken, whereas instructive
feedback is independent of the action taken.

Let's consider the following learning problem. Yarte faced repeatedly with a
choice among different options, or actions. After each choicel yeceive a numerical
reward chosen from a stationary probability disttibn that depends on the action you
selected. Your objective is to maximize the expettéal reward over some time period.
Each action selection is callegblay.

This is the original form of tha-armed bandit problemn thisn-armed bandit
problem, each action has an expected or mean reyinged that that action is selected;
let’s call this thevalueof that action. If you knew the value of each @atithen it would
be trivial to solve the-armed bandit problem: you would always selectatigon with
highest value. It is assumed here that you do nowkthe action values with certainty,
although you may have estimates.

If you maintain estimates of the action valuesntheany time there is at least
one action whose estimated value is greatest.iJllled agreedyaction. If you select
a greedy action, you aexploitingyour current knowledge of the values of the acion
If instead you select one of the nongreedy actitmes you arexploring because this
enables you to improve your estimate of the nomyresction's value. Exploitation is
the right thing to do to maximize the expected nelvan the one play, but exploration
may produce the greater total reward in the long Ror example, suppose the greedy
action's value is known with certainty, while salesther actions are estimated to be
nearly as good but with substantial uncertaintye Tihcertainty is such that at least one
of these other actions probably is actually bethan the greedy action, but you don't
know which one. If you have many plays yet to mdken it may be better to explore
the nongreedy actions and discover which of theenbatter than the greedy action.
Reward is lower in the short run, during explomatibut higher in the long run because
after you have discovered the better actions, yamu exploitthem Because it is not
possible both to explore and to exploit with amg action selection, one often refers

to the "conflict" between exploration and explatat
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In any specific case, whether it is better to emplor exploit depends in a
complex way on the precise values of the estimatesertainties, and the number of
remaining plays. There are many sophisticated nastlior balancing exploration and
exploitation for particular mathematical formulatsof then-armed bandit and related
problems. However, most of these methods make gtmsaumptions about stationarity
and prior knowledge that are either violated or asgble to verify in applications and
in the full reinforcement learning problem that @ensider in subsequent chapters. The
guarantees of optimality or bounded loss for thesthods are of little comfort when

the assumptions of their theory do not apply.
Let'sdenote the true (actual) value of actioas Q" (a), and the estimated value
at thet th play asQ,(a). Recall that the true value of an action is theameeward

received when that action is selected. One natuagl to estimate this is by averaging
the rewards actually received when the action vesected. In other words, if at thin

play actiona has been choseq times prior tot, yielding rewards, +1, +...+1, , then

its value is estimated to be

TR A )

Q(a)= ” - (4.1)

a

If ka= 0, then it is possible to defir@ (a) instead as some default value, such

asQ,(a)=0. Ask, - o, by the law of large number, (a) converges t@"(a). This

is called thesample-averagenethod for estimating action values because esiiimate
is a simple average of the sample of relevant résvadf course this is just one way to
estimate action values, and not necessarily thiedes Nevertheless, for now let's stay
with this simple estimation method and turn to gjuestion of how the estimates might
be used to select actions.

The simplest action selection rule is to selectabigon (or one of the actions)
with highest estimated action value, that is, feceon playt one of the greedy actions,

a , for which Q (a*)z max, Q, (a). This method always exploits current knowledge to

maximize immediate reward; it spends no time atsalnpling apparently inferior
actions to see if they might really be better. fgle alternative is to behave greedily
most of the time, but every once in a while, sathvemall probabilitye , instead select

an action at random, uniformly, independently oé taction-value estimates. The

53



methods using this near-greedy action selectiom ané callede -greedymethods. An
advantage of these methods is that, in the limthasnumber of plays increases, every

action will be sampled an infinite number of timgsaranteeing that, — o for all a,

and thus ensuring that all tigg(a) converge toQ"(a). This of course implies that the

probability of selecting the optimal action convesdo greater than &- that is, to near
certainty. These are just asymptotic guaranteeseter, and say little about the
practical effectiveness of the methods.

The advantage of -greedyover greedy methids depends on the task. In genera
we can say that Reinforcement Learning requireslanice between exploration and
exploitation.

IV.2.3 Incremental Implementation

The action-value methods discussed so far all astiraction values as sample
averages of observed rewards. The obvious implatientis to maintain, for each
actiona, a record of all the rewards that have followesl gklection of that action. Then,
when the estimate of the value of action a is néeatetimet, it can be computed
according to (4.1). A problem with this straightf@rd implementation is that its
memory and computational requirements grow ovee twithout bound. That is, each
additional reward following a selection of actiamequires more memory to store it and

results in more computation being required to cheilee Q, (a).

As you might suspect, this is not really necessdryis easy to devise
incremental update formulas for computing averagéls small, constant computation
required to process each new reward. For somenad&tQy denote the average of its
first k rewards (not to be confused wi, (a), the average for acticaat thekth play).
Given this average and le+{)st rewardry.1, then the average of &1 rewards can be
computed by:

Qua = Q¢ + ﬁ_[rkﬂ - Qk] 4.2)
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which holds even fok = 0, obtainingQ; = ry for arbitraryQo. This implementation
requires memory only fa@x andk, and only a small computation for each new reward.
The general form for the update rule is:

NewEstimat — OldEstimae + StepSiz[é’ arget—OIdEstimae] (4.3)

The expressiorﬁT arget—OIdEstimae] is anerror in the estimate. It is reduced
by taking a step toward the "Target." The targepresumed to indicate a desirable
direction in which to move, though it may be noiBythe case above, for example, the
target is thel+1)st reward.

Note that the step-size paramet&tepSize used in the incremental method

described above changes from time step to time #teprocessing th&th reward for

. : 1 .
actiona, that method uses a step-size parameteif .ofn this work | denote the step-

size parameter by the symbolor, more generally, by, (a .)For example, the above

incremental implementation of the sample-averagthaakeis described by the equation

a, (a) =i. Accordingly, | sometimes use the informal shontha(a) -1 to refer to
“ k k

a

this case, leaving the action dependence implicit.

IV.2.4 Tracking a Nonstationary problem

The averaging methods discussed so far are apptepin a stationary
environment, but not if the bandit is changing otmere. But we may often encounter
reinforcement learning problems that are effecyivebnstationary. In such cases it
makes sense to weight recent rewards more hedaly fong-past ones. One of the
most popular ways of doing this is to use a consttep-size parameter. For example,
the incremental update rule (4.3) for updating aerageQx of the kpast rewards is

modified to be:

Qs =Qc +ars ~Ql] (4.4)

Where the step-size parameter,0<a <1, is costant. This results i@k being a
weighted average of past reward and the initiamede Q.
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IVV.3. The Reinforcement Learning problem

The reinforcement learning problem is meant to Iseraightforward framing of
the problem of learning from interaction to achievgoal. The learner and decision-
maker is called thagent The thing it interacts with, comprising everytiiautside the
agent, is called thenvironment These interact continually, the agent selectictgoas
and the environment responding to those actionspaesenting new situations to the
agent. The environment also gives rise to rewasgdscial numerical values that the
agent tries to maximize over time. A complete siEation of an environment defines a
task one instance of the reinforcement learning proble

More specifically, the agent and environment intei# each of a sequence of
discrete time stepg, = 0,1,2,3,... . At each time stdp the agent receives some

representation of the environmerstate S S, whereS is the set of possible states,
and on that basis selects antion a, ] A(s,), where A(s )is the set of actions

available in statg. One time step later, in part as a consequenits attion, the agent

receives a numericaeward, r.,, DR, and finds itself in a new stats,1. Figure 10

diagrams the agent-environment interaction.

—

"'"[ Agent }

state reward action
I1.'II I vlfi'.r

Y

S

s | Environment ==

Figure 10 - The agent-environment interaction in RL

At each time step, the agent implements a mapping Etates to probabilities
of selecting each possible action. This mappingalled the agent'policy and is
denotedr;, , where 77,(s,a )is the probability thata, =aif s =s. Reinforcement

learning methods specify how the agent changgsolisy as a result of its experience.

The agent's goal, roughly speaking, is to maxintize total amount of reward it
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receives over the long run. This means maximiziy iMmmediate reward, but

cumulative reward in the long run.

IVV.3.1 Returns

So far we have been imprecise regarding the okigedti learning. We have said
that the agent's goal is to maximize the rewar@aeives in the long run. How might
this be formally defined? If the sequence of rewarteived after time steéps denoted

M0 Naas Nags -0 then what precise aspect of this sequence do isle tw maximize? In

general, we seek to maximize thgpected returnwhere the return, is defined as
some specific function of the reward sequencehénsimplest case the return is the sum

of the rewards:

R =Ny thothet. .t (4.5)

whereT is a final time step. This approach makes senappfications in which there is

a natural notion of final time step, that is, whiére agent-environment interaction
breaks naturally into subsequences, which legifodessuch as plays of a game, trips
through a maze, or any sort of repeated interagtiBach episode ends in a special state
called theterminal state followed by a reset to a standard starting state®® a sample
from a standard distribution of starting statesskBawith episodes of this kind are called
episodic tasksIn episodic tasks we sometimes need to distihgtie set of all
nonterminal states, denot&lfrom the set of all states plus the terminalestdenoted

S.

On the other hand, in many cases the agent-enveonhimteraction does not
break naturally into identifiable episodes, but gg@m continually without limit. For
example, this would be the natural way to formubat®ntinual process-control task, or
an application to a robot with a long life spamrall thesecontinuing tasksThe return
formulation (4.5) is problematic for continuing kasbecause the final time step would
beT =, and the return, which is what we are trying taxiiméze, could itself easily
be infinite. (For example, suppose the agent resea/reward of +1 at each time step.)
Thus, in this work | usually use a definition otuen that is slightly more complex
conceptually but much simpler mathematically.

The additional concept that | need to introducth& ofdiscounting According

to this approach, the agent tries to select actemghat the sum of the discounted
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rewards it receives over the future is maximizedpdrticular, it chooses, to maximize

the expectediscounted return

Rt = rt+1 + }'rt+2 + yzrt+3 .= Zykrt+k+1 (46)
k=0

where y is a parametefQ < y < ,Xalled thadiscount rate

The discount rate determines the present valueutfrd rewards: a reward
receivedk time steps in the future is worth onf§™ times what it would be worth if it
were received immediately. Jf < ,lhe infinite sum has a finite value as long as th
reward sequencérk} is bounded. Ify = 0 the agent is "myopic” in being concerned

only with maximizing immediate rewards: its objeetiin this case is to learn how to
choosea; so as to maximize only.;. If each of the agent's actions happened to
influence only the immediate reward, not future aeds as well, then a myopic agent
could maximize (4.6) by separately maximizing eecmediate reward. But in general,
acting to maximize immediate reward can reduce sacte future rewards so that the

return may actually be reduced. Asapproaches 1, the objective takes future rewards

into account more strongly: the agent becomes rfaosgghted.

