

Facoltà di Ingegneria

Fault-tolerant routing in Next
Generation Home Networks

Relatore Dottorando:

Chiar.mo Prof. Francesco Delli Priscoli Ing. Marco Castrucci

Coordinatore:

Chiar.mo Prof. Carlo Bruni

Dottorato di ricerca in Ingegneria dei Sistemi XXII Ciclo

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/74322243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

3

Index

Index ... 3
List of Figure .. 5
List of Tables .. 6
List of Acronyms .. 7
Chapter I ... 9
Introduzione .. 9
Chapter II .. 13
Overview of home networking ... 13

II.1. Introduction... 13
II.2. Home network evolution .. 13

II.2.1 ITU-T model ... 14
II.2.2 DSL-Forum model .. 14
II.2.3 Triple play model.. 15

II.3. Next Generation Home Networks...17
II.3.1 Routing in NGHNs ... 24

Chapter III... 26
MDP control framework... 26

III.1. Introduction... 26
III.2. Stochastic process ... 26
III.3. Markov chains... 27

III.3.1 Classification of states of a Markov chain.. 29
III.3.2 Long run properties of Markov chains ... 30
III.3.3 Continuous time Markov chains ... 32

III.4. Markov Decision Processes .. 35
III.4.1 Linear programming and optimal policies.. 36

III.4.1.1. A linear programming formulation... 37
III.4.2 Policy improvement algorithm ... 39

III.4.2.1. The Policy Improvement Algorithm... 41
III.4.3 Discounted cost criterion .. 43

III.4.3.1. A Policy Improvement Algorithm .. 43
III.4.3.2. Linear Programming Formulation .. 45
III.4.3.3. Finite-Period Markov Decision Processes and the Method of
Successive Approximations.. 46

Chapter IV... 48
Reinforcement Learning ... 48

IV.1. Introduction... 48
IV.2. An introduction to Reinforcement Learning... 48

IV.2.1 Elements of RL ... 50
IV.2.2 Evaluative feedback.. 51
IV.2.3 Incremental Implementation ... 54
IV.2.4 Tracking a Nonstationary problem ... 55

IV.3. The Reinforcement Learning problem.. 56
IV.3.1 Returns .. 57

IV.3.1.1. Unified notation for episodic and continuing tasks 58
IV.4. Modelling the environment as a Markov chain .. 59

IV.4.1 Optimal value functions and approssimations .. 61

4

IV.5. RL solutions methods ... 65
IV.5.1 Dynamic Programming... 65
IV.5.2 Monte Carlo methods.. 67
IV.5.3 Temporal-Difference Learning ... 68
IV.5.4 TD prediction.. 69

IV.5.4.1. Sarsa: on-policy TD control.. 70
IV.5.4.2. Q-Learning: off-policy TD control ... 71
IV.5.4.3. R-Learning for undiscounted continuing tasks............................... 72

Chapter V.. 74
Fault-tolerant routing in Next Generation Home Networks ... 74

V.1. Introduction... 74
V.2. State of the art routing algorithms .. 74
V.3. MDP fault-tolerant routing in NGHNs ... 75

V.3.1 Finite-Horizon MDP definition .. 76
V.3.2 MDP fault-tolerant routing ... 77

V.3.2.1. Link model .. 79
V.3.2.2. Fault-tolerant MDP routing .. 79
V.3.2.3. MDP algorithm outcomes... 85

V.4. Q-Learning formulation of the routing algorithm... 88
Chapter VI... 91
Results... 91

VI.1. Introduction... 91
VI.2. Scenario description.. 91
VI.3. MDP simulation results .. 97
VI.4. Q-Learning simulation results .. 101

Chapter VII ... 107
Conclusions... 107
References... 109

5

List of Figure

Figure 1 - The ITU-T 995.1 architecture for home networking 14
Figure 2 - The DSL Forum TR-094 architecture for home networking 15
Figure 3 - The hybrid bridged/routed triple play architecture .. 16
Figure 4 - The full-routed triple play architecture.. 16
Figure 5 - Inter-MAC reference architecture.. 18
Figure 6 - Inter-MAC functional architecture... 19
Figure 7 - Hybridization of technologies inside the home network 21
Figure 8 - NGHN Architecture Reference Model ..23
Figure 9 - A typical NGHN architecture configuration.. 23
Figure 10 - The agent-environment interaction in RL.. 56
Figure 11 - State and state-action pairs sequence ... 70
Figure 12 - Example home network ... 92
Figure 13 - Scheme of the exaple network ... 93

Figure 14 - MDP example: state space { }abs
i

i
SS sx ∪=

=
U
6

1

 and transitions among subsets

i
Sx , i = 1,…,6 .. 94

Figure 15 - MDP example: transitions from state s6... 94
Figure 16 - Simulation 1 results.. 99
Figure 17 - Simulation 2 results.. 101
Figure 18 - Simulation 1 results (routing table changes)..104
Figure 19 - Simulation 1 results (re-routing table changes) ... 104
Figure 20 - Simulation 2 results (routing table changes)..105
Figure 21 - Simulation 2 results (re-routing table changes) ... 106

6

List of Tables

Table 1 - Definitions of flow, path and link sets .. 77
Table 2 - Link characteristics.. 93
Table 3 - Flow characteristics... 95
Table 4 - Paths .. 95
Table 5 - Feasible states with active flows 2 and 3.. 96
Table 6 – First simulation set: algorithm parameters ... 98
Table 7 - Simulation 1: total routing table/path/link changes...99
Table 8 - Simulation 1: per-flow path changes... 99
Table 9 - Simulation 2: total expected routing table/path changes and probability of

changing the initial routing table .. 100
Table 10 - Simulation 2: expected per-flow path changes.. 101
Table 11 – Second simulation set: algorithm parameters ... 102
Table 12 - Simulation 1: total routing and re-routing table changes 103
Table 13 - Simulation 2: total routing and re-routing table changes 105

7

List of Acronyms

ARM Architecture Reference Model

ATM Asynchronous Transfer Mode

B-NT Broadband Network Termination

CPE Consumer Premise Equipment

DHCP Dynamic Host Configuration Protocol

DP Dynamic Programming

DSL Digital Subsriber Line

ETSI European Telecommunication Standardization Institute

EUT End User Terminal

FPD Functional Processing Device

FT Fault-Tolerant

GPI Generalized Policy Iteration

HDTV High Definition Television

HGI Home Gateway Initiative

HO Hand-Over

HWO Hybrid Wireless Optic

IGMP Internet Group Management Protocol

I-MAC Inter-MAC

IP Internet Protocol

ITU International Telecommunication Union

LAN Local Area Network

MAC Medium Access Control

MC Markovian Chain

MDP Markov Decision Process

NAT Network Address Tranlsation

NGHN Next Generation Home Network

NT Network Termination

OMEGA hOME Gigabit Access

PLC Power Line Communication

PPP Point-to-Point Protocol

P2P Peer To Peer

8

QoE Quality of Experience

QoS Quality of Service

RL Reinforcement Learning

TA Terminal Adapter

TD Temporal-Difference learning

TR Techical Report

VoD Video on Demand

VoIP Voice over IP

UBB Ultra-BroadBand

UT User Terminal

UWB Ultra Wide Band

WAN Wide Area Network

WiFi Wireless Fidelity

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

9

Chapter I

Introduzione

Le reti di nuova generazione, attualmente in fase di studio e di standardizzazione

presso i più importanti forum pubblici e privati mondiali come ETSI [46], ITU-T [47],

WiMAX Forum [48], BroadBand Forum [49] e Home Gateway Initiative [50],

introducono dei concetti di fondamentale interesse per l’ingegneria dei sistemi e del

controllo, considerando che le reti impiegate diventano sempre più complesse, a causa

di tecnologie eterogenee che necessariamente devono interoperare, ma che allo stesso

tempo devono poter essere gestite in modo efficiente. Per questo motivo i modelli di

rete moderni propongono un approccio in cui il mondo delle telecomunicazioni è

suddiviso in tre piani principali: il data plane, che gestisce i flussi dati e le applicazioni

degli utenti, il control plane, che include le funzionalità preposte ad eseguire un

controllo in real-time della rete, e il management plane, che comprende le funzionalità

dedicate alla configurazione a lungo termine e il fault management della rete.

Gli obiettivi della presente tesi sono stati molteplici:

� definire un modello di architettura per reti domestiche in grado di rendere

possibile l’interoperabilità di diverse tecnologie trasmissive;

� definire il modello di riferimento per un sistema di controllo dell’instradamento

dei flussi applicativi nelle reti domestiche multi-tecnologia, in grado di gestire

diversi requisiti di Qualità di Servizio (QoS) e le frequenti indisponibilità dei

percorsi;

� definire un algoritmo di controllo basato sul modello di riferimento proposto;

� validare il sistema di controllo proposto in un adeguato scenario simulativo.

Il primo obiettivo è stato raggiunto attraverso la definizione di un modello

architetturale di riferimento per reti domestiche multi-tecnologia [12]. A tale scopo, il

lavoro è consistito nella raccolta e l’analisi dei requisiti, la definizione delle specifiche,

il design dettagliato dei moduli funzionali e delle interfacce. Tale architettura apre

innumerevoli possibilità di applicazione delle teorie del controllo e dell’ottimizzazione

10

alla gestione e il controllo delle reti domestiche (campo ancora poco esplorato per la

mancanza di un adeguata architettura di rete come quella proposta) quali il controllo di

ammissione e il controllo dell’instradamento dei flussi accettati.

Il lavoro si è quindi focalizzato sulla progettazione di un sistema di controllo per

gestire l’instradamento dei flussi nella rete, tenedo conto dei requisiti di QoS dei flussi

stessi. A tal fine è stato utilizzato un approccio basato sulla teoria del Markov Decision

Process (MDP). Il sistema è stato quindi modellato come una catena di Markov, per la

quale sono stati definiti gli stati e le transizioni tra i diversi stati. Tale approccio è stato

scelto in quanto già applicato con successo per il controllo dell’instradamento di flussi

informativi, anche se fino ad oggi era stato applicato in reti core, mentre non era mai

stato considerato per essere applicato in reti domestiche. Inoltre, i particolari requisiti

del contesto considerato hanno reso necessarie notevoli modifiche ai modelli proposti in

letteratura, portando quindi alla definizione di un nuovo modello di rete: in pratica, è

stato necessario definire nuovi stati e nuove transizioni. L’approccio usato si è rivelato

una buona soluzione nell’ambiente domestico di applicazione, soggetto a numerosi e

ripetuti link fault. Il controllore è stato infatti progettato con l’obiettivo di minimizzare

il numero di re-instradameni dei flussi dovuti all’improvvisa indisponibilità di un

percorso usato da flussi già attivi.

Una volta terminata la fase di modellazione del sistema e di progettazione del

controllore, sono emersi problemi di scalabilità della soluzione proposta, che la rendono

inapplicabile in contesti reali con requisiti di real-time. Nonostante ciò, tale lavoro

costituisce un prezioso modello teorico di riferimento che può essere usato per

sviluppare algoritmi implementabili.

A dimostrazione di ciò è stato quindi definito un algoritmo basato sulla teoria del

Reinforcement Learning. In particolare è stato definito un algoritmo di Q-learning in

grado di apprendere la scelta ottimale a seconda dello stato del sistema.

Per verificare le performance dell’algoritmo proposto sono state effettuate

numerose simulazioni utilizzando il software di simulazioni MATLAB. I risultati delle

simulazioni hanno permesso di verificare come l’algoritmo di Q-learning proposto

consente di ottenere risultati prossimi a quelli ottenibili applicando l’algoritmo ottimo

basato su MDP.

Attualmente, l’algoritmo proposto è in fase di implementazione al fine di essere

integrato nel prototipo in fase di sviluppo presso i laboratori di ricerca di France

Telecom, nell’ambito del progetto OMEGA, finanziato dalla Commissione Europea.

11

Nel dettaglio, il presente lavoro si articola in 7 capitoli.

Il presente Capitolo 1 fornisce un’introduzione al fine di offrire una visione

completa di tutto il lavoro svolto.

Il Capitolo 2 presenta una panoramica sulle reti domestiche, al fine di descrivere

il contesto del presente lavoro. In particolare, viene descritta l’evoluzione delle reti

domestiche dalla loro nascita a oggi, attraverso la riproposizione dei modelli di rete che

si sono succeduti nel corso degli anni e frutto del lavoro di ricerca a livello mondiale e

presso gli enti di standardizzazione. Alla fine del capitolo viene inoltre presentato il

modello di rete domestica del futuro, in cui diverse tecnologie trasmissive verranno

utilizzate contestualmente per offrire maggiori capacità e quindi servizi a valore

aggiunto agli utenti. In particolare il modello presentato è stato il frutto della fase

iniziale del presente lavoro e definisce un innovativo modello di rete che dà una grande

rilevanza al piano di controllo della rete stessa. Questo perché le potenzialità delle

nuove reti domestiche potranno essere utilizzate in maniera efficiente solo se

opportunamente controllate in maniera automatica e in real-time da appositi protocolli e

algoritmi di controllo. Tra questi, viene definito il problema dell’instradamento di flussi

in rete (routing), con i suoi obiettivi e le sue caratteristiche nell’innovativo scenario

proposto.

Il Capitolo 3 e il Capitolo 4 forniscono le basi teoriche per l’algoritmo oggetto

del presente lavoro. In particolare, l’obiettivo del Capitolo 3 è quello di presentare gli

strumenti teorici, messi a disposizione nell’ambito del controllo stocastico,

relativamente alle catene di Markov e ai processi decisionali di Markov. Tali strumenti

sono stati utilizzati come approccio fondamentale per la definizione del problema di

routing. Nel Capitolo 4 viene invece fornita un’introduzione al Reinfocement Learning

(RL) e vengono presentati alcuni metodi di soluzione.

Il Capitolo 5 è il capitolo principale della tesi, in quanto contiene la descrizione

dell’algoritmo proposto. In particolare il capitolo è suddiviso in due parti. Nella prima

parte viene descritto l’approccio utilizzato per modellare il problema di routing in reti

domestiche di prossima generazione attraverso un processo decisionale di Markov. Tale

lavoro costituisce un risultato di grande rilievo in quanto determina una base teorica per

lo sviluppo di altri algoritmi che potranno essere progettati utilizzando diverse

metodologie. In aggiunta, tale frame work potrà essere utilizzato come punto di

riferimento per la valutazione delle prestazioni dei diversi algoritmi sviluppati. Nella

seconda parte del capitolo viene invece proposto un particolare algoritmo di routing,

12

progettato facendo uso delle metodologie di Reinforcement Learning e costruito sulla

base del riferimento teorico descritto nella prima parte del capitlo.

Nel Capitolo 6 sono presentati alcuni risultati numerici ottenuti attraverso la

realizzazione di una serie di simulazioni eseguite con il software MATLAB.

Inizialmente viene descritto lo scenario simulativo, rappresentante una rete domestica di

nuova generazione e realizzata attraverso l’integrazione di 4 tecnologie trasmissive

diverse. In seguito vengono presentati i risultati ottenuti attraverso la simulazione del

processo decisionale di Markov, utilizzando tre politiche diverse. I risultati ottenuti

mostrano le potenzialità dell’algoritmo proposto e la sua capacità di supportare flussi

con diverse caratteristiche e requisiti e quindi appartenenti a diverse Classi di Servizio.

Infine vengono presentati i risulati ottenuti attraverso la simulazione dell’algoritmo

basato su Reinforcement Learning. I risulati mostrano come le prestazioni di questo

algoritmo si avvicinano all’ottimo ottenibile co il processo decisionale di Markov.

Infine, nel Capitolo 7, vengono riportate le conclusioni del lavoro e viene fornita

un’indicazione dei prossimi sviluppi di questo algoritmo, sia dal punto di vista teorico

che implementativo.

13

Chapter II

Overview of home networking

II.1. Introduction

Home networking is defined by the CEA-HNIT’s Board of Directors as follows:

“A home network interconnects electronic products and systems, enabling access and

control of this products and systems, and any available content such as music, video or

data” [1]. Products need to be connected to each other; access to content (e.g.,

entertainment, information, services) must be provided; and the user must have control

of the products and the distribution of content. Content may come from within the home,

from a media centre hard disk, a personal video recorder, and so on; or remotely from

somewhere outside the home (e.g., form a Wide Area Network that provide connection

to Internet). One point that must be emphasized is the ease of use. The consumer should

not even know a home network is being established in its home. Consumers buy

applications, not home networks [2].

The significant interest in home networking today stems from the availability of

low-cost communication technologies and from the need for network operators and

service providers to overcome bandwidth limitations occourring today in home

networks, that limit the diffusion and the provisioning of added-value services to users.

In this chapter is presented the evolution of home networks, starting from simple

old implementation to the vision and the idea behind the next generation of home

networks that nowadays are being object of worldwide research. The chapter ends with

the presentation of the open research topics related to next generation home networks,

highlitghing how the present work intends to provide a solution to one of the most

important open issue.

II.2. Home network evolution

This section describes the evolution of the trends in architecture of home

networking during the ten last years through standardization as well as practical

implementations. Three different home networks model are presented: the ITU-T model,

14

the DSL-Forum model and the triple play model. In addition to those presented here,

there are also other standardization bodies and industrial forum (e.g. Home Gateway

Initiative (HGI)) at European and international level that are working to define

guidelines and standards for home networks.

II.2.1 ITU-T model

The first elaboration of models of home networking date back to the nineties,

with the ITU-T efforts to standardize recommendations for digital subscriber lines. ITU-

T 995.1 [3], for instance, introduces in 2001 the following entities:

� the NT1, terminating the access digital section of the broadband connection,

� the NT2, terminating the transport protocol for user traffic. It may implement

switching/routing functions,

� the Terminal Adapter (TA), adapting the transport protocol to the specific

requirements of a user terminal,

� the User Terminal, providing an interface for the user.

These entities are interconnected by interfaces (R, S, T, U) defined by the

following representation:

R
 T

Access
link

NT1 NT2 User
Terminal

U

Terminal
Adapter

S

Figure 1 - The ITU-T 995.1 architecture for home networking

II.2.2 DSL-Forum model

In 2004, the DSL Forum defined in TR-094 [6] requirements and capabilities

that a home network should provide to take advantage of the full capabilities of the

multi services broadband access. TR-094 introduces in particular the following entities:

15

� the B-NT (Broadband Network Termination),

� the Routing Gateway,

� the Premises Distribution (client infrastructure),

� the FPD (Functional Processing Device), which is a component of the home

network that processes voice, video or data for its intended application,

� the EUT (End User Terminal).

These entities are interconnected by interfaces (R, TCN, TPDN, U) defined by the

following representation:

R TPDN

Access
link

 TCN

B-NT EUT

U

Premises
Distribution

Routing
Gateway

FPD

Figure 2 - The DSL Forum TR-094 architecture for home networking

The R interface is the type of interface that the FPD should support in order to

provide connectivity to the EUT. The TCN interface defines the interface between the

Routing Gateway and the various premises distribution technologies. The TPDN interface

is physically discernable when the B-NT and Routing Gateway are implemented in

separate devices: it is practically limited to a point to point layer 1+2 connection. The U

interface is represented here in making abstraction of a possible splitter. Some entities

of these representations can be merged into one single equipment, for instance the EUT

and the FPD, or the Routing Gateway and the B-NT.

II.2.3 Triple play model

The triple play model [7] was adopted by the operators around 2004 in order to

launch commercial offers based on three service components: the Internet, the

conversational (VoIP, videophony) and the TV services. These offers were often based

16

on a residential gateway with physical ports each dedicated to a specific service, which

allows to simplify the implementation. The following figure gives an example (hybrid

between the bridged model and the routed model) of such a gateway:

VC Internet, VoIP

VC Videophony

Routing/NAT

LAN
Ethernet

WAN
ATM

DHCP PPP

Bridge

CPE

VC Digital TV, VoD

Analog PhoneAnalog Phone

Figure 3 - The hybrid bridged/routed triple play architecture

Such an option leads naturally to an organization of the home network where a

given technology is dedicated to a given service. In a longer term prospect, that

architecture will likely evolve to a more flexible configuration, based on a full-routed

solution, which would avoid the separation between the services and the constraint to

connect each device to a given port, as showed on the following figure:

VC Internet, VoIP

VC Visio

VC Digital TV, VoD

Routing/NAT

LAN
Ethernet

WAN
ATM

DHCP PPP

IGMP SNOOPING

CPEAnalog PhoneAnalog Phone

Figure 4 - The full-routed triple play architecture

17

II.3. Next Generation Home Networks

During last years, communication technology has evolved in terms of services

diversification. Requests of different advanced services lead to a mass-market of a

variety of devices and networks supporting heterogeneous and broadband technologies.

Several solutions have been deployed to provide broadband and heterogeneous

connectivity to users, especially in the access networks. But the diffusion of new

bandwidth demanding services (like HDTV) will be possible only when technology

limitations will be eliminated from the real network bottleneck: the users home area

network.

Several technologies are nowadays adopted in home networks. Despite this

diversity, it is possible to group all these technologies in two main categories,

depending on the communication medium to be used: wired communications and

wireless communications. Inside this two big clusters further distinctions take place.

Among wired communications, Ethernet (IEEE 802.3) is for sure the most common

technology used to interconnect different devices in a home environment. But in the last

years the attention and the research is focusing on Power Line Communications (PLC),

an emerging technology which uses power supply to convey the information through

the network. As such as concerns wireless communication, technologies like Wi-Fi

(802.11a/b/g) have already been exploited and new standards such as Wi-Max (802.16)

or UltraWideBand (802.15.3) are actually contending the attention of the people. An

emerging technology within wireless communications is the Free Space Optics

technology, which introduce the concept of wireless infrared and visible light

communications, alternative to the wireless radio frequency medium. As a consequence

of this large diversification, many different networks have emerged inside the domestic

ambient, causing de facto the impossibility to make interact devices connected to the

network with different technologies.

