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Diabetes           

As one of the major chronic metabolic diseases, diabetes mellitus affects at least 

200 million people worldwide and it is predicted to increase to 440 million adults 

by 2030 (Shaw JE. et al. 2010). It is characterized by a failure of glucose 

omeostasis, resulting in a variety of severe complications. Compelling evidences 

suggest that the key factor in the pathogenesis of both type I and type II diabetes 

is the loss of the insulin producing β cells of pancreatic islet of Langherans.  

In type I diabetes, accounting for approximately 10% of diabetic patients, the 

autoimmune response completely reduce pancreatic β cell mass, resulting in 

inadequate insulin secretion and consequently in abnormally high blood glucose 

levels. Because of the destruction of β cells, type I patient became dependent on 

daily injections of insulin, routing monitoring of blood glucose levels and strict 

diet control all lifelong.   

The most common form, classified as type II diabetes, is associated with 

asymptomatic peripheral resistance to insulin and impaired insulin secretion. 

However, at late stages of this disease β cell mass decreases significantly leading 

to hyperglycemia.  

One of the main processes involved in insulin producing β death is apoptosis 

which leads to insulin deficiency. Therefore, it is conceivable that a valuable 

approach to treat or even to prevent the onset of diabetes, may imply an anti-

apoptotic pro-survival therapy of  β  cell. 

 

Akt pathway and β cell          

The entire β cell mass is dictated by a dynamic balance of neogenesis, 

proliferation, cell size and apoptosis. 
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The molecular IRS/PI3K pathway plays a critical role in the regulation of β  cell 

mass and the Akt kinase is one of the most promising downstream molecules of 

this pathway. Akt has been implicated as a critical mediator of insulin-stimulated 

glucose uptake, suppression of apoptosis, stimulation of glycolysis and activation 

of glycogen and protein synthesis in various cell-culture systems (Coffer PJ et al. 

1998).  

It has recently become evident that PKB/Akt activation plays a pivotal role in β-

cell survival (Lingor MK. et al. 2003) and growth; moreover, recent evidences 

reviewed in Elghazi L. et al. (2006) underscore the importance of Akt in the 

regulation of β cell mass and function. In pancreatic β-cells,  PKB/Akt can be 

activated by different factors, such as IGF-1 and GLP-1 (Buteau J. et al. 2001; 

Giannoukakis N. et al. 2000), and it is directly activated by glucose (Dickson LM. 

and Rhodes CJ. 2004). When activated, via a cAMP-dependent or independent 

mechanism, Akt mediates a large number of cellular processes, including 

mitogenesis, survival and differentiation. 

Activation of Akt/PKB results in phosphorylation of many substrates that control 

various biological signalling cascades including insulin-mediated glucose 

transport, protein and glycogen synthesis, cell proliferation, growth, 

differentiation, and survival (Woodgett JR. 2005). Experiments in mouse models 

have assessed the role of Akt in glucose omeostasis. Akt1/PKBα deficient mice 

show normal glucose homeostasis but impaired foetal and postnatal growth (Cho 

H. et al. 2001b). In contrast, Akt2/PKBβ-deficient mice develop diabetes due to 

reduction in insulin-stimulated glucose uptake in peripheral tissue and β-cell 

failure (Cho H. et al. 2001a). These results suggest that Akt/PKB could play a role 

in β-cell adaptation to insulin resistance states. Akt1/Akt2 double-knockout mice 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib46#bib46
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib14#bib14
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib14#bib14
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib13#bib13
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showed severe growth deficiency, impaired skin development, and skeletal 

muscle atrophy, and died shortly after birth (Peng XD. et al. 2003). The 

generalized defect in conventional knockouts and the expression of different 

Akt/PKB isoforms with similar biochemical characteristics render β-cell function 

alterations difficult to interpret. Moreover, overexpression of constitutively active 

Akt/PKB in β-cells in transgenic mice resulted in augmented β-cell mass by 

increase in proliferation and cell size and in β cell resistance to streptozotocin-

induced death (Bernal-Mizrachi E. et al. 2001; Tuttle RC. et al. 2001). Transgenic 

mice with reduction of Akt/PKB activity in β-cells exhibited β cell mass but 

glucose intolerance, reduced basal insulin levels and defective insulin response to 

glucose and potassium (Bernal-Mizrachi E. et al. 2004). Based on these results 

and experiments in cell lines, it is likely that Akt/PKB is a major mediator of the 

responses to insulin, insulin-like growth factor (IGFI), incretins, and glucose.  In 

vivo and in vitro experiments suggest that Akt/PKB could mediate the 

proliferative signals induced by activation of Irs2 signalling (Kitamura T. et al. 

2002).  

Akt/PKB also regulates cell cycle molecules phosphorylation and inactivation of 

the Foxo family of forkhead transcription factors (AFX/Foxo4, FKHR/Foxo1, and 

FKHR-L1/Foxo3a) (Martinez-Gac L. et al. 2004). In particular the PI3K-

Akt/PKB pathway elicits events that reduce the abundance of p27
Kip1

 by 

regulation of transcription, translocation and protein levels, indicating that this 

cell cycle inhibitor can contribute to β-cell failure during the development of type 

II diabetes in insulin resistant models (Uchida C. et al. 2005). Similar to p27
Kip1

, 

Akt/PKB phosphorylates p21
CIP

, thereby inducing cytoplasmic translocation and 

stabilization (Liang J. et al. 2002, Chang F. et al. 2003).  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib5#bib5
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib41#bib41
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib4#bib4
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib27#bib27
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib27#bib27
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib29#bib29
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib42#bib42
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib11#bib11
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Akt has also implicated in β cell regeneration. In mice after pancreatectomy, Akt 

activation was observed in proliferating ducts (Jetton TL. et al. 2001). This may 

be mediated by phosphorylating the transcription factor CREB and the forkhead 

transcription factor Foxo-1. Phosphorylation of CREB has been associated with 

regulation of insulin and IRS-2 gene expression required for β cell differentiation 

and survival.   

The Akt/PKB signalling is one of the critical pathways regulating cell survival, 

and its importance in β-cells has been suggested by increased apoptosis observed 

in Irs2
−/−

 mice. In β-cells, Akt/PKB signalling mediates anti-apoptotic effects 

induced by diverse agents such as glucose, GLP-1, IGF-1, and insulin (Dickson 

LM. and Rhodes CJ. 2001; Brubaker PL. and Drucker DJ. 2004;); moreover the 

activation of Akt/PKB signalling protects β-cells against fatty acid-induced 

apoptosis and modulates survival to endoplasmic reticulum stress (Srinivasan S. et 

al. 2005, Wrede CE. et al. 2002). Glucose activation of Akt/PKB results in part by 

a paracrine/autocrine stimulation of the insulin receptor suggesting that glucose 

can be an important modulator of β-cell survival (Ohsugi M. et al. 2005). 

Akt/PKB affects survival by directly regulating members of the Bcl-2 family. 

Phosphorylation of BAD inhibits the pro-apoptotic activity by releasing it from 

the Bcl-2/Bcl-X complex and binding to 14-3-3 proteins. Increased apoptosis was 

associated with decreased Bcl-XL and Bcl-2 expression in pdx1
+/−

 islets, 

suggesting a potential link between Akt, pdx1, and survival (Johnson JD.  et al. 

2003).  

The regulation of cell size by Akt/PKB is mediated by activation of the 

mammalian target of rapamycin (mTOR), which targets ribosomal S6 kinase 

(S6K) and eukaryote initiation factor 4E binding protein 1 (4EBP1), key 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib16#bib16
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib16#bib16
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib7#bib7
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib37#bib37
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib37#bib37
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib47#bib47
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib31#bib31
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib26#bib26
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib26#bib26
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regulators of protein translation and cell size. Mice deficient in S6k1 exhibited 

glucose intolerance and hypoinsulinemia associated with a 15% reduction in β-

cell size, similar to the phenotype in dS6K-null Drosophila (Pende M. et al. 

2000). Moreover, overexpression of a constitutively active form of Akt/PKB 

resulted in increased cell size suggesting that S6K1 relates some of the growth 

signals induced by Akt/PKB. The potential role of mTOR/S6K signalling in 

proliferation remains controversial. There is substantial evidence for a role of 

insulin/IGF signalling in insulin secretion. Experiments in insulinoma cells 

suggest that the regulation of insulin secretion by PI3K/Akt/PKB is complex and 

no consensus has yet been achieved, however reduction in Akt/PKB activity in β-

cells by overexpression of a kinase-dead Akt/PKB mutant results in an insulin 

secretory defect (Bernal-Mizrachi E. et al. 2004).  

 

 

 

 

 

 

 

 

 

 

        (Elghazi  L. 2006) 

 

 

Figure 1. Schematic representation of Akt/protein kinase B (PKB) signaling.  

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib32#bib32
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib32#bib32
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCH-4H5N32V-1&_coverDate=02%2F28%2F2006&_alid=492819405&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5171&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=265c58537ce7b99ca1b553d3c6b47e76#bib4#bib4
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Diabetes strategies: from pancreas transplantation to now  .   

Current treatment options for diabetes are mainly based on the exogenous supply 

of insulin, an approach not fully capable of mimicking the tight control of 

endogenously produced insulin released from pancreatic β cells. 

An ideal cure for type I diabetes (and for some cases of type II diabetes) requires a 

device capable of performing the two essential functions of the missing β cells: 

sensing blood glucose levels and secreting appropriate levels of insulin to the 

blood stream. 

The pancreas has a remarkable capacity to regenerate and repair tissue damage 

and itself is likely to be the main source of new insulin- producing β cells and of 

cells that can regenerate the acini and ducts.  

Over the past four decades whole pancreas organ transplantation has been the 

most effective treatment for diabetes patient but with serious complications 

(Bonner-Weir S. and Weir GC. 2005). Whole pancreas transplantation, first 

performed in 1966 in combination with kidney was capable of producing a 

sustained, euglycemic state, reducing the incidences of hypoglycemia and offering 

the possible benefit of reducing microvascular, macrovascular and neurologic 

complications. Pancreas transplantation however, is a major, complex surgical 

procedure associated with significant risk and cost that may limit its general 

acceptability, especially when a potential diabetic recipient has little evidence of 

renal impairment and does not need a kidney transplant. 

Therefore, much attention has been focused on the potential of bioengineered 

insulin-producing surrogate cells (Guo T. et al. 2009; Halban PA. et al. 2010; 

Aguayo-Mazzucato C. et al. 2010). Several sources have been considered for the 

in vitro generation of insulin-producing cells including ex vivo expanded β cell 
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(Lechner A. et al. 2005), endocrine progenitor cells (Yatoh S. et al. 2007), 

transdifferentiated or transduced liver or intestinal cells (Elsner M. et al. 2008) , 

bone marrow mesenchymal stem cells (Sordi V. et al. 2008) and pluripotent 

embryonic stem cells (Assady S. et al. 2001; Lumelsky N. et al. 2001). 

           

 

         (Bonner-Weir S. et al. 2005) 

 

Figure 2. Pancreas as a source of β cells. 

 

 

The most prominent and promising cell source for β cell progenitors are 

embryonic stem cells (ESCs) derived from the inner cell mass of blastocystis 

during early stages of embryogenesis. The most important characteristics of ESCs 

include the capacity to self-renew and the potential to differentiate into all 

embryonic cell type, a potential termed pluripotency, under in vivo and in vitro 

conditions (McKay R. 2000). Another advantage of ESCs is the ability to 

maintain their stem cell properties upon proliferation under certain cell culture 
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conditions, thus allowing almost unlimited expansion without compromising their 

differentiation capacity. The substantial advances in studies on human ESC 

differentiation have raised the vision for new strategies aimed at generating large 

amounts of glucose-responsive, insulin-producing β cells for therapeutic  

purposes. 

Numerous approaches have been used to generate insulin- producing β cells from 

hESCs. Many reported the generation of cells with some degree of insulin 

production from mouse (Lumelsky N. et al. 2001; Soria B. et al. 2000), monkey 

(Lester LB. et al. 2004) and human ESCs but none of the studies has affirmed the 

in vitro production of fully functional β cell that can secrete physiologically 

sufficient amounts of insulin in response to glucose. One reason of this failure is 

the fact that although pancreatic β cells are the main source of insulin production 

in mammals they are not the only cell type that can synthesize and release insulin. 