IvV.3.1.1. Unified notation for episodic and continuing tasks

As described previously, there are two kinds affieicement learning tasks, one
in which the agent-environment interaction natyrélieaks down into a sequence of
separate episodes (episodic tasks), and one imthitoes not (continuing tasks). The
former case is mathematically easier because editin affects only the finite number
of rewards subsequently received during the episibde therefore useful to establish
one notation that enables us to talk precisely taboth cases simultaneously.

To be precise about episodic tasks requires sogtigauhl notation. Rather than
one long sequence of time steps, we need to corsiskries of episodes, each of which
consists of a finite sequence of time steps. Wehminthe time steps of each episode
starting anew from zero. Therefore, we have torrefet just to s, the state
representation at timg but tos;, the state representation at timef episodel (and
similarly for aj, ryi, =, Ti, etc.). However, it turns out that, when we discepisodic

tasks we will almost never have to distinguish lestw different episodes. We will
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almost always be considering a particular singlsagfe, or stating something that is
true for all episodes. Accordingly, in practice wdl almost always abuse notation
slightly by dropping the explicit reference to ege number. That is, | will writg to
refer tos;, and so on.

We need one other convention to obtain a singlatiwot that covers both
episodic and continuing tasks. We have definedehan as a sum over a finite number
of terms in one case (4.5) and as a sum over amtenhumber of terms in the other
(4.6). These can be unified by considering epidedaination to be the entering of a
specialabsorbing statdéhat transitions only to itself and that generately rewards of

Zero.
IV.4. Modelling the environment as a Markov chain

In the reinforcement learning framework, the ageratkes its decisions as a
function of a signal from the environment called #mvironment'state By "the state"
we mean whatever information is available to thenagWe assume that the state is
given by some preprocessing system that is nomgirmmtt of the environmeniThe
state signal should not be expected to inform tgent of everything about the
environment, or even everything that would be ugefit in making decisions.

What we would like, ideally, is a state signal teatnmarizes past sensations
compactly, yet in such a way that all relevant infation is retained. This normally
requires more than the immediate sensations, lugrmaore than the complete history
of all past sensations. A state signal that sueetetaining all relevant information is
said to beMarkov, or to havehe Markov property

If an environment has the Markov property, theroite-step dynamics allow to
predict the next state and expected next rewarengikie current state and action. One
can show that, by iteration, one can predict alife states and expected rewards from
knowledge only of the current state as well as Wwdag possible given the complete
history up to the current time. It also follows thdarkov states provide the best
possible basis for choosing actions. That is, tbst Ipolicy for choosing actions as a
function of a Markov state is just as good as test Ipolicy for choosing actions as a
function of complete histories.

A reinforcement learning task that satisfies therkda property is called a

Markov decision proces®r MDP. If the state and action spaces are finite, thas i
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called afinite Markov decision process (finite MDPfinite MDPs are particularly
important to the theory of reinforcement learning.

A patrticular finite MDP is defined by its state aaction sets and by the one-step
dynamics of the environment. Given any state aritbracs anda, the probability of

each possible next stag, is

P2 =Ps,, =s|s =sa =a 4.7)

These quantities are callé@nsition probabilities Similarly, given any current
state and actiorg anda, together with any next statg, the expected value of the next

reward is

R: =E{r.|s =sa =a5s,, =S} (4.8)

These quantitiesP? and R’,, completely specify the most important aspects of

the dynamics of a finite MDP (only information albaihe distribution of rewards
around the expected value is lost).

Almost all reinforcement learning algorithms aresdxh on estimatingalue
functions-functions of states (or of state-action pairgttastimatenow goodit is for
the agent to be in a given state (or how good b iperform a given action in a given
state). The notion of "how good" here is definedemnms of future rewards that can be
expected, or, to be precise, in terms of expeatdn. Of course the rewards the agent
can expect to receive in the future depend on wabtbns it will take. Accordingly,
value functions are defined with respect to paldicpolicies.

Recall that a policyg, is a mapping from each stat,] S, and actionall A(s )

to the probabilityz(s,a pf taking actiona when in states. Informally, thevalue of a
states under a policyr, denotedv “(s ) is the expected return when startingsiand

following = thereafter. For MDPs, we can defidé (s foymally as

V() =EAR |s =¢} = En{iykmm I%} (4.9)
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where E,,{ }denotes the expected value given that the agdoiw®lpolicy z, andt is
any time step. Note that the value of the termstate, if any, is always zero. We call

the functionV "the state-value function for policy.

Similarly, we define the value of taking acti@nin states under a policyr,
denotedQ”(s,a ) as the expected return starting frantaking the actiora, and

thereafter following policyt:

Q"(sa)=E R |s =sa =3a}= En{iymm s =s.3, =a} (4.10)
k=0

We call Q" theaction-value function for policy.

The value function¥ "and Q" can be estimated from experience.

A fundamental property of value functions used tiglwout reinforcement
learning and dynamic programming is that they gaparticular recursive relationships.
For any policyr and any stats, the following consistency condition holds betwdiea

value ofs and the value of its possible successor states:
V7(s) =Y s,y PAIRE + W (s))] (4.12)

where it is implicit that the actiona, are taken from the s&(s), and the next states,
are taken from the s& or fromS' in the case of an episodic problem. Equation (4.11
is theBellman equation fo¥ ™. It expresses a relationship between the value sifite

and the values of its successor states. The vahaiénV ” is the unique solution to its

Bellman equation.

IV.4.1 Optimal value functions and approssimations

Solving a reinforcement learning task means, roygfihding a policy that
achieves a lot of reward over the long run. FoitdiMDPs, we can precisely define an
optimal policy in the following way. Value functiendefine a partial ordering over
policies. A policyxn is defined to be better than or equal to a palicyf its expected

return is greater than or equal to thattbfor all states. In other wordg, > =’ if and
only if V7(s)=V”(s) for all sOS. There is always at least one policy that is Ibette

than or equal to all other policies. This is @ptimal policy Although there may be
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more than one, we denote all the optimal policigsth They share the same state-

value function, called theptimal state-value functiomlenoted V*, and defined as
V *(s) = maxV "(s) (4.12)

forall sOS.
Optimal policies also share the saopimal action-value functigrdenoted Q*,

and defined as
Q* (s,a) =maxQ”(s,a) (4.13)

for all sO0S and all A(s). For the state-action pais,g), this function gives the

expected return for taking acti@nin states and thereafter following an optimal policy.

Thus, we can write Q* in terms of V* as follows

Q*(sa) =E{r, +W*(s)ls =sa =4 (4.14)

Because V* is the value function for a policy, itish satisfy the self-consistency
condition given by the Bellman equation for statdues (4.11). Because it is the
optimal value function, however, V* 's consistermondition can be written in a special
form without reference to any specific policy. Tiesthe Bellman equation for V*, or
the Bellman optimality equatiorintuitively, the Bellman optimality equation exgsses
the fact that the value of a state under an optpohty must equal the expected return

for the best action from that state:

V*(s) = maxE{r,,, + W *(s..) s =s.a =4 (4.15)

and
V *(8) = !9332 Pa|R2 + W * (s)] (4.16)

The last two equations are two forms of the Bellmphmality equation for V*.

The Bellman optimality equation for Q* is:
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Q* (5:8) = Effy, +ymaxQ* (8,,,8) |5 =s.a, =af= Y Pi[RS + ymaxQ* (s'.a)
(4.17)

For finite MDPs, the Bellman optimality equationX8) has a unique solution
independent of the policy. The Bellman optimalityuation is actually a system of
equations, one for each state, so if thereNagtates, then there ake equations irN

unknowns. If the dynamics of the environment arevkm (RS, and P ), then in

principle one can solve this system of equatioms\fousing any one of a variety of
methods for solving systems of nonlinear equatiddse can solve a related set of
equations for Q*.

Once one has V*, it is relatively easy to determameoptimal policy. For each
states, there will be one or more actions at which theximam is obtained in the
Bellman optimality equation. Any policy that asssgmonzero probability only to these
actions is an optimal policy. You can think of this a one-step search. If you have the
optimal value function, V*, then the actions thppaar best after a one-step search will
be optimal actions. Another way of saying thishattany policy that igreedywith
respect to the optimal evaluation function V* is@ptimal policy. The term greedy is
used in computer science to describe any searatecision procedure that selects
alternatives based only on local or immediate am®rsitions, without considering the
possibility that such a selection may prevent fitaccess to even better alternatives.
Consequently, it describes policies that seledbastbased only on their short-term
consequences. The beauty of V* is that if one utd®e evaluate the short-term
consequences of actions--specifically, the one-steysequences--then a greedy policy
is actually optimal in the long-term sense in whigh are interested because V* already
takes into account the reward consequences obsdliple future behavior. By means of
V* the optimal expected long-term return is turnatb a quantity that is locally and
immediately available for each state. Hence, astep-ahead search yields the long-
term optimal actions.

Having Q* makes choosing optimal actions still easWith Q*, the agent does
not even have to do a one-step-ahead search: fostates, it can simply find any
action that maximize®* (s,a .)The action-value function effectively caches rigults
of all one-step-ahead searches. It provides thinapexpected long-term return as a
value that is locally and immediately available &arch state-action pair. Hence, at the
cost of representing a function of state-actiomgpanstead of just of states, the optimal
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action-value function allows optimal actions to ®elected without having to know
anything about possible successor states and vhgies, that is, without having to
know anything about the environment's dynamics.

Explicitly solving the Bellman optimality equatigorovides one route to finding
an optimal policy, and thus to solving the reintarent learning problem. However,
this solution is rarely directly useful. It is akim an exhaustive search, looking ahead at
all possibilities, computing their probabilities oEcurrence and their desirabilities in
terms of expected rewards. This solution reliesabteast three assumptions that are
rarely true in practice: (1) we accurately know tly@amics of the environment; (2) we
have enough computational resources to completeamgputation of the solution; and
(3) the Markov property. For the kinds of taskswhich we are interested, one is
generally not able to implement this solution elyabecause various combinations of
these assumptions are violated.

We have defined optimal value functions and optip@icies. Clearly, an agent
that learns an optimal policy has done very walt,ib practice this rarely happens. For
the kinds of tasks in which we are interested, alipolicies can be generated only
with extreme computational cost. As we discussem/@beven if we have a complete
and accurate model of the environment's dynamias,usually not possible to simply
compute an optimal policy by solving the Bellmartimality equation.

A critical aspect of the problem facing the agentiiways the computational
power available to it, in particular, the amountofnputation it can perform in a single
time step.

The memory available is also an important constraf large amount of
memory is often required to build up approximatiafssalue functions, policies, and
models.