A lot of research works has been done on convergence, and most of them

propose to enhance terminals and network components with technology independent

middleware frameworks. This is a good solution but not in a home gigabit access

network. A middleware solution is not suitable for terminal capabilities, it requires in

the most of cases to be installed, configured and maintained by the terminal user and

can process only low data rate services. Services like HDTV, Broadband Internet access,

18

on-line 3D gaming are extremely expensive in terms of resources. Therefore, these

services requires a disruptive approach for the management of the resources in a so

called Next Generation Home Network (NGHN), where convergence should be

achieved maintaining simplicity, scalability and backward compatibility.

In Europe, the FP7 OMEGA project ([9]) is defining and prototyping a new

architecture for home networks able to achive the above mentioned objectives. In

particolar, OMEGA is proposing an innovative protocol stack for home networks where

a new layer is introduced between the MAC layer and the IP layer: the so called Inter-

MAC layer ([10]). It receives and processes the information from the upper layers (IP)

in order to match the services requests with the availability offered by the various

underlying technology dependent MACs. The Inter-MAC (see Figure 5) is technology

independent and controls multiple technology networks by means of proper adapters. It

also provides services as well as connectivity to all the devices in the house. Thanks to

the introduction of the Inter-MAC layer, it is possible to obtain convergence inside the

home among several heterogeneous Telecommunication technologies, thus paving the

way to the possibility to achieve home network capacities od the order of Gigabit per

second.

Figure 5 - Inter-MAC reference architecture

In Figure 6 a functional architecture is presented, where it is possible to

distinguish the interfaces by which the Inter-MAC communicates with Network

19

protocol layer, the technology-dependent MAC layers, and with the signalling and

management plane; three main Inter-MAC functionalities are wrapped by a Monitoring

& Event Manager. It handles the decision to enforce taking in input the information

coming from the Signalling and Management Plane.

Figure 6 - Inter-MAC functional architecture

Each one of the functional components previously mentioned are described in

detail:

� QoS Control: it manages the resource allocation of specific flows guaranteeing

some QoS parameters: Bandwidth, Delay, Delay Variation, Loss Ratio and Error

Ratio. Different classes of service can be handles by the Inter-MAC and the QoS

Control then performs a complete scan over all MACs to estimate which of them

can handle the specific flow belonging to that class of service.

� Path Selection: select all the possible paths to connect two or more nodes

among various networks. It considers multi-hop solutions and take care of load

balancing tecniques. Load balancing is needed whenever the QoS parameters

could not be assured using only one available path. Path selection is a

functionality strongly interconnected with QoS control. Existing solutions for

multi-hop routing are tailored for homogenous networks and thus not suited for

the heterogeneous home gigabit architecture. Implementing multi-hop

connection in the home heterogeneous environment is novel, will be undertaken

by this functional component, and is the objective of this work. In general, path

selection can consider factors including class-of-service identification, policy-

20

based routing table derivation, dynamic bandwidth allocation, protection,

reservation, priority routing, and priority queuing.

� Technology Handover: in order to provide access to different communications

systems an efficient vertical handover mechanism is required. A technique that

uses the common semantic to describe the available channels and chooses

between them will be developed. The technology handover switches between

two different technologies and is recalled whenever a network congestion, link

failure or device mobility occur.

� Monitoring & Event Manager : it represents the link-up point for the

functionalities described above. Its task is to trigger decisions, based on

Signalling & Management Plane information. Since every Inter-MAC

functionality is related to each other, if Monitoring & Event Manager detects

that a particular link of the Home Network cannot support the service class

imposed by QoS Control, then it will trigger Path Selection module in order to

choose a better link. So, information produced from monitoring and event

manager will be used by Inter-MAC to cast its main functionalities: Qos

Control, Technology Handover and Path Selection.

The Next Generation Home Network Architecture Reference Model (ARM) has

been then designed to fulfil the following conditions:

� it should be elaborated in the continuation of models already elaborated in

standardization and currently used in the domain of home networking

architecture;

� it should provide a good comprehension of the bounds of the network;

� it should clarify the internal and external interfaces of the network;

� it should highlight the structure of the NGHN into elementary network

functionalities and capabilities.

In the prospect of the Gigabit data rate in Next Generation Home Networks, it

appears interesting to distribute the functions of connectivity inside the home with the

help of interconnection points spread in the home, and achieving the hybridization of

several different wired and wireless access technologies through the introduction of the

Inter-MAC layer described above. This scenario is illustrated in the following picture:

21

Figure 7 - Hybridization of technologies inside the home network

This illustration highlights the interconnection of a wide range of terminals with

a mesh network ensuring the coverage of the whole home area. These terminals can be

classified in families or clusters, not completely disjoint:

� data communication terminals (computers, PDA, notebook, …);

� gaming cluster;

� voice/video communication terminals (analog/digital phones, videophones,

mobile phones, …) ;

� entertainment consumer electronics audio/video terminals (STB, TV, MP3

player, HiFi equipment, …);

� domestic equipment (fridge, sensor networks, …).

In addition, the NGHN may also coexist with extensive legacy networks based

on technologies with which it should ensure compatibility.

A Next Generation Home Network can be considered as a set of devices

implementing the following capabilities ([11]): Gateway capability; Extender capability;

End Device capability and Serve Legacy Device capability. They implement one or

several specific functionalities in addition to the common set of mandatory NGHN

device functionalities (including the Inter-MAC functionalities), also described in [11].

I summarize here the approach leading to the structure of these network capabilities:

� a gateway can be considered a capability implementing a WAN connectivity in

addition to the common set of mandatory NGHN device functionalities;

22

� an end device can be considered as a capability implementing the functionality

of user terminal device, where traffic can leave or enter the network, in addition

to the common set of mandatory NGHN device functionalities;

� any NGHN device, implementing the basic set of mandatory NGHN

functionalities, can be considered as an extender capability enabler, which is

used to extend the Gigabit/s home network coverage or to interconnect different

devices that cannot communicate directly.

It has also been stated that the NGHN should provide interfaces in order to

interconnect to legacy devices or other networks. This is achieved by the serve legacy

device capability, which provides a minimum set of functionalities to make the legacy

device interoperate with the NGHN with the same experience as when it was used

before. All things considered, the architecture reference model can be built around these

four kinds of NGHN capabilities: the gateway, the end device, the extender, and the

serve legacy device. Each of the related devices may have one or several interfaces

(based on a 'no new wires' broadband technology) in order to connect to its neighbours.

All these interfaces have in common the fact to be compliant with the Inter-MAC

framework described in [10].

All of them can be named by the same term: the so called Ω-interface, which is

therefore a multi-technology interface. Moreover the NGHN presents two natural

external interfaces, the first one between the legacy device and the home network device

achieving its interconnection (R interface), and the second one between the access

network and the NGHN gateway (U interface).

The set of devices constituting the NGHN is organized in the form of a mesh

architecture bringing in the advantages of multi-path capabilities for traffic

reconfiguration. Their association can be represented under the global name of "NGHN

Device", maintaining apart the Gateway in order to highlight the interface with the

Access Network.

This leads to the following Next Generation Home Network Architecture

Reference Model ([12]):

23

Figure 8 - NGHN Architecture Reference Model

In a real network several end devices, extenders and legacy device adapters can

be interconnected in a ramified and extensive way. The multi-homing scenario, where

more than one interface to external networks exists, is also possible. The following

figure shows a possible implementation of the NGHN architecture with real devices:

Figure 9 - A typical NGHN architecture configuration

Figure 9 illustrates the mesh structure of a NGHN and the generic feature of the

Ω interface. It also illustrates the fact that the interfacing of legacy devices can be

achieved by different kinds of devices.

A lot of research open issue are still open in order to make the NGHN

architecture model presented above ready to be deployed and commercialized. Among

them I mention the problems related to the remote management of the network by the

operator, the management and the control of multimedia service provisioning, the

security, the efficiency in energy consumption and the management and control of the

Quality of Service (QoS). Thus, new solutions for connection admission control, routing

and path selection, load balancing, congestion control, scheduling and so on have to be

Legacy
Device

NGHN
Device

NGHN
Gateway

Access
Network

R U Ω

Ω

24

studied in order to exploit in the most effective and efficient way the capabilities and the

capacity offered by NGHNs.

This work intends to propose a new solution to the routing problem in NGHNs.

The peculiaritites of the routing problem in NGHNs is presented in the next section,

while the proposed solution is descrive in Chapter 5.

II.3.1 Routing in NGHNs

As described in the previous section, to support a variety of high capacity

demanding applications (data, audio, video), next generation home networks will be

realized through the integration of heterogeneous wired (e.g., Ethernet, Power Line

Communication (PLC), Optical Fiber (OPT)) and wireless (e.g., Wi-Fi, Ultra Wide

Band, Hybrid Wireless Optic) telecommunication technologies.

Since we are dealing with hybrid (i.e., meshed wireless and wired) networks, we

have to consider frequent topology changes due to the scarce robustness of some

technologies, which cause the link availability to be time-varying. In fact, due to their

nature, wireless and PLC technologies are characterized by high probability of link

faults (i.e., links becoming unavailable): for example, PLC systems suffer from

interference due to the use of electrical power by home appliance ([13]); Wi-Fi

communication systems suffer from interference due to other communication systems

using the same frequency spectrum ([14]).

The objective of these high-capacity home networks is to provide new

multimedia services (such as High-Definition TV (HDTV) on-demand or high-quality

Video-conference) characterized by high-bitrate, long flow duration and tight Quality of

Service (QoS) constraints (e.g., in terms of delay and delay variation – or jitter). To

guarantee the required QoS to these flows, they are subject to an admission control

procedure, in charge of deciding if the flow can be supported by the network based on

current traffic and network conditions, and to a routing protocol, which decides the path

to be used for the transmission1. In a home network, the number of high-quality flows is

likely to be small (at maximum, 5-10 simultaneous flows). Therefore, given the scarce

robustness of wireless and PLC technologies, the link availability dynamics due to link

1 Standard home services, such as web browsing, emails, P2P, are low-bitrate services and/or ‘elastic’
services (i.e., they adapt their transmission bitrate to the available capacity), and do not have strict QoS
requirements. Thus they are less impaired by link faults, and are regarded as background traffic with
lower priority with respect to the high-quality flows.

25

faults become even faster than the high-quality traffic dynamics (i.e., birth and

termination of high-quality flows).

In this scenario, the routing algorithm has to be fault-tolerant, in the sense that it

should be able to rapidly re-route active flows as soon as a link become unavailable in

the path: in fact, as a link becomes unavailable, all the flows crossing that link have to

be re-routed on other paths. This re-routing event should be avoided as far as possible,

because

i) during the re-routing process, some packets are likely to be lost (affecting the

QoS of the flow)

ii) the re-routing process involves additional control communications, which

reduce the capacity available to data communications.

If the network supports classes of service to offer QoS guarantees, decisions

upon the re-routing of flows should be based also on their classes of service. For

instance, re-routing a flow is likely to cause jitters in the flow transmission (i.e., a

variation in the transmission delay of flow packets): such jitters are insignificant in case

of data flows, whereas in case of video flows they affect the quality experienced by

users.

Existing routing algorithms are classified either as proactive (e.g., [16]-[18]) or

as reactive (e.g., [19], [20]). The former algorithms continuously update path

information, which is then available at algorithm decision time; the drawback is that

these algorithms require the knowledge of the topology of the whole network. Reactive

algorithms performs a route discovery procedure on demand, i.e., only at routing

decision time: on the one hand, they generate less control information since they must

not continuously update topology information; on the other hand, they delay the actual

data transmission until the path is discovered.

Clearly, the proactive approach is preferred in the considered home network

scenario due to the fast re-routing requirements and to its limited topology width which

makes the updating process fast.

To conclude, the aim of the proactive algorithm developed in this work is then

twofold: on one side it has to minimize re-routing occurrences; on the other side it has

to be be able of provide a fast re-routing since we are dealing with scenarios

characterized by highly variable topology.

26

Chapter III

MDP control framework

III.1. Introduction

The fault-tolerant routing algorithm is based on the Markov Decision Process

(MDP) control framework, which is presented in this chapter. MDP is a stochastic

control framework where decisions need to take into account uncertainty about many

future events. This chapter begins with the presentation of probability models for

processes that evolve over time in a probabilistic manner. Such processes are called

stochastic processes. After briefly introducing general stochastic processes, the

reminder of the chapter focuses on a special kind called Markov chain. Markov chains

have the special property that probabilities involving how the process will evolve in the

future depend only on the present state of the process, and so are independent of events

in the past. After that, Markov Decision Processes are presented as they allow to control

the behavior of a system modeled as a markov chain. In fact, rather than passively

accepting the design of the Markov chain, MDP allows to make a decision on how the

system should evolve by controlling the transition from a state to the following one. The

objective of MDP is to choose the optimal action for each state that minimize the cost

associated for the system in being in each state, considering both immediate and

subsequent costs.

III.2. Stochastic process

A stochastic process is defined to be an indexed collection of random variables

{ }tX , where the index t runs through a given set T. Often T is taken to be the set of non-

negative integers, and tX represents a measurable characteristic of interest at time t.

Stochastic processes are of interest for describing the behaviour of a system operating

over some period of time. The current status of the system can fall into anyone of the M

+ 1 mutually exclusive categories called states. For notational convenience, in this

chapter these states are labelled 0,1,…,M. The random variable tX represents the state

27

of the system at time t, so its only possible values are 0,1,…,M. The system is observed

at particular points of time, labelled t=0,1,…. Thus, the stochastic process

{ } { },...,, 210 XXXX t = provides a mathematical representation of how the status of the

physical system evolves over time. This kind of processes is referred to as being a

discrete time stochastic process with finite state space.

III.3. Markov chains

Assumptions regarding the joint distribution of ,..., 10 XX are necessary to obtain

analytical results. One assumption that leads to analytical tractability is that the

stochastic process is a Markov chain, which has the following key property: “a

stochastic process tX is said to have the Markovian property if:

{ } { }iXjXPiXkXkXkXjXP tttttt ======== +−−+ |,,...,,| 11111001 , for t = 0,1,…

and every sequence i, j, k0, k1,…, kt-1.

In words, this Markovian property says that the conditional probability of any

future “event”, given any past “event” and the present state iX t = , is independent of

any past event and depends only upon the present state.

A stochastic process { }tX (t = 0,1,2,…) is a Markov chain if it has the

Markovian property.

The conditional probabilities { }iXjXP tt ==+ |1 for a Markov chain are called

(one-step) transition probabilities. If, for each i and j,

{ } { }iXjXPiXjXP tt =====+ 011 || , for all t = 0,1,2,… then the (one-step)

transition probabilities are said to be stationary. Thus, having stationary transition

probabilities implies that the transition probabilities do not change over time. The

existence of stationary (one-step) transition probabilities also implies that, for each i, j,

and n (n =0,1,2,…), { } { }iXjXPiXjXP ntnt =====+ 0|| for all t = 0,1,…. These

conditional probabilities are called n-step transitional probabilities.

To simplify notation with stationary transition probabilities, let:

{ }iXjXPp ttij === + |1 ,

{ }iXjXPp tnt
n

ij === + |)(.

28

Thus, the n-step transition probabilitiy)(n
ijp is just the conditional probability

that the system will be in state j after exact n steps (unit of time), given it starts in state i

at any time t.

Because the)(n
ijp are conditional probabilities, they must be non negative, and

since the process must make a transition into some state, they must satisfy the

properties:

0)(≥n
ijp , for all i and j; n = 0,1,2,…,

1
0

)(=∑
=

M

j

n
ijp , for all i; n = 0,1,2,…

A convenient way to show all the n-step transition probabilities is the n-step

transition matrix:

)()(
1

)(
0

)(
1

)(
11

)(
10

)(
0

)(
01

)(
00

)(

...

............

...

...

n
MM

n
M

n
M

n
M

nn

n
M

nn

n

ppp

ppp

ppp

=Ρ for n =0,1,2,…

Note that the transition probability in a particular row and column is for the

transition from the row state to the column state. When n =1, we drop the superscript n

and simply refer to this as the transition matrix.

The Markov chains considered in this work have the following properties:

1. a finite number of states.

2. stationary transition probabilities.

The following Chapman-Kolmogorov equations provide a method for

computing the n-step transtion probabilities:

)(

0

)()(mn
kj

M

k

m
ik

n
ij ppp −

=
∑=

for all i = 0,1,…,M; j =0,1,…,M; and any m =1,2,…, n-1; n = m+1, m+2,…

These equations point out that in going from state i to state j in n steps, the

process will be in some state k after exactly m (less than n) states. This expression

enable the n-step transition probabilities to be obtained from the one-step transition

29

probabilities recursively. Thus, the n-step transition probability matrix Pn can be

obtained by computing the nth power of the one-step transition matrox P: P(n) = Pn.

III.3.1 Classification of states of a Markov chain

It is evident that the transition probabilities associated with the states play an

important role in the study of Markov chains. To further describe the properties of

Markov chains, it is necessary to present some concepts and definitions concerning

these states.

State j is said to be accessible from state i if 0)(>n
ijp for some 0≥n . Thus, state

j being accessible from state i means that it is possible for the system to enter state j

eventually when it starts from state i. In general, a sufficient condition for all states to

be accessible is that there exists a value of n for which 0)(>n
ijp for all i and j.

If state j is accessible from state i and state i is accessible from state j, then states

i and j are said to communicate. In general:

1. any state communicates with itself (because 1)0(=iip);

2. if state i communicates with state j, then state j communicates with state

i;

3. if state i communicates with state j and state j communicates with state k,

then state i communicates with state k.

As a result of these properties of communication, the states may be partitioned

into one or more separate class such that those states that communicate with each other

are in the same class. If there is only one class, i.e., all the states communicate, the

Markov chain is said to be irreducible.

It is often useful to talk about whether a process entering a state will ever return

to this state. A state is said to be a transient state if, upon entering this state, the process

may never return to this state again. Therefore, state i is transient if and only if there

exists a state j (j ≠ i) that is accessible from state i but not vice versa, that is, state i is

not accessibile from state j. Thus, if state i is transient and the process visits this state,

there is a positive probability (perhaps even a probability of 1) that the process will later

move to state j and so will never return to state i. Consequently, a transient state will be

visited only a finite number of times.

When starting in state i, another possibility is that the process definitely will

return to this state. A state is said to be a recurrent state if, upon entering this state, the

30

process definitely will return to this state again. Therefore, a state is recurrent if and

only if it is not transient. Since a recurrent state definitely will be revisited after each

visit, it will be visited infinitely often if the process continues forever.

If the process enters a certain state and then stays in this state at the next step,

this is considered a return to this state. Hence, the following kind of state is a special

type of recurrent state. A state is said to be an absorbing state if, upon entering this state,

the process never will leave this state again. Therefore, state i is an absorbing state if

and only if pii =1.

Recurrence is a class property. That is, all states in a class are either recurrent or

transient. Furthermore, in a finite-state Markov chain, not all states can be transient.

Therefore, all states in an irreducible finite-state Markov chain are recurrent.

Another useful property of Markov chains is periodicities. The periodo f state i

is defined to be the integer (t > 1) such that 0)(=n
iip for all the values of n other than t,

2t, 3t,…and t is the largest integer with this property. Just as recurrence is a class

property, it can be shown that periodicity is a class property. That is, if state i in a class

has period t, the all states in that class have period t.

In a finite-state Markov chain, recurrent states that are aperiodic are called

ergodic states. A Markov chain is said to be ergodic if all its states are ergodic states.

III.3.2 Long run properties of Markov chains

For any irreducible ergodic Markov chain,)(lim n
ij

n
p

∞→
exists and is independent of i.

Furthermore,

0lim)(>=
∞→ j

n
ij

n
p π ,

where the jπ uniquely satisfy the following steady-state equations.

∑
=

=
M

i
ijiJ p

0

ππ for j = 0,1,…, M

∑
=

=
M

j
i

0

1π

31

The jπ are called steady-state probabilities of the Markov chain. The term

steady-state probability means that the probability of finding the process in a certain

state, say j, after a large number of transitions tends to the value _j, independent of the

probability distribution of the initial state. It is important to note that the steady-state

probability does not imply that the process settles down into one state. On the contrary,

the process continues to make transitions from state to state, and at any step n the

transition probability from state i to state j is still pij.

There are other important results concerning steady-state probabilities. In

particular, if i and j are recurrent states belonging to different classes, then 0)(=n
ijp for

all n. This result follows from the definition of a class.

Similarly, if j is a transient state, then 0lim)(=
∞→

n
ij

n
p for all i. Thus, the probability

of finding the process in a transient state after a large number of transitions tends to zero.

If the requirement that the states be aperiodic is relaxed, then the limit)(lim n
ij

n
p

∞→

may not exist. However, the following limit always exists for an irreducible (finite-

state) Markov chain:

j

n

k

k
ij

n
p

n
π=








∑

=∞→
1

)(1
lim

When the jπ satisfy the steady-state equations.

This result is important in computing the long-run average cost per unit time

associated with a Markov chain. Suppose that a cost (or other penalty function) C(Xt) is

incurred when the process is in state Xt at time t, for t = 0, 1, 2,…. Note that C(Xt) is a

random variable that takes on any one of the values C(0), C(1),…, C(M) and that the

function C(•) is independent of t. The expected average cost incurred over the first n

periods is given by









∑

=

n

t
tXC

n
E

1

)(
1

.

By using the result that

32

j

n

k

k
ij

n
p

n
π=








∑

=∞→
1

)(1
lim

it can be shown that the (long-run) expected average cost per unit time is given by

∑∑
==∞→

=






 M

j
j

n

t
t

n
jCXC

n
E

01

)()(
1

lim π .