Although several studies provided evidences that cells containing insulin and 

various other β cell markers could be generate from embryonic stem cells, a recent 

report demonstrated that insulin staining could be artifact, reflecting insulin 

uptake by apoptotic cells from culture media containing high concentrations of 

insulin (Hansson M. et al. 2004). 

β cells have long been known to have a substantial capacity for replication, as best 

shown in rodents with various ex vivo and in vivo model system (Bonner-Weir S. 

et al. 2000). The replication rate of human β cells, however, is much lower that of 

rodent β cells although it can be modestly stimulated by transplantation of β cells 

into insulin resistant mice (Tyrberg B. et al. 2001). Considerable attention is now 

being focused enhancing β cell replication to generate cells for clinical 

application. Recent data suggest that β cells of human cultured islets can 
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dedifferentiate and expand, and then be directed to re-differentiate back toward a 

β cell phenotype (epithelial-mesenchimal transition) (Gershengorn MC. et al. 

2004). As cells expand from cultured human islet preparations they develop a 

serpiginous appearance and express nestin and the mesenchymal marker vimentin 

but not islet hormones. A variety of maneuvers were used to force re-

differentiation, including serum-free media, nicotinamide, glucagon like peptide1 

and aggregation cells which led to expression of an assortment of islets markers at 

low levels. A caveat of these studies is the difficulty to distinguish between the 

dedifferentiation of β cells and the expansion of pancreatic stem progenitor cell 

that are not of β  cell origin. 

It is interesting to compare these studies with those of PANC1 cell, a human 

pancreatic duct cell line, which have been shown to undergo a similar 

morphological transition with changes in culture conditions. When aggregated in 

serum-free media with a high glucose concentration, the cells express very low 

level of islet hormone mRNA and protein (Hardikar AA. et al. 2004).  

Moreover Hui H. et al. (2001) indicated that treatment with GLP-1 is indeed able 

to induce differentiation of rat (ARIP) and human (PANC-1) cell lines both 

derived from the pancreatic ductal epithelium, into insulin synthesizing cells. 

Misiti S. et al. (2005) suggested  that thyroid hormone T3 treatment of human 

pancreatic ductal cell lines is capable to convert them towards a β cell phenotype.  

A recent study has challenged the view that neogenesis from ducts or any other 

progenitor cell take place. Using genetic marking for lineage tracing with the 

insulin promoter, Dor Y. et al. (2004) concluded that no new islets were formed in 

mice after birth or following 70% pancreatectomy, but that new β cells could 

generated by replication of existing β cells. Although this study supports the 
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concept that β cell replication is the dominant mechanism for β cell expansion in 

adult mice, it remains controversial because it does not convincingly prove that 

new islets are not formed during neonatal life or after regeneration-inducing 

maneuvers such as partial pancreatectomy or duct ligation. 

Attempts to restore the β cell deficiency occurring in diabetes has been pursued 

with many strategies; although all these avenues are promising, one presents some 

difficulties and none is clearly better than the others. 

Within the past 30 years, pancreatic islet transplantation has became a clinical 

practice and an option in the treatment of diabetes. Islet transplantation has a 

distinct advantage over whole organ transplantation in regards to reduced peri-

procedural morbidity. The procedure avoids major surgery and the risk of 

associated post-operative complications, re-lapatomy and acute graft loss. In 1967 

Lacy‟s group described a novel collagenase-based method (later modified by Dr. 

Camillo Ricordi) to isolate islets, paving the way for future in vitro and in vivo 

islet experiment. Subsequent studies showed that transplanted islets could reverse 

diabetes in both rodents and non-human primates (Kemp CB. et al. 1973, Scharp 

DW. et al. 1975). In a summary of the 1977 workshop on pancreatic islet cell 

transplantation in diabetes, Lacy commented on the feasibility of islet cell 

transplantation as a therapeutic approach for the possible prevention of the 

complications of diabetes in man (Lacy PE. 1978). Improvements in isolation 

techniques and immunosuppressive regiments ushered in the first human islet 

transplantation clinical trials in the mid-1980. In 1999 Dr. James Shapiro and his 

team at University of Alberta in Canada pioneered the “Edmonton protocol”: a 

new set of procedures for islet transplantation. It has been hailed as an historic 

breakthrough and a major scientific “proof of principle”.  
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The Edmonton protocol involves isolating islets from a cadaveric donor pancreas 

using an improve method of islets purification and isolation. Each recipient 

receives islets from one to as many as three donors. The islets are infused into the 

patient‟s portal vein. Patients were maintained on a glucocorticoid-free 

immunosuppression protocol. 

         

Figure 3. Islets transplantation practice. 

 

The clinical outcomes of islet transplantation and the Edmonton protocol are 

encouraging. The main goal has historically been insulin independence for same 

years (Ryan EA, Shapiro AM. 2005). Although long-term insulin independence 

was not achieved in the majority of the patients, islet transplantation did help 

control blood glucose level more easily when combined with insulin injections.  

One major hurdle that precludes islets transplantation from being widely applied 

is the lack of adequate sources of donor islets and β cells due to the limited 

availability of cadaveric tissue. The discrepancy between the effectiveness of cell 

therapy and the limited amount of transplantable material has urged to explore 

new strategies in a search for renewable source of high quality β cells for 

transplantation.  
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This requirement may in part due to poor survival of transplanted islets in the first 

few days after transplantation, perhaps because of glucotoxicity, hypoxia and/or 

inflammation (Davalli AM. et al. 1996). Thus, a better understanding of the 

mechanisms controlling isolated islet cell death may lead to the development of 

strategies to improve islet survival following isolation. 

Many laboratories around the world have been focused their studies on 

developing methods and strategies for increasing the availability of β cells that 

could be transplanted into patients with TID. Moreover, ex vivo culture of β cells 

provide a good model to study the effect of new promising drugs or factors on the 

β cell function, proliferation and survival. Among these strategies in vitro 

expansion of islet cell mass by increasing β cell proliferation and survival (Garcia-

Ocana A. et al. 2001; Hayek A, Beattie GM, 2002) has gained some relevance. 

For many years scientists believed that pancreatic β cells were terminally 

differentiated cells incapable of undergoing proliferation. However, multiple 

studies have clearly shown that pancreatic β cells do normally replicate in basal 

condition and that proliferation rates can be enhanced in response to different 

physiological and patho-physiological environments (Sorenson RL, Brejle TC. 

1997). Several studies have shown that the major source of new β cells in adult 

mice life is through proliferation of pre-existing β cells, rather than differentiation 

of β cell precursors (Bonner Weir S. 2000; Dor Y.et al. 2004). 

It has became apparent that a number of strategies to counteract the apoptosis of 

islets and to prevent β cell functions may have therapeutic relevance in preventing 

diabetes. The IGF1/IGF BP3 complex has recognized to enhance β cell replication 

and β cell survival after exposure to pro-apoptotic agents, which indicated this 

complex as a survival factor for β cell undergoing apoptosis (Chen W. 2004). 
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Glucagon like peptide 1 (GLP1) is a growth factor for β cell and it also has a 

powerful anti-apoptotic action (Hui H. 2003), the role of glucose is not still clear.  

Several growth factors and pathways have been deeply studied and Akt kinase has 

been demonstrated as crucial to drive β cell replication and survival. 

It has in fact recently been evidenced that insulin released by the islets in culture 

activates Akt in an autocrine manner to mediate islet survival thus improving cell 

culture condition (Aikin R. et al. 2006). It has also been outlined an autocrine 

survival pathway in isolated human islets where secreted insulin improves islet 

survival by activating Akt, thus enhancing the chances of improving graft 

survival. Indeed, treatments which activate Akt during islet culture can improve 

graft survival (Contreras et al. 2002), indicating that elevated Akt activity could 

render islets less susceptible to injury during the immediate post-transplantation 

period. Moreover, Akt has gained relevance as a viable target designing molecular 

approaches to treat diabetes, both promoting islet cell mass up-regulation and 

promoting insulin secretion thus gaining a key role in regulation of β cell function.  
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Thyroid hormone          

Thyroid hormones, 3,5,3‟-triiodotyronine (T3) and 3,5,3‟,5‟-tetraiodothyronine 

(T4) are widely known to influence a variety of physiological processes, including 

cell growth, differentiation and metabolism in mammals, metamorphosis in 

amphibia, and development of the vertebrate nervous system (Shi YB. et al. 1998; 

Koibuchi N, Chin WW. 2000). Both T3 and T4 are synthesized by the thyroid 

gland; however, T4 is the major secreted hormone. Within the cell, T3 is the most 

potent thyroid hormone as it binds to TH receptors (TRs) with 10-fold higher 

affinity. The major pathway for the production of circulating T3 is via 5′ 

deiodination of the outer ring of T4 by selenoproteins known as deiodinases 

(Kohrle J. 2000). Type I deiodinase is found in peripheral tissues such as liver and 

kidney and converts circulating T4 to T3. Type II deiodinase has high affinity for 

T4 (Km in the nanomolar range) and is found primarily in the pituitary gland, 

brain, and brown fat, and contributes to both peripheral and intracellular 

conversion of T4 to T3. Thus, tissues that contain type II deiodinase can 

potentially respond differently to a given circulating concentration of T4 (by 

intracellular conversion to T3) than tissues that only can respond to T3. Type III 

deiodinase is found primarily in placenta, brain, and skin and, together with type I 

deiodinase, converts T4 to reverse T3 (rT3), an inactive metabolite of TH. 

Recently, TH transporters that are located in the plasma membrane and which can 

regulate TH uptake into cells have been described  (Jansen J. et al. 2005). Thus 

the intracellular level of T3 is dependent on the relative activities of these three 

deiodinases. 

 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WBD-4NYGXB1-3&_user=5417474&_coverDate=06%2F30%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000067209&_version=1&_urlVersion=0&_userid=5417474&md5=8aac3b708f0b0dd839082c097c8180f9&searchtype=a#bib9


21 

 

The classical genomic actions of Thyroid hormones      

Cellular action of thyroid hormone may be initiated within the cell nucleus, at the 

plasma membrane, in the cytoplasm and at the mitochondrion. Thyroid hormone 

T3 regulates nuclear gene expression by binding the thyroid hormone receptors 

(TRs). Two TR genes, α and β, encode four T3 - binding receptor isoforms (α1, 

β1, β2 and β3). TR is found in the nucleus as a heterodimer with retinoic acid X 

receptor (RXR). The heterodimeric complex sheds corepressor protein when T3 is 

bound and recruits coactivators that facilitate binding of the heterodimer T3 

complex to the thyroid hormone response elements (TREs) of hormone-

responsive genes and consequent gene transcription (Zhang J. and Lazar MA. 

2000). This genomic mechanism of thyroid hormone action has been 

demonstrated in several thyroid hormone responsive cells and leads to modulation 

of transcription of a hundred or more genes (Feng X. et al. 2000; Miller LD. et al. 

2004). Characteristics of genomic actions of the hormone include the requirement 

for access of the hormone to the cell interior, translocation and changes in cell 

content or secretion of specific gene products. Several or more hours are usually 

required for genomic mechanisms to be manifest. 

L-thyroixine (T4) can act via nuclear TR, but the affinity of receptor is much 

lower than that for T3. Thus T3 is the natural ligand of TRs. In the genomic 

concept of hormone action, T4 is viewed as a pro-hormone that yields the more 

metabolically active T3 via action of tissue deiodinase activities. 
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Nongenomic action of Thyroid hormones       

Although T3 is known to exert many of its actions through the classical genomic 

regulation of gene transcription, a number of T3 effects occur rapidly and are 

unaffected by inhibitors of transcription and protein synthesis. 

For more than two decades, actions of thyroid hormones in a variety of cells have 

been described that do not primarily involve nuclear TR (Bussett H. et al. 2003; 

Davis P.J. et al. 2005) and thus are „nongenomic.‟ The mechanisms of several of 

these nongenomic actions of thyroid hormone are now understood, at least in part, 

and depend upon cellular signal transduction systems and either novel cell surface 

receptors for thyroid hormone (Berg JJ. et al. 2005) or extranuclear TRβ (Lei J. et 

al. 2003; Moeller LC. et al. 2006) or derivatives of TRα (Davis PJ. et al.2007).  