Our framing of the reinforcement learning probleprceés us to settle for
approximations. The on-line nature of reinforcem&@rning makes it possible to
approximate optimal policies in ways that put meffort into learning to make good
decisions for frequently encountered states, aeXipense of less effort for infrequently
encountered states. This is one key property tiséindguishes reinforcement learning
from other approaches to approximately solving MDPs
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IVV.5. RL solutions methods

There exist three fundamental classes of methadsdieing the reinforcement
learning problem:
= Dynamic programming;
= Monte Carlo methods;
= Temporal-Difference learning.

Each class of methods has its strengths and wesdsiedynamic programming
methods are well developed mathematically, butirecqucomplete and accurate model
of the environment. Monte Carlo methods don't nexjai model and are conceptually
simple, but are not suited for step-by-step incraialecomputation. Finally, temporal-
difference methods require no model and are fuklyemental, but are more complex to
analyze. The methods also differ in several wayth wespect to their efficiency and
speed of convergence.

In the following sections | introduce all these hweats, but | will focus in
particular on Temporal-Difference learning, whishthe one used for the fault-tolerant

routing algorithm object of the present work.

IVV.5.1 Dynamic Programming

The term dynamic programming (DP) refers to a ctitbe of algorithms that
can be used to compute optimal policies given éepemodel of the environment as a
Markov decision process. Classical DP algorithnesadidimited utility in reinforcement
learning both because of their assumption of aeperhodel and because of their great
computational expense, but they are still importdrgoretically. DP provides an
essential foundation for the understanding of ttieerotwo methods presented in this
chapter. In fact, all of these methods can be viea® attempts to achieve much the
same effect as DP, only with less computation aitldowt assuming a perfect model of
the environment.

The key idea of DP, and of reinforcement learniegagally, is the use of value
functions to organize and structure the searclgdod policies.

The basic ideas and algorithms of dynamic programgmas they relate to

solving finite MDPs are:
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» Policy evaluation:refers to the (typically) iterative computation thle value
functions for a given policy.

= Policy improvementrefers to the computation of an improved policyegi the
value function for that policy.

» Putting these two computations together, we obpaircy iteration and value
iteration, the two most popular DP methods. Either of these be used to
reliably compute optimal policies and value funosofor finite MDPs given
complete knowledge of the MDP

» Insight into DP methods and, in fact, into almobtrainforcement learning
methods, can be gained by viewing thengaseralized policy iteratiofiGP1).
GPI is the general idea of two interacting procgseevolving around an
approximate policy and an approximate value fumctiOne process takes the
policy as given and performs some form of policyalaation, changing the
value function to be more like the true value fumttfor the policy. The other
process takes the value function as given and pesfeome form of policy
improvement, changing the policy to make it betessuming that the value
function is its value function. Although each pregehanges the basis for the
other, overall they work together to find a joirdligion: a policy and value

function that are unchanged by either process @tsequently, are optimal

DP may not be practical for very large problemst bompared with other
methods for solving MDPs, DP methods are actualiyecefficient. If we ignore a few
technical details, then the (worst case) time DPFhous take to find an optimal policy
is polynomial in the number of states and actidisear programming methods can
also be used to solve MDPs, and in some casesvibest-case convergence guarantees
are better than those of DP methods. But lineagnamming methods become
impractical at a much smaller number of states ttharDP methods (by a factor of
about 100). For the largest problems, only DP nuithare feasible. DP is sometimes
thought to be of limited applicability because bé turse of dimensionalifythe fact
that the number of states often grows exponentigilly the number of state variables.
Large state sets do create difficulties, but treeeinherent difficulties of the problem,
not of DP as a solution method. In fact, DP is carapively better suited to handling

large state spaces than competing methods sudheasskarch and linear programming.
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IV.5.2 Monte Carlo methods

Here | consider the first learning methods for mating value functions and
discovering optimal policies. Unlike the previouscton, here we do not assume
complete knowledge of the environment. Monte Carkihods require onlgxperience
sample sequences of states, actions, and rewantisdin-line or simulated interaction
with an environment. Learning froom-line experience is striking because it requires no
prior knowledge of the environment's dynamics, ga still attain optimal behavior.
Learning fromsimulatedexperience is also powerful. Although a modekguired, the
model need only generate sample transitions, motdmplete probability distributions
of all possible transitions that is required by ayric programming (DP) methods. In
surprisingly many cases it is easy to generate rexpe sampled according to the
desired probability distributions, but infeasible abtain the distributions in explicit
form.

Monte Carlo methods are ways of solving the reicgarent learning problem
based on averaging sample returns. To ensure gihtefined returns are available, we
define Monte Carlo methods only for episodic tadkzat is, we assume experience is
divided into episodes, and that all episodes ewadigtterminate no matter what actions
are selected. It is only upon the completion ofegmsode that value estimates and
policies are changed. Monte Carlo methods are thagmental in an episode-by-
episode sense, but not in a step-by-step sense.

As for DP algorithms, Monte Carlo method is useddmpute policy evaluation,
policy improvement and generalized policy iteratiBach of these ideas taken from DP
is extended to the Monte Carlo case in which oamle experience is available.

In addition, we can distinghuish amowng-policy methods, which attempt to
evaluate or improve the policy that is used to mad@sions, andff.policymethods, in
which the policy used to generate behavior, caltedbehaviorpolicy, may in fact be
unrelated to the policy that is evaluated and imedy called theestimationpolicy. An
advantage of this separation is that the estimagtioicy may be deterministic (e.g.,
greedy), while the behavior policy can continusample all possible actions.

To conclude, we can say that Monte Carlo methodslealue functions and
optimal policies from experience in the form sdmple episodesrhis gives them at
least three kinds of advantages over DP methodst, Rhey can be used to learn

optimal behavior directly from interaction with tleavironment, with no model of the
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environment's dynamics. Second, they can be ustdsivhulation orsample models
For surprisingly many applications it is easy tmgiate sample episodes even though it
is difficult to construct the kind of explicit modef transition probabilities required by
DP methods. Third, it is easy and efficientfé@us Monte Carlo methods on a small
subset of the states. A region of special intecest be accurately evaluated without

going to the expense of accurately evaluating éiseé of the state set.

I\VV.5.3 Temporal-Difference Learning

TD learning is a combination of Monte Carlo ideasl @ynamic programming
(DP) ideas. Like Monte Carlo methods, TD methods tzarn directly from raw
experience without a model of the environment'sattyics. Like DP, TD methods
update estimates based in part on other learnadatss, without waiting for a final
outcome (they bootstrap).

TD methods have an advantage over DP methods irthtg do not require a
model of the environment, of its reward and neatesprobability distributions.

The next most obvious advantage of TD methods Marte Carlo methods is
that they are naturally implemented in an on-lihdly incremental fashion. With
Monte Carlo methods one must wait until the encmfepisode, because only then is
the return known, whereas with TD methods one nead only one time step.
Surprisingly often this turns out to be a criticainsideration. Some applications have
very long episodes, so that delaying all learnintll an episode's end is too slow. Other
applications are continuing tasks, like the onesasred in this work, and have no
episodes at all. Finally, as we noted in the previsection, some Monte Carlo methods
must ignore or discount episodes on which experateactions are taken, which can
greatly slow learning. TD methods are much lesseqitble to these problems because
they learn from each transition regardless of vgliliisequent actions are taken.

But are TD methods sound? Certainly it is convenierearn one guess from
the next, without waiting for an actual outcomet tan we still guarantee convergence
to the correct answer? Happily, the answer is ¥&8. any fixed policyn, the TD
algorithm described above has been proved to cgevesV”™, in the mean for a
constant step-size parameter if it is sufficiesttyall, and with probability 1 if the step-
size parameter decreases according to the usulastiic approximation conditions. If

both TD and Monte Carlo methods converge asymgabgito the correct predictions,
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then a natural next question is "Which gets thes?' At the current time this is an
open question in the sense that no one has beertaplove mathematically that one
method converges faster than the other. In pradtic@ever, TD methods have usually
been found to converge faster than constaMi€ methods on stochastic tasks.

The methods presented in the following sub-sectayestoday the most widely
used reinforcement learning methods. This is priybdie to their great simplicity: they
can be applied on-line, with a minimal amount ofhpaoitation, to experience generated
from interaction with an environment; they can beressed nearly completely by

single equations that can be implemented with somatiputer programs.

I\VV.5.4 TD prediction

Given some experience following a polityboth methods update their estimate
V of V7. If a nonterminal stats is visited at timet, then both methods update their
estimateV(s) based on what happens after that visit. Rougbgaking, Monte Carlo
methods wait until the return following the visg known, then use that return as a
target forV(s). A simple every-visit Monte Carlo method suitalbe nonstationary

environments is

V(s) « V(s)+a[R -V(s)] (4.18)

whereR; is the actual return following tinteanda is a constant step-size parameter.

Let us call this methodonstants. MC. Whereas Monte Carlo methods must
wait until the end of the episode to determine itftement toV(s) (only then isR
known), TD methods need wait only until the nexhei step. At timet+1l they
immediately form a target and make a useful updateg the observed reward; and
the estimat®/(s.+1). The simplest TD method, known &B(0), is

V(s) « V(8)+ar, + W(s.)-V(s)] (4.19)

Because the TD method bases its update in parh @xiating estimate, we say

that it is abootstrappingmethod, like DP. We know

V() =ER |s =5 (4.20)
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and
V() = Edrs + W () S = 5 (4.21)

Roughly speaking, Monte Carlo methods use an ewimia(4.20) as a target,
whereas DP methods use an estimate of (4.21)arget.t The Monte Carlo target is an
estimate because the expected value in (4.20)tikmawn; a sample return is used in
place of the real expected return. The DP targednisestimate not because of the

expected values, which are assumed to be complptelyided by a model of the
environment, but becaud€’(s,, i9 not known and the current estima¥e(s,, , i9
used instead. The TD target is an estimate for bedisons: it samples the expected
values in (4.21) and it uses the current estivatestead of the tru¥ ”. Thus, TD

methods combine the sampling of Monte Carlo with biootstrapping of DP. As we
shall see, with care and imagination this can take long way toward obtaining the
advantages of both Monte Carlo and DP methods.

IV.5.4.1. Sarsa: on-policy TD control

The first step is to learn an action-value functi@ther than a state-value
function. In particular, for an on-policy method weust estimateQ”(s,a Yor the
current behavior policyt and for all states and actionsa. This can be done using

essentially the same TD method described abovelefamingV”™. Recall that an

episode consists of an alternating sequence @sséaid state-action pairs:

F, K
. +1 +2 0
@ - @ Y ¢ 7 @ ¥ S )
Sty Str10 G4 ] St+20 9142

Figure 11 - State and state-action pairs sequence

Now we consider transitions from state-action paistate-action pair, and learn
the value of state-action pairs. Formally thesesase identical: they are both Markov
chains with a reward process. The theorems assthiagonvergence of state values

under TD(0) also apply to the corresponding alpanifor action values:

Qs,a) « Q(s,a) +alr, + QS 8) — Qs 2,)] (4.22)
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This update is done after every transition fromoatarminal states. If s.q is

terminal, thenQ(s.,,a,, )is defined as zero. This rule uses every eleménthe
quintuple of events(s,,a,,r,.;,S..,&., ,)that make up a transition from one state-action

pair to the next. This quintuple gives rise to tlaeneSarsafor the algorithm.

