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Abstract 

Solar thermal collectors represent one of the most widely used technologies for heat production from renewable 
energy sources. To increase efficiency and to not increase too much cost different type of solar collectors, and in 
particular of evacuated tube collectors have been realized. In order to compare performance, tests at different 
conditions and in different configurations have to be performed. The aim of this paper is to establish the performance 
of a new prototype via an experimental evaluation of the performance in different conditions and configurations of 
three collectors. The prototype is particular owing to his new head configuration that permits an innovative parallel 
configuration way. Therefore, parallel and series configurations have been analyzed applying the UNI-EN 12975, in a 
steady-state regime. The efficiencies of the two configurations have been tested for different flow rates and different 
inflow water temperatures. The experimental results show that, with the same input flow rate to the single collector, 
the parallel configuration has higher performance than the series one, reaching 15% higher level of efficiency. Thus, 
it seems that these prototypes in optimized configuration can lead to a systems improvement, thereby increasing the 
overall energy production or giving the same energy production with smaller collector area. 
 
© 2015 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the Scientific Committee of ATI 2014. 
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1. Introduction 

Solar radiation is the main source of the energy system of the Earth and it is the basis of all the natural 
cycles and events of life, including many human activities. The knowledge of how the radiation is 

 

** Corresponding author. Tel.: +39 06 377251 
E-mail address: e.bocci@unimarconi.it. 

Available online at www.sciencedirect.com

© 2015 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Scientific Committee of ATI 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/74321752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egypro.2015.11.804&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egypro.2015.11.804&domain=pdf


 Marco Ricci et al.  /  Energy Procedia   82  ( 2015 )  744 – 751 745

intercepted(absorbed or deflected) by the atmospheric layer that surrounds the Earth (the fraction of it that 
reaches the ground and the one that comes from all directions)is a prerequisite for the understanding of 
natural phenomena related with climate and meteorology and the location and design of the systems that 
use solar energy. The use of new forms of renewable energy, including solar, in the future will become 
increasingly necessary to ensure the energy needs while avoiding the environmental impact caused by the 
massive use of fossil fuels [1–4].As claimed by Oussama Ibrahim et al. [5], energy demand is 
continuously increasing due to global population growth and improved living standards. However, fossil 
fuels, the current primary energy source, are being consumed in a random increasing manner, even 
though they are non-renewable and they are not distributed equally in the earth. Consequently, 
environmental pollution, economic and energy security issues are fearfully increasing. Based on this fact, 
worldwide governments are working hard to raise the share of renewable energy sources and reduce 
energy consumption. Different energy approaches have been proposed for various cases such as energy 
conservation building codes, low energy buildings, ultra-low energy buildings, zero energy buildings and 
energy-plus buildings. Water heating is a major energy consumer all around the world. Water issues such 
as quality monitoring [6,7] and management, water heating [8–11], purification [12–14] are major energy 
and exergy issues for producers and consumers all around the world [15–20]. Kalogirou presented the 
various types of solar thermal collectors and applications [21].In reference to the report published in June 
2014 [22], the European solar thermal market decreased in 2013, as shown in Table 1 (the data are 
referred to the most installed and in operation collector type: the glazed). Contrary to what happened in 
previous years, when there were significant variations between markets, the downturn in 2013 affected 
almost all of the largest and medium size markets (Flat plate and Glazed). The main markets declined or, 
at best, stagnated. In particular, the Italian solar thermal market was characterized by a difficult start due 
to the economic crisis and uncertainty with the legislative framework. Only in the last quarter of 2013 
were signs of market recovery. The law No. 90 of 2013 (August) modified the tax deductions for energy 
efficiency measures in buildings, increasing the deductible share to 65% of the investment costs over 10 
years.  

Table 1. Installed and in operation glazed solar collectors 

Country  Market (=Newly Installed m2) In operation m2 

 2011 2012 2013 2013/12 2013 2013/12  

Italy 390,000 330,000  297,000  -10% 3,649,130 8.4% 

EU28+Swiss 3,689,499 3,457,915  3,051,543  -11.8% 43,109,543 6.2% 

 
The vacuum tube collectors have been extensively studied and there are many researches in the 