Non-genomic or non-classical nuclear hormone effects encompass any actions 

that do not directly effect nuclear gene expression. Such non-genomic actions 

frequently have a short latency, are unaffected by inhibitors of transcription and 

translation, have agonist and antagonist affinity and kinetics divergent from the 

classical nuclear receptor and persist in genetically modified mice that lack the 

classical nuclear receptors. These non-genomic responses are frequently 

associated with secondary messenger signalling pathways including the 

phospholipase C (PLC). It has been suggested that such non-genomic actions 

might inositol triphosphate (IP3), diacyl glycerol (DAG), protein kinase C (PKC) 

and Ca
2+

I pathway, the adenylyl cyclase, protein kinase A (PKA) and the cyclic 

AMP-response element binding protein (CREB) pathway and the Ras, Raf1 

serine/threonine kinase, mitogen activated protein kinase (MEK) and the mitogen 

activated protein kinase (MAPK) pathway be mediated by either membrane 

associated isoforms of the classical nuclear receptors or by novel membrane 
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receptors with significantly different agonist/antagonist affinities ( Losel R. and 

Wehling M. 2003). The recent identification of such receptors for progestins and 

estrogens has highlighted the non-genomic actions of steroid hormone ( Li L. et 

al. 2003; Zhu Y. et al. 2003).  

Non-genomic actions of thyroid hormones have been described at the plasma 

membrane, in the cytoplasm and in cellular organelles (Henneman G. et al. 2001). 

Thyroid hormone non genomic action has been related to various second 

messenger signalling pathways. They have included the modulation of Na
+
, K

+
, 

Ca
2+

 and glucose transport, activation of PKC, PKA and ERK/MAPK and 

regulation of phospholipid metabolism by activation of PLC and PLD (Kavok NS. 

et al. 2001).  

In vitro, independent of protein synthesis, T4 induces IP3 and calcium signalling 

and augments the effects of IFNγ via PKC and PKA (Davis PJ. et al. 1989; 

Lakatos P. and Stern PH. 1991; Lin HY. et al. 1997). In addition, T4-linked to 

agarose, which does not cross the plasma membrane, has been shown to activate 

MAPK by a pertussis toxin sensitive mechanism suggesting the actions of a G 

protein-coupled thyroid hormone membrane receptor ( Lin HY. et al. 1999).  

In vivo, T4 regulates thermogenesis and the lipolytic activities of catecholamines 

within 30 min (Lynch MA. et al. 1985; Wrutniak C. and Cabello G. 1989).  

Non-genomic effects of thyroid hormone have also been reported in the 

myocardium and vasculature. T3 enhances cardiac output and reduces systemic 

vascular resistance in normal adult males within 3 min (Schmidt BM. et al. 2002) 

and cell culture studies suggest that thyroid hormones rapidly, and non-

genomically, regulate the Ca
2+

ATPase enzyme, the Na
+
 channel (INa) via PKC, the 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3G-4BRBK6V-2&_coverDate=12%2F31%2F2003&_alid=488675881&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4946&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=bacad7410baa20d5b04457f54416413c#bib38#bib38
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3G-4BRBK6V-2&_coverDate=12%2F31%2F2003&_alid=488675881&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4946&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=bacad7410baa20d5b04457f54416413c#bib38#bib38
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3G-4BRBK6V-2&_coverDate=12%2F31%2F2003&_alid=488675881&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4946&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=bacad7410baa20d5b04457f54416413c#bib35#bib35
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3G-4BRBK6V-2&_coverDate=12%2F31%2F2003&_alid=488675881&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4946&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=bacad7410baa20d5b04457f54416413c#bib35#bib35
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3G-4BRBK6V-2&_coverDate=12%2F31%2F2003&_alid=488675881&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4946&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=bacad7410baa20d5b04457f54416413c#bib80#bib80
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3G-4BRBK6V-2&_coverDate=12%2F31%2F2003&_alid=488675881&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4946&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=bacad7410baa20d5b04457f54416413c#bib31#bib31
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3G-4BRBK6V-2&_coverDate=12%2F31%2F2003&_alid=488675881&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4946&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=bacad7410baa20d5b04457f54416413c#bib31#bib31
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3G-4BRBK6V-2&_coverDate=12%2F31%2F2003&_alid=488675881&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4946&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=bacad7410baa20d5b04457f54416413c#bib13#bib13
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3G-4BRBK6V-2&_coverDate=12%2F31%2F2003&_alid=488675881&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4946&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=bacad7410baa20d5b04457f54416413c#bib33#bib33
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3G-4BRBK6V-2&_coverDate=12%2F31%2F2003&_alid=488675881&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4946&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=bacad7410baa20d5b04457f54416413c#bib36#bib36
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3G-4BRBK6V-2&_coverDate=12%2F31%2F2003&_alid=488675881&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4946&_sort=d&view=c&_acct=C000057972&_version=1&_urlVersion=0&_userid=2606776&md5=bacad7410baa20d5b04457f54416413c#bib37#bib37
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K
+
 channel (IK ) via PI3-kinase, the Na

+
/H

+
 anti-porter via PKC and MAPK and 

the inward rectifying potassium channel (IK1) (Davis PJ. and Davis FB. 2002).  

T3 also increases sarcoplasmic reticulum Ca
2+

, cell shortening, contractility and 

calcium mediated arrhythmic activity suggesting that T3 has a non-genomic, 

positive ionotropic and arrhythmogenic effect (Wang YG. et al. 2003).  

In pituitary cells, T3 has been shown to non-genomically stimulate the ether-a-go-

go related gene potassium channel (ERG/KCNH2), which reduces endocrine 

neuronal excitability, via PI3-kinase and the Rac GTPase, whereas TRH (thyroid 

releasing hormone) inhibits ERG activity via PKC and the Rho GTPase to 

increase neuronal excitability (Storey NM. et al. 2002). These observations 

suggest a possible role for non-genomic T3 signalling in the 

hypothalamic/pituitary feedback loop. 

Thyroid hormone T3 is also involved in the PI3K pathway: it has recently been 

reported to regulate the Na,K-ATPase activity via PI3K in alveolar epithelial cells 

(Lei J. et al. 2004) and to activate the protein kinase B via PI3K, in human 

fibroblasts (Cao X. et al. 2005). Estrogen and retinoic acid have also been 

recognized to activate PI3K rapidly through the nontranscriptional action of their 

receptors (Simoncini T. et al. 2000; Sun M. et al. 2001; Haynes MP. et al. 2003; 

Lopez-Carballo G. et al. 2002). Furthermore, estrogen receptor-α was 

demonstrated to activate PI3K through binding with p85α either in a ligand-

dependent manner in endothelial cells (Simoncini T. et al. 2000) or in a ligand-

independent manner in epithelial cells (Sun M. et al. 2001). 
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        (Davis PJ. 2007). 

Figure 4. Schematic representation of non genomic actions of T3 and T4.  

 

 

Might thyroid hormone influence glucose homeostasis?     

Thyroid dysfunctions and Diabetes are the two most common endocrinopathies 

encountered in clinical practice. Both conditions frequently co-exist and the 

prevalence of thyroid dysfunctions in diabetic patients is higher than in the 

general population (Perros P. et al. 1995). Thyroid hormones contribute to the 

regulation of glucose metabolism and pancreas function and it is reported that 

treatment of thyroid dysfunction in diabetic can improve the glycemic control, to 

attenuate the cardiovascular risk and, to promote the general well-being (Kadiyala 

R. et al. 2010). 
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Molecular studies showed that thyroid hormone T3, binding to the thyroid 

hormone receptor, regulates the phosphatidylinositol 3 kinase /Akt pathway in 

several cellular system (Cao x. et al. 2005; Furuya F. et al. 2006) 

Pancreatic islets and, in particular, the β cell express thyroid hormone receptor, α 

and β isoforms, in addition to other nuclear receptors implicated in the regulation 

of insulin signaling (Malaisse WJ. et al.1967; Chuang JC. et al. 2008). 

We have previously demonstrated that treatment of human pancreatic duct cells 

with T3 promotes cell differentiation into insulin producing β cells, upregulates 

insulin and glucose transporter-2 transcripts and increases the insulin release into 

the medium (Misiti S. et al. 2005). 

Moreover, Verga Falzacappa C. et al (2007) reported that T3 activates Akt in the 

islets β cell line rRINm5F and hCM through the interaction between thyroid 

hormone receptor TRβ1 and PI3K-kinase p85α. In particular T3 induced the PI3K 

signalling thus activating the kinase Akt. Therefore, T3 not only regulates 

pancreatic β cell proliferation and survival, but also induces the increase of cell 

size and granulosity cell protein synthesis and, most importantly, c-peptide 

production in our in vitro models. 

In conclusion we evidenced (Verga Falzacappa C. et al. 2009) that thyroid 

hormone action on PI3K/Akt signalling leads to the positive regulation of the 

main β cell features these being preferential targets in the designing of new 

strategies against β cell loss in diabetic disease. 

Taken these considerations I, firstly, hypothesized, for my thesis, that thyroid 

hormone T3 could act as a survival factor in a freshly isolated rat islets culture, 

and in particular that T3, being able to counteract physiological and 
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pharmacological β cell death, could promote islets viability to finally improve 

transplantation success. 

Moreover, the crucial endpoint of my study, linking thyroid hormone and β cell 

function, was to verify whether T3 treatment is able to preserve and protect 

functional β cell mass in a in vivo model. 
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The pancreatic β cell mass plays an essential role in determining the amount of 

insulin that is secreted by pancreatic β cells to maintain blood glucose levels 

within a narrow range. Pancreatic β cell loss is the key factor in the pathogenesis 

of both type 1 and type 2 diabetes. One of the main process involved in the β cell 

death is apoptosis, which leads to insulin deficiency. Therefore, it is conceivable 

that a valuable approach to treat or even to prevent the onset of diabetes may 

imply an anti-apoptotic pro-survival therapy of insulin producing cells. 

To this aim several factors (IGF 1, IGF 2, GLP-1, etc.), known for their 

proliferative properties and/or their action on cell differentiation, have been shown 

to interfere with the sequence of events leading to cell apoptosis and of promoting 

cell survival (Giannoukakis N. et al. 2000; Jill DJ. et al. 2000; Perfetti R. et al 

2000). Some pathways have been deeply studied and recent advances have 

indicated the signal transduction via insulin receptor substrate-2 (IRS-2) and 

downstream protein kinase B as crucial to the β cell function. In particular AKT 

kinase has been demonstrated to play an important role in the β cell proliferation, 

survival, size and insulin secretion. 

Our previously evidences suggest that thyroid hormone T3 can regulate cell 

proliferation, survival, size, protein synthesis and insulin production in the insulin 

secreting cells rRINm5F and hCM. In particular we have shown that T3 is able to 

induce the phosphoinositol 3-kinase activity, resulting in the activation of the 

AKT kinase in the cited cell line models (Verga Falzacappa C. et al. 2006, 2007). 

β cell replacement by transplantation of islet cells is currently regarded as 

acceptable therapeutic option for diabetic patients. Nevertheless, extremely large 

number of islets requiring two to four cadaveric pancreases are usually necessary 

to restore insulin independence. A critical problem is how islet cells can survive in 
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a new environment, particularly with regard to revascularization and 

reinnervation. Shortly after implantation islets grafts function poorly and many 

transplanted β cells undergo apoptosis prior to full engraftment. Today, ex vivo 

islets cell culture prior transplantation in presence of stimulating factors is 

considered a good strategy to contrast the short outcoming of islets 

transplantation. 

Taken all these considerations, the aim of my thesis was to investigate  the role of 

thyroid hormone treatment to improve islets transplantation strategy in freshly 

isolated rat islets during an in vitro culture period.  

Moreover, the crucial endpoint of my study, linking thyroid hormone and β cell 

function, was to verify whether T3 treatment was able to preserve and protect 

functional β cell mass in pharmacological diabetic mice. 
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Chemical            

Crude collagenase type 4 was obtained from Worthington Biochemicals 

Corporation (Lakewood, NJ); 3,5,3'-Triiodothyronine (T3), Polysucrose 400 and 

Streptozotocin (STZ) and 5-Bromo-2'-deoxyuridine (BrdU)were obtained from 

Sigma-Aldrich (Saint Louis, MO, USA). 

 

Animals studies           

Wistar rats male adult (about 12 weeks old) were used as islets donors. The 

animals had free access to tap water and pelleted food throughout the course of 

the study. The local animal ethics committee approved all experiments. 