It is straightforward to design an on-policy cohttgorithm based on the Sarsa

prediction method. As in all on-policy methods, ws@ntinually estimateQ” for the

behavior policyr, and at the same time chang®ward greediness with respect@d .

IV.5.4.2. Q-Learning: off-policy TD control

One of the most important breakthroughs in reirdorent learning was the
development of an off-policy TD control algorithrmdwn asQ-learning Its simplest

form, one-step Q-learnings defined by

Qs a) « Qs,a) +alr., +ymaxQ(s.,, ) -Q(s.a)]  (4.23)

wherea is the learning rateyis the discount factor and,, is the cost associated &), .

In particular, the learning rate determines to what extent the newly acquired
information will override the old information. A d¢eor of O will make the agent not
learn anything, while a factor of 1 would make #gent consider only the most recent
information. The discount factoy determines the importance of future rewards. A
factor of O will make the agent "opportunistic” byly considering current rewards,
while a factor approaching 1 will make it striver fa long-term high reward. If the
discount factor meets or exceeds 1,@wealues will diverge.

In this case, the learned action-value functi@ndirectly approximate®*, the
optimal action-value function, independent of theliqy being followed. This
dramatically simplifies the analysis of the algomit and enabled early convergence
proofs. The policy still has an effect in that &teérmines which state-action pairs are
visited and updated. However, all that is requifedcorrect convergence is that all
pairs continue to be updated. Under this assumgpinoha variant of the usual stochastic
approximation conditions on the sequence of step{sarameter$); has been shown to
converge with probability 1 tQ*. The Q-learning algorithm shown in procedural form

is:
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Initialize Q(s,a)arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Chosea from s using policy derived fror@ (e.g.,e-greedy)

Take actiora, observe, s
Q(s,a) ~ Q(s,a) +alr +ymaxQ(s,a’) - Q(s,a)]

S« S

until sis terminal

IvV.5.4.3. R-Learning for undiscounted continuing tasks

R-learning is an off-policy control method for tlaelvanced version of the
reinforcement learning problem in which one neitdisicounts nor divides experience
into distinct episodes with finite returns. In tliase one seeks to obtain the maximum

reward per time step. The value functions for acgolr, are defined relative to the

average expected reward per time step under theypa”:

o7 =1im lzn: E{r} (4.24)

el =]
assuming the process is ergodic (nonzero probalufitreaching any state from any
other under any policy) and thus thaf does not depend on the starting state. From
any state, in the long run the average rewarddssttme, but there is a transient. From
some states better-than-average rewards are rdcé&wvea while, and from others

worse-than-average rewards are received. It istthrsient that defines the value of a

state:

V(9= Edru-0"Is = (4.25)

and the value of a state-action pair is similahlg transient difference in reward when

starting in that state and taking that action:

00
~

Qn(s! a) = Z En{rt+k _pn |St =Saq = a} (426)

k=1
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We call theseelative valuesbecause they are relative to the average reward
under the current policy.

There are subtle distinctions that need to be drbetween different kinds of
optimality in the undiscounted continuing case. &téwless, for most practical

purposes it may be adequate simply to order pgliaeeording to their average reward

per time step, in other words, according to thefr. For now let us consider all policies

that attain the maximal value af” to be optimal.

Other than its use of relative values, R-learnig standard TD control method
based on off-policy GPI, much like Q-learning. laimtains two policies, a behavior
policy and an estimation policy, plus an actiondeafunction and an estimated average
reward. The behavior policy is used to generateeea&pce; it might be the-greedy
policy with respect to the action-value functionheT estimation policy is the one
involved in GPI. It is typically the greedy polioyith respect to the action-value
function. If = is the estimation policy, then the action-valuenction, Q, is an
approximation ofQ”and the average rewarg,, is an approximation op”. There has

been little experience with this method and it $tidne considered experimental.
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Chapter V

Fault-tolerant routing in Next
Generation Home Networks

V.1. Introduction

This chapter deals with the fault-tolerant routipgblem in Next Generation
Home Networks. At the beginning, some state of d@healgorithms are presented,
together with an explaination of the limitationstbé&ir application in the new scenario
considered in this work.

After that, the fault-tolerant routing algorithwhject of this work, is described.
First of all, the MDP formulation of the problemdsscribed, with the definition of the
state space, the action space, the transitionxretd the cost function. Then, the main
scalability problem related to the implementatidntiee optimal MDP controller are
described in order to explain the need to deriveneav algorithm based on
Reinforcement Learning. This explaination openswhg to the presentation of the Q-

Learning fault-tolerant algorithm.

V.2. State of the art routing algorithms

Existing routing algorithms are classified eitherpoactive (e.g., [16]-[18]), as
reactive (e.g., [19], [20]) or abybrid (e.g., [21], [22]). The proactive algorithms
continuously update path information, which is therailable at algorithm decision
time; the drawback is that these algorithms reqgthieeknowledge of the topology of the
whole network. Reactive algorithms performs a ralisgovery procedure on demand,
i.e., only at routing decision time: on the one dathey generate less control
information since they must not continuously updafelogy information; on the other
hand, they delay the actual data transmission uhél path is discovered. Hybrid
protocols use a combination of these two ideas.

Clearly, the proactive approach is preferred in ¢tbasidered home network

scenario due to the fast re-routing requiremendstants limited topology width which
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makes the updating process fast. Proactive rouythopplems have been successfully
modeled as Markov Decision Processes (MDP), withdbjective of maximizing the
number of active flows supported by the network.(§23]-[28]). MDPs are stochastic
control processes, and provide a mathematical frarle for optimization problems
involving both random events and decision make29]j[ However, in the MDP
formulations introduced so far, the topology of tledwork is considered as static, and
the dynamics of the MDP is driven by traffic eve(#sg., acceptance of new flows,
flow terminations, flow variations); the routinggtalem is then to decide the optimal
paths of the active flows. As topology events sasHink faults occur, the MDP must
be re-defined and the optimal policy must be requated. This approach is then not
suitable to provide fast re-routing.

Fault-tolerant routing algorithms have been prodose the mobile ad-hoc
networks scenario. In [30]-[34], robustness is eebd by redundancy: the source node
sends the same packets along all the differensathilable between the source and the
destination; these multipath routing mechanisms rave suitable for the scenario
considered in this work, since sending multiple iespof high-bitrate flows over
different paths would rapidly flood the network.sAl in [35], a multipath routing
algorithmis proposed, which is capable of significantly reidg the packet overhead
by dynamically identifying unavailable paths via dew-end path performance
measurements. In [36], a stochastic learning-basadk estimation procedure is used to
minimize the overhead while guaranteeing a cettaial of packet delivery. By the way,
since also both [35] and [36] use duplicate pact@chieve robustness to faults, they
are not efficient in case of high-bitrate flows.

V.3. MDP fault-tolerant routing in NGHNs

The aim of the proactive algorithm developed irs thork is twofold:
1. Minimization of re-routing occurrences;
2. Fast re-routing in scenarios characterized by kighatiable topology.

To achieve these objectives (recalling that, in toasidered home network
scenario, topology dynamics are faster than traffymamics), the proposed MDP
algorithm considers the traffic as static, and M@yhamics are driven by topology
events. In this case, the optimal re-routing polisy computed by taking into

consideration the probabilities that the paths lmacome unavailable in the future, and
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explicitly specifies the new path in case of lirdults. Even if this approach is capable
of guaranteeing fast re-routing decisions, asitra¥ents occur the MDP must be re-
defined and the optimal policy must be re-compubdate that the solution of the new
MDP (i.e., the MDP defined after a traffic evenlipas also the determination of the

optimal initial routing after the traffic event.

V.3.1 Finite-Horizon MDP definition

Under the markovignand stationarity assumptions, a MDP is definea fipite
state spac§, a finite set of available control actioAés) associated to each statel S
a costc(s,s,u) which is incurred by the system when it is in&& actionu is chosen,
and the system transitions to stdteand the transition probabilitys,s,u) that, in the
next stage, the system will be in stdteshen actioru in states is chosen. The transition
probabilitiest(s,s,u) constitute the transition matrix

In finite-horizon MDPs, the system is observed fostages. A policy is a
function 1(s;t) which at stage maps every state[1S to a unique control action
u O A(s). When the system operates under a potityt), the system incurs in the

following expected total (undiscounted) cost:

Cr= En{ic[s(t).ua),s(t +1)]}
=1 (5.1)
where the subscriptt specifies that the controller operates under polit and
c[s(t), u(t), s(t+1)] is the cost incurred at stagevhen the system is in stasé). The
MDP problem is to determine the optimal polityminimizing (5.1).
A standard algorithm for finite-horizon MDPs is theccessive approximation

algorithm ([42]), which returns i) the optimal poyi Tt{s;t) to be applied at stage
t=1,...n,s0S ii) the optimal value functiol(s), which represents the expected cost

of applying the optimal policyt{s;t) for stageg = 1,...p, starting from state 0 S,

2 A stochastic process has the Markov propertydfdbnditional probability distribution of the nestate
of the process depends only upon the presentastdtés conditionally independent of past states
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V.3.2 MDP fault-tolerant routing

In this section, the fault-tolerant routing probles formulated as a finite-
horizon MDP. For the sake of comprehension, Talderhmarizes part of the notation

which will be used in this section.

Element Set Cardinality
Routing tabler P is the set of all possible routing tables cBydK R
Path status = is the set of all possible path status vectors dEar= X
States Sis the state space card® <PR
S, is the set of states with path status card§) < card®
Flow f ® is the set of flows card) = F
Link | A is the set of links card) = L
N\ is the set of the links of pafh card(\p) <L

Awx) is the set of the links which cause the  card(\y.x)) <L

transitions betweer andx' as they change link

state
Pathp M is the set of paths cafd{=P
I, is the set of the paths which include link Cardﬂl) <P

M is the set of the paths which are card(1y) <P
available to flowf
M, is the set of the paths in use by card(1,) <P

routing tabler

Table 1 - Definitions of flow, path and link sets

Let us consider a network supportidgclasses of services and characterized by
a set of linksA, with cardinalityL. Each linkl is characterized by its capaciby,
expressed in [Mbps]. Let us define a generic fiaag a triple (source, destination, class
of service). Let the set of flows ldeand letF be the total number of flows. Each fldw
is characterized by a bitrabe expressed in [Mbps].