scientific literature: Li et al. [23] established a heat transfer model for a system of solar collectors in 
forced circulation; Kim and Seo investigated the thermal performance of a glass evacuated tube solar 
collector [24]; Morrison at al. studied different methods to extract heat from evacuated tubes [25]; Badar 
et al. investigated the overall heat loss coefficient [26]; Glembin at al. studied the impact of low flow 
rates on the efficiency of coaxial vacuum tube collectors [27]; Morrison at al. evaluated the characteristics 
of water-in-glass evacuated tube solar heaters [28] and developed a model for natural circulation flow rate 
through tubes mounted over a diffuse reflector [29]; Budihardjo and Morrison also evaluated the 
performance using measurements of optical and heat loss characteristics [30]; Shah and Furbo. 
investigated heat transfer and flow structures by means of CFD model [31].During the phase of design, 
study and calculation of the performance of the collectors system we referred to the work developed by 
Kaci et al. [32], Chen et al. [33], Giovannetti et al. [34], Fischer et al. [35], Zambolin and Del Col 
[36][37], Hayek et al. [38], Sakhrieh et al. [39], Föste et al. [40], Handoyo et al. [41], Liang at al. [42], 
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Ma et al. [43], Stanciu C. and Stanciu D. [44], Tang et al. [45],  paying attention to the specific test 
conditions and standards adopted in their researches. In particular the European standard UNI-EN 12975-
02 describes the methodologies for characterization of the thermal performance of solar collectors. The 
main objective of this study is to analyze an innovative configuration of a system of three vacuum U-tube 
solar collectors in order to determinate the thermal efficiency, comparing the results of the two different 
configurations: series and parallel. 

2. Experimental setup 

2.1. Collector specification 

An innovative prototype of evacuated tube solar thermal collector has been tested.T he prototype 
differs from the standard prototypes because has a third integrated pipe that allows parallel connection of 
multiple modules easy as the series connection. In fact, for installations of the same nature with modules 
belonging to the same market segment, collectors are commonly installed in series to avoid hydraulic 
complications. In particular enables up to 4-5 solar collectors to be connected, without the return line, 
with a unique hot water line and a unique cold water line. T he studied collector consists of eighteen 58 
mm diameter borosilicate double air-casing vacuum tubes fixed in an anodized aluminium framework for 
strength. Direct and diffused solar radiation penetrates the outside of the tubes and it is captured in the 
absorber. A special aluminium absorber inside the glass tube transfers the heat to the copper U tube inside 
the tubes. The collector specification is showed in Table 2. 

Table 2.Collector specification 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to assess the performance of the collector, a forced-circulation solar water heating system has 

been built. The test circuit was realized according to the UNI-EN 12975-2 requirements. 
Both configurations, parallel and series, were performed with a forced circulation closed circuit. The 

test circuit consists of the following components: two storage tanks of  (cold water) and  (hot 
water, heated by electric resistance), a thermostatic mixer valve (setting range: 308K-338 K) for mixing 
the two flows and in order to obtain a predetermined input temperature at the solar collectors system; the 
flow control valve, located between the mixer and the pump; a WiloST15/6-3, 230VAC, 50Hz circulation 

Collector specification Measurement Units Dimensions 

Measurements (lenght x width x height) [mm] 2002x1712x120 

Gross Area [m2] 3.427 

Aperture Area [m2] 1.80 

Absorber Area [m2] 1.46 

Weight (Empty) [kg] 86.5 

Fluid content [l] 3.09 

Max Pressure [kPa] 1000 

Recommended flow range [l/min*m2] 0.8 (1.45 for collector) 

Absorption coefficient [%] < 94.5 ±2 

Coefficient transfer of the glass [%] < 91.5 ±1 

Connecting dimensions [inch] 6 x ¾’’-M 
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pump, with3power regulation (43-61-82W); two flow meters; manometers, safety valves, an expansion 
tank, insulated copper pipes. 

2.2. Sensors and data acquirement  

The sensors used are: 
 thermocouples(typeJ, made of Iron(+) and constantan(Cu-Ni) (-), sensitivity of51.7microvolts/°C);  
 pyranometer(LPPYRA03AV, Delta Ohm second class, spectral range: 305nm÷2800nm, typical 

sensitivity: 10microV/(W/m2), measuring range: 0 to2000 W/m2);  
 anemometer (Gill Wind Sonic, range: 0-60m/s; accuracy: +/-2%; resolution: 0.01m/s, wind direction 

range: 0-359; accuracy: +/-3% @12m/s; resolution: 1).  
 flow transmitter (Vortex, range 0.9 – 15lt / min; Accuracy 1%). 

The temperature values given by the thermocouples were acquired with a National 
InstrumentsFieldPointCFP-1808. The software "Measurement and Automation", for data acquisition, and 
"Labview", for data recording have been used.  

The values provided by Anemometer and Solar imeter were acquired with ArduinoDue, configured 
with the software "CoolTerm". 

2.3. Test Conditions 

The system of 3 collectors has been repeatedly tested in its range of operating temperatures, under 
clear skies, in order to determine its performance in two configurations: Series and Parallel. 

The system has been tested in steady state condition, according with the UNI-EN 12975-2 that 
demands the requirements shown in Table 3 below.  