 In addition, jπ can be interpreted as the (long-run) actual fraction of times the

system is in state j.

III.3.3 Continuous time Markov chains

Until now it was assumed that the time parameter t was discrete (that is, t =

0,1,2,…). Such an assumption is suitable for many problems, but there are certain cases

where a continuous time parameter (call it t’) is required, because the evolution of the

process is being observed continuously over time. The definition of a Markov chain

given before also extends to such continuous processes.

As before, I label the possible states of the system as 0, 1, . . . , M. Starting at

time 0 and letting the time parameter t’ run continuously for 0≥t , I let the random

variable X(t’) be the state of the system at time t’. Thus, X(t’) will take on one of its

possible (M + 1) values over some interval, 1'0 tt <≤ , then will jump to another value

over the next interval, 21 ' ttt <≤ , etc., where these transit points (t1, t2, . . .) are random

points in time (not necessarily integer).

Now consider the three points in time (1) t’ = r (where 0≥r), (2) t’ = s (where s

> r), and (3) t’ = s + t (where t > 0), interpreted as follows:

t’ = r is a past time,

t’ = s is the current time,

t’ = s + t is t time units into the future.

Therefore, the state of the system now has been observed at times t’ = s and t’ =

r. Label these states as X(s) = i and X(r) = x(r). Given this information, it now would be

natural to seek the probability distribution of the state of the system at time t’ = s + t:

{ })()(,)(|)(rxrXisXjtsXP ===+ for j = 0,1,…, M.

33

Deriving this conditional probability often is very difficult. However, this task is

considerably simplified if the stochastic process involved possesses the following key

property: a continuous time stochastic process { }0');'(≥ttX has the Markovian property

if { } { }isXjstXPrxrXisXjtsXP ==+====+)(|)()()(,)(|)(, for all i, j = 0,1,…,

M and for all 0≥r , s > r, and t > 0.

Note that { }isXjstXP ==+)(|)(is a transition probability, just like the

transition probabilities for discrete time Markov chains considered above, where the

only difference is that t now need not be an integer. If the transition probabilities are

independent of s, so that { } { }iXjtXPisXjtsXP =====+)0(|)()(|)(for all s > 0,

they are called stationary transition probabilities. To simplify notation, I shall denote

these stationary transition probabilities by

{ }iXjtXPtpij ===)0(|)()(,

where)(tpij is referred to as the continuous time transition probability function. It is

assumed that





≠
=

=
→ jiif

jiif
tpij

t 0

1
)(lim

0
.

Now we are ready to define the continuous time Markov chains: a continuous time

stochastic process { }0');'(≥ttX is a continuous time Markov chain if it has the

Markovian property.

In the analysis of continuous time Markov chains, one key set of random

variables is the following: aach time the process enters state i, the amount of time it

spends in that state before moving to a different state is a random variable Ti, where i =

0, 1, . . . , M. Suppose that the process enters state i at time t’ = s. Then, for any fixed

amount of time t > 0, note that tTi > if and only if X(t’) = i for all t’ over the interval

tsts +≤≤ ' . Therefore, the Markovian property (with stationary transition

probabilities) implies that

{ } { }tTPsTstTP iii >=>+> | .

34

This is a rather unusual property for a probability distribution to possess. It says

that the probability distribution of the remaining time until the process transits out of a

given state always is the same, regardless of how much time the process has already

spent in that state. In effect, the random variable is memoryless; the process forgets its

history. There is only one (continuous) probability distribution that possesses this

property - the exponential distribution. The exponential distribution has a single

parameter, call it q, where the mean is 1/q and the cumulative distribution function is

{ } qt
i etTP −−=≤ 1 , for 0≥t .

This result leads to an equivalent way of describing a continuous time Markov

chain:

1. the random variable Ti ha san exponential distribution with a mean of 1/

qi

2. when leaving state i, the process moves to a state j with probability pij ,

where pij satisfy the conditions

pij = 0 for all i,

∑
=

=
M

oj
ijp 1 for all i

3. the next state visited after state i is independent of the time spent in state

i.

Just as the transition probabilities for a discrete time Markov chain satisfy the

Chapman-Kolmogorov equations, the continuous time transition probability function

also satisfies these equations. Therefore, for any states i and j and nonnegative numbers

t and s (ts ≤≤0),

∑
=

−=
M

k
kjikij stpsptp

1

)()()(.

A pair of states i and j are said to communicate if there are times t1 and t2 such

that pij(t1) > 0 and pji(t2) > 0. All states that communicate are said to form a class. If all

states form a single class, i.e., if the Markov chain is irreducible (hereafter assumed),

then pij(t) > 0, for all t > 0 and all states i and j.

Furthermore, jij
t

tp π=
∞→

)(lim always exists and is independent of the initial state

of the Markov chain, for j _ 0, 1, . . . , M. These limiting probabilities are commonly

35

referred to as the steady-state probabilities (or stationary probabilities) of the Markov

chain. The jπ satisfy the equations

∑
=

=
M

i
ijij tp

0

)(ππ for j = 0,1,…, M and every 0≥t .

III.4. Markov Decision Processes

Many important systems can be modelled as either a discrete time or continuous

time Markov chain. It is often useful to describe the behaviour of such a system in order

to evaluate its performances. However, it may be even more useful to design the

operation of the system so as to optimize its performance. Therefore, rather than

passively accepting the design of the Markov chain and the corresponding fixed

transition matrix, it is possible to be proactive. In fact, for each possible state of the

Markovian chain, it is possible to make a decision about which one of the several

alternative actions should be taken in that state. The action chosen affects the transition

probabilities as well as both the immediate costs and subsequent costs from operating

the system. The objective is to choose the optimal actions for the respective states when

considering both immediate and subsequent costs. The decision process for doing this is

referred to as Markov decision process.

The model for the Markov decision process considered in this work can be

summarized as follows:

1. The state i of a discrete time Markov chain is observed after each

transition (i = 0,1,…, M).

2. After each observation, a decision (action) k is chosen from a set of K

possible decisions (k = 1,2,…, K). (Note that some of the K decisions

may not be relevant for some of the states).

3. If decision di = k is made in state i, an immediate cost is incurred that has

an expected value Cik.

4. The decision di = k in state i determines what the transition probabilities

will be for the next transition from state i. Denote these transition

probabilities by pij(k), for j =0,1,…, M.

5. A specification of the decisions for the respective states (d0, d1,…, dM)

prescribes a policy for the Markov decision process.

36

6. The objective is to find an optimal policy according to some cost

criterion which considers both immediate costs and subsequent costs that

result from the future evolution of the process. One common criteria is to

minimize the (long-run) expected average cost per unit time.

This general model qualifies to be a Markov decision process because it possesses the

Markovian property that characterizes any Markov process. In particular, given the

current state and decision, any probabilistic statement about the future of the process is

completely unaffected by providing any information about the history of the process.

This property holds here since (1) we are dealing with a Markov chain, (2) the new

transition probabilities depend on only the current state and decision, and (3) the

immediate expected cost also depends on only the current state and decision.

There exists several procedures to find the optimal policy. One of them is to use

the exhaustive enumeration, but this one is appropriate only for tiny stationary and

deterministic problems, where there are only few relevant policies. In many applications

where there are many policies to be evaluated, this approach is not feasible. For such

cases, algorithms that can efficiently find an optimal policy are needed. Some of them

are described in the next sections.

III.4.1 Linear programming and optimal policies

Any stationary and deterministic policy R can be viewed as a rule that the

prescribes decision di(R) whenever the system is in state i, for each i = 0,1,…,M. Thus,

R is characterized by the values

{ })(),...,(),(10 RdRdRd M .

Equivalently, R can be characterized by assigning values Dik = 0 or 1 in the

matrix

 Decision k

State



















MKMM

K

K

DDD

DDD

DDD

...

............

...

...

11

11211

00201

Where each Dik (i = 0,1,…,M and k = 1,2,…,K) is defined as

37





=
istateinmadebetoisk

otherwise

decisionif
Dik 0

1

Therefore, each row in the matrix must contain a single 1 with the rest of the elements

0s.

Introducing Dik provides motivation for a linear programming formulation. It is

hoped that the expected cost of a policy can be expressed as a linear function of Dik or a

related variable, subject to linear constraints. Unfortunately, the Dik values are integers

(0 or 1), and continuous variables are required for a linear programming formulation.

This requirement can be handled by expanding the interpretation of a policy. The

previous definition calls for making the same decision every time the system is in state i.

The new interpretation of a policy will call for determining a probability distribution for

the decision to be made when the system is in state i. With this new interpretation, the

Dik now need to be redefined as

{ }istatekdecisionPDik === | .

In other words, given that the system is in state i, variable Dik is the probability of

choosing decision k as the decision to be made. Therefore, (Di1, Di2, . . . , Dik) is the

probability distribution for the decision to be made in state i. This kind of policy using

probability distributions is called a randomized policy, whereas the policy calling for

Dik = 0 or 1 is a deterministic policy. Randomized polizie can again be characterized by

the matrix

 Decision k

 State



















MKMM

K

K

DDD

DDD

DDD

...

............

...

...

11

11211

00201

where each row sum sto 1, and now 10 ≤≤ ikD .

III.4.1.1. A linear programming formulation

The convenient decision variables (denoted here by iky) for a linear

programming model are defined as follows. For each Mi ,...,1,0= and Kk ,...,2,1= , let

38

iky be the steady-state unconditional probability that the system is in state i and

decision k is made; i.e.,

{Pyik = state = i and decision }k= .

Each iky is closely related to the corresponding ikD since, from the rules of

conditional probability, iky = iki Dπ , where iπ is the steady-state probability that the

Markov chain is in state i . Furthermore,

∑
=

=
K

k
iki y

1

π ,

so that

∑
=

== K

k
ik

ik

i

ik
ik

y

yy
D

1

π

There exist several constraints on iky :

1. 1
1

=∑
=

M

i
iπ so that 1

0 1

=∑∑
= =

M

i

K

k
iky .

2. From results on steady-state probabilities ∑
=

=
M

i
ijij p

0

ππ so that

()∑ ∑∑
= = =

=
K

k

M

i

K

k
ijikjk kpyy

1 0 1

, for Mj ,...,1,0= .

3. 0≥iky , for Mi ,...,1,0= and Kk ,...,2,1= .

The long-run expected average cost per unit time is given by

() ∑∑∑∑
= == =

==
M

i

K

k
ikik

M

i

K

k
ikiki yCDCCE

0 10 1

π .

Hence, the linear programming model is to choose the iky so as to

Minimize ∑∑
= =

=
M

i

K

k
ikik yCZ

0 1

,

39

subject to the constraints:

 (1) 1
0 1

=∑∑
= =

M

i

K

k
iky .

(2) () 0
0 11

=−∑∑∑
= ==

M

i

K

k
ijik

K

k
jk kpyy , for Mj ,...,1,0= .

(3) ,0≥iky for ;,...,1,0 Mi = .,...,2,1 Kk =

Thus, this model has 2+M functional constraints and ()1+MK decision

variables. Assuming that the model is not too huge, it can be solved by the

simplex method. Once the iky values are obtained, each ikD is found from

.

1
∑

=

=
K

k
ik

ik
ik

y

y
D

The optimal solution obtained by the simplex method has some interesting

properties. It will contain 1+M basic variables .0≥iky It can be shown that 0>iky

for at least one ,,...,2,1 Kk = for each .,...,1,0 Mi = Therefore, it follows that 0>iky

for only one k for each .,...,1,0 Mi = Consequently, each 0=ikD or 1.

The key conclusion is that the optimal policy found by the simplex method is

deterministic rather than randomized. Thus, allowing policies to be randomized does not

help at all in improving the final policy. However, it serves an extremely useful role in

this formulation by converting integer variables (the ikD) to continuous variables so

that linear programming (LP) can be used.(The analogy in integer programming is to

use the LP relaxation so that the simplex method can be applied and then to have the

integer solutions property hold so that the optimal solution for the LP relaxation turns

out to be integer anyway.)

Linear programming can be thus used to solve vastly large problems, and

software packages for the simplex method are very widely available.

III.4.2 Policy improvement algorithm

After the presentation of the exhaustive enumeration and the linear programming

techniques, hereafter I present a third popular method to derive an optimal policy for

40

Markov decision processes called policy improvement algorithm. The key advantage of

this method is that it tends to be very efficient, because it usually reaches an optimal

policy in a relatively small number of iterations.

As a joint result of the current state i of the system and the decision kRdi =)(

when operating under policy R, two things occur. An (expected) cost ikC is incurred

that depends upon only the observed state of the system and the decision made. The

system moves to state j at the next observed time period, with transition probability

given by)(kpij . If, in fact, state j influences the cost that has been incurred, then ikC is

calculated as follows. Denote by)(kqij the (expected) cost incurred when the system is

in state I and decision k is made and then it evolves to state j at the next observed time

period. Then

∑
=

=
M

j
ijijik kpkqC

0

).()(

It is possible to show that, for any given policy R, there exist values

g(R),),(0 Rv),(1 Rv …,)(RvM that satisfy

),()()()(
0

RvkpCRvRg j

M

j
ijiki ∑

=

+=+ for .,...,2,1,0 Mi =

Denote by)(Rvn
i the total expected cost of a system starting in state I

(beginning the first observed time period) and evolving for n time periods. Then)(Rvn
i

has two components: ,ikC the cost incurred during the first observed time period, and

∑
=

−
M

j

n
jij Rvkp

0

1),()(the total expected cost of the system evolving over the remaining

1−n time periods. This gives the recursive equation

∑
=

−+=
M

j

n
jijik

n
i RvkpCRv

0

1),()()(for ,,...,2,1,0 Mi =

where iki CRv =)(1 for all i.

41

It will be useful to explore the behaviour of)(Rvn
i as n grows large. Recall that

the (long-run) expected average cost per unit time following any policy R can be

expressed as

∑
=

=
M

i
ikiCRg

0

,)(π

which is independent of the starting state i. Hence,)(Rvn
i behaves approximately as n

g(R) for large n. In fact, if we neglect small fluctuations,)(Rvn
i can be expressed as the

sum of two components:),()()(RvRngRv i
n
i +≈ where the first component is

independent of the initial state and the second is dependent upon the initial state. Thus,

)(Rvi can be interpreted as the effect on the total expected cost due to starting in state i.

Consequently,),()()()(RvRvRvRv ji
n
j

n
i −≈− so that)()(RvRv ji − is a measure of the

effect of starting in state i rather than state j. Letting n grow large, it is then possible to

substitute)()()(RvRngRv i
n
i += and ())()(1)(1 RvRgnRv j

n
j +−=− into the recursive

equation. This leads to the system of equations given in the opening paragraph of this

subsection.

Note that this system has M+1 equations with M+2 unknowns, so that one of

these variables may be chosen arbitrarily. By convention,)(RvM will be chosen equal to

zero. Therefore, by solving the system of linear equations, I can obtain),(Rg the (long-

run) expected average cost per unit time when policy R is followed. In principle, all

policies can be enumerated and that policy which minimizes)(Rg can be found.

However, even for a moderate number of states and decisions, this technique is

cumbersome. Fortunately, there exists an algorithm that can be used to evaluate policies

and find the optimal one without complete enumeration, as described next.

III.4.2.1. The Policy Improvement Algorithm

The algorithm begins by choosing an arbitrary policy .1R It then solves the

system of equations to find the values of)(),...,(),(),(1101 RvRvRvRg M − [with

0)(=RvM]. This step is called value determination. A better policy, denoted by ,2R is

then constructed. This step is called policy improvement. These two steps constitute an

42

iteration of the algorithm. Using the new policy 2R , we perform another iteration. These

iterations continue until two successive iterations lead to identical policies, which

signifies that the optimal policy has been obtained. The details are outlined below:

Initialization: Choose an arbitrary initial trial policy .1R Set 1=n

Iteration n:

Step 1 - Value determination: For policy ,nR use),(kpij ,ikC and 0)(=nM Rv to solve

the system of M + 1 equations

∑
=

−+=
M

j
ninjijikn RvRvkpCRg

0

),()()()(for ,,...,1,0 Mi =

for all M + 1 unknown values of).(),...,(),(),(110 nMnnn RvRvRvRg −

 Step 2 - Policy improvement: Using the current values of)(ni Rv computed for policy

,nR find the alternative policy 1+nR such that, for each state kRdi ni =+)(, 1 is the decision that

minimizes

∑
=

−+
M

j
ninjijik RvRvkpC

0

)()()(

i.e., for each state i,

kk
Minimize

,...,2,1=
 








−+∑

=

M

j
ninjijik RvRvkpC

0

)()()(,

and then set)(1+ni Rd equal to the minimizing value of k. This procedure defines a new policy 1+nR .

Optimality test: The current policy 1+nR is optimal if this policy is identical to policy .nR If it

is, stop. Otherwise, reset 1+= nn and perform another iteration.

Two key properties of this algorithm are

1.),()(1 nn RgRg ≤+ for ,...2,1=n

2. The algorithm terminates with an optimal policy in a finite number of

iterations.

43

III.4.3 Discounted cost criterion

Up to now, policies were measured on the basis of their (long-run) expected

average cost per unit time. Now I turn to an alternative measure of performance, namely,

the expected total discounted cost.

This measure uses a discount factor α, where 0 < α < 1. The discount factor α

can be interpreted as equal to 1/(1+ i), where i is the current interest rate per period.

Thus, α is the present value of one unit of cost one period in the future. Similarly, αm is

the present value of one unit of cost m periods in the future.

This discounted cost criterion becomes preferable to the average cost criterion

when the time periods for the Markov chain are sufficiently long that the time value of

money should be taken into account in adding costs in future periods to the cost in the

current period. Another advantage is that the discounted cost can readily be adapted to

dealing with a finite-period Markov decision process where the Markov chain will

terminate after a certain number of periods.

Both the policy improvement technique and the linear programming approach

still can be applied here with relatively minor adjustments from the average cost case, as

I describe next. Then I will present another technique, called the method of successive

approximations, for quickly approximating an optimal policy.

III.4.3.1. A Policy Improvement Algorithm

To derive the expression needed for the value determination and policy

improvement steps of the algorithm, I now adopt the viewpoint of probabilistic dynamic

programming. In particular, for each state i (i = 0,1,…,M) of a Markov decision process

operating under policy R, let ()RV n
i be the expected total discounted cost when the

process starts in state i (beginning the first observed time period) and evolves for n time

periods. Then ()RV n
i has two components: ikC , the cost incurred during the first

observed time period, and () ()∑
=

−
M

j

n
jij RVkp

0

1α , the expected total discounted cost of the

process evolving over the remaining 1−n time periods. For each Mi ,...,1,0= , this

yields the recursive equation

44

() () ()∑
=

−+=
M

j

n
jijik

n
i RVkpCRV

0

1α ,

As n approaches infinity, this recursive equation converges to

() () ()∑
=

+=
M

j
jijiki RVkpCRV

0

α , for Mi ,...,1,0= ,

where ()RVi can now be interpreted as the expected total discounted cost when the

process starts in state I and continues indefinitely. There are 1+M equations and

1+M unknowns, so the simultaneous solution of this system of equations yields the

()RVi .

This system of equations provides the expressions needed for a policy

improvement algorithm. After summarizing this algorithm in general terms, we shall

use it to check whether this particular policy still is optimal under the discounted cost

criterion.

Summary of the Policy Improvement Algorithm (Discounted Cost Criterion):

Initialization: Choose an arbitrary initial trial policy 1R . Set n=1.

Iteration n:

 Step 1: Value determination: For policy nR , use ()kpij and ikC to solve the system of

1+M equations

() () ()∑
=

+=
M

j
njijikni RVkpCRV

0

,α for i = 0, 1,…,M,

for all M+1 unknown values of () () ().,...,, 10 nMnn RVRVRV

Step 2: Policy improvement: Using the current values of the (),ni RV find the alternative policy

1+nR such that, for each state i, () kRd ni =+1 is the decision that minimizes

() ()∑
=

+
M

j
njijik RVkpC

0

α

i.e., for each state i,

45

Kk
Minimize

,...,2,1=
 () ()








+ ∑

=

M

j
njijik RVkpC

0

α ,

and then set ()1+ni Rd equal to the minimizing value of k. This procedure defines a new policy .1+nR

Optimality test: The current policy 1+nR is optimal if this policy is identical to policy .nR If it

is, stop. Otherwise, reset n = n + 1 and perform another iteration.

Three key properties of this algorithm are as follows:

1. () (),1 nini RVRV ≤+ for i = 0, 1, …,M and n = 1, 2,….

2. The algorithm terminates with an optimal policy in a finite number of

iterations.

3. The algorithm is valid without the assumption (used for the average cost case)

that the Markov chain associated with every transition matrix is irreducible.

III.4.3.2. Linear Programming Formulation

The linear programming formulation for the discounted cost case is similar to

that for the average cost case. However, we no longer need the first constraint given

before; but the other functional constraints do need to include the discount factor α .

The other difference is that the model now contains constants jβ for j = 0, 1, …,

M.

These constants must satisfy the conditions

∑
=

=
M

j
j

0

1β , 0>jβ for j = 0, 1, …, M,

but otherwise they can be chosen arbitrarily without affecting the optimal policy

obtained from the model.

The resulting model is to choose the values of the continuous decision variables

iky so as to

Minimize ∑∑
= =

=
M

i

K

k
ikik yCZ

0 1

,

46

subject to the constraints

(1) ()∑∑∑
= ==

=−
M

i

K

k
jijik

K

k
jk kpyy

0 11

βα , for j = 0, 1, …, M,

(2) 0≥iky , for i = 0, 1, …, M; k = 1, 2, …, K.

Once the simplex method is used to obtain an optimal solution for this model,

the corresponding optimal policy then is defined by

PDik = {decision = k and state = i} =

∑
=

K

k
ik

ik

y

y

1

.