Balb/c male mice (about 6 week old) were maintained in a pathogen-free 

environment in isolator caging system in air conditioned room at 23±1°C in the 

La Cattolica University‟s animal facilities (Rome, Italy) in accordance to the 

institutional guidelines. 

 

Isolation and culture of rat islets         

Pancreatic islets were isolated from 300 g weighting male adult Wistar rats by 

standard surgical procurement followed by intraductal collagenase distension, 

mechanical dissociation and Euroficoll purification. In brief animals anesthetized 

with ketamine 70 mg/Kg + domitor 0.5 mg/Kg injected intraperitoneally, were 

sacrified by CO2 inhalation. For the exposure of the whole pancreas, the 

abdominal wall was opened via a midline incision and the pancreas ductal 

connection to the intestine clamped. The pancreas was cannulated in situ via the 

common bile duct using a polyethilen tube (BD, Franklin Lakes, NJ) and 

distended by pumping a cold solution of collagenase (0.2%) prepared in a specific 
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isolation medium KRHB, containing (in mmol/l) NaCl 134, KC 4,7, CaCl2 1, 

MgSO4 1.2, KH2PO4 1.2, HEPES 10, BSA 0.5% pH 7.35. The whole pancreas 

was excised and transferred to a centrifugal tube and incubed for 20 min with 

gentle tumbling, at 37°C. Islets were purified on a discontinuous Euroficoll 

gradient, handpicked under a light stereomicroscope, pooled and then separated 

into study group and control group for the subsequent culture period. The islets 

were cultured in CMRL 1066 medium (GIBCO,Invitrogen Corporation, Carlsbad, 

CA) supplemented with 10% fetal bovine serum, L-Glutamine 2 mmol/L and 

Penicillin 100 μg/ml-Streptomycin 50 μg/ml in not coated plates (BD) with or 

without T3 (10-7 M) at 37°C in a humidified atmosphere of 5% CO2. 

 

Microscopic monitoring of cultured islets        

Morphological changes of isolated islets were monitored during 96 hours of 

culture. Images were recorded by a Canon digital camera and processed by Image 

J software. To evaluate the core cell damage of isolated islets, light microscopic 

analyses were performed at different time points (72 and 96 h) during the culture. 

 

Viability of cultured islets          

Batches of 15 islets were cultured in the presence or not of fresh aliquots of T3 

(10-7 M) added every day for 72 h and 96 h. Islets viability was tested by using 

live-dead cell viability test (MBL International, 4 H Constitution Way Woburn, 

MA, US) under manufacturer‟s instruction. The assay utilizes two different dyes 

which can differently pass through cell membrane, the Propidium Iodide (PI, red 

Fluorescence) can only pass damaged membrane (death cells), while the Green 

Dye can pass the intact membrane (live cells). Images were visualized with a 
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Leica (D-35606 Burgsolms, Solms, Germany) epifluorescence microscope and 

taken by a Canon digital Camera. Secondly images were processed by ImageJ 

software. Nuclei were counted and percentages of live vs. death cells were 

visualized on histograms. 

 

MTT assay of cultured islets         

 Islets were cultured in 96 multiwells for 72 and 96 h and treated as previously 

described. A solution of a tetrazolium salt was added to the culture medium and, 

after 4 h, the metabolic formazan product was solubilized in an organic solution. 

After 1 h of solubilization, the absorbances at 570 and 630 nm were recorded by 

using a 96 well plate reader. 

 

BrdU labeling for cultured islets         

Cell proliferation was determined additionally by BrdU staining. Islets were 

cultured for 48 h in the presence and not of T3 (10-7 M); during the last 24 h of 

culture BrdU 10 μM (Sigma-Aldrich) was added. The islets were cytospun on 

polarized slides. Slides were then washed in PBS 1x (Lonza) and incubated with 

HCl 3N for 25 min at RT; the reaction was then neutralized with borax-borate 

buffer (pH 9.1), and slides were washed in PBS 1x. Slides were incubated 

sequentially with PBS 1x, Goat serum 15% (Sigma-Aldrich), Triton X100 0.3% 

(Sigma) for 15 min at RT, and then with mouse monoclonal antibody anti-BrdU 

(Roche Diagnostic) 1:200, for 1 h at room temperature. After three washes in PBS 

1x, slides were incubated with the secondary antibody Alexafluor 546 anti-mouse 

(Invitrogen) 1:1,000, for 1 h at room temperature in dark. Slides were then washed 

in PBS 1x twice and stained with Hoechst 1 μg/ml for nuclear detection. 
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Localization and intensity of fluorescence were evaluated by optical sections 

obtained using an Axiovert 200M microscope (Zeiss, Oberkochen, Germany) with 

ApoTOME© device connected with a CCD camera Zeiss Axiocam. Negative 

controls including omission of the primary antibody were also performed. 

 

Induction of diabetes in mouse model        

Animals were divided into three experimental groups: CTR, STZ, STZ+T3. 

Diabetes was induced by multiple (for 2 consecutive days) low dose (150mg/kg of 

body weight) intraperitoneal injection of Streptozotocin (STZ), freshly dissolved 

in 10mM Na-citrate buffer (ph4,5). STZ-T3 mice were divided into 3 groups and 

co-treated with 3 different doses of 3,5,3‟-Triiodothyronine (T3) (75-100-150 μg 

of kg body weight, Saint Louis, Missouri, USA) every 24hours for 2 consecutive 

days. The T3 treatment began contemporary to Streptozotocin. 

 

Evaluation of pancreta tissue and immunostaining      

Mice were anesthetized with ketamine (70mg/kg) and domitor (1mg/kg) injected 

intra peritoneally and then sacrified by cervical dislocation. Pancreata were 

removed and embedded in killik cryostat embedding medium (Bio-optica, Milan, 

Italy). Five sections (7μm thick) per pancreata were examined. 

Cross sectional islet area was determined on a total of five slides per pancreas 

stained with hematoxilin/eosin. Images were analysed using the Image J software. 

For immunohistochemical analysis crysections were fixed in cold acetone for 

1minute, air-dried and fixed in 4% paraformaldehyde for 10 minutes. Endogenous 

peroxidase activity was blocked by incubating slides in a solution of 3% hydrogen 

peroxide for 10minutes. Unspecific binding was blocked incubating the slides in 
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5%goat serum in PBS Ca-Mg Free for 45 minutes and then for 15 minutes in 

1%BSA. Sections were incubated in humidified chambers overnight at 4°C with 

the appropriate primary antibody (insulin 1:100, pAkt 1:50, Akt 1:50 Cell 

Signalling) followed by 1 h incubation with secondary biotinylated anti-mouse or 

anti-rabbit (Vector Laboratories, Inc., 30 Ingold Road, Burlingame, CA) after 

which the sections were incubated for 1 more hour with Horseadish Peroxidase 

Avidin D (Vector Lab.). Immunoreactivity was revealed using 3,3‟-

diamonobenzidine (DAB, DAKO, north America, Carpinteria, CA) as the 

chromogen. Sections were counterstained with hematoxylin. 

 

Measurement of insulin mRna by Real Time PCR      

Pancreata RNA was extracted by SV Total RNA isolation System (Promega, 2800 

Woods Hollow Road Madison, WI) under manufacture‟s instruction and 1 μg 

used to synthetize cDNA using Omniscript RT Kit (Qiagen, Chatsworth, CA). 

cDNA corresponding to 20 ng of total RNA was used to perform fluorescent-

based real-time PCR quantification using the LightCycler Realtime PCR 

apparatus (Roche Inc., Nutley, NJ). Quantitative PCR was performed using SYBR 

Premix Ex TAq II (perfect Real Time)(TAKARA BIO INC. 2 Avenue du 

President Kennedy, 78100 St Germain en Laye, France) as described by the 

manufacturer. The reactions started with a denaturation step at 95° C for 10 

seconds, followed by annealing at 56° to 66° C for 5 seconds and elongation at 

72° C for 7 to 13 seconds. The reaction was then heated for 3 seconds at 2° C 

lower than the melting temperature of the DNA fragment. Oligoprimer pairs that 

allow the amplification of ~200 bp were designed and their specificity was 

verified by blasting in the GenBank database. Reading of the fluorescence signal 
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was taken at the end of the heating to avoid non-specific signal. A melting curve 

was performed to assess non-specific signal. mRNA expression levels are 

expressed as number of copies/µg total RNA using a standard curve of the 

crossing point vs. logarithm of the quantity. The standard curve was established 

using known cDNA amounts of 0, 102, 103, 104, 105, and 106 copies of 18s and 

a LightCycler 3.5 program provided by the manufacturer (Roche Inc.).  PCR 

products were analyzed on a 1,5% agarose gel. The expression levels of target 

genes were quantified and normalized by 18S level. Primers used for PCR 

amplification were for INS for: 5‟-TGGCTTCTTCTACACACCCA-3‟and rev:5‟- 

TGCAGTAGTTCTCCAGCTGG-3‟and for 18S for: 5‟-

GGAGAGGGAGCCTGAGAAA-3‟and 18S rev:5‟-

AAAGAGTCCTGTATTGTTATTTT-3‟. 

 

Immunofluorescence analysis         

Rat‟s islets were cytospun on polarized slides and immunofluorescence analysis 

was performed in the various experimental condition (specifically described 

within this section) to detect insulin signal. In addition the thyroid receptor b 1 

was detected by the same procedure. Islets were stained with primary antibodies, 

rabbit anti-insulin (Cell Signaling Technology, Inc., 3 Trask lane, Dansvers, MA) 

and anti-TRβ1 (Santa Cruz Biotechnology Inc., San Diego, CA). After washing in 

PBS 1x (Lonza), islets were incubated with secondary antibodies fluorochrome 

conjugated (Alexafluor 488 anti-rabbit; Alexafluor 546 anti-mouse). Hoechst dye 

(1 μg/ml) was used for nuclear detection. Fluorescence was detected with an 

epifluorescence microscope (Leica, Germany), images were captured by a Canon 
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digital camera and images were processed with ImageJ software (Wayne 

Rusband, National Institute of Health), where no differently specified. 

For immunofluorescence analysis in mouse model, slides were fixed and blocked 

as described previously. Primary antibodies (insulin and glucagon, Cell 

Signalling,1:100 and Glut2 and TRβ1, Santa Cruz, 1:50) were incubated for 1h at 

room temperature in humidified chambers. After 3 washes in BSA 1% in CMF 

slides were incubated with secondary antibodies (Polyclonal swine anti-rabbit 

Immunoglobulin FITC coniugated, DAKO, Denmark, 1:200) for 1h at room 

temperature in dark. Nuclei were counter-stained with 1μg/ml Hoechst dye 

diluited in CMF. 

 

Measurement of apoptosis          

Groups of 15 islets were cultured for 48 h in medium with and without T3 (10-7 

M) and exposed to STZ (5 mmol/L and 2 mmol/L), to H2O2 (100 μM) for the last 

2 h of treatment (before assessment of apoptosis) and cultured in serum-free 

CMRL medium for 48 h after a sensitization period (24 h) with CMRL completed 

medium. At the end of the treatment period, islets were fixed for 1 h with 4% 

paraformaldehyde, washed with cold PBS, incubated in Triton 0.1% in Sodium 

Citrate 0.1% for 2 min. on ice. After washes, apoptotic cells within islets were 

detected by the TdT-mediated dUTP biotin nick end labeling (TUNEL) method 

using an in situ Cell Death detection kit (Roche, D-68305 Waldhof, Mannheim, 

Germany) for 1 h, at RT, in dark, in according to manufacturer‟s procedures. 

Islets were counterstained for Insulin reveled by indirect fluorescence and nuclei 

were counter-stained with 1 μg/ml Hoecht dye diluited in PBS. TUNEL positivity 

signal was evaluated by optical sections obtained using an Axiovert 200M 
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microscope (Zeiss, Oberkochen, Germany) with ApoTOME© device connected 

with a CCD camera Zeiss Axiocam. 

TUNEL ASSAY in pancreata tissue were detected by an incubation with 

Converted- POD in an humidified chamber for 30 min at 37° C and for 5 min with 

DAB substrate. 

CASPASE ACTIVITY ASSAY. The caspGLOWTM red active caspase staining 

kit (Biovision Middlefield Way, CA) was used to quantify caspase activity. 