Table 3.Steady State Condition of UNI EN 12975-2 

Parameters Range 

  

  

  

 °  

Table 4. Testing Condition 

Preconditioning 15’ 

Time single test 10’ 

Radiation > 850W 

Operating pressure  (2,0 bar) 

Flow specific heat 4181  

Acquisition frequency 1 data per second 

 
It has been planned the testing condition showed in Table 4 below (e.g. the pre conditioning time of 

15 minutes proved to be enough time for the system to reach operating conditions and do not have 
influences due to the inertia of the system).  

Regarding the flow rate of the fluid in the closed circuit, the tests were carried out in such a way as to 
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compare the two systems in two different conditions: 
series inlet flow rate identical to the total parallel flow rate (e.g. with specific flow rate of 1.25 l/min 

this meaning 1.25 x 1.472(opening area) x 3 (number of collectors) = 5.52 l/min). 
same flow rate in the single panel (i.e. inlet flow rate to the parallel equal to three times the series one; 

e.g. with a specific flow rate of 0.7 l/min, it results series = 0.70*1.472*3 = 3.091 l/min, parallel = 
3*3.091 = 9.27 l/min) 

The general characteristics of each test are resumed in Table 5 below. 

Table 5. Test conditions 

Parallel configuration Series configuration 

Q=5.5 l/min Q=9.3 l/min Q=3.1  l/min Q=5.5 l/min 

T=293 K T=293 K T=293 K T=293 K 

T=308 K T=308 K T=308 K T=308 K 

T=323 K T=323 K T=323 K T=323 K 

T=338 K T=338 K T=338 K T=338 K 

 
The different test conditions allow to evaluate the performances of the system in the two different 

configurations(series/parallel) with a direct comparison. 

3. Results and Conclusion 

For each fluid temperature in input and for each flow rate, the efficiency was calculated as the ratio of 
the output power and the input power: 

   (1) 

The input power  is the product of radiation  and the aperture area , exposed to the radiation: 

   (2) 

The output power represents the heat(per time unit) exchanged to the heat-transfer fluid, which is 
proportional to the difference between input and output fluid system temperatures (DT), the flow rate (Q),  
density of the fluid ( ), the fluid specific heat (c), : 

   (3) 

   (4) 

The curve of instantaneous efficiency for each configuration was calculated, as claimed by the 
Standard UNI-EN 12975 (a1 and a2 are the linear and quadratic heat loss coefficient), setting an 
approximation of the data collection to the Ordinary Least Squares: 

   (5) 

where: 
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   (6) 

and: 

   (7) 

The efficiency values in function of Tm are showed in the Figure 1 below.  

 

Fig. 1. Efficiency variation versus Tm 

The Figure 1 shows that, as foreseen from literature and from equation 5, the efficiency decreases with 
the increase of Tm. Also, as foreseen from literature and from equation 1 and 4, the efficiency increases 
with the increase of the flow Q. Regarding the evaluation of the efficiency with the same flow rate in the 
single panel (i.e. series 3.1 and parallel 9.3 l/min), Figure 1 shows that not only the parallel efficiencies 
are higher (in particular from 20 to 40%) owing to the higher flow but also owing to the inferior output 
temperature and so lower Tm. Regarding the evaluation of the efficiency with the series inlet flow rate 
identical to the total parallel flow rate (i.e. series and parallel 5.5 l/min), Figure 1 shows that the parallel 
efficiencies are higher (in particular from 10 to 30%) but this cannot be accounted directly to the inferior 
output temperature because, at same time, the Tm values are also higher in the parallel configuration 
respect to the series. This meaning that within these prototypes something happen in the circulation of the 
water that cannot configure the collector as pure parallel configuration.  

In conclusion, the tests show, as foreseen from literature and from equations, that the parallel 
configuration can gives higher efficiency. Therefore, these prototypes, facilitating the parallel 
configuration, that increases the efficiency, canincrease the overall energy production or give the same 
energy production with smaller collector area (if applied in parallel instead of series configuration). But, 
the possibility to have an increase of efficiency without a loss of the quality of the energy produced, i.e. 
the reduction of the output temperature, has not registered with the same flow rate. In particular, the tests 
show that, with same flow, the performance of the collectors in the different series/parallel configuration 
follows the predictable series/parallel performance (i.e. increase of efficiency but reduction of output 
temperature in parallel configuration). Where the most applied case is considered, i.e. total flow fixed for 
the two configurations, the predictable higher efficiency of the parallel configuration is confirmed but, in 
this case, not, or at least not always, the inferior output temperature. To explaining the superior output 
temperature a simulative and experimental campaign at the level of each single panel and single tube has 
to be envisaged in order to verify if the temperature and/or the pressure drop difference can reduce the 
flow in a collector or part of a collector, explaining the superior temperatures and if these different fields 
of temperatures and flows can effectively guarantee higher efficiencies without remarkable temperatures 
decrease. 
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