The iky now can be interpreted as the discounted expected time of being in state

i and making decision k, when the probability distribution of the initial state (when

observations begin) is { } jjXP β==0 for j= 0, 1, …, M. In other words, if Pzn
ik = {at

time n, state = i and decision = k}, then

⋅⋅⋅++++= 332210
ikikikikik zzzzy ααα .

With the interpretation of the jβ as initial state probabilities (with each

probability greater than zero), Z can be interpreted as the corresponding expected total

discounted cost. Thus, the choice of jβ affects the optimal value of Z (but not the

resulting optimal policy).

It again can be shown that the optimal policy obtained from solving the linear

programming model is deterministic; that is, 0=ikD or 1. Furthermore, this technique

is valid without the assumption (used for the average cost case) that the Markov chain

associated with every transition matrix is irreducible.

III.4.3.3. Finite-Period Markov Decision Processes and the Method of
Successive Approximations

I now turn our attention to an approach, called the method of successive

approximations, for quickly finding at least an approximation to an optimal policy.

We have assumed that the Markov decision process will be operating

indefinitely, and we have sought an optimal policy for such a process. The basic idea of

the method of successive approximations is to instead find an optimal policy for the

47

decisions to make in the first period when the process has only n time periods to go

before termination, starting with n = 1, then n = 2, then n = 3, and so on. As n grows

large, the corresponding optimal policies will converge to an optimal policy for the

infinite-period problem of interest. Thus, the policies obtained for n = 1, 2, 3, …

provide successive approximations that lead to the desired optimal policy.

The reason that this approach is attractive is that we already have a quick

method of finding an optimal policy when the process has only n periods to go, namely,

probabilistic dynamic programming.

In particular, for i = 0, 1, …, M, let n
iV be the expected total discounted cost of

following an optimal policy, given that process starts in state i and has only n periods to

go.

By the principle of optimality for dynamic programming, the niV are obtained

from the recursive relationship

()








+= ∑
=

−
M

j

n
jijik

k

n
i VkpCV

0

1min α , for i = 0, 1, …, M.

The minimizing value of k provides the optimal decision to make in the first

period when the process starts in state i.

To get started, with n = 1, all the 00 =iV so that

{ }ik
K

i CV min1 = , for i = 0, 1, …, M.

Although the method of successive approximations may not lead to an optimal

policy for the infinite-period problem after only a few iterations, it has one distinct

advantage over the policy improvement and linear programming techniques. It never

requires solving a system of simultaneous equations, so each iteration can be performed

simply and quickly.

Furthermore, if the Markov decision process actually does have just n periods to

go, n iterations of this method definitely will lead to an optimal policy. (For an n-period

problem, it is permissible to set 1=α , that is, no discounting, in which case the

objective is to minimize the expected total cost over n periods.)

48

Chapter IV

Reinforcement Learning

IV.1. Introduction

Due to well known scalability problems with MDP control framework, a MDP

algorithms is not suitable to be implemented in real time systems, as the one considered

in this work. In fact, the path selection engine in the NGHN QoS controller is in charge

of deciding the path for a new flow as soon as it receives a new flow request. In addition,

due to the frequent link faults in the considered home networks, also re-routing has to

be calculated in real time to avoid loss of packet during the handover from the old path

to the new path.

Reinforcement learning (RL) is a control framework that can be easily built on a

MDP control framework of a system and produces interesting results that can be

obtained with low computation complexity. For this reason, the RL approach is

presented here as it is used in this work to derive, form the general MDP control

framework, a RL new algorithm that can be implemented in real time NGHN controllers

and provides, at the same time, results that are very close to the ones that are obtained

with the optimal MDP controller.

IV.2. An introduction to Reinforcement Learning

Reinforcement learning [15] is learning what to do so as to maximize a

numerical reward signal. The learner is not told which actions to take, as in most forms

of machine learning, but instead must discover which actions yield the most reward by

trying them. In the most interesting and challenging cases, actions may affect not only

the immediate reward but also the next situation and, through that, all subsequent

rewards. These two characteristics (namely trial-and-error search and delayed reward)

are the two most important distinguishing features of reinforcement learning.

Reinforcement learning is defined not by characterizing learning methods, but

by characterizing a learning problem. Any method that is well suited to solving that

49

problem, we consider to be a reinforcement learning method. A full specification of the

reinforcement learning problem in terms of optimal control of Markov decision

processes is presented later, but the basic idea is simply to capture the most important

aspects of the real problem facing a learning agent interacting with its environment to

achieve a goal. Clearly, such an agent must be able to sense the state of the environment

to some extent and must be able to take actions that affect the state. The agent also must

have a goal or goals relating to the state of the environment. The formulation is intended

to include just these three aspects (sensation, action, and goal) in their simplest possible

forms without trivializing any of them.

One of the challenges that arise in reinforcement learning and not in other kinds

of learning is the trade-off between exploration and exploitation. To obtain a lot of

reward, a reinforcement learning agent must prefer actions that it has tried in the past

and found to be effective in producing reward. But to discover such actions, it has to try

actions that it has not selected before. The agent has to exploit what it already knows in

order to obtain reward, but it also has to explore in order to make better action

selections in the future. The dilemma is that neither exploration nor exploitation can be

pursued exclusively without failing at the task. The agent must try a variety of actions

and progressively favor those that appear to be best. On a stochastic task, each action

must be tried many times to gain a reliable estimate its expected reward. The

exploration-exploitation dilemma has been intensively studied by mathematicians for

many decades.

Another key feature of reinforcement learning is that it explicitly considers the

whole problem of a goal-directed agent interacting with an uncertain environment. All

reinforcement learning agents have explicit goals, can sense aspects of their

environments, and can choose actions to influence their environments. Moreover, it is

usually assumed from the beginning that the agent has to operate despite significant

uncertainty about the environment it faces. When reinforcement learning involves

planning, it has to address the interplay between planning and real-time action selection,

as well as the question of how environmental models are acquired and improved. When

reinforcement learning involves supervised learning, it does so for specific reasons that

determine which capabilities are critical and which are not. For learning research to

make progress, important subproblems have to be isolated and studied, but they should

be subproblems that play clear roles in complete, interactive, goal-seeking agents, even

if all the details of the complete agent cannot yet be filled in.

50

IV.2.1 Elements of RL

Beyond the agent and the environment, one can identify four main subelements

of a reinforcement learning system: a policy, a reward function, a value function, and,

optionally, a model of the environment.

A policy defines the learning agent's way of behaving at a given time. Roughly

speaking, a policy is a mapping from perceived states of the environment to actions to

be taken when in those states. It corresponds to what in psychology would call a set of

stimulus-response rules or associations. In some cases the policy may be a simple

function or lookup table, whereas in others it may involve extensive computation such

as a search process. The policy is the core of a reinforcement learning agent in the sense

that it alone is sufficient to determine behavior. In general, policies may be stochastic.

A reward function defines the goal in a reinforcement learning problem.

Roughly speaking, it maps each perceived state (or state-action pair) of the environment

to a single number, a reward, indicating the intrinsic desirability of that state. A

reinforcement learning agent's sole objective is to maximize the total reward it receives

in the long run. The reward function defines what are the good and bad events for the

agent. In a biological system, it would not be inappropriate to identify rewards with

pleasure and pain. They are the immediate and defining features of the problem faced

by the agent. As such, the reward function must necessarily be unalterable by the agent.

It may, however, serve as a basis for altering the policy. For example, if an action

selected by the policy is followed by low reward, then the policy may be changed to

select some other action in that situation in the future. In general, reward functions may

be stochastic.

Whereas a reward function indicates what is good in an immediate sense, a value

function specifies what is good in the long run. Roughly speaking, the value of a state is

the total amount of reward an agent can expect to accumulate over the future, starting

from that state. Whereas rewards determine the immediate, intrinsic desirability of

environmental states, values indicate the long-term desirability of states after taking into

account the states that are likely to follow, and the rewards available in those states. For

example, a state might always yield a low immediate reward but still have a high value

because it is regularly followed by other states that yield high rewards. Or the reverse

could be true. To make a human analogy, rewards are like pleasure (if high) and pain (if

low), whereas values correspond to a more refined and farsighted judgment of how

51

pleased or displeased we are that our environment is in a particular state. Expressed this

way, it is clear that value functions formalize a basic and familiar idea.

Rewards are in a sense primary, whereas values, as predictions of rewards, are

secondary. Without rewards there could be no values, and the only purpose of

estimating values is to achieve more reward. Nevertheless, it is values with which we

are most concerned when making and evaluating decisions. Action choices are made

based on value judgments. We seek actions that bring about states of highest value, not

highest reward, because these actions obtain the greatest amount of reward for us over

the long run. In decision-making and planning, the derived quantity called value is the

one with which we are most concerned. Unfortunately, it is much harder to determine

values than it is to determine rewards. Rewards are basically given directly by the

environment, but values must be estimated and reestimated from the sequences of

observations an agent makes over its entire lifetime. In fact, the most important

component of almost all reinforcement learning algorithms is a method for efficiently

estimating values. The central role of value estimation is arguably the most important

thing we have learned about reinforcement learning over the last few decades.

The fourth and final element of some reinforcement learning systems is a model

of the environment. This is something that mimics the behavior of the environment. For

example, given a state and action, the model might predict the resultant next state and

next reward. Models are used for planning, by which we mean any way of deciding on a

course of action by considering possible future situations before they are actually

experienced. The incorporation of models and planning into reinforcement learning

systems is a relatively new development. Early reinforcement learning systems were

explicitly trial-and-error learners; what they did was viewed as almost the opposite of

planning. Nevertheless, it gradually became clear that reinforcement learning methods

are closely related to dynamic programming methods, which do use models, and that

they in turn are closely related to state-space planning methods. Modern reinforcement

learning spans the spectrum from low-level, trial-and-error learning to high-level,

deliberative planning.

IV.2.2 Evaluative feedback

The most important feature distinguishing reinforcement learning from other

types of learning is that it uses training information that evaluates the actions taken

rather than instructs by giving correct actions. This is what creates the need for active

52

exploration, for an explicit trial-and-error search for good behavior. Purely evaluative

feedback indicates how good the action taken is, but not whether it is the best or the

worst action possible. Evaluative feedback is the basis of methods for function

optimization, including evolutionary methods. Purely instructive feedback, on the other

hand, indicates the correct action to take, independently of the action actually taken.

Thus, evaluative feedback depends entirely on the action taken, whereas instructive

feedback is independent of the action taken.

Let’s consider the following learning problem. You are faced repeatedly with a

choice among n different options, or actions. After each choice you receive a numerical

reward chosen from a stationary probability distribution that depends on the action you

selected. Your objective is to maximize the expected total reward over some time period.

Each action selection is called a play.

This is the original form of the n-armed bandit problem. In this n-armed bandit

problem, each action has an expected or mean reward given that that action is selected;

let’s call this the value of that action. If you knew the value of each action, then it would

be trivial to solve the n-armed bandit problem: you would always select the action with

highest value. It is assumed here that you do not know the action values with certainty,

although you may have estimates.

If you maintain estimates of the action values, then at any time there is at least

one action whose estimated value is greatest. This is called a greedy action. If you select

a greedy action, you are exploiting your current knowledge of the values of the actions.

If instead you select one of the nongreedy actions, then you are exploring because this

enables you to improve your estimate of the nongreedy action's value. Exploitation is

the right thing to do to maximize the expected reward on the one play, but exploration

may produce the greater total reward in the long run. For example, suppose the greedy

action's value is known with certainty, while several other actions are estimated to be

nearly as good but with substantial uncertainty. The uncertainty is such that at least one

of these other actions probably is actually better than the greedy action, but you don't

know which one. If you have many plays yet to make, then it may be better to explore

the nongreedy actions and discover which of them are better than the greedy action.

Reward is lower in the short run, during exploration, but higher in the long run because

after you have discovered the better actions, you can exploit them. Because it is not

possible both to explore and to exploit with any single action selection, one often refers

to the "conflict" between exploration and exploitation.

53

In any specific case, whether it is better to explore or exploit depends in a

complex way on the precise values of the estimates, uncertainties, and the number of

remaining plays. There are many sophisticated methods for balancing exploration and

exploitation for particular mathematical formulations of the n-armed bandit and related

problems. However, most of these methods make strong assumptions about stationarity

and prior knowledge that are either violated or impossible to verify in applications and

in the full reinforcement learning problem that we consider in subsequent chapters. The

guarantees of optimality or bounded loss for these methods are of little comfort when

the assumptions of their theory do not apply.

Let’sdenote the true (actual) value of action a as ()aQ* , and the estimated value

at the t th play as ()aQt . Recall that the true value of an action is the mean reward

received when that action is selected. One natural way to estimate this is by averaging

the rewards actually received when the action was selected. In other words, if at the tth

play action a has been chosen ka times prior to t, yielding rewards
akrrr +++ ...21 , then

its value is estimated to be

()
a

k

t k

rrr
aQ a

+++
=

...21
. (4.1)

If ka = 0, then it is possible to define ()aQt instead as some default value, such

as () 00 =aQ . As ∞→ak , by the law of large numbers ()aQt converges to ()aQ* . This

is called the sample-average method for estimating action values because each estimate

is a simple average of the sample of relevant rewards. Of course this is just one way to

estimate action values, and not necessarily the best one. Nevertheless, for now let’s stay

with this simple estimation method and turn to the question of how the estimates might

be used to select actions.

The simplest action selection rule is to select the action (or one of the actions)

with highest estimated action value, that is, to select on play t one of the greedy actions,

a*, for which () ()aQaQ tat max* = . This method always exploits current knowledge to

maximize immediate reward; it spends no time at all sampling apparently inferior

actions to see if they might really be better. A simple alternative is to behave greedily

most of the time, but every once in a while, say with small probability ε , instead select

an action at random, uniformly, independently of the action-value estimates. The

54

methods using this near-greedy action selection rule are called ε -greedy methods. An

advantage of these methods is that, in the limit as the number of plays increases, every

action will be sampled an infinite number of times, guaranteeing that ∞→ak for all a,

and thus ensuring that all the ()aQt converge to ()aQ* . This of course implies that the

probability of selecting the optimal action converges to greater than 1-ε , that is, to near

certainty. These are just asymptotic guarantees, however, and say little about the

practical effectiveness of the methods.

The advantage of ε -greedy over greedy methids depends on the task. In general

we can say that Reinforcement Learning requires a balance between exploration and

exploitation.

IV.2.3 Incremental Implementation

The action-value methods discussed so far all estimate action values as sample

averages of observed rewards. The obvious implementation is to maintain, for each

action , a record of all the rewards that have followed the selection of that action. Then,

when the estimate of the value of action a is needed at time t, it can be computed

according to (4.1). A problem with this straightforward implementation is that its

memory and computational requirements grow over time without bound. That is, each

additional reward following a selection of action a requires more memory to store it and

results in more computation being required to determine ()aQt .

As you might suspect, this is not really necessary. It is easy to devise

incremental update formulas for computing averages with small, constant computation

required to process each new reward. For some action, let Qk denote the average of its

first k rewards (not to be confused with ()aQk , the average for action a at the kth play).

Given this average and a (k+1)st reward, rk+1, then the average of all k+1 rewards can be

computed by:

[]kkkk Qr
k

QQ −
+

+= ++ 11 1

1
 (4.2)

55

which holds even for k = 0, obtaining Q1 = r1 for arbitrary Q0. This implementation

requires memory only for Qk and k, and only a small computation for each new reward.

The general form for the update rule is:

[]eOldEstimatetTStepSizeeOldEstimateNewEstimat −+← arg (4.3)

The expression []eOldEstimatetT −arg is an error in the estimate. It is reduced

by taking a step toward the "Target." The target is presumed to indicate a desirable

direction in which to move, though it may be noisy. In the case above, for example, the

target is the (k+1)st reward.

Note that the step-size parameter (StepSize) used in the incremental method

described above changes from time step to time step. In processing the kth reward for

action a, that method uses a step-size parameter of
k

1
. In this work I denote the step-

size parameter by the symbol α or, more generally, by)(akα . For example, the above

incremental implementation of the sample-average method is described by the equation

a
k k

a
1

)(=α . Accordingly, I sometimes use the informal shorthand
k

a
1

)(=α to refer to

this case, leaving the action dependence implicit.

IV.2.4 Tracking a Nonstationary problem

The averaging methods discussed so far are appropriate in a stationary

environment, but not if the bandit is changing over time. But we may often encounter

reinforcement learning problems that are effectively nonstationary. In such cases it

makes sense to weight recent rewards more heavily than long-past ones. One of the

most popular ways of doing this is to use a constant step-size parameter. For example,

the incremental update rule (4.3) for updating an average Qk of the kpast rewards is

modified to be:

[]kkkk QrQQ −+= ++ 11 α (4.4)

Where the step-size parameter, α, 10 ≤< α , is costant. This results in Qk being a

weighted average of past reward and the initial estimate Q0.

56

IV.3. The Reinforcement Learning problem

The reinforcement learning problem is meant to be a straightforward framing of

the problem of learning from interaction to achieve a goal. The learner and decision-

maker is called the agent. The thing it interacts with, comprising everything outside the

agent, is called the environment. These interact continually, the agent selecting actions

and the environment responding to those actions and presenting new situations to the

agent. The environment also gives rise to rewards, special numerical values that the

agent tries to maximize over time. A complete specification of an environment defines a

task, one instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence of

discrete time steps, t = 0,1,2,3,… . At each time step t, the agent receives some

representation of the environment's state, SSt ∈ , where S is the set of possible states,

and on that basis selects an action,)(tt sAa ∈ , where)(tsA is the set of actions

available in state st. One time step later, in part as a consequence of its action, the agent

receives a numerical reward, Rrt ∈+1 , and finds itself in a new state, st+1. Figure 10

diagrams the agent-environment interaction.

Figure 10 - The agent-environment interaction in RL

At each time step, the agent implements a mapping from states to probabilities

of selecting each possible action. This mapping is called the agent's policy and is

denoted tπ , where),(astπ is the probability that aat = if sst = . Reinforcement

learning methods specify how the agent changes its policy as a result of its experience.

The agent's goal, roughly speaking, is to maximize the total amount of reward it

57

receives over the long run. This means maximizing not immediate reward, but

cumulative reward in the long run.

IV.3.1 Returns

So far we have been imprecise regarding the objective of learning. We have said

that the agent's goal is to maximize the reward it receives in the long run. How might

this be formally defined? If the sequence of rewards received after time step t is denoted

,...,, 321 +++ ttt rrr , then what precise aspect of this sequence do we wish to maximize? In

general, we seek to maximize the expected return, where the return, Rt, is defined as

some specific function of the reward sequence. In the simplest case the return is the sum

of the rewards:

Ttttt rrrrR ++++= +++ ...321 (4.5)

where T is a final time step. This approach makes sense in applications in which there is

a natural notion of final time step, that is, when the agent-environment interaction

breaks naturally into subsequences, which I call episodes, such as plays of a game, trips

through a maze, or any sort of repeated interactions. Each episode ends in a special state

called the terminal state, followed by a reset to a standard starting state or to a sample

from a standard distribution of starting states. Tasks with episodes of this kind are called

episodic tasks. In episodic tasks we sometimes need to distinguish the set of all

nonterminal states, denoted S, from the set of all states plus the terminal state, denoted

S+.

On the other hand, in many cases the agent-environment interaction does not

break naturally into identifiable episodes, but goes on continually without limit. For

example, this would be the natural way to formulate a continual process-control task, or

an application to a robot with a long life span. I call these continuing tasks. The return

formulation (4.5) is problematic for continuing tasks because the final time step would

be ∞=T , and the return, which is what we are trying to maximize, could itself easily

be infinite. (For example, suppose the agent receives a reward of +1 at each time step.)

Thus, in this work I usually use a definition of return that is slightly more complex

conceptually but much simpler mathematically.

The additional concept that I need to introduce is that of discounting. According

to this approach, the agent tries to select actions so that the sum of the discounted

58

rewards it receives over the future is maximized. In particular, it chooses ta to maximize

the expected discounted return:

∑
∞

=
+++++ =+++=

0
13

2
21 ...

k
kt

k
tttt rrrrR γγγ (4.6)

where γ is a parameter, 10 ≤≤ γ , called the discount rate.

The discount rate determines the present value of future rewards: a reward

received k time steps in the future is worth only 1−kγ times what it would be worth if it

were received immediately. If 1<γ , the infinite sum has a finite value as long as the

reward sequence { }kr is bounded. If 0=γ , the agent is "myopic" in being concerned

only with maximizing immediate rewards: its objective in this case is to learn how to

choose at so as to maximize only r t+1. If each of the agent's actions happened to

influence only the immediate reward, not future rewards as well, then a myopic agent

could maximize (4.6) by separately maximizing each immediate reward. But in general,

acting to maximize immediate reward can reduce access to future rewards so that the

return may actually be reduced. As γ approaches 1, the objective takes future rewards

into account more strongly: the agent becomes more farsighted.

IV.3.1.1. Unified notation for episodic and continuing tasks

As described previously, there are two kinds of reinforcement learning tasks, one

in which the agent-environment interaction naturally breaks down into a sequence of

separate episodes (episodic tasks), and one in which it does not (continuing tasks). The

former case is mathematically easier because each action affects only the finite number

of rewards subsequently received during the episode. It is therefore useful to establish

one notation that enables us to talk precisely about both cases simultaneously.

To be precise about episodic tasks requires some additional notation. Rather than

one long sequence of time steps, we need to consider a series of episodes, each of which

consists of a finite sequence of time steps. We number the time steps of each episode

starting anew from zero. Therefore, we have to refer not just to st, the state

representation at time t, but to st,i, the state representation at time t of episode i (and

similarly for at,i, r t,i, πt,i, Ti, etc.). However, it turns out that, when we discuss episodic

tasks we will almost never have to distinguish between different episodes. We will

59

almost always be considering a particular single episode, or stating something that is

true for all episodes. Accordingly, in practice we will almost always abuse notation

slightly by dropping the explicit reference to episode number. That is, I will write st to

refer to st,i, and so on.