Different paths are available to route each flaw® (i.e., different paths exist
from source to destination of flof); let ' be the set of paths, with cardinalRyand let

M: 0N be the set of paths available to route floewMoreover, each patp 011 is
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constituted by a set of links, O A. Clearly, the generic linkcan be included in more
than one path: Idd, 00 N be the set of paths including lihd = 1,...].
The network routing table is a vector withF elementsy, f=1,...F; rf is equal

to the pathp assigned to flow. The set of routing tables is then:

P:{r = (rl,rz,...,rF)‘rf =pOn,,f= 12'___,|:} (5.2)

Let R be the number of possible routing tables, andl}€fl I be the set of paths
used by routing table (i.e., the set of pathssuch that; = p for at least oné.

In my purposes, as specified in before, networlfitras considered static
between two traffic events, in the sense that thaber and the characteristics of the
flows remains the same in the period between tafiicrevents: in other words, the
MDP is defined between two traffic events. Traffieents arenew flow acceptance
flow terminationandflow variation In this work (as in the OMEGA project) | assume
that an admission controller is in charge of adngtthigh-demanding flows in the
network. Thus, the new flow acceptance event cpards to the establishment of a
new flow in the network; the flow termination eveatrresponds to the end of
transmission of an on-going flow; the flow variatievent corresponds to the variation
of the bitrate of an already accepted flow (afeenegotiation of flow parameters with
the admission controller).

The MDP must be re-initialized at every traffic et.eThe mean interval
between two traffic events is considered as thatdur of the finite-horizon MDP.

The control action is relevant whenever a pathenily used by a flow becomes
unavailable due to a link fault. The controller mtieen decide where to re-route the
flows, i.e., which paths to select among the abéélanes. It is also possible that one or
more flows cannot be routed anymore in the new bokditions: in this case, the
admission controller must decide upon the dropmhgne or more flows. From the
routing point of view, the decision to drop a flasvequivalent to the flow termination
traffic event, which entails the definition of an&DP.

In the following, it is introduced the link modehe overall framework and

finally how the proposed algorithm is used to tedating decisions.
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V.3.2.1Link model

In this work, | consider the possibility of incurg in link faults. The dynamics
of each linkl OO A is modeled by a two-state Markov chain: in timavailablestate, the
link cannot be used to transmit data, i.e., itsacdp is O; in theavailablestate, the link
can be used to transmit data, i.e., its capacity’isl assume that both the transition
frequency between the available state and the uabla state and the transition
frequency between the unavailable state and thiéabiastate are distributed according
to Poisson processes with mean frequengiesand A,, respectively, expressed in
[min™]. A given pathp is available only if all the links of the s8}, are available. Then,
if a link | becomes unavailable, all the paghS ', becomes unavailable. From standard
Markov chain theory ([37]), the probability thahkil is in the available and in the
unavailable states is computed&ad (A, + ) andyp, / (A + L), respectively.

Link state changes trigger topology events, whicivedthe MDP dynamics.
Link statistics are easily available in home netso(for example, in OMEGA link

statistics are collected by any device in chargeootrolling the network).

V.3.2.2Fault-tolerant MDP routing

The MDP is defined by the state spgethe action spacd, the transition

probability matrixT and the cost function

1. State space S
The path statusx is a vector withP elementsx, p = 1,...P, such that, = 1 if
pathp is available (i.e., if all linkd 00 A, are available)x, = 0 otherwise. The set of

path status vectors is then:

= ={x = (4, % Xp)|x, 0{0F, p=12.....P}. (5.3)

The numbeiX of possible path status vectors fis i the following, considering
two path status vectorss x' O =, | will write x > X' if X, >x, O p O M andx, > X, for at
least one patp O M.

® Note that, for some links, a two-state link modgght be insufficient. The proposed framework can b
extended to include also links modeledNygtate Markov chain by following the rationale 88].
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The system state is given by the path status vestdrby the current routing
table; the generic state is then the K+P)-vector s= (r,x), with r O andx O =.

Clearly, not all the couples k) are feasible; specifically, the stae (r,x) is feasible
only if the following twofeasibility conditionshold:

Xp =10p0N, ; (5.4)

> by <b,lOA. (5.5)
fIZIGD‘rf =pandICA,

The first feasibility condition (5.4) states thak the paths used by must be
available inx; the second condition (5.5) states that, for ek | O A, the link
capacityb, must be greater than or equal to the load of ljidomputed as the sum of
the bitrates of all the flows routed byn paths including link

In addition to the states identified by equatiolds4) and (5.5), | add an
absorbing state,ps Where the system transitions whenever no ottesiliée state exist
(in brief, the absorbing state can be considerednaaggregate of all the statesx)
which does not meet the two feasibility conditions)

The state space is then defined as follows:

S={s=(r,x)r = (r,Fpeenle ) OP X = (X0, X, 0% ) OZ %, =1, 0p 00

; >.b, <b,0l D/\}D{Sabs}. (5.6)

fO0|ry =pandiDA,,
Finally, the following sets are defined:

* Let Axx) be the set of links which are available when theh géatus isx and
whose transition to the unavailable state leadpidwd status fronx to x > X'
(generally, there are different links which causessame change of path status).
The same set of links is clearly involved in thansition fromx' to x: in this
case, the transition occurs when a given linkAxy) transitions from the

unavailable to the available state and all therdihks I' O Ay x)\{ 1} are already

available Ay x) is defined as follows:

N (xx) ={I D/\‘Xp =X if pOM,xp X, otherwisé (5.7)
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» LetS( O Sbe the set of states associated to path status

S, :{SDS|S:(r,x),xDE} (5.8)
(note thatS, might be empty for some =, and thatS = (S, O{sq ).
X=

2. Action Space A

In the generic state= (r,x) O S if i) link | O Axx) is unavailable, ii) all the
other linksl' O Axx)\{I} are already available, and iil) becomes available, one ore
more paths which are not available xn(i.e., all the path$ [T, such thatx, = 0)
become available. In this case, since the pathsstatanges from to x' [J = with X' > X,
all the paths which were feasible srare still feasible, and the system transitionsnfro
s = (r,x) to the new (feasible) stase= (r,x") O Swithout requiring any control action.

On the other hand, if a linkOAxyx), available inx, transitions to the
unavailable state, it renders unavailable one oremmvailable paths (i.e, all the
available pathg [ N, such thak, = 1). In this case, the path status vector chafiges
xtox'O=. If N, nMy=0 (i.e., if all the pathg I, are not used by the current
routing tabler), the system transitions from= (r,x) to the new states = (r,x) O S
without requiring any control action.

Conversely, ifl1, n My#0 (i.e., if one or more paths used bybecome
unavailable), the controller must change the rgutable. IfS, =0 (i.e., if no routing
tabler' [0 P exist such thatr(x") 0 9, the system transitions to the staig, and the
admission controller is triggered. Otherwise, tloatmller must decide which routing
table to choose among the routing tables whictiesmgible with respect 0.

Let us consider the generic state (r,x) O S;, and let us assume that a transition
occurs from the available to the unavailable stdta link | O Ay xy. When this event
occurs, the decision to change the routing taldenfr to r' 0 P is denoted withu(s,s),
wheres' = (r',x"):

» if SOS¢ and the controller decides to enforce the routiagle r', then

u(s,;s) = 1;

» if S OS¢ but the controller decides to enforce anotherimgutable,u(s,s) = 0;
= finally, if s O S thenu(s,s) is not an available decisionsn

Clearly, the controller must decide to enforce dyame routing table.
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In conclusion, the action space when the systamssates [] S is then defined

as follows:

A(s) = {u =[u(s.s)]ss,

Ny 20, D u(s,s) =Lu(s,s) =1if s'=(rx),u(s,s) 0{og otherwise}
STS,

(5.9)

whereu is the vector of possible controller actions whie@ system is in state[] S,

and a linkl O A x) becomes unavailable.

The controller policy is the functiort Sx[1,n] — A defined by setting a feasible
action vectowu [ A(s) for each stats [0 Sand for each stagdl [1,n]. The policy space

O is the set of the feasible policies:

Oz{n(s,t)=u|sDS,uDA(s),t=L...,n} (5.10)

3. Transition matrix

The transition frequencies between states canfee@d from the link transition
frequencies (between their available and unavalatdtes) and from the above-defined

action space.

Let us consider two generic states(r,x) 1S, ands = (r,x") O S, with the
same routing table and such thak' >x. | recall that when the path statusxisit
changes ta' if the following conditions hold:

i) a given linkl O Ay x) is in the unavailable state;

i) all the other linkd' O Ak x)\{ I} are already available;

i) link | transitions to the available state.

Since the path status xs the probability that all link$ O A x) are available is
null (otherwise the path status would %% thus, condition ii) implies condition i).
From the link dynamic model, it follows that the opability of ii) is

M [7\|' I\ +p.|.)], and that the mean frequency of event iii)isAs specified above,
1T I
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no action is required in this case, and the systansits from stats to states with the

following total mean frequency:

Pss)= Y { M A M},s:(r,x)DSX,s‘:(r,x')DSx.,x'>x. (5.11)
Py [T M T HE
where in the summation | exploited the hypothesisoisson transition frequencies
between link states.
Let us consider two generic states(r,x) 0 S ands =(r'x") 0S¢ such that
x >x"andS, # . | recall that when the path statuscjst changes tx' if a given link
| O Axx) transitions to the unavailable state (note thhtilks | [ Axx) are always
available when the path statusxijs From the link dynamic model, it follows that the
mean frequency of this event iz In this case, the mean frequency of the tramsitio

from states to states' depends also on the re-routing decision of thérober u(s,s):

¢S, S)=u(ss) XM ,sO0S,,s0S,,x>X. (5.12)
I0A 0
Finally, let us consider the generic state (r,x) [0 S, and a path status such
that S¢ =[. In this case, the system transitions from stat® states;ys with the

following transition frequency:

®SSwpd) = THy.SOS, S, =0,x>x (5.13)
ID/\(X,X.)

To obtain the transition probabilitigg(s,s) (where the sub-indexr highlights
that some transition probabilities depend on thepeatl policy), | apply a standard
uniformizationprocedure ([39]):

i) compute the so-called uniformization constariticl is an upper-bound of the
total outgoing frequency of each state:

Y>ma Z(p(s,s‘)} (5.14)

CES RS

i) divide the transition frequencies Ry
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tT[(s,s')zE > A,s0S,,s0S,, x> x; (5.15)

I0A 0
tn(s,s')zlu(s,s‘) > Hy,s0S,,s0S,x>x"; (5.16)
Y 10A (e xy
1 :
tu(SSae) == H,S0S,, S, =0,x>x. (5.17)
10A ()

iii) Add self-transitions to let the sum of the riggtions leaving each state be

equal to 1:

te(ss)=1- Xt (,8"), sUS. (5.18)
sOs
S'%S
Note thaty is expressed in [milj and that, since no transition outgoing fregg
exists but the self-transition (5.18), its selfagdion probabilityt(Saps Sabg 1S 1 Gaps IS
in fact an absorbing state).