Freshly-prepared seven-micrometer cryosections were incubated with a Red-

VAD-FMK at 1:300 diluition in PBS Ca-Mg free at 37°C for 45 min. and washed 

twice with the provided washing buffer for 10min. Nuclei were counter-stained 

with 1μg/ml Hoechst dye diluited in PBS. 

 

Western blot analyses           

For total protein extraction, islets and pancreata were lysed for 10 min in ice-cold 

lysis buffer containing 1% Tween 20, 10% glycerol, 150 mmol/L NaCl, 50 

mmol/L HEPES pH 7, 1 mmol/L MgCl2, 1 mmol/L CaCl2, 1 mmol/L NaF, 10 

mmol/L Na4P2O7, 2 mmol/L NaVO3, 1 mmol/L phenylmethylsulfonylfluoride, 

protease inhibitors. The lysates were sonicated and centrifugated at 12,000 rpm 

for 30 min. and the total cellular protein content was measured using Bradford 

method (Bio-rad, Richmond, CA). 50 μg of total extract per sample were loaded 

onto an 10% SDS-polyacrilamide gel, electrophoresed, and then blotted onto 

nitrocellulose membranes (Bio-Rad). Filters were blocked for non specific 

reactivity by incubation for 1 h at RT in 5% non-fat dry milk dissolved in PBS 

1X, Tween 20 0.1% and then incubated for 16 h at 4°C with  with the appropriate 

primary antibody. Antibodies:  anti-Akt and anti-pSer473Akt (Cell Signalling, 
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Danvers, MA, USA, 1:1000), anti-Glut-2 (Santa Cruz 1:500), anti Caspase 3 

(Millipore,290 Concord Road, Billerica,MA, USA, 1:200), anti Bax (Santa Cruz 

1:250), anti Tra/b (Santa Cruz 1:200). 

 At the end the membranes were washed and incubated for 45 min with the 

appropriate HRP-conjugated secondary antibody (anti-mouse, anti-rabbit; Sigma-

Aldrich 1:4000) in milk 5%, PBS 1X, Tween 20 0,1% for 45 min at RT. 

Immunoreactivity was visualized by the ECL immune-detection system 

(Amersham Corp, Arlington Heights, IL) in according to manufacturer‟s 

instructions. The relative band intensity was evaluated by densitometric analysis 

(Image J, Wayne Rusband, National Institute of Health, USA) and normalized to 

total B-actin.  

 

Trasmission electron microscopy         

Tissue fragments were fixed with 2% glutaraldehyde in PBS for 2 h at 4°C. 

Samples were postfixed in 1% osmium tetroxide in veronal acetate buffer (pH 

7.4) for 1 h at 25°C and stained with uranyl acetate (5 mg/ml) for 1 h at 25°C, 

dehydrated in acetone, and embedded in Epon 812. Ultra-thin sections were 

examined unstained or poststained with uranyl acetate and lead hydroxide under a 

Morgagni 268D electron microscope (Fei, Hillsboro, OR, USA). 

 

Measurements of biochemical parameters               

INSULIN SECRETION FOR CULTURED ISLETS. 15 Islets cultured in 

presence or in absence of T3 were stimulated with two different glucose 

concentrations ranging from 2.8 to 28 mmol/L in isolation medium and incubated 

for 45 min at 37°C. Insulin releasing was measured on supernatants by Mercodia 
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Ultrasensitive Rat Insulin Elisa (Mercodia AB, Sylveniusgatan 8A, SE-754 50 

Uppsala, Sweden) under manufacture‟s protocol. Results were presented in pg/ml 

after normalization with total protein content. 

In mouse model all measurements were performed after 8h fast. 

INTRAPERITONEAL GLUCOSE TOLERANCE TEST. Glucose tolerance test 

was carried out 48 hours after STZ and T3 treatment by an intraperitoneal 

injection of glucose (3g/kg of body weight) to overnight fasted mice. Glucose and 

insulin concentrations were determinated in tail vein blood at 0, 30 and 120 min 

after glucose injection by using Ascenzia Breeze (Bayer AG,51368 Leverkusen, 

Germany) and Mercodia ultrasensitive mouse insulin ELISA kit (Mercodia, 

Uppsala, Sweden). 

INSULIN TOLERANCE TEST. Mice received an intraperitoneal insulin injection 

(0,75U/Kg of bodyweight) under fast condition. Blood glucose concentration was 

determinated at 0, 30 and 120 min after injection by using Ascenzia Breeze 

(Bayer AG,51368 Leverkusen, Germany). 

 

Liver Rna isolation and RT-PCR analysis        

Total cellular RNA was isolated from livers by using  SV Total RNA Isolation kit 

(Promega, Madison, WI), according to manufacturer‟s instructions. RNA (1 μg) 

was subjected to reverse transcription (RT) by using a cDNA synthesis kit 

OmniScript (QIAGEN, Chatsworth, CA). cDNA was amplified to determine 

desiodase I expression using the following primer pairs : (mDioI) 5‟-

AAGAGGCTCTGGGTGCTCTTGG-3‟ and 5‟-

GGTTCTGGTGATTTCTGATGTC-3‟. Amplification was performed for 30 

cycles, after a first denaturing step at 94°C for 5 min, at a denaturing temperature 
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of 94°C for 30 sec, at annealing temperature of 55°C for 30 sec and at an 

extension temperature of 72°C for 30 sec. PCR products were electrophoresed 

onto a 1.5% agarose gel containing ethidium bromide (0.5 mg/ml) and visualized 

under UV light. 18s expression levels were analyzed as a control for RNA quality 

using the following primers for the amplification5‟-

GGAGAGGGAGCCTGAGAAA-3‟and:5‟-

GAAAGAGTCCTGTATTGTTATTTT-3‟.The relative intensity of the bands was 

quantitated by densitometric analysis (ImageJ, Wayne Rusband, National Instutite 

of health, USA) and normalized to the co-amplified 18s cDNA fragments.  

All primers were synthesized by MWG Oligo Synthesis Report (Eurofins MWG 

Operon, Edersberg, Germany) 

 

Statistical analysis          

Different statistical analyses were performed depending on the experimental type 

and are indicated in the relative Figure legends. 
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Thyroid hormone receptor β1 is highly expressed in the cytoplasm of rat islets   

Thyroid receptor β1 resulted to be the main mediator of T3 action on pancreatic β 

cells (Verga Falzacappa  C. et al. 2009). To evaluate if TRβ1 is expressed in the 

rat islets, immunofluorescence experiments have been performed. As shown in 

figure 5, the staining for TRβ1, revealed that the receptor is highly expressed in 

the islets cells and that is mainly located in the cytoplasm. In addition, when the 

islets were counterstained for insulin, it was possible to observe that the two 

signals were superimposable, indicating that the rat islets β cells do express the 

thyroid receptor β1. 
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Figure 5. Thyroid hormone receptor β1 immunofluorescence.  

Islets were cultured for 24 h and then indirect immunofluorescence was 

performed for thyroid receptor β1 (red) and for insulin (green). Nuclei were 

counterstained with Hoechst (blue). 
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Islets viability in vitro is augmented by T3 treatment      

In order to demonstrate a pro-survival role of Thyroid hormone T3 in freshly 

isolated rat islets, the islets were cultured in the presence or not of T3 (10
-7

 M) for 

24, 48, 72 and 96h. Our previous works on cell lines (hCM ad rRINm5F) 

indicated that the 10
-7 

M dose of thyroid hormone was able to influence  cell 

viability, proliferation, survival and function in vitro; considering that data, we 

decided to utilize the same dose for our ex vivo experiments. Fluorescence 

microscopy was utilized to determine the proportion of  dead cells within the 

islets. As shown in figure 6A, already at 72h of culture the viability of islets 

culture without T3 was reduced as evident by the considerable number of PI 

positive cells. T3 treatment sensibly improved the percentage of viable islets from 

50% to 65%  (Fig. 6A). Importantly, after 96 hours culture without T3, 80% of 

islets were decomposed, compared to 50% of islet cells cultured in the presence of 

T3. 

In accordance with the microscopic observations, MTT assay (Fig.6 B) confirmed 

that the T3 treated islets have cell viability values higher than  untreated islets, 

confirming that the hormone treatment could preserve islets vitality. 

 

Core cell damage is reduced by T3 treatment in rat islets     

During in vitro culture, necrosis of the cells occurs within the centre of the islets; 

islet core is primarily constituted by  cells. In this experiment we investigated 

whether T3 could contrast the core cell damage in isolated islets. Under light 

microscopy, freshly isolated pancreatic islets from rat had a smooth appearance 

with compact, differently spherical shapes, varied in size (Fig. 6C ). After 48h of 

in vitro culture, the islets began to present some cell damage. It was usually 
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located in the centre of the islets and characterized by a zone of dark cells that was 

separated from the surrounding viable tissue. By 96h of culture an extensive 

damaged area appeared in the centre of the islets. The damaged area was even 

larger, being extended throughout the islet. The observed results were consistent 

with the live/death cell analysis, whether they were different from the TUNEL 

assay. In the TUNEL assay, in fact, apoptotic cell death of single damaged cells 

within the core of a 24h cultured islet could be identified; however, many cells 

within the damaged area were also TUNEL negative, indicating that both necrotic 

and apoptotic cell deaths were involved in the process of core cell damage in 

cultured isolated rat islets. Strikingly, when the islets were exposed to T3 the 

damaged area resulted sensibly reduced. As shown in the Figure 6, after 72 and 

96h of in vitro tissue culture, T3 treated group (right) indicated a significant 

higher recovery of islets than control group (left panels) . Islets treated with T3 

exhibited excellent morphology and did not lead to core cell damage. These data 

demonstrate that T3 treatment was effective to reduce core cell damage of islets 

during the in vitro culture period. 
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Figure 6.   

(A) Islets viability.  

Islets were cultured in presence or not of T3 (10
-7 

M). Assessment of islets cell 

viability using fluorescence microscopy with propidium iodide (dead cell, red) 

and Live cell dye (MBL) (living cells, green) staining. Representative merged 

pictures are shown. Islets cultured without T3 showed the presence of numerous 

dead cells at the centre of the islets cultured with T3 showed fewer dead cells. The 

percentage of green and red cells was calculated by counting up to a minimum of 

200 cells for ten optical fields (200X) for each sample, randomly taken from two 

different experiments. P-value was calculated using a kruskal-Wallis test. the 

boxplot showed the median and the 10
th

, 25
th

 , 75
th

  and 90
th

 percentile. Bar 50μm; 

p< 0.005.  

(B) MTT assay.  

Cell viability has been evaluated by MTT assay performed on islets cultured in 

the presence or the absence of T3 for the indicated time. Data presented (B) are 

the OD values (570 nm) expressed as percentage of control on the axis, as means 

± SD, are the results of at least five experiments. Control has been taken as 100%. 

A comparison of the individual treatment was conducted by using one-way 

ANOVA followed by Dunnett post-hoc test p< 0,005. 

(C) Core cell damage.  

Islets were cultured in the presence or not of T3. The core cell damage was 

visualized under light microscopy and representative images are shown. Islets 

cultured in the presence of thyroid hormone showed a reduced core cell damage 

compared with islets cultured without T3. Magnification 100X. Bar:50μm.  
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T3 induces BrdU incorporation in rat islets cells      

Our previous demonstration in β cell lines revealed a mitogenic role for T3; 

although it is well known that the proliferation rate in islets is slight, we decided 

to investigate the T3 effect on islets cell proliferation via BrdU incorporation. 

Surprisingly, as shown in figure 7, in the core of the islets some BrdU positive 

nuclei were detectable in both the untreated and the treated samples. The T3 

treated BrdU nuclei number was increased. As shown, the counterstaining for 

insulin (green fluorescence) confirmed that the core of the islets is mainly 

populated by β cells, which were the ones positive for the BrdU staining. 
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Figure 7. BrdU labelling.  