We need one other convention to obtain a single notation that covers both

episodic and continuing tasks. We have defined the return as a sum over a finite number

of terms in one case (4.5) and as a sum over an infinite number of terms in the other

(4.6). These can be unified by considering episode termination to be the entering of a

special absorbing state that transitions only to itself and that generates only rewards of

zero.

IV.4. Modelling the environment as a Markov chain

In the reinforcement learning framework, the agent makes its decisions as a

function of a signal from the environment called the environment's state. By "the state"

we mean whatever information is available to the agent. We assume that the state is

given by some preprocessing system that is nominally part of the environment. The

state signal should not be expected to inform the agent of everything about the

environment, or even everything that would be useful to it in making decisions.

What we would like, ideally, is a state signal that summarizes past sensations

compactly, yet in such a way that all relevant information is retained. This normally

requires more than the immediate sensations, but never more than the complete history

of all past sensations. A state signal that succeeds in retaining all relevant information is

said to be Markov, or to have the Markov property.

If an environment has the Markov property, then its one-step dynamics allow to

predict the next state and expected next reward given the current state and action. One

can show that, by iteration, one can predict all future states and expected rewards from

knowledge only of the current state as well as would be possible given the complete

history up to the current time. It also follows that Markov states provide the best

possible basis for choosing actions. That is, the best policy for choosing actions as a

function of a Markov state is just as good as the best policy for choosing actions as a

function of complete histories.

A reinforcement learning task that satisfies the Markov property is called a

Markov decision process, or MDP. If the state and action spaces are finite, then it is

60

called a finite Markov decision process (finite MDP). Finite MDPs are particularly

important to the theory of reinforcement learning.

A particular finite MDP is defined by its state and action sets and by the one-step

dynamics of the environment. Given any state and action, s and a, the probability of

each possible next state, s’, is

{ }aassssP ttt
a

ss ==== + ,|'Pr 1' (4.7)

These quantities are called transition probabilities. Similarly, given any current

state and action, s and a, together with any next state, s’, the expected value of the next

reward is

{ }',,| 11' ssaassrER tttt
a
ss ==== ++ (4.8)

These quantities, a
ssP ' and a

ssR ' , completely specify the most important aspects of

the dynamics of a finite MDP (only information about the distribution of rewards

around the expected value is lost).

Almost all reinforcement learning algorithms are based on estimating value

functions--functions of states (or of state-action pairs) that estimate how good it is for

the agent to be in a given state (or how good it is to perform a given action in a given

state). The notion of "how good" here is defined in terms of future rewards that can be

expected, or, to be precise, in terms of expected return. Of course the rewards the agent

can expect to receive in the future depend on what actions it will take. Accordingly,

value functions are defined with respect to particular policies.

Recall that a policy, π, is a mapping from each state, Ss∈ , and action,)(sAa∈ ,

to the probability),(asπ of taking action a when in state s. Informally, the value of a

state s under a policy π, denoted)(sV π , is the expected return when starting in s and

following π thereafter. For MDPs, we can define)(sV π formally as

{ }






=== ∑

∞

=
=++

0
1 ||)(

k
stkt

k
tt srEssREsV γππ

π (4.9)

61

where { }πE denotes the expected value given that the agent follows policy π, and t is

any time step. Note that the value of the terminal state, if any, is always zero. We call

the function πV the state-value function for policy π.

Similarly, we define the value of taking action a in state s under a policy π,

denoted),(asQπ , as the expected return starting from s, taking the action a, and

thereafter following policy π:

{ }






 ====== ∑

∞

=
++ aassrEaassREasQ tt

k
kt

k
ttt ,|,|),(

0
1γππ

π (4.10)

We call πQ the action-value function for policy π.

The value functions πV and πQ can be estimated from experience.

A fundamental property of value functions used throughout reinforcement

learning and dynamic programming is that they satisfy particular recursive relationships.

For any policy π and any state s, the following consistency condition holds between the

value of s and the value of its possible successor states:

[]∑∑ +=
'

'')'(),()(
s

a
ss

a
ss

a

sVRPassV ππ γπ (4.11)

where it is implicit that the actions, a, are taken from the set A(s), and the next states, s’,

are taken from the set S, or from S+ in the case of an episodic problem. Equation (4.11)

is the Bellman equation for πV . It expresses a relationship between the value of a state

and the values of its successor states. The value function πV is the unique solution to its

Bellman equation.

IV.4.1 Optimal value functions and approssimations

Solving a reinforcement learning task means, roughly, finding a policy that

achieves a lot of reward over the long run. For finite MDPs, we can precisely define an

optimal policy in the following way. Value functions define a partial ordering over

policies. A policy π is defined to be better than or equal to a policy π’ if its expected

return is greater than or equal to that of π’ for all states. In other words, π > π’ if and

only if)()(' sVsV ππ ≥ for all Ss∈ . There is always at least one policy that is better

than or equal to all other policies. This is an optimal policy. Although there may be

62

more than one, we denote all the optimal policies by π*. They share the same state-

value function, called the optimal state-value function, denoted V*, and defined as

)(max)(* sVsV π

π
= (4.12)

for all Ss∈ .

Optimal policies also share the same optimal action-value function, denoted Q*,

and defined as

),(max),(* asQasQ π

π
= (4.13)

for all Ss∈ and)(sAa∈ . For the state-action pair (s,a), this function gives the

expected return for taking action a in state s and thereafter following an optimal policy.

Thus, we can write Q* in terms of V* as follows

{ }aasssVrEasQ tttt ==+= ++ ,|)(*),(* 11 γ (4.14)

Because V* is the value function for a policy, it must satisfy the self-consistency

condition given by the Bellman equation for state values (4.11). Because it is the

optimal value function, however, V* 's consistency condition can be written in a special

form without reference to any specific policy. This is the Bellman equation for V*, or

the Bellman optimality equation. Intuitively, the Bellman optimality equation expresses

the fact that the value of a state under an optimal policy must equal the expected return

for the best action from that state:

{ }aasssVrEsV tttt
a

==+= ++ ,|)(*max)(* 11 γ (4.15)

and

[]∑ +=
∈

'
''

)(
)'(*max)(*

s

a
ss

a
ss

sAa
sVRPsV γ (4.16)

The last two equations are two forms of the Bellman optimality equation for V*.

The Bellman optimality equation for Q* is:

63

{ } []∑ +===+= ++
'

'
''1

'
1)','(*max,|),(*max),(*

s
a

a
ss

a
ssttt

a
t asQRPaassasQrEasQ γγ

(4.17)

For finite MDPs, the Bellman optimality equation (4.16) has a unique solution

independent of the policy. The Bellman optimality equation is actually a system of

equations, one for each state, so if there are N states, then there are N equations in N

unknowns. If the dynamics of the environment are known (a
ssR ' and a

ssP '), then in

principle one can solve this system of equations for V* using any one of a variety of

methods for solving systems of nonlinear equations. One can solve a related set of

equations for Q*.

Once one has V*, it is relatively easy to determine an optimal policy. For each

state s, there will be one or more actions at which the maximum is obtained in the

Bellman optimality equation. Any policy that assigns nonzero probability only to these

actions is an optimal policy. You can think of this as a one-step search. If you have the

optimal value function, V*, then the actions that appear best after a one-step search will

be optimal actions. Another way of saying this is that any policy that is greedy with

respect to the optimal evaluation function V* is an optimal policy. The term greedy is

used in computer science to describe any search or decision procedure that selects

alternatives based only on local or immediate considerations, without considering the

possibility that such a selection may prevent future access to even better alternatives.

Consequently, it describes policies that select actions based only on their short-term

consequences. The beauty of V* is that if one uses it to evaluate the short-term

consequences of actions--specifically, the one-step consequences--then a greedy policy

is actually optimal in the long-term sense in which we are interested because V* already

takes into account the reward consequences of all possible future behavior. By means of

V*, the optimal expected long-term return is turned into a quantity that is locally and

immediately available for each state. Hence, a one-step-ahead search yields the long-

term optimal actions.

Having Q* makes choosing optimal actions still easier. With Q*, the agent does

not even have to do a one-step-ahead search: for any state s, it can simply find any

action that maximizes),(* asQ . The action-value function effectively caches the results

of all one-step-ahead searches. It provides the optimal expected long-term return as a

value that is locally and immediately available for each state-action pair. Hence, at the

cost of representing a function of state-action pairs, instead of just of states, the optimal

64

action-value function allows optimal actions to be selected without having to know

anything about possible successor states and their values, that is, without having to

know anything about the environment's dynamics.

Explicitly solving the Bellman optimality equation provides one route to finding

an optimal policy, and thus to solving the reinforcement learning problem. However,

this solution is rarely directly useful. It is akin to an exhaustive search, looking ahead at

all possibilities, computing their probabilities of occurrence and their desirabilities in

terms of expected rewards. This solution relies on at least three assumptions that are

rarely true in practice: (1) we accurately know the dynamics of the environment; (2) we

have enough computational resources to complete the computation of the solution; and

(3) the Markov property. For the kinds of tasks in which we are interested, one is

generally not able to implement this solution exactly because various combinations of

these assumptions are violated.

We have defined optimal value functions and optimal policies. Clearly, an agent

that learns an optimal policy has done very well, but in practice this rarely happens. For

the kinds of tasks in which we are interested, optimal policies can be generated only

with extreme computational cost. As we discussed above, even if we have a complete

and accurate model of the environment's dynamics, it is usually not possible to simply

compute an optimal policy by solving the Bellman optimality equation.

A critical aspect of the problem facing the agent is always the computational

power available to it, in particular, the amount of computation it can perform in a single

time step.

The memory available is also an important constraint. A large amount of

memory is often required to build up approximations of value functions, policies, and

models.

Our framing of the reinforcement learning problem forces us to settle for

approximations. The on-line nature of reinforcement learning makes it possible to

approximate optimal policies in ways that put more effort into learning to make good

decisions for frequently encountered states, at the expense of less effort for infrequently

encountered states. This is one key property that distinguishes reinforcement learning

from other approaches to approximately solving MDPs.

65

IV.5. RL solutions methods

There exist three fundamental classes of methods for solving the reinforcement

learning problem:

� Dynamic programming;

� Monte Carlo methods;

� Temporal-Difference learning.

Each class of methods has its strengths and weaknesses. Dynamic programming

methods are well developed mathematically, but require a complete and accurate model

of the environment. Monte Carlo methods don't require a model and are conceptually

simple, but are not suited for step-by-step incremental computation. Finally, temporal-

difference methods require no model and are fully incremental, but are more complex to

analyze. The methods also differ in several ways with respect to their efficiency and

speed of convergence.

In the following sections I introduce all these methods, but I will focus in

particular on Temporal-Difference learning, which is the one used for the fault-tolerant

routing algorithm object of the present work.

IV.5.1 Dynamic Programming

The term dynamic programming (DP) refers to a collection of algorithms that

can be used to compute optimal policies given a perfect model of the environment as a

Markov decision process. Classical DP algorithms are of limited utility in reinforcement

learning both because of their assumption of a perfect model and because of their great

computational expense, but they are still important theoretically. DP provides an

essential foundation for the understanding of the other two methods presented in this

chapter. In fact, all of these methods can be viewed as attempts to achieve much the

same effect as DP, only with less computation and without assuming a perfect model of

the environment.

The key idea of DP, and of reinforcement learning generally, is the use of value

functions to organize and structure the search for good policies.

The basic ideas and algorithms of dynamic programming as they relate to

solving finite MDPs are:

66

� Policy evaluation: refers to the (typically) iterative computation of the value

functions for a given policy.

� Policy improvement: refers to the computation of an improved policy given the

value function for that policy.

� Putting these two computations together, we obtain policy iteration and value

iteration, the two most popular DP methods. Either of these can be used to

reliably compute optimal policies and value functions for finite MDPs given

complete knowledge of the MDP

� Insight into DP methods and, in fact, into almost all reinforcement learning

methods, can be gained by viewing them as generalized policy iteration (GPI).

GPI is the general idea of two interacting processes revolving around an

approximate policy and an approximate value function. One process takes the

policy as given and performs some form of policy evaluation, changing the

value function to be more like the true value function for the policy. The other

process takes the value function as given and performs some form of policy

improvement, changing the policy to make it better, assuming that the value

function is its value function. Although each process changes the basis for the

other, overall they work together to find a joint solution: a policy and value

function that are unchanged by either process and, consequently, are optimal

DP may not be practical for very large problems, but compared with other

methods for solving MDPs, DP methods are actually quite efficient. If we ignore a few

technical details, then the (worst case) time DP methods take to find an optimal policy

is polynomial in the number of states and actions. Linear programming methods can

also be used to solve MDPs, and in some cases their worst-case convergence guarantees

are better than those of DP methods. But linear programming methods become

impractical at a much smaller number of states than do DP methods (by a factor of

about 100). For the largest problems, only DP methods are feasible. DP is sometimes

thought to be of limited applicability because of the curse of dimensionality, the fact

that the number of states often grows exponentially with the number of state variables.

Large state sets do create difficulties, but these are inherent difficulties of the problem,

not of DP as a solution method. In fact, DP is comparatively better suited to handling

large state spaces than competing methods such as direct search and linear programming.

67

IV.5.2 Monte Carlo methods

Here I consider the first learning methods for estimating value functions and

discovering optimal policies. Unlike the previous section, here we do not assume

complete knowledge of the environment. Monte Carlo methods require only experience-

sample sequences of states, actions, and rewards from on-line or simulated interaction

with an environment. Learning from on-line experience is striking because it requires no

prior knowledge of the environment's dynamics, yet can still attain optimal behavior.

Learning from simulated experience is also powerful. Although a model is required, the

model need only generate sample transitions, not the complete probability distributions

of all possible transitions that is required by dynamic programming (DP) methods. In

surprisingly many cases it is easy to generate experience sampled according to the

desired probability distributions, but infeasible to obtain the distributions in explicit

form.

Monte Carlo methods are ways of solving the reinforcement learning problem

based on averaging sample returns. To ensure that well-defined returns are available, we

define Monte Carlo methods only for episodic tasks. That is, we assume experience is

divided into episodes, and that all episodes eventually terminate no matter what actions

are selected. It is only upon the completion of an episode that value estimates and

policies are changed. Monte Carlo methods are thus incremental in an episode-by-

episode sense, but not in a step-by-step sense.

As for DP algorithms, Monte Carlo method is used to compute policy evaluation,

policy improvement and generalized policy iteration. Each of these ideas taken from DP

is extended to the Monte Carlo case in which only sample experience is available.

In addition, we can distinghuish among on-policy methods, which attempt to

evaluate or improve the policy that is used to make decisions, and off.policy methods, in

which the policy used to generate behavior, called the behavior policy, may in fact be

unrelated to the policy that is evaluated and improved, called the estimation policy. An

advantage of this separation is that the estimation policy may be deterministic (e.g.,

greedy), while the behavior policy can continue to sample all possible actions.

To conclude, we can say that Monte Carlo methods learn value functions and

optimal policies from experience in the form of sample episodes. This gives them at

least three kinds of advantages over DP methods. First, they can be used to learn

optimal behavior directly from interaction with the environment, with no model of the

68

environment's dynamics. Second, they can be used with simulation or sample models.

For surprisingly many applications it is easy to simulate sample episodes even though it

is difficult to construct the kind of explicit model of transition probabilities required by

DP methods. Third, it is easy and efficient to focus Monte Carlo methods on a small

subset of the states. A region of special interest can be accurately evaluated without

going to the expense of accurately evaluating the rest of the state set.

IV.5.3 Temporal-Difference Learning

TD learning is a combination of Monte Carlo ideas and dynamic programming

(DP) ideas. Like Monte Carlo methods, TD methods can learn directly from raw

experience without a model of the environment's dynamics. Like DP, TD methods

update estimates based in part on other learned estimates, without waiting for a final

outcome (they bootstrap).

TD methods have an advantage over DP methods in that they do not require a

model of the environment, of its reward and next-state probability distributions.

The next most obvious advantage of TD methods over Monte Carlo methods is

that they are naturally implemented in an on-line, fully incremental fashion. With

Monte Carlo methods one must wait until the end of an episode, because only then is

the return known, whereas with TD methods one need wait only one time step.

Surprisingly often this turns out to be a critical consideration. Some applications have

very long episodes, so that delaying all learning until an episode's end is too slow. Other

applications are continuing tasks, like the one considered in this work, and have no

episodes at all. Finally, as we noted in the previous section, some Monte Carlo methods

must ignore or discount episodes on which experimental actions are taken, which can

greatly slow learning. TD methods are much less susceptible to these problems because

they learn from each transition regardless of what subsequent actions are taken.

But are TD methods sound? Certainly it is convenient to learn one guess from

the next, without waiting for an actual outcome, but can we still guarantee convergence

to the correct answer? Happily, the answer is yes. For any fixed policy π, the TD

algorithm described above has been proved to converge to πV , in the mean for a

constant step-size parameter if it is sufficiently small, and with probability 1 if the step-

size parameter decreases according to the usual stochastic approximation conditions. If

both TD and Monte Carlo methods converge asymptotically to the correct predictions,

69

then a natural next question is "Which gets there first?" At the current time this is an

open question in the sense that no one has been able to prove mathematically that one

method converges faster than the other. In practice, however, TD methods have usually

been found to converge faster than constant-α MC methods on stochastic tasks.

The methods presented in the following sub-sections are today the most widely

used reinforcement learning methods. This is probably due to their great simplicity: they

can be applied on-line, with a minimal amount of computation, to experience generated

from interaction with an environment; they can be expressed nearly completely by

single equations that can be implemented with small computer programs.

IV.5.4 TD prediction

Given some experience following a policy π, both methods update their estimate

V of πV . If a nonterminal state st is visited at time t, then both methods update their

estimate V(st) based on what happens after that visit. Roughly speaking, Monte Carlo

methods wait until the return following the visit is known, then use that return as a

target for V(st). A simple every-visit Monte Carlo method suitable for nonstationary

environments is

[])()()(tttt sVRsVsV −+← α (4.18)

where Rt is the actual return following time t and α is a constant step-size parameter.

Let us call this method constant-α MC. Whereas Monte Carlo methods must

wait until the end of the episode to determine the increment to V(st) (only then is Rt

known), TD methods need wait only until the next time step. At time t+1 they

immediately form a target and make a useful update using the observed reward r t+1 and

the estimate V(st+1). The simplest TD method, known as TD(0), is

[])()()()(11 ttttt sVsVrsVsV −++← ++ γα (4.19)

Because the TD method bases its update in part on an existing estimate, we say

that it is a bootstrapping method, like DP. We know

{ }ssREsV tt == |)(π
π (4.20)

70

and

{ }sssVrEsV ttt =+= ++ |)()(11
π

π
π γ (4.21)

Roughly speaking, Monte Carlo methods use an estimate of (4.20) as a target,

whereas DP methods use an estimate of (4.21) as a target. The Monte Carlo target is an

estimate because the expected value in (4.20) is not known; a sample return is used in

place of the real expected return. The DP target is an estimate not because of the

expected values, which are assumed to be completely provided by a model of the

environment, but because)(1+tsV π is not known and the current estimate,)(1+tt sV , is

used instead. The TD target is an estimate for both reasons: it samples the expected

values in (4.21) and it uses the current estimate tV instead of the true πV . Thus, TD

methods combine the sampling of Monte Carlo with the bootstrapping of DP. As we

shall see, with care and imagination this can take us a long way toward obtaining the

advantages of both Monte Carlo and DP methods.

IV.5.4.1. Sarsa: on-policy TD control

The first step is to learn an action-value function rather than a state-value

function. In particular, for an on-policy method we must estimate),(asQπ for the

current behavior policy π and for all states s and actions a. This can be done using

essentially the same TD method described above for learning πV . Recall that an

episode consists of an alternating sequence of states and state-action pairs:

Figure 11 - State and state-action pairs sequence

Now we consider transitions from state-action pair to state-action pair, and learn

the value of state-action pairs. Formally these cases are identical: they are both Markov

chains with a reward process. The theorems assuring the convergence of state values

under TD(0) also apply to the corresponding algorithm for action values:

[]),(),(),(),(111 ttttttttt asQasQrasQasQ −++← +++ γα (4.22)

71

This update is done after every transition from a nonterminal state st. If st+1 is

terminal, then),(11 ++ tt asQ is defined as zero. This rule uses every element of the

quintuple of events,),,,,(111 +++ ttttt asras , that make up a transition from one state-action

pair to the next. This quintuple gives rise to the name Sarsa for the algorithm.

It is straightforward to design an on-policy control algorithm based on the Sarsa

prediction method. As in all on-policy methods, we continually estimate πQ for the

behavior policy π, and at the same time change π toward greediness with respect to πQ .

IV.5.4.2. Q-Learning: off-policy TD control

One of the most important breakthroughs in reinforcement learning was the

development of an off-policy TD control algorithm known as Q-learning. Its simplest

form, one-step Q-learning, is defined by

[]),(),(max),(),(11 ttt
a

ttttt asQasQrasQasQ −++← ++ γα (4.23)

where α is the learning rate, γ is the discount factor and 1+tr is the cost associated to 1+ts .

 In particular, the learning rate α determines to what extent the newly acquired

information will override the old information. A factor of 0 will make the agent not

learn anything, while a factor of 1 would make the agent consider only the most recent

information. The discount factor γ determines the importance of future rewards. A

factor of 0 will make the agent "opportunistic" by only considering current rewards,

while a factor approaching 1 will make it strive for a long-term high reward. If the

discount factor meets or exceeds 1, the Q values will diverge.