The transition probabilitieg(s,s) constitute the transition matrix
Remark 1

Note that when the system is in a given state endibset Sand a topology
event causes the path status vector to transit@n X to x', the transition probability
t(x,x") between the subsetg &d $ is uncontrolled and, thus, does not depend on the
routing policy. In fact, from equations (5.15)-(1%), the following transition

probabilities between subsetsaéhd & are obtained:

t(x,x')=1 > M Ar ANeS 20,S #20,x>x; (5.19)
YIOA Gy [ 1Ty At
t(x,x‘)=1 SU,S #0,Se 20,x>X; (5.20)
A ey
(X,Sapd) == TS 20,8, =0,x>X. (5.21)
A (e 0y
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where, to compute equation (5.20), | considered tina sum of the decisionss)

must be 1 (see definition (5.9)).

In conclusion, if the system is in the generic estaf] S;, the role of the
controller is then just to decide which statamong the ones inc8o choose when the
path status vector transitions frorto x', with x >x" and $ # 0. If the topology event

is such thak' >x or S¢ = [J, no control decision is required.

4. Cost function c

The main objective of the fault-tolerant routindipp is to minimize the number
of path changes, and in case of path changesl@sisable to minimize the link changes
(i.e., the number of links affected by re-routinganges). Moreover, if the network
supports classes of service to offer QoS guaranteescost of changing paths is also
weighted by the class of service of the re-routedsd.

To reflect these objectives, the cost function eisged to state = (r,x) and next

states = (r',x") is defined as follows:

K
c(s;s) = Z[ngthA(;;th(r . ')] + Wik By (1,77 (5.22)
=

where: A%, (r,r") is the number of re-routed flows of cldssvhen the routing table

changes fromm to r'; Ajink(r,r') is the number of links which i support different paths

with respect to; w(p'fa)th is the weight associated to the re-routing ofess flow; Wik

is the weight associated to the link changes. Isidan that the last part of the cost
(related to the link changes) is used just to de@dong two or more new routing

tables which have the same path cost; thus, Isetihin << W8S, k= 1,...K*

V.3.2.3MDP algorithm outcomes

As mentioned in before, a standard algorithm tal fine optimal solution of a
finite-horizon MDP problem is the Successive Appmaation algorithm, which returns,

at each stage the optimal stage-per-stage poliry(s,t) and the coupled optimal value

“ The path and link weights could also be setup ralieg to the technologies of the involved networks.
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function V'(s). The total number of stagesis computed by taking the upper integer
value of the mean time interval between two traffients (which is considered as the
duration of the finite-horizon MDP) times the umifdzation constany. Note that the
new traffic event might occur before or after tieaf stagen: in the former case, the
MDP is re-initialized before the considered finlterizon; in the latter case, the
controller keeps on using the final policy. In batses, since the actual MDP duration

is different with respect to the considered fitfitgizon, the policyt (st) is sub-optimal.

The results of the algorithm are exploited in tway®, as analyzed in the
following paragraphs: 1) to define the optimal oeting policy in case of link faults; 2)

to identify the optimal initial state.

1. Optimal re-routing policy in case of link faults

At each stagé = 1,...n, the optimal stage-to-stage polimy(st) conveys the re-
routing actions in case of link faults: let us amsuthat at stagethe system is in state
s = (r,x), and that link becomes unavailable causing the path status togehfaomx to

X', with x > x'; thanks to the action space defined in equat{dt®) and (5.9), in the

optimal policy there is exactly one state= (' ,x') O S, such that’ (s,s") =1, whereas

the other decisions” (s,s) are equal to O for each stae] S, such thas #s. Thus,

the controller decision is to change the routingedromr tor’, entailing the system

transition from state to states .

2. Optimal initial state identification

The optimal value function/ (s) is used to decide the optimal initial state
simitial = (mitial »X) after a traffic event. Given the path stagjshere can be either no
feasible states (i.e.S =), or there exist one or moreandidate initial states
identified by all the routing tablassuch thas = (r,x) 0 S In the former case, which is
relevant either in case of new incoming flows ocase of flow variation, the new MDP
starts directly in the absorbing stags which means in practice that the admission
controller must block/drop one or more flows, ahettthen the MDP must be re-
initialized. In the latter case, the most apprdgriaitial state must be chosen.

To choose the optimal initial state, | simply exte¢he definition of cost (5.22)

to compute the cost of each candidate initial takeereafter referred to @it (S). As
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a traffic event occurs, a new MDA T,C} is defined, and the controller has to decide
the initial state, based on the last routing taifléehe former MDP,rqq4, and on the

current path status Three traffic events are considered:

a) Flow variation

In this case, the new routing table r will have Haene number of flows with
respect to the past omgy. Cost definition (5.22) is thus seamlessly aplieato
compute the costniia (S) Of transiting from (yi4,X) to the candidate initial states] S;:
Cinitial (S) = C[(roi0,X), S]. Note that if €qq,x) is still feasible (i.e., rgig,x) 0 S), no re-

routing is necessary.

b) New flow acceptance

In this case, the new routing tablevill have one more flow with respect to the
past one 4. Let F be the number of flows of the new MDP; thep has (F — 1) flows.
Without loss of generality, let us assume thatffitts¢ (F — 1) flows of the new MDP are
the same flows of the past routing table; therxterdr,q by adding a null F-th element.
Cost definition (5.22), is subsequently applicabbe compute the costiita(s) of
transiting  from  [{00,0)X] to the candidate initial states [sS;:

Cinitial (S) = C[((r 01,0) X), S].

c) Flow termination (or dropping)

In this case, the new routing tablevill have one less flow with respect to the
past one 4. Let F be the number of flows of the new MDP; then has (F + 1) flows.
Without loss of generality, let us assume thatfitst F flows of the old routing table
are the same flows of the new routing table; theaxtendr by adding a null (F+1)-th
element. Cost definition (5.22), is subsequentlyliapble to compute the costia (S)

of transiting from f4,X] to the extended candidate initial stasgs= [(r,0) X], such that

(r,x) O S Cinitial(S) = C[(r 0ld:X), Sexd-

To finally choose the optimal initial state, thest@inia(s) of choosing the
candidate initial stateis added to the-stage cost incurred by the system starting from
s. The expected cost of starting from a candidattest(1 S, when the current path

status i< is then the following:
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Einitial (S) = Cinitiat () + V' (8), s 0 Se. (5.23)

The optimal initial states .., is then chosen as the candidate initial stdfeS,

which has the lowest expected cost (5.23).

From this discussion, it appears clear that theliglof a given policy is limited
in time by traffic events, i.e., traffic changeshi§ limitation and the well-known
scalability problems of the MDP approach ([29]) kgltened since, as above discussed,
| consider 1) home networks with a limited numbémnodes, 2) a limited number of
high-bitrate flows with long duration, and 3) | cier sporadic and low-bitrate flows
as uncontrolled background traffic with low-prigrit

In any case, the scalability problem of the propos#P approach renders it
unsuitable in future home networks, which are etgbdo consists of tens (or even
hundreds) of nodes. In this respect, the purposkei®MDP formulation is to define the
fundamental theoretical framework which is necesdar analyze the fault-tolerant
routing problem in time-varying network topologyesarios: then, the developed
framework can be used to develop more practicaralgns based, for example, on
Approximate Dynamic Programming ([39]) and Reinfarent Learning ([15])
approaches.

In the next section, a Reinforcement Learning fdation of the fault-tolerant

routing described so far is presented.

V.4. Q-Learning formulation of the routing algorithm

A Reinforcement Learning formulation of the fawtdrant MDP routing
algorithm presented in the previous section has ealized in order to develop an
algorithm that has low computational cost and tthext can be easily implemented in
real-time network control systems.

In particular, in this work the Q-Learning approdws been used to calculate

both the 1) initial action and 2) the action totalken in case of link fault.
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1. Initial action identification

In the Q-Learning approach, the learned actione/dilinctionQ(s,a, )is used
to determine the optimal action to be taken in estate.

At the beginning of the process, t¥s,a mpatrix is initialized with a value

that is related to the probability that the pathsduby the new flows can be subject to a
fault. In particular, considering that a pgils composed by a set of linkeind that the
probability of fault for a link is a, (I), the probability that a path is not subject tauait

is given by
[e-a 0l (5.24)

Thus, the initialQ(s,, a, )is set in the following way:
Qs a) =1-T-a,0) (5.25)
Op

The best initial actiora, is thus chosen in order to minimig¥s,,a, foj) each

allA.

2. Re-routing action in case of link faults

Let us assume that at stage¢he system is in state= (r,x), and that linkl
becomes unavailable causing the path status togehftaomx to x', with x >x'. The
controller decision is to change the routing tafoten r to ri.,, entailing the system
transition from state to states. .

Following the Q-learning one-step action value mptation, | derive

Qs.a) ~ Qs,&) +alc., +ominQ(s.,,a) -Q(s.,a)] (5.25)

wherea is the learning rateg is the discount factor and,, is the cost associated to

S
K

c(s;s) = kZ: [Wi)l;)thA(g;th (r.r ')] + Wiy By (1,17) (5.26)
=]
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In particular, the learning rate determines to what extent the newly acquired
information will override the old information. A d¢eor of O will make the agent not
learn anything, while a factor of 1 would make #gent consider only the most recent
information. The discount factos determines the importance of future rewards. A
factor of O will make the agent "opportunistic” byly considering current rewards,
while a factor approaching 1 will make it striver fa long-term high reward. If the
discount factor meets or exceeds 1,@wealues will diverge.

Following this rule it is possible to calculate,esich step, the best action to be

taken in order to minimize the cost of passing fistates, to states,,.

A limitation in applying this rule is that, at eastage, the algorithm selects
always the best possible action on the basis oatlgeired knowledgeg(eedypolicy).
But in this case the exploration is never perforptlds | can say that the algorithm is
myopic. In order to increment long-term performancé the algorithm, am- greedy
policy is adopted so that, with probabilitythe action selected is chosen in a random
way. This assures that the algorithm selects atdéaptimal actions that could instead

lead to a lower long term costs.
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Chapter VI
Results

VI.1. Introduction

In this chapter | present the results of a setrotiations done to understand the
behaviour of the proposed algorithm. In order tofgyen the simulations, MATLAB
simulation tool was used.

At first, a detailed description of the home netwacenario used for the
simulations is presented. In particular, | creatdteterogeneous home network scenario
where four different telecommunication technologies used to compose the network,
namely Ethernet, Otical fiber, PLC and WiFi.

The first serie of simulations were done to una@erdtthe behaviour of the MDP
algorithm presented in section V.3. The ‘greedyliqyo the ‘optimal’ policy and the
‘optimal QoS’ policy have been thus simulated aachpared.

After that, also the behaviour of the Q_Learningoathm presented in section
V.4 has been simulated and its performances wengpared with the ones of the
‘greedy’ and ‘optimal’ MDP algorithm.