Islets were cultured in the presence or absence of T3 for 48h and exposed to BrdU 

(10μM) for the last 48h. BrdU incorporation was evidenced with indirect 

immunofluorescence for BrdU (red). Islets were counterstained for Hoechst 

(blue). The percentage of BrdU positive cells was calculated by counting up to 

minimum of 200 cells for ten optical fields (200 X). 
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T3 protects rat islets from STZ induced apoptosis      

To assess whether T3 could also affect the survival of the islets exposed to pro-

apoptotic agents, the apoptotic process was induced by Streptozotocin treatment 

in the islets exposed to T3 or to vehicle alone. Islets were treated with 

Streptozotocin 2 or 5mmol/L for 2h. As shown in the Figure 8, for the 5 mmol/L 

dose, the percentage of TUNEL positive cells was high in the islets treated only 

with STZ, which demonstrates the presence of apoptosis (80%), while in the islets 

treated with T3 the TUNEL positive cells were highly reduced (30%), indicating 

that the hormone T3 is able to counteract the pro-apoptotic action of the drug.  To 

evidence the β cells inside the islets, counterstaining with insulin has been 

performed. As shown the insulin signal was mainly present in the core of the islets 

and it was superimposable with the TUNEL positivity, indicating that 

Streptozotocin could induce apoptosis specifically in the β cells. As shown, the 

untreated islets also show a low number of TUNEL positive cells, indicating that a 

physiological apoptosis was anyway present in the cultured islets. 
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Fig 8. TUNEL assay.  

Islets were exposed to two different doses (2mmol/L and 5 mmol/L) of 

Streptozotocin or not (untreated) and cultured in the presence (T3) or the absence 

(untreated) of T3 10
-7

M, as described in Materials and Methods. Apoptotic nuclei 

were detected as TUNEL-positive, nuclei were counter-stained with Hoechst  and 

merged images from a representative field (5 mmol/L dose) are shown. The mean 

± SE percent of TUNEL positive cells was calculated by counting up to a 

minimum of 300 cells from ten optical fields (200X) for each sample, randomly 

taken from two different experiments.  

P-values were calculated using Kruscal-Wallis test the box plot showed the 

median and the 10
th

, 25
th

 , 75
th

  and 90
th

 percentile. Bar: 50μM (10μM in the 

inset); p=0,0005.  
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T3 improves islet function in rat        

The thyroid hormone treatment preserved basal glucose responsiveness and 

insulin secretory function in rat islets. Isolated islets were incubated with or 

without T3 for 72h and 96h. A static glucose challenge assay (Figure 9) was 

performed and indicated that T3 was able to preserve β cell glucose 

responsiveness and insulin secretion in both basal (2.8 mmol/L) and stimulated 

(28 mmol/L) glucose condition. Moreover a significant increase in insulin 

secretion was observed in both the utilized glucose condition, thus suggesting that 

the thyroid hormone treatment improves the islets ability to secrete insulin.  
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Figure 9. Insulin secretion.  

Islets were cultured in the presence or not of T3 (10
-7

M). Insulin content of 

medium from islets cultured in the presence or the absence of T3 and exposed to 

basal (2.8 mmol/L) and stimulating (28 mmol/L) glucose concentration for 1h was 

assessed by Chemiluminescence. Results represent the mean ± SE of three 

separate experiments. 
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T3 upregulates Akt activation in rat islets       

Thyroid hormone treatment can induce the Akt phosphorylation in rat islets. As 

shown in the Figure 9, Western Blot for pAkt (Ser 473) clearly indicated that T3 

treatment (24h) was able to induce the activation of the kinase of 8 fold (4 R.D.U. 

in T3 cells vs 0,2 in control). 
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Figure 9. Akt activation.  

Western Blot analyses were performed as described in Materials and Methods and 

a specific band corresponding to the phosphorylated Akt (Ser 473) was detected. 

The expression of β-Actin was analyzed as a control for gel loading. At least three 

different experiments were performed, and a representative one is shown here. 

Densitometric absorbance values from three separate experiments were averaged 

(± SD), after they had been normalized to β-actin for equal loading. Data relative 

to each protein are presented on the right of the Western Blot panel in the 

histogram as Relative Densitometric Units (y axis). The different experimental 

groups are indicated on the x axis. A comparison of the individual treatment was 

conducted by using Student‟s t  test. p = 0,003. 
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T3 treatment preserves islets morphology and dimension in Balb/c mice   

To study the in vivo effects of the thyroid hormone T3, we used Balb/c mice. 

Diabetes has been induced with a “multiple low dose Streptozotocin injection 

protocol”, as described in the Materials and Methods section. The thyroid 

hormone action is mainly mediated through two thyroid receptor isoforms, 

namely TRα and TR. Our previous data evidenced that T3 action on pancreatic β 

cells and islets is predominantly mediated through the thyroid receptor β1 (Verga 

Falzacappa C. et al. 2009). Hence even if the expression of the thyroid hormone 

receptors α and β in murine pancreatic islets has already been described (Zinke A. 

et al. 2003) we confirmed this in our model by immunofluorescence and western 

blot analyses (Fig.10).  Mice were divided into three separate groups of study, 

namely the control one (CTR), which received vehicles alone; the Streptozotocin 

one (STZ), which received 2 intraperitoneal injections of STZ every 24 hours for 

2 days; and the Streptozotocin + T3 one (STZ+T3), which received both T3 and 

STZ, ip every 24 hours, for 2 days. At the end of treatments, mice were sacrificed, 

and pancreata were excised. Size and shape of the islets were evaluated by 

hematoxylin/eosin staining, while the expression of insulin as well as of glucagon 

by immunofluorescence analysis (Fig.11A). At the morphological level, as 

expected, islets from STZ-treated mice showed disarray of cellular architecture, 

irregular boundaries, reduced area and diminished β cell mass, when compared to 

control mice (Fig.11A). 

By contrast, T3 administration significantly prevented the decrease in  cell mass 

and islets area, counteracting the morphological changes induced by STZ. The β 

cell mass was directly analyzed by morphometry and the crossection area of the 

islets was measured as described in the Materials and Methods section. In fact, as 



58 

 

shown in Figure 11B while the area of the Streptozotocin islets was significantly 

reduced, the decrease was completely overcome by the T3 treatment.  Moreover, 

the T3-induced preservation of islets shape and size was not due to growth of 

undifferentiated mass, since no increase in the number of Ki67 + cells was 

observed (data not shown), excluding an eventual T3 caused indifferentiated mass 

growth. To better highlight the beneficial thyroid hormone effects on β cell mass 

and function, Real Time RT-PCR for Insulin has been performed. Typical 

standard curves plotted by the Lightcycler were obtained for Ins and rRNA 18s 

(r=-1). Melting point analysis of PCR products for both genes demonstrated single 

product formation, as confirmed by gel electrophoresis. As shown in the 

histogram, (Fig.11C) whether the presence of Insulin mRNA was barely 

detectable in the STZ treated pancreata, the thyroid hormone treatment was 

sufficient to maintain the Insulin gene levels comparable to control (65%), 

strongly overcoming the STZ inhibition. 
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Figure 10. Thyroid hormone receptors expression. 

Tissue sections from the different experimental groups of animals have been 

obtained as described in the Materials and Methods section. Indirect 

immunofluorescence for Thyroid Receptor (Red) and Insulin (Greeen) revealed 

the presence of TRα/β within the islets and the pancreatic tissue surrounding. 

Nuclei were counterstained with Hoechst (blue). Data are from 1 or 2 experiments 

with similar results (n=5 animals/group). At least ten fields per chamber and three 

independent cultures were examined. Space bar: 100 μm 

Western Blot analyses were performed as described in Materials and Methods and 

a specific band corresponding to the Thyroid Receptor α/β was detected. The 

expression of β -actin was analyzed as a control for gel loading. At least three 

different experiments were performed, and a representative one is shown here. 

Densitometric absorbance values from three separate experiments were averaged 

(± SD), after they had been normalized to β -actin for equal loading. Data are 

presented on the right of the Western Blot panel in the histogram as Relative 

Densitometric Units (y axis). The different experimental groups are indicated on 

the x axis. A comparison of the individual treatment was conducted by using 

Student‟s t  test. p= 0.003  
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Figure 11. 

(A) Histopathology. Tissue section from the different experimental groups of 

animals have been obtained as described in the Materials and Methods section. 

Immunofluorescence for Insulin  (green, left panels), and Glucagon (green, 

middle panel), and Hematoxilin and Eosin staining (right panels) were performed 

to analyze histopathological changes in pancreatic islets compared to control mice 

(CTR). Nuclei were counterstained with Hoechst (blue) in the IF experiments. 

Data are from 1 or 2 experiments with similar results (n=5 animals/group). At 

least ten fields per chamber and three independent cultures were examined Space 

bar: 100 μm. Histogram: The percentage of Insulin positive cells was calculated 

by counting up to a minimum of 200 cells for ten optical fields (200X) for each 

sample, randomly taken from two different experiments. 

The effect of treatment with T3 was statistically significant versus STZ. Student‟s 

t test: p< 0.05 vs STZ+T3.  

(B) Islet crossection area.  

Crossection area was calculated as described in the Materials and Methods and the 

results were averaged and represented on the histogram. The presence of T3 

significantly counteracts the reduction of islet area and deterioration. At least 10 

different islets per sample were analyzed for each experiment. Data are from 1 or 

2 experiments with similar results (n=5 animals/group). The effect of treatment 

with T3 was statistically significant versus STZ+T3. Student‟s t test:  p< 0.01 vs 

STZ+T3.  

(C) Real Time PCR.  

Total RNA was obtained from pancreata from animals of the various experimental 

groups and RT-qPCR was performed as described in the Materials and Methods 

section. Melting point analysis of PCR products for both genes demonstrated 

single product formation, as confirmed by gel electrophoresis (on the right). All 

PCR products were of the expected size and sequence. Normalized ratios are 

shown in the histogram; the presence of T3 was able to overcome the STZ 

inhibition of Insulin gene expression.  
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T3 counteracts STZ induced islets apoptosis in mice      

Based on our previous observations in β cell lines and in ex vivo cultured islets, 

where the presence of T3 was sufficient to completely overcome the ongoing 

apoptotic process, and considering the evident preservation of the β cell mass in 

T3 treated mice, we wanted to verify whether T3 treatment could protect the 

animals from STZ-induced effects by preventing apoptotic cell death. To this aim, 

TUNEL analyses and active caspases staining were assessed in pancreases from 

the different groups of mice. As shown in Figure 12, STZ treatment results in a 

much higher number of TUNEL + and active caspases + cells within the islets, 

when compared to control. These results demonstrate that the acute oxidative 

injury caused by STZ treatment induces a high level of cell death. By contrast, T3 

co-treatment prevents STZ-induced cell death, lowering the number of TUNEL + 

and active caspases + cells to levels comparable to control samples, as shown in 

the histogram of Fig. 12A. 

To deepen into the molecular changes induced by T3 in the apoptotic cascade, two 

major pro-apoptotic molecules have been analyzed by Western Blot, which are 

moreover both targeted by the Akt action. As shown in the Figure 12B, while STZ 

clearly induced BAX expression, the T3 can maintain its levels comparable to the 

control ones. In agreement, even the activation of the caspase3, a Bax 

downstream, which is clearly evident and strong in the STZ samples, shows basal 

levels in both the control and the STZ+T3 ones, indicating that T3 can contrast its 

activation by STZ.  
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Figure 12.  

(A) Apoptosis and survival. Tissue sections from the different experimental 

groups of animals have been obtained as described in the Materials and Methods 

section. Caspases activity (left panel, red) was detected by CaspGLOW  and 

TUNEL assay (right panel) was visualized by Immunohistochemistry. At 48h of 

STZ alone apoptotic nuclei were clearly detectable within the islets, while in the 

samples exposed contemporary to T3 apoptotic nuclei were hardly detectable 

within the islets. At least 10 different islets per sample were analyzed for each 

experiment. Data are from 1 or 2 experiments with similar results (n=5 

animals/group). Space bar: 100 μm 

Histogram: The percentage of TUNEL or Caspase positive cells was calculated by 

counting up to a minimum of 200 cells for ten optical fields (200X) for each 

sample, randomly taken from two different experiments. 

The effect of treatment with T3 was statistically significant versus STZ. 

Student‟s t test:  p< 0.01 vs STZ .  