In this case, the learned action-value function, Q, directly approximates Q*, the

optimal action-value function, independent of the policy being followed. This

dramatically simplifies the analysis of the algorithm and enabled early convergence

proofs. The policy still has an effect in that it determines which state-action pairs are

visited and updated. However, all that is required for correct convergence is that all

pairs continue to be updated. Under this assumption and a variant of the usual stochastic

approximation conditions on the sequence of step-size parameters, Qt has been shown to

converge with probability 1 to Q*. The Q-learning algorithm shown in procedural form

is:

72

Initialize Q(s,a) arbitrarily

Repeat (for each episode):

 Initialize s

 Repeat (for each step of episode):

 Chose a from s using policy derived from Q (e.g., ε-greedy)

 Take action a, observe r, s’

 []),()','(max),(),(
'

asQasQrasQasQ
a

−++← γα

 'ss ←

until s is terminal

IV.5.4.3. R-Learning for undiscounted continuing tasks

R-learning is an off-policy control method for the advanced version of the

reinforcement learning problem in which one neither discounts nor divides experience

into distinct episodes with finite returns. In this case one seeks to obtain the maximum

reward per time step. The value functions for a policy, π, are defined relative to the

average expected reward per time step under the policy, πρ :

{ }∑
=∞→

=
n

t
t

n
rE

n 1

1
lim π

πρ (4.24)

assuming the process is ergodic (nonzero probability of reaching any state from any

other under any policy) and thus that πρ does not depend on the starting state. From

any state, in the long run the average reward is the same, but there is a transient. From

some states better-than-average rewards are received for a while, and from others

worse-than-average rewards are received. It is this transient that defines the value of a

state:

{ }∑
∞

=
+ =−=

1

|)(
~

k
tkt ssrEsV π

π
π ρ (4.25)

and the value of a state-action pair is similarly the transient difference in reward when

starting in that state and taking that action:

{ }∑
∞

=
+ ==−=

1

,|),(
~

k
ttkt aassrEasQ π

π
π ρ (4.26)

73

We call these relative values because they are relative to the average reward

under the current policy.

There are subtle distinctions that need to be drawn between different kinds of

optimality in the undiscounted continuing case. Nevertheless, for most practical

purposes it may be adequate simply to order policies according to their average reward

per time step, in other words, according to their πρ . For now let us consider all policies

that attain the maximal value of πρ to be optimal.

Other than its use of relative values, R-learning is a standard TD control method

based on off-policy GPI, much like Q-learning. It maintains two policies, a behavior

policy and an estimation policy, plus an action-value function and an estimated average

reward. The behavior policy is used to generate experience; it might be the ε-greedy

policy with respect to the action-value function. The estimation policy is the one

involved in GPI. It is typically the greedy policy with respect to the action-value

function. If π is the estimation policy, then the action-value function, Q, is an

approximation of πQ and the average reward, ρ , is an approximation of πρ . There has

been little experience with this method and it should be considered experimental.

74

Chapter V

Fault-tolerant routing in Next
Generation Home Networks

V.1. Introduction

This chapter deals with the fault-tolerant routing problem in Next Generation

Home Networks. At the beginning, some state of the art algorithms are presented,

together with an explaination of the limitations of their application in the new scenario

considered in this work.

After that, the fault-tolerant routing algorithm, object of this work, is described.

First of all, the MDP formulation of the problem is described, with the definition of the

state space, the action space, the transition matrix and the cost function. Then, the main

scalability problem related to the implementation of the optimal MDP controller are

described in order to explain the need to derive a new algorithm based on

Reinforcement Learning. This explaination opens the way to the presentation of the Q-

Learning fault-tolerant algorithm.

V.2. State of the art routing algorithms

Existing routing algorithms are classified either as proactive (e.g., [16]-[18]), as

reactive (e.g., [19], [20]) or as hybrid (e.g., [21], [22]). The proactive algorithms

continuously update path information, which is then available at algorithm decision

time; the drawback is that these algorithms require the knowledge of the topology of the

whole network. Reactive algorithms performs a route discovery procedure on demand,

i.e., only at routing decision time: on the one hand, they generate less control

information since they must not continuously update topology information; on the other

hand, they delay the actual data transmission until the path is discovered. Hybrid

protocols use a combination of these two ideas.

Clearly, the proactive approach is preferred in the considered home network

scenario due to the fast re-routing requirements and to its limited topology width which

75

makes the updating process fast. Proactive routing problems have been successfully

modeled as Markov Decision Processes (MDP), with the objective of maximizing the

number of active flows supported by the network (e.g., [23]-[28]). MDPs are stochastic

control processes, and provide a mathematical framework for optimization problems

involving both random events and decision makers ([29]). However, in the MDP

formulations introduced so far, the topology of the network is considered as static, and

the dynamics of the MDP is driven by traffic events (e.g., acceptance of new flows,

flow terminations, flow variations); the routing problem is then to decide the optimal

paths of the active flows. As topology events such as link faults occur, the MDP must

be re-defined and the optimal policy must be re-computed. This approach is then not

suitable to provide fast re-routing.

Fault-tolerant routing algorithms have been proposed in the mobile ad-hoc

networks scenario. In [30]-[34], robustness is achieved by redundancy: the source node

sends the same packets along all the different paths available between the source and the

destination; these multipath routing mechanisms are not suitable for the scenario

considered in this work, since sending multiple copies of high-bitrate flows over

different paths would rapidly flood the network. Also in [35], a multipath routing

algorithm is proposed, which is capable of significantly reducing the packet overhead

by dynamically identifying unavailable paths via end-to-end path performance

measurements. In [36], a stochastic learning-based weak estimation procedure is used to

minimize the overhead while guaranteeing a certain level of packet delivery. By the way,

since also both [35] and [36] use duplicate packets to achieve robustness to faults, they

are not efficient in case of high-bitrate flows.

V.3. MDP fault-tolerant routing in NGHNs

The aim of the proactive algorithm developed in this work is twofold:

1. Minimization of re-routing occurrences;

2. Fast re-routing in scenarios characterized by highly variable topology.

To achieve these objectives (recalling that, in the considered home network

scenario, topology dynamics are faster than traffic dynamics), the proposed MDP

algorithm considers the traffic as static, and MDP dynamics are driven by topology

events. In this case, the optimal re-routing policy is computed by taking into

consideration the probabilities that the paths can become unavailable in the future, and

76

explicitly specifies the new path in case of link faults. Even if this approach is capable

of guaranteeing fast re-routing decisions, as traffic events occur the MDP must be re-

defined and the optimal policy must be re-computed. Note that the solution of the new

MDP (i.e., the MDP defined after a traffic event) allows also the determination of the

optimal initial routing after the traffic event.

V.3.1 Finite-Horizon MDP definition

Under the markovian2 and stationarity assumptions, a MDP is defined by a finite

state space S, a finite set of available control actions A(s) associated to each state s ∈ S,

a cost c(s,s',u) which is incurred by the system when it is in state s, action u is chosen,

and the system transitions to state s', and the transition probability t(s,s',u) that, in the

next stage, the system will be in state s' when action u in state s is chosen. The transition

probabilities t(s,s',u) constitute the transition matrix T.

In finite-horizon MDPs, the system is observed for n stages. A policy is a

function π(s;t) which at stage t maps every state s ∈ S to a unique control action

u ∈ A(s). When the system operates under a policy π(s;t), the system incurs in the

following expected total (undiscounted) cost:

[]








+= ∑
=

ππ
n

t
tttcEC

1
)1(),(),(sus

 (5.1)

where the subscript π specifies that the controller operates under policy π and

c[s(t), u(t), s(t+1)] is the cost incurred at stage t when the system is in state s(t). The

MDP problem is to determine the optimal policy π* minimizing (5.1).

A standard algorithm for finite-horizon MDPs is the successive approximation

algorithm ([42]), which returns i) the optimal policy π∗(s;t) to be applied at stage t,

t = 1,…,n, s ∈ S; ii) the optimal value function V∗(s), which represents the expected cost

of applying the optimal policy π∗(s;t) for stages t = 1,…,n, starting from state s ∈ S.

2 A stochastic process has the Markov property if the conditional probability distribution of the next state
of the process depends only upon the present state and is conditionally independent of past states

77

V.3.2 MDP fault-tolerant routing

In this section, the fault-tolerant routing problem is formulated as a finite-

horizon MDP. For the sake of comprehension, Table 1 summarizes part of the notation

which will be used in this section.

Element Set Cardinality

Routing table r Ρ is the set of all possible routing tables card(Ρ) = R

Path status x Ξ is the set of all possible path status vectors card(Ξ) = X

State s S is the state space card(S) < PR

 Sx is the set of states with path status x card(Sx) < card(S)

Flow f Φ is the set of flows card(Φ) = F

Link l Λ is the set of links card(Λ) = L

 Λp is the set of the links of path p card(Λp) < L

 Λ(x,x') is the set of the links which cause the

transitions between x and x' as they change link

state

card(Λ(x,x')) < L

Path p Π is the set of paths card(Π) = P

 Πl is the set of the paths which include link l card(Πl) < P

 Πf is the set of the paths which are

available to flow f

card(Πf) < P

 Πr is the set of the paths in use by

routing table r

card(Πr) < P

Table 1 - Definitions of flow, path and link sets

Let us consider a network supporting K classes of services and characterized by

a set of links Λ, with cardinality L. Each link l is characterized by its capacity bl,

expressed in [Mbps]. Let us define a generic flow f as a triple (source, destination, class

of service). Let the set of flows be Φ  and let F be the total number of flows. Each flow f

is characterized by a bitrate bf, expressed in [Mbps].

Different paths are available to route each flow f ∈ Φ (i.e., different paths exist

from source to destination of flow f); let Π be the set of paths, with cardinality P, and let

Πf ⊆ Π be the set of paths available to route flow f. Moreover, each path p ∈ Π is

78

constituted by a set of links Λp ⊆ Λ. Clearly, the generic link l can be included in more

than one path: let Πl ⊆ Π be the set of paths including link l, l = 1,…,L.

The network routing table r is a vector with F elements r f, f = 1,…,F; r f is equal

to the path p assigned to flow f. The set of routing tables is then:

{ }Ffprrrr ffF ,...,2,1 ,),...,,(21 =Π∈===Ρ r (5.2)

Let R be the number of possible routing tables, and let Πr ⊆ Π be the set of paths

used by routing table r (i.e., the set of paths p such that r f = p for at least one f).

In my purposes, as specified in before, network traffic is considered static

between two traffic events, in the sense that the number and the characteristics of the

flows remains the same in the period between two traffic events: in other words, the

MDP is defined between two traffic events. Traffic events are: new flow acceptance,

flow termination and flow variation. In this work (as in the OMEGA project) I assume

that an admission controller is in charge of admitting high-demanding flows in the

network. Thus, the new flow acceptance event corresponds to the establishment of a

new flow in the network; the flow termination event corresponds to the end of

transmission of an on-going flow; the flow variation event corresponds to the variation

of the bitrate of an already accepted flow (after re-negotiation of flow parameters with

the admission controller).

The MDP must be re-initialized at every traffic event. The mean interval

between two traffic events is considered as the duration of the finite-horizon MDP.

The control action is relevant whenever a path currently used by a flow becomes

unavailable due to a link fault. The controller must then decide where to re-route the

flows, i.e., which paths to select among the available ones. It is also possible that one or

more flows cannot be routed anymore in the new link conditions: in this case, the

admission controller must decide upon the dropping of one or more flows. From the

routing point of view, the decision to drop a flow is equivalent to the flow termination

traffic event, which entails the definition of a new MDP.

In the following, it is introduced the link model, the overall framework and

finally how the proposed algorithm is used to take routing decisions.

79

V.3.2.1. Link model

In this work, I consider the possibility of incurring in link faults. The dynamics

of each link l ∈ Λ is modeled by a two-state Markov chain: in the unavailable state, the

link cannot be used to transmit data, i.e., its capacity is 0; in the available state, the link

can be used to transmit data, i.e., its capacity is bl
3. I assume that both the transition

frequency between the available state and the unavailable state and the transition

frequency between the unavailable state and the available state are distributed according

to Poisson processes with mean frequencies µl and λl, respectively, expressed in

[min-1]. A given path p is available only if all the links of the set Λp are available. Then,

if a link l becomes unavailable, all the paths p ∈ Πl becomes unavailable. From standard

Markov chain theory ([37]), the probability that link l is in the available and in the

unavailable states is computed as λl / (λl + µl) and µl / (λl + µl), respectively.

Link state changes trigger topology events, which drive the MDP dynamics.

Link statistics are easily available in home networks (for example, in OMEGA link

statistics are collected by any device in charge of controlling the network).

V.3.2.2. Fault-tolerant MDP routing

The MDP is defined by the state space S, the action space A, the transition

probability matrix T and the cost function c.

1. State space S

The path status x is a vector with P elements xp, p = 1,…,P, such that xp = 1 if

path p is available (i.e., if all links l ∈ Λp are available), xp = 0 otherwise. The set of

path status vectors is then:

{ }{ }Ppxxxx pP ,...,2,1 ,1,0),...,,(21 =∈==Ξ x . (5.3)

The number X of possible path status vectors is 2P. In the following, considering

two path status vectors x, x' ∈ Ξ, I will write x > x' if xp > xp ∀ p ∈ Π and xp > xp for at

least one path p ∈ Π.

3 Note that, for some links, a two-state link model might be insufficient. The proposed framework can be
extended to include also links modeled by N-state Markov chain by following the rationale in [38].

80

The system state is given by the path status vector and by the current routing

table; the generic state s is then the (F+P)-vector s = (r ,x), with r ∈ Π and x ∈ Ξ.

Clearly, not all the couples (r ,x) are feasible; specifically, the state s = (r ,x) is feasible

only if the following two feasibility conditions hold:

rΠ∈∀= pxp ,1 ; (5.4)

∑
Λ∈=Φ∈

Λ∈≤
pf lprf

lf lbb
 and

 , . (5.5)

The first feasibility condition (5.4) states that all the paths used by r must be

available in x; the second condition (5.5) states that, for each link l ∈ Λ, the link

capacity bl must be greater than or equal to the load of link l, computed as the sum of

the bitrates of all the flows routed by r on paths including link l.

In addition to the states identified by equations (5.4) and (5.5), I add an

absorbing state sabs, where the system transitions whenever no other feasible state exist

(in brief, the absorbing state can be considered as an aggregate of all the states (r ,x)

which does not meet the two feasibility conditions).

The state space is then defined as follows:

() () (){ ; ,1 ;,...,, ;,...,,, 2121 rxrxrs Π∈∀=Ξ∈=Ρ∈=== pxxxxrrrS pPF

{ }. ,;
 and

abs
lprf

lf

pf

lbb s∪






Λ∈∀≤∑
Λ∈=Φ∈

 (5.6)

Finally, the following sets are defined:

� Let Λ(x,x') be the set of links which are available when the path status is x and

whose transition to the unavailable state lead the path status from x to x > x'

(generally, there are different links which causes the same change of path status).

The same set of links is clearly involved in the transition from x' to x: in this

case, the transition occurs when a given link l ∈ Λ(x,x') transitions from the

unavailable to the available state and all the other links l ' ∈ Λ(x,x')\{ l} are already

available. Λ(x,x') is defined as follows:

 { }otherwise ' , if ')',(pplpp xxpxxl ≠Π∉=Λ∈=Λ xx (5.7)

81

� Let Sx ⊆ S be the set of states associated to path status x:

 { }Ξ∈=∈= xxrssx),,(SS (5.8)

(note that Sx might be empty for some x ∈ Ξ, and that { }absSS s
x

x ∪=
Ξ∈
U).

2. Action Space A

In the generic state s = (r ,x) ∈ S, if i) link l ∈ Λ(x,x') is unavailable, ii) all the

other links l ' ∈ Λ(x,x')\{ l} are already available, and iii) l becomes available, one ore

more paths which are not available in x (i.e., all the paths p ∈ Πl such that xp = 0)

become available. In this case, since the path status changes from x to x' ∈ Ξ with x' > x,

all the paths which were feasible in s are still feasible, and the system transitions from

s = (r ,x) to the new (feasible) state s' = (r ,x') ∈ S without requiring any control action.

On the other hand, if a link l ∈ Λ(x,x'), available in x, transitions to the

unavailable state, it renders unavailable one or more available paths (i.e, all the

available paths p ∈ Πl such that xp = 1). In this case, the path status vector changes from

x to x' ∈ Ξ. If Πr ∩ Πl = ∅ (i.e., if all the paths p ∈ Πl are not used by the current

routing table r), the system transitions from s = (r ,x) to the new state s' = (r ,x') ∈ S

without requiring any control action.

Conversely, if Πr ∩ Πl ≠ ∅ (i.e., if one or more paths used by r become

unavailable), the controller must change the routing table. If Sx' = ∅ (i.e., if no routing

table r ' ∈ Ρ exist such that (r ',x') ∈ S), the system transitions to the state sabs, and the

admission controller is triggered. Otherwise, the controller must decide which routing

table to choose among the routing tables which are feasible with respect to x'.

Let us consider the generic state s = (r ,x) ∈ Sx, and let us assume that a transition

occurs from the available to the unavailable state of a link l ∈ Λ(x,x'). When this event

occurs, the decision to change the routing table from r to r ' ∈ Ρ is denoted with u(s,s'),

where s' = (r ',x'):

� if s' ∈ Sx' and the controller decides to enforce the routing table r ', then

u(s,s') = 1;

� if s' ∈ Sx' but the controller decides to enforce another routing table, u(s,s') = 0;

� finally, if s' ∉ S, then u(s,s') is not an available decision in s.

Clearly, the controller must decide to enforce exactly one routing table.

82

In conclusion, the action space when the system is in state s ∈ Sx is then defined

as follows:

[] { }












∈===∅≠Λ== ∑
∈

∈ otherwise 1,0)',(),'(' if 1)',(,1)',(,)',()(
'

'
'

)',(' ssxrsssssssus
x

x
s

xxs u,uuuA
S

S

 (5.9)

where u is the vector of possible controller actions when the system is in state s ∈ Sx

and a link l ∈ Λ(x,x') becomes unavailable.

The controller policy is the function π: S×[1,n] → A defined by setting a feasible

action vector u ∈ A(s) for each state s ∈ S and for each stage t ∈ [1,n]. The policy space

Ο is the set of the feasible policies:

{ }ntAStπ ,...,1),(,),(=∈∈==Ο susus (5.10)

3. Transition matrix

The transition frequencies between states can be inferred from the link transition

frequencies (between their available and unavailable states) and from the above-defined

action space.

Let us consider two generic states s =(r ,x) ∈ Sx and s' = (r ,x') ∈ Sx', with the

same routing table r and such that x' > x. I recall that when the path status is x, it

changes to x' if the following conditions hold:

i) a given link l ∈ Λ(x,x') is in the unavailable state;

ii) all the other links l ' ∈ Λ(x,x')\{ l} are already available;

iii) link l transitions to the available state.

Since the path status is x, the probability that all links l ∈ Λ(x,x') are available is

null (otherwise the path status would be x'): thus, condition ii) implies condition i).

From the link dynamic model, it follows that the probability of ii) is

[]∏
Λ∈

µ+λλ
ll

lll
\'

'''

)',(

)/(
xx

, and that the mean frequency of event iii) is λl. As specified above,

83

no action is required in this case, and the system transits from state s to state s' with the

following total mean frequency:

.' ,)',(' ,),(,)',('
\' ''

'

)',()',(

xxxrsxrsss xx
xx xx

>∈=∈=












λ
µ+λ

λ
=φ ∑ ∏

Λ∈ Λ∈
SS

l ll
l

ll

l (5.11)

where in the summation I exploited the hypothesis of Poisson transition frequencies

between link states.

Let us consider two generic states s =(r ,x) ∈ Sx and s' =(r ',x') ∈ Sx' such that

x > x' and Sx' ≠ ∅. I recall that when the path status is x, it changes to x' if a given link

l ∈ Λ(x,x') transitions to the unavailable state (note that all links l ∈ Λ(x,x') are always

available when the path status is x). From the link dynamic model, it follows that the

mean frequency of this event is µl. In this case, the mean frequency of the transition

from state s to state s' depends also on the re-routing decision of the controller u(s,s'):

'. ,' , ,)',()',('

)',(

xxssssss xx
xx

>∈∈µ=φ ∑
Λ∈

SSu
l

l (5.12)

Finally, let us consider the generic state s = (r ,x) ∈ Sx and a path status x' such

that Sx' = ∅. In this case, the system transitions from state s to state sabs with the

following transition frequency:

' , , ,),('

)',(

xxsss xx
xx

>∅=∈µ=φ ∑
Λ∈

SS
l

labs . (5.13)

To obtain the transition probabilities tπ(s,s') (where the sub-index π highlights

that some transition probabilities depend on the adopted policy), I apply a standard

uniformization procedure ([39]):

i) compute the so-called uniformization constant, which is an upper-bound of the

total outgoing frequency of each state:









φγ ∑
∈∈

)',(max>
'

ss
ss SS

 (5.14)

ii) divide the transition frequencies by γ:

84

xxssss xx
xx

>∈∈λ
γ

= ∑
Λ∈

π ' ,' , ,
1

)',('

)',(

SSt
l

l ; (5.15)

' ,' , ,)',(
1

)',('

)',(

xxssss xx
xx

>∈∈µ
γ

= ∑
Λ∈

π SSssut
l

l ; (5.16)

' , , ,
1

),('

)',(

xxsss xx
xx

>∅=∈µ
γ

= ∑
Λ∈

π SSt
l

labs . (5.17)

iii) Add self-transitions to let the sum of the transitions leaving each state be

equal to 1:

Stt
S

∈− π

≠
∈

π ∑ sssss

ss
s

),',(1=),(

'
'

. (5.18)

Note that γ is expressed in [min-1] and that, since no transition outgoing from sabs

exists but the self-transition (5.18), its self-transition probability tπ(sabs, sabs) is 1 (sabs is

in fact an absorbing state).