As deeply described in this chapter, simulationultesshow that the MDP
algorithm achieve better performances in respethécQ-Learning algorithm. Anyway
the results obtained demonstrate that Q-Learninfppeances are quite close to the
MDP ones and thus it that it is possible to use-Bd&lng algorithm in real-time

applications as the one presented in this work.

VI.2. Scenario description

In order to simulate the behaviour of the propaagdrithms and to evaluate the
performances, | consider the simple (for the sake&latument comprehension) but
meaningful (from the evaluation viewpoint) homewatk shown in Figure 12, where
Si and O denote the source of floinand the destination of floyy respectively, and the

Home Gateway is the router interconnecting the hoateork and the Internet; flows 3
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and 4, which comes from the Internet, are consitle® originated by the Home

Gateway.
— ETHERNET
——— Optical Fib
}’:)I.Ca 1ner @SO,?O
A\ WiFi 044
—-— PLC
=
@)
S
2 S\
m
s1 | s2
. J
: HOME OFFICE LOUNGE
| A\
RN A
I I (.
D1:| AW\ D2Dp3| A S3,54
| | D4 |
I D | I

Figure 12 - Example home network

Considering that Ethernet, Wi-Fi, Power Line Commaton (PLC) and
Optical Fiber (OPT) are networks characterized bghared medium (briefly, the
network capacity is shared among all the usersf) e®twork is modeled as a single
link: link 1 models the first-floor OPT networknk 2 models the PLC network; link 3
models the Wi-Fi network; link 4 models the groutabr Ethernet network, which is
connected to the first-floor network by the Homet&®ay. Note that each network
element (i.e., the PCs and the TV in Figure 12)lmasource and/or destination of more
than one flow, and that it is assumed that the sele®ent is capable of using more
than one technology. Figure 13 shows the schemtheofconsidered home network,
where, for the sake of simplicity, D1 and D4 ar#apsed in a single network entity.
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Link 2 (PLC)

|
S1| S2

Link 1 (OPT)

S3,54

Link 4 (ETH)

Figure 13 - Scheme of the exaple network

Link characteristics are strictly related to thewwrk technologies. Table 2
shows the link parameteps, A, andby, | = 1,...,4, used in the simulatioh$or the sake
of simplicity, all link capacitiedy, were set equal to 10 Mbps, but the OPT capacity
b; = 100 Mbps. By equation (5.14) and considering lthie characteristics, the value

y = 0.669 mift was chosen.

Link # Technology b [Mbps] N [min-1] w [min-1]
1 OPT 100 1/10 le-4
2 PLC 10 1/60 1/20
3 WiFi 10 1/30 1/30
4 ETH 10 1/5 le-4

Table 2 - Link characteristics

Four source-destination couples were consideresh@sn inFigure 14andFigure 15
each one modeled as a two-state Markov chain:anati’ state, the source transmits its
flow; in the ‘off’ state, the source is silent. Rbre sake of simplicity, all transmission

ratesby, f = 1, 2, 3, were set equal to 4.5 Mbps. Theditaon frequencies from the ‘on’

®> Note that we considered Ethernet and Optical Fib&s as reliable links: in fact, the frequencjgof
links 1 and 4 are so small that, in practice, tlgpréthm results do not sensibly change if we cdesi
them as always available, with the advantage ¢dite space reduction.
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to the ‘off’ state and vice-versa, denoted withand A;, respectively, were set as in
Table 3.

Figure 14 - MDP example: state spaceg = GSX 0{Sans} and transitions among subsets, ,
= '

i=1,...,6
S(l PP tﬂ(seaslﬁ) ! “\:
t(S5:Se) S(4
- 7

osos| p )

Se:S10) = L
10X, %,) g2 ;
\\\\\ é,//

Figure 15 - MDP example: transitions from states;
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Flow # b [Mbps] A¢ [min-1] Hr [min-1]

1 4.5 1/45 1/100

2 4.5 1/60 1/90

3 4.5 1/75 1/30

4 4.5 1/90 1/20

Table 3 - Flow characteristics
Finally, the paths available to each flow are shawihable 4.
Flow # Path # Link sequence Link technologies

1 1 {1,0,0,% OPT-ETH

1 2 {0,1,0,¢ PLC

1 3 {1,0,1,¢ OPT-WiFi

2 1 {1,0,0,3 OPT-ETH

2 4 {0,0,1, WiFi

3 5 {0,0,0,3 ETH

3 4 {0,0,1,0 WiFi

4 2 {0,1,0,0Q PLC

4 4 {0,0,1,0 WiFi

4 5 {0,0,0,% ETH

Table 4 - Paths

To clarify the MDP framework developed in Chapterl ®onstruct the MDP

corresponding to the case in which only flows 3 dnake activeR = 2). The feasible

states are listed in Tabl& Svhere: the routing table vector elements dertwtgoaths of

flows 3 and 4, respectively; the path status veetements denote the status of path 1
(OPT-ETH), of path 4 (WiFi) and of path 5 (ETH)spectively.

® Clearly, when 3 or 4 flows are active, the st@i@ce is considerably larger.
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Routing table

Path status

State

rl=(4,2)

r,=(4,4)
rs =(4,5)
rq=(5,2)
rs=(5,4)
re = (5,5)
r,=(4,4)
rs =(4,5)
rs=(5,4)
re = (5,5)
ry=(4,2)
r,=(4,4)
rs=(5,2)
re = (5,5)
r,=(4,4)
re = (5,5)

x1=(1,1,1)

x1=(1,1,1)
x1=(1,1,1)
x1=(1,1,1)
xp=(1,1,1)
xp=(1,1,1)
X2 =(0,1,1)
X2 =(0,1,1)
x2 =(0,1,1)
x2=(0,1,1)
x3 =(1,1,0)
x3 =(1,1,0)
X4 = (1,0,1)
X4 = (1,0,1)
xs = (0,1,0)
xs = (0,0,1)

sl =(1x1)
S = (r2X1)
S3 = (F3,X1)
St = (Fax1)
S = (rs.X1)
S = (FeX1)
7= (rax2)
8 =(3x2)
S = (rs,X2)
S10= (FeX2)
S11 = (F1,X3)
Si2 = (F2,X3)
$13 = (F4,Xa)
S14= (Fe,Xa)
Sis = ("2,Xs)
Si6 = ("'6:X6)
Sabs

Table 5 - Feasible states with active flows 2 and 3

Note that there are 6 path status veckpmhich lead to the non-empty seds,

i =1,...,6. The (uncontrolled) transition probabiltibetween the subse®g given by

equations (5.19)-(5.21), are shown in Figure 14.

To show an example of transition probabilities, Ufey 15 represents the

transition probabilities outgoing from stas = (r,X1). Beside the self-transition,

defined by equation (5.18), the figure shows that:

Two transitionstx(Ss,S10) andtx(ss,S14) exists froms; to the subsets, andS, ,

respectively. Since the two stat®g = (re,X2) ands;4 = (re,X4) are such that no

routing table change is required, these transitesasuncontrolled (see definition

(5.9)) and are equal tx;,x2) andt(x1,X4), respectively.

Two controlled transitiont(ss,S11) andtx(Se,S12) from ss to the subseg,  exists,

given by equation (5.15), since &) > xs, and (ii) the stater {,x3) is not feasible.
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According to equations (5.16) and (5.20), the tvamtmlled transitions are
equal tot(Ss,S11) = U(Se,S11)t(X1,X3) andty(Ss,S12) = U(Ss,S12)t(X1,X3), respectively,
with u(Ss,S11), U(Ss,S12) 0 {0,1} and u(ss,S11) + U(Ss,S12) = 1 (see definition (5.9)).

VI1.3. MDP simulation results

Numerical simulations were performed with the aimh evaluating the
effectiveness of the proposed MDP approach. Thenpleahome network described in
previous section was considered. Two simulationsevget up. Both simulations share
the same scenario depicted above.

Three policies were computed by properly setting #éhgorithm parameters,
denoted as ‘greedy’, ‘optimal’ and ‘optimal QoS’hd ‘optimal’ policy is the policy
aimed at minimizing the cost (5.22) of changing thmuting tables, without
differentiating among the classes of service. Taptimal QoS’ policy takes into
account also prioritization among the differentsskes of service. For comparison
purposes, the ‘greedy’ policy is also considerekichy, after a topology or traffic event,
chooses the new routing table as the one whichletha least number of path changes
and, in sequence, the least number of link changes.

With the ‘greedy’ and ‘optimal’ policies, the flovese not differentiated by their

class of service, and the weight§), associated to path changes of clads=1,...K,
are equal to 1. With the ‘optimal QoS’ policy, fldwhas higher priority: accordingly,

the weightwf};th was increased and set equal to 2. In all the igslidthe weightwjink,

associated to link changes, was set equal to 0l9@te that the link weight is much
smaller then the path weights since it is used amlghoose between routing tables
which involve the same number of path changes.

From the Markov chain modeling of the sources,niean time interval between

traffic events, regarded as the finite-horizon tiroe the MDP, is computed as

4 2) _1
to, :(ZA :r'uf ] = 15.54 min. Thus, the number of stages of the NtD&omputed
= Ay + My

asn =[yty|= 11. To obtain the ‘greedy’ policy it is sufficieto setn = 1.

Algorithm parameters are shown in Table 6.
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H (] (2) 3 (4)
Pol ICy Wpath Wpath Wpath Wpath Wiink n

Greedy 1 1 1 1 0.0025 1
Optimal 1 1 1 1 0.0025 33
Optimal QoS 2 1 1 1 0.0025 33

Table 6 — First simulation set: algorithm parametes

Simulation 1 was aimed at evaluating the overajoathm performances. 10
simulation runs were performed. For each run, ihle dnd flow parameters were used
to generate an event list; the events can bedra¥ents, i.e., flow births or terminations,
and topology events, i.e., link state variationseach traffic event, the MDP algorithm
is performed and the initial routing table is s&delcaccording to the theory presented in
the previous chapter. At each topology event, tbécy computed by the MDP
algorithm is applied to decide upon state transgtidcach simulation run was executed
three times: the first time with the ‘greedy’ pgliche second time with the ‘optimal’
policy, the third time with the ‘optimal QoS’ polic

Simulation results are collected by Table 7 andi@&band by Figure 16. Table
7 shows the mean number (over the 10 simulatios)rahrouting table, path and link
changes due to flow re-routing (i.e., to the decigo change the path of already active
flows), denoted witiN,, N, andN;, respectively, whereas Table 8 shows the per-flow
path changes, denoted wily(i), i =1,...,4. Figure 16 shows the ratio between the
values obtained with the ‘optimal’ and ‘optimal Qglicies over the values obtained
by the ‘greedy’ policy. The tables and the figuleacly show that:

I. the number of routing table, path and link changes nearly halved
thanks to the proposed MDP approach, both withidpgmal’ and with
the ‘optimal QoS’ policies, with a slight advantagfehe ‘optimal’ one;

Il. the ‘optimal QoS’ policy manages to reduce the neinds path changes
experienced by flow 1, which is the flow with thgglest priority (i.e.,
with the largest weight), both with respect to tigeeedy’ and the
‘optimal’ policies; to achieve this result, the topal QoS’ policy
increases the number of path changes experiencétehbyther flows (in
particular, in this scenario, by flow 3).
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Policy N, Np N,

Greedy 13.6 18.0 45.9
Optimal 7.3 10.0 23.7
Optimal QoS 7.3 11.1 25.9

Table 7 - Simulation 1: total routing table/path/link changes

Policy Np(1) Np(2) Np(3) Np(4)
Greedy 5.8 5.3 2.0 4.9
Optimal 4.5 1.0 15 3.0
Optimal QoS 11 3.5 3.2 3.3

Table 8 - Simulation 1: per-flow path changes
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Figure 16 - Simulation 1 results

Simulation 2 was aimed at showing how the routatgée is chosen in case of an
acceptance of a new flow in the ‘optimal’ and i toptimal QoS’ cases. To further

emphasize the ‘optimal QoS’ behavior, the weighla# 1 ngth was increased to 5. In

the example, initially all links are available,.j.@itial path statux is aP vector of
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ones; flows 2 and 3 are active and routed on pat{®PT-ETH) and 5 (ETH),
respectively. The algorithm is triggered by theegatance of flow 1.