(B). Western Blot. Western Blot analyses were performed as described in 

Materials and Methods on protein extracts from the various experimental groups 

and a specific band corresponding to Bax and Casapase3 was detected. As shown, 

while the presence of STZ clearly induced the expression of Bax and the 

activation of Casp 3, the presence of T3 was able to counteract STZ action, 

maintaining Bax and Casp 3 levels comparable to the CTR samples. The 

expression of β-actin was analyzed as a control for gel loading. At least three 

different experiments were performed, and a representative one is shown 

here.Densitometric absorbance values from three separate experiments were 

averaged (± SD), after they had been normalized to β-actin for equal loading. Data 

relative to each protein are presented on the right of the Western Blot panel in the 

histogram as Relative Densitometric Units (y axis). The different experimental 

groups are indicated on the x axis. A comparison of the individual treatment was 

conducted by using Student‟s t  test. p= 0.003  
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T3 does not influence Glut-2 expression or localization      

Since it is known that the glucose-analogue STZ requires the  cell glucose 

transporter Glut-2 to enter the cell and to exert its apoptotic effect (Schnedl WJ. et 

al. 1994), we investigated Glut-2 expression and localization in the islets by 

immunofluorescence analysis. As shown in Figure 13, the STZ could completely 

disarray the Glut-2 expression and localization, consistently with its negative 

effect on the whole islet structure; on the other hand both control and STZ+T3 

islets showed good localization and levels of the Glucose transporter. 

Interestingly,  T3 treatment did not alter either expression or localization of Glut-

2, ruling out the possibility that T3 could counteract apoptosis in β cells by 

preventing STZ entry via Glut-2.  In addition, since Glut-2 is the key responsible 

in the glucose uptake by the β cell, we can hypothesize that T3 effects are not due 

to any alteration in the glucose entry in the cells. 
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Figure 13.  

(A) Immunofluorescence. Tissue sections from the different experimental groups 

of animals have been obtained as described in the Materials and Methods section. 

Indirect Immunofluorescence for Glut-2 (green) revealed the presence of the 

Glucose transporter within the islets, clearly detectable . Nuclei were 

counterstained with Hoechst (blue). As shown with T3 treatment, no differences 

either in the expression levels or in the localization of the Glucose transporter 

Glut-2 was observed. On the other hand, the presence of the STZ was sufficient to 

cause a strong disarray in both expression and localization of Glut-2 in the islets. 

Data are from 1 or 2 experiments with similar results (n=5 animals/group). At 

least ten fields per chamber and three independent cultures were examined. Space 

bar: 100 μm 

(B) Western Blot. Western Blot analyses were performed as described in Materials 

and Methods on protein extracts from the CTR and the T3 treated animals and a 

specific band corresponding to Glut-2 was detected. The presence of T3 did not 

provoke any change in the Glut-2 expression, as compared to B-actin expression. 

The expression of β-actin was analyzed as a control for gel loading. At least three 

different experiments were performed, and a representative one is shown here. 

Densitometric absorbance values from three separate experiments were averaged 

(± SD), after they had been normalized to β-actin for equal loading. Data are 

presented on the right of the Western Blot panel in the histogram as Relative 

Densitometric Units (y axis). The different experimental groups are indicated on 

the x axis. A comparison of the individual treatment was conducted by using 

Student‟s t  test. P<0.003  
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T3 preserves ultrastructure of  cells against STZ      

To further evaluate the morphological recovery induced by T3 treatment in STZ-

treated mouse islets, TEM analysis was performed. Figure 14 contrasts the 

difference in ultrastructural appearance of well-granulated β cells in an islet of 

STZ+T3 mouse, as well as a CTR mouse, versus the extensively degranulated 

appearance of an islet from a STZ mouse. The marked reduction in insulin storage 

granules was generally associated with a dilatation of the rough endoplasmic 

reticulum. β cells containing mitochondria with a less dense matrix and partly 

damaged cristae were also observed, while large vacuoles, swollen cisternae of 

endoplasmic reticulum and myelinic bodies were also evident. These 

ultrastructural features are consistent with extreme secretory stress placed on 

residual β cells. In contrast, the -cells of STZ+T3 treated islets were 

characterized by an overall unaltered ultrastructural morphology, which was 

similar to control islets. The cytoplasm contained numerous granules of the round 

medium-dense core type or with angular or round crystalline material surrounded 

by a large clear halo. 
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Figure 14. Ultrastructure of β cell. 

Trasmission electron micrographs of STZ and STZ+T3 treated pancreatic islets 

compared to control (Uranyl acetate/lead citrate;  space bar 1μm). Nu, nucleus; 

MB, myelinic bodies. The ultrastructure of the beta cells was affected by STZ and 

maintained unaltered by the addition of T3. 

Data are from 1 or 2 experiments with similar results (n=5 animals/group). 
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T3 stimulates islets Akt activation in mice       

Previously, we demonstrated that T3 is able to activate the Akt signalling in 

pancreatic β cells and, most importantly, that this activation is the key event in the 

T3 action on pancreatic β cell function and survival;  hence, we sought to verify 

whether the observed T3-induced anti-apoptotic action may depend on Akt 

activation/phosphorylation. As shown in Figure 15, immunostaining for pAkt 

(Ser473) demonstrated that, while in STZ-treated islets Akt activation was 

significantly inhibited, when T3 was additionally administered, the levels of Akt 

phosphorylation were actually maintained comparable to control, untreated islets. 

This observation was further confirmed by Western blot analysis (Fig. 15, right 

panel). Furthermore considering that Akt survival action includes the regulation of 

some pro-apoptotic factors, as Bax and caspase 3, the evidence for Akt activation 

can easily be related to the shown Bax and Casp 3 inhibition by T3.  

These results, together with our previous evidences in β cell lines and in islets, 

strongly suggest that T3 exerts its β cell protective effect at least in part through 

the Akt signalling. 
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Figure 15.  

(A) Immunohistochemistry for pAkt.Tissue section from the different experimental 

groups of animals have been obtained as described in the Materials and Methods 

section. Immunohistochemistry for pAKT (Ser  473) was performed as described 

in teh Materials and Methods. The presence of T3 clearly provoked an increment 

in Akt activation, as compared to total Akt expression (data not shown). Data are 

from 1 or 2 experiments with similar results (n=5 animals/group). At least ten 

fields per chamber and three independent cultures were examined Space bar: 100 

μm.  

(B) Western Blot. Western Blot analyses were performed as described in Materials 

and Methods and a specific band corresponding to the phosphorylated Akt (Ser 

473) was detected. The expression of total Akt was analyzed as a control for gel 

loading. The presence of T3 clearly provoked an increment in Akt activation(Ser 

473), as compared to total Akt expression. At least three different experiments 

were performed, and a representative one is shown here. Densitometric 

absorbance values from three separate experiments were averaged (± SD), after 

they had been normalized to Akt for equal loading. Data relative to each protein 

are presented on the right of the Western Blot panel in the histogram as Relative 

Densitometric Units (y axis). The different experimental groups are indicated on 

the x axis. A comparison of the individual treatment was conducted by using 

Student‟s t  test. P< 0.001  
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T3 preserves glucose responsiveness in STZ treated mice     

Metabolic parameters were assessed in mice. After STZ injection mice were 

diabetic with significant fasting hyperglycemia, as described below, glycosuria 

and hypoinsulinemia when compared with age-matched control mice and STZ+T3 

mice. At the time of sacrifice body weight was still similar between mice injected 

with either STZ or STZ+T3, showing a little decrease only in few case of STZ 

injected animals. This was presumably due to dehydration and protein wasting 

associated with diabetes. Thus, the STZ injection protocol we used generated an 

experimental model of type 1 diabetes, as expected.    

Considering that T3 increases β cell function and survival, as we previously 

demonstrated, and that it maintains β cell mass in STZ-treated mice, it is 

conceivable that T3 may act as an anti-diabetic factor, ensuring euglycemic status 

by preserving β cell mass. We thus analyzed the ability of the different groups of 

mice to respond to an ip glucose tolerance test. Among the 25 mice receiving 

STZ, 21 became overlay diabetic (blood glucose >250 mg/dl); while 4 showed 

borderline elevated blood glucose (300>200 mg/dl). In contrast, among the 25 

mice treated with T3 together with STZ, only 4 became diabetic; the remaining 18 

maintained normal blood glucose levels (<150 mg/dl), while 3 died. In addition, 

glucose tolerance test evidenced that while the Streptozotocin treated mice 

completely lost their ability to normally respond to glucose loading , the presence 

of T3 preserves the ability of mice to restore their normal glycemia 120 min after 

glucose loading and maintains the serum glucose levels in the euglycemic range 

(Fig.16)  
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T3 preserves islets function in STZ treated mice      

Finally, we assayed  serum insulin levels to analyze the effect of T3 treatment on 

islets function. As shown in Figure 16 (A), STZ treatment induced a significant 

decrease in the insulin response, as showed by the lower levels of serum insulin at 

the different time points, according to the affected ability of control glucose blood 

levels; on the other hand when T3 was administered at the same time of STZ, 

serum insulin levels were comparable to the control (Fig. 16B), suggesting that T3 

treatment preserves insulin production, preventing STZ effects. These final 

observations supported the hypothesis on that T3 acts as an anti-diabetic in vivo, 

preserving β cell mass, counteracting β cell apoptosis and regulating the insulin 

response, via the Akt signalling. 

To better characterize the physiology of our mice, we decided to exclude the 

occurrence of Insulin intolerance by an Insulin Tolerance test. As shown in the 

histogram in Figure 16C, all animals showed an adequate Insulin responsive, 

although, as expected, glucose blood levels were higher in the animals treated 

with STZ. 

In all the experiments described above, the serum levels of FT4 and FT3 were 

evaluated by chemiluminescence to exclude the presence of hyperthyroidism in 

the animals; moreover the expression of the deiodinase 1 in liver was not altered 

by the treatment, as shown in Figure 16D, indicating a condition of  euthyroidism 

in the T3 treated mice. 
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Figure 16.  

(A, B) Physiological parameters. Analysis of blood glucose and Insulin levels 

after intra-peritoneal glucose tolerance test (upper panels). Glycemia was 

measured by glucometer, while Insulin concentration was assessed by ELISA 

assay, as described in the Materials and Methods section. 

Oral administration of T3 significantly reduces severity and progression of STZ-

induced diabetes in Balb/c mice and assured normal Insulin responsiveness.  

(C) ITT: Insulin tolerance was performed (lower panel) after intra peritoneal 

glucose injection. Insulin was injected intraperitoneally after glucose to the 

different experimental groups of animals. Glycemia was measured by glucometer. 

Results represent the mean 6 SE of three separate experiments. Grey: control 

black:STZ white:STZ+T3.  

(D) RT-PCR: Total RNA was extracted from liver from mice of the different 

experimental groups and RTPCR was performed as described in the Materials and 

Methods section. A single product was obtained for each gene, as showed by 

agarose electrophoresis. All PCR products were of the expected size and 

sequence. The presence of T3 did not induce any change in the DIO1 expression, 

as normalized to 18s. 
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Apoptosis plays an essential role in diabetic pathology, nonetheless being 

involved in the β cell death usually occurring in islet transplantation, it is also 

critical for diabetes treatment (Butler AE. et al. 2003). Factors that can augment 

the β cell mass are of particular interest in the field of the diabetes treatment, and 

to date many growth factors have been already investigated as potential agents 

able to increase or preserve the islet β cell mass  (Nielsen JH. et al. 2001). The 

ability of thyroid hormone T3 to influence pancreatic β cell has recently been 

investigated by my group. Our evidences (Verga Falzacappa C. et al. 2006; 2007) 

clearly demonstrated that T3 can be considered a mitogenic and survival factor for 

pancreatic β cell in vitro. 

In this study I investigated the effects of the  thyroid hormone T3 treatment on rat 

pancreatic islets during an in vitro culture and on β cell in vivo in a murine model. 

 

Thyroid hormone T3 improves function and survival of rat pancreatic islets 

during an in vitro culture 

The present study was undertaken to determine the effects of thyroid hormone T3 

on the survival and function of rat primary islets and resulted in four major 

findings.  

First, the addition of T3 to the culture medium can per se enhance islets viability 

and counteract the ongoing of core cell damage. Second, we demonstrated that 

thyroid hormone protects rat islets from apoptosis that occurs after streptozotocin 

exposure. Third the insulin secretion of islets is augmented in the islets cultured in 

the presence of the drug. Fourth T3 induced a significant increment in the 

activation of kinase Akt in rat islets. 
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Within the past 30 years, pancreatic islet transplantation has became a clinical 

practice and an option in the treatment of diabetes. Islet transplantation has a 

distinct advantage over whole organ transplantation attempting to reduce peri-

procedural morbidity. The major obstacles for successful clinical transplantation 

are the isolation of sufficient mass of islets together with the management of graft 

rejection (Shapiro AM. et al. 2006). The fatal outcoming, which is not related to 

immune rejection, has been thought to be due to insufficient or non-established 

vascularization of transplanted islets (Jansson L. et al. 2002). It has been 

demonstrated that during the first two days after transplantation, islets are not 

vascularized, leading to processes that impairs the inner β cell mass of the islets 

(Ono J. et al. 1979; Metrakos P. et al. 1994). As demonstrated, the main causative 

mechanisms involved in core damage might be necrosis and apoptosis 

(Rosemberg L. et al. 1999). Necrotic cell death may depend on the limitation of 

nutrition diffusion, while apoptosis is generally caused by pathological 

atmosphere arising from the isolation procedure. 