The transition probabilities tπ(s,s') constitute the transition matrix T.

Remark 1

Note that when the system is in a given state in the subset Sx and a topology

event causes the path status vector to transition from x to x', the transition probability

t(x,x') between the subsets Sx and Sx' is uncontrolled and, thus, does not depend on the

routing policy. In fact, from equations (5.15)-(5.17), the following transition

probabilities between subsets Sx and Sx' are obtained:

;' , , ,
1

)',('
\' ''

'

)',()',(

xxxx xx
xx xx

>∅≠∅≠












λ
µ+λ

λ
γ

= ∑ ∏
Λ∈ Λ∈

SSt
l ll

l
ll

l (5.19)

' , , ,
1

)',(
)',(

' xxxx
xx

xx >∅≠∅≠µ
γ

= ∑
Λ∈l

l SSt ; (5.20)

' , , ,
1

),('

)',(

xxsx xx
xx

>∅=∅≠µ
γ

= ∑
Λ∈

SSt
l

labs . (5.21)

85

where, to compute equation (5.20), I considered that the sum of the decisions u(s,s')

must be 1 (see definition (5.9)).

In conclusion, if the system is in the generic state s ∈ Sx, the role of the

controller is then just to decide which state s' among the ones in Sx' to choose when the

path status vector transitions from x to x', with x > x' and Sx' ≠ ∅. If the topology event

is such that x' > x or Sx' = ∅, no control decision is required.

4. Cost function c

The main objective of the fault-tolerant routing policy is to minimize the number

of path changes, and in case of path changes it is desirable to minimize the link changes

(i.e., the number of links affected by re-routing changes). Moreover, if the network

supports classes of service to offer QoS guarantees, the cost of changing paths is also

weighted by the class of service of the re-routed flows.

To reflect these objectives, the cost function associated to state s = (r ,x) and next

state s' = (r ',x') is defined as follows:

[])',()',()',(
1

)()(rrrrss linklink

K

k

k
path

k
path wwc ∆+∆=∑

=

, (5.22)

where:)',()(rrk
path∆ is the number of re-routed flows of class k when the routing table

changes from r to r '; ∆link(r ,r ') is the number of links which in r ' support different paths

with respect to r ;)(k
pathw is the weight associated to the re-routing of a class k flow; wlink

is the weight associated to the link changes. I consider that the last part of the cost

(related to the link changes) is used just to decide among two or more new routing

tables which have the same path cost; thus, I will set wlink <<)(k
pathw , k = 1,…,K4.

V.3.2.3. MDP algorithm outcomes

As mentioned in before, a standard algorithm to find the optimal solution of a

finite-horizon MDP problem is the Successive Approximation algorithm, which returns,

at each stage t, the optimal stage-per-stage policy π*(s,t) and the coupled optimal value

4 The path and link weights could also be setup according to the technologies of the involved networks.

86

function V*(s). The total number of stages n is computed by taking the upper integer

value of the mean time interval between two traffic events (which is considered as the

duration of the finite-horizon MDP) times the uniformization constant γ. Note that the

new traffic event might occur before or after the final stage n: in the former case, the

MDP is re-initialized before the considered finite-horizon; in the latter case, the

controller keeps on using the final policy. In both cases, since the actual MDP duration

is different with respect to the considered finite horizon, the policy π*(s,t) is sub-optimal.

The results of the algorithm are exploited in two ways, as analyzed in the

following paragraphs: 1) to define the optimal re-routing policy in case of link faults; 2)

to identify the optimal initial state.

1. Optimal re-routing policy in case of link faults

At each stage t = 1,…,n, the optimal stage-to-stage policy π*(s,t) conveys the re-

routing actions in case of link faults: let us assume that at stage t the system is in state

s = (r ,x), and that link l becomes unavailable causing the path status to change from x to

x', with x > x'; thanks to the action space defined in equations (5.3) and (5.9), in the

optimal policy there is exactly one state s* = (r *,x') ∈ Sx' such that 1),(** =ssu , whereas

the other decisions)',(* ssu are equal to 0 for each state s' ∈ Sx' such that s' ≠ s*. Thus,

the controller decision is to change the routing table from r to r *, entailing the system

transition from state s to state s*.

2. Optimal initial state identification

The optimal value function V*(s) is used to decide the optimal initial state

),(** xrs initialinitial = after a traffic event. Given the path status x, there can be either no

feasible states (i.e., Sx = ∅), or there exist one or more candidate initial states,

identified by all the routing tables r such that s = (r ,x) ∈ S. In the former case, which is

relevant either in case of new incoming flows or in case of flow variation, the new MDP

starts directly in the absorbing state sabs, which means in practice that the admission

controller must block/drop one or more flows, and that then the MDP must be re-

initialized. In the latter case, the most appropriate initial state must be chosen.

To choose the optimal initial state, I simply extend the definition of cost (5.22)

to compute the cost of each candidate initial state s, hereafter referred to as cinitial(s). As

87

a traffic event occurs, a new MDP {S,A,T,C} is defined, and the controller has to decide

the initial state, based on the last routing table of the former MDP, rold, and on the

current path status x. Three traffic events are considered:

a) Flow variation

In this case, the new routing table r will have the same number of flows with

respect to the past one rold. Cost definition (5.22) is thus seamlessly applicable to

compute the cost cinitial(s) of transiting from (rold,x) to the candidate initial states s ∈ Sx:

cinitial(s) = c[(rold,x), s]. Note that if (rold,x) is still feasible (i.e., (rold,x) ∈ S), no re-

routing is necessary.

b) New flow acceptance

In this case, the new routing table r will have one more flow with respect to the

past one rold. Let F be the number of flows of the new MDP; then, rold has (F – 1) flows.

Without loss of generality, let us assume that the first (F – 1) flows of the new MDP are

the same flows of the past routing table; then, I extend rold by adding a null F-th element.

Cost definition (5.22), is subsequently applicable to compute the cost cinitial(s) of

transiting from [(r old,0),x] to the candidate initial states s ∈ Sx:

cinitial(s) = c[((rold,0),x), s].

c) Flow termination (or dropping)

In this case, the new routing table r will have one less flow with respect to the

past one rold. Let F be the number of flows of the new MDP; then, rold has (F + 1) flows.

Without loss of generality, let us assume that the first F flows of the old routing table

are the same flows of the new routing table; then, I extend r by adding a null (F+1)-th

element. Cost definition (5.22), is subsequently applicable to compute the cost cinitial(s)

of transiting from [rold,x] to the extended candidate initial states sext = [(r ,0),x], such that

(r ,x) ∈ Sx: cinitial(s) = c[(rold,x), sext].

To finally choose the optimal initial state, the cost cinitial(s) of choosing the

candidate initial state s is added to the n-stage cost incurred by the system starting from

s. The expected cost of starting from a candidate state s ∈ Sx when the current path

status is x is then the following:

88

Einitial(s) = cinitial(s) + V*(s), s ∈ Sx. (5.23)

The optimal initial state *initials is then chosen as the candidate initial state s ∈ Sx

which has the lowest expected cost (5.23).

From this discussion, it appears clear that the validity of a given policy is limited

in time by traffic events, i.e., traffic changes. This limitation and the well-known

scalability problems of the MDP approach ([29]) are lightened since, as above discussed,

I consider 1) home networks with a limited number of nodes, 2) a limited number of

high-bitrate flows with long duration, and 3) I consider sporadic and low-bitrate flows

as uncontrolled background traffic with low-priority.

In any case, the scalability problem of the proposed MDP approach renders it

unsuitable in future home networks, which are expected to consists of tens (or even

hundreds) of nodes. In this respect, the purpose of this MDP formulation is to define the

fundamental theoretical framework which is necessary to analyze the fault-tolerant

routing problem in time-varying network topology scenarios: then, the developed

framework can be used to develop more practical algorithms based, for example, on

Approximate Dynamic Programming ([39]) and Reinforcement Learning ([15])

approaches.

In the next section, a Reinforcement Learning formulation of the fault-tolerant

routing described so far is presented.

V.4. Q-Learning formulation of the routing algorithm

A Reinforcement Learning formulation of the fault-tolerant MDP routing

algorithm presented in the previous section has been realized in order to develop an

algorithm that has low computational cost and then that can be easily implemented in

real-time network control systems.

In particular, in this work the Q-Learning approach has been used to calculate

both the 1) initial action and 2) the action to be taken in case of link fault.

89

1. Initial action identification

In the Q-Learning approach, the learned action-value function),(tt asQ is used

to determine the optimal action to be taken in each state.

At the beginning of the process, the),(tt asQ matrix is initialized with a value

that is related to the probability that the paths used by the new flows can be subject to a

fault. In particular, considering that a path p is composed by a set of links l and that the

probability of fault for a link l is au (l), the probability that a path is not subject to a fault

is given by

()[]∏
∈

−
pl

u la)(1 (5.24)

Thus, the initial),(tt asQ is set in the following way:

()[]∏
∈

−−=
pl

utt laasQ)(11),((5.25)

 The best initial action 0a is thus chosen in order to minimize),(00 asQ for each

Aa∈ .

2. Re-routing action in case of link faults

Let us assume that at stage t the system is in state s = (r ,x), and that link l

becomes unavailable causing the path status to change from x to x', with x > x'. The

controller decision is to change the routing table from r to r t+1, entailing the system

transition from state s to state st+1.

Following the Q-learning one-step action value optimization, I derive

[]),(),(min),(),(11 ttt
a

ttttt asQasQcasQasQ −++← ++ σα (5.25)

where α is the learning rate, σ is the discount factor and 1+tc is the cost associated to

1+ts :

 [])',()',()',(
1

)()(rrrrss linklink

K

k

k
path

k
path wwc ∆+∆=∑

=

 (5.26)

90

In particular, the learning rate α determines to what extent the newly acquired

information will override the old information. A factor of 0 will make the agent not

learn anything, while a factor of 1 would make the agent consider only the most recent

information. The discount factor σ determines the importance of future rewards. A

factor of 0 will make the agent "opportunistic" by only considering current rewards,

while a factor approaching 1 will make it strive for a long-term high reward. If the

discount factor meets or exceeds 1, the Q values will diverge.

Following this rule it is possible to calculate, at each step, the best action to be

taken in order to minimize the cost of passing from state ts to state 1+ts .

A limitation in applying this rule is that, at each stage, the algorithm selects

always the best possible action on the basis of the acquired knowledge (greedy policy).

But in this case the exploration is never performed, thus I can say that the algorithm is

myopic. In order to increment long-term performances of the algorithm, an ε- greedy

policy is adopted so that, with probability ε, the action selected is chosen in a random

way. This assures that the algorithm selects also not optimal actions that could instead

lead to a lower long term costs.

91

Chapter VI

Results

VI.1. Introduction

In this chapter I present the results of a set of simulations done to understand the

behaviour of the proposed algorithm. In order to perform the simulations, MATLAB

simulation tool was used.

At first, a detailed description of the home network scenario used for the

simulations is presented. In particular, I created a heterogeneous home network scenario

where four different telecommunication technologies are used to compose the network,

namely Ethernet, Otical fiber, PLC and WiFi.

The first serie of simulations were done to understand the behaviour of the MDP

algorithm presented in section V.3. The ‘greedy’ policy, the ‘optimal’ policy and the

‘optimal QoS’ policy have been thus simulated and compared.

After that, also the behaviour of the Q_Learning algorithm presented in section

V.4 has been simulated and its performances were compared with the ones of the

‘greedy’ and ‘optimal’ MDP algorithm.

As deeply described in this chapter, simulation results show that the MDP

algorithm achieve better performances in respect to the Q-Learning algorithm. Anyway

the results obtained demonstrate that Q-Learning performances are quite close to the

MDP ones and thus it that it is possible to use a Q-learing algorithm in real-time

applications as the one presented in this work.

VI.2. Scenario description

In order to simulate the behaviour of the proposed algorithms and to evaluate the

performances, I consider the simple (for the sake of document comprehension) but

meaningful (from the evaluation viewpoint) home network shown in Figure 12, where

Si and Dj denote the source of flow i and the destination of flow j, respectively, and the

Home Gateway is the router interconnecting the home network and the Internet; flows 3

92

and 4, which comes from the Internet, are considered as originated by the Home

Gateway.

D4
D1

S2S1

ETHERNET

Optical Fiber

WiFi

PLC

BEDROOM

B
E

D
R

O
O

M
LOUNGE

D2,D3

HOME OFFICE

HOME
GATEWAY

S3,S4

Figure 12 - Example home network

Considering that Ethernet, Wi-Fi, Power Line Communication (PLC) and

Optical Fiber (OPT) are networks characterized by a shared medium (briefly, the

network capacity is shared among all the users), each network is modeled as a single

link: link 1 models the first-floor OPT network; link 2 models the PLC network; link 3

models the Wi-Fi network; link 4 models the ground-floor Ethernet network, which is

connected to the first-floor network by the Home Gateway. Note that each network

element (i.e., the PCs and the TV in Figure 12) can be source and/or destination of more

than one flow, and that it is assumed that the same element is capable of using more

than one technology. Figure 13 shows the scheme of the considered home network,

where, for the sake of simplicity, D1 and D4 are collapsed in a single network entity.

93

Link 2 (PLC)

Link 4 (ETH)

S1 S2 D1,D4

D2,D3

Link 1 (OPT)

HOME
GATEWAY

Link 3 (WiFi)

S3,S4

Figure 13 - Scheme of the exaple network

Link characteristics are strictly related to the network technologies. Table 2

shows the link parameters µl, λl and bl, l = 1,…,4, used in the simulations5. For the sake

of simplicity, all link capacities bl, were set equal to 10 Mbps, but the OPT capacity

b1 = 100 Mbps. By equation (5.14) and considering the link characteristics, the value

γ = 0.669 min-1 was chosen.

Link # Technology bl [Mbps] λl [min-1] µl [min-1]

1 OPT 100 1/10 1e-4

2 PLC 10 1/60 1/20

3 WiFi 10 1/30 1/30

4 ETH 10 1/5 1e-4

Table 2 - Link characteristics

Four source-destination couples were considered, as shown in Figure 14 and Figure 15,

each one modeled as a two-state Markov chain: in the ‘on’ state, the source transmits its

flow; in the ‘off’ state, the source is silent. For the sake of simplicity, all transmission

rates bf, f = 1, 2, 3, were set equal to 4.5 Mbps. The transition frequencies from the ‘on’

5 Note that we considered Ethernet and Optical Fiber links as reliable links: in fact, the frequencies µl of
links 1 and 4 are so small that, in practice, the algorithm results do not sensibly change if we consider
them as always available, with the advantage of a state space reduction.

94

to the ‘off’ state and vice-versa, denoted with µf and λf, respectively, were set as in

Table 3.

s1s2

s3

Sx2

s5

s7

Sx1

s8

s9 s10

sabs

s4

s6

t(
x 5

,x
3)

t(x3,sabs)

Sx4

s13 s14

Sx3

s11 s12

Sx5

s15

Sx6

s16
t(x1,x4

)

t(x4,x1)

t(x
1 ,x

3)
t(x

3 ,x
1)

t(x2,x5)

t(x5,x2)

t(
x 5

,x
3)

t(
x 5

,x
3)

t(
x 5

,x
3)

t(x 5
,sab

s
)

t(x
3 ,s

abs)

t(
x 6

,s
ab

s)

t(x4,x6)

t(x6,x4)

Figure 14 - MDP example: state space { }abs
i

i
SS sx ∪=

=
U
6

1

 and transitions among subsets
i

Sx ,

i = 1,…,6

Sx2

Sx1

s10

s6 Sx4

s14

Sx3

s11

s12
tπ(s6,s10) =
t(x1,x2)

tπ(s6,s14) =

t(x1,x4)

tπ (s
6 ,s

12) =

u(s
6 ,s

12)t(x
1 ,x

3)

tπ(s6,s6)

tπ (s
6 ,s

11) =

u(s
6 ,s

11)t(x
1 ,x

3)

Figure 15 - MDP example: transitions from state s6

95

Flow # bf [Mbps] λf [min-1] µf [min-1]

1 4.5 1/45 1/100

2 4.5 1/60 1/90

3 4.5 1/75 1/30

4 4.5 1/90 1/20

Table 3 - Flow characteristics

Finally, the paths available to each flow are shown in Table 4.

Flow # Path # Link sequence Link technologies

1 1 {1,0,0,1} OPT-ETH

1 2 {0,1,0,0} PLC

1 3 {1,0,1,0} OPT-WiFi

2 1 {1,0,0,1} OPT-ETH

2 4 {0,0,1,0} WiFi

3 5 {0,0,0,1} ETH

3 4 {0,0,1,0} WiFi

4 2 {0,1,0,0} PLC

4 4 {0,0,1,0} WiFi

4 5 {0,0,0,1} ETH

Table 4 - Paths

To clarify the MDP framework developed in Chapter 5, I construct the MDP

corresponding to the case in which only flows 3 and 4 are active (F = 2). The feasible

states are listed in Table 56, where: the routing table vector elements denote the paths of

flows 3 and 4, respectively; the path status vector elements denote the status of path 1

(OPT-ETH), of path 4 (WiFi) and of path 5 (ETH), respectively.

6 Clearly, when 3 or 4 flows are active, the state space is considerably larger.

96

Routing table Path status State

r1 = (4,2) x1 = (1,1,1) s1 = (r1,x1)

r2 = (4,4) x1 = (1,1,1) s2 = (r2,x1)

r3 = (4,5) x1 = (1,1,1) s3 = (r3,x1)

r4 = (5,2) x1 = (1,1,1) s4 = (r4,x1)

r5 = (5,4) x1 = (1,1,1) s5 = (r5,x1)

r6 = (5,5) x1 = (1,1,1) s6 = (r6,x1)

r2 = (4,4) x2 = (0,1,1) s7 = (r2,x2)

r3 = (4,5) x2 = (0,1,1) s8 = (r3,x2)

r5 = (5,4) x2 = (0,1,1) s9 = (r5,x2)

r6 = (5,5) x2 = (0,1,1) s10 = (r6,x2)

r1 = (4,2) x3 = (1,1,0) s11 = (r1,x3)

r2 = (4,4) x3 = (1,1,0) s12 = (r2,x3)

r4 = (5,2) x4 = (1,0,1) s13 = (r4,x4)

r6 = (5,5) x4 = (1,0,1) s14 = (r6,x4)

r2 = (4,4) x5 = (0,1,0) s15 = (r2,x5)

r6 = (5,5) x6 = (0,0,1) s16 = (r6,x6)

- - sabs

Table 5 - Feasible states with active flows 2 and 3

Note that there are 6 path status vectors xi which lead to the non-empty sets
i

Sx ,

i = 1,…,6. The (uncontrolled) transition probabilities between the subsets Sx, given by

equations (5.19)-(5.21), are shown in Figure 14.

To show an example of transition probabilities, Figure 15 represents the

transition probabilities outgoing from state s6 = (r6,x1). Beside the self-transition,

defined by equation (5.18), the figure shows that:

- Two transitions tπ(s6,s10) and tπ(s6,s14) exists from s2 to the subsets
2xS and

4xS ,

respectively. Since the two states s10 = (r6,x2) and s14 = (r6,x4) are such that no

routing table change is required, these transitions are uncontrolled (see definition

(5.9)) and are equal to t(x1,x2) and t(x1,x4), respectively.

- Two controlled transitions tπ(s6,s11) and tπ(s6,s12) from s6 to the subset
3xS exists,

given by equation (5.15), since (i) x1 > x3, and (ii) the state (r6,x3) is not feasible.

97

According to equations (5.16) and (5.20), the two controlled transitions are

equal to tπ(s6,s11) = u(s6,s11)t(x1,x3) and tπ(s6,s12) = u(s6,s12)t(x1,x3), respectively,

with u(s6,s11), u(s6,s12) ∈ {0,1} and u(s6,s11) + u(s6,s12) = 1 (see definition (5.9)).

VI.3. MDP simulation results

Numerical simulations were performed with the aim of evaluating the

effectiveness of the proposed MDP approach. The example home network described in

previous section was considered. Two simulations were set up. Both simulations share

the same scenario depicted above.

Three policies were computed by properly setting the algorithm parameters,

denoted as ‘greedy’, ‘optimal’ and ‘optimal QoS’. The ‘optimal’ policy is the policy

aimed at minimizing the cost (5.22) of changing the routing tables, without

differentiating among the classes of service. The ‘optimal QoS’ policy takes into

account also prioritization among the different classes of service. For comparison

purposes, the ‘greedy’ policy is also considered, which, after a topology or traffic event,

chooses the new routing table as the one which entails the least number of path changes

and, in sequence, the least number of link changes.

With the ‘greedy’ and ‘optimal’ policies, the flows are not differentiated by their

class of service, and the weights)(k
pathw associated to path changes of class k, k = 1,…,K,

are equal to 1. With the ‘optimal QoS’ policy, flow 1 has higher priority: accordingly,

the weight)1(
pathw was increased and set equal to 2. In all the policies, the weight wlink,

associated to link changes, was set equal to 0.025. Note that the link weight is much

smaller then the path weights since it is used only to choose between routing tables

which involve the same number of path changes.

From the Markov chain modeling of the sources, the mean time interval between

traffic events, regarded as the finite-horizon time of the MDP, is computed as

1
4

1

2
−

=














+
= ∑

f ff

ff
fht

µλ
µλ

= 15.54 min. Thus, the number of stages of the MDP is computed

as n = γ tfh = 11. To obtain the ‘greedy’ policy it is sufficient to set n = 1.

Algorithm parameters are shown in Table 6.