Table 9 and Table 10 and Figure 17 collect therdlgo results. Table 9and
Figure 17 a) show i) the expected number of routiiide changek; and the expected
number of path chang&s in the finite-horizon timey, starting from the initial table
and ii) the probability?, that the initial table is not changed in the Brlitorizon time,.
Table 10 and Figure 17 b) show the expected numibgath changes for flow, denoted
with Ey), i = 1,...,4, in the finite-horizon time,.

The resulting initial routing tables are [3 1 5]daji 1 4] for the ‘optimal’ and
‘optimal QoS’ policies, respectively. The initiatase obtained by ‘optimal’ policy,
which is aimed at minimizing the total expectedhpahanges, entails that the active
flows 2 and 3 are not re-routed, and that flow foisted on path 3 (OPT-WiFi); flow 1
cannot be routed on the more robust path 1 (OPT)Eiite flows 2 and 3 already use
the Ethernet link, whose capacity is not enougbugeport 3 flows. On the contrary, the
‘optimal QoS’ approach, which is aimed also at ptiming flow 1, returns an initial
state which implies to re-route flow 3 from patliEslH) to path 4 (WiFi); in this way,
flow 1, which is the highest priority flow, can lbeuted on the robust path 1 (OPT-
ETH).

As shown by Table 9 and Figure 17 a), in the fihibgizon periodts, the
‘optimal’ routing policy achieves slightly lowdt, andP;, and significantly reduces,
with respect to the ‘optimal QoS’ policy. Table a@d Figure 17 b) shows that the
‘optimal’ policy addresses topology changes byaeting flow 1, whereas the ‘optimal
QoS’ policy re-routes flows 2 and 3: in this walye toptimal QoS’ policy manages to

minimize the expected number of path changes ofitfe-priority flow 1.

Policy E E Pr
Optimal 0.529 0.558 0.419
Optimal QoS 0.581 2.163 0.450

Table 9 - Simulation 2: total expected routing tak#/path changes and probability of changing the
initial routing table

" The collected statistics do not count the initalting table change and the initial path changedad to
route the new flow 2.
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Policy E,(1) E.(2) Ex(3) Ex(4)

Optimal 0.513 0.030 0.015 0
Optimal QoS 033 0.581 1.549 0

Table 10 - Simulation 2: expected per-flow path chages
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200 W optinel —

s B optimel QoS
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150 _ .
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100

BExp. # of path changes

flow#l flow#2 flow#3 flow#4

Figure 17 - Simulation 2 results

V1.4. Q-Learning simulation results

In this case, numerical simulations were performdth the aim of evaluating
the effectiveness of the proposed Q-Learning amprodgain, the example home
network described in previous section was constle@ne simulation was set up in
order to compare Q-Learning and MDP solutions perémces.

In particular, the ‘optimal’ and the ‘greedy’ paks using the MDP approach
has been compared with the-greedy” policy using the Q-Learning approach. The
‘optimal’ MDP policy is the policy aimed at minimig) the cost (5.22) of changing the
routing tables, without differentiating among tHasses of service. The ‘greedy’ MDP
policy is also considered, which, after a topolagytraffic event, chooses the new
routing table as the one which entails the leastlyar of path changes and, in sequence,

the least number of link changes. Thegteedy” Q-Learning instead is the policy
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aimed to minimizing the cost (5.22) of changing thating tables on the basis of the
acquired knowledge, but also performing exploratioorder to increase and complete
the knowledge about the system behaviour.

In this case | do not consider QoS, thus the flavesnot differentiated by their
class of service, and the weight§’. associated to path changes of clkads=1,...K,
are equal to 1.

Again, from the Markov chain modeling of the sowcihe mean time interval

between traffic events, regarded as the finitezworitime of the MDP, is computed as
-1
(<& 2444 _ . .
ty = Zm = 15.54 min. Thus, the number of stages of the NEDEbmputed
f=1/1¢ f

asn =[ytn|= 11. To obtain the ‘greedy’ policy it is sufficieto setn = 1

Algorithm parameters are shown in Table 11.

Poli cy W,(al;th W,‘f;m W,(asa)th W,(;gth Wiink n )4 a €
Greedy MDP 1 1 1 1 0.0025 1
Optimal 1 1 1 - -
0.0025 33 -
MDP
e-Greedy QL 1 1 1 1 0.0025 - 095 09 0.1

Table 11 — Second simulation set: algorithm paramets

Two simulations were perfomed, the first one withhburs duration of network
simulation, the second one with 20 hours duratibmetwork simulation. Both the
simulations was aimed at evaluating the overallé@+hing algorithm performances and
at comparing it bahviour with the MDP approach. Each simulation, the link and
flow parameters were used to generate an eventhesevents can be traffic events, i.e.,
flow births or terminations, and topology event®.,ilink state variations. At each
traffic event, the MDP algorithm is performed ame tnitial routing table is selected
according to the theory presented in the previdapter. At each topology event, the
policy computed by the MDP algorithm is applieddxide upon state transitions. Each
simulation run was executed three times: the firse with the ‘greedy’ MDP policy,
the second time with the ‘optimal’ MDP policy, th@rd time with the é-greedy’ Q-

Learning policy. In addition, everyg-greedy’ Q-Learning policy was simulated four

102



times and the average routing table changes armlteg table changes was calculated
in order to avoid that exploration could have astong impact on the results.
Simulation 1 results (10 hours of network simulajiare collected by Table 12,
by Figure 18 and Figure 19. Table 12 shows the mur{the mean number over the 4
simulation runs foré-greedy’ Q-Learning policy ) of routing table chasgdue both to
routing and to flow re-routing (i.e., to the deoisito change the path of already active
flows), denoted withN; andN,, respectively.
The table and the figures clearly show that:
I. The performance of the QL algorithm in terms of tw@mof routing table
changes are better than the ones obtained witeedgmolicy and at the
same time are close to the ones obtained usingoftenal MDP

approach;

Il. The same consideration ally also when consideriveg tumber of re-
routing table changes.

Policy N, Nre
Optimal MDP 130 35
Greedy MDP 135 40
e-greedy QL 133.75 38.75

Table 12 - Simulation 1: total routing and re-routing table changes

103



rt changes

136

135

134

122
¢ 13z
g
2
[Z)
= 13
130
120
123
122
127
opt. MOF MOF greedy G-Learning
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Figure 19 - Simulation 1 results (re-routing tablechanges)

Simulation 2 results (20 hours of network simulajiare collected by Table 13,
by Figure 20 and Figure 21. Table 13 shows the murtthe mean number over the 4
simulation runs foré-greedy’ Q-Learning policy ) of routing table chasgdue both to
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routing and to flow re-routing (i.e., to the deoisito change the path of already active
flows), denoted withN; andN,, respectively.

The table and the figures clearly confirm the ressabtained with the previous
simulation. In particular, the proposed QL algarmtipermits to achieve performances
close to the optimal requiring less computationfbre From this consideration it
appears that the proposed QL algorithm is suitédleeal-time implementation as in
the home network scenario depicted in Chapter 2.

Policy N, Nre
Optimal MDP 54 6
Greedy MDP 66 18
e-greedy QL 61.5 135

Table 13 - Simulation 2: total routing and re-routing table changes
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Figure 20 - Simulation 2 results (routing table chages)
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Figure 21 - Simulation 2 results (re-routing tablechanges)
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Chapter VII
Conclusions

This thesis describes a fault-tolerant routing wmntalgorithm for Next
Generation Home Networks. The work has been doi@yng two steps: i) definition
of the MDP theoretical control framework, ii) dafion of a Reinforcement Learning
algorithm based on the control framework develogerdng the previous phase of the
work.

The theoretical relevance of the first part of thark is that it defines an MDP
framework for the fault-tolerant routing in commeaaiion networks characterized by
time-varying path availabilities and supporting gistent multimedia flows; this is
typically the case of heterogeneous home netwavksye unreliable technologies such
as Wi-Fi and Power Line Communications are used.

The innovative approach consists in i) considetimg problem of re-routing
flows between traffic events (e.g., flow acceptdigeminations); ii) defining the MDP
dynamics depending on topology events (e.g., lakt§). The resulting optimal fault-
tolerant routing policy minimizes the re-routingcacrences, allows fast re-routing of
flows in case of link faults, and also allows s#éteg the optimal initial state after a
traffic event.

Numerical simulations validate the effectivenesshef proposed algorithm on a
meaningful example of home network.

Moreover, the considered home network scenariboatih representative of
current home networks, is simpler than the futuweé network scenario considered in
OMEGA, where tens or even hundreds of objects (ftloenTV to the washing machine)
are inter-connected (the so-called Internet-of-ghiITU Internet Reports, 2005)). In
this scenario, the poor scalability of the MDP aagwh will prevent the use of the
developed algorithm. Nonetheless, the proposedoappris still relevant since i) it
provides a theoretical framework for developing enecalable Approximate Dynamic
Programming and/or Reinforcement Learning algorghmand ii) it provides an

evaluation benchmark.
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In the second part of the work, a Reinforcementrihieg algorithm, based on
the MDP theoretical framework built in the firstgde, has been proposed to overcome
scalability problems of MDP approach. This algantls suitable to be implemented in
real-time environment and allows to achieve resuliat, has demonstrated by
simulations, are close to optimal ones.

On-going work is aimed at a real network implemgata of the proposed
algorithm in the testbed under development withm European project OMEGA.

In addition, it is under study the possibility txtend the proposed MDP
framework to include both traffic and topology dymas.
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