In this study, we evidenced the presence of a relevant core cell damage, which 

occurs mainly in the first day of culture and it is predominantly due to necrosis, as 

clearly demonstrated by TUNEL assay. Thyroid hormone T3 was able to 

counteract the ongoing of this process, thus preserving islets viability. Although at 

the present moment it is not precisely known which molecular mechanisms are 

involved in the core cell damage and no evidences exist about the link between 

thyroid hormones and necrosis, our previous works have unambiguously 

evidenced that T3 can promote the β cell proliferation, viability and survival by 

regulating mainly Akt pathway. We thus can hypothesize that a general impulse 
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from T3 to improve islets status might be due to its ability of regulating the main 

β cell features via Akt. 

An additional advantage of the pre-transplantation culture consists in practicing 

interventional strategies to prevent the profound β cell loss occurring via 

apoptosis, which has been estimated to cause up to 70% of the transplanted β cell 

mass destruction (Van der Windt DJ. et al. 2007). Hence, another approach has 

been to directly inhibit the apoptotic cascade, thus improving the survival 

capability of the islets (Emamaulle JA. et al. 2006). Wide spread apoptosis in the 

implanted tissue may also have long term deleterious consequences in islets 

transplantation, since the recipient‟s immune system is challenged with a large 

amount of apoptotic tissue, possessing both allo and auto-antigens from two or 

more donors. 

Taking these consideration, using protective factors to enhance β cell survival and 

prevent islets apoptosis is today widely explored. In accordance with our previous 

findings about T3 pro-survival effect, we herein demonstrated that the apoptotic 

process, induced by streptozotocin, could be counteracted by the T3 presence in a 

relevant manner. 

We previously demonstrated the pro survival action of T3 against STZ induced 

apoptosis in a rat insulinoma cell line (rRINm5f) and elucidated the molecular 

mechanisms underlying this effect, which involved, once again, the Akt 

signalling. It is conceivable that T3 might exert its survival action on STZ induced 

apoptosis mainly involving the same mechanism. 

The activation of Akt during islets culture might improve graft survival, indicating 

that Akt activity could render islets less susceptible to injury during the 

immediately post transplantation period. Therefore, it is plausible  that adding T3 
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to the islets culture medium and thus activating Akt during an in vitro culture 

period prior to transplantation could yield islets that are more likely to survive the 

insults encountered immediately after transplantation. In this study we sought how 

T3 is able to induce a 60% increment in Akt activation. We have previously 

deeply examined the key role that Akt plays in T3 action on pancreatic β cells. It 

is well established that Akt signalling, involving PI3K, is implied in cell cycle 

progression and survival even in pancreatic β cells, thus rendering the link 

between this molecule and the modulation of β cell mass, function and plasticity a 

critical subject for the intervention against diabetes. T3 is able to induce cell 

proliferation and survival;  moreover, T3 can increases pancreatic β cell size,  

protein synthesis and insulin secretion. All the cited effects appeared to be Akt 

mediated, thus confirming the relevance of this molecule in pancreatic β cell. 

In this study, we evidenced that thyroid hormone treatment can, indeed, induce 

islets survival and function. Infact, as shown, T3 can also increase insulin 

secretion. It has been demonstrated an autocrine effect of insulin on Akt 

activation, which results in an increment of survival and vitality of islets in culture 

(Aikin R. et al. 2006). Here, we demonstrated that T3 can increase insulin 

secretion and we also made evidence that the hormone caused an increment of 8 

fold in Akt activation already after 48 hours of treatment. Considered our previous 

evidences, we suggested that the observed Akt activation is directly dependent on 

T3 presence, however, considering the data about insulin autocrine action, we can 

speculate that Akt phosphorylation resulted from both a direct and indirect action 

on the signaling, thus involving also the insulin action. It has been demonstrated 

that the addition of exogenous insulin immediately following isolation was not 

able to improve short-term islet survival, while autocrine regulation via Akt was. 
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In particular, exogenous insulin can upregulate Akt during the first day of culture, 

but the effect is lost lately. It is thus plausible that stimulating insulin secretion 

involving the already seen mechanism, mainly through direct Akt activation. 

However, given the increment in insulin secretion due to thyroid hormone 

presence, we can hypothesize that also the autocrine insulin action might play a 

role in the survival effect of T3 on the islets. 

In conclusion, the presented observations, in the first part of my study, propose 

thyroid hormone T3 as a suitable factor to optimize and stimulate recovery and 

subsequent function of islets during in vitro culture indicating that thyroid 

hormone could play an important physiological role in  pancreatic islets.  

 

Thyroid hormone T3 counteracts streptozotocin induced diabetes in mouse  

The crucial endpoint of my study was to describe a novel protective action of 

thyroid hormone T3 from streptozotocin-induced diabetes in vivo. 

Recent clinical evidences indicate that thyroid hormone treatment can ameliorate 

diabetic condition (Ortega E. et al. 2008; Skarulis MC. et al. 2010). Our study is 

the first one to focus on β cell function in a diabetic animal model (STZ-induced 

diabetes mice) in presence of T3 administration. 

At first, T3 treatment rescued STZ-induced islets deterioration, as shown by the 

maintenance of the islet structure, size and consistency. Indeed, while STZ 

treatment induced reduction in islets size and cell number, the morphology of the 

islets, the abundance and distribution of insulin-, as well as of glucagon-, 

expressing cells in the animals treated with T3 and STZ, remained comparable to 

islets derived from control mice. Preservation of islets morphology was also 

confirmed at the ultrastructural level, where the presence of T3 prevented the 
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induction of STZ-induced features of cell damage (clumped chromatin, 

disorganized insulin-containing granules, altered mitochondria, endoplasmatic 

reticulum and vacuoles morphology). The observed ability to preserve the islets 

appearance was associated with protective role of T3 on STZ-induced β cell 

death, as shown by TUNEL analysis and caspase activation. The STZ-induced 

cell death observed within the islets was almost completely prevented by T3, in 

accordance with our previous data. It is known that streptozotocin enters β cells 

via the glucose transporter Glut-2 and induces islets deterioration by inducing β 

cell apoptosis (Shnedl WJ. el al. 1994). We sought that neither expression or 

localization of Glut-2 was altered by T3 treatment, ruling out that the observed 

effects may be dependent on impairment in streptozotocin internalization. These 

results are consistent with our previous observations where we showed that T3 

may be considered a mitogenic and survival factor for pancreatic β cell in vitro  it 

rescued, indeed, survival and function in freshly isolated islets in culture and 

protect cultured β cells from pharmacological induced apoptosis. 

Taken together our results show that the main mechanism leading to the increase 

in β cells mass, survival and function, when T3 is administered contemporary  

with STZ, is based on the prevention of STZ-induced β cells apoptosis. 

Increasing evidences  indicate that the decrease of the functional β cells mass is 

the hallmark of both type I and type II diabetes, resulting in the absolute or 

relative insulin insufficiency in both conditions. 

In this context, β cells apoptosis and impaired proliferation, consequences of 

hyperglycemia, are features that may be present in all forms of diabetes, 

suggesting that the classification of diabetes should be revalued. 
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β cells death can thus be considered has the key event of such diseases, 

highlighting the urgency to identify factors able to specifically target the β cells 

mass, avoiding any β cells toxic side effects. 

Moreover, we showed in this study that the observed T3 induced anti-apoptotic 

effects are associated with activation of the kinase Akt, the most important 

signaling pathway in the islets. This is consistent with recent data showing the 

ability of thyroid hormone T3 to stimulate Akt in neurons (Cao X. et al. 2009), in 

vascular myocytes (Carrillo-Sepulveda MA. et al. 2010) and with our previous 

data showing T3 stimulates Akt in pancreatic β cells in vitro. 

Considering these evidences, it is conceivable that the survival action of T3 in 

mice might involve the same mechanism, so that we did not deepen into Akt 

pathway. 

The important outcome of the observed T3 protective effects in β cells survival 

and function is the preservation of pancreatic metabolic activity.  Indeed, we 

showed that T3 administration actually preserves any intact response to glucose, 

and keeps plasma insulin levels in STZ-treated mice comparable to those in 

control mice; moreover we showed that both STZ and STZ+T3 treated mice do 

not develop insulin resistance. 

While β cell loss by apoptosis is a recognized feature of both type I and type II 

diabetes, approaches to block this process are limited, so far. Currently, the main 

goal for diabetes treatment is the maintenance of glucose homeostasis as close to 

normal as possible in order to avoid the devastating complications of this disease. 

These treatments include oral hypoglycemics and insulin sensitizers, different 

insulin preparations administered daily by multiple injections, continuous insulin 

pumps and, in some TID patients, transplantation of the whole pancreas or islets. 
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None of these approaches is focused on the maintenance of endogenous β cell 

mass, though it has been shown that even a small amount of preserved 

endogenous insulin secretion has great benefits in terms of clinical outcome. 

Therefore, finding a molecule that could be useful to block β cell apoptosis and 

thereby preserve and enhance endogenous β cell mass would represent a major 

breakthrough. The results presented in this study suggest that T3 may actually be 

a  good candidate. 

To this aim, however, therapeutic protocol should be accurately designed, in terms 

of both doses and time intervals, to avoid side effects. It is known indeed that 

excess of thyroid hormones production by the thyroid gland or by exogenous 

thyroid hormones administration, results in hyperthyroidism or thyrotoxicosis, 

characterized by tachycardia, with possible atrial arrythmias and heart failure, 

muscle wasting, osteoporosis in post-menopausal women, and other symptoms 

(Webb P. et al. 2004). However, thyroid hormone excess also results in beneficial 

effects, including the metabolic ones. Given the widespread effects of thyroid 

hormones on the physiology of multiple organs, the chance to use them in a 

therapeutical fashion remains attractive. In this context, it has been recognized 

that the induction of a subclinical hyperthyroidism, especially if temporary 

induced, might be well tolerated by patients and could be accepted in some 

clinical cases. As reported by Kaptein EM. et al. (2009), thyroid hormone 

treatment in obese patients with nonthyroidal illnesses provoked only a subclinical 

risk and no significant side effects concerning either weight loss or heart rate; not 

even mortality was worsened by THs treatment. In the present study, animals, 

which received thyroid hormone T3 for 48 hours, did not show any significant 

risky alterations in the thyroid status and did not develop any hyperthyroidism.  
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Next to the possibility to use T3 (or analogues) in vivo to counteract diabetes, 

given the pro-survival and anti-apoptotic activity on β cells described, T3 

administration may also be considered to improve setting for islets 

transplantation. A major impediment indeed to islet transplantation is the large 

number of islets required in order to confer insulin independence, resulting in the 

need of several organ donors (Harlan DM. et al. 2009). This fact is in contrast 

with the known small amount of β cell mass necessary for the maintenance of 

glucose homeostasis in vivo. It is therefore assumed that a large fraction of 

transplanted islets undergoes apoptosis and is lost. We previously demonstrated 

that the administration of T3 to the islets in culture preserves their vitality against 

both physiological and pharmacological cell death. T3 treatment makes islets less 

susceptible to stress during the transplantation, preventing β cell loss, reducing the 

number of the required islets and thereby improving the outcome of islets 

transplantation. 

In conclusion, our findings demonstrate for the first time that T3 administration 

counteracts STZ-induced diabetes, as being a pro-survival, anti-apoptotic factor 

for β cells, and thus preserves glucose sensing machinery. Altogether these results 

suggest that T3 can be considered for diabetes supportive therapy.  

As both type I and type II diabetes are diseases where deficiency in β cell mass 

and function is pathogenic, the ability of thyroid hormone to preserve islet mass 

without loss of β cell differentiated function makes T3 an attractive factor for 

future therapies for diabetes. 
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