98

Policy)1(
pathw)2(

pathw)3(
pathw)4(

pathw wlink n

Greedy 1 1 1 1 0.0025 1

Optimal 1 1 1 1 0.0025 33

Optimal QoS 2 1 1 1 0.0025 33

Table 6 – First simulation set: algorithm parameters

Simulation 1 was aimed at evaluating the overall algorithm performances. 10

simulation runs were performed. For each run, the link and flow parameters were used

to generate an event list; the events can be traffic events, i.e., flow births or terminations,

and topology events, i.e., link state variations. At each traffic event, the MDP algorithm

is performed and the initial routing table is selected according to the theory presented in

the previous chapter. At each topology event, the policy computed by the MDP

algorithm is applied to decide upon state transitions. Each simulation run was executed

three times: the first time with the ‘greedy’ policy, the second time with the ‘optimal’

policy, the third time with the ‘optimal QoS’ policy.

Simulation results are collected by Table 7 and Table 8 and by Figure 16. Table

7 shows the mean number (over the 10 simulation runs) of routing table, path and link

changes due to flow re-routing (i.e., to the decision to change the path of already active

flows), denoted with Nr, Np and Nl, respectively, whereas Table 8 shows the per-flow

path changes, denoted with Np(i), i = 1,…,4. Figure 16 shows the ratio between the

values obtained with the ‘optimal’ and ‘optimal QoS’ policies over the values obtained

by the ‘greedy’ policy. The tables and the figure clearly show that:

I. the number of routing table, path and link changes are nearly halved

thanks to the proposed MDP approach, both with the ‘optimal’ and with

the ‘optimal QoS’ policies, with a slight advantage of the ‘optimal’ one;

II. the ‘optimal QoS’ policy manages to reduce the number of path changes

experienced by flow 1, which is the flow with the highest priority (i.e.,

with the largest weight), both with respect to the ‘greedy’ and the

‘optimal’ policies; to achieve this result, the ‘optimal QoS’ policy

increases the number of path changes experienced by the other flows (in

particular, in this scenario, by flow 3).

99

Policy Nr Np Nl

Greedy 13.6 18.0 45.9

Optimal 7.3 10.0 23.7

Optimal QoS 7.3 11.1 25.9

Table 7 - Simulation 1: total routing table/path/link changes

Policy Np(1) Np(2) Np(3) Np(4)

Greedy 5.8 5.3 2.0 4.9

Optimal 4.5 1.0 1.5 3.0

Optimal QoS 1.1 3.5 3.2 3.3

Table 8 - Simulation 1: per-flow path changes

0

20

40

60

80

100

routing table path link

m
e
an

 #
 o

f c
ha

n
ge

s
[%

]
 .

.

optimal/greedy

optimal QoS/greedy

0
25
50
75

100
125
150
175
200

flow 1 flow 2 flow 3 flow 4m
e
a
n
 #

 o
f p

a
th

 c
h
a
n
g
e
s

[%
]

 .

optimal/greedy

optimal QoS/greedy

a)

b)

Figure 16 - Simulation 1 results

Simulation 2 was aimed at showing how the routing table is chosen in case of an

acceptance of a new flow in the ‘optimal’ and in the ‘optimal QoS’ cases. To further

emphasize the ‘optimal QoS’ behavior, the weight of flow 1)1(
pathw was increased to 5. In

the example, initially all links are available, i.e., initial path status x is a P vector of

100

ones; flows 2 and 3 are active and routed on paths 1 (OPT-ETH) and 5 (ETH),

respectively. The algorithm is triggered by the acceptance of flow 1.

Table 9 and Table 10 and Figure 17 collect the algorithm results. Table 9and

Figure 17 a) show i) the expected number of routing table changes Er and the expected

number of path changes Ep in the finite-horizon time tfh, starting from the initial table7,

and ii) the probability Pr that the initial table is not changed in the finite-horizon time tfh.

Table 10 and Figure 17 b) show the expected number of path changes for flow, denoted

with Ep(i), i = 1,…,4, in the finite-horizon time tfh.

The resulting initial routing tables are [3 1 5] and [1 1 4] for the ‘optimal’ and

‘optimal QoS’ policies, respectively. The initial state obtained by ‘optimal’ policy,

which is aimed at minimizing the total expected path changes, entails that the active

flows 2 and 3 are not re-routed, and that flow 1 is routed on path 3 (OPT-WiFi); flow 1

cannot be routed on the more robust path 1 (OPT-ETH) since flows 2 and 3 already use

the Ethernet link, whose capacity is not enough to support 3 flows. On the contrary, the

‘optimal QoS’ approach, which is aimed also at prioritizing flow 1, returns an initial

state which implies to re-route flow 3 from path 5 (ETH) to path 4 (WiFi); in this way,

flow 1, which is the highest priority flow, can be routed on the robust path 1 (OPT-

ETH).

As shown by Table 9 and Figure 17 a), in the finite-horizon period tfh, the

‘optimal’ routing policy achieves slightly lower Er and Pr, and significantly reduces Ep

with respect to the ‘optimal QoS’ policy. Table 10 and Figure 17 b) shows that the

‘optimal’ policy addresses topology changes by re-routing flow 1, whereas the ‘optimal

QoS’ policy re-routes flows 2 and 3: in this way, the ‘optimal QoS’ policy manages to

minimize the expected number of path changes of the high-priority flow 1.

Policy Er Ep Pr

Optimal 0.529 0.558 0.419

Optimal QoS 0.581 2.163 0.450

Table 9 - Simulation 2: total expected routing table/path changes and probability of changing the
initial routing table

7 The collected statistics do not count the initial routing table change and the initial path change needed to
route the new flow 2.

101

Policy Ep(1) Ep(2) Ep(3) Ep(4)

Optimal 0.513 0.030 0.015 0

Optimal QoS 0.033 0.581 1.549 0

Table 10 - Simulation 2: expected per-flow path changes

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

flow #1 flow #2 flow #3 flow #4

E
xp

. #
 o

f p
a
th

 c
ha

ng
e
s

.

optimal

optimal QoS

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

1 2 3

optimal

optimal QoS

b)

a)

Er Ep Pr

Figure 17 - Simulation 2 results

VI.4. Q-Learning simulation results

In this case, numerical simulations were performed with the aim of evaluating

the effectiveness of the proposed Q-Learning approach. Again, the example home

network described in previous section was considered. One simulation was set up in

order to compare Q-Learning and MDP solutions performances.

In particular, the ‘optimal’ and the ‘greedy’ policies using the MDP approach

has been compared with the “ε-greedy” policy using the Q-Learning approach. The

‘optimal’ MDP policy is the policy aimed at minimizing the cost (5.22) of changing the

routing tables, without differentiating among the classes of service. The ‘greedy’ MDP

policy is also considered, which, after a topology or traffic event, chooses the new

routing table as the one which entails the least number of path changes and, in sequence,

the least number of link changes. The “ε-greedy” Q-Learning instead is the policy

102

aimed to minimizing the cost (5.22) of changing the routing tables on the basis of the

acquired knowledge, but also performing exploration in order to increase and complete

the knowledge about the system behaviour.

In this case I do not consider QoS, thus the flows are not differentiated by their

class of service, and the weights)(k
pathw associated to path changes of class k, k = 1,…,K,

are equal to 1.

Again, from the Markov chain modeling of the sources, the mean time interval

between traffic events, regarded as the finite-horizon time of the MDP, is computed as

1
4

1

2
−

=














+
= ∑

f ff

ff
fht

µλ
µλ

= 15.54 min. Thus, the number of stages of the MDP is computed

as n = γ tfh = 11. To obtain the ‘greedy’ policy it is sufficient to set n = 1

Algorithm parameters are shown in Table 11.

Policy)1(
pathw)2(

pathw)3(
pathw)4(

pathw wlink n γ α ε

Greedy MDP 1 1 1 1 0.0025 1 - - -

Optimal

MDP

1 1 1 1
0.0025 33

- -
-

ε-Greedy QL 1 1 1 1 0.0025 - 0.95 0.9 0.1

Table 11 – Second simulation set: algorithm parameters

Two simulations were perfomed, the first one with 10 hours duration of network

simulation, the second one with 20 hours duration of network simulation. Both the

simulations was aimed at evaluating the overall Q-Learning algorithm performances and

at comparing it bahviour with the MDP approach. For each simulation, the link and

flow parameters were used to generate an event list; the events can be traffic events, i.e.,

flow births or terminations, and topology events, i.e., link state variations. At each

traffic event, the MDP algorithm is performed and the initial routing table is selected

according to the theory presented in the previous chapter. At each topology event, the

policy computed by the MDP algorithm is applied to decide upon state transitions. Each

simulation run was executed three times: the first time with the ‘greedy’ MDP policy,

the second time with the ‘optimal’ MDP policy, the third time with the ‘ε-greedy’ Q-

Learning policy. In addition, every ‘ε-greedy’ Q-Learning policy was simulated four

103

times and the average routing table changes and re-routing table changes was calculated

in order to avoid that exploration could have a too strong impact on the results.

Simulation 1 results (10 hours of network simulation) are collected by Table 12,

by Figure 18 and Figure 19. Table 12 shows the number (the mean number over the 4

simulation runs for ‘ε-greedy’ Q-Learning policy) of routing table changes due both to

routing and to flow re-routing (i.e., to the decision to change the path of already active

flows), denoted with Nr and Nre, respectively.

The table and the figures clearly show that:

I. The performance of the QL algorithm in terms of number of routing table

changes are better than the ones obtained with a greedy policy and at the

same time are close to the ones obtained using the optimal MDP

approach;

II. The same consideration ally also when considering the number of re-

routing table changes.

Policy Nr Nre

Optimal MDP 130 35

Greedy MDP 135 40

ε-greedy QL 133.75 38.75

Table 12 - Simulation 1: total routing and re-routing table changes

104

Figure 18 - Simulation 1 results (routing table changes)

Figure 19 - Simulation 1 results (re-routing table changes)

Simulation 2 results (20 hours of network simulation) are collected by Table 13,

by Figure 20 and Figure 21. Table 13 shows the number (the mean number over the 4

simulation runs for ‘ε-greedy’ Q-Learning policy) of routing table changes due both to

105

routing and to flow re-routing (i.e., to the decision to change the path of already active

flows), denoted with Nr and Nre, respectively.

The table and the figures clearly confirm the results obtained with the previous

simulation. In particular, the proposed QL algorithm permits to achieve performances

close to the optimal requiring less computational effort. From this consideration it

appears that the proposed QL algorithm is suitable for real-time implementation as in

the home network scenario depicted in Chapter 2.

Policy Nr Nre

Optimal MDP 54 6

Greedy MDP 66 18

ε-greedy QL 61.5 13.5

Table 13 - Simulation 2: total routing and re-routing table changes

Figure 20 - Simulation 2 results (routing table changes)

106

Figure 21 - Simulation 2 results (re-routing table changes)

107

Chapter VII

Conclusions

This thesis describes a fault-tolerant routing control algorithm for Next

Generation Home Networks. The work has been done following two steps: i) definition

of the MDP theoretical control framework, ii) definition of a Reinforcement Learning

algorithm based on the control framework developed during the previous phase of the

work.

The theoretical relevance of the first part of the work is that it defines an MDP

framework for the fault-tolerant routing in communication networks characterized by

time-varying path availabilities and supporting persistent multimedia flows; this is

typically the case of heterogeneous home networks, where unreliable technologies such

as Wi-Fi and Power Line Communications are used.

The innovative approach consists in i) considering the problem of re-routing

flows between traffic events (e.g., flow acceptance/terminations); ii) defining the MDP

dynamics depending on topology events (e.g., link faults). The resulting optimal fault-

tolerant routing policy minimizes the re-routing occurrences, allows fast re-routing of

flows in case of link faults, and also allows selecting the optimal initial state after a

traffic event.

Numerical simulations validate the effectiveness of the proposed algorithm on a

meaningful example of home network.

Moreover, the considered home network scenario, although representative of

current home networks, is simpler than the future home network scenario considered in

OMEGA, where tens or even hundreds of objects (from the TV to the washing machine)

are inter-connected (the so-called Internet-of-Things (ITU Internet Reports, 2005)). In

this scenario, the poor scalability of the MDP approach will prevent the use of the

developed algorithm. Nonetheless, the proposed approach is still relevant since i) it

provides a theoretical framework for developing more scalable Approximate Dynamic

Programming and/or Reinforcement Learning algorithms, and ii) it provides an

evaluation benchmark.

108

In the second part of the work, a Reinforcement Learning algorithm, based on

the MDP theoretical framework built in the first phase, has been proposed to overcome

scalability problems of MDP approach. This algorithm is suitable to be implemented in

real-time environment and allows to achieve results that, has demonstrated by

simulations, are close to optimal ones.

On-going work is aimed at a real network implementation of the proposed

algorithm in the testbed under development within the European project OMEGA.

In addition, it is under study the possibility to extend the proposed MDP

framework to include both traffic and topology dynamics.

References

[1] R. Holt et al., “Guide to Home Networks”;

http://www.ce.org/networkguide/default.asp

[2] B. Rose, “Home networks: a standard perspective”, IEEE Communication
Magazine, December 2001

[3] ITU-T Reccommendation G.995.1; “Overview of digital subscriber line (DSL)
Reccommendations”, February 2001

[4] ITU-T Reccommendation G995.1; “Amendment 1: Overview of digital subscriber
line (DSL) Recommendations”, 2003

[5] DSL Forum Technical Report TR-058; “Multi-Service Architecture & Framework
Requirements”, 2003

[6] DSL Forum Technical Report TR-094; “Multi-Service Delivery Framework for
Home Networks”, 2004

[7] DSL Forum Technical Report TR-126; “Triple-play Services Quality of Experience
(QoE) Requirements 13”, 2006

[8] DSL Forum Technical Report TR-144; “Broadband Multi-Service Architecture &
Framework Requirements”, 2007

[9] OMEGA ICT project, http://www.ict-omega.eu/

[10] V. Suraci, F. Delli Priscoli, M. Castrucci, G. Tamea, W. De Vecchis, G. Di Pilla,
"Inter-MAC: Convergence at MAC layer in Home Gigabit Network", ICT Mobile
Summit 2008, Stockholm, Sweden, June 2008

[11] M. Castrucci, C. Liberatore, G. Tamea, P. Jaffrè, M. Bahr, “Functional analysis for
Next Generation Home Networks”, ICT Mobile Summit 2009, Santander, Spain,
June 2009

[12] P. Jaffrè, J-P Javaudin, M. Castrucci, G. Tamea, C. Liberatore, M. Bahr,
“Architecture reference model for Next Generation Home Networks”, ICT Mobile
Summit 2009, Santander, Spain, June 2009

[13] HomePlug Alliance Homeplug AV White Paper, 2005

[14] IEEE, “IEEE Standard for Information technology—Telecommunications and
information exchange between systems— Local and metropolitan area networks—
Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications”, 2003

[15] R. S. Sutton, A. G. Barto, “Reinforcement Learning: An Introduction”, the MIT
Press, 1988

[16] T. Clausen, P.Jacquet, “Optimized Link State Routing Protocol (OLSR)”, IETF
RFC 3626, October 2003

[17] D. F. Macedo, L. H. A. Correia, A. L. dos Santos, A. A. F. Loureiro, J. M. S.
Nogueira, “A pro-active routing protocol for continuous, data dissemination in

wireless sensor networks”, in proc. 10th IEEE Symposium on Computers and
Communications, La Manga del Mar Menor, Spain, 2005

[18] L. Villasenor-Gonzalez, Y. Ge, L. Lamont, “HOLSR: a Hierarchical proactive
routing mechanism for mobile ad hoc network”, IEEE Communication Magazine,
pp.118-125, July 2005

[19] C. Perkins, E. Belding-Royer, S. Das, “Ad hoc on-demand distance vector (AODV)
routing", IETF RFC 3561, July 2003

[20] D. Johnson, Y.Hu, D. Maltz, “The dynamic source routing protocol (DSR) for
mobile ad hoc networks for IPv4”, IETF RFC 4728, February 2008

[21] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, “Directed
Diffusion or Wireless Sensor Networking,” IEEE/ACM Transactions on
Networking, vol. 11, pp. 2–16, Feb 2003.

[22] D. Braginsky and D. Estrin, “Rumor Routing Algorithm for Sensor Networks,” in
Proc. of the 1st ACM International Workshop on Wireless Sensor Networks and
Applications, Atlanta, Georgia, USA, 2002.

[23] Z. Dziong et al., “On Adaptive Call Routing Strategy for Circuit Switched
Networks – Maximum Reward Approach,” in Twelfth International Teletraffic
Congress, (Torino), June 1988

[24] F. P. Kelly, “Routing in Circuit Switched Networks: Optimization, Shadow Prices
and Decentralization,” Advanced Applied Probability, vol. 20, pp. 112–144, 1988

[25] E. Nordstrom, J. Carlstrom, “A new reward model for MDP state aggregation with
application to CAC and routing”, European Transaction on Telecommunications,
No. 16, pp 495-508, 2005

[26] E. Nordstrom, Z. Dziong, “CAC and routing for multi-service networks with
blocked wide-band calls delayed, part I: exact link MDP framework”, European
Transaction on Telecommunications, No. 17, pp 21-36, 2006

[27] E. Nordstrom, Z. Dziong, “CAC and routing for multi-service networks with
blocked wide-band calls delayed, part II: approximative link MDP framework”,
European Transaction on Telecommunications, No. 18, pp 13-33, 2007

[28] R.-H. Hwang, J. Kurose, D. Towsley, “MDP routing for multirate loss networks”,
Computer Networks, Vo.34, No.2, 2000

[29] F.S. Hillier, G.J. Lieberman, “Introduction to Operations Research”, Sixth Edition.
New York: McGraw Hill, ch. 21, 1995

[30] M.K. Marina, S.R. Das, “On-demand multipath distance vector routing in ad-hoc
networks”, 9th International Conference on Network Protocols, Riverside,
California, 2001

[31] S. Nelakuditi, Z. –L. Zhang, “On Selection of Paths for Multipath Routing”, 9th
International Workshop on Quality of Service, LNCS, Vol. 2092, Springer-Werlag,
London, 2001

[32] A. Tsirigos, Haas Z. J., “Multipath routing in the presence of frequent topological
changes, IEEE Communication Magazine, November 2001

[33] K. Wu, J. Harms, “On-Demand Multipath Routing for Mobile Ad-Hoc Networks”,
Proceedings of EMPCC, Vienna, February 2001

[34] J. Tsai, T. Moors, “A Review of Multipath Routing Protocols: From Wireless Ad
Hoc to Mesh Networks”, ACoRN Early Career Researcher Workshop on Wireless
Multihop Networking, July 2006

[35] Y. Xue, K. Nahrstedt, “Fault tolerant routing in mobile ad-hoc networks”, in proc.
IEEE Wireless Communication Networking conference, pp.1174-1179, March
2003

[36] J. Oommen, S. Misra, “A fault-tolerant routing algorithm for mobile ad hoc
networks using a stochastic learning-based weak estimation procedure”, IEEE
International Conference on Wireless and Mobile Computing, Networking and
Communications, June 2006

[37] F.S. Hillier, G.J. Lieberman, “Introduction to Operations Research”, Sixth Edition.
New York: McGraw Hill, ch. 21, 1995

[38] A. Pietrabissa “Optimal call admission and call dropping control in links with
variable capacity”, European Journal of Control, Vol. 15, N. 1, pp. 56-57, 2009

[39] D.P. Bertsekas, Dynamic Programming: Deterministic and Stochastic Models.
Prentice-Hall, Englewood Cliffs, NJ, 1987.

[40] Heyman, D., and M. Sobel, “Stochastic Models in Operations Research”, vol. 1,
McGraw-Hill, New York, 1982

[41] Ross, S., “Stochastic Processes”, 2d ed., Wiley, New York, 1995

[42] Puterman, M. L., “Markov Decision Processes: Discrete Stochastic Dynamic
Programming”, Wiley, New York, 1994

[43] Feinberg, E. A., and A. Shwartz “Markov Decision Processes: Research Directions
and Applications”, Kluwer Academic Publishers, Boston, 2001

[44] Whittle, P. “Optimization over Time: Dynamic Programming and Stochastic
Control”, Wiley, New York, vol. 1, 1982; vol. 2, 1983

[45] R.E. Bellman, “On a Routing Problem”, Qtrly. Applied Mathematics, Vol. 16, pp.
87-90, 1958.

[46] ETSI, European Telecommunication Standard Institute, www.etsi.org

[47] ITU-T, International Telecommunication Union – Telecommunication
Standardization Section, www.itu.int/ITU-T

[48] WiMAX Forum, www.wimaxforum.org

[49] BroadBand Forum, www.broadband-forum.org

[50] Home Gateway Initiative, www.homegatewayinitiative.org

[51] S. Waharte, R. Boutaba, Y. Iraqi, B. Ishibashi, “Routing protocols in wireless mesh
networks: challenges and design considerations”, Multimedia Tools Applications,
Vol. 29, pp. 285-303, 2006

[52] U. Lee, S. F. Midkiff, J. S. Park, “A Proactive Routing Protocol for Multi-Channel
Wireless Ad-hoc Networks (DSDV-MC)”, International Conference on
Information Technology: Coding and Computing, ITTC, 2005

[53] I. F. Akyildiz, X. Wang, W. Wang, “Wireless mesh networks: a survey”, Computer
Networks, Vol. 47, pp. 445-487, 2005

[54] Y. Bejerano, S.-J. Han, A. Kumar, “Efficient load-balancing routing for wireless
mesh networks”, Computer Networks, Vol. 51, pp. 2450-2466, 2007

[55] C. J. C. H. Watldns, P. Dayan, “Q-learning”, Machine Learning, Vol. 8, pp. 279-
292, 1989

